RIDER

mproved Width and Linearity Control: The improved control and horizontal linearity controls are of the slider type. Use of slider type controls has made adjust ment faster and more accurate.

PM Focus: A PM focus assembly is used in all 19 series chassis. Use of the PM focus assembly provides ood line focus and minimizes the defocusing effect on the electron beam due to voltage variation.

Vertical Retrace Blanking Circuit: A vertical re trace blanking circuit is used in later production sets (stamped Run 5 and higher). Vertical retrace blanking is achieved by applying the pulse voltage appearing a he secondary of the output transformer to the grid o the picture tube.

HIGH VOLTAGE WARNING

High voltages are present throughout the horizontal output, damper and second anode supply circuits. No tlempt should be made to make measurements from high voltage points in these circuits with ordinary test equipment. See Voltage Data.

Warning: Operation of the set outside of the cabinet or with cabinet back removed involves a shock hazard. Exercise normal high voltage precautions.

PICTURE TUBE REPLACEMENT

Picture tube replacement for these receivers is similar that of other chassis using a rectangular glass picture tube. Make picture adjustments as instructed on pages 3 to 4. Instructions for adjusting curvature correcting magnets used with 21EP4A ($21^{\prime \prime}$ cylindrical faced) picure tube in 19 Hl sets is given on page 3.

REMOVABLE PICTURE WINDOW

All models using the 19 series television chassis have picture windows which can be easily removed from the front of the cabinet for cleaning the inside of the win dow, picture tube and picture tube mask. Two types o picture window mountings are used. A removable mold ing in used in wood cabinet models. Removable corne brackets are used in plastic cabinet models. Instruction for removing and cleaning the picture window, picture tube and picture tube mask is given below.

REMOVING PICTURE WINDOW FOR CLEANING

If the picture window has a removable molding (at the top), remove the window by first removing the Phillips head screws and molding at the top of the picture window. Pull the top of the window away from the cabinet slightly and lift it up out of the channel at the bottom.
After cleaning the window, picture tube and picture tube mask as instructed below, install the window by placing the bottom edge in the channel and replace the molding. Use care when tightening screws on molding to prevent stripping.

If the picture window has removable corner brackets, first remove the two brackets at the top of the window. Then, while holding the window, loosen the screws on the bottom brackets. Allow the window to tilt out slightly at the top until it can be grasped and lifted free of the cabinet.

After cleaning, install the window by setting it in position and mounting the corner brackets. Use care when tightening bracket mounting screws to prevent stripping or cracking glass.

CLEANING GLASS PICTURE WINDOW

Clean the picture mask using a soft cloth, dampened in mild soapy water. Clean the picture window and the face of the picture tube using a soft cloth, dampened with your favorite window cleaner. Wipe dry using a chamois or soft, lint free cloth. Only use cloths which are just dampened as presence of moisture or water inside the set may cause damage. Install the window as instructed above.

INSTALLATION and SERVICE ADJUSTMENTS

When installing, each set should be checked for DX Range Finder adjustment (generally set on zero), picture centering, picture tilt, shaded corners, proper size, linearity, etc., to insure best performance. It is especially important that Ion Trap adjustment be checked, and that the Channel Slugs be adjusted upon installation or servicing of every set to insure ease of tuning. Make all checks and adjustments as instructed on the following pages.

For best results, all checks or adjustments should be made using a transmitted television test pattern. A mirror placed in front of the picture tube screen will be of help in observing the picture while making adjustments at the rear of the chassis. Removing the TV back disconnects the interlocking line cord; use a separate line cord (part number 89A22-1) when servicing. See "High Voltage Warning" on page.

INDIVIDUAL CHANNEL SLUG ADJUSTMENT

 USING A TELEVISION SIGNALIndividual channel oscillator adjustment of every receiver should be checked upon installation or servicing. If this adjustment is properly made, it is possible to turte from one station to another by merely turning the CHANNEL control. With correct channel adjustment, best picture will be located at the approximate center of the range of the TUNING control. However, this may not necessarily be maximum sound output.
Channel slug adjustment can be made without remov ing the chassis from the cabinet. Adjust as follows: a. Turn the set on and allow 15 minutes to warm up.
 and 19 K 1 sets. Channel knob is removed.
${ }_{*}^{19 F 1 A}$ sets have no Tone control.

Set the CHANNEL knob for a station in operation Set all other controls for a normal picture
c. Remove the CHANNEL knob.
d. Set TUNING control at center of its range by rotating it approximately half-way. At this setting, the hole in the TUNING knob will coincide with the hole in the control panel.
e. Insert a $1 / 8^{\prime \prime}$ blade, NON-METALLIC tool in the hole adjacent to the channel tuning shaft (see illustration). For each channel in operation, carefully adjust the channel slug for best picture with clear detail. (Note that this may not be the point at which the sound is loudest.) Be sure that the Tuning control is set at the center of its range before adjusting each channel slug. Generally, only slight rotation of we slug will be required; turning he slug in too far will cause it to fall into the coil. (If the slug falls into the coil, remove the chassis from the cabinet and remove the col. Move the retaining spring aside, lightly tap the open slips out. Replace slug and reset retaining spring.)

ION TRAP ADJUSTMENT

To prolong the life of the picture tube, it is important that this adjustment be made upon installation, after adjusting the picture positioning lever, or after repositioning the focus coil.

Set the BRIGHTNESS control (at front of set) for normal brightness.
Position the ion trap on the picture tube close to the base. Starting from this point, very carefully move the ion trap forward or backward and at the same time, otate it slightly in either direction until maximum brightness is produced

Reset the BRIGHTNESS control for normal brightness. Adjust the FOCUS control (at the rear of set) for good ocus. Readjust the ion trap for maximum brightness.
Note that there may be two locations where the brightest picture can be produced. The second ion trap loca-

Figure 3. Control Panel on 19E1, 19G1 and 19N1 Sets.
tion, which is further away from the tube base, should not be used or tube damage will result.
important: If the corners of the picture are shaded, be sure the ion trap has been properly adjusted. Do not sacrifice picture brightness when adjusting the ion trap to remove shaded corners. To eliminate shaded corners, see the discussion under "Check Picture Centering". Be sure to readjust the ion trap each time after adjusting the picture positioning lever or repositioning the focus assembly. Tighten the ion trap mounting screw (if used)

DX RANGE FINDER ADJUSTMENT

This control is at the rear of the set, near the right side.
This control is used to improve TV reception in fringe areas and in areas where there is interference.
The DX RANGE FINDER should be at the " 0 " position, if satisfactory pictures can be obtained by using the operating controls on the front of the set.

Where the TV signal strength is weak, the picture can often be improved by turning the DX RANGE FINDER part way to the right or, if necessary, all the way to " 300 " Snow (noise) in the picture can sometimes be mini mized by careful adjustment of the DX RANGE FINDER
Caution: If the DX RANGE FINDER is turned too far to the right for a strong signal, the picture may bend (overload).

If the signal strength changes, it may be desirable to change the setting of the DX RANGE FINDER; however, it is generally possible to set it at a single compromis position which gives reasonable reception for the differen signal strengths.

It is important to keep the DX RANGE FINDER setting as low as possible consistent with satisfactory pictures.

ADJUSTING CURVATURE CORRECTING MAGNETS FOR SETS USING A 21EP4A ($21^{\prime \prime}$) PICTURE TUBE

If either side of the picture has excessive curvature (pin cushion effect) or if corners of the picture are bent inwardly, this can be minimized by adjustment of the correcting magnets located on the yoke bracket. Eithe side of the picture can be adjusted individually by using the magnet on that side of the picture tube. A picture or test pattern having straight vertical lines nea the sides can be used for making adjustment; the patter from a cross-hatch generator is preferable. IMPOR ANT: A cross-hatch generator which is no capal syn is not suitable Adjust as follows:
a. Set the receiver controls for normal picture. Be sure that the picture is centered properly and vertical line arity adjustment is made.
b. Check the radial position of the magnet brackets. The magnet brackets are generally set so that the mount ing screw is centered in the curved slot. It should arvature necessary to change from this setting if the with respect to the side of the picture tube.
c. Move the correcting magnet against the deflection yoke bracket. While observing the vertical lines on he same side of the picture that the magnet is locat ed, slowly move the magnet forward until curvature of vertical lines near the side is minimized. If the magnets are moved too far forward, the corners the picture will bend inwardly or become shaded.

PICTURE CENTERING ADJUSTMENT

If the picture is off center, it can be centered by using the picture positioning lever, and when necessary, reposi-
tioning the focus as. tioning the focus assembly around the Follow the instruc. tions given below Note that the pic. ture positioning lever can be move
 lever can be moved sideways, or up and down.

Centering the Picture

a. Adjust ion trap as instructed on preceding page.
b. Adjust the picture positioning lever (sideways, or up and down) for correct picture centering. If center ing is not done with a test pattern, it may be neces sary to reduce picture height and width to determine correct centering c. Readjust the ion trap.

Difficulty in Centering the Picture

a. Adjust ion trap as instructed on preceding page.
b. Slightly loosen the two screws " K " which hold the ocus assembly to the yoke bracket. Center focu assembly around the tube neck; tighten screws.
c. Center the picture with the picture positioning lever If the picture cannot be centered with the lever, it may be necessary to locate the focus assembly slightly off center and then center the picture with picture positioning lever.
d. Readjust the ion trap.

Difficulty in Eliminating Shaded Corners
a. Loosen screws " G ", then move the yoke suppor bracket forward until rubber grommet " F " is firmly against the flare of the picture tube.
b. Move the deflection yoke coil " E " as far forward as possible. In some cases, it may be necessary to loosen the two screws "D", move the bracket up or down and then move the deflection yoke coil as far forward as possible.
c. Adjust ion trap as instructed on preceding page.
d. Shaded corners may also result from use of the wrong ion trap. These picture tubes use ion trap 94A15-3. The part number is stamped on the magnet.

FOCUS ADJUSTMENT

Focus adjustment can be made without removing the cabinet back from the receiver by rotating the shaft ex tending from the rear of the focus assembly. Set the Picture control for normal picture and the Brightnes control at slightly above average brightness. Rotate th control shaft to the right or to the left until the picture is in sharp focus. Slight rotation in either directio should generally bring the picture into focus. If th picture was greatly off focus, readjust the ion trap.

PICTURE TILT ADJUSTMENT

If the picture is tilted, loosen the wing screw "H" on he defection yoke coil and slight. until the the yoke straight. Before straight. Before screw, be sure that the yoke is moved the yoke is moved
as far forward as as far forward as
 Picture Tilted; Adjust
Deflection Yoke Coil. corners of the picture may become shaded.

HEIGHT AND VERTICAL LINEARITY

 ADJUSTMENTIf the picture is of incorrect height (vertical size), ad ust the HEIGHT control. This adjustment will affec the vertical linearity of the picture. If necessary, al
ternately adjust the VERT. LIN control and HEIGH ternately adjust the VERT. LIN control and HEIGH affected mostly by the Vertical Linearity control; th lower portion by the Height control

Incorred Height Alternatly Adjusl
HEICHT and VERT. LIN. Controls
If the large circle in the test pattern appears cramped or flattened at top or bottom (non-linear vertically), correct by alternately adjusting the VERT. LIN. control and the HEIGHT control.

Top or Bottom of Picture Cramped or Flattened; Adjust
VERT. LIN. and HEIGHT.

WIDTH ADJUSTMENT

If the picture is too wide or too narrow, adjust the WIDTH adjustment lever by moving it to the left or to the right until the picture just fills the picture tube screen.

HORIZONTAL LINEARITY ADJUSTMENT

If the large circle in the center of the lest pattern has a cramped or flat. tened appearance at lened appearance at either side (non-
linear horizontally) adjust the HORIZ. LIN. by moving it to the left or to the right as required. Note that the Horizontal Drive and

Side of Picture Cramped or
Flattenad; Adjust HORIZ. LIN.
he Width adjustment also affect linearity. Be sure that these adjustments are set correctly if difficulty is en these adjustments are set correcizontal linearity adjust ment.

HORIZONTAL DRIVE ADJUSTMENT

If this adjustment is not properly made, it may be difficult to obtain sufficient picture widh and brightness. Adjust as follows
a. Turn the CHANNEL control to an unused channel. (This adjustment may be made on a channel in operation, but results will not be as accurate.)
b. Set BRIGHTNESS control at a lower than average setting. Turn PICTURE control completely to the left
c. Turn the HORIZONTAL control (front panel) completely to the left.
d. Turn the HORIZ. DRIVE screw out (to the left) as far as possible while still maintaining slight tension

Vertical Line:
HORIZ. DRIVE.
on the trimmer plate. If a white vertical line for lines) appears on the screen, slowly turn the HORIZ DRIVE screw in, until the line(s) just disappears.

Do not use the Horizontal Drive to obtain correct width or linearity. If necessary, make the Width and Horizontal Linearity adjustments.

SIMPLIFIED HORIZONTAL SYNC ADJUSTMENT

A receiver which requires horizontal sync adjustment can be corrected only by following in extact detail the step-by-step procedure given here.
Check whether adjustment is necessary by rotating the HORIZONTAL control (A) on the front panel from one end to the other; the picture should hold as follows
a. For strong or medium signals, the picture should
remain in sync over the entire rotation of the

Bending or Jitter at Top

HORIZONTAL control. Horizontal sync adjust ment is required if the picture falls out of sync
bends at the top (jitters). or doubles up on the bends at the top (jitters). or doubles up on the side. See illustrations below.
b. For weak or fringe area signals. the picture should remain in sync over $1 / 2$ to $3 / 4$ of the rotasync adjus HORIZONTAL control. Horizontal out of sync. hends at the top (jitters), or doubles up on the side. See illustrations below.

Adjust Horizontal Swne as follows:

1. Set the DX Range Finder at " 0 " position (see figure 5) and set the PICTURE control (contrast on front panel) for normal picture
2. Important: Before making these adjustments, be sure that the picture can be made to sync vertically (re main stationary up and down) as lack of both ver tical and horizontal sync is an indication of trouble in the sync circuits. If replacement of tubes V401 and V403 does not eliminate sync trouble: see Service Hints For Horizontal Sync on page 5.

Figure 5. Rear Virw of Chassis Showing Horizonta
3. With the picture in sync. rotate HORIZONTAL con trol (A) on front panel from one end to the other. If picture does not hold sync as described in paragraph "a" or " h " at left, set the HORIZONTAL control (A) the point where the picture just loses syne FREQLIENCY (B) until the picture just falls back into sync. It may require several turns of adjustment (B). Repeat this procedure until the picture holds as described in paragraphs "a" or "b" at left. If the picture can be made to hold sync with adjustment of (B), adjustment is complete; otherwise proceed with step 4.
4. If the picture cannot be made to hold sync as described in paragraphs a or b at left, turn the LOCK RANGE adjustment (C) clockwise until tight, then back it out $1 / 2$ turn for strong and medium sig. nals. If signals are generally very weak, turn it out a full turn from the tight position.
5. Recheck step 3.
6. If horizontal sync is still unsatisfactory, carefully reIf horizontal sync is still unsatisfactory, carefully. re-
peat entire procedure. Try replacing tube V403. It peat entire procedure. Try replaciny turizontal Oscillator Alignment (using an oscilloscope) as instructed

COMPLETE HORIZONTAL OSCILLATOR
 ALIGNMENT

(Requires Oscilloscope)

1. IMPORTANT: Set the DX RANGE FINDER at " 0 " position (see figure 5) and set the PICTURE control (contrast on front panel) for normal picture.
2. In some chassis (stamped Run 1 or lower), the HORI. ZONTAL control (A) may be wired in reverse. If so, it will be impossible to make adjustment properly by following the instructions below.
To determine whether the control wiring is reversed, check the lug to which blue wire is connected. The blue wire should connect to the lug nearest bot tom edge of the chassis and the 68,000 ohm resistor R425 should connect to the lug nearest the top of the chassis. If wiring is reversed, change the two con nections in accordance with the information given
here.
3. IMPORTANT: Connect oscilloscope high side hrough a 10 mmfd . condenser to terminal marked C" or "2" on the horizontal blocking transforme T404. (See figure 6.) It is important to use short eads and a very low capacity condenser (at leas 10 mmfd .) to avoid loading the circuit and thus dis torting the waveform

Figure 6. Bottom $\begin{gathered}\text { View of Chassis Showing Horizontal } \\ \text { Sync Adjustments. }\end{gathered}$
4. Set the oscilloscope sweep to 15.75 KC or a sub multiple of it.
5. Adjust the HORIZONTAL LOCK slug (D) (see fig ure 6) until the oscilloscope waveform pattern ap pears as in figure 7 . The rounded and pointed peaks

Figure 7. Horizontal Oscillator W'aveform
of the waveform must have equal height. The pic ture must be kept in sync to obtain the proper oscil loscope waveform pattern. Keep the picture in sync by adjusting the HORIZONTAL FREQUENCY (B) and/or the LOCK RANGE trimmer (C). If the pic
ure still will not sync, check for a defective tube components, or wiring, before continuing further See Service Hints on Horizontal Instability And Tea ing In Picture on page 5.
6. Disconnect the oscilloscope leads.
7. Set the HORIZONTAL control (A) fully counter clockwise to break sync. If the picture does not go out of sync, momentarily interrupt the channel se ector, or adjust the HORIZONTAL FREQUENCY (B) until several bars appear sloping downward to the left. (See figure 8.)
8. Slowly turn the HORIZONTAL control (A) clockwis and note the least number of bars present before the picture falls into sync. If two or three bars are present, the LOCK RANGE trimmer is set properly, so reset the HORIZONTAL control (A) to maximum QUENCY (B) until the picture falls back into sync.

Figure 8. Picture Out of Horizontal Sync.
9. If more than three bars are present, adjust the LOCK RANGE trimmer (C) slightly clockwise. If less than 2 bars are present, adjust the LOCK RANGE trimme (C) counterclockwise. Repeat steps 7 and 8.
10. Rotate HORIZONTAL control (A) on the front panel from one end to the other. The picture should hold sync as follows
a. For strong or medium signals, the picture should remain in sync over the entire rotation of the HORIZONTAL control. If it falls out of sync, bends at the top (jitters), or double up on the side; sync adjustment is required see step 11 below.
b. For weak or fringe area signals, the picture should remain in sync over $1 / 2$ to $3 / 4$ of the rotation of the HORIZONTAL control. If it falls out of sync, bends at the top (jitters), or dou bles up on the side; sync adjustment is re quired; see step 11 below.
11. If picture does not hold sync as described in para graphs "a" or " b " above, set the HORIZONTAL control (A) at the point where the picture just lose sync or becomes unstable and adjust the HORIZON TAL FREQUENCY (B) until the picture just falls back into sync. It may require several turns of ad ture holds as described in paragraphs " a " or " b " of step 10 .

©John F. Rider

SERVICE HINTS

Also see Production Changes in this Manual.

TROUBLE SHOOTING

The television chassis covered in this Service Manual are newly designed sets incorporating the latest in televeries chassis are Newlined fires incorporated "N the 19 tures", on page 1. Important. Since there are many dif. ferences in these chassis over earlier model Admiral eceivers, it is important to remember the following when servicing or installing these receivers.

All chassis have a "DX Range Finder Control" (AGC delay circuit). This control is a potentiometer located at the rear of the chassis to enable adjustment of receiver sensitivity to suit the signal conditions in any local or ringe area. lno sive contrast and por sync Information on the adjust ment of the DX Range Finder control is given on page 3

The sound output tube V204 (6Y6G or 6AS5) func ions as a voltage dropping tube in addition to being a sound output tube. The cathode of the sound output tube operates at approximately 140 volts above chassis ground for TV operation. If the sound output stage becomes defective, $B+$ voltage to the TV tuner, sync separato and clipper, video amplifier and AGC delay circuit will be affected.

In chassis stamped Run 2 or lower, the first and second IF amplifiers V301 and V302 are in series. The cathode of V302 is operated at approximately 120 volts above chassis ground. If either V301 and V302 become defec tive, $B+$ voltage to the other stage will be affected.

In chassis stamped Run 3 and higher (except 19B1) B+ voltage to the first and second IF amplifiers V301 and V302 is in parallel. When making voltage measurements in chassis (except 19B1) stamped Run 3 and higher, it is important to note that the plate and screen voltages at the first and second IF amplifier stages V301 and V 302 , may vary over a wide range, depending on the strength of the TV signal. The voltages shown on the chematics are Taken wik, he Volage Data on sehematic pages.

In sets using the 94D46.2 or 94D46.3 cascode tuner, the triode sections of the RF stages (V101) are in series. The cathode of the second triode section is operated at approximately 130 volts alove chassis ground. If the
ube should be coine defective or be removed fron the socket, there will be no $\mathrm{B}+$ voltage on the plate of the frst triode section. See B+ distribution diagrams, figures 9 and 10 .

The horizontal oscillator circuit utilizes pulse width modulation for control of the horizontal oscillator fre quency. Information on servicing the horizontal oscil lator and horizontal oscillator control circuit is given in paragraph "Service Hints for Horizontal Sync".

Note: An oscilloscope is required for alignment of the horizontal oscillator waveform. Information on alignment of the horizontal oscillator is given on page 4

When servicing these chassis in the shop, it is imporant that the correct type of speaker or speaker substitute e used. The 19B1. 19CI. 19F1. 19F1A and 19 Hl chasPM speak EM speaker with output transformer, or a nounted to it. 19E1, 19G1 and 19N1 chassis stanped with the letter " T " at the rear of the chassis, use a permanent magnet (PM) speaker with the output transformer mounted on the television chassis. $19 \mathrm{E} 1,19 \mathrm{Gl}$ and 19 Nl chassis without the letter " T " use a permanent magnet (PM) speaker with the output transformer mounted directly on the speaker. lise of an incorrect speaker will result in no B+ voltage or weak and dis. orted sound.

B+ DISTRIBUTION IN TELEVISION CHASSIS

Figures 9 and 10 illustrate the basic $\mathrm{B}+$ distribution used in these chassis. The B+ distribution in chassis lamped 2 or lower is shown in figure 9. The $B+$ distribuion hassis stamper kun and cher is B_{+}circuits of TV and combination models and TV models using a different RF amplifier tube (V101) in the TV tuner. Alternate connections for the RF amplifier
tube (V101) is shown in figure 9. See "Television Chassis Differences", and "Trouble Shooting" information.
SPEAKER FIELO
FIIER ${ }^{\text {OR CHOKE FMSE }}$

Figure 10. B $+\underset{\text { Stastribution in All Chassis }}{\text { Cox }}$ (except 19B1)

SERYICE HINTS FOR HORIZONTAL SYNC

The horizontal oscillator control circuit controls the horizontal oscillator by a method called "Pulse Width Modulation". This method is so called, because the width of the pulse applied to the grid of the horizontal oscillator control section determines the length of time that current flows through this section. The duration of current flow through the control section determines the DC control voltage applied to the grid of horizontal oscillator, thereby controlling the frequency.
The waveshape applied to the grid of the horizontal
oscillator control section is formed by combining a par tially integrated pulse from the horizontal oscillator output and the horizontal sync pulse. If these two pulses ombine properly, the waveshape shown in figure 11 will be developed and the horizontal oscillator will be in sync

With no sync input, the waveform at the horizontal oscillator control grid should appear as shown in figure 12. Since the horizontal oscillator control voltage is dependent upon a waveshape formed at the horizontal output stages (V404, V405 and V406), a defective com

Figure 11. Waveform on Grid Pin 1 of V403
onent in one of these stages may cause sync trouble. f the waveform shown in figure 12 can be obtained, this will indicate .proper operation of the horizontal sweep circuit.

Figure 12. Waveform on Grid Pin 1 of V403

When the horizontal oscillator is out of sync, it may difficult to observe this waveform (figure 12) on an oscilloscope due to the presence of out-of-phase sync pulses. In this case, remove the sync separator and sync ipper tube V 40 . He the waveshape shown in figure 12 its socket. Then, remove the horizontal oscillator and control tube V403 (6SN7GT) Conventional, well-shaped ync pulses should appear at control arid (pin 1) of V403.

If there are no sync pulses, or the pulses are of low or varying amplitude, accompanied with noise, the sync circuits should be checked. However, if the sync pulses are well-shaped and of constant amplitude, the horizontal scillator may be misaligned. Place V 403 back into its ocket and make given on page 4.

If it is impossible to sync the picture, or obtain the correct waveform at terminal " C ", check for a defective component. See the following paragraphs,

HORIZONTAL INSTABILITY AND TEARING IN PICTURE

Horizontal instability, tearing or bending may be due to misadjustment of the DX Range Finder or orizontal sync adjustments; or it may be due to a aulty tube or defective components. If causes of rouble have been checked as instructed in the follow. ing steps and the chassis is Run 2 or lower, make the
circuit changes described under the heading below
on "Circuit Changes to Reduce Bending and Improve Horizontal Sync".
Make checks as follows:
a. Check to see if trouble is due to misadjustment of the DX Range Finder control. Set control at " 0 ", use this setting unless a higher setting gives better re-
sults. See figure 5 . sults. See figure 5.
b. Check horizontal sync adjustment as instructed under "Simplified Horizontal Sync Adjustment" on page 4 . djustment, continue with the following izontal Sync adjustment, continue with the following steps.
c. Replace the horizontal oscillator tube V403 (6SN7GT). Try tubes of different brands. Repeat Horizontal Sync djustment.
d. Check resistors (R420, R421, R422, R423, R424 and R428). These resistors should be within 5% tolerschematic. Also, check condenser C418 (.01 mfd.) for correct capacity. If this conser 418 (.01 mid.) being faulty it should be replaced with a 01 mfd 400 volt, 10% condenser part number 64 A 2.16

$\mathrm{mmfd}, 10 \%$ mica condenser, part numbr 65 B 21271
Check condensers C413 and C416 for either open or short.
g. If tapping the horizontal oscillator transformer T404 causes erratic operation, a cracked adjustment slug
in the transformer may be the cause If T404 is suspected as being the cause of the trouble, it hould be replaced. should be replaced
h. If after following each of the above steps, horizontal difficulties are still present, and the set is Run 2 o described in the section below.

CIRCUIT CHANGES TO REDUCE BENDING AND IMPROVE HORIZONTAL SYNC

(Applies to chassis stamped Run 2 or lower.)

Making the following circuit changes to an early production chassis, will minimize bending of the
picture at high contrast control settings in strong signal areas and improve horizontal sync in medium fringe areas.
IMPORTANT: Before making changes below, check whether bending or sync trouble is due to faulty tubes, defective components, misadjustment adjustment. See pages 3 and 4 for information on adjustment. See page 3 and 4 for information on Add chang
Add changes as follows

1. Check connections to the DX Range Finder control R315. Be sure that the center terminal is grounded and that the white wire goes to the terminal of the DX Range Finder nearest the bottom edge of the chassis. Connect a wire lead from pin 1 of V304 6AL5) to the remaining terminal of the Range Finder control. See figure 14.
2. In chassis using a 6AS5 sound output tube (V204), change resistor R212 from 3,600 ohms to 1,500 ohms, $1 / 2$ watt, 5%. In chassis using a 6Y6G sound output ube (V204), change resistor R212 from 4,700 ohms to 2,000 ohms, $1 / 2$ watt, 5%.
3. In chassis using a 6AS5 sound output tube (V204) change resistor R213 from 1,100 ohms to 910 ohms, $1 / 2$ watt, 5%. In chassis using a 6 Y 6 G sound output tube, change resistor R218 from 2.000 ohms to 1,500 ohms, $1 / 2$ watt, 5%.
4. In some areas, it may be beneficial to increase the sync pulse level by changing the sync take-off on the video amplifier plate load. Disconnect resistor R32 and R326s) from the junction of resistors R325 unction of P325 ohmsi. Reconnect R327 to 306. See figure 14.
5. Make the Run 4 change, which consists of connecting a 8.200 ohm resistor (R 443) in series with resistor R407 (between terminal 3 of the vertical integrator couplate and pin 1 of V401B). See figure 14.
6. Since step 1 above is effective only with the DX Range Finder set at " 0 ", use this setting unless a higher set ting gives better results.

Figure 14. Bottom View of Chassis Showing Simplified Circuit Changes for Reducing
Bending and Improving Horizontal Sync in Chassis Stamped Run 2 or

EXCESSIVE SNOW IN PICTURE DUE TO

Excessive snow in the picture can be caused by faulty ubes in the receiver. Check receiver as follows:
Short circuit the antenna terminals and turn the Picture control (contrast) fully clockwise.

Connect a vacuum tube voltmeter from test point "V" to chassis. Set the channel selector on an unassigned channel. If the voltmeter reading exceeds .6 volt negative, excessive receiver (tube) noise is indicated. This condition can usually be corrected by tube substitution. Substitute tubes in the following order: Video detector ube V304, RF oscillator tube V102, RF amplifier tube V101 and IF amplifier tubes V301, V302 and V303.
Corona or arcing in the second anode supply can also cause a high noise reading at the video detector resulting in excessive snow in weak signal areas.

If the above does not eliminate excessive snow and the chassis is stamped Run 2 or lower, see the "Snow Changes listed under Run 3 Production Change on page 16. Note: Since this portion of the Run 3 change is ather involved, we do not recommend that it be made in he field. However, if it is desired to make the changes, complete instructions can be obtained by writing the Service Department of the Admiral Corporation at 201 E. North Water Street, Chicago 2, Illinois.

MISCELLANEOUS TROUBLE DUE TO

FAULTY TUBES

Faulty tubes cause the majority of receiver troubles. The list below contains most common troubles which are enerally due to faulty tubes.
a. Poor fringe area reception due to low B plus voltage. Check the 5 U 4 G tube
b. Poor fringe area reception due to low sensitivity. Check the 6BC5 and 6BZ7 tubes, if used in the receiver.
c. Picture and sound separated due to IF oscillation. Check the 6CB6 and 6U8 tubes.
d. Picture bending caused by leakage between tube ele ments. Check the 6BC5 and 6CB6 tubes.
Poor sync stability, usually more noticeable in ver tical circuit. Check 12AU7 tube
f. Washed out picture due to negative grid current. Check 6CB6 tube.

VERTICAL JITTER AND POOR INTERLACE
Vertical jitter and poor interlace may occur in early production receivers, if the red lead (terminal 3) of the circuit of the vertical output tube V402 (654) lead to the deflection yoke should be dressed against the chassis and as far away from the grid circuit of the rtical output tube a possible.

ADDING VERTICAL RETRACE BLANKING CIRCUIT TO AN EARLY PRODUCTION CHASSIS
All 19 series chassis stamped Run 5 and higher, have a ertical retrace blanking circuit incorporated for eliminaing retrace lines. A schematic of the retrace blankin rcuit and detailed instructions for adding this change an early production receiver is given in the para graphs below. The following parts are required:
Sym. Description
Part No
$427.01 \mathrm{mfd}, 600$ volts, condenser.............64B 9.13
C 428.01 mfd , 400 volts, condenser............64B 9.32
R445 56,000 ohms, $1 / 2$ watt, resistor..........60B 8.563
R444 2700 ohms, $1 / 2$ watt, resistor.............60B 8-272

1. Locate the red wire between pin 10 of the picture tube and the junction of the black lead of T403A (vertical deflection yoke) and the red lead of T402 (vertical output transformer).

Figure 13. Vertical Output and Pieture Tube Circuit
2. Locate the bare wire between the junction of R431 820,000 ohms) and R438 (1200 ohms) and the junc
3. Disconnect the red wire and the bare wire from their common junction point. Reconnect both of these leads to the junction of the 7.5 ohm winding and the hite and yellow leads) See figure 13
(
4. Locate the red (positive) lead from C410 (20 mfd) and of T402. Disconnect the red wire from this red ion and reconnect to junction of 75 ohm and 100 hm winding of T402
5. Locate the green wire from pin 2 of the picture tube and disconnect from chassis ground. Connect green wire to a .01 mfd ., 600 volt condenser. Connect th ther end of this condenser to a 2700 ohm, $1 / 2$ wat esistor. Connect the other end of the resistor to the junction of the red lead of T402 and the black lead of T403A.
6. At the junction of the .01 mfd ., 600 volt condense and the green wire from pin 2 of the picture tube connected in step 5) connect a $56,000 \mathrm{ohm}$ resist the 56,000 ohm resistor

WARNING: Do not use any of the unused lugs of V402 (6S4) tube socket for the points. These lugs connected to the internal tube structure of the 6 St tube

TELEVISION TUNER SERVICE

INSUFFICIENT HEIGHT

If adjustment of the Height and Vertical Linearity controls does not provide sufficient height, try replacing the ertical output tube V402 (6S4). Insufficient height can also be due to a weak vertical oscillator tube V303 (6U8).

ELIMINATING AUDIO HUM

Strong (60 cycle) audio hum in these receivers can e due to any one of the causes listed below, which can easily be corrected.

1. Hum may be due to coupling between components in the audio input circuit and the AC wiring. Check the 117 volt AC leads to the On-Off switch. These leads should dress away as far as possible from the grid circuit of the sornd dress the lead between the control and the plate (pin 7) of V203 away from the AC and the leads.
2. Check position of condenser $\mathrm{C} 209(.01 \mathrm{mfd}$) in the sound amplifier circuit (V203) to make certain that it is not too close to the 117 volt AC wiring or On-Off switch. Af c20i is a cubld be paperected to the junction of resistor R207 (47,000 ohms) and condenser C208 (. 0022 mfd .).
. Check the B+ (power supply) circuits for an open or under capacity electrolytic condenser. Especially check filter condenser C501, 60 mfd ., 350 volts.
3. If the receiver is a TV only model using a $10^{\prime \prime}$ electro-magnetic (EM) speaker, it may be possible that the speaker is the cause of excessive hum. The speaker may be checked by substituting another speaker of the same type. The original $10^{\prime \prime}$ electro magnetic (EM) speaker part number 78B75-1, can be checked by substituting a permanent magnet (PM) speaker with the filter choke attached such as par number 78 B 80.1

SOUND BARS IN PICTURE

Sound bars noticeable at high volume levels, may be caused by heavy audio currents being induced in the B + circuits. This can be due to the location or the routing of leads to electrolytic condenser C215. Condenser C215 is the single section electrolytic condenser (80 mfd , 350

To minimize the possibility of sound bars in the pic ure, the mounting and routing of leads to electrolytic condenser C215 were changed. In later production sets, electrolytic condenser C215 is mounted in parallel and in front of the 9 lug terminal strip near the center of the chassis. When mounted this way, the terminals of con-
denser C215 face away from the TV tuner, thus permitting the negative lead C215 to connect directly to the cathode of the sound output tube V204.

TOUCH-UP OF RATIO DETECTOR SECONDARY

 USING TELEVISION SIGNAL (A8, BOTTOM
SLUG OF T201)

"Adjustment A8 is accessible through the $1 / 4^{\prime \prime}$ hole (just below T201) in bottom of the cabinet or the chassis mounting shelf, located toward the left side facing the rear of the set. See figure 22. Removal of the chassis is therefore not required. Adjustment need be made n one channel only. Proceed as follows:
a. Turn set on and allow about 15 minutes for warm up.
b. Tune set for normal picture and sound.
c. Carefully insert a non-metallic alignment tool through the opening in cabinet bottom below T201. An alignment tool with a screwdriver blade or hexagonal end is required depending on the transformer used, see * note below. When the alignment tool engages the bottom tuning slug A8, adjust the slug for best sound with minimum buzz level. Do this carefully as only slight rotation in either direction will generally be required. Correct adjustment point is located be tween the two maximum buzz peaks that will be noticed when turning the slug back and forth about $1 / 4$ to $1 / 2$ turn.

ALIGNMENT OF 4.5 MC TRAP A9, USING A TELEVISION SIGNAL
Beat interference (4.5 MC) appears in picture as very fine vertical or diagonal lines, very close together, having "gauze-like" appearance, the pattern will vary with peech, forming a very fine herringbone pattern.
The trap can be tuned by watching the picture and ad justing slug A9 for minimum 4.5 MC interference. If greater accuracy is required, the trap should be adjusted as instructed in step 3 of the " 4.5 MC Sound IF and Trap Alignment" procedure on page //.

SERVICING RADIO TUBES AND DIAL LIGHT IN

COMBINATION MODELS

The radio tubes can be serviced without removing the TV chassis from the cabinet. The radio tubes can be reached through the opening in the underside of the chassis shelf.
The dial light can be serviced by removing the tuning knobs and plastic control panel. A number 44 dial ligh (part number 81A1-5) is used in sets stamped Run 5 or lower; a number 47 dial light (part number 81A1-8) is used in sets stamped Run 6 or higher.

If ratio detector transformer (T201) has hollow hexagonal core slugs, bottom slug adjustment A8 can be made from top of chassis,
if you use alignment tool (part numberr 98 a30.7; available at Ad miral' Distributor). Bottom slug (AB) can be reached through the if you use alignment tool (part numbmr 98
hole in the core of the upper slug (A10).

SERVICING TV TUNER CHANNEL COILS

The cabinets of later production sets have been pro vided with a rectangular cut-out in the chassis shelf just below the TV tuner. This access opening will permit servicing of the tuner channel coils or for installing UHF channel coils without removal of the chassis from the cabinet.
To gain access to the underside of the tuner, it is necessary to remove the screen covering from over the cut-out in the chassis shelf. Then remove the bottom shield from the bollom of the tuner. Afer servicing the channel coils, carefuly replace the tuner shield. Replace he metal screen it to the cabinet.

SERVICING STATIONARY CONTACTS OF TV TUNER

A rectangular opening is provided at the side of the chassis for convenience in servicing the stationary con tacts of the TV tuner or for making voltage or resistance measurements.
To gain access to the stationary contacts of the TV tuner, it is necessary to remove the mounting screws oldered joint grounding the cover plate to the tuner Reassemble the cover plate in the same manner.

REMOYING CHANNEL COILS

Insert a screwdriver blade between the coil retainer spring and the turret end plate. Twist the blade away sprom the turret and lift the end of the coil upward.

CLEANING CONTACTS

Remove several sets of coils from turret and rotate turret to position making contact points of contact plate accessible for cleaning.
Using a small, stiff brush and carbon tetrachloride, clean contact surfaces of stationary contacts.
Remove accumulated dust or grease from stationary contacts and contact plate with a soft canvas cloth damp. ened with carbon tetrachloride. Accumulated rosin may be removed with a soft cloth dampened with alcohol.
Clean contact surfaces of rotating coils in same manner.

TUNER LUBRICATION

In general the lubrication applied to points of wear or friction at time of manufacture should make lubrication seldom, if ever necessary. However, should tuner lubrication become necessary, it is important that the correct mount and type of lubricant be used.
Using a clean brush, apply a film of switch contact oil (Admiral part number 98A64.l or Viscosity Oil Co.

Figure 15. Exploded View. TV Tuners 94D52-1, 94D52-2, 94D46-2 and 94D46-3.
For description of parts, see page $/ 4$.
\#7069) to the surfaces of the coil contacts and sta tionary contact points.

Lubricate bearing surfaces of all other moving parts with light vaseline or preferably Admiral part $\# 98 \mathrm{~A} 64$ or Viscosity Oil Co. \#8857 lubricant.
CAUTION: Do not use lubriplate or any similar lubricant containing zinc or cadmium

ADJUSTING CONTACT SPRINGS

Should the stationary contact springs make poor con tact due to msulicients fension, remove several sets coils from the turret Rotace the turret to position observation. With a narrow blade screwdriver adjus the contact spring tension by carefully bending the spring inward until highest point on the spring extends about $9 / 64$ of an inch above the plastic surface of the contact plate. With correct tension of the contact spring the spring should clear the flat surface of the turret coil by about $1 / 64$ of an inch.

OSCILLATOR SLUGS IN TOO FAR

If HF oscillator slugs "fall into" coil form, remove the channel coil, nove the slug retailing spring aside, Set the slug retaining spring into position; should rest firmly against the slug.

REMOVING TUNER TURRET ASSEMBLY

a. Remove retaining bracket MlO_{7} in front of the tuner
b. Remove rotor shaft assembly M104, rotor contac spring M124 and fibre washer M113. For reassembly, note order of parts removal.
c. Remove front and rear turret retaining springs M125 by pressing straight end away from tab on chassis
d. Using a screwdriver blade at the side of the tuner, press the detent spring M122 and roller M121 away from the turret detent plate.
e. Grasp tuner shaft and slip out of end plate bearings.

INTERCHANGEABILITY OF 20DP4A, $21 Z P 4 A, 21$ WP4 and 21WP4X PICTURE TUBES

Some of the above picture tubes can be used as inter changeable replacements and others cannot, as described below.
The 21EP4A picture tube used in the 19 Hl chassis and the 21 ZP 4 A picture tube used in 19 Kl and 19 Nl chassis the 21ZP4A picture tube used in 10 Kl and larger cabinet space required by these tules.

The 21WP4 or 21 WP4 X picture tubes used in 19 Fl 19F1A and 19 Gl chassis and the 20DP4A picture tub used in the 19 Cl and 19 El chassis can all be used as interchangeable replacements. However. the front tube supports may have to be cut down or padded to keep

REPLACEMENT OF THE UNGROUNDED STATOR PLATE OF TUNING CONTROL
Stator plate M118 (part number 94A45-86) is re placed with wiring lead and trimner condenser C110 attached, hecause it is difficult to solder the wire lead to the silver plated surface on the ceramic stator plate disc
To replace the stator plate, remove the turret assem bly. Remove nounting rivets from stator plate by drill ing out or clipping them out with diagonal wire cutters. Remove trimmer screw $\mathrm{M115}$ and locking nut MI14 from trimmer condenser Cl10. Insolder wiring lead connecting trimmer to terminal on contact plate.
Assemble the replacement stator plate (M118) by placing the ceramic button over the " s " hole in the chassis with the wiring lead extending into the chassis. Place the mounting bracket over the ceramic button and mount securely using $\# 4 x^{\frac{3}{15}}$ round head machine screws with $=4-40 \times \frac{3}{16}$ hex nuts and $\# 4$ shake proof lock washers wire lead to its original terminal on the contact plate making this lead as short as possible. Dress wiring lead from ceramic stator plate to trimmer condenser Cll 0 so it does not come in contact with the turret drum. Afte replacement of the stator plate. adjust trimmer condenser C110 (overall oscillator adjustment)

REMOVING CONTACT PLATE ASSEMBLY M123

a. Remove turret.
b. Remove the mounting screws at the front and rear of Contact Plate and Bracket Assembly M123.
c. Linsolder both ends of contact plate assembly. Press outward the front and rear tuner chassis end plates.
d. To free contact plate assembly. release the contact plate tabs by pushing them away from the slots in the end plates.
e. Unsolder all connections to contact plate. Unsolder the solder joint holding contact plate to the center partition of the tuner chassis.
the tube the same distance above chassis as the original tube. Use the measured distance between the original tube and chassis for obtaining proper alignment of the replacenent tube and the picture mask. Final alignment should be checked with chassis installed in the cabinet.
The deflection yoke housing must be moved forward or backward so that the rubber neck grommet will fit tightly against the cone of the picture tube. If it cannot be moved forward far enough, the slots in the yoke may have to be elongated or new holes can be in in the diagonal yoke housing support brackets.

PRODUCTION CHANGES

Production changes are coded RUN 1, RUN 2, etc., as given in the headings below. Run number (stamped on chassis) indicates that this particular run number heading below, as well as all changes under that numbers) made prior to that time. At the start of production (has stamped RUN 1; a few chassis were not stamped with a Run number.

CHANGE TO INCREASE BRIGHTNESS

Run 2 and higher in all 19 series chassis

The following changes were made in the cathode circuit of picture tube V306 for increased brightness
Resistor R330 was changed from 470,000 ohms to 180,000 ohms, $1 / 2$ watt, part number $60 \mathrm{~B} 8 \cdot 184$. Condenser C316 was changed from .01 mfd . to .22 mfd .400 volts, part number 64B8-24.

CHANGE TO ELIMINATE BENDING AND MPROVE HORIZONTAL SYNC AND CHANGE TO REDUCE SNOW IN FRINGE AREAS
Run 3 in 19B1, 19C1, 19E1, 19F1, 19F1A 19G1, 19H1, and 19K1 Chassis

Bending and Sync Changes

The following changes were made to eliminate possible bending at the top of the picture and to improve horizontal sync. If it is desired to make these changes to chassis stamped Run 2 or lower, see heading on "Circuit Changes to Reduce Bending und Improve Horizontal Sync" on page 6.

In early production chassis (with exception of 19B1), the B+ voltage to the 1st and 2nd IF amplifiers V301 and V302 is effectively in series. In later production sets, B+ voltage to the lst and 2nd IF amplifier stages is in parallel. This makes it possible to apply AGC voltage to the 1st and 2nd IF amplifiers of later production sets, of signal conditions without the possibility of overloading.

The circuit changes that were made to the IF amplifiers and AGC circuit of later production sets are as follows: The screen (pin 6) of 2nd IF tube V302 and terminal 2 of 2nd IF trainsformer T302 connect to common B+ through resistor R312 (1,000 ohms). Condenser C319 (. 001 mfd .) is connected from terminal 2 T302 to chassis.
The control grid (pin 1) of 2nd IF amplifier V302
is returned to AGC through T301 and decoupling reistor R309 (1,000 ohms). Condenser C318 (. 001 mfd .) is connected from terminal 3 of T301 to chassis. The suppressor grid (pin 7) of V302 is connected directly to chassis. The cathode (pin 2) of V302 returns to chassis through R336 (68 ohms).

Overloading of the video amplifier and possible sync nstability has been eliminated by the following circuit changes:

The B+ voltage at the screen (pin 6) of the video amplifier V305 (6CB6) was increased by lowering the value of resistors R212 and R213 in the grid and cathode ircuits of sound output tube V204
Resistor R212 was changed from 3,600 ohms to 1,500 hms in sets using a 6AS5 tube for V204, and was changed from 4,700 ohms to 2,000 ohms in sets using
6 Y 6 G tube for V 204 .

Resistor R213 was changed from 1,100 to 910 ohms in sets using a 6AS5 tube for V204 and from 2,000 ohms to 1,500 ohms in sets using a 6 Y 6 G tube for V 204 .
Increased sync pulse input to the sync circuits is obtained by the following changes made to the video amplifier plate circuit. Resistor R326 was changed from 2,700 ohms to 5,600 ohms, 1 watt. Resistor R325 (2,700 ohms) was omitted.

Snow Changes

(This portion of Run $\mathbf{3}$ aproduction change does not
apply to the ${ }^{19 \mathrm{Bl}}$ chassis.)
The circuit changes described below are rather involved. Generally, we do not recommend that they be made in the field. However, if snow is still excessive after making the checks given under the heading of "Excessive Snow Due to Faulty Tubes" on page 6 , and it is desired to make the changes below, instructions may be ob. tained by woriting the Service Department of the

Admiral Corporation at 201 E. North Water street, Chicago 2, illinois.
To reduce the amount of snow (front end noise) in the picture the AGC voltage to the tuner has been re-解 to the AGC voltage to the 2nd IF stages by applying a small positive voltage from voltage divider network.
The voltage divider network consisting of R301 (3.3 megohms), R333 (15 megohms), R334 (2.2 megohms) tween B+, the AGC diode V304 and the DX Rang Finder control R315.
One terminal of DX Range Finder R315 connects to the R338 (56,000 ohms). Resistor R317 connecting to pin 7 of diode V304 was changed from 820,000 ohms to 470,000 ohms. The delayed AGC bias developed at the AGC diode ($1 / 2$ of V304) is thus controlled by both the Contrast (picture) control and the DX Range Finder control. This provides a means of eliminating entirely the delay on the AGC diode in a very strong signal area and also a means of adjusting the AGC delay to a suitable value for best picture with minimum of snow in weak signal or intermediate fringe areas.

RESISTOR R443 ADDED TO IMPROVE
HORIZONTAL SYNC STABILITY

Run 4 in all 19 Series Chassis

Later production sets using vertical integrator couplate, part number 63 B 6.2 , have an $8,200 \mathrm{ohm}, 1 / 2$ watt resistor (R443) connected between terminal 3 of the couplate and pin 1 of sync separator tube V401 (12AU7). The R409, C403, C404 and C405.
Adding resistor R443 to the circuit has increased the sync level by squaring up the sync pulses, thereby improving horizontal sync instability.
To install resistor R443 (8,200 ohins) remove the number three lead of integrator couplate $63 \mathrm{~B} 6-2$ from pin 1 of V401 (12AU7). Connect resistor R443 between the number three lead of the couplate and pin 1 of V401 (12AU7).

VERTICAL RETRACE BLANKING

CIRCUIT ADDED

Run 5 in all 19 Series Chassis

A vertical retrace blanking circuit was added to eliminate retrace lines. The vertical retrace blanking circuit 56, ing of components R444 (2,700 ohms), R445 is shown in schematic figure 13 .
is
Vertical retrace blanking is achieved by applying the pulse voltage appearing at the low side (red lead) of the pulse voltage appearing at the low side (red lead) of the
vertical output transformer T402 to the grid (pin 2) of the picture tube V306.
Detailed instructions for eliminating retrace lines in Detailed instructions for eliminating retrace
carly production receivers are given on page 6.

TV TUNER SHAFT LENGTH INCREASED

Run 6 in All 19 Series Chassis

The TV tuners used in chassis stamped Run 6 and higher, have a longer shaft length. This increase in shaft
length was made to make the chassis adaptable for in stallation of a separate UHF tuner.

The 94D46-3 cascode TV tuner is used in all later production chassis (Run 6 and higher), with exception of the 19Bl chassis. The 94D52-2 pentode TV tuner is used in later production 19Bl chassis (Run 6 and higher)
TV tuners 94D46-2 and 94D46-3 are identical, with exception of shaft length. TV tuners 94D52-1 and 94D52-2 are identical, with exception of shaft length.

DIFFERENT INTEGRATOR AND SYNC
 COUPLATE USED

Run 7 in All 19 Series Chassis

Integrator couplate, part number 63B6-11 has replaced integrator couplate, part number 63B6-2 used in earlier production sets. The circuit of both couplates is the same with the exception thal resisor R40 Resistor R407 is con not contained in couplate 63B6.1. R couplate 63B6-11 to nected externall This change in integrator couplates has pin 1 plitude and squaring up the sync pulses.
To replace couplate 63 B 6.2 with couplate 63 B 6.11 To replace couplate 63 B 6.2 with couplate 63 B 6.11 of V401B and terminal 3 of the couplate. Connect re sistor R407 (22,000 ohnss, $1 / 2$ watt) between pin 1 of V401B and terminal 3 of couplate 63B6.11.
Sync couplate, part number 63 B 6.8 has replaced sync Sync couplate, part number 63 B 6.8 has replaced sync
couplate part number 63B6.4 used in early production couplate part number 63B6.4 used in early production condenser C315. Couplate 63B6.8 contains resistor R329 and condensers C315 and C317. This change in sync couplates has simplified circuit wiring by reducing the number of components.
To replace couplate 63 B 6.4 with couplate 63 B 6.8 change resistor R327 from 22,000 ohns to 27,000 ohms. Remove condenser C317 (. 01 mfd.). Connect couplate 63B6.8 between resistor R327 and pin 7 of V401A.

CHANGE IN TOLERANCE OF COMPONENTS IN THE HORIZONTAL OSCILLATOR CIRCUIT V403 In some Run 2 Chassis and all Chassis

Run 3 and highe

Changes were made to horizontal oscillator circuit V403 of later production sets to minimize possible variation of horizontal oscillator performance due to parts tolerances and variation in electrical characteristics of some brands of 6 SN 7 tubes. By reducing the permissible tolerance of components R42. Riz. R.a a Chis, he operation of the horizontal oscillator circuit becones less ritical.
In later production sets (stamped Run 3 and higher), olerance of resistors R422 1330,000 ohms), R423 82,000 ohms) and R428 (150,0 ohms) were chang. from 10% to 5% tolerance. Condenser C
In cases where it is difficult to make satisfactory Ho zontal Sync Adjustment, the conponents in the horizontal oscillator circuit should be checked for correct value as under Horizontal Instability And Tearing In Ficture.

RESISTORS R214 AND R215 REPLACED BY ON RESISTOR IN SOME LATER PRODUCTION 19E1, 19G1 and 19N1 CHASSIS
In later production chassis, resistors R214 and R215, 2.200 ohms, 2 watt, were replaced by a single wire wound resistor, 1,200 ohms, 5 watt, part number 61Al-10.

CHANGE TO PREVENT FUSE FAILURE IN TV-RADIO CHASSIS

Run 8 in 19E1, 19G1 and 19N1 Chassis

The circuit location of fuse M401 ($3 / 8 \mathrm{amp} .250 \mathrm{~V}$.) has been changed to prevent possible fuse failure when function switch 5701 is rotated from Radio to TV posi section S701C make simultaneous contact, thus applyin a sudden surge of current through the fuse.
Schematic figure 33 shows the fuse location in early sets and schematic figure 35 shows the fuse location in later sets having this production change. This change red and blue leads connecting to switch section S701C With this change made the red lead should connect to terminal "h" of S701C and the blue lead should connect to terminal " g " of S701C.

CHANGE IN SIZE OF FUSE M401

To prevent possibility of fuse failure, due to momentary line voltage surges, fuse M401 was changed from a

TELEVISION ALIGNMENT PROCEDURE

GENERAL

Complete alignment consists of the following individual procedures and should be performed in this sequence.
a. IF Amplifier and Trap Alignment.
b. IF Response Curve Check.
c. 4.5 MC Sound IF and Trap Alignment.
d. RF and Mixer Alignment.
e. Over-all RF and IF Response Curve Check.
f. HF Oscillator Adjustment.

TEST EQUIPMENT

To properly service this receiver, it is recommended that the following test equipment be available.

IMPORTANT: Many service instruments do not meet the requirements given below. A list of recom mended equipment is available from Admiral Distributor

Oscilloscope
Standard oscilloscope, preferably one with a wide band vertical deflection, vertical sensitivity at least .5 vol (RMS) per inch.

Signal (Marker) Generator
4.5 MC frequency.

18 to 30 MC frequency range.
50 to 90 MC frequency range.
170 to 225 MC frequency range.
Must have a huilt-in calibration crystal for checking dial accuracy.
$1 / 4$ ampere, 250 -volt fuse to a $3 / 8$ ampere, 250 -volt fuse part number 84 A 4.3 . Fuse replacement should be mad only with a $3 / x$ ampere, 250 -volt fuse, part number $84 \mathrm{~A} 4-3$

CHANGE IN PILOT LIGHT AND VOLTAGE DROPPING RESISTOR R707

In later production combination sets, a different pilot light and pilot light series dropping resistor is used.
Early production sets stamped Run 5 or lower use a number 44 pilot light (part number 81A1-5) and voltage dropping resistor $R 707$ is 4.7 ohms, $1 / 2$ watt, part num ber 60B28-11. In later production sets stamped Run 6 and higher, a number 47 pilot light (part number 81A1-8) is used and voltage dropping resistor R707 is 10 ohms, $1 / 2$ watt, part number 60B28-100.

MECHANICAL CHANGE IN RADIO TUNER

USED IN 19E1, 19G1 and 19N1 CHASSIS

Mechanical changes were made to the later produc tion radio tuner sub-chassis used in combination models. The dimensions of the radio chassis were altered slightly and the mounting position of the gang condenser was changed.
Early production radio tuners used gang condenser (part number 68B53) which mounts in a vertical posi tion. Later production radio tuners use gang condense (part number 68B53-1) which mounts in a horizonta
position.

Sweep Generator
Sweep generator must provide sweep frequencies from $\left.\begin{array}{c}18 \text { to } 30 \mathrm{MC} \text { range: } \\ 50 \text { to } 90 \mathrm{MC} \text { range: } \\ 170 \text { to } 225 \mathrm{MC} \text { range: }\end{array}\right\} \begin{gathered}\text { with at least } \\ 10 \mathrm{MC} \text { sweep width. }\end{gathered}$
Output: adjustable; at least one-tenth volt maximum Output impedance: 300 ohms balanced to ground.
A sweep generator not having constant output voltage over the swept range and linear sweep, will produce curves which are widely different from the ideal curves shown in the following pages. If repeated difficulty is encountered in obtaining these curves, the sweep gen erator should be checked. A simple check is to observ the response curve for a set that is in alignment.
Before suspecting the generator, be sure the alignment instructions in this manual have been followed carefully.

Vacuum-Tube Voltmeter

Preferably with low range (3 volt) DC zero center scale and a high voltage probe (30,000 volt range).

ALIGNMENT TOOLS

The following alignment tools are required. They can be obtained from the Admiral Distributor under the part numbers listed below:
Metal alignment screwdriver part number 98A30.9. Von-metallic (fiber) alignment screwdriver ($111 / 2^{\prime \prime}$ long, $1 / 8^{\prime \prime}$ diameter) part number 98A30-10

Non-metallic alignment wrench ($9^{\prime \prime}$ long, for hexagon core IF slugs) part number 98A30-12.

IMPORTANT ALIGNMENT HINTS

The following suggestions should be performed if difficulty
The following suggestions should be perform.
is experienced during the alignment procedure.

1. IF CIRCUIT INSTABILITY: When spot frequency align ing the $1 F$ amplifiers, the TTM pointer may swing when the
hand is placed too near the IF transformers. When viewing hand is placed too near the IF Iransformers. When viewing
the IF response curve on an oscilloscope, the curve may chang the
shape with hand capacity, especially when aligning A2 (3ri If transformer T303). To correct either of these conditions,
the following alignment hints should be tried: a) Check the generator out (a) Check the generator output leads to be certain that the
unshielded portion (especially the grounded lead) be as short unshielded por
as practicable.
(b) Be sure
(b) Be sure that a decoupling network is used at the video
detector output and that the leads on the network are kept as detector output and that the leads
short as possibe (See figure 21).
This) Construct a special tube shield as shown in figure 16. This is made from an ordinary tube shield and four 10,000 ohm
resistors. Keep the spacing beeween the two halves of the resistors. Keep the spacing bet
shield at a minimum ($1 / 3$ inch).

Figure 16. Special Tube Shield for
(d). The use of a non-metallic alignment tool, approximately
eight inches long (part number 98A30.12), will permit ad eigstment without coming too near to the transformers. 2. RECEIVER OVERLOADING WHEN CHECKING THE sensitivity of these receivers, it is is very easy in cause over sensitivity of these receivers, in is very easy to cause over.
loading in the third IF amplifier stage. In some cases, generator leakage alone is enough to produce a response curve o the oscilloscope. To prevent overloading, do the following:
at a me certain that the generator output attenuators are set
(a)
(b) Some generators have a build.in pad in the output table
to be used when viewing the over-all response curve. Be sure that the pad in the cable is properly connected in the circuit Refer to the generator instruction manual for details.
(c) 1 If a pad is not built in, the 12 db pad shown below in
figure 17 can be constructed and connected between the gener. ator and the antenna terminals.

Figure 17. Illustration of 12 db Attenuation
Pad for Viewing Over-all RF-IF Response Curve.

IF AMPLIFIER AND TRAP ALIGNMENT

- Connect bias battery; negative to test point " T ", see figure 22 , positive to chassis. A $41 / 2$ volt battery is required for all steps below.
- Disconnect antenna. Connect a jumper wire across the antenna terminals.

Set Channel selcetor to Channel 12 or other unassigned
high channel, to prevent interference during alignment. - Set the Picture control fully to the left (counterclockwise)

- Allow about 15 minutes for receiver and test equipment 10
- Use lowest DC scale on VTVM

Step	Signal Gen. Freq.	VTVM and Signal Generator Connections	Instructions	Adjust
1	*27.25 MC	VTVM high side to test point "V" through a decoupling filter; see figs. 21 and 22, common to chassis. Generator high side to 6J6 (V102) sperial tube shield. Connect low side to bottom part of the tube shield, see figure 16.	Connect a $41 / 2$ volt bias battery to test point " T ". Use lowest DC scale on VTVM. When peaking, keep reducing generator output for VTVM reading of approx. 1 volt or less. If unstable, refer to section 1 of the "Alignment Hints" above.	Al for minimum.
2	25.3 MC			$\begin{aligned} & \text { A2 and A3 for } \\ & \text { maximum. } \end{aligned}$
3	23.1 MC			$\begin{aligned} & \text { A4 and A5 for } \\ & \text { maximum. } \end{aligned}$
4	*27.25 MC			Repeat step above.
5	To insur	"I	Curve Cheek" sive	

Before proceeding, be sure to check the signal generator used in alignment against a crystal calibrator or other fre
quency standard for absolute frequency calibration required for this operation.

ALIGNMENT HINT
After becoming familiar with alignment procedure, some servicemen simplify subsequent alignment of sets by merely using the essential alignment data given in figures below.
W

Figure 21. Decoupling Filter

4.5 MC SOUND IF AND TRAP ALIGNMENT

See page 7 for touch-up of ratio detector using television signal without test equipment.
a. Connect signal generator high side to pin 2 of V304 \quad d. Use a NONMETALLIC alignment tool. If Ratio De to chassis.
. Allow about 15 minutes for receiver and test equipment to Transformer (T201) has hollow core slugs, botiom slug ad
justment AB can be made from top of chassis, if you us justment A8 can be made from top of chassis, if you use
alignent tool \# 98 A30.12 obtainable from Admiral Dis-
tributor.
c. Set Picture control fully to the left (counterclockwise).

$\begin{array}{c}\text { Signal Gen. } \\ \text { Freq. (MC) }\end{array}$	VTVM Connections	Instructions	Adjust
When using a signal generator, be sure to check it against a crystal calibrator or other frequency standard			

Adjust When using a signal generator, be sure to check it against a crystal calibrator or other
for accurate frequency calibration at 4.5 MC . Accuracy required is within one kilocycle.
IMPORTANT: If a signal generator and frequency standard are not available, alignment can be made using TV station signal. Tune in a station and follow steps 1,2 and 3 below. If necessary use a higher scale on the VTVM.

1	$\begin{gathered} \text { Set to } \\ \text { exactly } \\ \text { 4.5 MC } \end{gathered}$	High side to lest point "Y"; common to chassis.	Use lowest DC seale on VTVM.	A6 and $A 7$ for maximum (keep reducing generator output ${ }^{10}$ keep VTVM at approx. 1 volt).
2		$\begin{gathered} \text { High side to } \\ \text { test point "R"; } \\ \text { common to chassis. } \end{gathered}$	Use zero center scale on VTVM, if available.	A8 for zero on VTVM (the correct zero point is located between a positive and a negative maxi- mum). If A6 was far off, repeat step 1.
3		High side to test point "Y"; common to chassis.	Connect a 10 mmfd . condenser from pin 5 of V305 (6CB6) to pin 7 of V201 (6AU6). Use lowest DC scale on VTVM.	A9 for minimum.

RF AND MIXER ALIGNMENT

FOR SETS USING TV TUNERS 94D52-1 AND 94D52-2

(These tuners use a 6BC5 tube for RF amplifier V101.)

a. Connect negative of $41 / 2$ volt bias battery to test point " T ", positive to chassis. If it is difficult to obtain a curve of
sufficient amplitude, remove batery and connect a wire umper from test point " T " to chassis.
b. Connect sweep generator (with 300 ohm output) to anin marker generator, loosely couple a marker generator to
the antenna terminals. To avoid distortion of the response

curve, keep sweep generator oulput at a mininum, marker pips just barely visible. point "W"." on tuner (fig. 24). Ke

from chassis.
Set channel selector to Channel 10 .
d. Set channel selector to Channel 10

Set channel selector to Channel 10 .
Allow about 15 minutes for receiver to warm up and test
equipment.
Instructions Alternately adjust A10, A11 and A12 (figure 24) as required. Adjusting All
will generally shift the eenter of the response curve in relationd to the video
and sound carrier markers. A10 and A12 hould be alternately adjusted for
best gain with flat top appearance. Consistent with proper band width and best gain with flat top appearance. Consistent with proper band width and
borrect marker location, response curve should have maximum amplitude and correct marker location, response cu
flat top appearance; see figure 23 .
Check each channel operating in the service area for curve shown in fig. 23. In general, the adjustment performed in step 1 is sufficient to give satisfactory
response curves on all channels. However, if reasonable alignment is not obresponse curves on all channels. However, if reasonable a his ine not been inter-
tained on a particular channel, (a) check to see that coils hais
mixed, or (b) ty replacing the pair of coils for that particular channel, or mixed, or (b) try replacing the pair of coils for that particular channel, or
(c) repeat step il for the weak channel as a compromise adjustment to favor
(his particular channel. If a compromise adjustment is made, other channels (c) repeat step 1 for the weak channel as a compromise adjustment to
this particular channel. If a compromise adjustment is made, other channels operating in the service area should
have not been appreciably affected.

Step	Marker Gen. Freq. (MC)	Sweep Gen. Frequency
1	$\begin{gathered} \text { 193.25 MC } \\ \text { (Video Carrier) } \\ \text { 197.75 MC } \\ \text { (Sound Carrier) } \end{gathered}$	Sweeping Channel 10. See frequency table at right.
2	Set the sweep sweep the checked. Set t video carrier sound carrier	Eenerator to hannel to be he marker gencorresponding frequency and frequency.

RF AND MIXER ALIGNMENT

FOR SETS USING TV TUNERS 94D46-2 AND 94D46-3

(These tuners use a 6BZ7 tube for $\boldsymbol{R F}$ amplifier V101.)

a. Connect negative of $41 / 2$ volt bias battery to AGC buss (tes curve of sufficient amplitude, remove battery and connect wire jumper from test point "T" to chassis.
b. Connect sweep generator (with 3000 ohm outpul) to an-
tenna terminals. If sweep generator does not have a built. in marker generator, loosely couple a marker generator to
the antenna terminals. To avoid distortion of the response
curve, keep sweep, generator output at a minimum, marker
pips just barely visible.
Connect oscilloscope through a 10,000 ohm resistor to test point "W" on
from chassis.
d. Allow about 15 minutes for receiver and test equipment
to warm up.

Step	Marker Gen. Freq. (MC)	Sweep Gen. Frequency
1	$\begin{gathered} 193.25 \mathrm{MC} \\ \text { (Video Carrier) } \\ \text { 197.75 MC } \\ \text { (Sound Carrier) } \end{gathered}$	Sweeping Channel 10. See frequency table below.
2		Sweeping Channel 6. See frequency table below.
3	Set the sweep sweep the checked. Set t erator for the sound carrier	senerator to annel to be he marker sen. corresponding frequency and requency.

Instructions
Alternately adjust All and A12 (figure 24) as required to obtain equal peak
amplitudes and ysmmetry, consistent with flat top appearance, proper band
width and correct marker location; seefigure 23. widh and correct marker location; see figure 23

Adjust Al0 as required to obtain curve having maximum amplitude and fla
top appearance consistent with proper band width top appearance consistent with proper band widh and correct marker location
see figure 23. After completing adjustment, recheck adjustment of step 1 . Check each channel operating in the service area for curve shown below
In general, the adjustment performed in steps 1 and 2 are sufficient to siver satisfactory response curves on all channels, However, if reasiconable to siive
ment is not obtained on a particular channel, (a) check to see that coils have ment is not obtainet on aparticular chanel, (a) check to see that coils have
not been intermixed, or (b) rey replacing the pair of coils for that particula
channel or (c) reper channel, or (c) repeat step 1 for a weak high channel as a compromise ad
justment to favor the particular channel. Repeat step 2 for the weak justment to favor the particular channel. Repeat step 2 for the weak low
channel to favor he particular low channel. If a compromise adjustment is
made, other channels made, other channels operating in the service area should be checked to
make certain that they have not been appreciably affected.

ull skirt of curve will not be visible unless zenerator weep width extends beyond 10 MC .
Figure 23. RF Response Cure.

A5 23.1 MC MAX. MIXER PLATE
Figure 24. Top of TV Tuner, Showing

FREQUENCY TABLE				
Channel Number	Channal Freq., MC	$\begin{aligned} & \text { Yideo } \\ & \text { Corriar, } \\ & \text { MC } \end{aligned}$	$\begin{aligned} & \text { Sound } \\ & \text { Comrier, } \\ & \text { MC } \end{aligned}$	HF Osc. MC
	54. 60	55.25	59.75	81
3	60. 66	61.25	65.75	87
4	66. 72	67.25	71.75	93
5	76. 82	77.25	81.75	103
6	174-180	175.25	179.75	201
8	180.186	181.25	185.75	207
9	186.192	187.25	191.75	213
10	192.198	193.25	197.75	219
11	198.204	199.25	203.75	225
12	204-210	205.25	209.75	231
13	210.216	211.25	215.75	237

OVER-ALL RF AND IF RESPONSE CURVE CHECK (Using sweep generator and oscilloscope)				
Receiver Controls and Bias Battery	Sweep Generator	Marker Generator	Oscilloscope	Instructions
Picture control ful- ly to the left. Chan$\begin{array}{ll}\text { nel seleetor on } \\ \text { Channel } 10 & \text { or } \\ \text { or }\end{array}$ other unassigned nect negative of $41 / 2$ volt bias baltery to tive to chassis.	Connect to antenna terminals. Set generator to sweep channel selected. See frequency table on page 11 . Keep generator output as low as possible, to See section 2 of "Alignment Hints" on page 10.	If an external marker generator is used, loosely couple high side to sweep generator lead. are shown in frequency table on page 11.	Connect so point coupling filter; see figs. 21 and 22.	Compare the response curve obtained against the ideal curve shown in figure 26. If the curve is not within toleras instructed below. It should never be necessary to turn slugs more than one turn in either direction. is satisfactory on the channel checked, all other channels should also be satisfactory. IMPORTANT: When sweep
output is reduced, response curve amplitude on scope should also decrease, but curve shape should remain changes, reduce sweep output and/or the scope gain until the shape does not change. See section 2 of "Alignment Hints", on page 10. Figure 26. Ideal Over-all RF and IF Response Curve. Note that video carrier (marker) on the "Over-all RF-IF Response Curve" will appear on the opposite side of the curve as compared to the "IF Response Curve" figure 18. This is due to action of the mixer tube.				

HF OSCILLATOR ADJUSTMENT

 (Using a signal generator)It is alvoays advisable to make HF oscillator adjustments using a Television Signal as instructed on page 2. If a Television Signal is not available, HF oscillator adjustment can be made using a crystal calibrated signal generator. Make adjustments as follows:

Receiver Control Settings	Signal Generator	Instructions
Set Channel selector for each channel to be adjusted. Set "Tuning" control at half rotation. Turn volume control fully to the right (clockwise).	Connect to antenna terminals. Set generator to exact frequency of HF oscillator. See frequency table on page 11 . Set generator for maximum output.	"Wonnect a wire jumper from test, point "W" on the tuner to test point " Z ". See figure 22. Remove the ratio detector habe cillator slug A13 on each channel until a whistle (beat) is heard in the speaker of the receiver.

SERVICING RADIO TUNER IN 19E1, 19Gl AND 19NI MODELS

SERVICING RADIO TUBES AND DIAL LIGHT

The radio tubes and radio dial light can be serviced The radio tubes and radio dial light can be serviced
without removing the TV chassis from the cabinet. The without removing the TV chassis from the cabinet. The
radio tubes can be reached through the opening cut in the underside of the chassis shelf.
The dial light can be serviced by removing the tuning knobs and plastic control panel
A number 44 dial light (part number 81Al-5) is use in sets stamped Run 5 or lower; a number 47 dial ligh (part number 81A1-8) is used in sets stamped Run 6 and higher.

REMOVING RADIO TUNER

The radio tuner is mounted at the front apron of the chassis. Alignment, taking voltage readings or an in spection of the underside of the radio tuner can be performed without complete removal of the radio tuner from the TV chassis. To gain access to the underside of the
radio tuner, disconnect the tuning drive cord, remove the self-tapping screws at the rear of the radio tuner.

DIAL STRINGING

Dial stringing for the gang tuning control is shown below.

Figure 28. Dial Stringing for 19E1, 19G1 and

Figure 29. Radio Trimmer Locations.

The radio tuner in television and radio chassis should be aligned as instructed under "Radio Alignment Procedure" below.

The radio alignment trimmers are accessible without disassembly of the radio tuner from the TV chassis. The figure at right shows the locations of radio align ment trimmers

RADIO ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil

Turn receiver Volume control fully on

- Function switch in "Radio" position.

Step	Connect Signal Generator	Dummy Antenna Between Radio and Signal Generator
1	Gang condenser antenna stator	.1 MFD
2	"	"
3	Place generator lead close to loop of set to obtain adequate signal. No actual connection (signal by radiation).	

- Use lowest output setting of
satisfactory reading on meter.

Uains reading on meter. signal generator that gives a

- Use a NON-METALLIC alignment tool for IF adjustments.

Signal Generator Frequency	Receiver Dial Setting	Adj. Trimmers in Following Order to Max.
$\mathbf{4 5 5 \mathrm { KC }}$	Tuning gang wide open	"A-B (2nd IF) "C-D (list IF)
1620 KC	"	E (oscillator)
1400 KC	Tune in signal	SF (antenna)

Adjuatments A and C made from underside of chassis. See figure 29 for trimmer locations. \$ AM antenna trimmer may not peak if antenna leads are not properly routed or separated.

PARTS LIST

Electrical components have symbols in 100 series, 200 series, etc., according to location on schematic. Order parts by part number and description from Admiral Distributor

+ Component may be part of couplate, part number 63B6.5. Replace with exact duplicate or individual componets.

Sym.	Description	Sym.	Description	Part No.		
R318	4,700	R43	1 megohm, 1/2	60B 8.105		
R319	5,600 ohms, 1/2 wall 60B 8.562		68 ohms, $1 / 2$ watt, carbon	60B 2		
R320	1 megohm, $1 / 2$ watt 60B 8.105		47 ohms, 1	60B 14-470		
R321	1,000 ohms, Picture control. See R20		82 ohms, $1 / 2$ watt,			
R322	33,000 ohms, $1 / 2$ watt. 60B 8.333	R437	8,200 ohms, 2 watt.	60B 20		
R323	33,000 ohms Part of L3		1,200 ohms,. 2	60B 20		
24	10,000 ohms . P Part of L33	R439	1,000 ohms,	coi		
25	2.700 ohms,	R4	1,000 ohms, 1/2	0B 8.102		
	$\left\{\begin{array}{r}2,700 \text { ohms. } 1 / 2 \text { watt (in chassis }\end{array}\right.$ stamped Run 2 or lower)...	R441A 1.5 megohms, Vert. Hold) R441B 50,000 ohms, Hor. Hold				
	$\left\{\begin{array}{l}5,600 \text { ohms, } 1 \text { watt (in chassis } \\ \text { stamped Run } 3 \text { and higher)60B 60B } 14.562\end{array}\right.$	R442 4.7 ohms, $1 / 2$ watt, carbon only 60B 28.11 R443 8,200 ohms, $1 / 2$ watt.....................60B 8-822				
R327	$\left\{\begin{array}{l}\{22,000 \text { ohms, } 1 / 2 \text { watt 60B } 8.223 \\ \{27,000 \text { ohms, } 1 / 2 \text { watt. } 60 \text { 8 } 8.273\end{array}\right.$ (R327 is 22,000 ohms when couplate		(R443 used only when coupl part number 63B6-2.) See Run duction change on page 17.)			
	63 B 6.4 is used and 27,000 ohms when couplate 63 B 6.8 is used. See Run 7 production change on page 17.)	$\begin{aligned} & \text { R444 } \\ & \text { R445 } \end{aligned}$	2,700 ohms, $1 / 2$ watt... 56,000 ohms, $1 / 2$ watt.	$\begin{array}{r} \text { 60B } 8.272 \\ .60 B 8.563 \end{array}$		
*R3	15,000 ohms, $1 / 2$ watt		270,000 ohm			
*R3	270,000 ohms, $1 / 2$ watt60B 8-274	R701	22,000 ohms, $1 / 2$ watt	60B 8.223		
R330	180,000 ohms, $1 / 2$ watt....................60B 8. 8184 (R330 was 470,000 ohms in early sets)		10,000 ohms, 1 watt.	$\text { . } 60 \mathrm{~B} \quad 14-103$		
R331	100,000 ohms, Brightness control. 75B 13-25		27,000 ohms,	OB 14		
R332	1,000 ohms, Picture control. 758 F 13.21	R706	1 megohm,			
R333	15 megohms, $1 / 2$ watt.60B 8.156					
R334	2.2 megohms, $1 / 2$ watt 60B 8.225					
R335 R336	1,000 ohms, $1 / 2$ watt.......................60B 8.102 68 ohms, $1 / 2$ watt, carbon only...........60B $28-44$	(R707 is 4.7 ohms when \#44 pilot light is used and 10 ohms when \#47 pilot light is used. See production change on page 9.)				
R 3	4.500 ohms, 5 watt661A 1-24					
R338	56,000 ohms, 1/2 watt..................60B 8.563					
R401	2.7 megohms, $1 / 2$ watt 60B 8.275					
R40	12,000 ohms, $1 / 2$ watt 60B 8.123					
R403	47,000 ohms, 1/2 watt60B 6-473	CONDENSERS				
R404	2.7 megohms, $1 / 2$ watt60B 8.275					
	(33,000 ohms, 2 watt in comb. sets........ 60B 20.333 र18,000 ohms, 1 watt in "TV only" sets.... 60B 14-183		$.001 \mathrm{mfd}, \mathrm{min}$, ceramic.	98A 45.24		
406	$\int 15,000$ ohms, $1 / 2$ watt in comb. sets....... 60B 8.153 $\{22,000$ ohms, $1 / 2$ watt in "TV only" sets... 60B 8-223	$\mathrm{Cl03}\left\{\begin{array}{c} 800 \mathrm{mmid}, \text { min, ceramic feed-thru in } \\ 94 \mathrm{D} 46-2 \text { and } 94 \mathrm{D} 46.3 \text { tuners..........94C } 37.90 \\ 150 \mathrm{mmfd}, \text { ceramic } \mathrm{N} 470 \text { in 94D52-1 } \\ \text { and } 94 \mathrm{D} 52-2 \text { tuners.94D } 52.86 \end{array}\right.$				
§R407	22,000 ohms, $1 / 2$ watt....................60B 8.223 (See Run 7 production change on page 17.)	Cl04 . 5 to 3 mmid , N470 ceramic trimmers.... 98A 45.23				
§	8,200 ohms, $1 / 2$ watt		$\left\{\begin{array}{l}47 \text { mmid, ceramic, N1400 temp. coeff. } \\ \text { in } 94 \mathrm{D} 46.2 \text { and } 94 \mathrm{D} 6.3 \text { tuners........94D } 47.50\end{array}\right.$			
§R409	8,200 ohms, $1 / 2$ watt 60B 8.82	Cl 1				
R410	1.2 megohms, $1 / 2$ watt 60818.125		$120 \mathrm{mmfd}, 5 \%$ ceramic, N 750 temp. coeff. in 94D52-1 and 94D52-2 tuners. ..98A 45-25			
R411	1.5 megohms, Vertical Hold.............. 758 13-26					
R413	$1 \mathrm{meghm}, 1 / 2$ watt.....................608.60888.105	C106 5 to 3 mmid, ceramic trimmer......... 9814545				
R414	2.5 megohms, Height. 758 13.3	C107 10 mmid , 5\% ceramic, N750 temp. coeff... 98 A 45.64				
R4	1 megohm , $1 / 2$ watt. 608 8.105	C108$10 \mathrm{mmid}, 5 \%$, cer, N750 temp. coeff. 98A 45.64C109 $5 \mathrm{mmid}, 5 \%$, cer, N750 temp. coeff. 94 D 47.52				
R416	3,000 ohms, Vert. Lin. 75B 13.7	$5 \mathrm{mmid}, 5 \%$, cer, N750 temp. coeff. 94D 47.52				
R17		C110 Tuning Rotor 94D 46-87				
R418	560 ohms, $1 / 2$ watt..................... 60B	C112 $6.8 \mathrm{mmid}, 3 \%$, ceramic, NPO temp. coeff 94D 47.53				
R419	560 ohms, $1 / 2$ watt....................60B 8.561					
R4	330,000 ohms, 1/2 watt................. 60B 8.3	C113 120 mmfd , silver mica.................984 45-78				
R421	820,000 ohms, $1 / 2$ watt............... 60B 8.824	1148800 mmfd , min, ceramic feed-thru...... 94C 943 37-90				
R422	330,000 ohms, $1 / 2$ watt, $5 \% \ldots \ldots6087 .33$					
R423		C117 800 mmid , min, ceramic feed.thru....... 94C 37.90				
R424	3,900 ohms, $1 / 2$ watt. 60B 8.392	C118 3 mmid. 3\%, ceramic................. 94D 47.54				
R425	68,000 ohms, $1 / 2$ watt................. 608 8.683	$\begin{array}{ll}\text { C119 } & 1.5 \mathrm{mmid} \text {, ceramic....................... 94D } 46.84 \\ \text { C120 } & 47 \mathrm{mmfd} \text {, ceramic, N1400 temp. coeff. 94D } 47.50\end{array}$				
R426	50,000 ohms, Hor. Hold 75B 13-23					
R427	22,000 ohms, $1 / 2$ watt................. 60B 8.223	C201 6.8 mmfd , cer, N330 temp. coeff. 65C 6.71				
R428	150,000 ohms, $1 / 2 /$ watt, $5 \% \ldots \ldots60 \mathrm{~B}$	C202 20 mmld , 5\%, ceramic.................65C 6.51				
R429	8,200 ohms, $1 / 2$ watt..................60B 8-822	$\mathrm{C}^{203} .005 \mathrm{mfd}$ min, ceramic.................65C 10.1				
R430	150,000 ohms, $1 / 2 /$ watt60B 8.15	C204 $180 \mathrm{mmid}, 5 \%$, N030 temp. coeff. 65C 6.59 C205 4 mid, 50 volts, electrolytic............... 67A 4.9				
R431						
R432	82,000 ohms, $1 / 2$ watt................. 60B 8-823	C206 500 mmfd , ceramic................... 65C 6.6				
* Component may be part of couplate, part number 63 B 6.4 or 63 B 6.8 . Replace with exact duplicate or individual components. \& Component may be part of couplate, part number $63 \mathrm{B6} 6.2$ or 63 B 6.11 . Replare with exact duplicate or individual components.						

©John F. Rider

Description Knob, DX Range Finder.......................... 33 Bart 23.4	Description Connector Lead, 2nd Anode.......................88A 16.16		PARTS FOR MOUNTING 21ZP4A (21 $\mathbf{t}^{\prime \prime}$) PICTURE TUBE
Plastic Tubing (for 2nd anode lead)............ 96B 18-2.16.0 Pilot Lighs (\#44) 81 A 1.5	Fibre Support (for 2nd anode lead).......... 32A 178.	Fibre Support (for 2nd anode lead) 32A 183	Description Part No.
Pilot Light Socket 82A 18.1	Ion		Bracket, Strap and Spade Bolt Mounting...... 15B 878
Shield, Tube	Nut (\#8.32x $1 / 8$) for threaded end of tie rod....2A 1-15-24	t, Tube Mounting Strap ($1 / 4.20 \mathrm{Hex}$) $\ldots \ldots . .2 \mathrm{~L}$ 1.23.24	Bracket, Tie Rod Mounting......................15B 15862.1 Bracket, Tube Stop15B 896
plain type ..78 45.73 slotted type	Plastic Tubing (used between 2nd anode lead and chassis)............................... 96B 18-2-16.0	Nut for threaded end of tie rod (\#8.32x1/6) $\ldots .2$ A $1.15-24$ Plastic Tubing (used between 2nd anode	Bracket, Yoke Housing15C 613-1 Bracket, Yoke Housing Support
for 9 pin miniature tube.................... 87A 7-12	Rubber Collar (mounts over picture tube neck) . 12B 40	lead and chassis)96B 18-2	right side (facing rear) 15C 877-1
Shield, H.V. Compartment...................... 15D 855 Shield, Mica Filled (for mtg. 1B3GT tube socket) \qquad 33B 91	Rubber Strip, Adhesive ($\frac{3}{18} \times 3 \times 1 \times 2$)12B 5-6 Rubber Strip, Adhesive ($\frac{1}{3} \times 224 / 41 / 4$)12A 39.12	Rubber Channel (used under metal strap) 36^{*} length 12A 47.4	Connector Lead, 2nd Anode. \qquad 88A 16.18 Fibre Support (for 2nd anode lead) 32A 183
Socket, Tube miniature bakelite ((7 pin)	Rubber Strip, Adhesive ($\frac{1}{16} \times 1 \% \times 1$ \% ${ }^{\text {a }}$) 12A 39.17	Rubber Collar (mounts over picture tube neck) . . 12B 40	Ion Trap 944 15
	Screw, Wing (for deflection yoke)............. 1A		
	Tie Rod (\#8.32 thread)..........................28A 63-1 Tube Support (front of tube)....................33B 93	Screw, Wing (for deflection yoke) \qquad 1A 101-1-24	Nut for threaded end of tie rod (\#8.32 $\times 1 / 8$) ...2A $1 \cdot 15-24$ Plastic Tubing (used between 2nd anode lead and chassis)96B 18-2.16-0
	Webbing, Picture Tube Mounting Strap (44" length)		
Tuner, Television (complete) cascode type (in sets with $20^{\prime \prime}$ or $21^{\prime \prime}$ pic. tube) for sets Run 5 or lower for sets Run 6 and higher94D 46.3	PARTS FOR MOUNTING 20DP4A (20") PICTURE TUBE		
pentode type (in sets with 17" picture tube) for sets Run 5 or lower \qquad 94D 52.1	Bracket, Strap and Spade Bolt Mounting........ 15A 858 Bracket, Strap (supports yoke coil).............. 15A 572		 Spring Tube Grounding... A3909
for sets Run 6 and higher94D 92-2 (See Run 6 production change on page a, (See Run 6 production change on page 9.)	Bracket, Tie Rod Moumting.....................15B 862 Bracket, Tube Stop15A 857 Bracket, Yoke Housing15C 613-1	PARTS FOR MOUNTING 21EP4A (21") PICTURE TUBE	
MISC. RADIO PARTS FOR 19E1, 19G1 and 19NI CHASSIS	Bracket, Yoke Housing Support right side (facing rear) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$..................15C 861-1 left side (facing rear) $\ldots \ldots \ldots \ldots$	Bracket, Strap (supports yoke coil) 15A 572 Bracket, Strap and Spade Bolt Mounting....... 15B 878 Bracket, Tie Rod Mounting. 15B 862.1	Tube Front Support.....................33B 97
$5 y \mathrm{~m}$. Description Part No.	Connector Lead, 2nd Anode...................88A 16.18	Bracket, Tube Stop on sides of tube 15A 808	TUNING KNOBS and ASSOCIATED Knob, Radio Tuning
M701 Sockel, Phono Input $\ldots .88 A ~$ M706 Sockel, Phono Motor	Fibre Support (for 2nd anode lead)............ 32A 178-2	on front of chassis 15B 876	
S701 Switch, Function (complete)............. 77C 43 Clip, IF Transformer Mounting.................. 72B 28-10		$\begin{aligned} & \text { Bracket, Yoke Housing Support } \\ & \text { right side (facing rear)................................ } 15 \mathrm{C} \text { 877.1 } \\ & \text { 877.2 } \end{aligned}$	Knob, Televition Tuning maroon, "Channel" with gold inserts . 33C 33 C 53-23 53.26 less inserts
	Plastic Tubing (used between 2nd anode lead and chassis) 18.2.16.0	Connector Lead, 2nd Anode...................88A 16-18 Fibre Support (for 2nd Anode lead)......... 32 A 183	$\begin{aligned} & \text { less inserts for } 17 \mathrm{DX12} \text { only 33C 53.5 } \\ & \text { maroon, "Tuning" } \end{aligned}$
Grommet, Gang Mounting12B 1.2	Rubber Channel (used under metal strap)		with gold ring... 83 88-21 less gold ring
Lock Washer, Osc. Coil \& Gang (\#6 I.T.)..... 3B 1.25-24	$\begin{aligned} & 36^{*} \text { length12A } 47.4 \\ & \text { Rubber Collar (used over picture tube neck) ... 12B } 40 \end{aligned}$	ver, Picture Positioning. 15B 574	less gold ring for 17DX12 only..............33C 53-6 maroon, "Off:Volume"
Pilot Light \#44 Pilot Light \#47		Magnet, Correcting (with mig. bracket) A3614	
Pilot Light Shield882A 5.3	Screw, Wing (for deflection yoke)............. 1A 101-1.24	Nut, Tube Mounting Strap ($1 / 4.20$ Hex.) 2A 1 1-23.24	
Screw, Drum Set (\#6.32x¹/2 Allen Hd.)......... 1 A 43.14 Sleeve, Tuning (includes drum)................... AA231	Strap and Spade Bolt Assembly	readed end of tie rod (8-32x/8 Hex.) . 2A 1-15-24	
Socket, Pilot Light 82A 18.1	(\#8.32 thread)..................... 28 A	Plastic Tubing (used between 2nd anode	with gold ring......................... 33D 88
	Tube Front Support.........................33B 89		less gold ring for 17DX12 only............ 33C ${ }^{\text {33 }}$
Spring, Dial Cord Tension 19C 1.5 Spring, Tube Retaining \square 19A 56.4		Rubber Channel (used under metal strap) 26" length 12B 47.2	
Wesher, Vellutex (oscillator coil mig.)5A 1.21	PARTS FOR MOUNTING 2IWP4 OR 2IWP4X (21") PICTURE TUBE		brown, "Tuning" 33C 33-18 brown, "Off.Volume" (with gold insert)..... 33C 53-31 brown, "Picture"
PARTS FOR MOUNTING 17BP4 (17") PICTURE TUBE	Bracket, Strap and Spade Bolt Mounting........ 15A 858 Bracket, Strap (supports yoke coil)............. 15A 572 Bracket, Tie Rod Mounting...................... 15B 862.1 Bracket, Tube Stop 15A 857 Bracket, Yoke Honsing ..		
Bracket, Web Strap Clamping.................... 15A 787 Bracket, Strap (supports yoke coil).............. . . 15A 572	Bracket, Yoke Housing Support	Screw, Wing (for deflection Spring, Tube Grounding....	Spring, TV Knob Tension
Bracket, Tie Rod Mounting.................... 158 859	for 21 WP4 tube	Strap and Spade Bolt Assembly............... A3617	for "Of-Volume" knob 18A 188 43-1
Bracket, Tube Stop 15A 856	right side (facing rear) 15C 867.2		
Bracket, Yoke Housing Bracket, Yoke Housing Support	left side (facing rear)........................15C 887.1 for 21WP4X tube	Tie Rod sides of tube (\#8-32 thread).................. 28B $52-6$	Washer, Felt (used behind Tuning knob)....... 5A 4-14
		bottom of tube ($\# 8 \cdot 32$ thread) 28A 64-3 Tube Support (front) 33B 97	Washer, Fibre (used behind Volume knob) for TV only models.............................5A 1.36 for combination models 5A 1.38

CABINET PARTS

Description	121DX16L Mahog.	$\underset{\text { Blond }}{121 \text { DX17L }}$	221DX15L Walnut	$221 \text { DX16L }$ Mahog.	$\underset{\text { Blond }}{221 \text { DX17L }}$	$221 \mathrm{DX} 26 \mathrm{~L}$ Mahog.
Back, Cabinet (complete)	A3891	A3891	A3891	A3891	A3891	A3891
Bell, Cabinet Back.	32B 148-16	32B 148-16	32B 148-16	32B 148-16	32B 148.16	32B 148-16
Bracket, Mask Retainer	15A 848					
*Cabinet, Wood	* 35E 246-2	*35E 246.3	*35E 242.1	* 35 E 242.2	*35E 242-3	*35E 243.2
Carton and Filler	44C 282	44C 282	44C 279	44C 279	44C 279	44C 280
Control Panel (less door)	23D 133.4	23D 133-4	23D 133-4	23D 133.4	23D 133.4	23D 133.4
Control Panel Door	23D 133.5	23D 133.5	23D 133.5	23D 133.5	23D 133-5	23D 133-5
Control Panel Door Spring	19A 70					
Decals, Cabinet Refinishing.						35E 243-57
*Doors (Matched set of 2 front doors).						*35E 243-51
§Door Catch and Strike Plate......		See § footnote below.				
Door Handle					37A 39
Grille, Metal					36B 40-1	36B 42
Grille Cloth	36C 3-106	36C 3-157	36C 3.152	36C 3.152	36C 3-153	36C 3-136
\$Hinge, Cabinet (pair)		See §footnute below.				
Knobs, Tuning		See "Tuning Knobs and Assuciated Parts" on page 15.				
*Legs (2 legs and cross member)	35E 227.21	35E 227.22			
Line Cord and Interlock Socket	89A 22.1					
Molding, Removable (for pic. window)	35E 246-51	35E 246-52				35E 243.55
Plastic Trim (fits around edge of window mask)	33A 85.4					
Rubber Strip, Adhesive ($\frac{1}{16} \times 1 / 4 \times 21 / 2$)	12B 5-27	12B 5-27	12B 5.27	12B 5-27	12B 5-27	12B 5.27
Screw, Mtg. Control Panel						
\#4x"\%" PRH WS.	1A 7.11.57	1A 7.11.57	1A 7.11-57	1A 7-11.57	1A 7-11.57	1A 7.11-57
Speaker						
5" EM	78B 74-1	78B 74.1	\ldots
$10^{\prime \prime}$ EM			78B 75-1	78B 75-1	78B 75-1	78B 75-1
$10^{\prime \prime} \mathrm{PM}$ (with choke)		78B 80.1	78B 80.1	78B 80.1	78B 80.1
Swivel Caster						
Set of 4 casters, less sockets.	94A 27.120	94A 27.120	94A 27.120	94A 27.120
Single Casters, less socket.			37A 77-1	37A 77-1	37A 77-1	37A 77.1
Tubing, Plastic ($13 / 8^{\prime \prime}$ long,						
Window, Picture, Glass.......	21B 65.4	21B65-4	21B 65.4	21B 65.4	21P65.4	21B65-4
Window Mask, Metal.	23D 145					

- To insure proper matching and fit, also specify cabinet manufacturer's code letters (usually burned or stamped on back rail of cabinet). Wood parts are supplied only if old part cannot be repaired. When ordering, describe condition of old part in detail. § Order these parts using the part number given in Cabinet Hinge Ordering Data, Form No. S379. Otherwise, return old part, or send
an outline tracing (exact size) of part and note finish (brass, bronze, etc.).

CABINET PARTS FOR MODELS 221DX38 and 221DX38A

CABINET PARTS

To insure proper matching and fit, also specify cabinet manufacturer's code letters (usually burned or stamped on back rail of
cabinet). Wood parts are supplied only if old part cannot be repaired. When ordering, descrite condition of on
Order these parts using the part number given in Cabinet Hinge Ordering Data, Form S , Order these parts using the part number given in Cabinet Hinge Ordering Data, Form No. S379. Otherwise, return old part, or send
an outline tracing (exact size) of part and note finish (brass, bronze, etc.).

© John F. Rider

Figure 30. Schematic for 19B1, 19C1, 19F1, 19F1A, 19H1 and 19K1 Television Chassis. Note: This schematic applies only to chassis stamped Run 2 or lower. See figure 32 for chassis stamped Run 3 and figure 34 for chassis stamped Run 4 and higher.

19E1, 19G1, 19N1 SCHEMATIC NOTES

Run numbers are rubber stamped at the rear of the chassis.
(①), (12),.....(ㄱ), (1), etc. indicate alignment points and alignment connections. MPORTANT: Before making waveform and voltage measurements, see instructions below.

WAVEFORM DATA

Waveforms taken with PICTMRE contron set fully to the right, all other controls get for
(ity normal picture (in sync). DX Range Finder contron set full to the left at a distortion.
Wavefor
Waveforms at video and sync stages obtained with transmitted signal input to receiver.
Waveform at pins 1 and 4 of $V 403$ and terminal "C" (2) of T T 404 taken with a 10 mmfd . condenser connected in series with the oscilloscope high side.
The oscilloscope sweep is adjusted for 30 cycles (which is one-half of the vertical The oscilloscope sweep is adjusted for 30 cycles (which in one.half of the vertical
frequency), or for 7875 cycles (which is one.half of the horizontal frequency) so that two pulses appear on the screen.
The peak-10-peak voltage readings shown are subject to some variations due to response
Pulsed high voltage is present on the caution
Pulsed high voltage is present on the caps of V404 and V405 and at pin 3 of V406. Do
not make direct connection to these points with ordinary test equipment. Waveform and
 ascilloscope high side over ve insulatilo be thenen by llipping on twisting the lead from the waveform this way, the shape of waveform will be the same but the peak-lopeak voltage
voltage data

Voltages given on schematic)

(Voltages given on schematic)

- PICTURE control turned fully clockwise. CHANNEL control set on an unused channel
Other front controls set at approximately half rotation Nert Lin and Height set Other front controls set at approximately half rotation. Vert. Lin. and Height set at
approximately half rotation. DX Range Finder control set fully to the left (at " 0 " approximat
- Antenna disconnected from set with terminals shorted.
- Line voltage 117 volts AC.
- Voltages measured with a vacuum-tube voltmeter between tube socket terminals and
- Voltages at V101 and V102 (TV Tuner) are meazured with tube in socket. Use an
- adapter or lift tube out of socket just high enough to allow a needle point probe to
ada
contact tube pins. contact tube pins.
In tuners using a 6 BZ7 tube, voltages taken at pins 1 and 8 must be taken as described
- Voltages at V 306 measured from top of socket with tube removed.
- Volages marked with an asterisk * will vary widely with control setting. In combination
models, B+ voltages in TV chassis will be slightly higher when set is switched to radio models, B+ voltages in TV chassis will be slightly higher when set is switched to radio position. Altern
V 204 (6 Y 6 G).
CAUTION

Pulsed high voltages are present on the cap of V404, pin 3 of V400 and on the filament terminals and cap of the 1 B3GT tube. NO ATTEMPT SHOULD BE MADE TO TAKE
MEASUREMENTS FROM THESE POINTS WITHOUT SUITABLE TEST EQUIPMENT. Picture tube 2nd anode voltage can be measured from the 2nd anote connector and
should be taken only with a high voltage instrument such as a kilovolmeter. should be taken only with a high voltage instrument such as a kilovoltmeter. 2nd anode
voltage is approximately 15 KV Proper filament voltage check of the 183 G tube may
be made by observing filament brilliancy as compared with that obtained with a 15 be made by obs
dry cell battery.

Illustration of
TV-RAD-PHO switch
S701

Top View of Chasile.
(V701 and V772 are aceeaible from
nnderide of chascia).

SCHEMATIC NOTES

Run numbers are rubber stamped at the rear of the chassis.
Numerical symbols (1), (2), (3), etc. indicate run numbers for all 19 series chassis.
by a run number.
Ch. 19B1, 19C1, 19F1,

WAVEFORM DATA

(Waveforms given on schematic)
Waveforms taken with PICTURE control set fully to the right, all other controls set for normal picture (in sync). DX Range Finder control set fully to the left (at " 0 " position).
Warning: Incorrect adjustment of the DX Range Finder control will distortion. video and sync stages obtained with transmitted signal input to receiver Waveform at pins 1 and 4 of 4403 and terminal " $\mathrm{C}^{\prime \prime}$ (2) of T404 taken with a 10 mmfd .
condenser connected in series with the oscilloscope high side.
The oscilloscope sweep is adjusted for 30 cycles (which. is one-half of the vertical
frequency), or for 7875 cycles (which fo one-half of the horizontal frequency) so that two pulses appear on the screen.
The peak-to-peak vollage readings shown are subject to some variations due to response
of oscilloscope and parts tolerances.
CAUTION
Pulsed high voltage is present on the caps of V404 and V405 and at pin 3 of V406. Do
not make direct connection to these points with ordinary test equipment Weymerm not make direct connection to these points with ordinary test equipment. Waveform and
peak-t-pepak voltage at pin 3 of 4 Yo
divider taken, using an oscilloscope with a capacitive voltage divider probe. Waveform at V406 can alsos be taken by clipping or twisting the lead from
the oscilloscope high side over the insulation on the lead connecting to pin the oscilloscope high side over the insulation on the lead connecting to pin 3 . When taking
the waveform this way, the shape of waveform will be the same but the peak-to-peak the waveform this way, the shape of waveform will be the same
voltage will be much lower, depending upon the degree of coupling.

TV VOLTAGE DATA (Voltages given

- PICTURE control turned fully clockwise. CHANNEL control set on an unused channel - PICTURE control turned fully clockwise. CHANNEL control set on an unused channel.
Oher fron controls set at approximately half rotation. Vert Lin, and Height set at at
approximately half rotation DX Range Finder control set fully to the left (at " $0^{\prime \prime}$ approxima
position).
- Antenna disconnected from set with Terminals shorted
- Voltages marked with an asterisk * will vary widely with control setting.
- Line voltage 117 volts AC
- Voltages measured with a vacuum
chassis, unless otherwise indicated.

TV TUNER 94D52-I
USED IN I9BI CHASSIS ONLY THE CIRCUITS SHOWN BELOW ARE USED ONLY WITH 94052-I TUNER (I9BI CHASSIS)

- Voltages at V101 and V102 (TV Tuner) are measured with tube in socket. Use an adapler or inf contact tube pins.
In tuners using a 6 BZ7 tube, voltages taken at pins 1 and 8 must be taken as described above or no voltage reading will be obtained.
Voltages at V306 measured from top of socket with tube removed

caution

Pulsed high voltages are present on the cap of V404, pin 3 of V406 and on the filamen
erminals and con MEASUREMENTS FROM THESE POINTS WITHOUT SUITABLE TEST EOUIPMENT Picture tube 2 nd anode voltage can be measured from the 2 2nd anode connector and
should be taken only with a high voltage instrument such as a kilovoltmeter or a vacuum tube voltmeter with a high voltage probe. 2nd anode voltage is approximately 15 KV
Proper filament Proper filament voltage check of the 1B3CT tube may be made by of
ancy as compared with that obtained with a 1.5 volt dry cell battery.

Top View of Chassis.

Note: Tone control not used in 19B1 and 19F1A chassis.

Figure 32. Schematic for 19B1, 19C1, 19F1, 19F1A, 19H1 and 19K1 Television Chassis.
Note: This schematic applies only to chassis stamped Run 3. See figure 30 for chassis stamped Run 2 or lower and figure 34 for chassis stamped Run 4 and higher.

SCHEMATIC NOTES

Run numbers are rubber stamped at the rear of the chassis.
Numerical symbols (1), (2), (3), etc. on schematic indicate a production change covered y a run number
(11), (12),.....(ㄴ) (2). etc. indicate alignment points and alignment connections.

IMPORTANT: Before making waveform and voltage measurements, see instructions below.
(Waveforms given on schemotic)
Waveforms taken with PICTURE control set fully to the right, all other controls set for normal picture (in sync). DX Range Finder control set fully to the left (at "0" position)
Warning: Incorrect adjustment of the DX Range Finder control will cause waveform distortion.
Waveforms at video and sync stages obtained with transmitted signal input to receiver.
Waveform at pins 1 and 4 of $V 403$ and terminal "C" (2) of T404 taken with a 10 mmfd . condenser connected in series with the oscilloscope high side.
The oscilloscope sweep is adjusted for 30 cycles (which is one-half of the vertical The oscilloscope sweep is adjusted for 30 cycles (which is one-half of the verrical pulses appear on the screen.
The peak-to-peak voltage readings sho
of the oscilloscope and parts tolerances.
Pulsed high valtage is presen
Pulsed high voltage is present on the caps of V404 and V405 and at pin 3 of V406. Do not make direct connection 3 of $V 406$ taken, using an oscillosceppe with a capacitive voltage divider probe. Waveform at $V 406$ can also be taken by clipping or twisting the lead from he oscilloscope high side over the insulation on the lead connecting to pin 3. When taking
he waveform this way, the shape of waveform will be the same but the peak-to-peak the waveform this way, the shape of waveform will be the same
voltage will be much lower, depending upon the degree of coupling.

TV VOLTAGE DATA

PICTURE control turned fully clockwise. CHANNEL control set on an unused channel ther front controls set at approximately half rotation. Vert. Lin. and Height set a
at position).

- Antenna disconnected from set with Terminals shorted.
- Voltages marked with an
- Voltages measured with a vacuum
chassis, unless otherwise indicated. Voltages at V101 and 102 (TV Tuner) are measured with tube in socket. Use an contact tube pins.
In tuners using a 6 BZ7 tube, voltages taken at pins 1 and 8 must be taken as described bove or no vollage reading will be obtained.
- Voltages marked with an asterisk * will vary widely with control setting. In combination models, B+ voltages in TV chassis will be slightly higher when set is switched to radio position. Alternate voltage readings for 204 (6Y66).
Culsed high voltages are present on the cap of 404 , pin 3 of Y406 and on the filament
erminals and cap of the 1 B3GT tube. NO ATTEMPT SHOULD BE MADE TO TAKE MEASUREMENTS FROM THESE POINTS WITHOUT SUITABLE TEST EQUIPMENT. Picture tube 2 nd anode voltage can be measured from the 2 nd anode connector and should be taken only with a high voltage instrument such as a kilovoltmeter or a vacuum
tube voltmeter with a high voltage probe. 2nd anode voltage is approximately 15 KV . ube voltmeter with a high voltage probe. 2nd anode voltage is approximately 15 KV .
Proper fiament voltage check of the 1 B 3 GT tube may be made by observing filament brilliancy as compared with that obtained with a 1.5 volt dry cell battery.

Hllustration of
TV-RAD.PHO switch $\mathbf{S 7 0}$

Ton Viow of Chassis.
(V701 and V702 are (V701 and V702 are accessible from

Ch. 19E1, 19G1, 19N1

(6) TV TUNER 94D52-1d-2 USED IN I9BI CHASSIS ONLY CIRCUITS SHOWN BELOW USED ONLY WITH 94052-1\&-2 TUNERS (I9BI CHASSIS)

THIS CIRCUIT USED WITH 94D52-I\&-2 TUNERS (I9BI CHASSIS)

Note: Tone control not used

 in $19 B 1$ and 19F1 A chassis.Figure 34. Schematic for 19B1, 19C1, 19F1, 19F1A, 19H1 and 19K1 Television Chassis.
Note: This schematic applies only to chassis stamped Run 4 and higher. See figure 32 for chassis stamped Run 3 and figure 30 for chassis stamped Run 2 or lower.

SCHEMATIC NOTES

Run numbers are rubber
Numerical symbols (1), (2), (3), etc. on schematic indicate a production change covered
(ail), (A2),(V),
, (2). etc. indicate alignment points and alignment connections.
IMPORTANT: Before making waveform and voltage measurements, see instructions below.
 \section*{WAVEFORM DATA
 \section*{WAVEFORM DATA
 (Waveforms given on schematic}

Waveforms taken with PICTURE control set fully to the right, all other controls set for hormal picture (in sync). DX Range Finder control set fully to the left (at "0" position).
'ARNING: Incorrect adjustment of the DX Range Finder control will cause waveform distortion.
Waveforms at video and sync stages obtained with transmitted signal input to receiver Waveform at pins 1 and 4 of 4403 and terminal "C" (2) of T 4404 taken with a 10 mmid. Condenser connected in series with the oscilloscope high side
The oscill The oscilloscope sseep is adjusted for 30 cycles (which is one-half of the vertical
frequency) or for 7875 cycles (which is one-half of the horizontal frequency) so that two pulses appear on the screen.
The peak-10-peak voltage readings shown are subject to some variations due to response the oscilloscope and parts tolerances.

CAUTION

Pulsed high voltage is present on the caps of V 404 and V 405 and at pin 3 of V 406 . Do not make direct connection to these points with ordinary test equipment. Waveform and peak-to-peak voltage at pin 3 of $V 406$ taken, using an oscilloscope with a capacitive voltage
divider probe. Waveform at $V 406$ can also be taken by clipping or twisting the lead from the oscilloscope high side over the insulation on the lead connecting to pin 3. When taking the waveorm this way, the shape of waveform will be the same but the peak-to-peak
voltage will be much lower, depending upon the degree of coupling.

$$
\begin{aligned}
& \text { TV VOLTAGE DATA } \\
& \text { (Voltages given on schematic) }
\end{aligned}
$$

- PICTURE control turned fully clockwise. CHANNEL control set on an unused channel Other front controls set at approximately half rotation. Vert. Lin. and Height set a approximately half rotation. DX Range Finder control set fully to the left lat " 0 " position)
Antenna disconnected from set with terminals shorted
Voltages marked with an asterisk * will vary widely with control setting
- Line voltage 117 volts AC .
- Voltages measured with a vacuum-tube voltmeter between tube socket terminals and chassis, unless otherwise indicated
- Voltages at V101 and V102 (TV Tuner) are measured with tube in socket. Use an adapter or lift tube out of socket just high enough to allow a needle point probe to contact tube pins.
In tuners using a 6 BZ7 tube, voltages taken at pins 1 and 8 must be taken as described
Voltages at V306 measured from top of socke
socket with tube removed.
Pulsed high voltages are present on the cap of V404, pin 3 of V406 and on the filament
rminals and cap of the 1 B3GT tube. NO ATTEMPT SHOULD BE MADE TO TAKE MEASUREMENTS FROM THESE POINTS WITHOUT SUITABLE TEST EQUIPMENT. Picture tube 2 nd anode voltage can be measured from the 2 nd anode connector and
should be taken only with a high voltage instrument such as a kilovoltmeter or a vacuum. tube voltmeter with a high voltage probe. 2nd anode voltage is approximately 15 KV .
Proper filament voltage check of the Pube voltmeter with a high volage probe. 2nd anode voltage is approximately
Proper filament voltage check of the 1 B3GT tube may be made by observing filament brilli.
ancy as compared with thai otitained with a 1.5 volt dry cell battery.

19B1, 19C1, 19F1,
$19 \mathrm{~F} 1 \mathrm{~A}, 19 \mathrm{H} 1,19 \mathrm{~K} 1$

Run numbers are rubber stamped at the rear of the chassi
Numerical symbols (1), (2), (3), etc. on schematic indicate a production change covered (a1) (A2) (Y)
MPORTANT: Before naking waveform and voltage measurenments, see instructions below. veform and voltage me
WAVEFORM DATA

(Waverms

W'aveforms taken with PICTURE control set fully to the right, all other controls set for nornal pisture (in sync). DX Ranye Finder connrol set fully to the left (at " 0 " position).
MARNIGG: Incorrect adjustment of the DX Range Finder control will cause waveform distortion.
Waveforms at video and sync stages obtained with transmitted signal input to receiver condenser connected in series with the oscilloscope high side.
The oscilloscope sweep is adjusted for 30 cycles (which is one-half of the vertical requency), or for 8875 cycles (which is one-hall of the horizontal frequency) so that two pulse apparar one the seak voltage readings shown are subject to some variations due to response
The peal of the oscilloscope and parts tolerances.
Pulsed high voltage is present on the caps of $\mathfrak{V} 404$ and $\mathfrak{V} 405$ and at pin 3 of V406. Do Pot sake direct connection to these points with ordinary test equipment. Waveform and peak-10-peak voltage at pin 3 of V406 taken, using an oscilloscope with a capacitive voltage
divider probe. Waveforn at 4406 can also be taken by clipping or twisting the lead from divider probe. Wavefornn at V406 can also be taken by clipping or twisting the lead from
the oscilloscope high side over the insulation on the lead connecting to pin 3. When taking the waveform this way, the shape of waveform will be the same but the peak-to peak voltage will be much lower, depending upon the degree of coupling.

voltage data

- PICTURE control turned fully clockwise. CHANNEL control set on an unused channel. Other front controls set at approximately half rotation. Vert. Lin. and Height set at approximately half rotation DX Range Finder control set fully to the left (at " 0 " position).
- Antenna disconnected fromi set with terminals shorted.
- Line voltage 117 volts AC
- Doltages measured with a vacuum-tube volimeter between tube socket terminals and chassis, unless otherwise indicated.
- Voltages at V101 and V102 (TV Tuner) are measured with tube in socket. Use an
adapter or lift tube out of socket just high enough to allow a needle point probe to contact tube pins.
In tuners using a
6BZ7 tube, voltages taken at pins 1 and 8 must be taken as described In tuners using a 6 BZ7 tube, voltages taken
- Voltages at V306 measured from top of socket with tube removed.
- Voltages marked with an asterisk * will vary widely with control selting. In combination position. Alternate voltage readings for radio and TV are shown for sound output tube V204 (6Y6G).

CAUTION

Pulsed high voltages are present on the cap of 404 , pin 3 of 1406 and on the filament
 Ierminals and cap of the ${ }^{\text {MEASUREMENTS FROM THESE. POINTS WITHOUT SUITABLE TEST EQUUPMENT. }}$ Picture tube 2nd anode voltage can be measured from the 2 nd anode conneclor and
should be taken only with a high voltage instrument such as a kilovoltmeter or a vacuum. tube voltmeter with a high voltage probe. 2nd anode voltage is approximately 15 KV . Proper filament voltage check of the 1B3GT tube may be made by observing filament brilli-
ancy as compared with that obtained with a 1.5 yolt dry cell battery. ancy as compared with that obtained with a 1.5 volt dry cell battery.

© John F. Rider

fier circuit and coupling between the RF mixer and the IF amplifier circuit. An overall HF oscillator adjustment since it is not required
V 70
V 702 IF Amplifier. (AM Radio) and built.in and picture traps 119.75 MC and 2725 MC . Design of the cascode PF amplifier circuit has been optimized for use of the 6BZ7

Improved IF Amplifier: Increased gain, greate bandwidth, higher and more uniform sound level and of the features of this new IF amplifier

A 12AU7 as video detector and lst sound IF amplifier.

DX Range Finder Control: A DX Range Finder (AGC delay circuit) is used. This control is a potentiometer located at the rear of the chassis to enable ignal conditions of any local or fringe area. Use of this control has greatly improved reception in high noise el and weak signal areas and 22 E 2 chassis.

Picture Tube Mounted on Chassis: The picture tube is mounted directly on the chassis for servicing convenience. Mounting the picture tube on the chassis has also liminated possibility of trouble due to poor plug con nection.

TUBE COMPLEMENT

RF Amplifier
Oscillator and Mixe
Sound IF
Ratio Detector
$\left\{\begin{array}{l}\text { AM Detector, AVC } \\ \text { Sound Amplifier }\end{array}\right.$ Suund Output

2nd 1
3rd IF
Video Detecto
Ist Sound IF

Picture Tube
Gated AGC
$\left\{\begin{array}{l}\text { Vertical Oscillator } \\ \text { Sync Inverter }\end{array}\right.$ Vertical Output Sync Separator and Clipper Sync Discriminator Horizontal Output 2nd Anode Rectifier R

INSTALLATION AND SERVICE ADJUSTMENTS
Instructions for making installation and service adjust-

When installing, adjust the DX Range Finder control, check picture for centering, tilt, shaded corners, proper size, linearity, etc., to insure best performance. It is hat the channel slugs be adjusted upon installation or ervicing of every set to insure ease of tuning. Procedure or making "Individual Channel Slug Adjustment Using Television Signal" is given at right.

绪 vature (pin cushion ting curvature is given on page 30 . ontrast and poor sync

In normal signal strength areas, the DX Range Finder Control will generally be set at the " 0 " position. In interhe noise level is higher the DX Rang Finder atd will generally be set within the 10 to 150 position. In ringe areas or areas where long distance "DX" receply possibe, the DX Range For con will gen hish woise the 10 to or minimum . (sow) and fling Range

Adjust the DX Range Finder as follows

Rotate the DX Range Finder control fully to the left
channel.
Set the Picture (contrast) control fully to the righ (clockwse). tate the DX Range Finder control to the right for best contrast with a minimum of snow and flashing in the picture
tor bending of verical objects (overloading) ine picture. Also check to see that the picture locks syne properly when switching off and on channel. lesary, rolate the DX Range Finder control to tory
n some fringe areas where long range reception is This may vary with season and time of day. If the signal in the area concerned is subject to excessive fading and is weakest, overloading (picture bending) will take place when the signal is stronger. For this reason be sure that trol for periodic variations in signal strength.

INDIVIDUAL CHANNEL SLUG ADJUSTMENT

 USING A TELEVISION SIGNALIndividual channel oscillator adjustment of every receiver should be checked upon installa cion or servicing. If this adjustment is properly made, it is possible to tane from one station to another by merely lurning the CHANNEL control. With correct oscillator channel adjustmen, bes ple of the TUNING con How this of the ange of the TUNING control. However, this may no necessarily be maximum sound outpu

Channel slug adjustment can be made without remov ing the chassis from the cabinet. Adjust as follows:
a. Turn the set on and allow 15 minutes to warm up. . Set the CHANNEL knob for a station in operation. Set all other controls for a normal picture.
Set TUNING control at center of its range by rotating it approximately half-way.
d. Remove the CHANNEL and TUNING knobs.
e. Insert a $1 / k^{\prime \prime}$ blade, NON-METALLIC screwdriver (kit consisting of one metallic and one non-metallic screwdriver is available under part number 98A30.3) in the $1 / 4^{\prime \prime}$ hole adjacent to the channel tuning shaft. For each channel in operation, carefully adjust the For each channel in operation, carefully adjust the channel slug for best picture with clear detail. Be range before adjusting each channel slug. Only sligh range before adjusting each channel slug. Only slight rotation of the slug will be required; turning the slug in too far will cause it to fall into the coil. (If the
slug falls into the coil, remove the coil, move the slug falls into the coil, remove the coil, move the retaining spring aside, lightly tap the open end o the coil until the slug slips out. Replace slug and

Figure 1. Control Panel in 22E2 Sets. Channel

Figure 2. Control Panel in 22C2 Sets. Channel and Tuning Knobs Removed.

OUCH-UP OF RATIO DETECTOR SECONDARY

 USING TELEVISION SIGNAL (A12, BOTTOM
SLUG OF T201)

"This adjustment is accessible through the $1 / 4$ " hole (just below T201) in bottom of the cabinet or the chassis just below shelf located toward the left side facing the rear of the set. Removal of the chassis is therefore not ear of he se.. Remont need be male on one channel only. Proceed as follows:
a. Turn set on and allow about 1.5 minutes' for warm up. b. Tune set for normal picture and sound.

Carefully insert a non-metallic alignment tool through the opening in cabinet bottom below T201. An alignment tool with a screwdriver blade or hexagonal end is required depending on the transformer used, see * note below. When the alignment tool engages the bottom tuning slug A12, adjust the slug for best sound with minimum buzz level. Do this carefully as only slipht rotation in either direction will generally be required. Correct adjustment point is located between the two maxima buzz peaks that will be noticed when turning the slug back and forth about
d. If necessary, repeat individual channel slug adjust. ment and conclude with retouching the ratio detector secondary. Note: If oscillator adjustment is required for other channels, it will not be necessary to repeat the ratio detector secondary adjustment after once correctly adjusting it.
ALIGNMENT OF 4.5 MC TRAP Al3, USING A TELEVISION SIGNAL

Beat interference (4.5 MC) appears in picture as very fine vertical or diagonal lines, very close together, having a "gauze-like" appearance, the pattern will vary with speech, forming a very fine herringbone pattern.

The trap can be tuned by watching the picture and adjusting the slug for minimum 4.5 MC interference. If greater accuracy is required, the trap should be adjusted as shown on page 32 under " 4.5 MC Sound IF and Trap Alignment".

ADJUSTING CURVATURE CORRECTING MAGNETS FOR SETS USING A 21EP4 (21") PICTURE TUBE

If either side of the picture has excessive curvature (pin cushion effect) or if corners of the picture are bent inwardly, this can be minimized by adjustment of the correcting magnets located on the yoke bracket. Either side of the picture can be adjusted individually by using the magnet on that side of the picture tube. A picture or test pattern having straight vertical lines near the sides can be used for making adjustment; the pattern
from a cross-hatch generator is preferable. IMPOR TANT: A cross-hatch generator which is not capable of locking the picture in both horizontal and vertical sync is not suitable. Adjust as follows:
a. Set the receiver control for normal picture. Be sure that the picture is centered properly and vertical linearity adjustment is made.
b. Check the radial position of the magnet brackets. The magnet brackets are generally set so that the mount ing screw is centered in the curved slot. It should only be necessary to change from this setting if the curvature at the side of the picture is not centered with respect to the side of the picture tube.
Move the correcting magnet against the deflection yoke bracket. While observing the vertical lines on the same side of the picture that the magnet is located slowly move the magnet forward until curvature of ertical lines near the side is minimized. If the mag ets are moved too far forward, the corners of the picture will bend inwardly or become shaded.

SERVICING RADIO TUBES AND DIAL LIGHT IN 22E2 SETS

The radio tubes can be serviced without removing the TV chassis from the cabinet. The radio tubes can be reached through the opening in the underside of the chassis shelf.

The dial light can be serviced by removing the tuning knobs and plastic control panel.

Figure 3. Chassis View Showing Adjustment Locations.

SERVICE HINTS

Also see Production Change TROUBLE SHOOTING

The 22 C 2 and 22 E 2 chassis described in this manual are similar to other chassis in the 22 series with respect o the sync, sweep and power supply circuit. The basic differences in the 22C2 and 22E2 chassis over other 22 series are outlined
22 C 2 and 22 E 2 Chassis"
In general, the trouble shooting of the 22 C 2 and 22 E 2 chassis will be similar to that of other chassis in the 22 series which use a cascode TV tuner.

It is important, however, to remember the following trouble shooting hints which apply to the 22 C 2 and 22 E 2 chassis.

No picture or sound: Raster OK. Incorrect adjustment of the DX Range Finder control in a weak signal area may result in complete loss of picture and ound. In strong signal areas, incorrect adjustment may also result in picture bending, excessive contrast and poor sync. See instructions for adjustment.

No sound and no raster. In the 22 C 2 chassis, no sound and no raster or distorted sound and no raster can e due to a blown fuse M401. See paragraph on "Re lacing Fuse M401"

Excessive curvature at the sides of the picture (pin cushion effect) or bending of corners. Exces. sive curvature at the sides of the picture (pin cushion effect) or bending of corners can be due to misadjust ment of the curvature correcting magnets. See "Adjus ing Curvature Correcting Magnets Used With 21EP4A (21") Picture Tube".

Picture bending, excessive contrast or poor sync Incorrect adjustment of the DX Range Finder control in a strong signal area, may result in picture bending, excessive contrast and poor sync. Incorrect adjustment in a weak signal area may also result in complete loss of picture and sound. Instructions for adjustment is given.

MISCELLANEOUS TROUBLES DUE TO FAULTY TUBES

Faulty tubes cause the majority of receiver troubles. The list below contains most common troubles which are generally due to faulty tubes.
a. Poor fringe area reception due to low B plus voltage Check the 5U4G tube
b. Poor fringe area reception due to low sensitivity. Check the 6CB6, 6AG5 and 6BZ7 tubes.
c. Picture and sound separated due to IF oscillation. Check the 6CB6 and 6AG5 tubes.
d. Picture bending caused by leakage between tube ele ments. Check the 6CB6 tubes.

OJohn F. Rider
e. Poor sync stability, usually more noticeable in ver tical circuit. Check 12AU7 tube.
. Washed out picture due to negative grid current Check 6AC7 tube.

EXCESSIVE SNOW IN PICTURE

Excessive snow in the picture can be caused by faulty tubes in the receiver. Check receiver as follows:
Short circuit the antenna terminals and turn the pic ture control (contrast) fully clockwise.
Connect a vacuum tube voltmeter from test point " V " to chassis. Set the channel selector on an unassigned channel. If the voltmeter reading exceeds 6 volt nega condition can usually be corrected by tube substitution. condition can usually be corrected by tube substitution.
Substitute tubes in the following order: Video detector tube V304, RF oscillator tube V102, RF amplifier tube V101 and IF amplifier tube V301, V302 and V303.
Corona or arcing in the second anode supply can also cause a high noise reading at the video detector resulting in excessive snow in weak signal areas.

DISTORTED SOUND

Distorted sound can be caused by misalignment of the ratio detector transformer T201. This misalignment is sometimes due to frequency drift of the ratio detector transformer. If realignment of the ratio detector trans former does not correct this trouble permanently, a permanent remedy for this trouble is to connect a 20 mmfd , - $\mathbf{7 5 0}$ temperature coefficient, ceramic condenser (part number $65 \mathrm{C} 6-26$) in parallel with condenser C204 (180 mmfd , ceramic, connected across the secondary of the ratio detector transformer T201). Realign ratio detector after adding the 20 mmfd . condenser.

IMPORTANT NOTE ON 27.25 MC AND 19.75 MC

 TRAP ALIGNMENTIf difficulty is experienced in aligning the 27.25 MC and 19.75 MC traps (A7 and A8), using the method outlined in the alignment procedure on page 8, make trap alignment as follows:

1. Connect an oscilloscope between pin 8 (plate) of video amplifier V305 (6AC7) and chassis.
2. Make all connections and receiver control settings as instructed in steps 5 and 6 of the alignment procedure on page 32.
3. Operate the signal generator with AM (audio) modu lation turned on. Full generator output may be re quired.

Note: If a termination resistor is used in the generator output cable, increased generator output can be obtained by disconnecting the terminating resistor. Connect a condenser (.002 mfd . or larger) in series with the generator high side.
4. Adjust A7 (27.25 MC trap) and A8 (19.75 MC trap) for minimum amplitude of the waveform on the oscilloscope.

REPLACING FUSE M401

The horizontal output circuit of these receivers is pro tected by fuse M401 1.25 amp ., 250 volts). This fuse is located in the rear of the high voltage compartment. To replace the fuse, remove the two screws at the base of the high voltage compartment and lift the cover away from the base; see figure 3. Carefully remove or inseri the fuse so as to avoid damage to the horizontal output transformer.

REMOVABLE PICTURE WINDOW

All models using the 22 C 2 or 22 E 2 television chassis have picture windows which can be easily removed from the front of the cabinet for cleaning the inside of the window, picture tube and picture tube mask. A removable picture window molding is used in wood cabine modes. Instructions for removing and cleaning the pic ture window, picture tube and picture tube mask ar given below.

REMOVING PICTURE WINDOW FOR CLEANING

If the picture window has a removable molding (at the top), remove the window by first removing the Phillips head screws and molding at the top of the pic ture window. Pull the top of the window away from the cabinet slightly and lift it up out of the channel at the bottom.

After cleaning the window, picture tube and picture tube mask as instructed below, install the window by placing the bottom edge in the channel and replace the molding. Use care when tightening screws on molding to prevent stripping.

CLEANING GLASS PICTURE WINDOW

Clean the picture mask using a soft cloth, dampened in mild soapy water. Clean the picture window and the face of the picture tube using a soft cloth, dampened with your favorite window cleaner. Wipe dry using a chamois or soft, lint free cloth. Only use cloths which are just dampened as presence of moisture or water inside the set may cause damage. Install the window as instructed above

PICTURE TUBE REPLACEMENT

Picture tube replacement for the 22 series receivers is similar to that of other chassis using a rectangular glass picture tube. Instructions for adjusting curvature correcting magnets used with $21 E P 4 \mathrm{~A}$ ($21^{\prime \prime}$ cylindrical faced) picture tube is given on page 30 .

PRODUCTION CHANGES

The production changes given below appear in later produc-

 tion sets.At the start of production, chassis were not stamped with a run number, therefore some chassis will nol have a run number stamp.

Production changes are coded RUN 1, RUN 2, etc., as given in the headings below. Run number (stamped on chassis) indicates that this chassis has the change(s) incorporated which are explained under that particular run number heading below, as well as all changes (lower run numbers) made prior to that time.

CHANGE FOR INCREASED SOUND LEVEL

Run 1 in 22C2 and $22 E 2$ chassis

Early production sets used a 12AU7 tube for video detector and first sound IF amplifier V304. Later production sets stamped Run 1 or higher used a 12AT7 tube for V304. The schematic figure 16 shows a partial circuit of the first IF amplifier in sets using the 12AU7 tube. Important: The $12 \mathrm{AL}^{7}$ and 12 AT 7 tubes are not directly interchangeable. Replace with same type tube used in receiver.

MECHANICAL CHANGE IN RADIO TUNER

 USED IN 22E2 CHASSISMechanical changes were made to the later production radio tuner sub-chassis used in 22 E 2 combination models. The dimensions of the radio chassis were altered slightly and the mounting position of the gang condenser was changed.
Early production radio tuners used gang condenser (part number 68B53) which mounts in a vertical position. Later production radio tuners use gang condenser (part number 68B53.1) which mounts in a horizontal position

Figure 4. Exploded View, TV Tuner 94D47-2. (For description of parts, see page 36.

TELEVISION ALIGNMENT PROCEDURE

GENERAL

Complete alignment consists of the following individual procedures and should be performed in this sequence.
a. IF Anplifier and Trap Alignment.
b. IF Response Curve Check.
c. 4.5 MC Sound IF and Trap Alignment
d. RF and Mixer Alignment.
e. Over-all RF and IF Response Curve Check.
f. HF Oscillator Adjustment.

TEST EQUIPMENT

To properly service this receiver, it is recommended hat the following test equipment be available.
IMPORTANT: Many service instruments do not meet the requirements given below. A list of recom mended equipment is available from Admiral Distributor

Oscilloscope

Standard oscilloscope, preferably one with a wide band vertical deflection, vertical sensitivity at least .5 volt (RMS) per inch.
Signal (Marker) Generator
4.5 MC frequency.

18 to 30 MC frequency range.
50 to 90 MC frequency range.
170 to 225 MC frequency range.
Must have a built-in calibration crystal for checking dial accuracy.

Sweep Generator

Sweep generator must provide sweep frequencies from 18 to 30 MC range: with at least 50 to 90 MC range: 10 MC sweep width
Output: adjustable; at least one-tenth volt maximum. Output impedance: 300 ohms balanced to ground.
A sweep generator not having constant output voltage ver the swept range and linear sweep, will produce curves which are widely different from the ideal curves shown in the following pages. If repeated difficulty is encountered in obtaining hese curves, he sweep gen the response curve for a set that is in alignment.
Before suspecting the generator, be sure the alignment instructions in this manual have been followed carefully.

Vacuum Tube Voltmeter

Preferably with low range (3 volt) DC zero center scale and a high voltage probe (30,000 volt range)

ALIGNMENT TOOLS

An alignment tool kit consisting of one metallic and ne non-metallic screwdriver is available under part num ber 98A30.3. A non-metallic alignment tool with a screwdriver point at one end and hexagonal wrench (for hollow hexagonal core slugs) at the other is available under part number 98A30-7.

IF RESPONSE CURVE CHECK

(Using sweep generator and oscilloscope)

Receiver Controls and Bias Battery	Sweep Generator	Marker Generator	Oscilloscope	Instructions
Sct Channel selec- tor on channel 12 or an unassigned high channel. Pi ture control fully to the left. Connert bias battery to test point "T"; positive to chassis.	Commect high side to 6 J 6 mixer-osc. tube shield. Insulate tube shield from chassis, low ground. Set sweep frequency to 23 MC , and sweep width approximately 7 MC .	If an external used, loosely couple high side to su eep tube shield, low side to chassis. Marker frequencies indicated on IF Response Curve.		Check curve obtained against ideal response curve in ig. Note iolerances on curve. Keep marker and sweep out puts al very mininum ore prein sweep output should redure response curve amplishape of the response curve. If the curve is not within tolerance or the markers are the curve, touch -up with IF slugs as instructed below.

Figure 6. IF Response Curves, Incorrect Shape
If it is necessary to adjust for approximate equal peaks, care-
fully adjust slug A5 © $23.5 \mathrm{MC)}$ Mt should not be necessary to
turn slug A5 more than one turn in either direction.
 whstanto frow wisust it

Figure 5. Ideal IF Response Curve.

Before proeeeding, be sure to check the signal generator used in alignment against a crystal calibrator or other frequency standard for absolute frequency calibrat.
MC and 19.75 MC Trap Alignment" on page 31.

4.5 MC SOUND IF AND TRAP ALIGNMENT

- Connect lias battery; neqative to test point "T", see
 for steps $1,2,3,4$ and
- Disconnect antenna. Connect a jumper wire across the

Step \begin{tabular}{c|c|c}
Signal

Gen. Freq.

\quad

VTVM and Signal

Generator Connections
\end{tabular}

1 - 1 common to chassis. Generator high side to 636 (V102) tube shield; insulate shield from
chassis. Connect low side to chassis near $6 \mathrm{J6}$ tube base.

Connect Generator and VTVM sam Connect Gen
as in step 1.

Connect Gen
as in step 1

IF AMPLIFIER AND TRAP ALIGNMENT

- Set Channel selector to channel 12 or other unassigned - Set the Pictere contrul fully to the left (counterclockise) - Allow about 15 minutes for receiver and test equipment to - Use lowest DC scale on TTVM.

Instructions	Adjust
Use 3 volt bias battery. Use lowest DC scale on VTVM. When peaking, keep reducing generator output for VTVM reading of approx. 1 volt or less.	A1, A2 and A3 for maximum.
	A4 for maximum.
	A5 for niaximum.
Set channel switch to channel 12 or other unassigned high channel.	A6 for minimum.
Use $11 / 2$ volt bias battery. Set channel switch between channcls to break channel coil contact: YTVMreading will change when coil contact is broken.	A7 for minimum
	A8 for mininfum.
Use 3 volt bias battery. Set channel switch same as in step 1 .	Readjust A1 and A2 for maximum.

See page 30 for touch-up of ratio detector using television
See page 30 for touch-up of ratio detector ut
signal withoul test equipment.
a. Connect signal generator high side to Pin 1 of V304
12AU7 or $12 . A T 7$) hrough a .01 mfd. condenser, connect
d. Use a NON METALLIC alignment tool. If Ratio Det. ranstornier (T201) has hollow core slugs, bottom slug adastment All can be nade from top of chassis, if you ase
alignment tool $\# 98 \mathrm{~A} 30.7$ obtainable from Admiral Dis.
b. Allow about 15 minutes for receiver and test equipment to tributor.

Step	Signal Gen. Freq. (MC)	VTVM Connections	Instructions	Adjust
	When using a signal generator, be sure to check it against a crystal calibrator or other frequency standard for accurate frequency calibration at 4.5 MC . Accuracy required is within one kilocycle. IMPORTANT: If a signal generator and frequency standard are not available, alignment can be made using a TV station signal. Tune in a mation and follow steps 1.2 and 3 below. If necessary use a higher scale on the VTVM.			
1	$\begin{aligned} & \text { Set to } \\ & \text { exactly } \\ & 4.5 \mathrm{MC} \end{aligned}$	High side to est point "Y"; common to chassis.	Use lowest DC scale on VTVM.	A9, A10 and All for maximum (keep reducing generator output to keep VTVM at approx. 1 volt).
2		High side to, common to chassis.	Use zero center scale on VTVM, if available.	Al2 for zero on VTVM (the correct zero point is located between a positive and a negative maximum). If Al2 was far off, repeat step 1 .
3		High side to test point " Y "; common to chassis.	Connect a 10 mmfd . condenser from pin 8 of V305 (6AC7) to pin 8 of $V 304$ (12AU7 or 12AT7). Use lowest DC scale on VTVM.	A13 for minimum.

©John F. Rider

 Note that wideo carrier (marker) on the "Over-all RF.1F Response Curve" carrier (marker) on the "Over-all RF-1F
curve as or on the opposite side of the curve as compared to the "IF Response Curve" figure 5 .

Figure 13. O

REMOVING RADIO TUNER

The radio tuner is mounted at the front apron of the chassis. Alignment, taking voltage readings or an inspection of the underside of the radio tuner can be performed without complete removal of the radio tuner from the TV chassis. To gain access to the underside of the radio tuner, disconnect the tuning drive cord, remove the

DIAL STRINGING

Dial stringing for the radio tuning control is show below

Figure 14. Dial Stringing for the 22E2 Chassis.

ALIGNMENT OF RADIO TUNER

The radio tuner in television and radio chassis should be aligned as instructed under "Radio Alignment Procedure" below.

The radio alignment trimmers are accessible without disassembly of the radio tuner from the TV chassis.

AM Radio Tuner in

RADIO ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
- Turn receiver Volume control fully on; Tone control fully
- Function switch in "Radio" position.

Step	Connect Signal Generator	Dummy Antenna Between Radio and Signal Generator	Signal Generator Frequency	Receiver Dial Setting	Adj. Trimmers in Following Order to Max.
1	Gang condenser antenina stator	. 1 MFD	455 KC	Tuning gang wide open	$\begin{aligned} & \hline \text { *A.B (2nd IF) } \\ & \left.{ }^{*} \mathrm{C} \text { (}{ }^{(18 t} 1 \mathrm{FF}\right) \\ & \hline \end{aligned}$
2	"	"	1620 KC	"	E (oscillator)
3	Place generator lead close to loop of set to obtain adequate signal. No actual connection (signal by radiation).		1400 KC	Tune in signal	${ }_{\text {¢ }}$ F (antenna)
* Adjustments \mathbf{A} and \mathbf{C} made from underside of chassis. See figure 15 for trimmer locations. \& AM antenna trimmer may not peak if antenna leads are not properly routed or separated.					

HF OSCILLATOR ADJUSTMENT (Using a signal generator)

It is always advisable to make H F oscillator adjustments using a Television Signal as instructed on page 30.If a Television Signal is not available, HF oscillator adjustment can be made using a crystal calibrated signal generator. Make adjustments as follows:

SERVICING RADIO TUBES AND DIAL LIGHT

The radio tubes and radio dial light can be serviced without removing the TV chassis from the cabinet. The radio tubes can be reached through the opening cut in the underside of the chassis shelf.

The dial light (in models with wood cabinet only) can be serviced by removing the tuning knobs and control panel.

Signal Generator
Connect to antenna terminals. Set generator to exact frequency of HF oscillator. See frequency table on opposite page. Set generator for maximum output.

SERVICING RADIO TUNER IN $22 E 2$ MODELS

John F. Rider

PARTS LIST

Electrical components have symbols in 100 series, 200 series, etc., according to location on schematic. Order parts by number and description from Admiral Distributor

CHASSIS PARTS

* Component may be part of couplate, part number 63B6.3 or 63B6.5. Part number 63B6.3 used in 22 E 2 chassis, part number 63B6.5 used in 22C2 chassis. Order exact duplicate or individual components.
\ddagger Component may be part of couplate, part number 63 BB 6.4 . Order exact duplicate or individual component

Sym.	Description	Part No.
R439	68 ohns, $1 / 2$ watt, carlon resistor only	60B 28.44
	47 ohnis, 1 walt..................	60B 14.470
	82 ohms, $1 / 2$ watt, carbon resistor only.	60B 28.31
R442	3,300 ohms. 2 wall.	60B 20.332
R443	2.7 ohms, $1 / 2$ watt, carbon only	60B 28.47
	470,000 ohms, 1 watt, carbon only	60B 28.43
R445	1,000 ohms, 1/2 watt.	60B 8.102
R448	150,000 ohms, $1 / 2$ wall	60B 8.154
R450	680 ohms, 2 watt.	60B 20.681
	3,300 ohms, 2 watt	60B 20.332
	Focus Control	See R343B
$\begin{aligned} & \mathrm{R} 453 \mathrm{~A} \\ & \mathrm{R} 453 \mathrm{~B} \end{aligned}$	A 1.5 megohms, Vert. Hold B 25,000 ohms, Horiz. Hold	75B
R501	270,000 ohms, 1 watt	60B 14-274
R70	22,000 oh	60B
R702	10,000 olms, 2 watt.	60B 20.103
R703	150 ohms, $1 / 2$ watt	60B 8-151
R704	27,000 ohms, 1 watt	60B 14-273
R706	1 megohm, $1 / 2$ watt	60B 8-105
R707	4.7 ohms, 1 watt, carbon only	60B 28.49
R715	5,300 ohms, 5 watt, candohm	61A 3.16
CONDENSERS		
C102	3 to 9 mmfd , Cer. Trim.	98A 45-96
C103	. 001 mfd min., ceramic	98A 45-24
C104	. 5 to 3 mmfd , Cer. Trim.	98.4 45-23
C105	47 mmfd , ceramic, -1400 temp. coeff.	94D 47-50
C106	47 mmfd , ceramic, - 1400 temp. coeff.	94D 47.50
C107	. 5 to 3 mmfd , Cer. Trim.	98A 45-23
C108	$10 \mathrm{mmfd}, 3 \%$, Cer, -80 temp. coeff.	94D 47.51
C109	$5 \mathrm{mmfd}, 5 \%$, Cer, - 750 temp. coeff.	94D 47.52
C111	Tuning Rotor	98A 45.92
C112	6.8 mmid, 3%, Cer, NPOK temp. coeff.	94D 47.53
C114	. 001 mfd min. ceramic.	98.4 45-24
C115	800 mmfd min, cer, feed-thru	94C 37.90
C116	800 mmfd min, cer, disc	94C 37.91
C117	800 mmfd . min, cer, feed-thru	94C 37.90
C118	800 mmfd min, cer, feed-thru	94C 37.90
C119	800 mmfd min, cer, feed thru	94 C 37.90
C120	$3 \mathrm{mmfd}, 3 \%$, ceramic.	94D 47.54
C 121	$51 \mathrm{mmfd}, 3 \%$, Cer, - 80 temp. coeff	94 D 45.52
C122	$24 \mathrm{mmfd}, 3 \%$, Cer, -80 temp. coeff.	94D 47.55
C123	$6 \mathrm{mmfd}, 3 \%$, Cer, NPOK temp. coeff.	94D 47.57
C124	. 001 mfd min, ceramic.	98A 45.24
C125	1.5 mmfd , ceramic	94D 46.84
C126	6.8 mmfd, 3\%, Cer, NPO temp. coeff.	94D 47.53
C201	$6.8 \mathrm{mmfd},-.00033$ temp. coeff.	. 65 C 6.71
C203	. 005 mfd min, cerami	65 C 10.1
C204	$180 \mathrm{mmfd}, 5 \%,-.00003$ temp. coeff	65C 6.59
C205	500 mmfd ceramic.	65C 6.6
C206	4 mfd , 50 volts, electrolytic	67A 4.9
C207	. 002 mfd , 400 volts, paper	64B 9.17
C208	. 047 mfd , 200 volts, paper	.64B 9.9
C209	. 005 mfd , min, ceramic.	. 65 C 10.1
C210	50 mmfd , ceramic.	
*212	.01 mfd , 400 volts, paper.	.64B 5-10
C214 . 0047 mfd, 600 volts, paper. 64B 9.15		
C215	100 mmfd , ceramic	.65C 6.3
C216 . 0047 mfd , 400 volts, paper. 64B 9.15		
C217 . 0022 mfd, 400 volts, paper.............664B 9.		

used in 22 C 2 chassis. Order exact duplicate or individual components.
Component may be part of couplate, part number 63B6.4. Order exact duplicate or individual components.

OJohn F. Rider

©John F. Rider

OJohn F. Rider

MODEL NUMBERS Model numbers may have suffix lefter " N "	TV Chassis	Picture Tube	$\begin{gathered} \text { TV } \\ \text { Tuner } \end{gathered}$	Record Changer	Radio	Tone Control

SPECIFICATIONS FOR 23A1 CHASSIS

Picture Tube

Type $27 \mathrm{EP} 4\left(27^{\prime \prime}\right)$ rectangular picture tube with aluminum coated screen. Magnetic deflection and focus.

Operating Voltage

110-120 volts, 60 cycles, $A C$

Wattage

265 watts for all models.
Input Impedance and Transmission Line
300 -ohm balanced (between antenna terminals).
Note that 72 -ohm coaxial cable may be used by con necting the outer conductor to the chassis and the inner conductor to either antenna terminal. In weak signal areas, the use of coaxial cable should be avoided.

Antenno

All models equipped with a built-in TV antenna

Intermediate Frequencie

Video 25.75 MC. Sound 21.25 MC.
Intercarrier Sound 4.5 MC.

Fuse Location

The horizontal output circuit is fused with a $3 / 8$ amp., 250 -volt fuse, part number $84 \mathrm{~A} 4-3$. The fuse is located at the rear of the high voltage compartment.

TUBE COMPLEMENT FOR 23A1 CHASSIS

$\begin{aligned} & \mathrm{V} 101 \\ & \mathrm{v} 102 \end{aligned}$	$\begin{aligned} & \text { 6BZ7 } \\ & \text { 6J6 } \end{aligned}$	RF Amplifier Oscillator and Mixer
v201	6AU6	2nd Sound IF
V202	6AL5	Ratio Detector
v203	6Av6	Sound Amplifier
v204	6V6GT	Sound Output
v301	$6 \mathrm{CB6}$	1st IF
v302	6 6B6	2nd IF
v303	6AG5	3rd IF
$\left.\begin{array}{l} \text { V304A } \\ \text { v304B } \end{array}\right\}$	12AT7	$\left\{\begin{array}{l} \text { Video Detector } \\ \text { Ist Sound IF } \end{array}\right.$
V305	$6 \mathrm{CL6}$	Video Amplifier
v306	27EP4	Picture Tube
v307	6AU6	Gated AGC
$\left.\begin{array}{l} \text { v401A } \\ \mathbf{v 4 0 1 B} \end{array}\right\}$	6SN7GT	$\left\{\begin{array}{l}\text { Vertical Oscillator } \\ \text { Sync Inverter }\end{array}\right.$ Sync Inverter
V402	6AV5GT	Vertical Output
V403	12AU7	Sync Separator and Clipper
V404	6AL5	Sync Discriminator
V405	6SN7GT	Horizontal Oscillator
V406	6CD6G	Horizontal Output
V407	183GT	2nd Anode Rectifier
V408	6V3	Damper

© John F. Rider

Improved Horizontal Output Circuit: A new high directly potentio to a high efficiency 90 degree deflection yoke. A the drive adjustment typrizontal Drive control is used or windings) permits more effective and increased range of width adjustment.
Circuit improvements made to the horizontal output stage have resulted in increased output, capable of pro voltage (approximately 19,000 volts).

New Damper Tube: A 6V3 tube (9-pin miniature) is used as the damper tube. This tube features a higher heater to cathode breakdown voltage rating, higher peak inverse plate voltage rating and greater ability to handle
high peak currents. Use of this new damper tube minimizes possibility of tube failure in the damper circuit.

Improved Deflection Yoke: A newly designed defection yoke, provides the 90 degree deflection angle required for the 27 inch picture tube
Use of this new deflection yoke eliminates the need for pin cushion correction magnets as used with some 21 inch picture tubes.
Improved Focusing Circuit: The focus coil in this receiver is of the shunt type, being connected across th filtered output of the low voltage power supply. This new circuit provides better range of focus, minimizing defocusing effects due to loading of other circuits and variaion in power line voltage.

Improved Power Supply: Two 5L4G rectifier tubes re used. One 5U4G (V502) tube is used as the high oltage B+ rectifier, the other 5U4G (V501) tube is used as the low voltage B+ rectifier. Use of two rectifier ubes and other changes in the $\mathrm{B}+$ circuits have provided more efficient $\mathrm{B}+$ distribution with better voltage egulation.
Twin 10" Speakers: Two high qaulity $10^{\prime \prime} \mathrm{PM}$ speakers are used to provide increased audio frequency esponse (higher fidelity). The response of the speakers is staggered to produce widest possible range of audio response.

INSTALLATION and SERVICE ADJUSTMENTS

NOTE: Except for DX Range Finder adjustments, all adjustments described on this page and those which follow are for the 23A1 chassis only. For general service information, alignment, etc., see 22C2 and 22E2 chassis.

When installing, each set should be checked for DX Range Finder adjustment (generally set on zero), picture centering, picture tilt, shaded crners, proper size, linearity, etc., to insure best performance. TI is espeSluys be adjusted upon installation or servicing of every set to insure ease of tuning. Make all checks and adjustments as instructed on the following pages.
For best results, all checks or adjustments should be made using a transmitted television test pattern. A mirror placed in front of the picture tube screen will be of help in observing the picture while making adjustments at the rear of the chassis. Removing the TV back disconnects the interlocking line cord; use a separate line cord (part number 89A22-1) when servicing. See "High Voltage Warning

NDIVIDUAL CHANNEL SLUG ADJUSTMENT

 USING A TELEVISION SIGNALIndividual channel slug adjustment of every receiver should be checked upon installation or servicing. If this adjustment is properly made, it is possible to tune from one station to another by merely turning the CHANNEL control. With correct channel slug adjustment, best picture and satisfactory sound will be located at the approximate cent (half rotation) of the range of the Tuning control

Channel slug adjustment can be made without remo ing the chassis from the cabinet. Adjust as follows:
a. Turn the set on and allow 15 minutes to warm up
b. Set the CHANNEL. knob for a station; set other con trols for normal picture and sound.
c. Remove the CHANNEL knob.
d. Set TUNING control at center of its range by rotating it approximately half-way. At this setting, the hole in the TUNING knob will coincide with the hole in the control panel.
e. Insert a $1 / 8 \prime$ blade, NON-METALLIC tool in the hole through the TUNING knob (see illustration). For each channel in operation, carefully adjust the channel slug for best picture with clear detail. (Note that this may not be the point at which the sound
is loudest.) Be sure that the Tuning control is set at is loudest.) Be sure that the Tuning control is set at
the center of its range before adjusting each channel slug. Generally, only slight rotation of the slug will be required; turning the slug in too far will caus it to fall into the coil. (If the slug falls into the coil, remove the chassis from the cabinet and remove the coil. Move the retaining spring aside, lightly tap the
open end of the coil until the slug slips out. Replace slug and reset retaining spring.)

ION TRAP ADJUSTMENT

To prolong the life of the picture tube, it is mportant that this adjustment be made upon installation, after adjusting the picture position ing lever, or after repositioning the focus coil.
Set the BRIGHTNESS control (at front of set) for normal brightness.

Position the ion trap on the picture tube close to the base. Starting from this point, very carefully move the

ion trap forward or backward and at the same time, rotate it slightly in either direction until maximum brightness is produced
Reset the BRIGHTNESS control for normal brightmess. Adjust the FOCUS control (at front of set) for good focus. Readjust the ion trap for maximum brightness Note that there may be two locations where the bright est picture can be produced. The second ion trap loca not be used or tube damage will result.

Important: If the corners of the picture are shaded, be sure the ion trap has been properly adjusted. Do no sacrifice picture brightness when adjusting the ion trap
to remove shaded corners. To eliminate shaded corners, see the discussion under "Check Picture Centering" Be sure to readjust the ion trap each time after adjusting picture positioning lever or repositioning the focus coil. Tighten the ion trap mounting screw after adjustment.

LATEST DX RANGE FINDER ADJUSTMENT
 INFORMATION FOR 22C2, $22 E 2$ AND
 23A1 CHASSIS

(Supersedes adjustment information given on page 29.1
This control is at the rear of the set, near the left side. This control is used to improve TV reception in fringe areas and in areas where there is interference.
The DX RANGE FINDER should be at the " 0 " position, if satisfactory pictures can be obtained by using the operating controls on the front of the set.

Where the TV signal strength is weak, the picture can often be improved by turning the DX RANGE FINDER part way to the right or, if necessary, all the way to " 300 "

White flashes across the picture can sometimes be
minimized by careful adjustment of the DX RANGE FINDER.
Caution: If the DX RANGE FINDER is turned too far to the right for a strong sigual, the picture may disappear completely.
If the signal strength changes, it may be desirable to change the setting of the DX RANGE FINDER; however, it is generally possible to set it at a single compromise position which gives reasonable reception for the different signal strengths.
It is important to keep the DX RANGE FINDER set. ting as low as possible consistent with satisfactory pictures.

PICTURE CENTERING ADJUSTMENT

 If picture is off center, it can be centered by using the picture positioninglever, and when neclever, and when necessary, reposition-
ing the focus coil around picture tube neck. Note picture positioning lever can be moved sideways, or up and down.

Picture Not Centered; Adjus
Piclure

Centering the Picture

a. Adjust ion trap as instructed on preceding page.
a. Adjust ion trap as instructed on preceding page.
b. Slightly loosen the screw "A" which locks the picture positioning lever to the focus coil, and adjust the positioning lever to (sideways, or up and down) for correct picture centering. If centering is not done with a test pat width to determine correct centering.
c. Readjust the ion trap.

Difficulty in Centering the Picture
a. Adjust ion trap as instructed on preceding page.
b. Slightly loosen the two screws " B " which hold the b. Sighas coil to the yoke bracket. Center focus coil locus coil to the yoke bracket. Ce
around the tube neck; tighten screws.
c. Loosen the screw " A " and center the picture with the picture positioning lever. If the picture cannot be centered with the lever, it may be necessary to locate the focus coil slightly off center and then center the picture with picture positioning lever.
d. Readjust the ion trap.

Difficulty in Eliminating Shaded Corners
a. Loosen screws " G ", then move the yoke support housing forward until rubber grommet " F " is firmly against the flare of the picture tube.
b. Move the deflection yoke coil " E " as far forward a possible. If the deflection yoke coil cannot be moved forward far enough, it may be necessary to loosen the two screws " D ", move the bracket up or down, and then mrwe the deflection yoke coil forward.
c. Adjust ir . irap as instructed on preceding page.
d. Shaded corners may also result from use of the wrong ion trap. These picture tubes use iron trap 94A15-2. The part number is stamped on the magnet.

REPOSITIONING FOCUS COIL

Adjustment of focus coil location in the deflection yoke support housing is made at the factory. Readjustment hould not generally be required except when making picture replacement or if difficulty in focusing is enountered.
To adjust the position of the focus coil, proceed as follows:
a. Check to see that the deflection yoke housing and deflection yoke coil are moved forward as far as possible. See paragraph on "Difficulty In Eliminating Shaded Corners".
b. Loosen screws " C " at the sides of the yoke housing. Move the focus coil forward or backward as required. The spacing between the focus coil and the windings of the deflection yoke coil (not the fibre insulator
disc) should be about $3 / 8$ of an inch minimum. Moving the focus coil too far away from the deflection yoke coil may cause difficulty in focusing. Moving the focus coil too close to the deflection yoke coil will cause a reduction in picture width and make it impossible to properly focus the picture with the focus control.

PICTURE TILT ADJUSTMENT

If picture is tilted, " H " " H on deflection slightly rotate yoke until the picture is traight. Before tightening the wing screw, be sure yoke is as far forward as possible, otherwise corners of pictur may become shaded
 Picture Tilted; Adjust
Deflection Yoke Coil.

height and vertical linearity ADJUSTMENT

If the picture is of incorrect height (vertical size), adust the HEIGHT control with BRIGHTNESS control set for normal brightness. This adjustment may affect set for normal brightness. This adjustment may affect
the vertical linearity of the picture. If necessary, alternately adjust the VERT. LIN. control and HEIGHT control. Note that the upper portion of the picture is ffected mostly by the Vertical Linearity control; the lower portion by the Height control.

Incorrect Height; Alternately Adjusi
HEIGHT and VERT. LIN. Controls.

If the large circle in the test pattern appears cramped or hattened at top or boitom (non-linear vertically), correct by alternatelyad justing the VERT LIN. control and the HEIGHT control.

Top or Botlom of Picture Cramped or Flattened; Adjust
VERT. LIN. and HEIGHT.

WIDTH ADJUSTMENT

If the picture is too wide or too narrow, adjust the WIDTH adjustment screw until the picture just fills the icture tube screen. Make this adjustment with the BRIGHTNESS control set for normal brightness.

Moo Much Widhb;
Adjust WiDTH.

Not Enough Width;
Adjust WIDTH.

horizontal linearity adjustment

If the large circle in the center of the test pattern has a cramped or flateither side (non. linear horizontally), adjust the HORIZ adjust the HORIZ. LIN. adjustment
screw by turning it screw by turning it out (fully to the left). Then slowly

Side of Picture Cramped or
Flattened; Adjuat HORIZ. LIN. ight) until linearity is best. Note that there are two settings of the HORIZ. LIN. adjustment that appear to give good linearity. The correct adjustment setting is the one with the adjustment screw further out (to the left). Note also, that the Horizontal Drive and the Width adjustments also affect linearity. Be sure that these adjustments are set correctly if difficuity is encountered when making the horizontal linearity adjustment.

HORIZONTAL OSCILLATOR and HORIZONTAL DRIVE ADJUSTMENT

A receiver which requires horisontal oscillator or horizontal drive adjustment can be corrected only by following in exact detail the step-by-step procedure given here.

NOTE: If HORIZ. DRIVE adjustment is not properly made, it may be difficult to obtain sufficient picture width and brightness.
Check to see if the Check to see if the
HORIZONTAL conrol (on front panin "horizontal sync" through half of its range so that the picture does not "break up" when witching channels. Note: Since there is
 some interaction be- \qquad
tween the HORIZ. LOCK adjustment and the HORIZ. DRIVE control, adjustment of these controls are combined in one procedure.
If the picture will not stay in "horizontal sync" through half of the range of the HORIZONTAL control LOC front panel), it will be necessary to make HORIZ
LORIZ. DRIVE adjustments. However, before making these adjustments, be sure that the picture can be made to remain stationary up and down (sync vertically) as lack of both vertical and horizontal sync is an indication of trouble in the sync circuits such as a defective tube or other component.
Make the HORIZ. LOCK and HORIZ. DRIVE adjustments exactly as follows:
a. Allow the receiver to warm up for a few minutes Tune in the station, set the BRIGHTNESS control at a lower than average setting. Turn PICTURE control fully to the left. Important: Before proceeding, be sure that the DX Range Finder control (AGC) is
adjusted according to the instructions given in this manual.
b. Turn the HORIZONTAL control (front panel) completely to the left. Turn the HORIZ. DRIVE control fully to the right.
c. Turn the HORIZ. LOCK adjustment to the right until the picture falls out of sync. If the picture cannot be made to fall out of sync, momentarily interrupt the signal by switching the CHANNEL control off channel and then back on.
d. With the picture out of sync, turn the HORIZ. LOCK adjustment slowly to the left until the picture just falls in sync.
e. Turn the CHAN NEL control to an unused channel. If a white
vertical line(s) vertical line (s) center of the screen, slowly turn the HORIZ. DRIVE control to the left until the line(s) just disappears.

Vertical Line;
Adjust HORIZ. DRIVE.
f. If, in step " e ", the HORIZ. DRIVE control required readjustment, tune in a station and repeat steps " c " readjustment, tune in a station and repeal steps "cillator
and "d to be sure of proper Horizontal Oscill adjustment.
g. Adjustment should now be satisfactory. However, check adjustment by slowly rotating the HORIZON. TAL control in either direction while interrupting the television signal by swiching the ChANNEL control automatically fall in sync through at least half of the range of the HORIZONTAL control. If necessary, repeat the above step.
h. Do not use the HORIZ. DRIVE control to obtain correct width or linearity. If necessary, make Width rect width or linearity. If necessary,
and Horizontal Linearity adjustments.

SERVICE HINTS

TELEVISION ALIGNMENT

Alignment for the 23Al chassis is the same as for the 22 C 2 and 22E2 chassis. For alignment information, see page 32 and page 33

Important: The focus coil and the deflection yoke coil must be connected to chassis during alignment.

TROUBLE SHOOTING

The 23Al chassis described in this manual is similar o the 22 series chassis with the exception of the video amplifier, picture tube, vertical output, horizontal output, damper and power supply circuits. The basic differences in the 23 Al chassis over the 22 series is outlined under "New Features In 23A1 Chassis".

NOTE: This diagram applies only to chassis which are not stamped with a run number

Figure 20. Simplified Diagram Showing B+ Distribution in 23Al Chassis.

In general, the trouble shooting of the 23Al chassis will be similar to that of the 22 series chassis

It is important, however, to remember the following trouble shooting hints which apply to the 23Al chassis. Note : Some hints also apply to the 22 C 2 and 22 E 2 chassis.
Improper Focus (control focuses at extreme end of rotation, 23A1 chassis): This may be caused by weak 5U4G rectifier tube V501. Try another rectifier tub It may also be impossible to obtain good focus with FOCUS control if the focus coil is spaced too far awa coil and the deflion yoke coil. Spacing be $3 /$ of an inch minimum. The deflection yoke coil should be as far forward on the neck of the tube as possible. See para graph "Repositioning Focus Coil" on page 25.
Insufficient Picture Width (23A1 chassis). This may be caused by a weak rectifier tube V502, a weak horizontal output tube V406 or a weak damper tube V408 Insufficient picture width may also be caused by incorrect adjustment of the Horizontal Drive control R447, correct adjustment of the Horizontal Drive control R44 or improper positioning of the focus coil on the deflec-
tion yoke housing. Moving the focus coil too close to the deflection yoke coil will result in reduction of picture width. The spacing between the focus coil and the deflection yoke coil should be $3 / 8$ of an inch minimum.
White Flashes Across Picture (22C2, $22 E 2$ and 23A1 chassis): In weak signal, high noise level areas, white flashes across the picture can sometimes be minimized by careful adjustment of the DX Range Finder control. Caution: Turning the DX Range Finder con trol too far to the right for a strong signal may cause the picture to disappear completely. See instructions for DX Range Finder Adjustment on page 41 .

No Picture; Sound Normal (22C2, $22 E 2$ and No Picture; Sound Normal (22C2, 22E2 and
23A1 chassis): If the DX Range Finder control is turned too far to the right for a strong signal, the picture may disappear completely. Advancing the DX Range Finder control too far to the right for a strong signal area will cause excessive delay in AGC bias thereby blocking the video amplifier. See instructions for DX Range Finder Adjustment on page 41.

TROUBLE SHOOTING B + CIRCUITS

The power supply and $B+$ distribution circuits of th 23 Al chassis are different from previous model television receivers. A simplified diagram, showing the $\mathrm{B}+\mathrm{dis}$
tribution in the 23 Al chassis, is shown in figure 20 tribution in the 23Al chassis, is shown in figure 20.

REDUCING SNOW IN INTERMEDIATE

FRINGE AREAS
(Applies to 22C2, 22E2 Chassis Below Run 2 and 23A1 Chassis without a Run Number)
To reduce snow (front end noise) in intermediate fringe areas, it is recommended that the tuner AGC volt age be reduced to $11 / 2$ or 2 volts. This reduction in AGC voltage can be accomplished by removing resistor R33 (150,000 ohms) and replacing it with a 100,000 ohm
resistor and a 47,000 ohm resistor connected in series Connect the $47,000 \mathrm{ohm}$ resistor to chassis ground and the 100,000 ohm resistor to resistor R302, 1,000 ohms (test point "T"). Remove the tuner AGC lead (usually white) from test point " T " and connect it to the junction of the $100,000 \mathrm{ohm}$ resistor and 47,000 ohm resistor. To reduce the possibility of unstable operation, it is recom mended that the tuner AGC lead be by-passed to chassis by a .005 mfd . ceramic condenser

CHANGE IN SIZE OF FUSE M401

To prevent possibility of fuse burn-out, due to momentary overload, the horizontal output fuse was changed from a $1 / 4$ ampere, 250 -volt fuse to a $3 / 8$ ampere, 250 -位 fuse, part number 84A4-3. Fuse replacement should made only with a $3 / 8$ ampere, 250 -volt fuse, part number 84A4-3

REPLACING FUSE M401

The horizontal output circuit of these receivers is protected by fuse M401 ($3 / 8 \mathrm{amp}$, 250 volts, part number 84A4-3). This fuse is located in the rear of the high voltage compartment. To replace the fuse, remove the and lift the cover away from the base; see figure 19 . Carefully remove or insert the fuse so as to avoid damage to the horizontal output transformer.

CLEANING GLASS PICTURE WINDOW
The picture window and the picture tube should be cleaned whenever the television chassis is removed from the cabinet.

27EP4 PICTURE TUBE REPLACEMENT

Important: Make all deflection adjustments - Reposiioning Focus Coil, Picture Centering, Picture Tilt and Ion Trap - whenever replacing the picturing tube. These adjustments are described on pages 41 to 42 .
Warning: Before removing or replacing the picture tube, note the following precautions:
Before handling the picture tube, remove any residual charge on the second anode connector and the second node socket on the tube.

- Due to the high vacuum and large surface area of the picture tube, great care must be exercised when han dling. Do not pick up the picture tube by the neck. Do not scratch or subject the picture tube to excessive pressure as fracture of the glass will result in an exslosion of considerable violence which may cause heavy gloves should be worn while handling or installing a picture tube.
The picture tube, deflection yoke and focus coil mounting assembly are mounted on a removable board which sides in place along the rails under the cabinet top Mounting for the $27^{\prime \prime}$ picture tube is shown in figure 19.

To remove the picture tube, proceed as follows:

1. Disconnect the ground strap and all plugs which connect between the picture tube assembly, the chassis and the cabinet
2. Remove the television chassis.
3. Remove the Phillips head screws at the sides and back which fasten the mounting board to the top of the cabinet. Slide the picture tube assembly out of the cabinet.
4. Remove the ion trap.
5. Remove the tube stops on the front tube support brackets. Loosen the tie rod nut and disconnect the tie rods at each side of the picture tube. Remove tube strap and carefully remove the strap assembly

Clean the picture window and the face of the picture ube with a soft cloth dampened with clear water or window cleaner. Dry the glass with a chamois or a lintree cotton cloth.
The plastic tube mask is held in place with the picture window in a channel along the top and by brackets at the sides and the bottom edge. The tube mask may be removed when it requires cleaning. Mild soap and water applied with a soft cloth will safely remove any dirt on the plastic tube mask.

high voltage warning

High voltages are present throughout the horizontal output, damper and second anode supply circuits. No attempt should be made to make measurements from high voltage points in these circuits with ordinary test equipment.
Caution: Operation of the set outside of the cabinet with cabinet back removed involves shock hazard. Exercise normal high voltage precautions.
. Carefully move the tube straight out from the deflection yoke and focus coil to avoid any damage to either the picture tube neck or the deflection coil. Use care so the fibre insulating disc, which is between the focus coil and the deflection yoke, does not slip down and catch on the tube socket. To facilitate picture ube removal and installation, the fibre insulating

To install a new picture tube, proceed as follows:
a. Loosen the four hexagonal head screws " G " and slide the deflection yoke housing as far back as it will move; see figure 19. Carefully insert the picture tube, fitting the fibre insulating disc (between deflection yoke and focus coil) over the tube base. Move the picture tube in until it is positioned properly on the front support brackets.
b. Install the tube stops on the front support brackets and move the picture tube forward and snug against these stops.
Loosen deflection yoke wing nut " H " and move yoke coil back.
d. Slide the deflection yoke housing forward until the tube ring is snug against the flare of tube and tighten screws.
e. Move deflection coil forward as far as it will go and tighten wing nut " H "
f. Install the strap assembly and tighten the nuts on the spade bolts. Install each tie rod and tighten the tie rod nuts. Be sure that the strap is fitted squarely over the top of the picture tube, that the picture tube rests squarely and snug in the iront tube support brackets.
g. Dampen a soft cotton cloth with water and wipe away any finger marks. Polish the tube surface with a dry cotton cloth.
h. Install the ion trap.
i. Install picture tube assembly and chassis in cabinct. Make all picture tube adjustments described on pages 41 to 42 .

SUPPLEMENTARY PARTS LIST FOR 23AI CHASSIS

This parts list includes parts used in the 23Al chassis which are not used in the 22 C 2 or 22 E 2 chassis. Parts which have the same symbol number but have differen the 23A1 22 C 2 and 22 E 2

RESISTORS

Component may be part of cuuplat,, part number 63B6.3. Order exact duplicate in individual components,
$\$$ Component may be part of couplate, part number $63 \mathrm{~B} 6-2$. Order exact duplicate in individual components.

for mounting defection yoke adjjustment brackel and focus con (\#8. $1 / 2$ B.H.
loch washer)

for nounting front tube stop
for nounting front tube stop
($\# 6.32 \times 1 / 4$ H.H.S.T.)
1A 51-2.24
(${ }^{(\#)}$ mounting picture positioning lever (\#6.* B.H.M.S.) 65.375.C2-24
pacer Sleeve (for picture positioning lever).... 29A 2.3.24
irap Assembly "includes tie rod brackets
Tie Rod ($\# 8.32$ threaded end) 28 B 65
Washer, Spring (for mtg. picture positioning
4A 5.10
lever)

TUNING KNOBS and ASSOCIATED PARTS

CABINET PARTS for MODELS 228DX16,228DX17		
These model numbers may have the suffix letter " N ".		
Description	$\begin{aligned} & \text { 228DX } 16 \\ & \text { Mohog. } \end{aligned}$	$\underset{\text { Blond }}{228 D \times 17}$
Back, TV (complete).		A3882
Bracket, for mtg. picture window		
17" ${ }^{\prime \prime}$ wide (used at sides)15A 763.1	15A 763.1
$1 \frac{1}{16}$ " wide (used at bottom).	. 15A 763.2	15A 763.2
${ }^{*}$ Cabinet, Wood	-35E 234.2	*35E 234-3
-Cabinet Doors (matched		
2 front doors)..	-35E 234-50	-35E 234,5
Carion and Fillers.	.448 267	448267
Caster, Swivel	. 37A 77.1	37A 77.1
Control Panel (less door)	23D 133.1	23D 133.1
Control Panel Door	.23D 133.5	23D 133.5
Control Panel Door Spring	. 19A 70	19A 70

To insure proper matching and fit, also specify cabinet manufacturer's code letters (usually burned or stamped on back rail of cabinet) Wood parts are supplied only if old part cannot be repaired; when ordering, describe condition of old part in detail.
Order these paris using the part number given in Cabinet Hinge Ordering Data, Form No. S379. Otherwise, return old part, or send an Use ne tracing (exact size) of part and note finish (brass, bronze, etc.).

NOTE: Both 16" and 17" rectangular glass picture tubes are used
They require different mechanical mountings and mask and there-
fore are not interchangeable. When replacing tubes in service use identical tube sizes.

Electrical and Mechanical Specifications

Radio Frequency Ranges

Channel	Channel
Number	Freq. MC
2	54-60
3	60-66
	66-72
5	76-82
6	82-88
7	174-180
8	180-186
9	186-192
10	192-198
11	198-204
12	204-210
13	210-216

Picture Carrier
Freq. MC
55.25
61.25
67.25
77.25
83.25
175.25
181.25
187.25
193.25
199.25
205.25
211.25

Sound Carrier Freq. MC
59.75
65.75
71.75
81.75
87.75
179.75
185.75
191.75
197.75
203.75
209.75
215.75

Receiver RF Osc Freq. MC
81
87
93
103
109
201
207
213
219
225
231
237

Power Supply - - 105-125 volts 60 cycles 240 watts Speaker \ldots. - $5^{\prime \prime}$ PM 1.0 oz. Alnico 5

Speaker - - - - - - - - .-. .-. - . - 12 PM 4.64 oz. Alnico
Receiver Antenna Input Impedance -. 300 ohms balanced

12) 12 AUF	(V12)
13) $* 16 \mathrm{KP} 4 / 16 \mathrm{RP} 4$	(V13)
14) 6 SN 7 GT	(V14)
15) 12 BH 7	(V15)

and Sync Limiter
1st and 2nd Video Amplifier
Kinescope (Picture Tube)
Sync Amplifier and Separator
Vertical Oscillator and Vertical Output

* On 17" Mcleas use 17BP4/17BP4A
** When a 6BA6 is used in V3 position R1 (cathode bias resistor) is bypassed with a 1500 mmf condenser.

Tube Complement (Continued)

17) 6 BQ 6 GT	(V16)
18) 1 B 3 GT	(V17)
19) 6 W 4 GT	(V18)
20) 5 U 4 G	(V20)

Picture Intermediate Frequencie
Picture Carrier Frequency
Accompanying Sound Traps
Sound Intermediate Frequencies
Sound Carrier Frequency - - 21.25 MC
Sound discriminator band width (between peaks) - - 350 KC
Operating Controls (front panel)
Channel Selector \mathbb{Z} Dual Control Knobs
Fine Tuning \qquad
Contrast (Picture) ColumeDual Control Knobs
Contrast (Picture) Control \quad _
Horizontal Hold

Brightness - - Single Control
Focus - . - Single Control

Non-Operating Control
Width - . - - . - . . . - - Rear screwdriver adjustment.
Height - - .-. -
Horizontal Linearity - - - - - - Rear chassis screwdriver adjustment.
Vertical Linearity - - - . . - . Front chassis screwdriver adjustment.
Horizontal Drive - - - - - - - Rear chassis screwdriver adjustment.
Horizontal Oscillator Frequency
(Fine) - - - - - - - Rear chassis screwdriver adjustment (L16)
Horizontal Oscillator Frequency
(Wave Shape) - - . . - Bottom chassis screwdriver adjustment (L17)

Horizontal Locking Range - - - Rear Chassis screwdriver adjustment
Focus Coil -............ (Top chassis) lever adjustment for centering of raster.
Ion Trap Magnet On neck of picture tube
Deflection Coil Top chassis wing screw adjustment.
A LIGNMENT
Equipment Required

1) $\overline{\mathrm{RF}}$ signal generator to provide the following accurate frequencies. If the accuracy of the generator frequencies is not known, some type of crystal calibrator should be utilized to check the correct settings of the RF generator for each particular frequency.
(a) 4.5 MC Video Amplifier Trap
(b) IF Frequencies

21.25 MC	Sound IF, Sound Discriminator and Sound Traps
22.25 MC	Converter Coil
22.5 MC	Marker Frequency
23.0 MC	First Pix IF Coil
26.5 MC	Second Pix IF Coil
25.0 MC	Third Pix IF Coil
25.75 MC	Picture Carrier Marker

(c) RF Frequencies

Channel Number

Picture Carrier
\qquad
65.25
61.25
77.25
83.25
175.25
181.25
181.25
187.25
187.25
193.25
199.25
199.25
205.25
211.25

Sound Carrier
\qquad
59.75
65.75
71.75
81.75
87.75
179.75
85.75
191.75
197.75
203.75
209.75
215.75
(d) Output on these ranges should be adjustable and capable of providing at least . 1 volt.
2) Electronic Voltmeter
3) Cathode Ray Oscilloscope, $3^{\prime \prime}$ minimum screen
4) RF Sweep Generator, meeting the following requirements:
(a) Frequency Ranges

18 to $30 \mathrm{MC}$.1 MC . sweep width
40 to $90 \mathrm{MC},. 10 \mathrm{MC}$. sweep width
170 to 225 MC., 10 MC . sweep width
(b) Output adjustable to .1 volt.

The chassis may be removed from the cabinet with the kinescope tube in place and servicing and alignment work can be accomplished without removing the kinescope tube. This work is most conveniently performed by placing the chassis on its left side (power supply cage resting on work bench) and the controls facing the operator.

To remove chassis from cabinet remove
(1) Line cord from power outlet
(2) Masonite back
(3) Antenna Lead-in from terminal posts
(4) Speaker plug from rear of chassis
(5) Knobs from front of cabinet
(6) Four mounting screws and washers from bottom of cabinet

In sliding chassis out of cabinet be careful that the kinescope tube does not strike against cabinet or any other obstruction.

Order of Alignment

When complete receiver alignment is necessary it should be performed in the following sequence.
(1) Pix IF Traps
(2) Sound IF Transformers
(3) Sound Discriminator
(4) Pix IF Coils
(5) Retouch Pix IF Transformers
(6) 4.5 MC Trap

After removing chassis from cabinet, connect power and speaker plugs
If a local station is not operating on channel \#9 set the tuner to this channel, turn on power switch and proceed as follows: (If \#9 is a local station channel use channel \#8 or \#10).

Picture I-F Trap Adjustment

Insert 100,000 ohm resistor in series with hot lead of electronic voltmeter and connect to Pin \#7 of V1l with meter range switch set to lowest scale and observing polarity for negative readings.

Couple hot lead of RF SignalGenerator to converter tube V2 by means of a loop consisting of two turns of insulated hook-up wire. Connect ground lead of RF Signal Generator to chassis.

Note: If the converter tube V 2 is shielded - remove shield.
Set the generator frequency accurately to 21.25 MC , and adjust L7 cathode sound trap (see tube and trimmer layout drawing) for minimum reading on voltmeter.

By means of a clip lead, short circuit condenser C26 on cathode trap.
Increase generator output to maximum (recheck 21.25 MC generator setting) and adjust L 5 for minimum reading of voltmeter

Sound IF Transformer Adjustment

Change hot lead connection of electronic voltmeter (with 100,000 ohm resistor connected in series) to terminal marked " C " of sound discriminator transformer. Re duce output of the signal generator to give approximately 2 volts reading on voltmeter scale.

Adjust L1 and L2 for maximum reading.
Sound Discriminator Adjustment
Change hot lead connection of voltmeter to pin \#1 of V5 and adjust L3 for zero reading on voltmeter. This zero setting is very critical and the adjustment must be made with extreme care.

Repeat adjustments for L2 and L3 in the same manner indicated above.

© John F. Rider

Pix IF Coil Adjustment

Connect hot lead of voltmeter to pin \#7 of Vll and adjust the following slugs for maximum output at frequencies indicated:

If oscillation occurs during alignment, temporarily lower frequency of L8 by turning screw clockwise until screw projects approximately $\frac{1}{4}$. After properly adjusting L301, L4 \& L6 then set L8 to proper frequency. Oscillation is evidenced by high reading on voltmeter $(-10 v$ to $-20 v)$ with signal generator OFF and no signal coming in through the antenna terminals

Retouch Pix IF Transformer Adjustment

Disconnect RF signal generator leads and connect hot lead of sweep generator to coupling loop on converter tube and ground lead to chassis.

Connect vertical input terminal of oscilloscope to pin \#7 of Vll (Pix Dectector) and connect ground lead of scope to chassis.

Connect $1 \frac{1}{2} \mathrm{~V}$ flashlight battery with positive terminal to chassis and negative terminal to \#2 pin of V11.

Set tuner to channel 9 unless local station is operating on this frequency, in which case an adjacent channel should be used.

Set sweep generator frequency to IF sweep on the 20 to 30 MC range.
Adjust sweep generator output to produce a curve on the scope which is approximately $2 / 3$ of the screen diameter

Loosely couple output of RF signal generator to hot lead of sweep generator and set frequency of RF signal generator to 25.75 MC (marker).

Curve shown on scope should be similar to the standard response curve shown below. For proper setting of the pix carrier the 25.75 MC marker should appear on the curve at a point approximately 50% to 60% of the vertical height of the curve

To obtain this setting retouch L6 and L8.
Reset RF signal generator frequency to $22.5 \mathrm{M}: \mathrm{C}$ and retouch L301 and L4 for correct positioning of marker on shoulder of curve.

The curve may now be flat topped by retouching L8 \& L4
Recheck setting of 25.75 MC marker to make sure that pasition has not shifted on curve.

Disconnect bias battery.

Note: If the curve cannot be made to appear as above due to a local station or other interference, or multiple markers appear, remove (V1) 6BC5 RF tube from tuner.

Tuner Adjustments for Models using Tuner Part \#CL-2262
Note: Before making a complete tuner adjustment it is essential that the Sound I.F. and discriminator circuits be aligned at their proper frequencies as described above WHEN CHANGING THE CONVERTER TUBE IT IS NECESSARY TO REALIGN THE OSCILLATOR ADJUSTMENT ON ALL CHANNELS WITH THE V2 TUBE SHIELD IN PLACE.

RF and Converter Alignment

1) Set channel selector switch to \#12
2) Connect oscilloscope through 10,000 ohms to test point on tuner (bare tinned copper loop wire located between V1 and V2)
3) Set fine tuning control at approximate mid-point of its tuning range. Temporarily connect jumper wire from pin \#7 of V11 to chassis
4) Feed Sweep generator into antenna terminals, sweeping channel 12.
5) Adjust C301, C302, and C 304 for flat top response curve. Check picture and sound carrier markers corresponding to frequencies shown on Page 2 for all respective channels.
6) Remove jumper from pin \#7 of V11 to chassis.

Oscillator Alignment

1) Set channel selector switch to \#12
2) Connect signal generator to one antenna terminal and ground. Set to sound carrier frequency 209.75 MC
3) Connect electronic voltmeter to pin \#1 of V5 (6AL5) sound discriminator.
4) Adjust C303 for zero reading on electronic voltmeter between a positive and negative peak.
5) Check all channels for zero reading on voltmeter. It is usually not necessary to make any further adjustments. If it is found necessary to touch up the oscillator coils, the following procedure should be observed.

Oscillator Coil Touch-up

(a) Center fine tuning control, as described in Note A below.
b) Place a non-metallic screwdriver through opening, and adjust oscillator coil on channel 12 (L312)
c) Turn channel selector switch to channel 13 and adjust L313
(d) This adjustment can be repeated for all channels or if necessary on any single channel.

ADJUSTMENTS

Ion Trap Magnet Adjustment:
Turn the brightness control fully clockwise and the contrast control fully counter-clockwise. Adjust the ion trap magnet by moving it forward or backward and at the same time rotating it slightly around the neck of the kinescope until the raster on the screen is brightest. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust focus control until the line structure of the raster is clearly visible (sharp). Readjust the ion trap magnet again for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained
horizontal and vertical axis. The four wing nuts holding thit movement about its are tightened at the factory to prevent movement during shipment Upon installation of the receiver these wing nuts should be loosened and then adjusted finger tight. Centering of the picture within the mask is accomplished by gently moving the lever welded to the focus coil up and down or from left to right until the entire raster or picture is visible on the screen.

Deflection Yoke Adjustment:

If the lines of the raster are not horizontal or squared with the picture mask, loosen the deflection yoke adjustment screw and rotate the deflection yoke until this condition is obtained, and retighten the yoke adjustment screw.

If neck shadow is evident or the corners of the raster are dark, the deflection yoke must be moved forward as far as possible and the wing screw retightened. After observing that the picture tube is brought forward as far as possible to rest against the the chassis and move the entire bracket screws holding the rear tube support bracket to against the cone of the picture tube Where hold the rear tube the picture tube. Where an additional reinforcing bracket is used to remove the power supply making the por making the above adjustment. After the rear tube support bracket has been properly another set of another set of mounting holes on the side of the power supply cage which will maintain a firm pressure of the rubber cup against the cone of the picture tube.

Note A - The mid-point of the fine tuning range is attained when the point of the bakelite
cam (which is attached to the fine tuning control) faces directly downward)
cam (which is attached to the fine tuning control) faces directly downward.)

Check of Horizontal Oscillator Alignment
(Any adjustments or check of horizontal oscillator alignment should be made after a fifteen to thirty minute chassis warm-up period.)

Obtain a test pattern and turn the horizontal hold control to the extreme clockwise position. The picture should remain in synchronization or shift slightly to the right with the blanking bar becoming visible. The blanking bar may be unstable and move from side to side. Turn hold control counter-clockwise and the picture should remain in synchronization unless the signal is weak and in which case 3 or 4 bars may be seen sloping downward to the left.

If the receiver behaves in this manner and the test pattern is normal and stable, the horizontal oscillator is properly adjusted. Skip the "Adjustment of Horizontal Oscillator" and proceed with Height and Vertical Linearity adjustments.

Horizontal Oscillator

The horizontal oscillator is adjusted at the factory to provide the wave shape shown on the following page and normally can be adjusted by means of the horizontal frequency threaded brass screw (L16) at rear of chassis, and by means of the horizontal lock trimmer (C57).
(a) Turning the horizontal lock trimmer (C57) clockwise decreases the range of the horizontal hold control, and turning the trimmer counter-clockwise increases the range of the hold control. Normal setting is about one turn counter-clockwise from the tight position. In "Fringe" or weak signal position resulting in somewhat better
(b) Turning the horizontal frequat
(bars sloping downward to left). Turning the screw ise lowers the frequency, (bars sloping downward to left). Turning the screw counter-clockwise increases frequency (bars sloping downward to right).
Adjustment of Horizontal Oscillator (with the use of an oscilloscope)

1) Allow set to warm up to operating temperature. Select station operating 2) normally.
) Connect vertical input lead of oscilloscope to terminal "C" of horizontal oscillator transformer (TR-2294) and ground oscilloscope to chassis. Set frequency of scope to approximately 5 KC .
2) Set horizontal lock trimmer (C57) one turn from tight
3) Short terminals "C" \& "D" on TR-2294 by means of clip lead.
4) Set horizontal hold control at maximum clockwise rotation.
5) Adjust horizontal frequency screw (L16) until picture falls into sync. Then turn screw slightly counter-clockwise until blanking bar shows, or three or four bars show sloping downward to right.
6) Remove short from terminals " C " \& " D " of TR-2294 and adjust screw (L17) at terminal end of TR-2294 (under chassis) until wave shape as observed on scope is like that shown in sketch.

NOTE: Due to variations in oscilloscope input characteristics it may be necessary to insert a 50,000 ohm resistor in the vertical input lead. This will prevent the loading of the scope from affecting the frequency of the horizontal circuit.
8) Some further adjustment of horizontal frequency screw (L16) may be necessary to keep picture in sync while L17 is being adjusted for proper wave shape.
9) Remove scope from terminal "C".
10) Turn horizontal hold control through entire range. Picture should remain in sync except in clockwise position when "blanking bar" will appear., or two or three bars will show sloping downward to the right.
11) If picture falls out at left or condition described in " 10 " is not obtained adjust horizontal frequency screw (L16) slightly. Observe paragraphs "a" \& "b" under "Horizontal Oscillator"
NOTE: Some manufacturers types of 6SN7GT may perform better than others in the horizontal oscillator socket and excessive drift of the horizontal oscillator circuit may be caused by a weak or defective 6SN7GT tube.
After the horizontal oscillator circuit has been adjusted in the manner outlined above, any subsequent touch-up may be made with the horizontal requency screw L16.
Caution: It is important that the picture be centered in the mask properly with the horizontal hold control in the mid-position, otherwise the set user may attempt to center the picture by means of the hold control. Under this condition the control may be on "edge" and impulse noise or change of camera will cause the picture to fall out of synchronization.
© John F. Rider

QROAD (ROUND) | ADJUST LIT FOR |
| :--- |
| EQUAL HEIGHTS OF |
| ROUND AND SHARP |
| PORTIONS OF PULSE |

Height and Vertical Linearity Adjustments:
Adjust the height control until the picture fills the mask vertically. Adjust vertical linearity until the test pattern is symmetrical from top to bottom.

Adjustment of one control will require readjustment of the other. Then adjust focus coil lever to align the picture within the mask.

Width, Drive and Horizontal Linearity:
Turn the width control L19 (accessible through a hole in the rear of chassis) clockwise until the picture fills the entire width of the tube. Adjust the trimmer "horizontal drive" C67 (rear of chassis) to give the best degree of brightness and linearity. Adjust the horizontal linearity control L1 8 (rear of chassis) for best linearity of the right half of the picture. Readjust the width control until the picture fills the mask and again adjust the focus coil lever to align the picture within the mask.

NOTE: It is advisable to adjust both the height and width of the
picture to a size slightly larger than the mask opening so that during periods of low line voltage or subsequent aging of tubes adequate deflection to fill the mask opening is obtained.

MPORTANT:

The horizontal oscillator frequency must be checked for proper range of horizontal hold control after any adjustment of horizontal drive (C67) and horizontal lock (C57) trimmers. Some interaction is present between these trimmers and any adjustment of either one will usually require resetting of the horizontal freque cy adjustment screw (L16).

FOCUS:

Adjust the focus control for maximum definition of the vertical wedge of the test pattern and uniform focus over face of picture tube

Sensitivity Switch

A two-position switch is provided at the rear of the chassis for increasing the gain of the receiver which may be required for proper operation in fringe areas. Where sound and picture reception is weak with the sensitivity switch set in LOCAL position, switching to "FRINGE" position will improve the performance of the receiver.

Phono-Television Switch

A two-position slide switch is provided at the rear of the chassis together with a pick-up socket for plug-in of an external record changer.

Built-In Antenna

All models are equipped with a built-in antenna which will provide satisfactory 'eption in many locations. In areas of weak reception an outside antenna will substan-
mprove the performance of the receiver. An antenna post is provided at the rear of
-is and is accessible through the opening in the masonite back to permit the con-
y outside aerial. The built-in antenna is normally connected to the antenna sust be disconnected when attaching the outside aerial. To prevent the lead-in ae built-in antenna from contacting chassis parts and tubes it is recommended
that the lead-in wire be folded and held in place by tape or a rubber band. In some cases reception can be improved by changing the location of the receiver in the room.

rouble: Fuse blows on line voltage surge, etc. resulting in small picture

 old over on both sides and damping barsRemedy: Remove fuse from present circuit and then remove green lead from terminal \#l on TR-2293 horizontal output transformer and connect to \#8. Connect fuse between \#8 and \#l. Remove yellow wire from \#8 and connect to \#7. Dress fuse away from high voltage terminals.

Trouble: Insufficient width
Remedy: Connect an . 05-400 volt condenser across width control (terminals Connect an $05-400$ volt condenser across width control (terminal
$\# 5$ and \#6 on transformer). In severe cases of low line voltage, etc. a . $1-400$ condenser may be used. Change 6BQ6GT.
Trouble: Vertical retrace lines visible at low contrast. May be due to low transmitter sync level, or variations in picture tube characteristics.
emedy: Connect. $05-600$ volt condenser from green lead of vertical output transformer (TR-2189) to yellow lead (pin \#ll Vl3 Kinescope). transformer (TR-2189) to yellow lead (pin \#le points on terminal strip near vertical output transformer. Trouble: Beat interference, hash in picture or sound, or separation of
sound and picture on high band. Oscillation in sound I.F.
Remedy: Ground cathode resistor (Rl 150 ohms) directly to center shield of V3 socket list sound IF amplifier, instead of terminal strip and ceramic condenser traps, and distriminator.

1. Tube Changes

Due to the critical shortage of $12 A U 7$ tubes, the first and second video amplifier V12 will at times be replaced by a USN7GT tube. Due to inabil ity to obtain adequate supplies of $12 B H 7$ tubes, the vertical oscillator tube V15 is now being replaced by a 6 SN7GT and all further production will use the latter type of tube.
2. Circuit Change

Condenser No. C18. $01 / 600$ volts is being returned to the $6 V 6$ screen, p in \#4 instead of ground to reduce possibility of voltage breakdown.
Resistor No. R50, 6.8 Meg . going to the vertical hold control is not being used in all sets. It is of ten eliminated for better range of the vertical hold control.
3. Horizontal Tearing (Defective Parts)

If tearing occurs, especially in fringe areas resulting in a distorted picture, when contrast control is advanced, check for a short, leaky or open .05 condenser (C37) and low capacity in 220 MMF mica condenser (C38).
4. Color Converter

A color converter socket is now being wired in on the rear of the chassis A color converter socket is now being wireding with color converters -- when available.
5. Underwriters' Changes

In accordance with U/L requirements, a 120,000 ohm 1 watt resistor is befng placed ecross condenser C48 in the primary of the power transformer -- connecting one side of the A.C. line to ground.

- Picture Width

To increase picture width for low line voltage areas, a $.056600 \mathrm{~W} . \mathrm{V}$. paper condenser is now used on all models across terminals 5 and 6 of the flyback transformer TR-2293.
7. Vertical Height

To improve vertical height, try replacing the vertical output tube V15 which may be either a 6SN7GT or a 12BH7. As noted in paragraph one, both 6SN7GT and $12 B H 7$ have been used in V15 socket.
Due to resistor shortages, R55 and R56, 3300 ohms each respectively in series have been replaced on some receivers by one 6500 ohm 5 watt wire wound resistor. To obtain increased height where R55 and R56 are used, short out either one of them. Where a 6500 ohm resistor is used, shunt another 6500 ohm 2 to 5 watt resistor across the present one or replace it by a 3300 ohm 2 watt resistor.
8. Width Control

Due to the scarcity of power transformers, 0lympic Part No. TR-1966, it has been necessary to substitute another specification TR-1688 giving siightly lower $B+$ voltages. On all models where $T R-1688$ have been substituted and circuit by connecting both width control leads to terminal \#l of the 6BQ6GT circuit by connecti.
tube. (vl7 socket).
If it is necessary to reduce the width of the picture, restore connections of the width control by re-wiring to terminals 5 and 6 of the flyback transformer.
9. Vacuum Tubes

It appears that component parts manufacturers standards have been appreciably lowered lately. Therefore -- always check tubes first in case of performance and operation troubles. Some manufacturers types are better than others especially in 6BQ6 and 6SN7 types.

10. Resistors

Because of the critical shortage of this item, we and other manufacturers are compelled to develop new sources of supply even using resistors of foreign manufacture. While foreign resistors are properly rated as to wattage and resistance, the majority of them are of the un-insulated type. In production, these resistors are dressed away from contact with other parts. Transportation shock may cause them to shift, causing shorts. In case of trouble, check for short circuits and re-dress resistors so that they do not touch adjacent perts or components.
11. Horizontal Tearing (Modification)

When tearing of picture occurs at high or medium contrast control setting, R36 1000 ohm should be reduced to 700 or 800 ohms. When tearing or distortion occurs at low contrast setting R3U is too low and should be increased to 1200 ohms.

Production Changes

Pix Width: $R 7656,000$ ohm 1 watt resistor changed to $22,000 \mathrm{ohm} \pm 20 \%$ 1 watt.

Pix Height: R55 and R56 3,300 ohm 2 watt, (actually 6500 ohm 10 watt in production) replaced by one 3300 ohm 2 watt. A parallel resistor combination may be used as an equivalent of a 3300 ohm 2 watt resistor.

© John F. Rider

VHF antenna strips for

Standard Coil Tuners

CAPACITORS

Part No. Description
$4 \mathrm{mf}, 450 \mathrm{~V}$, electrolytic
4 mmf 1500 V , mica
$80 / 450 \mathrm{~V}, 10 / 450 \mathrm{~V}, 125 / 25 \mathrm{~V}$, elec.

CO-2067
CO-2266
CO-2344
CO-2560
CT-2261
PC-2435
$40 / 450 \mathrm{~V}, 40 / 450 \mathrm{~V}, 60 / 200 \mathrm{~V}$, elec.
500 mmf 20 KV
$50 / 350 \mathrm{~V}$, electrolytic
20/450V, electrolytic
$10-160 \mathrm{mmf} \& 50-370 \mathrm{mmf}$, trimmer
Vertical inter. network

All chassis are provided with a sensitivity switch and a phono-TV switch with phonojack.

NOTE: Both $17^{\prime \prime}$ and $20^{\prime \prime}$ rectangular glass picture tubes are used.
They require different mechanical mountings and mask and therefore are not interchangeable. When replacing tubes in service use identical tube sizes.

Electrical and Mechanical Specifications
Radio Frequency Ranges

Channel Number		Channel Freq. MC
2		$54-60$
3		$60-66$
4		$66-72$
5		$76-82$
6		$82-88$
7		$174-180$
8		$180-186$
9		$186-192$
10		$192-198$
11		$198-204$
12		$204-210$
13		$210-216$

Picture Carrier
Freq. MC
55.25
61.25
67.25
77.25
83.25
175.25
181.25
187.25
193.25
199.25
205.25
211.25

Sound Carrier Freq. MC
59.75
65.75
71.75
81.75
87.75
179.75
185.75
191.75
197.75
203.75
209.75

Receiver RF Osc Freq. MC Freg.

87
93
87
93
93
103
109
109
201
201
207
207
213
219
213
219
225
$203.75 \quad 225$
210-216
215.75
Power Supply
Speaker
Speaker
Speaker
Voice Coil Impedance
Receiver Antenna Input Impedance
Tube Complement

1) 6AG5, 6BC5 or 6CB6
2) 6J6
3) 6BA6
4) 6AU6
(V1)
5) 6AL5
6) 6AV6 or 6AT6
7) 6K6GT
(V2)
8) 6CB6
9) 6CB6

12) 6 AL 5	(V12)
13)	12 AU 7
14) $17 \mathrm{BP} 4 / 17 \mathrm{BP} 4 \mathrm{~A}$	(V13)
15) $20 \mathrm{CP} 4 / 20 \mathrm{DP} 4$	
16) 6 SN 7 GT	(V14)
17) 6 BL 7 GT	(V15)
18) 6 SN7GT	(V16)
19) 6 BG 6 G	(V17)
20) 1 B 3 GT	(V18)
21) 6 W 4 GT	(V19)
22) 5 U 4 G	(V20)

Video Detector, Automatic Gain Control and Sync Limiter
1st and 2nd Video Amplifier
Kinescope (Picture Tube)
Noise Limiter \& Vertical Sync Amplifier Sync Amplifier and Separator Vertical Oscillator and Vertical Output
Horizontal Oscillator and AFC
Horizontal Output
High Voltage Rectifier
Damper
Power Supply Rectifier

Picture Intermediate Frequencies
Picture Carrier Frequency
… - .-. - - - 25.75 MC
Accompanying Sound Traps
............. - 21.25 MC
Sound Intermediate Frequencies
Sound discriminator band width (between peaks) -- -350 KC
Operating Controls (front panel)

Channel Selector
Fine Tuning
Power Switch and Volume
Contrast (Picture) Control
Horizontal Hold
Vertical Hold
Brightness
Bral

Brightness
Single Contro

Non-Operating Controls
Width - - - - Rear screwdriver adjustment
Height
Height - - - - Front chassis screwdriver adjustment.
Horizontal Linearity - - -
Horizontal Linearity -- -- - - Rear chassis screwdriver adjustment.
Vertical Linearity - - -
Vertical Linearity

- Rear chassis screwdriver adjustment.

Horizontal Oscillator Frequency
(Fine)

Horizontal Oscillator Frequency
Wave Shape) - . - . - Bottom chassis screwdriver adjustment (L17). Horizontal Locking Range --. - (Top chassis) lever adjustment for centering of raster.
Focus Coil - . - . - . of raster.
Ion Trap Magnet On neck of picture tube
Deflection Coil - - - . - . - - Top chassis wing screw adjustment.

ALIGNMENT

Equipment Required

1) RF signal generator to provide the following accurate frequencies

If the accuracy of the generator frequencies is not known, some type of crystal calibrator should be utilized to check the correct settings of the RF generator for each particular frequency.
(a) 4.5 MC
Video Amplifier Trap
(b) IF, Frequencies
9.75 Adjacent Pix Trap 21.25 MC Sound IF, Sound 22.25 MC Converter Coil
22.5 MC Marker Frequency
22.75 MC First Pix IF Coil
24.25 MC Fourth Pix IF Coil
24.75 MC \quad Second Pix IF Coil
$\begin{array}{ll}25.75 \mathrm{MC} & \text { Picture Carrier Mar } \\ 27.0 \mathrm{MC} & \text { Third Pix IF Coil }\end{array}$
$\begin{array}{ll}27.0 \mathrm{MC} & \text { Third Pix IF Coil } \\ 27.25 \mathrm{MC} & \text { Adjacent Sound Trap }\end{array}$

(c) RF Frequencies	Picture Carrier Freq. MC	Sound Carrier Freq. MC
Channel Number	$\frac{\text { Freq. }}{55.25}$	59.75
2	61.25	65.75
4	67.25	71.75
5	77.25	81.75 87
6	83.25	179.75
7	175.25 181.25	185.75
9	187.25	191.75
10	193.25	197.75
11	199.25	209.75
12	205.25	209.75
13	211.25	215.75

(d) Output on these ranges should be adjustable and capable of providing at least .1 volt.
2) Electronic Voltmeter
3) Cathode Ray Oscilloscope, $3^{\prime \prime}$ minimum screen
4) RF Sweep Generator, meeting the following requirements:
(a) Frequency Ranges $\begin{array}{ll}18 \text { to } 30 \mathrm{MC.} & 10 \mathrm{MC} . \text { sweep width } \\ 40 \text { to } 90 \mathrm{MC.} & 10 \mathrm{MC} \text {. sweep width }\end{array}$
170 to $225 \mathrm{MC},. \quad 10 \mathrm{MC}$. sweep width
(b) Output adjustable to .1 volt.

The chassis may be removed from the cabinet with the kinescope tube in place and servicing and alignment work can be accomplished without removing the kinescope tube. This work is mor chasis on its left side (power supply cage resting on work bench) and the controls facing the operator.

To remove chassis from cabinet remove
(1) Line cord from power outlet
2) Masonite back
(3) Antenna Lead-in from terminal posts
(4) Speaker plug from rear of chassis
(5) Knobs from front of cabinet
(6) Four mounting screws and washers from bottom of cabinet

In sliding chassis out of cabinet be careful that the kinescope tube does not strike against cabinet or any other obstruction.

Order of Alignment

When complete receiver alignment is necessary it should be performed in the following sequence.
(1) Adjacent Channel Traps
(2) Accompanying Sound Traps
(3) Sound IF Transformers
4) Sound Discriminator
5) Pix IF Coils
6) Retouch Pix IF Transformers
(7) 4.5 MC Trap

After removing chassis from cabinet, connect power and speaker plugs.

If a local station is not operating on channel \#9 set the tuner to this channel, turn on power switch and proceed as follows: (If \#9 is a local station channel use channel \#8 or \#10).

NOTE: Before proceeding with alignment set sensitivity switch in LOCAL position.

Picture IF Trap Adjustment

Insert 100,000 ohm resistor in series with hot lead of electronic voltmeter and connect to junction of peaking coils L12\& L13, with meter range switch set to lowest scale and observing polarity for negative readings.

Couple hot lead of RF Signal Generator to converter tube V2 by means of a loop consisting of two turns of insulated hook-up wire. Connect ground lead of RF Signal Generator to chassis.

NOTE: If the converter tube V2 is shielded - remove shield.

Refer to tube and trimmer layout drawing. Set the generator frequency accurately to 27.25 MC and adjust L 7 adjacent sound trap for minimum reading on voltmeter. Set generator to 19.75 MC and adjust L11 adjacent pix trap for minimum reading on voltmeter.

Set the generator frequency accurately to 21.25 MC , and adjust L9 cathode sound trap (see tube and trimmer layout drawing) for minimum reading on voltmeter.

By means of a clip lead, short circuit condenser C29 on cathode trap.
Increase generator output to maximum (recheck 21.25 MC generator setting) and adjust L5 for minimum reading of voltmeter.

Sound IF Transformer Adjustment

Change hot lead connection of electronic voltmeter (with 100,000 ohm resistor connected in series) to terminal marked " C " of sound discriminator transformer. Reduce output of the signal generator to give approximately 2 volts reading on voltmeter scale.

Adjust L1 and L2 for maximum reading.

Sound Discriminator Adjustment

Change hot lead connection of voltmeter to pin \#1 of V5 and adjust L3 for zero reading on voltmeter. This zero setting is very critical and the adjustment must be made with extreme care

Repeat adjustments for L 2 and L 3 in the same manner indicated above.

Pix IF Coil Adjustment

Connect hot lead of voltmeter to pin \#7 of V12 and adjust the following slugs for maximum output at frequencies and sequence indicated:

$$
\begin{aligned}
& \mathrm{L} 4 \text { (Bottom of Can) - - - } 22.75 \mathrm{MC}
\end{aligned}
$$

If oscillation occurs during alignment, temporarily raise frequency of L 8 by turning screw counterclockwise until screw projects approximately $3 / 4$ ". After properly adjusting L301, L4, L6 \& L10 then set L8 to proper frequency. Oscill ation is evidenced by high reading on voltmeter (-10 v to -20 v) with signal gen erator OFF and no signal coming in through the antenna terminals.

Retouch Pix IF Transformer Adjustment
Disconnect RF signal generator leads, replace V2 tube shield, connect hot lead of sweep generator through a 330 mmf condenser to test point on tuner and ground lead to chassis.

Connect vertical input terminal of oscilloscope to junction of peaking coils L 12 and L13, and connect ground lead of scope to chassis

Connect 3 v . flashlight battery with positive terminal to chassis and negative terminal to junction of $C 34(.25-400 \mathrm{v})$ and $\mathrm{R} 30(560 \mathrm{k})$. This point is origin of AGC bias voltage.

Set tuner to channel 9 unless local station is operating on this frequency, in which case an adjacent channel should be used.

Set sweep generator frequency to IF sweep on the 20 to 30 MC range.

Adjust sweep generator output to produce a curve on the scope which is approximately $2 / 3$ of the screen diameter

Loosely couple output of RF signal generator to hot lead of sweep generator and set frequency of RF signal generator to 25.75 MC (marker)

Curve shown on scope should be similar to the standard response curve shown on following page. (See note below). For proper setting of the pix carrier the 25.75 MC marker should appear on the curve at a point approximately 50% of the vertical height of the curve.

To obtain this setting retouch L6 and L8.
Reset RF signal generator frequency to 22.5 MC and retouch L301 and L4 for correct positioning of marker on shoulder of curve.

The curve may now be flat topped by first retouching L10 and then L6.
Recheck setting of 25.75 MC marker to make sure that position has not shifted on curve.

NOTE: To ohtain increased sensitivity for fringe reception the response curve
Disconnect bias battery.

STANDARD RESPONSE CURVE
Note: If the curve cannot be made to appear as above due to a local station or other interference, or multiple markers appear, remove (V1)* 6 BC 5 RF tube from tuner.
4.5 MC TRAP ADJUSTMENT

Connect hot lead of 4.5 M C generator to pin \#7 of V12 (6 AL 5) video detector tube, and ground lead to chassis.

Connect voltmeter lead to pin \#7 of V13 (12AU7) video amplifier, and ground lead to chassis. Turn Picture Control full "ON" (clockwise).

Adjust L14 4.5 MC trap for minimum reading on voltmeter.

NOTE: If generator does not have sufficient output (1 volt at 4.5 MC), to provide indication on electronic voltmeter, adjust L14 by observing raster on
screen of picture tube as follows:
Turn Ll4 "out" (counterclockwise) so that the 4.5 MC "beat" is observed on screen which will appear as if a fine meshed screen was superimposed on the raster. Turn L1 4 "in" clockwise until the beat disappears. Adjust Brightness and Focus controls for sharpest line definition. Do not turn trap further "clockwise" than is necessary to remove "beat" or picture quality will suffer.

Tuner Adjustments for Models using Tuner Part \#CL-2262 and CL-2262-1 Note: Before making a complete tuner adjustment it is essential that the Sound I.F. and discriminator circuits be aligned at their proper frequencies as described above WHEN CHANGING THE CONVERTER TUBE IT IS NECESSARY TO REALIGN THE OSCILLATOR ADJUSTMENT ON ALL CHANNELS WITH THE V2 TUBE SHIELD IN PLACE.
RF and Converter Ali.gnment

1) Set channel selector switch to \#12
2) Connect oscilloscope through 10,000 ohms to test point on tuner (bare tinned copper loop wire located between V1 and V2)
Set fine tuning control at approximate mid-point of its tuning range. Temporarily connect jumper wire from pin \#7 of V12 to chassis.
3) Feed Sweep generator into antenna terminals, sweeping channel 12.
4) Adjust C 301, C 302 , and C 304 for flat top response curve. Check pic on Page 2 for all respective channels.
5) Remove jumper from pin \#7 of V12 to chassis.

* This may also be a 6AG5 or 6CB6

Oscillator Alignment

1) Set channel selector switch to \#12
2) Connect signal generator to one antenna terminal and ground. Set to sound carrier frequency 209.75 MC.
3) Connect electronic voltmeter to pin \#1 of V5 (6AL5) sound discriminator.
4) Adjust C303 for zero reading on electronic voltmeter between a positive and negative peak.
5) Check all channels for zero reading on voltmeter. It is usually not necessary to make any further adjustments. If it is found necessary to touch up the oscillator coils, the following procedure should be observed.

Oscillator Coil Touch-up

(a) Center fine tuning control, as described in Note A below.
(b) Place a non-metallic screwdriver through opening, and adjust oscillator coil on channel 12 (L312)
(c) Turn channel selector switch to channel 13 and adjust L313.
(d) This adjustment can be repeated for all channels or if necessary on any single channel.

ADJUSTMENTS

Ion Trap Magnet Adjustment:
Turn the brightness control fully clockwise and the contrast control fully counter-clockwise. Adjust the ion trap magnet by moving it forward or backward and at the same time rotating it slightly around the neck of the kinescope until the is slightly above average brilliance. Adjust focus control until the line structure of the raster is clearly visible (sharp). Readjust the ion trap magnet again for maximum the raster is clearly visible (sharp). Readjust the thent should be made with the brightness control at the maximum position with which good line focus can be maintained.

Focus Coil Adjustments:
The focus coil is mounted within a frame to permit movement about its horizontal and vertical axis. The four wing nuts holding the focus coil to the frame are tightened at the factory to prevent movement during shipment. Upon installation of the receiver these wing nuts should be loosened and then adjusted finger tight. Centering of the picture within the mask is accomplished by gently moving the lever welded to the focus coil up and down or from left to right until the entire raster or picture is visible on the screen.

Deflection Yoke Adjustment:

If the lines of the raster are not horizontal or squared with the picture mask, loosen the deflection yoke adjustment screw and rotate the deflection yoke until this condition is obtained, and retighten the yoke adjustment screw.

If neck shadow is evident or the corners of the raster are dark, the deflection yoke must be moved forward as far as possible and the wing screw retightened. After observing that the picture tube is brought forward as far as possible to rest against the two tube stop brackets, loosen the four screws holding the rear tube support bracket to the chassis and move the entire bracket forward so that the rubber cup presses firmly hold the rear tube support to the high voltage power supply cage it will be necessary to remove the power supply cover and remove the mounting screws in the bracket prior to

Note A - The mid-point of the fine tuning range is attained when the point of the bakelite
cam (which is attached to the fine tuning control) faces directly downward.)
making the above adjustment. After the rear tube support bracket has been properly adjusted and the screws retightened the reinforcing bracket can be reassembled using another set of mounting holes on the side of the power supply cage which will maintain a firm pressure of the rubber cup against the cone of the picture tube

Check of Horizontal Oscillator Alignmen

(Any adjustments or check of horizontal oscillator alignment should be made after a fifteen to thirty minute chassis warm-up period.)

Obtain a test pattern and turn the horizontal hold control to the extreme clockwise position. The picture should remain in synchronization or shift slightly to the right with the blanking bar becoming visible. The blanking bar may be unstable and move from side to side. Turn hold control counter-clockwise and the picture should remain in synchronization unless the signal is weak and in which case 3 or 4 bars may be seen sloping downward to the left.
© John F. Rider

If the receiver behaves in this manner and the test pattern is normal and stable, the horizontal oscillator is properly adjusted. Skip the "Adjustment of Horizontal Oscillator" and proceed with Height and Vertical Linearity adjustments. Horizontal Oscillator

The horizontal oscillator is adjusted at the factory to provide the wave shape shown on the following page and normally can be adjusted by means of the horizontal frequency threaded brass screw (L16) at rear of chassis, and by means of the
horizontal lock trimmer (C57).
(a) Turning the horizontal lock trimmer (C57) clockwise decreases the range of the horizontal hold control, and turning the trimmer counter-clockwise increases the range of the hold control. Normal setting is about one turn counter-clockwise from the tight position. In "Fringe" or weak signal areas the trimmer may be set two turns counter-clockwise from the tight position resulting in somewhat better range on the hold control.
(b) Turning the horizontal frequency screw (L16) clockwise lowers the frequency, (bars sloping downward to left). Turning the screw counter-clockwise increases frequency (bars sloping downward to right).
Adjustment of Horizontal Oscillator (with the use of an oscilloscope)

1) Allow set to warm up to operating temperature. Select station operating normally.
2) Connect vertical input lead of oscilloscope to terminal "C" of horizontal oscillator transformer (TR-2294) and ground oscilloscope to chassis. Set frequency of scope to approximately 5 KC .
3) Set horizontal lock trimmer (C57) one turn from tight
4) Short terminals "C" and "D" on TR-2294 by means of clip lead.
5) Set horizontal hold control at maximum clockwise rotation.
6) Adjust horizontal frequency screw (L16) until picture falls into sync. Then turn screw slightly counter-clockwise until blanking bar shows. or three or four bars show sloping downward to right.
7) Remove short from terminals "C" \& "D" of TR-2294 and adjust screw (L17) at terminal end of TR-2294 (under chassis) until wave shape as observed on scope is like that shown in sketch.

NOTE: Due to variations in oscilloscope input characteristics it may be necessary to insert a $50,000 \mathrm{ohm}$ resistor in the vertical input lead. This will prevent the loading of the scope from affecting the frequency of the horizontal circuit.
8) Some further adjustment of horizontal frequency screw (L16) may be necessary to keep picture in sync while L17 is being adjusted for proper wave shape.
9) Remove scope from terminal " C "
10) Turn horizontal hold control through entire range. Picture should remain in sync except in clockwise position when blanking bar will appear, or two or three bars will show sloping downward to the right.
11) If picture falls out at left or condition described in " 10 " is not obtained, " a " adjust horizontal frequency screw (L16) slightly. Observe paragraphs "a" adjust horizontal irequency screw

NOTE: Some manufacturers types of 6SN7GT may perform better than others in the horizontal oscillator socket and excessive drift of the horizontal oscillator circuit may be caused by a weak or defective 6SN7GT tube. After the horizontal oscillator circuit has been adjusted in the manner outlined above, any subsequent touch-up may be made with the horizontal frequency screw L16.

Caution: It is important that the picture be certered in the mask properly with the horizontal hold control in the mid-position, otherwise the set user may attempt to center the picture by means of the hold control. Under this condition the control may be on "edge" and impulse noise or change of camera will cause the picture to fall out of synchronization.

Height and Vertical Linearity Adjustments:
Adjust the height control until the picture fills the mask vertically. Adjust vertical linearity until the test pattern is symmetrical from top to bottom.

Adjustment of one control will require readjustment of the other. Then adjust focus coil lever to align the picture within the mask.

Width, Drive and Horizontal Linearity:

Turn the width control L19 (accessible through a hole in the rear of chassis) clockwise until the picture fills the entire width of the tube. Adjust the trimmer "horizontal drive" C67 (rear of chassis) to give the best degree of brightness and linearity. Adjust the horizontal linearity control L18 (rear of chassis) for best linearity of the right half of the picture. Readjust the width control until the picture fills the mask and again adjust the focus coil lever to align the picture within the mask.

It is advisable to adjust both the height and width of the picture to a size slightly larger than the mask opening so that during periods of low line voltage or subsequent aging of tubes adequate deflection to fill the mask opening is obtained.

IMPORTANT:

The horizontal oscillator frequency must be checked for proper range of horizontal hold control after any adjustment of horizontal drive (C67) and horizontal lock (C57) trimmers Some interaction is present between these trimmers and any adjustment of either one will usually require resetting of the horizontal frequency adjustment screw (L16).

FOCUS:

Adjust the focus control for maximum definition of the vertical wedge of the test pattern and uniform focus over face of picture tube.

Sensitivity Switch
A two-position switch is provided at the rear of the chassis for increasing the gain of the receiver which may be required for proper operation in fringe areas. Where sound and picture reception is weak with the sensitivity switch set in LOCAL position, switching to "FRINGE" position will improve the performance of the receiver.

Phono-Television Switch

A two-position slide switch is provided at the rear of the chassis together with a pick-up socket for plug-in of an external record changer.
$\frac{\text { Built-In Antenna }}{\text { All models are equipped with a built-in antenna which will provide satisfactory }}$ reception in many locations. In areas of weak reception an outside antenna will substantially improve the performance of the receiver. An antenna post is provided at the rear of the chassis and is accessible through the opening in the masonite back to permit the con nection of an outside aerial. The built-in antenna is normally connected to the antenna posts and must be disconnected when attaching the outside aerial. To prevent the lead-in wires of the built-in antenna from contacting chassis parts and tubes it is recommended that the lead-in wire be folded and held in place by tape or a rubber band. In some cases reception can be improved by changing the location of the receiver in the room.

Special Alignment Procedure for Fringe Reception
All adjustments are the same as for standard alignment except that the curve and marker frequency 22.75 MC (instead of 22.5 MC) are as shown below during "Retouch l'ix IF Transformer Adjustment" and a $1 \frac{1}{2} v$ bias battery is used instead of a $3 v$ bias battery.

The "after response" shown on the curve should not exceed 10% of the maximum curve to prevent adjacent channel interference in areas where a weak signal is on the low frequency side of a powerful local station. The adjustment of L301 and L4 will have the great-
 est effect on "after response". However L301 and L4 must not be set to a higher frequency (counterclockwise) than is necessary to reduce "after response" otherwise the sound sensi tivity will suffer.


```
CAUTION
```


$\underset{\substack{\text { vertical } \\ \text { LiNeARITY }}}{\text { nen }}$

FRONT VIEW OF CHASSIS

COILS AND TRANSFORMERS

Part No. Description

CK-1346 Filter choke
CL-1471 Sound IF coil
CL-1472 Cathode sound trap w/75mmf cond CL-1502 Width control CL-1503 Horiz. lin. control

CL-1536	Peaking coil $120 \mu \mathrm{~h}$ (blue dot)
CL-2073	Peaking coil $250 \mu \mathrm{~h}$ (green dot)
CL-2087-1	Deflection yoke 700
CL-2262-1	Tuner - Standard Coil
CL-2300	Focus coil
CL-2309	Pix IF transformer
CL-2331	Sound coil 4. 5 mc trap
CL-2364	Bifilar pix IF coil w/adj. pix trap
CL-2365	Bifilar pix IF coil w/adj. sound trap
CL-2427	Filament choke (RF)
TR-1469	Transformer - disc.
TR-1473	Transformer - vert. osc.
TR-1506	Transformer - audio output
TR-2117	Transformer - pix IF w/adj. sound trap
TR-2189	Transformer - vert. output
TR-2470	Transformer - power
TR-2293-1	Transformer - flyback
TR-2294	Transformer - horiz. osc.
	UHF Osc. /Ant. Strips (pair) for
	Standard Coil Tuners
	VHF Antenna Strips for Standard
	Coil Tuners
	VHF Oscillator Strips for
	Standard Coil Tuners

©John F. Rider

general description

The model $630 \mathrm{FA}-2$ chassis is a 31 tube receiver including picture and three rectifie Features include: full 12 channel coverage: latest Standard Coil Cascode circuit R cuner, with a high signal to noise ratio. Adaptable to UHF by just changing a channe
strip. Limiter-discriminator FM sound system, automatic frequency control of the stip. Limiter-discriminator FM sound system. automatic frequency control of the
horizontal oscillator (Syncroloc), full 4Mc band width, noise saturation circuits. fast ction keyed AGC, threshold control, Hi-fidelity push pull audio output, Phonograph onnection and switch, color connection, front focus control, all molded plastic condensers.

ine Voltage	60
Power Consumption.	320 Watts
Tuner input impedence	300 Ohms
Video IF carrier Freq.	26.4MC
Sound IF carrier Freq:	21.9 MC
Band width of Video IF.	4MC
Band width of Sound Discriminator	350KC
Adjacent channel trap (picture).	20.4MC
Adjacent channel trap (sound)	27.9MC
Video sensitivity	4 Microvol
Video IF amplifier	4 stages
Video amplifier.	2 stages
Sound IF amplifier	3 stages
Audio amplifier.	2 stages
Overall gain of Video Amplifier	40 times
Audio Output undistorted	5 watts
Audio Output maximum	10 watts

5. Apply the IF signal with an accurate generator to the 656 tube in the tuner. This may be done by placing an ungrounded shield cover over the tube and applying the signal to the shield. The ground connection for the generator should be as short a possible.
6. Set the generator to 24.05 MC with high output and adjust L 2 for maximum reading on the VTVM. Keep the meter on the lowest scale. Always keep the generator outpu
7. Set signal generator to 25.85 MC and adjust L 1 for maximum reading
8. Set signal generator to 21.9 MC and adjust T 7 for minimum reading
9. Set signal generator to 22.95 MC and adjust T 2 .nttom for maximum
10. Set signal generator to 21.9 MC and adjust T 2 top for minimum
11. Repeat steps 9 and 10 .
12. Set signal generator to 27.9 MC and adjust T 1 top for minimum
13. Set signal generator to 25.95 MC and adjust T 1 bottom for maximum.
14. Set signal generator to 22.45 MC and adjust converter on tuner for maximum
reading.

SOUND I.F ALIGNMENT

1. Connect the signal generator to pin 1 of VT-24 and set it on 21.9 MC . This setting should not be touched during the entire alignment. Reduce output of generator where necessary to keep meter reading within the specified scale.
2. Connect the VTVM common lead to ground and the other lead in series with a 1 remove the discriminator shield to make these connections as they can be made by making a hook on the resistor and making connection to the transformer lug C through the hole provided for the adjusting tool. Set the meter on the +10 scale and the top of
. Connect the meter common lead to ground and the other lead to the junction of R-113 and C-111. The VTVM should be set to plus 3 or 5 volt scale. Adjust T-10 bottom for zero reading on the meter
3. Connect the probe of the VTVM to terminal A of T-9. Set the meter on -3 or 5 .
4. Apply a 21.9 MC signal to the 6 J 6 tube in the same manner as that done in step 5 on VTVM. IF Alignment Section. Adjust T-8 top and bottom for maximum reading
rF OSCILLATOR ALIGNMENT
The RF unit or tuner is factory pre-aligned and the alignment screws on the top of the tuner should not be touched. Only the converter coil on the tuner should be adjusted as step number 14 of the Video IF Alignment.
The only adjustment that you can make on the tuner is the oscillator adjustment for the
. Connect an antenna to the tuner and turn the set on
5. Select the channels that are on the air. Set the fine tuning control to its midway position and do not touch again. A $1 / 4$ inch hole to the right of the control shaft will exposed.
Insert a fiber or plastic screwdriver not larger than 3 16" through the oscillat adjustment hole and slightly turn the slug in or out until maximum volume without dis
tortion is obtained. Do not screw the slug more than a couple of turns or it will fall into the coil and you will have to remove the coil and reset the slug.
6. Turn the channel selector to the stations that you can receive and repeat step 3 for each channel.
overall alignment
While it is generally unnecessary to use a sweep generator, it may be desirable to view the overall response curve. This curve is similar to that drawn below. To obtain it a 50-216 MC sweep generator is used together with a standard signal generator and an oscilloscope

In a normal area the $-3 V$ bias should be applied to the IF strip as in steps 2 and
13. Set the recive IF sweep generator to the antenna terminals and set to channel 12 or 3. Connect the
3. Connect the common lead of the VTVM to ground and the DC probe to the junction
of PC-2 and $\mathrm{R}-28$. Sct the meter to the -3 Or -5 V .
4. Set the sweep generator output to high output and adjust the fine tuning control on output until a reading of 3 volts is appears on the scope screen. Reduce the generato gain if necessary to get an adequate size pattern.

Cont te sima
5. Connect the signal generator to the antenna terminals through a small capacitor .
6. Observe and analyze the response curve obtained. If necessary the IF adjustments and
7. If T- 2 bottom requires any adjustment it may be necessary to readjust T- 2 top be at approximately 50% response. The curve must be approximately flat top with a 22.95 MC marker at approximately 100 K response. a 22.95 MC marker may be obtained
by readjusting the signal generator as in step 5 .

Throughout the video if alignment care should betaken o see that no two transformers. are tuned to the same frequency. Replace 6AU6 tube. VT-21 and remove bias batteries

installation note

If the set is to be used in a custom cabinet. mounting brackets are always supplied with the cabinet for the mounting of the picture tube. If the set is to be used in a wall installation then metal mounting brackets are available for this purpose.
After mounting the picture tube, the deflection yoke should be placed all the way up on The neck of the tube as far as it will go. Mount the focus coil with the gap forward. The focus coil should be about $1 / 4^{\prime \prime}$ behind the yoke. It is understood that the bracket -
Mount the ion trap on the neck of the tube near the cap. Make sure that you are using single correct ion trap with the particular tube you are using. Most tubes today us -
Connect the high voltage lead to the picture tube. Turn on the set. Adjust the bright slowly rotating at the same time until maximum brightness can be obtained on back picture tube. There might be two positions where maximum brightness can be ob

Connect the antenna to the set. Turn the AGC level control $3 ; 4$ clockwise. Turn up he contrast until a picture is on the screen. If the picture tears or has a venetian blind effect, adjust the synchroloc T-5 until the picture becomes steady. If it is

Adjust the width and djust the vertical height and linearity control to fill the tube vertically. If shadows he shadows and readjust the ion trape, sliththy focus coil slightly. This will remove yoke and focus coil there should be very little adjusting to be done centered in the
the picture is tilted, loosen the wing nut on top of the yoke and move it to the left o ight. This will level the picture. Tighten up the wing nut after this setting.

SERVICE HINTS

1. VT-18A, 3, 4, 5
© John F. Rider

© John F. Rider

GENERAL INFORMATION

SPECIFICATIONS

OPERATING VOLTAGE 105-125 volts, 60 cycles.

POWER CONSUMPTION 215 watts.

FUSE Located at rear of chassis. (5 amp .3 AG)

RECEIVER INPUT IMPEDANCE 300 OHM balanced (between terminals). If $72 \mathbf{O H M}$ coaxial cable is used, connect outer conductor to chassis and inner conductor to either antenna chassis
terminal.

INTERMEDIATE FREQUENCIES Video Carrier - -- - - 24.75 MC . ound Carier Sound --- 20.25 MC

SPEAKER
10" P.M. (all models except 21" T.M.) Voice Coil Impedance - - 3.2 ohms. Audio Power Output -- 2.5 watts. (Undistorted)
DEFLECTION
Electromagnetic
FOCUS

Electrostatic or Magnetic

CHASSIS CODE NUMBER

The first code group indicates the picture tube type and size. The second code group indicates the cabinet model The third code group indicates the chassis model.

Example:

$$
\begin{array}{ccc}
27 \mathrm{~A} & 28 & \mathrm{D} \\
1 & \mid & ! \\
\text { 1st } & \text { 2nd } & \text { 3rd }
\end{array}
$$

TUBE COMPLIMENT

SYMBOL
V1
V2
V3, V4, V5
V6
V7
V8
V9A
V9B
V10
V11
V12A
V12B
V13
V14
V15A
V15B
V16
V17
V18
Xtal

TUBE
6BQ7A
656
6CB6
6AG7
27NP4
6AU6
1/2-6T8
1/2-6T
$6 Y 6$ 5 S 4
5U4-6U8 $1 / 2-6 \mathrm{U}$
6C4
6C4 6AH4
6AH4 $1 / 2-6 S N 7$
1/2-6SN7
6CD6
6V3
1B3
1N60 or 1N64

FUNCTION
R.F. Amplifier

Osc. and Mixer
st, 2nd and 3rd I.F.
Video Amplifier
Picture Tub
Sound I.F.
Ratio Detector
ound Amplifier
Sound Output
Low Voltage Rectifier
Sync Separato
ync Clipper Amplifier
ertical Blocking Oscillator
Vertical Output
Horizontal Osc. Control
Horizontal Oscillator
Horizontal Output
Damper
High Voltage Rectifier
Video Detector

CAUTION NOTICE

HIGH VOLTAGE; (18,000 VOLTS) EXISTS AT THE HIGH VOLTAGE LEAD TO THE PICTURE TUBE, AND GREAT CARE MUST BE TAKEN WHEN REMOVING THE CHASSIS FOR SERVICING.
PICTURE TUBE HANDLING; GOGGLES AND HEAVY GLOVES SHOULD BE WORN WHEN HANDLING THE LIFT THE PICTURE TUB BY ITS NECK OR STRIKE THE NECK IN ANY WAY.

BACK COVER; THIS SHOULD ONLY BE REMOVED BY A QUALIFIED SERVICE TECHNICIAN.

This receiver is normally shippea ready for operation. After unpacking and removing wooden shipping base the following operational checks should be performed; Connect either an Indoor or Outside Antenna to the Receiver Antenna Terminals and plag in tolow should The OPERATING INSTRUCTIONS given below should

OPERATING INSTRUCTIONS

The receiver is adjusted at the factory and is ready for operation after installation. To place the receiver in operationattach the cord to any 117 volt 60 cycle AC outlet and proceed as follows:

1. Turn the OFF-ON, VOLUME control knob clockwise about one half turn and wait for tubes to warm to operating temperature.
2. Turn the CHANNEL selector knob to the desired channel.
3. The picture control should be turned to a point near half way rotation.

PRE-SET CONTR
VERTICAL SIZE AND LINEARITY ADJUSTMENTS Adjust the BIZE control until the picture completely fills the mask. Adjust the VERTICAL LINEARITY control until the picture is symetrical from top to bottom. Adjustment of one control will effect the adjustment of the other, therefore, readjustment may be required for correct setting.
4. The FINE TUNING control located behind the channel selector knob is then adjusted for the clearest picture.
NOTE: This may also require readjustment of the PICTURE control for maximum picture quality. 5. The VOLUME control is then adjusted for desired sound level.

ADJUSTMENTS
VERTICAL HOLD CONTROL moves slowly downward. Turn the control back until the picture moves upward and locks in.

PICTURE CONTROL
Adjust this control for best contrast with a test pattern or good picture.
now be followed.
Controls for customer adjustment are located on the ront panel behind the small control door. Controls at only by the installation technician.

BRIGHTNESS CONTROL
This control must be operated in conjunction with the PICTURE control for best picture contrast.
HORIZONTAL HOLD
Adjust this control to mid position.

SERVICE INFORMATION

- important

PICTURE TUBE ADJUSTMENTS

"Read (caution notice) on page I. ".
These adjustments to be made by Qualified Service Technicians only.

ION TRAP ADJUSTMENT
It is important that this adjustment be made upon intallation and repeated after "Focus" or "Positioning" adjustments.

When adjusting the ION TRAP have the BRIGHTNESS control set for normal brightness. Start with the ION TRAP close to the picture tube socket and move it slowy in the direction of the yoke while rotating it to find the position which gives maximum raster brilliance
Reset BRIGHTNESS control for normal brilliance. There may exist two positions of the trap where maxmum brightess base.

CAUTION: Never set the ION TRAP to the forward position.

If shadows now appear in the corner of the raster do ot attempt to eliminate them by adjusting the ION TRAP and sacrificing raster brilliance. Remove shad-

TONE CONTROL
LOCAL FRINGE SWITCH

Adjust control for desired sound range.
Place fitch in upward position for local stations.
© John F. Rider
down by moving the holding arm.
To make adjustment;

1. Turn the VERTICAL SIZE control until both the top and bottom edges of the raster are visable.
2. Loosen the screw that holds the magnet arm in place and adjust the magnet position by moving the all the top and bottom edges are straight and par llel to each other.

NOTE: Mis-adjustment of the CORRECTORMAG NETS may cause keystoning, poor linearity; etc

CENTERING ADJUSTMENTS
Two types of centering assemblies have been used in

One assembly utilizes a small bar type magnet which can be turned by means of a knurled shaft. This as embly is adjusted by turning the knurled shaft and by rotating the

One assembly consists of two magnetic rings mounted as two movable washers. The washers are provided of each other to vary the magnetic field. This unit is installed about $3 / 4$ inch behind the yoke to prevent the yokefrom demagnetizing the ring magnets. Adjustment is made by gradually rotating them with respect to each ther and by rotating the entire unit until the picture is centered.

TO REMOVE AND REPLACE PICTURE TUBE

REMOVING THE PICTURE TUBE

1. The vertical wooden bar (located at right of the screen) is secured by a holding screw inserte has been removed, grasp the vertical wooden ba and force upward until the bottom of the bar is clear of the framework. Bar can now be removed by pulling at the bottom with an outward and down ward motion.
2. Remove the safety glass front by placing palm of hands on the glass and forcing it to the right and bottom and left side of the cabinet Hold the thes carefully and remove by bringing the bottom edg forward.
3. Using the same general rule as in step 2 remove the mask.
4. Remove the cathode ray tube socket and the yoke plug, ion trap, centering device, the second anode
wire and cathode lead.
5. Remove the yoke and rubber grommet by first removing the yoke retaining springs from the eye moved in this order; top left, bottom right, top right and bottom left. The yoke and grommet may
now be taken from the neck of the CRT.
6. Return to the front of cabinet and remove the nuts and washers from the bottom CRT retaining bolts. Remove the nuts and washers from the top CRT retaining bolts and the CRT can be removed while
Remove the metal strap drop or jar CRT
ing the bolts on ech side of the screen loosen strap will slide off the picture tuhe.

EPLACING THE PICTURE TUBE

1. Place the metal strap around the picture tube and tighten the side bolts, being sure that bolts are midway along the side of picture and then tighten
for equal spacing. The picture tube should fit against the four small curved retaining brackets Tighten the strap securely.
2. Replace the springs and washers as shown:

Fig. 4. Picture Tube Mounting Bolt.
and place picture tube in position with the two top nuts and washers being replaced before the two bottom nuts and washers.
3. Tighten the mounting nuts to bring the picture screen just against the picture mask. Check pofitting it in the top groove, lowering it in place and then sliding it to the left. If the picture tube is too far back remove the mask and loosen proper mounting nuts. If the picture tube is too far for ward mask will not fit and the mounting nuts must be tightened.
4. Replace the rubber grommet and then the yoke Replace the four springs on the yoke with the shor toward the tube base. Then attach the springs of the eye-bolts on the tube mount in this order; top left, bottom right, top right and bottom left.
5. Replace centering device, ion trap (see ion trap adjustments), yoke plug, picture tube socket, cathode lead and second anode lead.
6. Replace the safety glass by placing it in the uppe groove first then lowering it in the bottom groov and then sliding it to the left as was done with th mask.
7. Replace wooden bar by moving top end up into the hole provided and pushing it down into the bottom cabinet.

SEMI-REMOVAL OF CHASSIS

The receiver chassis may be partially removed from cabinet for minor service and adjustments. The chassis may be moyed out from cabinet approximately one foo fter removing the two rear retaining brackets.

LIMIT OF CHASSIS REMOVAL DEPENDS UPON SLACK IN LEAD WIRES FROM THE CHASSIS TO PICTURE TUBE.

Fig. 5. Top View of Chassis.

HORIZONTAL OSCILLATOR ADJUSTMENTS

A) "HORIZONTAL FREQUENCY ADJUSTMENT" 1. Short circuit terminals " C "' and " D ', of the horiz station and sync in the picture if possible. Set PICTURE control to mid position. Set RANGE control "C100" to approximately one turn from full in position.
2. Turn the HORIZONTAL HOLD control R65 to the extreme clockwise position. If picture, is out of sync adjust frequency slug on " T_{11} " (back of chassis). NOTE; There may be two settings at which picture syncs, so use the one with screw been correctly located readjust the frequency ad justment slug counter clockwise until picture is just out of sync.
3. Turn the HOLD control approximately $1 / 4$ turn from the extreme clockwise position, to just sync from the extreme clockwise position, to just sync picture horizontally. (It may be necessary to slightHORIZONTAL DRIVE control " C_{4}," (back of chassis) counter clockwise, to point where vertical drive line appears near center of raster. If this throws picture out of sync readjust " T_{11} " (back of chassis) and then turn "C49' so that line just disappears. This is the proper adjustment of " "49"'; Now, turn the HORIZONTAL HOLD control "R65" the ex loses sync readjust " T_{11} ".
(B) "HORIZONTAL STABILIZER ADJUSTMENT"

1. Remove the short circuit from "C" and " D " of

Fig. 6. Bottom View of Chassis.
" T_{11} ". If picture loses sync slightly adjust the stabilizer adjustment of "T11" (under chassis). NOTE; There may be two settings that sync picture, use the one which is obtained with the screw

Conect the low capacit
2. Connect the low capacity probe of an oscilloscope to terminal "C" of 'T11". If scope upsets sync adjustment readjust frequency adjustment of " T_{11}

CORRECT
INCORRECT

Fig. 7. Horizontal Stabilizer Waveforms
3. Adjust the stabilizer adjustment " T_{11} " (under chassis) for above waveforms. The correct adjustment of this slug is when the two peaks are of equal height. During this adjustment the picture must be kept in sync by readjusting the HOLD control or " T_{11} " frequency adjustment (back of chassis). This adjustment is very important for correct operation of the circuit from the stand
point of oscilla
(C) 'HORIZONTAL LOCKING - RANGE - ADJUSTMENT"

1. Set the horizontal HOLD control fully counter clockwise. The picture may remain in sync. If clockwise. The picture may remain in the frequency adjust (back of chassis) slightly and momentarily switch channel until picture falls out of sync with diagonal lines sloping down to the left. Momentarily remove the signal by switching CHANNEL selector to next channel and back again. Slowly turn the HORIZONTAL HOLD control clockined as the picture pulls into of diagonal bars obtained as the picture pulls into
sync.
If more than 7 bars are present as the picture pulls into sync, adjust the horizontal LOCKING RANGE trimmer "C100" (back of chassis) slightly clockwise. If less than 3 bars are present, adjust " C_{100} " (range control) slightly counter clockwise; momentarily remove the signal, and then, again rotate the HOLD control carck obtained as the picture pulls into sync, repeating this procedure until 3 to 5 bars are present.
2. Replace scope and readjust " T 11 " stabilizer control for the waveforms of Figure (7).
3. Remove scope and set HOLD control to the extreme clockwise position. Adjust frequency slug " T_{11} " (back of chassis) counter-clockwise so that and then turn slug clockwise until blanking bar just disappears. The HOLD control can now be rotated either way without loss of sync.

Fig. 9. D.C. Distribution Diagram.

The distribution of the D.C. plate and screen yoltages shown in Figure 9. This diagram will serve as an aid in servicing the D.C. circuits. It will be noted that

V10 serves the dual function of an Audio Power Ampliier and a voltage divider. In this manner 140 volts is obtained at the cathode of V10.

ALIGNMENT PROCEDURES

I.F. AMPLIFIER ALIGNMENT

PREALIGNMENT INSTRUCTIONS

1. Connect negative side of bias battery (4V) to white lead entering R.F. tuner sub chassis and positive
lead to chassis. IMPORTANT; Be sure local
ringe switch is in local position.
A method of obtaining 4V DC for AGC bias is shown in Figure (10).

Fig. 10. Suggested Circuit for Adjusting AGC Bias.
2. Disconnect antenna and short antenna terminals.
3. Set channel selector to unused channel
4. Set picture control at mid position.
5. Allow reasonable warming period for receiver and
6. Connect V.T.V.M
"test point" at video detector near $\mathrm{V}-6$ (positive side of V.T.V.M. to chassis).
7. Connect RF signal generator high side to 6 J 6 shield. (Be sure to raise shield on the 656 to insulate it from chassis). Connect low side of generator to chassis at 6 J 6 base

PROCEDURE

IMPORTANT:
The following adjustments are made keeping the R.F. generator output low enough to give a V.T.
V.M. reading of less than one volt at the video "test point".

1. Set the signal generator to $23.9 \mathrm{M} . \mathrm{C}$. and adjust T_{4} for maximum on the V.T.V.M.
2. Set the signal generator to 24.7 M.C. and adjust T_{3}
3. Set the signal generator to 21.9
4. Ser maxignum on the V.T.V.M M.C. and adjust T \mathbf{T}_{2}
5. Set the signal generator to $22.7 \mathrm{M} . \mathrm{C}$. and adjust T_{1} for maximum on the V.T.V.M.
6. Repeat procedure.

IF RESPONSE CURVE (Visual Check)
The preceeding procedure should result in a reasonable IF response characteristic. However, a visual ignment. The response curve should appear as in Figure (11).

Fig. 11. Ideal I.F. Response Curve.

PROCEDURE:

1. Follow prealignment instructions, steps 1 thru 6 . 2. Connect sweep generator high side to the $6 J 6$ tube shield. Raise shield on 656 tube to prevent it from shorting the generator signal to ground.
2. If a separate marker generator is used, loosely couple high side to sweep generator lead on tube are indicated on IF response curve Figure (11).
3. Connect oscilloscope to "Video test point'. Mark
4. er pips on scope will be more distinct if a condenser between 100 MMFD and 1000 MMFD is connected across the oscilloscope input.
5. Check curve obtained against response curve of Figure (11). Note tolerance on curve. To preven overloading keep sweep and marker outputs at very
minimum. If response varies from tolerance given, or the markers are not in the proper location on the curve, improve the response by making the following adjustments
a. If peaks are not equal, carefully adjust T $(23.9 \mathrm{mc})$. It should not be necessary to adjus more than one turn in either direction.
b. If the curve cannot be made to resemble the steps under "IF" a mplifier alignment. Be sure that generator frequencies are accurate and adjustments carefully made. If a satisfactory curve cannot be obtained after the steps have been repeated, stages may not be operating properly due to defective tube or other circuit component.

R.F. AMPLIFIER AND MIXER ALIGNMENT

TEST EQUIPMENT: Oscilloscope, RF Marker Gener ator, and RF Sweep Generator.

1. Allow receiver and test equipment to warm up for approximately 15 minutes.
2. Repeat step 1 IF prealig. taining to bias battery)
3. Connect swas baterator to antenna terminals the receiver, If sweep generator does not have an internal marker generator, loosely couple an ex

Fig. 12. Connections for R.F. Tuner Alignment.

ROCEDURE

IMPORTANT:
The following adjustments are made while keeping the sweep generator output at a minimum and
cilloscope. The alignment of the standard RF tuner used in American Television receivers can be Low frequency channel This is possible and one the same trimmer condensers are used on al channels.
ternal marker generator through a 2 or 3 MMFD capacitor to the antenna terminals as shown in Figure (12).
4. Connect the oscilloscope vertical input to the RF test point on the RF tuner through a 10 K resistor A. 002 MFD condenser placed across scope ver tical input will remove stray pickup.
to the horator to the horizontal input of the scope

CHANNEL SELECTOR	SWEEP GENERATOR	MARKER FREQ.		ADJUSTMENTS	
		Sound (MC)	Picture (MC)	$\begin{aligned} & \text { (Step 1) } \\ & \text { Mixer \& RF2 } \end{aligned}$	$\begin{gathered} \text { (Step 2) } \\ \mathbf{R F}_{1} \end{gathered}$
5	79MC (15 MC sweep)	81.75	77.25	Adjust for equal peak amplitudes. Peaks should occur at proper marker points as shown in Figure (13).	no adjustment
10	$\begin{gathered} 195 \mathrm{MC} \\ \text { (20 MC sweep) } \end{gathered}$	197.75	193.25	no adjustment	Adjust maximum amplitude and maximum flatness while keeping markers properly located as in Fig. (13).
With the above procedure the alignment of all channels will now be sufficiently correct.					

Fig. 13. R.F. Response Curve.

As a final check of tuner alignment, turn channel selector to each of the channels in the area where the reeiver will operate. Use the above alignment chart conjunction with the frequencies given in Figure (14)
on the following page. The adjustments being, step 1 for channels 2 to 6 , and step 2 for channels 7 to 13 . If a compromise adjustment must be made, favor the weaker channels.

Channel		Sweep Gen. M.C.	Marker Gen.		$\begin{aligned} & \text { OSC } \\ & \text { M.C. } \end{aligned}$	
		Sound M.C.	Picture M.C.			
L	2		57	59.75	55.25	81
	3	63	65.75	61.25	87	
0	4	69	71.75	67.25	93	
	5	79	81.75	77.25	103	
W	6	85	87.75	83.25	109	
	7	177	179.75	175.25	201	
H	8	183	185.75	181.25	207	
1	9	189	191.75	187.25	213	
G	10	195	197.75	193.25	219	
H	11	201	203.75	199.25	225	
	12	207	209.75	205.25	231	
	13	213	215.75	211.25	237	

Fig. 14. Alignment Frequencies.

OVER-ALL ALIGNMENT

RF and IF section)

1. Use the same setup as shown in Figure (12) except that the oscilloscope is connected to "video 10K resistor and 0 cap. are not necessary)
2. Set the CHANNEL selector to an unassigned HIGH channel and set the sweep generator to sweep this channel. See sweep generator frequency Figure
3. Set marker to proper sound and picture carriers for unassigned HIGH channel chosen. See Figure (14).
4. If the response curve obtained does not compare with that shown in Figure (15), adjust 14 for proper response curve. An adjustment of more than one turn in either direction should not be necessary.

Fig. 15. Overall Response Curve.

R.F. OSCILLATOR ADJUSTMENT

(Using Television Station)
It is suggested, that RF oscillator adjustments be made using an "on the air television station".

1. Allow at least 15 minutes warm up time.
2. Set the "FINE TUNING" control at the center of rotation.
3. Set the CHANNEL selector to the channel whose . Set cillator frequency you wish to adjust.
4. Remove the CHANNEL selector and TUNING control knobs.
. Using a non-metalic screw driver of $(1 / 8)$ inch diameter, adjust the oscillator slug in the hole provided near the CHANNEL selector shaft.

B．Proper adjustment of this slug is for best picture clarity and detail．
OTE：The proper adjustment of the osclllator slug will not be where maximum sound level occurs．

IMPORTANT：The oscillator slug need not be ro－ tated very much．Turning the slug in too far will cause it to drop into the coil form．In the event that this occurs move the retaining spring aside， remove the coil，and lightly tap the open end of the coll until the slug slips out．Replace the slug and oil，reset the retaining spring，and repeat adjust－ ment as above．
（Using a Signal Generator）
It is suggested that the RF oscillator adjustments be
made using an on－the－air television station．However

SOUND I．F．ALIGNMENT

IMPORTANT：

The following adjustments are made using a non－ netalic screw driver with a $1 / 8$ inch blade．
if a television station signal is not avallable，the follow－
ing procedure may be used．
1．Set CHANNEL selector to channel to be adjusted 2．Set＂FINE TUNING＂at mid position．
4．Connect a crystal calibrated signal generator to the antenna terminals．Adjust the signal genera－ tor for maximum output．
5．Set crystal calibrated signal gentrator to exact frequency that the receiver oscillator should be
6．With a clip lead and a 01 MFD capacitor connect 6．With＇RF test point＂＇on the tuner to the center lug on the VOLUME control，or pin 8 of V9．
7．Adjust the RF oscillator slug on the tuner until whistle or beat note is heard in the speaker．
8．Repeat for all channels to be adjusted．

1．
1．Connect two 100 K OHM resistors in series from pin 2 of V9 to chassis ground．See Figure（16）． 2．Connect $\mathrm{a} \cdot$ V．T．V．M．（ 50 v scale）to points A and B as in Figure（16）．Note polarity of Connections．

Fig．16．Ratio Detector Alignment．

3．Tune in a T．V．station，adjust the receiver front controls for a good picture．（Set volume control controls for a good pictu
fully counter clockwise．）
4．Adjust T5 primary（botto
flection of the V ．T．V M slug）for maximum de－
5．Adjust L_{17} for maximum deflection of the V．T．V．M． and repeat step 4 then readjust L_{17} for maximum deflection．
6．Remove negative lead of the V．T．V．M．from point B in Figure（16）and connect it to the junction of
R_{91}（ 47 K ）and C_{68}（ 1500 MMF ）．The positive lead 7．Adjust the quardrature Fluge（16）．
7．Adjust the quardrature slug（top slug）on T 5 for a null on the V．T．V．M．
NOTE：Misalignment of T_{5}（top slug）may make read－ T_{5} is turned． T_{5}（top slug）should be adjusted for zero Adjustment should be made using the 50 V range of the V．T．V．M．and then succeedingly lower ranges to obtain the most sensitive null．

PARTS LIST

List of Resistors，Condensers，Coils，and Transformers

Reference No．	Description			Part No．
R_{1} thru R_{12}	Loacted in Standard Coill Tuner			
$\mathbf{R}_{13}, \mathbf{R}_{\mathbf{4 6}}, \mathbf{R}_{\mathbf{4 7}}$	2．2K	1／2W	10\％	R－8203
R_{14}	5．6K	1／2W	10\％	R－8198
$\begin{aligned} & \mathbf{R}_{15}, \mathbf{R}_{17}, \mathbf{R}_{19}, \mathbf{R}_{21} \\ & \mathbf{R}_{24}, \mathbf{R}_{79}, \mathbf{R}_{89} \end{aligned}$	1K	1／2W	10\％	R－8200
$\mathrm{R}_{16}, \mathrm{R}_{20}$	47 ohm	s 1／2W	10\％	R－8154
$\mathbf{R}_{18}, \mathbf{R}_{58}, \mathbf{R}_{101}$	10K	1／2W	10\％	R－8199
$\mathbf{R}_{22}, \mathbf{R}_{36}$	15 K	1／2W	10\％	R－8166

180 ohms 1／2W 10% 15K 1／2W 10\％ 820K 1／2W 10\％ 1Meg． $1 / 2 \mathrm{~W} \quad 10 \%$ 12K $\quad 1 / 2 \mathrm{~W} \quad 10 \%$ 5K 10W 10\％ 150K 1／2W 10\％ 2．2Meg．1／2W $\quad 10 \%$ $1.5 \mathrm{~K} \quad 1 / 2 \mathrm{~W} \quad 10 \%$ R－8196 R－8223
－8156 R－8171 R－8224 R－8174

R－8225
R－8187
R－8153

M－0017
R－8229
R－8216

R－8226
$\mathrm{R}-8186$
$\mathrm{R}-8185$

OJohn F. Rider

MODEL 1127

30 tube receivers (including picture tube and three rectifiers). Features include: full 12 channel coverage; latest Standard Coil Cascode Circuit RF tuner, with high signal to noise ratio, UHF adaptable; limiter-discriminator FM sound system; high second anode potential for full picture brilliance and definition; automatic frequency control of the horizontal oscillator (Syncrolok); full 4 mc . bandwidth of the picture channel; noise saturation circuits; keyed A.G.C.; and a phonograph input connector by means of which the sound section niay be used as an audio amplifier. Reference is made to the overall Circuit Diagram

ELECTRICAL SPECIFICATIONS

RF Frequency Range: Channels 2 to 13 in 12 steps. Power Supply Rating: 117 Volts, 60 Cycles, 275 Watts.
Audio Power Rating: Undistorted-2.5 Watts. Maximum-4 Watts.
Antenna Input. Impedance: $\mathbf{3 0 0}$ Ohms.
RF amplifier and RF oscillator-Mixer tubes are also supplied. These are the 6J6, oscillator and mixer, and 6 BK 7 or $6 \mathrm{BQ} 7, \mathrm{RF}$ amplifier in the tuner.

MODEL 621CM

MODEL 721CDM

 TUBE COMPLEMENT| $\begin{aligned} & \text { Circuit } \\ & \text { Symbol } \end{aligned}$ | $\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$ | Function |
| :---: | :---: | :---: |
| V101 | 6BA6 | 1st Sound IF Amplifier |
| V102 | 6BA6 | 2nd Sound IF Amplifier |
| v103 | 6AU6 | 3rd Sound IF Amplifier (Limiter) |
| V104 | 6AL5 | Sound Discriminator |
| V105 | 6AT6 | 1st Sound Amplifier and |
| V106 | 6K6 | Audio Output Tube |
| V107 | 6AG5 | 1 1st pix IF Amplifier |
| v108 | 6AG5 | 2nd pix IF Amplifier |
| v109 | 6AG5 | 3rd pix IF Amplifier |
| V110 | 6AG5 | 4th pix If Amplifier |
| vill | 6AL5 | Pix 2 nd Det. and D.C. Restorer |
| V112 | 6AU6 | 1st Video Amplifier |
| V113 | 6K6 | 2nd Video Amplifier |
| V114 | 6AU6 | AGC Keying Tube |
| V 115 | 6J5-GT | High Frequency Sync Clipper |
| V116 | 6]5-GT | Low Frequency Sync Clipper |
| V117 | 6SN7-GT | 2nd Sync Amplifier and Horizontal Discharge |
| V118 | 6J5-GT | Vertical Oscillator and Discharge Tube |
| V119 | 6 K 6 | Vertical Output Tube |
| V120 | 6AL5 | Horizontal Sync Discriminator |
| V 121 | 6K6.GT | Horizontal Oscillator |
| V122 | ${ }_{6 B G 6 . G}$ | Horizontal Output- |
| V123 | 6AC7 | Horizontal Oscillator Control |
| V124 | 183-GT/8016 | High Voltage Rectifier |
| V 125 | 6W4-GT | Damper |
| V126 | 5U4.G | Rectifier |
| V127. | 5U4.G | Rectificr |

INSTALLATION NOTES

Adjust the Ion Trap
In order to prolong the life of the picture tube, it is important that the following adjustment be made on every receiver upon installation and every time the receiver is serviced:
Very carefully move the ion trap forward or backward, and at the same time, rotate it in either direcward, and at the same time, rotate it in enst for the brightest picture possible with the brightness control set for average brightness.

Note that there may be two locations where the brightest picture can be produced. The ion trap location that is further forward on the picture tube neck should not be used; use the location nearer the rear.

IMPORTANT:-If the corners of the picture are shaded, be sure the ion trap has been properly adjusted. Do not sacrifice picture brightness when adjusting the ion trap to remove shaded corners. To eliminate shaded corners, see the discussion under "Check Picture Centering". Be sure to readjust the ion trap each time after adjusting the focus coil.

If the picture or raster is offcenter with respect to the mask, to the right or left, or too high or too low, it may readily be repositioned by adjustment of the Horizontal and Vertical center ing controls located on the rear apron of the chassis. (See Fig. I).

If the picture has a slightly blurred or fuzzy appearance, this may be cleared up by adjustment of the FOCUS control on the rear panel. The focus control should be adjusted for sharpest and clearest picture while viewing the face of the picture tube at close range, using a mirror if necessary. A good indication can be gotten by closely observing the scanning lines of the picture and adjusting for the sharpest and thinnest lines across the entire face of the picture tube.

When the height of the picture is not sufficient to fill the mask, or if vertical non-linearity is present (evidenced by unequal heights of the vertical wedges in the test pattern, or heads and bodies being out of proportion in a picture), the VERTICAL LINEARITY AND HEIGHT controls must be adjusted. These two controls affect each other, and when one is adjusted, it is usually necessary to readjust the other to obtain a satisfactory picture. The HEIGHT CONTROL has its greatest effect on the bottom half of the picture, while the LINEARITY CONTROL mostly affects the top half. If the picture width is not right, or if horizontal non-linearity is present, (i.e., one side of the picture expanded and the other side squeezed in); adjustment of the HORIZONTAL WIDTH, HORIZONTAL LINEARITY and/or HORIZONTAL DRIVE controls will be necessary. (Sce Fig. I).

Check Picture Tili
If the picture is tilted, loosen the wing screw on the deflection yoke coil and slightly rotate the yoke until the picture is straight. Before tightening the wing screw, be sure that the yoke is moved as far forward as possible, otherwise corners of the picture may become shaded.

If the picture does not hold in sync throughout the range of the HORIZONTAL HOLD control, it may be possible to make it do so by adjusting the SYNCROLOK control on the rear panel. If this cannot be done, a detailed adjustment of the sync system, must be made.
9. Using a Record Player

Provision is made on the chassis for playing a record player throughout the recciver. The record player inay be placed at a remote point, or near the set. The means of connecting the record playe to the receiver is as follows:

A terminal link board at the central rear chassis apron is the external means for connecting the record player through the audio amplifier of the television receiver. This is so labeled on the rea chassis apron. Also, see Fig. I. Use a shielded phono lead between the player and the television chassis. This is to mimimize extraneous pickup into the sensitive audio system of the chassis. Con nect the shield end of the phono lead to the link board Terminal No. l, which is at ground Operation: The procedure for using the record player through the television receiver after the pre ceding connections are installed is as follows:

A phono switch is provided on the Brightnes Control. When the Brightness Control is turned to its extreme counter-clockwise position, a click will be heard at this point, as the phono switch is thus turned on. With this simple motion all reception and light are entirely extinguished from the picture tube, and the phono circuit is
operation. Reference may be made to the Schematic Circuit Diagram for the simple circuit involved.

The record player is now ready to be used. To adjust the phono volume, use the regular volume control on the television receiver.

When resumption of television reception is desired, simply turn and reset the Brightness Control clockwise in the normal manner

ALIGNMENT PROCEDURE

Equipment Needed

Signal generator (or sweep signal generator with internal Sweep signal generator) marker generator.

Cathode Ray Oscilloscope.

Plastic aligning tool having a recessed metal blade.
Adjustable low voltage source ($0-6 \mathrm{~V}$)

Pre-Alignment-Fixed Frequency

1. Connect the RF output leads of the signal generator between the shield of the 6J6 in the tuner and ground. Raise the shield slightly so that it no longer contacts the chassis. Switch to modulated RF.
2. Attach the vertical amplifier leads of the Cathode Ray Oscilloscope to the picture 2nd detector load resistor (R139-3900 Ohms). Use high vertical amplifier gain.
3. Disable the AGC system by connecting the low voltage supply across the AGC condense C134 (0.47 Mfd). (Positive side to ground) and removing the AGC tube in the H.V. cage.
4. Adjust the signal generator to produce each of the listed frequencies using barely suficien RF output to produce a usable 400 cycle sine wave pattern on the screen of the oscilloscope in each case. Make sure that there is no over loading by raising and lowering the RF outpu and observing that the sine-wave pattern varie in amplitude accordingly. Use sufficient AGC voltage to prevent over-loading.
5. At each listed setting of the signal generator adjust the specified screw for maximum or minimum amplitude of the sine-wave pattern as indicated.

Adiunt	$\begin{aligned} & \text { Fro- } \\ & \text { quency } \end{aligned}$	Coil	$\begin{aligned} & \text { Loca- } \\ & \text { tion } \end{aligned}$	Amplifude
A	25.7 MC .	Converter Coil (Tuner)	Top	Max.
${ }_{B}$	22.3 MC.	1st Pix IF (T103)		ax.
C	22.8 MC.	2nd Pix IF (T104)	Bottom	Max.
D	25.7 MC .	3rd Pix IF (L188)	Top	Max.
E	23.9 MC .	4th Pix IF (T105)		Max.
F	21.75 MC .	1st Pix IF (T103)	Bottom	Min.
G	21.75 MC .	4th Pix $1 F$ (T105)	Botom	Min.
H	20.25 MC .	2nd Pix IF (T104)	Top	Min.
1	27.75 MC .	3rd Pix IF (L183)	Botom	Min.

6. It is advisable to repeat step 5 if the adjust ments required resetting by more than a few turns from their original position.
7. Now connect the oscilloscope leads to Termina A of the 2nd sound IF transformer Tl12 and ground.
8. Set the signal generator to 21.75 mc . and adjust the top and bottom screws of the lst and 2nd sound IF transformers Tlll and Tll2 for maximum amplitude of the sine wave pattern.
9. Connect the oscilloscope leads to the junction of Rlll (22 K ohm resistor emerging from shield over sound discriminator socket) C116 the output of the sound discriminator. The junction is at the end lug of a terminal strip mounted on the inner side apron of the chassis.
10. Still using 21.75 mc . adjust the primary of the sound discriminator transformer T113 (Top) for maximum amplitude and then adjust the botom forz amplitude. This ado should be quite critical with a sharp rise of amplitud to either side of the zero amplitude position

Sweep Alignment

1. Connect RF output of the sweep signal genera tor to the antenna terminals. Set the frequency to 85 mc . and the sweep width to 10 mc . Switch tuner to Channel 6. Set AGC voltage to -2 volts.
NOTE: - Steps 1 and 3 apply if separate sweep and signal generators are available. This is the preferable method. If a sweep generator with internal marker generator is the available instrument, connect as per step 1 of the prealignment instructions. Use a sweep frequency of about 24 mc . and disable the local oscillato broken off or carefully balancing the Standard Coil Tuner switching mechanism between channels. With the Dumont tuner only the former method can be used.
Be careful not to use excessive sweep signa output or marker injection as mis-shaping of the response curve will result.
2. Attach the oscilloscope leads to the terminals of the pix 2nd detector load resistor (R1393900). Connect the Hor. amplifier input ol the oscilloscope to the horiz. sweep output of the sweep signal generator. Switch of the in ternal sweep of the oscilloscope.

NOTE: - Excessive marker injection will alter the shape of the response curve. Use as little RF output as is necessary to produce a "birdie".
3. Clip the signal generator output lead to the "body" (no electrical connection) of the grid resistor of the lst pix IF amplifier (R11922 K ohms) near the AGC end. This serves to inject a weak signal capacitively into the pix IF amplifier. If this method of coupling doesn't produce a "birdie" or marker on the response curve, try clipping the signal generator leads between various points of the tuner chassis.
4. Use sufficient RF output of the sweep genera tor to produce a sweep pattern on the oscillo scope screen. be very careful not to use exces sive RF output or overloading will result. This will flatten the bottom of the response curve as viewed on the scope.
5. If 85 mc . input is being used, rotate the fine tuning control of the television chassis until the entire response curve comes into view. Use that portion of the fine tuning range where the response curve remains uniform. If some
portion of the response curve is still off the horizontal trace, try changing the sweep gen erator or using greater sweep width.
6. The various adjustments should be touched ul as follows to produce a response curve to con form with figure 2

7. If any of the adjustments were changed sub stantially from their pre-alignment position repeat adjustments F-I of step 5, pre-alignmen instructions.
8. Remove oscilloscope leads and connect to the 2nd sound IF transformer lug A Set the sweep and signal generators to 21.75 mc . and reduce the sweep width to about 1 mc .
9. Readjust the 1st and 2nd sound IF coils (Top and Bottom) for a symmetrical response curve to either side of 21.75 mc

OJohn F. Rider

10. Now attach the oscilloscope leads to the end of the 22 K Ohm resistor emerging from the shield over the socket of the sound discriminator tube. The " S " curve should now appear Adjust the primary of the sound discriminator transformer (T118) for equal upper and lower peaks without excessive loss of amplitude.

Tuner Channel Slug Adjustmen

Individual channel tuner oscillator adjustments of the television receiver should be checked, upon its installation or servicing. If such adjustments are properly made, it is possible to tune from one station to another by merely turning the CHANNEL Selector and, if necessary, slightly readjusting the fine TUNING control. With correct oscillator channel adjustment, best picture and satisfactory sound will be located at the approximate center (half rotation) of the range of the FINE TUNING control.
Channel slug adjustment can be made without removing the chassis from the cabinet. Adjust as follows
a. Turn the set on and allow 15 minutes to warm up.
b. Set the CHANNEL SELECTOR knob for a station; set other controls for normal picture and sound.
c. Set FINE TUNING control at center of its ange by rotating it approximately half way.
d. Remove the CHANNEL Selector and FINE TUNING knobs.
e. Insert a $1 / 8^{\prime \prime}$ blade, non-metallic screwdrıver in the $1 / 4^{\prime \prime}$ hole (to the right of the channel tuning shaft). For each channel in operation, carefully adjust the channel slug for best picture with clear detail and best sound. Be sure that the FINE TUN. iNG control is set at the center of its range before adjusting each channel slug. Generally, only a slight rotation of the slug will be required, turning the slug in $t 00$ far will cause it to fall into its con. (I) the slug falls into the coin, remove the coil strip from the tuner, move the retaining spring aside, lightly tap the open end of the coil until the slug slips out Replace slug and re-set retaining spring.)

GENERAL TROUBLE-SHOOTING NOTES

The lay-out diagram sbows the various "strings" or chains of vacuum tubes that control the pix sound, "sync" signals, vertical and horizontal sweeps. In the event of failure of any portion of the chassis, trouble-shooting should be undertaken in the following order:

1. Replace the tubes in the involved "string" in sequence.
2. Check the voltage readings against those listed on the schematic diagram for the involved "string".
3. Compare the wave-forms against those shown An approximate method for measuring the peak voltages as listed is to use the 6.3 volt heater supply as a reference. The method con sists of observing the desired pattern on the oscilloscope screen and then comparing the amplitude with that obtained by connecting o the heater voltage without altering the vertical amplifier gain sitting. The overal amplitude, (top to bottom of the observed heater voltage) represents approximately 18 volts.

AGC System

The AGC system keeps the voltage across the 2nd detector load resistor (R139-9900 Ohms) at a reasonably constant level (-1.8) volts for all signals of reasonable signal strength. Defects in the system can cause this voltage to rise or fall excessively.
The AGC voltage as measured across the AGC condenser (C1 34-47 Mfd) ranges from a fraction of a volt (-) to a little over -4 volts.

As a rough check of the system, if trouble is suspected, remove the 6AU6, Ist video amplifier. The AGC voltage should rise to well over -40 volts and the sound should disappear as the tuner and lst pix IF amplifier are cut-off

Sympton of AGC Defeतts

(a) Picture appears on weak signal or without antenna but strong signal produces black white raster. Sound normal - this is due to lack of AGC voltage and may be due to a defective AGC tube (6AU6) in the high voltage cage or a defective width control (mounted above flyback transformer on rea of cage).
(b) Ausence of picture and sound, raster normalReplace the tubes that are common to the picture and sound "strings". If this doesn't help try replac ing the lst video amplifier and the AGC tube (6AU6). If the trouble lies in the AGC system, there will be an excessively high AGC voltage across Cl 34 , and the AGC condenser (. 47 Mfd).

Barkhausen Oscillations

Under certain operating conditions, the horizonta output circuit may produce spurious signals of a type known as "Barkhausen oscillations". These signals cause one or more dark vertical stripes to appear in the picture on some channels usually on the left-hand side
In order to eliminate them, take the following teps in order:

1. Reduce the horizontal drive (turn the hor zontal drive trimmer screw clockwise).
2. Dress the antenna lead-in away from the H.V cage and power line-cord.
3. Replace the 6BG6-G horizontal output tube.
4. Replace the deflection yoke
5. Replace the horizontal output (Flyback) transformer.

Insufficient Height Consistent with Good Linearity

1. Replace tubes in the vertical sweep "string".
2. Replace the vertical output transformer T107.
3. Check voltages and waveforms.

Picture Twists Horizontally

1. Keplace tubes in the sync "string"
2. Replace the 6 AC 7 , hor. osc. control and the hor. sync discriminator, 6AL5.
3. Check the cathode resistors and condensers of the 6 J 5 sync clippers, V115, V116 according to the schematic diagram
4. Check the voltages and waveforms.

Buzz in Sound which Disappears when Contrast Control is Rotated Fully Clock-wise

1. Redress white wire to center arm of the contrast control away from other leads and up against side apron of chassis.
Picture Over-loads (Picture excessively black and white with almost no grays)
This sometimes occurs in a very strong signal area due to the very high signal strength over-loading the tuner beyond the limits of the AGC system. In that case, it is necesary to reduce the signal strength by the insertion of a suitable pad in series with the antenna terminals. A sketch of a recommended type is shown below constructed from small carbon re-

istors. In the event that the over-loading occurs in a weak or normal signal area, trouble in the AGC system should be suspected.

Fig. 5
Several Vertical White Stripes in the Left Side of the Picture (disappears when the width switch is snapped to wide position)
Replace R219, 470 resistor across width control Use a 5 Watt resistor.
Incorrect Vertical Frequency

1. Replace 6 J 5 vertical oscillator.
2. Check all the resistors and condensers of the vertical oscillator and discharge circuit.
3. Check the integrating network (R167, 168 169, C160, 161, 162, etc. contained in a printed circuit wafer).
4. Check the vertical blocking oscillator trans-former-T106.

Lack of Vertical Hold

1. Replace the tubes of the sync "string".
2. Check the integrating network (R167, 168, 169 , Cl60, 161, 162, etc. contained in a printed circuit wafer).

O John F. Rider
(

© John F. Rider

MODEL TV-5020

TV-5120

This television receiver is designed to operate on a 105-125 Volt AC, 60 cycle power line.

The receiver should not be installed near a radiator or any other area where it will be exposed to excessive heat. The position in a room will depend on the seating and lighting arrangements available. Best performance can be realized in a dim or moderately lit room.

The receiver is equipped with a built-in antenna which will afford excellent reception in most areas. A simple folded dipole antenna with reflectors used with a 300 ohm transmission line can be used in weak signal areas.

CONTROLS

VOLUME CONTROL AND ON-OFF SWITCH

The outer knob on the left side of the cabinet puts the receiver on or off and controls the sound. It has no affect on the picture quality.

CONTRAST CONTROL

The inner knob on the left side of the cabinet controls the picture contrast. Turning this control too far to the right will result in stark pictures with extreme black and white images. Turning it back too far will make the picture appear weak and washed out. The control should be adjusted until the picture appears natural with good black and white definitions.

CHANNEL SELECTOR

The bar knob on the right side of the receiver is used to select the required channel as indicated by the numbers on the channel selector escutcheon. The fine tuning inner knob should then be adjusted for the heat picture and sound.

INSTALLATION

The deflection yoke, "Focalizer", and ion trap settings may have shifted during transit. These components and all other controls should be re-adjusted at the time of installation. Make all the following adjustments.

DEFLECTION YOKE

Loosen the two screws securing the yoke mounting bracket. Push yoke to the closest possible position on the "bell" of the cathode ray tube. Tighten screws. Loosen the screw on the bottom of the deflection yoke. With a test pattern visible on the screen, rutate yoke so that top of picture runs parallel with the cabinet top. Tighten screw.

ION TRAP

Turn the back panel brilliance control to the almost full position. Move the ion trap backwards and forwards carefully rotating it at the same time for the best possible brilliance on the screen.

FOCUS AND POSTTIONING
This receiver is equipped with a newly designed device known as a "focalizer". It provides for all magnetic means of focusing and positioning. POSITIONING
Loosen the two nuts securing the "focalizer" to the mounting bracket. Slide the "focalizer" up or down and from one side to the other until a position is located that centers the test pattern on the picture tube. In some cases it may be necessary to re-adjust ion trap if neck shadowing occurs.

NOTE "A"

Some models are manufactured with a "Focalizer" equipped with a "shutter" assembly. This shutter assembly is actuated by a rod extending out near the Cathode Ray Tube neck. Rotating this rod will also rotate the picture on the actuated by a rod extending out near the Cathode Ray Tube neck.

FOCUS

Turn the channel selector to an inoperative channel. Turn brilliance control up until the raster is visible. Adjust variable magnetic shunt by turning large screw on top of "Focalizer" until raster lines are in focus. Re-adjust ion trap and repeat variable magnetic shunt adjustment.

REAR CHASSIS CONTROLS

VERTICAL LINEARITY AND HEIGHT CONTROLS
Adjust these controbse that the entire picture screen is filled vertically, and that the test pattern measures the same from center to top and from center to bottom. There is normally some interaction between these controls and same from center to top and from center to botto
the adjustments should be repeated several times.

HORIZONTAL DRIVE

GENERAL DATA

TUBE COMPLIMENT

V1. 6AG5 RF Amplifier
V2. 6J6 RF Oscillator and mixer
V3. 6AU6 lst Video IF Amplifier
V4. 6AU6 2nd Video IF Amplifier
V5. 6AU6 3rd Video IF Amplifier
V6. 6AL5 Video detector
V7. 12AU7 1st and 2nd Video Amplifier
V8. 6SH7 Ratio Detector driver
V9. 6AL5 Ratio detector
V10. 6SH7 lst Audio
V11. 6V6 Audio output
V12. 6SN7 Horizontal sweep oscinllator
V13. 6BG6-G Horizontal sweep output
V14. 1B3 High voltage rectifier
This receiver is equipped with a tuner designed to operate satisfactorily in any local or fringe areas. The tuner has rugged turret style construction and features very high sensitivity and a high signal to noise ratio. All oscillator and RF coils are snapped into position on a drum and can be readily replaced if necessary. Oscillator adjustments are accessible from the receiver front and adjustment can be made without removing the receiver from the cabinet.

VIDEO I. F.
The video IF amplifier consists of 3 6AU6 stages with four IF transformers. A powdered iron slug adjustment for each coil is available on the top of the chassis. The IF transformers are stagger tuned to two frequencies. The fourth and second IFs are tuned to 25.6 MC and the third and first $\mathrm{IFs}_{\mathrm{s}}$ are tuned to 23.4 MC .

SYNC. CIRCUTT

This receiver employe a new and improved "Sync. Amplifier, Phase Splitter, and DC Restorer" circuit. The AFC circuit in conjunction with this new circuit minimizes picture disturbances caused by ignition and similar types of interference. The improved sync. circuit also prevents vertical rolling in high interference or fringe areas.

This control should be adjusted to obtain additional horizontal size. Improper adjustment of this control may re
sult in two bright lines showing on the left hand side of the picture screen. Re-adjust this control until the lines dis appear.
HORIZONTAL LINEARITY
Proper adjustment of this control will fill out the left side of the test pattern so that the pattern will be round and not flattened on one side

VERTICAL HOLD

This control should be adjusted so that picture does not roll vertically. Re-adjust control if picture ralls when channel selector is turned on or off an active channel

HORIZONTAL HOLD

Adjust this control so picture does not roll horizontally. Check this adjustment by putting channel selector on or off channel. If picture rolls horizontally, re-set control.

BRILLIANCE

Adjust the brilliance control so that picture appears natural with good black and white contrast. Turning up this control too far may result in diagonal white re-trace lines showing on the picture screen. The control should be turned back until these lines disappear. It may also be necessary to re-adjust the contrast control on the front panel while this adjustment is made.

OJohn F. Rider

SOUND SYSTEM

This receiver uses the Inter-Carrier Sound System. The difference between this system and other systems is that the sound and picture information are both carried through a single I. F. amplifier channel. The sound carrier is taken off the video amplifier by a 4.5 megacycle sound "take-off" coil and fed through a 4.5 MC amplifier to the Ratio Detector, and the audio amplifier. The advantage of this system is that the necessity of two IF amplifiers is avoided and that drift in the local oscillator does not distort or cut off "sound" reception.

VIDEO I. F. ALIGNMENT

(Refer to Fig. 3 and Fig. 8 for reference points)

1. A fixed battery bias should be applied to the AGC circuit for proper IF alignment. Connect negative terminal of 3 -volt battery to reference point " B " the junction of 2.2 meg resistor (R31), 330 ohm resistor (R27), and $11,000 \mathrm{ohm}$ resistor (R28).
2. Connect positive terminal of 3 -volt battery to chassis ground

Connect hot terminal of VTVM (set for negative voltage reading) to reference point "A", the junction of the video detector 700 MH peaking coil and 4.7 K resistor (R37).
4. Connect ground terminal of VTVM to chassis ground.

Lift 6 J 6 tube shield above ground and connect AM signal generator (unmodulated) to tube shield. Connect signal generator ground to nearest chassis ground. Keep signal generator leads short to avoid regeneration.
Align IF-24 and IF-22 at $\mathbf{2 5 . 6} \mathbf{~ M C}$ for maximum output as indicated by the VTVM.
Align IF-23 and IF-21 at 23.4 MC for maximum output.
The over all IF response may be observed on a Cathode Ray oscilloscope in the following manner

1. Connect the synchronizing sweep voltage from a sweep Generator to the horizontal input of an oscilloscope for horizontal deflection
2. Loosely couple sweep generator by connecting to ungroanded tube shield floating over 6 J 6 tube and nearby ground. (Keep all leads short to avoid regeneration due to stray coupling.)
3. Set sweep generator to 24.5 MC frequency and 10 MC sweep width.
4. Connect vertical amplifier of scope to same point as VTVM, reference point "A", remove VTVM.
5. Set marker to 21.25 MC and 25.75 MC .

Response curve should be similar to curve shown in Fig. 4
Response curve may be flattened out and improved by re-adjusting IF 21 on front end.

OSCLLLATOR ADJUSTMENT

The oscillators may be adjusted without removing the chassis from the cabinet by the following procedure:

1. Remove channel selector knobs.
2. Remove channel selector eacutcheon.
3. Remove channel selector eacuicheon.
4. Turn channel selector to desired station
5. Set fine tuning control to the middle of its range.
6. Adjust oscillator screw through a hole located just to the right of the channel selector shaft. This adjustment should be made with a fibre or bakelite screwdriver. Set oscillator for best pompromise between picture and sound.

The oscillators may all be adjusted by using an All Channel Television sweep generator, a Marker Generator and a Cathode Ray Gscilloscope.

The output of the sweep generator should be connected to the antenna terminals. Loosely couple marker generator to antenna terminals also.

Connect high side of oseilloscope to same point "A" as VTVM connection and ground side of scope to nearest chassis ground.

Frequency settings for each channel can be determined from the chart below.

SOUND IF FREQUENCY 21.25 MC . PICTURE IF FREQUENCY 25.75 MC .

Channel	Frequency
2	54-60
3	60-66
4	66-72
5	76-82
6	82-88
7	174-180
8	180-186
9	186-192
10	192-198
11	198-204
12	204-210
13	210-216
FREQ. RKER	SOUND FREQ. MARKER

$\left.\begin{array}{cc}\begin{array}{c}\text { Picture } \\ \text { Marker } \\ \text { Frequency }\end{array} & \begin{array}{c}\text { Sound } \\ \text { Marker }\end{array} \\ \text { Frequency }\end{array}\right\}$

Set Sweep Generator to approximately midfrequency of each channel and tune until response curve is centered on oscilloscope screen. Adjust picture and sound markers to the exact frequency as indicated on the Frequency Chart.

Adjust oscillator screw so that sound carrier falls in notch as shown in Fig. 5. This adjustment should place the picture carrier at a point approximately 50% up on the opposite side of the response curve Some variations in location of picture carrier and wave shapes are permissable. The position of the picture carrier may vary from 45% to 60% up on the slope. A 15% valley is also acceptable in the overall wave shape response.

SOUND ALIGNMENT

(See Fig. 3, Fig. 6 and Fig. 8 for reference points)

1. Connect AM signal generator (unmodulated) to reference point "C", pin 7 of 12 AU 7 (V7) video amplifier.
2. Connect hot terminal of VTVM, set for negative voltag \geqslant reading, to reference point " D ", pin 7 of 6AL5 (V9) ratio detector.
3. Connect ground terminal of VTVM to chassis ground.
4. Set signal generator to 4.5 MC and adjust top and bottom of sound take-off coil (ST-10) and bottom of ratio detector coil (RD-416 or RD.7B) for maximum output.
5. Connect VTVM to reference point "E", junction of 47,000 ohm resistor (R16) and .0015 MFD condenser (C41).
6. Adjust top of ratio detector coil for zero reading

NOTE: Top of ratio detector may he re-adjusted for mininum "huzz" while a channel is in operation and a test pattern tone signal is being received.

© John F. Rider

Fig. 3

INDEX

TUBE COMPLEMENT

Tube	Type	Function	Tube	Type	Function
V1	6BZ7	Cascode RF Amplifier	V16	27EP4 or	Picture Tube
V2	6X8	Mixer \& Oscillator		24CP4	
V3	6BA6	lst IF Amplifier	V17	5U4G	Low Voltage Rectifier
V4	6CB6	2nd IF Amplifier	V18A	1/2 6SN7GT	Sync Clipper
V5	6CB6	3rd IF Amplifier	V18B	1/2 6SN7GT	Vertical Oscillator
V6	6CB6	4th IF Amplifier	V19	6AH4GT	Vertical Output
V7	6AU6	4.5 MC Amplifier	V20	6AL5	Phase Detector
V8	6AU6	Ratio Detector Driver	V21	6SN7GT	Horizontal Oscillator
V9	6AL5	Ratio Detector	V22	6CD6G	Horizontal Output
V10	6AU6	Audio Amplifier	V23	6AX4GT	Horizontal Damper
V11	6W6GT	Audio Output	V24	lX2-A	Hi-Voltage Rectifier
V12	6AU6	Keyed AGC Amplifier	V25	6AF4	UHF Oscillator
V13	6AH6	Video Amplifier	V26	6AN4	UHF Mixer
V14	12AT7	Noise Inverter	V27	5U4G	Low Voltage Rectifier
V15	6AU6	Sync Separator	V28	1X2-A	Hi-Voltage Rectifier

. . 12
TOP VIEW - TUBE LAYOUT
voltage measurements ... 12
WAVEFORMS 12

CHASSIS SPECIFICATIONS

Power Requirements
117 volts, 60 cycles AC
Power Consumption
250 Watts

Band Width

Video amplifier 3.8 MC within 3 db
IF Amplifiers 4 MC within 6 db
Antenna input to picture tube 3.5 MC at 6 db Ratio detector, peak to peak 200 KC

Deflection

Horizontal \& Vertical	Magnetic Electro Magnetic
Focus	Interlaced, 525 Lines
Scanning	15750 CPS
Horiz. Freq.	60 CPS
Vert. Freq.	30 CPS
Frame Freq.	

Fine Tuning
Plus \& minus 1 MC on Channel 2
Plus \& minus 1.6 MC on Channel 13

Audio Power Output

2.8 watts
$\left.\begin{array}{l}\text { MODEL }\end{array} \begin{array}{l}\text { IDENTIFICATION TABLE } \\ \text { MODELS FM27C, HB27C }\end{array}\right]$

[^0]VHF FREQUENCY CHART

Chan. No.	Chan. Freq.	Pieture Carrier	Sound Carrier	RF Osc. Freq.
2	$54-60$	55.25	59.75	101 MC
3	$60-66$	61.25	65.75	107 MC
4	$66-72$	67.25	71.75	113 MC
5	$76-82$	77.25	81.75	123 MC
6	$82-88$	83.25	87.75	129 MC
7	$174-180$	175.25	179.75	221 MC
8	$180-186$	181.25	185.75	227 MC
9	$186-192$	187.25	191.75	233 MC
10	$192-198$	193.25	197.75	239 MC
11	$198-204$	199.25	203.75	245 MC
12	$204-210$	205.25	209.75	251 MC
13	$210-216$	211.25	215.75	257 MC

The UHF band of frequencies has been placed between 470 MC and 890 MC . Each channel from 14 to 83 has been alloted, in succession, a band 6 MC wide within this spectrum.

$$
\begin{array}{ll}
\text { IF Frequencies: } & \text { Picture Carrier }-45.75 \mathrm{MC} \\
& \text { Sound Carrier }-41.25 \mathrm{MC}
\end{array}
$$

ALIGNMENT
 PROCEDURE

VISUAL ALIGNMENT OF THE RF AND

MIXER STAGES
CAUTION: Always determine by suitable tests, the causes of unsatisfactory operation before attempting to align portions of this receiver. Necessity for realignment will, in all cases, be rare.

PROCEDURE:

1. Connect an RF sweep generator with at least a 10MC sweep width to the antenna terminals through the test circuit shown in Figure 1.

1208

2. Remove the keyed AGC Amplifier tube V12. (This is necessary in order to eliminate AGC action which would interfere with RF alignment.)
3. Connect the positive terminal of a 3 volt dry cell supply to chassis ground and the negative terminal to the RF AGC test point.
4. Attach the high side of the vertical input of an oscilloscope to the input of the detector test circuit shown in Figure 2, and the output to the test point located on the tuner see Figure (4). In order to synchronize the sweep of the oscilloscope with the RF sweep; connect the horizontal amplifier terminals on the RF sweep generator labeled "oscilloscope sweep voltage."

5. Turn the station selector to Channel 13 and adjust the sweep generator until it sweeps from 208 MC to 218 MC . (NOTE: If the sweep generator does not supply marker signals at picture and sound carrier frequencies, an external source, such as a CW signal generator should be used to supply them. For method of marker injection, refer to instructions supplied by the manufacturer of sweep generator being used.
6. Adjust L913, L929, L930 until the viewed response curve is similar to that shown in Figure 3. Check all other channels readjusting L913, L929 and L930 as necessary to obtain optimum response on all twelve channels.

RF Response Curve
Figure 3
The dip in the curve between picture and sound carriers should not fall below 70.7% of the response peak and the bandwidth at 50% down should not exceed 11MC on the low band and 13MC on the high band.

RF OSCILLATOR ALIGNMENT

CW METHOD

1. Remove V12 from its socket and connect the negative terminal of a 3 volt dry cell bias supply to the RF and IF AGC test points. This to the best be accomplished by tieing the two points together.) the two points together.)
2. Apply the CW signal to the antenna terminals through the pad shown in Figure 1.
3. Connect the DC probe of a vacuum tube voltmeter to test point C

VHF TUNER VIEWS

Figure 4
4. Turn the fine tuning control to approxımately Figure 4) until a sharp dip in the voltage readthe center of its rotating range, and proceed as follows:

For low band alignment

- Tum channel selector to Channel No. 6. - Tune signal generator to the sound carrier frequency of Channel 6 - see frequency chart on page 2.
- Adjust the lowband oscillator slug (see

IF ALIGNMENT
Remove the AGC Amplifier (V12) from its socket. Connect the negative terminal of a 3

ing on the VTVM is reached.

For high bond olignment

- Turn channel selector to Channel No. 13. - Turn channel selector to Channel No. 13. frequency of Channel 13 - see frequency chart on page 2.
_ Adjust the high band oscillator slug (see Figure 4) until a sharp dip in the voltage reading on the VTVM is reached.
volt dry cell supply to the IF AGC test point and the positive terminal to chassis ground. Raise the tube shield of V2 so that it is not grounded and apply the signal to it.

Generator Frequency	VTVM Connections	Ad/ustment	Remarks
45 MC	To Test Point (C) and Ground	T3-T2-L958*	Adjust for Max.
42 MC	To Test Point (C) and Ground	L5-T1-L2*	Adjust for Max.
41.25 MC	To Test Point (C) and Ground	L1-L3	Adjust for Min. with output of Signal Gen. at Max.
39.75 MC	To Test Point (C) and Ground	L4	Adjust for Min. with output of Signal Gen. at Max.

NOTE: To insure correct IF Alignment follow the procedure outlined under Visual Check of IF Alignment.

* The designated frequencies for L958 and L2 are to be used for preliminary alighment only. Since these two coils compromise a band pass circuit, final alignment should be made with a sweep generator.

VISUAL CHECK OF IF ALIGNMENT

1. Lift the shield of the oscillator mixer tube V2 until it becomes ungrounded. Connect the high side of a sweep generator to the ungrounded tube shield and the ground lead to chassis ground. Connect a lead from the sweep synchronizing terminal on the sweep generator to the external sweep terminal on the oscilloscope.
2. Connect high side of oscilloscope to pin 7 of V13 video amplifier tube and ground lead to chassis ground. (Set contrast control at minimum.)
3. Remove the keyed AGC amplifier tube V12.
4. Connect the negative terminal of a 3 vol dry cell to the IF AGC test lead and the dry cell to the torminal to chassis ground.
5. Adjust sweep generator to sweep from 40 to 50MC.
6. Connect a vacuum tube voltmeter between pin \#1 of V13 and ground and adjust the pin \#1 of generator output until a reading of -2 volts is obtained.
7. Adjust the oscilloscope
sponse curve is centered
Place a lead from an AM signal generator near the IF strip and adjust it to cover from near the 4 MC .
40 to 50 M .

SOUND ALIGNMENT

Connect the Negative Terminal of a 9 volt
dry cell supply to the IF AGC test point and the Positive Terminal to Chassis ground.

9. Observe the response curve and the position of the markers (see nominal response curve Figure 5). A slight deviation from this response curve is permissible; however, complete realignment of the IF will be necessary if a great deviation is noted. Some improvement in the shape of the response curve may be accomplished by slightly readjusting L2 on the main chassis and L958 on the tuner.

For best performonce the difference in height of peoks should not exceed 30% nor should the dip drop more than 30% below the peak of the response curve

Signal Gonerator Coupling	Frequoncy	Connect	Adjust	Remarks

NOISE INVERTER ADJUSTMENT

NOTE: The noise inverter control is adjusted at the factory to give optimum performance under varied conditions, therefore, only upon rare occasions would any adjustment be necessary. If the receiver is to be operated in an extremely weak signal area having a high noise level, or
this control becomes maladjusted by one means or another, it can be satisfactorily set by the following procedure:
Select and properly tune in the strongest station in the area.
Tum the contrast control to its maximum position (full clockwise).

With the noise inverter control set at minimum, slowly turn it in the clockwise direction until a slight shifting of the picture in the horizontal plane is observed, then back off (counterclockwise) $1 / 8$ of a turn.
CAUTION: If this control is set too far in the clockwise position an erratic jumping of the picture will be encountered when switching channels.

HORIZONTAL OSCILLATOR ADJUSTMENT

This adjustment may be satisfactorily performed with any received program signal.
Set the Horizontal Hold control, R115, at approximately mid-position.
Set the Contrast control to the normal operating position.
Adjust the Horizontal Oscillator control, L23 until the diagonal streaks on the screen decrease in number and become erect (picture ocks in sync).
The setting obtained by the preceding steps may not give optimum range on the Horizontal
front panel hold control, therefore, further adustment by the trial and error method should be performed. When L23 is properly adjusted, the H. Hold control can be slowly rotated to its stops in either direction without losing picture sync.

HORIZONTAL DRIYE ADJUSTMENT

Allow the receiver to warm up for at least five contrast and brightness for a nor mal picture.
Adjust the horizontal drive trimmer until there is no indication of horizontal foldover in the picture.

ANTI-PIN CUSHIONING MAGNETS

Pin cushioning is an effect caused by the use

of the cosine-deflection yoke and is apparent by
the "bowing in" along the edges of the raster. In order to compensate for this condition two anti-pin cushioning magnets have been mounted to the picture tube mounting brackets. For ease of adjustment these magnet brackets are hinged in two places; thus allowing the magnet to be moved either forward or backward at various distances from the picture tube surface. The proper adjustment of each magnet may be observed by moving the raster off centerfar enough to see the side of the picture that is being straightened.
NOTE: These magnets are properly set at the factory and should require no further adjusting unless a new picture tube is installed.

UHF DIAL CORD STRINGING

ION TRAP ADJUSTMENT

Reduce the contrast and raise the brightness to a point where a blank raster is just visible on the picture tube. Rotate the ion trap while moving it either forward or backward until the brightest raster is obtained.
WARNING: It is extremely important that the ion trap be adjusted properly as soon as the set is cause severe damage to the CR tube, and this type of damage is not covered by the factory warranty. NEVER ADJUST THE ION TRAP TO WEMOVE SHADOP ADJUST THE ION TRAP TO

LOW VOLTAGE POWER SUPPLY
A straight AC power supply utilizing two 5U4G rectifier tubes is used. The input voltage is stepped up in the secondary of the power is stepped up in the secondary of the power
transformer (T6) and fed to the plates of the transformer (T6) and fed to the plates of the
rectifier tubes, (V17) and (V27). The output of the rectifiers is fed to the filter section consisting of C55A, L26, L18, and C42B. Tubes V11 and V12 are in series with V5 and 8, V2, V4, V7, V14, V15, V25 and V26 serving as voltage regulators for these tubes. When the
current through these amplifiers change due to changes in signal strength the cathode voltage of V11 and V12 vary accordingly. This causes the impedance of V11 and V12 to change main taining a constant voltage of +165 volts at the cathode of V11.
NOTE: No DC voltage from the low voltage rectifiers is supplied to V9, V20 or the plate of Vecti2.

REMOVAL AND INSTALLATION

OF PICTURE TUBE

CAUTION: Be sure the power is off. Wear goggles whenever a picture tube is being handled. 1. Place the cabinet face down taking all pre cautions necessary to keep from marring the finish.
2. Remove the high voltage lead fromits socket. Remove the tube socket from the base of the tube.
4. Remove the ion trap from the neck of the tube.
5. Loosen and remove the two $1 / 4^{\prime \prime}$ bolts that hold the yoke and hood assembly to the mounting straps.
6. Remove this assembly from the neck of the tube.
7. Bend the two straps away from the tube as far as possible.
8. Grasp the rim of the picture tube face and gently lift the tube out of its harness. Do not allow the tube to rest on its neck or base, and do not under any circumstances carry or handle the tube by its neck alone.
9. To replace the tube, reverse the above pro cedure paying particular attention to the fact that the two $1 / 4^{\prime \prime}$ bolts which hold the yoke and hood assembly should be tightened with equal pressure.

NOTE: No attempt should be made
ro align this UHF Tunar without
the aid af a UHF Gonerator.

© John F. Rider

Figure 12

CIRCUIT DESCRIPTION

UHF TUNER

This tuner covers the entire UHF range of 470 to 890 MC continuously by means of a three section tuning element. Two of these elements are used for tuning the band-pass or preselector input circuits while the other is for oscillator tuning. A bandwidth of approximately 10 MC is realized in this' band-pass circuit. The received signal from this point is fed into a ceived signal mom this point is GAN into a it beats with the local oscillator simnal. Injection of the oscillator voltage is through C1012 to the filament of V26. V25 a 6AF4 is the UHF local oscillator, the frequency of which, is maintained and tracked at a difference of 41MC from the incoming signal by the tuning element. Since the IF system of the TV receiver is tuned to 41MC, single conversion is accomplished within this tuner. The 41MC output is applied through L960 and L900 to the VHF tuner circuits which have been altered to operate as 41MC IF amplifiers by the switching arrangement. When the channel selector is in the UHF position the VHF local oscillator is inoperative allowing both the cascode amplifier and mixer stage to act as IF amplifiers thereby increasing the overall sensitivity during UHF reception.

VHF - RF SYSTEM

The tuner is of the rotary switch type, made up of a series of coils in cascade, bridging the contacts of the channel selector switch. The selector switch has 16 positions. Two positions of this switch are utilized to switch the necessary $\mathrm{B}+$ and bias circuits to operate the accompanying UHF tuner, and alter the VHF tuner to provide additional amplification in the IF range. All of the step-tuned coils are preadjusted with the final overall tuning adjustments made in the Bendix factory with the use of a sweep generator. Adjustment of the tuner in the field should not be attempted unless a sweep generator is used; and the instructions that are included under Alignment Procedure followed very carefully.
The antenna input circuit is designed to give optimum performance with 300 ohms balanced impedance. The signal is inductively coupled through T900 to the input grid of the RF amplifier. This grid also has applied to it the AGC voltage which controls the gain through both sections of the RF amplifier and 1st IF stage.

The RF amplifier, V1, is a 6BZ7, twin triode type of "ube connected in what is known as a series "cascode" circuit. In using a circuit of this design the noise figure which accompanies a conventional pentode amplifier has been greatly reduced and yet equivalent gain has been maintained. The input section of the RF stage is connected as a grounded cathode type amplifier. Its output is fed through L914 to the cathode of a grounded grid amplifier - the output section of the RF stage. All of the preselector coils are preadjusted and matched to a standard, therefore the only adjustments made available for overall RF alignment are L913, L929 and L930. The amplified RF signal is capacitively coupled through C908 to a pentode mixer stage - $1 / 2$ of a 6 X 8 (V2). Tuning of the mixer grid is acconplished by the same steptuning method that is utilized throughout the preselector stages. Grid leak bias for this stage is developed across 1905 a 220 K resistor. A test point for checking the tuner response curve has been made available at the top of the tuner. This point is coupled to the mixer plate by C915 making it necessary to detect the signal before applying it to the oscilloscope.
The other half of V2 a triode is used in a Colpitts type oscillator circuit. There' are two oscillator adjustments accessible from the front of the tuner, L957 for the high band of frequencies and L949 for the low band. The ine tuning capacitor has sufficient range to compensate for any further tuning which is required for the individual channels. Capacitive coupling (C913) is used to inject the oscillator ouput into the grid of the mixer stage
The output of the mixer is fed to the first IF amplifier through a series double tuned band pass circuit consisting of L958, C28 and L2. This type of circuit accomplishes two purposes - a high degree of oscillator frequency isolation plus optimum transfer of energy. The tunable tank circuit L 1 and C_{2} is used as a sound trap capacitively coupled to the grid of the first IF amplifier. This IF trap along with the one located in the plate circuit of the first IF amplifier reduces the IF gain at the sound carrier frequency approximately 32 db , providing satisfactory sound attenuation.

IF SYSTEM

Five stagger-tuned circuits employing one 6BA6 and three 6CB6 tubes along with a crystal detector comprises the interstage IF amplifier system.
Three of the IF transformers used in this

Abstract

system are of the Bifilar wound type - two windings interwound on a single form. A wind ives the effect of a single tuned coil. The ollowing advantages are derived from such an arrangement. Improved filtering of all plate and rid returns can be achieved because the by grid returns can be achieved because the byass condensers are returned to the same ground as their associated cathode thus eliminating circulating ground currents. It is also possible ach amplifier to a very low value therefore inimizing the possibility of a charge building minimizing the possibility of a charge building oise pick up. This latter advantage permits IF pyck up. This latter advantage permit if system to operate at optimum performance al in the first wo staged cathode resistors are sed of input cap acity with AGC voltage ons of input capacity with AGC voltage ange of voltage cascading which means that wo or voltage cascading wich means that wo or more "ubes are connected in what can be the first case involves the first If V3) The PF V3) and the RF amplifier V1, while a simila ook-up encases V6, 5 and V8. In each case tube at the top of the line-up has applied to its plate approximately the maximum voltage vailable and is so biased that the voltage drop cross it is sufficient to reduce the voltage a ts cathode to a value that is proper for operatng the next stage. This continues to happen grto of the ottom of the string has its cathode D.C. con ected to the ground. A hook-up of this kind consumes less powe due to the fact that the cubes at the top of the string are effectively sed as the plate load resistor for the pursuing stage, therefore the dissipation that normally akes place across a load resistor is utilized or amplification. This IF system has been designed to provide an overall response curve which is flat topped with a nominal bandwidth f 4 MC 6 db down from peak response. The IF output is fed into the video detector can T3 which encases the third IF amplifier plate transformer, sound take off coil, the crystal video detector IN60, and its associated peaking coils necessary to extend the frequency response to the desired bandwidth. Various test points have been indicated on he schematic diagram in order to facilitate the making of checks on the operation of the IF system. One is located in the AGC string at the junction of R56 and R57 while another is ocated at the junction of R10 and R12. These wo points have been made available from the top of the chassis for checking developed AGC voltage and for applying bias potentials when making sweep tests on the RF or IF systems Another test point " C " has been designated

at Pin 7 of V14, the noise inverter, for connecting a VTVM when mreasuring the voltage developed by the crystal detector during alignment with a CW signal.

SOUND SECTION

Intercarrier sound reproduction is used. By this method both the picture and sound carriers are amplified by the same IF amplifiers and beat together in the Video Detector, giving a 4.5MC FM carrier that is fed to the sound amplifier V7. The 4.5 megacycle beat is constant since it is always the fixed difference between the Video and Sound coming from the TV Station. Therefore, the Sound will not be affected by any normal oscillator drift since both the Video and Sound carriers will drift equal mounts and the difference will always be 4.5 MC . The 4.5MC sigal is taken off at I 9 and amplified by V7, which in turn is transformer coupled to the ratio detector driver V8. This tube has low DC voltages on the plate and screen and, while there is some amplification, its chief function is that of limiting. The Ratio Detector (V9) is of the conventional type The 33 tehm (R35) resistor conventional type. The ling line of the detector transformer (T4) stabilizes the impedance presented by the diodes If this resistor was deleted the variation in impedance between individual tubes would imped the AM rejection to vary between cause t
The output of the Detector is amplified in the 1st Audio stage (V10) and then directly coupled 1st Audio stage (V10) and then directly coupled to the grid of the output tube (V11). This DC coupling is possible since V11 is part of the voltage regulating system. (See Current Distri bution Diagram.)
About 10 db of negative feedback is provided by R55 which is connected between the secondary of the Audio output transformer and the cathode of the lst Audio amplifier (V10) to reduce output distortion

VIDEO AMPLIFIER

The Video amplifier is a 6AH6, with the associated wide band, low pass. filters. The output of the crystal detector is DC connected to the grid of the Video amplifier through filter circuit comprising a series (L7) and a shunt (L8) peaking coils. L16 is a shunt plate peaking coil used to extend the frequency re sponse of the Video amplifier to its desired value and compensate for any incurred phase shift. The response of the Video system is flat to 1 MC and down 3 db at 3.8 MC .
The contrast is controlled by changing the amount of degeneration in the Video amplifier

This is accomplished by varying the control R47 in the cathode circuit
No DC restoration is necessary at the output of the Video amplifier because the entire Video amplifier is direct coupled from the output of the crystal detector to the cathode of the picture tube. Therefore, the rectified video signal does not vary about an $A C$ axis.
Notice that the polarity of the detector is such that a negative signal is applied to the grid of the Video amplifier, resulting in a positive video signal at the plate which is applied directly to the cathode of the picture tube.

KEYED AGC

V12 is the AGC amplifier whose function is to keep the sensitivity automatically adjusted in accordance with the strength of the received signal. This is accomplished by the negative voltage which is developed at the plate of the AGC amplifier V12 tube and applied to the grids of the RF and IF amplifiers. The plate voltage for V12 is in the form of a positive pulse taken from terminal \#5 on the horizontal output Trans former 78.
This pulse is developed by the collapsing of the field in the horizontal deflection coils and its duration is about 5% of the horizontal period. Plate current can flow only during the applica tion of this pulse and tise amount of current flow is controlled by the amplitude of the sync pulse on the grid, pin \#1 of V12, and the setting of R138, the AGC control which serves as a variable grid resistor. The grid is DC connected able grid resistor. The grid is DC connected R62 and R63, the plate load resistors for the video amplifier. The bias level for V12 is a function of the video amplifier plate current function of the video amplifier plate current The AGC cathode potential is +165 volts, aken from the source which also supplies the plate of V13. The screen potential is approximately +340 volts, thus maintaining the equired potential difference with respect to the athode. The screen and plate voltages are approximately the same at the time the puls occurs.
When current flows in the plate circuit of V12 it will develop a negative voltage across esistors R56, R57 and R58. This voltage is filtered by the RC network R56, R57 and C43 o rid it of the horizontal frequency component $(15,750 \mathrm{cps})$. Therefore, the time constant re quired to filter frequencies of this kind can be quired to filter frequencies of this kind can be made very short as compared to the time con tad un 60 cyle conponent The had to filter out a 60 cycle component. The control voltage for the IF stages is taken from he junction of the dividing network, 156 and R57. The control voltage for the RF amplifier
is taken from the junction of R57 and R58 and fed through R9 with a delay voltage being ap plied by means of a voltage dividing network from the +165 supply. The circuit constants are such that the IF bias reaches a value of approximately -4.5 volts before the RF delay is overcome.
The keyed AGC system has good noise im munity because its duty cycle is only about 5% of the total time, and any noise pulses occuring during the other 95% of the time do no ffect its operation. The developed AGC volt age is a function of sync pulse amplitude only and is not affected by picture content. Hence the AGC action can be made fast, practically eliminating the flutter caused by airplanes.

NOISE INVERTER

The noise inverter, V14, provides a major improvement in signal-noise ratio for both horizontal and vertical synchronization.
This new circuit requires the use of a $\mathrm{Hi}-\mathrm{Mu}$ win triode tube. Its purpose is to prevent the noise that is normally present in the sync egion of the composite video signal from ap earing at the input of the sync limiter, V15. n this chassis the circuit has been designed around a 12AT7. The way this circuit ac complishes its purpose is by amplifying and nverting the noise that appears at the screen of the video amplifier and superimposing its negative output upon the positive noise pulses that are normally prevalent in the composite signal at this point. This out-of-phase com ponent will cancel out and eliminate any noise at the input of the sync separator that would ordinarily appear in the sync region of the composite video signal
The first section of this twin triode is connected in parallel with R65, the screen resisto or the video amplifier, V13. It is so biase by the voltage divider network, R66, R68 and R69 that it will conduct at varying degree corresponding to the signal level applied to its cathode from the screen of V13. This vari ation causes the tube to act as a variable low impedance shunt across R65 holding the volt age on the screen of V13 fairly constant until the desired moment - the arrival of a nois pulse. The same video signal that is being pulse. The the co Unit \#1 is also being coupled through C47 to the grid of Unit \#2 couplit mplitude is insufficient to overcome the bias of the section which is set by R69 the bias of therter control. It is important that he bias be set high enough to kep this section from conducting on sync peaks because that from conducting on syn ing both vertical and horizontal to fall out of
step. The next step is to follow the chain of reactions that is set up by a noise pulse which has great enough amplitude to ride well above the sync peaks. A noise pulse of this amplitude will, due to design, drive the grid of the video amplifier into cutoff thus allowing the voltage on both the plate and screen of that stage to rise rapidly. This pulse being of a positive polarity on the screen will also cutoff unit \#l of V14, doing away with its affect as a low impedance shunt across R65 allowing the voltage at its cathode to rise rapidly to the potential of the supply source. This wave front has been increased sufficiently, due to this chain of reactions, to overcome the bias of Unit \#2 when applied to its grid through C47. The overcoming of this bias allows Unit \#2 of V14 to conduct and amplify this noise pulse, superimposing it at the junction of R64 and R67 exactly upon the same noise pulse that created it within the composite video signal. Since the output of the noise inverter is negative in polarity the noise peak is cancelled to the point where it is placed well below the sync pulse region before the composite video signal reaches the sync separator.

ANTI-LOCKOUT MEASURES

When using the noise inverter circuit in a receiver employing keyed AGC, there is an important problem of "lockout" to be taken into consideration. The term "lockout" refers o a condition which may take place in the receiver upon the loss of horizontal synchronism. When the receiver loses horizontal sync, the keyed AGC will not function properly removing the bias from the IF amplifiers, thus permitting an excessive signal to be applied to the video amplifier V13. This increased signal is sufficient to drive the grid of V13 into cutoff causing the noise inverter to function continuously inverting the sync pulses, thereby preventing the receiver from pulling back into horizontal or vertical sync. Therefore anti-lockout measures have been designed with this circuit. C48 and R67 located in the plate circuit of Unit \#2 of V14 plays an important part in this function. When the receiver is out of sync, the vertical sync pulse causes C48 to charge sufficiently to reduce the effective plate voltage on the second half of V14 enough that the noise inverter approaches an inoperative condition. Another measure which aids the one just mentioned consists of placing an RC time constant, C47 and R70 in the grid circuit of Unit \#2 of V14. C47 becomes negatively charged due to the grid current that will flow during the vertical sync pulse while the receiver is out of sync. Here again this charge reaches proportions that
approach grid cutoff of this section of the tube The charges that build up on both C47 and C48 will remain only long enough to enable the receiver to regain synchronism due to the value of their respective resistors. Still another antilockout measure has been employed. This one consists of connecting the video detector output to the grid of Unit \#2 of V14 through R70 a 2.2 meg resistor. Since the negative output of the video detector reaches several volts in amplitude, without the application of AGC voltage to the IF amplifiers, this connection aids to further the negative bias on the grid of the output section of V14. In view of the fact that each measure tends to place this stage in an inoperative condition, their combined effects completely eliminate any tendency of the receiver to lockout during the loss of horizontal sync.

SYNC LIMITER

Video signals are applied to the grid of the Sync Limiter tube (V15) from the plate of the Video amplifier (V13) through an isolating resistor R64 and capacitor C49. This isolation is required to avoid adding excessive capacity to the Video plate circuit, which would reduce the bandwidth. Limiting is accomplished in the grid of V15. The signal is amplified and then clipped again in the plate of V15. The grid develops its own bias and the plate is operated at a low DC potential. The output is fed to the Sync Clipper (V18A). From the plate of V18A, the positive vertical pulse is fed through an integrating network to the Vertical Oscillato and Output, V18B and V19. Both a positive and a negative horizontal sync pulse are taken from V18A, the positive pulse is coupled through C71 to pin 7 of V20 and the negative one through C70 to pin 5 of V20.

THE VERTICAL DEFLECTION SYSTEN

The vertical deflection system consists of a blocking oscillator (V18B) and vertical output (V19) which is locked into synchronism by the vertical integrated sync pulse. The output of V19 is coupled to the vertical deflection coils (L19 and L20) by the vertical output transformer (T7).
For a discussion of the circuit operation it will be assumed that no triggering pulses are present. Following this, the triggering pulses will be added and their effect upon the operation discussed.
For any linear magnetic deflection system, the waveform of voltage which must be present across the deflection coils (L19 and L20) is as

Figure 13
shown in Figure 13, where A is the trace time and B is the retrace time.
The procedure for obtaining this waveform is as follows:
In common with all oscillators, feedback of energy from plate to grid must occur. A transformer (T9) is employed for this purpose. Any change in plate current will induce a voltage in the grid circuit which will act to aid this change. For instance, an increase in plate current will induce a positive voltage in the grid circuit through the blocking oscillator transformer T9 (See Schematic Diagram). As the grid becomes more positive, more plate current will flow, resulting in the grid becoming rapidly very positive. This will cause electrons to flow in the circuit, charging (C58). The electrons reaching the grid, pile-up on the negative side of condenser (C58). The resistances in this circuit are made large enough so that in combination with condenser (C58) they create a sufficient time çonstant for the oscillator to block out at a frequency slightly lower than 60 CPS. The electrons stored on C58 discharge slowly to ground.
Because of the slow discharge of (C58) caused by the high value of resistance in the circuit, electrons which have accumulated on the grid remain there in sufficient numbers to give it a large negative bias, sufficient to block or stop the plate current flow. Gradually the charge built up on (C58) passes through the resistance in the circuit back to the positive plate of (C58). The negative bias on the grid then becomes less. When (C58) is almost completely discharged, electrons again begin to flow from the cathode to the plate, the tube begins to draw plate current very fast, and reaches its high value, which drives the grid positive and the whole process is repeated. From the above explanation we can see that during every cycle there is a sharp pulse of plate current, followed by a period during which the tube blocks itself until the accumulated negative charge built up on the grid leaks off again. The frequency of these pulses is determined by C58 and the associated resistance in the circuit.
Figure 14 shows the voltage waveform across the resistance in the circuit. Figure 15 shows the plate current waveform which occurs once in every cycle.

Figure 15
The combination of resistor R142 and capacitor C59 forms the sawtooth waveform needed to drive the vertical output tube (V19). This sawtooth waveform is amplified in V19 and coupled to the deflection coils (L19 and L20) through the vertical output transformer (T7). A pulse is taken from the junction of C59 and R142 and fed to the suppressor grid (Pin 2 of V15) sync separator. This pulse arrives at the suppressor grid immediately after the
blocking oscillator is fired by the leading edge blocking oscillator is fired by the le
of the integrated vertical sync pulse.
The pulse fed to the suppressor grid is of sufThe pulse fed to the suppressor grid is of sufficient amplitude (approximately 100 volts) to cut off the tube. This pulse is formed by the vertical blocking oscllator ly-back and is negative in polarity. This negative pulse cuts the tube off for the remainder of the verticalsync and post equalizing pulse interval and the tube starts to conduct when the preparatory horizontal pulses arrive. Gating of the sync separator tube during iost of the vical and al the post equalizing pulse interval prevents these pulses from being coupled to the vertical circuit which would impair interlace

HORIZONTAL SWEEP SYSTEM

The horizontal sweep system consists of a
ree running multivibrator (V 21) coupled to horizontal output tube (V22) which drives the horizontal deflection coils (L21, L22). The phase detector tube (V20) is used to synchronze the multivibrator. The horizontal generato employs a 6SN7GT tube as a multivibrator whose frequency is controlled by the L, R and C in the circuit. The amount of charge placed on C80 will determine the multivibrator fre quency. The synchronizing system used to ock the oscillator in step with the synchron zing pulses employs
anced phase detector. iated circuits will be discussed first of all in the completely unsynchronized state. This condition would exist if V20 was removed from the circuit. The operation will then be discussed in the synchronized state.

UNS YNCHRONIZED STATE

The multivibrator used in the horizontal sweep system is of the cathode coupled type. Feedback between unit 1 and unit 2 is accomplished through coupling condenser C80 and the unbypassed cathode resistor R112 which is common to both sections. Now let us apply power to his circuit and follow the chain of reactions s they take place. Any disturbance within the ircuit would very likely cause an increase in he plate current of V21B, which in turn will e plate curely athe resistor R112 In an unsynchronize cathode resistor R11. V21A an se chronized s being fixed therefore a substantial increas as bethode voltage will drive the unit into plat curent cutoff. Since both units commence con ducting upon the application of voltage this ducting upon the application of voltage, this When the cathode voltage cuts-off this unit, the late volta latia of the supply volta thereby forming very steep wave front C80 couples this posi ve wave front to the gid of V21B causing the late current to flow freely offering a very low late curce discharge path for the voltage which pas built up on C 82 The orid of Unit \#2 due has bult uptin C82. The gid triven sufficiently positive to make it draw driven sufficiently posite the is being draw current. R114 and R115 consequently buildin brough Rive and R1s p a negative charge on the ged side of Cou V21B With V21B cut-off the voltage th 21B R112 will drop to a level that whe pla to 12 wind 21A to start drawing current. Its plate volt age will then drop sharply applying the deid Unt 2 , pushing it even more negative rid of Unit, 2 , pushing even more negativ
in this condition, that is - Unit \#l drawin current and Unit \#2 cut-off, until the negative charge on C80 drains off through R114 and Rll5. The time required for this negativ charge to become small enough to allow V21B o conduct again is determined by the RC time constant of the circuit and has been designed o be approximately 15750 cycles per second Consequently when this point is per sech irst cycle will be completed only to be irst cycle will be con only to be re peated
The frequency of this multivibrator is con trolled by two separate circuits. One is an RC circuit consisting of R114, R115 (Ho Hold Control) and C80 while the other is a LC circuit made up of L23 (Hor. Osc. Adjustment nd C75. The latter one is a tank circuit whic hould be tuned to be resonant at approximatel 15750 CPS in order to aid in keeping the multi vibrator oscillating at the correct frequency The function of the RC circuit was discussed in the previous paragraph.
In order to produce the necessary curren low in the horizontal deflection yoke a saw ooth voltage must be applied to the grid of th orizontal output tube. An RC circuit d of R118, a 18 K resistor and C82, 330 mmf condenser is used to properly shap ve voltage to produce alified by V22 (6CD6G) awtooth voltage is amplified and since the high voltage transformer is it late prod fed to the horizontal deflection coils, L2 and L22.

OPERATION WITH SYNCHRONIZATION

The Phase Detector (V20) provides automatic frequency control for the horizontal oscillato (V21). This is accomplished by comparing the phase of two different waveforms: both polar ties of the incoming horizontal sync pulse and a sawtooth waveform taken from the horizonta output transformer. The positive and negativ polarities of the incoming sync pulse kept ap moximately equal in amplitude, are taken from the plate and cathode of V18A. See Figure 16 a and b). They are coupled through C70 and C71 to pins 5 and 7 respectively of V20. The econ paverm 7 respectively of 20 . econd waveform consists of a sawh ge C72 and P124 corectly shapes the der inc and R124 corectly shas tooth waverorm revolving about an AC axis. The sawtooth voltage thus developed is bot positive and negative, and is applied to pin 1 and 2 of the phase detector tube (V20). Se Figure 16 (c)
The sync pulses and the sawtooth waveform are superimposed on each other in the phase
 current to flow through the pin 2 and 5 section of V20. The result of this is a positive voltage at the junction of R108 and R109, [see Figure 18 (a)] which makes the grid (pin 1 of V21) more positive and slows down the oscillator frequency.
If the horizontal oscillator is lower in frequency than the incoming sync pulse, the sawtooth voltage being applied to pins 1 and 2 of V20 will now be in the negative portion of its

PART NUMBER	SYMBOL NUMBER	DESCRIPTION	LIST PRICE
	ELECTRICAL COMPONENTS		
		VHF TUNER	48.80
258053-1		UHF TUNER	30.00
267032-9	C3, 4, 5, 8, 9, 10,	CAPACITOR-Coramic $680 \mathrm{mmf} \pm 20 \% 500 \mathrm{~V}$. 20
	$\begin{aligned} & 11,12,16,17,18, \\ & 22,26,44,51,15 \end{aligned}$		
267052-402	C21a, ${ }^{\text {b }}$	CAPACITOR-Dual Ceramic .004 mfd Min. 500 V	. 27
267032-37	C23	CAPACITOR-Coramic $68 \mathrm{mmf} \pm 10 \% 500 \mathrm{~V}$. 21
267064302	${ }^{2} 24$	CAPACITOR-Disc Ceramic $.003 \mathrm{mfd} \pm 20 \% 500 \mathrm{~V}$. 25
267037-502	C27, 29, 33, 47, 104	CAPACITOR-Disc Coramic 0005 mfd Min. 500 V	. 28
267059-272	C31	CAPACITOR-Moldod Tub., $00027 \mathrm{mfd} \pm 10 \% 400 \mathrm{~V}$. 28
267036-222	C32	CAPACITOR-Moldod Tub., $00022 \mathrm{mfd} \pm 20 \% 400 \mathrm{~V}$. 26
267036 -103	${ }^{\text {C34 }}$. 26
267024.16 267032.17	${ }_{\text {C33, }}^{\text {C36 }}$	CAPACITOR-Eloct. $10 \mathrm{mfd}+250 \%-10 \% 50 \mathrm{~V}$ CAPACITOR-Ceramic 1000 mmf Min. 500 V	. 80
267056-473	C37, 45, 49	CAPACITOR-Molded Tub., $0.047 \mathrm{mfd} \pm 20 \% 200 \mathrm{~V}$. 25
267036-224	C38	CAPACITOR-Moldod Tub., $.22 \mathrm{mfd} \pm 20 \% 400 \mathrm{~V}$. 26
267036-474	C39, 43, 56	CAPACITOR-Molded Tub., . $47 \mathrm{mfd} \pm 20 \% 400 \mathrm{~V}$. 39
267059-472	C40, 72	CAPACITOR-Molded Tub., $00047 \mathrm{mfd} \pm 10 \% 400 \mathrm{~V}$. 28
267005-10	C41a, b, c	CAPACITOR-Elect. (100-200, 40-200, 10-200)	2.73
267005-8	C42a, b, c, 55a, b, c	CAPACITOR-Elect. (80-450, 40-450, 10-450)	3.10
267037-203	C48	CAPACITOR-Dise Ceramic 02 mfd Min. 500 V	. 71
267024-17	C50	CAPACITOR-Elect. $2 \mathrm{mfd}+150 \%-10 \% 50 \mathrm{~V}$. 74
267060-472	C54, 57, 96	CAPACITOR-Molded Tub., $.0047 \pm 10 \% 600 \mathrm{~V}$. 26
267060-332	C58, 98	CAPACITOR-Molded Tub., $00033 \mathrm{mfd} \pm 10 \% 600 \mathrm{~V}$. 26
267055-473	C59, 64, 89, 91	CAPACITOR-Molded Tub., $047 \mathrm{mfd} \pm 20 \% 600 \mathrm{~V}$	
267058-104	C66, C 67		. 25
$267036-332$ $267036-102$	C67 $\mathrm{C} 70,71$	CAPACITOR-Moldod Tub., $00033 \mathrm{mfd} \pm 20 \%$ 400V	. 26
267059-103	C73, 71	CAPACITOR-Molded Tub., . $01 \mathrm{mfd} \pm 10 \% 400 \mathrm{~V}$. 25
CM243392K	C75	CAPACITOR-Silvered Mica $3900 \mathrm{mmf} \pm 10 \% 500 \mathrm{~V}$. 80
CM22A471K	C80	CAPACITOR-Mica $470 \mathrm{mmf} \pm 10 \% 500 \mathrm{~V}$. 29
267024-14	C81	CAPACITOR-Eloct. $10 \mathrm{mfd}+100 \%-10 \% 200 \mathrm{~V}$	1.19
CM22A331K	C82	CAPACITOR-Mica $330 \mathrm{mmf} \pm 10 \% 500 \mathrm{~V}$. 26
267032-39	C83	CAPACITOR-Ceramic $470 \mathrm{nmf} \pm 20 \% 500 \mathrm{~V}$ CAPACITOR-Trimmer Mica 20.270 mmf	. 24
$260009-10$ CM24A102K	C84 C86	CAPACITOR-Trimmer Mica $20-270 \mathrm{mmf}$. 49
267055-104	C90, 97	CAPACITOR-Molded Tub., 1 mfd $10 \% 600 \mathrm{~V}$. 40
267059-224	C93	CAPACITOR-Molded Tub., . 22 mid 10\% 400V	. 46
267063 -1	C94	CAPACITOR-Ceramic 500 mmf 20KV	1.20
267061 -1	C99, 100	CAPACITOR - Ceramic 500 mmf 10KV	1.25
$267060-222$	ClO_{1}	CAPACITOR-Molded Teb., $00022 \mathrm{mfd} \pm 10 \% 600 \mathrm{~V}$. 26
RC24A102K	R 1 $\mathrm{R} 2,5,22,83$	RESISTOR-Comp. 1000 hms i $1 / \pm 10 \%$ RESISTOR-Comp. 3.3 K ohms $1 / 2 \mathrm{~W} \pm 5 \%$. 18
RC23A680J	R3 ${ }^{\text {R }}$, 12,8	RESISTOR-Comp. 68 ohms $1 / 2 \mathrm{~W} \pm 5 \%$. 15
RC23A224K	R4, 61, 65	RESISTOR-Comp. 220K ohms $1 / 2 \mathrm{~W} \pm 10 \%$. 15
RC23A334J	R6	RESISTOR-Comp. 330K ohms $1 / 2^{W} \pm \pm 10 \%$. 15
RC23A184K RC23A151K	R7, 135 R8, 24	RESISTOR-Comp. ${ }^{\text {a }}$ (180 K ohms $1 / 2 \mathrm{~W} \pm 10 \%$ RESISTOR-Comp. 150 ohms $1 / 2 \mathrm{~W} \pm 10 \%$. 10
RC23A624J	R99 ${ }^{\text {R }}$	RESISTOR-Comp. 620 K ohms $1 / 2 \mathrm{~W} \pm 5 \%$. 15
RC23A684K	R10, 99	RESISTOR-Comp. 680K ohms $1 / 2 \mathrm{~W} \pm 10 \%$. 10
RC23A395J	R11	RESISTOR-Comp. $3.9 \mathrm{meg} 1 / 2 \mathrm{~W} \pm 5 \%$. 15
RC23A473K	$\begin{array}{r} \mathrm{R} 12,34,36, \\ 41,64,73 \end{array}$	RESISTOR-Comp. 47 K ohms 1/2W $\pm 10 \%$. 10
RC23A105J	R13, 26	RESISTOR-Comp. 1 meg 1/2W $\pm 5 \%$. 15
RC23A101K	R14, 120	RESISTOR-Comp. 100 ohms $1 / 2 \mathrm{~W} \pm 10 \%$ RESISTOR-Comp. 680 ohms $1 / 2 \mathrm{~W} \pm 10 \%$. 10
RC23A681K RC23A470K	R16	RESISTOR-Comp. 47 ohms $1 / 2 \mathrm{~W} \pm 10 \%$. 10
RC25A332K	R17	RESISTOR-Comp. 3.3K ohms $2 \mathrm{~W} \pm 10 \%$. 25
RC23A471K	R18, 74	RESISTOR-Comp. 470 ohms $1 / 2 \mathrm{~W} \pm 10 \%$. 10
RC23A222K	$\mathrm{R19}$	RESSSTOR-Comp. 2.2 K ohms $1 / 2 \mathrm{~W} \pm 10 \%$. 10
RC23A RC23A820	R20 R21	RESISTOR-Comp. 10 K ohms $1 / 2 \mathrm{~W} \pm 5 \%$ RESISTOR-Comp. 82 ohms $1 / 2 \mathrm{~W} \pm 10 \%$. 13
RC23A223K	R23, 86	RESISTOR-Comp. 22 K ohms $1 / 2 \mathrm{~W} \pm 10 \%$. 10

© John F. Rider

ALIGNMENT

VISUAL ALIGNMENT OF THE RF AND

MIXER STAGES

NOTE:

CAUTION: Always determine by suitable tests, the causes of unsatisfactory operation before attempting to align portions of this receiver. Necessity for realignment will, in all cases, be rare.

PROCEDURE:

1. Connect an RF sweep generator with at least a 10 MC sweep width to the antenna terminals through the test circuit shown in Figure 1.

$$
\text { Figure } 1
$$

2. Remove the keyed AGC Amplifier tube V10 (This is necessary in order to eliminate AGC action which would interfere with RF alignment).
3. Connect the positive terminal of a 3 volt dry cell supply to chassis ground and the negative terminal to the RF AGC test point.
4. Attach the high side of the vertical input of an oscilloscope through a $10,000 \mathrm{OHM}$ resistor to the test point located at the junction of R806 and R807. In order to synchronize the sweep of the oscilloscope with the RF sweep, connect the horizontal amplifier terminals of the oscilloscope to the terminals on the RF sweep generator labeled "oscilloscope sweep voltage.'
5. Turn the station selector to Channel 12 and adjust the sweep generator until it sweeps from 202 MC to 212 MC . (NOTE: If the sweep generator does not supply marker signals at picture and sound carrier fresignals at picture and sound carrier fre-
quencies, an extemal source, such as a quencies, an external source, such as a
CW signal generator should be used to supply them. For method of marker injection, ply them. For method of marker injection,
refer to instructions supplied by the manurefer to instructions supplied by the manu-

PROCEDURE

6. Adjust C802, C808 and C811 until the viewed response curve is similar to that shown in Figure 2. Check all other channels readjusting C802, C808 and C811 as necessary to obtain optimum response on all twelve channels as shown.

The dip in the curve between picture and sound carriers should not fall below 70.7% of the response peak and the bandwidth at 50% down should not exceed 11MC on any channel.

RF OSCILLATOR ALIGNMENT

CW METHOD

1. Remove V10 from its socket and connect the negative terminal of a 3 volt dry cell bias supply to the RF and IF AGC test points. (This can best be accomplished by tieing the two points together.)
2. Apply the CW signal to the antenna terminals through the pad shown in Figure 1.
3. Connect the DC probe of a vacuum tube voltmeter to test point C .
4. Set the signal generator to the sound carrier frequency of each channel that is to be aligned.
5. Turn the fine tuning control to approximately the center of its rotating range.
6. Adjust the oscillator coil slug that is accessible through a hole in the front panel of the tuner until a sharp dip in the voltage reading on the VTVM is reached. Repeat this procedure for all channels. Precautions

should be taken not to turm the oscillator slug into the coil form too far - to do so will allow the slug to pass beyond the clip which acts as a thread guide thus necessitating the removal of the channel strip in order to return the slug to its proper tuning position.

RECEIVED SIGNAL METHOD

There is also another satisfactory method for adjusting the RF oscillator in the turret type

IF ALIGNMENT

Remove the AGC Amplifier (V10) from its socket.
Connect the negative terminal of a 3 volt dry cell supply to the IF AGC test point and the
tuner. This may be accomplished without re tuner. This may be accomplished without relowing procedure:

1. Allow the receiver to warm-up for approximately 10 minutes
2. Turn the channel selector to a station which is in operation making sure that all othe controls are adjusted for normal picture.
3. Set the fine tuning control at the center of its range.
4. Remove both the channel selector and fine tuning knobs.
positive terminal to chassis ground.
Raise the tube shield of V2 so that it is not grounded and apply the signal to it.
Turn channel selector to an unassigned high channel position, to reduce the possibility of interference during alignment.

Generator Frequency	VTVM Connections	Adiustment	Remarks
44.3 MC	To Test Point (C) and Ground	T3	Adjust for Max.
42.7 MC	To Test Point (C) and Ground	T2-L2	Adjust for Max.
45.0 MC	To Test Point (C) and Ground	T1-L866	Adjust for Max.
41.25 MC	To Test Point (C) and Ground	L1	Adjust for Min. with output of Signal Gen. at Max.

NOTE: To insure correct IF Alignment follow the procedure outlined under visual check of IF Alignment.

OJohn F. Rider

5. Adjust the brass slug which is accessible through a $1 / 4^{\prime \prime}$ hole beside the tuning shaft first in a counterclockwise direction for the clearest detailed picture. If best detail is not reached then screw in clockwise direction. Here again caution must be taken not to rotate the slug too far into the coil form. (For best results a non-metallic screwdriver approximately 8 inches long must be used.)
6. Repeat this procedure for each local station making sure that the fine tuning control is in the center of its range.

VISUAL CHECK OF IF ALIGNMENT

1. Lift the shield of the oscillator mixer tube V2 until it becomes ungrounded. Connect the high side of a sweep generator to the ungrounded tube shield and the ground lead to chassis ground. Connect a lead from the sweep synchronizing terminal on the sweep generator to the external sweep terminal on the oscilloscope.
2. Connect high side of oscilloscope to pin 7 of V1l video amplifier tube and ground lead to chassis ground. (Set contrast control at minimum.)
3. Remove the keyed AGC amplifier tube V10.
4. Connect the negative terminal of a 3 vol dry cell to the IF AGC test lead and the positive terminal to chassis ground.
5. Adjust sweep generator to sweep from 40 to 50MC.
6. Connect a vacuum tube voltmeter between pin \#l of V11 and ground and adjust the sweep generator output until a reading of
-2 volts is obtained.
. Adjust the oscilloscope until the IF response curve is centered.
7. Place a lead from an AM signal generator near the IF strip and adjust it to cover from 40 to 50 MC .
8. Observe the response curve and the position of the markers (see nominal response curve Figure 4). A slight deviation from this response curve is permissible; however, complete realignment of the IF will be necessary if a great deviation is noted. Some improvement in the shape of the response curve may be accomplished by slightly readjusting L 2 on the main chassis and L866 on the Standard Coil (strip type) tuner or L958 on the Sarkes-Tarzian (switch type) tuner.

For best performonce the difference in height of peoks
should not exceed 30% nor should the dip drop more thon $\mathbf{3 0 \%}$ below the peok of the response curve.

NOISE GATE ADJUSTMENT

NOTE: The noise gate control is adjusted at the factory to give optimum performance unde varied conditions. Therefore, only upon rare occasions would any adjustment be necessary. If the receiver is to be operated in an ex-
tremely weak signal area where a high noise level is encountered, or this control becomes maladjusted by one means or another it can be satisfactorily set by the following procedure: - Select and properly tune in the strongest station in the area

- Turn the contrast control to its maximum position (full clockwise).
- With the noise gate control set at minimum lowly turn it in the clockwise direction until a slight shifting of the picture in the horizontal plane is observed, then back off (counterclockwise) $1 / 8$ of a turn.
CAUTION: If this control is set too far in the clockwise direction either the receiver will lose sync entirely or an erratic jumping of the picture will be encountered.

HORIZONTAL OSCILLATOR ADJUSTMENT

This adjustment may be satisfactorily performed with any received program signal.

- Set the Horizontal Hold control, R99, at approximately mid-position.
- Set the Contrast control to the normal operating position.
- Adjust the Horizontal Oscillator control, L18, until the diagonal streaks on the scieen decrease in number and become erect (picture locks in sync)
The setting obtained by the preceding step may not give optimum range on the Horizontal front panel hold control, therefore. further adjustment by the trial and error method should e perfor the H . Hold control can be slowly rotated to its stops in either direction without losing picture synchronization.

HORIZONTAL DRIVE ADJUSTMENT

CAUTION: Maladjustment of this control may cause unstable Horizontal sync or Horizontal pulling throughout the picture.

- Rotate the selector to an unassigned channel position.
- Turn the contrast control to its extreme counterclockwise position.
- Connect the DC probe of a VTVM to pin \#8 of V19 (6BQ6GT).
- Observing the voltmeter reading, turn the horizontal drive control (C70) clockwise not allowing the maximum voltage to exceed 15 volts (on some sets this much voltage may not be obtained).
- The correct setting will be reached by turning the drive control counterclockwise until the rapid voltage drop of approximately $1 / 2$ volts suddenly ends. (Further counterclockwise adjusting of the drive control will only cause a slow tapering off in voltage reading).
IMPORTANT: DO NOT adjust for minimum voltage reading. To do so may overdrive the horizontal output stage causing foldover in the picture.

ANTI-PIN CUSHIONING MAGNETS

Pin cushioning is an effect caused by the use of the cosine-deflection yoke and is apparent by the "bowing in" along the edges of the raster.

In order to compensate for this condition two anti-pin cushioning magnets have been mounted o the picture tube mounting bracket. For ease of adjustment these magnet brackets are hinged in two places; thus allowing the magnet to be moved either forward or backward at various distances from the picture tube surface. The proper adjustment of each magnet may be ob proper adjustment of each magnet may be observed by moving the ris enough to see the sid being straightened.
NOTE: These magnets are properly set at the factory and should require no further adjusting unless a new picture tube is installed.

ON TRAP ADJUSTMENT

Reduce the contrast and raise the brightness to a point where a blank raster is just visible on the picture tube. Rotate the ion trap while moving it either forward or backward until the brightest raster is obtained.

© John F. Rider

Figure 9

CIRCUIT DESCRIPTION

RF SYSTEM

The tuner used in this receiver is a rotary turret type which is made up of separate coil assemblies mounted in a rotating drum. These assemblies are of the snap-in design, therefore can be very readily replaced if and when such a necessity arises. All of the tuning adjustments were made with the aid of a sweep generator in the Bendix factory. Any further adjustment of the tuner in the field is not recommended unless a sweep generator is used and the instructions included under Alignment Procedure are followed very carefully. The antenna input circuit is designed to give optimum performance with 300 ohms bal anced impedance. The signal is inductively coupled to the input grid of the RF amplifier which is controlled by an AGC voltage.
The RF amplifier, V1, is a 6 BQ 7 , twin triode type of tube connected in what is known as a series "Cascode" circuit. In using a circuit of this design the noise figure which accompanies a conventional pentode amplifier has been greatly reduced and yet equivalent gain has been maintained. The input section of the RF stage is connected as a grounded cathode type amplifier. Its output is fed through L827 to the cathode of a grounded grid amplifier - the output section of the RF stage. All of the RF coils are preadjusted and matched to a standard, therefore the only adjustments made available for overall RF alignment are C802, C808 and C811. Two over-coupled tuned circuits couple the plate of the RF amplifier to the grid of the mixer stage, V2, one-half of a 6 J 6 . These circuits are so loaded that the overall response of the RF system is flat over a maximum band width of $11 M C$, to within 6 db of the peak response. R806 connected in series with R807 forms the grid leak resistor for the mixer stage. The test point located at the junction of these two resistors provides a very convenient point for checking a portion of the D.C. voltage developed by the injected oscillator signal and also for connecting an oscilloscope to examine the response characteristic of the RF system with a sweep generator. (A 10,000 ohm resistor should be connected in series with the oscilloscope to avoid adding excessive capacity to the mixer grid circuit.)
The other half of V2 is used in a Colpitts type oscillator circuit. There is an adjustable brass slug assembled in each oscillator coil for ease of correcting its frequency for each channel as it is selected. Inductive coupling is used to inject the oscillator output into the grid of the mixer stage. The DC voltage developed at the test point by the injected oscillator signal should be at least -2.5 volts on all of the
channels. C810 and L864 form the neutralizing circuit for the mixer stage. L865 is an RF peaking coil.
The output of the mixer is fed to the first IF amplifier through a band pass double tuned circuit consisting of L866, C822 and L2. This type of circuit accomplishes two purposes - a
high degree of oscillator frequency isolation high degree of oscillator frequency isolation plus optimum transfer of energy. The tunable tank circuit L1 and C2 is used as a sound trap capacitively coupled to the grid of the first IF amplifier. This IF trap reduces the IF gain at the sound carrier frequency approximately 32 db , providing satisfactory sound attenuation.

UHF ADAPTION TO THIS SYSTEN

The separate snap-in coil design of this tuner makes it very readily adaptable to UHF reception. The UHF snap-in coils commonly called "strips" are of such design to fit into the turret drum in the same manner as the VHF coils. Therefore an unused VHF position is utilized for UHF reception. The circuitry of these strips is shown in Figure 10. Double conversion is the method used to convert the UHF signal to the 41 MC IF frequency of this receiver. The antenna coil L1 is center tapped for a balanced 300 ohms 2 input and inductively coupled to the RF preselector circuit. This preselector circuit consists of two separately tuned tank circuits L2, C2 and L3, C3 which are inductively coupled to one another and pretuned to the designated channel frequency. This type of circuit is used to insure a high degree of signal selectivity to the crystal mixer CK710. The signal required for the first conversion of the received UHF is obtained from the VHF local oscillator. In order to insure that the local oscillator's output is rich enough in harmonics to produce the necessary signal, a IN60 is employed as a harmonic generator. This output is fed to the Harmonic Selector Circuit L4 and C4. A predetermined harmonic of the local oscillator selected by this tuned tank circuit is fed to the crystal mixer so as to produce in L5 the signal titled lst IF frequency. This signal is inductivity coupled into the input section of the 6BQ7 cascode RF amplifier. Since the signal is now in the VHF region, it is amplified and converted in the tuner just as if it were received at the antenna as a VHF station. The circuitry which has just been discussed is mounted on the strip which snaps into this antenna coil section of the removed VHF strips. The oscil-

UHF Antenna Stri

IF SYSTEM

Four stagger-tuned circuits employing one 6BA6 and two 6CB6 tubes along with a crystal detector comprises the interstage IF amplifier detector comprises the interstage IF amplifier
system. Three of the IF transformers used in system. Three of the IF transformers used in windings interwound on a single form A windwindings interwound on a single form. A winding of this type pprily a single tuned yet tunes as readily as a single tuned coil. The following advantages are derived from such an assembly. Improved hitering of all plate and grid returns can be achieved because the bypass condensers are returned to the same ground as their associated cathode thus eliminating circulating ground currents. It is also possible to keep the time constant in the grid circuit of each amplifier to a very low value therefore minimizing the possibility of a charge building up on the grids of these stages during heavy noise pick up. This latter advantage permits the IF system to operate at optimum performance at all times. Unbypassed cathode resistors are used in the first two stages to reduce the variations of input capacity with AGC voltage changes. Within this IF strip there is a case of voltage
with the addition of the harmonic generator circuit.
associated peaking coils necessary to extend the frequency response to the desired band width.
Various test points have been indicated on the schematic diagram in order to facilitate the making of checks on the operation of the IF system. One is located in the AGC string at the junction of R40 and R41 while another is located at the junction of R40 and R42. These two points have been made available from the top of the chassis for checking developed AGC voltage and for applying bias potentials when making sweep tests on the RF or IF systems. Another test point " C '" has been designated at the grid of the video amplifier V11. This point may be used for connecting a VTVM when measuring the voltage developed by the crystal detector during alignment with a CW signal, and it may also be used for applying a 4.5 MC signal with which to align the sound IF's and ratio detector transformer

SOUND SECTION

Intercarrier sound reproduction is used. By this method both the picture and sound carriers are amplified by the same IF amplifiers and beat together in the Video Detector, giving a 4.5MC frequency modulated signal that is fed to the Ratio Detector Driver V6. The 4.5 megacycle beat is constant since it is always the fixed difference between the video and sound carriers coming from the TV station. Therefore, the sound will not be effected by any normal oscillator drift, since both the video and sound carriers will drift equal amounts making the difference always 4.5 MC . This 4.5 MC signal is captured by a high impedance tank circuit, L5 and its distributed capacity located inside of the video detector can, and applied to the ratio detector driver V6 through C12. V6 as its name implies amplifies and drives the Ratio Detector hard enough to produce a charge on C19 great enough in amplitude to render V7 inoperative to an amplitude modulated signal of short duration. The Ratio Detector V7 is of conventional design. R20, a 180 ohms resistor, in series with the coupling link of the detector transformer T4 stabilizes the impedance presented by the diodes. If this resistor were omitted, the variation in impedance between individual tubes would cause the AM rejection to vary between re ceivers.
The output of the Detector is amplified in V8 first audio stage and then directly coupled to the grid of the audio output tube V9. This DC coupling is possible and necessary because V9 plays an intricate part in the voltage regulating system. (See Current Distribution Dia gram)
About 10 db of negative feedback is provided by R39 which is connected between the second-
ary of the audio output transformer and the cathode of the first audio amplifier V8 to reduce output distortion.

VIDEO AMPLIFIER

The Video amplifier is a 6AH6, with the associated wide band, low pass filters. The output of the crystal detector is DC connected to the grid of the Video amplifier through a filter circuit comprising a series (L3) and a shunt (L4) peaking coil. L1l is a shunt plate peaking coil used to extend the frequency response of the Video amplifier to its desired band width and compensate for any incurred phase shift. The response of the Video system is flat to 1 MC and down 3 db at 3.8 MC .

The contrast is controlled by changing the amount of degeneration in the Video amplifier. This is accomplished by varying the control R35 in the cathode circuit. The video stage gain is 34 db measured at 100 KC with the contrast control set at maximum.
No DC restoration is necessary at the output of the Video amplifier because the entire Video amplifier is direct coupled from the output of the crystal detector to the cathode of the picture tube. Therefore the rectified video signal doe not vary about an AC axis.
Notice that the polarity of the detector is such that a negative signal is applied to the grid of the Video amplifier resulting in a positive video signal at the plate which is applied di rectly to the cathode of the picture tube.

KEYED AGC

V10 is the AGC amplifier whose function is to keep the sensitivity automatically adjusted in accordance with the strength of the received signal. This is accomplished by the negative voltage which is developed at the plate of V10 and applied to the grids of the RF and IF amplifiers.
The plate voltage for this circuit is a positive pulse taken from terminal 8 of the horizontal output transformer T8. This pulse is developed by the collapsing of the field in the horizontal deflection coils and its duration is about 5% of the horizontal period. Plate current can flow only during this pulse and is controlled by the mplitude of the sync pulse being applied to the grid. The grid is DC connected to the video amplifier output at the junction of R45 and R48. Therefore, the bias level for V10 is a function of the video amplifier plate current. The AGC cathode potential is +150 volts, taken from the source which al so supplies the plate and screen of V1l. The screen potential is approximately 300 volts, thus maintaining the required potential difference with respect to the cathode. The screen and plate voltages are approximately the
same at the time the pulse occurs
When current flows in the plate circuit of V10 it will develop a negative voltage across resistors R40, R41 and R42. This voltage is sistors R40, R41 and R42. This voltage is filtered by the RC network R40, R41 and C32 to rid it of the horizontal frequency component quired to filter frequencies of this kind can be quired to filter frequencies of this kind can be made very small as compared to the time constant used in conventional AGC systems, which had to filter out a 60 cycle component. The control voltage for the 2nd if stage is taken rom the junc ion of the dividing network, R40 and R41. The control voltage for the RF amplifier and lst lF stage is taken from the junction R40 and R42. The reason why bias on V can be controlled merely by applying AGC voltnected in plate current series with one are conIn order to increase the effect that this AGC voltage has upon the lst IF amplifier, it has been shunted by a 470 K resistor R4. The manner in which R4 aids this condition is, as the impedance of V3 increases, R4 passes more and imped of Vl's plate curent, ih passes ffectively more of VI's plate current, therefore effectively reducing the
than in V1.
The keyed AGC system has good noise immunity because its duty cycle is only about 5% of he total time, and any noise pulses occurring during the other 95% of the time do not affect function of sync pulse amplitude only and is function of sync pulse amplitu Hence the AGC not effected by picture content. Hence, the AGC the flutter caused by airplanes.

SYNC SEPARATOR \& NOISE GATE

This circuit just as its name implies performs two important functions. It separates the sync pulses from the composite video signal and erases all effects of noise pulses which are greater in amplitude than the incoming sync pulses. The manner in which this pentagrid trayed by following the composite signal accompanied by impulse noise through this stage (see Figure 11). Without a signal the plate cur(see Figure 11). Without a signal the plate curon grid \#3, while at the same time a positive bias on grid $\# 1$ is allowing grids $\# 2$ and 44 which are tied together, to draw maximum cur rent. R61 controls the amount of positive bias being placed on grid \#1 which determines at what point the tube will ghi off. The negative what point the tube will gate of . The negative output of the video detector is being applied to Since V1l well as to the video amplifier V11. or positive signal which is being coupled
through C38 to grid \#3 of V12 is of a much greater amplitude than that of the signal being impressed upon grid \#l. It can be seen that during normal operation this tube has a negative signal on grid \#l and a positive signal on grid \#3. As long as the amplitude of the noise pulses is not greater in amplitude than sync tips, the positive bias on grid \#l is not overcome. Therefore, each sync pulse appearing at grid \#3 drives it sufficiently positive to overcome its bias and allow plate current to flow. The presence of noise pulses having greate amplitude than sync peaks drive grid \#1 beyond cutoff, preventing the tube from amplifing the noise which would otherwise pass on to the sync circuits. The tube remains in this cutof condition only for the duration of the impulse noise. This composite characteristic of the noise - immune sync separator shows how the amplitude of the signal at the video detector determines whether or not the pulse is suppressed or amplified.

SYNC SEPARATION

Complete separation of the horizontal and Complete separation of the horizontal and
vertical sync pulses from the video composite vertical sync pulses from the video composite
signal is accomplished in V12 a 6BE6 and V15A signal is acco
$1 / 26$ SN 7 GT.
The manner in which V12 aids in this operation has been presented in the preceding paration has been presented in the preceding p
graph titled sync separator and noise gate.
The output of V12 consisting entirely of sync pulses wiped clean of all video information, is pulses wiped clean of all vileo information, This signal which is now of a negative polarity must be inverted as well as further clipped to inst be inver asion wis insure proper operation of the vertical and horizontal sync circuits. Since the amplitude of these pulses are sufficiently strong to drive The result provides a more constant flat topped bic pulse with which to control the swped sync pulse with which to control the sweep oscillators.

Detailed Illustration of Noise Gate Operation using
ration of Noise Gate
either the $6 B E 6$ or $6 C 56$
Figure 11

THE VERTICAL DEFLECTION SYSTEM

The vertical deflection system consists of a free-running multivibrator (V15B and V16) which is locked into synchronism by the vertical integrated sync pulse. The output of the multivibrator (V16) is fed to the vertical output transformer (T7), and then to the vertical deflection ormer (T7), and then to the vertical deflection coils (L14), (L15) without the use of further amplification. The coupling network consisting of R74, R75, C47 and C48 is used between the two sections of the multivibrator to filte out any 15 KC horizontal pulses that may ge through the integrating network, thus improving the interlace.
For a discussion of the circuit operation, it will be assumed that no triggering pulses are present. Following this, the triggering pulse will be added and their effect upon the operation discussed.
For any linear magnetic deflection system, the waveform of voltage which must be presen across the deflection coils (L14, L15) is as shown in Figure 12, where A is the trace time and B is the retrace time.

Figure 12
The procedure for obtaining this waveform is as follows:
If the circuit is thought of as starting from a static condition where V15B and V16 are conducting, it can be seen from the schematic diagrain, that the circuit is very unstable and will readily break into oscillation. If V16 should have a slight increase in plate current due to "shot effect," "thermal agitation," o ny of many possible reasons, its plate voltag would decrease, driving the grid of V15B in negative direction. This would, in turn, de crease the plate current of V15B, causing the plate voltage to increase. Under these circum stances the grid of V16 would swing in a positive direction, further increasing the plate current. The process is cumulative and V15B is ent. The process is cumulative and Vff almost instantaneousy 15 B is deto cuned by the eriod of cutoff for V15B is determined by the me cof he coupling fficienly, V15B charge of C46 decreases sufficiently, 15 , tarts to conduct and his condition this condition just long enough for the grid
current flowing in V15B to charge $C 46$ suffi-
ciently negative to again cut off this section of the multivibrator. Then V16 begins to conduct and the cycle is repeated. The time constant is so adjusted that the waveform from grid of V15B to ground appears as in Figure 13. During the period of time that V15B is cut off, the waveform the plate of V15B tries to rise to the $\mathrm{B}+$ volt age, but C45 and R72 form an integrating circuit which causes the plate voltage waveform to appear as shown in Figure 14. The waveform of

Figure 14 is fed to the grid of V16 which is conducting and capable of amplifying during the trace time. The waveform appearing between the plate of V16 and ground is shown in Figure 15. The waveform appearing between V15B plate and $\mathrm{B}+$ is shown in Figure 16. This is the desired waveform as shown in Figure 12 for the voltage appearing across the deflection coils (L14, L15). The effect of the synchronizing pulses can now be discussed
The sync pulses appear at the grid of V16

Figure 15

Figure 16
© John F. Rider

Figure 17
with a negative polarity. They are amplified by V16 and sent to the grid of V15B as positive pulses. The effect is shown in Figure 17 which epresents the voltage waveform appearing a the grid of V15B. Without sync pulses $15 B$ yould start to conduct at c and e in their respective cycles, but with the sync pulses the grid is driven far enough positive at b and d to cause V15B to conduct and thereby lock the sweep in step with the sync pulses. Vertical hold is obtained by varying R73 which in turn varies the unsynchronized cutoff period of V15B. When R73 is increased the cutoff period is increased and vice-versa. See Figure 18. With the sync pulses as shown in Figure 18, no sync action will occur if R73 is made too large On the other hand, if R73 is made sufficiently small sync action will take place on every other "cycle. This explains why erratic operation is encountered with too little "hold," while a doubl image is sometimes observed with too much "hold."

Syne
Pulse

Figure 18
The multivibrator employs a coupling circuit etween V15B and V16 consisting of two RC networks in cascade, instead of the usual single RC network. This system makes the vertica sweep circuit much less likely to be triggered by noise and much more smoothly triggered by the sync pulses. The use of cascade coupling causes the grid voltage curve of V15B to cross the cutoff voltage line at a much steeper angle than it would with a single coupling circuit. See Figure 19. It will be observed that R75 and R80 are effectively across the vertical deflection coils (L14, L15) and in conjunction with R89 and R90 provide the dampening action across the deflection coils during the retrace period. Height is controlled by varying the plate load resistance (R84) of V15B, which in turn varies the magnitude of the waveform which is fed to

One RC Circuit

Figure 19
V16. Vertical linearity control, R83, varies the bias of V16, shifting the operating point of the tube up and down its dynamic curve NOTE: Vertical height, linearity and hold controls all interact one upon the other. Therefore it may be necessary to adjust these controls simultaneously for the best test pattern.

HORIZONTAL SWEEP SYSTEM

The horizontal sweep system consists of a multivibrator (V18) coupled to a horizontal output tube (V19) which drives the horizontal deflection coils (L16, L17). The phase detecto tube (V17) is used to synchronize the multivibrator. The horizontal generator employs a 6SN7GT tube as a multivibrator, whose frequency is controlled by the L, R and C in the circuit. The amount of charge placed on C66 will determine the multivibrator frequency. The synchronizing system used to lock the oscillator in step with the synchronizing pulses employs a 6AL5 (V17) as a balanced phase detector
The operation of the multivibrator and associated circuits will be discussed first of all in the completely unsynchronized state. This condition would exist if V17 was removed from the circuit. The operation will then be discussed in a synchronized state.

UNSYNCHRONIZED STATE

The multivibrator used in the horizontal sweep system is of the cathode coupled type. Feedback between unit 1 and unit 2 is accom plished through coupling condenser C66 and the unbypassed cathode resistor R96 which is common to both sections. Now let us apply power to this circuit and follow the chain of reactions as they take place. Any disturbance within the circuit could very likely cause an increase in the plate current of V18B, which in turn will increase the voltage at the top of the commo cathode resistor R96. In an unsynchronized condition the bias on V18A can be thought of as being fixed, therefore a substantial increase in cathode voltage will drive the unit into plat current cutoff. Since both units commence con ducting upon the application of voltage, this cutoff point of V18A is reached very rapidly When the cathode voltage cuts-off this unit, the plate voltage immediately climbs toward the
voltage level of its source forming a very steep wave front. C66 couples this positive wav font to the grid of V18B causing the plate cur rent to flow freely offering a very low impedance discharge path for the voltage which has buil up on C68. In fact, the grid of Unit \#2, due to the positive pulse coupled through C66, is driven sufficiently positive to make it draw current. This grid current is being drawn through R98 and R99 consequently building up a nega ive charge on the grid side of C66 to propor ions that will cut off conduction within V18B With V18B cut off the voltage at the top of R96 will drop to a level that will allow V18A to start drawing current. Its plate voltage will then drop sharply applying the developed negative wave front through C66 to the grid of Unit \#2, pushing it even more negative than it was when first cutting off this section. V18 was mains in this condition, that is - Unit \#1 draw ing current and Unit \#2 cutoff, until the nega tive charge on C66 drains off through R98 and R99. The time required for this negative charge to become small enough to allow V18B to conduct again is determined by the BC time constant of the circuit and has been designed to be approximately 15750 cycles per second. Con proxtly when this point is reached the first equently will be completed only to be the firs The frequency of this multivibrator is con trolled by two separate circuits. One is an RC nircuit consisting of R98, R99 (Hor Hold Con trol) and C66 while the, Her (Hor. Hold Control) and C66 wrie the other is a LC circui ade up of L18 (Hor. Osc. Adjustment) and chould the latter one is a tank circuit which 15750 CPS in torder to sonant at approximately ibso CPS in order to aid keeping the multi How the RC circuit fits into the picture was discussed in the previous paragraph.
In order to produce the necessary current flow In order to produce the necessary current flow in the horizontal deflection yoke a sawtooth voltage must be applied to the grid of the horiH106, 5600 ohm resistor and C68 a 330 uuf rob, a 560 on resistor and C 8 , a 330 uu condenser is used to properly shape the voltage fir by V19 (6BO6) and since the primary of fed by 19 (6BQ6) and since the primary of the high voltage transformer is its plate load, produces a sawtooth current which is fed to the horizontal deflection coils, L16 and L17. From pin 7 of the high voltage transformer (18) negative pulse is coupled through Cou to the unbypassed screen of 19 driving it down to ward its normal B+ voltage, thus allowing the horizontal output tube to draw eurent much sooner than it normally would. This measure tends to smooth out any oscillation or ringing effect not entirely eliminated by the horizonta damper tube, V20.
OPERATION WITH SYNCHRONIZATION
The Phase Detector (V17) provides automatic
frequency control for the horizontal oscillator V18). This is accomplished by comparing the phase of two different waveforms: the incoming orizontal sync pulse and a pulse taken from the horizontal output transformer. The first wave form is made up of sync pulses, approximately equal in amplitude, taken from the plate and cathode of V15A. See Figure 20 (a and b)

Figure 20
They are coupled through C60 and C61 to pins 5 and 7 respectively of V17. The second wave form consists of a positive component from erminal 8 and a negative component from ter minal 7 of the horizontal output transformer Capacitor C74 along with the network R102 and 77 shifts the phase of these two components o the correct operating point and the integrating etwork of C62 and R91 gives the correct saw ooth waveform revolving around a zero axis The sawtooth voltage thus developed is both ositive and negative, and is applied to pin 1 and 2 of the phase detector tube (V17). See Figure 20 (c).
The sync pulses and the sawtooth waveform are superimposed on each other in the phase etector. The amplitude of each sync pulse and he sawtooth wave remain the same, but any phase shift between the two will cause a varia ion in the DC voltage developed at the junction R92 and R93.
When both the horizontal oscillator and incoming sync are at the same frequency, they are properly phased and the amplitudes of the waveform in each section of the phase detector are equal. See Figure 21 (a). Each diode herefore, conducts equally and the DC voltages across the two load resistors, R92 and R93, are equal but opposite in polarity. The voltage developed at the junction of these resistors is therefore zero. Since the output is zero, no change in grid bias takes place and there is no change in the oscillator frequency.
If the horizontal oscillator is higher in frequency than the incoming sync pulse, the sawtooth voltage being applied to pins 1 and 2 of V17 will be in the positive portion of its cycle by the time the sync pulses arrive on pins 5 and
7. See Figure 21 (b). This places a negative sync pulse on pin 5, equal amounts of positive sawtooth voltage on pins 1 and 2 and a positive sync pulse on pin 7, allowing more current to The through the pin 2 and 5 section of V17. The result of this is a positive voltage at the whition of R92 and R93, [see Figure 22 (a)] which makes the grid (pin 1 of V18) more pos If and slows down the oscillator frequency. quency han the incoming sync pul quency than the incoming sync pulse, the sawtooth voltage being applied to pins 1 and 2 of V17 will now be in the negative portion of its cycle at the time the sync pulses arrive on pins 5 and . See Figure 21 (c). This places negative voltage on pins 1 and 2, instead of the positive potential that was there in the previous condition, and more current will flow through the pin 1 and 7 section of the diode. The voltage developed at the junction of R92 and Kg 3 will 22 be] a negative potential, [see Figure 22 (b)], making the grid (pin 1 of V18) more negative and speeding up the oscillator frequency. in V 18 in the event V17 should fail or be reof 18 in the event
moved from the socket.

OWER SUPPLY

A transformer power supply is used. The transformer T6 steps up the voltage in its secondary to about 350 V AC. This AC voltage is rectified by a 5U4G (V14) and applied to a capacitive input filter network which aids in placing approximately 370 V DC on the plate of V9. V9 and V10 are connected in series with several of the other amplifiers serving as voltage regulators. This particular application is carried out in the following manner: when the current through these amplifiers change, the cathode voltage on V9 and V10 varies accordingly. This causes the impedance of these tubes to change, maintaining a fairly constant voltage drop across them at all times. NOTE: There is no DC voltage applied to V7, V17 or to the plate of V10 from the low voltage power supply.

PART NUMBER	SYMBOL NUMBER	DESCRIPTION

LIST PRICE

267032.37	C800, 801, 823
267044033	C804
267032-17	$\begin{gathered} \mathrm{CBOS}_{819}, 810,821,817, \end{gathered}$
276685	C807
267032-3	C809
267038-17	C812, 822
267032-21	C813
RC23A 153K	R800, 810
RC23A473K	R801
RC23A334K	R802
RC23A 104K	R803
RC23A 184K	R804
RC23A471K	R805
RC23A223K	R806
RC23A224K	R807
RC23A103K	R808
RC23A472K	R809
258050-1	
267032.9	$\begin{aligned} & \text { C3, 4, 5, } 5,7,8,9, \\ & 12,25,29,33,34 \end{aligned}$
267037.103	C13, 26
267059-272	C16
267036-222	C 17, 52
267036-103	C18, 28, 38
267024-16	C19, 71
267032.17	C20
267056-473	C21, 35
267036-224	C22
267036-474	C23, 55
267059-472	C24, 62
$267032 \cdot 14$	C27
267005-10	C30, a, b, c
267005-8	$\begin{aligned} & C 31, a, c, c, \\ & C 40, a, b, c, \end{aligned}$
267024.17	C32
267056-104	C39, 51
267056-474	C41, 82
267060-472	C42, 43
267036-473	C44, 80
267055-473	C45, 50
CM24A272K	C46
CM24A102K	C47, 48, 72
267055-333	C49
267056-224	C56
267036-332	C57
267036-102	C60, 61
267059-103	C63, 76
267058-104	C64
CM124J392K	C65
CM22A391K	C66
26702414	C67
Cm22A331K	C68
267032.39	C69
260009-10	C70
267055-682	C73
267032.40	C74
267055-104	C75
267036-682	C77
267055-103	C81
267051-2	C83
RC24A 102K	R1
RC23A123J	R2
RC23A680J	R3
RC23A474K	R4
RC23A333J	R5
RC23A364J	R6
RC23A224K	R7

TUNER COMPONENTS

CAPACITOR-Ceramic - $68 \mathrm{mmf} \pm 10 \% 500 \mathrm{~V}$ CAPACITOR-Ceraic 1000 mis 500

CAPACITOR-Ceramic - $120 \mathrm{mmf} \pm 5 \% 500 \mathrm{~V}$ CAPACITOR-Ceramic - $47 \mathrm{mmf} \pm 20 \% 500 \mathrm{~V}$ CAPACITOR-Ceramic - $10 \mathrm{mmf} \pm 20 \% 500 \mathrm{~V}$ CAPACITOR-Caramic. $5 \mathrm{mmf} \pm 10 \% 500 \mathrm{~V}$ RESISTOR-Comp. $47 \mathrm{~K} 1 / 2 \mathrm{~W} \pm 10 \%$ RESISTOR-Comp. $330 \mathrm{~K} 1 / 2 \mathrm{~W} \pm 10 \%$ RESISTOR-Comp. 100K 1/2W $\pm 10 \%$ RESISTOR-Comp. 180K $1 / 2 \mathrm{~W} \pm 10 \%$ RESISTOR-Comp. 470 ohms $1 / 2 \mathrm{~W} \pm 10 \%$ RESISTOR-Comp. $220 \mathrm{~K} 1 / 2 \mathrm{~W} \pm 10 \%$ RESISTOR-Comp. $10 \mathrm{~K} 1 / 2 \mathrm{~W} \pm 10 \%$ RESISTOR-Comp. $4.7 \mathrm{~K} 1 / 2 \mathrm{~W} \pm 10 \%$

ELECTRICAL COMPONENTS

TUNER
CAPACITOR-Ceramic $680 \mathrm{mmf} \pm 20 \% 500 \mathrm{~V}$
CAPACITOR-Disc. Ceramic .01 mfd Min. 500 V CAPACITOR-Molded Tub., $0027 \mathrm{mfd} \pm 10 \% 400 \mathrm{~V}$ CAPACITOR-Molded Tub., $0022 \mathrm{mfd} \pm 20 \% 400 \mathrm{~V}$ CAPACITR-Molded Tub., $.01 \mathrm{mfd} \pm 20 \% 400 \mathrm{~V}$ CAPACITOR-Elect. $10 \mathrm{mfd}+250 \%-10 \% 50$ CAPACITOR-Ceromic 1000 mmf Min. 500 V CAPACITOR-Molded Tub.,. $22 \mathrm{mfd}+20 \% 400 \mathrm{~V}$ CAPACITOR-Molded Tub., 47 mfd $\pm 20 \% 400 \mathrm{~V}$ CAPACITOR-Molded Tub., $0047 \mathrm{mfd} \pm 10 \% 400 \mathrm{~V}$ CAPACITOR-Ceromic $220 \mathrm{mmf} \pm 20 \% 500 \mathrm{~V}$ CAPACITOR-Elect. (1000-200, 40-200, 10-200) +100\%
CAPACITOR-Elect. $2 \mathrm{mfd}+150 \%-10 \% 50 \mathrm{~V}$ CAPACITOR-Molded Tub., .1 mfd $\pm 20 \% 200 \mathrm{~V}$ CAPACITOR-Molded Tub., $47 \mathrm{mfd} \pm 20 \% 200 \mathrm{~V}$ CAPACITOR-Moldod Tub., 047 mid $+20 \% 400 \mathrm{~V}$ CAPACITOR-Molded Tub., $047 \mathrm{mfd} \pm 20 \% 600 \mathrm{~V}$ CAPACITOR-Mica $2700 \mathrm{mmf} \pm 10 \% 500 \mathrm{~V}$ CAPACITOR-Mica $1000 \mathrm{mmf} \pm 10 \% 500 \mathrm{~V}$ CAPACITOR-Molded Tub., 033 mid $\pm 20 \% 600 \mathrm{~V}$ CAPACITOR-Moldod Tub., $.0033 \mathrm{mfd}+20 \% 400 \mathrm{~V}$ CAPACITOR-Molded Tub., . 001 míd $\pm 20 \% 400 \mathrm{~V}$ CAPACITOR-Molded Tub., $.01 \mathrm{mfd} \pm 10 \% 400 \mathrm{~V}$ CAPACITOR-Molded Tub., $.1 \mathrm{mfd} \pm 10 \% 200 \mathrm{~V}$ CAPACITOR-Silvered Mico $3900 \mathrm{mmf} \pm 10 \% 500 \mathrm{~V}$
CAPACITOR-Mico $390 \mathrm{mmf}+10 \% 500 \mathrm{~V}$ CAPACITOR-Elect. ($10 \mathrm{mfd}+250 \%-10 \% 200 \mathrm{~V}$) CAPACITOR-Mico $330 \mathrm{mmf} \pm 10 \% 500 \mathrm{~V}$ CAPACITOR-Ceramic $470 \mathrm{mmf} \pm 20 \% 500$ CONDENSER-Trimmer - Mico $20-270 \mathrm{mmf}$ CAPACITOR-Nolded Tub., $0068 \mathrm{mfd} \pm 20 \% 600 \mathrm{v}$ CAPACITOR-Molded Tub., 1 mfd $\pm 20 \% 60$ CAPACITOR-Molded Tub., 0068 mfd $\pm 20 \% 400 \mathrm{~V}$ CAPACITOR-Molded Tub., $.01 \mathrm{mfd} \pm 20 \% 600 \mathrm{~V}$ CAPACITOR-Molded Tub., 250 mmf 12.5 KV . RESSTOR-Comp. 1000 ohms $1 \mathrm{~W} \pm 10 \%$
RESISTOR-Comip. 12 K ohms $1 / 2 \mathrm{~W} \pm 5 \%$ RESISTOR-Comp. 68 ohms $1 / 2 \mathrm{~W} \pm 5 \%$ RESISTOR-Comp. 470 K ohms $1 / 2 \mathrm{~W} \pm 10 \%$ RESISTOR-Comp. 33 K ohms $1 / 2 W \pm 5 \%$ RESISTOR-Comp. 360 K ohms $1 / 2 \mathrm{~W} \pm 5 \%$
RESISTOR-Comp. 220 K ohms $1 / 2 \mathrm{~W} \pm 10 \%$

OJohn F. Rider

The Bogen Broad Band Television Booster Model BB-1A is a double tuned push-pull broad band amplifier designed to increase the signal strength on television channels 2 to 13 by as much as 10 times, without introducing noise or reducing picture quality. Automatic power turn-on is built in, and is controlled by the power switch of the TV receiver.
INSTALLATION:

1. Connect the short length twin lead supplied, between the booster terminals marked "output" and the receiver antenna terminals.
> * INPUT CONNECTIONS $300 \Omega-152$
$75 \Omega-253$
CHANNELS 7-
CHANHEBAND

2. Connect the antenna lead-in to the booster terminals marked "input".
3. The rear of the chassis clearly indicates which terminals to use for the 300 or 75 ohm lines.
4. Plug the TV set power plug into the receptacle on the rear of the booster and connect the booster to the 117 v cycle A. C. line. (Do not plug into D. C.) The Booster outlet will accomodate TV receivers which draw from 150 to 350 watts.
5. For best results, the input and output twin leads should be straight and short They should be located so that they neither cross each other, nor run near each other. This may cause oscillation, which will be evidenced either by horizontal black bars appearing on the picture or by complete erasure of the picture.

OPERATION: Turn Booster Dial to "OFF". Turn on the TV power. (Booster power will then turn on automatically in about 30 seconds.) Tune in the desired TV channel number and tune the booster for best results on the TV set. The channel numbers on the booster dial are for reference only and best results frequently may be obtained at settings of the booster tuning dial slightly off the selected channel number.

When the Television Receiver is switched off, the booster will shut off automatically about a minute later.

NOTE: When using the Model BB-1A Booster with a console assembly whose total power drain exceeds the maximum rating of 350 watts, remove the line cord of the TV portion of the console from the receptacle within the console and plug it instead into the receptacle on the booster. The line cord of the booster should be plugged into the receptacle intended for the TV portion of the console.

TUBES

Model 35 Selenium Rectifier 656

TRANSFORMERS

T-393
Power Transformer

CAPACITORS

ALL CAPA CITANCE VALUES
IN MICRO MICROFARADS EXCEPT
WHERE OTHERWISE NOTED.
Description
MISCELLANEOUS

769 L	Cabinet
769 M	Knob
769 J	Drive Cam
769 K	Switch Cam
791 D	Tuning Plat
769 F	Cam Bracket
769 E	Drive Shaft

C516
C317
318
C318
C321
C319
C130
RESISTORS
30×150, elec.

1. $2 \mathrm{mmf} 10 \%$, ceramic
2. $7 \mathrm{mmf} 10 \%$, ceramic
$2.4 \mathrm{mmf} 5 \%$, ceramic
$56 \mathrm{mmf} 20 \%$, mica
. $047 \mathrm{mf} 20 \%, 400 \mathrm{~V}$

* output

CONNECTIONS
300 0 - 4 द́ 5
$75 \Omega-3$ द4
$47 \Omega 10 \% 1 / 2 w$, carbon $470 \Omega 10 \% 1 / 2 w$, carbon $4700 \Omega 10 \% 1 / 2 w$, carbon

GENERAL DESCRIPTION

The CT. 74 Chassis is the 27 inch CRT Version of the "CX-36" Series. The chassis itself employs 26 tubes, 36" Series. The additional tube is used as a acend Damper Tube. Basic differences in this chassis are in
the sweep circuits which are revised to operate with the larger picture tube. These revision are as follows:

1. A ype 6 AV 5 GT tube is used in place of the 6V6 A type 6 AVGGT tube is used in pace of the
as Vertical Output Tube. Circuit componens including the Vertical Output Transformer are also
changed in this circuit. changed in this circuit.
A type 6 CD 6 G tube is used in place of the 6BQ6 as
2. A type $6 \mathrm{CD6G}$ tube is used in place of the 6 Q 6 as
3. Horizontal Output tube.
Two $6 \mathrm{AX4GT}$ tubes, connected in parallel, are used
4. The Horizontal Output Transformer and Width Coil are revised to function with the 90° Deflection Yoke
which is required for the 27 inch Rectangular CRT.
5. The video peaking circuits have bean revised to to picture.
The chassis and picture tube are mounted separately
in the cabinet. Special Instructions for removal of both in the cabinet. Secial Instructions
the ehassis and the CRT are included
COCATION OF CONTROLS
There are six (6) primary operating controls acces(from
sotom to top) On-Off, Volume fivent), Shading (rear), Contrast, Vertical Hold, Fine Tuning (rear) and Channel Selector (front).
Mounted on the rom the rear of the instrument are the Height Verticil inearity, Horizontal Drive and AGC Set. The restical all potentiometer controls and with exception of $A G C$

MODEL 12F272M 27'' C.R.T. TV RECEIVER SERVICE INFORMATION

TV Chassis CT-74

TUBE COMPLEMENT

Ref. No.	Type	Function
V101	6BQ7	R. F. Amplifier
V102	6 J 6	Osc. \& Mixer
V201	6CB6	1st I.F. Amplifier
V202	6CB6	2nd I.F. Amplifier
V203	6 CB 6	3rd I.F. Amplifier
V204	6CB6	4th I.F. Amplifier
V205	6X8	, Triode Section, 1st Video Amplifier 1 Pentode Section, 1st Sound I.F. Amplifier
V206	6AQ5	Video Output
V208	$27 \mathrm{GP} 4 \text { or }$ $27 \mathrm{EP} 4$	Picture Tube
V301	6AU6	2nd Sound I.F. Amplifier
V302	6AL5	Ratio Detector
V303	6AV6	1st Audio Amp. \& AGC Clamp
V304	6AQ5	Audio Output
V401	6AU6	Keyed A.G.C. Amplifier
V402	6BA6	Sync Amplifier
V403	6BE6	Sync Sep. \& Noise Clipper
V404	12AT7	, 1st Triode, Sync Clipper 1 2nd Triode, Reactance Tube
V501	6AL5	Horizontal A.F.C.
V502	12AU7	1 1st Triode, Horizontal Oscillator 12 nd Triode, Horizontal Discharge
V505	1B3	H.V. Rectifier
V506	6 C 4	Vertical Multibibrator
V508	6 CD 6	Horizontal Output
V509	$6 \mathrm{AX4}$	Damper
V510	6AX4	Damper
V511	$6 \mathrm{AV5}$	Vertical Output
V601	5U4	L. V. Rectifier
V602	5 U 4	L. V. Rectifier
CR201	1 N 64	Video Detector

REMOVAL OF SAFETY

GLASS ESCUTCHEON

Should it be necessary, the safety glass is removable from the front of this instrument. The glass is fitted into slots in the chassis mounting shelf and the sides of the cabinet. It is held firmly in place at the top by a
emovable wood strip.

TO REMOVE THE GLASS:

1. Remove the small wood screw from the wood strip remove the strip.
. cabinet slot at the left of the cabinet.
Slide the glass upward until it is f.
tom slot and tilt the glass forward at the left. Note: A small rubber suction cup (such as a CRT the glass from the cabinet.
To replace the glass the above procedure should be
followed in reverse.

Removing the Picture Tube

From the Cabinet

CAUTION - Due to the weight and bulk of the 27 ' CRT it is recommended that more than normal precedure to facilitated in handling. One suggested prothe instrument face down on the floor using a heavy blanket or other padding to protect the cabinet, the proceed with the removal of the CRT as outlined below Using this method one man can remove the tube with
To Remove

1. Remove the cabinet rear door assembly (held in 2. Remave the CRT socket from the CRT base.
2. Remove the
3. Disconnect the Defleckion Yoke Cable.
4. Disconnect the H.V. Anode Connector from the
5. RRT.
6. support assembly.
7. Remove the four (4) nuts which fasten the front
CRT strap assembly to the cabinet. NOTE: UnCRT strap assemby to the cabinet. Nont is in the face down position (as described above) the CRT should be supported from
the rear while the mounting nuts are being rethe rear while
moved.
Lift the tube out of the cabinet tilting it slightly Lift the tube out of the cabinet tilting it slightly
to avoid striking the H.V. Section of the TV Chassis.
After removing the CRT assembly from the cabinet
place it face down on a pad place it face down on a pad (to protect the CRT face)
and remove the Ion Trap, Focus Magnet and Deflection Yoke. When installing a new CRT be certain that the rubber collar, which is used to hold the deflection yoke
in place against the bell of the tube, is solidly in place.

Removing the Chassis

From the Cabinet

The chassis used in this model is bolted to a sliding skid which fits in grooves provided in the cabinet con from the rear of the instrument as follows:

1. Remove the control knobs from the front of the instrument
2. Remove the cabinet rear door assembly (held in d screws)
3. Remove the Antenna Terminal strip (fastened to screws)
4. Remove the CRT Socket from the CRT base.
5. Disconnect the Deflection Yoke Cable.
6. Disconnect H.V. Anode Connector from the CRT.
7. Remove the Speaker plug from the TV chassis.
8. Remove the wood screws which fasten the chassis mounting skid to the cabinet (four screws at the
rear and one at the front near the R-F Unit.)
9. Slide the chassis on the sliding skid from the rear the instrument.
10. Remove the wooden skid from the chassis to facili-
tate service. To replace the chassis in the cabinet, follow this prong cables are Make certain that all interconnectchassis and sliding skid are securely fastened.

SET-UP ADJUSTMENTS

Final adjustment of the various secondary (or set-up)
controls should be made at the time of installation of
 operating test at the same time, and, of course, the the
owner should be instructed as to the peration of the
 be cautioned that the secondary controls should be ad-
justed only by an experienced television service man. Aduustments of the Horizontal A.F.C. circuits and set-
ting the Local Oscillator of the R.F. Tuner should he ting the Lontal $\begin{aligned} & \text { tof } \\ & \text { made as outined }\end{aligned}$

Preliminary Checks:

Remove the cabinet back and connect the receiver.
to an AC source, using a "cheater cord" (A line cord that can be plugged into the
receptacle on the rear of the chassis).
2. Turn the receiver on and adjust the Shading and If a raster is not seen after allowing time for the tubes to warm up, immediately adjust the Io raster, continue to adjust the magnet (by sliding
back and forth and rotating about the neck of the CRT) to obtain maximum brightness.
3. Check to see that the Deflection Yoke is flush
against the bell of the CRT. If the raster is tilted,
rotate the yoke to correct the tilt.
4. Connect the lead wire from an antenna to the the lead wire from the "built-in" antenna from these erminals bib to channel on which a pro-
Set the Channel knob to a channel on which a pro-
gram is being transmitted.
6. Adjust the Fine Tuning and Contrast controls to Adjust the Fest reception. Tune for the sharpest
obtain the best
detail in the picture, but not necessarily the brightdetail in the picture, but not
est picture or loudest sound.
7. Adjust the Shading control for the desired bright-
ness and the Volume control for the desired volness and the volume control for the desired
8. Adjust the Vertical Hold control if the picture rolls

Picture Centering and Focus
9. To center the picture on the CRT screen move the
centering handle on the Focusing Magnet.
 justment as outlined under "Adjustment of Horizontal
10. To provide over all good focus adjust the Focuser ocusing Minet The magnet should be approxi Focusing Magnet. The magnet should

ADJUSTMENT OF HORIZONTAL

A.F.C. CIRCUIT

There is no Horizontal Hold front panel control pro-
vided on this chassis. The picture should lock in synchronism automatically when switching from channel to channel ism automatically when switching remt of this circuit is reIn event, however, that or component
quired, because of towe precedure should be followed:
lowing pren

1. Remove the Horizontal A.F.C. Detector Tube (6AL5) slug until the picture is syncronized horizontally, When properly adjusted the picture will move slowly
ack and forth horizontally with one vertical blanking back
2. Re-insert the 6AL5 tube, and as soon as the tube reaculd fall in sync.
3. After making the frequency adjustment, check the ing the picture so that the right hand edge of the raser is visible. Adjust the Shading control for max
mum brilliance and reduce the Contrast control unti mum briliance and reduce the Contrast control unt
the raster edge can been. There should be approxi
mately $3 / 16$ inch between the edge of the raster on 17 mately $3 / 16$ inch between the edge of the raster on
inch tubes and $1 / 4$ inch on 21 inch tubes. If the pic ture is out of phase, adjust the Horizontal Phasin If considerable amount of change is required in the horizontal frequency as in Step 1 , above.

Picture Size and Linearity:

11. Adjust the Horizontal Drive and Width controls to obtain the proper picture width and horizontal linaarity. The Horizontal Drive control should be
adjusted first to provide maximum scan and then adjusted first to provide maximum scan and then
the Width control should be used to adjust for the proper horizontal size. If a vertical white line (or lines) appears in the picture, back off the Horizontal Drive control slightly.
12. Adjust the Height and Vertical Linearity controls to obtain proper height and vertical linearity. It may be necessary to adjust the Vertical ho picture should roll." (Refer to "Beam Corrector Magnet Adjustment").

Final Check:

13. In sequence, set the Channel knob to all channels on which reception is obtained. Adjust the receiver for operation as outlined in the Owner
Operating Instructions. Check the quality of re Operating Instructions. Check the quality of re-
ception, picture and sound on all available TV stations in the area.
NOTE: If a degree of "background noise" is noticed on moderate signals the AGC Differential Con trol (switch on rear chassis apron) should be placed in the DOWN position. If no back ground noise is apparent with he swith position.
14. Recheck the focuser adjustment and Ion Trap Magnet setting for good picture focus.
15. Check to see that the best reception is obtained on all channels with the Fine Tuning control set to the approximate center of its range. This can be
obtained by making the adjustments outlined under "Oscillator Adjustments Using a TV Signal
16. Remove the "cheater cord" and replace the cabinet
back.

OSCILLATOR ADJUSTMENT USING

 A TELEVISION SIGNAL1. Turn set on and allow sufficient time for set to reach
2. Turn Channel selector to the channel to be adjusted normal sound and picture. Set the Fine Tuning control to the midpoint of its range.
3. Remove Channel and Fine Tuning knobs and adjus metallic screwdriver. When the CHANNEL smallector is set for a particular channel, the oscillator "sluge" for that channel is accessible
front of the tuner chassis.
Adjust the oscillator slug for the clearest and sharpest
detail in the picture. At this point the sound should be
best, but not necessarily the loudest.
NOTE: BE CAREFUL NOT TO TURN THE SLUG TOO ITS MOUNTING.

ALIGNMENT INSTRUCTIONS

General Information

Before attempting either complete or partial alignment alignment data included here be read thoroughly. Afte ecoming famiar to the alignment charts only. Note th necessary to refer tothods given for alignment of the I-F Stages. The method to be used will depend upon the type of equipment available. If a ${ }^{4}$ Sweep Generator having a
40
a
a exception of the over-coupled transformer) can be accu
rately aligned with a Signal Generator having a $40-50 \mathrm{MC}$ rately aligned with a Signal Generator having a $40-50 \mathrm{MC}$
range and a VTVM. In this case the over-coupled stag range and a VTVM. In this case the over-coupled stage
can be aligned while observing the over-all R-F, I-F curve n a channel which is known to have fairly flat respons. A suggested list of Test Equipment needed for proper
alignment of the receiver is listed here. Under no circum stances should alignment be attempted without the proper equipment. When connecting the test equipment to the nection is made and that the leads are as short as possible

R-F AMPLIF

1. Connect the sweep generator output cable to the reeiver antennark if the seop generator used has terminating network. If the sweep generator used has
300 ohm balanced output use the matching pad shown in Figure 1 A . For other generators use the
proper values of R_{0} and R_{1} for the output cable improper values of Ro and R1 for the output cable im-
pedance of the particular generator. Adjust the generator to sweep Channel 10.
. Couple an accurately calibrated marker generator into the antenna input to provide picture and sound carrier
markers. In most cases the marker generator can be markers. In most cases the marker generator can be isolating resistor should be used in series with the
marker output cable. Maintain the output of the marker marker output cable. Maintain the output one tortion of the
2. Connect the oscilloscope (high side) through a 10 K Connet the oscilloscope (high side) through a 10 K on top of R-F Tuner Chassis. If necessary to provide a clean trace on the scope, connect a 270 uuf. (approx
value) capacitor across the vertical input terminals of 4. Remove the AGC Amplifier tube (V401, 6AU6) and Remove the AGC Amplifier tube (V401, 6AU6) and
connect a bias source (see note 2 of Video I-F Align-
ment) from terminal 2 of the R-F, I-F Chassis Power

1

Beam Corrector Magnet Adjustment
Adjust the Height Control so that the top and bottom he raster lines near the top and bot are to see traight. If the lines are bent adjust the two Beam Corrector Magnets (attached to the CRT metal suppon ing, one above and the other below the bell of the CRT actory and should not require re-adjustment unless they have been accidently bent out of position.
These magnets can be adjusted by moving them close oor further from the bell of the CRT or by moving tom from side to side. As the magnet is moved closer
to the tube, the raster lines will be pulled toward the agnet. Likewise as the magnet is moved away from e magne, will have less effect on the raster lines. ight, an irsegular bend may appear in the raster lines

NSTRUCTIONS Generator must be properly terminated in order to pre vent distortion of the response curve caused by reflections
and losses on the lines. All equipment used must be ade sufficient time for both test equipment and receiver to warm up before starting the alignment.

Test Equipment Specifications

R. Frequency Ranges
4.5 Mc with .5 and 2 MC Sweep Width, $40-50 \mathrm{MC}$ with approximately $10 \mathrm{MC} \mathrm{Sweep} \mathrm{Width} 50-90$
$\mathrm{MC}, 170-220 \mathrm{MC}$ with at least 10 MC Sweep Width b. Constant Output within the sweep range.
c. Signal Outpuit not less than 0.1 volt maximum.
2. Marker Generator
a. Frequency Range

Frequency Ranges
$41.25-47.25 \mathrm{MC}$
$55.25-215.75 \mathrm{MC}$ I- P Markers

ALIGNMENT

 3 volts.Remove the 1 st I-F Amplifier tube (V201) and detune Remove the 1 st I-F Amplifier tube (V201) and detune
the mixer plate transformer, Ti01. Set the receiver Channel Selector for Channel 10. A race should appear on the scope similar to that shown
in Figure 2. Adjust the trimmers C117, C107 and C111 on top of the R-F Tuner Chassis for maximum markers within the limit shown in Figure 2.
markers within the limit shown in Figure 2 . for each channel. Check the response curve obtained on ing limits: neither side of the curve should be down more than 30% and the valley of the curve should not
be down more than 30% of the total amplitude. If the ee down more than 30% of the total amplitude. If the
response of a particular channel does not come within these limits, check to see that the correct coils for that
channel are being used and try replacing the antenna channel are being used and try replacing the antenna can be made by adjusting the trimmer, C111, C107 and C111 to improve the response of the channel that is off. The response on all other channels should then be reaffected by the compromise.

©John F. Rider

R-F AMPLIFIER ALIGNMENT CHART							
$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Set Sweep Generator to:	Set Marker Generator to:	Connect Generator Output Cable to:	Connect Oscilloscope to:	Set Channel Selector to:	Adjust	Refer to Note/s:
1	$\begin{aligned} & \hline \text { Sweep } \\ & \text { Channel } 10 \end{aligned}$	$\begin{aligned} & 193.25 \mathrm{MC} \\ & 197.75 \mathrm{MC} \end{aligned}$	Receiver Antenna Input Terminals	Test Point R-F ${ }^{\text {on }}$ Tuner through 10K Resistor	$\begin{gathered} \text { Channel } \\ 10 \end{gathered}$	C117. C107 \& C111 for Maximum Amplitude \& location in Fig. 2.	1,2,3,4,5
2	Sweep Channel 13	$\begin{aligned} & 211.25 \mathrm{MC}, \\ & 215.75 \mathrm{MC} \end{aligned}$			$\begin{gathered} \text { Channel } \\ 13 \end{gathered}$	Check Response Curve on all Channels	7
3	Sweep Channel 12	$\begin{aligned} & 205.25 \mathrm{MC} \\ & 209.75 \mathrm{MC} \\ & \hline \end{aligned}$			Channel 12		
4	Sweep Channel 11	$\begin{aligned} & 199.25 \mathrm{MC} \\ & 203.75 \mathrm{MC} \\ & \hline \end{aligned}$			Channel 11		
5	Sweep Channel	$\begin{aligned} & 187.25 \mathrm{MC}, \\ & 191.75 \mathrm{MC} \\ & \hline \end{aligned}$			$\begin{gathered} \text { Channel } \\ 9 \end{gathered}$		
6	Sweep Channel 8	$\begin{aligned} & 181.25 \mathrm{MC}, \\ & 185.75 \mathrm{MC} \end{aligned}$			$\begin{gathered} \hline \text { Channel } \\ 8 \end{gathered}$		
7	$\begin{aligned} & \text { Sweep } \\ & \text { Channel } 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 175.25 \mathrm{MC}, \\ & 179.75 \mathrm{MC} \end{aligned}$			$\begin{gathered} \text { Channel } \\ 7 \end{gathered}$		
8	Sweep Channel 6	$\begin{aligned} & 83.25 \mathrm{MC}, \\ & 87.75 \mathrm{MC} \end{aligned}$			$\begin{gathered} \text { Channel } \\ 6 \end{gathered}$		
9	Sweep Channel 5	77.25 MC, 81.75 MC			$\begin{gathered} \text { Channel } \\ 5 \end{gathered}$		
10	Sweep Channel 4	$\begin{aligned} & 67.25 \mathrm{MC}, \\ & 71.25 \mathrm{MC} \\ & \hline \end{aligned}$			$\underset{4}{2}$		
11	Sweep Channel 3	$\begin{aligned} & 61.25 \mathrm{MC}, \\ & 65.75 \mathrm{MC} \end{aligned}$			$\underset{3}{\substack{\text { Channel } \\ \hline}}$		
12	$\begin{array}{ll} \hline \text { Sweep } \\ \text { Channel } & 2 \end{array}$	$\begin{aligned} & 55.25 \mathrm{MC}, \\ & 59.75 \mathrm{MC} \end{aligned}$			$\begin{gathered} \text { Channel } \\ 2 \end{gathered}$		

LOCAL OSCILLATOR ALIGNMENT

1. Connect the sweep generator output cable to the reterminating network. If the sweep generator used has a 300 ohm balanced output use the matching pad shown in Figure 1 A . For other generators use the proper value of R^{2} and R_{1} for the output cable impedance
of the particular generator. Adjust the generator to sweep Channel 13
2. Couple an accurately calibrated marker generator into the antenna input to provide picture and sound carrier
markers for Channel 13 .
3. Connect the oscilloscope (high side) through a 10 K
isolating resistor to the junction of R219 and pin 2 of
V2ata V205A.
4. Remove the AGC Amplifier tube (V401, 6AU6) and
connect a short test lead from pin 2 of the R-F, I-F connect a short test lead from pin 2 of the R-F, I-F R-F Amplifier bias at zero. Also, connect a bias batits terminals can be used), negative side to terminal 3 its the same plug and positive side to chassis. Adjust
of the pot to provide -3 volts bias at terminal 3 of the the pot to provide -3 volts bias at terminal 3 of the
R-F, I-F Chassis Power Cable plug.
5. Set the Channel Selector to Channel 13 and check the
response curve obtained against the ideal curve shown

in Figure 4. If the shape of the curve is not within I-F Amplifier Alignments. The R-F and I-F Amplifiers must be properly aligned before the oscillator adjustments can be correctly made.
6. Set the Fine Tuning control to the approximate center of its mechanical range
for the entire alignment.
T. Adjust the individual to properly position the markers on the curve This adto properly position the markers on the curve. This ad-
justment should be made with a non-metallic screwdriver having an $1 / 1 /$ inch blade approximately. If one
of the slugs should "fall into" the coil form, first reof the slugs should "fall into" the coil form, first re-
move the metal shield which covers the lower portion of the turret (to remove the shield pull down at the front and slide it out of its hinges at the rear)
and then remove the particular oscillator coil from the turret. To reposition the slug, move the slug retaining spring aside and tap the coil until the slug slides forward, then replace the spring so that the slug is held
in place. Replace the coil in the turret and proceed with its alignment.
7. Set the sweep and marker generators, progressively for each channel and check the position of the markers
on the curves. Adjust the individual oscillator "slug" wherever necessary to properly locate the markers.

Step	Set Sweep Generator to:		Set Marker Generator to:	Connect Generator Output Cable to	Connect Oscilloscipe to:	Set Channel Selector to:	Adjust	Refer to Note/s:
1	Sweep Channel 1		$\begin{aligned} & 211.25 \mathrm{MC}, \\ & 215.75 \mathrm{MC} \end{aligned}$	Receiver Antenna Input Terminals	Junction of R219 and pin 2 of V205A through 10K Resistor	$\begin{gathered} \text { Channel } \\ 13 \end{gathered}$	$\begin{aligned} & \text { Channel } 13 \\ & \text { Oscillator } \\ & \text { Slug } \end{aligned}$	$\begin{aligned} & 1,2,3 \\ & 4,5,6 \end{aligned}$
2	$\begin{aligned} & \text { Sweep } \\ & \text { Channel 1 } \end{aligned}$		$\begin{aligned} & 205.25 \mathrm{MC}, \\ & 209.75 \mathrm{MC} \end{aligned}$			$\begin{aligned} & \text { Channel } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Channel } 12 \\ & \text { Osillator } \\ & \text { Slug } \end{aligned}$	
3	Sweep Channel 1		$\begin{aligned} & 199.25 \mathrm{MC}, \\ & 203.75 \mathrm{MC} \end{aligned}$			$\begin{gathered} \text { Channel } \\ 11 \end{gathered}$	$\begin{aligned} & \text { Channel } 11 \\ & \text { Osc. Slug } \end{aligned}$	
4	Sweep Channel		$\begin{aligned} & 193.25 \mathrm{MC}, \\ & 197.75 \mathrm{MC} \end{aligned}$			$\begin{aligned} & \text { Channel } \\ & 10 \end{aligned}$	Channel 10 Osc. Slug	
5	Sweep Channel		187.25 MC, 191.75 MC			$\begin{array}{\|c} \hline \text { Channel } \end{array}$	$\begin{aligned} & \text { Channel } 9 \\ & \text { Osc. Slug } \end{aligned}$	
6	$\begin{aligned} & \text { Sweep } \\ & \text { Channel } \end{aligned}$	8	$\begin{aligned} & 181.25 \mathrm{MC}, \\ & 185.75 \mathrm{MC} \end{aligned}$			$\begin{gathered} \text { Channel } \\ 8 \end{gathered}$	$\begin{aligned} & \text { Channel } 8 \\ & \text { Osc. Slug } \\ & \hline \end{aligned}$	
7	Sweep Channel	7	$\begin{aligned} & 175.25 \mathrm{MC}, \\ & 179.75 \mathrm{MC} \end{aligned}$			Channel 7	Channel 7 Osc. Slug	
8	$\begin{aligned} & \text { Sweep } \\ & \text { Channel } \end{aligned}$	6	$\begin{aligned} & 83.25 \mathrm{MC}, \\ & 87.75 \mathrm{MC} \end{aligned}$			$\begin{gathered} \text { Channel } \\ 6 \end{gathered}$	$\begin{aligned} & \text { Channel }{ }^{6} \\ & \text { Osc. Slug } \end{aligned}$	
9	$\begin{aligned} & \text { Sweep } \\ & \text { Channel } \end{aligned}$	5	77.25 MC , 81.75 MC			$\underset{5}{\substack{\text { Channel } \\ \hline}}$	$\begin{aligned} & \text { Channel } 5 \\ & \text { Osc. Slug } \end{aligned}$	
10	Sweep Channel	4	$\begin{aligned} & 67.25 \mathrm{MC}, \\ & 71.75 \mathrm{MC} \end{aligned}$			Channel 4	$\begin{aligned} & \text { Channel }{ }^{4} \\ & \text { Osc. Slug } \end{aligned}$	
11	$\begin{aligned} & \text { Sweep } \\ & \text { Channel } \end{aligned}$	3	61.25 MC, 65.75 MC			$\underset{3}{\text { Channel }}$	$\begin{aligned} & \text { Channel }{ }^{3} \\ & \text { Osc. Slug } \end{aligned}$	
12	Sweep Channel	2	$\begin{aligned} & 55.25 \mathrm{MC}, \\ & 59.75 \mathrm{MC}, \end{aligned}$			Channel	$\begin{aligned} & \text { Channel }{ }^{2} \\ & \text { Osc. Slug } \end{aligned}$	

NOTE: The individual oscillator slugs are accessible from the front of the cabinet, therefore, if the R-F and I-F circuit are properly aligned, "touch up" of the oscillator alignment on any channel can be accomplished without remov-
ing the chassis from the cabinet. For further information, refer to "O scillator Alignment Using a TV Signal" on Page 3.

VIDEO I-F ALIGNMENT

1. Connect the sweep generator output cable (properly of V201 (grid of 1 st $1-F A m p l i f i e r)$ through a 1 ofd. isolating capacitor and adjust it to sweep from 40 to 50 MC . If a separate marker generator is is used it should
resistor.
2. Remove the AGC Amplifier tube (V401, 6AU6) and Chassis Power Cable plug to chassis. A the R-F, I-F Chassis Power Cable plug to chassis. A bias source
may be obtained from a 4.5 volt battery with a 1 K pot connected across its terminals. Connect the positive end of the battery to chassis ground and connect
the arm of the pot to terminal 3 of the R-F, I-F plug. the arm of the pot to terminal 3 of the R-F, I-F plug.
Connect a TVM to terminal 3 of the plug and adjust
the pot for a
3. Connect the oscilloscope high side to the VTVM.
4. Connect the oscilloscope high side to the junction of
R219 and pin 2 of $V 205 \mathrm{~A}$ through a 10 K isolating resistor.
5. Check the response curve for evidence of local oscillator influence by adjusting the fine tuning control.
If the shape of the curve changes, switch to another channel where oscillator influence is not present or else adjust the Channel Selector so that it is between
6. Adjust the marker generator to provide a marker at
41.25 MC and adjust the top slug of T 202 (Co-Chan41.25 MC and adjust the top slug of T202 (Co-Channel Sound I-F Trap) for minimum response at the
marker frequency. This adjustment may be made easier by running the sweep generator output high so that the trap "dips" are easily visible. Adjust the marker generator to 47.25 MC and adjust
the top slugs of T203 and T204 (Adjacent Channel Sound I-F Traps) for minimum response at the
7. Reduce the sweep. generator output so that a normal curve is seen. Adjust the marker generator to 42.65
$M C$ and then adjust the bottom slugs of 7202 and MC and then adjust the bottom slugs of T202 and
T204 to obtain maximum amplitude of the 42.65 MC
marker.
8. Adjust the marker generator to 45.3 MC and adjust the bottom slugs of T203 and T205 to obtain maximum amplitude of the 45.3 MC marker. To obtain access
to the bottom slug of T205 remove the contrast control from the front panel. Use a thin blade alignment tool for the adjustment.
9. Connect the sweep and marker generators to the test
point on the R-F Tuner through capacitor the R-F Tuner through a .001 ufd., isolating the available equipment Sellows, markers at Noth 9. If MC and 45.75 MC should be provided simultaneously.
10. A Adjust the overcoupled I-F circuit, T101 (on top of
the R-F Tuner) and the bottom slug of L211 to obcertain types of sweep generators this method is not usable due to the spureous response curves obtained on the scope which are caused by the various harmonic of coupled stage should be aligned as in step 6 of alternate method of I-F alignment. The 42.25 MC marker
must fall within 30% to 70% of maximum amplitude of the curve on one side and the 45.75 MC marker must The valley of the curve should not exceed the other side. tilt should not be greater than + or -10%. A 45 MC marker should fall within 5% of maximum amplitude

VIDEO I-F ALIGNMENT CHART						
$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Set Sweep Generator to:	Set Marker Generator to:	Connect Generator Output Cables to:	Connect Oscilloscope to:	Adjust	Refer
1.	$\begin{aligned} & \text { Sweep } \\ & \text { from } \\ & 40 \text { to } 50 \mathrm{MC} \end{aligned}$	41.25MC	pin 1 of 201 (grid of 1st I-F Stage) through a 001 ufd. capacitor	Junction of R219 and pin 2 of V205A through a 10 K resistor	Top slug of T202 for min. response at 41.25 MC	1,2,3,4
2.		47.25MC			Top slugs of T203 \& T204 for \min. response at 47.25 MC	1, 2, 4, 6
3.		42.65 MC			Bottom slugs of T202 \& T204 for max. amplitude of marker	1,2,4,7
4.		45.3MC			$\begin{aligned} & \text { Bottom slugs } \\ & \text { of T203 \& } \\ & \text { T205 for max. } \\ & \text { amplititue } \\ & \text { of marker } \end{aligned}$	1, 2, 4, 8
5.		Repeat St after comp Steps 3 \&				
6.		$\begin{aligned} & 42.25 \mathrm{MC} \\ & 45.0 \mathrm{MC} \\ & 45.75 \mathrm{MC} \end{aligned}$	Test Point on R-F Tuner through a .001 ufd., capacitor		T101 (on top of R-F tuner) and Bottom slug of L211 for curve shown in Fig. 5	2, 4, 9, 10

ALTERNATE METHOD OF VIDEO I-F ALIGNMENT

1. Connect the signal generator output cable to pin 1
of V201 through. 0011 urd.., isolating capacitor. If an
oscilloscope is used for indiction the generator should be AM modulated with a 400 c.p.s. signal. Set the bias at the I-F grids to minus 3 volts (refer Connect the VTVM to the junction
of V 205 through a 10 K resistor. R 219 and pin 2 Set the signal generator to 41.25 MC and adjust the top slug of T202 for minimum indication on the VTVM.
Set the signal generator to 47.25 MC and adjust the top slugs of T203 and T204 for minimum indication Set the signal. generator to 42.65 MC and adjust the
bottom slugs of T202 and T 204 for maximum indicabottom slugs of T202 and T204 for maximum indica-
tion on the VTVM.
Set the signal generator to 45.3 MC and adjust the
bottom slugs of T203 and T205 for maximum indication on the VVVM. To obtain access to the bottom slug of T205, remove the Contrast Control from the
front panel. Use a thin blade alignment tool for this adjustment.
Connect the Sweep Generator output cable to the receiver antenna input terminals through the proper
terminating network. (Refer to note 1 of R-F Ampliferm Alignment)
Connect the marker generator to pin 1 of V201
SOUND (4.5MC) I-F ALIGNMEN
2. Set the I-F Bias to minus 3 volts (Refer to Note 2
of Video I-F Alignment). 11. Connect the oscilloscope high side to the junction of
3. Set the receiver Channel Selector to Channel adjust the sweep generator to sweep Channel 12 . A curve should appear on the scope similar to tha
shown in Figure 6. The marker generator shoul bhown in Figure 6. The marker generator should
be adjusted to provide markers at 42.25 MC and 45.75 MC .
4. Adjust T101 (on top of the R-F Tuner) and the bottom slug of L211 for location of the markers as
stated in Note 10 of Video I-F Alignment.

5. Adjust the primary (bottom) of T301 for maximum and tiol from the front panel and insert a long "thin blade alignment tool through the mounting hole for this ad-
justment.
Recheck
6. Recheck the adjustment of L301 for maximum ampli-
tude and also the adjustment of T301 (secondary) to center the marker on the curve.

Figure 7

VIDEO I-F ALIGNMENT CHART (ALTERNATE METHOD

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Set Sweep Generator to:	Set Signal Generator to:	Connect Generator Output Cables to:	Connect Oscilloscope or VTVM to:	Adjust	Refer to Note/s
1.		41.25MC			Top slug of T202 for minimum indication.	1,2
2.		47.25MC	Pin 1 of V201 (grid of 1st I-F Stage) through a capacitor	Junction of R219 and pin 2 of through 10 K resistor	Top slug of T203 \& T204 for minimum indication.	1,2
3.		42.65MC			Bottom slugs of T202 \& T204 for Maximum indication.	1,2
4.		45.3 MC			Bottom slugs of T203 \& T205 for Maximum indication.	1,2,7
5.	Repeat Steps 1 and 2 after completing Steps 3 and 4.					
6.	. Sweep Channel 12	Markers at 42.25 MC , 45.0 MC 45.75 MC	See Notes 8 and 9	Junction of R219 \& pin 2 of V205A through 10 K resistor	T101 (on top of R-F Tuner) and Bottom Slug of L211 for curve shown in Fig. 6.	$\begin{aligned} & 8.9, \\ & 10,11, \\ & 12 \end{aligned}$

(ALIGNMENT INSTRUCTIONS CONT.) SOUND (4.5MC) I-F ALIGNMENT CHART

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Step
No.: \& \begin{tabular}{l}
Set \\
Sweep \\
Generator \\
To:
\end{tabular} \& \begin{tabular}{l}
Set \\
Marker Generator \\
To:
\end{tabular} \& \begin{tabular}{l}
Connect \\
Generator \\
Output Cables \\
To:
\end{tabular} \& Connect Oscilloscope Vertical input Cable To. \& Adjust: \& \begin{tabular}{l}
Refer \\
To \\
Note/s:
\end{tabular} \\
\hline 1. \& \multirow[t]{5}{*}{то:
\[
\begin{aligned}
\& 4.5 \mathrm{MC} \\
\& \text { 1.0 MC Sweep }
\end{aligned}
\]} \& \multirow[t]{5}{*}{10:

4.5 MC} \& \multirow[t]{5}{*}{Junction of L205 \& R218. Ground Side to Chassis} \& \multirow[t]{5}{*}{Junction of R306. 307 \& C310. Ground Side to Chassis} \& L301 for Maximum Amplitude of Curve Figure 7. \& 1, 2

\hline 2. \& \& \& \& \& Secondarv (tod) of T301 to center Marker. \& 1, 2, 5

\hline 3. \& \& \& \& \& Primarv (hottom) of T301 for equal amplitude of peaks \& 1, 2, 6

\hline 4. \& \& \& \& \& L301 for Maximum Amplitude and symetry of curve \& 1, 2

\hline 5. \& \& \& \& \& Secondary of T301 to center Marker. \& 1, 2

\hline
\end{tabular}

4.5MC TRAP (L208) ADJUSTMENT

1. Connect the sweep generator to the junction of L205
2. If a separate marker generator is used, it may be . If a separate marker generator is used, it may be
coupled to the sweep generator cable through a 10 K
resistor. The marker must be accurately calibrated resistor.
at 4.5 MC.

Connect the detector network to the CRT grid lead (as shown in Fig. 8), and connec
output of the detector network.
4. Adjust L208 (located near V206) for minimum ampli-
tude at the 4.5 MC marker. The curve should be similar to that shown in Figure 9 .

$\begin{aligned} & \text { Step } \\ & \text { No.: } \end{aligned}$	Set Sweep Generator To:	Set Marker Generator To:	Connect Generator Output Cables To:	Connect Oscilloscope Vertical Input Cable To	Adjust:	Refer To Note/s:
1.	4.5MC (2MC sweep)	4.5 MC	Junction of L205 \& R218. Ground side to chassis	To Detector Network as shown in Figure 8	L208 slug for minimum ampli tude at 4.5 MC Marker	1, 2, 3, 4
 Figure 8 Figure 9						

John F. Rider

OJohn F. Rider

SPECIFICATIONS

GENERAL INFORMATION

CHASSIS PRODUCTION RUN CODING

To facilitate and coordinate the handling of production un coding system has been established for these chassis. The initial production is coded as follows:
The R.F-I.F. chassis will be stamped just forward of the indicate the first production run
The Deflection Chassis will be stamped on the rear
pron above the width control with a $\mathrm{D}-1$.
Minor circuit changes will not affect this coding, however, when a major change is made, for example
in the Deflection Chassis, the code will be changed to
D-2.

REMOVING CHASSIS FROM CABINET

To gain access to the chassis the cabinet back must first wood screws. When shipped from the factory, the chassis is bolted to the cabinet shelf by six mounting bolts. These are sis head, hex-head machine bolts. The two bolts near necessary that these be repleced after servicing the chassis. nobs and the speaker cable, the chassis may be slid ou ill be necessary to remot. On some table model sets it efore removing the chassis.
For servicing, it is suggested that the chassis be placed

CAUTION - The normal safety precautions should be taken when handling this chassis since the picture tube is highly evacuated. Any weakening of the picture tube glass
caused by chipping, scratching or abnormal pressure may
cause implosion. caused by chipp

TO REMOVE THE GLASS

1. Slide back the small catch, located at the right on the underside of the chassis shelf. It will be ecessary to loosen the screw which holds the catch in place before it can be slid back. Note: On tead of the catch, on these sets the plug can be prom loose with a screwdriver.
2. From the exposed hole (formerly covered by the
catch) pull out the strip of felt.
3. After removing the felt, slide the glass to the
right until it is free of the cabinet slot at the left. the cabinet. With the glass removed the CRT mask can also be removed.
NOTE: A small rubber suction cup (sucb as a CRT
H.V. Anode cup) can be used to assist in removing the glass from the cabinet.

LOCATION OF SECONDAR

CONTROLS AND ADJUSTMENTS

There are four primary operating controls and four secondary controls (concealed by the hinged nameplate) accessible to the owner from the front of the instrument. The primary controls on the left are: Off-On
Volume (front) and Contrast (rear) and on the right: Channel Selector (front) and Fine Tuning (rear). The

re: TV-Phono Tone control, Shading, Vertical and Horizontal Hold (ton). On sets not having a TVhono Tone Control the secondary controls are from Peft to right Shading, Horizontal Hold and Vertical Hold. Mounted on the rear chassis apron and accessible inearity, Picture Lock and Rear Horiz: Hold. These re all potentiometer controls and with exception of is a recessed screwdriver adjustment. Also mounted on is a recessed screwdriver adjustment. Also mounted on with a sliding adjustment for quick set-up. The Horiontal Drive is a trimmer which is accessible through a moth hole in the rear of the chassis apron. In addition
ooferred to as the AGC
oifferential Control is located on the rear apron.

ET-UP ADJUSTMENTS

Final adjustment of the various "set-up" controls
should be made at the time of installation of the reeiver. The receiver should be given a thorough operating test at the same time, and, of course, the owner should be instructed as to the operation of the various controls on the front panel. The owner should be cau-
tioned that the "set-up" controls should be adjusted nly by an experienced television serviceman.

Preliminary Checks:

1. Remove the cabinet back and connect the receiver ord that can be plugged into ater cord" (A line cord that can be plugged into the AC
receptacle on the rear of the chassis).
2. Turn the receiver on and adjust the TV-Phono one switch to either the TV Bass or TV Treble e adjusted to approximately one half of full rota tion. If a raster is not seen after allowing time for the tubes to warm up, immediately adjust the Ion rap Master continue to adjust the magnet obtainin back and fontinue to adjust the magnet (by sliding rotating about the neek of the
bRT) to obtain maximum brightness and good CRT)
3. Check to see the Deflection Yoke is flush against Check to see the Deflection Yoke is flush agains
the bell of the CRT. If the raster is tilted, loosen the wing screw on top of the yoke and rotate the oke to correct the tilt
4. Connect the lead wire from an antenna to the terminals on the rear of the set. Be sure to remove
the lead wire from the "built-in" antenna from hese terminals when using an outside antenna.
. Set the Channel knob to a channel on which a pro-1 6. Adjust the Fine Tuning and Contrast controls to detail in the picture
. Adjust the Shading control for the desired bright ness and the Volume control
. Adjust the Vertical Hold control if the picture
. Adjust the (Front) Horizontal Hold control from one extreme to the other and note the amount o phased when the front Horizontal Hold control is in the center of its mechanical range. When ad justed to both extremes the controt should var the picture phasing by an equal amount. If thes conditions do not exist, foriow the procedure

Picture Lock Adjustment:

10. Rotate the PIX. LOCK control to the extreme clockwise position and then back it off slowly while observing the picture. As the control is
backed off the picture will shift slightly to the left. The control should be set to the position immediately pr
In extreme noisy and weak signal areas the Pix Lock control should be adjusted in conjunction with the sync controls to provide the most stabl

Picture Centering:
11. To center the picture on the CRT screen, adjus if necessary, rotate the centering magnet on the YOKE ADJUSTMENTS

If the picture cannot be centered, loosen the wing screw on the centering magnet and reset its loca-
tion on the CRT neck until centering can be chieved with neck until centering can be achieved with the centering adjustment. as close to the yoke as possible. If corner cutting is experi enced, loosen the two adjustment screws on eithe side of the deflection yoke and push the yoke as
far up on the bell of the CRT as possible. Also far up, on the bell of the cert as possibe. Alse

Picture Size and Linearity:
12. Adjust the Horizontal Drive Trimmer and Widt control to obtain the proper picture width and
horizontal linearity. The Horizontal Drive should be adjusted first to provide maximum scan and be adjusted first to provide maximum scan and
then the Width control should be used to adjust for the proper horizontal size. If a vertical white line (or lines) appears in the picture, turn the Hori-
13. Adjust the Height and Vertical Linearity controls
to obtain proper height and vertical linearity. It may be neecsary to do ajust the Vertical Hold con- con-
trol while making these adjustments if the picture trol while making these adjustments, if the picture
should roll. (On sets employing Beam Corrector Magnets refer to instructions for adjustment on
page page 18 .

Final Check:

14. In sequence, set the Channel knob to all channels on which reception is obtained. Adjust the re-
ceiver for operation as outlined in the 0 owne ceiver for operation as outlined in the Owne
Operating Instructions. Check the quality of Operating Instructions. Check the quality of re-
ception, picture and sound on all available TV stations in the area. NOTE If a degree of "background noise" is
noticed on moderate signals the AGC Differential Control should be placed in the DOWN position

15. Recheck the Ion Trap Magnet setting for good
. picture focus. to see that best reception 1s obtained on all chan
nels with the Fine Tuning control set to the ad proximate center of its range. This can be ob-
tained by making the adjustments outlined under tained by making the adjustments outlined unde
"Oscillator Adjustments Using a TV Signal."
16. Remove the "cheater cord" and replace the cabinet

ADJUSTMENT OF HORIZONTAL

 OSCILLATORThe procedure outlined here should be followed if
adjustment described in Step 9 cannot be properly made:

1. Remove the cover from the rear of the H.V. com partment and connect a shorting jumper betwee strip, just inside the H. V. compartment. This jumper is used to short out L501, the Horiz. Ring
2. Remove the 6BE6 fube (V402) and adjust the Rear
Horizontal Hold control so that when the front Horizontal Hold control so that when the front
Horizontal Hold control is set to the center of its Horizontal Hold control is set to the center of its
range there is approximately edge of the picture and the right edge of the raster 3. Remove the short from across L501. Adjust the slug of the ringing coil (L501) so that with th its range the picture is properly phased. as outlined in step 2 .
Replace the 6BE6 tube and check the pull-in range control to extreme clockwise position and switch ing off channel momentarily to interrupt the sig-
nal. If the picture breaks sync horizontally slowly rotate the Front Horizontal Control and observe rotate least number of dingonal blanking bars visible before the picture synchronizes. Pull-in should
occur at $11 / 2$ to $21 /$ bars. Repeat this adjustment
with the Front Horizontal Hold control in the occur at $1 / 2$ to $21 / 2$ bars. Repeat this adjustment
with the Front Horizontal Hold control in the opposite extreme position.

OSCILLATOR ADJUSTMENT USING
 A TELEVISION SIGNAL

1. Turn set on and allow sufíncient time for set to
2. Turn Channel selector to the chanaturel to be adTurn Channel selector to the channel to be adcontrols for normal sound and picture. Set the
F Femove Channel and Fine Tuning knobs and adjust the oscillator slug for that channel, using a NEL selector is set for a particular channel, the scillator slug for that channel is accessible chassis. Adjust the oscillator slug for the clearest and sharp-
est detail in the picture. At this point the sound should st detail in the picture. At this point th
be best, but not necessarily the loudest.

NOTE: BE CAREFUL NOT TO TURN THE SLUG OUT OF ITS MOUNTING.

ADJUSTMENT OF OUADRATURE COIL AND NOISE REJECTION CONTROL

 Adjustment of the Quadrature Coil (L302) and NoiseRejection Control (R307) should be made at the time the instrument is installed to insure the best sound reproduction. Access to these adjustments has been provided from the front of the instrument. With a station
properly tuned in remove the Volume and Contrast Knobs.
Adjustment of the Quadrature Coil can be made by inserting an alignment tool through the bottom hole Adjustment of this control should be made for the strongest and clearest sound.
The Noise Rejection
The Noise Rejection Control can best be set with the
signal attenuated until background noise is apparent in ignal attenuated until background noise is apparent in
the sound. With the signal attenuated adjust the contriol for minimum background hiss and noise. This con-
trol is located behind the top hole that is exposed by trol is located behind the top hole that is exposed by
cemoving the Volume and Contrast Knobs.

General Description

The Capehart "CX-37" TV Chassis is a two-piece chassi The Capehart
Rectifining. The front including the Pection of the chassis Tube the R-F - I-F Unit, bolts to the rear section of the chassis which is th Sync Deflection Unit. The chassis features a tilted I-
strip for ease in adjustment and replacing tubes. Complet isolation is obtained between the R-F - I-F Stages and the Deflection circuits.
The front portion of the R-F - I-F Unit forms a solid
mount for the picture tube while the H.V. Section serves mount ror the picture thbe whT and Deflection Yokerve as a rear mount for the CRT and Deflection Yoke. The
H.V. Section is a separate unit which is easily removable from the chassis for-servicing.
The chassis is designed for use with the new low-voltage electrostatic focus picture tubes which employ the new cylindrical face for reduced reflection. Mounting arrange-
ment of the CRT allows removal from the front of the meninet without removing the chassis.
There are three versions of the "CX-37" TV Chassis.
These are the basic units, Chassis No. CT-75 and CT-77 (using 17" and 21" rectangular picture tubes, respectively) and Chassis No. CT-81 (similar to CT-77, except for the
deletion of the audio circuits. This chassis is designed fo use in conjunction with a separate radio chassis). Th following circuit descriptions refer to the basic units, th

The R-F Tuning Unit

The R-F Tuner used in this chassis is the "Cascode" The R-F Tuner used in this chassis is the "Cascode"
Tuner employing two tubes; a type 6BQ7 tube and a type
6J6 tube. The 6BQ7 tube is used as a driven-grounded grid (Cascode) R-F Amplifier. Effectively this is a two-stage amplifier which combines the equivalent gain of a pentode
with the low-noise factor of a triode. This combination $r e$ sults in a greatly improved signal-to-nosie ratio which means less "snow" in weak and low signal areas.
There are two traps connected in series with the antenna
input. These are parallel-resonant traps formed by L112 \& C101 (fixed tuned to 45.1 MC) and L113 \& C102 (fixed tuned to 44.75 MC) which provide the desired amount of to the R-F Amplifier. In addition to these traps, a series to the R-F Amplifier. In addition to these traps, a seriesprovided in the input grid circuit of the R-F Amplifier. The capacitor, C116 (the variable portion of the trap) can be
adjusted to provide maximum rejection of any interfering adjuste to provide maximum rejection of any interfering
signal within the I-F pass band. Thus, the R-F circuits are
highly selective highly selective and provide maximum rejection of in-
wanted signals. In addition to this, the tuner is completely wanted signals. In addition to this, the tuner is completely
shielded to prevent radiation from the local oscillator also, to prevent pickup of unwanted signals in the various
tuned circuits.

The 6 J 6 tube is used as a mixer and oscillator in circuits uners. The mechanical arrangement and switching on his tuner is also the same as the earlier tuner.

Common I-F Amplifier Stages

The Capehart CX-37 chassis employs four stages (4 ype 6CB6 tubes) of common I-F pmplification. In accord with present RTMA Recommendations, the frequency of
he I-F stages is in the 40 MC region. The use of the higher intermediate frequency eliminates the problem of local oscilator radiation in the existing television channels. The rinciples of intercarrier sound are employed wherein both
he picture and sound information are amplified simultaneously throughout the I-F stages and are then seprated after heterodyning in the Video Detector. Using the intercarrier sound principle, the sound I-F reference to the picture carrier level. In order to maintain he proper difference in amplitude between the two cariers, a 41.25 MC trap is included in the coupling
former (T202) between the 1st and 2nd I-F stages

Coupling between the mixer and the 1st I-F stage is oil means of a low impedance avercoupled circuit of the 1st stage and the mixer plate ransformer form a tuned overcoupled circuit centered at 43.5 MC . The 2nd, 3rd and 4th stages and the Video De-
ector are coupled by means of Bifiar I-F coils. The tector are coupled by means of Bifilar I-F coils. The 2nd and 4th coils are tuned to the low-frequency side of the I-F bandpass (42.65 MC) and the 3rd and 5th coils
are tuned to the high side (45.3 MC) while the 1st coil in are tuned to the high side (45.3 MC) while the 1 st coil in
the grid of the 1st stage is tuned near the center of the the grid of
pass band.

The use of biflar-wound transformers allows a coeffiThe coupling capacitor such as used with impedance coupling is not necessary with this type of transformer. Th biflar coils provide improved noise immunity due to the ow resistance presented in the grid circuits by the second develop a charge on a coupling capacitor, if used, which in turn would cause a momentary increase in bias and subsequent reduction in stage gain. The noise pulse itself objectionable; however, each pulse is followed by a is no tail (or streak) which has an undesirable effect both on picture and sync.
Each bifilar coil is tuned by a threaded powdered-iron All trap adjustments are available from the top of the chassis and are provided with hex-nuts for easy adjust ment by hand. The 1st trap is tuned to the Co-Channel the Adjacent Channel Sound I-F.
The 1st and 2nd I.F. stages are actually connected in series DC-wise as can be seen from the current distributor diagram on the schematic diagram; the stages are, therefore, referred the is taken from the +300 voit source. The cathodes
of the 3 rd and 4 th stages are of the 3rd and 4th stages are returned to +135 voltt while
the 2 nd stage is returned through the 1 st to chassis ground. he 2 nd stage is returned through the 1 st to chassis ground.
altage is applied to the grid of the 1 st stage and due oo itrolled.

Video Detector

The Video Detector is a germanium crystal diode, type
1N64. The diode is mounted on the top terminals of the lN64. The diode is mounted on the top terminals of the
last I-F transformer (T206). The diode is readily accesast I-F transformer (pull-off) the top cap of the I-F shield can. By enclosing the diode within the shield can har-
monic radiation from the crystal is prevented. The Demonic radiation from the crystal is prevented. The Dealso. Because of its accessibility, the diode can be replaced, if need be, with the chassis in the cabinet. When replacing heat which may possibly damage the crystal. Always be heat which may possibly damage the crystal. Always be
sure that the top cap is replaced after inspecting or replacing a diode.

© John I. Rider

Video Amplifier

Two stages of video amplification are employed in this chassis; the pentode section of a 6X8 and a pentode 6AQ5
tube. The rectified output of the Video Detector developed cross the video detector load resistor is coupled directly mplified output of this tube is then coupled through a peeking netw.
Variation of contrast is provided by a potentiometer in apled th ing capacitor into the grid of the picture tube.
By providing a 2 volt signal at the output of the video
detector a signal of 125 volts peak-to-peak or more is available at the CRT grid through the use of two video amplifier stages. The method of selective peaking employed in these stages is designed to provide emphasis of certain portions of the video response. This emphasis assures mitted signal may not contain high definition video
A slug tuned 4.5 MC trap is included in the plate circuit
of the 2nd Video Amplifier to prevent the beat signal, de of the 2 nd Video Amplifier to prevent the beat signal,
veloped in the detector, from reaching the CRT grid.
The new cylindrical face Electrostatic Focus picture tube is used with this chassis. The CRT is the low voltage no focus control is needed. Variation of brightness is ac complished by a potentiometer (Shading control) in the

Sound I-F Circuits

The Sound I.F. Circuits are of the 4.5 Mc . intercarrier type. The 4.5 Mc. beat between the picture and sound with the video information by the pentede section of the
6×8 (V205). The 4.5 Mc. signal is removed from the video amplifier by a 4.5 . Mc. Trap consisting of L301 and C306 This trap effectively couples the 4.5 Mc . information from
the video amplifier plate circuit to the grid of the sound the video amplifier plate circuit to the grid of the so
I.F. amplifier (V205B) for additional amplification. Detection of the 4.5 Mc . FM signal takes place in the
6BN6 Gated Beam Detector (V301). The 6BN6 provides FM detection through an unusual constructional feature The tube is so constructed that a beam of electrons flowing of signal applied to either the first (limiter) grid or the third (quadrature) grid. By connecting the quadrature
grid to a 4.5 Mc . resonant circuit the signal is coupled to grid to a 4.5 Mc . resonant circuit te signal is coupled to
the quadrature grid through the electron stream of the the quadrature grid through the electron stream of the
tube with a phase shift of 90°. As the frequency of the
applied signal is varied around 4.5 Mc. (as with FM) the applied signal is varied around 4.5 Mc. (as with FM) the
phase shift between the limiter grid and quadrature grid phase shift between the limiter grid and quadrature grid will be aliowed to flow to the plate for a longer or shorter
ength of time. The length of time that plate current flows is exactly in step with the phase shift variations and thus follows the frequency shift of the incoming signal. The audio signal appears across R309 as a result of the plate
current flow of V301. Limiting to reject any AM signal is achieved in the tube when the signal exceeds an amplitude

Audio Amplifier

The audio signal that is present across R309 is coupled Control, coupling capacitor C312 and the Volume control R311 to the grid of the audio output tube (V302). Through
the large audio signal that is supplied by the detector and the large audio signal that is supplied by the detector and
the high sensitivity of the 6 BK 5 output tube no first audio amplifier stage is required. The output of the audio amplifier is supplied to a speaker connector on the chassis
through the output transformer T301.
pho input jack is mounted on
A phono input jack is mounted on the rear panel so that phono input is connected the the amplifier when switch S301 s actuated by turning the contrast control to its maximum

Keyed Automatic Gain Contro

A type 6AU6 Tube (V401) is employed as a Keyed AGC Amplifier. The grid of this tube is DC coupled to the plate norring at this point is a sync-positive composite video ignal. The white portions of the signal may be crushed, coupling from the second detector to the AGC amplifier). The screen voltage of the first video amplifier (V205A)
is supplied from +300 V through a 33 K resistor (R241) and the AGC control (R238). By varying the screen voltage on the video amplifier the amplification of that stage and thus the amount of
amplifier is set.
The plate of the AGC amplifier is pulsed with a 700 volt positive pulse, derived from a secondary winding on the horizontal width coil. The duration of this pulse is only
for the retrace time of the horizontal deflection system. This coincides with the received sync pulse applied to the grid of the AGC amplifier tube, provided the horizontal oscillator is in sync, and properly phased. Thus the AGC mplifier tübe operates as a keyed rectifier tube
C403 is charged negatively. When the tube stops conducting (during the interval between horizontal pulses) C403 discharges through R406 and R407 developing a voltage controlled stages as bias.
As the strength of the received signal increases, the peak sync voltage developed at the plate of the video amplifier tube (V205A) increases and thus increases the
current output of the AGC amplifier tube. This results in a more negative AGC voltage being developed, which educes the gain of the controlled stages.
Bias for the R.F. Amplifier is taken off across both R406 junction. The diode section of V501, 6BF6 tube is used as an AGC clamp. The plate of this diode is connected to the
R.F. bias point. The plate of this tube is also connected, R.F. bias point. The plate of this tube is also connected, weak signal input, this diode holds the R.F. bias at zero or just above. If the signal were to be increased gradually the voltage developed across R406 and R407 would eventually become sufficiently negative to cause the diode plate
to go negative. With the diode negative it no longer conrols the R-F bias and hence the bias is allowed to increase apidly. The circuit is so designed that the diode will hold to provide a snow-free picture without maximum R-F Amplifier gain. The switch, S401 is used to vary the point at which the diode loses its control and in this manner

SYNC SEPARATION AND

NOISE CANCELLATION

The amplification and shaping of the horizontal and
vertical sync pulses plus the removal of noise bursts that vertical sync pulses plus the removal of noise bursts that would be harmful to the stability of the scanning circuits
is accomplished by the 6 BE6 Sync Separator (V402). and one section of a 12AU7 (V403A) used as a Phase Splitter.
The composite video signal is applied to the signal grid (pin 7) of the 6 BE 6 through a .01 mfd coupling capacitor
(C406). Through a combination of no fixed bias, low plate voltage and a positive going sync pulse, grid current flows charging C406 to the amplitude of the sync pulses. Capaciresistor (R417) during the interval between pulses, setting bias on the grid that is equal to the amplitude of the pulse. This bias effectively clamps the tip of the sync is negative with respect to the sync pulses, this portion of current to flow at the intervals betw current to flow at the intervals between pulses. Thus the
sync pulses are effectively stripped from the composite
signal.

To eliminate positive going noise pulses that could be passed through the sync separator and cause unstable sync nideo information is coupled from the video detector load through a 47 K isolation resistor (R221) to the first grid
of the 6 BE 6 (pin 1). This signal is 180° out of phase with the signal applied to the signal grid (pin 7). The bias on the first grid is set so that with a normal signal, plate current is alowed tow all of the time. If a noise pulse greater amplitude than the sync pulses then the plate current is cutoff for the period of time that the noise pulse is
actually present. During this time no sync information is passed to the control circuits of the oscillators but the
stability of the oscillators is such that they will remain stability of the oscillators is such that they will remain in sync during this short time interval.
The sync information that is present at the 6BE6 plate
load (R419) is coupled to one-half of a 12 AU 7 (V403A) The vertical control pulses are amplified and passed on to the vertical integrating circuit (PC501). The horizontal cuit of the tube in a phase splitting action. By removing the horizontal pulses across balanced load resistors (R422 and R423) pulses are supplied to the Horizontal Phase De-
tector (V403B) that are of equal amplitude and opposite

Vertical Multivibrator \& Output

The vertical scanning pulses are developed in a conusing a 6V6 (V502) and a 6BF6 (V501) height necessitat ing readjustment of the Height control. This circuit provides the sharp pulse which is required to develop a sawtooth
yoke.
Vertical sync pulses are coupled into the vertical MV circuit from the output of the Phase Splitter through the vertical integrato
the 6 BF 6 (V501).
The free-running frequency of the MV is controlled by in the grid circuit of the 6 BF 6 control which is connected er operating control on the front panel.
The Height control (R531) varies the amplitude of the
awtooth wave on the plate of the 6BF6 by controlling the rate of charge of the capacitor C533.
The Vertical Linearity control (R529) varies the cathde bias on the output tube (V502). The grid voltage-plate entire range; therefore, the effect of varying R5 29 produces variations in the shape of the sawtooth wave by hifting the operating point of the tube to different points Iong its characteristic. The effective gain of this tube
will be varied as the operating point is shifted: therefore, djustment of the Linearity control will affect picture

Horizontal Oscillator and AFC Circui

Automatic control of the Horizontal Oscillator is accomished by the of V403B) is pulsed by a 15750 cycle pulse which is coupled rom the plate of the AGC Amplifier tube ($V 401$). Before application to the plate of V403B the pulse is integrated
and reduced in amplitude by the combination of R507, R502, C510 and C509 and, therefore, appears as a sawtooth pulse of approx. 20 volts peak-to-peak amplitude. In the
grid-cathode of V403B is a balanced resistor circuit composed of two 82 K resistors (R503 \& R504). A positive posed of two 82 K resistors (R503 $\&$ R504). A positive
going sync pulse is applied through C506 to the grid of this
tube. The positive pulse tube. The positive pulse on the grid causes the tube to
draw grid current which in turn develops a potential across raw grid current which in turn develops a potential across
the two 82 K resistors. Circuit values are chosen such that when the sync pulse applied to the grid and the sawtooth derived from the Horiz. Oscillator) applied to the plate are in step, the resultant voltage at the center of the two
8 K resistors will be approximately zero (position of Hor. Hold Control will affect this voltage due to AFC action). If the oscillator should shift slightly, an out-of-phase con-
dition will result. As a result of the difference in phase etween the plate and grid, the potential on the plate at he instant of arrival of the sync pulse at the grid will be either more or less positive depending on the direction of sponding change in plate current and as a result cause the potential at the center of the two 82 K resistors to shift in oltage a posine oro. The through a filtering network to the Horizontal Oscillator and is used to control the oscillator frequency

CHASSIS CX-37. CX-37-1, CX-37R, Prelim

John F. Rider

. Adjust the marker generator to provide a marker nel Sound I-F Trap) for minimum response at the marker frequency. This adjustment may be made
easier by running the sweep generator output high easier by running the sweep generator
so that the trap "dips" are easily visible.
6. Adjust the marker generator to 47.25 MC and adjus the top slugs of T203 and T204 (Adjacent Channe Sound I-F Traps) marker frequency
Reduce the sweep curve is seen. Adjust the marker generator to 42.6 MC and then adjust the bottom slugs of T 202 and
T 204 to obtain maximum amplitude of the 42.65 MC marker.
8. Adjust the marker generator to $45,3 \mathrm{MC}$ and adjus he bottom slugs of T203 and T205 to obtain maximum mplitude of the 45.3 MC marker. To obtain access the bottom slug of ool for the adjustment.
Connect the sweep and marker generators to the test capacitor. Set Channel Selector to Channel No. 9. I he available equipment allows, markers at both 42.25 MC and 45.75 MC should be provided simultaneously Adjust the overcoupled I-F circuit, T101 (on top of
the R-F Tuner) and the slug of L201 to obtain curve similar to that shown in Figure 5. With ertain types of sweep generators this method is no usable due to the spureous response curves obtained on
the scope which are caused by the various harmonics of the scope which are caused these conditions the over coupled stage should be aligned as in step 6 of alter-
nate method of $\mathrm{I}-\mathrm{F}$ alignment. The 42.25 MC narker must fall within 30% to 70% of maximum amplitude of the curve on one side and the 45.75 MC marker must fall within 40% to 60% of maximum on the other side.
The valley of the curve should not exceed 10% and the The valley of the curve should not exceed 10% and the
tilt should not be greater than + or -10%. A 45 MC marker should fall within 5% of maximum amplitude n the high frequency side of the curve.

ALTERNATE METHOD OF

GIDEO I-F ALIGNMENT

Note
Connect the signal generator output cable to pin 1
of V201 through .001 ufd., isolating capacitor. If an oscilloscope is used for indication the capacitor. If an Set the modulated with a 400 c.p.s. signal. to note 2 of at the I-F grids to minus
Connect the VTVM to the junction of R219 and pin 7
of V205A through a 10 K resistor. MC and adjust the
top slug of TT202 for minimum indication on the VTVM top slugs of T203 and T204 for minimum indication on the VTVM.
Set the signal generator to 42.65 MC and adjust the tion on the VTVM.
Set the signal generator to 45.3 MC and adjust the bottom slugs of T203 and T205 for maximum indication on the VTVM. To obtain access to the bottom
slug of T205, remove the Contrast Control from the front panel. Use a thin blade alignment tool for this
eiver antenna input terminals through the proper
Refer to note 1 of R-F Ampliterminating netw
fier Alignment).
Connect the marker generator to pin 1 of V201有,
of Video I-F Alignment)
R219 and pin 7 of V205A through a 10 K resistor.
12. Set the receiver Channel Selector to Channel 12 and curve should appear on the scope similar to that shown in Figure 6. The marker generator shoul be adjuste
45.75 MC .
13. Adjust T101 (on top of the R-F Tuner) and the Adjust T101 (on top of the R-F Tuner) and the
slug of L201 for location of the markers as stated in slug of 10 of Video I-F Alignment.

Figure 6
4.5 MC. SOUND I-F ALIGNMENT

Note:
Connect generator output cables to junction of L206 219 (pin 2 of V205A)
. Connect vertical input leads of oscilloscope to detector network shown in fig. 7. Clip the alligator clip of the detector input over the insulated wire between pin 2
of the 6 BN 6 and L 303 so that there is no direct electrical connection between the input to the detector net-
work and the circuit under test. The ground connecwork and the circuit under test. The ground connec-
tion of the detector circuit, however, should be connected to the chassis.
4. Short pin 1 to pin 2 of tube V202.
4. Inject 4.5 Mc . Signal with 50% AM modulation and adscilloscoper maximum. Use full vertical amplifier oscilloscope gain so that the signal
generator is kept as low as possible.
5. Adjust L303 for maximum indication and then recheck 5. Adjust adsustment of L301.
6. Remove crystal detector network and connect the oscil 7. Inject 4.5 Mc. FM signal with 25 kc . deviation a using full generator output to insure limiting in the 6BN6, adjust L302 (quadrature coil-accessible maximum output.
8. Remove short from V202 and connect receiver to antenna through a signal attenuator (Centralab
PCH-4, IRC QJ-3 or Equivalent). Adjust set for re-PCH-4, RC
ception of a local TV squivalent). Ad at atenuating the incoming signal so that background noise is just notice-
able at all times a more exact setting can be obtaice able at all times a more exact setting can be obtained.
Adjust Noise Rejection Control (R307 - accessible Adjust Noise Rejection Control (R307-a accessible
through top hole in back of Shading Control) for mini-
9. mym background noise and hiss. Remove attenuator
for clearest sound.

VIDEO I-F ALIGNMENT CHART

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Set Sweep Generator to:	Set Marker Generator to:	Connect Generator Output Cables to	Connect Oscilloscope to:	Adjust	Refer to Note/s
1.		41.25MC	pin 1 of V201 (grid of 1 st I-F Stage) through a .001 ufd. capacitor	Junction of R219 and pin 7 of V205A through a 10 K resistor	Top slug of T202 for min. response at 41.25 MC	1, 2, 3, 4
2.	$\begin{aligned} & \text { Sweep } \\ & \text { from } \\ & 40 \text { to } 50 \mathrm{MC} \end{aligned}$	47.25MC			Top slugs of T203 \& T204 for min. response at 47.25 MC	1, 2, 4, 6
3.		42.65MC			Bottom slugs of T202 \& T204 for max. amplitude of marker	1,2,4,7
4.		45.3MC			Bottom slugs of T203 \& T205 for max. amplitude of marker	1, 2, 4, 8

VIDEO I-F ALIGNMENT CHART (ALTERNATE METHOD)

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Set Sweep Generator to:	Set Signal Generator to:	Connect Generator Output Cables to:	Connect Oscilloscope or VTVM to:	Adjust	Refer to Note/s
1.		41.25MC	Pin 1 of V201 (grid of 1st I-F Stage) through a . 001 ufd., capacitor	Junction of R219 and pin 7 of through 10 K resistor	Top slug of T202 for minimum indication.	1,2
2.		47.25MC			Top slug of T203 \& T204 for minimum indication.	1,2
3.		42.65MC			Bottom slugs of T202 \& T204 for Maximum indica tion.	1,2
4.		45.3 MC			Bottom slugs of T203 \& T205 for Maximum indica tion.	1,2,7
5.	Repeat Steps 1 and 2 after completing Steps 3 and 4.					
6.	$\begin{aligned} & \text { Sweep } \\ & \text { Channel } \\ & 12 \end{aligned}$	Markers at 42.25 MC , 45.0 MC, 45.75MC	See Notes 8 and 9	Junction of R219 \& pin 7 of V205A through 10 K resistor	T101 (on top of R-F Tuner) and Top Slug of L201 for curve shown in Fig. 6.	$\begin{aligned} & 8,9, \\ & 10,11, \\ & 12, \end{aligned}$

4.5MC. TRAP L214 ADJUSTMENT CHART

Step No.	Set Marker Generator To:	Connect Generator Output Cables To:	Connect Oscilloscope Vertical Input Cable to:	Adjust:
1.	A.5 MC A.M. Modulation	Junction of L205 \& R219 Ground side to chassis	Junction of C234, R235, R232 thru detector network Fig. 7	L214 slug for minimum ampli- tude of modu- lation.

Figure 7

4．5 MC．SOUND I－F ALIGNMENT CHART

Step No．	Set Generator to：	Connect Generator Output Cable to：	Connect Scope Vertical Input Cable to：	Adjust	To Obtain	Refer to： Note／s
1.	4．5 Mc．50\％ AM Modulation	Pin 2，V301 through detector net－ work fig． 7	L301 and L303	Maximum Indication	$1,2,4,5$	
2.	4．5 Mc．FM 25 kc Deviation （maximum sig－ nal output）	Junction L206， R219	Junction R308 and R309	L302	Maximum Indication	$\mathbf{7}$
3.	Remove short on V202 and connect set to antenna．Tune in station and attenuate sig－ nal so that background hiss is apparent．	R307	Minimum back－ ground Hiss and Noise	8		
4.	Set connected to antenna with full signal input．	L302	Clearest Sound			

CX－37 TV CHASSIS
TUBE SOCKET RESISTANCE CHART CHASSIS CT－75 OR CT－77

Tube Type \＆Ref．No．	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9
V101（6BQ7）	Inf．	500K	24	． 2	0	100K	130K	Inf．	0
V102（6J6）	120 K	130 K	． 1	0	220K	9.5 K	0	－	－
V201（6CB6）	50K	47	0	0	Inf．	Inf．	0	－	－
V202（6CB6）	125 K	Inf．	100K	100K	80K	90K	Inf．	－	－
V203（6CB6）	100K	100 K	100K	100K	80K	100K	100K	－	－
V204（6CB6）	90K	80K	90K	100K	80K	80K	100K	－	－
V205（6X8）	0	60 K	300K	0	0	68	90	90K	100K
V206（6AQ5）	500K	600 to 2 K	0	0	100K	100K	N．C．	－	－
V207（CRT）	140K	1.2 meg ．	$\begin{aligned} & (\text { Pin } 6) \\ & 140 \mathrm{~K} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (Pin 10) } \\ & \text { Inf. } \end{aligned}$	$\begin{aligned} & \text { (Pin 11) } \\ & 140 \mathrm{~K} \end{aligned}$	$\begin{aligned} & \text { (Pin 12) } \\ & 140 \mathrm{~K} \end{aligned}$			
V301（6BN6）	150 to 650	3		In．	100 K	3.5	400 K	－	－
V302（6BK5）	100K	N．C．	0 to 500 K	0	，	220	$\begin{aligned} & 0 \text { to } \\ & 500 \mathrm{~K} \end{aligned}$	80K	N．C．
V401（6AU6）	100K	100K	100 K	100 K	200K	80K	100K	－	－
V402（6BE6）	50K	250K	0	0	80K	100K	1.5 meg ．	－	－
V501（6BF6）		250 K	100 K	0	0	100K	2.2 meg ．	3900	－
－501（686）	1.2 meg．	0	0	0	450K	450K	1.4 meg ．	－－	－
V502（6V6）	N．C．	0	80K	80K	2.2 meg ．	80K	0	700 to	
V503（12AU7）	180K	$\begin{aligned} & 50 \mathrm{~K} \text { to } \\ & 300 \mathrm{~K} \end{aligned}$	1．2K	0	0	100K	5 meg ．	1.2 K	\bigcirc
V504（6BQ6）	${ }_{\text {N N．C．}}$	N－	N．C．	80K	1 meg．	300K	0	0	－
V601（5U4）	N．C．	N．C．	Inf．	N．C．	100K	N．C．	100K	100K	－
$V 601$（504）	N．C．	80 K	N．C．	15	N．C．	15	N．C．	80K	－

All measurement are made from the tube socket pin to chassis．All readings may vary $\pm 20 \%$ ．The resistance readings
on tubes $\mathrm{V} 206, \mathrm{~V} 301, \mathrm{~V} 302, \mathrm{~V} 501, \mathrm{~V} 502$ and V 503 will vary with control settings．
ADAPTABILITY TO UHF

Conversion of the tuner incorporated in the CX37 chassis to reception of UHF stations can be accomplished by mere－ ly removing coil strips from the tuner（for channels that
are not locally received）and inserting a set of UHF strips are not locally received and inserting a set of UHF strips
for each UHF channel that is locally available．Due to
the physical dimensions of the UHF striss it it the physical dimensions of the UHF strips it is not possible
to place them adjacent to each other．If strips for more to place them adjacent to each other．If strips for more
than one UHF channel are to be installed，there should be
the space of at least one channel strip between them．The the space of at least one channel strip between them．The
UHF strips are in two sections（as is the VHF strip）and UHF strips are in two sections（as is the VHF strip）and
contain all of the required components to complete the conversion．
One section
One section of the UHF strip includes the antenna input
circuit，a crystal mixer and its tuned circuit and a 1st I－F circuit，a crystal mixer and its tuned circuit and a 1 st I－F
grid coil．The second section consists of the coils for the
ist I－F plate Is I－F plate，converter grid and the OOcillator．
In operation，the UHF signal is fed into the balanced
antenna input coil and is then coupled into the mixer cir－ cuit where it is mixed with an oscillator frequency（a har－
monic of the fundamental oscillator frequency）to produce an $I-F$ frequency which falls in the spectrum between the two present VHF television bands．This II－F frequency is
then coupled into the grid of the R－F Amplifier which in then coupled into the grid of the R－F Amplifier which in
this case ants as a 1st I－F Amplifier．The amplified I－F this case acts as a st I－F Amplifier．The amplified I－F
signal is then coupled into the mixer circuit where the
fundamental oscillator frequency mixes with it to produce fundamental oscillator frequency mixes with it to produce the regular 1－F frequency of the receiver．The functions
of the receiver from this point on then are the same as
for VHF 俍 or
Channel seception．
Con are available through your local Capehart parts distributor． are available through your local Capehart parts distributor．
At the time of ordering it is essential that the exact UHF hannel number desired and the exact tuner that the strips

ELIMINATION OF TELEVISION INTERFERENCE

Everyone is familiar with the types of interference that
have continually plagued the ratio listener－it has merely
been accepted as＂static．＂Unfortunately for tuned trap is provided in the input grid circuit of
the R．F F Amplifier．This trap can be adjusted to provide Everyone is familiar with the types of interference that been accepted as＂static．＂Unfortunately for television
viewers，the eyes are much more critical with respect to interference than the ears．In addition to this，there are other factors which add to the interference problem．Tele－
vision，having a relatively wide band width，provides a vision，having a relatively wide band width，provides a
greater range over which interference can be received． Also，the problem of weak signals in many areas permits types of in
noticeable．
Many types of television interference are beyond the scope of elimination within the receiver especially in weak
signal areas．The design of the CX－37 series signal areas．The design of the CX－ 37 series chassis takes
into consideration．wherever possible，the elimination or mine consideration，wherever possible，the elimination or
minimization of TVI．Use of the 40MC I－F itself eliminates a sizeable amount of interference resulting from images，
oscillator radiation from other TV sets and of course sit． oscillator radiation from other TV sets and，of course，sig－
nals in the 21 to 27 MC range．High selectivity in the R－F
amplifier is amplifier is supplemented with the incorporation of
parallel－tuned wave traps in the antenna input circuit parallel－tuned wave traps in the antenna input circuit．
These traps are tuned to provide rejection of sipnals within the I－F pass band．In addition to the parallel－tuned traps．

$C=0005 \mu \mathrm{~F}$
L＝ 3 －IN．CLOSE WOUND NO． 12 ENAMELED
IMRE ON I．5－IN．DIAMETER DOWEL

Powerline filtor for appliance

 maximum rejection at any frequency within the I－F pass band． In addition to the rejection built into these instruments adained through the of certain types of TVI can be ob－the
High tained through the use of external devices such as on
High－Pass Filter，which is shown below This hig the filter provides additional attentuation of all frequencies below the television band．The device can be constructed as shown in the diagram；however，similar devices ar
available commercially for such use．

In the case of interference from household electrica appliances entering the receiver through the AC line，a power－line filter such as shown below may be of some
help．Interference of this type is best eliminated at help．Interference of this type is best eliminated at the
source，however it is not always possible to do so So source，however it is not always possible to do so．Some
difficulty may be encountered in locating the source and also in obtaining the cooperation of the owner of the interfering appliance for eliminating this type of int erfer－

al high－pase filler to athoncate intorierence below telovision frequencies

CX－37 TV CHASSIS

TUBE SOCKET VOLTAGE CHART

CHASSIS CT－75 OR CT－77

Tube Type \＆Ref．No．	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9
V101（6BQ7）	123	－0．3	0.7	0	6．3 A．C．	240	120	123	
V102（6．J6）	94	88	6.3 A．C．	0	－1．8	-6.7	0	－	－
V201（6CB6）	$\begin{aligned} & -1.3 \text { to } \\ & -1.6 \end{aligned}$	0.5	0	6．3 A．C．	130	115	0	－	－
V202（6CB6）	140	140	$\begin{aligned} & 6.3 \text { A.C. } \\ & \text { (135 D.C.) } \end{aligned}$	$\begin{array}{\|l\|l} \hline 0 \text { A.C. } \\ \text { (135 D.C.) } \end{array}$	290	275	140	－	－
V203（6CB6）	130	135	$\begin{aligned} & \text { 6.3 A.C. } \\ & \text { (135 D.C.) } \end{aligned}$	$\begin{aligned} & 0 \text { A.C. } \\ & (135 \mathrm{D} . \mathrm{C}) \end{aligned}$	275	250	130	－	－
V204 6CB6）	130	135	$\begin{aligned} & 6.3 \text { A.C. } \\ & \text { (135 D.C.) } \end{aligned}$	$\begin{aligned} & 0 \text { A.C. } \\ & \text { (135 D.C.) } \end{aligned}$	280	280	130	－	－
$\begin{aligned} & \text { V205 (6X8) } \\ & \text { V206 (6AQ5) } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \text { to } 9 \end{aligned}$	$\begin{aligned} & -1.2 \\ & 10 \text { to } 18 \end{aligned}$	$\begin{aligned} & 120 \\ & \hline 30 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 6.3 A.C. } \\ & \text { 6.3 A.C. } \end{aligned}$	$\begin{aligned} & 0 \\ & 221 \text { to } \\ & 242 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 130 \end{aligned}$	$\begin{aligned} & -1.2 \\ & \text { N.C. } \end{aligned}$	130	90
V207（CRT）	0 A．C． （135 D．C．）	125	$\begin{aligned} & \text { Pin } 6 \\ & 160 \text { to } \\ & 300 \end{aligned}$		$\begin{aligned} & \text { in } 10 \\ & 550 \end{aligned}$	$\begin{aligned} & \text { Pin } 11 \\ & 160 \text { to } \end{aligned}$ 300	Pin 12 6．3 A．C． （135 D．C．		Anode V \dagger

V301 (6BN6)	2.7	0	0	6.3 A.C.	54	0	130	-	-
V302 (6BK5)	270	N.C.	0	0	6.3 A.C.	6.8	N.C.	280	N.C.
V401 (6AU6)	125	-	$\begin{aligned} & 0 \text { A.C. } \\ & (135 \text { D.C. }) \end{aligned}$	6.3 A.C. (135 D.C.)	130	300	130	-	-
V402 (6BE6)	0	0	0	6. 3 A.C.	24	17	-18	-	-
V403 (12AU7)	-. 4	-3.2	2.3	0	0	70	22	22	6.3 A.C.
V501 (6BF6)	$\begin{aligned} & -.6 \text { to } \\ & -12 \end{aligned}$	0	0	6.3 A.C.	0.3	0.3	$-.5 \text { to }$	-	-
V502 (6V6)	N.C.	0	280	295	0	295	6.3 A.C.	26	-
V503 (12AU7)	150	$\begin{aligned} & -6.4 \text { to } \\ & -20 \end{aligned}$	9	0	0	250	-. 4	9	6.3 A.C.
V504 (6BQ6)	N.C.	6.3 AC	N.C.	$\begin{aligned} & 149 \text { to } \\ & 162 \end{aligned}$	-37	8 to 10	0	0	$\begin{aligned} & \text { (cap) } 452 \\ & \text { to } 541 \end{aligned}$
V506 (6W4)	N.C.	N.C.	550	N.C.	285	N.C.	6.3 A.C. (135 D.C.)	$\begin{array}{\|l\|l\|} \hline 0 \\ (135 & \text { A.C. D.C. } \end{array}$	-
V601 (5U4)	N.C.	$\begin{aligned} & 320 \text { D.C. } \\ & (5 \text { A.C. }) \end{aligned}$	N.C.	320 A.C.	N.C.	320 A. C.	N.C.	$\begin{aligned} & 320 \text { D.C. } \\ & \text { (5 A.C.) } \end{aligned}$	-

miScellaneous
CRT Strap Assy. ${ }^{\text {CRT" }}$ C..........453154A-G1 \ldots...

 WF Tuner ransformer.... Tuning 200 M CRT socket Inator Ckt Pilot Lacket Socke.............. Speaker \& Phono Interlock Rece
Fuse Holder
PARTS LIST-R. F. TUNER 8502228-1 RESISTORS

CAPACITORS

${ }^{\text {C } 103 i . ~} 115,{ }^{120}$ uufd.451064A-1 30

MISCELLANEOUS

Fine Tuning Assy.451326A-1 2.15 INDUCTANCES

TRANSFORMERS AND INDUCTANCES

all prices subject to change without notice
${ }^{+}$Measured with zero brilliance.
MEASUREMENT CONDITIONS wise indicated. All voltages should be with $\pm 20 \%$ of the above stated values with line voltage of 117 volts, 60 cycle AC Voltages on V206 vary with setting of Contrast. Voltages on V401 vary with setting of AGC Set. Voltages on V501 and V502 vary with settings of Vert. Hold, Vert. Lin. and Height. Voltages on V207 vary with setting of shading.

A. G.C. Adjustment

Adjustment of the AGC control (R238) should only be made with the aid of a calibrated oscilloscope. Connect the fertal ${ }^{\text {V206). With the set connected to an antenna and }}$
fiejusted for normal reception adjust the AGC control (on adjusted for normal reception adjust the AGC contiol (on
top of chassis between power transformer and high voltage cape) for an indication of 12 volts peak-to-peak
The AGC control is properly adjusted at the factory and
the setting is marked with colored cement across the shaft and bushing of the control. If the control should become misadjusted and a calibrated oscilloscope is not available,
the control can be set approximately by resetting to its the control can be set approximately by re
original position, as indicated by the cement.

Production Changes

Early production chassis may vary from the schematic
C209, C239, C240, C241 were not used
R225, R242, R306 were not used
C209, C239, C240, C241 were not
R315, Ras 4730 K instead of of 100 k .
R315 was 470 K instead of 100 K .
R226 was 1800 instead of 820 .
R238 was 250 K instead of 100 K and was connected
between pin No. and pin No. 7 with a $4 . \mathrm{K}$ in
series C 526 (047 mfd 400 V) was connected from

was .15 amp .
25 was rrounded instead of connected to pin No. \&
C525 was grou
PRICE LiST

Special Instructions for UHF Installation

These receivers are manufactured with two types of R-F Units. The standard models employ a chassis using the turret type tuner (Part No. 850222) which can be adapted to UHF by addition of UHF Channel Strips. The
second version incorporates a chassis which employs a UHF/VHF Tuner assembly.

Models Employing the UHF/VHF

Tuner Assembly

These models can be identified by the marking "CX as appears on the model number sabel on the cabine back will contain the suffix "-1". Separate antenna
input terminals are provided on the rear of the cabinet
 are properly marked, VHF and UHF. If separate UHF
and VHF antennas are used in the installation with inand VHF antennas are used in the installation with in
dividual transmission lines for each, he individual lines should be tatached to the eorresponding input terminals.
If a single transmission line is used for both UHF and If a single transmission line is used for both UHF and
VHF as would be the case if a combination antenna is employed a UHF/VHF antenna coupler (such as the
Vee DX Mighty Match MM-30) can be used to separate tee signals at the reeceiver. In this case the common transmission line from the antenna should be connected
to the center terminals of the coupler, the UHF termi nals on the receiver should be connected to the UHF terminals on the coupler and the VHF terminals on the
receiver should be connected to the VFF terminals on receiver should be connected to the VHF terminals on
the coupler. The UHF/VHF tuner is completely pre adjusted at the factory and should require no adjust-
ments upon instalation of the receiver.

Models Employing the Turret Type Tuner "The chassis used in these models will be marked "CX-37R" on the chassis rear apron. (Note: Early models have a single antenna input terminal on the
rear of the cabinet which is used for both VHF and rear of the cabinet which is used for both VHF and
UHF. It is advisable to use a common transmission line, however, if separate lines are employed an antenna coupler can be used to feed the two lines into the com-
mon mon input terminals
Installation of UHF Channel Strips
To install UHF Channel Strips it is not necessary to remove the chassis from the cabinet. The installation
can be made from the bottom of the instrument, as
follows:
Turn the instrument on a suitable protective pad or cloth. Remove few staples and fold back a portion of the ventilating screen on the tuner side of the chassis
mounting shelf. This provides easy mounting shelf. This provides easy access to the
tuner in most instruments. On the smaller table models it may be necessary to loosen the chassis mounting bolts and allow the chassis to slip
down a fraction of an inch.
Remove the anti-radiation shield, prying up with a screw driver.
Remove a set of unused VHF strips (either ad-
jacent or preferably, one channel away from a
tom ocally received VHF station).
(4) Insert the UHF Strips as follows:
(B) Oscillator segment last. Make certain that a good connection is made at the inter(C) Make sure that the spring clips hold the
(5) Replace the anti-radiation shield and tack down ephe ventiliating screen.
6) Return the instrument to the upright position and proceed with the set-up adjustments as out-
ined on page 1 of this folder. The local oscil ator adjustment for. the UHF strip is similar to that for VHF. As a final check set the chan-
nol selector to the channel opition in which the
UHF strip has been int nel selector to the channel position in which the
UHF strip has been installed and set the fine
tuning control to the center of its range. Insert an insulated alignment screw driver through the osciliator adjustment hole in the front of the
chassis and adjust the oscillator slug slowly (either in or out) until the picture begins to distort (sound in picture). Rotate the slug just picture definition.
Caution: Do not make any other adjustments to the UHF stripss: When more than one set of trips are installed they must be spaced on the
turret at least one VHF strip apart. Due to the physical size of the strips, they cannot be Istalled adjacent to each other in the turret. After the installation is completed, the proper
UHF channel indicator tab should be cemented in place on the Channel Selector to identify the
position (or positions) in which UHF strips position (or positions) in which UHF strips
have been inserted. Sets of UHF and VHF channel tabs are available from your Capehart Distributor. The set contains VHF tabs which can be cemented in place also on the Chan
Selector to present a symetrical appearance.

Raising Screen From Chassis

Removing Shield from Tuner

Inserting UHF Strips

COMBINED UHF/VHF TUNER UNITS

UHF TUNER PART NO. 750445
VHF TUNER PART NO. 850270

CAPEHART "CX-37" SERIES TV CHASSIS WITH R-F UNIT PART NO. 850222

Beam Corrector Magnet Adjustment

Adjust the Height Control so that the top and bottom edges of the raster are just visible and check to see if straight. If the lines are bent adjust the two Beam
Corrector Magnets (attached to the yoke support Corrector Magnets (attached to the yoke support
bracket, one on each side of the CRT) to remove the
bend. These magnets are adjusted at the factory and bend. These magnets are adjusted at the factory and
should not require re-adjustment unless they have been should not require re-adjustment
accidentally bent out of position.

These magnets can be adjusted by moving them closer
o or further from the bell of the CRT or by moving to or further from the bell of the CRT or by moving to the tube, the raster lines will be pulled toward the
magnet. Likewise as the magnet is moved away from the tube, it will have less effect on the raster lines. If
the magnets have been shifted considerbly from their the magnets have been shifted considerbly from their
correct adjustment an irregular bend may appear in the raster at the sides.

The FLEETWOOD Remote Receiver is designed for custom installation in a special cabinet, in the wall of a room, or into a recess or nook which may exist in the television viewing area. Its flexibility frees it from the usual requirement that the entire set be accessible for tuning. With the FLEETWOOD Remote system, it is quite practicable to place the viewing screen over a stairway, or over a buffet. The tuner, measuring only $7 \times 111 / 2$ inches, may be built into an end table, into a magazine rack, or placed wherever it may be of service with a minimum of effort on the part of the viewer. It may be mounted in any position, and its beautifully edgelit dial, in perfect taste, will add warmth and color to any room.

The system employs 27 tubes, and will accommodate any of the standard $21^{\prime \prime}$ or $24^{\prime \prime}$ magnetic focus picture tubes. The high voltage system employed will supply 18,000 volts nominally, resulting in extremely good spot focus and high brilliance. A cosine squared yoke insures uniform focus over the entire screen.

The picture chassis, when fitted with a $21^{\prime \prime}$ tube, can be mounted in a space $21^{\prime \prime}$ wide and 21" high. The 21AP4 picture tube is only $223 / 4^{\prime \prime}$ long, from the faceplate to the outside of the tube socket. This tube is recommended wherever space is at a premium; for installation in an existing cabinet, or an enclosure of limited size. When fitted with a $24^{\prime \prime}$ tube, the chassis can be mounted in a space $26^{\prime \prime}$ wide and $30^{\prime \prime}$ high. The $24^{\prime \prime}$ tube is $24^{\prime \prime}$ long from faceplate to the outside of the socket.

The following Kits are available as accessories to your Fleetwood Receiver:
601 A Kit for mounting a type 21AP4 Metal rectangular tube. This Kit includes:
1 - Plastic ring for the front of the picture tube.
1 - Plastic sleeve for the picture tube, with anode connector.
1 - Rubber band for the plastic ring.
1 - Tie down cable for the picture tube, 49" long.
1 - Set of blocks for the front of the picture tube.
$4-8-32 \times 3 / 4^{\prime \prime}$ self-threading screws for the blocks.
2 - Nuts for the tie down cable.

601 B Kit for mounting a 21" glass tube, either cylindrical or spherical faced This Kit includes:

1 - Pair of support blocks for the front of the picture tube.
1 - Tie down strap for the front of the picture tube.
1 - Anode connector for the picture tube.
4-8-32 $\times 3 / 4$ " self-threading screws for the support blocks.
2 - Pieces of cork for the face of the support blocks.
2 - Phosphor Bronze Strips $1 / 4^{\prime \prime} \times 2 "$.
2-6-32 Self-threading screws.
604 A Kit for mounting a 24AP4 round metal tube. This Kit contains:
1 - Pair of side panels to support the yoke and focus coil.
1 - Pair of front tube support àssemblies.
2-6-32 $\times 1 / 4^{\prime \prime}$ self-threading screws for the front support assemblies. $2-8-32 \times 1 / 4^{\prime \prime}$ self-threading screws for the front support assemblies. 1 - Tie down cable for the front of the tube - 64" long.
1 - Plastic ring for the front of the tube
1 - Insulating sleeve for the tube, with anode connector.
1 - Rubber band for the plastic ring.
621 A Kit for framing a $21^{\prime \prime}$ metal picture tube. This Kit is assembled at the factory and is composed of the following items:

1 - Picture frame of Pacific Coast Birch, unfinished, sanded smooth, approximately 18 1/2" x $241 / 2^{\prime \prime}$ outside dimensions.
1 - Safety glass, $1^{\prime \prime} \times 22^{\prime \prime} \times 7 / 32^{\prime \prime}$, laminated.
1 - Mask for a 21AP4 type tube, gray-green in color.
4 - Clips for holding the assembled frame to the wall.
621 B Kit for framing a $21^{\prime \prime}$ Cylindrical Faced glass tube. This kit is assembled at the factory, and is identical with the 621 A Kit except for the mask, which will fit a Cylindrical Faced glass tube instead of the metal tube.
$\frac{624 \text { Kit for framing a } 24 " \text { Round Metal Tube. This kit is assembled at the factory, }}{\text { and is composed of }}$ and is composed of the following items:

1 - Picture Frame of Pacific Coast Birch, unfinished, sanded smooth, approximately $22^{\prime \prime} \times 28^{\prime \prime}$ outside dimensions.
1 - Safety Glass, $20^{\prime \prime} \times 26^{\prime \prime} \times 7 / 32^{\prime \prime}$, laminated.
1 - Mask for a 24AP4 tube, gray-green in color.
4 - Clips for holding the assembled frame to the wall.

ELECTRICAL SPECIFICATIONS

PICTURE TUBE:
REMOTE PANEL CONTROLS:

21AP4 Metal Rectangular or 24AP4 Metal Round
Station Selector
Fine Tuning
Contrast
Off-On-Volume

©John F. Rider
6. Place the tie down cable in the groove in the plastic ring and pass the ends through the holes in the front corners of the chassis. Screw the nuts on the ends and tighten MODERATELY. These nuts need be only "finger tight" to secure the tube.
7. Solder anode connector to the end of the white wire extending through the front of the high voltage box. Snap this connector into the terminal in the plastic sleeve.
8. Loosen the wing screw protruding from the top of deflection yoke. Push the yoke mounting hood forward until the rubber rims engage the flare of the picture tube firmly. While holding the hood forward under moderate tension, tighten the two screws which fasten the hood to the top of the upright panels.
9. Push the deflection yoke forward until it also engages the flare of the picture tube, and tighten the wing screw in the top of the deflection yoke.
10. Clamp the Ion Trap Magnet around the neck of the picture tube, about $1 / 2^{\prime \prime}$ forward of the tube base.
11. Place the picture tube socket on the base of the picture tube. Dress the leads away from the tubes on the chassis, and also away from the picture tube.

INSTALLING A 21" GLASS TUBE

USING A 601 B KIT

1. Mount the front support blocks on the chassis, screwing the $8-32 \times 3 / 4$ " screws through the blocks and into the holes found $1 / 2^{\prime \prime}$ from the front of the chassis.
2. Remove the four screws which hold the yoke mounting panels to the chassis Move the entire assembly (yoke, focus coil and panels) back $11 / 4^{\prime \prime}$, by putting the screws into the front set of holes in the panels.
3. Fasten the $2^{\prime \prime} \times 1 / 4^{\prime \prime}$ grounding strips to front of yoke mounting panels, using $6-32 \times 1 / 4^{\prime \prime}$ self-threading screws.
4. Place the pieces of cork on the faces of the front blocks. If desired, the cork may be cemented to the blocks.
5. Loosen the screws which hold the yoke mounting hood on top of the mounting panels, allowing the yoke to slide toward the rear of the chassis.
6. Set the picture tube in place on the blocks, using extreme caution not to damage the deflection yoke windings with the prongs of the picture tube as the base of the tube is guided through the yoke. The anode connection on the side of the picture tube should be on your left as you face the tube. The grounding strips must make connection with the coating on the outside of the tube.
7. Place the tie down strap over the top of the picture tube and pass the ends through the holes in the front corners of the chassis Screw the nuts onto the ends of the strap MODERATELY. These nuts need be only "finger tight" to properly secure the tube.
8. Loosen the wing screw protruding from the top of the deflection yoke Push the yoke mounting hood forward until the rubber rim engages the flare of the picture tube firmly. While holding the hood forward under moderate tension, tighten the two screws which fasten the hood to the top of the upright panels.
9. Push the deflection yoke forward until it also engages the flare of the picture tube, and tighten the wing screw on top of the deflection yoke.
10. Clamp the ION TRAP MAGNET around the neck of the tube, about $1 / 2^{\prime \prime}$ forward of the base.
11. Place the picture tube socket on the base of the picture tube.
12. Dress the leads away from the tubes on the chassis, and also away from the picture tube.
13. Solder the anode connector onto the end of the white wire extending through the front wall of the high voltage box, and press connector into place on the picture tube.

INSTALLING A 24" TUBE

 USING A 604 A KIT1. Mount the front support brackets on the chassis. Each front support bracket is mounted (wood side forward) with one $8-32$ and one $6-32$ self-threading screws. The screws are driven upward from beneath the chassis. The 8-32 screw goes through the hole in the corner of the chassis and engages the center hole in the bracket.
2. Remove the deflection yoke hood and the focus magnet assembly from the upright panels at the rear of the chassis. Remove the panels, and replace them with the taller panels supplied with the $24^{\prime \prime}$ mounting kit. Replace the deflection yoke and hood, leaving it loose and free to slip toward the rear of the chassis. Remount the focus magnet on the new panels.
3. Unpack the type 24 AP 4 tube and place it face down on a soft pad to protect it from being scratched. Place the plastic sleeve over the tube, with high voltage clip on the side of the tube away from the socket key. Bend the high voltage clip around the front edge of the rim of the tube.
4. With the plastic sleeve snug against the tube, wrap the plastic ring around the front of the tube, over the sleeve. Secure the ring with the rubber band, which must lie flat in the groove.
5. Set the picture tube, complete with its ring and sleeve on the chassis, using extreme caution not to damage the deflection yoke windings with the prongs of the pic ture tube as the base of the tube is guided through the yoke. The high voltage clip should be on your left as you face the tube. The front mounting pieces should fit into the groove in the mounting ring.
6. Place the tie down cable in the groove in the plastic ring, and pass the ends through the holes in the outside ends of the front mounting assemblies. Screw the nuts on the ends of the rod and tighten moderately.
7. Solder anode connector to the end of the white wire extending through the front of the high voltage box. Snap this connector into the terminal in the plastic sleeve.
8. Loosen the wing screw which holds the deflection yoke in the yoke mounting hood. Push the yoke mounting hood forward until the rubber rims engage the flare of the picture tube firmly. While holding the hood forward under moderate tension, tighten the two screws which fasten the hood to the top of the upright panels.
9. Push the deflection yoke forward until it also engages the flare of the picture tube, and tighten the wing screw which holds it in the yoke mounting hood.
10. Clamp the Ion Trap Magnet around the neck of the picture tube about $1 / 2^{\prime \prime}$ forward of the tube base.
11. Place the picture tube socket on the base of the picture tube. Dress leads away from the tubes on the chassis, and away from the picture tube.

ELECTRICAL CONNECTIONS

Connect the tuner chassis with the picture chassis, using the 40 -foot cable provided. Connect a P.M. Type speaker to the speaker terminals on the picture tube chassis. Plug each unit into a 117 volt, 60 cycle source of power. Turn the system " ON " by clockwise rotation of the center control on the tuner chassis. The tubes in both chass is should now be lighted.

Set the brightness control on the picture chassis to maximum. Adjust the Ion Trap Magnet until the screen of the picture tube lights up. The Ion Trap may be rotated completely, and moved back and forth along the neck of the picture tube. Proper adjustment has been atta ined when the light on the face of the picture tube is at its maximum.

Connect an antenna to the antenna terminals on the tuner chassis, using 300 ohm twin lead. It should now be possible to tune in a station.

CENTERING THE PICTURE

Each FLEETWOOD system is operated at the factory with a standard picture tube and is properly adjusted. However, picture tubes vary slightly and, when first set up, the picture on your set may not be properly centered. Around the neck of the picture tube, to the rear of the deflection yoke, will be found a focus magnet. It is mounted on a shelf with a single wing nut and is adjustable laterally on the shelf. The shelf in turn is mounted with two wing nuts and is adjustable vertically. These adjustments permit centering the picture. If the picture must be raised, the focus coil must be raised. Similarly, if the picture must be moved to one side in order to be centered, the focus magnet must be moved in the same direction as it is necessary to move the picture.

After the picture has been centered, it will be necessary to readjust the Ion Trap. The Ion Trap MUST BE ADJUSTED FOR MAXIMUM SCRE EN BRIGHTNESS ONLY, OR THE PICTURE TUBE WILL BE DAMAGED, OVER A PERIOD OF TIME. MAKE ALL CENTERING ADJUSTMENTS WITH THE FOCUS COIL.

To level the picture, loosen the wing screw above the deflection yoke and turn the yoke slightly. Keep the yoke pushed forward against the flare of the picture tube when
tightening the wing screw.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS: These adjustments should be made only if a reliable test pattern is available from a station. During some parts of the day several stations may be transmitting test patterns, and their individual differences may be "averaged." Generally speaking, the "Vertical Linearity" controls the top portion of the picture, and can make the test pattern "flat headed" or "egg headed." After changing the Vertical Linearity, the height will probably have to be reset.

HORIZONTAL HOLD: If the stations should come in as a series of black and white bars running diagonally across the screen, adjust the Horizontal Hold. Do not center the picture with this control

VERTICAL HOLD: Proper adjustment of this control will prevent the picture from "rolling" either up or down. When the Horizontal and Vertical Hold controls have been adjusted, they should not require re-setting for many months.

BRIGHTNESS: With no station tuned in, adjust this control so that the screen is nearly dark.

NORMAL OPERATION OF THE SYSTEM:

Select a station desired with the Station Selector Knob. Behind this knob is a FINE TUNING CONTROL. Turn this control counter-clockwise until the picture appears to be covered with a fine mesh pattern, or has "sound" in it. Turn the fine tuning control clockwise until this effect just disappears. This will be the point at which the picture will have a maximum of fine detail.

Adjust the CONTRAST control for the most pleasing picture. Too much contrast will give the picture a coarse appearance, while too little contrast will give the picture a 'washed out'' appearance.

OPERATION OF THE SYSTEM WITH A SEPARATE AUDIO SYSTEM:

On the rear of the tuner chassis is a jack marked DETECTOR OUTPUT, which may be used to supply audio to an external amplifier. In this case, the volume control in the tuner will not function, and the loudness or volume control in the external system must be used. It is important that the speaker terminals on the picture tube chassis be shorted with a wire at all times if there is no speaker connected to these terminals. Failure to do so may result in damage to the audio output transformer in the picture tube chassis.

CABINET CONSIDERATIONS

The FLEETWOOD picture chassis should always be mounted in a cabinet, or in an enclosure behind a wall. In either case, the face of the picture tube should be protected by a safety glass window. Suitable laminated safety glass, together with a Royalite Picture Mask and a mounting frame are available in the FLEETWOOD 621 Accessory Kit (for 21" tube); and the FLEETWOOD 624 Accessory Kit (for 24" tube). This safety glass should be mounted on a plywood panel not less than $1 / 4^{\prime \prime}$ thick. Panel layout drawings will be found in the back of this manual.

OJohn F. Rider

A piece of the plywood $2-1 / 2^{\prime \prime} \times 10-1 / 2^{\prime \prime}$ should be salvaged from the panel cutout to make a matching cover for the secondary controls. Two spring clips are provided to hold the cover in place. This cover will rarely have to be opened after the set has been properly adjusted. If the set is housed in a cabinet, the back of the cabinet should be masonite. Ventilation should be provided by piercing the masonite with holes not larger than $1 / 4^{\prime \prime}$ in diameter, on centers not greater than $1 / 2^{\prime \prime}$.

In order that the longest possible life may be expected from the tubes and other components in the system, it is imperative that both chassis be installed in a manner that will provide adequate ventilation. The shelf on which the picture chassis is mounted should have an opening approximately ten inches square, near the center of the chassis. This opening should be covered with hardware cloth, or heavy screen.

MOUNTING THE TUNER

If the tuner is to be installed in a piece of furniture, check the thickness of the panel behind which it is to be installed. If the panel is not over $1 / 2^{\prime \prime}$ thick, the front panel and the bottom of the tuner may be removed and the dial bezel may be mounted directly on the panel.

An opening approximately $4^{\prime \prime} \times 6^{\prime \prime}$ should be made in the shelf beneath the chassis for ventilation, and the opening should be covered with hardware cloth or heavy screen. Provision must also be made for ventilating the top of the chassis. At least 30 square inches of opening is recommended, at either the top, back, or sides of the tuner.

SERVICE NOTES

OSCILLATOR ADJUSTMENT

If the fine tuning control knob does not turn far enough to properly bring in a particular station, set the fine tuning control at the middle of its range. Turn the oscillator adjusting slug clockwise until the picture has "sound interference" in it. Turn slug counter-clockwise until this interference just disappears. This slug can be adjusted through the hole located one inch to the right of, and $1 / 4$ inch above the station selector shaft. As the station selector is turned to a different station, a different slug will appear in the hole. Use a non-metallic screw driver. A fraction of a turn should be sufficient.

Should the slug "fall into" the coil form, remove the bottom tuner cover by pulling downward on its for ward end, and remove the forward channel coil cartridge of the station concerned. Move the slug retaining spring out of its slot, and tap the coil assembly until slug slips forward. Set the retaining spring in place so that it rests firmly against the slug, and reassemble the tuner.

If the fine tuning is off in the same direction on all stations, due to replacing V2 (6J6), set the station selector on a station in the "high group" (11-13), set the fine tuning knob in the middle of its range. Turn C15 counter-clockwise until the picture has "sound interference" in it, then turn it clockwise until this interference just disappears.

I. F. ALIGNMENT -- VIDEO

1. Connect the negative terminal of a 3-volt battery to the junction of C118 and R105; positive grounded.
2. Connect the negative probe of a VTVM to point "A" at the "high' end of the contrast potentiometer; positive meter terminal to ground.
3. Connect signal generator having a $21-28 \mathrm{mc}$ range, to pin \#1 of V101 (6CB6) through a D.C. blocking condenser.

Adjust the following:

Coil
T105 - Bottom Slug
T101 - Bottom Slug
T102
T105 - Top Slug
T101 - Top Slug
L104
L105

Frequency
Indication
Null
Null
Null
Maximum
Maximum
Maximum
Maximum

Replace the VTVM with an oscilloscope, and the signal generator with a sweep generator, adjusted to sweep $20-28$ M.C. If necessary, re-adjust T101 (top), T105 (top), L104 and L105 to produce a curve approximately as shown:

Set marker generator to 23.7 and adjust L9 so that the dip produced by it is at 23.7 mc . Move the sweep generator lead to the output terminal of the tuner and adjust L101 for maximum response at 23.7 m.c.

TUNER ADJUSTMENT

Set sweep generator on channel 12 and feed the antenna terminals through a balancing network as shown:

Set station selector on channel 12 and adjust C6, C2 and C7 for maximum output and minimum tilt on top of curve.

I. F. ALIGNMENT - SOUND CHANNEL

1. Connect a voltmeter from the junction of R125 and R126 (point D) to ground. Tune in a station. Adjust T103, top and bottom, and T104 bottom for maximum reading. Connect the voltmeter between points C and D and adjust T104 top for zero volt age.

4 1/2 M.C. VDEO TRAP ADJUSTMENT

With a station tuned in, turn the fine tuning control knob counter-clockwise until "sound interference" can be seen in the picture. Adjust L107 for a minimum of this interference

HORIZONTAL OSCILLATOR ADJUSTMENTS:

1. Horizontal Linearity, L604:

Connect a voltmeter across the cathode resistor of the 6CD6, R609, and adjust the Horizontal Linearity Coil, L604 for minimum voltage, while watching a standard test pattern. Proper adjustment will be attained when the two halves of the pattern are similar, and will be close to the point of minimum cathode voltage.
2. Horizontal Frequency, L603:

With a station tuned in, temporarily ground the grid, pin \#1, of V601, the horizontal oscillator. Set the horizontal hold in the middle of its range, and adjust L603 until the picture is nearly stopped. Remove temporary ground from pin \#1, V601.
3. Horizontal Drive, C609:

With a station tuned in, set contrast at its minimum, and brightness so that the screen is lighted. Turn C609 clockwise from the rear of the chassis (loosen) until a white vertical bar appears near the middle of the screen. Tighten (coun ter-clockwise) until the bar just disappears.
4. Width:

Adjust so that $1 / 8^{\prime \prime}$ to $1 / 4^{\prime \prime}$ of the picture is off the screen on each side.

©John F. Rider

All resistors are $1 / 2$ watt, 10% composition except as noted.				C-611	500 mmf 20 KV
RESISTORS		R-205, R-427,		C-416 $\mathrm{C}-203$	$.0015 \mathrm{mf} 10 \%$, mica .004 mf 600 V , tubular paper molded
		R-408, R-426, R-607. R-419,		C-612, C-614	.01 mf 600 V , molded paper
Symbol No.	Description	R-436	$470 \mathrm{~K} \Omega$	C-201, C-412	. 005 mf 500 V , ceramic disc
		R-505	$250 \mathrm{~K} \Omega 1 \mathrm{w}$	C-506, C-615,	
R-615	3.9』, w.w.	R-513, R-428	1 meg	C-407	. 006 mf 600 V , paper
R-302	10ת,w.w.	R-509 ${ }^{\text {R-513 }}$	1.2 meg	C-601	$.006 \mathrm{mf} 500 \mathrm{~V} 10 \%$, mica
R-431	$51 \Omega 5 \%$	R-414, R-417	2.2 meg	C-505	. 015 mf 600 V , paper
R-430	100Ω	R-202	10 meg	C-604	. 01 mf 600 V , paper
R-608	150Ω	POTENTIOMETERS		$\begin{aligned} & \text { C-609 } \\ & \text { C-202, C-510 } \end{aligned}$	700 mmf , trimmer .02 mf 600 V , paper
R-207	270Ω	Symbol No.	Description	C-302, C-305	. $022 \mathrm{mf} \mathrm{600V}$
R-304	$470 \Omega 1 w$	Symbol No.	Description	C-403, C-408,	
R-619, R-620	560Ω	R-511	3000Ω (Vert. Lin.)	C-413, C-507, $\mathrm{C}-607, \mathrm{C}-608$	
R-609	300 ${ }^{\text {c }} 10 \mathrm{w}$, w.w.	R-305	3000Ω (Focus)	$\begin{aligned} & \text { C-607, } \\ & \text { C-415 } \end{aligned}$. 05 mf 600 V , paper 20%
R-208	$1000 \Omega 20 \% 2 \mathrm{w}$ 1000Ω	R-412	500 K (Brightness)	C-404, C-606,	. 22 mf 600 V , molded paper
R-602	$1500 \Omega 5 \%$	$\mathrm{R}-605$ $\mathrm{R}-508$	$100 \mathrm{~K} \Omega$ (Horiz. Hold) $250 \mathrm{~K} \Omega$ (Vert. Hold)	C-509, C-616	. 1 mf 600 V , paper
R-512	$2000 \Omega 1 \mathrm{w}$	R-510	2 meg (Height)	C-511	. 25 mf 600 V , paper
R-506	1800Ω			C-605	. 5 mf 200 V , paper
R-617	2200ת 2w 20\%	VACUUM TUBES		C-618	20 mf 450 V
R-422	2700Ω	VACUUM		$\begin{aligned} & \mathrm{C}-508 \\ & \mathrm{C}-303 \mathrm{~A}, \\ & \mathrm{C}-303 \mathrm{~B} / \mathrm{C} 406, \\ & \mathrm{C}-303 \mathrm{C}, \end{aligned}$	50 mf 50 V , electrolytic
R-432	$2700 \Omega 5 \%$	Symbol No.	Description		
R-421	3900Ω 3900Ω $2 w$	V-404	6AL5		
R-405	$4700 \Omega 2 \mathrm{w}$ 5\%	V-602	6CD6G	C-303D/C617	$20 \times 20 \times 20 \times 20 \mathrm{mf} 450 \mathrm{~V}$, electrolytic
R-601, R-606	$4700 \Omega 5 \%$	V-201	6AV6	C-304A/C204,	
R-310	$5600 \Omega 2 \mathrm{w}$	V-202	6V6GT	C-304B/C205,	
R-423	4700Ω	V-301	5U4G	C-304C/C610,	
R-308	$7500 \Omega 10 \mathrm{w}$, w.w.	V-401	6AC7	C-304D	$20 \times 20 \times 20 \mathrm{mf} 450 \mathrm{~V}+20 \mathrm{mf} 25 \mathrm{~V}$, elec.
R-610	$18 \mathrm{~K} \Omega 3 \mathrm{w}$	$\mathrm{V}-501, \mathrm{~V}-601$,		C-301A, B	$40 \times 40 \mathrm{mf} \mathrm{475V}$
R-433	$10 \mathrm{~K} \Omega$	V-403	6SN7GT		
R-611	$10 \mathrm{~K} \Omega 1 \mathrm{w}$	V-502	6S4	COILS AND TR	NSFORMERS
R-514	$15 \mathrm{~K} \Omega$	V-603	6W4GT		
R-406, R-429,		V-604	1B3GT	Symbol No.	Description
R-612	22Kת	V-402	6BE6		
R-418	39Kת	V-406	6AB4	L-301	Filter choke
R-613, R-614	$47 \mathrm{~K} \Omega$	V-405	Kinescope	L-302	Focus coil, 1400Ω
R-515	$82 \mathrm{~K} \Omega$			L-404	Series peaking coil, $93 \mu \mathrm{~h}$
R-616, R-621	82Kת 1w	CAPACITORS		L-402	Shunt peaking coil, $450 \mu \mathrm{~h}$
R-301, R-410,				L-403	Series peaking coil, $215 \mu \mathrm{~h}$ on 22 K res.
R-424, R-425,		Symbol No.	Description	L-602	Width coil, 3-16 $\mu \mathrm{h}$
R-416	$100 \mathrm{~K} \Omega$			L-603	Ringing coil, 5.5-20 h
R-203, R-507	220Kת	C-603	$47 \mathrm{mmf} 10 \% 500 \mathrm{~V}$, mica	L-601	Deflection yoke, $181 / 2 \mu \mathrm{~h}$
R-603, R-604	$180 \mathrm{~K} \Omega$	C-613	$47 \mathrm{mmf} 10 \% 1 \mathrm{KV}$, mica	L-604	Linearity coil, $1.5-8.3 \mu \mathrm{~h}$
R-409	$330 \mathrm{~K} \Omega$	C-409	$220 \mathrm{mmf} 20 \%$, mica	T-201	Audio output
R-415	$390 \mathrm{~K} \Omega$	C-602	270mmf 5\%, mica	T-301	Power Vertical output
		C-410, C-411	500mmf 10\%	T-601	Horizontal output

All resistors are $1 / 2$ watt, 10% Composition except as noted.		
RESISTORS		
Symbol No.		Description
R-141		1. $5 \Omega 1 \mathrm{w}$, w.w.
R-102		$51 \Omega 5 \%$
R-104, $\mathrm{R}-110$		68ת 5\%
R-106, $\mathrm{R}-112$,		
R-113, R-115,		
R-117, R-120		150ת
R-137		$150 \Omega 10 \mathrm{w}$, w.w.
R-123		270』
R-139		$800 \Omega 10 \mathrm{w}$, w.w.
R-105, R-107,		
$\mathrm{R}-114, \mathrm{R}-122,$		
R-135, R-133		1000ת
R-140		$2000 \Omega 10 w, w . w$.
R-138		3900 ${ }^{\text {1w }}$
R-101		3300 5%
R-108, R-111		$4700 \Omega 5 \%$
R-116		5600』 5\% 1w
R-132		6800 ${ }^{\text {1w }}$
R-103, R-109		$10 \mathrm{~K} \Omega 5 \%$
R-125, R-126		$10 \mathrm{~K} \Omega$
R-127		$15 \mathrm{~K} \Omega 1 \mathrm{w}$
$\mathrm{R}-124, \mathrm{R}-128$,		
R-136		22Kת
R-121		$100 \mathrm{~K} \Omega$
R-118, R-119,		
R-129		470K
POTENTIOMETERS		
Symbol No.	Descr	
R-201	$500 \mathrm{~K} \Omega$	e) with switch
R-142	5000Ω	ast)
VACUUM TUBES		
V-107	6AL5	
V-102, V-103,		
V-104, V-106	6AU6	

FLEETWOOD MODEL 610 TELEVISION RECEIVER

The Fleetwood Model 610 Television Receiver is a Custom Quality chassis designed for installation into a wall, or for use in a special cabinet. It is especially suited for installations which include high fidelity sound systems and record players. Two types of audio output are provided, making it possible to connect the receiver into almost any sound system without circuit changes, or to operate a loud-speaker from the amplifier which is included in the 610 Receiver.

The Fleetwood 610 Receiver will accommodate a $21^{\prime \prime}$ or a $24^{\prime \prime}$ picture tube, either metal or glass. Kits are available, which will mount any of the standard types of tubes. When the Receiver has been fitted with the desired type of picture tube, it makes a complete package, with everything except the loud-speaker firmly mounted onto a single chassis The chassis may be mounted in any position. A set of knobs is supplied with the Fleetwood 610.

UHF Tuner strips are available which will enable the FLEETWOOD to receive any of the new Ultra High Frequency stations. A set of these strips replaces a set of coils which are not used in a particular locality. The Super Cascode turret type tuner with which your Fleetwood is equipped insures maximum sensitivity on any channel, in both the VHF and UHF bands. When properly fitted with the strips for the UHF stations in your locality, these channels can be tuned in as easily as the regular VHF channels. An extra position on the dial is provided to show UHF when such a station is tuned in. The panel light associated with the replaced coils can easily be moved to this UHF position behind the dial panel.

ELECTRICAL SPECIFICATIONS

PICTURE TUBE:	21AP4
(Not Supplied)	21EP4
	24AP4
CONTROLS:	Off-Volume
	Contrast
	Brightness
	Station Selector-fine tuning
SECONDARY CONTROLS:	Vertical Hold
	Horizontal Hold
	Height
	Vertical Linearity
SECONDARY CONTROLS: (Rear of Chassis)	Width
	Horizontal Drive
	Horizontal Linearity
	Focus
I. F . FREQUENCIES:	Video 25.75 Mc.
	Audio 4.5 Mc.
BANDWIDTH:	Video 4 Mc .

AUDIO OUTPUT:

1. Ratio detector output; no volume control.
2. 6V6 Power Amplifier with inverse feedback.

POWER:

PICTURE TUBE ANODE VOLTAGE:

TUBE COMPLEMENT:

117 Volts, 60 Cycles 210 Watts

18 kv , design center, 20.5 kv max.

1-6BQ7	Cascode RF Amplifier
1-6J6	First Detector \& Local Oscillator
1-6CB6	First I. F. Amplifier
3-6AU6	2nd, 3rd, and 4th I. F. Amplifiers
1-12AU7	Video Detector, AGC Rectifier and
	1st I. F. Amplifier
1-6AU6	2nd Sound I. F. Amplifier
1-6AL5	Ratio Detector
1-6AV6	1st Audio Amplifier
1-6V6	Audio Power Amplifier
1-6AC7	Video Amplifier
1-6BE6	Sync Stripper and Noise Inverter
1-6SN7	Sync Phase Inverter
1-6AL5	Horizontal Phase Discriminator
1-6SN7	Horizontal Oscillator
1-6CD6	Horizontal Amplifier
1-6W4	Horizontal Damper
$1-1$ 1B3	High Voltage Rectifier
1-6SN7	Vertical Oscillator
$1-6 S 4$	Vertical Output Amplifier
$1-5 U 4$	Plate Supply Rectifier

WARNING - HIGH VOLTAGE

Extremely high voltages are used in the operation of this set. To avoid personal injury, extreme care should be exercised so that no contact is made with any components connected to the high voltage circuits. Do Not Operate the receiver with the high voltage compartment shield removed.

WARNING - PICTURE TUBE HANDLING

Particular care must be exercised when handling picture tubes due to their high vacuum and large surface area. The picture tube must not be struck, scratched, or subjected to more than moderate pressure at any time as fracture of the glass will re sult in an implosion of considerable violence capable of damaging both property and person.

DIMENSIONS

Width Height		Depth	
$201 / 4$	$141 / 2$		$201 / 4$
$203 / 4$	21		$231 / 4$
26	30		$251 / 4$

UNPACKING

Remove the chassis from the shipping carton. A small package will be found in the carton, which contains a set of knobs, the Ion Trap for the neck of the picture tube a pair of clips for holding a trap door in position over the secondary controls, and some small wood screws for mounting the clips onto the back side of the trap door. As soon as the receiver has been unpacked, examine it for any apparent damage which may have occurred in shipment. Should any damage be found, file a claim immediately with the carrier, stating the extent of the damage.

$$
\frac{\text { INSTALLING A 21" METAL PICTURE TUBE (21AP4) }}{\text { USING } 601 \text { A KIT }}
$$

1. Mount the front support blocks on the chassis, ridges forward, screwing the $8-32 \times 3 / 4^{\prime \prime}$ self-threading screws through the blocks and into the holes found $1 / 2^{\prime \prime}$ from the front of the chassis.
2. Unpack the type 21AP4 picture tube and place it face down on a soft pad to protect it from being scratched. Place plastic sleeve over the tube away from the socket key. Bend the clip around the front edge of the rim of the picture tube.
3. With the plastic sleeve snug against the tube, wrap the plastic ring around the ront rim of the tube, over the sleeve. Work the ring tightly around the tube. Secure the ring with the rubber band, which must lie flat in the groove.
4. Loosen the screws which hold the yoke mounting hood on top of the mounting panels, allowing the yoke to slip toward the rear of the chassis.
5. Set the picture tube, complete with its ring and plastic cover, in place on the chassis, using extreme caution not to damage the deflection yoke windings with the prongs of the picture tube as the base of the tube is guided through the yoke. The high voltage clip should be on your left as you face the tube. The ridges on the front mount ing blocks should fit into the groove in the mounting ring.
6. Place the tie down cable in the groove in the plastic ring and pass the ends through the holes in the front corners of the chassis. Screw the nuts on the ends and tighten MODERATELY. These nuts need be only "finger tight" to secure the tube.
7. Solder anode connector to the end of the white wire extending through the front of the high voltage box. Snap this connector into the terminal in the plastic sleeve.
8. Loosen the wing screw protruding from the top of deflection yoke. Push the yoke mounting hood forward until the rubber rims engage the flare of the picture tube firmly. While holding the hood forward under moderate tension, tighten the two screws which fasten the hood to the top of the upright panels.
9. Push the deflection yoke forward until it also engages the flare of the picture tube, and tighten the wing screw in the top of the deflection yoke.
10. Clamp the Ion Trap Magnet around the neck of the picture tube, about $1 / 2^{\prime \prime}$ forward of the tube base.
11. Place the picture tube socket on the base of the picture tube. Dress the leads away from the tubes on the chassis, and also away from the picture tube.

$\frac{\text { INSTALLING A 21" GLASS TUBE }}{\text { USING A } 601 \mathrm{~B} \text { KIT }}$
 SNG A 601 B KI

1. Mount the front support blocks on the chassis, screwing the $8-32 \times 3 / 4^{\prime \prime}$ screws through the blocks and into the holes found $1 / 2^{\prime \prime}$ from the front of the chassis
2. Remove the four screws which hold the yoke mounting panels to the chassis Move the entire assembly (yoke, focus coil and panels) back $1 / 4^{\prime \prime}$, by putting the screws into the front set of holes in the panels.
3. Fasten the $2^{\prime \prime} \times 1 / 4^{\prime \prime}$ grounding strips to front of yoke mounting panels, using 6-32 $\times 1 / 4^{\prime \prime}$ self-threading screws.
4. Place the pieces of cork on the faces of the front blocks If desired, the cork may be cemented to the blocks.
5. Loosen the screws which hold the yoke mounting hood on top of the mounting panels, allowing the yoke to slide toward the rear of the chassis
6. Set the picture tube in place on the blocks, using extreme caution not to damage the deflection yoke windings with the prongs of the picture tube as the base of the tube is guided through the yoke. The anode connection on the side of the picture tube should be on your left as you face the tube. The grounding strips must make connection with the coating on the outside of the tube.
7. Place the tie down strap over the top of the picture tube and pass the ends through the holes in the front corners of the chassis. Screw the nuts onto the ends of the strap MODERATELY. These nuts need be only 'finger tight' to properly secure the tube.
8. Loosen the wing screw protruding from the top of the deflection yoke. Push the yoke mounting hood forward until the rubber rim engages the flare of the picture tube firmly. While holding the hood forward under moderate tension, tighten the two screws which fasten the hood to the top of the upright panels.
9. Push the deflection yoke forward until it also engages the flare of the picture tube, and tighten the wing screw on top of the deflection yoke.
10. Clamp the ION TRAP MAGNET around the neck of the tube, about $1 / 2^{\prime \prime}$ forward of the base.
11. Place the picture tube socket on the base of the picture tube
12. Dress the leads away from the tubes on the chassis, and also away from the picture tube.
13. Solder the anode connector onto the end of the white wire extending through the front wall of the high voltage box, and press connector into place on the picture tube.

NSTALLING A 24" TUBE

USING A 604 A KIT

1. Mount the front support brackets on the chassis. Each front support bracket is mounted (wood side forward) with one $8-32$ and one $6-32$ self-threading screws. The screws are driven upward from beneath the chassis. The 8-32 screw goes through the hole in the corner of the chassis and engages the center hole in the bracket.
2. Remove the deflection yoke hood and the focus magnet assembly from the upright panels at the rear of the chassis. Remove the panels, and replace them with the taller panels supplied with the $24^{\prime \prime}$ mounting kit. Replace the deflection yoke and hood, leaving it loose and free to slip toward the rear of the chassis. Remount the focus magnet on the new panels
3. Unpack the type 24AP4 tube and place it face down on a soft pad to protect it from being scratched. Place the plastic sleeve over the tube, with high voltage clip on the side of the tube away from the socket key. Bend the high voltage clip around the front edge of the rim of the tube.
4. With the plastic sleeve snug against the tube, wrap the plastic ring around the ront of the tube, over the sleeve. Secure the ring with the rubber band, which must lie flat in the groove
5. Set the picture tube, complete with its ring and sleeve on the chassis, using extreme caution not to damage the deflection yoke windings with the prongs of the picture tube as the base of the tube is guided through the yoke. The high voltage clip should be on your left as you face the tube. The front mounting pieces should fit into the groove in the mounting ring.
6. Place the tie down cable in the groove in the plastic ring, and pass the ends through the holes in the outside ends of the front mounting assemblies. Screw the nuts on the ends of the rod and tighten moderately.
7. Solder anode connector to the end of the white wire extending through the front of the high voltage box. Snap this connector into the terminal in the plastic sleeve.
8. Loosen the wing screw which holds the deflection yoke in the yoke mounting hood. Push the yoke mounting hood forward until the rubber rims engage the flare of the picture tube firmly. While holding the hood forward under moderate tension, tighten the two screws which fasten the hood to the top of the upright panels.
9. Push the deflection yoke forward until it also engages the flare of the picture tube, and tighten the wing screw which holds it in the yoke mounting hood.
10. Clamp the Ion Trap Magnet around the neck of the picture tube about $1 / 2^{\prime \prime}$ forward of the tube base.
11. Place the picture tube socket on the base of the picture tube. Dress leads away from the tubes on the chassis, and away from the picture tube.

ELECTRICAL CONNECTIONS

Connect a PM type speaker to the speaker terminals on the chassis Connect an antenna to the antenna terminals, using 300 ohm twin lead. Plug the unit into a 117 volt, 60 cycle source. Turn the receiver on by clockwise rotation of the "off-volume" control. The tubes in the receiver should now be lighted. Set the brightness control to maximum (clockwise rotation). Adjust the Ion Trap Magnet until the screen of the picture tube lights up. The Ion Trap may be rotated completely, and moved back and forth along the neck of the picture tube. Proper adjustment has been attained when light of the face of the tube is at its maximum. It should now be possible to tune in a station.

CENTERING THE PICTURE

Each FLEETWOOD system is operated at the factory with a standard picture tube and is properly adjusted. However, picture tubes vary slightly and, when first set up, the picture on your set may not be properly centered. Around the neck of the picture tube, to the rear of the deflection yoke, will be found a focus magnet. It is mounted on a shelf with a single wing nut and is adjustable laterally on the shelf. The shelf in turn is mounted with two wing nuts and is adjustable vertically. These adjustments permit centering the picture. If the picture must be raised, the focus coil must be raised. Similarly, if the picture must be moved to one side in order to be centered, the focus magnet must be moved in the same direction as it is necessary to move the picture.

After the picture has been centered, it will be necessary to readjust the Ion Trap. The Ion Trap MUST BE ADJUSTED FOR MAXIMUM SCREEN BRIGHTNESS ONLY OR THE PICTURE TUBE WILL BE DAMAGED, OVER A PERIOD OF TIME. MAKE ALL CENTERING ADJUSTMENTS WITH THE FOCUS COIL.

To level the picture, loosen the wing screw above the deflection yoke and turn the yoke slightly. Keep the yoke pushed forward against the flare of the picture tube when tightening the wing screw.

HEIGHT AND VERTICAL LINERARITY ADJUSTMENTS: These adjustments should be made only if a reliable test pattern is available from a station. During some parts of the day several stations may be transmitting test patterns, and their individual differences may be "averaged." Generally speaking, the "Vertical Linearity" controls the top portion of the picture, and can make the test pattern "flat headed" or "egg headed." After changing the Vertical Linearity, the height will probably have to be reset.

HORIZONTAL HOLD: If the stations should come in as a series of black and white bars running diagonally across the screen, adjust the Horizontal Hold. Do not center the picture with this control

VERTICAL HOLD: Proper adjustment of this control will prevent the picture from "rolling"' either up or down. When the Horizontal and Vertical Hold controls have been adjusted, they should not require re-setting for many months.

NORMAL OPERATION OF THE SYSTEM: Select a station desired with the Station Selector Knob. Behind this knob is a FINE TUNING CONTROL. Turn this control counter-clockwise until the picture appears to be covered with a fine mesh pattern, or has "'sound" in it. Turn the fine tuning control clock-wise until this effect just disappears. This will be the point at which the picture will have a maximum of fine detail.

Adjust the CONTRAST CONTROL for the most pleasing picture. Too much contrast will give the picture a coarse appearance, while too little contrast will give the picture a "washed out"' appearance.

Adjust the BRIGHTNESS for the amount of light desired.

OPERATION OF THE SYSTEM WITH A SEPARATE AUDIO SYSTEM: On the rear of the chassis is a jack marked DETECTOR OUTPUT, which may be used to supply audio to an external amplifier. In this case, the volume control on the receiver will not function, and the loudness or volume control in the external system must be used. It is important that the speaker terminals on the picture tube chassis be shorted with a wire at all times if there is no speaker connected to these terminals. Failure to do so may result in damage to the audio output transformer in the picture tube chassis.

The FLEETWOOD picture chassis should always be mounted in a cabinet, or in an enclosure behind a wall. In either case, the face of the picture tube should be proteck. ted by a safety glass window. Suitable laminated safety glass, together with a Royalite Picture Mask and a mounting frame are available in the FLEETWOOD 621 Accessory Kit (for 21" tube), and the FLEETWOOD 624 Accessory Kit (for 24" tube). This safety glass should be mounted on a plywood panel not less than $1 / 4^{\prime \prime}$ thick. Panel layout drawings will be found in the back of this manual.

A piece of the plywood $21 / 2^{\prime \prime} \times 101 / 2^{\prime \prime}$ should be salvaged from the panel cutout to make a matching cover for the secondary controls. Two spring clips are provided to hold the cover in place. This cover will rarely have to be opened after the set has been properly adjusted. If the set is housed in a cabinet, the back of the cabinet should be masonite. Ventilation should be provided by piercing the masonite with holes not larger than $1 / 4^{\prime \prime}$ in diameter, on centers not greater than $1 / 2^{\prime \prime}$.

In order that the longest possible life may be expected from the tubes and other components in the system, it is imperative that both chassis be installed in a manner that will provide adequate ventilation. The shelf on which the picture chassis is mounted should have an opening approximately ten inches square, near the center of the chassis. This opening should be covered with hardware cloth, or heavy screen.

SERVICE NOTES

OSCILLATOR ADJUSTMENT

If the fine tuning control knob does not turn far enough to properly bring in a particular station, set the fine tuning control at the middle of its range. Turn the oscillator adjusting slug clockwise until the picture has "sound interference"' in it. Turn slug counter-clockwise until this interference just disappears. This slug can be adjusted through the hole located one inch to the right of, and $1 / 4$ inch above the station selector shaft. As the station selector is turned to a different station, a different slug will appear in the hole. Use a non-metallic screw driver. A fraction of a turn should be sufficient.

Should the slug "fall into" the coil form, remove the bottom tuner cover by pulling downward on its forward end, and remove the forward channel coil cartridge of the station concerned. Move the slug retaining spring out of its slot, and tap the coil assembly until slug slips forward. Set the retaining spring in place so that it rests firmly against the slug, and reassemble the tuner.

If the fine tuning is off in the same direction on all stations, due to replacing V2 (6J6), set the station selector on a station in the "high group" (11-13), set the fine tuning knob in the middle of its range. Turn C15 counter-clockwise until the picture has "sound interference"' in it, then turn it clockwise until this interference just disappears.

1. Connect the negative terminal of a 3 -volt battery to the junction of C118 and R105; positive grounded.
2. Connect the negative probe of a VTVM to pin \#4 of the 6AC7 tube; positive meter terminal to ground.
3. Connect signal generator having a $21-28 \mathrm{mc}$ range, to pin \#1 of V101 (6CB6) through a D.C. blocking condenser.

Adjust the following:

Coil	Frequency	Indication
T105 - Bottom Slug	27.25	Null
T101 - Bottom slug	21.1	Null
T102	$21: 25$	Null
T105 - Top Slug	25.5	Maximum
T101 - Top Slug	22	Maximum
L104	24.5	Maximum
L105		Maximum

Replace the VTVM with an oscilloscope, and the signal generator with a sweep generator, adjusted to sweep 20-28 M.C. If necessary, re-adjust T101 (top), T105 (top), L104 and L105 to produce a curve approximately as shown:

Set marker generator to 23.7 and adjust L9 so that the dip produced by it is at 23.7 mc . Move the sweep generator lead to the output terminal of the tuner and adjust L101 for maximum response at $23.7 \mathrm{~m} . \mathrm{c}$.

TUNER ADJUSTMENT
Set sweep generator on channel 12 and feed the antenna terminals through a balancing network as shown:

Set station selector on channel 12 and adjust C6, C2 and C7 for maximum output and minimum tilt on top of curve.

I. F. ALIGNMENT - SOUND CHANNEL

1. Connect a voltmeter from the junction of R125 and R126 (point D) to ground. Tune in a station. Adjust T103, top and bottom, and T104 bottom for maximum reading Connect the voltmeter between points C and D and adjust T104 top for zero voltage.

$41 / 2$ M.C. VIDEO TRAP ADJUSTMENT

With a station tuned in, turn the fine tuning control knob counter-clockwise until "sound interference" can be seen in the picture. Adjust L107 for a minimum of this interference.

HORIZONTAL OSCILLATOR ADJUSTMENTS:

1. Horizontal Linearity, L604:

Connect a voltmeter across the cathode resistor of the 6CD6, R609, and adjust the Horizontal Linearity Coil, L604 for minimum voltage, while watching a standard test pattern. Proper adjustment will be attained when the two halves of the pattern are similar, and will be close to the point of minimum cathode voltage.
2. Horizontal Frequency, L603:

With a station tuned in, temporarily ground the grid, pin \#1, of V601, the horizontal oscillator. Set the horizontal hold in the middle of its range, and adjust L603 until the picture is nearly stopped. Remove temporary ground from pin \#1, V601.
3. Hor izontal Drive, C609:

With a station tuned in, set contrast at its minimum, and brightness so that the screen is lighted. Turn C609 clockwise from the rear of the chassis (loosen) until a white vertical bar appears near the middle of the screen. Tighten (counter-clockwise) until the bar just disappears.
4. Width:

Adjust so that $1 / 8^{\prime \prime}$ to $1 / 4^{\prime \prime}$ of the picture is off the screen on each side.

VOLTAGE CHART									
Tube No.	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9
V101	-2	.3	F	0	125	125	0		
V102	-2	0	F	0	125	125	.3		
V103	-2	0	F	-	105	130	.3		
V104	0	0	F	0	95	133	1.1		
V105	125	0	1.6	F	F	-2	-.8	0	0
V106	-.8	0	0	F	60	60	0		
V107	-.6	-.6	0	F	0	0	-1.1		
V401	0	0	0	-.6	$0 / 9$	$110 / 190$	F	$140 / 200$	-
V402	-2	0	F	0	12	15	-1	-	-
V403	0	0	0	0	220	10	F	0	
V404	2.7	-4	F	0	0	-	0		
V501	0	75	3	-18	100	3	F	0	
V502	-	40	0	0	F	0	40	-	600
V601	± 2	265	11	-11	135	11	F	0	
V602	-	0	30	-	-3	-	F	160	
V603	-	-	Do not measure	340	-		650	650	
V201	-.9	0	F	0	0	0	100		
V202	0	0	170	190	0	-	F	9	
V301	-	360	-	$357 A C$	-	$357 A C$	-	360	

Kinescope Pin \#1-F Pin \#2-65 Pin \#10-420 Pin \#11-110 Pin\#12-0
Readings taken with RCA Voltohmist or equivalent VTVM.

Symbol No.	Description	Symbol No.	Description	Symbol No.	Description
				C414	01 mf ceramic disc
RESISTORS		R407, R409 R415	$330 \mathrm{~K} \Omega 10 \% 1 / 2 \mathrm{w}$ $390 \mathrm{~K} \Omega 10 \% 1 / 2 w$	C609	700 mmf , trimmer
		R415 R119, R129,	$390 \mathrm{~K} \Omega 10 \% 1 / 2 \mathrm{w}$	C202, C510	. 02 mf 600 V , paper
R615	$3.9 \Omega 10 \% 1 / 2 w, w . w$.	R118, R119, R129,		C124, C302, C305	. 022 mf 600 V , molded
R302	$10 \Omega 10 \% 1 / 2 w$, w.w. Special	R205, R427, R408, $\}$	$470 \mathrm{~K} \Omega 10 \% 1 / 2 w$	C403, C408, C413,	. 022 mf 600 V , molded
R102	$51 \Omega 5 \% 1 / 2 w$	R426, R607, R419		C507, C607, C608	. 05 mf 600 V , paper
R104, R110	$68 \Omega 5 \% 1 / 2 w$	R505	$250 \mathrm{~K} \Omega 10 \% 1 \mathrm{w}$	C118	. 22 mf 400 V , molded paper
R106, R112, R113,		R513, R428	$1 \mathrm{meg} \Omega 10 \% 1 / 2 \mathrm{w}$	C404, C606,	. $22 \mathrm{mf} \mathrm{400V}$,
R115, R117, R120,	$150 \Omega 10 \% 1 / 2 w$	R509	$1.2 \mathrm{meg} \Omega 10 \% 1 / 2 \mathrm{w}$	C509, C616	. 1 mf 600 V , paper
R608		R414, R417	$2.2 \mathrm{meg} \Omega 10 \% 1 / 2 \mathrm{w}$	C511	.25 mf 600 V , paper
R207	$270 \Omega 10 \% 1 / 2 w$	R202	$10 \mathrm{meg} \Omega 10 \% 1 / 2 \mathrm{w}$	C605	. 5 mf 200 V , molded paper
R123	$270 \Omega 10 \% 1 / 2 w$			C130	5 mf 50 V , electrolytic
R609	$300 \Omega 10 \% 10 w, w . w$.	CONTROLS		C618	20 mf 450 V
R304	$470 \Omega 1 \mathrm{w}$			C508	50 mf 50 V , electrolytic
R619, R620	$560 \Omega 10 \% 1 / 2 w$	R511	3000Ω Vert. Lin.	C303A, C303B/	50 mf 50 V , electrolytic
R402	$820 \Omega 10 \% 1 / 2 w$	R305	3000ת Focus, w.w. 4w	C406, C303C,	$20 \times 20 x 20 \times 20 \mathrm{mf} 450 \mathrm{~V}$, electrolytic
R105, R107, R114, $\}$		R412	500K Brightness	C303D/C617,	$20 \times 20 \times 20 \times 20 \mathrm{mf} 450 \mathrm{~V}$, electrolytic
R122, R131, R618	$1000 \Omega 10 \% 1 / 2 w$	R605	100K Ω Horiz. Hold (Height)	C304A/C204,	
R208	$1000 \Omega 2 \mathrm{w}$	R508	$250 \mathrm{~K} \Omega$ Vert. Hold	C304B/C205,	20x20x20mf 450V plus
R602	$1500 \Omega 5 \% 1 / 2 w$	R401	$1 \mathrm{~K} \Omega$ Contrast	C304C/C610, C	20 mf 25 V , electrolytic can
R303, R306	$1500 \Omega 10 \% 10 \mathrm{w}$, w. w.	R201	$500 \mathrm{~K} \Omega$ Volume w/switch	C304D	20 mf 25 V , electrolytic can
R512	$2000 \Omega 10 \% 1 w$	R510	$2 \mathrm{meg} \Omega$ Height	C301A, C301B	$40 \times 40 \mathrm{mf} 475 \mathrm{~V}$
R506	$1800 \Omega 10 \% 1 / 2 w$				(0x40mf 475 V
R617	$2200 \Omega 2 \mathrm{w}$	CAPACITORS		COILS	
R422	$2700 \Omega 10 \% 1 / 2 w$			L104, L105, L101	I. F. Coil
R421	$3900 \Omega 10 \% 1 / 2 w$	C117	$5.6 \mathrm{mmf} 10 \%$, ceramic tubular	L107	Video Trap Coils 4.5 mc
R101	$3300 \Omega 5 \% 1 / 2 w$	C603	$47 \mathrm{mmf} 10 \% 500 \mathrm{~V}$, mica	T105	\#2 I. F. Coil with 27.25 mc Trap
R405	$4700 \Omega 10 \% 2 w$	C613	$47 \mathrm{mmf} 10 \% 1 \mathrm{KV}$, mica	T101	\#3 I. F. Coil
R108, R111, \}		C116, C125, C401	56 mmf , ceramic tubular GP	T102	Cathode Trap 21.25 mc
R601, R606 $\}$	4700ת 5\% 1/2w	C409	220 mmf , mica	T104	Ratio Det. Coil 4.5 mc
R116	$5600 \Omega 5 \% 1 w$	C602	$270 \mathrm{mmf} 5 \%$ mica	T103	Sound I. F. Transf. 4.5 mc
R423	$4700 \Omega 10 \% 1 / 2 w$	C129	$330 \mathrm{mmf} 10 \%$, mica	L301	Filter Choke
R610	$18 \mathrm{~K} \Omega 10 \% 3 \mathrm{w}$	C105, C108, \}		L302	Focus Coil
R103, R109	$10 \mathrm{~K} \Omega 5 \% 1 / 2 \mathrm{w}$	C111, C115	330 mmf , ceramic tubular GP	L106	Peaking Coil 150 mh on 10 K res.
R125, R126	$10 \mathrm{~K} \Omega 10 \% 1 / 2 \mathrm{w}$	C128	$500 \mathrm{mmf} 10 \%$, mica	L402	Shunt Peaking Coil 450mh
R611	$10 \mathrm{~K} \Omega 10 \% 1 \mathrm{w}$	C410, C411	$500 \mathrm{mmf} 10 \%$	L403	Series Peaking Coil 215 mh on 18 K res.
R514, R612	$15 \mathrm{~K} \Omega 10 \% 1 / 2 \mathrm{w}$	C611	500 mmf 20 KV	L602	Width Coil 3-16mh
R127	$15 \mathrm{~K} \Omega 10 \% 1 \mathrm{w}$	C121	1000 mmf , ceramic tubular GP	L603	Ringing Coil 5.5-20mh
R124, R128, R406	$22 \mathrm{~K} \Omega 10 \% 1 / 2 w$	C123, C203	. 004 mf 600 V , tubular paper molded	L601	Deflection Yoke
R404	$22 \mathrm{~K} \Omega 10 \% 1 \mathrm{w}$	C612, C614	. 002 mf 600 V, molded paper	L108	Peaking Coil 250 mh
R307	$33 \mathrm{~K} \Omega 10 \% 1 \mathrm{w}$	C101, C102, C103,		L604	Linearity Coil 1.5-8.3mh
R418	$39 \mathrm{~K} \Omega 10 \% 1 / 2 w$	C104, C106, C107,		TRANSFORMERS	
R613, R614, R420	$47 \mathrm{~K} \Omega 10 \% 1 / 2 \mathrm{w}$	C109, C110, C113,		T201	Audio Output-Single 6V6 to 3.2Ω voice coil
R515	$82 \mathrm{~K} \Omega 10 \% 1 / 2 w$	C114, C119, C120,	. 005 mf 500 V, ceramic disc	T301	Power
R616, R621	$82 \mathrm{~K} \Omega 10 \% 1 \mathrm{w}$	C122, C126, C127,		T501	Vertical Output 18:1 Ratio
R121, R301, R410,		C201, C412, C112)		T601	Horizontal Output
R424, R425, R416)	$100 \mathrm{~K} \Omega 10 \% 1 / 2 \mathrm{w}$	C506, C615, C407	. 006 mf 600 V , paper	NETWORKS	
R203, R507	$220 \mathrm{~K} \Omega 10 \% 1 / 2 w$	C601	. $006 \mathrm{mf} 500 \mathrm{~V} 10 \%$ Zero Temp.	N501	
R603, R604	$180 \mathrm{~K} \Omega 10 \% 1 / 2 w$	C505, C604	. 01 mf 600 V , paper	N501	Vertical Integrator

CAUTION

HIGH VOLTAGE--Operation of a television recelver with the back open involves a shock hazard. When making adjustments
oren HIGH TEMPFRATURE OF TUBES--Some tubes in the receiver operate at extremely high temperatures. To avoid serious HANDLING OF PICTURE TUBES--Breakage of the picture tube, which contains a high vacuun, may result in injury fron
 equipped should be kept away while handling the tube. NEVER GRASP THF TUBE BY THF NFCK OR ALLOW PRESSURE TO BE EXFRTED ON THE NECK. In installation, if the tube sticks or fails to slip smoothly through the deflection yoke, in

ANTENNAS

BUILT-IN ANTENNAS--The receiver is equipped with two antennas: one for VHF reception is enclosed in the cabinet and one at the rear of the cabinet. These antennas will eliminate the need of an external anteuna in some areas where the signal strength is sufficient. If you are in a location where the signal strength
is not sufficient and it is impossible to obtain satisfactory reis not sufficient and it is impossibe to obain satislactory re-
sults with the built-in antennas due to the above effect, or if the receiver is too far from the television station, it will be necessary to install an external antenna which is designed for both
VHF and UHF, or two separate antennas - one designed for VHF and the other for UHF. Sometimes it is possible for VHF reception to be satisfactory on the built-in VHF antenna, but the reception of UHF on the built-in UHFantenna may be unsatisfactory:
of vice versa: In these cases it is only necessary to install one external antenna designed for VHF or for UHF, depending on which built-in antenna is not providing satisfactory reception EXTERNAL ANTENNA--The choice of the proper type of antenna
and its location are very important. Of equal importance is the installation or the antenna. In some localnes where there are
number of stations operating, it may be impossible to elininate all reflections.

CONNECTING EXTERNAL VHF ANTENNA--The antenna terminal board for the VHF antenna is located on a metal plate at the that are fastenedunder the screws of the terminal board. Fasten the lead-in wires of the external VHF antenna under these two
screws. Cover bare ends of the wires from the built-in antenna screws.
with tape.

CONNECTING EXTERNAL UHF ANTENNA--The antenna termi nal board for the UHF antenna is also located on the metal plate at the rear of the cabinet. Remove the UHF dipole antenna (wire
loop) leads that are fastened under the two screws and attach the loop) leads that are fastened under the two screws and attach th
lead-in from the external UHF antenna. Do not drape or coil the lead-in wire and keep it away from the power cord (and also the
speaker cable on console models).

FRONT PANEL CONTROLS

CONTRAST CONTROL - Varies the picture output (increases or dec reases the variations between light and dark areas of the picture) similar to the mann
output is varied by the volume control

OFF-ON-VOLUME- Turns the power off or on and varies
the output of sound.

COURSE TUNING (UHF)." Selects the channel number of the desired UHF station. To tune in a UHF station set termined by the setting of the slide switch (see note below).
Then set the COURSE TUNING (UHF) to the channel numThen set the COURSE TUNING

- CHANNEL SELECTOR (VHF)- Selects the channel number sure the COURSE TUNNG (UHF) is set to the VHF position (rotated completely counterclockwise).

FINE TUNING (VHF)-Tunes in the best picture. at which point sound is also received.

FINE TUNING (UHF)-Tunes in the best picture, at whic point sound is also received. Sometimes a slight adjustmen
of the Fine Tuning (VHF) will improve reception of a station.
*NOTE
The slide switch operated by a wire looped around the Contrast control shaft should be set, at the time of instalation, its forward position if a VHF station is not assigned to channel 5 in the area in which the receiver is being installed. T lot the switch in it forward position, pualt the en the Contrast control shaft. If a VHF station is assigned to channel 5, set the switch toward the rear by pushing back on the wire loop. In this position the UHF stations can be tuned-in with the COURSE TUNING (UHF) an
FINE TUNING (UHF) control knobs, when the CHANNEL SELECTOR (VHF) is set to channel 6. If no VHF station it FINE TUNNG (UHF) control knobs, when the CHANNEL SELECTOR (VHF) is set to channel 6. If no VHF station i ception. Be sure to inform the customer as to which channel (5 or 6) the switch has been set to operate on

OJohn F. Rider

ADJUSTMENTS

I ION TRAP ADJUSTMENT

Adjust the BRIGHTNESS control for normal brightness. With
the ION TRAP positioned close to the base of the picture tube move the trap forward or cackward and at the same time rotate move the direction until maximum brightness of the raster is
in either obtained. Readjust the BRIGHTNESS control until the raster is slightly above average brilliance. Adjust the FOCUS CONTROL
until the line structure of the raster is clearly visible. Readjust the ION TRAP again for maximum brightness.
There may be two locations on the tube neck where the ION
TRAP will produce maximum brightness. Never set the trap TRAP will produce maximum brightness. Never set the trap
to the forward position, always use the position closest to the tube base.
If there is a shadow in the corners of the raster, be sure the
ION TRAP is ION TRAP is properly adjusted. Do not sacrifice picture
brilliance when ajuusting the $10 N$ TRAP to overcome shadows
in corner of picture in corner of picture. If corner shadows are present, be sure
the DEFLECTION YOKE and CENTERING MAGNET are the DEFLER
properly adjusted.

2. DEFLECTION YOKE AND BRACKET

The DEFLECTION YOKE should be positioned as far forwar as possible on the picture tube neck and rotated to the left or the top and bottom of window frame
3. CENTERING RASTER:

If the picture is off center and/or has neck shadow, rotate 5. VERTICAL LINEARITY ADJUSTMENTS: until the poth CENTERING MAGNET levers to the left or right shadow. The CFNTERING MAGNET is located on the back
cover of the DEFLECTION YOKE. To determine the coret picture.centering, it may be necessary to reduce the size of the picture with the HEIGHT and WIDTH adjustments. After mak
4. height and width adjustment mean of the HEIGHT, WIDTH, VERTICAL LINEARITY.

The linearity and corresponding size controls will have to be adjusted together and with care to maintain picture symmetry.
For this reason it is best to use a test For this reason it is best to use a test pattern when making
these adjustments. Adjust size of picture to fill the screen by

The vfrtical linearity control has the effect of exp the picture at an increasing rate from the botiom to the top of
the picture. Adjustment of this control has the greatest effect the picture. Adjustment of this control has the greatest effect
on the top portion of the picture, some effect on the middle and very little effect on the bottom of the picture. The HEIGHT
and FOCUS controls may need readjustment as a result of the and FoCUS controls may need readjustment as a result
change in position of the VERTICAL LINEARITY control.
6. HORIZONTAL HOLD CONTROL

The horizontal hold control is adjusted with a weak picture to the center of its pull-in range. II the pull-in range
is insufficient or the horizontal sync is unstable, see Horiis insufficient or the horizontal sync is
zontal Hold Adjustment" under "Alignment
7. vertical hold control

The VERTICAL HOLD CONTROL is also adjusted to the center of its pull-in range with the contrast control set to obtain a
B. FOCUS CONTROL:

Adjust the FOCUS CONTROL for best focus of the vertical and horizontal wedges at the center of the test pattern. If corne TRAP. While observing the test pattern (or picture), make slight readjustment of the VERTICAL HOLD control until the horizontal lines are least noticeable. This adjustment is very control shaft to obtain proper adjustment.
cont
9. brighiness control:

BRIGHTNESS CONTROL and CONTRAST control should be se to obtain as much shading in the picture as possible. If the
Brightness control is set too low, the black and grays picture are black and if set too high, the black and grays of the
10. Local-distance (agc) switch

The LOCAL-diSTANCE SWitch can be set to prevent the re ceiver from overloading in strong signal areas or to reduce "snow" in the picture in weak signal a reas. In strong signal
areas, the "LOCAL" (counter-clockwise) position of the switch areas, the "LOCAL" (counter-clockwise) position of the switch
must be used. The second and third positions "SUBURBAN" must be used. The second and tird positions to weak signal areas. Use the position with which the best picture is obtained with a minimul, of overloading of the receiver when the CON
iI. oscillator adjustment using a televison signal:

Do not make any adjustments on the two oscillator adjusting
screws unless the FINE TUNTNG control range is insufficien screws unless the FINE TUNNG control range is insufficien to properly tune-in the station. The adjusting screws are ac-
cessible through holes in the front of the chassis after the chassis is removed from the cabinet.
(a) The adustment, proceed as a) Turn the recelver on and
(b) For stations from channel 13 to channel 7, set the Station Selector Switch to the highest channel received and adjust the Contrast and Volume control for normal soundand
picture. Set the Fine Tuning Control in the center of its picture.
(c) Using a small non-metallic screwdriver, adjust the above the fiber disc for the clearest and sharpest detail in the picture. This adjustment will be effective on all channels between 13 and 7. If other stations are operating in this range, it may be necessary to compromise
slightly on the high channel adjustment so the other channels may be properly tuned-in.
(d) For Stations on channel 6 and below, set the station Selector Switct to the channel received closest to channel Iector 6 andadjust the Contrast and Volume control for normal
sound and picture. Set the Fine Tuning control in the sound and picture.
center of its range.
(e) Using a small non-metallic screwdriver, adjust the
sloted head brass screw located to the right of the shaft for the clearest and sharpest detail in the picture. This for the clearest and sharpest detail in the picture.
adjustment will effect all channels between 6 and 2 .

All lead connections from the signal generator and wobbulator must be shielded. Keep the exposed ends and ground leads as short as possible (about one inch). Always locate the ground lead connections as close as possible to their respective "hot" leads in the teleHision receiver chassis. The wobbulator, signal generator output, and contrast control must be kept low enough to prevent overloading television receiver circuits.
CAUTION: One side of the chassisis connected to the power line. Therefore, test equipment should not be connected to the receiver
unless an isolation transformer is used between the power line and the receiver. DO NOT GROUND THE RECEIVER unless an isolation transtormer is used between the power
CHASSIS UNLESS AN ISOLATION TRANSFORMER IS USED.

1. To Ched I. F. Alignment on Orilloscope:
(a) Lift the shield of the Oscillator - Mixer tube V2 suffictently to clear the .socket ground clppe. Connect
sweep signal generator "hot" lead to the undergrounded tube shileld and generator ground lead to the tuner chassis.
(b) Connect high side of oscilloscope to high side of con-
trast control (pin 2 and 7 of V108), and the low side to chassis.
(c) Apply - 3.0 volts D.C. bias to lug 4 of S103 (See sketch set in the maxdmum counter-clockwise position.
(d) With the generator sweep set at zero, connect an elec-
tronic voltmeter between lug 2 of sio3 and chassis. tronic voltmeter between lug 2 of sio3 and chassis.
Adjust the output of the generator to obtain a reading of 2 volts D.C. on the meter.
(e) Set generator to sweep from 20 mc . to 30 mc .
(f) Connect marker generator to sweep generator output
leads and adjust to provide markers that appear in the leads and adjust
curre on page 5 .
(g) Observe curve and position of markers (see nominal
response curve). slight deviation in shape from the response curve). Slight deviation in shape from the nominal response curve is permissible, but if any great
deviation is noted, it will be necessary to realign the I-F Amplifter
2. Alignment, I. F. \& Tuner Ascembly (with olectronic voltmeter):
(1) Connect - $\mathbf{3 . 5}$ Volts D.C. bias supply to lug 4 of $\mathbf{S 1 0 3}$ or to junction of C115 and R144.
(2) Connect signal generator "hot" lead through a 1000 mof. capacitor to TP-1 (wire protruding from tuner
directly adjacent to the oscillator mixer tube V2) and directly adjacent to the oscillator
ground lead to the \mathbf{R}. F. tuner case.
(3) Connect high side of Electronic Voltmeter to lug 2 of si03 and low side to chassis.
4) Set signal generator to 25.0 mc . and adjust bottom of T 103 for maximum meter denection, H1milting meter deflection
(5) Set signai generator to 23.3 mc . and adjust bottom to $\mathbf{T} 102$ for maximum D.C. meter indication. Adjust signal generator amplitude to
mately 2 volts $D . C$.
(6) Reset signal generator to 219 mc , and aduct the tor T102 for minimum D.c. meter deniection. Signal generator amplitude must be sufficiently high to produce a
definite null. Meter must read at least 0.5 volts at null.
5) Repeat steps (5) and (6)
6) Next set signal generator to 25.2 mc . and adjust bottom of T101 for maximum meter indication, limiting output of
generator so peak reading will not exceed 2 volts D.C.
7) Reset signal generator to 23.3 mc . Copor resistor in series with a 100 mmf . capacitor from TP-2 (wire protruding from the tuner through the insulated eyelet between the brass adjusting screws) on the R-F Tuner
to the Tuner case. Adjust 101 for maximum meter deto the Tuner case. Adjust L101 for maximum meter denot exceed 2 volts D.C. Remove the 100 ohm resistor and
the 100 mmf . apacitor. the 100 mmf . fapacftor.
(10) Set slgnal generator to 24.65 mc . Connect the 100 ohm resistor and the 100 mmf . series capacitor across L101 and adjust mixer output (L9) on R-F Tuner for maximum meter indication. Adjusting amplitude of signal generator
to make this maximum indication a poroximately 2 volts to make this maxmum indication approximately 2 volts
D.C. Remove the 100 ohm resistor and the 100 mmf . capacitor.
(11) Check sensitivity. The input for 2 volts D.C. output and zero bas should not exceed 150 mic rovolts at 24.65 mc . and the local oscillator set to properly tune in channel 5 .
(12) Remove the signal generator and electronic voltmeter.

VARIABLE BIAS CONTROL ASSEMBLY

NOMINAL OVERALL I. F. RESPONSE CURVE

1. Connect crystal controlled 4.5 mc .400 cycle amplitude modulated signal, modulated 30% or greater, to lug 2 of S103 and chassis.
2. Connect high side of scope through detector probe to the picture tube cathode (pin 11). Connect low side of scope to chasis. Adjust 4.5 mc . trap, L 105 for minimum 400 cycle de .
3. Connect electronic voltmèter tolug 2 of ratio detector, V106, adjust 4.5 mc . sound take-off (L110) and bottom of ratio
ransformer (T107) for peak reading on voltmeter. Adjus input to make this peak reading 4 volts.
4. Adjust input to obtain 12 volts output. 1 ransfer electronic Wiring Diagram). Adjust top of T107 for zero balance of electronic voltmeter
5. Recheck steps 2,3 and 4 above.
6. Remove input signal, scope and electronic valtmeter

HORIZONTAL HOLD ADJUSTMENT

1. Tune in a local television signal and adjust contrast control for normal picture.
2. Connect electronic voltmeter between TP-3 (green lead) and chassis
3. Short TP-4 (orange lead) to chassis and adjust electronic
voltmeter to zero. oltmeter to zero
4. Remove short from TP-4. Do not change zero on electronic voltmeter
5. Connect a 0.1 mid., 20%, 600 volt capacitor between TP- 5 (red lead) and chassis.

TV ChASSIS TOP VIEW
(Tube ond Alignment Locotions)

Adjust Horizontal Hold control for zero reading on the meter.
7. Remove the 0.1 mfd. capacitor from TP-5 and chassis. Do
not disturb setting of horizontal not disturb setting of horizontal hold control.
8. Adjust Horizontal Stabilizer coil(L108) for zero reading on the meter.
9. Remove electronic voltmeter from TP-3
10. Check horizontal pull-in range. The pull-in range should be approximately 50° of the controls rotation.

IV CHASSIS BOTITM VIEW
(Tube Sockel ond Alignment Locations)
© John F. Rider

NOTES:

1. Remove the UHF Converter from the VHF reçeiver chassis.
. Disengage the toggle coupling from the switch throw arm Disengage of the UHF chassis.

To accomplish this: -
a. Turn the UHF tuning control clockwise until the pin lole coupling.
b. Turn the switch throw arm to a vertical position to dis engage fork of toggle coupling.
c. Turn the toggle coupling counter-clockwise to a vertical position so that it
of the drive pulley
d. Turn the switch throw arm counter-clockwise to the UHF position; top contact blade on switch rotor must contact and center on the two top switch fingers with the red wire
and
attached. Leave switch in this position while aligning.
3. Connect the output leads of the UHF converter to the R-F input terminals of the VHF Tuner
4. Connect the B- and filament leads of the tuner to the VHF receiver. Conn
ceiver chassis).
5. Set VHF Tuner to Channel 6
. Keep all leads as short as possib
. Alignment should be followed in the order shown

1.F. ALIGNMEN

Set I-F slide switch on the UHF Converter to Channel 6 (pushed toward the rear of chassis position).
2. Connect an electronic voltmeter or oscilloscope across the Turn on the power
4. Apply an 82.5 mc . (amplitude modulated if a scope is used) signal to the junction of C 2 and C
5. Adjust I-F input coil (T2) for peak reading on meter (or maximum indication on scope).
6. Change signal generator frequency to 88.5 mc . and adjust
$\mathrm{I}-\mathrm{F}$ output coil (T1) for maximum reading or indication
7. Repeat steps 4 through 6 until maximum readings are ob

Remove the generator connections from the junction of \mathbf{C}

OSCILLATOR ALIGNMENT

Connect an electronic voltmeter or scope across the second Connect an electronic voltme
2. Apply a 460 mc . (amplitude modulated when scope is used) signal to the UHF antenna

CRITICAL LEAU AND COMPONENT DRESS VHF RECEIVER CHASSIS

-f TUNER:
The brown AGC lead from the terminal board to the tuner should be dressed flat down to chassis.

With the tuner shaft at maximum counter-clockwise position electronic voltmeter (or maximum indication on scope).

. Set the signal generator to 904 m
Rotate the tuner shaft to maximum clockwise position an adjust the oscillator end inductor, L 13 for maximum readin on the voltmeter (or scope).
6. Repeat steps 2 through 5 until maximum reading is obtained.

R-F CIRCUIT ALIGNMENT

With the signal generator and electronic voltmeter or scope connected as for the Oscillator Alignment above, set the R-F
coupling trimmer, C 1 and C 2 to minimum capacity by turning the screw counter-clockwise.
2. Set the signal generator to 460 mc . (amplitude modulated when scope is used).
. With the tuner shaft at maximum counter-clockwise position, adjust the antenna and mixer trimmers, C8 and C11 fo Reset signal generator to 904 m
5. Rotate the tuner shaft to maximum clockwise position and just the anedin on mer (or scope) maximum reading on meter (or scope)
. Repeat steps 2 through 5 until maximum reading is obtained.
7. Reset signal generator to 460 mc
8. Turn the tuner shaft to maximum counter-clockwise position
9. Turn the power switch to the "OFF" position
10. Disconnect the generator and electronic voltmeter, or scope.

Re-engage the toggle coupling in the pin on the switch throw arm and the pin on the drive pulley as follows:
Rotate the tuning control shaft clockwise until the pin on
the rear of the drive pulley is toward the base of the chassis.
Turn the switch throw arm to a vertical position.
c. Turn the toggle coupling approximate 45° clockwise from a vertical position.
d. Turn the switch throw arm counter-clockwise until pin engages the upper fork on the toggle coupling
Turn the tuning shaft counter-clockwise and guide the pin on the rear of drive pulley into the lower fork of the coupling. The coupling is now in the proper operating position and when the tuning shaft is turned completely
counter-clockwise, the switch will be thrown to the VHF position.
12. Replace the UHF Converter on the VHF receiver chassis.

TV CHASSIS 393-394 (Schematic Parts)

VHF position contacts must be fully broken and all UHF position
contacts must be fully and firmly made at $7-1 / 2^{\circ}$ or more from
full counter-clockwise rotation as tuner shaft is rotated in a clockwise direction

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.
R101	39374-49
R102	39375-63
R103	39374-25
R104	39374-9
R105	39374-25
R106	39375-73
R107	39374-9
R108	39374-25
R109	39375-75
R110	39374-15
R111	39374-25
R112	39374-56
R113	39374-67
R114	39375-67
R115	39374-61
R116	39374-65
R117	39374-69
R118A	154385
R118B	
R119	Part of L104
R120	39374-131
R121	139375-361
R122	Part of L106
R123	Part of L107
R124	39374-37
R125	39374-57
R126	39374-69
R127	39374-59
R128	39374-29
R129	39374-146
R130	39374-41
R131	39374-35
R132	39374-31
R133	39374-41
R134	39374-37
R134	154087
R136	39374-31
R137	39374-28
R138	154086
R139	39374-14
R140	154088
R141	154084
R142	154089
R143	39374-17
R144	39374-25
R146	39374-49
R147	39374-49
R148	39374-41
R149	39374-77
R150	39374-77
R151	39374-131
R152	39374-133
R153	39374-26
R154	39374-34
R155	154093
R156	39374-53
R157	39374-36
R158	39374-55
R159	39374-121
R160	154083
R161	39303-12
R162	39374-15
R163	39374-29
R164	39374-18
R165	39375-73
R166	39375-73
${ }^{1} 167$	39374-43
R168	39374-27
R169	39374-43

[^1]John F. Rider

Final Assembly and Cabinet - Model EU-2ITOLU (Chassis 393)

Symbol No.	Part No.	Description	$\underset{\substack{\text { Symbol } \\ \text { No. }}}{ }$	Part No.	Description
	154377-2	Antenna Assy., VhF		154841-1	Knob (Small), Tuning, UH
	154965	Antenna Assy., UHF		154217-1	Knob, Volume
	154973	Back \& Power Cable Assy.		154265	Knob, Local-Suburban-Distanc
	154256	Block, Chassis Mtg. (4 used)		154270	Knob, Controls (Vertical-
	154312-3	Cabinet			Horizontal, Holds)
	132300-6	Cable\& Plug Assy., Power		154333-1	Mask, Window
	153550	Clip, Window \& Mask Assy.		154313	Nail, Channel Indicator
	144600	Grille Cloth		154347-2	Name Plate, Crosiey
	154216-1	Knob, Contrast		145211-22	Nut (Wing), Speaker Mtg Screw, Chassis Mtg
	$\begin{aligned} & 154214-1 \\ & 154215-1 \end{aligned}$	Knob (Large), Tuning, VHF, UHF Knob(Small), Tuning		154344-1	Screw, Chassis Mtg. Window, Tempered Glass

Final Assembly and Cabinet - Model EU-21TOLBU (Chassis 393)

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
	154377-2	Antenna Assy., VhF		154841-2	Knob (Small), 1
	154965	Antenna Assy., UHF		154217-2	Knob, Volume
	154973	Back \& Power Cable Assy.		154265	Knob, Local-Suburban-Dist
	${ }_{154256}^{15426}$	Block, Chassis Mtg. (4 used)		154270	Knob, Controls (Vertical
	$\begin{aligned} & 154312-4 \\ & 132300-6 \end{aligned}$	Cabinet Cable \& Plug Assy., Power		154333-1	Horizontal, Holds) Mask, Window
	153550	Clip, Window \& Mask Assy.		154313	Nail, Channel Indicator
	145472	Grille Cloth		154347-2	Name Plate, Crosley
	154216-2	Knob, Contrast		145211-22	Nut (Wing), Speaker Mtg.
	$\begin{aligned} & 154214-2 \\ & 154215-2 \end{aligned}$	Knob (Large), Tuning, VHF, UHF Knob (Small), Tuning		154344-1 154382-1	Screw, Chassis Mtg. Kindow, Tempered Glass

Final Assembly and Cabinet - Model EU-21COLU (Chassis 394)

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \\ \hline \end{gathered}$	Part No.	Description
	154377-2	Antenna Assy., VhF		154841-1	Knob (Small), Tuning, UHF
	154965	Antenna Assy., UHF		154217-1	Knob, Volume
	154975	Back \& Power, Cable Assy.		154265	Knob, Local-Suburban-Distance
	155113	Bracket, Chassis Mtg. (4 used)		154270	Knob, Controls (Vertical-
	154332-1	Cabinet			Horizontal, Holds)
	132300-6	Cable, Power		154351-1	Mask, Window
	153550	Clip (Retainer 4 used), Window \& Mask Assembly		$\left\|\begin{array}{l} 154313 \\ 145211-22 \end{array}\right\|$	Nail, Channel Indicator Nut (Wing), Speaker Mtg. (4 used)
	154451	Grille Cloth		154504	Plate, Chassis Mtg. (4 used)
	154217-1	Knob, Contrast		154347-1	Plate, Name (Crosley)
	154214-1	Knob (Large), Tuning, VHF, UHF		154334-1	Screw, Chassis Mtg. (4 used)
	154215-1	Knob (Small), Tuning		154382-2	Window, Tempered Glass

Final Assembly and Cabinet - Model EU-2ICOLBU (Chassis 394)

$\begin{gathered} \hline \hline \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
	154377-2	Anteuna Assy., VHF		154841-2	Knob (Small), Tuning, UHF
	154965	Antenna Assy., UHF		154217-2	Knob, Volume
	154974	Back \& Power, Cable Assy.		154265	Knob, Local-Suburban-Distance
	155163	Bracket, Chassis Mtg. (4 used)		154270	Knob, Controls (Vertical-
	$154332-2$ $132300-6$	Cabinet			Horizontal, Holds)
	${ }_{153550}^{132300}$	Cable, Power Clip (Retainer 2 used), Windo		154313	Mask, Window Nail, Channel Indicator
		\& Mask Assembly		145211-22	Nut (Wing), Speaker Mtg. (2 used)
	154452	Grilie Cloth		154504	Plate, Chassis Mtg. (4 used)
	154216-2	Knob, Contrast		154347-1	Plate, Name (Crosley)
	154214-2	Knob (Large). Tuning, VHF, UHF		154334-1	Screw, Chassis Mtg. (4 used)
	154215-2	Knob (Small), Tuning		154382-2	Window, Tempered Glass

Part No.	ript	Part No.	Description
154965			
154377-2	Antenna, Assembly VHF	${ }_{154217-1}^{15416-1}$	
154975	Back \& Power Cable Assembly	154265	Knob, Local - Suburban - Distance
155163	Bracket, Chassis Mtg. (4 Used)	154270	$\mathrm{K}_{\text {nob, }}$ Controls (Vertical \& Horizontal, Holds)
$155366-1$ $139319-2$	Cabinet	154841-1	Knob, Tuning (Channel Indicator), UHF
139319-2	Catch, Doors (4 Used)	154351-2	Mask, Window
153550	Clip. Retainer (2 Used), Window \& Mask	154313	Nail, Channel In
153817	$\xrightarrow{\text { Assembly }}$ Dois	145211-21	Nut (Wing), Speaker Mti
155164	Insulation, Chassis Mtg. Bracket (4 Used)	${ }_{154347-1}^{154803}$	Pin, External Cotter Plate, Name (Crosley)
153779	Grille Cloth	154373	Pull (2 Useed), Doors
${ }_{1466897}^{14678}$	Hinge, Upper Left \& Lower Right	154334-3	Screw, Chassis, Mtg. (4 Used)
${ }_{154214-1}^{146787}$	Hinge, Lower Left \& Upper Right	51752	Spring. Dial Cord
$15424-1$ $154215-1$	Knob. Tuning (Fine Tuning), UHF \& VHF Knob, Tuning (Channel Indicator), VHF	139319-1 154382-3	Strike, Door (4 Used)

Part No.	scription	Part No.	Description
154965	Antenna, Assembly UHF	154216-2	Knob, Contrast
154377-2	Antenna, Assembly VHF	154217-2	Knob, Volume
154975	Back \& Power Cable Assembly	154265	Knob, Local - Suburban - Dis
155163	Bracket, Chassis Mtg. (4 Used)	154270	Knob, Controls (Vertical - Horizontal, Holds)
$155366-2$ $14941-2$	Cabinet Catch, Doors ((4 Used)	$154841-2$ $15431-2$	Knoo, Tuning (Channel Indicator) UHF
153550	Clip, Retainer (2 Used), Window \& Mask	154313	Nail, Channel Indicator
154023	Doors ${ }^{\text {Assembly }}$	${ }_{1}^{145211-21}$	Nut (Wing), Speaker Mtg. (4 Used)
155164	Insulation, Chassis Mtg. Bracket (4 Used)	154347 -1	Plate, Name (Crosorley)
153781	Grille Cloth	149733-1	Pull (2 Used), Doors
149942 14943	${ }^{\text {Hinge, }}$ Upper Left \& Lower Right	${ }^{154334-3}$	Screw. Chassis, Mtg. (4 Used)
154214-2		${ }_{149941-1}^{51752}$	Spring, Dial Cord
154215-2	Knob, Tuning (Fine Tuning), UHF \& VHF	149941-1	Strike, Doors (4 Used)

Part No.	Description	Part No.	Description
154965	Antenna, Assembly UHF	154214-1	
${ }^{1543377-2}$	Antenna, Assembly VhF	154216-1	Knob, Contrast
154975	${ }^{\text {Back \& Power Cable Assembly }}$	${ }^{154265}$	Knob, Local - Suburban - Distance
${ }_{155993 \text {-1 }}^{155163}$	$\underset{\text { Bracket, }}{\substack{\text { Cabinet }}}$ Chassis Mtg. (4 Used)	${ }^{154270}$	Knob, Controls (Vertical - Horizontal, Holds)
153550	Clip, Retainer (2 Used), Window \& Mask	154313	Nail, Channel Indicator
	Assembly	154211-21	Nut (Wing), Speaker Mtg. (4 Used)
155164	Insulation, Chassis Mtg. Bracket (4 Used)	154803	Pin, External Cotter
154451	Grille Cloth	154347-1	Plate, Name (Crosley)
${ }_{\text {1 }}^{156002-1}$	Knob, Tuning (Channel Indicator) VHF	154334-3	Screw, Chassis Mtg. (4 Used)
156002-3	Knob, Tuning (Channel Indicator) UHF	${ }_{\text {S }}^{154382-2}$	Spring, Dial Cord Window Tempered Glass

SUBJECT: TO SHOW VARIOUS CHANGES IN CIRCUITRY AND ASSOCIATED CHASSIS CODE LETTERS.

CODE LETTER B

To Increase Vertical Sync. Stability

Now Part Numbers for Chassis Code Letters D \&

To Reduce Horizontal Fold Over

Symbol No.	Part No.	Description
C144	$137499-36$ R155	Capacitor, 470 mmf., $10 \%, 500 \mathrm{v} .$, mica Control, Horizontal Hold (170,00 ohm)

SCHEMATIC WIRING DIAGRAM - CHASSIS 393-394

SUBJECT: TO ADD ALIGNMENT PROCEDURE AND PARTS LIST FOR ONE TUBE CONVERTER PART NO. (155499)

Chassis 393 and 394 Code letter E, incorporate the one tube converter, Part No. 155499. Chassis 393 and 394 coded prior to Code letter E use converter, Part No. 154848

ALIGNMENT PROCEDURE

Oscillator Alignment:

1. Connect an electronic voltmeter or scope across the second detector load resistor, R114
2. Turn on the power
3. Apply a 460 mc . (amplitude modulated when scope is used) signal to the UHF antenna terminals through the antenna matching network (Fig. 3).
4. Turn out the adjusting screw of the mixer circuit trimmer C 4 so that the flat side of the head is $5 / 8^{\prime \prime}$ above
the chassis before aligning oscillator. With the tuner shaft at maximum CCW position, adjust the oscillator trimmer, C18 for peak reading on the electronic voltmeter (or maximum indication on scope).
5. Set the signal generator to 904 mc .

Rotate the tuner shaft to maximum CW position and adjust the oscillator end inductor, L 4 for maximum Repeat steps

R. F. Circuit Alignment:

1. With the signal generator and electronic voltmeter or scope connected as for the Oscillator Alignment above, set the R-F coupling trimmer, C 1 and C 2 to minimum capacity by turning the screw CCW
2. Set the signal generator to 460 mc . (amplitude modulated when scope is used)
. With the tuner shaft at maximum CCW position, adjust the antenna and mixer trimmers, C3 and C4 for maximum meter reading (or scope indication).
3. Reset signal generator to 904 mc .
4. Rotate the tuner shaft to maximum CW position and adjust the antenna and mixer end inductors, L2 and L3 for maximum reading on meter (or scope).
5. Repeat steps 2 through 5 until maximum reading is obtained
6. Turn the tuner shaft to maximum CW position and adjust the coupling trimmer, C1 and C2 for peak reading at 904 MC .
. Turn the power switch to the "OFF" position
7. Disconnect the generator and electronic voltmeter, or scope.
8. Re-engage the toggle coupling in the pin on the switch throwarm and the pin on the drive pulleyas follows. a. Rotate the tuning control shaft clockwise until the pin on the rear of the drive pulley is toward the base of the chassis.
b. Turn the switch throw arm to a vertical position.
c. Turn the toggle coupling approximate $45^{\circ} \mathrm{CW}$ from a vertical position
d. Turn the switch throw arm CCW until pin engages the upper fork on the toggle coupling
e. Turn the tuning shaft CCW and guide the pin on the rear of drive pulley into the lower fork of the coupling. The coupling is now in the proper operating position and when the tuning shaft is turned completely CCW, the switch will be thrown to the VHF position
9. Replace the UHF Converter on the VHF receiver chassis.

TOP VIEW UHF CONVERTER

BOTTOM VIEW UHF CONVERTER

SCHEMATIC DIAGRAM

Symbol	Part No.	Description
C1	155424	Stator, RF Trimmer
c2	155508	Rotor, RF Coupling Trimmer
c3	151880-2	Capacitor, . 8 -6.5 mmf., Trimmer
C4	151880-2	Сарасіtor, , 8-6.5 mmis, Trimmer
c5	155439-1	Capacitor, 12 mmf ., 5% disc ceramic
c7	156201-1	Capacitor, 470 mmf , 2 KV ., disc ceramic
c8	156201-1	Capacitor, 470 mmf ., 2 KV ., disc ceramic
c9	152997-9	Capacitor, . 2 mmf ., 500V.
C10	152997-10	Capacitor, 4.7 mmin , 10%, 500V.
C12	156201-1	Capacitor, 470 mmf ., 2 KV ., disc ceramic
C13	152997-8	Capacitor, .68 mmf ., 10%, 500V.
C14	152997-8	Capacitor, 68 mmf ., 500 V .
C15	152997-4	Capacitor, 3.3 mmf ., 10\%, 500 V .
C18	152997-1	Capacitor, 2.2 mmi , , 10%, 500V.
C17	152997-8	Capacitor, 68 mmf ., 500 v .
C18	155713-1	Capacitor, 2-7 mmf., Trimmer
C19	152997-11	Capacitor, 10 mmf ., 10\%, 500V.
R1	Part of Ll	Resistor, $22 \mathrm{ohm}, 108,1 / 2 \mathrm{w}$.
R2	Part of L1	Resistor, 22 ohm, 10\%, 1/2 w .
R3	Part of L1	Resistor, 390 ohm, $10 \%, 1 / 2 \mathrm{~W}$.
R4	39374-61	Resistor, 1 megohm, 10%, $1 / 2 \mathrm{~W}$.
R5	39374-61	Resistor, 1 megohm, 10\%, $1 / 2 \mathrm{w}$.
R8	39374-61	Resistor, 1 megohm, $10 \%, 1 / 2 \mathrm{~W}$.
R7	39374-218	Resistor, 27,000 ohm, 10\%, 2 w .
R8	39374-136	Resistor, 82,000 ohm, 10\%, 1 W .
R9	39374-37	Resistor, $\mathbf{1 0 , 0 0 0}$ ohm, 10\%, 1/2 \mathbf{w}.
L1	154711	Inductuner
L^{2}	Part of C3	Inductance
13	Part of C4	Inductance
14	Part of C18	Inductance
L5	148936-2	Choke, RF ($82 \mathrm{microhenries)}$
18	${ }_{156167}^{15989}$	Choke, RF (182 microhenries)
L8	148936-1	Choke, RF (.47 microhenries)
${ }^{18}$	148936-1	Choke, RF (47 microhenries)
19	155510	Choke, RF (1445 microhenries)
L10	148936-2	Choke, RF (828 microhenries)
cal		Antenna Transmission Line (300 ohm)
c01	154781	Terminal Board. UFF Antenna
co2	155431	Strap, Oscillator Plate
CR1	151871	Crystal, Germanium (1N72)
SW1	154721	Switch, Function
	154758	Arm \& Hub Assembly, Function Switch
	154735	Arm, Toggle
	154736	Bracket, Ider Pulley
	154682 155427	Bracket, Tube Lock
	155893	Eyelet (3 used to hold Rotors to Shaft)
	156207	Fisher Hub, Small Knob Shaft, Groove Pin O Outer Shaft Assembly
	$\begin{aligned} & 137939-1 \\ & 154798 \end{aligned}$	Idler Pulley Plate, Tuner Mounting
	155894	Rotor (3used)
	39311-2	Screw (2used), Set
	151883	Screw (6-32), Nylon
	${ }_{1558888}$	Shaft \& Stop Assembly, Inductuner Shield (Lid), Oscillator
	${ }_{158806}$	Shield, Oscillator
	154877	shield, Tube (6AF4)
	152053	Socket, Tube (V1)
	155499 155895	UBF Converter Complete
	155895	Washer (lused), Shaft e Stop Assembly

INDEX			
Page			PAGE
ALIGNMENT INSTRUCTIONS	21	SCHEMATIC	25
CIRCUIT DESCRIPTION	15	SPECIFICATIONS	13
Installation data.	17	top View - tube layout	22
PARTS LIST	22	TRIMMER LOCATIONS.	22
PRODUCTION CHANGES.	26	Voltage measurements	25
		WAVEFORMS	25

These receivers are equipped with seventeen (17) tubes, two (2) selenium rectifiers, and a picture tube.
They have a switch type tuner which tunęs the twelve V.H.F. television channels (2 to 13). The receivers may be converted to receive both V.H.F. and U.H.F. stations with the use of an external converter.

TUBE COMPLEMENT

Symbol	Tube	Function	Symbol	Tube	Function
V1	6BC5	R-F Amplifier	V109	6SN7GT	Sync. Clipper \& Sync. Output
V2	6 J 6	VHF Oscillator \& Mixer	V110	6AL5	Horizontal A.F.C.
V101	6CB6	1st I-F Amplifier	V111	6W6GT	Audio Output
V102	6CB6	2nd I-F Amplifier	V112	6AX4	Horizontal Damper
V103	6CB6	3rd I-F Amplifier	V113	6SN7GT	Horizontal Oscillator
V104	6C4	1st Audio Amplifier	V114	6BQ6GT	Horizontal Output
V105	12BH7	Vertical Oscillator \& Output	V115	183GT	H.V. Rectifier
V106	6AL5	Ratio Detector (Sound)	V116	21MP4	Picture Tube (chassis 386)
V107	6AU6	Sound Detector Driver	V116	21FP4A	Picture Tube (chassis 387)
V108	6AH6	Video Amplifier			

POWER SUPPLY: 117 volts, 60 cycle, a.c POWER CONSUMPTION: 130 watts. AUDIO POWER OUTPUT: 2 watts maximum. ANTENNA INPUT IMPEDANCE: 300 ohms balanced.

BLOCK DIAGRAM:

INTERMEDIATE FREQUENCY:
Video Carrier - 26.4 mc . Sound Carrier - 21.9 mc Intercarrier Sound - 4.5 mc .

DEFLECTION: Electromagnetic.
FOCUS: Electrostatic.
ION TRAP: Single Permanent Magnet
HORIZONTAL SCANNING FREQ.: 15,750 c.p.s VERTICAL SCANNING FREQ.: 60 c.p.s.
FRAME FREQUENCY: 30 c.p.s.
SCANNING: Interlaced, 525 lines.
SPEAKER:
21" Console Models $10^{\prime \prime}$ P.M
Table Models 51/4" P.M.
VOICE COIL IMPEDANCE: 3.2 ohms at 400 cycles E.M. SPEAKER FIELD COIL, D.C. RESISTANCE: 50 ohms.

FRONT PANEL CONTROLS

OFF-ON VOLUME - Turns the power off or on and varies the output of sound.

CHANNEL SELECTOR -Selects the channel number of the desired station.

CONTRAST CONTROL - Varies the picture output (increases or decreases the variations output (increases or decreases the variations
between light and dark areas of the picture) between light and dark areas of the picture) is varied by a volume control.

R. F. TUNER OSCILLATOR ADJUSTMENT

Generally, the two oscillator adjusting screws do not require adjusting. However, if the range of the the station to be tuntrol is insufficient to permi control reaches the end of its range (clockwise or counter-clockwise), then it will be necessary to remove the chassis from the cabinet to adjust these oscillator adjusting sicrews. To remove the chassis, pull the front panel control knobs off their shafts, remove the cabinet back, and the four chassis hold-down bolts.
With a service type power cable connected to the inter-lock connector on the rear of the chassis and the antenna connected to its terminals, turn the receiver on, and allow it to operate for at least five minute before attempting to adjust the oscillator screws.
The upper left screw is used to adjust the oscillator for stations which operate on channels 13 to 7 , and 6 to 2 (See Sketch). When it is necessary to adjust either or both of these screws, proceed as follows:

1. Set the CHANNEL SELCTOR swith to the channel number of the station that is porating on the highest assigned Set the CHANNEL SELECTOR switch to the channel number of the staion the is operang on the 13 to 7 channel range, if stations are channel 11).
2. Adjust the CONTRAST and VOLUME controls for normal sound and picture
3. Set the FINE TUNING control to the center of its range

With a non-metallic screwdriver adjust the oscillator adjusting screw until the clearest picture is obtained
NOTE: If other stations are operating in the area in the channel range that is being adjusted (13 to 7 or 6 to 2), it may be necessary to compromise slightly on the oscillator adjustment so as to permit the FINE TUNING to be equally effective on all stations

I. GENERAL DESCRIPTION

These Crosley television receivers are equipped with seventeen (17) tubes, two (2) selenium rectifiers, and a picture tube. They are designed to The chassis 386 is designed or 21 in metal picture tube; and chas sis 387 isdesigned to use a 21 -inch (21 FP4A) glass re tube.
The receivers will produce high definition pictures with ine detail and excellent brilliance and contrast on all twelve VHF (Very High Frequency)
television channels (2 to 13), and may be converted to receive both VHF and UHF (Ultra High Frequencyare there stations operating on all channels.

Symbol numbers contained in this description are listed on the schematic diagram for the 386 and 387 chassis.

$$
\text { In later production models using the } 386
$$ and 387 chassis, some alterations were made in the horizontal deflection circuit that required changing certain components. As the basic operation has not

© John F. Rider

CHANNEL SELECTOR FINE TUNING
(Rear Chassis Apron):

VERTICAL HOLD
HORIZONTAL HOLD
BRIGHTNESS
HEIGHT
VERTICAL LINEARITY
FOCUS
WIDTH
HORIZONTAL CENTERING
LOCAL-DISTANCE SWITCH

Dual Control Knob

Adjustments

(not including RF and IF):

HORIZ. STABILIZER . . . L108 -- Screwdriver adjustment.

DEFLECTION COIL Top of chassis.

CENTERING MAGNET Rear of Deflection Yoke

ION TRAP MAGNET
Top of chassis, picture tube neck

PRECAUTIONS

HIGH VOLTAGE WARNING - Operation of this receiver with the interlock by-passed, ar the chassis removed from
the cabinet involves a shock hazard from the receiver power supplies. Work on the receiver should not be attempted by anyane not thoroughly familiar with the precautians necessary when working on high voltage equipment. When handing the high voltage lead to the picture tube the receiver pawer plug should be disconnected from the power receptaclé.

HANDLING PICTURE TUBE - Do nat remave or handie the picture tube in any manner unless heavy gloves and pratective goggles are worn. Persons not sa equipped should be kept away while handing picture tube. Keep the tube away
the HIGH TEMPERATURE OF TUBES - Same tubes aperate at extremely high temperatures. To avoid serious burns do nat touch the tubes while the receiver is operating, or until the tubes have coaled after the receiver is shut aff.

2. CIRCUIT DESCRIPTION

2.01 Preliminary:

The "intercarrier" sound system used in this receiver differs from the "conventional" type of television circuit where the video and sound RF carriers are converted to their respective intermediate frequencies in the mixer tube. The video and sound IF are usually divided into two separate IF channels of different frequencies, separated by 4.5 mc . after leaving the plate of the mixer tube or at the plate of the 1 st . IF amplifier. As it is important to keep the audio component off the picture tube grid, traps must be inserted in the video IF and or video amplifier circuits to absorb the sound frequency.

In the "intercarrier" sound system the RF carriers are converted to their respective intermediate frequencies in the same manner as above (in the mixer tube), but the video and sound IF frequencies are not separated after leaving the mixer plate; instead they are amplified together in a common IF channel and both signals appear at the input to the video detector. As the video and sound carriers are always separated by a fixed difference frequency of 4.5 megacycles that must be maintained by the
transmitting station in accordance with FCC regulations, both IF signals that appear at the cathode of the video detector are separated exactly 4.5 megacycles. The video detector not only functions as a detector, but also as a mixer for the two IF signals. In the mixing process of the sound IF carrier with the video IF carrier, a 4.5 mc . beat signal is produced. This beat signal is frequency modulated in unison with the sound IF carrier.

The manner in which the 4.5 mc . beat signal is obtained, is comparable to the mixer action in a superheterodyne radio receiver.

In place of a local oscillator, the incoming video IF carrier beats against the incoming sound IF car rier to produce the sum and difference frequencies at the output of the detector. As the sum frequency amplifier, only the difference frequency need be considered.

After being amplified in the video amplifier, the 4.5 mc . signal is trapped or "sucked out" of the video signal and fed to the sound driver stage by means of the sound take-off transformer. The transformer serves a dual purpose of providing a 4.5 mc . trap to reduce sound interference in the picture and pro-
viding a sharp pass band for 4.5 mc . injection to the tuned to frequency by the coils on the front wafer grid of the sound driver stage. The 4.5 mc . signal switch and the trimmer capacitor C11, the Fine Tunis amplified and limited in the sound driver which ing control. Two variable inductors are included in provides sufficient signal to operate the sound de- this circuit for alignment of the oscillator. Oscillatector. FM demodulation of the sound IF signal is tor adjustment at channel 13 is made by L7 and at accomplished by the two diode sections of V106, that channel 6 by L8.
function as an unbalanced ratio detector which con- The series of coils on the third (from rear) verts frequency deviations of the IF carrier to audio wafer switch, connected to the grid of the mixer frequencies and suppresses amplitude modulation wafer switch, eough L6 to increase the bandwidth of the interference. The IF input is applied to the diodes circuit The variable inductor L6 is used to align by mutual couphing between the tuned primary and the high channels, the adjustment being madeat secondary of the ratio detector transformer T107. channel 13.
The applied IF carrier rectified by the diodes,
charges the electrolytic capacitor C151. The bias
voltage developed across R165 and R166 holds the The incoming signal to which the receiver is conduction level of the diodes at a definite value de- tuned, is amplified by V1 and applied to the grid of termined by the applied carrier. Any sudden change, the mixer section of V2 through the coupling casuch as may be caused by instantaneous noise im- pacitors C8 and C9, while the signal from the local pulses, cannot change the bias due to the relatively Feedback voltage fred through the capacitor.c14. long time constant of R165-R166-C151. The recti- Flied to the plate of the RF Amplifier V1, through fied audio frequencies pass through the terti- the capacitor c7. The output of the mixer, contains ary winding that is connected to the center tap of the a wide band of frequencies. It includes both the secondary, and through the sound volume control to video and sound intermediate frequencies that are the grid of the 1 st. Audio Amplifier tube V104. The transferred to the grid of the 1st IF amplifier Vi01, audio amplifier consists of two stages of amplifica- through the mixer plate coil L9, the coupling cations, a triode 1st stage V104 coupled to a beam power output stage V111 that drives the speaker.

2.02 RF Unit: (V1,V2)

The RF Unit comprises an RF stage, mixer and oscillator all in one compact unit. Its function is to amplify the received signal and to convert the sound and picture carriers to the correctintermediate frequencies.

The tuner assembly consists of four, twelve posiion wafer switches mounted on a common shaft. Pretuned coils are mounted between the contacts on each contact. The channel to which the switch is set is determined by the amount of inductance (number of coils) in the circuit.

The antenna is matched to the input circuit of the receiver by the transformer T 1 . As the chassis is at power line potential, isolating capacitors C163 and the are inserted between the transformer T1, and irst (enna. The antenna circuit is tuned by the first (closest to rear of RF unit) wafer switch con coils on the second wafer switch tune the plate cir cuit of V1. Two variable inductors L2 and L3 are connected in series with the RF coils on the respective wafer switches for alignment of the high channels (7 to 13). To obtain the proper band width, the coils on the antenna switch are tuned to the video carrier and the RF coils in the plate circuit of V1 are tuned to the sound carrier.

The VHF oscillator utilizes one section of the twin triode, V2, in a modified Col pitts oscillator cir cuit. The feedback voltage from the plate to the grid sobtained by means of the capacitor C12 and the interelectrode capacity of the tube. The oscillator is

2.03 IF Amplifier: (V101, V102, V103)

The If amplifier consists of three staggertuned stages using three sharp-cutoff, high gain pentodes. Stagger-tuning of the IF system provides a simple means of securing adequategain and a sufficiently broad pass-band that is needed to accept both the video and sound IF carriers.

Each IF coupling network consists of a variable iron core tuned inductance with closely coupled secondary windings over the primary of the coil. The secondaries of the 1 st . and 2nd. If coil are coupled directly to the grids of the following tube and the secondary of the 3rd. Ir coil is coupled di rectly to crystal diode, second detector. An adas ional winding, tued Wif ir copact form functions as a 21.9 megacycle sound trap.

Decoupling resistors and capacitors are used in the plate, screen and grid circuits to prevent coupling between the stages which might otherwise cause oscillation.

To provide stabilizing degenerative feedback, the cathode resistors R104 and R107 of V101 and V102 are unbypassed

As an intercarrier sound system is used in this receiver, both the video and sound carriers are amplified together in a common IF channel and both signals appear at the input of the second detector.
2.04 2nd. Detector: (CR1OI)

The 2nd detector is a germanium crystal diode and is located in the shield can of T103.
carriers are applied to the cathode of the crystal to roduce a video signal of the proper polarity. The ignal from the anode is applied to the grid of the Video Amplifier V108 through L113, L102 and the coupling capacitor C114.

A low pass filter circuit composed of C112, L113 and C113 in the output of the 2 nd. detector, rejects and C113 in the output of the 2 nd. detector, rejects the IF carriers.

To compensate for loss of high frequencies and phase shift, due to the capacity of the circuit, peaking coils, L102 and L103 are inserted in the circuit in series with the detector load resistor R114.

As a fixed difference of 4.5 megacyclesalways exists between the video and sound carriers, and must be maintained by the transmitting station in accordance with F.C.C. regulations, both IF signals hat appear at the input of the detector, are separated exactly 4.5 megacycles.

Besides functioning as a detector, the crystal also functions as a mixer for the two IF signals. In the mixing process of the sound IF carrier with the video IF carrier, a 4.5 megacycle beat signal is produced. This beat signal is frequency modulated in unison with the sound IF carrier.

2.05 A G C Circuit:

The purpose of the AGC circuit is to maintain a onstantoutput at the picture tube as the signal input varies due to different field strengths of the television station or flutter of field strength due to the interference from flying aircraft. As the voltage appearing across the detector load resistor R114 is always negative and varies according to the strength of the incoming signal, this voltage is used for autonatic gain control. This potential is applied to the grids of the 1st. and 2nd. IF amplifier tubes V101 and 102 through the resistor R116 and to the grid of the RF amplifier tube V1 through R117

A three position Local-Distance switch at the rear of the chassis is used to control the gain of the receiver. When the switch is in the "Local" position, the switch is open and the developed AGC voltage is position, a voltare divider is in R112 and R113, is thrown into the circuit. These resistors tend to is thrown into the circuit. These resistors tend to he gain For fringe are rece, position of the switch should be used. This position horts out a portion (R113) of the voltage divider etwork so a minimum AGC potential is applied to tubes. he tubes.

2.06 Video Amplifier: (V108)

The Video Amplifier V108, functions as an amplifier for the 60 cycle to 4 megacycles videosignal the 4.5 megacycle sound IF signal and the synchronizing pulse signal for control of the deflection circuits.

The video signal is applied to the cathode or the cture tube V116, through L104, L105 and C121. 105 and C117 functioning as a 4.5 megacycle trap prevents sound modulation from reaching the cathode of the picture tube.

L104, L106 and L107 are peaking coils which with their respective damping resistors, R119, R122 and R123 compensate for losses of the higher frequencies. To minimize attenuation of low frequenc C118B.

The cathode of V108 is connected to one end of the Contrast Control R118A, with the arm of the control returning to chassis. Connected in this man on the Video Amplifier and thus, sets the black level of the picture.

The 4.5 mc . Sound $1 F$ signal is applied to the gid of the 4.5 mc . Amplifier (Sound Driver) tub V107 through the capacitor C116. An absorbtio rap formed by L110 and C149 is tuned to the 4.5 mc. Sound IF frequency and provides a sharp pass band for 4.5 mc . injection to the grid of V107.

2.07 Sound Channel: (V107, V106, V104, VIII)

See last paragraph of "Preliminary Circuit Description" (2.01).

2.08 1st. \& 2nd. Sync Clipper: (V109)

A portion of the composit video signal is taken from the plate side of the Video Amplifier plate load resistor R121 and fed to the grid (pin 1) of the R124, R125 and C123 R124, R125 and C123. The signal that appears at the grid is positive in polarity and drives the grid grid current charging C123 negatively positive, rid current charging C123 negatively.

The tube bias is obtained by grid rectification of the video signal. The voltage developed across R126 biases the tube so that plate conduction occurs only on the peaks of the video signal. Since the maximum mulses, only the video signal is actually the syn (pin 2) of the 1st. Sync Clipper

The signal from the plate of the 1 st . Sync Clip per is applied to the grid (pin 4) of the 2nd. Sync Clipper through C125, and is negative in polarity. Any noise pulses, that would appear as irregulari ties at the most negative portion of the pulses, would drive the tube beyond cut-off and therefore are limited.

Very little amplification (close to unity) is obtained from the Sync Clipper stage, its primary purpose being to limit the amplitude of the sync pulses, clip the peaks caused by noise pulses, and to couple the sync signals of the proper polarity to the deflection circuits

Although the voltage on the plate of the Vertical

2.09 Picture Tube: (V116)

The picture tube is a rectangular electrostatic to chen it moke, it mus focus tube. Electromagnetic fields are used for vertical and horizontal deflection. obtain sufficient power.
The high voltage for the anode of the tube is
By controlling the plate voltage of the Vertical urnished by the high voltage power supply at ap- Oscillator by movement of the arm on the Heigh proximately 12 kilovolts. The Brightness control Control R138, the amplitude of the sawtooth yol R170 varies the
illumination.

The permanent magnet Ion Trap must be properly
The permanent magnet Ion Trap must be proper positioned on the

2.10 Integrating Network:

To separate the vertical from the horizontal sync pulses, an integrating network composed of R133, R134, C127 and C128, is coupled between the late of the 2nd. Sync Clipper (through C126) and the rid of the Vertical Oscillator V105A (through T104). pass the low frequency of the vertical synchronizing pulse, while the higher frequency of the horizontal sync is attenuated.

2.11 Vertical Oscillator \& Amplifier: (V105)

The purpose of these circuits is to provide sawtooth current of the proper amplitude and frequency to move the scanning beam across the picture tube screen slowly from top to bottom, during the rapidly from bottom to top during retrace time and blocking oscillator and discharge circuit is formed by one triode section, V105A, and its associated components. The Vertical Hold Control R135 in eries with T104, adjusts the free running frequenc of the oscillator.

Cathode to grid feed back induces a current which charges C129causing bias voltage to be applied momentarily to the tube. When this occurs, plate the voltage developed on the filter network R149-
current begins to flow, and C131 discharges rapidly C139, R150 and C141 is zero, and a condition of until plate current saturation is reched. The platy C139, R150 and C141 is zero, and a condition o urrent current saturation is reached. The plate stable operation exists. current begins to decay, reversing the direction of or if the oscillator frequency is too fast, the curto discharge. The grid is then driven negative, cut- rent in the diode section, pins 1 and 7 , will increase
ting off the plate current and slowly charging C131. and the current in the diode section, pins 5 and 2 will to discharge. The grid is then driven negative, cut- rent in the diode section, pins 1 and 7 , wind incent and slowly charging C131. and the current in the diode section, pins 5 and 2 will The cycle is repeated as soon as the voltage across decrease. If too slow, the action is reversed. C129 reaches a value that will again cause plate current to flow. This slow charging and rapid dischargrent to flow. This slow charging and rapid discharg- The difference voltage that is developed at the
ing of C131 causes a sawtooth voltage to be generated. junction of R146-R147 varies the bias applied to the sharp negative pulse to insure that the Vertical its frequency. Amplifier section (V105B) will remain cut off during retrace time.

A pulse from the junction of R136-R137 is applid AC pulses and prevents them from the control grid of the picture tube for the elimina- only D.C. changes will govern the frequency tion of retrace lines during scene changes.

The Vertical Linearity Control R140, varies th grid of the Horizontal Oscillator through the filter ovides a network R149, C139, R150 and C141, and corrects

The long time constant of the filter network recathode bias of the Vertical Amplifier, so that the ing characteristics of the tube. Impedance matc between the plate of the output tube and the deflec位 former T105.

2.12 Horizontal AFC: (V110)

The Horizontal AFC tube V110, is connected in a phase discriminator circuit for automatic phase and frequency control of the Horizontal Oscillator pulse from the the following manner: A negativ tion of V109 is applied to the cathode (pin 1) of the 6 AL5 Duo Diode V110, and a positive pulse from the plate of the 2nd. Sync Clipjer is fed to the plat (pin 2) of V110.

These pulses are compared, with respect to ime, with a wave representative of the Horizonta Oscillator line frequency. This wave is in the form of a sharp pulse and is taken from the Horizonta Deflection Yoke and integrated into a sawtooth by pin 5) and the plate (pin 7) of V110

Voltages developed across the diode load re sistors, R146 and R147 oppose each other due to th method of connecting the diodes to the output of the 2nd. Sync Clipper.

When the rectified output of stable operation exists.

The long time constant of the filter network re only D.C. changes will govern the frequency. - on
© John F. Rider

2.13 Horizontal Oscillator: (VII3)

A cathode coupled multivibrator type of oscillais employed to generate the sawtooth pulses used for horizontal deflection.

The operation of the circuit is as follows: When 113 A starts conducting, the voltage drop across 154 causes the grid of V113B to be driven negative
 period, C145 charges toward B_{+}and a voltage is deperiod, C145 charg and R157. As the current that is being discharged through R155 starts to diminish, he grid of V113B reaches cutoff, conduction starts, ding the sweep voltage.

The sudden pulse of current which occurs in the ommon cathode resistor R153 when C145 discharges will bias V113A beyond cutoff. The plate current of V113B gradually diminishes until the bias er holds V113A at cutoff, conduction again begins and the cycle is repeated

As the multivibrator is not very stable, due to its sensitivity to bias changes, a Horizontal Stabiizer (L108-C143) is inserted in the circuit. This stabilize the oscillator

2.14 Horizontal Output. Damper \& itigh Voltage Rectifier: (V114, V112. V115)

The Horizontal Output tube V114, amplifies the output of the Horizontal Oscillator so that sufficient current of the proper wave shape is available to excite the horizontal deflection yoke for horizontal scanning in the picture tube.

During the return trace of the sweep, the current which was flowing in the horizontal deflection yoke reverses. The induced voltage pulse in the primary put Transformer. T106 appears in the form of a very sharp positive pulse. This pulse is increased by auto transformer action to approximately 12 kilovolts and is applied to the plate of V115, and rectified. When a glass envelope picture tube is used the ube is sufficient to store this rectified energy that is used to accelerate the electron beam in the picture tube. When a metal envelope picture tube is used, a capacitor (C165) is added for this purpose. Picture width is increased or decreased by an adustable iron core that is part of T106, the adjustment being made by the width control on the rear apron of the chassis. This adjustment changes the width of the air gap of the core and permits more or less flux to flow, in this manner, the voltage fed to the plate of V115 is raised or lowered. The Damper tube V112 assists in providing a linear trace by damping out oscillations of the energy
stored in the deflection yoke and critically dampens the ringing in the yoke that occurs just at the end of
the line retrace period. The plate current of V114 in antenna are limited by the distance between the flows through the damper tube for the major portion receiver and the transmitter and the location and of the trace. type of building in which the receiver is used.

Capacitor C148 is fully charged during this per-
iod and supplies the plate current to V114 during
the time the damper tube V112 is not conducting.
Unless the signal transmitted by the television station is of sufficient strength to reach the area where the receiver is located, NO television re ceiver can reproduce the picture. Due to the high frequencies used for television transmission, the signals reach only to the "line of sight". This is determined by the height of the transmitting and receiving antennas. In addition, steel frame work buildings, mountains, hills etc. reflect the television signals so that even though the television station is
.15 Low Voltage Power Supply:
The low voltage power supply consists of a vol- signals so that tage doubler circuit using two selenium rectifiers with conventional filtering. Booster voltage from the
B_{+}voltage that is delivered to V114 the Horizontal B+ voltage that is delivered to V114, the Horizontal function satisfactorily.

In locations where it is impossible to obtain

and the 1 st . anode of the picture tube.

 satisfactory results with the built-in antenna, due toshielding effects of buildings or mountains or if the Filament Transformer T109 supplies the tion filament voltage for all the tubes except the HV Rectifier V115. Two additional windings on the transformer supply the filament voltage for the Audio as the cathodes of these tubes are at a relatively high positive voltage.
3. ANTENNAS
3.01 Built-in Antenna:

An antenna, that in some localities will eliminate the need of an external TV antenna, is built into low (channel. 2 to built-in antenna serves both the television bands.

For the high band, section " A " of the Built-in ntenna Schematic shown below, is the Built-in folded dipole resonating at 200 mc . Section "B" is the lead-in, and section "C" a $1 / 2$ wave shorted stub the lead-in, and section "C" a $1 / 2$ wave shorted stub
resonating at 200 mc . For the low band, A, B, and C resonate at 70 mc

Schematic of Built-in Anfenna

The antenna is mounted, or printed, on a card oard form fastened in the cabinet. For proper op eration of the antenna, do not shorten or lengthe he leads as this will change the resonating fre eceiver is located too far from the television sta

oor or outdoor antenna.

3.02 External Antenna:

A proper antenna instaliation is the most impor tant factor in avoiding reflections in a picture, or weak picture, although, in some localities where there are a number of stations operating, it may be mpossible to eliminate all reflections. The Service Man should suggest the proper type of antenna to be used in the specific location and install and adjust the antenna for the best picture quality.

This television receiver has been designed to perate from a 300 ohm parallel lead transmission line.

Remove the two wires from the built-in antenna astened to the two screws on the terminal board mounted on the rear of the cabinet and fasten the lead-in from the external antenna under these screws. Tape the loose ends of the wires from the built-in antenna, as noisy reception will result if hese wires come in contact with the antenna termi nal screws.
4. INSTALLATION

4.01 Unpacking:

The cabinet of this receiver is shipped in firs class condition with considerable attention given to protecting the finish. Handle With Care. To remove the cabinet from the shipping container, turn the the cabinet from the shipping container, turn the flaps. Fold the flaps up along the side of the carton and turn the carton back up. Lift the carton up and off the cabinet. Tilt cabinet and carefully knock of (ce- (console models only). Remove the screws in the quencies. The reșults obtained by using the built- cabinet back andswing back open. Check to see that
ll tubes are in place and firmly seated in their sockets. Check high voltage lead to see that it is onnected to the CRT secondanode connector socket on the bell of the tube. After inspection, close cabinet back and reinsert and tighten the screws.

4.02 Location of the Receiver

The selection of a proper location for placing the receiver in the room should be given careful consideration. Be guided by the following considerations.
Choose a location:
(1) Where no bright light will fall directly on the picture. (Some ilumination in the room is desirable).
(2) That will provide easy access for operation and comfortable viewing.
(3) Where the built-in antenna will pick up the strongest signal for clearest picture. Due to the variation of the station's signal strength throughout the room, all practical locations should be tried or if an outside antenna is used, choose a location that will permit a convenient connection to the antenna.
(4) Convenient to an electrical outlet of the proper voltage and frequency (117 volts, 60 cycles alternating current)

CAUTION: -- The receiver cabinet is provided with adequate ventilation openings. Do not obstruct the entilation by placing too close to a wall or placing bjects too close to the openings. Do not place close to sources of heat, such as radiators

5. OPERATING INSTRUCTIONS

The receiver is adjusted at the factory and is ready for operation after being connected to a 117 volt, 60 cycle a.c. outlet. To set the receiver in operation, follow the procedure outlined under 'Normal Operation"

5.01 Normal Operation:

1. Turn the Off-On Volume control knob approximately half-way clockwise; this will turn the receiver "on". Wait one minute for the tubes to warm-up to the proper operating temperature.
2. Turn the Channel Selector Knob to the desired station's channel number
3. Turn the Contrast control knob approximately half-way clockwise.
4. Adjust the Fine Tuning control until a clear picture is obtained; this may require a readjustment of the Contrast control to get the correct picture shading.

O John F. Rider

Turn the Volume control to obtain the desired sound level. On some stations it may be necessary to make a slight readjustment of the Fine tuning control to minimize nois in the sound
6. To turn the receiver "Off', turn the Off-On-Volume control completely counterclockwise. Normally, only the main controls need be adjusted. At rare interval it may be necessary to adjust the Auxiliary Controls due to the normal ageing of the tubes and other components

5.02 Auxiliary Control Adjustment:

1. Turn the receiver "On" as described i paragraph " 1 " of "Normal Operation".
2. Adjust the Brightness control for moderate brightness, below the point where the raster size increases.

NOTE: If normal brilliance is not obtained at this point it may be necessary to adjust the Ion trap on the neck of the picture tube. For Ion trap adjustment, see "Ion Trap Magnet Adjustment" in section 6.01
3. Turn the Brightness control counter-clockwise until the raster just becomes invisible.
4. Rotate the Channel Selector to the desired channel and move the Fine Tuning Control slowly over this point until the best quality picture is obtained. This may require adjustment of the Contrast control to obtain the proper contrast between the blacks and whites of the picture, or adjustment of the Focus control located on rear of chassis to sharpen reatest clarity of the lines in the center of the raster.
5. Adjust the Volume control to obtain the desired sound level. On some stations, the readjustment of the Fine Tuning control may be necessary to minimize the noise in the sound.
. If the picture rolls or jumps vertically, turn Contrast control counter-clockwise to obtain a weak picture and adjust the Vertical Hold control until the picture remains stationary. Then readjust Contrast control.
. If the picture pulls to the right or tears, adjust the Horizontal Hold control until the picture remains stationary on the screen then set the control in the center of the range in which it makes the picture stationary. This adjustment should also be made with the Contrast control set to obtain a weak picture.

6. SERVICE NOTES

All controls are adjustable without removing the chassis from the cabinet. The back of the cabinet must be opened for the Horizontal Stabilizer adjust ment which is on the top of the chassis

WARNING

An A.C. interlock is provided at the rear of the receiver so that when the back is removed, the power is off. Bypassing the interlock involves a shock hazard from the receiver high voltage power suphe ne ar che work net thorechly familiar with altempted by anyone not thoroughy familiar with precautions

6.01 Adjustments \& Operating Check:

Remove the screws in the cabinet back and swing open the back. Connect an auxiliary power cord with 5 suitable socket to the interlock receptacle on the rear of the receiver chassis.

1. ION TRAP MAGNET ADJUSTMENT - When making this adjustment, do not exert pressure on the neck of the picture tube. Adjust the BRIGHTNESS control for normal brightness. With the ION TRAP positioned close to the base of the picture tube, move the trap forward or backward and at the same time rotate in either direction until maximum brightness of the raster is obtained. Readjust the BRIGHTNESS control until the raster is slightly above average brilliance. Adjust the FOCUS CONTROL until the line structure of the raster is clearly visible. Readjust the ION TRAP again for maximum brightness.

There may be two locations on the tube neck where the ION TRAP will produce maximum brightness. Never set the trap to the forward position, always use the position closest to the be base.

If there is a shadow in the corners of the raster, be sure the ION TRAP is properlyadjusted. Do not sacrifice picture brilliance when adjusting the ION TRAP to overcome shadows in corner of picture. If corner shadows are present, be sure the DEFLECTION YOKE and CENTERING MAGNET are properly adjusted.
2. DEFLECTION YOKE ADJUSTMENT - Posi tion the Deflection Yoke as far forward as possible on the picture tube. If the lines of he raster are not horizontal, rotate the De lection Yoke so as to make the top of the raster parallel with the top of the chassis, then tighten the yoke adjusting screws.
3. CENTERING RASTER - Center the raster by urning the levers of the CENTERING MAG NET in either direction until the raster is centered. The CENTERING MAGNET is located on the back cover of the deflection yoke. To determine the correct pictur centering, it may be necessary to reduce the size of the picture with the HEIGHT and WIDTH adjustments. After making this adjustment, readjust ION TRAP

HEIGHT AND WIDTH ADJUSTMENTS Height, width and linearity adjustments mus be made only when necessary. The linearity and corresponding size controls will have to be adjusted together and with care to maintain picture symmetry. For this reason it is best to use a test pattern when making these adjustments. Adjust size of picture to fill the screen by means of the HEIGHT, WIDTH ERTICAL LINEARITY and the HORI ONTAL centering control.

VERTICAL LINEARITY ADJUSTMENT - The Vertical Linearity control has the effect of expanding the picture at an increasing rate rom the bottom to the top of the picture. Adjustment of this control has the greatest ffect on the middle and very litte effect the bottom of the picture. The Height Cont and Focus control may need readjustment as a rel Linearity Control ical Linearity Control
6. FOC US CONTROL - Adjust the FOCUS CON TROL for best focus of the vertical and hori zontal wedges at the center of the test patern. If corner focus is poor, check position of DEFLECTION YOKE and ION TRAP. While observing the test pattern (or picture), make a slight readjustment of the VERTIal HOLD control until the horizontal lines are least noticeable. This adjustment is ligh crical and win require only a very tain proper adjustment.
6.02 Oscillator Adjustment Using A Television Signal

Do not make any adjustments on the two oscil lator adjusting screws unless the FINE TUNING con trol range is insufficient to properly tune-in the station. The adjusting screws are accessible through holes in the front of the chassis after the chassis is emoved from the cabinet

To make the adjustment, proceed as follows:
(a) Turn the receiver on and allow a warm-up period of approximately five minutes.
(b) For stations from channel 13 to channel 7 set the Station Selector Switch to the highest channel received and adjust the Conrast and Volume control for normal sound eiture. Set the Fe.
(c) Using a small non-metallic screwdriver, adjust the slotted head brass screw located to the left of shaft and above the fiber disc for the clearest and sharpest detail in the picture. This adjustment will be effective on all channels between 13 and 7 . If other stations are operating in this range, it may be necessary to compromise slightly on the high channel adjustment so the other channels may be properly tuned-in
(d) For Stations on channel 6 and below, set the station Selector Switch to the channel reeived closest to channel 6 and adjust the Contrast and Volume control for normal sound and picture. Set the Fine Tuning control in the center of its range
(e) Using a small non-metallic screwdriver, adjust the slotted head brass screw located to the right of the shaft for the clearest and the right of the shaft for the clearest and ment will effect all channels between 6 and 2.

6.03 Local-Distance (AGC) Switch:

The Local-Distance Switch can be set to prevent the receiver from overloading in strong signal areas or to reduce "snow" in the picture in weak signal areas. In strong signal areas, the Local (counterclockwise) position of the switch must be used. The second and third positions Suburban and Distance are to be used in medium to weak Signal areas. Use the position with which the best picture is obtained with no overloading of the receiver when the Contras control is advanced.

6.04 Horizontal Lock-in Adjustment

See "HORIZONTAL HOLD ADJUSTMENT".

6.05 To Clean Picture Tube and Window:

The chassis must be removed from cabinet (See Section 6.06 Removal of the chassis from the cabinet)

6.06 Removel of the Chassis from the Cabinet: (Be sure Power is Disconnected)

1. Remove the (slip-on type) knobs from the front panel controls.
2. Remove the screws in the cabinet back and swing open the back.
3. Remove the built-in antenna leads from the antenna terminal board screws. $-$

\qquad

© John F. Rider

4. Disconnect the speaker plug from the speake socket on the rear of the speaker.
5. Remove the hex head machine screws that secure the chassis in the cabinet. These ar accessible from the bottom of the chassi shelf on the console models and from the bot tom of the cabinet on the table models.
6. Slide the chassis from the cabinet
7. To reinsert the television chassis in the cabinet, repeat steps 2 to 6 in reverse order, then proceed as follows:
(a) Replace the large and small knobs on the Volume Control and Off-On-Contrast control shafts.
(b) Replace the large and small knobs on the Fine Tuning and Channel Selector control shafts.

6.07 Removal and Replacement of
 the Picture Tube:

Do not remove or handle the picture tube in any manner unless heavy gloves and protective goggles are worn. KEEP THE TUBE AWAY FROM THE BODY WHILE HANDLING.

1. Disconnect the tube socket and high voltage anode lead from the picture tube. Remove the Ion Trap from the neck of the tube.
2. Remove Picture tube strap.
3. Grasp the picture tube firmly with both hands along the outer edge and gently slide it out of the deflection coils.

CAUTION: NEVERGRASP THE PICTURE TUBE BY ITS NECK OR ALLOW PRESSURE TO BE EXERTED ON THE NECK
4. Place the picture tube face down, on a flat surface covered by a clean cloth, in a location where it will not be disturbed.
5. When the picture tube is ready to be replaced in the receiver chassis, slide the picture tube gently back into the deflection coils.
6. Bottom of tube should rest on the rubber strip on the bracket fastened to the front of the chassis. Also, see that the neck of the ube is centered in the deflection coil. This entering must be accomplished by adjust-

ALLOW PRESSURE TO BE EXERTED ON THE NECK OF THE TUBE. Fasten the picture tube strap
7. Slide the deflection coil bracket forward as far as possible until the rubber cushion fits snugly against the flare of the picture tube Also make sure that the denlection colls are positione tube
8. Replace the Ion Trap.
9. Connect the anode (high voltage) lead to tube.
10. Connect the tube socket to base of tube

.08 Removal and Replacement of the RF Unit

1. Unsolder: (a) Black and Yellow lead from lug \#3 on rear of Tuner
(b) R143, 220 ohm resistor from lug \#2 on rear of Tuner
c) C101, 330 mmf . capacitor from lug \#1 on rear of Tuner.
d) Spiral shield from ground lance on rear of Tuner.
(e) C102, .05 mfd capacitor and H101, 100,000 ohm resistor from lug \#8 on rear of Tuner.
f) R101, 100,000 ohm resistor and Brown lead from lug \#9 n rear of Tuner
2. Remove CA101 antenna lead from terminal board CO102.
3. Remove two self tapping screws that fasten the tuner shaft supportbracket to the front of the chassis. Then remove the two screws that fasten the tuner mounting bracket to the underneath side of the chassis and carefully remove the unit from the bottom of the chassis.
4. To install the new R.F. TUNER UNIT, reverse steps " 1 " to " 3 ".
6.09 Test Equipment:
\qquad
Very high input impedance
readily Must
readily symehronize
with axis signal. Must With "Y" axis signal. Must
have excellent frequency and have excellent frequency and
phase reaponse from 10 cycles to at least two megacycles and should be capable wave without appreciable distortion. Must not compress size wave form reasonably phide range input attenuator

Voltage Calibrator

Electronic Voltmeter
R. F. Sweep Generator or Wobbulator

Suitable for calibrating the amplitude of the wave shapes on the "
cilloscope.

Very high input impedance for d.c. voltage measurements. Having at least one megohm
of d.c. resistance on the 3 volt scale.
Frequency range 20 to 250 megacycles, sweep width 1012 megacyclea (adjustable). .1 volt maximum. Output constant on all ranges. Center frequency variable over
the complete televiaion apectrum of channela $2-13$. Output impedance. 150 ohms unbalanced.

Slgnal Generator High frequency signal gen-
erator; minimum frequency
range; $40-250 \mathrm{mc}$. frequency range $40-250 \mathrm{mc}$.; frequency than 100 KC . Attenuator should be adjustable and ver accurate; modulation up to
30%.

Cathode-Ray Oacilloscope Same as in " A "

Probe Detector Schematic

6.10 Possible Failures:

NOTE: The following failures and possible solutions will aid the serviceman to locate and remedy the trouble

Tubes should be changed first and if this will not remedy the trouble, check voltages.

1. DEAD RECEIVER:

a. A.C. interlock not making connection.
b. Power cord broken, check cord at interlock.
c. Power switch SW 101 contacts open.
2. NORASTER OR SOUND BUT TUBES LIGHT UP:
a. Low voltage selenium rectifiers SR101, SR102.
b. Speaker plug disconnected.
c. Open choke L111.
d. Open R142 Fuse type Resistor
3. PICTURE BUT NO SOUND:
a. Audio Tubes (V104, V111).
b. Sound Det. Driver tube (V107)
c. Defective Speaker voice coil.
d. Receiver not tuned properly.
e. T108 or C157 defective.
f. Sound Detector tube (V106)
4. NO RASTER WITH SOUND PRESENT
a. Ion trap magnet not set properly.
b. No high voltage caused by 1B3 GT rectifier, T106 Horizontal Output transformer V110, V112, V113, or V114.
c. Defective Picture tube.
5. NO PICTURE OR SOUND WITH RASTER PRESENT:
a. IF tubes V101, V102 V103.
b. Crystal detector CR101 or Video amplifier V108; peaking coils open.
c. R.F. Unit.
d. Antenna Lead-in.
6. NO VERTICAL DEFLECTION:
a. Open Vert. Osc. Transformer T104.
b. Vertical Output Transformer T105 open
c. Open deflection coil L112A.
d. V105 tube defective or burnt out.
e. C132 shorted.
f. C131 or C118D shorted or R137 open
7. NO HORIZONTAL DEFLECTION:
a. Tubes V112, V113, V114
b. Horizontal Stabilizer Coil L108.
c. Open deflection coil L112B.
8. SOUND BARS OR GRAIN IN PICTURE a. Station not "tuned-in" properly
b. Ratio Detector Trans. T107 primary not adjusted properly
c. Microphonic tubes. (V2, V101, V102, V103)
Oscillation in F system due to lead dress or open by-pass capacitor.
e. R.F. or I.F. not aligned properly.
9. SIGNAL BUT NO VERTICAL SYNC:
a: Defective vertical oscillator Trans. T104 b. V105 tube.
c. Integrator network, C126, open or shorted
d. Vertical Hold Control R135 arm not making good contact.
b．Capcitors C136 and C137 open
c．R149 apen，or C139 defective．
d．Horizontal frequency àdjustment of L108 not properly adjusted．
e．Horizontal Hold control R155．
11．SIGNAL BUT NO VERT．OR HORIZ．SYNC：
a．Tube V109．
b．C123 or C125 open．
c．R127 open．
12．SHADOWS IN CORNERS OF PICTURE：
a．Ion trap magnet adjustment．
b．Misadjusted centering magnet
13．＂SNOW＂IN PICTURE：
a．Weak signal；check antenna and lead－in．
a．Weak signal；check antenn
b．Noisy tube $V 2$ in R．F．Unit．
c．Corona discharge from High Voltage power supply due to improper lead dress．

14．SMALL PICTURE：
a．Low line voltage．
b．Weak Selenium Rectifiers SR101，SR102．
c．V112 tube．

15．PICTURE WITH VERTICAL LINES：
AND HORIZONTAL NON－LINEARITY
a．V112 tube．

6．11 Critical Lead Dress：

CIRCUTT OR LEAD：
R．F．TUNING UNIT：
RF Tuner：
The brown AGC lead from the terminal board to the tuner should be dressed flat down to chassis．

IF Section：

The component leads and wires in the video IF section must be kept as short as possible．

RF Choke：

The end of the RF choke L113 which is wir ed to T103，lug 6，shall be as short as possible．

LEADS：

The black wire from T103，lug 4 to chassis must be as short as possible．All leads must be kept away from the plates of the selenium rectifiers， SR101 and SR102．Dress the red and blue leads of
Audio Output Transformer，T108 away from the high Audio Output Transformer，T108 away from the high
voltage shield so they will not be pinched under it．

Components：

Keep all components，particularly peaking coils， away from R121 which is wired between the termi－ nal boards adjacent to V110．

Resistors：

Dress the fuse resistor R142 attached to the terminal board，up away from the chassis．On the 385 chassis，dress the two 150 K ohm resistors，R151 and R152，in such a manner as not to short against the high voltage shield．

Capacitors：
The ． 006 mfd ．capacitor，C138，wired from V114， pin 6，to ground lug of C118，should be dressed down close to the chassis．The .005 mfd ．capacitor，C162， which is wired from the case of R1 18 thru the center lug of R118A to chassis，must have a very short lead on the end wired to the case of R118 so the body of the capacitor prevents any shorting to the shield wired to R118．

Controls：

All controls and the local－distance switch must be kept from shorting to the chassis．Make sure the control does not turn when the nut is tightened．

High Voltage Section：

The plate cap of the 1B3GT，V115，should be put on so the lead comes away from it in a vertical di－ rection．The vinyl tape that is applied to the corona ring should cover the entire outside edge of the ring and as much of the socket area as possible．
Yoke Coupling Network：
The yoke coupling network，L109，wired from T106 lug 3 to V112，lug 1，should be kept away from T106 lug 3 to
lug 4 of T106．

6．12 Alignment and Adjustment Notes：
1．The sound I．F．and video I．F．carriers of this receiver are 21.9 megacycles and 26.4 mega－ cycles respectively．Sound I．F．frequency 4.5 mc ．

2．When the television receiver is repaired or aligned，always turn the chassis on its side with I．F．strip and R．F．Tuning unit up and block upthe deflection coil mounting bracket to prevent the tube from resting on the bench．

3．Never disconnect the speaker while the power is on as the filter choke mounted on the speak－ er is in the B＋circuit．

4．If the television receiver must be operated with the picture tube removed from the chassis，tape or cover the exposed end of the high voltage anode lead．

5．All lead connections from the signal gen－ erator and wobbulator must be shielded． Keep the exposed ends and ground leads as short as possible（about one inch）．

6．Always locate the ground lead connections as close as possible to their．respective＂hot＂ leads in the television receiver chassis．
7．The wobbulator，signal generator output，and contrast control must be kept low enough to prevent over loading the television receiver circuits．

CONNECTING EXTERNAL ANTENNA

Remove the two wires from the built－antenna fastened to the two screws on the antenna terminal board mounted at the
rear of the receiver．Tape bare ends of wires from the built－in antenna．Keep the lead－in from the external antenna away from the power cord and speaker leads．Fasten the lead－in wires under the two screws on the antenna termi－ nal board．

ADJUSTMENTS

．ION TRAP ADJUSTMENT：

Adjust the BRIGHTNESS control for normal brightness．With the ION TRAP positioned close to the base of the picture tube，move the trap forward or backward and at the same time rotate in either drection until maximum brightness of the raster is obtained．Readjust the BRIGHTNESS control until the raster is slightly above average brilliance．Ad－ ust the FOCUS CONTROL until the line structure of the maximum brightness．
There may be two locations pn the tube neck where the ION RRAP will produce maxdmum brightness．Never set the the tube base．
f there is a shadow in the corners of the raster，be sure the ON TRAP is properly adjusted．Do not sacrifice picture

CAUTION

HGH VOLTAGE－－Operation of a television receiver with the back open involves a shock hazard．When making ad justments other than adjusting the controls at the front panel，all precautions for working near high voltage should be exercised．
HIGH TEMPERATURE OF TUBES－－Some tubes in the receiver operate at extremely high temperatures．To avoi erious burns，do not touch these tubes while the receiver is operating，or until the tubes have cooled after the set shut off．

HANDLING OF PICTURE TUBES－－Breakage of the picture tube，which contains a high vacuum，may result in injury rom flying glass．Do not scratch tube face or subject to more than moderate pressure．DO NOT REMOVE O WANDLE THE PICTURE TUBE IN ANY MANNER UNLESS HEAVY GLOVES AND PROTECTIVE GOGGLES ARE NECK OR ALLOW PRESSURE TO BE EXERTED ON THE NECK．In installation，if the tube sticks or fails to slip smoothly through the deflection yoke，investigate and remove the cause of the trouble．DO NOT FORCE TUBE．

ADJUSTMENTS（Continued）

－BRIGHTNESS CONTROL

BRIGHTNESS CONTROL and CONTRAST control should be set to obtain as much shading in the picture as possible． The Brightness control is set too low，the black and gray grays of the picture will appear light and faded．

10．LOCAL－DISTANCE（AGC）SWITCH：

The LOCAL－DISTANCE SWITCH can be set to prevent the receiver from overloading in strong signal areas or to re duce＂snow＂in the picture in weak signal areas．In strons signal areas，the＂LOCAL＂（counter－clockwise）position of the switch must be used．The second and third positions ＂SUBURBAN＂and＂DISTANCE＂are to be used in medium
to weak signal areas．Use the position with which the best picture is obtained with a minimum of overloading of the receiver when the CONTRAST control is advanced．

II．OSCILLATOR ADJUSTMENT USING A TELEVISION SIGNAL：
Do not make any adjustments on the two oscillator adjust ing screws unless the FINE TUNING control range is in sufficient to properly tune－in the station．The adjusting
screws are accesible through holes in the front of the chassis after the chassis is removed from the cabinet．

To make the adjustment，proceed as follows
（a）Turn the receiver on and allow a warm－up period of approximately five minutes．
（b）For stations from channel 13 to channel 7，set the ceired and adjust the Contrast and volume con－ rol for normal sound and picture．Set the Fine Tuning Control in the center of its range．
（c）Using a small non－metallic screwdriver，adjust the slotted head brass screw located to the left of shaft and above the fiber disc for the clearest and sharpest detail in the picture．Thisadjustment will be effective on all channels between 13 and 7 ．I other stations are operating in this range，it may
be necessary to compromise slightly on the high channel adjustment so the other channels may be properly tuned－in．
（d）For Stations on channel 6 and below，set the station Selector Switch to the channel received closest to channel 6 and adjust the Contrast and Volume con－
trol for normal sound and picture．Set the Fine trol for normal sound and picture．Set
Tuning control in the center of its range．
（e）Using a small non－metallic screwdriver，adjust the slotted head brass screw located to the right of the shaft for the clearest and sharpest detail in the pic ure．This adjustment will effect all channels be tween 6 and 2

I．F．ALIGNMENT

All lead connections from the signal generator and wobbulator must be shielded．Keep the exposed ends and ground leads as short as possible（about one inch）．Always locate the ground lead connections as close as possible to their respective＂hot＂ to prevent overloading the television receiver circuits．

CAUTION：One side of the chassis is connected to the power line．Therefore，test equipment should not be connected to the recerer unless anisolationtransformerisusa THE RECEIVER CHASSIS UNLESS AN ISOLATION TRANSFORMER IS USED．

1．To Check I．F．Alignment on Oscilloscope：
（a）Lift the shield of the Oscillator－Mixer tube V2 sufficiently to clear the socked ground clips．Con nect sweep signal generator＂hot＂lead to the under grounded tube shield and generator ground lead to the tuner chassis．
（b）Connect high side of oscilloscope to high side of contrast contro
side to chassis．

VARIABLE BIAS CONTROL ASSEMBLY

（c）Apply－ 3.0 voits D．C．bias to lug 4 of S103（Se sketch＂Variable Bias Control＂）．Contrast contro hould be set in the maximum counter－clockwis osition．
（d）With the generator sweep set at zero，connect an electronic voltmeter between lug 2 of S 103 and chas reading of 2 volts D．C．on the meter
（e）Set generator to sweep from 20 mc ．to 30 mc ．

NOMINAL OVERALL I．F．RESPONSE CURVE

I．F．ALIGNMENT（Continued）

（f）Connect marker generator to sweep generator out put leads and adjust to provide markers that appear in the curve．
（g）Observe curve and position of markers（see nomi nal response curve）．Slight deviation in shape from the nominal response curve is permissible，but if realign the I－F Amplifier．

2．Alignment，I．F．\＆Tuner Assembly（with eleatronic voltmeter）：
（a）Connect－ 3.0 Volts D．C．bias supply to lug 4 of S103．
（b）Connect signal generator＂hot＂lead through a 1000 mmf．capacitor to TP－1（wire protruding from tun－ V2）and ground lead to the R ．F tuner case．
（c）Connect high side of Electronic Voltmeter to lug 2 of S103 and low side to chassis．
（d）Set signal generator to 25.0 mc ．and adjust bottom of $T 103$ for maximum meter deflection，limitin attenuator．
（e）Set signal generator to 23.3 mc ．and adjust bottom of T102 for maximum D．C．meter indication．Ad indication approximately 2 volts D．C
（f）Reset signal generator to 21.9 mc ．and adjust the Signal generator amplitude must be sufficiently high

SOUND

1．Connect crystal controlled 4.5 mc .400 cycle amplitude modulated signal，modulated 30% or greater，to lug 2 of S103 and chassis．
2．Connect high side of scope through detector probe to the picture tube cathode（pin 11）．Connect low side of scop ycle deflection on scope．
．Connect electronic voltmeter to lug 2 of ratio detector V106，and adjust 4.5 mc ．sound take－off（L110）a nd bottom
to produce a definite null．Meter must read a leat 0.5 volt 5 an．
（g）Repeat steps 5 and 6
（h）Next set signal generator to 25.2 mc ．and adjust bottom of 1101 for maximum meter indication，lim iting output of generator so peak reading will no
exceed 2 volts D．C．
（i）Reset signal generator to 24.65 mc ．Connect a 500 ohm resistor in series with a 500 mmf ．capacitor from TP－2（wire protruding from the tuner through the insulated eyelet between the brass adjusting Adjust L101 for maximum meter deflection，bu limit output of generator so this reading does no exceed 2 volts D．C．Remove the 500 ohm resistor and the 500 mmf ．capacitor．
（j）Set signal generator to 24.65 mc ．Connect the 500 ohm resistor and the 500 mmf ．series capacito across L101 and adjust mixer output（L9）on R－F Tuner for maximum meter indication．Adjusting amplitude of signal generator to make this maxi move the 500 ohm resistor and the 500 mmf ． pacitor．
（k）Check sensitivity．The input for 2 volts D．C．out put and zero bias should not exceed 150 microvolts 1.5 ohms or less，and the local oscillator set to properly tune in channel 5 ．
（1）Remove the signal generator and electronic volt meter

ALIGNMENT

of ratio transformer（T107）for peak reading on volt－ meter．Adjust input to make this peak reading 4 volts．

4．Adjust input to obtain 12 volts output．Transier elec tronic voltmeter to junction of R167 and C153（refer to balance on electronic voltmeter－

5．
．Remove input signal，scope and electronic voltmeter

HORIZONTAL HOLD ADJUSTMENT

1．Tune in a local television signal and adjust contrast con trol for normal picture．

2．Connect electronic voltmeter between TP－3（green lead） and chassis．

3．Short TP－4（orange lead）to chassis and adjust electronic voltmeter to zero．
4．Remove short from TP－4．Do not change zero on elec－
tronic voltmeter．
．Connect a 0.1 mfd．plus 20% ， 600 volt capacitor between TP－5（red lead）and chassis．

6．Adjust Horizontal Hold control for zero reading on the meter．

7．Remove the 0.1 mfd．capacitor from TP－5 and chassis． Do not disturb setting of horizontal hold control
8．Adjust Horizontal Stabilizer coll（L108）for zero read－ ing on the meter．

9．Remove electronic voltmeter from TP－3
10．Check horizontal pull－in range．Thepull－in range should be approximately 50° of the controls rotation

OJohn F. Rider

CHASSIS 386 \& 387 HORIZONTAL DEFLECTION TRANSFORMERS Increase High Voltage and

 AND ASSOCIATED CODE LETTERS

Chassis 386 \& 387 (Code Lefter C)
To Reduce Horizontal fold over

Chassis 386 (Code Letter H), and Chassis 387 (Code Letter G) - The Horizontal Deflection Transformer (Part No. 154990-1) can be used by omitting lug \#2 and by wiring capacitor C147, 120 mmf ., between lug \#1 and \#3.

New Part Numbers for Chassis Code Letters H\&G

Symbol No.	Part No.	Description
C144	$137499-46$	Capacitor, 470 mmf., $10 \%, 500 \mathrm{v} .$, mica
R155	155511	Control, Horizontal Hold (170,000 ohm)
T106	$154990-2$	Transformer, Horizontal Output

Chassis 386 (Code Letter D)
To Reduce Horizontal fold over

Chassis 386 (Code Letter F), and Chassis 387 (Code Letter E) To Reduce Horizontal fold over

Chassis 386 \& 387 (Code Leffers B thru E) - For Horizontal Deflection Transformer T106 (Part No. 154990-1), the terminal numbering sequence is as shown in sketch B.

TIO6

SKETCH B

Chassis 386 (Code Letter H), and Chassis 387 (Code Letter G)

OJohn F. Rider

INDEX

PAGE

ALIGNMENT INSTRUCTIONS ... 30
NSTALLATION DATA....... 28
PARTS LIST 32
SCHEMATIC 35

SPECIFICATIONS 28
28
TOP VIEW - TUBE LAYOUT. . . 30
TRIMMER LOCATIONS. 30
VOLTAGE MEASUREMENTS ... 35
WAVEFORMS 35

These receivers are equipped with twenty (20) tubes, two (2) selenium rectifiers, and a picture tube They have a switch type tuner which tunes the twelve (12) VHF television channels (2 to 13), also a UHF Converter which covers the seventy (70) UHF television channels (14 to 83).

TUBE COMPLEMENT (VHF Chassis 396)

Symbol	Tube	Function	Symbol	Tube	Function
V1	6BC5	R-F Amplifier	V108	6AH6	Video Amplifier
V2	6 J 6	VHF Oscillator \& Mixer	V109	6SN7GT	Sync. Clipper \& Sync. Output
V101	6CB6	1st I-F Amplifier	V110	6AL5	Horizontal A.F.C.
V102	6CB6	2nd I-F Amplifier	V111	6W6GT	Audio Output
V103	6CB6	3rd I-F Amplifier	V112	6AX4	Horizontal Damper
V104	6C4	1st Audio Amplifter	V113	6SN7GT	Horizontal Oscillator
V105	12BH7	Vertical Oscillator \& Output	V114	6BQ6GT	Horizontal Output
V106	6AL5	Ratio Detector (Sound)	V115	183GT	H.V. Rectifier
V107	6AU6	Sound Detector Driver	V116	17HP4 or 17HP4A	Picture Tube

TUBE COMPLEMENT (UHF Converter)

Symbol	Tube	Function
V1	6AF4	UHF Oscillator
V2	6BQ7 or 6BQ7A or 6BZ7	I-F Amplifier

POWER SUPPLY: 117 volts, 60 cycle, a.c
POWER CONSUMPTION: 140 watts
AUDIO POWER OUTPUT: 2 watts maximum
ANTENNA INPUT IMPEDANCE:
300 ohms balanced
BLOCK DIAGRAM:

INTERMEDIATE FREQUENCY: Video Carrier - 26.4 mc . Sound Carrier - 21.9 mc . Intercarrier Sound - 4.5 mc . UHF Output - Channels 5 or 6.
 Eu-bitiolu (Mahogany) (Blond)

Eu-ifcolu (Mahogany)
EU-17COLBU (Blond)

DEFLECTION: Electromagnetic.
FOCUS: Electrostatic
ION TRAP: Single Permanent Magnet.
HORIZONTAL SCANNING FREQ.: 15,750 c.p.s.
VERTICAL SCANNING FREQ.: 60 c.p.s.
FRAME FREQUENCY: 30 c.p.s.
SCANNING: Interlaced, 525 lines.

SPEAKER

$17^{\prime \prime}$ Console Models $51 / 4^{\prime \prime}$ P.M
$17^{\prime \prime}$ Table Models $514^{\prime \prime}$ P.M.
VOICE COIL IMPEDANCE: 3.2 ohms at 400 cycles

CAUTION

high voltage--Operation of a television receiver ther than adjusting the controls at the front panel, all precautions for working near high voltage should be exercised HIGH TEMPERATURE OF TUBES--Some tubes in the receiver operate at extremely high temperatures. To avoid seriou HANDLING OF PICTURE TUBES--Breakage of the picture tube, which contains a high vacuum, may result in injury from Iling glass. Do not scratch tube face or subuct in GLOVES AND PROTECTIVE GOGGLES ARE WORN. Persons not so equipped should be kept away while handling the tube. NEVER GRASP THE TUBE BY THE NECK OR ALLOW PRESSURE TO BE EXERTED ON THE NECK. In instailation, if the tube sticks or fails to slip smoothly through the deflection yoke, in TO BE EXERTED ON THE NECK. In instailation, if the tube sticks or

ANTENNAS

buILT-IN ANTENNAS--The receiver is equipped with two antennas; one for VHF reception is enclosed in the cabinet and one for UHF reception is attached the anternas anna terminal the need of an external antenna in some areas where the signal strength is sufficient. If you are in a location where the signal strength is not sufficient and it is impossible to obtain satisfac-
tory results with the built-in antennas due to the above effects tory results with the built-in antennas due to the above erfiects,
or if the receiver is too far from the television station, it will be necessary to install an external antenna which is designed for both VHF and UHF, or two separate antennas--one designed for VHF and the other for UHF. Sometimes it is poss ible for but the reception of UHF on the built-in UHF antenna may be unsatisfactory; or vice versa. In these cases it is only neces-
sary to install one external antenna designed for VHF or for sary to instaln one which built-in antenna is not providing satisfactory reception.

EXTERNAL ANTENNA--The choice of the proper type of an-

front panel controls

CONTRAST CONTROL-Varies the picture output (increases or decreases the variations between light and dark areas of the picture) similar to the manner in which sound output is varied by the volume control
he output of sound.
tenna and its location are very important. Of equal importance is the installation of the antenna. In some localities wher to eliminate all reflections.

CONNECTING EXTERNAL VHF ANTENNA--The antenna ter minal board for the VHF antenna is located on a metal plate the rat that are fastened under the screws of the terminal board Fasten the lead-in wires of the external antenna under thes two screws. Cover bare ends of the wires from the built-in an tenna with tape.

CONNECTING EXTERNAL UHF ANTENNA--The antenna ter minal board for the UHF antenna is also located on the metal plate at the rear of the cabinet. Remove the UHF dipole an tenna (wire loop) leads that are fastened under the two screws
and attach the lead-in from the external UHF antenna. Do no drape or coil the lead-in wire and keep it away from the powe cord (and also the speaker cable on console models).

CHANNEL SELECTOR (VHF)- Selects the channel number of the desired VHF station. When tuning for VHF stations be sure the COURSE TUNING (UHF) is set to the VHF position (rotated completely counterclockwise).

FINE TUNING (VHF)-Tunes in the best picture, at which point sound is also received

COURSE TUNING (UHF)- ${ }^{-}$Selects the channel number of the desired UHF station. To tune in a UHF station se he CHANNEL SELECTOR (VHF) to channel 5 or 6 as deermined by the setting of the slide switch (see note below),
Then set the COURE TUNNG (UHF) to the channel numher of the desired UHF station.
*NOTE - The slide switch operated by a wire looped around the Contrast control shaft should be set, at the time of installation, to its forward position if a VHF station is not assigned to channel 5 in the area in which the receiver is being installed. To set the switch in its forward position, pull the Contrast and off-On-Volume knobs from their shafts. Then pull the wires
loop forward on the Contrast control shaft. If a VHF station is assigned to channel 5 , set the $s w i t c h$ toward the rear by loos forward on the Contrast control shaft. If a
pushing back on the wire lopp. In this position the UHF stations can be tuned-in with the COURSE TUNING (UHF) and
If pusing back on the wire ioop. In this ponsine CHANNEL SELECTOR (VHF) in set to channel 6 . If no VHF station is assigned to channel 5 or to channel 6 , set the switch for operation on either channel, whichever may provide the best re-
ception. Be sure to inform the customer as to whith channel (5 or 6) the switch has been set to operate on.

ADJUSTMENTS

l ion trap adjustment:

Adjust the BRIGHTNESS control for normal brightness. With the ION TRAP positioned close to the base of the picture tube, move the trap forward of mackimum brightness of the raster is in either direction until maximum brighness of the raster is
obtained. Readjust the BRIGHTNESS control until the raster is
slightly above average brilliance. Adjust the FOCUS CONTROL slightly above average brilliance. Adjust the FOCUS CONTROL
until the line structure of the raster is clearly visible. Readuntll the line structure of the raster is clearly visib
just the ION TRAP again for maximum brightness.
There may be two locations on the tube neck where the ION TRAP will produce maximum brightness. Never set the trap
to the forward position, always use the position closest to the tube base.
If there is a shadow in the corners of the raster, be sure the ION TRAP is properly adjusted. Do not sacrifice picture
brilliance when adjusting the ION TRAP to overcome shadows in corner of picture. if corner shadows are present, be sure the DEFLECTION
properly adjusted.
2. DEFLECTION YOKE AND BRACKET:

The DEFLECTION YOKE should be positioned as far forward as possible on the picture tube neck and rotated to the left or
right as required to make the picture parallel with respect to the top and bottom of window frame.

3. CENTERING RASTER

If the picture is off center and/or has neck shadow, rotate until the picture is centered on the screen and is free of neck shadow. The CENTERING MAGNET is located on the back cover of the DEFLECTION YOKE. To determine the correct picture centering, it may be necessary to reduce the size of the
picture with the HEIGHT and WIDTH adjustments. Atter making adjustment of CENTERING MAGNET, readjust ION TRAP.
4. HEIGHT AND WIDTH ADJUSTMENTS:

The linearity' and corresponding size controls will have to be adjusted together and with care to maintain picture symmetry For this reason it is best to use a test pattern when making these adjustments. Adjust size of picture to fill the scree
means of the HEIGHT, WIDTH, VERTICAL LINEARITY.

5. vertical linearity adjustments:

The VErtical linearity control has the effect of expanding the picture at an increasing rate from the bottom to the top of the picture. Adjustment of this control has the greatest effect on the top portion of the picture, some effect on the middle and
very little effect on the bottom of the picture. The HEIGHT verd FOCUS controls may need readjustment as a result of the change in position of the VERTICAL linearaty control.

6. HORIZONTAL HOLD CONTROL

The horizontal hold control is adjusted with a weak picture to the center of its pull-in range. In the pull-in range

7. VERTICAL HOLD CONTROL:

The vertical hold control is also adjusted tothe center

Off Conter and
Neck Shadow

CENTERING MAGNET AD-
JUSTMENT - If the picture is JUSTMENT - If the picture is
off center and/or has neck off center and/or has neck
shadow as shown in the illustration at the left, rotate either or both centering magnet levers to the right or left until the picture is centered on the screen and the picture is free of all neck shadow

DERLECTION YORE ADNUSTMeNT - The enenection yoke
must be positioned as far tor-
Wis ward as possibe on the neck of

 screws "D"' and "E". Screws "A" and "C" are for shiftin
the yoke up or down to center
it around the picture tube neck If the picture is tilted as illus-
trated trated at right, loosen wing nut
" B ". Then, rotate the yoke to
left or right as required to make
the picture to top and bottom of window
frame. Be sure to hold the yoke in position while tightening the
wing nut.
horizontal Stabilizer misodjusiod ADJUSTMENT- See "HORI".

Hold
HORIZONTAL HOLD CONTROL - If the picture ap pears as shown in the illustration, adjust the horizonta
hold control to right or left as required to lock in single stationary picture. If the range of the contro
is not sufficient to lock in picture, set the control to is not sufficient to lock in picture, set the control to its
midway position and then adjust the horizontal stabilmider adjustment until the picture locks in.
ind
LOCAL - SUbURBAN - distance switch - In strong signal areas set this switch to its extreme
counter-clockwise position (LoCAL). The middle po-counter-clockwise position (LOCAL). The middle po-
sition SUBURBAN), and extreme clockwise position
(DUSE (DISTANCE) are used in areas where the signal is
weak or medium strength. Set the switch in the posi-
tion which provides weak or medium strength. Set the switch in the posi-
tion which provides the most satisfactory picture with minimum overloading when the
contrast control is advanced.

- VERTICAL HOLD CONTROL - If the picture is moving up or down as illustrated at right, adjust the vertica
trol until a single stationary picture is obtained.
Lineority
FOCUS CONTROL - Rotate to the right or left until the sharpest picture, or sharpest horizontal lines, are obtained.

BRIGHTNESS CONTROL - Turn clockwise to increase brightness. To decrease brightness, turn counter-clockwise.
hORIzontal CENTERING CONTROL - If the picture is off center to the right or left, rotate this control in either direction as required to center the picture. The picture at the middle of its range of adjustment if not, then set
the control at the middle of its range. Then center the the control at the middle of its range. Then center the
picture on the screen by adjusting the centering magnet
levers as explained under "CENTERING MAGNET ADlevers as exp
JUSTMENT"
WIDTH CONTROL - If the picture is too narrow as illusbrated, or too wide, turn the width control clockwise or
counter-clockwise as required to adjust the picture to the counter-clockwise as required to adjust the pict
proper width of the viewing area on the screen.

Picture tilted Tol advanced just enough to dimly light up the face of the picture tube, slide the ion trap backward or forward and at the same time rotate it to the right or shadow appears at any of the corners, refer to "Centering Magnet Adjustment" above.

HEIGHT CONTROL - This control increases the overall
height of the picture when making this adjustment it is sometimes necessary to also adjust the VERTICAL LINEARcorrectly pro a picture that is
vertical linearity conTROL - This control increases or decreases the height of the upper portion of the picture.

Picture Too Narrow
of its pull-in range with the contrast control set to obtain a weak picture.
8. FOCUS CONTROL:

Adjust the FOCUS CONTROL for best focus of the vertical and focus is poor, check position of DEFLECTION YOKE and ION Trap. While observing the test pattern (or picture), make slight readjustment of the VERTICAL HOLD control until the
horizontal lines are least noticeable. This adjustment is ver critical and will require only a very slight movement of the control shaft to obtain proper adjustment.

9. BRIGHTNESS CONTROL:

BRIGHTNESS CONTROL and CONTRAST control should be se
to obtain as much shading in the picture as possible. If the Brightness control is set too low, the black and grays of the picture are black and if set too high, the black and grays of the picture will appear light and faded.
10. LOCAL-DISTANCE (AGC) SWITCH:

The LOCAL-DISTANCE SWITCH can be set to prevent the re"snow" in the picture in weak signal areas. In strong signal areas, the "LOCAL" (counter-clockwise) position of the switch must be used. The second and third positions "SUBURBAN"
and "DISTANCE" are to be used in medium to weak signa and "DISTANCE" are to be used in medium to weak signal
areas. Use the position with which the beat picture is obtained with a minimum of overloading of the receiver when the
II. OSCillator adjustment using a televison signal: Do not make any adjustments on the two oscillator adjustin screws unless the FINE TUNING control range is insufficient to properly tune-in the station. The adjusting screws are accessible through holes in the front of the chassis after the
(a) Turn the receiver on and allow a warm-up period of ap minutes
(b) For stations from channel 13 to channel 7 , set the Station the Contrast and Velugest channel recelved and adjus picture. Set the Fine Tuning Control in the center of its range. slotted head brass screw located to the left of shaft and
lector Switch to the channel received closest to chanel
above the fiber disc for the clearest and sharpest detail
6 and adjust the Contrast and Volume control for normal above the fure. This adjustment will be effictive on all channels between 13 and 7. If other stations are oper-
ating in this range, it may be necessary to compromise ating in this range, it may be necessary to compromise
slightly on the highchannel adjustment so the other channels may be properly tuned-in.

ADJUSTMENTS
irom the signal sound and picture.
e) Using a small no

Using a small non-metallic screwdriver, adjust the
sloted head brass screw located to the right of the shaft slotted head brass screw located to the right of the shat
for the clearest and sharpest detail in the picture. This for the clearest and sharpest detail in the picture.
adiustment will effect all channels between 6 and 2 .
All lead connections from the signal generator and wobbulator must be shielded. Keep the exposed ends and ground leads as shor as possible (about one inch). Always locate the ground lead connections as close as possible to their respective "hot" leads in the
television receiver chassis. The wobulator, signal generator output, and contrast control must be kept low enough to prevent over television
loading the television receiver circuits.

CAUTION: One side of the chassis is connected to the power line. Therefore, test equipment should not be connected to the receiver unless an isolation transformer is used between the power line
RECEIVER CHASSIS UNLESS AN ISOLATION TRANSFORMER IS USED.

1. To Chat I Fi Aligntent on Orcilloccope

(a) Lift the shield of the Oscillator - Mixer tube V2 sufficiently to clear the socket ground clips. Connect sweep signal generator "hot" lead to the undergrounded tube
shield and generator ground lead to the tuner chassis.
(b) Connect high side of oscilloscope to high side of con-
trast control (pin 2 and 7 of V108), and the low side to
) Apply - 3.0 volts D.C. bias to lug 4 of $\mathrm{Si03}$ (See sketch set in the maximum counter-clockwise position.
d) With the generator sweep set at zero, connect an elecAdjust the output of the generator to obfain a reading of 2 volts D.C. on the meter.
(e) Set generator to sweep from 20 mc . to 30 mc
(1) Connect marker generator to sweep generator output leads and adjust to provide markers that appear
curve (see nominal overall I. F. response curve).
(g) Observe curve and position of markers (see nominal overall I. F. response curve). Sight deviation in shape
from the nominal response curve is permissible, but if any great deviation is noted, it will be necessary to realign the I.F. Amplifier

2. Alignment, I. F. 4 Tuner Assembly (with oleatronic voltmetor)

(1) Connect - 3.0 Volts D.C. blas supply to lug 4 of sio3.
(2) Connect signal generator "hot" lead through a 1000 mmI . capacitor to TP- 1 (wire protruding from tuner directly adjacent to the oschior mixer tube V2) and
(3) Connect high side of Electronic Voltmeter to lug 2 of S103 and low side to chassis.
(4) Set signal generator to 25.0 mc . and adjust bottom of

variable bias control assembly

T103 for maximum meter deflection, limiting mete
and input attenuator T102 for maximum D. C. meter indication. Adjust sig nal generator amplitude to make this peak indicatio approximately 2 volts D.C.
(6) Reset signal generator to 21.9 mc . and adjust the top of T102 for minimum D.C. meter deflection. Signal generator amplitude must be sufficiently high to produce a definite null. Meter must read at least 0.5

Repeat steps 5 and 6 .
(8) Next set signal generator to 25.2 mc . and adjust bottom of T101 for maximum meter indication, limiting
output of generator so peak reading will not exceed 2 volts D.C.
(9) Reset signal generator to 24.65 mc . Connect a 500 TP -2 (wire protruding from the tuner throuth the insulated eyelet between the brass adjusting screws) on the R. F. Tuner to the Tuner case. Adjust L101 for maximum meter deflection, but limit output of generator so this reading does not exceed 2 volts
D. C. Remove the 500 ohm resistor and the 500 mm . capacitor.
(10) Set gignal generator to 24.65 mc . Connect the 500 ohm resistor and the 500 mmf . series capacitor across L101 and adjust mixer output (L9) on R. F. Tuner for maximum meter indication. Adjusting amplitude of
signal generator to make this maximum indication apsignal generator to make this maximum indication ap-
proximately 2 volts
D. . C. Remove the 500 ohm resistor and the 500 mml . capacito
(11) Check sensitivity. The input for 2 volts D.C. output and zero bias should not exceed 150 microvolts at 24.65 mc . with a generator internal resistance of 1.5
ohms or less, and the local oscillator set to properly ohms or less, a
tune in channel 5 .
(12) Remove the signal generator and electronic voltmeter

TV CHASSIS TOP VIEW
ube and Alignment Locations)

NOMINAL OVERALL I. F. RESPONSE CURVE
NOTE: Response as Seen by Means of Swoeo Generator

SOUND ALIGNMEN

. Connect crystal controlled 4.5 mc . 400 cycle amplitude modulated signal,
s103 and chassis.

Connect high side of scope through detector probe to the picture tube cathode (pin 11). Connect low side of scope to
chassis. Adjust 4.5 mc . trap, Lio5 for minimum 400 cycle deflection on scope. 3. Connect electronic voltmeter to lug 2 of ratio detector,
V106, and adjust 4.5 mc. sound take-off (L 110) and bottom
ratio transformer (T107) for peak reading on voltmete
4. Adjust input to obtain 12 volts output. Transier electronic Wiring Diagram) Adjust top of Tl 07 for zero balance on electronic voltmeter.
5. Recheck steps 2,3 and 4.
6. Remove input signal, scope and electronic voltmeter

HORIZONTAL HOLD ADJUSTMENT

1. Tune in a local television signal and adjust contrast control for normal picture
2. Connect electronic voltmeter between TP-3 (green lead) and chassis.
. Short TP-4 (orange lead) to chassis and adjust electronic voltmeter to zero.
Remove short from TP-4. Do not change zero on elecRemove short fro
tronic voltmeter.
3. Connect a 0.1 mid. plus 20%, 600 volt capacitor between
4. Adjust Horizontal Hold control for zero reading on the Remove the 0.1 mid. capacitor from TP-5 and chassi.
Do not disturb setting of horizontal hold control.
5. Adjust Horizontal Stabilizer coil (L108) for zero reading

Adjust Horizon.
on the meter.
9. Remove electronic voltmeter from TP-3.
10. Check horizontal pull-in range. The pull-in range should
be approximately 50° of the controls rotation.

TV Chassis bottom view
TV CHASSIS BOTTOM VIEW
Cubbe Socket and Alignment Locations)meter.

1. Remove the UHF Converter from the VHF receiver chassis.
2. Disengage the toggle coupling from the switch throw arm on the front of the UHF chassis.
accomplish this: -
a. Turn the UHF tuning control clockwise until the pin located on the
toggle coupling
. Turn the switch throw arm toa vertical position to dis engage fork of toggle coupling.
Turn the toggle coupling counter-clockwise to a verti cal position so that it does not interfere with the move ment of the drive pulley.
d. Turn the switch throw arm counter-clockwise to the
UHF position; top contact blade on switch rotor must UHF position; top contact blade on switch rotor mus contact and center on the two top switch fingers
the red wires attached. Leave switch in this position while aligning.
3. Connect the output leads of the UHF converter to the R-F input terminals of the VHF Tuner.
4. Connect the B+ and filament leads of the tuner to the VHF receiver chassis).
Set VHF Tuner to channel 6
5. Keep all leads as short as possible
6. Alignment should be followed in the order shown

I.F. ALIGNMENT:

Set I-F slide switch on the UHF Converter to Channel 6 pushed toward the rear of chassis) position.
2. Connect an electronic voltmeter or oscilloscope across hassis.
. Turn on the powe
Apply an 82.5 mc . (amplitude modulated if a scope is dignal to the junction of C2 and C9,
Adjust I-F input coil (T2) for peaking reading on meter (or maximum indication on scope).

rop View, UHF Converter

Bottom View, UHF Converter
6. Change signal generator frequency to 88.5 mc . and adjus I-F output coil (T1) for maximum reading or indication.
7. Repeat steps 4 through 6 until maximum readings are ob tained.
8. Remove the generator connections from the junction of oscillator alignment:

1. Connect an electronic vollmeter or scope across the sistor, R114.
2. Apply a 460 mc . (amplitude modulated when scope is used ignal to the UFF antenna terminal hrough the anten

3. With the tuner shaft at maximum counter-clockwise reading on the electrontc voltmeter (or maximum indication on scope).
4. Set the signal generator to 904 mc
5. Rotate the tuner shaft to maximum clockwise position and adjust the oscillator end inductor, L13 for maximum read-
6. Repeat steps 2 through 5 until maximum reading is obF CIRCUIT ALIGNMENT:
7. With the signal generator and electronic voltmeter or the $\mathrm{R}-\mathrm{F}$ coupling trimmer, C 1 and C 2 to minimum capacity by turning the screw counter-clockwise
8. Set the signal generator to 460 mc . (amplitude modulated with scope is used.)
9. With the tuner shaft at maximum counter-clockwise position, adjust the antenna and mixer trimmers, C8 and
C11 for maximum meter reading (or scope indication).
. Reset signal generator to 904 mc
10. Rotate the tuner shaft to maximum clockwise position and adjust the antenna and mixer end inductors, L 1 and L 2 fo maximum reading on meter (or scope).
11. Repeat steps 2 through 5 until maximum reading is ob anea.
12. Reset signal generator to 460 mc .
13. Turn the tuner shaft to maximum counter-clockwise po ition and adjust the coupling trimmer, $\mathbf{C} 1$ and C 2 for peak

Turn the power switch to the "OFF" position.
10. Disconnect the generator and electronic voltmeter, or scope.

CRITICAL LEAD AND COMPONENT DRESS VHF RECEIVER CHASSI

R-F TUNER

The brown AGC lead from the terminal board to the tuner hould be dressed flat down to chassis.
I.F SECTION:

The component leads and wires in the video I-F section must be kept as short as possible
R-f Choke:
The end of the R-F choke L113 which is wired to T103 lug 6 LEADS:
The black wire from T103, lug 4 to chassis must be as short as
The black wire from T103, lug 4 to chassis must be as short as selenium rectifiers. SR101 and SR102. Dress the red and blue leads of Audio Output Transformer, T108 away from the hig

COMPONENTS:

Keep all components, particularly peaking coils, away from R 121
V 110.

RESISTORS:

Dress the fuse resistor R142 attached to the terminal board, up

1. Re-engage the toggle coupling in the pin on the switc hrow arm and the pin on the drive pulley as follows
a. Rotate the tuning control shaft clockwise until the pin chassis.
b. Turn the switch throw arm to a vertical position. . Turn the toggle coupling approximately 45° clockwis
. Turn the switch throw arm counter-clockwise until pin engages the upper fork on the toggle coupling.
e. Turn the tuning shaft counter-clockwise and guide the coupling. The coupling is now in the proper operatin position and when the tuning shaft is turned completel ounter-clock VHF position
2. Replace the UHF Converter on the VHF receiver chassis 150 K orm resistors, R151 and R152, in such a manner as no
10 short against the high voltage shield.

CAPACITORS

The . 006 mid. capacitor, C138, wired from V114, pin 6, to round lug of C118, should be dressed down close to the chassis.
The 005 mid. capacitor, C 162 , which is wired from the case very short lead on the end wired to the case of R118 so the bod of the capacitor prevents any shorting to the shield wired to

CONTROLS:
All controls and the local-distance switch must be kept from shorting to the chassis. Make sure the control does not tur nut is tightened
high voltage section:
The plate cap of the 1B3GT, V115, should be put on so the lead omes away from it in a vertical direction. The vinyl tape tha s applied to the corona ring should cover the entire outsid

Yoke coupling network

The yoke coupling network, L109, wired from T106 lug 3 to
V112, lug 1, should be kept away from lug 4 of T106.

CRITICAL LEAD AND COMPONENT DRESS

UHF CONVERTER
As the UHF Converter used in this receiver operates over a range (470 mc . to 890 mc .) of frequencies that are from approximately two to four times higher than the highest frequencies encountered in VHF tuners, placement of parts and component lead engths in the circuit have considerable effect upon the performance of the untt. When replacing components or wiring, special note hould be taken of the position of the part or wire to be replaced, before removal. New parts or wires should be located in the same

Copacitors:

C3 The capacitors C3, C6 and C7 in the antenna circuit mus
C7 placed with their leads as short and direct as possible.
C9
C10 capacitors
C9
with their leads as
C10
short and direct as
12 The copacitor 12,12 must be placed The capacitor C12, 12 mmf ., must be placed with only
the silvered surface in contact with the lug to which it is soldered. They must be at right angles to the inductor In order to avoid burning off the silver plating or the unit,
not exceed $500^{\circ} \mathrm{F} .\left(260^{\circ} \mathrm{C}\right)$.
C13 When the oscillator trimmer assembly, C13 is soldered to the socket contacts, base of trimmer must be firmly eld flat against ribs in socket body while socket con tacts are firmly seated in the socket body so that this mechanical rigidity in this assembly will result in difficult alignment and poor oscillator frequency stability.
14 Capacitor C14, 2.2 mmf ., must be placed away from the chassis.
C19 Capacitors C19 and C20, should be dressed up and away

CRITICAL LEAD AND COMPONENT DRESS (Continued)

UHF CONVERTER
21 Capacitor C21, 27 mmf . must be connected with shortes possible leads.
C22 Capacitor C22, 1000 mmf . must be oriented so that the lat side of lug is toward pin 2 on the V2 tube socket, in rder that the lug may be bent over to the socket contact.
capacitor is not turned quite far enough when threads irst begin to tighten, it may be rotated up to about a $1 / 2$ turn further by application or greater torque to wrench arning too bercised to prevent stripping threads by

RESISTOR
R5 The resistor R5, 10,000 ohm, must be placed away from chokes:

The chokes L 4 and L 6 must be placed away from the
chassis. eads:

The B_{+}and heater leads leaving the oscillator radiation shield sis.
chass is.
The short red lead joining slide switch terminal and terform of loop, up and away from chassis.
c. The red lead joining the crystal holder terminal and slid witch terminal should be as short and direct as possible,
and dressed down againgt the chassis. There should b to excess lengths to be looped or doubled up.
R-F COUPLING TRIMMER:
Plates forming the R-F coupling trimmer (C1 and C2)

when trimmer screw is adjusted so that the plates are $1 / 32$ inch apart. Plates should overlap $1 / 8$ inch minimum. In order to accomplish this overlap, it may be necessary to decenter the parts on the UHF tuner tabs. If so, such decentering should be equally divided between the two parts.

OSCILLATOR:

a. The oscillator plate strap A-154740 (CO2) must be as chassis) resting on the tube socket ribs and with the plane of part of the piece joining the two socket contacts perpendicular to chassis. In order to realize this condition, of socket and "ears" on this piece must be inserted their of socket and "ears" on this piece must be inserted their
full length into holes in socket contacts. Solder should be flown between socket contact and the piece for full length
of socket contact, in order to avoid possibility of interof socket contact, in order to avoid possibility of inter-
mittent contact between socket contact and edge of this piece extending beyond "ears". Tab should be soldered A arin er

A dummy plug with hardened steel pins should be inserted
in the oscillator socket before components are placed and in the oscillator socket before components are placed and
soldered to socket lugs, to insure alignment of contacts.

CRYSTAL HOLDER:

When soldering connections to the crystal holder terminals, allow solder to flow between eyelet and terminal proper insure a consistent electrical connection.
FUNCTION SWITCH:
The function switch must have all VHF position contacts
and firmly made and all UHF position contacts fully fully and firmly made and all UHF position contacts fully broken when the UHF tuner shaft is at full counter-clockwise
rotation. All VHF position contacts must be fully broken and rall UHF position contacts must be fully and firmly made at
71,20 $1 / 2^{\circ}$ or more from full counter-clockwise rotation as tuner

PARTS LIST
TV CHASSIS 396 (Schematic Parts)

Symbol No.	Part No.
R149	39374-77
R150	39374-77
R151	39374-139
${ }^{\text {R152 }}$	39374-139
R153	39374-26
R154	39374-34
R155	154093
${ }^{\text {R156 }}$	39374-50
R157	39374-34
R158	39374-57
R159	39374-121
R160	154083
R161	39303-12
R162	39374-15
${ }^{\text {R16 }} 6$	39374-29
R164	39374-18
R165	39375-73
R166	39375-73
R167	39374-43
R168	39374-27
R169	39374-43
R170	154095
${ }^{\mathrm{R} 171}$	${ }^{154094}$
L101	155178
${ }^{\text {L102 }}$	154171
${ }^{\text {L103 }}$	154184
L104	154194
${ }^{\text {L105 }}$	${ }^{154158}$
L106	${ }^{154206}$
L107	154176
L108	154220
L109	154156

Description

$\begin{gathered} \text { Symbol } \\ \text { Sol } \end{gathered}$	Part No.	Description
L110	154183	Coil, Sound Take off
1111	154799	Choke, Filter (used on SP 101)
L112	154221-5	Yoke, Deflection
${ }^{2} 113$	${ }^{154376}$	Coil, R. F. Choke
L114	154799	Choke, Filter (used on SP 103)
T101	${ }^{155174}$	Transformer, 1st. I. F.
T102	155173	Transformer, 2nd. I. F.
T103	155179	Transformer, Diode I. F.
T104	154105-1	Transformer, Vertical Blocking Osc.
${ }^{\text {T105 }}$	154106	Transformer, Vertical Output
T106	154069-1	Transformer, Horizontal Output
T107	154108	Transformer, Ratio Detector
T108	154109-1	Transformer, Audio Output
T109	154720	Transformer, Filament
CA102	${ }^{132300-6}$	Cable \& Plug Assy, Power
Sw101	Part of R118B	Switch, ON-OFF (Power)
SW102	154115	Switch, A. G.C. Control
SP101	138762-7	Speaker, P. M. ${ }^{\left(5-1 / 4^{\prime \prime} \text { ") }\right.}$
SP103	138762-7	Speaker, P, M. (5-1/4")
S101	154178	Cable \& Connector Assy., (used with SP103)
S102	${ }^{154113}$	Socket, Test (Connector)
${ }^{\text {P101 }}$	${ }^{154243}$	Plug, Speaker Cable (used with SP103)
P102	154125	Plug, Interlock
SR101	${ }^{154112}$	Selenium Rectifier
SR102	${ }_{154112}^{1512}$	Selenium Rectifier
CR101	154111	Crystal (1N64)
C0101	155049	Terminal Boards \& Bracket Assy., Antenna (VHF, UHF)
CO102	154114	Connector
${ }_{\text {COIO3 }}$	${ }_{154114}^{15414}$	Connector

PARTS LIST
IV CHASSIS 396 (Schematic Parts)

$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
C101	137727-1	Capacitor, 330 m	14	144675	,
C102	39001-17	Capacitor, . 05 mid ., 600 v			
C103	144675-2	Capacitor, .005 mfd, , 500 v ., disc ceramic	C147	154102	Capacitor, 150 mmf ., $10 \%, 3000 \mathrm{v}$ ceramic
C104	144675-2	Capacitor, . 005 mfd , 500 v , disc	${ }^{\text {C148 }}$	Part of L109	Capacitor, 1 mfd , 200 v , , paper
C105	144675-14	ceramic Capacitor,	C149	137727-133	Capacitor, ceramic 88 mmf ., $10 \%, 500 \mathrm{v}$. ,
	14875-14	disc ceramic	C150	1446	Capacitor, .004 mfd , , 500 v . disc
C107	144675-2	Capacitor, . $005 \mathrm{mfd} ., 500 \mathrm{v}$. disc ceramic	$\begin{aligned} & \text { C150 } \\ & \text { C15 } \end{aligned}$	154103	Capacitor, .004 mfd . , 500 v . ceramic Capacitor, 5 mid., 50 v ., Electrolytic
C108	144675-14	Capacitor, .001 mfd , 500 v ., disc ceramic	C152	137727-129	Capacitor, 330 mmf ., $10 \%, 500 \mathrm{v}$., ceramic
109	144675-2	Capacitor, . 005 mfd , 500 v ., disc ceramic	C153	144674-1	Capacitor, . 001 mfd ., 500 v ., disc
110	144675-2	Capacitor, . 005 mfd , 500 v , disc ceramic	C154	144675-2	Capacitor, . $005 \mathrm{mid} ., 500 \mathrm{v} .$, disc ceramic
111	144675-14	Capacitor, . 001 mfd , 500 v , disc ceramic	$\begin{aligned} & \text { C155 } \\ & \text { C156 } \end{aligned}$	$\begin{aligned} & 154104 \\ & 39001-13 \end{aligned}$	Capacitor, 10 mfd , 50 v ., Electrolytic Capacitor,.1 mfd., 600 v ., paper
C112	137727-135	Capacitor, 10 mmf , $10 \%, 500 \mathrm{v}$, ceramic	$\begin{aligned} & \text { C157 } \\ & \text { C158 } \end{aligned}$	$\begin{aligned} & 39001-80 \\ & \text { Part of L112 } \end{aligned}$	Capacitor, .02 mfd ., 600 v ., paper Capacitor, 47 mmf , mica
C113	137727-103	Capacitor, 5 mmf ., $10 \%, 500 \mathrm{v}$, ceramic	C159 $\mathrm{C} 160$	Part of T102 Part of T107	Capacitor, 68 mmf ., $10 \%, 500 \mathrm{v}$. Capacitor, 10 mmf .
C114	39001-1	Capacitor, 1 mfd., 600 v ., paper	C161	Part of 1107	Capacitor, 100 mmf .
C115	154157	Capacitor, 5 mfd., 25 v ., paper	C162	144675-2	Capacitor, . 005 mfd , 500 v .,
${ }_{C 117} \mathrm{C} 116$	$154100-4$ $137727-126$	Capacitor, $2.2 \mathrm{mmf}$. , 500 v ., ceramic	R10		disc ceramic
		ceramic	R102	39375-63	Resistor, $3900 \mathrm{ohm} ,\mathrm{5} \mathrm{\%}$,
C118A	154099	Capacitor, 100 mfd , 300 v .	R^{103}	39374-25	Resistor, $1000 \mathrm{ohm} 10 \$,$% , 1 / 2 \mathrm{w}$.
C118B C118C		Capacitor, 10 mfd , 300 v . Electro- Capacitor, 200 mfd , 200 v . lytic	R104 R105	$\begin{aligned} & 39374-9 \\ & 39374-25 \end{aligned}$	Resistor, $1000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
C118D		Capacitor, 30 mfd ., 150 v .	R106	39375-73	Resistor, $10,000 \mathrm{ohm}, 5 \%, 1 / 2 \mathrm{w}$.
C119	144675-2	Capacitor, . 005 mfd ., 500 v ., disc ceramic	$\begin{aligned} & \text { R107 } \\ & \text { R108 } \end{aligned}$	$\begin{aligned} & 3974-9 \\ & 39374-25 \end{aligned}$	Resistor, $47 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$. Resistor, 1000 ohm, $10 \%, 1 / 2 \mathrm{w}$.
2A	154098	Capacitor, 200 mfd , 150 v . ${ }^{\text {Ele }}$	R109	39375-75	Resistor, $12,000 \mathrm{ohm}, 5 \%, 1 / 2 \mathrm{w}$.
${ }^{\text {C120B }}$		Capacitor, 5 mfd , , 150 v . $\}$ lytic	R110	39374-15	Resistor, $150 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
${ }_{\text {C121 }} \mathrm{C} 121$	$39001-19$ $137727-131$	Capacitor, ${ }^{1} \mathrm{mfd}$., 600 v ., paper Capacitor, 220 mmf ., 10%, 500 v ,	R111 R112	39374-25 $39374-56$	Resistor, 1000 ohm, $10 \%, 1 / 2 \mathrm{w}$. Resistor, 390,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.
		ceramic	R113	39374-67	Resistor, 1.8 : $\mathrm{megohm}, 10 \%, 1 / 2 \mathrm{w}$.
C123	39477-39	Capacitor, . 0047 mfd , 600 v ., molded paper	$\begin{aligned} & \text { R114 } \\ & \text { R115 } \end{aligned}$	$\begin{aligned} & 39375-67 \\ & 39374-61 \end{aligned}$	Resistor, $5600 \mathrm{ohm}, 5 \%, 1 / 2$ w. Resistor, 1 megohm, $10 \%, 1 / 2 \mathrm{w}$.
C124	137727-28	Capacitor, 22 mmf , $10 \%, 500 \mathrm{v}$. , ceramic	R116 R117	39374-65 39374-69	Resistor, 1.5 megohm, $10 \%, 1 / 2 \mathrm{w}$. Resistor, 2.2 megohm, $10 \%, 1 / 2 \mathrm{w}$.
${ }^{\text {C125 }}$	39001-17	Capacitor, . 05 mid., 600 v ., paper	R118A	154085	Control (Contrast), 2500 ohm
C126	39477-39	Capacitor, . 0047 mfd ., 600 v., molded paper	$\begin{aligned} & \mathbf{R 1 1 8 B} \\ & \mathbf{R 1 1 9} \end{aligned}$	Part of L104	Control (Volume), 1 megohm Resistor, 8200 ohm, $10 \%, 1 / 2 \mathrm{w}$.
C127	39477-39	Capacitor, 0047 mfd , , 600 v. ,	R120	39374-131	Resistor, $33,000 \mathrm{ohm}, 10 \%, 1 \mathrm{w}$.
C128	39477-41	molded paper Capacitor, 01	R121 R122	${ }_{\text {3 }} 39375-361$	Resistor, $4700 \mathrm{ohm}, 5 \%, 2 \mathrm{w}$ Resistor, $6800 \mathrm{ohm}, 100,1 / 2 \mathrm{w}$.
		molded paper	R123	Part of L107	Resistor, $3300 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
C129	39001-11	Capacitor, . 005 mfd ., 600 v ., paper	R124	39374-37	Resistor, $10,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
C130	39477-45	Capacitor, 047 mfd ., 600 v ., molded paper	$\begin{aligned} & \mathrm{R} 125 \\ & \mathrm{R} 126 \end{aligned}$	$\begin{aligned} & 39374-57 \\ & 39374-69 \end{aligned}$	Resistor, $470,000 \mathrm{ohm}, 10 \% .1 / 2 \mathrm{w}$. Resistor, 2.2 megohm, $10 \%, 1 / 2 \mathrm{w}$.
C131	39477-45	Capacitor, 047 mfd .	R127	39374-59	Resistor, $680,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
		molded paper	${ }^{\text {R128 }}$	39374-29	Resistor, $2200 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
C132	144675-2	Capacitor, . 005 mfd ., 500 disc ceramic	$\begin{aligned} & \text { R129 } \\ & \text { R130 } \end{aligned}$	$\begin{aligned} & 39374-146 \\ & 39374-41 \end{aligned}$	Resistor, $560,000 \mathrm{ohm}, 10 \%, 1$ w. Resistor, $22,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
C133	154097	Capacitor, 20 mfd ., 450 v ., Electrolytic	R131	39374-35	Resistor, $6800 \mathrm{ohm}, 100$
C135 C 136	${ }^{154096} 1378$	Capacitor, 140 mfd., 150 v , , Electrolytic	${ }_{\text {R132 }}$	39374-31	Resistor, $3300 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
C136	137727-132	Capacitor, 1000 mmf ., $10 \%, 500 \mathrm{v}$,, ceramic	$\begin{aligned} & \mathrm{R} 133 \\ & \mathrm{R} 134 \end{aligned}$	$\begin{aligned} & 39374-41 \\ & 39374-37 \end{aligned}$	Resistor, $22,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$. Resistor, 10,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.
C137	137727-132	Capacitor, 1000 mmf ., 10\%, 500 v	R134	154087	Control, Vertical Hopl (850, 000 ohm)
		ceramic	R136	39374-31	Resistor, $3300 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
C138	38001-78	Capacitor, . 006 mfd ., 600 v. , paper	R137	39374-28	Resistor, $1800 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
C139	39001-76	Capacitor, 003 mfd ., $600 \mathrm{v}$. ., paper	R138 R139	${ }_{\text {159374 }}^{154}$	Control, Height (5 megohm)
C140	39477-52	Capacitor, . 001 mfd ., 1000 v ., molded paper	$\begin{aligned} & \text { R139 } \\ & \text { R140 } \end{aligned}$	$\begin{aligned} & 39374-14 \\ & 154088 \end{aligned}$	Resistor, $120 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$. Control, Vertical Linearity (750 ohm)
C141	39001-13	Capacitor, . 01 mid., 600 v ., paper	R141	154084	Resistor, 8700 ohm, $5 \%, 5 \mathrm{w}$. Wire Wound
C142	137727-134	Capacitor, ceramic 75 mmf , $10 \%, 500 \mathrm{v}$.,	R142	154089	Resistor, $7.5 \mathrm{ohm}, 10 \%, 5 \mathrm{~W}$. Wire Wound (Fuse type)
C143	137499-30	Capacitor, 3900 mmf ., $10 \%, 500 \mathrm{v}$. . mica	$\begin{aligned} & \text { R143 } \\ & \text { R144 } \end{aligned}$	$\begin{aligned} & 39374-17 \\ & 39374-25 \end{aligned}$	Resistor, 220 ohm, $10 \%, 1 / 2$ w. Resistor, 1000 ohm, $10 \%, 1 / 2 \mathrm{w}$
C144	137499-31	Capacitor, 390 mmf ., $10 \%, 500 \mathrm{v}$.	R146	39374-49	Resistor, $100,000 \mathrm{ohm}$, 10%, $1 / 2$
C145	137499-34		$\begin{aligned} & \text { R147 } \\ & \text { R148 } \end{aligned}$	39374-49	Resistor, $100,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$. Resistor, 22, $000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.

Final Assembly and Cabinet-Model EU-17TOLU (Chassis 396)

$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
	$\begin{aligned} & 154377 \\ & 154965 \\ & 154974 \\ & 154222-3 \\ & 132300-6 \\ & 153751 \\ & 144600 \\ & 154206-1 \\ & 154214-1 \\ & 154215-1 \end{aligned}$	Antenna Assy., VHF Antenna Assy., UHF Back \& Power Cable Assy. Cabinet Cable \& Plug Assy., Power Clip (4 used), Window Retainer Grille Cloth Knob, Contrast Knob (Large), Tuning, UHF \& VHF Knob (Small), Tuning, VHF		154841-1 154217-1 154270 154154 154313 154347-1 145211-22 154101	Knob (Small), Tuning, UHF Knob, Volume Knob, Local-Suburban-Distance Knob, Controls (Vertical- Horizontal, Holds) Mask, Window Nail, Channel Indicator Name Plate, Crosley Nut (Wing), Speaker Mtg. Screw, Chassis Mtg. Window, Tempered Glass

Chassis 396, Code letter C incorporates the one tube converter, part no. 155499. Chassis 396 coded prior o Code letter C use converter, Part No. 154848
7. Turn the tuner shaft to maximum CW position and adjust the coupling trimmer, C1 and C2 for peak reading at 904 MC
8. Turn the power switch to the "OFF" position,
9. Disconnect the generator and electronic voltmeter, or scope.
10. Re-engage the toggle coupling in the pin on the switch throw arm and the pin on the drive pulley as follows
a. Rotate the tuning control shaft clockwise until the pin
a. Rotate the tuning control shaft clockwise until the pin on the rear of the drive pulley is toward the base

Turn the swit
. Turn the toggle hrow arm to a vertical position.
d. Turn the switce coupling approxamate $45^{\circ} \mathrm{CW}$ from a vertical position.
. Turn the switch throw arm CCW until pin engages the upper fork on the toggle coupling.
The coupling is now incW andguide the pin on the rear of drive pulley into the lower fork of the coupling. the switch will be thrown to the VHF position
11. Replace the UHF Converter on the VHF receiver chassis

PARTS LIST

1. Connect an electronic voltmeter or scope across the second detector load resistor, R114.
2. Turn on the power

Apply a 460 mc . (amplitude modulated when scope is used) signal to the UHF antenna terminals through the antenna matching network (Fig. 3).
Turn out the adjusting screw of the mixer circuit trimmer C4 so that the flat side of the head is $5 / 8^{\prime \prime}$ above the chassis before aligning oscillator
With the tuner shaft at maximum CCW position, adjust the oscillator trimmer, C18 for peak reading on the Set the signal generator to 904 mc
7. Rotate the tuner shaft to maximum CW position and adjust the oscillator end inductor, L 4 for maximum reading on the voltmeter (or scope).
maximum reading is obtained

R. F. Circuit Alignment:

With the signal generator and electronic voltmeter or scope connected as for the Oscillator Alignment above, set the R-F coupling trimmer, C1 and C2 to minimum capacity by turning the screw CCW
adjust the scope is used)
adjust the antenna and mixer trimmers, C3 and C4 for maximum meter reading (or scope indication).
4. Reset signal generator to 904 mc .
5. Rotate the tuner shaft to maximum CW position and adjust the antenna and mixer end inductors, L2 and L3
for maximum reading on meter (or scope) for maximum reading on meter (or scope)
ximum reading is obtained.

wotes:

QJohn F. Rider
PLACEMENT OF DIAL DRIVE CORD D.155497-E

$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Part No.	Description
C1	155424	Stator, RF Trimmer
c2	155508	Rotor, RF Coupling Trimmer
${ }^{\text {c3 }}$	151880-2	Capacitor, .8-6.5 mmf., Trimmer
${ }^{\text {c4 }}$	151880-2	Capacitor, 8 , 8.5 .5 mmI . Trimmer
C5	155439-1	Capacitor, 12 mmi ., 5\% disc ceramic
C7	156201-1	Capacitor, $470 \mathrm{mmf} ., 2 \mathrm{KV}$.,
C8	156201-1	Capactior, $470 \mathrm{mmf},. 2 \mathrm{kV}$.,
c9	152997-9	disc ceramic
	52997-9	Capacitor, $2 . \mathrm{mmf}$., 500
c10	152997-10	Capacitor, 4.7 mmf ., 10%, 50
C12	156201-1	Capacitor, 470 mmf ., 2 KV ., disc ceranic
C13	152997-6	Capacitor, 68 mmf ., 10%, 500 V .
C14	152997-8	Capacitor, 68 mml ., 500 v .
C.15	152997-4	Capacitor, $3.3 \mathrm{mmf}$. , 10%, 500 V .
C16	152997-1	Capacitor, 2.2 munf., 10\%, 500 V .
C17	152997-8	Capacitor, 68 mmf , 500 V .
${ }^{\text {c18 }}$	155713-1	Capacitor, $2-7 \mathrm{mmf}$, Trimmer
C19	152997-11	Capacitor, 10 mmf ., $10 \%, 500 \mathrm{~V}$.
R1	Part of L1	Resistor, $22 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
${ }^{\text {R2 }}$	Part of L1	Resistor, 22 ohm, 10\%, 1,2 W.
R3	Part of Ll	Resistor, $390 \mathrm{ohm} 10 \%,, 1 / 2 \mathrm{~W}$.
${ }^{\text {R4 }}$	39374-61	Resistor, 1 megohm. $10 \%, 1 / 2 \mathrm{~W}$.
R5	39374-61	Resistor, $1 \mathrm{megohm} 10 \%,, 12 \mathrm{w}$.
${ }^{\text {R6 }}$	39374-61	Resistor, 1 megohm, 10\%, $1 / 2 \mathrm{w}$.
R7	39374-218	Resistor, 27,000 ohm, 10\%, 2 W .
R8	39374-136	Resistor, 82,000 ohm, $10 \%, 1 \mathrm{w}$.
R9	39374-37	Resistor, 10,000 ohm, 10\%, $1 / 2 \mathrm{~W}$
L1	154711	Inductuner
L2	Part of C3	Inductance
L3	Part of C4	Inductance
L.4	Part of C18	Inductance
L5	148936-2	Choke, RF (82 microhenries)
${ }^{\text {L } 6}$	156167	Choke, RF (182 microhenries)
17	148936-1	Choke, RF ($47 \mathrm{microhenries)}$
L8	148936-1	Choke, RF (.47 microhenries)
L9	155510	Choke, RF (1145 microhenries)
L10	148936-2	Choke, RF (, 82 microhenries)
cal		Antenna Transmission Line (300 ohm)
co1	154781	Ter niinal Board. UhF Anterna
c02	155431	Strap, Oscillator Plate
CR1	${ }^{151871}$	Crystal, Germanium (1N72)
SW1	${ }^{154721}$	Switch, Function
	154758	Arm\& Hub Assembly, Function Switch
	154735	Arm, Toggle
	${ }^{134736}$	Bracket, Idler Pulley
	${ }_{155427}$	
		Eyelet (3 used to hold Rotors to Shaft)
	156207	Flsher Hub, Small Knob Shaft, Groove Pin \& Outer Shaft Assembly
	${ }_{1}^{1379399-1}$	Idiler Pulley
	154738 155894	Plate, Tuner Mounting Rotor (3used)
	${ }_{39311-2}^{15894}$	(${ }^{\text {Rotor (3used) }}$ Screw (2used), Set
	151883	Screw (6-32), Nylon
	${ }_{1535898}^{15898}$	Shaft \& Stop Assembly, Inductuner
	153884 153806	Shield (Lid), Oscillator
	${ }_{1} 1546877$	Shield, ${ }^{\text {Scillator }}$ (Stield, Tube (6AF4)
	${ }^{152053}$	Socket, Tube (V1)
	155499	UHF Converter Complete
	155895	Washer (1used), Shaft \& Stop Assembly

TUBE COMPLEMENT (UHF Converter)		
Symbol	Tube	Function
V1	6 AF 4	

POWER SUPPLY: 117 volts, 60 cycle, a.c. POWER CONSUMPTION: 145 watts. (VHF) 150 watts. (UHF) AUDIO POWER OUTPUT: 1.4 watts maximum. BLOCK DIAGRAM:

ANTENNA INPUT IMPEDANCE: 300 ohms balanced

INTERMEDIATE FREQUENCY:

Video Carrier - 26.4 mc
Sound Carrier - 21.9 mc
Intercarrier Sound - 4.5 mc .
UHF Output - Channels 5 or 6.

DEFLECTION: Electromagnetic

FOCUS: Electrostatic, 402 chassis
Magnetic, 403 and 404 chassis ION TRAP: Single Permanent Magnet HORIZONTAL SCANNING FREQ: 15,750 c.p.s. VERTICAL SCANNING FREQ.: 60 c.p.s. FRAME FREQUENCY: 30 c.p.s. SCANNING: Interlaced, 525 lines. SPEAKER:

21" Console Models $10^{\prime \prime}$ P.M.
$17^{\prime \prime}$ and $21^{\prime \prime}$ Table Models $51 / 4^{\prime \prime}$ P.M

CAUTION

HIGH VOLTAGE--Operation of a television receiver with the back open involves a shock hazard. When making adjustments other than adjusting the controls at the front panel, all precautions for working near high voltage should be exercised

HIGH TEMPERATURE OF TUBES--Some tubes in the receiver operate at extremely high temperatures. To avoid serious burns, do not touch these tubes while the receiver is operating, or until the tubes have cooled after the se

HANDLING OF PICTURE TUBES--Breakage of the picture tube, which contains a high vacuum, may result in injury from flying glass. Do not scratch tube face or subject to more than moderate pressure. DO NOT REMOVE OR HANDLE THE PICTURE TUBE IN ANY MANNER UNLESS HEAVY GLOVES AND PROTECTIVE GOGGLES ARE WORN. Persons not so equipped should be kept away while handling the tube. NEVER GRASP THE TUBE BY THE
NECK OR ALLOW' PRESSURE TO BE EXERTED ON THE NECK, In installation, if the tube sticks or fails to slip NECK OR ALLOX PRESSURE TO BE EXERTED ON THE NECK. In instalation, if the tube sticks or fails to slip
smnothly through the deflection yoke, investigate and remove the cause of the trouble. DO NOT FORCE TUBE.

CONNECTING EXTERNAL ANTENNA

Remove the two wires from the built-in antenna fastened to built-in antenna. Keep the lead-in from the external an the two screws on the antenna terminal board mounted a the rear of the receiver. Tape bare ends of wires from the
enna away from the power cord and speaker leads. Faste the lead-in wires under the two screws on the antenna termi

ADJUSTMENTS

1. ION TRAP ADJUSTMENT

With the ION TRAP positioned close to the base of the picture tube, and the BRIGHTNESS control at low to medium setting, move the trap forward or backward and at the same time rotate in either direction until maximum brightness of
the raster is obtained. Readjust the BRIGHTNESS control until the raster is slighty above average brilliance. Adjust the FOCUS CONTROL until the line structure of the raster is clearly visible. Readjust the ION TRAP again for maxi mum brightness.

There may be two locations on the tube neck where the ION TRAP will produce maximum brightness. Never set the trap to the forward position, always use the position neares
the tube base.

If there is a shadow in the corners of the raster, be sure the ION TRAP is properly adjusted. Do not sacrifice pic ture brilliance when adjusting the ION TRAP to overcom shadows in corner of picture. If corner shadows are
present, be sure the DEFLECTION YOKE and CENTERING MAGNET are properly adjusted.

2. DEFLECTION YOKE AND BRACKET:

The DEFLECTION YOKE BRACKET should be positioned asfar forward as possible so that the rubber cushion on th front of the bracket rests on the flare of the tube.

The DEFLECTION YOKE should be positioned as far for ward as possible on the picture tube neck and rotated to the left or right as required to make the picture parallel wit
respect to the top and bottom of window frame.

3. FOCUSING MAGNEI BRACKET ADJUSTMENT

$$
\text { (} 403 \& 404 \text { chassis) }
$$

This bracket should be adjusted so that the magnet is centered around the neck of the picture tube. Do not remove the cardboard spacer between the neck of the tube and the magnet. Adjustment can be made after loosening the two the magnet housing.

. Centering raster

If the picture is off center and/or has neck shadow on receivers using the 402 chassis, rotate either or both CENTERING MAGNET levers to the left or right until the picture is centered on the screen and is free of neck
shadow. The CENTEFING MAGNET is located on the back over of the DEFLECTION YOKE. On receivers using the 403 or 404 chassis, move the centering lever (woggle arm) ip or down or to the right or left. Some of the Focusing Magnetbrackets have a sloted head screw or a wing screw screw, retighten screw after adjustment is made. To determine the correct picture centering, it may be necessary to reduce the size of the picture with the HEIGHT and NG MAGNET, rèadjust 10 N TRAP

S. height and width adjustments:

The linearity and corresponding size controls will have to be adjusted together and with care to mainta in picture symmetry. For this reason it is best to use a test pattern when making these adjustments. Adjust size of picture to ill the screen by means of the HEIGHT, WIDTH, VERT
6. Vertical linearity adjustments:

The VERTICAL Linearity control has the effect of expanding the picture at an increasing rate from the bottom
to the top of the picture. Adjustment of this control has the reatest effect on the top portion of the picture, some efect on the middle and very little effect on the bottom of the adjustments as a result of the change in position of the VERTICAL LINEARITY control.
7. HORIZONTAL HOLD CONTROL:

The HORIZONTAL HOLD CONTROL is adjusted with a weak picture to the center oi its lock-in range. If the lockin range is insulficient or the horizontal sync is unstak see "Horizontal Hold Adjustment" under "Alignment".

8. VERTICAL hold control:

The VERTICAL HOLD CONTROL is also adjusted to the center of its lock-in range with the contrast control set to obtain a weak picture.

9. FOCUS CONTROL

Adjust the FOCUS CONTROL for best focus of the vertical and horizontal wedges at the center of the test pattern. If
corner focus is poor, check position of DEFLECTION YOKE and ION TRAP.

10. BRIGHINESS CONTROL:

BRIGHTNESS CONTROL and CONTRAST control should be set to obtain as much shading in the picture as possible. If the Brightness control is set too low, the black and grays
of the picture are black and if set too high, the black and of the picture are black and if set too high, the black and
grays of the picture will appear light and faded.

11. LOCAL-DISTANCE (AGC) SWITCH:

The LOCAL-DISTANCE SWITCH can be set to prevent the receiver from overloading in strong signal areas or to reduce "snow" in the picture in weak signal areas. In strong
signal areas, the "LOCAL" (counter-clockwise) the switch must be used. The second and third positions "SUBURBAN" and "DISTANCE" are to be used in medium to weak signal areas. Use the position with which the best picture is obtained with a minimum of overloading of the
receiver when the CONTRAST control is advanced.

12. NOISE GATE CONTROL:

This control makes it possible to obtain improved picture stability in the presence of electrical interference (noise), "Dhen the Local-Distance switch is in the "Suburban" or counter-clockwise, it is out of the circuit and has no effect. Adjust the control by turning it clockwise until the picture is stable. The limiting factor of this adjustment is the buzz
or noise that may be introduced, if the control is turned too far in the clockwise direction.
13. oscillator adjustment using a television signal Do not make any adjustments on the two oscillator adjusting screws unless the FINE TUNING control range is in sufficient to properly tune-in the station. The adjusting
screws are accessible through holes in the front of the screws are accessible through holes in the front of the

To make the adjustment, proceed as follows
(a) Turn the receiver on and allow a warm-up period of approximately five minutes.
(b) For stations from channel 13 to channel 7, set the Station Selector Switch to the highest channel re
ceived and adjust the Contrast and Volume contro for normal sound and picture. Set the Fine Tuning Control in the center of its range.
(c) Using a small non-metallic screwdriver, adjust the slotted head brass screw located above and to th clearest and sharpest detail in the picture. Thi adjustment will be effective on all channels between 13 and 7 . If other stations are operating in this range, it may be necessary to compromise
slightly on the high channel adjustment so the other channels may be properly tuned-in.
(d) For Stations on channel 6 and below, set the station Selector Switch to the channel received closest to channel 6 and adjust the Contrast and Volume con
trol for normal sound and picture. Set the Fine Tuning control in the center of its range.
(e) Using a small non-metallic screwdriver, adjust the slotted head brass screw located below the shaf This adjustment will effect all channels between 6 and 2.

l. F. ALIGNMENT

All lead connections from the signal generator and wobbulator must be shielded. Keep the exposed ends and ground leads as short as possible (about one inch). Always locate the ground lead connections as close as possible to their respective "hot" leads in the television receiver chassis. The wobbulator, signal generator output, and contrast control must be kept low enough to prevent overloading the television receiver circuits.

CAUTION: One side of the chassis is connected to the power line. Therefore, test equipment should not be connected to the receiver unless an isolation transformer is used between the power line and the receiver. DO NOT GROUND THE RECEIVER CHASSIS UNLESS AN ISOLATION TRANSFORMER IS USED.

1. To Check I. F. Alignment on Oscilloscope:
(a) Lift the shield of the Oscillator-Mixer tube V2 sufficiently to clear the socket ground clips. Connect sweep signal generator "hot" lead to the un-
grounded tube shield and generator ground lead to the tuner chassis.
(b) Connect high side of oscilloscope to high side of ontrast control (pin 2 and 7 of V108), and the low
side to chassis.
(c) Apply -3.0 volts D.C. bias to I-F Bias line (See sketch "Variable Bias Control"). Contrast control
should be set in the maximum should be set in the maximum counter-clockwise
position.
(d) With the generator sweep set at zero, connect an electronic voltmeter between top of detector load the generator to obtain a reading of 2 volts D.C. on the meter.
(e) Set generator to sweep from 20 mc . to 30 mc .
(f) Connectmarker generator to sweep generator output leads and adjust to provide markers that appear in the curve.
(g) Observe curve and position of markers (see nominal response curve). Slight deviation in shape from
the nominal response curve is permissible, but if any great deviation is noted, it will be necessary to realign the I-F Amplifier.

ADJUSTMENTS (Continued)

VARIABLE BIAS CONTROL ASSEMBLY

2. Alignment, i. F. \& Turner Assembly (with electroni

volimeter):
(a) Connect -3.0 Volts D.C. bias supply to I-F Bias
(b) Connect signal generator "hot" lead through a 1000 mmf . capacitor to TP-1 (wire protruding from tuner directly adjacent to the oscillator mixer tube v2) and ground lead to the R. F. tuner case
(c) Connect high side of Electronic Voltmeter to top of detector-load resistor, R116, and low side to chassis; zero meter
(d) Set signal generator to 24.4 mc . and adjust top of T101 for maximum D.C. meter indication on voltmeter. Adjust the signal generator amplitude to make this peak indication 2 volts D.C., approximately
(e) Set signal generator to 22.9 mc . and adjust top of L103 for maximum D.C. meter indication, limiting meter deflection to 2 volts D.C. by adjusting input
of attenuator.
(f) Set the signal generator to 21.9 mc . and adjust bottom of L103 for mintimum D.C. meter deflection. Input should be high enough to permit a definite null
to be observed on the meter.
(g) Repeat steps e and f.
(h) Set signal generator to 25.5 mc . and adjust top of L102 for maximum meter deflection, limiting meter deflection to 2 volts D.C. by adjusting input at
enuator. enuator.

NOMINAL OVERALL I. F. RESPONSE CURVE

Note: Response as Seen by Means of Sweep Ge
(i) Reset signal generator to 24.4 mc . Connect a 100 ohm resistor in series with a 1000 mmf . capacitor across L101. Adjust converter output, L11, of
R.F. Tuner for maximum meter deflection, but R.F. Tuner for maximum meter deflection, but exceed 2 volts D.C. Remove the reading does not exceed 2 vils D.C. Remove the 100 ohm resistor) Rese sign
(j) Reset signal generator to 27.9 mc . and adjust the bottom of L101 for minimum D.C. meter deflection. Signal generator amplitude must be suf-
(k) Set signal generator to 25.5 mc . Connect the 100 ohm resistor and the 1000 mm . series capacitor rom TP-2 (wire protruding from the tuner justing screws) on the R-F Tuner to the brass adand adjust L101 for maximum D.C. meter indication. Adjusting amplitude of signal generator to make this maximum indication approximately 2 volts D.C. Remove the 100 ohm resistor and the 1000 mmf . capacitor
(1) Repeat steps j and k .
(m) Check sensitivity. The input for 2 volts D.C. output and zero bias should not exceed 650 micro-
volts at 24.4 mc . with generator properly terminated, and generator fed into grid of first I-F amplifier.
(n) Remove the signal generator and electronic voltmeter.
(o) Note: When aligning bottom of L103 and bottom of the first null obtained when running the core nto the trap winding from the Tinnermann Clip end of the trap winding is the proper alignment
null.

SOUND ALIGNMENT

1. Connect crystal controlled 4.5 mc .400 cycle ampitude tom of ratio transformer (T102) for peak reading on modulated signal, modulated 30% or greater, between grid of video amplifier and chassis.
2. Connect high side of scope through detector probe to the picture tube cathode (pin 11). Connect low side of scope to chassis. Adjust 4.5 mc . trap, L109, for minimum 400 cycle deflection on scope.
3. Connect electronic voltmeter to lug 2 of ratio detector,
V106, and adjust 4.5 mc . sound take-off (L112) and bot-
voltme
. Adjust input to obtain 12 volts output. Transfer electronic voltmeter to junction of R129 and C128 (refer to Schematic Wiring Diagram). Adjust top of T102 for zero balance on electronic voltmeter
. Recheck steps 2,3 and 4.
. Remove input signal, scope and electronic voltmeter.

HORIZONTAL HOLD ADJUSTMEN

1. Tune in a local television signal and adjust contras ontrol for normal picture.
2. Connect electronic voltmeter between TP-3 (green lead) and chassis.
3. Short TP-4 (orange lead) to chassis and adjust elec tronic voltmeter to zero
4. Remove short from TP-4. Do not change zero on elec tronic voltmeter.
5. Connect a 0.1 mfd., 600 volt capacitor between TP-5 red lead) and chassis.

TOP VIEW 402-1, 403-1, 404-1 CHASSIS
6. Adjust Horizontal Hold control for zero reading on the meter
7. Remove the 0.1 mid. capacitor from TP-5 and chassis. Do not disturb setting of horizontal hold control.
8. Adjust Horizontal Stabilizer coil (L114) for zero reading on the meter.
9. Remove electronic voltmeter from TP-3.
10. Check horizontal pull-in range. The pull-in range should be approximately 50° of the control's rotation.

BOTTOM VIEW 402-1, 403-1, 404-1 CHASSIS

CIRCUIT DESCRIPTION (UHF CONVERTER)

This UHF Converter employs a 1 N72 crystal mixe and a 6AF4 UHF oscillator tube. The continuous tune covers the UHF Commercial Television Band, Chan nels 14 through 83. The filament and B+ voltages are supplied by the Crosley VHF television receiver with which the converter is used

The converter is designed to operate from a 300 ohm , balanced or unbalanced line antenna.
Provisions are made for connecting and switching of separate antennas for UHF and VHF. This switching is accomplished by movement of the UHF coarse or fine tuning knob. When the knob is turned completely a switch which (to "VHF") a link coupling throw the receiver input. By a slight movement of the knob in a clockwise direction (toward channel "14") the link coupling throws the switch to the UHF position, connecting the UHF antenna to the receiver input and shorting out the VHF antenna. This function is per formed before the UHF converter is tuned to any channel in the UHF commercial television band.
The UHF Tuner assembly consists of three variable The first two inductors mounted on a common shaft. selector circuit. This circuit passes the signal to which the UHF dial is set and attenuates all other signals, thus acting to reduce interference. These inductors in conjunction with the associated capacitors and end inductors, tune to any desired frequency between 465 and 902 megacycles, while the third inductor, used to tune the local UHF oscillator, covers a range of approximately 376 to 820 megacycles.
The antenna preselector circuit is shunted by the
wanted signals and acts as a high-pass radio frequency filter to suppress broadcast and other low frequency cross modulation interference that may be encountered when the television receiver is located in an extremely intense field of a local AM Broadcast station or other $\mathrm{R}-\mathrm{F}$ radiators.

The end inductors L2, L3, L4 and the capacitors, C3, C4 and C18, provide a means of aligning the tuner at the high and low end. The UHF oscillator utilizes a grid is obtained my means the from the plate to the interelectrode capacity of the tube. The oscilla circuit (and the preselector circuits) is tuned to frequency by movement of a shorting contact on the tuned line inductors. Position of this contact determines the resonant frequency of the inductance

Both the tuned incoming signal from the antenna and the local oscillator signal are applied to the crystal mixer. The antenna preselector circuit is capacity coupled (through C1, C2 and C15) to the germanium crystal mixer. The local oscillator is coupled to the mixer through capacitor C16. The output of the crystal mixer is coupled through R-F choke L9, to the output of the crystal mixer is fed to the R-F put of the VHF tuner.

Proper operation of the television receiver on the UHF channels require that the VHF Channel Selector be set to either channel 5 or 6, depending upon the to the channel if both channel 5 and 6 are clear, the one with the least interference should be used.

Alignment Notes:

UHF ALIGNMENT

CAUTION: This UHF converter unit is used with a VHF receiver that has one side of the chassis connected to the power line. DO NOT CONNECT TEST EQUIPMENT TO ANY PART OF THE RECEIVER OR GROUND THE CHASSIS UNLESS AN ISOLATION TRANSFORMER IS USED BETWEEN THE POWER LINE AND RECEIVER.

1. Remove the UHF Converter from the VHF re ceiver chassis.
2. Disengage the toggle coupling from the switch throw arm on the front of the UHF chassis.
To accomplish this: -
a. Turn the UHF tuning control clockwise until the pin located on the rear of the drive pulley is free from the toggle coupling.
b. Loosen the two set screws in switch throw arm collar and remove from switch shaft
c. Turn the switch clockwise to the UHF position; contact blade on switch rotor must contact and center on the two switch fingers with the red wires attached. Leave switch in this position while aligning.
3. Connect the output leads of the UHF converter to the R-F input terminals of the VHF Tuner.
4. Connect the B+ and filament leads of the tuner to their respective points from which they were re verter chassis to B- (VHF receiver chassis).
5. Keep all leads as short as possible, one way to ccomplish this is to mount the UHF converter at ight angles to the TV chassis with one mountin the require no additional length.
6. Set VHF Tuner to Channel 6.
7. Alignment should be followed in the order shown.

OSCILLATOR ALIGNMENT

1. Connect an electronic voltmeter or scope across the second detector load resistor.
2. Turn on the power
3. Apply a 460 mc . (amplitude modulated, when cope is used) signal to the UHF antenna termi the antenna matching network (Se Sketch).

Anfenna Matching Network

4. Turn out the adjusting screw of the mixer circuit trimmer C4 so that the flat side of the head is 5/8" above the chassis before aligning oscillator.
5. With the tuner shaft at maximum CCW position, adjust the oscillator trimmer C18 for peak reading on the electronic voltmeter or maximum indication on the scope (oscillator frequency is se to 84 mc below the carrier frequency)
6. Set the signal generator to 904 mc .
7. Rotate the tuner shaft to maximum CW position and adjust the oscillator 'end inductor, L4 up or down for maximum reading on the voltmeter.
8. Repeat steps 3 through 6 until maximum reading is obtained.

R-F CIRCUIT ALIGNMENT

1. With the signal generator and electronic voltmeter or scope connected as for the Oscillator Alignment above, set the R-F coupling trimmer, C1 and C2 to minimum capacity by turning the screw CCW.
. Set the signal generator to 460 mc . (Amplitude modulated when scope is used).
2. With the tuner shaft at maximum CCW position, adjust the antenna and mixer trimmers, C3 and C4 for maximum meter reading. (or scope indication)
3. Reset signal generator to 904 mc .
4. Rotate the tuner shaft to maximum CW position and adjust the antenna and mixer end inductors, L2 and L3, for maximum reading on meter or scope, by forming larger or smaller loop
5. Repeat steps 2 through 5 until maximum reading is obtained.
6. Turn the tuner shaft to maximum CW position and adjust the coupling trimmer, C1 and C2 for peak reading at 904 MC .
7. Turn the power switch to the "OFF" position
8. Disconnect the generator and electronic voltmeter, or scope.
9. Re-engage the toggle coupling in the pin on the switch throw arm and the pin on the drive pulley as follows:
a. Rotate the tuning control shaft clockwise until the pin on the rear of the drive pulley is toward the base of the chassis.
b. Turn the tuning shaft CCW and guide the pin on the rear of drive pulley into the fork of the toggle coupling, then continue to turn tuning shaft CCW to stop. The coupling is now in the proper operating position.
c. With the switch set to the VHF position (CCW) replace the switch throw arm so that the pin coupling engages the fork of the toggle $30^{\circ} \mathrm{CW}$ from horizontal. Tighten the two set screws in the switch throw arm collar.
d. Function switch should be checked for proper Function switch should be checked for proper
operation under conditions of customer use.

Socket Voltage Chant

UHF ALIGNMENT (Continued)

At full CCW rotation of tuner shaft, all VHF position contacts must be fully and firmly made and all UHF position contacts must be be fully and firmly made and all VHF position contacts must be fully broken, when tuner

UHF CONVERTER CHASSIS, (Top View)

UHF CONVERTER CHASSIS, (Bottom View)

Off Contor and

CENTERING MAGNET ADJUSTMENT - If the picture is off center and/or has neck
shadow as shown in the illusshadow as shown in the
tration at the left, loosen screw " G " and rotate the centering magnet lever " H " to the right left, up, down, or a combination of these directions until the pic ture is centered on the scree
and the picture is free of all and the picture is free of all
neck shadow. While holding
lever in position neck shadow. While holding
lever in position tighten screw
"G".

REAR VIEW - CHASSIS 404, 404-1 - (Chassis 403, 403-1 are similar to chassis 404, 404-1 excep that the 403 and 403-1 chassis are equipped with metal picture tube and a deffection yoke mounting bracket which is mounted directly to the chassis with the four screws " D " and " E ").

ION TRAP ADJUSTMENT - With the ion trap mag net positioned close to the base of the picture tube and slide the ion trap backward or forward and at the same time rotate it to the right or left until maximum bright ness is obtained. Readjust the brightness control unti the raster is slightly above average brilliance. Adjus the focus control until the line structure of the raster
is clearly visible. Readjust the Ion Trap again for maximum brightness. There may be two locations on the tube neck where the ion trap will produce maximum brightness. Never set the trap to the forward position always use the position closest to the tube base. I there is a shadow in the corner of the raster, be sure ion trap, do not sacrifice picture brilliance to overcom shadows in corners. When shadows are present, be sure the deflection yoke and centering magnet are properly adjusted.
NOISE GATE CONTROL - In areas that have strong electrical interference and the Local-Suburban-Distance Switch can be set to "Suburban or "Distance" be improved by turning the control clockwise to position where the picture is most stable with no buzz or noise introduced into the sound output
LOCAL - SUBURBAN - DISTANCE SWITCH - In counter-clockwise position (LOCAL). The middle position (SUBURBAN), and extreme clockwise posi

Misadjusted Vorticen Linearily
 tion (DISTANCE) are used in
areas where the signal is weak areas where the signal is weak
or medium strength. Set the switch in the position which provides the most sastifactory picture with minimum overload ing when the contrast control
is advanced. VERTICAL LINEARITY CON TROL - This control increase or deereases the height of ther HeIart HEIGHT CONTROL - This control increases the overall height of the picture. When
making this adjustment it is sometimes necessary to also ad-
just the VERTICAL LINEARjust the VERTICAL LINEAR correctly proportioned.

DEFLECTION YOKE ADJUST MENTS - The deflection yoke ward as possible on the neck of the picture tube. To make this adjustment, loosen screws "D" and "E" enough to permit the yoke bracket to be pushed for
ward. While holding the bracket in the forward position, tighten screws "D" and " E ". Screws "A" and "C" are for shifting the

Pidure !illed yoke up or down to center
around the picture tube neck
if the picture is tilted as illustrated at right, loosen as required to make the picture parallel with or righ to top and bottom of window frame. Be sure to hold the yoke in position while tightening the wing nut FOCUS ASSEMBLY - To Center the Focus Assembly and shift the assembly to right, left, up, or down unt paper shim around tube neck can be moved freely Then tighten screws "F".
FOCUS CONTROL: - Rotate to the right or left until the sharpest picture, or sharpest horizontal lines, ar obtained

HORIZONTAL STABILIZER ADJUSTMENT - See "HORIZONTAL HOLD CONTROL"

Hold

HORIZONTAL HOLD CONTROL - If the picture appears as shown in the illustration, adjust the horizontal hold control to right or left as required to lock control is not sufficient to lock in picture, see "Horizontal Hold Control" adjustment

VERTICAL HOLD CONTROI or If the picture is moving up adjust the vertical hold contro until a single stationary picture
is obtained.

CONNECTING EXTERNAL ANTENNA - When connecting an external antenna to the terminals at the rear of the receiver be sure to disconnect the built-in antenna which is being replaced by the external antenna

WIDTH CONTROL - If the picture is too narrow as illustrated, or too wide, turn the
width control clockwise or width control clockwise or counter-clockwise as required
to adjust the picture to the proper width of the viewing
area on the screen. area on the screen.

Off Comer and Neck Shodow
centering magnet adJUSTMENT - If the picture is off center and/or has neck shadow as shown in the illus-
tration at the left, rotate either or both centering magnet levers or the right or left until the picture is centered on the screen, and the picture is free of all neck shadow.

ION TRAP ADJUSTMENT - With the ion trap magnet positioned close to the base of the picture tube and the brightness control at a low to medium setting, same time rotate it to the right or left until maximum brightness is obtained. Readjust the brightness con-
trol until the raster is slightly above average brilliance. Adjust the focus control until the line structure of the raster is clearly visible. Readjust the ion trap again for maximum brightness. There may be two locations on the tube neck where the ion trap will produce maximum brightness. Never set the trap to the for-
ward position, always use the position closest to the ward position, always use the position closest to the
tube base. If there is a shadow in the corner of the raster, be sure the ion trap is properly adjusted; when adjusting the ion trap, do not sacrifice picture brilliance to overcome shadows in corners. When shadows are present, be sure the defiection yoke and centering
magnet are properly adjusted.

NOISE GATE CONTROL - In areas that have strong electrical interference and the Local-Suburban-Distance Switch can be set to "Suburban" or "Distance" without overloading the receiver, picture stability can be improved by turning the control clockwise to a or noise introduced into the sound output.

LOCAL - SUBURBAN - DISTANCE SWITCH - In strong signal areas set this switch to its extreme counter-clockwise position (LOCAL). The middle position (SUBURBAN), and extreme clockwise posi-
 tion (DISTANCE) are used in
areas where the signal is weak
or medium strength. Set the areas where the signal is weak
or medium strength. Set the switch in the position which
provides the most satisfactory provides the most satisfactory
picture with minimum overloading when the contrast control is advanced.

VERTICAL LINEARITY CONTROL - This control increases upper portion of the picture.

HEIGHT CONTROL - This control increases the overall height of the picture. When making this adjustment it is
sometimes necessary to also adjust the VERTICAL LINEARITY to obtain a picture that is correctly proportioned.

CONNECTING EXTERNAL ANTENNA - When connecting an external antenna, be sure to disconnect the built-in antenna, which is being replaced by the external antenna

REAR VIEW - CHASSIS 402, 402-1

DEFLECTION YOKE ADJUST MENTS - The deflection yoke must be positioned as far for the picture tube. To make this adjustment, loasen screws "D" and "E" enough to permit the yoke bracket to be pushed for-
ward. While holding the bracke in the forward position, tighten screws "D" and "E". Screws "A" and "C" are for shifting the yoke up or down to center If the picture is tilted as illustrated at right, loosen wing nut "B". Then, rotate the yoke to left or right as required to make the picture parallel with respect
to top and bottom of window to top and bottom of window
frame. Be sure to hold the yoke in position while tightening the wing nut.

HORIZONTAL STABILIZER ADJUSTMENT - See "HORI ZONTAL HOLD CONTROL"

Pleture Tiltod

HORIZONTAL HOLD CONTROL - If the picture appears as shown in the illustration, adjust the horizontal hold control to right or left as required to lock in a single stationary picture. If the range of the control is not sufficient to lock in picture, see "Horizontal Hold Control" adjustment

VERTICAL HOLD CONTROL

 - If the picture is moving up or down as illustrated at right, adjust the vertical hold control is obtained.

FOCUS CONTROL - Rotate to the right or left until the sharpest picture or sharpest horizontal lines are obtained

WIDTH CONTROL - If the picture is too narrow as illustrated, or too wide, turn the width control clockwise or counter-clockwise as require to adjust the picture to the proper width of the viewing area on the screen.

UHF CONVERTER SChematic

PARTS LIST
UHF CONVERTER

$\begin{gathered} \hline \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
C1	155424	Stator, RF Trimm
C2	155508	Rotor, RF Coupling Trimmer
C3	151880-2	Capacitor, .8-6.5 mmi., Trimmer
C4	151880-2	Capacitor, 8 -6.5 mmf., Trimmer
C5	155439-1	Capacitor, 12 mmf ., ceramic
C7	156201-1	Capacitor, 470 mmi., 2 KV ., disc ceramic
${ }^{\text {c9 }}$	152997-9	Capacitor, 2 mmf ., 500 V .
C10	152997-12	Capacitor, 4.7 mmf ., 500 V .
C12	156201-1	Capacitor, 470 mmi., 2 KV ., disc ceramic
C13	152997-6	Capacitor, . 68 mmf., 500 V .
C14	152997-8	Capacitor, 68 mmf., 500 V .
C15	152997-4	Capacitor, 3.3 mmi., 500 V .
C16	152997-1	Capacitor, 2.2 mmf ., 500 V .
C17	152997-8	Capacitor, 68 mmI ., 500 V .
C18	155713-1	Capacitor, 2-7 mmi., Trimmer
C19	152997-13	Capacitor, 15 mmf ., 500 V .
C20	152997-8	Capacitor, 68 mmf ., 500 V .
C21	152997-14	Capacitor, 27 mmf ., 500 V .
R1	Part of L1	Resistor, 100 ohm, $1 / 2 \mathrm{~m}$.
${ }^{\text {R2 }}$	Part of L1	Resistor, $100 \mathrm{ohm}, 1 / 2 \mathrm{w}$
RS	Part of L1	Resistor, $390 \mathrm{ohm}, 10 \%, 1 / 2$
R4	39374-57	Resistor, $470,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
R6	39374-57	Resistor, $470,000 \mathrm{ohm}, 108,1 / 2 \mathrm{w}$.
R7	39374-42	Resistor, 27,000 ohm, 10%, $1 / 2 \mathrm{w}$.
${ }^{\text {R8 }}$	39374-136	Resistor, $82,000 \mathrm{ohm}, 10 \% 1 \mathrm{~m}$.
R9	39374-37	Resistor, $10,000 \mathrm{obm}, 10 \%, 1 / 2 \mathrm{w}$
${ }^{\text {L }}$	155158-1	Inductuner, UEF
L2	Part of C3	Inductance
L3	Part of C 4	Inductance
${ }^{14}$	Part of Cl 18	Inductance
L5	148936-2	Choke, RF (82 microhenries)
L6	156187	Choke, RF (182 microhenries)
L7	148936-1	Choke, RF (47 microhenries)
L8	148936-1	Choke, RF (47 microhenries)
L9	155510	Choke, RF (145 microhenries)
L10	148936-5	Choke; RF (2.7 microhenries)

$\begin{aligned} & \text { Symbal } \\ & \text { No. } \end{aligned}$	Part No.
CA1	
COI	154781
CO2	155431
CR1	151871
SW1	156170
	155495
	155561
	155441
	154736
	155488
	155427
	154803
	155893
	156788
	${ }_{155491}$
	156872
	137940-1
	137940-8
	155710
	151883
	155484
	${ }^{39311-2}$
	155898
	153804
	${ }^{153806}$
	154677 154743
	${ }_{152543-1}^{15473}$
	${ }_{51752}^{152053}$
	${ }_{156871}$
	155895
	155712
	148206

© John F. Rider

PARTS LIST CHASSIS 402, 403 \& 404 (Schematic Parts) 402-1, 403-1 \& 404-1						PARTS LISTCHASSIS 403 \& 403-1			
						Part No.	Description	Part No.	Description
No.	Part	Description	\| So.	art No.	Description	154495	Antenna Terminal Board \& Bracket Assembly	154079-1	Ring (Retaining), Width Control Shaft (3 used)
49	39374-60	Resistor, 820,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.	Li05	156035	Coill, Video Peaking (117 microhenries)	155375	俍 $\begin{aligned} & \text { Barrier, Brightess Control } \\ & \text { Barrier, Tone Control }\end{aligned}$	154079-2	Ring (Retaining), Width Control Shaft Key
R150	39374-33	Resistor, 4700 ohm, $10 \%, 1 / 2 \mathrm{w}$.	L106	156036	Coil, Video Peaking (464 microhenries)	154722	Barrier, Picture Tube	153580 155195	Screw (Thumb), Deflection Yoke Assembly Shaft, Width Control
$\mathrm{R}_{\mathrm{R} 151} \mathrm{R152}$	${ }_{\substack{155576 \\ 154088 \\ 1}}$	Control, Noise Gate ($90,000 \mathrm{ohm}$)	${ }^{\text {L107 }}$	${ }^{155256}$	Choke, Fillament RF (.576 microhenries)	155750-2	Bracket (Frame), Deflection Yoke Assembly	154077	Shaft, Width Control (Horizontal Deflection Assembly)
${ }_{\text {R153 }}$	154088 154084		${ }_{\text {Liog }}^{\text {Liog }}$	${ }_{155446}^{15494}$	Coill Video Peaking (414 microhenries)	155222	Bracket (Front), VBF Tuner Shaft	155027	Shaft, VHF Tuner (
${ }^{\text {R154 }}$	39374-14	Resistor, $120 \mathrm{hmm,105} \mathrm{\%} 11 / \mathrm{m}^{\text {m }}$.	L110	${ }^{154206}$	Coill, video Peaking (106 microhenries)	$155330-1$ $15330-2$	Bracket (R.H.), Picture Tube Support	${ }^{155851}$	Shim, used between Focuser \& Picture Tube Neck
R155	39374-27	Resistor, 1500 ohm, $10 \%, 1 / 2 \mathrm{w}$.	L111	154176 15542	Coil, Video Peaking (840 microherrites) Coill Sound Takeorl (12 to 23 microhenries)	${ }^{155330-2}$	Bracket (L.H.), Picture Tube Support	155278	Shield, Corona
R156	${ }_{393744-43}^{1559}$	Control, Tone ($250,000 \mathrm{ohm}$) Resistor, 33,000 ohm, $10 \%, 1 / 2 \mathrm{w}$	${ }_{\text {L }}^{\text {L } 112}$ L13	${ }_{154221-6}^{15542}$	Coil, Sound Take-Off (12 to 23 microhenries) Yoke, Dellection Assembly (used on	${ }_{154253}^{15541}$	Bracket (2 used), Focuser Mounting	155241	Shield, High Voltage
R158	${ }_{154089}$	Resistor, 7.5 ohm, 105 , 5 w . wire wound	${ }_{\text {L113B }}$		Yoke, Deflection $\}$ Yoter $\begin{aligned} & \text { Assembly } \\ & 402 \text { only }\end{aligned}$	154253 1599	Bracket (Sadde), Denlection Yoke Assembly Bracket, Tone \& Brightness Controls	${ }_{155842-1}^{1541}$	Shield, Tube (2 used)
R159	39374-49	Resistor, 100,000 ohm, $105,1 / 2 \mathrm{w}$.	L113A	154221	Yoke, Deflection Assembly (used on	155558	Cable, Twin Shielded	${ }_{154203}^{15562-1}$	Picture Tube
${ }_{\text {R161 }}^{\text {R160 }}$	39374-49	Resistor, 100,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.	${ }_{\text {L114 }}^{\text {L138 }}$	154220	Yoke, Denlection ${ }^{\text {a }}$ (03, 404 chassis)	154276-2	Channel (Rubber), Deflection Yoke Assembly	154192	Socket, Tube Shock Mounted (V104)
R162	39374-139	Resistor, 150,000 ohm, 100 , 1 w .		15422	microhenries)	${ }_{155009}$	Clip, Anode Connector	${ }_{3}^{154127}$	Socket, Tube (V106, V107, V108, V110)
${ }_{\text {R164 }}^{\text {R163 }}$	- 3933444 -77	Resistor, 4.7 megohm, $1006,1 / 2 \mathrm{w}$.	L115	154156	Network, Yoke Coupling (3 microhenries,	156009 154180	Coil (High Voltage), Horizontal Deflection Assembly	${ }_{154131}^{39388}$	Socket, Tube (V111)
${ }_{\text {R165 }}$	- $\begin{array}{r}393744747 \\ 39374\end{array}$	Resistor, 4.7 megohm, $1065,1 / 2 \mathrm{w}$.	L116	156035	Used on 403,404 chassis only)	154124	Coupling, Width Control Shaft	154131 154117	Socket, Tube (V105, V114)
R166	39374-34	Resistor, $5600 \mathrm{ohm}, 10 \mathrm{p}, 1 / 2 \mathrm{w}$.	T101	155594	Transformer, Diode IF	155999-1	Cushion (Rubber), Picture Tube Support (2 used)	154130	Socket, Tube (V112)
${ }_{\text {R16 }}$	- $3933744-35$	Resistor, 4700 ohm, $105,1 / 2{ }^{\text {m }}$.	${ }_{T 102}$	154108	Transformer, Ratio Detector	155194	Disc, Fine Tuning (V.H.F.)	154148	Socket, Tube (V101, V102, V103)
${ }_{\text {R169 }}$	${ }^{39354-45}$	Resistor, 47,000 ohm, $108,1 / 2 \mathrm{w}$. Control, Horizontal Hold	${ }_{\text {T104 }}$	${ }_{155572}^{15555}$	Transformer, Verital Transformer, Vertical Oscillator	${ }_{154134}^{15788-1}$	Focuser (P.M.) Grommet (4 used), Tube Mounting (V104, V113)	154074	Support, High Voltage Lead (Horizontal Deflection
${ }_{\text {R170 }} \mathrm{R} 171$	- $3939374-56$	Resistor, 8200 ohm, $10 \%, 1 / 2 \mathrm{w}$. Resistor, 120 ohm, $10 \%, 1 / 2 \mathrm{w}$.	${ }_{\text {T105 }}$	$154109-2$ 15539	Transformer, Audio Output	155553	Insulator, Antenna Lead	154381	Spring, Capacitor Mounting (C166)
${ }_{\text {R172 }}$	$39374-50$ 393745	Resistor, 330,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.	${ }_{\text {T107 }}$	${ }_{155599-1}^{15590}$	${ }_{\text {Transformer, }}^{\text {Chiliament }}$	${ }_{1}^{138853}$	Insulator, Controls (8 used)	154414-4	Spring (2 used), Defliection Yoke Assembly to Picture
${ }^{\text {R173 }}$	39374-213	Resistor, $10,000 \mathrm{ohm}, 10 \%, 2 \mathrm{w}$.	T108	155514-1	Transformer. Horizontal Deflection	154264	Insulator, Interlock		Tube Support
R174	39374-6			138352 15411	Socket, Speaker Socket, Termina	154268 154025	Insulator, VHF Tuner Shaft	154072	Spring (Clip), Horizontal Deflection Assembly
R175	39303-12	Resisitor, 2.2 ohm (Part of T108)	coio3	Part of R134A\&B	Socket, Terminal Strip Swith, ON-OFF	${ }_{153109-1}$	Ion Trap	${ }_{153979-2}^{154071}$	Spring (Strap), Horizontal Deflection Assembly Strap, Picture Tube
R176	39374-139	Resistor, $150,000 \mathrm{ohm}, 10 \%, 1 \mathrm{w}$.	Sw102	155554	Swith, Rotary (AGC Control)	39012-102	Iron Core	155398	VHF Tuner, Complete
${ }_{\text {R177 }}$	39374-23	Resistor, 680 ohm, $10 \%, 1 / 2 \mathrm{w}$,	CR101	154111	Crystal. 1 N64	39012-116	Iron Core (6 used on IF Strip)	154123	Wafer, Capacitor Mounting (C148) $^{\text {a }}$
		on 402 only)	SR101	(155575-2	Rectifier, Selenium Rectifier, Selenium	${ }^{154073}$	Iron Core, Horizontal Deflection Assembly	154128	Wafer, Capacitor Mounting (${ }^{\text {c }}$ (40)
R180	39374-57	Resistor, 470,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.	SP101	${ }^{138762-7}$	Speaker, PM (5-1 $4^{\text {² }}$)	154122-2 $154122-3$	Plate Cap, Tube (V115)	155394	Washer (Extruded), Tone \& Brightness Controls
		Coil, Converter IF (1.98 to 4.5 microhenries)	${ }_{\text {SP102 }}$	$138762-7$ $138762-5$	Speaker, PM (5-1.4**) Speaker, PM (10.")	155253	Plate (Bearing), VHF Tuner Shaft	$\begin{aligned} & 138976 \\ & 149180 \end{aligned}$	Washer (Extruded), Auxillary Controls (8 used) Washer (Spring), Width Control Shaft
${ }_{\text {L102 }}$	1553319	Coll, 1st IF (1.95 to 4.5 microhenries)	CA101	${ }_{132300-6}$	Cable \& Plug Assentyly, AC Power	154075	Plate, Horizontal Width Control		
L104	${ }_{1}^{154376}$	Coil, Diode Choke (15.5 microhenries)	${ }_{\text {P102 }}$	${ }_{1341983}^{15425}$	Receptacle, AC Power Plug (Male), 2 Prong		CHASSIS	404 2 4041	
CHASSIS 402 \& 402-1						Part No.	Description	No.	Description
No.		iption	Part No.		Description	$\begin{aligned} & 154495 \\ & 155482 \end{aligned}$	Antenna Terminal Board \& Bracket Assembly Barrier, Brightness Control	$\begin{aligned} & 154079-2 \end{aligned}$	Ring (Retaining), Width Control Shaft Key Screw (Thumb), Deflection Yoke Assembly
154495	Antenna Tern	Board \& B				155375	Barrier, Tone Control	155195	Shaft, width Control
${ }_{155462}$	Barrier, Bri	ss Control	153580	Screw (Thumb),	eflection Yoke Assembly	155750-1	Bracket (Upper Frame), Deflection Yoke Assembly	154077	Shaft, Width Control (Horizontal Defection Assembly)
155375 $155750-1$	俍 $\begin{aligned} & \text { Barrier, } \\ & \text { Bracket (Fran }\end{aligned}$	Deflection Yoke Assembly	$39296-84$ 155195 1	Screw (2 used), P Shaft, width Cont	cture Tube Strap	155514 155199	Bracket (Lower Frame), Deflection Yoke Assembly	155027	Shaft, WHF Tuner.
155222	Bracket (Fro	HF Tuner Shaft	154077	Shaft, Width Cont	ol (Horizontal Deflection Assembly)	155741	Bracket, Tone \& Brightness Controls	${ }^{155278}$	Shield, Corona
${ }^{154255-2}$	Bracket. Pict	Tube Stop	155027	Shatt, vHF Tuner	(harzal Demecton Assemoy)	154253		${ }_{154143}^{15241}$	Shield, High Voitage
${ }_{154253}^{15238-2}$	${ }_{\text {Bracket, }}^{\text {Bricl }}$	Tube Strap Tie Down Deflection Yoke Assembly	155276 155241 1	Shield, Corona		155891	Bracket (R.H.), Picture Tube Support	155851	Shim, Used between Focuser \& Picture Tube Neck
155199	Bracket, Ton	Brightess Controls	154143	Shield, Tube (2 4 us		${ }^{1558592}$	Bracket (L.H.), Picture Tube Support	${ }^{155842-1}$	Socket \& Cable Assembly, Picture Tube
155558	Cable, Twin		154148-3	Socket \& Cable A	sembly, Picture Tube	155558	Cable, Twin Shielded	${ }^{154203}$	Socket, Tube Shack Mounted (V113)
${ }_{1}^{1542726-2}$	${ }_{\text {Channel (Rub }}$	Deflection Yoke Assembly	${ }^{154203}$	Socket, Tube Shoct	Mounted (V113)	${ }_{154276-2}$	Channel (Rubber), Deflection Yoke Assembly	${ }^{154192}$	Socket, Tube Shock Mounted (V104)
${ }_{156009}^{1526-1}$	$\xrightarrow{\text { Channel (Rubl }}$ Coil (High ${ }^{\text {a }}$	Picture Tube Mounting Foot	154192 154127	Socket, Tube Shoc	k Mounted (V104)	156009 154180	Coil (High Voitage), Horizontal Deflection Assembly	154127	Socket, Tube (V106, V107, V108, V110)
154180	Coil (Primary	orizontal Denlection Assembly	39388	Socket, Tube (V11)		155102-3	Connector, Picture Tube Anode	39388 154131	Socket, Tube (V111) ${ }^{\text {Socket, }}$ Tube (V105, V14)
${ }_{1551122-2}$	Connector, P	e Tube Anode	154131	Socket, Tube (V10)	v14)	154124	Coupling, width Control Shaft	154117	Socket, Tube (V109)
${ }_{153424-3}^{15124}$	Coupling, Wid Cushion (Rubl	Pisture Tube Strap	154117 154130	Socket, Tube (V10)		153424-1	Cushion, Picture Tube Strap	154130	Socket, Tube (V112)
155194 156045	Disc, Fine T	(VHF)	${ }^{154446}$	Socket. Tube (V10)	, v102, v103)	${ }_{155194}^{153424}$	Cushion, Picture Tube Support (2 used) Disc, Fine Tuning (V.H.F.)	154146 149322	Socket, Tube (V101, V102, V103) Support, Anode Connector
156045 154134	${ }_{\text {Foot, Picture }}$		149322 154074	Support, Anode C	nnector	${ }_{155788-1}$	(isc, Fine Tuning (V.H.F.)	149322 154074	Support, Anode Connector (Support, High Voltage Lead (Horizontal Deflection
155553	Insulator, Ant	Lead	149671-1	Spring (Grounding)	Deflection Yoke Assembly	154134	Grommet (4 used), Tube Mounting (V104, v113)		Assembly)
138853 15424	Insulator, Con	(8 used)	154135	Spring, Picture T	be Mounting (2 used)	155553	Insulator, Antenna Lead	149671	Spring (Grounding), Deflection Yoke Assembly
${ }_{1}^{154264}$	Insulator, Inte		154072	Spring (Clip), Hor	zontal Deflection Assembly	138853	Insulator, Controls (7 used)	154414-3	Spring, Picture Tube Mounting (2 used)
	${ }_{\text {Insumator, }}^{\substack{\text { Insun } \\ \text { I } \\ \text { rap }}}$	ner Shaft	154071 154205	Spring (Strap), Ho	izontal Deflection Assembly	154284	Insulator, Interlock	154072	Spring (CLip), Horizontal Deflection Assembly
cen 3 3012-102	Iron Core		1553531 15515	Strap, picture ${ }_{\text {Terminal }}^{\text {Board, }}$	eorizontal Deflection Assembly	${ }_{153109-1}^{15288}$	Insulator, VHF Tuner Shaft Ion Trap	${ }_{1}^{154071}$	Spring (Strap), Horizontal Deflection Assembly
${ }_{154073}^{39012 \text {-116 }}$	$\xrightarrow[\text { Iron Core (} 6]{\text { Iron Core, Ho }}$	on IF Strip)	155398 154123	$\underset{\text { Water, Capacitor }}{\text { VHer }}$	Mounting (C148)	39012-102	Iron Core	${ }_{155351}^{155887}$	Strap, Picture ${ }^{\text {Terminal Board, }}$ Horizontal Deflection Assembly
${ }_{154122-2}$	Plate Cap, Tu	(115)	${ }_{154126}^{15123}$	Waier, Capacitor	Mounting (C140)	39012-116	Iron Core (6 used on IF Strip)	155398	VHF Tuner, Complete
${ }_{1}^{154122-3}$	Plate Cap, Tue	${ }^{114)}$	155394	Washer (Exitruded	Tone \& Brightness Controls	154073	Iron Core, Horizontal Defliection Assembly	154123	Water, Capacitor Mounting (C148)
155253 154075	(Plate (Bearin)	HF Tuner Shaft	138976 155399	Washer (Exiruded)	Auxillary Controls (8 used) ube Mounting Foot (2 used)	$154122-2$ $154122-3$	Plate Cap, Tube (V115)	154128	Waier, Capacitor Mounting (C140)
$c154075154079-1$	$\left.\right\|_{\substack{\text { Prate } \\ \text { Ring (Retainin) }}}$	Width Control Shart (3 used)	155339 149180	Washer, Picture	Wide Mounting Foot (2 used)	${ }_{155253}^{154122-3}$	Plate Cap, Tube (V114) Plate (Bearing), VHF Tuner Shaft	155394 138978	Washer (Extruded), Tone \& Brightness Controls Washer (Extruded), Auxillary Controls (7 used)
NOTE: For Replacement Parts List for Chassis 403, 403-1, 404 \& 404-1, see page 20.						154075 154079-1	Plate, Horizontal Width Control Ring (Retaining), Width Control Shaft (3 used)	149180	Washer (Spring), Width Control Shaft

© John F. Rider

SERVICING

TURRET TUNERS

Because tuners operate at very hig requencies, considerable care must be ollowing simple precautions are oberved no difficulty should be en countered:
I. Don't assume the tuner is at fault until the other circuits of the re eiver have been carefully checked. 2. Always use exact replacement parts. 3. When troubleshooting a tuner do not disturb the parts or lead position ing.
4. When making a replacement, du plicate the positioning and lead dress of the original part.
5. Do not disturb any of the tuner djustments unless you are familiar with the proper adjustment procedure.

replacing tuner coil strips.

- TU-I, TU-2, TU-3, TU-4, TU-6

U-8, TU-10

I. Remove the tuner bottom cover by pulling its front end away from the tuner and unhooking its rear edge.
2. Using a screwdriver pry the spring finger, holding the strip, away from the turret end flate and lift out the strip.
3. To install the new strip, insert the two projections into the holes in the detent ring.
4. Pry the spring finger away from the end plate, push the strip in place, and let the spring finger snap over the end of the strip.
TU-5, TU-7, TU-9

1. Remove the four screws holding the tuner bottom cover and remove the cover
2. Using a screwdriver, push the spring finger holding the strip toward rear of tuner and lift out strip
3. To install new strip, insert end having smaller projection into the hole in the detent plate.
4. Pry the spring finger away from rear of drum and push the strip into place. Let spring finger snap back into place making sure that projection on end of strip seats correctly in hole in spring finger.

CLEANING THE TUNER CON TACTS. - Remove the tuner bottom cover and several of the coil strips as described in the previous paragraph. Rotate the turret so that pargrph. contacts are accessiblat the wiping pening made by removing th Clean the coil strip and wing the strips lacts with coil strip and wiping con "Noft wh moistened with "No Noise"

adjusting the tension of the

 WIPING CONTACTS.-Remove th tuner bottom cover and several of the coil strips. Rotate the turret to per mit access to the contacts through he opening thus provided Using mall screwdriver bend each Using pring until it extends approximat $1 / 8$ inch inward from the surface of he plastic contact moune surfaceTo check contact-mounting plate. To check the tension of the spring
contacts, place the turret in a position between channels and note th learance between the contact spring and the surface of the coil strip. The clearance should be approximately 1/64 inch.

REMOVING THE TUNER TURRET DRUM.-

I. Remove the tuner bottom cover.
2. Remove the fine tuning bracket from front of tuner
3. Remove the front and rear retaine springs by pushing the straight end of 4. spring toward the top of tuner 4. Slip the turret drum out of the tuner.

OSCILLATOR TUBE REPLACEMENT

 -Due to differences in interelectrode capacitance, replacement of the oscil oscillator frequency shift. This con oscillator frequency shift. This co oscillator frequency shift. This con- TEST EQUIPMENT. - To properly align a Du Montdition can be avoided by trying several s mitch turret tuner the following test equipment is recauses the least freque causes the least frequency shift. If it is necessary to use a tube which Oscillograph causes excessive frequency shift the oscillator frequency must be adjusted.
INDIVIDUAL CHANNEL OSCILLA. TOR ADJUSTMENT. - When the os TOR ADJUSTMENT.-When the oschannels but not is correct for some channels but not for others, the into correct the oscillags should be used channels requiring adjustment. Adjust the slugs as follows: quiring adjustment.
2. Remove the Fine-Tuning and Station Selector knobs. If set has a UHF dial, remove the dial.
3. Set the Fine-Tuning control in the center of its mechanical range. If the Fine-Tuning control does not have a stop, turn the control so that the flat on the shaft faces down.
4. Using an insulated alignment tool adjust the slug for best picture and sound. The slug is accessible through the hole just to the right of the tuning shaft.

OVERALL OSCILLATOR ADJUST-MENT.-TU-5, TU-7 and TU-9 are provided with an overall oscillator adjustment. When replacement of the oscillator tube, or components other than a channel strip, causes a change in oscillator frequency, this adjustment may be used to correct the oscillator frequency. The adjustment should be made as follows:

1. Tune the set to the highest channel station available.
2. Set the Fine-Tuning at the center of its mechanical range. If the Fine Tuning control does not have a stop, turn the control so that the flat on the shaft faces down
3. Adjust G (figure 2) for best picture and sound.
4. Check the tuning on all available channels and adjust the individual channel slugs if necessary.

TUNER ALIGNMENT

Vertical and a vertical deflection sensitivity of at least 0.1 rms volts per inch.

Sweep Signal Generator

Frequency range- 54 to 216 mc .
Sweep-At least 10 mc .
Marker Signal Generator
Frequency range- 54 to 216 mc .
Should have built-in calibrator crystal

Tune the set to the channel re

TUNER IDENTIFICATION

TUNER INTERCHANGEABILITY
All tuners that are used on the same chassis are interchangeable. In a few cases special instructions are required. For the technician's convenience an interchangeability chart is shown below which contains these instructions. When a ouner is in (E in figure 2) of the new tuner should be readjusted. The alignment procedure for the mixer output coil will be found on the service data sheet for the chassis involved.

Chassis	Symbol	$\begin{gathered} \text { Tuner } \\ \text { Part } \\ \text { Number } \end{gathered}$	Romarks
$\begin{aligned} & \text { RA }-160-162-162 B \end{aligned}$	$\begin{aligned} & \mathrm{TU}-1 \\ & \mathrm{TU}-2 \end{aligned}$	$\begin{array}{lll} 21 & 009 & 121 \\ 21 & 009 & 122 \end{array}$	TU-1 and TU-2 are directly interchangeable.
RA-164-16S	$\begin{aligned} & \text { TU- } 3 \\ & \text { TUU } \\ & \text { TU-5 } \\ & \text { TU-6 } \end{aligned}$	$\begin{array}{lll} 21 & 010 & 781 \\ 21 & 010 & 782 \\ 89 & 012 & 601 \\ 21 & 010 & 783 \end{array}$	TU-3, TU-4 and TU-S are directly interchangeable. TU-6 may be interchanged with TU-3, TU4 or TU-S by adding L220 (see production change 6552074 in this issue). TU-3, TU-4 and TU-S may be interchanged with TU-6 by removing L220.
$\begin{aligned} & \text { RA- } 166-167-170 \\ & 170 \end{aligned}$	$\begin{aligned} & \text { TU. } 7 \\ & \text { TU-8 } \end{aligned}$	89012901 89012971	TU-7 and TU-8 are directly interchangeable.
RA-168-169-	$\begin{aligned} & \text { TU-9 } \\ & \text { TU- } 10 \end{aligned}$	$\begin{array}{lll} 89 & 012 & 911 \\ 89 & 013 & 021 \\ \hline \end{array}$	TU-9 and TU-10 are directly interchangeable.

BENCH SET-UP.- The following precautions should be observed when setting up equipment for tuner alignment purposes:

1. Connect all equipment to a common ground. A metal topped bench is preferred, however heavy bonding straps topped bench
2. The sweep generator output must be properiy matched 3. Before attempting to perform an actual alignmen to the tuner input. A suitable matching device is shown sheck the bench set-up by connecting the test equipment in figure 1 . It consts of a mang duge which the generator output and three half-watt resistors.
check the bench set-up by connecting the test equipment tuner curves. If the curves are correct it can be assumed that the bench set-up is functioning properly

© John F. Rider

SERVICING TURRET TUNERS

PART II

A faulty tuner may produce any of the following symptoms：weak pic ure and sound，no picture and sound， icrophonics，and intermittent noise When the picture and sound are When the picture and sound are tubes may be checked by substitution． If the tubes are not at fault return he original ones to their sockets and bek the video i－f and detectors of the receiver before troubleshooting of the recei
the tuner．
he tuner
After it has been determined that the balance of the receiver is not at fault proceed to check the tuner in the following manner：

I．Measure the voltages at the socket pins．The undersides of the sockets can be reached by removing the tuner side plate．A quick check can be made by removing each tube from its socket and checking the voltages from the op of the socket．Using the latter perhed the voltages will not latter with those shown in the tables；how ver a quick check for the presenc f Bl voluge can be mas

2．Measure the resistances at the sock et pins．
3．Remove the tuner bottom cover and turret drum and inspect for
burnt parts，broken leads，parts touch－ ing turret drum，etc．
4．Check resistances of suspected parts．
5．Replace defective parts，clean all contacts，check the tension of the wiping contacts and reassemble the tuner for final check．
The cause of microphonics or in－ termittent noisc can usually be located by substituting tubes and by careful inspection of ali parts and contacts． The chart below outlines the proce－ dures to be followed for various tuner faults．

troubleshooting frocedures

Symptom	Procedure
Weak or No Sound and Picture （all channels）	1．Check V1 and V2 by substitution． 2．Check tuner voltage and resistance readings，and associated com－ ponents． （ 21 mc Tuners） Check mixer output capacitor and output tab for leakage or shorts．
Weak or No Sound and Picfure （one channel）	1．Check incorrect or defective channel strip in tuner drum． 2．Check tension and clean contact springs．
Inoperative－Tubes，Component Check OK	1．Remove coil drum．Inspect for components rubbing against the coil drum，especially at the mixer output coil．
Microphonics	1．Check 6 J 6 properly seated in its socket． 2．Check 6 J 6 by substitution． 3．Tighten the 6J6 socket pins．
Oscillator Slugs Do Not Adiust Properly（all channels）	1．Check 6 J 6 by substitution． 2．Check capacitors in oscillator circuit．
Oscillator Slug Turned Too Far In－ Cannot Be Adjusted	1．Remove bottom cover． 2．Rotate the tuner drum and remove the affected coil strip． 3．Loosen slug thread spring． 4．Tap slug back in position and reset its thread spring．
Channel 13 Oscillator Slug Will Not Adjust Properly 121 mc tuner）	1．Check mixer output coil adjustment．
Channel 2 Oscillator Slug Will Not Adiust Properly $(21 \mathrm{mc}$ tuner）	1．Check mixer output circuit．
Flashing When Tapped （2－section strip tuners）	1．Check position of fiber washer on drum shaft．The washer should be between the drum retaining spring and the Fine Tuning control spring．
Heavy Picture Beat （all channels）	1．Check adjustment of mixer output coil．

TURRET TUNER SERVICE DATA
TUNERS TU－1（21 009 121）AND TU－2（21 009 122）

Resistance readings for TU． 1 and TU－2 are shown below．All resistance measurements were taken with the funer wired in the chassis．Voltage readings are shown above in the schematic．

		1	2	3	4	5	6	7	8	9
$v 1$	6BK7/	1NF	90K／200K＊	0	． 1	0	11 K	220K	INF	0
$v 2$	696	18K	28K	． 1	0	240K	10K	0		

TUNERS TU－3（21 000 781），TU－4（21 000 782）AND TU－6（21 000 783）

Resistance readings for TU－3，TU－4 and TU－6 are shown below．All resistance measurements wore taken with the funer wired in
the chassis．Voltage readings are shown above in the schematic

Resistance readings for TU-8 and TU-10 are shown below. All resistance measurements were taken with the tuner wired in the

		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{V} 1$	6807	INF	750 K	0	.1	0	30 K	150 K	INF	0
$\mathbf{V 2}$	686	15 K	28 K	.1	0	260 K	10 K	0		

PARTS LIST
TUNERS TU-1, 2, 3, 4, 6, 8 AND 10

Symbol	Part No.	Symbol	Part No.	symbol	Port No.	Symbol	Port No.	Symbol	Port No.
Cl^{*}	42006050	C16*	42006050	C31	03124790	LIO	21011571	R 11	02032460
C2*	42006050	C 17	03100490	C32	03124790	LII	21012041	R12	02032500
C3	03119150	Cl_{18}	03119170	C33	03124790	LI2	21012051	R13	02031910
C4	03119160	C 19	03119150	C34	03124790	L13*	21010420	R14	02032480
C5	03119180	C20	03119190	C35	02124790	L14*	21010410	R15	02032490
C6	03123020	C21	03100490	C36	03100490	R1	02031910	R16	02031730
C7	03119100	C22	03119210	4	21010400	R2	02032520	R17	02031530
C8	03123030	C23	03119180	L2	21011190	R3	02032400	1	20007770
C9	03119170	C24	03119220	L3	21010430	R4	02032560	T2	20008541
ClO_{10}	03119190	C25	03123000	14	21010440	R5	02032480	(6Bk7)	25007341
ClI	03119160	C26	30039231	L5	21010450	R6	02031910	(6BQ7)	25007000
C12*	42006050	C27*	42006050	L6	21010460	R7	02032040	v2	25000190
C13*	21010410	C28	03100490	L7	21010470	R8	02032050		
C14*	21010420	C29	03123040	L8	21011180	R9	02032010		
C15	03100490	C30	03123010	19	21011561	R10	02032070		

- Denotes an assembled part.

Components location for tuners TU-1, 2, 3, 4, 6, 8 and 10 . The upper illustration
rum removed. The lower illustration is the side view with the side shield removed.

converter diodes are provided. This provision increases the amount of signal available at the input of the sound i-f amplifier, as compared to that obtained when a single diode is used. A single high-gain video-amplifier stage is employed.

The sync takeoff is in the plate circuit of the video amplifier. Three sync-clipper stages are used. The output of the third sync clipper is fed to a phase-splitter stage which provides out-of-phase sync signals required for operation of the horizontal phase detector. A multivibrator type horizontal-oscillator circuit is employed. A ringing circuit is provided in the oscillator circuit for improved stability.

A single 6BQ6-GT is used in the horizontal-output stage. A high-efficiency flyback-type high-voltage supply provides 14.5 kv for application to the CRT.

A keyed a-g-c circuit similar to that employed in RA-164-16) chassis is used. The a-g-c system also includes tuner a-g-c delay circuit to provide a wide range of conrol for maximum performance in fringe - and strong signal areas. A voltage regulator tube is provided in the a-g-c amplifier circuit to improve a-g-c stability.

The vertical-sync signal is taken off at the cathode of the phase-splitter stage and applied to a printed-circuit integrator network. A multivibrator circuit performs the combined functions of vertical oscillator and output stage.

As previously mentioned a separate sound-converter diode is provided. The output of the sound converter is applied to the input of a 4.5 mc intercarrier sound i-f tage. A ratio sound detector is employed. To secure
optimum sound quality two stages of audio amplificatio are used.

In the following p -agraphs a more detailed description is given of those circuits which are not familiar to the technician.
UHF - VHF TUNERS. - RA- 171 chassis are designed to receive all 82 UHF and VHF channels and are equipped with both UHF and VHF tuners. RA -166, RA-167 an RA-170 chassis are designed to receive the 12 VHF chan nels and are easily converted for UHF reception. The VHF tuners used in all models are of similar design. They are of the conventional switch-turret type, similar to thos used in RA-160-162 and RA-164-165 Telesets. Sinc most technicians are familiar with this type of tuner it will not be described in detail here.

A block diagram of the VHF and UHF tuners, showing the circuit arrangement when receiving the UHF channels, is shown in figure 2. The UHF tuner is of the continuous-tuning type and provides coverage of the balanced input is used. Th (coupled to a tuned preselector. The preselector consists of two tuned circuits which pass the desired chanal and oftenuate all other signals. The output of presector is applied to a crystal mixer.

The UHF tuner oscillator operates at one half the required frequency and its second harmonic is injected into the mixer circuit. The second-harmonic signal is obtained by applying the oscillator fundamental to a crystal harmonic generator. A tuned circuit is provided to select the proper harmonic

The oscillator frequency is chosen to provide a second harmonic 41.25 mc higher than the incoming sound carrier, in order to produce a sound i-f of 41.25 mc and a video i-f of 45.75 mc in the output of the mixer. A cuit. The UHF tuner output signals are fed output circoupling circuit to the input of the VHF tuner by this of a short length 73 ihm coan of a short length of 73 -ohm coax

The VHF tuner is provided with 13 switch-turre positions. To receive the UHF channels the tuner is switched to the thirteenth, or UHF position. In this position the tuner oscillator is disabled and the r-f and mixer stages operate as $41-\mathrm{mc}$ i-f amplifiers. Note that the incoming signal is converted only once and that the UHF tuner is a true tuner, not a converter.

When receiving VHF signals the B + is removed from the UHF tuner and the input of the VHF tuner is connected to the VHF antenna. This is accomplished by a slide switch which is actuated by the Station Selector knob.
PRESELECTOR CIRCUITS. - As previously mentioned the preselector consists of two inductively-coupled tuned circuits. Conventional tuned-circuit construction cannot be used in the UHF tuned circuits, consequently a special type high-Q low-loss circuit referred to as a capacitivelytuned, shorted coaxial line is used as shown in figure 3.
To aid in explanation of the preselector a low-frequency equivalent circuit is shown in figure 4A. The cir cuit configuration of the preselector is shown at B. The preselector tuned circuits are labeled 1 and 2.
The construction of these circuits is based upon the fact that transmission lines exhibit the same properties as do tuned circuits. For this reason the preselector circuit are referred to as transmission-line tuned circuits. For the benefit of the technician who is not familiar with this property of transmission lines a brief discussion follows.

An ordinary parallel-resonant circuit consists of an inductance and a capacitance as shown in figure SA. At its resonant frequency this circuit presents a very high impedance. At frequencies above its resonant frequency the inductive reactance, XL , is greater than the capacitive reactance, Xc. Since the greatest current flows through the smallest reactance, the capacitor current is greater than the inductor current, and the circuit is predominantly capacitive.

At frequencies below the resonant frequency of the circuit the capacitive reactance, Xc , is greater than the inductive reactance, X_{L}, the current through the inductor

FIgure 2. Black diagrom of UHF-YHF Tuners.
© John F. Rider
is greater than that through the capacitor, and the cir cuit is predominantly inductive.

A section of transmission line an exact electrical quarter-wave length long, shorted at one end, acts just the same as a parallel-resonant circuit. This property of transmission lines is due to the fact that it has both capacitance and inductance, as shown in figure 5 B . The line shown is of the coaxial type. When current passes through the inner lead a field is set up around the lead, conseqently the lead has inductance. The capacitance necessary to complete the tuned circuit exists between the inner and outer conductors and is represented by the dotted capacitors in figure $\varsigma \mathrm{B}$. This capacitance is referred to as distri buted capacitance and while it is not a "lumped constant" capacitor, as we ordinarily expect to find in a tuned cir cuit, it performs the same function.

As in the parallel-resonant circuit in figure SA, the quarter-wave line is a high impedance at its resonant fre quency. Above its resonant frequency it is predominantly capacitive, while below its resonant frequency it is pre dominantly inductive. Stating it another way, a trans mission line shorter than a quarter wavelength at a given frequency is inductive at that frequency. The fact that a shorted section of transmission line is inductive under certain conditions is important because this characteristic is taken advantage of in the design of the UHF tuner.

A transmission line less than a quarter-wavelengt long can therefore be used as the inductor in a parallel resonant circuit. By adding sufficient capacitance between
the inner and outer conductors, as shown in figure SC it can be resonated at the desired frequency. If the capacitor is made variable the circuit will be tunable over band of frequencies.

Comparing figure SC with the preselector tuned cir cuits in figure 4 B we can see that they are the same. A form of link coupling is used between the preselector tuned circuits. Since the inductance for the circuits is supplied primarily by the inner conductor of the trans mission line, the link must be located inside of the line. Partial turns of wire serve as the two links required (3 and 4 in figure 4B). They are brought out through holes in the outer conductors.
The same type of inductive coupling is also used between the input tuned circuit and the antenna. Two coupling loops are used to provide a 300 -ohm balanced input (5 in figure 4B).
The output of the second preselector circuit is coupled to the mixer by means of a tap on the inner conductor (6 in figure 4B). This method of coupling is the same as the tapped coil of figure 4A.

The physical construction of the preselector tuned circaits is shown in figure 6. The box in which the tuner is mounted forms parts of the outer conductors of the uned lines. The inner conductors are hollow U's, as the stator the figure. The inner conductors

A shield located between the first and second pre-

Figure 3. Schematic olagram of the UHF iunor.
selector circuits forms one side of the outer conductors the tuned lines.
The tuning-capacitor rotor plates are of the straightline frequency type. Four rotor plates are used in each capacitor. The end plates are slotted so that they may be bent in sections to correct tracking and passband characteristics over the tuning range.

Each line section is provided with a metal tab attached to the inner surface of the outer conductor. These tabs are used as trimmer capacitors to correct for normal production variations. They are adjusted by bending them closer to or farther from the inner conductors of the cuned lines, and are adjusted with the tuning-capacitor otors completely unmeshed, to establish the high end of the tuning range.

As shown in figure 3, two coupling loops are used beween the preselector tuned circuits. The upper loop, .162, is effective primarily at the low-frequency end of the band, while the lower loop, L163, is effective primarily at the high-frequency end of the band.
THE UHF OSCILLATOR. - The UHF oscillator uses a push-pull, tuned-plate, tuned-grid circuit. To avoid the need for a special tube type, and permit the use of an existing type of known reliability, the oscillator is operated at one half the required frequency. Operation in this manner also results in greater stability and uniformity in manufacture.

A 6 J 6 dual triode is used in the oscillator. The plate tank coil is a flat piece of sheet metal shaped as shown in figure 6. This type of construction results in greater uniformity of inductance and lead dress.

Plate-circuit tuning is accomplished by means of splittator capacitor C4. The rotor of this capacitor is ganged with those of the preselector and harmonic selector circuits. The grid circuit is tuned by L1s3 which is self

gure 4. A.-Low frequency equivalent of the prosolecto
sonant at the lower end of the tuning range and maintains the proper oscillator signal amplitude at these frequencies.
C1s6 and C157 provide the feedback necessary to maintain oscillation. Coil L2 is provided to permit adjustment of the plate circuit inductance. C152 is used to adust the oscillator tracking at the high end of the tuning range.

In order to produce a $41.25-\mathrm{mc}$ sound i-f and a 45.75 nc video i-f the local-oscillator signal must be tunable from $\$ 17 \mathrm{mc}$ to 931 mc . Since the oscillator operates at half the required frequency it tunes from 258.5 mc to 465.5 mc .

The oscillator output is applied to a crystal harmonic generator, CR101, by means of coupling link L164. The crystal distorts the oscillator signal making it rich in harmonics. From the harmonic generator the signal is fed to a harmonic-selector circuit. The harmonic selector is a tuned circuit identical to the preselector circuits exis a tuned circuit identical to the preselector circuits, exharmonic of the oscillator, the frequency required for mixer injection.
The oscillator second harmonic is applied to the crystal mixer, CR 102, by means of a tap on the inner conductor of the harmonic-selector tuned line. L158 is an r-f choke.

The mixer output appears across i-f coil L.15s. This coil is slug tuned to permit adjustment for proper bandpass. From this point the signal is link coupled (Lis6) o a short length of 72 -ohm coax, through which the signal is fed to the VHF tuner input.

The look point in the mixer-output circuit is used in production to observe the tuner bandpass and check the mixer injection current.
To minimize feedback from the i-f strip to the UHF tuner, the tuner is insulated from the main chassis and

©

Figure 5. A-Parallel funed resonant circuit. S-Resonant
quarter-wave coaxial line. c-Shorted coax line lesse than quarter-wave long usod as resonant circulit by the
grounded at one point by means of a shorr length of metallic braid. This type of grounding, called "single point grounding," is much more effective than simply mounting the tuner directly on the main chassis.

As pointed out previously the VHF tuner is provided with 13 switch-turret positions. To receive the UHF channels the Station Selector is placed in the thirteenth position. When this is done the VHF oscillator is disabled, and the necessary tuned circuits are switched in the VHF tuner so that the r-f amplifier and the mixer operate as 41 mc i-f stages.

In addition to the above, placing the Station Selector in the thirteenth position actuates a slide switch, S101 in figure 3, which applies $\mathrm{B}+$ to the UHF tuner and connects the VHF tuner input to the UHF tuner output.
VIDEO I-F STRIP. - Four 41 -mc stagger-tuned video i-f stages, employing 6CB6 tubes, are used. The grid circuit of the first video i-f stage is double tuned. All other coupling circuits are single tuned. A 47.25 mc adjacentchannel sound trap is provided. This trap is of the absorption type and is located in the plate circuit of the second video i-f stage. A-g-c voltage is applied to the first three stages.
VIDEO DETECTOR AND AMPLIFIER. - One-half of 1 6ALs twin diode serves as the video detector. D-c coupling is used between the detector and the video amplifier, as well as between the video amplifier and the CRT. A single high-gain video-amplifier stage employing a A single high-gain
12 BY 7 tube, is used.
The contrast control is located in the video-amplifier stage and consists of a potentiometer, connected between the cathode of the tube and ground. This potentiometer varies the bias and hence the gain of the video-amplifier stage.

A-G-C CIRCUITS. - A keyed a-g-c system with pro visions to delay application of a-g-c voltage to the tuner

Figure 6. The UHF funed circulth.
r-f amplifier is used. The system posseses the excellen noise immunity and rapidity of action characteristic of keyed systems. In addition the delay provision greatly improves performance in both weak and strong-signal areas.

The tuner a-g-c voltage remains at the minimum permissible value (-.5 volts) on weak signals. This permits the tuner r-f amplifier to operate at full gain, maintaining maximum signal-to-noise ratio and minimizing picture snow. Adequate a-g-c is maintained on weak signals by the voltage applied to the i-f stages.

The tuner a-g-c delay also makes it possible to select component values in the a-g-c circuit which permit the tuner a-g-c voltage to rise rapidly at higher signal levels. As a result maximum performance is obtained over a wider range of input signal levels, with a given a-g-c control setting.

The a-g-c circuit is shown in figure 7. A 6AU6 sharp cut-off pentode is used as a keyed a-g-c amplifier (V212). The composite video signal, at the plate of the video amplifier, is applied to the grid of V212, through R256. Since d-c coupling is used, a portion of the plate voltage of the video amplifier appears at V212's grid, making it positive with respect to ground.

A positive d-c potential is applied to the cathode of V212. This positive voltage is obtained from the cathode of the regulator tube, V223. The positive voltage applied to V212's cathode is greater than the voltage at its grid, consequently the tube is negatively biased.

The composite video signal on the grid of V212 is positive. The grid is biased sufficiently beyond cut off so that only the sync pulses drive the grid out of cut off.

A positive pulse, obtained from terminal 4 of the horizontal output transformer, is applied to the plate of

Figure 7. The a-g-c circult

V212 through C238, R239 and R241. This positive horizontal pulse occurs at the same time as the sync pulse at the grid, causing the tube to conduct. As a result a negative voltage is developed at the plate of V212. The a-g-c amplifier is similar to the one used in the RA-164165 chassis, and the reader is referred to the October, 1952 issue of the Service News for a more detailed description of its operation.

R264 and C24S, at the plate of V212, function as a filter which removes most of the horizontal pulse component. The total a-g-c voltage is developed across R245 and R263. This voltage is appplied to the tuner a-g-c delay network, shown in figure 7 within the dotted lines

To simplify the explanation of the delay network it has been shown in figure 8 with the diodes and capacitors removed. The negative a-g-c voltage produced by V212 appears at point A , causing a current to flow through R24S and R263 in the direction indicated by the dotted arrows. If we assume that this current is $225 \mu_{2}$ (.00022S amps), point A will be approximately -ss volts with respect to ground. As shown in the figure a bucking voltage of +270 volts is applied to R215, producing a cur rent through the circuit as indicated by the solid arrows. $2,667,000$ ohms , $2,667,000$ ohms, therefore the current due to the +270 volts is approximately $100 \mu \mathrm{a}$. (. 0001 amps)

Since the direction of the current due to the bucking voltage is opposite that due to V212, the currents subtract and the resultant current through R263 and R24s is $125 \mu_{\mathrm{a}}\left(225 \mu_{\mathrm{a}}\right.$ minus $\left.100 \mu \mathrm{a}\right)$, flowing from point A

Figure 8. Simplified schematic of a-g-e dolay net work show
produced by the $10-\mathrm{g}-\mathrm{c}$
the bucking voltage.

to ground. As a result point A becomes approximately 31 volts negative with respect to ground. The a-g-c voltage for the i-f stages is taken off at the junction of R24s and R263. The voltage at point A divides across these resistors producing approximately -5.9 volts at the i-f a-g-c take off.
Since point A is 31 volts negative and point C is 270 volts positive, the total drop across R210 and R21s is 301 volts. This voltage divides across the resistors producing a drop across R210 of approximately 27 volts. Thus point B is 27 volts positive with respect to point A making it 4 volts negative with respect to ground. The tuner a-g-c voltage is taken off at point B and is applied to the tuner r-f amplifier through R20s.

So far we have explained how the bucking voltage reduces the a-g-c voltage. The delay action of the circuit will be described with reference to figure 9. Referring to figure 9A assume that the same conditions exist as in figure 8. Point A is -31 volts and point B is -4 volts. Now assume that the voltage at point A is gradually mad less negative. This will cause the voltage at point B to also gradually become less negative.

When the a-g-c voltage at point A is reduced to approximately -27 volts, the voltage at point B will b zero. A further reduction in the voltage at point A will cause the voltage at point B to become positive. Provisions have been made in the a-g-c circuit to prevent point B from becoming positive. This is accomplished by the addition of diode V214, as shown in figure 9B.

When the voltage at point A is sufficiently negative to produce a negative voltage at point B the plate of the diode is negative and it does not conduct. Therefore it has no effect on the circuit. However, when the voltage at point A is reduced, so that point B tends to become positive, the diode begins to conduct. Under these conditions the diode acts as a very low resistance to ground (practically a short circuit) and point B remains at zero potential.

Now let's examine what occurs as the signal level at the input of the receiver changes. If the signal is very weak the of ece volage ar point A is not yery negative Point B tends to become positive but the action of the liode beeps it at zero potential As the signal surength rises the voltage at point A becomes more negarive How es, point B remains aro until the signal level over, poin B ro mader approxim 27 volts lat point A The diade pow ceases to conduct and as ut poin . 1 . ignal an B a regative, point B also become negative and a-g-c voltag is applied to the tuner r-f amplifier.
In this way application of a-g-c voltage to the tuner is delayed until the input signal reaches a pre-determined evel. It should be noted that negative a-g-c voltage is being applied to the i-f stages at all times because point A is always negative.
To prevent the plate current of the r-f amplifier from exceeding the maximum tube ratings, a minimum grid bias of -. 5 volts must be maintained on the tube. This

(9) John F. Rider

bias is obtained from the plate of diode number 2 in figure 7. When the voltage at point B , in figure 7 , is zero the plate of diode 2 assumes a potential of -.5 volts, due to contact potential. This contact potential is produced by random electrons which strike the plate of the diode and create a current flow in R20s.

C20s and C210 at the plate of diode 2 are bypass apacitors. C20s prevents r-f signals from the tuner from ptering the a-8 circuits. C 210 eliminates the remain ing horizontal pulse component from the a-g-c voltage.

As shown in figure 7 a voltage regulator tube (V223A)
provided to stabilize the cathode voltage on the a-g-c mplifier. The addition of this tube prevents line voltage or power supply load fluctuations from affecting the a-g-c voltage.

When the current through the a-g-c amplifier (V212) increases, the drop across R262 and the bias on V223A also increases. This results in a drop in current through V223A and R262 which tends to compensate for the original hange. As a result the bias on V212 is held at a comparaively constant valu
SYNC CIRCUITS. - The sync circuits consist of a noise inverter, three sync-clipper stages and a phase splitter, as hown in the block diagram of figure 10.

The composite-video signal is applied to the grids of the noise inverter and the first and second sync clippers. The noise inverter is biased so that it is normally cut off. When 2 noise pulse occurs, whose amplitude exceeds that of the sync signal, the noise inverter is driven out of cut off and the noise pulse appears at its plate. The output of the noise inverter is coupled to the grids of the first and second sync clippers. Since a phase reversal occurs in the noise inverter, the noise pulse arrives at the first and second sync clipper grids 180° out-of-phase with the composite-video signal and the noise pulse is cancelled it the grids.

The first sync clipper passes only horizontal sync in-
formation and the second sync clipper only vertical sync information. The separated horizontal and vertical sync signals are recombined in the output of the sync clippers and fed to the input of the third sync clipper. The third ync clipper is biased so that it clips near sync tip, to remove noise present on the sync pulse
The output of the third sync clipper is fed to the rid of the phase splitter. This stage provides additional clipping action and in addition provides out-of-phase sync ignals for application to the horizontal phase detector be vertical sync is taken off the cathode of the phase plitter. plitter.

ERTER. - The composite-video signal at the late of the video amplifier is applied to the upper end R238 in figure 11. R238, R302 and R303 form a voltage divider. That portion of the signal which appears cross R303 is applied to the grid of the noise inverter, 223B. Since d-c coupling is used between the videoamplifier plate and the grid of V223B, part of the videoamplifier plate voltage is applied to the grid, making it
ositive. A positive potential, obtained from the cathode V208A, is applied to the cathode of V223B through R3us. The positive cathode voltage is sufficiently greater han the positive grid voltage to bias the tube beyond cut and prevent it from conducting on any part of the composite-video signal, as shown in figure 12. Therefore under normal operating conditions there is no signal at the plate of this stage.

Figure 10. Block diagram of syne circuits.
igure 12. V223E grld-voltage, plate-current waroforma

Pigure 13. Slgnal at grid of V20BA.

figure 14. V208A grid-voltage, plato-current waroforme.

When a noise pulse occurs whose amplitude exceeds that of the sync, it drives the tube into conduction and appears in its output, as shown in figure 12. The output of the noise inverter is coupled to the grid of the first sync clipper. The signal at this point is shown in figure 13. A shows the composite-video signal obtained from the junction of R238-R302 and applied to the grid of the first sync clipper (V208A) through R240. B shows the noise pulses which are coupled from the plate of V223B to the grid of V208A, through C236. Note that the polarity of the noise pulses from the plate of V223B is opposite that of those in the composite-video signal. As a result the noise pulses cancel and the resultant signal appears as shown at C. Only a small portion of the noise still remains. In this way a large portion of the noise in the composite video signal is eliminated before applica tion to the sync clippers.
FIRST SYNC CLIPPER. - That portion of the compositevideo signal which appears across R302 and R303 is applied to the grid of the first sync clipper in conjunction with the output of the noise inverter. The noise cancellation action previously described takes place at this grid. Since the video-amplifier plate is d-c coupled to V208A, the grid is positive. A positive cathode voltage, exceeding this positive grid voltage, is developed across $\mathrm{R} 285-\mathrm{C} 215$, negatively biasing the tube. The operating conditions of the tube are shown in figure 14. The grid bias point of V208A is well beyond cut off, so that the tube conducts only on the horizontal-sync pulse, and the video and blanking information do not appear in its output.

In addition to eliminating the video and blanking information V208A removes most of the vertical-sync signal. This occurs as a result of the cathode-bias network; R285, C215 and R268. The signal at the grid of V208A is shown in figure 15A. Since the tube does not conduct on the video and blanking portions of the signal they have not been shown.

The horizontal sync pulses have a duration of 5 microseconds. During each horizontal sync pulse the tube conducts, as shown in figure 15 C , charging C 215 as shown at B. Since the interval between horizontal pulses is 58 microseconds (approximately 12 times the duration of each horizontal pulse), the charge due to each pulse is dissipated before the next pulse occurs, and the bias on V208A is substantially equal to that produced by the static current through the tube. V208A continues to conduct on each horizontal pulse producing current through R268, as shown in figure 15 C .

Since the equalizing pulses are only 2.5 microseconds in duration and the interval between them is long (32 microseconds), the charges on C215 due to each pulse is dissipated before the next pulse occurs. Consequently, the equalizing pulses also produce a signal across R268.

As shown in figure 15A the vertical sync pulses are of much longer duration (27 microseconds) and are not as widely separated (4 microseconds) as are the horizontal and equalizing pulses.

As a result the vertical-sync pulses develop a large
charge across C215, as shown in figure 15 B . This charg is added to the static cathode bias on V208A, causing the ube to remain near cut off for the duration of the verti cal-sync interval. Therefore, after the first vertical pulse occurs there is very little current through V208A, and the cathode resistor, R268.
V208A operates as a cathode follower with output taken off across R268. As a result of the operating condi tions just described, only the horizontal sync, the equalizing and the leading vertical sync pulses appear in its output.
The advantage of this type of sync-clipper circuit lies in the fact that noise pulses do not affect the bias on the stage. Noise pulses are normally of short duration. As noted in the previous discussion short duration pulses do not develop a significant charge on the cathode capacitor C215, and therefore do not change the bias on V208A.

In the usual grid-leak biased sync clipper the bias is determined by the peak amplitude of the signal. As a result high-amplitude noise pulses increase the grid bias, changing the clipping level and compressing, or completely eliminating, the sync information.
SECOND SYNC CLIPPER. - As noted in the preceding discussion the first sync clipper, V208A, does not pass the vertical sync signal. As a result other provisions have been made to separate the vertical sync from the compo site-video signal. This is accomplished in the second sync clipper, V208B in figure 11.

The composite-video signal at the grid of the first sync clipper is applied to the grid of the second sync clipper through R235. Since noise cancellation takes place at th grid of V208A a large portion of the noise present in the composite-video signal is cancelled before it reaches the grid of V208B.

Bias for V208B is obtained from the cathode of V208A hrough resistor R236. R236 and C23s function as a fil ter to prevent the horizontal and equalizing pulse comonents, present at the cathode of V208A, from reachin解 asitive positive voltage at the cathode of V208B. Since the grids seconds. As a result the 5 microsecond horizontal and the f 208 A and V 208 B are at approximately the same po- 2.5 microsecond equalizing pulses produce very little voltential, this causes the negative bias on V208B. to exceed age at the grid and do not drive the tube into conduction. the bias on V208A. To equalize the bias on both tubes The 27 microsecond vertical sync pulses, being of much R237 has been connected between the video take-off line longer duration, are integrated and drive the tube into conand the grid of V208B. The addition of the resistor pro- duction as shown in figure 16, producing a vertical-sync duces a slightly higher voltage at the grid, to compensate pulse across cathode resistor R268. This resistor is common for the slightly higher cathode voltage. In this manner to V208A and V208B and both the horizontal and vertical V208B is negatively biased beyond cut off. The operating sync signals appear across it.

Figure 16. V208s grid-voliage, plate-current wavoforms.

©
 $\underset{\substack{\text { SIGNAL } \\ \text { ACROss } \\ \text { R26 }}}{\text { St }}$

Figure 15. Operation of the first sync cilippor, V208A. A-Sync portion of the composite vidoe signal at grid. B-Instan-

As previously mentioned the input signal is applied to

THIRD SYNC CLIPPER. - The composite-sync signal (horizontal, equalizing and vertical pulses) appearing across R268 is applied to the cathode of the third sync clipper, V209A in figure 11. R269 maintains the grid and cathode at approximately the same $\mathrm{d}-\mathrm{c}$ potential, while the addition of C275 prevents the input signal from appearing at the grid. The operating conditions of the stage are shown in figure 17. Since the positive input signal is applied to the cathode it has the same effect as a negative signal applied to the grid, therefore the sync pulses drive the tube into cut off. As a result the upper 40% of the sync signal is clipped and does not appear at the plate. This clipping ac tion removes noise superimposed on the sync signal.
PHASE SPLITTER. - The phase splitter, V209B in figure 11, provides additional clipping and out-of-phase sync signals for application to the horizontal a-f-c phase detector.
The sync signal at the plate of V209A is applied to the grid of V209B through coupling capacitor C231. C231 in combination with R244 form a grid-leak bias network which biases the grid negatively. The comparatively long
vertical-sync pulse tends to charge C231 and increase the bias on the tube, so that the sync information immediately following the vertical-sync pulse is reduced in amplitude at the output of the stage. To overcome this condition 2 small positive voltage, obtained from the +150 volt line, is applied to the grid through R242. This permits the charge on C231 to leak off more rapidly so that the ampliude of the horizontal sync information is not reduced.
V209B operates as a conventional triode phase splitter. Output is obtained from both the plate and cathode circuits. The plate and cathode signals are of opposite polarity as required for operation of the horizontal a-f-c phase detector.

The vertical-sync signal is taken off at the cathode of 209B and applied to an integrator network before application to the vertical oscillator.

SERVICING PROCEDURES

ION-TRAP MAGNET ADJUSTMENT. -

1. Position the ion-trap approximately as shown in figure 18.

NOTE: A small magnetic shunt may have been clipped on the ion-trap magnet at the factory. Do not disturb this shunt.
2. Turn the set on and allow 30 seconds for warm-up Set the Contrast control at the middle of its range and set the brightness so that a raster is just visible on the screen NOTE: Do not operate the Teleset with the ion-trap mag. net improperly positioned for any longer than necessary 3. Slide the magnet slowly back and forth along the neck of the tube, while at the same time rotating it slightly to the left and right. As the raster becomes brighter, turn down the Brightness control until there is just enough brightness to permit the adjustment to be made. When the position giving maximum brightness and optimum
focus has been located, turn up the Brightness control until the raster begins to increase in size. Adjust the ion-trap magnet again, for maximum brightness and optimum focus.
deflection yoke adjustment. - If the picture is tilted, squeeze the ends of the yoke spring clip (A in Figure 18) together and lift them off the CRT support ring. Rotate the yoke until the picture is horizontal. The deflection yoke retainer (B in Figure 18) may rotate with the yoke. If this occurs the retainer should be held in posiion while the yoke is rotated, making sure that the yoke end cover rotates with the yoke. When the deflection yoke has been properly adjusted, reset the spring clip to hold the yoke in position.
POSITIONING ADJUSTMENT. - If the picture is not properly positioned, readjust the positioning magnet using the following procedure:
I. Push the positioning magnet assembly forward until it touches the rear of the yoke retainer.
touches the rear of the yoke retainer.
2. Bring the protruding adjustment tabs (C in Figure 18) together.
3. Rotate the entire positioning magnet assembly around the neck of the tube until the picture is properly positioned. 4. If the picture cannot be properly positioned in this manner, separate the tabs slightly and rotate the entire assembly around the tube again. Continue to repeat this step, increasing the separation of the tabs each time, until the picture is properly positioned. When this adjustment has been made, a slight readjustment of the ion-trap magnet may be necessary.
VHF TUNER OSCILLATOR ADJUSTMENT. - Individual oscillator adjustment slugs are provided in the VHF tuner to permit precise adjustments to suit the receiving condition for each channel in your area. These slugs are set at the factory for average conditions and do not require adjustment when the receiver is installed. However, it is of ten possible to obtain better reception by readjusting the oscillator slugs to suit the particular conditions at the location where the receiver is installed.
The following procedure should be used:
I. Turn the Station Selector to the channel on which the oscillator is to be adjusted.
2. Remove the Fine Tuning and Station Selector knobs (and the RA-171 UHF channel dial).
3. Set the Fine Tuning control so that the flat on the shaft faces downward. The oscillator slug is accessible shaft faces downward. The oscillator slug is accessibl
through the hole just to the right of the tuning shaft.
4. Using an insulated alignment tool. adjust the slug for 4. Using an insulated a
best picture and sound.

DUMONITOR ADJUSTMENT. - The Dumonitor control is adjusted at the factory and normally does not require readjustment in the field. However, in some cases better reception can be obtained by adjusting the control to suit the conditions in your area.

In weak signal areas the Dumonitor control should be adjusted for best contrast and picture stability.

In strong signal areas the control should be set to prevent overloading on the strongest signal received, using the following procedure:
I. Set the front panel Horizontal Hold control for minimum whip (straight vertical wedge on test pattern) at the top of the picture.
2. Adjust the Dumonitor control until no overload is observed.
3. Switch the Station Selector on and off channel. If this causes overload to occur reset the Dumonitor until the overload does not reappear when switching on and off channel.

In areas where both very strong and very weak signals are received the Dumonitor control should always be ad justed to prevent overloading on the strongest signal.
UHF-VHF ANTENNA CROSSOVER NETWORK. - If a combination UHF-VHF antenna having a single transmission line is UHF mission line is used with RA-171 chassis, an antenna cross at the receiver's UHF and VHF antenna terminals. Cross-
over network, Du Mont Part No. 88000 681, should be used. This network is available from your Du Mont distributor

The UHF-VHF transmission line should be connected to the terminals provided on the crossover network and the separate UHF and VHF output leads should be connected to their respective antenna terminals on the receiver.

REPLACING the VhF tuner Coil strips

. Remove the four screws holding the tuner bottom cover and remove the cover.
2. Using a screw driver, push the spring finger holding the strip toward rear of tuner and lift out strip.
. To install new strip, insert end having smaller projection into the hole in the detent plate.
4. Pry the spring finger away from rear of drum and push the strip into place. Let spring finger snap back into place making sure that projection on end of strip seats correctly in hole in spring finger.
CLEANING THE TUNER CONTACTS. - Remove the tuner bottom cover and several of the coil strips as described in the previous paragraph Rota the turre scribed in the previous paragraph. Rotate the turret so ing made by removing the strips. Clean the coil strip and wiping contacts with a soft cloth moistened with "No wiping

AdJUSting the tension of the wiping conTACTS. - Remove the tuner bottom cover and several of the coil strips. Rotate the turret to permit access to the contacts through the opening thus provided. Using a small screw driver bend each contact spring until it extends approximately $1 / 8$ inch inward from the surface of the plastic contact-mounting plate.

REMOVING VHF TUNER

I. Unplug the coax lead connection near 1st VIF transformer
2. Remove the dial cord.
3. Unsolder the four VHF tuner leads from the terminal strip on top of VHF tuner bracket.
4. Unsolder lead from terminal strip at slide switch
5. Unsolder lead from UHF tuner at slide switch
6. Unsolder center coax lead from slide switch.

7. Remove the bracket supporting the front and of the tuning shafts.
8. Remove the three screws mounting the VHF tunce to the support bracket.

REMOVING UHF TUNER

1. Unsolder the center lead of coax from slide switeh, and remove ground lug fastening outside lead of coax to bracket.
2. Unsolder red lead from UHF tuncr at slide switch.
3. Unsolder brown lead from UHF cuncr at terminal strip.
4. Loosen UHF tuner-shaft coupling screw.
5. Remove three screws fastening tuner to mounting bracket.

UHF DIAL CALIBRATION

If a UHF channel is available tune to channel and adjust the UHF dial for proper calibration

If no UHF channel is available, calibrate the dial so that it tunes below the channel 20 marker and above the channel 80 marker.

DIAL STRINGING PROCEDURE

1. Rotate the UHF pulley shaft fully clockwise.
2. Rotate the UHF tuning control so that the opening of the tuner shaft drum is positioned to the left.
3. Hook end of the dial cord on the pulley drum, marked START in figure 19, and string dial cord as shown.

Flgure 19.

TROUBLESHOOTING PROCEDURES

PICTURE

Symptom	Procedure
Bright Horizontal Line Loss of Vertical Size	1. Substitute V213 and V216 2. Check voltages, waveforms and associated components of V213 and V216 3. Check yoke and vertical output transformer, T201
Critical Vertical Hold	1. Check waveforms in integrator network
Drive Line in Center	1. Check setting of drive control
Insufficient Horizontal Size	1. Check settings of horizontal size and linearity controls 2. Substitute V220, V221 and V219 3. Check boosted $B+$ and associated components 4. Check C279 and C278
Insufficient Vertical Size	1. Check setting of vertical-size control

PICTURE (con't)		SOUND	
Symptom	Procedure	Symptom	Procedure
Loss of Horizontal and Vertical Hold Probable Cause: Faulty sync clipper stage	1. Check settings of front pancl hold controls 2. Substitute V208 and V209 3. Check voltages, waveforms and associated components of $V 208$ and V209	Buzz Probable Cause: Vertical sync in sound	1. Check fine tuning adjustment 2. Substitute V206 and V207 3. Check sound i-f alignment
Loss of Vertical Hold Only	1. Substitute V208 2. Check associated components of V208B	Cannot Be Tuned In Properly Probable Cause: H-f oscillator frequency misadjusted	1. Check oscillator slug adjustment 2. Substitute V102
Microphonics - Visual Probable Cause: Mechanical modulation of tube in picture circuits.	1. Check control shafts and knobs for binding against cabinct 2. Substitute V101 and V102 3. Substitute V201, V202, V203, V204 and V211	Dead or Weak	1. Substitute, V205, V206, V207, V214 and V21s 2. Check speaker plug and speaker audio transformer 3. Check voltages on V20S, V206, V207, V214 and V21S
No Brightness	1. Check for presence of high voltage at CR'T connector High Voltage OK No High Voltage 2. Check CRT for open filament 2. Check the 1/4 amp. fuse (F201) in high voltage cage (look for glow)	Probable Cause: Loss of gain in audio or sound i-f stage	4. Check components associated with V205, V206, V207, V214 and V21s s. Check sound i-f alignment
		Distorted	1. Check fine tuning adjustment 2. Substitute V206, V207, V214 and V21s 3. Check alignment of Z206 4. Check voltages on V214 and V21s 5. Check components in 1 st and 2 nd audio amp.
		Microphonics - Audible Probable Cause: Mechanical modulation of h-f oscillator (V102) or audio amplifier tubes.	1. Check for binding knobs or control shafts 2. Substitute V102 3. Substitute V214 and V21s
		Poor Quieting Probable Cause: Improper operation of ratio detector or sound i-f stage	1. Check fine tuning adjustment 2. Substitute V207
No Horizontal Hold - or Critical	1. Check setting of front panel horizontal hold control 2. Substitute V210 and V219		3. Check alignment of Z206 4. Substitute V206 s. Check components of ratio detector, V207
Horizontal Hold Probable Cause: Defective a-f-c circuit	3. Check setting of L210 horizontal-stabilizer control located on rear of chassis 4. Check voltages, waveforms and associated components of V210 and V219	PICTURE AND SOUND	
Picture Oversize - Low Brightness Probable Cause: Insufficient high voltage	1. Substitute V222 2. Check h-v rectifier components	Symptom	Procedure
Picture Too Small (Horizontal and Vertical) Probable Cause: B+ low	1. Substitute V217 and V218 2. Check B+ line and associated components		1. Substitute V101, V102, V201, V202, V203, V204, V20S, V215 (see note) and V223 2. Check voltages on V101, V102, V201, V202, V203, V204 and
Poor focus	1. Check setting of ion trap	No Picture, No Sound, Brightness OK	V20s and speaker plug connection. NOTE: The 150 V source is the cathode of V215, the 2nd audio
Poor Horizontal Linearity	1. Check setting of horizontal-linearity control 2. Substitute V220 and V221 3. Check voltages, waveforms and components associated with V220 and V221		amp., therefore, a defective tube, speaker plug connection, or out put transformer will result in loss of the 150 V
		No Picture, No Sound, Low Brightness (brightness control set at maximum)	1. Substitute V211 2. Check voltages and components associated with V211
	1. Check setting of vertical-linearity control 2. Substitute V216		
Poor Vertical Linearity	3. Check voltages, waveforms and associated components of V216 and 213	Overload in Picture - Buzz in Sound Probable Cause: Loss of a-g-c voltage	1. Check setting of the a-g-c porentiometer 2. Substitute V212, V201, V202 and V203 3. Check voltages, waveforms and components associated with V212
Sound Bars In Picture Probablc Cause: Misalignment	1. Check fine tuning adjustment 2. Check video i-f alignment	UHF OK, VHF Inoperative	le ${ }^{\text {1. Substitute V102. }}$ 2. Check operation of cam and slide switch, S101.
Vertical Instability Probable Cause: Faulty vertical oscillator	1. Check setting of front pancl vertical hold control 2. Substitute V213 and V216 3. Check voltages, waveforms and associated components of V213 and V216		3. Check voltages and components associated with V1
		VHF OK, UHF Inoperative	1. Substitute V151, CR101 and CR102. 2. Check operation of cam and slide switch, S101.
Weak Picture	1. Substitute V211 2. Check voltages and components associated with V211		

© John F. Rider

©John F. Rider

PARTS LIST

IASSIS

NOTES

1. All voltages are shown with the Contrast control rotated fully clockwise, and the Du control rotated fully clockwise, and the Duat P204, the agc test point.
2. Voltages $\pm 20 \%$ of those shown are normal.
3. All resistors are 10%, one-half watt, unless otherwise indicated.
4. All capacitors are $20 \%, 500 \mathrm{~V}$, unleas otherwhe indicated.

RA-166/167, 170/171

为

7XTAL

PHASING

When the alignment procedure hat been conpid the phasing of the video \bar{F} strip should be checked and corrocted

1. Tune the receivor to the best signal avallable, proferably
α station tranemitting a test patitern.
2. Adjust the Fine Tuning control until the sound tin the
. Carefully examine the
presence of spurioua black response (smear) following black elements of the plicture.
. If elther of these conditions is encountered, adjust the top sluq of $\mathbf{Z 2 0 1}$ not more tham $1 / 2$ turn to eliminate the con dilton.

VIDEO IF ALIGNMENT RA-166/171
Place STATION SELECTOR between channels to disable oscillator. Remove fuse, F201. Connect short length of wire to pin 5 of V102, Fig. 1. Use lowest VTVM range.

Step	Signal Generator		$\begin{aligned} & \text { Output } \\ & \text { Indicator } \end{aligned}$	Connect to	Adjust
	Frequency	Connect to			
1	44.25 mc No Sweep	Pln 5 V102 (1)	vTVM	Pin 2. V211 IVTVM	2205 for maximum reading Set signal generator output to madntain reading on lowest range of VTVM.
2	$\begin{aligned} & 42 \mathrm{mc} \\ & \mathrm{No} \text { Sweep } \end{aligned}$	As Above (2)	vTvM	$\begin{array}{c\|} \hline \text { Aı Above } \\ \hline \text { 2VTVM } \\ \hline \end{array}$	Z204 for maxdmum reading
3	$\begin{aligned} & 46.1 \mathrm{mc} \\ & \text { No Swoop } \end{aligned}$	As Above (3)	vTvM	$\begin{aligned} & \text { As Above } \\ & \hline \text { SVTVM } \\ & \hline \end{aligned}$	z203 (bottom) for maxdmum reading
4	44.25 mc No Sweep	As Above (4)	vTvM	4VTVM	Z202 for maxdmum reading
5	47.25 mc	As Above	vTvM	$\begin{aligned} & \mathrm{A}_{\perp} \text { Above } \\ & 5 \mathrm{VTVM} \end{aligned}$	Z203 (top) for minimura reading Increase algnal generctor output to obtaln reading on VTVM
6	43.5 me deviction	As Above (6)	$\begin{gathered} \text { Oscillograph } \\ \text { through } \\ \text { YTAL } \end{gathered}$		Mixer Plate Coil (L109) and Z201 (top) for 44.65 me marker on one peak 2201 (botlom) for 42.6 mc marker on other peak. C288 for 41.25 me dip. (Sets not having C288 do not need the 41.25 mc adjustment.)
7	4.5 mc 400 CPS AM	$\operatorname{Pln} 2$	$\begin{gathered} \text { Oscillograph } \\ \text { through } \\ \text { XTAL } \end{gathered}$	Junction R266, R267, \& C239 7XTAL	L207 tor minimum reading
SOUND IF ALIGNMENT					
8	4.5 mc 1 me Swoop	$\begin{gathered} \text { Pin } 8 \\ \text { V205 } \\ \text { See Note } \end{gathered}$	$\begin{gathered} \text { Ozcillograph } \\ \text { through } \\ \text { XTAL } \end{gathered}$	Pin 9 V207 8XTAL	I204 and Z206 (bottom) Adjust for waveform below
9	As Above		$\begin{gathered} \text { Onclllograph } \\ \text { Direct } \end{gathered}$	Junction R232. C228	Z206 top Adjuat for wavelorm below
ALTERNATE SOUND IF ALIGNMENT - USING TV SIGNAL					
8	Tolos IV for best for best	nal be tuned pleture.	vTVM	$\begin{aligned} & \text { Pin 7. V207 } \\ & 8 \times T A L \end{aligned}$	L204 2206 (bot.) for maxdmum reading
9	As		vtvM	Ratio Det. Test Point P206	z208 (top) for zero reading

RA-166/171 CHASSI

RA－166／171 PRODUCTION CHANGES

Tu climinate high audio frequency harmonics，present on the To climinate high audio frequency harmonics，present on the
150 volt line．In some cases these harmonics enter other stages of the receiver causing streaks in the picture．
Procedure：
Connecr a 5000 mmf ceramic capacitor from pin 8 to pin
Parts Required：

Run 1
Reason：
To．reduce radiation of harmonics of the sound and vadeo i－f ienn．ls．Lenerated in the video detector and sound converter，
in 215 ．Under some condtrions these harmonic signals enter the tuner causing interference in the picture．A dual triode is used in place of the GALS dual diode．The triode sections operate as diodes

with the grids acting as the dio
used as shields to reduce radiation
The sound－converter section plate is zrounded directly．The video－detector section plate is grounded through a parallel RC
network．The nerwork places the plate at ground portential to
． network．The network places the plate at ground portential to
$\mathrm{r}-\mathrm{f}$ ，while avoiding the loading．effect on the video det ctor which would occur if the plate were grounded directly．
Procedure：
Remove the GALS and irs sucker．Replace the sucker with a 9 －pin miniature socker．Rewire the circuit as shown in figure P－1．
Remove R265，connected berween the junction of C219
 resissor，from the
V205，to ground．

SYMBOL PART NUMBER
$\begin{array}{cc}\text { SYMBOL } & \text { PART NUMBER } \\ \text { R265 } & 02031820 \\ \text { R295 } & 02031860 \\ \text { R25 } & 02032\end{array}$

DESCRIPTION

$\begin{array}{ll}34003590 & \text { Tuber Ser，} 9 \text { pronk } \\ 12009040 & \text { Shield，}\end{array}$ 42009040
42007110
The first chassis so modifed Base．tur
RA－166． 167
No． $66(1972$ $\begin{array}{ll}\text { RA－168 } 1 \text {（1）} & \text { No．} 681 \\ \text { RA－170 } & \text { No．} 7096\end{array}$
RA－171
No． 711
Run 2
To reduce the possibility of regeneration in models equipped with a UHF runer．An RC decoupling nerwork has been added
between the $1-150$ volt line and between the +150 volt line and the cuner red lead． volt Iine two r－f bypass capacitors have been adided．
procedure：

1．Disconnect the yellow lead，and the red lead berween
Sinol and TB－ 5 ，from retruinal ；of TR .5 and recon neec them to rerninal 4 isce lyure P ．？and recon
Connect a 270 ohm， $1 / 2$ watt，resistor between terminals 3 and 4 of TB－ 55 ，and connect a 1000 mmf ceramic disc
capacitor between terminal 4 of TB． 35 and uround The capacitor between terminal 4 of TB－ 35 and ground．The
capacitor ground lead should he soldeted to the tuner capacitor ground lead should he soldered（t）the tune
bracker directly below terminal 4 of TB－ 35 ．
Connect a 1000 mmf ceramic capacitor between termina
6 of TB－ 35 and the ground point in step 2 ．
4．Connect a 1500 mmf ceramic disc capacior between Parts Required：
SYMBOL
C209） $\quad \begin{gathered}\text { PART } \\ 03 \\ \text { NUMBER } \\ \text { N }\end{gathered}$

Ren（12） 031700 Res． 270 ohm 10 r； $1 / 2 \mathrm{~W}$
The first chassis so modified are：
$\begin{array}{ll}\text { RA－166／167 } & \text { No．} 68891 \\ \text { RA－168／169 } & \text { No．} 681 . \\ \text { RA－170 } & \text { No．} 704201\end{array}$
RA－171
No． 711
Run 2
To inctease the long term stability of the vertical oscillator
Procedure： Remove C252 and replace it with a 2200 mmf mica cap
acitor．
Parts Required
Symbol Part number description C252 03029480 Care
RA－166／167 No． 6614876
RA－168／169 No． 68795
$\begin{array}{ll}\text { RA－170 } & \text { No．} 7014100 \\ \text { RA－171 } & \text { No．} 71121\end{array}$
Run 4
To provide improved picture quality and very weak signal sound performance．An accompanying sound trap C288－L225 is added，see figure P．3．the video amplifier plate load and sync
ake off circuits are changed as shown in take of circuits are changed，as shown
i－f alignment frequencies are specified．
Procedure：
Mount C 288 a .5 to 3 mmf capacitor in the rectangular chassis hole locared berween 2201 ，the firse video i－f ransformer and the input jack J204
ciror＇s spring lock nut to the chassis．
NOTE：A few chassis do nor have this hole．In this case drill a $1 / 1 /$ chassis do not have in the chassis mole．In this case drill a $1 / 8 /$ hole in the chassis midway
Z201－1 and J 204 ，and file the sides to fit C 288 ．

2．Connect L225 berween C288 and 1204 Remove the black lead connecting pin
video amplifier．and L207，the 4.5 mc tra
of V211，the Remove the black lead connected between TB－13－3 （junction of R237， $15 \mathrm{Meg} 1 / 2 \mathrm{~W}$ ，and R238， $22 \mathrm{~K} 5 \%$
W ）and pin 7 of V 211 （
5．Connect L226 berween pin 7 of V211 and L207．Con－ nect R332．a $6.8 \mathrm{~K} \quad 10 \% 1 / 2 \mathrm{~W}$ resistor，in parallel with
6．Connect a lead from TB－12．3（junction of L208 and R258， 5 K 5\％10W resistor）to the junction of TB．13．3 noted in sep 4.
Replace R228 at V206 with a $470 \mathrm{~K} \quad 10 \% \quad 1 / 2 \mathrm{~W}$ re－ sistor．
8．Replace R220 at V 204 with a $22 \mathrm{~K} 10 \% \quad 1 / 2 \mathrm{~W}$ resistor The frequencies in the alignment procedure should be changed as follows：
Step 1－44．25 mc（Z205）
Step 2－42 mc（Z204）

Sep 6－Adjust mixer plate coil（L109）and Z201 （top）for 44.65 mc marker on one peak and 2201 （bottom）for 42.6 marker on the oother peak of
waveform shown in figure P－5．Adjust C288 for waveform show
41.25 mc dip．

Parts Required：

SYMBOL	PART NUMBER	DESCRIPTION
C288	03019871	Cap．cer．var．． 5 to 3 mmf
L20？	21006623	Coil video peaking
1203	21006628	Coil video peaking
1225	21012011	Inductor，fixed
L226	21006623	Coil video peaking
R220	02031930	Res． $22 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$
R226，	02031840	Res． $3.9 \mathrm{~K} 10 \% \quad 1 / 2 \mathrm{~W}$
R228	02032090	Res． $470 \mathrm{~K} 10 \% 1 / 2 W$
R320	02031700	Res． 270 ohm $10 \% 1 / 2 \mathrm{~W}$
R332	02031870	Res． $6.8 \mathrm{~K} \quad 10 \% \quad 1 / 2 \mathrm{~W}$
The first chassis so modififed are：		
$\begin{aligned} & \text { RA-166/167 } \\ & \text { RA-168/169 } \end{aligned}$		No． 6618456
		No． 681201
RA－170		No． 7023315
	171	No． 716174

To provide a field adjustment of the r．f a－g．c delay in ordet tho obrain improved strong and very weak signal performance Procedure：

1．Mount S204，a single－pole three－position rotary switch on rear of chassis above L210
2．Remove R210．Connect a $180 \mathrm{~K} 1 / 2$ watt 5 m resisur between terminal 1 of S204 and terminal 3 of TB－18
Cover the leads of Cover the leads of this resistor with sp
resistor is shown as R 210 in figure $\mathrm{P}-3$ ．

3．Connect R 333 a a 47 K 12 W resistor，between terminals
 nals 1 and
Connet a lead $S 20, i$ i．
incen
arrs Requir

SYMBOL	Part number	DESCRIPTION
R210	02031020	Res． $180 \mathrm{~K} 5 \% 1 / 2 \mathrm{~W}$
R333	02031970	Res． $47 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$
R334	02031980	Res． $56 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$
S20\％	$05008: 31$	Switch is mosition
	hassis so	Swich io pesition

\qquad ed are：
RA－166／167
RA－168／169 RA－170

No． 681901
No． 0257.37

Run 5

To improve the horizontal lock－in range
possibility of overload in the th video i－f stage．
Procedure：
Remove C245，the a－p．c filter capacitur（ see figure P and replace it with a .033 mf 20 c

Pemove R272 in tis Remove R222 in the plate circuit of $V 20.1$ and replace
it with a 470 ohm 10% I W resistor
Ports Roquired

The first chassis so	molified are：
RA－166167	
RA $168 / 1681169$	No． 6619866
RA－170	No． 681901
RA－171	No． 702731

OJohn F．Rider

MODELS 711F，712F，720D，732B，734B，Ch．120169－B；733F，Ch．120169－

HORIZONTAL．AUTOMATIC FREQUENCY CONTROL

In modern day receivers it is necessary to use some form of automatic frequency con trol so that the horizontal sync．pulses do not directly trigger the horizontal oscillator． This is necessary since occasional noise bursts may prematurely trigger the oscillator， causing the picture to either spear or tear out．

By using A．F．C．the average of a group of sync．pulses are used to control the fre－ quency of the oscillator，therefore，if a sync．pulse is distorted or masked by noise little effect will be observed on the screen．

This type of system is especially useful in the fringe areas where the signal to elec－ trical noise interference is very poor．

This particular chassis uses a comparison of phase between the sync．signal and the generated sawtooth as a basis for automatic frequency control（A．F．C．）．Such a system is little influenced by changes in sync．amplitude or occasional noise and，therefore，operates extremely well．

A Phase Detector V－12B compares the difference in phase between transmitted hori－ zontal sync．pulse and the horizontal sawtooth voltage which is generated in the receiver Whenever the frequency of the horizontal multivibrator（V－13）changes，the sawtooth fre－ quency generated by this tube also changes．This effect changes the phase between the sync．and sawtooth voltages which is detected by V－12B（Horizontal Phase Detector）．

When the frequency and phase of the sync．and sawtooth is correct the negative grid voltage developed across R－66（ 82 K ）is equal to the positive cathode voltage developed across R－65（100K），therefore，the net output voltage to the grid of V－13（Horizontal Oscil－ lator）is zero．

If the oscillator slows up，the phasing is such to cause the grid current to increase more than the plate current with a resultant negative output control voltage．

If the oscillator speeds up the plate current increases more than the grid current and the net output control voltage is positive．
$R-77, R-69, C-47, R-64, C-46$ are used to couple and shape the negative going pulse to a negatively phased sawtooth．

C－54，C－53 Divide the generated horizontal sawtooth which is further reduced in ampli－ tude by the voltage division of C－48 in series with C－45．

The network of R－68（ 2.2 meg ）in parallel with $\mathrm{C}-50(.001)$ used in conjunction with C－49（．015）tends to filter unwanted high frequency pulses，while permitting the low fre－ quency control voltage to pass．

HORIZONTAL OSCILLATOR，SWEEP，AND OUTPUT

V－13 6SN7 is a cathode coupled multivibrator whose free running frequency depends upon such factors as setting of R－72（Horizontal Balance），R74（Horizontal Hold），adjust－ ment of L－10（Horizontal Phase Coil）and the applied plate and grid voltages．Since auto－ matic frequency control is to be used in this circuit，one of the above factors will have to be automatically varied．Since the grid of V－13A offers a convenient control point its voltage will be varied automatically to control the oscillation frequency of $\mathrm{V}-13$ ．The method of control is outlined under＂Horizontal Automatic Frequency Control．＂

The horizontal phase coil（L－10）is adjusted so that its natural resonant frequency is the same as the horizontal sync．rate（15，750 C．P．S．）．The abrupt voltage changes in the plate circuit of V－13A shock this circuit into oscillation．Since the frequency of L－10 and C－52 is not effected by voltage changes or other component changes，it greatly stabilizes the operation of the circuit by modulating the plate voltage of V－13A with a 15，750 C．P．S．sine wave． The polarity and phase of this sine wave is such that it maintains the free running fre－ quency of 15,750 C．P．S．

The sweep voltage is developed across C－56，C－54，C－53 which is charged through R－75（120K）and is then coupled to the grid of the 6BQ6GT horizontal output tube．The 6BQ6GT（V－14）is used as a power amplifier so as to supply the necessary horizontal de flection current to the deflection yoke．The hotizontal output transformer（T－9）matches the relatively low impedance of the horizontal deflection yoke winding（L－13）to the plate circuit of the 6BQ6GT（V－14）for maximum efficiency．The damper tube V－16（6W4GT）is effectively connected across the horizontal deflection yoke to damp out oscillations which occur over part of the horizontal scanning cycle．The resultant energy from these damped oscillations provides the boosted $B+$ voltage．

PHONO TV SWITCH

In the phono position，the phono－TV switch removes B plus voltages from the screen of the horizontal output tube，plate of the damper tube and removes screen and plate voltages from $\mathrm{V}-1$ ， V－2 and V－3（video IF tubes）．This renders the TV sweep，H．V．and signal circuits inoperative． At the same time the input to the volume control is disconnected from the discriminator output and connected to the output of the phono crystal．

RADIO CHASSIS 120152F（Model 733F）
This radio is an independent 5 tube superheterodyne A．M．receiver which utilizes the same speaker as the television receiver．This is achieved by means of a relay operated switch which is mounted on the television chassis．This relay also prevents the TV and radio from being oper－ ated at the same time．A pilot light incorporated in this chassis indicates when the radio is on． （For service information on Radio see page 7．）

RELAY OPERATED SWITCH（Model 733F Chassis 120169F）

A two pole double throw switch is operated by this relay．When the TV＂ON－OFF＂switch is in the＂OFF＂position，the relay is unenergized，（as shown on schematic），thus terminal F is shorted to terminal G and terminal l is shorted to terminal K ．Since terminals F and G are con－ nected together，the speaker（SP－1）is connected to the radio＇s audio output transformer．Since terminals I and K are connected together，power is supplied to the radio outlet（X－9）permitting the radio receiver to be turned on．

When the TVreceiver is turned＂ON＂the relay is energized，thus shorting terminal E to F and also H to I ．This removes the power from the radio outlet（ $\mathrm{X}-9$ ）and connects the speaker（SP－1） to the TV audio output transformer（T－8）instead of the radio＇s．

3 SPEED（ $78,45,33-1 / 3$ R．P．M．）AUTOMATIC RECORD CHANGER pt＊8 19069 （MODEL 733F）

This changer plays records through the sound portion of the TV chassis when the＂Phono－TV switch＇＇is placed in the phono position．

Features of this changer include playing and automatically changing as many as ten－12＂， twelve－ $10^{\prime \prime}$ ，twelve－ $7^{\prime \prime}$ ，or any assortment of intermixed $10^{\prime \prime}$ and $12^{\prime \prime}$ records of the same R．P．M．（78，45，33－1／3 R．P．M．）．

This changer shuts off automatically after the last record has been played．

PREPARING FOR OPERATION

1．SHIPPING BOLTS
Before placing in operation，the changer must be flooted freely on the mounting springs．During ship－ ment，the mechanism is secured by means of two shipping bolts．To float the changer，remove the furn－ table＊by lifting it straight up the spindle．Turn the two shipping bolts in a clockwise direction as far as
they will go and replace the turntable．Before the turn－ table can be fully seated，the idler wheel must be gently pushed back out of the way to prevent damage to the rubber tire．
＊When shipped turntable is secured to the back of the cabinet．

2．LEVELING RECORD CHANGER
It is essential to have the record changer absolutely level．Use a torpedo or similar type level on the record changer baseplate．Use adequate shims to level
the record changer pan or radio combination cabinet to achieve perfect level．

For additional service information refer to the manual on the 819053 changer which was issued at an earlier date．These changers are the same except 819069 has the addition of an equalizing cir circuit in series with the pickup arm（ 2.2 meg ohm in parallel with a 68 mmfd ．condenser）．See top of page 7.

BEAM BENDER（ION TRAP）

A single magnet type of beam bender is used and should always be adiusted by sliding and rotating the unit for maximum brightness．Do not adjust the trap for removing corner shadows if in so doing the brightness is reduced．

If two positions of maximum brightness are found use the one closer to the picture tube socket．

USE OF THE FRINGE COMPENSATOR

In fringe areas there is generally a higher ratio of electrical impulse noise（ignition， neon signs，electrical motors，etc．）to signal which might tend to effect sync．operation． To reduce this condition this chassis has been equipped with a＂Fringe Compensator and Switch＂．This compensator is lacated at the rear of the chassis，and can be adjusted to handle the effects of electrical interference in most fringe locations．This compensator is provided with an on－off switch so that it can be disconnected when not required．

NOTE：In most locations this added protection will not be necessary and the fringe compensator should remain in the＂off＇position．

Improper adjustment or application of the fringe compensator may result in ex－ cessive audio buzz and／or picture wiggle．This device is designed to give added performance in fringe areas and will result in satisfactory operation only if instruc． tions are carefully adhered to．

ADJUSTMENT OF THE FRINGE COMPENSATOR

1．）Tune set to a low frequency channel in a normal fashion．If low channels are not available use a higher channel．
2．）Turn fringe compensator switch to the＂$O N$＂position and adiust the potentiometer to the center of its mechanical range．
3．）Check all channels normally received in the area and re－adjust compensator if necessary for best performance．

CENTERING PROCEDURE

1．Set the unit，magnets forward，on the tube so that the magnets are about $1 / 4^{\prime \prime}$ behind the yoke．Adjust the clamp so that the unit is a sliding fit on the tube．
2．Set the magnets so that the adjusting arms are approximately 120° apart（figure 3 ）．
3．Adjust the ion trap magnet for maximum brightness．
4．Rotate the whole unit，this will cause the picture to move around a circle．Stop where the picture is most nearly centered．
5．Rotate the magnets separately，in equal distances but in opposite directions to complete the centering．
6．Repeat Steps 3， 4 and 5，if necessary．
7．Tighten clamp．
8．Readjust ion trap magnet to give maximum brightness．
CAUTION：It is important that the centering magnets not be，operated too close to the yoke as the A．C field from the yoke may cause the centering magnets to become demagnetized．

NOTE：Some slight improvement in focus may be obtained by adiusting the ion trap magnet within the range of the maximum brightness．

On no account should the trap magnet be adjusted to give good focus at the expense of brightness，as this condition produces ion＂burns＂on the screen in the course of time．

Figure 3 －CENTERING UNIT LOCATION DRAWING

ALIGNMENT
a. Equipment Required - A sweep generator, (10 MC sweep with center frequency of 44 MC. plus all
necessary R.F. sweep frequencies as listed in R.F. necessory R.F. sweep trequencies as istel in R.F.
Tabbe), accurate marker generator, oscilloscope and V.T. V.M. are required for alignment. The marker generator must supply frequencies
$\mathrm{MC}, \mathrm{t} 40$ to 48 MC . and 50 to 216 MC .
b. Alignment Points - The location of all I.F. trans-
formers
Figure formers,
Figure 8.

TV R.F. \& MIXER ALIGNMENT
Connect 3 volt bias battery to both I.F. and R.F. AGC. circuits, positive terminal to chassis $=$ nega-
ive terminal to iunction of $\mathrm{R}-16, \mathrm{C}-19, \mathrm{C}-18$. Add a iumper wire from this iunction to iunction
of $R-8, R-14$. applied to I.F. AGC

Figure 4. GENERATOR CONNECTIONS FOR TELEVISION
R.F. CHANNEL ALIGNMENT.

SWEEP \& MARKER GENERATOR		Marker Gen.	OSCILLOSCOPE CONNECTIONS	MISCELLANEOUS INSTRUCTIONS	TRIMMER OR SLUG	TYPE OF AD JUSTMENT AND OUTPUT INDICATION	
CONNECTIONS	FREQ. rRANGE	FREQ.					
Connect as shown in Fig. 4 ond adjust sweep controls for width so that complete channel response may be observed as shown in Fig. 5	$\begin{array}{\|c\|} \hline \text { Channel } \\ 122 \\ 207 \mathrm{MC} . \\ \text { Center } \\ \text { Freq. } \end{array}$	209.75 MC. Sound Carrier 205.25 MC . Pix Carrier	Vert. input of scope through 10K resistor to test point on tuner Fig. 8 ow side to chassis	Set Channel Selector to $\$ 12$ NOTE Keep output of R.F. Marker Generator at a level that provides a readable marker but does not distort the curve that is being observed on the scope.	$\begin{gathered} \text { C-2 } \\ \text { R.F. Amp } \\ \text { Input } \\ \text { Trimmer } \end{gathered}$	Adiust Trimmers C-2, C-5 and C-6 IMPORTANT: When odiusting be noted that the band pass characteristic can be broadened by sacrificing amplitude. It is undersirable to overly broaden the curve as that would result in a	
$\begin{gathered} \text { Same } \\ \text { ass } \\ \text { Above } \end{gathered}$			$\begin{gathered} \text { Same } \\ \text { absve } \end{gathered}$	Set Channel Selector to "13 (See Note Above) Set Channel Selector to \#11 (See Note Above)	The r-f band pass characteristic of the other elevision channels should now be checked without disfurbing the settings of trimmers $\mathrm{C}-2, \mathrm{C}-5$ and $\mathrm{C}-6$. Adjust the r-f sweep generator and marker generator for operation on the other television channels, observing position of both the sound carrier and picture carrier markers. Figure 5 -- TUNER RESPONSE CURVE SHOWING BAND-PASS LIMITS. The response for all channels should meet with the requirements of Fig. 5. To do so it may be necessary to compromise by slightly changing the initial channel " 12 adjustments of $\mathrm{C}-2$. $\mathrm{C}-5$ and $\mathrm{C}-6$ while switched to channel which does not conform.		
	$\begin{gathered} 110 \\ 195 \mathrm{MC} . \end{gathered}$	$\begin{aligned} * 197.75 \mathrm{MC} . \\ \because \\ \because 193.25 \mathrm{MC} . \end{aligned}$		Set Channel Selector to $\$ 10$ (See Note Above)			
	$\begin{gathered} 19 \\ 189 \mathrm{MC} . \end{gathered}$	$\begin{array}{r} * 191.75 \mathrm{MC} . \\ * * 187.25 \mathrm{MC} . \end{array}$		Set Channel Selector to 19 (See Note Above)			
	$\begin{gathered} 18 \\ 183 \mathrm{MC.} . \end{gathered}$	$\begin{array}{\|l} * 185.75 \mathrm{MC} . \\ * \\ * 181: 25 \mathrm{MC} . \end{array}$		Set Channel Selector to " 8 (See Note Above)			
	$177 \mathrm{MC.} \text {. }$	$\begin{array}{r} * 179.75 \mathrm{MC} . \\ * \\ * \\ \hline \end{array}$		Set Channel Selector to $\%$ (See Note Above)			
	$\begin{aligned} & 46 \\ & 85 \mathrm{MC} . \end{aligned}$	$\begin{aligned} & * \\ & * * \\ & * \\ & 83.75 \mathrm{MC} . \\ & 83.25 \mathrm{MC} . \end{aligned}$		Set Channel Selector to $\%$ (See Note Above)			
	$\begin{aligned} & 15 \\ & 79 \mathrm{MC.} . \end{aligned}$	$\begin{aligned} & * \\ & * * \\ & * 7.75 \mathrm{MC} . \\ & 77.25 \mathrm{MC} . \end{aligned}$		Set Channel Selector to " 5 (See Note Above)			
	$69 \mathrm{MC} .$	$\begin{array}{\|l} * \\ * \\ * \\ \hline \end{array} 7.75 \mathrm{MC} .25 \mathrm{MC} .$		Set Channel Selector to \#4 (See Note Above)			
	$\begin{aligned} & 13 \\ & 63 \mathrm{MC} . \end{aligned}$	$\begin{array}{\|l} \hline * \\ * \\ * \\ \hline \end{array} 1.75 \mathrm{MC} .$		Set Channel Selector to \#3 (See Note Above)			
	$\begin{aligned} & 12 \\ & 57 \mathrm{MC} . \end{aligned}$	$\begin{aligned} & * 59.75 \mathrm{MC} . \\ & * * 55.25 \mathrm{MC} . \end{aligned}$		Set Channel Selector to " 2 (See Nute Above)			

I.F. ALIGNMENT

1) Tune receiver to unused Channel 10 or 12.
2) Connect 3 volt bias battery with negative terminal to I.F. AGC. (Junction R-8, C-7, R-14) positive terminal to chassis.
3) Connect D.C. V.T.V.M. to video test point (see location in Fig. 7 and 8)
4) Connect terminated marker generator to floating shield of converter tube $\mathrm{V}-23 \mathrm{6J6}$. (Shield raised slightly so that it does not make contact with chassis). Use unmodulated marker. See Fig. 7.

MARKER GENERATOR	ADJUST	PROCEDURE
45.75 MC. Unmodulated	T-4	Peak for maximum response. Adjust output of signal generator so that maximum response does not produce more than -2 V. D.C. on V.T.V.M.
43.2 MC. Unmodulated	T-3	
42.0 MC . Unmodulated	T-2	
45.0 MC. Unmodulated	$\begin{aligned} & \mathrm{L}-3 \\ & \mathrm{~T}-1 \end{aligned}$	
41.25 MC. Unmodulated	L-2	Adjust trap for minimum response. Increase output from signal generator so that a true minimum position can be found.

Connect vertical input of an oscilloscope instead of V.T.V.M. to video test point with vertical scope gain set at, or near, maximum. (Horizontal scope sweep set at 400 cycles)

MARKER GENERATOR	ADJUST	PROCEDURE
47.25 MC.	$\mathrm{L}-1$	With signal generator set at maximum output, adjust L-1 for minimum vertical re- sponse on scope.
Amp. Mod.		

6) Now that all the I.F. coils and transformers have been set, the overall response can be observed and

SIGNAL GENERATOR INPUT		
CONNECTION	FREQUENCY	
	SWEEP	MARKER
Connect terminated sweep and marker as shown in Fig. 7.	Center frequency 44 MC . 10 MC . Sweep	45.75 MC.

MEASURING INSTRUMENT	ADJUST
Scope connected to Video Test Point	T-4

\square
If 45.75 MC . doesn't lie from 60 to 70% down adjust T-4 (see fig 6) for tolerances.

Providing overall curve is within tolerances as shown below, no further adjustments are needed. If band width or ilt is not as specified, repeat entire alignment procedure. If still out then a slight retouching is permissible. RAPS L-l and L-2 MUST BE AD JUSTED AS INDICATED ABOVE. DO NOT RE-ADJUST WHILE OBSERV ING OVERALL I.F. RESPONSE CURVE

KEEP OUTPUT SIGNAL GENERATOR AS LOW AS POSSIBLE WHEN OBSERVING THE OVERALL I.F. SHAPE SINCE Ube overload might result and the response will appear incorrectly flat and wide

NOTE: It may be impossible to observe the 47.25 MC . marker with the average service equipment due to the high attenuation
of trap L-1 (adiacent sound).

Figure 6. OVERALL I.F. RESPONSE CURVE

Figure 7. CONNECTIONS FOR I.F. ALIGNMENT.
All instrument leads should be dressed as directed and as short as possible to prevent interaction between input and output leads. Failure to do this may result in an unstable response indication.

NOTE It is important that the output cable of the sweep and marker generator be properly terminated in their characteristic impedance which is usually from 50 to 75 ohms. If this termination has not been built into the end of the cable by the instrument manufacturer * then a resistor of the proper value (characteristic impedance) should be connected across the output of each generator cable as shown above.

* If in doubt check your instruction book which is issued by the test equipment manufacturer.

R. F. OSCILLATOR ALIGNMENT

1. Connect marker and sweep generator as shawn in Figure 4, low side to chossis
2. Connect scope to video test point (see location Fig. 7 and 8).
3. Connect 3 volt bias battery as described under R.F. Alignment Page 4.
4. Before undertaking oscillator alignment be sure I.F. circuits are correctly aligned for band pass characteristic and trap
5. During oscillator alignment, it is necessary to set the fine tuning control so that the tooth on the fine tuming cam points
6. During oscil
downword.

*Sound Carrier Marker
r.f. osCillator alignment procedure

Figure 8 - LOCATION OF ALIGNMENT POINTS (TOP VIEW)

SOUND ALIGNMENT

(A) USING 4.5MC UNMODULATED SIGNAL GENERATOR

1) Short pin "1 of V-3 to chassis with short iumper wire sharp meter indigation generator
(B) USING TRANSMITTED TV AIR SIGNAL
2) Connect antenna and fune to a good on the air TV station.
3) Adjust fine tuning control for best picture.
4) Adiust antenna coupling for moderate signal so as
to provide a sharp meter indication with adjustment
of tronsformer.
strength; do not confuse with a peak adiustment.

TO TERMINAL
BOARD ON

t. V CHASSIS

Figure 9 - SCHEMATIC DIAGRAM OF RADIO, CHASSIS 120152-F

RESISTORS IN OHMS, CAPCCITRAS IN MFD. UNLESS OTHERWISE, WOTED.

PART NO. 950238

ALIGNMENT OF MIRACLE PICTURE LOCK

1) Tune set to a good channel.
2) Short phase coil (L-10), leads have been brought to top of chassis on a terminal strip near fus (see tube location diagrom figure II).
3) Short harizontal control grid to chassis. This point has also been brought to top of chassis on same strip os mentioned in step 2.
4) Rotate horizontal hold control (R -74) to center of its mechanical range.
5) Adiust horizontal bolance control (R-72) (rear of chassis) until picture pulls into synchronism (in most cases picture will sway from side to side)
6) Remove short from horizontal phasecoil (L-10) and adiust L-10 for same synchronous condition as step 5 above.
7) Remove short from horizontal control grid. Horizontal frequency circuits ore now properly aligned.
8) When properly adiusted (steps 1-7) the harizontal hold control can be moved slowly over most of its range without throwing the picture out of sync
© John F. Rider

3. Line voltage maintained at 117 volts a.c. for voltage measurements.
4. Socket connections are shown as bottoon views, with meas urements.

5. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.

NC denotes no connection, K is kilohms, MEG is megohms. Resistances marked *are measured to pin 7
of rectifier ($\mathrm{B}+$).

RESISTANT READINGS FOR CHASSIS 120152-F

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7
V-1	${ }_{12 \mathrm{CA}}^{12 \mathrm{BE6}}$	23 K	0^{5}	12	24	1500.	1500*	4 MEG
V-3	${ }^{12 \mathrm{AT6}}$	$6{ }_{6}^{18}$	0 0	${ }_{0}^{24}$	36 12	$1500{ }^{\circ} \mathrm{S}$ 500 k	1500°	120
V-4	50 CS	150	470 K	36	12 90	500K 470 K	${ }_{1500}$	- ${ }^{4700^{\circ}}$
V-S	35w4	N.C.	N.C.	90	120	135	150	${ }^{210}$

VOLTAGE READINGS LOCATED ON THE RADIO SCHEMATIC

DESCRIPTION

RADIO CHASSIS 120152-F
TYPE: Siagle-band (AM) superheterodyne. FREQUENCY RANGE: Broadcast 540 -1620 kc TYPES OF TUBES:

V-1-12BE6, converter
V-2-12BA6, i-f amplifier
V-3-12AT6, derector, a.v.c. a-f amplifier v-4 - SOC5, power output
V. 5 - $35 W 4$, rectifier

VOLTAGE RATING: 105 - 125 voles.
POWER SUPPLY: Power from T.V. Outlet X-9
POWER CONSUMPTION: 30 watts.
CURRENT DRAIN: 0.24 amp . at 117 volts a.c.

RADIO CHASSIS PARTS LIST - CHASSIS 120152-F

[^2]Figure 10 - TUBE LOCATION DIAGRAM
CHASSIS 120152-F

TV CHASSIS PARTS LIST - CHASSIS 120169-B, 120169-F

Figure 11 - TUBE LOCATIONS DIAGRAM FOR CHASSIS $120169 B$ and F

SYMPTOM	CHECK
Weok or no sound nor video (pictura) rostor normal	v-22, v-23, v-1, v-2, v-3, v-4*
Weak or no sound - Video and raster normal	$v-6, v-7, v-8, v-9, v-10$
Weak or no video-Sound and raster normal	V-5, V-24
Poor or no horizontal nor vertical sync. Saund and video normal (contrast control makes video darker or lighter)	V-11
Poor or no horizontal nor vertical sync. - video weak or distorted, raster normal - sound may or may not be normal	V-22, V-23, V-1, V-2, V-3, V-4
Poor or no horizontal sync - raster and sound normal (Picture locks in verticolly)	v-11, v-12, v-13
Poor or no vertical sync - raster and sound normal. (Picture tocks in horizontolly)	v-11. v.17, v-18
Horizontal line (no vertical sweop) - sound normal	V-18, V-19
Insufficient harizontal size, sound and video nor mal	v-14, v-16, v-20, v-21
Insufficient vertical size or white horizontal bar in picture	V-19
No sound, no raster - tubes lit	Fuse, V-20, V. 21
No sound, no raster - tubes not lit	Plug connection in wall socket, on-off switch, line cord

Another very
sconning lines
OJohn F. Rider

TV CHASSIS PARTS LIST - CHASSIS 120169-B, 120169-F continued

Figure 12 - UNDERSIDE VIEW OF CHASSIS 120169-B \& F VOLTAGE READINGS FOR CHASSIS 120169-B \& 120169-F

CONDITIONS FOR TAKING VOLTAGE AND RESISTANCE READINGS
The resistance measurements listed below ore for chassis $120169-\mathrm{B}$ and 120169 .F with a triangle coode . Due to component variations, voltage a.
chassis is not coded as mentioned above.

The picture tube, deflection yoke and high voltage circuits were connected to take the following readings and waveshopes.

1. Antenna disconnected and antenna terminals shorted on tuner and connected to chassis (use short leads).
2. Line voltage 117 volts (Disconnect power for resistance reodings).
3. 3 volt bias bottery connected to both I.F. and R.F. A.G.C. circuits, positive terminal to chassis, negative terminal to iunction of R-16, C.19, USED FOR VOLTAGE READINGS ONLY.
4. All controls in position for normal picture. (Varied when it directly effects reading)
5. All measurements taken with a vacuum tube volimeter and ohmmeter.
6. All readings listed in tables were taken between points shown and chassis.
7. Resistance readings are given in ohms unless otherwise noted.
8. N.C. denotes no connection.

WAVE SHAPE ANALYSIS CHART FOR CHASSIS 120169-B AND 120169-F

For models $711 \mathrm{~F}, 712 \mathrm{~F}, 720 \mathrm{D}, 732 \mathrm{~B}, 733 \mathrm{~F}$ and 734B. The information listed
Slight peak to peak voltage differences may be noticed if chassis is not triangle code marked as mentioned above.
The wave shapos shown here are arranged so as to give the serviceman an easy method of signal tracing. The peak to peak voltage given may vory slightly depending on signal strength ond component variations.
To accurately observe the wave shapes, the relatively high input capacity of an oscilloscope must be reduced so as not to change the operating characteristics of the television set. Foilure to do this will result in wrong wave shope readings.

Connect antenna and tune receiver to channel where best reception has been obtained in the past.
Low end of the probe is connected to CHASSIS and the controst control is set at MAXIMUM CONTRAST.
The 30 and 7875 C.P.S. oscilloscope sweep settings are used so as to permit the serviceman to observe two cycles of the wave shope,
NOTE: A wave shape seen in your oscilloscope may be upside down from same wave shape shown here. This will depend on the number of A wave shope seen in your oscilloscope may be u
stages of amplification in the oscilloscope used.

RESISTANCE READINGS FOR CHASSIS $120169-B$ AND $120169-F$

SYMBOL	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9	PIN 10	PIN 11	PIN 12
v-:	1 meg	45	. 2	0	- 15 k	- 15 k	0					
v-2	1 meog	42	. 2	θ	-15.5 K	-15.5 k	0					
v -3	0	170	. 15	0	-15.5 K	- 15.5 K	${ }^{\circ}$					
$v-4$	0	1 meg	. 25	0	95 K	0	5 k					
V-5	1.2 mm	${ }_{\text {Contrast }}$		0	- 23 k	* 15 k	Contrast					
V-6	1 mmog	${ }^{2}$	0	. 05	-16 K	-16 k	220					
V-7	55 k	0	0	. 05	-16 K	8.5 K	0					
V -8	0	90 K	0	. 05	170 K	0	90 K					
v-9	12 meg	0	0	05	1.6 meg	Fringe comp. 85 K 2.3 meg	250 k					
V -10	M.c.	05	-17 K	017 k	500 K	180 k	0	480				
V-11	-6.8 K	2 mog	0	. 05	. 05	${ }^{948} \mathrm{~K}$	15-K	0	0			
$\mathrm{v}-12$	22 k	280 K	110 K	0	0	16 k	330 k	5 k	. 05			
v-13	2.2 mes	024 k	950		${ }^{-180} \mathrm{k}$	950	0	. 05				
v-14	H.C.	0	M. C.	- 22 K	500 K	H.C.	. 05	115	Plate	ap of 6 B	6105	
V-15		PIN 2 AND	7 IMFI	TTE, PLATE	-105 k							
V-16	n.c.	M.C.	105 k	M.C.	-16 K	N.C.	105 K	-105 K				
V-17	N.C.	N.C.	0	. 05	12 meg	2.2 meg	0					
V-18	100	160 k	2.3 k	vertical hold 800 K 1.9 meg	$\begin{gathered} 1 \mathrm{meg} \\ 2.6 \mathrm{meg} \end{gathered}$	2.3 k	. 05	0				
v-19	M.c.	0	-16k	016 k	2.3 mes	1.9 mea	05	$\begin{aligned} & \text { vert. } \\ & 1 \text { in. } \\ & 30-5 k \end{aligned}$				
V-20	M.c.	016 K	H.C.	23	8.5	23	N.C.	${ }^{16 \mathrm{Kk}}$				
V-21	M.c.	16 K	N.C.	23	n.c.	23	N.c.	${ }^{16 \mathrm{~K}}$				
V-24	0	0	N.C.	N.C.	N.C.	- focus 0 to 470 K to 95	n.c.	n.c.	n.c.	700 k	240 K	. 05

© John F. Rider

PART NUMBERS						DESCRIPTION	LST PRICE
MODEL $711 F$	$\begin{gathered} \text { MODEL } \\ 7122 \end{gathered}$	$\begin{gathered} \text { MODEL } \\ 72000 \end{gathered}$	$\begin{gathered} \text { MODEL } \\ \hline 732 \mathrm{~L} \end{gathered}$	MODEL	$\text { MODEL }_{733 F}$		
140459							82.00
	140460					Cobinat - Moplo Tablo Madel	
		140487				Cobinet - Open Face Console or	109.00
		140487A				Cobinot - Open Face Console - Blonde	109.00
			140486			Cobinet - Console - Full Doors	158.00
				140492		Cabinet - Open face Console	86.00
460249	460249	460249	460249	40249	140488	Cobinet - Console - Full Doors	185.00 5.20
520161	520161	520161	520161	520161	520161	Gloss or	9.00
520162	520162			520162	520162	Gloss	6.60
445023	445023					Rubber Feet	
460252	460252	460252	460252	460252	460252	Control Door	2.45
4603318	460318	450318	460318		460318	Control Door Escutcheon	
587088	587088	587088	587088	587088	587088	Spring - Door	Sot
180041	180041					Speoker - $6^{\prime \prime}$	4.70
					180094	Speoker -6"	6.50
		180050	180050	180050		Speaker - $12^{\prime \prime} 31 / 2 \mathrm{oz}$. Mognet or	12.40
		180082	180082	180082		Speoker - $12^{\text {² }} .97$ oz. Mognet	9.60
560321	560321	560321	560321	560321	560321	Mosonite Bock	1.30
583206	583206	583206	583206	583206	583206	Line Cord	80
460281	460281	460281	460281	460281	460281	Tube Protector Cup	80
450138	450138	450138	450138	450138	450138	Knob - Conitrast	30
450137	450137	450137	450137	450137	450137	Knob - Fine Tuning	30
450134	450134	450134	450134	450134	450134	Knob Shank - Off - Volume	50
460262	460262	460262	450262	460262	450262	Knob Flonge - Off - Volume	
450133	450133	450133	450133	450133	450133	Knob Shank - Selector	
460261	450261	460261	460261	460261	460261	Knob Flonge - Seloctor	35
	275047	275047	275047	275047	275047	Spring Wosher - Knobs	
587012	587012	587012	587012	587012	587012	Spring Insert	02
587011	587011	587011	587011	587011		Spring insert	
547516		547516	547516	547516	547516	Indicator Pin	
450034	450034	450034	450034	450034	450034	Knob - Phono - T. V.	25

PRODUCTION CHANGES

In the course of production various changes were incorporated in the order shown below. Changes as listod under a particular letter also
In the course of production various chongos wero incorporoted in the order sho
include changes os listed under all provibus lotiers unless otherwise noted.

Triangle Code Letter	F.S.B. No.	Supp. No.	Purpose
A	Service Note	0	See Schematic and Page 9.
B	Service Note	0	See Schematic
C	Service Note	0	See Schematic
A	Service Note	0	See Schematic
D			

© John F. Rider

b) The white lead to the fringe compensator ON-OFF switch should be dressed away from the horizontal phase coil and the grid of the horizontal oscillator tube (V-13).
3) USE OF A 6BQ7A or 6BZ7 IN PLACE OF 6BQ7 ON TUNERS. The tuner used with this chassis may now incorporate either a 6BQ7, 6BQ7A or a 6BZ7 tube. These tubes are interchangeable but due to possible variations in interelectrode capacities, several tubes may have to be tried for best results.

GENERAL TUNER INFORMATION

In some tuners R-4 (180K) and R-3 (370K) may be changed to R-4 (150K) and R-3 (270K). Since the ratio of these resistors remain about the same there is no change in performance.
4) IMPROVEMENT OF SOUND IN THE FRINGE AREAS. Under certain conditions of reception or transmission, it may be advisable to touch up the alignment of the sound circuits in the field using an "on the air" TV station as the signal instead of the generator. By doing this, it is possible to improve the audio signal to noise ration.

The Service Note shows how this can be done in the field. As a final step the sound transformers should be retouched (while listening to the sound) for best audio and minimum noise.

Chassis Coded TRIANGLES A to D can be further improved if desired, by either shorting out the 4.5 mc trap (jumper wire across $\mathrm{L}-16$) or reconnecting the trap from the grid to the video amplifier plate circuit as shown under TRIANGLE E.

NOTE: If you short out the trap be sure to repeak the sound take-off transformer (T-5).
5) POPPING SOUND IN THE A UDIO WHEN PICTURE STARTS TO ROLL VERTICALLY OR WHEN THE VERTICAL HOLD CONTROL IS ADJUSTED.

This can be eliminated by installing a 100 ohm $1 / 2$ watt resistor between the plate and screen of the vertical output tube (V-19 6W6) as shown here and on schematic in Service Note. Above chassis incorporating this change are coded Triangle F.
6) BLACK HORIZONTAL STREAKS OVER PICTURE WHEN TUNED TO CHANNEL \#6 This condition is usually only apparent in the fringe areas and is caused by harmonics of the picture I. F. which is generated in the video detector coupling to the front end, causing regeneration of certain frequencies. This condition is tunable with fine tuning and can sometimes effect Channels 5 or 7.

If this condition exists it can be easily eliminated by connecting a 10 uh R. F. choke part \#705021 or a 20 uh R. F. choke part \#705014 is series with the condenser (C-21) connected to the grid of the 6CB6 Video Amplifier Tube. This choke should be connected and dressed as shown below:

MODEL 752 H

TV Chassis	Tube Size	TV Tuner
$120169-\mathrm{H}$	2LVPL (Metol-Rect.)	470712-VHF $470723-U H F$

ALL CHANNEL

 UHF-VHF RECEIVERModel 752 H using chassis $120169-\mathrm{H}$ is a $21^{\prime \prime}$ direct view television receiver which is designed to receive both V.H.F. channels 2 to 13 and U.H.F. channels 14 to 83 .

Combination V.H.F. and U.H.F. tuning is achieved through the use of two tuners which are connected to the same tuning knobs making V.H.F. or U.H.F. channel tuning very simple. The V.H.F. cascode turret tuner has 13 positions (one more than the conventional type), 12 being used for V.H.F. reception, (Channels 2 to 13), while the 13th or U.H.F. position is used to activate the proper U.H.F. circuits and provides additional amplification for the converted 40 mc . U.H.F. signal. In this position, a window is provided to observe the continuous tuning of the U.H.F. channels.

This receiver incorporates a built in U.H.F. - V.H.F. antenna. It has provisions for connecting separate external V.H.F. and U.H.F. antennas, or a combination U.H.F.V.H.F. antenna which uses a common lead in wire.

Except for the use of a special 13 th position V.H.F. turret tuner and a separate U.H.F. continuous tuner and associated circuits, the 120169-H V.H.F.-U.H.F. chassis and the 120169-B V.H.F. chassis are the same. Refer to the Service Note on the 120169-B chassis for all information not included in this addendum service note.
© John F. Rider

GENERAL DESCRIPTION

The U.H.F. tuner in this chassis utilizes continuous tuning from Channels 14 to 83 and is mounted adjacent to the special V.H.F. cascode turret tuner. This V.H.F. tuner is special in that it is provided with 13 positions (Channels 2 to 13 and a U.H.F. position) The U.H.F. tuner is coupled to the fine tuning control of the V.H.F. tuner by a dial cord. This arrangement allows for simple tuning since both V.H.F. fine tuning and U.H.F. continuous tuning are accomplished by the same knob.

When tuned to V.H.F. (Channels 2 to 13) the U.H.F. tuner is inoperative and, therefore, the set performs as a conventional V.H.F. receiver.

When the channel selector is set to the 13 th or U.H.F. position, a window on the channel selector knob displays the U.H.F. channel calibration and a cam located on the V.H.F. turret tuner shaft activates a switch which performs the following functions:

1) Applies $B+$ to the U.H.F. tuner causing it to function.
2) Connects the V.H.F. or combination of V.H.F.-U.H.F. antenna to the input of the U.H.F. tuner providing one antenna lead in is used.
3) Disconnects the V.H.F. antenna from the V.H.F. tuner.
4) Connects the output of the U.H.F. tuner to the input of the V.H.F. tuner.

The U.H.F. tuning system is designed for a single conversion, therefore, the I.F. frequencies (40 mc range) are the same from both the V.H.F. and U.H.F. tuners.

In the 13 th or U.H.F. position, the turret tuner strips in the V.H.F. tuner are designed to accept 40 mc signals. This means that the 40 mc I.F. signal from the U.H.F. tuner will be further amplified by the V.H.F. tuner which acts as an additional two stage low noise cascode amplifier preceding the receiver's I.F. system.

OPERATION OF VHF-UHF SWITCH

This switch is automatically operated by a cam located on the V.H.F. tuner shaft. This cam changes the switch from its V.H.F. position to U.H.F. whenever the V.H.F. tuner is set for U.H.F. operation.

The following diagram and description should make the operation of this switch clear

VHF POSITION

The V.H.F. antenna is connected through the switch to the input of the high pass filter L-17. The output of this filter is connected to the input of the V.H.F. tuner through this same switch. B+ is supplied to the U.H.F. tuner through a 100 K ohm resistor (R-105) preventing it from oscillating but allowing some current to flow through the 6 J 6 so that its cathode will not be poisoned during long periods of inoperation (V.H.F. reception).

UHF POSITION

The V.H.F. antenna or combination V.H.F.-U.H.F. antenna is disconnected from the V.H.F. tuner and connected to the input of the U.H.F. tuner through the switch and terminals 3 and 4 (providing they are connected. See installation instructions for more information). If a separate lead in is used for U.H.F., then terminals 3 and 4 should not be connected to the U.H.F. antenna terminals.

The single ended output of the U.H.F. tuner is fed through the switch to the input of the V.H.F. tuner.

The 100 K resistor $\mathrm{R}-105$ is shorted out by the switch so that full $\mathrm{B}+$ is applied to the U.H.F. tuner.

Since the V.H.F. mixer tube functions as a 40 mc amplifier when tuned to U.H.F., fixed grid bias is applied to it (test point V.H.F. tuner) through the switch.

DESCRIPTION OF UHF TUNER

The tuned elements in this tuner are of the modified coaxial transmission line type. As you can see from the enclosed mechanical schematic, the U.H.F. incoming signal is tuned by means of two R.F. preselectors. These preselectors are quarter wave end tuned coaxial lines. Capacitive tuning is employed at the open ends to electrically adjust the line to $1 / 4$ wave length and, therefore, effect a resonant condition at any frequency within the U.H.F. band. Two identical preselector circuits are coupled together to provide the proper band pass characteristic. The ganged variable capacitors adjust the two preselector lines and are similar to those used in conventional low frequency circuits. Each line is tuned by four rotor plates. Capacitor trimmers are located behind the coaxial line to preset the high frequency end of the R.F. preselectors. The antenna input in this tuner is coupled to the 1 st preselector circuit and is designed to match a balanced 300 ohm transmission line. The output from the preselector stages is fed through an R.F. choke (L-5) to the mixer crystal D-1.

The U.H.F. local oscillator uses a 6 J 6 in a conventional push pull circuit using lumped circuit constants. This oscillator operates at $1 / 2$ the desired frequency which greatly stabilizes the circuit and permits the use of a thoroughly field tested and debugged tube (6J6). The two outer oscillator capacitor plates are slotted to allow for factory corrections of pass band characteristics.

The output from this oscillator is loop coupled to the oscillator doubler section through L-7. A crystal diode (D-2) is employed in series with this coupling loop to provide rectification of the oscillator signal and thus effect more efficient doubling action. The output from this doubler is fed through $L-6$ to the mixer crystal $D-1$ where it beats with the preselected incoming U.H.F. signal. A picture I.F. of 45.75 mc and a sound I.F. of 41.25 mc are generated in this fashion. When the receiver is tuned to any V.H.F. channel a 100 K ohm resistor is inserted in series with the $\mathrm{B}+$ to the U.H.F. tuner as shown in the switch diagram on page three of this note. This is done to prevent weak operation of the U.H.F. oscillator after long periods of inoperation (set used on V.H.F.).

C-7 is used to set the high end of the oscillator and can be used in the field to compensate for slight variations in 6 J 6 s . The range of this trimmer has been limited so as not to effect tuner tracking. Because of this, several 6 J 6 s may have to be tried if adjustment of C-7 does not produce the desired results. Complete tuner shielding is provided to reduce oscillator radiation and stray pickup to a minimum.

The advantage of using a crystal mixer is its simplicity of design. Since a crystal generally has a higher conversion loss than V.H.F. mixer tubes, it becomes desirable to insert additional I.F. amplification so that the sensitivity of V.H.F. and U.H.F. will be of similar magnitudes.

This is accomplished by feeding the I.F. output from the U.H.F. tuner (T-A) to the input of the V.H.F. tuner. In the 13 th or U.H.F. position, the V.H.F. tuner becomes a two stage low noise cascode I.F. amplifier. The tuner input changes from 300 ohm balanced to a 72 ohm unbalanced line to match the I.F. output of the U.H.F. tuner. Since this U.H.F . strip (13th position) does not have any coil section for the V.H.F. oscillator, plate voltage is removed from this section of the 6 J 6 tube causing it to be inoperative.

ALIGNMENT

The alignment of the tuner is factory set and will usually not require any additional adjustments other than to compensate for differences in 6 J 6 oscillator tubes. Because of this fact, the only adjustment to be made in the field is trimmer C-7 which is located next to the 6J6 oscillator tube.

This trimmer is normally set at the factory to track the highest U.H.F. Channel (83-) This must be done with a U.H.F. sweep and marker generator. In the field, however, this equipment is not readily available and C-7 should, therefore, be used to track the highest U.H.F. channel received in the area. It is usually best to try a few 6 J 6 tubes until one is found which more nearly resembles the original, thus requiring only a slight adjustment of C-7.

In the event T-A has been tampered with or replaced, it should be adjusted for best results on all U.H.F. channels received in the area. This I.F. sometimes has only a slight effect on the picture or sound.

Before doing any alignment on this U.H.F. tuner, whether in the field or shop, be sure that the V.H.F. I.F. and R.F. circuits have been properly set up. Information pertaining to this can be found in the Service Note to which this is an addendum.

GENERAL TROUBLE SHOOTING INFORMATION

Since the operation of this tuner is dependent almost entirely on its mechanical configuration, all component parts whether lumped constants or transmission line section, have been manufactured and mounted as rigid as possible. If it is necessary to replace a component, the exact replacement part should be used. Be sure it is mounted in the same position using the same lead lengths as the original. This is very important since at U.H.F. frequencies a small piece of wire has an appreciable inductance. Stray capacitances between components and chassis also tend to affect the circuit's operation to a marked degree.

Due to the simplicity of design and manufacture of this tuner, little trouble is to be expected. In the event that this tuner becomes defective in any way, the trouble shooting chart in this note can be used to good advantage.

If the crystal D-2 is open or shorted, or the oscillator is inoperative, there will be no bias developed across R-2. If replacing D-2 does not rectify this condition, then it can be assumed that the oscillator is not functioning. Be sure that the harmonic generator coupling loop (L-7) is not touching the shield. A voltage and resistance check of the 6J6 oscillator circuit should soon locate the trouble.

If the correct bias is measured across the R-2 and the set still operates poorly on U.H.F., then it can be assumed that the mixer crystal D-1 is defective in some way. This can easily be determined by lifting $R-1$ off chassis and inserting a D.C. milliameter between it and chassis. In the event that the current readings are abnormally low or high, a new crystal known to be good should be inserted (see trouble shooting chart) If it is desired to localize the difficulty further, C-4 and, or C-5, can be disconnected. When soldering near crystals, be sure to use a small tipped, low wattage iron, placing the pliers between the crystal and the connection so as to absorb the heat thus protecting the crystal. This is important, since excessive heat can easily damage it.

Do not attempt to repair or adjust this tuner by adjusting any of the coupling loops or by moving various components. The only adjustment that can be made in the field is C- 7 to compensate for a change in interelectrode capacities when a new 6 J 6 is used. The proper procedure for this is shown under alignment.

Components which are not a part of the R.F. or oscillator tuned circuits such as feed thru condensers, B+ resistors, T-A, etc., can usually be replaced with little difficulty providing the above precautions are observed.

NOTE: In the event that this tuner needs an over all alignment or service of parts, the defective tuner should be returned for repairs through your Emerson distributor.

TROUBLE SHOOTING CHART

Component

D-2
Harmonic
Gen. Crystal

D-1	Current thru	0.6 thru 3.7
Mixer	R-1 Insert	to 1.00 ma.
Crystal	Milliammeter	(current)

$$
\begin{aligned}
& \text { Variations } \\
& \text { Low to High } \\
& \text { Frequency }
\end{aligned}
$$

+150 V .
6.3V. A.C.
-20 V . to -3 V .
Filament
R-3

R-2

R-1 Insert Milliammeter

Crystal
Crystal

C-10, C-15, C-11 shorted, the V.H.F.U.H.F. switch.

L-11 open, C-14, C-13 shorted.
R-3 open, C-12 shorted, L-10 open or shorted.

Crystal defective, L-7 shorted to chassis, C-7 shorted. Voltage polarity depends upon crystal polarity.

D-1 defective, C-4 shorted, L-8 open.

$11 / 2 \mathrm{MN}$. Sleeving - $1,4^{\prime \prime}$ Long Inserted on lance before wrapping dial cord one turn around lance.

STEP 2

STEP 3

GENERAL V.H.F. INSTALLATION INSTRUCTIONS

(A) ANTENNA

This chassis is designed to operate from either its built in U.H.F.-V.H.F. antenna, an external combination U.H.F.-V.H.F. antenna or separate U.H.F. and V.H.F. antennas using one or two sets of antenna lead in wires.

The set as delivered is ready to operate from its built in U.H.F.-V.H.F. antenna. In most strong signal areas this will suffice.

If it is necessary to install an external antenna, disconnect the built in one by removing the spade lugs (1 and 2) from the V.H.F. antenna terminals.

If one antenna lead in is used for both U.H.F. and V.H.F. reception, it should be connected to the V.H.F. input terminals. When the receiver is set for U.H.F. reception, the U.H.F.-V.H.F. switch automatically transfers the single antenna lead in to the input of the U.H.F. tuner removing it from the V.H.F. tuner. This transfer will only take place providing the jumper twin lead, connected to terminals 7 and 16 of the U.H.F.V.H.F. switch is also connected to the U.H.F. input terminal strip by means of spade lugs 3 and 4.

If separate U.H.F. and, or V.H.F. antenna lead in wires are used, they should be connected to their respective antenna input terminals. Under these conditions, spade lugs 3 and 4 must be removed from the U.H.F. input antenna terminals.

For new installations, it would be desirable and economical to install a combination U.H.F.-V.H.F. antenna providing, of course, that a V.H.F. station has been allocated to that area. In the event that the terrain is hilly or in a metropolitan area, ghosts may present quite a problem and it may be better to install separate U.H.F. and V.H.F. antennas. This may be necessary since combination antennas usually have poor directivity at U.H.F. Separate U.H.F. and V.H.F. antennas can be connected to one lead in if desired through a printed commercially available circuit filter.
U.H.F. ANTENNAS WHICH WILL TAKE CARE OF MOST PRESENT DAY INSTALLA-
TIONS. TIONS.

For use in strong signal areas where ghosts do not present a problem.

STACKED ∇ For use in weak signal areas where ghosts do not present much of a used for strong V.H.F. signals.

BOK TIE SCREEN REFLECTOR
For use in weak aignal areas where ghosts present a problem

FOLDED ROM TIE CORNER REFLECTOR For use in fringe aress phere ghosts present

NOTE: All of the above four antennas will operate over all 70 U.H.F. channels.

In U.H.F. the use of free space terminals and rigid construction is an important detail.
By free space ter minals we mean air insulation between the terminals of each antenna
section instead of bakelite or poly. The use of an insulation other than air, tends to collect moisture which creates a signal leakage path thus reducing the signal.

Since U.H.F. frequencies have relatively short wave lengths, rigid elements are very important. The slightest movement could easily become an appreciable part of a wave length which may affect signal pickup.

(B) ANTENNA WIRE

The common type 300 ohm ribbon line will work out satisfactorily only in strong signal areas, since when wet, line losses increase by almost 8 times at the high end of the U.H.F. band. The tubular 300 ohm line is much better in this respect as the leakage path is not as readily affected by moisture and can, therefore, be used in most signal areas. When wet, tubular line losses increase slightly more than two times at the high end of the U.H.F. band. In the extreme fringe areas the use of open wire line may be best, but it is more difficult to work with. Shielded 72 ohm or 300 ohm transmission line is not at all affected by weather conditions but these lines generally have a higher loss to start with and are comparatively expensive.

SETTING OF TUNING KNOBS

1) Make sure chassis has been adjusted in the cabinet so that the tuning shafts are perfectly centered through the cabinet hole.
2) Insert fine tuning knob on shaft and rotate fully counter clockwise (no further rotation of outer U.H.F. dial shaft).
3). Remove fine tuning knob and insert the U.H.F. dial (contains U.H.F. Channel \#s) on U.H.F. dial shaft. Set the scribed line at 12 o'clock before placing on shaft. Do not twist or turn when inserting U.H.F. dial. The scribe line is a hair thickness and is located about $3 / 16^{\prime \prime}$ to the right of the heavy black line near 0 of Channel 20.
3) Place fine tuning and selector knobs on their respective shafts.

NOTE: Leave enough space between knobs so that there will not be any binding.

REPLACEMENT OF TUNERS

If it becomes necessary to return a U.H.F. tuner to your distributor for repair or replacement, remove and retain the extension shaft and pulley. When returning the V.H.F tuner, remove and retain the V.H.F.-U.H.F. switch and the front plate which consists of a pulley and gear combination. This is important since replacement tuners will not come equipped with the above devices.

Under no conditions are both the V.H.F. and U.H.F. tuners to be returned as a unit. Before returning for replacement or repair, an honest effort should be made to repair the unit since all parts will be available through your Emerson distributor.

Transmission lines other than the shielded type should be mounted away (6 to 7 inches) from all nearby metal objects by use of stand-offs, as the closer these lines are to metal, the greater are the losses. In the event that it is impractical to use stand-offs, shielded lines such as RG-59U or RG-11U should be used. Never rest unshielded lines next to metal objects over any appreciable distance as losses will be exceptionally high and depend to a great extent on humidity variations.

If tubular line is used, be sure that the ends are sealed to prevent moisture from enter ing the line. This is easily done by heating the ends and pressing them together to form a good seal.

(C) HEIGHT AND ORIENTATION OF ANTENNAS AT U.H.F.

Since the wave lengths at U.H.F. are much shorter than at V.H.F., objects which did not appreciably reflect the V.H.F. wave will now reflect U.H.F. waves. Because of this, orientation and the use of directive antennas is much more important to minimize the pickup of reflected or ghost signals.

NEW PARTS

Part \#
Description
587040 Dial Cord Spring
541005 Dial Cord Fastener
530002 Dial Cord (specify length)
460424 Contrast Knob
460423 Fine Tuning Knob
460422 On-Off Volume Knob
460421 Channel Selector Knob
460425 U.H.F. Dial
565264 Fish Paper Mask for Dial (mounted to cabinet) Escutcheon Pin for Mask

Part \#
Description
470712 V.H.F. Tuner
470713 U.H.F. Tuner
960703 V.H.F.-U.H.F. Switch
817026 1N82 U.H.F. Mixer Crystal (D-1)
817027 G7B U.H.F. Harmonic
Gen. Crystal (D-2) or
817028 G7C U.H.F. Harmonic Gen. Crystal (D-2)
960704 T-A I.F. Coil on U.H.F. Tuner 960705 T-1 I.F. Coil on V.H.F. Tuner 720173 High Pass Filter L-17

Another effect of these shorter wave lengths is to cause a more rapid variation of sig- NOTE: The R.F. amplifier tube presently used is a 6BK7. In the future a 6BQ7, 6BQ7A nal pickup with antenna height. Because of this fact, it is important that antenna height or a 6BZ7 may be used. These three tubes are interchangeable, but due to possible vari be probed for maximum signal pickup. A foot higher or lower may yield a marked in- ations in interelectrode capacities, several tubes may have to be tried for best results. crease in the signal pickup.

HIGH VOLTAGE WARNING

Operation of this receiver outside its cabinet or with covers removed involves a shock hazard from the power supplies. No work should be attempted on this receiver by anyone not thoroughly familiar with the precautions necessary when working on high voltage equipment.

CATHODE RAY TUBE HANDLING PRECAUTIONS

Extreme care must be used in handling the picture tube. The tube is highly evacuated and, due to its large size, is subjected to a considerable amount of atmospheric pressure. The handler should wear safety goggles and gloves for protection. Avoid nicking or scratching the glass by rough contact with other objects.
Before removing the picture tube, discharge the capacitor formed by the inner and outer aquadag coatings on the tube by shorting the anode contact on the side of the tube to the outer surface with a well insulated piece of wire

GENERAL INFORMATION

TUNING RANGE: Channels 2 through 13 .
SOUND RATIO DETECTOR AND SOUND I.F. FREQUENCY: 4.5 MC

Channe Number	Channel Freq. Mc.	$\begin{gathered} \text { Picture } \\ \substack{\text { Cacrier } \\ \text { Freq. Mc. }} \end{gathered}$	$\begin{gathered} \text { Sound } \\ \substack{\text { Carrier } \\ \text { Freq.Mc. }} \end{gathered}$	Receiver Freq. Mc
2	54-60	55.25	59.75	81.35
3.	60-66	61.25	65.75	87.35
4	66-72	67.25	71.75	93.35
5.	76-82	77.25	81.75	103.35
6	82-88	83.25	87.75	109.35
7	174-180	175.25	179.75	201.35
8	180-186	181.25	185.75	207.35
9	186-192	187.25	191.75	213.35
10	192-198	193.25	197.75	219.35
11	198-204	199.25	203.75	225.35
12	204-210	205.25	209.75	231.35
13	210-216	211.25	215.75	237.35

ANTENNA: "Built-in-Antenna" with provisions for connection of external antenna where necessary. EXTERNAL ANTENNA IMPEDANCE: Balanced 300 ohms
POWER SUPPLY: 117 V. 60 cycles A.C.
POWER CONSUMPTION: 250 watts
AUDIO OUTPUT: 3.2 watts

TUBE COMPLEMENT

Symbol	Tube Usod	
V1	6BQ7 or 6BK7	Cascode RF Amplifier
v3	$6 \mathrm{J6}$	Osc. Mixer
V4	6CB6	1st IF
v5	6CB6	2nd IF
V6	6CB6	3rd IF
v7A	1/2 6AL5	Video Detector
V7B	1/2 6AL5	A.g.c.
v8	6AG7 or 12BY7	Video Output
V9A	$1 / 212$ AU7	Sync. Separator
v9B	$1 / 212 A U 7$	Sync. Clipper
V10	6AL5	Hor. Phase Detector
V11	6SN7-GT	Hor. Osc. \& Discharge
V12	6CD6.G	Hor. Output
V13	6W4-GT	Damper
V14	1B3-GT	High Voltage Rectifier
V15	6 S 4	Vertical Output
V16	5U4-G	Low Voltage Rectifier
V17	5U4-G	Low Voltage Rectifier
V18A	1/2 6SN7	Verical Osc.
V18B	1/2 6SN7	Sync. Inverter
V19	6K6-GT	Audio Output
V20A	$1 / 26$ T8	Audio Amplifier
V20B	1/26T8	Ratio Detector
V21	6AU6	Ratio Det. Driver
V22	17BP4 or 17RP4	Picture Tube

INSTALLATION INSTRUCTIONS

shipping block

The shipping block and bolt located on the top rear inside portion of the cabinet must be removed when the receiver s installed. Models $17 \mathrm{C} 2,17 \mathrm{C} 4$.

aeceiver location

The receiver may be placed anywhere in the room, but for greatest satisfaction it should be located:

1. Away from any bright light that may fall directly on the screen or be reflected from it. This includes windows and
lamps. Some illumination in the lamps. Some illumination in the room, off to one side, is desirable to prevent. eye-strain
2. To provide comfortable viewing and ease in operation.
3. At least one inch away from a wall to allow for cabinet ventilation. This is very important.

antennas

The choice of a television antenna depends entirely upon the location of the receiver with respect to all television slation transmitting antennas in any locality. Maximum pickp is obtained when the receiving antenna is directly in line of sight with the transmitting antenna.

"BULLTIN-ANTENNA"

The receiver is normally shipped with the FADA built-inantenna connected. This antenna is a stationary folded dipole which is used for both the high and low frequency channels. nected to the antenna terminals on the back of the cabinet.

When this antenna is used. the following requirements should e observed for best reception

1. In order to get maximum performance and satisfactory pictures from the "BUILT-IN-ANTENNA," ample signals from the television station must be present at the location of the receiver. Normally, the strength of the signals will vary throughout the room in which the receiver is located. For this reason, better pictures will be obtained if the receiver is thed in all possible locations in the viewing room and is all stations. Avoid large metallic objects, such as radiators metal panels, etc.
2. Lamps, vases, and metallic objects, when placed on to of the receiver, may effect the efficiency of the "BUILTIN ANTENNA."
3. The Foda "BUILT.IN-ANTENNA" will give satisfaclory reception in strong signal areas. but if the receiver is located in a fringe or weak signal area, an outdoor antenna is recommended.

outdoor antenna

The "BUiLT-IN-ANTENNA" must be disconnected from th antenna terminal strip before connecting the outdoor antenna
leads. It is immaterial which lead is connected to which eads. is immarerial which lead is connected to whic terminal
(1) Turn OFF-ON SOUND volume control clockwise about a half turn. This lurns the receiver on and sets the sound volume to a reasonable level.
(2) Allow a brief warm-up period.
(3) Set Station Selector to desired channel.
(4) Adjust the Fine Tuning control to where music or speech is heard, assuming that the station is broadcasting.
(5) Turn picture control fully counter clockwise.
(6) Turn the brightness control fully clockwise and then slowly counter clockwise until light is just visible on the screen.
(7) Turn the picture control clockwise until activity or a definite form is just noted on the screen. Do not advance control any further until steps 8,9 , and 10 are completed.
(8) If the pattern is moving up or down adjust Vertical control until pattern is stationary in vertical direction.
(9) If picture appears as black and white diagonal lines or seems to be moving sideways, adjust Horizontal control until a proper picture is obtained.
(10) Readjust Fine Tuning control for best picture
(11) Adjust Picture control until picture is suitable for brightness and contrast. If the control is advanced to maximum clockwise posi tion, overloading of the picture will occur on strong signals. This will be noted by excessive contrast, bending of picture and raspy noise in the sound output. When this occurs rotate the picture control slowly in a counter clockwise direction until the picture and sound distortion disappears. The brightness and details of a picture are controlled by the Brightness and details of a Dicture are controlled by the Brightness and
Picture knobs. Adjust Tone Controt for desired quality of sound.
(12) Recheck the Fine Tuning control for best picture

NOTE: If any difficulty is experienced with steps number 8 or 9 turn the PICTURE control $1 / 4$ turn counter clockwise, readjust the Fine Tuning control and then repeat these adjustments.

If the receiver has been in previous operation and no controls dis turbed except for turning the on-off knob to "off" position, then subsequent operation should require the previous steps 1 through 3 and, if necessary, steps 13 and 14 as follows:
(13) Adjust the FINE TUNING control for best picture quality. Readjust the SOUND volume control to desired level.
(14) Adjust PICTURE and BRIGHTNESS controls to obtain desired level of contrast and brightness.

17C2-17C4

17T6-17T9

FIG. 1. OPERATING CONTROLS

SERVICE ADJUSTMENTS

The receiver is completely adjusted at the tactory, so nor mally none other than the front panel operating instructions need be followed to put the receiver in operation. However, to provide for any misadjustment of the service controls due to handling. the following instructions are in order.

ION TRAP, FOCUSER AND DEFLECTION YOEE adjustments
Before any adjuatments can be made the back of the cabinet will have to be removed. Remove all screws holding back cover to cabinet, and pull cover away from cabinet. Since The power cord circuit is broken by the interlock when the cabinet back is removed, an extra television power cord will be necessary to make a power connection to the receiver. A mirror placed in front of the receiver will help in making the adjustments.

FOR MAGNETIC FOCUS EINESCOPES:

 ION TRAP ADJUSTMENTSTurn on the receiver and switch to one of the television channels not in use in your area. With the brightness control
in the maximum clockwise position and the picture control in the maximum clockwise position and the picture control
fully counterclockwise adjust the ion trap by moving it forward or backward of the base of the tube, of the same time rotating it slightly around the neck of the cathode ray tube for the brightest raster on the screen. Reduce the brightness control setting until the raster is just visible on the screen, readjust the ion trap for maximum brilliance. Adjust the focuser adjustment control (shown in Figure 2 or 3) until the line structure of the raster is clearly visible. Read-
just the ion trap for maximum raster brilliance. The final
touches of the adjustment should be made with the brightnes control at the maximum position with which good line focus can be maintained.

FOCUSER MAGNET ADJUSTMEAT

The focuser magnet should be adjusted so that there is approximately one-ighth inch of apace betwoen the rear shell of the deflection yoke and the front face of the focuser magnet. This spacing gives best average focus over the face of the tube.
The axis of the hole through the focuser magnet should be parallel with the axis of the cathode ray tube neck. See Figure 2 or 3.
NOTE: The cardboard insert betwoen the focuser maqnet and the neck of the cathode ray tube must not be removed.

deflection yofe adjustmiant

If the lines of the raster are not horizontal or squared with the picture mask, loosen the yoke centering wing screw (shown in Figure 2, 3) and rotate the yoke until this condeflection yoke is Tighten the wing screw making sure the ray tube as possible.

FIG. 2. SERVICE ADJUSTMENT AND CONTROLS electromagnetic focus kinescopes

17T6-17T9

CEntering adjustments

No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet as shown in Fig. 2 or 3. The centering plate has a locking screw which must be loosened before centering. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.
If a corner of the raster is shadowed, check the position of the ion trap. Reposition the ion trap within the range of maximum raster brightness to eliminate the shadow and plate In no case should the ion trap be adjusted to cause any loss of brightness since such operation may cause imme. diate or eventual damage to the cathode roy tube In some cases it may be necesary to shitt the position of the fcuser magnet in order to eliminate a corner shadow.

FOR ELECTROSTATIC FOCUS ENESCOPES:

ION TRAP ADIUSTMENTS
Tum on the receiver and switch to one of the television channels not in use in your area. With the brightness control in the maximum clockwise position and the picture contro fully counterelockwise adjust the ion trap by moving it for ards or backwards at the base of the kinescope, at the same time rotating it slighlly around the neck of the kine scope for the brightest raster on the screen.

deflection youe adustment

If the lines of the raster are not horizontal or squared with the picture mask, loosen the yoke centering wing screw (shown in figure 4) and rotate the yoke until this condition is obtained. Tighten the wing screw making sure that the deflection yoke is as far forward on the neck of the cathode ray tube as possible.

FIG. 3. SERVICE ADJUSTMENTS AND CONTROLS electromagnetic focus kinescopes

17C2-17C4

Centering adjustments:

No eiectrical centering controls are provided. Centering is accomplished by the adjustment of a P.M. centering device located close to the back of the yoke (see figure 4). Two ypes of centering magnets are shown. With the rotatable magnet type, ceniering is achieved by rotating the entire
unit as well as the centering control. With the contrarotatable magnet type, centering is uchieved by rotating one magne (or disc) with respect to the other. When the centering is satisfaciory, readiust the ion trap for maximum raster bri hance keeping the brighness confor al me maxin

NOTE: As all electrostatic focus kinescopes used are essentially of the seif-focus variety, good focusing will automatically be obtained throughout the life of the kinescope. In most receivers utilizing the electrostatic foc'ss kinescope, there is a focu control (see figure 5) for optimizing the focus. See step No. 8 under Service Control Adjustments for adjusting this control

FIG. 4. SERVICE ADJUSTMENTS AND CONTROLS electrostatic focus kinescopes

17T6-17T9-17C2-17C4

SERVICE CONTROL ADJUSTMENTS

 With the deflection system in proper mechanical align ment, the service controls may be adjusied. The mechani-cal adjustments ordinarily will not require further atten
and tion until the cathode ray tube is replaced. Normal pic
ture contrast and brightness should be maintained during adjustments with the AGC switch in its normal position
(max. clockwise position). Using a test pattern from ${ }^{\text {a }}$ local television station, make the service control adjust ments as follows: (Refer to Figure 3 or 5 . 1. Set the horizontal and vertical hold controls on the
iront panel for a steady test pattern. If horizontal syn Iront panel for a steady test pattern. II horizontal syn
chronization cannot be effecied within the normal range chronization cannot be elfecied within the normal cange
of the horizontal hold control, set the control in the center
of its range and adust the horizontal frequency coil of its range and adjust the horizontal frequency coil for a
steady picture. This screw driver adjustment is reached from the top rear section of the chassis.

Set the picture control on the front panel to minimum counter-clockwise, and advance the brightness control on
the front panel ciockwise to maximum. Fully open the the front panel clock wise to maximum. Fully open the
horizontal drive trimmer adjustment located on the center horizontal drive trimmer adjustment located on the center
rear apron of chassis. If no vertical white line appears in rear apron of chassis. In vertical whe it tull drive and
the center of the test pattern, leave it
proceed to the next step. If a vertical white line does approceed to the next step. If a vertical white line does ap-
pear in the center of the test pattern. gradually tighten up pear in the eenter of the test pattern, gradually tighten up
on the trimmer screw unit the white line is etiminated.
Insuffient horizontal drive will cause the raster to fall on the timmer screw untit the white line is eliminated
Insufficient horizontal drive will cause the raster to fall
short of filling the mask horizontally or cause the picture short of filling the mask horizontally or cause the picture
to lack the brilliance normally obtained with a correct to lack the
adjustment.
3. Reset the picture control for the desired picture conmost desirable picture most desirable picture.
. Set he width coil screw-driver adjustment so that the
test pattern fills the kinescope mask horizontally. If necessary recenter the pattern
5. Set the horizontal linearity coil screw-driver adiust 5. Set the horizontal linearity coil screw-driver adjust
ment so that the test pattern is symmetrical from left to right. A slight readjustment of the horizontal drive may be necessary after making this adjustmen S. Set the height control on the rear apron of the chassis so that the test pattern fills the kin
Recenter the pattern il necessary
7. Set the veterical linearity control on the rear apron of he chassis for a symmetrical test pattern vertically. A
slight readjustment of the height control may be required slight readjustment of the he
after making this adjustment
8. In receivers with electromagnetic focus kinescopes, se the brightness and picture controls for a normal test pat ter and adjust the focus adjustment until the fine hor zontal line siructure of contraster is clearly visible ove
the picture area. The control be turned through the correct point several times so that optimum focus is obtained.
In receivers with electrostatic locus kinescopes, set the brightness and picture controls for a normal test pattern
and adjust the focus control for the clearest horizontal and vertical wedges. Readjust the ion trap tor maximu TO REMOVE FRONT SAFETY GLASS ON MODEL $17 T 9$ ONLY
The front glass may be removed to allow cleaning of its The lront glass may be removed to allow
rear face and of the picture tube face The top edge of the glass tits into a groove on the inside on a metal bracket attached to the cabinet. The bracket is covered by a snap-on FADA nameplate Place fingers over top and bollom of the FADA nameplate
and pull. The natneplate will snap off to expose two and pull. The naineplate will snap off to expose two
screws in the bracket. Press bracket in towards cabinet with one hand and remove the two screws with the other hand. After removing screws, hold the bottom edge of the
glass with free hand. Remove bracket. While holding glass with free hand. Remove bracket. Wenily, holding
glass at bottom allow it to slide down genty, until its op edge comes below cabinet top. With other hand grasp
top edge of glass and remove glass from cabinet.

FIG. 5. SERVICE ADJUSTMENTS

ALIGNMENT

general

If the receiver must be aligned or some portion serviced, the chassis and kinescope must be removed from the cabinet Remove the knobs from the front panel, remove all screws holding back cover to cabinet, and pull cover away from cabinet to disengage interlock. Remove the two screws hold ing the antenna terminal strip to cabinet. Remove speaker plug.
For table model receivers the chassis and kinescope must be removed as one unit. Remove the four chassis mountirg bolts rom the underside of the cabinet. Slide the chassis back ou of the cabinet.
For console model receivers the chassis must be removed firs and separately from the kinescope (see fig. 3). Disengage the yoke plug. Remove the two bolts on the back top and bottom of the chassis mounting board. Slide the chassis board with chassis out of the cabinet. To remove the kinescope, remove the four boits holding the tube mounting board to the cabine and slide the complete assembly out of the cabinet.

EqUIPMENT REQUIRED

RF SWEEP GENERATOR
 a) Freenency Rang meeting the following requirements:

$\begin{array}{ll}18 \text { to } 30 \mathrm{mc} & 10 \mathrm{mc} \text { sweep width } \\ 40 \text { to } 90 \mathrm{mc} & 10 \mathrm{mc} \text { sweep width }\end{array}$

40 to 90 mc	
170 to 225 mc	10 mc sweep width

(b) Output adjustable with ot least I volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

OSCILLOSCOPE

$\stackrel{\text { EERT }}{\text { WRUT }}$

SWEEP
GENERATOR
$\underset{\substack{\text { INTERNAL } \\ \text { SWEEP } \\ \text { SUT }}}{ }$

RECEIVER
inpur

FIG. 6. SWEEP SETUP EXTERNAL PHASING

If the sweep generator does not have an internal blanking control or a phasing control, then it will be necessary to connect a phasing network between the sweep output of the sweep generator and the horizontal input to the oscilloscope.
See Fig. 6 SWEEP.SET.UP EXTERNAL PHASING.

CATHODE RAY OSCILLOSCOPE preferably one with a wide band vertical deflection, input calibrating source, and a low capacily probe.
sganal generator to cover all if frequencies of from 4.5 mc to 28 mc and all picture and sound carrier freauencies.

ELECTRONIC VOLTMETER of Junior "Voltohmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 20 KY .
Bias supply made of batteries to give 4.5 volts.

order of rlignment

Sound Ratio Detector.
Sound IF Transiformers.
Picture IF Transformers (preliminary and flat topping) Oscillator and RF sections.

PRECAUTIONS

Before proceeding with IF Alignment, the following precautions should be observed
Disconnect the antenna. Sel picture control for minimum. Remove R.F. unit bottom shield. Remove channel 11 oscillator coil section. This is the coil strip nearest the fine-tuning
control. Short the coil nearest the oscillator tuning slug, by soldering a bare wire across the coil terminals. Use extreme care so as not to shorl the oscillator coil to any other coil and also not to deform any of the coils. Reinsert channel 11 oscillator coil section and set R.F. unit to channel 11. Now the local oscillator is deactivated and you may proceed with the alignment without interierence from local television stations.

For all IF Alignment, insert a 47 K ohm resistor in series with the VTVM probe: also, a 47 K ohm resistor should be inserted the VTVM probe: also, a 4 a between the take-oh point ald
deocupling.

SOUND RATIO DETECTOR AND IF RLIGNMERT

1. Connect probe of the VTVM to the diode plate of the ratio detector tube V20B (6T8, pin 2). Common to ground. See Fiqure 8
2. Connect high side of the signal generator to the grid of the ratio detector driver. V21 (6AU6, pin 1). Common to ground. See Figure 8.
3. Tune the slgnal generator to exactly 4.5 mc and attenuate
the generator so it does not exceed 8 volts on the VTVM.
4. Peak L16 bottom core (FIG. 8) for maximum
5. Peak L17 top core (FIG. 9) for maximum.
6. Adjust attenuator of signal generator to give exactly eight
volts on the VTVM. 7. Move orobe of VTVM to junction of R35, C28 and C29.
(FIG. 8). (MG. 8.
7. Adiust L17 top core (FIG. 9) for exactly 4 volts on the
VTVM.
8. Move signal aenerator to video output tube V8 (6AG7. pin 4) (FIG. 8) and repeat steps number ! and 3.
9. Peak Ll2 bottom (FIG. 8) and L13 top (FIG. 9) for
maximum.
10. Repeat with care steps 1 -3-4.5-6-7.8.

ALTERNATIVE PBOCEDURE FOR STEPS 8-7-:

1. Connect common lead of VTVM to junction of R33 and R34. (FIG. 8)
2. Connect probe of VTVM to junction of R35. C28, and O29. (FIG. 8).
3. Adjust L17 tod (FIG. 9) for zero readinc on the VTVM.

PICtURE IF. (ROUGH ALIGNMENT)

Connect the bias battery as shown in fig. 8. The negative side of the bias battery to the iunction of R4. R5, and C80 and the positive side to ground. Disconnect the white wire, hat goes to the center terminal of the AGC switch (S2), from the junction of R4, R5, and C80. Connect the output of the signal generalor beiween the test point on the R^{5} unit (se ig. 9) and ground
2. Connect the proive of the VTVM to the function of L11 and RI6 (fig. 8). Common to ground. When 12BY7 is used con
nect o junction ol LII and R118.
Set the signal generator to 21.6 mc . and adjust L25, co nect to junction of LII and RI1.8. mc . and adjust L25, co.
3. Set the signal generator to 21.6 . channel sound trap. (fig. 9) for minimum output on V T VM. 4. Reset the signal generator to 23.25 mc . Adjust the outpu of the signal generator for approximately 2.5 volts on the
VTVM. 5. Peak first Picture I.F. coil (located on R.F. Unit) and the 2.5 volts on the VTVM by adjusting the generato output.
6. Reset signal generator to 25.7 mc .
7. Peak second Picture I.F. coil L3 and the fourth Picture 1.F coil L9 (fig. 9) for maximum.

PICTURE I.F. (FLAT-TOPPING)

. Remove signal generator and VTVM
Connect the sweep generator between the R.F. jest point and ground.
3. Connect the oscilloscope probe to the junction of L 11 and RI6 (or LII and R118 in sets using 12BY7).
4. Connect the hot side of the signal generator to the chassis ide apron nearest the first IF. stage. Leave the ground side disconnected.
5. With most sweep generators, there is enough output to give an I.F. response curve of sufficient height on the cscillo scope. If there is insufficient output use 3 volts bias instead of 4.5 volis. In adjusting the output of the sweep generator. make sure you do not overload the I.F.'s. This can be ascertained by noticing that the relative shape of the I.F. response
does not change with small variations in sweep generator does not change with small variations in sweep generato outpu
6. Set the signal generator to 26.1 mc . and advance the output until a marker pip is visible on the Picture I.F. curve on the oscilloscope. Be careful not to distort the I.F. curve by advancing the generator output too far. Adjust L3 and L9 so that the marker pip is
I.F. curves and Markers.
7. Set the signal generator to 22.7 mc . Adjust the first Picture F. coil (located on the R.F. Tuner) and L6 so that the marker pip is at the 50% point. See Fiq. 7
8. Repeat steps 6 and 7 until an acceptable curve is achieved

FIG. 7. TYPICAL PICTURE I.F. CURVES AND MARKERS

oscillator and r.f. alignment

The R.F. Unit is a turret type tuner with separata coil sea ments for each channel. Normal channel sequence is pro gressive in a clockwise direction covering channels 2 to 13 6BK7. The converter stage utilizes a $8 / 6$.

oscillator alignment

It should be possible to lune in all channels with the fin tuning control C 212 (see figs. 8 and 9) in the middle thir of its range. When V ages, the oscillator may shift slighily in irequency requiring adjustment. It is isteale and ma be replaced, several tubes should be tried to find one that requires the least oscillator adjustment.
If an accurately calibrated signal generator that covers an the R.F. frequencies is available then continue with step If not go on to step 10 .

1. Remove tube shield on 676. V3.
2. Modify a tube shield which will fit snugly over the 616 and still remain ungrounded.
3. Remove shorting wire from channel 11 oscillator coil and replace segment and R.F. unit bottom shield.
4. Turn channel selector to channel 12 .
5. Set generator to the oscillator frequency which is 231.35 mc. for channel 12 .
6. With reference to figure 10 connect the generator to one of the 10 mmf capacitors and connect the other 10 mmi capacitor to the ungrounded tube shield over the 6J6. Connect remaining terminal on probe to vertical input on oscilloscope. 7. Set fine tuning control C212 (fig. 9) to center of its range Adjust C211 tor zero beat pattern on the oscilloscope screen. (The oscillator coil slug which is accessible from the chassis front apron should be in its mechanical mid-posith. slug should fall in during adjustment, the turrel housing. the little wire have to be remally ins into the slug threads lifted ud. and the slug brought forward to its mean position.)
7. Reset the generator for the oscillator frequency of channel I. Adjust the oscillator coil slug for zero beat on the oscilloscope screen. Use a non-metallic screw-driver in adiusting the oscillator coil slug.
8. Repeat step \& for the remaining channels, making suie he signal generator is set fo: the proper frequency on each channel.
When an accurately calibrated generator is not available, then oscillator alignment can only be accomplished when the local T.V. transmitters are on the air
9. Remove bias battery and replace AGC leud to junction of R4, R5, and C80 (fig. 8).
10. Set fine tuning control C212 (fig. 9) to center of its range. 12. Rotate channel selector control to one of the local T.V. stations and adiust the ossillator coil slug, which is accessible from the front chassis' apion (fig. 9), for best picture. 13. Check remaining local stations by rotating the channel selector switch to each chann
oscillator slug for best picture.

FIG. 8. BOTTOM VIEW OF CHASSIS

FIG. 9. TOP VIEW OF CHASSIS
14. If on one or two of the channels you do not have enough
oscillator range, readjus C211 and repeat steps 12 and 13 . It is possible to adiust the oseillator channel slugs without
removing the chassis trom the cabinet. The slugs are made removing the chassis from the cabinet. The slugs are mado
accessibie by removing the channel selocior ond fine tuning knobs and by moving the oscutcheon platat to one side. Use
a long thin tibre or bakelite scrowdriver tor making adust $\underset{\substack{a \\ \text { a long thin } \\ \text { ments. }}}{\text { tibre or bakelite screwdriver for making adiust. }}$

FIG. 10.

h.f. Aligmient

1. Reconnect bias ballery as in slep 1. Picture 1.F. (Rough
alignment). Disconnect white $A G C$ wire. Set bias for 3 volts. 2. Connect oscilloscope hrough 10,000 ohms to tost point oir .h. Unit. Connect sweep generator to antenna terminals. If
the sweep generator is not erminated for balanced 300 ohms. insert the network shown in ficiq. 11 below.

FIG. 11.
3. Set fine tuning control at approximotely the midpoint of
its tuning range and rotate channel selector to channel 12 . 4. Adiust swoep generator 10 channel 12 and loosely couplo
signol generator to swoep genorator in order 1 o obtain pic ture carrier and sound carrier marteres.
5. Adiust C206. C203. and C213 for flat top
Seo figure 12 for acceptable R.F. passbonds.
6. Check remaining channols. If the response curves ob. lained on ony channel in nol acceptabie, it might be neces
sary 10 relurn to channel 12 and make a sary to return to channel 12 and make a compromise of
response. If one channel is oxtremely out, that coil soction
 the tuner trom the chassis in order to repair or replace a a co
"POWER PLUS" SWITCH. ITS FUNCTION AND US
The new Fada elevevision receiver with "Power Plus" control
has been designed tor
 This has been achieved by the utilization of two types of
automatic gain control' $A G C C$ circuits. The $A G C$ circuit in
 on the rear apron of the receiver chassis.
In normal or strong signnal aroas. the AGC swilch is rolated 10 its maximum clockwise position. This introduces a peak
delector type of $A G C$ which is tost ocling hos delector type of AGC which is tast acting, has yood limiting
and prevents overloading, all of which are desircobe features and prevents overloading, all of what.
tor superior teception in these aroas.
In weak and noisy signal areas, the $A G C$ switch is ratated to its maximum counterclockwise position. This introduces an average delector ype of $A G C$ which is compleely immune
to the impulse O the impulse type of noises prominent in weak signal areas.
Another desirabole feacure of this type of AGC tor weak signal areas is that a lower value or bias in developed for
a fixed signal strength a fixed signal strength, thereby giving betier noise factor
and superior contrast. These chatacteristics qive
and and superior contrast. These charociterisics give a pieture
which has a minimum of snow. which is tree of noise, ond which has a mimum of snow. which is tree
which is tree of horizontal and vertical itter.

ACCEPTABLE R.F. PASSBAND FIG. 12.

SERVICE SUGGESTIONS

No Raster Kinescope

heorrect adiustment of in trap mage
No high voltage. Check V11, V12, V13, V14. Check all voltages and waveforms associated with these tubes. Incorrect setting of horizontal drive control (C51). Check fuse Fl.
Horkontal Deflection Only
Check V15, V18A, T5, T6, L18, L19, R60 and R66
Check voltage and waveforms on grids and plates of V15,
Poor Horkontal Linocrity
Check V12. V13, L21, L23, L24, C56, C57 and C58.
Small Ranter
Low B or low line voltage
Check V15 and V17.
Rastor-No Sound No Picture with Control Over Brightaese Check V4. V5, V6, V7. V8 and their associated circuits. Check R. F. Unit,
Rastor - No Sound No pheture and No Control Over Chect 130
Check 130 volts supply and R87.
Raster Picture and No Sound
Check V19, V20 A o Sound
Check V19, V20 A and B, V21.
Check alignment of L12, L13, L16, and L17.
Poor or No Horlsontal Sync.
Check for gassy Kinescope.
Check V9. V10. V18B and their associated circiuits.
Poor or No Vertical Syac.
Check V9, V18B and their associated circuits.
Picture Smear
Check Video peaking coils L10. L11, L14, and L15.
Check V7, V8, and their associated circuits.
Check video I. F. Alignment.
Arcing in High Voltage Supply
When replacing a component in the high voltage supply
ali soldered connections should there are no sharp ends. This will eliminate any poss

WAVE FORMS

PIN 7 (V7A) 6AL5
VIDEO DETECTOR (HORIZ. SCOPE) 3 VOLTS PP

PIN 8 (V8) 6AG7 VIDEO OUTPUT (HORIZ. SCOPE) 65 VOLTS PP

dN 2 (VGA) 12AU7
SYNC. SEPARATOR (HORIZ. SCOPE) 45 Volts PP

Un and

PIN 1 (V9A) 12AU7
SYNC. SEPARATOR (HORIZ. SCOPE) 6 volts PP

PIN 6 (V9B) 12AU7
SYNC. CLIPPER (HORIZ. SCOPE) 65 VOLTS PP

PIN 8 (V8) 6AG7 VIDEO OUTPUT (VERT. SCOPE) 65 VOLTS PP

PIN 2 (V9A) 12AU7 SYNC. SEPARATOR (VERT. SCOPE) 45 VOLTS PP

PIN 1 (V9A) 12AU7
SYNC SEPARATOR (VERT. SCOPE) 16 volts PP

PIN 6 (V9B) 12AU7 SYNC. CLIPPER (VERT. SCOPE) 65 VOLTS PP

PIN 3 (V18B) 6SN7GT YNC. INVERTER (VERT. SCOPE 25 volts PP

PIN 6 (V15) 654 48 volts pp

PIN 1 (V10) 6AL5 HORIZ PHASE DETECTOR 20 VOLTS PP

PIN 5 \& 7 (V10) 6AL5 horiz. PHASE DETECTOR 16 VOLTS PP

PIN 5 (V12) 6CD6G HORIZ. OUTPUT 65 Volts PP

O John F. Rider

© John F. Rider

HIGH VOLTAGE WARNING

Operation of this receiver outside its cabinet or with covers removed involves a shock hazard from the power supplies. No work should be attempted on this receiver by anyone not thoroughly familiar with the precautions neces. sary when working on high voltage equipment.

CATHODE RAY TUBE HANDLING PRECAUTIONS

Extreme care must be used in handling the picture tube. The tube is highly evacuated and, due to its large size, is subjected to a considerable amount of atmospheric pressure. The handler should wear safety goggles and gloves for protection. Avoid nicking or scratching the glass by rough contact with other objects.
Betore removing the picture tube, discharge the capacitor formed by the inner and outer aquadag coatings on the tube by shorting the anode contact on the side of the tube to the outer surface with a well insulated piece of wire.

GENERAL INFORMATION

24 T2

Channel Freq. Mc.	Picture Carrier Freq. Mc.	Sound Corriler Freq. Mc.	Recolver R-F Osc. Freq. Mc.
$54-60$	55.25	59.75	81.35
$60-66$	61.25	65.75	87.35
$66-72$	67.25	71.75	93.35
$76-82$	77.25	81.75	103.35
$82-88$	83.25	87.75	109.35
$174-180$	175.25	179.75	201.35
$180-186$	181.25	185.75	207.35
$186-192$	187.25	191.75	213.35
$192-198$	193.25	197.75	219.35
$198-204$	199.25	203.75	225.35
$204-210$	205.25	209.75	231.35
$210-216$	211.25	215.75	237.35

TUNING RANGE: Channels 2 through 13. SOUND RATIO DETECTOR FREQUENCY: 4.5MC. SOUND IF FREQUENCY: 4.5MC.
PICTURE IF FREQUENCY: 26.1 MC .
ANTENNA: "Built-in-Antenna" with provisions for connection of external antenna where necessary EXTERNAL ANTENNA IMPEDANCE: Balanced 300 ohms.
POWER SUPPLY: 117 volts, 60 cycles A.C. POWER CONSUMPTION: 250 watts
AUDIO OUTPUT: 3.2 watts

INSTALLATION INSTRUCTIONS

shipping block

The shipping block and bolt located on the top rear inside portion of the calanol must be removed when the receive is installed Model 21 C 2 only

receiver location

The receiver may be placed anywhere in the room, but for qreatest salistaction it should be located:

1. Away from any bright light that may tall directly on the screen or be reflected from 11 . This includes windows and lamps. Some side, is
2. To provide comfortable viewing and ease in operation
3. At least one inch away from a wall to allow for cabinet ventilation. This is very important.

antennas

The choice of a television antenna depends entirely upon the location cf the receiver with respect to all television up is obtained when the receiving antenna is directly in line of sight with the transmitting antenna.

"bulltin.antenna

The receiver is normally shipped with the FADA built-in antenna connected. This antenna is a stationary lolded dipole which is used for both the high and low trequency channels. It is lastened to the top underside of the cabinet. and con

When this antenna is used, the following requirements should be observed for best receplion

1. In order to get maximum performance and satisflactory pictures from the "BUILTIN-ANTENNA. ample signals from the television station must be present at the location of the receiver. Normally, the strength of the signals will var
roughout the room in which the refeiver is located. For his reason, beller pictures will be obtained if the receiver is tried in all possible locations in the viewing room and is then placed where the clearest pictures are received from all stations. Avoid large metallic objects, such as radiators. metal panels. etc.
2. Lamps, vases, and melallic objects, when placed on top the receiver, may effect the efficiency of the "BUILT-IN. antenna.
3. The Foda "builtin-antenna" will give satisfactory eceplion in strong signal areas; but if the receiver is s recommended.

outdoor antenna

The "BUILTIN-ANTENNA" must be disconnected from the entenna terminal strip before connecting the outdoor antenna leads. It is immaterial which lead is connected to which lerminal.

TUBE COMPLEMENT		
SYmbol	Tube Usod	
v1	6BQ7 or.6BK7	Casoode RF Amplitier
v3	616	Osc. Mixer
v4	6CB6	lst IF
vs	6CB6	2nd IF
v6	6CB6	3rd IF
V7A	$1 / 2$ 6AL5	Video Detactor
v7	$1 / 2$ 6ALS	A.G.C.
v8	6AG7 or 12BY7	Video Output
v9A	$1 / 2$ [2AU7	Sync. Separator
v9B	$1 / 212 A U 7$	Sync. Clipper
V10	6AL5	Hor. Phase Detector
V11	6SN7-GT	Hor. Osc. \& Discharge
V12	6CD6.G	Hor. Output
V13	6W4-GT	Damper
V14	183-GT	High Voltage Rectifier
V15	654	Vertical Output
V16	SU4-G	Low Voltage Rectifier
V17	SU4.G	Low Voltage Rectifier
VI8A	$1 / 265 N 7$	Vertical Osc.
V18B	1/265N7	Syne Inverter
V19	6K6-GT	Audio Output
V20A	1/2678	Audı Ampliter
V20B	1/2678	Ratio Detector
V21	6AU6	Ratio Det. Driver
V22	21EP4, 21 AP4	Picture Tube

OPERATING INSTRUCTIONS

Hoter to Figure 1)

(1) Turn OFF.ON SOUND volume control clockwise about a half turn. This turns the receiver on and sets the sound volume to a reasonable level.
(2) Allow a brief warm-up period.
(3) Set Station Selector to desired channel.
(4) Adjust the Fine Tuning control to where music or speech is heard, assuming that the station is broadcasting.
(5) Turn picture control fully counter clockwise.
(6) Turn the brightness control fully clockwise and then slowly counter clockwise until light is just visible on the screen.
(7) Turn the picture control clockwise until activity or a definite form is just noted on the screen. Do not advance control any further until steps 8,9 , and 10 are completed.
(8) If the pattern is moving up or down adjust Vertical control until pattern is stationary in vertical direction.
(9) If picture appears as black and white diagonal lines or seems to be moving sideways, adjust Horizontal control until a proper picture is obtained.
(10) Readjust Fine Tuning control for best picture.
(11) Adjust Picture control until picture is suitable for brightness and contrast. If the control is advanced to maximum clockwise position, overloading of the picture will occur on strong signals. This will be noted by excessive contrast, bending of picture and raspy noise in the sound output. When this occurs rotate the picture control slowly in a counter clockwise direction until the picture and sound distortion disappears. The brightness and details of a picture are controlled by the Brightness and Picture knobs. Adjust Tone Control for desired sound quality (12) Recheck the Fine Tuning control for best picture

NOTE: If any difficulty is experienced with steps number 8 or 9 , turn the PICTURE control $1 / 4$ turn counter clockwise, readjust the Fine Tuning control and then repeat these adjustments.

If the receiver has been in previous operation and no controls disturbed except for turning the on-off knob to "off" position, then subsequent operation should require the previous steps 1 through 3 and, if necessary, steps 13 and 14 as follows:
(13) Adjust the FINE TUNING control for best picture quality. Readjust the SOUND volume control to desired level.
(14) Adjust PICTURE and BRIGHTNESS controls to obtain desired level of contrast and brightness
© John F. Rider

on trap adiustments

urn on the receiver and switch to one of the television channels not in use in your area. With the brighness control the maximum clockwise position and the picture conirol
ally counterclockwise adiust tho ion trap by moving it brward or backward at the base of the tube. at the same me rotating it slightly around the neck of the cathode ray tube for the brightest raster on the screen. Reduce the brightcreen, readiust the ion trap for maximum brilliance. Adiust e focuser adjusiment control (shown in Figure 2,3 or 4) until the line structure of the raster is clearly visible. Read fust the ion trap for maximum raster brilliance. The final ouches of the adjustment should be made with the brightness control at the maximum position with which good line focus

ocuser magnet adjustment

The focuser magnet should be adjusted so that there is
approximately oneeighth inch of space betwoen the rear shell of the deflection yoke and the front face of the focuser magnet. This spacing gives best average focus over the ace of the tube
The axis of the hole through the focuser magnet should be arallel with the axis of the cathode ray tube neck See Figure 2.3 or 4.
NOTE: The cardboard insert between the focuser magnet and the neck of the cathode ray tube must not be removed.

DEFLECTION YOKE ADJUSTMENT

the lines of the raster are not horizontal or squared with the picture mask, loosen the yoke centering wing screw hown in Figure 2,3 or 4) and rotate the yoke until this condition is obtained. Tighten the wing screw making sure the fillection yoke is as far forward on the neck of the cathode ray tube as possible.

24T2

ENTERING ADJUSTMENTS

No electrical centering controls are provided. Centering is magnet as shown in Fig. 2, 3 or 4 . The centering plate ha locking screw which must be loosened before centering side to side and sidewise adjustment moves the picture up and down.
If a corner of the raster is shadowed, check the position of the ion trap. Reposition the ion trap within the range of
maximum raster brightness to eliminate the shadow and recenter the picture by adjusiment of the focus centering plate. In no case should the ion trap be adjusted to cause
any loss of brightness since such operation may cause im any loss of brightness since such operation may cause im.
mediate or eventual damage to the cathode ray tube. In
some cases it may be necessary to shit the position of the some cases it may be necessary to shift the position of the

SERVICE CONTROL

ADJUSTMENTS With the deflection system in proper mechanical align-
ment, the service controls may be adjusted The mechani-
cal adiustments ordinarily will not require further attencal adjustments ordinarily will not require further atten-
tion until the cathode ray tube is replaced. Normal picture contrast and brightness should be maintained during adustments. Using a test pattern from a local television station, make the service control adjustments as follows
Refer to Figure 2,3 or 4 .
Set the horizontal and vertical hold controls on the front panel for a steady test patter. if horizontal synchronization cannot be effected within the normal range
of the horizontal hold control, set the control in the center of its range and adjust the horizontal frequency coil for a steady picture. This screw driver adjustment is reached
rom the top rear section of the chassis rom the top rear section of the chassis
2. Set the picture control on the front panel to minimum
counter-clockwise. and advance the brightness control on
e front panel clockwise to maximum Fully open the horizontal drive trimmer adjustment located on the center ear apron of chassis. If no vertical white line appears in he center of the test patiern, leave it at full drive and
proceed to the next step. If a vertical white line does appear in the center of the test pattern, gradually tighten up on the trimmer screw until the white line is eliminated. Insufficient horizontal drive will cause the raster to fall
hort of filling the mask horizontally or cause the picture lack the brilliance normally obtained with a correct djustment.
Reset the picture control for the desired picture con-
rast. If necessary readjust the brightness control lor a rast. If necessary. rea
4. Set the width coil screw-driver adjustment so that the
test pattern fills the horizontal dimensions of the cathode est pattern fills the horizontal dimensions of the cathode
a ing plate may be necessary to recenter the pattern. 5. Set the horizontal linearity coil screw-driver adjust-
ment so that the test pattern is symmetrical from left to ment so that the test pattern is symmetrical from left to right. A slight readjustment of the horizontal
be necessary after making this adjustment.
6. Set the height control on the rear apron of the chassis so that the test patern tills the vertical dimensions of the cathode ray tube mask. A minor adjustmentor the pacusern Set the vertical linearity control on the rear apron of he chassis for a symmetrical test pattern in the vertical dimensions. A slight readjustment of the height contro
may be required after making this adjustment. Set the brightness and picture controls for a normal test pattern and adjust the focus adjustment until the fine hor-
izontal line structure of the raster is clearly visible over izontal line structure of the raster is clearly visible over
the picture area. The control should be turned through the correct point several times so that optimum focus is
obtained.

FIG. 3. SERVICE ADJUSTMENTS AND CONTROLS

MODELS DL21T, 21C2, 21T, 24T2

FIG. 4. SERVICE ADIUSTMENTS AND CONTROLS $21 T$ DL21T
to remove front safety glass on MODEL $21 T$ ONLY
The front glass may be removed to allow The front glass may be removed fo allow cleaning of its
rand of the picture tube face. The top edge of the glass fits into a groove on the inside
suriace at the top of the cabinet. The bottom edge rests on surlace at the top of the cabinet. The bottom edge rests on
a metal bracket attached to the cabinet. The bracket is covered by a snap-on decorative plate.
Place fingers over top and bottom of the
Place fingers over top and bottom of the decorative plate
and pull. The nameplate will snap off to expose two and pull. The nameplate will snap off to expose tw
screws in the bracket. Press bracket in towards cabine with one hand and remove the two screws with the other hand. After removing screws, hold the bottom edge of the
glass with free hand. Remove bracket. While holding glass at bottom allow it to slide down gently. until its top
edge comes below cabinet top. With other hand grasp top
edge of glass and remove glass from cabinet. TO PEMOVE FRONT SATETY GISS TO REMOVE FRONT
The top edge of the glass fits into a groove on the inside The top edge of the glass fits into a groove on the inside
surface of the top of the cabinet. The bottom edge of the glass fits into a groove on the inside suriace at the bottom of cabinet and rests on a pushe-up bar which possse
throug the bottom (near front and center) of the cabine through the bottom (near front and center) of the cabinet
A screw holds this push bar to the underside of the cabinet bottom.
Move cabinet forward until the felt feet at the front portion of the cabinet bottom just touch the odge of the table. The
front edge of the cabinet will overhang the table. Ther roll now be sufficient root will overhang the table. There push bar to the bottom of the cabinet.
Place one hand on the top portion of the salety glass. With the iree hand remove the screw holding the push bar Prace the free hand on glass next to the other hand Press
gently forward and down on glass which will slide down gently forward and down on glass which will slide down
to expose top edge. Grasp top edge with either hand and bring glass out and then up from bottom groove.

general

ALIGNMENT

If the receiver must be aligned or some portion serviced he chassis must be removed first and separately from the
kinescope. (See figures 2, 3, or 4.) To remove the chassis emove the knobs from the front panel, remove all screws holding back cover to cabinet and pull cover awoy from socket, the kinescope high voittage lead, the yole plug,
and the speaker plug. Remove the wo screws holding the and the speaker plug. Remove the two screws hold
antenna terminal strip to the top of the cabinet.
For Models 21 T and DL21T, remove the four chassis moun ing bolts from the underside of the cabinet, (See Figure 4) and slide the chassis back out of the cabine bottom of the chassis mounting board. A third bolt which runs through the bottom board underneath the front of the
chassis must be loosened. (This bolt is used to align the chassis must be loosened. (This bolt is used to align the
control shafts with the holes on the front panel.) Slide chassis hoard with chessis out of the cabinet. (See Fig. 3)
For Model 24 T 2 remove the two bolts on the back top and For Model 24 T2 remove the two bolts on the back top and bottom and one boit on the top ront of the chassis mount
ing board (See Figure 2) and slide the chassis mounting ing board, (See Figure 2 and slide the ch
board with the chassis out of the cabinet
To remove the kinescope on Models 21 C 2 and 24 T 2 re
move the bolts (four on $21 C 2$ and move the bolts (four on 21 C 2 and three on 24 T 2) holding
the tube mounting board to the cabinet. For the 24 T 2 , als remove the kinescope holding blocks. Slide the complete assembly out of the cabinet.
To remove the kinescope on Models 21 T and DL21T place
the cabinet front down and remove the four bolts holding The cabinet iront down and remove the iour bolts holding off the tube. being careful not to exert any force on neck
of tube, and then loosen the two screws holding the kine scope holding strap to free tube. Kinescope can then be
lifted tree from cradle. Warning: Do not attempt to lil scope hree from cradle. Warning: Do not attempt to lift kinescope by grasping neck of tube.

MF SWEIP GENEBATOR meating the following requirement
(a) Frequency Rangea

18 to $30 \mathrm{mc} \quad 10 \mathrm{mc}$ swoep width
$\begin{array}{ll}40 \text { to } 90 \mathrm{mc} & 10 \mathrm{mc} \text { swoep width } \\ 170 \text { to } 225 \mathrm{mc} & 10 \mathrm{mc} \text { sweep width }\end{array}$
b) Output adjustable with at least 1 volt maximum
c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

OSCILLOSCOPE

FIG. 5. SWEEP SETUP

 EXTERNAL PHASINGIf the swoep generator does not have an internal blanking control or a phasing control, then it will be necessary to connect a phasing network betwoen the swoep oulpyt of the woep generator and the horizontal input to the oscilloscope Cathode ray oscrioscope proth
CATHODE RAY OSCHLOSCOPE preferably one with a wide band vertical deflection, input calibrating source, and a low capacity probe.
agnal genkrator to cover all IF frequenciea of from 4.5 mc to 28 mc and all pleture and sound cartier frequencies.

ELECTRONC VOLTMETER of Junior "Voltohmyst" type and high voliage multiplier probe for use with this meter to permit measurements up to 20KV
order of alignmen
Sound Ratio Delector
Sound IF Transtormers
Picture IF Transformers (preliminary and flat topping) Oscillator and RF sections.

preckutions

Before proceeding with IF Alignment, the following precauions should be observed
Disconnect the antenna. Set picture control for minimum. Remove R.F. unit bottom shield. Remove channel 11 oscillator解 sock. This is the coil strip nearest the fnotuning oldering a bare wire across the oscillator tuning slug. by are so as not to shor the oscillator coil to any extreme and also not to delorm any of the coils. Reinsert charin 11 scillator coil section and set R.F. unit to channel 11. Now he local oscillator is deactivated and you may proceed with the alignment without interference from local television

For all IF Alignment, insert a 47 K ohm resistor in series with the VTVM probe: also, a 47K ohm resistor should be inserted dezoupling.

OUND RATIO DETECTOR AND IF ALIGMMENT

Connect probs of the VTVM to the diode plate of the ratio detector tube V20B (678, pin 2). Common to ground. See Figure 11 .
2. Connect high side of the signal generator to the grid of the ratio detector driver. V21 (6AU6, pin 1). Common to ground. See Figure 11
3. Tune the signal generator to exactly 4.5 mc and atienuate
the generator so it does not exceed 8 volts on the VTVM. . Peak L 16 bctiom core (FIG. 11) lor maximum.
5. Peak L17 top core (FIG. 12) for maximum.
6. Adjust attenuator of signal generator to give exactly eight
volts on the VTVM.
. Move prcbe of VTVM to junction of R28, C31 and C29. FIG. 11)
8. Adjust L17 top core (FIG. 12) for exactly 4 volts on the
VTVM. VTVM.
9. Move signal generator to video output tube V8 (6AG7,
pin 4) (FIG. 11) and repeat steps number 1 and 3 . 10. Peak Lil2 bottom (FIG. 11) and L13 top (FIG. 12) for maximum
11. Repeat with care steps $1-3 \cdot 4 \cdot-5 \cdot 6 \cdot 7 \cdot 8$.

alternative procedure for steps 8.7.8

1. Connect common lead of VTVM to junction of R29 and 2. Connect probe of VTVM to junction of R28. C31, and C29 2. Connec
(FIG. 11).
2. Adjust L 17 top (FIG. 12) for zero reading on the VTVM.
3. Connect detector probe shown in figure ${ }^{6}$ between
kinescope cathode (junction of R37 and A38) and ground. 13. Rotate the contrast control to its maximum clockwise posi-
iin. Connect probe of VTVM to dotector.
4. Adjust L 12 (bottom slug) for minimum output on VTVM.

FIG. 6. DETECTOR PROBE

ICTURE IF. (ROUGH RLIGNMENT)

Connect the bias battery as shown in fig. 11. The negative side of the bias battery to the junction of R8, R5, and C81, and the positive side to ground. Disconnect the white wire. that goes to the center terminal of the AGC switch (S2), from the junction of R8, R5, and C81. Connect the output of the signal generator be
Connect the probe of the VTVM to the iunction of L 11 and 16 (iig ill Common to ground.
3. Set the signal generator to 21.6 mc . and adiust L25, cohannel sound trap, (fig. 12) for minimum output on VTVM. . Reset the signcl generator to 23.25 mc . Adjust the output the signal generator for approximately 2.5 volts on the TVM
Peak first Picture 1.F. coil (located on R.F. Unit) and the hird Picture I.F. coil L 6 (fig. 12) for maximum. Maintain approximately 2.5 volts on the VTVM by adjusting the generator output
6. Reset signal generator to 25.7 mc .
7. Peak second Picture I.F. coil L3 and the fourth Picture I.F. coil L9 (fig. 12) for maximum.

PICTUBE IF. (FLAT-TOPPING)

Remove signal generator and VTVM
Counect the sweep generator between the R.F. test point and ground
. Connect the oscilloscope probe to the junction of Lll and R16.
Connect the hot side of the signal generator to the chassis side apron nearest the first I.F. stage. Leave the ground side disconnected.
5. With most sweep generators, there is enough output to give an I.F. response curve of sufficient height on the oscilloscope. If there is insufficient output use 3 volts bias instead of 4.5 volts. In adjusting the output of the sweep generator. make sure you do not overload the I.F.s. This can be ascerdoes nol change with small variations in sweep generator output.
6. Set the signal generator to 26.1 mc . and advance the output until a marker pip is visible on the Picture I.F. curve on the oscilloscope. Be careful not to distort the 1.F. curve
advancing the generator output too far. Adjust L3 and L9 so that the marker pip is at the 50% point. See Fig. 7 Picture .F. curves and Markers.
. Set the signal generator to 22.7 mc . Adjust the first Picture I.F. coil (located on the R.F. Tuner) and L6 so that the marker pip is at the 50% point. Se9 Fig.
8. Repeat steps 6 and 7 until an acceptable curve is achieved

FIG. 7. TYPICAL PICTURE LF. CURVES AND MARKERS

oscillator and r.f. aldgnmen

The R.F. Unit is a turret type tuner with separate coil segments for each channel. Normal channel sequence is proessive in a clockwise direction covering channels 2 to 13 . R.F. amplifier is of the cascode type utilizing a $6 \mathrm{BQ7}$ or BKK7. The converter stage utilizes a 6 J6.

oscillator alignment

should be posstble to tune in all channels with the fine luning control C212 (see figs. 11 and 12) in the middle third of its range. When V3 ages, the oscillator may shift slightly in frequency requiring adjustment if V 3 is defective and musi inequacy requeral tubes should be tried to find one that requires the least oscillator adiustment.
If an accurately calibrated signal generator that covers all the R.F. frequencies is available then continue with step 1 it not go on to step 10 .

1. Remove tube shield on 6J6. V3
2. Modity a tube shield which will fit snugly over the 6 J 6 and still remain ungrounded.
3. Remove shorting wire from channel 11 oscillator coil and Popace segment and R.F. unit bottom shield.

Turn channel selector to channel 12
5. Set generator to the oscillator frequency which is 231.35 me. for channel 12.
6. With reference to figure 8 connect the generator to one of the 10 mml capacitors and connect the other 10 mmi capacior to the ungrounded tube shield over the 636 . Connect remaining terminal on probe to vertical input on oscilloscope 7. Sel fine tuning control C212 (fig. 12) to center of its range Adjust C211 tor zero beat pattern on the oscilloscope screen The oscillctor coil slug which is accessible from the chassid front apron should be in medustert, the oscillator cail ng will have to be from the turret housing segment will have to be remolly ths into the slug threads he wh frow to its mean position. e. nesol the generator for he osciliator trequency 1. Adjust the oscillator coil slug for zero beat on the oscillo scope screen. Use a non-metallic screw-driver in adjusting th oscillator coil slug
9. Repeat step 8 for the remaining channels, making sure the signal generator is set for the proper frequoncy on each channel.
When an accurately calibrated generator is not available then oscillator alignment con only be accomplished when the local T.V. transmitters are on the air
10. Remove bias battery and replace AGC lead to junction of R8, R5, and C81 (fig. 11).
11. Set fine tuning control C212 (fig. 12) to center of its range. 12. Rotate channel selector control to one of the local T.V stations and adjust the oscillator coil sjug, which is acces sible from the front chassis apron (fig. 12), for best picture. 13. Check remaining local stations by fotating the cinannel selector switch to, each channel in turn and adiusting the selector switch to, each chan
orchllotor slug tor best piteture.
4. If on one or two of the channels you do not have enough It is possible to adiust the oscillator channel slugs without is possible to adjust the oscillator channel slugs without
emoving the chassis from the cabinet. The slugs are made cessible by removing the channel selector and fine tuning accessible by removing the channel selector and fine tuning
knobs and by moving the escutcheon plate to one side. Use long thin fibre or bakelite screwdriver for making adjustmenta.

FIG. 8.

a.f. ALIGNMENT

1. Reconnect bias battery as in stop 1. Picture I.F. (Rough
alignment). Disconnect white AGC wire, Set bias for 3 volts. 2. Connect oscilloscope through 10.000 ohms to test point on F. Unit. Connect sweep generator to antenna terminals. If he sweep generator is not terminatod for ba

FIG. 9.
3. Sot fine tuning control at approximately the midpoint of
its tuning range and rotate channel selector to channel 12 . 4. Adjust sweep generator to channel 12 and loosely couple signal generator to sweep generator in
lure carrier and sound carrier markers.
5. Adiust C206. C203, and C213 for flat top response curve.
See figure 10 for acceatable RF passbands.

Check remaining channels. If the response curves obained on any channel is not acceptable, it might be neces. sary to return to channel 12 and make a compromise of its esponse. If one channel is extremely out that coil section
hould be repaired or replaced. It is nol necessary to remove he tuner from the chassis in order to repair or replace a coil section.

ACCEPTABLE R.F. PASSBAND FIG. 10.

MODELS DL21T, 21C2, 21T, 24 T 2

FIG. 11. BOTTOM VIEW OF CHASSIS

FIG. 12. TOP VIEW OF CHASSIS

WAVE FORMS

$=-1 / \int-\infty$

PIN 7 (V7A) 6AL
VIDEO DETECTOR (HORIZ. SCOPE)
3 VOLTS PP

PIN 8 (V8) 6AG7
VIDEO OUTPUT (HORIZ. SCOPE)
65 VOLTS PP

PIN 2 (V9A) 12AUT
SYNC. SEPARATOR (HORIZ. SCOPE
45 VOLTS PP

PIN 1 (V9A) 12AU7
SYNC. SEPARATOR (HORIZ. SCOPE)
16 VOLTS PF

PIN 6 (v9b) 12aU7
SYNC CLIPPER (HORIZ. SCOPE)
65 VOLTS PP

in 7 (V7A) 6ALS
VIDEO DETECTOR (VERT. SCOPE) 3 volts PP

(V8) 6 AG
VIDEO OUTPUT (VERT. SCOPE
65 VOLTS PP

PIN 2 (V9A) 12AU7
YNC. SEPARATOR (VERT. SCOPE) 45 volts PP

PIN I (V9A) 12AU7
SYNC. SEPARATOR (VERT. SCOPE) 6 volts Pp

PIN 6 (V9B) 12AU7
SYNC. CLIPPER (VERT. SCOPE
5 VOLTS PP

PIN 3 (V18B) 6SN7GT SYNC. INVERTER (VERT. SCOPE) 25 VOLTS PP

PIN 6 (V15) 6 S4
VERTICAL OUTPUT
48 VOLTS PP

PIN 1 (V10) 6ALS
HORIZ. PHASE DETECTOR
20 VOLTS PP

PIN $5 \& 7$ (V10) 6ALS
HORIZ. PHASE DETECTOR
16 VOLTS PP

PIN 5 (V12) 6CD6G
hORIZ OUTPUT
65 VOLTS PP

PIN 4 (V18A) 6SN7GT VERTICAL OSCILLATOR 48 VOLTS PP

PIN 9 (V15) 6 S4 VERTICAL OUTPU 850 VOLTS PP

IN 2 (V10) 6AL5 HORIZ. PHASE DETECTOR 20 VOLTS PP

PIN 2 (VII) 6SN7GT HORIZ. OSC \& DISCHARGE 38 volts PP

'POWER PLUS" SWITCH. ITS FUNCTION AND USE The new Fada television receiver with "Power Plus" control This been designed for oplimum perfiormance in all areas. Thas achieved by the utilizatiton of two types of unomatic gain control ($A G C$) citcuits. The. AGC circuit in use is controlled by the AGC "Power Plus" swich loca'ed on the rear apron of the receiver chassis.
 In normal or strong signal areas. the AGC switch is rotated 10 its maximum clockwise posinion This ind to its maximum clockwise position This introduces a peak detector type of AGC which is fast acting, has good limiting and prevents overloading. all of which are desirable features superior teception in these areas
 In weak and noisy signal areas. the AGC switch is rotated ans maximum counterclock wise position. This introduces an average detector type of $A G C$ which is completely immune 'T the impulse type of noises prominent in weak signal areas. Another desirable teature of this type of AGC for weak signuil areas is that a lower value of bias is developed for fixed signal strengith. thereby giving better noise tactor and superior contrast These characteristics give a picture andich has a minimum of snow, which is tree of noise, and wher which has a minimum of snow. which is tree which is tree of horizontal and vertical jitter.
 SERVICE SUGGESTIONS

No Raster on Kinescop
ncorrect adiustment of ion trap magne elective Kinescope.
No high voltage. Check VII, V12. V13. V14. Check all voltages and waveforms associated with these tubes. Incoriect setting
Check fuse Fl.

Horisontal Dellection Only

Check V15, V18A, T5, T6, L18, L19, R60 and R6 Check voltage and wavelorms on grids and plates of V15 Poor Horizontal Linearty
Check V12, V13, L21, L23, L24, C65 and C66.
small Rater
Low B or low line voltage.
Check V15 and V17.
Rastor-No Sound No Plcture wilh Control Over Brightess Chect R. F. V6. V7. V8 and their associated circuis Check R. F. Unit

hator - No Sound No Pecture and No Contral Over

Check 130 volts supply and R95,
lastor Picture and No Sound
Check alignment of L12, LI3, Li6. and L17
Poor or No Horizoalal Sync.
Check for gassy Kinescope.
Check V9. V10. V18B and their associaled circuits.
Poor or No Vortical Sync.
Check V9, V18B and their associated circuits
Check Video peaking coils L10, L!1, L14, and L15
Check V7. V8. and their associated circuits.
heck video 1. F. Alignmen,
Arcing in High Vollage Supply
When replacing a componen
all soldered connections should be made voltage supply here are no sharp ends. This will eliminate any oossibility of corona
4.5 mc Beat in Picture
Check L25, L12, L13 and their associated circuits
Check alignment of L25. L12. LI3.

IST OF PARTS - R.F. UNIT

CAPACITORS

Symbol

Description
800 mmi , GMV. Disc Cetanic on centershield assembly
1000 Dis. 1000 mmi GMV Ceramic $0.5-3 \mathrm{mmf}$ Ceramic Trimmer
$120 \mathrm{mmi} 5 \%$ N 750 Ceramic $120 \mathrm{mmf} 5 \%$ N750 Ceramic
100 mmi
20%
N750 Ceramic .5 .3 mml Ceramic Trimmer $10 \mathrm{mmi} 5 \%$ NPO Ceramic
$10 \mathrm{mmi} 5 \%$ N750 Ceramic $2.2 \mathrm{mmt} \pm .25 \mathrm{~mm}$
$\mathrm{N} 330 \pm 500$ Ceramia
20 mmin
10%
$0 . \mathrm{mmf} 10 \%$ NPO Ceramic
0.5 mmi Ceramic Trimmer
Fine Tuning Variable Capacilo
Fine Tuning Variable Capa
3.9 mmi Ceramic Trimmer
800 mml GMV Feed Thru
Capacitors
Assembly
$120 \mathrm{mmi} 10 \%$ N750 Ceramic
1000 mml GMV Ceramic

RESISTORS

Symbol	RESIST Doscription
R201	220 K ohms $20 \% 1 / 2$ Watt
R202	180 K ohms $10 \% 1 / 2$ Watt
R203	4.7 K ohms 10% 1/2 Watt
R204	1.0 K ohm 20% 1/2 Watt
R205	220 K ohms 20% 1/2 Watt
R206	10 K ohms 10% 1/2 Watt
R207	22 K ohms $20 \% 1 / 2$ Watt
R208	47 K ohms $20 \% 1 / 2$ Watt
R209	10 K ohms 10% 1/2 Watt
R211	10 K ohms 10% 1/2 Watt
	15 K ohms $20 \% 1 / 2$ Wall
	COILS
Symbol	Dencripuon
1201	Antenna Section, separate for each channel
1202	Antenna Section, separate for each channel
L203	R.F. Section, separate for each channel
L204	R.F. Section, separate for each channel
1205	R.F. Section. separate for each channel
L206	Heater Choke ${ }^{\text {Neutralizing Coil }}$
${ }_{\text {L207 }}$	Neutralizing Coil Heater Choke
L209	Tuned I.F. Coil

MISCELLANEOUS
Dascription
ube- $6 \mathrm{BK7} / 6 \mathrm{BQ} 7$

LIST OF PARTS

Dexcripuion
33010% 1/2W.
$4710 \% \mathrm{1} / 2 \mathrm{~W}$.
$4020 \% 1 / 2 \mathrm{~W}$.
$33010 \% 1 / 2 \mathrm{~W}$.
$0010 \% 1 / 2 \mathrm{~W}$.
$10010 \% 1 / 2 \mathrm{~W}$.
$10010 \% 1 / 2 \mathrm{~W}$.
8.2K $10 \% 1 / 2 \mathrm{w}$.
$8.2 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
$4710 \% 1 / 2 \mathrm{~W}$.
100 10\% $1 / 2 \mathrm{~W}$.
$5.6 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
$12010 \% \frac{1 / 2}{} \mathrm{~W}$.
$10 \mathrm{~K} 10 \% \mathrm{~L} / \mathrm{W} \mathrm{W}$.
100 10\% $1 / 2 / \mathrm{W}$.
$39 \mathrm{~K} 10 \% \mathrm{~W}$.
$39 \mathrm{~K} 10 \% \mathrm{IW}$.
$8.2 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
1 megohm 10% 1/2
$680 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
megohm $10 \% 1 / 2$
750 tapped at 250 (Contrast)
$8210 \% ~ 1 / 2 \mathrm{~W}$.
$39 \mathrm{~K} 10 \% \mathrm{lW}$
$39 \mathrm{~K} 10 \% 2 \mathrm{~W}$
$39 \mathrm{~K} 10 \%$ 2W.
SK 10\% 10 w w. .
$\mathrm{K} 10 \% 10 \mathrm{~W}$.
$7 \mathrm{~K} 10 \% 1 / \mathrm{W}$.
$7 \mathrm{~K} 10 \% 1 / 2 W$
$.7 \mathrm{~K} 10 \%$ IW
$15 \mathrm{~K} 10 \% 1 / 2 \mathrm{w}$.
$22 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
$22 \mathrm{~K} 10 \%$ 1/2W.
500 K (Volume)
10 megohm $20 \% 1 / 2 \mathrm{~W}$.
$220 \mathrm{~K} 20 \% 1 / 2 \mathrm{~W}$.
$40 \mathrm{~K} 10 \% \quad 1 / 2 \mathrm{~W}$.
470 K 10\% $1 / 2 \mathrm{~W}$.
680 10\% W.
680 10\% IW.
470 10\% IW.
$470 \mathrm{~K} 10 \% \mathrm{H} / 2 \mathrm{~W}$.
$330 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
0 K (Brightness)
$22 \mathrm{~K} 20 \%$ 1/2 W.
1.8 megohm $10 \% 1 / 2 \mathrm{~W}$
$3 \mathrm{~K} 10 \%$ 多w.
OK $10 \% 1 / 2 \mathrm{~W}$.
$47 \mathrm{~K} 10 \% \mathrm{y} / \mathrm{W}$.
$3 \mathrm{~K} 10 \%$ IW.
1.8 megohm $10 \% 1 / 2 \mathrm{~W}$

1.8 megohm $10 \% 1 / 2 \mathrm{~W}$.
6.8 megohm $10 \% ~$
$1 / 2 \mathrm{~W}$.

2.2K 10\% $1 / 2 \mathrm{~W}$.
$1 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
$2.2 \mathrm{~K} 10 \% \mathrm{~L} / \mathrm{w}$ w.
$12 \mathrm{~K} 10 \% \mathrm{y} / \mathrm{W}$.
88K $10 \% \mathrm{IW}$.
OOK $10 \% ~ / 2 / 2 \mathrm{~W}$.
$00 \mathrm{~K} 10 \% / 2 \mathrm{w}$.
$100 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$. 1.7 megohm $10 \% 1 / 2 \mathrm{~W}$.
22K $10 \% \mathrm{mog} / 2 \mathrm{~W}$.
$22 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
$8.2 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
$.2 \mathrm{~K} 10 \% \mathrm{l} / 2 \mathrm{~W}$.
.5 megohm $10 \% 1 / 2 \mathrm{~W}$.
1 megohm (Verical Hold) $47 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$. .2 megohm $10 \% 1 / 2 \mathrm{~W}$ megohm 10\% $1 / 2 \mathrm{~W}$. $12 \mathrm{~K} 10 \% / 2 \mathrm{~W}$. $2 \mathrm{~K} 10 \%$ 1/2 W 2.2 megohm 10
33010%.

Symbol Part No

R68	
R69	32
R70	11
R71	32
R72	32
R73	
R74	
R75	
R76	32
7	32
R78	32
R79	32.
R80	32
R81	52
R82	
R83	32
R84	32
	32
R86	32
R87	32
R88	п1
R90	32
R91	32
R92	11
R93	11
R94	1
R95	11
R100	32
R101	32
R117	32
R118	32
R120	
-R56	
8	

52.68 32.15 117.81 32.18
32.18

Doscripuion

K (Vertical Linearity)
7K 10\% $1 / 2 \mathrm{~W}$.
7.5K 10\% 10W. W

220K $20 \% 1 / 2 \mathrm{~W}$.
$220 \mathrm{~K} 20 \% 1 / 2 \mathrm{~W}$.
$56010 \% 1 / 2 \mathrm{w}$
$56010 \% 1 / 2 \mathrm{~W}$.
$56010 \% ~ 1 / 2 \mathrm{~W}$.
$1 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
$470 \mathrm{~K} 10 \% ~$
1/2W.
5. $\mathrm{KK} 10 \% ~ \% / 2 \mathrm{~W}$.
$1.5 \mathrm{~K} 5 \% 1 / 2 \mathrm{~W}$.
$47 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
00K 10% 1/2 W W.
OK (Horizontal Hold)
$50 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
$3.9 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
$470 \mathrm{~K} 10 \%$ 1/2W
$15 \mathrm{~K} 10 \% \mathrm{~W}$.
$15 \mathrm{~K} 10 \% 2 \mathrm{~W}$.
10010% 1/2W.
0010% 2W.
17.5K 10\% 10W.W.W.
. $10 \% 1 / 2$ W.I.R.C. W.W.
$100 \mathrm{~K} 20 \%$ IW
50010% 20W. W.W
50010% 20w. W.W
50010% 20w. W.W.
50010% 25W.W.W.

$5.6 \mathrm{~K} 10 \% 1 / 2 \mathrm{~W}$.
500 K ohms (Tone)
Vertical Integrator
Three Resistors in one unit,
plus C50. C51. C52.

005 mf GMV Disc 500 V . 005 mf GMV Disc 500 V .
$1500 \mathrm{mmf} 20 \%$
500 V Ceranc $120 \mathrm{mmf} 20 \% 500 \mathrm{~V}$. Ceramic 005 mf GMV Disc 500V. $120 \mathrm{mmf} 20 \%$ 500V. Ceramic $47 \mathrm{mmf} 10 \%$ NPO 500 V . Ceramic $2 \mathrm{mml} 10 \%$ soov. Ceramic 005 mf GMV Disc 500 V . 005 mI GMV Disc 500 V . 005 mf GMV Disc 500 V . 005 mf GMV Disc 500 V .
$20 \mathrm{mmf} 20 \% 500 \mathrm{~V}$ Cera $120 \mathrm{mmf} 20 \% 500 \mathrm{~V}$. Ceramic 005 mf GMV Disc 500 V $3 \mathrm{mmt} \mathrm{20} \mathrm{\%} \mathrm{500V}$. Ceramic $1 \mathrm{mt} 20 \%$ 200V
005 mf GMV Disc 500 V $5 \mathrm{mmi} 10 \%$ 500V Ceramic $.01 \mathrm{mi} 20 \% 400 \mathrm{~V}$ $1 \mathrm{mi} 20 \% 200 \mathrm{~V}$ $80 \mathrm{mmi} \mathrm{20} \mathrm{\%} 500 \mathrm{~V}$. Ceramic $70 \mathrm{mmf} 10 \% 500 \mathrm{~V}$. Ceramic 5 mf 450 V . Electrolytic 80 mi 350 V . Electrolytic 10 ml 350 V . Electrolytic $2 \mathrm{mmf} 20 \% 500 \mathrm{~V}$. Ceramic $9 \mathrm{mml} 20 \% 500 \mathrm{~V}$. Coram

A

John F. Rider
－Couple crystal－controlled R－F carrier markers FINE TUNING cont ill wideo cadier receiver $1 / 2$ down on curve．Turn up marker output till R－f sound carrier is visible on bandpass and ad－ just sound trap（L114）to minimize effect of sound carrier marker．
6 －Check all channels as above．
SOUND ALIGNMENT
－Connect 4.5 megacycle signal generator to pin 2 of 12BH7（V7）video amplifier．
－Connect DC V．T．V．M．lead to pin 7 of 6AL6（V9） ratio detector，negative polarity．
－Adjust signal generator to precisely 4.5 mega－ cycles；adjust output to read approximately 5 volts on V．T．V．M．
－Adjust L113 and bottom of T100 for maximum de－ flection on V．T．V．M．Keep V．T．V．M．reading be－
low 10 volts at all times．
Attach iwo series－conne
－Across R 126 （Ratio Detector $100 \mathrm{~K}(\pm 1 \%$ ）resistors nect DC V．T．V．M．to center－t ap of 100 K resistors， and connect ground wire of V．T．V．M．to junction of C119 and C120（Audio Take－off of T100）．
6 －Adjust top of Tloo for zero reading on V．T．V．M． between a plus and a minus peak．

VIDEO AMPLIFIER TRAP

When necessary，the video amplifier 4.5 mc trap（L110） should be adjusted as follows
－Connect 4.5 mc signal generator＂high＂lead to picture tube grid；ground to chassis
2 －Connect DC V．T．V．M．to pin 7 of 6AL5（V9） ratio detector， 10 volt scale，negative polarity
3 －Adjust L110 for minimum deflection on V．T．V．M

r－F OSCILLATOR

If all channels are not within range of FINE TUNING ontrol，adjust two screws located in front of r－f tuner nit for adjustment of either low or high band．CAUTION Do not touch adjustments on top of r－f tuner unit，other han converter plate coil，L404，during IF Alignment horizontal oscillator alignment

If the Horizontal Hold control fails to maintain sync he horizontal oscillator should be reset．To reset this screwdriver adjustment，set the horizontal hold control is the center of its range and syac the picture with the hori－ ontal A．F．C．adjustment screw．Check the hold contro s required to provide sync on all channels． as required to provide sync on all channels．
DEFLECTION YOKF：，ION THAI ANDFOCUSADJIIGMF：NT
Following is the proper procedure for adjusting the Deflection Yoke，Ion Trap and Focus．

The receiver should be turned on but not connected oo an antenna．These steps should then be taken in the following order

1 －The Deflection Yoke should be moved as far forward as possible on the neck of the CRT
2 －The Brightness control should be turned to max－ mum（clockwis）and the Contraser should
－The Ion Trap should be cotated and at the same time moved lorward and backward to find the position which produces the brightest raster
－The Deflection Yoke should be rotated so that the top and bottom edges of the raster are parallel to the top of the chassis．
5 －The Brightness control should now be reduced （ccw）to a point

6 －With Brightness and Contrast controls at normal positions，adjust the Focus control（rear o chassis）for well－defined scanning lines．
height，width and linearity
To adjust the overall size and linearity of the picture is almost mandatory that a test pattern transmitted from a local station be used．It should also be remembered that in areas where more than one station is being received，that ictures transmitted from different sta：ions will vary slight－ to fill the area outlined by the mask．

The Width control（rear of H．V．cage）should be ad justed to give a picture that will fill the mask horizont ally

The Height and Vertical Linearity controls（both ear of chassis）should then be edjusted for a linear pictur that will fill the mask vertically．
picture tube handling precautions
The pleture tube encloses o high vocuum ond with the arge surface oreo of glass involvod，the stresses sot upiderable．An abnormal honding stress，occidental blow of o highly stressed surface，or even o scratch on the urfoce of the rube could couse it to implode or collopse with destructive violence．

high voltage warning

Speration of this recelvar outside the cabinat or with covers removed involvas a shock hazard from the re－ seiver power supplies．Work on the receiver should not themptod by anyone who is not thoroughly fomillor with the precoutions necessory when working on high

© John F. Rider
resistance measurements on 105-2-82100 CHASSIS

TU	TUBE	PIN Numbers								
LOC.	TYPE	1	2	3	.	5	6	7	8	9
v_{1}	$6 \mathrm{BC5}$	150K	0	0	0	25 K	25k	0		
V_{2}	6 J 6	33K	23K	0	0	220 K	15K	0		
v3	$6 \mathrm{CB6}$	132K	47	0.3	0	23 K	23K	0		
V4	${ }^{6} 6 \mathrm{CB6}^{6}$	148 K	56	0.3	0	${ }^{23 \mathrm{~K}}$	${ }^{23 \mathrm{~K}}$	0		
V_{5}	$6 \mathrm{CB6}$	0.2	150	0.2	0	23 K	23K	0		
V6	6 6als	2.5	0	0	0	0	0	4.7K		
V_{7}	12 BH 7	26R	4.7K	220	0	0	31k	1 M	0105 K	
V_{8}	${ }^{6}$ AU6	100K	0	0	0	25K	125K			
V9	${ }_{6015}^{6075}$	∞	${ }^{\infty}$	0.6	0	0	${ }^{0}$	47K		
V_{10}	${ }^{\text {6SOPGT }}$	0	10 M	\%	K		500K	0	0	
V_{11}	${ }^{6666 T}$	${ }^{1}$	0	29k	29K	470 K	x	0	330	
V_{12}	${ }^{128 H 7}$	31 K	0.5M	2.7K	0	0	91K	11.5K	0	0
V_{13}	12 B 27	20 K	2.2 M	,	0	0	20K	4.7M.	, 0	0
V_{14}	128H7	${ }^{216 K}$	1.5M	3.3 K	0	K	1.7M ${ }^{\text {c }}$	${ }_{\substack{2 \\ 2.1 \mathrm{~K}^{\circ}}}^{\text {d }}$		0
V_{15}	6AL5	3.4 M	3.4M	0	0.6	22 K	0	22K		
V16	12BH7	${ }^{32 \mathrm{~K}}$	${ }^{\text {3.8M }}$	1.8K	0.0	0.0	246K	100 to 1		0
V_{17}	6B066T	x x	0	x	${ }^{66} \mathrm{~K}$	470K	x	0	220	$\begin{aligned} & \text { Plate- } \\ & 200 \mathrm{k} \end{aligned}$
$\left\lvert\, \begin{aligned} & \mathrm{v}_{18} \\ & \mathrm{v}_{19} \end{aligned}\right.$	${ }_{6}^{1 \times 46 T}$	x	x	Hi-Vol 204K	${ }^{\text {lage }} \mathrm{X}$	ectifier 26 K	Plat	- 204 SK		
V20	$5{ }^{\text {U }} 46$	x	${ }_{26 \mathrm{~K}}$	\mathbf{x}	100	x	100		26K	
v21	21 PP4	Pinl: 0 ;	Pin 2:	IM; Pin		OK; Pin				

Resist encen me
in T T position.
ind
X. Mdicateo

- Variees. with contrant (picture) Sett in

Variee with veric al epeed eleling; reading siven is nominal.
Varies with Horizontal Hold Compol Solling.

RESISTANCE MEASUREMENTS ON 105-2-81700 and 105-2-82000 CHASSIS
TUBE TUBE PIN NUMBERS

v_{1}	6BC5	150k	0	0	0	25K	25K			
V_{2}	${ }^{6} \mathrm{~J} 6$	33k	${ }^{23 \mathrm{~K}}$	0	0	220k	15K	0		
${ }^{3}$	6 CB6		47	0.3	0	23K	23K	0		
${ }^{v_{4}}$	6 CB6		56	0.3	0	23 K	23K	0		
V5	$6 \mathrm{CB6}$	0.2	150	0.2	0	23K	23K	0		
V_{6}	6AL5	2.5	0	0	0	0	0			
v_{7}	$12 \mathrm{BH7}$	26 K	4.7K	220	0	0	31K	1 m	0to 5K ${ }^{\text { }}$	0
v8	${ }_{6}{ }^{\text {aU6 }}$	100\%	0	0	0	25K	125K			
${ }^{\mathrm{V} 9}$	6 6ls	∞	${ }^{\infty}$	0.6	0		0	47K		
v11	${ }_{6} \mathbf{V 6 G T}$	x	0	${ }_{29} 29$	29 K	470 K	x	${ }_{0}$	330	
V_{12}	12 HH 7	312	0.5M	2.7K	0	0	91k	11.5K		
${ }^{1} 1$	12827	20K	${ }^{2.2 \mathrm{M}}$	0	0	0	20 N	4.7m.		0
V14	$12 \mathrm{BH7}$	${ }^{2168}$	${ }^{1.5 M}$	${ }^{3.3 \mathrm{~K}}$	0	0	$1.7 \mathrm{M}^{4}$	$2.1 \mathrm{~m}^{\circ}$		0
V15	$6 \mathrm{Cl}{ }^{\text {a }}$	3.4M	3.4M	0	0.6	22 K	0	${ }^{22 \mathrm{~K}}$		
V16	12 BH 7	${ }^{32 \mathrm{~K}}$	3.8M	1.8K	0.0	0.0	246K	1000		
V17	6BP6GT	x x	0	x	36K	470	x	0	220	
V18	$1{ }_{2} A^{\text {a }}$			Hi-	kase	ectifier	er Plate	-204k		
	6T4GT	x	x	204K						
${ }^{\mathbf{V}} \mathbf{2 0}$	${ }^{5146}$	x	26 K	X					26 K	
	Ros intesaceos mosoured from Pin to Proumd with Phono-TV Switch, it any,									
Note:										
	${ }^{\text {in }}$. Indicateate that pin is not ueed as torminal post for mother part of the									
	Indicates that pin is ueed enterminal pont for another									
	circu									
	- Veries with liverrity setting; roeding siven ion nomina.									

tube socket voltages - 105-2-82100 Chassis

tube	tube	Pin numbers								
Loc.	TYPE	1	2	3	4	5	6	7	8	9
V_{1}	6BC5	-1	,	0	6.2 ac	105	105	0		
V_{2}	${ }^{6} 56$	120	75	0	6.2 ac	-2.5	-4	0		
V_{3}	${ }^{6 C B 6}$	-0.4	0.6	$6.0{ }^{\text {ac }}$	0	120	120	0.		
V_{4}	${ }_{6}$ CB6	-0.4	0.6	6.0 ac	0	120	120	0		
V_{5}	${ }_{6} 6$ CB6	0	1.0	6.1 ac	0	120	120	0		
V_{6}	${ }^{6 \text { alL }}$	0	-0.		6.3 ac	${ }^{0}$	0	-0.4		
v	12 BH 7	90	-0.4	2.0			$\begin{gathered} { }^{165}{ }^{165} \\ 0 \end{gathered}$	${ }^{0} 0^{\circ}{ }^{5}$		0
V8	${ }^{60} 10$	-0.5	0	,	6.3 ac	120	50	-		
	${ }_{\text {6SOLS }}^{\text {6AL }}$	-0.5	-0.5	5.5 ac	0	0	0	-1.5		
${ }^{10}$	${ }_{6 \text { V6GT }}$	${ }_{0}^{0}$	-1	${ }_{200}^{0}$		0	8	6.3 ac 6.3	${ }_{10}$	
V_{12}	${ }_{12 \mathrm{BH} 7}$	60	20	20	2	0	20	${ }_{-0.4}^{\text {c. }}$	0	6.3 ¢
V13	$12 \mathrm{BZ7}$	90	-0.8		0	0	90	-0.9	0	6.3 ac
¢14	${ }^{12 \mathrm{BH}} 7$	420.	-3°	22°	5.5 ac	0.	$100{ }^{\text {c }}$	-30	0	6.3 ac
V_{16}	12 BH 7	290	0.1	15		${ }_{6.3} 0.1$	${ }_{120}$	0.1 -5		。
$\mathrm{V}_{17}{ }^{\text {E }}$	6Bp6Gt	-20	,	0	155	-20		6.3 cc	15	
118 V 18 18	${ }_{6}^{1 \times 2 \mathrm{~A}}$				Hish ${ }^{\text {- }}$	Vollase				
V 20	chict	320	${ }_{340}$	525		310				
${ }^{21}$	21 FP4	1:0;	Pin 2 :							6.3

NOTE: All voltagee me anured with V. T. V. M. from pin to ground with line voltage of 117 V ac and ancenna terminals shorted. Valueas we DC un-
lesp otherwise noted. The Phono-TV switeh, if provided, is in the $T V$ ponition.

TUBE SOCEET VOLTAGES ON 105-2-81700 and 105-2-82000 CHASSIS

$\begin{aligned} & \text { TUBE } \\ & \text { LOC. } \end{aligned}$	$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	PIN NUMBERS								
		1	2	3	4	5	6	7	8	,
v_{1}	$6 \mathrm{BC5}$	${ }^{-1}$	\%		6.2	105	105	0		
$\begin{array}{r}\text { V2 } \\ \mathrm{v}_{3} \\ \hline\end{array}$	${ }_{6}^{616}$	${ }^{120}$	75	${ }^{\circ}$	6.2 c	-2.5	-4	0		
V	${ }_{6}^{6 C B 6}$	-0.4	0.6	6.0 ac	${ }^{\circ}$	120	120	0		
V5	${ }_{6 C B 6}$	0	1.0	${ }_{6.1}^{\text {ac ac }}$	${ }_{0}$	120	120			
${ }^{\text {v/ }}$	${ }_{12 \mathrm{AL5}}$	0	0		${ }^{6.3}$ ac		0	-0.4		
	12 BH 7	90	0.4				$\begin{aligned} & 165 \\ & { }^{165} \end{aligned}$	510°	${ }_{10} 0^{3} \stackrel{5}{5}^{\text {c }}$	${ }^{0}$
V_{8}	${ }_{601}^{606}$	${ }_{-0.5}^{0.5}$	- 0	0	6.3 c	120	50	0		
$\stackrel{\text { V10 }}{ }$		-0.5	${ }_{-1}^{-0.5}$	5.5		0	8	${ }_{6}^{-1.5}$		
V11	${ }_{6} 666 T$	0	0	200	210	0	${ }_{0}$	6.3 ac 6.3 ac	10	
V_{12}	${ }^{12 \mathrm{BH} 7}$	60	20	20	0	0	20	-0.4	0	
${ }^{\mathrm{V} 13}$	12887 12847	${ }_{420}^{90}$	-0.8	${ }_{22}{ }^{\circ}$	0	0	${ }_{100}^{90}$	-0.9 -30	0	$6.3 \times$ $6.3{ }^{\text {ac }}$ (
V15	6 6LS	12	-12	${ }_{0}$	5.5 cc	0.1	0	-3.1		
${ }_{\text {V17 }} \mathrm{V}_{17} \mathrm{~V}^{\text {e }}$	${ }_{6}^{128 \mathrm{~B}} \mathrm{C} 7$	200 -20	0.1	15	6.3 sc	6.3 ac	120	-5	15	0
V18	1×24				Hish ${ }^{155}$	Voltes				
V_{19}	${ }^{6 T 4 G T}$	320	0	525			-	525'	525 ${ }^{\text {' }}$	
$\mathrm{V}_{2} 20$	${ }_{1}{ }^{\text {SUHP4 }}$		340				320 ec.			
V21	17HP4	in 1:0;			Pinio:			$1: 40 \text { is }$		12: 6

NOTE: All voltagos mo wured with V. T. V. M. from pin to rround with line

NO. 13-G-118 CODE NO. 105-2-82100

The safety glass of this receiver is removable so that the face of the picture tube may be cleaned. To acthe upper strip that bolds the safety wall socket. Remove moving the five screws which secure the strip, supporting the safety glass so that it does not fall forward. Remove he safety glass by tilting it forward and lifting it out of he slot whe low glass relaining strip. Be careful no to scratch or strike the surface of the picture tube with any object. Carefully clean face of picture tube and the cloth. DO NOT ATTEMPT TUBE MASK. Reassemble by inserting THE PICTURE lower strip. Replace upper strip and tighten the salys curely

Cabinet parts repair list

Cabine

Trabinetor, Cover
Trapdoor, Base
Safetr
Mask
Glask Retainer Strip, (Upper)
Glasa Reteiner Strip
Glasa Retainer Strip, (Lower)
Back Cov
Speanker
Knob, Channef Solector
nob, Vemier
$\mathrm{Knob}, \mathrm{On}$-Oft V Olum
Knob, Pix Control
Knob, Phono-TV Swit

| A60168-1F | A60165-1F | A60170-1F | A60164-1F | A60166-1F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A4400 | | | | |
| A4 | | | | |

©John F. Rider

CODES 105-2-81700, -82000, -82001, -82100

© John F. Rider

TELEVISION ALIGNMENT PROCEDUR

Aligning a television receiver is an exacting procedure and involves the use of bench space, test equipment and skilled personnel at the service shop, as well as the cost of making two trips to the customer's home. Beat the shop, the serviceman should check these very common sources of trouble:

1- The antenna and installation. - Front panel and rear cha

3 - Reception on all available channels.

- 4 - Tube failures. Substitute from your kit of known good replacemenis.
5 - Visual inspection of underside of chassis for obvious faults, such as loose connections, etc
TEST EQUIPMENT REQUIRED FOR ALIGNMENT
The equipment specified below is desirable, but in cases where this equipment is not available, it is possibl to align the receiver by use of a 20 to 30 mc . modulated r-f signal generator, using the picture and speaker as in ication of al ignment.

1-Signal Generator with an output variable between 100 and 100,000 microvolts, and crystal controlled or crystal-calibrated at the following acies
a- 4.5 megacycles
b- 22.8 megacycles

- 25.4 megacycles
d- 21.25 megacycles
2 - DC Vacuum Tube Voltmeter with 5 volt and 10 volt ecales.
3 - A pair of balanced ($\pm 1 \%$) 100 K carbon resistcrs. TEST EQUIPMENT
AEQUIRED FOR SWEEP ALIGNMENT CHECK
1-R-F sweep generator with frequencies ranging from 40 to 220 megacycles, having sweep widt of approximately 10 megacycles, and having ad.1 volt.
2 - Crystal-controlled or crystal-calibrated markers lor the picture and sound
- Cathode Ray Oacilloscope with good low frequency response.

CAUTION: THE SECOND ANODE LEAD TO THE PIC TURE TUBE HAS A HIGH POTENTIAL. DURING THIS PLUG FROM ITS SOCKET, THUS ELIMINATING THIS HIGH VOLTAGE HAZARD.
I.F. ALIGNMENT PROCEDURE

1-Connect "high" lead of signal generator to the lest point located on the top of the RF tuner unit (Refer to the R-F tuner location diagram located on inside of cabinet). Connect ground to chassis.
Connect
2 - Connect DC VTVM lead (through 10K isolating resistor) to 4.7 K diode load resistor (R113); ground to chassis. Set VTVM to 5 volt scale, egative polarity.
3 - Set I.F. generator to 25.4 megacycles with sufhe VTVM.
4 - Carefully adjust L101 and L104 (see tube and tuner location) for maximum deflection on VTVM. Adjust sweep generator output to keep meter eading approximately 3 volts.
5 - Set I. F. signal generator to 22.8 megacycles with sufficient output to read approximately 3 volts on the VTVM.
6 - Carefully adjust L404, Llo3 (see tube and tuner ocation) for maximum deflection on VTVM. Adust signal generator output to keep meter read-
ing approximately 3 voks.
7 - Set I.F. signal generator to 21.25 megacycles and adjust signal generator (negative polarity), ient deflection on VTVM.
8 - Adjust L114 for minimum deflection on VTVM.
SWEEP ALIGNMENT CHECK
Although not essential, a sweep alignment check is a desirable verification of good R-F and I.F. response. Proceed as follows:

- Connect R-F sweep generator to antenna terminals (antenna impedance 300 ohms.)
2 - Calibrate oscilloscope for convenient 5 volts peak-to-peak vertical deflection (5 volts peak voltage of the 6.3 V A.C. filament).
3 - Connect vertical input of oscilloscope (through 10K isolating resistor) to 4.7 diode load resisto (R113); ground to chassis. Connect horizontal input of oscilloscope to "scope " terminals of Rgenerator; adjust for convenient horizontal sweep.
- Set R-F sweep generator to channel 3, television receiver o channel 3 , and if necessary, adjus horizontal setting for convenient band and play baving 5 volts vertical deflection as pre viously calibrated. (If you must touch scope ver tical settings during these adjustments recalibrate scope for 5 volts peak-to-peak as in step 2 above).

5 - Couple crystal-controlled R-F carrier markers FINE TUNING control till video cajast receiver 1/2 down on curve. Turn up marker output til R-f sound carrier is visible on bandpass and ad just sound trap (L114) to minimize effect of sound carrier marker.
6 - Check all channels as above.

SOUND ALIGNMENT

When necessary, the video amplifier 4.5 mc trap (L110) - be adjusted as foll

1 - Connect 4.5 mc signal generator "high" lead to picture tube grid; ground to chassis.
2 - Connect DC V.T.V.M. to pin 7 of 6AL5 (V9) ratio detector, 10 volt scale, negative polarit,
3 - Adjust L110 for minimum deflection on V.T.V.M.

R-F OSCILLATOR

- Connect 45 megacycle signal generator to pin 2 of 12BH7 (V7) video amplifier.
2 - Connect DC V.T.V.M. lead to pin 7 of 6AL6 (V9) ratio detector, negative polarity.
3 - Adjust signal generator to precisely 4.5 megacycles; adjust output to read approximately 5 volts on V.T.V.M.
4- Adjust L113 and bottom of T 100 for maximum delection on V.T.V.M. Keep
5 - Attach two series-connected $100 \mathrm{~K}(\pm 1 \%)$ resistors across R 126 (Ratio Detector Load Resistor). Connect DC V.T.V.M. to center-tap of 100 K resistors, and connect ground wire of V.T.V.M. to junction CIIS C100 for zero reading on V.T. YM. 6 - Aetween a plus and a minus peak.

VIDEO AMPLIFIER TRAP

If all channels are not within range of FINE TUNING control, adjust two screws located in front of r-f tuner unit for adjustment of either low or high band. CAUTION: Do not touch adjustments on top of r-f tuner unit, other than converter plate coil, L404, during IF Alignment. horizontal oscillator alignment

If the Horizontal Hold control fails to maintain sync, the horizontal oscillator should be reset. To reset this screwdriver adjustment, set the horizontal hold control in the center of its range and sync the picture with the horizontal A.F.C. adjustment screw. Check the hold control action on various channels and alter the screw adjustment as required to provide sync on all channels. DEFLECTION YOK F., ION TRAP ANI FOCUS ADJIISTMENT

Following is the proper procedure for adjusting the Deflection Yoke, lon Trap and Focus.

The receiver should be turned on but not connected an antenna. These steps should then be taken in the following order:

1 - The Deflection Yoke should be moved as far forward as possible on the neck of the CRT

2 - The Brightness control should be turned to max mum (clockwise) and the Contrast control should be turned to minimum (counterclockwise).

3 - The lon Trap should be totated and at the same time moved forward and backward to find the position which produces the brightest raster on screen.

4 - The Dellection Yoke should be rotated so that the top and bottom edges of the raster are paralle to the top of the chassis.

5 - The Brightness control should now be reduced (ccw) to a point where the raster is slightly above normal brilliance.

6 - With Brightness and Contrast controls at normal positions, adjust the Focus control (rear of chassis) for well-defined scanning lines.

HEIGHT, WIDTH AND LINEARIT

To adjust the overall size and linearity of the picture it is almost mandatory that a test pattern transmitted irom a areas where more than one station is being received, that pictures transmitted from different sta:ions will vary slightly in size. The smallest transmitted picture should be made to fill the area outlined by the mask.

The Width control (rear of H.V. cage) should be ad justed to give a picture that will fill the mask horizontally,

The Height and Vertical Linearity controls (both rear of chassis) should then be adjusted for a linear picture that will fill the mask vertically.
picture tube handling precautions
The picture tube encloses a high vacuum and with the arge surface area of glass involved, the stresses sol up, particuloriy at the front rim of the tube, are con-
siderable. An abnormal handling stress, accidental blow at o highly stressed surface, or even a scratch on the surface of the tube could couse it to implode or collopse with destructive violence.

HIGH VOLTAGE WARNING

Operation of this recelver outside the cobinat or with covers removed involves a shock hazard from the ree. celvar power supplles. Work on the recelver should no allempled by anyone who is noh working on high voltage equipment.

tube socket voltages on Chassis 105-2-82001

O John F. Rider

INSTALLATION

PREPARING THE RECEIVER FOR INSTALLATION:

Do not connect this unit to an electric outlet until these unpacking instructions have been followed and rechecked.

1. Remove shipping Bracket which is located at the rear of the record changer compartment drawer.
2. The record changer is floated on spring mountings. For shipping purposes only, these mountings are made rigid. To float the changer, remove the turntable by lifting it straight up the spindle. Turn the two shipping rigid. To float the changer, remove the identified by large, round heads) in clockwise direction as far as possible and replace the turntable. Replace the turntable with a counterclockwise turning motion, making sure that the driver wheel is in position
against the inside flange of the turntable.
For proper operation, the radio chassis must be allowed to float on the rubber shock mounts on which it is mounted. This is done by loosening the two bolts which hold the shock mounts secure. These bolts are at the mounted. The chassis with a cardboard "Shim" under them. The bolts can be reached from the undersije af the compartment, and from the television compartment.
TUBES:
The receiver is shipped with all of the tubes in their respective sockets. Be sure that each tube is pushed all the way down in its socket. The tocation of the tubes are shown below.

NOTE: All DC voltoges moosured with V.T.T.M. from Chossis to socket contoct indicted All voltoges ore positive DC unless otherwise morked.
Volume control full on. Zero signol input.

Tone control in counter-clockwise position,
Bond switch in "AM"" position.
Yorioble condenser set ot minimum.
Line voltoge 117 volts, 60 cycle AC.

CHASSIS REMOVAL

Remove the power cord from the electrical outlet before starting to remove chassis.

1. Remove the four knobs.
2. Remove the back cover.
3. Remove loop and dipole antenna leads from their respective terminals.
4. Detacir the phono-motor cord. (Plug and socket connection.)
5. Remove the phono-input lead from the receptace on the chassis.
6. Remove the interconnecting cables from receptacle in T.V. chassis.
7. Remove chassis mounting screws. The chassis may now be removed from the cabinet.

DIAL STRINGING

ALIGNMENT PROCEDURE

The following equipment is necessary to properly align this receiver:
I. AM signal generator with frequency coverage from 455 kc . to 1700 kc .
2. $F M$ or $C W$ signal generator covering the $F M$ band from 87 mc . to 109 mc . and the 10.7 mc . for FM IF alignment.
3. Vacuum Tube Voltmeter (VTVM).
4. Output meter-to match 4 ohms, 5 watts maximum.
5. Insulated alignment screwdriver.
6. Dummy antenna-0.1 mfd. capacitor, $\mathbf{3 0 0}$ ohm carbon resistor and inductive loop (fashioned from several turns of wire).

TUBE COMPLEMENT
NOTE: Oxcilloscope equipment not required if oligned occording to the following procedure:

12AT7	Oscillator-Converter	1	6SQ7	AM Detector-1 st Audio (AM-FM)
6AU6	1 st IF Amplifier	1	6AL5	FM Detector
6AU6	2nd IF Amplifier			

[^3]INSTALIATION
PREPARING THE RECORD CHANGER FOR OPERATION
Do not connect this unit to a power outlet until all shipping items on the record changer have been removed.
The record changer is floated on spring mountings. For shipping purposes only, these mountings are made rigid. To float the changer, remove the turntable by lifting it straight up the spindle. Turn the two shipping bolts (identified by large, round heads) in a clockwise direction as far as possible and replace the turntable. Replace the turntable with a counterclockwise turning motion, making sure that the driver wheel is in position against the inside flange of the turntable.
It is essential to have the record changer absolutely level. Use a torpedo or similar type level on the changer baseplate. Use adequate shims under the radio combination cabinet to achieve perfect level.
RECORD CHANGER CONNECTION
See that the connections from the pickup arm and from the turntable motor are plugged into their sockets on the radio chassis.
POWER SUPPLY
The record changer is designed for operation from $105-125$ volt, 60 cycle, alternating current (AC) supply only. Never connect to a supply having a different frequency or voltage than that specified.

OPERATION

This Intermix Record Changer is designed to automatically play standard 78 RPM records, and 45 RPM and $331 / 3 \mathrm{RPM}$ records of standard commerical dimensions. Any of these type records up to $12^{\prime \prime}$ in diameter may be played manually.
The changer will automatically play as many as ten $12^{\prime \prime}$, twelve $10^{\prime \prime}$, or any assortment of ten records intermixed. However, only intermix records of the same typeeither standard (78 RPM) or long play ($331 / 3$ RPM).

A full stack of twelve $7^{\prime \prime}, 331 / 3$ RPM, long-play records, a full stack of twelve $7^{\prime \prime}$ 45 RPM, fine-groove records (with the proper adapter inserted in the record), or a full stack of twelve 7" 78 RPM records (children's records) with lead-in and finishing grooves will also automatically play on this changer. Changer shuts off after the last record has been played.
Those children's records and home recordings that do not have lead-in and finishing grooves must be played manually.

LOADING THE RECORDS FOR

AUTOMATIC OPERATION

1. Lift up on the record support knob until it clears the spindle and swing it to the left.
2. Carefully place the records on the spindle and lower them to the off-set shoulder. Steady the records with one hand and replace the record support over the spindle. Gently push down on the record support knob until the records are held parallel with the turntable.
3. The record to be played first should be at the bottom of the stack; the second record to be played next, etc. The side of the record to be played should face upward.
TO PLAY STANDARD RECORDINGS O PLAY 1. Motor speed control knob must be in the 78 position. A stack of $10^{\prime \prime}$ and $12^{\prime \prime}$ standard records (78 KPM) may be intermixed.

TO PLAY LONG-PLAY
 (33 1/3 RPM) RECORDS

Motor speed control knob must be in the " 33 " position a stock of $10^{\prime \prime}$ and $12^{\prime \prime}$ long play records ($331 / 3$ RPM) may be intermixed, or a full stack of $7^{\prime \prime}$ long play records ($331 / 3$ RPM) may be played.

TO PLAY FINE- GROVE (45 RPM) RECORDS

1. Motor speed control knob must be in the "45" position. Your fine-groove 45 RPM records are manufactured with a $11 / 2^{\prime \prime}$ spindle hole. Because of this it is es sential before playing these records that a record adapter be inserted (as shown in the illustration) in each 45 RPM record to be played. A full stack of $7^{\prime \prime}$ Fine Groove (45 RPM) records may be played

STARTING THE MECHANISM

The pickup arm should be in place on the pickup arm rest.

1. Turn the receiver on and set the selector switch to phono position.
2. Turn the changer control knob clockwise (to the right) to "REJ." and release it This will release the bottom record from the stack and will cause the pickup arm to come to its proper position on the record and start playing. When the record is finished, the mechanism will automatically lift the pickup arm and drop the next record into position for playing. When the last record is played, the mechanism will automatically shut off.

NOTE: If when the line cord is first connected to an A.C. outlet, the turntable does not revolve and the ON-OFF Reject Control cannot be turned to its "ON" position it will be necessary to rotate the turntable in a clockwise direction by hand until the pickup arm is on its rest.

TO REJECT A RECORD

To reject a record you don't want to hear, turn the changer control knob to "REJ." and release it. This will lift the pickup arm from the record and drop the next rec ord into position for playing.

TURNING OFF

To turn off the changer before the last record has been played, turn the changer control knob to "OFF," lift the pickup arm from the record and place it on the rest.
TO REMOVE RECORDS
Lift and turn the record support arm to the left. Lift the records from the turntable.

MANUAL OPERATION

To play records one at a time as with an ordinary phonograph:

1. Lift up on the record support knob until it clears the spindle. Swing it to the left until the pin in the shaft drops into the locating groove.
2. Place the record on the off-set shoulder of the spindle and tilt it toward the back of the pickup arm (A).

This will guide the push-off finger into the center hole of the record. Pull the record (B) so the center hole is over the main part of the spindle. The record can now drop to the turntable (C) and be played in the usual manner.
3. Turn the changer control knob to "ON".
4. Place the needle in the starting grooves of the record.

TONE AND VOLUME CONTROLS

The tone and the volume controls will affect record reproduction and volume in the manner as for the radio.

CARE OF RECORDS

To insure long life for your records requires only slight effort. Do aot expose them to heat from the sun or from nearby stoves or radiators. Store them preferably in albums, but in any case keep them always in a cool, dry place, resting vertically. Remove dust and dirt, using a soft cloth and a light circular motion.

SUGGESTIONS

When loading and unloading the changer use care to prevent bending of spindle. Records should not be left on the spindle except during operation of changer. Records will warp. When machine is not in use, it is suggested that the motor control be left in the " 78 " position. For best reproduction keep needle and records clean.

IF NOISE DEVELOPS
Noisy scratching indicates worn records. Some records will wear longer than others, even if kept equally clean. This is due not only to quality of manufacture and care given the records but also to the kind of music recordered.

SELECTION OF NEW RECORDS

When buying records inspect them carefully to be sure that they do not have chipped edges and that they are perfectly flat. Records that are warped or "saucer shaped" or that have chipped edges may not operate properly in the record changer.

SPECIAL INSTRUCTIONS

1. The set-down position of the needle is adjusted by means of an adjusting screw. See illustration. Turn this screw in either direction until correct setdown is obtained for a $10^{\prime \prime}$ record. When correct set-down is obtained for the $10^{\prime \prime}$ position, the $12^{\prime \prime}$ and $7^{\prime \prime}$ setdown positions also will be correct.
2. The pickup arm height is adjusted by the height adjustment screw. See illustration. Turn the screw in or out until the underneath side of the pickup arm lifts $1 / 4^{\prime \prime}$ above a $11 / /^{\prime \prime}$ stack of records on the turntable during start of cycle.
3. The pickup arm is equipped with a cartridge having a osmium tipped unipoint needle. Insert new needle and tighten thumb nut firmly by hand.
The replacment needle will have to be adjusted before it is tightened in the pickup cartridge to insure that the needle shank is securely held by the knurled thumb nut.

CAUTION: DO NOT USE PLIERS ON KNURLED THUMB NUT TIGHTEN WITH FINGERS ONLY.

PARTS LIST FOR RECORD CHANGER

PART
NUMBE

PART NUMBER

K 3466
K 2110
K 2110
K 2594
K 2594
K 1719

DES
 Pace

C" ${ }^{\circ}$
"C" Washer-Record Support
"C" Washer-Maith Coantrol
"C" Washer-12" Record Selector
"C" Washer-Conical Lift Pin Spring
Control Link
Conrol Shaft Bear
Control Shaft Assy.
Conical Lift Pin Spring
Control Shaft Assy.
Die Cast Frame Oaly
Escutcheon
Ejector Liak Assy.
Fibre Washer-Trip Lever Ass.
Fibre Washer-Iditer Wheel
Flat Washer-Slide and Cam Aser.
Fibre Washer-Main Gear Asv.
Fibre Strip-Switch
Hairpin Clip-Idler Wheel Hiage Ass.-LLift Pin Hinge Spriag
Hinge Arm Ansy.
Eccentric for Set-Down
Hinge Arm
Hinge Spring (Tortional)
Tinnerman Speed Nut
Careridge
Cartridge (Astatic "GCAG.M")
Osmium Duo Point Needle
Cable and Clip Assy
Surengthener Screw
Lock Spring
Lift Screw
Lift Screw
Lift Pin
Lever Assy.-Sbut.Of
Locator-Tone Arm Return
Locator Ring-Tone Arm Retura Cam
Lock Spring
Lift Screw
Motor Assembly-(Rusell)
Motor Fassener
Motor Speed Co
Gear Control Rod
"C" Wrasher-Trip Lever Aner.
Roller
Shaft
Rivet
Gear Only
Spring Wather-Trip Lever Ast
Bushing
Bracket
Trip Lever Assy.
Fibre Washer-Trip Lever Asy.
Pawl
Pawl Lever
Rivet
Pal Nut
Plastic Support Les
Pal Nut for Spindle

DESCRIPTION
Reject Knob
Reiect Spring-Shur.Of Rod
Reset Lever
Return Spring-Tone Arm
Rubber Bumper
Rubber Grommet
Record Support Asy
Plastic Button
Plastic Button
Record Support R
Screw-10.24 $\times 5 / 16$ and Lock.Washer
Spring Washer
Shut-Of Spring-Control Link
Shut.Off Spring-Contr
Shut Of Bracket Assy.
Screw- $6 \times 5 / 16$ Sheet Metal-Shut:Of Bracket
Screw- 6 .32 $\times 1 / 4$
Sasety Spring
Safery Plate-Lift
Shipping Eolt ift Pin
Shut-Of Rod
Speed Nut-Spring
Spring for Reset Lever
Switch Only
Switch Cover
Spring-Compression-Switch Control Lever
Spring for Set-Down Leve
Spring for Shut-Off Lever
Spriag Washer-Compression
Screw-4.40 Hex Head
Slide and Cam Assy.
Spring for Slide
Slide Bearing
Switch Control Lever Asy.
Strengthener Screw-\#4 $\times 1 / 4$ Thread Curriag
Speed Control Knob
Surengthener 2nd Bracket Ass
Spindle and Beariog Asy.
Spindle Assy. less Ball Race and Washeri Spindle Guide
Record Pusher
Spindle Body and Base Asy
Retainer Riog-Spindle Assy.
Bearing Washer--Spindle Asy.
Bearing (Ball Race)-Spindle Aev.
Bearing Washer-Spindle Ass.
Pusher Spring-Spindie Guide
Pusher Shaft Spring-Record Pusher
Pusher Shaft and Housing Asy. (Complete)
Turntable and Hub Assy.
Trip Lever Asy
Trip Link
Tone Arm Shaft and Sleeve
Tone Arm Rest Post
Trip Spriag-Concrol Liok
Terminal Strip
Trip Finger-
Ca
Trip Finger-Cam
Tone Arm and Hinge Ase
Streagthener Assy.
Plastic Tone Arm Only
Washer-1/4 I.D. $\times 1 / 2$ O.D. $\times 1 / 16-$ Lift Pia
Washer-"Flat-Steel"
Washer-Concrol Lever Aser.
12" Record Selector
$7 \boldsymbol{7}$ Sec.down Lever

TUNING PROCEDURE

To turn the television receiver on, turn the OFF-ON VOLUME control clockwise until a click is heard. Allow approximately 30 seconds for the tubes to warm up. Turn the STATION SELECTOR control to the desired channel. This control may be turned in either direction. 3. Turn the CONTRAST control clockwise until activity or definite form is noted on the screen.

OCCASIONAL ADJUSTMENTS TO IMPROVE PICTURE RECEPTION

There are four controls at the front of the chassis which are accessible when the hinged control panel is pulled are pre-set at the factory and may occasionally need adjustment due to aging of the components in the re ceiver and the fluctuating line voltages in different areas

CONTROLS AND FUNCTIONS

HORIZONTAL HOLD-Stops horizontal movement (diag onal bars.)
TONE-Adjusts for tonal quality bass or treble.
解
VERTiCAL HOLD-Stops upward or downward picture move ment.
4. Adjust the FINE TUNING control for clearest picture and the VOLUME control for desired volume.
5. To turn off the receiver, turn only the OFF-ON VOLUME control counterclockwise until a click is heard.

PICTURE TUBE SAFETY GLASS

will be necessary to clean the picture tube safety glass and the face of the picture tube occasionally. Remove the screws and cleat as outlined in the illustration. Insert
your fingers into the opening at the center of the frame

John F. Rider

ION TRAP MAGNET ADJUSTMENT - The ion trap magnet should be positioned close to the base of the tube with the magne of the ion trap on the side where the electron gun is nearest the glass neck of the picture tube. From this position
adjust the magnet by moving it back and forth and at th adjust the magnet by moving it back and forth and at the
same time rotating it slightly around the neck of the picsame time rotating it slightly around the neck of the picture tube until the brightest raster is obtained on the the raster is slightly above brightness control setting unt ion trap magnet for maximum raster brilliance and best focus. MAXIMUM RASTER BRILLIANCE AND BEST FOCUS OCCUR AT THE SAME POINT. Do not sacrifice brilliance for best focus. The ion trap magnet adjustment is a very critical one especially with the electrostatic type zero focus picture tube. Consequently, great care should be taken to make sure that the ion trap magnet is correctly adjusted.
DEFLECTION YOKE ADJUSTMENT - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

CENTERING ADJUSTMENT - If horizontal or vertical centering is required, adjust each ring in the centering device until proper centering is obtained. If a clamp type centering device is used, rotate the device to the left or right and turn the knob located at the top of the device until the picture
is centered correctly. is centered correctly.

PICTURE ADJUSTMENT - For further adjustments, obtain a test pattern on the receiver. Turn on receiver and follow tuning procedure on page 16 . When a test pattern is ob-
tained it may be necessary to slightly re-adjust the fine tuning control for clearest picture.
ADJUSTMENT OF AGC THRESHOLD CONTROL - Tune the receiver to the strongest station in the area in which the reeiver will be used. While observing the picture and listen ing to the sound, turn the control clockwise unithe) appear. Then turn the control a few degrees counter-clockwise from the point at which overloading occurs. (The stronger he signal input, the more counter-clockwise this setting will be.) In areas where the strongest signal does not exceed 10,000 uv the setting will usually be maximum
clockwise. With the control set clockwise. With the control set correctly, the AGC will
automatically adjust the bias on the RF and IF ampli fiers so that the best possible signal to noise ratio (Minimum snow) will be obtained for any signal input to the receiver.
ADJUSTMENT OF SYNC STABILITY CONTROL - When receiving strong (500 MV or more) signals, set hold controls so that the picture is locked in. Turn the sync control urn the control slowly clockwise until a minimum amount of bending occurs. If the control is set incorrectly bending, tearing, etc., will be present and when switching rom channel to channel the picture will not lock in quickly.
In weak signal areas the control should be set for maximum picture stability. In general the weaker the signal he more clockwise the control should be turned. When the sync stability control is correctly adjusted the receiver will hold sync without tearing or rolling under ven the most adverse noise conditions.

Check of horizontal oscillator alignment - Tune in a station and adjust the horizontal hold control until the
picture falis into sync. Momentarily remove the signa oy switching off channel and then back. The pictur horizontal hold control. It in the above check the receiver tails to hold sync or the pull-in range is at the extreme end of the control, it will be necessary to make the iollowing adjustment.
HORIZONTAL FREQUENCY ADJUSTMENT - With the horizontal hold control set to the center of its range of rotation adjust the horizontal trequency control (L-14) until the picture pulls into sync. Recheck the "Horizontal Oscillator Alignment."
height and vertical linearity adjustment - Adjust the height control (R-54) until the picture fills the mask vertically. Adjust the vertical linearity control (R-47) until picture centering device to align picture with the masi. Adjustment of any control will require a re-adjustment of the other control.
WIDTh, dRIVE and linearity adjustaments - While receiv ing a signal from a station (with picture locked in sync) brightness control (R-25) up so that collockwise, furn the washed out. Adjust width control (L-15) until the picture fills the mask. Turn the horizontal drive control (R-89) clockwise until white bars appear in the left center portion of the raster, then turn counter-clockwise until the white bars just disappear. This adjustment will allow the horizontal system to operate at maximum efficiency. AdUust horizontal linearity control (L-16) for best linearity. If adjustment of the horizontal drive (R-89) or horizental inearity (L-16) is required, it usually will be necessary ment of the horizontal linearity control (L-16) is requirea readjustment of the horizontal drive control ($\mathrm{R}-89$) will e necessary. Adjust the picture centering device to align the picture with the mask.

CHECK OF R-F OSCILLATOR ADJUSTMENTS

 The oscillator is preset at the factory and normally needs no adjustment. However, if adjustments are required, cabinet. Remove without removing the chassis from the cabinet. Remove the channel selector and fine tuning TEST PROCEDURE:1. Set chiannel selector to receive desired station.
2. Set channel selector to receive desired station
3. Set fine tuning control in center of its range.
4. Set fine tuning control in center of its range.
5. Adjust oscillator slug, with bakel:te type screwdriver
for best picture resolution.
Repeat steps 1, 2 and 3 on all channels used

Fig. 6-Bottom Socket Voltoges

NO RASTER ON PICTURE TUBE - If raster cannot be obtained check below for the possible causes.
1: Ion trap magnet adiustment is incorrect. 2: No + + voltage. Check defective. If fuse continually burns out, check (A) Horizontal output tube V-17 (6BQ6-GT)
(B) Check damper tube V-18 (6AX4-GT).
(C) Check horizontal oscillator tube V-16 (6SN7-GTA)
for proper operation.
(D) With an ohm meter, check for a short between terminal 1 of the horizontal output transformer (T-9) and the chassis.
(E) Check DC resistance of T-9.
No high voltage. Check V-17, V-18 and V-19 tubes : No high voltage. Check V-17, V-18 and V-19 tubes and circuits. If the horizontal defrect voltage (600 V) measured on terminal No. 1 of T-9, the trouble can be isolated to the high voltage rectifier circuit. Either the high voltage winding to the 6BQ6-GT plate and $1 \mathrm{B3}$ plate is open, tube $\mathrm{V}-19$ is defective, its filament circuit is open, R-99 and C-78 defective or pix tube elements shorted internally
Defecits open. circuir open
HORIZONTAL DEFLECTION ONLY - If only horizontal deflec ion is obtained as evidenced by a straight line across he face of the picture following: Vertical
ascilator and vertical output tube V-8 inoperVertive. Check socket voltages.
: Vertical oscillator transformer (T-4) defective.
3: Vertical output transformer (T-5) open or shorted.
4: Yoke vertical coils open or shorted.
4: Yoke vertical coils open or shorted.
5: Vertical hold, height or linearity controls may be de-
fective.
POOR VERTICAL LINEARITY - If adjustment of the heigh and linearity controls will not correct this condition, any of the following may be the cause.
1: Check variable resistors R-49 and R-54.
2. Vertical output transformer (T-5) defective.

3: Capacitors C-35A, C-39 or C
4: $V-8$ defective, check voltages.
5: Excess leakage or incorrect value of capacitor C-37 or open or incorrect value of resistors R-55 \& R-56.
6: Low plate voltages. Check rectifier tube and capacitors 7. in +B supply circuits.

7: Capacitor C-36 defective.
8: Vertical deflection coils (L-12) defective.
POOR HORIZONTAL LINEARITY - If adjustment of the Horizontal drive and linearity controls does not correct this condition, check the following:
1: Check or replace horizontal output tube V-17.
2: Check or replace damper tube V-18 (6AX4-GT).
3: Check capaciors $($ l-inearitv control $(L-16)$ for defects.
4: Horizontal deflection coils (L-17) defective.

irapezoidal or nonsymmetrical raster

1: Defective yoke
WRINKLES ON LEFT SIDE OF RASTER - This condition can be caused by:
1: Defective yoke due to C-75 or R-98 (internal in yoke
assembly) being wrong value or open. These com ponents are mounted in rear of yoke assembly 2: V -18 ($6 \mathrm{AX} 4-\mathrm{GT}$) defective.

SMALL RASTER - This condition can be caused by
1: Low +B or line voltage. Check V-20 (5U4G).
2: Insufficient output from horizontal output tube V-17. Replace tube.
3: Insufficient output from vertical oscillator and vertical
4: Output tube $V-8$. Replace tube. drive control $R-89$
4: Incorrect setting of horizo
5: Incorrect setting of (L-ヤ5) width control.
raster; no imace, but accompanying sound - This condition can be caused by:
: No signal on picture tube grid. Check V-5A (12AT7) and V-6 (6AH6) tubes and associated circuits.
broken).
3: AGC tube (V-9) may be defective. Check tube and its associated circuit.

SIGNAL APPEARS ON PICTURE TUBE GRID BUT IMPOSSIBLE TO SYNCHRONIZE THE PICTURE VERTICAILY AND HORIZONTALLY - A condition of this nature can be caused by:

1: Defective sync separator V.7 or phase spliter V-5B.
3: AGC system inoperative. Check V-9 (6AU6) AGC tube and associated circuits.
signal on picture tube grid and horizontal sync oniy - If this condition is encountered, check:

1: Vertical integrating network capacitors $C-31 A, B \& C$
2: Vertical hold control (R-51) defective.

signal on picture tube grid and vertical sync oniy

1: V-15 or V-16 defective
2: Improper setting of (L-14) horizontal frequency con trol.
3: Check setting of horizontal drive control and horizon tal linearity control.

PICTURE STABLE BUT WITH POOR RESOLUTION - If the picture PICsolution is not up to standard, it may be caused by any of the following:
1: Defective pix I-F tubes V-1,2\&3, (6CB6's).
2: Defective picture detector V-4A, (6AL5) or video am plifier V-5A or video output V-6 (6AH6)
3: Defective picture tube.
4: Open video peaking coil. Check all peaking coils -5, $-6,1-8, L-9, L-10$ and $L-11$ for continuity. Not
5: Leakage in V-6 (6AH6) grid capacitor C-11. If the capacitor is not found to be defective, check the following:
1: Check all potentials in video circuits.
2: Check picture tube grid circuit for poor or dirty
3: Check and realign, if necessary, the picture I-F and R-F circuits.

PICTURE SMEAR:

1: A smear can be attributed to phase shift at the low or high frequency end of the video characteristic. This can be caused by improper values of resistors and capacitors in the video circuits. Check for grid curren on video output tube V-6 (6AH6), open or shorted peaking coils, video amplifier load resistors are of improper value (high).
2: This trouble can also originate at the transmitter Check reception from another station.
3: Check and realign, if necessary, the picture 1-F and R-F circuits.

Man made noise in sound (Ignition, etc)

1: Check sound I-F tubes $V-10,11 \& 12$ and associated circuits.
2: Check sound I-F alignment.

BENDING OR S-ING

1: Check sync stability control adjustment.
2: Check capacitors $\mathrm{C}-35 \mathrm{~B}$ and C -79B.
3: V - 17 (6BQ6-GT) defective or V - 16 (6SN7-GTA) defective.
4: Check sync separator tube V. 7 (6BE6) and phase splitter V-5B (12AT7) and V-5A (12AT7) video amplifier.
5: Check AGC threshold control.

ALIGNMENT PROCEDURE

TEST EQUIPMENT - To service this receiver properly, it is recommended that the following test equipment be available:

R-F SWEEP GENERATOR meeting the following requirements:
(a) Frequency ranges:

18 to $30 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
40 to $90 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
170 to $225 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
(b) Output adjustable with at least .1 volt maximum. (c) Output constant on all ranges.
(d) Flat output in all attenuator positions.

CATHODE-RAY OSCILLOSCOPE preferably one with a wide band vertical deflection and an input calibrating source.

SIGNAL GENERATOR to provide the following frequencies Output on these ranges should be adjustable and at least 1 volt maximum.)
(a) Intermediate alignment frequencies
23.1 mc first picture I-F coil.
24.1 mc third picture I-F coil.
25.9 mc second picture I-F coil.

PICTURE NORMAL-NO SOUND OR WEAK OR DISTORTED SOUND
1: Check sound I-F alignment.
2: Check V-10 (6AU6) V-11 (6AU6) V-12 (6AL5) V-13 (6AV6) V-14 (6AQ5) and associated circuits.

POOR FOCUS

1: Improper setting of lon Trap magnet.
2: Defective picture tube or picture tube socket.

PICTURE JITIER:

1 : If regular sections at left of the picture are dis placed, replace the horizontal oscillator tube V-16.
2: Vertical instability may be due to loose connection or noise received with the signal.
3: Horizontal instability may be due to unstable transmitted sync.
4: Check receiver AGC system for proper operation.
5: Check phase splitter V-5B, (12AT7) and sync separafor $V-7$ (6BE6).
6: Check for improper setting of sync stability control.
7: Picture tube grid lead not held in position by suppon spring, ie: close proximity of grid lead to sync and horizontal tubes will cause picture to jitter at high contrast setting.
8: Check AGC threshold control.
21.7 mc sound trap.
4.5 mc video trap \& sound I-F.
25.2 mc converter plate coil (Tuner).
heterodyne frequency meter with crystal calibrator if the signal generator is not crystal controlled.
electronic voltmeter and a high voltage probe for use with this meter to permit measurements up to 20 kilovolts.

SERVICE PRECAUTIONS - To service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the cabinet back, disconnect the leads from the speaker, remen the 5 chassis mounting bolts. The chassis may be serviced with the picture tube in place provided the chassis is turned on its side with the power transformer on the bottom. The weight of the chassis will be supported against the power transformer and pix tube brackets.
CAUTION: Do not permit the kinescope second-anode lead to become shorted to the chassis. To do so will cause considerable overload on the high voltage filter resistor

©John F. Rider

ALIGNMENT PROCEDURE

PIX I-F

Fig. 8 -Top Chassis Video
ond Audio I-F Adiustments
A. Unmodulated R-F signal into Converter Grid by means
 of tube shield insulated from base. VTVM with filter in lead of 22 K ohms and 5000 mmf connected to pic. det. load Fig. 10-vivM Connections resistor, (R-100) 4700 ohms, in series with peaking coil (L-6) from Pin 7 of 6AL5. Input signal level should be such that output is less than 2 volts DC. Apply -4.5 V battery bias on AGC line.

1.	freauency 25.2 MC	Converter plate coil on top of funer for maximum dc at picture detector.
2.	23.1 MC	lst picture I-F coil (T-1) for maximum dc at picture detec- for.
3.	25.9 MC	2nd picture 1-F coil (T-2) for maximum dc at picture detec- tor.
4.	24.1 MC	3rd picture 1-F coil (T-3 below chassis) for maximum dc at pic- fure detector.
5.	21.7 MC	3rd picture 1-F trap (T-3 in can above chassis) for minimum dc at picture detector.

B. I.F Sweep Generator into converter grid by means of tube shield insulated from base.
Connect oscilloscope across R-100 (in place of VTVM) Apply -4.5 V bias (DC) to AGC line (battery).
Tuner should be switched to dead channel so as not to cause interference.

Fig. 12-Overoll Response Curve

Observe overall I-F response, which should be as shown above: A slight touch-up may be required. At no time should the trap coil be re-adjusted, nor should it be necessary to turn any of the picture I-F coils more than $\mathbf{1 / 2}$ urn of the slug. The following comments are suggestions only:

ALIGNMENT PROCEDURE (Continued)

1. The height of the 26.2 MC marker is controlled by the 25.2 MC (Converter Plate Coil on tuner) and the 25.9 MC (2nd P.I.F.) coils.
2. The uniformity of response (flatness across top and position of 23.5 MC) marker is controlled for the nost part by the 24.1 MC third picture I-F coil.
3. The 23.0 MC marker position is controlled by the first picture I-F (23.1 MC coil). However, it is NOT advisable to change the setting of the coil, due to its effect on sound rejection. lis adjustment should be avoided unless believed to be absolutely necessary.

VIDEO

With 4.5 MC unmodulated signal from a high impedance source, (10,000 ohms in series with the generator) into plate of the picture detector tube (Pin 7-6AL5) and VTVM on picture tube grid, tune 4.5 MC trap (L.7 Top) for

TUNER ALIGNMENT

A. Sweep generator with balanced 300 ohm output to antenna terminals. Marker generator output to antenna terminals. Oscilloscope to "test point" (Figure 13) on tuner. Connect $11 / 2 \mathrm{~V}$ bias to AGC line at junction of $\mathrm{R}-33$ and $\mathrm{C}-20$ on the receiver

Fig. 13-Top Tuner Adiustments
B. RF AND CONVERTER ADJUSTMENT

1. With channel selector on Channel 12, adiust C-201 slightly favoring the Pix carrier, then adjust $\mathrm{C}-206$ and C -209 for response as in Figure 14. Picture and sound markers at 90% maximum response.
minimum response. VTVM on 0.10 V AC scale. This ad justment can also be made while observing a picture from a station. Tune trap for least 4.5 MC beat in picture

AUDIO I-F

1: With signal generator set to 4.5 MC and dc VTVM connected to junction of R-62 and C-46, adjust sound take-off coil (L-13 Top) and sound I-F transformer slugs (T-6 Top \& Bottom) for maximum.
2: With VTVM connected to pin 7 of V-12 (6AL5) adjus the ratiq detector primary ($T-7$ Bottom) for maximum
3: With VTVM connected to junction of R-66, R-69 and C-50, adjust ratio detector secondary (T-7 Top) for cross over (zero voltage) on lowest scale.
NOTE - If no signal generator is available, the pro cedure above may be followed by tuning in a station and using the 4.5 MC beat between picture and sound carrier.
2. Check response on all channels. If markers are below 70% on any channels, readjust $\mathrm{C}-201, \mathrm{C}-206$, and C-209. Recheck all channels.

C. OSCILLATOR ADJUSTMENT.

1. Apply -4.5 volts on I-F AGC line at junction of R-1 and C-21.
2. Connect oscilloscope to output of video detector Place fine tuning in center of range. Check response on all channels. Sound marker should be in notch and picture marker at 50%. (See Figure 12).
3. If markers are off, individual oscillator coil slugs will require adjustment. Adjust each channel slug, accessible through hole in front of chassis with a non-metallic screwdriver to bring sound marker to correct position.

TUNER ASSEMBLY INFORMATION

Fig. 16-" $\mathbf{Q "}^{\prime \prime}$ Tuner Schematic Diagram.

TUNER ASSEMBLY PARTS LIST RESISTORS

COILS AND CHOKES (Continued)
Part No. Description $\begin{gathered}\text { Channel } \\ \text { Code No. }\end{gathered}$
9A2278-11 Antenna Coil 12.Q.
9A2278-12 Antenna Coil 13-Q.
9A2279.1 Oscillator Coil 2-Q.
9A2279-2 Oscillatar Coil 3-Q.
9A2279-3 Oscillator Co:il 4.Q.
9A2279-4 Oscillator Coil 5.Q.
9A2279-5 Oscillator Coil 6.Q.
9A2279.6 Oscillator Coil 7.Q.
9A2279.7 Oscillator Coil 8.Q.
9A2279-8 Oscillator Coil 9-Q.
9A2279.9 Oscillator Coil 10.Q...
9A2279-10 Oscillator Coil 11-Q..
A2279.11 Oscillator Coil 12-Q
9A2279-12 Oscillator Coil 13-Q
$\begin{array}{ll}31 \text { B-296 } & \text { Choke, Cathode .. } \\ 34 \text { A-546 } & \text { Choke, R-F Filomen }\end{array}$
34A575 Choke, Oscillator Filament
318-295 Chake, Mixer Plate
${ }^{31 A-078}$ Converter Plate Coil
31B-230 Choke, Coil
MISCELLANEOUS MECHANICAL PARTS
Ref. No. Part No. Description
M-107 $\quad 31$ B. 012 Bracket, Sharp Tuning Rotor Retaining
M-108 31B-048 Spring, Detent Plate Grounding.

M-109 165-006 Shield, Tube (6J6)
M. 1110 16S.004 Shield, Tube (6BQ7)
$\begin{array}{lll}\text { M-112 } & \left.31 A-010 \quad \begin{array}{c}\text { Spring, Slug Retaining } \\ \text { (Osillator Coil) }\end{array}\right)\end{array}$
M-113 $110.022 \begin{gathered}\text { Washer, } \\ \left(1 / 4^{\prime \prime} 10\right. \\ \text { by }\end{gathered}$
M-114 10E-401 Nut, locking Spring (for trimmers)
M. 115 9A-410-7 Screw, Trimmer

M-116 9A-629-3 $\begin{gathered}\text { Screw, Bracket Mounting } \\ \left(6 / 32^{\prime \prime} \text { by } 1 / 4^{\prime \prime}\right)\end{gathered}$
$\begin{array}{lll}\text { M. } 117 & 318.029 & \text { Osc. Slug Trimmer }\end{array}$
M-121 31 B-016 Roller, Detent ($3 / 8^{\prime \prime}$ dia., $3 / 32^{\prime \prime}$ dia
M-122 $318-005$ Spring, Detent ($2-5 / 16^{\prime \prime}$ long)
M-123 318-278 Cantact Plate and Bracket Assembly
$\begin{array}{lll}\text { M-124 } & 318-008 & \begin{array}{c}\text { Spring, Sharp } \\ \text { (Flat Bronze } 1.7 / 16^{\prime \prime}\end{array} \text { by } 1 / 2^{\prime \prime} \text {) } \ldots \ldots . .\end{array}$

M- 126
31A-066-26 Fine Tuning Shaft (Sharp Tuning) Fine Tuning Shatt (Sharp
used with 25 A1095 Tuner
© John F. Rider

OSCILLOSCOPE WAVEFORM PATTERNS

The waveforms on this page were taken with the receiver tuned to a normal picture．The numbers on the waveforms correspond to the numbers on the schematic diagram which identifies each test point．
The voltages shown on each waveform are the approxi mate peak to peak amplitudes．The frequencies shown in－

No．1－6AL5 Pix Det．Plote
No． 3.5 V P． 60 C．P．S．

No．B－6SN7－GTA－Vert．Osc．Plate
125 V P．P 60 c．P．S．
No．${ }_{50 \mathrm{~V}}^{\text {14－6SN7－Hor．}}$ Osc．Plate
15，750
C．P．S．

No．3－Pix Tube Grid
20.100 V P．P 60 C．P．S．

No．5－6BEg Sync Sep．Plate
No．10－6SN7．GTA Vert．Output Grid
6SN7．GTA Vert．OUt
150 V P．P 60 C．P．S．

No．6－12AT7 Phase Spliter Cothode
1BV P．P 60 C．P． 5 ．

No． $11-$ Vert．Def．Coil
ioov P．P 60 C．P．S．
$\begin{array}{ccc}\text { No．} & \text { 17－6BQ6 } & \text { Grid } \\ 120 \mathrm{~V} \\ \text { P．－} & 15,750 & \text { C．P．S．}\end{array}$

No．${ }^{12-6 A U G}$ A．G．C
450 V P．P 15,750 C．P．S
No．18－6AX4－Gr Damper Plate
120 Y P． 15,750 C．P．S．

PARTS LIST

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

ORDERING PARTS

Order parts from yaur nearest Firestone Home and Auto Supply Warehouse．When ordering parts，it is important that the correct code Wuber and stock number，be given with the torrect part name and part number as shown in the parts list．You will find the stock num－ number also appears on the front cover of this booklet．

RETURNING DEFECTIVE PARTS
All parts on adjustments must be returned to your District Office Service Department with claim form completely filled out．This receiver repairman．

CAPACITORS

List
Price

$80 \times 1 \quad 1000 \mathrm{mmf}$
1000 mmf
Ceramic．．．．．．$\$.20$

80×3	1000 mmf			Dual Ceramic．．	． 30
47X603	47 mmf		500 V	Ceramic．	20
of T －3					
47×562	5 mmf		500 V	Ceramic．	． 80
47X584	1.5 mmf360 mmf			Composition．．．	． 10
47×568			500 V	Molded Mica．	． 20
RCP10M4473M		． 047 mf	400 V	Tubular．	． 30
RCPIOM4104M		． 1 mf	400 V	Tubular	． 35
RCPIOM6473M		． 047 mf	600 V	Tubular．	． 35
RCP10M6153M RCPIOM2104M		． 015 mf	600 V	Tubular．	． 30
			200 V	Tubular．	． 30
RCP10M2224M		． 22 mf	200 V	Tubular．	45
RCP10M4103M		． 01 mf	400 V	Tubular．	． 25
45×392			400 V		
	$\begin{aligned} & 40 \mathrm{mf} \\ & 10 \mathrm{mf} \end{aligned}$		$\begin{aligned} & 50 \mathrm{~V} \\ & 400 \mathrm{~V} \end{aligned}$	Dry Electrolytic	2.50
Part of 76×7（See Miscellaneous）					
47×543	4700 mmf		500 V	Molded Mica．	． 85
RCPIOM4472M		． 0047 mf	400 V	Tubular．	． 25
47×604	100 m		500 V	Ceramic．	． 20

O John F. Rider

© John F. Rider

Fig．1－Tube Layout．

RECEIVER LOCATION－Advise the owner as to the proper location for the television receiver．The following may be used as a guide：

1．Choose an area in the home where sunlight or light from lamps does not strike the face of the picture tube and cause glare．

2．Remember the necessity of an electrical outlet and the location of the point at which the antenna leads enter the room．
3．The receiver should be placed a short distance from the wall to allow adequate ventilation．
4．The receiver should be placed to permit easy access
for operation and comfortable viewing from all angles．
ANTENNA－This receiver has been designed to use an an－ tenna with a 300 ohm balanced transmission line．This line must be as short as possible because the longer the line the greater the chances are for picking up electrical disturb－ ances．Stand－off insulation should be used to keep the line away from the mast，metal or walls．Twist this line about one turn per foot throughout the line to cancel out direct signal and／or noise pickup by the transmission line．It should also be securely anchored in place so that a change in weather will not affect its position．

HIGH VOLTAGE WARNING

This television receiver contains high voltages which are dangerous to life．Never operate or service the receiver outside of the cabinet or with the covers removed until all the safety precautions necessary for working with high voltage equipment have been observed．

PICTURE TUBE

handling precautions

Shatterproof goggles and heavy gloves must be worn by individuals while handling the picture tube or insta！！！ing the picture tube into the receiver
The p：cture tube encloses a high vacuum and due to the large surface area，is subjected to very high air pressure．Therefore，care should be taken not to bump or scratch the picture tube accidentally as it may cause the tube to implode resulting in damage to property or injury to an individual．

TUNING PROCEDURE

To turn the television receiver on，turn the OFF－ON VOLUME control clockwise until a click is heard．Allow approximately 30 seconds for the tubes to warm up．
．Turn the STATION SELECTOR control to the desired channel．This control may be turned in either direction．

Turn the CONTRAST control clockwise until activity or definite form is noted on the screen．

4．Adjust the FINE TUNING control for clearest picture and the VOLUME control for desired volume

To control counterclockwise until a click is heard．
6．TONE CONTROL－When this Control is turned clock－ wise，the high notes will predominate and when turned counterclockwise，a deep bass effect will result．
7．In localities where UHF programs are available，turn the STATION SELECTOR control to the UHF position and tune in the desired station with the UHF Tuning Control．The dial scale is calibrated in channel num－ 14 bers and covers the entire UHF range of channels 14 through 83.

OCCASIONAL ADJUSTMENTS TO IMPROVE PICTURE RECEPTION

There are four controls at the front of the chassis which are accessible when the hinged control panel is pulled downward．See illustration Figure 2．These controls adjustment at the factory and may occasionally need ceiver and the fluctuating line voltages in different areas．

CONTROLS A

HORIZONTAL HOLD－Stops horizontal movement（diag． onal bars．）

TONE－Adjusts for tonal quality bass or treble．

PICTURE TUBE SAFETY GLAS

PICTURE TUBE SAFETY GLASS－It will be necessary to clean he picture tube safery glass and the face of the picture tube occasionally．Remove the screws and cleat as out－ lined in the illustration．Insert your fingers into the opening at the center of the frame and carefully lift up and pull out the safety glass．Clean the safety glass and the face of the picture tube with a soft lint－free cloth dampened
with woter or mild soapsuds．
f any adjustments are necessary follow the instructions under＂Controls and Functions．＂
mportant－Be sure that the FINE TUNING control has controls．

FUNCTIONS

BRIGHTNESS－Adjusts for desired picture brilliance．
VERTICAL HOLD－Stops upward or downward picture move－

For models that have the cleat and screws at the top of the cabinet the following caution must be observed． CAUTION－UPON REMOVAL OF The last sCREW AND the cleat the glass may fall forward．support the glass with one hand as you lift it gentiy FROM THE CABINET

NON-OPERATING CONTROLS

ON TRAP MAGNET ADJUSTMENT-The ion trap magnet should be positioned close to the base of the tube with the magnet of the ion trap on the side where the electron gun is nearest the glass neck of the picture tube. From this position adjust the magnet by moving it back and forth and at the same time rotating it slightly around the neck of the picture tube until the brightest raster is obtained on the picture screen. Reduce the brightness control setting unth hen trap magnet for maximum raster brilliance and best focus. MAXIMUM RASTER BRILLIANCE AND BEST FOCUS OCCUR AT THE SAME POINT. Do not sacritice brilliance for best focus. The ion trap magnet adjustment is a very critical one especially with the electrostatic type zero focus picture tube. Consequently, great care should be taken to make sure that the ion trap magnet is correctly adiusted.
dEFLECTION YOKE ADJUSTMENT - If the lines of the raster re not horizontal or squared with the picture mask, rotate antion yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

CENTERING ADJUSTMENT - If horizontal or vertical centering is required, adjust each ring in the centering device until proper centering is obtained. If a clamp type centering device is used, rotate the device to the left or right and furn he knob located at the top of the device until the picture is centered correctly.

PICTURE ADJUSTMENT - For further adjustments, obtain a est pattern on the receiver. Turn on receiver and follow uning procedure . When a test pattern is ob tained it may be necessary to slightly re-adjust the fine funing control for clearest picture
ADJUSTMENT OF AGC ThRESHOLD CONTROL - Tune the receiver to the strongest station in the area in which the re overloading (buzz in sound, washed-out picture) apns of Then furn the control a few degrees counter-clockwise from the point at which overloading occurs. (The stronge the signal input, the more counter-clockwise this setting will be.) In areas where the strongest signal does not ex ceed 10,000 uv the setting will usually be maximum clockwise. With the control set correctly, the AGC will fiers so that the best possible signal to noise ratio (Minimum snow) will be obtained for any signal input to the receiver.
ADJUSIMENT OF SYNC STABILITY CONIROL - When receiv ing strong (500 MV or more) signals, set hold controls so thar lo piccure il bending occurs at top of picture Then turn the control a few degrees counter-clockwis until bending disappears. If the control is set incorrectly bending, tearing, etc., will be present and when switching from channel to channel the picture will not lock in quickly. In weak signal areas the control should be set for maximum picture stability. In general the weaker the signal the more clockwise the control should be turned.
When the sync stability control is correctly adjusted the receiver will hold sync without tearing or rolling unde even the most adverse noise conditions.
CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT - Tune in o station and adjust the horizontal hold control until the picture falls into sync. Momentarily remove the signal
by switching off channel and then back. The picture should pull into sync over a range of 90° rotation of the horizontal hold control. If in the above check the receiver fails to hold sync or the pull-in range is at the exireme following adjustment.
ORIZONTAL FREQUENCY ADJUSTMENT - With the horizontal hold control set to the center of its range of rotation, adjust the horizontal frequency control (L-14) unila Cligne pull"
height and vertical linearity adjustment - Adjust the height control ($\mathrm{R}-54$) until the picture fills the mask vertically. Adjust the vertical linearity control (R-49) until he picture is symmetrical from top to bottom. Adjust the Adjustment of any control will require a re-adjustment of he other control.
WIDTH, DRIVE AND LINEARITY ADJUSTMENTS- While receiving a signal from a station (with picture locked in sync) ing a signal from arn contrast control fully counter-clockwise, turn the brightness control (R-25) up so that the picture appears washed out. Adjust width control (L-15) until the picture fills the mask. Turn the horizontal drive control (R-89) clockwise until white bars appear in the left center poron of the raster, then furn counter-clockwise until the white bars just disappear. This adjustment will allow the horizontal system to operate at maximum efficiency. Adis adiustment of the horizontal drive ($\mathrm{R}-89$) or horizontal inearity ($\mathrm{L}-16$) is required, it usually will be necessary to recheck the horizontal oscillator alignment. If adjustment of the horizontal linearity control (L-16) is required, readjustment of the horizontal drive control (R-89) will be necessary. Adjust the picture centering device to align the picture with the mask

CHECK OF R-F OSCILLATOR ADJUSTMENTS

The oscillator is preset at the factory and normally need no adjustment. However, if adjustments are required they can be made without removing the chassis from the abinet. Remove the channel selector and fine tuning knobs from the funing shaft.
TEST PROCEDURE:
. Set channel selector to receive desired station
2. Set fine tuning control in center of its range.
3. Adjust oscillator slug, with bakelite type screwdriver, for best picture resolution.
4. Repeat steps 1,2 and 3 on all channels used.

Caution - These adjustments are intended only for VHF
Channels. For information regarding UHF alignment see paragraph "Tuner Alignment",

Fig. 5-Tuner Oscillotor Adiustments

SERVICE SUGGESTIONS

check below for the possible causes．
1：lon trap magnet adjustment is incorrect．
2：$N o+B$ voltage．Check $4 / 10$ ampere fuse．Replace if defective．If tuse continually burns out，check
（A）Horizontal output tube V－17（6BQ6－GT
（B）Check damper tube V－18（6AX4－GT）
（C）Check horizontal oscillator tube V－16（6SN7－GTA） for proper operation．
（D）With an ohm meter，check for a short between zontal output transformer （T－9）and the chassis
3：No high voltage．Check V－17，V－18 and V－19 tubes and circuits．If the horizontal deflection circuits are operating as evidenced by the correct voltage（ 600 V ） measured on terminal No． 1 of T－9，the trouble can be isolated to the high voltage rectifier circuit．Either the high voltage winding to the 6BQ6－GT plate and 1B3 plate is open，tube V－19 is defective，its filament circuit is open， k －gg and C －
Defective picture tube heat
ter or cathode retu：n circuit open．

HORIZONTAL DEFLECTION ONLY－If only horizontal deflec－ tion is obtained as evidenced by a straight line across the face of the picture tube，it can be caused by the ollowing：
1：Vertical oscillator and vertical output tube V－8 inoper－ ative．Check socket voltages．
2：Vertical oscillator transformer（ T－4）defective．
3：Vertical output transformer（T－5）open or shorted．
5：Yoke vertical coils open or shorted．
：Vertical hold，height or linearity controls may be de－ fecive．

POOR VERTICAL LINEARITY－If adjustment of the height and linearity controls will not correct this condition，any of the following may be the cause．
1：Check variable resistors R－49 and R－54．
3：Capacitors C－35A C－39 or C－70 defective．
3：Capacitors $\mathrm{C}-35 \mathrm{~A}, \mathrm{C}-39$ or
4： $\mathrm{V}-8$ defective，check voltages．
5：Excess leakage or incorrect value of capacitor C－37 or open or incorrect value of resistors R－55 \＆R－56．
6：Low plate voltages．Check rectifier tube and capacitors in $+B$ supply circuits．
7：Capacitor C－36 defective
8：Vertical deflection coils（L－12）defective．
POOR HORIZONTAL LINEARITY－If adjustment of the Hori－ zontal drive and linearity controls does not correct this ondition，check the following：
1：Check or replace horizontal output tube V－17
2：Check or replace damper tube V －18（6AX4－GT）．
3：Check capacitors C－74，C－76，C－77 and horizontal linearity control（L－16）for defects．
4：Horizontal deflection coils（L－17）defective．

TRAPEZOIDAL OR NONSYMMETRICAL RASTER

1：Defective yoke．
WRINKLES ON LEFT SIDE OF RASTER－This condition can be caused by：
1：Defective yoke due to C－75 or R－98（internal in yoke
assembly）being wrong value or open．These com－ ponents are mounted in rear of yoke assembly． 2： V －18（6AX4－GT）defective．

SMALL RASTER－This condition can be caused by：
SMALL RASTER－This condition can be caused by：
1：Low $+B$ or line voltage．Check V－20 \＆V－22（5U4G）．
1：Low +B or line voltage．Check $\mathrm{V}-20$ \＆ $\mathrm{V}-22$（ 5 V G ）．
2：Insutticient output trom horizontal output tube V－17． Replace tube．
3：Insufficient output from vertical oscillator and vertical output tube V－8．Replace tube
．Incorrect setting of horizontal drive control R－89．
5： V －18（6AX4－GT）defective．
6：Incorrect setting of（L－15）width control．
RASTER；NO IMAGE，BUT ACCOMPANYING SOUND－This condi－ ion can be caused by：
：No signal on picture tube grid．Check V－5A（12AT7） and V－6（6AH6）tubes and associated circuits．
Bad contact to picture tube grid（lead to socket broken）
：AGC tube（V－9）may be defective．Check tube and its associated circuit．

SIGNAL APPEARS ON PICTURE TUBE GRID BUT IMPOSSIBLE TO SYNCHRONIZE THE PICTURE VERTICALLY aND hORIZONTALLY A condition of this nature can be caused by：
1：Defective sync separator V－7 or phase splitter V－5B．
2：If tubes are O．K．check voltages，and associated cir－ cuits．
AGC system inoperative．Check V－9（6AU6）AGC tube and associated circuits．

SIGNAL ON PICTURE TUBE GRID AND HORIZONTAL SYNC ONLY －If this condition is encountered，check：
and resistors R－46 A B \＆C C－31A，B \＆C Vertical hold cont

signal on picture tube grid and vertical sync onty

1：V－15 or V－16 defective
：Improper setting of（L－14）horizontal frequency con－
：Check setting of horizontal drive control and horizon－ tal linearity control．
4：Check V－15 and V－16 socket voltages．
PICTURE STABLE BUT WITH POOR RESOLUTION－If the picture resolution is not up to standard，it may be caused by any of the following
1：Defective pix I－F tubes V－1， 2 \＆3，（6CB6＇s）．
Defective picture detector V－4A，（6AL5）or video am－ ：Dlifier V－5A or video outive picture tube．
4：Open video peaking coil．Check all peaking coils L－5，L－6，L－8，L－9，L－10 and L－11 for continuity．Note that L－5，L－9 and L－10 have shunting resistors．If the
5：Leakage in V． 6 （6AH6）grid capacitor C－11．If the capacitor is not found to be defective，check the fol－
lowing：
2：Check picture tube grid circuit for poor or dirty
3．Conack．
3：Check and realign，if necessary，the picture I－F and R－F circuits．

IICTURE SMEAR:

1: A smear can be attributed to phase shift at the low or high frequency end of the video characteristic. This can be caused by improper values of resistors and capacitors in the video circuits. Check for grid current on video output tube V-6 (6AH6), open or shorted peaking coils, video amplifier load resistors are of improper value (high).
: This trouble can also originate at the transmitter. Check reception from another station.
Check and realign, if necessary, the picture I-F and R-F circuits.

AN MADE NOISE IN SOUND (Ignition, etc)

1: Check sound I-F tubes V-10, 11 \& 12 and associated circuits.
2: Check sound I-F alignment.

BENDING OR S-ING

: Check sync stability control adjustmeni
2: Check capacitors $\mathrm{C}-35 \mathrm{~B}$ and $\mathrm{C}-79 \mathrm{~B}$.
V-17 (6BQ6-GT) defective or V-16 (6SN7-GTA) defective.
4: Check sync separator fube V-7 (6BE6) and phase splitter V-5B (12AT7) and V-5A (12AT7) video amplifier.

5: Check AGC threshold control.

PICTURE NORMAL—NO SOUND OR WEAK OR DISTORTED SOUND
1: Check sound I-F alignment.
2: Check V-10 (6AU6) V-11 (6AU6) V-12 (6AL5) V-13 (6AV6) V-14 (6AQ5) and associated circuits.

RASTER ON TUBE BUT NO PICTURE OR SOUND

This condition can be caused by,
1: Defective pix I-F Amplifier tubes V-1, V-2 or V-3
2: Defective pix detector tube V-4A (6AL5). Check tube and its associated circuit.

3: Defective R-F Amplifier or oscillator mixer tubes in the tuner.
: UHF-VHF switch defective

OOR FOCUS

I: Improper setting of Ion Trap magnet.
2: Defective picture tube or picture tube socket.

PICTURE JITTER:

1: If regular sections at left of the picture are dis If regular sections at left of the picture are dis-
placed, replace the horizontal oscillator tube V - 16 .
2. Vertical instability may be due to loose connections or noise received with the signal
3: Horizontal instability may be due to unstable transmitted sync.
4: Check receiver AGC system for proper operation.
5: Check phase splitter V-5B, (12AT7) and sync separator $\mathrm{V}-7$ (6BE6).
6: Check for improper setting of sync stability control.
7: Picture tube grid lead not held in position by support spring, ie: close proximity of grid lead to sync and horizontal tubes will cause picture to jitter at high contrast setting
. Check AGC threshold control.
NO PICTURE OR SOUND OR WEAK PICTURE OR SOUND IN UHF OSItion
If this condition is encountered
: Check to see whether or not a UHF station is operating in the vicinity.
2: The 6AF4 oscillator tube or the IN72 (or IN82) crystal may be defective.
3: Pre-selector in UHF tuner defective.
4: Low pass filter defective
5: The UHF antenna and oscillator strips in the VHF funer defective.
6: Defective switch on UHF funer.

ROCEDURE
 ALIGNMENT PROCEDURE

TEST EQUIPMENT - To service this receiver properly, it is recommended that the following test equipment be available:
R-F SWEEP GENERATOR meeting the following requirements: (a) Frequency ranges:

18 to $30 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
120 to $130 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
170 to 225 mc , 10 mc sweep width
470 to 890 mc , 10 mc sweep width
(b) Output adjustable with at least .1 volt maximum
(c) Output constant on all ranges.
(d) Flat output in all attenuator positions.

CATHODE-RAY OSCILLOSCOPE preferably one with a wide band vertical deflection and an input calibrating source.

SIGNAL GENERATOR to provide the following frequencies: (Output on these ranges should be adjustable and at least . 1 volt maximum.)
a) Intermediate alignment frequencies
23.1 me first picture I-F coil.
24.1 me third picture I-F coil.
25.9 mc second picture I-F coil.
21.7 mc sound trap.
4.5 mc video trap \& sound I-F
25.2 mc converter plate coil (Tuner).

HETERODYNE FREQUENCY METER with crystal calibrator if the signal generator is not crystal controlled.
Electronic voltmeter and a high voltage probe for use with this meter to permit measurements up to 20 kilovolts. SERVICE PRECAUTIONS - To service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the cabinet back, disconnect the leads from the speaker, remove the antenna terminal board at rear of cabinet, and then the 5 chassis mounting bolts. The chassis may be serviced with the picture tube in place provided the chassis is turned on its side with the power transformer on the bottom. The weight of the chassis will be supported against

CAUTION: Do not permit the kinescope second-anode lead to become shorted to the chassis. To do so will cause considerable overload on the high voltage filter resistor R-99.

ALIGNMENT PROCEDURE
PIX I-F

Fig. 8-Top Chassis Video
and Audio l-F Adjustments
A. Unmodulated R-F signal into Converter Grid by means
 of tube shield insulated from base. VTVM with filter in lead of 22 K ohms and 5000 mmf connected to pic. det. load resistor, (R-100) 4700 ohms, fig. 10-VTVM Connections resistor, (R-100) 4700 ohms,
in series with peaking coil (L-6) from Pin 7 of 6AL5. In in series with peaking coil (L-6) from Pin 7 of GAL5. In volts DC. Apply -4.5 V battery bias on AGC line.
frequency

1. 25.2 MC
2. 23.1 MC
3. 25.9 MC
4. 24.1 MC
5. 21.7 MC
adjust
Converter plate coil on top of tuner for maximum de at picture detector.

Ist picture 1-F coil (T-1) for maximum de at picture detec tor.
2nd picture I-F coil (T-2) for maxi
3rd picture I-F coil (T-3 below chassis) for maximum de at picture detector.
3 rd picture 1-F trap (T-3 in can above chassis) for minimum d at picture detector.
B. I-F Sweep Generator into converter grid by means of tube shield insulated from base.
Connect oscilloscope across R-100 (in place of VTVM). Apply -4.5 V bias (DC) to AGC line (battery).
Tuner should be switched to dead channel so as not to cause interference

Fig. 9-Bottom Chassis Video

Fig. 11-Cscilloscope Connections

Fig. 12-Overall Response Curve

Observe overall 1-F response, which should be as show above: A slight touch-up may be required. At no time should the trap coil be re-adjusted, nor should it be neces sary to turn any of the picture l-F coils more than $1 / 2$ turn of the slug. The following comments are suggestions only:

© John F. Rider

1. The height of the 26.2 MC marker is controlled by the 25.2 MC (Converter Plate Coil on tuner) and the 25.9 MC (2nd P.I.F.) coils.
2. The uniformity of response (flatness across top and position of 23.5 MC) marker is controlled for the nost part by the 24.1 MC third picture I-F coil:
3. The 23.0 MC marker position is controlled by the first picture I-F (23.1 MC coil). However, it is NO advisable to change the setting of the coil, due to be avoided unless believed to be absolutely neces sary.

VIDEO

With 4.5 MC unmodulated signal from a high impedance source, (10,000 ohms in series with the generator) into plate of the picture detector tube (Pin 7-6AL5) and VTVM on picture tube grid, tune 4.5 MC trap (L-7 Top) fo
minimum response. VTVM on $0-10 \vee A C$ scale. This ad justment can also be made while observing a picture from a station. Tune trap for least 4.5 MC beat in picture

AUDIO I-F

1: With signal generator set to 4.5 MC and de VTVM connected to junction of R-62 and C-46, adjust sound (T) maximum.
2: With VTVM connected to pin 7 of V-12 (6AL5) adjus the ratio detector primary ($\mathrm{T}-7$ Bottom) for maximum
3: With VTVM connected to junction of R-66, R-69 and C-50, adjust ratio detector secondary (T-7 Top) for cross over (zero voltage) on lowest scale.
NOTE - If no signal generator is available, the pro cedure above may be followed by tuning in a station and using the 4.5 MC beat between picture and sound carrie
A. Sweep generator with balanced 300 ohm output to antenna terminals. Marker generator output to antenna terminals. Oscilloscope to "test point" (Figure 13) on tuner. Connect $11 / 2 \mathrm{~V}$ bias to AGC line at junction of $\mathrm{R}-33$ and $\mathrm{C}-20$ on the receiver.

Fig. 13-Top Tuner Adiustments
B. RF AND CONVERTER ADJUSTMENT.

1. With channel selector on Channel 12, adjust C-201 slightly favoring the Pix carrier, then adjust C-206 and C -209 for response as in Figure 14. Picture and sound markers at 90% maximum response.
2. Check response on all channels. If markers are below 70% on any channels, readjust C-201, C-206 and C-209. Recheck all channels.

Fig. 14-Pix \& Audio Markers
C. OSCILLATOR ADJUSTMENT.

1. Apply -4.5 volts on I-F AGC line at junction of R-1 and C-21.
2. Connect oscilloscope to output of video detector Place fine tuning in center of range. Check res ponse on all channels. Sound marker should be
in notch and picture marker at 50%. (See Figure 12).
3. If markers are off, individual oscillator coil slugs will require adjustment. Adjust each channel slug, accessible through hole in front of chassis with a non-metallic screwdriver to bring sound marker to correct position.
4. To adjust oscillator on UHF position, feed the sweep generator with center frequency of 124 MC and markers at 121.75 and 126.25 into the input of the low pass filter (output of UHF tuner). Adjust oscillator slug in the VHF tuner so that the 121.75 pix carrier marker is at 50% and that 126.25 marker is in the sound notch. If a sweep generator is not available, a single frequency generator set VTVM to the and VTVM may be used. Connec Feed generator into the low pass filter. Adjust oscil lator slug in the VHF tuner so that the 126.25 marker is in the sound notch of the I-F curve. If the 6AF4 oscillator tube in the UHF tuner is replaced, it may be necessary to adjust the oscillator trimmer C-309 on the UHF tuner located underneath the chassis. (See Figure 15). Adjust this rimmer until the funer will cover a range of below 470 MC to above 890 MC .

Fig. 15-UHF Tunar Adjustment.

VHF TUNER ASSEMBLY INFORMATION

Fig. $16-$ " Q " Tuner Pictoriol.

ig. 17-"Q" Yuner Schematic Diogram

UHF TUNER INFORMATION

Fig. 18-UHF Tuner Schematic Diagram.

OSCILLOSCOPE WAVEFORM PATTERNS

The waveforms on this page were taken with the receiver tuned to a normal picture. The numbers on the waveforms :orrespond to the numbers on the schematic diagram vhich identifies each test point.
The voltages shown on each waveform are the approximate peak to peak amplitudes. The frequencies shown in-
dicates the repetition rate of the waveform, not the sweep rate of the oscilloscope. If the waveforms are observed on the oscilloscope with a poor high frequency response the corners of the pulses will tend to be more rounded than those shown below and the amplitudes of any high
frequency pulse will tend to be less. frequency pulse will tend to be less.

No. 1-6ALS Pix Det. Plate
No. 1-6AL5 Pix Def. Plat
3.5V p.p 60 C.P.S.

 No. 2-6AH6 Grid
8 V P.p 60 c.p.S.
of this tuner is shown only for the purpose of outlining the circuit used.

If the UHF tuner does not operate satisfactorily after the tube or crystal replacement, disconnect the tuner and return it to the factory for repair.

No. ${ }^{14-6 S N 7-H o r .}$ Osc. Plote
50 V P.P 15,750
C.P.S.
No. 8-6SN7.GTA-Vert. Osc. Plate
4SV P.P 60 C.P.S.

No. $13-6 A 15$ Phase Det
18 F P.P 15,750 C.P.S.

No. 3-Pix Tube Grid
20.100 V P.p 60 C.P.S.
No. 9-6SN7-GTA Vert. Osc. Grid
170 V P.P 60 C.P.S.
No. ${ }^{15-65 N 7}$ Hor. Ose. Grid
48V P.p 15,750
C.p.S.

Due to the complexity of the UHF funer, neither servicing nor aligning is encouraged in the field because replacement of any component within the R-F circuit may disturb the band-pass characteristics of the tuner. However, the SAF4 tube or the IN72 (or 1N82) crystal may be replaced in the field if found to be defective. A schematic diagram

DRIVE CORD REPLACEMENT

No. $6-12$ AT7 Phase Splitrer Cothode
No. 11-Vert. Def. Coil
100V P.p 60 C.P.S.
No. 17-6BQ6 Grid
120V P.p 15,750 C.P.S.

You will note that there are two cords used for the pointer drive system on this receiver. Part number 10×88 Drive Cord assembly and part number 28×603 Spring are used on the tuning shaft and large pulley, while part number 10×89 Drive Cord and a part number 28×603 Spring aro
used on the small pulley system and the pointer. Install the cords as shown in the illustration. After completing the installation rotate the fine tuning shaft a few turns to take up the slack in the cord.

No. 6-12AT7 Phose Spliter Cothode
18 V P.P 15.750 C.P.S.
No. ${ }^{12-6 A U 6}$ A.G.C.
450 P P.P
15,750
C.P.S.

(C) John F. Rider

21" UHF-VHF TELEVISION RECEIVER

INDEX RADIO FREQUENCY RANGES										
PAGE PAGE										
ALIGNMENT INSTRUCTIONS .. . 5 INSTALLATION DATA 2 PARTS LIST	SPECIFICATIONS 1 top View - tube layout. . . 2 TRIMMER LOCATIONS........ 5 TROUBLESHOOTING 4 VOLTAGE MEASUREMENTS ... 4 WAVEFORMS 7		Channel Number	$\begin{gathered} \text { Channel } \\ \text { Frequency } \\ \text { Mc } \end{gathered}$	Pisture Carrier Frequency Mc	Sound Coarrier Frequency Mc	Channel Number	$\begin{aligned} & \text { Channel } \\ & \text { Frequency } \\ & \text { Mc } \end{aligned}$	$\begin{gathered} \text { Picture } \\ \text { Carrier } \\ \text { Frequency } \\ \text { Mc } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Sound } \\ \text { Corrier } \\ \text { Frequency } \end{array} \\ \text { Mc } \end{gathered}$
PRODUCTION CHANGES. 8			2	54.60	55.25	59.75	43	644.650	645.25	649.75
RESISTANGE MEASUREMENTS . . 8			3	60.66	61.25	65.75	44	650.656	651.25	655.75
SCHEMATIC 8			4	66.72	67.25	71.75	45	656-662	657.25	661.75
			5	76-82	77.25	81.75	46	662.668	663.25	667.75
			6	82-88	83.25	87.75	47	668-674	669.25	673.75
			7	174-180	175.25	179.75	48	674-680	675.25	679.75
			8	180-186	181.25	185.75	49	680.686	681.25	685.75
	TUBE COMPLEMENT		9	186-192	187.25	191.75	50	686.692	687.25	691.75
Nextern			10	192-198	193.25	197.75	51	692-698	693.25	697.75
	Symbol Type	Function	11	198-204	199.25	203.75	52	698-704	699.25	703.75
	VHF Tuner. . . 616	R-F Osc. and Mixer	12	204.210	205.25	209.75	53	704-710	705.25	709.75
	*VHF Tuner...6BQ7	R-F Amplifier	13	210-216	211.25	215.75	54	710-716	711.25	715.75
	UHF Tuner... 6 AF4	R-F Osc.	14	470-476	471.25	475.75	55	716.722	717.25	721.75
	UHF Tuner... 1 N72 or	Crystal Mixer	15	476-482	477.25	481.75	56	722-728	723.25	727.75
	1N82		16	482-488	483.25	487.75	57	728-734	729.25	733.75
	V-16CB6	1st Pix I-F Amplifier	17	488-494	489.25	493.75	58	734-740	735.25	739.75
	v-26CB6	2nd Pix I-F Amplifier	18	494-500	495.25	499.75	59	740-746	741.25	745.75
Wencrm	V-36CB6	3rd Pix I-F Amplifier	19	500-506	501.25	505.75	60	746.752	747.25	751.75
	V-4 A \& B....6AL5	Pix Det. and DC Restorer	20	506-512	507.25	511.75	61	752-758	753.25	757.75
	V.5 A \& B. ... 12AT7	1st Video Amp. and Phase	21	512.518	513.25	517.75	62	758-764	759.25	763.75
IMPORTANT		Splitter	22	518.524	519.25	523.75	63	764-770	765.25	769.75
Models 35TV2-43-9023A and 45TV2-43-9023B are identical except for a few minor changes in cabinet construction and design. For differences between the " A " \& " B " models, see the replacement parts list section.	V-66AH6	Video Output	23	524-530	525.25	529.75	64	770.776	771.25	775.75
	V-76BE6	Sync. Separator	24	530-536	531.25	535.75	65	776.782	777.25	781.75
	V-86SN7-GTA	Vertical Osc. \& Vertical	25	536-542	537.25	541.75	66	782-788	783.25	787.75
		Output	26	542-548	543.25	547.75	67	788-794	789.25	793.75
	V-96AU6	Automatic Gain Control	27	548-554	549.25	553.75	68	794-800	795.25	799.75
ELECTRICAL SPECIFICATIONS	V.10........ 6 baUb	1st Audio 1-F	28	554-560	555.25	559.75	69	800-806	801.25	805.75
Power Supply.60 Cycles Only60 -125 Volts AC	V-11.........6AU6	2nd Audio I-F	29	560-566	561.25	565.75	70	806-812	807.25	811.75
	V-12.......6AL5	Ratio Detector	30	566-572	567.25	571.75	71	812-818	813.25	817.75
Power Consumption. 200 Watts	V-13........6AV6	1st Audio Amplifier	31	572-578	573.25	577.75	72	818-824	819.25	823.75
Power Output 2.4 Watts (Max.) 1.8 Watts (10% Distortion)	V-14........6AQ5	Audio Output	32	578-584	579.25	583.75	73	824-830	825.25	829.75
	V-15........6AL5	Phase Detector	33	584-590	585.25	589.75	74	830-836	831.25	835.75
Tuning RangesV.VHF - Channels 2 thru 13 UHF - Channels 14 thru 83	V-16.......6SN7-GTA	Horizontal Oscillator	34	590-596	591.25	595.75	75	836-842	837.25	841.75
Antenna Input Imp. 300 Ohms Balanced	V-17........6BQ6-GT	Horizontal Output	35	596-602	597.25	601.75	76	842-848	843.25	847.75
$\begin{aligned} & \text { Intermediate Frequencies Picture } 26.20 \mathrm{MC} \\ & \text { Sound } 21.70 \mathrm{MC} \end{aligned}$	V-18........6AX4-GT	Damper	36	602-608	603.25	607.75	77	848-854	849.25	853.75
	V-19.........1B3-GT	High Voltage Rectifier	37	608-614	609.25	613.75	78	854-860	855.25	859.75
$\begin{array}{r} \text { I-F (UHF Position Only). Picture } 121.75 \\ \text { Sound } 126.25 \end{array}$	$\begin{aligned} & \text { V-20 \& V-22..5U4-G } \\ & \text { V-21....... . 17HP4 } \end{aligned}$	Picture Tube 17" Glass Rectangular (Electrostatic)	38	614.620	615.25	619.75	79	860-866	861.25	865.75
			39	620-626	621.25	625.75	80	866-872	867.25	871.75
Intercarrier Sound System... 4.5 MC			40	626-632	627.25	631.75	81	872-878	873.25	877.75
Loud Speaker. See Parts List	*For replacement purposes a $6 B Z 7$ tube may be used in place of a 6BQ7 tube.		41	632-638	633.25	637.75	82	878-884	879.25	883.75
Voice Coil Imp. 3.2 Ohms 400 Cycles 607-3	place of a 6BQ7 tube.		42	638-644	639.25	643.75	83	884-890	885.25	889.75

Fig. 1-Tube Layout.

RECEIVER LOCATION - Advise the owner as to the proper location for the television receiver. The following may be used as a guide:

1. Choose an area in the home where sunlight or light from lamps does not strike the face of the picture tube and cause glare.
2. Remember the necessity of an electrical outlet and the location of the point at which the antenna leads enter the room.
3. The receiver should be placed a short distance from the wall to allow adequate ventilation.
4. The receiver should be placed to permit easy access

HIGH VOLTAGE WARNING

This television receiver contains high voltages which are dangerous to life. Never operate or service the receiver outside of the cabinet or with the covers removed until all the safety precautions necessary for working with high voltage equipment have been observed.

PICTURE TUBE
 HANDLING PRECAUTIONS

Shatterproof goggles and heavy gloves must be worn by individuals while handling the picture tube or installing the picture tube into the receiver.
The picture tube encloses a high vacuum and due to the large surface area, is subjected to very high PICTURE TUBE SAFETY GLASS - it will be necessary to clean air pressure. Therefore, care should be taken not to bump or scratch the oicture tube accidentally as it Remove the safety glass carefully as outlined in the illus. may cause the tube to implode resulting in damage to property or injury to an individual.
for operation and comfortable viewing from all angles.

ANTENNA - This receiver has been designed to use an an- NOTE - In some receivers it may be necessary to remove 5 screws and cleat from under top edge of cabinet for the removal of picture tube glas. tenna with a 300 ohm balanced transmission line. This line must be as short as possible because the longer the line the greater the chances are for picking up electrical disturbances. Stand-off insulation should be used to keep the line away from the mast, metal or walls. Twist this line about one turn per foot throughout the line to cancel out direct 2 . signal and/or noise pickup by the transmission line. It should also be securely anchored in place so that a change in weather will not affect its position.

Fig. 2-Front Panel Controls

TUNING PROCEDURE

To turn the television receiver on turn the OFF-ON VOLUME control clockwise until a click is heard. Allow approximately 30 seconds for the tubes to warm up.

Turn the STATION SELECTOR control to the desired channel. This control may be turned in either direction.
. Turn the CONTRAST control clockwise until activity or definite form is noted on the screen.
Adjust the FINE TUNING control for clearest picture and the VOLUME control for desired volume.
5. To turn off the receiver, turn only the OFF-ON VOLUME To turn off the receiver, turn only the OFF-ON VO
control counterclockwise until a click is heard.
6. TONE CONTROL - When this Control is turned clockwise, the high notes will predominate and when turned counterclockwise, a deep bass effect will result.
7. In localities where UHF programs are available, turn the STATION SELECTOR control to the UHF position and tune in the desired station with the UHF Tuning Control. The dial scale is calibrated in channel numbers and covers the entire UHF range of channels 14 through 83.

OCCASIONAL ADJUSTMENTS TO IMPROVE PICTURE RECEPTION
are accessible controls at the front of the chassis which downwardible when the hinged control panel is pulled are pre-set See illustration Figure 2. These controls adjustment at the factory and may occasionally need ceiver and the fluctuating line voltages in different areas.

If any adjustments are necessary follow the instructions If any adjustments are necessary
under "Controls and Functions."

IMPORTANT - Be sure that the FINE TUNING control has been set for the clearest picture before adjusting any controls.

CONTROLS AND FUNCTIONS

HORIZONTAL HOLD-Stops horizontal movement (diagonal bars.)

BRIGHTNESS-Adjusts for desired picture brilliance
VERTICAL HOLD-Stops upward or downward picture move ment.

AFETY GLASS

THE CLEAT THE GLASS MAY FALL FORWARD. SUPPORT THE GLASS WITH ONE HAND AS YOU LIFT IT GENTLY FROM THE CABINET. Clean the safery glass and the face of the picture tube with a soff lint-free cloth dampened with water or mild soapsuds.

- John F. Rider

WARNING - Before handling the picture tube, it will be necessary to remove the static charge. In receivers with lass picture tubes, ground the anode lead to chassis, and insert an insulated wire from the well in the fube the static charge by grounding an insulated wire from the chassis to the metal portion of the tube.
PICTURE TUBE REPLACEMENT - To replace the picture tube is necessary to remove the chassis from the cabinet. This may be accomplished in the following manner

1. Remove the front panel control knobs by pulling them traight from their shafts.
Remove the cabinat back.
Disconnect the leads from the speaker, remove the antenna terminal boards at the rear of the cabinet and FULLY out of the cabinet
2. Remove the picture tube as shown and outlined in the illustration. To install a new picture tube, reverse the procedure making sure that the picture tube fits close against the picture tube cushion. If the picture tube sticks or fails to slip into place smoothly, investigate and remove the source of the trouble. Never force used in mounting the tube be replaced, otherwise difficulty may be encountered when horizontal or vertical centering is required.

FRONT OF CHASSIS

Accessible After

Brightness
 Vertical Hold

Tone

NON-OPERATING CONTROLS REAR OF CHASSIS

 ing to the sound, turn the control clockwise until signs of overloading (buzz in sound, washed-out picture) appear from then he control a few degrees counter-clockig from the point at which overloading occurs. (The sronger the signal input, the more counter-clockwise this setting will be.) In areas where the strongest signal does not ex ceed 10,000 uv the setting will usually be AGC will clockwise. With the conirol set correclly, and I.F. ampli--16 mum snow) will be obtained for any signal input to the .R-89 receiver.
R-49 ADJUSTMENT OF SYNC STABILITY CONTROL - When receiv R-49 ing strong (500 MV or more) signals, set hold controls R-39 so towly clockwise until bending occurs at top of picture. R-108 Then turn the control a few degrees counter-clockwis until bending disappears. If the control is set incorrectly bending, tearing, etc., will be present and when switching from channel to channel the picture will not lock in quickly
In weak signal areas the control should be set for maxi mum picture stability. In general the weaker the signa the more clockwise the control should be turned. When the sync stability control is correctly adjusted the receiver will hold sync without tearing or rolling under even the most adverse noise conditions.

CHECX OF HORIZONTAL OSCILLATOR ALIGNMENT - Tune in station and adjust the horizontal hold control until the
by switching oft channel and then back. The picture should pull into sync over a range of 90° rotation of the horizontal hold control. If in the above check the receiver ails to hold sync or the pull-in range is at the extreme nd of the control,
HORIZONTAL FREQUENCY ADJUSTMENT - With the horizontal hold control set to the center of its range of rotation, adjust the horizontal frequency control (L-14) until the picture pulls into syn
eight and vertical linearity adjustment - adjust the height control (R-54) until the picture fills the mask eright control (R-54) until the picture fills the mask er picture is symmetrical from top to bottom. Adjust the icture centering device to align picture with the mask. Adjustment of any control will require a re-adjustment of he other control.
WIDTH, DRIVE AND LINEARITY ADJUSTMENTS- While receiving a signal from a station (with picture locked in sync) urn contrast control fully counter-clockwise, turn the brightness control (R-25) up so that the picture appears washed out. Adjust width control (L-15) until the picture fils the mask. Turn the horizontal drive control (R-89) lockwise until white bars appear in the left canter por-
 white bars just disappear. This adjustment wilf allow the ust horizontal linearity control ($L-16$) for best linearity f adjustment of the horizontal drive (R-89) or horizontal linearity (L-16) is required, it usually will be necessary to recheck the horizontal oscillator alignment. If adjustment of the horizontal linearity control (L-16) is required, readjustment of the horizonial drive control (R-89) wil be necessary. Adjust the picture centering device to align

CHECK OF R-F OSCILLATOR ADJUSTMENTS
The oscillator is preset at the factory and normally need no adjustment. However, if adjustments are required they can be made without removing the chassis from the cabinet. Remove the channel selector and fine tuning knobs from the tuning shaf
TEST PROCEDURE:

1. Set channel selector to receive desired station.
2. Set fine tuning control in center of its range.
3. Adjust oscillator slug, with bakelite type screwdriver
for best piture resolution.
. 3 on all channels used.
Caution - These adjustments are intended only for VHF Channels. For information regarding UHF alignment see paragraph "Tuner Alignment":

© John F. Rider

SERVICE SUGGESTIONS-(continued

picture smear:

A smear can be attributed to phase shift at the low or high frequency end of the video characteristic. This can be caused by improper values of resistors and capacitors in the video circuits. Check for grid curren peaking coils, video amplifier load resistors are of improper value (high)
2: This trouble can also originate at the transmitter Check reception from another station
: Check and realign, if necessary, the picture I-F and R-F circuits.
man made noise in sound (lgnition, etc)
1: Check sound I-F tubes V-10, 11 \& 12 and associated circuits.
2: Check sound I-F alignment

BENDING OR S-ING

1: Check sync stability control adjustmen
2: Check capacitors $\mathrm{C}-35 \mathrm{~B}$ and $\mathrm{C}-79 \mathrm{~B}$.
3: V - 17 (6BQ6-GT) defective or V - 16 (6SN7-GTA) defective
4: Check sync separator tube $\mathrm{V}-7$ (6BE6) and phase splitter V-5B (12AT7) and V-5A (12AT7) video ampli-

5: Check AGC threshold control.
PICTURE NORMAL-NO SOUND OR WEAK OR DISTORTED SOUND 1: Check sound I-F alignment.
2: Check V-10 (6AU6) V-11 (6AU6) V-12 (6AL5) V-13 (6AV6) V-14 (6AQ5) and associated circuits.

RASTER ON TUBE BUT NO PICTURE OR SOUN

This condition can be caused by,

1: Defective pix I-F Amplifier tubes V-1, V-2 or V-3
2: Defective pix detector tube $V-4 \mathrm{~A}$ (6AL5). Check tube and its associated circuit.

3: Defective R-F Amplifier or oscillator mixer tubes in the tuner.
4: UHF-VHF switch defective

OOR FOCUS

1: Improper setting of lon Trap magne
2: Defective picture tube or picture tube socket

PICTURE JITTER

1: If regular sections at left of the picture are dis placed, replace the horizontal oscillator tube $\mathrm{V}-16$.
Vertical instability may be due to loose connections or noise received with the signal
3: Horizontal instability may be due to unstable transmitted sync.
4: Check receiver AGC system for proper operation.
5: Check phase splitter V-5B, (12AT7) and sync separator V-7 (6BE6).
6: Check for improper setting of sync stability control. 7: Picture tube grid lead not held in position by support spring, ie: close proximity of grid lead to sync and horizontal tubes will cause picture to jitter at high C
Check AGC threshold control
NO PICTURE OR SOUND OR WEAK PICTURE OR SOUND IN UHF POSITION
f this condition is encountered
1: Check to see whether or not a UHF station is operating in the vicinity.
2: The 6AF4 oscillator tube or the IN72 (or IN82) crystal may be defective.
3: Pre-selector in UHF tuner defective.
4: Low pass filter defective.
5: The UHF antenna and oscillator strips in the VHF uner defective.
6: Defective switch on UHF tuner

ALIGNMENT PROCEDURE

TEST EQUIPMENT - To service this receiver properly, it able

R-F SWEEP GENERATOR meeting the following requirements
(a) Frequency ranges

18 to $30 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
40 to $90 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
20 to $130 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
70 to $225 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
70 to $225 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
470 to $890 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
(b) Output adjustable with at least .1 volt maximum (c) Output constant on all ranges.
(d) Flat output in all attenuator positions

CATHODE-RAY OSCILLOSCOPE preferably one with a wide band vertical deflection and an input calibrating sourse SIGNAL GENERATOR to provide the following frequencies: (Output on these ranges should be adjustable and a st . 1 volt maximum.)
23.1 mc first picture frequencies
24.1 mc third picture I-F coil

25.9 mc second picture I-F coil.

21.7 mc sound trap.
4.5 mc video trap \& sound I-F
25.2 mc converter plate coil (Tuner).

HETERODYNE FREQUENCY METER with crystal calibrator if the signal generator is not crystal controlled.
ELECTRONIC VOLTMETER and a high voltage probe for use with this meter to permit measurements up to 20 kilovolits. SERVICE PRECAUTIONS - To service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the cabinet back, disconnect the leads from the speaker, remove the antenna terminal boards at rear of cabinet, and then the 5 chassis mounting bolts. The chassis may be serviced with the picture tube in place provided the chassis bottom. The weight of the chassis will be supported against the power transformer and pix tube brackets. he power Wransormer and pix wube brackers.
CAUTION: Do not permit the kinescope second-anode lead to become shorted to the chassis. To do so will cause considerable overload on the high voltage filter resistor

ALIGNMENT PROCEDURE

PIX I-F

Fig. 8-Top Chassis Video
and Audio 1-F Adjustments
A. Unmodulated R-F signal into Converter Grid by means
 of tube shield insulated from base. VTVM with filter in lead of 22 K ohms and 5000 mmf connected to pic. det. load resistor, (R-100) 4700 ohms, ${ }^{\text {sig. }} 10$-VTVM Connections resistor from Pin 7 of 6AL5. Input signal level should be such that output is less than 2 volts DC. Apply -4.5V battery bias on AGC line.

1.	frequencr 25.2 MC	Converter plate coit on top of tuner for maximum de at picture detector.
2.	23.1 MC	1st picture I-F coil (T-1) for maximum dc at picture detec- tor.
3.	25.9 MC	2nd picture I-F coil (T-2) for maximum dc at picture detec- tor.
4.	24.1 MC	3rd picture I-F coil (T-3 below chassis) for maximum dc at pic- ture detector.
5.	21.7 MC	3rd picture I-F trap (T-3 in can above chassis) for minimum dc at picture detector.

B. I-F Sweep Generator into converter grid by means of tube shield insulated from base.
Connect oscilloscope across R-100 (in place of VTVM). Apply -4.5 V bias (DC) to AGC line (battery).
Tuner should be switched to dead channel so as not o cause interference.

Fig. 11-Oscillascope Connections

Fig. 12-Overall Response Curve

Observe overall I-F response, which should be as shown above: A slight touch-up may be required. At no time should the trap coil be re-adjusted, nor should it be necessary to turn any of the picture I-F coils more than $1 / 2$ turn of the slug. The following comments are suggestions only:
I. The height of the 26.2 MC marker is controlled by the 25.2 MC (Converter Plate Coil on tuner) and the 25.9 MC (2nd P.I.F.) coils.
2. The uniformity of response (flatness across top and position of 23.5 MC) marker is controlled for the most part by the 24.1 MC third picture I-F coil.
3. The 23.0 MC marker position is controlled by the first picture I-F (23.1 MC coil). However, it is NOT advisable to change the setting of the coil, due to
its effect on sound rejection. Its adjustment should its effect on sound rejection. Its adjustment should
be avoided unless believed to be absolutely necesbe av
sary.

VIDEO

With 4.5 MC unmodulated signal from a high impedance source, (10,000 ohms in series with the generator) into plate of the picture detector tube (Pin 7-6AL5) and VTVM on picture tube grid, tune 4.5 MC trap ($\mathrm{L}-7 \mathrm{Top}$) for

TUNER ALIGNMENT

A. Sweep generator with balanced 300 ohm output to antenna terminals. Marker generator output to antenna terminals. Oscilloscope to "test point" (Figure 13) on tuner. Connect $11 / 2 \mathrm{~V}$ bias to AGC line at junction of $\mathrm{R}-33$ and $\mathrm{C}-20$ on the receiver.

Fig. 13-Top Tuner Adjustments
B. RF AND CONVERTER ADJUSTMENT.

1. With channel selector on Channel 12, adjust C-201 slightly favoring the Pix carrier, then adjust C-206 and C-209 for response as in Figure 14. Picture and sound markers at 90% maximum response.
2. Check response on all channels. If markers are below 70% on any channels, readjust $\mathrm{C}-201, \mathrm{C}-206$. and C-209. Recheck all channels.

Fig. 14-Pix \& Audio Morkers
inimum response. VTVM on $0-10 \mathrm{VAC}$ scale. This ad. justment can also be made while observing a picture from a station. Tune trap for least 4.5 MC beat in picture.

AUDIO I-F

1: With signal generator set to 4.5 MC and de VTVM connected to junction of R-62 and C-46, adjust sound take-off coil (L-13 Top) and sound l-F transformer slugs (T - 6 Top \& Bottom) for maximum.
2: With VTVM connected to pin 7 of V-12 (6AL5) adjust the ratio detector primary ($\mathrm{T}-7$ Bottom) for maximum.
3: With VTVM connected to junction of R-66, R-69 and C-50, adjust ratio detector secondary (T-7 Top) for cross over (zero voltage) on lowest scale.
NOTE - If no signal generator is available, the procedure above may be followed by funing in a station and using the 4.5 MC beat between picture and sound carrier.
C. OSCILLATOR ADJUSTMENT.

1. Apply -4.5 volts on I-F AGC line at junction of R-1 and C-21.
2. Connect oscilloscope to output of video detector. Place fine tuning in center of range. Check response on all channels. Sound marker should be in notch and picture marker at 50%. (See Figure 12).
3. If markers are off, individual oscillator coil slugs will require adjustment. Adjust each channel slug, accessible through hole in front of chassis with a non-metallic screwdriver to bring sound marker to
4. To adjust oscillator on UHF position, feed the
sweep generator with center frequency of 124 MC sweep generator with center frequency of 124 MC and markers at 121.75 and 126.25 into the input
of the low pass filter (output of UHF funer). Adjust oscillator slug in the VHF tuner so that the 121.75 pix carrier marker is at 50% and that 126.25 marker is in the sound notrch. If a sweep generator is not available, a single frequency generator set to 126.25 MC and VTVM may be used. Connect
VTVM to the pix detector load resistor R-100 VIVM to the pix detector load resistor R-100. Feed generator into the low pass filter. Adjust oscil-
lator slug in the VHF tuner so that the 126.25 marker is in the sound notch of the I-F curve.
5. If the SAF4 oscillator tube in the UHF tuner . If the 6AF4 oscillator tube in the UHF tuner is
replaced, it may be necessary to adjust the oscil. lator trimmer C-309 on the UHF tuner located underneath the chassis. (See Figure 15). Adjust this trimmer until the tuner will cover a range of below 470 MC to above 890 MC .

fig. 15-UHF Tuner Adiustiment.

VHF TUNER ASSEMBLY INFORMATION

Fig. 16-" $\mathbf{Q}^{\prime \prime}$ Tuner Pictoriol.

Fig. 17-" $\mathbf{Q}^{\prime \prime}$ Tuner Schemotic Diagram.
© John F. Rider

UHF TUNER INFORMATION

Fig．18－UHF Tuner Schemotic Diogrom．

Due to the complexity of the UHF tuner，neither servicing nor aligning is encouraged in the field because replace－ ment of any component within the R－F circuit may disturb the band－pass characteristics of the tuner．However，the 6AF4 tube or the 1N72（or 1N82）crystal may be replaced in the field if found to be defective．A schematic diagram
of this tuner is shown only for the purpose of outlining the circuit used．

If the UHF tuner does not operate satisfactorily after the rube or crystal replacement，disconnect the tuner and return it to the factory for repair

OSCILLOSCOPE WAVEFORM PATTERNS

The waveforms on this page were taken with the receiver funed to a normal picture．The numbers on the waveforms correspond to the numbers on the schematic diagram which identifies each test point．
the voltages shown on each waveform are the approxi－ mate peak to peak amplitudes．The frequencies shown in－
dicates the repetition rate of the waveform，not the sweep rate of the oscilloscope．If the waveforms are observed on the oscilloscope with a poor high frequency response， the corners of the pulses will tend to be more rounded than those shown below and the amplitudes of any high frequency pulse will tend to be less．

No． $2-6 A H 6$ Grid
$8 V$ P．P 60 C．P．S．

No．3－Pix Tube Grid
No．9－6SN7．GTA Verl．Os．Grid
130 V P．P 60 C．P．S．
No．15－6SN7 Hor．O3c．Grid

No．10－6SN7－GTA Vort．Output Grid 120V P－P 60 c．P．S．

No．18－6AX4－GT Domper Plote
120 V D．P 15.750 C．P．S．

You will note that there are two cords used for the pointer drive system on this receiver．Part number 10×88 Drive Cord assembly and part number 28X603 Spring are used on the tuning shaft and large pulley，while part number 10×89 Drive Cord and a part number 28×603 Spring are
used on the small pulley system and the pointer．Instail the cords as shown in the illustration．After completing the installation rotate the fine tuning shaft a few turn to take up the slack in the cord．

No．6－12AT7 Phose Spliter Cothode

WARNING - Before handling the picture tube, it will be necessary to remove the static charge. In receivers with and insert an insulated wire from the well in the tube o chassis. In receivers with metal picture tubes, remove the static charge by grounding an insulated wire from
the chassis to the metal portion of the tube.
PICTURE TUBE REPLACEMENT - To replace the picture tube it is necessary to remove the chassis from the cabinet. his may be accomplished in the following manner: Remove the front panel control knobs by pulling them straight from their shafts.
. Disconnect the leads from the speaker, remove the antenna terminal board at the rear of the cabinet and then the five chassis mounting bolts. Pull chassis CAREFULLY out of the cabinet.
Remove the picture tube as shown and outlined in the illustration. To install a new picture tube, reverse the procedure making sure that the picture tube fits close against the picture tube cushion. If the picture tube sticks or fails to slip into place smoothly, investigate
and remove the source of the trouble. Never force the tube. It is important that all the clips and shims used in mounting the tube be replaced, otherwise difficulty may be encountered when horizontal or vertical centering is required.

FRONT OF CHASSIS

Accessible After Opening Front Panel Control Cover) Horizontal Hold

Veriical Hold

Tone

NON-OPERATING CONTROLS

 REAR OF CHASSIS
(c) John F. Rider

ION TRAP MAGNET ADJUSTMENT-The ion trap magnet should be positioned close to the base of the tube with the magnet of the ion trap on the side where the electron gun is adjust the magnet by moving it back and forth and at the same time rotating it slightly around the neck of the picture tube until the brightest raster is obtained on the picture screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Readjust the ion trap magnet for maximum raster brilliance and best focus. MAXIMUM RASTER BRILLIANCE AND BEST FOCUS OCCUR AT THE SAME POINT. Do not sacrifice brilliance for best focus. The ion trap magnet adjustment is a very critical one especially with the electrostatic type zero focus picture tube. Consequently, great care thate sorrectly adjusted.

DEFLECTION YOKE ADJUSTMENT - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.
CENTERING ADJUSTMENT - If horizontal or vertical centering is required, adjust each ring in the centering device until vice is used, rotate the device to the left or right and turn the knob located at the top of the device until the picture is centered correctly.

PICTURE ADJUSTMENT - For further adjustments, obtain a test pattern on the receiver. Turn on receiver and follow tuning procedure. When a test pattern is ob tained it may be for clearest picture.
adjusimint of agc ihnehold contiol
ADJUSTMENT OF AGC THRESHOLD CONTROL - Tune the re ceiver to the strongest station in the area in which the re ceiver will be used. While observing the picture and listen ng to the sound, turn the control clockwise until signs of Then from the int at whith overloding (The stronger from the poin at which ovenoading occors. (The setting will be.) In areas where the strongest signal does not exceed 10,000 uv the setting will usually be maximum clockwise. With the control set correctly, the AGC will automatically adjust the bias on the R.F. and I.F. amplifiers so that the best possible signal to noise ratio (Mini mum snow) will be obtained for any signal input to the receiver.
ADJUSTMENT OF SYNC STABILITY CONTROL - When receiving strong (500 MV or more) signals, set hold contro so that the picture is locked in. Turn the sync control slowly clockwise until bending occurs at top of picture Then furn the control a few degrees counter-clockwise until bending disappears. If the control is set incorrectly bending, tearing, etc., will be present and when switching from channel to channel the piture will In weak signal areas the control should be set for maximum picture stability. In general the weaker the signa the more clockwise the control should be turned. When the sync stability control is correctly adjusted the receiver whe most adverse noise conditions.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT - Tune in a station and adjust the horizontal hold control until the picture falls into sync. Momentarily remove the signa
by switching off channel and then back. The picture should pull into sync over a range of 90° rotation of the fails to hold sync or the pull-in range is at the extreme end of the control, it will be necessary to make the ollowing adjustment.
horizontal frequency adjustment - With the horizontal hold control set to the center of its range of rotation, picture pulls into sync. Recheck the "Horizontal Oscillator Alignment."
height and verical linearity adjustment - Adjust the height control (R-54) until the picture fills the mask vertically. Adjust the vertical linearity control (R-4)) unt picture centering device to align picture with the mask. Adjustment of any control will require a re-adjustment of the other control.
WIDTH, DRIVE AND LINEARITY ADJUSTMENTS - While receiving a signal from a station (with picture locked in sync) furn contrast control fully counter-clockwise, furn the brightness control (R-25) up so that the picture appears washed out. Adjust width control (L-15) until the picture fills the mask. Turn the horizontal drive control (R-89) clockwise until white bars appear in we lef center por white bars just disappear. This adjustment will allow the horizontal system to operate at maximum efficiency. Adjust horizontal linearity control (L-16) for best linearity. If adjustment of the horizontal drive (R-89) or horizental linearity (L-16) is required, it usually will be necessary to recheck the horizontal oscillator alignment. If adjust ment of the horizontal linearity control ($\mathrm{L}-16$) is requirea readjustment of the horizontal drive control (R-89) wil be necessary. Adjust the picturn

CHECK OF R-F OSCILLATOR ADJUSTMENTS

The oscillator is preset at the factory and normally need

 no adjustment. However, if adjustments are required they can be made without removing the chassis from the cabinet. Remove the channel selector and fine tuning knobs from the tuning shaft.TEST PROCEDURE
Set channel selector to receive desired station Set fine tuning control in center of its range. Adjust oscillator slug, with bakelite type screwdriver Rer best picture resolution.
Caution - These, 2 and 3 on all channels used. Channels. For information are intended only for VH see paragraph "Tuner Alignment".

ig. 5-Tuner Oscillotor Adjustments

SERVICE SUGGESTIONS

NO RASTER ON PICTURE TUBE - If raster cannot be obtained check below for the possible causes
: No trap magnet adjustment is incorrect. defective. If tuse continually burns out, check (A) Horizontal output tube V-17 (6BQ6-GT)
(B) Check damper tube V-18 (6AX4-GT)
(C) Check horizontal oscillator tube V-16 (6SN7-GTA) for proper operation.
(D) With an ohm meler, check for a short between (T-9) and the chassis.
(E) Check DC resistance of T-9.

3: No high voltage. Check V-17, V-18 and V-19 tubes and circuits. If the horizontal deflection circuits are operating as evidenced by the correct voltage (600 V) measured on terminal No. 1 of T-9, the trouble can be isolated to the high voltage rectifier circuit. Either IB3 plate is open, tube V-19 is defective, its filament circuit is open, R-99 and C-78 defective or pix tube elements shorted internally.
4: Defective picture tube heater open or cathode refurn circuit open.
HORIZONTAL DEFLECTION ONLY - If only horizontal deflecion is obtained as evidenced by a straight line across the face of the picture tube, it can be caused by the following:
: Vertical oscillator and vertical output tube V-8 inoperative. Check socket voltages.
: Vertical oscillator transformer (T-4) defective.
3: Vertical output transformer (T-5) open or shorted
5: Yoke vertical coils open or shorted. fective.
POOR VERTICAL LINEARITY - If adjustment of the height and linearity controls will not correct this condition, any Ce varig may be the cause
. Vertical output transformer (T-5) defective
3: Capacitors C-35A, C-39 or C-70 defective
4: V-8 defective, check voltages.
5: Excess leakage or incorrect value of capacitor C-37, or open or incorrect value of resistors R-55 \& R-56.
6: Low plate voltages. Check rectifier tube and capacitors in $+B$ supply circuits.
8: Vertical deflection coils (L-12) defective.
POOR HORIZONTAL LINEARITY - If adjustment of the Horizontal drive and linearity controls does not correct this condition, check the following:
1: Check or replace horizontal output tube V-17.
2: Check or replace damper tube V - 18 ($6 \mathrm{AX} 4-\mathrm{GT}$).
3: Check capacitors C.74, C-76, C-77 and horizontal
linearity control (L-16) for defects.
4: Horizontal deflection coils (L-17) defective

TRAPEZOIDAL OR NONSYMMETRICAL RASTER

1: Defective yoke.
WRINKLES ON LEFT SIDE OF RASTER - This condition can be caused by
1: Defective yoke due to C-75 or R-98 (internal in yoke
assembly) being wrong value or open. These com ponents are mounted in rear of yoke assembly.
2: V-18 (6AX4-GT) defective.
SMALL RASTER - This condition can be caused by:
1: Low +B or line voltage. Check V-20 \& V-22 (5U4G).
2: Insulticient output trom horizontal output tube V-17. Replace tube.
3: Insufficient output from vertical oscillator and vertical : insufficient tube V-8. Replace tube.
4. Incorrect setting of horizontal drive control R-89

V-18 (6AX4-GT) defective

RASTER; NO IMAGE, BUT ACCOMPANYING SOUND - This condition can be caused by:
: No signal on picture tube grid. Check V-5A (12AT7) 2: Bad contact to picture tube grid (lead to socket broken).
3: AGC tube (V-9) may be defective. Check tube and its associated circuit.
signal appears on picture tube grid but impossible to SYNCHRONIZE THE PICTURE VERIICALLY AND HORIZONTALLY - A condition of this nature can be caused by:
: Defective sync separator V-7 or phase splitter V-5B.
2: If tubes are O.K. check voltages, and associated cir-
cuits.
AGC system inoperative. Check V-9 (6AU6) AGC tube and associated circuits.
signal on picture tube grid and horizontal sync only - If this condition is encountered, check:
: Vertical integrating network capacitors C-31A, B \& C, and resistors R-46 A, B \& C.

signal on picture tube grid and vertical sync only

1: V-15 or V-16 defective.
2: Improper setting of (L-14) horizontal frequency control.
: Check setting of horizontal drive control and horizoncontrol
picture stable but with poor resolution - If the picture resolution is not up to standard, it may be caused by any of the following:
1: Defective pix I-F tubes V-1, 2 \& 3, (6CB6's).
2: Defective picture detector V-4A, (6AL5) or video amplifier V-5A or video output V-6 (6AH6).
3: Defective picture tube.
4: Open video peaking coil. Check all peaking coils L-5, L-6, L-8, L-9, L-10 and L-11 for continuity. Note that L-5, L-9 and L-10 have shunting resistors.
5: Leakage in V.6 (6AH6) grid capacitor C-11. If the capacitor is not found to be defective, check the fol lowing:
1: Check all potentials in video circuits.
2: Check picture tube grid circuit for poor or dirty
3: Check and realign, if necessary, the picture I-F and R-F circuits.

SERVICE SUGGESTIONS-(continued)

picture smear:

: A smear can be attributed to phase shift at the low or high frequency end of the video characteristic. This can be caused by improper values of resistors and on video output tube V. 6 (6AH6), open or shorted peaking coils, video amplifier load resistors are of improper value (high).
This trouble can also originate at the transmitter. Check reception from another station.
Check and realign, if necessary, the picture I-F and R-F circuits.

MAN MADE NOISE IN SOUND (Ignition, etc)

: Check sound I-F tubes V-10, $11 \& 12$ and associated circuits.
: Check sound I-F alignment.

BENDING OR S-ING

1: Check sync stability control adjustment.
2: Check capacitors $\mathrm{C}-35 \mathrm{~B}$ and C -79B.'
V-17 (6BQ6-GT) defective or V-16 (6SN7-GTA) defective.
Check sync separator tube V-7 (6BE6) and phase splitter V-5B (12AT7) and V-5A (12AT7) video amplisplitt
fier.
5: Check AGC threshold control.
PICTURE NORMAL-NO SOUND OR WEAK OR DISTORTED SOUND I: Check sound I-F alignment.
2: Check V-10 (6AU6) V-11 (6AU6) V-12 (6AL5) V-13 (6AV6) V-14 (6AQ5) and associated circuits.

RASTER ON TUBE BUT NO PICTURE OR SOUND

This condition can be caused by,
1: Defective pix I-F Amplifier tubes V-1, V-2 or V-3
2: Defective pix detector tube V-4A (6AL5). Check tube and its associated circuit.
: Defective R-F Amplifier or oscillator mixer tubes in the tuner.

UHF-VHF switch defective

POOR FOCUS

1: Improper setting of Ion Trap magnet.
2. Defective picture tube or picture tube socket

pICTURE JItier:

1: If regular sections at left of the picture are displaced, replace the horizontal oscillator tube V-16.
: Vertical instability may be due to loose connections
or noise received with the signal.
3: Horizontal instability may be due to unstable transmitted sync.
4: Check receiver AGC system for proper operation.
5: Check phase splitter V-5B, (12AT7) and sync separator V-7 (6BE6).
6: Check for improper setting of sync stability control. 7: Picture tube grid lead not held in position by support spring, ie: close proximity of grid lead to sync and horizontal tubes will cause picture to jitter at high contrast setting.
8: Check AGC threshold control.
NO PICTURE OR SOUND OR WEAK PICTURE OR SOUND IN UHF POSITION
If this condition is encountered
1: Check to see whether or not a UHF station is operating in the vicinity.
2: The 6AF4 oscillator tube or the IN72 (or IN82) crystal may be defective.
3: Pre-selector in UHF tuner defective.
4: Low pass filter defective.
5: The UHF antenna and oscillator strips in the VHF tuner defective.
6: Defective switch on UHF tuner

ALIGNMENT PROCEDURE

TEST EQUIPMENT - To service this receiver properiy, it is TST EQUPMEN - To servilowing test equipment be avail recom
R-F SWEEP GENERATOR meeting the following requirements: (a) Frequency ranges:

18 to $30 \mathrm{mc}, 10 \mathrm{mc}$ sweep width 40 to $90 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
170 to 225 mc , 10 mc sweep width
470 to $890 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
(b) Output adjustable with at least .1 volt maximum. (c) Output constant on all ranges.
(d) Flat output in all attenuator positions.

CATHODE-RAY OSCILLOSCOPE preferably one with a wide band vertical deflection and an input calibrating source.

SIGNAL GENERATOR to provide the following frequencies: Output on these ranges should be adjustable and a least. 1 volt maximum.)
(a) Intermediate alignment frequencies.
23.1 mc first picture I-F coil.
24.1 mc third picture I-F coil
25.9 mc second picture l-F coil.
21.7 mc sound trap.
4.5 mc video trap \& sound I.F
25.2 mc converter plate coil (Tuner).
heterodyne frequency meter with crystal calibrator if the signal generator is not crystal controlled.
ELECTRONIC VOLTMETER and a high voltage probe for use with this meter to permit measurements up to 20 kilovolts. SERVICE PRECAUTIONS - To service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the cabinet back, disconnect the leads from the speaker, remove the antenna terminal board at rear of cabinet, and then the 5 chassis mounting bolts. The chassis may be serviced with the picture tube in place provided the chassis is turned on its side with the power transformer on the bottom. The weight of the chassis will be supported against the power transformer and pix tube brackets.

CAUTION: Do not permit the kinescope second-anode lead to become shorted to the chassis. To do so will cause a considerable overload on the high voltage filter resistor
R -99.

ALIGNMENT PROCEDURE

PIX I-F

Fig. 8-Top Chossis Video
Ond Audio 1-F Adiustments
A. Unmodulated R-F signal into Converter Grid by means
 of tube shield insulated from base. VTVM with filter in lead of 22 K ohms and 5000 mm connected to pic. det. load resistor, (R-100) 4700 ohms, tig. 10-vTVM Connections resistor, (R.100) 4700 ohms, in series with peaking coil (L-6) from Pin 7 of 6AL5. Input signal level should be such that output is less than 2 volts DC. Apply -4.5 V battery bias on AGC line.

1. | FREQUENCY |
| :--- |
| $25.2 ~ M C ~$ |
2. 23.1 MC
3. 25.9 MC
4. 24.1 MC

ADJUST

Converter plate coil on top of tuner for maximum dc at picture detector.
lst picture I-F coil (T-1) for maximum dc at picture detector.
2nd picture I-F coil (T-2) for maximum do at picture detec tor.

3rd picture I-F coil (T-3 below chassis) for maximum dc at picture detector.
3rd picture I-F trap (T-3 in can above chassis) for minimum dc at picture detector.
. I-F Sweep Generator into converter grid by means of tube shield insulated from base.
Connect oscilloscope across R-100 (in place of VTVM). Apply -4.5 V bias (DC) to AGC line (battery).
Tuner should be switched to dead channel so as not to cause interference.

Fig. 9-Botiom Chassis Video
ond Audio I-F Adjustments.

Fig. 11-Cscilloscope Connections

Fig. 12-Overaill Response Curv

Observe overall I-F response, which should be as shown above: A slight touch-up may be required. At no time should the trap coil be re-adjusted, nor should it be necessary to turn any of the picture I-F coils more than $1 / 2$ turn of the slug. The following comments are suggestions only:

O John F. Rider

ALIGNMENT PROCEDURE (Continued)

1. The height of the 26.2 MC marker is controlled by the 25.2 MC (Converter Plate Coil on tuner) and the 25.9 MC (2nd P.I.F.) coils.
2. The uniformity of response (flatness across top and position of 23.5 MC) marker is controlled for the nost part by the 24.1 MC third picture I-F coil.
3. The 23.0 MC marker position is controlled by the first picture I-F (23.1 MC coil). However, it is NOT its effect on sound rejection. Its adjustment should be avoided unless believed to be absolutely necessary.

VIDEO

With 4.5 MC unmodulated signal from a high impedance source, (10,000 ohms in series with the generator) into picture tube grid tune 45 MC trap ($\mathrm{L}-7 \mathrm{Top}$) for

TUNER ALIGNMENT carrier

Sweep generator with balanced 300 ohm output tc antenna terminals. Marker generator output to antenna terminals. Oscilloscope to "test point" (Figure 13) on tuner. Connect $11 / 2 \mathrm{~V}$ bias to AGC line at junction of $\mathrm{R}-33$ and $\mathrm{C}-20$ on the receiver.

Fig. 13-Top Tuner Adiustments
B. RF AND CONVERTER ADJUSTMENT

1. With channel selector on Channel 12, adjust C-201 slightly favoring the Pix carrier, then adjust C-206 and C -209 for response as in Figure 14. Picture and sound markers at 90% maximum response.
2. Check response on all channels. If markers are below 70% on any channels, readjust C-201, C-206 and $\mathrm{C}-209$. Recheck all channels.

Fig. 14-Pix \& Audio Morker:
minimum response VTVM on $0-10 \mathrm{~V}$ AC scale. This ad. justment can also be made while observing a picture from a station. Tune trap for least 4.5 MC beat in picture.

AUDIO I-F

1. With signal generator set to 4.5 MC and de VTVM connected to junction of R-62 and C-46, adjust sound take-off coil (L-13 Top) and sound I-F transformer slugs ($\mathrm{T}-6$ Top \& Bottom) for maximum.
2: With VTVM connected to pin 7 of V-12 (6AL5) adjust the ratio detector primary ($\mathrm{T}-7$ Bottom) for maximum.
2. With VTVM connected to junction of R-66, R-69 and C.50, adiust ratio detector secondary (T.7 Top) for cross over (zero voltage) on lowest scale.
NOTE - If no signal generator is available, the procedure above may be followed by tuning in a station and using the 4.5 MC beat between picture and sound
C. OSCILLATOR ADJUSTMENT.
3. Apply -4.5 volts on I-F AGC line at junction of R-1 and C-21.
4. Connect oscilloscope to output of video detector. Place fine tuning in center of range. Check response on all channels. Sound marker should be in notch and picture marker at 50%. (See Figure ,
5. If markers are off, individual oscillator coil slugs will require adjustment. Adjust each channel slug, accessible through hole in front of chassis with a non-metallic screwdriver to bring sound marker to correct position.
6. To adjust oscillator on UHF position, feed the sweep generator with center frequency of 124 MC and markers at 121.75 and 126.25 into the input of the low pass filter (output of UHF tuner). Adjust pix carrier marker is at 50% and that 126.25 marker is in the sound notch. If a sweep generator is not available, a single frequency generator set to 126.25 MC and VTVM may be used. Connect VTVM to the pix detector load resistor R-100. Feed generator into the low pass filter. Adjust oscillator slug in the VHF tuner so that the 126.25 marker is in the sound notch of the I-F curve.
7. If the GAF4 oscillator tube in the UHF tuner is replaced, it may be necessary to adjust the oscillaror trimmer C-309 on the UHF tuner located undemer until the tuner will cover a range of below 470 MC to above 890 MC .

Fig. 15-UHF Tuner Adjusiment.

VHF TUNER ASSEMBLY INFORMATION

fig. 16-" "Q" Tuner Pictorial.

Fig. 17-" $\mathbf{Q "}^{\prime \prime}$ Tuner Schematic Diagram

Fig. 18- UHF Tuner Schematic Diagram.

The waveforms on this page were taken with the receiver tuned to a normal picture. The numbers on the waveforms correspond to the numbers on the schematic diagram which identifies each test point
The voltages shown on each waveform are the approximate peak to peak amplitudes. The frequencies shown in-

$\begin{array}{ll}\text { No. } 1-6 A L 5 \\ \text { 3. Pix } & \text { Det. Plote } \\ \text { 3.5 P. } \\ \text { O } \\ \text { C.P.S. }\end{array}$

$\begin{array}{cccc}\text { No. } & \\ 35 \mathrm{~V} \\ \text { 2-12ATP } \\ \text { P-P } & 60 & \text { C.P.P.S. }\end{array}$ No. 2 2-6AH6 Grid
$8 V$
P.P 60 C.P.S.
dicates the repetition rate of the waveform, not the sweep rate of the oscilloscope. If the waveforms are observed on the oscilloscope with a poor high frequency response, than those shown below and the amplitudes of any high frequency pulse will tend to be less.

No. 7-12AT7 Phase Splititer Plote
No. 13-6AL5 Phose De
18V P.P 15,750 C.P.S.

No. 8-6SN7-GTA-Vert. Osc. Plote

Due to the complexity of the UHF tuner, neither servicing nor aligning is encouraged in the field because replacement of any component within the R-F circuit may disturb the band-pass characteristics of the funer. However, the 6AF4 tube or the $1 N 72$ (or 1N82) crystal may be replaced in the field if found to be defective. A schematic diagram
of this tuner is shown only for the purpose of outlining the circuit used

If the UHF tuner does not operate satisfactorily after the tube or crystal replacement, disconnect the funer and return it to the factory for repair.

No. 3-Pix Tube Grid
$20-100 \mathrm{~V}$ P.P 60 C.P.S.

No. 10-6SN7. GTA Vert. Output Grid
150V P.P 60 C.P.S.

No. $\begin{gathered}11-V_{\text {ert. }} \text { Def. Coil } \\ \text { 100V P.P } 60 \text { C.P.S. }\end{gathered}$
No. 17-68Q6 Grid

No. 9-6SN7.GTA Vert. Osc. Grid

\square

Fig. 19 -Drive Cord Stringing.

You will note that there are two cords used for the pointer drive system on this receiver. Part number 10X88 Drive Cord assembly and part number 28×603 Spring are used on the tuning shaft and large pulley, while part number 10×89 Drive Cord and a part number 28×603 Spring are
used on the small pulley system and the pointer. Instal the cords as shown in the illustration. After completing the installation rotate the fine tuning shaft a few turns to take up the slack in the cord.

No. $5-68 \mathrm{EE}$ Sync Sep. Plat
20 V P.P 60 C.P.S.

No. 6-12AT7 Phase Splititer Cathode
18 V P.P ${ }_{15,750}$ C.P.S.

No. 6-12ATV Phose Splititer Cothode 2AT7 Phose Splititer
18 V P.p 60 C.P.S.

No. 12-6AUG A.G.C

21＂UHF－VHF TELEVISION RECEIVER

There are two different ratio detector transformers（T－7）used in these receivers，Part the 9A2269 ratio detector．Receivers using the 9A2295 ratio detector can be identified by the following changes：

C－50 becomes $47 \times 570 \quad 330 \mathrm{mmf}$ molded mica condenser

R． 64 becomes $884333 \quad 33 \mathrm{~K}$ ohm 0.5 W carbon resistor
$\left.\begin{array}{rl}R-67 \\ R-68\end{array}\right\}$ become 883103 10K ohm 0.5 W carbon resistors
In addition，the 9A2295 ratio detector has terminals with numerical identification （ $1,2,3$ etc．）whereas the 9 A2269 atio detector has terminals wilh alphabelical identi－

© John F. Rider

© John F. Rider
MODELS 17T10, 17T10-UHF, 17T11, 17T11-UHF, 17T12, 17T12-UHF, 21T2

MODELS 17T10. -UHF, 17T11, -UHF, 17T12, -UHF, 21 T 2

Loudspeoker: 5.5270.7	Typenico PM Dynamic Cone Diameter................. $51 / 4$ nches Voice Coil Impedance at 400 cps. . . . 3.2 ohms
Picture Tube:	Type (for 21T2) 21EP4B
	Type (for 17-inch models) 17BP4A
	Screen Aluminum-coated
	Construction \qquad Glass tube
	Deffection and Focus.............. Magnetic
	Deflection Angle 70 Degrees
	Shape $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. Rectangular
Antenne	Built-in antenna provided*
	External antenna terminals
	Impedance-300 ohms, balanced to ground

* Built-in antenna is connected in the factory, and must be
* Built-in antenna is connected in the factory, and
disconnected if it is desired to use an outside antenna.

$\begin{gathered} \text { Tubes } \\ \text { and } \\ \text { Rectifiers } \end{gathered}$	$\underset{\text { bol }}{\substack{\text { sym- }}}$	Purpose Type
	V1	1st R-F Amplifier.6AB4
	V2	2nd R-F Amplifier6AK5
	V3	Converter-Oscillator. 12AT7
	V4	1st Video I-F Amplifier 6CB6
	V5	2nd Video I-F Amplifier6CB6
	V6	3rd Video I-F Amplifier. 6CB6
	V7	1st and 2nd Video Amplifier.........12AT7
	V8	
	V9	Vertical Sweep Generator 12SN7-GT
	V10	Vertical Output.................25L6-GT
	V11	Sync Amplifier and Clipper. 6SL7-GT
	V12	Noise Canceller and Horizontal AFC Discriminator6AQ7-GT
	V13	Horizontal AFC and Oscillator . . . 12SN7-GT
	V14	Horizontal Sweep Output.25BQ6-GT
	V15	High-voltage Rectifier 1 $\mathbf{2}^{2}$-A
	V16	Horizontal Damper Tube25W4-GT
	V17	Audio I-F (4.5 MC) Amplifier6AU6
	V18	Audio I-F (4.5 MC) Amplifier and Limiter.
	V19	Ratio Detector.6ALS
	V20	Audio Amplifier 6SQ67
	V21	Audio Output. 25L6-GT
	Y1	Video Detector (Germanium Diode)....1N64
	$\times 451$	Selenium Rectifier 350 ma.
	$\begin{aligned} & \text { X } 452 \\ & \mathrm{~F} 460 \end{aligned}$	Selenium Rectifier 350 ma.
		UHF. 103 TUNER
		UHF-103 HUNER
	Y200	Detector (Germanium Diode)..........1N72
	$\begin{aligned} & \text { V202 } \\ & \text { V201 } \end{aligned}$	

GENERAL INFORMATION

Features of this series include a balanced input to a two-stage
r-f amplifier, intercarrier sound, ratio-detector B + boost circuit automatic frequency control for horizontal sweep synchroniza tion, noise canceller circuit with picture stabilizer control,
selenium type rectifiers, electromagnetic deflection, PM focus unit and power outlet for an UHF translator.
The models $17 \mathrm{~T} 10-\mathrm{UHF},{ }^{17 \mathrm{~T} 11 \text {-UHF and 17T12-UHF con }}$ tain an ultra-high frequency tuner, Model UHF-103, for reception
of stations in the UHF spectrum. The tuner has three switch positions, which can be preset to any channel in the entire UHF spectrum. The tuner employs a heterodyne circuit consisting of
a crystal diode, a beat oscillator and an I-F amplifier which are energized by a separate power supply.

NOTE: Late production receivers do not use fiexible focus control but
Fig. 2. Picture Tube Adjusiment

1．Follow steps 1 through 9 of preceding paragraph．
2．Place picture tube into cabinet，reposition tube strap as sembly，assemble left picture－tube mounting nut flush with end of mounting rod，see Fig． 6
3．Tighten the right picture－tube mounting nut
5．Place yoke mount rod as indicated in Fig． 5 and tighten 5．Place yoke mount
6．Make sure that the focus unit is perpendicular to and con
REPLACEMENT OF YOKE AND PM FOCUS UNIT There are two types of PM focus units：the early type with riveted－on bracket，Fig． 5 ，and the later production type which is identical to that used on Model 21T4，F
assembling follow this procedure（see Fig．4）：
1．Turn nut on the fiber yoke support by fingers fully forward．
2．The nut immediately to the rear of the focus unit shield should be set for $23 / 8$ inches between the disk and the yoke
flange．
3．The yoke support stop nut is now unsc
fiber yoke support and suitably tightened
4．Make sure that the focus unit is placed perpendicular and
tioned on the focus unit support rods as far back from the
focus unit as possible while still maintaining their vertical focus unit as possib

Fia．6．Tube Strap Assombly Mount，Model 21 T2

general:

In most cases the circuits in the receiver should need realign ment only when components have been replocedd in the tuned
circuits or the adjustments have been tampered with. When the decision is reached that the trouble lies in improper alignment of
the circuits, the alignment should be undertaken only if proper he circuits, the alignment should be undertaken only if prope
test equipment is available. The alignment procedure described follows the sweep method
using General Electric test equipment. When other than General Electric sweep equipment is used, make sure that it meets the Electric sweep equipment is used, make sure that it meets the
requirements listed below. If an accurately calibrated marker
generator is not available, a conventional signal generator may

TEST EQ

The foll owing test equipment is necessary

1. R-F SWEEP GENERATOR
(G-E Type ST-4A or Equivolont)
 $40-50 \mathrm{MC}$ with approximately 10 MC sweep width.
$50-90 \mathrm{MC}, 170-220 \mathrm{MC}$ with 15 MC sweep width.
b. Constant output in the sweep range.
2. marker generator
(G-E Type ST-5A or Equivolent)
The marker generator must have good frequency stability,
accurate calibration and must cover the following frequen

44.10 MC for video IF
45.00 MC for video IF
45.75 MC for video IF
47.25 MC for video IF

Fig. 7. R-F Ailgnment Equipment Connections
be used to supply the markers. Its output should be Notes:
coupled to the sweep generator output terminals and must be 1 . The R-F tuner may be aligned without removing it from the kept as low as possible to prevent distortion of the sweep wave- thain chassis. Disconnect the 300 onhm transmission line from
form. the antenna input transformer, T100 and disconnect the B+
Before proceeding with the alignment make sure to read all to the oscillator. To do this remove the self-tapping screws which notes and consult the connection diagrams. Allow the test equip. hold the rear shield, so that the terminal boards are exposed. notes and consult the connection diagrams. Ap 15 minutes before Unsolder the jumper between terminals 3 and 4 of the top ter-
ment and receiver to warm up for at least 15 mand connect choke L141 to terminal 3 . starting the alignment. It is often advisable to perform the align- 2 . Connect the sweep generator to the R-F tuner antenna input ment with the picture tube disconnected. The filament circuit can transformer using the G-E STBA balanced adapter to obtain except pins No. 7 and No. 8 which must be plugged in to pins to the R-F tuner through approximately three feet of 300 -ohm
No. 1 and No. 12 of the picture tube socket.
transmission line and a resistor pad, as shown in Fig. 9A. When transmission line and a resistor pad, as shown in
using other test equipment of the unbalanced output type, a
pad as shown in Fig. 9 B should be used instead. pad as shown in Fig. 9B should be used instead.
3. Connect a 3 -volt battery to the AGC terminal of the R-F
b. 4.5 MC for sound IF and trap alignment.
c. Picture and sound carrier frequencies for Channel No.
through No. 13.
3. BALANCED OUTPUT ADAPTER
(G-E ST-8A or Equivalent)
See R-F Alignment, note 2.
4 OSCILIOSCOPE
(G-E Type ST-2A or Equivalent)
The oscilloscope should have good sensitivity and preferably a
the vertical deffection circuits. Although the high frequency
response is not response is not necessary for alignment, it is imperative when
making waveform measurements. making waveform measurements.

. detector network

A crystal detector network as shown in Fig. 19 is necessar

Fig. 8. I.F Allignment Equipment Connections

5. It is possible to obtain two different settings of C105, Fig. 11,
that will give the proper R-F band width. The correct settin that will give the proper R-F band width. The correct setting
may be determined by switching from Channel 13 to Channel 12 may be determined by switching from Channel
and observing the change in band width. The correct setting will
result in a slightly greater band width on Channel 12. esult in a slightly greater band width on Channel 12 . 6. When proper tracking on the low channels cannot be achieved with the provided screw adjustments, the inductance of the 6) may be varied by inserting a knife blade between the windings. This method of adjustment requires the removal of the uner shield, a procedure which will detune the circuits. However
most cases the provided screw-type adjustments will suffice to achieve proper tracking through all channels after the shield ha een replaced.
7. The picture and sound carrier marker should not be less than
75% of the peak of the R•F response curve. Refer to the "limits" 5% of the peak of the R-F response curve. Refer to
curves shown in the accompanying alignment chart.
8. Seal trimmer screw of C105 and the brass cores in the coils 1114, L112, Leru9, L119, L116, L127 and L124, Fig. 11, with wa oprevent detuning. Seal the tuning screws in trimmers C104 -F tuner terminal board and connect the transmission line -F tuner input transform. Mount the rear R-F tuner shield For over-all alignment check see page 6 .

Fig. 9 . Swaep Ganerator Termination

Fig. 11. R-F Tuner, Side Viow

(a) Set generator sweep width to 10.15 mc .
(b) Signal input point at r f tuner input transformer, T100
(c) Sis

R-F Alignment Chart

(c) Observe response curve at test point "A," Fig. 10 , through $10,000-$ ohm resistor. Connect test equipment ground lead to r-f
(c) Adhere to following order when performing a complete alignment.
(e) When following the procedure below, an attempt should be made to obtain the indicated ideal response curves. Minor deviation

GENERAL-Two methods of oscillator frequency adjustment are given below. The first method uses a transmitting station for the align the oscillator coils.
A. "On Stetion Signol" Alignment

R-F and video I.F alignment must be correct before attempting oor each one of the coils being adjusted. Tune in the station starting with the higher channels and adjust the tuning screws for all available stations so that with the fine tuning control in the full
clockwise position, audio is just visible in the picture. Then check to see that best picture response on all channeis takee
place approximately in the center of the oscillator tuning range. place approximately in the center of the oscillator tuning range.
B. Swoop Alignmant

1. R-F and video I-F must be properly aligned before align-
ing the oscillator.
2
Connect a 2. Connect a 3 -volt battery to the AGC terminal of the R-F
tuner, see Fig. 14, with the positive lead of the battery connected to the main chassis. 3. Disconnect the $\mathbf{3 0 0 - o h m}$ transmission line from the antenna
terminals to the $\mathrm{R}-\mathrm{F}$ terminals and connect the sweep generator terminals- to there terminals as described in note 2 on page 4 . 4. Set the fine tuning knob 180° (1/2 turn) from the counter
clockwise limit of its rotation, i.e. rotate the fine tuning kno clockwise limit of its rotation, i.e. rotate the fine tuning knob
counterclockwise to the end of its travel, then turn the fine tuning control knob $180^{\circ}(1 / 2$ turn) clock wise. This setting of the
fine tuning control should be maintained for all oscillator adjustments. Make the indicated adjustments so that the picture carrie 5. Make the indicated adjustments so that the picture carrier
marker for the channel falls at 50% on the high frequency side of the response curve.

OSCILLATOR ALIGNMENT CHART
Sweop Generator 5woep Width 10.15 MC

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Receiver } \\ \text { and } \\ \text { Marker } \\ \text { Position } \end{gathered}$	Marker Generator Frequency	Signal Input Point	Observe Response Curve at	Adjust	$\begin{aligned} & \text { See } \\ & \text { Note } \end{aligned}$
13	No. 13	211.25 MC	$\begin{aligned} & \text { Antenna } \\ & \text { terminals } \\ & \text { (see Note 3) } \end{aligned}$	Junction of L256, R292, L268 thru and chassis	L135 Channel No. 13 oscillator adjustment.	$\begin{gathered} 1,2,3 \\ 4,5 \end{gathered}$
14	No. 12	205.25 MC			L134 Channel No. 12 oscillator adjustment.	
15	No. 11	199.25 MC			L134 Channel No. 11 oscillator adjustment.	
16	No. 10	193.25 MC			L134 Channel No. 10 oscillator adjustment.	
17	No. 9	187.25 MC			L134 Channel No. 9 oscillator adjustment.	
18	No. 8	181.25 MC			L134 Channel No. 8 oscillator adjustment.	
19	No. 7	175.25 MC			L134 Channel No. 7 oscillator adjustment.	
20	No. 6	83.25 MC			L133 Channel No. 6 oscillator adjustment.	
21	No. 5	77.25 MC			L132 Channel No. 5 oscillator adjustment.	
22	No. 4	67.25 MC			L131 Channel No. 4 oscillator adjustment.	
23	No. 3	61.25 MC			L130 Channel No. 3 oscillator adjustment.	
24	No. 2	55.25 MC			L129 Channel No. 2 oscillator adjustment.	

VIDEO I-F ALIGNMENT

notes:

1. Connect a 3 -voit bias battery from the junction C284,
R288 and picture control, R284 to chassis, see Fig. 27 . 2. Set channel switch to Channel No. 11 and turn Fine Tuning control to the counterclockwise stop
2. The noise cancelier V12 should be biased off during align-
ment by rotating the Picture Stabilizer at the rear of the receiver ment by rotating the Picture
to the counterclockwise stop.
3. The sweep generate characteristic impedance. Couple the signal to the point of input
through the capacitor through the capacitor specified and adjust signal input to give a
video resper
alignment of cases it is only necessary io perform an over-all alignment of the video i-f to obtain the final curve. L251 will
adjust the marker 42.5 mc of the audio or low-frequency side of
the response the response curve; coil L266 will adjust the marker 45.75 mc of
the video or high-frequency side of the curve. T101 and L254 should be adjusted simultaneously to obtain maximum gain and flatness of the curve, see
the final curve as in step 5.
4. It is necessary to detune the i-f coils by shorting as noted in the alignment chart to prevent the coil preceding the signa
input point from influencing the response curve. input point from influencing the response curve.
7 . It is important that the cores of all coils,

Step	Marker Generator Frequency	Signal Points Between	Adjust	Remarks
1	47.25 MC	Test Point " A " on head-end thru 100 mmf capacitor and head-end chassis.	Cores of L265 and L267 for minimum output at 47.25 MC .	Make this adjustment with high scope gain.
2	$\begin{aligned} & 42.50 \mathrm{MC} \\ & 4.10 \mathrm{MC} \\ & 45.75 \mathrm{MC} \end{aligned}$	V6 grid (pin 1) thru .01 mf capacitor and chassis; short L266.	Core of L254, 3rd- if for proper curve.	
3	$\begin{aligned} & 41.25 \mathrm{MC} \\ & 42.50 \mathrm{MC} \\ & 45.00 \mathrm{MC} \\ & 45.75 \mathrm{MC} \end{aligned}$	V5 grid (pin 1) thru .01 mf capacitor and chassis, short L251 and remove short on L266.	Core of L266, 2nd i-f for proper curve.	
4	$\begin{aligned} & 41.25 \mathrm{MC} \\ & 42.50 \mathrm{MC} \\ & 45.00 \mathrm{MC} \\ & 45.75 \mathrm{MC} \\ & 47.25 \mathrm{MC} \end{aligned}$	V4 grid (pın 1) thru .01 mf capacitor and chassis, remove short on L251.	Core of L251, 1st i-f for proper curve.	
5		Test Point " A " on head-end thru 100 mmf capacitor and head-end chassis.	Core of T201, T101 and L254.	41.25 mc -Marker should be at 7% with 45.0 mc marker at 100%. 45.75 mc marker may vary between the limits 25% and 35% (nominal the limits 25% and 42.5 mc marker may vary between 50% and 90% (nominal 70%). Peak of the curve should approximately equal 150% referred to the $100 \% 45 \mathrm{mc}$ marker.

OVER-ALL (RF-IF) ALIGNMENT CHECK

 A receiver which has been properly R-F aligned and I.F aligned must not be considered as a properly aligned receiveruntil the over-all check and adjustments have been made Because the converter grid and cathode are utilized ae a detecto
diode in the $R-F$ alignment process, a certain degree of "tilt" diode in the R-F alignment process, a certain degree of ""iit""
$R-F$ detuning will occur. The only method of determining th degree of introduced "tiit", and the correction thereof must be In general, a receiver which has been properiy R-F aligned
will display an over-all curve (antenn to dide In general, a receiver which has (antenna to diode) which will
will display an over-all curve
duplicate the I-F system curve, since the major portion of the duplicate the I.F system curve, since the major portion of the
receiver selectivity occurs in the I-F system. It is to be expected, receiver selectivity occurs in the I-F system. It is to be expected,
however, that minor variations in the over-all curve will occur however, that minor variations in the over-al
when checking each of the various channels.
The procedure given here is quite simple, and assures optimum peen properly aligned according to the data given for R-F has been properiy aligned according to
and $\mathrm{I}-\mathrm{F}$ alignment, proceed as foliows:
a. Couple R-F sweep and channel marker signals to antenna
input
b. Connect oscilloscope to jun
through 10,000 ohms, see Fig. 27. c. Sweep each channel, starting with channel \#13, and observe resuiting sound and picture I-F ine Tuning control so that the

Fig. Should the observed curve not agree with that shown in Fig. 17, the following adjustments should be made:

made.
On channeis $7-13$, adjust C108 Furve. 10) to produce desired CAUTION: Do not move C108 adjustment core more than three onens in either direction-usually one turn will suffice to produce
II. On channels 4,5 and 6 adjust L127 for proper curve compensa-
tion if required (Fig. 11). III. On channels 2 and 3 adjust L124.
(50hn F. Rider

TRAP ADJUSTMENTS

g. 78. Tube and

Alignment of Llo6 I-F Trap (R-F Tuner)
The trap, L106, Fig. 10, is for the purpose of removing any requency in the i-f range which may cause int hould be aligned for minimum interference Thanel interference pattern on the screen. he interference frequency is known, L106 may also be aligned for minimum interference as outlined below.

1. Connect 3 volts bias from the AGC line on head-end Cerminal board, Fig. 14, to chassis. Connect the positive of the bias battery to chassis.
2. Use an accurate mer generator to furnish marker of the same frequency as the interfering frequency.

Connect the scope to view the response curve at output of the video detector. Use a sweep generator with its center frequency set approximately at the interference frequency 3. Do not tune L106 so it will attenuate Channel No. 2 . 4. Use the GE-ST8A balanced adapter and a 3 -foot piece
of 300 -ohm transmission line to couple the r -f sweep to the of 300 -ohm transmission line to couple the r-f sweep to the
antenna terminals of the receiver, to properly match the input impedance of this receiver.
If the shape of the response curve changes when you grasp the
ion
inm transmission line a $300-$ ohm transmission line, a resistor pad, as shown in Fig. 9, should be inserted at the head-end antenna terminals. mplitude cases as you grasp the
of the response curve will decrease, the shape will not change.

L106 ALIGNMENT CHART

Marker Frequency	Sweep Frequencies and Input Points	Observe Response Curve at	Channel Switch Setting	Adjust	See Note
Interference frequency	40 to 50 MC to an- tenna terminals	Junction R292, L256 and L268	2	Core of L106 for mini- mum amplitude of curve at marker.	$\mathbf{1 , 2 , 3 , 4}$

ADJUSTMENT OF VIDEO AMPLIFIER 4.5 MC TRAP

(L260)
when transeitting tone modulation during test pattern trans
mission. .
(a) Tune the receiver for best detail.
(b) Set the pisture control to give reduced contrast or by NOTES:
(b) Set the picture control to give reduced contrast or byNOTES:
using a resistor pad in the antenna circuit.
This trap is used to remove 4.5 mc audio i-f from the video using a resistor transformer T401 and primary of T 402 for maxi- amplifier which shows up in the picture as a cross-hatch pattern.
(c)
This trap will very rarely require adjustment. If adjustment is mum sound output.
(d) Adjust the secondary of T 402 for best quality audio necessary, proceed as follows:
(d) Adjust the secondary of $T 402$ for best
reception and for minimum buzz in the output.

> essary, proceed as iollows:

L260 ALIGNMENT CHART

$\begin{aligned} & \text { (a) } \\ & \text { (b) } \end{aligned}$	marker generator frequency 4.5 mc SWEEP GENERATOR FREQUENCY $4.5 \mathrm{MC}=500 \mathrm{KC}$ Keep signal below limiting level of receiver.			
Step	Signal Input Points Between	Observe Response Curve at	Adjust	
1	Pin 1 of V17 thru .01 mf capacitor and chassis	Junction of R404, C404, and secondary of T401 thru 10 K -ohm resistor and chassis.	Primary and secondary of T401 for max. amplitude and symmetry of curve.	
2			Secondary of T402 to place zero beat of 4.5 mc marker and sweep at the cross-over of the curve and base line.	
3	Pin 1 of V18 thru .01 mf capacitor and chassis	Junction of R408, C411, and R411 thru 10 K -ohm resistor and chassis.	Primary of $\mathbf{T} 402$ for equal amplitude of the positive and negative peaks with a straight line connecting these peaks.	
4			Secondary of T402 to place zero beat of 4.5 mc marker at crossover point of curve and the base line.	
5	Recheck alignment of Step 4 on operating station as in Note 3.			

(a) Marker Generator Frequency 4.5 MC . Mc .

of the 4.5 mc marker. Use a detector network as shown in Fig. 19, the signal.
2. Adjust the Vertical Hold control to remove the vertical pulses from the response curve.

1. Feed a 4.5 mc signal with a 500 kc swee
proper response curve as indicated in the chart. 2. Keep the input signal of the sweep generator low enoug so that limiting does not take place, otherwise the response
will broaden out, preventing correct adjustment. Check by increasing the output of the generator: the response curve should increase in amplitude.
increase in amplituce.
2. An alternate method to the visual alignment is the sound

© John F. Rider

3. TurAtIGNMANT PROCEDURE
clockwise. clockwise.
4. From this "starting point,", gradually turn the oscillator
tuning core clockwise into the coil until tuning core clockwising into the coil until a UHF picture and ac-
companying sound signal are received. While turning the oscompanying sound signal are received. While turning the os-
cillator core clorkwise into the coil, two strong picture responses may be noticed. However, the first response to be noted while
turning the core clockwise from its maximum counterclockwise turning the core clockwise from its maximum counterclockwise
position is the response to be used. Be careful not to exert any position is the response to be used. Be careful not to exert any
pressure when turning the core into the coil, to avoid any damage to the coil.
5. Adiust
6. Adjust the R-F tuning core for maximum picture signal.
7. The oscillator tuning co the Fine Tuning control on the television receiver will permit tuning slightly into accompanying audio bars or "beats." Be
sure that you can tune away from any adjacent chanel intersure that you can tune away from any adjacent channel inter-
ference.
5 . The Tuner is now aligned for ference.
8. The Tuner is now aligned for operation on one UHF channel.
Repeat steps 1 to 4 on the two remaining UHF positions, if more Repeat steps 1 to 4 on the two remaining UHF positions, if more
than one UHF channel is available in your area.

UHF-103 CIRCUIT DESCRIPTION

Refer to diagram, Fig. 27, page II.
 ing UHF signal with a signal which is ised by mixing the incom

 frequency 6AF4 oscillator. This mixing takes place in a 1 N 72crystal diode, the output of which is amplifed by the crystal diode, the output of which is amplified by the low-noise
$6 \mathrm{BK7} 7$ cascode amplifer. The output of this amplifier is then link-coupled to the television receiver antenna terminals.
Two antenna inputs are provided; one for the VHF antenna
and one for the UHF antenna. Switches S 1 and S 2 are mechaniand one for the UHF antenna. Switches S1 and S2 are mechani-
cally ganged with the UHF coil plate. The switch, S1 permits swithing of the VHF receiver antenna input lead to either the
VHF antenna directly, or to the Translar VHF antenna directly, or to the Translator output link.
On the VHF position, switch $\mathbf{S} 2$ un-shorts R11. Thus, On the VHF position, switch S2 un-shorts R11. Thus, a small
amount of current is permitted to flow through the tubes, even while on the VHF position.
In the UHF-1 position
In the UHF-1 position, as shown, the signal is fed into the input circuits consisting of C1, C2, C3, C4 and L1. L1 is a $1 / 4$.
wave shorted line, the electrical length of which is varied by
adjustment adjustment of the shorting core. For mechanical convenience,
this $1 /-$ wave line is wound into a spiral form and should not be considered as a conventional "coil."
The values of $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C}, \mathrm{C}, \mathrm{C}$ are chosen so that the input
circuit impedance closely approximates 300 ohms across the circuit impedance closely approximates 300 ohms across the
UHF band, while the impedance at the junctions of C1 and C 4
and the ends of the transmission line L1, is yery and the ends of the transmission line L1, is very high-in the
order of several thousand ohms. C7, C8, L7 and L8 maintain order of several thousand ohms. C7, C8, L7 and L8 maintain
accurate balance of the input circuits. C9 and the 1 N 72 diode
are tied in series across the line. Their midpoint is are tied in series across the line. Their midpoint is used for ex-
traction of the VHF converted signal as well as for injection of the local UHF oscillator signal. C9 is critical in value since to
gether with the diode it also affects the balance of the line. gether with the diode it also affects the balance of the line.
The oscillator, a 6 AF 4 tube, is connected in an ultra-a oscillator circuit. Its plate voltage is "shunt-fed" through L17
which presents a high impedance at frequencies abe which presents a high impedance at frequencies above approxi
mately 250 mc . The oscillator tank circuit, L 2 , is also a tunable shorted $1 / 4$-wave line. Oscillator output is taken from the cathode circuit across L14 and coupled through C11 into the 1N 72 diode
L9 furnishes the d-c return path for rectified diode current L9 furnishes the d-c return path for rectified diode current,
while C18 resonates with other circuit constants to the VHF output frequency. The converted UHF signal is coupled through
C19 into the coscone C19 into the cascode 6BK7 7 amplifier. This amplifier consists of two stages. The first stage is a con-
ventional triode, grounded-cathode stage, whose input circuit is tuned to the, VHF frequency, (approximately 79 to 85 mc).
The cathode circuit, consisting of $\mathrm{R1}$ and C 20 is only used to The cathode circuit, consisting of R1 and C20, is only used to
obtain d-c bias. L12 is a high-impedance, shunt-fed R-F choke. The output of the first stage is capacity-coupled into the second
Thed triode which is a grounded-grid amplifier. In the cathode of the
second stage is connected a conventional bias resistor R4 second stage is connected a conventional bias resistor, R4, and
its R-F bypass capacitor, C23.L11 provides the d-c cathode return through T1 to ground and also provides neutralization of the first triode stage to prevent it from oscillating. This neutralizing
coil is somewhat critical in value and must, if damaged be recoil is somewhat critical in value and must, if damaged, be re-
placed by a proper coil in the low-noise advantages of this cir-
cuit are to be maintained.

SERVICING THE UHF-103 TUNER

Before replacing components check first the tubes. Check to see that the oscillator is working properly: the voltage on tes
point (see Fig. 25) should read -4 volt as measured with VTVM With the exception of the oscillator socket, the components
tuner is comparatively simple, requiring no special considerations
other than the usual lead dress precautions common in VHF practice. However, because of the small size of most component soldering prevent overhe The oscillator circuit wiring and the UHF coils are critical and require specialattention of Oscillator Tube Socket

1. Remove the coil turret assembly by loosening the four set screws in the long coupling (Fig. 23) and the one set screw in
the short coupling. Then, by lifting the detent roller and turning the assembly so one of the detent slots matches the bracket screw, the turret can be slid out of the unit.
2. Unsolder all connections to the V-shap Remove contactor board from the assembly by removing the one Phillips-head screw.
3. Carefully unsolde the components to the tube socket, 4. Drill out the two rivets holding than necessary. After removing this bracket the oscillator tube socket can be
removed removed. When reinstalling new socket be sure to place components in the original position (see Fig. 26). Positioning is so critical removing or inserting it but to pull or push it straight from the
socket. socket.

Replacement of UHF Coils

1. Remove small spring split washer (Truarc clip) on turret shaft that holds textolite coil bracket. To facilitate this operation a set of Truarc pliers should be used which may be obtained at
your General Electric dealer (order number WH 50×58). 2. After removing old coil solder new coil assembly in place
with the coil leads in their normal position. Flow the solder with the coil leads in their normal position. Flow the solder between the lead and the contact, making sure that the iron
does not put any stress on the lead which might deform it. The tuning cores for the coils are of different sizes and are selected to fit the coils. Therefore, do not interchange cores from one coil to another. Coils are supplied from the factory complete
with their cores; be sure to replace as such. 3. With proper care it is possible to replace coil without
removing coil bracket. Bend carefully the textolite plate upward removing coil bracket. Bend carefully the textolite plate upward
just above the coil to be removed. Push the coil to the right until just above the coil clears the retaining hole.
2. Gently release the textolite plate, and while holding the coil in this cocked position, apply the soldering iron to the two
coil terminals simultaneously. As soon as the solder melts tilt the coil terminals simultaneously. As soon as the solder melts tilt the
coil still further to the right and remove it. Wipe the contacts clean of all solder.
3. When replacing new coil bend textolite plate gently up-
ward and put the new coil into position, being careful not to ward and put the new coil into position, being, careful not to
even slightly bend the coil eads in any direction. This precaution
is very important is very important as poor frequency stability will probably result
if it is not followed. In soldering the new coil leads in place use if it is not followed. In soldering the new coil leads in place use
the same precaution as outlined above.

Fig. 26. UHF-103 Tube and Component Layout, Bottom View

Schomatic Diagram UHF-103

MODELS 17T10, -UHF, 17T11, -UHF, 17T12, -UHF, 21 T2

COMPLETE LIST OF TV CHANNEL FREQUENCIES

PRODUCTION CHANGES

1. Vertical Sweep Circuit (Models 17T10-T11-T12 only), To reduce height changes with different settings of the
Brightness control, R276, the resistor in the cathode of the picture tube was changed from R289, 150,000 ohms
(URD-101) to R277, 220,000 ohms (URD.105).
at the top of the resistor across the vertical output transformer, T302, was 180,000 ohms, (URD-103).
2. Horizontal Sync Circuit (Models 17T10-T11-T12 only). To improve horizontal sync stability under various conditions
of signal strength levels, the feed-back resistor connected from of signal strength levels, the feed back resistor connected from
the grid of the horizontal oscillator (V13B) the discriminator the grid of the horizontal oscillator (V13B) to the discriminator
(V12) plate was changed from R279, 180,000 ohms (URD-103) to R390, 330,000 ohms (URD-109).
3. Vertical Output Circuit To improve the vertical linearity, the vertical output tube was changed from 25L6-GT to 25 W 6 -GT. These tubes are inter changeable and no change in tube socket wiring was necessary
4. UHF-103 in Metal Cabinet 17T10, 21T2 When the UHF-103 Tuner is installed in a metal cabinet-type
receiver, there is a tendency for the cabinet to induce horizontal receiver, the into the vertical system. The condition is recognized
sync pulses into by the fact that the vertical sync is weak and unstable. To eliminate this trouble, connect a .01 mf .600 v molded
paper capacitor between the front control apron and chaseis paper capacitor between the front contron apron and ciassis. side of the chassis looking at the front. Connect one lead of the
capacitor to the center ground lug of the existing terminal board capacitor to the center ground lug of the exnisting terminal board
and the other lead to a soldering lug to bee mounted under one and the other lead to a soldering lug to be mounted un
of the screws fastening the front chassis mounting foot.

PARTS LIST MODELS 17T10-TII-TI2, 2IT2

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Cat. No. \& Symbol \& Description \& \(\underset{\substack{\text { List } \\ \text { Price }}}{\substack{\text { cen }}}\) \& Cat. No. \& Symbol \& Description \& \(\underset{\text { List }}{\substack{\text { List } \\ \text { Price }}}\) \\
\hline \multicolumn{4}{|c|}{RESISTORS, IW CARBON (Cont'd)} \& \multicolumn{4}{|l|}{COILS AND TRANSFORMERS (Cont'd)} \\
\hline \begin{tabular}{l}
-URE-08 -URE-093 -URE-101 \\
*URE-113
\end{tabular} \& \& \& \[
\begin{array}{r}
\$ 0.17 \\
177 \\
.17 \\
.17
\end{array}
\] \& \& L260, C270. L261 L258, 402, 452, 453 \& COIL-4.5 mc. video trap CHOKE - Video peaking coil, \(110 \mu \mathrm{~h} ., 4.85\) ohms single coil pi wound. \(2 \mu \mathrm{~h}\). \& \(\$ 1.80\)

.45
.25

\hline \multicolumn{4}{|c|}{Carban 2 W .} \& -RLI-138 \& $$
\begin{gathered}
\mathrm{L} 258,402, \\
452.453, \\
454,455 \\
\mathrm{~L} 270,354
\end{gathered}
$$ \& CHOKE- 10 /h., in hori- \& 25

\hline \& (ele $\begin{aligned} & \text { R345 } \\ & \text { R386 } \\ & \text { R272 } \\ & \text { R296 } \\ & \text { R270 } \\ & \text { R373 }\end{aligned}$ \& \& .25
.25
.25
.25
.25
.25 \& \& L137
L136
L141
Li48,

L139 \& | CHOKE-. 56 , h. heater CHOKE-1.4 choke., V3A os cillator cathode. CHOKE-R-F choke CHOKE-3.3 th., choke |
| :--- |
| | \& .25

.35
.65
.25

\hline \multicolumn{4}{|c|}{POTENTIOMETERS} \& \[
$$
\begin{aligned}
& \text { *RLI-159 } \\
& \hline \text { 'RLI-161 }
\end{aligned}
$$

\] \& | L 106 |
| :--- |
| L262. |
| L257, 263 | \& tuning core in headeend

cHoke-Video
compen- \& 75

\hline :RRC-096 \& \[
\left\lvert\, $$
\begin{aligned}
& \mathrm{R} 308 \\
& \mathrm{R} 311
\end{aligned}
$$\right.

\] \& \multirow[t]{2}{*}{3 meg., Height control, 2W 4000 ohms, 2 W . Vertica Linearity control} \& \& | -RLI-162 |
| :--- |
| *RLI-165 | \& \multirow[t]{2}{*}{\[

\left\lvert\, $$
\begin{aligned}
& \text { LiO0 } \\
& \text { L266, } 277
\end{aligned}
$$\right.
\]} \& CHOKE-Video compen \& . 4.35

\hline -RRC-173 \& R3 \& \& 1.65 \& \multirow[t]{2}{*}{${ }_{\text {RLI-173 }}$ RLI-174 RLI-185} \& \& COIL-3rd. video I-F coil and tuning core \& 1.75

\hline -RRC-174 \& R305 \& 100,000 ohms, Horizontal hold control, Model 21 T \& 1.25
1.25 \& \& L269 R294 L271. \& \multirow[t]{2}{*}{} \& . 50

\hline C-1 \& R276 \& 125,000 ohms, Vertical Hold
control. Model 2172 only control, Model 2172 Only
500,000 ohms, Brightness \& 1.25 \& RLI-185 \& \& \& \multirow[t]{2}{*}{. 60}

\hline *RRC-186 \& \multirow[t]{2}{*}{R284, 413

R387} \& \qquad ohms, Brightness 2 meg. and .5 meg., Picture \& 1.25 \& \multirow[t]{2}{*}{-RLX-035} \& \multirow[t]{2}{*}{$$
\begin{gathered}
\mathbf{C} 265,267, \\
\text { L254, } \\
\text { 255, } 256
\end{gathered}
$$} \& VIDE DE ASS' Y - In ahicld can in. \&

\hline -RRC-186 \& \& and Volume dual control.
Horizontal
Hold
100,000 \& 2.80 \& \& \& \& \multirow[t]{2}{*}{6.00}

\hline \multirow[t]{2}{*}{*RRC-195} \& ${ }^{\text {R342 }}$ \& \& 1.40

1.40 \& -RTD-008 \& \[
$$
\begin{gathered}
\text { T402. } \\
\text { C407. } \\
408
\end{gathered}
$$

\] \& | TRANSFORMER |
| :---: |
| $\begin{array}{c}\text { Retector } \\ \text { demation } \\ \text { sembly } \\ \text { with } \\ \text { cormer } \\ \text { capatitors }\end{array}$ | \&

\hline \& R388 \& 5000 ohmm $3 / / 2$ watt, Hori- \& \multirow[t]{2}{*}{1.65} \& \multirow[t]{2}{*}{- RTF-002
RTL-137} \& \multirow[t]{2}{*}{T451} \& \multirow[t]{2}{*}{TRANSFORMER - Fila ment for $V 1, V 2$, and $V 3$} \& \multirow[b]{2}{*}{3.60}

\hline \cdot RRC-196 \& \multicolumn{2}{|l|}{R341} \& \& \& \& \&

\hline \multirow[t]{2}{*}{-RRC-200 RRC-201} \& \multirow[t]{2}{*}{R298

R338} \& \multirow[t]{2}{*}{| Brightness control, 500,000 |
| :--- |
| 3 meg., Picture Stabilizer, 17 - |
| inch models in Picture |} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1.35 \\
& 1.00
\end{aligned}
$$
\]} \& \multirow[b]{2}{*}{-RTL-139} \& \& TRANSFORMER-I-F in-

put with tuning core in \& \multirow[t]{2}{*}{2.90}

\hline \& \& \& \& \& \& TRANSFORMER - VIdeo I-F head end output with \&

\hline \multicolumn{4}{|c|}{RESISTORS} \& \multirow[t]{2}{*}{$$
\begin{gathered}
\text { RTO.081 } \\
\text {-RTO-116 } \\
\text {-RTO-117 }
\end{gathered}
$$} \& T405 \& tuning core in shield can

TRANSFORMER-Audio \& 1.95
2.25

\hline \multicolumn{4}{|c|}{Wire Wound and Special} \& \& H302 \& (er \& 12.65
7.60

\hline \multirow[t]{2}{*}{| *REK-002 |
| :--- |
| *RRW-048 |
| -RRW-051 |
| ${ }^{*}$ RRW-053 |} \& $\left\lvert\, \begin{gathered}\text { C419, } \\ \text { R417. } \\ \text { R4, } \\ \text { R451 }\end{gathered}\right.$ \& \& \& \multicolumn{3}{|r|}{miscellaneous Electrical} \&

\hline \& \[
$$
\begin{aligned}
& \mathbf{R} 457 \\
& \mathbf{R} 380
\end{aligned}
$$

\] \& | 20 ohms, 10 liobar. 4,000 ohms, 7 w ., wire wound |
| :--- |
| $\pm 10 \%$. | \& 1.75

.65 \& \multirow[t]{2}{*}{${ }_{-}^{\text {-RECPC-006 }}$} \& \multirow[t]{2}{*}{} \& \multirow[t]{8}{*}{| CAP-High voltage rectifier FUSE- 1.6 amp., $125 \mathrm{v} .$, alo CORE-Brass |
| :--- |
| tuning core for R-F tuner cORE-Tuning core composition iron with screw atud for RLI-097, RLI- |
| CORE Width control, screw stud. CORE-Tuning core for ra tio detector transf., RTD |} \& \multirow[b]{2}{*}{. 05}

\hline -RRW-058 \& \multirow[t]{2}{*}{R375} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{. 20} \& \& \& \&

\hline -RRW-079 \& \& \& \& -REI-014 \& F459 \& \&

\hline \cdot RRW-082 \& R452 \& 1500 ohmm, 10%, 10 w \& . 60 \& *REI-016 \& \& \& . 05

\hline $\cdot{ }^{\text {RRW-088 }}$ \& R382 \& 14,000 wire wound at 140 v., giobar \& . 60 \& \& \& \&

\hline -RRW. 098 \& R297 \& $$
\begin{aligned}
& \pm 15 \% \\
& 3300 \mathrm{~mm}, 10 \text { w., wire } \\
& \text { wound }=10 \%
\end{aligned}
$$ \& 1.50

1.00 \& *REI-027 \& \& \& . 20

\hline \& \& \& 1.00 \& \multirow[t]{2}{*}{-REI-033} \& \& \& 60

\hline \multicolumn{4}{|c|}{COILS AND TRANSFORMERS} \& \& \& \& 25

\hline -RJX-050

- ${ }^{\text {RLA }} 037$ \& T100 \& \& 75.00 \& -REI-034 -REI-03S \& \& \& 10

\hline *RLC-091 \& L351 \& coit ${ }^{\text {tenna input }}$ Horizontal Hold coil \& 1.80 \& \& \& \& . 10

\hline -RLD-014 \& L35 \& Coil - Width contro with \& 1.75 \& *REI-036 \& \& CORE-Brass (screw type. \&

\hline *RLD-016 \& L352 \& codiuatment core \& 1.30 \& \& \& for R.Fertuer coilt Lil2, \& . 10

\hline RLD-045 \& $$
\begin{gathered}
\text { D } 302,352, \\
\text { R388, } \\
389
\end{gathered}
$$ \& Horizontal and yertical deflection coils with re \& 1.30 \& *REI-038 \& \& \& . 20

\hline *RLF-024 \& L255. 256 \& colls- 31 inh R-F choke part of video detector as. \& 15.00

.65 \& RER-015 \& X451,452 \& | position iron with screw |
| :--- |
| | \& . 20

\hline - RLF-051 \& L4 \& ${ }^{\text {ammber }}$ \& . 65 \& *RET-014 \& \& 10N TRAP-PMi manat \&

\hline -RLI-096 \& ${ }_{\substack{\text { Li 266, } \\ 280}}^{\text {267. }}$ \& \& $$
\begin{array}{r}
3.75 \\
.85
\end{array}
$$ \& *RII-057 \& \& \& 1.45

\hline -RLI-097 \& $$
\begin{gathered}
40100 \\
\mathbf{T} 401 \\
\hline 405
\end{gathered}
$$ \& COIL-1at. Rudio I.F and \& 2.25 \& \& \& wafer mounting insulator. textolite side rails. \& . 25

\hline
\end{tabular}

Cat. No.	Symbol	Description	$\underset{\substack{\text { List } \\ \text { Price }}}{\text { cen }}$
MISCELLANEOUS ELECTRICAL (Cont'd)			
-RII-067		INSULATOR - Textolite	\$0.05
RII-072		INSULATOR-For	\$0.05
-RII-074			35
		INShannel switch bracket.	. 15
RII.075		INSULATOR-Left ${ }_{\text {cond }}^{\text {hand }}$ control mounting bracket	15
RII.076		INSULATOR-Riight hand	. 15
-RJC-015	P402	PLUG-Single male poonnector cor defection	
		male plus for deffect	. 30
-RJC. 019	P404	SPEAAER PIN-L Loud	. 02
$\cdot \mathrm{RJC} .020$		CONNECTOR	
RJC-025		Model 17T10-TII-T12	60
		${ }_{12}$ conector 17 T 11 and 17	. 70
-RJJ-008	S452	Receptacle - Trans-	35
${ }^{-R J}$	1451	RECEPTACLE - Power	
RJP-039	P401	PLUG-Yoke connect	20
		male, 4 pins	. 15
-RJS-003		SOCKET-Tube socket, oc tal $1^{5 / 16}$ inch for 6SQ7	. 20
-RJS. 025		SOCKET-Molded octal socket, wax impregn. for	,
-RJS. 026			2
			. 20
-RJS.031		SOCKET-Octal tube soc-	25
*RJS-118		SOCKET Wafer socket, 9	35
\bullet RJS. 132		SOCKET-Seven pin tube	ss
		socket, ${ }_{\text {and }}^{\text {and }}$ inch for V12	20
-RJS-133		Socker-Tube socket, ${ }^{7}$	
		V18...	20
*RJS-135		SOCKET - Octal shock	25
RJS-145		SOCKET-Miniature, 7 pin, wafer for 6CB6	. 30
\bullet RJS-148		SOCEET-Molded, tube	
		aseme	. 25
\bullet RJS-159	J402, 403	SOCKET - Female recep.	
		(leado yoke asay., and pix	. 20
*RJS-160		SOCKET-Miniature 7 pin, for V1 and V2	. 25
\bullet RJS-161		$\mathrm{SOCKET}_{\text {for } \mathrm{V} 3}$-Miniature 9 pin	30
-RJS-170	J401	SOCKET-Yoke connector,	. 25
-RJS. 179			. 25
RLF. 059		for 6aub	20
		Leas fexible shaft, 17 T 10 and 21 T1	11.00
RLF-060		PM FOCUS ASSEMBLY-	11.00
*RSX-019	$\underset{\text { L134. }}{\substack{\text { Sion-E. }}}$	SWITCH WAFER-Chan nel switch wafer with os	
			7.00
-RSX-020	$\underset{\substack{\text { sioo-D. } \\ \text { L128 }}}{ }$	WAFER COIL ASSY Switch wafer channel switch wafer with 2nd	
		R-Fbp).	7.00
*RSX 021	$\underset{L 120 . c}{s i o g . c .}$	SWITCH 2nd R-F grid Woils (from knob).	. 00
*RSX-022		SWITCH WAFER-With 1st R-F. plate coils (4th from knob)	6.50
-RSX-023	S100-A	SWITCH WAFER-Chan nel awitch water with ca- pacitors and coils (Sth pacitors	5.75
			5.75
-RWX-045			20
-RWX-045		SOCKET-Picture	. 90
s-527D.7	Lsi	SPEAKER-PM, $51 /$ inch	0

[^4]
prices are suggested list prices and subject to change without notice. Mica and ceramic capacitort are soo volts unles otherwise specififed.
Resittor value tolerance is 10% unless otherwise specified.

©John F. Rider

© John F. Rider

OJohn F. Rider

ISTALLATION INSTRUCTIONS (Cont'd)

ontrol shaft hole). NOTE: Before replacing picture tube intor ceivers equipped with a metal mask, place the insist real The thust
space between the mask front bezel and the inside rim. The seal should then be pulled through the eight tab holes which are arranged around the
eight provided tabs.
2. Prace picture tube strap over tube and secure strap with
. he provided nuts and
3. Slide yoke assembly over tube ne
top support bracket. 4. Position both yoke mounting rods and tighten knurled draw nuts.
5. Install ion trap.
6. This step applies only to those receivers equipped with a metal mask.
After the side rods have been tightened and the assembly secured so that the picture tube can' ' possibly move or shift, the
dust seal may be positioned. Push the dust seal off of the eight dust seal may be positioned. Push the dust seal off of the eight
tabs in the mask rim. The dust seal will then fall into its proper place between the picture tube and the mask.
chassis.
8. Bolt chassis to cabinet and install knobs.
9. Connect all leads and cables.

Fig. 6. Side View of Late Picture Tube Mount Assembly

'LATE', 2l-INCH PICTURE TUBE ASSEMBLY

GENERAL: This information refers to the assembly shown in Fig 2, $6,7,8,9$ and 10 . In mid-production, the yoke and focus uni assembly was shanged installation adjustments and service pro cedure. Basically, this assembly is similar to the earlier unit that the picture tube is held forward by a strap assembly which
in turn, is secured to the cabinet. The yoke and focus assembly in held in position against the bell of the picture tube by side rod in a manner similar to that used in the earlier assembly. The yoke
is supported by the tube neck and hence need not be specially is supported by the tube neck and hence need. It is necessar however to make sure that the focus unit is concentric about and On some receivers using this assembly, the brass focus unit support rods must be "cocked" slightly clockwise (approximatel 5 degrees) so that the picture straightening magnets will
reasonably vertical in their position to prevent a "Parallelogram reasonaby vertical production receivers using the new assembly since the picture
straighteners were re-designed with off-set brass supporting straps which will properly position them without "cocking" th entire assembly.
Late production focus units utilize a screw driver method o
adjustment rather than the fexible shaft and knob found o adjustment rather than the flexible shaft and knob unit that a nonmagnetic screw driver be used to simplify the
procedure. Also, when attempting to adjust the focus uni procedure. Also, when attempting that be sure that the screw driver enter the screw funnel otherwise the ion trap may become disturbed
This would require removal of the cabinet back to allow re adjustment of the ion trap.

PICTURE TUBE ASSEMBLY ADJUSTMENTS (LATE ASSEMBLY)
The following 1. Remove cabinet back. 2. Apply power to the receiver, turn set on and tune in a test pattern.
3. Adjust
necessary controls to correct any existing maladjustments. These control functions are as follows:
ION TRAP: Set the brightness control (under front ON TRAP: Set the brightness control (under front panel con-
trol door) to its maximum clockwise position and alternately trol door) to its maximum clockwise position and
slide and rotate the ion trap for maximum brightness.
YOKE POSIIIONNGG: Rotate yoke to square picture within the
mask. It is not necessary to loosen any part of the assembly mask. It is not ne
FOCus UNIT: Loosen the focus unit securing nuts and laterally
adjust the focus unit for the dimension shown in Fig. 6. Make djust the focus unit for the dimension shown in Fig. 6. Make perpendicular to the tube neck. Tighten the focus unit securing nuts. Adjust the focus control for best focus unit is the cer which is located on the forward securing screws and move the lever in control. Loosen ular path until the picture is centered. Readjust the focus knob if the picture centering process disturbed the focus adjustment. PlCTURE STRAIGHTENERS: These are the tho antiopincushioning
magnets mounted near the bell of the picture tube. Adjust these magnets mounted near the bell of the picture tube. Adjust these
magnets as follows
(a) Reduce the picture size so that the raster edges are visible.
(a) Reduce the picture size so that the raster edges are visible.
(b) Adjust the straightening magnets so that
the raster edges are perfectly straight. These magnets will have an
effect upon the width, but their important function is to keep the raster edges from being "bowed" in or out.

Fig. 8. Pieture Tube Adiustments

INSTALLATION INSTRUCTIONS (Cont'd)
A. TO REMOVE PICTURE TUBE (Lale Assombly): Disconnect all cables and leads. Remove chassis. hing surface. Leosen and remove nuts and washers which secure the
remo
Le mounting rods to the picture tube strap assembiy. yoke mounting rods to the picture tube strap assembiy. Remove rear support strap nuts and move straps aside.
Remove entire yoke and focus assembly. . Remove entire yoke and focus assembly.
B. to replace picture tube (Late Assombly):

1. This step applies only to those receivers equipped with metal mask. Before inserting picture tube into mask, the spong rubber dust seare should be placed into the space between the
mask front bezel and the inside rim. The dust seal should the mask front bezel and the inside rim. The dust seal should then
be pulled through the eight tab holes arranged around the mask be pulled through the eight tab holes arranged as
inside rim. Hook the dust seal on the eight tabs.

2. Replace picture tube.

Replace, in reverse order, all yoke and focus assembly parts 4. After the side rods have been tightened and the assembly sust seal may be positioned. Push the dust seal off of the eight tabs in the mask rim. The dust seal will then fall into its proper place between the picture tube and the mask sk. and the tie channel hould be turd by finger fully forward. The nut immediately nches between the disc and (large disc) should be set for ${ }^{23 / 8} 8$ as shown in Fig. 6 . The fiber yoke support stop nut should now be unscrewed toward the fiber yoke support and suitably tightenec. Next, tighten the nut ts maximum forward position
6. Replace ion trap.

RECEIVER CIRCUIT ANALYSIS

Abstract

A brief description of the operation of each circuit is given in the following paragraphs. A block diagram of the receiver is own in Fig. 11 to better visualize the operation of the receriver. The incoming signal is amplified by two r-f amplifier stages V101, $6 \mathrm{AB4}$, and $\mathrm{V}^{202 \text {, } 6 \mathrm{AK} 5 \text {. The signal is then mixed in the }}$ converter Vio3B, 1/2, 12AT7, with a s signal developed by the ocal oscillator V103A, $1 / 2$ 12AT7. The resulting intermediate ocal oscillator frequencies (both sound and picture) are then coupled via a transmission line into the video i-f strip consisting of the tubes transmission line into the video i-f strip consisting of the tubes V104, V105 and V106 (6CB6 tubes). After amplification these ignals are then rectified or detected by a crystal diode, Y151. Across the diode load circuit appears a 4.5 mc FM signal conaining the sound information. This 4.5 mc FM sound i.f carrier is amplified by V109, 6 CB 6 and then passed to a limiter, V110, 6 AUb. The output of the limiter is detected by a ratio detector A11A, $1 / 26 \mathrm{~T} 8$. Tubes V111B, $1 / 26 \mathrm{~T} 8$ and V112, $6 \mathrm{AQ5}$ omprise the remainder of the audio system. The audio signal omprise the remainder of the is then fed to the loudspeaker. Composite sync and video information also appears across the ideo detector diode load and is passed to the video amplifer $V 107$ and thence to the grid of the picture tube, V108. A portion of the composite sync and video voltage appearing across the diode load is picked off and amplified by the sync amplifier V113A, $1 / 212 \mathrm{AT7}$. In order to remove the deleterious effects of strong impulse noise upon picture stability, a noise canceler circuit is incorporated in this receiver. The noise canceller V113B, $1 / 212 A T 7$ is tied across the output of the sync amplifer in such a manner that it will eliminate the noise impulses. This

will be more completely described on page 20.
After removal is noise pulses if any the composite video and sync informationd blanking pedestals are stripped off leaving only the vertical and horizontal sync information. Another functio of the clipper is to provide an automatic gain control (AGC
voltage which is used in conjunction with diode d-c voltage to vontrol the gain of the r-f and i.f stages.
contis
This is partially accomplished by clip
This is partially accomplished by clipper, grid rectification of
the sync pulses together with a "minimum," bias developed by the sync pulses together with a "minimum" bias developed by
the diode detector. Since the sync information is held at a constant level throughout the transmission, these pulses provide an excellent amplitude reference for purposes of AGC operation. The
horizontal and vertical sync pulses are separated after the clipper horizontal and
and fed therir respective sweep frequency controlling devices
The vertical sync information is integrated in the integrator The vertical sync information is integrated in the integrato
network P301 to form the vertical sync pulse. This pulse is applied to one grid of the vertical multivibrator $\mathrm{V} 114,12 \mathrm{BH} 7$, to control its frequency. The produced vertical sweep pulse is
properly shaped and amplified by the vertical amplifier V115, properly shaped and amplifined by the vertical amplifiner wing ings of the deffection yoke. A portion of the vertical sweep pulse
is picked off at the output of tube V115, and after proper shaping, is picked of at the output of the picture tube. This vertical blank. ing pulse is used to blank or cut off the picture tube during th
vertical retrace time, thus eliminating the annoying diagona vertical retrace time, thus eliminating the annoying diagonal
white lines that may appear in the picture should the brightness

RETRACE BLANKING

These receivers incorporate both vertical and horizontal retrace blanking which removes the annoying diagonal white lines
or the white irregular vertical band frequently noticed on re-
ceivers nht eivers not equipped with retrace blanking facilities.
VERTICAL RETRACE BLANKINGC313 and R329 (see Fig. 38) differentiates network consisting rm originating at the vertical output stage plate (V115) and forms a steep positive "spike" voltage. This voltage is coupled through C 172 into the picture tube cathode and hence drives it 0 cut-off during the retrace portion of the vertical sweep cycle.
C 318 and R326 are required for the horizontal blanking system as explained below. These components have little or no effect on the vertical blanking pulse.)
HORIZONTAL RETRACF BLANKING-
ORIZONTAL RFARCE BLANKING-Horizontal blanking is also ac-
complished by the application of a suitable positive pulse to the icture tube cathode.
A "sample" of the width coil pulse is fed to the grid of the
horizontal blanking tube, V116B, after suitable shaping. V116B horizontal blanking tube, V116B, after suitable shaping. V116B
functions as a cathode foliower and provides isolation between the pulse source and the picture tube circuits. This system pro-
vides a suitably low impedance source of horizontal blanking pulses. The developed blanking pulses appear across R326. As far as
he horizontal blanking pulses are concerned, the bottom end of R326 is virtually grounded, since C318 provides a low impedance eturn path at the 15,750 cps. frequency. C318 is used additionally to pevent the appearance of horizontal pulse informa-
tion in the ertical output circuits which would otherwise destroy
picture interlace. picture interlace.

HORIZONTAL SYNCHRONIZATION
Horizontal synchronization is accomplished by comparing the Horizontal synchronization is accomplished by comparing the
phase and/or frequency of the incoming horizontal sync pulses
with the phase and /or frequency of the horizontal sweep pulses with the phase and/or frequency of the horizontal sweep pulses
which are generated within the receiver. Thich are generated within the receiver.
This comparison is made in the horizontal phase detector cir-
Thit $(V 117$) which then, by means of this comparison, provides cuit (V117A) which then, by means of this comparison, provides
a d-c output voltage. The polarity and amplitude of this voltage ad-c output voltage. The polarity and amplitude of this voltage
will depend upon any difference between the phase or frequency will depend upon any difirence betwen the phase or ireq
of the sync pulses and the locally generated sweep pulses. This "correction" voltage is next applied, after suitable
filtering, to the reactance tube (V118A) which, in turn, retards or advances the firing time of the horizontal oscillator thus caus-

Fig 15. Bosic Harizantal Phase Detectar
A triode-type tube is used as the phase detector. In general, the application of a small, identical positive voltage to both the
grid and plate will cause identical currents to fow in each element. grid and plate will cause identical currents to fow in each element.
Figure 15 shows the basic horizontal phase detector circuit.
R352 and R353, being nearly equal in value, will have developed across each of them, an equal but opposing d-c voltage due to the application of the negative polarity sync signals to the cathode
R352 and R353 differ in value only to correct for the slight mpedance difference between the grid to cathode and plate to cathode paths.)
A sample of the horizontal saw-tooth voltage, obtained from
the discharge stage (V117B) plate circuit, is fed into the plate circuit of the phase detector, V1117A, and hence modulates its
plate current. The resulting effects are shown in Fig. dicated in condition 1, if the horizontal oscillator is properly timed, the developed saw-tooth will be so positioned that the sync
pulses will occur exactly at the center of the retrace slope. There pulses will occur exactly at the center of the retrace slope. There
fore, the grid and plate currents will be equal, and because the are
are of opposite polarity, a total of zero $\mathrm{d}-\mathrm{c}$ volts will appear at the detector output.
Conditions 2 and 3 saw-tooth pulse. In either case, a current unbalance will exis which will cause a positive or negative d-c voltage to be developed
which in turn will be used to correct the oscillator timing. If the

horizontal oscillator of the receiver fires too late (i.e. the saw-tooth causing a negative output voltage. This will cause a speeding up causing a negative output voltage. This will cause a specding up
of the horizontal oscillator by virtue of the reactance tube (to be discussed below). If the saw-tooth leads, as shown in condition
3, the negative developed voltage at the plate will be less than 3. the negative developed voltage at the pate will be less than
the positive voltage appearing at the cathode, thus resulting in a positive firing time.
The reac The reactance tube, as shown in Fig. 17, acts as a variable
resistance which is connected in series with $\mathbf{C} 358$ across the oscil lator tank circuit to vary its frequency. As the d-c output from the phase detector changes amplitude or polarity, the reactance tube plate resistance will change accordingly. A positive voltage on the grid will cause the tube to conduct more heavily, thereby
lowering the resistance between the capacitor C 358 and ground. This increases the effective capacitive reactance of C358 across The oscillator tank circuit and causes a consequent lowering of its negative grid correcting voltage will result in a higher natural

Fig. 17. Reactance Tube Circuil

general description

The r-f amplifier, converter and local oscillator are constructed as a complete unit sub-assembly This unit is designed and shielded to reduce oscillator radiatio ${ }^{10}$ To minimum. This r-f tuner unit employstwo r-f amplifiers, a converter and megacycles for picture and 41.25 mepacycles. for sound. capacity, the tube capacity, and the capacity of three trimmer As the channel selector is switched to lower channels, coils ar
added in series to lower the frequency. The oscillator section added in series to lower the frequency. The oscillator section
has a tuning adjustment for each channel so that the oscilato frequency may be correctly adjusted for every channel with
setting of the fine tuning control at the center of its range: setting of the fine tuning control at the center of its range:
The antenna is coupled to the cathode of the first $\mathrm{r}-\mathrm{f}$ amplifier by a balanced input transformer to reduce noise pick-up. by a The - tuner unit includes an intermediate frequency trap in
the cathode ecircuit of the first r-f amplifier to remove interfering the cathode circuit of the first r-f amplifier to remove interfering
frequencies, in the intermediate frequency pass-band, which may be picked by the antenna system. The trap is connected into the circuit when the receiver is tuned to the critical channels,
through 6 .
Automatic gain control bias is applied to the second r-f ampli
fier. fier. The i-f output of the converter is applied to the first i-f ampli- $_{\text {Ther }}^{\text {fier }}$, former.
A test point is added at the converter grid which is isolated A test point is added at the converter
from the grid by a 10,000 -ohm resistor.

SERVICE ON R.F. TUNER UNIT

都 The r-f tuner unit has been carefully designed for trouble
free operation and ease in servicing. All parts including the It is recommended that any trouble be definitely located before removing the r-f tuner unit. Make the following checks to help his usually diminates the r-
 absent, but the raster is normal, the troub
i-f s stages as well as in the $\mathrm{r}-\mathrm{f}$ tuner unit.
2. If a noise pattern is evident on the screen, it usually indi-
cates that the r-f tuner unit, the video i-f and the video amplifier cates that the r-f tuner unit, the video i-f and the video amplifer circuits are operating normally. Check for a short or an open cir
cuit in the antenna or antenna input circuits or first r-f stage. 3. Replace head-end tubes with known good tubes. Note
when a new tube is used, slight differences in interelectrode caWhen a new tube is used, slight differences in interelectrode ca pacities between tubes may cause a slight detuning of ref circuits.
If an oscillator tube is replaced, the fine tuning range should be checked
t. Check for proper AGC bias voltage at test point No. VII
A or B Normal signal with normal contrast control setting should A or B Normal signal with normal contrast contro.
produce approximately -3 volts VTVM reading.
5. The oscillator may be checked by measuring the voltage a
test point No 1 . If the oscillator is functioning it test point No. 1. If the oscillator is functioning it should develop
approximately -4 volts as measured by a vacuum tube volt approximately -4 volts as measured
meter. If the oscillator is in inoperative the voltage at test poin No. 1 will drop below 1 volt.
6. Check the i-f link output coupling for open or short circuit

Fig. 18. R-F Tuner, Side View

Fig. 19. R-F Tuner, Botlom View, Switch Removed
7. Couple a 44 -megacycle 400 -cycle amplitude modulate
signal to test point No. 1. If the 400 -cycle modulation is presen signat otest point No. . 1 . the 40 -cycle modulation is presen
at the output of the video amplifier plate as seen on an oscillo scope or observed on the screen of the picture tube in the form of
horizontal bars, it is highly probable that the trouble lies some hore in the R-F tuner unit ahead of the converter, V103B
wher grid (pin 7). However, should this 40 -cycle information fail to appear in the receiver output, a check should be made of the first
second and third viedo i-f amplifier stages, the crystal diode and the video amplifier.
8. Check r-f tuner socket voltages shown in Fig. 36, page 31. removal of tuner unit from chassis-

1. Disconnect the antenna transmission line and the tuner out
put 100 ohm i - coupling link at the i-f assembly 2. Remove self-tapping screws holding the tuner to the
mounting brackets at the rear and side of the tuner. mounting brackets at the rear and side of the tuner 3. Disconnect the following leads from the r-f tuner terminal
board: AGC, 6.3-volt heater, high B+ and low B+, see Fig. 27 4. Disconnect the black phenolic coupling from the r-f tune switch shaft. The tuner assembly is now free for removal.
replacement of switch wafers-See Fig. 18 and 20.
2. Remove the r-f tuner unit from the chassis and remove it shield.
3. L. 2. Loosen setscrew (E) which holds Textolite switch shaft into
the brass coupling RMK-006 and slide the brass cout
4. Remove the spring clips (B) which secure the switch wafer
to the Textolite side rails (C) to the Textolite side rails (C). There are six of these springs on
each side. These may be removed by lifting the tab out of the hole in the Textolite side rails. 4. Uncrew the four hex nuts (D) which secure the side rails
(C) to the shields. The side rails may be lifted out of the switch (C) to t.
5. Unolder the connections to the wafer to be removed and
replace with the new wafer.
to remove the oscillator wafer only-See Fig. 18 and 20 1. Remove the r-f tuner from the chassis and remove the r-f 2. Loosen the Allen setscrew (E) which holds the Textolite witch shaft to the coupling and pull the shaft out of the ator wafer 3. Remove the four spring clips (B) which secure the Textolite wafer
6. Remove the two self tuner unit front apron to the chassis, and pull the front apron forward so that the oscillator wafer may be removed. Use care
not to break the connection to the tuning capacitor, C118. ot to break the connection to the tuning capacitor, C118. it by springing up the Textolite side rails (C). When reassembling the r-f tuner unit and replacing switch
wafers, use care not to damage or distort any of the coils mounted wafers, use care not to damage or distort any of the coils mounted
on the switch wafers. Reassemble the r-f tuner unit in the reverse order that it was disassembled.
removal of tuning capacitor or detent assembly-See Fig. 8 and 20.
7. Remove the r-f tuner unit from the chassis as outlined 2. Remove the r-f tuner unit shield.
8. Remove the two spring clips (B) which hold the Textolite 4. Loosen the rear setscrew which holds the Textolite shaft of the coupling. 5. Remove the two self.tapping
apron to the r - tuner unit chassis.
9. 6. Spring up the Textolite side rails (C) to release the front
apron for access to the tuning capacitor. 7. Unsolder the tuning capacitor lead at the 12AT7 socket 8. To remove the detent assembly, remove the " C " washer on
brass shaft.

2ND R-F PLATE
SWITCH WAFERS SHOWN ARE SWITCHED TO CHANNEL NO. 13
p793379

RECEIVER ALIGNMENT

general
The following procedure covers the alignment of the R-F
Tuner Unit Video I-F System, Audio I-F System and Video Tuner Unit, Vi,
Amplifer Trap. In most cases the circuits in the receiver should need realignment only when tubes or components in the tuned circuits hav
been replaced, or the adjustments have been tampered with When the decision is reached that the trouble lies in improper alignment of the circuits, the alignment should be undertake
only if proper test equipment is available. In many cases, the only if proper test equipment is available. In many cases, the
"over-all" receiver alignment may be first checked to determine the source of the difficulty.

ALWAYS USE AN ISOLATION TRANSFORMER TO PROTECT TEST EQUIPMEN

TEST EQUIPMENT

The following test equipment is necessary in order to effect

1. r-f sweep generator
(G-E Type ST-4A or Equiva
4.5 MC with approximately 2 MC sweep width. $50.48 \mathrm{MC}, 170-220 \mathrm{MC}$ with 15 MC sweep width.
b. Constant output in the sweep rang
2. Marker generator

The Type ST-5A or Equivalent)
The marker generator must have good frequency stability,
a. $\begin{aligned} & 38.00 \mathrm{MC} \\ & 41.25 \mathrm{MC}\end{aligned}$
42.50 MC
45.00 MC

Fig. 21. R.F Swoop Equipment Connecting Diagram
45.75 MC
47.25 MC
b. Picture and sound carrier frea tencies for Channel No. 2,
c.
3. balanced output adapter
(G-E ST-8A or Equivalent)
See R-F Alignment, note 2 .
4. OSCILLOSCOPE
(G-E Type ST-2A or Equivalent)
(G-E Type ST-2A or Equivalent)
The oscilloscope should have good sensitivity and preferably a 5 -inch screen with a good wide-band frequency response in the vertical deflection circuits. Although the high frequency re
sponse is not necessary for alignment, it is imperative when sponse is not necessary video waveforms.
obser
s. detector network

A crystal detector network as shown in Fig. 31 is necessary algning the 4.5 mc video amplifier trap.

Fig. 22. I-F Swoep Equipment Connecting Diagram

Fig. 23. Swoop Equipment Yormination

The alignment procedure described foilows the sweep method
using General Electric test eeuipment. When other than Genera using General Electric test equipment. When other than Genera
Electric sweep equipment is used, make sure that it meets the requirements listed below. If an accurately calibrated marker generator is not available, a conventional signal generator may b
used to supply the markers. Its output should be loosely coupled to the sweep generator output terminals and must be kep as low as possible to prevent distortion of the sweep wave-form Before proceeding with the alignment make sure to read all
notes and consult the connection diagrams. Allow the test equip mest and receiver to warm up for at least 15 minutes befor
starting the alignment. starting the alignment.

R-F Tuner Unit Before actually starting the Alignment procedure, it would be In general comprehend the objectives to be achieved. be "flat" across each channel. As previously noted, the majo portion of the receiver selectivity will be found in the I-F system, istics of the transmitted signal. Hence, the R-F Tuner respons istics of the transmitted signal. Hence, the R-F Tuner respons
should permit conversion of the incoming signal to the I-F spectrum with cut disturbing the amplitude relationship of th
two carriers and their associated sidebands. two carriers and their associated sidebandid
Additionally, the R-F Tuner must provid
of selectivity to prevent cross-modulation of the television signal by other $V H F$ services and to prevent signals in the 40 to 48 mc
band from being passed to the $1-F$ amplifer with a consequent band from being passed to
degradation of the picture.
In the following p=ocedure, the tuner may be aligned withou
removing it from the main chassis. The alignment procedure is removing it from from parts; the firstion deals with alignment and frequenc response shaping of the signal frequency circuits and the second
portion with the adjustment of the local oscillator. The signa portion with the adjustment of the local oscillator. The signal
frequency circuits, as may be noted on the schematic diagram Fig. 36 , are brought into resonance by adjustment of some of th
inductances and, in some cases, by the adjustment of low valu inductances and, in
trimmer capacitors.
The only adjustment in the cathode of the first R-F amplifier,
V101, is the I-F interference trap, L106. This trap is pre-set at the V101, is the I-F interference trap, L106. This trap is pre-set at the
factory at approximately 43.0 mc and may be readjusted, if re quired, to any offending signalin the $40-50$ me rance. (Caution:
when adjusting tins trap-make sure that it has not changed the when adjusting tinis trap-make
normal channel No. 2 response)
The first R-F amplifer plate and second R-F amplifier grid circuits are tuned by switch-tapped coils and trimmer capacitor
C104 and C106. Channels 7-13 are brought into resonance by the adjustment of these trimmers. Channels 2 thru 6 are brough ade
into resonance by the adjustment of inductances L109. LI12
L116 and L19. Coupling between these stages is controled L116 and L119. Coupling between these stages is controlled by
the common impedances 1114 and C C 105 . L114 controls the band the common impedances L114 and C105. LII4 controls the band
width on channels. 26 , while C105 controls the bandwidth o channels 7.13 . Although the following procedure indicates th
above adjustments are to be made only on a few specific channels above adjustments are to be made only on a few speciic channels,
the final adjustment will represent an excellent compromise setting for all channels.
The second R-F plate and Converter grid circuits are tuned by
the tank circuits associated with switch wafer S100D. C108 the tank circuate the circuits in channels $7-13$. L124 and L127 resonate the circuits on channels $2-6$. In the "over-all" receiver
alignment procedure, page 20 , these three adjustments are used alignment procedure, page 20, these three ace
to correct for "Tilt", in the over-all response.
The oscillator frequency is changed from channel to channel by
switching additional inductances in series with the channel No. 13 oscillator coil progressively down to channel No. 2. Each of these
coils is adjustable through the front detent plate of the Tune coils is adjustable through the front detent plate of the Tuner

Fig. 25. R-F Tunor Adiustments, Top Viow
notes:
R-F Alignment

1. The R-F tuner may be aligned without removing it from the mant chassis. Disconnect the, 300 -ohm transmission line from
the antenna input transformer, Tioo and disconnect the B+ to the oscillator. To do this, on 4th-production R-F tuner units
(those incorporating a 470 ohm, R125 resistor on the rear terminal (those incorporating a 470 -ohm, $R 125$ resistor on the rear terminal
boards) merely open the jumper between the two center terminal on the upper board. On earlier units disconnect this sumper and
transone L142 from terminal 4 to terminal 3 (ee Fig. 27) transpose $L 142$ from terminal 4 to terminal 3 (see Fig. 27),
Failure to transpose L_{142} will remove plate voltage from the 1 st $\mathrm{F}-\mathrm{F}$ amplifier and hence will result in improper alignment and reduced gain.
2. Connect
3. Connect the sweep generator to the R-F tuner antenna input
transformer using the G-E ST-8A balanced adapter to obtain transhm output, see Fig. 21. The adapter should be connected
300 ohms
to to the R-F tuner through approximately three feet of 300 -ohm
transmission line and a resistor pad, as shown in Fi . 23A. When using other test equipment of the unbalanced output type, a pa as shown in Fig. 23B should be used instead.
4. Connect a 3 -volt battery to the AGC terminal of the R-F tuner, see Fig. 27, with the positive lead of the battery connected 4. Should it beco
ch. Should it become difficult to obtain proper tracking on channels $7-13$ with the indicated adjustments, proper tracking
may be achieved by dressing the coil L122. See Fig. 20 . This is available through the opening obtained by removing the self tapping screw on the side flap and bending the flap up. See Fig. 26 B+ short. 5. It is possible to obtain two different settings of C105, Fig. 26 that will give the proper R-F bandwidth. The correct setting and observing the change in bandwidth. The correct setting will result in a slightly greater bandwidth on Channel 12. achieved with the provided screw adjustments, the inductance of the coils L110, L111, L117, L118, L125 and L126 (Fig. 18 and 20) may be varied by inserting a knife blade between the wind
ings. This method of adjustment requires the removal of the ings. This method of adjustment requires the removal of the
tuner shield, a procedure which will detune the circuits. However, in most cases the provided screw-type adjustments will
suffice to achieve proper tracking through all channels after the suffice to achieve proper
shield has been replaced.
5. The picture and sound carrier marker should not be less
than 75% of the peak of the $\mathrm{R}-\mathrm{F}$ response curve. Refer to the "han 75 . \% of the peak of the R-F response curve. ener to the 8. Seal trimmer screw of C105 and the brass cores in the coils
L114, L112, L109, L119, L116, L127 and L124, Fig. 26, with wax L114, L112, L109, L119, L116, L12 and as , ig. 26 , with wax to prevent detuning. Seal the turing screws
C106 and Clos, Fig. bs, with glue. Reconnect the jumper on the
R-F tuner terminal board and connect the transmission line to R-F tuner terminal baard and connect the transmission line to R-F tuner input transformer.
6. For receiver over-all alignment check, see page 26.

z-てા 30Vd ^1 गावIJヨ79 1V83N30
(a) Set generator sweep width to $10-15 \mathrm{mc}$.
) Observe response curve at test point 1, Fig. 25, through 10,000 -ohm resistor. Connect test equipment ground lead to r-f tuner
(d) Adhere to following order when performing a complete alignment.

When following the procedure below, an attempt should be made to obtain the indicated ideal response curves. Minor deviations

Step	$\begin{gathered} \text { Receiver } \\ \text { and } \\ \text { Sweep } \\ \text { Generator } \\ \text { Channel } \end{gathered}$	Marker Generator Frequency MC	
1	No. 13	$\begin{aligned} & 211.25 \\ & 215.75 \end{aligned}$	C104, C105 and C108 (Fig. and proper bandwidth of below. Limits are shown in
2	No. 12	$\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$	No adjustments; check tracking; obtain curve " A ": limits shown in last column.
3	No. 11	$\begin{aligned} & 199.25 \\ & 203.75 \end{aligned}$	
4	No. 10	$\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$	
5	No. 9	$\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$	
6	No. 8	$\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$	
7	No. 7	$\begin{aligned} & 175.25 \\ & 179.75 \end{aligned}$	
8	No. 6	$\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$	L112, L114, L119 and L127, Fig. 26, for maximumgain, optimum curve flatness and 4.5 mc band width: see curve "B"
9	No. 5	$\begin{aligned} & 77.25 \\ & 81.75 \end{aligned}$	No adjustments, check tracking; see curve "B"
10	No. 4	${ }^{67.25}$	
11	No. 3	$\begin{aligned} & 61.25 \\ & 65.75 \end{aligned}$	L109, L116 and L124, Fig. 26, for maximum gain and optimum curve
12	No. 2	$\begin{gathered} 55.25 \\ 59 \end{gathered}$	No adjustments, check tracking: see curve " B "

Fig. 27.
Torminal Boards

Oscillator Alignment

GENERRL Two methods of oscillator frequency adjustment ar
given below. The first method uses a transmitting station for th adjustment while the second method requires a sweep generator to align the oscillator coils.
A. "ON Settion Signol" Alignment
R.F and video I-F alignment
 each one of the coils being adjusted. Tune in the stations starting
with the hater each one of he coils being adjusted. Tune in the stations starting
with the highest freuency channels and adjust the tuning screws
for all avaiabse stations so that with the fine tuning control in for all available stations so that with the fine tuning control in
the full-clock wise position audio is just visible in the picture.
Then, check to sec that best picture response on Then, check to see that best picture response on all channels
takes place approximately in the center of the oscillator fine takes place
tuning range.
8. Swoop Alignment
tuner, see Fig. 27, with the positive lead of the battery the R-F
terminals to the $\mathbf{R - F}$ - terminals and connect the sweep generato terminalis to tue R-F terminals and connect the sweep generato
to the R-F tuner terminals as described in note 2 on page 18 . 4. Set the fine tuning knob $180^{\circ}(1 / 2$ turn) from the counter
clockwise limit of its rotation, ie clockwise limit of its rotation, i.e. rotate the fine tuning kno
counterclockwise to the end of its travel, then turn the fin
tuning control knob 180° (1) ourn) clockwise. This setting of tuning control knob $180^{\circ}(1 / 1 / 2$ turn) clockwise. This setting of the
fine tuning control should be maintained for all oscillator adjust-
ments. Make the indicated adjustments so that the picture carrier
5. Marker for the channel falls at 50% on the high frequency side of
.

Swith

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Receiver } \\ \text { and } \\ \text { Marker } \\ \text { Position } \end{gathered}$	Marker Generator Frequency	$\begin{aligned} & \text { Signal } \\ & \text { Input } \\ & \text { Point } \end{aligned}$	Observe Response Curve at	Adjust	See Note
13	No. 13	211.25 MC	$\begin{gathered} \text { Antenna } \\ \text { terminals } \\ \text { (see Note 3) } \end{gathered}$	Test PointIII(Video detectordiode load)	L135 Channel No. 13 oscillator adjustment.	$\begin{aligned} & 1,2,3, \\ & 4.5 \end{aligned}$
14	No. 12	205.25 MC			L134 Channel No. 12 oscillator adjustment.	
15	No. 11	199.25 MC			L 134 Channel No. 11 oscillator adjustment.	
16	No. 10	193.25 MC			L134 Channel No. 10 oscillator adjustment.	
17	No. 9	187.25 MC			L134 Channel No. 9 oscillator adjustment.	
18	No. 8	181.25 MC			L134 Channel No. 8 oscillator adjustment.	
19	No. 7	175.25 MC			L134 Channel No. 7 oscillator adjustment.	
20	No. 6	83.25 MC			L133 Channel No. 6 oscillator adjustment.	
21	No. 5	77.25 MC			L132 Channel No. 5 oscillator adjustment.	
22	No. 4	67.25 Mc			L131 Channel No. 4 oscillator adjustment.	
23	No. 3	61.25 MC			L130 Channel No. 3 oscillator adjustment.	
24	No. 2	55.25 MC			L129 Channel No. 2 oscillator adjustment.	

RECEIVER ALIGNMENT (Cont'd)

I-F AMPLIFIER ALIGNMENT

General:

As indicated on the accompanying schematic diagrams, two
basically different video amplifiers have been used. Since the basically different video amplifiers have been used. Since th
requency and transient response of these amplifers differ some what, the desired i-f response curves must also differ in order to oth systems.
The "Desired Waveform," "Remarks" columns in the followin Ahart are each identified by the designation "12BH7" or " 6 BK 7 Before sweep aligning a receiver, determine its video am
plifier (V107) tube yype and use the corresponding curves to achieve proper alignment.
ermination of the sweep output cablerved regarding the proper termination of the sweep output cable, warm-up time, equipment
cable dress. etc. Always use an Isolation Transformer when
servicing these receivers.
wotes

1. Connect a 100,000 ohm $1 / 2$-watt resistor across R302 to bia off the noise inverter which otherwise would cause a false i- 1 .
curve indication, see figure below. Remove this resistor after
completing the alignment.

2. Connect the negative lead of a 3 -volt bias battery to test point VIIA. Connect the positive lead to the nearest top-chassis
ground point. Similarly, insert a 45.0 -volt negative bias at test point X to prevent horizontal pulse information from appearing
on the swerp waveforms.

3. Set contrast control and rear apron AGC control (if re4. Calibrate the vertigal ounterclockwise. volt A-C will provide the desired curve size. Receiver response should be observed dat test point III as indicated in the following
diagram. Connect the ground side of the cable to the nearest diagram. Connect the gr
op-chassis ground point.
4. Set channel selector switch to Channel 11 position and turn
the fine tuning control fully counterclockwise.

5. Refer to Fig. 22 and 23 for proper connection and termina tion of sweep generator, In many cases, it will be necessary to start with Step,
6. point for use in cases where the receiver has become seriously misaligned, or when the correct setting of the e 8.0 mm trap (L1s8) is difficult to determine in the "over-all", i-f cure e.
8 . Note that in the following procedure, the 45.0 me marker is used as the 100% reference point in the ""12BH7", alignment,
while the curve peak is used as the 100% reference point in the while the curve peak is used as the 100% reference point in the
" 6 BK 7 - A " alignment procedure. Align as indicated in the chart below.

Over-all (RF-IF) Alignment Check

A receiver which has been properly r-f aligned and i-f aligned
must not be considered as a properly aligned must not be considered as a properiy aligned receiver until the
over-all check and adjustments have ben made. Because the
the r-f alignment process a certain degree of "tilt" or r-fdetuning the r-f alignment process, a certain degree of "tilt" or r.f detuning
will occur. The only method of determining the degree of intro-
duced "tilt" and the correction thereof must be done by obseryig the over-all curve
In general, a receiver which has been properly r-f aligned will
display an over-all curve (antenna to diode) which will isplay an over-all curve (antenna to diode) which will closely eiver selectivity occurs in the i if f system. It is to be tof the rehowever, that minor variations in the over-all curve will occur
The procedure given below is quite simple, and assures optimum picture detail and receiver sensitivity. After the the receiver
has been properly aligned according to the data given for r-f and mum picture detail and receiver sensitivity. After the receiver
has been properly aligned according to the data given for r - and
i-f alignment, proced as follows:
alignment, proceed as follows:
a. Couple r-f sweep and channel marker signals to antenna
b. Observe receiver response at Test Point III
c. Sweep each chanel, starting with Chann

Sweep each channel, starting with Channel 13, and ob-
serve resulting curve. Adjust the Fine Tuning control so serve resulting curve. Adjust the Fine Tuning control so
that the resulting sound and picture IF markers fall in the
approximate positions shown in step 3 of the chart below.
Should the observed curve not agree with that shown in
step 3, the following adjustments should be made:
I. On Channels 7-13, adjust C108 (Fig. 24) to produce deCAUTION: Do not move C108 ad
three turns in either direction-usually one turn will suffice to produce the desired curve compensation. compensation if required.

STEP	sweep input	Adjust	desired response (12BH7)	REMARKS (12BH7)	DESIRED RESPONSE ($68 \mathrm{K7} \cdot \mathrm{~A}$)	REMARKS ($6 B K 7 . A$)
1	Into Pin 1 of V106 thru 001 mf capacitor, Center sweep frequency approx. 44 mc. Sweep width approx. 15 mc	1158 (Trap) to 38.0 mc L157 (V106 plate) to peak at 44.6 mc		Use full available sweep width		Use full available sweep width
2	Into Test Point II (refer to schematic diagrams) thru .001 mf capacitor. Center sweep frequency approx. 44 mc. Sweep width approx. 10 mc	L156 (Trap) to 41.25 mc L154 (Trap) to 47.25 mc L153 (V104 plate) set 45.75 mc marker L155 (V105 plate) set 42.5 mc marker L157 (V106 plate) balance curve		Use 45.0 mc as 100% reference Set 45.75 mc @ 60% Set 42.5 mc @ 70% L157 should be peaked (a) 44.15 mc		Peak of curve $=100 \%$ Set 45.75 mc @ 60% Set 42.5 mc @ 60% L157 should be adjusted for symmetrical skirt response
3	Into Test Point I (on r-f tuner) thru .001 mf cap. Center sweep frequency approx. 44 mc . Sweep width approx. 10 mc	1152 (Trap) to 38.0 mc L151 (Trap) to 47.25 mc T151 (V104 grid) and T104 (R-F Tuner) for curve shown, check percentages as indicated in "Remarks" column		Use 45.0 mc as 100% reference simultaneously "rock" T151 \& T104 for symmetrical skirts consistent with optimum gain. Max. curve peak 145%, \min. curve peak 115% min. curve peak 115%		Peak of curve $=100 \%$ Adjust T151 and T104 for flat peak. Adjust L157 to correct for any "Tilt." 45.0 mc may fall between limits of $85-100 \%$

©John F. Rider

2. Use an accurate marker generator to furnish a signal of the
same frequency as the interfering frequency and a sweep gen-
erator with its center frequency set approximately at the
erator with its center frequency set approximately at the interat the output of the video detector
3. Use the
of $\mathbf{3 0 0 - o h m}$ transmission line to couple the r -f sweep to thece antenna terminals of the receiver.
4. Be sure not to tune the trap so that it will attenuate
channel No. 2.

In many cases a circuit difficulty may be localized by observing the picture or test pattern and by noting the presence or absence of
 the socket if it in found to be satisfactory.
Always make
Always make sure that all tubes are making good socket contact. In some cases it may be necessary to clean the tube pins to elim To facilitate trouble shooting the waveforms of Figures 38, 39, and 44 should be consulted. Alignment equipment may be used to For a detailed description of circuit chatecking for the response curves given in the alignment procedure.

SYMPTOM	CHECK FOR

1. Inoperative local oscillator, V103A
2. Open video i-f coupling capacitors, C152, C155, C158, C162

Improper or no screen or poltage at r.f or i.f tubes due to shorted screen by
4. pass capacitor or open resistor

1. Shorted capacitor, C166
2. Open coupling capacitor, C162
3. Defective crystal diode, Y151
4. Open input circuit and components of antenna input circuit, such as open capaci-
tors, C173, C174, or open transformer, T100
5. Antenna arientation
6. Open filament, V101
7. Open capacitors, C412, C413, C414
8. Alignment of i.f amplifier and asso
9. Open by-pass, C151 on AGC bus
10. Open AGC filter capacitor C180
11. Alignment of r-f and video i.f amplifiers
. Misalignment of video i.f amplifier
Misalignment of r - f amplifier
stages (also check for input terminals of receiver
Defective peaking coil
12. For microphonic tubes: V101, V102, V103, V104, V105, V106, V107 and V108 For misalignment of adjacent channel sound traps L151 and L154 or misalignment
of accompanying sound trap L156

DEFECTS OF THE VIDEO AMPLIFIER
No picture, sound satisfactory, raster
satisfactory
B. Lack of picture detail (focus satisfactory)
C. Trailing Whites

1, 2, 3, 4

Shorted capacitor, C403C in cathode V107B (1st, 2nd, 3rd prod.) Open input coupling capacitor, cif short of grid to cathode in picture tube
Shorted peaking coils
y those coils shunted by resistors)
Increase in value of diode load and video amplifier plate resistors

1. Decrease in value of diode load and/or video amplifier plate resistors

© John F. Rider

Fig. 33. Bothom Viow of Chastis (Represents typical layout; minor variations may be oncounterod)
©John F. Rider

MAJOR PRODUCTION CHANGES

general:

As previously noted, several mechanical and electrical changes have occ. rred during the production of this family of receivers.
Listed below are the various items to be considered with referenc. to specific production versions. It should be noted that electrical ircuit changes are not chronologically related to those change hich occurred in the various mechanical assemblies. To prevent confusion, electrical circuit changes shall be denoted as 1 st, 2nd,
3rd or 4th production versions, while mechanical assembly hanges shall be referred to as "early," "mid" and "late" produc ion items.

MECHANICAL ITEMS

PIcture tube assembir

Two basic types of picture tube assemblies have been used during production, each of which is described on pages 5 through
10. The "early" models 21T1, 21C204 and 21C214 use the during production, eachels $21 \mathrm{~T} 1,21 \mathrm{C} 204$ and 21214 use the
10 . The ""arly." mone
"square" type assembly depicted on page 5 . All later production "square" type assembly depicted on page 5. All later production
of these models utilize the "late" type assembly described on page 19.

MASK AND OVERLAY:

Two different masks, one metal and one plastic, have been used in these receivers. These masks are interchangeable. It should be noted however, that the metal type mask requires the
use of a rubber dust seal (Cat. No RIG-010, the mask and the picture tube. The dust seal should be installed according to instructions found on pages 18 and 19 . The plastic
and type mask was used in early and midproduction receivers. The
metal type mask is to be found in middle and late production units.

2. ANCHORING OF MASK:

On late production metal masks two overlay anchors are securing the mask to the cabinet by means of No. 8×3 permit wood screws. This was done to eliminate shifting of the mask or ring transportation.

3. FOCUS UNIT ASSEmBLY

Early and midproduction focus units utilized a flexibl rear of the receiver for the purpose of focus adjustment.
Late production focus units utilize a screw driver and as
sociated guide funnel type adjustment. These two focus unit are otherwise similar as may be noted in Figs. 4 two focus unit
and

detector can assembly

1st and 2nd production chassis incorporated the detector can etector is located under the se 38 . In this
3rd and 4th production receivers utilize the detector assembly
shown in Fig. 44. To change the diode or any other component within this assembly, it is merely necessary to remove the two self-tapping screws at the base of the assembly. The entire
assembly may then be pulled off of the mounting plate assembly may then be pulled off of the mounting plate. The
shield can may then be removed from the aseembly by compressing the two spring tabs on the top tuning core securing clip.

ELECTRICAL ITEMS

1. HORIZONTAL OUTPUT TUBE-Horizontal output tube was
hanged from 25AV5 to 25BQ6. The $25 A V 5$ tube was used in first changed from 25AV5 to 25BQ6. The 25AV5 tube was used in first
production models only.
 R162, was changed from 3900 ohms to 3000 ohms. For identifica-
tion these receivers were rubber-stamped on the back apron of Re thassis receivers were
2. HORIZONTAL SWEEP OUTPUT TRANSFORMER AND YOKE-In 3rd and 4th production models the horizontal output transformer an yoke were changed. Receivers using these revised sweep com
ponents bear a label on the high-voltage compartment rear which indicates the catalog numbers of the horizontal rear dout
transformer and yoke contained therein. Models transformer and yoke contained therein. Models 17 Cl 125 and
20 C 107 use horizontal output transformer RTO-130, 21 models use RTO-129. The yoke to be used with either of these transformers is RLD-050. These components should not be used in
those receivers which used the "early" type transformer and yoke, unless a "late" transformer and a "late" yoke are simultaneously installed. These receivers using these "late" sweep
components are rubber-stamped with No. 430 components are rumes
changes of No. 420 .
3. DELAYED AGC-In order to improve the operation of the receiver a new eceivers using was incorporated in the 3 rd and 4 th by noting the "Local-Fringe Stabilizer" two-position switch label located on the cabinet back. This control replaces the original potentiometer and switch, the label of which read The purpose of this new circuit is two-fold:
a. To prohibit the development of AGC bias for the 2 nd
r-f stage until a sufficiently strong signal is received which will r-f stage until a sufficiently strong signal is received which will
remove all conversion noise in the picture. This results in an improvement of the signali-to-noise ratio on weak signals while
still permitting AGC action by virtue of a non-delayed AGC still permitting AGC action by virtue of a non-delayed AGC
voltage which is applied to the i.f system. b. To make the AGC fully automatic, thus eliminating the necessity of adjusting an AGC level potentiometer to suit
particular installation conditions. For easy identification these particular installation conditions. For easy identification these
receivers were rubber-stamped with No. 401 which also include changes No. 420 and No. 430 . See page 20 for detailed description
4. NEW VIDEO AMPLFIER-A new video amplifier circuit using
a $6 \mathrm{BK} 7-\mathrm{A}$ instead of 12 BH 7 tube was used in the 4 th proa 6 BK7.A instead of 12 BH 7 tube was used in the 4th pro are stamped with the number 1140 .
This new circuit has been incol porated, to increase the over all receiver bandwidth and to improve the video transien
response. Since this circuit change was incorporated after the delayed AGC circuit, all receivers equipped with the new video Toget also with this delayed AGC.
Together with this circuit change, the capacitor C162 in the
video detector is changed from 5 mmf to 9 mmf . The new typ tube necessitated a change in the filament string wiring which permits the operation of a 450 ma. heater (68 BK 7 -A) partially
in series with other filaments and partially from the filament in series with other friaments and partially from the filament
transformer. When replacing the filament transformer, observe
the precaution outliner the precaution outlined.
and acing the filament transformer, observe
For detailed circuit analysis and alignment notes refer to pages 20 and 20 . For easy identifi
cation receivers incorporating this circuit change were rubberstamped with No. 1140 . These receivers include a 3000 -ohm
5. Change of picture tube in model $20 C 107$ receivers6. CHANGE OF PICTURE TUBE IN MODEL $20 C 107$ RECEIVERS-Late
production 20C107 receivers were equipped with a 20DPAA production 20 Cl 107 receivers were equipped with a 20DP4A
picture tube instead of $20 \mathrm{CP4A}$ as used in the earlier production.
Receivers using a 20 CP 4 A tube require two flat washers on each Receivers using a 20CP4A tube require two flat washers on each upport rod (see Fig. 6) as a spacing
shield disk and the fibre yoke support.
Receivers using a 20DP4 picture tube require a " T " spacer
and one flat washer on each support rod as is also required for and one flat washe
6. "LATE" TYPE VIDEO DETECTOR ASSEMBLY-First, second and third production receivers incorporate a video detector assembly in which the value of C162 is 5 mmf . The video detector of 4 th
production roceivers incorporate a 9 mmf capacitor, C162. This change appears in all receivers which incorporate the $6 \mathrm{BK} 7-\mathrm{A}$

Fig. 34. Tube Location, Bottom View

Fig. 35. Tube ond Trimmar Leation

Fig. 36. R.F Tunar, Schematic Diagrom (4th Production).

Fig. 37. Doflection Yoke Wiring

© John F. Rider

Fig. 43. Test Point Diagram (Represents a typical receivor, though minor variations may be encountered)

To readjust the preamplifier for operation on Channel No.
6 instead of No. 5 , as shipped from the factory, proceed as follows: (a) Turn core "A" (see Fig. 45) approximately three turns (b) counterclockwise.
(b) Turn core " B " approximately two and a half turns counterThe UHF Tuner is now ready for operation on Channel No. 6

(a) Always allow approximately 15 minutes warm-up tim b) before proceeding with the ad justments.

Set the Tuner knob ring to "UHF-1" position and the
television receiver channel selector knob on either Channel No. 5 or No. 6 according to preceding information. Se
the Fine Tuning control on the Fine Tuning control on the television receiver to the middle of its range.

ALIGNMENT PROCEDURE

1. Turn
clockwise. clockwise
2. From "this "starting point," gradually turn the oscillator
tuning core clockwise into the coil until a UHF picture end actuning core clockwise into the coil until a UHF picture and ac
companying sound signal are received. While turning the os cillator core clock wise into the coil, several minor responses as
well as two strong picture responses may be noticed. However, well as two strong picture responses may be noticed. However,
the first strong response to be noted while turning the core clockthe first strong response to be noted while turning the core clock
wise from its maximum counterclockwise position is the response to be used. Be careful not to exert any undue pressure when
turning the core into the coil, since damage to the coil may result.

Fig. 46 Bottom View of Turrel Tuner Chassis

3. Adjust the R-F tuning core for maximum picture signal.
4. The oscillator tuning core should now be readjusted so that
the Fine Tuning control on the television receiver will permit the Fine Tuning control on the television receiver will permi tuning slightly into accompanying audio bars or "beats." Be
ference. Tuner is now aligned for operation on one UHF channel 5. The Tuner is now aligned for operation on one UHF channel.
Repeat steps 1 to 4 on the two remaining UHF positions, if more

UHF-103 CIRCUIT DESCRIPTION

Refer to diagram, Fig. 47, Conversion of UHF to

Conversion of whF to VHF is achieved by mixing the incomrequency 6 GF 4 oscillator. This mixing tates place in a $1 N 72$ crystal diode, the output of which is amplified by the low-noise
6 BK 7 cascode amplifier. The output of this amplifier is then ink-coupled to the television receiver antenna terminals.
Two antenna inputs are provided; one for the VHF Two antenna inputs are provided; one for the VHF antenna and one for the UHF antenna. Switches S1 and S2 are mechani-
cally ganged with the UHF coil plate. The switch, $\mathbf{S 1}$ permits cally ganged with the UHF coil plate. The switch, s1 permit
switching of the VHF receiver antenna input lead to either th
VHF antenna directly or to the UHF Tuner output link. VHF antenna directly, or to the UHF Tuner output link. On the VHF position, switch $\mathbf{2}$ an-shorts R11. This, a small
amount of current is permitted to fow through the tubes, even while on the VHF position.
In the UHF-1 position, as shown, the signal is fed into the
input circuits consisting of 1 , C 2 , C 3 nput circuits consisting of $\mathrm{C}, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$ and $\mathrm{L1}$. L1 is a $1 / 4$ -
wave shorted line, the electrical length of which is adjustment of the shorting core. For mechanical convenience considered as a ine wound into a spiral form and should not be The values of $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$. circuit impedance closely, C4 are chosen so that the input entire UHF band, while the impedance at the junctions of C 1 and he order of several thousand ohms. C7, C8, L7 7 and L8 main tain accurate balance of he input circuits. C9 and the IN72 diode are cied in series across the line. Their midpoint is used for ex-
traction of the VHF conver the local UHF oscillator signal. C 9 is critical in value since of gether with the diode it also affects the balance of the line.
The oscillator, a 6AF4 tube, is connected in an ultra-audion which presentsuit. Its plate voltage is "shunt-fed" through L1 mately 250 mc . The oscillator tank circuit, L2, is also a tunable
shorted $1 / 4$-wave line. Oscillator output is taken from the cathode circuit across L14 and coupled through C11 into the 1 N 72 diode
L9 furnishes the d-c return path for rectified diode current, while C18 resonates with other circuit constants to the VHF
output frequency. The converted UHF signal is coupled through Cl9 into the cascode 6BK7 amplifier.
This amplifier consists of two stages. The first stage is a con ventional triode, grounded-cathode stage, whose input circuit
is tuned to the VHF frequency (approximately 79 to 85 mc). The cathode circuit, consisting of R1 and C20, is only used to obtain d-c bias. L12 is a high-impedance, shunt-feed \mathbf{R} - F choke.
The output of the first stage is capacity-coupled into the second The output of the first stage is capacity-coupled into the second
triode which is a grounded-grid amplifier. In the cathode of the second stage is connected a conventional bias resistor, R4, and
its R-F bypass capacitor, C23. L11 provides the d-c cathode its R-F bypass capacitor, C23. L11 provides the d-c cathode
return through T1 to ground and also provides neutralization return throug Trode stage. This neutralizing coil is somewhat
of the first trion
critical in value and must, if damaged be replaced by an exact critical in value and must, if damaged, be replaced by an exact
replacement coil if the low-noise advantages of this circuit are to be maintained.

SERVICING THE UHF-103 TUNER

With the exception of the oscillator socket, the components
thereon and the UHF coils, the replacement of components in the thereon and the UHF coils, the replacement of components in th tuner is comparatively simple, requiring no special considerations
other than the usual lead dress precautions common to $V H F$ practice. However, because of the small size of most component be sure to prevent overheating of components by using a small
soldering iron. The oscillator circuit wiring and the UHF coils are critical and require special attention.

Replacement of Oscillator Tube Socket

1. Remove the coil turret assembly by loosening the four set screws in the long coupling (Fig. 40) and the one set screw in
the short coupling. Then, by lifting the detent roller and turning the short coupling. Then, by lifting the detent roller and turning
the assembly so one of the detent slots matches the bracket screw, the turret can be slid out of the unit.
2. Unslder all connectins
3. Unsolder all connections to the V-shaped contactor board
Remove contactor board from the assembly by removing the Remove contactor
Phillips-head screw.
4. Carefully unsolder the components at the tube socket,
being careful to note their exact position. 4. Drill out the two rivets holding the detent roller bracket. After removing this bracket the oscillator tube socket can b
removed by drilling out its securing rivets. 5. When reinstalling new socket be sure to place the components in their original positions (see Frig. 46). Positioning is
somewhat critical hence is not advisable to wiggle the tube back and forth when removing or inserting it but rather to pull or
push it straight from the socket. Even minor distortion of the tube socket pins has a most detrimental effect at ultra high
frequencies. frequencies.

Replacement of UHF Coils

Replacement of UHF Coils

1. Remove small pring split washer (Truarc clip) on turret
shaft that holds textolite coil bracket. To facilitate this operation a set of Truarc pliers should be used which may be obtained at your General Electric dealer (order number WH-50 x 59).
2. After removing old coil, solder new coil assembly in with the coil leads in their normal position. Flow the solder between the lead and the contact, making sure that the iron
does not put any stress on the lead which might deform it does not put any stress on the lead which might deform it.
The tuning cores for the coils are of different sizes and are selected to fit the coils. Therefore, do oot interent sizes and are cores from one coil to another. Coils are supplied from the factory complete w. With reasonable care it is possible to
removing the coil bracket. Carefully bend the textolite plat upward just above the coil to be removed. Push the coil to the
right until the top of the coil clears the retaining hole 4 . Gently release the textolite plate, and while holding the coil in this cocked position, apply phe soldering iron to the two
coil terminals simultaneously. As soon as the solder melts, tilt the coil terminals simultaneously. As soon as the solder melts, tilt the
coil still further to the right and remove it. Wipe the contacts clean of all solder.
3. When replacing new coil gently bend textolite plate up.
ward and put the new coil into position, being careful not to
bend the coil ward and put the new coil into position, being careful not to
bend the coil leads in any direction. This precaution is very im portant as poor frequency stability will probably result if it is
not followed. In soldering the new coil leads in place not followed. In soldering the new coil leads in place use the
same precaution as outlined above

\%URD-027			13 13 13
*URD-049			
*URD-051	${ }_{\text {R111 }}^{\text {R101 }}$.13 .13
:URDD-067	R110		. 13
-URD-071	$\mathrm{R}^{\mathrm{R} 109}$	${ }_{8200} 860$ ohms, 35	${ }^{3}$
*URD-073	R104, 112	$10,000 \mathrm{ohms}$, $1 / 2$.	3
*URDD-079	${ }_{\text {R1102, }}$	${ }_{18}^{12,0000}$ ohmm,	${ }_{13}^{13}$
	R113	$220,000 \mathrm{ohms}$, ${ }^{1 / 2} \mathbf{W}$	
-URE-067	R103	5600 ohms, 1 'w	7

COILS and TRANSFORMERS			
	${ }_{\text {T100 }}^{\text {L143 }}$	TRANSFORMER-Antenna input CHOKE-1.4 uh heater choke.	1.80 .45 5
- RLILI-145 144	L137	${ }^{\text {CHOKE-Heater chore }}$ CHOKE-1.4	
*RLI-154	L138. 139,	CHOKE-RF choke.	. 25
-RLI-159		TRAP-1-F trap and tuning core in	
*RLI-165 ${ }_{\text {RTL }}$ - 139	${ }_{\substack{\text { Liod } \\ \text { T104 }}}$. 35
		put transformer.\|	1.95

PRICES ARE SUGGESTED LIST PRICES AND SUBJECT TO
Mica and ceramic capacitors are 500 volts unless otherwise specifed
Resistor value tolerance is $\pm 10 \%$ unless otherwise specified. \quad *Indicates 1st Production.

© John F. Rider

© John F. Rider

© John F. Rider

OJohn F. Rider

GENERAL

The Hallicrafters UHF "Match Box" converter kits are available in two forms. One kit is supplied with a "Match Box" to cover UHF frequencles from 470 to 680 MC (channels 14 thru 48) and the other kit is supplied with a "Match Box" to channel in either the upper or the lower range. If reception is desired on a second UHF channel in either the upper or the lower range an additional "Match Box" in either range may be installed in the conversion kit. The "Match Boxes"are easily changed since all necessary connections are made to the "Match Box" by means of a 5 pin plug with the exception of two antenna input connections which must be soldered.
Both kits are supplied completely wired with a heater transformer for supplying the necessary heater voltage for the tabe in each Match Box. Only four simple wiring connections are made when wiring the conversion kit into the chassis. Two for the antenna connections, one for the necessary plate voltage and the other for the primary of the heater transformer
The Hallicrafters UHF Match Box converters consist of a double tuned band pass circuit which couples the 300 ohm UHF antenna input to a crystal diode mixer where the received UHF signal is mixed with the output of a local oscil lator. The fundamental frequency of this oscillator may be adjusted so that the output frequency of the Match Box is

The local oscillator in each Match Box must be preset by the Service Technician at the time of installation so that the output frequency of the Match Box is the same as the channel frequency for any vacant VHF channel from 2 through 6 .
For UHF reception the VHF tuner channel selector is set to the selected vacant channel and the VHF-UHF switch in For UHF reception the $H F$ tuner channel selector is set to the selected vacant channel and the VHF-UHF Switch in
the UHF converter is set in either of the two UHF positions which have a Match Box tuner in place. The fine tuning control in the VHF tuner may then be used as a fine tuner for UHF reception. For VHF reception the VHF tuner channel selector is set to the desired VHF channel and the VHF-UHF switch in the converter is set to the VHF position (full counterclockwise). The set will now operate in the same manner that it did before conversion.
The same antenna terminal on the back of the television receiver is used for both VHF and UHF reception. Either a VHF or a UHF antenna will have to be connected to this terminal depending upon the frequency of the station being received. A multiband VHF-UHF antenna may be used which will eliminate the necessity for changing antennas
The cabinet modifications required are simple to make on all models. The cabinets for models 1010P, 1012P, 1021 p and 1026P require a $1 \frac{1}{2}$ " hole which must be drilled. A template for the proper location of this hole is provided with the kits. Other cabinets have provisions which require only hand tools for modification. Cabinets for models 1010P, $1012 \mathrm{P}, 1021 \mathrm{P}, 1026 \mathrm{P}, 1051 \mathrm{P}, 1052 \mathrm{P}, 1053 \mathrm{P}$ and 1054 P will require gluing of a small label on the front of the cabinet to
cover the four holes left when the Hallicrafters name plate is taken off of the front of the cabinet. This gummed label is supplied with both conversion kits and is coated with a special cement to insure its remaining fixed on the cabinet. The high voltage power supply shield used in some of the earlier series 1200D chassis was rectangular in shape and must be replaced in order to provide mounting space for the Match Box assembly. The correct replacement shield is available as an accessory under part number 69D547. Before this shield is installed, as directed in the step by step instructions, the inside of it must be covered with "Scotch" \#21 electrical tape as specified in the instructions. This tape is available from Hallicrafters under stock number 8A2085. Approximately $16 \frac{1^{\prime \prime}}{\prime^{\prime}}$ of tape $4^{\prime \prime}$ wide are required to properly cover one of the 69D547 shields. Tape of narrower width may be used provided the strips are overlapped and the area shown in the instructions is covered
The A, K, \& W1200D chassis used in models 1010P and 1012 P and the D, L, \& X1200D chassis used in models 1021 P Box sub-chassis. For this reason a new front chassis cover plate part number 63C958 is supplied with the kit for use only on these chassis. Other chassis may or may not require drilling the $7 / 8^{\prime \prime}$ or larger hole and the two $3 / 16^{\prime \prime}$ holes. Templates are supplied for the proper location of these holes on the various other chassis.

INSTALLATION OF UHF MATCH BOX CONVERTER SUB-CHASSIS
Before starting the installation of either the 1×1658 or the 1×1678 conversion kits be sure to read the general instruc-

tions given on page 2 .
 MECHANICAL CHASSIS CHANGES

1. Remove the chassis from the cabinet. holes for the Match Box sub-chassis. Use the chart on page 1953-203 to determine which drilling template should be used. On chassis which do not have a removeable front plate it will not be necessary to drill mounting holes as these chassis already have the necessary provisions for adding the Match box sub-chassis. A new front chassis plate is provided with the kits for use on A, D, K, L, W \& X1200D chassis.
2. Replace the new or drilled front chassis cover plate from step 2.
3. Remove the high voltage compartment shield. If the shield is rectangular in shape (part number 69D492) it must be ordered separately be replaced in a later step by a new shield part number 69D547. The 69D547 shiel
4. Insert the converter sub-chassis in the TV chasts and
means of the two $6-32 \times \frac{1}{4}$ " hex head self tapping scrows front cover plate use the two $3 / 16^{\prime \prime}$ holes on each side of the switch shaft. On chassis without the removeable front chassis cover plate use two diagonally opposite holes in the corners of the sub-chassis.
5. The rear mounting bracket for the converter sub-chassis should now be fastened. On some chassis this bracke rests directly on the chassis and should be secured with one of the $8-32 \times \frac{1}{4}$ " hex head self tapping screws supplied. If this rear bracket does not rest directly on the chassis use either the $1 / 2^{\circ}$ or the $3 / 4^{"}$ spacer sup plied along with the $8-2 \times 7 / 8^{\prime \prime}$ hex head self tapping screw. The correct spacer will not bend or warp the plied along with the $8-32 \times 7 / 8^{\prime \prime}$ hex head
sub-chassis or the rear mounting bracket.

WIRING
7. Connect and solder the long black heater transformer primary lead to one of the four outer lugs of the power supply series electrolytic capacitor (C-135 in some chassis and C-161 in others). It will be necessary to remove the 183-GT high voltage rectifier tube $V-111$ and raise the plastic insulating tape on the chassis in order to gain access to the bottom of this capacitor. See Fig. 205A.
8. Press the plastic insulating tape back in place after dressing the transformer lead as shown in Fig. 205A
9. Replace the 1B3-GT high voltage rectifier tube $\mathbf{V - 1 1 1}$.
10. Replace the high voltage compartment shield. Be careful to dress the wires running under the edges of this shield through the notches provided so that the wires are not pinched under the edges of the shield. A new shield may be required as described on page 1953-202. Insulate the new shield if used as shown in Fig. 205B.
Dress the orange wire from the VHF-UHF switch over to the terminal strip directly behind the VHF tuner Connect and solder to the lug as shown in Fig. 205A. This wire provides 150V. B+ for the converter and is con Rected to the B+ supply for the three I.F. tubes in the receiver

Remove and discard R-186, R-187, C-100 and C-101 from the VHF tuner input terminals. The Match Box sub-VHF-UHF switch. The 300 ohm twin lead for the antenna lead-in should be front of the sub-chassis next to the near the VHF tuner terminals and connected to the terminal strip on be disconnected from the terminal strip connections. Refer to Fig. 205A.for the location of these terminals.

The 1X1658 and 1X1678 UHF Match Box conversion kits for the series 1200D Hallicrafters television chassis will enable the Service Technician to easily and quickly convert any of the models listed in the following chart.

MODELS	CHASSIS	FRONT CHASSIS COVER PLATE MODIFICATIONS	CABINET MODIFICATIONS

13. Connect and solder the $6 \frac{1}{2}$ " twin line coming from the VhF-UHF switch to the now vacant antenna ter minals of the how tuner. Refer to Fig. 201. the spaghetti covered antenna lead-in twin line must be dressed to prevent any possible coupling between these two lines.
14. Installation of the Match Box sub-chassis is now complete with the exception of inserting either one
or two Match Boxes. Instructions for installing and adjusting the individual Match Boxes are given,

Fig. 2058. Position of Plastic Insulation on 690547 Shield

Fig. 205A. Series 12000 Chossis with Match Box UHF Sub-Chassis Installed

INSTALLATION AND ADJUSTMENT OF INDIVIDUAL MATCH BOXES

GENERAL

The UHF Match Box converter sub-chassis is provided with two sockets for plug-in Match Box units. Thequire oscillator plate supply the TV chassis, and heater voltage, obtained from the heater transformer. Each conversion kit is supplied with one Match Box plug-in unit. The Match Box
supplied with the 1×1658 kit will cover any UHF channel from 14 through 48 while the one supplied with the 1X1678 kit will cover any channel from 45 through 83.

In order to cover a second UHF channel with either kit, Match Box 1A1664 may be used to cover channels 14 through 48 and Match Box 1A1665 may be used to cover channels 45 through 83

Each Match Box regardiess of the range it covers is supplied with two screws for adjustment of the oscillator. One screw is $5 / 8^{\prime \prime}$ long and the other $7 / 8^{\prime \prime}$ long. The shorter screw must be used to cover the upper half of the tuning range of the Match Box. The the main TV chassis if used to tune this range. The $5 / 8^{\prime \prime}$ screw will be found taped to the side of each Match Box unit when received in kit form with the sub-chassis or when obtained as an individual unit.
When the VHF-UHF switch is in the UHF-2 position (full clockwise) the Match Box next to the heater transformer is used. With the switch in the UFF-1 is used. In the VHF switch position (full counterclockwise) neither Match Box is used and the antenna input is conne through C-100 and C-101 to the VHF tuner input terminals.

Fig. 2064. Match Box Connections \& Adjustments

INSTALLATION

1. Plug the UHF Match Box to be installed into either of the two positions in the conversion sub-chassis. Be sure to hook the two prongs on the Match Box unit over the protrusion on the sub-chassis to support the end of the unit on which the oscillator tube is mounted.
2. Connect and solder the two antenna leads (spaghetti covered) from the VHF-UHF switch to the terminals of the Match Box. See Fig. 206A to determine which pair of leads should be used. If only one Match Box is to be installed, the remaining pair of
cover photo and the ends taped.
3. Turn the television receiver on in the usual manner and allow at least a two minute warm up period Sel most interference free unused channel from 2 through 6 and set the VHF tuner channel selector to this channel Position the fine tuning control of the VHF tuner to the center of its tuning range.
Set the VHF-UHF selector switch in the Match Box converter to the UHF position which corresponds with the position of the Match Box being adjusted. See General text above.
4. Adjust the oscillator tuning screw on the Match Box until the desired UHF channel is received. See Fig. 206A is usually possible to receive the desired signal at two different settings of this adjustment. USE THE POSIION The places the converter oscillator frequency below the frequency of the incoming signal by an amount equal to the
frequen of the VHF channel that was selected in step 3 .
B. Adjust the two input tuning adjustment screws (C-1 and C-2) shown in Fig. 206A. for the best possible picture. These adjustments should be carefully made to provide the most desirable compromise between bandwidth
(picture definition) and sufficient sensitivity to provide a stable noise free picture.
. Repeat steps 5 and 6 until reception cannot be further improved.
5. Repeat steps 4 through 7 for a second Match Box if used.

CABINET MODIFICATIONS

The cabinet modifications required for the various receiver models are explained in the chart on page 1953-203.
In some models when the converted chassis is replaced in the cabinet the shaft of the VHF-UHF switch will not pass through the center of the hole in the cabinet. The large knob supplied for the VHF-UHF switch will cover the cabinet
hole even if the switch shaft is considerably off of center.

Fig. 207A. Schematic Diagram of Conversion Kit with a 1 A 1664 and 1A1665 Match Box in Place

SERVICE PARTS LIST

KITS \& ACCESSORIES

Insulator plate, VHF-UHF switch mounting.
Knob, VHF-UHF switch.........
Nut, 3/8-32; VHF-UHF switch mounting
Plate, front chassis cover; for A,D,K,L, W \& X1200D chassis only
Resistor, 470,000 ohms $\frac{1}{2}$ watt carbon ($R-186 \&$ R-187)
Spacer, $1 / 2$ inc
Spacer, $3 / 4$ inch
Strip, antenna tie lug; upright type.
Switch, 3 position; VHF-UHF selector

Fig. 208A. Cabinet Modifications for Models 1010P, 1012P, 1026P, 1053P \& 1054 P 921978

INSTALLATION \& OPERATING INSTRUCTIONS

FOR

hallicrafters self powered single channel uhf converter (SUPPLIED IN TWO FREQUENCY RANGES)

hallicrafters stock no.
1X1527
1×1678

COVERS CHANNELS
14 through 48
14 through 48
45 through 83

FREQUENCY RANGE
470 mc . to 680 mc .
470 mc . to 680 mc.
656 mc. to 890 mc.

The model 1X1527 and model 1X1679 converters provide for the reception of any single UHF television channel. The converter is fixed tuned to the desired channel at the time of installation. This unit may be installed on any standard television receiver that has provision for 300 ohm balanced antenna input. This includes all hallicrafters tele VISION RECEIVERS. The Hallicrafters converter has been designed for excellent performance as well as simplicity of installation and operation as illustrated by the following features:

- Self contained power supply.
- Convenient power outlet for the television receiver.
- Utilizes the full amplification of the VHF tuner
- Output may be tuned to any of the low VHF channels, is most interference free in any given signal area
- No alteration of the television receiver is required. ADJUSTMENT SCREW
- Test equipment is not required for pre-tuning.
- Single switch selects either UHF or VHF operation.

TO INSTALL AND ADJUST CONVERTER

Mount the unit on the cabinet back so that the FUNCTION LEVER protrudes beyond the side of the cabinet as shown in Figure 2.
. Make the required antenna and power connections as illustrated in Figure 1. The converter is designed to operate from a 115 volt, 60 cycle AC power source.

Figure 1.

$$
\text { .om a } 115 \text { volt, } 60 \text { cycle AC power source. }
$$

Set the FUNCTION LEVER on the converter to the "UHF ON" (down) position

Turn the television receiver on in the usual manner and allow at least a two minute warm up period. Select the most interference free unused channel (2 through 6) and set the CHANNEL SELECTOR on the television receiver to the channel decided upon. Position the FINE TUNING control to the center of its tuning range.

Adjust the OSCILLATOR TUNING screw on the converter until the desired UHF channel is received. It is usually possible to receive the desired signal at two different settings of this adjustment. USE THE POSITION THAT cillator frequency below the frequency of the incoming signal by an amount equal to the frequency of the VHF channel that has been selected in step 4.

Adjust the two INPUT TUNING adjustment screws on the converter for the best reception. These adjustments should Adjust the two INPUT TUNING adjustment screws on the converter for the best reception. These adjustments should sensitivity to provide a stable noise free picture.

Repeat steps 5 and 6 until reception cannot be further improved.

OPERATION

1. Turn the television receiver on in the usual manner.
2. Set the converter FUNCTION LEVER to the "UHF ON" (down) position. Allow one minute for the converter tube to reach operating temperature.
3. Set the CHANNEL SELECTOR on the television receiver t the unused channel (2 through 6) that was decided upon at the with the FINE TUNING control on the television receiver.
4. Adjust the other operating controls on the television receive in the usual manner if required. When UHF operation is to the "VHF ON" (up) position converter formal operation of the receiver.

Figure 2.

1. Set the HEIGHT
control so control so that the
test pattern fits and centers in the vertical dimension of the
kinescope escutcheon. A minor adjustment
of the focus coil posiof the focus coil posi-
tion may be required tion may be required
to recenter the patto rec
tern.
\qquad
trol for a symmetrical test pattern in the
vertical dimension. A slight readjustment
of the HEIGHT conof the HEIGGT con-
trol may be required tron may be required
when making this when mak
adjustment.

Flegre 9.
Note - The sequence of "non-operating" control adjustapproach and not an arbitrary procedure. Variations of the procedure is permitted to obtain the final result.

DISMANTLING FOR KINESCOPE REPLACEMENT

 OR ALIGNMENT ADJUSTMENTS (MODEL 518) 1. Remove the four front panel control knobs by pullingthem straight from their shafts. The dual control knobs must them straight irom their shatts. The dual control knobs
be removed in two pieces, removing the center unit first.
2. Remove the back cover. Note that the line cord and talf
of the interlock connector come along with the back cover.
3. Unfasten and remove the speaker to clear the KINESCOPE. Remove the two screws holding the antenna terminal
4. Remove the five chassis bolts holding the receiver chassis in the cabinet and slide the entire assembly from the cabinet. The KINESCOPE is now accessible for replacement or adjustment.

REMOVING THE KINESCOPE

Refer to the warning KINESCOPE HANDLING PRECAU-
TIONS. Read all warning notices on both TIONS. Read all warning notices on both tube and carton. Fol COPE and proceed as follows:

1. Disconnect the KINESCOPE SOCKET at the base of the
2. Slip the ION TRAP from the neck of the tube past the kinesc ope base connector
3. Measure the distance from the front edge of the steel band to the face of the tube. Keep this dimension handy for installation of a new tube.
4. Remove the steel band at the front rim of the kinescope and carefully slip the neck of the kinescope out of the FOCUS COLL and DEFLECTION YOKE. If the tube fails to slip out
smoothy, investigate and remove the cause of the trouble. Do smoothly, inve
not use force.
5. The DEFLECTION YOKE must seat firmlyagainst the are of the kinescope. Check by loosening the single DEFLECTION YOKE ADJ. screw and pushing the DEFLECTION YOKE forward as far as it will go. Take up the slack in the screw emporarily to hold the coil in place.
6. Slip the ION TRAP over the neck of the tube. If it is the ring type, the arrow points toward the front of the tube; if it
is of the clamp type, the blue coded clamp is toward the front. 6. Rec onnect the KINESCOPE SOCKET and anode connector and turn on the receiver
7. After allowing a few minutes for warm up, turn up the
BRIGHTNESS control and set the ION TRAP for maximum raster brilliance, backing off the brightness control adjustment as the maximum point is approached. The ION TRAP must be neck of the tube to obtain the proper setting. The arrow on the ring type ion trap will generally point at the HV anode con nector when properly positioned as far as rotation is concerned, the of trap. With the
brilliance and the PICTURE control full counter-clockwise, ad ust the FOCUS control until the line structure of the raster is ter brilliance. The final touches on this adjustment should be made with the BRIGHTNESS control at the maximum positio with which good line focus can be maintained, then back off the setting of
disappear
8. Check the position and appearance of the test pattern, If the test pattern is off center or shadowed at the corner FOCUS COIL ADI screws for a centered evenly illuminated raster. Note that the three spring loaded adjustment screws tilt the focus coil to shift the position of the raster on the face
of the kinescope. Do not turn all three screws up tight, use of the kinescope. Do not turn

CAUTION - It is not necessary to tilt the focus coil excessively. Excessive tilt may snap the neck of the kinescope if sufficient force is used The focus coil may be shifted slightly for addiloosening the two knurled screws holding the coil
to the mounting plate. Tighten the screws after
the adjustment.
9. If the lines of the raster are not horizontal or square
with the escutcheon, loosen the DEFLECTION YOKE ADJ with the escutcheon, loosen the DEFLECTION YOKE ADJ.
screw and rotate the DEFLECTION YOKE until this conditio screw and rotate the the adjustment.
10. Follow the procedure under NON-OPERATING CONFOCUS COIL or DEFLECTION YOKE necessary to obtain the desired results. The final adjustment of the focus coil should ern approximately centered.

MEASUREMENT OF H.V. POTENTIAL ON

 KINESCOPE ANODEThe second anode potential will be approx. $11,000 \mathrm{~V}$., on a receiver that is functioning properly. Since the high potential for the kinescope anode is obtained from the horizontal output transformer, the "non-operating" control adjustments outlined above must be made or be known to be in proper adjustment proper operation of the horizontal sweep circuit or circuit proper operation of the horizontal sweep cin the high voltage filter will generally account for an abnormal anode potential. If the anode potential is low, check
CAUTION HIGH VOLTAGE
CAUTION HIGH VOLTAGE

Do not use hand held fexible test leads when
hands clear of the circuit during measurement
hands clear of the circuit during measurement.
A 11 KV. potential exists in this circuit. Exer-
ercise all normal high voltage precautions.

1. Connect a 50 -megohm resistor string in series with a 300 microampere meter. Connect the free meter terminal to
made with a fine wire slipped under the connector cap may be the resistor string with 5-mander the connector. Make up provide a safety factor for voltage breakdown. If 5 -megohm resistors are used, a total of ten will be required to obtain the 50 megohms. Make the setup self-supporting and allow adeto prevent high voltage breakdown.
2. Turn on the receiver and set the BRIGHTNESS and PICTURE Controls at minimum. The microammeter will read approx. a modicroamperes measured in this manner (PICanode. The anode potential is measured in this manner (PIC approx. 200 mic roamperes, to simulate the kinescope load on

ALIGNMENT PROCEDURE

Note - The following alignment adjustments do not require the use remod if extensive alignment adjustments are to be tube CAUTION - Removal of the kinescope tube exposes the HIG H VOLTAGE anode connector contact. Keep this lead and contact clear of personnel servicing equipment and grounded precautions while working with the exposed units.

EQUIPMENT REQUIRED

$$
\begin{aligned}
& \text { Signal generator covering } 4 \mathrm{mc} \text { to } 30 \mathrm{mc} \\
& \text { Signal generator covering } 40 \mathrm{mc} \text { to } 215 \mathrm{mc} \\
& \text { Electronic voltmeter } \\
& \text { Two } 150 \text { ohm carbon resistors }
\end{aligned}
$$

f-M SOUND CHANNEL ALIGNMENT

1. Connect the low frequency signal generator output across resistor (R-118) in the plate circuit of the 12AU7 VIDEO DET. tube (V-104). Thi
strip near the tube socket.
2. Connect the electronic voltmeter between pin 7 of the 6AL5 FM DET. tube (V-109) and chassis ground.
3. With the signal generator (unmodulated) set at 4.5 mc . (See Fig. 11) for maximum d-c voltage as measurcd ADJ. electronic voltmete i. Adjust the limiter grid transformer (105) before adjusting the f -m detector transformer (T -108) primary. Use just enough signal generator output to obtain 4. Connect the electronic voltmeter across the 1000 mmf condenser ($\mathbf{C - 1 3 5}$) at the output of the $\mathrm{f}-\mathrm{m}$ detector stage and (T-108) for the null. SEC. ADJ. of the f-m detector transformer 5. Shift the fre
4.5 mc and touch up the FM signal generator either side mately equal peaks. Use just enough signal generator output to obtain one volt peaks for the best results.
4. After completing the alignment procedure and placing the and adjust the 4.5 MC TRAP ADJ. for maximum vertical wedge definition. This adjustment is located on the under side of the hassis and on the same coil NOTE - The primary
None adjustment of T-111 priment of T-108, the coarse ay all be made throu $\mathrm{T}-111$ and the 4.5 mc trap adjustment m if desired.

I-F AMPLIFIER ALIGNMENT

1. Connect the electronic voltmeter across resistor $\mathrm{R}-118$ resistor is located on the terminal strip near the tube socket. 2. Couple the high side of the signal generator to the mixer lube (V-2) by slipping a tight fitting tube shield or length of erator lead to it. Connect the ground side of the signal genertor to the frame of the tuning unit.

Set the channel selector at channel

OJohn F. Rider
4. Set the signal generator output (unmodulated) to develop
ore or two volts at the electronic voltmeter and adjust the four
i-f amplifier coils, according to the following chat, i-f amplifier coils, according to the following chart, for maxi-
mum d-c voltage as measured by the electronic voltmeter. Readjust tie signal generator output as required to maintain I-F AMPLIFIER ALIGNMENT CHART

Signal Generator Frequency (No Modulation)	Adjustment (Refer to Fig. 11)	Stage Adjusted
	23.2 MC IF ADJ.	1st IF amp
23.2 mc	25.2 MC IF ADJ.	2nd IF amp
25.2 mc	26.1 mc	26.1 MC IF ADJ.
22.9 mc	22.9 MC IF ADJ.	Video a mp

5. Check the i-f amplifier frequency response by tuning the signal gene rator from 21 mc throughl 26.25 mc and observ-
ing the change in $\mathrm{c}-\mathrm{c}$ voltage at the electronic voltmeter If ing te change in c-c voltage at the electronic voltmeter. If
the sisnal generator output is set for an electronic voltmeter reading of 1.5 volts at the peak i-f amplifier response. the $d-c$ voltage should not drop below one volt between the two peaks normaly obtained with this i-f amplifier. If the response is
unsatisfactory, repeat tine procedure or try slight modifications of the reconmended settings to obtain the desired response. Avoid resonating the coils with the iron core at the bottom end
of the coil form. (Adjust nent screw near limit of its travel.)

If a sweep type signal generator and oscilliscope is available the problem of making the final adjustments will be much easier. Check the two carrier i-f responses, 21.75 mc and 26.25 mc . The 21.75 mc response will be approximately 20 db response will fall approximately 6 db below the peak (Approx 0.4 volt). Refer to Fig. 12.

The average i-f amplifier sensitivity, when feeding the sig${ }_{2}$, will run approx. 1500 to 3000 micrevolts for the one in step peak measured at resistor R-118. (Receiver's oscillator operating on channel 2.)

station channel alignment

1. Due to the broad frequency response of the i-f amplifier, it is necessary to use a 24.5 mc signal generator or
oscillator (unmodulated) as a beat frequency oscillator (BFO) in order to locate the center frequency of the i-f amplifier response for the correct local oscillator adjustment. The from the generator output placed in close proximity to the 2AU7 VIDEO DET. tube ($\mathrm{V}-104$).
2. Connect the high frequency signal generator output to he receiver's anitenna trans mission line through the two $150-$ ransmission line
3 Clip on an 01 mfd condenser between pin 2 of the kineThe connection erminal strip under the chassis provided for the socket leads
3. Set the "BFO" generator at 24.5 mc (No modulation).
*6. Set the channel selector at channel center of its range requency signal generator at 57 mc . and adjust the 81.5 nic OSC. ADJ. screw for a rough audio beat note, using the speaker as a detector.
*7.
. Set the
requency signal generator at 177 mc and adjust the 201.5 MC OSC. ADJ. screw for a rough audio beat note.
4. Discomect the .01 mifd condenser and conrect the elecronic voltmeter across resistor $\mathrm{R}-118$ in the plate circuit $\underset{*}{a} 9$ alignment. sienal generator at 85 mc and adjust trimmers $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D for maximunn voltage as measured by the electronic voltmeter. volt at the electronic volt meter. Note that trimmers A and B and trimmers C and D must be adjusted simultaneously since ircuits. and amplinier tubes are operatin!, in push-pull **10. Set the channel selector at channel 13 , the hich fre quency signal qenerator at 213 mc . and adjust trimumers $\mathrm{E}, \mathrm{F}, \mathrm{G}$, and H for maximum voltage following the same procedure used step 9 . This completes the aliznment of the tuning unit. mately 200 microvolts for one volt DC at resistor $\mathrm{R}-118$ when measured in the above manner
*Note - If local TV stations are operating on channels 2 ana , the adjustments made in steps 6 and 7 may be made without best picture in each case.
${ }^{* *}$ Note - Steps 9 and 10 are not ordinarily required. Adjust位
CARRIER US I.F FREQUENCY CHART

$\begin{aligned} & \text { Channel } \\ & \text { No. } \end{aligned}$	Channel Freq. (mc)	Picture Carrier Freq. (mc)	Sound Carrier Freq. (mic)	$\begin{aligned} & \text { Receiver } \\ & \text { Osc. } \\ & \text { Freq. (mc) } \end{aligned}$	$\begin{gathered} \text { Picture } \\ \text { IF } \\ \text { Freq. (me) } \end{gathered}$	$\begin{aligned} & \text { Sound } \\ & \text { IF } \\ & \text { Freq. (mo) } \end{aligned}$	$\begin{gathered} \text { Picture IF } \\ \text { less } \\ \text { Sound IF (me) } \end{gathered}$
2	54-60	55.25	59.75	81.5	26.25	21.75	4.5
3	60-66	61.25	65.75	87.5	26.25	21.75	4.5
4	66-72	67.25	71.75	93.5	26.25	21.75	4.5
5	76-82	77.25	81.75	103.5	26.25	21.75	4.5
6	82-88	83.25	87.75	109.5	26.25	21.75	4.5
7	174-180	175.25	179.75	201.5	26.25	21.75	4.5
8	180-186	181.25	185.75	207.5	26.25	21.75	4.5
9	186-192	187.25	191.75	213.5	26.25	21.75	4.5
10	192-198	193.25	157.75	219.5	26.25	21.75	4.5
11	198-204	199.25	203.75	225.5	26.25	21.75	4.5
12	204-210	205.25	209.75	231.5	26.25	21.75	4.5
13	210-216	211.25	215.75	237.5	26.25	21.75	4.5

© John F. Rider

© John F. Rider

SERVICE PARTS LIST											
Ref. No.	Description	Manufacturer's Part Number	Ref. No.	Description	$\begin{aligned} & \text { Manufacturer's } \\ & \text { Part Number } \end{aligned}$	Ref. No.	Description	Manufacturer's Part Number	Ref. No.	Description	Manufacturer's Part Number
	Electrical parts						RESISTORS (Cont.)			MISCEILANEOUS (Cont.)	
	transformers and coils			CONDENSERS (Cont.)		$R-138,139$	8200 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 822 \mathrm{~K}$		Electrical Parts (Cont.)	
L-1	Coil, antenna (Part of tuner ass'y.)		C-134,169	330 mmf . 500 V ., ceramic	47820331 K 5	R-140	2500 ohms 2 watts, FOCUS	25B710	PL-101	Line cord and plug PL-102	87A1668
L-2	Coil, LF antenna stage (Part of tuner ass'y.)		C-135	1000 mmff . 500 V. ., ceramic	47820102M5 $47 \times 20 \mathrm{~A} 331 \mathrm{M}$		control		-	Socket, kinescope	6B341
L-3	Coil, LF mixer stage (Part of		C-139,141	. 01 mfd. 600 V ., tubular	$46 \mathrm{AY103J}$	$\begin{aligned} & \mathrm{R}-141,142 \\ & \mathrm{R}-144,170 \end{aligned}$	560 ohms $1 / 2$ watt, carbon 1 megohm $/ 50,000$, VERTICAL/	25B861	PL-1	Plug, speaker (Includes SO-102)	10 A 287
	tuner ass'y.)		C-142	10-10-10-10 mid. 450 V .,	45B157		HORIZONTAL control (Dual)		PL-105	Plug, kinescope anode	10A300-3
L-4	Coil, HF antenna stage (Part of tuner ass'y.)		C-143	electrolytic .5 mfd. 200 V., tubular	46AT504J	R-148	5,000 ohms, VERTICAL LINE- ARITY control	$25 \mathrm{B712}$	F-101	Fuse, 3 amp. (with wire leads)	39A340
L-5	Coil, HF mixer stage (Part of		C-144	56 mmf .500 V ., mica	47X15D560K	R-149	3300 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 332 \mathrm{~K}$			
	tuner ass'y.)		C-145.146	.01 mfd .600 V ., molded paper	$46 \mathrm{BR103L6}$	R-151	2.5 megohms $1 / 2$ watt, HEIGHT	258711			
L-6	Coil, LF oscillator stage (Part of tuner ass'y.)		$\begin{aligned} & \mathrm{C}-147 \\ & \mathrm{C}-148 \end{aligned}$	$40-40 \mathrm{mfd} .450 \mathrm{~V}$., electrolytic 80 mfd .450 V ., electrolytic	$\begin{aligned} & 45 \mathrm{~A} 159 \\ & 45 \mathrm{~B} 158 \end{aligned}$		control				
	of tuner ass'y.) Coil, HF oscillator stage (Part		$\mathrm{C}-148$ $\mathrm{C}-150$	220 mmf . 500 V ., mica	${ }_{47 \times 20 \mathrm{~A} 221 \mathrm{M}}^{45158}$	${ }_{\text {R-152,158 }}^{\text {R-154,162 }}$	33,000 ohms $1 / 2$ watt, carbon	${ }_{23 \times 20 \times 104 \mathrm{M}}^{23 \times 20 \times 33 \mathrm{~K}}$			
	Coil, HF osc illator stage (part of tuner ass'y.)		C-153	. 02 mfd. 200 V ., tubular	46AU203J	${ }_{\text {R-156,157 }}$	100,000 ohms $1 / 2$ watt, carbon 10,000 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 103 \mathrm{~J}$		MECHANICAL PARTS	
L-101,102,	Coil, video peaking	51A1154	C-154,166	$390 \mathrm{mmf} .500 \mathrm{~V} .$, mica	47x20A391M	${ }_{\mathrm{R}-159}^{\mathrm{R}-156}$	1 megohm, VOLUME control	25 A856			
109			C-155	$10,000 \mathrm{mmf} .500 \mathrm{~V} .$, mica	47X35A103K	R-160	4.7 megohms $1 / 2$ watt, carbon	23x20x475M		CHASSIS PARTS	
L-103,104	Coil, video peaking	$51 \mathrm{Al155}$	C-156	180 mmf . 500 V ., mica	47x20A181M	R-163	330 ohms 1 watt, carbon	$23 \times 30 \times 331 \mathrm{~K}$			
L-105	Coil, focus	${ }_{51}^{5181158}$	C-159 C-161,165,	HORIZONTAL DRIVE, control	${ }_{46 \text { 44 Y } 503 \mathrm{~J}}$	R-164	5,000 ohms 10 watts, WW	24BG502E 24BH201E		Socket, a-c power	10A286
$\stackrel{\text { L-106 }}{\text { L-107 }}$	Deflection yoke Coil, WIDTH control	53A180 51B1072-1	C-161,165.	. 05 mfd .600 V ., tubular	46 A Y503J	$\mathrm{R}-165$ $\mathrm{R}-167$	200 ohms 20 watts. WW 82,000 ohms $1 / 2$ watt, carbon	24BH201E $23 \times 20 \times 823 \mathrm{~K}$	so-101	Socket, octal (Tube)	6A339
L-108	Coil, horizontal line-	$51 \mathrm{B1071}$	C-162,171	68 mmf .500 V ., ceramic	47B20680K5	R-168	820,000 ohms $1 / 2$ watt, carbon	23x20x824M		Socket, octal (Tube V-107)	6B296
	ARITY control		C-164	$500 \mathrm{mmf} .20,000 \mathrm{~V}$., ceramic	47 A 216	R-169	150,000 ohms 1 watt, carbon	$23 \times 30 \mathrm{BF} 154 \mathrm{M}$		Socket, miniature 7 pin (Tube)	6 A 340
T-101,102,	Transformer, i-f amplifier	50A431	C-167	. 035 mfd .600 V. , tubular	46 A Y 353 J	R-171,176	150,000 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 154 \mathrm{M}$		Socket, miniature 9 pin (Tube)	6 B 334
103,104			C-172,173,	1000 mmf .500 V ., ceramic	47B20A102M5	R-172	18,000 ohms 1 watt, carbon	$23 \times 30 \times 183 \mathrm{~K}$		Socket, miniature 9 pin	6A343
T-105	Coil, 4.5 mc sound trap	50 A 432	174,175			$\mathrm{R}^{\mathrm{R}-173,177}$	120,000 ohms $1 / 2$ watt, carbon	23X20X124M		Bracket, rear kinescope support	
T-106	Transformer, vertical oscillator Transformer, vertical output	$55 \mathrm{Bl115}$ 55 A 128				$\begin{aligned} & \mathrm{R}-174 \\ & \mathrm{R}-175 \end{aligned}$	2.7 megohms 1 watt, carbon 100,000 ohms 1 watt, carbon	23X30BF275M 23X30BF104M		Bracket, rear kinescope support Rear tube support (Deflection	$67 \mathrm{C} 1009$
T-108	Transformer, ratio detector	$50 \mathrm{B406}$		RESISTORS		$\mathrm{R}-175$ $\mathrm{R}-181,182$	39,000 ohms 2 watts, carbon	23X40x 393 K		yoke housing)	
T-109	Transfurmer, audio output	55 C 134	R-1,2	150 ohms $1 / 2$ watt, carbon	23x20x151K	$\mathrm{R}^{\mathrm{R}-183}$	100 ohms 1 watt, carbon	$23 \times 30 \times 101 \mathrm{~K}$		Bracket, rear tube support	67 C 1003
T-110	Transformer, power	${ }_{5181153}$	R-3,7,9	1000 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 102 \mathrm{~K}$	R-184	10,000 ohms 1 watt, carbon	$23 \times 30 \times 103 \mathrm{~K}$			67B1082
T-111	Transformer, horizontal osc.	${ }_{55 \mathrm{Cl133}}^{51 \mathrm{Blas}}$	11,12			R-185	3.3 ohms $1 / 2$ watt, carbon	${ }_{23 \times 30 \times 105 \mathrm{M}}$		$\begin{aligned} & \text { Bracket, rear } \\ & \text { brace (L.H.) } \end{aligned}$	
T-112	Transformer, horizontal output	55 C 133	R-4	10,000 ohms $1 / 2$ watt, carbon 5600 ohms $1 / 2$ watt, carbon	${ }_{23 \times 20 \times 562 \mathrm{~K}}^{23 \times 20 \times 10 \mathrm{~K}}$	$\mathrm{R}-187$ $\mathrm{R}-190$	1 megohm 1 watt, carbon 560,000 ohms $1 / 2$ watt, carbon	$\begin{aligned} & 23 \times 30 \times 105 \mathrm{M} \\ & 23 \times 20 \times 564 \mathrm{~K} \end{aligned}$		Plate, focus coil mtg.	$67 \mathrm{B1127}$
	CONDENSERS		R-5	$1 \mathrm{megohm} \mathrm{1/2} \mathrm{watt}$,	${ }_{23 \times 20 \times 105 \mathrm{~K}}$	R-190 $\mathrm{R}-193$	56000 ohms 1 watt, carbon	${ }_{23 \times 30 \times 562 \mathrm{~K}}$		Coil spring, focus coil adj.	75A153
C-1	Tuning capacitor ass'y. (Part of tuner ass'y.)		$\begin{aligned} & \mathrm{R}-8,10 \\ & \mathrm{R}-13 \end{aligned}$	100,000 ohms $1 / 2$ watt, carbon 47 ohms $1 / 2$ watt, carbon	$\begin{aligned} & 23 \times 20 \times 104 \mathrm{~K} \\ & 23 \times 20 \times 470 \mathrm{~K} \end{aligned}$	Tol. on carb	on resistors -- M-20\%, $\mathrm{K}-10 \%$, J-5\%			Machine screw, focus coil adj. Cradle, kinescope mtg.	3A1143 67C1006
C-2,4	330 mmf . 500 V ., ceramic	47820331K5	R-101	33 ohms $1 / 2$ watt, carbon	${ }^{23 \times 20 \times 330 \mathrm{~K}}$					Spring, kinescope ground (Riveted to part 67C1006)	75B152
C-3,8	1500 mmf . 500 V. ., ceramic	${ }_{47 \mathrm{P}}^{47 \mathrm{~B} 20152 \mathrm{~K} 5}$	${ }_{\text {R-102 }}$	4700 ohms 1 watt, carbon	${ }_{2}^{23 \times 30 \times 472 \mathrm{~K}}$					Clamp, kinescope mtg.	76 C 474
$\left\lvert\, \begin{aligned} & C-5,6 \\ & C-7,10,12 \end{aligned}\right.$	1.5 mmf .500 V ., bakelite 500 mmf .500 V ., ceramic	47A160-3 47 B 20501 K 5	$\begin{array}{r} \mathrm{R}-104,107, \\ 111,130 \end{array}$	15,000 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 153 \mathrm{~K}$		TUBE COMPLEMENT			Anode lead support	758151
C-9.11	4.7 mmf . 500 V ., bakelite	47A160-6	R-105,110,	47 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 470 \mathrm{~K}$						
C-101,103,	$5000 \mathrm{mmf} .450 \mathrm{~V} .$, ceramic	47A168	180			V-1,2,3	Type 6J6: RF amp; mixer; and osc.	$90 \times 6 \mathrm{~J} 6$			
$\begin{aligned} & \text { 104,105, } \\ & 106,107, \end{aligned}$			$\begin{gathered} R-106,109 \\ 112,191 \end{gathered}$	150 ohms $1 / 2$ watt, carion	$23 \times 20 \times 151 \mathrm{~K}$	V-101,102,	Type 6AU6: 1st, 2nd and 3rd IF	$90 \times 6 \mathrm{AU6}$		CABINET PARTS	
108,109,			R-108,188	100 ohms $1 / 2$ watt, carbon	23x $20 \times 101 \mathrm{~K}$	103,108	amp; and audio IF amp.				
131,132			R-14,136,	22,000 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 223 \mathrm{~K}$	V-104,105,	Type 12AU7: video detector and	x12	TS-101	Antenna terminal strip	$88 \mathrm{A020}$
C-110,168	$5 \mathrm{mmf} 500 \mathrm{~V} .,$. ceramic	47820050K5	178			106	1st video amp; 2nd video amp.			Bracket, antenna terminal	67 A 1087
$\text { C-111,117, } \begin{gathered} 149,160 \end{gathered}$. 25 mifd .200 V ., tubular	46AT254J	$\mathrm{R}-117$ $\mathrm{R}-188,133$,	220,000 ohms $1 / 2$ watt, carbon 10,000 ohms $1 / 2$ watt, carbon	$\begin{aligned} & 23 \times 20 \times 224 \mathrm{~K} \\ & 23 \times 20 \times 103 \mathrm{~K} \end{aligned}$		and sync. separator; sync. amp. and 2nd sync. separator			strip mtg. Escutcheon, kinescope	
C-112	$22 \mathrm{mmf} .500 \mathrm{~V} .$, mica	$47 \times 20 \mathrm{~A} 220 \mathrm{~K}$	155,			V-107,113	Type 6SN7GT: vertical osc. and	$90 \times 6 \mathrm{SN7GT}$		(Model 518)	
C-113	. $05 \mathrm{mfd} .200 \mathrm{~V} .$, tubular	46AU503J	R-119,186	2200 ohms 1 watt, carbon	${ }_{23 \times 40 \times 472 \mathrm{~K}}^{23 \times 30 \times 20}$		amp; and horizontal osc.			Escutcheon, control panel	7D133
C-114	$56 \mathrm{mmf} .500 \mathrm{~V} .$, mica	${ }_{46 \text { AY104, }}^{47 \times 20 \mathrm{~S}}$ (${ }_{\text {R }}^{\text {R }}$ R-120, 2127,	4700 ohms 2 watts, carbon 1 megohm $1 / 2$ watt, carbon	${ }_{23 \times 20 \times 105 \mathrm{~K}}^{23 \times 40 \times 472 \mathrm{~K}}$	V-109	Type 6ALV: i -m detector	$90 \times 6 \mathrm{AV} 6$		(Model 518)	
$\left\lvert\, \begin{gathered} C-115,128 \\ 151 \end{gathered}\right.$. 1 mf . 600 V ., tubular	46AY104J	$\begin{array}{r} \mathrm{R}-122,127, \\ 132,143, \end{array}$	1 megohm $1 / 2$ watt, carbon	23x20x105K	$\mathrm{V}-111$	Type 6AQ5: audio output	$90 \times 6 \mathrm{~A} \mathrm{P}^{5}$		Glass, safety (Model 518)	${ }^{22 \mathrm{D} 268}$
C-116	. 02 mid. 600 V ., tubular	46AY203J	150			V-112	Type 5V4G: low voltage rectifier	$90 \times 5 \mathrm{~V} 4 \mathrm{G}$		tuning	
C-118,122	$.1 \mathrm{mfd} .200 \mathrm{~V} .$, tubular	46AU104J	R-123	2500 ohms WW.; PICTURE	25B790	V-114	Type 6BQ6GT: horizontal amp.	${ }_{90 \times 1 \mathrm{X} 2} 9$		Knob, HORIzONTAL	15B194
C-119,136,	. 01 mfd. 200 V ., tubular	46AU103J				$\begin{aligned} & \mathrm{V}-115 \\ & \mathrm{v}-116 \end{aligned}$	Type 1X2: high Type 6W4GT: damper	90×6		Knob, VOLUME \& PICTURE	15B196
137			R-124	330,000 ohms $1 / 2$ watt, carbon 27,000 ohms $1 / 2$ watt, carbon	${ }_{23 \times 20 \times 273 \mathrm{~K}}^{23 \times 20 \times 33 \mathrm{M}}$		Type 12LP4: kinescope	$90 \times 12 \mathrm{LP4}$		Knob, channel selector	15B197
C-120,157,	1000 mmf . 500 V ., mica	47X20A102M	$\mathrm{R}-125$ $\mathrm{R}-126,137$,	27,000 ohms $1 / 2$ watt, carbon 47,000 ohms $1 / 2$ watt, carbon	${ }_{23 \times 20 \times 473 \mathrm{~K}}$					Dust seal, rubber	16 Al 169
C-121,130	100 mmf . $500 \mathrm{~V} .$, ceramic	47B20101K5	153							Cabinet top (Model 518)	92 A 211
C-123,152	. $002 \mathrm{mfd} 600 \mathrm{~V} .$, tubular	$46 \mathrm{AZ202J}$	R-128	180,000 ohms $1 / 2$ watt, carbon	23X20×184M		ElLANEOUS			Cabinet bottom (Model 518)	92 E 210
C-124,125	. 005 mfd .200 V. , tubular	46AU502J	R-129	50,000 ohms, BRIGHTNESS	25A858					Front panel (Model 518)	68 D 146
C-126	4700 mmf. $500 \mathrm{~V} .$, mica			${ }_{4}^{\text {control }}$ (0000 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 4$		Electrical parts			Cabinet back (Model 518)	8 81010
C-127	$100 \mathrm{mfd} .250 \mathrm{~V} . ; 150 \mathrm{mfd}$. 50 V .; electrolytic	45B156	$\begin{gathered} \mathrm{R}-131,161, \\ 179 \end{gathered}$	470,000 ohms 1/2 watt, carbon	$23 \times 20 \times 474 \mathrm{M}$		Tuning unit assembly complete			Foot, rubber (Model 518) Shield, kinescope (Rear cover)	$\begin{aligned} & 16 \mathrm{~A} 150 \\ & 69 \mathrm{~B} 292 \end{aligned}$
$\left\lvert\, \begin{gathered} \mathrm{C}-129 \\ \mathrm{C}-133 \end{gathered}\right.$. 25 mfd .600 V ., tubular	$\begin{aligned} & 46 \mathrm{AX} 254 \mathrm{~J} \\ & 45 \mathrm{~A} 109 \end{aligned}$	$\begin{aligned} & \mathrm{R}-134 \\ & \mathrm{R}-135,147 \end{aligned}$	2200 ohms $1 / 2$ watt, carbon 2.2 megohms $1 / 2$ watt, carbon	$23 \times 20 \times 222 \mathrm{~K}$ 23 X 20 X 225 M	LS-101	Speaker assembly	85 C 098		(Model 518)	

INDEX

CHASSIS
RUN NUMBERS Ll100D

GENERAL SPECIFICATIONS

antenna. external or built in ANTENNA INPUT IMPEDANCE 300 OHMS TUNING 12 CHANNELS, $2-13$ POWER SUPPLYY 110-120 V, 60 CYCLES POWER INPUT. 235 WATTS SPEAKER . 10" PIM PICTURE CARRIER IF 26.25 MC SOUND CARRIER IF.................... 21.75 MC INTERCARRIER SOUND SYSTEM $\quad 4.5$ MC CABINET FINISH. 1067 MAHOGANY CABINET FINISH 27 RECTARE TUBE. 1068 BLOND TV TUNER 1E 1441 CASCODE Fig. 133A. Model 1067 (Mahogany)
E 1068 (Blonde)

TUBE COMPLEMENT

V 1. . . 6BK7 or 6BQ7	RF AMPLIFIER	V 109. . 6AU6	AUDIO I-F AMPLIFI
V 2 . . . 656	OSCILLATOR-MIXER	V 110..6AL5	AUDIO DETECTOR
V 101. . 6CB6	1ST I-F AMPLIFIER	V 111. *6AV6 or 6SQ7	T AUDIO AMP
V 102. . 6CB6	2ND I-F AMPLIFIER	V 112..6AQ5	AUDIO OUTPUT
V 103. . 6CB6	3RD I-F AMPLIFIER	V 113.. 6AX5GT	LV Rectifier
V 104. . 6AL5	VIDEO DETECTOR	V 114. . 5U4G	LV RECTIFIER
V 105. .6AH6	VIDEO AMPLIFIER	V 115. . 6SN7GT	ZONTAL OSCILLATOR
V-106.*12AU7 or 6SN7GT	SYNC AMP \& SEP	V 116. . 6 CD6	ORIz. A
V 107. . 6SN7GT	SYNC CLIPPER \&	V 117. . 6V3	DAMP
	VERTICAL OSC	V 118.. 1B3GT	Rec
108.. 6AV5	ERTICAL AMPLIFIER	V 119.. 27E	PICTURE T

* These tubes are not directly interchangeable. For socket wiring of each type refer to the Schematic Diagram. When
tube replacement is required use the same tube types found in the receiver chassis.
COMPARISON CHASSIS LIIOOD - Runs 1 \& 2
Runs 1 \& 2 of the L1100D Chassis are identical except for the voltage supply to the plate of V-111, the audio voltage amplifier, and the screen grid of $\mathrm{V}-112$, the audio output stage.
The connection between Pin 3 of CRL- 102 (the audio coupling networkj and Bplus and the connection betwen Pin of V-112 and the B plus are broken. Pin 3 of CRL- 102 and Pin 6 of V-112 are then connected together and then to - 158 R-186. C-140 (20 mfd., 450 V ., electrolytic) then is connected to B plus at the juncture of R-209, L-119, F-104, CRL-102 and Pin 6 of V-112, and the negative terminal to the chassis.

FOCUS: With the channel selector control tuned to a free channel, adjust the focus control until the lines of the raster are clearly visible. If this operation does not achieve proper focus, the whole PM focus assembly may be moved either backwards or forward by adjustment of the mounting bracket adjustment screws on each side of the rear tube support brackets. Retighten screws after adjustment

Fig. 458. Improper Heigh Control Setting

Fig. 45C. Improper Width

Fig. 450. Improper Horizontol Drive Control Setting

Adjust the height and width controls so that the picture fills out the dimensions of the screen. A slight readjustment of the centering control may then be necessary.
Adjust the horizontal drive by advancing the control clockwise until a vertical white line appears in the pattern as shown in Fig. 45D. Turn the control in the opposite direction a little further beyond the point at which the line disappears. If a white line does not appear leave the control set to the extreme clockwise position. If, after setting the drive control, the horizontal hold control on the front panel fails to restore synchronization it will be necessary to adjust the horizontal oscillator as described under "HORIZONTAL OSCILLATOR ADJUSTME NT".

Fig. 45F. Improper Vertical
Linearity Control Setting

REMOVAL OF THE PICTURE TUBE

. Remove the picture tube from the cabinet according to instructions above

2. Disconnect the anode plug (PL-105) from the side of the tube and short the plug to the chassis to insure discharge of the high voltage filter capacitor. Discharge the aquadag coating by shorting the anode contact of the tube to the outer tube coating
3. Remove the anode lead keeper by unhooking the attached springs.
4. Remove the tube socket from the base of the tube.
5. Remove the ion trap from the neck of the picture tube
. Remove the two rear support adjustment screws closest to the front of the picture tube
6. Loosen the two remaining rear support adjustment screws by nine complete turns each but leave them in place.
7. Loosen the three screws which hold the deflection yoke mounting bracket.
. Loosen the screws for the picture tube mounting strap
8. Remove mounting strap and rubber strip.
9. Carefully lift tube upward to clear picture tube stop brackets, raising the rear picture tube support to provid enough cearance for the neck. DO NOT FORCE NECK
10. Move tube forward gently until neck of tube emerges from deflection yoke and rubber collar. Slight twisting motion may be necessary to free neck from the rubber collar

INSTALLATION AND ADJUSTMENT OF THE PICTURE TUBE

1. With the tube in position so that the anode lead will be located on the right side when viewed from the front face place the rubber strip across the top and sides along the front rim of the tube
2. Slide the neck of the picture tube through the rubber collar and the deflection yoke
3. Seat the tube on the pad so that the face rests against the rubber stop pads, not the brackets for the pads
4. Place the mounting strap around the rubber strip and tighten the mounting strap screws.
5. Move the rear support so that the rubber collar rests firmly against and supports the cone of the tube. Tighten the rear support adjustment screws.
6. Tighten the three screws on the deflection yoke mounting bracket
7. Slip the ion trap over neck of tube.
board of the cabint, being careful to protest the tube. (The tube weighs about forty -five pous.)
OTE: If no suitable tool is available for loosening the two screws located under the main chassis in the limited clearance available, it will be necessary to remove the chassis. This can be done by pulling off the front knobs, removing the speaker plug, yoke plug, high voltage lead, ground wire lug (black wire) and removing the
 back and removed. It can then be replaced after the picture tube adjustment is made

WARNING!

picture tube handling precautions EXTREME CARE SHOULD BE USED IN REMOVING OR INSTALLING THE PICTURE TUBE. DO NOT FORCE
THE NECK OR GRASP THE TUBE BY THE NECK ALONE. THE DESTRUCTIVE EFFECTS OF IMPLOSION INCREASE WITH GREATER SURFACE AREA AND GREATER GLASS THICKNESS.
THE FORTY-FIVE POUND WEIGHT OF THIS TUBE MAKES IT ADVISABLE THAT ITS INSTALLATION OR REMOVAL BE A TWO-MAN OPERATION

Shatterproof goggles, heavy gloves, and protective clothing are recommended.
8. Connect the picture tube socket and anode plug (PL-105) and turn on receiver.

With the brightness control turned up, adjust the ion trap both ang the length of, and around, the neck of the tube Turn brightness control down as maximum point is approached.
10. With slightly more than normal brightness and the channel selector tuned to a free channel, adjust the focus control until the lines of the raster are most clearly visible. If good focus cannot be obtained in this manner loosen screws on PM focus mounting bracket, move this bracket forward or back and again adjust the focus contro lever. Tighten screws again when perfect focus is obtained.
11. Readjust the brightness control for normal brilliance and touch up ion trap setting.
12. Connect the antenna and tune in a test pattern, if possible.
13. Readjust the contrast control until different shades of the gray scale are clearly visible.
14. If the pattern is off center or shadowed at the corners, loosen the centering lock nut and adjust the centering lever Rotating this lever through the horizontal slot centers the picture vertically. For moving the picture to right or Rotating this lever through the horizontal slot centers the picture ved, loosen the screws to the right and left of the focus magnet. Retighten nut and screws after adjustment.
15. If the lines of the raster are not horizontal or square with the escutcheon, loosen the deflection yoke adjustment nut and rotate deflection yoke until proper raster position is obtained. Tighten thumb screw after adjustment properly adjusted pattern.

HIGH VOLTAGE WARNING

OPERATION OF THE RECEIVER CHASSIS OUTSIDE OF THE CABINET INVOLVES DANGER OF OPERATION OF SHOCK. EXERCISE ALL NORMAL HIGH VOLTAGE PRECAUTIONS WHEN WORKING WITH THIS RECEIVER.

Fig. 48A. 27" Tube Mounting Detai

pICTURE TUBE ANODE HIGH VOLTAGE MEASUREMENT

The second anode potential will be approximately 18,000 volts or higher in a receiver that is functioning prope it is possible to obtain good picture brilliance, the second anode potential is correct and need not be measured.

The setting of the horizontal drive control will affect the high voltage on the second anode. Instructions for setting this control are given in the section under the heading of "SERVICE ADJUSTMENTS".
it is necessary to measure the voltage present on the second anode, a meter specincally designed for high voltage measurements should be used. The contrast and brightness controls should be rotated to the minimum position and $\mathrm{L}-105$ should be connected to the picture tube. Under these conditions the test meter will load the high voltage power supply approximately the same amount as the picture tube would during normal operation.

SAFETY FIRST

O NOT USE hand held flextble Test lad when making second anode high voltage (NOT may cause a severe burn or in some cases be fatal

HORIZONTAL OSCILLATOR ADJUSTMENT

The horizontal hold control on the front panel fails to restore synchronization, the horizontal range adjustment should be reset. Procedure for this adjustment is as follows:

1. Turn the horizontal hold control to the full clockwise position. Adjust the horizontal range adjustment until a vertical bar appears in the pattern as shown in Fig. 49B.
2. Turn the horizontal hold control to the full counterclockwise position. Momentarily set the channel selector to an adjacent channel, and then return it to the original channel being used for adjustment. The resulting picture may or mar no
3. If more than four bars appear in step 2, repeat steps 1 and 2 .
4. Check the action of the front controls. If the horizontal oscillator is properly adjusted it should be possible to obtain a stable picture on all active channels.
If the above procedure fails to restore stable synchronization, make proper horizontal oscillator waveform adjustments with the aid of an oscilloscope as directed in the following steps.
5. Connect the oscilloscope as shown in Fig. 49A Adjust the tertiary waveform adjustment until the sine wave is equal in amplitude to the peak of the sawtooth as adjustment to keep the picture synchronized.

This adjustment is very important for correct opera tion of the circuit. If the broad peak of the wave (a seen on the oscilloscope) is lower than the sharp peakk, the noise immunity becomes poorer, the stabilizing oscillator becomes more serious.

On the other hand, if the broad peak is higher than the harp peak, the oscillator is overstabilized, the pull in range becomes inadequate and the broad peak ca control approaches the clockwise position.
. Remove the oscilloscope and repeat steps 1 and 2 if necessary.
7. Check the action of the front controls'and repeat the above steps as required to provide positive synchronization on all active channels.

TERTIARY WAVEFORM AD (UNDERSIDE OF CHASSIS)

OW CAPACITY RF CABLE (RG-59/U OR EQUIV.)

Fig. 49A. Oscilloscope Connection tor Horizontal Oscillator Alignment

I-F AMPLIFIER ALIGNMENT

TELEVISION CHANNELS vs. CARRIER, OSCILLATOR AND I-F FREQUENCIES

1. Connect a VTVM between test terminal (A) and the chassis. Refer to Fig. 52A or the schematic diagram for the particular chassis involved.
2. Connect the high side of a signal generator to the shield of the osc./mixer tube. This connection will capacitively couple the generator output to the tube. Make sure that the shield is ungrounded by raising it point near the base of the the it in place. Connect the ground return of the generator to any chassis
. Set the channel selector to any vacant channel.
3. Set the signal generator output (unmodulated) for a two volt dc reading on the VTVM and adjust the three i-f transformers, L-113, and L-52 according to the I-F AMPLIFIER ALIGNMENT CHART shown below. Readjust the signal generator output as required to maintain the two volt VTVM reading.

I-F AMPLIFIER ALIGNMENT CHART

Signal Generator Frequency (No Modulation)	Adjustment	Location	VTVM Indication
25.6 mc	T-102 (top)	See Fig. 52A	Maximum
23.1 mc	T-103 (top)	See Fig. 52A	Maximum
24.5 mc	T-104 (top)	See Fig. 52A	Maximum
21.75 mc	T-103 (bottom)	Under Chassis	Minimum
24.75 mc	${ }^{\text {L-113 }}$ (L-52	See Fig. 52A	Maximum
24.75 mc		See Fig. 52A	Maximum

* NOTE: Hold the channel selector between two channels when making this adjustment:
** NOTE: Return the channel selector to the normal position on any vacant channel and shunt the 4700 ohm Return the channel selector to the normal position on any vacant channel and shunt the 4700 ohm resistor after adjustment is completed.

5. After adjusting the 21.75 mc sound trap (bottom slug of $\mathrm{T}-103$), recheck the setting of the top core of $\mathrm{T}-103$. Note that the bottom core of T-103 is concealed by wax. Remove and save the wax. Aiter the bottom core has been adjusted, replace the wax and melt it with a soldering iron to secure the core so that the setting will not change when the chassis is subjected to normal operating conditions.
6. Tune the signal generator from 21 mc through 26.25 mc and observe the change in indication on the VTVM. If the generator output is set to the level where a 1.5 volt meter reading is obtained at the peak i-f amplifier response, the reading should not drop below one volt between the two peaks normally obtained with this i-f tions of the re band-pass response istain the desired results. Avoid resonating or try slight modiricacore at the bottom end of the coil form (adjustment screw near the outer limit of its travel). Final adjustments can be made much more easily if a sweep type signal generator and oscilloscope are used.
7. Check the two carrier i-f responses of 21.75 mc and 26.25 mc . The 21.75 mc response will be approximately 26 db below the peak response (approx. 0.075 volt) and the 26.25 mc response will fall approximately mately 26 db below the peak response (approx. 0.075 volt) and the
6 db below the peak, (approx. 0.75 volt). Refer to Fig. 54A.
o determine the i-f amplifier sensitivity, connect a signal generator to the osc./mixer tube as directed in step 2 above. Set the generator frequency to either i-f peak. If a generator output of 800 to 1500 microvolts. produces a
one volt dc reading on a VTVM connected between terminal (A) and ground, the $i-f$ amplifier sensitivity is normal.

Channel No.	Channel Freq. (mc)	Picture Carrier Freq. (mc)	Sound Carrier Freq. (mc)	Receiver Osc. Freq. (mc)	Picture I-F Freq. (mc)	Sound I-F Freq. (mc)	Picture I-F less Sound I-F (mc)
2	$54-60$	55.25	59.75	81.5	26.25	21.75	4.5
3	$60-66$	61.25	65.75	87.5	26.25	21.75	4.5
4	$66-72$	67.25	71.75	93.5	26.25	21.75	4.5
5	$76-82$	77.25	81.75	103.5	26.25	21.75	4.5
6	$82-88$	83.25	87.75	109.5	26.25	21.75	4.5
7	$174-180$	175.25	179.75	201.5	26.25	21.75	4.5
8	$180-186$	181.25	185.75	207.5	26.25	21.75	4.5
9	$186-192$	187.25	191.75	213.5	26.25	21.75	4.5
10	$192-198$	193.25	197.75	219.5	26.25	21.75	4.5
11	$198-204$	199.25	203.75	225.5	26.25	21.75	4.5
12	$204-210$	205.25	209.75	231.5	26.25	21.75	4.5
13	$210-216$	211.25	215.75	237.5	26.25	21.75	4.5

IE1441 SUPERDYNAMIC TV TUNER ALIGNMENT (ANT. \& RF CIRCUITS)

The tuner was carefully aligned at the factory and should not require complete realignment under normal operating conditions. A slight readjustment of the individual oscillator slugs may be required as the tubes in the tuner age or are replaced. In some rare cases it will be necessary to realign the tuner after replacing either of the two tubes. If any service work is performed on the tuner, realignment may or may not be required. NO ATTEMPT TO REALIGN THE TUNER SHOULD BE MADE UNTIL THE BALANCE OF THE TV RECEIVER IS KNOWN TO BE
IN PROPER OPERATING CONDITION AND IS PROPERLY ALIGNED.

EQUIPMENT REQUIRED

1. Sweep generator covering all 12 television channels.
2. Marker generator covering the same range as the sweep generator.
3. Oscilloscope.
4. Vacuum tube voltmeter (VTVM)

SET-UP PROCEDURE

1. Set the CHANNEL SELECTOR switch to channel 12.
2. Connect the oscilloscope through a $10,000 \mathrm{ohm}$ resistor to test point TP-9. (See Schematic Diagram and Fig. 56A).
3. Connect the negative pole of a 3 volt dry battery to the terminal where the delayed AGC lead (white wire) from the tuner is connected. Connect the positive pole of the dry battery to the receiver chassis. (See Schematic Diagram).
4. Set the FINE TUNING control at the approximate mapoint of its tuning range.
5. Connect the sweep generator to the antenna terminals and adjust the output to sweep channel 12.
6. Loosely couple the output from the marker generator to the antenna terminals. Use the minimum amount of coupling and signal from the marker generator required to give a good marker or pip on the oscilloscope PICTURE pattern.

ANTENNA AND RF CIRCUIT ALIGNMENT

7. Adjust C-13, C-3 and C-6 for a flat-top response curve and maximum gain. Check markers on all channels. They should fall in automatically on each channel. Correct marker frequencies for each channel are given in the Picture Carrier and Sound Carrier columns of the chart. Refer to Fig. 56B.
8. Disconnect the battery used to obtain negative bias.
9. Disconnect the test equipment and air check the receiver on all active channels. If it is possible to receive a normal picture on all active channels by adjusting the FINE TUNNG control, further alignment will not be necessary.

$1 E 1441$ SUPERDYNAMIC TV TUNER ALIGNMENT (OSC. CIRCUIT)

1. Set the FINE TUNING control at the approximate midpoint of its tuning range.
2. Place a non-metallic screwdriver through the openings provided in the front of the chassis and the tuner as sembly and adjust the oscillator coil slug for each active channel to give the best possible picture.

Fig. 56A. Top View Alignment Adjustments for TV Tuner with L-52 \& L-113 Coupling Circuit

TYPICAL OSCILLOSCOPE PATTERNS FOR LIIOOD CHASSIS

The patterns given on the following pages are presented as a guide when using an oscilloscope to locate trouble in the video amplifier, sync., horizontal oscillator, horizontal output, vertical oscillator, and vertical output stages of the iv receiver.

Considerable variation may be noted in the amplitude and shape of some of the various waveforms from one receiver to the next. As long as the waveform obtained from the receiver under test contains the same general characteristics as those shown in the illustrations and the relative amplitude is within approximately 25% of the peak to peak voltage or relative amplitude shown below each waveform the pattern obtained may be assumed to be correct. The patterns are observed with the tv receiver tuned to an active channel and the controls adjusted for the best possible picture.

The waveforms shown in the illustrations were obtained on a Dumont type 304 oscilloscope which was used in conjunction with a low capacity 10 to 1 probe such as the Tel-Instrument Co. type 1610. Other types of oscilloscopes will account for a certain amount of variation in the amplitude and shape of the patterns obtained from the actual receiver under test. A low capacity probe must be used in order to obtain satisfactory results.

With the exception of the test pattern obtained across the vertical yoke all patterns are taken with the ground side of the oscilloscope connected to the ground or chassis of the tv chassis and the 10 to 1 probe connected to the specific points in the tv chassis as specified by each pattern.

The patterns obtained from the horizontal amplifier plate, damper cathode, and the high voltage rectifier tube must be he prved by means of the high voltage probe which is made from a type $1 \times 2-\mathrm{A}$ tube as shown in Fig. 60A. The tube is used as a high voltage coupling capacitor. Use a new tube for this application because the loose filament of a burned out one may touch the plate. These patterns are also shown with their relative amplitudes indicated with respect to the pattern obtained at the cathode (topcap) of the damper tube, $\mathrm{V}-118$, which is given a unit value of one.

At certain points throughout the tv receiver the oscilloscope pattern obtained will be dependent upon the frequency of the horizontal sweep oscillator in the oscilloscope. The oscilloscope sweep frequency must be either 30 cps ($1 / 2$ o the tv vertical oscillator frequency) or 7875 cps ($1 / 2$ of the tv horizontal oscillator frequency) depending upon the pattern desired. The sweep frequency required to obtain the patterns shown is given with each pattern

VIDEO AMPLIFIER

V-105 Video Amp. plate (Pin 5) Adjust the contrast control to give a 40 volt peak t peak reading.

220

Input to Vertical
Integrating Network Cathode Ray Tube
(Junction of R-131, V-119 grid (Pin 2)
C-193, \& R-129)

VERTICAL OSCILLATOR AND VERTICAL AMPLIFIER

V-107 Vert. V-107 Vert. $\begin{array}{ll}\text { Osc. grid (Pin 4) } & \text { Osc. plate (Pin 5) }\end{array}$

V-108 Vert. V-108 Vert.
Amp. grid (Pin 1) Amp. plate (Pin 5)
SYNC. AMPLIFIER, SEPARATOR AND CLIPPER (Cont)

V-106 Sync. V-107 Sync. Sep. plate ($\operatorname{Pin} 6$) Clipper Plate ($\operatorname{Pin} 1$)

92 c 1
${ }_{9}^{92(1500} 1$

SYNC. AMPLIFIER SEPARATOR AND CLIPPER

V-106 Sync.
Amp. grid (Pin 2)

22150

John F. Rider

©John F. Rider

MODELS 1067, 1068, Ch. L1100D, Runs 1, 2

John F. Rider

INDEX

Fig．109A．Model 1010P，Mahogany

RUN NUMBER ．．．．．I FOR ALL CHASSIS
GENERAL SPECIFICATIONS
antenna
External or built in
ANTENNA INPUT IMPEDANCE ．．．．．． 3 300 OHMS
TUNING ．．．．．．．．．．．． 12 ChANNELS， $2-13$
POWER SUPPLY ．．．．．．．．．．110－120 V．， 60 CYCLES

fig．IllA．Model 1012 P，Mahogany

Fig．113A．Model 1021P，Mahogany

Fig．115A．Model 1026P，Mahogany
CHASSIS ，D or X1200D RUN NUMBER

GENERAL SPECIFICATIONS

antenna．
EXTERNAL OR BUILT IN
ANTENNA INPUT IMPEDANCE SILVER VORTEX
ANTENNA INPUT IMPEDANCE ．．．．． 300 OHMS
POWER SUPPLY ．．．．．．．．．．．．110－120 V．， 60 CYCLES

POWER INPUT
TUBES．
SPEAKER．
SPEAKER． 1021.9
PICTURE CARRIER IF
OUND CARRIER IF
CABINET FINSH SOUND SYSTEM ．$\quad . . \begin{array}{r}26.75 \mathrm{M} \\ 21.25\end{array}$
PICTURE TUBE ．．．．． 20 RECTANGMABOGANY
WITH ELECTROSTATIC FOCU

Model 1021P TUBE COMPLEMENT
$\mathrm{v}-1016 \mathrm{CB} 6$ V－102 6CB6
V－103 6 6B6 v－103 6CB6
$\mathrm{v}-104$ 6AH6
$\begin{array}{cc}\mathrm{V}-105 & 12 \mathrm{SNFTGT} \text { or } \bullet \text { 6SN7GT }\end{array}$ $\mathrm{V}-107$ 6AL5．

The 1B3GT tube may be replaced by
removing the chassis from the cabinet．
－Used only in L1200D Chassis．

R－FAMPLIFIER	V－108	6SN7GT．	horizontal oscillator
OSCLLLATOR／MLXER	V－109	25BQ6GT or ${ }^{-6 \mathrm{~B}}$	Q6GT HORIZONTAL OUTPUT
FIRST I－F AMPLIFIER	V－110	12AX4	DAMPER
SECONDI－FAMPLIFIER	$\mathrm{V}-111$	＊183GT	high voltage rectifier
THIRD I－F AMPLIFIER	V－112	6AU6	SOUND I－F AMPLIFIER
VIDEO AMPLIFIER	V－113	6AL5	Ratio detector
SYNC CLIPPER	$\mathrm{V}-114$	6C4	AUDIO AMPLIFIER
．VERT．OSC．\＆OUTPUT	$\mathrm{V}-115$	25L6GT／G or 06 W 6	AUDIO OUTPUT AMPLIFIER
HORIZONTAL A．F．C．	V－116	17HP4	．PICTURE TUBE
ced by removing the cabine cabinet．	ttom	and the high voltage	compartment shield without

OJohn F. Rider

Fig. 139A. Model 1062C, Mahogany

CHASSIS J1200D
RUN NUMBER . 1

GENERAL SPECIFICATIONS

POWER SUPPLY
POWER INPUT
TUBES.
SPEAKER
PICTURE CARRIER IF
SOUND CARRIER IF
INT ERCARRIER SOU CABINET FINSH picture tube
TV TUNER.

110-120 V., 60 CYCLES 18........ 145 WATTS 18, INCLUDING PIX TUBE
8' $^{\prime \prime}$ ELECTRODYNAMC $8^{\prime \prime}$ ELECTRODYNAMIC $8^{\prime \prime}$ ELECTRODYNAMIC
.... .26 .25 MC MAHOGANY 21" RECTANGULAR GLASS with electrostatic focus 1E1380 CASCODE
v-1 *6BQ7.
$\begin{array}{ll}\mathrm{V}-2 & * 6 \mathrm{~J} 6 . \\ \mathrm{v}-101 & 6 \mathrm{CB6}\end{array}$
$\mathrm{V}-102$ 6CB6
$\mathrm{v}-103$ 6CB6.
$\mathrm{v}-104$
VAH
$\mathrm{V}-104$ 6AH6.
$\mathrm{V}-105$ 6SN7GT
$\begin{array}{ll}\text { - } 105 & \text { 6SN7GT } \\ \mathrm{v}-106 & 12 \mathrm{BH} 7 .\end{array}$
V-107 6AL5.

External or built in 300 OHMS 12 Channels, $2-13$

TUBE COMPLEMENT

F AMPLIFIER OSCLLLATOR/MLXER FIRST I-F AM PLIFIER SECOND I-F AMPLIFIER THIRD I-F AMPLIFIER VIDEO AMPLIFIER
SYNC CLIPPER ERT. OSC. \& OUTPUT HORIZONTAL A.F.C

V-108 6SN7GT -109 6BQ6GT $V-110 \cdot 12 A X 4$ $\mathrm{V}-111$ *183GT v-112 6AU6. $\mathrm{V}-113$
$\mathrm{~V}-114$
6AL
6C4 $\begin{array}{ll}\mathrm{V}-114 & 6 \mathrm{C} 4 . \\ \mathrm{V}-115 & 6 \mathrm{~W} 6 .\end{array}$ v-116 21MP4

HORIZONTAL OSCILLATOR horizontal output DAMPER h voltage rectifier OUND I-F AMPLIFIER RATIO DETECTOR UDIO OUTPUT AMPLIFIER .PICTURE TUBE

These tubes may be replaced by removing the cabinet bottom without removing the chassis from the cabinet. Remove the high voltage compartment shield to replace $\mathrm{V}-111$

CHASSIS Pl200D
RUN NUMBER 1
GENERAL SPECIFICATIONS
ANTENNA.
EXTERNAL OR BUILT IN
ANTENNA INPUT IMPEDANCE
SILVER VORTEX
OJohn Rider

POWER SUPPLY
 POWER INPUT

 TUBES. . SPEAKERICTURE CAPDIER if
NT ERCARRIER SOUND SYSTE CABINET FINISH CICTURE TUBE
TV TUNER

10-120 V., 60 CYCLES
8 including 145 WATTS 8, IN LLUDNG PL TUBE $6 \frac{1}{2}$ " ELECTRODYNAMIC $\because 21.75 \mathrm{MC}$ BROWN, EBONY PLASTIC WITH RECTANGULAR GLASS wITH ELECTROSTATIC FOCUS

CHASSIS R1200D RUN NUMBER

GENERAL SPECIFICATIONS
ANTENNA. EXTERNAL OR BUILT IN
SILVER VORTEX

$$
\text { ANTENNA INPUT IMPEDANCE . . . } 2 \text { CHANNEIS } 300 \text { OHMS }
$$

$$
\text { ANTENNA } 12 \text { CHANNELS, } 2-13
$$

Fig. 127A. Model 1053P, Mahogany

TUBE COMPLEMENT

\(\begin{array}{ll}\mathrm{V}-1 \& 6 \mathrm{BC5}
\mathrm{~V}-2 \& 6 \mathrm{~J} 6 .\end{array}\) $\mathrm{V}-101 \quad 6 \mathrm{CB6}$ \(\begin{array}{ll}\mathrm{V}-102 \& 6CB6
\mathrm{V}-103 \& 6CB6\end{array}\) -103 6CB6. -105 12SN7GT 12BH7 6AL5... 25BQ66GT 12AX4. 1R3GT. 183GT. 6AL5 6C4. -116 17HP4/

OSCILLATOR/MIXER FIRSTI-F AMPLIFIER THIRD I-F AMPLIFIER VIDEO AMPLIFIER ... SYNC CLIPPER VERT. OSC. \& OUTPUT
HORIZONTAL A.F.C HORIZONTAL OSCLLA.F.C HORIZONTAL OUTPUT high voltage rectifie SOUND I-F AMPLIFIER RATIO DETECTOR

POWER SUPPLY TUBES.
SPEAKER
PICTURE CARRER I
SOUND CARRIER IF
INT ERCARRIER SOUND SYSTEM26.25 MC CABINET FINISH BLONDE MAHOGANY PICTURE TUBE 21" RECTANGULAR GLASS OR METAL WITH ELECTROSTATIC FOCUS

Fig. 129A. Model 1054P, Blonde

v-1	6BC5
V-2	6 J 6
V-101	6CB6
V-102	6CB6
V-103	6CB6
V-104	6AH6
V-105	12SN7CT
V-106	12BH7
V-107	6A

v-107 6AL5
horizontal oscillato HORIZONTAL OUTPUT
High voitac. DAMPER
SOUND I RECTIFIER
RND I-F AMPLIFIER
RATIO DETECTOR
AUDIO OUTPUT AMPLIFIER
21MP4 PICTURE TUBE
bint
the high volt may be replaced by removing the cabinet b

OJohn F. Rider

CHASSIS IDENTIFICATION

A chassis stamp, located on the right side of the rear apron of the chassis, provides the necessary information to identify the chassis and thereby determine the applicable service data and schematic diagram. The first letter of this chassis stamp indicates the chassis type and the number with letter suffix designates the chassis series. A production run number is stamped directly below or to one side of the chassis identification stamp. At the start of production, chassis are stamped RUN 1. Whenever a major production change is made in the chassis, the run number changes to the next higher number

CHASSIS NO.	MODELS CHASSIS MAY BE USED IN
A1200D, K1200D or W1200D	1010P, 1012P
D1200D. L1200D or X1200D	$1021 \mathrm{P}, 1026 \mathrm{P}$
F1200D	1013 C
G1200D	$1022 \mathrm{C}, 1027 \mathrm{C}$
J1200D	$1062 \mathrm{C}, 1063 \mathrm{C}$
P1200D	$1051 \mathrm{P}, 1052 \mathrm{P}$
R1200D	$1053 \mathrm{P}, 1054 \mathrm{P}$
T1200D	$1055 \mathrm{C}, 1056 \mathrm{C}, 1060 \mathrm{C}, 1061 \mathrm{C}$
Y1200D (with UHF)	$1058-\mathrm{U}$
Z1200D (with UHF)	$1057-\mathrm{U}$

COMPARISON OF 1200 SERIES CHASSIS

The A1200D may be considered the basic chassis in the series 1200 chassis. The $\mathrm{D}, \mathrm{F}, \mathrm{G}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{P}, \mathrm{R}, \mathrm{T}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z1200D chassis are all based on the A1200D chassis with any one or more of the, modifications shown on the follow ing pages. See chart below for modifications used in any particular chassis.

COMPARISON CHART FOR 1200 SERIES

CHASSIS	PIX TUBE SIZE See Modification I	HEATER CIRCUIT See Modification IV	TUNER TYPE See Modification VII	MODIFICATIONS USED and/or NOTES FOR RUN 1
A1200D	17" glass	Series-parallel	1 C 1345 Pentode	Basic 1200 series chassis.
D1200D	20"glass	Series-parallel	1 C 1345 Pentode	1 except step D \& II
F1200D	17" glass	Transformer	$1 \mathrm{C1376}$ Cascode	II, III, IV, VI \& VII
G1200D	20" glass	Transformer	1 C 1376 Cascode	I, II, IV, VI \& VII On some chassis, $\mathrm{R}-181$ is 270,000 ohms and R-194 value is 100,000 or 120,000 ohms.
J1200D	21" metal	Transformer	1 E1380 Cascode	I, IV, VI, VII, Lx, X, XI, XII \& XIV*
K1200D	17" glass	Transformer	1 C 1345 Pentode	IV \& V
L1200D	20" glass	Transformer	1 C 1345 Pentode	I except step D, II, IV \& V
P1200D	17" glass	Series-parallel	$1 \mathrm{C1345}$ Pentode	vi, x \& X
R1200D	21" metal or glass	Series-parallel	1C1345 Pentode	I, vi, vili, $\mathrm{x}, \mathrm{x}, \& \mathrm{XIV}^{*}$
T1200D	21" metal	Transformer	1C1376 Cascode	I, IV, VI, VII, VIII, IX, X, XII \& XTV*
W1200D	17" glass	Series-parallel	1 C 1345 Pentode	II \& VI
X1200D	20" glass	Series-parallel	1 C 1345 Pentode	$\mathrm{I}, \mathrm{II} \& \mathrm{VI}$
Y1200D	17" glass	Transformer	1E1483 VHF Cascode \& 1 E1484 UHF	IV, VI, IX, X, XIII \& XIV \quad *
Z1200D	21" metal	Transformer	1 E1483 VHF Cascode \& 1 E1484 UHF	

Modification XIV will be found only in J, R, \& T1200D chassis which have a RUN 1A chassis stamp
Only Run 1A and later Z1200D chassis have modifications X and XIV
See page 33 for changes in Runs 2, 3, 4 and 5 of the Y1200D and Z1200D UHF chassis.

DIFICATION IV			
COMPARISON OF 1200 SERIES CHASSIS (Cont.)		LOCATION OF CHANGE	CHANGE MADE
LIST OF MODIFICATIONS		A. Between power line and Damper heater pin 8	190 ohms cold/ 19 ohms hot, 5 watts negative temperature coefficient resistor ($\mathrm{R}-143$) deleted.
MODIFICATION I		B. Heater string shunt	80 ohms, 10 watts, 5% resistor (R-144) deleted.
To change from a 17 inch to a 20 or 21 inch picture tube the following changes are made:		C. Heater string shunt D. Heater string choke	42 ohms, 3 watts, 5% resistor (R-145) deleted.
		E. First I.F. Amplifier heater bypass	4000 mmf . dual disc ceramic capacitor (C -104) deleted.
LOCATION OF CHANGE	CHANGE MADE	F. Ratio Detector heater bypass	5000 mmf . disc ceramic capacitor ($\mathrm{C}-106$) deleted.
A. High side of Horizontal Hold control	82,000 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-178$) added.	H. 4.5 MC Amplifier heater bypass	5000 mmf . disc ceramic capacitor ($\mathrm{C}-159$) deleted.
		J. Sync. Clipper V-105	Auto transformer T-110 (52C258) added.
B. Plate (pin 2) circuit of Horizontal	220,000 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-179$) added.	K. Horizontal Output V-109	25BQ6GT tube replaced by 6BQ6GT tube.
		L. Audio Output V-115	25L6GT tube replaced by 6W6 tube.
C. Plate supply decoupling of Horizontal Oscillator (pin 2)	. 1 mfd ., 600 v . paper capacitor ($\mathrm{C}-162$) added.	M. Audio Output tube socket wir ing	Cathode pin 8 connected directly to heater pin 7 to place both heater and cathode at the same potential.
D. Plate supply decoupling of Horizontal Oscillator (pin 2)		MODIFICATION V	
	180,000 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-194$). The bottom of $\mathrm{R}-194$ is returned to terminal 1 of T-109.	LOCATION OF CHANGE	CHANGE MADE
E. Plate (pin 2) circuit of Horizontal Oscillator	4700 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-157$) replaced by 8200 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-180$).	A. Integrating network in Vert. Osc. grid circuit	$\begin{aligned} & 22,000 \text { ohms, } \frac{1}{2} \text { watt resistor (} R-133 \text {) replaced by } \\ & 47,000 \text { ohms, } \frac{1}{2} \text { watt resistor }(R-183) . \end{aligned}$
F. Plate (pin 2) circuit of Horizontal Oscillator		B. AGC divider network in Sync. Clip. plate circuit	3300 ohms, $\frac{2}{2}$ watt resistor ($\mathrm{R}-132$) replaced by 2200 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-184$).
	470 mmf . silver mica capacitor (C-145) replaced by 390 mmf . silver mica capacitor ((C-163).	C. $\begin{aligned} & \text { Horizontal } \\ & \text { resistor }\end{aligned}$	$1200 \mathrm{ohms}, \frac{1}{2}$ watt resistor ($\mathrm{R}-153$) replaced by 1500 ohms , $\frac{1}{2}$ watt resistor ($\mathrm{R}-185$).
G. Horizontal Output stage grid coupling	5000 mmf . disc ceramic capacitor ($\mathrm{C}-146$) replaced by	D. Horizontal Oscillator plate circuit (pin 2)	4700 ohms, $\frac{2}{2}$ watt resistor ($\mathrm{R}-157$) replaced by 8200 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-180$).
		E. Horizontal Oscillator plate circuit (pin 2) $\overline{\text { F. Horizontal Oscillator Adjustment }}$	470 mmf . silver mica capacitor ($\mathrm{C}-145$) replaced by 390 mmf . silver mica capacitor (C-163).
H. Horizontal Output stage grid leak	330,000 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-158$) replaced by 390,000 ohms, $\frac{1}{2}$ watt resistor ($R-181$).		Test point (A) removed and the Horizontal Oscillator Adjustment procedure changed. See page 1952-78.
1. Horizontal Output stage screen bypass	10,000 ohms, 2 watts resistor ($\mathrm{R}-182$) added.	IFICATION VI	
J. Horizontal Output stage screen resistor		This modification is composed of MODIFICATION V plus the following changes:	
K. Horizontal Output stage output transformer	Horizontal output transformer T-106 (55D193) replaced by	LOCATION OF CHANGE	CHANGE MADE
L. Servo Loop feedback from Horizontal Output to AFC tube	Two 150,000 ohms, 1 watt resistors ($R-151 \& R-152$) series connected replaced by 33,000 ohms, 1 watt resistor ($R-177$).	A. Sync. Clipper plate circuit (pin 2)	680,000 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-127$) replaced by 1.2 megohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-190$).
M. Series capacitor in doubler power supply	$140 \mathrm{mfd} ., 150 \mathrm{v}$. electrolytic capacitor ($\mathrm{C}-135$) replaced by $200 \mathrm{mfd} ., 150 \mathrm{v}$. electrolytic capacitor ($\mathrm{C}-161$).	B. Sync. Clipper grid leak (pin 4)	22,000 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-130$). replaced by 47,000 ohms, $\frac{1}{2}$ watt resistor $(\mathrm{R}-191)$.
N. Audio voltage amplifier cathode resistor	1500 ohms, $\frac{1}{2}$ watt resistor ($R-169$) replaced by 1200 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-176$)	D. Sync. Clipper plate (pin 5) circuit supply E. Sync. clipper plate (pin 5) circuit	10,000 ohms, 1 watt resistor ($\mathrm{R}-192$) added.
O. Speaker	Speaker with field coil resistance of 85 ohms replaced by speaker with field coil resistance of 61 ohms	F. Sync. Clipper plate (pin 5) circuit supply	10 mfd ., 150 v . electrolytic capacitor ($\mathrm{C}-169$) added.
MODIFICATION II		G. AGC Control Switch	Switch S-102 (60B500) replaced by S-103 (60B507).
The 75 mmf ., 500 V . ceramic capacitor ($\mathrm{C}-1$ $\mathrm{v}-108$, is replaced by a 100 mmf ., $500 \mathrm{v} . \mathrm{s}$ $\mathrm{C}-170$. The 100 mmf . capacitor, $\mathrm{C}-170$, is) connected from plate pin 5 to ground of the Horizontal Oscillator, ver mica capacitor (C-170). Some chassis have neither C-142 or preferred capacitor.	MODIFICATION VII To use a 1C1376 Cascode tuner in place	1C1345 Pentode tuner the following changes are made:
MODIFICATION III The horizontal integrating network in the grid circuit (pin 4) of the Horizontal Oscillator is changed as follows: A. 4.7 megohms, $\frac{1}{2}$ watt resistor ($R-149$) is replaced by 470,000 ohms, $\frac{1}{2}$ watt resistor ($R-189$). B. . 003 mfd ., 400 v . paper capacitor ($\mathrm{C}-139$) is replaced by .005 mfd ., 400 v . paper capacitor ($\mathrm{C}-167$). C. $.01 \mathrm{mfd} ., 400 \mathrm{v}$. paper capacitor ($\mathrm{C}-141$) is replaced by .05 mfd ., 400 v . paper capacitor ($\mathrm{C}-168$).		A. The 1 C 1345 Pentode tuner is removed and replaced by the 1 C 1376 Cascode tuner. These two tuners do not have the same terminal connections. Refer to schematic diagram. The 1 C 1376 Cascode tuner may be used only with chassis which have a heater transformer. B. A wire to supply 260 volts $d-c$ is added between tuner terminal 4 of the Cascode tuner and the junction of R-120 (33,000 ohms, 1 watt, the video amplifier screen resistor) and the 260 volt " B " supply. FICATION VIII	
		Whenever the picture tube used has a metal cone which eliminates the high voltage filter capacitor built into tubes with an outer aquadag coating, C-166 ($500 \mathrm{mmf} .20,000$ volts) is required between pin 7 and ground of the 1B3GT high voltage rectifier. Resistor R-210 (1 megohm 1 watt) was added in series with the anode lead on some chassis with metal cone picture tubes.	

MODIFICATION IX

A. A deeper chassis with a depth of $33 / 4^{\prime \prime}$ instead of $3^{\prime \prime}$ is used
B. The tuner, three i-f amplifiers, video detector, video amplifier, 4.5 MC amplifier and the ratio detector are mounted on a separate sub-chassis
C. Test socket SO-101 is deleted.

The 6C4 audio amplifier tube, $\mathrm{V}-114$, is moved to a new location slightly forward and to one side of the vertical output transformer.

MODIFICATION X

The horizontal stabilizer coil L-108 (55B1536) is replaced by coil 51 B 1642 and its mounting plate 63A902. When coil $51 \mathrm{B1642}$ is used for $\mathrm{L}-108$, plate 63 A 902 must also be used and either $\mathrm{C}-142$ (75 mmf .) or $\mathrm{C}-170$ (100 mmf .)
connected between pin 5 of the horizontal oscillator and ground is deleted. Coil 51 B1642 is preferred. However, the 55B1536 coil will be found in some chassis. Use coil 51B1642 and plate 63A902 for replacement purposes.

To use a 1E1380 Cascode tuner in place of the 1C1345 Pentode tuner the following changes are made:
A. The 1C1345 Pentode tuner is removed and replaced by the 1C1380 Cascode tuner. The 1E1380 tuner does not have terminal lugs on the back. The wire leads from this tuner must be connected to the correct points in the chassis as shown in the schematic diagram. The 1 E 1380 tuner also requires a supply voltage of
approximately 250 volts as shown in the schematic diagram. The 1 E 1380 tuner may be used only with $3 / 4^{\prime \prime}$ approximately 250 volts as shown in the schem
B. Resistor R-101 (100,000 ohms, $\frac{1}{2}$ watt) in the A.G.C. bus is not required

MODIFICATION XII

The vertical and horizontal hold controls are moved from the rear apron of the chassis to a removable plate mounted on the front apron of the chassis.

MODIFICATION XII

A 16 position VHF Cascode tuner (1E1483) is used along with the 1E1484 UHF tuner. At the same time, the i-f frequency is shifted to a higher frequency covering .41 .25 MC to 45.75 MC instead of 21.75 MC to 26.25 MC . The associated circuit changes are easily identified in the schematic diagram by the schematic symbols in the 200 catagory which were assigned to those components required to make this change in i-f frequency

MODIFICATION XIV

To improve vertical and horizontal sync particularly under extreme fringe area receiving conditions the following changes will be found in chassis which have a RUN 1A chassis stamp except the Y1200D which has this change in RUN 1.
A. 10,000 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-124$) replaced by 22,000 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-195$).
B. 470,000 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-125$) replaced by 220,000 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-196$)
C. 47,000 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-183$) replaced by 33,000 ohms, $\frac{1}{2}$ watt resistor ($\mathrm{R}-197$).
D. ${ }^{22} \mathrm{mmf} .500 \mathrm{~V}$., ceramic tubular capacitor ($\mathrm{C}-124$) - replaced by 47 mmf .500 V ., ceramic tubular capacitor
E. 1000 mmf .500 V ., ceramic disc capacitor ($\mathrm{C}-171$) added between pin 5 and ground of the 12AX4 damper

CHANGES FOR RUN 2 OF THE Yl200D \& ZI200D CHASSIS

1. A 100 ohm $\frac{1}{2}$ watt resistor ($\mathrm{R}-211$) was added in series with the +B bus feeding $\mathrm{V}-101$ and the tuner
2. A $\mathbf{1 0 0 0} \mathrm{mmf}$. ceramic disc capacitor ($\mathbf{C}-176$) was added between the power supply side of $\mathbf{R}-211$ and ground.

A 1000 mmf . ceramic disc capacitor (C-175) was added between the power supply side of R-209 and ground. The other side of R-209 is connected to pin 10 of the VHF tuner.
4. The UHF input coil in the VHF tuner ($\mathrm{L}-1$ in the schamctics) was made adjustable by either one of two methods. The first method used was to insert a small self-supporting coil in series with the co-axial cable from the UHF The next method used consisted of replacing L-1 in the VHF tuner with a coil having an adjustable iron core.
5. Capacitor C-308 (100 mmf . ceramic tubular) at the UHF tuner end of the co-axial cable between the UHF and VHF tuners had an additional 120 mmf . ceramic tubular capacitor connected in parallel with it. The value of this additional parallel capacitor was varied in some chassis in order to obtain the desired bandwidth in this coupling circuit. If replacement is necessary be sure to use a capacitor with the same value as the one found
CHANGES FOR RUN 3 OF THE YI200D \& ZI200D CHASSIS
Changes 1 through 5 shown above for the Run 2 changes were incorporated except that in change 4 the only coil used for $\mathrm{L}-1$ had an adjustable iron core
Heater choke (L-205) was inserted in series with the brown heater lead to the UHF tuner
Pin 9 of the VHF tuner was by-passed by a 1000 mmf . ceramic disc capacitor C-178.
4. The position of $\mathrm{R}-207$ (100 ohms 1 watt) was changed so that the plate current for the VhF tuner, $V-101$ and $\mathrm{V}-102$ flows through it instead of the plate current for $\mathrm{V}-103$ plus the VHF tuner, $\mathrm{V}-101$ and $\mathrm{V}-102$.
5. The junction of R-207 (100 ohms 1 watt moved in the above step) and R-205 ($470 \mathrm{ohms} \frac{1}{2}$ watt) was by-passed by The junction of R-207 (100 ohms 1 watt moved in the abo
6. In the Video Detector circuit the junction of R-116 and R-117 was moved from the junction of C-114, L-102 and $\mathrm{L}-103$ to the junction of R-114 and L-103.
7. Resistor $\mathrm{R}-212$ (10,000 ohms $\frac{1}{2}$ watt) was added to the AGC circuit for $\mathrm{V}-101$ and $\mathrm{V}-102$.

CHANGES FOR RUN 4 OF THE Y1200D \& Zl200D CHASSIS

1. Run 4 for both of these chassis is the same as the Run 3 chassis except that the video peaking coil L-107 and resistor R-123 on which $\mathrm{L}-107$ is wound are replaced by a wire jumper

CHANGES FOR RUN 5 OF THE YI2OOD \& ZI2OOD CHASSIS

In the grid circuit (pin 1) of V-105 resistor R-195 (22,000 ohms, $\frac{1}{2}$ watt) is replaced by $R-124$ ($10,000 \mathrm{ohms}, \frac{1}{2}$ watt) and $R-196$ (220,000 ohms, $\frac{1}{2}$ watt) is replaced by $R-125$ (470,000 ohms, $\frac{1}{2}$ watt)
B. In the plate circuit (pin 2) of V-105 resistor $\mathrm{R}-190$ (1.2 megohms, $\frac{1}{2}$ watt) is replaced by $\mathrm{R}-\mathbf{2 1 3}$ (820,000 ohms, $\frac{1}{2}$ watt).
C. In the grid and cathode circuits of V-105 (pins 1 \& 3) capacitor C-172 (47 mmf) is replaced by C-124 (22 mmf).
D. In the plate circuit of V-106A (pin 1) resistors R-136 (3300 ohms, $\frac{1}{2}$ watt) and $R-137$ (1800 ohms, $\frac{1}{2}$ watt) are transposed so that $R-136$ goes to ground and $R-137$ connects to $C-130$ and $C-131$. The junction of the two resistors connects as before.
E. In the plate circuit of V-104 (video amp.) peaking coil L-107 and resistor R-123 on which It is wound is added to the circuit in series with the power supply and $\mathrm{R}-121$.
F. In the Servo Loop feedback from the horizontal output to the AFC tube (V-107 pins 5 \& 7), capacitor C-140 (. 001 mfd. 1000 V . molded tubular) is replaced by two 01 mfd. ceramic disc capacitors ($\mathrm{C}-179 \& \mathrm{C}-180$).
G. Capacitor C-181 (1000 mmf . 500 V ., ceramic disc) was added between the positive terminal of C-119A (200 mfd . 150 V ., electrolytic) and ground.
H. A shield was placed over the bottom of the video detector transformer T-203.

1. The i-f output coupling circuit of the 1E1484 or 1E1659 UHF tuner was changed at the factory as shown in the following partial schematics:

CIRCUIT BEFORE MODIFICATION
T-301
L-301

T-301 I-F coupling tranformer

100 mmf

150 mmf . ceramic (1E1484)

50A600
53A290
47A351
47A394

$\mathrm{L}-307$
$\mathrm{~L}-308$
$\mathrm{L}-308$
$\mathrm{C}-316$
$\mathrm{C}-317$
$\mathrm{C}-318$
$\mathrm{C}-317$
$\mathrm{C}-318$
$\mathrm{C}-317$
$\mathrm{C}-318$
$\mathrm{R}-306$
$\mathrm{C}-318$
$\mathrm{R}-306$
$\mathrm{R}-307$

CIRCUIT AFTER MODIFICATION

I-F coupling coil

f. choke

47 mmf . tubular ceram 100 mmf . tubular ceramic 5000 mmf . disc cerami 150,000 ohms $\frac{1}{2}$ watt

SERVICE ADJUSTMENTS

ote: The controls whose adjustment is outlined below are all located on the rear apron of the chassis with the excep ion of the centering device which is located on the neck of the picture tube. The sequence of "SERVICE ADJUST MENTS" outlined herein is suggested as a convenient method of approach and is not an arbitrary procedure. Variations
of the procedure are permitted to obtain the desired final results. The operating controls, located on the front panel, f the procedure are permitted to obtain the desired final results. The operating controls, located on the front panel, should be set for as good a pattern as possible before making any of the following adjustments.

Fig. 73A. Improper Hold Control Adjustments
VERTICAL AND HORIZONTAL HOLD CONTROLS - These two controls should be adjusted until a single steady picture is obtained. With average signal strength it should be possible to switch from one active channel to another without losing sync when these two controls are properly adjusted. These two controls will be found on the front apron of
some chassis. some chassis.

Fig. 73B. Improper Centering Adjustments
CENTERING - Place the horizontal centering control, located on the rear apron of the chassis, in the approximate center of the range over which it may be rotated. Rotate the two ring magnets of the centering device around the neck of the picture tube until the picture is properiy centered. Each ring magnet is provided with an ear for making this adjustment. The centering device should contact the rear of the deflection yoke. A slight readjustment of the ion trap may be necessary after adjusting the centering device. The horizontal centering control may now be adjusted as required

Fig. 73C. Improper Height Control Setting

Fig. 73D. Improper Vertical Linearity Control Setting

HEIGHT CONTROL AND VERTICAL LINEARITY ADJUSTMENT - A test pattern will be required for the proper adjustment of these two controls. The height control has a pronounced effect on the overall picture height and at the same time the adjustment of this control will expand or contract the top of the picture more than the bottom.
control will affect the height somewhat but will have a more pronounced effect on the botion of the picture. The interaction between these two controls makes it necessary to adjust both for proper picture height and vertical linearity. A.G.C. CONTROL SWITCH - The A.G.C. control switch should be adjusted for the best average performance on all active channels.

With this switch set in the 0-10 MILE position (counterclockwise) maximum AGC voltage is applied to the tuner. The video amplifier will not be overloaded by strong signals
With this switch set in the OVER 30 MILES position (clockwise) minimum AGC voltage is applied to the tuner. Snow in the picture will be at minimum when the switch is in this position under weak signal or fringe area receiving condi tions. If the AGC control switch is left in this position in areas where strong signals are received, poor pictur
quality will result along with a probable intercarrier buzz in the speaker. In some cases the sync pulses will b clipped and trouble will be encountered which will appear like a loss of sync unless this switch is properly adjusted
WIDTH CONTROL - The width control should be adjusted until the picture fills the screen horizontally. Rotating this control in the clockwise direction will increase picture width while counterclockwise rotation will decrease pictur width

BRIGHTNESS CONTROL - This control should be adjusted in any given location for the best average picture from the various active channels which may be received

FOCUS CONTROL - Adjust this control until the fine horizontal lines which make up the picture are clearly visible. Use the lines in the center portion of the picture for this adjustment
HUM ADJUSTMENT - A small rheostat will be found mounted on the frame of some of the speakers. Adjust this Cheostat with a small screw driver for minimum audible hum in the speaker

PICTURE TUBE REMOVAL

. Remove the chassis from the cabinet. Note that on chassis with the horizontal and vertical hold controls on the號 may be removed. These are push-on type knobs
2. Insure the discharge of the high voltage power supply by disconnecting the anode plug and shorting it to the chassis. Also short the anode socket or metal cone of the picture tube to the chassis.
3. Remove the picture tube socket from the base of the tube
. Slip the ion trap and the centering device from the neck of the tube. On some chassis, the centering device is an integral part of the deflection yoke assembly
Carefully remove the rear support tension spring on each side of the picture tube. If a glass cone picture tube is involved, remove the metalized paper picture tube shield and ground by unhooking the springs on each side and the tuve mounting strap
7. Lift the front of the picture tube just far enough to clear the front mounting brackets and slip the tube forward until the neck is clear of the deflection yoke and the rubber collar. Use a slight twisting pull to break the cone of the tube from the rubber collar if the two are stuck together. Loosen the deflection yoke adjustment screw if required for clearance when raising the front of the picture tube over the front mounting brackets
CAUTION - IF THE TUBE FAILS TO SLIP OUT EASILY, INVESTIGATE AND REMOVE THE CAUSE OF TROUBLE DO NOT USE FORCE AS THE NECK OF THE PICTURE TUBE IS EASILY BROKENE
DO

Fig. 75A. 17" Glass Pix Tube Mounting

Fig. 75B. 20 or $21^{\prime \prime}$ Gloss Pix Tube Mounting

OJohn F. Rider

PICTURE TUBE INSTALLATION AND ADJUSTMENT

Position the tube so that the anode socket is located at the left side of the tube when viewed from the front face. A metal cone tube will not have an anode socket but will require the polyethylene mounting ring around the front im of the tube with the joint in the ring on the bottom center of the tube.
2. Insert the neck of the tube through the rubber collar and the deflection yoke. Seat the front of the tube on the front mounting brackets. The groove in the polyethylene mounting ring fitting over the front mounting brackets or the picture tube face resting against the front stop pad will determine the forward position of the tube. Be sure that the face of the picture tube rests against the stop pad and not against the bracket for this pad which is provided on chassis which use glass cone picture tubes.
3. Place the mounting strap around the front of the tube. On metal cone tubes place the $4^{\prime \prime}$ rubber strip in the top center of the groove in the polyethylene mounting ring. At the same time be sure that the copper anode connector front. Be sure the picture tube mounting cushion is placed under the mounting strap for glass cone tubes.
4. Tighten the screws on each end of the mounting strap and replace the rear support tension spring on each side of the picture tube. On glass cone picture tubes replace the metalized paper picture tube shield and ground with the the picture tube mounting strap and the springs on each end should be hooked around the screws on each end of the mounting strap. If the replacement glass pix tube does not have an outer aquadag coating it will be necessary to install C-166 (500 mmf .20 KV .). See schematic. This capacitor will already be installed in chassis with metal cone picture tubes.
5. Press the deflection yoke firmly forward against the cone of the picture tube and tighten the deflection yoke adjusting screw.
6. The picture tube neck should pass through the approximate center of the deflection yoke. If it does not, loosen the deflection yoke bracket adjustment screws and reposition the yoke
7. Slide the centering device over the neck of the tube. This device should be installed directly behind and contacting the deflection yoke with the adjusting ears for the two ring magnets as near to the deflection yoke as possible. ing the deflection yoke with the adjusting ears for the the chassis the centering device is an integral part of deflection yoke assembly
8. Check the ion trap for any marking and slip the trap over the neck of the tube. If the trap is marked with an arrow, the arrow should point towards the tace of the tube
9. Connect the picture tube anode plug and replace the anode keeper and springs if a glass pix tube is being installed.
10. Connect the picture tube socket and turn the receiver on. Don't forget the chassis is "hot" - use an isolation transformer.
11. Turn up the brightness control and set the ion trap for maximum raster brilliance, backing off the brightness ontrol as the maximum point is approached. The ion trap must be rotated about the axis of the tube as well as control as the maximum point is approached.
12. Tune in a test pattern and set the focus, brightness and contrast controls for as good a picture as possible
13. Check the position and appearance of the test pattern. If it is off center or shadowed at the corners, adjust the ears of the centering device by rotating them about the axis of the picture tube until proper centering is obtained. An additional horizontal centering control is located on the rear apron of the chassis. This control sh
the approximate center of the range over which it may be rotated before adjusting the centering device.
14. If the lines of the raster are not horizontal or square with respect to the escutcheon, loosen the deflection yoke adjustment screw and rotate the deflection yoke until the proper raster position is obtained. Press the deflection yoke firmly against the cone of the picture tube and tighten the adjustment screw
15. Follow the procedure under "SERVICE ADJUSTMENTS" and make any minor adjustments necessary to obtain a properly adjusted pattern.

HIGH VOLTAGE WARNING

OPERATION OF THE RECEIVER CHASSIS OUTSIDE OF THE CABINET INVOLVES DANGER OF ELECTRICAL SHOCK USE A POWER LINE ISOLATION TRANSFORMER AND EXERCISE ALL NORMAL HIGH VOLTAGE PRECAUTIONS WHEN WORKING WITH THIS RECEIVER

Fig. 77A. 17" Glass Pix Tube Mounting

Fig. 77B. 20 or 21" Gloss Pix Tube Mounting

Fig. 77C.I 21" Metol Pix Tube Mounting.

PICTURE TUBE ANODE HIGH VOLTAGE MEASUREMENT

The second anode potential for a 17 inch tube will be approximately 11,500 volts and approximately 14,000 volts for a 20 or 21 inch tube. If it is possible to obtain good picture brilliance, the second a node potential is correct and need not be measured.
The setting of the width control will affect the high voltage on the second anode. If the width control is set for excessive width, the second anode potential will be low.

If it is necessary to measure the voltage present on the second anode, a meter specifically designed for high voltage measurements should be used. The contrast and brightness controls should be rotated to the minimum position and the anode plug should be connected to the tube. Under these conditions the test meter will load the high voltage power supply approximately the same amount as the picture tube would during normal operation.

SAFETY FIRST

DO NOT USE HAND HELD FLEXIBLE TEST LEADS When MAKING SECOND anODE high VOLTAGE MEASUREMENTS. ANY ACCIDENTAL CONTACT WITH THE HIGH VOLTAGE PRESENT IN THS CIRCUIT MAY CAUSE A SEvERE BURN OR IN SOME CASES BE FATAL

HORIZONTAL OSCILLATOR ADJUSTMENT FOR CHASSIS A1200D \& X1200D

If the horizontal hold control fails to restore synchronization, the horizontal stabilizer coil (L-108) should be adjusted. Procedure for this adjustment is as follows:

1. Set the brightness control for normal picture brightness and turn the contrast control as low as possible with a picture still visible on the screen.
2. Turn the horizontal centering control, located on the rear apron of the chassis, full clockwise. The right side of the raster should the width control counterclockwise until the right edge of the raster does become visible.
3. Connect a .1 mfd .600 V . tubular capacitor between test point (A) and the chassis. See Fig. 78B
4. Adjust the horizontal hold control for a single steady picture whose right edge is approximately $\frac{1}{4}$ inch to the left of the right edge of the raster. See Fig. 78A.
5. Remove the .1 mfd .600 V . capacitor installed in step 3.
6. Adjust the horizontal stabilizer coil, (L-108) until the right edges of the picture and the raster are the same distance apart as they were set in step 4. See Fig. 78A
. Readjust the horizontal centering control and the width control for normal operation.

Fig. 78A. Test Pattern for Horizontal Stabilizer Adjustment

Fig. 78B. Harizantal Oscillator Adjustment Point for Chossis with Series-Parallel Heaters

HORIZONTAL OSCILLATOR ADJUSTMENT FOR CHASSIS

F, G, J, K, L, P, R, T, W, X, Y AND Z1200D

If the horizontal hold control fails to restore synchronization, the horizontal stabilizer coil (L-108) should be adjusted. Procedure for this adjustment is as follows:

1. Set the horizontal hold control in the approximate center of the range over which it may be rotated
2. Set the channel selector to an active channel and adjust the horizontal stabilizer for a single steady picture. See Fig. 78B or 78C
3. Rotate the horizontal hold control full clockwise. The picture may or may not remain in sync. If it does, momentarily switch the channel selector to another channel and return it to the original channel. The picture should now be slightly out of sync
4. Rotate the horizontal hold control full counterclockwise. The pic ture may or may not remain in sync. If it does, momentaril original channel. The picture should now be slightly out of sync.

When the horizontal stabilizer coil is properly adjusted the results outlined in steps 3 and 4 will be obtained. If the correct results are not obtained, repeat steps 2,3 and 4 until they are.

Fig. 78C. Harizontal Oscillator Adjustment Point for Chossis
with Heoter Transformer

Fig. 78C. ${ }^{28818}$

THE P \& RI2000 ARE DEEP CHASSIS. SEE MODIFICATION IOUTER Shafti tinmen shaf
Fig. 79A. Front Controls for Chassis A, D, F, G, K, L, P, R, W, ond X12000

Fig. 79D. Rear Controls for Chassis J12000 and T12000

the P \& RIzood are deep chassis. SEe modification ix on Page 1952-72D.
Fig. 79B. kear Controls for Chassis A, D, F, G, K, L, P, R, W and X 12000

Fig. 79C. Frant Controls for Chossis J1200D and T1200D

FM SOUND CHANNEL ALIGNMENT FOR 1200 SERIES CHASSIS

QUIPMENT REQUIRED

Signal generator covering 4 to 30 mc . unmodulated
Vacuum tube voltmeter (VTVM).
Sound alignment test circuit shown in Fig. 80A.

transfor mer.

PROCEDURE

Fig. 80A. Sound Alignment Test Circuit

1. Connect all test equipment to a common ground. Connect the TV chassis to this same ground after installing a isolation transformer between the power line and the TV chassis. One side of the line cord connects directly to the TV chassis and an isolation transformer must be used for safety.
2. Set the channel selector to any vacant channel and the contrast control at minimum
3. Connect the signal generator output through a .005 mfd . capacitor to terminal 2 of test socket $\mathrm{SO}-101$ shown in Figs. 79AA, 79AB, 81A \& 81B or test point (D) shown in schematic diagram. Ground the shield of the generator
4. Connect the sound alignment detector circuit and VTVM as shown in Fig. 80A. Adjust the 4.5 mc . generator output (unmodulated) to give a 1 volt reading on the VTVM.
5. Adjust the 4.5 mc . trap adjustment ($\mathrm{L}-105$) at 4.5 mc . for a minimum VTVM reading.
6. Disconnect the test circuit and connect the VTVM to test terminal (B) (Pin 2 of FM detector, V-113). See schematic diagram.
7. Adjust the 4.5 mc . amplifier grid adjustment ($\mathrm{L}-110$) and the primary of $\mathrm{T}-107$ (bottom core) at 4.5 mc . for a maximum VTVM reading
8. Connect the VTVM to test terminal (C), shown in the schematic diagram. Adjust the secondary of T-107 (top core) at 4.5 mc . for the zero reading which occurs between the positive and negative peaks. If the zero reading occurs at more than one setting, use the position nearest the top limit of the core
9. Shift the signal generator an equal amount on either side of 4.5 mc . and touch up the primary of T-107 (bottom core) for approximately equal peaks. Use just enough signal output to obtain one volt peaks for best results.

Fig. 79AA. Tap View Chossis Alignment Locatians for Chassis P \& R1200D

fig. 79AB. Top View Alignment Locations for Chossis \mathcal{J} \& TI200D

Fig. 81A. Top View Chassis Alignment Location for Chassis A, D, w \& $\times 12000$

Fig. 81B. Top View Alignment Locotions for Chossis F, G,K \mathcal{E} LI2000
I-F AMPLIFIER ALIGNMENT FOR 1200 SERIES CHASSIS EXCEPT Y \& Z1200D (See Page 48.)

EQUIPMENT REQUIRED

SWEEP GENERATOR \qquad RCA type WR-59B or equivalent.
MARKER GENERATOR M) \qquad RCA type wo-5a Television Ca VACUUM TUB
\qquad
\qquad
(V) RCA type WV-97A or equivalent.
TEST CIRCUIT
RANSFORMER \qquad Three volt battery

PROCEDURE

Signal Generator Frequency (No Modulation)	Adjustment		VTVM
25.4 MC	T-101 (bottom)	Location	Indication
23.4 MC	See Fig. 81A	Maximum	
24.5 MC	T-102 (bottom)	Under Chassis	Maximum
21.75 MC	T-103 (bottom)	See Fig. 81A	Maximum
23.4 MC	T-102 (top)	See Fig. 81A	Minimum
24.75 MC	T-102 (bottom)	See Fig. 81A	Maximum
24.75 MC	*L-101 $^{\text {UL-9 }}$	See Fig. 81A	Maximum

IMPORTANT - The wax in the end of the coil forms holding the iron core in position may be softened for adjustment of the core by means of a heated screwdriver or a small pencil type soldering iron inserted into the wax. Remelt wax after adjustment.

* NOTE: On chassis with the 1E1345 Pentode and 1E1376 Cascode tuners, temporarily connect the series resistor capacitor combination shown in Fig. 82A to the tuner test point TP-2 when making this adjustment. On chassis with the 1 E1380 Cascode tuner, hold the channel selector between channels when making this adjustment.
the 6CB6 first i - f at the series resistor-capacitor combination shown in Fig. 82A to the grid (pin 1) of V-101 the 6CB6 first $\mathrm{i}-\mathrm{f}$ amplifier when making this adjustment.
 directed in steps $1,2,3$ and 6. shield which couple the high side of the sweep generator r-f output to the osc./mixer tube by connecting to the tube shield which has been raised above its grounding clips. The ground side of the sweep generator should be connec-

10. Loosely couple the high side of the marker generator to the high side of the sweep generator by clipping the marker generator r-f lead over the insulation of the sweep generator r-f lead. The ground side of the marker generator should be connected to the receiver chassis
IMPORTANT - To prevent overloading of the i-f amplifier keep the output of the sweep and marker generators as low as possible. The marker generator output should be just high enough to produce visible pips on the pattern. In some attenuation of the 21.75 MC signal by the trap in the top of $\mathrm{T}-102$.
11. Connect the sweep output terminals on the sweep generator to the input of the horizontal amplifier in the os cilloscope.

Connect one side of a $47,000 \mathrm{ohm} 1 / 2$ watt resistor to test socket, SO-101, pin 2 or to test point (D) shown in the schematic diagrams for chassis which do not have the test socket. Connect the other end of the resistor to the o the of the input terminals for the vertical amplifier in the oscilloscope. The scope ground terminal con output section.

Reduce the r-f output of the sweep generator and increase the gain of the vertical amplifier in the oscilloscope as much as possible without introducing an excessive amount of noise on the test pattern. This will prevent over loading of the $i-\mathrm{f}$ system.
14. Check the position of the markers shown in Fig. 84A. Adjust only the bottom cores of T-101, T-102 and T-103 for a response curve of maximum amplitude with a slightly tilted flat topped appearance as shown in Fig. 84A. This tilt is required to compensate for the capacitive coupling used for the signal generators. The actual response ob tained will be flat when the pattern viewed on the oscilloscope has this tilt. The bottom core of T-103 will pri marily control the tilt of this central portion of the curve.

The bottom core of T-101 should be adjusted to position the 26.25 MC marker in the 50% position shown in Fig. 84A. The bottom core of T-102 should be adjusted to determine the slope of the curve between 21.75 MC and 23.4 MC with the 22.75 MC marker down 50% on the curve as shown in Fig. 84 A

1. Connect all test equipment to a common ground. Connect the TV chassis to this same ground after installing an isolation transformer between the power line and the TV chassis. One side of the line cord connects directly to the TV chassis and an isolation transformer must be used for safety. Allow a 15 minute warm up period.
2. Set the AVC switch on the rear chassis apron to the $0-10 \mathrm{MILE}$ (counterclockwise) position
3. Connect the negative side of a 3 volt battery supply to pin 3 of test socket so-101 or test point (E). Connect the positive side of the supply to the TV chassis.
4. Connect a VTVM to pin 2 of test socket SO-101 or test point (D) through a 47,000 ohm carbon resistor. Connect the ground side of the meter to the TV chassis.
5. Connect the high side of a marker generator to the shield of the osc./mixer tube. This connection will capacitivel couple the generator output to the tube. Make sure the shield is ungrounded by raising it above the grounded clips
. Set the channel selector to any vacant channel.
6. Set the marker generator output (unmodulated) for a two volt negative dc reading on the VTVM and adjust the three i-f transformers, L-9, and L-101 according to the I-F AMPLIFIER ALIGNMENT CHART shown below. Readjust the signal generator output as required to maintain the two volt VTVM reading.

Under no circumstances should an attempt be made to adjust L-9, L-101 and the 21.75 MC trap in the top of T-102 by means of an oscilloscope and sweep generator. Maladjustment of these coils does not give a noticeable indication on the oscilloscope. Align these coils by following the procedure given in steps 1 through 7 only.

MEASUREMENT OF I-F AMPLIFIER SENSITIVITY

To determine the i-f amplifier sensitivity, disconnect the r-f output lead from the tuner where it connects to L-101, Temporarily connect one side of a .005 mfd. ceramic or mica capacitor to grid pin 1 of the 6 CB6 first i-f amplifier tube V-101. Connect the unmodulated r-f output of a marker generator to the other side of the capacitor and the ground side of the generator to the TV chassis. Set the marker generator to 24.75 MC . Connect a VTVM as directed in step 4 of the alignment procedure. The three volt battery must be removed. If a gen
produces a 1 volt reading on the VTVM, the i-f amplifier sensitivity is normal.

TELEVISION CHANNELS vs. CARRIER, OSCILLATOR AND I-F FREQUENCIES

Channel No.	Channel Freq. (mc)	Picture Carrier Freq. (mc)	Sound Carrier Freq. (mc)	Receiver Osc. Freq. (mc)	Picture I-F. Freq. (mc)	Sound Freq. (mc)	Picture I-F Iess Sound I-F (mc)
2	$54-60$	55.25	59.75	81.5	26.25	21.75	4.5
3	$60-66$	61.25	65.75	87.5	26.25	21.75	4.5
4	$66-72$	67.25	71.75	93.5	26.25	21.75	4.5
5	$76-82$	77.25	81.75	103.5	26.25	21.75	4.5
6	$82-88$	83.25	87.75	109.5	26.25	21.75	4.5
7	$174-180$	175.25	179.75	201.5	26.25	21.75	4.5
8	$180-186$	181.25	185.75	207.5	26.25	21.75	4.5
10	$186-192$	187.25	191.75	213.5	26.25	21.75	4.5
11	$192-198$	193.25	197.75	219.5	26.25	21.75	4.5
12	$198-204$	199.25	203.75	225.5	26.25	21.75	4.5
13	$204-210$	205.25	209.75	231.5	26.25	21.75	4.5
	$210-216$	211.25	215.75	237.5	26.25	21.75	4.5

Fig. 84A. Typical Response for $\mathbf{2 1 . 7 5}$ to $\mathbf{2 6 . 2 5}$ MC I-F Amplifier

ALIGNMENT FOR 1C1345 PENTODE \& 1C1376 CASCODE TV TUNERS

These tuners have been carefully aligned at the factory by personnel using precision equipment. Minor alignment adjustments of the tuner may be necessary after making tube or part replacements. When replacing tubes in a tuner select the one which gives best performance. Realignment of the tuner probably will not be required if a selected tube is used for replacement. Use of an alternate tube may require a complete realignment of the TV tuner. For those service engineers who are properly equipped as specified, the following alignment procedure is included. Balance of receiver mat be functiong

EQUIPMENT REQUIRED FOR TV TUNER ALIGNMENT

1. Sweep generator RCA type WR-59B or equiv.

Marker Generator_RCA type WR-39C Television
. Oscilloscope \qquad Calibrator or equivalent
4. Bias Source \qquad 1.5 volt battery
5. Isolation Transformer__ 150 watt rating or higher

9281794-1
Fig. 85A. Numbering of Tuner Terminals

SET-UP PROCEDURE FOR TUNER ALIGNMENT

1. Check to be sure that the tube shields and the bottom cover for the tuner are in place.
2. Connect all test equipment and the television chassis to a common ground. Be sure to use an isolation trans號
3. Connect the negative terminal of a 1.5 volt bias source to terminal 8 of the TV tuner. See Fig. 85A for terminal numbering. Connect the positive side of the bias source to any convenient ground point on the chassis
4. Connect the hot lead from the oscilloscope through a 10,000 ohm carbon resistor to test point T.P.-1 (See page 1952-86). Connect the ground lead from the oscilloscope to any convenient ground point on the TV tuner chassis.

OSCILLATOR ADJUSTMENT

1. Turn the channel selector to channel 13 .
2. Set the marker generator to 237.5 mc . and connect generator leads to the antenna terminals.
3. Rotate the fine tuning control until a zero beat is indicated on the scope. When the fine tuning control is rotated a band will appear across the face of the scope. As the point of zero beat is approached this band will increase in amplitude and then decrease sharply until a minimum is reached which is the point of zero beat. If the fine tuning control is rotated farther in the same direction the amplitude of the band will increase sharply and then decrease. The point of zero beat should fall in the approximate center of the range over which the fine tuning L-7 (Channel 13 Oscillator Adjustment) for the zero beat. Do not disturb the setting of the fine tuning control after this adjustment.
4. Set the channel selector to channel 6.
5. Set the marker generator to 109.5 mc .
6. Adjust L-8 (Channel 6 Oscillator Adjustment) for the zero beat indication on the scope

NOTE: Adjustment of the channel 13 and channel 6 oscillator coils automatically brings all other channel into adjustment. The adjustment screws cover their entire electrical range within eight full revolutions counterclockwise from the tight position. Any further rotation of these screws may cause them to fall out. Counterclockwise rotation of the screws will decrease the oscillator frequency. Best results will be obtained if a non-metallic screwdriver is used.

If the factory adjustment of the incremental loops and coils has not been disturbed, alignment of the rf plate, rf grid, and mixer grid should be complete after the completion of step 4 unless extensive repairs have been made on the tuner. Check the other channels for a similar band pass characteristic as shown in Fig. 87A. If they have the correct characteristics further alignment is not necessary. If they do not, procede with step 5. When aligning the 1C1376 oil before continuing with steps 5 and 6 . to repeat step 4
5. Adjust the coils of the rf plate, rf grid, and mixer grid for channels 12 through $\mathbf{7}$ starting with channel 12 . Adjus the signal generators for each channel to the frequencies given in the chart on page 39 . Pushing the half turn coil loops towards the center of the switch so that they are closer to the switch wafer will increase the frequency while pulling them out and away from the switch wafer will decrease the frequency. Adjust for a band pass characteristic containing both carriers with steep sides and maximum gain.
6. Adjust the coils of the rf plate, rf grid, and mixer grid for channels 6 through 2 starting with channel 6 . Adjust the signal generators for each channel to the frequencies given in the chart on page 39. Spreading the turns of the coils will increase the frequency while squeezing the turns together will decrease the frequency. Adjust for a band pass characteristic containing both carriers with steep sides and maximum gain. A tuning wand may be used to determine what change is necessary

Fig. 86A. IC1345 Pentode TV Tuner Alignment Adjustments

TOP VIEW

FRONT VIEW

Fig. 868. IC1376 Cascode TV Tuner Alignment Adjustments

BAND PASS ALIGNMENT OF 1 Cl 345 \& 1 Cl 376 TV TUNERS

CAUTION: Band pass alignment is carefully made at the factory. Attempt this alignment oniy with proper equipment and set-up. The tube shields and the bottom cover for the tuner must be in place. The oscillator adjustment given on page 39 must be completed before the band pass alignment is started.

1. Complete the set-up procedure given on page 39.
2. Connect the leads from the sweep and marker generators to the tuner antenna terminals

Turn the channel selector to channel 13. Adjust the generators to the correct frequencies for channel 13 as shown in the chart on page 39.
4. Adjust L-3 (channel 13 rf plate), L-2 (channel 13 rfgrid), and L-6 (channel 13 mixer grid) adjusting screws (see Fig. 86A or 86B for a band pass characteristic containing both carriers with steep sides and maximum gain. The adjustment will not be found on the top of these tuners.

Fig. 87A. Typical Channel Response Curves for TV Tuners
${ }^{928116}$

* 30 BRIGHTNESS MAX
I50 BRIGHTNESS MIN
$\triangle \quad 0$ FOCUS CONTROL MIN 500 FOCUS CONTROL MAX
picture tube lead color code

PIN NO	COLOR	ELEMENT
1	BLACK	HEATER Q GND.
2	GREEN	GRID
6	BLUE	FOCUS GRID
10	RED	ANODE GRID
11	YELLOW	CATHODE
12	BROWN	HEATER

Fig. 88A. Picture Tube Socket Voltages

Fig．88B．1EI 380 Cascode TV Tuner Alignment Adjustments

IE1380 CASCODE TV TUNER ALIGNMENT（ANT．\＆RF CIRCUITS）

The tuner was carefully aligned at the factory and should not require complete realignment under normal operating conditions．A slight readjustment of the individual oscillator slugs may be required as the tubes in the tuner age or are replaced．In some rare cases it will be necessary to realign the tuner after replacing either of the two tubes．It any service work is performed on the tuner，realignment may or may not be required．NO ATTEMPT TO REALIGN HE FATING SONDTIO MND IS PROPERLY BALANCE OF THE TV RECEIVER IS KNOWN TO BE IN PROPER Perating condition and is properiy aligned．

EQUIPMENT REQUIRED

1．Sweep generator covering all 12 television channels
2．Marker generator covering the same range as the sweep generator
3．Oscilloscope．

4．Vacuum tube voltmeter（VTVM）

SET．UP PROCEDURE

1．Set the CHANNEL SELECTOR switch to channel 12
2．Connect the vertical amplifier input of the oscilloscope through a 10,000 ohm resistor tr lest point TP－9 on the tuner．（See Schematic Diagram and Fig．88B）．The horizontal amplifier in the oscilloscope should be connected to the oscilloscope sweep voltage output from the sweep generator
3．Connect the negative pole of a 1.5 volt dry cell to the terminal where the AGC lead（white wire）from the tuner is connected．（Connect the positive pole of the dry cell to the receiver chassis．（See Schematic Diagram）．

4．Set the FINE TUNING control at the approximate midpoint of its tuning range．
5．Connect the sweep generator to the antenna terminals and adjust to sweep channel 12．Keep the output of the sweep generator as low as possible to prevent overloading the r－f stage．
．Loosely couple the r－f output from the marker generator to the antenna terminals．Use the minimum amount coupling and signal from the marker generator required to give a good marker on pipe on the oscilloscope pattern

ANTENNA AND RF CIRCUIT AUGNMENT
7．Adjust C－13，C－3 and C－6 for a flat－top response curve and maximum gain．Check markers on all channels．They should fall in automatically on each channel．Correct marker frequencies for each channel are given in the Picture Carrier and Sound Carrier columns of the chart on page 39．Refer to Fig． 87
8．Disconnect the battery used to obtain negative bias
9．Disconnect the test equipment and air check the receiver on all active channels．If it is possible to receive a nor mal picture on all active channels by adjusting the FINE TUNING control，further alignment will not be necessary

IE1380 CASCODE TV TUNER ALIGNMENT（OSC．CIRCUIT）

1．Set the FINE TUNING control at the approximate midpoint of its tuning range．
2．Place a non－metallic screwdriver through the openings provided in the front of the chassis and the tuner assembly and adjust the oscillator coil slug for each active channel to give the best possible picture

voltage reading taken under the following conditions： 1．ANTENNA DISCONNECTED，AND TERMINALS SHORTED．
2．CHANNEL SEL
（ 12 OR 13 ）．
．
3．arightness control maximum，
5．AGC COST CONTROL MINIMUM．
5．AGC CONTROL SET TO MAXIMUM COUNTER－
CLOCKWISE POSITION．
6．ALL OTHER CONTROLS SET FOR NORMAL RASTER．
7．LINE VOLTAGE litV $60 \sim$ ac．
8．ALL VOLTAGES ARE DC AND POSITIVE WITH
RESPET TO THE CHASSIS UNLESS OTHERWISE
SPECIFIED．

．all readings taken with a vivm

KEY
＊VARIES FROM 70 TO I65V DEPENDIN
UPON THE SETTING OF THE HEIGHT
CONTROL．
－heater of vilis is connected to
TP TIE POINT．
tp tie point．
nc no connection．
not readable．

6806／GT
88096
V109

Fig. 89A. Voltage Chart for 17" A, K, P \& Wi200D Chassis with IC1345 Pentode Tuner
Fig. 90A. Voltage Chart for $20^{\prime \prime} \mathrm{D}, \mathrm{L}$ \& $\times 1200 \mathrm{D}$ or 21 " R1200 D Chassis with 1 C 1345 Pentode Tuner

Fig. 89AA. Voltage Chart for 17' F1200D Chassis with IC1376 Cascode Tuner

Fig. 90AA. Voltoge Chort for $20^{\prime \prime}$ G12000 or $21^{\prime \prime}$ T12000 Chassis with IC1376 Coscode Tuner

TYPICAL OSCILLOSCOPE PATTERNS

The patterns given on the following pages are presented as a guide when using an oscilloscope to locate trouble in the video amplifier, syn
television receiver.

Considerable variation may be noted in the amplitude and shape of some of the various waveforms from one receiver to the next. As long as the waveform obtained from the receiver under test contains the same general characteristics as those shown in the illustrations and the relative amplitude is within approximately 25% of the peak to peak voltage or relative amplitude shown below each waveform the pattern obtained may be assumed to be correct. The patterns ar observed with the tv receiver tuned to an active channel and the controls adjusted for the best possible picture. The line voltage should be set to 117 volts.

The waveforms shown in the illustrations were obtained on a Dumont type 304 oscilloscope which was used in conjunction with a low capacity 10 to 1 probe such as the Tel-Instrument Co. type 1610. Other types of oscilloscopes wil account for a certain amount of variation in the amplitude and shape of the patterns obtained from the actual receiver under test. A low capacity probe must be used in order to obtain satisfactory results. A power line isolation trans former should also be used for safety since the chassis is "hot".

With the exception of the test patterns obtained across the vertical yoke and horizontal yoke all patterns are taken with the ground side of the oscilloscope connected to the ground or chassis of the tv receiver and the 10 to 1 probe connected to the specific points in the tv chassis as specified by each pattern.

The patterns obtained from the horizontal amplifier plate, damper cathode, horizontal deflection yoke, and the high The patterns obtained from the horizontal amplier plate, damper cane probe which is made from a type 1X2-A tube as voltage rectifier tube must be observed by means of the high yolage probe wige a new tube for this application because
shown in Fig. 94A. The tube is used as a high voltage coupling capacitor. Use a shown in Fig. 94A. The tube is used as a high voltage coupling capacitor.
the loose filament of a burned out one may touch the plate and damage the probe or input circuit of the scope. These the lodse fllament of a burned out one mamplituches indicated with respect to the pattern obtained at pin 3 (cathode) of the damper tube ($\mathrm{V}-110$) which is given a unit value of one.

At certain points throughout the tv receiver the oscilloscope pattern obtained will be dependent upon the frequency of At certain points throughout the tv receiver the oscilloscope pattern obtained wince mept be either $30 \mathrm{cps}(1 / 2$ of the tv vertical oscillator frequency) or 7875 cps ($1 / 2$ of the tv horizontal oscillator frequency) depending upon the pattern desired. The sweep frequency required to obtain the patterns shown is given with each pattern.

VIDEO AMPLIFIER

Before viewing the following waveforms set the and the pattern shown on page
v-105
Sync. Clip.
Grid Pin 1
Sweep Freq 7875 cps
Voltage P / P
43 volts

VERTICAL OSCILLATOR AND VERTICAL AMPLIFIER

V-106A
Adjust the contrast control to give a 60 volt peak to peak reading. Do not change this setting when taking ther waveforms. other waverorms.

V-106A
Vert. Osc.
Grid Pin 2

Voltage P / P
180 volts

Sweep Freq.
Voltage P / P Voltage P / P
set 60 volts

V-104 Video Amp. Plate pin 5

VERTICAL OSCILLATOR AND VERTICAL AMPLIFIER (Cont.)

Across Vert. loscope must not be grounded since the ground side Green Leads of the scope is connected to $\mathrm{B}+$ of the power supply. of the scope is connerted to $\mathrm{B}+$ of the power supply.
Do not touch the tv chassis and the scope during this observation as a severe shock will result. The "hot" lead of the scope should be connected to the green wire and the other scope lead should be connected to the green wire with black tracer

HORIZONTAL OSCILLATOR AND HORIZONTAL AMPLIFIER DRIVE

Before endeavoring to view the following waveforms read the notes and instructions at the beginning of this section pertaining to waveforms. The high voltage the test equipment being used.

Fig. 94A. High Voltage Probe for Waveform Observations

NOTE: When observing this test pattern the osciloscope must ant be gruunded since the ground side of the scope is connected to $\mathrm{B}+$ of the power supply. Do not touch the tv chassis and the scope during this observation as a severe shock will result. The "hot' lead of the scope should be connected to the red wire and the other scope lead should be connected to the red wire with black tracer.

PICTURE TUBE AND MOUNTING COMPONENTS FOR A, D, F, G, J, K, L, P, R, T, W, X, Y AND ZI200D CHASSIS Schematic
Symbol Symbol

Description

Picture tube
Bracket, deflection yoke mtg. Bracket, front pix tube support Bracket, front right pix tube support Bracket, front left pix tube support Bracket, rear pix tube and yoke support Bracket, bottom extension for a Bracket, stop pad; right mtg. Bracket, stop pad; left mtg. Centering device; electrostatic tubes Collar, picture tube mtg.; rubber Cushion, pix tube mtg.; sponge rubber Ground and shield, pix tube; metalized paper Hook, pix tube ground and shield Ion trap Keeper, pix tube anode Pad, pix tube mtg.; $3^{\prime \prime}$ rubber channel

PL-101 Plug, pix tube anode Screw, deflection yoke adj. Sleeve, insulating; rear pix tube support springs Sleeve, 12 " insulating; anode lead. Socket assembly, pix tube Spacer, front pix tube support Spring, anode keeper; $1 \frac{1}{2}$ " long Spring, anode keeper, $3 \frac{2}{4}=$ long. Spring, pix tube ground and shield Spring, pix tube ground
Spring, pix tube rear support
Strap, pix tube mtg.; with end brackets Strap, copper; anode connector Strap, copper;
Strip, rubber

On some $17^{\prime \prime}$ chassis the picture tube is mounted with a forward tilt of approximately four degrees. This tilt causes the bottom of the rear picture tube and yoke support bracket to raise up and at the same time move toward the rear of An additional spacer is also placed under the front picture tube mounting brackets on some chassis as indicated below.

The following parts are used when the picture tube is tilted:

Socket assembly, pix tube	W1200D		Y1200D
			6A454
Spacer, extra; front pix tube support	None		
Bracket, right rear support	6A1985	None	
Bracket, left rear support	67C2081	67C2081	
Bracket, rear pix tube \& yoke support	67C2080	67C2080	
Bracket, stop pad; center mounting	No change	67A2083	
	No change	None	

When a chassis with a tilted picture tube is installed in a cabinet a different mask, cabinet back and sometimes safety glass are used. These different cabinet parts are listed on the model data sheets for each individual model when applicable.

Fig. 104A. IE1484 UHF Tuner Drive Mechanism Stringing

STRINGING \& ADJUSTMENT OF VERNIER DRIVE, DIAL \& UHF TUNER DRIVE

STRINGING VERNIER DRIVE

Tie one end of a 16 " or longer dial cord to tension spring at " A " and position the spring as shown in Fig. 104A so that a slight tension on the dial cord will hold the spring in place.

Pass cord around pulleys as shown in Fig. 104A in the direction indicated by the arrows. Maintain a slight tension on the free end of the cord and rotate the large pulley counterclockwise to the position shown in Fig. 104A.
Tie the free end of the dial cord to the tension spring at " B " after stretching the spring.
Place a drop of quick drying cement on the knots to prevent them from working loose.

STRINGING UHF TUNER DRIVE AND DIAL

Set UHF tuner drive drum and vernier drive fully counterclockwise as shown in Fig. 104A.
Tie one end of a 34" or longer dial cord to tension spring at "A" and hook other end of spring on the pulley, stretch the spring and pass the cord around pulleys as shown in Fig. 104A in the direction indicated by the arrows until the dial shaft pulley is reached.

Carefully set the position of the dial so that the dial marker is directly above the center of the shaft as shown in Fig. 104A. Pass dial cord around spaghetti covered pin through notches in pulley rim and take one turn around pulley before passing free end of cord through notch in drive drum pulley and tying to the tension spring at "A". Cement knots to prevent them from working loose.

ADJUSTMENT OF PULLEY FRICTION NUT

The vernier drive is designed with a fast and slow tuning speed. During slow speed tuning the friction nut must be tightened so that the friction developed by the spring washer will not allow the idler pulley (Item 6. Fig. 104AA) to slip. If it does slip, it will not be possible to accurately tune in a UHF station.

During high speed tuning the idler pulley must slip. If the friction nut is set too tight the dial cord will slip on the idler pulley causing excessive cord wear necessitating frequent cord replacement. The dial will also be hard to turn.

SERVICE PARTS LIST FOR UHF TUNER VERNIER DRIVE MECHANISM
The items in the following parts list are identified in Fig. 104AA, except item 12 shown in Fig. 104A, by means of the item numbers. WHEN ORDERING REPLACEMENT PARTS ORDER BY PART NUMBER ONLY.

ITEM	DESCRIPTION	PART NO.	ITEM	DESCRIPTION	PART NO.
1	Collar	77A615	7	Screw, set; 6-32 $\times \frac{1}{2}$ " bristol	3A1803
2	Dial shaft \& pulley assembly	28B142	8	Spring, drive string tension	75A163
3	Nut, friction	2A2182	9	Stop, pulley	67A2144
4	Pin, stop	74A586	10	Washer, flat	4A140
5	Pulley and idler assembly	28B141	11	Washer, spring	4A1557
6	Pulley, idler	28A139	12	Spring, drive string tension	75A173

Fig. 104AA. Drive Mechanism Exploded View

Fig. 104CA. Top View Chassis Alignment Location for Chassis Y\& 21200 D
VHF \& UHF CHANNELS vS. CARRIER\& OSCILLATOR FREQUENCIES FOR 45.75 TO 41.25 MC IF. SYSTEMS

IF AMPLIFIER ALIGNMENT FOR Y AND Z1200D CHASSIS

EQUIPMENT REQUIRED

SWEEP GENERATOR \qquad
\qquad
\qquad RCA type WR-59B or equivalent
MARKER GENERATOR METER (VTVM)
\qquad RCA type WO -56A Te revision Cal
SCILLOSCOPE RCA type WV-97A or equivalent.
IAS SOURCE \qquad Three volt battery.
TEST CIRCUIT
ISOLATION TRANSFORMER \qquad 150 watt rating or higher.

PROCEDURE

1. Connect all test equipment to a common ground. Connect the TV chassis to this same ground after installing an isolation transformer between the power line and the TV chassis. One side of the line cord connects directly to the TV chassis and an isolation transformer must be used for safety. Allow a 15 minute warm up period.
2. Set the AVC switch on the rear chassis apron to the 0-10 MLE (counterclockwise) position.
3. Connect the negative side of a 3 volt battery supply to test point (E). Connect the positive side of the supply to the TV chassis. See schematic diagram.
4. Connect a VTVM to test point. (D) through a 47,000 ohm carbon resistor. Connect the ground side of the meter to the TV chassis. See Fig. 104CA.
5. Connect the high side of a marker generator to the shield of the osc./mixer tube. This connection will capacitively couple the generator output to the tube. Make sure the shield is ungrounded by raising it above the grounded clips that hold it in place.
6. Set the channel selector to channel 3 or 4 , whichever is vacant.
7. Set the marker generator output (unmodulated) for a two volt negative dc reading on the VTVM and adjust the three if transformers, L-9, and L-201 according to the I-F AMPLIFIER ALIGNMENT CHART shown below. Readjust the signal generator output as required to maintain the two volt VTVM reading

IF AMPLIFIER ALIGNMENT CHART

Signal Generator Frequency (No Modulation)	Adjustment	Transformer or Coil Location	VTVM Indication
45.0 MC	T-201 (bottom)	See Fig. 104CA	Maximum
42.8 MC	T-202 (bottom)	Under Chassis	Maximum
44.0 MC	T-203 (bottom)	See Fig. 104CA	Maximum
41.25 MC	T-202 (top)	See Fig. 104CA	Minimum
42.8 MC	T-202 (bottom)	See Fig. 104CA	Maximum
44.25 MC	\#L-201	See Fig. 104CA	Maximum
44.25 MC	\#L-9	See Fig. 104CA	Maximum

MPORTANT - The wax in the end of the coil forms holding the iron core in position may be softened for adjustment of the core by means of a heated screwdriver or a small pencil type soldering iron inserted into the wax. Remelt wax after adjustment.

* NOTE: Temporarily connect the series resistor-capacitor combination shown in Fig. 104DA to the tuner test point TP-2 when making this adjustment

NOTE: Temporarily connect the series resistor-capacitor combination shown in Fig. 104DA to the grid (pin 1) of $\mathbf{V - 1 0 1}$ the 6CB6 first if amplifier when making this adjustment.

On all channels the Picture I.F frequency is 45.75 MC and the Sound I-F frequency is 41.25 MC which gives a difference between
these two frequencies of 4.5 MC for the inter-carrier sound system.

Disconnect the VTVM and marker generator connected in steps 4 and 5 . The balance of the set-up should be as directed in steps $1,2,3$ and 6
9. Capacitively couple the high side of the sweep generator r-f output to the osc./mixer tube by connecting to the tube shield which has been raised above its grounding clips. The ground side of the sweep generator should be connected to the receiver chassis. Adjust the generator to sweep from 40.5 to 46.5 MC
10. Loosely couple the high side of the marker generator to the high side of the sweep generator by clipping the marker generator r-f lead over the insulation of the sweep generator r - flead. The ground side of the marker generato should be connected to the receiver chassis.

MPORTANT - To prevent overloading of the i-f amplifier keep the output of the sweep and marker generators as low as possible. The marker generator output should be just high enough to produce visible pips on the pattern. In some attenuation of the 41.25 MC signal by the trap in the top of T-202.
11. Connect the sweep output terminals on the sweep generator to the input of the horizontal amplifier in the oscilloscope.
12. Connect one side of a $47,000 \mathrm{ohm} 1 / 2$ watt resistor to test point (D) shown in the schematic diagrams. Connect the other end of the resistor to the high side of the input terminals for the vertical amplifier in the oscilloscope. The receiver chassis. Keep the scope leads away from the internal chassis
13. Reduce the r-f output of the sweep generator and increase the gain of the vertical amplifier in the oscilloscope a much as possible without introducing an excessive amount of noise on the test pattern. This will prevent over loading of the $i-f$ system
14. Check the position of the markers shown in Fig. 104EA. Adjust only the bottom cores of T-201, T-202 and T-203 for a response curve of maximum amplitude with a slightly tilted flat topped appearance as shown in Fig. 104EA. This tilt is required to compensate for the capacitive coupling used for the signal generators. The actual response obtained will be flat when the pattern viewed on the oscilloscope has this tilt. The bottom core of $\mathrm{T}-203$ will pri marily control the tilt of this central portion of the curve.
The bottom core of $\mathrm{T}-201$ should be adjusted to position the 45.75 MC marker in the 50% position shown in Fig. 104EA.

The bottom core of T-202 should be adjusted to determine the slope of the curve between 41.25 MC and 42.8 MC with the $\mathbf{4 2 . 2 5}$ MC marker down 50% on the curve as shown in Fig. 104EA.
Under no circumstances should an attempt be made to adjust L-9, L-201 and the 41.25 MC trap in the top of T-202 Uy means of by means of an oscilloscope and sweep generator. Ming the procedure given in steps 1 through 7 only.

I-F AMPLIFIER SENSITIVITY

MEASUREMENT

To determine the i-f amplifier sensitivity, disconnect the r-f output lead from the tuner where it connects to 0.2 mfd . mica or ceramic capacitor to grid pin 1 of the first 6CB6 i-f amplifier tube V-101. Connect the unmodulated $r-f$ output of a marker generator to the other side of the capacitor and the ground side of the generator to the TV chassis. Set the marker generator to 43.75 MC . Connect a VTVM as The 3 volt battery must be removed. If a generator output of 200 to 400 microvolts produces a 1 volt reading on the VTVM, the i-f amplifier sensitivity is normal.

Fig. 104EA. Typical Response for 41.25 to 45.75 MC I-F Amplifiers

Fig. 104FA. Voltage Chart for Chassis Y1200D

1. ANTENNAS DISCONNECTEO, AND
2. CHANNEL SELECTOR SET TO UHF POSITION.
3. aRIGHTNESS CONTROL MAXIMUM
4. CONTRAST CONTROL MINIMUM.
5. AGC CONTROL SET TO MiMuM COUNTER
6. AGC CONTROL SET TO
CLOCKWISE POSITION.
7. ALL OTHER CONTROLS SEt fOR NORMAL raster.
8. Line voltage ilv 60 ~ ac.
-. ALL voltages are dc and positive with RESPECT TO THE CHASSIS UNLESS OTHERWISE
SPECIFIED.
9. all reaoings taken with a vtym.

- varies from 65 to isst. depenoing ufon the
* VaRies from gs to issy oepenoing
- inoicates grouno lugs
- heater of vis is connecteo to cathooe, pine
tp tie point.
NC NO CONNECTION.
wr not readable.

$92 c 1911$

Fig. 104 GA. Voltage Chart for Chassis Z1200D

Notes

VOLTAGE READING TAKEN UNDER THE FOLLOWING
antennas
DISCONNECTED, AND
SHORTED.
2. CHANNEL SELECTOR SET TO UHF POSITION.
3. BRIGHTNESS CONTROL MAXIMUM.

CONTRAST CONTROL MINIMUM.
5. AGC CONTROL SET TO
6. ALL OTHER CONTROLS SET FOR NORMAL RASTER.
7. Line voltage itv $60 \sim$ ac
8. ALL VOLTAGES ARE OC AND POSITIVE WITH
RESPECT TO THE CHASSIS UNLESS OTHEPWIS

SPECIFIED.
9. all readings taken with a vtivm.

KEY

* varies from 70 to ibov, depenoing upon the
* setting of the height control.
- indicates ground lugs
tp tie point.
nc no connection.
nt not readable.

I-F ALIGNMENT OF THE COUPLING BETWEEN THE IE1483, IE1582, OR IE1670 VHF AND IE1484 OR IE1659 UHF TUNERS.

The following alignment procedure is suitable for use with any series 1200D chassis equipped with the 1E1483, 1E1582 or 1E1670 sixteen position cascode VHF tuner and a 1 E1484 or 1E1659 UHF tuner
no attempt should be made to perform the following alignment procedure until the vhf tuner and the balance of the tV receiver is known to be in proper operating condition.

EQUIPMENT REQUIRED

Sweep Generator \qquad RCA type WR-59B or equiv.
Marker Generator \qquad RCA type WR-39C or equiv.
Oscilloscope
\qquad RCA type WO-56A or equiv
Detector Circ \qquad $1 \frac{1}{2}$ volt battery or
Isolation Transformer \qquad 150 watt rating or higher

SET-UP PROCEDURE \& ADJUSTMENT

1. Check to be sure that all tube shields are in place on both tuners. Open the bottom shield cover of the 16 position VHF tuner and connect the test circuit of Fig. 104 HA to the plate pin 1 of the $6 \mathrm{BZ} 7 \mathrm{r}-\mathrm{f}$ amp-

2. Connect all test equipment and the television chassis to a common ground. Be sure to use an isolation transformer for the receiver chassis. Allow at least a 5 minute warm up period for the receiver chassis with the channel selector in the UHF position
3. Connect the negative side of the bias source to terminal 8 of the VHF tuner and the positive side to the chassis.
4. Connect the vertical input terminals of the oscilloscope to the test circuit as shown in Fig. 104 HA
5. Set the sweep generator to sweep an 8 MC band from 40 to 48 MC . Connect the r-f output hot lead through a .005 mfd. disc ceramic capacitor to the junction of the diode X-301, L-301, C-310 and C-311 in the UHF tuner. This point is the 1 N 82 diode chip which is farthest away from the 6AF4 oscillator tube in the UHF tuner. The ground
6. Loosely couple the high side of the marker generator $r-f$ lead to the high side of the sweep generator by connecting the marker generator r-f lead to the sweep generator r - f lead through a 22 mmf . capacitor. The ground side of the marker generator should be connected to the receiver chassis.
7. Connect the sweep output terminals on the sweep generator to the input of the horizontal amplifier in the oscilloscope.

IMPORTANT-To prevent possible overloading of the tuned circuits and the r-f amplifier tube in the VHF tuner keep the output of the sweep generator as low as possible with a useable pattern remaining on the oscilloscope. The oscilloscope vertical gain should be close to maximum. The marker generator output should be set just high enough to produce visible pips on the pattern viewed on the oscilloscope
8. Adjust the I.F. output coil (T-301) in the UHF tuner and the I.F. input coil (L-1) (*) in the VHF tuner for peaks of equal amplitude with the 45.75 MC picture carrier marker appearing exactly on one peak of the curve. The equal amplitude with the 45.75 MC picture carrier marker appearing exactly on one peak of the curve. The
42.25 MC marker should appear somewhere within the 10% limits on the other peak of the curve shown in Fig. 1041 B . The coil adjustments must be made so that the two peaks are of the same amplitude regardless of the
42.25 MC marker position. 42.25 MC marker position.
(*) In some of the early versions of the 1 E1483 sixteen position VHF tuner, the I.F. input coil is not adjustable by means of an iron core. On these tuners it will be necessary to spread or compress the turns of this coil within tuner. Some tuners had an additional coil on the outside of the tuner connected in series with the co-axial link from the UHF tuner. This coil may be adjusted as well as the coil inside the VHF tuner.

John F. Rider

SPECIAL NOTE: The capacitor ($\mathrm{C}-308$) connected across the r-f output terminals of the UHF tuner determines the bandwidth of the coupling circuits between the UHF and VHF tuners. If this capacitor is increased in value the bandwidth will decrease while a decrease in the value of this capacitor will increase the bandwidth. In some of the E1484 tuners C-308 will have a ceramic tubular capacitor connected in parallel with it so that the total effective value will range from 100 to 220 mmf . Some 1 E1484 tuners have a variable capacitor (Part No. 44A347) connected in parallel with a 150 mmf . ceramic capacitor (Part No. ${ }^{47 \mathrm{~B} 20151 \mathrm{M} 5 \text {) across } \mathrm{C}-308 \text {. This variable capacitor is }}$ factory set to give the desired bandwidth. If the bandwidth determined in step 8 is found to be not correct this capacitor may be adjusted. Determine from step 8 whether the bandwidth should be increased or decreased and adjust the variable capacitor accordingly. Repeat step 8. If the bandwidth requires further adjustment, again change the setting of the variable capacitor and repeat step 8. Repeat this procedure until the desired bandwidth is obtained. The value of C-308 is 150 mmf . in the 1 E 1659 tuners.

Fig. 1041A. Alignment Adjustments for
282010
\qquad
Fig. 1041B. Response Curve for VHF-UHF -F Coupling Alignment
hese tuners have been carefully aligned at the factory by personnel using precision equipment. Minor adjustments of the tuner may be necessary after making tube or part replacement. When replacing tubes in a tuner use the select the one which gives best performance. Realignment of the tuner probably will not be required if a selected tube is used for replacement. For those service engineers who are properly equipped as specified, the following TO BE FUNCTIURNG PROPERI AND THE ATTEMPT TNER ALIGNME UNTII THE TV RECEIVER IS KNOWN

EQUIPMENT REQUIRED FOR VHF TUNER ALIGNMENT

Sweep Generato \qquad RCA type WR-59B Marker Generat \qquad RCA type WR-39C or equiv. Bias Source \qquad $1 \frac{1}{2}$ volt battery or eq equiv.
Detector Circuit \qquad See Fig. 104HA.
Isolation Transformer 150 watt rating or higher

OSCILLATOR ADJUSTMENT FOR 16 POSITION TUNERS

1. Connect the balanced sweep output from a signal generator to the VHF tuner antenna terminals through the 300 ohm pad shown in Fig. 104JA. Set sweep generator for 10 MC sweep.
2. Connect the negative side of $1 \frac{1}{2}$ volt bias supply to terminal 8 of the VHF tuner. Connect the positive side
of the bias supply to the chassis.
3. Connect the oscilloscope and band-pass detector circuit shown in Fig. 104HA to Test Point TP-2 shown in Fig. 104IC.
4. Set the VHF tuner channel selector to channel 13
5. Loosely couple the high side of the marker generator to the antenna input terminals by clipping the lead ver the insulation of one sweep generator lead Connect the ground side of the generator to the chassis of the VHF tuner. Set the marker generator to the channel 13 picture carrier frequency of 211.25 MC
6. Carefully note the position of the marker pip on the response curve. Use a grease pencil if necessary to mark the position on the face of the cathode ray tube.
7. Loosely couple the high side of the marker generator to the band-pass detector circuit by clipping the lead over the germanium diode in the detector circuit. Connect the ground side of the generator to the chassis of the VHF tuner. Set the marker generator to 45.75 MC .
8. Rotate the fine tuning control of the VHF tuner until the 45.75 MC marker is in the same spot as the marker steps 5 and 6 . If this cannot be accomplished by adjustment of the fine tuning control, adjust the channel 3 oscillator adjustment ($\mathrm{L}-7$) to position the 45.75 MC marker. DO NOT DISTURB THE SETTING OF THE INE TUNING CONTROL AFTER THIS ADJUSTME NT

FRONT VIEW

9221910

Fig. I04IC. Alignment Adjustments for IE1483, IE1582 or IE1670 VHF Tuners
15. Repeat step 7 using the same marker frequency of 45.75 MC .
16. Adjust the channel 6 oscillator adjustment until the 45.75 MC marker pip is in the same position on the curve as the marker pip in Step 14. See Fig. 104IC.
17. Repeat steps $9,5,6,7$ and 12 for channels 5, 4, 3 and 2 in that order. In each case switch the channel selector and sweep generator to the channel being aligned. The marker generator frequency for step 10 will be the picture carrier frequency for the
carrier frequency of each channel.
NOTE: If two marker generators are available the alignment can be greatly simplified by using one generator for the picture carrier marker and the other for the 45.75 MC marker. Both generators are connected to the receiver at all times as directed in the above instructions. The use of two generators will produce two pips on the pattern. The adjustments outlined above will make these two pips coincide on the oscilloscope pattern.

EACH RESPONSE CURVE MUST FALL

Fig. 104KA. Typical Channel Response Curve

BAND-PASS ALIGNMENT FOR 16 POSITION VHF TUNERS 1E1483, $1 E 1582$ \& $1 E 1670$

do not attempt this alignment until the i-f alignment of the receiver has been checked and is known to be correct. the oscillator adjustment procedure given on page 39 must also be completed before starting this alignment.

1. Connect the balanced sweep output from a signal generator to the VHF tuner antenna terminals through the 300 ohm pad shown in Fig 104JA. Set the sweep generator for 10 MC sweep.
2. Connect the negative side of the $1 \frac{1}{2}$ volt bias supply to terminal 8 of the VHF tuner. Connect the positive side of the bias supply to the chassis.
3. Connect the oscilloscope and band-pass detector circuit shown in Fig. 104HA to Test Point TP-2 shown in Fig. 104IC.
4. Set the VHF tuner channel selector to channel 13.
5. Loosely couple the high side of the marker generator to the band-pass detector circuit by clipping the lead over the germanium diode in the detector circuit. Connect the ground side of the generator to the chassis of the VHF tuner.
6. Set the sweep generator for channel 13 and turn the VHF tuner channel selector to channel 13. outlined in step 7. in step 7.
7. Repeat step 7 as a final adjustment for channel 13. as shown in Fig. 104 IC. the oscilloscope.

Fig. 104MA. Numbering of Tuner Terminals

curves shown on page - The mixer grid adjustment ($\mathrm{L}-6$) must be adjusted for maximum mid -band gain regardless of the shape of the skirts. The slope and position of the skirts are primarily controlled by the r-f plate adjustment ($\mathrm{L}-3$) while the r-f grid adjustment ($\mathrm{L}-2$) controls the slope of the flat topped portion of the curve. Always adjust to place the picture carrier marker on a peak of the curve.

It the factory adjustment of the incremental loops and coils has not been disturbed, alignment of the r-f plate, r-f grid and mixer grid should be complete after the completion of step 7, unless extensive repairs have been made on
 alignment is not necessary. If they do not, proceed with the following steps.
Adjust the coils of the r-f plate, r-f grid and mixer grid for channels 12 through 7 starting with channel 12. Adjust the signal generators for each channel to the frequencies given in the chart on page 39 , Pushing
the half turn incremental loops toward the center of the switch so that they are closer to the switch wafer will increase the frequency while pulling them out and away from the switch wafer will decrease the frequency. Always adjust the mixer grid coils for maximum mid-band gain and the r-f plate and r-f grid coil loops as
9. Adjust the coils of the r-f plate, r-f grid and mixer grid for channels 6 through 2 starting with channel 6 . Adjust the signal generators for each channel to the frequencies given in the chart on page $39 . \quad$ Spreading the turns of the coils will increase the frequency while squeezing the turns together will decrease the frequency. Always adjust the mixer grid coils for maximum mid-band gain and the r-f plate and r-f grid coils as outlined

ALIGNMENT OF UHF POSITION IN 16 POSITION VHF TUNERS

1. Complete the oscillator and band-pass alignment given on pages 51 and 52
2. Turn the channel selector switch in the VHF tuner to the UHF position which will turn on the UHF dial light.
3. Complete the I-F Amplifier Coupling Alignment given on page 50 and 51 and leave the sweep
and marker generators connected as for the coupling alignment.
4. Connect the oscilloscope and band-pass detector shown in Fig. 104HA, to Test Point TP-2 on the VhF tuner
5. Adjust the incremental coils on S-1C and S-1D in the VHF tuner for the same general characteristics obtained for the I-F coupling alignment between the VHF and UHF tuners. The two peaks of the curve should be adjusted so that they are of equal amplitude with the picture carrier marker on one peak of the curve as shown in Fig. 104iB. Oniy a slight adjustment of these coils is required to produce considerable change. Adjust the

CHANNEL SELECTOR SHOWN ON CHANNEL 13 AS INDICATED BY FLAT ON SHAFT.
7. Adjust L-2 (channel 13 r -f grid), L-3 (channel $13 \mathrm{r}-\mathrm{f}$ plate), and $\mathrm{L}-6$ (channel 13 mixer grid) adjusting screws

ALIGNMENT OF THE 1E1484 AND 1E1659 UHF TUNERS

It is recommended that the alignment of the 1E1484 and 1E1659 UHF tuners not be disturbed in the field. If it is definitely established that realignment of the tuner is absolutely necessary the UHF tuner will have to be removed
from the main TV chassis in order to get at the adjustments. Electrical connections to the main TV chassis will have to be maintained in order to use amplifiers in the TV chassis to obtain a useable oscilloscope indication and prevent loading of the UHF tuner output circuit by the necessary test equipment. A heavy ground braid must also be connected between the UHF tuner chassis and the main TV chassis.
the hallicrafters service department provides a tuner exchange service for a nominal FEE. THE SERVICE TECHNICIAN IS URGED TO AVAIL HIMSELF OF THIS SERVICE RATHER THAN TO AT FEE. THE SERVICE TECHNICLAN IS URGED

SET.UP PROCEDURE

1. Complete the I-F coupling allgnment given on page 1952-104H.
2. Connect the band-pass detector circuit given in Fig. 104 HA to an oscilloscope and the plate (6BZ7 pin 1) of the r-f amplifier in the VHF tuner.
3. Connect the output of a UHF sweep generator to the UHF tuner antenna terminals through the 300 ohm resistor network shown in Fig. 104JA.
4. Loosely couple the r-f output of a UHF marker generator to the leads from the sweep generator.

Fig. 104NA. UHF Tuner Adjustment Points

OSCILLATOR ADJUSTMENT

1. Rotate the UHF tuning control to the full counterclockwise position.
2. Set the marker and sweep generators to 465 MC
3. Adjust the oscillator trimmer capacitor ($\mathrm{C}-312$ shown in Fig. 104NA) until the marker appears on the top portion of the curve.
4. Rotate the UHF tuning control to the full clockwise position
5. Set the marker and sweep generators to 900 MC .
6. Carefully spread or pinch together the legs of the oscillator end inductor (LI-3 shown in Fig. 1040A) until the marker appears on the top portion of the curve.
7. Repeat the above steps until no further improvement is apparent. The oscillator adjustment figures of 465 and 900 megacycles are approximate only, and may not fall precisely at the dial settings specified; in every $\frac{\text { case, however, the oscillator must be aligned so that both frequencies can be tuned by normal manipulation }}{\text { of the tuning control }}$ of the tuning control.

R-F ALIGNMENT

1. Rotate the UHF tuning control to the full counterclockwise position.
2. Set the marker and sweep generators to $\mathbf{4 6 5}$ MC.
3. Adjust the r-f trimmer ($\mathrm{C}-305 \& \mathrm{C}-307$ shown in Fig. 104NA) for maximum gain and a flat top response curve. The marker should be in the top center portion of the curve
4. Rotate the UHF tuning control to the full clockwise position.
5. Carefully spread or pinch together the legs of the r-f end inductors ($\mathrm{LI}-1 \& \mathrm{LI}-2$ shown in Fig. 1040A) for maximum gain and a flat top response curve. The marker should appear in the top center portion of the curve.
6. Repeat the above steps until no further improvement is apparent.

Fig. 1040. Parts Identification for 1E1484 G 1 EI659 UHF Tuners
SERVICE PARTS LIST FOR IE1484 \& 1E1659 UHF TUNERS The parts in the following list may be identified by reference symbols shown in the above figure.

©John F. Rider

SERVICE PARTS LIST (Cont.)					168
Schematic Symbol	CAPACITORS (Cont.)		C-201	$1000 \mathrm{mmf}$.500 V ., ceramic disc	47 A 230
			C-202	1000 mmf .500 V ., ceramic disc 1000 mmf .500 V ., ceramic disc	47A2230 47A330
	Description	Hallicrafters Part Number	C-204	1000 mmf . 500 V ., ceramic disc	47A230 47 A 230
			C-205.	1000 mmf . 500 V ., ceramic disc	47A230
			C-206	1000 mmf . 500 V ., ceramic disc	47A230
			* ${ }^{\text {C-207 }}$	$680 \mathrm{mmf} .500 \mathrm{~V} ., 5 \%$, ceramic tubular	47A319
*C-117	$30 \mathrm{mmf} .500 \mathrm{~V} ., 10 \%$ ceramic tubular	47X25PG300K	*- ${ }^{\text {C-208 }}$	$820 \mathrm{mmf} .500 \mathrm{~V} .5 \%$, ceramic tubular	47A320
C-118	$100-10 \mathrm{mfd} .300 \mathrm{~V} ., 200-30 \mathrm{mfd} .150 \mathrm{~V}$., electrolytic	45 C 209	${ }^{*} \mathrm{C}-209$	820 mmf . $500 \mathrm{~V} .5 \%$, ceramic tubular	47A320
C-119.	200-5 mid. 150 V., electrolytic.	45 C 210	C-210.	24 mmf .500 V ., ceramic tubular.	$47 \mathrm{B20A240K5}$
C-120	5000 mmf . 500 V ., ceramic disc	47A168	$\mathrm{C}-211$ $\mathrm{C}-212$	34 mmf .500 V ., ceramic tubular	47B20A240K5
C-121	. 1 mfd .400 V ., paper tubular	46AV104J	C-213		47B20331M5
* $\mathrm{C}-12$	$220 \mathrm{mmf} .500 \mathrm{~V} ., 10 \%$ ceramic tubular	$47820221 \mathrm{K5}$		330 mmf .500 V ., ceramic tubular	47B20331N
C-123	. 005 mfd . 600 V ., paper tubular	47820220M5		* USE EXACt replacement part only	
C-124.	22 mmf .500 V ., ceramic tubular			8 SEE NOTE ON BOTTOM OF PAGE 54.	
C-125	. 05 mfd .400 V ., paper tubular	46BS472L4			
C-127	. 0047 mfd. 400 V ., molded paper tubular	46BS472L4			
C-128	.01 mfd .400 V ., molded paper tubular	46BS103L4			
C-129.	0.0047 mfd .400 V ., molded paper tubular	${ }_{46 \mathrm{BSA} 43 \mathrm{~L}} 46 \mathrm{l}$		RESISTORS	
C-130	. 047 mfd .400 V .; molded paper tubular				
C-131	. 047 mfd . 400 V ., molded paper tubular	46BS473L4 47 Al 68	Schematic		Hallicrafters
C-132	5000 mmf .500 V ., ceramic disc	45B208	Symbol	Description	Part Numb
C-133	20 mid. 450 V ., electrolytic	46AU503J	R-100	5 ohm hum balance rheostat (part of speake	
C-135	140 mfd .150 V ., electrolytic	$45 \mathrm{B207}$	R-101	100.000 ohms $\frac{1}{2}$ watt, carbcn	23X20×104K
*C-136	1000 mmf .500 V ., ceramic tubular	47820A102M5	R-102	4700 ohm $\frac{1}{2}$ watt, carbon	23X20×472K
* C-137	1000 mmf . 500 V ., ceramic tubular	47BAZ 4102 F	R-103	1000 ohms $\frac{1}{2}$ watt, carbon	23X20x102K
C-138	.006 mfd .600 V ., paper tubular	46AZ602F	R-104.	47 ohms $\frac{1}{2}$ watt, carbon.	23X20x470K
* C-139	0.003 mfd .400 V ., paper tubular	46 BS 102 L 10	R-105	1000 ohms $\frac{1}{2}$ watt, carbon	$23 \mathrm{X} 20 \times 102 \mathrm{~K}$
* C-140 $\mathrm{C}-141$. 001 mfd . 1000 V ., molded paper tubular	46AW103J	R-106	10,000 ohms $\frac{1}{2}$ watt, carbon	$23 \mathrm{X} 20 \times 103 \mathrm{~K}$
(${ }_{\text {c }}^{\text {C-141 }}$. 75 mmf m. 500 V ., 10% ceramic tubular	47B20750K5	R-107	47 ohms $\frac{1}{2}$ watt, carbon	$23 \times 20 \times 470 \mathrm{~K}$
* C-143	3900 mmf . 500 V ., 10% silver mica	47X30D392K	R-109.	8200 ohms $\frac{1}{2}$ watt, carbon	$23 \times 20 \times 822 \mathrm{~K}$
* C-144	390 mmf .500 V ., 10% silver mica	47X20D471K	R-110	150 ohms $\frac{1}{2}$ watt, carbon	23X20x151K
* C-145	470 mmf .500 V ., 10% silver mica	47×168	R-111	1000 ohms $\frac{1}{2}$ watt, carbon	$23 \times 20 \times 102 \mathrm{~K}$
C-146	5000 mmf .500 V. , ceramic disc	47 A 296	R-112	390,000 ohms $\frac{1}{2}$ watt, carbon	$23 \times 20 \times 394 \mathrm{~K}$
*C-147	$120 \mathrm{mmf} 3000 V.$. , ceramic disc ${ }^{\text {a }}$ (mfd .200 V , paper tubular (part of L-109)	47 A 296	R-113	1.5 megohms $\frac{1}{2}$ watt, carbon	$23 \times 20 \times 155 \mathrm{~K}$
- $\begin{array}{r}\text { C-148 } \\ \text { C-149 }\end{array}$		$47 \times 30 \mathrm{TH} 680 \mathrm{~K}$	R-114.	5600 ohms $\frac{1}{2}$ watt, carbon	$23 \times 20 \times 562 \mathrm{~K}$
c-149 $\mathrm{C}-150$	Dual 4000 mmf . 500 V ., ceramic disc	47 A 218	R-115	$1 \mathrm{megohm} \frac{1}{2}$ watt, carbon	$23 \times 20 \times 105 \mathrm{~K}$
C-151	5 mfd . 50 V ., electrolytic	45B175 47820331 M 5	R-116 $\mathrm{R}-117$	1.5 megohms $\frac{1}{2}$ watt, carbon 2.2 megohms $\frac{1}{2}$ watt, carbon	${ }_{23 \times 20 \times 1525 \mathrm{~K}}^{23 \times 2}$
C-152	330 mmf .500 V ., ceramic tubular	47820331M5	R-118/168	2500/1,000,000 ohms; dual contrast/volume control	25B997
C-153	1000 mmf .500 V ., ceramic disc	47A168	R-119...	8200 ohms $\frac{1}{2}$ watt, carbon (part of L-104)	--------
C-154.	5000 mmf .500 V ., ceramic disc		R-120	33,000 ohms 1 watt, carbon	23X30×333K
C-155	10 mfd .50 V ., electrolytic	458211	R-121	4700 ohms 2 watt, carbon	23X40X472K
C-156	. 01 mfd. 400 V ., paper tubular	46AW103J	R-122	6800 ohms $\frac{1}{2}$ watt, carbon (part of L-106)	---------
C-157	. 02 mfd .600 V ., paper tubular	46AY203J	$\mathrm{R}-123$	3300 ohms $\frac{1}{2}$ watt, carbon (part of L-107)	
C-158	5000 mmf . 500 V., ceramic disc	47A168	R-124.	10,000 ohms $\frac{1}{2}$ watt, carbon.	$23 \times 20 \times 103 \mathrm{~K}$
C-159.	5000 mmf .500 V ., ceramic disc	47A168	R-125	470,000 ohms $\frac{1}{2}$ watt, carbon	$23 \mathrm{X} 20 \times 474 \mathrm{~K}$
C-160	$47 \mathrm{mmf} 2000 V.$. , (part of L-112)		R-126	2.2 megohms $\frac{1}{2}$ watt, carbon	$23 \mathrm{X} 20 \times 225 \mathrm{~K}$
* ${ }_{\text {C-161 }}$ C-162	200 mfd , 150 V ., electrolytic	45 B 217 46AY104J	$\mathrm{R}-127$ $\mathrm{R}-128$	680,000 ohms $\frac{1}{2}$ watt, carbon	$\begin{aligned} & 23 \times 20 \times 684 \mathrm{~K} \\ & 23 \times 20 \times 222 \mathrm{~K} \end{aligned}$
C-162 $*$ C-163	. $1 . \mathrm{mfd}$. 600 V ., paper tubular	46AY104J $47 \times 200391 \mathrm{~K}$	$\mathrm{R}-128$ $\mathrm{R}-129$.	2200 ohms $\frac{1}{2}$ watt, carbon 560,000 ohms 1 watt, carbon	$23 \times 20 \times 222 \mathrm{~K}$ $23 \mathrm{X} 30 \times 564 \mathrm{~K}$
*-164.	560 mmf . 500 V ., 10% silver mica	$47 \times 20 \mathrm{D} 51 \mathrm{~K}$	R-130	22,000 ohms $\frac{1}{2}$ watt, carbon	$23 \times 20 \times 223 \mathrm{~K}$
C-165	.047 mfd .400 V ., paper tubular	46BS473L4	$\mathrm{R}-131$	6800 ohms $\frac{1}{2}$ watt, carbon	$23 \mathrm{X} 20 \times 682 \mathrm{~K}$
C-166	$500 \mathrm{mmf} 20,$.000 V., ceramic	47A223	R-132	3300 ohms $\frac{1}{2}$ watt, carbon	23X20×332K
C-167	. 005 mfd . 400 V ., paper tubular	46AW502H 48 AW 503 H	R-133	22,000 ohms $\frac{1}{2}$ watt, carbon	$23 \mathrm{X} 20 \times 223 \mathrm{~K}$
C-168	.05 mfd .400 V ., paper tubular	${ }_{45 \text { 46097 }}$	R-134.	10,000 ohms $\frac{1}{2}$ watt, carbon	23X20×103K
C-169.	10 mfd .150 V ., electrolytic .		R-135	$850,000 \mathrm{ohms}$; vertical hold control: for mtg. on rear apron	2581001
$\mathrm{s}^{*} \mathrm{C}-170$	100 mmf . 500 V ., silver mica		R-135	850,000 ohnis: vertical hold control: for mtg. on front apron	$25 \mathrm{B1013}$
C-171	1000 mmf . 500 V ., ceramic disc	47 A 230 O	R-136	3300 ohms $\frac{1}{2}$ watt, carbon	$23 \times 20 \times 332 \mathrm{~K}$
$\mathrm{C}-172$ $\mathrm{C}-173$	$47 \mathrm{mmf} .500 \mathrm{~V} .$, ceramic tubular	47820470M5	R-137	1800 ohms $\frac{1}{2}$ watt, car bon	23X201182K
C-173	. 05 mfd .600 V. , paper tubular	46AY503J	${ }_{\text {R-139 }} \mathrm{R}-138$.	5 megohms ; height control	25B998 ${ }_{23 \times 120 \times 1 \mathrm{~K}}$
C-174.	. 01000 mfd mmf. 600 V ., paper tubular	47 A 230	R-139 $\mathrm{R}-140$	120 ohms $\frac{1}{2}$ watt, carbon	258999
C-176	1000 mmf . 500 V ., ceramic disc	47A230	*R-141	8700 ohms 3 watts, 5% wire wound	24A971
C-177	1000 mmf. 500 V ., ceramic disc	47 A 230	${ }^{\text {R }}$-142	7.5 ohms 5 watts, fuse type wire wound	25B1004
C-178	1000 mmf .500 V ., ceramic disc	47A230	*R-143.	190 ohms cold - 19 ohms hot, 5 watts; neg. temp. coeff.	25 A 1008
C-179	.01 mfd .500 V ., ceramic disc.	47A217	*R-144	80 ohms 10 watts, 5% wire wound	24A 955
C-180	. 01 mfd .500 V ., ceramic disc	47A217	*R-145	42 ohms 3 watts, 5% wire wound	24 A 957
C-181	1000 mmf . 500 V ., ceramic disc	17A230	R-146	100,000 ohms $\frac{1}{2}$ watt, carbon	23X20X104K

© John F. Rider

CABINET SERVICE PARTS FOR MODEL 1058 U

© John F. Rider

NOTE: For tuner sc hematic, see page 57.

Channel selector shown on cunnel is
As ineicated or flat on shaft.

ALUES AND TOLERANCES SHOWN ARE NOMINAL AND VARIA. TIONS MAY BE FOUND. IT IS RECOMMENDED THA THE VALAE
OF ANY REPLACEMENT CORRESPOND TO THE NOMINAL VALUE
OF THE PART BEING REPLACED.

THE FOLLOWING INFORMATION IS INTENDED TO BE USED IN CONJUNCTION WITH ANY TELEVISION CHASSIS INCORPORATING

 THIS TYPE OF UHF TUNING UNIT.IDENTIFICATION

Figure 1. UHF Tuner Assembly

INTRODUCTION

This UHF tuner is of continuous design. In other words, tuning for a UHF channel is not unlike tuning a radio for a radio station. The tuning range is from channel 14 through 83. There are two parts to the tuner, the ection. Thallory Tuning under the chassis pan and is accessible only by removing the chassis from the cabinet. Circuit operation is described below.

CIRCUIT OPERATION OF THE UHF TUNER
The method of operation may be best understood by referring to the block diagram of the UHF Tuner Assembly, Figure 2. As shown in the upper left of the diagram, the antenna, a UHF-VHF combination type, is connected to the input of the preselector when function switch is in the UHF position. The line connecting the antenna has a normal impedance of 300 ohms.

ELECTRICAL AND MECHANICAL DATA

Antenna Input Impedance	300 Ohms balanced
Output	Single output for sound and picture
R-F Amplifier	$6 \mathrm{BQ7}$ or 6BZ7
Mixer-Oscillator	6 AF 4
Tuning Range	Channels 14-83
Tuning Mechanism	Continuous

The sirnal may be traced to the first tuned circuit which is resonated to the channel to be received. is then coupled capacitively to the second tuned circuit which has the same resonant frequency. The couplin between the circuits is such that a bandpass of 6 mc or more is obtained. The output of the second tuned circuit is matched to the Xtal which is also fed by a voltage from the oscillator shown to the right. The oscillator frequency is so arranged and by being conhan the signal by the 1 form arred by this mount throughout the band.

A connection from the Xtal circuit to the cascode 1-F section contains a filter which passes the difference in frequency of the I-F but rejects the signal frequency.

This I-F signal is now amplified through the cascode stage approximately twenty-five times. However, in the mixing process, the resulting $1-\mathrm{F}$ signal is three times down as compared to the

Lastly, the output of the cascode stage is link-coupled to the first I-F grid coil of the main video I-F amplifier and from there on, the usual circuit actions take place as in the VHF television receiver.

Figure 2. Block Diagram, UHF Tuner Assembly

ALIGNMENT PROCEDURE

1. Perform the usual VHF alignment of the set with the function switch control shaft turned to the counterclockwise position (VHF position). Use the standard alignment procedure. Be sure that the four interately to the fixed frequencies specified so that a minimum amount of staggering of the mixer plate coil and lst grid I-F coil is required to obtain a flat I-F response curve
2. Throw the function switch to its UHF position by turning control shaft in a clockwise direction. Attach a signal generator to ground (make ground lead as short as possible) and to UHF test point lead through a 120 ohm resistor. Shunt a 10 ohm resistor to ground off test point (see Figure 5). turns out from its maximum clockwise position, using a center frequency of approximately 44 mc . Adjust the two UHF I-F transformers so as to obtain a flat response between the frequency limits given for the VHF bandwidth.

When necessary, turn the neutralizing trimmer to broaden the response curve of the first circuit.

Figure 5. Alignment Test Set-up

NOTE

Each time the neutralizing trimmer is turned, it must be recentered.
3. Close the test point through a meter ($0-10$) ma dc and check to see that the injection current runs 1 to 2 ma over the band. This should be approximately 1.5 ma over 500 to 750 mc

Solder test point lead to chassis and check to see that shields are fastened tightly.

Figure 6. Switching Arrangement, UHF Tuner Assembly

© John F. Rider

IDENTIFICATION

Figure 1. Chassis 195 TV Chassis
Chassis 195 receiver incorporates a low radiation " 40 megacycle" cascode type tuner, the RF-11, that comprises the $\mathrm{R}-\mathrm{F}$ stages.

Both picture and sound output from the tuner is fed to the first of four stages of stagger-tuned I-F amplification. The picture carrier frequency is 45.75 mc . An intercarrier type sound system is employed, the 4.5 mc
sound take-aff occuring at the output of the video detector. sound take-off occuring at the output of the video detector.
The sound is fed into the first of two 4.5 mc sound I-F The sound is fed into the first of two 4.5 mc sound I-F stages. A 39.75 mc adjacent channel picture trap, a 41.25 mc co-sound trap, and a 4.25 mc adjacen

A ratio detector is used as the sound second detector This stage is followed by a stage of voltage amplification which drives a stage of power amplification. The beam
power output tube is coupled to the speaker through an audio output transformer which is located on top of the receiver chassis.

The video detector is one-half of a miniature dual diode vacuum tube. The output from this detector is coupled directly to the video amplifier through high frequency compensating shunt and series peaking colls. The single stage of video a mplication is direch coupled to the cathode of the picture tube through high frequenct compers is circuit is needed in the receiver.

ELECTRICAL AND MECHANICAL DATA
TABLE I - ELECTRICAL AND MECHANICAL DATA

Operating Voltage	115 Volts AC, 60 cps
Power Consumption	200 Watts
Tuning Range	Channels 2-13
Maximum Audio Power Output	3 Watts
Audio Output Impedance	6.4 Ohms tapped at 3.2 Ohms at 400 cps
Intermediate Frequencies	
Picture Carrier Sound Carrier	45.75 Mc 4.5 Mc
Antenna Input Impedance	300 Ohms, balanced
Picture Tube Size	$17^{\prime \prime}$ Rectangular

TABLE II - TUBE COMPLEMENT

TUBE	TYPE	FUNCTION
V1	6BZ7 or 6BQ7	R-F Amplifier
V2	6J6	Oscillator-Mixer
V101	6AU6	1st Sound I.F.
V102	6AU6	2nd Sound I.F.
V103	6AL5	Ratio Detector
V104	$1 / 2-6$ SQ7	Audio Amplifier
V105	6K6GT	Audio Output
V201	6CB6	1st Picture I.F.
V202	6CB6	2nd Picture I.F.
V203	6CB6	3rd Picture I.F.
V204	6CB6	4th Picture I.F.
V205	1/2-6AL5	Video Detector
V301	6AH6	Video Amplifier
V302	17HP4 (Chassis 195)	Picture Tube
V401	6AU6	AGC Keyer
V402	1/2-6SQ7	Delayed AGC
V501	6AU6	1st Sync Separator
V502	1/2-6SN7GT	2nd Sync Separator
V601	6SN7GT	Vertical Oscillator
V602	6S4	Vertical Output
V701	1/2-6AL5	Horiz. Phase Det.
V702	1/2-6SN7GT	Horiz. Oscillator
V703	6SN7GT	Horiz. Output
V704	6BQ6GT	DW4GT
V705	6W4GT	Damper
V706	1B3GG	H.V. Rectifier
V801	5U4G	L.V. Rectifier

Two stages of sync separation are designed into the receiver. They receive the composite video signal from a tap on the video amplifier load resistor.

The second sync separator serves the additional function of a phase splitter for feeding approximately equal and opposite sync pulses to the balanced horizontal phase detector. A negative sync pulse is taken from a tap on cathode resistor, and this pulse is fed to the vertical integrating network, Z501, for the purpose of synchronizing the vertical oscillator.

The vertical oscillator is the cathode-coupled multivibrator type. It drives a single power triode outpu stage which is coupled to the vertical deflection coils through an output transformer. The positive pulse of the retrace portion of the vertical sweep output voltage is reve transformer, and the resulting negative voltage pulse is coupled to the picture tube control grid through a .022 uf condenser which also serves to sharpen the pulse so that it is only effective during the retrace portion of the sweep. The negative voltage pulse biases the picture tube beyond cut-off during the retrace portion of the vertical sweep, and the bright retrace lines are blanked out.

The horizontal oscillator is a cathode-coupled type of multivibrator. The stabilizing influence of a paralle tuned L-C circuit is used as part of the plate load of one of the triodes in the multivibrator circuit. The natura frequency of the tuned circuit is made very close to the horizontal sweep frequency. The frequency of the hori zontal multivibrator is further stabilized by a balanced horizontal phase detector circuit of chal triode which has its plate and grid tied together so that the triode serves as a diode. The horizontal oscillator drives a stage of power amplification that is coupled to the horizontal deflection coils through an output transformer The horizontal output transformer is also an active member of the high voltage supply. In addition the horizontal output transformer supples positive keyer pulses to the plate of the keyed AGC tube and it furnishe a reference saw-tooth voltage in conjunction with the horizontal deflection coil circuit for the horizontal phase detector.

The high voltage section is a high efficiency fly back type which uses a single half-wave rectifier. The approximately 200 volts that results from the rectifica tion of the fly-back potential across the damper tube is

Figure 2. Ion Trap Position
added to the 280 volt bus potential, and this boost voltage of approximately 480° volts is applied to the vertica sweep circuits and electrostatic focus circuit throug voltage to their respective circuits.

The low voltage power supply is the conventiona full-wave rectifier type which delivers power into condenser input RC filter voltage divider network tha supplies the required bus voltage for the circuit throughout the receiver.

Chassis 195 is a 24 -tube TV receiver, including the rectangular picture tube.

The picture tube is seated in a support bracket which mounts directly on the receiver chassis of al three chassis types.

Provision is made for phono input on Chassis 195 The phono reproduction may be selected by the use of a double-pole double-throw switch once a record player hs: been connected to the TV chassis. The selector switch performs the functions of switching the audio and switching the picture tube control grid from the brightness control circuit to ground, cutting off the picture tube raster when the phonograph is being played Phono motor power is provided through an AC outlet a the rear of the receiver chassis. A color converter receptacle is also available at the rear apron of the five-pin plug is inserted in the receptacle. Pins 1 and 5 of the plug are jumpered together, and it is essentia that the plug be inserted in the receptacle in order that the $\mathrm{B}+$ circuit to the brightness control be complete.

FUSE PROTECTION

Two sources of fuse protection are provided in the chassis. The entire receiver is protected against overloading due to short circuiting that results in excessive input current being drawn by the power transformer The fuse used for this purpose is a 3 -ampere Slo-Blo type that is housed in a fuse holder mounted on the chassis rear apron. The second source of fuse protection is in the horizontal output screen circuit and damper circuit. A $1 / 4$-ampere fuse is held in a fuse clip located inside of the high voltage cage at the left rear corner.

MAINTENANCE

The 195 chassis and its complete model assembly is designed to facilitate receiver servicing. The chassis is mounted in a horizontal position within the cabinet It is held in position within the cabinet by four bolt which thread into four mounting brackets located a the corners of the chassis. The four bolts are inserted of the backboard exposes the top of the chassis. The removal of one screw from the bottom rear of the high voltage cage allows the back and top of the cage to be rotated away for servicing inside of the cage. The bottom of the chassis is made accessible by removing the bottom cover board which is held in place by several made by remuving the channcl selector knob and inserting a non-metallic screw-driver through the access hole located at the right-hand side of the tuner shaft.

OPERATING INSTRUCTIONS

Front Panel Controls

Refer to Figure 3 for location of front panel controls. OFF-ON VOLUME CONTROL

The VOLUMF control is part of a dual type poentiometer being associated with the CONTRAST conrol. The chassis power switch is mechanically linked to the volume potentiometer. This switch opens the ind power line to the receiver power transformer is turned to the The initial rotation of the shaft in the clockwise direction closes the AC switch and causes the sound level to start increasing toward maximum audio power output. The smaller, outer, left-hand knob is the one that turns the VOL UME control shaft when the knobs are in place.
CONTRAST CONTROL
The CONTRAST control varies the gain of the video mplifier. With the AGC system used for maintaining constant signal level, the CONTRAST control becomes primarily useful in setting background level for best average program contrast levels. To increase picture contrast turn the CONTRAST control clockwise. The large, inner, left-hand knob is the one that turns the CONTRAST control shaft when the knobs are in place.

TUNING CONTROLS

The tuning controls are the dual type. To select desired channel, turn the CHANNE L SFLFCTOR shaft in either direction until the desired channel's coils are in operating position in the tuner. Once a channel has counterclockwise until the picture starts to become wavy and variable dark horizontal lines and bars appear in the picture. Turn the shaft clockwise until the lines and bars just disappear and the picture appears clear and sharp. Do not turn too far in the clockwise direction or definition will start to decrease. Picture and sound tuning are synchronized so that the best picture will come in with best sound when alignment is correct.

The remaining three front panel controls are located ehind the front controls cover plate when the chassis is rom the front panel to reach these controls.
BRIGHTNESS CONTROL
The BRIGHTNESS control sets the average background illumination of the picture

1. Temporarily turn the CONTRAST control to minimum setting (extreme counterclockwise).
. Turn the BRIGHTNESS control so that a medium illumination is visible on the screen.
This setting produces a picture with average backround characteristics at about three-quarters contrast recommendation, the BRIGHTNESS control may be set so that the picture is most pleasing to the customer. VFRTICAL HOLD CONTROL

The Vertical Hold control has a hold-in range over control so that the picture is brought from a Turn the
moving picture into sync and best interlace of the sweep ines is observed
TONE CONTROL AND TV-PHONO SWITCH
The control is dual control. A double pole double hrow switch is mounted at the rear of the tone potentiometer. The switch is activated when the tone control or the extreme counterclockwise position. Extreme counterclockwise rotation of the tone control switches the receiver for TV operation and provides maximum bass response. Clockwise rotation of the control provides continuous increase in treble response. Maximum clockwise rotation switches the receiver to PHONO operation. When changing from one function to the other, urn the control in the appropsiate direch uila click is heard.
obtained.

Rear Adjustments

The rear chassis controls are intended to be adjusted by the dealer or his service representative at the time of installation in the customer's home or during a service call. Once adjusted correctly, these controls need not be changed over long periods of time or unless a specific tion of pror controls. ion of rear controls

ION TRAP

The effects of the FOC US control, ion trap, and entering magnet orientation are slightly interdependent necessary for optimum setting of these controls. Always set the ion trap for maximum raster brightness.

CAUTION

Never attempt to center the picture by mis-
adjustment of the ion trap.
Set the BRIGHTNESS and CONTRAST controls about midrange, never at maximum setting, to avoid damaging the picture tube first anode. Refer to Figure 2. Rotate the ion trap on the picture tube neck until light appears on the screen. After initial light has been obtained, move the ion trap back and forth and further rotate it to obtain the brightest raster. If the receiver is equipped with a Rauland picture tube, the optimum ion trap setting is indicated by minimum green glow inside the tube neck. FOC US ADJUSTMENT

Flectrostatic focusing is used. The picture tube is designed for optimum focus at some fixed potential chiefly upon tube type, but the variation of focus with several hundred volts change in focus potential is very slight. The FOCUS control is a 2 megohm potentiometer connected between boost voltage (approx. 480 volts) and ground. The arm of the potentiometer is connected to the focusing electrode in the picture tube.

With a picture on the picture tube screen, turn the FOCUS control until the sharpest picture is obtained at the center of the picture.

ORIZONTAL DRIVE ADJUSTMENT
. Turn the HORIZ. DRIVE control counterclockwise until a drive bar (thin, light vertical line) appears. Turn the control clockwise until the drive bar just disappears. If no drive bar is obtained, set the HORIZONTAL HOLD CONTROL

The HORIZONTAL HOLD control provides a vernier adjustment for the horizontal multivibrator operating frequency. Proper setting depends on correct adjustment of the HORIZ. FREQ. and HORIZ. DRIVE controls. Turn the Horizontal Hold control until bending of he top portion of the picture is eliminated. This is best determined by noting the vertical line
HORIZONTAL FRECUENCY CONTROL
. Turn the Horizontal Hold control to mid-range. while switching the CHANNEL SELECTOR on and off channel until sync is lost.
3. Turn the control clockwise and check the number of bars which appear just before pull-in of the picture. Check circuit for abnormal operation if less than two bar pull-in occurs.
4. Continue turning control clockwise while switching the CHANNEL SELECTOR on and off channel until sync is lost.
5. Turn the control counterclockwise and check the point where picture pull-in occurs
6. Turn the control an additional $1 / 2$ turn counterclockwise.
HORIZONTAL LINEARITY
Adjust for best Horiz. Linearity with a test pattern. This is gen
WIDTH ADJUSTMENT
To adjust picture width, turn WIDTH control, L705 clockwise to increase width, counterclockwise to decrease width. When adjusting picture width, remember to take line voltage into consideration if it differs by more than several volts from the value usualy existing When and/or for voltage difference when adjusting width. Width increases with increase in line voltage
VERTICAL SIZE AND LINEARITY ADJUSTMENTS The VERT. SIZE and VERT. LINEARITY controls adjust the height and vertical proportion of the picture. The VERT. SIZE control affects the height of the entire picture but not in a linear manner. The bottom portion of the picture is expanded at a greater rate than the top portion, and the picture center tends to move toward the top of the picture tube

1. Turn the VERT. SIZE control counterclockwise to increase the height of the picture and clockwise to decrease the picture height
The VERT. LINEARITY control affects the upper created by changes made by the VERT. SIZE control. 2. Turn the VERT. LINEARITY control clockwise to expand the upper portion of the picture and counterclock wise to compress the upper portion of the picture.
After adjustment of the picture height and/or vertical linearity, check the VERT. HOLD adjustment; the three controls are interdependent. The same caution that was given for picture width and line voltage applies equally well to vertical picture size.

Figure 6. Voltmeter Isolation

Ratio Detector Alignment

Equipment: Generator input remains unchanged from the level that produced 6.5 to 7 volts in the preceding step. Connect the voltmeter across the junction of R111 and R112 and the switch side of R110; polarity will depend upon which side of resonance the secondary winding of T101 is tuned. If a VTVM is being used, set the zero voltage point up scale so that plus and minus readings may be observed without changing the of the higher scales of the VTVM and decrease the scale setting as the null point is obtained.

Procedure: Tune the secondary (top) of T101 for a zero reading on the voltmeter. Do duced the 6.5 to 7 volts in the first step. Repeat tuning of T101 primary and secondary until adjustments do not change.

Trap and Picture I-F Alignment

TUNING 4.5 MC TRAP

Equipment: Connect the CW generator through the .005 uf isolating condenser, to pin 7 or to 4.5 mc . Connect the detector network and voltmeter between ground and the cathode of the picture tube as
shown in shown in Figure 7.
Procedure: Tune L302 (4.5 mc trap in plate circuit of video amplifier) for minimum indication TUNING $39.75 \mathrm{MC}, 41.25 \mathrm{MC}$, AND 47.25 MC TRAPS Equipment: Couple the CW generator "hot" lead to the tuner mixer grid. This may be done in
s. The $.5-3$ uf trimmer condenser (C 12 several ways. The .5-3 uuf trimmer condenser (C12
in Bulletin 301) located in front of the 656 and nearest

Figure 7. Detector Network
the contact side of the tuner is connected to pin 5 of the 6J6, the mixer grid. This plate of the trimmer condenser is accessible through a hole in the side cover plate. The "hot" generator lead may be coupled to this point through a . 005 uf isolating condenser, the condense pigtail being clipped to the trimmer by some convenien means. Another method of coupling the generator is to remove the 656 , wrap the isolating condenser pigtail
around pin 5 of this tube, and replace it in its socket. In either method take care that the pigtail lead does not short to ground. A third method of coupling is to pull the 6 J 6 tube shield up on the tube until it is not grounded. Clip the "hot" lead of the generator directly to the tube shield. The tube shield and the tube electrodes form a condenser which capacitively couples the signal to the mixer grid. The capacity is much less than .005 uf, and a much higher level of generator output will be required if this method is utilized.

Connect the negative lead of the voltmeter to pin 1 of V301, the video amplifier grid, using the 10 K ohm voltmeter positive lead to ground. Connect the negative terminal of the 3 volt bias source to the AGC bus; connect the bias source positive lead to ground.

Procedure: Turn the CONTRAST control to its maximum f aliposition (extreme clockwise) for remainder on the CW minimum voltmator and adjusting the trap slug for a traps is given in Table III. Khe order of tuning the overloading I-F circuits.

TUNING PICTURE I-F COILS
Equipment: Instruments and set-up remain the same as for trap alignment during the first part of the procedure. For final adjustment the sweep frequency generator is also used and the voltmeter should be replaced by the oscilloscope. See Figure 8 for oscilloscope isolation details.
Procedure: Tune the I-F coils by setting the coil frequency on the CW generator and adjusting the coil for maximum voltmeter reading. The CW generator output must be attenuated so that the DC output voltage of the video detector (indicated on the voltmeter), remains at 1 volt as the I-F coils are tuned. The order of tuning is from the last I-F stage toward the tuner. Before tuning the grid coil of the 1st I-F stage, temporarily tune the tuner mixer plate coil for a minimum reading on the voltmeter at 41.90 mc . After the 1st picture I-F grid coil has been tuned, tune the mixer plate coil to 45.05 mc and repeat the trap and I-F alignment procedure until no additional change in adjustments is necessary

When no further change takes place, replace the voltmeter with the oscilloscope and replace the CW generator with the sweep frequency generator. Use the mixer grid. Loosely couple the CW generator (marker) to the input by clipping or touching the CW generator "hot" lead to the unshielded insulated end of the sweep generator "hot" lead. This will afford a small amount of capacitive coupling. If the $C W$ and sweep generators are contained in the same instrument, it will only be necessary to switch on the sweep frequency generator in order to continue the procedure. Tune the sweep frequency generator to a center frequency of approximately 4.8 mc. Use a sweep whe two response curve skirts is well within the ends of the oscilloscope trace. Check the overall bandwidth, position of the picture carrier, dip in bandpass, and trappage by using the marker pip to locate frequency points on the response curve. See Figure 9. Tune the CW generator to 45.75 mc . The marker pip should appear at approximately the 50% point on the response curve skirt. Adjust the 1st I-F grid coil, L201, to eliminate any tilt of the response curve and adjust the mixer plate transformer T25 to set the picture carrier at the 50% response point. It should not be necessary to readjust the other picture 1-F coils. Once the picture carrator so that the marker pip moves to the 50% response point on the opposite skirt. Note the frequency calibration of the CW generator dial and subtract this value from 45.75 mc . The difference should be between 3.6 mc and 3.8

Figure 9. Picture I-F Response Curve
mc , the bandpass limits taken between 50% point of picture carrier and 50% point of opposite skirt. If the bandpass does not lie within these limits, touch up the Any appreciable touch-up requirement should be taken as an indication that the I-F Section is not operating normally and should be checked for abnormalities.

Figure 8. Oscilloscope Isolation
table III - TV alignment procedure

STEP NO.	SENGNAL GREQRATOR FRENCY, MC	CONNECT SIGNAL TO	OUTPUT INDICATOR	ADUST	INSTRUCTIONS	SPECLAL CONNECTIONS AND SETTINGS

SOUND I-F AND RATIO DETECTOR

1	$\begin{aligned} & 4.5 \\ & C W \end{aligned}$	$\begin{gathered} \text { Pin } 7 \\ \text { of } \\ \text { V205 } \end{gathered}$	Meter across pin 7 of V103 and ground.	$\begin{array}{\|c\|} \hline \text { T101 Pri. } \\ \text { (bottom) } \\ \text { L101 } \\ \text { L210 } \end{array}$	Tune for maximum reading on meter.	Signal level should be low enough to obtain approximately 6.5 to 7 volts on meter. Use isolation networks shown in Figures 5 and 6.
2	$\begin{aligned} & 4.5 \\ & \mathrm{CW} \end{aligned}$	"	Meter across junction of R111 and R112 and Switch side of R110.	$\underset{\substack{\text { T101 Sec. } \\ \text { (top) }}}{ }$	Tune for zero meter reading; use same signal level as in step 1.	Repeat tuning of T101 primary and secondary until adjustments do not change.

3	$\begin{aligned} & 4.5 \\ & \text { CW } \end{aligned}$	$\begin{gathered} \text { Pin } 7 \\ \text { of } \\ \text { v205 } \end{gathered}$	Meter connected through detector network to picture tube cathode lead.		L302	Tune for minimum reading on meter.	Detector and isolating networks shown in Figures 5 and 7. Temporartly detune L210.
4	${ }_{c W}^{39.75}$	Mixer grid	Voltmeter ac pin 1 of V301 ground.		L208	Tune for maximum reading on meter.	Apply -3V bias to AGC bus. See text for connection to mixer grid. Use isolating resistor between negative voltmeter lead and pin 1 of v301. Keep generator output low. Remove $1 / 4 \mathrm{amp}$. fuse or bias V704 with -60 V for remainder of procedure
5	$\stackrel{41.25}{C W}$	"	"		L205	"	
6	$\stackrel{47.25}{C W}$	"	"		L203	"	
7	$\stackrel{42.70}{C W}$	Mixer grid	"		L207	Tune for maximum reading on meter.	Set CONTRAST control for maximum contrast. Adjust signal level throughout I-F aligament so that a 1 volt DC output is maintained at pin 1 of V301.
8	$\begin{aligned} & 44.10 \\ & \text { CW } \end{aligned}$	"	"		L206	"	
9	${ }_{\text {CW }}^{41.25}$	"	"		L204	"	
10	$\begin{gathered} 45.60 \\ C W \end{gathered}$	"	"		L202	"	
11	$\begin{gathered} 41.90 \\ \mathrm{cW} \end{gathered}$	"	"		L201	"	Temporarily tune mixer plate transformer for minimum voltmeter reading at 41.90 mc .
12	$\stackrel{45.05}{C w}$	"	"		$\begin{gathered} \text { Mixer } \\ \text { Plate } \\ \text { Coil, L4 } \end{gathered}$	"	
13		Repeat st	eps 4 through 1	2 until	il adjustm	ents do not change	
14	Approximately 43.8 with $10-$ me sweep. Marker re quired quired.	Mixer grid	High gain scope to pin 1 of V301.	$\begin{array}{\|l\|l\|} \hline \text { Mix } \\ \text { Plat } \\ \text { Pad } \\ \text { ant. } \\ \text { 1sti } \\ \text { coie } \end{array}$	rer te Coll L201 Other s if essary.	Set 45.75 mc marker at 50\% point with Mixer Plate transformer T25. Eliminate tilt with L201	See Figure 8 for isolation network. Use markers to determine bandpass between picture carrier and 50% point on opposite skirt. Bandpass should be bet 3.8 mc and 3.6 mc . Adiust other I-F coHs to obtain proper curve only when absolutely necessary.

ALIGNMENT

The following alignment procedure describes alignment of the stagger-tuned video $1-F$ amplifier stages and the 4.5 mc sound $\mathrm{I}-\mathrm{F}$ amolifier stages.

The following discussion describes recommended methods and equipment to be used and precautions to be observed during the alignment procedure a ready reference alignment guide to be studied.

For best results it is important that alignment be performed on a metal topped bench with all instruments and equipment securely bonded together and to ground. All leads should be as short as is practicable, particularly in the input grid circuits. Allow about fifteen before beginning the alignment Isolation circuits will be required for both the input and output connections. It is important that composition resistors, preferably the half-watt size, and disc type ceramic condensers be used in making up these isolation networks so that a minimum amount of external inductance is added to the tuned circuits being adjusted.

The following equipment* will be required in order to align the picture and sound I-F stages of the receiver
properly.

1. Accurate CW signal generator covering the following frequencies:

4.5 mc	44.10 mc
39.75 mc	45.60 mc
41.25 mc	45.75 mc
42.25 mc	47.25 mc
42.70 mc	

The generator must have an attenuation control which can be used to vary its output signal level.
2. Sweep frequency generator with a sweep center frequency of approximately 43.8 mc and a 10 mc sweep width.
3. Cathode Ray Oscilloscope with at least a moderately high vertical gain. Must have external sweep input or internal sweep frequency equal to the sweep generator sweep frequency and capable of phase control
4. DC voltmeter with sensitivity of 20,000 ohms per volt or higher and voltage scale ranges which include approximately 10 volts and 3 volts (full scale is an ideal type.
5. 3 volt bias source such as a battery
6. Detector network shown in Figure 7
7. . 005 uf isolating condenser.

Several instrument manufacturers combine the first three items of the equipment list into one compact instrument assembly.
9. . 001 uf condenser for shunting oscilloscope input.

Before alignment is begun, tune the tuner off-channel by turning the tuner CHANNEL SELECTOR shaft so that the detent roller rests on one of the high points of the drum disc. Remove the $1 / 4 \mathrm{amp}$. fuse or bias pin 5 of signals and -60 volts, in order to eliminate spurious ORDER OF ALIGNMENT

1. Sound I-F and Ratio Detector Primary
2. Ratio Detector Secondary
3. 4.5 mc Sound Take-ol
4. 4.5 mc Beat Trap
5. 39.75 mc Adj. Channel Picture Trap
6. 41.25 Co-channel Sound Trap
7. 47.25 Adj. Channel Sound Trap
8. 44.10 mc 3 rd Picture I-F Coil
9. 41.25 mc 2nd Picture I-F Coil
10. 45.6 mc 1 st Picture I-F Coil
11. 41.9 mc 1st Picture $\dot{\mathrm{I}}-\mathrm{F}$ Grid Coil
12. 45.05 mc Mixer Plate Coil

It is important that the alignment be performed in order listed, with the exception of items 1 and 2 , because here is some interaction within the various stages. It is for this reason that step 13 is included in the align-

Sound I-F Alignment

Equipment: Connect the "hot" lead of the CW signal generator to the grid, pin 1, of V101, the ist sound I-F tube, through a 005 uf isolating condener as shown in Figure 5. Tune the generator frequency to 4.5 mc , unmodulated. Connect the voltmeter negative lead in series with a 10 K isolating resistor to pin 7 Figure 6. It is important that the 10 K ohm isolating resistor be at the very end of the meter lead to avoid egeneration. Connect the positive voltmeter lead to ground.

Procedure: Adjust L101, L210 and T101 primary (bottom), to obtain a maximum voltmeter reading. The maximum voltage reading should be held at about 6.5 to 7 volts by decreasing the generator output sthe transformer windings are turned to resonance

Figure 4. Schematic Diagram for Chassis 195

CHASSIS 300-17
 MODELS 7M140, 7B141
 CHASSIS 300-21
 MODELS 21M143, 21B144, 21P145, 21 M317, 21B318, 21M718, 21B719, 21P720 nоте

This information also covers the $\mathbf{3 0 0}$ series chassis, incorporating the "All-Wave Tuner".
Chassis incorporating the "All-Wave Tuner" can be identified by
IDENTIFICATION

Figure 1. Chassis 300 TV Chassis
Chassis 300-17 and 300-21 will come under the collective heading of the 300 series chassis.

The 300 series chassis will incorporate either a 9786 VHF tuner or a 9795 All-Wave tuner which comprises the RF stages of the receiver.

This tuner is identical to the 9758 tuner except that the coupling is changed. If a 9795 All-Wave uner is used refer to this bulletin. Both picture and sound output from the tuner is fed to the first of thre stages of stagger-tuned I-F amplification. The picture sound system is employed, the 4.5 mc sound typ occurring at the output of the video amplifier. Th sound is fed into a single 4.5 mc sound I-F stage.

igure 2. Ion Trap Position

ELECTRICAL AND MECHANICAL DATA 3
TABLE I - ELECTRICAL AND MECHANICAL DATA

Operating Voltage	115 Volts AC, 60 cps
Power Consumption	155 Watts
VHF Tuning Range	Channels $2-13$
Maximum Audio Power Output	1.6 Watts
Audio Output Impedance	3.2 Ohms at 400 cps
Intermediate Frequencies Picture Carrier Sound Carrier	45.75 mc 4.5 mc
Antenna Input Impedance	300 Ohms, balanced
Picture Tube Size	$17{ }^{\prime \prime}$ and $21^{\prime \prime}$ Rectangular

TUBE	TYPE	FUNCTION
V1	6BQ7A, 6BQ7 or 6BZ7	R-F Amplifier
V2	6.36	Oscillator Mixer
V101	6A U6	Sound I-F
V102	6A L5	Ratio Detector
V103	6AV6	Audio Amplifier
V104	6W6GT	Audio Output
V201	6CB6	1st Picture I-F
V202	6CB6	2nd Picture I-F
V203	6CB6	3rd Picture I-F
V204	1/2 6AL5	Video Detector
V301	12BY7	Video Amplifier
V302	$21 \mathrm{YP} 4,17 \mathrm{HP} 4$	Picture Tube
V401	$1 / 212 \mathrm{AUT}$	AGC Keyer
V501	$1 / 212 \mathrm{AU7}$	1st Sync Separator
V502	1/2 12AU7	2nd Sync Separator
V601	6SN7GT	Vertical Oscillator
V602	654	Vertical Output
V701	1/2 6AL5	Horiz. Phase Det.
V702	1/2 12AU7	Horiz. Phase Det.
V703	6SN7GT	Horiz. Oscillator
V704	6BQ6GT	Horiz. Output
V705	6W4GT	Damper
V706	183	H. V. Rectifier
X801	SEL. RECT.	L.V. Rectifier
X802	SEL. RECT.	L.V. Rectifier

HORIZONTAL DRIVE ADJUSTMENT

1. Turn the HORIZ. DRIVE control counterclockwise until a drive bar (thin, light vertical line) appears.
2. Turn the control clockwise until the drive bar just disappears. If no drive bar is obtained, set the control at the maximum counterclockwise position. HORIZONTAL FREQUENCY CONTROL
3. Turn the Horizontal Hold control to mid-range.
4. Turn the HORIZ. FREQ. control counterclockwise while switching the CHANNEL SELECTOR on and off channel until sync is lost.
Turn the control clockwise and check the number cf bars which appear just before pull-in of the picture. Check circuit for abnormal operation if less than two bar pull-in occurs.
Continue turning control clockwise while switching the CHANNEL SELECTOR on and off channel until sync is lost.
5. Turn the control counterclockwise and check the point where picture pull-in occurs.
Turn the control an additional $1 / 2$ turn counterclockwise.

WIDTH ADJUSTMEN?

To adjust picture width, turn WIDTH control, L705 clockwise to increase width, counterclockwise to dec rease width. Whe voltage into consideration if it differs by more than several volts from the value usually existing when and/or where the receiver is to be operated. Make allowance for voltage difference when adjusting width. Width increases with increase in line voltage
VERTIC AL SIZE AND LINEARITY ADJUSTMENTS The VERT. SIZE and VERT. LINEARITY controls adjust the height and vertical proportion of the picture. The vere but not in a linear manner. The bottom portion of the picture is expanded at a greater rate than the top portion, and the picture center tends to move toward the top of the picture tube.

1. Turn the VERT. SIZE control counterclockwise to increase the height of the picture and clockwise to decrease the picture height.
The VERT. LINEARITY control affects the upper portion of the picture and compensates for non-linearity created by changes made by the VERT. SIZE control.
2. Turn the VERT. LINEARITY control clockwise to expand the upper portion of the picture and counterclockwise to compress the upper portion of the picture.
After adjustment of the picture height and/or vertical linearity, check the VERT. HOLD adjustment; the three controls are interdependent. The same caution that was given for picture width and line voltage applies equally well to vertical picture size.
RASTER CENTERING
It is best to adjust the picture linearity and size, using a test pattern, before centering the picture. If

Figure 3. Top View Parts Layout
picture tilt exists, temporarily loosen the wing screw at the top of the deflection yoke and rotate the yoke until the tilt is eliminated. Make certain that the deflection yoke is seated as far forward on the picture Raster conterin is lo to
Ranent magnet ring on the neck of the picture two ust behind the deflection yoke. The centering assembly should be positioned very near the deflection yoke (never more than an inch behind). Due to inter-action it will be necessary to rotate both magnets to obtain correct centering in most instances
AUTOMATIC GAIN CONTROL
This control and its associated circuits regulate R-F and I-F AGC voltages (within the limits of the AGC wise the greatest bias appears on the I-F AGC bus and the lowest bias appears on the R-F AGC bus for a given signal. When the control is reversed the I-F AGC bias voltage is minimum and the R-F AGC bias is maximum or a given signal. This source of high R-F bias is very useful when strong signals cause the video stages to overload, clipping the sync pulses. In very strong signal areas turn the AGC control counterclockwis. necessary because increase bias on the R-F amplifier with simultaneous decrease in I-F bias will lead to excessive noise in the picture after a certain point Conversely, in weaker signal areas the control should be turned clockwise so that the R-F bias is reduced and the I-F bias is increased. This condition will improve the signal to noise ratio, minimizing "snow", in the picture. Again, do not over control or the I-F stages may be overdriven. The optimum point is a function of signal strength. Use picture quality as an indicating device and adjust for optimum performance.

TABLE III - TV ALIGNMENT PROCEDURE

$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$		$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { TO } \end{aligned}$	OUTPUT INDICATOR	ADJUST	INSTRUCTIONS	SPECIAL CONNECTIONS AND SETTINGS
SOUND I-F AND RATIO DETECTOR						
1	$\begin{aligned} & 4.5 \\ & C W \end{aligned}$	$\begin{gathered} \text { Pin } 2 \\ \text { of } \\ \text { V301 } \end{gathered}$	Meter across pin 7 of V102 and ground.	T101 Pri. (bottom) L101	Tune for maximum reading on meter	Signal level should be low enough to obtain approximately 4 to 7 volts on meter. Use isolation networks shown in Figures 4 and 5.
2	$\begin{aligned} & 4.5 \\ & \text { CW } \end{aligned}$	"	Meter across ground and junction of R105 and C108.	$\begin{aligned} & \text { T101 Sec. } \\ & \text { (top) } \end{aligned}$	Tune for zero meter reading; use same signal level as in step 1.	Repeat tuning of T101 primary and secondary until adjustments do not change.
TRAPS AND PICTURE I-F						
3	$\begin{aligned} & 4.5 \\ & C W \end{aligned}$	$\begin{aligned} & \text { Pin } 2 \\ & \text { of } \\ & \text { V301 } \end{aligned}$	Meter connected through detector network to picture tube cathode lead.	L302	Tune for minimum reading on meter.	Detector and isolating networks shown in Figures 4 and 6.
4 5 6 7	$\begin{gathered} 41.25 \\ \mathrm{CW} \\ \\ 43.75 \\ \mathrm{CW} \\ 42.75 \\ \mathrm{CW} \\ 45.4 \\ \mathrm{CW} \end{gathered}$	Mixer grid $"$ Mixer grid	Voltmeter across R215.	$\begin{aligned} & \text { Top of } \\ & \text { L203 }\end{aligned}$ L204 L203 L202	Tune for minimum reading on meter. Tune for maximum. 17 Tune for maximum reading on meter.	Apply -3V bias to AGC bus See text for connection to mixer grid. Use isolating resistor between negative voltmeter lead and R213. Keep generator output low. Either bias V704 with A-60 volts or remove tube. Set CONTRAST control for maximum contrast. Adjust signal level throughout I-F alignment so that a 1 volt DC output is maintained across R215.
8	$\begin{aligned} & 43 \\ & \mathrm{CW} \end{aligned}$	"	"	L9	Tune for minimum reading on meter.	
9	$\begin{aligned} & 43 \\ & C W \end{aligned}$	"	"	L201	Tune for maximum.	
10	$\begin{aligned} & 45 \\ & C W \end{aligned}$	"	"	L9	Tune for maximum.	

11 Repeat steps 4 through 10 until adjustments do not change.

12	Approximately 43.5 with 10 mc sweep. Marker required.	Mixer grid	High gain scope across R215	Adjust L202, L203 and L204 if necessary.	Set 45.75 mc marker at 50% point with L202. Eliminate tilt with L204.

See Figure 7 for isolation network. Use markers to determine bandpass between picture carrier and 50% point on opposite skirt Bandpass should be between 3.4 mc and 3.6 mc . Ad just
L 9 and L 201 only when absolutely necessary.

The following alignment procedure describes align ment of the stagger-tuned video I-F amplifier stages and the 4.5 mc sound I-F amplifier stages. The alignthe 1952 procedure for the VHF TV tuner is described covers the tuner Manual. Bulletin No. 301 and 301 A recommended methods and equipment to be used and premmended methods and equipment to be used and precautions to be observed during the alignment procedure. Table in offers a ready reference alignmen has been studied.

For best results it is important that alignment be performed on a metal topped bench with all instruments and equipment securely bonded together and to ground. All leads should be as short as is practicable, particularly in the input grid circuits. Allow about fifteen minutes for the test equipment and receiver to warm before beginning the alignment. Isolation circuits will be required for both the input and output connections.
It is important that composition resistors, preferably the half-watt size, and disc type ceramic condensers be used in making up these isolation networks so that a minimum amount of external inductance is added to the tuned circuits being adjusted.

The following equipment* will be required in order to align the picture and sound I-F stages of the receiver properly.

1. Accurate CW signal generator covering the following frequencies:

4.5 mc	43.75 mc
41.25 mc	45 mc
42.25 marker freq	45.4 mc
42.75 mc	47.25 marker freq
43 mc	

The generator must have an attenuation contro which can be used to vary its output signal level.
2. Sweep frequency generator with a sweep cente frequency of approximately 43.5 mc and a 10 mc sweep width.
3. Cathode Ray Oscilloscope with at least a moderately high vertical gain. Must have external sweep input or internal sweep frequency equal to the sweep generator sweep frequency and capable of phas control.
4. DC voltmeter with sensitivity of 20,000 ohms per volt or higher and voltage scale ranges which involt or higher and voltage scale ranges which indeflection). VTVM with zerocenter scale adjustmen is an ideal type.
5. 3 volt bias source such as a battery.
6. Detector network shown in Figure 7.
7. . 005 uf isolating condenser.
8. 10 K ohm, $1 / 2$ watt composition resistor.
9. . 001 uf condenser for shunting oscilloscope input.
*Several instrument manufacturers combine the first three items of the equipment list into one compact instrument assembly

Before alignment is begun, tune the tuner off-channe by turning the tuner CHANNEL SELECTOR shaft so tha the detent roller rests on one of the high points of the drum disc. Bias the grid of V704 with a -60 volts or remove the tube. This is done in order to eliminate spurious signals and the possibility of high shock hazard. ORDER OF ALIGNMENT. (Use a non-metallic alignmen tool or one with a small metal insert.)

1. Ratio Detector Primary
2. 4.5 mc Sound Take-Off
3. 4.5 mc Video Trap
4. Tune Co-Sound Trap (L203) for minimum out put indication at 41.25 mc
5. Tune 3rd I-F Coil (L204) for maximum out put indication at 43.75 mc
6. Tune 2nd I-F Coil (L202) for maximum output indication at 42.75 mc
. Tune
7. Tune Converter Coil (L9) for minimum out put indication at 43 mc . Tune Input Coil (L201) for out put indication at 43 mc
8. Tune Converter Coil (L9) for maximum output indication at 45 mc
Repeat steps (5) to (11) until adjustments do not change.

NOTE

In all steps of video I-F alignment, the input signal should be maintained to a level of approximately one (1) volt DC output across video detector load. This is to insure against false tuning due to overloading.
It is important that the alignment be performed in order listed, with the exception of items 1 and 2, because there is some interaction within the various stages.

Sound I-F Alignment

Equipment: Connect the "hot" lead of the CW signal generator to the grid, pin 2, of V301, the ider as shown in Figure 4. Tune the generator frequency er as shown in Figure 4. Connect the voltmeter negative lead in series with a 10 K isolating resistor to pin 7 of V102, one plate of the ratio detector, as shown in Figure 5. It is important that the 10 K ohm isolating resistor be at the very end of the meter lead to avoid regeneration. Connect the positive voltmeter lead to ground.

Figure 4. Signal Generator Isolation

Figure 5. Voltmeter Isolation
Procedure: Adjust L101 and T101 primary (bottom), The maximum voltage reading should be held at about 4 to 7 volts by decreasing the generator output as the ransformer windings are turned to resonance

Rafio Detector Alignment

Equipment: Generator input remains unchanged from the level that produced 4 to 7 volts in the preceding step. Connect the voltmeter across the junction of R105 and C 108; polarity will depend upon which side of resonance the secondary winding of T101 is tuned. If a VTVM is being used, set the zero voltage point up scale so that plus and minus readings may be observed without changing the polarity selector switch VTVM and decrease the scale setting as the null point is obtained.

Procedure: Tune the secondary (top) of T101 for a zero reading on the voltmeter. Do no duced the 4 to 7 volts in the first step. Repeat tuning of T101 primary and secondary until adjustments do not change.

Trap and Picture J-F Alignment TUNING 4.5 MC TRAP
Equipment: Connect the CW generator through the 301 (plate .005 uf isolating condenser, to pin 2 of to 4.5 mc . Connect the detector network and voltmeter between ground and the cathode of the picture tube as shown in Figure 6.
Procedure: Tune L302 (4.5 mc trap in plate circuit of video amplifier) for minimum indication
TUNING 41.25 MC TRAP
Equipment: Couple the CW generator "hot" lead to the tuner mixer grid. This may be done in several ways. The .5-3 uuf trinimer condenser (C12 in

Figure 6. Detector Network

1952 Bulletin 301) located in front of the 6 J and neares the contact side of the tuner is connected to pin 5 o the $6 \mathrm{J6}$, the mixer grid. This plate of the trimmer plate . point through a 005 uf tsolatip condenser, the condense pigtail being clipped to the trimmer by some convenien means. Another method of coupling the generator is to remove the 6 F , wrap the isolating condenser pigtai around pin 5 of this tube, and replace it in its socket In either method take care that the pigtail lead does not short to ground. A third method of coupling is to pull the $6 j 6$ tube shield up on the tube until it is not grounded. Clip the "hot" lead of the generator directly to the tube shield. The tube shield and the tube elecsignal to the mixer grid. The capacity is much less than 005 uf, and a much higher level of generator output will be required if this method is utilized.

Connect the negative lead of the voltmeter across R215, the video amplifier load, using the 10 K ohm isolating resistor at the end of the lead; connect the voltmeter positive lead to ground. Connect the negativ terminal of the 3 volt bias source to the AGC bus; connect the bias source positive lead to ground.

Procedure: Turn the CONTRAST control to its maximum position (extreme clockwise) for remainder on the CW generator and adjusting the trap slug for minimum voltmeter reading. The order of tuning the traps is given in Table III. Keep signal low to avoid overloading I-F circuits.
TUNING PICTURE I-F COILS
Equipment: Instruments and set-up remain the same as for trap alignment during the first par of the procedure. For final adjustment the sweep fre quency generator is also used and the voltmeter should oscilloscope isolation details.

Procedure: Tune the I-F coils by setting the coil frequency on the CW generator and adjusting the coil for maximum voltmeter reading. The CW generator output must be attenuated so that the DC output voltage of the video detector (indicated on the voltmeter), remains at 1 volt as the I-F coils are tuned. The order of tuning is from the last I-F stage toward the tuner. Before tuning the grid coll of the 1st 1 a minimum reading on the voltmeter at 43 mc . After the 1 st picture I-F grid coil has been tuned, tune the mixer plate coil to 45 mc and repeat the trap and I-F alignment procedure until no additional change in adjustments is necessary.

When no further change takes place, replace the voltmeter with the oscilloscope and replace the CW generator with the sweep frequency generator. Use the same isolating condenser and input connection to the mixer grid. Loosely couple the CW generator (marker) to the input by clipping or touching the CW of the sweep generator "hot" lead. This will afford a small amount of capacitive coupling. If the CW and sweep generators are contained in the same instrument, it will only be necessary to switch on the sweep frequency generator in order to continue the procedure. Tune the sweep frequency generator to a center frequency of approximately 43.5 mc . Use a sweep width of approximately 10 mc so that the base of each of the two response curve skirts is well within the ends of the oschloscope picture carrier, dip in bandpass, and trappage by using the marker pip to locate frequency points on the response curve. See Figure 8. Tune the CW generator to 45.75 mc. The marker pip should appear at approximately the 50% point on the response curve skirt. Reaajust individual coils to give proper band pass. Adjust 1st I-F coil to set video carrier (45.75 mc) at 50% (6 db) response point. Adjust 2nd I-F coil to set the 50% (6 db) bandwidth point (42.25 mc) on sound side. Adjust 3 rd I-F coil to eliminate any tilt in the response shape. It
\qquad

Figure 8. Picture I-F Response Curve
coil. Once the picture carrier has been correctly positioned at the 50% response point, tune the CW generator to 42.25 mc , which should be the 50% point on the sound side. This will give the proper bandwidth of 3.5 mc . achieve the correct bandwidth.

Figure 9. Bottom View Parts Tube Layout

ALL WAVE TUNER

The 9795 is the All-Wave tuner. This tuner incorpoates a 6 BQ 7 , a 6 BQ 7 A or a $6 \mathrm{BZ7}$ for an RF amplifier; 6T4 or 6AF4 as a UHF oscillator with a 6 U8 acting as a mixer and dif oscilator. Rer

Figure 10. All Wave Tuner
In general, the combination tuner consists of two major units, as noted in the block diagram; the UHF subassembly, and VHF subassembly.

Referring to the block diagram, Figure 11, the antenna is seen to be connected to a diplexer which provides separation of signals above 470 mc for the

The operation may best be followed by tracing the path of the signal from the antenna through the corresponding tuner and then to the I-F amplifier at its output. When the combination tuner is in UHF position, the signal from the common antenna passes down the twinlead to the diplexer and continues on to the UHF tuner. Here it goes through two preselector circuits and into a Xtal mixer. The Xtal is supplied with a local oscillator
voltage, differing by 40 mc above the signal frequency. After mixing it becomes a 40 mc signal (I-F frequency) and passes into the VHF tuner. Since the combination tuner has been set for UHF operation, the 40 mc ampliier, which is noted in a block below the VHF tuner, is now in place of one of the VHF channels. In this manner, the signal is amplified again it 40 mc and passes on through the output to the I-F stage.

When the combination tuner is in the VHF Fisition, the following path of signal may be traced: as previously noted, the signal travels from the common antenna to the diplexer, but now, since its frequency is below 300 mc , it is diverted directly to the VHF tuner input. At this point, it is connected to one of the channels (2-13) as in the usual TV band, and is amplified at this corresponding frequency. At the end of this amplification, it
is mixed (in the VHF tuner) by a $6 \mathrm{U8}$ stage. This provides the local oscillator, again 40 mc above the signal, and the result in output is then the 40 mc signal which is coupled by the output plate coil to the I-F strip.

The various components of the major subassemblies may be seen from the circuit diagram (figure). In the UHF tuner, L22 and L23 are the preselector circuits. oscillator tube is either a $6 \mathrm{AF4}$ or 6 T 4 , as shown. It should be noted that the coils, L20 and L21, along with C30, C31 and C32, comprise the high-pass filter portion of the diplexer. The low-pass filter, consisting of coils La and Lb , along with the two 1.5 mmfd condenser, is the other portion of the diplexer which diverts signals lower than 300 mc to the VHF tuner.

Shaft Function

1. FINE TUNING - Outer shaft for VHF and UHF oscillators fine tuning
2. SWITCHING - Center shaft includes nine detent positions, eight for UHF decade coil board strips covering frequency channels 14 to 19; 20 to 29 ; 83. VHF channels 10 through 13 may be received on first UHF decade position. The ninth position allows VHF reception.
3. SWITCHING - Inner shaft includes twelve detent positions, ten for UHF unit digits (individual channel
selection included within the above eight decades), twelve positions for VHF channels 2 to 13.
4. VHF TUNING - To receive VHF channels 2 through 13, set middle section of tuning knob assembly so that 'VHF" and channel numbers are directly in front of pilot light. These VHF channel numbers will be found on the inner circles of numbers. To switch
5. UHF TUNING - To receive UHF channels, rotate . middle section either right or left from VHF position. First half of UHF channel number is controlled by middle knob. Second half of UHF channel number is controlled by front crown knob; example, channel 56 - the middle knob will place the first half of the UHF channel number (5) in front of the pilot light. The front crown knob will place the second half of this UHF channel number (6) in front of the pilot light, thus reducing UHF channel 56.

Figure 11. All Wave Tuner Block Diagram

ALL-WAVE I-F ALIGNMENT PROCEDURE - GENERAL
The combination All-Wave tuner contains two sections - the first (front section) contains the UHF portion. The second (rear section) is the usual 12channel VHF turret tuner. There is one difference in the VHF section, in that it contains a contact board or cascode Strip. This provides the equivalent of a 13 th VHF position. The units front decade knob is in the rear turret from channel 2 to 13 , It is also held out when the decade knob is in the 10 's position for channels $10,11,12$ and 13. UHF operation is obtained when the decade center knob is in the 10 ' s position for chan14 to 19 and for all succeeding decade positions, up to 83.

I-F ALIGNMENT

Set the tuner in the VHF position (on channel 10) and insert a signal at the test point (refer to Figure 10) for the generator being used. Use a -3 volts for the AGC bias. Observe the output of the video detector with a 10 K resistor and a .001 capacitor isolation network which is connected to the oscilloscope vertical terminals or a voltmeter.
A. Apply a 43 mc signal and align the 1 st I-F grid coil until a maximum indication is observed.
B. Apply a 45 mc signal and align the output plate coil (L9) of the tuner for maximum indication. A sweep ma then be applied and the I-F touched up for in the I-F strip slightly, rather than accommodate discrepancies in the curve with changes in the settings of the adjustments mentioned in A and B.

- F ALIGNMENT - CHECK VHF

Set the tuner to the VHF position on the decade enter knob and the units front knob on channel 10. Connect a sweep to the VHF or the antenna point of the iplexer. Note overall wave shape and position of sound in video carrier. Adjust local oscillator slug to proper 3 volts is applied to AGC during the above operation. R-F ALIGNMENT - CHECK UHF

With the tuner at channel 19, with three or four volts of bias on the I-F AGC and three volts of R-F AGC Connect a UHF sweep to the antenna terminals with the proper dummy termination (300 ohms total). Observe he output on the video detector with proper isolation Use a 60 cycle sweep that is phased properly.
A. Check wave shape and operation of channels 14,21 , 31, 41, 51, 61,71 and 81. These should operate positively and not be intermittent.
B. Note above operation to be made with fine tuner in center of fine tuning range

NOTE

To adjust VHF local oscillators, place tuner in VHF position, remove knobs, place fine tuner in VHF position, remove knobs, place inne tuner be reached with proper alignment tool through UHF unit.
To ad just UHF local oscillator, place tuner in UHF position, remove knobs, place fine tune in middle of range. Rotate units front knob Adjust front screw head.

© John F. Rider

Figure 13. Schematic Diagram for Chassis 300

CHASSIS 375-21
MODELS 21M910, 21B911, 21P912

IDENTIFICATION

Figure 1. Chassis 375

Chassis 375 is similar to the 300 chassis. The chassis are identical with the exceptions to be pointed out in this bulletin. Chassis 375 includes an AM Radio Tuner. This tuner employs two tubes, a converter and a 6 BA as an I-F amplifier. In conjunction with the radio, there is an ENTERTAINMENT SE LECTOR SWITCH. This switch is used for program selection, RADIO, TV and PHONO. When the switch is in TV position, the chassis operates as would Chassis 300. When the switch is in RADIO-PHONO, parts of the TV CIRCUIT cease to operate, due to an electrical difference which is caused by the switching action. The horizontal oscillator and horizontal output circuit is moving the second anode voltage, etc.

ELECTRICAL AND MECHANICAL DATA
TABLE I - ELECTRICAL AND MECHANICAL DATA

Operating Voltage	115 Volts AC, 60 cps
Power Consumption	140 Watts
Tuning Range	Channels 2-13
TV	535 KC to 1620 KC
AM Radio	
Maximum Audio Power	
Output	3.25 Watts
Audio Output Impedance	3.2 Ohms at 400 cps,
Intermediate Frequencies	
Picture Carrier	45.75 MC
TV Sound Carrier	4.5 MC
AM Sound Carrier	455 KC
TV Antenna Input	300 Ohms Balanced
Impedance	Broadcast Band Loop
Radio Antenna	21" Rectangular
Picture Tube Size	

TABLE II - TUBE* COMPLEMENT

TUBE	TYPE	FUNCTION
V1	6BZ7 or 6BQ7	R-F Amplifier
V2	6J6	Oscillator-Mixer
V101	6AU6	Sound I-F
V102	6AL5	Ratio Detector
V103	12AX7	1st Audio
V104	6V6	Audio Output
V105	6V6	Audio Output
V201	6CB6	1st Picture I-F
V202	6CB6	2nd Picture I-F
V203	6CB6	3rd Picture I-F
V204	$1 / 26$ 6AL5	Video Detector
V301	12BY7	Video Amplifier
V302	21YP4	Picture Tube
V401	$1 / 26$ 6L5	Delayed AGC
V402	$1 / 212 A U 7$	AGC Keyer
V501	$1 / 2$ 12AU7	1st Sync Sep.
V502	$1 / 2$ 12AU7	2nd Sync Sep.
V601	6SN7	Vertical Oscillator
V602	6S4	Vertical Output
V701	$1 / 2$ 6AL5	Horiz. Phase Detec.
V702	$1 / 2$ 12AU7	Horiz. Phase Detec.
V703	6SN7	Horiz. Oscillator
V704	6BQ6	Horiz. Output
V705	6W4	Damper
V706	1B3	H.V. Rectifier
X801	Sel. Rect.	L.V. Rectifier
X802	Sel. Rect.	L.V. Doubler

*Including crystal and selenium rectifiers.

TABLE III - AM ALIGNMENT PROCEDURE*

Step No.	$\begin{gathered} \text { CW } \\ \text { Signal } \\ \text { Freq. } \end{gathered}$	$\begin{gathered} \text { Connect } \\ \text { Signal } \\ \text { To } \end{gathered}$	Condenser Setting	Adjust	Instructions
1	$\begin{aligned} & 455 \\ & \mathrm{KC} \end{aligned}$	$\begin{gathered} \text { Pin } 1 \text { of } \\ \mathbf{V}_{1} \end{gathered}$	Full open	T2 Primary and Secondary T1 Primary and Secondary	Use a modulated signal. Maintain generators signal level so as to obtain .4 volts reading on output meter. (Meter across audio disconnect speaker output transformer secondary).
2	$\begin{aligned} & 1620 \\ & \mathrm{KC} \end{aligned}$	$\begin{gathered} \text { Radiate } \\ \text { into } \\ \text { loop } \end{gathered}$	"	$\begin{aligned} & \text { Trimmer } \\ & \text { C2A } \end{aligned}$	Connect radiating loop consisting of several turns (having same shape as AM loop) about 4 inches from AM loop. Maintain same output reading as above by attenuating input signal.
3	$\begin{gathered} 1400 \\ K C \end{gathered}$	"	Tune condenser gang for signal	Trimmer C1A	Tune for maximum output. Maintain same output as above.
4	$\begin{aligned} & 600 \\ & \mathrm{KC} \end{aligned}$	"	"	Bend end plates of Cl	Maintain same output as above.

*Refer to Bulletin 403 for TV ALIGNMENT TABLE.

Figure 2. Top View Parts Layout

NOTE:
Note:

Figure 3. Bottom View Tube Layout and Pin Voltage Information

NOTE: Ualess otherwise noted all resistors are $1 / 2$
tioz tolerance with values given in ohms.

sYmbol	PART No.	value	TOL.	volts	rype
capacitors					
${ }^{\text {c } 101}$	4048	${ }^{68}$	10\%	500	с.т.
$\left.\begin{array}{c}\text { cio2 } \\ \text { C103 }\end{array}\right\}$	4036	2X. 004		500	C.D.
C1043	5443	10			
$\xrightarrow[\substack{C 105 \\ C 106}]{\substack{\text { cta }}}$	4065	${ }_{330}^{100}$			с.т.
${ }^{\text {c } 107}$	See Electrolytic				
cicios	${ }_{4029}^{14031}$. 0005		500 500	c. ${ }_{\text {c. }}^{\text {c.D. }}$
${ }_{\substack{\text { Cl10 }}}^{\text {c11 }}$	${ }_{4029} 4142$.oos		500 400	C.D.
${ }_{C 112}$	4142 4 4	. 0122		400	Tub. Paper Tub. Paper
${ }^{\text {c113 }}$	${ }_{4}^{4148}$. 047		400	
${ }_{\text {Cl14 }}$	${ }_{4125}^{4127}$	-0047		${ }_{400}^{400}$	${ }_{\text {cter }}^{\text {T.P. }}$
${ }^{1116}$	4148	-047		400	T.p.
ci18	${ }_{4152}^{4148}$. 0.043		400 400	T.
C119 C120	$\underbrace{\text { See Electrolytic }}_{4150}$. 1		400	T.p.
${ }_{\text {c202 }}^{\text {c201 }}$	${ }_{14031}^{4029}$. 0005		(c. C c.D.
C^{203}	14031	.001		500	C.D.
$\mathrm{c}_{\mathrm{C} 204}^{\mathrm{C} 205}$	${ }_{14054}^{14031}$	${ }_{820}$			
coicter	- 140951	${ }_{201}^{24}$	10\%	(500	Q.C
coict	${ }_{14031}^{14031}$.001		(c.
${ }^{\text {c209 }}$	${ }_{1}^{14054}$	820	${ }_{10 \%}^{10 \%}$	500	c. T.
cick	${ }_{\text {Part of L203 }}^{14056}$	${ }_{47}^{24}$			
C^{212}	14031	. 001		500	c. D.
${ }_{\substack{\text { C213 } \\ C 214}}$	${ }_{1}^{14031}$.001		($\begin{aligned} & 500 \\ & 500\end{aligned}$	$\xrightarrow{\text { c. } \mathrm{D} \text { C. }}$
${ }^{\text {c215 }}$	${ }^{14054}$	820	10\%	500	c.t.
${ }_{C}$	${ }_{14058}$	10	10\%	500	Q.c.
${ }^{\text {c } 301}$	4099			500 500	Q.c.
	${ }_{\text {Part of }}{ }^{4029} 1302$	${ }_{47} .005$			
c304	4131	. 22		200	т.P.
${ }^{\text {C40 }}$	4131	. 22		200	т.P.
cto3	Not Used				
C404	${ }_{4029}^{4172}$. 47		200 500	T.P.
C406	${ }_{4029}$.005		500	C.D.
${ }^{\text {c501 }}$	${ }^{4136}$. 0222	10%	400	
C502	${ }_{4027}^{4028}$	220		400	${ }_{\substack{\text { T. } \\ \text { T.P. }}}^{\text {Mica or Ceramic }}$
	${ }_{\text {Part of }}^{969501}$				
C506					
cicil	${ }_{4158}^{1413}$	${ }^{.0039}$	${ }_{10 \%}^{10 \%}$	200	$\underset{\text { T.P. }}{\substack{\text { T.P. }}}$
${ }^{\text {c603 }}$	4144	1			T.P.
C604	$\underset{\text { See Electrolytic }}{4144}$. 1			t.p.
C608		. 047			
$\underset{\substack{\text { C607 } \\ \text { C608 }}}{\text { cos }}$	See Electrolytic	. 022			T.P.
c701	14031	. 001		500	c. D.
c702	4175	. 001	10\%	400	T.p.
C703	${ }_{4185}^{4175}$	${ }^{.001}$	${ }_{10 \%}^{10 \%}$	400 400	$\underset{\text { T.P. }}{\substack{\text { T.P. } \\ \text { T. }}}$
c705	4158	. 04047	10\%	200	T. p .
Cr708	${ }^{4085}$	3900 470	${ }^{10 \%}$	500	Silver Mica
c708	4175	. 001	10%	400	
${ }^{\text {c779 }}$	14009	470	10%		Mica
${ }_{\substack{\text { C710 } \\ \mathrm{C} 711}}$	${ }_{14053}^{4029}$	${ }_{100}$		3000	c.D.
${ }_{\text {c712 }}$	${ }_{14048}^{14053}$	${ }_{47}^{100}$	10%	3000	
${ }^{C 713}$	41448	${ }_{47}$	10\%		T.P.
${ }^{\text {c714 }}$			10\%	3000	C.D. or Mica
$\begin{gathered} \text { c801 } \\ \text { c800 } \end{gathered}$	See Electrolytic Part of 4261 Part of 42 4257	140 200		150 150	See Electrolytic

SYMBOL	PART No.	description
1703	5464	Coil - Width Control
miscellaneous		
1801	9505	Light - Plilot
1100	${ }_{6198}^{6198}$	Socket- Speaker
J800 101	${ }_{\substack{8121 \\ 6101}}^{819}$	Receptacle - Phono Yoke
$\underset{\substack{\text { LS101 } \\ \text { LS102 }}}{ }$	$\begin{aligned} & 9103 \\ & 9091 \end{aligned}$	Speaker - 10" Low Frequency Speaker - 5-1/4" High Frequency
$\begin{gathered} { }_{M 302}^{4301} \end{gathered}$	$\begin{gathered} 9702 \\ 9722 \end{gathered}$	Trap - ion Magnet - Centering
$\begin{gathered} \text { Proo } \\ { }_{P 8000}^{800} \end{gathered}$	$\begin{aligned} & \substack{8235 \\ 8234 \\ 8126 \\ \hline 126} \end{aligned}$	Plug - Speaker Plug - Yoke Receptacle - Power Interlock
$\stackrel{s, B 01, \mathrm{C}}{\mathrm{s}, \mathrm{D}}$	6037	Switch - Rotary
$\left.\begin{array}{l}\times 801\} \\ \times 802\}\end{array}\right\}$	9735	Rectifiers - Selentum
201 $z 202$	$\underset{\substack{9788 \\ 9795}}{ }$	which is equiv. to $9-1 / 2$ " of
2301 $\mathbf{z 7 0 2}$	$\begin{aligned} & 8108 \mathrm{~A} \\ & 6227 \end{aligned}$	

AM RADIO

symbol	Part No .	description
CAPACITOR		
	$\begin{aligned} & 4418 \\ & \\ & 14081 \\ & 14084 \\ & 14064 \\ & 4097 \\ & 4097 \\ & \\ & 14057 \end{aligned}$	Variable Section, Loop Antenna Trimmer, Loop Section Trimmer Oscillator Sectio $100 \mathrm{mml} 20 \%, \mathrm{G} / \mathrm{P}$. Tubular .02 Hi-Cap Ceramic Disc . 02 Hi-Cap Ceramic Disc . 01 Hi-Cap Ceramic Disc 125 mmf (Part of Item T2) $47 \mathrm{mml} 20 \%$ G.P. Tubular
RESISTO		
	4506 4628 4511 24600 4502 4504	
TRANSFORMERS		
$\underset{\text { T2 }}{\text { T }}$	$\begin{gathered} 5172 \\ 5172 \end{gathered}$	I- F Input, 455 KC I- F Outout, 455 KC
couts		
$\underset{\mathrm{L2}}{\mathrm{L1}}$	5485 5549	Loop Antenna AM Oscillator
miscellaneous		
z1	9757	Dode Crysal (1N65)
tubes		
$\begin{gathered} \mathrm{v}_{1} \\ \mathbf{v}^{2} \end{gathered}$	6BE6 6BAB	

©John F. Rider

CHASSIS 400-21
 MODELS 21M721, 21M722, 21B723, 21P7 24

CHASSIS 401-21

MODELS 21M146, 21B147, 21P148, 21M320, 21B321, 21P322

CHASSIS 402-24

MODELS 24M150, 24B151, 24P152

CHASSIS 403-24

MODELS 24M725, 24B726, 24 P7 27 NOTE
This information also covers the 400 series chassis, incorporating the "All-Wave Tuner".
Chassis incorporating the "All-Wave Tuner" can be identified by
"U" following the model number, (Example 21M721U)

identification

Figure 1. Chassis 401-21 INTRODUCTION

Chassis $400-21,401-21,402-24$ and $403-24$ will come under the collective heading of the 400 series chassis. The 400 series chassis contain all of the outstanding Hoffman features, plus new electrical and mechanical modifications. The same fine workmanship V chassis have been incorporated. All changes, both mechanical and electrical, were made with the service man in mind.

Chassis 400 and 401 are identical in every respect except for the power supply and audio portion of Chassis 400 which incorporates a Push-Pull, Hi-Fi audio circuit.

Chassis 402 and Chassis 403 are identical except for the audio portion of Chassis 403 which incorporates a Push-Pull, Hi-Fi audio circuit. Chassis 400-401 and 402.403 are similar except for the following: Chassis 402 and 403 drive a 24 inch picture tube, whereas Chassis 400 and 401 drive a 21 inch picture tube. The require an increase in the amount of energy needed to
veep the larger tube. Therefore the major electrical difference will be found in the high voltage and sweep circuits.

The major mechanical difference, besides the increase in picture tube size, is the use of a 90° deflection yoke assembly.

ELECTRICAL AND MECHANICAL DATA

TABLE I - ELECTRICAL AND MECHANICAL DATA

Operating Voltage	All Chassis	115 Volts AC, 60 CPS
Power Consumption	Chassis 400 Chassis 401 Chassis 402 Chassis 403	265 Watts 240 Watts 260 Watts 275 Watts
VHF Tuning Range	All Chassis	Channels 2-13
Maximum Audio Power Output	Chassis 400 Chassis 401 Chassis 402 Chassis 403	
Audio Output Impedance	Chassis 400 Chassis 401 Chassis 402 Chassis 403	6.4 Ohms 6.4 Ohms 6.4 Ohms 6.4 Ohms
Intermediate Frequencies Picture Carrier Sound Carrier	All Chassis All Chassis	$\begin{aligned} & 45.75 \mathrm{Mc} \\ & 4.5 \mathrm{Mc} \end{aligned}$
Antenna Input Impedance	All Chassis	300 Ohms
Picture Tube Size	Chassis 400 Chassis 401 Chassis 402 Chassis 403	$\begin{aligned} & 21^{\prime \prime} \\ & 21^{\prime \prime} \\ & 24^{\prime \prime} \\ & 24{ }^{\prime \prime} \end{aligned}$

TABLE II - TUBE COMPLEMENT

CHASSIS	TUBE	TYPE	FUNCTION
All	V1	$6 \mathrm{BZ7}$ or 6BQ7	R-F Amplifier
All	V2	6.56	OSC - Mixer
All	V101	6AU6	1st Sound IF
All	V102	6AU6	2nd Sound IF
All	V103	6AL5	Ratio Detector
401.402	V104	6AV6	Audio Amp
400-403	V104	1/2 12AX7	Audio Amp
400-403	V104	$1,212 \mathrm{AX7}$	1st Audio Driver
401-402	V105	6K6GT	Audıo Output
400-403	V105	6V6	Audio Output
400-403	V106	6V6	Audio Output
All	V201	6CB6	1st Picture IF
All	V202	6CB6	2nd Picture IF
All	V203	6CB6	3rd Picture IF
All	V204	6CB6	4th Picture IF
All	V205	1/26AL5	Video Detector
All	V205	1/2 6AL5	Delayed AGC Clamp
All	V301	6AH6	Video Amp
400-401	V302	21ZP4A	Picture Tube
402-403	V302	24CP4A	Picture Tube
All	V401	6AU6	AGC Keyer
All	V501A	$1.212 \mathrm{AT7}$	1st Sync Sep.
All	V501B	$1212 \mathrm{AT7}$	2nd Sync Sep. Phase Splitter
All	V601	6SN7GT	Vertical OSC
400-401	V602	6S4	Vertical Output
402-403	V602	6W6	Vertical Output
All	V701	6AL5	Horiz. Phase Detector
All	V702	6SN7	Horiz. Oscillator
All	V703	6CD6	Horiz. Oscillator
All	V704	6W4	Damper
All	V705	1B3	H.V. Rectifier
All	V801	5U4	L.V. Rectifier
All	V802	5 U 4	L.V. Rectifier

Chassis $400-401-402$ and 403 will incorporate either a low radiation " 40 megacycle" VHF cascode type tuner (Part \#9786 RF-14) or an All-Wave tuner

This tuner is identical to the 9758 tuner, except that the coupling is changed. If a 9795 All Wave tuner is used, refer to this bulletin. Both picture and sound output from the tuner is fed to the first of four stages of stagger-tuned I-F amplification. The picture carrier frequency is 45.75 mc . An intercarrier type sound system is employed, the 4.5 mc sound take-off occurring at the output of the
video detector. The sound is fed into the first of two 4.5 mc I-F stages. A 39.75 mc adjacent channel picture trap, two 41.25 mc co-sound traps, and a 47.25 mc adjacent channel sound trap are employed in the video I-F stages.

A ratio detector is used as a second sound detector. This stage is followed by a stage of audio amplification (a dual diode triode on Chassis 401-402 and dual triode on Chassis $400-403$ with the second half of the dual triode 402
power amplification on Chassis 401-402 and a push-pull network in Chassis 400-403. On Chassis 401-402 the audio amplifier is coupled to the audio output by means of a printed circuit, Z201. The audio output tube or ubes is coupled to the speakers through an audio outpu transformer. On all chassis, plug-type speaker con-
nection is used. Chassis $400-403$ uses a $\mathrm{Hi}-\mathrm{Fi}$, pushpull type audio circuit, which incorporates two tetrodes You will note that a unique phase inversion scheme is being used in that one of the push-pull tubes receives its driving voltage from the audio amplifier in the convenional manner, whereas the second tube receives its qual and opposite phase voltage from a tertiary winding on the audio output transformer, thus eliminating the need for a vacuum tube phase inverter. The vide detector is 1,2 of a miniature dual diode vacuum tube the delayed AGC Tho out put from this video dete is coupled directly to the video amplifier, through high requency compensating shunt and series peaking coils. The single stage of video amplification is directly coupled to the cathode of the picture tube through hig requency compensating shunt and series peaking coils Since direct coupling is employed, no DC restoratio circuit is needed in the receiver. The keyer tube pro vides the necessary AGC bias for the first and thir I-F stages.

Two stages of sync separation are designed into the receiver. They receive the composite video signal from a tap on the video amplifier load resistor.

The second sync separator serves the additional unction of a phase splitter for feeding approximately equal and opposite sync puises to the balanced horizontal phase detector. A negative sync pulse is taken from tap on cathode resistor, and this pulse is fed to th ertical
rer
The vertical oscillator is the cathode coupled multivibrator type. It drives a single power output tage which is coupled to the vertical deflection cons he rgh an output transformer. The positive pulse se retrace portion of the vertical sweep output volage is reversed in phase by the transformer action of transformer and the resulting negative voltage output transformer, and the resulting negative voltage .022 uf condenser which also serves to sharpen the pulse so that it is only effective during the retrace portion of the sweep. The negative voltage pulse biases the picture tube beyond cut-off during the retrace portion of the vertical sweep, and the bright retrace lines are blanked out.

The horizontal oscillator is a cathode-coupled type of multivibrator. The stabilizing influence of a parallel tuned L..C circuit is used as part of the plate The natural frequency of the tuned circuit is made very close to the horizontal sweep frequency. The frequency of the horizontal multivibrator is further stabilized by a balanced horizontal phase detector circuit which consists of a dual diode. The horizontal oscillator drives a stage of power amplification that is coupled to the horizontal deflection coils through an output transformer. The horizontal output transformer is also an active

© John F. Rider

member of the high voltage supply．In addition the horizontal output transformer supplies positive keye pulses to the place of the keyed AGC tone andion with the horizontal deflection coil circuit for the horizonta phase detector．

The high voltage section is a high efficiency fly－back type which uses a single half－wave rectifier．The approximately 200 volts that results from the rectifica－ tion of the fly－back potential across the damper tube is added to the 280 volt bus potential，and this boost voltage 403）is applied to the vertical sweep circuit．

The low voltage power supply is a dual，full wave ectifier type，which delivers power into a condenser input RC filter voltage divider network that supplie the required bus voltage for the circuits throughoul the receiver．The picture tube is seated in a support bracket which mounts directly on the receiver＇s chassis Chassis 401－402 is a 25 tube television receiver，in cluding the rectangular picture tube．Chassis 400－403 is a 26 tube televisionision is made for a phono input on the 400 series chassis．The phono reproduction may be selected by the use of a double pull，double throw switch．On Chassis 401－402，this is accomplished by

OPERATING INSTRUCTIONS

Front Panel Controls

Refer to Figure 9 for location of front panel controls． OFF－ON VOLUME CONTROL

The VOLUME control is part of a dual type potenti meter．being associated with a CONTRAST control The chassis power switch is mechanically linked to the volume potentiometer．This switch opens the 115 volt power line to the receiver＇s power transformer and $A C$ RECTACLE Wen the rotation of the shaft in the clockwise direction closes the AC switch and causes the sound level to start increasing toward maximum audio power output．The smaller， outer，left－hand knob is the one that turns the volume control shaft when the knobs are in place．This control also performs the function of automatically removing the bias from the picture tube when the control is in OFF POSITION．（Refer to Focus Operation．）
CONTRAST CONTROL
The CONTRAST control varies the gain of the video amplifier．With the AGC system used for maintaining constant signal level，the CONTRAST control becomes primarily useful in setting background level for best viewing under various room lighting levels or different average program contrast levels．To increase picture contrast turn the CONTRAST control clockwise．The large，inner，left－hand knob is the one that turns the CONTRAST control shaft when the knobs are in place．
$1 / 2$ of the treble tone control switch，where on Chassis 400－403，this is accomplished by $1 / 2$ of the brightnes control switch．This selector switch performs the unction of switching the audio amplifier from the ratio detector output to the phono input and switching th picture tube control grid from the brightness contro circuit to ground，cutting off the picture tube raster
when the phonograph is being played．Phono motor ower is provided through an AC outlet at the rear the receiver＇s chassis

Figure 2．Ion Trap Position

UNING CONTROL
The tuning controls are the dual type．To selec a desired channel，turn the CHANNEL SELECTOR shal in either direction until the desired channel＇s coils are in operating position in the tuner．Once a channel has Counterclockwise until the picture starts to become shav and variable dark horizontal lines and bars appear in the picture．Turn the shaft clockwise until the lines and bars just disappear and the picture appears clea and sharp．Do not turn too far in the clockwise direction or definition will start to decrease．Picture and sound uning are synchronized so that the best picture wil come in with best sound when alignment is correct

The remaining three front panel controls are lo cated in the middle of the front chassis panel．On hassis 400－403，these controls are visable．On down in order to view controls

BRIGHTNESS CONTROL AND PHONO SWITCH（For Chassis 400 and 403 Only）

The BRIGHTNESS control sets the average back－ ground illumination of the picture．

1．Temporarily turn the CONTRAST control to minimum setting（extreme counterclockwise）．

2．Turn the BRIGHTNESS control so that a medium illumination is visible on the screen．

This setting produces a picture with average back－ ground characteristics at about $3 / 4$ contrast setting．For individual tastes that vary from this recommendation， the BRIGHTNESS control may be set so that the picture is most pleasing to the customer．

On chassis 400 and chassis 403 this control performs a dual function．A double pole，double throw switch is mounted at the rear of the brightness potentiometer． This switch is activated when the BRIGHTNESS control shaft is turned either to the extreme clockwise position or the countration the receiver for phono operation and provides minimum brightness．Clockwise rotation of the control provides continuous increase in brightness intensity．

BASS（Chassis 400－403）

As BASS control is turned clockwise，the frequency range is spread to increase reproduction of the lower requencies，as indicated onss dial．Maxtmum bass response is， lockwise position．

VERTICAL HOLD CONTROL（For Chassis 401 and Chassis 402 Only）

The VERTICAL HOLD CONTROL has a hold－in range over which the picture will stay in vertical sync． Turn the control so that the picture is brought from a downward moving picture into sync and best interlace of the sweep lines is observed．Chassis 400 and Chassis位 HOLD CONTROL．

TREBLE（Chassis 400－403）
As control is turned clockwise，the frequency range is spread to increase the reproduction of the high fre－ quencies，as indicated on the dial．Maximum treble response is achieved when TREBLE control is in the extreme clockwise position．
TONE CONTROL AND PHONO SWITCH（For Chassis 401 and 402 Only）

This control is a dual control on Chassis 401 and 402 only．A double pull，double throw switch is mounted at the rear of the tone potentiometer．The switch is activated when the tone control shaft is turned to either the extreme clockwise position or the extreme counter－ clockwise position．Extreme counterclockwise rotation of the tone control switches the receiver for PHONO operation and provides maximum base response．Clock－ wise rotation of the contrul provides continuous increase in treble response．Maximum clockise rotation changing from one function to the other，turn the control in the appropriate direction until a click is heard．Then turn the control until the desired tone is obtained．

Rear Adjusfments

The rear chassis controls are intended to be ad－ justed by the dealer or his service representative at the time of installation in the customer＇s home or
during a service call．Once adjusted correctly，these ontrols need not be changed over long periods of time r Figure 3 for location of rear controls．

ION TRAP
The effects of the FOCUS ADJ，ion trap，and cen－ ering control orientation are slightly interdependent and one or two sequential adjustments of each may be necessary for optimum setting of these controls．Always set the ion trap for maximum raster brightness

CAUTION

Never attempt to center the picture by mis－ adjustment of the ion trap．

Set the BRIGHTNESS and CONTRAST controls about midrange，never at maximum setting，to avoid damaging the picture tube．Move the ion trap over the＂flags＂of the picture tube first anode．Refer to Figure 2．Rotate on trap on the picture tube neck has been obtained， move the ion trap back and forth and further rotate it to obtain the brightest raster．If the receiver is equipped with a Rauland picture tube，the optimum ion trap setting s indicated by minimum green glow inside the tube neck．

FOCUS ADJUSTMENTS（Refer to Figure 3）

Magnetic focusing is being employed in the 400 series chassis．For correct focus adjustment，adjust ocus control for maximum focus range．Readjust ion rap after making the initial focus adjustment．Check neck of picture tube，making sure it is in center，the off－ n control switch nowic focusing is belion of removing the bias from the picture tube so that when the set is urned off，the small electron beam that is present will be out of focus，therefore preventing damage to the face of the picture tube

Figure 3．Focus and Centering Adjustment

ORIZONTAL DRIVE ADJUSTMENT

1. Turn the HORIZ. DRIVE control counterclockwis until a drive bar (thin, light vertical line) appears
2. Turn the control clockwise until the drive bar just disappears. If no drive bar is obtained, set the control at the maximum counterclockwise position

HORIZONTAL HOLD CONTROL

The HORIZONTAL HOLD control provides a vernie djustment for the horizontal multivibrator operatin requency. Proper setting depends on correct adjust ment of the HORIZ. FREQ. and HORIZ. DRIVE controls

Turn the Horizontal Hold control until bending of the top portion of the picture is eliminated. This is best determined by noting the vertical lines in the picture.

HORIZONTAL FREQUENCY CONTROL

1. Turn the Horizontal Hold control to mid-range
2. Turn the HORIZ. FREQ. control counterclockwis while switching the CHANNEL SELECTOR on an off channel until sync is lost.
3. Turn the control clockwise and check the number of bars which appear just before pull-in of the picture Check circuit for abnormal operation if less than two
bar pull-in occurs.
4. Continue turning control clockwise while switching the CHANNEL SELECTOR on and off channel until sync is lost.
5. Turn the control counterclockwise and check the point where picture pull-in occurs.

Turn the control an additional $1 / 2$ turn counter clockwise.

WIDTH ADJUSTMENT
To adjust picture width, turn WIDTH control L703 clockwise to increase width, counterclockwise to decrease width. When adjusting picture width, remember to take line voltage into consideration if it differs by more and or where the receiver is to be userated Make allowance for voltage difference when adjusting width Width increases with increase in line voltage

VERTICAL SIZE AND LINEARITY ADJUSTMENTS
The VERT. SIZE and VERT. LINEARITY controls adjust the height and vertical proportion of the picture The VERT. SIZE control affects the height of the entire of the picture is expanded at a greater rate than the top portion, and the picture center tends to move toward the top of the picture tube.

1. Turn the VERT. SIZE control counterclockwise to increase the height of the picture and clockwise to decrease the picture height

The VERT. LINEARITY control affects the upper portion of the picture and compensates for non-linearity
2. Turn the VERT. LINEARITY control clockwise to expand the upper portion of the picture and counter clockwise to compress the upper portion of the picture

After adjustment of the picture height and/or vertical linearity, check the VERT. HOLD adjustment; the three controls are interdependent. The same caution tha equally well to vertical picture size.

RASTER CENTERING

It is best to adjust the picture linearity and size, using a test pattern, before centering the picture. If picture tilt exists, temporarily loosen the wing screw at the top of the deflection yoke and rotate the yoke until the tilt is eliminated. Make certain that the deflection yoke is seated as far forward on the picture tube neck as it is possible to move the yoke.

Raster centering is accomplished by adjusting the center control. Refer to Figure 3. By moving the left to right. By moving the control from left to right the raster moves up and down.

AUTOMATIC GAIN CONTROL

This control and its associated circuits regulate R-F and I-F AGC voltages (within the limits of the AGC system). When the AGC control is turned ful clockwise the greatest bias appears on the I-F AGC bus and the lowest bias appears on the R-F AGC bus I-F AGC bias voltage is minimum and the R-F AGC bias is maximum for a given signal. This source o high R-F bias is very useful when strong signals cause the video stages to overload, clipping the sync pulses in very strong signal areas turn the AGC control counterclockwise until loss of sync is eliminated. Do not turn more than necessary because increase bias on the R-F amplifier with simultaneous decrease in I-F bias wil lead to excessive noise in the picture after a certain should be turned clockwise so that the R-F bias is reduced and the I-F bias is increased. This condition will improve the signal to noise ratio, minimizin "snow", in the picture. Again, do not over control or I-F stages may be overdriven. The optimum point is a function of signal strength. Use picture quality as an indicating device and adjust for optimum performance

FUSE PROTECTION

The source of fuse protection is in the horizontal output screen circuit and damper circuit. A 1/4-amper use is held in a fuse clip located inside of the high voltage cage.

ALIGNMENT

The following alignment procedure describes alignment of the stagger-tuned video I-F amplifier stages and the 4.5 mc sound I-F amplifier stages. The alignment procedure for the TV tuner is described in a Service Manual covers the tuner. The following discussion describes recommended methods and equipment to be used and precautions to be observed during the alignment procedure. Table III offers a ready reference alignment guide to be followed after the more detailed procedure has been studied

For best results it is important that alignment be performed on a metal topped bench with all instruments and equipment securely bonded together and to ground. larly in the input grid circuits. Allow about fifteen minutes for the test equipment and receiver to warm before beginning the alignment. Isolation circuits will be required for both the input and output connections. It is important that composition resistors, preferably the half-watt size, and disc type ceramic condensers be used in making up these isolation networks so that a minimum amount of external inductance is added to the tuned circuits being adjusted

The following equipment* will be required in order to align the picture and sound I-F stages of the receiver properly.

1. Accurate CW signal generator covering the following frequencies:

4.5 mc	44.2 mc
39.75 mc	42.25 mc
41.25 mc	45.5 mc
4.25 mc	43 mc
42.5 mc	45 mc

The generator must have an attenuation control which can oe used to vary its output signal level.
2. Sweep frequency generator with a sweep center frequency of approximately 43.5 mc and a 10 mc sweep width.
3. Cathode Ray Oscilloscope with at least a moderately high vertical gain. Must have external sweep input or internal sweep frequency equal to the sweep generator sweep frequency and capable of phase control.
4. DC voltmeter with sensitivity of 20,000 ohms per volt or higher and voltage scale ranges which include approximately 10 volts and 3 volts (full scale deflection). VTVM with zero center scale adjustment is an ideal type.
5. 3 volt bias source such as a battery
6. Detector network shown in Figure 6
7. . 005 uf isolating condenser

Several instrument manufacturers combine the first three items of the equipment list into one compact instrument assembly.
8. 10 K ohm, $1 / 2$ watt composition resistor
9. . 001 uf condenser for shunting oscilloscope input.

Before alignment is begun, tune the tuner off-channel by turning the tuner CHANNEL SELECTOR shaft so that drum disc. Bias pin 1 of V703 with -60 volts, in order to eliminate spurious signals and possibility of hig voltage shock hazard, or remove high voltage tube.

ORDER OF ALIGNMENT

. Sound I-F and Ratio Detector Primary
Ratio Detector Secondary
. 4.5 mc Sound Take-o
5. 39.75 mc Adj. Channel Picture
6. 41.25 Co-channel Sound Traps
7. 47.25 Adj. Channel Sound Trap
. 42.75 mc 4 th Picture I-F Coil
. 44.2 mc 3 rd Picture I-F Coil

1. 42.25 mc 2nd Picture I-F Coil
. 45.5 mc 1st Picture I-F Coil
2. 43 mc Converter Coil (m
3. 43 mc Input Coil (max)
4. 45 mc Converter Coil (max)

It is important that the alignment be performed in rder listed, with the exception of items 1 and 2, becaus there is some interaction within the various stages.

Sound I-F Alignment

Equipment: Connect the "hot" lead of the CW signal generator to the grid, pin 1, of V101, the er as shown in Figure 5 . Tune the generator frequency to 4.5 mc , unmodulated. Connect the voltmeter negative lead in series with a 10 K isolating resistor to pin 7 of V103, one plate of the ratio detector, as shown in Figure 5. It is important that the 10 K ohm isolating resistor be at the very end of the meter lead to avoid regenera ion. Connect the positive voltmeter lead to ground
Procedure: Adjust L101, L210 and T101 primary (bottom), to obtain a maximum voltmeter reading. The maximum voltage reading shoult be output as the transformer windings are turned to resonance.

Figure 4. Signal Generator Isolation

Figure 5. Voltmeter Isolation

Ratio Detector Alignment

Equipment: Generator input remains unchanged from the level that produced 4 to 7 volts in the preceding step. Connect the voltmeter across the juncion of R111 and R112 and the switch side of R110 polarity will depend upon which side of resonance the secondary winding of T101 is tuned. If VTVM is being used, set the zero voltage point up scale so that plus the polarity selector switch on the VTVM. Start with ne of the higher scales of the VTVM and decrease the scale setting as the null point is obtained.

Procedure: Tune the secondary (top) of T101 for zero reading on the voltmeter. Do no hange the generator output level from that which pro duced the 4 to 7 volts in the first step. Repeat tuning of T101 primary and secondary until adjustments do not change

Trap and Picture I-F Alignment

TUNING 4.5 MC TRAP
Equipment: Connect the CW generator through the .005 uf isolating condenser, to pin 7 of 05 (plate of video detector) and tune the generato o 4.5 mc . Connect the detector network and voltmete etween ground and the cathode of the picture tube as

Procedure: Tune L302 (4.5 mc trap in plate circuit o on voltmeter.

TUNING $39.75 \mathrm{MC}, 41.25 \mathrm{MC}$, AND 47.25 MC TRAPS
Equipment: Couple the CW generator "hot" lead to the tuner mixer grid. This may be done i everal ways. The .5-3 uaf trimmer condenser (c12 front of the 6.5 and nearest the contact side of the tuner is connected to pin 5 of the $6 \sqrt{ } 6$, the mixer grid. This plate of the trimmer condenser is accessible throug

a hole in the side cover plate. The "hot" generator lead may be coupled to this point through a .005 uf isolating condenser, the condenser pigtail being clipped to the trimmer by some convenient means. Another method of coupling the generator is to remove the $6 \sqrt{6}$, wrap the isolating condenser pigtail around pin 5 of this tube, and replace it in its socket. In either method take care ethed of coupling is to pull the 6 to ground. A thir the tube until it is not grounded. Clip the "hot" lead of the generator directly to the tube shield. The tube shield and the tube electrodes form a condenser which capacitively couples the signal to the mixer grid. The capacity is much less than .005 uf, and a much higher evel of generator output will be required if this method is utilized.

Connect the negative lead of the voltmeter to pin 1 V301, the video amplifier grid, using the 10 K ohm isolating resistor at the end of the lead; connect the voltmeter positive lead to ground. Connect the negative terminal of the 3 volt bias source to the AGC bus; connect the bias source positive lead to ground.
Procedure: Turn the CONTRAST control to its maximum position (extreme clockwise) for remainder alignment. Tune the traps by setting the trap fre ency on the CW generator and adjusting the trap slug for a minimum voltmeter reading. The order of tuning the traps is given in Table III. Keep signal low to avoid overloading 1-F circuits

TUNING PICTURE 1-F COILS
Equipment: Instruments and set-up remain the same as for trap alignment during the first par of the procedure. For final adjustment the sweep ire erepaced by the oscilloscope. See Figure 7 fo scilloscope isolation details.

Procedure: Tune the I-F coils by setting the coil fre quency on the CW generator and adjusting the coil for maximum voltmeter reading. The C output voltage of the video detector (indicated on the voltmeter), remains at 1 volt as the I-F coils are tuned. The order of tuning is from the last I-F stage toward the tuner. Before tuning the grid coil of the 1st I-F stage, temporarily tune the tuner mixer plate coil for minimum reading on the voltmeter at 43 mc . After he 1st picture 1-F grid coil has been tuned, tune the mixer plate coil to 45 mc and repeat the trap and I-F alignment procedure until no additional change in ad ustments is necessary.

When no further change takes place, replace the voltmeter with the oscilloscope and replace the CW

Figure 7. Oscilloscope Isolation
generator with the sweep frequency generator. Use the same isolating condenser and input connection to (marker) to the input by clipping or touching the CW generator "hot" lead to the unshielded insulated end of the sweep generator "hot" lead. This will afford a small amount of capacitive coupling. If the CW and sweep generators are contained in the same instrument, it will only be necessary to switch on the sweep frequency generator in order to continue the procedure. Tune the sweep frequency generator to a center frequency of approximately 43.5 mc . Use a sweep whe the response mately 10 mc so that the base of of the oscilloscope trace. Check the overall bandwidth, position of the picture carrier, dip in bandpass, and trappage by using the marker pip to locate frequency points on the response curve. See Figure 8. Tune the CW generator to 45.75 mc . The marker pip should appear at approximately the 50% point on the response curve skirt. Adjust individual coils to give proper bandpass. Adjust 1st I-F to set video carrier (45.75 mc) at 50% (6 db) response point. Adjust 2nd I-F to set the 50% (6 db) bandwidth point (42 mc) on sound side. Adjust 3 rd and 4 it cons to eliminate any to adjust converter or input coil.

Figure 8. Picture 1-F Response Curve

Figure 9. Top View Parts Layout

Figure 6. Detector Network

TABLE III - TV ALIGNMENT PROCEDURE						
$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$		$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNALL } \\ & \text { TO } \end{aligned}$	OUTPUT INDICATOR	ADJUST	INSTRUCTIONS	SPECIAL CONNECTIONS AND SETTINGS
SOUND I-F AND RATIO DETECTOR						
1	$\begin{aligned} & 4.5 \\ & C W \end{aligned}$	$\begin{gathered} \text { Pin } 1 \\ \text { of } \\ \text { V301 } \end{gathered}$	Meter between pin 7 of V103 and ground.	$\begin{aligned} & \text { T101 Pri. } \\ & \text { (bottom) } \\ & \text { L1011 } \\ & \text { L210 } \end{aligned}$	Tune for maximum reading on meter.	Signal level should be low enough to obtain approximately 4 to 7 volts on meter. Use isolation networks shown in Figures 5 and 6.
2	$\begin{aligned} & 4.5 \\ & \text { CW } \end{aligned}$	"	Meter across junction of R111 and R112 and switch side of R110.	$\underset{(\text { top })}{\text { T101 Sec. }}$	Tune for zero meter reading; use same signal level as in step 1.	Repeat tuning of T101 primary and secondary until adjustments do not change.
TRAPS AND PIC TURE I-F						
3	$\begin{aligned} & 4.5 \\ & \text { CW } \end{aligned}$	$\begin{aligned} & \text { Pin } 1 \\ & \text { of } \\ & \text { v301 } \end{aligned}$	Meter connected through detector network to picture tube cathode lead.	L302	Tune for minimum reading on meter.	Detector and isolating networks shown in Figures 5 and 7.
4	$\begin{gathered} 39.75 \\ \mathrm{CW} \end{gathered}$	Mixer grid	Voltmeter across pin 1 of V301 and ground	L209	Tune for minimum reading on meter.	Apply -3V bias to AGC bus. See text for connection to mixer grid. Use isolating resistor between negative voltmeter lead and pin 1 of V301. Keep generator output low. Bias V703 with -60 V for remainder of procedure or remove high voltage fuse.
5	$\begin{gathered} 41.25 \\ \text { Cw } \end{gathered}$	"	"	"	"	
6	$\begin{gathered} 41.25 \\ \mathrm{CW} \end{gathered}$	"	"	L205	"	
7	$\begin{gathered} 47.25 \\ C W \end{gathered}$	"	"	L203	"	
8	$\begin{array}{r} 42.5 \\ \mathrm{CW} \end{array}$	Mixer grid	"	L208	Tune for maximum reading on meter.	Set CONTRAST control for maximum contrast. Adjust signal level throughout I-F alignment so that a 1 volt DC butput is maintained at pin 1 of V301.
9	$\begin{array}{r} 44.2 \\ \mathrm{CW} \end{array}$	"	"	L206	"	
10	4225	"	"	L204	-;	
11	$\begin{array}{r} 45.5 \\ \mathrm{CW} \\ \hline \end{array}$	"	"	L202	"	

$\begin{array}{\|l\|} \text { STEP } \\ \text { NO. } \end{array}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { FREQUENCY, } \\ & \text { MC } \\ & \hline \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { SIGNAL } \\ \text { TO } \end{gathered}$	OUTPUT INDICATOR	ADJUST	INSTRUCTIONS	SPECIAL CONNECTIONS AND SETTINGS
12	$\begin{aligned} & 43 \\ & \mathrm{CW} \end{aligned}$	Mixer grid	Voltmeter across pin 1 of V301 and ground.	L201		Temporarily tune mixer plate coil for minimum voltmeter reading at 43 mc.
13	$\begin{gathered} 45 \\ \mathrm{CW} \end{gathered}$	"	"	$\begin{aligned} & \text { Mixer } \\ & \text { Plate } \\ & \text { } 99 \end{aligned}$		
14		Repeat steps 4 through 12 until adjustments do not change.				
15	Approximately 43.5 with 10 mc sweep. Marker required.	Mixer grid	High gain scope to pin 1 of V301	Mixer Plate Coil and L201 1st. Other coils if necessary.	Adjust 1st I-F to set video carrier (47.75 mc) at 50% point. Adjust 3rd and 4th I-F to eliminate any tilt.	See Figure 7 for isolation network. Use markers to determine bandpass between picture carrier and 50% point on opposite skirt. Bandpass should be between 3.8 mc and 3.6 mc. Adjust other I-F coils to obtain proper curve only when absolutely necessary.

ALL-WAVE TUNER

The 9795 is the All-Wave Tuner. This tuner in corporates a 6BQ7, 6BQ7A or a 6BZ7 for an R-F 6 U 8 acting as a mixer and VHF oscillator. Refer to Figure 12 for complete schematic of the 9795 .

SHAFT FUNCTION

1. FINE TUNING - Outer shaft for VHF and UHF oscillators fine tuning.
2. SWITCHING - Center shaft includes nine deten positions, eight for UHF decade coil board strips covering frequency channels 14 to $19 ; 20 ; 29 ; 30$ to 39; 40 to 49; 50 to $59 ; 60$ to $69 ; 70$ to 79 and 80 to 83. VHF channels 10 through 13 may be received allows VHF reception.
3. SWITCHING - Inner shaft includes twelve deten positions, ten for UHF unit digits (individual channe selection included within the above eight decades) twelve positions for VHF channels 2 to 13
4. VHF TUNNG - To receive VHF channels 2 through 13, set middle section of tuning knob assembly so tha "VHF" and channel numbers are directly in front of pilot light. These VHF channel numbers will be found on the inner circle of numbers. To switch VHF channels, rotate front crown control knob only.
5. UHF TUNING - To receive UHF channels, rotate middle section either right or left from VHF position First half of UHF channel number is controlled by middle knob. Second half of UHF channel number is controlled by front crown knob; example, channel

56 - the middle knob will place the first half of the UHF channel number (5) in front of the pilot light. The front crown knob will place the second half of light, thus producing UHF channel 56

Theory of Operation

In general, the combination tuner consists of two major units as noted in the block diagram; the UHF subassembly, and VHF subassembly

Referring to the block diagram, the antenna is seen be connected to a diplexer which provides separation of signals above 470 mc for the UHF tuner, and signals elow 300 mc for the VHF tuner

Figure 10. All-Wave Tune

The operation may best be followed by tracing the path of the signal from the antenna through the corre sponding tuner and then to the I-F amplifier at its output. When the combination tuner is in UHF position, the
signal from the common antenna passes down the twinsignal from the common antenna passes down the twin-
lead to the diplexer and continues on to the UHF tuner. lead to the diplexer and continues on to the UHF tuner.
Here it goes through two preselector circuits and into Here it goes through two preselector circuits and into a Xtal mixer. The Xtal is supplied with a local oscilator After mixing, it becomes a 40 mc signal (I- F frequency) and passes into the VHF tuner. Since the combination tuner has been set for UHF operation, the 40 mc amplifier, which is noted in a block below the VHF tuner, is now in place of one of the VHF channels. In this manner, the signal is amplified again at 40 mc and passes on through the output to the I-F stage.

When the combination tuner is in the VHF position, the following path of signal may be traced: As previously the diplexer, but now, since its frequency is below 300 mc , it is diverted directly to the VHF tuner input. At this point, it is connected to one of the channels ($2-13$) as in the usual TV band, and is amplified at this corresponding frequency. At the end of this amplification, it is mixed (in the VHF tuner) by a 6 U 8 stage. This provides the local oscillator, again 40 mc above the signal, and the result in output is then the 40 mc signal which is

ALIGNMENT

Figure 11. Block Diagram, All-Wave Tuner
The various components of the major subassemblies may be seen from the circuit diagram (figure 12). In the UHF tuner, L22 and L23 are the preselector circuits. oscillator tube is either a 6AF4 or 6T4; as shown. It should be noted that the coils, L20 and L21, along with C30, C31 and C32, comprise the high-pass filter portion of the diplexer. The low-pass filter, consisting of coils La and Lb , along with the two 1.5 mmfd condensers, is the other portion of the diplexer which diverts signals lower than 300 mc to the VHF tuner.
A
A. Apply a 43 mc signal and align the 1 st I-F gr
B. Apply a 45 mc signal and align the output plate coil (L9) of the tuner for maximum indication. A sweep
may then be applied and the I-F touched up for proper response. It is preferable to adjust coils in the I-F strip slightly, rather than accommodat discrepancies in the curve with changes in the settings of the adjustments mentioned in A and B.

R-F ALIGNMENT - Check VHF

Set the tuner to the VHF position on the decade center knob and the units front knob on channel 10 . Connect a sweep to the VHF or the antenna point of the diplexer. Note overall wave shape and position of sound in video carrier. Adjust local oscillator slug to proper 3 volts is applied to AGC during the above operation.

R-F ALIGNMENT - Check UHF

With the tuner at channel 19, with three or four volts of bias on the I-F AGC and three volts of R-F AGC Connect a UHF sweep to the antenna terminals with the proper dummy terinination (300 ohms total.) Od serve the output on the video detector with proper n scope.) Use a 60 cycle sweep that is phased properly
A. Check wave shape and operation of channels 14 $21,31,41,51,61,71$ and 81 . These should operate positively and not be intermittent.
B. Note above operation to be made with fine tuner in center of fine tuning range.

NOTE

To adjust VHF local oscillators, place tuner in VHF position, remove knobs, place fine tuner in middle of range so VHF local oscillators can be reached with proper alignment tool through UHF unit.
To adjust UHF local oscillator, place tuner in UHF position, remove knobs, place fine tuner Adjust front screw head.

Horizontal Phase Detector

It has not been the general policy to include a discussion on circuit theory and operation in the service bulletins. A large number of text books and magazine articles have covered the field quite thoroughly. However, there have been a number of questions submited balanced horizontal phase detector.

Figure 13 shows the horizontal sweep section. Without a control voltage on the grid of the horizonta multivibrator, it operates at a free-running frequency which is determined by the inductance of L701 and the resistance of R710, all other factors remaining constant These other factors are R and C component values, B_{+} supply voltage, and control voltage at grid No. 1, which the frequency vs DC control voltage characteristic of

Figure 14. Basic Phase Detector
the common cathode type of multivibrator used in the 400 series chassis is such that a positive change in DC voltage on grid No. 1 produces a decrease in frequency and a negative change produces an increase in frequency all other factors remaining constant. Since B+ supply voltage changes with line voltage variations and signal change slightly with temperature and humidity, these frequency determining factors do not remain constant. It remains necessary to hold the multivibrator to a constant frequency by employing some factor which does remain constant for all practical purposes. This factor is the horizontal sync pulse frequency which originates at the transmitting source. This source is
not used directly because of its poor immunity from random noise pulses, but voltage is derived.

It remains to be shown how the DC control voltage s made to vary in such a manner as to counteract changes in the other factors so that the frequency will remain constant. Fundamentally, this is accomplished by comparing a sampling of the instantaneous frequency of the multivibrator output with the standard frequency source

The difference between the two frequencies is made to generate a DC control voltage of such magnitude and polarity that the difference tends to remain zero for all practical purposes. Figure 14 is a simplified drawing figure 13 with all but the essential components deleted. V1 represents V701A, V2 represents V701B, R1 represents R701 and R2 represents R702. C719 ground, and the saw-tooth current produces a saw-tooth voltage across R718. The saw-tooth potential at 1 , Figure 14 has an AC axis since DC is blocked by as the horizontal multivibrateq frequency som the derived saw tooth is used as a sampling voltage C1 and C2 represent C702 and C703 respectively. The serve to couple the sync pulses to the phase detector and to block DC as well as to serve as an active part of the phase detector circuit. R706 is used only as a Gid leak for the horizontal multivibrator grid \# Without this grid leak, a failure in the horizontal contro ube would leave grid \#1 with insufficient bias. There exceed the rated values. R703, C704 and C705 form low pass filter to the voltage at point 3, Figure 14. This filter offers a low impedance path to ground for the AC component of voltage that appears at point 3. In addition his filter performs the important function of making the DC control voltage at the multivibrator grid No. 1 rela ively free from random noise pulses which ride in with the sync pulses. The time constant of the filter is very long compared to the change in circuit conditions but the time constant is relatively short as far as DC change brought on by phase change is concerned

The analysis is simplified by assuming an idea saw-tooth voltage waveform (symmetrical about the and ideal sync pulses (equal shape and amplitude)

Each diode in conjunction with its respective couplin ondenser forms a rectifier circuit. The condense mount which is a function of the voltage applied betwee the diode electrodes.

Case I Multivibrator in Synchronization
Consider the case when the multivibrator is in synchronization. Figure 15a shows graphically tha the zero voltage point of the saw-tooth occurs at the ame point in time that the middle of the sync pulse pulses must occur sometime during the return line or

Figure 15. Waveform Analysis of Phase Detector
fly-back: that is, during the steep portion of the sawtooth wave. This restriction is necessary for viewing of the picture in correct frame position. It is the positive half of the saw tooth at the plate of V1 and the negative sync pulse at the cathode of V1 that cause diode 1 to conduct current. It is the negative half of the saw tooth at the cathode of V2 and positive sync puls t the plate of V2 that cause diode V2 to conduct current This situation is shown graphically by flipping the sync pulses with respect to the zero potential axis. The wacts. The tabeling a eries aiding, and the amount of diode conduction depends on the sum of the two potentials applied across the diode at any instant. For the present case, the potentia variation across each diode is the same over one cycle so each condenser charges an equal amount. The instantaneous rate of charge is not the same for each condenser. This gives rise to pulsating output. A pulsating voltage is equivalent to an AC voltage compo-new-pass filter attenuates the AC component to a negliible value. Since each condenser charges by the same amount, points 2 and 4 are at potentials of equal amplitude and opposite polarity if C 1 equals C . The potentia at point 3 is the algebraic sum of these two potentials, so it is zero.

Case II Multivibrator Too Slow.
Figure 15 b shows that the saw-tooth zero potentia point occurs $\triangle T$ seconds (a few millionths of a second in order of magnitude) later than the middle of the syn ence across its electrodes and $V 1$ has a smaller differ difference across its electrodes during the time that the sync pulses are applied than for the same interval o time in Case I. The difference is represented by $\triangle E$ volts. This means that the C2 will charge more and C1 charge less, relative to Case I. The potentials at points 2 and 4 are no longer of equal magnitude The charge on C 2 tends to equalize the charge on C1 by
transferring electrons through R2 and R1. The potential point 3 is the algebraic or net potential between and 4, relative to ground; and it is several volts negative ith respect to ground. The decrease in potential cause the multivibrator to speed up, and as its phase differ nce with the sync pulses decreases, the correctiv oltage decrease toward zero.

Case III Multivibrator Too Fast.
Figure 15c shows that the saw-tooth zero potential point occurs $\triangle \mathrm{T}$ seconds (a few millionths of a second order of magnitude) before the middle of the sying on the two diodes are reversed. $\mathbf{C 1}$ charges more than C2, and there is a net positive potential at point 3. This positive potential causes the multivibrator to slow down The phase difference between saw-tooth and sync voltage ends toward zero, causing the correcting voltage to do he same.

The most stable state of equilibrium and the one that produces the correct picture frame phase relative to the blanking bar is the zero voltage state. The multivibrator out put of the phase detector is either slightly positive or negative, but this state is less stable. The picture frame phase is wrong, and the multivibrator is likely to lose sync (equilibrium) when switching channels or interrupting the horizontal sync pulse in some other manner

Figure 16. Bottom View Parts Tube Layout

O John F. Rider

© John F. Rider

Figure 18. Schematic Diagram for Chassis 401

symbol	part no.	value	row.	${ }_{\text {Watrse }}^{\substack{\text { vits }}}$	$\mathrm{type}^{\text {Pr }}$	symboL	Part no.	value	rom		TYPE	symbol	part mo.	valus	roL	${ }_{\text {wats }}^{\substack{\text { watrs } \\ \text { vols }}}$	YPPE
			stons			${ }_{\text {Rex }}^{\text {Reos }}$	${ }^{34507}$	${ }^{\text {180\% }}$		${ }^{1 \text { Wat }}$		${ }_{c}^{\text {c22 }}$		${ }^{470}$	${ }^{107}$	500 V	
$\underset{\substack{\text { R100 } \\ \text { R101 }}}{ }$	No voed							coik		${ }^{1 \text { Wat }}$				${ }_{1}^{1.5}$			
		(1000												${ }_{5} 0015$	108		
${ }_{\substack{\text { nin } \\ \text { nios } \\ \text { R105 }}}$	(15928		${ }^{208}$					5.0k				cisi	${ }_{14030}^{14032}$	${ }^{15} 5$			
			20\%						${ }_{\text {cos }}^{\text {20\% }}$			${ }_{\substack{\text { csa } \\ \text { c30 }}}$	$\xrightarrow{\text { Not Used }}$				
	${ }_{664}^{684}$	${ }_{\substack{\text { a }}}^{\substack{\text { 10k } \\ 200}}$		1 Wat				cosisk	${ }_{208}$	${ }_{1}^{1}$ Watt		cos	${ }_{\text {Partiot }}^{4151}$	${ }^{42}$		200 v	
${ }_{\text {H111 }}^{\text {R11 }}$	${ }_{4}^{45297}$		208			${ }_{\text {R6614 }}$	Partor 6001	580			Yoke	${ }_{\text {cos }}$					
${ }_{\text {R }}^{\substack{\text { R112 } \\ \text { R11 }}}$	$\underbrace{}_{\substack{489727 \\ 24502}}$	${ }_{\text {cosk }}^{\text {138, }}$	20\%			¢	${ }^{\text {Nat Seed }}$	100 K					Not veed	22		${ }^{2000}$	
${ }_{\substack{\text { R111 } \\ \text { R115 }}}^{\text {R15 }}$	Stictir	10M	20\%			${ }_{\substack { \text { R702 } \\ \begin{subarray}{c}{\text { R7\% }{ \text { R702 } \\ \begin{subarray} { c } { \text { R7\% } } } \\{\text { R704 }}\end{subarray}}$			208				coile				
${ }_{\substack{\text { P117 } \\ \text { R118 }}}$							(1931		${ }^{208}$								
${ }_{\substack{\text { R120 } \\ \hline 1.129}}^{\text {R12 }}$		$\underbrace{\text { sex }}_{\substack{2300 \\ 500}}$				$\substack{\text { Rrop } \\ \text { Rrog }}^{\text {and }}$	${ }_{\substack{484 \\ 4610}}$	cisk	5\%			cison		${ }_{20} 0022$	108	400 V	cera
	14698			2 watt		$\underset{\text { R720 }}{\text { R710 }}$	${ }_{\text {cel }}^{\text {Sentrols }}$					${ }_{\substack{\text { c } 509 \\ \text { cos }}}$	Parc_{4}^{4127} of 7501	coir		400 V	
$\underset{\substack{\text { R200 } \\ \text { R201 }}}{ }$	Not	1 k	${ }^{208}$			${ }_{\substack{\text { R7711 } \\ \text { R72 }}}$	See coniris	${ }^{4700}$				${ }_{\text {ces }}^{\substack{\text { c50 } \\ \text { c50 }}}$		-005			
${ }_{\substack{\text { H2203 } \\ \text { R204 }}}^{2020}$	(isisi					$\underset{\substack{\text { R7214 } \\ \text { R7is }}}{ }$						cen					
${ }_{\substack{\text { H205 } \\ \text { H20e }}}^{\text {nem }}$	cise	$\underset{\substack{47 \\ 470}}{ }$						cisk		${ }_{2}^{20}$ wats			coly	${ }_{1}^{\text {a }}$	$\xrightarrow{1068}$	200 v	
	cisis	$\underset{\substack{478 \\ 120 \\ 120}}{ }$				${ }_{\substack{\text { R7718 } \\ \text { R79 }}}$	${ }_{\text {Part of }}^{1457508}$	${ }_{18}^{22}$		2 Wats		ceict	see Electrovites				
${ }_{\substack{\text { H211 } \\ \text { H211 }}}$		${ }^{3} 9.98$				${ }_{\substack{\text { Repo } \\ \text { R801 }}}$	Not vasd			wats		cose	${ }^{\text {col }}$	${ }^{.0077}$			
${ }_{\substack{\text { R212 } \\ \text { R213 }}}$		${ }_{\text {che }}^{\substack{470 \\ 8.20}}$					${ }_{\text {che }}^{4771}$	1300		wats			No Ubed				
		(ino				вво4								001	${ }^{108}$		
$\underbrace{\text { R218 }}_{\substack{\text { R2118 } \\ \text { R218 }}}$			208									(cres		(001		¢	
${ }_{\text {R220 }}^{\text {R218 }}$		${ }_{\text {cosk }}^{\text {228 }}$				$\substack { \text { ciol } \\ \begin{subarray}{c}{102 \\ \text { ciod }{ \text { ciol } \\ \begin{subarray} { c } { 1 0 2 \\ \text { ciod } } } \end{subarray}$	${ }^{4029}$	$\xrightarrow{.005}$				circo	See Elictrolytc	. 0303	108	S00 V	silver mica
	${ }_{\text {Nol Used }}$	880	20\%	2 Wata		cocce		. 4004	${ }^{\text {op }}$		Dual Ceramic		citites	,	${ }^{10 \%}$		
${ }_{\substack{\text { HaO2 } \\ \text { Ros }}}$						$\substack { \text { cioo } \\ \begin{subarray}{c}{\text { cion }{ \text { cioo } \\ \begin{subarray} { c } { \text { cion } } } \\{\substack{10}} \end{subarray}$		${ }_{\text {20, }}^{\text {. }}$			Dual Ceramic	crin $\substack{\text { c712 } \\ \text { cha }}$	(1409	470	${ }^{10 \%}$	500 V	mica
(ise		${ }_{\substack{104 \\ 2710}}^{170}$				cile		cos			Ratio Detector		cilit	. 42	10%	${ }_{\substack{200}}^{200 \mathrm{~V}}$	
${ }_{\substack { \text { R30 } \\ \begin{subarray}{c}{\text { Ras } \\ \text { Ros }{ \text { R30 } \\ \begin{subarray} { c } { \text { Ras } \\ \text { Ros } } }\end{subarray}}$	${ }_{\substack{4 \\ 4604 \\ 460}}$	${ }_{\text {l }}$	208			cine	${ }_{\text {Pration }} 1065$	${ }_{\substack{200 \\ 305}}^{200}$				cin			10%		
cincin		${ }_{\text {3.9k }}$	${ }_{\substack{208 \\ 5 \%}}$	${ }^{1}$ wat		cile	(10420					coil		Soo		${ }_{20 \mathrm{kvV}}^{20 \mathrm{kv}}$	
${ }_{\substack{\text { fand } \\ \text { R312 } \\ \text { R312 }}}$		${ }_{\substack{15 \mathrm{~L} \\ 120 \mathrm{~K}}}$	20%					,		${ }_{600} 00 \mathrm{~V}$		${ }_{\text {c } 720}$	Partititios	47	106	1500 V	
${ }^{\text {R313 }}$	4501	${ }^{22 \mathrm{~K}}$	208			coil		.005		400 v			$\underset{\substack{\text { Not Uosed } \\ \text { dios }}}{ }$	01			
${ }_{\substack{\text { R400 } \\ \text { R401 }}}$	${ }_{\text {Not Uaed }}^{\text {asid }}$		${ }^{208}$			$\substack { \text { c118 } \\ \begin{subarray}{c}{118{ \text { c118 } \\ \begin{subarray} { c } { 1 1 8 } } \\{c} \end{subarray}$. 047				cicic	see Eliceropites	. 01			
(itas		${ }_{4}^{158}$	208			$\substack{\text { cind } \\ \text { ci21 }}_{\text {cid }}$	See EEcectroytiliss							1			
		${ }^{3.350}$	5\%			coick	${ }_{\substack{\text { Na Uned } \\ \hline 1020}}$						Electroivica				
(R40\%		3300 $30 \times$ 10 10	${ }_{\substack{208 \\ 5 \%}}$			cen	$\substack { 41029 \\ \begin{subarray}{c}{123 \\ 10030{ 4 1 0 2 9 \\ \begin{subarray} { c } { 1 2 3 \\ 1 0 0 3 0 } } \end{subarray}$	$\xrightarrow{.005}$		${ }_{500}^{500 \mathrm{~V}}$						Lyric	
${ }_{\text {R }}^{\text {R419 }}$		1.1.3M	5%				(14030	${ }^{\text {.0015 }}$				$\mathrm{c}_{\mathrm{c} 112} \mathrm{C120}$	${ }_{\text {2252 }}^{2208}$			- ${ }_{\text {s50 }}^{50}$	
${ }^{\text {R550 }}$						coiction	¢			500 V		$\substack{\text { cili } \\ \text { cios }}_{\substack{\text { cose }}}$	$\underset{\substack{4252 \\ 1251}}{ }$				
			20%			cos		$\underset{\substack{20 \\ 470 \\ 400}}{\substack{15}}$				coicce	(1235	com		cois	
		(inciek	cos			cin	(14050 (1430			500 V			(1231	隹			
$\underbrace{}_{\substack{\text { R550 } \\ \text { R507 }}}$	${ }_{\substack{24517 \\ 2 \\ 24517}}$	ciok							${ }^{108}$			ciseo	(225	${ }^{30} 40$ mid		cos	
		${ }_{\substack{3 \\ 320 \\ 320}}$. 20015				symbol	part no.			dsscription	
	Part of Z501 Part of Z501 Not Use	8.2k 8.2k 4.74	208					$\begin{array}{\|c} 170 \\ \hline 100 \\ .005 \\ .0015 \end{array}$	108 108	500 v		L $\begin{aligned} & \text { L1 } \\ & \text { L2 }\end{aligned}$		$\begin{gathered} \text { coul } \\ \text { col } \\ \text { on } \end{gathered}$	cols	rap (1-F	

symbol	Part no.	description
${ }^{15}$		Coll - 5 Turss 1/4 O.D., Cascode Coupting
${ }_{\text {L6 }}^{4}$		
17		Coll - Neutralizing
${ }_{48}^{L 8}$		al coll - Mixer Plate (Compensating Indiclence) Coll - Mixer Plate
101	5437	Coll - Interstage (Sound I-F - 4.5 Mc)
${ }^{1201}$	5539	Coll - I-F Input (43 Mc)
${ }^{1202}$	5538	Coll - 1st I-F (45.5 Mc)
L203	5440 5537	
${ }^{2} 205$	5438	Coil - (41.25 Mc Trap)
L206	(5358	
${ }_{\text {L208 }}$		
${ }_{\text {L209 }}^{2208}$	${ }_{5440}$	Coil - Adjucent Channol Prcture Trap (30.
${ }_{\text {L210 }}$	5430	coll - Sound take oft (4.5 Mc)
	5433	Coil - Peaking (Detector series 150 UH)
${ }^{2} 212$	5434	Coil - Peaking (Detector Shunt 970 Uil)
${ }^{1201}$	5433	Colll - Peaking (VIdeo Output Series 150 UB)
L302	54302	
1801 See Miscellaneous		
4701	5448	Coil - Horizontal Frequency
L703	$)^{5} 5$	Coll - Damper Choke Coll - wiot
${ }_{\text {L704 }}$	See miscellaneous	
		transformers
${ }_{\text {T102 }} \mathbf{1 0 1}$	$\begin{aligned} & 5443 \\ & 5192 \end{aligned}$	Transformer - Ratio Detector-4.5 Mc Transformer - Audio Output
7801	5157	Translor mer - Vertical Output
7701	5184	Transformer - Horisontal Output
r801	5038	Transtormer - Power
	CONTROL - switches	
8114	4907	Control - Volume, 500 K
${ }^{\text {R302 }}$	48897	Coatro - Contrast Valve, 1.5k
R403	853	Control - Acc, sok
${ }^{\text {ReOs }}$	4888	Control - Vertical Hold, im
R8608 Reog	48885 4885	Control - Vertical Linearity, 5K
(R710	4859	Control - Horizontal Hold, 25 K K
		Control - Horizontal Drive, 25K
		miscellaneous
7701	9782	Fuse - $1 / 4$ Amp, slo-Blo
1801	9505	Liqht - Pllot (844 Masda)
1201	${ }_{9729}^{9729}$	Yoke - Defloction 70°
$\underline{504}$	9729	Yoke - Deflection 70°
ת01	${ }^{121}$	Receplacte - Phono Input
$\begin{aligned} & L s 101 \\ & L S 102 \end{aligned}$	$\begin{aligned} & 9091 \\ & 90074 \end{aligned}$	
${ }_{4301}$	9702	Ion Trap - 45 Gauss
M302	9789	Focuser
P801	8128	Receptacle - Power
220	9788 or	Tuner - Cascode R-F- UHF-VHF, 40 Mc
	8107-A	Socket-Kiknescope with Leads
2301 2702	${ }_{\substack{9895 \\ 8227}}$	Network - Vertical Integratior Plug - Anode Connector min Lead
		Plug - Anode Connector mith Lead

John F. Rider

Figure 19. Schematic Diagram for Chassis 402

© John F. Rider

Figure 20. Schematic Diagram for Chassis 403

©John F. Rider

DESCRIPTION

The Regency Model RC-600 UHF (Ultra High Frequency) Television Converter is designed to permit reception of UHF television signals on receivers

The frequency coverage of the UHF television band is from 470 to 890
gacycles. Seventy UHF channels make up this band and are numbered 14 megacycles. Seventy UHF channels make up this band and are numbered 14
through 83 . As adjusted at the factory, the RC-600 converts any of the UHF channels for reception on channel 10 on your VHF television receiver. If a signal on channel 10 makes this channel unusable, an easily performed adjust-
ment will permit reception of the UHF signals on any channel from 8 to 13 .

Two front panel control knobs are used on the Regency Model RC-600. (See indicated by the large slide rule type dial. The other front panel control actuates the selector switch. Switch positions are marked OFF-VHF-UHF. If the television receiver's AC plug is inserted into the receptacle on the back of the
converter (see figure 2), the selector switch also controls power to the tele converter (see figure 2), the selector switch also controls power to the tele-
vision recaiver.

The action of the selector switch is as follows:

1. OFF POSITION-Power to both converter and receiver is turned off.
2. VHF POSITION-Power to the receiver and to the converter tube filaments is turned on, and the VHF antenna is connected through the switch to the receiver antenna input terminals. The receiver may
tune in any available VHF station from Channel 2 through 13 .
U. UHF POSITION-Power to both receiver and converter is on. The VHF antenna is disconnected by the switch, and the converter output
(channel 10 frequency) is fed to the antenna input terminals of the (channel 10 frequency) is fed to the antenna input terminals of the
receiver. With the channel selector of the receiver in channel 10 posireceiver. With the channel selector of the receiver in channel 10 posi-
tion, the converter is tuned to an available UHF signal for best picture and sound.

Figure 1.

Figure 2.

INSTALLATION

1. Locate the converter as close to the television receiver as is convenient Disconnect the VHF antenna lead from the receiver and connect it to the con
2. Connect a short piece of 300 ohm twin lead from the receiver antenna input terminals to the converter terminals marked VHF SET
3. Connect the UHF antenna lead-in to the converter torminals marked ect antenna. If a combination UHF and hr antenna is employed, con UHF ANTENNA to terminals marked VHF ANTENNA.
4. If it is desired to have the television receiver turned on and off by the converter selector switch, plug the receiver AC plug into the AC receptacle the bak of converter.
5. Plug the converter power cord into a convenient outlet that provides
$0-125$ volts AC, 50 to 60 cycles. DO NOT CONNECT TO A DC SOURCE. 6. Solect a clear VHF channel (8 to 13) for UHF reception, preferably
channel 10, if available, and tune in a UHF station as described in OPERATION below. Adjust the converter output by means of the small fiber knob
at the back of the converter (see figure 2) for best reception of the UHF at the back of the converter (see figure 2) for best reception of the UHF television signal.

OPERATION

With the television receiver line cord plugged into the back of the converter, as previously described, the power switch of the television receive should be left in "On" position at all times. The lower knob on the converter then turns the converter and receiver off an
employing only one control for this operation.
To place your television receiver in operation, rotate the lower knob on he front of the converter cabinet to VHF position. In this position the tele-
vision receiver may be used to tune in available VHF stations between channels 2 and 13 in the normal fashion. Since the filaments of the converter tubes are and with power in VHF position, a warm-up period is not required whe supplied with power in
switching to UHF position.

To receive UHF stations, turn the lower knob on the converter to the osition (or such other channel as may have been selected for UHF reception) The receiver is now set to receive signals from the UHF converter. Turn the large knob on the converter until the desired UIIF channel is tuned as indi cated by the pointer on the tuning dial. This setting of the tuning knob should always be adjusted for best picture and sound from the received UHF
Tuning may be touched up with the fine tuning control on the receiver.

In areas where only UHF stations are available, the convirter is turned period to allow the tubes to reach their required operating temperature, thus insuring stable operation. Usually it is found that the normal warm-up period of the television receiver is sufficient. For some receivers it may be necessien operation.

SERVICING PROCEDURES

The Regency Model RC-600 conventor employs a tuning drum unit conisting of a pre-selector circuit, crystal mixer, oscillator, and intermediat frequency amplifier. Both oscillator and converter tubes, type 6AF4 and 6BK7, are contained inside the tuning drum. A power transformer supplies filament voltages and provides voltage to the half wave selenium rectifier in the B plus circuit.

When servicing the converter, any components may be replaced with the exception of those contained in the tuning drum. Should difficulties occur in he tuning drum or if alignment is required, it is suggested that the entire converter unit be returned to the factory for service. To aid in locating the orious converter components, the top and bottom chassis views are shown in figures 3 and 4.

TUBE REPLACEMENT-A tube puller is supplied with each tube in the uning drum. If tube replacement is required, perform the following steps:

1. Remove knobs from front of cabinet.

2. Removo back covor

3. Remove hex head screws holding chassis in.

4. Remove chassis.

5. Remove the 6BK7 tube (located at center of tuning drum, nearest the front of chassis)
6. Remove screw holding shield plate near top of tuning drum.
7. Remove the 6AF4 tube.
8. Remove tube pullers from old tubes and replace on new tubes
9. Re-assemble the chassis into the calinet.

Normally, a tube replacement will not necessitate converter alignmen However, if the unit does not track properly or if converter operation is no p to standard after tube replacement, it is suggested that a number of tubes (particularly the 6AF4 oscillator) be tried. In this way, it will be possible to elect a tube whose characteristics more nearly approach those of the original

Figure 3. Chassis Rear View

Figure 4. Chassis Bottom View

REPLACEMENT PARTS

In ordering replacement parts from the factory, always give part number (and number printed on the part, if different from number shown on parts list) and name or description of part.

All parts on which adjustments or replacements are desired must be returned to REGENCY DIVISION, I. D. E. A. INC., 7900 Pendleton Pike, Indianapolis 26, Indiana, with a letter specifying the reason for the return and giving the model and serial number of the according to stanilard speci are to be used. This converter is fications, and any comperen locally with the information in this instruction manual.

The following list is for identification of parts and may be referred to igures 3 and 4 for locations of these parts. Most resistors, capacitors, etc can be supplied by your parts dealer from the description or by comparison with old parts. If you are unable to locate parts, we will be glad to supply dditional information if required

PARTS LIST
 TUBES

V 1
v 2

C1

R1
T1

MISCELLANEOUS PARTS

Selenium rectifier 65MA@ 130 volts
300-296-2 tubes Dial lamp \#47 Selector switch Terminal board, antenna Plastic cabinet Glass dial Dial light shield Dial Pointer Knob, selector switch Knob, tuning Spring, dial drive Dtal plate, metal

I GENERAL DESCRIPTION

The following Series of Television Receivers are distinguished by related chassis types.
Models 5620, 5620-1: 26-tube receiver (including picture tube and two rectifiers). Features include: full 12 channel coverage; latest Standard Coil Cascode Circuit RF tuner, with high signal to noise ratio, UHF adaptable; limiter-discriminator FM sound system; high second anode potential for full picture brilliance and definition; automatic frequency control of the horizontal oscillator (Syncrolok); full 4 mc . bandwidth of the picture channel; noise saturation circuits; keyed A.G.C.; a connection is provided for adaptation to color reception; and a phonograph input connector by means of which the sound section may be used as an audio amplifier. Reference is made to the overall circuit diagram.

Models 2400, 2426, 2426B: These sets have a chassis especially adapted for use with a $24^{\prime \prime}$ picture size, and is otherwise the same as Model 5620.

II ELECTRICAL SPECIFICATIONS

R.F. Frequency Range:
 Power Supply Rating:
 Audio Power Rating:

Channels 2 to 13 in 12 steps 117 Volts, 60 Cycles, 275 Watts Undistorted - 2.5 Watts Maximum - 4 Watts

Antenna Input Impedance: 300 ohms

CIRCUIT
SYMBOL

III TUBE COMPLEMENT
SYMBOL
TUBE TYPE
FUNCTION
ALTERNATE

RF amplifier, RF Oscillator-Mixer tubes are also supplied. These are 6 J 6 oscil lator and Mixer, and 6 BK7 RF amplifier in the tuner.

V 101	6AG5
V 102	6AG5
V 103	6AG5
V 104	6AG5
V 105	6AL5
V 106	6AU6
V 107	6K6GT
V 108	6SN7GT
V 109	6AU6
V 110	$6 \mathrm{J5}$
V 111	6K6GT
V 112	6SN7GT
V 113	6BQ6GT
V 114	1B3GT
V 115	6W4GT
V 116	5U4G
V 117	6AU6
V 118	6AU6
V 119	6AL5
V 120	6AT6
V 121	6 K 6
V 122	6 SH7
V 123	6AL5

$$
\begin{array}{lll}
\text { 1st Video I.F. } & (6 \mathrm{CB} 6) & (6 \mathrm{BC} 5)^{*} \\
\text { 2nd Video I.F. } & (6 \mathrm{CB} 6) & (6 \mathrm{BC} 5)^{*} \\
\text { 3rd Video I.F. } & (6 \mathrm{CB} 6) & (6 \mathrm{BC} 5)^{*} \\
\text { 4th Video I.F. } & (6 \mathrm{CB} 6) & (6 \mathrm{BC} 5)^{*} \\
\text { A-Video Detector } & & \\
\text { B-D.C. Restorer } & & \\
\text { 1st Video Amplifier } & & \\
\text { 2nd Video Amplifier } & & \\
\text { A-Sync Limiter } & & \\
\text { B- Sync Amplifier } & \\
\text { AGC Keying Tube } & \\
\text { Vertical Oscillator } & \\
\text { \& Discharge } & \\
\text { Vertical Amplifier } & \\
\text { A- Horizontal Discharge } & \\
\text { B- Horizontal Oscillator } & \\
\text { Horizontal Amplifier } & \text { (6BG6G) } \\
\text { High Voltage Rectifier } & \\
\text { Damper } \\
& \\
\text { Power Supply Rectifier } & \\
\text { Sound I.F. } & \\
\text { Sound Limiter } & \\
\text { Sound Discriminator } & \\
& \\
\text { 1st Audio Amplifier } & \\
\text { Audio Output } \\
\text { Horiz. Oscillator Control } \\
\text { Horiz. Syne Discriminator }
\end{array}
$$

FIGURE 3
rear chassis controls

. VIDEO I.F.

IV CIRCUIT DESCRIPTION

The video I.F. section is composed of the 4 amplifier stages V-101, $\mathrm{V}-102, \mathrm{~V}-103$, and V-104. This video I.F. section provides ample gain and gives very satisfactory pictures in all TV signal reception areas. The I.F. sound is taken off at the plate of the 2nd I.F. video amplifier(V-102) taking advantage of the extra gain afforded by the lst two video I.F. stages. The video I.F. section is equipped with adjacent traps to eliminate interference from channels on either side of the station being received. The video I.F. picture carrier frequency is 26.25 megacycles. Also, a 4.5 mc trap (T114) is incorporated to eliminate sound "pebble" from the picture.

2. VIDEO DETECTOR AND AMPLIFIERS

All Models employ a 6AL5 half-wave detector (V-105A); and a 6AU6 first video amplifier ($\mathrm{V}-106$). A 6 K 6 ($\mathrm{V}-107$) is employed as the second Video amplifier. The gain of the video is controlled in the cathode of this stage by degeneration with high frequency compensation.

3. SOUND SECTION

The sound section consists of one 6AU6 (V-117) sound I.F. amplifier and one 6AU6 limiter ($\mathrm{V}-118$) tuned to 21.75 megacycles; a phase discriminator using a 6AL5 duodiode (V-119); a 6AT6 (V-120) first audio amplifier and a 6 K 6 (V-121) audio output tube.

Provision has been made to allow the audio section to be used as a phonograph amplifier. Phono input is located on the rear of the chassis, the picture tube and video amplifier are inactivated by turning the brightness control to the extreme counterclockwise position until phono-switch shape into position.

4. SYNCHRONIZING CIRCUITS

The vertical and horizontal synchronizing pulses are taken off in the plate circuit of the 1st video amplifier. They are then fed through two 6SN7 (V-108A, V-108B) triode stages for shaping and amplification. The vertical sync pulse is removed after the second stage of amplification and is applied to the grid of a 6 J 5 ($\mathrm{V}-110$) triode functioning as the vertical blocking oscillator. The resulting saw-tooth wave form is fed through a 6 K 6 (V-111) vertical amplifier which drives the vertical deflection coils.

The horizontal sync pulse is clipped and amplified by the 6SN7 (V-108A, V-108B) and then fed to the horizontal discriminator described below. The horizontal sweep voltage is applied to the grid of a 6BQ6 ($\mathrm{V}-113$) horizontal amplifier which drives the horizontal deflection coils

5. HORIZONTAL OSCILLATOR AND FREQUENCY CONTROL CIRCUIT

The Horizontal oscillator and frequency control system is essentially a modified Syncrolok circuit. This system retains all the advantages of the Syncrolok circuit including noise immunity and phasing control.

The circuit uses three tubes, a horizontal oscillator ($1 / 26 \mathrm{SN} 7$ - V-112B), a horizontal oscillator control tube (6 SH 7 - $\mathrm{V}-122$), and a horizontal sync discriminator 6AL5 - V-123). The discriminator compares the frequency and phase of the sine wave output of the oscillator with that of the incoming horizontal sync pulses. If there is a difference between the two, the discriminator circuit acts through the oscillator control circuit to correct the oscillator frequency.

Since the control tube circuit is designed to react only to changes in the average level of discriminator output, noise pulses have little effect on the circuit, their duration usually being too short to affect the average output level.

6. COLOR ADAPTABILITY

All receivers are provided with a terminal on the rear apron of the chassis for ready connection to an adapter for color reception. This connec tion is indicated in Fig III as the center lug on the terminal connection; the same connection containing the phono connection. This color lug is directly connected to the 60 -cycle color sync pulse, from the vertical circuit, within the chassis.

7. HIGH VOLTAGE CIRCUIT

The high voltage supply consists of a"flyback" high voltage system, a 6 W 4 (V-115) damper tube, and a single 1B3 ($\mathrm{V}-114$) high voltage rectifier. By employing an extremely efficient high voltage transformer, 15 KV anode voltage is consistently obtained on the picture tube.

8. LOW VOLTAGE SUPPLY

The low voltage supply is of the conventional type and consists of a $115 \mathrm{~V}, 60$-cycle power transformer, a $5 \mathrm{U} 4 \mathrm{G}(\mathrm{V}-116)$ full wave rectifier, plus its associated filter components.

BOTTOM VIEW

V INSTALLATION NOTES

When the set is ready for installation, subject it to a thorough visual inspection to be sure that no damage has occurred in shipment.

The set should be used in conjunction with a suitable 300 ohm antenna. When the antenna has been installed and connected to the chassis, connect the set to a 115 V 60 -cycle AC outlet.

1. In some cases, it may not be possible, as a result of shipping, to first off obtain a satisfactory picture by means of the front panel controls. If this happens, it will be necessary to readjust the rear panel controls. The names and locations of these controls are shown on the accompanying diagram, Fig. III.
2. If the picture or raster is off-center with respect to the mask, to the right or left, or too high or too low, it may readily be repositioned by adjustment of the FOCUS COIL. The FOCUS COIL is located on the neck of the picture tube. This adjustment is accomplished by simply loosening the wing nuts holding the FOCUS COIL, repositioning the FOCUS COIL so that the picture is properly centered in the mask with no neck shadow, and then re-tightening the wing nuts. This adjustment is done while viewing the picture with the aid of a mirror placed in front of the television set.
3. If the picture has a slightly blurred or fuzzy appearance, this may be cleared up by adjustment of the FOCUS control.
4. When the height of the picture is not sufficient to fill the mask, or if vertical non-linearity is present (evinced by unequal heights of the vertical wedges in the test pattern, or heads and bodies being out of proportion in a picture), the VERTICAL LINEARITY AND HEIGHT controls must be adjusted. These two controls affect each other, and when one is adjusted, it is usually necessary to readjust the other to obtain a satisfactory picture. The HEIGHT CONTROL has its greatest effect on the bottom half of the picture, while the LINEARITY CONTROL mostly affects the top half. If the picture width is not right, or if horizontal non-linearity is present, (i.e. one side of the picture expanded and the other side squeezed in), adjustment of the HORIZONTAL WIDTH, HORIZONTAL LINEARITY and/or HORIZONTAL DRIVE controls will be necessary (See Fig. III).
5. If the picture does not hold in sync throughout the range of the HORIZONTAL HOLD control, it may be possible to make it do so by adjusting the SYNCROLOK control on the rear panel. If this cannot be done, a detailed adjustment of the sync system, as described in the following: Service, Section VI, must made.
VI SERVICE INFORMATION

Each television set is pre-aligned and pre-adjusted before being shipped from the factory, and should give satisfactory performance upon installation. However, should it become necessary to re-align either the Sound or Video I.F. stages, or re-adjust the horizontal synchronizing circuits, it is suggested that the following procedures be used as guides.
HIGH VOLTAGE WARNING: OPERATION OF THE TELEVISION RECEIVER OUTSIDE THE CABINET, OR WITH COVERS REMOVED INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WHEN WORKING ON THE CHASSIS, ALL PRECAUTIONS SHOULD BE TAKEN TO PREVENT CONTACT WITH HIGH VOLTAGE POINTS. DO NOT OPERATE THE CHASSIS WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

1. ADJUSTMENT OF HORIZONTAL OSCILLATOR

Connect a suitable antenna to the receiver and tune to an operating television station. A picture or test pattern should appear on the screen. The picture should remain in horizontal sync with the HORIZONTAL HOLD control in both the extreme clockwise and extreme counter-clockwise positions. The picture should also pull into sync with the hold control in either of these positions when the signal is momentarily removed.

If the above check reveals a lack of sync in the set, make the following adjustments:
(a) Tune in a television station and adjust the fine tuning control for best sound quality.
(b) Turn the syncrolok frequency control (on the rear of the chassis) until the picture is synchronized.
(c) If the blanking bar appears in the picture turn the "phase adjustment" (rear slug of syncrolok transformer under the chassis) until the blanking bar moves to the right and off the raster.
(d) Turn horizontal hold to extreme counter-clockwise position and turn "syncrolok frequency adjustment" (located on rear apron of the chassis) clockwise until the picture falls out of sync. Then turn the adjustment slowly counter-clockwise to the point where the picture falls into sync again.
(e) Readjust the phase adjustment so that the left side of the picture is close to to the left side of the raster, but does not begin to fold over.
(f) Turn HORIZONTAL HOLD to its extreme clockwise position. The right side of the picture should be close to the right side of the raster, but should not begin to fold over. If it does, readjust the phase.
(g) Momentarily remove the signal by tuning station selector off channel and then re-tuning. When the signal is restored, the picture should fall into sync. If it doesn't turn the sync frequency adjustment counter-clockwise until it does.
(h) Turn horizontal hold to extreme counter-clockwise position. Remove the signal momentarily. When the signal is restored, the picture should fall into sync.

2A. VIDEO I.F. ALIGNMENT

The following procedures should be followed when aligning the Video I.F. sections:

Connect the focus coil and deflection yokes to the set. Speaker and picture tube connections need not be made for I.F. alignment.
(a) Plug set into $115 \mathrm{~V}, 60$ cycle line; turn set on.
(b) Disable AGC by shorting Pin \#1 of 6AU6 (V-109) keying tube to ground.
(c) Connect -1.5 volt bias between chassis and AGC strip. (Junction of R128 and C131).
(d) Connect a calibrated signal generator to the tuner by connecting the "hot" lead to the tuner mixer tube shield, and the ground lead to the chassis. Shield must be disconnected from ground so that signals can be coupled into the mixer through the shield to tube capacity.
(e) Connect one lead of a vacum tube voltmeter to the plate side of the 3900 ohm video detector load resistor, the other lead to ground, using lowest voltage range on meter.
(f) Adjust traps first. Inject trap frequencies of $20.25 \mathrm{mc} ; 21.75 \mathrm{mc} ; 27.75 \mathrm{mc}$; and 4.5 mc into tuner and adjust the respective traps for minimum deflection on meter. When adjusting 4.5 mc trap, a voltmeter with crystal probe should be connected between R141 and ground.
(g) Inject video I. F. amplifier frequencies of $25.8 \mathrm{mc} ; 22.8 \mathrm{mc} ; 22.3 \mathrm{mc} ; 25.7 \mathrm{mc}$ and 23.9 mc . into the tuner, adjust each stagger tuned stage at its respective frequency for maximum deflection on vacuum tube voltmeter.
(h) Repeat Step (f).

Note: In all alignment procedures, use as low a signal input as possible to prevent overload.

3. SOUND I, F, ALIGNMENT

The following procedures should be followed when aligning the Sound I.F. sections of all the 260 Models.

The Sound I.F. carrier frequency is 21.75 mc . Inject a 21.75 mc . signal on the grid of the first sound I.F. amplifier. Connect a d.c. voltmeter in series with a 1. meg. resistor between ground and the high side of the second I.F. amplifier grid lead resistor ($\mathrm{R}-103$). Adjust I.F. transformer ($\mathrm{T}-101$) to obtain a maximum reading on the voltmeter (the voltage should be between -1 and -3 volts).

Now connect the voltmeter and the 1 meg. resistor between ground and the junction of the discriminator load resistors. Adjust the discriminator transfer primary for maximum deflection on the meter.

Connect the voltmeter across the total discriminator load and adjust the discriminator secondary for zero reading on the meter. Make sure that the meter goes positive as the secondary is adjusted to one side of the balance point and negative as it is moved to the other side.

4. USE OF OSCILLOSCOPE TO CHECK ALIGNMENT

In all cases it is desirable to check the alignment of both the Sound and Video I.F. sections as outlined above by using an oscilloscope in conjunction suitable sweep equipment. This procedure is outlined herewith:

To check both Video and Sound I.F. alignment, attach a sweep generator to the antenna terminal and inject I.F. markers from the crystal controlled source between the chassis and the ground side of the cathode resistor of the first Video I.F. amplifier.

(a) Switch channel selector on set to Channel Six (6) and adjust the sweep generator to sweep Channel Six
(b) Connect horizontal input of oscilloscope to "Scope" terminal of sweep generator
(c) Connect vertical input of oscilloscope across the video detector load resistor (R-138).
(d) Slight adjustment of the video I. F. coils should bring the I.F. curve into proper shape. Check trap frequencies and half voltage point frequencies with crystal markers only.

The curves that should be obtained from a properly aligned I.F. are shown in Fig. I and II, depending on the set Model.

The sound I.F. curves can be observed by connecting the vertical input of the oscilloscope in series with a 50 K resistor between the grid resistor of the 6AU6 limiter tube and ground series resistor. The discriminator curve can be observed by connecting the vertical input of the oscilloscope across the discriminator diode load resistors (Junction R-106 and R-108).

5. TUNER CHANNEL SLUG ADJUSTMENT

Individual channel tuner oscillator adjustments of the television receiver should be checked, upon its installation or servicing. If such adjustments are properly made, it is possible to on-tune from one station to another by merely turning the CHANNEL Selector and, if necessary, slightly readjusting the fine TUNING control. With correct oscillator channel adjustment, best picture and satisfactory sound will be located at the approximate center (half rotation) of the range of the FINE TUNING control.

Channel slug adjustment can be made without removing the chassis from the cabinet. Adjust as follows:
a. Turn the set on and allow 15 minutes to warm up.
b. Set the CHANNEL SELECTOR knob for a station; set other controls for normal picture and sound.
c. Set FINE TUNING control at center of its range by rotating it approximately half way.
d. Remove the CHANNEL Selector and FINE TUNING knobs.
e. Insert a $1 / 8^{\prime \prime}$ blade, non-metallic screwdriver in the $1 / 4^{\prime \prime}$ hole (to the right of the channel tuning shaft). For each channel in operation, carefully adjust its channel slug for best picture with clear detail and best sound. Be sure that the FINE TUNING control is set at the center of its range before adjusting each channel slug. Generally, only a slight rotation of the slug will be required; turning the slug in too far will cause it to fall into its coil. (If the slug falls into the coil, remove the coil strip from the tuner, move the retaining spring aside, lightly tap the open end of the coil until the slug slips out. Replace the slug and re-set retaining spring.)
6. TROUBLE SHOOTING DATA

Reference is made to "Resistance Measurement Chart", and "Voltage Measurement Chart" These charts are useful in detailing which section of the chassis may be inoperative. Any resistance or voltage measurements which do not correspond to these charts will point up the circuit breakdown as to resistor, condenser, etc.

RESISTANCE CHART

Tube No.	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9
V101	100K	82	0	0.2	10K	10K	82		
V 102	100K	82	0.2	0	9. 5 K	9. 5 K	82		
V 103	100K	39	0.2	0	12.5K	9.5K	39		
V 104	0.4	150	0.2	0	14.5K	8. 5 K	150		
V 105	0.2	22K	0.2	0	1 meg	0	4K		
V 106	3. 9 K	0	0	0.2	10K	9. 5 K	0		
V 107	1 meg	0	10K	8K	800K	1. 0 meg	0.2	290	
V 108	20K	37K	3.9 meg	300K	25K	0	0.2	0	
V 109	40K	8K	0	0.2	100K	25K	8K		
V 110	0	0	900K	60K	2.2 meg	60K	0.2	750	
V 111	11K	0.2	11K	11K	2.2meg	2. 8 K	0	4. 5K	
V 112	2.3 meg	100K	750	100K	10K	800	0.2	0	
V 113	NC	0.2	NC	15K	500K	NC	0	850	
V 114		Inf			110K		Inf		
V 115	9K	NC	23K	9K	9K	9 K	23K	23K	
V 116	NC	9K	NC	750	NC	750	NC	9K	
V 117	470K	0	0	0.2	9K	9K	100		
V 118	22K	0	0.2	0	9K	9K	0		
V 119	200K	100K	0	0.2	0	0	100K		
V 120	10meg	0	0.2	0	22 K	22K	340K		
V 121	180	0.2	10.5K	10K	270K	320K	0	0	
V 122	0	0	0	1.45 meg	0	8 K	0.2	32K	
V 123	30	500K	0	0.2	1 meg	0	500K		

All measurements in ohms taken with reference to chassis ground.
Permissible resistance variation $\approx 10 \%$.
Readings taken with Senior Voltohmist.
Measurements taken with all front panel controls in max. CW position.
$\mathrm{K}=1000$ ohms

VOLTAGE CHART

Tube No.	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9
V 101	-. 12	0.64	0	6. 3AC	85	85	0.64		
V 102	-. 10	0.68	6.3AC	0	84	84	0.68		
V 103	-. 08	0.54	6.3AC	0	60	80	0.54		
V 104	0	1.1	6.3AC	0	60	90	1.1		
V 105	0	0	6.3AC	0	1.8	0	-. 5		
V 106	-. 5	0	0	6.3AC	77	100	0		
V 107	0	0	42	100	0.4	2.5	6.3AC		
V 108	80	250	90	0	43	0	6. 3AC		
V 109	80	101	0	6.3AC	0.42	260	101		
V 110	0	0	138	-89	-150	-89	6.3AC	-89	
V 111	0	6.3AC	245	245	-70	-56	0	-43	
V 112	-140	120	-86	-106	230	-86	6. 3AC	0	
V 113	0	6. 3AC	0	180	-90	0	0	-76	
V 114	*	*	*	*	*	*	*	*	
V 115	260	NC	500	250	250	260	500	500	
V 116	NC	280	NC	350AC	NC	350AC	NC	280	
V 117	-. 08	0	0	6.3AC	98	98	0.74		
V 118	-. 4	0	6.3AC	0	96	94	0		
V 119	1	-3	0	6. 3AC	0	0	-2.5		
V 120	-. 7	0	6.3AC	0	-. 3	-. 3	60		
V 121	-25	6.3AC	235	240	-25	0	0	0	
V 122	0	0	0	-3.8	NC	104	6.3AC	240	
V 123	-4	-9.5	0	6.3AC	-4	-	-9		

*Do not measure these voltages with ordinary meters - DANGER - Extremely high potentials.
AC line voltage 115 volts.
Measurements in volts taken with reference to chassis ground.
All voltages D.C. unless otherwise specified.
All voltages positive unless otherwise specified.
All measurements taken with Senior Voltohmist with picture tube and antenna disconnected. Permissible voltage variation $=20 \%$.

VII TUNER DESCRIPTION

A new Cascode type Standard Coil tuner is used in all models
It is a rugged, sensitive 12 -position turret tuner. Each channel has its individual set of coils, connected into the television circuit, when selected. The cascode circuit of this tuner provides higher gain and greater signal-to-noise reception ratios than ever before practicable. The fine tuning control permits erisp, sharp pictures to be brought in individually for each channel, at the point of best and truest sound reception. Standard Coil Products, Inc., will make available UHF coil sets, for simple insertion in place of any unused VHF channel, for direct reception through this receiver of any ultra high frequency (UHF) channels that will be authorized by the F,C.C.

RESISTORS, Carbon, $1 / 2 w$

Symbol No.	Fart No.	Description
R209	ERA-33GJ	3.3Ω
R182	ERA-3005	$30 \Omega 10 \%$
R129	ERA-3901	$39 \Omega 10 \%$
R118, R123	ERA-8201	$82 \Omega 10 \%$
R101, R193	ERA-1011	100 10%
R116, R121, R127,		
R132,R134	ERA-1511	$150 \Omega 10 \%$
R144	ERA-3311	$330 \Omega 10 \%$
R175, R176	ERA-5611	$560 \Omega 10 \%$
R102, R105, R189,		
R119, R124, R130,	ERA-1021	1000 210%
R136, R120, R125		
R172	ERA-1821	1. $8 \mathrm{~K} \Omega 10 \%$
R131	ERA-2725	$2.7 \mathrm{~K} \Omega 5 \%$
R128	ERA-3325	$3.3 \mathrm{~K} \Omega 5 \%$
R141	ERA-3321	3. $3 \mathrm{~K} \Omega 10 \%$
R138	ERA-3925	$3.9 \mathrm{~K} \Omega 5 \%$
R122, R135	ERA-5625	5. $6 \mathrm{~K} \Omega 5 \%$
R171	ERA-8221	8. $2 \mathrm{~K} \Omega 10 \%$
R150, R154, R159,		
	ERA-1031	$10 \mathrm{~K} \Omega 10 \%$
R153, R158	ERA-1531	$15 \mathrm{~K} \Omega 10 \%$
R103, R108, R181	ERA-2231	$22 \mathrm{~K} \Omega 10 \%$
R149, R206, R190	ERA-2731	$27 \mathrm{~K} \Omega 10 \%$
R109, R152	ERA-8231	$82 \mathrm{~K} \Omega 10 \%$
R106, R107, R133,		
$\left.\begin{array}{l} \mathrm{R} 166, \mathrm{R} 187, \mathrm{R} 191, \\ \mathrm{R} 198 \end{array}\right\}$	ERA-1041	$100 \mathrm{~K} \Omega 10 \%$
R168	ERA-2241	$220 \mathrm{~K} \Omega 10 \%$
R113	ERA-2741	$270 \mathrm{~K} \Omega 10 \%$
R112	ERA-3341	$330 \mathrm{~K} \Omega 10 \%$
R156	ERA-3941	$390 \mathrm{~K} \Omega 10 \%$

R126, R185, R186,	
R183, R194	\} ERA-4741 470K Ω 10\%
R142	ERA-8241 820K $\Omega 10 \%$
R207	ERA-1051 1meg 10%
R165	ERA-1555 1.5meg 2 5\%
R155, R169, R170	ERA-2251 2. $2 \mathrm{meg} \Omega 10 \%$
R147, R157	ERA-3951 3.9meg 10%
R111	ERA-1061 $10 \mathrm{meg} \Omega 10 \%$
RESISTORS, Carb	on, 1w $1 \mathrm{~K} \Omega$.
R174	ERB-1022 3.3K̇ $\Omega 10 \%$
R148	ERB-3321 15K $\Omega 10 \%$
R208	ERB-1531 $47 \mathrm{~K} \Omega$ 10\%
R160, R180	ERB-4731 $470 \mathrm{~K} \Omega 10 \%$ (used on
Allen Bradley	ERB-4741 260 K 24 only)
RESISTORS, Carbon, 2w	
R195	ERC-1011 $100 \Omega 10 \%$
R184	ERC-1511 150 10%
R203	ERC-4711 $470 \Omega 10 \%$
R143	ERC-1231 12K ${ }^{\text {S }} 10 \%$
RESISTORS, Wire Wound, High Wattage	
R115 ERD-10	$4600 \Omega 10 \% 10 \mathrm{w}$
R114 ERD-10	1Kת 10\% 5w
R196 ERD-11	$3 \mathrm{~K} \Omega 10 \% 5 \mathrm{w}$ (used in 260 K 24 only)
R196, R202 ERD-10'	$15 \mathrm{~K} \Omega 10 \% 10 \mathrm{w}$ (used in 260 C \& 260 DXC only)
$\begin{aligned} \text { R202 } & \text { ERD-10 } \\ & \text { ERD-11 } \end{aligned}$	$25 \mathrm{~K} \Omega 10 \% 10 \mathrm{w}$ (used in 260 K 24 only) Bleeder assembly -6450Ω total Tapped at 1450 and 5000Ω

© John F. Rider

© John F. Rider

General Information

POWER SUPPLY-These receivers are designed to operate from a power source of 117 volts at 60 cycles A.C. It will, however, operate satisfactorily from a line whose voltage is no A.C. Always measure the voltage of the line with a dependable a-c voltmeter if it is suspected that the line voltage is beyond the above acceptable limits
TUBES-In all receivers, all tubes, including the picture tube, are shipped properly mounted in their sockets. Check to see loose during shipment. See Picture Tube Handling Precautions loose during shipment. See Picture Tube Handing Precautions
below.

ANTENNA-The installation and orientation of an antenna is one of the most important single factors in realizing optimum
performance from a television receiver. An improperly oriented, or poorly matched, or unwisely chosen antenna can completely off set the good design engineered into these television receivers. For these reasons, choose, locate and install your antenna carefully, especially in poor signal areas. All receivers in these series are equipped with a built-in antenna which performs satisfactorily in locations where good signal strength is available, and where a minimum of noise is present.
When an outdoor antenna must be installed, use a standard, approved antenna, having a 300 ohm impedance, and match it with a balanced 300 ohm transmission line. Orient the antenna for maximum signal strength from the greatest number of stations, and for the minimum amount of interference and reflection. Where the receiver is to be installed beyond the
range of good signal strength (about 30 miles) use a stacked array, being careful to match the impedance of the antenna, is required try a "booster" for improvement of signal-to-noise ratio.

In critical locations, where the receiver is surrounded by several stations, most of which are located beyond the 30 mile radius, a careful appraisal of the terrain and the measurement of field strength will usually yield acceptable television operafull use of the directional and "gain" properties of a stacked array and booster, the following procedure is recommended:

1. Measure the field-strength of the transmitted signal from each of the desired stations on a calibrated field-strength meter.
2. Tabulate your results and conclude which stations are within reasonable quality distance. A field-strength of 300 microvolts-per-meter or higher will give acceptable re sults. A field-strength measurement of 100 microvolts per-meter or lower may not be satisfactory without the a boster.
3. Let the consumer decide which of the acceptable channels he desires, and orient the antenna to receive maximum signal from those desired stations.
Always twist the 300 ohm lead-in about once for every foot of length to minimize transmission line noise pick-up.

PICTURE TUBE HANDLING PRECAUTIONS

Extreme care should be used in handling the picture tube. The picture tube bulb encloses a high vacuum and, due to its large surface area is subjected to considerable air pressure. The front
of the picture tube, particularly the rim of the viewing surface,
must not be struck, scratched, or subjected to more than mod erate pressure at any time. If the yoke sticks or fails to slip smoothly over the tube or its socket, check and remove th cause of the trouble. Do not urder any circumstances forc

OPERATION OF THIS RECEIVER WITH INTERLOCKED BACK COVER REMOVED INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THIS RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT.
IMPORTANT—With the exception of the next paragraph, all information in this folder pertains to $16^{\prime \prime}, 1 \mathbf{1 7}^{\prime \prime}$,

20" and $21^{\prime \prime}$ screen receivers. YOKE ASSEMBLY INSTALLATION INSTRUCTIONS FOCUS AND YOE

(FOR RECEIVERS WITH 20" AND 21" SCREEN ONLY)

1. Remove the slotted head P.K. screws retaining
the back, and release the interlocked line cord.
2. Remove the Focus Coil from its shipping position against the side of the tube support bracket by removing the long machine screw and nut and re taining bracket. This bracket and hardware may be thrown away. Remove the 2 wingscrews located on the Focus Coil Mounting Bracket.
3. Remove the beam bender from the neck of the picture tube and carefully slide the Focus Coil, smooth side forward, over the neck of the C.R. tube until there is about $1 / 4^{\prime \prime}$ separation between
the Focus Coil and the rear of the Deflection Yoke.
4. Fasten the Focus Coil in place by means of the wingscrews removed in Step 2.
5. Slide the beam bender over the neck of the pic ture tube.
6. Connect the picture tube socket to the picture tube base
7. The male octal plug from the Deflection Yoke and Focus Coil Assembly is already plugged into its female socket on the chassis.

BUILT-IN ANTENNA INSTALLATION

This receiver is shipped with the built-in antenna mpletely connected. A few precautions should be bserved, upon installing this receiver, if optimum performance is to be obtained.

1. Try to locate the receiver in such a position so that:
) All requirements for good viewing position and ventilation are satisfied.
b) It is near a $\mathbf{1 0 5 - 1 2 5}$ volt 60 cycle A.C. power outlet.
c) The back of the receiver is parallel and close to a window which faces in the general direc tion of the transmitters
d) It is not adjacent to a street having heavy automobile traffic which may cause ignition interference.

After performing the Service Adjustments outlined on the following pages, try a few stations and observe if their signals are received with suf

SERVICE

ficiently good quality so that the receiver may be left in this position.
3. If signal strength and noise conditions are known to be good and operation is not satisfactory, it may be best to try a new receiver location, choosing one where the receiver will be rotated 90 degrees relative to its former position.
If, however, it is found that the receiver is not permitted to perform at its best because of limitations of the built-in antenna in a noisy or weaksignal area, an outdoor antenna should be installed.

To connect an outdoor antenna to this receiver

1. Loosen the two screws on the antenna terminal strip.
. Disconnect the existing built-in antenna wires.
Connect the 300 ohm lead-in from the external antenna to the terminals and tighten the screws. antenna to

Below is given a description of the steps required in adjustment of the Beam Bender and Deflection Yoke and the adjustment of the Focus, Vertical Size and Linearity and Horizontal Size, Linearity, Drive and A.F.C. controls. However, it should be remembered that these adjustments are to be made only when picture quality is such that service adjustment is warranted. Use this description as a check-list and if a particular phase of quality is good, leave it alone and go on to the next operation. Refer to figure 1 for location of front panel controls, and to figure 7 for location of rear panel controls.
IMPORTANT-The adjustment of the Beam Bender (Ion Trap magnet) must be performed immediately after the receiver warms up. If any length of time is permitted to elapse while the receiver is on, and while the Beam Bender is misadjusted, serious damage to the internal structure of the cathode-ray gun may result.
A. PREPARATION FOR SERVICE ADJUSTMENTS

1. Remove the three slotted-head P.K. screws on the back of the receiver (located one in each corner, and one closest to the center of the cabinet top), disengage the interlock, and remove the back with the line cord.
2. Drop hinged door on front panel for access to the auxiliary controls as illustrated in Fig. 1. The lower set of these controls is adjusted by means of a narrow shanked screwdriver.
3. Connect a substitute interlock line cord between receiver and suitable power outlet and turn on the receiver allowing about ion seconds of warm-up period before proceeding
B. BEAM BENDER (ION TRAP) ADJUSTMENT
4. Advance the BRIGHTNESS control almost fully clockwise
5. Position the beam bender on the glass neck approximately $1 / 2^{\prime \prime}$ from the picture tube base.
6. Starting from this position, adjust the Beam Bender by moving it forward or backward,
and at the same time rotating it slightly around the neck of the tube until the brightest raster appears on the screen. If two maximum rightness positions are found, the one nearest the tube base is the correct setting. This adjustment should be done quickly to avoid damaging the gun structure.
7. Adjust the BRIGHTNESS control setting until the raster is slightly above average brilliance.
8. Re-adjust the Beam Bender carefully for maximum raster brilliance.
C. DEFLECTION YOKE ADJUSTMENT
9. Loosen the wing thumb screw located at the top of the deflection yoke frame.
10. Check to see that the deflection yoke mounting bracket rubber cushions press firmly against the flare of the tube
11. Press the yoke firmly against the flare of the tube.
12. Rotate the yoke until the lines of the raster are horizontal and squared with the picture are horizontal and squared with the picture mask, and tighten the wing screw.

SERVICE ADJUSTMENTS (Continued)

D. FOCUSING ADJUSTMENTS

1. Adjust BRIGHTNESS and CONTRAST con trols so that the raster brilliance corresponds to that of an average picture.
2. If a corner of the raster is shadowed, it indi cates that the electron beam is striking the neck of the tube. Loosen the Focus Coil Wing Screws and rotate the coil about its horizonta and vertical axis until the entire raster is visible, approximately centered, and with no shadowed corners. The Focus Coil should be kept close to, but not necessarily touching, the rear of the deflection coil for optimum range of the focus control. A slight readjustment of the Beam Bender may now be required.
3. Adjust the focus control (see Fig. 1) so that the lines of the raster are sharp and distinct over the greatest screen area.
E. HORIZONTAL A.F.C. ADJUSTMENT In order to check this adjustment tune in a station, preferably one that is transmitting a tes pattern. If difficulty is encountered in locking the picture horizontally or if it locks-in only when the Horizontal Hold Control is at either end of its rotation, adjust the Horizontal A.F.C. Control as follows:
4. Turn CONTRAST down about half way.
5. Turn HORIZONTAL HOLD CONTROL fully counterclock wise.
6. If the picture is not locked in, turn the HORI ZONTAL A.F.C. control till it does lock-in (See Fig. 7)
7. Momentarily interrupt the signal by switching the channel selecter off channel and then back The picture should just fall out of sync. If i does not, turn the Horizontal A.F.C. adjust ment screw slightly clockwise and again mo mentarily interrupt the signal. Continue this procedure until the picture just falls out of sync. only when the signal is interrupted.
8. Rotate the Horizontal Hold Control clockwise until the picture falls into sync. The picture

CONTRAST

hig. 2. deflection yoxe and focus ${ }^{6}$ conntering dis

(20" and $21^{\prime \prime}$ RECEIVERS ONLY

should now stay in sync. throughout most of the range of the Horizontal Hold Control.
6. If the picture cannot be made to hold sync., carefully repeat the above procedure. If difficulty is still encountered, it may be necessary to make a complete alignment of the hori zontal oscillator transformer using an oscillo scope, as described on page 3.
F. PICTURE CENTERING, SIZE AND LINEARITY 1. Horizontal or Vertical Centering is accom plished mechanically. To center the picture loosen the Focus Coil Wing Nuts sufficiently to twist the Focus Coil slightly about its hori zontal or vertical axis. Make sure the corners of the raster are not shadowed. See step D.2. Note: Some $20^{\prime \prime}$ receivers are equipped with magnetic centering disc, located between the focus coil and the deflection yoke. To center the picture in the mask, rotate and slightly vary the position of the disc in its vertical plane. This adjustment should be made in conjunction with positioning of Focus Coil (described above)
cribed above)

fig. 1. FRONT PANEL ADJUSTMENTS

fine tuning

Adjust the VERTICAL SIZE and VERTICAL LINEARITY controls until the test pattern is vertically linear and symmetrical from top to bottom, and fills the mask. Adjustment of either control may require readjustment of the other. If vertical synchronization "falls out," readjust the VERTICAL HOLD control (Refer to Fig. 1)
3. Adjust the HORIZONTAL SIZE control slotted screw, located at the rear of the High Voltage cage at the rear of the chassis, for correction of horizontal width. The large outer arcs of the test pattern should coincide with the edge of the picture mask. (Refer to fig 7)

Alignment

t

Instructions

Video I-F and Sound Alignment Procedure

TV I-F ALIGNMENT

1. Tune receiver to quiet portion of TV High Band
2. Set contrast control fully counterclockwis
3. Apply 3 v. negative bias between the A.G.C. bus (at
4. Connect TV I-F Signal Generator through a 1500 MMF condenser to Test Point (A) of tuner unit; low side to ground. (See schematic diagram.)
5. Connect negative lead of V.T.V.M. (or meter of 20,000 ohms-per-volt, or better) to 4.7K diode load resistor TEST
POINT (B); positive lead to ground. (See schematic diagram.)
6. Feed $23.2 \mathrm{MC}[23.3]^{*}(\pm .05 \mathrm{MC})$ from Signal Generator and adjust T4 for maximum deflection on meter. Maintain Signal. Generator outpu
7. Feed 21.8 MC [21.8$]^{*}$ ($\pm .05 \mathrm{MC}$) from Signal Generator, and adjust T3 as above.
8. Feed $24.0 \mathrm{MC}[23.9]^{*}(\pm .05 \mathrm{MC})$ from Signal Generator
9. Feed $24.7 \mathrm{MC}[24.5]^{*}$ (
10. Feed adjust T as above a 24.5$]^{*}(\pm .05 \mathrm{MC}$) from Signal Generator
11. Replace the meter with the vertical input of an Oscillo
scope through a 10 K isolating resistor, low side to ground.
12. Remove Signal Generator. Feed a video I-F Sweep Gen-
erator (20 to 28 MC) through loosely coupled shield of 6.15 converter tube, making sure shield is not grounded. (Refer to Fig. 3.)

Adjust the HORIZONTAL DRIVE control trimmer for horizontally symmetrical pattern and elimination of any existing vertical bar in left center of picture. The final adjustment should have the control at least 1,2 turn counterclockwise from the maximum clock wise position. (See Fig. 7)
5. The readjustment of the HORIZONTAL A.F.C. control may now be necessary
6. Adjust the HORIZONTAL LINEARITY control slotted screw, located at the rear of the High Voltage cage, for central alignment of the inner circles of the test pattern. 12. Loosely couple high side of a TV I-F Marker Generator
to the high Sweep Generator Lead; low side to ground. Feed I-F Sweep, and observe response on 'scope. (See
Fig. 5.) Use marker frequencies $20.25,21.75$ and 24.75 MC .
If response does not approximate that shown in Fig. 5, repeat steps 3 to 9 , making sure that frequencies are precise, and that the Signal Generator output voltage is kept low. Continue with steps 10 to 13. A slight touch-up of
individual slugs may be required to approximate the recommended curve of Fig. 5.
NOTE: If 3 v fixed bias is unavailable and zero fixed bias is used, set signal gen er

TV SOUND ALIGNMENT

NOTE: TV-phono switch must be in TV position

1. Connect a 4.5 MC Signal Generator ($\pm .01 \mathrm{MC}$) through a 1500 MMF condenser to the 4.7 K video diode load resistor TESTPOINT (B); lew side to ground. See schematic diagram.
2. Obtain two resistors of approximately 100,000 ohms each whose resistanres have been matched accurately with an (R107) at the 6T8 tube socket (V9A).
3. Connect negative lead of V.T.V.M. to junction of matched resistors of step 2; positive lead to ground.
4. Feed 4.5 MC ($\pm .01 \mathrm{MC}$) from signal generator, and adjust L22, sound take-off coil, for maximum defiection on .T.V.M. Two points of maximum deflection may be found tained when screw is at most outward maximum reading position.
5. Adjust the bottom slug of T10 for maximum deflection on V.T.V.M.
6. Connect positive lead of V.T.V.M. to junction of C96, and R106 TEST POINT (C), leaving negative lead of V T.V.M connected as in step 3 . See schematic diagram
. Adjust top of T10 for zero output on V.T.V.M. betwee two opposite polarity peaks.

IMPORTANT: Keep the sweep generator and marker generator outputs at minimum to avoid curve dis tortion. Marker pips should be kept barely visible.

OJohn F. Rider

ChanNELnumber	SWEEP GEN. GENTERFREO. (KMC.SWEEP)	MARKER GENERATOR FREOUENCIES	
		VIDEO GARRIER	SOUND CARRIER
2	57 Mc .	59.25 mc .	39.73Mc.
3	63 mc .	61.29 Mc .	65.73 Mc
-	69 nc .	$67.29 \times \mathrm{mc}$.	1.75 uc .
5	19 mc .	77.25 mc .	81.75 nc .
6	05 mc .	B3.25 Mc.	87.75 mc
1	177 mc .	175.25 Mc .	179.79 M
-	103 mc .	181.25 mc .	105.75 mc .
,	189 mc .	10728.25 mc .	191.75 mc .
10	195 mc .	193.25 Mc .	197.75 uc .
11	201 mc .	199.25 Mc .	203.79 Mc .
12	207 Mc .	20925 mc C	209.75wc.
13	213 mc .	211,23	19.75

R.F. and Oscillator Alignment
 (STANDARD COIL TUNER)

 R.F. ALIGNMENT1. Connect TV Sweep Generator to Antenna Terminals.
2. Connect R.F. Marker Generator loosely to Antenna Terminals.
3. Connect vertical amplifier of Oscilloscope through a 10,000 ohm 1/2w. resistor to Test Point (A) fig' 6.
Short A.G.C. Bus to ground on TV chassis (across C22A 5000 MMF Discap condenser).
4. Set Station Selector switch to Channel 12.
5. Feed 207 mc at 10 mc sweep from Sweep Generator, and 205.25 mc and 209.75 mc fixed frequencies from R.F. Marker
Generator Generator.
6. Observe response curve on Scope. If necessary adjust C2, C4, or C7 (See fig. 6) so that response curve corresponds ap-
proximately to that shown in fig. 5 and has maximum gain 8. Check markers on response curve of all remaining channels, setting Sweep and Marker Generators re corresponding frequencies for each channel. See Table I for convenient tabulation of proper frequencies. If the R.F. Markers do not fall
in automatically in their proper places on all channels a in automatically in their proper places on anl channels, a C4, or C 7 .

OSCILLATOR ALIGNMENT

1. Connect TV R.F. Sweep Generator to Antenna Terminal
2. Couple R.F. Marker Generator loosely to Antenna Term
inals.
inals. Connect vertical amplifier of Oscilloscope across the vid
amplifier grid and ground (Pin 7 of $12 \mathrm{BH} 7, \mathrm{~V} 7 \mathrm{~A}$).
3. Couple 24.75 mc video I.F. Marker Generator loosely to first I.F. grid (Pin 1 of 6CB6, V3)
4. Rotate Fine Tuning control to center of range
5. Set Station Selector switch to Channel 12.
6. Set Sweep Generator to 207 mc at 10 mc sweep and Marker Senerator to 205.25 mc (video carrier).
7. Observe response curve and adjust C10 (fig. 6) for Zerobeat with 24.75 marker. Zero-beat is indicated by an unOTE: Quality of response curve does not aff aceurad NoTE: Quality of response curve does not affect accuracy of .
8. Check for zero-beat on all channels in this manner, setting tor at corresponding frequencies. (See Table I.) It is not usually necessary to make any further adjustments. However, if the individual oscillator coils must be touched-up, he following procedure should be employed
a) Rotate Fine Tuning control to center of range.
b) Set Station Selector to desired channel, Sweep Generator to its center frequency with 10 mc sweep, R.F. Marker (See Table I), and I.F. Marker Generator at 24.75 mc .
c) Place a non-metallic screwdriver through the opening
marked 'Recessed Individual Osc. Adjustment', fig. 6, mand adjust oscillator coil zero-beat with 24.75 mc marker on response curve.
d) This adjustment can be repeated on any single channel, all channels.
e) If difficulty is encountered in tuning any particular chanadjustments are made, readjust C10 slightly (as in Step 8) shifting the whole range of frequencies in the desired direction.

FIG. 5. RECOMMENDED RESPONSE CURVES.

Fig. 6. R.F. TUNER adjustment points (standaro coil tuner) front

FIG. 7. PICTURE OF TV CHASSIS (REFER TO FIG. 2 FOR $20^{\prime \prime}$ \& 21 " YOKE \& FOCUS ASSEMBLY)

HORIZONTAL OSCILLATOR TRANSFORMER ALIGNMENT

Refer to Service Adjustment "E" before proceeding with this alignment.

Tune in a TV
. If after attemp ment, described above, the picture cannot be maice Adjust-pre-set the Horizontal Stabilizing adjustment (inner slug of T8, beneath chassis) 5 turns in from its maximum out
Set the Horizontal Hold control to the center of its range
and adjust the Horizontal A.F.C. adjustment until the and adjust the
4. Connect a low capacity probe of an oscilloscope to terminal "C" of the Horizontal oscillator transformer, T8; low side to ground. Set horizontal sweep to $7875 \mathrm{C} . \mathrm{P} . \mathrm{S}$. If a low
capacity probe is unavailable, connect a 10 K resistor in capacity probe is unavailable, conn.
series with the vertical scope lead.
5. Adjust the Horizontal Stabilizing brass slotted screw until the broad and narrow peaks of the pattern on the oscilloontal Stab. adjust adjusting the Horizontal A.F.C. adjustment, if necessary
6. Disconnect oscilloscope and follow Service Adjustment E above.

PARTS LIST

CAPACITORS

8YMBOL	Part No.	DESCRIPTION	SYMBOL	Part No.	DESCRIPTION
$\mathrm{Cl}_{1-\mathrm{Cl}}$	Part of Tuner	Unit D-36.137-2 (Standard)	C24	D-3.105-23	. $22 \mathrm{MF}, 400 \mathrm{~V}$. Molded
C17	B-4.115-1	$5000 \mathrm{MMF}, 450 \mathrm{~V}$. Cer. Disc.	C25A $\}$	B-4.125-1	5000 MMF ${ }^{\text {d }}$ 450V. Dual Cer. Dis
${ }^{\text {C18 }}$	C-4.109-10	100 MMF , Cer.	${ }_{C} 256$ B	B-4.125-1	5000 MMF 460V. Dual Cer. D
C19A ${ }_{\text {C19 }}$ \}	B-4.125-1	$\left.\begin{array}{l}5000 \\ 5000 \mathrm{MMFF}\end{array}\right\} 450 \mathrm{~V}$. Dual Cer. Disc.	$\begin{aligned} & \mathrm{C} 26 \\ & \mathrm{C} 27 \end{aligned}$	$\begin{aligned} & \text { B-4.115-1 } \\ & \text { C-4.109-10 } \end{aligned}$	5000 MMF, 450V. Cer. Disc. 100 MMF, Cer. Tub.
C20	B-4.115-1	5000 MMF, 450V. Cer. Disc.	C28	C-4.111-5	3.3 MMF, Cer.
	B-4.125-1	$\left.\begin{array}{l}5000 \text { MMF } \\ 5000 \text { MMF }\end{array}\right\} 450 \mathrm{~V}$. Dual Cer. Disc.	${ }^{+\mathrm{C} 29}$	D-3.105-23	$40 \mathrm{MF}, 450 \mathrm{~V}$. Elect. $.22,400 \mathrm{~V}$. Molded
${ }_{\text {C22A }} \mathbf{C} 2$	B-4.125-1	$\left.\begin{array}{l}5000 \mathrm{MMF} \\ 5000 \mathrm{MMF}\end{array}\right\} 450 \mathrm{~V}$. Dual Cer. Disc.	* ${ }_{\text {C31 }}$ C32	D-3	${ }^{4} \mathrm{MF}, 450 \mathrm{~V}$. Elect.

SYMBOL Part No. DESCRIPTION
$\begin{array}{ll}\text { C1-C15 } & \text { Part of Tuner Unit D-36.137-2 (Standard) } \\ \mathrm{C}_{17} & \text { B-4.115-1 }\end{array}$

C-4.109-10 B-4.125-1
 B-4.115-1
 B-4.125-1

B-4.125-1

$$
\begin{aligned}
& 5000 \mathrm{MMF}, 450 \mathrm{~V} . \\
& 100 \mathrm{MMF} \text {. }
\end{aligned}
$$

$$
\left.\begin{array}{l}
5000 \mathrm{MMF}, \\
5000 \mathrm{MMF} \\
5000 \mathrm{MMF}
\end{array}\right\}_{\text {A50V }} .
$$

$$
\left.\begin{array}{l}
5000 \mathrm{MMF}, 450 \mathrm{~V} \text {. Cer. Disc. } \\
5500 \mathrm{MMF} \\
5000 \mathrm{MMF}
\end{array}\right\} 450 \mathrm{~V} \text {. Dual Cer. }
$$

CAPACITORS-Continued

COILS AND CHOKES

TRANSFORMERS

Symbol

description d.c. resist.

© John F. Rider

PART

DESCRIPTION \& SPECIFICATIONS

The Magnavox 105 Series TV Chassis are 21 tube receivers including a direct view picture tube. It is constructed on a single chassis and so designed as to accommodate $17^{\prime \prime}$ rectangular, $20^{\prime \prime}$ rectangular or $21^{\prime \prime}$ rectangular picture tubes without any change in circuitry.

Features of this Series include:

- Capacity coupled video amplifier
- Intercarrier I-F Amplifiers for ease of alignment, increased stability and freedom from the effect of oscillator drift
- Keyed automatic gain control
- Magnalok type horizontal frequency control
- Cathode modulation of picture tube
- Vertical multivibrator circuit
- Noise inverter circuit for noise immunity

IMPEDANCE
300 ohm input.................Speaker Voice Coil 3.2 ohms

POWER REQUIREMENTS

TUBE COMPLEMEN

Symbol	Tube	Function	Symbol	Tube	Function
V1	6BC5	R-F Ampl.	V207	(See List)	Picture tube
V2A	1/212AT7	Mixer	V301A	$1 / 212 \mathrm{AX7}$	Noise invertor
V2B	1/212AT7	Oscillator	V301B	$1 / 212 \mathrm{AX7}$	Sync separator
V101	6AU6	Limiter	V302A	1/26SN7	Sync ampl.
V102A	1/26T8	Discriminator	V302B	1/26SN7	Sync clipper
V102B	1/26T8	1 st Audio ampl.	V303	6SN7	Vertical MV
V103	6V6GT	Audio output	V304	6W6GT	Vertical output
V201	6CB6	1st Video I-F	V401A	1/26SN7GT	Hor. AFC
V202	6CB6	2nd Video I-F	V401B	1/26SN7GT	Hor. osc.
V203	6BC5 /6AG5	3rd Video I-F	V402	6BQ6	Hor. output
V204	6AU6	Video det. 1st	V403	1 B 3	H. V. Rectifier
		Audio I-F	V404	6W4	Damper
V205	6CB6	Video ampl.	V 501	5U4G	L. V. Rectifier
V206	6AU6	AGC ampl.			

CHASSIS DIFFERENCES

Chassis No.	Audio	Picture Tube	Control Panel No.\#
Ст 331A, B	Internal	20CP4A	1
Ст 331C, E	Internal	20CP4A	3
Ст 332A, B	External	20CP4A	2
Ст 332C, E	External	20CP4A	4
CT 333A, B	Internal	17BP4A	1
Ст 333C, E	Internal	17 BP 4 A	3
CT 334A, B	External	17BP4A	2
CT 334C, E	External	17BP4A	4
Ст 335A, B	Internal*	17BP4A	1
CT 335C, E	Internal*	17BP4A	3
CT 336A, B	External	17 BP 4 A	2
Ст 336C, E	External	17BP4A	4
Ст 337A, B	Internal**	20CP4A	1
CT 337C, E	Internal**	20CP4A	3
CT 338A, B	External	16 TP 4	2
CT 338C, E, J	External	$16 \mathrm{TP4}$	4
Ст 339C, E	Internal*	20CP4A	3
Ст 340A, B	External	20CP4A	2
CT 340C, E	External	20CP4A	4
CT 341D	Internal	21FP4A	3
CT 341 K	Internal	21FP4A	6
CT 342D	External	21FP4A	4
CT 343D, K	Internal	17HP4	3
CT 344D, K	Internal	17HP4	4
CT 345D, K	Internal*	17\%P4	3
CT 346D	Internal	21FP4A	3
CT 347D, K	Internal*	20HP4A	3
CT 348D, K	External	20HP4A	4
CT 349D, K	Internal*	20HP4A	3
CT 350D, K	Internal**	20HP4A	3
CT 350H	Internal**	20HP4A	5
CT 351E	Internal	21 EP4A	3
CT 351F	Internal	21EP4A	5
CT 351 J	Internal	21EP4A	6
CT 352E, J	External	21EP4A	4
CT 353E, J	Internal*	21EP4A	3
CT 354D, K	External	17\%P4	4
CT 355D, K	External	20HP4A	4
CT 356K	Internal	17HP4	3
CT 357 K	Internal	20HP4A	3
*Connections for radio tuner. **Vertical Mounting. \#See chart on opposite page.			

c. Switch off channel and then back on chan nel. Picture may come in immediately or diagonal bars may'appear.
d. If diagonal bars are present, turn the horizontal hold control clockwise slowly. The number of diagonal bars will reduce and after three bars are reached a slight additional rotation of the control in a clockwise direction should result in the picture locking in sync. If the picture does not lock in until after two bars are reached, the horizontal lock trimmer needs to be adjusted. When less than two bars are present, adjust the trimmer slightly in a coun-ter-clockwise direction. In the J and K versions, the LOCK trimmer was replaced with a fixed capacitor.
e. After making this adjustment check the pull in range again. With the horizontal hold control full counter-clockwise, switch off channel then back on. If diagonal bars appear, rotate the hold control clockwise slowly. The picture should lock in sync with a slight rotation of the control, after three bars are reached. If necessary repeat the lock trimmer adjustment and then check until correct adjustment is attained. If this condition can not be obtained, check horizontal alignment, as outlined in alignment section.

FIGURE 4

PICTURE TUBE ADJUSTMENTS

Note-On sets with electrostatic focus picture tubes, the focus coil is omitted. Focusing is accomplished by adjusting the focus control on rear apron of chassis and to the left of the high voltage compartment.

PART IV

CIRCUIT DESCRIPTION

R-F TUNER

The R-F tuner is a separate assembly and mounts at the right front of the receiver. It consists of an R-F amplifier V_{1} (6BC5) and mixeroscillator V2 (12AT7). A 12-position channel selector rotary switch is used with a concentric shaft which operates the variable dielectric type fine tuner. For ease of alignment, inductances, adjustable by bending or spreading, are provided on every channel.

The antenna input transformer T1 is designed for optimum antenna coupling on all channels (2-13). An electrostatic shield is used between the primary and secondary to reduce the amount of man-made interference appearing on the R-F grid. As shown in the schematic, Fig. 10 the secondary
of the antenna transformer T1 is tuned for each channel by shunting it with the proper value of inductance (S 1 , Section 4) to make it resonate with the R-F tube V1. (6BC5) input capacity.

Tuning of the R-F plate and mixer grid is accomplished by wafer sections 3 and 2 , which are identical to the R-F grid wafer and have similar series strings of channel coils associated with them to resonate with the R-F plate capacity and mixer grid capacity, respectively. Coupling capacitors C7, C9, and C10 connected between appropriate points on the R-F plate and mixer grid coil strings provide the necessary coupling for the proper bandpass on all channels. Shields between the R-F grid, R-F plate, and mixer grid wafers reduce stray coupling.

The triode mixer V2A ($1 / 212 A T 7$) is used because of its low noise characteristic. The triode mixer also has relatively low plate resistance compared to a pentode so that it furnishes a large portion of the damping needed for proper bandwidth in the mixer plate-I-F grid circuit. The mixer coil L4 is connected in series between the converter plate and 1st I-F grid to prevent the oscillator voltage appearing on the mixer plate from getting to the 1st I-F grid capacity in series C22 (10 mmf .) eliminates the high channel mixe regeneration due to resonance of the lead from the mixer plate to the I-F coil L4 with the total stray and tube capacities. A test point is provided stray and tube capacities. A test point is provided in the mixer grid circuit (junction of R14 and
R6), to which a scope may be connected for observing the R-F band-pass curves. This is ground ed when not in use in order to provide a short enough time constant to avoid white noise under very strong impulse noise conditions.
The local oscillator V2B ($1 / 212 A T 7$) is of the Colpitts type. The circuit is conventional with the inductance (S1, Section 1) connected from grid to plate. Series coil switching is used for ease of alignment and wafer assembly. A variable dielectric type fine tuner (C 19) is used. The tuning range obtained is about 4 mc on Channel 13 and 2 mc on Channel 2.
To reduce high band radiation from the main TV chassis, the choke L7 was added in the output lead to the 1st I-F tube grid and the tuner chassis was connected to the main chassis only at the tuner rear apron. To reduce high and low band radiation from the antenna, the tuner shield cover was shortened so that it extends only to the shield partition located between the R-F grid and plate switch wafers. To reduce all types of radiation, a metal shield to cover the fine tuning assembly, and an additional outside shield cover were added. This, in conjunction with the walls of the tuner well in the main TV chassis, provides a complete additional enclosure around the tuner. The shield is grounded at a number of points on the main TV chassis.

VIDEO I-F

The picture I-F amplifier consists of four single tuned circuits, stagger tuned to specific frequencies. Series tuning is used between the mixer
plate and first I-F grid in order to reduce the amount of oscillator voltage appearing on the first I-F grid. Bifilar coils are used in the 1 st and 2 nd I-F stages, whereas a more conventional interstage coil is used to couple the 3rd I-F to the detector stage. The first and second I-F stages are stacked with AGC applied to the 1st I-F only. Because of the stacking arrangement the second I-F bias change will be proportional to the applied bias. The 3rd I-F and detector are also stacked. See power distribution block diagram, Figure 5.

The use of Bifilar coils provides the necessary low impedance in the grid and plate circuits of the impedance in the grid and plate circuits of
the stages so that I-F bias is not developed by noise pulses that are of sufficient amplitude to draw grid current. L206 (36 microhenries), wound on the 18 K converter circuit load resistor, provides a low impedance in the 1 st I-F grid return.
In the 1st and 2nd I-F stages, V201 and V202, 6CB6 tubes are used to provide maximum stable gain. To compensate for variation in input capacity with change of gain, the cathode resistors R203 and R207 (47 ohms) are un-bypassed. A 6BC5 (V203) is used in the 3rd video I-F stage, and since this stage is not provided with gain control, the cathode is bypassed.

VIDEO DETECTOR AND IST SOUND I-F:

Detection is accomplished by the diode action of the grid and cathode of V204. The 4.5 mc component is recovered from the plate of the tube after amplification. The video component is recovered at the detector load. The effect is identical to having a diode directly coupled to a pentode. However, since the grid and cathode of the pentode act as a detector and produce the same results, the diode is eliminated.
The video frequency voltage developed across the diode load resistor (R213) is of negative polarity. This signal is amplified by the direct coupled video amplifier V205, (6CB6), and coupled to the kinescope. In order to obtain the proper video response, the total stray and circuit capacity had to be kept to a minimum. It was for this reason that the 3rd video I-F coil had to be modified, since a standard Bifilar coil would contribute about 70 mmf . of capacity. L203, L201,
and R213 provide the necessary peaking for the video amplifier, whereas C208 and L201 are so adjusted as to resonate at 4.5 mc , thus attenuating the 4.5 mc beat at the video amplifier and increasing the amplitude of the 4.5 mc carrier to the 1 st Sound I-F amplifier. L202 (an R-F choke) and C207 attenuate the I-F carrier and its components.
The 4.5 mc FM modulated carrier generated in the diode action is amplified and transformer coupled through T-204 to the sound limiter V101, (6AU6). A double tuned circuit is used to provide good selectivity since a large portion of the demodulated video frequencies also exist in the plate circuit.

SOUND LIMITER AND DISCRIMINATOR

The sound limiter V101 (6AU6) is stacked with the sync amplifier V302A, sync clipper V302B, sync separator V301B and the R-F screen. This portion of the stacked arrangement is possible because of the relatively constant plate current characteristic of the sound limiter.
The limiter was designed on the basis of plate limiting and grid limiting. Plate limiting is accomplished by using a low screen potential and grid limiting is obtained by using grid leak bias. In this combination, the tube initially has zero bias with no signal at the grid. As soon as a signal is applied, the grid is driven slightly positive and charges C101 (56 mmf .). The capacitor attempts to discharge through R101 (220K), but due to the relatively long time constant, the discharge will occur slowly. Because of the current flow through R101, a voltage is developed, with the grid becoming negative. This bias varies with the amplitude of the incoming signal, in this way tending to keep the plate current constant within wide limits of input voltage.
Since substantially no AM rejection exists below the threshold of limiting, the circuit parameters were adjusted so that limiting occurs when the developed bias is approximately 1.2 V . across R101. Because of this action of the limiter, there is an F-M signal of constant amplitude applied to the discriminator transformer T101.
The 4.5 mc discriminator circuit uses the diodes (No. 1 and No. 2) section of V102A ($1 / 26 \mathrm{~T} 8$) for detection. The discriminator is used because of the
relative greater gain over the ratio detector. However, unlike the ratio detector, the discriminator is sensitive to both amplitude and frequency modulation. The AM output is zero at center frequency and is proportional to the frequency deviation from balance, but with limiter action, suppression of AM to either side of center frequency is accomplished.

The DC load for the discriminator is composed of R102 and R107. The audio output is modified by R108 and C106, the de-emphasis network; then coupled to the grid of the 1st audio amplifier V102B ($1 / 26 \mathrm{~T} 8$).

AUDIO AMPLIFIER

The audio amplifier is a two-stage amplifier using $1 / 26 \mathrm{~T} 8$, (V102A) and 6V6, (V103). The triode in the 6T8 gives comparatively high gain. This makes it possible to use inverse feedback. The feedback is from the voice coil winding of the audio output transformer to the cathode of the 1st AF amplifier. By this method, the distortions introduced by V102, V103 and T102 can be greatly reduced. Such a connection also gives better speaker damping.

VIDEO AMPLIFIER

In addition to the notes on the detector, as given in the paragraph on the video detector and 1st sound I-F, the 4.5 mc trap serves to greatly reduce the amount of inter-carrier beat that may be present in the signal. As far as the video signal is concerned, the detector is compensated to approximately 4 mc . This is more than necessary, but is done for the reasons stated in the paragraph on the video detector and sound I-F.
The detector is DC coupled to the video amplifier V205, (6CB6). The DC level is retained for better picture quality, and AGC reference. The video amplifier is compensated for 3 mc response, this being the definition obtainable from the I-F. The video amplifier is AC coupled to the kinescope. The coupling time constant is long enough that vertical shading is minimized.
An external color converter connection is provided. It is connected to the cathode of the video amplifier and takes advantage of the cathode follower action when the contrast control is set to minimum.

NOISE INVERTER

The noise inverter, one half 12AX7 (V301A), is a grounded grid amplifier that forms a parallel signal path around the video amplifier tube. Since it is cathode driven, the noise inverter signal output is in phase with the detector signal while the video amplifier output is 180° out of phase.
The signals from these two sources are applied to common load resistors. For sync circuits, the gain through the noise inverter, due to its plate load (R215 and R218), is greater than that through the video amplifier plate load (R 218), resulting in driving the noise into the white region and leaving the sync pulses free of noise bursts. This will result in a minor amount of low amplitude white noise in the picture. The noise inverter is biased beyond cutoff, enabling it to conduct only on noise signals which exceed the sync tips at the detector.
Bias for the noise inverter is obtained from the grid bias voltage of the horizontal output tube by means of a voltage divider in the output tube grid return. A filter network, R320 and C302, removes the horizontal sawtooth that exists in this circuit. Since bias on the horizontal output tube is determined by the signal amplitude on its grid, the horizontal drive control (C406) will affect the bias voltage of the noise inverter. The voltage divider has been set up to avoid any difficulty with the noise inverter when the horizontal drive is correctly adjusted.

AGC

The 105 chassis uses keyed AGC. Since peak type of AGC references on the sync tips only, it would be highly desirable to make the AGC system inoperative during the interval of time between sync pulses. This is accomplished by supplying a pulse from the horizontal output system to the plate of the AGC tube V206 (6AU6). The time constants used in this system are very short. This makes it very adaptable to reducing airplane flutter. A series fed pulse to the AGC amplifier was chosen because of the ease of filtering the derived AGC voltage. A more rapidly acting AGC is therefore possible.
The R-F AGC voltage is considerably delayed to reduce the medium signal noise content of the picture. The I-F gain is high enough that it is at the threshold of the noise level of the
converter. If R-F and I-F bias were always equal, then the converter noise would appear in the picture at considerably higher signal level than necessary. To prevent this, the R-F bias is delayed until the I-F gain is reduced to where no converter noise appears in the picture. At this level the R-F bias starts increasing at a rate faster than the I-F bias. The result is that the R-F and I-F bias are equal at approximately -5.5 volts. This gives the set its best strong signal handling capabilities. At full sensitivity the noise at the R-F input masks out the converter noise.
The threshold of the R-F bias is adjusted so that when it has increased to -0.5 V , the I-F bias is in the order of -2.7 to -3.0 volts. The crossover of R-F and I-F biases is approximately -5.5 volts. The R-F amplifier grid to cathode is used as a clamp for R-F bias delay in the AGC used as
system.
The double time constant filtering, formed by C213, C214 and R212 at the AGC plate, is for eliminating a low frequency transient in the AGC bus following the vertical sync pulse.

SYNC SEPARATORS

The sync separators consist of three triode sections, one half 12AX7 (V301B) and a 6SN7 (V302A, V 302B), which are, sync separator, sync amplifier, and sync clipper, respectively.
The grid of the sync separator has a double time constant (R304, C309, and R302, C303) that provides a faster recovery time under noise conditions. Having grid leak biasing, the sync separator will only accept a certain peak to peak portion of the positive peak of the signal. At low contrast levels this includes some of the video signal; therefore, another stage of separation is required. The first stage inverts the signal, making it necessary to cathode drive the sync amplifier, which operates in much the same manner as the sync separator. The sync tip amplitude, in particular the vertical serrated pulses, have become quite irregular due to successive stages of amplification, making it necessary to have another stage which will level off this side of the sync signal. A negative signal fed to the grid of the sync clipper accomplishes this purpose, and supplies a negative sync signal at the cathode for the vertical multivibrator and a positive sync signal at the plate for the horizontal AFC.

VERTICAL SWEEP OSCILLATOR

The vertical sweep oscillator V303 is a crosscoupled multivibrator. In the A and B versions a bridged T filter is used for feed back coupling to the grid of the first tube. This filter removes horizontal frequencies which would prevent proper interlace. Later versions have the bridged T network eliminated. The output is taken from the plate of the second triode. Trapezoidal wave hape is obtained by the peaking circuit composed of C307 and R315, and R316 in A and B versions. The resistance of the peaking circuit is divided to obtain retrace blanking for the kinescope. All other versions use C307 and R315 for peaking. The multivibrator circuit feeds the 6 W 6 GT vertical output tube V304

HORIZONTAL OSCILLATOR AND FREQUENCY CONTROL

The horizontal oscillator, discharge, and AFC circuits utilize a double triode tube 6SN7, (V401) The frequency of the blocking oscillator, V401B can be adjusted by the top slug of T401. The fre quency of oscillation is stabilized by a tuned circuit. The inductance for the tuned circuit is in T401 and the capacitor is C407. The generated sawtooth reaches the grid of the output tube V402 through the capacity divider C410-C406. The latter, marked horizontal drive, is variable and controls the amount of drive on the grid of V402 (6BQ6). This adjustment will affect the horizontal linearity, high voltage, and noise inverter tube bias.
Syrichronization is accomplished by means of the AFC, V401A, as follows: A complex wave consisting of the sync pulse and a parabola is fed to the grid of this triode. The sync pulse rides at the peak of the complex wave. The tube is biased from the oscillator grid to such a value that plate current flows only during the positive peak por tions of the complex wave. A portion of the cathode voltage is applied to the oscillator grid Its magnitude affects the frequency of the oscillator in such a way as to automatically lock it in synchronism.

The plate voltage for the AFC as supplied through R412, R402, and R401, is obtained from the boost supply. This is to neutralize the horizontal oscillator frequency change due to the in-
herent regulation characteristics of the boost voltage at different brightness levels.

HORIZONTAL OUTPUT AND DAMPER

The function of the horizontal output tube V402 is to supply sufficient current of the proper wave form to the horizontal deflection coils to provide horizontal scanning for the kinescope. The function of the damper tube, V404, (6 W 4) is to stop oscillation of components at certain times and thus help provide a linear trace. Other function of this circuit are to provide a high amplitude pulse for high voltage and to recover a good part of the energy in the system. The energy recovery appears in the form of a boost voltage at the damper cathode.
The inductance and distributed capacity of the system are controlled so that the self-resonan frequency will be in the order of 72 KC so that the retrace time will be sufficiently short.

THE RECTIFIED HIGH VOLTAGE

SUPPLY

The high voltage is supplied by part of the energy stored in the horizontal system. When the 6BQ6 plate current is cut off by the hori zontal sawtooth, a high positive pulse of voltag appears on the tertiary of T402 due to the rapidly collapsing field in the system. This high positive pulse is rectified by the high voltage rectifie V403 (1B3) This pulse charges the H. V C415. This condenser is returned condenser is returned to the plate of the damper tube so that the negative pulse that exists there simultaneously with the
tertiary pulse will add to the available high voltage. This added high voltage is approximately 1500 V . The total high voltage applied to the picture tube is 14 KV .

The filament power is obtained from a one-turn coil around the horizontal output transformer core. Width is controlled by L401 and linearity is controlled mainly by L402; the drive control influences linearity to some extent.

The capacitor and resistor in series across the upper half of the horizontal deflection coils cancel out the crosstalk transients. The resistor in series with the capacitor makes the value of the capacitor less critical. The resistors across the vertical windings damp out vertical transients.

LOW VOLTAGE SUPPLY

The low voltage power supply provides the filament and plate voltages for the receiver. A 5U4G (V501) rectifier tube is used to supply 290 volts DC input to the filter at approximately 230 ma . The power transformer has two 6.3 volt filament windings. One winding is grounded and supplies 11.4 amperes for all of the tubes except V202, V203, and V206. These three tubes are supplied by the second winding and draw 0.9 amperes. This winding is connected to the 140 volt bus so that the filament to cathode rating of the three tubes is not exceeded.

FOCUSING

Both permanent magnet and electrostatic focusing is employed in this series. On chassis having the permanent magnet focus unit, there is a centering plate on the front of the focus unit and a focus adjusting screw on the rear. Adjustment of the focus adjusting screw varies the flux density through which the electron beam passes. Ion trap and centering adjustments may be required after the beam is properly focused. The electrostatic focused units vary from the above in that the focus control is a potentiometer located on the rear apron of the chassis and centering is accomplished by means of a centering device located on the neck of the tube between the deflection coil and ion trap.

© John F. Rider

PART V

ALIGNMENT

HORIZONTAL AFC

Horizontal frequency adjustment (T401 top slug).

1. Short out Terminals C-D of horizontal oscillator and AFC transformer. Set horizontal lock (if used) and horizontal drive trimmers $11 / 2$ turn from tight.
2. Turn horizontal hold control full clockwise, and adjust frequency slug (top of T401) until picture locks in.
3. Before further frequency adjustments are made, set up horizontal width and horizontal linearity, making any final adjustment neces sary to horizontal drive trimmer. If the horizontal drive trimmer is changed at any time, the frequency adjustment will have to be checked.
Horizontal Oscillator waveform adjustment, (T401 bottom slug).
4. Remove short from terminals C-D of T401.
5. Connect oscilloscope, through series capacitor of approximately 15 mmf , to terminal C of T401. The pattern should be a sine wave, superimposed on a sawtooth. Adjust bottom slug of T109 for proper waveform, i.e. peak of sawtooth and sine waves should be nearly equal.
6. Remove the oscilloscope from T109. Turn the "horizontal hold" control full clockwise. Adjust frequency slug (top of T401) until picture is just out of sync. as indicated by blanking bar appearing at left of picture. Back off frequency slug slightly until picture again locks in sync. This adjustment is made with BRIGHTNESS control in full clockwise position.

VIDEO I-F ALIGNMENT

Test equipment needed:
A.M. Signal generator 21.25 to 25.75 MC Sweep Generator
Cathode Ray Oscilloscope
Electronic Voltmeter

1. A low impedance voltage source, such as a tapped "C" battery must be used to apply fixed bias during alignment. Connect -1.5 volts to the R-F AGC bus and -4.5 volts to the I-F AGC bus. It is not necessary to remove the AGC tube during alignment.
2. Connect modulated signal generator to convertor grid wafer through hole in tuner
shield. shield.
3. Connect scope or VTVM across detector load resistor (R213). The scope is preferable as overload is more easily detected.
4. Tune the signal generator to the following frequencies and adjust the corresponding slugs for maximum indication.

Frequency	Adjust
23.1 MC	Converter Coil
25.3 MC	(T201) 1st I-F
23.4 MC	(T202) 2nd I-F
25.5 MC	(T203) 3rd I-F

5. Remove signal generator and connect sweep generator to antenna terminals through proper impedance matching network, see Figure 6. Loosely couple marker generator to I-F chassis.

antenna impedance matching net

FIGURE 6

6. Tune sweep generator and television chassis to channel 6 .
7. Retouch I-F coils if necessary for proper curve as shown on following page.

OVERALL I-F CURVE FIGURE 7
NOTE: The converter (23.1 mc) will have most effect on the low frequency side of the curve, the 1st I-F transformer (25.3 mc) on the high frequency side. Tilt may be corrected by adjusting the 2nd or 3rd I-F transformer. Proper positioning of the markers is important, as no traps are used.

SOUND I-F ALIGNMENT

1. Connect VTVM through 1 meg . isolating resistor, across R101 (220K) limiter grid resistor. CAUTION: Case of VTVM will be at +85 volts.
2. Connect 4.5 MC signal to pin 1 (V204) and chassis ground.
3. Adjust primary (top slug) and secondary (bottom slug) of T204, for maximum reading. Keep output of signal generator low, so that this maximum reading does not exceed -5 volts.
4. Remove VTVM and connect from junction of R108 and C106 to ground.
5. Adjust primary (bottom slug) of T101 discriminator transformer for maximum output, and secondary (top slug) for zero reading. NOTE: For accurate alignment do not change level of signal input after Step 3 above. Discriminator adjustments should be repeated until no improvement can be made.

OSCILLATOR ALIGNMENT

Oscillator alignment should be made only when the fine tuning control tunes in the extreme clock-
wise or counter-clockwise position, or if it will not tune at all within its tuning range.
TOUCH UP OSCILLATOR ALIGNMENT If some channels do not tune at all, or not near enough to the center of the fine tuning range, adjust the oscillator trimmer for the best compromise tuning on all channels. If, for example all channels tune near one side of the control, adjustment of the trimmer will bring them all near the center. However if some channels tune near one end and others tune at the other end of the control, adjustment will move some to the center and move the others beyond the range of the control. In this case the oscillator coils will have to be adjusted individually as follows:

COMPLETE OSCILLATOR ALIGNMENT
Connect a sweep generator to the antenna terminals of the receiver. Connect an unmodulated signal generator to the antenna terminals and tune it to the channel 13 video carrier frequency. TV signals may be used.

Loosely couple an unmodulated signal generator to the first I-F grid and tune it to 25.75 MC . Connect an oscilloscope across the video detector load resistor through a 10 K ohm resistor.

Turn on the receiver and set the vernier to the mid range position. When the receiver has warmed up, if there are two markers on the scope, determine which rotation of the vernier causes the markers to move closer together. If it is clockwise, reset the vernier to the midrange position and close the channel 13 oscillator coil. If it is counter-clockwise open the coil. Adjust for a zero beat. The channel 13 coil moves all high band channels. The channel 6 coil moves all low band channels.
Tune the sweep generator to channel 12. The signal generator to the channel 12 video carrier frequency. Set channel selector to 12. Adjust the channel 12 oscillator coil for a zero beat of the markers.

Repeat the procedure for channels 11 through 2. Recheck channels 13 through 7. The high channel coils are adjusted by moving them up or down and the low channel coils by spreading or pushing together.

TV CHANNEL FREQUENCIES

Channel No.	Band Width (MC)	Picture Carrier	Sound Carrier	Local Oscillator
2	$54-60$	52.25	59.75	81
3	$60-66$	61.25	66.75	87
4	$66-72$	67.25	71.75	93
5	$76-82$	77.25	81.75	103
6	$82-88$	83.25	87.75	109
7	$174-180$	175.25	179.75	201
8	$180-186$	181.25	185.75	207
9	$186-192$	187.25	191.75	213
10	$192-198$	193.25	197.75	219
11	$198-204$	199.25	203.75	225
12	$204-210$	205.25	209.75	231
13	$210-216$	211.25	215.75	237

ANTENNA, R-F AMPLIFIER AND CONVERTER ALIGNMENT

The desired pattern to be applied to the I-F amplifiers is the result of three variables. These three variables are the ANTENNA COIL (rear
wafer), the R-F COIL (second wafer from rear) and the CONVERTER COIL (third wafer from rear).
These coils must be very carefully adjusted with only a slight movement. It is imperative that the following sequence of adjustment is followed to obtain the desired pattern. Antenna coils first, R-F coils second, and the converter coil last. The R-F wafer has $B+$ on it and should not be touched with the hand or a metal tool. Adjustment of the converter coil is critical. The oscillator coils fourth wafer from rear) are properly adjusted and should not be touched.
The R-F tuner has been properly aligned at the factory and should not require any additional adjustment except when tubes are replaced in the tuner. Proper selection of the replacement tube will eliminate the necessity of making these coil adjustments. Try several tubes while observing their effects on the pattern. Use the one that gives the desired pattern. It is important that the tuner cover be in place when observing the pattern.

PART VI

SERVICE INFORMATION

HIGH VOLTAGE WARNING

The danger accompanying shock is always present when the receiver is operated outside the cabinet or when the rear cover is removed from the cabinet. Only a person familiar with the precautions to be observed when working with highvoltage equipment should service this receiver.

CATHODE RAY TUBE HANDLING

Shatterproof goggles and heavy gloves should be worn at all times when handling a cathode ray tube. The tube should not be handled in the vicinity of any person not so equipped. When handling the tube, always keep it away from the body.
Due to the large surface area of the tube and the high vacuum contained within, more than ordinary care is required to prevent shattering the tube. The large end of the bulb, particularly the rim of the viewing surface, must not be struck, scratched, or subjected to more than moderate pressure. If the tube binds during removal or replacement, determine the cause of the trouble. DO NOT FORCE THE TUBE.

PICTURE TUBE REPLACEMENT (HORIZONTAL CHASSIS)

If it becomes necessary to replace the picture tube, it should be done in the following manner.

1. Remove the tube socket from the rear of the picture tube, then remove the ion trap.
2. Remove the safety glass assembly by taking out the screws which hold the glass rail in position.
3. Loosen the nuts that secure the tube strap over the rim of the tube, and remove the strap.
4. Remove the high voltage anode connector and lift out the tube
5. Install the replacement picture tube being careful not to force the neck when inserting thru the deflection coil.
6. Install the HV connector, replace the support strap, and fasten it down securely with the nuts removed in Step 3.
7. Loosen the thumbscrew on top of the deflection yoke, so the yoke moves freely. Loosen the two hex-head screws on each side of the deflection yoke mounting bracket, and push
the top section forward. until the rubber bumper fits against the bell of the tube, all the way around. Make sure tube face is vertical and neck of tube is parallel with chassis base. Then tighten the screws. Then press the deflection yoke forward as far as possible, and tighten the thumbscrew.
8. Loosen the two screws which secure the fo cus magnet, and move it so the neck of the tube is properly centered in it. Then tighten the screws and adjust the ion trap.
9. On chassis using "magnetic focus picture tubes" HORLZONTAL and VERTICAL CENTERING $3 / 4$ of the picture is accomplished by moving the "centering device" on the front side of the focus magnet. Readjustment of the ion trap may be necessary after this plate has been adjusted.
On chassis using "electrostatic focus pic ture tubes", HORIZONTAL and VERTICAL CENTERING is accomplished by adjusting the "centering ring" located on the neck of the tube behind the deflection coil.

(VERTICAL CHASSIS)

In models where the chassis is mounted in a vertical position, the following procedure is reommended.

1. Remove the safety glass and mask assembly by taking out the screws which hold the glass rail in place.
2. Lay the cabinet on its side on a clean piece of felt or other soft material, with the chassis side down
3. Remove the two metal wedges that brace the rim of the picture tube top and side. Two wood screws hold each in place.
4. Two $1 / 4-20$ screws secure each side of the chassis to the mounting rails of the cabinet. Remove these screws, and pull the chassis out of the cabinet. Proceed through steps 1 to 9 in the preceding section. Then replace the chassis.

REVISIONS

A comparison of the schematic diagrams for the $A \& B$ and the C chassis will show that a number of components were rearranged in the vertical multivibrator circuit. This was done to reduce the number of components requiring close tolerances, thereby simplifying service problems.
The vertical output stage was changed so that the 6W6 tube operates as a beam power tube rather than a triode as previously employed. This makes the selection of tubes less critical, as there are many 6W6's which will oscillate when triode connected, resulting in alternate light and dark horizontal bars on the screen. Two capacitors (C408 and C410) were changed in value, so that proper adjustment of the associated controls would be nearer the center of their range
The "E" revision is similar to "C", with the following differences: R232 and R233 were added, and the value of C 209 was changed to eliminate the possibility of intercarrier "buzz" and audio hum. R215 and R308 were changed to improve sync separation.

A focus control has been added in the "D" revision for use with electro-statically focused tubes. Otherwise, the circuit is the same as the " E ".

A tone control has been added to some chassis. When the tone control is installed at the left of the control panel, the " D " becomes an " H " and the " E " becomes an " F "

On the J \& K revisions, resistor R202 was changed to 8200 ohms. The horizontal lock trimmer C411 was changed from a variable to a fixed capacitor. R239 and C222 have been added to eliminate vertical sweep modulation at maximum settings of contrast and brilliance controls. R215 was changed in value to reduce twist at top of picture.

SERVICE HINTS ON THE 105 SERIES TV CHASSIS

Intercarrier Buzz

1. Check alignment of secondary (top slug) of discriminator transformer. Adjust for mini mum buzz on transmitted signal.
2. Check 4.5 MC sound alignment as outlined in service manual.
3. Check response curve on video I-F. Align if necessary.
4. Buzz may be due to overmodulation at the transmitter. If more than one station is available, try all stations. Buzz on only one station will confirm this condition.
5. See revision " E ", page 18.

White Raster, No Picłure or Sound

1. Check AGC amplifier (6AU6)
2. Check keyer coil and width coil.
3. Check tuner and I-F tubes.

Several tubes should be tried in the I-F amplifier. Because of the voltage stacking, these tubes must have nearly equal mutua conductances.
4. Check video amplifier tube.

Overall Focus

1. Make sure proper ion trap is installed. $20^{\prime \prime}$ and $21^{\prime \prime}$ magnetic focus tubes use par number 360492-2 or 4 (yellow dot).
$20^{\prime \prime}$ and $21^{\prime \prime}$ electrostatic focus tubes use part number 360492-5 or 6 (green dot).
2. Check ion trap adjustment. Slight adjustment may be necessary to obtain maximum brightness at full clockwise position of brightness control.
3. Check focus adjustment. Adjust for best focus at normal brightness.
A. On magnetic focus units the focus control is a screw-driver adjustment at the rear of the focus magnet. If good focus cannot be obtained, and picture changes position considerably with rotation of focus control, install a new focus magnet part number 360504-1.
B. On electrostatic focus units, the focus control is a potentiometer adjustment on the rear chassis apron.
4. On magnetic focus tubes make sure the focus magnet is placed $1 / 4^{\prime \prime}$ to $3 / 8^{\prime \prime}$ in back of the deflection yoke.
5. If poor overall focus is noted replace deflection yoke. Use part number 360526-1 as replacement.
6. Try a picture tube which is known to give good focus in another instrument.

Picture Resolution and Contrast

1. Try known good tubes (6CB6) in I-F and video amplifiers. CAUTION: If it is necessary to change tubes in the I-F amplifier, check the alignment.
2. Check range of fine tuning control. The 4.5 mc . beat pattern should begin to appear in the picture at the left center of the fine tuning control range. If this cannot be accomplished, try adjusting the oscillator trimmer located on the front of the tuner. If further oscillator adjustment is necessary, proceed as outlined in the alignment instructions.
3. Check I-F alignment.

Background Noise

1. To reduce background noise in picture, change R223 from 4.7 megohm to 3.9 megohm.
2. Remove 10 K ohm resistor, R231, in the 2 nd I-F grid return.
NOTE: R231 not used in A and B models.

Vertical Syne

1. In weak signal areas, R215 in AGC grid circuit should be 27 K ohm. In some chassis 10 K ohms has been used.
2. If proper height and vertical linearity cannot be attained without "foldover" at bottom of raster, replace vertical output transformer, part number 320060-1.

Horizontal Syne

1. If horizontal circuit will not stay in adjustment, replace horizontal oscillator transformer, part number 360499-1.
2. If horizontal drive adjustment appears too critical, or if horizontal and vertical sync "motorboats," install noise inverter bias control as shown. This control can be installed in place of "color converter" jack.

Adjust "noise bias" control for most stable sync.
3. Align horizontal oscillator and AFC.

Signal Blocking (Strong Signal Areas Only)

1. If signal blocks when tuning from weak to strong signal check noise inverter bias. This should be approximately- 11 V , and may be raised by adjustment of the horizontal drive control or "noise bias" control if used.
2. Replace V206, AGC amplifier tube.
3. Blocking may be due to excessive grid current in V203, the 3rd video I-F amplifier This circuit may be modified as shown below.

Detector load resistor, 2.6 V. p/p \mathbf{p} 's.sope
30 c.p.s.

 Grid of sync clipper, 25
$\mathrm{~V} . \mathrm{p} / \mathrm{p}$, scope at $30 \mathrm{c} . \mathrm{p} . \mathrm{s}$.

ORIGINAL CIRCUIT FIGURE 9

MODIFIED CIRCUIT FIGURE 10
$\underset{2.5}{\text { Cathode of sync clipper, }}$
30 c.p.s.

O John F. Rider

(C) John F. Rider

Ref.
No. DESCRIPTION
R 314 Resistor, carbon, 1 megohm, $1 / 2 \mathrm{~W}$. Resistor, carbon, 1.5 megohm, $1 / 2 \mathrm{~W}$ (J\& K only)
Resistor, carbon, 2.2 megohm, $1 / 2 \mathrm{~W}$ (all except above)
R 315 Reistor carbon 5600 ons Resistor, carbon
(A \& B only)
Resistor, carbon, 2200 ohms $1 / 2 \mathrm{~W}$ (all except above) ohms, $1 / 2 \mathrm{~W}$
Resistor, carbon, 4700 ohms, $1 / 2 \mathbf{W}$.
(A \& B only)
Resistor, carbon, $22,000 \mathrm{ohms}, 1 / 2 \mathrm{~W}$ (all others)
317 Resistor, carbon, 2.2 megohm, $1 / 2 \mathrm{~W}$ ($\mathrm{A} \& \mathrm{~B}$ only)
Resistor, carbon, 1.5 megohm, $1 / 2 \mathrm{~W}$ (all others)
R 318 Potentiometer, vertical linearity, Potentiometer ($\&$ B only) (all others)
Resistor, carbon, 560 ohms, 1 W ($A \& B$ only) Resistor, carbon, 47 ohms, $1 / 2 \mathrm{~W}$. (all others)
R 320 Resistor, carbon, 680,000 ohms, $1 / 2 \mathrm{~W}$ R 321 Resistor, carbon, 22,000 ohms, $1 / 2 \mathrm{~W}$. $\begin{array}{ll}\text { R } 322 & \text { Resistor, carbon, } 47,000 \text { ohms, } 1 / 2 \mathrm{~W} \text {. } \\ \text { R } 323 & \text { Resistor, carbon, } 120,000 \text { ohms, } 1 / 2 \mathrm{~W} \text {. }\end{array}$ $\begin{array}{ll}\text { R } 323 & \text { Resistor, carbon, } 120,000 \text { ohms, } 1 / 2 \mathrm{~W} \\ \text { R } 324 \text { Resistor, carbon, } 47,000 \text { ohms, } 1 / 2 \mathrm{~W} \text {. }\end{array}$ R 325 Resistor, carbon, 3900 ohms, $1 / 2 \mathrm{~W}$. R 326 Resistor, carbon, 10,000 ohms, $1 / 2 \mathrm{~W}$. R 327 Resistor, carbon, 27,000 ohms, 1 W . R 328 Resistor, carbon, 47,000 ohms, $1 / 2 \mathrm{~W}$. R 401 Potentiometer, 50,000 ohms (A \& B only) Potentiometer, $50,000 \mathrm{ohms}$ (all others) R 402 Resistor, carbon, 120,000 ohms, $1 / 2 \mathrm{~W}$ R 403 Resistor, carbon, 3900 ohms, $1 / 2 \mathrm{~W}$.
R 405 Resistor, carbon, 330,000 ohms, $1 / 2 \mathrm{~W}$.
$\begin{array}{ll}\text { R } 405 & \text { Resistor, carbon, } 82,000 \text { ohms, } 1 / 2 \mathrm{~W} . \\ \text { R } 406 & \text { Resistor, carbon, } 330,000 \text { ohms, } 1 / 2 \mathbf{W} .\end{array}$
$\begin{array}{ll}\text { R } 406 & \text { Resistor, carbon, } 330,000 \text { ohms, } 1 / 2 \mathrm{~W} . \\ \text { R } 407 & \text { Resistor, carbon, } 820,000 \text { ohms, } 1 / 2 \mathrm{~W} .\end{array}$
R 407 Resistor, carbon, $820,000 \mathrm{ohms}, 1 / 2 \mathrm{~W}$.
R 408 Resistor, carbon, 150,000 ohms, $1 / 2 \mathrm{~W}$.
R 409 Resistor, carbon, 150,000 ohms, $1 / 2 \mathrm{~W}$.
R 410 Resistor, carbon, 8200 ohms, $1 / 2 \mathrm{~W}$.
R 411 Resistor, carbon, 47,000 ohms, 1 W .
$\begin{array}{ll}\text { R } 412 & \text { Resistor, carbon, } 120,000 \text { ohms, } 1 / 2 \mathrm{~W} . \\ \text { R } 413 & \text { Resistor, carbon, } 47 \text { ohms, } 1 / 2 \mathrm{~W} .\end{array}$
R 413 Resistor, carbon, 47 ohms, $1 / 2 \mathrm{~W}$.
R 414 Resistor, carbon, 3900 ohms, $\pm 10 \%, 2 \mathrm{~W}$

$$
\begin{gathered}
\text { (J\&K only) } \\
\text { Resistor, carbor }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Resistor, carbon, } 7500 \text { ohms, } 2 \mathrm{w} \text {. }
\end{aligned}
$$ (all others)

R 415 Resistor, carbon, 68,000 ohms, $1 / 2 \mathrm{~W}$
R 416 Resistor, carbon, 1 megohm, 1 W....
R 417 Resistor, carbon, 2200 ohms, $1 / 2 \mathrm{~W}$.
R 418 Resistor, carbon, $47,000 \mathrm{ohms}, 1 / 2 \mathrm{~W}$. (used "with radio tuner" only)

230104-98 230104-100 230104-102 ...230104-71 . 230104-66 230104-70 230104-78 230104-102 230104-100 220126-4 220126-10 230105-59 230104 -46 230104-9 230104.7 230104-82 -230104-82 230104-69 230104-74 230105-79 -230104-82 220076.44
220126.9 $220126-9$
$230104-87$ 230104-69 230104-92 230104-85 230104-92 230104-97
230104 230104-88 .230104-88 . $230104-73$ 230105-82 .230104-87 230104-46 230096-69 230096-180 $230104-84$

$230105-98$ 230104-66 230104-8?

FIGURE II-SCHEMATIC DIAGRAM, 700357 TUNER
© John F. Rider

FIGURE 12-SCHEMATIC DIAGRAM, 105 SERIES A AND B

FIGURE 13-SCHEMATIC DIAGRAM, 105 SERIES C. E AND F

OWER REQUIREMENTE

All chassis are rated 117 volts AC 60 cycles. Power consunptions listed are for 117 volt line.

TV with audio	205 Watte max.
TV without audio	190 watts max.

The addition of the UHF converter will increase the power consumption approximately 10 watts, the UHF tuner about 4 watte.

TUBE COMPIEMENT

Function	Tube Type	Symbol	Function	Tube Type	Symbol
Cascode RF Amplifier	6BQ7	V1	Sync Separator	1/2 12AX7	V3018
RF Mixer	1/2 6U8	V2A	Sync Amplifier	1/2 6¢N7GT	V302A
Oscillator	1/2 6U8	V2B	Sync Clipper	1/2 ósN7GT	V302B
let Video IF	6CB6	V201	Vertical Os-		
2nd Video IF	6СB6	V202	cillator	6SN7GT	V303
3rd Video IF	6CB6	v203	Vertical Output	6W6GT	V304
Video Detector	IN64	Crystal	Horizontal AFC	$1 / 2$ 6SNTGT	V401A
Sound IF Amplifier	6AUG	v204	Horizontal Os-		
Limiter	6AU6	V101	cillator	1/2 6SN7GT	V401B
Discriminator	1/2 6T8	V102A	Horizontal Out-		
let AF Amplifier	1/2 6T8	V102B	put	6BQ6GT	V402
Audio Output	6V6GT	V103	Damper	6W4GT	V404
Video Amplifier	6CB6	V205	HV Rectifier	1B3GT	V403
AGC Amplifier	6ais6	v206	LV Rectifier	5U4G	V501
Noise Inverter	1/2 12AX7	V301A	Picture Tube	$20^{\prime \prime}$ or $21^{\prime \prime}$ rectangular	V207

CIRCUIT DESCRIPTION

General

This receiver is basically deaigned to accommodate either a UHF tuner or a UHF converter. The converter can be added when the UHF transmiseions atart and the customer wishes it.

The TV receiver is constructed on a single chaseis which may be used in conjunction with an AM tuner or a separate audio amplifier or record player. It is so designed that it will accommodate either 2l-inch rectangular or 20 -inch rectangular tubes without any changes in circuitry.

Cascode RF Tuner

The cascode RF tuner concists of an RF amplifier VI (6BQ7) and mixer-oscillator V2 ((U8). A 12-position channel selector rotary switch is used with a concentric ehaft which operates the variable type fine tuner. For ease of alignment, inductances adjustable by bending or spreading are provided on every channel.

As shown in the schematic diagram, the secondary of the antenna transformer TI is tuned for each channel by shunting it with the proper value of inductance (Sl, epction 4) to make it resonate with the RF tube Vl (6BQ7) input capacity. Ll and Cl form an IF trap, which is tuned to 44.5 MC for best average IF rejection on all channels. To further minimize IF interference an external IF trap assembly is available for those few areas where the overall IF interference is severe. These trape are series-connected in the receiver antenna lead-in and should be tuned to give maximum rejection at the undesired IF frequency.

Tuning of the RF plate and mixer grid is accomplished by wafer eections 2 and 3, which are identical to the RF grid wafer. Coupling capacitors C6, C9 and C10, connected between appropriate points, provide the necessary coupling for the proper bandpass on all channels. Shields between the RF grid, RF plate and mixer grid wafers reduce stray coupling. The 6BQ7 RF tube is used in a cascode circuit (triode 1 grounded cethode, triode 2 grounded grid) to minimize triode feedbeck so that the superior eignal-to-noise ratio of a triode is realized with good stability.

The pentode mixer V2A ($1 / 26 \mathrm{U} 8$) is used because of its low feedback characteristic with 41 MC IF.

To reduce high band radiation from the main TV chassis, common low side capacity coupiing was used to the lat IF tube grid circuit and the tuner chassis was connected to the main chaseis only at the tuner rear apron.

Video IF

The video IF amplifier operates at a picture carrier frequency of 45.75 MC , with a 6 db design bandwidth of 3.0 MC and consists of a double-tuned circuit (low-side capacity coupled), followed by three stagger tuned I-F transformers. The double-tuned circuit consists of two similar coils that are physically separated, one in the tuner (converter plate coil), and one in the grid circuit of the lst IF amplifier (T201).

The remainder of the IF amplifier consists of three staggertuned stages, using 6CB6's for maximum stable gain. A trap similar to that on the IF input coil is inductively coupled to the lst IF plate coil (T202) and tuned to 47.25 MC adjacent channel sound carrier.

This chassis employs intercarrier sound IF (4.5 MC) produced by the beat between sound and picture carriers. The video detector is comprised of a crystal diode (IN64)located accessibly within shield can (T204), also containing the final IF bifilar coil, bypass capacitor and IF stabilizing filter choke.

The 4.5 MC intercarrier sound IF signal is applied to the single tuned lst sound IF amplifier (V204) and in turn fed to the limiter stage (V101).

The limiter was designed on the basis of plate limiting and grid limiting. Plate limiting is accomplished by using a low screen potential and grid limiting is obtained by using grid leak bias.

The 4.5 MC discriminator circuit uses the diodes (\#l and \#2) section of V102A ($1 / 26 T 8$) for detection. The AM output is zero at center frequency and is proportional to the frequency deviation from balance, and with limiter action, suppression of AM to either side of center frequency is accomplished.

Audio Amplifier

The audio amplifier is a two-stage amplifier using $1 / 2 \quad 6 T 8$ (V102A) and 6V6 (Vl03). The triode in the 6 T 8 gives comparatively high gain. This makes it possible to use inverse feedback. The feedback is an overall feedback from the voice coil winding of the audio output transformer to the cathode of the lst AF amplifier.

Video Detector, Video Amplifier

The detector is DC coupled to the video amplifier V205 (6CB6). The DC level is retained for better picture quality, and AGC reference. The video amplifier is compensated for 3 MC response, this being the definition obtainable from the $I F$. The video amplifier is AC coupled to the picture tube.

Noise Inverter

The noise inverter is for the purpose of removing noise bursis that exceed the sync pulse level from the signal that is fed to the AGC and the sync circuits. The noise inverter (one-half 12AX7 V301A) is a grounded grid amplifier that forms a parallel signal path around the video amplifier tube. Since it is cathode driven, the noise inverter signal output is in phase with the detector signal while the video amplifier out put is 180° out of phase.

The noise inverter is biased beyond cutoff, enabling it to conduct only on noise signals which exceed the sync tips at the detector.

Bias for the noise inverter is obtained from the grid bias voltage of the horizontal output by means of a voltage divider in the output tube grid return. Since bias on the horizontal output tube is determined by the signal amplitude on its grid, the horizontal drive control (C406) will affect the bias voltage of the noise inverter. A potentiometer (R304) provides for independent adjustment of noise inverter bias and horizontal drive. The voltage divider has been set up to avoid any dificiculty with the noise inverter when the horizontal drive is correctly adjusted. The noise inverter bias usually is between -9 V and -13 V as measured with VIVM. AGC

The 105-41 MC chassis uses keyed AGC for improved noise immunity and reduction of airplane flutter. A series-fed pulse to the AGC amplifier was chosen because of the ease of filtering the derived AGC voltage. A more rapidly acting AGC is therefore possible.

Sync Separators

The sync separators consist of three triode sections, one-half $124 X 7$ (V301B) and a 6 SN? (V302A, V302B), which are sync separator, sync amplifier and sync clipper, respectively.

Having grid leak bias, the sync separator will only accept a cer tain peak-to-peak portion of the positive peak of the signal. At low contrast levels this includes some of the video signal; therefore, another stage of separation is required. The first stage inverts the signal, making it necessary to cathode drive the sync amplifier, which operates in much the same manner as the sync separator. A negative signal fed to the grid of the sync clipper supplies a negative sync signal at the cathode for the vertical multivibrator and a positive sync signal at the plate for the horizontal AFC.

Vertical Sweep Oscillator

The vertical sweep oscillator is a plate-to-grid multivibrator using a 6 SN7 dual triode. The integrated vertical sync is fed to the grid of the first triode section and the output wave is taken from the plate of the second triode. The pulse across the resistance R3l5 of the peaking circuit is also used for obtaining vertical retrace blanking of the picture tube.

The feedback circuit in the multivibrator is from the peaking resistor to the grid of the first triode. RC30l is a printed circuit integrating network for deriving the vertical synchronizing pulse.

Vertical Output Circuit

The vertical output amplifier is a type 6W6, pentode connected and transformer coupled to the yoke. Improvement in linearity is obtained by feedback from the transformer secondary to the grid.

Horizontal Oscillator and Frequency Control

The horizontal oscillator, discharge and AFC circuits utilize a double triode tube 6SN7 (V401). The frequency of the blocking oscillator (V4O1B) can be adjusted by the top slug of T40l. The frequency of oscillation is stabilized by a tuned circuit. The inductance for the tuned circuit is in $T 401$ and the capacitor is 6407. The generated sawtooth reaches the grid of the output tube V402 through the capacity divider C410-C406. The latter, marked HORIZONTAL DRIVE, is variable and controls the amount of drive on the grid of V402 (6BQ6). THIS ADJUSTMENT WILL AFFECT THE HORIZONTAL LINEARITY, HIGH VOITAGE AND INVERTER TUBE BIAS.

Horizontal Output and Damper

The function of the output tube V402 is to supply sufficient urrent of the proper waveform to the horizontal deflection coils in order to provide horizontal scanning for the picture tube. The function of the damper tube, V 404 (6 W 4) is to stop oscillation of the yoke current at retrace time and thus help provide a linear trace. Other functions of this circuit are to provide a high amplitude pulse for high voltage and to recover a good part of the energy in the system. Part of the energy recovered appears in the form of a boost voltage at the damper cathode, and part in actual deflection current in the yoke.

© John F. Rider

High Voltage Supply

The high voltage is supplied by part of the energy stored in the horizontal system. When the GBQ6 plate current is cut-off by the horizontal sawtooth, a high positive pulse of voltage appears on the tertiary of $T 402$ due to the rapidly collapsing field in the system. This high positive pulse is rectified by the H.V. rectifier V403 (183).

Anastigmatic Deflection Yoke

The anastigmatic deflection yoke has the windings spaced in a manner that gives very little deflection spot defocusing. Low Voltage Supply

The low voltage power supply provides the filament and plate voltages for the receiver. A 5U4G (V501) rectifier tube is used to supply 290 volts DC input to the filter at approximately 230 MA The power transformer has two 6.3 voit filament windings. One winding is grounded and supplies 11.4 amperes for all of the tubes except V202, V204 and V206. These three tubes are supplied by the second winding and draw 0.9 amperes. This winding is connected to the 140 volt bus so that the filament to cathode rating of the three tuibes is not exceeded.

ALIGNMENT INSTRUCTIONS
HORIZONTAL OSC. AND AFC

1. Horizontal frequency ad justment (Top slug, T401).
a. Short out terminals C and D of the horizontal oscillator and AFC transformer. Set HORIZONTAL NRIVE trimmer to $1 \frac{1}{2}$ turns from tight.
b. Turn HORIZONTAL HOLD control to full clockwise position and adjust the top slug of T40l until picture locks in.
c. Adjust HORIZONTAL MRIVE, LINEARITY, and WINTH controls for proper size and linearity of picture. If it is necessary to change the HORIZONTAL DRIVE control, readjustment of the frequency slug will be necessary.
NOTE: If proper frequency adjustment cannot be obtained
2. Check the grid voltage on the noise invertor tube, Pin 7, V301 (12AX7). It should be between -9 and -13.5 V., (Measure with VIVM only)
3. Recheck Horizontal Linearity adjustment.
d. Repeat UIDTH, LINEARITY and FREQUENCY adjustments.
4. Horizontal Waveform adjustment (bottom slug T401)
a. Remove short from terminals C and D of T40l.
b. Connect oscilloscope probe in series with 15 mmf . capacitor to terminal C. Set scope at horizontal frequency and adjust bottom slug of T401 so that the rounded and sharp peaks of the curve are of equal amplitude.
c. Remove scope. With HORIZONTAL HOLD control in full clockwise position, adjust frequency slug (top of T401) until picture is just out of sync as indicated by blanking bar appearing at left of picture. Back off frequency slug slightly until picture again locks in sync. This adjustment is made with BRIGHTNESS control in full clockwise position.

VIDEO I-F ALIGMMENT

Test equipment needed:
A.M. Signal generator 41.25 to 47.25 MC

RF Sweep Generator
Cathode Ray Oscilloscope
Electronic Voltmeter
4.5 V "C" battery with tap at 1.5 volts

1. Connect positive (f) terminal of "C" battery to chassis ground Connect -1.5 V Tap to RF grid return (junction R222 and R223). Connect -4.5 V Tap to IF grid return (junction R235 and C201).
2. Connect modulated signal generator to convertor grid wafer through hole in tuner shield.
3. Connect scope or VIVM across detector load resistor (R213).
4. Tune the signal generator to the following frequencies and adjust the corresponding slugs for as indicated in table below:

FREQUENCY	ADJUST	INDICATION
47.25 MC	T203 (Top) 2nd IF	Minimum
$47 . \mathrm{CNMC}$	T 201 (Top) IF Input	Minimum
43.5 MC	T201 (Bottom) Input IF	Maximum
45.6 MC	Convertor Coil	Maximum
43.3 MC	T202 (Bottom) Ist, IF	Maximum
45.2 MC	T203 (Bottom) 2nd IF	Maximum
44.1 MC	T204 (Bottom) 3rd IF \& Det	Maximum

NOTE: Do not readjust IF input coil after peaking converter coil.
5. Remove signal generator and connect sweep generator to antenna terminals through proper impedance matching network, see Fig. l. (If generator output is unbalanced) loosely couple marker generator to IF chassis.

FIG. I
6. Tune sweep generator and television chassis to channel 4.
7. Retouch IF coils only if overall RF-IF curve does not fall within the limits shown. The RF oscillator must be on frequency when making this check.

OVERALL I-F CURVE

SOUND I-F ALIGNMENT

1. Connect VTVM through 1 mg . isolating resistor, across Rlol (39K) limiter grid resistor. CAUTION: Case of VIVM will be at $t 85$ volts.
2. Connect 4.5 MC signal to terminal D (T204) and chassis ground.
3. Adjust L206 sound take-off coil and Ll01, sound IF coil for max imum reading. Keep output of signal generator low, so that this maximum reading does not exceed -2 volts.
4. Remove VIVM and connect from junction of R108 and Cl06 to ground.
5. Adjust primary (bottom slug) of Tlol discriminator transformer for maximum output, and secondary (top slug) for zero reading. NOTE: For accurate alignment do not change level of signal input after Step 3 above. It may be necessary to detune secondary of TlOl before peaking of the primary can be accomplished.

RF TUNER ALIGNMENT

Oscillator alignment should be made only when the fine tuning control tunes in the extreme clockwise or counter-clockwise position or if it will not tune at all within its tuning range.

TOUCH UP OSCILJATOR ALIGMMENT

If some channels do not tune at all, or not near enough to the center of the fine tuning range, adjust the osciliator trimmer for the best compromise tuning on all channels. If, for example all channels tune near one side of the control, adjustment of the trimmer will bring them all near the center. If the range of the trimmer is not sufficient to accomplish this, check the space between the "hot" plate of the fine tuner and the fine tuner cam. This space should not be greater than .015". If it is necessary to change the space it can be adjusted by carefully bending the "hot" plate. CAUMION: Do not decrease the space to the point of excessive rubbing. If some channels tune near one end and others tune at the other end of the control, adjustment will move some to the center and move the others beyond the range of the control. In this case the oscillator coils will have to be adjusted individually as follows:

COMPLETE OSCILLATOR ALIGNMENT
Connect a sweep generator to the antenna terminals of the receiver. Connect an unmodulated signal generator to the antenna terminals and tune it to the Channel 13 video carrier frequency. IV signals may be used.
oosely couple an unmodulated signal generator to the first IF grid and tune it to 45.75 MC . Connect an oscilloscope across the video detector load resistor.

Turn on the receiver and set the vernier to the mid range position. When the receiver has warmed up, if there are two markers on the scope, determine which rotation of the vernier causes the markers to coincide. If it is clockwise, reset the vernier to the midrange position and close the Channel 13 oscillator coil. If it is counter-clockwise, open the coil. Adjust for a zero beat. The Channel 13 coil moves all high band channels. The Channel 6 coil moves all low band channels.

CHANNEL NO.	RANDUITTH (MC)		PICTURE CARRIER		SOUND CARRIER

Tune the sweep generator to Channel 12. The signal generator to the Channel 12 video carrier frequency. Set CHANNEL SEIECTOR to 12. Adjust the Channel 12 oscillator coil for a zero beat of the markers.

Repeat the procedure for Channels 11 through 2. Recheck Channels 13 through 7. The high channel coils are adjusted by moving them up or dow and the low channel coils by spreading or pushing together.

ANTENNA, RF AMPLIFIER AND CONVERTER ALIGNMENT
The desirec pattern to be applied to the IF amplifiers is the result of three variables. These three variables are the AIFTENNA COIL (rear vafer), the RF COIL (second wafer from rear) and the CONVERTER COIL (third wafer from rear).

These coils must be very carefully adjusted with only a slight movement. It is imperative that the following sequence of adjustment is followed to obtain the desired patiern. Antenna coils first, $F F$ coils second, and the converter coil last. The RF wafer has Bf on it and should not be touched with the hand or a metal tool. Adjustment of the converter coil is critical. The oscillator coils (fourth wafer from rear) are properly adjusted and should not be touched.

The $R F$ tuner has been properly aligned at the factory and should not require any additional adjustment except when tubes are replaced in the tuner. Proper selection of the replacement tube will eliminate the necessity of making these coil adjustments. Try several tubes while observing their effects on the pattern. Use the one that gives the desired pattern. It is important that the tuner cover be in place when observing the pattern.

© John F. Rider

PARTS LIST' O OR THE .105L \& M SERIES			SYMBCL	DESCRIPTİN	PART NO.
SMECL	DESCRIPTICH	PART . NC .	C 213 C 214	Capacitor, Paper, $01 \mathrm{mfd}, 200 \mathrm{~V}$ Capacitor, Paper, . $047 \mathrm{mfd}, 200 \mathrm{~V}$	$\begin{aligned} & 250202-7 \\ & 250202-11 \end{aligned}$
			C215	Capacitor, Ceramic, $470 \mathrm{mmf}, 450 \mathrm{~V}$	250175-9
T101	Transformer, Discriminator, 4.5 M'.C.	360.512 ?	C216	Capacitor, Paper, $01 \mathrm{mfd}, 600 \mathrm{~V}$	250201-7
Tl02	Transformer, Audio Cutput, Cmit on "Without Audio"	320063-1	C217	Capacitor, Paper, $.22 \mathrm{mfd}, 200 \mathrm{~V}$	250202-15
T201	Coil \& Trap I.F. Input	360545-1	C218	Capacitor, Ceramic, $470 \mathrm{mmf}, 450 \mathrm{~V}$	250175-?
T202	Coil, lst I.F.	360548-1	C220	Capacitor, Ceramic, $470 \mathrm{mmf}, 450 \mathrm{~V}$	250175-9
T203	Coil ${ }^{2}$ Trap, 2nd I.F.	360546-1	$\bigcirc 221$	Capacitor, Ceranic, $5000 \mathrm{mmf}, 450 \mathrm{y}$	250175-1
T204	Coil ${ }^{\text {S Video Det. 3rd I.F. }}$	360549-1	C222	Capacitor, Ceramic, $220 \mathrm{mmf}, 500 \mathrm{~V}$	250218-5
T301	Transformer, V.O.	320060-1	C223	Capacitor, Ceramic, $470 \mathrm{rmf}, 450 \mathrm{~V}$	250175-9
T401	Transformer, Horizontal Blocking Oscillator	360499-1	C224	Capacitor, Ceramic, 680 mmf , 500 V	250218-4
T402	Transformer, H.V.	320061-1	C302	Capacitor, Paper, $222 \mathrm{mfd}, 200 \mathrm{~V}$	250202-15
T 1501	Transformer, Fower	300064-1	C303	Capacitor, liica, $240 \mathrm{mmf}, \pm 5 \%, 500 \mathrm{~V}$	250159-56
L101	Coil, Sound I.F.	360481-1	C304	Capacitor, \ica, $47 \mathrm{mmF}, 50 \mathrm{q}$ V	250159-78
L201	Coil, Peaking, Resistor Color Code 6 uh	360443-23	C305	Capacitor, 11ica, 4700 mmf , $5 \%, 500 \mathrm{~V}$	250161-24
L202	Coil, Peaking, White	360443-13	C306	Capacitor, Paper, $0068 \mathrm{mfd}, 200 \mathrm{~V}$	250202-6
L203	Coil, Peaking, Black-Black-Black	360443-27	C307	Capacitor, Paper, . $1 \mathrm{mfd}, 400 \mathrm{~V}$	250211-13
L204	Coil, Peaking, Brown	360443-13	C308	Capacitor, Paper, . $047 \mathrm{mft}, 400 \mathrm{~V}$	250211-11
L205	Coil, Feaking, Green-Green	360443-14	С309	Capacitor, Ceranic, $1500 \mathrm{mmf}, 450 \mathrm{~V}$	250175-3
L206	Coil, Sound Takeoff	360535-1	C310	Capacitor, Faper, $047 \mathrm{mfd}, 400 \mathrm{~V}$	250211-11
L301	Coil, Deflection	360526-1	C311	Capacitor, Cerarnic, 10 Krmf , 450 V	250175-2
L401	Coil, Keyer ${ }^{\text {a }}$ Horizontal Width	360521-1	C401	Capacitor, Paper. . 047 mfd , 400 V	250211-11
L402	Coil, Morizontal Linearity	360517-1	C402	Capacitor, Faper, $47 \mathrm{mfd}, 200 \mathrm{~V}$	250202-17
L501	Filter Reactor	320058-1	C403	Capacitor, Faper, . $022 \mathrm{mfd}, 200 \mathrm{~V}$	250202-9
	Focus Magnet	360504-1	C404	Capacitor, Faper, $047 \mathrm{mfd}, 200 \mathrm{~V}$	250202-11
	Centering Device (Electrostatic Focus Tube)	360525-1	C405	Capacitor, liica, $82 \mathrm{mmf}, 500 \mathrm{~V}$	250159-81
Cl 101	Capacitor, Mica, 56 mmf, 500 V	250159-79	C406	Capacitor, Trimer	260116-1
ClO^{10}	Capacitor, Ceramic, Dual, $4000 \mathrm{rmf}, 450 \mathrm{~V}$	250195-2	C407	Capacitor, Mica, $10 \mathrm{~K} \mathrm{mmf}, 300 \mathrm{~V}$	$\begin{aligned} & 250161-47 \\ & 250159-51 \end{aligned}$
Cl04	Capacitor, Ceramic, $5000 \mathrm{mmf}, 450 \mathrm{~V}$	250175-1	C408	Capacitor, Mica, $150 \mathrm{rmf}, \pm 5 \%, 500 \mathrm{~V}$	$\begin{aligned} & 250159-51 \\ & 250160-64 \end{aligned}$
C106	Capacitor, Ceraric, $100 \mathrm{mmf}, 450 \mathrm{~V}$	250207-46	C409	Capacitor, Mica, $1000 \mathrm{mmf}, \pm 1 \%, 500 \mathrm{~V}$	$\begin{aligned} & 250160-64 \\ & 250159-90 \end{aligned}$
	Capacitor, Ceramic, $470 \mathrm{rmf}, 500 \mathrm{~V}$ "Electrostatic Tube Nith Audio"	250207-50	$C 410$ $C 411$	Capacitor, Míca, $470 \mathrm{mmf}, \pm 10 \%, 500 \mathrm{~V}$ Capacitor, Kica, $68 \mathrm{mmf}, 500 \mathrm{~V}$	$\begin{aligned} & 250159-90 \\ & 250159-80 \end{aligned}$
	Capacitor, Ceramic, $1000 \mathrm{mmf}, 350 \mathrm{~V}$		C412	Capacitor, Paper, . $047 \mathrm{mfd}, 400 \mathrm{~V}$	250211-11
	"With Audio" \& Radio Tuner	250088-46	C413	Capacitor, Paper, . $047 \mathrm{mfd}, 400 \mathrm{~V}$	250211-11
C108	Capacitor, Paper, $01 \mathrm{mfd}, 200 \mathrm{~V}$, Orit on "Nithout Audio"	250202-7	$\begin{aligned} & \mathrm{C} 414 \\ & \mathrm{C} 415 \end{aligned}$	Capacitor, Paper, $.1 \mathrm{nfd}, 400 \mathrm{~V}$ Capacitor, IIi Voltage	${ }^{250211-13}$
Cl09	Capacitor, Paper, . $01 \mathrm{mfd}, 400 \mathrm{~V}$,	250211-7	C416	Capacitor, Paper, . $22 \mathrm{mfd}, 400 \mathrm{~V}$	250211-15
	Omit on "Nithout Audio"		C501	Capacitor, Electrolytic, $40-35-30-30 \mathrm{mfd}, 350 \mathrm{~V}$	270021-43
Clll	Capacitor, Paper, . 02 mfd , Used on "Audio for A.M. Only"	250129-3	C502	Capacitor, Electrolytic, $10-30-5 \mathrm{mfd}, 350 \mathrm{~V}$ $200 \mathrm{mfd}, 25 \mathrm{~V}$	270021-46
Cl12	Capacitor, Paper, . $0015 \mathrm{mfd}, 400 \mathrm{~V}$ Electrostatic Tube "Nith Audio"	250211-2	C503	Capacitor, Electrolytic, $20 \mathrm{mfd}, 350 \mathrm{~V}$ $30 \mathrm{mfd}, 25 \mathrm{~V}$	270023-19
C113	Capacitor, Mica, $68 \mathrm{rmf}, 500 \mathrm{~V}$	250159-80	P101	Resistor, Carbon, 39 K Chms, $\frac{1}{\frac{1}{2}} \mathrm{~W}$	230104-31
C201	Capacitor, Ceramic, 470 mun, 450 V	250175-9	R102	Resistor, Carbon, $470 \mathrm{Chms}, \frac{1}{2}$ N	230104-58
C202	Capacitor, Ceramic, 470 mmf, 450 V	250175-9	R103	Resistor, Carbon, 8200 Chns, $\frac{1}{2}$ W	230104-73
C203	Capacitor, Ceramic, $470 \mathrm{mmf}, 450 \mathrm{~V}$	250175-9	R104	Resistor, Carbon, 15K Chms, 1 W	230105-76
C204	Capacitor, Ceramic, $470 \mathrm{mmf}, 450 \mathrm{~V}$	250175-9	P106	Resistor, Carbon, 100K Chms, $\frac{1}{2} \mathrm{~W}$	230104-86
C205	Capacitor, Ceramic, 680 mmf , 500 V	250218-4	$R 107$	Resistor, Carbon, 100K Ohrm, $\frac{1}{2}$ W	230104-86
C206	Capacitor, Ceramic, $680 \mathrm{mmf}, 500 \mathrm{~V}$		2108	Resistor, Carbon, 68 K Chms, $\frac{1}{2} \mathrm{~N}$	230104-84
C207		250207-3	R109	Potentiometer, Yol. Control, 1 Kegohm, $\frac{1}{4} \mathrm{~W}$	
C208	Capacitor, Ceramic, $5000 \mathrm{mmf}, 450 \mathrm{~V}$	$\begin{gathered} 250175-1 \\ 250175-1 \end{gathered}$		"Nith Audio" only	220126-25
C209 C 210	Capacitor, Ceramic, $5000 \mathrm{mmf}, 450 \mathrm{~V}$ Capacitor, Paper, $.1 \mathrm{mfd}, 400 \mathrm{~V}$	$\begin{aligned} & 250175-1 \\ & 250211-13 \end{aligned}$		Potentiometer, Vol. Control With Switch With "Radio Tuner"	220118-2
C210 C 211	Capacitor, Paper, ${ }_{\text {Capacitor, }}$ Paper, .22 mff , 200 V	250202-15	R110	Resistor, Carbon, 4.7 Megohn, $\pm 57 . \frac{1}{2}$ W	
C212	Capacitor, Paper, $11 \mathrm{mfd}, 200 \mathrm{~V}$	250202-13		Omit on "isithout Audio"	230104-106

SYMBC	DESCRIPTIOY	PAPT MO.	SYM ${ }^{\text {SOL }}$	DESCRIPTION:	FART I:C.
R111	Resistor, Carbon, 470K Chms, $\frac{1}{2}: /$ Omit on "Nithout Audio"	230104-94	R306	Pesistor, Carbon, 470K Chms, $\frac{1}{2}$ N	230104-94
R112	Resistor, Carbon, $10{ }^{\text {chms, }} \frac{3}{2} \mathrm{~W}$		R307 R308	Resistor, Carbon, 1 Megohra, $\frac{1}{1}$ W	230104-98
	Omit on "Without Audio"	230104-38	R308 R309	Resistor, Carbon, 560 Chms, $\frac{1}{2}$ iN	230104-59
R113	Resistor, Carbon, 100 Chms, $\frac{1}{2} \mathrm{~W}$ Crit on "Nithout Audio"		R309 R310	Resistor, Carbon, 100 K Chms, $\frac{1}{1} \mathrm{~W}$ Resistor, Carbon, 680 K Chms, $\frac{1}{2} \mathrm{~W}$	230105-86
? 114	Crait on "rithout Audio" Pesistor, Carobn, 470K. Ohms, $\frac{1}{2} \mathrm{~W}$	230104-50	R311	Potentiometer, Vertical Hold, 1 Megohm, $\frac{1}{4} \mathrm{~W}$	
	Cmit on "Nithout Audio"	230104-94		Electrostatic Tube With Audio	220126-27
2115	Resistor, Carbon, 390 Ohms, 1 W Cmit on "Without Audio"	230105-57		Potentiometer, Vert Hold Radio Tuner is Without Audio	220126-29
P116	Resistor, Carbon, 390 Ohms, 1 W Cmit on "Without Audio"	230105-57	R312 R314	Potentiometer, Virt. Ht., 2.5 Megohm, $\frac{1}{4} \mathrm{~W}$ Resistor, Carbon, 1.5 Megohm, $\frac{1}{2} \mathrm{~W}$	220076-5
R118	Cmit on "Without Audio"	$230105-57$ $220126-28$	R315	Resistor, Carbon, 2200 Ohms, $\frac{1}{2} \mathrm{~W}$	230104-66
R201	Potentiometer, Vertical Fit. 2 Focus	220076-5	R316	Resistor, Carbon, 22 K Ohms, 1 W	230105-78
R202	Resistor, Carbon, 22 K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-78	R317	Resistor, Carbon, 1.5 Megoln, $\frac{1}{2}$ W	230104-100
? 203	Resistor, Carbon, 47 Chms, $\frac{1}{2}$ W	230104-46	R318 R320	Potentiometer, Vertical Linearity, 650 Ohms, $1 \frac{1}{2}$ N	220120-1
R204	Resistor, Carbon, 470 Chms, $\frac{1}{2}$ W	230104-58	R321	Resistor, Carbon, 680 K Ohms, ${ }^{\frac{1}{2}} \mathrm{~W}$ Resistor, Carbon, 22 K Chms, $\frac{1}{2} \mathrm{~W}$	230104-96
R205	Resistor, Carbon, 330K Cheris, $\frac{1}{2}$ W	230104-92	R322	Resistor, Carbon, 47K Ohms, $\frac{2}{2} \mathrm{~W}$	230104-78
R206	Resistor, Carbon, 180K Ohms, $\frac{1}{2}$ W	230104-89	R323	Resistor, Carbon, 120K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-87
R207	Resistor, Carbon, 47 Ohms, $\frac{1}{2} \mathrm{~W}$	230104-46	R324	Resistor, Carbon, 47 K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-82
R208	Resistor, Carbon, 22K Chms, $\frac{1}{2} \mathrm{~W}$	230104-78	R325	Resistor, Carbon, 3900 Ohns, $\frac{1}{2} \mathrm{~W}$	230104-69
R209	Resistor, Carbon 470 Chms, $\frac{1}{2} \mathrm{~W}$	230104-58	R326	Resistor, Carbon, 10K Ohms, $\frac{1}{2} . \mathrm{W}$	230104-74
R210	Resistor, $\mathrm{C}_{\mathbf{a}} \mathrm{rbor} 220 \mathrm{Ohms},, \frac{1}{2} \mathrm{~W}$	230104-54	R327	Resistor, Carbon, 27K Chrs, 1 W	230105-79
$R 211$	Resistor, Carbon, 470 Ohns, $\frac{1}{2} \mathrm{~W}$	230104-58	R328	Resistor, Carbon, 47K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-82
R212	Resistor, Carbon, 39K. Ohns, $\frac{1}{2}$ W	230104-81	R401	Potentiometer, Horizontal Hold, 50K Ohms, $\frac{1}{4} \mathrm{~W}$	220126-9
R213	Resistor, Carbon, 5600 Ohms, $\frac{1}{2} \mathrm{~W}$	230104-71	R402	Resistor, Carbon, 120K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-87
R214	Resistor, Carbon, 470 Ohms, $\frac{1}{2} \mathrm{~W}$	230104-58	R403	Resistor, Carbon, 3900 Ohms, $\frac{2}{2} \mathrm{~W}$	230104-69
R215	Resistor, Carbon, 10K Chms, $\frac{1}{2} \mathrm{~W}$	230104-74	R404	Resistor, Carbon, 330 K Ohms, $\frac{2}{2} \mathrm{~W}$	230104-92
R216	Potentiometer, Contrast, 600 Ohms, $\frac{1}{2} \mathrm{~W}$	220126-26	R405	Resistor, Carbon, 82 K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-85
R217	Resistor, Carbon, 22K Ohms, 1 W	230105-78	R406	Resistor, Carbon, 330K Ohrs, $\frac{1}{2}$ W	230104-92
R218	Resistor, Carbon, 2200 Ohms, 1 W	23n105-66	R407	Resistor, Carbon, 820K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-97
R219	Resistor, Carbon, 3300 Ohms, 1 W	230105-68	R408	Resistor, Carbon, 150K Ohms, $\frac{1}{2}$ W	230104-8
R220	Resistor, Carbon, 120K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-87	R409	Resistor, Carbon, 150K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-88
R221	Resistor, Carbon, 330 K Chms, $\frac{1}{2} \mathrm{~W}$	230104-92	R410	Resistor, Carbon, 8200 Ohns, $\frac{1}{2}$ W	230104-73
R222	Resistor, Carbon, 470 Ohns, $\frac{1}{2} \mathrm{~W}$	230104-94	R411	Resistor, Carbon, 47K Chms, 1 W	230105-82
2223 R 226	Resistor, Carbon, 4.7 Megohm, ${ }^{\frac{1}{2}} \mathrm{~W}$ Resistor, Carbon, 2	${ }_{2}^{230104-106}$	R412	Resistor, Carbon, 120K Ohns, $\frac{1}{2} \mathrm{~W}$	230104-87
R227		230104-90	R413	Resistor, Carbon, 47 Ohms, $\frac{1}{2} \mathrm{~W}$	230104-46
R228	Resistor, Carbon, 82K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-85	R414	Resistor, Carbon, 3900 Ohms, $\pm 10 \%$, 2 W	230106-69
R229	Resistor, Carbon, 180K Chms, $\frac{1}{2} \mathrm{~W}$	230104-89	R418	Resistor, Carbon, 1 Megohm, ${ }^{\text {Resistor, }}$ Carbon, 47 K	230105-98
R230	Resistor, Carbon, 33K Cihms, $\frac{1}{2} \mathrm{~W}$	230104-80	R419	Resistor, Carbon, 4.7 Ohms, 1 W	230104-82
R231	Resistor, Carbon, 10K Ohms, $\frac{1}{2}$ W	230104-74	R420	Resistor, Carbon, 4.7 Ohms, ${ }^{\text {Resistor, Carbon, } 3900 \text { Ohms }}$ ($10 \% 2 \mathrm{~W}$	230107-1
R234	Resistor, Carbon, 39K Ohms, $\frac{1}{2}$ W	230104-81	R501	Resistor, Carbon, 3900 Ohns, $\pm 10 \%{ }^{\text {desistor, Wire Wound, } 125 \mathrm{Ohms}, 10 \mathrm{~W}}$	230106-69
R235	Resistor, Carbon, 1000 Chms, $\frac{1}{2} \mathrm{~W}$	230104-62		Resistor, Wire Nound, 1300 Ohms, 3 W	240021-11
R236	Resistor, Carbon, 6800 Chms, $\frac{1}{2} \mathrm{~W}$	230104-72	R503	Resistor, Carbon, 220 K Ohms, 11 W	240021-30
R237	Resistor, Carbon, 470 K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-94	RC301	Printed Circuit	
R238 P 239	Resistor, Carbon, 470 Chms, $\frac{1}{2} \mathrm{~W} V$	230104-58	FSOl	Fuse, 150 MA	250186-1
R239		230104-85	J101	Socket, Speaker	180476-1
R301	Resistor, Carbon, 680 K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-78	J104	Socket, A.C.	180504-11
R302	Resistor, Carbon, 270K Ohms, $\frac{1}{2} \mathrm{~W}$	230104-91		Socket, A.C., "Nithout Audio" Only	180428-1
R303	Resistor, Carbon, 68K 0 hms, $\frac{1}{2} \mathrm{~W}$	230104-84		R.F. Tuner Unit	700379-20
R304	Reststor, Carbon, 4.7 Megohm, $\frac{1}{2} \mathrm{~W}$	230104-106			

© John F. Rider

PART I

DESCRIPTION AND SPECIFICATIONS

The Magnavox 103 series television chassis are all 24 tube receivers, including rectifiers and a direct view picture tube. All chassis of this series require an external audio amplifier either in an associated radio chassis in the combination models or the 127 amplifier for television only. Features of the 103 series include:

- R-F Tuner with tuned input to give improved signal to noise ratio, increased sensitivity, and improved image rejection
- Four stages of stagger-tuned video I-F for reduced phase distortion, increased stability and ease of alignment.
- Three stages of sound I-F, plus the first video I-F, which amplifies both video and sound - F frequencies.
- Direct coupled video amplifiers eliminating the necessity for a DC restorer
- Separate audio amplifier chassis, to be omitted when the TV chassis is used with a radio in combination models. In models having TV only, the audio amplifier may be operated alone, or use with a record player
- MAGNALOK horizontal AFC system, which controls the frequency by comparing the sine wave oscillator frequency with the frequency of the sync pulses. The result is applied to a reactance tube that controls the oscillator frequency
- Amplified AGC affords maximum uniformity of performance when changing stations and reduces fading.
- De-energizing circuit eliminates bright spot on picture tube when the power is turned off

V-1-R-F Amplifier
V-2-Mixer...
V-3-Oscillator
V-101-1st Sound I-F
V-102-2nd Sound I-F
V-103-3rd Sound I-F
V-104-Sound Discriminator
V-105A-AGC Amplifier
-105B-AGC Rectifier
V-106-1st Video I-F (Composite)
V-107-2nd Video I-F
V-108-3rd Video I-F
V-109-4th Video I-F
V-110A-1st Video Amplifier.
V-110B-AGC Clamp.

TUBE COMPLEMENT

6BC5	V.111-2nd Video Amplifier	Q
$1 / 212 \mathrm{AT7}$	V-112A-1st Sync Amplifier	$1 / 26$ SN7
$1 / 412 \mathrm{AT} 7$	V-112B-2nd Sync Amplifier	$1 / 26 \mathrm{SN} 7$
6BA6 or 6AU6	V-113A--Sync Clipper	$1 / 26$ SN7
6BA6 or 6AU6	V-113B-Vertical Oscillator	$1 / 26$ SN7
6AU6	V-114-Vertical Output	6V6
6AL5	V-115-Horizontal Control	6AU6
$1 / 26$ SN7	V-116-Horizontal Discriminator	6AL5
$1 / 26$ SN7	V-117A-Horizontal Oscillator	$1 / 212 \mathrm{AU} 7$
6CB6	V-117B-Horizontal Discharge	$1 / 2$ 12AU7
6CB6	V-118-Horizontal Output	6BG6
6CB6	V-119-HV Rectifier	1 B 3
6CB6	V-120-Damper	6W4
1/26 6SN7	V-121-LV Rectifier	5U4
$1 / 26$ SN7	V-122-Picture Tube	(See Chart)

- 127 AMPLIFIER

Rectifier.
 st Audio Amplifier
 Audio Output.

IMPEDANCE AND POWER RATINGS

CT Number	Audio Amp.	Picture Tube	Picture Tube Center Height	CT Number	Audio Amp.	Picture Tube	Picture Tube Center Height
262	127 Amp.	16 TP 4	$91 / 2$	288	Radio	17 AP 4	107/8
263	127 Amp.	16GP4	111/4			17 BP 4	
264	127 Amp.	19EP4	12	289	127 Amp.	17 AP 4	111/4
265	127 Amp.	19AP4	12			17BP4	
266	Radio	16 TP 4	91/2	290	Radio	$17 \mathrm{AP4}$	111/4
267	Radio	16TP4	$111 / 4$			17 BP 4	
268	Radio	19EP4	12	291	127 Amp.	19 EP 4	111/4
269	Radio	19AP4	12			19AP4	
283	127 Amp.	16TP4	111/4	292	Radio	19EP4	111/4
284	Radio	16 TP 4	111/4			19AP4	
285	Radio	16 TP 4	107/8	293	127 Amp.	20CP4	111/4
286	127 Amp.	17 AP 4	101/8	294	Radio	20 CP 4	$111 / 4$
		17BP4		297	127 Amp.	19AP4	13
287	Radio	17 AP 4	101/8	299	127 Amp.	20 CP 4	13
		17BP4		316	Radio	20 CP 4	12

RECEIVER OPERATING INSTRUCTIONS

1. Plug the receiver power cord into the power outlet.
2. Set the TV-PHONO switch on the rear of the TV chassis to TV.
3. Turn on the radio chassis and set the band selector switch to TV in combination models. On TV models only, turn the PICTURE OFF-ON control to the right about $1 / 2$ turn
4. Set the STATION SELECTOR switch to the desired channel number.
5. Adjust the FINE TUNING control for the best quality sound. Set the desired sound volume with the VOLUME control
6. Advance the BRIGHTNESS control to slightly illuminate the picture tube screen. If no light appears, it may be due to incorrect ion trap adjustment. The proper procedure for adjust ing the ion trap follows:
With the brightness control full on, adjust the ion trap until light appears on the screen. Reduce the brightness to a point near extinction by turning the brightness control counterclock wise. Readjust the ion trap for maximum brightness. It may be necessary to reduc brightness still farthur and readjust the ion trap.
Adjust the PICTURE control for the desired contrast.
7. If the picture "rolls" up or down, turn th VERTICAL control knob so the "roll" is down ward, then turn it in the opposite direction until the picture moves up to lock in frame Switching from channel to channel will not cause the picture to lose sync if the control is properly set.
8. If the picture does not snap into horizontal syn mmediately on being switched to a picture channel, but instead shows diagonal bars that slowly reduce in number until the picture snaps in, the following adjustments should be made Remove the Horizontal Discriminator tube (V-116, 6AL5) and adjust the HORIZONTAL HOLD SCREW until the picture slowly moves back and forth with the blanking bar vertical Replace the AFC discriminator tube After allowing time for the tube to warm up, the pic ture should fall into sync immediately upon switching from channel to channel.
9. If horizontal linearity is unsatisfactory, adjust the Drive control for maximum width. This point may be determined by observing the height, as minimum height occurs simultane ously. Then adjust linearity control for linear pattern.
10. Adjust the HEIGHT control until the picture just fills the mask vertically. Adjust the VER TICAL LINEARITY until the test pattern is
symmetrical from top to bottom. These two controls are interacting and should be adjusted together.
11. The FOCUS MAGNET has an adjustable shunt ring that governs the amount of magnetic flux controlling the size of the electron stream. Set the FOCUS CONTROL at about mid-range, and adjust the shunt ring so proper focus appears at this point. This ring is adjusted by loosening the "Shunt Ring Adjusting Screw" shown in Figure 1, and moving the ring parallel to the neck of the tube. Any further focusing can be accomplished with the focus control.

It will probably be necessary to readjust the ion trap after the shunt ring has been moved.
13. To center the picture, loosen the screw on each side of the focus coil and move the coil about the neck of the tube until proper centering is accomplished. Tighten the screws with the coil in this position.
14. If shadcws appear in the corners of the picture adjust the spring loaded screws holding the focus magnet support plate to tilt the focus magnet in the direction to eliminate the shadows.

FIGURE

FIGURE 2
TOP VIEW OF CHASSIS

picture control governs the cathode degeneration of the second video amplifier

The peaking network between the second video amplifier and the picture tube is conventional, except for the 4.5 Mc . trap, that is included to eliminate any beat between the sound and picture carriers.
The picture tube is grid modulated with a negative signal. Its brilliance is variable by means of the brightness control in the cathode circuit. The picture control has the AC switch on it, and also a switch that opens, putting - 100 volts on the picture tube cathode thus decreasing the grid bias to zero the high voltage supply. This eliminates the bright spot noticeable on the picture tube of some receivers.

The sound I-F take-off transformer is tuned to 21.25 Mc . and removes the frequency modulated sound I-F signal from the video I-F strip. The three transformer coupled sound I-F amplifiers are all conventional. This highly efficient circuit applies an adequate signal to the FM discriminator. The resultant audio signal is applied to the amplifier section of the associated radio chassis when used in combination models.

Models featuring TV only use a high fidelity audio amplifier Amp. 127A. This amplifier chassis has its own power supply, a 6 S 57 audio amplifier and a 6 V 6 power output. It also contains the audio cable socket and speaker socket. Its line cord plugs into the AC socket on the TV chassis.
A Phono-TV switch and a phono jack are located on the rear apron of the TV chassis in models featuring TV only. For TV reception the switch must be turned to TV. When an external record player is used, its output is plugged into the phono jack and the switch must be in the Phono position. In the Phono position, 117 V AC is applied to the Amp. 127 but not to the TV chassis. Thus the amplifier may be used independently.
The vertical and horizontal sync pulses appear on the video carrier, through the I-F amplifiers, detector and video amplifiers, between scanning lines of video modulation. Their appearance at the picture tube grid is always during retrace time, and cuts the beam to blanking level at those intervals.
The positive going signal, Fig. 4 (a), is sampled at the plate of the first video amplifier, and applied
to the grid of the first sync amplifier V-112A. This tube is biased so the video portion of the signal falls below the knee of its characteristic curve, and receives but little amplification, and the sync pulses appear on the linear portion of the curve, and are amplified, as shown in Fig. 4 (b).
The negative signal that is fed to the second sync amplifier grid V-112B is again amplified. This tube is also biased so that any noise on the crest of the pulses is removed, and any noise between the sync pulses is reduced to their amplitude. The resulting wave form is shown in Fig. 4 (c).
The signal is in a positive direction at the sync clipper grid V-113A, and in that stage the lower half of the signal is removed, leaving only clean, square sync pulses, as shown in Fig. 4 (d).

(a)

(c)

(d)

These are applied to the vertical oscillator stage V-113B, through RC-101, a filter network which passes only the low frequency vertical pulses: The vertical blocking oscillator and discharge stage, $V-113 B$, is $1 / 2$ of a 6 SN7. During non-conduction, the grid voltage is negative with respect to the cathode. The plate draws current during discharge at a rate determined by the setting of the height control R-239. Due to the coupling of the oscillator transformer, there is a corresponding voltage rise on the grid, A to B in Fig. 5. When the grid becomes more positive than the cathode, it draws grid cur rent. This quickly charges C-205, which drives the grid negative and cuts off the plate current, see B to C. Then the charge on C-205 is slowly dis charged through the vertical speed control, R-218 and R-216, which allows the grid voltage to slowly rise to its normal bias, see \mathbf{C} to A. Then plate current begins to flow again and the cycle is repeated at a frequency depending on the rate of $\mathrm{C}-205$ dis charge, which is controlled by the setting of R-218.

The frequency is adjusted at slightly slower than 60 cps . During the charging period of C-205 (C to A), the vertical sync pulse is applied just before it would "trip" in its free-running cycle. The magni tude of the sync pulse is sufficient to drive the tube into conduction, and therefore controls the fre quency of the blocking oscillator

The sync clipper output signal is also used to synchronize horizontal scanning. When free running, the Horizontal Oscillator V-117A operates at a frequency approximately correct for horizontal scanning. The resultant sine wave output is applied through T-112 to the plates of the Horizontal Discriminator V-116 180° out of phase. The horizontal sync pulses are applied to the center tap of the plate winding of the transformer, and appears at the plates of the Discriminator in phase. When the oscillator operates in synchronism with the transmitter, the pulses appear on the sine waves as one plate goes through zero voltage in a negative direction and as the other plate goes through zero voltage in a positive direction.

This may be seen in Fig. 6 (a)
Because the pulses appear when both plates are at zero voltage, there is no change in the operation of the circuit. However if the oscillator changes in frequency, the sync pulses at the detector plates do not appear when the oscillator voltage is zero, but at a point on each sine wave either before or after it goes through zero, as shown in Fig. 6 (b).

As the sine wave on one plate is of opposite polarity from the other, and as the sync pulse on one plate is of the same polarity as the other, the sync pulse will add to the sine wave that is positive, and subtract from the one that is negative. This condition will produce a voltage unbalance in the cathode circuit of the Discriminator.

This voltage difference, applied to the grid of V-115, the 6AU6 Horizontal Control stage, controls the variable reactance in shunt with the horizontal oscillator tank circuit, and causes the oscillator to change frequency in such a direction so as to come back into exact synchronism with the sync pulses.

PLATE I
PLATE 2
OSCILLATOR SINE WAVE IN PHASE WITH SYNG

(a)

platel

PLATE 2 OSCILLATOR SINE WAVE OUT OF PHASE WITH

(b)
figure 6

PART IV

ALIGNMENT

DEFLECTION CIRCUIT ALIGNMENT

The horizontal AFC circuits are to be adjusted as follows：
1．Set station selector to a channel with a station．
2．Lock the picture in with the vertical control．
3．Remove the horizontal discriminator tube （V－116，6AL5）．
4．Adjust HORIZONTAL HOLD screw（rear of chassis）until diagonal bars disappear and the picture moves slowly across the screen with the blanking bar vertical．

VIDEO I－F ALIGNMENT

1．Adjust the bias on the tuner AGC lead to -2 volts by using the variable resistor and plug assembly（illustrated in Fig．8）substituted for the AGC tube．

2．Connect the I－F signal generator to the con－ verter grid wafer（through the hole provided in the bottom of the tuner shield）and chassis ground．

3．Connect the oscilloscope to the first video plate through a $10,000 \mathrm{ohm}$ isolating resistor．The purpose of the oscilloscope is to observe the demodulated signal and make sure no overload develops．Overload is detected by no increase in output for an increase in input，and a dis－ torted waveform．
4．Set the modulated signal generator to 19.75 Mc ． and adjust the trap coil L－101 for minimum response．

PIN 8
Control for setting R－F bias．Use Plug Adeptor to plug into $A \in C$
tube socket，ViO5，$A \in C$ tube is removed．

FIGURE 8

5．Set the signal generator to 21.25 Mc ．and adjust the trap coil L－103 and the sound pick－off coil T－105 for minimum response．
6．Set the signal generator to 27.25 Mc ．and adjust trap coil L－102 for minimum response

7．Set the signal generator to 25.5 Mc ．Be sure the signal does not overload the receiver．Align the converter coil on the R－F tuner for maxi－ mum response．

8．Set the signal generator to 21.8 Mc ．and adjust the first I－F transformer T－104 for maximum response．
9．Set the signal generator to 23.8 Mc ．and adjust the second I－F transformer T－106 for maximum response．
10．Set the signal generator to 22.3 Mc ．and adjust the third I－F transformer T－108 for maximum response．

To check the overall alignment, set the bias on the tuner AGC lead to -2 volts. Connect the sweep generator to the receiver antenna terminals. Connect the oscilloscope to the first video amplifier plate through a 10,000 ohm isolating resistor. Tune the receiver and the sweep generator to channel 13.

The video I-F can now be retouched if necessary to obtain the overall frequency response curve, Fig. 9, with the picture carrier at approximately 40% of maximum response as shown in the curve drawing. In making the final touch up adjustments, it should be remembered that the converter stage and the first video I-F stage are high Q circuits and tend to control the response at the high and low frequency ends of the pass band. The third and fourth video I-F's are relatively low Q circuits and they control the response over the center of the passband. The second video I-F controls the tilt All twelve channels should be checked for alignment

FIGURE 9

OSCILLATOR ADJUSTMENT

Set channel selector on channel 13. Apply a crys tal controlled, amplitude modulated sound carrier to the receiver antenna terminals. Set the fine tuner to the mid-range position. Tune the oscillator trim-
mer for the null in the sound output. Each channel should be checked for proper tuning, the null should be more than 30 degrees rotation from either end of the fine tuner rotation.
NOTE: Complete alignment of the R-F Tuner is covered in other manuals and will not be repeated here. The schematic diagram of the tuner is shown in Fig. 12.

SOUND I-F ALIGNMENT

1. Adjust the bias on the tuner AGC lead to -2 volts by using the variable resistor and plug assembly. Set the modulated signal generator - 21.25 Mc . Connect the output cable of the generator to the grid of the first sound I-F (Pin 1 of V-101) and chassis ground. Connect an oscilloscope or VTVM to terminal 1 of T-102 through a $470,000 \mathrm{ohm}$ isolating resistor. Align both slugs of T-101 and T-102 for maximum output.
2. Connect the oscilloscope to the junction of C-126 and R-116. Align the bottom slug of the dis criminator transformer ($\mathrm{T}-103$) for minimum output. Disconnect the signal generator.
3. Connect the sweep generator to Pin 1 of V-101 and chassis ground. Connect the oscilloscope to terminal 1 of T - 102 through a 470,000 ohm isolating resistor. Check for symmetrical re sponse about 21.25 Mc .
4. Connect the oscilloscope to junction of R-116 and C-126, and check the discriminator (T-103) for symmetrical output.

4.5 MC. TRAP ALIGNMENT

Connect the modulated signal generator to the first video amplifier grid. Tune the generator to 4.5 Mc. Connect a crystal detector to the picture tube grid lead. Turn the contrast control fully counterclockwise. Observe the signal at the crystal detector load resistor on an oscilloscope and adjus the 4.5 Mc . trap for minimum output at the scope.

I-F ALIGNMENT CHARTS
I. VIDEO I-F

This chart was prepared from the preceding detailed information, and is condensed in chart form for your convenience. Caution: Set R-F bias to -2 volts as outlined in text before proceeding.

Connect Signal Gen.	Mod.	Connect Sweep Gen.	$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$		Connect Scope		Adjust		For		Remarks									
(1) Convertor Grid Wafer On Tuner	AM		19.75		Plate, Pin 2 Video Amp.		$\begin{aligned} & \text { Trap } \\ & \text { L-101 } \end{aligned}$		Min.		Adjacent Channel Picture									
(2)			21.25		$\mathrm{V}-110 \mathrm{~A}$ Through		$\begin{aligned} & \text { Trap } \\ & \text { L-103 } \end{aligned}$		Min.		Co-Channel Sound									
(3)			21.25		10,000 ohm Isolating		T-105		Min.		Sound Takeoff Coil									
(4)			27.25		Resistor		$\begin{aligned} & \text { Trap } \\ & \mathrm{L-102} \end{aligned}$		Min.		Adjacent Channel Sound									
(5)			21.8		T-104				Max.		1st I-F Trans.									
(6)			23.8		T-106				Max.		2nd I-F Trans.									
(7)			22.3		T-108				Max.		3rd I-F Trans.									
(8)			25.2		T-109				Max.		4th I-F Trans.									
(9)			25.5		Convertor				On Tuner											
(10)		Antenna Terminals Through Proper Matching Networ	Check All Channel		Same As Above		$\stackrel{\text { All }}{\text { I-F Coils }}$ Except Traps		Correct Waveform		See Notes Below									
Notes:	Slug	Freq.			Tunes				Most Affects											
	Conv.				H. F. End of Curve															
		25.521.8							SharpBroad				L. F. ${ }_{\text {Tilt }}$		of Cur					
	T-106	21.823.8																		
	T-108	23.822.3		BroadBroad			Center of Curve													
	109	25.2																		
2. SOUND I-F																				
Connect Signal Gen	Mod.	Connect Sweep Gen.	$\underset{\text { Mreq. }}{\text { Mc. }}$	ConnectScope		$\begin{aligned} & \text { Connect } \\ & \text { VTVM } \end{aligned}$		Adjust		For		Remarks								
(1) Grid of 1st Sound I-F	AM		21.25	Terminal of T-102 Through 470,000 ohms			Both Top and Bottom Slugs of T-101 and T-102			Max.										
(2) Pin 1, V-101			21.25	$\begin{aligned} & \text { Junction of } \\ & 6126, R-116 \end{aligned}$			Bottom Slug T-10.3			Min.										
(3)		$\begin{aligned} & \text { Pin 1, V-101 } \\ & \text { 1st Sound I-F } \end{aligned}$	21.25	Term. 1of T-102Through470,000 ohms			Top and Bottom Slugs of T-101, T-! 02			Symmetrical Curve										
(4)		$\begin{aligned} & \text { Pin 1, V-101 } \\ & \text { 1st Sound I-F } \end{aligned}$	21.25	25 Junction of R-116, C-126			Top and Bottom T-103			Good Disc. Curve										
		i-f ampl curve shghtly flat. TOPPED																		

PART V

SERVICE INFORMATION

PICTURE TUBE REPLACEMENT

 (HORIZONTAL CHASSIS)If it becomes necessary to replace the picture tube, it should be done in the following manner

1. Remove the tube socket from the rear of the picture tube, then remove the ion trap.
2. Remove the safety glass assembly by taking out the screws which hold the glass rail in position.
3. Loosen the nuts that secure the tube strap over the rim of the tube, and remove the strap
4. Remove the high voltage anode connector and lift out the tube.
5. If metal tube, transfer the insulating ring to the replacement tube
6. Install the HV connector, replace the support strap, and fasten it down securely with the nuts removed in step 3.
7. Loosen the thumbscrew on top of the deflection yoke, so the yoke moves freely. Loosen the two hex-head screws on each side of the deflection yoke mounting bracket, and push the top section forward until the rubber bumper fits against the bell of the tube, all the way around. Make sure tube face is vertical and neck of tube is parallel with chassis base. Then tighten the screws. If the screw heads on the left side are difficult to reach, use a right-angle spintite, an end wrench, or remove the HV compartment cover. Then press the deflection yoke forward as far as possible, and tighten the thumbscrew.
8. Tighten the three focus coil plate adjustment screws until the plate is near the deflection yoke, perpendicular to the neck of the tube.
9. Loosen the two screws which secure the focus coil, and move it so the neck of the tube is properly centered in it. Then tighten the screws and adjust the ion trap.
10. If centering is not satisfactory, move the focus coil around the neck of the tube until the pic ture is properly centered in the mask. It may be necessary to readjust the ion trap each time the focus coil is moved.

PICTURE TUBE REPLACEMENT

(VERTICAL CHASSIS)

In models where the chassis is mounted in a vertical position, the following procedure is recommended.

1. Remove the safety glass and mask assembly by taking out the screws which hold the glass rail in place.
2. Lay the cabinet on its side on a clean piece of felt or other soft material, with the chassis side down.
3. Remove the two metal wedges that brace the rim of the picture tube top and side. Two wood screws hold each in place.
4. Two $1 / 4-20$ screws secure each side of the chassis to the mounting rails of the cabinet. Remove these screws, all connections to the amplifier and pull the chassis out of the cabinet. Then proceed through steps 1 to 10 in the preceding section. Then replace the chassis.

NOTICE: In the event that proper centering can not be accomplished, remove the ion trap, turn the front edge to the rear, install and readjust it. Then proceed with the centering adjustment. If proper centering still cannot be accomplished, remove the focus coil and rotate 180°.

MODIFICATIONS AND SERVICE SUGGESTIONS

SOUND DRIFT

The 103 series chassis is mounted vertically in some cabinets, and the heat rising to the tuner may cause some oscillator drift. The changes outlined below were made to compensate for this, and, if found necessary in early chassis, may be incorporated in the field

Refer to Fig. 10 in making these modifications.
a. Replace C-21, 10 mmf . (black, brown, black, black, white) with 10 mmf . N-750 (violet, brown, black, black, white) Magnavox Part No. 250088G63. C-21 is the condenser connected from the oscillator socket to the front lug at the base of the front wafer.
b. Remove C-16, 3 mmf. N-750 (violet, black orange, black) from oscillator socket.
c. Add 3 mmf . N-1800 (orange, orange, black, orange, black, green) Magnavox Part No. 250088G57 from rear lug at bottom of front wafer (connection point for $\mathrm{C}-17$ oscillator trimmer) to chassis ground in front of oscillator socket (connection point for C-22). Keep leads as short as possible.

Check oscillator alignment on channel 13 (or on highest channel station) to see if oscillator tunes in with fine tuner not too close to either end of its rotation. If not, adjust oscillator trimmer C-17 (in front apron of tuner) with screwdriver
Check oscillator alignment on all other channels (or on all available stations) to see if all other channels tune in with fine tuner not too close to either end of its rotation. If any channel does not tune in r tunes too close to either end of fine tuner rotation, adjust the inductance of the oscillator coil for that channel. Then check all lower channels, adjusting their coils also, if necessary. Re-check tuning of all channels after last coil is adjusted.

Although the above changes should correct this difficulty, in persistent cases change $\mathrm{C}-18,100 \mathrm{mmf}$. condenser to part No. 250088-13, 100 mmf . N-750. It is also advisable to check the 22,000 ohm oscillator grid resistor R 9 , as this will sometimes change value with temperature increases. Changing C-18 and R-9 may also help in curing a similar complaint on the horizontally mounted chassis, but C-16 and $\mathrm{C}-21$ should not be changed in this case.

Note that the overall video response curve shown Note that the overall video response curve shown
this manual differs from that of the preliminary in this manual differs from that of the preliminary
manual. In cases of poor resolution, it is advisable manual. In cases of poor resolution, it is advisable
to check the I-F alignment, making sure that the curve is within the limits shown in Fig. 9.

SIGNAL OVERLOAD

In very strong signal areas, some overload may be experienced on this chassis. This condition may be corrected by changing R-164 in the AGC clamp circuit to 2.7 megohms.

VOLTAGE CHART

Measurements made with receiver operating at 117 volts, 60 cycles $A C$, with a strong signal input. Measurements made with

$\begin{aligned} & \text { Tube } \\ & \text { No. } \end{aligned}$	Tube Type	Function	Plate		Screen		Cathode		Grid	
			$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts
V-101	$\begin{aligned} & \text { 6BA6 } \\ & \text { 6AU6 } \end{aligned}$	1st Sound I-F	5	120	6	120	7	1.5	1	0
V-102	$\begin{aligned} & \text { 6BA6 } \\ & \text { 6AU6 } \end{aligned}$	2nd Sound I-F	5	120	6	120	7	1.6	1	0
V-103	6AU6	3rd Sound I-F	5	60	6	60	7	0	1	-5.8
V-104	6AL5	Discriminator	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	$\begin{aligned} & -4.5 \\ & -3.5 \end{aligned}$			$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{array}{r} 1.42 \\ 0 \end{array}$		
V.105A	1/26SN7GT	AGC Ampl.	5	-18			6	-38	4	-39
V-105B	1/26SN7GT	AGC Rect.	2	92			3	4.7	1	-3.7
V-106	6CB6	1 st Video I-F	5	140	6	140	2	. 22	1	-4.8
V-107	6CB6	2nd Video I.F	5	140	6	140	2	. 22	1	-4.2
V-108	6CB6	3rd Video I-F	5	140	6	140	2	. 36	1	-4.2
V. 109	6CB6	4th Video I-F	5	140	6	140	2	2.3	1	0
V-110A	1/26SN7GT	1st Video Ampl.	2	-16			3	-80	1	-88
V.110B	1/26SN7GT	AGC Clamp	5	0			6	0	4	-2.2
V.111	6AQ5	2nd Video Ampl.	5	170	6	200	2	2.7	7	-16
V-112A	1/26SN7GT	1 st Sync Ampl.	2	100			3	4.8	1	-3.7
V-112B	1/26SN7GT	2nd Sync Ampl.	5	96			6	1.12	4	-. 9
V.113A	1/26SN7GT	Syne Clipper	2	+200			3	8.3	1	-17
V-113B	1/26SN7GT	Vertical Osc.	5	+140			6	-80	4	-138
V-114	6V6GT	Vertical Output	3	+280	4	280	8	-47	5	-65
V-115	6AU6	Horiz. Control	5	+200	6	150	7	+3.6	1	. 24
V-116	6AL5	Horiz. Discr.	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{gathered} 0 \\ .1 \end{gathered}$			$\begin{aligned} & 7 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & -27 \\ & -28 \\ & \hline \end{aligned}$		
V.117A	1/212AU7	Horiz. Osc.	1	170			3	. 1	2	-8.6
V-117B	1/212AU7	Horiz. Disch.	6	142			8	-80	7	-110
V-118	6BG6G	Horiz. Output	Cap	Do not meas.	8	205	3	-80	5	-110
V-120	6W4GT	Damper	5	Do not meas.			3	450		
V-121	5U4G	LV Rectifier	4/6	*365			8/2	300		
V-122	(See Chart Picture Tube)			\$13KV	10	400	11	70-120	2	-5 to +50

AC voltage, measured from - 100 volt tap.

Measured with electrostatic voltmeter.
Do not measure Horizontal Output plate or
Damper plate with VTVM.
Pulses cause grid rectification in meter so reading is
meaningless, and HV pulses may damage meter

Assuming normal operation of the television receiver, voltage waveforms often do not appear as shown. This is a function of the type of
oscilloscope used, and its input cable. scilloscope used, and its input cable. These waveforms are as reproduced on a greater or lesser frequency fidelity, may have a
waveform quite different in shape and waveform quite different in shape and/or size.
Therefore, the service technician must be fa-

Grid of 1 st Video Ampl.,
pin ${ }_{30}$ c. V.p.s. 5 V . p/p.* at

Cathode of Sync Clipper, pin 3, V-113A, 'scope at c.p.s. vert.
synchronized. $50 \mathrm{~V} . \mathrm{p} / \mathrm{p}$.
 Secondary of Vert. Out-
put trans., yellow lead,
'scope at 30 c.p.s. 105

Grid of Hor. Output (junction of R-202,
R-203), s.scope at 7875

WHY THE WAVEFORMS VARY

miliar with his oscilloscope, must recognize imitations and must make mental correction if The same do not appear to be "normal." The same logic applies to the measure of D-C RCA Voltohymist, Jr. and the use of a 20.000 ohm per volt movement will indicate some D.C voltages to differ greatly from those shown.
Again, logic and reasoning must be applied,
realizing that in a high impedance circuit, the indicated voltage will be less than the actual
operating voltage. operating voltage.
meter readings for scope waveforms and D-C meter readings may be computed if all pertinent
factors are known, but the experienced tech nician makes mental correction and allowances to the end that high fidelity instruments are not
required.

O John F. Rider

PARTS LIST FOR AMP 127AA AUDIO AMPLIFIER

Function	Tube Type	Symbol	Function	Tube Type	Symbol
RF Amplifier	6BQ7	V1	Sync Amplifier	1/2 6SN7GT	V302A
RF Mixer	1/2 6u8	V2A	Sync Clipper	$1 / 2$ 6SN7GT	V302B
Oscillator	1/2 6U8	V2B	Vertical Oscil-		
lst Video IF	6 CB 6	V201	lator	6SN7GT	V303
2nd Video IF	6CB6	V202	Vertical Output	6AUSGT	V304
3rd Video IF	6CB6	V203	Horizontal AFC	$1 / 2$ 6SN7GT	V401A
4 th Video IF	6cB6	V204	Horizontal Os-		
Sound IF Ampli-			cillator	1/2 6SN7GT	V401B
fier	6AU6	V101	Horizontal Out-		
Limiter	6AU6	V102	put	6CD6G	$\checkmark 402$
Ratio Detector	6AL5	V103	HV Rectifier	1B3GT	V403
AF Amplifier \&			Damper	6ax4GT	V404
Phase Inverter	12AX7	V104	2nd Detector	IN64	
Audio Output	6V6GT	V105	Damper	$64 \times 4 \mathrm{GT}$	V405
Audio Output	6V6GT	V106	LV Rectifier	5U4G	V501
Video Amplifier	6CB6	V205	LV Rectifier	5U4G	V502
AGC Amplifier	6AU6	V208	Picture Tube	$27^{\prime \prime}$ glass	V207
Noise Inverter	1/2 l2AX7	V301A		rectangular	
Syme Separator	$1 / 2$ 12AX7	V301B			

CIRCUIT DESCRIPIION

General

This chassis is designed to power a $27^{\prime \prime}$, 90 degree picture tube and supplies full sweep at a maximum high voltage consistent with the tube rating. Light output (using the aluminized tube) is comparable to or preater than that of the smaller screen chassis. A total of 27 tubes (including picture tube and rectifiers) plus a crystal detector is used

The design features a cascode RF tuner, an increased sensitivity full bandwidth video IF amplifier, and wide band video amplifier to provide a high contrast, high definition picture. Other special features include a high gain intercarrier sound IF amplifier with limiter and ratio detector, and a 10 watt push-pull audio amplifier. There are direct provisions for a UHF tumer, which can be added when needed.

The horizontal output system is of the new efficient auto trans former type, providing greater high voltage with full 90 degree deflection. The vertical deflection system provides full sweep with positive interlace.

Further features employed in the 107 design are, keyed AGC and noise inverter for optimum fringe area performance, and the "synchroguide" horizontal oscillator and AFC system.

The 107 design employs a single shallow-pan chassis for ease of service. The plug-in deflection yoke and $27^{\prime \prime}$ picture tube mount separately in the cabinet. The chassis is designed for any mounting position including side mounting.

The 107 chassis is rated for 117 volts 60 cycles AC line poten tial with power consumption of 315 watts. Sufficient additional power capacity for the UHF tuner has been included in the design of the power supply.

Cascode RF Tuner
The cascode RF tuner consists of an RF amplifier V1 (6BQ7) and mixer-oscillator V2 (6U8). A l2-position channel selector rotary switch is used with a concentric shaft which operates the variable fine tumer. For ease of alignment, inductances adjustable by bending or spreading are provided on every channel.

As shown in the schematic diagram, the secondary of the antenna transformer $T l$ is tuned for each channel by shunting it with the proper value of inductance (Sl, Section 4) to make it resonate with the RF tube Vl ($6 B Q 7$) input capacity. $L l$ and $C l$ form an IF trap, which is tuned to 44.5 MC for best average IF rejection on all channels. To further minimize IF interference an external IF trap assembly is available for those few areas where the overall IF interference is severe. These traps are series-connected in the receiver antenna lead-in and should be tuned to give maximum rejection at the undesired IF frequency.

Tuning of the RF plate and mixer grid is accomplished by wafer sections 3 and 2, which are identical to the RF grid wafer. Coupling capacitors C6, C9 and C10, connected between appropriate points provide the necessary coupling for the proper bandpass on all channels Shields between the RF grid, RF plate and mixer grid wafers reduce stray coupling. The $6 B Q 7 \mathrm{RF}$ tube is used in a cascode circuit (triode 1 grounded cathode, triode 2 grounded grid) to minimize triode feedback so that the superior signal-to-noise ratio of a triode is realized with good stability.

The pentode mixer V2A ($1 / 26 \mathrm{U} 8$) is used because of its low feedback characteristic with 41 MC [F

To reduce high band radiation from the main TV chassis, common low side capacity coupling was used to the lst IF tube grid circuit and the tuner chassis was connected to the main chassis only at the tuner rear apron.

Video IF

The video IF amplifier operates at a picture carrier frequency of 45.75 MC, with a design bandwidth of 4.0 MC at -6 db and consists of a double-tuned circuit (low-side capacity coupled), followed by a staggered quadruple. This double-tuned circuit consists of two similar coils that are physically separated, one in the tuner (converter plate coil,) and one in the grid circuit of the lst IF amplifier (T2O1).

The remainder of the IF amplifier consists of four stagger-tuned stages, using 6CB6's for maximum stable gain. Inductively coupled to the lst, 2nd and 3rd IF plate coils are three traps, similar to that on the IF input coil. Two of these traps are tuned to 47.25 MC (adjacent channel sound), and one to 39.75 MC (adjacent channel picture). An additional 41.25 MC trap is capacity-coupled to the plate of the 2nd IF tube to provide additional co-channel sound rejection.

The lst and 2nd IF stages are in series, thus reducing the drain on the low voltage supply and at the same time providing a relatively "Stiff" effective "B" voltage for better AGC action. Similarly, the 4th IF tube is in series with the sound IF amplifier.

To provide stability, all IF coils and traps, with the exception of the capacity-coupled 41.25 MC trap, are completely shielded and the detector IN64 is enclosed in the 4th IF can. Two RF chokes (L201 and the RFC in 4 th IF assembly) with a self-resonant frequency of 43 MC provide isolation of the IF amplifier and prevent stray coupling of the RF component.

Video Detector \& Sound IF System

The 107 chassis employs intercarrier sound IF (4.5 MC) produced by the video detector. The latter comprises a crystal diode (IN64) located accessibly within shield can (T-205) also containing the final IF bifilar coil, bypass condenser and IF stabilizing filter choke.

The 4.5 MC intercarrier sound IF signal is amplified by the single tuned lst sound IF amplifier (VIOl) and in turn fed to the limiter stage (V102). The limiter stage drives a conventional ratio detector circuit which provides additional AM rejection resulting in high quality FM sound performance in the recovered audio. It is to be noted that both grid and plate limiting occu in the limiter stage.

The audio amplifier comprises a resistance coupled voltage amplifier phase inverter stage (V104) driving a pair of 6V6GT push-pull output tubes giving 10 watts of high quality audio output. A phono switch and input jack is provided at the rear of the chassis for convenient use with an external phono. Provision is also made for connecting an external radio tuner to feed the TV audio amplifier.

Video Amplifier

The video amplifier employs two stages in order to provide full bandwidth with a good margin of drive voltage (up to $130 \mathrm{~V} . \mathrm{P}-\mathrm{P}$) for the picture tube. The first stage is a 6CB6 (V205) direct coupled to the video detector for constant level noise clipping. Sync and AGC takeoff is from the plate side of V205, the AGC tube (V208) being DC coupled to this point.

The video signal is AC coupled to the grid of the video output tube (V206). By means of grid current DC restoration takes place at this point. The combined tube characteristics of the two stages are such that good contrast in the vicinity of "white" is achieved and DC restoration on the output tube grid maintains this condition with re-
lative black/white content changes in the signal. Partial AC coupling from the output peaking circuit (L205 and R223) to the picture tube grid is employed in order to render less critical the variation in background (DC) component when switching between channels. THE LOAD RESISTOR (R223) IS WIRE WOUND AND HAS AN AMOUNT OF INDUCTANCE WHICH IS A PART OF THE COMPENSATION EMPLOYED AND SHOULD NOT BE REPLACED BY A NON-INDUCTIVE RESISTOR.

Noise Inverter

The noise inverter is for the purpose of removing noise bursts that exceed the sync pulse level, from the signal that is fed to the AGC and sync circuits. The noise inverter (one-half l2AX7, V301A) is a grounded grid amplifier that forms a parallel signal path around the video amplifier tube. Since it is cathode driven, the noise in verter signal output is in phase with the detector signal while the video amplifier output is 180° out of phase.

The noise inverter is biased beyond cutoff, enabling it to conduct only on noise signals which exceed the sync tips at the detector

Bias for the noise inverter is obtained from the grid bias voltage of the horizontal output tube by means of a voltage divider in the output tube grid return. A potentlometer (R304) provides for independent adjustment of noise inverter bias and horizontal drive. The noise inverter bias usually is between -9 V and -13 V as measured with a VIVM.

This chassis uses keyed AGC for improved noise immunity and reduction of airplane flutter effects. A series fed pulse to the AGC amplifier was chosen because of the ease of filtering the derived AGC voltage. A more rapidly acting AGC is therefore possible.

The RF AGC voltage is considerably delayed to reduce the medium signal noise content of the picture. The RF amplifier grid to cathode conduction is used as a clamp for RF bias delay in the AGC system.

Sync Separators

The sync separator consists of three triode sections (V301B), V302A, V302B) which are, respectively, the sync separator, sync amplifier, and sync clipper.

The sync separator is direct coupled to the sync amplifier operating in its positive grid region. The sync clipper is AC coupled to the sync amplifier and levels off sync tips at a uniform level. The sync clipper also serves as a phase-splitter and supplies a negative sync signal at the cathode for the vertical system, and a positive sync signal at the plate for the horizontal system.

Vertical Sweep Oscillator

The vertical sweep oscillator is a plate to grid multivibrator using a 6SN7 dual triode. The integrated vertical sync is fed to the grid of the first triode section and the output wave is taken from the plate of the second triode (vertical discharge V303B).

The feedback circuit in the multivibrator is from the peaking resistor to the grid of the first triode. PC3Ol is a printed circuit integrating network and this together with an additional integrating section (R3l2 and C307) for improved interlace provides the vertical sync pulse.

Vertical Output

The vertical output amplifier is a type 6AU5GT (V304) pentode connected, and transformer coupled to the yoke.

The capacitor across the transformer secondary reduces horizontal pulses on the vertical yoke winding and improves interlace.

Retrace blanking is obtained by superimposing part of the vertical retrace pulse on the picture tube bias so that the picture tube is biased beyond cut-off during retrace.

Horizontal Oscillator and Frequency Control

The horizontal oscillator, discharge and AFC circuits utilize a double triode tube 6SN7, ($\mathbf{V} 401$). The frequency of the blocking oscillator, V401B, can be adjusted by the slug of L40l (accessible at rear of chassis). The frequency of oscillation is stabilized by a tuned circuit. The inductance for the tuned circuit is 1401 and the capacity is composed of C410, C 41 l and C412. The generated sawtooth reaches the grid of the output tube V402 through the capacity divider C410-C411. The latter, marked horizontal drive, is variable and controls the amount of drive on the grid of V402 (6CD6G). This adjustment will affect the horizontal linearity, high voltage and inverter tube bias and to a slight degree the frequency. Feedback capacitor (C408) affects the frequency slightly.

Synchronization is accomplished by means of the AFC, V401A, as follows: A complex wave consisting of the sync pulse and a parabola is fed to the grid of this triode. The sync pulse rides near the peak of the complex wave. The tube is biased from the oscillator grid to such a value that plate current flows only during the positive peak portions of the complex wave. A portion of the integrated cathode voltage is applied to the oscillator grid. Its magnitude controls the frequency of the oscillator in such a way as to automatically lock it in synchronism.

Horizontal Output and Damper

The function of the output tube V402 is to supply sufficient current of the proper waveform to the horizontal deflection coils for normal horizontal scanning of the picture tube. The function of the damper tubes (V 404 and V 405) is to damp oscillations of the yoke current following retrace time and thus help provide a linear trace. Two dampers are used due to the greater current requirement for 90° deflection. Because the output transformer is the auto transformer type, "inverted" damper tubes are required, and for this reason such tubes must withstand high heater-
to-cathode potentials. Other functions of this circuit are to provide a high amplitude pulse for high voltage and to recover a substantial part of the energy in the system. Part of the energy recovered appears in the form of a boost voltage at the damper cathode and part in actual deflection current in the yoke.

The output transformer is a highly efficient auto transformer, and special insulation is used to protect it against H.V. breakdown. Normal retrace time in the system is 9 to 10 microseconds. Width is controlled by L402 and linearity is controlled mainly by L403; the drive control influences linearity to some extent.

High Voltage Supply

The high voltage is supplied by part of the energy stored in the horizontal system. When the 6CD6G plate current is cutoff by the horizontal oscillator pulse, a high positive pulse of voltage appears on the high voltage winding of T4Ol due to the rapidly collapsing field in the system. This high positive pulse is rectified by the H.V. rectifier V403 (1B3). The total high voltage applied to the picture tube is 20 KV .

Anastigmatic Deflection Yoke \& Focusing

The anastigmatic deflection yoke has the windings distributed in a manner that gives very little deflection spot defocusing. This also produces a slight amount of raster distortion. Beam straighteners are used to correct this slight distortion. Otherwise the yoke is conventional in electrical characteristics.

The 90° deflection requires that the yoke be designed physically shorter than 700 systems in order to minimize neck shadows. This makes the yoke less sensitive, thus requiring greater deflection power and consequently more current.

A permanent magnet focus unit which has a centering plate on the front and the focus adjusting screw at the rear of the assembly is used.

Low Voltage Supply

The low voltage power supply provides the filament and plate voltages for the receiver. Two 5U4G (V501 and V502) rectifier tubes are used to supply nominal 300 volts DC input to the filter at approximately 435 ma . The power transformer has one 6.3 volt and one 12.6 volt center tapped filament winding. The 12.6 volt winding is normally grounded at midpoint and supplies filament current for all of the tubes except V207, V101, V202, and V208. These four tubes are supplied by the second winding. This winding is connected to a 140 volt point so that the filament to cathode rating of the tubes is not exceeded.

a. Using a 4.5 V " C " battery with a tap at 1.5 V , connect the posiitive terminal to ground. Connect the -1.5 V tap to the junction of R234 and R235, the R. F. grid return. Connect the -4.5 V terminal to the junction of R2Ol and C2Ol, the I.F. grid return.
b. Connect oscilloscope and/or VTVM across R2l6, the video detector load resistor. The oscilloscope is preferable as overload is more easily detected.
c. Connect an AM signal generator to the convertor grid circuit. This connection can be made to convertor grid wafer of tuner through hole in bottom of tuner shield.
d. Align the following slugs for indicated output.

* The convertor coil and the bottom slug of T2Ol form a double tuned circuit and should be adjusted as follows:
(1) Detune convertor coll.
(2) Adjust T2Ol for maximum output.

3) Adjust convertor coil for maximum output. (4) Do not reset T201.
\# If any of these slugs require more than 3 turns readjust associated trap (top slug).
e. Remove signal from convertor grid and loosely couple signal generator for marker injection.
f. Set receiver and R-F sweep generator to channel 4 and connect R-F sweep generator to antenna terminals of receiver. Note: If balanced output cable for sweep generator is not available, the impedance matching network shown below should be used.

g. Retouch I-F slugs (bottom), if necessary, to obtain curve shown. If curve falls within prescribed limits do not readjust.
h. Check all channels for symmetry and bandwidth. If it is necessary to retouch any of the I-F adjustments, only the following should be adjusted.

To correct for excessive tilt, adjust 4 th I-F (43.1 MC) coll. To adjust low frequency side of curve, adjust 2nd I-F (41.8 MC) coil. For high frequency correction, adjust the lst \& 3rd I-F coils (45.2 MC) and (45.3 MC).
2. 4.5 MC TRAP (LIOL) ADJUSTMENT
a. Remove V203, 3rd video I-F amplifier to prevent noise from masking output indication.
b. . Connect 4.5 MC AM signal to terminal " D " of T205, video detec tor. Signal Input must not exceed 0.2 V. RMS.
c. Connect VTVM with crystal probe to grid lead of picture tube.
d. Turn contrast control to full clockwise position and adjust core of LlOl for minimum output.
3. SOUND I-F ALIGNMENT
a. Connect 4.5 MC signal to terminal "D" of T205 as in 4.5 MC trap adjustment.
b. Connect VTVM from pin 7 of V103, 6AL5 to ground.
c. Adjust Llo2, Sound I-F coil, and primary of ratio detector transformer (bottom of Tlol) for maximum output. Reduce signal to maintain output below -5.0 volts to prevent overload.
d. Remove VIVM and connect negative lead to the junction of R109 and Rllo, and probe to Junction of R108 and Cll2.
e. Adjust secondary (top) of ratio detector transformer for zero reading.
ing secondary should require more than 3 or 4 turns for proper adjustment, repeat primary adjustment, as in (b) and (c).
4. HORIZONTAL OSCILLATOR AND AFC ALIGNMENT:
a. Tune set to weakest channel available.
b. Set noise bias control fully clockwise. Then set horizontal drive trimmer about $1 / 2$ turn from full clockwise position as a preliminary setting.
c. Short terminals "C" and " D " of horizontal stabilizing coil (L4Ol), and turn horizontal hold control to full clockwise position.
d. Adjust Horizontal Frequency coil (on rear chassis apron) until picture locks horizontally.
e. Adjust Horizontal Width, Drive and Linearity as follows:

1. Adjust Horizontal Drive trimer for maximum sweep. Turn counterclockwise until compression appears at center (drive lines),
then clockwise until compression is just eliminated.
2. Adjust Horizontal Linearity coil (L4O3) on rear chassis apron for proper linearity. Two positions may be found which appear correct. The proper adjustment is that with the core further out (counter-clockwise position).
3. Adjust Horizontal Width control (I402) on rear chassis apron for proper picture size.
P. Remove short from terminals "C" and "D" of stabilizing coil and connect oscilloscope through approximately 15 MF capacitor to terminal "C" above.
g. Adjust stabilizing coil (L401) inside chassis so that sharp and rounded peaks of the pattern on the oscilloscope are of equal amplitude. If necessary, horizontal hold control may be adjusted to maintain sync.
h. Remove oscilloscope lead and turn horizontal hold to full clockwise position.
4. Turn Brightness Control to full clockwise position and adjust Horizontal Frequency control until blanking bar appears at left side of picture. Then back off until blanking bar and wiggle at top of picture is not present.

VOITAGE CHART 107 SERIES

$\begin{aligned} & \text { TUBE } \\ & \text { NO. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	FUNCTION	PLATE		SCREEN		CATHODE		GRID	
			PIN	VOITS	PIN	VOLTS	PIN	Volts	PIN	VOLTS
Vl	6BQ7	R-F Amp	$\frac{1}{6}$	$\begin{array}{r} 180 \\ 85 \end{array}$			3	85	2	85
v2	6U8	Mixer Osc.	6	$\begin{aligned} & 180 \\ & 135 \end{aligned}$	3	100			$\begin{aligned} & 2 \\ & 9 \end{aligned}$	$\begin{array}{r} -4 * \\ -5.5 * \end{array}$
Viol	6au6	Sound I-F Amplifier	5	290	6	290	7	150	1	145
V102	6aU6	Limiter	5	180	6	180	7	110	1	105
V103	6AL5	Ratio Det.	7	-25						
V104	12AX7	Audio Amp \& Phase Inverter	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	$\begin{aligned} & 170 \\ & 170 \end{aligned}$			3 8	2 2		
V105	6v6GT	Audio Output	3	295	4	290	8	20	5	0
V106	6v6GT	Audio Output	3	295	4	290	8	20	5	0
V201	6CB6	lst Video I-F	5	150	6	150	2	. 25	1	-5
v202	6CB6	2nd Video I-F	5	285	6	285	2	175	1	170
v203	6cB6	3rd Video I-F	5	140	6	140	2	. 25	1	-5
V204	6cb6	4th Video I-F	5	145	6	140	2	2.5		
V205	6CB6	Video Amp.	5	180\#	6	110\#			1	-1.0 \#
V206	6K6GT	Video Output	3	160*	4	145				
V207	See List	Picture Tube	Cap	20KV	10	570	11	105\#	2	45
V208	6aU6	AGC Amp.	5	-. 5	6	615	7	210	1	180
V.301	12ax7	Noise Inv. Sync Sep.	1	$\begin{array}{r} 25 \\ 110 \end{array}$			3	-1	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	-8.5 -14
V.302	6SN7GI	Sync Amp. Sync Clipper	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{array}{r} 185 \\ 80 \end{array}$			6 3	$\begin{array}{r} 110 \\ 3 \end{array}$	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	100 -1
V303	6SNTGT	Vertical Osc.	2 5	$\begin{aligned} & 60 \\ & 80 \\ & \hline \end{aligned}$			3 6	25 25		
V304	6AU5GT	Vertical Output	5	255	8	190	3	25	1	0
V401	6SN7GT	Horizontal AFC. Horizontal OSC.	$\begin{array}{r} 5 \\ 2 \\ \hline \end{array}$	$\begin{array}{r} 250 \\ 450 \\ \hline \end{array}$			6	-9.5\#	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{array}{r} -45 \\ -125 \\ \hline \end{array}$
V402	6CD6G	Hor. Output	Cap	Do not measure	8	160			5	-40
V403	1B3GT	H.V. Rectifier	Cap	Do not measure						
V404	6AX4GT	Damper	5	260			3	620		
V405	6AX4GT	Damper	5	260			3	620		

* Varies with channei selector switch position.

Varies with control setups.

smboL	deschiption	part no.
T101	Transformer, Ratio Detector	360482-1
${ }_{\text {T201 }}$	Coil ${ }^{\text {e }}$ Trap, I.F. Input	360545
${ }_{\text {T203 }}$		360546-1
0.4	Coill $\&$ Trap, 3 rd $\mathrm{I} . \mathrm{F}$.	360546 -1
${ }^{1} 205$	Coil $\&$ video Det. I, ${ }^{\text {F }}$	360549-1
T301	Transformer, Vericical output	330035-1
T401	Transformer, Horizontal Output $\&$ Hi Voltage used with 360556-1 Deflection Yoke Transformer, Horizontal Output $\&$ Hi Voltage used with 360556-2 Deflection Yoke	360552-1
${ }^{1501}$	Transformer ${ }^{\text {Power }}$	
L101	Coil, 4.5 ${ }^{\text {ck }}$ Sound Takeoft	$360535-1$
L102	Coil, 4.5 MC Sound I.F.	360481-1
L201	Coil, Peaking, ouh, Orange-Orange-Green	360443-23
L202	Coil, Peaking, 103 uh, Yellow-Yellow-Yellow	360443-24
L203	Coill, Peaking, 360 uh, Gray-Gray	360443-19
L204	Coil, Peaking, 93 uh, Green-Green-Green	360443-25
L205	Coil, Peaking, 180 uh, Blue-Blue-Blue	360443-26
L206	Trap Coil assembly	360554-1
L401A, ${ }^{\text {B }}$	Transformer, Horizontal oscillato	360499-3
L402A, B	Transformer, Keyer \& Horizontal width	360534-1
${ }_{\text {L404 }}$	Coil, Horizontal Linearity	360533-1
L404	Deflection Transformer	360556-1
	Deflection Yoke used with 360552-2 Hi Voltage	
L501	Transforme	${ }_{320064-1}^{36056-2}$
ClO_{101}	Capacitor, Ceramic, ${ }^{10} \mathrm{mmf}$, \pm 10\%, 500 V	250207-3
C102	Capacitor, Ceramic, $10 \mathrm{Kmmf.}, \mathrm{GmV}$,	250175-2
C103	Capacitor, Ceramic, 5000 mmf, Comv, 500 V	250175-1
C104	Capacitor, Ceramic, 5000 mmf, Ginv, 500 V	250175-1
${ }_{C} 105$	Capacitor, Ceramic, 5000 mmp , Ganv, 500 V	250175-1
${ }_{\text {C106 }}$		${ }_{\text {250159-80 }}$
C108	Capacitor, Mica, ${ }^{\text {chem mmf }}$, $\pm 10 \%$, 500 V	250159-79
C109	Capacitor, Ceramic, 5000 mmf, Guv, 500 V	250175-1
${ }_{C 111}$	Capacitor, Ceramic, 5000 mmp , GMv, 500 V	${ }^{2501755-1}$
C112	Capacitor, Mica, 470 mmf , $\pm 10 \%$, ${ }^{\text {coov }}$	250159-90
$\mathrm{C}_{1} 113$	Capacitor, Ceramic, $\mathbf{1 0 0 0} \mathrm{mmf}$, 3iov	25008B-46
${ }^{6} 114$	Capacitor, Paper, . 0033 mfd , 600 V	${ }^{250201-4}$
${ }_{C}^{C 115}$		$\left\lvert\, \begin{aligned} & 250201-7 \\ & 250159-90\end{aligned}\right.$
C_{118}	Capacilor, Paper, . 0477 mid ${ }^{\text {a }}$ (600 V	$250201-11$
Cl_{119}	Capacilor, Paper, . 047 mfd , 600 V	250201-11
Cl^{120}	Capacitor, Paper, . 0015 mfd , 600 V	250201-2
${ }_{C}{ }_{C} 2121$		$\xrightarrow{250201-2}$
C202		250175-9
$\mathrm{C}_{2} 23$	Capacitor, Ceramic, 470 mmf , 450 V	250175-9
${ }^{\text {c204 }}$	Capacitor, Ceramic, 470 mmf , 450 V	250175-9
${ }_{\text {C205 }}$		250175-9
${ }_{6} 207$		250175-9
C208	Capacitor, Ceramic, $470 \mathrm{mmf}, 450 \mathrm{~V}$	250175-9
C209	Capacitor, Ceramic, $470 \mathrm{mmf}, 450 \mathrm{~V}$	250175-9
${ }_{C}^{\text {cher }}$		${ }_{\text {250175-9 }}$
${ }^{\text {C212 }}$	Capacitor, Ceramic, 680 mmf , 450 V	250218-4
${ }_{C 214}^{C 213}$		${ }^{250175-9}$
C215		${ }_{250207-46}$
C216	Capacitor, Paper, . 1 mfd , 400 V	250211-13
C217		${ }^{250175-7}$
C219	Capacitor, Paper, . $0033 \mathrm{mfd}, 600 \mathrm{~V}$	${ }^{250201-4}$
${ }_{6} 222$		${ }_{250202-15}$
C_{223}	Capacitor, Paper, 01 mfd , 600 V	${ }^{250201-7}$
${ }_{\text {C224 }}$		250202-13
C226	Capacitor, Paper, : 01 mfd , 600 V	${ }_{250201-7}$
C227	Cspacitor, Paper, . 22 mfd, 200 V	250202-15
C228	Capacitor, Ceramic, 1 mmf, $\pm 10 \%$, 500 V	250209-114
C229		250218-4
C303	Capacitor, Paper, Capacitor, ceramic	$\underbrace{250202-15}_{250175-3}$
		250175-3

Smbol	deschiption	Part no.
R222	Resistor, Carbon, 5600 ohms, ${ }^{2 W}$	0106-71
${ }^{\text {R223 }}$	Resistor, Wire wound, 3300 ohas, \pm 5\%, 10W	240021-31
R225	hesistor, Carbon, Resistor, a	230104-102
R226	Resistor, Carbon, 68 ohms ${ }^{\text {a }}$, $1 / 2 \mathrm{~W}$	230104-98
R227	Potentiometer, (Brightness) 100 K ohms, $1 / 4 \mathrm{~W}$	$220126-31$
R228	Resistor, Carbon, 47 K ohms, $1 / 2 \mathrm{~W}$	230104-82
R229	Resistor, Carbon, 150k ohms, $1 / 2 \mathrm{~W}$	230104-88
${ }_{\text {R232 }}^{\mathbf{R 2 3 1}}$	Resistor, Carbon, 180k ohms, $1 / 2 \mathrm{w}$	230104-89
R_{233}		230104
34		230104-80
R235	Resistor, Carbon, 680 K ohms, $1 / 2 \mathrm{w}$	230104-96
R236	Resistor, Carbon, 39 K otims, $1 / 2 \mathrm{~W}$	230104-81
R237	Resistor, Carbon, 270 K ohns, $1 / 2 \mathrm{~W}$	230104-91
R238	Resistor, Carbon, 100 K ohns, $1 / 2 \mathrm{~W}$	230104-86
R241	Resistor, Carbon, 6800 ohts, $1 / 2 \mathrm{w}$	230104-72
R^{242}	Resistor, Carbon, 15 K ohms, $1 / 2 \mathrm{w}$	$230104-76$
R243	Resistor, Carbon, 3900 ohns, $1 / 2 \mathrm{~W}$	230104-69
al	Resistor, Carbon, 22 L Ohas, $\pm 10 \%, 1 / 2 \mathrm{w}$	230104-78
${ }_{\text {R302 }}$	sistor, Carbon, 270 c ohns, $1 / 2{ }^{\text {w }}$	230104
03		230104-84
R304	Porentiometer, (Noise bias) $500 \mathrm{~K}, 1 / 4 \mathrm{w}$	220126 -35
R305	Resistor, Carbon, 470k ohus, $1 / 2 \mathrm{w}$	230104-94
${ }_{\text {R }}^{\text {R306 }}$	Resistor, Carbon, 4.7 Megohm, $1 / 2 \mathrm{~W}$	0104-106
\%07	hesistor, Carbon, 22 K ohms, $1 / 2{ }^{\text {w }}$	2301
${ }_{\text {R309 }}$	hesistor, Carbon, 56 K ohas, $1 / 2 \mathrm{~W}$	230104-83
R310	Hesistor, Carbon, Hesistor, Carbon, 3900	230104-98
R311	Resistor, Carbon, 390 ohms, $1 / 2{ }^{W}$	${ }_{230104-57}$
12	Hesistor, Carbon, 8200 ohms, $1 / 2{ }^{\text {W }}$	230104-73
	Resistor, Carbon, 100K ohms, 1 w	230105-86
R314	Potentiometer, (Vertical Linearity) 2.5 Megohm, 1/	${ }^{220076-5}$
16	Potentioneter (Vericical Hold) ${ }^{\text {a }}$ (Megoha, $1 /$	230104-302
R317	Resistor, Carbon, 1.5 Megoha, $1 / 2 \mathrm{~W}$	230104-100
R318	Resistor, Carbon, 22 K ohas, $1 / 2 \mathrm{~W}$	230104-78
R319	Resistor, Carbon, 1000 ohns, $1 / 2 \mathrm{~W}$	230104-62
${ }^{\text {R320 }}$	Potentiometer, (Vertical Height) 400 ohms,	220126-34
R322		${ }_{\text {230104-100 }}$
R323	Resistor, Carbon, 4700 ohns, ${ }^{\text {l/w }}$	${ }_{\text {230105-70 }}$
$\mathrm{R}^{3} 24$	Resistor, Carbon, 15 K ohas, ${ }^{1 w}$	230105-76
R325	Resistor, Carbon, 2.2 Megohm, $1 / 2 \mathrm{~W}$	230104-102
${ }_{\text {R }}^{\text {R402 }}$		230104-87
R403		
R404	Resisior, Carbon, 3900 ohns, $1 / 2{ }^{2}$	230104-69
$\mathrm{R}^{\mathrm{R} 405}$	Resisior, Carbon, 330k ohms, $1 / 2 \mathrm{~W}$	230104-92
${ }_{\text {R407 }}$		230104-85
R408		230104-92
R409	Resistor, Carbon, 150 ok ohms, $1 / 2 \mathrm{~W}$	230104-88
R410	Resistor, Carbon, 150k ohms, $1 / 2{ }^{2}$	230104-88
R411		230104-73
R413	Resistor, Carbon, lok ohms, $1 w$	230105-74
R414	Resistor, Carbon, 100 ohms, $1 / 2{ }^{\text {W }}$	230104-50
R416	Resistor, Carbon, 8200 ohms, ${ }^{2 w}$	230106-73
R418	Resistor, Carbon, 15k ohms, ${ }^{\text {Resistor, }}$ Carbon, ${ }^{\text {d }}$	${ }^{230105-76}$
8419		$\xrightarrow{230107-2} \mathbf{2 3 0 1 0 5 - 9 8}$
R420	Resistior, Carbon, 8200 ohms $\mathbf{1 / 2 W}$	230104-73
${ }_{\text {H501 }}$	Resistor, wire Wound, 105 ohms, $\pm 5 \%$, 15 W	240021-34
${ }_{\text {PC301 }}$	Resistor wire Wound, 650 ohms, ± 5, 10 W	${ }^{240021-33}$
J101	Socker, Phono	${ }_{180466-1}$
${ }^{103}$	Socket, Speaker, 7 Pin	180504-16
J401	Socket, Yoke	
J501	Socket, A.C.	
¢	${ }_{\text {Fuse, }}$ Switch, ${ }^{\text {20A, }}$, Slow-H1ow	80530-1
S101	Switch, Phono	60229-1
		65377
	Ion Trap	
	Acceptable substitute	360492-4

General Information

OW SUPPLY-These receivers are designed to operate from a power source of 117 volts at 60 cycles A.C. It will, how ver, operate satisfactorily from a line whose voltage is no dice than 105 volts, or no greater than 125 volts at 60 cycle A.C. Always measure the voltage of the line with a dependabl .

TUBES-In all receivers, all tubes, including the picture tube are shipped properly mounted in their sockets. Check to se that all tubes are firmly seated since some may have. worked loose during shipment. See Picture Tube Handling Precaution below
ANTENNA-The installation and orientation of an antenna is one of the most important single factors in realizing optimum performance from a television receiver. An improperly oriented or poorly matched, or unwisely chosen antenna can completely For these reasons, choose, locate and install your antenna care fully, especially in poor signal areas. All receivers in the series are equipped with a built-in antenna which perform satisfactorily in locations where good signal strength is avail able, and where a minimum of noise is present.
When an outdoor antenna must be installed, use a standard proved antenna, having a 300 ohm impedance, and match with a balanced 300 ohm transmission line. Orient the antenn for maximum signal strength from the greatest number tations, and for the minimum amount of interference and the receiver is to be installed beyond the
range of good signal strength (about 30 miles) use a stacked array, being careful to match the impedance of the antenna, transmission line, and receiver ($\mathbf{3 0 0} \mathrm{ohms}$). If additional gain is required, try a "booster" for improvement of signal-to-noise ratio
In critical locations, where the receiver is surrounded by sev, eral stations, most of which a.e located beyond the 30 mile radius, a careful appraisal of the terrain and the measurement of field strength will usually yield acceptable television operation where a haphazard installation might have failed. To make full use of the directional and "gain" properties of a stacked array and booster, the following procedure is recommended

1. Measure the field-strength of the transmitted signal from each of the desired stations on a calibrated field-strength meter.
2. Tabulate your results and conclude which stations are within reasonable quality distance. A field-strength of 300 sults. A field-strength measurement of 100 microvolts-per-meter or lower may not be satisfactory without the per-meter or lower
use of a "booster."
3. Let the consumer decide which of the acceptable channel he-desires, and orient the antenna to receive maximum he-desires, and orient the antenna
signal from those desired stations.
. Always twist the 300 ohm lead-in about once for every foot of length to minimize transmission line noise pick-up.

picture tube handling precautions

Extreme care should be used in handling the picture tube. The picture tube bulb encloses a high vacuum and, due to its large f the picture tube, particularly the rim of the viewing surface
must not be struck, scratched, or subjected to more than mod erate pressure at any time. If the yoke sticks or fails to slip cause of the trouble. Do not under any circumstances forc the yoke.

high Voltage warning

OPERATION OF THIS RECEIVER WITH INTERLOCKED BACK COVER REMOVED INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THIS RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT.

IMPORTANT—With the exception of the next paragraph, all information pertains to $16^{\prime \prime}, \mathbf{1 7 \prime \prime}, 20^{\prime \prime}$ and $21^{\prime \prime}$ screen receivers.

IMPORTANT

The Series 112 and 113 Television Receivers are shipped with the ion trap (beam bender) and centering magnet taped to the neck of the electrostaticfocus picture tube. These components are very carefully adjusted and then taped to prevent accidental movement during shipment. The adjustment of the ion trap is especially critical in the electrostatic-focus
type of picture tube. The electron gun of the picture tube can be damaged within seconds as a result of a misadjusted ion trap. DO NOT READJUST THE ION TRAP UNLESS ABSOLUTELY NECESSARY. If B adjustment is required read the instructions in paragraph B of the Service Adjustments on page 3 before turning the receiver on.

BUILT-IN ANTENNA INSTALLATION

This receiver is shipped with the built-in antenna ompletely connected. A few precautions should be observed, upon installing this receiver, if optimum performance is to be obtained.

1. Try to locate the receiver in such a position so that:
a) All requirements for good viewing position and ventilation are satisfied.
b) It is near a $105-125$ volt 60 cycle A.C. power outlet.
c) The back of the receiver is parallel and close to a window which faces in the general direction of the transmitters.
d) It is not adjacent to a street having heavy automobile traffic which may cause ignition interference
2. After performing the Service Adjustments outlined on the following pages, try a few stations and observe if their signals are received with suf-
ficiently good quality so that the receiver may be left in this position
3. If signal strength and noise conditions are known to be good and operation is not satisfactory, it may be best to try a new receiver location, choosing one where the receiver will be rotated 90 degrees relative to its former position.
If, however, it is found that the receiver is not permitted to perform at its best because of limitations of the built-in antenna in a noisy or weaksignal area, an outdoor antenna should be installed.

To connect an outdoor antenna to this receiver :

1. Loosen the two screws on the antenna terminal strip.
2. Disconnect the existing built-in antenna wires
3. Connect the 300 ohm lead-in from the external antenna to the terminals and tighten the screws.

SERVICE ADJUSTMENTS

Below is given a description of the steps required in adjustment of the Beam Bender and Deflection Yoke nd the adjustment of the Focus, Vertical Size and Linearity and Horizontal Size, Linearity, Drive and A.F.C controls. However, it should be remembered that these adjustments are to be made only when picture quality and ent if a particular phase of quality is good, leave it alone and go on to the next operation. Refer to figure 1 for location of front pane controls, and to figure 7 on the schematic diagram for location of rear panel controls

IMPORTANT-The adjustment of the Beam Bender (Ion Trap magnet) must be performed immediately fter the receiver warms up. If any length of time is permitted to elapse while the receiver is on, and while the Beam Bender is misadjusted, serious damage to the internal structure of the cathode-ray gun may result.
A. PREPARATION FORSERVICEADJUSTMENTS

1. Remove the eight slotted-head wood screws and the one hex-head P.K. screw adjacent the line cord bracket, disengage the interlock, and remove the back and the line cord
2. Drop hinged door on front panel for access to the auxiliary controls as illustrated in Fig. 1 The lower set of these controls is adjusted by means of a narrow shanked screwdriver
3. Connect a substitute interlock line cord between receiver and suitable power outlet and turn on the receiver allowing about 30 seconds BRICHTNESS control turned fully counter clockwise.

BEAM BENDER (ION TRAP) ADJUSTMENT

1. Position the beam bender on the glass neck approximately $1 / 2^{\prime \prime}$ from the picture tube base
2. Advance the BRIGHTNESS control almos fully clockwise.
3. Starting from this position, adjust the Beam Bender by moving it forward or backward and at the same time rotating it slightly around the neck of the tube until the brightest raster appears on the screen. If two maximum brightness positions are found, the one near adjustment should be done quickly to avoid damaging the gun structure
4. Adjust the BRIGHTNESS control to maximum, fully clockwise.
5. Re-adjust the Beam Bender carefully for maximum raster brilliance.
6. The Beam Bender must be adjusted at all times for maximum brightness. A misadjusted Beam Bender can damage the picture tube in a matter of seconds and it is of utmost importance to make this the first adjustment when the fore the cabinet back is reinstalled. ING ADJUSTMENT
7. Loosen the wing thumb screw located at the top of the deflection yoke frame.
8. Check to see that the deflection yoke mounting bracket rubber cushions press firmly against the flare of the tube.
9. Press the yoke firmly against the flare of the tube. An improperly positioned yoke will cause shadows on the corners of the raster. This indicates that the electron beam is striking the neck of the picture tube.
10. Rotate the yoke until the lines of the raster are horizontal and squared with the picture mask, and tighten the wing screw.
11. Position the centering magnet assembly approximately $1 / 2^{\prime \prime}$ to $3 / 4$ " behind the yoke. Centering is accomplished by rotating the small hori zontal shaft. When the shaft of the magnet is above the tube vertical centering results, if the entire magnet assembly is rotated on the pic ture tube neck. until the shaft is on either side both vertical and center horizontally. When sary rotate the magnet assembly while rotat ing the small magnet shaft. Improper adjust ment may cause neck shadow. Check the yok ment may cause neck shadow. Check the yok position as described in 3 above. Then readjust without neckshadow Readjust the Beam without neckshadow. Readjust the Beam Bender for maximum brightness.
12. Adjust the focus control (see Fig. 1) so that the lines of the raster are sharp and distinct over the greatest screen area.
E. HORIZONTAL A.F.C. ADJUSTMENT

In order to check this adjustment tune in a sta tion, preferably one that is transmitting a test pattern. If difficulty is encountered in locking the picture horizontally or if it locks-in only when the Horizontal Hold Control is at either end of its rotation, adjust the Horizontal A.F.C. Control as follows:

1. Turn CONTRAST down about half way.
2. Turn HORIZONTAL HOLD CONTROL fully counterclockwise.
3. If the picture is not locked in, turn the HORIZONTAL A.F.C. control till it does lock-in (See Fig. 7)
4. Momentarily interrupt the signal by switching the channel selecter off channel and then back. The picture should just fall out of sync. If it does not, turn the Horizontal A.F.C. adjustment screw slightly clockwise and again momentarily interrupt the signal. Continue this procedure until the picture just falls out of sync. only when the signal is interrupted.

D. FOCUSING ADJUSTMENTS
5. Adjust BRIGHTNESS and CONTRAST controls so that the raster brilliance corresponds to that of an average picture
6. Adjust focus control for best focus. Some electrostatic tubes will focus properly over the entire range of the focus control. This is no defect, it merely indicates an exceptionally well balanced gun structure.
7. Readjust the Beam Bender for maximum brightness.
8. Rotate the Horizontal Hold Control clockwise until the picture falls into sync. The picture should now stay in sync. throughout most of the range of the Horizontal Hold Control.
9. If the picture cannot be made to hold sync., 7 carefully repeat the above procedure. If diffi- 8 culty is still encountered, it may be necessary to make a complete alignment of the horizontal oscillator transformer using an oscilloscope, as described on page .

Fig. 2. DEFLECTION YOKE AND CENTERING MAGNET ASSEMBLY
F. PICTURE, SIZE AND LINEARITY

1. Adjust the VERTICAL SIZE and VERTICAL LINEARITY controls until the test pattern is vertically linear and symmetrical from top to bottom, and fills the mask. Adjustment of either control may require readjustment of
the other. If vertical synchronization "fallsout," readjust the VERTICAL HOLD control. (Refer to Fig. 1)
2. Adjust the HORIZONTAL SIZE control slotted screw, located at the rear of the High Voltage cage at the rear of the chassis, for correction of horizontal width. The large outer arcs of the test pattern should coincide with the edge of the picture mask. (Refer to fig 7)
3. Adjust the HORIZONTAL DRIVE control trimmer for horizontally symmetrical pattern, and elimination of any existing vertical bars in left center of picture. The final adjustment should have the control at least $1 / 1$ turn counterclockwise from the maximum clockwise position. (See Fig. 7)
4. The readjustment of the HORIZONTAL A.F.C. control may now be necessary.
5. Adjust the HORIZONTAL LINEARITY control slotted screw, located at the rear of the High Voltage cage, for central alignment of the inner circles of the test pattern.

Alignment Instructions
 Video I-F and Sound Alignment Procedure

TV I-F ALIGNMENT

Tune receiver to quiet portion of TV High Band.
2. Set contrast control fully counterclockwise.
3. Apply 3 v. negative bias between the A.G.C. bus (at
4. Connect TV I-F Signal Generator through a 1500 MmF
condenser to Test Point (A) of tuner unit: low side to ground. (See schematic diagram.) ohms-per-volt, or better) to 4.7K di. (or meter of 20,000 POINT (B); positive lead to fiagram.)
and adjust C [23.3]* ($\pm .05 \mathrm{MC}$) from Signal Generator Signal 14 for maximum deflection on meter. Maintain Signal Generator output so low that meter reads no more
than 1.5 volts at peak. Feed 218 MC
and adjust T3 as above $\pm .05 \mathrm{MC}$) from Signal Generator Feed 24.0 MC [23.9]
Feed adjust T2 as above. $\pm .05 \mathrm{MC}$) from Signal Generator, Feed 24.7 MC [24.5]* ($\pm .05 \mathrm{MC}$) from Signal Generato and adjust T 1 as above.
. Replace the meter with the vertical input of an Oscillo
11. Remove Signal Generator. Feed a video I-F Sweep Generator (20 to 28 MC) through loosely coupled shield of 6 J 6 converter tube, making sure shield is not grounded. (Refer to Fig. 3.)
Loosely couple high side of a TV I-F Marker Generator to the high Sweep Generator Lead; low side to ground. Feed 1-F Sweep, and observe response on 'scope. (See 14. If response does not approximate that s. repeat steps 3 to 9 , making sure that frequencies are precise, and that the Signal Generator output voltage is kept low. Continue with steps 10 to 13 . A slight touch-up of individual slugs may be req
ommended curve of Fig. 5 .
NOTE: If 3 v fixed bias is unavailable and zero fixed bias is used, set signal generator at [] bracketed frequencies values

TV SOUND ALIGNMENT

1. Connect a 4.5 MC Signal Generator ($\pm .01 \mathrm{MC}$) through a 1500 MMF condenser to the 4.7 K video diode load resistor TESTPOINT (B); low side to ground. See schematic
diagram. diagram.
© John F. Rider
2. Obtain two resistors of approximately 100,000 ohms each, whose resistances have been matched accurately with an (R107) at the 6 T8 tube socket (V9A).
3. Connect negative lead of V.T.V.M. to junction of matched resistors of step 2; positive lead to ground.
4. Feed $4.5 \mathrm{MC}(\pm .01 \mathrm{MC})$ from signal generator, and adjust L22, sound take-off coil, for maximum deflection on V.T.V.M. Two points of maximum deflection may be found when making this adjustment. Correct adjustment is attained when screw is at most outward maximum reading position.
5. Adjust the bottom slug of T10 for maximum deflection on v.T.V.M.
6. Connect positive lead of V.T.V.M. to junction of C96, and Ri06 TEST POINT (C), leaving negative lead of V.T.V.M connected as in step 3. See schematic diagram
7. Adjust top of T10 for zero output on V.T.V.M. between two opposite polarity peaks.

IMPORTANT: Keep the sweep generator and marker generator outputs at minimum to avoid curve dis tortion. Marker pips should be kept barely visible

FIG. 3. IF Alignment mocher

R.F. and Oscillator Alignment (STANDARD COIL TUNER)

R.F. ALIGNMENT

1. Connect TV Sweep Generator to Antenna Terminals.
2. Connect R.F. Marker Generator loosely to Antenna Terminals.
Connect vertical amplifier of Oscilloscope through a 10,000 ohm 1/w w. resistor to Test Point (A) fig 6.
5000 MMF Discap condenser)
3. Set Station Selector switch to Channel 12.
4. Feed 207 mc at 10 mc sweep from Sweep Generator, and 205.25 mc and 209.75 mc fixed frequencies from R.F. Marker Generator.
or C7 (See fig. 6) so that response curve corresponds ap. proximately to that shown in fig. 5 and has maximum gain.
5. Check markers on response curve of all remaining channels, setting Sweep and Marker Generators at corresponding fre-
quencies for each channel. See Table I for convenient tabuquencies for each channel. See Table I for convenient tabuin automatically in their proper places on all channels, a compromise must be made by slight readjustment of C 2 , C4, or C7.

OSCILLATOR ALIGNMENT

1. Connect TV R.F. Sweep Generator to Antenna Terminals. Couple R.F. Marker Generator loosely to Antenna Term inals.
Connect vertical amplifier of Oscilloscope across the video
mplifier grid and ground $(\operatorname{Pin} 7$ of $12 \mathrm{BH7}, \mathrm{V7A})$) Couple 24.75 mc video I.F. Marker Generator loosely to first Couple 24.75 me video I.F. Ma
I.F. grid (Pin 1 of 6CB6, V3)

table i rf alignment frequencies			
channel NUMBER	SWEEP GEN. CENTER FREQ ($\mathrm{OMC.SWEEP}$)	Marker generator frequences	
		VIDEO CARRIER	$\begin{aligned} & \text { SOUND } \\ & \text { CARRIER } \end{aligned}$
2	${ }^{\text {st muc. }}$	55.25 uc .	58.15 mc .
3	63 mc .	61.25 mc .	65.75 Mc
4	69 mc .	67.25 mc.	7.15 mc .
5	19 mc .	71.25 mc.	0.75 mc .
-	15 mc .	${ }^{63.25 \mathrm{Mc}}$	6775mc.
1	177 Mc .	175.25 MC .	179.15 mC .
-	103 mc .	101.25 mc .	105.75 mc .
,	108 mc .	107.25 mc .	18.15 mc .
10	195 mc .	193.25 mc .	$197 . r 5 \mathrm{mc}$.
I	201 mc .	139.25 Mc .	203.75 mc .
12	207 Mc	20325 Mc	209.7515 C .
13	213 mc .	211,25 mc.	215.75 mc .

hig. 6. r.f. tuner adjustment points (standard coil tuner)
HORIZONTAL OSCILLATOR TRANSFORMER ALIGNMENT
Refer to Service Adjustment " E " before proceeding with this

1. Tune in a TV station, preferably one that is transmitting a test pattern.
2. If after attempting the Horizontal A.F.C. Service Adjustment, described above, the picture cannot be made to sync.
pre-set the Horizontal Stabilizing adjustment (inner slug of T8, beneath chassis) 5 turns in from its maximum out
position. position.
3. Set the Horizontal Hold control to the center of its range
and adjust the Horizontal A.F.C. adjustment until the and adjust the
picture is in sync.
4. "Connect a low capacity probe of an oscilloscope to terminal to ground. Set horizontal sweep to 7875 CPS ; If a low to ground. Set horizontal sweep to $7875 \mathrm{C} . \mathrm{P} . \mathrm{S}$. If a low
capacity probe is unavailable, connect a 10 K resistor in capacity probe is unavailable, conn
series with the vertical scope lead
5. Adjust the Horizontal Stabilizing brass slotted screw until the broad and narrow peaks of the pattern on the oscilloscope are of equal height. (See illustration.) During Hori-
zontal Stab. adjustment, picture must be kept in sync by zontal Stab. adjustment, picture must be kept in sync. by
adjusting the Horizontal A.F.C. adjustment, if necessary. 6. Disconnect oscilloscope and follow Service Adjustment

TUBE COMPLEMENT AND VOLTAGE CHART - SERIES $112-113$

Symbol	----Function---	Tube Type	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9
v_{1}	${ }^{\text {RF Amp. }}$	6A65/68C5/6CB6	75	0	6.3AC	0	75	72	0	-	-
V2	Osc. Mixer	6 J6	64	49	6.3 AC	0	-1.7	${ }_{-3.6}$	0	-	-
v3	1 1st video If.	66^{66}	9	. 4	0	6.3aC	93	96	0	-	-
$v 4$	2 d V Video If.	66^{66}	8	${ }^{37}$	0	${ }_{6} .3 \mathrm{AC}$	94	97	0	-	-
v5	3 rd video If.	6 6UU6	0	0	0	6.3AC	95	98	9	-	-
v6	AGC and Videe Det.	$6 \mathrm{AL5}$	0	- 8	${ }^{6.3 A C}$	0	0	0	-. 4	-	
$\checkmark 7$	Video Amp.	$12 \mathrm{BH7}$	98	-. 2	0	6.3AC	6.3AC	78	-4	8	0
v8	Sound If Amp.	6406	0	0	0	6.3 CC	94	94.5	\%		
v9	Ratio Det. and AF Amp.	618	-. 5	-. 8	- 5	${ }_{6.3 A C}$	0	0	,	. 6	40
vio	Audio Output	6K6	NC	0	208	224	0	224	${ }^{6.34 C}$	14	$-$
v_{11}	Sync Sep-Amp.	65×7	0	28	2.8	28	75	28	6.3AC	,	-
V_{12}	Vertical Osc.	$6{ }^{6} 4$	200	0	0	${ }^{6.3 A C}$	200	43	,		
v_{13}	Vertical Output	$6 \mathrm{~V}_{6}$	NC	${ }^{6.3 A C}$	240	345	0	NC	0	28 V	-
V14	Horizontal Osc. Gontrol	6SN7	-7	190	6.2	-62	183	0	0	${ }^{6.3 A C}$	-
vis	Horizontal Output	6avs	-27	${ }^{6.3 A C}$	0	NC	Do not measure	NC	0	140	-
v16	Horizontal Damper	6w4	245	nc	465	nc	245	nc	$\begin{gathered} 248 \\ \hline+6.3 A C \end{gathered}$	$\begin{array}{\|c\|} \hline 248 \\ \hline+6.3 A C \\ \hline \end{array}$	-
v17	High Voltage Rect.	${ }^{183}$	-	14 KV	-	14kV	-	14kV	14 kV	nc	-
v18	Low Voltage Rect.	504	NC	$\frac{302}{5.0 A C}$	nc	2954 C	248	295aC	248	- $\begin{array}{r}307 \\ 5.0 A C\end{array}$	-
v 19	Picture Tube		0	2.6	-	-	-	0.425	$\frac{\text { Pin } 10}{440}$	Pin 11	$\frac{\text { Pin } 12}{6.3 A C}$
	Yoke Socket		245	410	245	-	245	-	47 AC	-	-

John F. Rider

MAJESTIC TV PAGE $12-5$

SPECIFICATIONS

\qquad
Video 26.1 MC Sound 21.6 MC Intercarrier Sound Freq. 4.5 MC

CAUTION

The regular $B+$ voltages are dangerous, and precaution should be taken when the chassis is removed from the cabinet for service. Secondary human reactions to otherwise harmless shocks have been known to cause injury. Always discharge the picture anode to the receiver chassis before handling the tube. The picture tube is highly evacuated, and if broken, glass fragments will be violently expelled.

A.G.C. SYSTEM

This receiver utilizes a type of keyed A.G.C., the 6U8 tube performing dual functions of sound I.F. amplifier and A.G.C. Keyer.

This system requires a D.C. connection from the video detector through the video amplifier, to the A.G.C. Keyer (triode section 6U8). The A.G.C. Keyer is directly connected across a portion of the plate load resistance for the video amplifier. This establishes a bias voltage (-6 to -10 V .) across $\mathrm{R}-133$, due to the current drain in the 12BY7 video amplifier, holding the 6U8 approximately at cutoff, depending on the contrast setting.

The plate circuit of the A.G.C. Keyer has no direct connection to B_{+}, its plate supply voltage consisting entirely of pulses taken from a winding on the horizontal output transformer. This winding will normally supply a positive pulse of approximately 500 volts peak value to the keyer during the horizontal retrace time. This pulse will exceed the cathode voltage by approximately 150 volts, at the same time that the positive horizontal sync pulse will appear at the grid of the 6U8. The conduction of the 6U8 at this time will establish a small negative voltage across R-122, which is then filtered and applied to the controlled I.F. stages as the A.G.C. control voltage. This bias is cut in half by a simple voltage divider and only half is applied to the R.F. circuits (see schematic).

Due to the direct connection between the video amplifier and the A.G.C. Keyer, the A.G.C. voltage developed will depend to a large extent upon current through the video amplifier. Advancing the contrast control, as would be necessary on weak signals, has the effect of increasing the bias on the A.G.C. Keyer and consequently less A.G.C. voltage is developed. Conversely, retarding this control, as would be necessary on strong, local signals, will reduce the bias on the Keyer, and more A.G.C. voltage will be developed, in effect increasing the range of the contrast control.

Since the Keyer is conducting heavily not more than 5% of the time, random noise occuring during the active portion of the horizontal scan cannot charge up the A.G.C. filter system to any large degree, unless the noise is of sufficient amplitude to cause grid current in the controlled stages.

IM PORTANT NOTICE

In previous models, the filament winding on the power transformer which supplied heater voltage to the 6 W 4 was connected directly to the positive 140 volt supply. This was done to minimize the potential between heater and cathode of the 6 W 4 damper.

In these models, this heater winding is maintained at a positive 220 volts by means of a voltage divider connected between $\mathrm{B}+$ and ground. The filament winding is bypassed by a .05 mfd 600 volt capacitor to ground.

VOLTAGE CHART

Tube No.	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9
V 22	0-1.5	0	0	6. 3AC	140	140	+. 7-1.2		
V 23	0-1. 5	0	0	6. 3AC	140	140	+. 7-1.2		
V 24	0	1.8	0	6. 3AC	140	140	0		
V 25	0	1.9	0	6. 3AC	140	140	0		
V 30	.+ 3.0 ${ }^{\text {to }}$	$3_{3.0}^{-1.0} 0$	0	6. 3AC	6.3AC	0	220-290	140	
V 40*	-155	+16	+50	+60	+60	+200	+5. 5	+160	+140
V 41	-11	-11	6. 3AC	0	0	NC	-22		
V 9	+15	0	$\begin{aligned} & +4 \text { to } \\ & +18 \end{aligned}$	6. 3AC	6.3 AC	+120	0 to -45	0	0
V 10	+100	-. 5	0	6. 3AC	6. 3AC	$\begin{aligned} & +6.5 \text { to } \\ & 8.2 \end{aligned}$	$\overline{-1.0}_{3.3}$	$\begin{aligned} & +1.0 \text { to } \\ & 4.8 \\ & \hline \end{aligned}$	0
V 4	$\begin{aligned} & -1.0 \text { to } \\ & +3.3 \end{aligned}$	+275	$\begin{aligned} & +10 \text { to } \\ & +12 \end{aligned}$	-7 to -9	+130	$\begin{aligned} & +10 \text { to } \\ & +12 \end{aligned}$	0	6. 3AC	
V 5	+. 6	0	0	$\begin{aligned} & +6.5 \text { to } \\ & +8.2 \\ & \hline \end{aligned}$	$\begin{aligned} & -19 \\ & -36 \end{aligned} \text { to }$	NC	6.3AC	$\begin{aligned} & \text { CAP DO NOT } \\ & \text { MEASURE } \\ & \hline \end{aligned}$	
V 6	NC	NC	$\begin{aligned} & +500 \text { to } \\ & +575 \end{aligned}$	NC	+360	NC	+200	+200	
V 2	$\begin{aligned} & -17 \text { to } \\ & -30 \end{aligned}$	$\begin{aligned} & -70 \text { to } \\ & +150 \end{aligned}$	+1.0	0	$\begin{aligned} & +24 \text { to } \\ & +40 \end{aligned}$	+1	6.3AC	$\underbrace{-17}_{-30} \text { to }$	
V 3	+. 2	$\begin{aligned} & +290 \text { to } \\ & +450 \\ & \hline \end{aligned}$	0 to +24	+. 2	$\begin{aligned} & +290 \text { to } \\ & +450 \end{aligned}$	0 to +24	6.3AC	0	
V 11	NC	$+60$	+200	+200	-5 to -15	NC	+60	0	
V 1	NC	+400	NC	360AC	NC	360AC	NC	+400	
v 7	DO NOT MEASURE								

XXD-10707

INSTALLATION AND ADJUSTMENT

BUILT-IN-ANTENNA

This receiver is equipped with a built-in antenna which should provide favorable reception of television signals within the primary service area, and where local interferences are not excessive. Do not locate the receiver near a large metal surface such as a radiator or metal partition, or a serious reduction of signal will result.

OUTSIDE ANTENNA

Where reception is weak due to less favorable receiving conditions with the built-in antenna, an outside antenna is recommended. When this external or outdoor antenna is connected to the receiver input terminals, the built-in antenna must be disconnected.

RECEIVER INSTALLATION

The receiver was shipped from the factory with all components preadjusted for normal operation. However, if in checking the receiver performance it becomes evident that one or more of the installation controls are out of adjustment, due to handling, it is necessary to re-adjust the affected controls. A complete adjustment of installation controls is outlined in the step by step procedure which follows. It will be noted that adjustment of some of the controls will interact on one or more of the others. These controls should be adjusted alternately, and in the given sequence of the procedure. Power should never be applied to the receiver for any great length of time, prior to the installation, without checking the ion trap adjustment for best screen illumination.

SEQUENCE OF ADJUSTMENTS

Ion Trap Adjustment

1. Remove the cabinet back cover. (In some cases, this will open circuit the A.C. interlock, and another line cord with appropriate fittings must be used temporarily until the necessary adjustments have been completed.) With power applied to the receiver and after allowing adequate warm-up time, set the brightness control in the center of its range and rotate the ion trap, or beam bender magnet, until light appears on the screen. After initial screen illumination is obtained, move the magnet forward or back ward, and further rotate it to obtain the brightest raster. If two positions are noted which seem to give equal screen brightness, the setting closest to the picture tube bas should be used. This is the only setting of the ion trap that is correct. NEVER ATTEMPT TO COMPENSATE FOR NECK SHADOWS OR FOCUS WITH THE ION TRAP OR BEAM BENDER ADJUSTMENT, IF BY SUCH ADJUSTMENT THE SCREEN BRIGHTNESS IS DECRE ASED.

Focus Adjustment

2. Adjust the brass screwdriver slotted rod to the right of the C.R.T. socket until best focus is obtained. The raster may be centered by movement of the positioning ring (inside the focusing ring) with the "Wobble Stick," which is supplied with every unit. This special nonmagnetic rod will be taped to an electrolytic capacitor on top of the chassis in every receiver employing a PM focus unit.

Yoke Positioning

3. Connect an antenna to the set and tune in a station, (test pattern if available)

Check to make sure that the deflection yoke is positioned firmly against the "bell" of the picture tube. The yoke may be slightly tilted to the left or right in order to properly frame the picture within the mask.

Horizontal Drive Adjustment

4. Check the horizontal drive setting by turning the drive trimmer several turns counter-clockwise until one or more vertical white lines are observed on the left side of the screen. Then, turn the trimmer just far enough clockwise to eliminate these "drive lines." In the event that no drive lines are observed on the picture tube face, leave the trimmer set to the position of minimum capacity consistent with sufficient trimmer screw pressure and good horizontal linearity.

Vertical Sweep Adjustments

5. Adjust the vertical size and the vertical linearity controls on the rear of the chassis for correct height and best vertical linearity. Do not attempt this adjustment unless a test pattern is available.
Width Adjustment
6. Check the width coil for proper setting, and correct if necessary.

Caution

7. Re-Adjust the beam bender or ion trap if necessary.
*Some chassis will contain electrostatically focused picture tubes. These tubes will ordinarily have the focus electrode wired to the 140 volt B+ supply. Due to line voltage variations, however, it may become necessary to raise or lower the voltage on this electrode for best focus. Any well filtered voltage from zero, or ground, to a positive 400 volts is permissable on this electrode. If satisfactory focus is not obtained within this range of voltages, re-check the width and horizontal drive adjustments. If these adjustments are found to have been correctly made, check the second anode voltage on the picture tube. For this measurement, a voltmeter which will range to at least fifteen thousand volts is necessary. The picture tube second anode voltage should range between 11.5 and $13.5 \mathrm{~K} . \mathrm{V}$. positive. The picture is centered by means of a centering magnet, located just to the rear of the deflection yoke, in the position formerly occupied by the focus unit. This magnet may be rotated in any direction to correctly center the pattern. When this ring is in a vertical plane, the thumbscrew will adjust vertical centering. When the ring is in a horizontal plane, horizontal centering will be effected by adjustment of the thumbscrew. (See assembly instruction.)

General Circuit Description

The LOW VOLTAGE POWER SUPPLY is conventional, consisting of a center tapped power transformer used on conjunction with a 5 U 4 full wave rectifier.

This supply provides a filtered output of approximately 360 volts for application to the sweep or deflection circuits. It is interesting to note that the I.F.-R.F. portions and the sound-audio portions of the receiver are in series across the 360 volt supply. This arrangement provides 220 volts for application to the sound and audio circuits, and the remaining 140 volts is available for I.F.-R.F. supply potential. The audio power a mplifier tube (6V6) is also used as a series voltage regulator. Its grid is returned to a
high impedance voltage divider tapped at approximately 130 volts, while its cathode is wired directly to the 140 volt line. Any change in the 140 volt drain due to A.G.C. fluctuations thus changes the grid to cathode voltage of the 6 V 6 almost instantaneously, and the resulting cathode current change in this tube acts to maintain the 140 volt supply substantially constant. It should, ther efore become apparent that if the 140 volt supply measures considerable higher than 140 volts, a short exists across the sound-audio circuits. If this voltage is considerably lower than the nominal 140 volts, and the 390 ohm resistor ($\mathrm{R}-80$) in the plate supply circuit of the 6V6 is observed to over heat, a short exists across the 140 volt supply. If the 140 volt supply is measured considerably lower than its nominal value, and the 390 ohm resistor does not overheat, an open circuit is indicated in the 200 volt sound-audio portion of the receiver. (See Diagram Below.)

Alignment Procedure

Necessary Equipment:
Television Sweep Generator
Marker Frequency Generator
Vacuum Tube Voltmeter
4.5MC Crystal Generator, or equivalent, Oscilloscope

Sound I.F. Alignment

1. Connect a 4.5 MC generator to the grid of the video amplifier tube. Low signal level is important here. Metering may be accomplished at the sound take-off poin of the ratio detector (at the juncture of R-155 and C-160) with the meter ground connected to pin eight of the 6 V 6 .
2. Adjust the slug of L-18 (sound take-off coil) for maximum negative meter indication. Attenuate the output of the generator so that not more than five volts is measured on the meter, as the alignment progresses.
3. Adjust the top slug of T-5 (ratio det. primary) for the maximum negative reading.
4. Move the meter ground to the juncture of R-156 and R-157 (6800 ohm resistors) in the sound detector circuit, and adjust the bottom slug of T-5 (Ratio Det.) for zero voltage. The other meter lead remains connected as in Step 1. N. 4.5MC trap adjustment is necessary. The trap consists of a coil $\mathrm{L}-17$ which is self-resonant at 4.5 MC .

OJohn F. Rider

* A dummy 6J6 may be substituted for the mixer tube with the \#1 pin removed, to facilitate alignment.

R.F. Alignment

The R.F. tuner in the receiver has to be pre-aligned by the manufacturer and adjustment in the field is not recommended. It may be necessary on occasional sets, however, to re-set the local oscillator tuning slug. This may be accomplished without test equipment, if it is possible to receive a signal of good quality, and if the I.F. and R.F. portions of the set are functioning correctly. Simply set the fine tuning in the center of its range and adjust the oscillator slug for best picture detail. The oscillator adjustment is recessed in a hole in the tuner front, directly to the right of the tuner shaft. This adjustment must be checked on each channel to be received. It is important that a non-metallic alignment screwdriver be used to prevent detuning when the adjustment is completed and the screwdriver withdrawn. On sets using a wooden front panel, a small hole is provided under the flanged tuner knob, which will accommodate this alignment tool, and make possible re-setting the osc. slug without removing the set from its cabinet. If a signal of sufficient strength is not available, oscillator adjustment may be made with the sweep generator connected as for I.F. alignment, and the video R.F. carrier frequency applied to the antenna terminals of the receiver from an accurately calibrated signal generator. With the hook-up outlined above, a pip, or marker indicating the video carrier for the particular channel being set will appear on the I.F. response curve. This pip will ride up and down on the curve when the fine tuning control is moved, and the oscillator is correctly set when the pip is passing through the point on the curve marked 26.1 in Fig. 5, with the fine tuning at the center of its rotation.

BLOCK DLAGRAM

fromatan o.s.a

SYNC. STAGE WAVE FORMS

STANDARD COIL
Pentode Circuit
XXB-10663

© John F. Rider

© John F. Rider

OJohn F. Rider

©John F. Rider

ELECTRICAL SPECIFICATIONS

V.36CB6 V-4 A \& B. ..6AL5 V-5 A \& B... $12 A U 7$
V-7 $\ldots .$. . 6AH6
V-8 6SN7-GTA

3rd Pix I-F Amplifier
Pix Det. and AGC
Sync Sep. DC Restorer and Phase Splitter
Video Output
Vertical Osc. \& Vertical Output

Audio I.F
Ratio Detector
1st Audio Amplifier
Audio Output
Phase Detector
Horizontal Oscillator Horizontal Output

Damper

High Voltage Rectifier
Low Voltage Rectifier
Picture Tube $17^{\prime \prime}$ Glass Rectangular (Electrostatic)

RADIO FREQUENCY RANGES

Channel Number	Channel Frequency Mc	Picture Carriier Frequency Mc	Sound Carequer Frequency Mc	Receiver ReF Osc. Frequency Mc
2	$54-60$	55.25	59.75	81.45
3	$60-66$	61.25	65.75	87.45
4	$66-72$	67.25	71.75	93.45
5	$76-82$	77.25	81.75	103.45
6	$82-88$	83.25	87.75	109.45
7	$174-180$	175.25	179.75	201.45
8	$180-186$	181.25	185.75	207.45
9	$186-192$	187.25	191.75	213.45
10	$192-198$	193.25	197.75	219.45
11	$198-204$	199.25	203.75	225.45
12	$204-210$	205.25	209.75	231.45
13	$210-216$	211.25	215.75	237.45

RECEIVER LOCATION - Advise the owner as to the proper location for the television receiver. The following may be used as a guide:
. Choose an area in the home where sunlight or light from lamps does not strike the face of the picture ube and cause glare.
2. Remember the necessity of an electrical outlet and the location of the point at which the antenna leads enter the room.
3. The receiver should be placed a short distance from the wall to allow adequate ventilation.
4. The receiver should be placed to permit easy access for operation and comfortable viewing from all angles.

Fig. 1-Tube Layout.

ANTENNA - This receiver has been designed to use an antenna with a 300 ohm balanced transmission line. This line must be as short as possible because the longer the line the greater the chances are for picking up efectrical disturbances. Stand-off insulation should be used to keep the line away from the mast, metal or walls. Twist this line about one turn per foot throughout the line to cancel out direct signal and or noise pickup by the transmission line. It should also be securely anchored in place so that a change in weather will not affect its position.

HIGH VOLTAGE WARNING

This television receiver contains high voltages which are dangerous to life. Never operate or service the receiver outside of the cabinet or with the covers removed until all the safety precautions necessary for working with high voltage equipment have been observed.

PICTURE TUBE

HANDLING PRECAUTIONS

Shatterproof goggles and heavy gloves must be worn by individuals while handling the picture tube or installing the picture tube into the receiver.
The picture tube encloses a high vacuum and due to the large surface area, is subjected to very high air pressure. Therefore, care should be taken not to bump or scratch the picture tube accidentally as it may cause the tube to implode resulting in damage to property or injury to an individual.

TUNING PROCEDURE

To turn the television receiver on, turn the OFF-ON VOLUME control clockwise until a click is heard Allow approximately 30 seconds for the tubes to warm up.
Turn the STATION SELECTOR control to the de sired channel. This control may be turned in either direction.

OCCASIONAL ADJUSTMENTS TO IMPROVE PICTURE RECEPTION

Brightness and Vertical Hold Controls are provided at the front of the receiver. These controls are pre-set at the factory and may occasionally need adjustment due to aging of the components in the receiver and the fluctuating line voltages in different areas. If any adjustments are
3. Turn the CONTRAST control clockwise until activity or definite form is noted on the screen.
4. Adjust the STATION SELECTOR control for cleares picture and the VOLUME control for desired volume.
5. To turn off the receiver, turn the OFF-ON VOLUME control counterclockwise until a click is heard.
necessary, follow the instructions under "Controls and Functions."
IMPORTANT - Be sure that the STATION SELECTOR Control has been set for the clearest picture before adjusting any control.

CONTROLS AND FUNCTIONS

HORIZONTAL HOLD-Stops horizontal movement (diagonal bars.) This control is located at the rear of the receiver.

BRIGHTNESS-Adjusts for desired picture brilliance. VERTICAL HOLD-Stops upward or downward picture movement.

Fig. 3-Removal of Picture Tube.

WARNING - Before handling the picture tube, it will be necessary to remove the static charge. In receivers with glass picture tubes, ground the anode lead to chassis, and insert an insulated wire from the well in the tube o chassis. In receivers with metal picture tubes, remove the static charge by grounding an insulated wire from the chassis to the metal portion of the tube.

PICTURE TUBE REPLACEMENT - To replace the picture tube it is necessary to remove the chassis from the cabinet. This may be accomplished in the following manner:
. Remove the front control knobs by pulling them straight from their shafts.
Remove the cabinet back
. Disconnect the leads from the speaker, remove the antenna terminal board at the rear of the cabinet and then the five chassis mounting bolts. Pull chassis CAREFULLY out of the cabinet.
4. Remove the picture tube as shown and outlined in the illustration. To install a new picture tube, reverse the procedure making sure that the picture tube fits close against the picture tube cushion. If the picture tube sticks or fails to slip into place smoothly, investigate
and remove the source of the trouble. Never force the tube. It is important that all the clips and shims used in mounting the tube be replaced, otherwise difficulty may be encountered when horizontal or vertical centering is required.

FRONT OF CHASSIS

Brightness

Vertical Hold

NON-OPERATING CONTROLS REAR OF CHASSIS

Horizontal Centering Vertical Centering	Centering Device
Ion Trap Magnet	Wing Nut Adjustment
Deflection Yoke Wing Screw
Width	L-15
Horizontal Drive	R-80
Horizontal Hold	L-14
Vertical Linearity	-49
Height	54

SERVICE SUGGESTIONS

NO RASTER ON PICTURE TUBE - If raste check below for the possible causes.
 1: Ion trap magnet adjustment is incorrect

2: $\mathrm{No}+\mathrm{B}$ voltage. Check 410 ampere fuse. Replace defective. If fuse continually burns out, check
(A) Horizontal output tube V-17 (6BQ6-GT)
(B) Check damper tube V-18 (6W4-GT).
(C) Check horizontal oscillator tube V. 16 (6SN7-GTA) for proper operation.
(D) With an ohm meter, check for a short between rerminal 1 of the horizontal oulput transformer (T-8) and the chassis.
(E) Check DC resistance of T-8.
: No high voltage. Check V-17, V. 18 and V-19 tubes and circuits. If the horizontal deflection circuits are operating as evidenced by the correct voltage $(600 \mathrm{~V})$
measured on terminal No. 1 of T-8, the trouble can be isolated to the high voltage rectifier circuit. Either the high voltage winding to the 6BQ6-GT plate and 1B3 plate is open, tube V-19 is defective, its filament circuit is open, R-99 and C- 78 defective or pix tube elements shorted internally.
: Defective picture fube heater open or cathode return circuit open
horizontal deflection oniy - if only horizontal deflection is obtained as evidenced by a straight line across ion is abse of the picture tube it can be caused by the following:
1: Vertical oscillator and vertical output tube V-8 inoper ative. Check socket voltages.
2: Vertical oscillator transformer (T-4) defective.
3: Vertical output transformer (T-5) open or shorted.
4: Yoke vertical coils open or shorted.
5: Vertical hold, height or linearity controls may be defective.

POOR VERTICAL LINEARITY - If adjustment of the height and linearity controls will not correct this condition, any of the following may be the cause.
1: Check variable resistors R-49 and R-54.
2: Vertical output transformer ($\mathrm{T}-5$) defective
3: Capacitors C-35A, or C. 70 defective.
4: V-8 defective, check voltages.
5: Excess leakage or incorrect value of capacitor C-37, 6: Low plate voltages. Check rectifier tube and capacitor
b: Low plate voltages.
in $+B$ supply circuits.
7. Capacitor C-36 defective
: Vertical deflection coils (L-12) defective.

POOR HORIZONTAL LINEARITY - If adjustment of the Horizontal drive control does not correct this condition, check the following:
1: Check or replace horizontal output tube V-17.
2: Check or replace damper tube V - 18 ($6 \mathrm{~W} 4-\mathrm{GT}$).
3: Check capacitors C-74, C-76, for defects.
4. Horizontal deflection coils (L-17) defective.

IRAPEZOIDAL OR NONSYMMETRICAL RASTE 1: Defective yoke.

WRINKIES ON

1. Defective

. Defective yoke due to C .75 or R. 98 (internal in yoke assembly) being wrong value or open. These comin rear of yoke assembly.

SMALI RASTER - This condition can be caused by
1: Low $+B$ or line voltage. Check V-20 (5U4G).
: Insumficient output from horizontal output tube V.17.
Replace tube.
al oscillator and vertic
Incorrect setting of horizontal drive control R-89.
5: V-18 (6W4-GT) defective.
6: Incorrect setting of (L-15) width control.

RASTER; NO IMAGE, BUT ACCOMPANYING SOUND - This con-

 dition can be caused by1: No signal on picture tube grid. Check V-7 tube and associated circuits.
2: Bad contact to picture tube grid (lead to socket broken).

SIGNAL APPEARS ON PICTURE TUBE GRID BUT IMPOSSIBLE TO SYNCHRONIZE THE PICTURE VERTICAILY AND HORIZONTALIY - A condition of this nature can be caused by:

1: Defective V-5A sync separator or phase splitter V-5B. 2: If tube is O.K. check voltages, and associated circuits. : AGC system inoperative. Check V-4B (6AL5) AGC tube and associated circuir.

SIGNAL ON PICTURE TUBE GRID AND HORIZONTAL SYNC ONLY - If this condition is encountered, check:
: Vertical integrating network capacitors C-31A, B \& C and resistors R-46 A, B \& C
2: Vertical hold control (R-51) defective.
signal on picture tube grid and vertical sync oniy : V-15 or V. 16 defective
2: Improper setting of (L-14) horizontal hold control
3: Check setting of horizontal drive control.
4: Check V. 15 and V. 16 socket voltages.
picture stable but with poor resolution - If the picture esolution is not up to standard, it may be caused by ony of the follow
pix l-F tubes V-1, 2 \& 3, (6CB6's).
. Defective picture detector V.4A, (6AL5) or video output (V.7)

4: Open video peaking coil. Check all peaking coils L-6 L-7, L-8, L-9 and L-10 for continuity. Note that L-6 and L-7 have shunting resistors.
5: Leakage in grid capacitor C-14. If the capacitor is not found to be defective, check the following:
1: Check all potentials in video circuits.
2: Check picture tube grid circuit for poor or dirty
3. Check.

Check and realign, if necessary, the picture I-F
and R-F circuits.

PICTURE SMEAR:
1: A smear can be attributed to phase shift at the low or high frequency end of the video characteristic. This can be caused by improper values of resistors and
capacitors in the video circuits. Check for grid current on video output tube V-7 (6AH6), open or shorted on video output coils, video amplifier load resistors are of improper value (high).
2: This trouble can also originate at the transmitter. Check reception from another station.
3: Check and realign, if necessary, the picture I.F and R-F circuits.
iman made noise in sound (Ignition, etc.)
2 and associated
1: Check
2: Check sound I-F alignment.

BENDING OR S-ING

1: Check capacitors $C-35 B$ and $C-79 B$
2: V -17 (6BQ6-GT) defective or V-16 (6SN7-GTA) de ective.
Check sync separator tube V-5A (12AU7) and phase plitter V-5B (12AU7).
\qquad
PICTURE NORMAL-NO SOUND OR WEAK OR DISTORTED SOUND 1: Check sound I-F alignment
(6AL5) V. 13 (6AV6) V- 1 (6AQ5) and associated circuits.

BUZZ IN SOUND:

1: Contrast setting too high.
2: Check sound I.F Alignment.

POOR FOCUS:

1: Improper setting of Ion Trap magne
2: Defective picture tube or picture tube socket

PICTURE JITTER:

1: If regular sections at left of the picture are displaced replace the horizontal oscillator tube V-16.
2: Vertical instability may be due to loose connections or noise received with the signal.
3: Horizontal instability may be due to unstable transmitted sync.
4: Check receiver AGC system for proper operation.
5: Check phase splitter $V-5 B,(12 A U 7)$ and sync separator V.5A.
6: Picture tube grid lead not held in position by support spring, ie: close proximity of grid lead to sync and horizontal tubes will cause picture to jitter at high contrast setting.
7: Contrast control setting either too high or too low.

TEST EQUIPMENT - To service this receiver properly, it is recommended that the following test equipment be avail able:

R-F SWEEP GENERATOR meeting the following requirements (a) Frequency ranges:

18 to $30 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
40 to $90 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
170 to $225 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
(b) Output adjustable with at least 1 volt maximum (c) Output constant on all ranges.
(d) Flat output in all attenuator positions

CATHODE-RAY OSCILLOSCOPE preferably one with a wide band vertical deflection and an input calibrating source.

SIGNAL GENERATOR to provide the following frequencies (Output on these ranges should be adjustable and at least . 1 volt maximum.)
(a) Intermediate alignment frequencies
23.1 mc first picture I.F coil
24.1 mc third picture I-F coil.
25.9 mc second picture I-F coil.

ALIGNMENT PROCEDURE

21.7 mc sound trap.
4.5 mc video trap \& sound I.F.
25.2 mc converter plate coil (Tuner).
heterodyne frequency meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic voltmeter and a high voltage probe for use with this meter to permit measurements up to 20 kilovalts.
SERVICE PRECAUTIONS - To service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the cabinet back, disconnect the leads from the speaker, remove the antenna terminal board at rear of cabinet, and then the 5 chassis mounting bolts. The chassis may be serviced with the picture tube in place provided the chassis is turned on its side with the power transformer on the bottom. The weight of the chassis will be supported against the power transformer and pix tube brackets.
CAUTION: Do not permit the kinescope second-anode lead to become shorted to the chassis. To do so will cause a considerable overload on the high voltage filter resistor R-99.

The waveforms on this page were taken with the receiver tuned to a normal picture. The numbers on the waveforms correspond to the numbers on the schematic diagram which identifies each test point The voltages shown on each waveform are the approximate peak to peak amplitudes. The frequencies shown in-

Fig. 13-Tuner Schematic

TUNER PARTS LIST

dicates the repetition rate of the waveform, not the sweep rate of the oscilloscope. If the waveforms are observed on the oscilloscope with a poor high frequency response, the corners of the pulse shown below and the amplitudes of any high frequency pulse will tend to be less.

No. 12-65N7-Hor. Ose. Plote 50 V P.p 15.750 C.P.S.
No. 2-Pix Tube Grid
20.100 V P.P 60 C.p.S.

No. 4-12AU7 Phase Splitter Cothode
18 V P.p 60 C.p.S.
No. 6-6SN7-Vert. Osc. Plate
100 V P.p 60 C.p.S.

No. 8-6SN7 Vert. Output Grid 120V P.p 60 C.P.S.
o. 14-6SN7 Hor. Osc. Plote 135 V P.P 15,750 C.p.s.

No. 4-12AU7 Phose Splitter Cathode 18 V P.p 15,750 C.p.S.

No. 15-6BQ6 Grid
120V P.-P 15.750 C.P.S.

No. 9-vert. Def. Coil
-

No. 10-Term " A " Hor. Output Iransformer

TELEVISION PARTS LIST

17"' GLASS RECTANGULAR PIX TUBE

ELECTRICAL SPECIFICATIONS

Power Supply	105-125 Volts AC 60 Cycles Only
Power Consumption	170 Watts
Power Output	2.7 Watts (Max.) 1.55) Watts (10% Distortion)
Tuning Range	12 Channel
Antenna Input Imp.	300 Ohmis balanced
Intermediate	Picture 26.4 MC
Frequencies	Sound 21.9 MC
Intercarrier Sound System	4.5 MC
Loud Speaker	Electro-Magnetic
Voice Coil Imp.	3.2 Ohms 400 Cycles
Field Coil Resistance	90 Ohms

Power Supply Power Output

Tuning Range Antenna Input Imp. Frolate tercarrier Sound Ioul Spaker Voice Coil Imp. Field Coil Resistance

NERAL DESCRIPTION
These models use 19 tubes, (including picture tube and rectifier) have a crystal diode video detector, employ a intercarrier sound circuit, have safety interlock and a fuse in the low voltage power supply. Picture tube has electrostatic focus, which is automatic and permanent.

ION TRAP MAGNET ADJUSTMENT: The ION trap magnet should be positioned approximately over the diagonal slit in the electron gun. From this position adjust the magnet by moving it back and forth and at the same time rotating it slightly around the neck of the picture tube until the brightest raster is obtained on the picture screen. Reduce the brightness control setting until the raster is slightly above average brilliance

DEFLECTION YOKE ADJUSTMENT: If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until' this condition is obtained. The correct position for the deflection yoke is as far forward on the neck of the picture tube as the shape of the tube will allow. Tighten the yoke adjustment wing screw.

CENTERING MAGNET: The centering magnet should be rotated and the control adjusted until the picture is properly framed keeping in mind that the effect of the control is governed by the position of rotation. If the control is above or below the neck of the picture tube, the picture will be moved up or down. To the left or right of the neck of the picture

TUBE COMPLEMENT

05-125 Volts AC 60 Cycles Only 170) Watts 1.55 Watts (10% Distortion)

12 Channel
300 Ohnis balanced Sound 21.9 MC
4.5 MC
:lectro-Magneti 90 Ohms

OFF-VOLUME: Turns set on or off and adjusts sound volume.
CONTRAST: Varies contrast between light and dark portions of the television picture.
STATION SELECTOR: Tunes the set to the desired station or channel. It may be turned in either direction.

FINE TUNING: Adjusts set so that both picture and sound are received with maximum clarity. BRIGHTNESS: Controls brilliance of the picture. VERTICAL HOLD: Stops picture from moving up or down.
HEIGHT: Changes size of picture vertically. VERT. LINEARITY: Controls vertical distribution of picture.
HORZ. HOLD: Stops picture from moving. WIDTH: Changes size of picture horizontally.
tube the picture will be moved either to the left or right.

WIDTH ADJUSTMENTS: Adjust width by turning slug either clockwise or counter clockwise. A clockwise rotation will decrease width. Proper width is obtained when raster covers entire screen of picture tube.

CHECK OF HORIZONTAL OSC. ALIGNMENT Tune in a station and adjust the horizontal hold control until the picture falls into sync. Momentarily remove the signal by switching off channel and then back. The picture should pull into sync. If in the above check the receiver fails to hold sync. re-set horizontal hold slightly.

IIEIGHT AND VERTICAL LINEARITY ADJUSTMENTS: The vertical size and linearity controls should both be adjusted at the same time while a test pattern is being transmitted. The linearity conrol affects the upper portion of the picture while the size control affects the overall size especially the lower portion of the picture. Adjust both controls simultaneously until the test pattern is symmetrical and fills the entire screen vertically. Readjust the rertical hold control if necessary.

PICTURE TUBE REPLACEMENT: To replace the picture tube it is necessary to remove the chassis following manner:

1. Remove the fr.

Remove the front panel control knobs by pulling Reme the fabin their shafts.
2. Remove the cabinet back. Remove antenna terminal board from cabinet back. You will not that the interlocked line cord disconnects the power when the cabinet back is removed.
3. Disconnect speaker plug from chassis, remove the five chassis mounting bolts. Pull chassis

CAREFULLY out of the cabinet
4. Remove the picture tube as shown and outlined in the illustration. To install a new picture tube, reverse the procedure making sure that the picture tube fits close against the picture tube cushion. If the picture tube sticks or fails to lip into place smoothly, investigate and remove It is important that all the clips and shims used
in mounting the tube be replaced, otherwise
difficulty may be encountered when horizontal 5 or vertical centering is required.

WARNING: Before handling the picture tube, it will be necessary to remove the static charge. In receivers with metal picture tubes, remove the static charge by grounding an insulated wire from the chassis to
the metal portion of the tube.

SERVICESUGGESTIONS

NO RASTER ON PICTURE TUBE: If raster cannot be obtained check below for the possible causes

1. ION trap magnet adjustment is incorrect.
\circlearrowright. No $B+$ voltage. Check $1 / 4$ ampere fuse. Replace if defective. If fuse continually burns out, check (A) for short of $\mathrm{B}+$ circuit with ohmmeter check (B) horizontal output tube V-14 (6 BQ 6 GT), check (C) damper tube V-15 ($6 \mathrm{~W} 4-\mathrm{GT}$). (D) Check horizontal oscillator V-11. (6SN7-GT) for proper operation. (E) With an ohmmeter check for a short between terminal 3 of the horizontal output transformer (T-6) and the chassis.
2. No high voltage. Check V-11, V-14, V-15 and $V-17$ tubes and circuits. If the horizontal deflec tion circuits are operating as evidenced by the correct voltage measured on pin 3 of the damper tuve (V-15), the trouble can be isolated to the high voltage rectifier V-17 circuit. Either the high voltage winding to the 6BQGGT plate and B3 plate is open, tule V-17 is defective, its fila ment circuit is open, or the high voltage filter caparitor C-70 is shorted.
3. Defective picture tube. Heater open or cathocle return circuit open

HORIZONTAL DEFLECTION ONLY: If only horizontal deflection is obtained as evidenced by a straight line across face of the picture tube, it can be caused by the following.

1. Vertical oscillator V-10A (6SN7-GT) or vertical output tube V-13 (6S4) inoperative. Check voltares on grid and plate

Vertical oscillator transformer T-4 defective. Vertical output transformer (T-5) open ol shorted.

Yoke vertical coils open

Vertical hold, height or linearity controls may be defective.

POOL VERTICAL LINEARITY: If adjustment of the height and linearity controls will not correct this condition, any of the following may be the cause.

1. Check variable resistors $\mathrm{R}-54$ and $\mathrm{R}-59$.
c. Vertical outnut transformer (T-5) defective
2. Capacitors C-54A \& B or C-53C \& D defective.
3. V-10A (6SN7-GT) or V-13 (6S4) defective, check voltages.
4. Excess leakage or incorrect value of capacitor C-51, C-52, or open or incorrect value of resistors R-55, 56 \& R-57.
5. Low plate voltages. Check rectifier tubes and capacitors in B+ supply circuits
6. Vertical deflection coils defective (part of T-7 yoke).

POOR HORIZONTAL LINEARITY:

1. Check or replace horizontal output tule V-14 (6 BQ 6 -GT)
2. Check or replace damper tube V-15 (6W4-GT).
3. Check capacitor C-67.
4. Horizontal deflection coils defective (part of T-7 yoke).

TRAPEZOIDAL OR NONSYMMETRICAL RASTER

1. Improper adjustment of ION trap magnet.

John F. Rider

SERVICE SUGGESTIONS (Continued)

CHECK OF R-F OSCILLATOR ADJUSTMENTS

BARS AND WRINKLES ON LEFT SIDE OF RASTER: This condition can be caused by:

1. Defective yoke due to C-69 or R-61, R-62 (Internal in yoke assembly) being wrong or open. These components are mounted in rear of yoke assembly.
2. V-15 (6W4) defective.

SMALL RASTER: This condition can be caused by:

1. Low B+ or line voltage. Check V-18 (5U4G).
2. Insufficient output from horizontal output tube V-14. Replace tube.
3. Insufficient output from vertical oscillator tube V-10A or vertical output tube V-13. Replace tubes.
4. V-15 (6W4) defective.

RASTER: NO IMAGE, BUT ACCOMPANYING SOUND: This condition can be caused by:

1. No signal on picture tube grid. Check V-6 (6AH6) tube and associated circuits.

SIGNAL APPEARS ON PICTURE TUBE GRID BUT IMPOSSIBLE TO SYNCHRONIZE THE PICTURE VERTICALLY AND HORIZONTALLY:

A condition of this nature can be caused by:

1. Defective sync. Sep. V-8 or Horiz. splitter V-10B or Horiz. Phase Detector V-9.
2. If tubes are O.K. check voltages, and associated circuits.
3. AGC system inoperative.
4. Open video peaking coil. Check all coils, L-8, L-9, $\mathrm{L}-10, \mathrm{~L}-16$ and $\mathrm{L}-11$ for continuity. Note that $\mathrm{L}-9$ and $\mathrm{L}-11$ have shunting resistors.
5. Check all potentials in video circuits.
6. Check and realign, if necessary, the picture 1-F and R-F circuits.

POOR FOCUS:

1. Improper adjustment of ION trap.
2. Defective picture tube.

SNOWY PICTURE:

1. Insufficient signal input.
2. Defective antenna.
3. Weak V-1 (6BC5).
4. Defective Tuner.

The oscillator is preset at the factory and normally needs no adjustment. However, if adjustments are required, they can be made without removing the chassis from the cabinet. Remove the channel selector and fine tuning knobs from the tuning shaft.

TEST PROCEDURE:

1. Set channel selector to receive desired station
2. Set fine tuning control in center of its range
3. Adjust oscillator slug, with bakelite type screwdriver, for best picture resolution.
4. Repeat steps 1,2 and 3 on all channels used.

fig 4 -turret type tuner

PICTURE SMEAR:

1. Normally, smear can be attributed to shift at the low frequency end of the video characteristic. This can be caused by improper values of resistors and capacitors in the video circuits. Check for grid current on video output tube V-6 (6AH6).
2. This trouble can also originate at the transmitter. Check reception from another station
3. Check and realign, if necessary, the picture I-F and $R-F$ circuits.

PICTURE JITTER:

1. Replace the horizontal oscillator tube V-11.
2. Vertical instability may be due to loose connections or noise received with the signal.
3. Horizontal instability may be due to unstable transmitted sync. or to noise.
4. Check receiver AGC system for proper operation.
5. Check phase splitter V-10B (6SN7-GT)

.044

ALIGNMENT PROCEDURE

TEST EQUIPMENT: To service this receiver properly, it is recommended that the following test equipment be available:

R-F SWEEP GENERATOR meeting the following requirements:
(a) Frequency ranges:

18 to $30 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
40 to $90 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
170 to $2: 25 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
(b) Output adjustable with at least .1 volt maximum.
(c) Output constant on all ranges.
(d) Flat output in all attenuator positions.

CATHODE-RAY OSCILLOSCOPE preferably one with a wide band vertical deflection and an input calibrating source.

IIeterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled
Electronic Voltmeter and a high voltage probe for use with this meter to permit measurements up to 20 kilovolts.

FIG. 7 - OVERALL RESPONSE CURVE

SIGNAL GENERATOR to provide the following frequencies; (Output on these ranges should be adjustable and at least .1 volt maximum.)
(a) Intermediate alignment frequencies.
26.1 Plate coil tuner
24.4 1st Pix I.F. Coil
24.0 2nd Pix I.F. Coil
4.5 mc video trap and sound I.F.
26.1 3rd Pix I.F. Coil
(b) Radio frequencies.

Clannel No.	Pieture Carrier Frel. Mc.	Sound Carrier Frem. Mc.
2	55.25	59.75
3	61.25	65.75
4	67.25	71.75
5	77.25	81.75
6	83.25	87.75
7	175.25	179.75
8	181.25	185.75
9	187.25	191.75
10	193.25	197.75
11	199.25	203.75
12	205.25	209.75
13	211.25	215.75

SERVICE PRECAUTIONS: To service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the cabinet back, disconnect speaker plug from chassis, remove the antenna terminal board from cabinet back, and then the 5 chassis mounting bolts. The chassis may be serviced with the picture tube in place provided the chassis is lurned on its side with the power transformer on the top. The weight of the chassis will be supported against the high voltage housing.

CAUTION: Do not permit the kinescope secondanode lead to become shorted to the chassis. To do so will cause a considerable overload on the high voltare filter resistor R-86.

1031
A. Unmodulated R-F signal into Converter Grid by means of tube shield insulated from base. VTVM connected to junction picture detector load resistor, (R-21) 6800 ohms, and peaking coil (L-8). Input signal level should be such that output is less than 2 volts DC. apply - 4.5 V battery Pias on AGC line.
©John F. Rider

TUNER ALIGNMENT

Frequency

Adjust

1. 26.1 MC Converter plate coil (on top of tuner) for maximum dc at picture detecto
2. 24.4 MC 1st picture I-F coil L-5 (above chassis) for maximum dc at picture detector
3. 24.0 MC 2nd picture I-F coil L-6 (above chassis) for maximum de at picture detector
4. 26.1 MC 3rd picture I-F coil L-7 (above chassis) for maximum dc at picture detector:
B. I-F Sweep Generator into converter grid by means of tube shield insulated from base. Connect oscilloscope across R-21, 6800 Ohms (in place of VTVM). Apply - 4.5 bias (battery) to AGC line.

Tuner should be switched to a channel not being used so as not to cause interference.

FIG. 10 OVERALL I.F. RESPONSE CURVE 1035

Olscrve overall I-F response, which should be as shown above: A slight touch-up may be required. At no time should it be necessary to turn any of the picture I-F coils more than $1 / 2$ turn of the slug. The following comments are suggestions only:

1. The height of the 26.4 MC marker is controlled by the (26.1 MC) converter plate coil on tuner and the (26.1 MC) 3rd P.I.F. coils.
2. The 23.7 MC marker position is controlled by the 2nd picture I-F coil (24.0 MC) and the 1st picture I-F coil (24.4 MC).

4.5 MC TRAP ALIGNMENT

1. Tune in a station.
2. Adjust fine tuning rotar until appear in picture.
3. Turn L-10 slug all the way out (counter clock wise).
4. Turn the slug in (clockwise) until the horizontal scanning lines are smooth and continuous.

SOUND I-F ALIGNMENT: Connect signal gen erator to grid of video amp. (6AH6), adjust contrast control to maximum Set signal generator to 45 MC (no modulation) (setting of 45 MC must be accu re) Culact (2) two 50,000 MC must be accu C-39 (C-39 (resistors must match within 5%). . . TVM is connected across C-39. See Fig. 12. Adjust L-12 and T-3 (Bottom) for maximum on VTVM. This adjustment should be made with voltage on VTVM under 12 volts. 2. Connect VTVM between junction
of $R-39, R-40$ and junction of the (2) two 50,000 of R-39, R-40 and junction of the (2) two 50,000 ohm resistors. See Fig. 12. Adjust T-3 (Top) for zero on VTVM. If VTVM reads below zero, reverse leads and again adjust T-3 (Top) for zero reading. Re-check step one.

FIG. 12
1039
A. Sweep generator with balanced 300 ohm output to antenna terminals. Marker generator output to antenna terminals. Oscilloscope to "Test Point" on tuner. Ground AGC line at junction of R-12 and C-17.

1043
2. Check response on all channels. If markers are below 70% on any channel, readjust C-1, C-9 and C-3. Re-check all channels.
PIX
SOUND

FIG.I4 - PIX AND AUDIO MARKERS
C. Oscillator adjustment:

1. Remove AGC ground. Apply - 4.5 Volts on I-F AGC line.
2. Connect oscilloscope to output of video detector. Place fine tuning in center of range. er should be at 50%. See Fig. 7.
3. If some channels are off, individual oscillator coil slugs will require adjustment. Adjust each channel slug, accessible through hole in front of chassis with a non-metallic screwdriver to bring Picture Marker to correct position.

MAIN CHASSIS

Fig. 2-Front Panel Controls

TUNING PROCEDURE

1. To turn the television receiver on, turn the OFF-ON VOLUME control on the radio panel clockwise until a click is heard. Allow approximately 30 seconds for the tubes to warm up.
2. Turn BAND SWITCH control on the radio panel to the TV position.
3. Turn the STATION SELECTOR control to the desired channel. This control may be turned in either

OCCASIONAL ADJUSTMENTS T

There are three controls at the front of the chassis which are accessible when the hinged control panel is pulled downward. See illustration. (Figure 2.) These controls are pre-set at the factory and may occasionally need adjustment due to aging of the components in the receiver and the fluctuating line voltages in different areas.

CONTROLS A

HORIZONTAL HOLD - Stops horizontal movement (diagonal bars.)
direction.
4. Turn the CONTRAST control clockwise until activity or definite form is noted on the screen.
5. Adjust the FINE TUNING control for clearest pictur and the VOLUME control for desired volume.
6. To turn off the receiver, turn only the OFF-ON VOLUME control counterclockwise until a click is heard.

IMPROVE PICTURE RECEPTION
If any adjustments are necessary follow the instructions under "Controls and Functions."

Important - Be sure that the FINE TUNING control has been set for the clearest picture before adjusting any controls.

UNCTIONS

VERTICAL HOLD - Stops upward or downward picture
BRIGHTNESS-Adjusts for desired picture brilliance.

PICTURE TUBE SAFETY GLASS

It will be necessary to clean this glass and the face of the
icture tube occasionally. Remove the safety glass careully as outlined in the illustration.

CAUTION-UPON REMOVAL OF THE LAST SCREW and

THE CLEAT THE GLASS WILL FALL FORWARD. SUPPORT THE GLASS WITH ONE HAND AS YOU LIFT IT GENTIY FROM THE CABINET. Clean the safety glass and the face of the picture tube with a soft lint-free cloth dampened
with water or mild soapsuds.

RING. LIFT TUEE SLIGHLY from lower cradle brackets in front then remove tube from support bracket

\qquad

Fig. 3-Removal of Picture Tube

WARNING - Before handling the picture tube, it will be necessary to remove the static charge. In receivers with
glass picture tubes, ground the anode lead to chassis, and insert an insulated wire from the well in the tube to chassis. In receivers with metal picture tubes, remove the static charge by grounding an insulated wire from the chassis to the metal portion of the tube.
PICTURE TUBE REPLACEMENT - To replace the picture tube
it is necessary to remove the chassis from the cabinet. This may be accomplished in the following manner: 1. Remove the front panel control knobs by pulling them straight from their shafts.
2. Remove the cabinet back
3. Disconnect the leads from the speaker, the radio chassis, remove the antenna terminal board at the rear of the cabinet and then the five chassis mounting 4. Remove the picture tube as shown and cabinet. Remove the picture tube as shown and outlined in the procedure making sure that the picture tube fits close against the picture tube cushion. If the picture tube sticks or fails to slip into place smoothly, investigate and remove the source of the trouble. Never force the tube. It is important that all the clips and shims used in mounting the tube be replaced, otherwise difficulty may be encountered when horizontal or

FRONT OF CHASSIS

(Accessible After Opening Front Panel Control Cover)
Horizontal Hold

Brightness
Veitical Hold
.R-25

NON-OPERATING CONTROLS

REAR OF CHASSIS

Horizontal Centering	Centering
Vertical Centering) Device
Ion Trap Magnet	Wing Nut Adjustment
Deflection Yoke	Wing Screw
Width	L-15
Horizontal Linearity	L-16
Horizontal Drive	R-89
Horizontal Frequency	L-14
Vertical Linearity	R-49
Height	R-54
Sync Stability	R-39
AGC Threshold Control	R-108

AGC Threshold Control

Fig. 4-Adjustments Rear of Chassis

ION TRAP MAGNET ADJUSTMENT－The ion trap magnet should be positioned close to the base of the tube with the magne of the ion trap on the side where the electron gun is nearest the glass neck of the picture tube．From this position adjust the magnet by moving it back and forth and at the same time rotating it slightly around the neck of the pic ture tube until the brightest raster is obtained on the picture screen．Reduce the brightness control setting until
the raster is slightly above average brilliance．Readjust the ion trap magnet for maximum raster brilliance and best focus．MAXIMUM RASTER BRILIANCE AND BEST FOCUS OCCUR AT THE SAME POINT．Do not sacrifice brilliance for best focus．The ion trap magnet adjustment is a very critical one especially with the electrostatic type zero focus picture tube．Consequently，great care should be taken to make sure that the ion trap magnet is correctly adjusted．
DEFLECTION YOKE ADJUSTMENT－If the lines of the raster are not horizontal or squared with the picture mask，rotate the deflection yoke until this condition is obtained．Tighten the yoke adjustment wing screw．

CENTERING ADJUSTMENT－If horizontal or vertical centering is required，adjust each ring in the centering device until proper centering is obtained．If a clamp type centering de－ vice is used，rotate the device to the left or right and turn the knob located at the top of the device until the picture is centered correctly．

PICTURE ADJUSTMENT－For further adjustments，obtain a test pattern on the receiver．Turn on receiver and follow tuning procedure on page 18．When a test pattern is ob－
tained it may be necessary to slightly re－adjust the fine tuning control for clearest picture．
ADJUSTMENT OF AGC THRESHOLD CONTROL－Tune the re－ ceiver to the strongest station in the area in which the re ceiver will be used．While observing the picture and listen overloading（buzz in sound，washed－out picture）appear． Then turn the control a few degrees counter－clockwise from the point at which overloading occurs．（The stronger the signal input，the more counter－clockwise this setting will be．）In areas where the strongest signal does not ex－ ceed 10,000 uv the setting will usually be maximum clockwise．With the control set correctly，the AGC will automatically adjust the bias on the R．F．and I．F．ampli－
fiers so that the best possible signal to noise ratio（Mini－ mum snow）will be obtained for any signal input to the mum new
AdJUSTMENT OF SYNC STABILITY CONTROL－When receiv－ ing strong（ 500 MV or more）signals，set hold controls so that the picture is locked in．Turn the sync control fully counter－clockwise，then，while observing the picture，
turn the control slowly clockwise until a minimum amount of bending occurs．If the control is set incorrectly bend． ing，tearing，etc．，will be present and when switching from channel to channel the picture will not lock in quickly．
In weak signal areas the control should be set for maxi－ mum picture stability．In general the weaker the signal the more clockwise the control should be turned． When the sync stability control is correctly adjusted the
receiver will hold sync without tearing or rolling under receiver will hold sync without tearing or rolling under even the most adverse noise conditions．
CHECK OF HORIZONTAL OSCILLATOR ALIGNmENT－Tune in a station and adiust the horizontal hold control until the
picture falls into sync．Momentarily remove the signal by switching off channel and then back．The picture should pull into sync over a range of 90° rotation of the horizontal hold control．If in the above check the receiver fails to hold sync or the pull－in range is at the extreme end of the control，it will be necessary to make the following adjustment．
HORIZONTAL FREQUENCY ADJUSTMENT－With the horizontal hold control set to the center of its range of rotation， adjust the horizontal frequency control（L－14）until the picture pulls into sync．Recheck the＂Horizontal Oscillator Alignment．＂
height and vertical linearity adjustment－Adjust the height control（R－54）until the picture fills the mask vertically．Adjust the vertical linearity control（R－49）until the picture is symmetrical from top to bottom．Adjust the picture centering device to align picture with the mask． Adjustment of any control will require a re－adjustment of the other control．
WIDTh，DRIVE AND LINEARITY ADJUSTMENTS－While receiv－ ing a signal from a station（with picture locked in sync） brightness control（R－25）will counter－clockwise，that the picture appears washed out．Adjust width control（L－15）until the picture fills the mask．Turn the horizontal drive control（R－89）． clockwise until white bars appear in the left center por－ tion of the raster，then turn counter－clockwise until the white bars just disappear．This adjustment will allow the horizontal system to operate at maximum efficiency．Ad－ If adjustment of the horizontal drive（R－89）or horizontal linearity（L－16）is required，it usually will be necessary to recheck the horizontal oscillator alignment．If adjust－ ment of the horizontal linearity control（L－16）is required readjustment of the horizontal drive control（R－89）will be necessary．Adjust the picture centering device to align the picture with the mask

CHECK OF R－F OSCILLATOR ADJUSTMENTS

The oscillator is preset at the factory and normally needs no adjustment．However，if adjustments are required， cabinet．Remove the channel selector and fine tuning
chan knobs from the tuning shaft TEST PROCEDURE：
EST PROCEDURE：
1．Set channel selector to receive desired station．
1．Set channel selector to receive desired station
2．Set fine tuning control in center of its range．
3．Adjust oscillator slug，with bakelite type screwdriver
．Repeat steps 1， 2 and 3 on all channels used．

Fig．5－Tuner Oscillator AdjusIments

Fig．6－Bottom Socket Voltage

NO RASTER ON PICTURE TUBE - If raster cannot be obtained check below for the possible causes.
1: lon trap magnet adjustment is incorrect.
2: $\mathrm{No}+\mathrm{B}$ voltage. Check $4 / 10$ ampere fuse. Replace if defective. If fuse continually burns out, chec
(A) Horizontal output tube V-17 (6BQ6-GT)
(C) Check horizontal oscillator tube V-16 (6SN7-GTA) for proper operation.
(D) With an ohm meter, check for a short between terminal 1 of the horizontal output transformer (T-9) and the chassis.
(E) Check DC resistance of T-9.

No high voltage. Check V-17, V-18 and V-19 tubes and circuits. If the horizontal deflection circuits are operating as evidenced by the correct voltage $(600 \mathrm{~V})$ be isolated to the high voltage rectifier circuit. Either the high voltage winding to the 6BQ6-GT plate and 1B3 plate is open, tube V-19 is defective, its filament circuit is open, R-105 and C-75 defective or pix tube elements shorted internally.
4: Defective picture tube heater open or cathode return circuit open

HORIZONTAL DEFLECTION ONLY - If only horizontal deflection is obtained as evidenced by a straight line across tion is obtained as evidenced by a straight line across
the face of the picture fube, it can be caused by the following:
1: Vertical oscillator and vertical output tube V-8 inoperative. Check socket voltages.
2: Vertical oscillator transformer (T-4) defective.
3: Vertical output transformer (T-5) open or shorted
4: Yoke vertical coils open or shorted.
. Vertical hold, height or linearity controls may be defective

OOR VERTICAL LINEARITY - If adjustment of the height and linearity controls will not correct this condition, any of the following may be the cause
1: Check variable resistors R-49 and R-54.
2: Vertical output transformer (T-5) defective.
: Capacitors C-47B, C-70 or C-71 defective.
5: V-8 defective, check voltages.
. Excess leakage or incorrect value of capacitor C-68, 6. Low plate voltages. Check rectifier tube and capacitors in $+B$ supply circuits.
: Capacitor C-67 defective.
8: Vertical deflection coils (L-12) defective.
POOR HORIZONTAL LINEARITY - If adjustment of the Horiontal drive and linearity controls does not correct this condition, check the following:
: Check or replace horizontal output tube V-17
Check or replace damper tube V-18 (6W4-GT)
Check capacitors C-77, C-78, C-79 and horizontal
linearity control (L-16) for defects : Horizontal deflection coils (L-17) defective

RAPEZOIDAL OR NONSYMMETRICAL RASTER
 1: Defective yoke.

Wrinkles on left side of raster - This condition can be caused by:
: Defective yoke due to C-76 or R-106 (internal in yoke
assembly) being wrong value or open. These com- PICTURE SMEAR
ponents are mounted in rear of yoke assembly.
$\mathrm{V}-18(6 \mathrm{~W} 4-\mathrm{GT})$)
2: V -18 ($6 \mathrm{~W} 4-\mathrm{GT}$) defective
SMALL RASTER - This condition can be caused by : Low $+B$ or line voltage. Check $\mathrm{V}-20$ (5 U 4 G).
2: insufficient output from horizontal output tube V-17. Replace tube
3: Insufficient output from vertical oscillator and vertical output tube $\mathrm{V}-8$. Replace tube.
4: Incorrect setting of horizontal drive control R-89.
lis (CW

RASTER; NO IMAGE, BUT ACCOMPANYING SOUND - This condi-
ion can be caused by:
ion can be caused by: MAN MADE NOISE IN SOUND (Ignition, etc)
: No signal on picture tube grid. Check V-5A (12AT7) 1: Check sound I-F tubes V-10, 11 \& 12 and associated (OAH6) tubes and associated circuits.
Bad contact to picture tube grid (lead to socket
3: AGC tube (V-9) may be defective. Check tube and its associated circuit

Check sound I-F alignment.

BENDING OR S-ING
1: Check sync stability control adjustment.
SIGNAL APPEARS ON PICTURE TUBE GRID BUT IMPOSSIBLE TO 2: Check capacitors C-47A and C-49A
SYNCHRONIZE THE PICTURE VERTICALLY AND HORIZONTALLY
1: A condition of this nature can be caused by:
3: V-17 (6BQ6-GT) defective or V -16 (6SN7-GTA) de fective.
2. If tubes are O.K. check voltages, ind splitter V-5B.
cuits.
AGC system inoperative. Check V-9 (6AU6) AGC tube and associated circuits.
plitter $V-5 B$ separator tube $V-7$ ($6 B E 0$) and phase fier.
5: Check AGC threshold control
SIGNAL ON PICTURE TUBE GRID AND HORIZONTAL SYNC ONLY

PICTURE NORMAL-NO SOUND OR WEAK OR DISTORTED SOUND
1: Check sound I-F alignment.
2: Check V-10 (6AU6) V-11 (6AU6) V-12 (6AL5) V-13 (6AV6) and associated circuits.

POOR FOCUS

1: Improper setting of lon Trap magnet.
2: Defective picture tube or picture tube socket

PICTURE JITTER:

1: If regular sections at left of the picture are dis placed, replace the horizontal oscillator tube V-16.
2: Vertical instability may be due to loose connections or noise received with the signal.
3: Horizontal instability may be due to unstable trans mitted sync.
4: Check receiver AGC system for proper operation.
5: Check phase splitter V-5B, (12AT7) and sync separa tor V-7 (6BE6).
6: Check for improper setting of sync stability control
7: Picture tube grid lead not held in position by support spring, ie: close proximity of grid lead to sync and horizontal tubes will cause picture to jitter at high contrast setting.
8: Check AGC threshold control.

- If this condition is encountered, check:

1: Vertical integrating network capacitors C-53A, B \& C,
and resistors $R-68 A, B \& C$.
2: Vertical hold control (R-51) defective.

SIGNAL ON PICTURE TUBE GRID AND VERTICAL SYNC ONLY

1: V-15 or V-16 defective.
: V-15 or V-16 defective.
: Improper setting of (L-14) horizontal frequency con-
trol.
: Check setting of horizontal drive control and horizon-
4: Check V-15 and V-16 socket voltages.

PICTURE STABLE BUT WITH POOR RESOLUTION - If the picture

 resolution is not up to standard, it may be caused by any of the following1: Defective pix $1-F$ fubes $V-1,2$ \& 3, (6CB6's).
2: Defective picture detector V-4A, (6AL5) or video am plifier V-5A or video output V-6 (6AH6).
3: Defective picture tube.
4: Open video peaking coil. Check all peaking coils Open video peaking coil. Check all peaking coils
$\mathrm{L}-5, \mathrm{~L}-6, \mathrm{~L}-8, \mathrm{~L}-9, \mathrm{~L}-10$ and $\mathrm{L}-11$ for continuity. Note that L-5, L-9 and L-10 have shunting resistors.
5: Leakage in V-6 (6AH6) grid capacitor C-36. If the capacitor is not found to be defective, check the fol-
copacig:
1: Check all potentials in video circuits.
2: Check picture tube grid circuit for poor or dirty contact.
3: Check and realign, if necessary, the picture I-F and R-F circuits.

ALIGNMENT PROCEDURE

TEST EQUIPMENT - To service this receiver properly, it is recommended that the following test equipment be avail able:

R-F SWEEP GENERATOR meeting the following requirements (a) Frequency ranges:

18 to $30 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
40 to $90 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
40 to $90 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
170 to $225 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
(b) Output adjustable with at least . 1 volt maximum.
(c) Output constant on all ranges.
(d) Flat output in all attenuator positions.

CATHODE-RAY OSCILLOSCOPE preferably one with a wide band vertical deflection and an input calibrating source.

SIGNAL CENERATOR to provide the following frequencies Output on these ranges should be adjustable and at least .1 volt maximum.)
(a) Intermediate alignment frequencies.
23.1 mc first picture I-F coil.
24.1 mc third picture I-F coil.
25.9 mc second picture I-F coil.
21.7 mc sound trap.
4.5 mc video trap \& sound I-F.
25.2 mc converter plate coil (Tuner).
heterodyne frequency meter with crystal calibrator if the signal generator is not crystal controlled.

ELECTRONIC VOLTMETER and a high voltage probe for use with this meter to permit measurements up to 20 kilovolts.

SERVICE PRECAUTIONS - To service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the cabinet back, disconnect the leads from the speaker, the radio chassis, remove the antenna terminal board at rear of cabinet, and then the 5 chassis mounting bolts. The chassis may be serviced with the picture tube in place provided the chassis is turned on its side with the powe transformer on the bottom. The weight of the chassis will be supported against the power transformer and pix tube brackets.

CAUTION: Do not permit the kinescope second-anode lead to become shorted to the chassis. To do so will cause a considerable overload on the high voltage filter resistor R-105.

ALIGNMENT PROCEDURE

 PIX I-F

A. Unmodulated R-F signal into Converter Grid by means A. Unmodulated $\mathrm{R}-\mathrm{F}$ signal into Converter Grid by means
 base. VTVM with filter in lead of 22 K ohms and 5000 mmf connected to pic. det. load Fig. 10-VTVM Connections resistor, (R-37) 4700 ohms, in series with peaking coil (L-6) from Pin 7 of 6AL5. Input signal level should be such that output is less than 2 volts DC. Apply -4.5V battery bias on AGC line.

1.	FREGUENCY 25.2 MC	Converter plate coil on top of tuner for maximum dc at picture detector.
2.	23.1 MC	l st picture I-F coil (T-1) for maximum dc at picture detec- tor.
3.	25.9 MC	2nd picture I-F coil (T-2) for maximum dc at picture detec- tor.
4.	24.1 MC	3rd picture I-F coil (T-3 below chassis) for maximum dc at pic- ture detector.
5.	21.7 MC	3rd picture I-F trap (T-3 in can above chassis) for minimum dc at picture detector.

B. I-F Sweep Generator into converter grid by means of tube shield insulated from base.
Connect oscilloscope across R-37 (in place of VTVM) Apply -4.5 V bias (DC) to AGC line (battery)
Tuner should be switched to dead channel so as not to cause interference.

Fig. 12-Overall Response Curve

Observe overall I-F response, which should be as shown above: A slight touch-up may be required. At no time should the trap coil be re-adjusted, nor should it be neces sary to turn any of the picture I-F coils more than 12 turn of the slug. The following comments are suggestions only:

ALIGNMENT PROCEDURE (Continued)

1. The height of the 26.2 MC marker is controlled by the 25.2 MC (Converter Plate Coil on tuner) and the 25.9 MC (2nd P.I.F.) coils.
2. The uniformity of response (flatness across top and position of 23.5 MC) marker is controlled for the most part by the 24.1 MC third picture I-F coil.
3. The 23.0 MC marker position is controlled by the first picture I-F (23.1 MC coil). However, it is NOT advisable to change the setting of the coil, due to its effect on sound rejection. Its adjustment should be avoided unless believed to be absolutely necessary.

VIDEO

With 4.5 MC unmodulated signal from a high impedance source, (10,000 ohms in series with the generator) into plate of the picture detector tube (Pin 7-6AL5) and VTVM on picture tube grid, tune 4.5 MC trap (L-7 Top) for
minimum response. VTVM on $0-10 \mathrm{VAC}$ scale. This ad justment can also be made while observing a picture from a station. Tune trap for least 4.5 MC beat in picture

AUDIO I-F

1: With signal generator set to 4.5 MC and de VTVM connected to junction of R-13 and C-14, adjust sound rake-off coil (L-13 Top) and sound I-F transformer slugs ($\mathrm{T}-6$ Top \& Bottom) for maximum.
2: With VTVM connected to pin 7 of V-12 (6AL5) adjust the ratio detector primary ($T-7$ Bottom) for maximum.
3: With VTVM connected to junction of R-17, R-20 a.d C-18, adjust ratio detector secondary ($\mathrm{T}-7$ Top) for cross over (zero voltage) on lowest scale.
NOTE - If no signal generator is available, the pro cedure above may be followed by tuning in a station and using the 4.5 MC beat between picture and sound carrier.

TUNER ALIGNMENT

A. Sweep generator with balanced 300 ohm output to antenna terminals. Marker generator output to antenna terminals. Oscilloscope to "test point" (Figure 13) on tuner. Connect $11 / 2 \mathrm{~V}$ bias to AGC line at junction of $\mathrm{R}-34$ and $\mathrm{C}-29$ on the receiver.

Fig. 13-Top Tuner Adjustments
2. Check response on all channels. If markers are below 70% on any channels, readjust $\mathrm{C}-201, \mathrm{C}-206$, and C-209. Recheck all channels.

Fig. 14-Pix. \& Audio Markers
C. OSCILLATOR ADJUSTMENT

1. Apt / 2.5 volts on I:F AGC line at junction of R-1 and C-30A.
2. Connect oscilloscope to output of video detector Place fine tuning in center of range. Check response on all channels. Sound marker should be in notch and picture marker at 50%. (See Figure 12).
3. If markers are off, individual oscillator coil slugs will require adjustment. Adjust each channel slug, accessible through hole in front of chassis with a non-metallic screwdriver to bring sound marker to correct position.

© John F. Rider

PARTS LIST

OSCILLOSCOPE WAVEFORM PATTERNS

he waveforms on this page were taken with the receiver funed to a normal picture. The numbers on the waveforms correspond to the numbers on the schematic diagram which identifies each test point.
he voltages shown on each waveform are the approxi-
mate peak to peak amplitudes. The frequencies shown in-
dicales the repetition raie of the waveform, not the sweep rate of the oscilloscope. If the waveforms are observed on the oscilloscope with a poor high frequency response, the corners of the pulses will tend to be more rounded than those shown below and the amplitudes of any high
frequency pulse will tend to be less.

RADIO AND RECORD CHANGER
prices subject to change without notice

Ref. No.	Part No.	description	$\underset{\substack{\text { Selling } \\ \text { Price }}}{ }$
TRANSFORMERS AND COILS			
L. 1	9A2283	R. F. Interstoge Coil	${ }^{88}$
1.2	9A2113	Ozsillator Cail	${ }^{30}$
T. 1	9 A 2114	"B" Ronge Loap Antenna	1.30
T. 2	942112	1st I. F. Transformer	. 94
T. 3	9A2063	2nd I. F. Transformer	. 94
T.4	51×134	Output transformer	1.56
r.5	53×291	Power ITransiormer	5.52

DIAL AND DRIVE ASSEMBLY

$2 \times \times 14$ Drive Shatt

miscellaneous

$$
8^{\prime \prime \prime} \text { P.M. Speaker }
$$

$$
\begin{aligned}
& \text { Knobs (Mah.) } \\
& \text { Knobs (Blande) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Knabs (Blande) } \\
& \text { Escuthean }
\end{aligned}
$$

Band Switch
ine Gord ond Plug Assembly
Tube Sockeret
Tube Shie'd
TV.AC Receptac.e
Line Cord Clamp
Phono. TV Audia
Thono, TV Audia Socket
Copacitor-Resistar Combination
Pilat Light Sacket Assembly.)
Pilat Light Socket Assembly
No. 51 pilot Light Bulb....
Jewel, Pilot Light
YYPE V-28A189 RECORD CHANGER PARTS
Sce Nate Motor Assembly, 60 cycles
V-2503B Pickup Arm
P.77V Crystal Cartidge \& Noedles (Use 60H17)
85.16 Needle, Regu!ar (Use 61 H2)
85-18 Need'e, Microgroave, Red (Use 61H13)

TELEVISION PARTS LIST

$21^{\prime \prime}$ METAL RECTANGULAR PIX TUBE
21" metal rectangular pix tube

PRICES SUBJECT TO ChANGE WITHOUT NOTICE

NOTICE: There is a model number lobel on the chassis. This label idenifies the receiver os

Ref. No.	Part No.	Descrip			$\begin{aligned} & \text { Selling } \\ & \text { Price } \end{aligned}$
CAPACITORS-Continued					
	Port of 76x7 (See Miscelloneous)				
$\begin{aligned} & c .54 \\ & c .60 \end{aligned}$	47×543	4700 mmf	500 V	Molded Mico	. 52
C. 59	RCM20A271K 270 mmf		500 V	Molded Mico. .	. 06
c. 62	RCPIOM2473M	3M .047 mf	200 V	Tubular....	. 18
C. 63	RCM208431K	K 430 mmf	500 V	Molded Mica.	. 18
c. 64	47×570	330 mmf	500 V	Molded Mico..	. 14
c. 65	RCM20A22IK	1K 220 mmf	500 V	Molded Mico. .	. 16
$\left\lvert\, \begin{aligned} & c .671 \\ & c .701 \end{aligned}\right.$	RCPIOM6104M	04M . 1 mf	600 V	Tubular.	. 30
C. 69	RCP10M6103M	03M . 01 mf	600 V	Tubular....	. 18
c. 71		30 mf	400 V	Dry Electrolytic	c 1.06
c. 75		500 mmf	20 K.V.	Ceromic......	1.20
c.76	4×560 47X598 RCPIOMAIS	56 mmf 54M . 15 mf	1500 V	Ceramic......	. 20
c. 78			400 V	Tubulor....	. 24
	RESISTORS				
	Ohms		Watts		
R.1	883822	8.2 K	0.5	Carbon..	. 10
$\left.\begin{array}{\|l\|l\|} R-2 \mid \\ R-5 \end{array} \right\rvert\,$	883470	47	0.5	Carbon..	. 10
$\left[\begin{array}{l} R-3 \\ R-6 \\ R-12 \\ R-16 \\ R-30 \end{array}\right]$	885102	1K	0.5	Carbon....	. 06
$\left\|\begin{array}{\|l\|} R-4 \\ R .7 \end{array}\right\|$	883223	22 K	0.5	Corbon...	. 10
R.8	884181	1801.5	0.5	Carbon......	. 08
$\left\{\begin{array}{l} R \cdot 9 \\ R-42 \end{array}\right\}$	884152		0.5	Carbon...	. 08
R. 10	Part of 1.5				
$\left.\begin{array}{\|c\|c\|c\|c\|c\|} R-1 \\ R \cdot 44 \end{array} \right\rvert\,$	884101	100	0.5	Carbon.	. 08
R. 13	B84563 884333	56 K	0.5	Carbon......	. 08
$\begin{aligned} & R-141 \\ & R-41 \\ & R-801 \end{aligned}$		33 K	0.5	Carbon.	. 08
$\left.\begin{array}{l} R .15 \\ R-24 \\ R .36 \\ R .74 \end{array}\right\}$		100 K	0.5	Corbon.	. 08
R-17	884271	270	0.5	Carbon....	. 08
$\left.\begin{array}{l} R .18 \\ R-19 \\ R-86 \end{array}\right\}$	884223	22 K		Carbon......	. 08
$\begin{aligned} & R-201 \\ & R-651 \end{aligned}$	884683	68 K		Carbon....	. 08
R.22	40×367 40×333	$\begin{aligned} & 1.5 \mathrm{~K} \\ & 500 \mathrm{~K} \end{aligned}$	Controst Control		1.66
R-25				ightness Control	. 52
$\left.\begin{aligned} & R-31 \\ & R-32 \end{aligned} \right\rvert\,$	885151	150	0.5	Carbon......	. 06

NDEX

IMPORTANT
Issue " A " $\&$ " B " Series of Models 3171 \& 3173 are identical except for a few minor changes in cabinet construction and design. For differences between the " A " \& " B " models, see the parts list section.

ELECTRICAL SPECIFICATIONS
Power Supply. 105-125 Volts AC
Power Consumption........ . . 210 Watts
Power Output 2.4 Watts (Max)
Tuning RangesVHF - Channels 2 thru UHF - Channels 14 thru 83
Antenna Input Imp. 300 Ohms Balanced Intermediate Frequencies Picture 26.20 MC Sound 21.70 MC I-F (UHF Position Only). Picture 121.75
Intercarrier Sound System . . . 4.5 MC
Loud Speaker. See Parts List
Voice Coil Imp. 3.2 Ohms 400 Cycles

	TUBE	MPLEMENF
Symbol	Type	Function
VHF	Tuner. . 616	R-F Osc. and Mixer
*VHF	Tuner. . .6BQ7	R-F Amplifier
UHF	Tuner. . .6AF4	R-F Osc.
UHF	Tuner. . . 1 N 72 or	Crystal Mixer
	1N82	

MODELS 3173ARB
PAGE
(Continued)

TRIMMER LOCATIONS. 31 voltage measurements ... 30 Channel
Number

Channel
Frequency
Mc俍

Picture carrie Frequen Mc

55.25
61.25
67.25
77.25

Soun
Carri Carr
Freque
Mc 59.75 65.75
71.75 81.7 81.75
87.75
179.75

174-180
180-18
186-192
198-20
204-21
210-2 470-476

482-48
$482-48$
$488-49$
494-500
500-506
506-512
512.51

518-524
$524-530$
$530-536$
536-542
$542-548$
$554-560$
560-566
566-572
$572-578$
$578-584$ $584-590$ $590-596$

2

RADIO fREQUENCY RANGES

Channel Number	$\begin{aligned} & \text { Channel } \\ & \text { Frequency } \\ & \text { Me } \end{aligned}$	Picture Carrier Frequency Me	$\begin{gathered} \text { Sound } \\ \text { Corrier } \\ \text { Frequency } \\ \text { Mc } \end{gathered}$
43	644-650	645.25	649.75
44	650-656	651.25	655.75
45	656-662	657.25	661.75
46	662.668	663.25	667.75
47	668-674	669.25	673.75
48	674-680	675.25	679.75
49	680.686	681.25	685.75
50	686-692	687.25	691.75
51	692-698	693.25	697.75
52	698-704	699.25	703.75
53	704-710	705.25	709.75
54	710.716	711.25	715.75
55	716.722	717.25	721.75
56	722.728	723.25	727.75
57	728-734	729.25	733.75
58	734.740	735.25	739.75
59	740-746	741.25	745.75
60	746-752	747.25	751.75
61	752-758	753.25	757.75
62	758-764	759.25	763.75
63	764-770	765.25	769.75
64	770-776	771.25	775.75
65	776-782	777.25	781.75
66	782-788	783.25	787.75
67	788-794	789.25	793.75
68	794-800	795.25	799.75
69	800-806	801.25	805.75
70	806-812	807.25	811.75
71	812-818	813.25	817.75
72	818.824	819.25	823.75
73	824.830	825.25	829.75
74	830-836	831.25	835.75
75	836-842	837.25	841.75
76	842-848	843.25	847.75
77	848-854	849.25	853.75
78	854-860	855.25	859.75
79	860-866	861.25	865.75
80	866-872	867.25	871.75
81	872-878	873.25	877.75
82	878-884	879.25	883.75
83	884-890	885.25	889.75

Fig. 1-Tube Layout.

RECEIVER LOCATION - Advise the owner as to the prope location for the television receiver. The following may be used as a guide:

1. Choose an area in the home where sunlight or light from lamps does not strike the face of the picture tube and cause glare.
2. Remember the necessity of an electrical outlet and the location of the point at which the antenna leads enter the room.
3. The receiver should be placed a short distance from the wall to allow adequate ventilation.
4. The receiver should be placed to permit easy access
for operation and comfortable viewing from all angles.
ANTENNA - This receiver has been designed to use an an tenna with a 300 ohm balanced transmission line. This line must be as short as possible because the longer the line the greater the chances are for picking up electrical disturbances. Stand-off insulation should be used to keep the line away from the mast, metal or walls. Twist this line about 2 one turn per foot thooughout the line to cancel out direct signal and/or noise pickup by the transmission line. It 3 change in weather will not affect its position.

HIGH VOLTAGE WARNING

This television receiver contains high voltages which are dangerous to life. Never operate or service the receiver outside of the cabinet or with the covers removed until all the safety precautions necessary for working with high voltage equipment have been observed.

PICTURE TUBE

HANDLING PRECAUTIONS

Shatterproof goggles and heavy gloves must be worn by individuals while handling the picture tube picture tube safety glass - It will be necessary to clean or installing the picture tube into the receiver. The picture tube encloses a high vacuum and due to the large surface area, is subjected to very high lined in the illustration. Insert your fingers into the opening air pressure. Therefore, care should be taken not to bump or scratch the oicture tube accidentally as ito may cause the tube to implode resulting in damage to property or injury to an individual.

5 screws and cleat from und
Fig. 2-Front Panel Controls

TUNING PROCEDURE

te picture tube safety glass and the face of the picture tube occasionally. Remove the screws and cleat as out-

To turn the television receiver on, turn the OFF-ON VOLUME control clockwise until a click is heard. Allow approximately 30 seconds for the tubes to warm up. urn the STATION SELECTOR control to the desired channel. This control may be turned in either direction. Turn the CONTRAST control clockwise until activity or definite form is noted on the screen.
4. Adjust the FINE TUNING control for clearest picture and the VOLUME control for desired volume.

OCCASIONAL ADJUSTMENTS TO

There are four controls at the front of the chassis which are accessible when the hinged control panel is pulled downward. See illustration Figure 2. These controls are pre-set at the factory and may occasionally need adjustment due to aging of the components in the receiver and the fluctuating line voltages in different areas.

CONTROLS A
HORIZONTAL HOLD-Stops horizontal movement (diagonal bars.)
onal bars.) of the picture tube with a soft lint-free cloth dampened with water or mild soapsuds.
5. To turn off the receiver, turn only the OFF-ON VOLUM control counterclockwise until a click is heard.
6. TONE CONTROL - When this Control is turned clock wise, the high notes will predominate and when turne counterclockwise, a deep bass effect will result.
7. In localities where URF prograls are available, tu the STATION SELECTOR control to the UHF position Control. The dial scale is calibrated in channel numbers and covers the entire UHF range of channels bers and covers
14 through 83.

If any adjustments are necessary follow the instructions under "Controls and Functions."

IMPORTANT - Be sure that the FINE TUNING control has been set for the clearest picture before adjusting any controls.

FUNCTIONS

BRIGHTNESS-Adjusts for desired picture brilliance. VERTICAL HOLD-Stops upward or downward picture move. ment.

For models that h the cabinet the following caution must be observed. CAUTION - UPON REMOVAL OF THE LAST SCREW AND THE CLEAT THE GLASS MAY FALL FORWARD. SUPPORT the glass with one hand as you lift it gently from the cabinet.
© John F. Rider

rig. 7-Block Diagram

SERVICE SUGGESTIONS

NO RASTER ON PICTURE TUBE - If raster cannot be obtained check below for the possible causes.
1: Ion trap magnet adjustment is incorrect
2: $\mathrm{No}+\mathrm{B}$ voltage. Check $4 / 10$ ampere fuse. Replace if defective. If fuse continually burns out, check
(B) Check daper tube V-18 (6AX4Q6-G
C) Check horizontal oscillator tube V-16 (6SN7-GTA) for proper operation.
(D) With an ohm meter, check for a short between terminal 1 of the horizontal output transformer (T-9) and the chassis.
(E) Check DC resistance of T-9

3: No high voltage. Check V-17, V-18 and V-19 tubes and circuits. If the horizontal deflection circuits are measured on terminal No. 1 of T-9, the trouble can be isolated to the high voltage rectifier circuit. Either the high voltage winding to the 6BQ6-GT plate and 33 plate is open, tube V - 19 is defective, its filamen circuit is open, R-105 and C-75 defective or pix tube elements shorted internally.
4: Defective picture tube heater open or cathode return circuit open.

HORIZONTAL DEFLECTION ONIY - If only horizontal deflection is obtained as evidenced by a straight line acros the face of the picture tube, it can be caused by the following:
1: Vertical oscillator and vertical output tube V-8 inoperative. Check socket voltages.
2: Vertical oscillator transformer (T-4) defective.
3: Vertical output transformer (T-5) open or shorted.
4: Yoke vertical coils open or shorted.
fective.
POOR VERTICAL LINEARITY - If adjustment of the heigh and linearity controls will not correct this condition, any of the following may be the cause.
1: Check variable resistors R-49 and R-54.
2: Vertical output transformer (T-5) defective
3: Capacitors C-47B, C-70 or C
4: V-8
5: Excess leakage or incorrect value of capacitor C-68
or open or incorrect value of resistors R-90 \& R-92.
6: Low plate voltages. Check rectifier tube and capacitors in $+B$ supply circuits.
7: Capacitor C. 67 defective.
8: Vertical deflection coils (L-12) defective
POOR HORIZONTAL LINEARITY - If adjustment of the Horizontal drive and linearity controls does not correct this zontal drive and linearity contr
condition, check the following:
1: Check or replace horizontal output tube V-17.
2: Check or replace damper tube V-18 (6AX4-GT)
3: Check capacitors C-77, C-78, C-79 and horizontal linearity control (L-16) for defects.
4: Horizontal deflection coils (L-17) defective.

trapezoidal or nonsymmetrical raster

I: Defective yoke.
WRINKLES ON LEFT SIDE OF RASTER - This condition can be caused by:
1: Defective yoke due to C-76 or R-106 (internal in yoke
assembly) being wrong value or open. These components are mounted in rear of yoke assembly.
2. V-18 (6AX4-GT) defective.

Si.ALL RASTLR - ihis condition can be caused by
1: Low +B or line voltage. Check V-20 \& V-22 (5U4G).
: Insufficient output from horizontal output tube V-17. Replace tube.
3: Insufficient output from vertical oscillator and vertical output tube V-8. Replace tube
4: incorrect setting of horizontal drive control R-89.
5: v-18 (6AX4-GT) defective.
6: incorrect setting of (L-15) width control.
RASTER; NO IMAGE, BUT ACCOMPANYING SOUND - This condition can be caused by
1: No signal on picture tube grid. Check V-5A (12AT7) and V-6 (6AH6) tubes and associated circuits.
2: Bad contact to picture tube grid (lead to socket broken).
3: AGC tube ($\mathrm{V}-9$) may be defective. Check tube and its associated circuit.

SIGNAL APPEARS ON PICTURE TUBE GRID BUT Impossible to synchronize the picture vertically and horizontally - A condition of this nature can be caused by

1: Defective sync separator V-7 or phase splitter V-5B.
2: If tubes are O.K. check voltages, and associated cir-
3: AGC system inoperative. Check V-9 (6AU6) AGC tube and associated circuits.
signal on picture tube erid and horizontal sync oniy - If this condition is encountered, check:

1: Vertical integrating network capacitors C-53A, B \& C and resistors R-68 A, B \& C.

SICNAL ON PICTURE TUBE GRID AND VERTICAL SYNC ONLY

1: V-15 or V-16 defective.
2: Improper setting of (L-14) horizontal frequency con-
3: Check setting of horizontal drive control and horizontal linearity control.
4: Check V-15 and V-16 socket voltages.
picture stable but with poor resolution - If the picture
resolution is not up to standard, it may be caused by any of the following:
1: Defective pix I-F tubes V-1, $2 \& 3$, ($6 C B 6^{\prime}$ s).
2: Defective picture detector $\mathrm{V}-4 \mathrm{~A}$, ($6 \mathrm{ALL5}$) or video amplifier V-5A or video output V-6 (6AH6)
4: Open video peaking coil. Check all peaking coils L-5, L-6, L-8, L-9, L-10 and L-11 for continuity. Note that L-5, L-9 and L-10 have shunting resistors.
5: Leakage in V-6 (6AHO) grid capacitor C-36. If the capacitor is not found to be defective, check the fol lowing:
1: Check all potentials in video circuits.
2: Check picture tube grid circuit for poor or dirty
. Check and realign, if necessary, the picture I-F and R-F circuits.

© John F. Rider

PICTURE SMEAR:

1: A smear can be attributed to phase shify at the low or high frequency end of the video characteristic. This can be caused by improper values of resistors and capacitors in the video circuits. Check for grid current on video output tube V-6 (6AH6), open or shorted peaking coils, video amplifier load resistors are of improper value (high).
2: This trouble can also originate at the transmitter. Check reception from another station.
3: Check and realign, if necessary, the picture I-F and R-F circuits.

MAN MADE NOISE IN SOUND (Ignition, etc)

1: Check sound I-F tubes V-10, 11 \& 12 and associated circuirs.
2: Check sound I-F alignment.

BENDING OR S-ING

1: Check sync stability centrol adjustment.
2: Check capacitors C-47A and C-49A.
3: V - 17 (6BQ6-GT) defective or V - 16 (6SN7-GTA) defective.
4: Check sync separator tube V-7 (6BE6) and phase splitter V-5B (12AT7) and V-5A (12AT7) video ampli fier.
5: Check AGC threshold control.
PICTURE NORMAL-NO SOUND OR WEAK OR DISTORTED SOUND
1: Check sound I-F alignment.
2: Check V-10 (6AU6) V-11 (6AU6) V-12 (6AL5) V-13 (6AV6) V-14 (6AQ5) and associated circuits.

RASTER ON TUBE BUT NO PICTURE OR SOUND

This condition can be caused by,
1: Defective pix I-F Amplifier tubes V-1, V-2 or V-3
2: Defective pix detector tube V-4A (6AL5). Check tube and its associated circuit.
: Defective R-F Amplifier or oscillator mixer tubes in the tuner.
4: UHF-VHF switch defective.

POOR FOCUS

1: Improper setting of Ion Trap magnet
2: Defective picture tube or picture tube socket.

PICTURE JITTER:

1: If regular sections at left of the picture are displaced, replace the horizontal oscillator tube V-16.
. Vertical instability may be due to loose connections or noise received with the signal.
Horizontal instability may be due to unstable transmitted sync.
4: Check receiver AGC system for proper operation.
5: Check phase splitter V-5B, (12AT7) and sync separator $V-7$ ($6 B E 6$).
6: Check for improper setting of sync stability control.
7: Picture tube grid lead not held in position by support spring, ie: close proximity of grid lead to sync and horizontal tubes will cause picture to jitter at high contrast setting.
8: Check AGC threshold control.
no picture or sound or weak picture or sound in uhf POSITION
If this condition is encountered
1: Check to see whether or not a UHF station is operating in the vicinity.
2: The 6AF4 oscillator tube or the IN72 (or IN82) crystal may be defective.
: Pre-selector in UHF tuner defective.
4: Low pass filter defective.
5: The UHF antenna and oscillator strips in the VHF tuner defective.
6: Defective switch on UHF tuner

ALIGNMENT PROCEDURE

TEST EQUIPMENT - TO service this receiver properly, it is recommended that the following test equipment be avail
able:

R-F SWEEP GENERATOR meeting the following requirements
(a) Frequency ranges:

18 to $30 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
40 to $90 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
120 to $130 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
170 to $225 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
470 to $890 \mathrm{mc}, 10 \mathrm{mc}$ sweep width
(b) Output adjustable with at least .1 volt maximum
(d) Flat output in all alt ranges.

CATHODE-RAY OSCIILOSCOPE preferably one with a wide band vertical deflection and an input calibrating source. SIGNAL GENERATOR to provide the following frequencies (Output on these ranges should be adjustable and at least .1 volt maximum.)
(a) Intermediate alignment frequencies
23.1 mc first picture I-F coil.
24.1 mc third picture I-F coil
24.1 mc third picture I-F coil.
25.9 mc second picture I-F coil
21.7 mc sound trap.
4.5 mc video trap \& sound I-F.
heterodyne frequency meter with crystal calibrator if the signal generator is not crystal controlled.
ELECTRONIC VOLTMETER and a high voltage probe for use with this meter to permit measurements up to 20 kilovolts. SERVICE PRECAUTIONS - TO service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the cabinet back, disconnect the leads from the speaker, remove the antenna terminal boards at rear of cabinet, and serviced with the picture tube in place provided the chassis is turned on its side with the power transformer on the is turned on its side with the power transformer on the
bottom. The weight of the chassis will be supported against the power transformer and pix tube brackets.
CAUTION: Do not permit the kinescope second-anode lead to become shorted to the chassis To second-anode a considerable overload on the high voltage filter resistor R-105.

ALIGNMENT PROCEDURE

PIX I-F

A. Unmodulated R-F signal into Converter Grid by means
 of tube shield insulated from base. VTVM with filter in lead of 22 K ohms and 5000 mmf connected to pic. det. load esistor, (R-37) 4700 ohms, rig. 10-VTVM Connections series with peaking coil (L-6) from Pin 7 of 6AL5. Involts DC. Apply -4.5 V battery bias on AGC line

1.	frequency 25.2 MC	Converter plate coit on top of tuner for maximum dc at picture detector.
2.	23.1 MC	1st picture I-F coil (T-1) for maximum de at picture detec- tor.
3.	25.9 MC	2nd picture I-F coil (T-2) for maximum dc at picture detec- tor.
4.	24.1 MC	3rd picture I-F coil (T-3 below chassis) for maximum dc at pic- ture detector.
5.	21.7 MC	3rd picture I-F trap (T-3 in can above chassis) for minimum dc at picture detector.

B. I-F Sweep Generator into converter grid by means of tube shield insulated from base.
Connect oscilloscope across R-37 (in place of VTVM). Apply -4.5V bias (DC) to AGC line (battery).
Tuner should be switched to dead channel so as not to cause interference

Fig. 9-Bottom Chassis Video
and Audio lif Adiusments

Fig. 12-Overall Response Curve

Observe overall I-F response, which should be as shown above: A slight touch-up may be required. At no time should the trap coil be re-adiusted, nor should it be necessary to turn any of the picture I-F coils more than $1 / 2$ turn of the slug. The following comments are suggestions only:

ALIGNMENT PROCEDURE (Continued)

The height of the 26.2 MC marker is controlled by the 25.2 MC (Converter Plate Coil on tuner) and the 25.9 MC (2nd P.J.F.) coils.
2. The uniformity of response (flatness across top and position of 23.5 MC) marker is controlled for the most part by the 24.1 MC third picture I-F coil.
3. The 23.0 MC marker position is controlled by the irst picture I-F (23.1 MC coil). However, it is NO its effect on sound rejection. Its adjustment should be avoided unless believed to be absolutely necessary.

VIDEO

With 4.5 MC unmodulated signal from a high impedance source, (10,000 ohms in series with the generator) into picture pube arid tune 45 MC trap (7 TOp) fo

TUNER ALIGNMENT

A. Sweep generator with balanced 300 ohm output to antenna terminals. Marker generator output to an tenna terminals. Oscilloscope to "test point" (Figure 13) on tuner. Connect $11 / 2 \mathrm{~V}$ bias to AGC line at junction of R-34 and C-29 on the receiver.

Fig. 13-Top Tuner Adiustments
B. RF AND CONVERTER ADJUSTMENT.

1. With channel selector on Channel 12, adjust C-20 slightly favoring the Pix carrier, then adjust C-206 and C-209 for response as in Figure 14. Picture and sound markers at 90% maximum response.
2. Check response on all channels. If markers are below $\mathbf{7 0 \%}$ on any channels, readjust C-201, C-206 and $\mathrm{C}-209$. Recheck all channels.

Fig. 14-Pix \& Audio Morkers
minimum response. VIVM on 0-10 V AC scale. This ad. justment can also be made while observing a picture from a station. Tune trap for least 4.5 MC beat in picture.

AUDIO I-F

1: With signal generator set to 4.5 MC and de VTVM connected to junction of R-13 and C-14, adjust sound slugs ($\mathrm{T}-6$ Top \& Bottom) for maximum.
2: With VTVM connected to pin 7 of V-12 (6AL5) adjust the ratio detector primary ($\mathrm{T}-7$ Bottom) for maximum.
3: With VTVM connected to junction of R-17, R-20 and C-18, adjust ratio detector secondary (T-7 Top) for cross over (zero valtage) on lowest scale.
NOTE - If no signal generator is available, the p:ocedure above may be followed by tuning in a station and using the 4.5 MC beat between picture and sound
C. OSCILLATOR ADJUSTMENT

1. Apply -4.5 volts on I-F AGC line at junction of R-1 and C-30A.
2. Connect oscilloscope to output of video detector. Place fine tuning in center of range. Check response on all channels. Sound marker should be 12).
3. If markers are off, individual oscillator coil slugs will require adjustment. Adjust each channel slug, accessible through hole in front of chassis with .a non-metallic screwdriver to bring sound marker to correct position.
4. To adjust oscillator on UHF position, feed the sweep generator with center frequency of 124 MC and markers at 121.75 and 126.25 into the input of the low pass filter (output of UHF tuner). Adiust pix carrier marker is at 50% and that 126.25 marker is in the sound notch. If a sweep generator marker is in the sound notch. If a sweep generator
is not available, a single frequency generator set to 126.25 MC and VTVM may be used. Connect VTVM to the pix detector load resistor R-37. Feed generator into the low pass filter. Adjust oscillator slug in the VHF funer so that the 126.25 marker is in the sound notch of the I-F curve.
5. If the 6AF4 oscillator tube in the UHF tuner is replaced, it may be necessary to adjust the oscilunderneath the chassis. (See Figure 15), Adiust this trimmer until the tuner will cover a range of below 470 MC to above 890 MC.

Fig. 15-UHf Tuner Adjustment.

VHF TUNER ASSEMBLY INFORMATION

Fig. 16_" $Q^{\prime \prime}$ Tuner Pictariol

Fig. 17-"Q" Tuner Schemotic Diogrom.

UHF TUNER INFORMATION

Fig. 18-UHF Tuner Schamotic Diogrom.

OSCILLOSCOPE WAVEFORM PATTERNS

The waveforms on this page were taken with the receive funed to a normal picture. The numbers on the waveforms correspond to the numbers on the schematic diagram which identifies each test point.
The voltages shown on each waveform are the approx mate peak to peak amplitudes. The frequencies shown in
dicates the repion rate the waverm, not the sweep rate of the oscilloscope. If the waveforms are observed on the oscilloscope with a poor high frequency response, han those shown blow and the amplitudes of any high frequency pulse will tend to be less.

 No. 2-6AH6 Grid
$8 V$
P.P 60 C.P.S.

Due to the complexity of the UHF tuner, neither servicing nor aligning is encouraged in the field because reptacement of any component within the R-F circuit may disturb the band-pass characteristics of the tuner. However, the 6AF4 tube or the 1N72 (or 1N82) crystal may be replaced in the field if found to be defective. A schematic diagram
of this tuner is shown only for the purpose of outlining the circuit used.

If the UHF tuner does not operate satisfactorily after the tube or crystal replacement, disconnect the tuner and return it to the factory for repair.

No. 3-Pix Tube Grid
20.100 V P.p 60 c.p.S.

No. 5-6BE6 Sync Sep. Plote
No. 10-6SN7.GTA Vert. Output Grid
o. 16-65N7 Hor. Osc. Plote

No. 17-6BQ6 Grid
120V P.P 15,750 C.P.S.

Fig. 19-Drive Cord Stringing.

You will note that there are two cords used for the pointe drive system on this receiver. Part number 10X88 Drive Cord assembly and part number 28×603 Spring are used on the tuning shaft and large pulley, while part number 0×89 Drive Cord and a part number 28×603 Spring are
used on the small pulley system and the pointer. Install the cords as shown in the illustration. After completing the installation rotate the fine tuning shaft a few turn to take up the slack in the cord

No. 6-12AT7 Phase Spliter Cothode
18V P.p
15,750
C.P.S.

No. 12-6AUU A.G.C

No. 18-6AX4-GT Domper Piote

21" UHF-VHF TELEVISION RECEIVER

PRODUCTION CHANGES
There are two different ratio detector transformers ($T-7$) used in these receivers, Part umbers 9A2269 and 9A2295. The T-7 circuit shown in this schematic diagram covers by the following changes:

R-15 becomes B84333 33 K ohm 0.5 W carbon resistor

C-18 becomes $47 \times 570 \quad 330 \mathrm{mmf}$ molded mica condenser
In addition, the 9A2295 ratio detector has terminals with numerical identification
III addition, the 9A2295 ratio detector has terminals with numerical identification
(1, 2, 3 etc.) whereas the 9 A 2269 ratio detector has terminals with alphabetical identi(i, 2,3 etc.). whereas
fication (A)

John F. Rider

Ref. No.	Part No.	Deseriptio		Soll	ling				
CAPACITORS-Continued									
$\begin{gathered} c-488 \\ c .711 \end{gathered}$	45×393	30 mf	400 V	Dry Electrolytic 1.06					
C.49A]	45×390	80 mf60 mf	${ }_{400 \mathrm{~V}}^{400}$	Dry Electrolytic					
C-498 ${ }^{\text {c }}$									
C. 53 C (5)	Part of 76x7 (See Miseellaneous)								
C.538									
C.53C)									
C-54	47X543	4700 mmf	500 V	Malded Mica. .	. 52				
C-601	RCM20A271K	$\begin{array}{lll} \mathrm{K} & \quad 270 \mathrm{mmf} \\ \mathrm{~K} & 430 \mathrm{mmf} \end{array}$	500 V	Molded Mica. .	. 16				
c. 63			500 V	Molded Mico..					
c. 64	47×570	330 mmf	500 V		. 14				
c-65	RCM20A201K	K 200 mmf		Molded Mica. .					
C-67)	RCPIOM6104	104M .1 mf	600 V	Tubulor......					
C-69	RCP10M6103	M .01 mf	600 V	$\begin{aligned} & \text { Tubular........ } \\ & \text { Ceromic...... } \\ & \hline 1.20 \end{aligned}$					
c. 75		500 mmf	20 k.V.						
c. 76	47×598	56 mmf	1500 V	Ceromic......Tubular.....	. 20				
C-78	RCPIOM415	54M . 15	400 V		. 24				
	RESISTORS								
R. 1	B83822	${ }_{8.2} \mathrm{O} \mathrm{K}$	${ }_{0}^{\text {Waths }}$	Corbon......	. 10				
R-2 $\mathrm{R}-5$	883470	47	0.5	Corbon......	. 10				
R-5) $\mathrm{R}-3$ R									
R.6	B85102	1K	0.5	Corbon......	. 06				
R-12									
R-30									
R-4]	B83223	22 K	0.5	Corbon......	. 10				
R.8	884181	180	0.5	Corbon.	. 08				
R.9	B84152	1.5 K	0.5	Corbon.					
R.42 ${ }^{\text {d }}$	Part of 1.5								
R.10									
R-11	884101	100	0.5	Corbon......	. 08				
R.13	884563	56 K	0.5	Corbon......	. 08				
[R.14]	B84333	33 K	0.5		. 08				
				Corbon....					
R.15	884104	100 K	0.5	Carbon.....					
R-24					. 08				
			0.5						
R. 17	884271	270		Corbon......	. 08				
$R .18$ $R .19$	884223	22 K	0.5	Corbon......	. 08				
R-861									
R-20	4683	68 K	0.5	Corbon.......	. 08				
R-21									
R-65		1.5 K							
	78×12			Contrast and Volume Control					
	$\begin{aligned} & 885106 \\ & 40 \times 333 \\ & \hline \end{aligned}$	10.0 meg. 500 K	0.5 Corben......						
R-25				ightness Control					
R-26A R R	Part of 76×5 (See Miscellaneous)								
R.53\|	885473	47 K	0.5	Carbon......					
R.28	$\begin{aligned} & \text { C84331 } \\ & \text { D84102 } \end{aligned}$	3301 K	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	Carbon. Carbon.	. 10				
R-29									
R.31]	B85151	150	0.5	Carbon......	. 06				
R.33	B84275	2.7 meg.	0.5	Carbon......					
R.34	884474	470 K	0.5	Carbon.	. 08				
R.100 $\mathrm{R}-35$	883334 883472	$\begin{aligned} & 330 \mathrm{~K} \\ & 4.7 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { Corbon....... } \\ & \text { Carbon...... } 10 \\ & \text { Cat } \end{aligned}$					
R.37									
R.38 $R-63$	884473	47 K	0.5	Carbon...... . 08					
R-103									

CONTROLS

Figure 1．Front Controls

OPRRATOR＇S CONTROLS

On－Off Volume－Turns the receiver on or off and ad－Selector Switch－Selects the desired unit of the re－ justs the sound volume level．
Contrast or Picture－Varies the contrast between the the light and dark portions of the picture．

Tuning－Tunes the receiver to the desired station or channel．May be turned in either direction．
ceiver for operation；either VHF or UHF
Brightness－Controls the brilliance of the picture．
V．Hold－Controls synchronization of the picture ver－
tically． tically．
H．Hold－Controls synchronization of the picture hori－ zontally．

SERVICEMAN＇S CONTROLS

V．Size－Controls the size of the picture vertically．
V．Linearity－Controls vertical distribution of picture． Fringe－Suburban－Local Switch－Three position switch for selection of the proper operational characteristics of the receiver for various signal level areas．
Sync Stabilizer Adjust－Changes the operational Sync Stabilizer Adjust－Changes the operational receiver is located．Control has no effect in＂local＂ switch position．

H．Size－Controls the size of the picture horizontally To．some extent，affects the vertical size control sefting H．Linearity Magnet－Controls horizontal distribution of right side of picture．
Anti－Pin Cushion Magnet－（21＂only）－Eliminates pin－cushioning and keystoning．
Centering Magnet－Controls positioning of the pic－
ture for proper framing．
Ion Trap Magnet－Controls focus and picture tube illumination．

Figure 2．Rear Controls
NOTE：The V．Hold control on the rear flange（figure 2）has a rubber knob for easy iden－ The V．Hold control on the rear flange（figure 2）has a rubber knob for easy iden
tification．The position of all the controls are illustrated in figures 1,2 and 3 ．Refer to figure 6 for the position of the vertical linearity control．

Figure 3A．17－inch Tube Assembly

Figure 3B．21－inch Tube Assembly

SERVICE ADJUSTMENTS

Vertical Size and Vertical Linearity Controls

 (R-73 and R-75):The vertical size and linearity controls should both be adjusted at the same time while a test pattern is being transmitted. The linearity control affects the upper portion of the picture while the size control affects the overall size especially the lower portion of the picture Adjust both controls simultaneously until the test pattern is symmetrical and fills the entire screen vertically Readjust the vertical hold control if necessary.

CAUTION:

The vertical linearity control is on the top chassis plate, The vertical linearity control is on the top chassis plate
therefore, severe shock may' result from contact. an isolation transformer is unavailable, use an insulated screwdriver for the adjustment to reduce shock hazards. The adjustment can be made from either the top or bottom of the chassis.

Fringe-Suburban-Local Switch (Figure 2):

The three position switch selects the proper operational characteristics of the receiver for the signal strength governed by the signal strength available.
In the Fringe position the A.G.C. voltage is reduced of ats the sync and the sync stabilizer adjust contro ipping level to reduce noise affects.
In the Suburban position full A.G.C. is applied and the sync stabilizer adiust control functions as in th fringe position.
In the Local position full A.G.C. is applied and the sync stabilizer adjust control is disabled.

Sync Stabilizer Adjust Control (R-61)

The control varies the operational characteristics of the sync clipper stage to obtain the optimum operation point for the least effect of noise interrupting synchro nization. The control should be adjusted for a steady picture.

Ion Trap Magnet (Figure 3)

The position of the ion trap magnet MUST be over the grid of the picture tube (second cylinder from the base identified by a flared forward lip) If the adjustment is tion which gives maximum illumination is found. Adjust the screw for maximum illumination. Repeat the above two steps. Rotate and slide magnet until the best focus position is found. Tighten wing nut. Adjustment should be made with brightness and picture controls set for normal viewing.

NOTICE: Some receivers may incorporate a 6BK7 tube in place of the 6BQ7A R.F. Amplifier in the VHF tuner. Re fer to page 26 for wiring differences.

Some receivers may also incorporate a 12 BH 7 in place of the 12 SN 7 Vertical Blocking Oscillator and Output tube. Refer to page 26 for wiring differences.

orizontal Size Control (Figure 2):

The horizontal size control should be adjusted until the picture fills the entire screen horizontally. A clockwise rotation will decrease size. To some extent the vertical size control setting may be affected by a major horizontal size adjustment.

Horizontal Hold Control (L-30):

The horizontal hold control is located on the rear flange of the chassis and should be adjusted in the following manner.
Set the picture control to its normal operating position. Turn the thumb screw clockwise until it reaches its stop. Turn two complete turns counter-clockwise. The thumb screw is a vernier adjustment and will then be in
the center of its range.
Turn the iron core with a small screwdriver or adjusting tool until the picture is steady (no horizontal movement). Set the core to the middle of its range.
After the iron core has been properly adjusted the thumb screw should then be used as a vernier adjustment to control synchronization when necessary.

Centering Magnet (Figure 3):

The centering magnet should be rotated and the control adjusted until the picture is properly framed keeping in mind that the effect of the control is governed by the position of rotation. If the control is above or below the neck of the picture tube, the picture will be the picture tube the picture will be moved either to the the picture tub
left or right.

Deflection Yoke (Figure 3):

The correct position for the deflection yoke is as far forward on the neck of the picture tube as the shape of the tube will allow. Tube shadow or a tilted raster may esult from an incorrectly positioned yoke. If a positioning adjustment is necessary, loosen the yoke wing nut
located at the top of the picture tube assembly (fig 2).

Horizontal Linearity Magnet (Figure 3):

The horizontal linearity magnet affects the linearity of the right side of the picture only. The magnet pulls or stretches the right side and has a greater effect closer to the picture tube.

Anti-Pin Cushion Magnet - 21" only (Figure 3B):
Adjust centering until an edge of the raster is visible. Loosen the positioning screws and slide the magnet backward or forward until the edge of the raster is vertically straight. If keystoning is noticed adjust magnets in vertical plane.

WARNING

At all times during operation the top chassis plate is at 125 volts DC potential above ground and it also may be at the line-voltage potential depending on how the line cord plug is inserted in the power receptacle.

Extreme caution must be observed when working with the chassis outside the cabinet and when power is applied to the receiver with the cabinet back removed. SEVERE SHOCK may result from contact with chassis.

Use an isolation transformer between the line cord plug and power receptacle when service is required. This removes all shock hazards and is the ONLY safeguard. Damage to the receiver and test equipment may result without the use of an isolation transformer.

SERVICE DATA

WARNING:

High voltage on the plate caps of the 1X2A high voltage rectifier and the 258Q6 horizontal pulse amplifier. DO NOT MEASURE this voltage.

Schematic Diagram

The schematic diagram located at the rear of this manual shows all the values of resistance and capacitance and gives all the proper voltages at the pins of the tube sockets. The voltage readings were taken with al 115 volt Acration, no

Replacing Tubes:

Before replacing the tubes the cabinet back must first be removed. Removing the cabinet back disengages the safety interlock and removes the power to the receiver. the safety interlock as severe shock may result.

Before replacing the High Voltage tubes first be sure the power is turned off and then short the corona ring of the $1 \times 2 A$ to the chassis.

WARNING:

Do not remove any tubes while the receiver is in operation as over-loading and component failures may result. Also contact with the top chassis plate during operation may produce a severe shock
If the receiver has been in operation for some time, the tubes become hot and gloves should be used when replacing tubes to prevent finger burns.

Picture Tube Handling:

Due to the large surface and extreme high vacuum of picture tube care should be used when handling the chassis outside the cabinet. Do not subject the tube to excessive pressure of rough handling as an implosion may result causing serious personal injury.

High Voltage Power Supply:

In the process of inspection, repairs, changing of tubes transformers, or following should be closely observed.

Termint on $1 \times 2 \mathrm{~A}$ socket must toward the inside of the corona ring and be dressed toward the inside
2. The corona ring must be dressed in such a way as to make its presence useful; that is, properly centered and about $1 / 8$-inch below the socket terminals.
3. All leads must be dressed as far away as possibl from the transformer winding. Excess lead length should be transferred to the top-side of the chassis.
When replacement of the H.V. deflection transformer is necessary, be sure to closely follow the precautions is necessary, be sure to closely follow the transformer can easily be replaced with the chassis in the cabinet by the following procedure.

1. Remove two (2) hex head screws on either side of the H . Size control.
. Disengage the H.V. lead holder ring. (back side of shield can)
2. Remove 25BQ6 plate cap
3. Remove shield can by pushing back side of shield can toward front and lifting up.
© John F. Rider

SERVICE DATA

SERVICE DATA

VHF TELEVISION FREQUENCY RANGES
(All figuros represent megacycles)

Channel	Channel Frequencies	Picture Carrier Frequency	Sound Carrier Frequency	Receiver RF Oscillator Frequency
Low Band				
2	-... 54.60 55.25	59.75	-......... 82
	... 60.66	-....... 61.25	65.75	-............. 88
....	-. 66.72	-........ 67.25	-.. 71.75	1 $-\cdots924$ $-\quad .94$
5	-...76-82		81.75	104
	82.88 83.25	87.75	-.........110
High Band				
7	.174.180 175.25	179.75	202
8	. 180.186 181.25	185.75	
	.186-192	-...... 187.25	- - - 1911.75	--........ 214
10	.192-198	-...... 193.25	-.... 197.75	-.......... 220
11	.198-204 199.25	203.75	226
	204-210205.25	-.... 209.75	\cdots
13	.210.216	--.... 211.25	215.75	-.......... ${ }^{238}$

R. M. A. WIRE COLOR CODE

Listed below is a R.M.A. wire color code chart to aid in circuit tracing.

Wire Color	Where used
Black	B- or Ground leads
Brown	Filament leads
Red	B+ leads
Orange	Screen leads
Yellow	Cathode leads
Green	Grid or Control leads
Blue	Plate leads
Violet	Not used
Gray	A.C. leads
White	Bias leads

COIL DC RESISTANCE CHART

The $D C$ resistance readings shown in the chart below have been taken with a ohmmeter directly across the coil being measured. The coils not listed in the chart have a DC resistance reading of less than one ohm. A tolerance of $\pm 5 \%$ is permissible.

coils	resistance in ohms	colls	RESISTANCE	in ohms
117	1.5	T4 pri.		170
120	1.5	T5 pri.		960
${ }^{122}$	2.2	soc.		160
123 124	2	T6 pri.		1100
124 125	2	soc.		6.6
$L 25$ 127	8	T7A		${ }_{128}^{68}$
L28		T8 258 B	plate to 1 $\times 2 \mathrm{~A}$ plate	180
$L 29$	1.5	258 ¢	plate to term 4	9.5
130	80	258¢	plate to term 3	17.5
L31	2.3	2589	plate to term 1	25.5
132	72	term	to term 8	2.6
133	8.5	torm	to torm 10	5.4
${ }_{\text {T3 }}^{134}$ pri.	2.3 4.7	T9 pri.		7

REMOVABLE SAFETY GLASS

To clean the inside of the safety glass and the face of the picture tube follow the simple procedure below.

1. Remove the on-off volume and tuning knobs (pull straight out).
2. Remove two (2) phillips head screws at bottom of escutcheon.

Figure 4. Dial Stringing

DIAL CDRD IREIPLACEMENT

Dial Cord Stringing:

If dial cord replacement is necessary, turn the tuning shaft completely counter-clockwise. Two (2) separat dial cords are used and can be restrung separately.
Large Tuner Pulley Stringing:
Follow the diagram and start by attaching the dial cord to the top tension spring as shown on the larg tuner pulley. Route the cord through the opening in the pulley and make a quarter counter-clockwise turn around the pulley and route to the tuning shaft assembly directly in front of the stop washers. Make six 16 counter-clockwise turns around the tuning shaft assembly and the one (1) cour continue in the counter-clock wise direction and make one and one-half ($11 / 2$) turn around the tuner shaft in front of the center washer Route to the large pulley and make (1) complete turn around the pulley before routing through the opening and then attach to the tension spring. Add second ten sion spring as shown.
Small Tuner Pulley Stringing:
Follow the diagram and start by attaching the dial cord to the tension spring and route through the opening
3. Remove two (2) gold phillips head screws at top on either side of escutcheon
4. Remove escutcheon.
5. Remove selector switch
6. Carefully remove safety glass by pulling out and down from bottom.

in the tuner dial pulley. Route over the bracket and pulley assembly (rear pulley) and make two and onehalf ($21 / 2$) counter-clockwise turns around the small tuner pulley and then route over the bracket and pulley assembracket and then make two (2) clockwise turns around the tuning dial pulley before routing through the apening and attaching to the other end of the tension spring

Mechanical Tracking:

If for any reason the stop washers do not correspond to the stop position of the tuner, loosen the set screws Turn the tuningey and bushing assembly and re-position. position (stop washers in position shown in diagram) and tuner shaft also to the extreme counter-clockwise position. Retighten set screw.

Dial Calibration:

To correct any error in calibration, turn the tuning knob until the channel number appears in the opening. Press finger on the dial indicator and tune in the corresponding station.

VHF GENERAL DESCLIIPTION

VHF Tuner:

The Tuner is composed of a separate sub-chassis consisting of a 6BQ7A (twin triode) cascode RF amplifier and a 12AT7 tube (twin triode) for the oscillator and converter. Separate high and low band coils and trimmers are used with an automatic switching device to change bands. The tuner selects and amplifies the stations signal and converts it to the carrier IF frequency of
26.75 MC for video and 22.25 MC for sound which in turn is then fed to the IF amplifiers for further amplification.

Video IF Amplifier:

The Video IF Amplifiers are mounted on a separate sub-chassis along with a crystal video detector and the A.G.C. network. The IF amplifier section consists of three (3) staggered tuned stages with an over coupled output if transformer using 6CB6 (pentode) tubes of the intercarrier type both the video and sound IF frequencies are amplified simultaneously and then detected by a Raytheon CK-706 crystal. The signal is then coupled to the video amplifier and the first grid of the sync clipper. The A.G.C. network of R-59 and C-78 develops a negative bias voltage proportional to the average composite video signal.

Video Amplifier:

The Video Amplifier section consists of a 6AH6V (pentode) tube with a degenerative picture (or contrast) =ontrol (R-33) to vary the signal to the cathode of the tage and then separated by a 4.5 MC trap (L-29). this trap also serves to separate or keep the audio from appearing in the picture.

Sound Section:

The Sound Section consists of a 6AU6 (pentode) 4.5 MC audio IF amplifier, 6AL5 (twin diode) ratio detector, 6AV (triode) audio amplifier and a 25 Lo tbeam action between the video and sound IF frequencies at the video detector a 4.5 MC signal is obtained containing the audio information. After the video detector the audio information is amplified by the video amplifier, separated from the video by the trap (L-29), amplified, detected and further amplified before being coupled to the speaker.

Sync Clipper:

The Sync Clipper stage utilizes a 6BE6 (heptode) tube which functions as a sync separator and noise clipper. The signal from the output of the video amplifier
is coupled to pin 7 through R-34 and C-77. With the positive going signal at pin 7 and the low plate voltage sync separation is accomplished. When noise bursts are present the negative going signal from the video detector coupled through R-58 to pin 1, cuts the tube off and eliminates false sync information in the output. A sync stabilizer adjust control (R-61) is provided to adjust the cut-off or clipping level by varying the bias voltage to pin number 1. A three position F-S-L switch is also provided to change the operational character-
istics of the receiver for various signal leval areas. The switch disconnects the control (R-61) from the circuit and applies a fixed bias voltage only in the "local"

Figure 5. Block Diagram of VHF portion of Receiver
position. in the "fringe" position the A.G.C. source connected to 240 volt B plus through 20 megohms of resistance ($R-56, \mathrm{R}-60$). No bias voltage to the RF and IF tubes is utilized in this position allowing maximum mplification. in the suburban and local positions full A.G.C. is applied. The sync pulses are separated rom the video signal without the noise effects and the coupled to the vertical blocking oscillator cathode and horizontal A.F.C.

ertical Deflection:

The Vertical Deflection section consists of a 12SN7 twin triode) tube, one-half being used as a blocking oscillator and the other half as an output amplifier. Th signal from the plate of the sync clipper is coupled through R-67 and C-81 to the cathode of the blocking oscillator. The vertical hold control (R-69) in the grid circuit varies the oscillator operating frequency, thus providing adjustment for synchronization. The vertica size control (R-33) valifs he amplinde the amount of vertical deflection. The vertical linearity control (R-75)
varies the cathode resistance, thus adjusting the operat ing characteristics of the amplifier to provide the proper wave shape to obtain a linear picture vertically. The eliminate vertical retrace lines at high brightness levels.

AFC Discriminator:

The Automatic Frequency Control section utilizes a 6AL5 (twin diode) tube which functions as a discriminator. The horizontal sync pulses from the output of the sync clipper are coupled to the AFC tube through
capacitor C-79. At the same time two feed back volt ages of opposite polarity are intergrated and applied to the plates of the AFC tube. The two feed back voltages are obtained from a separate winding (terminals 7 and 10) of the HV deflection transformer and are of the same frequency as the horizontal multivibrator. Any phase shift between the horizontal sync pulses and the horizontal multivibrator signal will cause one diode section to conduct more than thaplied to the grid of the multivibrator and change the operating frequency. The
output of the AFC discriminator thus synchronizes the horizontal multivibrator to the incoming horizontal sync pulse.

Horizontal Multivibrator:

The Horizontal Multivibrator uses a 6SN7 (twin triode) tube and is of the conventional cathode coupled type. The core tuned parallel resonant circuit (L-30 and C-97) is used as a hold adjustment to stabilize the range of the automatic frequency control tube a fine hold control is not necessary. The output signal of the multivibrator is coupled to the horizontal pulse amplifier through capacitor $\mathrm{C}-106$. Capacitor $\mathrm{C}-107$ is a negative peaking device to aid in cutting off the pulse amplifier tube at the proper time.

Horizontal Pulse Amplifier:

The Horizontal Pulse Amplifier utilizes a 25BQ6 (beam pentode) tube to develop the necessary power for the fly back pulse and the horizontal winding of the deflection yoke.

VHE CIIRCUIT DESCHEPTION

Damper:

The Damper tube (6AX4-diode) performs three functions: aids in horizontal scanning, suppresses oscillations which occur over part of the horizontal scanning cycle and gives an increase in plate supply voltage for the vertical blocking oscillator, vertical output amplifier and first anode of the picture tube

Hi-Voltage Supply:

The High Voltage (second anode) is obtained from the auto-transfomer type primary winding of the HV
deflection transformer (T-8). When the plate current of the H pulse amplifier tube is cut off, the field builtup in the primary winding collapses and induces a high voltage surge which is rectified by the 1X2A tube,
picture tube and applied to the second anode. The 1X2A is a conventional half-wave high voltage rectifier and obtains its filament power from a separate secondary winding of the $H V$ deflection transformer.

Low Voltage Supply:

The B plus voltage for the receiver is obtained from the voltage doubler arrangement of two selenium rectifiers and filter capacitors C-90 and C-91. The majority
of the receivers tubes obtain its filament power from the of the receivers tubes obtain its filament power from the
filament transformer (T-9), however, three tubes are connected in series with resistor R-101 and placed across the 115 volt AC line. A safety interlock is provided to reduce shock hazards and a resistor type fuse overloading.

VHE SERVICE HINTS
V.H.F. Tuner:

Before looking into the tuner for a particular trouble, Betore looking into the tuner for a particular trouble,
first make the following observations. Since the receiver is of the intercarrier type both the sound and video information are amplified simultaneously by the tuner, IF and video amplifiers. Therefore, if the sound section is functioning normally it can be assumed that there are no
defects in the tuner, I F or video amplifiers. If the redefects in the tuner, IF or video amplifiers. If the re-
ceiver is "dead" (no sound or picture - raster normal) ceiver is "dead" (no sound or picture - raster normal)
first determine whether a signal is being transmitted and then check the antenna, lead-in and connections to the receiver. Next, rotate the contrast or picture control completely to the left (counter-clockwise) and observe
the face of the picture tube. Advance the control to the the face of the picture tube. Advance the control to the extreme clockwise position and again observe the face of the picture tube. If no "snow" appears check the video amplifier, detector and second and" third IF amp
lifiers. If, however, an increase of "snow" appears check the first IF amplifier before looking into the tuner.
The tuner can easily be serviced by removing the three hex-head nuts on top and the one on the bottom which makes all the tuner components within easy reach and all parts can be serviced. When working inside the tuner do not move any component a great distance as a
change in the distributed capacity may result and offset change in the distributed capacity may result and offset
the alignment. When replacing components be sure to the alignment. When replacing components be sure to obtain the sam
same position.
A majority of tuner troubles are often open and high resistance ground or coil solder connections, defectiv trimmers or coils and defective switch contacts.
Open or high resistance connections can easily be repaired by placing a hot soldering iron at the solde connection.
Defective switch contacts may cause an intermittent condition or the loss of one or both bands. Contact rePlacement is easily accomplished by removing the two
switch plate tension springs, the hex-head bolt and the switch plate ension spings, the hex-head bolt and the
switch plate bracket. Lift up the switch plate assembly and remove the switch contact holder and replace contacts.

A.G.C.

The A.G.C. is a negative bias voltage proportional to the average composite video signal, developed by the network of R-59 and C-78 and applied to the RF and first and second IF amplifiers. The magnitude of the A.G.C. voltage will vary according to the strength of the signal being received. However, it will closely correspond to the detector output voltage (across R-27). As a fast and simple check to determine whether the
A.G.C. voltage is normal, measure both the A.G.C. and A.G.C. voltage is normal, measure noothal operating conditions these two voltages will be approximately the same.

Sync Stability:

For optimum sync stability the following points should For optimum sync stability the following points should
be considered. A three position F-S-L switch and a sync stabilizer adjust control are provided along with the two hold controls. The position of the switch is governed by the strength of the signal being received and the control should be adjusted for a steady picture. The po-
sition of the switch and the adjustment of the control sition of the switch and the adjustment of the control are important for good sync stability (control will not
function in "local" switch position). function in local switch position).
hold thumb screw and coil core should be set to the center of their respective ranges. (Center position before going out of sync in either direction).
For good vertical sync stability the vertical hold control can be adjusted to reduce the effect of noise that may interrupt synchronization in reception areas where
noise conditions exist. Rotate the vertical hold control until the picture is moving upward and just locks into place. At this control setting, the noise will have the least tendency to interrupt vertical synchronization.

Vertical Distribution:

A fast and simple method to check the vertical distribution of a TV picture, without a test pattern, rotate the vertical hold control until the picture is moving slowly
downward. Observe the black horizontal bar. If the vertical size and linearity controls are properly adjusted, the bar will not change in thickness as it moves from top to bottom.

VIDED I-F ALIGNMENT

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Signal Generator Freq. (me.)	$\begin{gathered} \text { Sweep } \\ \text { Generator } \\ \text { Freq. (mc.) } \end{gathered}$	Signal Input Point	Output Point	Remarks	Adjust	Response
1	$\begin{aligned} & 23.5 \\ & 26.2 \end{aligned}$	25	Pin 1 of tube 5	Scope at junc tion of L25, R27, C53	Connect short between pin 5 and pin 6 of tube 4	T2 pri. T2 sec. Coupling rod	
2	Calibrate scope for sensitivity of one volt per inch. Adjust peak response for one inch deflection. Marker should fall 10% down. If response curve is not as shown readjust coupling rod (bottom of T2) for proper bandwidth and $T 2$ primary and secondary for flat response and maximum gain.						
3	21.4		Converter grid	VTVM at junction of L25, R27, C58	Remove Short. Adjust generator for output of approx. 2 volts DC	$\begin{aligned} & \text { L19-B } \\ & \text { (top of } \\ & \text { Chassis) } \end{aligned}$	Maximum Reading
4	26.5	-	Converter grid	VTVM at iunction of L25, R27, C58	Adjust generator for output of approx. 2 volts DC	L19-A (bottom of chassis)	Maximum Reading
5	21.4	-	Converter grid	VTVM at junction of L25, R27, C58	Remove Short. Adjust generator for output of approx. 2 volts DC	$\begin{gathered} \text { L19-B } \\ \text { (top of chassis) } \end{gathered}$	Maximum Reading
6	23.8	-	Converter grid	$\begin{aligned} & \text { VTVM at } \\ & \text { junction of } \\ & \text { L25, R27, C58 } \end{aligned}$	Adjust generator for output of approx. 2 volts DC	L16	Maximum Reading
7	25.0	-	Converter grid	VTVM at junction of L25, R27, C58	Adjust generator for output of approx. 2 volts DC	L15	Maximum Reading
8	-	25	Converter grid	Scope at junc tion of L25, R27, C58		$\begin{gathered} \text { T2 pri. } \\ \text { (top of chassis) } \end{gathered}$	Rock for flat response
9	$\begin{aligned} & 23.5 \\ & 26.5 \end{aligned}$	25	Converter grid	Scope at junc tion of L25, R27, C58	Marker should be 50% down and responso curve should be as shown - If not, repeat alignment.	Check point only	

Picture IF frequency 26.75 MC - Sound IF frequency 22.25 MC .

* NOTE: A very short lead from the generator must be used to prevent regeneration

VIDEO TRAP COIL (L-29) ADJUSTMENT

1. Tune in a station

sound bars just appear.

4. Turn the slug in (clockwise) until the horizontal 3. Turn L-29 slug all the way out (counter-clockwise). scanning lines are smooth and continuous

SOUND I-F ALIGNMENT

1	4.5	-	Junction of L25, R27, C58	VTVM at junction of R44, C65, C67		T3 pri. (bottom of chassis)	Maximum Reading
2		4.5	$\begin{aligned} & \text { Junction of } \\ & \text { L25, R27, } \\ & \text { C58 } \end{aligned}$	Scope at junc tion of R44. C65, C67	Sweep approximately $\pm 100 \mathrm{kc}$-Adjust for maximum linearity	T3 sec. (bottom of chassis)	
3		4.5	$\begin{aligned} & \text { Junction of } \\ & \text { L25, R27, } \\ & \text { C58 } \end{aligned}$	Scope at junc tion of R44, C65, C67	Sweep approximately ± 100 kc-Adjust for symmetry of peaks	T3 pri. (bottom of chassis)	

NOTE: L-29 coil should only be adjusted as prescribed. Do not adjust for maximum sound

PRE-ALIGNMENT PRECAUTIONS

1. If sweep generator does not have a balanced output connect a 150 ohm resistor in series with the ground lead and 150 ohms minus the internal resist
the generator in series with the hot lead.
2. Connect a 1000 mmf capacitor across scope terminals and a 10 K ohm resistor in series with hot

Figure 7. Bottom Chassis View
3. Connect signal generator through a 1000 mmf capacitor.
4. Set F-S-L switch to "Fringe" position.
5. When aligning the IF Amplifier be sure tuner is turned to high band channel 13.

1. Preset trimmer screws C 11-14-18-22-28-31. to dimensions shown on page $4-4$
. Preset coil cores L3-5-7-8-10-11 in the following manner:
(a) In low band position, turn tuner to top of stroke (cores furthest out of coil).
(b) Switch will be in low band position.
(c) Adjust coil cores 1.6 inch from core to end of coil form (use core aligning tool if available).

LOW BAND RE TRACKING Turn Tuner to channel 6 .
NOTE: Low Band must be aligned before high band.

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Signal Generator Freq. (me.)	$\begin{gathered} \text { Sweep } \\ \text { Generator } \\ \text { Freq. (mc.) } \end{gathered}$	$\begin{aligned} & \text { Signal } \\ & \text { Input } \\ & \text { Point } \\ & \hline \end{aligned}$	Output Point	Remarks	Adjust	Response
1	$\begin{aligned} & V-83.25 \\ & S-87.75 \end{aligned}$	Channel 6	Antenna Terminals	* Test Point (terminal 6)	Adjust for maximum response	C-2B	
2	$\begin{aligned} & V-83.25 \\ & S-87.75 \end{aligned}$	Channel 6	Antenna Terminals	* Test Point (terminal 6)	Adjust for maximum response	$\begin{aligned} & \mathrm{C}-18 \\ & \mathrm{C}-22 \end{aligned}$	
3	$\begin{aligned} & v-77.25 \\ & S-81.75 \\ & v-67.25 \\ & S-71.75 \\ & v-61.25 \\ & S-65.75 \\ & v-55.25 \\ & S-59.75 \end{aligned}$	Channel 5 Channel 4 Channel 3 Channel 2	Antenna Terminals	* Test Point (terminal 6) * See sketch on schematic	Adjust tuner until response curve appears on scope. Adjust trimmers for compromise which will give the best overall response across band.	$\begin{aligned} & \mathrm{C}-18 \\ & \mathrm{C}-22 \end{aligned}$	

HIGH BAND R TRACEING Turn Tuner to channel 13.

1	$\begin{aligned} & \mathrm{V}-211.25 \\ & \mathrm{~S}-215.75 \end{aligned}$	Channel 13	Antenna Terminals	* Test Point (terminal 6)	Adjust for maximum response	C-2A	
2	$\begin{aligned} & \mathrm{V}-211.25 \\ & \mathrm{~S}-215.75 \end{aligned}$	Channel 13	Antenna Terminals	* Test Point (terminal 6)	Adjust for maximum response	$\begin{aligned} & C-11 \\ & C-14 \end{aligned}$	
3	$\begin{aligned} & \hline \mathrm{V}-205.25 \\ & \mathrm{~s}-209.75 \\ & \mathrm{v}-199.25 \\ & \mathrm{~s}-203.75 \\ & \mathrm{~V}-193.25 \\ & \mathrm{~s}-197.75 \\ & \mathrm{v}-187.25 \\ & \mathrm{~s}-191.75 \\ & \mathrm{v}-181.25 \\ & \mathrm{~s}-18.75 \\ & \mathrm{v}-175.25 \\ & \mathrm{~s}-179.75 \end{aligned}$	Channel 12 Channel 11 Channel 10 Channel 9 Channel 8 Channel 7	Antenna Terminals	* Test Point (terminal 6) * See sketch on schematic	Adjust tuner until response curve appears on scope. Adjust trimmers for compromise which will give the best overall response across band.	$\begin{aligned} & C-11 \\ & C-14 \end{aligned}$	

LDW BAND OSCILLATOR TRACKING Turn Tuner to channel 6.

1	83.25	Channel 6	Antenna Terminals	Scope at june tion of L25, R27, C58	Adjust until marker is 50\% down on low frequency slope	C-31	
2	$\begin{aligned} & 67.25 \\ & 55.25 \end{aligned}$	Channel 4 Channel 2	Antenna Terminals	Scope at june. tion of L25, R27, C58	Marker should be 50% down on low frequency slope		

HIGII BAND OSCIMLATOR TRACKING Turn Tuner to channel 13.

1	211.25	Channel 13	Antenna Terminals	Scope at junc tion of L25, R27, C58	Adjust until marker is 50\% down on low frequency slope	C-28	
2	$\begin{aligned} & 193.25 \\ & 175.25 \end{aligned}$	Channel 10 Channel 7	Antenna Terminals	$\left\lvert\, \begin{gathered} \text { Scope at june } \\ \text { tion of L25, } \\ \text { R27, C58 } \end{gathered}\right.$	Marker should be 50\% down on low frequency slope		

VHF TUNER DIAGRAM

Figure 8. VHF Tuner Diagram

UHF GENERAL DESCRIPTION

The UHF Tuner is a single conversion, continuous tuning device which mechanically mounts directly over the VHF tuner in the receiver. The tuner is coupled to the VHF tuner by drive gears which thus provides tuning of both UHF and VHF by the same tuning knob. The tuner obtains its filament and plate supply voltages from the TV chassis and a switch is provided to select the desired tuner for operation.

The UHF Tuner selects the UHF stations video and sound carriers and converts them to the carrier IF frequency of 26.75 MC for video and 22.25 MC for sound which is coupled to the IF amplifiers in the receiver by 10 inches of RG.62U cable.
Some receivers may incorporate a 6BK7 tube in place of the 6BQ7A cascode pre-IF amplifier. Refer to figure 12 for wiring differences.

Figure 9

UTE CIRCUIT DESCRIPTIDN

The UHF Tuner employs a double coaxial line RF cavity pre-selector. The coaxial line arrangement has the advantages of high selectivity, low insertion losses, uniform band-width and good shielding against oscillator radiation. The coaxial cavity is basically a one-quarter wave shorted tuned stub. The electrical length of the cavities is varied by a ribbon which is attached to the ing is accomplished similar to varying the length of a tuned stub which would change the resonant length for various frequencies. The dial cord is of a special material which is not affected by temperature or moisture and is locked to the pulleys which eliminates the possibility of slippage. Tracking screws are provided in the cavities to obtain uniform band width and sensitivity. The tracking screws vary the capacity between the ribbon and the cavity wall and thus vary the electrical length of the ribbon.

UHF CIRCUIT DESCRIPTION

The UHF Tuner maintains a fairly constant antenna input impedance of $\mathbf{3 0 0}$ ohms, has an overall band-width of 6 to 8 megacycles and has an oscillator injection curent ratio of approximately 2 to 1 . The only amplification of the signal takes place in the cascode amplifier. The signal is not amplified in the RF cavities, therefore, the sensitivity of the receiver on UHF will not quite equal that of VHF. A receiver equiped with a UHF tuner will have an overall UHF sensitivity of approxi-

SEIRVICE MINTS

If the receiver is "dead" when attempting to view a UHF program, first check the position of the selector switch, then determine whether a signal is being transmitetd and then check the antenna and lead-in connections before suspecting the tuner for trouble

Also as a fast check, view the face of the picture tube at minimum contrast or picture control setting and advance the control to maximum. Compare the difference. If there is little or no difference (no "snow") check the video detector and IF amplifiers. If an increase of "snow" appears at maximum control setting, check the first IF stage before looking to the tuner for a defect.

If the UHF tuner is not functioning properly, first substitute the oscillator (6AF4) and cascode amplifier (6BQ7A) tubes. Next check the voltages at the UHF amplifier is necessary.

mately 150 microvolts.

Service features of this tuner provides a convenient check point for measuring the oscillator grid current to determine whether the oscillator is functioning. Also provisions have been made for measuring the oscillato injection current to check both the crystal detector and the oscillator. An opening is also provided for coupling to the input grid coil when alignment of the cascode
power socket or cable connections in the receiver
If soldering iron servicing, crystal detector or com ponent parts replacement is necessary, the picture tub must be removed. Removing the picture tube makes the majority of the UHF Tuner components within easy reach and most of the parts can be serviced. The tuner should not be removed from the chassis when service is required also caution must be observed not to lay the chassis on the tuner side. Damage to the UHF Tuner may result,

CAUTION: When attempting to service the tuner, do not move or rearrange components or mechanical parts as a change in distributed capacity may result and off set the alignment. When replacing a component, be sure to obtain the same lead lengths and replace in the same physical position.

SEIEVICE DATA

To determine whether the oscillator section is functioning, a convenient check point has been provided where the oscillator grid current can be measured. To measure the oscillator grid current, place a Simpson Model 260 Multimeter (or equivalent) on the 100 microamp scale across the $\mathbf{2 2}$ ohm resistor (R2). See figure 10. A reading of 10 to 30 microamperes should be obtained if the oscillator is functioning normally.

Figure 10

Both the oscillator and crystal detector can easily be checked by measuring the oscillator injection currrent. Place a Simpson Model 260 Multimeter (or equivalent) on the 100 microamp scale across the 22 ohm resistor (R10) at the terminal indicated in Figure 11. A reading of 5 to 40 microamperes should be obtained if both the oscillator and crystal are functioning normally.

Figure 11

Figure 12 6BK7 UHF TUNER SCHEMATIC

Figure 13 6BQ7A UHF TUNER SCHEMATIC

Figure 14

CRYSTAL DETECTOR: If replacement of the CK-710 Crystal Detector is necessary, the picture tube must be emoved along with the cyrstal cover (refer to figure 14) The crystal is soldered into place and should be carefully resoldered after replacement. Overheating may damage the crystal. To dissipate the heat, grasp

ALIGNMENT

Since UHF is a relatively new field, test equipment necesary for RF and Oscillator Alignment is highly expensve and not readily available on the market at the present time. Therefore, a complete alignment procedure is not presented in this manual.

The cascode Pre-IF Amplifier can easily be realigned if necessary by connecting a 25 MC unmodulated signal to the junction of Coil L-5 and Capacitor C-2 (see figure 14), and a VTVM at the video IF Detector output of the receiver. Conth 14 and 16 for maximum VTVM capacito
reading.

Figure 15

If for any reason such as dial cord replacement, component replacement. etc.. the RF cavities may be adusted for peak performance. Before attempting adjustment, note position of ribbons and mark the UHF drive gear so that original positions can be relocated if necessary. Loosen the pulley positioning screw (refer to figure
15d rotate the RF Drive Pulleys while viewing a UHF program. Rotate the pulleys for the sharpest and clear est picture.
CAUTION: Do not under any circumstances attempt adjustment of the tracking screws, oscillator trimmer screw or oscillator cavity. Precision test equipment is necessary for the adjustment.
U.H.F. TELEVISION FREQUENCY RANGES
(All Figures Represent Megacycles)

12BH7 Vertical Deflection Schematic Diagram
(Parts differences noted in parts list by a double asterisk-**)

© John F. Rider

GENERAL INFORMATION

The Motorola Super Strata-Tuner is a two-tube UHF convertor which employs continuous tuning over all 70 of the
UHF channels. This unit operates in conjunction with a VHF TV receiver as a double superheterodyne, using the RF stage of the VHF tuner as the 1 st IF stage. The Super Strata-Tuner is available as a self-contained convertor, in kit form for installation in designated Motorola TV chassis,

SELF-CONTAINED CONVERTOR
The self-contained UHF convertor has its own built-in connected externally to any VHF TV rabinel. It may be
vertor models are:

$$
\begin{array}{lll}
\frac{\text { Model }}{} & \frac{\text { Cabinet Finish }}{} & \text { Tuner } \\
\text { TC-101 } & \text { Mahogany } & \text { TT-19 } \\
\text { TC-101B } & \text { Limed oak } & \text { TT-19 }
\end{array}
$$

CONVERTOR KITS
The UHF convertor kits are designed for installation in all Motorola TV receivers having Ulif cut-out cover plate3 on the front panels of the cabinets. VMF chassis designed

CHART I

UHF KIT		INSTALL IN MOTOROLA tV CHASSIS		CONVERTOR DESCRIPTION					
MODEL	$\begin{aligned} & \text { BASIC } \\ & \text { TUNER } \end{aligned}$	$\begin{aligned} & \text { SERIES } \\ & \text { FHAMENTS } \end{aligned}$	parallel FILAMENTS	FILAMENT TRANSFORMER INCIUDED	$\begin{aligned} & \text { TONE } \\ & \text { CONTRO } \\ & \text { ON UHF } \\ & \text { TUNER } \end{aligned}$	CONNECTION TO TV CHASSIS	TUNING SHAFT LENGTH	COIOR OF VHF CHAN. NEL KNOB INCIUDED	COIOR OF UHF DIAL $\&$ KNO INCLUDED
TK.17M	TT-28M	$\begin{aligned} & \text { TS. } 314 \\ & \text { TS. } 315 \end{aligned}$	$\begin{aligned} & \text { TS-214 } \\ & \text { TSS } 288 \\ & \text { TS-236 } \\ & \text { TS-307 } \end{aligned}$	Yes (discard) Yes (discard) Yes (discord) Yes (discord) Yes (use) Yes (use)	No No No No No No	Soldered Soldered Soldered Soldered Soldered		$\begin{aligned} & = \\ & = \\ & = \\ & = \end{aligned}$	(See Note 2) (See Note 2) (See Note 2) See Note 2) (See Note 2) (See Note 2)
VTK-17M	VIT-28M	$\begin{aligned} & \text { TS-325 } \\ & \text { TS-326 } \\ & \text { TS-400 } \end{aligned}$	$\begin{aligned} & \text { TS } 351 \\ & \text { TS-401 } \\ & \text { TS }-399 \end{aligned}$	Yes (discard) Yes (discard) Yes (discard) Yes (use) Yes (use) Yes (use)	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Soldered Soldered Soldered Soldered Soldered	$\begin{aligned} & 25 / /^{\prime \prime \prime} \\ & 25 /{ }^{\prime \prime \prime} \\ & 25 /{ }^{\prime \prime \prime} \\ & 25 / /^{\prime \prime \prime} \\ & 25 / \%^{\prime \prime \prime} \end{aligned}$	$\begin{aligned} & = \\ & \text { = } \\ & \text { = } \\ & = \end{aligned}$	(See Note 2) (See Note 2) (See Note 2) See Note 2) (See Note 2) (See Note 2)
VTK.17ME	VIT-28M	$\begin{aligned} & \text { TS- } 325 \\ & \text { TS-400 } \end{aligned}$		Yes (discord) Yes (discard)	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Soldered Soldered	$\begin{aligned} & 23 /{ }^{\prime \prime \prime \prime} \\ & 23 \end{aligned}$	-	(See Note 3) (See Note 3)
TK.19M	TT-52M		TS-292 WTS-292 TS-324 wTS-324 TS-408	$\begin{aligned} & N_{0} \\ & N_{0} \\ & N_{0} \\ & N_{0} \\ & N_{0} \end{aligned}$	Yes Yes Yes Yes Yes	Plug-in. (See Note 1) Plug-in (See Note 1) Plug-in (See Note 1) Plug-in (See Nole 1) Plug-in (See Note 1)	$213 / 6^{\prime \prime}$ $213 / 6^{\circ}$ $213 / 6^{\prime \prime}$ $213 / 6{ }^{6}$ $213 / 6$	Brown Brown Brown Brown Brown	Brown Brown Brown Brown Brown
TK.19ME	TT.52M		$\begin{aligned} & \mathrm{TS}-292 \\ & \mathrm{TS}-408 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Plug-in Plug-in	$\begin{aligned} & 219, k^{\prime \prime \prime} \\ & 2!1 / k^{\prime \prime} \end{aligned}$	Black Black	Black Black
TK-20M	TT-57M	TS-410		Yes	No	Plug-in	213/6"	Brown	Brown
TK.22M	TT-27M		$\mathrm{TS} .119 \mathrm{Cl},$ TS-1190	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	Soldered Soldered	$25 / / 2^{\prime \prime}$	-	(See Nole 4) (See Note 4)
TK.23M	TT.31M	$\begin{aligned} & \text { TS-216 } \\ & \text { TS-275 } \end{aligned}$		$\begin{aligned} & \begin{array}{l} \text { Yes } \\ \text { Yes } \end{array} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	Soldered Soldered	$\begin{aligned} & 21 /{ }^{\prime \prime \prime} \\ & 20 \end{aligned}$	=	(See Note 2) (See Note 2)
TK-24M	TT.35M		TS-501	No	No	Plug-in	31\%/2"	Brown	Brown
TK-24ME	Tr.35M		TS. 501	No	No	Plug-in	31\%/3"	Black	Black
TK-31M	VTT-58M	VTS-410		Yes	No	Plug-in	$311 / 2^{\prime \prime}$	Brown	Brown
TK-33M	Tr.60M		VTS:292	No	Yes	Plug-in	31/8"	Brown	Brown

[^5]Ne 3. Gold dil will block lelering and block Uning knob.

The kits vary only by the addition of required hardware luded for installation of the convertor transformer is in TV chassis. Kits TK-17M and VTK-17M, which are de signed to cover early series and parallel filament chassis include a filament transformer which is to be discarded when used in parallel filament TV chassis.
The UHF tuners used in the kits are basically the sam nd vary only in shaft lengths, mounting brackets, and th addition of a tone control. They r
ment power from the VHF chassis.

If the VHF receiver contains a tone control, it is to be aper
rol mounted on the appropriate UHF convertor tuner

Late model TV chassis contain areceptacle for plugging is require the convertor connections to be soldered

Chart I lists convertor kits, the TV chassis with whic may be used, and differences between the convertors.

FACTORY-INSTALLED CONVERTORS
UF tuners installed in the TV chassis at the factory re, in most cases, identical with the tuners listed in Chart I. The TV chassis containing factory-installed UHF chassis is the same as the corresponding VHF TV chassis with the addition of UHF convertor. Use the VHF TV Servire Manual for VHF parts and service information and this manual for UHF convertor information (i, e., TS-292Y UHF information would be found in this manual, while the VHF

UHF tuners and the current TV chassis in which they included from the factory are shown in Chart It.
TUNING RANGE - Channels 14 through 83 ($470-890 \mathrm{mc}$)

CHART II

$\begin{gathered} \text { CHASSIS } \\ \text { INSTALLED IN } \end{gathered}$	UHF TUNER
rs-292Y	T.52M
vis-292Y	TT-60M
wis-292Y	T-52M
TS.324Y	TT.52M
rs.326y	VTT-28M
TS.408Y	π T-52M
ts-410Y	Tr.50M
vis-4ior	$\pi \cdot 58 \mathrm{M}$
ts-501\%	Tr.35M

CONVERTOR OUTPUT FREQUENCY - Channels 5 or 6 (76 to 88 mc)
antenna input impedance - 300 ohms
POWER SUPPLY
Convertor -
-101 117 volts, 60 cycle only
Filament-6.3V
Its, 60 cycle only
$\mid \mathrm{B}+120 \mathrm{~V}$
2. Kits (Series Filament Receivers)

Filament -6.3V(supplied by $\mid \mathrm{Hi}$ B +250 to 280 V filament transformer with
117V 60 cycle primary)
3. Kits (Parallel Filament Receivers)

tube complement

Ref. No.	Tube	Function
v-1	6AF4	UHF Oscillator
- ${ }^{\circ}$	${ }^{6} \mathrm{~T} 4$	(see Service Notes)
v-2	6BK7	Pre-amplifier
CR-1	CK-710 or	UHF Mixer Cry

-1 CK-710 or
Pre-amplifier

Discard the antenna jumper connection and connect each antenna to the proper input terminals when two outdoor anennas are being used.

In some areas where the VHF antenna and the jumper are used, it may benecessary to experiment with the length The installation procedure for the outdoor UHF antenna will, in general, be the same as for the VHF antenna. The lead-in, however, should be the tubular, unshielded 300 ohm line instead of the ribbon type, as the latter attenuates

UHF frequencies when damp. As the UHF antenna is more ritical in setting up than the VHF, more care should b taken in properly positioning the antenna. Setting the UH
antenna toward the station will not necessarily give the bes esults, so check the area in order to deliver the maximum signal to the receiver.
When using the tubular lead, it is good practice to form drainage logp before the lead enters the house, then punc done, the condensation formed inside the 300 ohm tubula line, may create a pool of water behind the television set

CIRCUIT description

The UHF convertor was designed to operate as a double superheterodyne, in conjunction with a TV receiver, where
the RF stage of the VHF tuner is used as the 1st IF. The UHF signal enters the convertor thru the antenna coupling RF coin, then it is loop-coupled to the transmission line,
where a UHF mixer (losser type) crystal is tapped on. The incoming signal beats against the output of a series tuned Colpitts oscillator and the resultant frequency is either channel 5 or 6 . The output of the crystal mixer is then amplified by a low-noise cascode amplifier and the ampli-
ied signal is coupled to the VHF receiver tuner.
The UHF signal enters a 300 ohm balanced input and is loop-coupled into the transmission tine by L which is serted into a slot in the tubing.
Except for the power supply, all tuners are basically quarter-wave coaxial line. See capacity-loaded, shorted The tube wall, together with the rod \& core assembly (A \& b, Figure 1), form the inductance $\mathrm{L}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{a}}$ is the distributed capacity between core ((B) and the tube wall. As the core
moves into the transmission line tube, the line is lengthened moves into the transmission line tube, the line is lengthened
and its resonant frequency lowered. The line is capacityloaded by C_{b} and C_{c} to keep the line frombecoming too long. C_{b}, formed by the core (B) and the capacitor tuning. and C_{C}, formed by the core (B) and screw adjustment (D). ricular value part ofarticular
tial tracking adjustment at the low frequency end, while C is the initial m.
ed bushing (C).

A crystal mixer, CR-1 is tapped onto the thans line, and the incor, CR-1, is tapped onto the transmission 6AF4 series-tuned, modified Colpitts oscillator. The difference frequency is either channel 5 or 6 , depending upon which channel is unoccupied by a VFF station. The oscillator coil L_{b} consists of a glass coil form with a metallized the windings, here is also a solidnetallized section to which, with core (H), form the tuning capacitor C_{p}. Core (J), in addition to tuning the inductance L_{b}. combines with the windings to form caparitor C_{d}. As its capacitance varies only slightly with the position of (J), C_{d} is effecslug (K), a series of copper rings, raises the resonat irequency of the unused portion of the inductance to keep its self-resonance higher than the operating frequency, thus preventing "suck-out" in the tuning range. (E) and (L) are
high and low alignment adjustments, respectively.

The crystal, CR-1, is a losser type of mixer. Therefore, its output is fed to a 6BK7 cascode pre-amplifier which is used because of its good signal-to-noise ratio. It is a wide-band amplifier, passing both channel 5 and chan-

```
ced, and is coupled into the VHPF receiver antenna termi
```

ced, and is coupled into the VHPF receiver antenna termi
Atwo-position switch on the Built-InSuper Strata-Tuner
Atwo-position switch on the Built-InSuper Strata-Tuner
allows the VHF antenna to be bypassed during UHF recep-
allows the VHF antenna to be bypassed during UHF recep-
tion settings, while it bypasses the UHF antenna during VHF
tion settings, while it bypasses the UHF antenna during VHF
The two-position switch also controls the B. supply dring UHF the $\mathrm{B}+$ is approximately 260 V . while during

```
ihm dropping resistor ( \(R-16\) ). The low Bt is necessary to
prevent deterioration of the UHF convertor tubes which Special Tools \& Materials Required would occur if no B, were present while filament voltages were supplied to the tubes. The filaments are lit so that
either UHF or VHF stations can be viewed without any be Andenna bushing adjusting tool - This adjusting tool can "warm-up" period

The switch on the TT-19 has a third position which acts
as an on-off switch for both TV chassis and convertor when
the TV receiver is plugged into an AC outlet on the back of \({ }^{2}\). Insulated screwdriver.
the \(T V\) receiv
the convertor.
3. Hexalignment tool ( \(3 / 32\) " hex - insulated) for iron cores
4. Brass-iron tuning wand.
5. UHF plug and receptacle extension. Extension can be made up by soldering \(28^{\prime \prime}\) lengths of wire between plag Part No. 9K721371). See Figure 4.

\section*{alignment}
The built-in convertor chassis, as it is mounted in the Vhassis, does not have the adjustments readily acces main chassis.
The TT-19 (TC-101) must be removed from its cabinel for alignment.
plug the convertors into the following sources of sup
1. TT-19 into a \(1: 1\) isolation transformer receiving 117 V AC 60 cycle only.
2. Built-in convertors into a power supply having a \(\mathrm{B}+\mathrm{o}\)硅
The \(B+\) and filament voltages can be taken from the \(T\) receiver by means of a plug and receptacle extension listed Special Tools Required for Alignment .
In convertors wired directly to the chassis (TT-27M TT-28M, VTT-28M, and TT-31M), solder an extension to
As proper voltages are important for best alignmen
the 19 it is necessary to shunt a 330 ohm resis across the "Dummy Load" input, as there is a possibi lity of standing waves appearing due to the long 300 ohm convertor output lead.
This alignment procedure will differ from those pre quency oscillator and antenna adjustments before the IF ca be aligned.
This alignment chart is laid out so that you can make a complete alignment by following all the steps in succession
or you can align only one circuit by following the steps listed under the heading of the particular circuit you wish to align i. e. , OSC steps \# 2 and \# 8 ,
Turn the selector switch to UHF (full clockwise posi tion).
Connect the output of the UHF signal generator to the input of the UHF convertor (Figure 3).
Connect the output of the convertor to the input of the "Dummy Load". (Full details for construction of the dum-
microammeter to the output of the "Dummy Load" (Fig are 3).

In order to properly align the UHF tuner, the following hould be
1. Avoid turning the mid-frequency bushing and the low requency slug in too far, as the high frequency plunger can strike it when the dial is fully counterclockwise.
2. The dial assembly must always stop due to the filled gear and not due to seating of the carriage or the slug on (LOW FREOUENCY) obstructions at either end of carriage travel

3. Avoid spurious generator responses in the high frequency range. This can be detected by a marked difference
. Avoid making final adjustments with the UHF attenuator
1. UHF Signal Generator-Measureme
General Radio GR 1021 , or equivalent.
2. Microammeter -RCA-WV84, Simpson \#374, or equiva
3. DC Meter - Low range electronic voltmeter (RCA voltohmyst junior or equivalent).
4. Power Supply
a. TC-101
117 volts 60 cycle only (thru isolation transformer)
Built-In Convertor
(1) B+ -260 volts at 50 ma
(1) B+ -260 volts at 50 ma
(2) Fil -6.3 volts at 0.675 amps
Pigure 3. uhf tuner alignuent connections
5. Dummy Load
6. Isolation Transformer
7. Variac




\footnotetext{
© John F. Rider
}


(c) John F. Rider


©John F. Rider

\section*{GENERAL INFORMATION}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{9}{*}{} & \multicolumn{3}{|l|}{tube complement} \\
\hline & \[
\begin{aligned}
& \text { Ref. } \\
& \text { No. }
\end{aligned}
\] & Tube & Function \\
\hline & & & Function \\
\hline & V-1 & 6BZ7 & RF Amplifier \\
\hline & v-2 & 6 U 8 & Mixer-Oscillator \\
\hline & v-3 & 6СВ6 & 1st IF Amplifier \\
\hline & V-4 & 6СВ 6 & 2nd IF Amplifier \\
\hline & V-5 & 6CB6 & 3rd IF Amplifier \\
\hline & V-6 & 6АН6 & Video Amplifier \\
\hline \multirow[t]{7}{*}{RADIO CHASSIS - Chassis HS-319 contains six tubes and receives AM broadcasts only. Except for a common speaker, it operates independently of the television receiver. Refer to HS-319 Service Manual for service data.} & V-7 & 6AU6 & FM Driver \\
\hline & V-8 & 6AU6 & FM Limiter \\
\hline & V-9 & 6AL5 & Ratio Detector \\
\hline & V-10A & 1/2 6SN7GT & 1st Audio Amplifier \\
\hline & V-10B & 1/2 6SN7GT & Phase Detector \\
\hline & v-11 & 6W6GT & Audio Output \\
\hline & V-12 & 6SN7GT & 1st \& 2nd Clippers \\
\hline \multirow[t]{3}{*}{RECORD CHANGER - Three-speed Model RC-40. Refer to RC-40 Service Manual for service data.} & V -13A & 1/2 128H7 & Vertical Blocking Oscillator \\
\hline & V-13B & 1/2 128H7 & Vertical Output \\
\hline & V-14 & 6SN7GT & Horizontal Oscillator \\
\hline \multirow[t]{3}{*}{TUNING RANGE - Channels 2 through 13 with provisions for UHF adaptation.} & V-15 & 6BQ6GT & Horizontal Output \& High Voltage \\
\hline & v-16 & 6AX4GT & Generator \\
\hline & V-17 & 183GT & High Voltage Rectifier \\
\hline \multirow[t]{2}{*}{TV IF FREQUENCY-Sound -21.9 mc} & & & \\
\hline & v-18 & 17LP4 & Picture Tube: rectangular; glass electrostatic fucus; cylindrical face \\
\hline \multicolumn{4}{|l|}{TV ANTENNA - "Bilt-In-Antenna" with provisions for connection of an external antenna.} \\
\hline \multicolumn{4}{|l|}{TV ANTENNA INPUT ImPEDANCE - 300 olims} \\
\hline \multirow[t]{2}{*}{POWER SUPPLY - 117 volts, 60 cycle AC only} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{POWER CONSUMPTION - TV: 160 watts}} \\
\hline & & & \\
\hline
\end{tabular}
Operation of this receiver outside its cabinet or with covers removed involves a shock hazard from the power supplies. No work should be attempted on this receiver by
anyone not thoroughly familiar with the precautions necesanyone not thoroughly familiar with the precautions neces-
sary when working on high voltage equipment. Due to the

\section*{PICTURE TUBE HANDLING PRECAUTIONS}
Extremecare must be used in handling the picture tube. This tube is highly evacuated and, due to its large size. is
subjected to a considerable atmospheric pressure. The subjected to a considerable atmospheric pressure. The
handler should wear safety goggles and gloves for protection. Avoid nicking or scratching the glass by rough con-

\section*{INSTALIATION \& OPERATING INSTRUCTI}
antennas
These receivers are equipped with the Motorola "Bilt-In-Antenna", mounted inside the cabinet, for use in good ignal areas.
should be observed for best the "Bilt-In-Antenna".
1. The signal should be relatively strong. As the signal strength will vary throughout the room in which the receiver the one in which the best pictures are received from all stations. Avoid large metallic objects such as radiators metal panels, etc.
Lamps, vases and metallic objects, when placed on the receiver, may affect the efficiency of the "Bilt-ln-Antenna".

If additional signal is necessary for good reception, an
tact with other objects. Before removing the coated glass picture tubes, discharge the capacitor formed by the inner and outer aquadag coatings on the tube by shorting the anode well-insulated piece of wire.
indoor or outdoor antenna may be required.
operating controls
There is a dual control on the left and a triple control on the right of the
control functions.


\section*{}

The receiver is completely adjusted at the factory, so normally none other than the front panel control operating instructions need be followed in putting the receiver in operation. However, to provide for misadjustment of the service controls due to handling, etc., the following instruc
tions are in order. See Figure 2 for location of the service adjustment controls.

ADJUSTMENT OF THE ION TRAP
Under conditions of rough shipment, it is possible for he ion trap to become mis-adjusted. To prevent serious damage to the picture tube, the follo
ment should be used. See Figure 2 .

Place the magnet on the neck of the tube so that it is positioned over the slash in the gun structure. (The slash is the separation between grids \(\# 1\) and \(\# 2\).) With the BRIGHT NESS control at low intensity, move the magnet a short dis tance forward and backward, at the same time rotating it, to obtain the brightest raster. If, in obtaining the rrightes raster, the magnet has to be moved more than \(1 / 2 "\) forward
from the slash, it is probably weak and should be replaced. Nevercorrect for a shadowed raster with the ion trap mag net if such correction results in decreased brightness. The ion trap is always adjusted for maximum brightness and, if
shadows occur at this setting, they should be eliminated by adjusting the magnetic centering device on
tube, or by changing the position of the yoke.

CAUTION: Keep the BRIGHTNESS control at low inten sity until the ion trap is properly set.

\section*{CENTERING}

NOTE: The ion trap should be properly adjusted before centering or focusing is attempted.

It is important, in achieving correct centering and good focus, that the magnetic centering device be properly ad justed. The centering device used who elects arranged in such a way that the magnetic field intensity can be varied in angle or direction by means of the two projecting arms and by rotating the device about the tube neck. When the arms are superimposed, the fields of the two magnets cancel Moving the arms progressively farther apart in a given di-
rection, with respect to each other, will produce an increasing field intensity of a given polarity. If the arms are moved apart in the other direction, a field of opposite po larity will result. This controllable magnetic field, actin
picture vertically when the arms are initially at eilher side and by rotation to a vertical arm position, it will also proof the magnetic centering device should be held to a mini mum because of the danger of defocusing and shadow.

To center the picture correctly, follow these steps:
1. Reduce the size of the picture so that all four edges are visible. Tune in a station; do not attempt centering with an uncontrolled raster.
2. Start with the magnetic centering device arms togethe and turned so they arehorizontal. The device should be popart of it to slip inside the yoke opening.
. Adjust the electrical horizontal centering control on the ack of the chassis for best horizontal centering obtainable within the range of the control.
4. Separate the arms of the centering device in the proper direction to center the picture vertically
5. If full horizontal centering was not obtained in step 3 , complete the horizontal centering by slightly rotating the magnetic centering device as a unit one way or the other It may then be necessary to readjust vertical centering by slightly changing the relative position of the arms.
6. Recheck adjustment of ion trap after centering is completed.
FOCUS
The zero focus type of electrostatically focused tube sed in these chassis requires a fixed potential applied to the focusing anode which is supplied through the focus control potentiometer. This control, in effect. provides a ween tubes, but is far less critical in adjustment than was the focus control in the electromagnetically focused tubes. By carefully turning the control through its range, a point of adjustment will be found where optimum focus is obtained, but no misadjustment of the control will result in the extreme defocusing which resulted from the off-focus. range in the controis
In some tubes, the effect of the focus control is so slight as to lead the serviceman to believe that a fault exists in the circuit. The control should be adjusted to the point where the line structure is disting ishable overa screen.
Due

Due to differences in gun structure between tubes menioned above, it may be found that in some picture tubes netic centering device pointing in a particular direction. If, after the magnetic centering device has been adjusted as in the paragraph on centering, good overall focus is not obthe centering procedure.
RASTER CORRECTOR MAGNETS
On chassis having a cylindrical face picture tube, there is a magnet on each side of the rear support bracket to straighten the raster sides, if necessary. They are correctly set at the factory but if moved in shipping or, if the do so:
. Reduce raster size so that its sides are just visible.
2. Move corrector magnet forward or backward so tha sides are straight
vertical hold
Adjust the VERTICAL HOLD control for the center of the vertical sync lock-in range.
vertical size and vertical linearity
Adjust the VERTICAL SIZE control until the picture fills the mask vertically. Adjust the VERTICAL LINEARITY of the VERTICAL SIZE control may require a readjustment of the VERTICAL LINEARITY control and possibly of the VERTICAL HOLD control.
horizontal hold adjust ment
The HORIZONTAL HOLD control should have a syn range of approximately \(50^{\circ}\). If the control is too critical adjust as follows:
1. Shunt the HORIZONTAL OSCILLATOR coil L-23 ground with a . 25 mf 400 V capacitor. This may be done with the chassis in the cabinet by placing the capacitor Figure 2 .
2. With the HORIZONTAL CENTERING control, move the picture to the left so that the right edge of the raster can be seen, as viewed from the front of the set. Adjust the HOR sync pulse of the blanking pulse. The blanking pulse is the gray bar a the right edge of the raster.)
3. Remove the .25 mi capacitor from across the HORI ZONTAL OSCILLATOR coil
. Adjust the HORIzONTAL OSCILLATOR coil until the same amount of 'sync pulse can be seen as was noted in

\section*{horizontal size}

Adjust the HORIZONTAL SIZE control until the pictur fills the mask horizontally. As this control also affect VERTICAL SIZE may be brightness

Adjust the BRIGHTNESS control, in combination wit the CONTRAST control, for the most pleasing picture rescent picture tube screen and to prevent poor picture de tail.
DEFLECTION YOKE ADJUSTMENT
If the deflection yoke shifts, the picture will be tilted To correct, loosen the thumbscrew on top of the deflection yoke and rotate yoke until the picture is straight. Before tightening the lumbscres. make cortain that the derle
yoke support and the picture tube have shifted ransit or, if for any reason, these parts have been removed and replaced, it is best to do a complete job of repositioning. See Figure 2. The picture tube should be mounted so front of the chassis. should then be tightened. (NOTE: This applies only to the glass tubes. The position of the metal picture tubes is fixed by the front brackets.) The picture tube rear suppor bracket mounting screws should be loose enough to permit

John F. Rider
liding the bracket forwarduntil it fits snugly up against the and yoke saddle screws and push the yoke up against the flare of the tube. CAUTION: Do not use force in sliding the bracket. If too much force is applied, a strain will be placed on the neck of the tube when the support bracket
mounting screws are tightened, or the yoke may be forced out of position. The opening in the yoke should be concentric with the neck of the tube.
test receptacle
A three-pin receptacle, accessible from the side of the chassis (see J-4, Figures \(4 \& 11\) ) is provided for checking sensitivity and AGC voltage. The video detector load re pin 1 , and \(\operatorname{pin} 2\) is grounded. trea selector swa

A three-position AREA SELECTOR switch, located on the back of these chassis, permits them to be adapted to varying receiving conditions found in different localities. See Figure 2 .

The LOCAL, SUBURBAN, and FRINGE positions cor respond approximately with the settings required for strong, In the LOCAL position, AGC is applied to the RF ampli fier, mixer, and the first two IF stages. In the SUBURBA position, AGC is removed from the RF and mixer stages, In the FRINGE position, the AGC applied to the IF stages is ground to improve noise limiting

Since the AREA SELECTOR switch allows the receiver your location ander best conditions for the signal strength a quality, instability, or a buzzing sound in the speaker. Set this switch in the position which gives the clearest and most
tone control linkage setting
If, for any reason, it becomes necessary to replace the tone control linkage, the following procedure should be fol
lowed:
1. Set the tone control potentiometer at zero ohms (maximum counterclockwise)
2. Place the linkage over the TONE and CONTRAST VOLUMEshafts in such a manner that the arms and link ar below the shafts.
3. Move the arms counterclockwise as far as possible and tighten the setscrew on the TONE control shaft.
4. After chassis has been replaced in cabinet, place the TONE control knob over the CONTRAST-VOLUME shaft s CHANGING OF TUBES
1. The power should be turned off when changing tubes
2. Indiscriminate changing or interchanging of tubes should be avoided for the following reasons
a. A change of \(1 F\) or RF tubes or crystal detector can cause loss of sensitivity or poor picture quality. Check alignment and sensitivity.
b. A change of limiter or ratio detector tubes can cause distorted audio, buzz, or loss of audio sensitivity. Check audio alignment and sensitivity.
c. Changing horizontal oscillator tube can result in poor noise rejection or cause the horizontal hold control to be ou of range. This may necessitate readjustment of the hori
zontal oscillator coil.

figure 3. tube locations

\section*{ALIGNMENT}
general
The chassis should be mounted on angle iron brackets To that all connections and adjustments may be made easily Since the power cord circuit is broken by the interlock when the cabinet back is removed, it will be necessary to tacle in order to make a wine finale interlockrecepOrder Motorola Part No. 30B470.756.
It is important that an isolation transformer be used be-
tween the receiver and the line when any test equipment is
attached to the chassis. Due to the full wave rectifier, there is always a potential difference between the chassis and earth, and it is very important that an isolation transtion is especially important if grounded test equipment is used. NEVER GROUND THE RECEIVER CHASSIS DURING ESTING OPERATIONS OR INSTALLATION UNLESS AN SOLATION TRANSFORMER IS USED As proper voltages are important for best alignment,
We a variac if necessary to obtain 117 volt input.

\section*{order of alignment}

A complete receiver alignment can be most conveniently
1. IF \& Mixer Transformers

Oscillator \& RF Sections
3. 4.5 Mc Trap
4. Audio Take-Off, Interstage Coil, \& Ratio Detector

IF AMPLIFIER ALIGNMENT

\section*{Equipment Required}

IF SweepGenerator meeting the following requirements
1. 18 to 30 mc , approximately 12 mc sweep width.
2. Output constant and adjustable to at least 0 . I volt max
imum.
3. Accurately calibrated, adjustable markers

Cathode Ray Oscilloscope - Preferably one with a calibrated attenuator

AM Signal Generator - Adjustable Output
NOTE: If there is no built-in marker in the sweep genera tor, loosely couple the output of an accurately calitrated AM
signal generator to the IF strip. At all times, keep the marker output low enough to prevent the marker from dis torting the response curve.
If a wide band scope is used, the marker will be more distinct if a capacitor of 100 to 1000 mmf is placed acros the scope input. Use the smallest size possible, since too
the two transformers together will make for proper marker placement and "jacking" action of T-6. See Figure
CAUTION: A. Keep the signal input low, to prevent flattening the top of the curve, due to limiting in the video or scope amplifiers.
B. The dressing of plate and grid components in the if circuit
C. The resonance point of the IF coils and the trap will be found at two settings of the core The correct setting is the one with the core at the outer end of the winding.
8. Tune the 2nd IF transformer. T-5, to place a 22.8 m marker on the low side of the response curve \(50 \%\) down
 provide a flat top or symmetrical response curve as in ste 6. See Figure 5.
9. Tune trap L-12 for maximum attenuation on the curve at 21.9 mc , as in Figure 5. Make sure the core is towar the outside of the trap winding (toward the top)
10. Tune trap L-11 for maximum attenuation on the curve at 27.9 mc , as in Figure 5 . Make sure the cor
the outside of the trap winding (toward the top).
11. Move the generator and capacitor to jack J-2. See Figure 7. Short
12. Turn the primary and secondary of the mixer IF trans.

NOTE: This is a double-tuned circuit. Make sure the slugs are tuned away from the center of the coil.

NOTE: It is important that the 21.9 mc and 27.9 carriers are attenuated as much as shown in Figure 6. To
calculate, connect an AM generator to the mixer grid and a VTVM across the detector load resistor. Take voltage readings at \(21.9 \mathrm{mc}, 24.6 \mathrm{mc}\), and 27.9 mc and
\(\frac{\text { voltage reading at } 24.6}{\text { voltage reading at } 2 \mathrm{~L} .9}=\) between 50 and 80
nd
\(\frac{\text { voltage reading at } 24.6}{\text { voltage reading at } 27.9}=\) at least 100


FIGire 5
If response curve
FIGURE 6
yixer response curve

\section*{BANDWIDTH}

The IF bandwidth may be checked with an AM signal generator, if desired. Connect the generator, through a 1000 mmf capacitor, to jack J-2 in the grid circuit of the mixer tube, \(\mathrm{V}-2 \mathrm{~B}\), and an electronic voltmeter across the
video detector load resistor R-27 (4700). Short out R-11 ( 4700 ), set the generator frequency to 24.6 mc , and adjust its output for a 1 volt reading on the meter. Double the output of the generator. Tune to both sides of 24.6 mc and note the frequencies indicate the 6 db bandwidth points and should be .22 .9 mc and 26.4 mc . By watching the meter while tuning slowly through the band, any serios peaks regeneration

After the mixer and IF stages have been aligned, a check After the mixer and IF stages have been aligned, a check 1. Remove the battery bias and observe the response curve on the scope as taken between the picture tube cathode (yel low lead) and chassis. The bandwidth may change with the bias removed, but change more than 0.2 mc , check the
the bandwidth does chater cathode resistors or change tubes.
2. Set the contrast control at maximum gain (fully clockwise).
3. Decrease the generator input until the outputsignal show a marked decrease
4. Any regeneration present will be indicated by shar peaks on the overall response curve.
NOTE: The oscillator should be detuned, as described above during this procedure

CAUTION: Do not inject too much marker signal


\section*{MIXER SENSITIVITY MEASUREMENTS}
. Connect an AM signal generator, set at \(24.6 \mathrm{mc}, \bmod -\) ulated \(30 \%\) with 400 cycles, to jack J-2 through a capaci-
or of 1000 mmf . Short out R-11 ( 7700\()\).
. Remove the battery bias from the AGC line
. Remove shunt wire from oscillator.
4. Connect the oscilloscope to the cathode of the picture lube. Turn contrast control to maximum.
5. Turn the station selector switch to the low channel po sition which gives the lowest noise reading on the meter.
6. The signal required to produce 20 volts peak-to-peak on
he scope should be less than 100 microvolts.

NOTE: To calibrate scope, connect it across the 6.3 volt filament supply. The peak-to-peak amplitud.
will then be approximately \(18 \mathrm{~V}(6.3 \times 2.8)\).

F Sensitivity measurement
. Move generator to jack J-3 feeding into the grid of the st IF tube ( \(\mathrm{V}-3,6 \mathrm{CB}\) )
2. Connect the electronic voltmeter, through a 100 K de coupling res
\(\mathrm{R}-27\) (4700).
3. The signal required to produce 1 volt on the voltmeter should be less than 750 microvolts.
ANTENNA, RF \& OSCILLATOR ALIGNMENT
: NOTE : The IF circuits must be aligned before the oscillator section can be properly phased.

\section*{Equipment Required}

Sweep generator having
1. Frequency range \(40-220 \mathrm{~m}\)
2. Output constant and adjustable
4. Adjustable markers (markers should be calibrated occasionally by checking against an accurate signal generator).

AM Signal Generator having:
1. Frequency range \(40-220 \mathrm{mc}\)
2. Accurate frequency and attenuator calibratio

Oscilloscope: \(\begin{aligned} & \text { Preferably one with a calibrated input atten } \\ & \text { uator. }\end{aligned}\) FREQUENCY CHART
\begin{tabular}{ccccc} 
Chan & Frequency & Picture & Sound & Oscillator \\
2 & \(54-60\) & 55.25 & 59.75 & 81.65 \\
3 & \(60-66\) & 61.25 & 65.75 & 87.65 \\
4 & 66.72 & 67.25 & 71.75 & 93.65 \\
5 & \(76-82\) & 77.25 & 81.75 & 103.65 \\
6 & \(82-88\) & 83.25 & 87.75 & 109.65 \\
7 & \(174-180\) & 175.25 & 179.75 & 201.65 \\
8 & \(180-186\) & 181.25 & 185.75 & 207.65 \\
9 & \(186-192\) & 187.25 & 191.75 & 213.65 \\
10 & \(19-198\) & 193.25 & 197.75 & 219.65 \\
11 & 1988.204 & 199.25 & 203.75 & 225.65 \\
12 & \(204-2010\) & 205.25 & 209.75 & 231.65 \\
13 & \(210-216\) & 211.25 & 215.75 & 237.65
\end{tabular}

\section*{antenna \& RF alignment procedure}
1. Remove the horizontal output tube V-15, to eliminate R interference in the oscilloscope. Connect a 5000 ohm 10 malize the bus voltages.
2. Detune the oscillator by placing a shunt wire across the oscillator inductance (from position 2 to position 13 on the bandswitch).
3. Remove th antena lead in rom the chassis, and nect the sweep generator to the antenna receptacle. Kee the leads from the generator to the socket short. Use in generator for markers.
4. Connect the oscilloscope, through a decoupling resisto of 47 Kohms to jack J-2 in the grid circuit of the mixer tub V -2B. See Figure 7.
5. Ground the AGC lead to the mixer and RF stages by moving the area selector switch to the suburban or fringe position

(PERMI
MARKER
NOMINAL VARIATIONS FROM MARKE
THESE SHOULD NOT EXCEED 5\%
EXGEPT AS SHOWN.

channel 2 after
trap setting

figure 8. hf response curve
6. Refer to Figure 7 for the location of the trimmers and
oils. The chart listed above gives the picture and sound coils. The chart lis
carrier frequencies.
7. The antenna coils are tuned to the video carrier side and the RF coils are tuned to the sound carrier side. Fig ure 8 shows the shape of the the oscilloscop
8. Set
the coil.
9. Turn the station selector switch to channel 8. Set the center frequency of the sweep generator to the center fre quency of channel 8 ( 183 mc ).
10. Adjust ceramic trimmer, C-11, so that the video and sound markers appear on the response curve within the dits shown in Figure 8
NOTE: The two impedance matching transformers, T-1 and \(\mathrm{r}-2\) must be a minimum of \(1 / 4\) " apart or a "suck-out" will
be noted on channel 12 or 13 .
11. Move the station selector switch to channel 13, and se the generator to the center frequency of the channel 213 mc ) Adjust the screw in coil
channel 13 (see Figure 8).
12. Recheck channel 8 for proper response. Readjust trim
12. K
mer
13. Check channels 13 through 7 and compare the curves in Figure 8. It is important that the antenna primary coil (L-1F) is not changed. The wave shapes maybe narrowed ratio will be seriously affected.
NOTE: If the response is checked with the cover on the tun er, the a short distance, but the markers should be with tolerance.
14. Move the station selector switch to channel 6 and set the generator to the center frequency of the channel ( 85 mc )
15. Compress or spread the channel 6 antenna coil, \(L-2 E\), and RF coil, L-7E, to obtain the proper response. See Figure 7 for coillocations and Figure 8 for response curve.
The antenna coil affects the video carrier and the RF coil affects the sound carrier
and
NOTE: The tilt on the low channels, particularly channels 5 and 6 , can be controlled by adjusting the antenna match
ing coit, L-il.
16. Align channels 5 through 2, in that order, in the same manner as channel 6. As the coils are in series, the prope channels. On one of the lower channels, check that the channels. On one of the lower chaterer head retersed. Waveform deviations indicate a faulty coil.
CAUTION: Make certain the bandswitch is on the cor rect channel before checking bandpass.
17. With channel selector on channel 2 , adjust the two traps formed by C-97 \& C-99 a
tively. Proceed as follows
a. Move the oscilloscope to the picture tube cathod (yellow lead), and connect an AM generator, set at 104. \(30 \%\), to the antenna input.
b. With the contrast control at maximum gain (fully
clockwise), adjust the fine tuning control for maximumamp clockwise),
litude on scope.
pressing) for minimum amplitude on scope. These coils can be reached with the tuner cover on through two holes in d. To check rejection of 104.7 mc , set the generato output high enough so that a 20 volt peak-to-peak wave ap pears on the scope. Note the generator output reading.
e. Tune the generator to 57 mc , tune fine tuning trim
mer for maximum amplitude on scope, and adjust the gen erator output to give a 20 volt peak-to-peak wave on th scope. Again note the generator output reading
f. Using figures noted
formula shown in step \((\mathrm{g})\).
g. For proper rejection, \(\frac{\text { generator output at } 104.7 \mathrm{mc}}{\text { generator output at } 57 \mathrm{mc}}=\) at least 6000
h. If voltage ratio in \((\mathrm{g})\) is less than 6000 , repeat steps (a) through (g).
oscillator adjustment
NOTE: The iF and mixer circuit must be aligned before the oscillator is adjusted.

Remove shunt wire from oscillator inductance.
2. Connect the oscilloscope, through a 47 K ohm resistor, across the video detector load resistor R-27(4700). Re-
store AGC to the mixer and RF tubes by placing the Area Selector Switch into LOCAL position.
3. Refer to Figure 7 for the locations of the trimmers and coils. The sound carrier frequencies may be obtained from the preceding chart.
4. Set fine tuning trimmer for mid-capacity.
5. Turn station selector switch to channel 10 .
6. Set the sweep generator to channel 10, with a center frequid of limiting in the overall response curve show NOTE: The curve should be substantially that of the mixer as in Figure 6 . Any consistent tilting of the response curve indicates that the mixer and IF stages are not properly aligned.
7. Introduce a marker corresponding to the sound carrier of channel \(10(197.75 \mathrm{mc})\). Keep marker signal as low as possible.
8. Adjust the oscillator trimmer C-15 to place the sound marker slightly higher in frequency than the 21.9 mc trap dip. This allowance must be made for the shift caused by
the bottom shield being off. When the shield is replaced the sound marker will move down into the trap dip. The picture marker will then be approximately one-half down from the base line on the opposite side of the curve
9. Check channels 7 through 13, noting whether the sound marker falls just above the trap dip, with the fine tuning trimmer at approximately mid-capacity.
10. If more than a 30 degree change in the fine tuning trimmer was needed in step 9 , adjust the channel 13 oscillator adjusted, it may be necessary to readjust trimmer C-15 on channel 10. Coil L-8 has more effect on channels 10 to 13 than on channels 7 to 9
11. Turn the station selector switch to channel 6, and set , sweep generator center frequency to 85 mc .
12. Set the fine tuning trimmer to \(15^{\circ}\) off mid-capacity


NOTE: It is important that the rotor be set as nearly as possible to the drawing. Otherwise, the fine tuning trim mer may not have
signal. 13. Introduce a marker of channel \(6(87.75 \mathrm{mc})\).
14. Compress or spread the 6 until the sound marker is placed just above the dip L-9E
15. Align channels 5 through 2 , in that order, in the sam manner as channel 6 , so that the sound marker falls jus abuve the trap dip, with the fine tur
degrees of initial setting in step 12 .
NOTE: Since the oscillator coils are in series, it is neces
sary to adjust the high channel coils first, before procect
ing to a lower channel.

mid capacity Figure 9. Fine tuning trimmer setting

\section*{:}

\section*{oVERALL SENSITIVITY MEASUREMENTS}
overall measurement of sensitivity is made as fol An
lows:
1. Connect an AM signal generator to the antenna receptacle on the receiver chassis, matching the generator to th receiver with a resistor network. In the case of a genera-
tor with a 50 ohm output impedance, insert a 100 ohm resistor inseries with the output terminal, and a 150 ohm re sistor in series with the ground terminal.
2. From the cathode of the picture tube (yellow lead) to chassis, connect a calibrated oscilloscope. NOTE: To calchassis. connect a callirace
ibrate scope, connect it across the 6.3 volt filament sup-
che ply. The peak-to-peak amplitude on the screen will then b approximately \(18 \mathrm{~V}(6.3 \times 2.8)\)
3. Set the
clockwise).
4. Set the signal generator for \(30 \%\) modulation at 400 cycles, tune it to the mid-carrier frequency of the channel
being checked and rotate the fine tuning trimmer for max i mum output.
The generator signal necessary to produce 20 volts
pak-to-peak on the scope should be less than:
a) 30 microvolts for channels 7 through 13
4. 5 MC TRAP ALIGNMENT

Equipment Required
AM Signal Generator: Accurately calibrated at 4.5 mc
Adjustable outpu
Low range electe
Procedure:
1. Connect the signal generator to pin 3 of test receptacle, .
2. Set CONTRAST control for maximum gain (fully clock

Connect the voltmeter and a germanium crystal detec or, as shown in Figure 10, between the cathode of the picture tube (yellow lead) and chassis.
4. With the signal generator accurately set at 4.5 mc and maximum output, adjust trap L-17 for minimum reading on he lowest voltage scale of the meter.

AUDIO TAKE-OFF, interstage Coil,
\& RATIO DETECTOR
Refer to Figure 4 for location of adjustments
1. If possible, it is desirable to align the audio section rom an actual station signal, since the 4.5 mc alignment requency will be exact. To permit operation below the Limiting level of the audio driver tube, for sharp alignment,
he fine tuning trimmer should be turned off the station the fine tuning trimmer should be turned off ar stared from
slightlyso that there is between 6 and 8 VV as measured one side of C-54 and chassis.
2. If a signal generator is used, tune it accurately to 4.5 mc , and adjust the output to a pproximately 5 , 000 micro-
volts. Connect the high side of the signal generator to pin
. of the test receptacle and the low side to chassis. The following steps apply whether the station signal or signal generator is used.
3. From either side of electrolytic capacitor C-54 ( 10 m )
3. From either side of electrolytic capacitor \(\mathrm{C}-54(10 \mathrm{mf})\)
through a 10 K ohm decoupling resistor, connect an elec tronic voltmeter to chassis.

CHASSIS

\section*{HS-319}
4. Tune audio take-off coil L-20 for maximum reading on 5. Tune interstage coil L-21 for maximum reading on meter.
NOTE: As adjustments are brought to resonance, it is ad visable to reduce the signal generator output to preven overloading.
6. Tune ratio detector ( T - 7) primary (top core) for maximum reading on meter.

figure 10. electronic voltueter connections
NOTE: Both the primary and secondary of the ratio detector transformer have two tuning points. Only one, with the
cores at the outer end of the windings, is the proper point. 7. Move the meter and decoupling resistor to the junction R-45 (33K) and C-55 (1000 mmf).
8. Adjust T-7 secondary (bottom core) for zero response on the lowest scale of the meter. Be sure the slag is tune to the outside of the winding (toward the top). This corres
ponds to the cross -over point of the FM detector curve. If ponds to the cross-over potin curve may be checked by tun-
desired, the symmetry of the cur ing the signal generator 25 kc above and below 4.5 mc and noting the plus and minus voltage produced, reversing th me ratio detector system, the voltages in each direction should be approximately equal. If not, check the tuning of L-20, L-21, and both the primary and secondary of T-7, the ratio detector transformer. If necessary, replace th ratio detector tube V-9.
9. Repeat steps 4 through 8 for maximum accuracy
audio sensitivity measurement
tacle.
2. Connect the electronic voltmeter from either side o electrolytic capacitor C-54, through a 10 K ohm decoupling resistor, to chassis.
3. Set the generator at 4.5 mc .
4. With a 5,000 microvolt signal, the AVC voltage rea on the meter should be greater than 5 volts.

\section*{\({ }^{-}\)Coice coil.}
2. Connect an AM signal generator as in chart below.
3. Set the signal generator for 400 cycle, \(30 \%\) modulation.
4. Rotate the PHONO-RADIO switch to the "RADIO" position.
5. Turn the receiver volurne control to maximum. ing range is correct. Core (7) has been pre-set at the factory and normally should require no retuning.

If difficulty is encountered in tuning trimmer (5), adjust trimmer (6) to \(1 / 2\) turn from tight.
6. Use a small fibre screwdriver for aligning the IF and diode transformers.
7. Adjust the signal generator output to produce 1.27 volts (. 5 watts) across the voice coil. As stages are aligned, to to maintain the 1.27 volt level.
8. See Figure 2 for adjustment locations, and the following 8. See Figure 2 for
chart for procedure.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline STEP & DUMMY ANTENNA & GENERATOR CONNECTION & GENERATOR FREQUENCY & \[
\begin{gathered}
\text { GANG } \\
\text { SETTING }
\end{gathered}
\] & ADJUST & REMARKS \\
\hline \[
\begin{aligned}
& \text { if alid } \\
& 1 .
\end{aligned}
\] & \begin{tabular}{l}
NMENT \\
. 1 mf
\end{tabular} & Grid of conv. \(\mathrm{v}-2\) (pin 7 . 6BE6) & 455 Kc & Fully opened & \[
\begin{aligned}
& 1,2,3 \& 4 \\
& (\mathrm{IF} \text { cores })
\end{aligned}
\] & Adjust for maximum. \\
\hline \[
\begin{aligned}
& \mathrm{RF} \text { ALI } \\
& 2 .
\end{aligned}
\] & gnment
\[
.1 \mathrm{mf}
\] & Grid of conv. v-2 (pin 7. 6BE6) & 1620 Kc & Fully opened & \[
\begin{gathered}
5 \\
\text { (Osc) }
\end{gathered}
\] & Adjust for maximum.* \\
\hline 3. & - & - & - & - & - & Connect BC loop to chassis. \\
\hline 4. & - & Across radiation loop** & 1400 Kc & Tune in signal & \[
\stackrel{8}{(\mathrm{Ant})}
\] & Adjust for maximum. \\
\hline
\end{tabular}
5. If, after the receiver has been aligned as above, it is found to be badly off calibration, it will be necessary to adjust os cillator core (7) as follows: connect the generator to the grid of the converter tube and, with the gang fully closed, adjus
** Connect generator output across \(5^{\prime \prime}\) diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12"


OJohn F. Rider


\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Ref. \\
No.
\end{tabular} & \begin{tabular}{l}
Part \\
Number
\end{tabular} & Description \\
\hline \multicolumn{3}{|l|}{Chassis hs-319 Electrical parts} \\
\hline \multicolumn{3}{|l|}{Capacitors} \\
\hline C-1 & 19B691877 & Variable: 2 -gang. \\
\hline C-2 & 21877286 & Ceramic: 100 mmf 500 \\
\hline c-3 & 8R9816 & Paper: . 05 mf 400 v . \\
\hline C-4 & 21877286 & Ceramic: 100 mmf 500 v \\
\hline c- & \(21 \mathrm{K77373}\) & Ceramic: 47 mmf 500 v . \\
\hline c-6 & 21 K 482726 & Ceramic disc: \(10,000 \mathrm{mmf} \mathrm{450v}\) \\
\hline C-7 & 21 K 482726 & Ceramic disc: \(10,000 \mathrm{mmf} \mathrm{450v}\) \\
\hline C-8 & \(23 \mathrm{B610587}\) & Electrolytic: \(40-40 \mathrm{mf} / 350 \mathrm{v}\), \\
\hline C-9 & 21 K 482726 & Ceramic disc: \(10,000 \mathrm{mmf} \mathrm{450V}\) \\
\hline C-10 & 8R9809 & Paper: . \(01 \mathrm{mf} \mathrm{400v........}\). \\
\hline C-11 & 8R9813 & Paper: . 005 mf 600 v . \\
\hline C-12 & 21877286 & Ceramic: 100 mmf 500 v ..... \\
\hline C-13 & 8R490232 & molded paper: 47,000 mmf 400 v \\
\hline C-14 & 8R9813 & Paper: . 005 mf 600 v ........ \\
\hline C-15 & 8n9813 & Paper: . 005 mf 600 v \\
\hline C-16 & 8R9809 & Paper: . 01 mf 400 V . \\
\hline C-17 & 8R9847 & Paper: . 002 mf 600v........ \\
\hline C-18 & 21K482726 & Ceramic disc: \(10,000 \mathrm{mmf} 450 \mathrm{~V}\) \\
\hline \multicolumn{3}{|l|}{Pilot Light} \\
\hline I-1,2 & \(65 \times 10867\) & Bulb, pilot light: \#44; 6-8v; .25 amp; clear; bayonet base \\
\hline
\end{tabular}
\(\frac{\text { Coils }}{\text { L-1 }}\)
24 C690896 Loop antenna.
st Resistors
Note: All resistors are insulated carbon type
\begin{tabular}{|c|c|c|c|}
\hline R-1 & 6R6004 & \(1 \mathrm{meg} 20 \%\) 1/2w.........doz & \\
\hline R-2 & 6R2039 & 68 10\% 1/2w............doz & 1. \\
\hline R-3 & 6R6080 & 4700 10\% 1/2w...........doz & \\
\hline R-4 & 6R6012 & 33,000 20\% 1/2w........doz & \\
\hline R-5 & 6R6056 & 47,000 20\% 1/2W........doz & \\
\hline R-6 & 6R6290 & 2200 20\% 1/2w..........doz & \\
\hline R-7 & 6R3922 & \(100010 \%{ }^{2 W}\) & \\
\hline R-8 & 6R5732 & 15,000 10\% 2 W & \\
\hline R-9 & 6R6432 & 270 10\% 1/2w...........doz & \\
\hline R-10 & 6R6290 & 2200 20\% 1/2w..........doz & \\
\hline R-11 & 6R6056 & 47,000 20\% 1/2w........doz & \\
\hline R-12 & 6R3927 & 2.2 meg \(20 \%\) 1/2w.......doz & \\
\hline R-13 & 6R6032 & 470,000 20\% 1/2w.......doz & \\
\hline R-14 & 6R2109 & \(10 \mathrm{meg} 20 \% 1 / 2 \mathrm{w} . . . . . . . .\). doz & \\
\hline R-15 & 184600974 & Volume control: 2 meg; tapped at 600,000 ; includes power switch. & \\
\hline R-16 & 6R6074 & 68,000 10\% 1/2w.........doz & \\
\hline R-17 & 18 K 77399 & Tone control: 1 me & \\
\hline R-18 & 6R6336 & 270 10\% 1w. & \\
\hline R-19 & 6R6032 & 470,000 20\% 1/2w.......doz & \\
\hline R-20 & 6R6015 & 220,000 20\% 1/2w.......doz & \\
\hline \multicolumn{4}{|l|}{Switches} \\
\hline S-1 & 408601065 & Switch, phono-radio. & \\
\hline \multicolumn{4}{|l|}{Transformers} \\
\hline T-1 & 258600684 & Power Transform & \\
\hline T-2 & 24K691878 & Oscillator Transfor & \\
\hline
\end{tabular}
Oscillator Transforme
white \& red dot......
6.95

\section*{S U P P L E M E N T N O.I}

\section*{PRODUCTION CHANGES}
\begin{tabular}{l|l}
\hline Chassis & \multicolumn{1}{c}{ Change } \\
\hline Coding
\end{tabular}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Chassis \\
Coding
\end{tabular} & \multicolumn{1}{c}{ Change } \\
\hline \hline TS-408A-02 & \begin{tabular}{l} 
the T-6 assembly. Transformer has new part \\
number.
\end{tabular} \\
\begin{tabular}{l} 
C-74 changed from 20 mf to 10 mf to eliminate \\
vertical flutter due to line voltage variations.
\end{tabular}
\end{tabular}

\section*{REPLACEMENT PARTS LIST SUPPLEMENT}

NOTE: When ordering parts, specify model number of set in addition to part number and description of part. The following
vice Manual.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ref.
No. & \begin{tabular}{l}
Part \\
Number
\end{tabular} & Description & \[
\begin{gathered}
\text { List } \\
\text { Price }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Ref. } \\
& \text { No. }
\end{aligned}
\] & Part
Number \\
\hline c-74 & 23A702450 & \begin{tabular}{l}
Capacitor, electrolytic: \\
10 mf 450 V .
\end{tabular} & 1.35 & & \\
\hline T-6 & 24K720421 & Transformer, 3rd IF: with CR-1, C-31, L-13, core \& mtg base (this is electrically the same as the former transformer 243720980 except \(\mathrm{L}-13\) has been added & & & \\
\hline
\end{tabular}

\section*{Description}
\(\underset{\substack{\text { List } \\ \text { Price }}}{\text { Lent }}\) inside assembly. Use
24 K720421 as replacement or 24 B 720980 in early chassis. The new transformer is
wired the same as the old except that \(\mathrm{L}-13\) is inside the shield)....................... 4.
prices subject to change without notice

\section*{S U P P LEMENTINO.2}

PRODUCTION CHANGE
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Chass } \\
& \text { Coding }
\end{aligned}
\] & & \multicolumn{3}{|c|}{Change} \\
\hline TS-40 & A-03 & \[
\left\lvert\, \begin{aligned}
& \text { C- } 75 \\
& \text { resist } \\
& \text { and th } \\
& \text { anode } \\
& \text { trol p }
\end{aligned}\right.
\] & ( 5000 mmf ) omitted and a 100 K 1 or added between the focus control he blue lead to the picture tube focu This adds protection to the focus otentiometer. & \[
\begin{gathered}
\text { watt } \\
\text { arm } \\
\text { sing } \\
\text { con- }
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { Ref. } \\
& \text { No. }
\end{aligned}
\] & & & Description & \[
\begin{gathered}
\text { List } \\
\text { Price }
\end{gathered}
\] \\
\hline R-95 & 6R11 & 8214 & \begin{tabular}{l}
Resistor, carbon: 100,000 \\
20\% 1 ............................ sistor stitute values of 120 K and 150k may be found in some chassis. Substitutes should have at least a one-watt rating, however
\end{tabular} & . 20 \\
\hline
\end{tabular}


\section*{REPLACEMENT PARTS LIST SUPPLEMENT}

NOTE: When ordering parts, specify model number of set in addition to part number and description of part. The following part is an addition to the original items in the TS-408 Series

\section*{PARTS LIST}
note:

\section*{Description}
\(\begin{array}{ll}\text { Ref. } & \text { Part } \\ \text { No. }\end{array}\)
Chassis ts -408 A Capacitor




OJohn F. Rider



\section*{PRODUCTION CHANGES}

\section*{S U P P L E M E N T N O. 3}

\section*{GENERAL INFORMATION}

This service manual supplement contains a supplemen tary parts list and a record of production changes for the TS-408 series chassis (from TS-408A-04 thru TS \(-408 \mathrm{~B}-03\) ), a listing of receivers not included in previous service man -
uals or supplements, and replacement parts for chassis and receivers containing factory-installed UHF tuners.

\section*{CEASSIS DESCRIPTION}

The basic chassis is TS-408. Suffixes (A-04, B-01 etc.) to this basic number indicate production changes. A "Y suffix designates a chassis containing a factory-installed CHASSIS TS-408 SERIES

Refer to TS-408A Service Manual and Supplements No. and No. 2 for service information on chassis TS-408A through TS-408A-03. This manual contains supplementar chassis TS-408A-04 through TS-408B-03

CHASSIS TS-408Y SERIES
Chassis model numberswith a "Y" suffix (TS-408AY-04) ndicate that the chassis contains factory-installed UHF tuners. The TS-408Y series chassis uses the TT-52M UHF uning unit. Refer to the TT-52M
ice data and UHF tuning unit replacement parts.

\section*{RECEIVER MODEL CBART}
\begin{tabular}{l|l|l|l|l}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l} 
TV \\
TVApe of Set
\end{tabular}} & \begin{tabular}{c} 
Radio \\
Chassis \\
Chassis \\
Used
\end{tabular} & \begin{tabular}{c} 
Record \\
Charger \\
Used
\end{tabular} \\
Model & \multicolumn{1}{|c|}{ Tysed }
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Chassis Coding & Changes & Chassis Coding & Changes \\
\hline TS-408A-04 & Fusing wire ( \(F-1\) ) added to filament circuit. & & "Framelock" circuit added, as listed below, to improve vertical sync under noise con- \\
\hline \multirow[t]{4}{*}{TS-408A-05} & R-82 (4700) changed to 6800 ohms. & & ditions: C-103(33), C-104 (22), R-96(1000) \\
\hline & R-85 (4700) changed to 6800 ohms. & & and L-27 added to 3rd IF stage. \\
\hline & C-80(.002) changed to 4700 mmf , to reduce & & \begin{tabular}{l}
C-28 (1500) changed to 1000 mmf . \\
\(\mathrm{C}-105\) (470) and \(\mathrm{R}-97\) (15K) added to video
\end{tabular} \\
\hline & horizontal ove & & amplifier stage. \\
\hline \multirow[t]{3}{*}{TS-408A-06} & R-62 (3300) changed to 1800 ohms and R-63 (1800) changed to 3300 ohms, to increase & & C-63 (22) removed from 1st clipper. \\
\hline & blanking pulse at the grid of the picture tube. (This change does not occur in some chassis until "B-01".) & TS-408B-0! & These chassis incorporated all changes listed under "A-06" and "B-00". \\
\hline & & TS-408B-02 & R-53 (680K) changed to 1 meg, to improve \\
\hline TS-408A-07 & The On-Off switch moved to the high side of the \(A C\) line. & & interlace. \\
\hline \multirow{5}{*}{TS -408B-00} & & TS-408B-03 & C-75(5000 mmf, 2000V) added from picture \\
\hline & NOTE: Chassis marked "B-00" do not incorporate the change listed under "A-06". & & tube focusing anode (blue lead) to chassis \\
\hline & Compensating coil \(\mathrm{L}-16\) and \(\mathrm{L}-17(4.5 \mathrm{mc}\) & & with 2000 V rating, to prevent high voltage \\
\hline & trap) interchanged, to improve video re- & & flash-over within the picture tube and the \\
\hline & sponse. & & vertical output tube, respectively. \\
\hline
\end{tabular}

\section*{SERVICE NOTES}

CAUTION: If the 6BQ6GT horizontal out put tube is removed
vent its short

\section*{REPLACEMENT PARTS LIST SUPPLEMENT}

NOTE: When ordering parts, specify model number of set in addition to part number and description of part. The following parts are additions to the original items in the TS-408 Service Manuals.


MODELS 17F13BCY, CY, F, FB, FBY, FY, 17K14BCY, CY, WCY,17K15CY, 17K16CY, 17T11CY, ECY,17T12CY, BCY, 12WCY, Ch. TS-408, -408Y Series
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Part & & List & \(\xrightarrow{\text { Part }}\) Number & & \({ }_{\text {che }}^{\text {List }}\) & & & \\
\hline N & Description & Price & er & Description & e & Part Number & Description & \[
\begin{gathered}
\text { List } \\
\text { Price }
\end{gathered}
\] \\
\hline 6F720722 & Cabinet，combination：red－brn mahogany；less window，mask and bezel assembly（17F13CY）． & & 55K790733 & Hinge，stop：LH；statuary bronze finish（at LH top \＆RH bottom of er（aors）（17F13CY，17F13F & & MODELS 17 & 4CY，bCY，WCY Cabinet parts & \\
\hline 16K720723 & Cabinet，combination： 11 med oak & & & \({ }_{17 \mathrm{~F} 13 \mathrm{FY} \text { ）}}\) & ． 30 & 1 U730050 & Antenna，built－in：Model ta－23； & \\
\hline & less window，mask and bezel as－ sembly（17F13BCY）． & ＊＊ & 55K712169 & Hinge，stop：RH；statuary bronze finish（at RH top \＆LH bottom & & & with leads（UHF \＆VHF TV）（re－ places single vHF antenna used & \\
\hline 16F722468 & cabinet，combination：red－bra mahogany；less window，mask and & & & upper doors）（17F13CY，17F13F， 17F13FY）． & ． 30 & 1v72203 & \begin{tabular}{l}
in some models） \\
Back Cover：with picture tube rear
\end{tabular} & \\
\hline & bezel（17F13F，17F13FY） & ＊＊ & \(6 \mathrm{B72025}\) & ob，control：brown（VWF channel & & & cover and line cord & 05 \\
\hline 16K722469 & Cabinet，combination：limed oak； & & & selector）（17F13F，17F13FB） & 1.50 & & Bezel，picture tube（window frame） & 9.05 \\
\hline & less window，mask and bezel （ \(17 \mathrm{~F} 13 \mathrm{FB}, 17 \mathrm{~F} 13 \mathrm{FBY}\) ） & ＊＊ & 36K722236 & Knob，control：brown（VHF channel selector）（17F13CY，17F13BCY， & & 7A72070 & Bracket，bezel retaining（mounts window and bezel assembly to & \\
\hline 1 K 721910 & cable，antenna jumper assembly： & & & 17F13FY，17F13FBY）．．．．．．．．． & 5 & & cabinet）．．．．．．．．．．．．．．．． & 10 \\
\hline & 2612＂long；includes spade lugs and & & \(36 \mathrm{C720252}\) & Knob，control：brown（contrast）． & ． 65 & 16 F 72023 & Cabinet，console：red－brn mahogany； & \\
\hline & 2150 ohm resistors（Jumper be－ & & 368720250 & Knob，control：brown（fine tuning & 50 & 16K720233 & Cabinet，console：limed oak；less & \\
\hline & when \(s 1\) & & \(36 C 72025\) & & & & window，mask \＆bezel（ 17 K 14 BCY ） & \\
\hline & 17F13BCY， \(17 \mathrm{~F} 13 \mathrm{FY}, 17 \mathrm{~F} 13 \mathrm{FB}\) & ． 70 & & \({ }_{10}\) & 50 & 16K720234 & Cabinet，console：walnut；less win－ & \\
\hline 55k712372 & Caster：includes 55k712373 gripneck & 85 & \(36 \mathrm{C720949}\) & Knob，control：brown，gold letter－ & & & nask \＆bezel（ 17 K 14 & \\
\hline 55K & Catch，bullet：statuary bronze & & & ing（ UFFF tuning）（17F13CY，17F13BC & & \(1 \mathrm{K721910}\) & Cable，antenna jumper assembly： & \\
\hline & finish（door latch－on cabinet） & & & ．17F13FY，17F13FBY） & ． 55 & & 26⿳亠二口欠刂＂long；includes spade lugs & \\
\hline & （17F13CY，17 13F，17F13FY）．．．．． & ． 10 & \(36 \mathrm{C701150}\) & Knob，control（radio） & 45 & & and 2150 ohm resistors（Jumper & \\
\hline 55K482792 & Catch，bullet：brass（door latch－ on cabinet）（17F13BCY，17F13FB， & & 368721980 & Lever，selector（UHF－VHF selector） （17F13CY，17F13BCY，17F13FY， & & & between UHF and VHF antenna ter－ minals when single ant is used）． & \\
\hline & 17F13FBY） & ． 10 & & 17 F 13 FBY ） & ． 80 & 55K712372 & Caster：includes 55k712373 gripneck & 85 \\
\hline 720717 & Clip，speed（mounts gasket and mask to bezel） & ． 05 & 29A791608 & lug，spade（on ant jumper cable） （17F13CY，17F13BCY，17F13FY， & & 2A7207 & Clip，speed（mounts gasket and mask to bezel） & ． 05 \\
\hline \(35 \times 720727\) & Cloth，grille：mahogany \＆gold； & & & 17 F 13 FBY ） & 15 & 35K72023 & Cloth，grille：19－15／16＂x 14＂； & \\
\hline & 112＂\(x^{16-1 / 8 " ~(17 F 13 C Y, ~ 17 F 13 ~}\) & & 720621 & Mask，picture & ． 90 & & & 3.70 \\
\hline & 17F13F） & 4.40 & 1V721114 & Medalilion，UHF（over UHF cut－out & & 35K720236 & Cloth，grille：19－15／16＂\(\times 14\)＂； & \\
\hline 35K720726 & Cloth，grille
\[
\text { 112 }{ }_{2}^{\prime 2} \times 16-1,
\] & & 33A72209 & hole）（17F13F，17F13FB）．． Name Plate（ UnF－VHF indica & 1.30 & 35K7202 & \begin{tabular}{l}
eggshell \＆gold（ 17 K 14 BCY ）． \\
Cloth，grille：19－15／16＂x 14＂；
\end{tabular} & 3.70 \\
\hline & 17 F 13 FBY ，17F13FB） & ． 40 & & （17F13CY， 1 TF13BCY， 17 F 13 F & & & walnut \＆gold（ 17 K 14 mCY ） & 3.70 \\
\hline 30K712361 & Cord，line：with plug； 9 ft long．． & ． 95 & & 17F13FBY）． & ． 15 & 30K712361 & Cord，line：with plug and interlock & \\
\hline 1V790756 & Cord，line：with plug and interlock & & 84 & Nut，speednut：for 5／16＂stud & & & receptacle； 9 ft long．．．．．．．．．．．．． & .95
1.30 \\
\hline 72113 & receptacle； 2 ft
Cover，chassis bottom & 1.30 & & （medallion plate mtg）（17F13F，
17F13FB） & ． 15 & 158710068 & Cover，chassis bottom．．．．．．．．．．．．． & \\
\hline 15B71006 & Cover，picture tube rear（on back & & 64 A 20785 & plate，medallion & & & cover） & 65 \\
\hline & & ． 65 & & 17F13FB） & & \(34 \mathrm{C72095}\) & Dial scale：brown，gold numerals & \\
\hline \(34 \mathrm{C720956}\) & Dial scale：brown，gold numerals & & 0728 & Pull，door：brass（upper door） & 80 & & （UHF channel indicator） & ． 45 \\
\hline & （UHF channel indicator）（17F13CY， & & （2092 & pull，door：brass（lower door）． & 80 & 32K7207 & Gasket，picture tube：rubber
（around picture tube front） & \\
\hline \(13 \mathrm{C791478}\) & 17F13BCY，17F13FY，17F13FBY）．． & \[
\begin{array}{r}
.45 \\
3.75
\end{array}
\] & 56 & Rivet，shoulder（TV line cord & ． 45 & 36K72223 & Knob，control：brown（VHF channel & \\
\hline 5A7 & Eyelet，radio chassis mtg：plain & & & Screw，drive：． \(060-32 \times 3 / 1\) & & & selector）． & 45 \\
\hline & 9／32＂long． & ． 15 & & rnd head；brass pltd（name plate & & \(36 C 720252\) & Rnob，control：brown（contrast）．．． & ． 65 \\
\hline 5A600963 & Eyelet，radio chassis mtg：pierced； 1／8＂long．．．．．．．．．．．．．．．．．．．．．．．．．．doz & & & mtg）（17F13CY， \(17 \mathrm{~F} 13 \mathrm{BCY}, 17 \mathrm{~F} 13 \mathrm{FY}\) ， 17F13FBY） & ． 15 & 368720250 & Knob，control：brown（fine tuning \＆volume） & O \\
\hline 32K720730 & Gasket，picture tube：rubber & & 3S114993 & Screv，machine： \(1 / 4-20 \times 1-3 / 4\) & & 36C720251 & control & \\
\hline & （around picture tube front） & ． 60 & & hex head；cad pl（TV chassis & & & ing（tone）． & ． 50 \\
\hline 5A71092 & Grommet，radio chassis mtg ：rubber & ． 10 & & mtg）．．．．．．．．．．．．．．．．．．．．doz & ． 50 & 36C720949 & Knob，control：brown，gold letter－ & \\
\hline 55K712288 & Hinge，stop：rH；brushed brass & & 387534 & Screw，sheet metal：\＃8－15 \(\times 1-3 / 8\) & & & ing（UHF tuning）．．．．．．．．．．．．．．． & 55
80 \\
\hline & finish（at bottom of lower do & & & pl hex head；cad pl（radio chas－ & & 368721980 & Lever，selector（UHF－VHF selector） & \\
\hline & （17F13BCY，\({ }^{17 \mathrm{~F} 13 \mathrm{FB},} \mathbf{1 7 \mathrm { F } 1 3 \mathrm { FBY } \text { ）．}}\) & ． 20 & & sis mtg）．．．．．．．．．．．．．．．．．．．．．． doz & 15 & 29A791608 & Lug，spade（on ant jumper & \\
\hline 55k790732 & Hinge，stop：LH；brushed brass finish（at top of lower door） & & \(43 A 722235\) & Spacer，pendant：fibre；gray（be－ hind UFF－VHF selector lever） & & 13D720621 & cable）．．．．．．．．．．． & .15
1.90 \\
\hline & （17F13BCY， 17 F 13 FB ， 17 F 13 FBY ）．． & 20 & & （17F13CY，17F13FBY）． & 20 & 33A722098 & Name Plate（UHF－VHF indicator） & 15 \\
\hline 55k712168 & Hinge，stop：LH；brushed brass & & 43K722 & pacer，pendant：fibre；bu & & 5K791856 & Rivet，shoulder（ 1 ine cord mtg）doz & ． 30 \\
\hline & 1sh（at LH top \＆ & & & ehind UHF－VHF selector lever） & & 3s7491 & Screw，drive：．060－32 x 3／16 pl & \\
\hline & 17F13FBY） & ． 30 & & （17F13BCY，17F13FBY） & ． 20 & & \[
m \mathrm{tg})
\]
\(\square\) doz & ． 15 \\
\hline 55K790734 & Hinge，stop：RH；brushed brass & & & Pinish；with 1／2＂nail（door & & 35114993 & Screw，machine： \(1 / 4-20 \times 1-3 / 4 \mathrm{pl}\) & \\
\hline & nish（at RH top \＆LH bottom & & & 1atch－on door）（17F13CY，17F & & 43A7222 & hex head；cad pl（chassis mtg）doz & ． 50 \\
\hline & of up & ． 30 & & 17 F 13 FY ） & & &  & \\
\hline 35k712289 & Hinge，stop：RH；statuary bro & & & nall（door latch & & & （17K14CY， 17 K 14 WCY ） & ． 20 \\
\hline & inish（at bottom of lower door） & & & （17F13BCY，17F13FB，17F13FBY）．． & ． 10 & 43K722467 & Spacer，pendant：fibre；buff color & \\
\hline & （17F13CY，17F 13F，17F13FY）．．．．．． & ． 30 & 64K791029 & Track \＆channel，record changer & & & （behind UHF－VHF selector switch） & \\
\hline 55K790731 & Hinge，stop：Lh；statuary bronze & & & drawer & 5.90 & & （17K14BCY） & ． 20 \\
\hline & finish（at top of lower door） & & 61 D 720245 & Window，picture & 0 & 61 D & W1ndow，picture & 7.00 \\
\hline
\end{tabular}
model 17א15CY CAbinet parts
10730050
Antenna，built－in：Model TA－23；
with leads（UHF \＆VHF TV） 1V722037 Back Cover：with picture tube rear \({ }^{13 R} 720279\) Bezel，picture tube（window frame） Bracket，bezel retaining（mounts window and bezel assembly to cabinet）．
16 F720763 Cabinet，console：red．brn mahogany， 10
\(1 \mathrm{K721910}\) less window，mask and bezel．．．
Cable，antenna jumper assembly
\(26 \frac{1}{\frac{1}{2}}\)＂long；includes spade lug
 between UHF and VHF ant terminals
55k712372 when single ant is used）
55 K 712372
55 K 72307 Caster：includes 55 K 712373 gripneck finish（door latch－on cabinet）
42A720717 C1ip，speed（mounts gasket and
35 K 720768 mask to bezel）．．．．．．．．．．．．．．．．．．．． 05
30K712361
\(15 D 721138\)
158710068
Coth，grille：mahogany \＆gold．．．．
Cord，line：with plug and inter cord，1ne：with plug and interlock

34 C 720956
32K720730 \(55 K 712169 \begin{gathered}\text {（around picture tube front）．．．．} \\ \text { Hinge，stop：RH；statary bronze } \\ \text { finish（at }\end{gathered}\) Cover，
cover
Dial
 （UnF channel indicator） Gasket，picture tube：rubber 55K790733 Hinge，stop：LH；statuary bronze Hinge，stop：LH；statuary bronze
finish（at LH top and RH bottom 36K722236
\(36 \mathrm{C7} 20252\)
368720250 \(36 \mathrm{B720250}\) \(36 C 720251\) 36 C 720949 36B721980
29A791608 \({ }^{13 \mathrm{D} 720621}\) 33A722098
55 K 720769 55K720769
5 A791856 3S7491 Knob，control：brown（VHF channel selector）．．．．．．．．．．．．．．．．．．．．．．．．．．．． Knob，control：brown（fine tuning Knob，control：white，brown letter－ Ing（tone）．．．．．．．．．．．．．．．．．．．．．．．．
Knob，control：brown，gold letter－ ing（UFF tuning）．．．．．．．．．．．．．．．．． Lug，spade（on ant jumper
cable）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Mask，picture tube．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

\(\begin{array}{ll}\text { 3S7491 } & \begin{array}{l}\text { Rivet, shoulder ( (1ine cord mtg) } \\ \text { Screw, } \\ \text { drive: }\end{array} .060-32 \times 3 / 16 \mathrm{pl}\end{array}\)
Screw, drive: . \(060-32 \times 3 / 16\) pl
rnd head; brass pltd (name plater
rnd head; brass pltd (name plate
mig)
3S114993 Screw, machine: \(1 / 4-20 \times 1-3 / 4\) p1
hex head; cad pl (chassis mtg) do
43 A 22235 Spacer, pendant: fibre; gray (be-
55K72308 Strike bullet statuary bronz.
55K72308 Strike, bullet: statuary brooze
Strike, bullet: statuary bronze
finish; with \(1 / 2\) " nail (door
\(610720245 \begin{gathered}\text { latch } \\ \text { Window, picture }\end{gathered}\)
©John F．Rider



(12) (10) (110) (10)
votes
 \(\oplus\). moon turuct conss

OJohn F. Rider

\section*{SPECIFICATIONS}
operating line voltage - 108 to 125 Volts 60 Cycle A.C
CHANNEL COVERAGE--VHF Channels 2 to 13 inclusive: UHF Channels 14 to 8 with "Snap-in" adapter stripa.
I.F. VIDEO CARHIER 25.1 MC - I.F. SOUND CARRIER 20.6 MC.

POWER CONSUMPTION - 235 Watts.
AUDIO POWER OUTPUT - 1.5 Watts Undistorted - measured with standard load. LOUD SPEAKER - \(10^{\prime \prime}\) P.M. Type using Alnico 5.
voice coil impedance - 3.2 Ohms at 400 Cycles.
PROTECTIVE FUSE.
high voltage - 18,000 vols at 2 nd Anode.
OTHER ADVANTAGES ARE: ONE KNOB picture control - HIGH GAIN channel selector - R.F. SHE of VHF and UHF stations. - BALANCED 300 Ohm impedance input to tuner
72 Ohm unbalanced line-SYNCHROGUIDE A.F.C. reduces noise interference 72 Ohm unbalanced line - SYNCHROGUIDE A.F.C. reduces noise interference in picture -
SOUND limis the dift to a minimum amount while locking the sound to the
picture - IMPROVED high voltage tifback circuit for BRIGHTER pictures and picture. - IMPROVED high voltage flyback circuit for BRIGHTER pictures and
BETTER contrast - HIGH FIDELITY F.M. SOUND - INVERSE FEEDACK for improved audio response - FOUR I.F. Iransiormers for better SELECTIVITY an RMPSole
RESOLUTION - PPATE VOLTAGE REGULATION for smoother over-all perform
ance ance - MODERATE TEMPERATURE RESTS ANTI-GLARE picture mask - SAFETY GLASS protection - HAND RUBBED WOOD cabinets of many styles. APPROVED BY NATIONAL BOARD OF UNDERWRITERS.

ss-0039

\section*{HIGH VOLTAGE WARNING}
Operation of this receiver with interlocked back cover removed involves a shock hazard from the receiver power supplies. Work on this receiver should not be attempted by anyone who is no thoroughly familiar with the precautions necessary when working on high voltage equipment.

\section*{CATHODE RAY TUBE HANDLING PRECAUTIONS}
Shatterproof goggles and heavy gloves should be worn at all times when handling the cathode ray tube. The tube should not be handled in the vicinity of any person not so equipped. When handling the cathode ray tube, always keep it away from the body. It is fitting and proper to request the customer and his children to leave the room during a Picture tube exchange.
The cathode ray tube bulb, due to its large surface area and high vacuum contained within, (0. More than ordinary care is required to prevent shatiering the tube. The large end of the bulb, particularly the rim of the viewing surface, must not be struck, scratched, or subjected to more than moderate pressure at any time. If the tube sticks or fails to slip smoothly into place during replacement, remove the tube and determine the cause of the trouble.
DO NOT FORCE THE TUBE

\section*{FRONT PANEL SERVICE CONTROLS}
(located under Muntz nameplate)
HORIZONTAL HOLD: The horizontal hold control locks the horizontal oscillator to the frequency of the transmitted sync. pulse. Rotating the control clockwise the picture should fall out of sync. showing one vertical blanking bar. The picture should remain in horizontal sync. when rotating the H. hold control counter clockwise. (See horizontal A.F.C. Alignment, Page 4.)

VERTICAL HOLD: The vertical hold control locks the verical sweep with the transmitted sync. pulse. Set the vertical hold where the picture snaps into vertical lock.
BRILLIANCE: Adjust the brilliance control in combination with the picture control for the mos pleasing picture. Set the brilliance to a point where the picture control will give a dark black, a brilliant white, and varying degrees of grey.


Figure No. 1

\section*{PICTURE TUBE ADJUSTMENTS}

\section*{ADJUSTMENT OF ION TRAP}

To prevent serious damage to the picture tube the Dilowing method of adjustment should be used: Place the Ion Trap so that it is near the picture tube base socket, and adjust the Brilliance control \(80^{\circ}\) counter-clockwise before turning set on.
Tum set on and allow for normal warm-up time. Move the Ion Trap a short distance forward or backward at the same time rotating it until the point of optimum raster brightness is found. Reduce bril-
liance and reset ion trap for maximum screen brilliance and reset ion trap for maximum screen brilliance.
CAUTION: Keep brilliance control at low intensity until the ion trap is properly set.
DO NOT at any time adjust the ion trap to correct for centering or a shadowed raster. (See focalizer adjustment).
If the focus adjustment, centering lever, focalizer or deflection yoke are in any way readjusted or changed, the ion trap should again be readjusted for maximum brilliance.
ALWAYS MAKE THE ION TRAP THE FIRST AND LAST ADJUSTMENT.

\section*{REAR CHASSIS SERVICE CONTROLS}

VERTICAL LINEARITY AND VERTICAL SIZE: The Vertical linearity and Vertical size controls should be adjusted simultaneously to fill the picture mask vertically and in the proper proportions. The Ver tical Size controls picture heights and the Vertical linearity picture proportion.

HORIZONTAL DRIVE: This control affects picture width and horizontal linearity, particularly the left side of the picture. This control somewhat affects the horizontal A.F.C. alignment. See Page 4. The correct setting of the Drive trimmer is of the point where the drive line is eliminated.
HORIZONTAL RANGE: See Horizontal A.F.C Alignment (Page 4).


Figure No. 2

\section*{FOCALIZER ADJUSTMENT}

The focalizer is used to center the picture with the best possible line detail. Adjustments are provided as shown in Fig. 3 or Fig. 4.
The focalizer should be positioned as close to the deflection yoke as is consistent with good line detail and correct picture centering.

\section*{CENTERING ADJUSTMENT}

Push deflection yoke forward on neck of tube against the flare (See deflection yoke adjustment). shifts the picture horizontally; horizontal movement of the lever controls the vertical positioning. If picture is difficult to center or neck shadow is present, loosen and reposition focalizer.

\section*{FOCUS ADJUSTMENT}

Focus is made by rotating the Focus Adjustmen located on the focalizer assembly. Set the picture control to a normal picture and the Brilliance control to a slighty above average brightness. Rotate the
focus adjustment until the picture is in sharp focus with the clearest line detail throughout the picture

DEFLECTION YOKE ADJUSTMENT
If picture is tilted, loosen the wing nut on the deflection yoke coil and slightly rotate the yoke coil until picture is straight. Before tightening the moved as far forward as possible, otherwise cormers of the raster may be shaded. See Centering Adjust ment.


\section*{gure No. 3}

TOP VIEW-C.R.T. ADJUSTMENTS


Figure No. 4

\section*{INDIVIDUAL CHANNEL ADJUSTMENT}

The tuner is completely and accurately aligned at the factory, however, for best performance it is necessary to touch up the oscillator coil tuning slug on each of the operating channels.
The oscillator coil tuning slugs may be reached by removing the channel selector knob and the fine tuning knob. See Fig. 1.
A. Turn the TV set on and allow a 10 minute warm-up period.
B. Turn channel selector to an operating channel. Remove channel selector and fine tuning knobs.
C. Set fine tuning control shaft to center of its range
D. Turn up volume control and picture control to a normal setting.
E. Use a non-metallic screwdriver and adjust slug for most efficient compromise of both operating channel.
CAUTION: Do not screw slug past its thread limitations as it will drop into coil form. Always start by turning the adjusting slug in a counterclockwise direction.

\section*{ADJUSTING THE HORIZONTAL A.F.C.IN THE HOME}

A receiver which requires horizontal sync. adjustment may be corrected by following the procedure given below.
Check to see if adjustment is necessary by rotating the \(H\). hold control located under the MUNTZ ameplate. The picture should hold as follows:
A. Fully counter-clockwise, the picture should remain in horizontal sync.
B. Rotate the H. hold control fully clockwise and the picture should fall out of sync. showing one vertical bar (on weak signals up to \(31 / 2\) bars are acceptable).
If the horizontal A.F.C. does not fill the above requirements the circuit needs readjusting. Before ing tubes V-14 HOR. AFC. \& OSC. (6SN7), V. 11 Sync. Separator (12AT7).
A. Reset the horizontal range trimmer (Fig. 2) \(1 / 4\) turn out from full "in" position.
B. Tune in station and set picture control below a normal-contrast condition.
C. Tum H. Hold control to a full clockwise position and adjust top slug of horizontal A.F.C. can (T6) (See Fig. 20) until picture snaps into horizontal sync. with one bar. Rotating control counter clockwise picture should remain in sync. the \(H\). Hold should normally be set 20 degrees counterclockwise from where the picture pulls into horizontal sync.
If the above conditions can not be met, the horizontal A.F.C. circuit needs complete alignment. Follow instructions "Complete alignment of A.F.C."

RESISTANCE CHART
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SYM. & TYPE & FUNCTION & \[
\begin{aligned}
& \text { PIN } \\
& \# 1
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { PIN } \\
\# 2
\end{array} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { IN } \\
\# 3
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 4
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 5
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \sharp 7
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { PIN } \\
\neq 8 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { PIN } \\
\# 9
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 10
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 11
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 12 \\
& \hline
\end{aligned}
\] \\
\hline V. 3 & 6AU6 & Sound I. F. & 470K & 0 & 0 & . 05 & \(4^{2}\) & \(0^{1}\) & 82 & & & & & \\
\hline V-4 & 678 & F.M. Det. \& lst I. F. & 600K & 10K & 600K & 0 & . 05 & 0 & 0 & 4.7M & \[
470{ }^{2}{ }^{2}
\] & & & \\
\hline V. 5 & 6W6 GT & Audio Output & Inf. & 0 & \[
520^{2}
\] & \[
270^{2}
\] & \[
120 \mathrm{~K}^{1}
\] & T. P. & . 05 & \[
0^{1}
\] & & & & \\
\hline V. 6 & 5 S 4 G & L. V. Rect. & Inf. & \[
100^{3}
\] & Inf & 35 & Inf & 35 & Inf & \[
100^{3}
\] & & & & \\
\hline V. 7 & 6CB6 & 1st I. F. Amp. & 857K & 47 & . 05 & 0 & \[
680^{1}
\] & \[
680^{1}
\] & 0 & & & & & \\
\hline V. 8 & 6AU6 & 2nd I. F. Amp. & 847 & 0 & . 05 & 0 & \[
680^{1}
\] & \(680{ }^{1}\) & 82 & & & & & \\
\hline V. 9 & 6AU6 & 3rd I. F. Amp. & . 4 & 0 & . 05 & 0 & \(680{ }^{1}\) & \(680{ }^{1}\) & 120 & & & & & \\
\hline V-10 & 6CB6 & Video Amp. & 1.2M & \[
\begin{aligned}
& \text { Contrast } \\
& 0 \text { to } 1.5 \mathrm{~K}
\end{aligned}
\] & . 05 & 0 & \[
5.6 \mathrm{~K}^{2}
\] & 0 & \[
\left.\begin{array}{|c|}
\hline-2 \text { ontrast } \\
0 \text { to } 1.5 K
\end{array} \right\rvert\,
\] & & & & & \\
\hline V. 11 & 12AT7 & Sync. Separator & \[
8_{820 \mathrm{~K}}{ }^{2}
\] & 3.9M & 0 & 0 & 0 & \[
22 \mathrm{~K}^{1}
\] & 22K & 0 & . 05 & & & \\
\hline V.12 & 6AV5 GT & Vert. Output & 2.2M & 0 & \[
\begin{array}{|c|}
\hline \text { V. Line } \\
680 \text { to } \\
3180
\end{array}
\] & Int & \[
800^{3}
\] & Inf & . 05 & T. P. & & & & \\
\hline V.13 & \(6{ }^{6} 5\) & Vert. Osc. & 0 & . 05 & \[
\begin{array}{|c|}
\hline \text { V. Size } \\
\text { 1.8M to } \\
\hline 3.8 \mathrm{M} \\
\hline
\end{array}
\] & T. P. & \[
\begin{array}{|c|}
\hline \text { V. Hold } \\
2.7 \mathrm{M} \text { to } \\
\hline 5.2 \mathrm{M} \\
\hline
\end{array}
\] & T. P. & 0 & 0 & & & & \\
\hline V. 14 & 6SN7 GT & Hor. AFC \& Hor. Osc. & 1.48M & \[
\begin{array}{|c|}
\hline \ddot{100 \mathrm{~K}} 10 \\
150 \mathrm{~K} \\
\mathrm{H} . \mathrm{Hold} \\
\hline
\end{array}
\] & 412 K & 480K & \[
74^{3}
\] & 0 & . 05 & 0 & & & & \\
\hline V. 15 & 6CD6 G & Hor. Output & т. P. & . 05 & 100 & T. P. & 470K & T. P. & 0 & 14.2K & & & & \\
\hline V.16 & 183 GT & H. V. Rect. & - & - & - & - & - & - & - & - & & & & \\
\hline V. 17 & 6V3 & Damper & T. P. & Inf & Inf & . 05 & 0 & Inf & 2 & Inf & Inf & & & \\
\hline V.18 & 27NP4 & Kinescope & 0 & 22K & - & - & - & - & - & - & - & \(0{ }^{3}\) & \[
\begin{array}{|c|}
\hline \text { Brill. } \\
100 \mathrm{~K} \text { to } \\
\hline 150 \mathrm{~K} \\
\hline
\end{array}
\] & . 05 \\
\hline \multicolumn{15}{|l|}{} \\
\hline
\end{tabular}

\section*{VOLTAGE CHART}

Set all controls to a counter clockwise position, short antenna connections. speaker plugged in. Line voltage set at 117 V . A.C. All measurement
Model 97A.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SYM. & TYPE & FUNCTION & \[
\begin{aligned}
& \hline \text { PIN } \\
& \# 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 2
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 3
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 4
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 5
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 4
\end{aligned}
\] & PIN
\(\# 7\) & \[
\begin{aligned}
& \text { PIN } \\
& \# 8
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{PIN} \\
& \# 9
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 10
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 11
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 11
\end{aligned}
\] \\
\hline V. 3 & 6AU6 & Sound I. F. & 0 & 0 & 0 & 6.3 AC & 260 & 145 & . 82 & & & & & \\
\hline V. 4 & 678 & F.M. Det. \& 1st Audio & -. 4 & - . 8 & -. 4 & 0 & 6.3 AC & 0 & 0 & -. 7 & 70 & & & \\
\hline V. 5 & 6W6 & Audio Output & TP & 0 & 220 & 240 & 125 & TP & 6.3 AC & 145 & & & & \\
\hline V. 6 & 5 U 4 & L.V. Rect. & & & & & & & & 355 & Take at r & ow Lea & Power & ansform \\
\hline V. 7 & 6 CB6 & 1st I. F. Amp. & -. 52 & . 6 & 6.3 AC & 0 & 115 & 115 & 0 & & & & & \\
\hline V. 8 & 6AU6 & 2nd I.F. Amp. & -. 52 & 0 & 6.3 AC & 0 & 120 & 120 & . 84 & & & & & \\
\hline V. 9 & 6AU6 & 3rd I. F. Amp. & 0 & 0 & 6.3 AC & 0 & 140 & 120 & 1.4 & & & & & \\
\hline V-10 & 6 Cb6 & Vidio Amp. & 0 & 3.2 & 6.3 AC & 0 & 230 & 145 & 3.2 & & & & & \\
\hline V.11 & 12AT7 & Sync. Sep. & 50 & -2 & 0 & 0 & 0 & 35 & -. 25 & 0 & 6.3 AC & & & \\
\hline V. 12 & 6AV5 & Vert. Output & 0 & 6.3 AC & 32 & 0 & 340 & 0 & 0 & 145 & & & & \\
\hline V.13 & 6 J & Vert, Oscillator & 0 & 6.3 AC & 80 & 0 & -23 & 0 & 0 & 0 & & & & \\
\hline V.14 & 6SN7 & Hor. A. F.C. \& Osc. & -24 & 120 & -11 & -75 & 210 & 0 & 6.3 AC & 0 & & & & \\
\hline V.15 & 6CD6 & Hor. Output & TP & 6.3 AC & 12.5 & TP & -16 & TP & 0 & 135 & Do no & meas & cap & Itage. \\
\hline V.16 & 1B3 & H. V. Rect. & & & & & & Do not & masure. & & & & & \\
\hline V. 17 & 6 V 3 & Damper & TP & 0 & 0 & 6.3 AC & 0 & 0 & 340 & & not me & sure & volt & \\
\hline V.18 & 27NP4 & Kinescope & 0. & 0 & & & & & & & & 340 & 125 & 6.3 AC \\
\hline
\end{tabular}

\section*{ALIGNMENT INSTRUCTIONS}

When observing the television receiver band pass characteristics on the scope, it is important to avoid distortion of the response curve which would occur when using an abnormal signal input from the sweep and marker generators.

VIDEO I. F. RESPONSE CURVE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STEP } \\
& \text { No. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SWEEP } \\
& \text { GENERATOR } \\
& \text { COUPLING }
\end{aligned}
\] & \begin{tabular}{c} 
SWEEP \\
\(\begin{array}{c}\text { GENERATOR } \\
\text { FREQUENCY }\end{array}\) \\
\hline
\end{tabular} & MARKER GENERATOR FREQUENCY & CHANNEL & SCOPE
CONNECTION & ADJUSTMENT & REMARKS \\
\hline 1 & \multirow[t]{4}{*}{High side thru ungrounded tube shield floating over V2(6J6) Osc-Mixer Tube Fig. 8.} & \multirow[t]{4}{*}{23 MC with a 10 MC Sweep} & 20.6 MC & \multirow{4}{*}{\(2 \cdot 13\)} & \multirow[b]{4}{*}{Alignment test point "E" Fig. 8} & A (L-6) & \multirow[t]{4}{*}{Short antenna connections. Check response curve with Fig. 5 and touch up where necessary.} \\
\hline 2 & & & 22.6 MC & & & B (Z-4) & \\
\hline 3 & & & 24.3 MC & & & C (Z-5) & \\
\hline 4 & & & 25.1 MC & & & D (Z.6) Fig. 8 & \\
\hline
\end{tabular}

SOUND I.F. AND
DISCRIMINATOR ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { STEP } \\
\text { No. }
\end{gathered}
\] & \[
\begin{gathered}
\text { SWEEP } \\
\text { GENERATOR } \\
\text { COUPLING }
\end{gathered}
\] & \[
\begin{gathered}
\text { SWEEP } \\
\text { GENERATOR } \\
\text { FREQUENCY }
\end{gathered}
\] & MARKER GENERATOR FREQUENCY & CHANNEL & SCOPE
CONNECTIONS & ADJUSTMENTS & REMARKS \\
\hline 5 & High side thru . 1 blocking condenser to Xtal (Yl). Low side to chassis ground. & 4.5 MC (100KC Sweep & 4.5 MC & 2-13 & Pin 2 of (6T8) V4, and chassis ground. Fig. 10 & \[
\begin{aligned}
& \text { F \& H } \\
& \text { Fig. } 8
\end{aligned}
\] & Remove C22 (4 mfd. 50 V . 'lytic) ground lead. Adjust for max. symmetrical wave form. Fig. 9 Solder C-22 ground lead when completed. \\
\hline 6 & SAME & SAME & SAME & SAME & Test Point '"T"' Fig. 10 and Chassis ground. & \[
\stackrel{\text { G }}{\text { Fig. } 8}
\] & Adjust for 4.5 MC marker in center of symmetrical "S" curve Fig. 11. \\
\hline
\end{tabular}

RF ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STEP } \\
& \text { NO. }
\end{aligned}
\] & \(\underset{\substack{\text { SWEEP } \\ \text { GENERATOR } \\ \text { COUPLING }}}{ }\) & SWEEP GENERATOR FREQUENCY 10 MC SWEEP & MARKER GENERATOR FREQUENCY & CHANNEL & SCOPE CONNECTION & ADIUSTMENT & REMARKS \\
\hline \multirow{12}{*}{7} & \multirow{12}{*}{Across antenna terminals. An impedance matching network is needed with some generators. Refer to your equipment instruc. tions.} & 57.50 & \[
\begin{aligned}
& 55.25 \\
& 59.75
\end{aligned}
\] & 2 & \multirow{12}{*}{Tuner RF test point "N" Fig. 8} & \multirow{12}{*}{C2 Rear Ant. trimmer - To bring up
the side of response curve. C4 Center Plate trimmerShifts the center of the response curve in relation to the markers. Cl3 Front Grid Trimmer-Alternately with C4 for with flat top appearance and maximum amplitude.} & \multirow[b]{12}{*}{} \\
\hline & & 63.50 & \[
\begin{array}{r}
61.25 \\
65.75 \\
\hline
\end{array}
\] & 3 & & & \\
\hline & & 69.50 & 67.25
71.75 & 4 & & & \\
\hline & & 79.50 & \[
\begin{aligned}
& 77.25 \\
& 81.75 \\
& \hline
\end{aligned}
\] & 5 & & & \\
\hline & & 85.50 & \[
\begin{aligned}
& 83.25 \\
& 87.75 \\
& \hline
\end{aligned}
\] & 6 & & & \\
\hline & & 177.50 & \[
\begin{aligned}
& 175.25 \\
& 179.75
\end{aligned}
\] & 7 & & & \\
\hline & & 183.50 & \begin{tabular}{l}
181.25 \\
185.75
\end{tabular} & 8 & & & \\
\hline & & 189.50 & \[
\begin{aligned}
& \hline 187.25 \\
& 191.75 \\
& \hline
\end{aligned}
\] & 9 & & & \\
\hline & & 195.50 & \[
\begin{aligned}
& 193.25 \\
& 197.75 \\
& \hline
\end{aligned}
\] & 10 & & & \\
\hline & & 201.50 & \[
\begin{aligned}
& 199.25 \\
& 203.75
\end{aligned}
\] & 11 & & & \\
\hline & & 207.50 & \[
\begin{aligned}
& 205.25 \\
& 209.75
\end{aligned}
\] & 12 & & & \\
\hline & & 213.50 & \[
\begin{aligned}
& 211.25 \\
& 215.75
\end{aligned}
\] & 13 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{OSCILLATOR ALIGNMENT} \\
\hline \[
\begin{aligned}
& \text { STEP } \\
& \text { NO. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SWEEP } \\
& \text { GENERATOR } \\
& \text { COUPLING }
\end{aligned}
\] & SWEEP
GENERATOR
FREQUENCY & MARKER
GENERATOR
FREQUENCY & CHANNEL & SCOPE CONNECTION & ADJUSTMENT & REMARKS \\
\hline [ & \multicolumn{4}{|l|}{Use table and instructions in RF alignment chart.} & Alignment Test Point 'E" Fig. 8 & Individual Channel oscillator slugs
Channels \(2-13 \mathrm{in}\) clusive. & Adjust to place
sound and video
markers as per
Fig. 7 .
If the oscillator
seems to be off
frequency approxi-
mately. the same
amount for a major-
ity of the channels.
it is possible to
correct them in one
step, using adjust-
ment C4. Fig. 8.
This is an all chan.
nel adjustent and
should not be used
for any individual
channel. \\
\hline
\end{tabular}


Figure No. 6


Figure No. 7


Figure No. 9

figure No. 10

\section*{COMPLETE ALIGNMENT OF HORIZONTAL OSCILLATOR A. F.C}
1. Tune in a known good signal (test pattern where possible) and adjust the contrast control well below an over-contrast condition
2. Turn both Horz. Osc. slugs out of coil can No. Lit Cauthe oscillator adjustments are withince both No. LO-0039. If the Horz. Osc. slugs are turned too far in, a coupled condition is reached which is undesirable.
3. Place jumper wire between terminals \(C\) and \(D\) of T-6.

BENEATH CHASSIS


Figure No. 12
4. Preset Horz. Range Trimmer \(1 / 4\) turn out from ull "in" position. Turn Horz. Hold control fully clockwise. Through adjustment of top slug of T-6 cause the picture to sync. If necessary, re sync picture.
5. With picture in sync., check picture width and inearity, adjusting Horz. Drive until a norma picture is obtained
6. Remove jumper between terminals \(C\) and \(D\) of T-6. Picture should remain in sync. If it does not re-adjust horz. Range Trimmer or top slug of 1 - 6 following adjustment must have a flat vertical amplifier response up to 500 K . C. or better or a false waveform will result. A scope with poor vertical response will show a perfect wave form as shown in Figure 12A but when checked against a good wide band oscilloscope, the
waveform will be found to have considerable tilt. This is highly undesirable because the bottom core is not adjusted properly, although we are led to believe it is. We stress the importance
of a good Wide Band Scope such as the Sylvania Model 400 T.V. Oscilloscope or equivalent. Fig. 12 and 12 A .
7. Connect scope having a 5 mmf . condenser in series with the vertical lead to point C Fig. 12 . Adjust bottom slug of T-6 until the broad and ing picture in sync at all times. If picture goes

H. OSC. WAVEFORM

Figure No. 12A
out of sync. at any time repeat procedure under step 6. If the picture still goes out of sync., there is a defect in the Horz. control and A.F.C. circuit. Try a new 6SN7 tube before checking urther.
Tect circuit adjustment is very important to correct circuit operation. If the broad peak is lower poor, hence the osc. is not stabilized as well resulting in greater drift. If the broad peak is higher than the sharp peak, the oscillator becomes over-stabilized and double triggering can occur when the hold control approaches full clockwise position. REMOVE SCOPE.
8. Set the Horz. Hold control to extreme clockwise position and adjust top slug of T-6 for one vertical blanking bar. Rotate Horz. Hold control fully counter-clockwise. Picture should remain in sync.

\section*{RESISTANCE OF COMPONENT PARTS NOT SHOWN ON SCHEMATIC DIAGRAM}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYM. & DESCRIPIION & Part mo. & RESISTAMCE & OHMS & \% \\
\hline \(\mathrm{T}_{1}\) & Audio Output Transtormer & т0.0033 & \begin{tabular}{l}
Primary \(\qquad\) \\
Secondary \(\qquad\)
\end{tabular} & \[
305 .
\]
\[
\text { } 305 .
\] & \\
\hline T \({ }_{2}\) & Power Transformer & TP. 0021 & \begin{tabular}{l}
Primary \(\qquad\) \\
H.V. Secondary P.P. \\
Fill. (Green to Green) \\
Rect. Fill. \(\qquad\)
\end{tabular} & \[
\begin{array}{r}
\hline .8 \\
70 . \\
.2 \\
.2 \\
\hline
\end{array}
\] & \\
\hline \[
\begin{aligned}
& \hline \mathrm{T}_{3} A \\
& \mathrm{~T}_{3} B
\end{aligned}
\] & Vertical Deflection Yoke Horizontal Deflection Yoke & IC.0061 & \begin{tabular}{l}
Vertical Terminals (4\&6) \(\qquad\) \\
Horizontal Terminals (1\&3) \(\qquad\)
\end{tabular} & \[
\begin{aligned}
& 52.7 \\
& 18.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \pm 10 \% \\
& \pm 10 \%
\end{aligned}
\] \\
\hline \(\mathrm{T}_{4}\) & Vertical Output Transtormer & т0.0037 &  & \[
\begin{gathered}
740 . \\
7.2
\end{gathered}
\] & \[
\begin{aligned}
& \pm 20 \% \\
& \pm 10 \%
\end{aligned}
\] \\
\hline T5 & Vertical Blocking Transformer & TO.0035 &  & \[
\begin{array}{r}
195 . \\
1110 .
\end{array}
\] & \[
\begin{aligned}
& \pm 10 \% \\
& \pm 10 \%
\end{aligned}
\] \\
\hline T6 & Horizontal Oscillator Coil & 10.0039 & \(\qquad\) & \[
\begin{aligned}
& 80 . \\
& 45 .
\end{aligned}
\] & \\
\hline \(\mathrm{T}_{7}\) & Horizontal Output Translormer & T0.0036 &  & \[
\begin{array}{r}
.606 \\
7.142 \\
10.48
\end{array}
\] & \[
\begin{aligned}
& \pm 10 \% \\
& \pm 10 \% \\
& \pm 10 \%
\end{aligned}
\] \\
\hline \(\mathrm{I}_{8}\) & Filter Choke & LC-0059.1 & \(\cdots\) & 100. & \[
\begin{aligned}
& +15 \% \\
& -10 \%
\end{aligned}
\] \\
\hline \(L_{12}\) & Peoking Coil (105 uh) white & IC.0057.2 & .-..................................................... & 6.5 & \\
\hline \(\mathrm{L}_{13}\) & Peaking Coil ( 640 uh ) brown & IC.0057.3 & ....-............................................................ & 20. & \\
\hline \(L_{14}\) & Peaking Coil ( 240 uh ) grey & LC.0057-4 & ....-. & 11. & \\
\hline \(L_{15}\) & Peaking Coil (200 uh) yellow & LC.0057.5 & ……............................................................. & 10. & \\
\hline \(\mathrm{L}_{32}\) & 4.5 mc Trap Coil & LC-0062 & .......................................................... & 2. & \\
\hline \(\mathrm{Z}_{2}\) & Sound Take.off Coil 4.5 mc & T0.0038 &  & 5. & \\
\hline \(\mathrm{Z}_{3}\) & Ratio Detector & L1-0046B &  & \[
\begin{gathered}
3.8 \\
.25 \\
.9 \\
.9 \\
\hline
\end{gathered}
\] & \\
\hline \(\mathrm{z}_{4}\) & Second I.F. Coil & 11.0042 & \begin{tabular}{l}
Primary \\
Secondary \(\qquad\)
\end{tabular} & \[
\begin{aligned}
& .3 \\
& .3
\end{aligned}
\] & \\
\hline \(\mathrm{z}_{5}\) & Third I.F. Coil & L1.0041 & \begin{tabular}{l}
Primary \(\qquad\) \\
Secondary \(\qquad\)
\end{tabular} & \[
\begin{aligned}
& .3 \\
& .3
\end{aligned}
\] & \\
\hline \(z_{6}\) & Fourth I.F. Coil & L1.0040 & \begin{tabular}{l}
Primary \\
Secondary
\(\qquad\)
\(\qquad\)
\end{tabular} & \[
\begin{aligned}
& .3 \\
& .3 \\
& \hline
\end{aligned}
\] & \\
\hline \(\mathbf{Y}_{1}\) & \[
\begin{array}{ll}
\hline \text { Crystal } & \text { IN60 } \\
\text { CK706 }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { CX. } 0028 \\
& \text { CX }-0030
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Use only Simpson Model 260 Meter or equivalent. These tests are not effective with a V.T.V.M. \\
Forward Resistance (Use RXI Scale.) Reject if below 30 ohms and above 250 ohms. \\
Backward Resistance (Use RX10,000 Scale.) Reject if below 200 K ohms and above 2.5 megohms. \\
The front to back ratio should be from approximately 1,000 to 1.500 times in a good crymal. \\
The resistance values of the crystal detector are approximately correct, but not in every instance. \\
The best method of checking this component is by substitution during I.F. alignment. Establish an amplitude reference on the scope. disconnect one end of the crystal in question and place a new crystal in the circuit. By comparison in amplitude. determine the efficiency of the crystal in question.
\end{tabular}} \\
\hline
\end{tabular}

\section*{TUNER PR-0195-2}

\section*{CASCODE TUNER—STANDARD COIL}

\section*{TUNER MAINTENANCE}

The entire turret drum, with coils in place, may be romoved from the tuner chassis by removing the springs at each end of the unit. This gives
access to the components and tube sockets which access to the components and tube sockets whic
are not accessible from the side of the tuner.

CALTION: The high frequencies used in television make it necessary that extreme care be exercised in handling or servicing tuners. Location and lead dress of components and wiring are very critical. At high frequencies, wiring leads tend to act as small inductances and stray capacities; consequently, any change made may appreciably alter the electrical characteristics of critical circuits. Parts location and ground connections should be maintained as important that they be replaced with parts of identical characteristics and physical size.
If the oscillator slug is turned too far in a clockwise direction, control of the slug will be lost, as the slug will fall into the coil form. To recover the slug remove th \(\epsilon\) coil from the drum assembly, move the
slug retaining spring aside, tap the coil board in way to move the slug forward. Reset the slug retaining spring. For alignment information see Page 4. paragraph "Oscillator Alignment."

\section*{TUBE REPLACEMENT}

Replacement of tubes (especially the \(6 J 6\) oscillator tube) may cause excessive change in frequency of tube) may cause excessive change incuits. This is due to differences of interelectrode capacitances, unavoidable in the manufacture of tubes. When replacing a 656 tube, it is recommended that several tubes be tried in order to select a tube which will cause the least oscillator frequency shift. Doing so, will in most cases eliminate the need for realignment of the tuner circuits.

\section*{CLEANING AND LUBRICATION}

Dirty switch contacts prevent the passage of R.F. and detune the circuits. At certain high frequencies they even act as small rectifiers causing very unwanted conditions. It is VERY IMPORTANT that the switch contacts in the tuner be PERIODICALLY
CLEANED AND LUBRICATED. Properly doing so CLEANED AND LUBRICATED. Properly doing so reduces wear and gives lasting service to the second most costly part in the TV chassis.

Remove the bottom cover plate. Remove the drum retaining springs at either end of the tuner. The complete drum may now be removed from the chassis.
Clean the coil board contacts and stator contacts with a lint free cloth. Lubricate with a pure sulphur-
free, mineral oil. Many wholesale TV stores mer-
chandise special contact lubricants that are sulphur free and easily stored in a repairman's kit.
CAUTION: Switch contacts are brass, silver plated, and every care is exercised to preserve the silver plating. No abrasive should be used in cleaning become imbedded in the silver and wear it away

\section*{MECHANICAL TROUBLES}

If mechanical parts are broken, it must be determined whether to repair or replace the unit. Re moval of the drum assembly was described in the paragraph "Tuner Maintenance."
Erratic operation on any one channel requires checking the coil boards of that channel. To remove a coil board, insert a screwdriver between the coil retainer spring and the turret end plate. Press the blade away from the turret and lift the end of the coil upward and remove. Parts mounted on the and tested. Should excessive rosin from the soldering connections be found on the coil board, clean away with care. Rosin causes high resistance leakage. A coil board may be returned to the drum assembly in the reverse manner in which it was removed.
There are eleven contact springs located in the Side of the tuner wall. A side view of a spring looks like a lobe or tear drop. With continued us the contact springs may become fatigued. If this Clean and lubricate with an approved contact fluid Clean and lubricate with an approved
Reassemble and check all channels.

Noisy channel switching may be due to the detent spring roller not rotating on the detent plate. Lubricate both surfaces with high vacuum grease
For microphonism produced by tapping the tubes or tuner chassis, or in case of intermittent video persists, look for loose connections; clean contact surfaces and lubricate as explained above.

\section*{CIRCUIT OPERATION}

The R.F. Circuit employs \(\alpha\) dual triode which is connected in cascode. The cascode amplifier circuit is a grounded-cathode stage followed by a new nine-pin miniature dual triode developed for use in VHF cascode circuits (6BQ7 or 6BZ7). Each triode section has a separate cathode, and the two units are electrically independent. To minimize interstage coupling, an internal shield is located between the two triode sections. This shield is condirectly to the ground. This cascode circuit design by the shielded triodes in the 6BQ7 tube is much less than in the pentode tube. Therefore the signal-to-noise ratio is also much improved for the cas code circuit.

A higher B+ voltage is used with the R.F. amplifier circuit than is used in the mixer-oscillator circuits For this reason independent \(B+\) feed leads are ex tended from the tuner, Fig. 14.

\section*{TROUBLE SHOOTING}

Tube substitution is the first step. This is discussed in the paragraph on tube replacement on Page 5. The presence of oscillator grid voltage is very im portant. Lack of it indicates that the oscillator is not operating. Lack of voltage at test point \(N\), when the oscillator is working, indicates trouble in the mixer circuit.
The following RESISTANCE and VOLTAGE ance readings her improper voltage or resis ance readings are indications of problems involved.
NOTE: Follow instructions carefully.-Channell Selector to Channel 13. - All controls counter-clockwise. - Line cord disconnected. - Antenna disconnected.
- Speaker connected. A. All measurements taken from socket pins to points
indicated by suftix number. ©ee suffix Chart. For resistance readings of sockets
V1. V2. remove tubes and measure from socket pins to points indicated. The V1. V2. remove tubes and measure from socket pins to points indicated. The readings below have been taken with an R.C.A. VoltOhmist. (V.T.V.M
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SYM. & TYPE & FUNCTION & \[
\begin{aligned}
& \text { PIN } \\
& \# 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 2
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 3
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 4
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 5 \\
&
\end{aligned}
\] & \[
\begin{gathered}
\text { PIN } \\
\# 6
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { PIN } \\
& \sharp 7
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { PIN } \\
& \# \# 8
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { PIN } \\
& \# 9
\end{aligned}
\] \\
\hline V.1 & \[
\begin{gathered}
\hline \text { 6BQ7 } \\
616
\end{gathered}
\] & R. F. Âmp. Osc.Mixer & \begin{tabular}{l}
Inf. \\
\(10 K^{\prime}\)
\end{tabular} & \[
\begin{gathered}
900 \mathrm{~K} \\
80^{1}
\end{gathered}
\] & \[
\begin{gathered}
0 \\
.05
\end{gathered}
\] & \[
\begin{gathered}
.05 \\
0
\end{gathered}
\] & \[
\begin{gathered}
0 \\
230 \mathrm{~K}
\end{gathered}
\] & \[
\begin{gathered}
2500^{2} \\
10 \mathrm{~K}
\end{gathered}
\] & \[
\begin{gathered}
\hline 260 \mathrm{~K} \\
0
\end{gathered}
\] & Inf. & 0 \\
\hline
\end{tabular}

\section*{VOLTAGE CHART}

NOTE: Follow instructions carefully. Turn Channel Selector to Channel 13. Turn all service controls (front and rear) countermade to chassis ground. - Antenna terminals shorted. - Line voltage set at 117 V.A.C. Readings subject to a plus or minus \(20 \%\) variation. - The readings below taken with an R. C. A. Voliohmyst. (V. T. V. M.) Model 97A.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SYM. & TYPE & FUNCTION & \[
\begin{aligned}
& \text { PIN } \\
& \# 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 2
\end{aligned}
\] & \[
\begin{gathered}
\hline \begin{array}{c}
\text { PIN } \\
\# 3
\end{array}
\end{gathered}
\] & \[
\begin{aligned}
& \text { PIN } \\
& { }_{\# 4}
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { PIN } \\
\sharp 45
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
\# 6
\end{gathered}
\] &  & \[
\begin{aligned}
& \text { PIN } \\
& \# \#
\end{aligned}
\] & \[
\begin{aligned}
& \text { PIN } \\
& \# 9
\end{aligned}
\] \\
\hline V. 1
V. 2 & 6BQ7
616 & R. F. Amp.
Osc. Mixer & 125
90 & \(\underset{140}{-.3}\) & \(\stackrel{0}{6.3 A C}\) & 6.3AC
0 & 0
-4.5 & \[
\begin{gathered}
235 \\
-5.5
\end{gathered}
\] & 125
0 & 125 & 0 \\
\hline
\end{tabular}


—————n

\section*{PARTS LIST-CASCODE TUNER PR-0195-2}

The following list of parts can be identified from the schematic diagram, Fig. No. 14.

\section*{TUNERS}


\section*{MISCELLANEOUS}
\begin{tabular}{|ccc} 
& \multicolumn{2}{c}{ MISCELLANEOUS } \\
Sym. & \multicolumn{1}{c}{ Description } & Mart No. \\
Phield—Bottom & \(31 \mathrm{~B}-044\)
\end{tabular}\(]\)

\(\mathrm{Cl} \quad\) Cap. Disc. 3.0 mmf
 \(\pm .25 \mathrm{mmf}\).

CD8C 030C CC-0107
 C2 Capacitor-Trimmer 31A-079 CT-0013
 C3, 15 Capacitor Ceramic
 \(1,000 \mathrm{mmf}\). MIN. G.P. CD8 \(\times 102 \mathrm{Z}\) CC-0100
 C4, 13 Capacitor-Trimmer 31A-056 CT-0011
 C5 Ceramic Capacitor
 13D-196 CC-0099
 (Stand Off)

CC-0099
C6 Cap. Disc. \(1.5 \mathrm{mmf} \quad\) CD8C 1R5M CC-0106 C7, 8 Cap. Disc. 47 mmf . \(\pm 10 \%\) N-1400

CD8Q 470K CC-0103
C9 Capacitor Disc. 10 mmf . \(\pm 10 \%\) N.P.O. CD10C 100K CC-0102 ClO Cap. Disc. 5 mmf . \(\pm 5 \%\) N.P.O.

CD8U 050C CC-0105
Cll Fine Tuning Assem. (PR-0195-2)

31A066-98 AS-0437
C12 Cap. Disc. 6.8 mmf \(\pm .25 \mathrm{mmf}\). N.P.O.
C14 Capacitor Ceramic 120 mmf .
C16, 17, Ceramic Capacitor 18, 19 (Feed Thru) Slug Tuning Spring, Coil Retainer

\section*{U. H. F.}

\section*{(ULTRA HIGH FREQUENCY}

No modification is necessary to the MUNTZ TV
17B8 chassis to receive U.H.F. signals. The insertion Our \(\begin{aligned} & 17 B 8 \text { chassis to receive U.H.F. signals. The insertion } \\ & \text { Part No. of the U.H.F. channel strip in an unused V.H.F. }\end{aligned}\) MP-0461 The U.H.F. strip is in two sections (as is the V.H.F. strip) which contains all the required components to complete the conversion to U.H.F. reception; no other tubes, parts or external connections are required. SP-0053 The short strip (Antenna) includes the antenna in-SP-0054 put circuit and a lst I.F. Grid coil. The long strip SM-0197 verter grid and the Oscillator plus a crystal harmonic generator and its bias network.

In operation, the U.H.F. signal is fed into th antenna input coil and is coupled to the mixer cir cuit where it is mixed with an oscillator frequency
(Harmonic of the fundamental oscillator frequency) to produce an IF frequency which falls in the spectrum between the two present V.H.F. television bands. This I.F. frequency is then coupled into the grid of the R.F. amplifier which in this case acts as a lst I.F. amplifier. The amplified I.F. signal is then coupled into the mixer circuit where the fundamenta oscillator frequency mixes with it to produce the regular I.F. frequency of the receiver. The functions of the receiver from this point on then are the same as for V.H.F. reception.



Figure No. 16
Figure No. 16A

\section*{SCHEMATIC AND PICTORIAL DIAGRAM OF UHF CHANNEL STRIPS}

ANTENNA STRIP (5 CONTACT)
A-Antenna Coil
B-RF Preselector
D-Crystal (Mixer)
E-UHF Coupling Loop
F-First IF Coupling Coi
G-Harmonic Selector
H-Added ground contact to turret detent disc H—Added ground

Figure No. 15

\section*{OSCILLATOR-CONVERTER STRIP (6 CONTACT)}

J-Connecting pin between converter and Antenna Strips
K-Crystal (Harmonic Generator)
L-RF Coupling
M-Converter Grid Coil
N-Oscillator Coil
O-Oscillator Slug

Before installing U.H.F. channel coils, be sure that the letters stamped on the U.H.F. coils are the same as the letter stamped on the V.H.F. coils in the tuner.
Each coil has the number of the channel it will receive and \(\alpha\) letter following (ie..10Q) Channel 10 Q type coil.
Therefore this tuner will use \(Q\) type coils. If the letter is an \(F\), it will use \(F\) type U.H.F. or V.H.F. coils. (See Figure 13A.)
Be sure the U.H.F. channel coil is stamped with the correct channel number for the U.H.F. station in operation in your area.
Handle U.H.F. coils very carefully so the spacing between wires and components is not disturbed. Do not adjust screws adjacent to contacts on the 5 contact antenna coil section. They are preset at the factory.
1. Remove the unused V.H.F. channel strips.
2. Insert long ( Osc ) strip in front section of tuner drum.
3. Insert short (Antenna) strip in rear section of tuner drum. Be sure that pin in long strip makes secure contact.
4. Turn on your MUNTZ TV set and rotate channel selector so that U.H.F. channel strip is in operating position.
5. Rotate fine tuning control. If the best picture is not received at the center of fine tuning range, adjust oscillator slug. (See oscillator adj. section).
6. Do not attempt to adjust individual coils in antenna section, they are factory adjusted to give
correct performance.

\section*{VHF-UHF FREQUENCY ALLOCATIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Chan. } \\
& \text { No. }
\end{aligned}
\] & Frequency Band (Mc) & \[
\begin{gathered}
\text { Video } \\
\text { Carrier }
\end{gathered}
\] & Audio & \[
\begin{aligned}
& \text { Chan. } \\
& \text { No. }
\end{aligned}
\] & Frequency Band (Mc) & \[
\begin{gathered}
\text { Video } \\
\text { Carrier }
\end{gathered}
\] & Audio Carrier \\
\hline 2 & 54.60 & 55.25 & 59.75 & 43 & 644.650 & 645.25 & 649.75 \\
\hline 3 & 60.66 & 61.25 & 65.75 & 44 & 650.656 & 651.25 & 655.75 \\
\hline 4 & 66.72 & 67.25 & 71.75 & 45 & 656.662 & 657.25 & 661.75 \\
\hline 5 & 76-82 & 77.25 & 81.75 & 46 & 662.668 & 663.25 & 667.75 \\
\hline 6 & 82-88 & 83.25 & 87.75 & 47 & 668.674 & 669.25 & 673.75 \\
\hline 7 & 174-180 & 175.25 & 179.75 & 48 & 674.680 & 675.25 & 679.75 \\
\hline 8 & 180.186 & 181.25 & 185.75 & 49 & 680-686 & 681.25 & 685.75 \\
\hline 9 & 186-192 & 187.25 & 191.75 & 50 & 686-692 & 687.25 & 691.75 \\
\hline 10 & 192-198 & 193.25 & 197.75 & 51 & 692.698 & 693.25 & 697.75 \\
\hline 11 & 198-204 & 199.25 & 203.75 & 52 & 698.704 & 699.25 & 703.75 \\
\hline 12 & 204-210 & 205.25 & 209.75 & 53 & 704-710 & 705.25 & 709.75 \\
\hline 13 & \(210-216\) & 211.25 & 215.75 & 54 & \(710-716\) & 711.25 & 715.75 \\
\hline 14 & 470.476 & 471.25 & 475.75 & 55 & 716.722 & 717.25 & 721.75 \\
\hline 15 & 476-482 & 477.25 & 481.75 & 56 & 722-728 & 723.25 & 727.75 \\
\hline 16 & 482-488 & 483.25 & 487.75 & 57 & 728.734 & 729.25 & 733.25 \\
\hline 17 & 488.494 & 489.25 & 493.75 & 58 & 734.740 & 735.25 & 739.75 \\
\hline 18 & 494-500 & 495.25 & 499.75 & 59 & 740-746 & 741.25 & 745.75 \\
\hline 19 & 500-506 & 501.25 & 505.75 & 60 & 746-752 & 747.25 & 751.75 \\
\hline 20 & 506-512 & 507.25 & 511.75 & 61 & 752-758 & 753.25 & 757.75 \\
\hline 21 & 512.518 & 513.25 & 517.75 & 62 & 758.764 & 759.25 & 763.75 \\
\hline 22 & 518.524 & 519.25 & 523.75 & 63 & 764-770 & 765.25 & 769.75 \\
\hline 23 & 524.530 & 525.25 & 529.75 & 64 & 770.776 & 771.25 & 775.75 \\
\hline 24 & 530-536 & 531.25 & 535.75 & 65 & 776-782 & 777.25 & 781.75 \\
\hline 25 & 536-542 & 537.25 & 541.75 & 66 & 782.788 & 783.25 & 787.75 \\
\hline 26 & 542-548 & 543.25 & 547.75 & 67 & 788.794 & 789.25 & 793.75 \\
\hline 27 & 548-554 & 549.25 & 553.75 & 68 & 794-800 & 795.25 & 799.75 \\
\hline 28 & 554-560 & 555.25 & 559.75 & 69 & 800-806 & 801.25 & 805.75 \\
\hline 29 & 560-566 & 561.25 & 565.75 & 70 & 806.812 & 807.25 & 811.75 \\
\hline 30 & 566-572 & 567.25 & 571.75 & 71 & 812.818 & 813.25 & 817.75 \\
\hline 31 & 572.578 & 573.25 & 577.75 & 72 & 818.824 & 819.25 & 823.75 \\
\hline 32 & 578-584 & 579.25 & 583.75 & 73 & 824-830 & 825.25 & 829.75 \\
\hline 33 & 584-590 & 585.25 & 589.75 & 74 & \(830-836\) & 831.25 & 835.75 \\
\hline 34 & 590-596 & 591.25 & 595.75 & 75 & 836.842 & 837.25 & 841.75 \\
\hline 35 & 596.602 & 597.25 & 601.75 & 76 & 842 -848 & 843.25 & 847.75 \\
\hline 36 & 602-608 & 603.25 & 607.75 & 77 & 848-854 & 849.25 & 853.75 \\
\hline 37 & 608.614 & 609.25 & 613.75 & 78 & 854.860 & 855.25 & 859.75 \\
\hline 38 & 614.620 & 615.25 & 619.75 & 79 & 860.866 & 861.25 & 865.75 \\
\hline 39 & 620.626 & 621.25 & 625.75 & 80 & \(866-872\) & 867.25 & 871.75 \\
\hline 40 & 626-632 & 627.25 & 631.75 & 81 & 872.878 & 873.25 & 877.75 \\
\hline 41 & 632.638 & 633.25 & 637.75 & 82 & 878-884 & 879.25 & 883.75 \\
\hline 42 & 638.644 & 639.25 & 643.75 & 83 & 884.890 & 885.25 & 889.75 \\
\hline
\end{tabular}
© John F. Rider


RUN \(\begin{gathered}\text { RUMBERS } \\ \text { DESCRIPTION OF CHANGE }\end{gathered}\)
RUN The \(1 / 2\) Amp. 250 Volt Fuse (FU-0002-2) NUMBER has been deleted from the 17B8 chassis 3 and a 5 Amp. "Slo-Blo" Fuse (FU-0005-2) has been inserted in the primary circuit of the power transformer

RUN 1. To reduce the effect of the contrast control on the sound I.F. circuit; condenser C71 has been added from the cathode of the Video Amplifier to ground. C71 Capacitor, Tub. Cer. Durez 270 mmf. \(20 \% 500\) volt
2. In addition to the above, \(\alpha\) wiring change has been made. The wiring of electrolytic condensers C26A and C29A has been transposed. Doing so has reduced the coupling effect between sections of the condensers.

RUN To reduce the possibility of corona and RUMBER arcing, of the 1B3GT high voltage rectifier 5 tube socket assembly, the following parts have been changed.
\begin{tabular}{|c|c|c|}
\hline Old Part No. & Description & New Part No. \\
\hline SO.0047 & H.V. Socket and Corona Ring Assembly & JC.0030 \\
\hline None used IN-0102 & Cover, H. V. Tube Socket Insulator, H.V. Socket Mounting & IN-0098
SO.0042 \\
\hline WF.0030 & Washer, Corona Shield Insulator & WF.0030.1 \\
\hline
\end{tabular}

Note: The above new parts comprising the 1B3GT Tube Socket assembly are not interchangeable with those used in the 17B8 chassis

To improve the stability of the Horizontal A.F.C. circuit, Condenser, C-63 has been changed to a moulded paper condenser
\begin{tabular}{c} 
RuN \\
NuMbers \\
\hline
\end{tabular}

\section*{DESCRIPTION OF CHANGE}

C-63 Capacitor Tubular Paper Moulded -. 01 Mid.- \(20 \%\) 600V-CPM-0101
2. For better isolation of the Tuner from the I.F. Circuits, a 4700 ohm Resistor ( \(\mathrm{R}-10\) ) has been added in series with the (white) AGC lead to the tuner. This resistor is located on the I.F. Panel Assembly.
R-10 Resistor-4700 ohms-10\% 1/2W RC-4701-18.

RUN To comply with an underwriter Labro NUMBER tory request, the interlock wiring assembly 1 has been changed. Previous to RUN 7 a dual capacitor ( \(2 \times .01 \mathrm{mf}\) G.M.V. 500 V .) Part No. CC-0096 was used across the A.C input of the inter lock socket.

\section*{interesting notes}

ALL The value of R54 will vary in early proCHASSIS duction models in accordance with the scan of the yoke used. A \(1 / 2\) watt resistor varying from 1.2 meg. to 2.2 meg., depend ent upon the vertical size, may be used The deflection yoke has now been stand ardized, and for that reason, a 1.8 meg. \(\pm\) \(10 \% 1 / 2\) watt carbon resistor is now used a R54, see schematic diagram.

ALL To minimize neck shadow at the left side CHASSIS of the picture and to correct centering of 1788 the picture, the \(27 \mathrm{ohm}, 2\) watt resistor (R81) connected to terminals \#5 and \#6 of the horizontal output transformer (TO-0036) should be lowered in value. A 120 ohm \(1 / 2\) watt resistor connected in parallel with the 27 ohm resistor is recommended as this reduces the value of the resistance to approximately 22 ohms. However, the value of the resistor may be varied in accordance with the centering and shadow problem.

CAUTION: Before varying the resistance value of the 27 ohm resistor check to see that all adjust nents are properly completed along the neck of the CRT.

\section*{OSCILLOGRAMS}

To obtain a close approximation of the wave forms and peak to peak voltages as shown, the eceiver should be connected to 117 volt AC line dhe contrast control set for 40 volts peak to peak he cathode of the picture tube. Any scope may e calibrated to read peak to peak voltages by to the vertical input. The peak to peak amplitude the vertical input. The peak to peak amplitude the sine wave seen on the scope is equal to 2.83 be used for this purpose. 63 times \(282=178\). This voltage may be used as a reference voltage to calibrate the scope.

3. PIN \#2 SYNC SEPARATOR

5. \#3 VERTICAL INTEGRATOR

The wave forms and voltages are subject to varia tions due to the response of the scope used and parts tolerances.

Caution: No reading should be attempted with the scope at pin \#5 of the 6AV5 Vertical Output tube due to the high pulse voltage present. Wave form \#10 is indicative of the vertical output.

All wave forms were taken with a Model No. 400 Sylvania Oscilloscope and peak to peak voltages calibrated as detailed above.

2. PIN \#5 VIDEO AMP

4. PIN \#I SYNC SEPARATOR

6. \#2 VERTICAL INTEGRATOR


6-Z ヨ9Vd ^1 ZINNW

OSCILLOGRAMS (Continued)

8. PIN \#3 VERT. OSC.

10. YELLOW LEAD VERT. OUTPUT TRANS.

12. PIN \#5 H. AFC \& OSC.

13. PIN \#4 H. AFC \& OSC.

14. C OF AFC CAN

15. D OF AFC CAN

16. RANGE TRIMMER

TUBE LAYOUT AND SIGNAL PATH CHART
The signal path chart provided is to assist the Serviceman in isolating a particular trouble in the easiest and fastest way possible. As an example; the receiver under test has picture and no audio. A quick look at the audio signal will tell you immediately that the trouble lies somewhere between V-4 and the speaker.


Figure No. 20

\section*{OPERATION AND SERVICE DATA}

\section*{RADIO CHASSIS_8FM34}

\section*{ANTENNA}
(A) Broadcast Band: A highly selective loop an tenna is provided for broadcast reception. The loop antenna will give excellent results in most locations. In unfavorable locations where distant reception is required a well constructed outdoor antenna about fifty feet long may be used. The antenna should be of the chassis marked "A."
(B) F-M Band: A built-in antenna is provided at the rear of the cabinet, and connected to the an tenna strip F-M terminal posts for F-M reception.
Although the receiver will operate without a ground connection in most locations, a good ground ground connection in most locations, a good ground will often reduce noise pickup on the broadcast
band in noisy locations. A good ground connection can be made by connecting to a pipe driven into the ground. The ground wire from the clamp should be connected to the antenna strip terminal post marked " \(G\) " at the rear of the chassis.

\section*{CONTROLS}
(A) On-Off switch and Volume Control: This con(A) On-Off switch and Volume Control: This con off switch and volume control.
(B) Tone Control: This control knob marked TONE" when turned to the right (clockwise) pro duces a deep bass effect, while rotation to the left (counter-clockwise) produces a more brilliant treble tone. Various shading between the extremes may be
(C) Band Selector Switch: This three position con trol knob is provided with a dot marker for designating the proper position in selecting the frequency band desired, and also connects the "Phono" pickup into the circuit for use of the record changer. The extreme left hand position marked "F-M" designates the "F-M" band. The second position marked "A-M" selects the "Broadcast" band. The third position
marked "Phono" selects the "Phonograph" position.
(D) Tuning Control. This control marked "Tuning selects the desired F-M or Broadcast station, the fre quency of which is indicated by the dial pointer.

\section*{OPERATION}

F-M Band-Set the Selector Switch to "F-M" Position. Turn the Volume control knob to the right; a click will be heard indicating that power is being for the tubes our rarm up. Advance the volume by turning the Volume control knob to the right. Turn the Tuning control knob slowly so that the dial
pointer indicates the frequency in megacycles of the desired F-M station on the upper scale of the dial marked FREQUENCY MODULATION. The F-M band is ultra-high frequency and necessitates slow prein tuning sound quality and minimum hiss. When stations are properly tuned, reception on this band should be clear and free from hiss or disturbing noise. If this is not the case check your antenna installation or turning the Volume control knob to the left or right to suit the listener. NEVER REDUCE THE VOLUME BY DETUNING-ALWAYS USE THE VOLUME CONTROL KNOB. The tone control knob may be used to adjust the quality of reproduction to suit individual preferences, or to compensate for defects in room acoustics.
BROADCAST BAND - TURN• THE BAND SELECTOR SWITCH TO THE "BC" POSIIION. Turn the Tuning control knob slowly so that the dial pointer indicates the frequency of the desired station on the lower portion of the dial scale marked STANDARD BROADCAST. Then ture carefully for best and clearest reception. Adjust the Volume and Tone control knobs to suit the listener. High pitched noises such reduced when the tone control knob is turned to the right or bass position
PHONOGRAPH-SET THE SELECTOR SWITCH IO THE PHONO POSITION. Open the cutomatic ions on Page 11. Adjust the Volume and Tone con rol knobs to suit the listene

\section*{LINE VOLTAGE}

This receiver is designed for operation on 105-125 Volts; 60 Cycles, Alternating Current (AC) only. POWER CONSUMPTION INCLUDING RECORD CHANGER: 115 Watts.

\section*{TUBES}

The Tubes used, and their functions, are as follows: 12AT7 R-F Amplifier and Mixer (F-M) 6BE6 A-M Converter and F-M Oscillator
6BA6 lst I-F Amplifier (A-M \& F-M)
6BA6 2nd I-F Amplifier (F-M)
6AL5 F-M Detector
6AV6 A-M Detector, A.V.C. and Audio Amp.
6V6GT Beam Power Amplifier
5Y3GT Rectifier
For the placement of these tubes, refer to the diagram.

tube and adjustment location diagram
ALIGNMENT CHART
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\({ }_{\text {str }}\)} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\operatorname{maxiviva}_{\text {nck }}
\]} & \multicolumn{3}{|r|}{sicmal amberos} & \multicolumn{2}{|r|}{vatris} & \multirow[t]{2}{*}{anver} & \multirow[t]{2}{*}{} \\
\hline & & & TP\% & nma. & commetions & trit & commertioxs & & \\
\hline 1 & B.c. .1.r. &  & А.... & \[
\begin{gathered}
455 \text { EC } \\
30 \% \text { Mod. }
\end{gathered}
\] & Rear B.C. Section of Variable Condenaer & Output & Aeroue Voice Conl &  & \({ }_{\substack{\text { max }}}^{\substack{\text { matput }}}\) \\
\hline \[
\begin{gathered}
\text { Preferred } \\
\text { Method }
\end{gathered}
\] & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 甲.n. } \\
& \text { i.p. }
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \({ }^{\text {r.n. }}\) & \[
\begin{aligned}
& 10.7 \text { mc. } \\
& 30,
\end{aligned}
\] & \multirow{4}{*}{\begin{tabular}{l}
Eich 8ide Through \\
.005 ver. (Approx.) Cap \\
To Pin 7 of 12at7
\end{tabular}} & output & Acrome voice conl & \multirow[t]{2}{*}{\begin{tabular}{l}
Top \(\pm\) Bot. \\
or \(\mathrm{Tl} \& 72 \mathrm{~F}\) \\
Bot. of T3
\end{tabular}} & Out put \\
\hline  & & & or & \[
\begin{aligned}
& 10.7 \mathrm{mc.} \\
& \hline \text { numpa. }
\end{aligned}
\] & & D.0.c.e.m. &  & & \({ }_{\text {Dosisiction }}^{\text {max. }}\) \\
\hline & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 2.n. Bead } \\
& \text { mer. reas. }
\end{aligned}
\]} & -.n. & 10.7 nc & & output & see votce con & top & max. \\
\hline notiod & & & or A.n. &  & & - P.i.c.j.m. & \begin{tabular}{l}
Yog. To Jusct ton of 8.28 \\

\(\qquad\)
\end{tabular} & \[
\begin{aligned}
& 08 \\
& \mathrm{ra}
\end{aligned}
\] &  \\
\hline Prores & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & 2.n. &  & \multirow{4}{*}{\begin{tabular}{l}
Each IIde of Gen. \\
Output Through \\
150 On Reaistor \\
To 2.M. Ant. Terminis
\end{tabular}} & output & acrome voice coil & & max. \\
\hline \[
1
\] & & & ..P. or a.n. & \[
\begin{gathered}
\text { 108. } 5 \text { mc. } \\
\text { Uneod. }
\end{gathered}
\] & &  & Megative To Pia 7 of
CALS; Ponitive to Ground &  & \({ }_{\text {afax }}^{\text {max. }}\) \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ع.м. } \\
& \text { в.r. }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \text { P.M. mand } \\
\text { nos w. }
\end{array}
\]} & \({ }^{\text {a }}\).. & 105 MC.
308 Mod. & & out & acroee voice coil & \multirow[t]{2}{*}{} &  \\
\hline \[
\begin{gathered}
1 \\
\text { noticic } \\
\hline
\end{gathered}
\] & & & or a.m & 105 UC. & & \[
\begin{array}{|l|l|}
\hline \text { D.c.c. } \\
\text { r.f. }
\end{array}
\] & Megative To Pia 7 Of
ahs; Positive to Ground & & Dotisection \\
\hline - & \({ }_{\text {asec }}^{\text {ac. }}\) & \[
\begin{aligned}
& \text { B.i.c. Pand } \\
& \text { maxi. } \\
& \text { rroc. }
\end{aligned}
\] & ..x. & 1850 BC. & Lear B,C. Eection of & output & acrooe Potce coil &  & ma. \\
\hline 7 & 8.c. & \[
\begin{aligned}
& \text { B.c. Band } \\
& 1500 \text { EC. }
\end{aligned}
\] & A.n. & \[
\begin{aligned}
& 1500 \text { rc. } \\
& 30 \text { ypa }
\end{aligned}
\] & Each Side of Gea. Output To
2 Or 3-Tura loop (1 Foot Dia.)
geveral Poet From Ant. & out put & Acrome Poice conl &  & Output \\
\hline
\end{tabular}

1-Turn Volume Control Fally Clockwise.
-Maintain Signal Input Low Enough To Have Less Than 2 Volts Across Melers.
4-Unless Otherwise Noted, Connet Low Side OI Signal Generator to Cha-ssis.
5-Use Proper Tool For
5-Use Proper Tool For Small I.F. Trans. Adjustmen Io - I.t.. . 150 Dia. Bakelite With Blade .075 Thick.
PARTS LIST
\begin{tabular}{|c|c|}
\hline Muntz TV & \\
\hline Part Number & Description Garod Numb \\
\hline (1) LI -9001 & AM - I.F. Transformer........ (C-1.445-3) \\
\hline (2) LO -9001 & BC - Oscillator Coil...........(C-1.436-2) \\
\hline (3) LI -9002 & FM - I.F. Transformer -....... (C-1.446-2) \\
\hline (4) LI -9003 & FM - I.F. Transformer........(C-1.446-3) \\
\hline (5) LI -9004 & \begin{tabular}{l}
Ratio Detector Transformer Can Height \(2^{1 / 22^{\prime \prime}}\). \\
(C-1.524)
\end{tabular} \\
\hline LI -9004 & \begin{tabular}{l}
Ratio Detector Transformer \\
Can Height \(115 / 16^{\prime \prime}\). \\
(C-1.542-1)
\end{tabular} \\
\hline -9001 & Filament Choke .................(B-1.501) \\
\hline (7) LC 9002 & RF Choke - RF Plate............(B-1.512) \\
\hline (8) LC -9003 & RF Choke - Osc. Cathode..(B-1.535-1) \\
\hline (9) LC -9004 & RF Choke - RF Cathode......(B-1.535-2) \\
\hline (10) LO -9002 & FM Oscillator Coil ...............(B-1.538) \\
\hline (11) LR -9001 & FM - RF Grid Coil................(B-1.539) \\
\hline (12) AN -9001 & BC Loop Antenna ..............(D-1.540) \\
\hline (18) LC -9005 & Modulator Plate Choke......(B-1.536-1) \\
\hline (114) LC -9006 & Parasitic Suppressor ..........(B-1.536-2) \\
\hline (16) CV -9001 & Variable Condenser ...........(C-2.222) \\
\hline (10) VC \(\cdot 9001\) & Volume Control \& Switch.(C-8.201-11) \\
\hline (A) VC -9002 & Tone Control .................(C-8.201-12) \\
\hline (11) TO -9001 & Output Transformer ......... (C-9.241-3) \\
\hline & \\
\hline
\end{tabular}

Muntz TV
\begin{tabular}{|c|c|c|}
\hline Part Number & Description & Garod Numb \\
\hline (10) LC -9007 & Filter Choke & (C-9.255) \\
\hline (20) SW-9001 & Band-Switch & (C-8.228) \\
\hline (21) SK -0014 & \(10^{\prime \prime}\) Speaker & \\
\hline (29) CC -9001 & Dual Shielded Capacitor & mic (B- \\
\hline (23) CE -9001 & Dry Electroly & acitor
. C-5.42 \\
\hline (24) CE-9002 & Electrolytic Cop & .....(C \\
\hline (2) CT -9001 & Ceramic Tri 3.5 mmf &  \\
\hline
\end{tabular}
(26) AN 9002 Cabinet Antenna for FM.........................................

MISCELLANEOUS PARTS

\section*{\(\begin{array}{ll}\text { DG -0025 } & \text { Dial Glass (AM - FM) } \\ \text { ES }-0029 & \text { Escutcheon - Radio }\end{array}\)}

ES -0029 Escutcheon - Radio .................... \(\begin{array}{lll}\text { KB } & -0034 & \text { Knob Tuning, Tone \& Volume } \\ \text { KB } & -0035 & \text { Knob, Band Switch }\end{array}\) \(\begin{array}{lll}\text { KB } & -0035 & \text { Knob, Band Switch } \\ \text { FB } & -0009 & \text { Background - Dial Scale. }\end{array}\) \(\begin{array}{ll}\text { FB } & -0009 \\ \text { PL } & \text { Background - }\end{array}\)
\(\begin{array}{ll}\text { PL } & -0005 \\ \text { PL } & \text { Plug - Phono................ }\end{array}\)
\(\begin{array}{ll}\text { PL -0025 } & \text { Plug - Min. Connector.......... } \\ \text { PL } & 0026 \\ \text { Plug - Speaker Connetor... }\end{array}\)


\section*{OPERATION AND SERVICE DATA}

\section*{AUTOMATIC RECORD CHANGER}

VM MODEL 950

\section*{PREPARING FOR OPERATION}

SHIPPING BOLTS: Before placing in operation, the player must be floated freely on the mounting the player must be floated freely on the mounting by means of two shipping bolts. To float the changer, remove the turntable by lifting it straight up the spindle. Turn the two shipping bolts in a clockwise
direction as far as they will go and replace the turn direction as far as they will go and replace the turn-
table. Before the turntable can be fully seated, the table. Before the turntable can be fuly seated, the
idler wheel must be gently pushed back out of the way to prevent damage to the rubber tire.
have the record changer absolutely level. Use to torpedo or similar type level on the record changer baseplate. Use adequate shims to level the record changer pan or radio combination cabinet to achieve perfect level.

\section*{OPERATION}

Loading--
1. Pull straight upon record support knob until record support clears spindle. Swing record support to the left until pin in shaft drops into locating groove.
2. Changer will automatically play ten - \(12^{\prime \prime}\) either standard or long-play records, twelve - \(10^{\prime \prime}\) either standard or long-play records, any assortment of Pull straight up on record support knob until \(7^{\prime \prime}\) long-play or fine-groove records.
NOTE: Standard, fine-groove, and long-play records cannot be intermixed. Motor speed control knob must be reset for each type of recording
3. Place records on spindle and lower to off-set shelf. Hold records level and replace record support over spindle.

To Play Standard Recordings-
1. Motor speed control knob must be in the " 78 " osition.
2. To start, turn changer control knob to "Rej." and release. Changer will operate automatically until the last record has been played. Pickup arm returns to rest and the changer control knob to the "Off" position. Changer automatically stops.
To Play Long-Play ( \(33^{1 / 3}\) RPM) Records-
1. Motor speed control knob must be in the " 33 " position.
To Play Fine-Groove ( 45 RPM ) Records-
1. Motor speed control knob must be in the " 45 " osition.
2. These records are manufactured with a \(11 / 2^{\prime \prime}\) inserted into each 45 RPM record to be played. This is necessary to reduce the spindle hole to conventional size.
REJECTING: To reject a record at any time while changer is operating, turn changer control knob to Rej." and release.
STOPPING: To turn off changer before automatic hut-off, turn changer control knob to 'Off." Lift pickup arm and place on rest.

UNLOADING: Lift the record support and swing to the left until pin on shaft drops into locating qroove Lift stack of records straight up and off spindle. home recordings, allow the changer to go through or complete shut-off cycle. Lift the record support arm and move it to the left clear of the turntab'e. Place record on spindle and lower to spindle shelf. Tilt record down toward the rear of pickup arm and lower record to turntable. Turn changer control knob to "On" position only. Raise pickup arm and place in lead-in groove of record.
REPEATING OF \(7^{\prime \prime}, 10^{\prime \prime}\), OR \(12^{\prime \prime}\) RECORDS: To repeat records, swing record support clear of spindle, place record on the turntable, and start "changer. record is repeated, wait for the changer to finish cycling and reposition the pickup arm manua'ly to the 12" position.
SUGGESTIONS: When loading and unloading the changer, use care to prevent bending of the spindle. Records should not be left on the spinale except dur ing operation of changer. Records will warp. When machine is not in use, it is suagested that the speed control knob be left in the " 78 " position. For best records flat in folders or in albums. Do not lay record on record.

\section*{CHANGE CYCLE}

This changer is provided with what is known as a velocity trip mechanism. The change cycle is started by the faster inward motion of the pickup arm when the needle enters the trip grooves at the end of the record. Only records having fast-finishing erate this velocity trip.

\section*{ADJUSTMENTS}

NEEDLE SET-DOWN: The set-down position of the needle is adjusted by means of the set-down adjust ment screw mounted on the hinge arm assembly. Turn this screw adjusting pickup arm for correct setdown on \(10^{\prime \prime}\) record. When the correct set-down is needle set-down will also be correct.
PICKUP ARM HEIGHT: The pickup arm height is adjusted by the lift screw located at the rear of the strengthener. To raise the height of the pickup arm, turn this screw counter-clockwise. To lower the pickup arm, turn clockwise. The pickup arm height should be adjusted so that with a \(1 / 3^{\prime \prime}\) stack of rec ords the pickup arm lifts \(1 / 4^{\prime \prime}\) straight up as the change cycle starts.
NEEDLE PRESSURE: The needle pressure should be between 10 and 12 grams. Adjustment may be made by loosening the screw on the slide which the slide back and forth until the correct needle pressure is obtained.-


\section*{CABINETS-CABINET PARTS}

\begin{tabular}{|c|c|c|}
\hline Quan. & Description & Part No. \\
\hline 2 & Strip Escutcheon Backing (2765A) & FB-0010 \\
\hline 1 & Grille, Cabinet (2764A-2763A) & GW-0016 \\
\hline 1 & Grille, Cabinet (2765A) & GW-0017 \\
\hline 1 & Insulator, Radio Compartment (2765A) & IN-0114 \\
\hline 1 & Knob, Volume Control & KB-0032 \\
\hline 3 & Knob, Tone, Tuning, \& Volume Control (Radio) 2765A & KB-0034 \\
\hline 1 & Knob, Band Switch (Radio) 2765A & KB-0035 \\
\hline 1 & Knob, Channel Selector & KB-0036 \\
\hline 1 & Knob, Fine Tuning & KB-0037 \\
\hline 1 & Knob, Picture Control & KB-0038 \\
\hline 1 & Cover, Plate (Muntz) & MO-0050 \\
\hline 2 & Brace, Pix Tube Support & MP-0478 \\
\hline 1 & Label, Radio-Phono (2765A) & NL-0071 \\
\hline 1 & Filler, Pix Tube Neck Protector & PM-0034 \\
\hline 2 & Strip, Dial Glass (Radio) 2765A & RB-0046 \\
\hline 3 & Strip, Pix Tube, Mask & RB-0048 \\
\hline 1 & Bumper, Housing & RB-0053 \\
\hline 4 & Strip, Pix Tube Stop Brkt. & RB-0054 \\
\hline 18 & Channel, Pix Tube Protection & RB-0055 \\
\hline 1 & Ring Tension, (Pix Tube Harness) & SP-0056 \\
\hline 1 & Glass, Pix Tube Protection & WG-0015 \\
\hline 1 & Rail, Wood Removable, Glass Retaining (Walnut) & WC-0001-11 \\
\hline 1 & Rail, Wood Removable, Glass Retaining (Mahogany) & WC-0001-13 \\
\hline 1 & Rail, Wood Removable, Glass Retaining (Limed Oak) & WC-0001-14 \\
\hline 1 & Rail, Wood Removable, Glass Retaining (Blonde) & WC-0001-15 \\
\hline 1 & Speaker, P.M. \(10^{\prime \prime}\) (Radio) (2765A) & SK-0014-1 \\
\hline 1 & Speaker, P.M. \({ }^{\prime \prime}{ }^{\prime \prime}\) & SK-0020 \\
\hline 1 & Spring, 2nd Anode Cable Stand Off. & SP-0059 \\
\hline 1 & Wing Screw, Deflection Yoke & SC-0036-1 \\
\hline 1 & Spacer Clip, Deflection Yoke & MP-0477 \\
\hline
\end{tabular}

\section*{CHASSIS PARTS LIST} CHASSIS MODEL \(17 B 8\) CAPACITORS
\begin{tabular}{llll} 
Sym. & \multicolumn{1}{c}{ Description } & \% Voltage Part No. \\
C18 & Disc. Cer. 5000 mmf. & 500 V CC-0060 \\
C19 & Disc. Cer. 5000 mmf. & 500 V CC-0060 \\
C20 & \begin{tabular}{l} 
Tub. Cer. \\
Durez Insul. 470 mmf.
\end{tabular} & 20 & 500 V CC-0078 \\
C21 & \begin{tabular}{l} 
Tub. Cer. \\
Durez Insul. 1000 mmf.
\end{tabular} 20 & 500 V CC-0061
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Sym. & \multicolumn{2}{|l|}{Description} & \multicolumn{2}{|l|}{\% Voltaqe Part No.} \\
\hline C22 & L'ytic & 4 mfd . & & 50 V CE-0031 \\
\hline C23 & Disc. Cer. & 5000 mmf . & & 500 V CC-0060 \\
\hline C24 & Tub. Paper & . 01 mfd . & 20 & 400V CP-0041 \\
\hline C25 & Tub. Paper & . 01 mfd . & 20 & 400V CP-0041 \\
\hline C26a, b & L'ytic & \(2 \times 40 \mathrm{mfd}\). & & 450V CE-0026 \\
\hline C26c & L'ytic & 100 mfd . & & 200V CE-0026 \\
\hline C27 & L'ytic & 40 mfd . & & 250V CE-0034 \\
\hline C28 & Tub. Paper Moulded & . 022 mfd . & 20 & 600V CPM-0102 \\
\hline C29a, b & L'ytic & \(2 \times 40 \mathrm{mfd}\). & & 450V CE-0033 \\
\hline C29c & L'ytic & 100 mfd . & & 50 V CE-0033 \\
\hline C30a, b & Shielded Dual disc. cer. & \(2 \times .01 \mathrm{mfd}\). & & 500 V CC-0096 \\
\hline C31 & Disc. Cer. & 5000 mmi . & & 500 V CC-0060 \\
\hline C32 & Disc. Cer. & 5000 mmf . & & 500 V CC-0060 \\
\hline C33 & Disc. Cer. & 5000 mmf . & & 500 V CC-0060 \\
\hline C34 & Disc. Cer. & 5000 mmf . & & 500 V CC-0060 \\
\hline C35 & Disc. Cer. & 5000 mmf . & & 500 V CC-0060 \\
\hline C36 & Disc. Cer. & 5000 mmf . & & 500 V CC-0060 \\
\hline C37 & Disc. Cer. & 5000 mmf . & & 500V CC-0060 \\
\hline C38 & Tub. Paper & . 22 mfd . & 20 & 200V CP-0055 \\
\hline C39 & Disc. Cer. & 5000 mm . & & 500V CC-0060 \\
\hline C40 & Disc. Cer. & 5000 mm . & & 500V CC-0060 \\
\hline C41 & Disc. Cer. & 5000 mmi . & & 500 V CC-0060 \\
\hline C42 & Tub. Paper & . 1 mfd . & 20 & 400V CP-0034 \\
\hline C43 & Tub. Paper & . 1 mfd . & 20 & 600V CP-0013 \\
\hline C44 & Tub. Cer. Durez Insul. & 270 mmf . & 20 & 500V CC-0094 \\
\hline C45 & Tub. Paper Moulded & . 01 mfd . & 20 & 600V CPM-0101 \\
\hline C46 & Tub. Paper Moulded & . 047 mfd . & 20 & 600V CPM-0105 \\
\hline C47 & Tub. Paper Moulded & . 047 mfd . & 20 & 600V CPM-0105 \\
\hline C48 & Tub. Paper Moulded & . 047 mfd . & 20 & 600V CPM-0105 \\
\hline C49 & Tub. Paper oil filled & . 01 mfd . & 10 & 1000V CP-0061 \\
\hline C50 & Tub. Paper & . 047 mfd . & 10 & 600V CP-0049 \\
\hline C51 & Tub. Paper & . 047 mdd . & 10 & 600V CP-0049 \\
\hline C52 & Tub. Paper & .1 mfd . & 20 & 600V CP-0013 \\
\hline C53 & Tub. Paper Moulded & . 0022 mfd . & 10 & 600V CPM-0100 \\
\hline C54 & Tub. Paper & . 0022 mfd . & 20 & 600V CP-0056 \\
\hline C55 & Mica & 47 mmf . & 10 & 500V CM-0044 \\
\hline C56 & Tub. Paper Moulded & . 047 mfd . & 10 & 600V CPM-0104 \\
\hline C57 & Tub. Paper Moulded & . 047 mfd . & 20 & 600V CPM-0105 \\
\hline C58 & Tub. Paper & . 022 mfd . & 20 & 200V CP-0052 \\
\hline C59 & Tub. Paper & . 47 mfd . & 20 & 200V CP-0045 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Sym. \\
C60 \\
C6la, b
\end{tabular}} & Description & Ohms & Wat & ats \% & Part No. \\
\hline & Mica & 68 mmf . & & 1000V & CM-0045 \\
\hline & b Dual & & & & \\
\hline & Trimmer & \[
\begin{aligned}
& 2 \times(10- \\
& 160 \mathrm{mmf} .)
\end{aligned}
\] & & & CM-0012 \\
\hline C62 & Tub. Cer. Durez & \[
\begin{aligned}
& 180 \mathrm{mmf} . \\
& (-330 \mathrm{TC})
\end{aligned}
\] & & & CC-0113 \\
\hline \multirow[t]{2}{*}{C63} & Tub. Paper & & & & \\
\hline & Moulded & . 01 mfd . & & 600V & CPM-0101 \\
\hline \multirow[t]{2}{*}{C64} & Tub. Cer. & & & & \\
\hline & Durez Insul. & . 1000 mmf . & & & CC-0112 \\
\hline C65 & Mica & 820 mmf . & & 500V & CM-0046 \\
\hline C66 & Tub. Paper & .47 mfd . & & 200V & CP-0045 \\
\hline C67 & Tub. Paper & . 1 mfd . & & 600 V & CP-0013 \\
\hline C68 & Tub. Paper Moulded & . 022 mfd . & & 600V & CPM-0102 \\
\hline C69 & Tub. Paper & . 1 mfd . & & 600V & CP-0013 \\
\hline \multirow[t]{2}{*}{C70} & Tub. Cer. & & & & \\
\hline & Durez Insul. & . 1000 mmf . & & 500V & CC-0061 \\
\hline \multirow[t]{2}{*}{CRI} & PEC Vert. & & & & \\
\hline & Integrator & & & & CC-0071 \\
\hline C71 & Tub. Cer. Durez & 270 mmf . & & & CC-0094 \\
\hline C73 & Disc. Cer. & . 01 mfd . & & 1500V & CC-0126 \\
\hline \multirow[t]{2}{*}{C74} & Disc. Cer. & .01 mfd . & & 1500V & CC-0126 \\
\hline & & RESISTORS & & & \\
\hline Sym. & Description & , Ohms & Wa & atts \% & Part No. \\
\hline \multirow[t]{2}{*}{R10
R11} & Carbon. & 4.7K & 1/2 & 10 & RC-4701-18 \\
\hline & Candohm. & ..... 1.5K & 9 & 10 & RW-0039 \\
\hline \[
\begin{aligned}
& \mathrm{Rll} \\
& \mathrm{Rl2}
\end{aligned}
\] & Carbon... & ...... 82 & 1/2 & 10 & RC-082-18 \\
\hline R13 & Carbon. & . 330 & 1/2 & 10 & RC-330-18 \\
\hline R14 C & Carbon. & 100K & 1/2 & 10 & RC-1003-18 \\
\hline R15 C & Carbon. & 10K & 1/2 & 10 & RC-1002-18 \\
\hline \multirow[t]{2}{*}{R16 \({ }_{\text {- }}^{\text {d }}\)} & Dual Control S & & & & \\
\hline & \& Vol.............. & .......... 500 K & & & VC-0040-1 \\
\hline R16b C & Contrast & \(\ldots\) & & & VC-0040-1 \\
\hline R17 C & Carbon. & .... 15 & 1/2 & 20 & RC-015-28 \\
\hline R18 C & Carbon. & 270 & 1/2 & 10 & RC-270-18 \\
\hline R19 & Carbon & 4.7M & 1/2 & 20 & RC-4704-28 \\
\hline R20 & Carbon. & 470K & 1/2 & 10 & RC-4703-18 \\
\hline R21 & Carbon. & 2.2M & 1/2 & 5 & RC-2204-58 \\
\hline R22 & Carbon. & 120K & 1/2 & 5 & RC-1203-58 \\
\hline R23 & Carbon. & ... 270 & 2 & 10 & RC-270-12 \\
\hline R24 & Carbon. & 680 & 1/2 & 10 & RC-680-18 \\
\hline R25 & Carbon. & .... 82 & 1/2 & 10 & RC-082-18 \\
\hline R26 C & Carbon. & .... 680 & 1/2 & 10 & RC-680-18 \\
\hline R27 & Carbon. & .10K & 1/2 & 10 & RC-1002-18 \\
\hline R28 & Carbon. & 47 & 1/2 & 10 & RC-047-18 \\
\hline R29 & Carbon & .15K & 1/2 & 10 & RC-1502-18 \\
\hline R30 Ca & Carbon. & .. 82 & 1/2 & 10 & RC-082-18 \\
\hline R31 & Carbon. & . 8.2 K & 1/2 & 10 & RC-8201-18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Sym. & Description Ohms & Watts \% & Part No. \\
\hline R32 & Carbon..................... 120 & 1/2 10 & RC-120-18 \\
\hline R33 & Carbon.....................820K & 1/2 120 & RC-8203-18 \\
\hline R34 & Carbon.....................22K & 1/2 10 & RC-2202-18 \\
\hline R35 & Carbon ....................4.7K & 1/2 10 & RC-4701-18 \\
\hline R36 & Carbon.....................1.2M & 1/2 10 & RC-1204-18 \\
\hline R37 & Carbon..................... 5.6 K & 210 & RC-5601-12 \\
\hline R38 & Carbon.....................10K & 1/2 10 & RC-1002-18 \\
\hline R39 & Carbon.....................330K & 1/2 10 & RC-3303-18 \\
\hline R40 & Carbon.....................100K & 1/2 10 & RC-1003-18 \\
\hline R41 & Carbon....................3.9M & 1/2 10 & RC-3904-18 \\
\hline R42 & Brilliance Control...... 50 K & & VC-0036 \\
\hline R43 & Carbon..................... 22 K & 1/2 10 & RC-2202-18 \\
\hline R44 & Carbon.....................330K & 1/2 10 & RC-3303-18 \\
\hline R45 & Carbon.....................820K & 1/2 10 & RC-8203-18 \\
\hline R46 & Carbon.....................22K & 1/2 10 & RC-2202-18 \\
\hline R47 & Carbon.....................180K & 1/2 10 & RC-1803-18 \\
\hline R48 & Carbon.....................180K & 1/2 5 & RC-1803-58 \\
\hline R49 & Carbon.....................22K & 1/2 10 & RC-2202-18 \\
\hline R50 & Carbon..................... 680 & 1/2 10 & RC-680-18 \\
\hline R51 & Vert. Lin. Control....... 2.5 K & & VC-0037 \\
\hline R52 & Carbon.....................2.2M & 1/2 10 & RC-2204-18 \\
\hline R53 & Deleted & & \\
\hline R54 & Carbon.....................1.8M & \(1 / 210\) & RC-1804-18 \\
\hline R55 & Vert. Size Control......2M & & VC-0034 \\
\hline R56 & Vert. Hold Control.....2.5M & & VC-0046 \\
\hline R57 & Carbon.....................2.7M & 1/2 10 & RC-2704-18 \\
\hline R58 & Carbon..................... 22 K & 1/2 10 & RC-2202-18 \\
\hline R59 & Carbon.....................8.2K & 1/2 10 & RC-8201-18 \\
\hline R60 & Carbon.....................100K & \(1 / 210\) & RC-1003-18 \\
\hline R61 & Hor. Hold Control......50K & & VC-0036 \\
\hline R62 & Carbon..................... 82 K & 110 & RC-8202-11 \\
\hline R63 & Carbon.....................330K & 1/2 10 & RC-3303-18 \\
\hline R64 & Carbon.....................4.7K & 1/2 10 & RC-4701-18 \\
\hline R65 & Carbon.....................820K & 1/2 10 & RC-8203-18 \\
\hline R66 & Carbon..................... 82 K & 110 & RC-8202-11 \\
\hline R67 & Carbon.....................150K & 110 & RC-1503-11 \\
\hline R68 & Carbon.....................330K & 110 & RC-3303-10 \\
\hline R69 & Carbon.....................10K & 1/2 10 & RC-1002-18 \\
\hline R70 & Carbon.....................150K & 110 & RC-1503-11 \\
\hline R71 & Carbon.....................68K & 110 & RC-6802-11 \\
\hline R72 & Carbon.....................470K & 1/2 10 & RC-4703-18 \\
\hline R73 & Carbon..................... 120 & 1/2 10 & RC-120-18 \\
\hline R74 & Carbon..................... 680 & 1/2 10 & RC-680-18 \\
\hline R75 & Carbon..................... 100 & 210 & RC-100-12 \\
\hline \multirow[t]{2}{*}{R76} & Wire Wound & & \\
\hline & Vit. En......................13.5K & \(10 \quad 10\) & RW-0040 \\
\hline R77 & Carbon.......................5.6K & \(1 / 210\) & RC-5601-18 \\
\hline R78 & Carbon.................... 680 & 1/2 10 & RC-680-18 \\
\hline R79 & Carbon..................... 680 & 1/2 10 & RC-680-18 \\
\hline R80 & Wire. Wound..............5.6 & 1/2 10 & RC-006-18 \\
\hline R81 & Carbon..................... 22 & 210 & RC-022-12 \\
\hline R82 & Carbon.....................470K & 1/2 10 & RC-4703-18 \\
\hline R83 & Carbon.....................47K & 1/2 10 & RC-4702-18 \\
\hline R84 & Carbon..................... 820 K & 1/2 10 & RC-8203-18 \\
\hline R90 & Carbon......................1K & \(1 / 2 \quad 10\) & RC-1001-18 \\
\hline
\end{tabular}







CHASSIS 17B8

 \(\qquad\) \(11^{12}\)
\(i^{1}\)


sol 10
© John F. Rider

Direct View Electromagnetic Picture Tube 14＇＂Rectangular
17＇י Rectangular
20＇Rectangula
Operating Voltage
\(110-120 \quad 60\) Cycles
Wattage
ITS Wols
Input Impedance and Transmission Line
300 ohm balanced（between antenno terminals）
75 ohm coaxial cable may be used by connecting shield to chassis and inner conductor to either antenno terminal
Intermediate Frequencies
Video－ 25.75 Mc
Intercarrier Sound－4．5 Mc
fuse Location
Horizontal output fuse，\(F_{1}\) ，is located inside the high
voltage enclosure
apron of the chassis． apron of the chassis．

\section*{SPECIFICATIONS}

Tube Complement
\begin{tabular}{|c|c|c|}
\hline Com & & \\
\hline V1 & 6AG5，6BC5，6CB6 & R．F．Amp． \\
\hline V2 & 616 & Mixer and Osc． \\
\hline V3 & 6AG5，6CB6＊． \(68 C 5\) & Ist I．F．Amp． \\
\hline V4 & 6AG5，6CB6 \％，6BC5 & 2nd I．F．Amp． \\
\hline V5 & 6AU6 & 3rd I．F．Amp． \\
\hline V6 & 6AL5 & Video Det．and A．G．C． \\
\hline V7 & 6AC7 & Video Amp． \\
\hline V8 & 12AU7 & D．C．Restorer，Sync Separator and Splitter \\
\hline V9 & 6AU6 & Sound I．F．Amp． \\
\hline V10 & 678 & Ratio Det．and 1st Audio \\
\hline V11 & 6 V 6 & Audio Output \\
\hline V12 & 6AL5，6H6＊ & Sync Phose Det． \\
\hline V13 & 6SN7 GT & Horizontal Osc． \\
\hline V14 & 6BG6 G & Horizontal Output \\
\hline V15 & 6W4GT & Damper \\
\hline V16 & 1 \(\times 2 \mathrm{~A}\) & Pulse Rectifier \\
\hline V17 & 6 SN7 GT & Vertical Osc． \\
\hline V18 & 6K6 GT & Vertical Output \\
\hline V19 & 544 G & Power Rectifier \\
\hline V20 & & Picture Tube \\
\hline
\end{tabular}
＂Tubes not directly interchangeable see schematic．


\section*{INSTALLATION AND SERVICE ADJUSTMENTS}

When installing，each set should be checked for picture centering，picture tilt，shaded corners，proper size，linearity， etc．，to insure best performance．It is especially important that the Ion Trap be checked，and that the Channel Slugs be duusted upon install a on or senvicing of every sel ro insure arcibed her
For best results，all checks or odjustments should be made using a transmitted television test pattern．A mirror placed in front of the picture tube screen will bo a holp in

HIGH VOLTAGE WARNING
Operation of this receiver outside of its cabinet involves a shock hazard from the power supplies．No work should be attempted on this receiver by anyone who is not thoroughly familiar with the precoutions necessary when working on the high voltoge equipment．

\section*{EXTERNAL ANTENNA}

When an external indoor or an outdoor antenna is re－ quired，be sure to disconnect the built－in antenna leads from the antenno terminal board，tape them and place them away from the chassis．

\section*{OPERATING THE TELEVISION RECEIVER}

The controls of this receiver are operated conventionally． When tuning，carefully odjust the TUNING control for the best picture．

INDIVIDUAL CHANNEL SLUG ADJUST－ MENT＂A3＂＇USING TELEVISION SIGNAL

Individual channel oscillator adjustment of every re－ ceiver should be checked upon installation or servicing．If this adjustment is properly made，it is possible to tune from one station to another by merely turning the CHANNEL con trol．With correct oscillator channel adjustment，best pictur Tunine locared

Channel slug adjustment can be mode without removing the chassis from the cabinet．Adiust as follows
a．Turn the set on and allow 15 minutes to warm up．
b．Sot the CHANNEL knob for a station in operation． Set all other controls for a normal picture．
c．Sot TUNING control at center of its rangebyro－ tating it approximately half－way．
d．Remove the CHANNEL and TUNING knobs．
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
e. Insert a \(1 / 8^{\prime \prime}\) blade, NON-METALLIC screwdriver in the \(1 / 4^{\prime \prime}\) hole adjacent to the channel tuning shaft. For each channel in operation, carefully adjust the channel slug for the best picture with clear detail. Be sure that the Tuning control is set at the center of its range before adjusting each channel slug. Only slight rotation of the slug will be required; furning the slug in too for will cause it to fall into the coil. (If the slug falls into the coil, remove the coil, move the retaining spring aside, lightly tap the open end of the coil until the slug slips out. Replace slug and re-set retaining spring;) \\
If a number of slugs are found to tune all the way in or all the way out, or if the 656 oscillator-mixer tube has been replaced, it may becessary to make the "Overall Oscillator Adjustment' as discussed below. \\
OVER-ALL OSCILLATOR ADJUSTMENT ''Al" USING TELEVISION SIGNAL \\
Over-all oscillator adjustment should only be necessary when replacing the oscillator-mixer tube (6/6), or when all channel slugs are off in the same direction. When replacing the oscillator-mixer tube ( 6.16 ), it is recommended that several tubes be tried to select one which will cause least oscillator frequency shift. \\
Al is generally odjusted so that approximately \(3 / 16^{\prime \prime}\) of screw thread is exposed. \\
Adjust as follows: \\
a. Follow steps ' \(a\) " ', ' \(b\) "', and " \(c\) ' above. \\
b. Carefully odjust trimmer C6 (figure 8) for best picture with clear detail. \\
c. Check and, if necessary, moke individual channel odjustments as indicated above. \\
ION TRAP ADJUSTMENT \\
To properly adjust the Ion Trap, Focusing Device and the Deflection Yoke the following procedure should be followed. \\
The Deflection Yoke should be placed in position closest to the "bell"' of the Cathode Ray Tube as far forward on the neck of the tube as is possible. The Focus Device is next in line and Ion Trap last. See figure 1. \\
The antenna should be connected to the receiver, the set should be turned on, the brilliance control turned to MAXIMUM and the controst control at MAXIMUM. \\
The Ion Trap should be moved forward and backward and at the some time rotated to achieve the brightest raster on the face of the CRT. \\
Reduce the brilliance control to a point slightly over normal brightness and adjust the Focus Control on the rear of the Focus Device with a non-magnetic screwdriver for cloorest and sharpest horizontal sweep lines. The lon Trap should then be readjusted slightly for the brightest response on the face of the tube. \\
The Focus Device aperture should be moved to secure a complete raster centered and with no corners cut off. \\
Finally the Deflection Yoke should be rotated to "square" the raster with the chassis as a reference. The screws on the yoke brackets should then be set.
\end{tabular} & \begin{tabular}{l}
HEIGHT, WIDTH AND LINEARITY \\
To adjust the overall size and linearity of the picture it is almost mandatory that a pattern transmitted from a local station be used. Linearity adjustments, particularly, cannot be accurately made on moving transmissions. It should also be remembered that in areas where more than one station is being received, that pictures transmitted from different stations will vary slightly in size. The smallest transmitted picture should be made to fill the area delineated by the mask. \\
The first step in linearity and size adjustment is to turn the Width Control (rear of chassis) all the woy in. (clockwise) \\
The Horizontal Drive trimmer should then be adjusted for the best compromise between maximum brightness and good horizontal linearity. Misodjustment of the Horizontal drive condenser will show as bright vertical bars on the left hond side of the picture. The Width Control should then be bocked out until the picture is the correct width. \\
Vertical Linearity and theight odjustment are made in the conventional manner. It will be noted that there is some interaction between these controls. \\
HORIZONTAL OSCILLATOR ADJUSTMENT \\
The set should hold horizontal sync over approximately one turn of the horizontal hold control. This will vory with signal strength of the received station. The contral will bind at the extreme ends of its rotation. Do not attempt to force it to turn ofter binding is encountered or serious damoge will result. If the set does not hold at a point in the center of the control range it indicates trouble in the horizontal oscillator or sync phase detector. \\
PICTURE TUBE REPLACEMENT \\
Important: After replacing any picture tube, be sure to make all deflection odjustments -- Picture Centering, Deflection Yoke, and Ion Trap- \\
Especially note comments on picture centering. \\
WARNING: Because of the high 2nd anode voltage used (approximately 12 KV ) and the possibility of danger of implosion due to high vacuum, the following precautions should be noted when removing or replacing picture tubes: \\
a. Before handling a picture tube, remove the 2nd anode static charge from both the picture tube and the 2nd anode connector by shorting them to chassis. \\
b. Shotterproof goggles and heavy gloves should be worn while handling or installing a picture tube. \\
c. Always handle the picture tube very carefully. DO NOT pick the tube up by the neck. \\
INCREASING SENSITIVITY FOR OPERATION IN FRINGE AREAS \\
The following hints may be helpful for improving sensitivity in fringe areos. These hints should be followed in the sequence given. The balance of the procedure can be omittod if sotisfactory results are obtained at any point in the procedure. \\
a. Make sure that the proper antenna is used and correctly installed. Information on various types of high gain antennas is available from the Disrributor.
\end{tabular} & \begin{tabular}{l}
b. Check the rectifier tube ( 5 U 4 G ) by substitution as the voltage output of some tubes may be slightly higher. An increase in \(B\)-voltage will increase sensitivity. \\
c. Check the video amplifier tube (6AC7) by substifution. Increased contrasr is sometimes obtained with tube replacement. \\
d. Check the power line voltage. If the voltage is known to vary greatly, it is recommended that the set be operated from a constant valtage transformer with a power rating of at least 300 watts. \\
e. Carefully realign the receiver following the instructions given in this manual. Checking tubes (by substitution) in the RF amplifier, oscillatormixer, IF stoges, and video detector while aligning will often giv. considerable increase in gain. The increase in gain may be observed by an increase in amplitude, on the response curve. Realignment of the particular stage should always be made after each tube replacement, in order to realize the maximum gain possible. \\
Change to Improve Vertical Sync Stability in Weak Signal Area \\
1. Remove vertical integrator plate. \\
2. Make up vertical integrating circuit shown below: \\
TELEVISION ALIGN \\
GENERAL \\
Complete olignment corsists of the following individual procedures. Cumplate alignment should be performed in this sequence. \\
a. IF Amplifier Alignment. \\
b. 4.5 MC Sound IF Alignment. \\
c. RF and Mixer Alignment. \\
d. Overall RF and IF Response Curve Check and High Frequency Oscillator Alignment. \\
TEST EQUIPMENT \\
To properly service this receiver, it is recommended that the following test equipment be ovailable. Note: Equipment below moy be ovailable as a single unit, except for the vacuum tube voltmeter. \\
SWEEP GENERATOR \\
Sweep generator must provide sweep frequencies from 18 to 30 MC ronge: 10 MC sweep width. \\
50 to 90 MC range: 10 MC sweep width. \\
170 to 225 MC range: 10 MC sweep width. \\
Output: adjustable; at least one-tenth volt maximum. \\
Output impedance: 300 ohms balanced to ground. \\
Sweep generator should preferobly hove a built-in morker generator with calibration crystal for checking dial accuracy. \\
SIGNAL GENERATOR with crystal calibrator which can also be used as a morker generator. \\
4.5 MC frequency. \\
18 to 30 MC frequency range.
\end{tabular} & \begin{tabular}{l}
PRODUCTION VARIATIONS \\
1. One or two 100 ohm 10 watt resistors were added betwoen the center tap of some power transformers and chassis to reduce the B plus voltage to approximately 360 volts. \\
2. In sets of serial 51,200 and below the audia de-emphasis network was 33 K and 2200 MMF . \\
3. Vertical hold control may be 750K, when this is used, a 390 K resistor is connected in series with it. \\
4. In some sets coupling condenser between vertical multivibrator and vertical output tube may be .25 MFD - 600 V . \\
5. In sets of serial 50,000 and below, 1000 MMF condensers coupling sync to phase detector may be \(1500 \mathrm{MMF} \pm 10 \%\). \\
NMENT PROCEDURE \\
50 to 90 MC frequency range. \\
170 to 225 MC frequency range. \\
Must hove a built-in calibration crystal for checking dial occuracy. \\
OSCILLOSCOPE \\
Standord ascilloscope, preferably one with a wide band vertical deflection, vertical sensitivity ot least .5 volt peak-to-peak per inch. \\
VACUUM-TUBE VOLTMETER \\
Standard Vacuum-tube Voltmeter with high resistance input and low voltage DC Range (3 volts or less). In addition, a zero center low voltage range will be found useful. \\
ALIGNMENT TOOLS \\
An alignment tool kit consisting of one metallic and one non-metallic screwdriver is necessory. \\
SWEEP GENERATOR NOTE \\
A sweep generator which does not hove corstont output valtage and reasonobly lineor sweep frequency distribution, will produce curves which ore widely different from the "IF" Resporse Curve" or Overall RF and IF Response Curve" Shown in the following poges. If repeated difficulty is encountered in obtaining these curves, the swoep generotor should be checked. A simple check is to observe the response curve for a set that is known to be in olignment. \\
Bofore suspecting the generator, be sure the olignment instructions have been fallowed carefully.
\end{tabular} \\
\hline
\end{tabular}
©John F. Rider

\section*{IF AMPLIFIER ALIGNMENT}
a. Disconnect antenno; connect jumper wire across
terminals.
Sol receiver to channel \(13 \propto\) other unossigned high chonnel to provent signal interference during

IF alignment. Set Picture control fully to right (clockwise).
c. Allow about 15 minutes for recsiver and tes equipment to worm up.
\begin{tabular}{|c|c|c|c|c|}
\hline Stop & \[
\begin{array}{|l}
\text { Stgmel Gen. } \\
\text { Freat. (MMC) }
\end{array}
\] & VTVM and Signal Generator Connections & Instructions & Adjunt \\
\hline 1 & 21.25 & \multirow[t]{3}{*}{VTVM high side to test point "T", low to chas sis. R.F. gen. high side to floating tube shield on 6J6 low to chassis.} & \multirow[t]{3}{*}{Use VTVM 3 volt DC scale. Adjust signal generator to maintain approximately 1 volt output.} & L5 for min. \\
\hline 2 & 23.2 & & & L 3 \& 4 for max. \\
\hline 3 & 25.2 & & & L 1 \& 2 for max. \\
\hline 4 & \multicolumn{4}{|l|}{To insure correct I.F. alignment, make the "I.F. Response Curve Check' given below.} \\
\hline
\end{tabular}

\section*{IF RESPONSE CURVE CHECK}
(Using sweep generator and oscilloscope with sweep input to RF ixer V2)

Differences in tube gain and component values affect If re apones. These differences are not apparent in alignment of IFs ment); hence it is proferable that on If response curve check be mode ofter completion of the If amplifier alignment

The If response curve chock con be mode as indicoted directly below. However, also note that a betther check can be
made by foeding the swoep signal through the entire RF and IF system as given under "Overall RF and If Response Curve Check (Step 1)". The overall check should be mode after moking all ather alignments.
a. Make all control settings and connections as given in " a " through " \(c\) " the If amplifier alignment chort dpove.
. Connect oscilloscope" between point ' \(T\) '' and chassis ground see fig. 4. Koep loods awoy from receiver.
Connect sweep generator high side ta tobe shield of 656 (V2) osc-mixer tube. Be sure to insulate tube shield from chassis.
 MC).
d. If sweep generator does not have a built-in marker genierator loosely couple marker generator high side to the sweep genorator load connected to tube shield on tuner; low side to chossis ground.
Ta avoid distortion of the resporse curve, keep the swoep To avoral and marker generator outputs at a very minimum.

Marker pips should be just kept barely visible. To minimize distortion, set sweep generator output for VTVM rooding of approximately .6 volt \(D C\), measured between test point " \(T\) " and chassis. Connecting a \(1-1 / 2\) volt battery (negative to AGC Line, positive to chassis) will allow greater signal input withour distorting the response curve.
in figure 3. Since it is not alweys possible to get curve shown in shoure 3 . Since it is not alwoys possible to get ideal curves, within \(30 \%\) of each other. The dip or valley in the center of the curve should not be greater than \(30 \%\) down from the highast peok of the curve. Check video and sound If carrier points by meons of morker generator. It is important that morker pips be in the proper location on the response curve. The 25.75 MC marker, should be \(50 \%\) below the highest peok on the high frequency side of the curve. The 22 MC marker approximately \(85 \%\) below the highest peak. The 21.25 MC morker should be located at least \(95 \%\) below the highest peok, and may or may not be visible.
Consistent with proper band width and correct location of morkers, the response curve should preferably have maximun
amplitude, symmetry, and flat top appearance.
If the procedure ziven has been carefully followed and the esponse curve obtained differs greatly from the curve shown, reeat the If Amplifier Alignment, making sure generator frequencies are precise and adiustments are accurately made.
-OSCILLOSCOPE NOTE
- In dealing with RF and IF reaponce carrea it in well to remember that an inverted or mirror hange may reskle,
 \(\mathrm{aminf}^{2}\). in connected acrose the oecilloseope inpul.

\section*{ALIGNMENT HINT}

After becoming familiar withalignment procedure, some servicemen simplify subsequent alignment of sets by merely using the essential alignment data given in figures below.


antasuzeo rroon michesi peas
Figure 3 IF Response Curve.


Figure 4 3ottom View Showing Test Point Connections.


Figure 5 Top View of Chassis Showing Aligrment Data.

\subsection*{4.5 MC SOUND IF ALIGNMENT}
a. Disconnect antenna, Connect iumper wire across terminals.
b. Connect signal generator high side to \(\operatorname{Pin} 4 V 7\) connect low side to chossis.

Allow about 15 minutes for receiver and test equipment to warm up.
d. Set Picture control fully to the right (clockwise).
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Signal Gen. Freq. (MC) & VTVM Connections & Instructions & Adjust \\
\hline 1 & \multicolumn{4}{|l|}{\begin{tabular}{l}
Since the transmitled video and sound carriera have an acrurate 4.5 MC frequency difference, it in adviseable to use a TV atation signal instead of a signal generator for accurate alignment of steps below. When usinz \(n\) television signal, it may be necessary to use a higher seale on the VTVM. ( \(\mathbf{3 0 V}\) ) \\
IMPORTANT: When using a signal senerator, be sure to check it against a crystal calibrator or other froquency standard for accurate frequency ealibration at 4.5 MC . Accuracy required is within one kilocycle.
\end{tabular}} \\
\hline 2 &  & High side to
test point " Y "; common to chassis. & Use 3 volt DC acale on VTVM.
Keep VTVM leads well sepaKeep VTVM leads well sepa-
rated from signal generator (if used) and chassis wiring. & \begin{tabular}{l}
L6 and top of Tifor Laximum (keep reducing \\

\end{tabular} \\
\hline 3 & \[
\begin{aligned}
& \text { modulnted. } \\
& \text { See step i } \\
& \text { for use of } \\
& \text { station } \\
& \text { signal. }
\end{aligned}
\] &  & Use 3 volt zero center acale on VTVM, if availalile. Keep VTVM leade well neparated from signal wiring. & Bottomof Tl forzero zeropoint is located betreen \(\begin{gathered}\text { positive and } \\ \text { a }\end{gathered}\) negative maximum). \\
\hline
\end{tabular}
(See Page 4 for MChart, Fig. 6. RF Response Curve, Fig. 7. Front view of \(T\) V Tuner and Fig. 8. Top of tV Tuner, Showing Adjustment Location) Fig. 4 For rest Point Location.

\section*{RF AND MIXER ALIGNMENT}
a. If used earlier, disconnect \(1-1 / 2\) volt bottery
b. Disconnect antenna from receiver.
he response curve, keep sweep generator outpul at a minimum, marker pips just barely visible.
d. Connect oscilloscope through a \(10,000 \mathrm{ohm}\) resistor to test point ' W ' ' on tuner (Fig. 8). Keep scope leads away from chassis.
Connect sweep generator to antenna terminals. If sweep generator does not have a built-in marker the antenna terminals. To avoid distortion of
. Allow about 15 minutes for receiver and test equipment to worm up.
Step
\begin{tabular}{|c|c}
\begin{tabular}{c} 
Marker Gen. \\
Froq. (MC)
\end{tabular} & \begin{tabular}{c} 
Swoep Gen. \\
Frequency
\end{tabular} \\
\hline \begin{tabular}{c}
205.25 \\
(Video Carrier) \\
209.75
\end{tabular} & \begin{tabular}{c} 
Sweeping \\
Channel 12
\end{tabular} \\
(Sound Carrier) & \\
\hline &
\end{tabular}

Sec frequency table below. Set the sweep generator to
sweep the channel to be checked. Set the marker generator
for the corresponding video for the corresponding video
carrier frequency and sound
corrier frequency. carrier frequency.

Instructions
Check for curve resembling RF Response Curve shown below. If neceasary,
adjust A8, A9 and A10 (figure 9) as required. Note that adjusting A9 will shift the center of the reaponse curve in relation to the video sand sound car rier markers. A8 and A10 should be alternately adjusted for best gain with
flat top appearance. Consistent with proper band width and correct marker flat top appearance. Consistent with proper band width and correct marker
location, reaponse curve should have maximum amplitude and flat top appearance.
Check each channel operating in the service area for curve resembling RF Response Curve shown below.
In eneral, the adjustment performed in step 1 is sufficient to sive satiofactory response curves on all channels. However, if reasonable alismment is not obtained on a particular channel, (a) check to see that coils have not been inter
mixed, or (b) try replacing the pair of coils for that particular channel, or
 this particular channel. If a compromise adjuatment is made, other channele
operating in the service area should be checked to make certain that they operating in the service area should
have not been appreciably affected.

\section*{OVERALL RF and IF RESPONSE CURVE CHECK (Step 1)} and HF OSCILLATOR ALIGNMENT (Step 2)
(Using sweep generator and oscilloscope.)

\section*{IMPORTANT}

Since \(H F\) Oscillator alignment requires absolutefrequency accuracy a station signal is generally best suited for alignment of the indi vidual channel oscillator slugs A3. Theprocedureforusing a station signal (and without removalof chassis) is given in
nel Slug Adjustment Using Television Signal on page 1.

The procedure for HF Oscillator alignment with an oscilloscope and a sweep generator is givenablow.
a. Disconnect antenna.

Disconnect signal generator and VTVM (if used earlier).
c. Set the Tuning control at half rotation by rotating it approximately \(150^{\circ}\) as shown in Figure 7.
d. Connect sweep generator to antenna terminals. If sweep generator does not have a built-in marker generator, loosely couple a marker generator to the antenna terminals. To avoid distortion of the response curve, keep sweep generator output at a minimum, marker pips just barely visible. Con
nacting o \(1-1 / 2\) volt battery (negative to AGC Line; positive to chassis) will allow greater signal input without distorting response curve.
e. Connect oscilloscope between point " T " and chassis ground (see Figure 4). Keep oscilloscope leads oway from chassis.
f. Allow about 15 minutes for receiver and test equipment to worm up.
g. When adjusting A3, use a NON-METALLIC alignment screwdriver with a \(1 / 8\) inch blade.


If an ooeillator slug should fall into a coil, remove the coill, move the alug retaining spring aside, lightly tap the open end
of the eill againat a colid object until the slag slips out. Replace alug and set the retaining apring into its cut-out olot.
\begin{tabular}{|c|c|c|c|}
\hline Channel Number & Channel Freq. MC & Video Corrier, MC & Sound Carrier, MC \\
\hline 2 & 54. 60 & 55.25 & 59.75 \\
\hline 3 & 60. 66 & 61.25 & 65.75 \\
\hline 4 & 66. 72 & 67.25 & 71.75 \\
\hline 5 & 76-82 & 77.25 & 81.75 \\
\hline 6 & 82. 88 & 83.25 & 87.75 \\
\hline 7 & 174-180 & 175.25 & 179.75 \\
\hline 8 & 180-186 & 181.25 & 185.75 \\
\hline 9 & 186-192 & 187.25 & 191.75 \\
\hline 10 & 192.198 & 193.25 & 197.75 \\
\hline 11 & 198-204 & 199.25 & 203.75 \\
\hline 12 & 204210 & 205.25 & 209.75 \\
\hline 13 & \(210-216\) & 211.25 & 215.75 \\
\hline
\end{tabular}


To insure best reception and ease of taning, "touchup" adjustment of the individanl channel slugs A3,
using the station signal from each of the atations in the service area, muat be made, preferably in the customurin home. See "lndividual Channel Slag Adjustment Using Televioion Signal" on page \(\%\)

Fig. 9 Overall 1 RF and
IF Response Curve.

- masuabe from menest pata

\section*{TUNER LUBRICATION}


Fig. 7. Front View of TV Tuner.

\title{
A3 Individual channel adj. al overall oscillator adj. \\  \\ AZ A4 AS
}

Fizure 8 Adjustment Location. \(\begin{gathered}\text { Top of TV Tuner, }\end{gathered}\)

\section*{TELEVISION TUNER SERVICE}

\section*{GENERAL}

The TV tuner is a sub-chassis consisting of an RF ampliFier stage and a mixer-oscillator stage.

Three different RF amplifier tubes, either 6AG5, 6BC5 or \(6 C B 6\), are used in this tuner. Although these tubes have similar characteristics and are generally interchangeable is advisable to check the RF amplifier curve with a swee generator and oscilloscope after replacement. A dual triode 656 tube is used in the mixer-oscillator stage.

Channel selection is accomplished by rotation of the tuner turret assembly, which has a separate set of two coils for each of the 12 television channels. Each set consists of an antenna coil in one assembly, and a mixer-oscillator coil in another. Coils are the snop-in type. Coils can be identified as to channel by the number stamped on the outside of the coil assembly. A tuning control permits fine adjustment of oscillator frequency.

The high frequencies used in television make it necessary that extreme care be exercised in servicing tuners.

Location and lead dress of components and wiring are usually very critical. Wiring leads, acting os small inductances or capocities, may appreciably alter e
of critical circuits at high frequencies.

Parts location and ground connections should be as originally made. When replacing components, it is importart that they be replaced with parts of itentical electrical characteristics and physical size.

\section*{TUNING CONTROL}

The Tuning control is a variable dielectric type condenser The normal tuning range of the Tuning control for high channels
MC.
slight rubbing of the dielectric rotor of M104 against the grounded stator plate M107 is intentional, in order to avoid vibration with resulting microphonics. However the dielectric rotor should not be allowed to contact the circular disc riveted to the body of the tuner.

The Tuning control is permanently set at the factory and cannot be readjusted for frequency tuning range.

Refer to parts list for temperature coefficients, tolerances, and other essential description.
Note resemblance between some ceramic con
Also note that replacement of lator-mixer tube) may cause some slight detuning of circuits. This is due to the inherent differuning of tuner electrode capacitances. When replacing \(6 / 6\) tubes it is \(r e c\) ommended that several tubes be tried in order to select a tube which will cause least oscillator frequency shift This is easily checked by noting the amount of rotation of the Tuning control required to tune in the television signal. It is recommended that this check be made on the high channels. Make individual channel slug adjustments as instructed on page

Channel snap-in coils must be handled with care. Do not disturb coil windings. Also be sure the coils are properly paired for the indicated channel number, and that coils follow proper sequence when reassembled in the turret drum. For proper reference of tuner shaft in relation to coil position refer to figure 7.

\section*{TUNER REPLACEMENT}

Replacement of the complete tuner should generally never become necessary since electrical and mechanical parts are easily replaceable. At time of publication, the manufacturer can supply a replacement tuner on an exchange basis, if you are unable to make repoirs.

\section*{REMOVING CHANNEL COILS}

Insert a screwdriver blade between the coil retainer spring and the turret end plate. Twist the blade away from the turret and lift the end of the coil upward.

\section*{CLEANING CONTACTS}

Remove several sets of coils from furret and rotate turret o position making contact points of contact plate accessible or cleaning.

Using asmall, stiff brush and carbon tetrachloride, clean Remtact surfaces of stationary contacts.
Remove accumulated dust or grease from stationary contacts and contact plate with a soft canvas cloth dampened moved with a soft cloth dampened with alcohol.

Clean contact surfaces of cotatimg

In general the lubrication applied to points of wear or friction at time of manufacture should make lubrication seldom, if ever necessary. However, should tuner lubrication bocome necessary, it is important that the correct amount and ype of lubricant be used.

Using a clean brush, apply a film of switch contact oil, Viscosity Oil Co. '7069) to the surfaces of the coil contacts lubricate bearing points.
yoseline or pefaces of all other moving parts with ight yoseline or preferably Viscosity Oil Co. \({ }^{1} 8857\) lubricant. CAUTION: Do not use lubriplate or any similar lubricant containing zinc or cadmium.

\section*{ADJUSTING CONTACT SPRINGS}

Should the stationary contact springs make poor contact due to insufficient tension, remove several sets of coils from the turret. Rotate the furret to position making the boltom of blade screwdriver, adjust the or observation. With a norrow fully bending the spring inward until highest point an sring extends about \(9 / 64\) of an inch above the plastic sufface of the contact plate. With correct tension of the contact pring, the spring should clear the flat surface of the turret iil the spring should clear the flat surface of the turre

OSCILLATOR SLUGS IN TOO FAR

If HF oscillator slugs ' 'fall into'" coil form, remove the channel coil, move the slug retaining spring M112 aside, and tap the coil ossembly until the slug slips forward. Set the the slug reting spring into position; it should rest firmly ogainst

\section*{REMOVING TUNER TURRET ASSEMBLY}
a. Remove retaining bracket M107 in front of the tuner . Remove rotor shoft assembly M104, rotor contact spring of parts removal.
Remove front and rear turret retaining springs M125 by pressing straight end oway from tab on chassis.
. Using a screwdriver blade at the side of the tuner, press the detent spring M122 and roller M121 away from the

\section*{turret detent plate. \\ . Grosp tuner shaft and slip out of end plate bearings}

\section*{REPLACEMENT OF THE UNGROUNDED STATOR} PLATE OF TUNING CONTROL

Stator plate Mll8 is replaced with wiring lead and trim mer condenser C5 attached, because it is difficult to solder the wire lead to the silver plated surface on the ceramic stato plate disc.
To replace the stator plate, remove the furrel assembly emove mounting rivets from stator plate by drilling out o lipping them out with diagonal wire cutters. Remove trim mer screw M115 and locking nur M114 from trimmer condenser C5. Unsolder wiring lead connecting trimmer to terminal on contact plate.
Assemble the replacement stator plate (M118) by placing the cerdmic button over the \(5 / 8^{\prime \prime}\) hole in the chassis with the wiring lead extending into the chossis. Place the mounting bracket over the ceramic button and mount securely using
\(4 \times 3 / 16\) round head machine screws with \(4-40 \times 3 / 16\) the nuts and 44 shake proof machine screws with \(4-40 \times 3 / 16\) hox denser C5 in chossis and solder wire lead to it rimmer conminal on the contact plate making this lead as shiginal ter ble. Dress wiring lead from ceramic stator plate to pimmer condenser C 5 so it does not come in contact with the turret drum. After replacement of the stator plate, odiust trimmer condenser C5 (overall oscillator adjustment).

\section*{REMOVING CONTACT PLATE ASSEMBLY M128}
a. Remove turret
b. Remove the mounting screws at the front and rear of Contact Plate and Bracket Assembly M123.
c. Unsolder both ends of contact plate ossembly. Press outward the front and rear tuner chassis end plates.
d. To free contact plate assembly, release the contact plate tabs by pushing them owsy from the slots in the end plates. e. Unsolder all connections to contact plate. Unsolder the solder joint holding contact plate to the center portition of the tuner chassis.
f. Reassemble in the same manner.


©John F. Rider

\section*{PARTS LIST}

\section*{RESISTORS}



```

Ambemysensmemm" mamuss
Ssicmamoms-

```

```

 *)
    ```




SCHEMATIC SUPPLEMENT
NOTE:
WHEN \(6 A G 5\) OR GBC5 TUBES ARE USED FOR 3.V4, AND V5. PIN NO 7 IS UNCONNECTED.

\section*{CHANGES IN MODEL 217 CHASSIS}

The supplement to the schematic shows the changes in the video IF amplifier made. The changes in the sync separator and DC restorer were also incorporated into some chassis.
The changes in the IF amplifier were made to improve sensitivity and stability. The changes in the DC restorer and sync separator improve the operation of the sync circuit and also improve the operation of the DC restorer so that the brightness control requires a minimum of adjustment when the contrast control is changes.
The following table should be substituted for the table labeled "IF AMPLIFIER ALIGNMENT".

\(117 \mathrm{~V}-60 \mathrm{mac}\) oner
ROM WaTts
RMA.COOE
217

\section*{IF AMPLIFIER ALIGNMENT}
a. Disconnect antenna; connect jumper wire across terminals.
b. Set receiver to channel 13 or other unassigned high channel to prevent interference during IF alignment.

Set Picture control fully to right
c. Allow about 15 minutes for receiver and test equipment to warm up.
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & \begin{tabular}{c} 
SIGNAL GEN. \\
FREQUENCY \\
(MC)
\end{tabular} & \begin{tabular}{c} 
VTVM AND SIGNAL \\
GENERATOR \\
CONNECTIONS
\end{tabular} & \begin{tabular}{c} 
INSTRUC- \\
TIONS
\end{tabular} & ADJUST \\
\hline 1 & 25.2 & \begin{tabular}{l} 
VTVM high side to test \\
point"T", low to chas- \\
Sis. R.F. gen. high side \\
to floating tube shield \\
on 6J6. Low to chassis.
\end{tabular} & \begin{tabular}{l} 
Use VTVM 3 \\
volt DC scale. \\
Adjust signal \\
generator to \\
maintain ap- \\
proximately 1 \\
volt output.
\end{tabular} & \begin{tabular}{c} 
L4 \& L2 \\
for Max.
\end{tabular} \\
\hline 2 & 23.0 & \begin{tabular}{l} 
L1 \& L3 \\
for Max.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
To insure correct I.F. alignment, make the "I.F. Response Curve \\
Check" given below
\end{tabular} \\
\hline
\end{tabular}

When ordering replacements, be sure to give complete descrip-
tion of part, chassis number, model number, and any other pertinent information in addition to part number if available.

\section*{SPECIFICATIONS}
Direct View Electromagnetic Picture Tube
14＇＂，Rectangular
\(17^{\prime \prime}\) Rectangular
20＇Rectangular 1＇＂Rectangula

Operating Voltage 110－120 60 Cycles
Wattage 175 Watts
Input Impedance and Transmission Line
ance and 75 ohm balanced（between antenna terminals） shield to chassis and inner conductor to either antenna terminal

Intermediate Frequencies
ideo－ 25.75 Mc ．
Sound－ 21.25 Mc ．
Intercarrier Sound－ 4.5 Mc
Fuse Location
Horizontal output fuse，\(F_{1}\) ，is located inside the high voltage enclosure．
The line fuse，\(F_{2}\) ，is located in a fuse holder on the rear apron of the chassis．
\begin{tabular}{|c|c|c|}
\hline V1 & ment & \\
\hline V1 & 6C36 & R．F．Amp． \\
\hline V2 & 6 J 6 & Mixer and Osc． \\
\hline \(\vee 3\) & 6CB6 & 1 st I．F．Amp． \\
\hline V4 & 6CB6 & 2nd I．F．Amp． \\
\hline V5 & 6CB6 & 3rd I．F．Amp． \\
\hline V6 & 6AL5 & Video detector \\
\hline V7 & 6AC7 & Video Amp． \\
\hline V8 & 6AU6 & Sound I．F． \\
\hline V9 & 678 & Ratio Det．\＆Audio Amp． \\
\hline V10 & 6V6GT & Audio Output \\
\hline V11 & 12AU7 & Sync．Separator \\
\hline V12 & 6BL7GT & Vert．Osc．and Output \\
\hline V13 & 6AU6 & AGC Key tube \\
\hline V14 & 6AL5 & Hor．Phase detector \\
\hline V15 & 6SN7GT & Horizontal oscillator \\
\hline V16 & 6BG6G & Horizontal output \\
\hline V17 & 1B3GT & Pulse rectifier \\
\hline V18 & 6W4GT & Damping Diode \\
\hline V19 & 5U4G & B plus rectifier \\
\hline V20 & 17BP4 & 17＇＇CRT \\
\hline & 20DP4 & 20＇CRT \\
\hline & 21EP4 & \(21^{\prime \prime}\) CRT \\
\hline & 24AP4 & 24＇ CRT \\
\hline
\end{tabular}

CENTERING
ADJUSTMENT


When installing，each set should be checked for picture entering，picture tilt，shaded corners，proper size，linearity， etc．，to insure best performance．It is especially important that the Ion Trap be checked，and that the Channel Slugs be adjusted upon installation or servicing of every set to insure ease of tuning．Any adjustments required should be made as described here

For best results，all checks or adjustments should be made using a transmitted relevision test pattern．A mirror placed in front of the picture tube screen will be of help in observing the picture while adjusting rear chassis controls．

\section*{HIGH VOLTAGE WARNING}

Operation of this receiver outside of its cabinet involves a shock hazard from the power supplies．No work should be attempted on this receiver by anyone who is not thoroughly familiar with the precautions necessary when working on the high voltage equipment．

\section*{EXTERNAL ANTENNA}

When an external indoor or an outdoor antenna is re－ quired，be sure to disconnect the built－in antenna leads from the antenna terminal board，tape them and place them away from the chassis．

\section*{OPERATING THE TELEVISION RECEIVER}
the controls of this receiver are operated conventionally． When tuning，carefully adjust the TUNING control for the best picture

INDIVIDUAL CHANNEL SLUG ADJUST－
MENT＇\(A 3\)＇＇USING TELEVISION SIGNAL
Individual channel oscillator adjustment of every re－ ceiver should be checked upon installation or servicing．If this adjustment is properly made，it is possib ne station to onother by merely turning the CHA Will correct oscillator channcl Tuning control．

Charmel slug odjustment can be inade without removiry the chassis from the cabinet．Adjust as follows：
a．Turn the set on and allow 15 minutes to warm up．
Set the CHANNEL knob for a station in operation．
Set all other controls for a normal picture
Set TUNING control at center of its range byro
taring it approximately halif－way．
d．Remove the CHANNEL and TUNING knobs
．Insert a \(1 / 8^{\prime \prime}\) blade，NON－METALLIC screw－ diver in the \(1 / 4\)＂hole adjacent to the channe uning shoft．For each channel in operation carefully adjust the channel slug for the best pic－ ture with clear detail．Be sure that the Tuning control is set at the center of its range before ad－ justing each channel slug．Only slight rotation of the slug will be required；furning the slug in slug folls into the ill fall we coil．（If the etaining spring aside，lightly top the open end of the coil until the slugslips out．Replace slug and lips out．Replace slug and re－set retaining spring；）

If a number of slugs are found to tune all the way in o all the way out，or if the 6 J 6 oscillator－mixer tube has been replaced，it may be necessary to make the＂Overall Oscil－ lator Adjustment＂as discussed below．

OVER－ALL OSCILLATOR ADJUSTMENT＂AI＂ USING TELEVISION SIGNAL

Over－all oscillator adjustment should only be necessary when replacing the oscillator－mixer tube（ 6 J 6 ），or when all channel slugs are off in the same direction．When replacing he oscillator－mixer tube（ 6 J O ），it is recommended that sev－ eral tubes be tried to select one which will cause least oscil lator frequency shift．

Al is generally adjusted so that approximately \(3 / 16^{\prime \prime}\) of crew thread is exposed

\section*{Adjust as follows：}
a．Follow steps＇＇\(a\)＇＇，＇\(b\)＇＇，and＇＇\(c\)＇above
b．Carefully adjust trimmer C6（figure 8 ）for bes
picture with clear detail
c．Check and，if necessary，make individual channe adjustments as indicated above．

\section*{ION TRAP ADJUSTMENT}

To properlyadjust the Ion Trap，Focusing Device and the Deflection Yoke the following procedure should be followed

The Deflection Yoke should be placed in position clos－ est to the＂bell＇＂of the Cathade Ray Tube as far forward on the neck of the tube as is possible．The Focus Device is nex in line and Ion Trap last．See Figure 1.

The antenna should be connected to the receiver， the set should be turned on，the brilliance control lurned to MAXIMUM and the contrast control at MAXIMUM．

The lon Trap should be moved forward and backword and at the same time rotated to achieve the brightest roster on the face of the CRT

Reduce the brilliance control to a point slightly over normal brightness and adjust the Focus Control on the rear of the Focus Device with a non－magnetic screwdriver for clear－ est and sharpest horizontal sweep lines．The lon Trap should then be readjusted slightly for the brightest response on the face of the tube

The Focus Device aperture should be moved to secure a complete raster centered and with no corners cut off

Finally the Deflection Yoke should be rotated to＂square＂ the raster with the chassis as a reference．The screws on the yoke brackets should then be set．

\section*{HEIGHT，WIDTH AND LINEARITY}

To adjust the overall size and linearity of the picture it is almost mandatory that a pattern transmitted from a local station be used．Linearity adjustments，particularly，cannot be remembered that in moving whansmissions．It should also be ing received，that pictures tronsmitted from different stave

The Horizontal Drive trimmer should then be adjusted for the best compromise between maximum brightness and good horizontal linearity. Misodiustment of the Horizontal
drive condenser will show as bright vertical bars on the left drive condenser wide of the picture. The Width Control should then be backed out until the picture is the correct width.

Vertical Linearity and height odjustment are made in the conventional manner. It will be noted that there is some interaction between these controls.

HORIZONTAL OSCILLATOR ADJUSTMENT
The set should hold horizontal sync over approximately one turn of the horizontal hold control. This will vary with signal strength of the received station. The control will bind of the extreme ends of its rotation. Do not attempt to force it to turn ofter binding is encountered or setious domage will result. If the set does not hold at a point in the center of the control ronge it indicates trouble in the horizontal oscillator or sync phase detector.

\section*{PICTURE TUBE REPLACEMENT}

Important: After replacing any picture tube, be sure I make all defiection adjustments -- Picture Centering, Deflec tion Yoke, and lon Trap -- as given on page 3. Especially WARN: picture centering.
WARNING: Because of the high 2 nd anode voltage used (approximately 12 KV ) and the possibility of danger of implosion due to high vacuum, the following precautions should be noted when removing or replacing picture tubes
a. Before handling a picture tube, remove the 2nd anode static charge from both the picture tube and the 2nd anode connector by shorting them to chossis.
b. Shatterproof goggles and heavy gloves should be w. Alwoys while hondling or installing a picture tube. Alwoys handle the picture tube very carefully
DO NOT pick the fube up by the neck.

\section*{VOLTAGE CHART}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{TUBE} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline VI & 6 CB6 & \(0^{\circ}\) & \(0^{6}\) & 0 & 6.3AC \({ }^{6}\) & 105 & \(105^{6}\) & \(0^{6}\) & - & - \\
\hline v2 & 6 J 6 & 105 & \(105^{\text {b }}\) & \({ }^{\circ}\) & 6.3AC \({ }^{\text {d }}\) & \(0^{\phi}\) & \(0^{¢}\) & \({ }^{\circ}\) & - & - \\
\hline V3 & 6C86 & -0.4 & 0.5 & 6.3AC & 0 & 90 & 90 & 0 & - & - \\
\hline V4 & \(6 \mathrm{CB6}\) & -0.4 & 0.5 & 6.3AC & 0 & 95 & 95 & 0 & - & - \\
\hline V5 & 6CR6 & 0 & 1.4 & 6.3AC & 0 & 100 & 100 & 0 & - & - \\
\hline V6 & 6AL5 & 0 & 0 & 6.3AC & 0 & 0 & 0 & -0.5 & - & - \\
\hline V7 & 6 AC7 & 0 & 6.3AC & 0 & -0.5 & 1.4 & 100 & 0 & 225 & - \\
\hline v8 & 6 au6 & -0.3 & 0 & 6.3AC & 0 & 100 & 100 & 0.6 & - & - \\
\hline v9 & 678 & -0.4 & -0.8 & -0.4 & 0 & 6.3AC & 0 & 0 & -0.8 & 75 \\
\hline V10 & 6 V 6 & NC & 0 & 225 & 250 & 0 & NC & 6.3AC & 10 & - \\
\hline VII & 12AU7 & 60 & 10 & 10 & 6.3AC & 6.3AC & 10 & -0.7 & 0 & 0 \\
\hline V12 & 6BL7 & -0.9 & 320 & 19 & -30 & 75 & 0 & 0 & 6.3AC & - \\
\hline V13 & 6 AU6 & 235 & 250 & 250 & 6.3AC* & \(+\) & 350 & 250 & - & - \\
\hline V14 & 6AL5 & 0 & 0 & 6.3AC & 0 & 6 & 0 & -4 & - & - \\
\hline V15 & 6SN7 & -7 & 120 & 13 & 1.3 & 320 & 13 & 6.3AC & 0 & - \\
\hline VI6 & 6BG6 & -25 & 0 & 0 & NC & -25 & HC & 6.3AC & 270 & - \\
\hline V17 & 183 & \(\dagger\) & 1 & \(\dagger\) & \(\dagger\) & \(\dagger\) & \(\dagger\) & \(\dagger\) & \(\dagger\) & - \\
\hline V18 & 6W4 & NC & NC & 550 & NC & \(\dagger\) & \(\dagger\) & 250 & 6.3AC* & - \\
\hline V19 & 504 & NC & 5AC \(\triangle\) & NC & 355AC & NS. & 355 AC & NC & 360 & - \\
\hline
\end{tabular}

TEST CONDITIONS:
NOTES:
LIME 117V. - 60 CYCLE A.C. antenna shorted-tune to chanmel 13 contrast, brightmess, \& volume at minimum. other controls in norhal operatimg position. VOLTAGES TAKEN WITH VTVM FROM POINT INDICATED TO CHASSIS EXCEPT WhERE NOTED.

TELEVISION ALIGNMENT PROCEDURE

GENERAL
Complete alignment consists of the following individual procedures. Complete alignment should be performed in this sequence.
a. IF Amplifier Alignment.
. 4.5 MC Sound IF Alignment
d. Overall RF and IF Response Curve Check and High Frequency Oscillator Alignment.

\section*{TEST EQUIPMENT}

To properly service this receiver, it is recommended thot the following test equipment be available. Note: Equipment below may be ovailable as a single unit, except for the vacuum tube voltmeter.

SWEEP GENERATOR
Sweep generator must provide sweep frequencies from 18 to 30 MC range: 10 MC sweep width.
170 to 925 MC range: 10 MC sweep widh.
70 ro 225 MC range: 10 MC sweep width
Outpur: adjustable; at least one-tenth volt maximum.
Sweep generator should preferably have a built-in
marker generator with colibration crystal for checking dial accuracy.
SIGNAL GENERATOR with crystal colibrator which can also be used as a marker generator

18 to 30 MC freque
18 to 30 MC frequency range.

50 to 90 MC frequency range.
170 to 225 MC frequency range
Must have a built-in calibration crystal for checking dial accuracy.
OSCILLOSCOPE
Standard ascilloscope, preferably one with a wide band
vertical deflection, vertical sensitivity at least .5 volt
peak-to-peak per inch
VACUUM-TUBE VOLTMETER
Standard Vacuum-tube Voltmeter with high resistance input and low voltage DC Range ( 3 volts or less). In addition, a zera center low voltoge range will be found useful.

\section*{ALIGNMENT TOOLS}

An alignment tool kit consisting of ane metallic and one non-metallic screwdriver is necessary.

\section*{SWEEP GENERATOR NOTE}

A sweep generator which does not have constant output voltoge and reasonably linear sweep frequency distribution, will produce curves which are widely different from the " "IF" Resporse Curve or Overall RF ond IF Response Curve" Shown in obtaining these curves the sweep cenerator should checked. A simple check is to observe the response curve for a set that is known to be in alignment.

Before suspecting the generator, be sure the alignment instructions in this manual have been followed corefully

\section*{IF AMPLIFIER ALIGNMENT}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
IF AMPLIFIER \\
a. Disconnect antenna; connect jumper wire across terminals. \\
b. Set receiver to channel 13 or other unassigned high channel to prevent interference
\end{tabular}} & \begin{tabular}{l}
LIGNMENT \\
during IF alignment. fully to right. \\
c. Allow about 15 minutes equipment to warm up.
\end{tabular} & Picture control receiver and test \\
\hline Step & Signal Gen. Frequency (MC) & VTVM and Signal Generator Connections & Instructions & Adjust \\
\hline 1 & 25.2 & VTVMhigh side to test point " \(T\) ", low to chassis. RF gen high & \begin{tabular}{l}
Use VTVM 3 volt DC scale. \\
Adjust signal generator to
\end{tabular} & L4 \& L2 for Max. \\
\hline 2 & 23.0 & side to floating tube shield on 6J6. Low to chassis. & maintain approximately 1 volt output. & L1 \& L3 for Max. \\
\hline 3 & \multicolumn{4}{|l|}{To insure correct I.F. alignment, make the "I.F. Response Curve Check" given below.} \\
\hline
\end{tabular}

\section*{IF RESPONSE CURVE CHECK}
(Using sweep generator and oscilloscope with sweep input to RF wixer V2).

Differences in tube gain and component values affect IF response. These differences are not apparent in alignment of IFs when using a signal generator and VIVM (single froquency align-
ment); hence it is preferable that on IF response curve check be
mode ofter completion of the IF amplifier alignment.
The IF response curve check can be mode os indicatod directly below. However, also note that a better check con be
©John F. Rider
made by feeding the sweep signal through the entire RF ond IF ystem os given under ''Overall RF and IF Response Curve Check Stop 1." The overall check should be made ofter making all Moll
Moke all control settings and connections as given in "a' Hrough " \(c\) " the IF omplifier alignment chort above
. Conmect oscilloscope between point "Ind and chossis ground, Connect sweep generator high side to tube shield of 656 (V2) osc-mixer tube. Be sure to insulate tube shield from chossis. Connect sweet generator low side to chossis close to 616 tube base. Set sweep generator to sweep the If band poss ( 19 to 29 MC).
d. If sweep generator does not have a built-in marker generator, loosely couple marker generator high side to the sweep genchossis ground.
To avoid distortion of the response curve, keep the sweep generator and marker generator outpurs of a very minimum. Marker pips should be just kept barely visible. To minimize distortion, set sweep generator output for VTVM reading
of approximately 6 volt DC, meosured between test point "Ti" and chossis. Connecting a \(1-1 / 2\) volt battery (negative to

\section*{OSCILLOSCOPE NOTE}
 When acing a wide band oneillocoope for slignment, marker plpe will be more dietinet if condenaer from 100 to 1,000 momfd. is connected neroes the oseilloecope inpat.

\section*{ALIGNMENT HINT}

After becoming familiar withalignment procedure, someservicemen simplify subsequent alignment of sets by merely using the essential alignment data given in figures below.

antasuceo mon menest peas
Figure 3 IF Response Curve.


Figure 4 Zottom View Showing Test Point Connections.


Figure 5 Top View of Chassia Showing Aligument Date

\subsection*{4.5 MC SOUND IF ALIGNMENT}
. Disconnect antenno. Connect jumper wire across terminals
. Connect signol generator high side to Pin 4 V 7 . connect low side to chossis.
c. Allow about 15 minutes for receiver and test equipworm up.
d. Set Picture control fully to the right (clockwise)
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Signal Ge Freq. (MC) & VTVM Connections & Instructions & Adjust \\
\hline 1 & \multicolumn{4}{|l|}{\begin{tabular}{l}
Since the transmitted video and sound carriers have an accurate 4.5 MC frequency difference, it in adviseable to use a TV station signal instead of a signal generator for accurate alignment of steps below. When using a television signal, it may be necessary to use a higher scale on the VTVM. ( 30 V ) \\
IMPORTANT: When using a signal generator, be sure to check it againat a crystal calibrator or other fre quency standard for accurate frequency ealibration at 4.5 MC. Accuracy required is within one kilocycle.
\end{tabular}} \\
\hline 2 & \[
\begin{gathered}
4.5 \\
\text { unmodu. } \\
\text { lated }
\end{gathered}
\] & High side to test point "Y"; common to chassis. & Use 3 volt DC scale on VTVM. Keep VTVM leads well sepa. rated from signal generator (if used) and chassis wiring. & L 6 and top of Ti for maximum (keep reducing generator output tokep
vivmat approx. 1 volt \({ }^{2}\). \\
\hline 3 & \[
\begin{gathered}
\text { See step } 1 \\
\text { for use of } \\
\text { sation } \\
\text { signal. }
\end{gathered}
\] &  & Use 3 volt zero center scale on VTVM, if available. Keep VTVM leads well separated from signal
generalor (if used) and chasxis generalor (if used) and chasnis
wiring. & Bottomof Th forzzero
On VTVM the correct zeropoint is located betvernapositive and \\
\hline
\end{tabular}
```

See Pagell for MC Chart, Fig. 6. RF Response Curve, Fig, 7, Front
Viem of T V Tuner and Fig. 8. Top of TV Tuner, Showing Adjustment
Location) Fig. \& For Test Point Location,

```

\section*{RF AND MIXER ALIGNMENT}
a. If used earlier, disconnect \(1-1 / 2\) volt bottery
b. Disconnect antenno from receiver.
c. Connect sweep generator to antenna terminals. If sweep generator does not have a built-in marke the antenna terminals. To avoid distortion
e response curve, keep sweep generator output at a minimum, marker pips just barely visible.
d. Connect oscilloscope through a 10,000 ohm resistor to test point ' W '' on tuner (Fig. 8). Keep scope eads away from chassis.
e. Allow about 15 minutes for receiver and test equip ment to warm up.
\begin{tabular}{|c|c|c|}
\hline Step & \begin{tabular}{c} 
Marker Gen. \\
Freq. (MC)
\end{tabular} & \begin{tabular}{c} 
Swoep Gon. \\
Frequency
\end{tabular} \\
\hline 1 & \begin{tabular}{c}
205.25 \\
(Video Carrier) \\
209.75
\end{tabular} & \begin{tabular}{c} 
Sweeping \\
Channel 12
\end{tabular} \\
(Sound Carrier)
\end{tabular}

Instructions
Check for curve resembling RF Response Curve shown below. If neecessary,
adjust A8, A9 and A10 (figure 9) as required. Note that adjusting A9 will hift the center of the response curve in relation to the video and sound wall rier markers. A8 and Al0 should be alternately adjusted for hest gain with
flat top appearance. Consistent with proper hand width ocation, response curve should have inaximum amplitude and marker appearance.

Check each channel operatin
Response Curve shown below
lasponse Curve shown below. in the service area for curve resembling RF In general, the adjustment performed in step 1 is sufficient to give satiofactory
response curves on all channels. However, if reasonable alignment is not response curves on all channels. (a) Hever, if reasonable alignment is not ob-
tained on a particular channel. a) ehek to see that coils have not been inter mixed, or (b) try replacing the pair of coile for that particular channel, or
() repeat atep 1 for the weak channel as a compronise adjustment to (c) repeat step 1 for the weak channel as a compronise adjustment to favor
this particular channel. If a conpromise adjustment is made, other channele this particular channe. in a coinpromise ad juatment is made, other channel
operating in the service area should be checked to make certain that the;
have not been appreciably affected.

OVERALL RF and IF RESPONSE CURVE CHECK (Step 1) and HF OSCILLATOR ALIGNMENT (Step 2)
(Using sweep generator and oscilloscope.)

\section*{IMPORTANT}

Since \(H F\) Oscillator alignment requires absolute frequency accuracy, a station signal is generally best suited for alignment of the individual channel oscillator slugs A3. Theprocedure for using astation signal (and without removalof chassis) is given in
nel Slug Adjustment Using Television Signal on pagell.

The procedure for HF Oscillator alignment with an oscilloscope and a sweep generator is givenobelow
a. Disconnect antenno
b. Disconnect signal generator and VTVM (if used earlier).
c. Set the Tuning control at half ratation by rotating it approximately \(150^{\circ}\) as shown in Figure 7 .
d. Connect sweep generator to antenno terminals. If sweep generator does not have a built-in marker generator, loosely couple a marker generator to the antenna terminols. To avoid dision of whe minimum, marker pips just barely visible. Con-
necting a \(1-1 / 2\) volt battery (negative to AGC Line; positive to chassis) will allow greater signal input without distorting response curve
e. Cannect oscilloscope between point " T " and chassis ground (see Figure 4). Keep oscilloscope leads away from chassis.
Allow about 15 minutes for receiver and test equipment to warm up.
When adjusting A3, use a NON-METALLIC alignment screwdriver with a \(1 / 8\) inch blade.
\begin{tabular}{|c|c|c|c|}
\hline Step & Marker Gen. Freq. (MC) & Sweep Gen. Frequency & Instructions \\
\hline 1 & \multicolumn{3}{|l|}{Sweep the RF band pass (channel 13 or other nanassigned high channel) and check the shape of the overall response curve obtained against the ideal curve shown below. If shape of curve is not within limits shown, it will ive necessary to repeat the IF Amplifier Alignment. The IFs must be accurately aligned before correct oscillator adjustment can be made.} \\
\hline
\end{tabular} will ie necessary to repeat the IF
oscillator adjustment can be made.
\[
\begin{aligned}
& \begin{array}{l}
\text { Set the Tuning control at half rotation (see figure 7). Check to see whether } \\
\text { osicillato alignment in required by comparing the location of the video and } \\
\text { ocul }
\end{array} \\
& \begin{array}{l}
\text { sound earrier markers (sound carrier mariker may or mang not be visibo e) on } \\
\text { the response curve obtained for each channel with the "Overall RF and if }
\end{array}
\end{aligned}
\]

> major number of channels or on only a few channels.
> \(\begin{aligned} & \text { If the morkers for a maior number of channels are far off in the same diree } \\ & \text { tion, adjust the overall oscillator adjustment A1 (on channel } 13 \text { or other }\end{aligned}\) unassigned high channel) so that the video carrier marker is located as shown \(\begin{aligned} & \text { in the response curve siven below. (If the video carrier marker is at the } \\ & \text { proper point on the curve, the sonnd carrier marker should locate at the }\end{aligned}\) \(\begin{aligned} & \text { proper point on the curve, the sound carrier marker should locate at the } \\ & \text { proper point on the carve.) Be sure the Tuning control is at half rotation }\end{aligned}\) \(\begin{aligned} & \text { proper point on the carve.) Be sure the Tuning control is at half rotation } \\ & \text { while making this adjustment. Recheck all channels individually for proper }\end{aligned}\) location.
\(\begin{aligned} & \text { vidual channel slue A3, (uning a NON-METALLLC alignment pool with a } 1 /{ }^{\prime}{ }^{\prime} \\ & \text { blade) so that the video carrier marker is located as shown in the response }\end{aligned}\)
\(\begin{aligned} & \text { curve given below. Only slight rotation of the slug will be required; turuing } \\ & \text { the slug in too far will cause the slug to fall into the coils." (If the video ear- }\end{aligned}\)
\(\begin{aligned} & \text { The slug in too far will eause the slus to fall into the coil.* (If the video ear- } \\ & \text { rier marker } \\ & \text { should } \\ & \text { at }\end{aligned}\) shor markert locat at the proper point on the curve.).
is at half rotation while making this adjustment.

To insure best reception and ease of tuning, atouchup adjustment of the individual channel slags A3,
usink the station signal (rom each of the stations in the service area, must be made, preferably in the customusink the stationsignal rom each of the stations in the service area, must be made, prefera
ur", home. See "Individual Channel Slug Adjustment Using Television Signal" on page il.

Fig. 9 Overall RF and
IF Response Curve.
(2)
a nasulefo from menest par

If an oscillator slus should fall into a coil, remove the coil, move the slug retaining spring aside, lightly tap the open end
of the coil againat a colid object antil the slug slips out. Replace slug and met the relaining spring into its cutout


Full skirt of curve will not be visible unless
Figure 6. RF Reppore Cund
\(\left.\begin{array}{|cccc|}\hline \text { Chanel } & \begin{array}{c}\text { Channel } \\ \text { Freq. }\end{array} & \begin{array}{c}\text { Video } \\ \text { Coarrier, } \\ \text { Cumber }\end{array} & \begin{array}{c}\text { Sound } \\ \text { COrrier, }\end{array} \\ \text { MC }\end{array}\right)\)


\section*{TELEVISION TUNER SERVICE}

\section*{GENERAL}

The TV tuner is a sub-chassis consisting of an RF amplifier stage and a mixer-oscillator stage.

Three different RF amplifier tubes, either 6AG5, 6BC3, or 6 CB6, are used in this tuner. Although these tubes have similar characteristics and are generally interchangeable, it is advisable to check the RF amplifier curve with a sweep generator and oscilloscope after replacement. A dual triode 656 tube is used in the mixer-oscillator stage.

Channel selection is accomplished by rotation of the uner turret assembly, which has a separate set of two coils for edch of the 12 television channels. Each set consists of an antenna coil in one assembly, and a mixer-oscillator coil in as to channel by the snop-in type. Coils can be identified coil assembly. A Tuning control permits fine adiustment oscillator frequency.

Thator frequency
The high freque
The high frequencies used in television make it necessary extreme care be exercised in servicing tuners.
ally very critical. Wiring leads, acting as small inductances or capacities, may appreciably alter electrical characteristics of critical circuits at high frequencies.

Parts location and ground connections should be as originally made. When replacing components, it is importart that they be replaced with parts of identical
electrical characteristics and physical size.


Figure 8. \(\begin{gathered}\text { Tidjustment } \\ \text { Ofocation. }\end{gathered}\)

Refer to parts list for temperature coefficients, tolerances, and ther essential description.
Note resemblance between some ceramic con-年sers and resistors. If in doubt, check Schematic Also note that replacement of tubes (especially 6 J 6 oscil-lator-mixer tube) may cause some slight detuning of turier electrode capacitances. When replacing differences of interommended that several tubes be tried in order ta select a tube which will cause least oscillator frequency shift. This is easily checked by noting the amount of rotation of the Tuning control required to tune in the television signal. It is recommended that this check be made on the high channels. Make individual channel slug adjustments as instructed on page 1 .

Channel snap-in coils must be handled with care. Do not disturb coil windings. Also be sure the coils are properily paired for the indicated channel number, and that coils follow proper reference of tuner shaft in relation torret drum. For fer to figure 7.

\section*{TUNER REPLACEMENT}

Replacement of the complete tuner should generally never become necessary since electrical and mechanical parts are easily replaceable. At time of publication, the manufacturer can supply a replacement tuner on an exchange basis, if you
are unable to make repairs.

\section*{TUNING CONTROL}

The Tuning control is a variable dielectric type condenser The normal tuning range of the tuning control for high chan－ rels is plus or minus 3 MC ，for low channels plus or minus 1.5 MC．

Slight rubbing of the dielectric rotor of M104 against the grounded stator plate M107 is intentional，in order to avoid rotor should not be allowed to contact the circular disc riveted to the body of the tuner．
The Tuning control is permanently set at the factory and cannot be readjusted for frequency tuning range．

\section*{REMOVING CHANNEL COILS}

Insert a screwdriver blade between the coil retainer spring and the turret end plate．Twist the blade away from the turret and lift the end of the coil upward．

\section*{CLEANING CONTACTS}

Kemove several sets of coils from turret and rotate furret to position making contact points of contact plate accessible for cleoning．

Using a small，stiff brush and carbon tetrachloride，clean contact surfaces of stationary contacts．

Remove accumulated dust or grease from stationary con－ acts and contact plate with a soft canvas cloth dampened with carban tetrachloride．Accumulated rosin may be re－ moved with a soft cloth dampened with alcohol．

Clean contact surfaces of rotating coils in same manner．

\section*{TUNER LUBRICATION}

In general the lubrication applied to points of wear or Iriction at time of manufacture should make lubrication sel－ dom，if ever necessary．However，should tuner lubrication become necessary，it is important that the correct amount and type of lubricant be used．

Using a clean brush，apply a film of switch contact oil， Viscosity Oil Co．＇7069）to the surfaces of the coil contacts and stationary contact points．

Lubricate bearing surfaces of all other moving parts with light yaseline or preferably Viscosity Oil Co．\({ }^{\prime} 8857\) lubricant CAUTION：Do not use lubriplate or any similar lubricant containing zinc or cadmium．

\section*{ADJUSTING CONTACT SPRINGS}

Should the stationary contact springs make poor contact due to insufficient tension，remove several sets of coils from the turret．Rotate the furret to position making the bottom of
the contact strip accessible for observation．With a narrow blade screwdriver，adjust the contact spring tension by care－ fully bending the spring inward until highest point on the spring extends about \(9 / 64\) of an inch above the plastic surface of the contact plate．With correct tension of the contact spring，the spring should clear the flat surface of the furret coil by about \(1 / 64\) of an inch．

\section*{OSCILLATOR SLUGS IN TOO FAR}

If HF oscillator slugs＇fall into＇coil form，remove the channel coil，move the slug retaining spring M112 aside，and ap the coil assembly until the slug slips forword．Ser the lug retaining spring into position；it should rest firmly against the slug．

\section*{REMOVING TUNER TURRET ASSEMBLY}
a．Remove retaining bracket M107 in front of the tuner．
b．Remove rotor shaft assembly M104，rotor contact spring MI24 and fibre wast
of parts removal． pressing straight end away from tab on chassis．
．Using a screwdriver blade at the side of the tuner，press the detent spring M122 and roller M121 away from the turret detent plate．
e．Grasp tuner shaft and slip out of end plate bearings．

\section*{REPLACEMENT OF THE UNGROUNDED STATOR PLATE OF TUNING CONTROL}

Stator plate MI18 is replaced with wiring lead and trim－ mer condenser C5 attached，because it is difficult to solder the wire lead to the silver plated surface on the ceramic stator plate disc．

To replace the stator plate，remove the turret assembly． Remove mounting rivets from stator plate by drilling out or clipping them out with diagonal wire cutters．Remove trim－
mer screw M115 and locking nur M114 from frimmer con－ denser C5．Unsolder wiring lead connecting trimmer to ter－ minal on contact plate．
Assemble the replacement stator plate（M118）by placing the cerdmic button over the \(5 / 8^{\prime \prime}\) hole in the chassis with the wiring lead extending into the chassis．Place the mounting bracket over the ceramic button and mount securely using
\(4 \times 3 / 16\) round head machine screws with \(84-40 \times 3 / 16\) hex \(4 \times 3 / 16\) round head machine screws with \(4-40 \times 3 / 16\) hex nuts and 4 shake proof lock washers．Mount trimmer con－
denser C5 in chassis and solder wire lead to its originai ter－ minal on the contact plate making this lead as short as possi－ ble．Dress wiring lead from ceramic stator plate to trimmer condenser C 5 so it does not come in contact with the turret drum．After replacement of the stator plate，odjust trimmer condenser C5（overall oscillator adjustment）．

REMOVING CONTACT PLATE ASSEMBLY M123
a．Remove turret．
b．Remove the mounting screws at the front and rear of Con－ tact Plate and Bracket Assembly M123．
c．Unsolder both ends of contact plate assembly．Press our－
d．To free contact plate assembly，relend plates．
d．To free contact plate assembly，release the contact plate
tabs by pushing them away from the slots in the end plates
e．Unsolder all connections to contact plate．Unsolder the solder joint holding contact plate to the center partition of the tuner chassis．
f．Reassemble in the same manner．

\section*{INTERMITTENT PICTURE AND SOUND}

This trouble is most commonly due to an intermitten ube，loose tube socket contacts，dirty or loose coil contacts loose or cold（rosin）soldered joints，or loose or vibrating parts in the underside of the tuner chassis．

When replacing tubes，see tube note under＂General＇＂
Loose tube socket contacts may sometimes be iightened by compressing contacts with an ice pick or a large needle． Defective tube socket contacts can sometimes be replaced individually．

For cleaning and adjusting coil contacts，see＇Cleaning Contacts＂and＂Adjusting Contact Springs＇

Loose or intermittent connections can be found by tapping components or rotating the channel selector and watching the pattern on an oscilloscope．A visual inspection or a continu ity check will also be helpful．

Apply a hat soldering iron to soldered joints which ap－ pear doubful．Coution：Do not change lead lengths or move components other than to slightly separate parts or leods which See discussion under＂General＇

\section*{SOUND BARS IN PICTURE （DUE TO MICROPHONICS）}

Microphonics in the TV Tuner will generally produce sound bars in the picture or a ringing sound as the volume is turned up or as the cabinet is tapped lightly

Check for microphonic oscillator mixer tube，V2（ \(6 \mathbf{5}\) ）． It is recommended that several tubes be tried，in order to se－ lect a tube which will be least microphonic and at the same time，causes a minimum of oscillator frequency shift，as noted with rotation of Tuning control．In some cases，replacement of the oscillator mixer fube，may necessitate readjustment of trimmer condenser Al（C5）（overall oscillator odiustment）．

Microphonics can also be due to vibration of loose wires or loose components．In some instances，the ceramic stator plate MII8（funing stator）has been a source of microphonics ince the rivets which fasten this part to the tuner chassis may be loose．This can be remedied by soldering the plate mount－ ing bracket to the funer chassis．To solder the plate mounting bracket to the funer chassis，remove the grounded Tuning stator plate M107，and move the tuner shaft M104 forward．

Also，check for any mechanical＇rub＇＇such as loose screws which hold the tuner sub－chassis to the main chassis， loose solder connection from tube shield base to chassis，or extremely dry turer shaft．





©John F. Rider



\section*{OLYMPIC TELEVISION RECEIVERS, CHASSIS TYPES TM AND TN}

These models are twenty tube direct viewing television receivers differing only in type of cabinet, size of speaker and their use in conjunction with a radio receiver and automatic record changer in the combinatio models. A \(17^{\prime \prime}\) electrostatically focused rectangular tube ( 17 HP 4 ) is used in the \(17^{\prime \prime}\) models and a \(21^{\prime \prime} \mathrm{mag}\) netically focused rectangula

Service information for radio chassis in combination models will be found in the Operating and Service instructions (|B-3020), which is furnished with each set along with operating instructions for the automatic record changer.

ELECTRICAL AND MECHANICAL SPECIFICATIONS
\begin{tabular}{|c|c|c|}
\hline TUBE COMPLEMENT & REF. NO. & FUNCTION \\
\hline \(6 \mathrm{BK7}\) or 6BQ7 & VI & RF Amplifier \\
\hline bJb & V2 & RF Oscillator and Converter \\
\hline 6AU6 & V3 & 2nd Sound IF Amplifier \\
\hline 6AL5 & V4 & Ratio Detector \\
\hline 6AV6 & V5 & Audio Amplifier \\
\hline 6W6/GT & V6 & Audio Output \\
\hline 6CB6 & V7 & Ist Video IF Amplifier \\
\hline \({ }_{6}\) CB6 & V8 & 2nd Video IF Amplifier \\
\hline 6CB6 & V9 & 3rd Video IF Amplifier \\
\hline 6 U8 & \[
\begin{aligned}
& \text { VIOA- } 1 / 2 \\
& \text { VIOB- } 1 / 2
\end{aligned}
\] & Video Detector \& AGC Ist Sound IF Amplifier \\
\hline 6 AC7 & VII & Video Amplifier \\
\hline \(12 \mathrm{AU7}\) & V12 & Sync Separator \& Clipper \\
\hline \(12 \mathrm{AU7}\) & V13 & Sync Amplifier \& Noise Clipper \\
\hline 12BH7 & V14 & Vertical Oscillator \& Amplifier \\
\hline 6SN7/GT & V15 & Horizontal Oscillator \& AFC \\
\hline 6BQ6/GT & V16 & Horizontal Output \\
\hline IB3/GT & V17 & High Voltage Rectifier \\
\hline 6W4/GT & V18 & Damper \\
\hline 5U4/G & V19 & Power Rectifier \\
\hline 17HP4 ? & & \Picture Tube - TM Chassis \\
\hline \(21 \mathrm{ZP4A}\) ) & V20 & \}Picture Tube - TN Chassis \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Power Supply \\
Power Consumption Speaker:
\end{tabular}}} & 105-125 Volts 60 Cycle AC only 185 Watts TM - 200 Watts TN \\
\hline & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(17756,21758.21 T 69.21 T 70\).
21774}} & 5"' PM \\
\hline & & 8" PM \\
\hline \multicolumn{2}{|l|}{17C57, 17K55, 21-65, \(21 \mathrm{C6} 68,21 \mathrm{C} 72.7\)} & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{21C73, \(21060,21 \mathrm{D} 64,21 \mathrm{K61.2}\)}} & \(10^{\prime \prime} \mathrm{PM}\) \\
\hline & & \\
\hline \multicolumn{2}{|l|}{Voice Coil Impedance} & 3.2 Ohms at 400 Cycles \\
\hline
\end{tabular}

OPERATING CONTROLS (SEE FIG. I)
Front Panel - Exposed
Channel Selector
Fine Tuning
Power Switch and Volume
Dual Control
Contrast (Picture) Control
Dual Control
Front Panel - Concealed


Local-Distance Control Single Contro

NON OPERATING CONTROLS (SEE FIGS. I AND 6)
Width Control
Horizontal Drive
Horizontal Oscillato
Horizon
Height
Vertical Linearity
Centering
Focus.

Top Chassis Screwdriver Adjustment Rear Screwdriver Adjustment
Top Chassis Screwdriver Adjustment
Top Chassis Screwdriver Adjustment
Front Panel Screwdriver Adjustment (Concealed Centering Magnet on Neck of Pix Tube
Single Control - Screwdriver Adjustment (Concealed Single Control - Screw
Front Ponel - TN Only


\section*{CIRCUIT DESCRIPTION}

\section*{GENERAL}

The Olympic receivers covered by this monual use the Intercarrier type of Video and Sound IF System. Both Picture and Sound signals are received by the tuner, through thre an IF frequency and then fed, together, Video detector stage the too amplication. At the The sound signal is fed into a Sound IF Amplifier and then through a Katio Detector, an Audio amplifier, an Video signal with its and ultimately to the speaker. The through a Video Amplifier after which the Sync pulses are diverted into four Sync Separating and Clipping Stages and from there to the Vertical and Horizontal Sweep Oscillators. The Video information is fed from the Video amplifier to the Cathode of the Cathode Ray Picture) Tube.

\section*{TUNER}

These receivers include the Olympic "Rocket" Tuner which is of the new cascode type. The principal advantages of the Rocket tuner are; greater sensitivity of these Signal-to-noise ratio, and low radiation. Most a dual triode \(\mid 6 \mathrm{BQ7}\) or \(6 \mathrm{BK7}\) - VII) in which the two sections of the (ub)7 or \(6 B K 7\) - VI) in which the two The first triode is used as grounded cathoded shield. and the AGC voltage, generated later in the Vide Detector and AGC Stage, is applied to the grid. The second Triode section of the tube is a Grounded Grid Amplifier and is directly coupled to the first section. The first section is reutralized by a factory adjusted coil to resonate with the grid-cathode capacity of the second section. The overall gain of the two stages is through the use of triodes which a single pentode but of tube noise, the signal to noise ratio is greatly im. proved.

The Oscillator and Mixer stages are essentially the same as earlier Olympic turret type tuners with the addition of a complete shield covering the entire underside of the tuner, internal shielding
coupling, all to minimize radiation.

\section*{PICTURE IF SYSTEM}

These receivers have three stages of Video IF Ampli and 9) The firs are used in all three positions (V7. and functions as the output coupling of the tuner. The second IF coil (L-5) is followed by the Adjacent Sound Trap (L-b). The adjacent sound trap eliminates inter ference in the picture which might be caused by the sound signal of the next lowest channel when the lowe channel is used in the same area. The third Picture (L-8) is followed by an Accompanying Sound Trap (L-9) All coils and traps are adjusted from the top of the chassis. The IF coils are "stagger-tuned" to four fre quencies described later in this manual under RF.IF Alignment Procedure

\section*{VIDEO DETECTOR AND AGC}

Both video detection and the development of the AGC voltage are accomplished in the triode section of a 68 (triode-pentode) VIO. Video detection occurs between cathode (Input) and grid (output) while the plate (output) of this triode (VIOA). The AGC voltage is fed to the tuner and to the IF stages in the "local" position of the "Local-Distance" switch. In the fringe position Average"AGC from the Detector load esistor is fed to the IF stages and halt the AGC voltage to the tuner
The sound portion of the composite signal is picked Amplifier. This stage utilizes the pentode section of the UU8.(VIOB).
VIDEO AMPLIFIER
The signal that is fed into the grid (Pin 4) of the AC7 Video Amplifier (VII) has already had the sound above). The Video informatideo Defector and \(A G C\) ing pulses are amplified in this stage. The Sync is picked off through an "RC" network consisting of R42 and C37 in the Plate circuit and fed to the Sync Separator and the cathode of the Kinescope (V 19 _- Pin Ill after passing through a 4.5 Mc trap (L10) to eliminate any sound interference in the picture.

SYNC SEPARATOR AND CLIPPERS
The sync system of these receivers employs four
stages. Two dual triodes, both \(\mid 2 A U 77^{\prime}\), (V|2 \& VI3). The first triode of the first tube (VI2) is the sync separator stage. This in turn feeds into the first triode of the second tube (VI3), the sync amplifier. The sync amplifier
supplies pulses to the Horizontal AFC and oscillator supplies pulses to the Horizontal AFC and oscilator
(V|5) and simultaneously to the Vertical Blocking oscillator (V14) (through the vertical integrating network). The second half of the first tube (V12) is the sync clipper and the second half of the second tube \((V \mid 3)\) is the noise clipper
SWEEP SYSTEM — VERTICAL
The second triode of the 12BH7, Verticab Oscillator and Output tube (V14) serves as a vertical oscillator and discharge tube. The sync pulses from the Sync Separator and Clipper (V 12), after being shaped by the frequency of this section. The output of the oscillator stage is amplified in the first section of the same tube (V 14) and then fed through the Vertical Output Transformer to the vertical windings of the Deflection Yoke. SWEEP SYSTEM - HORIZONTAL

The Horizontal Oscillator is essentially of the blocking oscillator type. The operation of the A.F.C. system depends upon a correcting voltage developed in the control section of the Horizontal Oscillator and AFC tube (V 15) where the oscillator output and the incom-
ing pulses differ in either phase or frequency. The coning pulses differ in either phase or frequency. at cut-off
trol tube. (first section V 15) is maintained at cut until such time as the sync pulse is either ahead or behind the Oscillator sawtooth peak. When either case occurs the control tube develops a voltage which is applied as a bias to the oscillator grid and alters the oscillator frequency to coincide with the frequency of the incoming pulses. The Horizontal Oscillator transadjustment of the ascillator frequency and the front
panel Horizontal Hold Control is a fine adjustment in the same sense.
Note: Many of the components in the horizontal circuits are of critical value and therefore shoul Care should also be taken in dressing leads and locating parts when replacing. This can be ac complished by carefully noting positions of parts and leads before removal

\section*{SOUND SYSTEM}

The sound carrier is taken off the plate (Pin 1) of the Video detector and AGC tube (VIOA) and fed into the
grid of the Ist Sound IF Amplifier (VIOB - Pin 2) and grid of the Ist Sound IF Amplifier (VIOB - P4 2) and
trom there through the Ratio Detector (V4), the Audio Amplifier (V5), the Audio Output tube (V6) and then to the speake

\section*{HIGH VOLTAGE POWER SUPPLY}

The Energy stored in the horizontal windings of the deflection yoke during the forward sweep produces high voltage surges during retrace. This is multiplied by the "Auto Transformer" (primary) winding of the Horizontal Output Transformer (TR 2771) and is then recti-
fied by a \(\mid B 3 / G\) VI7) to provide approximately 15 fied by ar
Kilovolts for the picture tube anode (V20).
"B" VOLTAGE POWER SUPPLY
The " \(B\) " voltage in these chassis is provided by a standard transformer-rectifter circuit. The secondary of
the Power Transformer provides, in addition to a centerthe Power 'ransformer provides, in addition to a center ing for the 5 U4G Power Rectifier (V19), and two six-volt windings. One six-volt source is used for the filaments of the Damper Tube (VI8) only, and the other for the filaments of all other tubes. A "B" voltage of +145 volts is derived from the cathode of the 6W6/GT Audio Output Tube ( \(V\) 6). This voltage is utilized primarily in
the IF circuits and removal of the \(6 W 6\) from its socket will therefore make the entire IF strip inoperative.

\section*{ADJUSTMENTS}

\section*{ION TRAP MAGNET ADJUSTMENT}

Turn the brightness control fully clockwise and the contrast control fully counterclockwise. Adjust the ion trap magnet by moving it forward or backward and at
the same time rotating it slighly around the neck of the kinescope until the raster on the screen is brightest. Of two possible positions, use the one nearest the tube base. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust focus control until the line structure of the raster is clearly
visible (sharp). Readiust the ion trap magnet again for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained. Never correct for a shadowed raster with the ion trap

\section*{DEFLECTION YOKE ADJUSTMENT}

If the lines of the raster are not horizontal or squared with the picture mask. Loosen the deflection yoke adjustment screw and rotate the deflection yoke until this condition is obtained, and retighten the yoke adjust ment screw. If neck shadow is evident or the corners o forward as far as possible and the wing screw re tightened.

CENTERING ADJUSTMENT (21" - "TN" - ONLY) The 21 receivers are electromagnetically focused and centering is accomplished by adjusting an arm which
extends vertically from the front of the focus coil. This arm may be rotated for a limited distance, around the neck of the tube and may also be moved up and down The physical setting of the focus coil itself in relation to the neck of the tube will also affect picture position e the adjustment arm is used, it should be tained that (1) the focus coil is at right angles to the neck of the tube (by setting the two nuts which tighten the tube support rods) and (2) that the neck of the tube
is directly centered in the focus coil (by loosening the is directly centered in the focus coil by loosening the and sliding up or down
Note: Remove corrugated shipping clip from around neck of pix tube before attempting any adjustments.
ADJUSTMENT OF HORIZONTAL OSCILLATOR
(I) Allow set to warm up to operating temperature Select station operating normally.
(2) Short out horizontal Phasing Coil (L 17) Terminals C and D.
(3) Set horizontal hold control at maximum clock-wise rotation
(4) Adjust horizontal frequency screw (L 16) until picture falls into sync. Turning the horizontal fre quency screw (L Ib) clockwise lowers the frequency, (bars sloping downward to left). Turning the screw counter-clockwise incre
ing downward to right)
(5) Connect vertical input lead of oscilloscope with 5 MMF isolating condenser in series to terminal ground horizontal oscillator transformer and ground oscilloscope to chassis. Set frequency of
scope to approximately 5 KC .
scope to approximately 5 KC .
(6) Remove short from terminals of the horizontal phasing coil (L 17) and adjust screw (L 17) until
wave shape os observed on scope is like that shown in sketch. (See Fig. 3.)
(7) Some further adjustment of horizontal frequency screw (L 16 ) may be necessary to keep picture
terminal " C " and retouch 8) Remove scope from
L 16, as per " 9 " below.
(9) Turn horizontal hold control through entire range rotation. At full clockwise rotation blanking bar or jitter should be evident. At full counter-clock wise position picture should fall out to \(41 / 2\) to 5 bars sloping downward to the left. (1f picture stays in sync the tuner switch should be rotate to interrupt signal momentarily

Caution: It is important that the picture be centered in the mask properly with the horizontal hold control in the mid.position, otherwise the set user may attempt to center the picture by means of the hold control. Under this condi-
tion the control may be on "edge" and impulse noise or change of camera will cause the picture to fall out of synchronization. It should also be noted that some manufacturers ypes of GSNTGI may perform better than others in the horizontal oscillator socket and excessive drift of the horizontal oscillator cir cuit may be caused by a weak or defective
6SN7GT tube.

ADJUST FOR EQUAL PEAKS


FIG. 3

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS
For best results it is preferable that these adjust. ments be made on a transmitted test pattern; although atisfact

Both controls will affect the height AND linearity of the picture and therefore must be adjusted simultane ously. It will be found that the Height Control has a the top and the linearity control iust the reverse.

Note: It is advisable that both height and width of the picture be adjusted to a size slightly larger than
\[
\begin{aligned}
& \text { the mask opening, so that during periods of low } \\
& \text { line voltage adequate picture size is maintained. }
\end{aligned}
\]

\section*{HORIZONTAL WIDTH \& DRIVE ADJUSTMENT}

The Horizontal Width Control Coil (L19) and the Horizontal Drive Trimmer (C67) should be adjusted si-
multaneously. The Horizontal Drive Trimmer should be srewed tight (clockwise) and the backed off (counter clockwise) until Horizontal Drive bars appear. Then turn Drive Trimmer in again (clockwise) until drive bars, just will appear regardless of Drive Trimmer adjustment. In these sets the trimmer should be set at 2 turns out counter-clockwise) from tight.) After the drive trimme has been set, the width coil should be adjusted for proper picture width to till the mask aperture
Important: The horizontal oscillator frequency must be checked for proper range of horizontal control after any adjustment of horizontal drive (66). Any adjustment of C67 will usually equire resefing of the horizontal frequenc adjustment coil (L-16).

\section*{BUILT.IN ANTENNA}

All models are equipped with a built-in antenna which provide satisfactory reception in many locations. In areas of weak reception an outside antenna will sub. tenna binding posts are provided at the rear of chassis and are accessible through the opening in the masonite back to permit the connection of an outside aerial. antenna posts and must be disconnected when attaching the outside aerial. To prevent the lead-in wires of the built-in antenna from contacting chassis parts and ubes, it is recommended that the lead-in wire be folded and held in place by tape or a rubber band. In some ases reception can be improved by changing the locafion of the receiver in the room when set is operating with built-in antenna.

\section*{John F. Ride}

\section*{rf-IF ALIGNMENT PROCEDURE}

\section*{EQUIPMENT REQUIRED}
(I) RF signal generator to provide the following accurate frequencies:
(a) 4.5 Mc (Video Amplifier Trap. Sound IF and Ratio Detector)
(b) IF Frequencies
21.75 MC Accompanying Sound Trap
27.75 MC Adjacent Sound Trap (L6) 25.5 MC First Pix IF Transformer (L301) 23.25 MC Second Pix IF Transformer (L5) 25.25 MC Third Pix IF Transformer (L7) 23.25 MC Fourth Pix IF Coil (L8)
21.75 MC Sound Carrier Marker
26.25 MC Picture Carrier Marker
23.5 MC Shoulder Marker
c) RF Frequencies
\begin{tabular}{ccc} 
CHANNEL & \begin{tabular}{c} 
PICTURE \\
CARRIER
\end{tabular} & \begin{tabular}{c} 
SOUND \\
CARRIER
\end{tabular} \\
NUMBER & FREQ. MC & FREQ. MC
\end{tabular}
d) Output on these ranges should be adjustable and capable of providing at least .I volt.
If the accuracy of the generator frequencies is not known, some type of crystal calibrator should generator for each particular frequency.
(2) Electronic Voltmeter
(3) Cathode Ray Oscilloscope. \(3^{\prime \prime}\) minimum screen.
4) RF Sweep Generator, meeting the following re quirements:
(a) Frequency Ranges:

\section*{18 to 30 MC}

170 to 225 MC
10 MC sweep width
(b) Output adjustable to . 1 volt.

TO REMOVE CHASSIS FROM CABINET
Remove: (1) Line cord from power outlet
(2) Masonite back.
(3) Antenna Lead-in from terminal posts
(4) Speaker plug from rear of chassis.
(5) Knobs from front of cabinet.
(6) Four mounting screws and washers from bottom of cabinet.

In sliding chassis out of cabinet, be careful that the kinescope tube does not strike against speaker or any other obstruction.

Before proceding it will be necessary to use an extra line (or "cheater") cord to supply AC current to the chassis as the set's line cord is attached to the masonite back of the cabinet.

\section*{ORDER OF ALIGNMENT}

When complete receiver alignment is necessary, it should be performed in the following sequence:
```

(1) Accompanying Sound Trap
Adjacent Sound Trap
Pix IF Coils
(4) 4.5 MC Trap
(5) 4.5 MC Sound IF and Ratio Detector

```

After removing chassis from cabinet re-connect power and speaker plugs.
If a local station is not operating on Channel 9 set the tuner to this channel, furn on power switch and proceed as follows: (If 9 is a local station, use Channel 8 or 10.1

ACCOMPANYING AND ADJACENT SOUND TRAPS
Insert a 100,000 ohm \(1 / 2\) watt resistor in series with the "Hot Lead" of the electronic voltmeter and connect to the junction of L12 and C33. Meter switch should be set to the lowest negative scale.
should be connected to chassis.
Remove the shield of the RF Oscillator and Mixer tube (V2) from ground clips leaving shield resting on tube and connect hot lead of the RF Signal Generator to it. This will couple generator output to mixer plate.

Set the generator frequency accurately to 21.75 MC . and adjust (L9) sound trap (See Fig. 6 Tube and Trimmer Layout) for minimum reading on voltmeter.
Set the generator frequency accurately to 27.75 MC and adjust (L6) Adjacent Sound Trap for minimum reading on voltmeter.


\section*{PIX IF COIL ADJUSTMENT}

Adjust the following slugs for maximum output at frequencies and sequence indicated with meter and generator connected as above: (See Sound Traps.)


Note: After setting L301 DO NOT readjust to improve wave shape.
If oscillation occurs during alignment, temporarily raise frequency of L5 by turning screw counter-clockwise until screw projects approximately \(3 / 4^{\prime \prime}\). Oscillation is evidenced by high reading on voltmeter ( -5 V to - 20 V ) with signal generator OFF and no signal coming in ing L301, L7 and L8 reset L5 to proper frequency if it had been necessary to detune.
Connect hot lead of sweep generator through a 330 uuf condenser to test point on tuner and connect ground

Connect vertical input terminal of oscilloscope to junction of peaking coil L12 and C33 and connect ground lead of scope to chassis.
Connect 1.5 V flashlight battery with positive terminal to chassis and negative terminal to junction of R32 and R33. Place the Local Distance Switch in the Local position. This point is origin of AGC bias voltage. Set tuner frequency, in which case an adjacent channel should be used.
Set Sweep Generator frequency to IF sweep on the 20 to 30 MC range

Adjust sweep generator output to produce a curve on the scope which is approximately \(2 / 3\) of the screen diameter.
Loosely couple output of RF signal generator by using shield on V 2 and set frequency of RF signal gen erator to 26.25 MC (marker).

Curve shown on scope should be similar to the response curve shown in Figure 4. For proper setting of the pix carrier the 26.25 MC marker should appear on the curve at a point approximately \(50 \%\) of the vertical height of the curve
To obtain this setting retouch L7

Reset RF signal generator frequency to 23.5 MC and retouch L525 and L8 for correct positioning of marke on shoulder of curve.

Recheck setting of 26.25 MC marker to make sure that position has not shifted on curve.
Disconnect bias battery.
Note: If the curve cannot be made to appear a above due to a local station or other inter (VI CBK7 or if multiple markers appear, remov (VI-6BK7 or 6 BQ 7 ) RF tube from tuner

\subsection*{4.5 MC TRAP ALIGNMENT}

Connect voltmeter lead to Diode crystal rectifier as shown in Fig. 5. Connect Diode crystal rectifier between ground . Cathode lead (yellow wire) and chassi 12 and Signal generator is connected at junction of voltm C33. Set contrast control at maximum and from socket. Use maximum output of generator at 4.5 MC. Adjust LI 4 trap for minimum reading on meter.

When it is necessary to retouch this trap in the field proper adjustment can be made by using the local sta tion signal and turning the Fine Tuning Control to bring fine herringbone sound beat into the picture. The 4.5 MC trap (L14) should then be adjusted to minimize this
beat interference.


© John F. Rider

\section*{OPERATING AND SERVICE INSTRUCTIONS}

\section*{for}

\section*{OLYMPIC AM-PHONO-TV 3-SPEED CHANGER COMBINATION}

\section*{Frequency Range: A.M. 540.1620 kc}

\section*{Power Requirement: 105 -120 Volts a-c 60 cycles.}

Power Consumption: Receiver: \(\mathbf{3 0}\) watts. Receiver with Record Changer: 50 watts.

\section*{IMPORTANT NOTICE:}

This AM-PHONO-TV receiver and automatic 3 -speed record changer console is for use on alternating current ONLY and should never be used on direct current.

Before operating the record changer it will be necessary to loosen the two record changer mounting screws completely as described in separate accompanying Record Changer Instruction Sheet.

This instrument is equipped with two separate chassis; one a 5 tube (including rectifier) AM chassis and a 20 tube (including rectifiers) television chassis. Built-in antennas are provided for both AM and TV sections of the receiver which will provide satisfactory reception under normal operating conditions. For AM reception an outside antenna will seldom be required whereas on TV the use of an outside antenna will generally improve the quality of reception.
AM RECEIVER CONTROLS: (see separate folder for television controis and operation)
The AM receiver has four control knobs marked according to their function, and reading from left to right as follows:
I. VOLUME
2. OFF.ON.TONE
3. \(\mathrm{AM}-\mathrm{PH}-\mathrm{TV}\)
4. TUNING

NOTE: The power switches for operating the television and radio sections of this instrument are interconnected and there fore it is necessary that the power switch of the unit which is not in operation be turned to the "OFF" position.

\section*{TUNING:}

To place receiver in operation turn the OFF-ON knob clockwise until a click is heard. The tubes require a warm-up period of about one-half minute before the set is ready to function.
A.M.

For AM reception turn AM-PH.TV knob to the position where AM faces the indicator dot. The tuning knob should now be turned until the dial pointer is at the frequency of the desired station. Dial numbers are converted to kilocycles by adding one zero. For example, 70 on the dial is 700 kilocycles. With volume control set to LOW volume level turn the station selector knob until the desired station is received loudest. Now adjust volume to the desired level and the tone control to the desired tone. DO NOT USE TUNING KNOB TO ADJUST VOLUME BY TUNING OFF STATION AS THIS
WILL RESULT IN POOR TONE QUALITY. WILL RESULT IN POOR TONE QUALITY.

NOTE: When operating this console as a Radio Receiver be sure that the motor switch on the record changer is in the OF position.




\section*{RECORD CHANGER OPERATION}

To operate the record changer, turn the AM-PH-TV knob so that PH faces indicator dot. Leave the "Off-ON' 'knob in the "ON" position and adjust volume and tone with the same knobs as used in receiver operation. FOR DETAILED

\section*{TELEVISION RECEPTION:}

To use the television receiver in this instrument it is IMPORTANT that the AM-PH-TV knob be set in the position where TV faces indicator dot. If this is not observed the sound section of the television receiver will be inoperative. For instructions how to use television receiver read the separate instructions accompanying this instrument.

\section*{SERVICE AND ALIGNMENT INSTRUCTIONS}

To remove the chassis from the console, it is first necessary to disconnect all plugs and sockets between the rear of the receiver chassis, the speaker, the television set and the record changer, respectively. Then remove the four knobs and the

CAUTION: WHEN REMOVING THE CHANGER BE SURE TO PLACE IT IN A POSITION IN WHICH THE CHANGER MECHANISM WILL NOT BE DAMAGED.

\section*{ALIGNMENT:}

Equipment Required: Modulated R.F. signal generator; output meter; insulated screw-driver; two .I mfd 400 volt con densers.

To insure proper alignment a radiated signal will be required during part of the alignment procedure. To radiate a signal connect a loop of about \(6^{\prime \prime}\) to \(8^{\prime \prime}\) diameter (one turn of \#14 or \#12 wire) across the output of the signal gener ator and place this loop parallel to the loop of the receiver to be aligned at a distance of about \(8^{\prime \prime}\) or \(10^{\prime \prime}\).

To align the receiver it is necessary to remove the chassis from the cabinet, check that the pointer coincides with the left vertical side of the gold rectangle surrounding the calibration points (below 550 kc .) In this position the condense should be completely closed. Connect the output meter and signal generator as follows:

Output meter - Connect across voice coil and turn volume control to maximum
Signal generator - Connect the low side of the signal generator to the common B minus bus thru a 1 l mfd condenser and keep the output as low as possible, then proceed in the sequence shown on the alignment chart .


© John F. Rider


\section*{VOLTAGE MEASUREMENTS}

Notes: VTVM used. Measurements taken between terminals and chassis. Measurements within \(20 \%\) of specified values are satisfactory. Values in DC volts unless otherwise noted. Switch in UHF position.

\section*{MODEL \(\underset{\text { (ALSO }}{1850}\) USED \(\operatorname{\text {UNMODEL}}\) THF 2152 ) \\ ALIGNMENT PROCEDURE}

\section*{PRELIMINARY NOTES:}

VHF tuner and TV I-F strip must be in proper alignment before attempting alignment of UHF tuner Connect oscilloscope or VTVM across the 4.7 K ohms video detector load, R-I2. TV schematic.
\begin{tabular}{l|l|c|c|c|c|c|c|c|c|c}
\hline TUBE TYPE & FUNCTION & PIN 1 & PIN 2 & PIN 3 & PIN 4 & PIN 5 & PIN 6 & PIN 7 & PIN 8 & PIN 9 \\
\hline 6X4 & Rect. & 170 AC & NC & 0 & 6.3 AC & NC & 170 AC & 190 & \(\ldots .\). & \(\ldots .\). \\
6BK7/ & I-F Amp. & 120 & 0 & .85 & 6.3 AC & 0 & 125 & 0 & 1 & 0 \\
6BQ7 & & & & 0 & 6.3 AC & 0 & \(5.7^{*}\) & 85 & \(\ldots\) & \(\ldots\) \\
6AF4 & Osc. & \(85 *\) & 5.7 & 0 & \\
\hline
\end{tabular}
*Use I5K ohms isolating resistor in series with voltmeter probe.

\section*{RESISTANCE MEASUREMENTS}

EQUIPMENT REQUIRED—AM VHF signal generator with 12 Mc sweep; oscilloscope or VTVM; insulated screwdriver.
TO CRYSTAL

I-F ALIGNMENT
- To crystal ot junction of items
\(21,29,45,51\), UHF schem-

21, 29, 45, 51 , UHF schem-
atic, thru matching net. Fig. 1 .
2-Same as 1.

OSCILLATOR ALIGNMENT
3-UHF antenna terminals thru matching net. See Fig. 2.
4-Same as 3.

82 Mc
82 Mc with

465 Mc (5th harmonic of 93 Mc ) 900 Mc (5th harmonic
of 180 Mc
transformers.
tems 5 \& 6 .
Figs. 3 \&
Item 6.
Figs. 3 .
Figs. \(3 \& 4\).
Oscillator trimmer
Oscillator trimme
item 48, Fig. 3. pinch legs of oscillator end-inductor,
see Fig.
3. see Fig. 3.

Carefully spread or Set pointer at extreme right of dial. Adjust
Adjust for maximum signal.

Adjust for equal signal response at VHF channels 5 \& b. Maximum gain for minimum band-width of 12 Mc .

Set pointer at extreme left of dial. Adjust for maximum.

5-Repeat steps 3 and 4 until no further improvement in signal is apparent. 465 Mc and 900 Mc are approximations and may not fall precisely at extreme left and right dial positions. However, oscillator alignment must be made so that both frequencies
may be tuned within dial limits.
\begin{tabular}{lcl} 
6-Same as 3. & 465 Mc & \begin{tabular}{l} 
R-F trimmers, \\
Item 72, Fig. 4. \\
\(7-S a m e ~ a s ~ 3 . ~\)
\end{tabular} 900 Mc \\
& & \begin{tabular}{l} 
R-F end-inductors, \\
Fig. 3.
\end{tabular} \\
\hline
\end{tabular}

8-Repeat steps 6 and 7 until no further improvement in 9-Same as 3.

465 Mc


Fig. 3-BOTTOM VIEW

\section*{R-F trimmers,
Item 72, Fig. 4. R-F end-inductors,} signal is apparent. Coupling trimmer,

Set pointer at extreme left of dial. Adjust
for maximum. Set pointer at extreme right of dial. Adjust for moximum.

Fig. 4-TOP VIEW


Notes: VTVM used. Measurements taken between terminals and chassis. Measurements within \(20 \%\) of specified values are satisfactroy. Switch in UHF position. AC cord disconnected.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TUBE TYPE & FUNCTION & PIN 1 & PIN 2 & PIN 3 & PIN 4 & PIN 5 & PIN 6 & PIN 7 & PIN 8 & PIN 9 \\
\hline \(6 \times 4\) & Rect. & 130 & NC & 0 & . 3 & NC & 130 & 50K* & ...... & \(\ldots\) \\
\hline \[
\begin{aligned}
& 6 B K 7 / \\
& 6 B Q 7
\end{aligned}
\] & I-F Amp. & 50K* & 0 & 56 & . 3 & 0 & 50K* & 0 & 56 & 0 \\
\hline 6AF4 & Osc. & 50K* & 12K & 0 & . 3 & 0 & 12K & 50K* & -...- & ..... \\
\hline
\end{tabular}


REPAIR PARTS LIST

\section*{ITEM NO.}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ITEM NO.} \\
\hline PMA-65011-1 & 1 & Inductuner, UHF \\
\hline PMA-65011-4 & 4 & Transformer, Power \\
\hline PMA.65011-5 & 5 & Transformer, I-F Input \\
\hline PMA.65011-6 & 6 & Transformer, I-F Output \\
\hline PMA.65011-9 & 9 & Switch AC \& Antenna Changeover \\
\hline PMA-65011-24 & 24 & Choke, Neutralizing \\
\hline PMA-65011-25 & 25 & Capacitor, Ceramic Tubular, 10 UUF \\
\hline PMA-65011-27 & 27 & Choke, I-F Plate \\
\hline PMA-65011-29 & 29 & Capacitor, Ceramic Tubular, . 68 UUF
\[
\pm 10 \%
\] \\
\hline PMA-65011-35 & 35 & Capacitor, Electrolytic Filter, 20-20-20/200-175-150 UUF \\
\hline PMA.65011.36 & 36 & Resistor, Carbon, 56 Ohms, \(\pm\) \\
\hline PMA-65011.38 & 38 & Resistor, Carbon, 400 Ohms \\
\hline PMA-65011-39 & 39 & Resistor, Carbon, 680 Ohms \\
\hline
\end{tabular}

\section*{SCHEMATIC
ITEM NO.}
\(\begin{array}{lll}\text { PMA-65011-40 } & 40 & \text { Capacitor, Ceramic Tubular, } 68 \text { UUF } \\ \text { PMA-650|1-41 } & 41 & \text { Resistor, Corbon, } 12 \mathrm{~K} \text { Ohms }\end{array}\)
PMA-65011-41 41 Resistor, Corbon, 12K Ohms \(\begin{array}{lll}\text { PMA-65011-42 } & 42 & \text { Capacitor, Ceramic Disc, } 1000 \text { UUF } \\ \text { PMA-65011-44 } & 44 & \text { Capacitor, Ceramic Tubular, } 22 \text { UUF }\end{array}\) \(\begin{array}{lll}\text { PMA-65011-44 } & 44 & \text { Capacitor, Ceramic Tubular, 2.2 UUF } \\ \text { PMA-65011.45 } & 45 & \text { Capacitor, Ceramic Tubular, 1.0 UUF }\end{array}\) \(\begin{array}{llll}\text { PMA-65011-45 } & 45 & \text { Capacitor, Ceramic Tubular, 1.0 UUF } \\ \text { PMA-65011-46 } & 46 & \text { Capacitor, Ceramic Tubular, 1.2 UUF }\end{array}\) \(\begin{array}{lll}\text { PMA-65011-46 } & 46 & \text { Capacitor, Ceramic Tubular, } 1.2 \text { UU } \\ \text { PMA-65011-47 } & 47 & \text { Resistor, Carbon, } 3300 \text { Ohms, } 2 \text { Wot }\end{array}\) PMA-65011-48 48 Rapacitor, Ceramic Trimmer
PMA-65011-50 \(50 \quad \begin{gathered}\text { 3-10 UUF }\end{gathered}\)
\(\begin{array}{lll}\text { PMA-65011-50 } & 50 & \text { Choke, Oscillator } \\ \text { PHA-65011-51 } & 51 & \text { Choke, Oscillator }\end{array}\)
PHA-65011-51 51 Choke, Oscillator
PMA-65011-53 53 Choke, Oscillator \& R-F
PMA-65011-72 \(72 \begin{gathered}\text { Capacitor, Ceramic Trimmer, } \\ .8-6.5 \text { UUF }\end{gathered}\)
PMA-65011.74 74 Nylon Adjustment Scrow

\section*{ADJUSTMENTS}

WARNING－OPERATION OF THE RECEIVER CHASSIS OUTSIDE OF THE CABINET INVOLVES THE DANGER CAUTION SHOULD BE EXERCISED AT ALI TIMES．
Occasional minor adjustments will be needed if any cir cuit work or tube replacement is required．A test pattern cuir work or tube replacement is required．A tost pattern．
generated locally or from a broadcast station，is recom－ generated locally or from a broadcast station，is recom－
mendod for best results．The operating and auxiliary con－ trols，located on the front panel and rear apron，should be set for as good a patiorn as possible before making the following adjustments：

\section*{CENTERING}

Rotate oach of the Centering Rings separately until the picture is properly centered．

HEIGHT AND WIDTH
Adjust the Height and Width Centrols so that the pie－ ture fills out the dimensions of the screen．A slight re－ad－ justment of the centering control may be necessary．

HORIZONTAL DRIVE CONTROL
The Horizontal Drive Control（C51B）is adjustetd by backing off the control until a vertical white bar appears in the middle of the picture，and then going in one full
turn from this point．This adjustment may be reached from the underside of the chassis mounting boord．See below for detailed deseription of Horizontal Oscillator Sync Ad． iustment．
VERTICAL LINEARITY CONTROL
Sat the Vertical Linearity Adjustments for a symmetrica pattern．A slight re－adjustment of the Height and Width Controls may then be necessary．

Note：The sequence of adjustments outlined above is suggested as a convenient method of approach and not an arbitrary procedure．The procedure used to obtain the final results may be varied to fit the circumstances．

\section*{NOISE BALANCE CONTROL}

Turn the Channel Selector to the strongest station signal on the air．Slowly turn the Noise Balance Control from ful clockwise position counterclockwise until the picture just starts to show a distorted shape．Then turn the control slightly in the opposite direction so that the picture shape is normal．Check all channels．If the picture shape is dis torted on any channel，advance the control slightly clock－ wise to restore normal shape．（NOTE：WHENEVER TH COUNTERED WHICH CANNOT BE ADJUSTED COR RECTLY WITH THE HORIZONTAL LOCK OR FINE TUNING CONTROLS，ALWAYS SET THE NOISE BAL－ ance Control fully Clockwise before mak ING ANY OTHER ADJUSTMENT．）

PICTURE TUBE ADJUSTMENTS
WARNING：THE PICTURE TUBE ENVELOPE EN CLOSES A HIGH VACUUM．ANY ACCIDENTAL TUBE TO IMPLODE WANDLING MAY CAUSE TH STRUCTIVE FORCE．THE WEARING OF HEAVY

GLOVES AND SHATTER．PROOF GOGGLES IS AD VISED WHEN HANDLING THE PICTURE TUBE．

1．Turn the Brightness Control to maximum（clockwise）and the Picture Control to minimum（Counterclockwise）．
2．Rotate the lon Trap Magnet and at the same time move it backward and forward to obtain the brightest raster．
3．Reduce the Brightness Control so that the raster is slightly over normal brilliance and re－adjust the lon Trap Magnet for maximum brightness．
4．Loosen the Deflection Yoke adjusting serews and rotate the Deflection Yoke so that the top and bottom edges of the raster are parallel to the top of the chassis． When this adjustment is made，tighten screws．
5．Adjust the Centering Control until the entire raster is visible，centered within the opening of the mask，with no shadowed corners．
b．Move the lon Trap Magnet as in step 2 for final ad－ justment．

HORIZONTAL OSCILLATOR SYNC ADJUSTMENT


1．Set the Noise Balance control to maximum clockwise．
Connect an oscilloscope to terminal＂ C ＇on the Syn－ chroguide transformer（T－B）through a small capacitor chroguide transforme
from 10 to 50 UUF．
3．Connect a DC VTMV from the grid of the type 6AU5 Horizontal Output tube（V－15）to the chassis．Use a high impedance probe．
4．Set the trimming capacitor adjustment serews in tigh for the Horizontal Locking Range（C－51a）and the Hori zontal Drive（C－5Ib）．
5．Back off the trimmer for the Horizontal Locking Range \(1 / 4\) turn．
6．Back of the trimmer for the Horizontal Drive until the VTVM registers－9 volts（approximately one full turn）
7．Adjust front serew of Synchroguide to lock－in picture horizontally．

Antenna
Built－in with Provisions for External 300 Ohms Antenna
Intercarrier Sound System
4．5 Megacycles
Picture Carrier I－F ．．．45．75 Megacycles
Sound Carrier I－F ．．．41．25 Megacycles
Power Supply ．．．．110－120 Volts， 60 Cycle，AC．
Power Consumption ．． 215 Watts
Speaker
PM Type 3．2 Ohms Voice Coil
8. Adjust inside core of Synchroguide to give correct wave form. Re-adjust front screw simultaneously to keep in sync. Use non-metallic screw driver on inside core
\(\sim N^{-\infty}\)
CORRECT

incorrect


INCORRECT
9. Trim front screw to get approximately three bars break ut when switching channels, with Horizontal Lock control in maximum clockwise position

THE HORIZONTAL LOCK CONTROL SHOULD PRO DUCE THE FOLLOWING CONDITIONS
A. Sync should hold with control in maximum counterclock wise position.
B. Sync should pull in when switching channels over at least Sync should pull in when switching channels
half of the rotation range of the control.
C. Picture should not jitter at any position of the control a. If sync does not hold in maximum counterclockwise position, back off front screw of Synchroguide. Re
b. If sync does not pull in when switching shanne If sync does not pull in when switching channels over half of rotation range, back off \(\mathrm{C}-51 \mathrm{a}, 1 / 4\) turn If the picture jitters at any position of the Horizontal If the picture jitters at any position of the Horizontal
Lock control, advance the control in a clockwise di-
rection to the position that produces the greatest rection to the position that produces the greatest
amount of jitter and adjust the front screw of the Synchroguide in a clockwise direction until the jitter stops. If jitter is not eliminated, advance C-5la trimmer adjustment. If jitter persists, shunt a 100 UUF capacitor across C -5la. Re-check break-out on clockwise end when switching channels. Back of C-5la if sync does not pull in over at least half of rotation range of Horizontal Lock control.

\section*{ALIGNMENT}

NOTE: ALWAYS SET NOISE B ALANCE CONTRO FULLY CLOCKWISE BEFORE MAKING ANY ALIGN MENT TESTS OR ADJUSTMENTS

\section*{I-F ALIGNMENT}


Lift the top section of the shield on the R-F oscillatormixer tube so that it does not make electrical contact with its base. Connect one side of the output of an A-M signal generator to the shield, the other side to the chassis.
Connect a VTVM across the 4.7K video detector load. Use the lowest scale reading on the meter. Always attenuate the signal generator output for a reading below the limits of the meter, approximately -1 to - 1.5 volts.
Set the Volume and Contrast controls to minimum. Set the Channel Selector to channel 7 or 13, depending on local conditions or interference.

PROCEDURE


The I-F passband may be observed by substituting a The I-F passband may be observed by substituting a sweep generator for the A-M signal generata a 3 volt bat-
tuting an oscilloscope for the VTVM. Connect a tuting an oscilloscope for the its positive terminal is connected to the chassis and the negative terminal is connected to the AGC lead. The sweep generator should be set to approximately 44 Mc and then adjusted to center the wave form on the scope face. To avoid overload and to assure a true view of the wave shape, the output of the sweep generator should be attenuated until further attenuation has a minimum effect on the wave shape. If necessary, a slight adjustment of the I-F transformers may be made to obtain a close approximation to the ideal curve. Adjustment of T-2 or T -10 affects the band width. Adjustment should be preferred for slope adjustment.

SOUND ALIGNMENT
1. Connect an A-M signal generator tuned to 4.5 Mc be tween the grid of V5 and ground. Connect the akign ment test circuit shown below and tune L8 for a mini mum reading on a VTVM.
2. Disconnect the alignment test circuit and connect the VTVM to ground and Pin 5 of V7. Adjust L9 and primary of T 3 (Bottom) for maximum indication.
3. Remove the VTVM and re-connect it to ground and unction of R27 and R28. Adjust secondary of T3 (Top or zero. (Note: When tuning through the proper set ting, the meter should swing negative on one side and positive on the other side.)


USE IN34 CRYSTAL
SOUND ALIGNMENT TEST CIRCUIT

tube location chart for chassis no. s
200-1
200-11

© John F. Rider

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CHASSIS & RADIO
CHASSIS & \multicolumn{2}{|l|}{NO. OF TUBES} & \[
\begin{aligned}
& \text { PICTURE } \\
& \text { TUBE } \\
& \hline
\end{aligned}
\] & TUNER & \\
\hline \(150-4\)
150.5 & 155 & \({ }_{21}^{21}\) & 2 & \[
20 C P 4
\] & PMB-5700I PMB-57001 & Turrot Pentode \\
\hline \(150-4\)
\(150-7\) & & 20 & & 217HP4 & PM8.57003 & Rotory Switch \\
\hline \(150-9\) & & 21 & & 17HP4 & PM \({ }^{\text {P } 575001}\) & \\
\hline 150-10 & 160 & 21 & 2 & 21 MP4 & PMB-57002-1 & Turrot Cascode \\
\hline 150.12 & & 21 & & 17HP4 & PM8.57001 & \\
\hline 150-16 & & 21 & & 17HP4 & PMB-57002-1 & \\
\hline 150-31 & 155 & 21 & 2 & 214 P 4 & PMB.57002-1 & \\
\hline 150.51 & & 21 & & 24AP4 & PMB-57002-1 & \\
\hline 150.61 & 155 & 21 & 2 & \(21 \mathrm{MP4}\) & PMB-57002-1 & \\
\hline
\end{tabular}


Power consumption of combination sets is 240 watt.

\section*{DESCRIPTION}

\begin{abstract}
COMBINATION RECEIVERS USING CHASSIS 15 55-I A-M RADIO TUNER
TV CHASSS 150-4, \(150-31\) \& \(150-6 \mid\)
Chassis model 155 is a two tube A-M radio tuner with built-in loop antenna, a type 6BE6 converter tube, a type detector, type IN65. This A-M radio tuner has a control panel separate from the television controls. The audio amplifying and audio output circuits of the television receiver provide these functions for radio reception. A three position function switch on the radio control panel (Sla, Ib, Ic radio schematic) permits changing the source of the audio signal voltage across the volume control po honograph as desired. The 155 A-M radio tuner is connected to the television circuit through an adapter socket on the back of the TV chassis. The phono motor is also plugged into the back of the TV chassis, but the phono pick-up lead is plugged into the A-M radio tuner. Chassis 155-I is the same as 155 except for length of control shafts.
COMBINATION RECEIVERS USING CHASSIS 160 AM RADIO TUNER
\end{abstract}

Chassis model 160 is also a two tube A-M radio tuner Chassis model 160 is also a two tube A-M radio tuner tector as chassis 155. The function of the two tuners is also the same. However, a single set of controls is used o provide both television and radio reception on receivers with the 160 chassis. The radio dial is attached to the TV Fine Tuning control, which gives this control a dual capacity, depending on the position of the TV. RADIO-PHONO function switch. The 160 chassis is hind the front panel auxiliary controls. Its tuning gang
is driven off the fine tune shaft with a pulley and string ing arrangement. The function switch (S-la, Ib, Ic radio schematic) is connected directly into the TV audio cir
cuit between the high frequency de-emphasis net, R-28 C 27 都d the coupling capacitor \(\mathrm{C}-28\), to the volume control potentiometer, R-I3a (TV schematic).

The phono motor and phono pick-up leads are plugged The phono motor and phono
into the back of the TV chassis.
COMBINATION RECEIVERS USING CHASSIS 113 RADIO, TV CHASSIS 150-2, MODEL 2080
Chassis model 113 is a 5 tube superheterodyne A-M ra dio receiver with built-in loop antenna. The radio and power supplies and control panels. One speaker is used with the secondaries of the two voice coils wired to the speaker in parallel through the PHONO-RADIO-TV func tion switch on the radio panel. On some sets the audio output transformer of the TV is mounted on the radio chassis.

\section*{RECORD CHANGERS}

There are three types of record changers used in Pacific Mercury combination receivers.
Pacific Mercury model 90023 is a V-M, model 950, rec Chicago, model 114 record changer.
Pacific Mercury model 90026 is a General Instrument \& Appliance Corp., model 700F-33/45, record changer. All three record changers operate on 117 volts AC, 60 cycle power.

CHASSIS 150-9 \& 150-16
fier (V-5) only. The signal input to the second half of V-4 across which is developed the audio signal voltage from the 4.5 Mc ratio detector, V-7. There is no phono jack on the twenty tube chassis. The voltage readings on the pins of V-4 are as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{VIDEO DETECTOR} & & \multicolumn{2}{|l|}{AUDIO AMPLIFIER} \\
\hline PIN NO. & Voltage & FUNCTION & PIN NO. & voltage \\
\hline 1 & 0 & Plate & 6 & 100 \\
\hline 2 & -. 25 & Control Grid & - 7 & -. 75 \\
\hline 3 & 0 & Cathode & 8 & 0 \\
\hline 4 & 6.3 AC & Filament & 5 & 6.3 AC \\
\hline
\end{tabular}

Pin No. 9 is a common ground for both halves of the filament. The voltage readings on the pins of the other tubes in the twenty tube chassis are the same as for the twen-ty-one tube chassis, 150 -Series

17HP4 type picture tube. The 17HP4 has electrostatic focus with 450 volts on Pin No. 6, and 29 volts on Pin No. 10. See installation and adjust

CHASSIS 150.7 \& \(150-12\)
Chassis \(150-7\) and \(150-12\) also use a type 17 HP 4 picture tube. These two models are 20 tube chassis, similar to the Noise Balance circuit.

The second half of V-4 (Type 12AX7), which formerly functioned as the Noise Balance Control, is used as the audio amplifier in these models, and -8 , the type \(6 A V o\)
tube, which was formerly used for audio amplification is omitted.
There is no coupling between the two halves of the twin triode V-4, in the twenty tube receivers even though they are in the same envelope. The output from the first half, the video detector, is coupled to the video ampli-


150-SERIES CHASSIS.

\section*{© John F. Rider}

ROTARY SWITCH TUNER—PMB-57003
Chassis 150-7 only, uses a rotary switch R-F tuner. This R-F selector is electrically equivalent to a tapped coil whose inductance is reduced from its maximum value by means of a rotary switch. The switch progressively shorts additional taps to ground as the selector knob is rotated and the oscillator coils are switched in and out of the circuit from channel 2 to channel 13
The R-F amplifier tube is a type 6AG5, 6BC5, or 6CB6 A twin triode, type 6J6, is used for the combination mixer and oscillator.

CHASSIS I50-5 \& 150-5
Chassis models \(150-5\) and \(150-51\) use a 24 inch, magnetic focus, metal picture tube, type 24AP4. The use of this tube requires changing the circuit of the basic 150 -Series chassis as follows:
Resistor R-36 in the low voltage rectifier filter circuit has been replaced by a choke coil, L-13. A filter network (R-89, C-43, and R-90, C-73) is used to increase stability of the vertical sweep circuit with line voltage variations.
The capacity of C-66 has been reduced from .25 mfd . to . mfd. to provide the additional linearity and width con-
trol necessary for the larger raster.

\section*{ADJUSTMENTS}

The chassis listed in this supplement require the same type of adjustments as described in the 150 -Series Service anual.

\section*{INSTALLING AND ADJUSTING PICTURE TUBES}

\section*{17HP4}

Rotate each of the Centering Rings separately until the picture is properly centered.

\section*{24AP4}

The 24 inch picture tube is mounted on a triangular wooden platform, and this platform is bolted to the cabinet at each of its three corners. The chassis is mounted separately on a flat wooden base which in turn is fastened the side of the cabinet with four wood screws.

PEMOVING THE PICTURE TUBE
To remove the picture tube, it is first necessary, to remove the chassis.

\section*{WARNING: OBSERVE ALL HIGH VOLTAGE AND} PICTURE TUBE HANDLING PRECAUTIONS
I. Remove the push-on type control knobs on the front panel and remove the back of the cabinet.
2. Remove the upright support (Held in place by two wood screws) located in the rear of the cabinet to the left of the neck of the picture tube
3. Disconnect:
a. Speaker plug.
b. Antenna.
c. Anode lead of picture tube.
d. Picture tube socket.
e. Ion trap.
f. Deflection yoke (Some models have plug-in yoke leads).
. Focusing assembly.
h. Wire or spring that is used to ground the deflection yoke support and tube mounting strap to the chassis.

4. Remove the four screws on the side of the cabinet Remove the four screws on the side of the cabinet
that hold the wooden base of the chassis in place and slide the chassis and base out of the cabinet.

Note: The chassis may be operated for servicing without emoving the picture tube from the cabinet by taking the chassis off its base and placing it next to the cabinet made.
5. Remove the wooden block that acts as a wedge support for the top of the rim of the picture tube.
6. Remove the three anchor bolts that fasten the platform support to the cabinet and slide the platform and picture tube out of the cabinet.
7. Unfasten the mounting strap from the rim of the tube.
INSTALLING THE PICTURE TUBE
I. Set the picture tube on its supporting platform, with its rim resting in the cradle, and attach the mounting strap. Position the tube so that the key-way for the
tube socket will be toward the chassis. Place the rubber collar and deflection yoke support as far forward on the neck of the tube as possible.
2. Slide the supporting platform inside the cabinet and bolt it in the proper position. The supporting platform has elongated holes for the three bolts that anchor it to the cabinet. This allows adjustment of the platform's position so that the face of the tube can be made to fit properly against the mask, regardles
3. Replace the wooden block that acts as a wedge support for the top of the rim of the picture tube.
4. Slide the chassis, mounted on its base, into the grooved track on the side of the cabinet and fasten it in place with the four wood screws. The holes through which the chassis is bolted to its base are large enough to shift the chassis to the position that will allow the control shafts to fit properly.
5. Connect:
a. Focusing assembly.
b. Deflection yoke (or plug).
c. lon trap.
d. Picture tube socket.
e. Anode lead.
f. Wire or spring that is used to ground the deflection yoke support and tube mounting strap to the chassis.
g. Speaker plug.
h. Antenna.
6. If the picture is not properly centered, move the Cen tering Control Lever on the rear of the receiver a short istance in any direction necessary for correction. Do may be exerted may be exerted on the neck of the picture tube. light adjustment of the deflection yo or focs mar, mountings may be necessary. mountings may be necessary.
7. Replace the upright support.
8. Replace the back of the cabinet and the push-on control knob

\section*{ALIGNMENT}

NOTE: ALWAYS SET NOISE BALANCE CONTROL FULLY CLOCKWISE BEFORE MAKING ANY ALIGNMENT TESTS OR ADJUSTMENTS.

I-F SWEEP PATTERNS AND ALIGNMENT CHART


FIG. 8
\begin{tabular}{|c|c|}
\hline SIGNAL GENERATOR FREQUENCY & ADJUSTMENT \\
\hline 24.35 Mc ..... & T2, Ist I-F coil on tuner, and LI \\
\hline 23.2 Mc & …..... L3 \\
\hline 25.2 Mc & TI \\
\hline 21.6 Mc & L2 \\
\hline
\end{tabular}

\section*{VTVM
INDICATION \\ INDICATION \\ Maximum \\ Maximum \\ Maximum}
5. Peak the fourth I-F transformer (T2) to 24.35 Mc keeping the VTVM reading at -1 to -1.5 volts by adjustment of the attenuator on the signal generator.
6. Connect a 1.000 ohm resistor from the grid of VI to the junction of R2 and R4. Adjust the first I-F coil located on the tuner for a maximum reading on the VTVM of between -1 and - 1.5 volts (L9. Fig. 10|. Remove the 1,000 ohm resistor.
7. Place the tuner turret so that it is between any two channels and adjust LI for maximum indication 10525 LI is fixed and step 7 should be disregarded
. Peak the third I-F coil (L3) to 23.2 Mc keeping the VTVM reading at -1 to -1.5 volts.
9. Tune the signal generator to 25.2 Mc and adjust SOUND ALIGNMENT the second I-F transformer (TI) for maximum, keeping the VTVM reading at -1 to - 1.5 volts.
0. Adjust the signal generator to 21.6 Mc and tune the trap \(L 2\) for a minimum reading.
II. The I-F passband may be observed by connecting a sweep generator across the terminals of the A-M signal generator and substituting an oscilloscope for the VTVM. Place a 3 volt battery so that its positive terminal is connected to the chassis and its negative terminal is connected to the junction of approximately 24.35 Mc and then adjusted to center the waveform on the scope face. To avoid overload, and to assure a true view of the wave shape, the output of the sweep generator should be attenuated until further attenuation has a minimum effect on the wave shape. If necessary, a slight adjustment of the I-F transformers may be made to obtain a close approximation to the ideal curve. Adjustment of L 3 or TI affects the bandwidth. Adjustment of T2 affects the slope of the top.
1. Connect an A-M signal generator tuned to 4.5 Mc between the grid of V5 and ground. Connect the alignment test circuit shown below and tune L8 for a minimum reading on a VTVM.
2. Disconnect the alignment test circuit and connect the VTVM to ground and Pin 5 of V7. Adjust L9 and primary of T 3 (Bottom) for meximum indication.
Remove the VTVM and re-connect it to ground and junction of R27 and R28. Adjust secondary of T3 Nop) for zero. Note: When tuning through the proper selting, the meter should swing


FIG. 9-SOUND ALIGNMENT TEST CIRCUIT

\section*{ALIGNMENT OF THE ROTARY SWITCH TUNER PMB-57003}

Note: This tuner has been carefully checked and aligned at the factory to give the best possible performance. Alignment should not be necessary in the field unless tubes or other components are replaced.


SCHEMATIC - ROTARY SWITCH TUNER PMB-57003
C. Adiustment of chanel 13 and chant Adjustment of channel 13 and channel 6 oscillator brings all other channels in adjustment. Do not back up the screws more than 8 turns from tight. At that ing up will cause the screw to drop out.
Notes: Cover and tube shields to be on. Have rated supply voltages fed to tuner. Allow at least 3 minutes warm up. When replacing oscillator tube, select on which requires minimum touch-up. Clockwise rotation of screws increases frequency.
BAND PASS ALIGNMENT
I. Use R-F sweep to antenna and oscilloscope to the test point through 10,000 ohms.
2. The oscillator must be operating for each channel at nearly the correct frequency.

\section*{OSCILLATOR ADJUSTMENT}
1. Turn station selector to channel 13
2. Connect signal generator, adjusted to correct channel 13 oscillator frequency, to the antenna
3. Connect oscilloscope to test point through 10,000 ohms.
4. Set fine tuning in center of range. Check channel 13 and 6 for zero beat on scope.
If it is necessary to make adjustments to the oscillator, the following steps should be followed:
A. Align high channels for correct frequency with channel 13 oscillator screw (See illustration, Adjustment
B. Align low channels for correct frequency with channel B. Align oilw channels for correct req
6 oscillator screw (Adjustment E).
3. Align channel 13 R-F plate (Adjustment B) and R-F Arid (Adjustment A) end inductances. Align channel ing together the turns. The band pass should include both carriers, have steep sides, and maximum gain.
4. Align the incremental loops of the R-F plate, R-F grid, and mixer grid from 12 to 7 , in that order. Pushing the loops inwards increases the frequency.
5. Align channel 6 R-F plate, R-F grid, and mixer grid to obtain a flat response with maximum gain. Spread should include both carriers and have steep sides.
6. Align incremental coils of R-F plate, R-F grid, and mixer grid from 5 to 2 in that order. Spreading coils increases the frequency. A tuning wand may be used to determine what change is necessary.

ass alignment is carefully made a he factory. Attempt this alignment only with proper equipment and set-up.
CONDITIONS OF MEASUREMENT
"B" Supply
120 Volts
Heater Supply ..........................................6.3 Volts AC
Grid Bias
\[
-.5 \text { Volts }
\]

\section*{ALIGNMENT OF THE A-M RADIO TUNER} CHASSIS 155
Set RADIO-PHONO-TV function switch to RADIO position.
Set Volume and Tone controls at full clockwise position. With tuning gang fully closed, align dial pointer exactly /8" from left edge of dial panel background.

\section*{Connect output meter across voice coil.}

Notes: Use an insulated alignment screwdriver. Use signal generator having \(30 \%\) modulation at 400 cycles. At enuate signal generator to keep output meter reading below 1.25 volts.

CHASSIS I55-TOP VIEW
\begin{tabular}{|c|c|c|c|c|c|}
\hline DUMMMY
ANTENNA &  & SIG. GEN. FREQUENCY & dial seting & ADJust & REMARKS \\
\hline 1.) . 1 mfd . &  os mfd. Low slde to ground. & 455 Kc & Tuning gang fully open. & Top \& Bottom TI . ist 1-FTop a Botiom 12 2nd 1.- & Adiust for max. \\
\hline 2.) None & To loop frorm from Plece in proximity of -in antanna. & 1500 Kc & Adiust qana q irom loft edge of didi panol back- & C -2a Ose . trimmer. & Adiust for max. \\
\hline 3.) None & Same as (2). & & \(11 / 2\) ' from loft edge. & L-2 Osc. Slug & Adjust for max. \\
\hline 4.) None & Same as (2). & 1500 Kc & 4/2" from left edge. & C.la R.F. & Adiust for max. \\
\hline & & Repost (2). & (3) ond (4) if nocos & sary. & \\
\hline
\end{tabular}


\section*{© John F. Rider}


PICTURE TUBE


\section*{NOTES:}
1. Last C-74; last R-90. All capacitors in UUF, all resistors \(1 / 2\) watt, unless otherwise noted.
2. Pin voltages taken with VTVM. Antenna shorted. TV. PHONO switch in TV position. Contrast control minimum contrast. Noise Balance control maximum clockwise. Other controls at normal operating position. All voltages positive Pin 3 to Pin 4 on V-II.
. Wave form peak to peak voltages taken with video output 45 volts peak to peak.
4. PRODUCTION CHANGES:
a. Previous serial No. 39,828, Terminal I, N2 connected directly to \(290 \mathrm{~B}+\).
b. Previous serial No. 65, 122, Linearity coil was used con nected from Pin 3, V. 16 to Terminal 8, T9, with tap to Terminal 7. T9. Also Terminal 7 \& 8, T9 connected
through 04 mfd . capacitor (C.63). through .04 mfd . capacitor (C-63).
c. Previous serial No. 46,889 , each side of primary, T5
by-passed to ground through 01 mfd. capacitor (C. 70 by-passed to ground through . 01 mfd . capacitor (C. 70 \& C.71).
d. Previous serial No. 47.610 . C-74 not used. Also C- 25 connected Pin 6 to Pin 7, V.6.

oapter socket \({ }^{6}\) SOCKET-Botton view





OJohn F. Rider


Fig. 1. Model 2721



Fig. 3. Model 2723 Standard


FIg. 4. Model 2724

SECTION I

\section*{GENERAL INFORMATION}

\section*{DESCRIPTION OF MODELS:}

MODEL 2721, Fig. 1, is a console television receiver with full length doors. Chassis 2720 is used. The 21 inch rectangular picture tube is mounted in the cabinet on a removable shelf. Cabinet finishes are Mahogany, American Colonial, French Provincial, and Blonde Oak.

MODEL 2722, Fig. 2, is a console television receiver with full length doors. Chassis 2720 is used. The 24 inch round, metal picture tube is mounted in the cabinet on a removable shelf. Cabinet finishes are Mahogany, American Colonial, French Provincial, and Blonde Oak

MODEL 2723 STANDARD, Fig. 3, is an open face console television receiver using chassis 2710 . The 21 inch rectanguar picture tube is mounted on the chassis. Cabinet finishes are Mahogany, Maple, and Blonde Oak.

MODEL 2723 DE LUXE, (not shown) has full length doors Otherwise it looks exactly like the 2723 standard shown in Fig. 3.

MODEL 2724, Fig. 4, is a table model television receiver using chassis 2710 . The 21 inch rectangular picture tube is mounted on the chassis. Cabinet finishes are Mahogany and Blonde.

CHASSIS 2710, Figs. 8 and 9, is designed for horizontal mounting in the cabinet and mounts a 2 J inch rectangular picture tube. It is used in models 2723 Standard and De Luxe and in Model 2724 (table model).

CHASSIS 2720, Figs. 10 and 11, is smaller than the 2710 chassis since It does not mount the picture tube, It is designed for vertical mounting in the cabinet and is used in Models 2721 and 2722.

\section*{SPECIFICATIONS:}

OVERALL DIMENSIONS:
\begin{tabular}{lllcll} 
& 2721 & 2722 & 2723 std & 2723 dix & 2724 \\
Height & 37 in. & 399 in. & 37 in. & 37 in. & 23 in. \\
Width & 31 in. & 35 in. & 25 in. & 26 in. & 24 in. \\
Depth & 24 in. & 25 in. & 23 in. & 24 in. & 22 in. \\
Ship. Wf. & 180 lbs. & 210 lbs. & 150 lbs & 165 lbs. & 115 lbs.
\end{tabular}品. W. 180 lbs. 210 lbs. 150 libs. 165 lbs .115 lbs
TELEVISION TUNING FREQUENCY RANGE:
All 12 VHF television channels currently allocated in the United States, consisting of channels 2 thru 13, and covering requencies from 54 to 88 Mc . and 174 to 216 Mc .
Coil strips are available for UHF channels 14 thru 83

\section*{INTERMEDIATE FREQUENCIES:}

Picture Carrier: 25.0 Mc
Picture Carrier: 25.0 Mc .
Intercarrier Sound: 4.5 Mc .

\section*{ELECTRICAL RATINGS:}

Line voltage (all models), 110-120 volts AC, 60 cycles pe second.
Power consumprion (all models), 190 watts.

\section*{LOUDSPEAKER DATA}

Type (all models): Permanent Mugnel.
Voice coil impedance (all models): 3.2 ohms at 400 cycles per second.
Cone diameter, 2721, 2722 and 2723 de luxe: 10 in . with 3.16 oz. Alnico V.

Cone diameter, 2723 standard and 2724: 6 in. with 2.15 oz. Alnico V.

\section*{FOCUS:}

Electrostatic.
SWEEP DEFLECTION:
Electromagnetic, 70 degree

\section*{SCANNING:}

525 lines interlaced.
HORIZONTAL SCANNING FREQUENCY: 15,750 cycles per second.
VERTICAL SCANNING FREQUENCY: 60 fields per second.

\section*{PICTURE REPETITION RATE}

30 frames per second.

\section*{SECTION II}
\begin{tabular}{|c|c|c|}
\hline No. & Tube & Function \\
\hline V-1 & 6AU6 & Sound I-F \\
\hline V-2 & 6CB6 & Driver \\
\hline V-3 & 6AL5 & Ratio Detector \\
\hline V-4 & 6AV6 & 1 st Audio Amplifier \\
\hline V-5 & 6V6-GT & Audio Output \\
\hline V-6 & 6CB6 & 1st Pix 1-F \\
\hline V-7 & 6CB6 & 2nd Pix 1-F \\
\hline V-8 & 6CB6 & 3rd Pix I-F \\
\hline V-9 & 6CB6 & 4th Pix l-F \\
\hline V-10A & 1/26AL5 & Pix Detector \\
\hline V-10B & 1/26AL5 & D. C. Restorer \\
\hline V-11 & 6CB6 & 1 st Video Amplifier \\
\hline V-12 & 6K6-GT & 2nd Video Amplifier \\
\hline V-13 & 12AU7 & Sync Pulse Separator and Amplifier \\
\hline V-14 & 6AL5 & Automatic Frequency Control and Discriminator \\
\hline V-15 & 6SN7-GT & Horizontal Oscillator \\
\hline V-16 & \[
\begin{aligned}
& \text { 6J5 or } \\
& 6 \mathrm{~J} 5-\mathrm{GT}
\end{aligned}
\] & Horizontal Discharge \\
\hline V-17 & 6AV5-GT or 6AU5-GT & Horizontal Output \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { V-18 } \\
& \text { V-19 }
\end{aligned}
\] & 6AX4-GT 1B3-GT & Damper High Voltage & ALAT & ISTRUCTIONS \\
\hline V-20 & 6AV6 & Automatic Noise Inverter & & \\
\hline V -21 & 6AU6 & Keyed Automatic Gain Control & PICTURE TUBE ADJUSTMENTS: & \\
\hline V-22 & \(6 J 5\) or 6J5-GT & Vertical Oscillator & The following picture tube adjustments are to be checked upon installation or whenever the receiver is serviced. (See & \begin{tabular}{l}
8. Remove tube securing band, rubber band alid mounting ring. This step applies to model 2722 only. \\
9. Replace the tube by reversing the above procedure.
\end{tabular} \\
\hline V-23
\(\mathrm{V}-24\) & 6S4
\(504-\mathrm{G}\) & Vertical Output & Fig. 5, Picture Tube Yoke Assembly.) & Shell should be flush against deflection yoke rubber \\
\hline \(v-24\) & \(\int^{\text {20, }}\) (1-P4A & Pix Tube for models 2721, 2723 (both standard and deluxe), and & 1. Deflection Yoke. Loosen deflection yoke adjustment screw and rotate yoke so that raster is square with picture tube frame. Make certain yoke is positioned & - \\
\hline V-25 & & \begin{tabular}{l}
\[
2724 .
\] \\
Pix Tube for model 2722.
\end{tabular} & \begin{tabular}{l}
firmly against cone of tube. \\
2. Ion Trap. Turn contrast control to minimum. Set bright-
\end{tabular} & \begin{tabular}{l}
The procedure on models 2723 and 2724 is as follows: \\
1. Disconnect power plug. \\
2. Remove back.
\end{tabular} \\
\hline V-26 & 6BQ7 & \begin{tabular}{l}
R-F Amplifier \\
Note: Eorly models using R-F Tunor 10531 may use either a 68 CD or o 68K7. Tube must be raploced with type removed.
\end{tabular} & \begin{tabular}{l}
ness control at approximately \(90 \%\) clockwise and slowly slide ion trap backward and forward, at the same time rotating around neck of tube, until maximum brightness is obtained. \\
Reset brightmess control to just light tube. Turn con-
\end{tabular} & \begin{tabular}{l}
3. Remove chassis by removing control knobs on panel and four bolts on bottom of shelf. \\
4. Remove picture tube socket. \\
5. Remove ion trap and centering magnet.
\end{tabular} \\
\hline V-27 & 616 & Oscillator and Mixer & \begin{tabular}{l}
trast control clockwise to \(90 \%\) of maximum and readjust ion trap for peak brightness. \\
3. Centering. The centering magnet is a dual ring magnet. The centering is dependent upon the relation of
\end{tabular} & \begin{tabular}{l}
7. Remove spring harness and unfasten band over top of picture tube. \\
8. Pull tube forward and out of yoke.
\end{tabular} \\
\hline
\end{tabular}

\author{
PHONO RECEPTACLE AND SWITCH \\ There is a receptacle on the rear of the chassis to accom modate a record player. There is also a TV-PHONO switch that connects either the set or the record player.
}


Fig. 5. Plicture Tube Yoke Assembly

PICTURE TUBE ADJUSTMENTS:
The following picture tube adjustments are to be checked upon installation or whenever the receiver is serviced. (See
1. Deflection Yoke Lossen defl crew and rotate yoke so that raster is adjustmen cicture tube frame. Make certain yoke is positioned y against cone of tube.
ton Trap. Turn contrast control to minimum. Set bright slowly slide ion trap backward and forward, at the same time rotating around neck of tube, until maximum brightness is obtained. rast control clos convol ro just lightrube. Turn con adiust ion trap for peak brightess.
3. Centering. The centering magnat is a dual ring mag the rings to each other and the relation of both to the tube. The centering magnet is positioned almos against the deflection yoke, then the two section rotated in relation to each other, and as a whole, until proper centering is obtained. This adjustment is quite stable and wised little attention unless it position is disturbed

2 above.
REMOVING AND REPLACING
PICTURE TUBE:
CAUTION
WEAR GOGGLES OR A MASK AND USE GLOVES TO HANDLE TUBE. DO NOT STRIKE OR SCRATCH TUBE OR SUBJECT IT TO MORE THAN MODERATE PRESSURE.
NOTE: It is not necessary to remove the picture tube to cloan the tube face. Simply remove three screws in front roil and remove safoty glass. Clean glass and face of tube with window cloaning fluid on a soft cloth.
In all models it is necessary to remove the chassis before Ing the picture tube
The procedure on models 2721 and 2722 is as follows:
- Disconnect power plug.
. Remove back
. Remove picture tube socket, yoke plug, anode lead clip, and spoaker plug.
Remove chassis by removing the four mounting bolts, removing knobs from control panel, and sliding chassis out.
5. Remove four bolts holding tube support platform.
. Slide picture tube and tube support plafform out of the cabinet.
Slide ion trat
ture tube -
8. Remove tube securing band, rubber band alıd mount
9. ing ring. This step applies to model 2722 only.

Replace the tube by reversing the above procedure
Shell should be flush against deflection yoke rubber cushions.

The procedure on models 2723 and 2724 is as follows
1. Disconnect power plug
2. Remove back.

Remove chassis by removing control knobs on panel and four bolts on bottom of sh
5. Remove ion trap and centering magnet
7. Risconnect high voltage lead from picture tube.
picture tube.
Pull fube forward and out of yoke.

\section*{OPERATING INSTRUCTIONS}

\section*{ALL MODELS}
1. Turn receiver on by turning VOLUME CONTROL clockwise.
2. Allow for normal tube warm up
3. Turn SELECTOR to desired television channel.
4. Adjust FINE TUNING CONTROL for maximum picture quality.
5. Adjust CONTRAST CONTROL for most pleasing ple

Adjust VOLUME CONTROL to desired level.

\section*{NON-OPERATING CONTROLS:}

\section*{GENERAL:}

The non-operating controls are located similarly on all models. Six of them are under the nameplate escutcheon on the front of the set. They are:

ANI (automatic noise inverter)
Vertical hold
Brightness
Vertical linearity
Height
Focus
Focus
To reach these controls open the spring doors on the escutch eon.
There are four non-operating controls at the rear of the chassis. They are:

Horizontal hold
Horizontal drive
Horizontal linearity
Width
Width
All controls are marked. Read the following instructions
before making any adjustments.

\section*{ADJUSTMENT OF NON-OPERATING}

\section*{CONTROLS:}

The following adjustments should be made while observ ing a station test pattern. Allow receiver to warm up for te minutes.
Adiustment of FOCUS control and BRIGHTNESS control self explanatory.
Set HORIZONTAL HOLD to synchronize picture hori
Set VERTICAL HOLD so that picture does not move up or
Adjust HEIGHT and WIDTH controls in conjunction with VERTICAL LINEARITY and HORIZONTAL LINEARITY con trols to obtain symmetrical paitern of correct size.
The automatic noise inverter (ANI) control MUST be ad-
justed at the location where the receiver is to be used. More
justed at the location where the receiver is to be used. More-
over, it must be adjusted using the weakest signal that will over, ir must be adjusted using the weak
be received. The procedure is as follows:
1. Rotate the ANI control to its extreme counterclock-
2. Advance the control clockwise until the picture begin to distort.
3. Return the control counterclockwise slightly beyond where the distortion disappears.
4. Check all channels for picture stability. If adjustment has not been made on the weakest signa
The HORIZONTAL DRIVE control is adjusted by rotating it clockwise until a bright vertical bar appears, causing picture compression. Then the control is rotated counterclockwise until the compression just disappears.

\section*{SECTION III}

\section*{ALIGNMENT PROCEDURE}

\section*{GENERAL:}

It is important that the service technician read and adhere to the alignment instructions in this section. This point canno be stressed too strongly, especially in the case of the picture I-F alignment.
Many service technicians have been accustomed to align ing the picture i-F response curve on the oscilloscope alone. This procedure is not recommended because it is actually quite possible to get what appears to be an acceptable urve and still be lacking in horizontal resolution
Instead, the spot frequency alignment outlined below It will be noted
It will be noted that in the following procedure the sweep the case, the output impedance of the generator must match the 300 ohm input impedance of the set. A matching network may be devised to accomplish this. At the factory a Sylvania type 500 sweep generator was used. This generator has an output impedance of 75 ohms. The network used to match this particular impedance to the set is shown in Fig. 6 . For a generator with 50 ohms impedance, use 56 ohms for the Also in step 12 it is directed that the generator be loosely coupled to the converter tube. This is done by disconnecting the tube shield from ground and connecting the generator between the shield and ground.
Test point locations are shown on the schematic diagram, Fig. 20, and on the chass is illustrations, Figs. 8,9, 10, and 11. Allow the set to warm up for 10 minutes before alignment.

\section*{PICTURE I-F ALIGNMENT:}
1. Remove ANI tube, 6AV6(V-20).
2. Connect a 3 volt battery between point " \(A\) " and ground, with the negative lead to point "A."
3. Connect a vacuum tube voltmeter between points " \(B\) "
and " \(C\)."
4. Connect signal generator between ground and first i-F grid (V-6, pin 1), through a .001 mfd capacitor. Set outpu at maximum.
NOTE: Early models have traps on 1st and 2nd I-F's only. These are tuned to 26.5 Mc . and 20.5 Mc . respec ively. Alignment procedure is as described in steps 6 and 7 below, using 26.5 Mc . instead of 26.25 M Steps 5 through 12 are listed in tabular form.

\section*{Signal
Generator \\ Generator}

Frequency Adjust. For
18.75 Mc 26.25 Mc. \(\begin{array}{cc}\text { S-218 } & \text { Minimum } \\ \text { and S-19B } & \text { Minimum } \\ \text { S-20B } & \text { Minimum }\end{array}\) \(\begin{array}{lll}20.50 \mathrm{Mc} & \mathrm{S}-20 \mathrm{~B} & \text { Minimum } \\ 22.15 \mathrm{Mc} & \mathrm{S}-22 \mathrm{~A} & \text { Maximum }\end{array}\)
(Adjust generator output for
2.5 to 3 volt VTVM reading
for steps 8 thru 12.)
9. \(\quad 23.70 \mathrm{Mc}\). S-21A Maximum
11. 24.80 Mc. \(S-20 A\) Maximum

REPEAT STEPS 5 THROUGH 11
Disconnect signal generator from l-F grid and
loosely couple it to converter tube, V-27. See general instructions, this section.
12. 21.05 Mc . S-6A Maximu
13. Disconnect VIVM and 3 volt battery
14. Connect oscilloscope to point "B," using a 22,000 ohm isolating resistor in series with the scope probe. Connect an electrolytic capacitor, 5 mfd ., 50 volt, between poin "J" and ground, the negative lead going to point "J. for leakage. There should be no drop in A.G.C. voltage when the capacitor is connected.


Fig. 6. Matching Network
15. Connect sweep generator to antenna terminals through an impedance matching network. (See preceding gen eral instructions.)
16. Rotate tuner to a low frequency channel, say channel 3 and set sweep generator to center frequency of channe used ( 63 Mc . for channel 3 ). With a sweep width of 10 Mc., adjust generator output to develop approximately 4 volts of A.G.C.
17. With signal generator loosely coupled to converter tube, adjust output to provide the markers shown on the response curve, Fig. 7. Check the position of the markers one at a time.
. Observe the waveform obtained on the oscilloscope and compare it with the waveform shown in Fig. 7 if the spor frequency alignment has been carevuly retouching of the I-F adjustments may be required. It should not be necessary to change any adjustment ap preciably. The markers should be locared as follows: The 20.5 Mc ., the 26.25 Mc . and the 18.75 Mc . markers at minimum response.
The 25.0 Mc . marker af \(50 \%\) response.
The 21.55 Mc. marker at \(100 \%\) response.

\section*{ALIGNMENT OF 4.5 Mc. TRAP:}
1. Remove Pix Detector-D.C. Restorer tube, 6AL5 (V-10). 2. Connect signal generator between point " B " and ground thru a .001 mrd isolating capacitor.
3. Turn contrast control to maximum.
4. Connect a R-F VTVM to point "D." If an R-F vacuum tube voltmeter is not available, connecr a germani ventional VTVM.
5. Set signal gener at one volt or more.
6. Adjust trap, S-23, for minimum VTVM reading

Note: if signal generator is not capable of one volt output, will be necessary to adjust the trap by visual means. To do this, observe the picture and adjust the trap to eliminat the 4.5 Mc . beat.

OUND -F AND RATIO DETECTOR ALIGNMENT:
1. Connect signal generator between point " B " and ground.

Connect VTVM between points " \(E\) " and " \(F\) "
With generator frequency at 4.5 Mc ., adjust S-1, S-2, and 5-3 for maximum output.
4. Connect VTVM between point " \(G\) " and ground
5. With generator at 4.5 Mc. , adjust Ratio Detector primary, 5-4, for maximum output. A positive voltoge will be noted.
6. Connect VTVM between points " \(G\) " and " \(H\)."
7. Adjust Ratio Detector secondary, S-5, for zero between positive and negative peaks.

\section*{RADIO FREQUENCY TUNER:}

The radio frequency funer used is the "Standard Cascode uner" manufactured by Standard Coil Products Inc. for Packard-Bell Co. Most models use tuner 10532 (Packard-Bell part number), but early models incorporated tuner 10531. Schematics of both are shown, Figs. 17 and 18.
The 10531 tuner uses a 6BK7 or a 6BQ7 tube as an R-F amplifier, but these tubes are not interchangeable. A tube must be replaced by the type that is removed.
The 10532 tuner has an improved circuit designed for use The 6BQ7 tube only as 1 Remplifier.
Speciol Nole: Some 10532 tuners are supplied with a 6807 A or a
6B27. These tubes ore interchongeoble with the usvol 6807 . Alignment of the tuner, other than channel slugs and converter 1 -F, is not recommended.

\section*{UHF OPERATION}

UHF coil strips for the radio frequency tuner will be avail able through Packard-Bell Factory Service Departments for channels 14 through 83 . When requesting strips specify the uner part number. Tuner 10531 uses " \(K\) strips and funer 0532 uses " \(Q\) " strips. These strips are not interchangeable. No tuner adjustment is needed after strip installation except normal oscillator slug adjustment.


© John F. Rider

CHASSIS 2720 IS
USED ON MODELS
2721 AND 2722.

\section*{IST OF ADJUSTMENTS :}
\begin{tabular}{|c|c|c|c|}
\hline Reference
Symbol & Description & Reference Symbol & Description \\
\hline S-1 & Intercarrier sound, 4.5 Mc. & S-19A & 1 lst picture 1-F, 24.8 Mc . \\
\hline S-2 & Sound 1-F, primary, 4.5 Mc . & S.20a & \\
\hline 5.3 & Sound I-F, secondary, 4.5 Mc . & S.208 & 2nd picture 1 -r, 21.25 Mc . \\
\hline S-4 & Ratio detector, primary & S-21A & 3 rd picture l-F, 23.7 Mc . \\
\hline S-5 & Ratio detector, secondary & S-218 & Trap, 26.25 Mc . \\
\hline S-6A & Converter I-F, in R-F tuner & S-22A & 4 th picture l-F, 22.15 Mc . \\
\hline \({ }_{5}^{5-68}\) & \({ }_{\text {Mixerer , in }} \mathrm{R}\) - F tuner & S.22B & Trap, 18.75 Mc . \\
\hline 5.60 & Antenna, in R -F tuner & S-23 & Trap, 4.5 Mc . \\
\hline S-6E & Oscillator trimmer, in 10531 tuner only & S-25 & Horizontal hold \\
\hline S-7 thru S-18 & Oscillator slugs for the 12 channels & S-26 & Width \\
\hline
\end{tabular}

© John F. Rider

\section*{NO HORIZONTAL DEFLECTION}
1. Horizontal deflection coil L-19B open.

\section*{NO VERTICAL DEFLECTION}
1. V-23 defective; change tube then check voltages and associated components
2. Vertical deflection coil L-19A open.

\section*{INSUFFICIENT WIDTH}
1. V- 24 defective; change tube, then check for adequate B plus voltage.
2. Power transformer T-4 may be defective; check plate winding.
3. \(\mathrm{V}-16, \mathrm{~V}-19\) defective; change tubes then check voltages ctive horizontal output transformer T-2.
5. Check horizontal sweep wave-forms.

\section*{NON-SYMMETRICAL RASTER}
I. Check centering magnet and ion trap adjustments.
2. Yoke assembly may be defective.
3. Check vertical linearity and height adjustments.

\section*{PICTURE BUT NO SOUND}
1. V-1, V-2, V-3, V-4, or V-5 defective; change tubes then check voltages and associated components.
3. Speaker voice coil open.

\section*{CRITICAL LEAD DRESS:}

In the event parts are replaced, refer to the appropriate chassis illustration, Fig. 8, 9, 10, or 11 for proper placemen and lead dress. Particular attention should be given the 1. Do no

Do not displace components in the picture I-F circuit. If it is necessary to replace components in this section, the 2. Dress high voltage bhecked following the changes. 3. If parts are replaced in the high voltage section, solde loints must be rounded and free from sharp corners 4. The lead from the ANI control, R-68, should be dressed away from the 4.5 Mc . trap \(\mathrm{S}-23\).

\section*{SOCKET VOLTAGES:}

The socket voltages shown were measured on a typical hassis, under the following conditions:
I. No signal
3. Volume and contrast controls set at minimum, othe controls at normal operating position.
4. D.C. voltages measured with a vacuum tube voltmeter.
5. A.C. voltages measured with a 1000 ohms per volt
6. Voltage
exception of those on \(V-1\) respect to ground with the exception of those on V-1, \(\vee-2, V-5\), and \(V-21\). Voltages cathode of \(\dot{V}-5\), which itself is 117 volts above ground.

> NOTE: Some voltage readings are subject to a variation depending upon the setting of related controls. Thus the voltages on the vertical oscillator tube V-22 depend on the setting of the vertical hold control.and the height control Likewise the voltages on \(\mathrm{V}-23\) are varied by \(\mathrm{R}-91\).


\section*{© John F. Rider}

fig. 15. R-f Tuner 10531



Fig. 17. Schematic Diagram, Tuner 10531


Figure 18. Schematic Diagram, Tuner 10532

17. (V-18) Vert. Osxil.,., Plate, (Pin 3)
60 C.P.S., 105 V.P.P.

Fig. 19. Waveforms


NOTE: Early models have only two pix I-F traps, S-19B and
Fig. 20. Schemafic Diagram, Models 2721, 2722, 2723, and 2724
S -20B, tuned to 26.5 Mc . and 20.5 Mc .
\[
\text { - } 8
\]


\section*{CAPACITORS (Cont.)}

\section*{table of replaceable parts}

To be assured of genuine Packard-Bell replacement parts, Packard-Bell Seackard-Bell part number from your nearest below.
\begin{tabular}{|c|c|}
\hline City & Address \\
\hline Los Angeles (home office) & 1101 So. Hope St. \\
\hline Alhambra & 2221 West Valley Blvd. \\
\hline Burbank & 3007 Magnolia Blvd. \\
\hline Compton & 14912 So. Atlantic Blvd. \\
\hline Culver City & 2405 So. La Cienega Blvd. \\
\hline Denver & 1441 Ogden St. \\
\hline El Paso & 1515 Wyoming St. \\
\hline Fresno & 531 "P" St. \\
\hline Honolulu & 1923 Kalakava Ave. \\
\hline Oakland & 1009 Cypress St. \\
\hline Phoenix & 228 E. Roosevelt St. \\
\hline Portland & 326 N. W. 21 st Ave. \\
\hline Riverside & 247 la Cadena Dr. \\
\hline Salt Lake City & 624 So. State St. \\
\hline San Diego & 3069 El Cajon Blvd. \\
\hline San Francisco & 1157 Post St. \\
\hline San Mateo & 1037 No. Bayshore Blyd. \\
\hline Santa Ana & 1324 W. First St. \\
\hline Seattle & 2310 4th Ave. \\
\hline Spokane & South 125 Stevens St. \\
\hline Tacoma & 2327 So. Tacoma Ave. \\
\hline
\end{tabular}

\section*{CAPACITORS}

Notes: (1) "GMV" means "capacities listed are Guaranteed Minimum Values over a range of from plus 10 deMrees C . to plus 65 degrees C ."
(2) Unless otherwise specified, tolerances are: Electrolytic capacitors, \(+50 \%,-10 \%\)
(3) "NPO" denotes zero temperature coefficient.




\section*{RESISTORS}

Notes: (1) Resistors are \(1 / 2\) watt unless otherwise specified
C-5 Ceramic, 10,000 mmf GMV, 500 volt, disc 23939
(2) Tolerance is \(10 \%\) unless otherwise specified





Fig. 5. Webster Recerd Clvanger
PHONOGRAPH OPERATION, MODEL 2921: (Model 2921 uses the V-M Model 950 three speed automatic record changer, Fig. 4.)
1. Turn receiver on and set SELECTOR to Phono position.
2. Pull record support straight up and swing it to side
3. Until small pin on shaft drops into locating groove.
3. Place records on spindle and lower to offset shelf Hold records level and replace record support over
spindle. Changer will play ten 12 inch records, twelve spindle. Changer will play ten 12 inch records, twelve
10 inch records, (standard or long playing), or twelve 7 inch records. The 10 inch and 12 inch may be intermixed if they are to be played at the same speed.
4. Set speed control and needle selector to correspond with type of record being played.
5. Turn on-off-reject button to "REJ." to start turntable and drop first record. Operation is now automatic; the changer will shut off after the last record has been played.
6. To reject any record while playing, turn on-off-reject
button to "REJ."

REMOVING RECORDS, (model 2921):
1. Lift record support and swing it to side until small pin on shaft drops into locating groove.
2. Lift stack straight up off spindle.

MANUAL OPERATION, (model 2921):
1. With no records on turntable and record support in position on spindle, furn on-off-reject button and allow changer to go thru shut off cycle.
2. Lift record support and swing it to side. Place record on turntable and return record support to position on spindle.
3. Set speed control and needle selector to correspond with the type record being played.
4. Start turntable and place needle on record.

PHONOGRAPH OPERATION, MODEL 2922:
(Model 2922 uses the Webster Model 114 three speed automatic record changer, Fig. 5.)
1. Turn receiver on and set SELECTOR to Phono position
2. Lift the record ballast arm and swing it away from the spindle and exert a slight downward pressure until it latches.

MODELS 2921, Ch. 2921: 2922, Ch. 2922
3. Place up to a one inch stack of any one size of records on the spindle and swing the record ballast arm back spindle in the hole. The automatic index finger will remain away from the record until the change cycle starts. It will then move in to feel the diameter of the record and automatically index the pickup arm to he proper playing position.
4. Rotate needle selector to correspond with the type of the records to be played, \(33-45\) for \(331 / 3\) or 45 R. P. M. records, " 78 " for 78 R. P. M. records.
5. Move the speed selector lever to correspond with the speed of the records to be ployed. Push the START REJECT button to drop the first record. Hold butto down until pickup arm moves.
6. To reject any record while playing automatically, push he START-REJECT button.
7. After the last record has been played, the turntable will shut off automatically and pickup arm will return to rest position.

REMOVING RECORDS, (model 2922):
1. Set the speed selector to off
2. Lift and swing ballast arm away from spindle until it latches.
3. Place the fingers of both hands under opposite sides of the bottom record. Do not apply pressure to the rop, but keep thumbs free, lifting the entire stack of records up following the contour of the spindle.

MANUAL OPERATION, (model 2922 )
1. Lift the record ballast arm and swing it away from the spindle and exert a slight downward pressure until it latches.
2. Place a record on the turntable and move the speed control
played.
3. Rotate needle selector to correspond with record being played.
4. Place pickup arm on record, turntable will start automatically.
5. When record has been played, remove pickup arm to rest position, turntable will shut off automatically.

MPORTANT: ALWAYS MOVE SPEED SELECTOR TO N N USE.

\section*{NON-OPERATING CONTROLS:}

\section*{GENERAL:}

The non-operating controls are located similarly on both models. Six of them are under the nameplate escutcheon on the front of the set. They are:

\author{
Vertical hold \\ Brightness \\ Vertical linearity \\ Height \\ Focus
}
To reach these controls open the spring doors on the escutch-
eon.
There are four non-operating controls at the rear of the
chassis. They are:
Horizontal hold
Horizontal drive
Horizontal linearity
Width

All controls are marked. Read the following instructions before making any adjustments.

\section*{ADJUSTMENT OF NON-OPERATING} CONTROLS:
The following adjustments should be made while observing a station test pattern. Allow receiver to warm up for ten minutes.
Adjustment of FOCUS control and BRIGHTNESS control is self explanatory.

Set HORIZONTAL HOLD to synchronize picture hori zontally.

Set VERTICAL HOLD so that picture does not move up or down.

\section*{SECTION II}

\section*{ALIGNMENT PROCEDURE}

\section*{GENERAL:}

It is important that the service technician read and adher ro the alignment instructions in this section. This point canno be stressed too strongly, especially in the case of the pictur - F alignment.

Many service technicians have been accustomed to align ing the picture I-F response curve on the oscilloscope alone. quite possible to get what appears to be an acceptable curve and still be lacking in horizontal resolution

Instead, the spot frequency alignment outlined below should be followed.

It will be noted that in the following procedure the sweep generator is fed in through the antenna terminals. This being he case, the output impedance of the generator must matc the 300 ohm input impedance of the set. A matching networ may be devised to accomplish this. At the factory a Sylvania output impedance of 75 ohms. The network used to match this particular impedance to the set is shown in Fig. 6. For generator with 50 ohms impedance, use 56 ohms for the shunt resistor, and 130 ohms for each of the series resistors.

Also in step 12 it is directed that the generator be loosely coupled to the converter tube. This is done by disconnecting he tube shield from ground and connecting the generato between the shield and ground

Test point locations are shown on the schematic diagram, ig. 20, and on the chassis illustrations, Figs. 8,9, 10, and 11

Adjust HEIGHT and WIDTH controls in conjunction with VERTICAL LINEARITY and HORIZONTAL LINEARITY con trols to obtain symmetrical pattern of correct size.
The automatic noise inverter (ANI) control MUST be ad justed at the location where the receiver is to be used. More be received. The proced using the weakest signal that wil
1. Rotate the ANI control to its extreme counterclock wise position.
2. Advance the control clockwise until the picture begin to distort.
3. Return the control counterclockwise slightly beyond where the distortion disappears.
4. Check all channels for picture stability. If adjustmen has not been made on the weakest signal, synchronization may be lost on another channel.

The HORIZONTAL DRIVE control is adjusted by rotating clockwise until a bright vertical bar appears, causing pictura compression. Then the control is rotated counterclockwise until the compression just disappears.
Step G

Step Frequen
6. \(\quad 26.25 \mathrm{Mc}\).
7. 20.50 Mc .
and \(\begin{array}{r}\mathrm{S}-318 \\ \mathrm{~S}-29 \mathrm{~B} \\ \mathrm{~S}-308\end{array}\)
Minimum

Minimur
8. 22.15 Mc s-32A Maximum 2.5 si generator output for 2.5 to 3 voir VIM reading for steps 8 thru 12.
9. \(\quad 23.70 \mathrm{Mc}\).
11. \(\quad 24.80 \mathrm{Mc}\). S-29A Maximum

REPEAT STEPS 5 THROUGH 11
Disconnect signal generator from I-F grid and loosely couple it to converter tube, V-29. See general instructions, this section.
12. 21.05 Mc .
S-12 Maximum
(on R-F tuner)
13. Disconnect VTVM and 3 volt battery.
14. Connect oscilloscope to point "B," using a 22,000 ohm isolating resistor in series with the scope probe. Connect an electrolytic capacitor, 5 mfd ., 50 volt, between point " \(\mathrm{\prime} \mathrm{\prime}\) " and ground, the negative lead going to point "J." The capacitor should previously have been checked for leakage. There should be no drop in A.G.C. voltage when the capacitor is connected.
15. Connect sweep generator to antenna terminals through an impedance matching network. (See preceding general instructions.)
16. Rotate tuner to a low frequency channel, say channel 3, and set sweep generator to center frequency of channel Mc adiust generotor output to develop approximately 4 volts of A.G.C.
17. With signal generator loosely coupled to converter tube, adjust output to provide the markers shown on the response curve, Fig. 7. Check the position of the markers one at a time.
18. Observe the waveform obtained on the oscilloscope, and compare it with the waveform shown in Fig. 7. If the spot frequency alignment has been carefuly done, the comp of the \(1-F\) adiustments may be required. It should not be necessary to change any adjustment appreciably. The markers should be located as follows:

The 20.5 Mc ., the 26.25 Mc . and the 18.75 Mc . markers at minimum response.

The 25.0 Mc . marker at \(50 \%\) response.
The \(\mathbf{2 1 . 5 5} \mathrm{Mc}\). marker at \(\mathbf{1 0 0 \%}\) response.

fig. 7. I-F Response Curve

\section*{ALIGNMENT OF 4.5 Mc. TRAP:}
1. Remove Pix Detector-D.C. Restorer tube, 6AL5 (V-12),

Connect signal generator between point "B" and ground thru a .001 mfd . isolating capacitor.
3. Turn contrast control to maximum.
4. Connect a R-F VTVM to point "D." If an R-F vacuum tube voltmeter is not available, connect a germanium diode crystal in serion.
5. Set signal generator to 4.5 Mc ., exactly, with the output at one volt or more.
6. Adjust trap, S-33, for minimum VTVM reading.

Note: If signal generator is not capable of one volt output, will be necessary to adjust ha wap by visual means. To do 4.5 Mc. beat.

\section*{SOUND I-F AND RATIO DETECTOR ALIGNMENT:}
1. Connect signal generator between point " B " and ground.
2. Connect VTVM between points " \(E\) " and " \(F\)."
3. With generator frequency at 4.5 Mc ., adjust S-7, S-8 and S-9 for maximum output.
4. Connect VTVM between point " \(G\) " and ground.
5. With generator at 4.5 Mc ., adjust Ratio Detector primary, S-10, for maximum output. A positive voltage wil be noted.
6. Connect VTVM between points " \(G\) " and "H."
7. Adjust Ratio Detector secondary, S-11, for zero between positive and negative peaks.



\section*{RADIO FREQUENCY TUNER:}

The radio frequency funer used is the "Standard Cascode uner" manufactured by Standard Coil Products Inc. for Packard-Bell Co. Most models use tuner 10532 (Packard-Bell part number), but early models incorporated tuner 10531. Schematics of both are shown, Figs. 17 and 18.

The 10531 tuner uses a 6BK7 or a 6BQ7 tube as an R-F
amplifier, but these tubes are not interchangeable. A tube amplifier, but these tubes are not interchangeable. A tube must be replaced by the type that is removed.

The 10532 tuner has an improved circuit designed for use with the 6BQ7 tube only as the R-F amplifier.

Z7. Nate: Some 10532 tuners are supplied with o ©BQ7A or a 6BZ7. These tubes ore interchangeable with the usual 6BQ7.

\section*{UHF OPERATION:}

UHF coil strips for the radio frequency tuner will be avail able through Packard-Bell Factory Service Departments for channels 14 through 83 . When requesting strips specify the tuner part number. Tuner 10531 uses " K " strips and tune
10532 uses " \(\mathrm{Q}^{\text {" }}\) strips. These strips are not interchangeable No tuner adjustment is needed after strip installation ex cept normal oscillator slug adjustment.

\section*{D. C. RESISTANCE MEASUREMENTS}

\section*{AM RADIO}

1st I-F Transformer, AM Radio Primary (terminals 2 \& 3)
Secondary (terminals 1 \& 4)
I I-F Transformer, AM Radio Srary (erminals 2 \& 3) \(\quad 16.5\) ohms \(\quad 11.5\) ohms
Oscillator Coil, AM Radio
Start to ground
Tap to ground
5.5 ohms
.65 ohms

\section*{ALIGNMENT OF AM RADIO}

The alignment of the AM radio consists of the steps show in the following chart. Use the smailest possible input signal in each case. Connect the output meter to the speaker voice coil.

Refer to Figs. 8, 9, 10, and 11 for location of adjustments and test points.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Connect Oscillator thru a .01 mfd . capacitor to: & Oscillator Setting & Pointer Setting & Adjust \\
\hline 1. & V-1 grid (pin 7) and ground & 455 Kc. & 540 Kc. & \begin{tabular}{l}
S-3, S-4, \\
S-5 and S-6 \\
for max. output
\end{tabular} \\
\hline 2. & Test loop* & 1620 Kc. & 1620 Kc . & S-2 for max. output \\
\hline 3. & Test loop* & 1500 Kc. & 1500 Kc . & S-1 for max. output \\
\hline 4. & \begin{tabular}{l}
Test loop* \\
*Two or three tu mately 10 inches about two feet
\end{tabular} & \begin{tabular}{l}
\[
600 \mathrm{Kc} .
\] \\
ire approxi eter placed civer.
\end{tabular} & 600 Kc. & Move sleeve or which ferroloop is wound for maximum output. On some models a segment of the coil is movable. \\
\hline
\end{tabular}

Repeat step 3 and 4 several times to insure perfect tracking

\section*{SECTION IV}

\section*{SPECIAL SERVICING INFORMATION}

\section*{BLOCK CIRCUIT DIAGRAM:}

The block circuit diagram shown in Fig. 12 will enable service personnel to trace the signal through the receiver in a logical manner.

\section*{PRODUCTION MODIFICATIONS:}

The following production modifications were made since the publication of "Preliminary Service Data" concerning these models. They are mentioned here in order to explain any variation between the schematic diagram and the receiver being serviced. THE REASON FOR THE CHANGE IS SHOWN IN CAPITAL LETTERS
1. EASE IN ASSEMBLY. Capacitor C-10, 100 mmf , and R-11, 22,000 ohms, are now combined into one uni called a "capristor". The Packard-Bell part number of the capristor is 23970
2. IMPROVED PERFORMANCE. The front end tuner, Pack ard-Bell number 10531, has been replaced with tuner 10532.
3. SUPPRESSION OF ADJACENT-CHANNEL INTERFER ENCE. All four picture I-F transformers have been changed to a new type embodying adjacent-channe traps on each. In making this change, R-35 was changed from 8200 ohms to 10,000 ohms and resisto R-43 from 5600 ohms to 4700 ohms.

\section*{LOCATING TROUBLE BY PICTURE TUBE OBSERVATION:}

A large proportion of circuit failures may be isolated by observing certain characteristics present in the picture. Listed below are a number of possible picture faults and their probable cause.

\section*{NO RASTER ON PICTURE TUBE}
1. Incorrect adjustment of ion trap magnet.
2. V-18, V-20, V-21, V-26 defective; check voltages and associated components.
3. V-17 defective, (no horizontal drive); change tube, then check voltages and associated components.
4. Check horizontal sweep wave-forms.
5. No high voltage; check transformer T-2 for defects.
6. Blown fuse; if fuse continues to blow out, check for short in B boost voltage.
7. Defective picture tube or picture tube socket.

PASTER BUT NO SOUND OR PICTURE
1. Tuner defective.
2. V-23 defective, check \(A\). G. C. voltage.
3. V-7 defective.

\section*{SOUND AND RASTER BUT NO PICTURE}
1. V-13 or V-14 may be defective; change V-13, check voltages; if trouble does not disappear, change V-14 and check voltages.
2. Check video wave-forms.

\section*{PICTURE STABLE BUT POOR RESOLUTION}

\section*{OR DEFINITION}
1. V-13 or V-14 may be defective. Change tubes successively, then check voltages and associated components
2. Check centering magnet and ion trap for proper adjustment
3. R-F or I-F circuit may be improperly aligned.
4. Video peaking coils may be open or shorted.

\section*{WEAK RASTER}
1. Low B plus or line voltage.
2. V-26 may be defective; change tube then check volt
3. V-18, V-20, V-21 defective; change tubes, then check
3. V-oltages and associated components.
4. Power transformer T-4 may be defective. Check plate winding.
5. Filter capacitors may be defective. Check C-20B, C-20C \(\mathrm{C}-69 \mathrm{~B}\), and \(\mathrm{C}-69 \mathrm{C}\).

\section*{PICTURE NOT STABLE}
1. If regular sections of the left picture are displaced, \(V\) - 18 may be defective; check voltages.
2. Check for loose connections or noise.

\section*{PICTURE WILL NOT HOLD HORIZONTAL}

\section*{SYNC.}
1. Horizontal hold control out of adjustment. See non operating controls on page \({ }^{14}\)
2. V-17 defective; change tube, then check voltages and associated components.
3. Check horizontal sweep circuit wave-forms.


Fig. 13. Tube Location Chart, Chassis 2921, Bottom View


Fig. 14. Tube Locafion Chart, Chassis 2922, Botfom View

\section*{POOR VERTICAL LINEARITY}
1. Incorrect adjustment of vertical linearity control. See non-operating controls on page 7.
2. Vertical output transformer defective, (T-3)

\section*{NO HORIZONTAL DEFLECTION}
1. Horizontal deflection coil L-22B open.

\section*{NO VERTICAL DEFLECTION}
1. V-25 defective; change tube, then check voltages and associated components.
2. Vertical deflection coil L-22A open.

\section*{INSUFFICIENT WIDTH}
1. V-26 defective; change tube, then check for adequate B plus voltage.
2. Power transformer T-4 may be defective; check plate winding.
3. \(\mathrm{V}-18, \mathrm{~V}-21\) defective; change tubes, then check voltages.
4. Defective horizontal output transformer T-2.
5. Check horizontal sweep wave-forms.

\section*{NON-SYMMETRICAL RASTER}
I. Check centering magnet and ion trap adjustments.
2. Yoke assembly may be defective
3. Check vertical linearity and height adjustments.

\section*{PICTURE BUT NO SOUND}
1. V-3, V-4, V-5, V-6, or V-7 defective; change tubes, then check voltages and associated components.
2. Audio output transformer T -1 open
3. Speaker voice coil open.

\section*{CRITICAL LEAD DRESS:}

In the event parts are replaced, refer to the appropriate chassis illustration, Fig. 8, 9, 10, or 11, for proper placement and lead dress. Particular attention should be given the following:
1. Do not displace components in the picture l-F circuit. If it is necessary to replace components in this section, the alignment should be checked following the changes.
2. Dress high voltage leads up and away from the chassis.
3. If parts are replaced in the high voltage section, solder joints must be rounded and free from sharp corners.
4. The lead from the ANI control, R-77, should be dressed away from the 4.5 Mc . trap, \(\mathrm{S}-33\).
5. The lead from the center top of the height control, R-57B, should be dressed away from the tone control, R-20.

\section*{SOCKET VOLTAGES:}

The socket voltages shown were measured on a typica chassis, under the following conditions:
1. No signal.
2. Line voltage, 117 volts.
3. Volume and contrast controls set at minimum, other controls at normal operating position.
4. D.C. voltages measured with a vacuum tube voltmeter
5. A.C. voltages measured with a 1000 ohms per voit meter.
6. Voltages measured with respect to ground with the 6. Voltages measured with respect to ground with the
exception of those on \(\mathrm{V}-3, \mathrm{~V}-4, \mathrm{~V}-7\), and \(\mathrm{V}-23\). Voltages on these tubes were measured with respect to the cathode of V-7, which itself is 117 volts above ground.
NOTE: Some valtage readings are subject to a variation depending upon the setting of related controls. Thus the setting of the vertical hold control and the height control. Likewise the voltages on V-25 are varied by R-100.
All figures given below show the approximate magnitude
of the reading to be expected, rather than the exact voltage.
Tube location is shown on Figs. 13 and 14, which are dia grams of the bottom view of each chassis.

\section*{SOCKET VOLTAGES, SWITCH IN} "TV'" POSITION

V-1, 6 BE 6, A.M. Converter
Not used in TV reception
V-2, 6BAG, A.M. I-F Amp.
Not used in TV reception
V-3, 6A*6, Sound I-F*
\begin{tabular}{llc} 
Pin & Element & Voltage \\
1 & Grid 1 & 0 \\
2 & Grid 3 & 0 \\
3 & Heater & 0 \\
4 & Heater & 6.3 AC \\
5 & Plate & 135 \\
6 & Grid 2 & 135 \\
7 & Cathode & 14
\end{tabular}

V-4, 6CB6, Driver*
\begin{tabular}{clc} 
Pin & Element & Voltage \\
1 & Grid 1 & 2.9 \\
2 & Cathode & 3.6 \\
3 & Heater & 0 \\
4 & Heater & 6.3 AC \\
5 & Plate & 52 \\
6 & Grid 2 & 52 \\
7 & Grid 3 & 3.2
\end{tabular}

V-5, 6AL5, Ratio Defector
\begin{tabular}{rll} 
Pin & Element & Voltage \\
1 & Cathode 1 & 9.5 \\
2 & Plate 2 & 0 \\
3 & Heater & 0 \\
4 & Heater & 6.3 AC \\
5 & Cathode 2 & 6.2 \\
6 & Shield & 0 \\
7 & Plate 1 & 4.3
\end{tabular}

V-6, 6AV6, 1 st Audio
\begin{tabular}{llc} 
Pin & Element & Voltage \\
1 & Grid & -.56 \\
2 & Cathode & 0 \\
3 & Heater & 6.3 AC \\
4 & Heater & 0 \\
5 & Diode Plate & 0 \\
6 & Diode Plate, not used & \\
7 & Plate & 110
\end{tabular}

V-7, 6V6-GT, Audio Outpuf*

\section*{Pin Element Voltage}

No connection
Heater 6.3 AC
\(\begin{array}{llr}2 & \text { Heater } & 6.3 \\ 3 & \text { Plate } & 160 \\ 4 & \text { Grid 2 } & 177\end{array}\)
Grid 2
Grid 1
\(\begin{array}{ll}\begin{array}{l}\text { No connection } \\ \text { Heater }\end{array} & 0\end{array}\)
Cathode
V-8, 6CB6, 1 st Pix I-F
\begin{tabular}{clc} 
& \\
Pin & Element & Voltage \\
1 & Grid 1 & -.3 \\
2 & Cathode & 1.05 \\
3 & Heater & 0 \\
4 & Heater & 6.3 AC \\
5 & Plate & 109 \\
6 & Grid 2 & 109 \\
7 & Grid 3 & 0
\end{tabular}

V-9, 6CB6, 2nd Pix I-F
\begin{tabular}{rlc} 
Pin & Element & Voltage \\
1 & Grid 1 & -.3 \\
2 & Cathode & 1.25 \\
3 & Heater & 0 \\
4 & Heater & 6.3 AC \\
5 & Plate & 110 \\
6 & Grid 2 & 110 \\
7 & Grid 3 & 0
\end{tabular}
V.10, 6CB6, 3rd Pix I-F
\begin{tabular}{|c|c|c|}
\hline Pin & Element & Voltage \\
\hline 1 & Grid 1 & -. 3 \\
\hline 2 & Cathode & 1.05 \\
\hline 3 & Heater & 0 \\
\hline 4 & Heater & 6.3 AC \\
\hline 5 & Plate & 113 \\
\hline 6 & Grid 2 & 113 \\
\hline 7 & Grid 3 & 0 \\
\hline \multicolumn{3}{|c|}{V-11, 6CB6, 4th Pix I-F} \\
\hline Pin & Element & Voltage \\
\hline 1 & Grid 1 & 0 \\
\hline 2 & Cathode & 2.0 \\
\hline 3 & Heater & 0 \\
\hline 4 & Heater & 6.3 AC \\
\hline 5 & Plate & 117 \\
\hline 6 & Grid 2 & 117 \\
\hline 7 & Grid 3 & 0 \\
\hline \multicolumn{3}{|c|}{V-12, (A\&B), 6AL5 Pix Detector and D. C. Restorer} \\
\hline Pin & Element & Voltage \\
\hline 1 & Cathode 1 & 11 \\
\hline 2 & Plate 2 & 0 \\
\hline 3 & Heater & 0 \\
\hline 4 & Heater & 6.3 AC \\
\hline 5 & Cathode 2 & 5.6 \\
\hline 6 & Shield & 0 \\
\hline 7 & Plate 1 & 9.8 \\
\hline
\end{tabular}

V-13, 6CB6, 1 st Video
\begin{tabular}{|c|c|c|}
\hline Pin & Element & Voltage \\
\hline 1 & Grid 1 & 9.8 \\
\hline 2 & Cathode & 12.0 \\
\hline 3 & Heater & 0 \\
\hline 4 & Heater & 6.3 AC \\
\hline 5 & Plate & 95 \\
\hline 6 & Grid 2 & 117 \\
\hline 7 & Grid 3 & 0 \\
\hline \multicolumn{3}{|r|}{V-14,6K6-GT, 2nd Video} \\
\hline Pin & Element & Voltage \\
\hline 1 & No connection & \\
\hline 2 & Heater & 0 \\
\hline 3 & Plate & 320 \\
\hline 4 & Grid 2 & 117 \\
\hline 5 & Grid 1 & 0 \\
\hline 6 & No connection & \\
\hline 7 & Heater & 6.3 AC \\
\hline 8 & Cathode & 14 \\
\hline
\end{tabular}

V-15, 12 AU7, Sync. Amplifier
\begin{tabular}{|c|c|c|}
\hline Pin & Element Plate 2 & \[
\begin{aligned}
& \text { Voltage } \\
& 13.5
\end{aligned}
\] \\
\hline & Grid 2 & -3.5 \\
\hline 3 & Cathode 2 & 0 \\
\hline 4 & Heater & 0 \\
\hline 5 & Heater & 0 \\
\hline 6 & Plate 1 & 76 \\
\hline 7 & Grid 1 & 13.5 \\
\hline 8 & Cathode 1 & 13.5 \\
\hline 9 & Heater Tap & 6.3 AC \\
\hline \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { V-16, 6AL5, A. F.C., } \\
& \text { Discriminafor }
\end{aligned}
\]} \\
\hline Pin & Element Cathode 1 & \begin{tabular}{l}
Voltage \\
0
\end{tabular} \\
\hline 2 & Plate 2 & 0 \\
\hline 3 & Heater & 0 \\
\hline 4 & Heater & 6.3 AC \\
\hline 5 & Cathode 2 & 6 \\
\hline 6 & Shield & 0 \\
\hline 7 & Plate 1 & -4.2 \\
\hline
\end{tabular}

V-17, 6SN7-GT, Horiz. Osc.
\begin{tabular}{|c|c|c|}
\hline Pin & Element & V \\
\hline 1 & Grid 2 & -1 \\
\hline 2 & Plate 2 & 110 \\
\hline 3 & Cathode 2 & 13 \\
\hline 4 & Grid 1 & 1 \\
\hline 5 & Plate 1 & 300 \\
\hline 6 & Cathode 1 & 13 \\
\hline 7 & Heater & 0 \\
\hline 8 & Heater & 6.3 AC \\
\hline \multicolumn{3}{|c|}{\begin{tabular}{l}
V.18, 6J5 or 6J5-GT, \\
Horiz. Discharge
\end{tabular}} \\
\hline \[
\underset{1}{\text { Pin }}
\] & Element Shell in 615 No connection in 6J5-GT & \begin{tabular}{l}
Voltage \\
0
\end{tabular} \\
\hline 2 & Heater & 0 \\
\hline 3 & Plate & 165 \\
\hline 4 & No connection & \\
\hline 5 & Grid & -21 \\
\hline 6 & No connection & \\
\hline 7 & Heater
Cathode & \[
6.3 \mathrm{AC}
\] \\
\hline
\end{tabular}

V-19, 6AV5-GT or 6AU5-GT, Horiz. Output
\begin{tabular}{rlc} 
Pin & Element & \multicolumn{1}{c}{ Voltage } \\
1 & Grid 1 & 4.8 \\
2 & Heater & 0 \\
3 & Cathode, Grid 3 & 62 \\
4 & No connection & \\
5 & Plate & 5 Kr. pulse \\
6 & No connection & 6.3 AC \\
7 & Heater & 240 \\
8 & Grid 2 &
\end{tabular}

V-20, 6AX4-GT, Damper
\begin{tabular}{rlc} 
Pin & Element & Voltage \\
1 & No connection & \\
2 & No connection & \\
3 & Cathode & 580 \\
4 & No connection & \\
5 & Plate & 330 \\
6 & No connection & 0 \\
7 & Heater & 0 \\
8 & Heater & 6.3 AC
\end{tabular}

V-21, 1B3-GT, H.V.
Rectiffer
15,500 volts between pin 2 and grouhd

V-22, 6AV6, Automatic Noise Inverter
\begin{tabular}{rll} 
Pin & Element & Voltage \\
1 & Grid & -.3 \\
2 & Cathode & 9.8 \\
3 & Heater & 0 \\
4 & Heater & 6.3 AC \\
5 & Diode Plate, not used \\
6 & Diode Plate, not used \\
7 & Plate & 116
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{V-23, 6AU6, Keyed Automatic Gain Control*} \\
\hline Pin & Element & Voltage \\
\hline & Grid 1 & -22 \\
\hline 2 & Grid 3 & 0 \\
\hline 3 & Heater & 0 \\
\hline 4 & Heater & 6.3 AC \\
\hline 5 & Plate & -115 \\
\hline 6 & Grid 2 & 210 \\
\hline 7 & Cathode & 0 \\
\hline
\end{tabular}

Voltages taken with respect to cathode of V-7; see paragraph 6 at beginning of this section.

\section*{SOCKET VOLTAGES, SWITCH IN} "RADIO" OR "PHONO" POSITION:
V-1, 6BE6, A.M. Converter
\begin{tabular}{|c|c|c|}
\hline Pin & Element & Voltage io or phono) \\
\hline 1 & Grid 1 & -3.5 \\
\hline 2 & Cathode, Grid 5 & 0 \\
\hline 3 & Heater & 0 \\
\hline 4 & Heater & 6.3 AC \\
\hline 5 & Plate & 90 \\
\hline 6 & Grids 2 \& 4 & 90 \\
\hline 7 & Grid 3 & -. 8 \\
\hline
\end{tabular}
\begin{tabular}{clc} 
Pin & Element & \begin{tabular}{c} 
Voltage \\
(radio or phono)
\end{tabular} \\
1 & Grid 1 & 0.8 \\
2 & Grid 3 & 0 \\
3 & Heater & 0 \\
4 & Heater & 6.3 AC \\
5 & Plate & 95 \\
6 & Grid 2 & 95 \\
7 & Cathode & 1
\end{tabular}

V-6, 6AV6, A. M. Detector and Amplifier
\begin{tabular}{llc} 
Pin & Element & \begin{tabular}{c} 
Voltage \\
(radio or phono)
\end{tabular} \\
1 & Grid & -.56 \\
2 & Cathode & 0 \\
3 & Heater & 0 \\
4 & Heater & 6.3 AC \\
5 & Diode plate & 0 \\
6 & Diode plate, not used \\
7 & Plate & 110
\end{tabular}

V-7, 6V6-GT, Audio Outpuf*

Pin Elemen


Voltages taken with respect to cathode of V-7 see paragraph 6 at beginning of this section.



Fig. 17. Schematic Diagram, Tuner 10531


Figure 18. Schematic Diagram, Tuner 10532



\section*{TABLE OF REPLACEABLE PARTS}

To be assured of genuine Packard-Bell replacement parts, order by the Packard-Bell part number from your nearest Packard
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { City } \\
\text { Los Angeles (home office) }
\end{gathered}
\] & Address 1101 So. Hope St. & Phone Rlchmond 7-6411 \\
\hline Alhambra & 2221 West Valley Blvd. & ATlantic 2 \\
\hline Burbank & 3007 Magnolia Blvd. & CHarleston 0-4877 \\
\hline Compton & 14912 So. Atlantic Blvd. & NEwmark 5-8148 \\
\hline Culver City & 2405 So. La Cienega Blvd. & VErmont 9-8953 \\
\hline Denver & 1441 Ogden St. & Keystone 6365 \\
\hline El Paso & 1515 Wyoming St. & 2-1608 \\
\hline Fresno & 531 "P" St. & \\
\hline Honolulu & 1923 Kalakava Ave. & 99 \\
\hline Oakland & 1009 Cypress St. & TEmplebar 6-1662 \\
\hline Phoenix & 228 E. Roosevelt St. & Alpine 4-5514 \\
\hline Portland & 326 N. W. 21st Ave. & Capital 9716 \\
\hline Riverside & 247 La Cadena Dr. & 1338 \\
\hline Salt Lake City & 624 So. State St. & 9-3748 \\
\hline San Diego & 3536 Adams & TAlbot 1-8163 \\
\hline San Francisco & 1157 Post St. & PRospect 6-1880 \\
\hline San Mateo. & 1037 No. Bayshore Blvd. & Dlamond 4-6882 \\
\hline Santa A & 1324 W. First St. & Klmberly 3.6571 \\
\hline Seattle & 2310 4th Ave. & Mutual 2400 \\
\hline Spokane & outh 125 Stevens St. & Riverside 6153 \\
\hline Tacoma. & 2327 So. Tacoma Ave. & Broadway 2175 \\
\hline Tueson & 745 No. 4th Ave. & 4-2408 \\
\hline
\end{tabular}

\section*{CAPACITORS}

Notes: (1) "GMV" means "capacities listed are Guaranteed Minimum Values over a range of from plus 10 de grees C. to plus 65 degrees C.
(2) Unless otherwise specified, tolerances are: Electrolytic capacitors, \(,+50 \%,-10 \%\)
Paper capacitors \(+30 \%, 10 \%\) Paper capacitors, \(+30 \%,-10 \%\)
(3) "NPO" denotes zero temperature coefficient.

\section*{REFERENCE} SYMBOL
\(\mathrm{C}-1\)
\(\mathrm{C}-2\)
C-2 Ceramic, 220 IS"
Ceramic, \(220 \mathrm{mmf}, 20 \%\), 350 volt Paper, \(\mathbf{C l}\) Ceramic, \(10,000 \mathrm{mmf}\) GMV, 500 volt, dise
Ceramic, \(10,000 \mathrm{mmf}\) GMV, 500 volt, disc
7 Tweet filter network, consisting of two 100 mmf capacitors and a 47,000 ohm resistor

PACKARD-BELL
PART NO.
ART No.

\section*{23915}

23915
23939
23939

23930

\section*{REFERENCE DESCRIPTION PACKARD-BEL
SYMBOL PART NO SYMBOL}

C-8 Ceramic, \(2.2 \mathrm{mmf} \pm .25 \mathrm{mmf}\), 500 volt, NPO
\(\left.\begin{array}{ll}\text { C-9A } & \begin{array}{l}\text { Ceramic, } \\ 500 \text { volts }\end{array} \\ \text { C-9B } & \begin{array}{l}\text { Ceramic, } 4000 \mathrm{mmf} \text { GMV, } \\ 500 \text { volts }\end{array} \\ \hline\end{array}\right\}\) dual, disc GMV, 23955 C-9B 500 volts
C-10 Capristor (consists of a \(100 \mathrm{mmf} \quad 23970\) 10 Capristor (consists of a 100 mmf capacitor in
ohm resistor)



© John F. Rider


PHILCO UHF TUNER-ADAPTER UT-21, PART No. 43.6475
Philco UHF Tuner-Adapter Part No. 43-6475 provides for reception of UHF signals on television chansides for reception of UHF signals on through 83. It is designed for installation in nhilco Television Receivers using ref chassis 41, 42, 44, or 71 . The Tuner-Adapter consists of a UHF converter and preamplifier unit, a changeover switch, adapter cables and plugs, a tuner driving assembly, and mounting hardware.

\section*{CIRCUIT DESCRIPTION}

The UHF Tuner-Adapter functions as a converter, and converts the signals of the UHF band to a frequincy selected within the VHF band. The frequency pending upon the locality in which the receiver is pending
The incoming UHF signals are coupled through the antenna input line, and through two \(680-\mu \mu \mathrm{f}\). condeniers and a 150 -ohm transmission line to the antenna tank of the tuner. See figure 1. The antenna tank is coupled to the mixer tank by means of the mu an ling of L2 and L3 and the stray by desired UHF signal is selected bier frequency, and tank and the mixer tank to propel mixer circuit by the signal is then coup coupling of L4 and L5. 'The localmeans of the oscillator signed circuit. The local-oscillator signal is he associate the crystal mixer circuit by means of a 300 ohm, miniature transmission line and the mutual couping of L7 to L5 and L8 to L6. The UHF ref digital and the oscillator signal are mixed in the crystal mixer circult to produce a radio-frequency signal that is within the range of the VHF tuner when the tuner is set to either Channel 2 or Channel 3. This signal is fed into a preamplifier, and the amplified signal is then fed into the VHF tuner through a twin-wire lead. In the VHF

PR-2472

:under, the signal is reconverted to the intermediate frequency of the television receiver.
On VHF operation, a 150,000 -ohm resistor is placed in series with the UHF oscillator plate, thus making the oscillator inoperative.
The purpose of using two ref tanks in the UHF tuner is to readily admit the ref signals, and, at the same time, to prevent the i-f and oscillator signals from feeding back into the antenna and causing interference with other receivers.

\section*{CHANGEOVER SWITCH}

The change-over switch supplied with the Tuner Adapter is used to switch from VHF to UHF, and vice versa. It is operated either by pulling the UHF tuning knob forward or pushing it back toward the control panel. When the knob is pulled forward, the switch is thrown to the UHF position; when the know
\[
-7
\]
is pushed back, the switch is thrown to the VHF positon. When thrown to the UHF position, the switch connects the antenna to the UHF tuner, turns on the UHF pilot light, and connects the output of the UHF tuner to the antenna input of the VHF tuner. tuner to the antenna input on the switch connects the
thrown to the VHF position, the antenna to the VHF tuner input, turns off the UHF pilot light, and places a 150,000 -ohm resistor in series with the UHF oscillator plate, as explained above. TUNER AND POINTER DRIVE. © gang shaft to the pointer . point the tuning shaft, operates the change-over switch when the shaft is pulled forward or pushed back
pulled forward or pushed back.
The shaft of the tuning -condenser gang is connected to the tuning shaft by means of a drive cord and pulley assembly. Another drive cord connects the tuning.

\section*{ALIGNMENT AND REPAIRS}

The frequencies at which the tuner operates are ex tremely high; therefore, it is important that the utmost care be taken to safeguard against upsetting the delicate adjustments of the tuner. It is recommended that the serviceman make only minor repairs on the tuner, such as replacement of a tube or crystal and the wiring of external leads. The tuner should be returned to the factory for alignment and major repairs, unless the serviceman is properly equipped to perform this work. In general, a good rule to follow is not to remove the cover of the tuner.
Replacing a tube with a new one may detune the tuner. If this occurs, try a number of tubes until the best substitute for the original tube is found.


Figure 4. Oscillator Board and Mixer Board
Figure 3. Base Layout of UHF Tüner-Adapter, with Oscillator and Mixer Boards in Place
TP2-3242



TP2-2607-A
Figure 9. Tuning Shaft and Switeh Washer Details

The score line on the bracket should be placed to the rear of the shelf. Fasten the bracket with the two \(3 / 8\)-inch wood screws provided. (See figure 8.)
10. Reinstall the deflection chassis if the chassis was removed in step 3.

NOTE: The chassis must be installed before mounting the UHF tuner, so that the UHF tuner will not interfere with the installation of the chassis.
11. Insert the adapter plug into the interconnecting power socket on the deflection chassis, and then insert the plug of the interconnecting power cable into the socket on the adapter.
12. Insert the pilot-light socket into the clip, near the UHF tuning shaft.


TP2-2609-B
Figure 10. Pointer-Drive-Cord Installation Details
3. Position tuning shaft and pointer, center the dial on the control erring the front slot of the shelf bracket. Slide the tuner assembly for- about 4 inches in length, and remove about one-half ward until the front end of the tuning shaft extends inch of insulation from the end. Insert the bare ends through the center hole \(3 / 4\)-inch beyond the front of of the wires into the twin-lead connector, and fasten the control panel. See figure 8. Use one of the two them with the screws in the side of the connector. mounting holes in the rear foot of the mounting 21 . Replace the fishpaper antenna-lead holder with bracket, and fasten the bracket in place with the the new holder provided. Fasten the new holder with \# \(5 \times 3 / 8\)-inch wood screw provided. In some models the two nails provided, and then pass the twin-wire the rear foot of the mounting bracket will locate over the vent hole in the chassis shelf. In these models, use the remaining shelf bracket to straddle the vent hole, and fasten the shelf bracket under the side mounting foot, with the extruded section facing downward. Fasten the shelf bracket and rear bracket to the chassis mounting board. When the rear side mounting foot is mounted on top of the shelf bracket, use one washer under the rear bracket.
14. Using a pair of pliers, push the pin provided into hole " \(A\) " or hole " \(B\) " in the tuning shaft. See figure 9. For 17 -inch models with metal cabinets, use hole " A "; for these models, remove the excess length by cutting the shaft at the slot behind the pin. For all other models, use hole " \(B\) ".
15. Fasten the pointer to the pointer driver with the clip provided. See figure 9. Place a felt washer on the pointer, and feed the pointer through the hole in the dial backing plate so that the backing plate of the color which matches the cabinet faces the front of the pointer. Insert the pointer driver through the center hole in the cabinet, and feed the pointer, felt washer, and backing plate over the tuning shaft.
16. Feed the pointer driver through the switch washer, and join the pointer driver to the pulley on the tuning shaft, using the clip provided.
17. String the pointer drive assembly cord as shown in figure 10 , using the long dial cord supplied.
18. String the main drive-shaft cord as shown in figure 11 , using the short dial cord supplied.
19. Put the knob on the tuning shaft, and turn the shaft to the extreme counterclockwise position. Place the template (figure 12) behind the pointer, and line up the pointer with the index mark on the template. Remove the knob and template, place the dial over the
20. Cut the antenna lead from the VHF tuner to
22. Cut holes in the cabinet back, and fasten the antenna terminal board provided, as shown in figures 14 through 18. Replace the cabinet back and make connections as illustrated, according to the type of antenna installation being used.
23. Paste the label provided over the outside-antenna instructions on the cabinet back.


Figure 12. Pointer Positioning Template


Figure 11. Drive-Shaft Drive-Cord Installation Details


Figure 13. Lead Dress and Lead Holder Details
TP2-3169
Hizur 13. Lead Dress and Lead Hoider Detaik


TP2-3170
UHF and
Figure 14. Antenna-Lead Connections,
VHF Built-in Antenna

\section*{© John F. Ridor}


Figure 15. Antenna-Lead Connections, Common UP2-3172 and VHF External Antenna


Figure 17 Ant TP2-3171 UHF External Antennas
Figure 17. Antenna-Lead Connections Built-in and


Figure 16. Antenna-Lead Connections, Separate UFF ind


TP2-3173

Figure 18. Antenna-Lead Connections, VHF External and


\section*{CIRCUIT DESCRIPTION}

Philco "B line", Code 130 Television Receivers use wo chassis-r-f chassis R-181, containing the r-f, video, audio, and sync circuits, and deflection chassis D-181, containing the power and deflection circuits. Since these chassis are not isolated from the 60 -cycle power line, all protruding shafts and mounting feet are insulated from the chassis.

CAUTION: See A-C LINE ISOLATION
A separate subchassis contains the r-f amplifier, the oscillator, and the mixer. The r-f amplifier uses a 6BZ7 tube, V1. The oscillator and mixer each use one half of a \(12 \mathrm{AZ7}\) tube, V2. The output of the mixer is fed to a three-stage, stagger-tuned, i-f amplifier system employing three 6CB6 tubes. A type 1N64 crystal diode is used for the video detector, the output of which is amplified by a single-stage video amplifier utilizing a type 12BY7 tube, V6. The connections at the detector are such as to produce a composite video signal with negative-going sync
pulses. The signal, which is subjected to a 180 -degree pulses. The signal, which is subjected to a 180 -degree phase shift through the video amplifier, is applied to the cathode of the picture tube; therefore, the sync
pulses at this point are positive-going. The grid of the picture tube is returned to ground through a resistor (R309). A blanking pulse, taken from the vertical output stage, is applied across R309, for suppression of the vertical retrace.
Sound i.f. (intercarrier) is obtained by utilizing the beat frequency produced when the \(26.6-\mathrm{mc}\). video carrier and the \(22.1-\mathrm{mc}\). sound carrier are mixed in the video detector. The \(4.5-\mathrm{mc}\). beat frequency is the difference between 26.6 mc . and 22.1 mc ., and contains the FM sound signal. This \(4.5-\mathrm{mc}\). signal contains only a negligible amount of video amplitude modulation, provided that the amplitude of the 22.1mc. signal is considerably lower than that of the 26.6 mc . signal. The proper relationship between the two carriers is established during the alignment of the receiver. There is sound output only when both the video and sound carriers are present.
The oscillator is tuned primarily to obtain the best picture, since the \(4.5-\mathrm{mc}\). relationship always exists between the two carriers. The \(4.5-\mathrm{mc}\). sound i.f. (intercarrier), which is taken from the plate circuit of the video amplifier, is passed through a \(4.5-\mathrm{mc}\). sound i-f stage using a 6AU6 tube, V7, and is then applied to the FM detector, which utilizes two diode sections of a 6 T8 tube, V8A. The triode section of the 6 T 8 , V8B, is used as the first audio amplifier. The \(6 \mathrm{~T} 8, \mathrm{~V} 8 \mathrm{~B}\), is used as the first audio am
power amplifier uses a 6 K 6 GT tube, V9.
power amplifier uses a 6 K 6 GT tube, 19 .
A portion of the video signal appearing at the grid of the video amplifier is applied to the pentode section of a 6U8 tube which operates as a sync amplifier V10A. The output of this stage is composite video
with positive-going sync, and is applied to grid 3 (pin 7) of the 6BE6 sync separator, V11. Since grid-leak bias is used on grid 3, the tips of the sync pulses are clamped to zero, and the video components swing in a negative direction from zero. Because of the cut-off characteristics of grid 3, the video components are eliminated, and only negative-going sync pulses appear in the plate circuit of the sync separator. At the same time, however, a signal is taken from the video detector and applied to grid 1 (pin 1) of the 6BE6 tube. This grid is returned to B plus, and the bias is maintained close to zero, because of a small grid-current flow. Since the signal applied to grid 1 is composite video with negative-going sync, any noise modulation present in the signal appears in the form of sharp spikes, driving in a negative direction. The circuit constants are chosen to allow grid 1 to cut
off plate current whenever the signal goes more neg ative than the sync pulses. A series grid-limiting resistor (R614) is also incorporated, to prevent the video components from appearing in the plate circuit of the sync separator. A-G-C voltage is also developed in the sync separator circuit in the following manner: On tips of the sync pulses, grid 3 (pin 7) of the 6BE6 tube draws current, which flows downward through the network composed of R609, R610, R611, L 214 , and R211, causing capacitors C604, C602, and C603 to assume negative charges that are proportional to the amount of peak signal applied to grid 3. The tuner a-g-c voltage is delayed by means of a resistor divider network, which applies a small positive voltage to the tuner a-g-c circuit. This positive voltage prevents a-g-c action from lowering the tuner gain on weak signals. To prevent the delay voltage from driving the tuner a-g-c voltage positive on weak signals, a diode clamp (part of V8B) is connected across C602.
The negative-going sync pulses appearing in the plate circuit of the sync separator are fed to the sync inverter stage, V10B (triode section of the 6U8 tube). This stage acts as a phase-splitter circuit; positive sync pulses appear in the plate circuit, and negative sync pulses are taken from the cathode. Both positive and negative sync pulses are fed through the interchassis cable into the deflection chassis.
Proper triggering of the vertical oscillator requires negative synchronizing pulses. The vertical sync signal is separated from the horizontal sync signal by the integrator circuit, and is fed to the grid of the vertical oscilator (V12), a cathode-coupled multivibrator. The output of the vertical oscillator is amplified by a type 12B4 tube, V13, which is employed as the vertical output amplifier. The output of the amplifier is applied to the vertical-deflection coils through the vertical-output transformer.
The horizontal sweep circuits require both positive
and negative sync pulses. The phase-comparer circuit uses a 6AL5 tube, V14. Positive sync pulses are applied to the plate of V14A, and negative sync pulses are applied to the cathode of V14B. A saw-tooth voltage is fed to the plate of V14B and to the cathode of V14A, for comparison of the sync and horizontal sweep voltages. When the saw-tooth and sync signals are exactly in phase, no voltage is developed across R800, but when the two signals are out of phase, R800, but when the two signals are out of phase,
either a positive or a negative voltage is developed, either a positive or a negative voltage is developed,
depending upon whether the horizontal-oscillator frequency is lower or higher than the sync-pulse frequency. The grid circuit of the horizontal oscillator, a 12AU7 (V15) cathode-coupled multivibrator, is connected to R800 through a filter network; when the voltage at this point goes in a positive direction, the frequency of the horizontal oscillator is increased, and when the voltage swings negative, the frequency of the oscillator is decreased. In this manner the frequency of the horizontal oscillator is controlled frequency of the horizontal oscillator is controlled over the lock-in range of the circuit. The horizontal-
oscillator hold control (R812) adjusts the horizontaloscillator hold control (R812) adjusts the horizontal-
oscillator frequency so that it is within the control range of the phase comparer. The output of the horizontal oscillator is fed to the horizontal output amplifier, which makes use of a 6BQ6GT tube, V16. The screen voltage for the horizontal amplifier is supplied from a voltage-divider network. R816, R817, (the WIDTH control), R818, R307 (the BRIGHTNESS control), and R311 are parts of this divider. R817 varies the voltage applied to the screen, thus adjusting for proper picture width. Adjusting R307 for brightness varies the bias on the picture tube. The change in bias causes a change in beam current, and would tend to result in a change in picture width and variation in the second-anode voltage. However, when the control arm of the BRIGHTNESS control, R307, is moved toward ground, less of the control is shunted by the 22 K resistor, R 311 , and the total resistance of the voltage divider is increased. This increase in resistance results in a decrease in the current through the divider, and the screen voltage on the horizontal amplifier is increased proportionally, thus compensating automatically for the increase in beam current in the picture tube. The horizontal amplifier feeds the deflection coils through the horizontal output transformer. A 6AX4GT tube, V17, is used as the horizontal damper.
The second-anode voltage for the picture tube is supplied by one 1B3GT high-voltage rectifier tube, V18. The B plus voltage for the receiver is supplied by two selenium rectifiers, CR100 and CR101, in a full-wave, voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained from across a filter choke, L405, which is in series with the negative side of the B plus supply. The B plus boost
voltage, derived from the horizontal damper circuit supplies higher B plus voltage to the vertical oscillator and the first anode of the picture tube. Filament voltage for all the tubes except the high-voltage rectifier is supplied by a step-down transformer. Filament volt age for the high-voltage rectifier is supplied by winding on the horizontal output transformer.

\section*{IMPORTANT}

\section*{A.C LINE ISOLATION}

CAUTION: One side of the a-c line is connected to the chassis through Cl01 and L405. The other side of the a-c line is connected to the chassis through R100 F100, CR100, and C103, in series. Grounding the chassis will result in a short circuit across one or the other of these two branches in the voltage-doubler circuit. During servicing and alignment it is desirable that an a-c line isolation transformer capable of handling at least 225 watts (Philco Part No. 45-9600) be used. Failure to use an isolation transformer will greatly increase the shock hazard, and may result in damage to the test equip ment or receiver, or both.

\section*{SPECIFICATIONS}

VHF TUNING................................... position incremental tuner, covering VHF Television Channels 2 through 13; fine tuning of loc oscillator
\(\qquad\) covering UHF Television Channels 14 through 83; fine and coarse tuning
INTERMEDIATE FREQUENCIES

\section*{Video Carrier}
26.6 mc .

Sound (intercarrier)
4.5 mc .

TRANSMISSION LINE \(\quad 300\)-ohm, twin-wire lead OPERATING VOLTAGE ............. 110 to 120 volts, 60 cycles, a.c.
ithout UHF, 175 POWER CONSUMPTION.................ithout UHF, 175
watts; with UHF, 180 watts
TUBE COMPLEMENT
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{c} 
Reference \\
Symbol
\end{tabular} & \multicolumn{1}{|c|}{ Tube Type } & \multicolumn{1}{c|}{ Function } \\
\hline V1 & 6BZ7 miniature & R-F Amplifier \\
V2 & R12AZ7 miniature & \begin{tabular}{l} 
Oscillator-Mixer \\
V3, V4, V5
\end{tabular} \\
6CB6 miniature & Video I-F Amplifiers \\
V6 & 12BY7 miniature & Video Output Amplifier \\
V7 & 6AU6 miniature & Sound I-F Amplifier \\
V8 & 6T8 miniature & Ratio Detector, First Audio, \\
and Tuner A-G.C Clamp \\
V9 & 6K6GT octal & Audio Output \\
V10 & 6U8 miniature & Sync Amplifier, Sync Inverter \\
V11 & 6BE6 miniature & Sync Separator, A.G.C. \\
V19 & S7YP4, or 21ZP4A & Picture Tube \\
\hline
\end{tabular}
\begin{tabular}{||l|l|l|}
\hline \multicolumn{3}{|c|}{ DEFLECTION CHASSIS D-181 } \\
\hline \multicolumn{3}{|c|}{\begin{tabular}{l} 
Reference \\
Symbol
\end{tabular}} \\
\hline Tube Type & \multicolumn{1}{|c|}{ Function } \\
\hline V12 & 12BH7 miniature & Vertical Oscillator \\
V13 & 12B4 miniature & Vertical Output Amplifier \\
V14 & 6AL5 miniature & Horizontal Phase Comparer \\
V15 & 12AU7 miniature & Horizontal Oscillator \\
V16 & 6BQ6GT octal & Horizontal Output Amplifier \\
V17 & 6AX4GT octal & Horizontal Damper \\
V18 & 1B3GT octal & High-Voltage Rectifier \\
\hline
\end{tabular}

\section*{SUPPLY FUSE REPLACEMENT}

The B supply protective fuse, F 100 , is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a 1.6 -am pere, delayed-action-type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before replacing the fuse

\section*{HORIZONTAL-OSCILLATOR}

\section*{ADJUSTMENT}

To adjust the horizontal-oscillator circuit, tune in station and proceed as follows:
1. Reduce the width of the picture until approximately 1 inch of blank screen appears at the righthand and left-hand sides of the picture
2. Increase the BRIGHTNESS control setting un til the blanking becomes visible. This will appear as a dark vertical bar on each side of the picture.
3. Connect a \(.1-\mu\). condenser from the test point adjacent to TC800, to ground. (The plate side of the horizontal ringing coil, L 800 , is connected to the test point.)
4. Set the HORIZONTAL HOLD control to the approximate center of its mechanical rotation.
5. Adjust the HORIZ. HOLD CENTERING con trol until equal portions of the blanking bar appear on both sides of the picture.
6 . Remove the \(.1-\mu \mathrm{f}\). condenser from the test point 7. Adjust the horizontal ringing coil, L800, until equal portions of the blanking bar again appear on both sides of the picture.
8. Rotate the HORIZONTAL HOLD control through its range. The picture should fall out of sync on both sides of the center of its rotation. If the picture does not fall out of sync on both sides, re adjust the HORIZ. HOLD CENTERING control.
9. Rotate the HORIZONTAL HOLD contro through its range, and observe the number of diagonal blanking bars that appear just before the picture pulls into sync. The pull-in should occur with from 1 to 2 diagonal bars when the sync position is approached from either direction. If proper pull-in is not obtained, repeat the above procedure.

\section*{VIDEO-DETECTOR}

\section*{PEAKING-COIL ADJUSTMENT}

The video-detector peaking coil, L214, is adjusted at the factory for proper transient response of the video circuit. Ordinarily, this coil will require no further adjustment by the serviceman. On any station where excessive overshoot or excessive smear is present, a slight adjustment of L214 may improve the picture quality on that station; however, this adjustment may sacrifice the quality on other channels. If L214 is replaced in servicing, adjustment will be required.
Before adjusting L214, check the tuner alignment and i-f alignment. (Never adjust L214 until the alignment of the receiver is correct.) Then tune in a station and adjust L214 until there are no trailing whites or mear in the picture. Turning TC206 clockwise reduces trailing whites and overshoot; turning TC206 counterclockwise reduces picture smear and increases trailing whites. The proper position is the point where no smear or trailing whites appear in the picture
The above procedure for adjustment of TC206 applies to a particular station exhibiting smear or overshoot. After TC206 is adjusted, reception on all the other stations should be checked, to make certain that the adjustment has not impaired the picture quality.

\section*{TELEVISION ALIGNMENT}

\section*{GENERAL}

The alignment consists of tuning each i-f coil to given frequency, using an AM signal, and then feeding in a sweep signal at the antenna terminals and touching up the adjustments to obtain the desired pass band.
The over-all response curve (r-f, i-f) of the circuits from the antenna terminals to the video detector, after the i-f stages have been aligned, should appeai essentially the same, regardless of the channel under test. If not, the tuner should be aligned.
The video-carrier intermediate frequency is 26.6 mc., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:
1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained by having the top of the workbench metallic. The receiver chasis should be placed tunerside down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picture-tube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm
up for 15 minutes before starting the alignment. 4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method for calibrating the signal generator to the sound and video r-f carrie frequencies is to zero-beat the signal generator with the received signals.
For further information regarding calibration, refer to Philco Lesson PR-1745 (J), entitled "Television Service in the Home."

\section*{TEST EQUIPMENT REQUIRED}

The following test equipment is recommended for aligning the receiver:
1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent.
2. Vacuum-tube voltmeter, or 20,000 -ohms-per-volt voltmeter.
3. R-F Probe, Philco Part No. 76-3595 (for use with Model 7008 generator)

\section*{JIGS AND ADAPTERS REQUIRED}

\section*{Mixer Jig}

Connections to the grid of the mixer tube may be made through the alignment jack provided for tha purpose. To connect the generator to this point, a mixer jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No 45-1636, with as short a ground lead as possible, may be used to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signal-generator output lead be terminated with a \(68-0 h m\) resisto (carbon), so that regeneration, caused by connection of the lead to the mixer, is held to a minimum.
Antenna-Input Matching Network
Figure 1 shows an impedance-matching network for coupling the signal generator to the antenna-input terminals of the receiver. This network, which is de signed to have an input impedance of 75 ohms and


Figure 1. Antenna-Input Matching Network
an output impedance of 300 ohms , is used to match a 75 -ohm generator to a 300 -ohm antenna-input circuit. The resistors used in this network should be of carbon-composition construction, and should be chosen from a group to obtain values within \(10 \%\) of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

Video I-F Alignment Jig
Video Test Jack Adapter)
The alignment jig shown in figure 2 should be used during the i-f alignment, to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This jig consists of a 5 -prong plug, a 10,000 -ohm potentiometer, a 2200 -ohm isoplug, a \(10,000-\) ohm potentiometer, a 2200 -ohm isomethod of fabricating the jig is also shown. It is sug gested that the bias battery and potentiometer be mounted in a metal box of convenient size.
The potentiometer and switch are connected across the \(7 \frac{1}{2}\)-volt battery. The switch is used to disconnect the potentiometer, to prevent the discharge of the battery while not in use. The 1000 -ohm resistor in series with the arm of the control will prevent rapid discharge of the battery if the leads are accidentally shorted.
Sound I-F Alignment Jig
Figure 3 shows the jig that should be used to con nect the voltmeter and oscilloscope to the VOLUME CONTROL socket, J400. A suggested method of fab ricating the jig is also shown.



Figure 3. Sound I-F Alignment Jig
Procedure Using Signal Generator
An r-f signal (unmodulated), at the oscillator
frequency, is fed into the antenna input from an AM signal generator, and the oscillator tuning cores are adjusted for zero beat. The r-f signal frequency should be accurately determined. It is preferable that the signal be taken from a crystal-controlled source; if this is not available, the signal generator may be calibrated against the television station.
1. Connect the hot lead of the oscilloscope to the mixer plate test point, G2, through a 1000 -ohm resistor, and connect the ground lead of the oscilloscope to the chassis, near the test point. (High oscilloscope gain may be necessary to obtain a visual
In this instance, base-line hum may be ignored.)
2. Connect the AM (marker) generator to the \(300-\) ohm antenna-input terminals. For this purpose the
antenna-input matching network is not required.
3. Disconnect the white ( \(a-g-c\) ) lead from the tuner, and connect it to the negative terminal of a \(11 / 2\)-vol battery. Ground the positive terminal. If regeneration


Figure 4. Television Tuner, Showing Locations of Adjustments

\section*{TEIEVISION TUNER ALIGNMENT}

After the tuner is serviced, or if an i-f alignment is required, the tuner alignment should be checked by observing the tuner response curve, as given under Bandpass Alignment. If the response curve does not fall within the limits shown in figure 5, the tuner should be realigned. If realignment is necessary, use the procedure given below.

Since the frequency of the local oscillator affects the tuner response, the local-oscillator alignment should be made first

General
Tuning cores are provided in the oscillator coils a channels \(13,11,9,7,6\), and 4 . By adjusting these tuning cores, all channels may be placed on frequency. This procedure should be carried out with the highest-frequency channel first, since the alignmen of each channel affects the alignment of all the chan nels below it in frequency. The channel adjustments are so arranged that, with one exception, each adjustment corrects the tuning of more than one channel. The coverage of the various adjustments is as follows:
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Channel \\
Adjustment
\end{tabular} & \begin{tabular}{c} 
Channels Corrected \\
By Adjustment
\end{tabular} \\
\hline 13 & 13 and 12 \\
11 & 11 and 10 \\
9 & 9 and 8 \\
7 & 7 only \\
6 & 6 and 5 \\
4 & 4,3 and 2 \\
\hline
\end{tabular}

The FINE TUNING cam should be preset for all adjustments by placing the stop on the FINE TUNING cam between the Channel 7 and 8 holes on the front plate of the tuner. See figure 4.
is observed, the bias may be increased to 4 or 5 volts, to reduce the regeneration.
4. Mechanically preset the fine-tuning cam as shown in figure 4.
5. Feed in an r-f signal (unmodulated), at the oscillator frequency for Channel 13, with the CHANNEL SELECTOR set for Channel 13
6. Adjust the Channel 18 tuning core (see figure 4).
7. Reset the signal-generator frequency and the CHANNEL SELECTOR, and adjust the tuning cores for Channels 11 and 9 , respectively.
8. Repeat steps 5, 6 and 7 until Channels 13, 11, and 9 are within plus or minus 500 kc . of the correct frequency.
9. Feed in r-f (unmodulated) signals, at the oscillator frequencies for Channels 7,6 , and 4 , consecutively (see NOTE below), and adjust the respective

NOTE: The exact position of the FINE TUNING cam should be marked when Channel 4 is correctly aligned. This position is to be used in step 4 of the i-f alignment procedure.
Procedure Using Station Signal
The following simplified procedure may be used to align the oscillator when the television i-f align ment is satisfactory and a station signal is available:
1. Mechanically preset the FINE TUNING cam the center of its range (see figure 4).
2. Tune in the highest frequency channel to be
3. Adjust the tuning core for that channel, or the next highest channel, for the best picture; that is, starting with sound in the picture, turn the tuning ore until the sound disappears. Repeat for each channel received in the area.

\section*{Bandpass Alignment}

General
The bandpass alignment consists of aligning the tuner at Channels 13 and 6, and then making it track down to Channels 7 and 2, respectively.
During the alignment, a fixed bias of \(1 \frac{1}{2}\) volts is applied to the r-f amplifier tube.
An FM (sweep) signal is applied to the antennainput circuit, and an oscilloscope is connected to the mixer plate circuit. The. oscilloscope gain should be as high as possible, consistent with hum level and "bounce" conditions. Hum conditions will cause distortion of the time base and response. Bounce conditions, which are caused by poor line regulation, will cause the response and time base to jump up and down. The use of too high an oscilloscope gain aggravates these conditions, whereas the use of too low a gain necessitates increasing the generator out-
put to a point where the tuner may be overloaded. Overload may be checked by changing the generator output while observing the shape of the response curve; any change in the shape of the curve indicates overload, in which case a lower generator output and higher oscilloscope gain must be used. The tuner coupling link should be disconnected from the i-f section and a 40 - to 70 -ohm resistor connected across the open end of the link, to eliminate the absorption effect of this coil on the response curve.
1. Disconnect the white ( \(\mathrm{a}-\mathrm{g}-\mathrm{c}\) ) lead from the tuner, and connect it to the negative terminal of a \(1 \frac{1}{2}\)-volt battery. Ground the positive terminal.
2. Disconnect the tuner link at terminal board B11-5 and B11-7 (see figure 36), and connect a 40 - to 70 -ohm carbon resistor to the two leads of the link.
3. Connect a 1000 -ohm resistor in series with the hot lead of the oscilloscope. Connect the other end of the resistor to the mixer plate test point, G2, and connect the ground lead of the oscilloscope to the chassis, near the test point.
4. Connect the FM (sweep) generator to the \(300-\) ohm antenna-input terminals through an antenna-in put matching network. See figure 1 .

\section*{Procedure}
1. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 13 ( 213 mc .): Adjust the generator for sufficient sweep to show the complete response curve
2. Establish the channel limits (see figure 5) by using the marker (AM r-f) signal generator to produce marker pips on the response curve. (Set the marker generator first to 210 mc ., then to 216 mc .)


Figure 5. Television Tuner TP9.512
Response Curve, Showing Bandpass Limits


Figure 6. Television Tuner Response Curve, Showing Tracking Compensation
TP0.1174
The curve should be reasonably flat between the imits shown in figure 5.
3. Adjust TC502 and TC504 (figure 4) for a symmetrical, approximately centered pass band. Set the marker generator to 213 mc . Detune TC504 counter clockwise until a single peak appears. Adjust TC502 until the peak falls on the \(213-\mathrm{mc}\). marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC500 for maxmum curve height and symmetry of the single peak The antenna circuit is now tuned for the high frequency channels.
4. Readjust TC502 and TC504 for a symmetrical response, centered about 213 mc ., and falling within the limits shown in figure 5.
5. Set the CHANNEL SELECTOR and FM gen5. Se the Channel \(7(177 \mathrm{mc}\).).
erator to Chan
6. Establish the channel limits by using the marker generator to produce marker pips on the response curve. (Set the generator first to 174 mc ., then to 180 mc .). The curve should be reasonably flat between the limits.
7. On Channel 7, note the response curve, with respect to tilt and center frequency. The curve should be centered in the pass band, and should be symmetrical.
8. If the curve is not symmetrical, and appears unbalanced, as shown in figure 6, leave the generator and tuner set to Channel 7, and adjust C508 and C512 (see figure 4) to obtain a response curve which
is the mirror image (tilt in the opposite direction) of the original. This is a form of overcompensation, to allow for the effect of Channel 13 adjustment on Channel 7 For example, if the Channel 7 response appears as in figure 6A, then the trimmer should be adjusted to obtain the response shown in figure 6 B
9. Reset the CHANNEL SELECTOR and generators to Channel 13. Readjust TC502 and TC504 for a symmetrical and centered pass band. See step 4
10. Set the CHANNEL SELECTOR and gener ators to Channel 7, and check the response for cente frequency and symmetry. Repeat steps 8 and 9 as many times as necessary to obtain the most symmetrical and centered response curves on Channels 13 and 7. Channels 7 through 13 are now correctly aligned.
11. Set the CHANNEL SELECTOR and sweep generator to Channel 6 ( 85 mc .)
12. Establish the channel limits, using the marker generator to produce marker pips on the response curve. (Set the generator first to 82 mc ., then to 88 mc .)
13. Adjust TC503 and TC505 for a symmetrical approximately centered pass band. Set the marke generator to 85 mc . Detune TC505 counterclockwise until a single peak appears.

CAUTION: Do not turn TC505 exces
sively, or it will fall out of the coil.
Adjust TC503 until the peak falls on the \(85-\mathrm{mc}\) marker. It may be necessary to increase the output
f the generator during this adjustment. Then adjust TC501 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for Channels 2 through 6 . To prevent overloading he output of the generator should be reduced after this adjustment is completed.
14. Readjust TC503 and TC505 for a symmetrical response, centered about 85 mc .

\section*{VIDEO I-F ALIGNMENT}

\section*{Preliminary}

Before proceeding with the alignment or making an alignment check, observe the following preliminary instructions
1. Preset the CONTRAST and BRIGHTNESS con trols to the maximum counterclockwise position.
2. Preset the CHANNEL SELECTOR to Channel 4
. Preset 1 . f .
. Insert the video i-f alignment jig into J 200
4. Connect the oscilloscope to the 2200 -ohm resistor from the video i-f alignment jig. Connect the ground lead of the oscilloscope to the ground lead of the jig.
5. Connect a 3 -volt bias battery to the video i-f alignment jig, with the negative terminal of the battery to the bias lead of the jig, and the positive terminal to the ground lead.
6. Connect the AM generator to the mixer test point, G-1, through a mixer jig, and adjust the genpoint, for approximately 30 percent modulation at 400 cycles. Adjust the output of the generator during alignment, to keep the output at the second detector below .6 volt, peak to peak

NOTE: If the i-f shield has been removed for repairs, it must be replaced before proceeding with the alignment.

\section*{cedure}
1. Tune the AM generator to 28.1 mc ., and adjust TC200 (see figure 7) for minimum output, as observed on the oscilloscope.
2. Tune the AM generator to 22.1 mc ., and adjust TC203 for minimum output, as observed on the oscilloscope.

NOTE: In steps 1 and 2 it is necessary to keep the generator output sufficiently high that a null indication may be observed on the oscilloscope; however, avoid overloading of the receiver by excessive signal
3. Tune the AM generator to the frequencies indicated below, and adjust the tuning cores for maximum output.
a. 24.0 mc , adjust TC512.
b. 25.7 mc ., adjust TC201.
c. 23.6 mc ., adjust TC202.
d. 26.4 mc ., adjust TC204.
e. 24.5 mc ., adjust TC205.


Figure 7. R-F Chassis R-181, Top View, Showing Locations of Adjustments
4. Connect the sweep generator and r-f marker generator to the antenna terminals through a matching jig. (If a separate oscilloscope is used, connect the sweep output of the generator to the horizontal input of the oscilloscope.) Set the CHANNEL SELECTOR to Channel 4, and tune the sweep generator for output on Channel 4. After the equipment is properly connected, adjust the FINE TUN-


Figure 8. Over-all R-F, I-F Response Curve, Showing Tolerance Limits

ING control to the mark previously made (see NOTE under Oscillator Alignment)
5. If the response curve does not fall within the limits shown in figure 8 , the adjustment of the tuning cores may be touched up slightly while observing the response curve with the sweep generator. Do not touch the setting of TC200 and TC203. To ad just the curve, adjust TC201 and TC204 for prope video carrier level. The top of the curve may be leveled by adjusting TC205, and the low-frequency side of the curve may be adjusted by adjusting TC202. By means of these adjustments the response
curve should be brought within the limits shown in figure 8.

CAUTION: Do not turn any of the tuning cores excessively. To retouch, only turn the tuning cores slightly. This caution applies particularly to TC202.

\section*{SOUND I-F ALIGNMENT}
l. Remove the lst v-i-f tube, and connect a v.t.v.m. or a 20,000 -ohms-per-volt voltmeter to the sound i-f alignment jig. Adjust the VOLUME control for moderate speaker output.


Figure 9. Wiring Diagram of Crystal Detector
2. Feed in an accurately calibrated \(4.5-\mathrm{mc}\). AM signal through the 2200 -ohm resistor in the video i-f alignment jig, to pin 2 of J200.
3. Tune TC400 TC401, and TC402 for maximum indications on the meter. The point of maximum indications on the meter. The point of maximum
meter indication for TC402 should also be the point meter indication for TC402
4. Tune TC402 for minimum speaker output
5. Connect an r-f probe or crystal detector to the cathode (pin 11) of the picture tube. See NOTE below 6. Tune TC300 for minimum indication on oscilloscope. (If a crystal detector is not available, TC300 may be adjusted for minimum beat pattern, as ob-
served on the picture tube, with a station picture present.)
7. Replace the 1st v-i-f tube. Tune in a station and use the speaker output as an indication
8. Turn the FINE TUNING control clockwise to obtain a slightly fuzzy picture.
9. Tune TC402 for minimum AM (noise) output NOTE: The R-F Probe, Part No. 76-3595, is used as a detector of the \(4.5-\mathrm{mc}\). signal, and the oscilloscope is used as an indi cating device. An alternate crystal detector may be made up as shown in figure 9 .

\section*{OSCILLOSCOPE WAVEFORM PATTERNS}

These waveforms were taken with the receiver adThese waveforms were taken with the receiver ad-
justed for an approximate peak-to-peak output of 3 volts at the video detector. The voltage given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the waveformsnot the sweep rate of the oscilloscope. The wave


Figure 10. Video Detector Output, Pin 2 of J 200
3 volts, 60 c . P.s.
 66 volts, 60 c.p.s.
forms were taken with an oscilloscope having good high-frequency response. With oscilloscopes having high-frequency response. With oscilloscopes having
poor high-frequency response, the sharp peaks of the horizontal waveforms are more rounded than those shown, and the peak voltages differ from those shown.






Figure 38. Deflection Chassis D-181, Run 4 (First Production), Schematic Diagram


\section*{UHF TUNER-ADAPTER UT21D, PART NO. 43 -6778 FOR RECEIVERS USING R-F CHASSIS R-181}


Figure 39. Deflection Chassis D-181, Run 4 (First Production), Base Layout

UHF Tuner-Adapter UT21D, Part No. 43-6778, provides for the reception of UHF signals on television channels 14 through 83. It is designed for installation in Philco Television Receiver models that have a model number beginning with " B ," and use r-f chassis R181. The adapter consists of a UHF converter and preamplifier unit, a change-over
switch, adapter cables and plugs, a planetary drive tuning-assembly, and mounting hardware

\section*{CIRCUIT DESCRIPTION}

The UHF Tuner-Adapter functions as a converter, and converts the signals of the UHF band to a frequency selected within the VFH band. The frequnel selected is that of either Channel 2 or the receiver is used.
The incoming UHF signal is coupled through the antenna input line, and through two \(680-\mu \mu \mathrm{f}\) condensers and a 150 -ohm transmission line to the antenna tank of the tuner. See figure 42 . The an tenna tank is coupled to the mixer tank by mean of the mutual coupling of L2 and Led is selected by tuning the antenn tank and the mixer tank to the proper frequency, and the signal is then coupled to proper frequency, and mixer circuit by means of the mutual coupling of L4 and L5. The local-oscillator signa is generated by a 6AF4 tube and the associated circuit. The local-oscillator signal is coupled to the crystal mixer circuit by means of a 300 -ohm, minia ture transmission line and the mutual coupling of L 7 to L5 and L8 to L6. The UHF r-f signal and the oscillator signal are mixed in the crystal mixer circuit, producing a radio-frequency signal within range of the VHF tuner when the tuner is set to either Channel 2 or Channel 3. This signal is fed into a preamplifier, which amplies it, and it is then fed into the VHF tuner through a twin-wire lead In the VHF tuner, the signal is converted to the In VHF VHF UHF scillator plate, which make this oscillator inoperative.

The purpose of using two r-f tanks in the UHF tuner is to readily admit the r-f signals, and, at the same time, prevent the UHF i-f and oscillato signals from feeding back into the antenna and causing interference with other receivers.

\section*{CHANGE-OVER SWITCH}

The change-over switch supplied with the Tuner

Adapter is used to switch from VHF to UHF, and vice versa. It is installed on the back of the VHF uner, and is operated by an actuator mounted on the VHF tuner shaft. When the VHF Channel Selector is turned to the position for UHF operation, the switch connects the antenna to the UHF tuner, turns off the VHF pilot light, turns on the UHF pilot light, and connects the output of the UHF tuner to the antenna input of the VHF tuner. When the VHF Channel Selector is turned to any He VHF tuner turns off the UHF pilot light turns the VHF VF pilot light and places a 150000 -ohm esistor in series with the UHF oscillator plate as explained above.

\section*{PLANETARY DRIVE}

The UHF tuner is tuned by means of a 3-gang tuning condenser, which is driven through a specially designed planetary drive. The planetary drive is so constructed that with a single control thob The tuning shaft is coupled to the driving naft through three balls, which form a planetary drive that produces slow rotation for fine tuning. See figure 40. After rotating 180 degrees with the tuning shaft a pin engages the driving shaft, and the two shafts are direct-coupled, for coarse tuning. To re-engage the planetary drive for fine tuning, it is only necessary to reverse the direction of the rotation. The dial pointer is connected to the tuning gang through a cord drive, and indicates the channel number to which the tuner is tuned.

\section*{ALIGNMENT AND REPAIRS}

The frequencies at which the Tuner-Adapter operates are extremely high; therefore, it is necessary that the utmost care be taken to safeguard against upsetting the delicate adjustments of the tuner. It is recommended that the serviceman make only minor repairs to the tuner, such as replacement of the tube or crystal and the wiring of external leads. The Tuner-Adapter should be reirs, unless the factory for alignment and major repairs, unless the jeibs In general a rood rule to follow is not to jobse ther-Adapter unles so equipped.

NOTE: Replacing the tube with a new one may detune the tuner. If this occurs, a number of tubes should be tried, until the most satisfactory substitute for the original is found.



Figure 43. Oscillator and Mixer Board Layout


Figure 44. Base View of Tuner-Adapter UT210,
igure 44. Base View of Tuner-Adapter UT21
Part No. 43-6778, Preamplifier Assembly

figure 46. Top View and Base View of Yune Adapter UT21D, Part No. 43-6778, With Board Assemblies in Place


Figure 45. Side View and Base View of Tuner-Adapter UT21D, Part No. 43-6778, Without Board Assemblies

\section*{INSTALLATION INSTRUCTIONS}

This tuner will provide reception of UHF Channels 14 through 83 by converting the UHF signal to the VHF frequency of Channel 2 or Channel 3. When the VHF CHANNEL SELECTOR of the Receiver is Channel 2 or Channel 3 position may be used for the reception of the converted UHF signal; when the VHF CHANNEL SELECTOR is rotated in the clockwise direction, both Channel 2 and Channel 3 may be received. To install the tuner, proceed as follows:
1. Remove the cabinet back and the r-f chassis from the cabinet. Then remove the nameplate from the control panel.
2. Insert the dial scale and bezel assembly into the hole provided in the cabinet. The four studs should be passed through the four holes provided. Fasten the assembly in
3. Remove the tuner assembly from the mounting board with which it was shipped. Keep the screw for mounting the tuner in the cabinet
4. Place the spacers on the mounting studs, and use the studs to attach the bracket and socket assembly to the rear of the VHF tuner on the r-f chassis, as shown in figure 47.
5. Place the switch-actuator assembly on the shaft that extends from the rear of the VHF tuner; position the assembly so that the switch-actuator studs point away from the tuner. See figure 47
6. Place the switch assembly or the mounting studs push the switch toward the top of the tuner, and asten it in place with the washers, lock washers and nuts provided. See figure 47.
7. Set the VHF CHANNEL SELECTOR to Chan nel 3, and rotate the switch actuator on the tune from the rear of the VHF tuner) until the switch


Figure 47. UHF-VHF Change-over Switch,
Figure 47. UHF-VHF Change-over


Figure 48. Switch Actuator Stud Position with ge-over Switch in VHF Position and VHF CHANNEL SELECTOR on Channel 3
actuator studs are positioned as shown in figure 48 Exert slight pressure against the actuator in the clock wise direction, and fasten the actuator securely on the the operation of the UHF-VHF change-over switch and actuator is as follows: When the change-over switch is thrown to UHF in the Channel 3 position, the switch actuator should throw to the position shown in figure 49. The change-over switch should throw to UHF on Channels 2 and 3 when the VHF CHANNEL SELECTOR is switched from Channel 4 to Channel 3 and then to Channel 2. The change-over switch should SELECTOR is switched from Channel 13 to Channel


Figure 49. Switch Actuator Stud Postion \({ }^{\text {TrP-107-A. }}\) Figure 49. Switch Actuator Stud Position with
Change-over Switch in UHF Position and VHF CHANNEL SELECTOR on Channel 3


Figure 50. Lead Dress and UHF Tuner Mounting Details

2 and then to Channel 3. Make certain that the actuator clears the cam shoulder when the CHANNEL 4 If the switch does not throw properly reposition the switch on the mounting studs and the switch actuator on the VHF tuner shaft until the switch operates as described above. Lubricate the switch cam and switch actuator studs with cup grease.
8. Remove the bulb and shield from the pilotlight assembly on the r-f chassis, place the bulb place the shield over the bulb. Cut the pilot-light leads about one inch from the chassis, and tape up each end separately.
9. Remove the audio output tube, plug the octal adapter into the tube socket, and place the tube in the adapter socket. The octal adapter is wired to the switch.

CAUTION: MAKE SURE THAT THE
LEADS DO NOT TOUCH THE TUBES.
10. Remove the antenna lead from the VHF tuner and solder the short lead from the UHF-VHF changeand solder the short lead from the UHF-VHF changewhich the antenna lead was removed. See figure 47. Insert the two twin-wire leads from the change-over switch through the paper lead holder, and then slide the lead holder over the tapered-line assembly on the VHF tuner.
11. Fasten the dress lug to the chassis with the 11. Fasten the dress lug to
screw provided (sec figuro 50).
12. Place the UHF tuner in the cabinet, in the center of the chassis shelf, and position it so that the UHF knob shaft protrudes \(9 / 16\) inch from the front
of the cabinet. Fasten the UHF tuner to the chassis shelf with the three screws removed in step 3. It is important that these screws be tightened securely to shelf. Turn the UHF tuning shaft to its extreme counterclockwise position, and check the pointer position on the scale. If the pointer is not properly positioned, loosen the three mounting bolts, move the UHF tuner to properly position the pointer, and fasten the assembly with the three mounting screws.
13. Install the r-f chassis in the cabinet, and insert the pilot-light socket into the pilot-light clip. Fasten the r-f chassis with the original bolts, and place the original knobs on their shafts.
14. Connect the 5 -pin plug of the UHF tuner to the 5 -pin socket in the bracket and socket assembly lead from the UHF Connect the the single pin located near the 5 -pin socket. Dress the leads under the dress lug as shown in figure 50.
15. Replace the fishpaper antenna-lead holder with the new holder provided. Fasten the new holder with the two nails supplied, and then pass the twin-wir leads through the holes as shown in figure 51. Wrap tape around the yellow-marked twin-wire leads with through the twin holder
16. Fasten the antenna terminal board on the cabinet back. Replace the cabinet back on the cabinet, and dress the leads through the back. Connect shown in figures 52 through 56.
17. Paste the label provided over the outsideantenna instructions on the cabinet back


Figure 51. Antenna Lead Holder


Figure 52. Antenna-Lead Connections, Common Built-in Antenna


Figure 53. Antenna-Lead Connections, Common External Antenna


Figure 54. Antenna-Lead Connections, Separate External Antennas


Figure 55. Antenna-Lead Connections, VHF Built-in and UHF External Antennas


Figure 56. Antenna-Lead Connections, VHF External and UHF Built-in Antennas

\section*{PARTS LIST}

\section*{MPORTAN}

General replacement items commonly stocked by the serviceman are omitted from this parts list．All condensers are molded－bakelite Philco condensers，with a 600 －volt rating，and all resistors are \(1 / 2\) watt，unless otherwise indicated．Parts are listed according to chassis type，and should be ordered in this way rather than by model number．A list of miscellaneous parts is given at the end of the parts list for each chassis type．All parts are symbolized in the schematic diagram and base layout，for identification purposes．
NOTE：Part numbers identified by an asterisk（ \({ }^{\circ}\) ）are general replacement items． These numbers may not be identical with those on factory parts．Also，the elec trical values of some replacement items may differ from the values indicated in the schematic diagram and parts list．The values substituted in any case are so chosen that the operation will be unchanged．When ordering replacements，use only the＂Service Part No．

DEFLECTION CHASSIS D－181
\begin{tabular}{|c|c|c|}
\hline ON 1－POWER SUPPLY & \multicolumn{2}{|r|}{SECTION 8－HORIZONTAL SWEEP} \\
\hline \(\underset{\text { Description }}{ }\)－POWER SUPPLY \({ }^{\text {Service }}\) Part No． & Reference Symbol & Description \(\begin{gathered}\text { Service } \\ \text { Part No．}\end{gathered}\) \\
\hline sers，electrolytic filter， & C80 & Condenser，by－pass， \(82 \mu \mu \mathrm{f}\) ．\(\ldots\) ． \\
\hline \(20 \mu\) f．，150＊．－－7． & A & \\
\hline \begin{tabular}{l}
Condenser，electrolytic filter， \\
\(80 \mu \mathrm{f} ., 300-\) \(\qquad\) 30－2584－3
\end{tabular} & &  \\
\hline  & C808B & \begin{tabular}{l}
Condenser，electrolytic， \\
\(20 \mu\) ．，475v \(\qquad\) Part of Cl03
\end{tabular} \\
\hline  & 809 & Condenser，coupling， \(390 \mu \mu \mathrm{f}\) ．\(\ldots\) ．．．．．．．60－10395417 \\
\hline \[
26 \text { wire }
\] & C811 & ndenser，saw－tooth forming， \\
\hline  & &  \\
\hline Socket，a－c line ．．．）． & C815 & Condenser，damping， \(68 \mu \mu \mathrm{f}\) ．．．．．a＊＊＊＊＊＊30－1246－1 \({ }^{\text {a }}\) \\
\hline chassis connecting \(\qquad\) （See Misc．＂B＂） & J8 & －Socket，deflection－yoke connector．．．． －\(^{\text {27－6274－8 }}\) \\
\hline Plug，a－c line \(\cdot \square \quad \begin{aligned} & \text { Part of a－c line cord } \\ & \text { ass＇y．（see Misc．＂} A \text {＂）}\end{aligned}\) & L800 & Coil，horizontal stabilizing， \\
\hline Resistor，current limiting， 5 ohms， & & 30 to 80 mh ．．．．］ה木⿴囗才， \\
\hline 10 watts ．a）\({ }^{\text {a }}\) & L801 & Coil，r－f choke，horizontal－output \\
\hline  & & plate ．－．7）Pars of T800 \\
\hline \begin{tabular}{l}
Resistor，voltage dropping， \\
4.7 ohms， 1 watt．．． \\
66－9478340
\end{tabular} & L802 and L803 & Coils，horizontal deflection．．．．．．．．Part of deflection yoke（see Misc．＂A＂） \\
\hline Switch，off－on ．．．．． & L804 & thode ．．．－．．．32－4112－24 \\
\hline  & L805 & Coil，r－f choke，damper plate ．．．－3）32－4112－24 \\
\hline SECTION 7－VERTICAL SWEEP & R810 & ntiometer，HORIZ．HOLD \\
\hline Description \begin{tabular}{c} 
Service \\
Part No．
\end{tabular} & & \begin{tabular}{l}
CENTERING control， \\
250,000 ohms \(\qquad\) 33－5565－17
\end{tabular} \\
\hline ils，vertical deflection．．．．．．．．．．．．．．．．．．．Part of deflection voke（see Misc．＂A＂） & R811 & esistor，feedback coupling， \\
\hline Resistor，vertical－oscillator plate load， 150,000 olums 1 watt & & 33，000 ohms， 1 watt．．．．．｜－ \\
\hline \begin{tabular}{l}
Resistor，vertical－oscillator cathode， 2200 olms． \(1 / 2\) watt， 5 \\
66－2228240
\end{tabular} & R812 & \begin{tabular}{l}
Potentiometer，HORIZ．HOLD control， \\
50,000 ohmis \(\qquad\)
\end{tabular} \\
\hline Resistor，vertical－oscillator grid， 510,000 oluns． \(1 / 2\) watt， 5 ， \(\qquad\) 66－4518240 & R816 & Resistor，screen supply divider， 5000 ohms， 5 watts．．．．．．．．．．．．．．．．．．．．．．．．．．．33－1335－118 \\
\hline \begin{tabular}{l}
Potentimeter，VERT．HOLD control， \\
1 megohm－Part of R812
\end{tabular} & R817 & Potentiometer，WIDTH control， \\
\hline Potentiometer，HEIGHT control，
2.5 megolmis ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．33－565－32 & &  \\
\hline Potentiometer，V＇ERT．LIN．control，
2.5 megohms ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．33－5565－32 & R820 & Resistor，voltage dropping， 39，000 ohms， 2 watts．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．66－3395340 \\
\hline Resistor．vertical－output damping， 100，000 ohms， 1 watt．．．．．．．．．．．．．．．．66－4104340 & R821 & Resistor，feedback coupling， \\
\hline Resistor，vertical－output decoupling， 1800 ohms， 5 watts 33－1335－102 & &  \\
\hline Transformer，vertical outpui．．．ax－ & 00 & Transformer，horizontal output ．．．．7＊） \\
\hline
\end{tabular}

\section*{MISCEILANEOUS＂A＂}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{miscellaneous＂A＂} \\
\hline Description Part & Description Part No． \\
\hline  & Slield，h．v．corona \\
\hline Beam bender ．．．．． &  \\
\hline Cable assembly，volume control． & Socket，high－voltage rectifier（1B3GT）．．．］\(\quad \square \times \square\) \\
\hline Cable and plug ass＇y．，deflection（17＂picture tube）．．41－4086－18 & Socket，horizontal oscillator（12AU7）．－ \\
\hline Cable and plug ass＇ y ．，deflection（21＂picture tube）．．41－4086－25 &  \\
\hline  &  \\
\hline Cord，a－c line ．．．．．． & Socket，vertical oscillator（12BH7）．－ד］－ \\
\hline Deflection，yoke ass＇y．．－7） & Socket，vertical output（12B4）．．．．］ \\
\hline  & Spring，high－voltage cable ．．．．］． \\
\hline
\end{tabular}


\section*{R－F CHASSIS R－181}
\begin{tabular}{|c|c|c|c|}
\hline & SECTION 2－VIDEO I．F． & & SECTION 4－SOUND \\
\hline Reference Symbol C200 &  & Reference
Symbol & Description \(\begin{gathered}\text { Service } \\ \text { Part No．}\end{gathered}\) \\
\hline C200 & Condenser，d－c blocking， \(47 \mu \mu \mathrm{f}\) ．\(. . . .60-00475420\) & & Description Part No． \\
\hline 01 & Condenser，trap， \(18 \mu \mu \mathrm{f}\) ．．．．．．．． & C400 & Condenser，coupling， \(2.2 \mu \mu \mathrm{f}\) ．．．．．． \\
\hline 04 & Condenser，fixed trimmer， 22 uرf．．．．62－022009001 & C401 & Condenser，fixed trimmer， \(18{ }_{\mu \mu \mathrm{f}}\) ．62－018400021 \\
\hline 05. & Condenser，d－c blocking， \(100 \mu \mu \mathrm{f}\) ．．．．6－1 10409001 & C404 & Condenser，fixed trimmer …ㅈ．． \\
\hline C208 & Condenser，electrolytic ．－．］． & C405 & Condenser，fixed trimmer ．－．］．．．．．．．．．．．Part of \(\mathbf{Z 4 0 0}\) \\
\hline C208A & Condenser，filter， \(40 \mu \mathrm{f} ., 300 \mathrm{v}\) ．．．．．．．．．．．Part of C208 & C406 & Condenser，detector balancing， \\
\hline C208B & \begin{tabular}{l}
Condenser，decoupling filter， \\
\(10 \mu \mathrm{f}\) ．， 300 v \(\qquad\) Part of C208
\end{tabular} & C409 &  \\
\hline 211 & Condenser，detector by－pass， 5 u \(\mu\) f．．．．30－1224－28 & C410 & Condenser，filter， \(2 \mu\) ．\(\cdots \cdots \rightarrow \cdots\) \\
\hline 200 & Crystal，video detector，in64 & C414 & Condenser，plate by－pass， \\
\hline 1200 & Pilot light ．．．now & &  \\
\hline J200 & Socket，video test and fringe switch．．．．．．．．．．．27－6273 & C415 & Condenser，filter， \(20 \mu \mathrm{f}\) ．，300vv ．．．．．．．．．．．Part of C208 \\
\hline 0 and &  & J400 & Socket，volume control ．．．．．｜＞－27－6273 \\
\hline L201 & & J401 & Socket，speaker ．．．－ \\
\hline L202 &  & L400 & Coil，audio take－off ．．．．．．．． \\
\hline 03 & Coil，28．1－mc．trap ．．．． & L401，L402 & Coils，ratio detector ．．．］．．．．．．．．．．．．．．．．．．Part of \(\mathbf{Z 4 0 0}\) \\
\hline 04 &  & and L403 & \\
\hline 05 &  & L404 & Coil，filament choke ．．．．ㅈ․․․․․․․․․…32－4112－15 \\
\hline L206 & Coil，filament choke ．．．．त． & L405 & Choke，filter，l hy．， 60 ohms ．．．．．．．．．．．．．．．．．．．．32－8617 \\
\hline \[
\begin{aligned}
& \text { L207 and } \\
& \text { L208 }
\end{aligned}
\] &  & PL400 & Plug，volume control …．．．．．．．．Part of cable and pluy \(\begin{gathered}\text { ass } y \text { ．（see Misc．＂} A \text {＂）}\end{gathered}\) \\
\hline L209 and & Coils，coupling & PL401 & Plug，speaker ．－．\(\quad\) as \(\quad\) Part of spaker cable \\
\hline L211 &  & R401 & \begin{tabular}{l}
Resistor，screen dropping， \\
12，000 ohms， 1 watt \\
\(66-3124340^{\circ}\)
\end{tabular} \\
\hline 12 &  & R409． & \\
\hline L213 &  & & \(270 \mathrm{ohms}, 1\) watt \(\qquad\) 66－1274340 \({ }^{\circ}\) \\
\hline L214 & \begin{tabular}{l}
Coil，variable，video peaking， \\
\(200-400 \mu \mathrm{~h}\) ． \(\qquad\)
\end{tabular} & R410 & Resistor，screen dropping， 4700 ohms，l watt ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．66－2474340＊ \\
\hline R202 & Resistor，filter， 330 ohms，1 watt ．．．．．66－1334340 \({ }^{\circ}\) & R412 & Potentiometer，VOLUME control， \\
\hline R207 & Resistor，voltage dropping， & & 2 megohms \\
\hline T200 & Transformer，video i－f input．．．．－ & Z400 & Transformer，ratio detector \\
\hline T201 & Transformer，2nd video i－f ．－．］． & & \\
\hline T202 & Transformer，3rd video i－f ．－．．．． & & SECTION 6－SYNC \\
\hline & SECTION 3－VIDEO & & SECTION O－SYN \\
\hline Reference Symbol & Description \(\begin{gathered}\text { Service } \\ \text { Part No．}\end{gathered}\) & Reference Symbol & Description Part No． \\
\hline C301 & Condenser， \(4.5-\mathrm{mc}\) ．trap， \(68 \mu \mu \mathrm{f}\) ．\(\ldots . . \mathrm{m2-068409011}\) & C600 & Condenser，by－pass， \(330 \mu \mu \mathrm{f}\) ．．．．．．．．．．．62－133001001 \\
\hline C302 & Condenser，filter， \(10 \mu \mathrm{f} ., \mathrm{300v}\) ．－．．．．．．．Part of C208
Coil，4．5－mc．trap & R603 & Resistor，plate load，18，000 ohms， \\
\hline L301 & Coil， \(4.5-\mathrm{mc}\) c．trap \({ }_{\text {Coil，}}\) & & 2 watts ．．．．． \\
\hline L302 & \begin{tabular}{l}
Coil，variable，video peaking， \\
60－200 \(\mu \mathrm{h}\) \\
32－4467－18
\end{tabular} & R609 & Resistor，voltage divider， 1 megohm， 1／2 watt， \(5 \%\) \(\qquad\) \\
\hline R301 & Potentiometer，CONTRAST control， 1000 ohms ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Part of R307 & R618 & Resistor，voltage divider， 8200 ohms， 1 watt ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．66－2824340． \\
\hline R305 & Resistor，plate load， 3900 ohms， 7 watts ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．33－1335－116 & R619 & Resistor，voltage divider， 10 megohms， \(1 / 2\) watt， \(5 \%\) ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．66－6108240 \\
\hline R307 & Potentiometer，BRIGHTNESS control， & R620 & Resistor，decoup \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{MISCELLANEOUS "B"} \\
\hline iption & ( \\
\hline \multicolumn{2}{|l|}{Cable and plug ass'y, chassis connecting .-.. \(\times\). \(\times\). \(41-4146-10^{\circ}\)} \\
\hline Cable and sock & cket ass, \({ }^{\text {a }}\) picture tube \\
\hline \multicolumn{2}{|l|}{Cable and socket ass'y., pilot light ....} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Shield, pilot light ...,} \\
\hline Socket and b & ase ass'y., 6CB6 \\
\hline \multicolumn{2}{|l|}{Socket and base ass'y., 6T8 ... \(\times\) ? \(\times\) -} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{SECTION 5-TV TUNER, PART No. 76-7664} \\
\hline Reference & Description \(\begin{gathered}\text { Sarvice }\end{gathered}\) \\
\hline \({ }_{\text {C500 }}\) C501 & Condensers, antenna isolating, \\
\hline C501 &  \\
\hline C502 & Condenser, FM trap, \(20 \mu \mathrm{uf}\). ... \(\quad 6 \mathbf{6 2 - 0 2 0 3 0 9 0 1 1}\) \\
\hline C503 & Condenser, coupling, \(220 \mu \mu \mathrm{f}\). .-...62-122001001 \\
\hline C504 & Condenser, by-pass, \(10 \mu \mu \mathrm{f}\). ... 6 62-010409011 \\
\hline C505 & Condenser, neutralizing. 2.2 muf. ._- 30-1221-6 \\
\hline C506 & Condenser, grid by-pass, \(150 \mu \mu \mathrm{f}\). ...62-115001011 \\
\hline C507 & Condenser, decoupling, . \(01 \mu \mathrm{f}\). ... \(\quad\) 30-1238-2 \({ }^{\circ}\) \\
\hline C508 & \begin{tabular}{l}
Condenser, trimmer, r-f plate, \\
.5-3 \(\mu \mathrm{ff}\).
\end{tabular} \\
\hline C509 & Condenser, by-pass, \(150 \mu \mu \mathrm{f}\). .-ד) 62-115001011 \\
\hline C510 & Condenser, coupling, \(5 \mu \mu \mathrm{f}\). \(\quad\) - \(\quad\) 30-1221-15 \\
\hline C511 & Condenser, coupling, \(39 \mu \mu \mathrm{f}\). -.... 62 -039409011 \\
\hline C512 & \begin{tabular}{l}
Condenser, trimmer, mixer grid, \\

\end{tabular} \\
\hline C513 & Condenser, oscillator coupling, \(1.5 \mu \mu \mathrm{f}\). ................................................................... \\
\hline C514 & Condenser, grid blocking, \(22 \mu \mu \mathrm{f}\). ..62-022009001 \\
\hline C51 & Condenser, fixed trimmer, \(2.2 \mu \mathrm{ff}\). ....30-1224-66 \\
\hline C516 & Condenser, FINE TUNING
(bakelite tube)
Cu-6935-1 \\
\hline C517 & Condenser, fixed trimmer, \(15 \mu \mu \mathrm{f}\). ..62-015409011 \\
\hline C519 & Condenser, feed-through, \(1000 \mu \mu \mathrm{f}\). ....30-1245-1 \\
\hline C520 & Condenser, feed-through, \(1000{ }_{\mu} \mu\) f. ...30-1245-1 \\
\hline C521 &  \\
\hline C522 & Condenser, coupling, \(4.7 \mu \mu \mathrm{f}\). ..........30-1221-13 \\
\hline C523 &  \\
\hline L500, L501, L502, and & Coils, tapered line ...) \\
\hline \multicolumn{2}{|l|}{L502, and L503} \\
\hline L504 & Coil, FM trap \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{L505 to Coils, antenna tuning .............. Part of WS500A}} \\
\hline & \\
\hline L512 & Coil, r-f coupling ...wn \\
\hline L513 to & Coils, r-f plate tuning ..............Part of WS500B \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{L520 to
L526 incl.}} \\
\hline & \\
\hline L528 & Coil, mixer plate .... \\
\hline L529 & Coil, i-f primary ...x \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{\text {L531 }}^{\text {L5 }}\) and Coils, r-f choke - - \(\square_{\square}^{\text {a }}\)}} \\
\hline & \\
\hline \[
\begin{gathered}
\mathrm{L} 532 \\
\mathrm{~L} 58
\end{gathered}
\] & Coils, oscillator tuning - Part of WS500D \\
\hline R508 & \begin{tabular}{l}
Resistor, oscillator feed, \\
10,000 ohms, 1 watt
\end{tabular} \\
\hline R510 & \\
\hline & 27,000 ohms, 1 watt \(\qquad\) 66-3274340 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SECTION 5-TV TUNER, PART No. 76-7664 (Cont.) & \multicolumn{2}{|l|}{UHF TUNER-ADAPTER UT21D, PART No. 43.6778} \\
\hline \(\substack{\text { Reference } \\
\text { Symbol }}\)
Description \begin{tabular}{c} 
Service \\
Part No.
\end{tabular} & & \\
\hline  & \[
\begin{aligned}
& \text { Reference } \\
& \text { Symbol }
\end{aligned}
\] & Description Part No. \\
\hline  & \[
\begin{aligned}
& \mathrm{C} 1 \text { and } \\
& \mathrm{C} 2
\end{aligned}
\] & Condenser, antenna input, \(680{ }_{\mu \mu \mathrm{f}}\). \(\begin{array}{r}\text { Part of } \\ \text { Panel, filter }\end{array}\) \\
\hline WS500C(F)
Switch, wafer, mixer grid \(\ldots \ldots \quad\) and
and
WS00C(R) & & \begin{tabular}{l}
Condenser, tuning: \\
Shaft and rotor ass'y. \(\qquad\) 76-7481-3
\end{tabular} \\
\hline wS500D(F) Switch, wafer, oscillator \(\qquad\) 76-7660 and & C3A & Stator, r-f, ell.h. ..) \\
\hline WS500D(R) & C3B & Stator, r-f., r.h. .-W - 56-9595-1 \\
\hline Z500 Tapered-line ass'y \({ }^{\text {a }}\) & C3C & Stator, r-f, l.h. \(\square \square\) - 56-9595 \\
\hline misCELLANEOUS "C" & C3D & Stator, r-f, r.h. .-W \\
\hline  & C3E & Stator ass'y., oscillator .... \\
\hline  & C3F & Stator ass'y., oscillator .-. \(\square^{\square} \quad\) 76-7479 \\
\hline  & C4 & Condenser, padder ass'y., r-f \(\quad\) 76-7472 \\
\hline  & C5 & Condenser -.- Stray capacitance \\
\hline  & C6 & Condenser, padder ass'y., r-f .-. \({ }_{\text {a }}\) \\
\hline Hairpin, plunger grounding & C7 & Condenser, mixer tank, \\
\hline  & C &  \\
\hline  & & nixer \\
\hline Retaining ring \(\times\) - & C8 & Condenser, temperature compensating, \\
\hline  & &  \\
\hline Shaft, extension .- & C9 & Condenser, oscillator trimmer _-_ 31-6525 \\
\hline Shield, tube, 9-pin miniature \(+\square \square\) 56-5629-5 & & \\
\hline  & C10 & Condenser, oscillator tank, \(11 \mu \mu \mathrm{f}\). ...Part of Tank \\
\hline Spring, shaft \(-\square \times \square\) - 56-8023 & & \\
\hline Spring, plunger \(\times \ldots \square \quad 56\) & Cll & Condenser, trimmer .-.......art of Tank ass'y., ose. \\
\hline Spring, rotor index detent \(\times \square \square \square\)
Terminal panel, antenna \(\times \square \quad\) 56-9158 & C12 & Condenser, grid by-pass, \(1000 \mu \mu \mathrm{f}\). .-. 30-1245-1 \\
\hline Terminal panel, antenna & C13 & Condenser, output tuning, 2-8 \(\mu \mu \mathrm{f}\). -.. 31-6527 \\
\hline Washer, fiber & C14 & Condenser, heater by-pass, \(1000 \mu \mu \mathrm{f}\). ..30-1245-1 \\
\hline  & C15 & Condenser, plate by-pass, \(1000 \mu \mu \mathrm{f}\). \(\ldots \ldots 30-1245-1\) \\
\hline & C16 & Condenser, input coupling, \(8 \mu \mu \mathrm{f}\). ... 30-1224-46 \\
\hline CONNECTING CABLES, PLUGS AND SOCKETS & C17 & Condenser, neutralizing, \(470 \mu \mu \mathrm{f}\). ..62-147001011 \\
\hline  & C18 & Condenser, decoupling, \(470 \mu \mu \mathrm{f}\). ....62-147001011 \\
\hline  & C19 & Condenser, cathode by-pass, 470 \\
\hline J100 Socket, a-c line .... & &  \\
\hline J200 Socket, video test and fringe switch........ 27-6273 & C20 & \\
\hline  & C20 & \({ }_{\mu \mu \mathrm{f} \text {. ..er) }}\) \\
\hline J401 Socket, speaker …ㅈ..ㅊ.. & C21 & \\
\hline J800 Socket, deflection-yoke connector .......7-6274-8 & C21 & Condenser, cathode tuning,
\(\mu \mu \mathrm{f}\). 62-147001011 \\
\hline \begin{tabular}{l}
PL101 Plug and cable ass'y., \\
chassis connecting . - - \({ }^{\text {41-4146-10 }}\)
\end{tabular} & C22 & Condenser, grid by-pass, \(470{ }_{\mu \mu \mathrm{f}} \ldots . .62\)-147001011 \\
\hline Pl100 Plug and line cord ass'y. . \(\square \square \quad\) 41-3865 & & \\
\hline PL400 \(\begin{gathered}\text { Plug and cable ass'y., } \\ \text { volume control }\end{gathered} \quad\) 41-4136-30 & & Condenser, plate tuning, \(2-6 \mu \mu \mathrm{f}\). ...... 31-6520-4 \\
\hline PL401 \({ }^{\circ}{ }^{\circ}\) Plug and cable ass'y., speaker............ See cabinet parts list & C24 & Condenser, plate tuning, \(2.2 \mu \mu \mathrm{f}\). .........30-1221-6 \\
\hline PL800 Plug and cable ass'y., deflection.......41-4086-25 & & \(15 \mu \mu \mathrm{f}\). .-W \\
\hline Cable, high voltage \(\qquad\) AD-2631 & CDI &  \\
\hline Cable and socket ass'y., pilot light ...27-6233-103 & & Lamp, pilot, VHF - 34-2068 \\
\hline - NOTE: The length of this cable varies with cabinet and & & Lamp, pilot, UHF \(\times\) 34-2064 \\
\hline speaker size. For Service Part No. refer to cabinet parts list in Philco Service Bulletins. & & Inductor, r-f, 1.h. \(\quad\) Part of C3A Stator \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Reforence Symbol & Description \(\begin{aligned} & \text { Sorvice. } \\ & \text { Part No. }\end{aligned}\) \\
\hline L2 & Inductor, r-f, r.h. .-.]. \\
\hline L3 & Inductor, r-f, 1.h. \\
\hline L4 & Inductor, r-f, r.h. .-.................Part of C3D Stator \\
\hline \[
\begin{aligned}
& \mathbf{L 5} \text { and } \\
& \text { L6 }
\end{aligned}
\] & Inductors, crystal mixer. \(\qquad\) Part of Board ass'y., mixer \\
\hline \[
L 7 \text { and }
\]
L8 & Inductors, oscillator coupling ………... \(\begin{gathered}\text { Part of Board } \\ \text { ass'y., mixer }\end{gathered}\) \\
\hline \[
\begin{aligned}
& \text { L9 and } \\
& \text { L10 }
\end{aligned}
\] &  \\
\hline L11 and
L12 &  \\
\hline L13 &  \\
\hline L14 & Choke, oscillator cathode ....................32-4550-6 \\
\hline L15 & Choke, oscillator plate ....ㅈ․․․․․․… \\
\hline L16 & Coil, input tuning primary ...] \\
\hline L17 &  \\
\hline L18 &  \\
\hline L19 & Choke, cathode tuning ....) \\
\hline L20 &  \\
\hline L21 & Coil, secondary ...]. \\
\hline R1 & Resistor, damping, 300 ohms ...........66-1308340 \\
\hline R2 & Resistor, damping, 150 ohms .-.........66-1158340 \\
\hline R3 & Resistor, decoupling, 8200 ohms .......66-2828340 \\
\hline R4 & Resistor, decoupling, 47 ohms ...-.)......Part of L13 \\
\hline R5 & Resistor, decoupling, 10,000 ohms \(\ldots .\). Part of L15 \\
\hline R6 & Resistor, parasitic damping, 15 ohms 66-0158340 \\
\hline R7 & Resistor, cathode bias, 120 ohms .-....66-1128340 \\
\hline R8 & Resistor, grid leak, 100,000 ohms......66-4108340 \\
\hline R9 & Resistor, plate damping, 1500 ohms 60-2158340 \\
\hline R10 & Resistor, plate decoupling, 330 ohms 66-1338340 \\
\hline R11 & Resistor, output damping, 1000 ohms 66-2108340 \\
\hline R12 & Resistor, B+ dropping, 10,000 ohms, 10 watts \(\qquad\) 33-1336-58 \\
\hline R13 & Resistor, filament dropping, 10 ohms 66-0108340 \\
\hline R14 & Resistor, pilot lamp, 3.9 ohms ...-_......66-9898340 \\
\hline R15 & \begin{tabular}{l}
Resistor, B + dropping, 150,000 \\
ohms \(\qquad\) 66-4158340
\end{tabular} \\
\hline \multirow[t]{6}{*}{T1} &  \\
\hline & Board ass'y., mixer ...- \\
\hline &  \\
\hline & Panel, filter ..-7x \\
\hline & Tank ass'y., oscillator ....] \\
\hline &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{MISCELLANEOUS} \\
\hline ElECTRICAL PARTS Service & & MECHANICAL PARTS Cont.) Sorvice \\
\hline Description Part No. & & Description Part No. \\
\hline Cable ass'y., pilot light ...) & & Screw, adjusting \\
\hline  & & Spring ..W) \\
\hline Panel, antenna, UHF .--ד) & & 54-9059 \\
\hline Switch ...] & & Dial scale and bezel assembly \(\qquad\) 76-8293-1 \\
\hline MECHANICAL PARTS & & Foot and insulator assembly .-. \\
\hline Stice & & Grommet, feed-through . \\
\hline Description Part No. & & Knob .-ד) 76-8292 \\
\hline Tuner Shaft Mounting: & &  \\
\hline Ball, bearing (10) .-7w & & Nut, mounting (2) ....) \\
\hline Bearing, front .-.]ה & &  \\
\hline  & &  \\
\hline  & & Pulley, tuner shaft ....- \\
\hline  & & Screw, \#4, mounting (2) ....].- \\
\hline Nut, rear bearing - & & Screw, (2) \(\qquad\) 1W32694FA3 \\
\hline Nut, insert & &  \\
\hline Switch Mounting: & & Screw, \#8 (3) .-W) W-W IW19907FA3 \\
\hline Actuator assembly ...- & & Screw, \#10 (2) .-.anoway \\
\hline Bracket and socket assembly ....]. & & Shield, 6BQ7 tube \(\qquad\) 56-5629-5 \\
\hline Collar stud (2) ...] & & Shield, 6AF4 tube \(\qquad\) 56-5629-9 \\
\hline Lock washer (2) ...] & & Socket, 9-pin miniature ...... \\
\hline Nut, \#8, special (2) ..-W) & & Socket, 7-pin miniature \(\qquad\) 27-6288 \\
\hline Spacer, 3/8" \((2)\) )...] & &  \\
\hline Washer, fiber (2) .-.] & & Spring clip, dial background (2) ....ה) \\
\hline Planetary Assembly: & & Spring, converter (6) ....- \\
\hline  & & Spring, drive cord ...- \\
\hline Ball, \(1_{6 \prime \prime}^{\prime \prime} \times \ldots\) & & Spring, pointer drive \\
\hline  & & Terminal panel \\
\hline  & &  \\
\hline Block, spring ...].ancoun & &  \\
\hline Insulator, tuning shaft ...new & & Washer, fiber (2) .-ד) \\
\hline Pulley and shaft assembly, idler ..-We. & & Assemblies: \\
\hline Ring, retaining, drive shaft ...]_ & & Tuner and preamplifier \\
\hline Ring, retaining, ider shaft & &  \\
\hline  & &  \\
\hline Shaft, outer & & Preamplifer assembly \\
\hline Shaft and pin assembly, inner ...-3. & & Shaft and rotor assembly, tuner \\
\hline
\end{tabular}

\section*{CIRCUIT DESCRIPTION}

The Philco "B" line, Code 150 television receivers use two chassis, the r-f chassis, R-204, containing the \(r-f\), video, audio, and sync circuits, and the deflection chassis, D-204, containing the power and deflection circuits.
Since these chassis are not isolated from the 60 cycle power line, all protruding shafts and mounting feet are insulated from the chassis.

\section*{CAUTION: See A.C Line Isolation.}

The r-f amplifier, oscillator, and mixer section is built on a separate sulchassis. The r-f amplifier uses a 6BZ7 tube, V1. The oscillator and mixer each use one half of a 12AZ7 tube, V2. The output of the mixer is fed to a four-staye, stager-tuned, i-f amplifier system employing four 6CB6 tubes, V3, V4, V6, and V6. A 1 N 64 crystal diode is used for the video detector. One half of a 6 U 8 tube, V7A, is used as the first video amplifier, which drives a 6AQ5 viden output amplifier, V8.
Sound i.f. (intercarrier) is obtained by utilizing the beat frequency produced when the \(45.75-\mathrm{mc}\). video carrier and the \(41.25-\mathrm{mc}\). sound carrier are mixed in the video detector. The beat frequency, 4.5 mc ., is the difference between 45.75 mc. , and 41.25 mc ., and contains the FM sound signal. This 4.5 -mc. signal contains only a neqligille amount of the video amplitude modulation, provided that the amplitude of the \(41.25-\mathrm{mc}\). signal is considerably lower than that of the \(45.75-\mathrm{mc}\). siznal. The proper relative amplitudes of the two carricrs arc established in the alignment of the receiver. There is sound output only when both the video and sound carriers are present.
The oscillator is tuned primarily to obtain the best picture, since the 4.5 -mc. relationship always exists between the two carriers. The 4.5 -mc. sound i.f. (intercarrier), which is taken from the video detector, is amplified by a 6BA6 tule, V9, and a 6AU6 tube, V10, and is fed to the FM detector, which utilizes two diode sections of a 6 T8 tule, V11A. The triode section of the 6T8 tube, V11B, is used as the first audio amplifier. The power amplifier uses a type 6L6GA tube, V12.
A-G-C voltage for the video i-f system and the \(r\)-f amplifier is obtained from a keyed a-g-c system which uses a 6AU6 tube, V13, as the a-g-c gate. Composite video from the video-amplifier plate circuit, V7A, is fed to the grid of the a-g-c gate tube, while a gating or keying pulse, obtained from a winding on the horizontal-output transformer, located
on the deflection chassis, is applied to the plate. The would be passed by the sync separator; however, the sync-pulse polarity applied to the grid of V13 is output of the noise inverter consists of these same positive; therefore, the a-g-c gate can conduct in noise pulses, but they are of opposite polarity; thus, proportion to the amplitude of the sync-pulse tips if the noise pulses are cancelled. The output of the the gating or keying pulse occurs at the same time as sync separator gontains only the sync pulses which the sync. Because the keying or gate pulse is of are fed to the deflection chassis through the conconstant amplitude, approximately 500 volts peak, necting cable.
the amplitude of the sync pulse determines the amount of conduction in the gate tube. The plate current of the keyed a-g-c gate tube flows through H220, R219, and R218, developing a voltage which is negative with respect to the chassis and whose amplitude is proportional to the plate current. This negative voltage is used to control the gain of the receiver. Since conduction cannot occur in the a-y-c gate tube unless the sync pulse and gating pulse occur at the same time, noise disturbances that occur during the intervals between sync pulses cannot affect the a-gec voltage.
Composite video for the sync circuits is taken from the plate circuit of the video amplifier, V7A. The full output of the amplifier is fed to the grid of the noise inverter, one half of a 12AU7 tube, V14B, and to the grid of the sync separator, one half of a 6 U 8 tube, V7B. The noise inverter is operated with a low value of plate voltage and high bias (applied to the cathode by a voltage-divider network), which keeps the tube beyond cutoff. When the composite video signal is applied to the grid of the noise inverter through C601, the sync appears as positive pulses; noise which could affect the sweep circuits also appears as positive pulses Harmful noise pulses usually have amplitudes far yreatcr than the sync pulses, and, therefore, drive the grid of the noise inverter positive sufficiently to allow conduction in the noise-inverter plate circuit. To prevent the noise inverter from conducting during the sync-pulse interval, the gated leveler, using. one half of a 12 AU 7 tube, V14A, is employed to ciamp the sync pulses below the conduction level of the noise inverter. The gated leveler conducts only when the sync pulses and gating pulse occur at the same tine, thus leveling the noise-inverter input to the sync-pulse level.
The output of the noise inverter consists of negativegoing noise pulses. It should be noted that the noise pulses which exceed the sync level have been passed and their polarity reversed by the noise inverter. The output of the noise inverter is now mixed with the composite video and fed to the grid of the sync separator. Since the composite vidco fed to the grid of the sync separator has positive sync polarity, the positive noise pulses carried with the composite video

The phase splitter, using one half of a 12AU7 tube, V15A, inverts the sync polarity for proper triggering of the vertical oscillator. The vertical sync is separated from the horizontal sync by the integrator circuit, and is fed to the grid of the vertical blocking oscillator, using one half of a 12 AU 7 tube, V15B. The output of the vertical oscillator is amplified by the vertical-output amplifier, a 12B4 tube, V16. The output of the amplifier is applied to the verticaldeflection coils through the vertical-output transformer.
The phase splitter also supplies horizontal sync to the phase-comparer diodes, a \(6 \mathrm{AL5}\) tube, V17. The horizontal sync outputs are taken from the phase splitter, one from the cathode, the other from the plate circuit. These two outputs are of opposite polarity, and are fed to the two diodes of the phase comparer, the negative pulses to the cathode of V17B, and the positive pulses to the plate of V17A. A sawtooth voltage is fed to the plate of V17B and the cathode of V17A for comparison of the sync and horizontal-sweep voltages. When the sweep and sync are in phase, no voltage is developed across R800, but when the two signals are out of phase, a voltage is developed. This voltage controls the frequency of the horizontal oscillator, a 12AU7 tube, V18. Whel this control voltage is positive, it increases the frequency of the oscillator; when the voltage is negative it reduces the frequency of the oscillator. Thus the control voltage acts to hold the horizontal oscillator in phase with the sync signal. The HORIZ. HOLD control, R811, adjusts the horizontal oscillator to the proper frequency, so that it may be controlled by the phase comparer. The output of the horizontal oscillator is fed to the horizontal-output amplifier, which uses a 6BQ6GT tube, V19.

The screen voltage for the horizontal amplifier is supplied from a voltage-divider network. R816, R815 (the WIDTH control), R822, R313 (the BRIGHT NESS control), and R314 are parts of this divider R815 varies the voltage applied to the screen, thus adjusting for proper picture width. Adjusting R313 for brightness varies the bias on the picture tube. The change in bias causes a change in beam current, and would tend to result in a change in picture width
and variation in the second-anode voltage. However, when the control arm of the BRIGHTNESS control, R313, is moved toward ground, a smaller part of the control is shunted by the 22,000 ohm resistor, R314, and the total resistance of the voltage divider is increased. This increase in resistance results in a decrease in the current through the divider, and the screen voltage on the horizontal amplifier is increased proportionately, thus compensating automatically for the increase in beam current in the picture tube. The horizontal amplifier feeds the deflection coils through the horizontal-output transformcr. A 6AX4GT tube, V20, is used as the horizontal damper.
The second-anode voltage for the picture tube is furnished by a high:voltage winding of the horizontaloutput transformer, T800, and is rectified by a 1B3GT high-voltage rectifier tube, V 21 . The B-plus voltage for the receiver is supplied by two selenium rectifiers, CR100 and CR101, in a full-wave voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained from across a filter choke, mounted on the speaker, which is in series with the negative side of the B-plus supply. The B-plus boost voltage, derived from the horizontal-damper circuit, supplies higher B-plus voltage to the vertical amplifier, the vertical oscillator, and the first anode of the picture tube. Filament current for all the tubes except the high-voltage rectifier is supplied by a 110 -volt, 60 cycle filament transformer. Filament current for the high-voltage rectifier is supplied by a winding on the horizontal-output transformer.

\section*{IMPORTANT}

\section*{a-C LINE ISOLATION}

CAUTION: One side of the a-c line is connected to the chassis through C101 and L406. The other side of the a-c line is connected to the chassis through F100, R100, CR100, and Cl 03 , in series. Grounding the chassis will result in a short circuit across one or the other of these two branches in the voltagedoubler circuit. During servicing and alignment, it is desirable that an a-c line isolation transformer capable of handling at least 225 watts (Philco Part No. 45-9600) be used Failure to use an isolation transformer will greatly increase the shock hazard, and may result in damage to the equipment.

\section*{SPECIFICATIONS}

VHF TUNING ........Twelve channel, 13-position incremental tuner, covering VHF Television Channels 2 through 13 and UHF position; fine tuning of local oscillator
UHF TUNING (if provided) .... Continuous tuning, covering UHF Television Channels 14 through 83; fine and coarse tuning
INTERMEDIATE FREQUENCIES
Video carrier .......................... . 45.75 mc . Sound (intercarrier) ...................... 4.5 mc. TRANSMISSION LINE . . . 300 ohm, twin-wire lead OPERATING VOLTAGE . . . . . . . . . 110 to 120 volts, 60 cycles, a. c.
POWER CONSUMPTION. . without UHF, 215 watts;

TUBE COMPLEMENT
\begin{tabular}{|c|c|c|}
\hline REFERENCE SYMBOL & TUBE TYPE & FUNCTION \\
\hline \multicolumn{3}{|c|}{R-F CHASSIS R-204} \\
\hline V 1 & 68Z7-miniature & R.F amplifier \\
\hline \(\stackrel{V 2}{\mathrm{~V}, \mathrm{V4}, \mathrm{v5},}\) & 12AZ7-miniature 6CB6-miniature & Oscillator, mixer
Video iff amplifie \\
\hline & & \\
\hline V7 & 6U8-miniature & Video amplifier, sync sepa- \\
\hline V8 & 6AQ5-miniature & Video output \\
\hline V9 & 6BA6-miniature & First sound i.f amplifier \\
\hline V11 & 6AU6-miniature & Second sound i.f amplifier \\
\hline V11 & 678-miniature & FM detector, first audio amplifier \\
\hline V12 & 6L6GA-octal & Audio output \\
\hline V 13
V 14 & 6AU6-miniature & \({ }^{\text {A.C.C gate }}\) \\
\hline \({ }^{\text {V22 }}\) & 17YP4 or \({ }^{\text {12A }}\) 21Z4P4A & Gated leveler. noise inverter
Picture tube \\
\hline & or 21 EP4A \({ }^{\text {ar }}\) & Picture tube \\
\hline
\end{tabular}

DEFLECTION CHASSIS D-204
\begin{tabular}{|c|c|c|}
\hline 15 & 12AU7-miniature & Phase splitter, vertical oscillator \\
\hline V16 & 12B4-miniature & Vertical output \\
\hline V17 & 6AL5-miniature & Phase com \\
\hline V18
V 19 & \({ }_{6 B 06 G T}^{\text {12AU7 }}\) - miniature & Horizontal oscill \\
\hline 20 & 6AX4GT-Octal & \begin{tabular}{l}
Horizontal \\
Damper
\end{tabular} \\
\hline V21 & 183GT-octal & High-voltage rectifier \\
\hline
\end{tabular}

\section*{B SUPPLY FUSE REPLACEMENT}

The \(B\) supply protective fuse, \(F 100\), is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a 1.6 -ampere delayed-action-type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before
replacing the fuse.

\section*{HORIZONTAL-OSCILLATOR ADJUSTMENT}

To adjust the horizontal-oscillator circuit, tune in a station and proceed as follows:
1. Reduce the width of the picture so that approximately one inch of blank screen appears on the right-hand and left-hand sides of the picture.
2. Increase the BRIGHTNESS control setting so that the blanking time becomes visible. This appears as a dark bar along the right-hand and left-hand sides of the picture.
3. Connect a \(. l-\mu \mathrm{f}\). condenser from pin 2 of the gate-pulse socket, J801, to ground.
4. Set the HORIZ. HOLD control to the center of its mechanical rotation.
5. Adjust the HORIZ. HOLD CENTERING control to bring the picture into the center of the blanking bars. When the picture is centered in the blank ing bars, the bars on the right-hand and left-hand sides of the picture will be of equal width.
6. Remove the \(. l-\mu f\). condenser previously connected to pin 2 of the gate-pulse socket.
7. Adjust the horizontal ringing coil, L800, until the picture is again centered in the blanking bar.
8. Rotate the HORIZ. HOLD control through its range. The picture should fall out of sync on both sides of the center of its rotation. If the picture does not fall out of sync to both sides, readjust the HORIZ. HOLD CENTERING control to obtain fall-out to either side of sync.
9. Rotate the HORIZ. HOLD control through its range and observe the number of diagonal blanking bars just before the picture pulls into sync. The pull-in should occur with from 1 to 2 diagonal bars when the sync position is approached from either direction. If proper pull-in is not obtained, repeat he above procedure

\section*{VIDEO PEAKING-COIL ADJUSTMENT}

The video peaking coils, L 305 and L 307 , are ad justed at the factory for proper transient response of the video amplifiers. Ordinarily, these coils will require no further adjustment by the serviceman ex ept in cases where they have been tampered with or where replacement becomes necessary. Under normal circumstances, when alignment of the tuner or i-f stages is undertaken, the video peaking coils should not require adjustment.

Before adjusting L305 and L307, check both the uner and i-f alignment. (Never adjust L305 and 307 until the alignment of the receiver is correct.) Then tune in a station and adjust the receiver to give a picture of the best obtainable quality, with medium contrast. Turn the fine tuning control clockwise until a very slight beat pattern appears in the picture. Carefully observe the appearance of the picture regarding smear or overshoot (trailing whites). A small amount of overshoot may be desirable, to produce a sharper picture. Conversely, in weak-signal areas, a small amount of smear may be desirable, to reduce the harsh appearance of snow. The adjustments of L305 and L307, and their effects on the picture are as follows:
1. The amount of overshoot may be reduced by turning both TC302 and TC303 counterclockwise.
2. The amount of smear may be reduced by turning both TC302 and TC303 clockwise.
Normally, the point of proper adjustment is where ninimum smear and trailing whites appear in the picture; however, a compromise adjustment may be made to suit prevailing conditions. As a rule, when properly adjusted, the adjustment screws (TC302 and TC303) should protrude from the chassis by ap: proximately \(1 / 2\) to \(3 / 4\) inch.

\section*{TELEVISION ALIGNMENT} GENERAL
The alignment consists of tuning each i-f coil to a given frequency, using an AM signal, and then feeding in a sweep signal at the antenna terminals and ouching up the adjustments to obtain the desired pass band.
The over-all response curve (r-f, i-f) of the circuits rom the antenna terminals to the video detector, after the i-f stages have been aligned, should appear essentially the same, regardless of the channel under test. If not, the tuner should be aligned. Before aligning the tuner, refer to the CAUTION given under Procedure, in Tuner Bandpass Alignment.
The video-carrier intermediate frequency is 45.75 mc., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:
1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained if the top of the workbench is metallic. The
receiver chassis should be placed tuner-side-down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about two inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picturetube yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to the sound and video r-f carriers of each channel used during alignment. If the Philco Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method of calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.
For further information regarding calibration, reer to Philco Lesson PR-1745(J), entitled "Television Service in the Home."

\section*{TEST EQUIPMENT REQUIRED}

The following test equipment is recommended for aligning the receiver:
1. Philco Precision Visual Alignment Generator for Television and FM, Model 7008, or equivalent.
2. Vacuum-tube voltmeter, or 20,000 -ohms-per-volt oltmeter.
3. R-F Probe, Philco Part No. 76-3595 (for use with Model 7008 generator).

\section*{IGS AND ADAPTERS REQUIRED}

\section*{Mixer Jig}

Connections to the grid of the mixer tube may be made through the alignment jack provided for this purpose. To connect the generator to this point, a mixer-grid jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45-1636, with as short a ground lead as possible, nay be used to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signalgenerator output lead be terminated with a 68 -ohm resistor (carbon), so that regeneration, caused by connection of the lead to the mixer, is held to a minimum.


Figure 1. Antenna-Input Matching \(\begin{gathered}\text { TPO-1179 } \\ \text { Network }\end{gathered}\)

\section*{Antenna-Input Matching Network}

An impedance-matching network for coupling the signal generator to the antenna input terminals of the receiver is shown in figure 1. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms, is used to match a \(75.0 h m\) generator to a \(300 \cdot 0 \mathrm{hm}\) antennainput circuit. The resistors used in this network should be of carbon-composition construction, and should be chosen from a group, to obtain values within ten percent of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna-matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

\section*{Video I-F Alignment Jig (Video Test Jack Adapter No. 1)}

This alignment jig designed for use at J200, and shown in figure 2, should be used during the i-f alignment, to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. The adapter consists of a five-pin plug, two 10,000 ohm resistors, and a \(1500-\mu \mu \mathrm{f}\). condenser for isolation of the bias supply. To isolate the oscilloscope from the receiver circuits, a 15,000 -ohm resistor, by-passed by a \(1500-\mu \mu \mathrm{f}\). condenser, is used. A suggested method of fabricating the jig is also shown in figure 2. This jig should not be used to observe the composite video from the video detector output.

Sound I-F Input Alignment Jig (Video Test Jack Adapter No. 2)
To observe the composite video at J200, a jig may be made with a five-pin plug and a \(\mathbf{2 2 0 0}\)-ohm resistor (See figure 3.) The \(\mathbf{2 2 0 0}\) ohm resistor should be con nected to pin 2 of the plug. A ground lead should be connected to pin 3. To observe the composite video connect the oscilloscope to the 2200 -ohm resistor and the ground lead. This jig is also used for injection of the \(4.5-\mathrm{mc}\). signal during sound i-f alignment.


TP2-1507:B
Figure 2. Video I-F Alignment Jig (Video Test Jack Adapter No. 1)
 Figure 3. Sound 1-F Input Alignment Jig (Video


TP2-3263-A
Figure 4. Sound I-F Output Alignment Jig (FM Test Point and Volume Control Jack Adapter)

Sound I-F Output Alignment Jig (FM Test Point and Volume Control Socket Adapter)
Figure 4 shows the adapter that should be used to connect the voltmeter to the FM detector through the volume control socket, J400, and FM test point (G400). The adapter should be inserted into the volume control socket, and the clip lead from the adapter connected to the FM test point. The volume control cable and plug, PL400, is inserted into the socket on top of the adapter

\section*{TELEVISION TUNER ALIGNMENT}

After the tuner is serviced, or if an i-f alignmen is required, the tuner alignment should be checked. If realiznment is necessary, use the procedure given below.

Since the frequency of the local oscillator affects the tuner response, the local-oscillator alignment should be made first.

\section*{Oscillator Alignment}

General
It is possible to place each channel exactly on frequency by adjusting the tuning core of each coil the adjustment procedure should be carried out
with the highest channel (13) first, since the alignment of each channel will affect the alignment of the hannels below it in frequency. The FINE TUNING control should be preset for all adjustments by placing the stop on the fine-tuning cam at Channel 8 oscillator tuning core. See figure 5.


TP3-942-A
Figure 5. Television Tuner, Showing Locations of Adjustments

\section*{Pracedure Using Signal Generotars}

An r-f signal (unmodulated), at the video carrier frequency of the channel, is fed into the antenna input, and an i-f signal, at the i-f carrier frequency, is fed to the first i-f amplifier. Two AM signal generators are used to supply these signals. An oscilloscope is connected to the video detector output. The oscillator core is then adjusted for zero beat on each channel. The two generators should be accurately calibrated as described in Philco Lesson Series PR-1745(J).
To align the oscillator, proceed as follows:
1. To observe the zero beat, connect the oscilloscope to the video-detector output through the video i-f alignment jig. See figure 2. Bias the tuner and i-f a-g.c circuits with \(11 / 2\) volts, and remove the gate-pulse plug, PL801, from the socket, J801. To apply the bias to the tuner, connect the battery to the white lead which comes from the feed-through condenser at the top of the tuner. To make certain that good connec-
tion is made to the tuner a-g-c circuit, remove the tion is made to the tuner a-g-c circuit, remove the glyptol coating on this condenser terminal.
2. To feed in the i-f comparison signal, remove the shield from the first v-i-f tube and wrap several turns of insulated copper wire around the tube. Connect the output leads of the v-i-f signal generator to the two ends of the wire loop, and set the generator for unmodulated output at 45.75 mc .
3. To feed in the signal representing the channel requency, set the r-f signal generator at the video carrier frequency of Channel 13 , and connect the output to the antenna-input terminals of the receiver, through the proper matching jig:
4. Mechanically preset the fine-tuning cam, as shown in figure 5, and set the CHANNEL SELECTOR to Channel 13.
5. Adjust the Channel 13 tuning core for zero beat, as indicated by the oscilloscope.
6. Retune the r-f signal generator and reset the CHANNEL SELECTOR for Channel 12, then 11, etc., each time adjusting the respective tuning core for zero beat. The tuning cores should be adjusted progressively from the highest-frequency channel to progressively from the highest-irequency channel to the lowest, because the higher
will affect the lower channels.

\section*{Pracedure Using Statian Signal}

The following simplified procedure may be used to align the oscillator when the television i-f alignment is satisfactory and a station signal is available. If this procedure is used in the service shop, signals
from all stations which the customer can receive must be available in the service shop.
1. Mechanically preset the fine-tuning cam as shown in figure 5.
2. Tune in the highest-frequency channel to be received, and adjust the tuning core for that channel for the best picture; that is, starting with sound in the picture, turn the tuning core until the sound in
the picture just disappears.
3. Repeat step 2 for each channel received in the area, starting with the highest-frequency channel and finishing with the lowest channel.

\section*{Tuner Bandpass Alignment \\ General}

The bandpass alignment consists of aligning the tuner at Channels 13 and 6, and then making it track properly.

During the alignment, a fixed bias of \(11 / 2\) volts is applied to the r-f amplifier tube through the white a-g-c lead.

An FM (sweep) signal is applied to the antennainput circuit through the proper matching jig, and an oscilloscope is connected to the junction of R518 and the tuner red lead. The oscilloscope gain should be as high as possible, consistent with "hum" level and "bounce" conditions. Hum conditions will cause distortion of the time base and response. Bounce conditions will cause the response and the time base to jump up and down, and this effect is caused by poor line regulation. The use of too high an oscilloscope gain aggravates these conditions, whereas the
use of too low a gain necessitates increasing the use of too low a gain necessitates increasing the generator output to a point where the tuner may be overloaded. The scope controls should be adjusted so that the width of the presentation is double the height. Overload may then be checked by changing the generator output while observing the shape of the response curve. When the generator output is changed, the vertical gain of the oscilloscope should be readjusted to keep the scope presentation ampli-
tude the same. Do not readjust the horizontal gain tude the same. Do not readjust the horizontal gain
control. Any change in the shape of the curve indicates overload, in which case a lower generator output and higher oscilloscope gain must be used.

The signal-generator output must be properly matched to the antenna-input circuit of the tuner. The antenna-input matching network shown in figure 1 , or a Philco Antenna Matching Jig, Part No. 45-1637, may be used for this purpose. If a matching jig is not used, the result obtained will be extremely unreiiable.

Regeneration or a mismatch in the test setup will also cause poor and unreliable results. To check for regeneration or mismatch move the hand along the generator cable after all equipment is connected, and observe the response curve on the oscilloscope screen. If the response curve on the oscilloscope changes as the hand is moved along the cable, regeneration or mismatch is indicated. Another check may also be made with the volume control advanced until noise can be heard from the speaker. If the level of the noise changes as the hand is moved along the generator cable, regeneration or mismatch is indicated. The symptoms which indicate these conditions may also be caused by failure to use the proper matching jig, as described above.

\section*{Procedure}

CAUTION: When comparing the response curves from channel to channel, maintain the 2-to-1 width-to-height relationship in the oscilloscope presentation, as described above.
1. Connect the FM (sweep) and AM marker generators to the 300 -ohm antenna input terminals through an antenna-input matching jig.
2. Connect the oscilloscope to the junction of R518 ( \(15 \mathrm{k}, \mathrm{lw}\) ) and the tuner red lead.
3. Apply \(11 / 2\) volts of bias to the white tuner a-g-c lead.
4. Disconnect the tuner coupling link at wiring panel B-14, terminals 1 and 4, and solder a 68 -ohm, one-half watt carbon resistor to the open link coming from the tuner. See figure 8. Remove the first i-f tube from its socket.
5. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 13 ( 213 mc .). Adjust the generator for sufficient sweep width to show the complete response curve.
6. Establish channel limits (see figure 6) by using the marker (AM r-f) signal generator to produce marker pips on the response curve. (Set the marker generator first to 210 mc ., then 216 mc .) The response curve should be reasonably flat between the limits.
7. Readjust TC502 and TC504 for a symmetrical response, centered about 213 mc . and falling within the specifications, as shown in figure 6.
8. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 7 ( 177 mc .). Establish the channel limits by using the marker-signal generator to produce marker pips on the response curve. (Set the marker generator first to 174 mc ., and then to 180 mc .) The curve should be reasonably flat between the limits.


TP3-1213
Figure 6. Television Tuner Response Curve, Show ing Bandpass Limits
9. On Channel 7, observe the tilt and center frequency of the response curve. The curve should be centered on the pass band and should be symmetrical. If it is not symmetrical, and appears unbalanced, as in figure 7, adjust C507 and C512 (figure 5) to obtain a response curve which is the mirror image (tilt in the opposite direction) of the original; for example, if Channel 7 response curve appears as in figure 7A, adjust C507 and C512 until the curve appears as in figure 7B. This adjustment overcompensates to make allowance for the effect of Channel 13 adjustments (to be made in step 10) upon Channel 7 response.
10. Reset the CHANNEL SELECTOR and gen erators to Channel 13, and repeat steps 8 through 10 as many times as is necessary, to obtain the most symmetrical and centered response curves on Channels 13 and 7. Channels 7 through 13 are now correctly aligned.
11. Set the CHANNEL SELECTOR and sweep generator to Channel 6 ( 85 mc .).
12. Establish the channel limits, using the marker generator to produce marker pips on the response curve. (Set the marker generator first to 82 mc ., then to 88 mc .).
13. Adjust TC503 and TC505 for a symmetrical, approximately centered pass band. Set the marker generator to 85 mc . Detune TC505 counterclockwise until a single peak appears. Adjust TC503 until the peak falls on the 85 -mc. marker. It may be necessary

\section*{© John F. Rider}
to increase the output of the generator during this adjustment. Then adjust TC50l for maximum curve hicisht and symmetry of the single peak. The antenna circuit is now tuned for Channels 2 through 6.
14. Readjust TC503 and TC506 for a symmetrical response, centered about 85 mc . and falling within the specifications. as shown in figure 6. Channels 2 through 6 are now correctly aligned.

\section*{VIDEO I-F ALIGNMENT}

\section*{Preliminary}

Before proceeding with the i-f alignment or making an alignment check, observe the following preliminary instructions:
1. Preset the CONTRAST and BRIGHTNESS controls to the maximum counterclockwise position. 2. Preset the CHANNEL SELECTOR to Channel 4.
3. Insert the video i-f alignment jig into J200.
4. Connect the oscilloscope to the 15,000 -ohm resistor from the video i-f alignment jig. Connect the ground lead of the oscilloscope to the ground lead from the adapter.
5. With a voltmeter connected across the points shown in figure 2, set the potentiometer to furnish -14 volts of bias.
6. Connect the AM generator to the mixer test point, G500, through a mixer jig, and adjust the generator for approximately 30 percent modulation at 400 cycles. Adjust the output of the generator during the alignment to keep the output at the second detector below 6 volt, peak to peak.

NOTE: If the i-f shield has been removed for repairs, it must be replaced hefore proceeding with the alignment.

\section*{Procedure}
1. Tune the AM generator to 47.25 mc ., and adjust C201 for minimum output, as observed on the oscilloscope.
2. Tune the \(A M\) generator to 41.25 mc ., and adjust C203 for minimum output, as observed on the oscilloscope.

NOTE: In steps 1 and 2, it is necessary to keep the generator output sufficiently high that a null indication may be observed on the oscilloscope; however, avoid overloading of the receiver by excessive signal.



TP3-943-A
Figure 8. R-F Chassis R-204, Top View, Showing Locations of Adjustments
3. Tune the \(A M\) generator to the frequencies indicated below, and adjust the trimmers (see figure 8) for maximum output.
\[
\text { a. } 42.7 \text { mc.-adjust C514 }
\]
b. 44.75 mc .-adjust C 204
c. 45.7 mc.-adjust C210
d. 44.4 mc .-adjust C215
e. 43.0 mc --adjust C 218
f. 42.0 mc .-adjust C206
4. Increase the bias (by means of the potentiometer) until the scope presentation of step \(f\), above, is reduced to 50 percent of its previous amplitude, and retouch C206 for maximum indication on the oscilloscope.
5. Connect the sweep generator and r-f marker generator to the antenna terminals through a matching jig. (If a separate oscilloscope is used, connect the sweep output of the generator to the horizontal input of the oscilloscope.) Set the CHANNEL SELECTOR to Channel 4, and tune the sweep generator for output on Channel 4. Tune the r-f marker generator for the video carrier frequency of Channel 4 ( 67.25 mc .), and tune the i-f marker generator (connected through jig to mixer grid) to 45.75 mc . Note that two marker generators are used for this procedure. The r-f marker generator is connected to the antenna terminals, while the i-f marker generator is connected capacitively to the mixer grid test point, G500. A jig constructed from a piece of fiber tubing, with \(3 / 1{ }_{1}\) inch inside diameter, and a brass machine screw which fits tightly into the tubing, is used to connect the generator capacitively to the test point. The screw is adjusted so that it clears the test point by approximately \(1 / 14\) inch. The output cable of the marker generator is connected to the head of the brass screw in the jig and to chassis near the mixer tube. Both marker generators should be adjusted for the minimum output required to make the markers barely visible. Failure to observe this precaution, or the use of excessive output from the sweep generator, will cause misleading results. After the equipment is properly connected, adjust the FINE TUNING control for zero-beat of the two markers, as observed on the oscilloscope. When zero beat is obtained, remove the i-f marker.
6. If the response curve does not fall within the limits, as shown in figure 9, the adjustment of the trimmers may be touched up slightly, while observing the response curve. Do not retouch the setting ing the response curve. Do not retouch the setting
of C 201 , C203, or C206. To adjust the curve, first adjust C215 and C218 alternately until maximum improvement is obtained. C215 affects the tilt of the

CHASSIS D-204, R-204, Code 150


Figure 9. Over-all R-F, I-F Response Curve
curve, and C218 affects the dip of the curve. After C215 and C218 have been adjusted, adjust C514 for proper slope at the \(42.25-\mathrm{me}\). side of the curve, and then adjust C204 and C210 for proper level at the video carrier frequency ( 45.75 mc .)

CAUTION: Do not turn any of the trimmers excessively. To retouch, only turn the trimmers slightly.

\section*{SOUND I-F ALIGNMENT}

The sound i-f system may be aligned by the use of a station signal or an accurately calibrated signal generator, for the signal source. If the station signal is used, tune the FINE TUNING control for the best picture, regardless of sound. It will be necessary to reduce the signal input to the receiver, so that the d-c output at the sound detector, as measured with the aid of the sound i-f output alignment jig (between point " \(B\) " and ground), is kept below 5 volts, maximum, and preferably below 3 volts. To establish this level in strong-signal areas, it may be necessary to short the antenna terminals and to apply bias to the a-g-c circuit. The signal input to the receiver may be adjusted by varying the length of the shorting lead. The bias may be applied to the a-g-e circuit by means of the jig shown in figure 3. The sound i-f output
alignment jig shown in figure 4 should be used for convenient connection of the meter to the sounddetector output.
When a signal generator is used, bias should be applied to the a-g-e circuit, to avoid any possibility of regeneration, using the sound i-f input alignment jig (figure 3). In addition, the first video i-f tube should be removed, to aid in the reduction of circuit noises from the i-f system.

NOTE: To periorm the sound i-f alignment
it will be necessary to plug the radio-tuner
plug, PL402, into socket J402 and set the
function switeh to the TV position.
l. Connect the generator through the 2200 -ohm resistor, in the sound i-f input alignment jig, to pin 2 of J200. The generator should be adjusted for unmodulated output at 4.5 me .
2. Insert the sound i-f output alignment jig into the volume-control socket, J400, and insert the volume-control plug, PL400, in the top of the jig. Connect the clip lead to the FM test point, G400; connect a 20,000 -ohms-per-volt voltmeter between point " \(B\) " and the ground lug of the jig, with the negative lead of the meter going to point "B."
3. Adjust TC300, TC400, TC401, and TC402 for maximum output, as indicated on the meter. If the


Figure 10. R-F Probe for Sound-Trap Adiustment
output exceeds 5 volts, reduce the signal input to the receiver.
4. Shift the positive lead of the meter to point " C " on the sound i-f output alignment jig, and adjust TC403 for zero crossover. Zero crossover is indicated loy a zero indication on the meter. When TC403 is turned in one direction from this zero point, the meter will swing positive; turning TC403 in the opposite direction will cause a negative swing. (To aid in reading a positive and negative swing on the meter set the pointer, by means of its zero-adjustment screw, to a convenient calibration mark on the scale, before connecting the meter to the circuit.)
5. Replace the first video i-f tuhe, and tune in a station on the receiver. Turn the FINE TUNING control to obtain a slightly fuzzy pieture, and retouch TC403 for minimum AM (noise or buzz), using the speaker output as an indication.

\section*{ADJUSTMENT OF 4.5-MC. TRAP}

To adjust the \(4.5-\mathrm{mc}\). trap in the plate circuit of the first video amplifier, proceed as follows:
1. Connect the output of the signal generator to the lead from pin 2 of the sound i- \(\{\) alignmen jig (see figure 2). Adjust the generator for 4.5 mc 400 -cycle modulated output. Set the output attenuator or maximum output from the generator.
2. Connect the input of the r-f probe, shown in figare 10 , to the grid of the pieture tube, and connect he output of the probe to the vertical input of the oscilloscope. Adjust the vertical gain of the oscillocope to maximum
3. Adjust TC301 for minimum indication on the oseilloscope. (The normal setting for TC301 is with the screw approximately \(5 / 8\) inch out from the chassis.)
An alternate method for adjustment of TC301 may be used if a \(4.5-\mathrm{mc}\). generator is not available. To adjust TC301 without the renerator, proceed as follows:
1. Tune in a strong station signal.
2. Turn the FINE TUNING control in a clockwise direction until a fine beat pattern appears in the picture.
3. Adjust TC301 until the beat disappears or is at minimum. When correctly adjustel, the screw will he out from the chassis approxinately \(5 / 8\) inch.
4. If more than one station is available, eheck the setting of TC301 on all stations.

\section*{OSCILLOSCOPE WAVEFORM PATTERNS}

The waveforms illustrated were taken with the receiver adjusted for an approximate peak-to-peak output of 2 volts at the video detector. The voltages given with the waveforms are approximate peak-topeak values. The frequencies shown are those of the waveforms-not the sweep rate of the oscilloscope


Figure 11. Video-Detector Output,
2 volts, 60 c.p.s.

The waveforms were taken with an oscilloscope having good high-frequency response. With oscilloscopes having poor high-frequency response, the sharp peaks of the horizontal waveforms are more rounded than those shown, and the peak voltages differ from those shown.

© John F. Rider



TP2-2852
Figure 29. Horizontal Oscillator,
Pin 2 of Gate-Pulse Socket 1801 2 of Gate-Pulse Socket 180
35 volts, 15,750 c.p.s.


Figure 31. Horizontal-Oscillator Grid 38 volts, 15,750 c.p.s.


Figure 33. Horizontal-Deflection Yote TP2-650 3000 *Pin 7 of of 18,750 c. *See CAUTION.

CAUTION: High-voltage pulses are present in the horizontal
CAUTION: High-voltage pulses are present in the horizontaloutput circuit. The waveiorm shown in figure
with the alligator clip of the oscilloscope lead clipped over the insulation of the lead connected to pin 7 of J800. (To prevent puncture of the insulation of the lead, file off the teeth of the alligator clip, and wrap friction tape around the


Figure 30. Horizontal-Oscillator Cathode, \({ }^{\text {T }}\) Pins 8 and 3
16 volts, 15,750 c.p.s.


Figure 32. Horizontal-Output Crid, 130 volts, 15,750 c.p.s.

clip.) Connection to other points in the horizontal-outpu circuit is dangerous, because of the high voltages present. The peaksto-peak voltage shown for figure 33 is the actual voltage present; however, the amplitude of the scope presentation depends upon the degree of coupling.

\section*{VOLTAGE MEASUREMENTS}

The voltages given below and on the schematics were taken with a 20,000 -ohms-per-volt voltmeter, with a line voltage of 117 volts, and no signal input to the receiver. Since voltage readings taken in the video i-f stages vary widely with different test equipment setups, voltage measurements for these stages are omitted from the diagrams


P3-892
Figure 35. R-F Chassis R-204, Bottom View, Showing Voltages at the Sockets

\# varies with horiz hold ano horiz holo centering


36 Deflen-1202 Showing Voltages at the Sockets


Figure 38. Television Tuner, Part No. 76-7600-3, Schematic Diagram



TP3-1207

Figure 41. Deflection Chassis D-204, Schematic Diagram



Figure 42. Deflection Chassis D-204, Base Layour

\section*{UHF TUNER-ADAPTER UT20B, PART NO. 43-6701}

UHF Tuner-Adapter UT20B, Part No. 43-6701, provides for reception of UHF signals on television Channels 14 through 83. UHF Tuner-Adapter UT20B is designed for installation in Philco \(B\) line television receivers and is installed on BU models. These receivers use r-f chassis R-204.
The Tuner-Adapter consists of a UHF Tuner, a VHF-UHF change-over switch, adapter cables and plugs, a planetary tuner driving assembly and mounting hardware

\section*{CIRCUIT DESCRIPTION}

The UHF tuner converts the UHF signals to the in termediate frequency of the r-f chassis.
The incoming UHF signal is coupled through the antenna input line, and through two i-f traps, two \(680-\mu \mu \mathrm{f}\). condensers, and a \(150-\mathrm{ohm}\) transmission line to the antenna tank of the tuner. See figure 45. The antenna tank is coupled to the mixer tank by means of the mutual coupling of L2 and L3 and the stray capacitance, C5. The desired signal is and the stray capacitance, C5. The desired signal is selected by tuning the antenna tank and the mixer tank to the correct frequency, and the signal is then coupled to the crystal mixer circuit by means of the mutual coupling of L4 and L5. The local-oscillator signal is generated by a 6AF4 tube, Vl , and the asso ciated circuit. The oscillator circuit is coupled to the crystal mixer circuit by a 300 ohm, miniature trans mission line and the mutual coupling of L 7 to L 5 and L8 to L6. The r-f signal and the oscillator signal are mixed in the crystal mixer circuit to produce a \(45.75-\mathrm{mc}\). video carrier intermediate-frequency signal. This signal is coupled to the VHF tuner through L18, a coaxial cable, and J500 on the VHF tuner. In UHF operation, the local oscillator of the VHF tuner is inoperative, and the r-f amplifier and mixer tubes of the VHF tuner operate as i-f amplifiers.
The two tanks of the UHF tuner, the antenna tank and the mixer tank, are used to prevent the i-f and oscillator signals from feeding back to the antenna and interfering with other receivers. The two tanks pass incoming signals readily, but do not pass the i-f or oscillator signal.

\section*{CHANGE-OVER SWITCH}

The change-over switch supplied with the TunerAdapter is used to switch from VHF to UHF, and vice versa. It is installed on the back of the VHF tuner, and is operated by an actuator mounted on the

VHF tuner shaft. When the Channel Selector of the VHF tuner is turned to the UHF position, the changeover switch makes proper connections for UHF operation. In this position, the switch places a 150,000 ohm resistor in series with the VHF mixer plate, which drops the voltage on the plate of the tube. (In the UHF position, the VHF Channel Selector places extra inductances in the VHF r-f and mixer circuits permitting them to operate as i-f amplifiers, and it also shunts the VHF oscillator grid circuit with a 10 ohnm resistor, putting the oscillator out of operation.) The change-over switch also turns off the VFF pilot light, turns on the UHF dial pilot lights, a ad connects the antenna to the UHF tuner.
When the VHF Channel Selector is turned to any VHF position, the change-over switch places a 150,000 -ohm resistor in series with the UHF local oscillator plate circuit, which drops the voltage applied to the plate, and puts the oscillator out of operation. The switch also turns on the VHF pilot light, turns off the UHF dial pilot lights, and con nects the antenna to the VHF tuner.

\section*{PLANETARY DRIVE}

The UHF tuner is tuned by means of a 3-gang tuning condenser, which is driven through a specially designed planetary drive. The planetary drive is so constructed that fine tuning and course tuning can be accomplished with a single control knob. The tuning shaft is coupled to the driving shaft through three balls, which form a planetary drive that produces slow rotation for fine tuning. See figure 43. After rotating 180 degrees with the tuning shaft a pin engages the driving shaft, and the two shaft are direct-coupled, for coarse tuning. To re-engage the planetary drive for fine tuning, it is only necessary to reverse the direction of rotation. The dial pointer is connected to the tuning gang through a cord drive and indicates the channel number to which the tuner is tuned

\section*{ALIGNMENT AND REPAIRS}

The frequencies at which the Tuner-Adapter op erates are extremely high; therefore, it is necessary that the utmost care be taken to safeguard against upsetting the delicate adjustments of the tuner. I is recommended that the serviceman make only minor repairs to the tuner, such as replacement of the tube or crystal and the wiring of external leads. The

John F. Rider


Figure 45. UHF Tuner-Adapter UT20B, Part No.



Figure 47. Top View and Base View of UHF Tuner-
Adapter UT20B, Without Board Assemblies


Figure 49. VHF-UHF Change-Over Switch, Mounting Details

Tuner-Adapter should be returned to the factory for alignment and major repairs, unless the serviceman is properly equipped to perform these jobs. In general, a good rule to follow is not to remove the cover of the Tuner-Adapter

NOTE: Replacing the tube with a new one may detune the tuner. If this occurs, a number of tubes should be tried, until the most satisfactory performance is obtained

\section*{INSTALLATION INSTRUCTIONS}

To install the UIIF tuner-adapter, proceed as follows:
l. Remove the cabinet back and r-f chassis from the cabinet; then remove the nameplate on the control panel by pushing it out from inside the cabinet.
2. Insert the dial scale and bezel assembly into the hole provided in the cabinet. Fasten the assembly in place with the two \(10-32\) nuts provided.
3. Remove the tuner assembly from the mounting board with which it was shipped. Keep the three screws for mounting the tuner in the cabinet.
4. Place the spacers on the mounting studs and attach the bracket and socket assembly to the rear of the VHF tuner on the r-f chassis. See figure 49.
5. Place the switch-actuator assembly on the shaf extending from the rear of the VHF tuner with the switch-actuator stud pointing away from the tuner See figure 49.
6. Place the switch assembly on the two mounting studs, and fasten it in place with the flat washers lock washers, and nuts provided. See figure 49.
7. Put the VHF Channel Selector in the Channel 2 position. Rotate the switch actuator clockwise on the tuner shaft until the actuator touches the fiber cam on the change-over switch, and fasten the switch acon the change-over switch, and fasten the switch ac-
tuator in this position. Rotate the VHF Channel Selector to the UHF position. Check the switch operation, to make sure that the switch is thrown properly. Rotate the VHF Channel Selector to Channel 13 position, and check the switch operation, to make sure that the switch is not thrown in this position. Lubricate the switch-actuator stud and switch cam with cup grease
8. Remove the pilot lamp from the r-f chassis pilot-light socket. Remove and discard the pilot-light socket and cable assembly from the r-f chassis. Insert the plug from the change-over switch into the socket on the r-f chassis from which the pilot-light cable was removed. Mount the new pilot-light socket from the change-over switch as shown in figure 50. Insert the pilot light in the socket, and install the shield provided over it


TP3-755
Figure 50. Pilot-Light Socket, Mounting Details
9. Remove the antenna lead from the VHF tuner, and solder the short lead from the UHF-VHF changeover switch to the VHF tuner terminals from which the antenna lead was removed. Slide the folded fiber lead holder over the tapered-line coil assembly on the VHF tuner, and dress the twin-wire antenna leads through the holder. See figure 51. The fiber holder will prevent the twin-wire leads from touching the tubes on the r-f chassis.
10. Place the UHF tuner in the cabinet between the r-f and deflection chassis, and fasten the UHF tuner to the chassis shelf with the three screws removed in step 3. It is important that these screws be tightened securely, so as to hold the UHF tuner in place on the chassis shelf.
11. Fasten one end of the ground lead to the r-f chassis with the drive screw. See figure 52 . Install the chassis in the cabinet, and fasten the other end of the ground lead to the UHF tuner with the \(8-32 \times 1 / 4\) inch hex-head machine screw. Fasten the r-f chassis with the original mounting bolts. Place the original knobs on their shafts, and the knob provided on the UHF tuning shaft.
12. Insert the plug from the UHF tuner into the socket on the bracket installed in step 4.
13. Insert the coaxial cable into the jack on the VHF tuner. See figure 52.
14. Replace the fiber antenna-lead holder with the new holder provided. Fasten the new holder with the

\({ }_{\text {TP3-756 }}\)
Figure 51. Folded Fiber Lead Holder and VHF-UHF Change-over Switch, Mounting Details
nails provided, and then pass the twin-wire leads through the holes as shown in figure 53. Pull the leads through the holder until they are tight, making certain that the leads do not contact the tubes or the chassis. Wrap tape around the yellow-marked twinwire leads with the spade lug ends, to prevent the leads from passing back through the fiber holder.
15. Fasten the antenna terminal board provided as shown in figures 54 through 58. Replace the cabinet back and make the connections illustrated for the type of antenna installation being used.
16. Paste the label provided over the outside antenna instructions on the cabinet back.


TP2-3169
Figure 53. Fiber Lead Holder, with Lead Dress Details

Figure 54. Antenna-Lead Connections, Common VHF and UHF Built-In Antenna


Figure 55. Antenna-Lead Connections, Common VHF and UHF External Antenna


Figure 56. Antenna-Lead Connections, Separate
VHF and UHF External Antennas


Figure 57. Antenna-Lead Connections, VHF Built-


Figure 58. Antenna-Lead Connections, VHF Ex ternal and UHF Built-In Antennas
General replacement items commonly stocked by the serviceman are omitted from this parts list. All condensers are molded-bakelite Philco condensers, with a 600 -volt rating, and all resistors are \(1 / 2\) watt, unless otherwise indicated. Parts are listed according to chassis type, and should be ordered in this way rather than by model number; in addition, a miscellaneous listing will be found at the end of the parts list for each chassis type. All parts are symbolized in the schematic diagrams and base layouts, for identification purposes.
NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagrams and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering replacements, use only the "Service Part No."

\section*{DEFLECTION CHASSIS D-204}

SECTION 1—POWER SUPPLY
\begin{tabular}{|c|c|c|}
\hline Reference Symbol & Description & Service Part No. \\
\hline \[
\mathrm{Cl100} \text { and }
\] & Condenser, filter, electrolytic \(120 \mu \mathrm{f}_{\mathrm{F}, \mathrm{r}} 150 \mathrm{v}\) & 30-2568-51 \\
\hline C102 & Condenser, filter, electrolytic, \(10 \mu \mathrm{f}\)., 50 v & 45-3035-6 \\
\hline C103 & Condenser, filter, electrolytic, \(100 \mu\) f., 300 v & 30-2584-27 \\
\hline CR100 and
CR101 & Rectifier, selenium, 350 ma . & 34-8003.7 \\
\hline F100 & Fuse, line, 1.6 amperes & AD2248-19 \\
\hline J100 & Socket, a-c line & 27.6240-3 \\
\hline J101 & Socket, chassis connecting & 27-6274-1 \\
\hline J-102 & Socket, radio chassis connect ing & 27.62744 \\
\hline PL100 & Plug, a-c line & Part of a-c line cord ass'y. (See Misc. "A") \\
\hline PL101 & Plug and cable ass'y., chassis connecting & \({ }^{\text {(See }}{ }^{\text {(S") }}\) Misc. \\
\hline R100 & Resistor, current limiting, 5
ohms, 10 watts ............. & 33.3448.5 \\
\hline R102 & Resistor, voltage dropping .. & 20 inches No. \\
\hline R103 & Resistor, voltage dropping, 4.7 ohms, 1 watt & 66.9474340 \\
\hline S100 & Switch, offon & Part of volume control \\
\hline T100 & Transformer, filament & 32-8575 \\
\hline
\end{tabular}

SECTION 7-VERTICAL SWEEP
\begin{tabular}{|c|c|c|}
\hline Reference Symbol & Description & Service Part No. \\
\hline & Condenser, cathode by-pass, \(100 \mu\) f., 25v ................ & Part of Cl03 \\
\hline \[
\begin{aligned}
& \mathrm{L} 700 \text { and } \\
& \mathrm{L} 701
\end{aligned}
\] & Coils, vertioal deflection .. & Part of deflection yoke (See Misc. "A") \\
\hline
\end{tabular}

SECTION 7—VERTICAL SWEEP (Cont.)
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{c} 
Reference \\
Symbol
\end{tabular} & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Service \\
Part No.
\end{tabular}} \\
\hline R701 & \begin{tabular}{c} 
Potentiometer, VERT. HOLD \\
control, 250,000 ohms
\end{tabular} & .....
\end{tabular} Part of R811

SECTION 8-HORIZONTAL SWEEP
\begin{tabular}{|c|c|c|}
\hline Reference Symbol & Description & Service Part No. \\
\hline C803 & Condenser, filter, \(.001 \mu \mathrm{f}\). & 30-1238.3 \\
\hline C804 & Condenser, filter, . \(01 \mu\) f. ... & 30-1238.2 \\
\hline C805 & Condenser, by-pass, \(82 \mu \mu \mathrm{f}\). & 60-00825317 \\
\hline C806 & Condenser, ringing,
\(+10 \% 22\) \(\mathrm{mf}^{2}\). & 60-20225004 \\
\hline C807 & Condenser, d-c blocking, 390 \({ }_{\mu \mu \mathrm{f}}\). & 60-10395417 \\
\hline C808 & Condenser, charging, \(390 \mu \mu \mathrm{f}\). & 60-10395417 \\
\hline C813 & Condenser, anti-ringing, 68 \(\mu \mu \mathrm{f}\). & 30-1246.1 \\
\hline C814 & Condenser, horizontal a-f-c feedback, \(01 \mu\) f. & 30-1 \\
\hline C815 & Condenser, electrolytic ...... & Part of C103 \\
\hline C815A & Condenser, by-pass, \(10 \quad \mu f_{\text {, }}\),
300 v & Part of Cl03 \\
\hline C815B & Condenser, by-pass, \(10 \mu \mathrm{f}_{\text {, }}\) & Part of Cl03 \\
\hline C-816 & Condenser, yoke blocking, 47 \(\mu \mathrm{f}, \mathrm{l}\) 100v & 304651-16 \\
\hline J800 & Socket, deflection & 27-6274-8 \\
\hline J801 & Socket, gate pulse & 27.6273 \\
\hline L800 & Coil, stabilizing, \(30-80 \mathrm{mh}\). & 324557 \\
\hline L801 & Coil, rf choke, horizontal. output plate & Part of T800 \\
\hline
\end{tabular}

\section*{SECTION 8—HORIZONTAL SWEEP (Cont.)}
\begin{tabular}{|c|c|c|}
\hline Reference Symbol & Description & Service Part No. \\
\hline \[
\begin{aligned}
& \mathrm{L} 802 \text { and } \\
& \mathrm{L} 803
\end{aligned}
\] & Coils, horizontal deflection & Part of deflection yoke (See Misc. "A") \\
\hline L804 & Coil, r.f choke, damper
cathode & 32-4112-24 \\
\hline L805 & Coil, r.f choke, damper plate & 32-4112.24 \\
\hline PL800 & Plug, deflection ........... & \[
\begin{aligned}
& \text { Part of cable } \\
& \text { ass'y. (See } \\
& \text { Misc. "A") }
\end{aligned}
\] \\
\hline PL801 & Plug. gate pulse ........... & \begin{tabular}{l}
Part of cable \\
ass'y. (See \\
Misc. "A"
\end{tabular} \\
\hline R810 & Potentiometer, HORIZ. HOLD CENTERING, 250,000 ohms & 33.5565-17 \\
\hline R811 & Potentiometer, HORIZ. HOLD control, 50,000 ohms ...... & 33.5563.50 \\
\hline R815 & Potentiometer, WIDTH con. trol, 12,000 ohms, 2 watts . & 33-5546-51 \\
\hline R816 & Resistor, screen voltage dropping, 4200 ohms, 5 watts ... & 33-1335-101 \\
\hline R817 &  & 66-3474340 \\
\hline R818 & Resistor, voltage divider, 82. 000 ohms, 1 watt & 66-3824340 \\
\hline
\end{tabular}

SECTION 8—HORIZONTAL SWEEP (Cont.)
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { Reference } \\
& \text { Symbol }
\end{aligned}
\] & Description & Service Part No. \\
\hline \[
\begin{aligned}
& \mathrm{R} 819 \\
& \text { T800 }
\end{aligned}
\] & \begin{tabular}{l}
Resistor, voltage divider, 47. 000 ohms, 1 watt \\
Transformer, horizontal out. put
\end{tabular} & 66.3474340
32.8607 \\
\hline \multicolumn{3}{|c|}{MISCELLANEOUS "A"} \\
\hline & Description & Service Part No. \\
\hline \multicolumn{2}{|l|}{Cable assembly, high voltage ............} & AD2631 \\
\hline \multicolumn{2}{|l|}{Cable and plug assembly, deflection ......} & 414086.25 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Cable and plug assembly, volume control. Cord, line}} & 4141364 \\
\hline & & 41-3865 \\
\hline \multicolumn{2}{|l|}{Shield, corona} & 56.9684 \\
\hline \multicolumn{2}{|l|}{Sorket, damper tube} & 27.6174-7 \\
\hline \multicolumn{2}{|l|}{Sockel, high-voltage rectifier} & 27.6290.1 \\
\hline \multicolumn{2}{|l|}{Socket, miniature, 7-pin} & 27-6203-12 \\
\hline \multicolumn{2}{|l|}{Sorket, miniature, 9-pin} & 27.6203-6 \\
\hline \multicolumn{2}{|l|}{Socket, octal ........} & 27.6174 \\
\hline \multicolumn{2}{|l|}{Socket. 12AU7 tube} & 76-6115.1 \\
\hline \multicolumn{2}{|l|}{Socket, vertical output, 12B4} & 76.6115-2 \\
\hline Spring, ano & e lead & 28.9137 \\
\hline
\end{tabular}

R-F CHASSIS R-204 (Cont.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \text { Reference } \\
\text { Symbol }
\end{gathered}
\] & Description & Service Part No & Reference Symbol & Description & Service Part No. \\
\hline  & \begin{tabular}{l}
Coil, series peaking, \(10 \mu \mathrm{~h}\). Coil, series peaking, \(1.7 \mu \mathrm{~h}\). Coil, shunt peaking, \(180 \mu \mathrm{~h}\). Coil, filament choke \\
Resistor, voltage dropping, 5600 ohms, 1 watt \\
Resistor, B+ dropping, 2000 ohms, 7 watts \\
Transformer, video i.f input \\
Transformer, lst video i-f \\
Transformer, 2nd video i.f \\
Transformer, 3rd video i-f \\
Transformer, 4th video i.f
\end{tabular} & \begin{tabular}{l}
324422-27 \\
\(324480 \cdot 17\) 324480.9 32-4112-15 \\
\(66-2564340\) \\
33.3446-8 \\
32-4599-2 \\
32-4598-5 \\
\(32-4598 \cdot 3\)
\(32-4548-26\) \\
32-4548-27
\end{tabular} &  & \begin{tabular}{l}
Coil, filament choke \\
Coil, filter choke \\
Resistor, voltage divider, 27 000 ohms, 1 watt \\
Resistor, cathode bias, 180 ohms, 1 watt \\
Potentiometer, dual \\
Potentiometer, TONE control, 5 megohms \\
Potentiometer, VOLUME control, 2 megohms \\
Transformer, audio output \\
Transformer, lst sound i-f \\
Transformer, FM detector
\end{tabular} & \begin{tabular}{l}
32-4112.15 \\
Speaker field \\
66-3274340 \\
66.1185340 \\
33-5563-44 \\
Part of R418 \\
Part of R418 \\
32-8579 \\
32-4497A \\
32-4450.6A
\end{tabular} \\
\hline \multicolumn{3}{|c|}{SECTION 3—VIDEO} & \multicolumn{3}{|c|}{SECTION 6-SYNC} \\
\hline Reference Symbol & Description & Service Part No. & \[
\begin{aligned}
& \text { Reference } \\
& \text { Symbol }
\end{aligned}
\] & Description & Service
Part Part No. \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { C300 } \\
& \text { C301 } \\
& \text { C303 } \\
& \text { C304 } \\
& \text { C309 }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Condenser, audio take-off, 2.2 \(\mu \mu \mathrm{f}\). \\
Condenser, by-pass, \(18 \mu \mu\) f.
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline 30.1221-6 \\
62-018400021
\end{array}
\]} & C604 & Condenser, by-pass, \(470 \mu \mu \mathrm{f}\). & 30-1225-18 \\
\hline & & & & & \\
\hline & \multirow[t]{2}{*}{Condenser, by-pass, \(68 \mu \mu\) f. .. Condenser, by-pass, \(33 \mu \mu\) f. ..} & 62.068409011 & \multicolumn{3}{|c|}{MISCELLANEOUS "B"} \\
\hline & & \multirow[t]{3}{*}{\[
\begin{aligned}
& 62-033009001 \\
& 60-10225417 \\
& 32-4463-9
\end{aligned}
\]} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Description}} & \\
\hline & Condenser, by-pass, \(33 \mu \mu\) f. .. Condenser, screen by-pass, 220 \(\mu \mu\) f. & & & & Sorvice
Part No. \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{|l|l|}
\mathbf{L} 300 \\
\text { L301 }
\end{array}
\]} & \multirow[t]{2}{*}{Coil, audio take-off ......... Coil, video-amplifier grid, peaking, \(150 \mu\) h. ..........} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Cable and plug assembly, audio .......... Cable and plug assembly, chassis connecting Cable and plag assembly, gate pulse}} & 4141951 \\
\hline & & 324463.9 & & & \[
\begin{aligned}
& 41-4146 \cdot 10 \\
& 414141
\end{aligned}
\] \\
\hline L302 & Coil, 4.5-mc. trap .......... & \[
32-4480.18
\]
32-4463-2 & \multicolumn{2}{|l|}{Cable aud plag assembly, gate pulse ...... Cable and socket assembly, picture tube ..} & \[
\begin{aligned}
& \text { 41-4141 } \\
& 41-3964-19
\end{aligned}
\] \\
\hline L305 &  & 32-4467.20 & \multicolumn{2}{|l|}{Cable and socket assembly, pilot light .....} & \({ }^{41} 41763\) \\
\hline L306 & Coil, picture-tube grid peaking, \(40 \mu \mathrm{~h}\). & 324480-1 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Shield, tube, 6CB6 \\
Shield, tube, 6T8
\end{tabular}} & \[
\begin{aligned}
& \text { 56-5629FA3 } \\
& \text { 56-5629-5 }
\end{aligned}
\] \\
\hline L307 & Coil, shunt peaking, 60-230 \(\mu\) h. & 32-4467-20 & \multicolumn{2}{|l|}{Socket and base assembly, 6L6 tube .......
Socket} & 27.6174 \\
\hline R308 & Potentiometer, CONTRAST
control, 2500 ohms....... & 33-5563.51 & \multicolumn{2}{|l|}{Socket and base assembly, 6CB6 tube ..... Socket and base assembly, 6T8 tube .......} & \[
\begin{aligned}
& 27-6203.14 \\
& 27.6203 \cdot 18
\end{aligned}
\] \\
\hline R311 & Resistor,
ohms, 7 plate load, 2500
Potentiometer, BRIGHTNESS & 33-1335-93 & \begin{tabular}{l}
tubes \\
Socket, miniature, 9-pin
\end{tabular} & Sockeh, miniature, 6AU6, 6AQ5, and 6BA6 & \[
\begin{aligned}
& 27.6203 \\
& 27.6203-\tilde{q}
\end{aligned}
\] \\
\hline
\end{tabular}

SECTION 5-T.V. TUNER,
PART No. 76-7600-3
\begin{tabular}{|c|c|c|}
\hline Reference Symbol & Description & Service Part No. \\
\hline C500 & Condenser, FM trap, \(20 \mu \mu \mathrm{f}\). & 62-020309011 \\
\hline C501 and & Condenser, antenna isolating, & \\
\hline C502 &  & 30-1225-18 \\
\hline C503 & Condenser, iff trap, \(22 \mu \mu\) f. . \({ }^{\text {a }}\) & Part of L505 \\
\hline C504 & Condenser, r.f coupling, 39 \(\mu \mu\). & 62-039409011 \\
\hline C505 & Condenser, neutralizing, 220 \(\mu \mu\). & 62-122001001 \\
\hline C506 & Condenser, a-g-c decoupling, \(1000 \mu \mu \mathrm{f}\). & 30-1245-1 \\
\hline C507 & Condenser, r-f trimmer, 0.5 to \(3.0 \mu \mu\) f. & 31-65203 \\
\hline
\end{tabular}


OJohn F. Rider


\section*{UHF TUNER-ADAPTER PART No. 43-6474, FOR RECEIVERS USING R-F CHASSIS 81 OR 84}
pending upon the locality in which the receiver is used.
The incoming UHF signal is coupled through the antenna input line, and through two \(680-\mu \mu \mathrm{f}\). condensers and a 150 -ohm transmission line to the antenna tank of the tuner. See figure 1 . The antenna tank is coupled to the mixer tank by means of the mutual coupling of L2 and L3 and the stray capacitance, C5. The desired signal is selected by tuning the antenna tank and the mixer tank to the proper frequency, and the signal is then coupled to the crystal mixer circuit by means of the mutual coupling of L4 and L5. The local-oscillator signal is generated by a 6AF4 tube, V1, and the associated circuit. The local-oscillator signal is coupled to the crystal mixer circuit by means of a \(300-\mathrm{ohm}\), miniature transmission line and the mutual coupling of L7 to L5 and L8 to L6. The UHF r-f signal and the oscillator signal are mixed in the crystal mixer circuit, producing a radio-frequency signal within range of the VHF tuner when the tuner is set to either Channel 2 or Channel 3. This signal is fed into a preamplifier, which amplifies it, and it is then fed into the VHF tuner through a twin-wire lead In the VHF tuner, the signal is converted to the inter mediate frequency of the television receiver On VHF mediation a 150,000 ohm resistor is placed in series operation with the UHF oscillator plate, which makes this oscil lator inoperative
The purpose of using two r-f tanks in the UHF tuner is to readily admit the r-f signals, and, at the same time, prevent the UHF i-f signal from feeding back into the antenna and causing interference with other receivers.

\section*{CHANGE-OVER SWITCH}

The change-over switch supplied with the TunerAdapter is used to switch from VHF to UHF, and vice versa. It is installed on the back of the VHF tuner and is operated by an actuator mounted on the VHF tuner shaft. When the VHF Channel Selector is turned to the position for UHF operation, the switch consect to the light, light, turns on the UHF pilot high, and connects the VHF VHF tuner. When to any VHF position, the switch connects the antenna to the VHF tuner, turns off the UHF pilot light, turns on the VHF pilot light, and places a \(150,000-\mathrm{hm}\) re sistor in series with the UHF oscillator plate, as ex plained above.

\section*{ADAPTER CABLES AND PLUGS}

The adapter plugs shown in the schematic diagram are not used in factory-installed units; the cables are wired directly into the chassis at the proper places. The plugs are used only in field-installed units. (Refer

\section*{PLANETARY DRIVE}

The UHF tuner is tuned by means of a 3－gang tuning condenser，which is driven through a specially de－ signed planetary drive．The planetary drive is con－ structed so that fine tuning and coarse tuning can be accomplished with a single control knob．The tuning shaft is coupled to the driving shaft through three balls，which form a planetary drive that produce slow rotation for fine tuning．See figure 2．After rotating 180 degrees with the tuning shaft，a pin engages the driving shaft，and the two shafts are direct－coupled， for coarse tuning．To re－engage the planetary drive for fine tuning，it is only necessary to reverse the direc－ tion of the rotation．The dial pointer is connected to he tuning gang through a cord drive，and indicates he channel number to which the tuner is tuned．

\section*{ALIGNMENT AND REPAIRS}

The frequencies at which the Tuner－Adapter op－ erates are extremely high；therefore it is necessary that the utmost care be taken to safeguard against upsetting the delicate adjustments of the tuner．It is recom－ mended that the serviceman make only minor repairs to the tuner，such as replacement of the tube or crystal and the wiring of external leads．The Tuner－Adapter should be returned to the factory for alignment and major repairs，unless the serviceman is properly equipped to perform these jobs．In general，a good ule to follow is not to remove the cover of the Tuner－ Adapter．

NOTE：Replacing the tube with a new one may detune the tuner．If this occurs，try a number of tubes until one is found that will most nearly replace the original．

\section*{INSTALLATION INSTRUCTIONS}

\section*{To install the UHF Tuner－Adapter on the rf chassis，} proceed as follows：
1．Remove the cabinet back and r－f chassis from the cabinet．Then remove the nameplate on the con－ trol panel by pushing it out from inside the cabinet．
2．Attach the front chassis bracket to the r－f chassis with the two screws provided with the tuner．See figure 4.
3．Attach the rear support angle to the r－f chassis with the two screws provided．See figure 4.
4．Measure the distance between the centers of the shaft hole for the contrast－brightness control and the center hole（previously covered by the nameplate）on the control panel．Mount the Uhe tuner assembly loosely on the r－f chassis with the screws，nut，and the distance the distate between the \({ }^{\text {a }}\) is to the distance and contrast－brightness shaft is equal to the distance between the centers of the iwo holes in the control panel．Make certain that the fish paper insulator is in place over the moualig aFm of the tuner assembly． See figure 5．Fasten the UHF tuner securely in place． 5．Put the spacers on the mounting studs，and at－
tach the mounting studs to the rear of the VHF tuner on the r－f chassis．See figure 6.
6．Place the switch－actuator assembly on the shaft extending from the rear of the VHF tuner，with the switch－actuator stud pointing away from the tuner． See figure 6.
7．Place the switch assembly on the mounting studs，and fasten it in place with the fiber washers lock washers，and nuts provided．See figure 6.
NOTE：In some cases the switch mounting hardware provided may be as shown in figure 7 If so，disregard steps 5 and 7 ，and mount the
switch as shown in figure 7.
8．Put the VHF Channel Selector on the channel position to be used for UHF operation（Channel 2 or Channel 3）．Rotate the switch actuator on the tune shaft until the actuator stud throws the switch．Fasten the switch actuator in this position．Rotate the Chan nel Selector on either side of the UHF position，and check the switch operation，to make sure thar the switch is thrown in the UHF position but not on either side of the UHF position．Lubricate the switch－actua tor stud and the switch cam with cup grease．

On factory－installed units，the switch actuator may have two studs，as shown in figure 8．If so，remove the one stud，as indicated in the drawing．
9．Remove the bulb and shield from the pilot－light assembly on the r－f chassis，and place them in the empty socket from the UHF tuiner assembly．Tape up the old socket from the r－f chassis．
10．Remove the audio output tube（ 6 K 6 GT in r－f chassis 81 ，or 6L6GA in r－f chassis 84），plug the octal adapter into the tube socket，and place the tube in the adapter socket．The octal adapter is wired to the switch．
11．Cut the antenna lead from the VHF tuner to about 3 inches in length，and remove about \(1 / 2\) inch of insulation from the end．Insert the bare ends of the wires into the twin－lead connector，and fasten them with the screws in the sides of the connector．
12．Install the UHF pilot－light clip inside the cabinet near the UHF tuner shaft hole，as shown in figure 9.
13．Fasten the dress lug to the chassis with the screw provided（see figure 5）；then dress the lead except the 300 －ohm twin leads，under the lug．
14．Install the chassis in the cabinet，and insert the pilot－light sockess into the pilot－light clips．The socket with the red leads must be installed in the UHF clip and the socket with the brown leads，in the VHF clip． the VHF clip
15．Put th
． shaft in the extreme counterclockwise position．Then remove the knob
16．Hestall the background plate and pointer over the UHF tuning shaft．The background plate has the may be chosen to harmil

\section*{OJohn F．Rider}




Figure 14. Antenna-Lead Connections, VHF Built-In and UHF External Antennas (Boch Tuner-Adapters)

figure 15. Antenna-Lead Connections, VHF External and


Figure 17. Side View and Base View of Tuner-Adapter Part No. 43-6474, Without Board Assemblies


TP2-3180
Figure 18. Top View and Base View of Tuner-Adapter Part No. 43-6474, With Board Assemblies

\section*{UHF TUNER-ADAPTER PART No. 43-6473, FOR RECEIVERS USING R-F CHASSIS 91, 91R, 94 OR 94R}

UHF Tuner-Adapter Part No. \(43-6473\) provides for the reception of UHF signals on television channels 14 through 83. It is designed for installation in Philco High-Fidelity Television Receivers using r-f Philco High-Fidelity Television Receivers also be used
chassis 91 or 94 . The Tuner-Adapter may chassis 91 or 94 . The Tuner-Adapter may also be 44 R ,
in remote-control sets using r-f chassis \(91 R\) or if it is used in conjunction with Shaft Extension Adapter, Part No. 43-6476.
The Tuner-Adapter consists of a UHF tuner, a change-over switch, adapter cables and plugs, a plan-change-over switch, adapter cables and plugs, a plan-
etary tuner driving assembly, and mounting hardware.

\section*{CIRCUIT DESCRIPTION}

The UHF tuner converts the UHF signals to the intermediate frequency of the r-f chassis.

The incoming UHF signal is coupled through the antenna input line, and through two i-f traps, two \(680-\mu \mu \mathrm{f}\). condensers, and a \(150 \cdot 0 \mathrm{hm}\) transmission line to the antenna tank of the tuner. See figure 19. The antenna tank is coupled to the mixer tank by means of the mutual coupling of L2 and L3 and the stray capacitance, C5. The desired signal is selected by tun ing the antenna tank and the mixer tank to the cor rect frequency, and the signal is then coupled to the crystal mixer circuit by means of the mutual coupling of L4 and L5. The local-oscillator signal is generated by a 6AF4 tube, V1, and the associated circuit. The oscillator signal is coupled to the crystal mixer circuit by a 300 -ohm, miniature transmission line and the mutual coupling of L 7 to L 5 and L 8 to L 6 . The rsignal and the oscillator signal are mixed in the crystal mixer circuit to produce a \(45.75-\mathrm{mc}\). video carrier intermediate frequency signal. This signal is coupled to the VHF tuner through L18, a coaxial cable, and J500 on the VHF tuner. In UHF operation, the local oscil lator of the VHF tuner is inoperative, and the r-f amplifier and mixer tubes of the VHF tuner operat as i.f amplifiers.
The two tanks of the UHF tuner, the antenna tank and the mixer tank, are used to prevent the i-f signal from feeding back to the antenna and interfering with other receivers. The two tanks pass incoming signal very readily, but do not pass the i-f signal.

\section*{CHANGE-OVER SWITCH}

The change-over switch supplied with the Tuner Adapter is used to switch from VHF to UHF, and vice versa. It is installed on the back of the VHF tuner and is operated by an actuator mounted on the VHF tuner shaft. When the Channel Selector of the VHF tuner is turned to the UHF position, the change-ove switch makes proper connections for UHF operation In this position, the switch places a 150,000 -ohm re sistor in series with the VHF mixer plate, which drops the voltage on the plate of the tube.
( In the UHF position, the VHF Channel Selector places extra inductances in the VHF r-f and mixer circuits, permitting them to operate as i-f amplifiers, and it also removes the inductances from the VHF oscillator circuit, putting it out of operation.) The change-over switch also tuns off the VHF pilot light, turns on the UHF pilot light, and connects the an tenna to the UHF tuner. When the VHF Channel Selector is turned to any VHF position, the change-over lectitch places a 150,000 -ohm resistor in series with the UHF localoscillator plate circuit, which drops the voltage applied to the plate and purs the oscillator voltage applied to the plate, and puts the osch VHF pilot light turns of the UHF pilot light, and con pilot light, turns off the UHF pilot light, and connects the antenna to the VHF tuner.

\section*{ADAPTER PLUGS}

The adapter plugs shown in the schematic diagram are not used in factory-installed units; the cables are wired directly into the chassis at the proper places The plugs are used only in field-installed units. (Refer to steps 9 and 11 of the installation procedure given below.)
The octal adapter is inserted into the audio output tube socket, and the tube is then inserted into the adapter socket. This adapter supplies B+ and filament voltages to the UHF tuner
The B+ disconnect assembly of the r-f chassis is in series with the VHF mixer plate.
When the UHF tuner is installed, this socket and plug are separated, and the plug, which is connected to the VHF mixer plate, is plugged into the socket of the UHF tuner, so that, in UHF operation, the change over switch can place a 150,000 -ohm resistor in series with the VHF mixer plate. (The original socket of the B+ disconnect assembly is left disconnected, since it has no further function after the UHF tuner is installed.)
The antenna disconnect assembly is used to con nect the VHF tuner antenna input to the change-over switch.

\section*{PLANETARY DRIVE}

The UHF tuner is tuned by means of a 3-gang tuning condenser, which is driven through a specially designed planetary drive. The planetary drive is constructed so that fine tuning and coarse tuning can be accomplished with a single control knob. The tuning shaft is coupled to the driving shaft through three balls, which form a planetary drive that produces slow rotation for fine tuning. See figure 2. After rotating 180 degrees with the tuning shaft, a pin engages the driving shaft, and the two shafts are direct-coupled, for coarse runing. To re-engage the planetary drive for fine tuning, it is only necessary to reverse the direc

PART NOS. 43-6473, 43-6474, Converters

tion of rotation. The dial pointer is connected to the tuning gang through a cord drive, and indicates the channel number to which the tuner is tuned.

\section*{ALIGNMENT AND REPAIRS}

The frequencies at which the Tuner-Adapter operates are extremely high; therefore, it is necessary that the utmost care be taken to safeguard against upsetting the delicate adjustments of the tuner. It is recommended that the serviceman make only minor repairs to the tuner, such as replacement of the tube or crystal and the wiring of external leads. The TunerAdapter should be returned to the factory for alignment and major repairs, unless the serviceman is properly equipped to perform these jobs. In general. good rule to follow is, not to remove the cover of the Tuner-Adapter.
NOTE: Replacing the tube with a new one may detune the tuner. If this occurs, try a number of tubes until one is found that will most nearly replace the original.

INSTALLATION INSTRUCTIONS
To install the UHF Tuner-Adapter on the r-f chassis, proceed as follows:


Figure 20. Placement of Mounting Brackets on R-F Chassis
1. Remove the cabinet back and r-f chassis from the cabinet; then remove the nameplate on the control panel by pushing it out from inside the cabinet.

Figure 21. UHF Tuner-Adapter Part No. 43-6473, Mounted on R-F Chassis


Figure 22. \(\begin{gathered}\text { Change-Over Switch Mounting Details } \\ \text { (Tuner-Adapter Part No. 6473) }\end{gathered}\)
2. Attach the front chassis bracket to the r-f chassis with the two screws provided. See figure 20.
3. Attach the rear support angle to the r-f chassis with the two screws provided. See figure 20.
4. Measure the distance between the centers of the shaft hole for the contrast-brightness control and the center hole (previously covered by the nameplate) on the control panel. Mount the UHF tuner assembly loosely on the r-f chassis with the screws, nuts, and washers provided (see figure 21); then slide the UHF uner so that the distance between the centers of the UHF tuner shaft and contrast-brightness shaft is equal o the distance between the centers of the two holes in the control panel. Make certain that the fish paper insulator is in place over the mounting arm of the tuner assembly. Fasten the UHF runer securely in place.
5. Put the spacers on the mounting studs, and attach the mounting studs to the rear of the VHF tuner on the r-f chassis. See figure 22 .
6. Place the switch-actuator assembly on the shaft extending from the rear of the VHF tuner with the switch-actuator stud pointing away from the tuner. 7. Place the switch assembly on the two mounting studs, and fasten it in place with the fiber washers, lock washers, and nuts provided. See figure 22.
NOTE: In some cases the switch mounting hardware provided may be as shown in figure 7. If so, disregard the procedure given in steps 5 and 7 , and attach the switch as illustrated in figure 7.
8. Put the VHF Channel Selector in the Channel 2 position. Rotate the switch actuator on the tuner shaft (clockwise, as viewed from the rear of the chassis)
until it just touches the edge of the movable portion of the switch. Secure the actuator in this position. Turn the VHF Channel Selector to the UHF position, and then to the Channel 13 position. Make sure that the switch contacts make proper contact in each position. If not, loosen the switch mounting screws and adjust the switch so that it functions properly. Recheck the switch on the Channel 2, UHF, and Channel 13 positions. Lubricate the switch-actuator stud and the switch cam with cup grease.
9. Open the \(\mathrm{B}+\) disconnect assembly (small plug and socket on r-f chassis, near rear of tuner), and plug the male connector from the r-f chassis into the socket from the switch. Tape up the old socket from the r-f chassis.
hassis.
. Remove the bulb and shield from the pilotlight assembly on the r-f chassis, and place them in the empty socket from the UHF tuner assembly. Tape up the old socket from the r-f chassis.
11. Remove the audio output tube ( 6 V 6 GT in r-f chassis 91 , or 6L6GA in r-f chassis 94 ), plug the octal adapter into the tube socket, and place the tube in the adapter socket. The octal adapter is wired to the switch.
12. Plug the UHF tuner coaxial output cable into the jack on the VHF tuner. See figure 21.
13. Cut the antenna lead from the VHF tuner to about 3 inches in length, and remove about \(1 / 2\) inch of insulation from the end. Insert the bare ends of the insulation from the end. Insert the and fasten them with screws in the sides of the connector.
14. Dress all leads except the 300 ohm twin leads under the dress lugs, as shown in figure 21.
15. Install the UHF pilot-light clip inside the cabinet, near the UHF tuner shaft hole, as shown in figure 9.
16. Install the chassis in the cabinet, and insert the pilot-light sockets into the pilot-light clips. The socket with the red leads must be installed in the UHF clip, and the socket with the brown leads, in the VHF clip.
17. Put the knob on the UHF shaft, and turn the shaft until the pointer pulley shaft is in the extreme counterclockwise position; then remove the knob.
18. Install the background plate and pointer on the UHF tuner shaft. The background plate has the two sides coloted differently, so that the proper color may be chosen to harmonize with the cabinet color.
19. Place the dial scale over the tuner shaft, and line up the holes in the dial background plate with the holes in the dial scale. Line up the dial scale with the front panel, and fasten the scale with the screws provided. Place the knob on the UHF tuner shaft, and replace the control knobs on the r-f chassis shafts.
20. Replace the fish paper antenna-lead holder with the new holder provided. Fasten the new holder with the two nails provided, and then pass the twinwire leads through the holes, as shown in figure 10.
21. Cut the holes in the cabinet back, and fasten the antenna terminal board provided as shown in the illustrations above (figures 11 through 15). Replace the cabinet back, and make the connections as illustrated, according to the type of antenna installation being used.
22. Paste the label provided over the outside-anrenna instructions on the cabinet back.




Figure 23. Oscillator and Mixer Board Layouts (Both Tuner-Adapters)


Figure 24. Side View and Base View of Tuner-Adapter Part No. 43-6473, Without Board Assemblies


Figure 25. Top View and Base View of Tuner-Adapter Part No. 43-6473, With Board Assemblies

\section*{PARTS LIST}

UHF TUNER-ADAPTER PART No. 43-6474
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Symbol & Description & Service Part No. & Reference Symbol & Description & \begin{tabular}{l}
Service \\
Part No.
\end{tabular} \\
\hline C1 and C2 & Condenser, antenna input, \(680 \mu \mu \mathrm{f}\). & Part of Panel, filter & \[
\begin{aligned}
& \overline{\mathrm{R} 3} \\
& \mathrm{R} 4
\end{aligned}
\] & Resistor, decoupling, 8200 ohms Resistor, decoupling, 47 ohms & \[
\begin{aligned}
& 62.2828340 \\
& \text { Part of L13 }
\end{aligned}
\] \\
\hline C3 & Condenser, tuning: & & R 5 & Resistor, decoupling, 10,000 ohm & Part of L15 \\
\hline & Shaft and rotor ass'y. & 76.7481 & R6 & Resistor, parasitic damping, 15 ohms & s 66.0158340 \\
\hline C3A & Stator, r-f, 1.h. & 56.9595 & R7 & Resistor, cathode bias, 120 ohms & 66.1128340 \\
\hline C3B & Stator, r-f, r.h. & 56.9595.1 & R8 & Resistor, grid leak, 100,000 ohms & \(\begin{array}{r}66.4108340 \\ \hline 66-215830\end{array}\) \\
\hline \({ }_{C 3}\) C & Stator, r-f, \(1 . \mathrm{h}\). & .56 .9595
56.9595 .1 & R9 \({ }_{\text {R10 }}\) & Resistor, plate damping, 1500 ohms
Resistor, plate decoupling, 330 ohms & S \(\begin{array}{r}66-2158340 \\ 66.133840\end{array}\) \\
\hline C3D & Stator, r-f, r.h. & 56.9595.1 & R10 & Resistor, plate decoupling, 330 ohms & \[
\begin{aligned}
& \text { is } \quad . \quad 66.1338340 \\
& \text { ns } \quad 66-2108340
\end{aligned}
\] \\
\hline C3E & Stator ass'y., oscillator & 76.7479 & R11 & Resistor, output damping, 1000 ohms & ms. 66.2108340 \\
\hline C3F & Stator ass'y., oscillator & 76.7479 & R12 & Resistor, B+ dropping, 10,000 ohm & \\
\hline C4 & Condenser, padder ass'y., r-f & 76-7472 & & 10 watts & \(33-1336-58\)
66.0108340 \\
\hline C5 & Condenser . . . . ...........St & cay capacitance & & Resistor, filament dropping, 10 ohms & \\
\hline C6 & Condenser, padder ass'y \({ }^{\text {c }}\) r-f & Part 76.7472 & & Resistor, B+ dropping, 150,000 ohms & \[
\begin{aligned}
& 66.4158340 \\
& 66.1478340
\end{aligned}
\] \\
\hline C7 & Condenser, mixer tank, \(15 \mu \mu \mathrm{f}\). & Part of Board ass'y, mixer & \[
\begin{aligned}
& \text { R15 and } \\
& \text { R16 }
\end{aligned}
\] & Resistor, damping, 470 ohms & 66.1478340 \\
\hline C8 & Condenser, temperature compensati \(.4 \mu \mu \mathrm{f}\). & ing,
30-1224-109 & \[
\begin{aligned}
& \text { T1 } \\
& \text { Board ass'y., }
\end{aligned}
\] & Transformer, i-f output
mixer & \[
76.7475 \cdot 1
\] \\
\hline C9 & Condenser, oscillator trimmer & 31-6525 & Board ass'y \({ }_{\text {, }}\) & oscillator & \(76-7480\)
\(6-8078-1\) \\
\hline C10 & Condenser, oscillator tank, \(11 \mu \mu \mathrm{f}\). & Part of Tank ass'y., osc. & Panel, filter Tank ass'y., & oscillator & \[
76-7473
\] \\
\hline C11 & Condenser, by-pass & Part of Tank ass'y., osc. & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{MISCELLANEOUS}} \\
\hline C12 & Condenser, grid by-pass, \(1000 \mu \mu \mathrm{f}\). & 30-1245-1 & & & \\
\hline \(\mathrm{Cl}^{\text {c13 }}\) & Condenser, output tuning, 2-8 \(\mu \mu \mathrm{f}\). & \(31-6527\) & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{ELECTRICAL PARTS}} \\
\hline C15 & Condenser, heater by-pass, \(1000 \mu \mu\) & 245-1 & & & \\
\hline C16 & Condenser, input coupling, 8 公 & 30-1224-46 & \multicolumn{2}{|l|}{Description} & rvice Part No. \\
\hline C17 & Condenser, neutralizing, \(470 \mu \mu \mathrm{f}\). & 62.147001011 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Adapter cable Connector, twin-lead}} & 41-4120-1 \\
\hline C18 & Condenser, decoupling, \(470 \mu \mu \mathrm{f}\). & 62-147001011 & & & 54-5181 \\
\hline C19 & Condenser, cathode by-pass, \(470 \mu \mu \mathrm{f}\). & 62.147001011 & \multicolumn{2}{|l|}{Cable ass'y, pilot light \({ }^{\text {Padder ass }}\) ( (L1 and L12 tuning adjustment)} & 27-6233-50 \\
\hline C20 & Condenser, filament by-pass, 470 \(\mu \mu \mathrm{f}\). & 62.147001011 & \multicolumn{2}{|l|}{Padder ass'y. (L11 and L12 tuning adjustment) Panel, antenna, UHF} & \[
\begin{aligned}
& 76-8193 \\
& .76-7097
\end{aligned}
\] \\
\hline C21 & Condenser, cathode tuning, \(470 \mu \mu \mathrm{f}\). & 62.147001011 & \multicolumn{3}{|l|}{Switch . ....... . . . . . . . . . . . . . . . . . . 42-1996-1} \\
\hline C22 & Condenser, grid by-pass, \(470 \mu \mu \mathrm{f}\). & 62-147001011 & & & \\
\hline C23 & Condenser, plate by-pass, \(2-6 \mu \mu \mathrm{f}\). & 31-6520-4 & \multicolumn{3}{|c|}{MECHANICAL PARTS} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{C25 and
C26}} & 30-1221-6 & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Planetary Assembly}} \\
\hline & & 62.022009001 & & & \\
\hline CD1 & Crystal detector, mixer circuit & 34.8024 & & & 56-8020 \\
\hline 11 & Lamp, pilot, UHF & 34-2068 & \multicolumn{2}{|l|}{Ball, \(3 / 18^{\prime \prime}\) Ball, 7/32"} & 56-8020-1 \\
\hline 12 & Lamp, pilot, VHF & 34.2068 & \multicolumn{2}{|l|}{Pulley ass'y.} & 76.8186 \\
\hline L1 & Inductor, r-f, 1.h. ......... Part & of C3A-Stator & \multicolumn{2}{|l|}{Ring, retaining} & 1W42536PA3 \\
\hline L2 & Inductor, r-f, r.h. .......... Part & of C3B-Stator & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Ring, retaining
Shaft, inner end}} & 1W60982FE7 \\
\hline L3 & Inductor, r-f, l.h. .......... Par & of C3C-Stator & & & 28.9176 \\
\hline 14 & Inductor, r-f, r.h. ......... Part & of C3D-Stator & \multicolumn{2}{|l|}{Shaft, inner end} & 28.9069 \\
\hline L5 and 16 & Inductors, crystal mixer & Part of Board & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Shaft and pin ass'y., inner Screw, adjusting}} & 76-8185 \\
\hline \multirow[t]{2}{*}{L7 and L8} & & ass'y., mixer & & & \(\begin{array}{r}28-9094 \\ \hline 28-9174\end{array}\) \\
\hline & Inductors, oscillator coupling & Part of Board ass'y., mixer & \multicolumn{3}{|l|}{} \\
\hline L9 and L10 & Inductors, oscillator & Part of Board ass'y., osc. & Shaft and Ro & oror Assembly, Mounting & W2510-5 \\
\hline L11 and L12 & Inductors, oscillator & Part of Tank ass'y., osc. & Bearing, fr Bearing, & & 56.9593
\(56-9609\)
56.099 \\
\hline L13 & Choke, heater decoupling & 32.4556 & Nut, front & bearing & \(56-9594\)
56.9599 \\
\hline \({ }^{2} 14\) & Choke, heater-cathode decoupling & 32-4550.6 & Nut, rear bert & bearing & W1679.1FA3 \\
\hline L15 & Choke, plate decoupling .. & 32-4556-2 & Nut, insert & & -56-9590 \\
\hline \(\underline{L 16}\) & Coil, input tuning primary & 32-4359-14 & Spring, cen & der (2) & \(56-9591\) \\
\hline L17 & Coil, input tuning secondary & 32-4578 & Spring, end & & \\
\hline L18 & Coil, neutralizing & 32.4551-2 & \multicolumn{3}{|l|}{Switch Mounting} \\
\hline L19 & Choke, cathode tuning & 32-4548-13 & \multicolumn{2}{|l|}{Collar stud (2)} & 28-9126 \\
\hline L20 & Coil, primary & Part of Tl & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Lock washer (2) \\
Nut, \#8, special (2)
\end{tabular}}} & 1W24515FAI \\
\hline L21 & Coil, secondary & Part of T1 & & & 1W20506FA3 \\
\hline R1 & Resistor, damping, 330 ohms & 62-1338340 & \multicolumn{2}{|l|}{Spacer, 3/8" (2)} & 29158PA3 \\
\hline R2 & Resistor, damping, 150 ohms & 62-1158340 & \multicolumn{2}{|l|}{Washer, fiber (2)} & 27-4109-29 \\
\hline
\end{tabular}

PARTS LIST (Cont.)

\begin{tabular}{|llr} 
\\
\begin{tabular}{c} 
Reference \\
Symbol
\end{tabular} & & Description
\end{tabular}

\begin{tabular}{|c|c|}
\hline Description & Service Part No. \\
\hline Panel, antenna, UHF & 76.7097 \\
\hline Plug, i-f cable & 56-2027-3 \\
\hline Switch & 42.1996 \\
\hline \multicolumn{2}{|l|}{MECHANICAL PARTS} \\
\hline Tuner Shaft Mounting & \\
\hline Ball, bearing (10) & W2510.5 \\
\hline Bearing, front & \\
\hline \multicolumn{2}{|l|}{Tuner Shaft Mounting} \\
\hline Bearing, rear &  \\
\hline Grove pin \({ }^{\text {Nut, front bearing }}\) & 1W41033.9534 \\
\hline Nut, rear bearing & 56.9599 \\
\hline Nut, insert ..... & W1679,1FA3 \\
\hline Spring, center (2) & \(56-9590\)
\(56-9591\) \\
\hline Spring, end (2) & 56-9591 \\
\hline \multicolumn{2}{|l|}{Switch Mounting} \\
\hline Switch actuator ass'y. & 76-8189 \\
\hline Collar stud (2) & 28.9126 \\
\hline Lock washer (2) & 1W24515FA1 \\
\hline Nut, \#8, special (2) & 1W20506FA3 \\
\hline Spacer, 3/8" (2) & 1W29158FA3 \\
\hline Washer, fiber (2) & 27-4109-29 \\
\hline \multicolumn{2}{|l|}{Planetary Assembly} \\
\hline Ball, 1 1/8' & 5W2017 \\
\hline Ball, \(7 / 88^{\prime \prime}\) & 56.8020 \\
\hline Ball, 7/32" (3) & 56-8020-1 \\
\hline Pulley ass'y. . & -76.8186 \\
\hline Ring, retaining & 1W42536FA3 \\
\hline Ring, retaining, shaft & 1W60982FE7 \\
\hline \multicolumn{2}{|l|}{Planetary Assembly} \\
\hline Screw, adjusting & 28-9094 \\
\hline Shaft, inner end & 28.9176 \\
\hline Shaft, outer & 28-9069 \\
\hline Shaft and pin ass'y., inner & 76-8185 \\
\hline Spring & 28-9174 \\
\hline \multicolumn{2}{|l|}{Mounting Hardware, Tuner and Planetary Assembly} \\
\hline Bracket ass'y., front & 76-8187 \\
\hline Bracket, rear .... & 28-9096 \\
\hline Support, angle, rear & \(28-9093\)
54.8544 \\
\hline Washer, fiber & 54.8544 \\
\hline Washer, fiber & 11w52604 \\
\hline Bushing, fiber. & 54.8474 \\
\hline Clip, pilot light & \(56-3545-6\)
54.5172 \\
\hline Dial scale .... & 54.5172 \\
\hline Dial background & 54.5180 \\
\hline Grommer, feed-through & 27-4707 \\
\hline Knob & 54.5177 \\
\hline Pointer & 54-8850 \\
\hline Pulley, tuner shaft & 28-9090 \\
\hline Shield, tube & 56-5629.9 \\
\hline Spring (3), drive cord & 28-9088 \\
\hline Tuner and planetary ass'y., complete & 76-8182 \\
\hline
\end{tabular}

\section*{CIRCUIT DESCRIPTION}

Philco 1953, Code 127, Television Receivers use two chassis-the r-f chassis 97 , containing the r-f, video, audio, and sync circuits, and the deflection chassis J-7, containing the power and deflection circuits.
Since these chassis are not isolated from the 60 -cycle power line, all protruding shafts and mounting feet are insulated from the chassis.

CAUTION: See A-C Line Isolation.
The r-f amplifier, oscillator, and mixer section is built on a separate subchassis. The r-f amplifier uses a \(6 \mathrm{BZ7}\) or 6 BQ 7 tube, V 1 . The oscillator and mixer each use one half of a \(12 \mathrm{AZ7}\) tube, V2. The output of the mixer is fed to a four-stage i-f amplifier system em-
ploying four 6CB6 tubes, V3, V4, V5, and V6. A ploying four 6CB6 tubes, V3, V4, V5, and V6. A
1N64 crystal diode is used for the video detector. One half of a 6 U 8 tube, V 7 A , is used as the first video amplifier, which feeds into a 6AQ5 video output amplifier,
V8. V8.
Sound i-f (intercarrier) is obtained by utilizing the beat frequency produced when the \(45.75-\mathrm{mc}\). video carrier and the \(41.25-\mathrm{mc}\). sound carrier are mixed in the video detector. The beat frequency, 4.5 mc ., is the difthe FM sound signal. This \(4.5-\mathrm{mc}\). signal contains only a negligible amount of the video amplitude modulation, provided that the amplitude of the \(41.25-\mathrm{mc}\). sig. nal is considerably lower than that of the \(45.75-\mathrm{mc}\). signal. The proper relative amplitude of the two carriers is established in the alignment of the receiver. There is sound output only when both the video and sound carriers are present.
The oscillator is tuned primarily to obtain the best picture, since the \(4.5-\mathrm{mc}\). relationship always exists between the two carriers. The \(4.5-\mathrm{mc}\). sound i.f. (inamplified by a 6BA6 tube, V9, and a 6AU6 tube, V10, and is fed to the FM detector, which utilizes two diode and is fed to the FM detector, which utilizes two diode
sections of a 6T8 tube, V11A. The triode section of the 6 T8 tube, V11B, is used as the first audio amplithe 6T8 tube, V11B, is used as the first audio ampli-
fier. The power amplifier uses a 6L6GA tube, V12. A-G.C voltage for the video i-f system and the r-f amplifier is obtained from a keyed a-g-c system which uses a GAU6 tube, V13, as the a-g-c gate. Composite video from the video amplifier plate circuit, V7A, is fed to the grid of the a-g-c gate tube, while a gating or keying pulse, obtained from a winding on the horizontal-output transformer located on the deflection chassis, is applied to the plate. The sync-pulse polarity applied to the grid of V13 is positive; thereamplitude of the sync-pulse tips if the gating or keying pulse occurs at the same time as the sync. Because the keying, or gate pulse, is of constant amplitude (approximately 500 volts peak), the amplitude of the sync pulse determines the amount of conduction in the gate tube. The plate current of the keyed a-g-c gate tube flows thr
PR-2445
voltage which is negative with respect to the chassis, and is proportional to the plate current. This negative voltage is used to control the gain of the receiver. Since conduction cannot occur in the a-g-c gate tube unless the sync pulse and gating pulse occur at the ame time, noise disturbances that occur during the intervals between sync pulses cannot affect the a-g-c
voltage. voltage.
Composite video for the sync circuits is taken from the plate circuit of the video amplifier, V7A. The plate load of the video amplifier consists of two sections, R304 and R305. The full output of the amplifier is fed to the grid of the noise inverter, one half of a 12AU7 tube, V14B, and to the grid of the sync separator, one half of a 6 U8 tube, V7B. The output developed across R305 only is fed to the grid of the a-g-c gate, a 6AU6 tube, V13. The noise inverter is operated with a low value of plate voltage and with high bias (applied to the cathode by a voltage-divider network), which keeps the tube beyond cutoff. When the composite video signal is applied to the grid of the noise nverter through C601, the sync appears as positive pulses, and noise which could affect the sweep circuits also appears as positive pulses. Harmful noise pulses usually have amplitudes far greater than that of the sync pulses and, therefore, drive the grid of the noise inverter positive sufficiently to allow conduction in the noise inverter plate circuit. To prevent the noise inverter from conducting during the sync pulse interval, the gated leveler, using one half of a 12AU7 tube, V14A, is used to clamp the sync pulses below the conduction level of the noise inverter. The gated leveler conducts only when the sync pulses and gating pulse occur at the same time, thus leveling the noise pulse occur at the same time, thus
inverter input to the sync-pulse level.
The output of the noise inverter consists of negativegoing noise pulses. It should be noted that the noise pulses which exceed the sync level have been passed and their polarity reversed by the noise inverter. The utput of the noise inverter is now mixed with the omposite vince the composite video fed to the grid sef ator. Since the composite video fed to the grid of the sync separator has positive sync polarity, the positive noise pulses carried with the composite video would be passed by the sync separator; however, the output of the noise inverter consists of these same noise pulses, but of opposite polarity. Thus, cancellation of the noise pulses is effected. The output of the sync separator contains only the sync pulses, which are fed to the deflection chassis through the connecting cable.
The phase splitter, using one half of a 12AU7 tube, V15A, inverts the sync polarity for proper triggering of the vertical oscillator. The vertical sync is separated from the horizontal sync by the integrator circuits, and is fed to the grid of the vertical blocking oscillator, which uses one half of a \(12 A U 7\) tube, V13B. The output of the vertical oscillator is amplified by the vertical-output amplifier, which uses a 6BQ6GT tube,

V16. The output of this amplifier is applied to the vertical-deflection coils through the vertical-output transformer.

In addition to the vertical-sync output, two hori-zontal-sync outputs are taken from the phase splitter, one from the cathode, and the other from the plate circuit. These two outputs are of opposite polarity and are fed to the two diodes of the phase comparer a 6AL5 tube, V17; the negative pulses are fed to the cathode of V17B, and the positive pulses, to the plate of V17A. A portion of the horizontal sweep output voltage is taken from the horizontal-output transformer, and is fed to the plate of V17B and the cathode of V17A, for comparison of the horizontal-sync and horizontal-sweep voltages. When the sweep and sync are in phase, no voltage is developed across R800, but when the two signals are out of phase, a voltage is de veloped across R800. When this voltage is positive, increases the frequency of the horizonral oscillator it 12AU7 tube, V18). when the voltage is negative, it reduces the frequency of the oscillator negative, it holds the horizontal oscillator in phase with the sync hignal. The horizontal hold control, R811, adjusts the horizontal-oscillator frequency so that it may be the horizontal-oscillator frequency so that it may be con-
trolled by the phase comparer. The output of the horitrolled by the phase comparer. The output of the hori-
zontal oscillator is fed to the horizontal-outpur amplifier, which uses a 6CD6G V19 amplifier, which uses a 6CD6G tube, V19. The through the hrizobe the deflection 6 V through the horizontal-output transformer. A 6 V tube, V20, is used as the horizontal damper.
The second-anode voltage for the picture tube is supplied by two 1B3GT high-voltage-rectifier tubes, V21 and V22, connected in a voltage-doubler circuit The B-plus voltage for the receiver is supplied by two selenium rectifiers, CR100 and CR101, in a full-wave voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained across the filter choke which is in series with the negative side of the R-plus supply. The B-plus-boost voltage derived from the horizontal-damper circuit supplies higher B-plus voltage to the first anode of the picture tube. Filament current for all the tubes except the high-voltage rectifiers is supplied by a 117 -volt, 60 -cycle step-down trans former. Filament current for the high-voltage rectifiers is supplied by two windings on the horizontal-outpu transformer

NOTE: The J-7 Chassis incorporates a protective high-voltage shorting switch (located on the rear of the high-voltage cage), which shorts the output of the 1B3GT high-voltage doubler-rectifier (V22) to ground when the cabinet back is removed. Do not attempt to operate the receiver with the cabinet back removed without first disabling this shorting switch. The switch can be disabled temporarily for service work by removing the two self-tapping screws at the bottom edge of the rear cover of the high-voltage cage, and propping up the rear cover.

\section*{IMPORTANT}

\section*{A-C LINE ISOLATION}

CAUTION: One side of the a-c line is connected to the chassis through C101, L100, and R104, in series. The other side of the a-c line is connected
to the chassis through R100, F100, CR100, and C103, in series. Grounding the chassis will result in a short circuit across one or the other of these ewo branches
in the voltage-doubler circuit. During servicing and in the voltage-doubler circuit. During servicing and
alignment, it is desirable that an a-c line isolation transformer capable of handling at least 250 watts
(Philco Part No. 45.9600 ) be used. Failure to use an (Philco Part No. 45.9600) be used. Failure to use an
isolation transformer will greatly increase the shock isolation transfornier will greatly increase the shock
hazard, and may result in damage to the test equip.
ment, or receiver, or both.

\section*{SPECIFICATIONS}

CHANNEL TUNIN
Twelve-channel, 13-
position, wafer-switch incremental tuner; fine tuning of local oscillator
FREQUENCY RANGE Television Channels 2 through 13 and U-H-F position
INTERMEDIATE FREQUENCIES

Video carrier
Sound (intercarrier)
TRANSMISSION LINE
OPERATING VOLTAGE
45.75 mc.
4.5 mc.
\(300-\mathrm{ohm}\) twin-wire mc.
110 to 120 volts,
60 cycles, a.c.
POWER CONSUMPTION
250 watts
TUBE COMPLEMENT
R-F 97 CHASSIS
\begin{tabular}{|c|c|c|}
\hline Reference Symbal & Tube Type & Function \\
\hline V1 & \[
\underset{\substack{\text { mBQ7 or } 6 \mathrm{BZ} 7 \\ \text { minure }}}{ }
\] & R-F amplifier \\
\hline V2 & 12AZ7-miniature & Oscillator, mixer \\
\hline V3, V4,
V5, V6, & 6CBG-miniature & Video i.f amplifers \\
\hline V7 & 6U8-miniature & Video amplifier, sync separator \\
\hline V8 & 6AQ5-miniature & Video output \\
\hline v9 & 6BAG-miniature & First sound i-f amplifier \\
\hline V10 & 6AU6-miniature & Second sound i-f \\
\hline V11 & 678-miniature & FM detector, first audio amplifier \\
\hline V12 & 6L6GA-octal & Audio output \\
\hline V13 & 6AU6-miniature & \\
\hline V14 & 12AU7-miniature & Gated leveler, noise inverter \\
\hline V23 & 27LP4 & Picture tube \\
\hline
\end{tabular}

J-7 DEFLECTION CHASSIS
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { Reference } \\
\text { Symbol }
\end{gathered}
\] & Tube Type & Function \\
\hline V15 & 12AU7-miniature & Phase splitter, vertical oscillator \\
\hline V16 & 6BQ6GT-octal & Vertical output \\
\hline V17 & 6AL5-miniature & Phase comparer \\
\hline V18 & 12AU7-miniature & Horizontal oscillator \\
\hline V19 & 6CD6G-octal & Horizontal output \\
\hline V20 & 6V3-miniature & Damper \\
\hline V21, 222 & 1B3GT-octal & High-voltage rectifier \\
\hline
\end{tabular}


\section*{REMOVING AND REPLACING 27LP4 PICTURE TUBE}

\section*{GENERAL}

The Philco 27LP4 picture tube is designed for a maximum of safety. Moreover, when properly mounted in the frame assembly, the picture tube is supported in such a manner as to provide a maximum of protection against breakage. Therefore, it is important that the tube be properly installed in its supporting frame. It is suggested that the service technician protect his eyes and the exposed parts of his body when handling all picture tubes. The removal and installation of the 27LP4 picture tube is quite safe if the procedure given below is followed.

CAUTION: Because of the bulkiness and in creased weight of the 27 LP 4 tube, as com pared with that of the smaller picture tubes, eplacement of the 27LP4 requires two men These tubes are not delicate when handled in the proper manner; however, care must be taken not to mar the glass in any way, as sur face scratches and chips weaken a glass struc ure considerably. Also, because of its weight do not attempt to handle this tube by the neck

\section*{PROCEDURE FOR REMOVING 27LP4 TUBE}
1. Remove both the deflection chassis and the r-f chassis from the cabinet
2. Lay the cabinet face-down on the floor, taking precautions against marring the cabinet.
3. Remove the four nuts and washers that secure the mounting feet of the assembly to the front of the cabinet.
4. Remove the two wood screws that secure the rear supporting struts of the tube assembly to the cabinet.
5. Remove the tube assembly (one man on each side of the cabinet).
6. Place the tube assembly face-down on a soft, protective cloth or mat, and slip the beam-bender magnet off the rear end of the tube. Referring to figure 1 , locsen clamp ring (A) by means of clamp screw (B), unhook the four clips securing the web straps to the mounting feet, and lift the deflection-yoke housing and strap assembly (containing the deflection yoke and focus assembly) off the neck of the tube
7. Mark the positions of the four mounting feet on the front band with a pencil or scriber (this is necessary because the mounting feet are free to slide, once the front band is loosened)
8. Loosen the two Allen head clamping screws (C) and (D) with a \(\overline{5} / 16\)-inch Allen wrench, and remove and (D) with a \(5 / 16^{-1}\) inc
the front band assembly.

\section*{PROCEDURE FOR INSTALLING 27LP4 TUBE}
1. Place the picture tube face-down on a soft, pro rective cloth or mat, and position the front band assembly over the tube so that the lateral indentation in the band coincides with the welded seam around the outer edge of the tube's face plate.
Take up slack in the band, tightening both clamp. ing screws ( \(C\) ) and ( \(D\) ) by hand.

NOTE: If the front band is positioned cor rectly, the distance from the bottom edge of each mounting foot to the surface on which the tube is resting will be \(17 / 8\) inches, as shown in figure 1.
2. Position the mounting feet, on the front band, to coincide with the marks previously made on the front band.
3. Tighten both clamping screws (C) and (D) alternately, using a \(\overline{3} / 1_{6}\)-inch Allen wrench.

NOTE: Take up on clamping screws (C) and (D) as tightly as possible. As can be seen from figure 1, the separation between the ends of the bands must be less than \(1 / 8\) inch, when tightened.
4. Slip the deflection-yoke housing and strap as sembly (containing the deflection yoke and focus assembly) over the neck of the tube, and position it o that clamp screw (B) on clamp ring (A) is on the side of the tube opposite the anode button
5. Place the clips (on the web straps) over the hooks on the four mounting feet, and tighten clamp ring (A) by means of clamp screw (B).
6. With the cabinet face-down on the floor, place the tube assembly in the cabinet (one man on each side of cabinet), and replace the four nuts and washers that secure the mounting feet to the front of the cabinet.
7. Replace the two wood screws that secure the rear supporting struts of the tube assembly to the cabinet.
8. Stand the cabinet upright, and install the r-f chassis, deflection chassis, and beam-bender magnet.

\section*{ADJUSTING 27LP4 PICTURE-TUBE} ASSEMBLY
1. Mechanically center the focus assembly, over the neck of the tube, by adjusting the centering plate. It is important that the focus assembly and yoke be conentric with the tube neck for best focus and shadow learance.
2. Set the HORIZ. CENTERING control (R824) o its extreme counterclockwise position, and set the BRIGHTNESS control for maximum brightness of the picture.
3. Adjust the beam bender for maximum brightness of the picture.
6. If necessary, loosen the wing nuts and rotate the defection yoke, to correct for picture tilt. Make certain that the deflection yoke is as far forward as possible, and tighten the wing nuts.
5. Adjust the centering plate so that neck shadow is just eliminated on the right-hand side of the screen, at the same time keeping the picture centered vertically. Do not attempt to center the picture horizontally by means of the centering plate.
6. Adjust the FOCUS control (on focus assembly). Set the CONTRAST control for the proper level, and readjust the FOCUS control for the best over-all focus.
7. Repeat steps 3 and 5, if necessary.
8. Adjust the HORIZ. CENTERING control (R824) for proper horizontal centering of the picture. 9. Turn the BRIGHTNESS control slowly toward the minimum position, checking that shadow does not appear at any brightness level. If shadow does appear, repeat steps 5 and 8 , and recheck.

\section*{B SUPPLY FUSE REPLACEMENT}

The B supply protective fuse, F 100 , is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a 1.6-ampere
delayed-action-type fuse, Philco Part No. 45.2656-23. delayed-action-type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before re-
placing the fuse.

\section*{HORIZONTAL-OSCILLATOR ADJUSTMENT}

To adjust the horizontal-oscillator circuit, tune in a station and proceed as follows:
1. Reduce the width of the picture so that approximately one inch of blank screen appears at the righthand and left-hand sides of the picture.
2. Increase the BRIGHTNESS control setting so that the blanking time becomes visible. This appears as a dark vertical bar at the right-hand and left-hand sides of the picture.
sides of the picture.
3. Connect a \(.1-\mu \mathrm{f}\). condenser from Test Point J802 to ground.
4. Set the HORIZ. HOLD control to the center of its mechanical rotation.
5. Adjust the HORIZ. HOLD CENTERING control to bring the picture into the center of the blanking bars. When the picture is centered in the blanking bars, the bars at the left-hand and right-hand sides of the picture will be of equal width.
6. Remove the \(.1-\mu\) f. condenser from the Test Point. (See step 3.)
7. Adjust the horizontal ringing coil, 1800 , until the picture is again centered in the blanking bar. 8. Rotate the HORIZ. HOLD control through its range. The picture should fall out of sync to both sides of the center of rotation. If the picture does not
fall out of sync to both sides, readjust the HORIZ. tially the same, regardless of the channel under test HOLD CENTERING consrol to obtain fall-out to If not, the tuner should be aligned. Before aligning either side of sync
the tuner, refer to the CAUTION given under TUNER 9. Rotate the HORIZ. HOLD control through its BANDPASS ALIGNMENT.
range, and observe the number of diagonal blanking The video-carrier intermediate frequency is 45.75 bars that are visible just before the picture pulls into mc., and the sound intermediate (intercarrier) fresync. The pull-in should occur with from 1 to 2 quency is 4.5 mc . Alignment of these circuits requires diagonal bars when the sync position is approached careful workmanship and good equipment. The folfrom either direction. If proper pull-in is not ob- lowing precautions must be observed:
tained, repeat the above procedure.

\section*{VIDEO PEAKING COIL ADJUSTMENT}

The video peaking coils, L. 305 and L.307, are ad justed at the factory for proper transient response of the video amplifiers. Ordinarily, these coils will require no further adjustment by the serviceman except in cases where they have been tampered with, or wher replacement becomes necessary. Under normal circum undertaken, the video peaking coils should not require adjustment.
1. There must be a good bond between the receive chassis and the test equipment. This is most easily ob tained by providing the workbench with a metallic top. The receiver chassis should be placed tuner-side down on the bench. If the bench has no metallic top, the test equipment and chassis can be bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip. 2. Do not disconnect the picture tube, picture-tube
yoke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be Before adjusting L305 and L307, check both the calibrated accurately to the sound and video r-f cartuner and i-f alignment. (Never adjust L305 and L307 riers of each channel used during alignment. If Model until the alignment of the receiver is correct.) Then 7008 is used, the built-in crystal calibrator provides tune in a station and adjust the receiver to give a pic- an excellent means of calibration. An alternate method ture of the best obtainable quality, with medium con- of calibrating the signal generator to the sound and trast. Turn the fine tuning control clockwise until a video r-f carrier frequencies is to zero-beat the signal very slight beat pattern appears in the picture. Care- generator with the received signals.
fully observe the appearance of the picture regarding For further information concerning calibration, resmear or overshoot (trailing whites). A small amount fer to Philco Lesson PR-1745 (J), entitled "Television of overshoot may be desirable, to produce a sharper Service in the Home."
picture. Conversely, in weak-signal areas, a small Test Equipment Required
appearance of "snow". The adjustments of L305 and The following test equipment is recommended for appearance of "snow". The adjustments of L305 and L307, and their effects on the picture, are as follows:
1. The amount of overshoot may be reduced by turning both TC302 and TC 303 counterclockwise.
2. The amount of smear may be reduced by turning both TC302 and TC303 clockwise.
Normally the point of proper adjustment is where minimum smear and trailing whites appear in the picture; however, a compromise adjustment may be made to suit prevailing conditions. As a rule, when prop-
erly adjusted, the adjustment screws (TC302 and TC303) should protrude from the chassis by approximately \(1 / 2\) inch to \(3 / 4\) inch.

\section*{TELEVISION ALIGNMENT PROCEDURE}

\section*{Ceneral}

The alignment consists of tuning each i-f coil to a given frequency, using an AM signal, then feeding in a sweep signal at the antenna terminals and touching up the adjustments to obtain the desired pass band.
The over-all response curve ( \(r-f, i-f\) ) of the circuits from the antenna terminals to the video detector, after the i-f stages have been aligned, should appear essen-
ligning the receiver:
1. Philco Precision Visual Alignment Generato for Television and FM, Model 7008, or equivalent.
2. Vacuum-tube voltmeter, or 20,000 -ohms-per-vol voltmeter.
3. R-F Probe, Philco Part No. 76-3595 (for use with Model 7008 generator).

\section*{Jigs and Adapters Required}

\section*{Mixer Jig}

Connections to the grid of the mixer tube may be made through the alignment jack provided for this purpose. To connect the generator to this point, a mixer-grid jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No. 45-1636, with as short a ground lead as possible, may be used to confect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signal-generator output lead be terminated with a 68 -ohm carbon resistor (used with alligator-clip adapter only), so that any regeneration caused by connection of the lead to the mixer is held to a minimum.


TP2-1507-A
Figure 2. Video I-F Alignment lig (VIDEO TEST
Jack Adapter No. 1)
Antenna-Input Matching Network
An impedance-matching network for coupling the signal generator to the antenna-input terminals of the receiver is shown in figure 2 on page 5 of Service Manual PR-2170. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms, is used to match a 75 -ohm generator to a 300 -ohm antenna-input circuit. The resistors used in this network should be of carboncomposition construction, and should be chosen from group, to obtain values within \(10 \%\) of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna-matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.
Video I-F Alignment Jig (VIDEO TEST Jack Adapter No. 1)
The alignment jig shown in figure 2 should be used during the i-f alignment, to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This adapter consists of a 5 -prong plug, two \(10,000-\mathrm{ohm}\) resistors, and a \(1500-\mu \mu \mathrm{f}\). condenser for isolation of the bias supply. To isolate the oscillo-


TP2-3265
Figure 3. Sound l-f linput Alignment lig (VIDEO TEST
scope from the receiver circuits, a 15,000 -ohm resistor, by-passed by a \(1500-\mu \mu\) f. condenser, is used. A suggested method of fabricating the jig is also shown in figure 2. This jig should not be used to observe th composite video from the video-detector output.

Sound I-F Input Alignment Jig (VIDEO TEST Jack Adapter No. 2)
To observe the composite video, a jig may be made with a 5 -pin plug and a 2200 -ohm resistor. See figure 3. The 2200 -ohm resistor should be connected to pin 2 of the plug. A ground lead should be connected to pin 3. For convenience in applying bias to the a-g-c circuits, a lead should be connected to pin 5. To observe the composite video, connect the oscilloscope to the 2200 -ohm resistor and the ground lead. This jig is also used for injection of the \(4.5-\mathrm{mc}\). signal during sound i-f alignment.

Sound I-F Output Alignment Jig (FM Test Point and Volume Control Socket Adapter)
Figure 4 shows the adapter that should be used to connect the voltmeter to the FM detector through the Volume Control socket (J401) and FM Test Point (J403). The adapter should be inserted into the Volume Control socket, and the clip lead from the adapter connected to the FM Test Point. The Volume Control cable and plug (PL401) is inserted into the socket on top of the adapter.

\section*{TELEVISION TUNER ALIGNMENT}

After the tuner is serviced, or if an i-f alignment is required, the tuner alignment should be checked. If realignment is necessary, use the procedure given below.
Since the frequency of the local oscillator affects the tuner response, the local-oscillator alignment should be made first.

Figure 4. Sound I-F Output Alignment lig (FM Test Point and Volume Control Socket Adapter)
TP2-3263

\footnotetext{
\section*{}
}


Figure 5. Television Tuner, Showing Location of \(\begin{gathered}\text { Adjustments }\end{gathered}\)

\section*{OSCILLATOR ALIGNMENT}

\section*{General}

It is possible to place each channel exactly on fre quency by adjusting the tuning core of each coil. The djustment procedure should be carried out with the highest-frequency channel (13) first, since the alignment of each channel will affect the alignment of the channels below it in frequency. The FINE TUNING control should be preset for all adjustments by placing the stop on the fine-tuning cam at the Channel 8 oscillator tuning core. See figure 5 .

\section*{Procedure Using Signal Generators}

An r-f signal (unmodulated), at the video carrier frequency of the channel, is fed into the antenna input, and an i-f signal, at the i-f carrier frequency is fed to the first i-f amplifier. Two AM signal generators are used to supply the above signals. An oscilloscope is connected to the video detector output. The oscillator core is then adjusted for zero beat on each channel. The two generators should be accurately cal brated, as described in Philco Lesson PR-1745 (J)
o align the oscillator, proceed as follows
1. To observe the zero beat, connect the oscillocope to the video-detector output through the video -f alignment jig. See figure 2. Bias the tuner and the i-f a-g-c circuits with 1.5 volts, and remove the Gate Pulse Plug, PL801, from the socket, J801. To apply bias to the tuner, connect the battery to the white lead which comes out of the top of the tuner. On later runs of this tuner, the white a-g-c lead connects to a feedhrough condenser on top of the tuner. To make cerain that good connection is made to the tuncr a-g-c circuit, remove the glyptol coating on this condenser erminal before connecting the bias battery.
2. To feed in the i-f comparison signal, remove the

shield from the first v-i-f tube and wrap several turns of insulated copper wire around the tube. Connect the output leads of the v-i-f signal generator to the two ends of the wire loop, and set the generator for un modulated output at 45.75 mc .
3. To feed in the signal representing the channel frequency, set the r-f signal generator to the video carrier frequency of Channel 13, and connect the out put to the antenna terminals of the receiver, through the proper matching jig.
4. Mechanically preset the fine-tuning cam, as shown in figure 5 , and set the CHANNEL SELECTOR to Channel 13.
5. Adjust the Channel 13 tuning core for zero beat as indicated by the oscilloscope.
6. Retune the r-f signal generator and the CHAN NEL SELECTOR for Channels 13, then 11, etc., each time adjusting the respective tuning core for zero beat. The tuning cores should be adjusted progressively from the highest-frequency channel to the lowest, because the higher channel adjustments will affect the lower channels.

Procedure Using Station Signal
The following simplified procedure may be used to align the oscillator when the television i-f alignmen is satisfactory and a station signal is available. If this procedure is used in the service shop, signals from al able in the service shop
1. Mechanically preset the fine-tuning cam to the
enter of its range. See figure 5 .
2. Tune in the highest-frequency channel to be received, and adjust the tuning core for that channel for the best picture; that is, starting with sound in the picture, turn the tuning core until the sound in the picture just disappears.
3. Repeat step 2 for each channel received in the area, starting with the highest-frequency channel and finishing with the lowest.

\section*{TUNER BANDPASS ALICNMENT}

\section*{General}

The bandpass alignment consists of aligning the tuner at Channels 13 and 6, and then making it track properly.

During the alignment, a fixed bias of 1.5 volts is ap plied to the r-f amplifier tube through the white a-g-c lead.

An FM (sweep) signal is applied to the antenna input circuit through the proper matching jig, and n oscilloscope is connected through a 100,000 -ohm esistor to the mixer-grid test point. The oscilloscop gain should "be as high as possible, conm contition will level and bounce condition. Hum condite Bounce cause distortion of the time base and response. Bounce conditions will cause the response and the time base oo jump up and down, and is caused by poor line regulation. The use of too high an oscilloscope gain aggra vates these conditions, whereas the use of too low a align the oscillator when the te stations which the customer can receive must be availservice shop 


TP9-512日-1
Figure 6. Television Tuner Response Curve, Showing
gain necessitates increasing the generator output to a point where the tuner may be overloaded. The scope controls should be adjusted so that the width of the presentation is 2 times the height. Overload may then be checked by changing the generator output while observing the shape of the response curve. When the generator output is changed, the vertical gain of the oscilloscope should be readjusted, to keep the scope presentation amplitude the same. Do not readjust the horizontal gain control. Any flattening of the curve indicates overload, in which case a lower generato output and higher oscilloscope gain must be used. The signal-generator output must be properly matched to the antenna input of the tuner.

Correct alignment cannot be obtained withou the use of a suitable matching jig.
Regeneration or a mismatch in the test setup will also make it impossible to obtain correct alignment. To check for these conditions, move the hand along the generator cable, after all equipment is connected, and observe the response curve on the oscilloscope moved along the cable, regeneration or mismatch is indicated. Another check may also be made with the volume control advanced until noise can be heard from the speaker. If the level of the noise cable, regeneration or mismatch is indicated. The symptoms which indicate these conditions may also be caused by failure to use the proper matching jig, as described above.


Figure 7. Television Tuner Response Curve, Showing \(\begin{gathered}\text { TPO-1174 } \\ \text { Tracking Compensation }\end{gathered}\)

CAUTION: When comparing the response curves from channel to channel, maintain the 2-to-1 width-to-height relationship in the oscilloscope presentation, as described above.
Procedure
1. Connect the FM (sweep) and AM marker gen erators to the 300 -ohm antenna input through an antenna-input matching jig.
2. Connect the oscilloscope to the mixer-grid test point through a 100,000 -ohm, one-half watt resistor, as shown in figure 5. Connect the ground lead of th oscilloscope as close to the mixer tube as possible
3. Apply 1.5 volts bias to the white tuner a-g-c lead. 4. Disconnect the tuner coupling link at wiring panel B-13, terminals 1 and 4, and solder a 68 -ohm, one-half watt carbon resistor to the open link coming from the tuner. See figure 7. Remove the first i-f tube from the socket.
5. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 13 ( 213 mc .). Adjust the generator for sufficient sweep width to show the complete response curve.
6. Establish the channel limits (see figure 6) by using the marker (AM r-f) signal generator to produce marker pips on the response curve. (Set the marker generator first to 210 mc ., then to 216 mc .) The response curve should be reasonably flat between the limits.
7. Adjust TC502 and TC504 (figure 5) for a symmetrical, approximately centered pass band. Set the marker generator to 213 mc . Detune TC504 counterlockwise until a single peak appears. Adjust TC502 until the peak falls on the \(213-\mathrm{mc}\). marker. (It may be necessary to increase the output of the generator during this adjustment.) Then adjust TC500 for aximum curve height and symmetry of the single peak. The antenna circuit is now tuned for the high band channels.

NOTE: On later runs of the tuner, L506 is not tunable and TC500 is omitted; therefore, the adjustments in step 7 should be confined to TC502 and TC504 when later run tuners are encountered.
8. Readjust TC502 and TC504 for a symmetrica response, centered about 213 mc ., and falling within the specifications, as shown in figure 6 .
9. Set the CHANNEL SELECTOR and FM generator to Channel 7 ( 177 mc .). Establish the channel limits by using the marker signal generator to pro-


Figure 8. R-F Chassis 97, Top View, Showing
duce marker pips on the response curve. (Set the marker generator first to 174 mc ., then to 180 mc .) The curve should be reasonably flat between the limits. 10. On Channel 7, observe the tilt and center frequency of the response curve. The curve should be centered on the pass band, and should be symmetrical! If it is not symmetrical, and appears unbalanced, as in figure 7, adjust C507 and C512 (figure 5) to obtain a response curve which is the mirror image (tilt in the Channel 7 response of the original; for example, if Chant \(\mathbf{C} 506\) and C514 curve appears as in figtre 7 A, ad just 506 and C .f until the curve appears as in figure B. This adjust ance for the effer of Chanei 13 adjustmen made in step 11) upon Channel 7 response.
11. Reset the CHANNEL SELECTOR and generators to Channel 13, and repeat steps 8 through 10 as many times as necessary to obtain the most sym metrical and centered response curves on Channels 13 and 7. Channels 7 through 13 are now correctly aligned.
12. Set the CHANNEL SELECTOR and sweep gen erator to Channel 6 ( 85 mc .).
13. Establish the channel limits, using the marker generator to produce marker pips on the response curve. (Set the marker generator first to 82 mc ., then to 88 mc .)
14. Adjust TC503 and TC505 for a symmetrical, approximately centered pass band. Set the marker generator to 85 mc . Detune TC505 counterclockwise until a single peak appears. Adjust TC503 until the peak falls on the 85 -mc. marker. It may be necessary to in crease the output of the generator during this adjustment. Then adjust TCSO for maximum curve heigh and symmetry of the single peak. The antenna cir cuit is now tuned for Channels 2 through 6.
15. Readjust TC503 and TC506 for a symmetrical response, centered about 85 mc ., and falling within the specifications, as shown in figure 6. Channels 2 through 6 are now correctly aligned.

\section*{VIDEO I-F ALIGNMENT}

\section*{PRELIMINARY}

Before proceeding with the i-f alignment or making an alignment check, observe the following preliminary instructions:
1. Preset the CONTRAST and BRIGHTNESS controls to the maximum counterclockwise position.
2. Preset the CHANNEL SELECTOR to Channel 4 3. Insert the video i-f alignment jig into J200.
4. Connect the oscilloscope to the 15,000 -ohm re sistor from the video i-f alignment jig. Connect the ground lead of the oscilloscope to the ground lead from the adapter.
5. Connect a 6 -volt battery to the a-g-c test jack with the negative terminal to the bias lead and the positive terminal to the ground lead.
6. Connect the AM generator to the mixer-grid
© John F. Rider
test point, G1, through a mixer jig, and adjust the generator for approximately 30 percent modulation at 400 cycles.

NOTE: If the i-f shield has been removed for repairs, it must be replaced before proceeding with the alignment.

\section*{PROCEDURE}
1. Tune the AM generator to 39.75 mc ., and adust C518 (see figure 8) for minimum output, as observed on the oscilloscope.
2. Tune the AM generator to 47.25 mc ., and adjust C201 for minimum output, as observed on the oscilloscope.
3. Tune the AM generator to 41.25 mc ., and adjust C203 for minimum output, as observed on the oscilloscope.

NOTE: In steps 1,2 , and 3 , it is necessary to keep the generator output sufficiently high that a null indication may be observed on the oscilloscope. However, avoid overloading of the receiver by excessive signal.
4. Tune the AM generator to the frequencies indicated below, and adjust the trimmers for maximum output.
a. 42.7 mc -adjust C514
b. 45.4 mc -adjust C204
c. 42.0 mc --adjust C206
d. 45.0 mc .-adjust C210
e. 44.4 mc .-adjust C215
f. 43.0 mc --adjust C218
5. Connect the sweep generator and r-f marker generator to the antenna terminals through a matching jig. (If a separate oscilloscope is used, connect the

weep output of the generator to the horizontal input of the oscilloscope.) Connect a 7.5 -volt battery to the a-g-c test jack, with the negative terminal to the bias lead and the positive terminal to the ground lead. Set the CHANNEL SELECTOR to Channel 4, and tune the sweep generator for output on Channel 4. Tune the r-f marker generator for the video carrie frequency of Channel 4 ( 67.25 mc .), and tune the i-f marker generator (connected to mixer grid) to 45.75 mc. Note that two marker generators are used fo his procedure. The r-f marker generator is connected to the antenna terminals, while the i-f marker ge erator is connected to the mixer-grid test point, G A jig constructed from a piece of fiber tubing, with \(3 / 18\) inch inside diameter, and a brass machine screw which fits tightly into the tubing, is used to connect the generator to the test point. The screw is adjusted so that it clears the test point by approximately \(1 / 64\) inch. The output cable of the niarker generator is connected to the head of the brass screw in the jig and to the chassis near the mixer tube. Both marker generators should be adjusted for the minimum output required to make the markers barely visible. Failure to observe this precaution, or the use of excessive out put from the sweep generator, will cause misleading results. After the equipment is properly connected, adjust the FINE TUNING control for zero beat of the two markers, as observed on the oscilloscope When zero beat is obtained, remove the i-f marker.
6. If the response curve does not fall within the limits, as shown in figure 9, the adjustment of the trimmers may be touched up slightly. Do not retouch the setting of C518, C201, C203, or C206. To adjust the curve, first adjust C215 and C218 alternately, until maximum improvement has been obtained. C215 affects the tilt of the curve, and C218 affects the dip of the curve. After C215 and C218 have been adjusted, adjust C514 for the proper slope at the \(42.25-\mathrm{mc}\). side of the curve, then adjust C204 and C210 for the proper level at the video carrier frequency ( 45.75 mc .).

CAUTION: Do not turn any of the trim-
mers excessively. To retouch, make only a
slight adjustment.

\section*{SOUND I-F ALIGNMENT}

The sound i-f system may be aligned by the use of a station signal or an accurately calibrated signal generator, for the signal source. If the station signal is used, tune the FINE TUNING control for the best picture, regardless of sound. It will be necessary to reduce the signal input to the receiver, so that the d-c output at the sound detector, as measured with the aid of the sound i-f output alignment jig (between point " \(B\) " and ground), is kept below 5 volts maximum, and preferably below 3 volts. To establish this level in strong signal areas, it may be necessary to short the antenna terminals and to apply bias to. the a-g-c circuit. The signal input to the receiver may be
adjusted by varying the length of the shorting lead. The bias may be applied to the a-g-c circuit by means of the jig shown in figure 3. The sound i-f output alignment jig shown in figure 4 should be used for convenient connection of the meter to the sounddetector output.
When signal generator (accurately calibrated) is used, bias should be applied to the a-g-c circuit, to avoid any possibility of regeneration, using the sound i-f input alignment jig (figure 3). In addition, the first video i-f tube should be removed, to aid in the reduction of circuit noises from the i-f system.
1. Connect the generator through the 2200 -ohm resistor, in the sound i-f input alignment jig, to pin 2 of J200. The generator should be adjusted for unmodulated output at 4.5 mc .
2. Insert the sound i-f output alignment jig in the volume-control socket (J401), and insert the volume control plug (PL401) in the top of the jig. Connect the clip lead to the FM Test Point (J403); connect 20,000-ohms-per-volt voltmeter between point " \(B\) " and the ground lug of the jig, the negative lead of the meter going to point "B."
3. Adjust TC300, TC400, TC401, and TC402 for maximum output, as indicated on the meter. If the output exceeds 5 volts, reduce the signal input to the receiver.
4. Shift the positive lead of the meter to point "C" on the sound i-f output alignment jig, and adjust TC403 for zero crossover. Zero crossover is indicated by a zero indication on the meter. When TC403 is turned in one direction from this zero point, the meter will swing positive; turning TC403 in the opposite direction will cause a negative swing (To aid in direction will cause a negative swing. on the meter reading apor by means of its zero-adjustment screw, set the pointer, by martion on the scale before connecting the meter to the circuit )
onnecting the meter to the circuit.)
5. Replace the first video i-f tube, and tune in a station on the receiver. Turn the FINE TUNING TC403 for minimum AM noise, using the speaker output as an indication.


Figure 10. R-F Probe for Sound-Trap Adjustment

\section*{ADJUSTMENT OF 4.5-MC. TRAP}

To adjust the 4.5 mc . trap in the plate circuit of the first video amplifier, proceed as follows:
1. Connect the output of the signal generator to lead " \(A\) " from pin 2 of the sound \(i\) i-f input alignment jig (see figure 3). Adjust the generator for 4.5 mc . 400 -cycle modulated output. Set the output attenu ator for maximum output from the generator.
2. Connect the input of the r-f probe, shown in figure 10 , to the grid of the picture tube, and connect the output of the probe to the vertical input of the oscilloscope. Adjust the vertical gain of the oscilloscope to maximum. Adjust the horizontal sweep of the oscilloscope for 400 cycles.
3. Adjust TC301 for minimum indication on the oscilloscope. (The normal setting for TC301 is with the screw approximately \(5 / 8\) inch out from the chassis.) An alternate method for adjustment of TC301 may be used if a \(4.5-\mathrm{mc}\). generator is not available. To adjust TC301 without the generator, proceed as fol lows:
1. Tune in a strong station signal.
2. Turn the FINE TUNING control in the clock wise dir
3. Adjust TC301 until the beat disappears or is at a minimum. When correctly adjusted, the screw will be out from the chassis by approximately \(5 / 8\) inch. 4 . If more than one station is available, check the setting of TC301 on all stations.

\section*{OSCILLOSCOPE WAVEFORM PATTERNS}

The waveforms shown below were taken with the eceiver adjusted for an approximate peak-to-peak output of 2 volts at the video detector. The voltages given with the waveforms are approximate peak-to-peak values. The frequencies shown are those of the wave-orms-not the sweep rate of the oscilloscope. The waveforms were taken with an oscilloscope having good high-frequency response. With oscilloscopes having poor high-frequency response, the sharp peaks of the horizontal waveforms will be more rounded than those shown, and the peak voltages will differ from those shown.
*CAUTION: High-voltage pulses are pres-
ent in the horizontal-output circuit. The
waveform in figure 33 was taken with the alligator clip of the oscilloscope lead clipped over the insulation of the lead connected to pin 7 of J800. (To prevent puncture of the insulation of the lead, file off the teeth of the alligator clip and wrap friction tape around the clip.) Connection to other points in the horizontal-output circuit is dangerous, due to the high voltages present. The peak-topeak voltage shown for figure 33 is the actual voltage present; however, the amplitude of the scope presentation depends upon the degree of coupling.

Figure 9. Over-all R-F, I-F Response Curve


TP2-658
Figure 17. Noise-Inverter Cathode.
Wave shape and Pmplitude vary with


Figure 23. Vertical-Oscillator Plate 130 volts, 60 c.p.s.


TP2-2852 Figure 29. Horizontal Oscillator,
Junction of L800, R806, and C806 20 volts, 15.750 c.p.s.


Figure 12. Cate-Pulse Plug2, Pin 4 500 volts, 15,750 c.p.s.


TP2-659
Figure 18. Sync-Saparator Plate, 17 volts. 60 c.p.s.


TP2-644
Figure 24. Vertical-Output Grid, 40 volts, 60 c.p.s.


Figure 30. Horizontal-Oscillator \(\begin{gathered}\text { TP2-647 }\end{gathered}\) Cathode, Pins 8 and 3
12 volts, 15.750 c.p.s.

 22 volts, 60 c.p.s.


TP2-660
Figure 19. Sync-Separator Plate 17 volss, 15,750 c.p.s.


TP2-645 Figure 25. Vartical-Output Plate, 450 Plate Cap volts. 60 c.p.s.


Figure 31. Horizontal-Oscillator 34 volts, 15,750 c.p.s.


TP2-656 Fizure \(\begin{aligned} & \text { 14. Gate-Pulse Plug. Pin } 3 \\ & 9 \text { volfs, } 15,750 \quad \text { c.p.s. }\end{aligned}\)


TP2-639 Figure 20. \(\begin{aligned} & \text { Phase-Splitter Grid, Pin } 7 \\ & \\ & \\ & \text { volts, } 60 \text { c.p.g. }\end{aligned}\)


TP2-641 Figure 26. Phase-Splitter Plate.
Jnction of R614, R615, and C800 on of R614, R615, and
volts. 15,750 c.p.s.


TP2-649 Figure 32. Horizontal-Output Grid 120 volts, 15,750 c.p.s.


Figure 15. Gated-Leveler Grid, 3 volts, \({ }^{\text {Pin }} 15,750\) c.p.s.


TP2-640 Figure 21. Phase-Splitter Plate, 35 Polts, 60


TP2-642 Figure 27. Phase-Splitter Cathode 9 volts, \({ }^{\text {Pin }} 15,750\) c.p.s.


TP2-650 Figure 33. Horizontal-Deflection
 5600 volts, 15,750 c.p.s


TP2-657 Figure 16. \(\begin{gathered}\text { Noise-Inverter Plate. } \\ \text { Junction of R } 605 . \text {. } 602, \text { and } \mathrm{C} 603\end{gathered}\) Junction of R605, C602, and
23
volts,
15.750 c.p.s.


TP2-652 Figure 28. Phase Comparer, \(6 \begin{gathered}\text { Pins } \\ 6 \\ \text { volts, } \\ 15,750\end{gathered}\)


TP2-651
Figure 34. Cate-Pulse Socket, 400 Pin 4 of 18801 ch. 15.750 c.p.s.




\section*{PARTS LIST}

\section*{IMPORTANT}

General replacement items commonly stocked by the serviceman are omitted from this parts list. All condensers are molded-bakelite Philco condensers, with a 600 -volt rating, and all resistors are \(1 / 2\) watt, unless otherwise indicated. Parts are listed according to chassis type and should be ordered in this way rather end of the parts list for each chassis type. All parts are symbolized in the schematic diagrams and base layouts, for identification purposes.
NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indi cated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will either be unchanged or improved. When ordering replacements, use only the "Service Part No.'

\section*{DEFLECTION CHASSIS J-7}

SECTION 1—POWER SUPPLY


SECTION 7—VERTICAL SWEEP

\begin{tabular}{lllr}
\hline \begin{tabular}{c} 
Reference \\
Symbol
\end{tabular} & \multicolumn{1}{c}{ Description } & \begin{tabular}{r} 
Serrice \\
Part
\end{tabular} \\
\hline No.
\end{tabular}

SECTION 8-HORIZONTAL SWEEP
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\text { Reference } \\
\text { Symbol }
\end{gathered}
\] & Description \(\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}\) \\
\hline C805 & Condenser, by-pass, \(80 \mu \mu \mathrm{f}, \pm 5 \% \quad 60-00825317\) \\
\hline C807 & Condenser, d-c blocking, \(390 \mu \mu \mathrm{f}\).,
\[
\pm 5 \%
\]
\[
60-10395417
\] \\
\hline C808 & Condenser, charging, \(270 \mu \mu \mathrm{f}\), \(\pm 5 \%\)
\[
60-10275417
\] \\
\hline C813 & Condenser, anti-ringing, \(100 \mu \mu \mathrm{f}\)., 4000 v
\[
30-1246 \cdot 2
\] \\
\hline C815 & Condenser, by-pass, \(20 \mu \mathrm{f}\)., 300v Part of C103 \\
\hline J800 & Socket, deflection ......... 27.6274.7 \\
\hline J801 & Socket, gate pulse \\
\hline 1800 & Coil, stabilizing, 30 to 80 mh . ... 32-4557 \\
\hline L801 & Coil, r-f choke, horizontal output plate Part of T80C \\
\hline \[
\begin{aligned}
& \mathrm{L} 802 \text { and } \\
& \mathrm{L803}
\end{aligned}
\] & Coils, horizontal deflection \(\begin{gathered}\text { Part of deflection } \\ \text { yoke (See Misc. "A") }\end{gathered}\) \\
\hline L804 & Coil, r-f choke, damper cathode Part of T800 \\
\hline L805 & Coil, r-f choke, damper plate 32.4112.24 \\
\hline PL800 & Plug, deflection \(\cdots \begin{gathered}\text { Part of cable ass'y, } \\ \text { (See Misc. "A") }\end{gathered}\) \\
\hline PL801 & Plug, gate pulse \(\quad \cdots \begin{array}{r}\text { Part of cable ass'y. } \\ \text { (See Misc. "B") }\end{array}\) \\
\hline
\end{tabular}

DEFLECTION CHASSIS J-7 (Cont.)

SECTION 8-HORIZONTAL SWEEP (Cont.)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Reference } \\
\text { Symbol }
\end{gathered}
\] & Description \(\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}\) & Description & \[
\begin{gathered}
\text { Service } \\
\text { Part No. }
\end{gathered}
\] \\
\hline R810 & \begin{tabular}{l}
Potentiometer, HORIZ. HOLD CEN. \\
TERING control, 250,000 ohms 33-5565-17
\end{tabular} & Arm and magnet ass'y., picture tube Beam bender & \[
\begin{array}{r}
76-6594 \\
76-6077-4
\end{array}
\] \\
\hline R811 & Potentiometer, HORIZ. HOLD control, 50,000 ohms 33-5563-57 & Cable assembly, high voltage, picture tube Cable and plug assembly, deflection Cable and plug assembly, volume control & 41.40646
41.4146 .9
\(41-4136-2\) \\
\hline R815 & Potentiometer, WIDTH control, 10,000 ohms, 2 watts ... 33-5546-18 & \begin{tabular}{l}
Cord, line \\
Focus assembly
\end{tabular} & \[
\begin{aligned}
& 41-3865 \\
& 76.8087
\end{aligned}
\] \\
\hline R816 & Resistor, screen voltage dropping, 10,000 ohms, 2 watts .... 66.3105340 & Insulator, electrolytic condenser mounting Shield, corona & \begin{tabular}{l}
\[
\begin{array}{r}
27-9508-1 \\
56-9684
\end{array}
\] \\
27-6290-1
\end{tabular} \\
\hline R817 & Resistor, feedback, 47,000 ohms, 1 watt
\[
66-3474340
\] & \begin{tabular}{l}
Socket, high-voltage rectifier (V21) \\
Socket, miniature, 7 pin, 6AL5
\end{tabular} & \[
\begin{gathered}
27-6290-2 \\
27-6203 *
\end{gathered}
\] \\
\hline R818 & \begin{tabular}{l}
Resistor, voltage divider, 3300 ohms, \\
7 watts
\[
33-1335-115
\]
\end{tabular} & Socket, miniature, 9 pin, 6V3 and 12AU7 Socket ass'y., octal, 6BQ6GT & \[
\begin{gathered}
7.6203 .6^{*} \\
76.6119
\end{gathered}
\] \\
\hline R824 & Resistor, HORIZ. CENTERING control, 200 ohms, 2 watts 33.5546.50 & \begin{tabular}{l}
Socket, octal, 6CD6G \\
Socket, ass'y., miniature, 12AU7 Stand-off, 2 inch
\end{tabular} & \[
\begin{gathered}
27-6174 \\
76.6115-1 \\
54-7309-8
\end{gathered}
\] \\
\hline T800 & Transformer, horizontal output .... 32-8598 & Yoke, deflection & 32-9650 \\
\hline
\end{tabular}

\section*{R-F CHASSIS 97}

SECTION 2—VIDEO I.F.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Symbol & Description & Service Part No. & \[
\begin{gathered}
\text { Reference } \\
\text { Symbol }
\end{gathered}
\] & Description & Service Part No \\
\hline C200 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Condenser, 47.25 -mc. trap, \(10 \mu \mu \mathrm{f}\).,
\[
\pm 5 \%
\] \\
60-00105417
\end{tabular}} & \({ }_{\mathrm{L} 206}\) and & Coils, coupling & Part of T201 \\
\hline C201 & Condenser, trimmer, \(47.25-\mathrm{mc}\). trap 1 to \(5 \mu \mu\) f. & \[
31-6520-9
\] & \({ }_{\mathrm{L} 208}^{\mathrm{L} 207}\) and & Coils, coupling & of T202 \\
\hline C202 & \multirow[t]{2}{*}{Ccndenser, \(41.25-\mathrm{mc}\). trap, \(5 \mu \mu \mathrm{f}\). Condenser, trimmer, \(41.25-\mathrm{mc}\). trap 1 to \(5 \mu \mu\).} & . \(\quad 30-1224-28\) & \({ }_{\text {L209 }}\) & Coil, filament choke Coils, coupling &  \\
\hline C203 & & ap, 31-6520.9 & \begin{tabular}{l}
L211 \\
L212 and
\end{tabular} & Coils, coupling & Part of T204 \\
\hline C204 & Condenser, trimmer, 1 to \(5 \mu \mu \mathrm{f}\). & 31-6520-12 & L213 & & \\
\hline C205 & Condenser, d-c blocking, \(12 \mu \mathrm{ff}\). & 62-012300001 & L214 & Coils, series peaking, \(10 \mu \mathrm{~h}\).
Coil, series peaking, \(4 \mu \mathrm{~h}\). & \(32-4422-27\)
\(32-4143.22\) \\
\hline C206 & Condenser, trimmer, 1 to \(5 \mu \mu \mathrm{f}\). & 31-6520-9 & L216 & Coil, shunt peaking, \(400 \mu \mathrm{~h}\). & 32-4480-5 \\
\hline C209 & Condenser, a-g-c by-pass, \(680 \mu \mu \mathrm{f}\). & 62-168001001* & L217 & Coil, filament choke & 2-4112-15 \\
\hline \[
\begin{aligned}
& \mathrm{C} 210 \\
& \mathrm{C} 211
\end{aligned}
\] & \multicolumn{2}{|l|}{Condenser, trimmer, 1 to \(5 \mu \mu \mathrm{f}\). . . \(31.6520-9\)} & R208 & Resistor, B+ dropping, 5600 oh & \\
\hline C211 & Condenser, screen by-pass, 680 \(\mu \mu \mathrm{f}\). & 62-168001001* & R224 & Resistor, voltage dropping, 2,000 & \\
\hline C212 & Condenser, by-pass, \(680{ }^{\circ} \mu \mathrm{f}\). & 62-168001001* & T200 &  & 32-4548-23 \\
\hline C215 & Condenser, trimmer, 1 to \(5 \mu \mu \mathrm{f}\) : & 31-6520-9 & T201 & Transformer, first video i-f & 32-4548-28 \\
\hline C218 & Condenser, trimmer, 1 to \(5 \mu \mu \mathrm{f}\). & 31-6520-9 & T202 & Transformer, second video i- & \\
\hline C219 & Condenser, detector by-pass, \(5 \mu \mu \mathrm{f}\). & 30-1224-28 & \[
\begin{aligned}
& \mathrm{T} 203 \\
& \mathrm{~T} 204
\end{aligned}
\] & Transformer, third video i-f Transformer, fourth video i-f & \[
\begin{aligned}
& 32.4548-26 \\
& 32-4548-27
\end{aligned}
\] \\
\hline C220 & Condenser, by-pass, \(680 \mu \mathrm{\mu}\) f. & 62-168001001 & & & \\
\hline C221 & Condenser, by-pass, \(680 \mu \mathrm{ff}\). & 62-168001001 & & SECTION 3-VIDEO & \\
\hline C223 & Condenser, a.g.c filter, \(2 \mu \mathrm{f}\). & 30-2417-7 & & & \\
\hline C224 & Condenser, electrolytic & 30-2584-24 & & & \\
\hline C224A & Condenser, filter, \(40 \mu \mathrm{f}\)., 300v & Part of C224 & Symbol & Description &  \\
\hline C224B & Condenser, filter, \(10 \mu \mathrm{f}\)., 300v & Part of C224 & & & \\
\hline CD200 & Condenser, filter, \(10 \mu \mathrm{f}\)., 300v & Part of C224 & \[
\begin{aligned}
& \text { C300 } \\
& \text { C301 }
\end{aligned}
\] & Condenser, audio take-of, 2. & 62.018400021 \\
\hline J200 & Socket, video test & 27-6273* & C302 & Condenser, screen by-pass, \(33 \mu \mu \mathrm{f}\). 62 & 62.033009001 \\
\hline \begin{tabular}{l}
L200 and \\
L201
\end{tabular} & Coils, tuner coupling & Part of T200 & C303 & Condenser, by-pass, \(68 \mu \mu \mathrm{f}\). & \begin{tabular}{l}
62 -068409011 \\
62.033009001
\end{tabular} \\
\hline L202 & Coil, 47.25 -mc. trap & 32-4548-15 & L300 & Coil, audio take-off & 32-4463-9 \\
\hline L203 & Coil, 41.25 -mc. trap & 32-4112-31 & L301 & Coil, peaking, video amplifier grid, & \\
\hline L204 & Coil, 1st i-f grid & 32-4112-31 & & \(180 \mu \mathrm{~h}\). & 32-4480.9 \\
\hline
\end{tabular}
- John F. Rider



\section*{CIRCUIT DESCRIPTION}

Philco "B" line, Code 140, Television Receivers use two chassis-the r-f chassis R-191, containing the r-f, video. audio, and sync circuits, and deflection chassis D-191, containing the power and deflection circuits. Since these chassis are not isolated from the 60 -cycle power line, all protruding shafts and mounting feet are insulated from the chassis.

CAUTION: See A-C LINE ISOLATION
A separate subchassis contains the r-f amplifier, the oscillator, and the mixer. The r-f amplifier uses a type 6BZ7 tube, V1. The oscillator and the mixer use a type 6 X 8 tulse, V 2 , the pentode section of the tube being used for the mixer, and the triode section for the oscillator. The output of the mixer is fed to a three-stage, stagger-tuned, i-f amplifier system employing thrce type 6 CB 6 tubes, V3, V4, and V5. A type 1 N 64 crystal diode, CD200, is used for the video detector, the output of which is amplified by a twostage video amplifier utilizing a type 6AU6 tube, V6, and a type 6AQ5 output tube, V7. The connections at the detector are such as to produce a composite video signal with negative-going sync pulses. The signal, which is suljected to a 360 -degree phase shift through the video amplifier, is applied to the grid of the picture tube, V19; therefore the sync pulses at this point are negative-going. A positive-going blanking pulse, taken from the vertical-output stage, is applied to the cathode of the picture tube for suppression of the vertical retrace.
Sound i.f. (intercarrier) is obtained by utilizing the beat frequency produced when the \(45.75-\mathrm{mc}\). video carrier and the \(41.25-\mathrm{mc}\). sound carrier are mixed in the video detector. The \(4.5-\mathrm{mc}\). beat frequency is the difference between 45.75 mc . and 41.25 me., and contains the FM sound signal. This \(4.5-\mathrm{mc}\). signal contains only a negligible amount of video amplitude modulation, provided that the amplitude of the \(41.25-\mathrm{mc}\). signal is considerably lower than that of the \(4.55-\mathrm{mc}\). signal. The proper relationship between the two carriers is established during the alignment of the receiver. There is sound output only when both the video and sound carriers are present. The oscillator is tuned primarily to obtain the best picture, since the \(4.5-\mathrm{mc}\). relationship always exists between the two carriers. The \(4.5-\mathrm{mc}\). sound i.f. (intercarrier), which is taken from the plate circuit of the video amplifier, is passed through a \(4.5-\mathrm{mc}\). sound i-f stare using a 6AU6 tube, V8, and is then applied to the FUI detector, which utilizes two diode sections of a 6 T 8 tube, V9A. The triode section of the 6T8, V9B, is used as the first audio amplifier. The power amplifier \(^{\text {PR }}\) uses a type 6 V 6 GT tube, V10.

A portion of the video signal appearing at the output of the first video amplifier is applied to grid 3 (pin 7) of the 6CS6 sync separator, V11. Since gridleak bias is used on grid 3, the tips of the sync pulses are clamped to zero, and the video components swing in a negative direction from zero. Because of the cutoff characteristics of grid 3 , the video components are eliminated, and only negative-going sync pulses appear in the plate circuit of the sync separator. At the same time, however, a signal is taken from the video detector and applied to grid 1 (pin 1) of the 6CS6 tube. This grid is returned to B plus, and the bias is maintained close to zero, because of a small grid-current flow. Since the signal applied to grid 1 is composite video with negative-going sync, any noise modulation present in the signal appears in the form of sharp spikes, driving in a negative direction. The circuit constants are chosen to allow grid 1 to cut off plate current whenever the signal goes more negative than the sync pulses. A series grid-limiting resistor, R608, is also incorporated to prevent the video components from appearing in the plate circuit of the sync separator. A-G-C voltage is also developed in the sync separator circuit in the following manner: On tips of the sync pulses, grid 3 (pin 7) of the 6CS6 tube draws current which flows downward through the network R602, R603, R604, R211, and
L214, causing capacitors C605, C602, and C603, to L 214 , causing capacitors \(\mathrm{C} 605, \mathrm{C} 602\), and C 603 , to
assume negative charges proportional to the amount of peak signal applied to grid 3. The tuner a-g-c voltage is delayed by means of a resistor divider network which applies a small positive voltage to the tuner a-g-c circuit. This positive voltage prevents a-g-c action from lowering the tuner gain on weak signals. To prevent the delay voltage from driving the tuner a-g-c voltage positive on weak signals, a diode clamp (part of V9B) is connected across C602.
The negative-going sync pulses appearing in the plate circuit of the sync separator are fed to one half of a 12AU7 tube, V12A, connected as a phase-splitter circuit; positive sync pulses appear in the plate circuit, and negative sync pulses are taken from the cathode.
Proper triggering of the vertical oscillator requires positive synchronizing pulses. The vertical sync sig nal is separated from the horizontal sync signal by the vertical integrator circuit, and is fed to the grid circuit of the vertical blocking oscillator, one half of a l2AU7 tube (V12B). The output of the vertical oscillator is amplified by a type 12B4 tube, V13 which is employed as the vertical-output amplifier The output of the amplifier is applied to the vertical-deflection coils through the vertical-output transformer.

The horizontal-sweep circuits require both positive and negative sync pulses. The phase-comparer cir cuit uses a 6AL5 tube, V14. Positive sync pulses are applied to the plate of V14A, and negative sync pulses are applied to the cathode of V14B. A saw ooth voltage, taken from the horizontal-output cir cuit, is fed to the plate of V14B and to the cathode of V14A, for comparison of the sync and horizontal sweep voltages. When the saw-tooth and sync signals are exactly in phase, no voltage is developed acros R800, but when the two signals are out of phase either a positive or a negative voltage is developed depending upon whether the horizontal-oscillato requency is lower or higher than the sync-pulse fre quency. The grid circuit of the horizontal oscillator, a type l2AU7 tube, V15, operating as a cathode coupled multivibrator, is connected to R800 through a filter network. When the voltage at this point goe in a positive direction, the frequency of the horizonta oscillator is increased; when the voltage swings nega ive, the frequency of the oscillator is decreased. In this manner the frequency of the horizontal oscillator is controlled over the lock-in range of the circuit. The horizontal hold control, R81l, adjusts the horizontal-oscillator frequency so that it \(\vdots\) s within the control range of the phase comparer. The output of the horizontal oscillator is fed to the horizontal output amplifier, which makes use of a type 6BQ6GT tube, V16. The screen voltage for the horizontal amplifier is supplied from a voltage-divider network The network includes R818, R816 (the WIDTH con trol), R817, R315 (the BRIGHTNESS control), and R316. R816 varies the voltage applied to the screen thus adjusting for proper picture width. Adjusting R315 for brightness varies the bias on the picture tube. The change in bias causes a change in beam current, and would tend to result in a change in pic ture width and a variation in the second-anode volt age. However, when the control arm of the BRIGHT SESS control R315, is moved toward ground, smaller part of the control is shunted by the 22,000 olm resistor, R316, and the total resistance of the voltage divider is increased. This increase in re sistance results in a decrease in the current through the divider, and the screen voltage on the horizontal amplifier is increased proportionally, thus compen sating automatically for the increase in beam current in the picture tube. The horizontal amplifier feeds the deflection coils through the horizortal-output transformer. A 6AX4GT tube, V17, is used as the horizontal damper
The second-arrode voltage for the picture tube is supplied by one lB3GT high-voltage rectifier tube,

V18. The B plus voltage for the receiver is supplied by two selenium rectifiers, CR100 and CR101 in a full-wave, voltage-doubler circuit, operating directly from the power line. Bias voltage is obtained from across a filter choke, which is in series with the negative side of the \(B\) plus supply. The \(B\) plus boost volt age, derived from the horizontal damper circuit, sup plies higher B plus voltage to the vertical oscillator, first audio stage, and the first anode of the picture tube. Filament voltage for all the tubes except the high-voltage rectificr is supplied by a step-down transformer. Filament voltage for the high-voltage rectifier is supplied by a winding of the horizontaloutput transformer.

\section*{IMPORTANT}

\section*{A-C LINE ISOLATION}

CAUTION: One side of the a-c line is connected to the chassis through C101 and L405. The other side of the a-c line is connected to the chassis through F100, R100, CR100, and C103, in series. Grounding the chassis will result in a short circuit across one or the other of these two branches in the voltage-doubler circuit. During servicing and alignment it is desirable that an a-c line isolation transformer capable of handling at least 225 watts (Philco Part No. 45-9600) be used. Failure to use an isolation trans former will greatly increase the shock haz ard, and may result in damage to the test equipment or receiver, or both.

\section*{SPECIFICATIONS}

VHF TUNING ......... Twelve channel, 12-position incremental tuner, covering VHF Television Channels 2 through 13 ; fine tuning of local oscillator
UHF TUNING (if provided) ....... Continuous tun ing, covering UHF Television Channels 14 through 83 ; fine and coarse tuning
INTER MEDIATE FREQUENCIES
Video Carrier
.45 .75 mc .
Sound (intercarrier)
.4 .75 mc
TRANSMISSION LINE .... 300 -ohm, twin-wire lead
OPERATING VOLTAGE ........ 110 to 120 volts
60 cycles, a. c
POWER CONSUMPTION. . without UHF, 175 watts; with UHF, 180 watts

TUBE COMPLEMENT R-F CHASSIS R-191
\begin{tabular}{|c|c|c|}
\hline REFER-
ENCE SYMBOL & TUBE TYPE & FUNCTION \\
\hline V1 & 6BZ7 miniature & R.F Amplifier \\
\hline V2 & 6X8 miniature & Oscillator-Mixer \\
\hline V3, V4, v5 & 6CB6 miniature & Video I.F Amplifiers \\
\hline v6 & 6AU6 miniature & Video Amplifier \\
\hline v7 & 6AQ5 miniature & Video Output Amplifier \\
\hline v8 & 6AU6 miniature & Sound I.F Amplifier \\
\hline v9 & 6 T 8 miniature & Ratio Detector, First Audio, and Tuner A-G-C Clamp \\
\hline V10 & 6V6GT octal & Audio Output \\
\hline v11 & 6CS6 miniatare & Sync Separator \\
\hline V19 & 17YP4 or 21ZP4A & Picture Tube \\
\hline
\end{tabular}

DEFLECTION CHASSIS D-191
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { REFER- } \\
& \text { ENCE } \\
& \text { SYMBOL }
\end{aligned}
\] & TUBE TYPE & FUNCTION \\
\hline V12 & 12AU7 miniatue & Phase Splitter, Vertical Oscillator \\
\hline V13 & 12B4 miniature & Vertical-Oatput Amplifier \\
\hline V14 & 6AL5 miniature & Horizontal Phase Comparer \\
\hline V15 & 12AU7 miniature & Horizontal Oscillator \\
\hline V16 & 6BQ6GT octal & Horizontal-Outpat Amplifier \\
\hline V17 & 6AX4GT octal & Horizontal Damper \\
\hline V18 & 1B3GT octal & High-Voltage Rectifier \\
\hline
\end{tabular}

\section*{B SUPPLY FUSE REPLACEMENT}

The B supply protective fuse, F100, is wired into the low-voltage section, and is in series with the selenium rectifiers. For replacement, use a 1.6 ampere delayed-action-type fuse, Philco Part No. 45-2656-23.

CAUTION: Discharge the circuit before replacing the fuse.

\section*{HORIZONTAL-OSCILLATOR ADJUSTMENT}

To adjust the horizontal-oscillator circuit, tune in station and proceed as follows:
1. Reduce the width of the picture until approximately 1 inch of blank screen appears at the righthand and left-hand sides of the picture.
2. Increase the BRIGHTNESS control setting until the blanking becomes visible. This will appear as a dark vertical bar on each side of the picture.
3. Connect a \(.1 \mu\) f. condenser from the test point, adjacent to TC800, to ground. (The plate side of the hoizontal ringing coil, L800, is connected torthe teist point.)
4. Set the HORIZONTAL HOLD control to the approximate center of its mechanical rotation.
5. Adjust the HORIZ HOLD CENTERING control until equal portions of the blanking bar appear on both sides of the picture.
6. Remove the \(.1-\mu\). condenser from the test point.
6. Remove the \(.1-\mu \mathrm{f}\). condenser from the test point.
7. Adjust the horizontal ringing coil, L800, until equal portions of the blanking bar again appear on both sides of the picture.
8. Rotate the HORIZONTAL HOLD control through its range. The picture should fall out of syac on both sides of the center of its rotation. If the picture does not fall out of sync on both sides, readjust the HORIZ HOLD CENTERING control.
9. Rotate the HORIZONTAL HOLD control through its range, and observe the number of diagonal blanking bars that appear just before the picture pulls into sync. The pull-in should occur with from 1 to 2 diagonal bars when the sync position is approached from either direction. If proper pull-in is not obtained, repeat the above procedure.

\section*{VIDEO PEAKING-COIL ADJUSTMENT}

The video peaking coil, L303, is adjusted at the factory for proper transient response of the video circuits. Ordinarily, this coil will require no further adjustment by the serviceman. On any station where excessive overshoot or excessive smear is present, a slight adjustment of L303 may improve the picture quality on that station; however, this adjustment may sacrifice the quality on other channels. If L303 is re placed in servicing, adjustment will be required.
Before adjusting L303, check the tuner alignment and i-f alignment. (Never adjust L303 until the alignment of the receiver is correct.) Then tune in a staor smear in the picture. Turning TC301 clockwise reduces trailing whites and overshoot; turning TC301 counterclockwise reduces picture smear and increases trailing whites. The proper position is the point where no smear or trailing whites appear in the picture.

The above procedure for adjustment of TC301 applies to a particular station exhibiting smear or overshoot. After TC301 is adjusted, reception on all the other stations should be checked, to make certain that the adjustment has not impaired the picture TEST EQUIPMENT REQUIRED quality.

\section*{TELEVISION ALIGNMENT}

\section*{\section*{GENERAL}} tern of first checking the tuner response with an FM 2. Facuum-tube voltmeter, or 20,000 -ohms-per-volt sweep generator and oscilloscope, comparing the re- voltmeter.
1. Philco Precision Visual Alignment Generator
sponse curve with that given in the manual, and aligning the tuner if necessary. After it is established that the tuner is in correct alignment, the video i-f channel is aligned by tuning each coil to its assigned pole frequency, using an AM signal, and then feeding in a sweep signal at the antenna terminals and re touching the i-f adjustments to obtain the desired pass band. Finally, the sound channel is aligned, using an AM signal, by tuning the sound take-off coil and the i-f and ratio-detector transformers.
The over-all response curve ( \(r\)-f, i-f) of the circuits from the antenna terminals to the video detector, after the i-f stages have been aligned, should appear essentially the same, regardless of the channel under test. If not, the tuner should be aligned.
The video-carrier intermediate frequency is \(\mathbf{4 5 . 7 5}\) mc., and the sound intermediate (intercarrier) frequency is 4.5 mc . Alignment of these circuits requires careful workmanship and good equipment. The following precautions must be observed:
1. There must be a good bond between the receiver chassis and the test equipment. This is most easily obtained by having the top of the workbench metallic. The receiver chassis should be placed tuner-side down on the bench. If the bench has no metallic top, the est equipment and chassis can be bonded by a strip of copper about 2 inches wide. The section of the chassis nearest the tuner should rest on the strip.
2. Do not disconnect the picture tube, picture-tube oke, or speaker while the receiver is turned on.
3. Allow the receiver and test equipment to warm up for 15 minutes before starting the alignment.
4. The marker (AM) signal generator should be calibrated accurately to the frequencies used and to he sound and video r-f carriers of each channel used during alignment. If Model 7008 is used, the built-in crystal calibrator provides an excellent means of calibration. An alternate method for calibrating the signal generator to the sound and video r-f carrier frequencies is to zero-beat the signal generator with the received signals.
For further information regarding calibration, refer to Philco Lesson PR-1745 (J) entitled "Television Service in the Home.'

The following test equipment is recommended for aligning the receiver:
2. acuum-tube voltmeter, or 20,000 -ohms-per-volt


Figure 1. Antenna-Input Matching Network
3. R-F Probe, Philco Part No. 76-3595 (for use with Model 7008 generator).

\section*{JIGS AND ADAPTERS REQUIRED}

Mixer Jig
Connections to the grid of the mixer tube may be made through the alignment jack provided for that purpose. To connect the generator to this point, a mixer jig, Philco Part No. 45-1739, and a connecting cable, Philco Part No. 45-1635, may be used. As an alternate, a Philco alligator-clip adapter, Part No 45.1636, with as short a ground lead as possible, may be used to connect the alignment jack. The ground lead should be connected as close as possible to the mixer tube. It is essential that the signal-generator output lead be terminated with a 68 -ohm resistor (carbon), so that regeneration, caused by connection of the lead to the mixer, is held to a minimum.

\section*{Antenna-Input Matching Network}

Figure 1 shows an impedance-matching network for coupling the signal generator to the antennainput terminals of the receiver. This network, which is designed to have an input impedance of 75 ohms and an output impedance of 300 ohms , is used to match a 75 -ohm generator to a 300 -ohm antennainput circuit. The resistors used in this network should be of carbon-composition construction, and should be chosen from a group to obtain values within \(10 \%\) of those indicated. The resistors should be placed in a shield can, to prevent variable effects. An antenna matching jig, Philco Part No. 45-1736, which consists of a matching transformer and connecting box, may be used in place of the resistor network.

Video I-F Alignment Jig
(Video Test Jack Adapter)
The alignment jig shown in figure 2 should be used during the i-f alignment, to apply the proper bias to the a-g-c bus, and to provide a convenient oscilloscope connection. This jig consists of a 5 -prong plug, a \(10,000-0 \mathrm{hm}\) potentiometer, two isolating resistors (one 10,000 -ohm and one 15,000 -ohm), two \(1500-\)


Figure 2. Video I-F Alignment Jig \({ }^{\text {T}}\)
micromicrofarad capacitors, two \(71 / 2\)-volt batteries and switch. A suggested method of fabricating the jig is also shown. It is suggested that the bias batteries and potentiometer be mounted in a metal box of convenient size.

The potentiometer and switch are connected across the two \(71 / 2\)-volt batteries. The switch is used to disconnect the potentiometer, to prevent the discharge of the battery while not in use.


Figure 3. Sound I-F Alignment Jig


TP2-2201-1
Figure 4. Television Tuner, Showing Locations of

\section*{General}

Tuning cores are provided in the oscillator coils at The FINE TUNING cam should be preset for all adchannels \(13, \mathrm{Il}, 9,7,6\), and 4 . By adjusting these justments by placing the stop on the FINE TUNING tuning cores, all channels may be placed on fre- cam between the Channel 7 and 8 holes on the front quency. This procedure should be carried out with plate of the tuner. See figure 4. the highest-frequency channel first, since the alignment of each channel affects the alignment of all the channels below it in frequency. The channel adjustments are so arranged that, with one exception, each adjustment corrects the tuning of more than one channel. The coverage of the various adjustments is as follows:
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
CHANNEL \\
ADJUSTMENT
\end{tabular} & \begin{tabular}{c} 
CHANNELS CORRECTED \\
BY ADJUSTMENT
\end{tabular} \\
\hline 13 & 13 and 12 \\
11 & 11 and 10 \\
9 & 9 and 8 \\
7 & 7 only \\
6 & 6 and 5 \\
4 & 4,3, and 2 \\
\hline
\end{tabular}

CHASSIS D-191, R-191, Code 140

CHANNEL SELECTOR, and adjust the tuning cores for Channels 11 and 9, respectively.
8. Repeat steps 5, 6, and 7 until Channels 13,11 , and 9 are within plus or minus 500 kc . of the correct frequency.
9. Feed in r-f (unmodulated) signals, at the oscillator frequencies for Channels 7, 6, and 4, consecutively (see NOTE below), and adjust the respective tuning cores (see figure 4).

NOTE: The exact position of the FINE TUNING cam should be marked when Channel 4 is correctly aligned. This position is to be used in step 4 of the i-f alignment procedure.

\section*{Procedure Using Station Signal}

The following simplified procedure may be used to align the oscillator when the television i-f alignment is satisfactory and a station signal is available: l. Mechanically preset the FINE TUNING cam to the center of its range (see figure 4).
2. Tune in the highest-frequency channel to be received.
3. Adjust the tuning core for that channel, or the next higher channel, for the best picture; that is, starting with sound in the picture, turn the tuning core until the sound disappears. Repeat for each channel received in the area.

\section*{Bandpass Alignment}

General
The bandpass alignment consists of aligning the tuner at Channels 13 and 6 , and then making it track down to Channels 7 and 2, respectively.
During the alignment, a fixed bias of \(11 / 2\) volts is applied to the r-f amplifier tube.
An FM (sweep) signal is applied to the antennainput circuit, and an oscilloscope is connected to the mixer plate circuit. The oscilloscope gain should be as high as possible, consistent with hum level and "loounce" conditions. Hum conditions will cause distortion of the time base and response. Bounce conditions, which are caused by poor line regulation, will cause the response and time base to jump up and down. The use of too high an oscilloscope gain aggravates these conditions, whereas the use of too low a gain necessitates increasing the generator output to a point wherc the tuner may be overloaded. Overload may be checked by changing the generator output while observing the shape of the response curve; any change in the shape of the curve indicates overload, in which case a lower generator output and higher oscilloscope gain must be used. The tuner coupling link should be disconnected from the


TP3-1213
Figure 5. Television Tuner Response Curve, Showing Bandpass
i-f section by removing the plug, PL500, and a 40 - to 70 -ohm carbon resistor should be connected across the open end of the plug. This is done to eliminate the absorption effect of the tuner link coil, L200, on the response curve.

\section*{Procedure}
1. Disconnect the white (a-g-c) lead, from the tuner, and connect it to the negative terminal of a \(11 / 2\)-volt battery. Ground the positive terminal.
2. Disconnect the tuner plug, PL500, at terminal board B13 (see figure 33), and connect a 40 - to 70 -ohm carbon resistor across the plug.
3. Connect a 1000 ohm resistor in series with the hot lead of the oscilloscope. Connect the other end of the resistor to the mixer plate test point, G2, and con nect the ground lead of the oscilloscope to the chassis, near the test point.
4. Connect the FM (sweep) generator to the 300 ohm antenna-input terminals through an antennainput matching network. See figure 1 .
5. Set the CHANNEL SELECTOR and FM (sweep) generator to Channel 13 ( 213 mc .). Adjust the generator for sufficient sweep to show the complete response curve.
6. Establish the channel limits (see figure 5) by using the marker (AM r-f) signal generator to produce marker pips on the response curve. (Set the marker generator first to 210 mc ., then to 216 mc .) The curve should be reasonably flat between the limits shown in figure 5
7. Adjust TC502 and TC504 (figure 4) for a symnetrical, approximately centered pass band.
8. Set the CHANNEL SELECTOR and FM gencrator to Channel 7 ( 177 mc .)
9. Establish the channel limits by using the ma.ker generator to produce marker pips on the response curve. (Set the gencrator first to 174 mc ., then to 180 mc .) The curve should be reasonally flat between the limits.
10. On Channel 7, note the response curve, with respect to tilt and center frequency. The curve should be centered in the pass band, and should be symmetrical.
11. If the curve is not symmetrical, and appears unbalanced, as shown in figure 6 , leave the generator and tuner set to Channel 7, and adjust C508 and C512 (see figure 4) to obtain a response curve which is the mirror inaqe (tilt in the opposite direction) of the original. This is a form of overcompensation, to allow for the effect of Channel 13 adjustment on Channel 7. For example, if the Channel 7 response appears as in figure 6A, then the trimmer should be adjusted to obtain the response shown in figure 6 B .
12. Reset the CHANNEL SELECTOR and gen erators to Channel 13. Readjust TC502 and TC504 for a symmetrical and centered band pass. See step 4.
13. Set the CHANNEL SELECTOR and generators to Channel 7, and check the response for center fre quency and symmetry. Repeat steps 8 and 9 as many times as is necessary to obtain the most symmetrical, centered response curves on Channels 13 and 7 centered response curves on Channels 13 and
14. Set the CHANNEL SELECTOR and sweep generator to Channel 6 ( 85 mc .).
15. Establish the channel limits, using the marke generator to produce marker pips on the response curve. (Set the qenerator first to 82 mc ., then to 88 J 200 mc.
4. Connect the oscilloscope to the 15,000 -ohm re 16. Adjust TC503 and TC505 for a symmetrical, sistor from the video i-f alignment jig. Connect the approximately centered pass band. Set the marker ground lead of the oscilloscope to the ground lead generator to 85 mc . Detune TC505 counterclockwise from the adapter.
until a single peak appears.

CAUTION: Do not turn the core of TC505
excessively, or it will fall out of the coil.
Adjust TC503 until the peak falls on the \(85-\mathrm{mc}\). marker. It may be necessary to increase the output of the generator during this adjustment. Then adjust TC501 for maximum curve height and symmetry of the single peak. The antenna circuit is now tuned for Channels 2 through 6. To prevent overloading, the output of the generator should be reduced afte this adjustment is completed.
17. Readjust TC503 and TC505 for a symmetrical response, centered about 85 mc .
5. With a voltmeter connected across the point shown in figure 2, set the potentiometer to furnish 6 volts of bias.
6. Connect the \(A M\) generator to the mixer tes point, Gl, through a mixer jig (described in step 4 of procedure given below), and adjust the generator for approximately 30 percent modulation with 400 ycles. Adjust the output of the generator during the alignment to keep the output at the second detector below 6 volt, peak to peak.

NOTE: If the i-f shield has been removed
for repairs, it must be replaced before proceeding with the alignment.


Figure 7. R-F Chassis R-191, Top View, Showing Locations of Adjustments
and tune the i-f marker generator (capacitively coupled to the mixer grid) to \(\mathbf{4 5 . 7 5} \mathrm{mc}\). Note two marker generators are used for this procedure. The r-f marker generator is connected to the antenna terminals, while the i.f marker generator is coupled capacitively to the mixer grid test point, G1. A jig constructed from a piece of fiber tubing, with \(3 / 10\)-inch inside diameter, and a brass machine screw which fits tightly into the tubing, is used to couple the generator capacitively to the test point. The screw is adjusted so that its tip clears the test point by approximately \(1 / 64\) inch. The output cable of the
marker generator is connected to the head of the brass screw in the jig and to the chassis near the mixer tube. Both marker generators should be adjusted for the minimum output required to make the mark ers barely visible. Failure to observe this precaution, or the use of excessive output from the sweep gen erator, will cause misleading results. After the equip ment is properly connected, adjust the FINE TUN ING control for zero beat of the two markers, as observed on the oscilloscope. When zero beat is ob tained, remove the i-f marker.
5. If the response curve does not fall within the limits shown in figure 8, the adjustment of the trimmers may be touched up slightly, while observing the response curve. Do not retouch the setting of C202 at this point. To adjust the curve, first adjust C206 and C212, alternately, until maximum improvement has been obtained. C212 affects the tilt of the curve, and C206 affects the dip of the curve. After C 212 and C206 have been adjusted, adjust C210 for proper slope at the \(42.5-\mathrm{mc}\). side of the curve, then adjust C526 for proper level at the video carrier fre quency ( 45.75 mc .). After these adjustments have been made, if the response curve still does not fall within the limits shown in figure 8, a slight readjustment of C202 is permissible.

CAUTION: Do not turn any of the trim-
mers excessively. To retouch, turn the trim-
mers only slightly.

\section*{SOUND I-F ALIGNMENT}
1. Remove the lat v-i-f tube, and connect a v.t.v.m. or a 20,000 -ohms-per-volt voltmeter to the sound i-f alignment jig (figure 3). Adjust the VOLUME control for moderate speaker output.
2. Feed in an accurately calibrated \(4.5 \cdot \mathrm{mc}\). AM signal, through the \(\mathbf{2 2 0 0}\)-ohm resistor in the video i-f alignment jig, to pin 2 of \(\mathbf{J} 200\).
3. Tune TC400, TC401, and TC402 for maximum indications on the meter. The point of maximum meter indication for TC402 should also be the point of minimum speaker output.
4. Tune TC402 for minimum speaker output.
5. Connect an r-f probe or crystal detector to the grid (pin 2) of the picture tube. See NOTE below.
6. Tune TC300 for minimum indication on oscilloscope. (If a crystal detector is not available, TC300 may be adjusted for minimum beat pattern, as ob served on the picture tube, with a station picture present.)
7. Replace the lst v-if tube. Tune in a station,


TP3-891
Figure 8. Over-All, R-F, I-F Response Curve, Showing Tolerance Limits
using the speaker output as an indication of correct tuning.
8. Turn the FINE TUNING control clockwise to obtain a slightly fuzzy picture.
9. Tune TC402 for minimum AM (noise) output.

NOTE: The R-F Probe, Part No. 76-3595, is used as a detector of the \(4.5-\mathrm{mc}\). signal, and the oscilloscope is used as an indicating device. An alternate crystal detector may be made up as shown in figure 9.


Figure 9. Wiring Diagram of Crystal Detector

\section*{OSCILLOSCOPE WAVEFORM PATTERNS}

These waveforms were taken with the receiver ad justed for an approximate peak－to－peak output of 2 volts at the video detector．The voltages given with the waveforms are approximate peak－to－peak values． The frequencies shown are those of the waveforms－ not the sweep rate of the oscilloscope．The waveforms
were taken with an oscilloscope having good high－ frequency response．With oscilloscopes having poor high－frequency response，the sharp peaks of the hori－ zontal waveforms will be more rounded than those shown，and the peak－to－peak voltages will differ from those shown．



Figure 10．Video Detector Output， Pin 2 of J 200
2 volts， 60 c．p．s．

TP2－787
析


Fizure 12．Video Amplifier Plate， 50 volts， 60 c．p．s．


\footnotetext{
Figure 14．Syme Separater Plate， 26 volts， 15.750 c．p．s．
}


Figure 16．Phaso－Splitter Plate TP2－640 44 vint 60 ap． 44 volts， 60 c．p．s．


TP2－697／
Figure 18．Vertical－Oscillator Plate 260 volts， 60 c．p．s．


Figure 20．Vertical－Output Plate，
TP2－645 450 volts， 60 c．p．s．


Figure 22．Phase－Splitter Cathode， 10 volts， 15,750 c．p．s

Figure 17．Vertical－Oscillator Grid， 390 volts， 60 c．p．s．


OJohn F．Rider





Figure 34. R-F Chassis R-191, Schematic Diagram

\section*{UHF TUNER-ADAPTER UT22, PART NO. 43-6703, FOR RECEIVERS USING R-F CHASSIS R-191}

UHF Tuner-Adapter UT22, Part No. 43.6703, wil provide for the reception of UHF Channels 14 through 83. It is designed for installation in Philco B line television receivers, and is installed on all BU models. These receivers use r-f chassis R-191.
The Tuner-Adapter consists of a UHF tuner, a change-over switch, adapter cables and plugs, planetary tuncr driving assembly, and mounting hardware.

\section*{CIRCUIT DESCRIPTION}

The incoming UHF signal is coupled through the antenna input line to blocking condensers Cl and C 2 , leakage resistors R8 and R9, an i-f trap, C5.L1, C6-L2, and a 150 ohm transmission line, to the antenna tank of the tuner. See figurc 37. The antenna tank is coupled to the mixer tank by means of the mutnal coupling of L2 and L3 and the stray capaci tancc, C5. The desired signal is selected by tuning the antenna tank and the mixer tank to the correct frequency; this is acconnplished by tuning condensere C3A, C3B, C3C, and C3D. These condensers, plus C3E and C3F, located in the oscillator tank circuit form the manual tuning gang.
The signal is then fed to the crystal mixer circuit by means of the mutual coupling of L4 and L5. The local-oscillator signal is generated by a 6AF4 tube Vl, and its associated circuit. The frequency of oscillation is maintained at 45.75 mc . above the signal frequency in the antenna and mixer tank, in order to effect a \(45.75-\mathrm{mc}\). video carrier intermediate frequency when the two signals are subsequently mixed in the crystal mixer tank.
The output signal from this local oscillator is intro duced into the crystal mixer circuit through a 300 ohm, miniature transmission line and the mutual coupling of L7 to L5 and L8 to L6. These four printed inductances, in addition to C 7 , form the mixer board assembly. The signal is fed into a 6BQ7 preamplifie stage, then to the video i-f circuits, and through the UHF change-over switch, by means of a coaxial connection. On VHF operation, a 150,000 -ohm resistor is placed in series with the UHF oscillator plate, rendering this oscillator inoperative.
The two tanks of the UHF tuner, the antenna tank and the mixer tank, are used to prevent the i-f signal from feeding back to the antenna and interfering with other receivers. These two tanks pass incoming signals very readily, but do not pass the i-f signal

\section*{CHANGE-OVER SWITCH}

The change-over switch supplied with the TunerAdapter is used to switch from VHF to UHF, and vice versa. It is installed on the back of the VHF tumer, and is operated by an actuator mounted on the VHF tuner shaft. When the Channel Selector of the VHF tuner is turned to the UHF position, the changeover switch makes proper connection for UHF opcration. In this position, the switch places a \(150,000-\) ohm resistor in series with the VHF B-plus lead which drops the B-plus voltage applied to the VHF tuncr. The antenna is connected to the UHF tuner the VHF pilot light is turned off, and the UHF pilot liyhts are turned on; the output of the UHF tuner is connccted to the video i-f input circuit.

When the VHF Channel Selector is turned to any VHF - position, the change-over switch places a 150,000 -ohm resistor in scries with the UHF local oscillator plate circuit, which drops the voltage applied to the plate, and disables the oscillator. The switch also connects the antenna to the VHF tuner turns off the UHF pilot lights, and turns on the VHF pilot light.

\section*{ADAPTER CABLES AND PLUGS}

The adapter plugs shown in the schematic diagram are not used in factory-installed units; the cables are wired directly into the chassis at the proper places. The plugs are used only in field-installed units. (Re fer to the installation instructions for the proper method of inserting and connecting all plugs and cables.)

\section*{PLANETARY DRIVE}

The UHF tuner is tuned by means of a 3 -gang tuning condenser, which is driven through a specially designed planetary drive. The planetary drive is con structed so that fine tuning and coarse tuning can be accomplished with a single control knob. The tuning shaft is coupled to the driving shaft through three stcel balls, which form a planetary drive that pro duces a slow rotation for fine tuning. See figure 38 After rotating 180 degrees with the tuning shaft, a pin engages the driving shaft, and the two shafts are direct-coupled, for coarse tuning. To re-engage the planetary drive for fine tuning, it is only necessary to reverse the dircction of the rotation. The dial pointer



Figure 41. Base View of Preamplifier Assembly of UHF Tuner-Adapter UT22, Part No. 43-6703


Figure 43. Top View and Base View of UHF Tuner-Adapter UT22, Part No. 43-6703, With Board Assemblies


Figure 42. Side View and Base View of UHF Tuner-Adapter UT22, Part No. 43-6703, Without Board Assemblies


Figure 44. Change-Over Switch, Switch Actuator, and Lead-Dress Details
is connected to the tuning gang through a cord drive, and indicates the channel number to which the tuner is tuned.

\section*{ALIGNMENT AND REPAIRS}

The frequencies at which the Tuner-Adapter operates are extremely high; therefore, it is necessary that the utmost care be taken to safeguard against upsetting the delicate adjumements of the tuner. It is recommendod that the serviceman make only minor repairs to the tuner, such as replacement of the tube or crystal and the wiring of external leads. The


Figure 45. Rear View of VHF Tuner
Tuner-Adapter should be returned to the factory for alignment or major repairs, unless the serviceman is properly equipped to perform these jobs. In gencral, a good rule to follow is not to remove the cover of the Tuner-Adapter, unless so equipped.

NOTE: Replacing the tube with a new one
may detune the tuner. If this occurs, try a
number of tubes until one is found that will
provide the most satisfactory performance.

\section*{INSTALLATION INSTRUCTIONS}

To install the UHF Tuner-Adapter on the r-f chassis, proceed as follows:
1. Remove the cabinet back and r-f chassis from the cabinet; then remove the nameplate on the control panel by pushing it out from inside the cabinet.
2. Insert the dial scale and bezel assembly into the hole provided in the cabinet. Fasten the assembly in place with the two nuts provided.
3. Remove the UHF tuner assembly from the mounting board with which it was shipped. Keep the three screws for mounting the tuner in the cabinet.
4. Remove the coaxial cables from the two sockets at the side of the VHF tuner. Remove the bracket and socket assembly (J500 and J201) from the back of the VHF tuner, and discard them.
5. Place the switch-actuator assembly on the shaft extending from the rear of the VHF tuner so that the switch-actuator stud points away from the tuner. See figure 44. Flace the spacers on the mounting studs


TP3-795
Figure 46. Change-Over Switch Mounting Details and Lead-Dress Details
and attach to the rear of the VHF tuner on the ref chassis. See figure 45.
6. Remove the screw on the side of the VHF tuner, as shown in figure 41. Place the switch assembly on the two mounting studs, and fasten it in place with the flat washers, lock washers, and nuts provided. See figure 46. Fasten the upper switch bracket in place as shown in figure 46.
7. Put the VHF Channel Selector in the Channel 2 position. Rotate the switch actuator clockwise (as viewed from the rear of the VHF tuner) on the tuner shaft until the actuator touches the fiber can on the changeover switch. Fasten the switch actuator in this position. Rotate the Channel Selector to the UHF position. Check the switch operation to make sure that the switch is thrown properly. Rotate the Chanmel Selector to Channel 13 position and check the switch operation to make sure that the switch is not thrown in this position. Fasten the lower switch bracket to the side of the VHF tuner with the screw removed in step 6. Lubricate the switch-actuator stud and switch cam with cup grease.
8. Remove the andio-output tube from its socket, and insert the adapter plug into the socket. Insert the tube into the adapter. See figure 46.
9. Insert the coaxial cable from the VHF tuner into the bottom socket on the changeover switch. Insert the coaxial cable from the ref chassis into the top socket on the switch. See figure 46.


TP3-755
Figure 47. Pilot Light Mounting Details
tuner to the chassis shelf with the three screws removed in step 3. It is important that these screws be tightened securely, so as to hold the UHF tuner in place on the chassis shelf. Turn the UHF tuning shaft to its extreme counterclockwise position, and check the pointer position on the scale. The pointer should be positioned just below the Channel 14 mark on the scale. If the pointer is not properly positioned, loosen the three mounting bolts and move the UHF tuner

f ic
\(\qquad\) Figure 48. UHF Tuner, Showing Location of Ground Lead and Coaxial Socket

assembly to properly position the pointer; then fasten the assembly with the three mounting screws.
14. Fasten the ground lead and the dress lugs to the ref chassis with drive screws. See figure 46. Install the chassis in the cabinet, and fasten the ground strap under the screw on the UHF tuner as shown in figure 48. Fasten the ref chassis with the original mounting bolts. Place the original knobs on their shafts, and the felt washer and knob supplied on the UHF tuning shaft.
15. Insert the coaxial plug from the change-over switch into the socket.on the UHF tuner. See figure 48. Insert the 5 -pin plug from the UHF tuner into the socket on the bracket at the rear of the VHF tuner. Dress the leads under the dress lug as shown in figure 46.
n figure 46.
16. Replace the fiber antenna-lead holder with the 16. Replace the fiber antenna-lead holder with the
new holder provided. Fasten the new holder with the nails provided (or screws for metal cabinets), and then pass the twin-wire leads through the holes as shown in figures 49 and 50 . Pull the leads through


Figure 50. Antenna-Lead Holder
© John F. Rider


TP2-3170-1
Figure 51. Antenna-Lead Connections, Common Built-In Antenna
the holder until they are tight, making certain that the leads do not contact the tubes or the chassis. Wrap tape around the yellow-marked twin-wire leads with the spade-lug ends, to prevent the leads from passing back through the fiber holder.
17. Fasten the antenna terminal board provided as shown in the illustrations above (figures 51 to 55 ) Replace the cabinet back, and make the connections as illustrated, according to the type of antenna instal lation,being used.
18. Paste the label provided over the outside antenna instructions on the cabinet back.


Figure 52. Antenna-Lead Connectiont TP2-3172-1
External Antenna


TP2-3174-1
Figure 53. Antenna-Lead Connections, Separate
 diagram and base layout, for identification purposes. replacements, use only the "Service Part No."

SECTION 7—VERTICAL SWEEP
\begin{tabular}{|c|c|c|}
\hline Reference Symbol & Description & Service Part No. \\
\hline C708 & Condenser, electrolytic, \(20 \mu\) f. & Part of Cl 03 \\
\hline \[
\begin{aligned}
& \text { L700 and } \\
& \text { L701 }
\end{aligned}
\] & Coils, vertical deflection & Part of deflec. \\
\hline & & Misc. "A") \\
\hline R704 & Potentiometer, VERT. HOLD control, 250,000 ohms ..... & Part of R811 \\
\hline R707 & Potentiometer, HEIGHT control, 2.5 megohms ........ & 33-5565-32 \\
\hline R708 & Potentiometer, VERT. LIN. control, 5 megohms ....... & 33-5565-31 \\
\hline R712 & Resistor, vertical output de coupling, 2200 ohms, 5 watts & 33.1335.97 \\
\hline T700 & Transformer, vertical oscillator & 32-8431-2 \\
\hline T701 & Transformer, vertical output.. & 32.8625 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Reference Symbol & Deseription & Service Part No. \\
\hline \[
\left\lvert\, \begin{aligned}
& \mathrm{Cl00} \text { and } \\
& \mathrm{C} 101
\end{aligned}\right.
\] & Condensers, electrolytic filter, \(120 \mu \mathrm{f}\)., 150v \(\qquad\) & 30.2568-51 \\
\hline C103 & Condenser, electrolytic filter, \(80 \mu \mathrm{f}, 300 \mathrm{v}\) & 30-2584.35 \\
\hline CR100 and CR101 & Rectifiers, selenium, 350 ma. . & 34-8003-16 \\
\hline F100 & Fuse, line, 1.6 amperes & 45-2656-23 \\
\hline F101 & Fuse, heater protective link.. & Piece of No. 26 wire \\
\hline J100 & Socket, a-c line & 27.6240.3 \\
\hline J101 & Socket, chassis connecting & 27.6274.1 \\
\hline PL100 & Plug, chassis, atc line & Part of a-c line cord ass'y. (see Misc. "A") \\
\hline PL101 & Plug and cable ass'y., chassis connecting & (See Misc. "B") \\
\hline R100 & Resistor, current limiting, 5
ohms, 10 watts \(\ldots . . . . . . .\). . & 33.3448-5 \\
\hline R102 & Resistor, voltage dropping, 4.7 ohms, 1 watt & 66.9474340 \\
\hline S100 & Switch, offon & Part of R414 \\
\hline T100 & Transformer, filament & 32-8590 \\
\hline
\end{tabular}

Transformer, vertical output..

Figure 55. Antenna-Lead Connections, VHF
External and UHF Built-In Antennas

\section*{PARTS LIST}

\section*{IMPORTANT}

General replacement items commonly stocked by the serviceman are omitted from this parts list. All condensers are molded-bakelite Philco condensers, with a 600 -volt rating, and all resistors are \(1 / 2\) watt, unless otherwise indicated. Parts are listed according to chassis type, and should be ordered in this way rather than by model number. A list of miscellaneous parts is given at the end of the parts list for each chassis type. All parts are symbolized in the schematic

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts. Also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation will be unchanged. When ordering

DEFLECTION CHASSIS D-191

SECTION 8-HORIZONTAL SWEEP
\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{c|}
\hline \text { Reference } \\
\text { Symbol }
\end{array}
\] & Description & Service Part No. \\
\hline C805 & Condenser, plate by-pass, 82 \(\mu \mu \mathrm{f}\). & 60-00825317 \\
\hline C807 & Condenser, coupling, 390 m f . & 60.10395417 \\
\hline C808 & Condenser, sawtooth forming, \(390 \mu \mu \mathrm{f}\). & 60-10395417 \\
\hline C813 & Condenser, damping, \(68 \mu \mu \mathrm{f}\), 2000v & 30-1246.1* \\
\hline C815A & Condenser, electrolytic, \(10 \mu\)., 300v & Part of C103 \\
\hline C815B & Condenser, electrolytic, \(20 \mu \mathrm{f}\), 475v & Part of C103 \\
\hline J800 & Socket, deflection-yoke connector & 27-6274-8 \\
\hline L800 & Coil, horizontal stabilizing, 30 1080 mh . & 324557 \\
\hline \[
\begin{aligned}
& \text { L801 and } \\
& \text { L802 }
\end{aligned}
\] & Coils, horizontal deflection .. & Part of deflec. tion yoke (see Misc. "A") \\
\hline L803 & Coil, r-f choke, damper cathode & 324112-24 \\
\hline L8 & Coil, r.f choke, damper plate & 324112-24 \\
\hline L805 & Coil, r.f choke, horizontaloutput plate & Part of T800 \\
\hline R810 & Potentiometer, HORIZ. OSC. FREQ. control, 250,000 ohms & 33-5565-17 \\
\hline PL800 & \begin{tabular}{l}
Plug and cable ass'y, deflection \\
( \(17^{\prime \prime \prime}\) picture tube) ...... \\
(21" picture tube)
\end{tabular} & \[
\begin{array}{r}
\mathbf{4 1 - 4 0 8 6 \cdot 1 8} \\
\mathbf{4 1 - 4 0 8 6 - 2 5}
\end{array}
\] \\
\hline R812 & Resistor, feedback coupling, 39,000 ohms, 1 watt ...... & 66-3394340 \\
\hline R811 & Potentiometer, HORIZ. HOLD control, 50,000 ohms ...... & 33.5563-50 \\
\hline R818 & Resistor, screen-supply divider, 5000 ohms, 5 watts ........ & 33.1335.101 \\
\hline R816 & Potentiometer, WIDTH control, 12,500 ohms, 2 watts.. & 33-5546-41 \\
\hline R819 & Resistor, screen-supply divider, 82,000 ohms, 1 watt ........ & 66.3824340 \\
\hline R820 & Resistor, B plus boost, filter, 42,000 ohms, I watt ........ & 66-3474340 \\
\hline R822 & Resisinn, feedhack coupling, 39,000 ohms, 1 watt ....... & 66-3394340 \\
\hline T800 & Transformer, horizontal output & 32-8624 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\multirow[b]{2}{*}{MISCELLANEOUS "A"}} & \multicolumn{6}{|c|}{R-F CHASSIS R-191 (Cont.)} \\
\hline & & & & & & \multicolumn{3}{|c|}{SECTION 4-SOUND} & \multicolumn{3}{|c|}{MISCELLANEOUS "B" (Cont.)} \\
\hline & Description & Service Part No. & & Description & Service Part No. & Reference Symbol & Description & Service
Part No. & & Description & Service Part No. \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Arm and magnet ass'y., picture tube \\
Beam bender \\
Cable assembly, volume control \\
Cable and plug ass'y, deflection ( \(17^{\prime \prime}\) picture tube) \\
Cable and plug ass'y., deflection (21" picture tube) \\
Cable, high voltage \\
Cord, a-c line \\
Deflection-yoke ass'y. \\
Focus ass'y., p.m.
\end{tabular}} & \[
\begin{array}{|l}
76-6594 \\
76-6077-2 \\
41-4136-3 \\
41-4086 \cdot 18 \\
41-4086 \cdot 25 \\
\text { AD-2631 } \\
41 \cdot 3865 \\
32-9648 \\
76-6126-4
\end{array}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
Insulator, electrolytic condenser mtg. Shield, h.v. corona \\
Socket, damper ( 6 AX 4 GT ) \\
Socket, high-voltage rectifier (1B3GT) \\
Socket, horizontal oscillator (12AU7) \\
Socket, horizontal output (6BQ6GT) \\
Socket, horizontal phase comparer (6AL5) \\
Sorket, vertical oscillator-phase splitter (12AU7) \\
Socket, vertical output (12B4) \\
Spring, high-voltage cable
\end{tabular}} & \begin{tabular}{l}
27.9508-1 \\
56.9684 \\
27.6174.7 \\
27.6290.1 \\
76.6115-1 \\
27-6174 \\
27-6203.12 \\
27.6203.16 \\
76.6115-2 \\
28.9137
\end{tabular} & C40
C4
C4
C4
C4
C4
C4 & \begin{tabular}{l}
Condenser, coupling, \(2.2 \mu \mu\) f. Condenser, fixed trimmer, 18 \({ }_{\mu \mu} \mathrm{f}\). \\
Condenser, fixed trimmer Condenser, fixed trimmer Condenser, detector balancing,
\end{tabular} & \begin{tabular}{l}
30-1221-6 \\
62.018400021 \\
Part of Z400 \\
Part of \(\mathbf{Z 4 0 0}\) \\
62.115001011 \\
62-133001001 \\
30.2417.7 \\
304650-91 \\
34-2068
\end{tabular} & Insulator, C control Shield, tube Shield, tube Shield, pilo Socket and Socket and Socket, tube Sorket, tube Sorket, tube Socket, tub & \begin{tabular}{l}
ONTRAST and BRIGHTNESS \\
(6T8) \\
(6CB6) \\
light \\
base ass'y. (6CB6) \\
base ass'y. (6T8) \\
7-pin miniature \\
7-pin miniatare (6AQ5) \\
9.pin miniatare \\
octal
\end{tabular} & \begin{tabular}{l}
54-8488 \\
56.5629.5 \\
56.5629FA3 \\
56.9074-2FA3 \\
27-6203-14 \\
27-6203.18 \\
27-6203 \\
27-6294 \\
27.6203.6* \\
27-6174
\end{tabular} \\
\hline \multicolumn{3}{|r|}{\multirow[b]{2}{*}{SECTION 2-VIDEO I.F. R-F}} & R-191 & & & 1400
J400
J401 & \multirow[t]{2}{*}{\begin{tabular}{l}
Socket, volume control \(\qquad\) \\
Sockel, speaker \\
Coil, audio take-off \(\qquad\) \\
Coils, ratio detector \(\qquad\)
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
27-6273 \\
27-4785-22 \\
32-4463.9 \\
\text { Part of Z400 }
\end{array}
\]} & \multicolumn{3}{|c|}{TV TUNER, PART No. 76-8400} \\
\hline & & & \multicolumn{3}{|c|}{SECTION 2-VIDEO I.F. (Cont.)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { L400 } \\
& \text { L401, L402, } \\
& \text { and L403 } \\
& \text { L404 }
\end{aligned}
\]} & & & Reference Symbol & Descriptio & Service Part No. \\
\hline \[
\begin{aligned}
& \text { Reference } \\
& \text { Symbol }
\end{aligned}
\] & Description & Service Part No. & \[
\begin{aligned}
& \text { Reference } \\
& \text { Symbol }
\end{aligned}
\] & Description & Service Part No & & \multirow[t]{2}{*}{\begin{tabular}{l}
Coils, ratio detector \\
Filter choke, 1 henry, 39 ohms \\
Plug, volume control
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 32.4112 .15 \\
& 32.8617 \\
& \text { (Part of cable }
\end{aligned}
\]} & \[
\begin{aligned}
& \mathrm{C} 500 \text { and } \\
& \mathrm{C} 501
\end{aligned}
\] & Condensers, antenna isolating, \(470 \mu \mu \mathrm{f}\). & \\
\hline C200
C201 & Condenser, trimmer, \(1-5 \mu \mu\) f. Condenser, trap, \(5 \mu_{\mu}\) f. & \[
\begin{array}{|l|l|l|}
\hline 31-6520.9 \\
30-1224-28
\end{array}
\] & L211 & Coil, series peaking, \(10 \mu \mathrm{~h}\).
Coil, series peaking, \(3 \mu \mathrm{~h}\) & 324422-27 & & & & & Condenser, FM trap, 20 erf.
Condenser, grid coupling, 39 & \[
30-12514
\] \\
\hline \multirow[t]{2}{*}{C-01} & \multirow[t]{2}{*}{Condenser, lst i.f tuning, 1-5 \(\mu \mu \mathrm{f}\).} & \multirow[t]{2}{*}{\({ }^{30-1224-28}\)} & L213 & \multirow[t]{3}{*}{Coil, series peaking; \(125 \mu \mathrm{~h}\). Coil, video peaking, \(250 \mu \mathrm{~h}\). Plug, tuner link} & 32-4480-8 & \multirow[b]{2}{*}{PL401} & \multirow{3}{*}{Plng, speaker .............} & \multirow[t]{3}{*}{Part of speaker cable ass'y. (see cabinet parts)} & \multirow[b]{2}{*}{C505} & \multirow[t]{2}{*}{Condenser, a-g.e by-pass, 220 \(\mu \mu \mathrm{f}\).} & 62-0394 \\
\hline & & & L214 & & 32-44804 & & & & & & 62.122001011 \\
\hline C204 & Condenser, cathode by-pass, \(470 \mu \mu \mathrm{f}\). & 30-1225-18 & PL201 & & Part of cable and plug ass'y. & \multirow[t]{2}{*}{R400} & & & \multirow[t]{2}{*}{C506} & Condenser, grid by-pass, 680 \(\mu \mu \mathrm{f}\). & \multirow[b]{2}{*}{\[
\begin{array}{|l}
62 \cdot 168001011 \\
30 \cdot 1238-6
\end{array}
\]} \\
\hline C205 & Condenser, a-g.c decoupling, \(470 \mu \mu \mathrm{f}\). & 30-1225-18 & R212 & & (see Misc. "B") & & Resistor, cathode bias, 390 ohms, 1 watt & 66.1394340 & & \begin{tabular}{l}
\(\mu \mu \mathrm{f}\). \\
Condenser, decoupling, . \(01 \mu\) f.
\end{tabular} & \\
\hline C206 & Condenser, lst i.f plate tuning, \(1-5 \mu \mu\). & 31-6520.9 & T200 & 3300 ohms, 6.2 watts Transformer, video i.f input & \[
\left\lvert\, \begin{array}{l|l|}
33-3446.11 \\
32-4599.1
\end{array}\right.
\] & R402 & Resistor, screen drupping, 12 , 000 ohms, I watt & 66.3124340* & C508 & Condenser, decoupling, . \(01 \mu\) f. Condenser, trimmer, r-f plate, .5-3 \(\mu \mu\) f. & \[
31-6520.3
\] \\
\hline \(\stackrel{\text { C209 }}{\text { C209A }}\) & Condenser, electrolytic ...... & 30.2584.33
Part of 209 & T201 &  & 324598 & R40 & Resistor, voltage dropping, 18, 000 ohms, 2 watts & 66.3185340 & \multirow[t]{2}{*}{C509
C510} & \multirow[t]{2}{*}{Condenser, by-pass, \(150 \mu \mu \mathrm{f}\). Condenser, coupling, . \(68 \mu \mu \mathrm{f}\).} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 62.115001011 \\
& 30-1221.11 \\
& 62-015409011
\end{aligned}
\]} \\
\hline C209A
C209B & Condenser, filter, \(40 \mu \mathrm{f}, \mathrm{300v}\)
Condenser, decoupling, filter & Part of C209 & T202 & Transformer, 2nd video i.f & \(32-49884\) & R41 & Resistor, cathode bias, 390 & & & & \\
\hline &  & Part of C209 & & ¢late \(\ldots \ldots \ldots \ldots \ldots\)........... & 32459 & R4 & ohms, 1 watt \(\ldots \ldots . . . .\).
Potentiometer, VOLUME con- & 66.13 & C511
C512 & Condenser, coupling, \(15 \mu \mu\). Condenser, trimmer, mixer & \\
\hline C210 & Condenser, 2nd i.f plate tuning, \(1-5 \mu \mu\). & 31-6520.9 & & plate ..................... & 32-4598-2 & \multirow[b]{2}{*}{\[
\begin{array}{|l|l|}
\hline \text { T400 } \\
\mathbf{Z 4 0 0}
\end{array}
\]} & trol, 2 megohms & 33.5564.14 & &  & 31.6520.7 \\
\hline C211 & Condenser, screen by-pass, 680 \(\mu \mu \mathrm{f}\). & 62.168001001 & \multicolumn{3}{|c|}{SECTION 3-VIDEO} & & Transformer, audio output .. Transformer, ratio detector . . & \[
\left\lvert\, \begin{aligned}
& 32-8629 \\
& 32-4450-6 \mathrm{~A}
\end{aligned}\right.
\] & & Condenser, oscillator coupling, \(2.2 \mu \mu\). & 30-122 \\
\hline C212 & Condenser, 3rd i.f plate tuning, \(1-5 \mu \mu\). & 31-6520.9 & Reference Symbol & Description & \[
\begin{aligned}
& \text { Service } \\
& \text { Part No. }
\end{aligned}
\] & \multicolumn{3}{|c|}{SECTION 6_SYNC} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{C} 514 \\
& \mathrm{C} 515
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Condenser, grid blocking, 15 \(\mu \mu \mathrm{f}\). \\
Condenser, fixed trimmer, 3.3 \(\mu \mu\).
\end{tabular}} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{array}{l|l|l|}
30 \cdot 1224-113 \\
30.1224-114
\end{array}\right.
\]} \\
\hline C213
C215 & \begin{tabular}{l}
Condenser, screen by-pass, 560 \(\mu \mu \mathrm{f}\). \\
Condenser, detector by-pass, 5
\end{tabular} & 62-156001011 & & \multirow[t]{2}{*}{\begin{tabular}{l}
Condenser, 4.5 -mc. trap, 68 \(\mu \mu\). \\
Condenser, screen by-pass, 330 \(\mu \mu \mathrm{f}\).
\end{tabular}} & 62-068409001 & Reference Symbol & Description & Service Part No. & & & \\
\hline CD200 & \(\mu \mu \mathrm{f}\)
Crysta
, & \({ }_{\text {34-8022 }}\) & C303 & & 62.133001001 & C600 & Condenser, by-pass, \(220 \mu \mu \mathrm{f}\). . & 62 -122001001 & C516 & Condenser, FINE TUNING, plastic tube & \[
\begin{aligned}
& 76-6935 \cdot 1 \\
& 30.1224 .58
\end{aligned}
\] \\
\hline \({ }^{\text {ch200 }}\) & Crystal, video detector IN64..
Socket, video test ........ & 34.8022
27.6273 & C304 & Condenser, by-pass, \(100 \mu \mu \mathrm{f}\). & \({ }^{62.110409001}\) & R606 & Resistor, voltage divider, 6800
ohms, 1 watt ............... & \(66-2684340\) & \[
\begin{aligned}
& \text { C517 } \\
& \text { C518 }
\end{aligned}
\] & \begin{tabular}{l}
Condenser, by-pass, \(3.3 \mu \mu \mathrm{f}\). . \\
Condenser, output coupling,
\end{tabular} & \multirow[t]{2}{*}{\begin{tabular}{l}
30.1224.58 \\
62.168001021
\end{tabular}} \\
\hline J201 & Socket, tuner to i.f coupling. & Part of connec-
tor ass'y. (see & L300 & Coil, 4.5 mc. trap \(\ldots \ldots \ldots \ldots\).
Coil, series peaking, 250 & & R60 & Resistor, decoupling, 12,000 & & & \begin{tabular}{l}
\(680 \mu \mu\) f. \\
Condenser screen by-pass, 680
\end{tabular} & \\
\hline & \multirow[b]{2}{*}{Coils, tuner coupling ...} & \multirow[t]{2}{*}{Mise. "C")
Part of T200} & \multirow[t]{2}{*}{L302} & \multirow[t]{2}{*}{Coil, shunt peaking, \(250 \mu \mathrm{~h}\). Coil, variable video peaking, \(60-240 \mu \mathrm{~h}\).} & 324480-4 & \multirow[t]{2}{*}{R613} & \multirow[t]{2}{*}{Resistor, voltage divider, 1 megohm, \(1 / 2\) watt, \(\pm 5 \%\)..} & 66.31253 & C51 & Condenser, screen by-pass, 680 \(\mu \mu \mathrm{f}\). & 62-168001011 \\
\hline L200 and & & & & & 32-4467-18 & & & 66.5108240 & C520 & Condenser, filament by-pass, \(220 \mu \mu \mathrm{f}\). & 62.122001011 \\
\hline L202 & Coil, trap
Coil, 1st if
g & \(324597-2\)
\(324548-12\) & L304 & Coil, series peaking, \(40 \mu \mathrm{~h} .\).
Potentiometer, CONTRAST & & \multicolumn{3}{|c|}{MISCELLANEOUS "B"} & C521
C522 & Condenser, filament by-pass, \(800 \mu \mu \mathrm{f}\). & \multirow[t]{2}{*}{\[
\begin{aligned}
& 30 \cdot 1238 \cdot 7 \\
& 30 \cdot 1221 \cdot 14 \\
& 30 \cdot 1221 \cdot 10
\end{aligned}
\]} \\
\hline L204 and & C.oils, roupling & Part of T201 & R311 & \begin{tabular}{l}
2500 ohms \\
Resistor, plate load, 3000 ohms,
\end{tabular} & Part of R315 & & Description & Service Part No. & C522 & Condenser, coupling, \(3.9 \mu \mu \mathrm{f}\). Condenser, coupling, . \(82 \mu \mu \mathrm{f}\). & \\
\hline L206 \({ }_{\text {L207 }}\) & Coil, filament choke
Coils, coupling & 324112-15 & R313 & 10 watts Resistor, picture-tube ground- & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Cable and plug ass'y., chassis connecting. Cable and plug, i.f. to tuner Cable and socket ass'y., picture tube ..... Cable and socket ass'y, pilot light .......}} & \multirow[t]{3}{*}{\[
\left\lvert\, \begin{aligned}
& 41-4146 \cdot 10^{*} \\
& 41-3754-55 \\
& 41.3946 \cdot 19 \\
& 27-6233-6^{*}
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{C524
C 25} & \multirow[t]{2}{*}{Condenser, filament by-pass, \(220 \mu \mu \mathrm{f}\).} & \\
\hline L208 & & & & ing, 470,000 ohms, 1 watt & 66-4474340 & & & & & & \[
\begin{array}{|l}
62 \cdot 122001011 \\
30-1238-7
\end{array}
\] \\
\hline L209 and L210 & Coils, roupling & Part of T203 & R315 & Potentioniter, BRIGHTNESS, 100,000 ohm & 33-5563.51 & & & & \[
\begin{aligned}
& \text { C525 } \\
& \text { C527 }
\end{aligned}
\] & \begin{tabular}{l}
Condenser, by-pass, \(800 \mu \mu \mathrm{f}\). \\
Condenser, i.f trap, \(22 \mu \mu\) f.
\end{tabular} & Part of L527 \\
\hline
\end{tabular}

DEFLECTION CHASSIS D. 191 (Cont.)
miscellaneous "A"

\section*{R-F CHASSIS R-191}

SECTION 2—VIDEO I.F.




TV TUNER, PART No. 76-8400 (Cont.)
\begin{tabular}{|c|c|c|}
\hline Reference Symbol & Description & Service Part No. \\
\hline J500 & Socket, tuner link & Part of Connector ass'y, tuner to i.f. (see Misc. "C") \\
\hline \[
\begin{array}{|l}
\text { L500, L501, } \\
\text { L502, and } \\
\text { L503 }
\end{array}
\] & Coils, tapered line .......... & 324432-3 \\
\hline L504 & Coil, FM trap & 32 \\
\hline \[
\begin{aligned}
& \text { L505 to } \\
& \text { L511 incl. }
\end{aligned}
\] & Coils, antenna tuning & Part of WS500A \\
\hline L512 & Coil, r.f coupling & 312-5145-22 \\
\hline  & Coils, r-f plate tuning ....... & Part of WS500B \\
\hline \[
\begin{aligned}
& \text { L520 to } \\
& \text { L526 incl. }
\end{aligned}
\] & Coils, mixer grid tuning .... & Part of WS500C \\
\hline L527 & Coil, i.f trap & 32 \\
\hline L528 & Coil, mixer plate & 312.5151-10 \\
\hline L530 & Coil, filament choke & 32-4550-1 \\
\hline L531 & Coil, filament choke & 324550-11 \\
\hline L532 to
L538 incl. & Coils, oscillator tuning & Part of WS500D \\
\hline PL500 & Plug, tuner link & Part of Cable and Plug ass'y. (see Misc. "C") \\
\hline R508 & Resistor, oscillator feed, 33,000
ohms.........................\(~\) & 66-3334340 \\
\hline R510 & Resistor, mixer plate feed, 10, 000 ohms, 1 watt .......... & 66-3104540 \\
\hline \[
\begin{aligned}
& \text { WSS500A(F) } \\
& \text { and } \\
& \text { WS500A (R) }
\end{aligned}
\] & Switch, wafer, antenna ...... & 76.8410 \\
\hline \[
\begin{aligned}
& \text { WS500B (F) } \\
& \text { and } \\
& \text { WS500B (R) }
\end{aligned}
\] & Switch, wafer, rif plate ...... & 76-8409 \\
\hline \[
\begin{aligned}
& \text { WS500C(F) } \\
& \text { and } \\
& \text { WS500C(R) }
\end{aligned}
\] & Switch, wafer, mixer grid ... & 76-8408 \\
\hline WS500D(F)
and
WS500D(R) & Switch, wafer, oscillator ..... & 76-8407 \\
\hline z500 & Tapered line ass'y. ........ & 76-8417 \\
\hline
\end{tabular}

MISCELLANEOUS "C"
\begin{tabular}{|c|c|}
\hline Description & Service Part No. \\
\hline Cam and shaft, fine tuning & 76-6936-3 \\
\hline Cable and plug, tuner to i-f & 41-3754.55 \\
\hline Connector ass'y, tuner to i-f & 76.8521 \\
\hline Coupling, fine tuning shaft & 54-4912.2 \\
\hline Detent, ball & 56-8020 \\
\hline " \(E\) " Washer, detent (in back of fine tuning cam) & 1W60980FA3 \\
\hline
\end{tabular}

MISCELLANEOUS "C" (Cont.)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{\begin{tabular}{|l|l|}
\hline
\end{tabular}} \\
\hline Serrice \\
Prort
\end{tabular}

\section*{CONNECTING CABLES, PLUGS, AND SOCKETS}
\begin{tabular}{|c|c|c|}
\hline Reference Symbol & Description & Service Part No. \\
\hline J100 & Socket, acc line & 27-6240.3 \\
\hline J101 & Socket, chassis connecting .. & 27.6274-1 \\
\hline J200 & Socket, video test .......... & 27.6273 \\
\hline J400 & Sockel, volume control ...... & 27.6273 \\
\hline J401 & Socket, speaker ........... & 27-4785-2~ \\
\hline J800 & Socket, deflection-yoke connector & 27-6274-8 \\
\hline PLI00 & Plug and line cord ass'y. .... & 41-3865 \\
\hline PL101 & Plug and cable ass'y., chassis connecting & 41-4146-10 \\
\hline PL400 & Plug and cable ass'y, volume control & 414136-3 \\
\hline PL401 & \(* * P l u g ~ a n d ~ c a b l e ~ a s s ' y, ~\)
speaker \(\ldots \ldots . . . . . . . . . . . . . . . . . . ~\) & See cabinet parts list \\
\hline \multirow[t]{5}{*}{PL800} & Plug and cable ass'y, deflection & \\
\hline &  & \[
\begin{array}{|l}
41-4086-18 \\
414086-25
\end{array}
\] \\
\hline & Cable, high voltage ......... & AD-2631 \\
\hline & Cable and socket ass'y., picture tube & 41-3664-19 \\
\hline & Cable and socket ass'y, pilot light & 27-6233.103 \\
\hline
\end{tabular}

UHF TUNER-ADAPTER UT22, PART No. 43-6703
\begin{tabular}{|c|c|c|}
\hline Reference Symbol & Description & Service Part No. \\
\hline C1 and C2 & Condenser. antenna input. 680 \(\mu \mu \mathrm{f}\). & Part of panel filter \\
\hline C3 & Condenser, tuning: Shaft and rotor ass'y. .... & 76.74814 \\
\hline C3A & Stator, r.f, l.h. & 56.9595 \\
\hline С3в & Stator, r.f. r.h. & 56.9595-1 \\
\hline C3C & Stator, r-f, l.h. & 56.9595 \\
\hline C3D & Stator, r-f. r.h. & 56.9595-1 \\
\hline C3E & Stator ass'y., oscillator & 76.7479 \\
\hline C3F & Stator ass'y., oscillator & 76.7479 \\
\hline C4 & Condenser, padder ass'y., r.f. & 76.7472 \\
\hline C5 & Condenser ................ & Stray capacitance \\
\hline C6 & Condenser, padder ass'y., r-f. & 76.7472 \\
\hline C7 & Condenser, mixer tank, \(30 \mu \mu \mathrm{f}\). & Part of board ass'y., mixer \\
\hline C8 & Condenser. temperature compensating, \(4 \mu \mu\) f. & 30-1224-109 \\
\hline C9 & Condenser, oscillator trimmer & 31.6525 \\
\hline C10 & Condenser, oscillator tank, 2.5 \(\mu_{\mu} \mathrm{f}\). & Part of tank ass'y., osc. \\
\hline C11 & Condenser, by-pass ........ & Part of tank ass'y., osc. \\
\hline C12 & Condenser. grid by-pass, 500 \(\mu \mu \mathrm{f}\). & 30-1245-3 \\
\hline C13 & Condenser, feedback, \(1.0 \mu \mu \mathrm{f}\). & 30-1238-2 \\
\hline C14 & Condenser, heater by-pass, 500 \(\mu \mu\) f. & 30.1245-3 \\
\hline C15 & Condenser, plate by-pass, 500 \(\mu \mu \mathrm{f}\). & 30-1245-3 \\
\hline C16 & Condenser. input coupling, 8 \(\mu \mu \mathrm{f}\). & 30-1224-46 \\
\hline C17 & Condenser, neutralizing, 680 \(\mu \mu \mathrm{f}\). & 62.168001001 \\
\hline C18 & Condenser, decoupling. 680 \(\mu \mu \mathrm{f}\). & 62-168001001 \\
\hline C19 & \begin{tabular}{l}
Condenser, cathode by-pass, \\

\end{tabular} & 62.168001001 \\
\hline C20 & Condenser, filament by-pass, \(470 \mu \mu \mathrm{f}\). & 62.147001011 \\
\hline C2I & Condenser, cathode tuning, \(680 \mu \mu \mathrm{f}\). .................... & 62.168001001 \\
\hline C22 & Condenser, grid by-pass, 680 \(\mu \mu \mathrm{f}\). & 62-168001001 \\
\hline C23 & Condenser, plate tuning, 1-5 \(\mu \mu \mathrm{f}\). & 31-6520-10 \\
\hline C26 & Condenser, grid by-pass, . 01 \(\mu\) f. & 30-1238-2 \\
\hline C27 & Condenser, decoupling, 680 \(\mu \mu\) f. & 62-168001001 \\
\hline C28 & Condenser, output coupling, \(680 \mu \mu \mathrm{f}\). & 62.168001001 \\
\hline \[
\begin{aligned}
& \mathrm{C} 29 \text { and } \\
& \mathrm{C} 30
\end{aligned}
\] & Condenser, antenna input, 100 \(\mu \mu \mathrm{f}\). & 30.1225-13 \\
\hline C31 &  & 31-6520-10 \\
\hline CDI & Crystal detector, mixer circuit & 34-8026 \\
\hline 11 and I3 & Lamps, pilot, UHF .......... & 34-2068 \\
\hline 12 & Lamp, pilot, VHF ........... & 34-2068 \\
\hline Ll & Inductor, r-f, 1.h. ........... & \begin{tabular}{l}
Part of C3A. \\
Stator
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Reference Symbol & Description & Service Part No. \\
\hline L2 & Inductor, r.f, r.h. & Part of C3B. Stator \\
\hline L3 & Inductor. r.f. 1.h. & Part of C3C. Stator \\
\hline L4 & Inductor, r.f, r.h. ............ & Part of C3D.
Stator Stator \\
\hline L5 and L6 & Inductors, crystal mixer ..... & Part of board ass'y., mixer \\
\hline L7 and L8 & Inductors, oscillator coupling & Part of board ass'y., mixer \\
\hline L9 and L10 & Inductors, oscillator ......... & Part of board ass'y.. osc. \\
\hline \[
\begin{array}{|l|l}
\mathrm{L} 11 \\
\mathrm{~L} 12
\end{array} \text { and }
\] & Inductors, oscillator ......... & 76.7627 \\
\hline L13 & Choke. heater decoupling ... & 324556.3 \\
\hline L14 & Choke, heater-cathoce deroupling & 3245564 \\
\hline L15 & Choke. plate decoupling .... & 32-4556-2 \\
\hline L16 & Coil, input tuning, primary .. & 324597.7 \\
\hline L17 & Coil, input tuning. secondary. & 324597.9 \\
\hline L18 & Coil. neutralizing & 32.45974 \\
\hline L19 & Choke, cathode tuning & 324597.5 \\
\hline L22 & Choke plate decoupling .... & 324556.2 \\
\hline \[
\left\lvert\, \begin{aligned}
& \mathrm{L} 24 \text { and } \\
& \hline \mathrm{L} 24
\end{aligned}\right.
\] & Coils, i-f trap ............. & Part of panel filter \\
\hline R2 & Resistor, damping, 220 ohms & 66.1228340 \\
\hline R3 & Resistor, decoupling, 6800
olims …..................... & 66.2688340 \\
\hline R4 & Resistor, decoupling, \(\quad 220\)
ohms .......................... & Part of L13 \\
\hline R5 &  & Part of L.15 \\
\hline R6 &  & 66.2104240 \\
\hline R7 &  & 66.0688340 \\
\hline R8 and R9 & Resistor, antenna input, 470, 000 ohms & Part of panel filter \\
\hline R10 & Resistor, grid loading, 8200
ohms .......................... & 66.2828340 \\
\hline R11 & Resistor, pilot light, 3.9 ohms & 66.9398340 \\
\hline R12 & Resistor, B \(+\underset{\text { dropping, }}{ } \mathbf{0 0 0}\) ohms, 10 watts...... & 33-1336-58 \\
\hline R13 & Resistor, a-g-r decoupling, 10,000 ohms & 66.3108340 \\
\hline R14 & Resistor, bias divider, 1.5 meg-
ohms ....................... & 66.5158340 \\
\hline R15 & Resistor, damping, 10 ohms . & 66.0108340 \\
\hline R16 & Resistor, damping, 470 ohms. & 66-1478340 \\
\hline R17 & Resistor, plate load, 3300 ohms & 66.2338340 \\
\hline \[
\begin{aligned}
& \text { R18 and } \\
& \text { R19 }
\end{aligned}
\] & Resistor, tuner disabling, 150,000 ohms & 66-4158340 \\
\hline R20 & Resistor. bias divider, 1.5 meg ohms & 66.5158340 \\
\hline R21 & Resistor. pilot light, 10 ohms. Board ass'y., mixer & \[
\begin{array}{|l|}
\hline 66.0108340 \\
76.7475-4
\end{array}
\] \\
\hline & Board ass'y., oscillator & 76.7480 \\
\hline & Panel, filter ............. & 76-8078 \\
\hline & Tank ass'y., oscillator & \({ }^{76-7627}\) \\
\hline
\end{tabular}

John F. Rider

\section*{UHF TUNER-ADAPTER UT21B, PART NO. 43-6592 FOR RECEIVERS USING R-F CHASSIS 81 OR 84}

UHF Tuner-Adapter UT21B, Part No. 43-6592, provides for the reception of UHF signals on television channels 14 through 83. It is designed for installation in Philco Television Receiver models that have a model number beginning with "A.T," and use r-f chassis 81 or 84 . The adapter consists of a UHF converter and preamplifier unit, a change-over switch, adapter cables and plugs, a planetary tuner driving assembly, and mounting hardware.

\section*{CIRCUIT DESCRIPTION}

The UHF Tuner-Adapter functions as a converter, and converts the signals of the UHF band to a frequency selected within the VHF band. The frequency selected is that of either Channel 2 or Channel 3, depending upon the locality in which the receiver is used. The incoming UHF signal is coupled through the antenna input line, and through two \(680-\mu \mu \mathrm{f}\). condensers and a 150 -ohm transmission line to the antenna tank of the tuner. See figure 1. The antenna tank is coupled to the mixer tank by means of the mutual coupling of L2 and L3 and the stray capacitance, C5. The desired signal is selected by tuning the antenna tank and the mixer tank to the proper frequency, and the signal is then coupled to the crystal mixer circuit by means of the mutual coupling of L4 and L5. The local-oscillator signal is generated by a 6AF4 tube, V1, and the associated circuit. The local-oscillator signal is coupled to the crystal mixer circuit by means of a 300 ohm, miniature transmission line and the mutual coupling of L7 to L5 and L8 to L6. The UHF r-f sig. nal and the oscillator signal are mixed in the crystal mixer circuit, producing a radio-frequency signal within range of the VHF tuner when the tuner is set o either Channel 2 or Channel 3. This signal is fed nto a preamplifier, which amplifies it, and it is then ed into the VHF tuner through a twin-wire lead. In the VHF tuner, the signal is converted to the interperation, 150,000 ohm resistor is placed in series ish UHF oscillar plate, which mis sescit lar in Uperative
The purpose of
The purpose of using two r-f tanks in the UHF uner is to readily admit the r-f signals, and, at the from feeding back into the antenna and causing inals ference with other receivers.

\section*{CHANGE-OVER SWITCH}

The change-over switch supplied with the Tuner Adapter is used to switch from VHF to UHF, and vice versa. It is installed on the back of the VHF cuner, and is operated by an actuator mounted on the turned tuner shaft. When the VHF Channel Selector

connects the antenna to the UHF tuner, turns of the

VHF pilot light, turns on the UHF pointer pilot light,
and connects the output of the UHF tuner to the an- for coarse tuning. To re-engage the planetary drive tenna input of the VHF tuner. When the VHF Chan- for fine tuning, it is only necessary to reverse the dinel Selector is turned to any VHF position, the, switch rection of the rotation. The dial pointer is connected UHF pointer pilot light turns on the VHF pilot light, the 8 g and places a 150,000 ohm resistor in series with the UHF oscillator plate, as explained above

\section*{PLANETARY DRIVE}

The UHF tuner is tuned by means of a 3-gang tuning condenser, which is driven through a specially de signed planetary drive. The planetary drive is so constructed that fine tuning and coarse tuning can be accomplished with a single control knob. The tuning shaft is coupled to the driving shaft through thre balls, which form a planetary drive that produces slow rotation for fine tuning. See figure 2. After rotating 180 degrees with the tuning shaft, a pin engages th driving shaft, and the two shafts are direct-coupled

\section*{BEAM-OF-LIGHT POINTER}

The beam-of-light pointer consists of a pilot-light socket assembly, a small light box, a focusing lens, and a mechanical assembly which moves the unit as the tuning shaft is rotated. The lamp, light box, and len project a beam of light on the dial scale, and the mechanical assembly moves this beam across the scale The pointer drive

\title{
ALIGNMENT AND REPAIRS
}

The frequencies at which the Tuner-Adapter oper
ates are extremely high; therefore, it is necessary tha the utmost care be taken to safeguard against upset: ting the delicate adjustments of the tuner. It is recom
 and such as replacement of the tube or cher should we return external leads. The Tuner-Acaper majo- repairs, unless the serviceman is perperly equipped to perform these jobs. In gencral a pood equic to follow is not to remove the uwer of the tuner Adapter.

NOTE: Replacing the tube with a new on may detune the tuner. If this occurs, a number of tubes should be tried, until the most satisfactory substitute for the original found.


Figure 2. Planetary Drive Assembly, Exploded View, Showing Mechanical Construction. (Both Tuner-Adapters) \({ }^{\text {² }}\)

\section*{INSTALLATION INSTRUCTIONS}

To install the Tuner-Adapter on the r-f chassis, proceed as follows:
1. Remove the cabinet back and r-f chassis from the cabinet. Then remove the nameplate on the control panel by pushing it out from inside the cabinet.
2. Insert the dial scale and bezel assembly into the hole provided in the cabinet. The four studs should be passed through the four holes provided. Fasten the assembly in place with the washers and small palnuts provided.
3. Remove the tuner assembly from the mounting board with which it is was shipped. Keep the screws for mounting the tuner in the cabinet.
4. Place the spacers on the mounting studs, and use the studs to attach the bracket and socket assembly to the rear of the VHF tuner on the r-f chassis, as shown in figure 4.
5. Place the switch-actuator assembly on the shaft extending from the rear of the VHF tuner so that the switch-actuator stud points away from the tuner. See
figure 4 . figure 4.
6. Place the switch assembly on the mounting
studs, and fasten it in place with the fiber washers, lock washers, and nuts provided. See figure 4.
7. The UHF tuner is designed to convert the UHF signals to the frequency of Channel 2 or Channel 3. If a VHF station is available on Channel 2 in the area where the receiver is to be used, set the switch actuator to operate the switch on Channel 3. If a station is available on Channel 3 set the actuator to throw the witch Channel 2. Fasten the actuator in place, and check the operation of the actuator stud and the and check the operation of the actuator see that the switch is thrown properly.
8. Remove the bulb and shield from the pilot-ligh 8. Remove the bulb and shield fom the pilot-ligh assembly on the r-f chassis, and place them in the empty
socket of the UHF tuner assembly. Tape up the old socket of the UHF tuner assembly. Tape up
socket of the r-f chassis with the tape provided.
9. Remove the audio output tube ( 6 K 6 GT in r-f chassis 81 , or \(6 L 6 G A\) in r-f chassis 84 ), plug the octal adapter into the tube socket, and place the tube in the adapter socket. The octal adapter is wired to the
switch. switch.
10. Remove the antenna lead from the VHF tuner and solder the short lead from the UHF-VHF changeover switch to the VHF tuner antenna terminals from
which the antenna lead was removed. See figure 4.



TP2-3280
Figure 3. Drive-Cord Stringing Arrangement (Both Tuner-Adapters)
11. Fasten the dress lug to the chassis with the screw provided (see figure 5) ; then dress the leads un er the lug
12. Install the r-f chassis in the cabir \(t\), and insert the pilot-light socket into the pilot-light clip. Fasten the r-f chassis with the original bolts. Place the orig al knobs on their shafts.
13. Place the UHF tuner in the cabinet, between he r-f and deflection chassis, and fasten the UHF tuner o the chassis shelf with the three screws removed in step 3. It is important that these screws be tightened securely, to hold the UHF tuner in place on the chassi shelf.
14. Plug the 5 -pin plug of the UHF tuner into the 5 -pin socket on the bracket installed in step 4. Fasten the lead with the clip over the pin located near the 5 -pin socket. Dress the leads as shown in figure 5 .


Figure 4. Change-Over Switch Mounting Details (Tuner

\section*{© John F. Rider}




Figure 17. Change-Over Switch Mounting Details (Tuner-Adapter Part No. 43-6591)
rule to follow is not to remove the cover of the Tuner Adapter

NOTE: Replacing the tube with a new one may detune the tuner. If this occurs, a number of tubes should be tried, until the most atisfactory substitute for the original is found

\section*{INSTALLATION INSTRUCTIONS}

UHF Tuner-Adapter UT20A, Part No. 43-6591, is designed for installation. in Philco High Fidelity TV-90 Television Receivers using r-f chassis 91A or 94A; with Extension Kit, Part No. 43-6593, this Tuner-Adapter may also be used in Television Receivers using r-f chassis 97. To install the UHF Tuner-Adapter on the f chassis, proceed as follows:
1. Remove the cabinet back and r-f chassis from he cabinet; then remove the nameplate on the control panel by pushing it out from inside the cabinet.
2. Insert the dial scale and bezel assembly into the hole provided in the cabinet. The four studs should
be passed through the four holes provided. Fasten the assembly in place with the clips provided.
3. Remove the tuner assembly from the mounting board with which it was shipped. Keep the three screws for mounting the tuner in the cabinet.
4. Place the spacers on the mounting studs, and use the studs to attach the bracket and socket assembly to the rear of the VHF tuner on the r-f chassis. See fig ure 17.
5. Place the switch-actuator assembly on the shaft extending from the rear of the VHF tuner so that th witch-actuator stud points away from the tuner. Se figure 17
6. Place the switch assembly on the two mounting studs, and fasten it in place with the fiber washers, lock washers, and nuts provided. See figure 17
7. Put the VHF Channel Selector in the Channel 2 position. Rotate the switch actuator on the tune shaft until the actuater touches the fiber cam on th changeover switch. Fasten the switch actuator in this position. Rotate the Channel Selector to the UHF position. Check the switch operation, to make sure position.


Figure 18. Lead Dress and Tuner Mounting Details (Tuner-Adapter Part No. 43-6591)
TP2-3281
nel Selector to Channel 13 position, and check the switch operation, to make sure that the switch is not thrown in this position. Lubricate the switch-actuator stud and switch cam with cup grease.
8. Remove the bulb and shield from the pilot-light assembly on the r-f chassis, and place them in the pilot-light socket of the UHF tuner assembly. Remove the pilot-light socket and cable assembly from the r-f chassis. (The socket and cable assembly may be discarded, as it is no longer required.) \({ }^{\circ}\) Insert the 4 -pin plug from the switch into the 4 -pin pilot-light socket on the r-f chassis. See figure 17.
9. Remove the antenna lead from the VHF tuner, and solder the short lead from the UHF-VHF changeover switch to the VHF tuner terminals from which the antenna lead was removed.
10. Install the chassis in the cabinet, and insert the pilot-light socket into the pilot-light clip. Fasten the r-f chassis with the original mounting bolts. Place the original knobs on their shafts.
11. Place the UHF tuner in the cabinet, between the r-f and deflection chassis, and fasten the UHF tuner to the chassis shelf with the three screws removed in step 3. It is important that these screws be tightened securely, to hold the UHF tuner in place on the chassis shelf.
12. Insert the coaxial cable into the jack on the VHF tuner. See figure 18.
13. Insert the 4 -pin plug of the UHF tuner into the 4 -pin socket on the bracket installed in step 4. Dress the leads as shown in figure 18.
14. Place the knob provided on the UHF tuner shaft, and set the tuning shaft in the counterclockwise position. Turn the receiver on, and, from the back of the cabinet, observe the position of the beam-oflight pointer on the dial scale. If the light beam does not fall on the scale index mark on the back of the scale, turn the receiver off and loosen the locking screw on the pointer. See figure 18. Move the pointer assembly slightly in the required direction. Again


Figure 19. Side View and Base View of Tuner-Adapter UT20A, Part No. 43-6591, Without Board Assemblies
turn on the receiver and observe the position of the light-beam pointer. If necessary, repeat the adjustment until the pointer falls on the index mark; then fasten the locking screw.
15. Replace the fishpaper antenna-lead holder with the new holder provided. Fasten the new holder with the two nails provided, and then pass the twin-wire leads through the holes as shown in figure 6.
16. Fasten the antenna terminal board provided as shown in figures 7 through 11. Replace the cabinet back, and make the connections illustrated for th type of antenna installation being used.
17. Paste the label provided over the outsideantenna instructions on the cabinet back.

\section*{INSTALLATION INSTRUCTIONS FOR}

\section*{EXTENSION CABLE PART NO. 43-6593}

Extension Cable Part No. 43-6593 is designed to provide for installation of UHF Tuner-Adapte UT20A, Part No. 43-6591, in Philco Television Re ceivers using r-f chassis 97 . To install the extension cable with the Tuner-Adapter, follow the instructions supplied with the Tuner-Adapter, except for step 12. Change step 12 to read as follows:

Insert the coaxial cable from the UHF tuner into the ack on the end of the extension cable. Insert the extension cable into the jack on the VHF tuner.

\section*{REPLACING AND ADJUSTING} BEAM-OF-LIGHT POINTER PILOT LAMP
When the beam-of-light pointer pilot lamp is replaced, or if the assembly is disturbed, the pointer assembly must be refocused. To refocus the assembly, proceed as follows.
\(\cdot 1\). Remove the pointer locking screw, and remove the pilot light and lens assembly from the tuner by sliding the assembly forward.
2. Disconnect the two wires of the pilot-light socket at the terminal board on the side of the tuner.
3. Remove the cement that holds the pilot-light socket in position; then place the assembly in a focusing jig such as that shown in figure 21. This jig may be constructed from heavy-gauge sheet metal. Connect the two leads from the socket to a 6.3 -volt source.

NOTE: If the pilot lamp requires replace
ment, it must be replaced with one having a
straight-wire type of filament. If the filament
is of coiled wire, proper focus cannot be
obtained.

\section*{(c) John F. Rider}


Figure 20. Top View and Base View of Tuner-Adapter UT20A, Part No. 43-6591, With Board Assemblies

PARTS LIST
UHF TUNER-ADAPTER PART NO. 43-6592
\begin{tabular}{|c|c|c|}
\hline Reference Symbol & Description & \begin{tabular}{l}
Service \\
Part No.
\end{tabular} \\
\hline R8 & Resistor, grid leak, 100,000 ohms & .66-41083 \\
\hline R9 & Resistor, plate damping, 1500 ohms & .66-2158 \\
\hline R10 & Resistor, plate decoupling, 330 ohms & .66-1338340 \\
\hline R11 & Resistor, output damping, 1000 ohms & 66-2108340 \\
\hline R12 & Resistor, B+ dropping, 10,000 ohms,
10 watts & 33.1336-58 \\
\hline R13 & Resistor, filament dropping, 10 ohms & \\
\hline R14 & Resistor, B+ dropping, 150,000
ohms & \\
\hline R15 and & Resistor, damping, 470 ohms & .66-1478340 \\
\hline & Resistor, pilot lamp, 3.9 ohms & 66-9898340 \\
\hline \multirow[t]{6}{*}{T1} & Transformer, i-f output & 32-4575 \\
\hline & Board ass'y, mixer & 6.7475-3 \\
\hline & Board ass'y, oscillator & 76-7480 \\
\hline & Panel, filter ......... & 6-8078-1 \\
\hline & Tank ass'y, oscillator & 76-7473 \\
\hline & Padder ass'y., oscillator & 76-7564 \\
\hline
\end{tabular}

MISCELLANEOUS
ELECTRICAL PARTS
\begin{tabular}{|c|c|}
\hline Description & \begin{tabular}{l}
Service \\
Part No
\end{tabular} \\
\hline Cable ass'y, pilot light ....... & 27.6233-50 \\
\hline Padder ass'y. (L11 and L12 tuning adjustment) & 76-8193 \\
\hline Panel, antenna, UHF & 76-7097 \\
\hline Switch & 42-1996-1 \\
\hline
\end{tabular}

MECHANICAL PARTS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Beam-of-light pointer assembly:} \\
\hline Housing, lamp & 28-9251 \\
\hline Lens & 54-8908 \\
\hline Speed nut, pointer assembly & 1W56958 \\
\hline Screw, pointer adjusting & 1W12492FA3 \\
\hline Pivot, threaded & 28-5 76 \\
\hline \multicolumn{2}{|l|}{Planetary assembly:} \\
\hline Bracket & 76-8303 \\
\hline Ball, \(1 / 8{ }^{\prime \prime}\) & 562017 \\
\hline Ball, \%/88" & 56-8020 \\
\hline Ball, \(7 / 32^{\prime \prime}\) & 56-8020-1 \\
\hline Block, spring & 28-9175 \\
\hline Ring, retaining & 1W60982PE7 \\
\hline Shaft, inner end & 28-9176 \\
\hline Shaft, outer & 28-9069-1 \\
\hline Shaft and pin ass'y., inner & 76-8300 \\
\hline Screw, adjusting & 28-9094 \\
\hline Spring & 28-9174 \\
\hline \multicolumn{2}{|l|}{Shaft and rotot assembly, mounting:} \\
\hline Ball, bearing (10) & W2510.5 \\
\hline Bearing, front & 56.9593 \\
\hline Bearing, rear & 56.9609 \\
\hline Nut, front bearing & 56.9594 \\
\hline Nut, rear bearing & 56.9599 \\
\hline Nut, insert & W1679-1FA3 \\
\hline Spring, center (2) & 56-9590 \\
\hline Spring, end (2) & 56-9591 \\
\hline \multicolumn{2}{|l|}{Switch mounting:} \\
\hline Actuator assembly & 76.8189 \\
\hline Collar stud (2) & 28-9126-1 \\
\hline Lock washer (2) & 1W24515FA1 \\
\hline Nut, \#8, special (2) & 1W20506FA3 \\
\hline Spacer, \(3 / 8^{\prime \prime}\) (2) \({ }^{\text {a }}\) & 1W29158FA? \\
\hline Washer, fiber (2) & 27-4109-29 \\
\hline
\end{tabular}


John F. Rider

Model 17T261DE
"Ainsworth" Walnut, Mahogany, Blonde

INDEX
ALIGNMENT INSTRUCTIONS . . . 4
INSTALLATION DATA . . . . . . . 2 PARTS LIST . . . .. . . . . . . . 13 PRODUCTION CHANGES. . . . . . 16 RESISTANCE MEASUREMENTS .. 15
SCHEMATIC .......... .. 16 SPECIFICATIONS . . . . . . . . . 1 TOP VIEW - TUBE LAYOUT. . . 3 TRIMMER LOCATIONS. . . . . . . 1
TROUBLESHOOTING . . . . . . . . 8
VOLTAGE MEASUREMENTS ... 11 WAVEFORMS
9

\section*{ELECTRICAL AND MECHANICAL SPECIFICATIONS}
(Continued)
\begin{tabular}{|c|c|}
\hline PICTURE Intermediate frequencies & Operating controls (Front Panel) \\
\hline Picture Carrier Frequency...................... 45.75 mc . & \(\underset{\text { Fine Tuning }}{\text { Channel Selor }}\) ( \(\} \ldots . . . . . . . . . . . . .\). . Dual Control Knobs \\
\hline Adjacent Channel Sound Trap.................. 47.25 mc . & \(\underset{\substack{\text { Picture } \\ \text { Brightness }}}{ }\} \ldots \ldots . . . . . . . . . . . . . . . .\). Dual Control Knobs \\
\hline Adjacent Channel Picture Carrier Trap............ 39.25 mc . & \begin{tabular}{l}
Picture Horizontal Hold \\
Picture Vertical Hold \(\qquad\)
\end{tabular} \\
\hline SOUND INTERMEDIATE FREQUENCIES & \(\left.\begin{array}{l}\text { Sound Volume and On-Oft Switch } \\ \text { Tone Control and Phono Switch }\end{array}\right\}\)........ Dual Control Knobs \\
\hline Sound Carrier Frequency...........41.25 mc. and 4.5 mc . & NON.OPERATING CONTROLS (not including r-f and i.f adjustments) \\
\hline deo response............................. To 4 & Picture Centering.................top chassis adjustment \\
\hline FOCUS....................................... Magnetic & \begin{tabular}{l}
Width. ...............................ear chassis adjustment \\
Height. ..............................ear chassis adjustment
\end{tabular} \\
\hline SWEEP DEFLECTION........................... Magnetic & Horizontal Linearity.......rear chassis screwdriver adjustment Vertical Linearity......................ear chassis adjustment \\
\hline SCANNING........................... . . . & Horizontal Drive...........rear chassis screwdriver adjustment Horizontal Oscillator Frequency . . . . . . . rear chassis adjustment \\
\hline HORIzONTAL SWEEP frequency.............15,750 cps & Horizontal Oscillator Waveform..... bottom chassis adjustment Horizontal Locking Range................rear chassis adjustment \\
\hline & Focus......................top chassis adjustment \\
\hline VERTICAL SWEEP FREQUENCY. ................. 60 cps & Ion Trap Magnet........................top chassis adjustment Deflection Coil.............top chassis wing nut adjustment \\
\hline RAME frequency (Picture R & AGC Co \\
\hline
\end{tabular}

\section*{HIGH VOLTAGE WARNING}

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, in. VOlves a Shock hazard from the receiver power supplies. work on the receiver Should not be attempted by anyone who is not thoroughly familiar with the preCAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE the receiver with the high voltage compartment shield removed.

\section*{KINESCOPE HANDLING PRECAUTIONS}
do not remove the receiver chassis, install. remove or handle the kinescope in any manner unless shatterproof goggles are worn. people not so equipped SHOULD BE KEPT AWAY WHLLE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM the body while handling.

The kinescope bulb encloses a high vacuum and due to its large suriace area, is subjected to considerable air prossure. For this reason. the kinescope must be handled with more care than ordinary recelving tubes.

The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or subjected to more than moderate pressure at any time. During service if the tube sticks or fails to slip smoothly into its socket, or dellecting yoke, investigate and remove the cause of the trouble. Do not lorce the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA roplacement kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver.

\section*{OPERATING INSTRUCTIONS}
8. Adjust the PICTURE and BRIGHTNESS controls for suil able picture contrast and brightness.
9. In switching from one channel to another, it may be necessary to repeat steps 4 and 8 .
10. When the set is turned on again after an idle period it should not be necessary to re peat the adjustment if the pos been changed 11 any adiustme is necessary, step number 4 generally sufficient.
11. If the positions of the controls have been changed, it may be necessary to repeat steps through 8.
12. To use a record player plug the record-player output cable into the PHONO jack on fine the rear apron, and set the TV
TUNING PH tone switch to a "PH" pos tion.

\section*{INSTALLATION INSTRUCTIONS}

UNPACKING.-These receivers are shipped complete in cardboard
Take the receiver out of the carton and remove all packing Make sure that all tubes are in place and are firmly seated in their sockets.
Check to see that the kinescope high voltage lead clip is in
Plug a power cord into the 115 volt a-c power source and into the receiver interlock receptacle. Turn the receiver power
witch to the "on" position, the brightness control fully clockswitch to the "on" position, the brightness contr
wise, and the picture control counterclockwise.
ION TRAP MAGNET ADJUSTMENT. - Set the ion trap magnet approximately in the position shown in Figure \({ }^{2}\)
Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting
until the raster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjust-
ment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.


Figure 2-Yoke and Focus Mugnet Adjustments

DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask,
rotate the deflection yoke until this condition is obtained rotate the deflection yoke until this co

PICTURE ADJUSTMENTS. -- It will now be necessary to obtain a test pattern picture in order to make further adjust-
ments. Connect the antenna transmission line to the receiver. If the Horizontal Oscillator and AGC System are operating properly. it should be possible to sync the picture at this point However, if the AGC control is misadjusted, and the rece
is overloading, it may be impossible to sync the picture.
If the receiver is overloading, turn R181 on the rear apron
(see Figure 3) counterclockwise until the set operates normally '(see Figure 3) counter-clockwise
and the picture can be synced.

ChECK OF horizontal oscillator alignment. Turn the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal
sync. Momentarily remove the signal by switching of channel then back. Normally the picture will be out of sync. Turn bars will be gradually reduced and when only 2 or 3 bars sloping downward to the left are obtained, the picture will
pull into sync upon slight additional clockwise rotation of the pull into sync upon slight additional clockwise rotation of the
control. Pull-in should occur before the control has been turned 120 degrees from the extreme counter-clockwise pos tion. The picture should remain in sync for approximately 90


Figure 3-Rear Chassis Adjustments

\section*{INSTALLATION INSTRUCTIONS}
degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should remain in sync and should not show a black bar in the picture.
If the receiver passes the above checks and the picture is
normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with 'Focus Magnet Adjustment.
ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to
hold sync over 90 degrees of clockwise rotation of the control old sync over 90 degrees of clockwise rotation of the control
fom the pull-in point, it will be necessary to make the followrom the pull-in
ing adjustments.
Horizontal Frequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television
station and adjust the T113 horizontal frequency adjustmen at the rear of the chassis until the picture is just out of syac and ihe horizontal blanking appears as a vertical or diagona black bar in the raster. Then turn the Thy
Horizontal Locking Range Adjustment. - Set the horizontal hold control to the full counter-ciockwise position. Momentarily emove the signal by switching off channel then back. Th picture may remain in sync. If so turn the T113 rear core
slightly \(a n d\) momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down o the left. Slowly turn the horizontal hold control clockwis and note the least number of diagonal
belore the picture pulls into sync. 14 more than 3 bars are present
If more than 3 bars are present just before the picture pulls slightly clockwise. li less than 2 bars are present. adjust C191A slightly counter-clockwise. Turn the horizontal hold control
counter-clockwise. momentarily remove the signal and re check the number of bars present at the pullin point. Hepea check the number of bars present at the pull
his procedure until 2 or 3 bars are present.
Repeat the adjustments under "Horizontal Frequency Ad-
justment" and "Horizontal Locking Range Adiustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizor al Oscillator Alignment" the oscillator is properly adjusted 11 it is impossible to sync the picture at this point and the
AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in th alignment procedure on page 11. For field purposes paragrap "B" under Horizontal Oscillator Waveform Adjustment ma be omitred.

FOCUS MAGNET ADJUSTMENT. - The focus magnet should be adjusted so that there is approximately threeeighths inch
of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing ives best average focus over the face of the tube
The axis of the hole through the magnet should be parallel with the axis of the kinescope ne
PIN.CUSHION CORRECTION. - Two pin-cushion correc tion magnets are employed to correct a small amount o
pincushion of the raster due to the lens effect of the face o in-cushion of the raster due to the lens effect of the tace
he kinescope. These magnets are mounted on small arms. one on each side of the kinescope as shown in Figure 2. Th arms hinge in one plane on self lapping screws which ac magnets are swung towards the tube, maximum correction are swung away from the tube. To adjust the magnets, loosen the two self tapping screws and position the magnets until the sides of the raster appear straight. Tighten the screws
without shifting the position of the magnets. ln some cases it may be necessary to twist or bend the magnet support arms to obtain the appearance of straight raster edges.
CENTERING ADJUSTMENT. - No electrical centering con Irols are provided. Centering is accomplished by means of separate plate on the focus magnet. The centering plates in
lude a locking screw which must be loosened betore llude a locking screw which must be loosened betore cen
lering. Up and down adjustment of the plate moves the pictur ering. Up and down adjustment of the plate moves the picture
side to side and sidewise adjustment moves the picture up and down.

Ih a corner of the raster is shadowed, check the position of of maximum raster brightness to eliminate the shadow und recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage 1 , the tube. In some cases it may be neces.
sary to shift the position of the focus magnet in order to sary to shift the position
eliminate a corner shadow.
WIDTh. DRIVE and horizontal linearity adjust. MENTS. - Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best clockwise until the picture begins to "wrinkle" in the middle hen clockwise until the "wrinkle" disappears.
Turn the horizontal linearity control L 107 clockwise until the picture begins to "wrinkle" on the right and then counter-
clockwise until the "wrinkle"" disappears and best linearity is obtained.
Adjust the width control Llo6 to obtain correct picture width. A slight readjustment of these three controls may be necessary to obtain the best linearity
drive control affect horizontal adjusted, recheck the oscillator alignment.
height and vertical linearity adjustments. - ad. just the height control (R199 on chassis rear apron) until the
picture fills the mask vertically. Adjust vertical linearity (R211 picture fills the mask vertically. Adjust vertical linearity (R211
on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a re. adjustment of th
with the mask.

FOCUS. - Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the whie
Recheck the position of the ion trap magnet to make sure
that maximum brightness is obtained.
Check to see that the yoke thumbscrew and the focus magnet mounting screws are tight.


Figure - R-F Oscillator Adjustments
CHECK OF R-F OSCILLATOR ADJUSTMENTS. - Tune in all available stations to see if the receiver r - oscillator is adjusted to the proper frequency on all channels. If adjust
ments are required, these should be made by the method out lined in the alignment procedure on page 9 . The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown
in Figure 4 . Adjustment for channel 13 is on top of the chassis. AGC THRESHOLD CONTROL - The AGC threshold con require readjustment in the field.
To check the adjustment of the AGC Threshold Control tune in a strong signal and sync the picture. Momentarily remove the signal by switching off channel and then back.
the picture reappears immediately, the receiver is not over the picture reappears immediately, the receiver is nor over
loading due to improper seting of R181. If the picture requires an appreciable portion of a second to reappear, or bends
excessively. His1 should be readjusted.

John F. Rider

\section*{INSTALLATION INSTRUCTION}

Turn R181 fully counter-clockwise. The raster may be bent until there is a very, very slight bend or change of bend in the picture. Then turn R181 counter-clockwise just sufticien
If the signal is weak, the above method may not work as it may be impossible to get the picture to bend. In this case
turn R181 clockwise until the snow in the picture becomes解 more pronounced, heise ratio is obtained.
The AGC control adjustment should be made on a strong ignal if possible. If the control is set too far clockwise on weak signal, then the receiver may overload when a stron

FM TRAP ADJUSTMENT. - In some instances interference may be encountered from a strong FM station signal. A tra the trap tune in the station on which the interference is ob served and adjust the L58 core on top of the antenna matching

CAUTION. - In some receivers, the FM trap L 58 will tun down into channel 6 or even into channel 5 . Needless to say such an adjustment will cause greatly reduced sensitivity on hese channels. If channels 5 or 6 are to be received, check
LS to make sure that it does not affect sensitivity on these two channels.
Replace the cabinet back and connect the receiver antenna eads to the cabinet back. Make sure that the screws holding \(t\) are up tight, otherwise it may rattle or buzz when the re

KINESCOPE SCREEN CLEANING. - The kinescope saiety lass is held in place by four sping clips which may b moving the safety glass for cleaning without the necessity of romoving the chassis and kinescope
CHASSIS REMOVAL. - To remove the chassis from the cabinet for repair or installation of a new kinescope, remove
the control knobs, the cabinet back, unplug the speaker cable kirol knobs, the cabinet back, unplug the speaker cable, oltage cable. Take out the chassis bolts under the cabine Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION. - Do not install remove, or handie the kinescope in any manner, unless shatter
proof gogqles and heavy qioves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.
REMOVAL OF KINESCOPE.-To remove the kinescope from the cabinet, loosen the two nuts and disengage the rods
alongside the kinescope. Remove the wing screw which holds alongside the kinescope. Remove the wing screw which holds
he yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus magnet as an assembly. Handle this tube by the portion at the edge of the screen will produce leakage paths which may interfere with recep tion. If this portion of the tube has inadvertently been handled wipe it clean with a soft cloth moistened with "dry" carbo
letrachloride.
installation of kinescope. - Wipe the kinescop creen surface and fron panel safety glass clean of all du or similar cleaning agent.
Replace the kinescope and chassis by reversal of the reigh vollage contact is to the right when linstalled so that the the rear of the cabinet. The magnet of the ion trap magne

CABINET ANTENNA.-A cabinet antenna is provided in ene receivers and the heads are brought out near the a in place of the outdoor antenna in areas where the signal are strong and no reflections are experienced.

ANTENNAS.-The finest television receiver built may be said to be only as good as the antenna design and installasuit the particular local conditions, to install it properly and orient it correctly
If two or more stations are available and the two stations are in different directions, it may be possible to make a compromise orientation wh
an all such channels.
If it is impossible to obtain satistactory results on one or more channels, it may become necessary either to provide means for turning the antenna when switching channels or to
install \(a\) separate antenna for one or more channels and switch antennas when switching channels. In some cases, the antenna should not be installed permanently until the quality of the picture reception has been line can be run between receiver and the antenna, allowing sufficient slack to permit moving the antenna. Then, with a telephone system connecting an observer at the receiver and
an assistant at the antenna, the antenna can be positioned an assistant at the antenna, the antenna can be positioned
to give the most satisfactory results on the received signal to give the most satisfactory results on the received signal.
A shift of direction or a few feet in antenna position may effect a tremendous difference in picture reception.

REFLECTIONS. - Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the image occurs when a signal arrives at or subsequen being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less
severe cases, reilections may occur that are not noticeable severe cases. reflections may occur that are not noticeable
as reflections but that will instead cause a loss of definition in the picture.
Under certain extremely unusual conditions, it may be pos sible to rotate or position the antenna so that it receives the cleanest picture over a rellected path. In such is the case, the
antenna should be so positioned. However, such a position may give variable results as the nature of reflecting surfaces may vary with weather conditions. Wet surfaces have been surfaces. Depending upon the circumstances, it may be possible to
eliminate the reflections by rotating the antenna or by moving
it to it to a new location. In extreme cases, it may be impossible -
INTERFERENCE.-Auto ignition, street cars, electrical mawhich spoils the picture. Whenever possible, the antenna location should be removed as far as possible from highways, hospilas, doctors' offices and similar sources of inter keep the antenna rods at least \(1 / 4\) wave length (at least 6 feet away from oher antennas, metal roots, gutters or other metal objects.
Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmission line.
However, if the intertering signal is on the same frequency as the television station, a trap will provide no improvement.
WEAK PICTURE.-When the installation is near the limit of the area served by the transmitting station, the picture may on the screen. This condition is due to lack of signal strength trom the transmitter.

RECEIVER LOCATION.-The owner should be advised of he importance of placing the receiver in the proper location The location should be chosen-
-Away from bright windows and so that no bright light will tall directly on the screen. (Some illumination in the room is desirable, however
- To give easy access for operation and comtortable -To permit
Convenient
-To allow adequate ventilation.

CHASSIS TOP VIEW



OJohn P. Rider

Adjust L65 on top of the r.f unit for minimum 400 cycle
indication on the oscilloscope. If necessary, this adjustment can be retouched in the field to nocessary, this adjustment
to one specific trequency in the i.t band rass. to one specific frequency in the i.f band pass.. Howevert, in
such cases, care should be taken not to adjust it so as to such cases, care should be taken not to adjust it so as to
reduce sensitivity on channel 2 . Remove the wire clip from pin 7 of V 2 and replace the tube and tube shield.
Set the channel
Turn the fine tuning control 30 degrees clockwise from the
center of its mechanical range now and at all times when center of its mechanical range no
adjusting the oscillator frequency.
adjusting the oscillator frequency.
Adjust C 2 for proper oscillator frequency, 227 mc . This may be done in several ways. The easiest way and the way which will be recommended in this procedure will be to use the
signal generator as a heterod yne frequency meter and beat signal generator as a heterodyne frequency meter and beat
the oscillator aqainst the signal generator. To do this, tune the signal generator to 227 mc. with crystal accuracy. Insert one end of a piece of insulated wire into the rif unit through the
hole provided for the adjustment for C11. Be careful that the hole provided for the adjustment for C11. Be careful that the
wire does not touch any of the tuned circuits as it may cause wire does not touch any of the tuned circuils as it may cause
the frequency of the rit unit oscillator to shift. Connect the other end of the wire to the "rif in" terminal of the signal
generator. Adjust C 2 to obtain an audio beat with the signal generator.
generator.
Note--If on some units, it is not possible to reach the proper
channel 8 oscillator frequency by adjustment of \(C 2\). switch to channel 8 oscillator frequency by adjustment of C2, switch to
channel 13 and adjust L46 to obtain proper channel 13 oscillator frequency as indicated in the table on page 8 . Then, switch trequency as indicated in the table on page 8. Then, switch
to channel 12 and adjust L 1110 obtain proper channel 12 oscilto channel 12 and adjust 11 to obtain proper channel propriate oscillator trimmer to obtain the proper frequency on
each channel. Then again on channel 8 , adjust \(C 2\) to obtain proper channel 8 oscillator frequency. Switch back to channel 13 and adjust LL46 and back to channel 8 and acjust C2.
Set the T 1 core for maximum inductance (core turned counter. Set the Tl core for maximum inductance (core turned counter-
clockwise.) Connect the sweep generator through a suitable attenuator
as shown in Figure 11 to the input terminals of the antenna matching unit.
Connect the signal generator loosely to the antenna ter-
minals.
Set the sweep generator to cover channel 8.
Set the oscilloscope to maximum gain and use the minimum
input signal which will produce a useable pattern on the Input signal which will produce a useable pattern on the
oscilloscope. Excessive input can change oscillator injection during alignment and produce consequenen misclaignment even
though the response as seen on the oscilloscope may look normal.
Insert markers of channel 8 picture carrier and sound carrier, 181.25 mc . and 185.75 mc .
Adjust \(\mathrm{C} 9 . \mathrm{C} 11\), C15 and C18
Cor approximately correct curve shape, frequency, and band width as shown in Figure The correct adjustment of C18 is indicated by maximum
amplitude of the curve midway between the markers. C15 tunes the r-f amplifier plate circuit and affects the frequency
tit of the pass band most noticeably. C9 tunes the mixer grid
circuit and affects the till of the curve most noticeably lascircuit and affects the tilt of the curve most noticeably as.
suming that \(C 18\) has been properly adjusted). C11 is the coupling adjustment and hence primarily affects the response band width.
Adjust the signal generator to the channel 6 oscillator frequency 129 mc .
Turn the fine
Turn the fine tuning control 30 degrees clockwise from the
center of its mechanical range. center of its mechanical range.
Adjust \(L 5\) for an audible be
as before.
Set the sweep generator to channel 6.
From the signal
From the signal generator, insert channel 6 sound and pic-
ture carrier markers, 83.25 mc . and 87.75 mc . Adjust L48, L50 and L53 for proper respo
Figure 13.
L50 tunes the r-f amplifier plate circuit and primarily
affects the frequency of the pass band. L53 tues the rif amplifier grid and is adjusted to give maximum amplitude of amplifier grid and is adjusted to give maximum ampititude of
the curve between the markers. . 48 affects the tilt of the curve
but not quite the same as C9 adjustment. When the circuits are corfectly adjusted and L48 is rocked on either side of its
proper setting. the high frequency (sound carrier) end of the
curve appears to remain nearly fixed in amplitude while the
picture carrier end tilts above or below this point Turn off the sweep and signal generators.
Connect the "Voltohmyst" to the r-f unit test point TPI. Adjust the oscillator injection trimmer C8 for -3.5 volts or
at maximum if -3.5 volts cannot be reached. This voltage at maximum in -3.5 volts cannot be reached. This voltage
should fall between -2.5 and -5.5 volts on all channels when
the alignment of all circuits is the alignment of all circuits is completed.
Turn the sweep generator and signall generator back on
and recheck channel 6 response. Readjust L48, L50 and L53 and recheck
ii necessary.
Set the receiver channel selector switch to channel 8 and
readjust C 2 for proper oscillator frequency readjust C2 for proper oscillator frequency, 227 mc . Set the sweep generator and signal generator to channel 8.
Headjust \(\mathrm{C}, \mathrm{C} 11, \mathrm{C} 15\) and C 18 for correct curve shape. frequency and band width.
Turn off the sweep and signal generators, switch back to
channel 6 and check the oscillator injection voltage at TP1 if \(\mathrm{C9}\) was adjusted in the recheck of channel 8 response. far off, it may be neecessary to adjust the oscillator frequency and response on channel 8 , adjust the oscillator injection on channel 6 and repeat the procedure several times before the
proper setting is obtained. Turn off the sweep gen
channel
Adjust th
Adjust the signal generator to the channel 13 oscillator frequency 257 mc .
Sel the line tuning control 30 degrees clockwise from the
center of its mechani
Adjust L446 to obtain an audible beat. Slighty overshoot
the adjustment of L44 by turning the slug a little more in the the adjustment of L46 by turning the slug a litite more in the
same direction from the original seting then reset the oscil. same direction from the original setting, then reset the oscil.
lator to proper frequency by adjusting C 2 to again obtain the beat.
Check the response of channels 7 through 13 by switching
the receiver channel switch, sweep generator and markee the receiver channel switch, sweep generator and markee
oscillator to each of these channels and observing the response and oscillator injection obtained. See Figure 13 for typical response curves. It should be found that all these channels have the prope:
\(80 \%\) response.
If the markers do not tall within this requirement, swith
channel 8 and readjust C9, C11, C15 and C18 as necessary. Turn of the sweep generator and check the channel
oscillator frequency. If C 2 has to be readjusted for channel the principle of overshooting the adjustment and then cor recting by adjusting L46 should be tollowed in order to
establish the L/C ratio for the desired oscillator tracking. Turn the receiver channel selector switch to channel 6 . Ad just is for correct oscillator frequency, 129 mc .
Turn the sweep generator on and to channel 6 and observ
the response curve. If necessary readjust L48, L50 and L53. Switch the receiver, the sweep and signal generators to
channel 2 and adjust \(T 1\) clockwise to a pint where there is channel 2 and adjust TI clockwise to a point where there is
no change in the channel 2 response as Tl is turned. Switch the receiver through channel 6 down through channel 2 and check for normal response curve shapes and oscil lator injection voltage.
If excessive tilt in the same direction occurs on channels 2,
3 and 4 adjust C18 on channel 2 to overshoot the correction 3 and 4, adjust C18 on channel 2 to overshoot the correction
ot this till, then switch to channel 6 and adjust 153 for maximum amplitude of curve between markers. This adjustmen should produce "flat" response on the low channels if the
other adjustments especially L 48 are correct. Likewise check channels 7 through 13, stopping on 13 for the next step.
With the receiver on channel 13 , check the receiver oscil-
lator frequency. Correct by adjustment of C 2 ii necessary. lator frequency. Correct by adjustment of C2 if necessary.
Adjust the oscillator to frequency on all channels by switch ing the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer to obtain the
audible beat. It should be possible to adjust the oscillator to audible beat. It should be possible to adjust the oscillator to
the correct frequency on all channels with the fine tuning the correct trequency on all channels with the fine tuning
control in the middle third of its range. When employing WR39 calibrators to adjust of ine receiver. Oscillator, tune the calibrator to one-half the receiver oscillator frequency on
channels 4,5 and 6 and to one-fourth the receiver oscillator channels 4,5 and 6 and to one-fourth
frequency on channels 11 , 12 and 13 .
\begin{tabular}{|c|c|c|c|c|}
\hline Channel & Picture Carrier Freq, Mc & Sound Carrier Freq. Mc. & \begin{tabular}{l}
Receiver \\
R-F Osc. \\
Freq. Mc
\end{tabular} & Channe Oscillat Adjustm \\
\hline 2. & . 55.25 & 59.75 & .. 101 & .L1 \\
\hline 3. & 61.25 & . 65.75 & . 107. & L2 \\
\hline 4. & 67.25 & . 71.75 & . 113 & 13 \\
\hline 5. & 77.25 & 81.75 & . 123. & 14 \\
\hline 6. & 83.25 & 87.75 & . 129 & . 5 \\
\hline 7. & .175.25 & .179.75 & . 221 & L6 \\
\hline 8. & . 181.25 & .185.75 & . 227 & L7 \\
\hline 9. & 187.25. & .191.75 & . 233 & L8 \\
\hline 10. & .193.25. & . 197.75 & . 239 & 19 \\
\hline 11. & .199.25. & . 203.75 & . 245 & L10 \\
\hline 12. & . 205.25 & . 209.75 & . 251 & L11 \\
\hline 13. & . 211.25 & 215.75 & 257 & \\
\hline
\end{tabular}

\section*{Remove the 39 ohm resistor from the
ink to terminals " A " and " B " of T104.}
hatio detector alignment. - Set the signal generator at 4.5 mc . and connect it to the second soond i.f grid.
pin 1 of V102. Set the generator for \(30 \% 400\) cycle modulation. As an alternate source of signal, the RCA WR39B or WR39C calibrator may be employed. If used, connect its output cable
to the grid of the 4th pix i -i amplifier, pin 1 of V109. Set the to the grid of the 4th pix i.f amplifier, pin 1 of V109. Set the
frequency of the calibrator to 45.75 (pix carrier) and modu-
late with 4.5 mc. crystal. Also turn on the internal AM audio hequency 4.5 me. crystal. Also turn on the internal AM audio
late with 4.5 modulation. The 4.5 mc. signal will be picked off at T110A modulation. The 4.5 mc . signal will be picked
and amplified through the sound i if amplifier.
Connect the "Vollohmyst" to the junction of R110 and R150. Connect the oscilloscope to the junction of R111 and C113 Tune the ratio detector primary, T 102 top core for maximum DC output on the "Voltohmyst." Adjust the signal level from the signal generator for 10 volts on the "Voltohmyst" when linally peaked. This is approximately the operating level of he ratio delector for average signals.
Tune the "Voliohmyst" to the junction of R111 and C113. Tune the ratio delechor se
zero d.c on the "Voltohmyst."
Adjust R139 for minimum AM indication on the oscilloscope. Retune the T102 bottom core to obtain zero d.c on the "VoltOhmyst."
Repeat the adjustment of T 102 bottom core for zero d.c on he oscilloscope until both conditions are satisfied at the same settings of the adjustments. Final louches on these adjustments
must be made with the input signal adjusted to produce 10 volts d.c on the "Voltohmyst" at the junction of R110 and

SOUND I.F ALIGNMENT.
othe first sound \(i .1\) amplitier grid, pin the sweep generator 1 of Vlol. Adjust th generator for a sweep width of 1 mc . at a center frequency of

Insert a 4.5 mc. marker signal from the signal generator
into the first sound \(\mathrm{i} . \mathrm{f}\) grid. Cont
Connect the oscilloscope
Adjust T101 top and bottom cores tor maxim gin symmetry about the 4.5 mc . marker on the i.f response. The有 The oulput level from the sweep should be sel to produce
approximately 2.0 volt peak-topeak at terminal \(A\) of \(T 101\) when the linal touches on the above adjustment are made.
it necessary that the sweep output voltage should not ex. ceed the specified values otherwise the response curve will be
broadened, permitting slight misadjustment to pass unnoticed broadened, permitting slight misadjustment to pass.
and possibly causing distortion on weak signals.
Connect the oscilloscope to the junction of R111 and C113
and check the linearity of the response. The pattern obtained and check the linearity of the response. The pid be similar to that shown in Figure 15 .
should
SOUND TAKE.OFF ALIGNMENT. - Connect the 4.5 mc. generator in series with a 1.000 ohm resistor to terminal "C"
of T110. The input signal should be approximately 0.5 volts.

Short the fourth pix i.f grid to ground, pin 1 V109. 10 prevent
noise from masking the output indication. As an alternate source of signal the RCA WR39B or WR39C two paragraphs. Connect calibrator across link circuit, T104 A, B. and modulate 45.75 carrier with 4.5 mc . crystal.
Connect the crystal diode probe of a "VoliOhmyst" to the
plate of the video amplifier, pin 6 of V 110 (pin 8 if 6 AG 7 used ). Adjust the core of T110 for minimum output on the meter Remove the short from pin 1 Vlog to ground, if used.

PICTURE I.F TRAP ADJUSTMENT. - Connect the i.f signal
generator across the link circuit on terminals \(A\) and \(B\) of T104. generator across the link circuit on terminals A and B of T104,
Connect the "VoltOhmyst" to the junction of R193 and R194, Obtain a 7.5 volt battery capable of withstanding appre ciable current drain and connect the ends of a 1.000 ohm
potentiometer across it. Connect the battery positive terminal potentiometer across it. Connect the battery positive terminal
To chassis and the potentiometer arm to the junction of R193 and R194.
Set the bias pot 10 produce approximately -1.0 volt of bia
at the junction of R193 and R194. at the junction of R193 and R194.
Set the signal generator to each of the following 4 of 6AG7), and adjust the corresponding circuit for minimum dre output at pin 2 of V110. Use sufficient signal input to produce 1.0

1.25 mc

T105 botlom core

PICTURE I-F TRANSFORMER ADJUSTMENTS. - Set the signal generator to each of the following frequencies and peak
the specified adjustment for maximum indication on the "Volt Ohmyst." During alignment, reduce the input signal if neces sary in order to produce 1.0 volt of d-c at pin 2 of V110 with
43.7 mc.
45.5 me .
4.
.1109
.1108
T107
To align T105 and T106, connect the sweep generator to
the first picture i.f grid, pin 1 of V106 through a 1.000 mm the inst picture i.t grid, pin 1 of V106 through a \(1,000 \mathrm{~mm}\)
ceramic capacitor. Shunt R136, R143 and terminals "A" and
"FF" "F" of Tl109 with 330 ohm composition resistors. Set the i - b bias
to - 1.0 volt at the junction of R193 and H194. -1.0 volt at the junction of Risb and R199.
Adiust 105 and \(T 106\) (pin 4 of 6AG7) Adjust T105 and T106 top cores for maximum gain and
curve shape as shown in Figure 16. For tinal adjustments set the output of the sweep generator to produce 0.5 volts peak-
topeak at the oscilloscope terminals. opeak ar the osciloscope terminals.
To align T1 and T104, connect the sweep generator to the
mixer grid test point TP2. Use the shortest leads possible with not more than one inch of unshielded lead at the end of the eep cable.

Connect a 180 ohm composition resistor from terminal B of
T105 to the junction of R131 and C131. Connect the oscilloT105 to the junction of R131 and C131. Connect the oscillo
scope diode probe to terminal B of T105 and to ground. Couple the signal generator loosely to the diode probe in order to oblain markers.
Cl22 is variable and is provided as a band width adjus
ment. Preset \(\mathrm{Cl22}\) to minimum capacity Adjust Tl lop and Tl 104 bottom for maximum gain at 43.5 mc. and with 45.75 mc . at \(70 \%\) of maximum response. Adjust C122 until 41.25 mc . is at \(85 \%\) response with respect
to the low frequency shoulder at approximately 41.9 mc as shown in Figure 17.
Disconnect the diode probe, the 180 ohm and three 330 ohm
SWEEP ALIGNMENT OF PIX I.F. - Connect the oscilloscope to pin 2 of V110 (pin 4 where V110 is a 6 AG 7 ). Adjust the bias potentiometer to obtain -6.0 volts of bias as
measured by a "Voltohmyst" at the junction of H193 and measu
R194.

MCDELS 17T250DE, 17T261DE, Ch. KCS74, KCS74M1, Late

\section*{ALIGNMENT PROCEDURE} ALIGNMENT PROCEDURE


John F. Rider

This adjustment is very important for correct operation of
the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes
poorer, the stabilizing effect of the tuned circuit is reduced poorer, the stabilizing effect of the tuned circuit is reduced
and dritt of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of
the oscillotor when the hold control approaches the clockthe oscillator
wise position.
Remove the oscilloscope upon completion of this adjustment. Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching of channel then back. The
 the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clock. wise and note the least number of diago
just before the picture pulls into sync.
,

If more than 3 bars are present just before the picture pulls
into sync, adjust the horizontal locking range trimmer C191A slightly clockwise. If less than 2 bars are present, adjust C191A slightly counter-clockwise. Turn the horizontal hold
control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pullin point. Repeat this procedure until 2 or 3 bars are present.
Turn the horizontal hold control to the maximum clockwise
position. Adjust the \(T 113\) frequency core so that the diagonal position. Adjust the TII frequency core so that the diagonal
bar sloping down to the right appears on the screen and then beverse the direction of radjustment so that bar just moves of reverse the direction of adjustment so that bar just
the screen leaving the picture in synchronization.

SENSITIVITY CHECK.-A comparative sensitivity check can be made by operating the receiver on a weak signal from a
television station and comparing the picture and sound obtelevision station and comparing the picture and sound ob-
tained to that obtained on other receivers under the same conditions. This weak signal can be obtained by connecting uator pad.
RESPONSE CURVES.-The response curves shown on page
14 are typical though some variations can be expected. are typ The response curves are shown in the classical manner of
presentation. that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscillo
scope and the sweep generator. The curves may be seen scope and the sweep generator. The curves may be seen
inverted and/or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the
sweep generator. sweep generator.
NOTES ON R.F UNIT ALIGNMENT.-Because of the fre quency spectrum involved and the nature of the device, many
of the r.f unit leads and respects. Evit the power somponents are critical in some
supply leads form lops which couple to the tuned circuits, and if resonant at any of the fre quencies involved in the performance of the tuner, may cause
serious departures from the desired characteristics. In the design of the receiver these undesirable resonant loops have been shifted far enough away in frequency to allow reason-
able latitude in their components and physical arrangement without being troublesome. When the r-f unit is aligned in the
receiver. no trouble from resonan toops should be experireceiver. no trouble from resonant loops should be experi
enced. However, it the unit is aligned in a jig separate from ence. However. if the unit is aligned in a jigg separate from
the receiver. attention should be paid to insure that unwanted resonances do not exist which might present a faulty repreA
A resonant circuit exists between the r-f tuner chassis and The outer shield box. which couples into the antenna and \(r\).i.
plate circuits. The frequency of this resonance depends on the physical structure of the shield box, and the capacitance
between the tuner chassis and the front plat. This resonance between the tuner chassis and the front plate. This resonance
is controlled in the design by using insulating washers of is controlied in the design by using insulating washers
proper thickness in the front plate to tuner chassis mounting
The pertormance of the tuner will be impaired it the proper The performance of the tuner will be impaired if the proper
washers are not used. Obviously then. it the r . unit is re washers are not used. Obviously then, if the rif unit is re-
moved for service, the washers should be replaced in the
correct order when the unit is replaced. correct order when the unit is replaced.
 R-F UNIT ALIGNMEnt

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 15 & If C9 was roadju & dinstop & 4, repoat stop 11, & - 13 and & \[
\text { detop } 14 \text { until the }
\] unit oscillator & 257 mc . & spocifiod in oach & Rop aro fulfillod with & \begin{tabular}{l}
L46 for beat on het. \\
 and adjust C1 for
\end{tabular} & Fig. 7 \\
\hline 17 & Antennatermi. nals loosely & \[
\begin{aligned}
& 211.25 \\
& 215.75
\end{aligned}
\] & \begin{tabular}{l}
Antennatermi \\
nale through pad
\end{tabular} & \[
{ }_{23}^{\mathrm{Channol}}
\] & Not usod & - & TP1. Gain to maximum &  \({ }_{T P 1}\) &  & Fig. 13 \\
\hline 18 & " & \[
\begin{aligned}
& 205.25 \\
& 209.75
\end{aligned}
\] & - " & \[
\begin{array}{|c|}
\hline \text { Channol } \\
12
\end{array}
\] & Not uned & - & " & Rec. on channel 12 & " & Fig. 13 \\
\hline 19 & " & 199.25
203.75 & " & \[
\begin{array}{|c|}
\hline \text { Channol } \\
\hline
\end{array}
\] & " & - & " & Rec. on channol 11 & ' & \({ }_{\text {Fig. }} 13\) \\
\hline \({ }^{20}\) & " & \[
\begin{aligned}
& 193.75 \\
& 197.75
\end{aligned}
\] & " & \[
\begin{gathered}
\text { Channol } \\
10
\end{gathered}
\] & " & - & " & Rec. on channol 10 & " & \({ }_{\text {Fig. }} 13\) \\
\hline 21 & " & \[
\begin{aligned}
& 187.25 \\
& 191.75
\end{aligned}
\] & " & \[
\begin{array}{|c|}
\hline \text { Channol } \\
\hline
\end{array}
\] & * & - & " & Rec. on channel 9 & " & Fig. 13 \\
\hline 22 & " & 181.25
185.75 & " & Channol & " & - & " & Rec. on channel 8 & " & Fig. 13 \\
\hline \({ }^{23}\) & " & \[
\underset{\substack{175.25 \\ 179.75}}{1}
\] & " & \({ }_{\text {Channel }}^{7}\) & " & - & " & Rec. on channel 7 & " & Fig. 13 \\
\hline
\end{tabular}
\[
\begin{array}{c|c}
25 & \text { Ropoat atop 13. If the oscillator is off froquoncy overehoot the adj } \\
\hline 26 & \text { Ropoat oteps } 16 \text { through } 25 \text { until all adjuetmonts are obtained }
\end{array}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 27 & Not usod & - & Not usod & - & Loosoly to r-i unit oscillato & 129 mc . & Not ured & Rec. on channel 6 & LS for beat on het. freq. meter & Fig. 7 \\
\hline 28 & Antennaterminal. lootely & \[
\begin{aligned}
& 83.25 \\
& 87.75
\end{aligned}
\] & Antennaterminal nad
pad & \[
\underset{6}{\text { Channol }}
\] & Not usod & - & \(\underset{\substack{\text { TPaximum } \\ \text { main }}}{ }\) & \[
\begin{aligned}
& \text { Rec. on channel } 6 \\
& \text { "VoitOhmyst' on } \\
& \text { TPl }
\end{aligned}
\] &  &  \\
\hline 29 & " & \[
\begin{aligned}
& 77.25 \\
& 81.75
\end{aligned}
\] & " & \(\underset{5}{\text { Channel }}\) & " & - & " & Roc. on channel 5 & " & Fig. 13 \\
\hline 30 & " & \[
\begin{aligned}
& 87.25 \\
& 71.25
\end{aligned}
\] & " &  & " & - & " & Rec. on channel 4 & " & Fig. 13 \\
\hline 31 & " & \[
\begin{aligned}
& 61.25 \\
& 65.75
\end{aligned}
\] & " & \(\underset{3}{\text { Channol }}\) & " & - & " & Rec. on channel 3 & " & Fig. 13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{ALIGNMENT PROCEDURE} & \multicolumn{2}{|c|}{ALIGNMENT DATA} \\
\hline Stop. & \[
\begin{aligned}
& \text { CONNEGT } \\
& \text { SIGNAL } \\
& \text { GENERATOR } \\
& \text { TO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SIGNAL } \\
& \text { GEN. } \\
& \text { FREO. }
\end{aligned}
\] & \[
\begin{gathered}
\text { CONNECT } \\
\text { SEWEP } \\
\text { GENERATOR } \\
\text { TO }
\end{gathered}
\] & \[
\begin{aligned}
& \text { SWEEP } \\
& \text { FREN. } \\
& \text { FRC. }
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline \text { GONNECT } \\
\text { HETERODYNE } \\
\text { FREO METER } \\
\text { TO }
\end{array}
\] & \[
\begin{aligned}
& \text { HET. } \\
& \text { METER } \\
& \text { FREQ. } \\
& \text { MC. }
\end{aligned}
\] & \[
\begin{gathered}
\text { CONNECT } \\
\text { OSCILLOSCOPE } \\
\text { TO }
\end{gathered}
\] & \[
\begin{gathered}
\text { MISCELLANEOUS } \\
\text { CONNECTIONS } \\
\text { INSTRUCTIONS }
\end{gathered}
\] & ADJUST & \({ }_{\text {remer }}^{\text {Ti }}\) & \multirow[b]{5}{*}{} &  \\
\hline 32 & " & \(\underset{59}{59.25}\) & " & \(\underset{\substack{\text { Channel }}}{\text { cher }}\) & " & - & " & Rec. on channol 2 & " & Fig. 13 & &  \\
\hline 33 & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
If excensive tilt ir the same direction occurs on channels 2, 3 and 4, adjust C18 on channel 2 to overshoot the correction of this tilt then switch to channel 6 and adjust L53 for max. amplitude of response between carrier markers. \\
Check r-f response and oncillator injection on channels 7 through 13 steps 23 back upthrough step 17 stopping on channel 13 for the next step.
\end{tabular}}} & &  \\
\hline 35 & & & & & & & & & & & & \(\left.\left|\begin{array}{l|l|}\text { BALANCED } \\ \text { OUTPUT }\end{array}\right| \begin{aligned} & \text { BALANCED } \\ & \text { OUTPUT }\end{aligned} \right\rvert\,\) MSIG4 \(\left|\begin{array}{ll}\text { BALANCED } \\ \text { OUTPUT }\end{array}\right|\) \\
\hline 35 & Not used & - & Not usod & - & \begin{tabular}{l}
Loosely coupled \\
to r-f oscillator
\end{tabular} & 257 mc . & TPl. Gain to
maximum & Rec. on channel 13 & Cl for beat on het. freq. meter & Fig. 7 & & Figure 11-Sweep Attenuator Pads \\
\hline 36
37 & \(\stackrel{.}{*}\) & - & \(\cdots\) & - & . & 251 mc . & . & \begin{tabular}{|l|} 
Rec. on channel 12 \\
Rec. on channel11
\end{tabular} & L11 as above & \begin{tabular}{|c|} 
Fig. 7 \\
\hline Fig. 7 \\
\hline
\end{tabular} & 1 1 1 & \\
\hline 38 & . & - & . & - & . & 239 mc . & . & Rec, on channel 10 & L9 as above & Fig. 7 & & \\
\hline 39 & * & - & " & - & " & 233 mc . & " & Rec, on channel 9 & L8 as above & Fig. 7 & & \\
\hline 40 & . & - & . & - & * & 227 mc . & " & Roc.on channel 8 & L7 as above & Fig. 7 & & \\
\hline 41 & " & - & " & - & \(\cdots\) & 221 mc . & \(\cdots\) & Rec. on channel 7 & Lf as above & Fig. 7 & & SOMC. AT 60\% \(\pm 15 \%\) RESPPNSE \\
\hline 42 & . & - & " & - & " & 129 mc. & " & Rec. on channel 6
Roc. on channol 5 & \(\frac{15}{15}\) as above & \(\frac{\text { Fig. } 7}{\text { Fig. } 7}\) & & \\
\hline 44 & " & - & " & - & " & 113 mc . & " & Rec. on channel 14 & L3 as above & Fig. 7 & & gure 12-Antenna Matching Unit Re \\
\hline 45 & " & - & " & - & " & 107 mc . & " & Roc.on channel 3 & L2 as above & Fig. 7 & & \(\sim^{5} \sim^{5}\) \\
\hline 46 & " & - & - & - & - \({ }^{\text {a }}\) & 101 mc . & & Roc.on channel 2 & Ll as above & Fig. 7 & (0) & \(\square\) \\
\hline 47 & Repeatateps 35 & hrough 46 & \(\frac{\text { as a chack. On co }}{\text { RATIO DE }}\) & TEPCTOR, & , remove 39 ohm & Oosistor and & d reconnoct linkt & to terminals \(A\) and \(B\) NMENT & of T104. & &  & (2) (3) \(3^{3}\) \\
\hline 48 & Grid 2nd Snd I-F (pin 1, V102 or WR39B or C 4th pix I-F (pin i, viog.) &  & Not used & - & Not usod & - & Across spoakor
voice coill Vol. ume control sot
for max. volume. &  &  & \({ }_{\text {Fig. }}^{\text {Fig. }} 10\) &  & \begin{tabular}{l}
(5) \\
(6) \\
\(\int_{(7)}^{p}\)
\end{tabular} \\
\hline 49 & \({ }^{\circ}\) & .' & & - & & - & " &  &  & \({ }_{\text {Fig. }}^{\text {Fig. }} 10\) & 8-R-F Oscillator Alljustments &  \\
\hline 50 & \(\underset{\substack{\text { Sigy } \\ \text { Snd. } \\ \text { Gon. }}}{\text { to lat }}\) & 4.5 mc . &  & 4.5 mc . & . & - & In saries with torminal \(A\), of
tor
Timin T101. & Sweep output re-
duced to provide 2 v p-p on scope. & \[
\begin{aligned}
& \text { T101 top and bot. } \\
& \text { coras for max. bain } \\
& \text { and nymmetry at } \\
& 4.5 \text { me. }
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline \text { Fig. } \\
\hline \text { Fig. } \\
\text { Fig. } 14 \\
\hline
\end{array}
\] &  &  \\
\hline 51 & . & . & - & " & & - & Junction of R112 and C113 & Check for aymmet form (positive and & rical responso wave negative). & Fig. 15 & - \({ }^{\text {a }}\) &  \\
\hline 52 & Sig. Gen. in 86. fisms to T110-C or WR39 acros T104A and & " & Not unod & - & " & - & &  & Adiust T110 for minimum roacing & Fig. 9 &  &  \\
\hline & & & & & TURE I-F AND & rap adju & ustment & & & & 4, mex & 4.5 mc - \({ }^{\text {chen }}\) \\
\hline 53 & Not usod & - & Not used & - & Not usod & - & Not usad & Connect bias boxto R144 and to gnd.
on - & junction of R143 and djust to & &  & \[
\square \quad 4.5 \mathrm{mc} /)^{15.0 \mathrm{mc}}
\] \\
\hline \(\begin{array}{r}54 \\ \hline 5 \\ \hline 5\end{array}\) &  & 39.25 mc . & " & - & " & - & " &  & \[
\left\lvert\, \begin{array}{lll}
\text { T104 top } & \text { core } \\
\text { give } \\
\text { give min. } \\
\text { moter. }
\end{array}\right.
\] & Fig. 9 &  &  \\
\hline 55 & " & 41.25 mc . & " & - & & - & & . & T105 bot. for min. & \({ }_{\text {Fig. } 10}\) & &  \\
\hline 56
57 & & 47.25 mc . & \(\stackrel{.}{ }\) & - & " & - & " & - & T106 bot. for min. & Fig. 10 & & Figure 14
Sound I-F \\
\hline 57 & " & 43.7 mc . & . & - & " & - & " & Sig. Gon.outputto
give
i.0 V d \(-c\) \({ }^{\text {give }}{ }^{-10}{ }^{-1}\) & T109 for max. & Fig. 7 & & \begin{tabular}{llr}
\begin{tabular}{l} 
Sound I.F \\
Response
\end{tabular} & \begin{tabular}{c} 
Ratio Det. \\
Response
\end{tabular} & \begin{tabular}{c} 
T105 and T106 \\
Response
\end{tabular}
\end{tabular} \\
\hline 58 & . & 45.5 mc . & . & - & " & - & . & . & T108 for max. & Fig. 9 & & \(41.9 \mathrm{Mc}-74\) \\
\hline 59 & " & 41.8 mc . & " & - & " & - & " & " & T107 for max. & Fig. 9 & Tf &  \\
\hline 60 & \[
\begin{aligned}
& \text { First pix i-f frid } \\
& \text { (oin } 106 \text { ) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { pin }{ }^{\text {p }} \text { loosoly. }
\end{aligned}
\] & \[
\begin{array}{|c|c}
\hline \begin{array}{c}
\text { Various } \\
\text { Fico } \\
\text { Fig. } 16
\end{array} \\
\hline
\end{array}
\] &  &  & " & - &  &  &  & \({ }_{\text {Figig }}{ }_{\text {Fig }} \mathbf{1 6}\) &  &  \\
\hline 61 & Connected probe. & \[
\begin{aligned}
& \text { Various } \\
& \text { Sige } \\
& \text { Fig. } 17
\end{aligned}
\] & Mizer grid test hort lead.
\(\qquad\) &  & . & - & Scope diode prober and to gnd & Rec. on chan. 4. Connect 180 ohmis junction R135 and Cl32. Upon comecope and shunt. ing resiotore. &  & \({ }_{\text {Fig. }}^{\text {Fig. }} 17\) &  &  \\
\hline 62 & \begin{tabular}{l}
\(\underset{\text { Connocted }}{\text { Conaly to grid }}\) \\

\end{tabular} & \[
\begin{gathered}
\begin{array}{c}
\text { various } \\
\text { Fig. } \\
\text { Fig. }
\end{array}
\end{gathered}
\] & " & - & " & - & Connoct &  & Retouch T108 and pone obtain roig. 18. Do not adabsolutoly nocerssary & Fig. 18 & Figure 10-Bottom Chassis Adjustments & \begin{tabular}{l}
\(c\) \\
Figure 19-Horizontal Oscillator Waveforms
\end{tabular} \\
\hline
\end{tabular}

© John F. Rider

PICTURE I.F RESPONSE.-At times it may be desirable to observe the individual iff stage response. This can be achieved by the following method:
For T107, T108 or T109, shunt all i.f transtormers with a 330 ohm carbo
observed.
Connect a wide band sweep generator to the second pix i-f grid and adjust it to sweep from 38 mc . to 48 mc .
dark vertical line on left of picture:
(1) Reduce horizontal drive and readjust width and horizontal
linearity.
(2) Replace V117.
light vertical line on left of picture: (1) V119 defective.

Connect the oscilloscope to test point TP102 and observe the overall response. The respe.
that of the unshunted stage.
To see the response of transformers \(\mathrm{T1}\), T104 and T105, T106,
follow the instructions given on page io Figures 28 through 36 given on page 10 .
Figures 28 through 36 show the response of the various stages
obtained in the above manner. The curves shown are typical although some variation between receivers can be expected. Relative stage gain is not shown.
RESPONSE PHOTOGRAPHS Taken from RCA WO58A Oscilloscope


Figure 28-Overall Pix I-F Response


Figure 31-Response of T107 Pix I-F Transformer


Figure 34-Video Response at Average Contrast


Figure 29 Response of T1.T104


Figure 32-Response of T108


Figure 35 -Video Response
100 KC Square W'ave)


Figure 30-Response of
T105-T106 Pix I-F Transform


Figure 33-Response of T109 Pix I.F Coil
 Figure \(36-V\) ideo Response
(60 Cycle Square Wave)

Grid af Sync Separator
(Pin 4 of \(V 113)(65 N 7)\)
nltage depends on picture
Figure 4l-Vertical (30 Volts PP)
igure 42 -Horizontal (30 Volts PP

Plate of Sync Separator
Voltage depends on picture Figure 43-Vertical (33 Volts PP)

Figure 44-Horizontal (8 Volts PP)

Grid of Vertical Sync Amp.
(Pin 4 of V114A) (6SN7).
Figure 45-Vertical (12 Volts PP)
Figure 46-Horizontal (5 Volts PP) \(\rightarrow\)

Plate of Vertical Sync.Amp.
(Pin 5 of V114A) (6SN7) Figure 47-Vertical (27 Volts PP) \(\leftarrow\)
Figure 48-Horizontal (16 Volts PP)
\(\rightarrow\)

Plate of Sync Separator
(Pin 2 of V113)
Figure \(57-\) Vertical (15 Volts PP)
Figure \(58-\) Horizontal (15 Volts PP)


Figure 51 -Grid of V'ertical Sueep
Output (Pin lof V115)(6AQ5)
Output (Pin loo V115) (6AQ5)
\(\longleftarrow\)
Figure 52-Plate of Vertical Sweep
Output (Pin 5 of V115) (6AQ5)
( 800 Volts PP)

Cathode of Sync Separator
(Pin 3 of V113) 6 SN7)
Figure 53-Vertical (ll Volts PP)
Figure 54-Horizontal (6 Volts PP)

Grid of Hor Sync Amp
(Pin lof V112) (6SN7) Figure 63-Vertical (65 Volts PP)
Figure 64-Horizontal (65 Volts PP)

Figure 55-Vertical (40 Volts PP)
Figure \(\overline{36-H o r i z o n t a l ~(40 ~ V o l t s ~ P P) ~}\)

Cathode of Hor Sync Amp
(Pin 3 of V112) (6SN7)
Figure 65-Vertical (18.Volts PP) \(\leftrightarrow\)
Figure 66-Horizontal (18 Volts PP)

O John F. Rider

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { No. }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Tube } \\
\text { Type }
\end{gathered}
\]} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operating
Condition} & \multicolumn{2}{|l|}{E. Plate} & \multicolumn{2}{|l|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|l|}{E. Grid} & \multirow[b]{2}{*}{Notes on Measurements} \\
\hline & & & & \[
\begin{array}{|l|l|}
\hline \text { Pin } \\
\text { No. }
\end{array}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { Po } \\
& \text { No. }
\end{aligned}
\] & Volis & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & Pin
No. & Volts & \\
\hline \multirow[t]{2}{*}{V112} & 6SN7GT & \[
\begin{aligned}
& \text { Hor. Sync. } \\
& \text { Amplifier }
\end{aligned}
\] & \[
\underset{\text { Signal }}{5000 \mathrm{Mu} .}
\] & 2 & 162 & - & _ & 3 & 1.4 & 1 & -40 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & 152 & - & - & 3 & 0.52 & 1 & \(\stackrel{-24}{ }\) & \begin{tabular}{|c|} 
*Unreliable measurement \\
point. Voliage depends on noiso
\end{tabular} \\
\hline & & & \[
\underset{\text { Signal }}{5000 \mathrm{Mu} .}
\] & 5 & 84 & - & - & 6 & 0 & 4 & -1.38 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 98 & - & - & 6 & 0 & 4 & \({ }^{1.08}\) & -Voltage depends on noise. \\
\hline \multirow[t]{2}{*}{V113} & 6SN7GT & Hor. Sync.
Separator & \[
\underset{\text { Signal }}{5000 \mathrm{Mu} . \mathrm{V} .}
\] & 2 & 290 & - & - & 3 & 95 & 1 & 50 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & 285 & - & - & 3 & -56 & 1 & \({ }^{*} 38\) & *Unreliable measurement
points. Voltage depends on noise. \\
\hline \multirow[t]{2}{*}{V113} & 6SN7GT & Vert. Sync.
Separator & \[
\begin{gathered}
5000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 115 & - & - & 6 & 0 & 4 & -58 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 59 & - & - & 6 & 0 & 4 & -11 & \\
\hline \multirow[t]{2}{*}{V114A} & 6SN7GT & Vert. Sync.
Amplifier & \(\underset{\substack{5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal }}}{ }\) & 5 & 45 & - & - & 6 & 0 & 4 & 0.03 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 43 & - & - & 6 & 0 & 4 & 0 & \\
\hline \multirow[t]{2}{*}{V114B} & 6SN7GT & \[
\begin{array}{|l|}
\hline \text { Vertical } \\
\text { Oscillator }
\end{array}
\] & \[
\begin{gathered}
5000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 2 & \({ }^{7} 7\) & - & - & 3 & 0 & 1 & --15.3 & *Depends on selting of Vert. hold \\
\hline & & & \(\stackrel{\text { No }}{\text { Nignal }}\) & 2 & \({ }^{70}\) & - & - & 3 & 0 & 1 & --15 & control. Voltages sho
synced pix adjustment. \\
\hline \multirow[t]{2}{*}{V115} & 6AQ5 & \[
\begin{array}{|l|l|}
\hline \text { Vertical } \\
\text { Output }
\end{array}
\] & \[
\begin{gathered}
5000 \mathrm{Mu} \mathrm{~V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 270 & 6 & 290 & 2 & 27 & 1 & 0 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 267 & 6 & 285 & 2 & 26 & 1 & 0 & \\
\hline \multirow[t]{2}{*}{V116} & 6SN7GT & Horizontal
Osc. Control & \[
\begin{gathered}
5000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 2 & 237 & - & - & 3 & -10 & 1 & -28.5 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & 228 & - & _ & 3 & -18 & 1 & -29.5 & \\
\hline & & & \[
\begin{gathered}
5000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 2 & 104 & - & - & 3 & -36.3 & 1 & -44 & Hor. hold counter-clockwise \\
\hline & & & \[
\begin{array}{|c}
5000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{array}
\] & 2 & 246 & - & - & 3 & -11.5 & 1 & -26 & Hor. hold clockwise \\
\hline \multirow[t]{2}{*}{V116} & 6SN7GT & Horizontal
Oscillator & \[
\begin{aligned}
& 5000 \mathrm{Mu} \mathrm{~V} . \\
& \text { Signal }
\end{aligned}
\] & 5 & 200 & - & - & 6 & 0 & 4 & -75 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 197 & - & - & 6 & 0 & 4 & -78 & \\
\hline & & & \[
\begin{aligned}
& 5000 \mathrm{Mu} \mathrm{~V} . \\
& \text { Signal }
\end{aligned}
\] & 5 & 193 & - & - & 6 & 0 & 4 & -93 & Hor. hold counter-clockwise \\
\hline & & & \[
\begin{aligned}
& 5000 \mathrm{Mu} \mathrm{~V} . \\
& \text { Signal }
\end{aligned}
\] & 5 & 198 & - & - & 6 & 0 & 4 & -74 & Hor. hold clockwise \\
\hline \multirow[t]{2}{*}{V117} & 6BQ6GT & Horizontal
Output & \[
\begin{gathered}
5000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & Cap & . & 4 & 190 & 8 & 19.2 & 5 & -16 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & Cap & . & 4 & 190 & 8 & 19.2 & 5 & -15.3 & Pulse Present \\
\hline
\end{tabular}
- High Voltage
-High Voltage
Pulse Present

At average
Brightness


\section*{Figure 77-R.F Unit Wiring Diagram}

\section*{CRITICAL LEAD DRESS}

Keep all wiring in the pix i.t, sound i.f and video circuits as short as possible.
Keep the leads on C110, C111, C112, R108, R139, R150, sible.
Do not change the bus wire connection to pin 2 of viol and V102. Sleeving is used on these wires to insure length and to prevent shorting.
Dress C115 down between R114 (volume control) and wafer S101-B.
. Ground R126 to pin 3 of V106 and R134 to pin 7 of V107
. Do not change the grounding of R136, R140 and R143.
7. Keep the bus wire from T109-A to Cl44 (plug in capacitor) short and direct.
8. Ground the filanents of sockeis V107, V108 and V109 independently of the socket center pin. Use ground lances

Drss ind straight up to act as a shield between T101-A and 1 . 2 .
Dress C155 and R160 (kine cathode) up in the air above
1. Keep the leads connected to T113-C and T113-D (synchoguide) down so that they will not short out when the
chassis is placed in the cabinet.
12. Do not reroute any wires between T104 and the terminal board alongside it. Keep all leads on the foot side of the erminal board
13. Dress all wires routed past T104, shielded wires W102 and W103 under the big lances near T104.
14. Dress all a.c leads to S 102 under the large lances on the front apron.
15. Dress R113 close to the chassis with leads as short as possible.
16. Dress Cl 58 and \(\mathrm{Cl22}\) up in the air and away from all other leads and components.
17. The lead from pin 5 of V111 to the terminal board under the high voltage cage should be routed between v117 Dock and 2 war
and resistors away from each other and an ther wires and components.
19. Dress all wires away from damper tube V119.
20. The wire from pin 5 V116 to T113-A should not be more than 5 inches long.
21. Dress all peaking coils up and away from the base.
22. Dress all leads in the high voltage compartment away from each other and away from the high voltage trans. former.
© John F. Rider
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline stocr & deschiption & stock & description & stock & description & stocr & DESCRIPTION \\
\hline & f.F UNIT ASSEMBLIES KRK11A & 76548 & Screw-No. \(4.40 \times 5 / 16^{\prime \prime}\) adjusting screw for coils Ll, L2, L3, L4, L46 & \({ }^{76673}\) & Capacitor-Ceramic, 220 m & 73784 & Capacitor-Tubular, paper, oil impregnated, 0.1 200 volts (C155, C175) \\
\hline & & 76519 & Shatt-Channel selector shaft and plate & 73091 & Capacitor-Mica, 270 mmf . (C2 & 73551 & Capacitor-Tubular, paper, oil impregnated, 0.1 m \\
\hline 76539 & ard-Anienna matching transformer terminal board
less coils L58, L59, L60 and less capacitors C24, C25, & 76134 & Shaft-Fine tuning shaft and cam & 47617 & Capacitor-Ceramic, 270 mn & & volts (C170, C185, C194) \\
\hline & C26, C27 & 7714 & Shield-Front shield completo with shatt bushing and & 39640 & Capacitor-Micc, 330 mmt . (C16 & 73557 & Capacitor-Tubular, paper, oil impregncted, 0.1 mid..
60a volts (Cl18, \({ }^{\text {2 }}\) 23) \\
\hline 76531 & Bo & & bracket & 76476 & Capacitor-Mica, 330 mmf . & & \\
\hline 76845 & Bracket-Vertical bracket for holding V1 tube & \({ }_{76534}\) & Shield-Tube shield & 73094 & a. 3 & 73786 & Capacitor-Tubular, paper, oil impregnated, 0.27 mid . 200 volts (C202) \\
\hline 76965 & Capacitor-Ceramic, variable, for fine tuning-plunger type (C2) & 76530 & Socket-Tube socket, 9 pin, miniature, ceramic, saddlemounted for V1 & \({ }^{540}\) & \begin{tabular}{l}
Capacitor-Mica, 470 mmf . (C110. C111) \\
Capacitor-Ceramic, 1500 mmf . (stand-oth) (C144)
\end{tabular} & 73787 & Capacitor-Tubular, paper, oil impregnated, 0.47 mfd. 200 volts (C157, C168, C196) \\
\hline \({ }^{93056}\) & Capacitor-Ceramic, 5 mms. (C26, C32) & 76336 & Socket-Tube socket, 9 pin, miniature, bakelite, saddlemounted for V2 & 73 & & 76498 & Choke-Filter choke (L115) \\
\hline 70597 & Capacitor-Ceramic, 8 mmf . (C29) & 7714 & Spacer-Metal spacer for front plate & & C130, C131, C135, C136, C139, C142, C216) & 76 & Clip-Tubular clip to mount stand.ott capa \\
\hline 55326 & Capacitor-Ceramic, 10 mmf . (C3) & 75163 & iction spring (formed) for line tuning & 76470 &  & 73477 & Coil-Choke coil (L101) \\
\hline 54207 & Capacitor-Ceramic, 18 mml. (C27) & 30340 & line tuning 1 & & 156B' & 76442 & Coil-Horizontal linearity coil complete with adjustable \\
\hline 76557 & Capacitor-Ceramic, 22 mms ( \(\mathrm{Cl9}\), C31) & 75068 & Spring-Retaining spring for tube shield & 73960 & Capacitor-Ceramic, 10.000 mml . (C145, C148) & & core (L107) \\
\hline 76558 & Capacitor-Ceramic, 22 mmi . (C5) & 77204 & ing tor tine tuning control & 877 & Capacito-Ceramic, dual, 10.000 mml . (C101A, C101 & 76441 & Coil-Width coil complete with adjustable core (Li06) \\
\hline 70935 & Capacitor-Ceramic, \(27 \mathrm{mmf}\). (C25) & 5 & Stator-Antenna stator complete with rotor, coils, ca- & & (107A. C107B) & 76640 & Coil-R-F choke coil (1.5 muh) (L109) \\
\hline 76739 & Capacitor-Ceramic, 33 mmt ( \(\mathbf{C 2 4}\) ) & & paciors, and resistor (S5, C20, L42, L43, L44, L45, & 745 & Capacitor-Electrolytic, 5 m & 77195 & Coil-Peaking coil (120 muh) (L103, R149) \\
\hline 77460 & Capacitor-Ceramic. 220 mmf . (C10) & & & 28417 & Capacitor-Electrolytic, 5 mid., 450 volts (C183) & 76647 & Coil-Peaking coil (180 muh) (L108, R152) \\
\hline 75199 & Capacitor-Ceramic, 270 mmt ( C12, C14) & 77353 & pacitor and resistors (S2. C10, C12, L12, L13, L14, & 75218 & Capacitor-Electrolytic, comprising 1 section of 10 mid. 350 volts, 1 section of 5 midd., 350 volts and 1 section & \[
\begin{aligned}
& 71526 \\
& 77194
\end{aligned}
\] & Coil-Peaking coil ( 250 muh) (L104) \\
\hline 75166 & Capacitor-Ceramic, 1500 mmi . (stand.ott) (C13. C17. C21, C22. C28, C30) & 05 & L15, L16, L17, L18, L19, L20, L21, L47, L48, R4, R5, R6) Stator-Oscillator stator complete with rotor, coils and & & \begin{tabular}{l}
of 150 mid., 50 volts (C212A., C212B, C212C) \\
Capacitor-Electrolytic, comprising 1 section of 100 mfd ..
\end{tabular} & 77194 & Coil-Peaking coil ( 1000 muh) (L110) Connector-Anode connector \\
\hline 75610
73748 & Capacitor-Ceramic, 1500 mml ( (C6)
Capacitor-Ceramic, 1500 mmm. ( \(C 16, ~ C 20, ~ C 23) ~\) & & capacitors (S1, C3, C7, L1, L2, L3, L4, L5, L6, L7, L8. L9, L10, L11. L46) & 764 & \begin{tabular}{l}
350 volts, 2 sections of \(10 \mathrm{mfd}, 350\) volts and 1 sec \\
(C211A, C211B, C211C, C211D)
\end{tabular} & 35787 & Connector-Phono input connector (1101) \\
\hline 73748 & Capacitor-Ceramic, 1500 mmt ( (C16, C20, C23) & 76553 & Stator-R.F plate stat & & & 75474 & Connector-Single contact male connector tor speakor
cable \\
\hline 71088 &  & & pacitor and resistor (S3, C14, L22. L23, L24, L25, L26. L27, L28, L29, L30, L31, L50, R7) & 75220 & Capacitor-Electrolytic, 150 mld., 200 volts (C209, C210) & & \\
\hline 77151 & Capacitor-Tubular, steatite, adjustable, 0.8 - 3.0 mmf ( (C8) & 76556 & & 76479 & Capacitor-Tubular, moulded, oil impregnated, . 00068 mid.., 600 volits (C200) &  & Connector-2 contact male connector for power cord \\
\hline 75184 & Capacitor-Ceramic, adjustable, \(0.80-3.8 \mathrm{mml}\). complete with adjusting stud (C9) & & pacitor and resistors (S44, C19, L32, L33, L34, L35, L36. , L38, L39, L40, L41, L53, R11, R12) & 75249 & Capacitor-Tubular, paper, oil impregnated, 001 mid.. 600 volts (C164, C172, C190) & 50367 & Connector-6 contact female connector for yoke leads (1103) \\
\hline  & Capacior-Adjustable trimmer, steatite, 1.4. mmf. (C18)
Capacior-Mica trimmer, 55.80 mmf ( \(\mathrm{Cl11}\) ) & 76561 & Strap--Channel No. \(13 \mathrm{r} \cdot \mathrm{4}\) grid strap (L52) & 7699 & Capacitor-Tubular, moulded, oil impregnated, .0012 & & Co \\
\hline 76143 & Clip-Tubular clip for mounting stand-off capacitors & 76525 & Strip-Coil segment mounting strip-rh center & & & & yoke (P103) \\
\hline 73591 & Coil-Antenna matehing coil (2 required) & 76526 & Strip-Coil segment mounting strip-LH lower & & \({ }^{\text {capa }}\) volls (C159) & 77200 & Co \\
\hline 73477 & Coil-Choke coil (L57) & 76544 & \(\underset{\substack{\text { Strip-Coil } \\ \text { trimmer }}}{\text { segment mounting strip-LH upper - less }}\) & 73595 &  & 76444 & Control-Brightness control (R21) \\
\hline 76763 & Coil-Filament choke coil (L63, L64) & 75446 & Stud-Capacitor stud for trimmer coil L49, C15 (uncoded & & pacitor-Tubular, paper, oil impregnated, .0027 & 772 & Control-Horizontal and ver \\
\hline 77206 & Coil-Filament choke co & & ER") & & Capao volts (C119) & & R197B) \\
\hline 76562 & Coil-R.F amplifier coupling coil (L51) & & Stud-Capacitor stud for trimmer coil L49, Cl5 (coded numerically and "Hi Q") & 73818 & Capacitor-Tubular. papar, oil impregnated. . 0027 mid. & 76445 & Control-Picture control (R158) \\
\hline 77153 & Coil-r.F choke coil (L66) & 76740 & -No. \(6.32 \times 1^{\prime \prime}\) adjusting stud for adjustable & & 1600 vols (C121) & 71199 & Control-Ratio delector balance control (R139) \\
\hline \({ }^{76537}\) & Coil-Shunt coil complete with adjustable core (L61) & & pacitor & 737 & Capacitor-Tubular
600 volts
(C160) & 76449 & Control-Verical linearity control (R211) \\
\hline 76529 & Coil-Shunt coil complete with adjustable core (L62)
Coil-Trimmer coil (3 turns) with adjustable inductance & \({ }_{76536}^{77152}\) & Terminal-Terminal for mounting C8 trimmer
Transtormer-Antenna matching transtormer completu & 20 & Capacitor-Tubular, paper, oil impregnated. . 0047 mid., con volt (C115, C187) & 26986 & Control-Volume control and power switch (R114, S102) Cover-Back cover for hi-voltage compartment \\
\hline 652 & Coil-Trimmer coil (3 turns) with adjustable inductance core and capacitor stud (screw adjustment) for r-t section (L49, C15) & 536 & Transformer-Antenna matching transformer complete (T2, C24, C25, C26, C27, L58, L59, L60. I61, L62. I1) Transformer-Convertor transformer (TI. R3) & 73789 & \begin{tabular}{l}
600 volts (C115, C187) \\
Capacitor-Tubular, paper, oil impregnated, . 0068 mid., 400 volts (C151)
\end{tabular} & \[
\begin{aligned}
& 76986 \\
& 76985 \\
& 74956
\end{aligned}
\] & Cover-Back cover for hi.voltage compartment Cover-Side cover for hi-voltage compartment Cushion-Rubber cushion for dellection yoke hood \\
\hline 38853 & Connector-4 contact female connector-part of matching transformer (II) & \({ }_{76540}^{76535}\) & Trap-FM trap complete with adjustable core (L58) Trap-1.F trap (L65) & 3561 & Capacitor-Tubular, paper, oil impregnated, 01 mid., 400 volts (C116, C120, C165) & 74839 & Fastener-Push fastener for mounting tube socket for V116 and tube socket 76453 \\
\hline 76559 & Connector-Oscillator grid connector & 76542 & Trap-1.F trap ( 41.25 MC ) complete with core (L60) & 73594 & Capacitor-Tubular, moulded, oil impregnated, . 01 mid.. 600 volts (C199) & 73600 & Fuse-0.25 amps. (F101) \\
\hline 77202 &  & 76541 & Trap-1.F trap (45.75 MC) complete with core (L59) & 73562 & Capacior & 76459 & Grommet-Rubber grommet for 2nd anode load \\
\hline 765 & Core-Adjusting core for FM trap & 75190 & Washer-Insulating washer (neoprene) for adjustable capacitor & & 00 volls (C195), & 37396 & Grommel-Rubber grommet for mounting tube socket for V116 and tube socket 76453 \\
\hline 7652 & Detent-Detent mechanism and tibre shatt & & & & Capacitor-Tubular, paper, oil impregnated, . 022 600 volts (C179) & 76830 & Hood-Deflection yoke hood less rubber cushions \\
\hline 7345 & Form-Coil form for coils L48, L.50, L53 & & S ASSEI & 73810 & Capacitor-Tubular, paper, oil impregnated, 022 mid & 76168 & Magnet-Focus magnet \\
\hline 7720 & Link-Link assembly for tine tuning & & & & 1000 volts (C206) & 76141 & Magnet-lon trap magnet (P.M. type) \\
\hline 76728 & Nut-Speednut for mounting adiustable .trimmer 76532 & 56 & Bracket-Channel indicator lamp bracket & 7381 & Capacitor-Tubular, paper, oil impregnated, . 027 m 1000 volts (C205) & 76633 & Magnet-Pin cushion correction magnet complete with
support arm \\
\hline 503047 & 47 ohms , \(\pm 10 \% .1 / 2\) watt (R) & 76454 & Brackel-Mounting bracket complete with insulator for picture control & 73596 & Capacitor-Tubular, paper, oil impregnated, . 033 mid 1000 volts (C180) & 18469 & Plate-Bakelite mounting plate tor electrolytic 75220 \\
\hline 503082 & 92 ohms, \(\pm 10 \% .1 / 2\) watt (R10) & 71496 & Capacitor-Adjustable trimmer, 5.70 mml . (C122) & 73790 & Capacitor-Tubular, & 76464 & Plate-Hi-voltage plate--bakelite-complete with tube socket and corona ring \\
\hline 503115 & 150 ohms, \(\pm 10 \%\), \(1 / 2\) watt ( & 75217 &  & & Capacitor-Tubular, paper, oil impreqnated, . 047 & , & Printed Circuit-Consisting of 1 section of 22,000 ohms. \\
\hline 503220 & \(1000 \mathrm{ohms}, \pm 10 \% .1 / 2\) wall (R7. R14) & & Capacitor-Ceramic. 12 mmf ( (C193) & 73558 & Capacitor-Tubular, paper, oil impregnated, . 047 200 volts (C171) & & sections of 8200 ohms. 1 section of .002 mid., and \\
\hline 503233 & 3300 ohms . \(\pm 10 \%\) \% \(1 / 2\) watt (R4, R11. \(\mathrm{R12}\) ) & 33380 & Capacitor-Ceramic. 15 mmf . (C154) & 73553 & Capacitor-Tub & & \[
\begin{aligned}
& 2 \text { sections } \\
& \text { R166, R167) }
\end{aligned}
\] \\
\hline 503247
503410 & 4700 ohms , \(\pm 10 \%, 1 / 2\) watt (R2)
100,000 hms, \(\pm 10 \%, 1 / 2\) watt (R1, R5, & 736 & Capacitor-Ceramic, 39 mmi ( C153 \(^{\text {a }}\) & &  & 76675 & Rectilier-Picture detector crystal rectifier (Ch101) \\
\hline 5034 & 470,000 ohms, \(\pm 10 \%\), 1/2 watt (R8) & 71924 & Capacitor-Ceramic, 56 mmI ( C105 \(^{\text {) }}\) & & C189) & 76452 & Rectilier-Selenium rectilier (CR102, CR103) \\
\hline 14343 & Retainer-Fine tuning shatt retaining ring & 76475 & Capacitor-Mica, 68 mml ( (C192) & 3592 & Capacitor-Tubular, paper, oil impregnated, & 76796 & Resistor-Wire wound, 5.1 ohms. \(1 / 3\) watt (R23) \\
\hline 75164 & Rod-Actuating plunger rod (fibre) for fine tuning link & \({ }^{76474}\) & Capacior-Mica, 82 mml . (C163) & & 600 volts (C124) & 76639 & Resistor-Wire wound, 180 ohms, 2 watts (R23) \\
\hline 76547 & Screw-No. \(4.40 \times 1 / 1^{\prime \prime}\) adjusting screw for coils L6, L7, & 39396 & Capacitor-Ceramic, 100 mmf . (C114, C162) & 73597 & Capacitor-Tubular, paper, oil impregnated, . 047 mid., 1000 volts (C186) & 77193 & Resistor-Wire wound. 680 ohms. 1 watt (R119) \\
\hline 76549 &  & 75437
51416 & Capacior-Ceramic, 100 mml . (C152) & 73792 & pacitor-Tubular. & 34473 & Resistor-Wire wound, 2000 ohms, 10 watts (R128) \\
\hline & Screw-No. \(4-40 \times 3 / 8{ }^{\prime \prime}\) adjusting screw for coil Ls & 51416 & Capacitor-Mica, 180 mml . (C167) & & 100 volts (C182) & 6390 & Resistor-Wire wound, 5600 ohms, 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { srock } \\
& \text { No. }
\end{aligned}
\] & description & stocis & description \\
\hline 76642 & Resistor-Wire wound, 6750 ohms, 10 watts (R156) & 503482 & \(820,000 \mathrm{ohms}, \pm 10 \% .1 / 2\) watt (R188, R200, R222, R231) \\
\hline & Resistor-Fixed, composition: & 503510 & \(1 \mathrm{megohm}, \pm 10 \% .1 / 2\) watt (R177) \\
\hline 503047 & 47 ohms , \(\pm 10 \% .1 / 2\) watt (R108, R154, R233) & 1769 & 1.8 megohm, \(\pm 5 \%\), \(1 / 2\) watt (R161) \\
\hline 502056 & 56 ohms. \(\pm 5 \%\), \(1 / 2\) watt (R134) & 9063 & 1.8 megohm, \(\pm 5 \%, 1\) watt (R229) \\
\hline 3476 & 68 ohms, \(\pm 5 \%, 1 / 2\) watt (R140) & 503522 & 2.2 megohm, \(\pm 10 \%\), \(1 / 2\) watt (R189, R204, R207) \\
\hline 50208 & 82 ohms , \(\pm 5 \%, 1 / 2\) watt (R101) & 503539 & 3.9 megohm, \(\pm 10 \% .1 / 2\) watt (R174) \\
\hline 5021 & 100 hms . \(\pm 5 \%\), \(1 / 2\) watt (R126) & 503 & 8.2 megohm, \(\pm 10 \%\), \(1 / 2\) watt (R163) \\
\hline 50 & 100 ohms , \(\pm 10 \%\), \(1 / 2\) watt (R122, R129) & 503610 & \(10 \mathrm{megohm}, \pm 10 \%\). \(1 / 2 \mathrm{watt}\) (R113) \\
\hline 503118 & 180 ohms , \(\pm 10 \%\), \(1 / 2\) watt (R144) & 71456 & Screw-No. \(8.32 \times 7 / 16^{\prime \prime}\) wing screw for mounting do- \\
\hline 50312 & 220 ohms , \(=10 \%\), \(3_{2}^{2}\) wall (R153) & & flection yoke \(\times\) dit \\
\hline 50 & 330 ohms , \(=10 \%\), \(1 / 2\) wall (R213) & 76455 & Shaft-Connecting shaft (nylon) for picture and brightness controls \\
\hline 503147 & 470 ohms, \(=10 \%\), \(1 / 2\) wall (R123) & 73584 & Shield-Tube shield for V101, V102, V103, V106, V107. \\
\hline 513147 & 470 ohms , \(=10 \% .1\) watt (R120. R212) & 7534 &  \\
\hline 31 & 680 ohms. \(\pm 10 \%\), \(1 / 2\) wall (R157) & 757 & Socket-Channel indicator lamp sock \\
\hline 50221 & 1000 ohms . \(\pm 5 \%, \frac{1 / 2}{} \mathbf{w a t t}\) (R150) & 748 & Socket-Kinescope sock \\
\hline 5032 & 1000 ohms, \(\pm 10 \%, 1 / 2\) watt (R107, R121, R125, R131, R133, R137, R142, R145, R175) & 75222 & Socket-Tube socket, octal, ceramic, plate mounted for \\
\hline 503212 & 1200 ohms \(\pm 10 \%\), \(1 / 2\) wall (R178) & 3125 & Socket-Tube socket, octal, wafer, for V112, V113, V114, \\
\hline 503222 & 2200 ohms, \(\pm 10 \%\). \(1 / 2\) wall (R159) & &  \\
\hline 52322 & 2200 ohms \(\pm 10 \%\), 2 watts (R164) & 50367 & Socket-Tube socket, 6 pin, moulded, saddle-mounted
for V119 \\
\hline 50323
513233 & 3300 ohms, \(\pm 10 \%, 1 / 2\) watt (R218) & 715 & Socket-Tube socket, 6 pin, moulded for v118 \\
\hline 51323 & 3900 ohms , \(\pm 5 \%\), \(1 / 2\) wall (R151) & 73117 & Socket-Tube socket, 7 pin, water, miniature, for V101, V102, V103, V104, V105, V106, V107, V108, V109, V111 \\
\hline 503239 & 3900 ohms . \(\pm 10 \%\), \(1 / 2\) watt (R225) & 73115 & Socket-Tube socket. 7 pin, moulded, miniature, plate- \\
\hline 51 & 4700 ohms, \(\pm 10 \%\), 1 watt (R155) & & mounted for V115 \\
\hline 5022 & \(5600 \mathrm{ohms}. \pm 5 \%\), \(1 / 2\) watt (R136) & \({ }^{76453}\) & Socket-Tube socket, octal, moulded, saddle-mounted for V110 (6AG7) for KCS47M1 \\
\hline \begin{tabular}{l}
503256 \\
14659
\end{tabular} & \begin{tabular}{l}
5600 ohms. \(\pm 10 \%, 1 / 2\) watl (R172). \\
6800 ohms \(+5 \% \%\) 1/2wall (R109, R
\end{tabular} & 76971 & Socket-Tube socket, 9 pin, waier, miniature, for V110 \\
\hline 513268 & \(6800 \mathrm{ohms}. \pm 10 \%, 1 \mathrm{watt}\) (R147) & 76636 & Stud-Adjusting stud complete with quard for focus \\
\hline 5032 & 8200 ohms , \(\pm 10 \%, 1 / 2\) watt (R210) & & magnet \\
\hline 5033 & 10.000 ohms, \(\pm 10 \% .1 / 2\) watt (R115, R205) & 76428 & Support-Bakelite support only-part of hi.voltage shield \\
\hline 51331 & 10.000 ohms, \(\pm .10 \%\), 1 watt (R141) & 77215 & Switch-Tone contiol and phono swith (S101) \\
\hline 523 & 10.000 ohms. \(\pm 10 \% .2\) watts (R236) & 76463 & Terminal-Screw type grounding terminal \\
\hline 503 & 12.000 ohms \(=10 \%, 1 / 2\) watt (R171, R173) & 77198 & Transformer-First pix i-f grid transformer complete with adjustable cores (T104, C125, R124) \\
\hline 513312 & 12.000 ohms, \(\pm 10 \%\), 1 watt (R176) & 77197 & \\
\hline 50 & \(15.000 \mathrm{ohms}, \pm 10 \%\), \(1 / 2 \mathrm{w}\) watt (R219) & & with adjustable cores (T105, C132, C133, R130) \\
\hline 503318
51322 & 18,000 ohms. \(\pm 10 \%, 1 / 2\) watt (R105, R184, R190, R228)
22,000 ohms \(\pm 10 \%\), watt (R227) & 435 & Transformer-Second pix i-f grid transformer complete with adjustable core (T106, C134) \\
\hline 513 & 22.000 ohms, \(\pm 10 \%\), 1 watt (R227) & & with adjustable core (T106, C134) \\
\hline 50333 & 33.000 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R132, R183, R192) & 76433 & Transformer-Third or fourth pix i-f transformer (T107,
T108) \\
\hline 503339
51339 & 39,000 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R111)
39,000 ohms, \(\pm 10 \%, 1\) watt (R180) & 76436 & Transiormer-Fitth pix i.f transtormer (T109, C143, \\
\hline & & & R146, CR101) \\
\hline & 43,000 ohms, \(\pm 5 \%\), 1 watt (R209) & 76795 & Translormer-Hi-voltage transiormer (T114) \\
\hline 503347 & 47,000 ohms, \(\pm 10 \%\). \(1 / 2\) watt (R103, R169) & 76440 & Transformer-Horizontal oscillator transformer complete with adjustable cores (T113) \\
\hline 513347 & 47,000 ohms, \(\pm 10 \%\), 1 wall (R127, R135, R191, R232) & 76997 & Transtormer-Output transformer (T103) \\
\hline 502356 & \(56,000 \mathrm{ohms}\). \(\pm 5 \%\), \(1 / 2\) watt (R143) & 76429 & Transiormer-Power transiormer, 117 voll, 60 cycle \\
\hline 523356 & 56.000 ohms, \(\pm 10 \% .2\) watts (R106) & & \\
\hline 503368 & \(68.000 \mathrm{ohms}. \pm 10 \%\), \(1 / 2\) watt (R195, R201, R202) & 38 & Transformer-Sound i-f transformer complete with adjustable cores (T101, C103, C104) \\
\hline 513368 & 68.000 ohms. \(\pm 10 \%\), 1 watt (R226) & 76437 & \\
\hline 513382 & 82.000 ohms. \(\pm 10 \%\), 1 watt (R224) & 7643 & adjustable cores (T110, C147) \\
\hline 503410 & 100,000 ohms, \(\pm 10 \%\), 1/2 watt (R203, R217) & 76439 & Transformer-Ratio detector transformer complete with \\
\hline 512410 & 100.000 ohms , \(\pm 5 \%, 1\) watt (R230) & & adjustable cores (T102, C108, C109) \\
\hline 30180 & 120.000 ohms, \(\pm 5 \%, 1 / 2\) watt (R206) & 76431 & Transtormex-Vertical output transtormer (T111) \\
\hline 503415 & 150,000 ohms, \(\pm 10 \%\). \(1 / 2\) watt (R160, R179, R215, R220) & 77225 & Trap-4.5 MC trap (L105, C149) \\
\hline 046 & 200,000 ohms, \(\pm 5 \%, 1 / 2\) watl (R194) & 76616 & Yoke-Deflection yoke complete with 6 contact male \\
\hline 503422 & 220.000 ohms , \(\pm\) - \(\mathrm{i} 0 \%\), \(1 / 2\) watt (R214) & & \({ }_{\text {R240, }}^{\substack{\text { conneetior } \\ \text { R21) }}}\) (L111, L112. L113, L114, C208, P103, R2 \\
\hline 50242 & 270.000 ohms . \(\pm 5 \%, 1 / 2\) watt (R162) & & \\
\hline 50 & 270.000 ohms . \(\pm 10 \% .1 / 2\) watt (R185) & &  \\
\hline 503433 & 330,000 ohms, \(\pm 10 \%, 1 / 2\) watt (R116, R221) & & \({ }_{\text {RLP }}^{\text {RL- } 105 \mathrm{SE6}}\) \\
\hline 512433 & 330,000 ohms, \(\pm 5 \%\), 1 watt (R223) & & RMA. 274 \\
\hline 503439 & \(390,000 \mathrm{ohms}\), \(\pm 10 \%\), \(1 / 2\) watt (R196) & & (For Model 17T250DE) \\
\hline 5034 & 470.000 ohms. \(=10 \% .1 / 2\) watt (R117, R148, R168, R234) & 75024 & Cone-Cone and voice coil (3.2 ohms) \\
\hline 503456 & 560,000 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R198) & 75022 & Speaker-8" P.M. speaker complete with cone and voice coil ( 3.2 ohms ) \\
\hline
\end{tabular}

\section*{© John F. Rider}



OJohn F. Rider


Model I7T200 "Shelly"
Ebony Model 17 T201 "Hadley"
(Shown on base)


Model 17 T211 "Asbton"
Walnut, Mabogany, Blond


Model 17T202 "Kentwood"
Mabogany, Grined Mabogany, Grained
(Shown on base)


Model 17 T220 "Albury"

INDEX

ALIGNMENT INSTRUCTIONS ... 20
INSTALLATION DATA....... \(1^{\text {R }}\)
PARTS LIST .. ........... 31
PRODUCTION CHANGES. . . .. . 30
RESISTANCE MEASUREMENTS. . 30
SCHEMATIC ............ 30
SPECIFICATIONS . ....... 17
top View - tube layout. . . 19
TRIMMER LOCATIONS. . . . . . 24
TROUBLESHOOTING. . . . . . . 25
VOLTAGE MEASUREMENTS . .. 27
WAVEFORMS .. . . . . . . . . . 25

GENERAL DESCRIPTION
Models 17T200, \(17 \mathrm{~T} 201,17 \mathrm{~T} 202,17 \mathrm{~T} 211\), and 17 T 220 are " 17 inch" television receivers. The receivers are-identical Features of the television
Features of the television unit are: full twelve channel
coverage; intercarrier FM sound system; coverage; intercarrier \(F M\) sound system; ratio detector;
improved picture brilliance; pulsed picture A.G.C; A-F-C horizontal hold; stabilized vertical hold; noise saturation circuits; improved sync separator and clipper; 3.2 me. band width for picture channel and reduced hazard high voltage
supply. An auxiliary audio input jack is supply. An auxiliary audio input jack is provided to permit
the use of an external record playing attachment.

\section*{ELECTRICAL AND MECHANICAL SPECIFICATIONS}

PICTURE SIZE . . 146 square inches on a 17QP4 Kinescope TELEVISION R-F FREQUENCY RANGE
All 12 television channels, 54 mc . to 88 mc .174 mc . to 216 mc Picture I-F Carrier Frequency .................... 25.50 mc Sound I-F Carrier Frequency ......... 21.00 mc . and 4.5 mc POWER SUPPLY RATING . 115 volts, 60 cycles, 190 watt AUDIO POWER OUTPUT RATING 40 wat VIDEO RESPONSE ............................. To 3.2 mc SWEEP DEFLECTION .......................... Magnetic FOCUS......................................................
LOUDSPEAKERS
RCA TUBE COMPLEMENT
\begin{tabular}{|c|c|}
\hline Tube Used & Function \\
\hline RCA 6CB6 & R-F Amplifier \\
\hline RCA 6 J 6 & R-F Oscillator and Mixer \\
\hline 3) \(\mathrm{RCA} 6 \mathrm{CB6}\) & 1st Picture I-F Amplitier \\
\hline 4) RCA \(6 \mathrm{CB6}\) & 2nd Picture I-F Amplital \\
\hline 5) RCA 6CB6 & 3rd Picture I-F Ampli \\
\hline 6) RCA 12AU7 . Picture 2nd & tor and Vert. Sync. \\
\hline 7) RCA 6CL6 (6AC7) (6AG & *Video Amp \\
\hline (8) RCA 6AU6 & 1st Sound I-F Ampl \\
\hline (9) RCA 6AU6 & 2nd Sound I-F Amp \\
\hline (10) RCA 6AL5 & Ratio Dete \\
\hline 1) RCA 6Av6 & 1st Audio Amplifier \\
\hline (2) RCA 6K6GT & Audio Output \\
\hline (13) RCA 6AU6 & AGC Amplitier \\
\hline (14) RCA 6SN7GT . Horizonto & c. Sep. and Sync. Output \\
\hline (15) RCA \(6 J 5\) & Vertical Sweep Oscillator \\
\hline 6) RCA 6K6GT & Vertical Sweep Output \\
\hline (17) RCA 6SN7GT Horizon & eep Oscillator and Control \\
\hline (18) RCA 6BQ6GT & .Horizontal Sweep Output \\
\hline (19) RCA 6W4GT & Damper \\
\hline (20) RCA 1B3-GT/8016 & High Voltage Rectifier \\
\hline (2) RCA 17QP4. & Kinescope \\
\hline (22) RCA 5U4G & Rectifier \\
\hline (23) RCA 5Y3GT & Rect \\
\hline
\end{tabular}

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE INTERMEDIATE FREQUENCIES
Picture I.F Carrier Frequency Adjacent Channel Sound Trap 27.00 mc

SOUND INTERMEDIATE FREQUENCILS
Sound I-F Carrier Frequency
Sound I-F Frequency
VIDEO RESPONSE
To 3.2 mc
FOCUS.

Magnetic
SCANNING .............................erlaced, 525 hne
HORIZONTAL SWEEP FREOUENCY.... . 15,750 cps VERTICAL SWEEP FREQUENCY
... . 60 cps
FRAME FREQUENCY (Picture Repetition Rate) 30 cps


\section*{high voltage warning}

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS RE MOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REIMOVED.

\section*{KINESCOPE HANDLING PRECAUTIONS}

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES, AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure For this reason, the kinescope must be handled with more care than ordinary receiving tubes.

The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or subjected to more than moderate pressure at any time. During service if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA replacement

rigure 1-Receiter Operating Controls.

\section*{INSTALLATION INSTRUCTIONS}

UNPACKING.-These receivers are shipped complete in cardboard cal
the receiver.
Take the receiver out of the carton and remove all packing material.
Make sure that all tubes are in place and a: firmly seated
in their sockets. in their sockets.
Check to see that the kinescope high voltage lead clip
is in place. is in place.
Plug a power cord into the 115 volt a-c power source and
into the receiver interlock receptacle. Turn the receiver power into the receiver interlock receptacle. Turn the receiver power
switch to the "on" position, the brightness control fully clock. switch to the "on" position, the brightness contra
wise, and the picture control counter-clockwise.
ION TRAP MAGNET ADJUSTMENT.-Set the ion trap magnet approximately in the position shown in Figure 2 .
Starting from this position immediately adjust the magnet by moving if forward or backward at the same time rotating it
slightly around the neck of the kinescope for the brightest slightly around the neck of the kinescope for the brightest
raster on the screen. Reduce the brightness control setting raster on the screen. Reduce the brighness control setting
until the raster is slightly above average brilliance. Turn the
to focus control (shown in Figure 2) until the line structure of the
raster is clearly visible. Readjust the ion trap magnet for raster is clearly visible. Readjust the ion trap magnet for
maximum raster brilliance. The final touches of this adjustmaximum raster brillance. The linal touches of this adjust-
ment should be made with the brightness control at the
maximum clockwise position with which good line focus can maximum clockw
be maintained.


Figure 2-Yoke and Focus Magnet Adjustments

DEFLECTION YOKE ADJUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask,
rotate the deflection yoke until this condition is obtained. rotate the deflection yoke until this co
Tighten the yoke adjustment wing screw.
PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjust
ments. Connect the anterna transmission line to the receiver
If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this poin
However, if the AGC control is misadjusted, and the receive is overloading, it may be impossible to sync the picture If the receiver is overloading, turn R149 on the rear apron
(see Figure 3) counter-clockwise until the set operates nor
mally and the picture can be synced. mally and the picture can be synced.
CHECK OF HORIZONTAL OSCILLATOR ALIGN MENT.-Turn the horizontal hold control to the extreme
counter-clockwise position. The picture should remain in counter-clockwise position. The picture should remain
horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync.
Turn the control clockwise slowly. The number of diagonal Turn the control clockwise slowly. The number of diagona
black bars will be gradually reduced and when black bars will be gradually reduced and when only 2 or
bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the
control Pull-in should control. Pull-in should occur before the control has been
turned 120 degres from the extreme counterccockwise posi turned 120 degrees from the extreme counter-clockwise posi-
tion. The picture should remain in sync for approximately 90


Figure 3-Rear Cbassis Adjustments

\section*{INSTALLATION INSTRUCTIONS}
degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should remain in syn an should not show a black bar in the picture
If the receiver passes the above checkk and the picture is
normal and stable, the horizontal oscillator is properly normal and stable, the horizontal oscillator is properly
aligned. Skip "Alignment of Horizontal, Oscillator" and proaligned. Skip "Alignment of Horizontal
ceed with "Focus Magnet Adjustment."
ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to
hold sync over 90 degrees of clockwise rotation of the control hold sync over 90 degrees of clockwise rotation of the contro
from the pull-in point, it will be necessary to make the follow ing adjustments.
Horizontal Frequency Adjustment.- Turn the horizontal hold control to the extreme clockwise position. Tune in a
television station and adjust the Tllo horizontal frequency television station and adjust the T110 horizontal frequency
adjustment at the rear of the chassis until the picture is just ou adjustment at the rear of the chassis until the picture is just out
of sync a and the horizontal blanking appears sa a vertical or
dian of sync and the horm in the raster. Then turn the T110 core
dianonal black bor
until the bar moves out of the picture leaving it in sync
Horizontal Locking Range Adjustment.-Set the hori-
zontal hold control to the full counter-clockwise position zontal hold control to the fulb by switching off channel then back. The picture may remain in sync. If so turn the T110 rear
core slightly and momentarily switch off channel. Repeat until core slightly and momentarily switch off channel. Repeat unit
the picture falls out of sync with the diagonal lines sloping
down the picture thals left. Slowly turn the horizontal hold control
down to the lol
clockwise and note the least number of diagonal bars obtained clock wise and note the least number of diagonal bars obtained
just before the picture pulls into sync.
If more than 3 bars are present just before the picture pulls
into sync, adjust the horizontal locking range trimmer Cl61A into sync, adjust the horizontal locking range trimmer Clis
slightly clockwise. If less than 2 bars are present, adjust Cl61A slightly counter-clockwise. Turn the horizontal hold contro counter-clockwise, momentarily remove the signal and re
check the number of bars present at the pull-in point. Repea check the number of bars present at the pull.
this procedure until 2 or 3 bars are present.
Repeat the adjustments under "Horizontal Frequency Ad Kepeat the adjustments under Horizontal requency Ad justmen and Horizontal under each are fulfilled. When the
the conditions specified und horizontal hold operates as outlined under "Check of Horizon-
tal Oscillator Alignment" the oscillator is properly adjusted.
If it is impossible to sync the picture at this point and the AGC system is in proper adiustment it will be necessary to
adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page ill: For field purposes paragraph
" \({ }^{\prime \prime}\) " under Horizontal Oscillator Waveform Adjustment may be omitted.
FOCUS MAGNET ADJUSTMENT. - The focus magne should be adjusted so that there is approximately three-eighths and the flat of the front face of the focus magnet. This spacing age focus over the face of the tub.
The axis of the hole through the magnet should be paralle with the axis of the kinescope neck
through the center of the opening.
PIN-CUSHIONCORRECTION.-Two pin-cushion correc tion magnets are employed to correct a small amount of
pin-cushion of the raster due to the lens effect of the face of pin-cushion of the raster due to the lens effect of the face the kinescope. These magnets are mounted on small arms,
one on each side of the kinescope as shown in Figure 2. The arms hinge in one plane on self tapping screws which ac both as a hinge and an adjustment locking screw. When the
magnets are swung towards the tube, maximum correction magnets are swung towards the tube, maximum correction
is obtained. Minimum correction is obtained when the arms are swung away from the tube. To adiust the magnets, loosen
the two self tapping screws and position the magnets until the two self tapping screws and position the magnets until
ine sides of the raster appear straight. Tighten the screws ithout shifting the position of the magnets. In some cases it Lay be necessary to twist or bend the magnet support arms to straight raster edges.
CENTERING ADJUSTMENT. - No electrical centering
controls are provided. Centering is accomplished by means controls are provided. Centering is accomplished by means
of a separate plate on the focus magnet. The centering plates include a locking screw which must be loosened before cen. teride to side and sidewise adjustment moves the picture up
sictur side to side
and down. is obtained. A slight readjustment lines in the test pattern vertical that maximum brightness is obtained.

If a corner of the raster is shadowed, check the position of
the ion trap magnet. Reposition the magnet within the range the ion trap magnet. Reposition the manget withe the range
of maximum raster brightness to eliminate the shadow and of maximum raster brightness to eliminate the shadow and In no case should the magnet be adjusted to cause any los
of brightness since such operation may cause immediate or of brightness since such operation may cause immediate or
eventual damage to the tube. In some cases it may be neceseventual damage the shift the position of the focus magnet in order to
sary to
eliminate a corner shadow.
WIDTH DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS. - Adjustment of the horizontal drive con-
trol affects the high voltage applied to the kinescope. In orde tro aftects the high voligge applied to the kinescope. In ordet
to obtain the highest possible voltage hence the brightest and
best focused picture adjust horizontal drive trimmer Cl61B to oblain tocused picture, adjust horizontal drive trimmer, Cl61B counter-clockwise until the picture begins to "wrinkle" in
middle then clockwise until the "wrinkle" disappears.
Turn the horizontal linearity control Ll08 clockwise until the picture begins to "wrinkle", on the right and then counter-
clockwise until the "wrinkle" disappears and best linearity

Adjust the width control Ll06 to obtain correct picture width.
A slight readjustment of thes hree controls may be neces
Adjustments of the horizontal drive control affect horizonta Adjustments of the horizontal drive control affect horizontal
oscillator hold and locking range. If the drive control was
adjusted, recheck the oscillator alignment.
HEIGHT AND VERTICAL LINEARITY ADJUST. MENTS. - Adjust the height control (R173 on chassis rear
apron) until the picture fills the mask vertically. Adjus apron) until the picture fills the mask vertically, Adiust
vertical linearity
is R181 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either contro
will require a readustment of the of her. Adjust centering to will require a readjustment of the other. Adjust centering to
align the picture with the mask.
FOCUS. - Adjust the focus magnet for maximum definition
Recheck the position of the ion trap magnet to make sure
Check to see that the yoke thumbscrew and the focus
,

To REMOVE Escurcheon, sLlos
 -oscillator adustuent
for chañel numer ligure \(4-R-\) F Oscillator fdjustment

CHECK OF R-F OSCILLATOR ADJUSTMENTS Tune in all available stations to see if the receiver r.f oncillator is adjusted to the proper irequency on all channels. If adjust lined in the alignment procedure on page 21 . The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown
in Figure 4. Adjustment for channel 13 is on top of the chassis.
AGC THRESHOLD CONTROL.-The AGC threshold control R149 is adjusted at the factory
not require readjustment in the field.
To check the adjustment of the AGC Threshold Control fune in a strong signal and sync the picture. Momentarily the picture reappears immediately, the receiver is not over an appreciable portion of a second to reappear, or bends

\section*{© John F. Rider}

Figure 6-Chassis Bottom Vieu'

TLST EQUIPMENT.-To properly service the television lest equipment be available:
R-F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

20 to \(30 \mathrm{mc} ., 1 \mathrm{mc}\). and 10 mc . sweep width 50 to \(90 \mathrm{mc} ., 10 \mathrm{mc}\). sweep width
(b) Output adjustable with at least I volt maximum. (c) Output constant on all ranges.
d "Etp" output on al ater positiors.
Cathode-Ray Oscilloscope--For alignment purposes, the
oscilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle pquare wave without appreciable distortion.
For video and sync waveform observations, the oscilloscope
must have excellent frequency and phase response from 10 must have excellent frequency and phase response from
cycles to at least two megacycles in all positions of the gain control.
Signal Generator to provide the following frequencies with
crystal accuracy.
(a) Intermediate frequencie
22.25 and 25.5 mc . conv. and first pix i-f trans.
22.75 mc . second picture i-f transtormer
24.25 mc . fourth picture i-f transformer
25.5 mc . third picture i-f transiormer
25.50 mc . picture carrier
2.7 .00 mc . adjacent channel sound trap
(b) Radio frequencies
\begin{tabular}{|c|c|c|}
\hline Channel & Carrier & Carrier \\
\hline Number & Freq. Mc. & Freq. Mc \\
\hline 2 & 55.25 & 59.75 \\
\hline 3 & 61.25 & 65.75 \\
\hline 4 & 67.25 & 71.75 \\
\hline 5 & 77.25 & 81.75 \\
\hline 6 & 83.25 & 87.75 \\
\hline 7 & 175.25 & 179.75 \\
\hline 8 & 181.25 & 185.75 \\
\hline 9 & 187.25 & 191.75 \\
\hline 10 & 193.25 & 197.75 \\
\hline 11 & 199.25 & 203.75 \\
\hline 12 & 205.25 & 209.75 \\
\hline 13 & 211.25 & 215.75 \\
\hline
\end{tabular}
(c) Output of these range

Heterodyne Frequency Meter with crystal calibrator Heterodyne Frequency Meter
which covers the frequency range from 80 mc. to 109 mc . and

Electronic Voltmeter of Junior or Senior "VoltOhmyst' type and a high voltage multiplier probe for use with this

Serice Prab
serviced without the kinescope. However, if it is necessary to view the raster during servicing, it would be a great convenience to have a bench mounted kinescope and speaker
CAUTION: Do not short the kinescope second anode lead.
Its short circuit current presents a considerable overload o
the high voltage rectifier Vlli
Adjustments Required.-Normally, only the r-f oscillato and mixer lines will require the attention of the service
technician. All other circuits are either broad or very stable and hence will seldom require readjustment.
alignment is necessary, it can be most conveniently performe alignment is necessary,
in the following order:
(1) R-F unit
(2) Picture i-f transtormers
(3) Picture i-f trap
(4) Sweep of picture i-f
(5) Ratic detecto

R-F UNIT ALIGNMENT from terminal 2 of the r-t unit terminal board and connect a
39 ohm composition resistor between lugs 1 and 2 .
Detune Tl by backing the core all the way out of the coil.
Back the L44 core all the way out. Back the L203 core all he way oul.
In order to align the \(r\)-f tuner, it will first be necessary to
set the channel-13 oscillator to frequency. The shield over the bottom of the \(r\)-f unit must be in place when making any
adjustments. adjustments.
The oscillator may be aligned by adjusting it to beat with
a crystal-calibrated heterogne a crystal-calibrated heterodyne frequency meter. Couple the
meter probe loosely to the receiver oscillator.
Set the channel selector switch to 13 .
\(\begin{aligned} & \text { Adjust the heterodyne frequency meter to the correct fre } \\ & \text { quency }(236.75 \mathrm{mc}) \text {. }\end{aligned}\)
Set the fine tuning control 30 degrees clockwise from the
mechanical center of its range.
Adjust Cl for an audible beat on the heterodyne frequency meter
Now that the channel-13 oscillator is set to frequency, we
may proceed with the r-f alignment.
Turn the AGC control fully clockwise.
Obtain a 7.5 volt battery capable of withstanding appre-
ciable current drain and connect the ends of a 1,000 ohm ciable current drain and connect the ends of a 1,000 ohm potentiometer across in. Connect the battery positive torminal to chassis and the potentiometer arm eo terminal
r-f unit. Adjust the bias box potentiometer to produce -3.5
volts of bias at the r-f unit terminal board.
Connect the oscilloscope to the test point TPI on top of
the r-f unit. Connect the \(r\)-f sweep oscillator to the receiver antenna terminals. The method of connection depends upon the outpul
impedance of the sweep. The P300 connections for 300 -ohm impedance of the sweep. The P300 connections for \(300-\mathrm{hm}\)
balanced or 72 -ohm single-ended input are shown in the circuit schematic diagram. If the sweep oscillator has a
50 -ohm or 72 -ohm single-ended output, 300 -ohm balanced output can be obtained by connecting as shown in Figure 9.
Connect the signal generator loosely to the receiver antenna erminals.
et the receiver channel switch to channel 8 .
Set the sweep oscillator to cover channel 8
Insert markers of channel 8 picture carrier and sound car-
rier. 181.25 mc . and 185.75 mc .
Adjust C9, Cl1, C16 and C22 for approximately correct
curve shape, frequency, and band width as shown in Figurell. The correct adjustment of C22 is indicated by maximum tunes the r-f amplifier plate circuit and affects the frequency
of the curve most noticeably. C9 tunes the converter grid cir cuit and affects the tilt of the curve most noticeably (assuming that C22 has been properly adjusted). Cll is the coupling ad

Set the receiver channel switch to channel 6 .
Adjust the heterodyne frequency meter to the correct fre Atrol 30 degrees clockwise from the Set the fine tuning control 30
mechanical center of its range.
\(\begin{aligned} & \text { Adjust LS for an audible beat on the heterodyne frequency } \\ & \text { meter. }\end{aligned}\)

\section*{ALIGNMENT PROCEDURE}

Set the sweep generator to channel 6
From the signal generator，insert channel 6 sound and
picture carrier markers， 83.25 mc．and 87.75 mc ． Adjust L42，L45 and L49 for proper response as shown in
Figure 12． L42 is
L42 is adjusted to give maximum amplitude of the curve between the markers．
L49 primarily affects the prequency of response．
Connect the＂VoltOhmyst＂to the r－f unit test point TP1 Adjust C7 for -3.0 volts at the test point．
Retouch L42，L45 and L49 for proper response if necessary
If necessary，retouch C11 for proper band width on channel 6 ． Ontinue these retouching adjustments until proper response
obtained and -3.0 volts of oscillator injection a re presen is obtained and al \(^{3}\) al the test point，TPI．
\(\begin{aligned} & \text { Set the receiver channel selector switch to channel } 8 \text { and } \\ & \text { readjust } \mathrm{Cl} \text { for proper oscillator frequency．}\end{aligned}\) Set the sweep oscillator and signal generator to channel 8 Readjust C9，C16 and C22 for correct curve shape，fre
quency and band width．Readjust C11 only if necessary． Switch the receiver，the sweep oscillator and signal gen
erator to channel 13 ． erator to channel 13
Adjust L52 for maximum amplitude of the curve midway
between markers and then overshoot the adiust ing the slug in the same direction from the initial setting little more than the a mount of turning required to reach maxi um amplitude of response
Adjust C22 for maximum ampltude of response．
Turn off the sweep generator．Adjust the L43 core for correct
channel 13 oscillator frequency，then overshoot the adjustment by turning the slug a little more in the same direction from
the initial setting．Reset the oscillator to proper frequency by adjustment of Cl ．
Turn the sweep oscillator back on
Check the response of channels 7 through 13 by switching
the receiver channel switch，sweep oscillator and marker oscillator to each of these channels and observing the response and oscillator injection obtained．See Figure 11 for
typical response curves．It should be found that all these typical response curves．It should be found that all these
channels have the proper shaped response with the markers channels have he pro．
above \(80^{\prime}\) ，response．
If the markers do not fall within this requirement，switch to
channel 8 and readjust \(\mathrm{C} 9, \mathrm{Cl1}, \mathrm{Cl} 6\) and C 22 as necessary If C22 required adjustment，the adjustment should be oversho a small a amount and corrected by adjustment of LS2 to give
maximum amplitude of response between the sound and pic ture carrier markers．The antenna circuit（L52，C22）is broad
so that tracking is not particularly critical so that tracking is not particularly critica．
If the valley in the top of the selectivity curves for the high
channels is deeper than normal，the curve can be flattened somewhat by decreasing the inductance of L44 by turning the core stud in．Be sure to check for undesirable resonant suck－
outs on channels 7 and 8 if this is done． outs on chan
Turn the sweep oscillator off and check the receiver channel
r －f oscillator frequency．If the oscillator is off frequenc r－i oscillator irequency．If the oscillator is off frequency
overshoot the adjustment of Cl and correct by adjusting L 43 ．
Turn the receiver channel selector switch to channel 6 ．
Adjust 5 for correct oscillator frequency． Tun ho cor
Turn the sweep oscillator on and to channel 6 and observe
he response curve．In necessary readjust L42，L45 and L49． should not be necessary to touch Cll
Check the oscillator injection voltage at the test point TP1
It necessary adjust C7 to give -3 volts injection If \(\mathrm{C7}\) is adiusted，switch to channel 8，and readiust C9 in C7 curve shape，then recheck channel 6 ．
Switch the receiver through channel 6 down through
channel 2 and check for normal response curve shapes and channel 2 and check for normal response curve shapes and
oscillator injection voltage． Likewise check channels 7 through 13 ，stopping on 13 for
the next step． he next step．
With the receiver on channel 13 ，check the receiver oscilla
or frequency．Correct by adjustment of Cl if necessary．

Adjust the oscillator to frequency on all channels by switch ing the receiver and ine heterodyne irequency meter to each obtain a beat on the freq．meter．It should be possible to adjus the oscillator to the correct frequency on all chansibels with the fine tuning control 30 degrees clockwise from the mechanical
center of its range． Channel
Number \(\begin{gathered}\text { Picture } \\ \text { Carier }\end{gathered}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Channel Number & \begin{tabular}{l}
Picture \\
Carrier \\
Freq．Mc
\end{tabular} & \begin{tabular}{l}
Sound \\
Carrier \\
Freq．Mc．
\end{tabular} & \begin{tabular}{l}
Receiver \\
R－F Osc． \\
Freq．Mc．
\end{tabular} & Channel Oscillator Adjustment \\
\hline & 55.25 & ． 59.75 & ． 80.750 & Adustrent \\
\hline 3 & 61.25 & 65.75 & 86.750 & L2 \\
\hline 4 & 67.25 & 71.75 & 92.750 & L3 \\
\hline 5 & 77.25
83 & 81.75 & 102.750 & \({ }^{\text {L4 }}\) \\
\hline 7 & 175.25 & 179.75 & 1200.750 & L5 \\
\hline 8 & 181.25 & 185.75 & 206.750 & L7 \\
\hline 9 & 187.25 & 191.75 & 212.750 & L8 \\
\hline 11 & 193.25
199.25 & 197.75
203.75 & 218.750
224.750 & \(\stackrel{19}{10}\) \\
\hline 12 & 205.25 & 209.75 & 230.750 & L11 \\
\hline 13 & 211.25 & 215.75 & 236.750 & Cl \\
\hline
\end{tabular}

Switch to channel 8 and observe the response．
Adjust Tl clockwise while watching the change in response
When Tl is properly adjusted，the selectivity curve will be slightly wider with a slightly deeper valley in its top．
Switch through all channels and observe response，oscilla
tor injection and rif oscillator frequency Switch hrough all channels and observe response，oscilla
tor injection and rf oscillator frequency．Minor touch－ups
adjustments may be made at this time．However if C7 adjustments may be made at this time．However，if \(\mathrm{C7}\) or \(\mathrm{C9}\)
are changed appreciably，then a recheck of the oscillato are changed anpreciably，then a recheck
frequency on all channels should be made．
Reconnect the link from \(T 101\) to terminal 2 of the r－f unit
terminal board．
Since Tl was adjusted during the rif unit aiignment it will
be necessary to sweep the R－F UNIT TUBE CHANGES
R－F UNIT TUBE CHANGES．－Since most of the circuits are low capacitance circuits the r－f unit may require readjust
ments when the tubes are changed． If the 6 CB6 r－f amplifier tube is changed，it may be neces
sary to readiust Cl 6 and C 22 sary to readjust C16 and C22．
If the \(6 / 6\) oscillator and mixer tube is changed，then more
extensive adjustments are required． extensive adjustments are required．
For good conversion efficiency，the oscillator injection to d
triode mixer must be held reasonably close triode mixer must be held reasonably close to the optimum
value．Although there is some latitude in this level，it is nearly expended in the normal variation in injection from channel marily to establishing the condiutions for of C7 is limited pri Since changes in oscillator injection affect conversion gain，it also affects the input capacity of the mixer，thus also affecting
tracking of the mixer grid circuit These tube their consequent effect on circuit alignment thereby require readjustment of the r－f unit if maximum conversion efficiency
is to be retained after the \(6 J 6\) tube is changed It may be is to be retained atter the 6 J 6 tube is changed．It may be
possible，however，to try several 6 J 6 tubes and select one
which gives satistactory PICTURE I－F TRANSFORMER ADJUSTMENTS． Connect the＂VoltOhmyst＂to the junction of R142 and R143． Turn the AGC control fully clockwise，
Obtain a 7.5 volt battery capable of withstanding appre－
ciable current drain and connect the ends of a 1000 ． potentiometer across it．Connect the battery positive termina to chassis and the potentiometer arm to the junction R142 and R143．Adjust the potentiometer for -5.0 volts indication
Set the channel switch to channel number 9， 10 or 11 ． Connect the＂VoltOhmyst＂to pin 2 of V110（Pin 4 if 6AC7
or 6AG7 is used）and of ground．

Connect the output of the signal generator to the mixer grid est point TP2 in series with a 1500 mmf ceramic capacitor． Connect a separate -5 volt bias supply to TPI with the
positive terminal to ground． minal to ground
Set the generator to each of the following frequencies and
with a thin fiber screwdriver tune the specified adjustment with a thin fiber screwdriver tune the specified adjustment
lor maximum indication on the＂Voltohmyst＂．In each in． stance the generator should be checiked against a crystal
calbrator to insure that the generator is on frequency

\section*{ALIGNMENT PROCEDURE}

Adjust the signal generator output to give 3 volts on the
Voltohmyst＂as the final adjustment is made． \(\begin{array}{ll}\text {（1）} 24.25 \mathrm{mc}-\mathrm{TlO7} & \text {（3）} 22.75 \mathrm{mc}-\mathrm{T} 105\end{array}\)

PICTURE I－F TRAP ADJUSTMENT．－With the same connections as above，tune the generator to 27.00 mc ．and Set the generator output so that this minimum is about 3 volt when final adjustment is made．II necessary，the i．f bias may
be reduced in order to obtain the 3 volt reading on the be reduced
SWEEP ALIGNMENT OF PIX I－F．－To align TI and T104，connect the sweep generator to the mixer grid test poin shortest leads possible，with not more than one inch of unshielded lead at the end of the sweep cable．Connect the
Connect a separate -5.0 volt bias supply to TPI with the
positive terminal connected to ground and by－pass TPl to positive terminal connected to ground and by－pass TP1 to
ground with a 1500 mml．ceramic capacitor． round with a 1500 mmf ．ceramic capacitor．
Clip 330 restors 2 and 13 Clip 330 ohm resistors across terminals \(\AA\) and \(B\) of 1106

Preset Cll5 to minimum capacity．
Adjust the bias box potentiometer to obtain -5.0 volts of
bias as measured by a＂VoltOhmyst＂at the junction of R142 bias as measured by a＂Voltohmyst＂at the junction of R142
and R143．Leave the AGC control fully clockwise． Connect a 180 ohm composition resistor from pin 5 of V106 Connect a 180 ohm composition resistor from pin 5 of Vio6
to pin 5 of A V 106 and to Connet the oscilloscope diode probe
Couple the signal generator loosely to the diode probe in
order to obtain markers．
Adjust Tl （top）and \(\mathrm{TlO4}\)（bottom）for maximum gain and
with 25.5 mc at \(70^{\prime}\) ，of maximum response．
Set the sweep output to give 0.3 volt peak－to－peak on the ascilloscope when making the final touch on the above
Adjust \(\mathrm{Cl15}\) until 22.25 mc ．is at \(70^{\prime}\) ；response with respect
to the low frequency shoulder of the curve as shown in
Figure 12．
Disconnect the diode probe，the 180 ohm and two 330
ohm resistors． Connect the oscill
of \(6 A C 7\) or \(6 A G 7\) ）．
Leave the sweep generalor connected to the mixer gric est point TP2 with the shortest leads possible． Adjust the output of the sweep generator to obtain 3.0 volts
peak－to－peak on the oscilloscope．
Couple the signal generator loosely to the grid of the firs pix i．I amplifier．Adjust the output of the signal generator to Pu small makkers on he response curve
Retouch T105，T106 and T107 to obtain the response shown
in Figure 13．
It is especially important that the 22.4 mc ．marker should
fall at \(55 \%\) on the overall \(i\) if response curve．If the marker should fall appreciably higher than \(55 \%\) ，trouble may be
experienced with sound in the picture．If the marker should experienced with sound in the picture．If the marker should
all appreciably below \(55 \%\) response，the sound sensitivity may be reduced and may cause the sound to be noisy in
weak signal areas． weak signal areas．
RATIO DETECTOR ALIGNMENT．－Set the signal gen－
erator at 4.5 mc．and connect it to the first sound i－f grid，

As an alternate source of signal，the RCA WR39B or WR39C calibrator may be employed．In such a case，connect
the calibrator to the grid of the third pix if amplifier，pin the calibratas．
1 of V108． Set the frequency of the calibrator to 25.50 mc ．（pix
carrier）and modulate with 4.5 mc ．crystal．The 4.5 mc ．
signal will be picked off at L 102 and amplified through the signal will be picked off at \(L 102\) and amplified through the
sound i －f amplifier．
Connect the＂VoltOhmyst＂to pin 2 of V103．
Tune the ratio detector primary，T102 top core for maximum
d－c output on the＂Volto hmyst＂．Adjust the signal level from d－c output on the＂Voltohmyst＂．Adjust the signal levevil from
the signal generator for 6 volts on the＂VoltOhmyst＂when the signal generator for 6 volts on the＂VoltOhmyst＂when
finally peaked．This is approximately the operating level of finally peaked．This is approximately
the ratio detector for average signals．

Connect the＂VoltOhmyst＂to the junction of R106 and Cl08 Tune the ratio detector secondary T1O2 bottom core for zero
\(\mathrm{d}-\mathrm{c}\) on the＂VoltOhmyst＂．
o Repeat adjustments of T 102 top for maximum d－c at pin 2
of V103 and T102 bottom for zero d－c at the junction of RiO6
and C1O8．Make the final adjustments with the signal input and ClOB．Make the final adjustments with the signal input
level adjusted to produce 6 volts \(d-c\) on the＂VoltOhmyst＂at level adjusted
SOUND I－F ALIGNMENT．－Connect the signal genera－
tor to the first sound i－f amplifier grid，pin 1 of Vlol． As an alternate source of signal，the RCA WR39B or R39C calibrator may be employed as above
Connect the＂VoltOhyst＂to pin 2 of \(\mathrm{VlO3}\)
Tune the TlOL top core for maximum d－c on the＂Volt－
Ohmyst＂． The output from the signal generator should be set to
produce approximately 6.0 volts on the＂Voltohmyst＂when produce approximately 6.0 volts on the＂＂ollohmyst＂，when
the tinal touches on the above adjustment are made．
4．5 MC．TRAP ADJUSTMENT．－Connect the signal
4R generator in series with a 1,000 ohm resistor to pin 2 of V109．
Set the generator to 4.5 mc．and modulate it \(300^{\prime}\) ；with 400

Short the third pix i．－f grid to ground，pin 1，V108，to
prevent noise from masking the output indication． Connect the crystal diode probe of an oscilloscope to the plate of the video amplity
\(6 A C 7\) or \(6 A G 7\) is used）．
Adjust the core of L103 for minimum output on the oscillo－
scope．
Repe．
Remove the short from pin 1，V108 to ground．
As an alternate method，this step may be omitted at this point in the alignment procedure and the add
＂on the air＂after the alignment is completed．
If this is done，tune in a station and observe the picture on the fine tuning control is set for proper oscillator－frequency hen L103 requires no adjustment．If a 4.5 mc ．beat is present， urn the fine tuning control slightly clockwise so as to exagger
ate the beat and then adjust Llo3 for minimum beat the beat and hen adjust LlO3 for minimum bea
CHECK OF OVERALL RESPONSE．－If desired，the overall response of the receiver can be checked on each
Connect the r－f sweep generator to the receiver antenna nput terminals．If necessary，employ one of the pads shown
in Figure 9 to match the sweep output cable to the r－f unit． Connect the signal generator loosely to the first pix i－f amplifier grid．
Adjust the bias potentiometer to obtain -5.0 volts of bias
as measured by a＂Voltohmyst＂at the junction of an measured by a＂VoltOhmyst＂at the junction of R142 Connect the oscilloscope to pin 2 of V 110 （or pin 4 if 6AC7
or \(6 \mathrm{AG7}\) is used）． 6AG7 is used）
Check the response of channels 2 through 13 by switching
the receiver channel switch and sweep oscillator to each these channels and observing the response obtained．On each channel，adjust the output of the sweep generator to
btain 3.0 volts peak－to－peak on the oscilloscope．
I－F markers at 22.4 mc．， 24.75 mc ．and 25.5 mc ．should be
provided by the signal generator．
The response obtained in this manner should be very similar Some curves may show a \(10 \%\) sag in the top between
22.75 mc．and 24.75 mc ．while others may show a \(10 \%\) peak this region．This may be considered normal．
If the picture carrier is consistently high or low on all
channels，T106 may be adjusted slightly．Do not adjust T105． AGC CONTROL ADJUSTMENT．－Disconnect all test quipment except the oscilloscope which should be connected
pin 6 of V110（pin 8 when \(6 \mathrm{AC7}\) or \(6 \mathrm{AG7}\) is used）． Connect an（pin 8 when 6ACY or 6AG7 is used）． Turn the AGC control fully counter－clockwise． Tune in a strong signal and adjust the oscillos
Turn the AGC control clockwise until the tips of sync begin be compressed，then counter－clockwise until no compression

\title{
CHASSIS KCS72, KCS72M1, KCS72M2, Lat
}

\section*{ALIGNMENT PROCEDURE}

HORIZONTAL OSCILLATOR ADJUSTMENT.-Nor-
 sidered to be a part ot the alignment procedure, but since the
ossillato wavelorm adustment may requir the use of an
oscilloscope, it con not be done convenienty in the field. The oscilloscope, it cam not be done conveniently in the field. The
wavelorm adiustment is made at the factory ond normall,

 ceiver is aligned
tion is improper

Horizontal Frequency Adjustment.-Tune in a station
 trequency core on the rear apron until the picture will
synchronize. If the picture still will not sync, turn the Tild wavetorm adiustment core (under the chassis) out of the eol several turns from its original position and read
frequency core until the picture is synchronized.

Examine the width and linearity of the picture. If picture width or linearity is in in orrect, adiust the horizontal drive
control C16BB, the width control Llo6 and the linearity contro L108 until the picture is conred

Horizontal Oscillator Waveform Adjustment.-The horizontal osililator wavelorm may be adjusted by either of
two method. hhe methoo outlined in paragraph A below may
beemplo be employed in the ield when an oscilloscope is notavailable
The servicice shop melthod outtined in paragraph B below requires the use of an oscilloscope.
Alace adiustment horizootal hold control completely clockwise
 on the screen. First, turn the T110 trequency ocre ( (on the rear
apron) antil the picture falls out of sync ond three or four apron) antil the picture falls out of sync and three or four
diagonoll llack bars sloping down to the right appear on the screen. Then turn the wavetorm adjustment corere (undorer the
chassis) into the coil while at the same time adiusting the tre
 bars on the screen. Continue thin proe od fure untid hin oscillatoo
begins to molorboot, then turn the wavero begins to molorboat, then turn the wavetorm odjustment core
out until the motorboating jus stops. As a check, tum the Tilo frequency ore until the picture is synchronized then reverse of sync with the diagonal bars sloping down to the right
 more than three or four bars should appear on the screen
Instead, the horizontal oscillator should begin the motorboat


B-Connect the low capacity probe of an ossillosopepe to
terminal C of Tilo Turn the horizontal hold quarter turn from the clockwise position so that the picture is
in sync. The paltern on the oscilloscoope should be as shown in sync. The pattern on the oscilioscope should be as shown
in Figure 14 . Adjust the waveform adjustment core of Till until the two peaks hare wave the same height. During this adiustment, the picture muss
the hold control if necessary

This adjustment is vecy important for correct operation of
the circuit. It the broad peak of the wave on the oscilloscope is lower than the shatp peak, the waine on the ossilioscope
poorer, the stabilizing effeck tof the tuned immunity becme nd dritt of the oscail terfect of the tuned circuit is reduced hand it the broscmaldoror hecomes more serious. On the the the quate and the broad peakilized, the pull-in range beause double bermes inade oscilitior
position.

Remove the oscilloscope upon completion of this adjustment.
Horizontal Locking Range Adjustment.-Set the hori zontal hold control to the full counter-clockwise position Momentarily remove the signal by switching off channel then
back. The picture may remain in sync. If so turn the Tllo

Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars
obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls
into sync, adjust the horizontal locking range trimmer CliblA inlo sync, adiust he horizontal locking range irimmer Ci61A
slighty clockwise. If less than 2 bars are present, adiust
C166A control scounter-clockw-ecise, momentarily remove the signal and recheck the number of bars present at the pull-in
Repeat this procedure until 2 or 3 bars are present.

Turn the horizontal hold control to the maximum clockwise
position. Adjust the Tllo frequency core so that the diagonal position. Adjust the T110 frequency core so that the diagonal reverse the diritcection of adjustment so that bar just moves to
the left side of the screen leaving the picture in synchronization.

SENSITIVITY CHECK -A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound
obtained to that obtained on other receivers under the same obtained to
conditions.

This weak signal can be obtained by connecting the shop antenna to the receiver through a ladder type attenuator pad.
The number of stages in the pad depends upon the signal
strengh available at the antenna A sufficient number of The number of stages in the pad depends upon the signal
strength available at the antenna. A sufficient number of
stages stages should be inserted so that a somewhat less than normal
contrast picture is obtained when the picture control is at the contrast picture is obtained when the picture control is at the
maximum clock wise position. Only carbon type resistors should
be used to construct the pad. maximum clockwise position.

RESPONSE CURVES.-The response curves shown on RESPONSE CURVES. -The response curves shown on
page 23 and referred to throughout the alignment procedure
were taken from a production set. Although these curves are were taken from a production set. Althoug
typical, some variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "'response up"' and low frequency to
the left. The manner in which they will be seen in a given tes the left. The manner in which they will be seen in a given test
set-up will depend upon the characteristics of the oscillozcope and the sweep generator The curves may be seen inverted
and /or switched from left to right depending on the deflec and/or switched from left to right depending on the deflec
tion polarity of the oscilloscope and the phasing of the

NOTE ON R-F UNIT ALIGNMENT.-Because of the frequency spectrum involved and the nature of the device,
many of the rfu unit leads and components are critical in some respects. Even the power supply leads form loops which couple
to the tuned circuits, dnd if resonant at any of the frequencies involved in the performance of the tuner, may cause serious
departures from the desired characteristics. In the design of departures from the desired characteristics. In the design of
the receiver these undesirable resonant loops have been She redediver enough away in frequency to allow reasonable
shat
latitude in their out being troublesomene. When the rif unit is aligned in the receiver, no trouble. from resonant loops should be experi.
enced. However, tif unit is aligned in a iig separate from enced. However, if the unit is aligned in a ciig separate from
the receiver, attention should be paid to insure that unwanted resonances do not exist which might present a faulty repre-
sentation of \(r\)-f unit alignment.

A resonant circuit exists between the r-f tuner chassis and A resonani couter bhield which couples into the antenna and \(r-1\) plate circuits. The frequency of this resonance depends on the physical structure of the shield box, and the capacitance be-
iween the tuner chassis and the front plate. In the KRK8 units, this resonance should fall between 120 and 135 mc. and is controlled in the design by using insulating washers of dif-
ferent thicknesses (in the front plate to tuner chassis mounting) ferent thicknesses (in the front plate to tuner chassis mounting)
to compensate for differences in the shield boxes of different models of receivers. The performance of the tuner, particularly
on channels 7 and 8 will be impaired if the proper washers on channels 7 and 8 will be impaired if the proper washers
for the particular shield box involved are not used. Obviously then, if the r-f unit is removed dor service, the washers should
be replaced in the correct order when the unit is replaced.
the detalled alignment procedure beginning on page hoshould be read before alignment by use of the table IS ATTEMPTED
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline STEP. & \[
\begin{gathered}
\text { CONNECT } \\
\text { GENENALETOR } \\
\text { GEOTO }
\end{gathered}
\] & \[
\begin{aligned}
& \text { SIGNAL } \\
& \text { SNE. } \\
& \text { GREO. }
\end{aligned}
\] & \[
\begin{gathered}
\text { CONNECT } \\
\text { GENEREPTOR }
\end{gathered}
\] & \[
\begin{gathered}
\text { SWEEFP } \\
\text { SGREP. } \\
\text { FRED. }
\end{gathered}
\] & CONNECT
HETERODYNE
FREOR METER
TO & \[
\begin{aligned}
& \text { HET } \\
& \text { METER } \\
& \text { FREO. }
\end{aligned}
\] & CONNET
vOLTOHMYST
TO & MISCELLANEOUS CONNECTIONS instructions & ADJUST & \(\underset{\text { TOFER }}{\text { Rem }}\) \\
\hline \multicolumn{11}{|c|}{R-F UNIT ALIO} \\
\hline 1 & \multicolumn{10}{|l|}{Disconnect the co-ax link from terminal 2 of the r-f unit terminal board and connect a 3 ohrn composition resistor between lugs 1 and 2. Detune T1 by backing the core all the way out of the coil. Back the L44 core all the way out. Back the L203 core all the way out. In order to align the r-i any adjustments.} \\
\hline 2 & Not used & & Not used & & \begin{tabular}{|l|l|}
\hline Loosely couppled \\
to \(r\) & \(-f\) \\
oscillator
\end{tabular} & \[
\begin{aligned}
& { }^{236.75} \text { M. }
\end{aligned}
\] & Not used & Fine tuning 30 degreas chockwise from
mechanical center of its range. Receiver on
channel 13 . & Cl for anaudiblebeat on het. freq. meter & Fig. 7 \\
\hline 3 & & & , & & & & Connect '"Volt-
Ohmyst' to terminal 3 of the board & \(\underset{\text { Turn AGC }}{\substack{\text { control } \\ \text { fuly clockwise } \\ \text { Con }}}\) Not bias box to tor-
ninal
minal of
of term. board & \begin{tabular}{l}
Adjust the bias box
polentiometer for \\

\end{tabular} & \\
\hline \({ }^{4}\) & \[
\begin{aligned}
& \text { Antennal } \\
& \text { (10inaly }
\end{aligned}
\] & \({ }_{185.75}^{181.25}\) & \begin{tabular}{l}
Antenna \\
(seetext for \\
precaution)
\end{tabular} & \[
\left.\begin{array}{|c|}
\substack{\text { Swoopp } \\
\text { cing } \\
\text { chanel } \\
8}
\end{array} \right\rvert\,
\] & Not usod & - & Not used & Roe. on chan 8 . Conn
Adjust C9, C11. C16 and shape frequency and markers. C9 a fifects tio iroquency of respor
sponse band width. & ct oscilloscope to TP1 band width. C22 is amplitude between . Cll affects the re- & Fig. \\
\hline 5 & Not used & & Not used & Not used & Losoly coupled
to \(r-\mathrm{f}^{2}\) oscillator & 108.75 & " & Rec. on channel 6 & L5 for audible beat on hel. freq. meter. & Fig. \\
\hline 6 & \[
\begin{aligned}
& \text { Antenna } \\
& \text { terminal } \\
& \text { (loosely) }
\end{aligned}
\] & \({ }_{87}^{83.25}\) & Antenna
terminals
(see text for
precaution) & \({ }_{\text {Channel }}\) & Not used & - & * &  &  & Fig. 11 \\
\hline 7 & Not used & - & Not usod & - & Not used & - &  & Rec. on channel 6 & Adjust C7 for -3.0
volts at the tost point & Fig. \begin{tabular}{l} 
Fig. \\
Fib \\
\hline
\end{tabular} \\
\hline
\end{tabular}


\section*{ALIGNMENT TABLE}


\section*{ALIGNMENT DATA}


OJohn F. Rider

\section*{SERVICE SUGGESTIONS}
ollowing is a list of symptoms of possible failures and an indication of some of the possible faults:

O RASTER ON KINESCOPE:
(1) Incorrect adjustment of ion trap magnet. Magnet reversed
(1) Incorrect adjustment of ion trap mo
(2) V115 or V116 inoperative. Check waveforms on grids
and plates.
(3) No high voltage-if horizontal deflection is operating a oltage transformer, the waveform on terminal 1 of high B3GT circuit. Either the Tlll high voltage winding is open, the 1B3GT tube is defective or its filament circuil
(4) V110 circuil

Dorm chart. inoperative-Refer to schematic and wave (5) Damper tube (V118) inoperative
(6) Defective kinescope
(8) No receiver plate

NO VERTICAL DEFLECTION
(1) V113 or V114 inoperative. Check voltage and waveforms on grids and plates.
(2) T108 open.
(3) Vertical deflection coils open

\section*{SMALL RASTER:}
(1) Low Plus B or low line voltage
(2) V116, V120 or V121 defective.

POOR VERTICAL LINEARITY
(1) If adjustments cannot correct, change V114
(2) Vertical output transformer T108 defective
(3) V113 defective-check voltage and wave
(3) and platective-check voltage and waveforms on grid
(4) \(\mathrm{Cl51}, \mathrm{Cl52}, \mathrm{Cl53}, \mathrm{Cl55}\), or Cl 56 defective.
(5) Low plate voltage-check rectifiers and capacitors in
(6) If height is insufficient, try changing V113.

POOR HORIZONTAL LINEARITY
(1) If adjustments do not correct, change V116, or V118 (2) T108 or L108 delective.
(3) Cl 76 or Cl 77 defective.
(1) Cl8l defective
(2) Defective yoke.

PICTURE OUT OF SYNC HORIZONTALLY:
(1) T110 incorrectly tuned.
(2) R192, R193 or R170B defective.

TRAPEZOIDAL OR NON SYMMETRICAL RASTER:
(1) Improper adjustment of centering of focus magnet or ion (2) Defoctive yoke.

\section*{RASTER AND SIGNAL ON KINESCOPE BUT} NO SOUND:
(1) L102 defective.
(2) Sound i.f, ratio dotector or audio amplitior inoperative-
check VIO1, V102, V103 and thoir
(3) Audio
(3) Audio aystom dotec
(4) Speaker dofective

SIGNAL AT KINESCOPE GRID BUT NO SYNC
(1) AGC control R149 misadjusted
(2) Vlll, inoperative. Check voltage and waveforms at its

SIGNAL ON KINESCOPE GRID BUT NO VERTICAL SYNC:
(1) Check V113 and associated circuit
(2) Integrating network inoperative-Check.
(3) V109B or V112B defective or associated circuit defective
(4) Gas current, grid emission of grid cathode leakage in

SIGNAL ON KINESCOPE GRID BUT NO HORIZONTAL SYNC:
(1) T110 misadjusted-readjust as instructed on page 1 .
(1) Tllo misadjusted-readjust as instructed on page 1 (2) V112 inoperative-check socket voltages and waveforms
(4) C142, C161A, \(\mathrm{Cl} 163, \mathrm{Cl} 65, \mathrm{C} 166, \mathrm{Cl} 67, \mathrm{Cl} 68, \mathrm{Cl} 69\) or

Cl70 defective
(5) If horizontal speed is completely off and cannot be

SOUND AND RASTER BUT NO PICTURE OR SYNC
(1) Picture, detector or video amplifier defective-check (2) Bad contact to kinescope cathode

PICTURE STABLE BUT POOR RESOLUTION:
(1) V109A or V110 defective.
(2) Peaking coils defective-check resistance.
(3) Make sure that the focus control operates on both sides
(4) \(\begin{aligned} & \text { of }- \text { proper } \text { I-F circuits misaligned. }\end{aligned}\)

\section*{PICTURE SMEAR:}
(1) R-F or I-F circuits misaligned
(2) Open peaking coil.
(3) This trouble can originate at the transmitter-check on another station.

\section*{PICTURE JITTER:}
(1) AGC control R149 misadjusted
(2) If regular sections at the lett picture are displaced
(3) Vertical instability may be due to loose connection
(4) Horizontal instability may be due to unstable trans mitted sync.

RASTER BUT NO SOUND, PICTURE OR SYNC
(1) Defective antenna or transmission line.
(2) R-F oscillator of frequency.
(3) R-F unit inoperative-check V1, V2.

DARK VERTICAL LINE ON LEFT OF PICTURE:
(1) Reduce horizontal drive and readjust width and horizontal
(2) Replace V116

Light vertical line on left of picture
(1) V118 defective.

RESPONSE AND WAVE FORM PHOTOGRAPHS
 Taken from RCA WO58A Oscilloscope
\begin{tabular}{|c|}
\hline Figure 25-Overall Pix I-F Response \\
\hline \(\longleftarrow \sim\) \\
\hline Figure 26-Response of Ti-T104 Pix I-F Transformers \\
\hline
\end{tabular}


Figure \(27-\) Response of T10s
Pix I-F Transformer \(\ldots\)

Figure 28-Response of T106
Pix I-F Transformer
Pix I-F Transformer \(\Rightarrow\)


Grid of Video Amplijer
(Pin 2 of V110) ( \(6 \mathrm{CL6}\) )
(Pin 2 of V110) (6CL6)
Voltage Depends on Picture Figure \(31-V\) ertical (Oscilloscope
Synced to \(1 / 2\) of Verrical Sweep synced to \(1 / 2\) of Vertical Sw
Rate \((1.5\) Volts PP) \(\longleftarrow \leftarrow\)

Figure \(32-\) Horizontal (Oscilloscope
Synced to \(1 / 2\) of Horizontal Sweep
Rate \()(1.5\) Volts \(P P)\)
Ral \(1 / 2\) Horizont
\(\xrightarrow{\longrightarrow}\)


Plate of Video Amplifier
(Pin 6 of V110) ( \(6 C L 6\) )
Voltage depends on picture
Figure 33-Vertical (85 Volts PP)
\(\longleftarrow \leftarrow\)
Figure 34-Horizontal (85 Volts PP)
\(\Longrightarrow\)

© John F. Rider


WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope


Figure \(57-G r i d\) of Horizontal Oscil (6SN7GT) \((330\) Volts PP) \()\) \(\longleftarrow\)

Figure 58-Plate of Horizontal Oscil laiur (Ping of Vits)
\((6 \mathrm{SNGTO})(140\) Volts PP\()\)


Figure \(59-\) Terminal "C" of Tilo (

Figure \(60-G r i d ~ o f ~ H o r i z o n t a l ~ O u t . ~\)
put Tube
(Pin 5 of \(V 16\) )
 \(\longrightarrow\)


Figure 63-Plate of Damper
(Pin 5 of \(V 1 / 8)\left(6 W^{\prime} 4 G T\right)\) 160 Volts PP) \(\longleftarrow\)

Figure 64 - Plate of AGC Amplifer

\(\xrightarrow{560 \text { Volts } P>}\)


VOLTAGE CHART
The following measurements represent two sets of conditions. In the first condition, a 15000 microvolt test pattern signal was fed into the
receiver, the picture synced and the \(A G C\) control properly adjusted. The second condition was obtained short circuiting the receiver antenna terminals. Vritages shown are read with a type WV97A senior "Voltohmyst" between the leads and
terminal and chassis ground and with the red terminal and chassis ground and with the receive: operating on 117 volts, 60 cycles, a-c. The symbol < "Veotohmyst" ben
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { No }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { Type }
\end{aligned}
\]} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operating Condition} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|l|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{Notes on Measurements} \\
\hline & & & & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \\
\hline \multirow[t]{2}{*}{V1} & \multirow[t]{2}{*}{616} & \multirow[t]{2}{*}{Mixer} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 2 & 153 & - & - & 7 & 0 & 5 & \[
\begin{aligned}
& *-3 \\
& \text { to } 0
\end{aligned}
\] & *Depending on channel \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 2 & 135 & - & - & 7 & 0 & 5 & \[
\begin{aligned}
& *-3 \\
& \text { to }-5
\end{aligned}
\] & *Depending on channel \\
\hline \multirow[t]{2}{*}{V1} & \multirow[t]{2}{*}{6 J 6} & \multirow[t]{2}{*}{R-F Oscillator} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & 1 & 100 & - & - & 7 & 0 & 6 & \[
\begin{aligned}
& *-3 \\
& \text { to }-5
\end{aligned}
\] & *Depending on channe! \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 1 & 85 & - & - & 7 & 0 & 6 & \[
\begin{aligned}
& *-3 \\
& \text { to }-5
\end{aligned}
\] & *Depending on channel \\
\hline \multirow[t]{2}{*}{v2} & \multirow[t]{2}{*}{6CB6} & \multirow[t]{2}{*}{\begin{tabular}{l}
R-F \\
Amplifier
\end{tabular}} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 260 & 6 & 150 & 2 & 1 & 1 & -5.8 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Siynal }
\end{gathered}
\] & 5 & 220 & 6 & 100 & 2 & 1.0 & 1 & -0.1 & \\
\hline \multirow[t]{2}{*}{V101} & \multirow[t]{2}{*}{6AU6} & \multirow[t]{2}{*}{lst Sound I-F Amp.} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 130 & 6 & 142 & 7 & 0.8 & 1 & 0 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 116 & 6 & 129 & 7 & 0.6 & 1 & 0 & \\
\hline \multirow[t]{2}{*}{V102} & \multirow[t]{2}{*}{6AU6} & \multirow[t]{2}{*}{2d Sound
I-F Amp.} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 131 & 6 & 148 & 7 & 0 & 1 & -5.1 & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 5 & 110 & 6 & 120 & 7 & 0 & 1 & *-0.3 & *Unreliable measuring point. Voltage depends on noise. \\
\hline \multirow[t]{2}{*}{V103} & \multirow[t]{2}{*}{6AL5} & \multirow[t]{2}{*}{Ratio Detector} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 7 & 0 & - & - & 1 & 12 & - & - & 7.5 kc deviation at 1000 cycles \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 7 & 0.7 & - & - & 1 & *5.1 & - & - & *Unreliable measuring point. Voltage depends on noise. \\
\hline \multirow[t]{2}{*}{V104} & \multirow[t]{2}{*}{6AV6} & \multirow[t]{2}{*}{1st Audio Amplifier} & \[
\begin{array}{|c}
15000 \mathrm{Mu} \\
\text { Signal } \\
\hline
\end{array}
\] & 7 & 87 & - & - & 2 & 0 & 1 & -0.7 & At min. volume \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 7 & 76 & - & - & 2 & 0 & 1 & -0.6 & At min. volume \\
\hline \multirow[t]{2}{*}{v105} & \multirow[t]{2}{*}{6K6GT} & \multirow[t]{2}{*}{Audio Output} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 3 & 260 & 4 & 263 & 8 & 19 & 5 & -0.7 & At min. volume \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 3 & 250 & 4 & 251 & 8 & 18.5 & 5 & -0.7 & At min. volume \\
\hline \multirow[t]{2}{*}{V106} & \multirow[t]{2}{*}{6CB6} & \multirow[t]{2}{*}{lat Pix. I-F Amplifier} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 246 & 6 & 258 & 2 & \(<0.1\) & 1 & -8.6 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 108 & 6 & 108 & 2 & 0.7 & 1 & *-0.2 & *Unreliable measuring point. Make measurement at T104-B \\
\hline \multirow[t]{2}{*}{V107} & \multirow[t]{2}{*}{6CB6} & \multirow[t]{2}{*}{\begin{tabular}{l}
2nd Pix. I-F \\
Amplifier
\end{tabular}} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & 5 & 242 & 6 & 255 & 2 & \(<0.1\) & 1 & -8.6 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 108 & 6 & 108 & 2 & 0.5 & 1 & -0.2 & \\
\hline \multirow[t]{2}{*}{V108} & \multirow[t]{2}{*}{6CB6} & \multirow[t]{2}{*}{3rd Pix. I-F Amplifier} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & 5 & 133 & 6 & 172 & 2 & 2.1 & 1 & 0 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 115 & 6 & 162 & 2 & 1.9 & 1 & 0 & \\
\hline \multirow[t]{2}{*}{V109A} & \multirow[t]{2}{*}{12AU7} & \multirow[t]{2}{*}{Picture 2d Det} & \[
\begin{aligned}
& 15000 \mathrm{Mu} . \mathrm{V} . \\
& \text { Signal }
\end{aligned}
\] & 1 & -8.4 & - & - & 3 & 0 & 2 & -1.3 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 1 & -1.8 & - & - & 3 & 0 & 2 & -0.6 & \\
\hline \multirow[t]{2}{*}{V109B} & \multirow[t]{2}{*}{12AU7} & \multirow[t]{2}{*}{Vert. Syns: Separator} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 6 & 71 & - & - & 8 & 0 & 7 & -40 & \\
\hline & & & \[
\begin{gathered}
\mathrm{No} \\
\text { Signal }
\end{gathered}
\] & 6 & \[
\begin{gathered}
* 50 \\
\text { to } 100
\end{gathered}
\] & - & - & 8 & 0 & 7 & *-15 & *Unrehable, dopends on noise \\
\hline
\end{tabular}

R-F UNIT WIRING DIAGRAM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { No. }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { Type }
\end{aligned}
\]} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operating} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|l|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{Notes on Measurements} \\
\hline & & & & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \\
\hline \multirow[t]{2}{*}{V110} & \multirow[t]{2}{*}{\[
\begin{gathered}
6 \mathrm{CL} 6 \\
*(6 \mathrm{AC} 7) \\
*(6 \mathrm{AG} 7)
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Video \\
Amplifier
\end{tabular}} & \[
\underset{\substack{15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal }}}{ }
\] & 6 & 130 & 8 & 149 & 1 & 0.2 & 4 & -1.3 & AGC control set for normal operation \\
\hline & & & \[
\stackrel{\text { No }}{\text { Signal }}
\] & 6 & 110 & 8 & 130 & 1 & 0.5 & 4 & -0.6 & *Refer to Fig. 67 for socket connections \\
\hline \multirow[t]{2}{*}{vill} & \multirow[t]{2}{*}{6AU6} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { AGC } \\
& \text { Amplifier }
\end{aligned}
\]} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & 5 & -40 & 6 & 250 & 7 & 153 & 1 & 151 & \\
\hline & & & \[
\stackrel{\text { No }}{\text { Signal }}
\] & 5 & +2.3 & 6 & 258 & 7 & 135 & 1 & 105 & \\
\hline \multirow[t]{2}{*}{V112A} & \multirow[t]{2}{*}{6SN7GT} & \multirow[t]{2}{*}{Hor. Sync Separator} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & 2 & 263 & - & - & 3 & 190 & 1 & 130 & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 2 & 258 & - & - & 3 & 138 & 1 & 110 & \\
\hline \multirow[t]{2}{*}{V112B} & \multirow[t]{2}{*}{6SN7GT} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Sync } \\
& \text { Output }
\end{aligned}
\]} & \[
\underset{\substack{15000 \mathrm{Mu} \\ \text { Signal } \mathrm{V}}}{ }
\] & 5 & 58 & - & - & 6 & 0 & 4 & -2.1 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 48 & - & - & 6 & 0 & 4 & \[
\begin{gathered}
* \\
+0.6
\end{gathered}
\] & *Depends on noise \\
\hline \multirow[t]{2}{*}{V113} & \multirow[t]{2}{*}{6 J 5} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Vertical } \\
& \text { Oscillator }
\end{aligned}
\]} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & 3 & 70 & - & - & 8 & 0 & 5 & -15 & *Depends on setting of Vert. hold control \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 3 & 68 & - & - & 8 & 0 & 5 & -14 & Voltages shown are synced pix adjustment \\
\hline \multirow[t]{2}{*}{V114} & \multirow[t]{2}{*}{6K6GT} & \multirow[t]{2}{*}{Vertical Output} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & 3 & 265 & 4 & 270 & 8 & 30 & 5 & -5 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 3 & 253 & 4 & 260 & 8 & 28 & 5 & -5 & \\
\hline \multirow[t]{2}{*}{V115} & \multirow[t]{2}{*}{6SN7GT} & \multirow[t]{2}{*}{Horizontal Osc. Control} & \[
\underset{\substack{15000 \mathrm{Mu} \\ \text { Signal } \\ \text { V. }}}{ }
\] & 2 & 165 & - & - & 3 & +1.5 & 1 & -21 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & 160 & - & -- & 3 & -10 & 1 & -24 & \\
\hline \multirow[t]{2}{*}{v115} & \multirow[t]{2}{*}{6SN7GT} & \multirow[t]{2}{*}{Horizontal Oscillator} & \[
\underset{\substack{15000 \mathrm{Mu} \\ \text { Signal } \\ \text { V. }}}{ }
\] & 5 & 185 & - & - & 6 & 0 & 4 & -80 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 170 & - & - & 6 & 0 & 4 & -88 & \\
\hline \multirow[t]{2}{*}{V116} & \multirow[t]{2}{*}{6BQ6GT} & \multirow[t]{2}{*}{Horizontal Output} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & Cap & * & 4 & 180 & 8 & 21.2 & 5 & -13 & *High Voltage Pulse Present \\
\hline & & & \[
\begin{gathered}
\mathrm{N} \circ \\
\text { Signal }
\end{gathered}
\] & Cap & * & 4 & 170 & 8 & 21.0 & 5 & -13 & *High Voltage Pulse Present \\
\hline \multirow[t]{2}{*}{V117} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 183GT } \\
& \hline 8016
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { H. V. } \\
& \text { Rectifier }
\end{aligned}
\]} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} . \mathrm{V} .}
\] & Cap & * & - & - & \(2 \& 7\) & 14,000 & - & - & *High Voltage Pulse Present \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & Cap & * & - & - & 2 \& 7 & 13,600 & - & - & *High Voltage Pulse Present \\
\hline \multirow[t]{2}{*}{V118} & \multirow[t]{2}{*}{6W4GT} & \multirow[t]{2}{*}{Damper} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} . \mathrm{V} .}
\] & 5 & 270 & - & - & 3 & * & - & - & *High Voltage Pulse Present \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 260 & - & - & 3 & * & - & - & *High Voltage Pulse Present \\
\hline \multirow[t]{2}{*}{V119} & \multirow[t]{2}{*}{21AP4} & \multirow[t]{2}{*}{Kinescope} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} . \mathrm{V} .}
\] & Cap & 14,000 & 10 & 400 & 11 & 170 & 2 & 120 & At average Brightness \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & Cap & 13,600 & 10 & 385 & 11 & 150 & 2 & 115 & At average Brightness \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { V120 } \\
& \text { V121 }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SU4G } \\
& \text { SY3GT }
\end{aligned}
\]} & \multirow[t]{2}{*}{Rectifiers} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & \(4 \& 6\) & - & - & - & 2 \& 8 & 285 & - & - & \\
\hline & & & \[
\begin{gathered}
\mathrm{No} \\
\text { Signal }
\end{gathered}
\] & 4 \& 6 & - & - & - & 2 \& 8 & 275 & - & - & \\
\hline
\end{tabular}


Figure \(15-\) R-F Unit W'iring Diagram

\section*{CRITICAL LEAD DRESS:}
1. Keep all wiring in the pix i.f, sound i.f and video circuits as short as possible.
2. Keep the leads on \(\mathrm{Cl18}, \mathrm{Cl20}, \mathrm{Cl22}, \mathrm{Cl24}, \mathrm{Cl26}, \mathrm{R114}\), Ri21 and Ri23 as short and direct as possible.
3. Do not run any leads under Cll5 trimmer capacitor.
4. Dress C118 vertically parallel to terminals A and B of T104. Dress C135 parallel to terminals A and B of T1O4 close to the chassis.
5. Keep Cl 27 away from chassis with no more than \(1 / 4\) inch leads at each end.
6. Dress the lead from \(\mathrm{TlO5}(\mathrm{C}\) ) to the terminal board, close to the chassis.
7. Keep all filament leads dressed close to the chassis.
8. Ground filaments of V106, V107 and V108 independently of tube shields (pin 8). Use ground lances provided near pins of each socket
9. Dress lead from pin 5 of V11O to 1102-2 close to the chassis.
10. Keep leads to L103 as short as possible
11. Dress Cl30, Cl32, L102, L104, L105, L114, R131, R133, R135 and R139 away from the chassis.
12. Do not tape kinescope cathode lead in with other kine scope leads.
13. Do not change the bus wire connections to pin 2 of VlO and V102. Sleeving is used to insure length and to prevent shorting.
14. Keep leads on Cl 36 short and direct. Dress the lead from Cl 36 to pin 5 of Vill as shown in wiring diagram.
15. Do not dress C 170 in such a position that adjustment of T11O is inaccessible.
16. Keep the leads on R2O1 as short and direct as possible.
17. Dress the lead from pin 3 of V 113 to Cl 53 as shown in the wiring diagram.
18. Mount C183 directly on the terminal board provided keeping it as far away from T109 as possible.
19. Dress all leads in the high voltage compartment away rom each other and away from the high voltag transformer.

CHASSIS WIRING DIAGRAM



\section*{© John F. Rider}

\section*{PARTS}
\begin{tabular}{|c|c|c|c|}
\hline stock & description & \[
\begin{gathered}
\text { stock } \\
\text { No. }
\end{gathered}
\] & description \\
\hline & r.f Unit assemblies & 75164 & Rod-Actuating plunger rod (fibre) for line tuning link \\
\hline & KRK8D & 71476 & Screw- \(4-40 \times 1 / 4^{*}\) adjusting screw for L6, L7, L8, \\
\hline 76845 & Br & 751 & Screw-\#4-40 \(\times 3 / 2^{\text {" }}\) adjusting screw for L1, L2, L3, L4, L 4 \\
\hline 76845 & Bracket-Vertical bracket for holding ascillator tube
shield & 517 & Scrow-\# \\
\hline 75201 &  & 73640 &  \\
\hline 76965 & & 74575 & Scrow-*4.40 x 3 399"adjuating scrow for L42 \\
\hline &  & 76519 & Shaft-Channel selector shaft and plato \\
\hline 71088 & Capacitor-Headed Lead. 0.68 mmf . (C27) & 76134 & Shaft-Fi \\
\hline 76968 & Capacitor--Caramic, 3 mmf . (C4) & 76962 & Shield-Oscillator and converter sections shield-sna on type \\
\hline 200 & Capacitor-Coramic, 12 mmf . (C24) & 76967 & Shield-Tube shield for V1, V2 \\
\hline 45465 & Capacitor-Coramic. 15 mmf . (C3) & 75088 & Socket-Tube sockot, 7 contact, miniature, \\
\hline 75196 & Capacitor-Ceramic, 39 mmf . (C5) & & saddle-mounted \\
\hline 75199 & Capacitor-Coramic, 270 mmf . (C12, C13, C20) & 75191 & Spacer-Insulating spacer for front plat* \\
\hline 75641 & Capacitor-Coramic, 390 mmf . (C10) & 75163 & Spring-Friction spring (formod) for fin \\
\hline 75166 & Capacitor-Coramic, 1500 mmf . (C6, C14, C15, C19) & 30340 & Spring-Hair pin spring for finotuning lin \\
\hline 7374 & Capacitor-Coramic, 1500 mmf . (C18, C26) & 74578 & Spring-Retaining spring for adj \\
\hline 75089 & Capacitor-Ceramic, dual 1500 mmf . (C17A, C17B) & 76961 & Spring-Retaining spring for oscillator tube shield \\
\hline 7347 & Capacitor-Ceramic, 5000 mmf . (C21) & 73457 & Spring-Return spring for fine tuning contr \\
\hline 21504 & Capacitor-Tubular, steatite, a djustable, \(0.65 \cdot 1.2 \mathrm{mmf}\). (C7) & 75180 & \begin{tabular}{l}
 \\
 L42,' L52; R9, R10, R11)
\end{tabular} \\
\hline 504 & Capacitor-Coramic. 0.68 mmf . (C23) & & \\
\hline 75184 & Capacitor-Ceramic. adjustable. 0.75 .4 mmf ., complete with adjusting stud (Cl) & 77459 & Stator-Convertor stator complote with rotor, coils, capacL16, L17, L18, L19, L20, L21, L45, R4, R5, Ri2) \\
\hline 75197 & Capacitor-Ceramic, 6.8 mmf. (C8) & 76963 & Stator-Osililator seetion stator complote with rotor. \\
\hline 75189 & Capacitor-Adjustable, \(7-30 \mathrm{mmf}\). (C22) & &  L10. L11, L43) \\
\hline 174 & Capacitor-Ceramic, trimmer, \(50-75 \mathrm{mmf}\). (C11) & 76964 & Stator-R-F amplifier stator complete with rotor, coils, \\
\hline 76143 & Clip-Tubular clip for mounting stand-off capacitors & & capacitora (C13) and resistor (R6) (S1-3. C13, L22, L23 L24, L25, L26, L27, L28, L29, L30, L31, L49, R6) \\
\hline 73477 & Coil-Choke coill (L51) & 75170 & Strip-Coil segment mounting strip-L.H. lower \\
\hline 202 & Coil-Choke coill, 56 muh (L46) & 75171 & Strip-Coil segment mounting strip-L.H. upper-less \\
\hline 75185 & Coil-Converter plate loading coill (L44) & & Strip-Coil segment mounting strip-R.H. centor \\
\hline 7518 & Coil-Trimmor coil ( \(11 / 2\) turns) with adjustable induc.
tance core and capacitorstud (tcrow adjust mont) for tance core and capacitor st
converter section (C9, L47) & 75446 & Stud-Capacitor stud-brass-\#4-40×3/16" with \(3 / 64^{\prime \prime}\) screw driver slot fortrimmer coils L47, L48 and capac. itor Cl uncoded and coded 'ER' \\
\hline 75183 & Cail-Trimmer coil (3turns) with adjustable inductance core and capacitor stud (screw adjustment) for r-f soction (L48, C16) & 75447 & Stud-Capacitor stud-brass-\#4.40×3/16* with 3/64* screw driver slot fortrimmer coile L 47 , L 48 and capac-
itor Cl coded numerically and " Hi - \\
\hline 76460 & Contact-Teast point contact & & Stud-\#6-32 \(\times 13 / 16^{* \prime}\) adjusting stud for trimmer C7 \\
\hline 76966 & Core-Adjustable core for fine tuning capacitor & 75181 & Transformer-Converter transformer (T1) \\
\hline 75162 & Dotont-Detent mechaniem and fibre shaft & 75607 & Washor-Insulating washer (hox) \\
\hline 73453 & Form-Coil form for L45, L49 & 25190 & Washor-Insulating washer (neoprone) for trimmer \\
\hline 75165 & Link-Link assombly for fine tuning & & \\
\hline 76518 & Plate-Front plate and shaft bearing Resiator-Fixed, composition:- & & chassis assemblies KCS72 \\
\hline 503027 & 27 ohms, \(\pm 10 \%, 1 / 2 \mathrm{watt}\) ( R ) & 76456 & Brackot-Channel indicator lamp \\
\hline 503068 & 68 ohms. \(\pm 10 \%\), \(1 / 2\) watt (R13) & & \\
\hline 50411 & 150 ohms, \(\pm 20 \%\). \(1 / 2\) watt (R10) & & Bracket-Mounting bracket complete with insula
picture contral \\
\hline 503222 & 2200 ohms, \(\pm 10 \%, 1 / 2 \mathrm{watt}\) (R6) & 71496 & Copacitor-Adjustable, mica, 5.70 mmf . (C115) \\
\hline 50323 & 3900 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R9, R11) & 33098 & Capacitor-Coramic, 10 mmf . (C127) \\
\hline 503247 & 4700 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R12) & 33380 & Capacitor-Coramic, 12 mmf . (C162) \\
\hline 5023 & 1000 ohms, \(\pm 5 \%\), \(1 / 2\) watt (R3) & 75450 & Capacitor-Ceramic, 39 mmf . (C203) \\
\hline 504310 & 10,000 ohms, \(\pm 20 \%\), \(1 / 2 \mathrm{watt}\) (R2) & 73664 & Capacitur-Coramic, 39 mmf . (C131) \\
\hline 503322 & 22,000 ohms, \(\pm 10 \%\), \(1 / 2 \mathrm{watt}\) (R7) & 76475 & Capacitor-Mica, 68 mmf . (C164) \\
\hline 504410 & 100.000 ohme. \(\pm 20 \%\), \(1 / 2\) watt (R1, R4, R5) & 76474 & Capacitor-Mica, 82 mmf . (C142) \\
\hline 1343 & Rotainor-Fine tuning ehaft retaining ring & 75437 & Capacitor-Caramic, 100 mmf . (C202) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\underset{\substack{\text { stock } \\ \text { No. }}}{ }\) & description & \[
\begin{gathered}
\text { stock } \\
\text { No. }
\end{gathered}
\] & description \\
\hline 76673 & Capacitor-Ceramic, 220 mmf . (C136) & 735 & \\
\hline 75248 & Capacitor-Mica, 220 mmf . (C146) & & \\
\hline 47617 & Capacitor-Ceramic. 270 mmf . (C106) & 75071 & \(\underset{\substack{\text { Capacitor-Tubular, } \\ \text { volts (C159, C160) }}}{\text { (C1) moulded paper, } .047 \mathrm{mfd} ., 400}\) \\
\hline 396 & Capacitor-Mica, 270 mmf ( (C130) & 73792 & Capacitor-Tubular, paper, ail impregnated, . 068 mfd .. 400 volts (C156) \\
\hline 76476 & Capacitor-Mica, 330 mmf . (C169, C175) & 384 & Capacitor-Tubular, paper, oil impresnated, 0.1 mfd ., \\
\hline 39640 & Capacitor-Mica, \(330 \mathrm{mmf}\). (C143) & & \\
\hline 73094 & Capacitor-Mica. 390 mmf . (C149) & 73551 & Copacitor-Tubular, papar, oil impregnated, \(0.1 \mathrm{mfd} .\),
400 volls (C144, C150. C158, C165, C183) \\
\hline 76990 & Capacitor-Mica. 470 mmf . (C107, C121) & 73557 &  \\
\hline 76990 & \begin{tabular}{l}
Capacitor-Ceramic, dual 4700 mmf (C117A, C117B \\
C9A. C19B, Cl25A. C125B, C120A. Cl26B) \\
Capacitor-Ceramic, 4700 mmf . (C118, C120, C122, C123.
\end{tabular} & 73786 & \begin{tabular}{l}
Capacitor-Tubular, paper, oil impregnated, 0.27 mfd. \\
200 volts (C174)
\end{tabular} \\
\hline 73960 &  & 16994 & Capacitor-Tubular, paper, oil impregnated, 0.33 mfd ., 200 volts (C135) \\
\hline 76991 & Capacitor-Ceramic, dual \(10,000 \mathrm{mmf}\). (C101A, C1018) & 73787 & Capacitor-Tubular, paper, oil impregnated, 0.47 mfd ., 200 volts (C168) \\
\hline 74521 & Capacitor-Electrolytic, 5 mfd., 50 volta (C109) & 76498 & Choke-Filter choke (Ll13) \\
\hline 75218 & \begin{tabular}{l}
Capacitor-Electrolytic, comprising 1 section of 10 mfd . \\

\end{tabular} & 73591 & Coil-Antenna matching coil (2 req'd) (Part of T200) \\
\hline 75217 & Capacitor-Mica trimmor, dual 10.160 mmf . (C161A.
C161B) 161B) & \[
\begin{aligned}
& 75241 \\
& 76442
\end{aligned}
\] & \begin{tabular}{l}
Coil-Antenna shunt coil (L202) \\
Coil-Horizontal linearity coil completo with adjustable core (L108)
\end{tabular} \\
\hline 76987 & Capacitor-Electrolytic, comprising 1 section of 80 mfd ., \({ }^{400}\) C182B) & 7644 & Coil-Width coil complete with adjustable core (L106) \\
\hline 76970 & \begin{tabular}{l}
Capacitor-Electrolytic comprising 1 section of 100 mfd ., \\

\end{tabular} & \[
76640
\] & Coil-Peaking coil ( 1.5 muh) (L107) Coil-Peaking coil ( 36 muh ) (L101) \\
\hline 76479 & Capacitor-Tubular, maulded paper, oil impregnated, \(00068 \mathrm{mfd} ., 600\) volts (C171) & 71527 & \begin{tabular}{l}
Coil-Peaking coil (93 muh) (Ll04) \\
Coil-Peaking coil ( 250 muh ) (L114)
\end{tabular} \\
\hline 75643 & Capacitor-Tubular, paper, oil impregnated. .001 mfd .. 1000 volts (C148, C163) & \[
\begin{aligned}
& 75252 \\
& 77124
\end{aligned}
\] & \begin{tabular}{l}
Coil-Peaking coil ( 500 muh ) (L102) \\
Coil-Peaking coil ( 1000 muh ) (L105, R216)
\end{tabular} \\
\hline 76995 & Capacitor-Tubular, moulded paper, oil impregnated,
.0012 mfd ., 600 volts (C172) & 7178 & Connector-Anode lead connector complete \\
\hline 76508 & Capacitor-Tubular, paper, oil impregnated, 0015 mfd .. 600 volts (C138) & \[
\begin{aligned}
& 3578 \\
& 7547
\end{aligned}
\] & \begin{tabular}{l}
Connector-Phono input connector (J101) \\
Connector-Single contact male connector for speaker cable
\end{tabular} \\
\hline 77123 & Capacitor-Tubular, moulded paper, oil impregnated.
.0015 mfd ., 1000 volts (Cl5s) & 75482 & Connector-Video connector (JIO2) \\
\hline 73595
73599 & Capacitor-Tubular, paper, oil imprognated, . 0022 mid ., 600 volts (Cl108, C154) & \[
\begin{aligned}
& 74594 \\
& 38853
\end{aligned}
\] & Connector-2 contact male connector for power cord Connector-4 contact female connector for antenna transformer (J200) \\
\hline & apaciror-
bolts (Cl12) & 503 & Connactor-6 contact female connector for yoke lead (J103) \\
\hline 73818 & Capacitor-Tubular, paper, oil impragnated, .0027 mfd ., apacitor-Tubulta
1600 volts (C114) & 755 & Connector- 6 contact male connector-part of deflection onnector-6
yoke (P103) \\
\hline 73795 & Capacitor-Tubular, paper, oil impregnated, .0033 mfd .,
600 volts ( \(\mathrm{C} 137, \mathrm{C} 139\) ) & 76975 & Control-AGC control (R149) \\
\hline 73920 & Capacitor-Tubular. paper, oil impregnated. \(.0047 \mathrm{mfd} .\).
60 volta (C \(110 . \mathrm{C} 151\) ) & \[
\begin{aligned}
& 76444 \\
& 76448
\end{aligned}
\] & \begin{tabular}{l}
Control-Brightness control (R184) \\
Control-Height control (R173)
\end{tabular} \\
\hline 73808 & Capacitor-Tubular, paper, oil impregnated. \(0082 \mathrm{mfd} .\),
1000 volts (C147) & 76974 & Control-Horizontal and vertical hold control (RI70A.
RI70B) \\
\hline 73561 & Capacitor-Tubular, papar, oil impregnated, 01 mfd. .
400 volts (C111, C 113 , C 134 ) & \[
76445
\]
\[
76976
\] & \begin{tabular}{l}
Control-Picture control (R137) \\
Control-Vertical linearity control (R181)
\end{tabular} \\
\hline 73594 & Capacitor-Tubular, moulded paper, oil impregnated. mid., 600 volts (C170) & 77096 & Control-Vertical linearity control (R181)
Control-Volume control and power switch (R109, S102) \\
\hline 74938 & Capacitor-Tubular, paper, oil impregnated, \(.012 \mathrm{mfd} .\), 200 volts (C188) & \[
\begin{aligned}
& 71498 \\
& 76986
\end{aligned}
\] & \begin{tabular}{l}
Core-Adjustable core and atud for FM trap 15449 \\
Cover-Back cover for hi-voltage compartment
\end{tabular} \\
\hline 73797 & Capacitor-Tubular, paper, oil impregnated, \(.015 \mathrm{mfd} .\).
600 volts (Cl29) & 76985 & Cover-Side cover for hi-voltage compartment \\
\hline 73562 & Capacitor-Tubular, paper, oil impregnated. . 022 mfd. . 400 volts (C167) & 74956
74839 & \begin{tabular}{l}
Cushion-Rubber cushion for deflection yoke hood \\
Fastener-Push fastoner for mounting tube socket 76453
\end{tabular} \\
\hline 73798 & Capacitor-Tubular, paper, oil imprognated, . 022 mfd ., 600 volts (C157) & \[
73600
\] & Fuse-0.25 amps., 250 volts (F101) \\
\hline 73810 & Capacitor-Tubular,.paper, oil imprognated, . 022 mfd ., 1000 volts (C177) & 76459 & \(\qquad\) \\
\hline 73811 & Capacitor-Tubular, paper, oil impragnated, .027 mfd ., 1000 volts (C176) & 76830 & Hood-Deflection yoke hood less rubber cushions \\
\hline 73596 & Capacitor-Tubular. paper, oil impregnated, . 033 mfd ., 1000 volts (C152) & \[
\begin{aligned}
& 76168 \\
& 76141
\end{aligned}
\] & \begin{tabular}{l}
Magnet - Focus magnet \\
Magnet-Ion trap magnet (P.M. type)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \({ }_{\substack{\text { stock } \\ \text { No. }}}^{\text {cest }}\) & Escription & \({ }_{\substack{\text { stock } \\ \text { No. }}}\) & Ription \\
\hline 12683 & not-Pin cuahion corroction & - & 270.000 ohms. \(\pm 10 \% .1 / 2\) watt (R157) \\
\hline 28864 & Plate-Hi-voltage plato (bakalito) amembly complot & \begin{tabular}{c} 
s.30333 \\
si2133 \\
\hline
\end{tabular} &  \\
\hline & Weith tub mockotand andona ring & 503439 & 300.000 ohme. \(\pm 10 \% .1 / 2 \mathrm{watt}\) (R168) \\
\hline 298 &  &  &  \\
\hline 1880 & Rosistor-Wirt wound. 820 ohms. 1 watt (R13) & 503458 & S60,000 ohme. \(\pm 10 \%\), \(1 / 2\) wattet (R146, R171) \\
\hline 76469 & Resittor-Wire wound. 2500 ohms, 10 watte (R115) & 503468. & 880,000 ohme. \(\pm 10 \%\) 1/2 watt (R154, R181) \\
\hline 789 & Reosit tor-Wire wound. 465 & \({ }^{503482}\) & 820.000 ohme. \(\pm 10 \%\) \% \(1 / 2 \mathrm{~m}\) \\
\hline & Rasiator-Fixad. compoaition:- & 10 & 1 mogohm, \(\pm 10 \%\), \(1 / 2\) watt (R1) \\
\hline 503 & 33 hma. \(\pm 10 \%\), \(1 / 2\) watt (R130) & 5021 & \(1.17 \mathrm{mogohm} . t 5 \%\). \(1 / 2 \mathrm{w}\) \\
\hline & 39 ohme. 4 +5\%. \(1 / 2\) watt (R122) & & \(1.2 \mathrm{mogohm}, \pm 108.1 / 2 \mathrm{watt}\) (R1) \\
\hline 5004047 & 47 home. \(\pm 20 \%\). \(/ 2\) watt (R201) & 39083 & 1.8 megohm. \(\pm 5 \% .1\) watt (R197) \\
\hline 503082 & 82 ohms. \(\pm 10 \%\). \(1 / 2\) watt (R101) & 503322 & \({ }^{2.2}\) mogohm, \(\pm 10 \%\), \(1 / 2 \mathrm{watt}\) (R126, R15 \\
\hline 502118 & 180 ohme. \(\pm 5 \%\) \% \(1 / 2 \mathrm{watt}\) (R125) &  &  \\
\hline \({ }^{503139}\) & 330 ohme. \(\pm 10 \% .1 / 2\) Watt (R182) & & spok- \\
\hline 503147 & 470 ohma. \(\pm 10 \%\) \% \(1 / 2\) watt (R144) & \({ }^{76459}\) & Shat- \\
\hline \({ }_{5}^{131315}\) & \(5800 \mathrm{hmm}. \pm 10 \% .1\) watt (R207) & & Shiold-Tube ahield for vilol, \\
\hline \({ }^{504210}\) & 1000 ohme. \(\pm 20 \% .1 / 2\) watt (R102. R118. R120. R124. R127) & & 8hield-Tubo thiold for V109 \\
\hline \({ }^{\text {s03222 }}\) & 2200 ohme. \(\pm 10 \% \mathrm{k} / 1 / \mathrm{watt}\) (R104, R212) & & Sockot-Channol indicator lamp ockot and loca \\
\hline \({ }^{523223}\) & 2200 ohms. \(\pm 10 \% .2\) watts (R131) & cint & Socket-Kinet \\
\hline \({ }^{5042}\) & \(3300 \mathrm{hmm}. \pm 20 \%\) \% \(1 / 2 \mathrm{watt}\) (R211) & &  \\
\hline \({ }^{53232}\) & 3300 ohme, \(\pm 10 \% .2\) watts (R131) & & Sockeot-Tubs ockeot, 6 pin \\
\hline & 3900 ohme. \(\pm\) 5\%, \(1 / 2\) watt (R129, R184) & 887 &  \\
\hline 503239 & 3300 ohme. \(\pm\) 10\%\% \(1 / 1 /\) watt (R194) & 7317 & Soctot-Tube ooket 7 , pinj, watar miniatu \\
\hline \({ }^{5233}\) & 6800 ohme. \(\pm 10 \%\). 2 watte (R203) & 78453 &  \\
\hline & 8200 ohma, \(\pm 10 \%\) \% \(1 / 2\) watt (R176, & & \\
\hline \({ }^{91322}\) & 8200 ohma. \(\pm 10 \%\) & &  \\
\hline & 10.000 ohmm. \(\pm\) S\%. \(1 / 2 \mathrm{watt}\) (R107, R108, R123) & 72827 & Sockit-Tubo mockot, 8 pin, wtatito addle mountod for \\
\hline 5023 & 10,000 ohms. \(\pm\) 20\%. \(11 / \mathrm{watt}\) (R132) & 71 & Socke-T \\
\hline 5033 & 12,000 ohme. \(\pm 10 \%\). \(1 / 2\) watt (R149) & & for \\
\hline & 12,000 ohme. \(\pm 10 \% .2\) watts (R133) & & \\
\hline \({ }^{803}\) & 13,000 ohms. \(\pm 10 \%\). \(1 / 2\) watt (R153) & 77011 & Suith-Tont control and phono witch low volume \\
\hline \({ }_{5}^{503}\) & (1)0,000 ohms, \(\pm 10 \%\). \(1 / 2\) watt (R123, R158, & \({ }_{76883}\) & Torminal-Scrow type grounding torminal \\
\hline s033 & 22,000 ohmm, \(\pm 10 \%\), 1/2 watt (R167, R217) & &  \\
\hline \({ }^{5133}\) & 22.000 ohme. \(\pm 10 \%, 1\) watt (R193) & & Traneformer-Hi-voltago traneformer (T111) \\
\hline \({ }^{603}\) & 27,000 ohms. \(\pm 10 \%\). \(1 / 2\) watt (R215) & 78440 & Tranformmor-Horitotal al ocililator transor \\
\hline \({ }_{5} 513\) & 27.000 ohms. \(\pm 10 \% .1\) watt (R218) & & Traneformor-Output trantor \\
\hline \({ }^{5133}\) & 33.000 ohms. \(\pm 10 \%\). 1 watt (R214) & 78984 & Tratioformor-Power transformor, 117 volte 80 cyelo \\
\hline \begin{tabular}{l} 
coser \\
si339 \\
51399 \\
\hline
\end{tabular} & 39,000 ohmn, \(\pm 10 \%\), \(1 / 2\) watt (R106, Rl & & Traneformor-Ratio dotector transtormer (T102, Cl09) \\
\hline & 47,000 ohme. \(\pm 10 \%-1 / 2 \mathrm{watt}\) (R180) & &  \\
\hline 5043 & 47.000 ohms. \(\pm 20 \%\). \(1 / 2 \mathrm{watt}\) (R144) & & \({ }_{\text {Trant }}{ }_{\text {Trarr }}\) \\
\hline 512347 & 47,000 ohme. \(\pm\) 5\%. 1 watt (R148) & &  \\
\hline \({ }^{513347}\) & 47,000 ohme. \(\pm\) 10\%. 1 watt (R132) & 76980 & Transtormor-Sopord. third or fourth \\
\hline \({ }_{\text {cose }}^{50358}\) & 55.000 ohme. \(\pm 105.1 / 2 \mathrm{watt}\) (R146, R155, R204) & & \\
\hline & 56,000 & 7549 &  \\
\hline \({ }_{513388}\) & 68.000 ohms. \(\pm 10 \%\), 1 watt (R19) & 32983 & Trap-1-F trap (L200, L201, C200. C201) rap-4.5 MC trap (L103, Cl28) \\
\hline \({ }^{513382}\) & \(82,000 \mathrm{ohmm} . \pm 10 \%\) & 78618 &  \\
\hline 504410 & \(100.000 \mathrm{ohms}. \pm 20 \%\). \(1 / 2\) & &  \\
\hline ciliclo & \({ }^{1000.000 ~ o h m b . ~} \pm 10 \%\). 1 watt (R173) & & speaker asbemblies \\
\hline 180 & 1200000 ohme. \({ }^{5 \%}\) \% \(1 / 2\) watt (R143) & & \\
\hline & 150,000 ohms. \(\pm 10 \%\), \(1 / 2\) watt (R174, R183, R187) 150,000 ohms. \(\pm 20 \%\). \(1 / 2\) watt (R139) & & RMA-274 \\
\hline \({ }^{512415}\) & 150.000 ohms. \(\pm 5 \% .1\) watt (R195) & & (For Modole 17 17200, 17 T201 \& 17 Tr20 \\
\hline 502418 &  & 700 & \\
\hline & 270.000 ohme. \(\pm 5 \%\), \(1 / 2 \mathrm{watt}\) (R177) & & ( 2 ohms) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \({ }_{\substack{\text { stock } \\ \text { No. }}}\) & description & stoc & descriptio \\
\hline \multirow{8}{*}{\[
\begin{aligned}
& 75024 \\
& 75022
\end{aligned}
\]} & \multirow[t]{8}{*}{\begin{tabular}{l}
SPEAKER ASSEMBLIES 971490-3W RLMA.274 \\
(For Modele 17T211 \& 17T220) \\
Cone-Cone and voice coil ( 3.2 ohms) \\
Speaker- \(8^{\prime \prime}\) P.M. speaker complete with cone and voice
cail ( 3.2 ohme) \\
NOTE: If etamping on epeaker in inetrumente does not
agree with above speaker number, order replacernent agree with above speaker number, order replacement
parti by referringto model number of instrument, num-
ber etomped on epeaker and full deseription of part bor stomped on apeaker and full description of part
required.
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 76598 \\
& 77264
\end{aligned}
\]} & \multirow[t]{2}{*}{Knob-Tone control and phono wwitch knob-maroon-Knob-Brightness control or vertical hold control knob} \\
\hline & & & \\
\hline 77189 & \begin{tabular}{l}
MISCELLANEOIJS \\
Back-Cabinet back complete for Modele 17T200. 17 T201.
17 T 202
\end{tabular} & 77267 & \\
\hline 77190 & Back-Cabinot back complotot for Modele 177211, 17 Tr220 & &  \\
\hline \%en & Board-"Antenna" terminal board & & \\
\hline 76811 & \multirow[t]{2}{*}{ Brackot-Hangor bracket for dofloction yoke hood for} & &  \\
\hline 77001 & & &  \\
\hline 7681 & \begin{tabular}{l}
Bracket-Hangar brackot for doflection yoke hood for
Modol 17 ITT11 \\
Bracket-Hangor bracket for doliaction yoke hood for
\end{tabular} & & Pad \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & & Pad
Par \\
\hline & & & \\
\hline &  & & \(\xrightarrow{\text { Panold Motal }}\) (tod \\
\hline 71892 & \multirow[t]{2}{*}{Catch-Bullet catch and strike for Model 17 T 220 Clip-Spring clip for spacing ground braid} & & \\
\hline 78823 & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& x_{312} \\
& \text { x3399}
\end{aligned}
\]} & Clip-Spring clip for spacing ground braid Cloth-Grille cloth for Modele 17T201, 17 T202 & & mahogany \\
\hline & \(\mathrm{Cl}_{17 \mathrm{oth}}^{\mathrm{I} 211} \mathrm{Grill}\) cloth for mahogany cabinot for Modol & & \\
\hline \({ }^{1736}\) &  & & \\
\hline 754 & \multirow[t]{2}{*}{Connotar-Single contact male connoctor for antonna} & & \\
\hline & & &  \\
\hline \multirow[t]{2}{*}{\({ }_{7}^{71457}\)} & Connector-4 contact male connector for antenna cable & &  \\
\hline & \begin{tabular}{l}
Cord-Power cord and plug \\
Cumhion-Rubber cushion \(\left(1 / 16^{\prime \prime} \times 1^{\prime \prime} \times 5 / /^{\prime \prime} \times 1^{\prime \prime}\right)\) for
\end{tabular} & &  \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
kinescope and cradle aupport ( 4 reg 'd) \\
Docal-Control panal function docal for, mahooany or
\end{tabular}} & & \({ }_{\text {Sorow }}\) \\
\hline & & & \\
\hline 71984 & Docal-Trado mark docal for Modol 177220 & & sp \\
\hline 77012 & \multirow[t]{2}{*}{ Eecutchoon-Channol markor ucutehoon-gold} & & spring-For \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
75456 \\
74889
\end{tabular}} & & & \({ }_{\substack{\text { Spring-Re } \\ \text { port } \\ \text { rode }}}\) \\
\hline & & & Spring-Retaining apring for knobe 79663. 75464, 77298 \\
\hline \({ }^{24889}\) & & & Spring-Rotaining ppring for knobe 7es91. 785892.77383 \\
\hline \multirow[t]{2}{*}{74308} & \multirow[t]{2}{*}{Hing} & &  \\
\hline & & & \\
\hline \multirow[t]{2}{*}{78983
78991} & \multirow[t]{2}{*}{\begin{tabular}{l}
Knob-Channel melector knob-maroon-(inner) \\
Knob-Fine tuning control knob-maroon-(outer)
\end{tabular}} & &  \\
\hline & & Tsen & \({ }^{\text {Str}}\) \\
\hline 7893 & \(\mathrm{K}_{\text {nob - Pictur con entrol. horizontal hold control or vol- }}^{\text {ume }}\) & & \({ }_{\text {Sta }}\) \\
\hline 78997 & Knob-Tone control and phono wwitch knob-maroon- & & Sup \\
\hline \multirow[t]{2}{*}{7659} & \multirow[t]{2}{*}{Knob-Brightneas control or vertical hold control knob
-boige-(outer)} & & \\
\hline & & & \\
\hline \({ }_{7}^{78599}\) & \begin{tabular}{l}
Knob-Channol eelector knob-beige-(inner) \\
Knob-Finetuning control knob-beige-(outer)
\end{tabular} & & \\
\hline \multirow[t]{2}{*}{25484} & Knob-Pioturn eontrol, horisontal hold control or vol- & & \\
\hline & urne control and power ewitch knoh-beige- (inne & & \\
\hline
\end{tabular}
ELECTRICAL AND MECHANICAL SPECIFICATIONS
(Continued)


INDEX
\begin{tabular}{|c|c|}
\hline & PAGE \\
\hline ALIGNMENT INSTRUCTIONS & \\
\hline Installation data & 34 \\
\hline PARTS LIST & 47,48 \\
\hline PRODUCTION CHANGES. & 14 \\
\hline RESISTANCE MEASUREMENTS & \\
\hline SCHEMATIC & \\
\hline SPECIFICATIONS & 33 \\
\hline top View - tube layout & 35 \\
\hline TRIMMER LOCATIONS & 40 \\
\hline TROUBLESHOOTING. & \\
\hline VOLTAGE MEASUREMENTS & 43, 44 \\
\hline WAVEFORMS . . . . & 41,42 \\
\hline
\end{tabular}



Model 21T228 "Brandon" Model 21T229 "Belgrove"
Walnut, Mahogany, Maple Waln

\section*{ELECTRICAL AND MECHANICAL SPECIFICATIONS}
PICTURE SIZE . 227 square inches on a 21 AP4 Kinescope
RCA TUBE COMPLEMENT TELEVISION R-F FREQUENCY RANGE
All 12 television channels, 54 mc. to 88 mc., 174 mc. to 216 mc Picture I-F Carrier Frequency .................... 25.50 mc Sound I-F Carrier Frequency..........21.00 mc. and 4.5 mc POWER SUPPLY RATING . . 115 volts, 60 cycles, 190 watts AUDIO POWER OUTPUT RATING . ..... 4.0 watts max VIDEO RESPONSE. .
 FOCUS............
Magnetic Models 21T207, 207G. (971636-1) 5" PM Dynamic, 3.2 ohms Modele 21T218, 227, 228. (92569-12) \(12^{\prime \prime}\) PM Dynamic, 3.2 ohn WEIGHT AND DIMGNSIONS (inch) WEIGHT AND DIMENSIONS (inchea)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Model & Net Weight & Shipping Woight & Width & Hoight & Dopth \\
\hline 21 207. & 94 & . 115 & . \(281 / 2\) & . \(281 / 4\). & \(271 / 2\) \\
\hline 21T202G & 105 & 126 & 285/ & 281/4 & 285\% \\
\hline 21T208. & 94 & 115 & 251/8 & 243/4 & 251/8 \\
\hline 217217. & 104 & 132 & 26 & 393/ & 251/8 \\
\hline \(21 T 218\). & 112 & 144 & 275/ & 391/4 & 24 \\
\hline 217227. & 130 & 162 & .271/2 & 401/8 & 271/8 \\
\hline 217228. & 132 & 164 & 275/ & 39\%/ & 26\%/8 \\
\hline 21T229.. & 139 & 173 & 271/8 & 40 & 267/8 \\
\hline
\end{tabular}
RECEIVER ANTENNA INPUT IMPEDANCE
operating controls (Front Panel)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PICTURE INTERMEDIATE FREQUENCIES} \\
\hline Picture Carrier Frequency & 25.50 mc . \\
\hline Adjacent Channel Sound Trap & 27.00 mc . \\
\hline \multicolumn{2}{|l|}{SOUND INTERMEDIATE FREQUENCIES} \\
\hline Sound Carrier Frequency & 21.00 mc . \\
\hline Sound I.F. Frequency. & . 4.5 mc . \\
\hline VIDEO RESPONSE & To 3.2 mc . \\
\hline FOCUS & Magnetic \\
\hline SWEEP DEFLECTION & . . Magnetic \\
\hline SCANNING......................... . & Interlaced, 525 line \\
\hline HORIZONTAL SWEEP FREQUENCY. & 15,750.cps \\
\hline \multicolumn{2}{|l|}{VERTICAL SWEEP FREQUENCY............. 60 cps} \\
\hline FRAME FREQUENCY (Picture Repetition & tion Rate). . 30 cps \\
\hline
\end{tabular}


\section*{high voltage warning}
OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

\section*{KINESCOPE HANDLING PRECAUTIONS}
DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.
The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For thin reason, the kinescope must be handled with more care than ordinary recoiving tubes.
The large end of the kinsscope bulb-particularly that part at the rim of the viewing surface-must not be struck scratched or subjected to more than moderate pressure at any time. During service if the tube sticks or fuile to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube Refor to the Receiver Installation section for detailod instructions on kinescope installation. All RCA replacement

John F. Rider

The following adjustments are necessary when turning the receiver on for the first time.
1. See that the TV.PH switch is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best pix and the
SOUND VLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then crockwise until a light
appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Adjust the CONTRAST and BRIGHTNESS controls for
suitable picture contrast and brightness.
9. In switching from, one channel to another, it may be necessary to repeat steps 4 and 8 .
10. When the set is turned on again after an idle period it


Figure 1-Receiver Operating Controls should not be necessary to re peat the adjustment if the posi been changed. If any adjustment is necessary, step number 4 is generally sufficient.
11. If the positions of the conll. If the positions of the con-
trols have been changed, it may trols have been changed, it may through 8 .
12. To use a record player plug the record-player outpu the rear apron, and set the TV-PH switch to "PH"

\section*{INSTALLATION INSTRUCTIONS}

UNPACKING.-These receivers are shipped complete in cardboard c
the receiver.
Take the receiver out of the carton and remove all packing material.
Make sure that all tubes are in place and are firmly seated
Check to see that the kinescope high voltage lead clip is in place.
Plug a power cord into the 115 volt a-c power source and Plug a power cord into the lis volt a-c power source and
into the receiver interlock receptacle. Turn the receiver ppower
switch to the "on" position, the brightness control fully clockswitch to the "on" position, the brightness contro
wise, and the picture control counter-clockwise.
ION TRAP MAGNET ADJUSTMENT.-Set the ion trap magnet approximately in the position shown in Figure 2 . moving it forward or backward at the same time rotating it
slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the
focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjust-
ment should be made with the brightness control at the ment should be made with the brightness control at the
maximum clockwise position with which good line focus can maximum clock
be maintained.


Figure 2-Yoke and Focus Magnet Adjustments

DEFLECTION YOKE ADJUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this con
Tighten the yoke adjustment wing screw.
PICTURE ADJUSTMENTS. - It will now be necessary to obtain a test pattern picture in order to make further adjust

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync che picture at uis poin is overloading, it may be impossible to sync the picture.
If the receiver is overloading, turn R149 on the rear apron (see Figure th) counter-clockwise until
mally and the picture can be synced.
CHECK OF HORIZONTAL OSCILLATOR ALIGN MENT, -Turn the horizontal hold control to the extrem counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching
oft Turn the control clockwise slowly. The number of diagona black bars will be gradually reduced and when only 2 or 3
bars sloping downward to the eft are obtained, the picture will bars sloping downward to tha 'eff are obtained, the picture will
pull into sync upon slight addritonal clockwise rotation of the pull into sync upon slight addutonal clockwise rotation of he turned. 120 degrees from the extreme counter-clockwise posi-
tion. The picture should remain in sync for approximately 90


Figure 3-Rear Chassis Adjustments
degrees of additional clockwise rotation of the control. At the axd should not show a black bar in the picture.
If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is, properly
aligned. Skip "Alignment of Horizontal Oscillator" and prodjustment.
ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold
control at the extreme counter-clockwise position or failed to
hold sync control at the extreme counter-clockwise position or failed to
hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be ne ing adjustments.
Horizontal Frequency Adjustrent.-Turn the horizontal hold control to the extreme clockwise position. Tune in a adjustment at the rear of the chassis until the picture is just out of sync-and the horizontal blanking appears as a vertical or
diagonal black bar in the raster. Then turn the Tllo core diagonal black bar in the raster. Then turn the Tllo core
until the bar moves out of the picture leaving it in sync. Horizontal Locking Range Adjustment--Set the horizontal hold control to the full counter-clockwise position. back. The picture may remain in sync. If so turn the Tllo rear the picture talls out of sync with the diagonal lines sloping
down to the left. Slowly turn the horizontal hold control
clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.
If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C161A
slightly clockwise. If less than 2 bars a are present, adjust Cl61A sightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and reheck the number of bars present at the pull.
his procedure until 2 or 3 bars are present.
Repeat the adjustments under "Horizontal Frequency Ad-
ustment" and "Horizontal Locking Range Adiustment" until he conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizonor Algnment the oscillator is properly adjusted. If it is impossible to sync the picture at this point and the AGC system is in proper adiustment it will be necessary to
adjust the Horizontal Oscillator by the method outlined in the " B " under Horizontal Oscillator Waveform Adjustment may be omitted.
FOCUS MAGNET ADJUSTMENT.-The focus magnet should ke adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke
and the flat of the front face of the focus magnet. This spacing and the fiat of the front face of the focus magnet.
The axis of the hole through the magnet should be parallel
with the axis of the kinescope neck with the kinescope neck with the axis of the kinescope neck
hrough the center of the opening.

PIN-CUSHION CORRECTION.-Two pin-cushion correcion magnets are employed to correct a small amount of the kinescope. These magnets are mounted on small arms, one on each side of the kinescope as shown in Figure 2 . The arms hinge in one plane on self tapping screws which act
both as a hinge and an adjustment locking screw. When the magnets are swung towards the tube, maximum correction is obtained. Minimum correction is obtained when the arms are swung away from the tube. To adjust the magnets, loosen
the two self tapping screws and position the magnets until the sides of the raster appear straight. Tighten the screws without shifting the position of the magnets. In some cases it
may be necessary to twist or bend the magnet support arms to may be necessary to twist or bend the magnet su.
obtain the appearance of straight raster edges.
CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means
of a separate plate on the focus magnet. The centering plates include a locking screw which mast bet The centering plates side to side and sidewise adjustment moves the picture up

If a corner of the raster is shadowed, check the position of If a corner of the raster is shadowed, check the position of of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate.
In no case should the magnet be adjusted to cause any loss In no case should the magnet be adjusted to cause any loss eventual damage to the tube. In some cases it may be necessary to shift the position of
eliminate a corner shadow.
WIDTH, DRIVE AND HORIZONTAL LINEARITY DJUSTMENTS. - Adjustment of the horizontal drive conrol affects the high voltage applied to the kinescope. In order obtain the highest possible voltage hence the brightest and counter-clockwise until the picture begins to "wrinkle" in the middle then clock wise until the "wrinkle" disappears.
Turn the horizontal linearity control L108 clockwise until he picture begins to "wrinkle", on the right and then counterlockwise until the "wrinkle" disappears and best linearity

Adjust the width control Ll06 to obtain correct picture width. A slight readjustment of these three controls may be neces-

Adjustments of the horizontal drive control affect horizontal scillator hold and locking range. If the
HEIGHT AND VERTICAL LINEARITY ADJUST MENTS. - Adjust the height control (R173 on chassis rear apron) until the picture fills the mask vertically. Adinearity (R181 on rear apron), until the test pattern synimetrical rom top to bottom. Adjustment of either control align the picture with the mask.
FOCUS.-Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the Recheck the position of the ion trap magnet to make sure
that maximum brightness is obtained.

Check to see that the yoke thumbscrew and the focus
magnet mounting screws are tight. magnet mounting screws are tight.

Figure 4-R-F Oscillator Adjustments
CHECK OF R-F OSCILLATOR ADJUSTMENTS.une in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjust-
ments are required, these should be made by the method outined in the alignment procedure on page 9. The adjustments For channels 2 through 12 are available from the front of the in Figure 4. Adjustment for channel 13 is on top of the chassis.
AGC THRESHOLD CONTROL.-The AGC threshold AGC THRESHOLD CONTROL. - The AGC threshold
ontrol R149 is adjusted at the factory and normally should control R149 is adjusted at the factor
not require readjustment in the field.
To check the adjustment of the AGC Threshold Control, tune in a strong signal and sync the picture. Momentarily emove the signal by switching off channel and then back. If the picture reappears immediately the receiver is not over-
loading due to improper setting of Ri49. If the picture requires an appreciable portion of a second to reappear, or bends
 xcessively, Rl49 should be readjusted

\section*{© John F. Rider}

Turn R149 fully counter-clockwise. The raster may be bent slightly. This should be disregarded. Turn R149 clockwise
until there is a very, very slight bend or change of bend in the picture. Then turn Rl49 counter-clockwise just sufficiently
to remove this bend or change of bend.

If the signal is weak, the above method may not work as
it may be impossible to get the picture to bend. In this case, it may be impossible to get the picture to bend. In this case,
turn R149 clockwise until the snow in the picture becomes urn 149 clockwise until the snow in the picture becomes
more pronounced, then counter-clockwise until the best signal to noise ratio is obtained.
The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a
weak signal, then the receiver may overload when a strong weak signal, then the
signal is received

FM TRAP ADJUSTMENT.-In some instances intererence map be encountered from a strong FM station signal. trap is provided to eliminate this type of interference. To
adjust the trap tune in the station on which the interference adjust the trap tune in the station on which the interference
is observed and adjust the L203 core on top of the antenna matching transformer for minimum interference in the picture.

CAUTION.-In some receivers, the FM trap L203 will tune such an adjustment will cause greatly reduced sensitivity on 203 to make sure that it does not affect sensitivity on these wo channels.
Replace the cabinet back and connect the receiver antenna leads to the cabinet back. Make sure that the screws holding it are up tight, otherwise it may
receiver is operated at high volume

KINESCOPE SCREEN CLEANING.-The kinescope safety glass is held in place by four spring clips which may
be removed from the back of the front panel. This permits removed from the back of the front panel. This permits removing the safety glass for cleaning
removing the chassis and kinescope.
CHASSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the speaker cable,
the kinescope socket, the antenna cable, the yoke and high voltage cable. Take out the chassis bolts under the cabin

KINESCOPE HANDLING PRECAUTION.-Do not in. shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kine-
scope. Keep the kinescope away from the body while handling.

REMOVAL OF KINESCOPE.-To remove the kinescope from the cabinet, loosen the two nuts and disengage the the yoke frame to the cabinet Remove the kinescone the the yoke frame to the cabinet. Remove the kinescope,
yoke frame with yoke and focus magnet as an assembly.
Handle this tube by the portion at the edge of the screen will produce leakage paths which may interfere with recep tion. If this portion of the tube has inadvertently been handled wipe it clean with a soft cloth moistened with "dry" carbon
tetrachloride.

INSTALLATION OF KINESCOPE.- Wipe the kinescope
screen surface and front panel safety glass clean of all dust screen surface and front panel safety glass clean of all dus
and fingermarks with a soft cloth moistened with "Windex' or similar cleaning agent.
Replace the kinescope and chassis by reversal of the he high voltage contact is to the right when looking at it fro the rear of the cabinet. The magnet of the ion trap magne
should be to the left.

CABINET ANTENNA. - A cabinet antenna is provided in some receiver models and the leads are brought out near the antenna terminal board. The cabinet antenna may b employed in place of the outdoor antenna in areas where
the signals are strong and no reflections are experienced.

ANTENNAS. - The finest television receiver built may be said to be only as good as the antenna design and installauit the particular local conditions, to install it properly and suit the particulay
orient it correctly
If two or more stations are available and the two stations are in different directions, it may be possible to make a com-
promis orientation which will provide a satisfactory signal on all such channels.
If it is impossible to obtain satisfactory results on one or
more channels, it may become necessary either to provide more channels, it may become necessary either to provide means for turning the antenna when switching chanels or to
install a separate antenna for one or more channels and to witch antennas when switching channels.
In some cases, the antenna should not be installed perma-
nently until the quality of the picture reception has been bently until the quality of the picture reception has been line can be run between receiver and the antenna, allowing sufficient slack to permit moving the antenna. Then, with a elephone system connecting an observer at the receiver and
an assistant at the antenna, the antenna can be positioned to give the most satisfactory results on the received signal. A shift of direction or a few feet in antenna position may - \(r\) remendous difference in picture reception.

REFLECTIINS. - Multiple images sometimes known as
echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent mage occurs when a signal arrives at the antenna atter being reflected ofr a building, a hill or other object. In severe
cases of reflections, even the sound may be distorted. In less vere cases, reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition the picture.
sible to rotate or position the antenna so that it receives the cleanest picture over a reflected path. If such is the case, the antenna should be so positioned. However, such a position
may give variable results as the nature of reflecting surfaces may vary with weather conditions. Wet surfaces have been known to have different reflecting characteristics than dry Depend
Depending upon the circumstances, it may be possible to eliminate the reilections by rotating the antenna or by moving
it a n new location. In extreme cases, it may be impossib!e inate the reflection

INTERFERENCE.-Auto ignition, street cars, electrical which spoils the picture Whenever possible the antenna location should be removed as tar as possible from high ways, hospitals, doctors' offices and similar sources of inter ference. In mounting the antenna, care must be taken to
keep the antenna rods at least \(1 / 4\) wave length (at least 6 feet) away from other antennas, metal rools, gutters or other tal objects.
Short-wave radio transmitting and receiving equipmen ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmis sion line. However, if the interfering signal is on the same
frequency as the television station, a trap will provide no improvement.
WEAK PICTURE. - When the installation is near the limi of the area served by the transmitting station, the picture may be speckled, having a "snow" effect, and may not hold strength from the transmitter.
RECEIVER LOCATION.-The owner should be advised of the importance of placing the receiver in the proper location in the room.

The location should be chosen -
-Away from bright windows and so that no bright light will fall directly on the screen. (Some illumination i
-To give easy access for operation and comfortable iewing
To permit convenient connection to the antenna.
To allow dequate ventilation



Figure 6-Chassis Bottom View

\section*{ALIGNMENT PROCEDURE}

TEST EOUIPMENT.-To properly service the television chassis of this receiver, it is
test equipment be available:
R-F Sweep Generator meeting the following requirements
(a) Frequency Ranges

20 to \(30 \mathrm{mc} ., 1 \mathrm{mc}\). and 10 mc . sweep width 50 to \(90 \mathrm{mc} ., 10 \mathrm{mc}\). sweep width
b) Output adjustable with at least .1 volt maximum
(c) Output constant on all ranges.
(d) "Fat" output on all attenuator positions.

Cathode-Ray Oscilloscope- -For alignment purposes, the oscilloscope employed must have excellent low frequency and
phase response, and should be capable of passing a 60 -cycle phase response, and should be capable of pa.
square wave without appreciahle distortion.

For video and sync waveform observations, the oscilloscope
must have excellent frequency and phase response from 10 must have excellent frequency and phase response from 10 cycles to
control.
Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies
22.25 and 25.5 mc . conv. and first pix i.f trans. 22.75 mc . second picture i.f transtorme 24.25 mc . fourth picture i.f transforme 25.5 mc . third picture 1 .
25.50 mc . picture carrier
27.00 mc . adjacent channel sound trap
(b) Radio frequencies
Channel
Number
2
3
4
5
6
7
8
9
10
11
12
13
Picture
Carrier
Freq. Mc. \(\quad\)\begin{tabular}{r} 
Sound \\
Carrier \\
Freq.
\end{tabular}
(c) Output of these ranges should be adjustable and at

Heterodyne Frequency Meter with crystal calibrator which covers the frequen
from 200 mc . to 237 mc .
Electronic Voltmeter of Junior or Senior "VoltOhmyst" type and a high voltage multiplier probe
meter to permit m surements up to 15 kv .
Service Precautions.-If possible, the chassis should be serviced without the kinescope. However, if it is necessary to view the raster during servicing, it would be a great con venience to have a bench mounted kine
complete with a set of extension cables.
CAUTION: Do not short the kinescope second anode lead Its short circuit current presents
the high voltage rectifier V17.
Adjustments Required.-Normally, only the r-f oscillato and mixer lines will require the attention of the service technician. All other circuits are either broad or very stable and will seldom require readjustment.
ORDER OF ALIGNMENT.- When a complete receive in the following order the way out. adjustments. quency ( 236.15 mc ). meter herfunit Connect
terminals. quency ( 108.75 mc .).
(6) Sound i-f alignment (7) 4.5 Mc Trap Adjustm̀nt (8) Check of overall response (9) AGC control adjustment (10) Horizontal oscillator alignment
(1) R -F unit
(2) Picture i.f transformers (3) Picture i-f trap (4) Sweep of picture i-f (5) Ratio detector
\[
\begin{aligned}
& \text { Disconnect the } \\
& \text { minal board or }
\end{aligned}
\]

R-F UNIT ALIGNMENT.-Disconnect the co-ax link from terminal 2 of the r.f unit terminal board and connect a
Detune TI by backing the core all the way out of the coil.
Back the L44 core all the way out. Back the L203 core all
In order to align the r-f tuner, it will first be necessary to set the channel-13 oscillator to frequency. The shield over the bottom of the \(r\)-f unit must be in place when making any
The oscillator may be aligned by adjusting it to beat with a crystal-calibrated heterodyne frequency meter. Couple the
meter probe loosely to the receiver oscillator.
Set the channel selector switch to 13 .
Adjust the heterodyne frequency meter to the correct fre
Set the fine tuning control 30 degrees clockwise from the of its range.
Adjust Cl for an audible beat on the heterodyne frequency
Now that the channel-13 oscillator is set to frequency, we may proceed with the r-f alignment.
Turn the AGC control fully clockwise.
Obtain a 7.5 volt battery capable of withstanding apprepotentiometer across it. Connect the battery positive terminal potentiometer across it. Connect he barm to terminal 3 of the rf unit. Adjust the bias box potentiometer to produce - 3.5 as the unit terminal board.
Connect the oscilloscope to the test point TPI on top of
Connect the r-f sweep oscillator to the receiver antenn ferminals. The method of connection depends upon the output impedance of the sweep. The P300 connections for 300 -ohm circuit schematic diagram. If the sweep oscillator has 72 has circuit schematic diagram. If the sweep oscillator has a
50 -ohm or 72 -ohm single-ended output, 300 -ohm balanced output can be oblained by connecting as shown in Figure 9 .

Set the receiver channel switch to channel 8 .
Set the sweep oscillator to cover channel 8 .
Insert markers of channel 8 picture carrier and sound car mc . and 185.75 mc
Adjust C9, \(\mathrm{Cl1}, \mathrm{Cl} 6\) and C 22 for approximately correct , The correct adjustment of C22 is indicated by maximum unes the rimplifier plate circuit and aftects the frequen of the curve most noticeably. C9 tunes the converter grid circuit and affects the tilt of the curve most noticeably (assuming tment and hence primarily affects the response band width.
Set the receiver channel switch to channel 6.
Adjust the heterodyne frequency meter to the correct fre-
Set the fine tuning control 30 degrees clockwise from the Sechanical center of its range.
meter. \(L\) for an audible beat on the heterodyne frequency

\section*{Set the sweep generator to channel 6}

From the signal generator, insert channel 6 sound and
picture carrier markers, 83.25 mc. and 87.75 mc . Adjust L42, L45 and L49 for proper response as shown in
Figure 12. gure 12.
L42 is adjusted to give maximum amplitude of the curve
etween the markers. L45 primarily affects the tilt of the curve. between the markers. L45 primarily affects the ti
L49 primarily affects the frequency of response
Connect the "VoltOhmyst" to the r.f unit test point TPI Adjust C7 for -3.0 volts at the test point.
Retouch L42, L45 and L49 for proper response if necessary,
If necessary, retouch Cll for proper band width on channel 6 . Continue these retouching adjustments until proper response is obtained and \(\overline{3}\)
at the test point, TPI
Set the receiver channel selector switch to channel 8 and Seadjust Cl for proper oscillator frequency
Set the sweep oscillator and signal generator to channel 8 . Readjust C9, C16 and C22 for correct curve shape, fre
quency and band width. Readjust C11 only if necessary. Switch the receiver, the sweep oscillator and signal gen-
erator to channel 13 .
Adjust L52 for maximum amplitude of the curve midway ing the slug in the same direction from the initial setting a little more than the amount of turning required to reach maxinum amplitude of response.
Adjust C22 for maximum amplitude of response
Turn off the sweep generator. Adjust the L43 core for correct
hannel 13 oscillator frequency, then overshoot the adjustment by turning the slug a little more in the same direction from the initial setting. Reset the oscillator to proper frequency by
adjustment of Cl . adjustment of Cl .
Turn the sweep oscillator back on
Check the response of channels 7 through 13 by switching
he receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observing the oscillator to each of these channels and observing the
response and oscillator injection obtained. See Figure 11 hor
typical response curves. It should be found that all these typical response curves. It should be found that all these
channels have the proper shaped response with the markers channels have the prop
above \(80 \%\) response.
It the markers do not fall within this requirement, switch to If C 22 required adjustment, the adjustment should be oversho a small amount and corrected by adjustment of L52 to give
maximum amplitude of response between the sound and picmaximum amplitude of response between the sound and pic.
ture carrier markers. The antenna circuit (L52, C22) is broad so that tracking is not particularly critical.
If the valley in the top of the selectivity curves for the high
channels is deeper than normal, the curve can be flattened channels is deeper than normal, the curve can be flattene
somewhat by decreasing the inductance of L44 by turning the somewhat by decreasing the inductance of L44 by turning the
core stud in. Be sure to check for undesirable resonant suckouts on channels 7 and 8 if this is done.
Turn the sweep oscillator off and check the receiver channe
r -f oscillator frequency. It the oscillator is off frequency vershoot the adjustment of Cl and correct by adjuating L 43 . Turn the receiver channel selector switch to channel 6
Adjust LS for correct oscillator frequency Adjust LS for correct oscillator irequency.
Turn the sweep oscillator on and to channel 6 and observe
response curve. It necessary readjust L42, L45 and L49. it should not be necessary to touch Cll.
If Check the oscillator injection voltage at the test point TP1. adjusted, switch to channel 8, and readjust C9 for proper curve shape, then recheck channel 6 .
Switch the receiver through channel 6 down through
channel 2 and check for normal response curve shapes and oscillator injection voltage.
Likewise check channels 7 through 13, stopping on 13 for
the next step.
With the receiver on channel 13 , check the receiver oscilla
tor frequency. Correct by adjustment of Cl if necessary.

\section*{ALIGNMENT PROCEDUR}

Adjust the oscillator to frequency on all channels by switch ing the receiver and the heterodyne frequency meter to each channel and adjusting the appropriate oscillator trimmer to
obtain a beat on the freq. meter. It should be possible to adjust the oscillator to the correct frequency on all channels with th fine tuning control 30 degrees clockwise from the mechanical Pictu
\begin{tabular}{|c|c|c|c|c|}
\hline Channel Number & \begin{tabular}{l}
Picture \\
Carrier \\
Freq. Mc
\end{tabular} & \begin{tabular}{l}
Sound \\
\(\underset{\text { Freq Mc }}{\text { Carier }}\) \\
Freq. Mc.
\end{tabular} & \begin{tabular}{l}
Receiver \\
R-F Osc. \\
Freq. Mc.
\end{tabular} & Channel Oscillator Adjustmen \\
\hline 2... & 55.25 & 59.75 & 80.750. & L1 \\
\hline 3 & 61.25 & 65.75 & 86.750 & 2 \\
\hline 4 & 67.25 & 71.75 & 92.750 & L3 \\
\hline 5. & 77.25 & 81.75 & 102.750 & 4. \\
\hline 6. & 83.25
175.25 & \(\begin{array}{r}87.75 \\ 17975 \\ \hline\end{array}\) & 108.750 & 5 \\
\hline 7 & 175.25 & 179.75 & 200.750 & 6 \\
\hline 8. & 181.25 & 185.75 & 206.750 & 17 \\
\hline 10. & 187.25 & 191.75
197.75 & 212.750
218.750 & L8 \\
\hline 11 & 199.25 & 203.75 & 224.750 & L10 \\
\hline 12 & 205.25 & 209.75 & 230.750 & Lll \\
\hline 13 & 211.25 & 215.75 & 236.750 & Cl \\
\hline
\end{tabular}

Switch to channel 8 and observe the response. Adjust \(T 1\) clockwise while watching the change in response.
When \(T 1\) is properly adjusted, the selectivity curve will be When Tl is properly adjusted, the selectivity curve
slightly wider with a slightly deeper valley in its top.
Switch through all channels and observe response, oscilla tor injection and rif oscillators and frequency. Minor touch oscilla
adjustments may be made at this time. However, if \(\mathrm{C7}\) or CS adjustments may be made at this time. However, if \(\mathrm{C7}\) or C 9
are changed appreciably, then a recheck of the oscillator
trequen are changed appreciably, then a recheck
frequency on all channels should be made.
Reconnect the link from T1Ol to terminal 2 of the r .f unit
terminal board. Since Tl was adjusted during the r .f unit alignment it will
be necessary to sweep the overall i-f response.
R-F UNIT TUBE CHANGES.-Since most of the circuit are low capacitance circuits the r.f unit may require readjust .
If the \(6 \mathrm{CB6} \mathrm{r}\)-f amplifier tube is changed, it may be neces.
sary to readjust Cl 6 and C 22 . If the 6J6 oscillator and mixer tube is changed, then mor extensive adjustments are required.
For good conversion efficiency, the oscillator injection to a value. Although there is some latitude in this level, it is nearl expended in the normal variation in injection from channe
to channel. Consequently the adjustment C 7 is to channel. Consequently, the adjustment of C7 is limited pri
marily to establishing the conditions for good conversion Sance changes in oscillator injection affect conversion gain, it
also affects the input capacity of the mixer the als also affects the input capacity of the mixer, thus also affecting tracking of the mixer grid circuit. These tube variations wit
their consequent effect on circuit alignment thereby requir readjustment of the r.f unit if maximum conversion efticiency is to be retained after the 616 tube is changed. It may be possible, however, to try several 6J6 tubes and select one
which gives satisfactory performance without realignment PICTURE I-F TRANSFORMER ADJUSTMENTS.-
Connect the "VoltOhmyst" to the junction of R142 and RI43. Connect the "VoltOhmyst" to the junctio
Turn the AGC control fully clockwise.
Obtain a 7.5 volt battery capable of withstanding appre-
ciable current drain and connect the ends of a 1,000 ohm potentiometer across it. Connect the battery positive terminal potenassis and the potentiometer arm to the junction RR42
and R143. Adjust the potentiometer for -5.0 volts indication on the "Voltohmyst"
Set the channel switch to channel number 9,10 or 11 Connect the "VoltOhmyst" to pin 4 of V110 (pin 2 if 6CL6 is
used) and to ground Conne
Connect the output of the signal generator to the mixer grid
test point TP2 in series with a 1500 mmf ceramic capacition Connect a separate - 5 volt bias supply to TP1 with the
positive terminal to ground. Set the generator to each of the following frequencies and
with a thin fiber screwdriver tune the specifiad adjustmen with a thin fiber screwdriver tune the apecified adjustmen
for maximum indication on the "VoltOhmyst". In each in for maximum indication on the "Voltohmyst". In each in
stance the generator should be cheched against a crystal stance the generator should be cheched against a
calibrator to insure that the generator is on frequency.

Adjust the signal generator output to give \({ }^{\text {ALIGNMENT PROCEDURE }}\)
Voltohmyst" as the final adjustment is made.

\section*{\({ }^{(12)} 24.25 \mathrm{mc} .-\mathrm{Tl102}\)}

PICTURE I-F TRAP ADJUSTMENT.-With the same connections as above, tune the generator to 27.00 mc . an Set the generator output so that this minimum is about 3 volts hen final adjustment is made. If necessary, the i.f bias may be reduced in
"Voltohmyst".
SWEEP ALIGNMENT OF PIX I-F.-To align Tl and T104, connect the sweep generator to the mixer grid test point
TP2. In series with a 1500 mmf ceramic capacitor use the shortest leads possible, with not more than one inch of unshielded lead at the end of the sweep cable. Connect the Connect a separate -5.0 volt bias supply to TP1 with the
positive terminal connected to ground and by-pass TP1 to positive terminal connected to ground and
ground with a 1500 mmf . ceramic capacitor.
Set the channel selector switch between channels 2 and 13 Clip 330 ohm resistors across terminals A and B of 1106
and T100.
Preset Cll5 to minimum capacity.
Adjust the bias box potentiometer to obtain -5.0 volts of and R143. Leave the AGC control fully clockwise.
Connect a 180 ohm composition resistor from pin 5 of V106
to terminal A of Tlos. Connet the oscilloscope diode probe to pin 5 of V106 and to ground.
Couple the signal generator loosely to the diode probe in o obtain markers.
Adh 25.5 (top) and T 104 (bottom) for maximum gain and Set the sweep output to give 0.3 volt peak-to-peak on the oscilloscope when making the final touch on the above Adjust Cll 5 until 22.25 mc . is at \(20 \%\) response with respec to the low frequency shoulder of the curve as shown in
Figure 12. Figure 12
Disconnect the diode probe, the 130 ohm and two 330
ohm resistors. Connect the oscilloscope to pin 4 (pin 2 if 6 CL 6 is used) of
V110 socket. V110 socket.
Leave the sweep generator connected to the mixer grid
test point TP2 with the shortest leads possible.
Adjust the output of the sweep generator to obtain 30 volt
peak-to-peak on the oscilloscope.
Couple the signal generator loosely to the grid of the first
pix i -f amplifier. Adjust the output of the signal generator to pix i.f amplifier. Adjust the output of the signc.
produce small markers on the response curve.
Retouch T105, T106 and T107 to obtain the response shown
It is especially important that the 22.4 mc. marker should
fall at \(55 \%\) on the overall \(i-f\) response curve. If the marker fall at \(55 \%\) on the overall i-f response curve. If the marke experienced with sound in the picture. If the marker should experienced with sound in the picture. If the marker should
fall appreciably below \(55 \%\) response, the sond sensitity
may be reduced and may cause the sound to be noisy in may be reduced and
RATIO DETECTOR ALIGNMENT.-Set the signal gen. erator at 4.5 mc . and connect it to the first sound i-f grid,
pin 1 of V101. As an alternate source of signal, the RCA WR39B or
WR39C calibrator may be employed. In such a case WR39C calibrator may be employed. In such a case, connect the calibr 1 of V108.
Set the frequency of the calibrator to 25.50 mc . (pix
carrier) and modulate with 4.5 mc . crystal. The 4.5 mc . carrier) and modulate with 4.5 mc . crystal. The 4.5 mc .
signal will be picked off at Ll 102 and amplified through the signal will be pick
Connect the "VoltOhmyst" to pin 2 of V103.
Tune the ratio detector primary, T102 top core for maximum
d-c output on the "VoltOhmyst". Adjust the signal level from the signal on the "orator for 6 volts on the "Voltoh hyst" when finally peaked. This is approximately the operating level of
the ratio detector for average signals.

Connect the "VoltOhmyst" to the junction of R106 and Cl08. Tune the ratio detector secondary Tl 102 bottom core for zer d-c on the "VoltOhmyst".
Repeat adjustments of T102 top for maximum d.c at pin 2
of VlO3 and Tl02 bottom for zero d-c at the junction of R106 of \(\mathrm{VVO3}\) and \(\mathrm{TIO2}\) bottom for rero \(\mathrm{d}-\mathrm{c}\) at the junction of R10 and Ci08. Make the tinal adjustments with the signal input
level adjusted to produce 6 volts \(d-c\) on the "Voltohmyst" at
pin 2 of V103 level adjusted
pin 2 of V103.
SOUND I-F ALIGNMENT.-Connect the signal genera
tor to the first sound i-f amplifier grid pin 1 of viol.
tor to the first sound i-1 amplifier grid, pin 1 of Vin
As an alternate source of signal, the RCA WR39B or
WR39C calibrator may be employed as above. Connect the "VoltOhmyst" to pin 2 of V103
Tune the TlOl top core for maximum d.c on the "Volt
The output from the signal generator should be set to produce approximately 6.0 volts on the "Voltohmyst" whe
the final touches on the above adiustment 4.5 MC TRAP ADJUSTMENT - Connect the generator in series with a \(1,000 \mathrm{ohm}\) resistor to pin 2 of V109 Set the generator to 4.5 mc. and modulate it \(30{ }^{\prime} ;\) with 400
cycles. Set the output to approximately 0.5 volts. Short the third pix i.f grid to ground, pin 1, , V108, to Connect the crystal diode probe of an oscilloscope to the
plate of the video amplifier, pin 8 (pin 6 if 6 CL 6 is used) of V 110 . Adjust the core of L1O3 for minimum output on the oscilloscope.
Remove the short from pin 1, V108 to ground
Asmove the short from pin 1 , his step may be omitted at this point in the alignment procedure and the adjustment made If this is done, tune in a station and observe the picture on the fine tuning control is set for proper oscillator-fre, when then LIO3 requires no adjustment. If a 4.5 mc . beat is present turn the fine tuning control slightly clockwise so as to exagger ate the beat and then adjust L103 for minimum beat.
CHECK OF OVERALL RESPONSE.-II desired, the
overall response of the receiver can be checked on each channel.
Connect the r-t sweep generator to the receiver antenn input terminals. If necessary, employ one of the pads shown
in Figure 9 to match the sweep output cable to the rf unit Connect the signal generator loosely to the first pix it Adjust the bias potentiometer to obtain -5.0 volts of bia as measured by a "oitOhmyst at the junction of R142
Connect the oscilloscope to pin. 4 (pin 2 if 6 CL 6 is used)
of Vino.
Check the response of channels 2 through 13 by switching
the receiver channel switch and sweep oscillator to each of the receiver channel switch and sweep oscillator to each of
these channels and observing the response obtained. each channel, adjust the output of the sweep generator to each channel, adjust the output of the sweep
obtain 3.0 volts peak-to-peak on the oscilloscope
I.F markers at 22.4 mc., 24.75 mc . and 25.5 mc . should be
provided by the signal generator. provided by the signal generator
The response obtained in this manner should be very similar
to that shown in Figure 13. Some curves may show a \(10 \%\) sag in the top between
22.75 mc. and 24.75 mc. while others may show a \(10 \%\) peak
in this region. This may be considered normal. in this region. This may be considered normal.
If the picture carrier is consistently high or low on all
channels, T106 may be adjusted slightly. Do not adjust T105.
AGC CONTROL ADJUSTMENT. - Disconnect all tes equipment except the oscilloscope which should be connected equipment except the oscilloscope which
to pin 8 (pin 6 if \(6 \mathrm{CL6}\) is used) of V110.
Connect an antenna to the receiver antenna terminals.
Turn the AGC control fully counter-clockwise.
Tune in a strong signal and adjust the oscilloscope to see
the video waveform.
Turn the AGC control clockwise until the tips of sync begin
to be compressed, then counter-clockwise until no compression
to be compressed, then counter-clockwise until no compression
is obtained.

HORIZONTAL OSCILLATOR ADJUSTMENT.-No HORIly the adiustment of the horizontal oscillator is in ot con
sidered sidered to be a part of the alignment procedure, but since th oscilloscope, it can not be done conveniently in the field. The wavetorm adjustment is made at the factory and normally
should not require readiustment in the field. However should not require
waveform adustment should be checked whenever the re
ceiver is aligned or whenever the horizontal oscillator opera ceiver is aligned
tion is improper.

Horizontal Frequency Adjustment.-Tune in a station
 frequency core on the rear apron until the picture wil
synchronize. If the picture still will not sync, turn the Tll wavelorm adjustment core (under the chassis out of the coil several turns from its original position and read
frequency core until the picture is synchronized.

Examine the width and linearity of the picture. If picture dith or linearity is incorrect, adust he horizontal drive 108 until the picture is correct.

Horizontal Oscillator Waveform Adjustment-Th
horizontal oscillator waveform may be adjusted by either of wro methods. The method outlined in paragraph A below ma be employed in the field when an oscilloscope is not available. he service shop method outlined in paragraph B below
A.-Turn the horizontal hold control completely clockwise lace adjustment tools on both cores or ho and be prepare on make simultanious anjuste Tlio frequency core (on the rear apron) until the picture falls out of sync and three or four screen. Then, turn the waveform adjustment core (under the chassis) into the coil while at the same time adjusting the fre quency core so as to maintain three or four diagonal black begins to motorboat, then turn the wavelorm adjustment core
out until the motorboating just stops. As a check, turn the T110 ut until the motorboating just stops. As a check, turn the T110
antil the picture is synchronized then reverse frequency core unil tion pit the core until the picture falls out
the direction of rotation sync with the diagonal bars sloping down the righ
Continue to turn the frequency core in the same direction. No more than three or four bars should appear on the screen
 if necessary until this condition is obtained.
B.-Connect the low capacity probe of an oscilloscope
 in sync. The pattern on the oscilloscope should be as shown in Figure 14. Adjust the waveform adjustment core of Tllo
until the two paks are at the same height. During this until the two peaks are at the same height. During this
adjustment, the picture must be kept in sync by readjusting
the hold control iit necessary.

This adjustment is very important for correct operation of circuit. If the broad peak of the wave on the oscilloscope
sower than the sharp peak, the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced
and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the
onsillater is overstabilized the pull-in rane becomes inadescillator is overstabilized, the pull-in range becomes inade-
quate and the broad peak can cause double triggering of the quate and the broad peak can cause double triggering of the
oscillator whon the hold control approaches the clockwise position.
Remove the oscilloscope upon completion of this adjustment.
Horizontal Locking Range Adjustment.-Set the horizontal hold control to the tull counter-clockwise position. Momentarily remove the signal y switching oft channel then
back. The picture may remain in sync. If so turn the T110 brequency pore slighty remain in sync. in so thrn the

Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars
obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C161A
slightly clockwise. If less than 2 bars are present, adjust
Cl6iA slightly counter-clockwise. Turn the horizontal hold Cl61A slightly counter-clockwise. Turn the horizontal hold recheck the number of bars present at the pull-
Repeat this procedure until 2 or 3 bars are present.

Turn the horizontal hold control to the maximum clockwise Position. Adjust the Tllo frequency core so that the diagonal bar sloping down to the right appears on the screen and then
everse the direction of adjustment so that bar just moves to reverse the direction of adjustment so that bar just moves to
the left side of the screen leaving the picture in synchronization.
SENSITIVITY CHECK.-A comparative sensitivity check can be made by operating the receiver on a weak signal
Irom a television station and comparing the picture and sound rrom a television station and comparing the picture and sound
obtained to that obtained on other receivers under the same conditions.

This weak signal can be obtained by connecting the shop antenna to the receiver through a ladder type attenuator pad. strength available at the antenna. A sufficient number of
stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the
sta maximum cocockise position.
RESPONSE CURVES.-The response curves shown on page 14 and referred to throughout the alignment procedure
were taken from a production set. Although these curves are typical, some variations can be expected.
The response curves are shown in the classical manner of
presentation, that is with " "response up" and low treauency to presentation, that is with "response up" and low frequency to
the left. The manner in which they will be seen in a given tes set-up will depend upon the characterisics of the oscilloscope and the sweep generator. The curves may be seen inverted
and/or switched from left to right depending on the dellection swithed from oscilloscign and the phasing of the sweep generator.

NOTE ON R-F UNIT ALIGNMENT.-Because of the NOTE ON R-F UNTT ALIGN teNr.-Because of vice
frequency spectum involved and the nate of deve,
many of the r-f unit leads and components are critical in some frequency spectrum invoved and the
many of the \(r\)-f unit leads and components are eritical in some respects. Even the power supply leads torm loops which coupl
to the tuned circuits, and if resonant at any of the frequencie
 departures from the desired characteristics In the design of
the receiver these undesirable resonant loops have been the receiver these undesirable resonant loops have bee latitude in their components and physical arrangement with
out being troublesome. When the rf unit is aligned in the out being troublesome. from resonant loops should be experi enced. However, if the unit is aligned in a iig separate from
the receiver, attention should be paid to insure that unwanted the receiver, attention sho which might present a faulty repre
resonances do not exist sentation of \(\mathrm{r}-\mathrm{f}\) unit alignmen

A resonant circuit exists between the \(r\) - - tuner chassis and the outer shield box, which couples into the antenna and rphysical structure of the shield box, and the capacitance be tween the tuner chassis and the fron platie. In the KRK8 units,
this resonance should between 120 and 135 mc. and \(i\) is
that controlled in the design by using insulating washers of di ferent thicknesses (in the front plate to tuner chassis mounting
to compensate for difterences in the shield boxes of differen models of receivers. The performance of the tuner, particularly
on channels 7 and 8 will be impaired if the proper washers on channels 7 and 8 will be inpaired in the proper washer then, if the r.t unit is removed for service, the washers should
be replaced in the correct order when the unit is replaced.
the detailed alignment procedure beginning on page gbshould be read bffore alignment by use of the table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline STEP. & \[
\begin{array}{|c|}
\hline \text { CONNECT } \\
\text { SINNELOLOR } \\
\text { CENATOR } \\
\text { TO }
\end{array}
\] & \[
\begin{aligned}
& \text { SIGNAL } \\
& \text { GGNE } \\
& \text { FREO. } \\
& \hline
\end{aligned}
\] &  &  & CONNECT
FRTERODYNE
TRETER
TO &  & CONNECT VOLTOHMYST" & MISCELLANEOUS CONAETD AND
INSTRUCTIONS & adjust & \({ }_{\text {refer }}^{\text {TO }}\) \\
\hline & \multicolumn{10}{|c|}{r-f unit alignment} \\
\hline 1 & \multicolumn{10}{|l|}{Disconnect the co-ax link from torminal 2 of the r-f unit torminal board and connect a 3 ohm composition rasistor betwoen lugs 1 and 2. Dotune Tl by backing the core all the way out of the coil. Back the L44 core all the way out. Back the L203 core all the way out. in order to allgn the rin
tunar, it will first be necessary to set the channel 13 oscillator to frequency. The shield over the bottom of the r-f unit mut be in place when making any adjustments.} \\
\hline 2 & Not used & & Not used & & Looaely coupled to \(r\) - oscillator &  & Not used &  & Cl foranaudiblebeat on het. freq. meter & Fig. 7 \\
\hline 3 & " & & . & & & & Connoot " "Voltminal 3 of the r-funit &  &  & \\
\hline 4 & Antenna (loosely) & \({ }_{181}^{185.75}\) & Antenna terminala preciaution) & \[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Swoopp } \\
\text { inhan } \\
\text { channal }
\end{array} \\
\hline
\end{array}
\] & Not usod & - & Not used &  shapo. fromuency and adjustod
markera.
of
givfocta
and til frequency of roppon
spone band width. &  & \({ }_{\text {Figg. }}^{\text {Fig }}\) \% \({ }_{8}^{7}\) \\
\hline 5 & Not usad & & Not usod \({ }^{\text {a }}\) & Not usod &  & 108.75 & " & Roc. on channel 6 & \[
\begin{aligned}
& \text { L5 for audible beat } \\
& \text { on hot. freq. meter. }
\end{aligned}
\] & Fig. 8 \\
\hline 6 & \(\underset{\substack{\text { Antenna } \\ \text { torminal }}}{ }\) (loosely & \({ }_{87.75}^{83}\) & Antenna (see text for precaution) & \(\underset{6}{\text { Channel }}\) & Not used & - & " &  &  & Fig. 12 \\
\hline 7 & Not usod & - & Not used & - & Not usod & - & Conneat. "Voltunit test point rPl & Roc. on channol 6 & \[
\begin{aligned}
& \text { Adjust C7 for }-3.0 \\
& \text { volts at the test point }
\end{aligned}
\] & \({ }_{\text {Fig. }}^{\text {Fig. }} 9\) \\
\hline 8 & \multicolumn{10}{|l|}{Repeat above stops until the specifiod conditions are obtained.} \\
\hline 9 & Not used & & Not used & - \({ }_{\text {to }}\) & Looaely coupled
to r-f oncillator & 206.75 & & Roc. on chan. 8 & C1 for audible bot
on hat. frac. moter & Fig. \\
\hline 10 & Antonna
torminal
(loonely) & \({ }_{185}^{181.25}\) & Antenna
torminals
(ooe feal
procaution) &  & Not ued & - & Not usod & \multicolumn{2}{|l|}{Rec. on chan. 8. Readjust C9, C16 and C22 for correct curve shape, frequency and b
width. Readjust Cll only if necessary.
\(\qquad\)} &  \\
\hline 11 & " & \({ }_{\substack{211.25 \\ 215 \\ 215}}\) & " \({ }^{\text {- }}\) & \[
\begin{gathered}
\text { Sweop } \\
\text { ing } \\
\text { channel } \\
13
\end{gathered}
\] & Not used & - & Not usad & \multicolumn{2}{|l|}{Rac. on chan. 13. Adjuast L52 for max. amplimore than required to reach max. response, Adjest C22 to regain max. amplitude of
response. response.} & \[
\begin{gathered}
\text { Fig. } \\
{ }_{F}(1,12 \\
(13)^{2}
\end{gathered}
\] \\
\hline 12 & " & 215.75 & Not used & - & Loosely coupled
to \(r\)-f oscillator & \({ }^{236.75}\) & & \multicolumn{2}{|l|}{Receiver on chan. 13. Adjuat L43 for correct channel 13 osc. freq. then overshoot. Roest,
the osc. to proper freq. by adjustment of Cl . these to pall} & \begin{tabular}{|l|l|} 
Fig. \\
Fig. \\
\hline 8 \\
\hline
\end{tabular} \\
\hline 13 & " & \({ }_{209.75}^{205}\) & \multirow[b]{2}{*}{} & \(\underset{\substack{\text { channol } \\ 12}}{ }\) & Not usod & - & Connoct. "Volt-
\(\substack{\text { Ohmyt. } \\ \text { unit } \\ \text { TPIt toat } \\ \text { point } \\ \text { point }}\) & Res. on chan. 12 & Check to see that re. sponse is corract and
-3.0 volts of osc. in. jection is present & Fig. \({ }_{\text {Fig. }} 1^{8}\) \\
\hline 14 & " & \({ }_{203.75}^{199.25}\) & & channel \({ }_{11}\) & 1 & - & " & Rec. on chan. 11 & " & \(\underset{\text { Figg }}{(12)}\) \\
\hline \({ }^{15}\) & & \(\underset{197.75}{193}\) & " & channel \({ }_{10}\) & 1 & - & " & Roc. on chan. 10 & " & \({ }_{\text {Figi }}{ }^{\text {(1) }}\) (2) \\
\hline 16 & " & \({ }_{1981.75}^{18.25}\) & & channal & + & - & " & Rec. on chan. 9 & - & \({ }^{\text {Fig }}\) (9) \({ }^{12}{ }^{12}\) \\
\hline 17 & " & \({ }_{1}^{181.25}\) & " & \({ }_{\text {channel }}\) & & - & " & Rec. on chan. 8 & , & \({ }_{\text {Fig }}^{(8)}{ }^{12}\) \\
\hline 18 & * & \({ }_{179.75}^{175.25}\) & & channol & & - & " & Rec. on chan. 7 & - & \({ }_{\text {Fig }}^{\text {(i) }} 12\) \\
\hline 19 &  &  & yhannel (atop: 13 orrected by adjuut & \[
\begin{aligned}
& 13 \text { through } \\
& \text { yot maintil } \\
& \text { yotmont of LS }
\end{aligned}
\] & ( 18) is below \(80 \%\) Lain correct respor
L52 to give maxim &  & or markor. ropatat piltude of responso &  & 11. C16 and C22 as nea picture carrier markert. &  \\
\hline 20 & Ropoat stop & 9. If theo & oucillator is off fro & frequency or & ovorshoot the adju & juatmont a & of Cl and correct by & y adjuating L43. & & \\
\hline 21 & Ropacat tiop & ps 13 throu & agh 20 until all roct & oquiroment & nts are obtained. & & & & & \\
\hline 22 & Not used & - & Not usod & &  &  & & Rec. on chan. 6 & Ls fort zoro boat on & Fig. 8 \\
\hline 23 & Antenna
terminal:
(loomely) & \({ }_{8}^{83.25} 8\) & Ant. terminale (eee text for precaution &  & ng Not unod & - & Not used & Obarvo retpone. 14 touch C11. & necossary roadjust L42. uld not be nocessary to &  \\
\hline 24 & Not unod & - & Not uned & - & Not uned & - & Connact "Volt-
Ohmyst" to the O-f unit tent point
TPI & \begin{tabular}{l}
Check ose. in joction \\
 sponsa then ropeat
\end{tabular} &  & \({ }_{7}^{7}\)\begin{tabular}{l} 
Prig. \\
Fig. 12 \\
\hline
\end{tabular} \\
\hline \({ }^{25}\) & \begin{tabular}{l}
Antenna
terminale \\
(loomely)
\end{tabular} & \({ }_{81.75}^{77.25}\) & Ant. termi. nals (see text or precautio &  & -1 & - & , & Roc. on chan. 5 & Chack to soo that ro. -3.0 volte of ose. injoction is prosent & \({ }^{\text {d }}\). \({ }^{\text {Fig. }}\) (s) \({ }^{12}\) \\
\hline
\end{tabular}


© John F. Rider

WAVEFORM PHOTOGRAPHS
WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope

SIGNAL AT KINESCOPE GRID BUT NO SYNC:
(1) AGC control R149 misadjusted.
(2) VIII, inoperative. Check voltage and waveforms at its grid and plate.

SIGNAL ON KINESCOPE GRID BUT NO VERTICAL SYNC:
(1) Check V113 and associated circuit.
(1) Check V113 and associated circuit.
(2) Integrating network inoperative-Check
(2) Integrating network inoperative-Check.
(3) V109B or V112B defective or associated circuit defectiv
(4) Gas current grid emission or grid cathode leakage in
Vll2. Replace.

SIGNAL ON KINESCOPE GRID BUT NO
HORIZONTAL SYNC:
1) T110 misadjusted-readjust as instructed on page 11 .
(2) V112 inoperative-check socket voltages and waveforms.
(3) T11O defective.
(4) C142, Cl61A, C163, C165, Cl67, C166, C168, C187 or
Cl88 defective. (5) If horizontal speed is completely off and cannot be
adjusted check R192, R193, R170B, R196, R195 and R198.

SOUND AND RASTER BUT NO PICTURE OR SYNC:
(1) Picture, detector or video a mplifier defective-check (2) Bad contact to kinescope cathode.

PICTURE STABLE BUT POOR RESOLUTION
(1) V109A or V110 defective.
(2) Peaking coils defective-check resistance.
(3) Make sure that the focus control operates on both sides (4) of proper focus. R . l .

\section*{PICTURE SMEAR.}
(1) R-F or I-F circuits misaligned
(2) Open peaking coil.
(3) This trouble can originate at the transmitter-check on another station.

\section*{PICTURE JITTER}
(1) AGC control R149 misadjusted.
(2) If regular sections at the left picture are displaced
(3) Vertical instability may be due to loose connections
(4) Horizontal instability may be due to unstable trans Horizontal

RASTER BUT NO SOUND, PICTURE OR SYNC
(1) Defective antenna or transmission line.
(2) R -F oscillator off frequency.
(3) R-F unit inoperative-check V1, V2

DARK VERTICAL LINE ON LEFT OF PICTURE
(1) Reduce horizontal drive and readjust width and horizontal
(2) Replace V116

LIGHT VERTICAL LINE ON LEFT OF PICTURE: (1) V118 defective






Plate of Video Amplifier
(Pin 6 of \(V 110)(6 C L 6)\) (Pis Voltage depends on picture
igure \(33-\) Vertical ( 85 Volts PP)
\[
\text { Figure } 33 \text {-Vertical (85 Volts PP) }
\]
\[
\longleftarrow+4
\]
Figure 34-Horizontal (85 Volts PP)

© John F. Rider


© John F. Rider



John F. Rider

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\underset{\substack{\text { stock } \\ \text { No. }}}{\text { coser }}\) & description & \(\underset{\substack{\text { stock } \\ \text { No. }}}{\text { coser }}\) & description & \(\underset{\substack{\text { Stock } \\ \text { No. }}}{\substack{\text { chen }}}\) & description & \(\underset{\substack{\text { srock } \\ \text { No. }}}{\text { cosen }}\) & description \\
\hline 5031 & 470 ohms, \(\pm 10 \%, 1 / 2\) watt (R114) & 76887 & Shaft-Connocting shatt (nylon) for picture and bright- & & miscellanzous & 25464 & Knob-Picture oritrol, horizontal hold dontrol or volume \\
\hline \({ }^{13131}\) & 550 ohms . \(\pm 10 \%\). 1 watt (R207) & 23584 & Shield-Tube shield fo & 72211 & Back- Back covor completo with power cord (217208, & & hogany or ack instruments (inor) \\
\hline ( 5 so4210 &  & \({ }_{7}^{78972}\) & Shield-Tube shiold for V109 & & & \({ }^{2963}\) & Knob-Picture contral, horizontal hold control or volu
control and power switchknob-maroon-for mahoga \\
\hline \({ }_{523222}\) & 2200 ohmu. \(\pm 10 \% .2\) watte (R131) & \({ }_{7}^{75718}\) & Socket-Channol indicator lamp rocket and load & & board (Moodel 21 T2096) & 74001 & \\
\hline \({ }^{504233}\) & 3300 ohme. \(\pm 20 \%\), \(1 / 2\) watt (R211) & 312 &  & 756 &  & & control and pow
ments (inner) \\
\hline 50239
503239 & 3300 ohms. \(\pm 5 \% .1 / 2 \mathrm{watt}(\) R129. R164)
3900 ohme, \(\pm 10 \%\), \(1 / 2\) watt (R194) & \({ }^{76453}\) &  & 76184
76629 & Boar & 26598 & Knob-Tone control and phono witeh knob-h \\
\hline 5032 & 5600 ohme. \(\pm 10 \%\), \(1 / 2\) watt (R138) & & Vilo) & &  & 76597 &  \\
\hline 5332 & 8800 ohms, \(\pm 10 \%\), 2 watte (R203) & \({ }_{\text {coser }}^{71508}\) & Socket-Tube socket, 6 pin, moulded-for V117 & 72009 & Brachet-Hancor hracket for dolloction yoko hood for & 5626 & Knob-Tone contral and phono switch knob \\
\hline \({ }^{503382}\) & 8200 ohme. \(\pm 10 \%\), \(1 / 2\) watt (R176, R179) & &  & 7669 & Brackot-Masking panol support bracket (2 req'd) & &  \\
\hline 513232 & 10,000 ohmm. \(\pm 5 \%\), \(1 / 2\) watt (R107, R109, R123) & 23117 &  & 76599 & Brackot-"U" shape bracket for defleotion yoke supp & \({ }_{7}^{16589}\) &  \\
\hline 504310 & 10.000 ohms, \(\pm 20 \%\), \(1 / 2 \mathrm{watt}\) (R152) & 503 & Socket-Tube socket, 8 pin, moulded saddo-mountod & 77680 &  & & f \\
\hline \({ }^{503312}\) & 12.000 ohms, \(\pm 5 \%\), 1/w watt (R121) & 72627 & Socket-Tube sockot, 8 pin, atoatito addllo mountod for & 5699 & Bumper-Rubbor bumper for kinesco & & \({ }_{\text {Masknd }}\) \\
\hline 5033 & 12,000 ohms, \(\pm 10 \%\). \(1 / 2 \mathrm{watt}(\mathrm{R} 145)\) & \({ }^{26971}\) & Socket-Tube sockot, 9 pin, water miniature for viog & 892 & Cateh-Bullot Cateh and atrike for cabinot doors & \({ }_{\text {72036 }}^{7206}\) & Mask-Polystyrene masking panel for kinescope \\
\hline s5333 & (e) \({ }^{\text {a }}\) & 76636 & Stud-Adjusting stud complote with guard for focus
magnot & 72018 &  & &  \\
\hline \({ }^{503318}\) & 18,000 ohme, \(\pm 10 \%\), \(1 / 2\) watt (R128, R158, R166, R196) & 77011 & Swith-Tono control and phono & 1756 & Crill coloth for & \({ }_{76177}^{77678}\) & Matk-Polvat trone ma \\
\hline \({ }^{233318}\) & \({ }^{18,000 ~ o h m s . ~} 110 \%\), 2 watta (R133) & \({ }_{7}^{76483}\) & Terminal-Scrow typo grounding terminal & & \({ }^{2121217208,}\) & 77013 & Nut-Spood \\
\hline ( \(\begin{gathered}503322 \\ 513322\end{gathered}\) & \begin{tabular}{l}
22,000 ohms, \(\pm 10 \%, 1 / 2\) watt (R167, R217) \\
22,000 ohms, \(\pm 10 \%, 1\) watt (R193)
\end{tabular} & 7697 &  & &  & \({ }_{73634}\) &  \\
\hline \({ }_{50332}\) & 27,000 ohms, \(\pm 10 \%\), \(1 / 2 \mathrm{watt}\) (R215) & \({ }^{76795}\) & Tra & x3222 &  & 76601 & Pad-Kinoscopo odgo support pad (4 req'd) \\
\hline \({ }^{113327}\) & 27,000 ohms, \(\pm 10 \%\), 1 watt (R218) & 78440 & Trantiormor-Horizontal osilliltor transformer & & Cor Modele & 72016 & Pull-Cabinot door pull for Model 21 1217 \\
\hline \({ }^{313333}\) & 33,000 ohma. \(\pm 10 \% .1\) watt (R214) & & plete with adjustable cores (T110) Transformar-Output tran former (T103) & 25474 & connet & 77017
7721 & Puul-Cabinot door pull for Model 21 T227
Pull-Cabinet door pull tor Modol 112288 \\
\hline \({ }^{\text {s03339 }}\) & \(33,000 \mathrm{ohms}, \pm 10 \%\), \(1 / 2 \mathrm{watt}\) (R106, R & 76984 & Transformer-Powewt traneformor, 115 volto 60 cycle ( T 109 ) & 39153 & Connoctor-4 contact male connoctor for antenna cable & \({ }_{76828}^{27021}\) & \\
\hline 513339
s0347 & 39,000 ohms, \(\pm 10 \%\), 1 watt (R132)
47,000 ohms, \(\pm 10 \%\) watt (R160) & 77112 & Transformor-Ratio dotoctor transformer (T102, C105) & \({ }^{71457}\) & Cord-Powere cord and plug & & Roded asembly \\
\hline so3397
s0437 & 47,000 ohms, \(\pm 20 \%, 1 / 2\) watt (R144) & &  & 7669 & Cuuhion-Rubber eushion for maaking panal support
brachate ( 2 req'd) & & Rods"Lu thapod throd dod rod for dolloction \\
\hline \({ }^{12347}\) & \({ }^{47,000 ~ o h m s, ~} \pm 5 \%\), 1 watt (R198) & \({ }^{78978}\) & Transformer-Vertical output transformer (T108) & \({ }_{76827}^{78631}\) & Cuuhion-Rubber cuuhion for safoty glass & 6632 &  \\
\hline \({ }_{\substack{\text { so3356 } \\ \text { s1235 }}}\) & 56,000 ohme. \(\pm 10 \%\). \(1 /\) watt (R146, R20
56.000 ohme. \(\pm 5 \%\), 1 watt (R178) & &  & 76831
77268 & Cunhion-Rubber custion tor duat moaling the kinascope,
Docal-Coantrol function docal for blonde mahogany. & 74113 &  \\
\hline 503388 & 68,000 ohms. \(\pm 10 \%\). \(1 / 2\) watt (R219) & &  & 77015 &  & 74269 &  \\
\hline (313068 & 68,000 ohms. \(\pm 10 \%\), 1 watt (R192)
88,000 ohme. \(\pm 10 \%, 1\) watt (R191) & 7549 &  & 1994 & Docal-" & 77682 &  \\
\hline \begin{tabular}{l}
304410 \\
\hline 1341 \\
\hline
\end{tabular} & \(1000000 \mathrm{ohms}, \pm 20 \%\). \(1 / 2 \mathrm{watt}\) (R213) & \[
\begin{aligned}
& 75929 \\
& 76983
\end{aligned}
\] & Trap-i-f trap (L200, L201, C200, C201) & & 21 T229
Emblem-'RCA Victor' emble & 76808 & \(\left.{ }_{21} 120276\right)\) \\
\hline (313410 & 100.000 ohmes. \(\pm 10 \%\). 1 watt (R175)
120.000 ohme. \(\pm 5 \%\) \% \(1 / 2\) watt (R143) & 2693 & Yoke-Dolioction yoke comploto with 6 contact male & 72012
75456 & Emblem-'RCA Victor' emblem
Escutcheon-Channel marker esc & &  \\
\hline 503415 & 1850000 ohme. \(\pm 10 \%\). \(1 / 2\) watt (R174, R183, R187) & &  & 72113
77684 & Toot-Rubber foot (4 rog'd) for Modol 21 1208 & \[
\begin{aligned}
& 73643 \\
& 76630
\end{aligned}
\] & pring-Channel marker escutcheon spring clip \\
\hline (304415 & 1850,000 ohms, \(\pm 20 \%\). \(1 /\) watt (R139)
150,000 ohms, \(\pm 5 \%\) w watt (R195) & & SPEaker assemblies & & \({ }^{2}\) & 77006 & (6 rocid) \\
\hline \({ }^{502418}\) & 1880.000 ohms, \(\pm 5 \%\), \(1 / 2\) watt (R141) & & 971490-3W. RL-105-E6, RMA-274 & \({ }_{37396}^{2632}\) & Grommet-Rubber grommet for speaker mounting & & \({ }_{\text {port rod nut }}^{\text {Spring-Rotain }}\) \\
\hline 302427 &  & & (For Modols 21 T 208, 21 T217, 21 Tr29) & & & & \({ }^{\text {spring }}\) \\
\hline \({ }^{\text {s03433 }}\) & 330.000 ohme. \(\pm 10 \%\) \% \(1 / 2\) watt (R111, R188) & 75024
75022 &  & & 215 & \({ }_{76837}\) & Spring-Retaining spring for knobs *76591, 76592, 76 \\
\hline (12433 & 330000 ohme, \(\pm 5 \% .1\) watt (R190)
390,000 ohma, 100 , \(1 / 2\) watt (R168) & &  & &  & 7993 & 76596, \(76597,76598,76624,76625\) and 76626
Spring-Suspension spring for kinencope socket le \\
\hline 503447 & 470,000 ohme, \(\pm 10 \%\), \(1 / 2\) watt (R150, R200) & & 2W. RL-111-A1, & &  & \({ }^{29936}\) & Oop-Cabinot door stop for Modolo 21 T227. 21 T228, 21 T229 \\
\hline 504447 & 47,000 ohme. \(\pm 20 \%\), \(1 / 2\) watt (R112, R147)
560.000 ohme. \(110 \%\) \% watt (R148, R171) & & (For Modols 21 2181,21 21 227,21 2288) & & Knob-Bright nose control or vortical ho & & Strap-Top or hoteom motin \\
\hline 503468
50392 & 680,000 ohmes, \(\pm 10 \%\), 1/ watt (R154, R161) & \({ }_{75682}^{759}\) & Cono-Cono and vicice coill ( 3.2 hhme ) & &  & \[
\begin{aligned}
& \text { 77723 } \\
& 7759
\end{aligned}
\] & Wachor-Celluloose wohbor-gold-for knobs
Washor-Colluloor washor-maroon- for hnobs (Modele \\
\hline (ens \(\begin{aligned} & \text { so382 } \\ & \text { so310 }\end{aligned}\) & 880.000 ohma, \(\pm 10 \%\), \(1 / 2\) watt (R199, R199)
1 megohm, \(\pm 10 \%\), \(1 / 2\) watt (R155) & 76389 & (eater & & Knob-Channel selector knob-maroon-for mahog
or walnut instruments (inner) & 25458 & Washer-Felt washer-beige \\
\hline 502311
503512 & 1.1 mosohm. \(\pm 5 \%\) \% \(1 / 2 \mathrm{watt}\) (R136) & & & & Kinob-Channol) anlector knob-tan-for maplo ind & 23457 & marker escutcheon for blonde or oak instrumen \\
\hline 503515 & (1.2 mogohm, \(\pm 10 \%\). \(1 / 2\) watt (R180) & & (For Models 21 T207, 21 17207G) & &  & & channel marker escutcheon for \\
\hline 11789
39063 & 1.8 megohm, \(\pm 5 \%\). \(1 / 2\) watt (R140) 1.8 megohm, \(\pm 5 \% .1\) watt (R197) & 72000 &  & 26623 & Knoh-Fino tuning control knob-maroon-for mahog- & & Washer-Felt washer-tan-between
marker escutcheon for maple inst \\
\hline 5033 &  & & Jote:-It Ptamping on epatarer in inotrumonte dout & &  & 25500 & Washor-Folt wachor for kinacope \\
\hline
\end{tabular}
© John F. Rider

\section*{GENERAL DESCRIPTION}

The KRK-22A R-F tuner is a 12 channel VHF unit which independent of the receiver chassis. This unit is a four circuit, wafer switch type with incremental inductance tuning, usin a combination mixer-oscillator circuit. The twelve position switch tunes each of the four circuits to the proper frequency for reception on channels 2 to 13 , inclusive. The antenna
input circuit uses an elevator transformer with an associated high-pass M-derived filter contained in a common shield housing. An adjustable F-M trap is provided. The output circuit uses a link-coupled I-F transformer with low impedance coaxial cable to the receiver chassis I-F input. The extended range fine tuning control is concentric with the channe selector detent mechanism.

\section*{ELECTRICAL SPECIFICATIONS}
\begin{tabular}{|c|c|c|}
\hline TELEVISION R-F FREQUENCY RANGE & RCA TUBE COMPLEMENT & \\
\hline All 12 television channels, 54 mc . to \(88 \mathrm{mc} ., 174 \mathrm{mc}\). to 216 mc . & Tube Used & Function \\
\hline Picture I-F Carrier Frequency . . . . . . . . . . . . . . 41.25 mc . & (1) RCA 6BQ7A & R-F Amplifier \\
\hline Sound I-F Carrier Frequency . . . . . . . . . . . . . . . . 45.75 mc . & (2) RCA \(6 \times\) & R-F Oscillator and Mixer \\
\hline ANTENNA INPUT IMPEDANCE & POWER SUPPLY RATING & \\
\hline Choice: 300 ohms balanced or 72 ohms unbalanced. & Plate Supply & 6.3 volts, 270 vols, 25 ma amp \\
\hline
\end{tabular}

INSTALLATION INFORMATION
The KRK-22A tuner is now being installed as original equipment in the models listed. Early production models use the KRK-11B tuner.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline the KRK-11B & & & 21 D317 & "Merrit & & KCS-81A \\
\hline Model & Name & Chassis No. & 21 D326 & "Staun & & KCS-81A \\
\hline 17 T 301 & "Wayne" & KCS-78A & 21 D327 & "York & & KCS.81A \\
\hline 17 T 302 & "Glendale" & KCS-78A & 21 D328 & 'Kenbr & & KCS.81A \\
\hline 17 T 10 & "Hanley" & KCS-78A & 21 D329 & "Sout & & KCS-81A \\
\hline 217303 & "Kirby" & KCS-82A & 21 D330 & "Cler & & KCS-81 \\
\hline 217313 (G) & "Jeffrey" & KCS-82A & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{The following models had the KRK-22A tuner installed originally. Service Data on these models include information on the KRK-22A tuner.}} \\
\hline 217314 (G) & "Prentiss" & KCS-82A & & & & \\
\hline 217315 & "Deauville" & KCS-82A & & & & \\
\hline 217316 & "Hilton" & KCS-82A & Model & Nar & & Chassis No. \\
\hline 217322 & "Dobson" & KCS-82A & 21 T342 & "Lawr & & KCS-82D \\
\hline 217323 & "Lexington" & KCS-82A & 217344 & "Mont & & KCS-82D \\
\hline 217324 & "Stockton" & KCS-82A & 21 D346 & "Ruthe & & KCS-81D \\
\hline \multicolumn{7}{|c|}{ALIGNMENT PROCEDURE} \\
\hline \multicolumn{3}{|l|}{TEST EQUIPMENT. - To properly align this tuner, it is recommended that the following test equipment be available:} & Channel & \begin{tabular}{l}
Picture \\
Carrier
\end{tabular} & Sound Carrier & Receiver R-F Osc. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{VHF Sweep Generator meeting the following requirements:}} & \({ }_{2}\) & Freq. Mc. 55.25 & Freq. Mc.
59.75. & Freq. Mc \\
\hline & & (a) Frequency Ranges \({ }^{\text {a }}\) & 3. & 61.25 & 65.75 & 107 \\
\hline \multicolumn{3}{|c|}{35 to \(90 \mathrm{mc} ., 11 \mathrm{mc}\). to 12 mc. sweep
170 to 225 mc .12 mc . sweep width} & 4. & 67.25 & 71.75 & 113 \\
\hline \multicolumn{3}{|l|}{} & 5 & \({ }_{83}^{77.25}\) & 81.75
87.75 & 129 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{(d) "Flat" coutput on all attenuator positions.}} & 7 & 175.25 & 179.75 & 221 \\
\hline & & & 8. & 181.25 & 185.75 & 227 \\
\hline \multicolumn{3}{|l|}{VHF Signal Generator to provide the following frequen-} & 9. & 187.25 & 191.75 & 233 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
cies with crystal accuracy: \\
(a) Intermediate frequencies
\end{tabular}}} & 11. & 193.25 & \begin{tabular}{l}
197.75 \\
20375 \\
\hline 29
\end{tabular} & 239
245 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & 12. & 199.25 & 209.75 & 245 \\
\hline & & & 13. & 211.25 & 215.75 & 257 \\
\hline
\end{tabular}
(c) Output of these ranges should be adjustable and a VHF Heterodyne Frequency Meter with crystal cal brator if the signal generator is not crystal calibrated
Cathode-Ray Oscilloscope. - For alignment purposes, the phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion
Electronic Voltmeter.-A voltmeter with a 1.5 volt DC
scale is required. RCA Senior "Voltohmyst" or equivalent. KRK-22A ANTENNA MATCHING UNIT ALIGNMENT The antenna matching unit is accurately aligned at the factory. Adjustment of this unit should not be attempted in the customer's home since even slight misalignment may cause
serious attenuation of the signal especially on channel 2. The r-f unit is aligned with a particular antenna matching trans former in place. If for any reason, a new antenna matching
transformer is installed, the r-f unit should be realigned. The F.M Trap which is mounted in the antenna matching unit may be adjusted without adversely affecting the align ment of the unit.
To align the antenna matching unit disconnect the lead
from the F-M trap L53 to the channel selector switch SID from the F.M trap L53 to the channel selector switch SID unit through a 1000 mmf. capactitor to the grid of the second
pix i.f amplitier, unit through a 1000 mmf. capa
Replace the cover on the matching unit while making all
adjustments. adustments.
Connect the positive terminal of the chassis and the potentiometer arm to the junction of R133 and C133B Set the potentiometer to produce approximately -5.0 volts of bias at the junction of R133 and C133B.
Connect an oscilloscope to pin 9 of V11O and set the
Connect a VHF signal generator to the antenna input term
nals. Modulate the signal generator \(30 \%\) with an audio signal Tune the signal generator to 45.75 mc . and adjust the generator output to give an indication on the oscilloscope
Adjust L54 in the antenna matching unit for minimum audio indication on the oscilloscope.
Tune the signal generator to 41.25 mc . and adjust L 57 for
minimum audio indication on the oscilloscope. minimum audio indication on the oscilloscope.

Connect a 300 ohm \(1 / 2\) watt oumput of the matching unit. Connect a 300 ohm \(1 / 2\) watt composition resistor from LS3 to Connect an oscilloscope low capacity crystal probe from


Figure 1-Sweep Attenuator \(P\)
L53 to ground. The sensitivity of the oscilloscope should gain to maximum.

Connect the VHF sweep generator to the matching unit ntenna input terminals. In order to prevent coupling reacadvisable to employ a resistance pad at the matching unit erminals. Figure 1 shows three different resistance pads for use with sweep generators with 50 ohm co-ax output, 12 ohm
co-ax output or 300 ohm balanced output. Choose the pad to match the output impedance of the particular sweep employed. Connect the signal generator loosely to the matching unit antenna terminals.
Set the sweep generator to sweep from 45 mc . to 54 mc plished by retuning channel number 1 to cover this range With WR59B sweep generators this may be accomplished by etuning channel number 2 to cover the range. In makin hese ajjustments on the generator, be sure not to urn the core retaining spring.
Adjust L55 and L56 to obtain the response shown in figur 2. L55 is most effective in locating the position of the shoulder of the curve at 52 mc . and \(L 56\) should be adjusted to give specified shape of the response curve. The adjustments in the matching unit interact to some extent. Repeat the above matching unitil ne further adjustments are necessary.
Remove the 300 ohm resistor and crystal probe connections
Restore the connection between L53 and SID. Replace V106


> 50 we. at \(50 \%\) a \(15 \%\) response pont

Figure 2-Antenna Matching Unit Response KRK-22A TUNER ALIGNMENT
A tuner unit which is operative and requires only touch u adjustments, requires no presetting of adjustments. For such
units, skip the remainder of this paragraph. For units whic are completely out of adjustment, preset C 2 all the way out Turn T1 slug all the way out. Do not change any of the adjust ments in the antenna matching unit.
Disconnect the link from terminals "A" and "B" of T104
and terminate the link with a 39 ohm composition resistor and terminate the link with a seceiver channel selector switch to channel 2
The 42.0 mc . trap is adjusted with zero bias. To insure tha the bias will remain constant, take a clip lead and short
circuit the AGC terminal of the tuner at the terminal board to ground.
Connect the oscilloscope to the test point TPl
tuner unit. Set the oscilloscope to maximum gain.
Connect the output of the VHF signal generator to the out of the antenna matching unit at the junction of L53 and C2
Tune the signal generator to 42
Tune the signal generator to 42.0 mc . and modulate it \(30 \%\)
with a 400 cycle sine wave. Adjust the signal generator for maximum output.
Adjust C19 on top of the tuner, for minimum 400 cycle indi-
cation on the oscilloscope. If necessary, this adjustment can cation on the oscilloscope. If necessary, this adjustment can
be retouched in the field to provide additional rejection to one specific frequency in the i.f band pass. However, in such cases, care should be taken not to tune

Connect the potentiometer arm ot one of the edas supplies
to the AGC terminal on the tuner and ground the battery positive terminal to the tuner case. Adjust the bias potentiometer to proace- B .0 volts of bias, as meas
"VoltOhmyst" at the AGC terminal on the tuner.
Set the channel selector switch to channel 8.
Preset C5 to read -3.0 volts at the test point TPl, as read on the "Voltohmyst". The limits for oscillator injection voltage
are 2 volts minimum and not exceeding a maximum 5.5 volts.

Turn the fine tuning control fully clockwise.
Adjust C3 for proper oscillator frequency, 227 mc . This
may be done in several ways. The easiest way and the way may be done in several ways. The easiest way and the way
which will be recommended in this procedure will be to use the signal generator as a heterodyne frequency meter and
beat the oscillator against the signal generator. To do this, beat the oscillator against the signal generator. To do this,
tune the signal generator to 227 mc. with crystal accuracy.
Insert one end through the hole provided for the adjustment of Clo. Be care ful that the wire does not touch any of the tuned circuits as it may cause the frequency of the tuner oscillator to shift.
Connect the other end of the wire to the "r. f " the signal generator. Adjust C3 to obtain an audible beat with the signal generator
Turn C2 clockwise until the beat note just begins to change,
then turn one full turn in the same clockwise direction. channel 8 oscillator frequency by adjustment of \(\mathrm{C3}\), switch to channel 13 and adjust L42 to obtain proper channel 13
oscillator frequency as indicated in the table on page 11 . Then, switch to channel 12 and adjust Lll to obtain proper channel 12 oscillator frequency. Continue down to channel 8 ,
adjusting the appropriate oscillator trimmer to obtain the proper frequency on each channel. Then again on channel 8, adjust C3 to obtain proper channel 8 oscillator frequency.
Switch back to channel 13 and readjust L42 and back to Switch back to channel
channel 8 and adjust C 3.
Set the Tl core for maximum inductance (core turned counter-clockwise).
Return the fine tuning control to the mechanical center of Its range.
Connect the sweep generator through a suitable attenuator, as shown in Figut.
antenna matching unit.

Connect the signal generator loosely to the antenna terminals.
Set the sweep generator to cover channel 8 .
Set the oscilloscope to maximum gain and use the minimum
input signal which will produce a usable pattern on the input signal which will produce a usable pattern on the
oscilloscope. Excessive input can change oscillator injection oscilloscope. Excessive input can change oscillator injection
during alignment and produce consequent misalignment even though the response as seen on the csc:lloscope may look normal.
Insert markers of channel 8 picture carrier and sound
carrier, 181.25 mc . and 185.75 mc . carrier, 181.25 mc . and 185.75 mc .
Adjust \(\mathrm{Cl}, \mathrm{ClO}, \mathrm{Cl5}\) and C 20 for approximately correct
curve shape, frequency, ind band width as shown in Figure 6 . The correct adjustment of C2O is indicated by maximum
amplitude of the curve midway between the markers. C15 tunes the r-f amplifier plate circuit and affects the frequency of the pass band most noticeably. C7 tunes the mixer grid circuit and affects the tilt of the curve most noticeably (assuming that C20 has keen properly adjusted). C1O is the coup-
ling adjustment and hence primarily affects the response ling adjustm.
Connect the "VoltOhmyst" to test point TPI. Adjust C5 to
read - 3.0 volts dc on the "Voltohmyst" at TPI. Readjust C2, \(\mathrm{C7}^{-\mathrm{ClO}}\) and \(\mathrm{C15}\) for proper response. Adjust C 20 for maximum gain at midpoint of the cud
the proper response is obtained.
Set the receiver channel switch to channel 13 .
\(\begin{aligned} & \text { Adjust the signal generator to the channel } 13 \text { oscillator } \\ & \text { frequency } 257 \mathrm{mc} \text {. }\end{aligned}\)

Turn the fine tuning conuu iuny ciockwise. Adjust L42 to obtain an audible beat. Slightly overshoct
he adjustment of L42 by turning the slug an additional turn the adjustment of L42 by turning the slug an additional turn in the same direction from the original setting, then reset the
oscillator to proper frequency by adjusting C 2 to again oscillator to pro
obtain the beat.
Set the sweep generator to channel 13 .
From the signal generator, insert channel 13 sound and
picture carrier markers, 211.25 mc and 215.75 mc . Adjust L 43 and L4S for proper response as shown in
Figure6. Figure 6.
Turn off the sweep and signal generators
Connect the "VoltOhmyst" to the tuner test point TP1.
Check the oscillator injection voltage to be within limits as
 If it was necessary to readjust \(\mathrm{C5}\), turn the sweep and sigral
generators back on and recheck the channel 13 response. generators back on and recheck
Readjust L43 and L45 if necessary.
Set the receiver channel selector switch to channel 8 and

Set the sweep generator and signal generator to channel 8 . Readjust \(\mathrm{C7}, \mathrm{ClO}, \mathrm{Cl5}\) and C20 for correct curve shape quency and band width.
Turn off the sweep and signal generators, switch back io if C7 was adjusted in the recheck of channel 8 response. If the initial setting of the oscillator injection trimmer wo and response on channel 8 , adjust the oscillator injection on channel 13 and repeat the tracking procedure several time
before the proper setting is obtained.
Turn off the sweep generator and switch the receiver to
channel 6 . Adjust the signal generator to the channel 6 oscillator frequency 129 mc
Set the fine tuning control to the center of its mechanial range
for proper Lor an audible beat Adjust L44, L46 and L41 lor proper curve shape as shown in Figure 6. Recheck the the limits specified. Readjust C5 if necessary
If C5 required adjustment, switch the receiver and the signal generator to channel 8 . Readjust C 7 for correct curve
shape and recheck C 2 and C 3 for proper oscillator frequency. Check the response of channels 2 through 6 by switching the receiver channel switch, sweep generator and marke
generator to each of these channels and observing the response and oscillator injection voltage obtained. See Yesponse and oscillal response curves. It should be found
figure 6 for typical rel
that all these chanels have the proper response with the markers above \(80 \%\) response. If the markers fail to fall within this requirement readjust
L44, LL6 and L41 in order to obtain curves within the proper limits.
Switch the chanrel selector, signal generator and marke
generator through chunnels 7 to 13 and observe the respons curves, referring to Figure 6 for proper wave shape. Theck che injection voltage at each channel to be within limits to obtain the prope With the receiver and signal generator on channel 13 ad
just L42 for an audible beat with the signal generator Adjust the oscillator to frequency on all channels by switch ing the receiver and he frequency standard to each channe and adjusting the appropriate oscillator slug to obtain the
audible beat. It should be possible to adjust the oscillator to obtain the a adible beat on each channel. Recheck the oscil
lator injection voltage on each channel to verity that the lator injection voltage on each channel to verify that the
voltage is within the specified limits.
NOTE: I.F. Response Curves
NOTE: I.F. Response Curves of receivers using the
KRK-j2A are the same as those using the KRK-11B
tuner. Refer to Sarvice Data KRK-22A are the same as those using the KRK-11B
tuner. Refer to Service Data for the specific mode
receiver concerned.

\section*{LAYOUT AND SCHEMATIC DIAGRAMS}


Figure 3-Front Vieu


Figure 4-Rear View
Figure s-Schematic Diagram


Figure 万-R-F Response


Figure 7-KRK-22A Tuner Adjustments


\section*{GENERAL DESCRIPTION}

UHF.VHF Tuner Kit KRK- 25 includes a 16 Channel UHF.VHF tuner, mounting hardware, components for circuit modifications, coaxial link cable, FM trap, knobs for Walnut and Mahogany instruments, and instructions for installation. Knobs for Blond and Oak or Maple and Cherry instruments are available from RCA Victor Distributors (refer to parts
list for proper part numbers).

\section*{ELECTRICAL SPECIFICATIONS}

\section*{TELEVISION R-F FREQUENCY RANGE}

Any of 70 UHF channels
Any of 12 VHF channels, 54 mc . to 88 mc ., 174 mc mc. to 890 mc . 216 mc . Any of 12 VHF channels. 54 mc . to \(88 \mathrm{mc} .174 \mathrm{mc}, 10\). to 216 mc .
Any desired combination of 16 UHF and \(/ \mathrm{VHF}\) channels Any desired.)
may be used.
45.75 mc.
41.25 mc.

Sound I-F Carrier Frequency.
WEIGHT AND DIMENSIONS
Net Shipping Width
\(\begin{array}{ccc}\text { Net } & \begin{array}{c}\text { Shipping } \\ \text { Weight } \\ \text { Weight }\end{array} & \begin{array}{c}\text { Width } \\ \text { Inches } \\ \text { W1/2lbs. } \\ 111 / 2 \mathrm{lbs} .\end{array} \\ 51 / 2\end{array}\)
\(\begin{array}{cc}\begin{array}{c}\text { Height } \\ \text { Inches }\end{array} & \begin{array}{c}\text { Depth } \\ \text { Inches } \\ 15\end{array}\end{array}\)

\section*{INSTALLATION INSTRUCTIONS}

The UHF-VHF Tuner Kit KRK-25 may be installed in the following receivers:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Model & Name & Chassis No. & Model & Name & Chassis No \\
\hline 17 T 150 & "Colby" & KCS66C & 17T250DE & "Brett" & KCS74 \\
\hline \(17 \mathrm{Tl51}\) & "Glenside" & KCS66C & 17T26IDE & "Ainsworth" & KCS74 \\
\hline 17 T 153 & "Bristol" & KCS66 & 21 Tl 59 & "Selfridge" & KCS68E \\
\hline 17 T 154 & "Whittield" & KCS66 & \(21 \mathrm{Tl159DE}\) & "Selfridge" & KCS68F \\
\hline 17 T 155 & "Preston" & KCS66 & 217165 & "Meredith" & KCS68E \\
\hline 17 T 160 & "Hampton" & KCS66 & \(21 \mathrm{Tl66DE}\) & "Farmington" & KCS68 \\
\hline 17 T 162 & "Caldwell" & KCS66A & \(21 \mathrm{Tl74DE}\) & "Bancroft" & KCS68F \\
\hline 17 T 163 & "Crafton" & KCS66C & 21 T176 & "Suffonle" & KCS688 \\
\hline 17 T 172 & "Covington" & KCS66A & 217177 & "Donley" & KCS68C \\
\hline 17T172K & "Covington" & KCS66D & 211178 & "Rockingham" & KCS68C \\
\hline 17 T 173 & "Calhoun" & KCS66A & 21T178DE & "Rockingham" & KCS68F \\
\hline 17T173K & "Calhoun" & KCS66D & 217179 & "Clarendon" & KCS68C \\
\hline 17 T 174 & "Kendall" & KCS66A & 21T179DE & "Clarendon" & KCS68F \\
\hline 17T174K & "Kendall" & KCS66D & 21T197DE & "Sunderland" & KCS68H \\
\hline
\end{tabular}

Determine that the receiver is in proper operating
condition before proceeding with the tuner installation. CABINET MODIFICATIONS
Remove the television chassis from the cabinet
Locate and drill two \(1 / 2\) inch holes in the receiver chassis
shelf using the template provided. For location see Fig. 1 .
Remove the channel marker escutcheon from the cabinet. tabs flush aqainst cabinet. Cut a semi-cingular bend ring inches in diameter for indicator lamp clearance as shown in Fig. 2. This notch must be undercut on the inside of
wooden cabinets, also refer to Fig. 2.
A portion of the plastic front mask must be removed on 21
inch receivers to allow pilot light bracket clearance, see
Fig. 3.

\section*{REMOVAL OF PRESENT TUNER}

Remove the cable clamp from the side of the tune
Color of all leads removed should be noted for reference
ater.
Disconnect the shielded cable from ground and terminal \(A^{\prime \prime}\) at T104 (lst. Pix. I-F Grid Transformer).
Disconnect the AGC lead coming from the receiver chassis,
at terminal 3 of the tuner. - 117 in

Disconnect the +B except 17T250DE and ITT261DE.) Disconnect the +B lead feeding terminal 4 of the tuner
through a 100 ohm resistor, at the receiver chassis terminal board. Connect the 18000 ohm 2 watt resistor supplied with the kit, between this point on the chassis terminal board
and a nearby ground lance.

The rotary type tuner is shipped with 12 pretuned VHF inserts covering Channels 2 through 13 inclusive. UHF inserts are available from RCA Victor Distributors
The tuner employs four tubes plus a crystal rectifier. It is designed to be used with chassis Nos. KCS66, KCS66A, KCS66C, KCS66D-K

\section*{ANTENNA INPUT IMPEDANCE}

UHF-Choice: 300 uhms balanced or 72 ohms unbalanced.

\section*{RCA TUBE COMPLEMENT}


Remove the speaker cable clamp from the receiver chassis. Locate the mounting holes for the tuner by using the
emplates supplied with the kit. The two large brackets are emplates supplied with the wit. The two large brackets are
used with 21 inch receivers and the two small brackets with 17 inch receivers. On receivers us
these holes are already provided. An alternate method for locating the mounting holes may
be used if desired. This is accomplished by locating the
position of the top mounting hole of the front bracket, see position of the top mounting hole of the front bracket, see
Fig. 5 . On 17 inch Models this hole is located \(41 /\) inches from Fig. 5. On 17 inch Models this hole is located \(4 / 4\) inches from
the chassis front and 5/16 inches in from the right side of the chassis front and \(5 / 16\) inches in from the right side of
the chassis. On 21 inch Models the hole is located \(23 / 2\) inches from the chassis front and \(5 / 16\) inches in from the right side of the chassis. The remaining holes may be located by assembiner in position with the top front hole as a guide, and spotting the other holes.
CAUTION: Check the position of components and cables
under the chassis belore drilling holes to avoid possible Drill all chassis holes using a \#30 drill to fit the self (On 21 inch Models only.)
A chassis lance partially occupies the location of the
hole for the top screw of the rear bracket. Bend the hole for the top screw of the rear bracket. Bend the lance
flush to the chassis. Drill the hole with a \#8 drill and use the machine screw, washers and nut provided in the tune kit or this mounting hole.
Mount the tuner on the receiver chassis. A flat surface shoula be used to support the tuner
assure proper mechanical alignment.
Mount the three-lug terminal board, attached to the tuner
leads, under the top front mounting bracket screw with the terminals facing the tuner as in Fig. 5
Connect the link cable to T 2 on the tuner as shown in
Fig. 5 , grounding the shield on the lance provided.
Connect the other end of the link cable to terminal "A"
of T104 (lst Pix. I-F Grid Transformer), grounding the shield to the adjacent chassis lance. The link cable must be shunted with a 1000 ohm resistor and a 5.70 mmf . trimmer capacitor. part of the original circuit. Remove any existing fixed resistors
and capacitors which shunt the link cable in some models.
Connect the AGC feed to the white-green lead from the
tuner at the terminal board previously mounted on top front tuner at the terminal board previ
of the receiver chassis. See Fig. 5 .
Connect the (265 V.) +B feed to the red lead from the tuner
at the terminal board.
Connect the heater feed to the brown lead from the tuner (On 21 inch Models only.)
Connect the two 1800 ohm 2 watt resistors, supplied in
kit, in series between the center lug of the terminal board kit, in series between the center lug of the terminal board holding the red lead fom the tuner and the rear terminal
\((+373 \mathrm{~V}\) ) of R 243 bleeder resistor mounted on the top right front corner of the receiver chassis. See Fig. 5.

MODEL KRK-25, UHF-VHF Tuner Ki must be bent upwards, to prevent contact with the buttons
on the inserts. Remove the tuner cover. Rotate the channel selector knob until an empty drum compartment lies under the input jack Il. The two springs will now be accessible and
may be bent upwards sufficiently to clear the insert buttons.
When coaxial cable is used for the UHF input, attach the axial cable. The use of a separate UHF antenna, fed to the coaxial input jack Il, will require removal of the antenna coupling loop from all UHF inserts used. Cut the coupling
loop wires at the contact buttons to which they are soldered. Remove the tape securing the loop to the insert. The loop is then removed by carefully rotating until it slips out easily.

\section*{KNOB ASSEMBLY}

The proper order of knob assembly is shown in Fig. 4.
Place the fine tuning knob on the shatt and rotate Push the knob in until seated firmion on the fine tuning cam. ush the knob in until seated hirmly against the cam.
Place the channel selector knob on the shaft. Rotate knob until the knob teeth mesh with the drive gear, at a point where a hole in the knob face is over the channel indicator Remove tabs from the tab disc corresponding to any UHF channels to be used. Mount the tab disc on the indicator disc. The proper position will be indicated by the keyway on the he required UHF channel number tabs from the sheet supplied and mount on the indicator disc
rojection on the disc to the smallest cover by matching the Mount the indicator assembly on the shaft, matching the lats on the assembly spring and the shaft. Push the assembly into position.
REMOVAL AND INSTALLATION OF INSERTS INSERT REMOVAL. - Remove the tuner cover shield. channel insert position may be identified by the stampings on the insert drum which are visible through the channel Rotate the channel selection wise. Three inserts will be clearly visible in the tuner cover one desired. Hemove the insert by the insert buttons, do not grip the adjusting screws. Slide the insert to the rear until the nothes
on the insert clear the drum tabs. Lift the insert upward and remove.
INSERT INSTALLATION.-Identify the proper insert chamber in the manner previously described.
The insert has two fingers at each end. Place the longer insert fingers in the notch at the reach ond the drum and longer
ine insert into the drum chamber. Push the insert back against the retaining spring until the notches clear the tabs until seated over its entire length. Release the tension applied gainst the retaining spring allowing the insert to move orward under the tas. The short fingers on the insert will
onter the slot in the front drum disc when the insert is prop. erly seated.
Replace the tuner cover shield.
and install the lamel indicator lamp on the tuner lamp bracket acing to the front.

The existing antenna input connector may be used when
modified. Cut of the two close-spaced jumpered pins close
to the bakelite disc. Insert the connector in the tuner jack and fasten in position using the retainer plate and screw provided in the kit.
An FM trap is supplied with the kit. It consists of a \(4 \% \mathrm{inch}\)
length of flat 300 ohm transmission line with a 5.70 mm . length of flat 300 ohm transmission line with a 5.70 mmf shunt trimmer at one end, the opposite end is shorted. Tape
the trap securely to the receiver antenna cable at some convenient location between the receiver terminal board and the tuner as shown in Fig. S. The exact position of the trap
is not important except for convenience of trimmer adjustment.

When a common UHF.VHF antenna is used in fringe areas,
the contact springs under the UHF coaxial input jack ji


ALIGNMENT PROCEDURE
TUNER ADJUSTMENTS
INSERT ADJUSTMENTS. - Some factory prealigned UHF inserts may require minor adjustment when installed in
the tuner. This can be accomplished by using the UHF station as a signal source.
CAUTION SHOULD BE TAKEN TO OBSERVE FOR REFERENCE,
THE INITAL POSITION OF ALL CORES BEFORE MAKING NY ADJUSTMENTS.
Set the fine tuning control to the center of its range on the
channel to be adjusted. Adjust the oscillator core for this hannel to obtain maximum audio output without distortion. Adjustment of the tripletuned circuit; UHF antenna, UHF
ink coupling and mixer cores may be made, in necessary to link coupling and mixer cores
obtain best picture and sound.

DETENT TENSION ADJUSTMENT.-The tension of the detent roller may be adjusted by the detent tension adjust-
ment, see Figs. 6 and 13 .

TEST EQUIPMENT.-To properly service the KRK- 25 Tuner whed that the followin the


VHF Sweep Generator meeting the following requirements 35 to 90 rc., 1 mc. to 12 mc . sweep width
170 to 225 mc, . (b) Output adjustable, with at least .1 volt maximum (c) Output constant on all ranges.

VHF Signal Generator to provide the following frequen ies with crystal accuracy:
39.25 mc ., 41.25 mc ., 43.5 mc ., 45.75 mc ., 47.25 mc . (b) Radio frequencie
\begin{tabular}{|c|c|c|c|}
\hline Channel & Picture Carrier & Sound Carrier & Receiver R-F Osc. \\
\hline Number & Freq. Mc. & Freq. Mc. & Freq. Mc \\
\hline 3 & 55.25
61.25 & 59.75
65.75 & 107 \\
\hline 4 & 67.25 & 71.75 & 113 \\
\hline 5 & 77.25 & 81.75 & 123 \\
\hline 7 & 83.25 & 87.75 & 129 \\
\hline 7 & 175.25 & 179.75 & 221 \\
\hline 8 & 181.25 & 185.75 & 227 \\
\hline & 187.25 & 191.75 & 233 \\
\hline 10 & 193.25 & 197.75 & 239 \\
\hline 11 & 199.25 & 203.75 & 245 \\
\hline 12 & 205.25 & 209:75 & 251 \\
\hline 13 & 211.25 & 215.75 & 257 \\
\hline
\end{tabular}
(c) Output of these ranges

VHF Heterodyne Frequon Mer brator if the signal generator is not crystal controlled. UHF Sweep Generator with a frequency range of 470 UHF Signal Generator to provide the following fre
\begin{tabular}{|c|c|c|c|}
\hline Channel & Picture Carrier & Sound & Receiver \\
\hline Number & Freq. Mc. & Frea. Mc. &  \\
\hline 14 & 471.25 & 475.75 & 517 \\
\hline 15 & 477.25 & 481.75 & 523 \\
\hline 16 & 483.25 & 487.75 & 529 \\
\hline 17 & 489.25 & 493.75 & 535 \\
\hline 18 & 495.25 & 499.75 & 541 \\
\hline 19 & 501.25 & 505.75 & 547 \\
\hline 20 & 507.25 & 511.75 & 553 \\
\hline 21 & 513.25 & 517.75 & 559 \\
\hline 22 & 519.25 & 523.75 & 565 \\
\hline 23 & 525.25 & 529.75 & 571 \\
\hline 24 & 531.25 & 535.75 & 577 \\
\hline 25 & 537.25 & 541.75 & 583 \\
\hline 26 & 543.25 & 547.75 & 589 \\
\hline 27 & 549.25 & 553.75 & 595 \\
\hline 28 & 555.25 & 559.75 & 601 \\
\hline 29 & 561.25 & 565.75 & 607 \\
\hline 30 & 567.25 & 571.75 & 613 \\
\hline 31 & 573.25 & 577.75 & 619 \\
\hline 32 & 579.25 & 583.75 & 625 \\
\hline 33 & 585.25 & 589.75 & 631 \\
\hline 34 & 591.25 & 595.75 & 637 \\
\hline 35 & 597.25 & 601.75 & 643 \\
\hline
\end{tabular}


Cathode Ray Oscilloscope.-An oscilloscope with sitivity of 1 millivolt per inch is required. A suitable pre-ampli Electronic Voltmeter.-A voltmeter with a 1.5 volt DC le is required. RCA Senior "Voltohmyst" or equivalent DC Milliammeter.-A milliammeter with a range of 0.50 Adapter Socket.-An adapter socket is required to meter the cathode current of the 6S4. Wiring of adapter is shown
in Figure 7 . PICTURE I-F T RAP ADJUSTMENT.- Connect the i-f signal gen 7104 . Connect the "VolitOhmyst" to the junction of R143 and R144.
On KC54 chassis using a 6 CL6 video amplifier, connect nd R194.
Obtain two 7.5 volt batteries capable of withstanding
appreciable current drain and connect the ends of a 1,000 ohm potentiometer across each. Connect the positive terminal on one battery to the chassis and the potentiometer arm to he junction of R143 and R144. On KCS74 chassis with o the chassis and the potentiometer arm to the junction of 193 and R194.
The second bias supply will be used later
Set the bias to produce approximately -1.0 volt of bias at the
unction of R143 and R144 or R193 and R194 as noted above. Connect the "VoltOhmyst" to pin 4 of V110, the 6AG7 video

Set the VHF signal generator to each of the following frequencies and adjust the corresponding circuit for minimum d.c oufput at pin 4 of VIIO or at pin 2 if 6 CLL is used for Vllo.
Use sufficient signal to produce 1.0 volt of d-c on the meter

T104 top core
T105 bottom cor 39.25 mc
41.25 mc
47.25 mc T106 bottom core
PICTURE I-F TRANSFORMER ADJUSTMENTS. and peak the specified adjustment for maximum indication on the "VoitOhmyst". During alignment, reduce the inpul of V110 (pin 2 of V110 if 6CL6 is used) with 1.0 volt of i . bias at the junction of R143 and R144 or R193 and R194 43.7 mc.
45.5 mc.
41.8 mc. T 109
\(\mathrm{T108}\)
T 107
To align T105 and T106, connect the sweep generator to the first picture i.f grid, pin 1 of V106 through a 1000 mmf .
ceramic capacitor. Shunt R141, R149 (R136, R143 on KCS74 chassis as previously noted) and terminals "A and 330 ohm oith -1.0 volt at the junction of R143 and R144 or R193 and R194 as previously noted
Connect the oscilloscope to pin 4 of V1lo (pin 2 of vllo
where 6CL6 is used). curve output of the VHF sweep generator to produce 0.5 volt peak-to-peak at the oscilloscope terminals.
CRYSTAL MIXER PLATE CIRCUIT, T2 AND T104.To align the crystal mixer plate circuit, T2 and T1O4, connect
the VHF sweep generator to the front terminal of the \(1 N 82\) Crystal holder in series with a 1500 mml . ceramic capacitor ator to the tuner case.

Set the Channel selector to Channel
Connect a 180 ohm composition resistor between terminal
" B of T 105 and the junction of \(\mathrm{R135}\) and \(\mathrm{Cl32}\) (R131 and (131 KCS74 chassis using 6CL6 for V110).
Connect the oscilloscope diode probe to terminal " B " of
T105 and ground. Couple the signal gen
order to obtain markers.
The shunt trimmer across termina \(A\) and \(B\) of \(T 10\) (C220 in KCS68, C221 in KCS66 or C122 in KCS74) is the shunt trimmer to minimum capacity. Adjust. T2 (top) 45.75 (bottom) for maximum gain at 43.5 mc . and with

Adjust shunt trimmer (C220, C 221 or C 122 ) until 41.25 shoulder at approximately 41.9 mc as shown in Fiqure 0 dajust T1 for maximum gain. Readjust T2 and T104 if neces
dode probe, the 180 ohm and the thre ohm resistor

SWEEP ALIGNMENT OF PIX I-F.- Connect the oscil.
Adjust the bias potentiometer to obtain -6.0 volts of
bias as measured by a "VoltOhmyst" at
R143 and R144, or R193 and R194 as before.
Leave the sweep generator connected to the front terminal of the 1 N82 crystal holder with the shortest leads possible
and with not more than one inch of unshielded lead at the end of the sweep cable. If these precautions are not observed, the receiver may be unst.
obtained may be unreliable.
5.0 volts peak-to po the sweep generator to obtain 3.0 Couple the signal a
duce small markers on the response curve .
MODEL KRK-25, UHF-VHF Tuner Kit

\section*{MODEL KRK-25, UHF-VHF Tuner Ki}

Retouch T108 and T109 to obtain the response shown in
Figure 10 Do not adjust T107 unless absolutely necessary. If Figure in Do not adjust T107 unless absolutely necessary. If the 41.25 mc . sound i.f carrier and may create interference in the picture. It will also cause poor adjacent channel picture
rejection. II T1O7 is tuned too high in the frequency, the level of the 41.25 mc . sound i.f carrier will be 100 low and may produce noisy sound in weak signal areas.
Remove the oscilloscope, sweep and signal generator
connections. onnections.
Remove the bias box employed to provide bias for alignment. TUNER VHF ALIGNMENT. - Remove the 6S4 voltage 6 S 4 in the adapter.
Connect the \(0-50\) milliampere meter to the adapter socke Connect the - 50 milliampere meter
Remove the tuner cover shield
Rotate the channel selector to a point midway between
hannels, disengaging the insert contacts, and observe the channels, disengaging the insert contacts, and observe the non-oscillating plate current. Some tubes may oscillate even
with the tuned circuits disengaged. To be sure the oscillator in in a non-oscillatory state, short circuit the spring contact 2 and 13, the two contacts nearest the tuner front, with finger.
(NOTE: The contacts are at zero d.c potential.) Should the plate current rise, keep finger on the contacts while adjust-
ing the oscillator plate current. Adjust R6, oscillator voltage
control for a 28 milliampere reading on the meter. ontrol, for a 28 milliampere reading on the meter.

\section*{heplace the tuner cover shield.}

Connect the VHF sweep generator to the antenna terminals.
Connect the VHF signal generator loosely to the antenna
preamplifier i Connect the oscilloscope, through the prea
needed with oscilloscope used, to test point TPI.
Ground the AGC bias at the tuner terminal board using a lip lead to insure that the bias will remain constant.
Turn off the adapter switch, removing plate voltage
from the oscillator. This is required because of RF.IF inter Irom the oscillator. This is required bec
action when a crystal is used as a mixer
Set the channel selector and the sweep generator to Channel
Insert markers of Channel 2 picture carrier and sound
and anier, 55.25 mo . and 59.25 me .
Adjust antenna T6, r.f amplifier plate L29 and mixer L30
adjustments for a symmetrical curve with maximum gain a adjustments for a symmetrical curve with maximum gain at
he center of the pass band. The curves will have a deep valley because of no crystal loading and nonlinear detecto
chacracteristics. The limits for the 100 , characterisics. The limits ior the 100 , response points are
hown in Figure 11 . If bandwidth is out of tolerance, it can usually be corrected by redressing the coupling capacito of the double tuned circuit, C40 on insert A. Maximum
bandwidth occurs when the capacitor is centered in the bandwidth occu
insert chamber.
Repeat the above steps for all VHF channels adjusting he appropriate antenna, \(r\) rf amplifier plate and mixe slugs for a symmetrical curve with maximum gain at the Turn the pass band
Remove the oscilloscope and preamplifier if used, from Remove the
test point TP1.
Turn the AGC control fully clockwise.
Remove the clip lead grounding the AGC bias on the tuner terminal board.
Connect the potentiometer arm of one of the bias supplies
to the AGC terminal on the tuner and ground the battery positive terminal to the tuner case. Adjust the bias potenti ometer to produce - 3.5 volts of bias, as measur
"VoltOhmyst" at the AGC terminal on the tuner.
Connect the potentiometer arm of the second bias supply
to the junntion of R143 and RR44 (R193 and R194 on KCS74
chassis with 6 CL6 chassis with 6CL6 for V110), and ground the positive batter
terminal. Adjust the bias potentiometer to produce - 5 volts terminal. Adjust the bias potentiometer to produce -5 volt
of i-f bias as indicated on the "Voltohmyst" at the junc of i-f bias
tion point.

Connect the oscilloscope to pin 4 of V110 (pin 2 of VI1O
here 6CL6 is used). Use 3 to 5 volts peak-to peak output on the oscilloscope.
Turn the adapter switch on to apply plate voltage to the oscillator.
Turn the channel selector to Channel 13 .
Set the fine tuning control to the center of its range.
Adjust the oscillator slug L22 to proper frequency, 257 mc .
This may be done in several ways. The easiest way and the This may be done in several ways. The easiest way and the way which will be recommended in this procedure will be to use the signal generator as a heterodyne frequency meter
and beat the oscillator against the signal generator. To do his, tune the signal generator to 257 mc. weth crystal accu-
tacy. Insert one end of a piece of insulated wire into the racy. Insert one end of a piece of insulated wire into the
tuner through either of the two holes next to the oscillator tuner through either of the two heles next turer. Be careful
tube on the right front top corner of the tuner hat the wire does not touch any of the tuned circuits as it
may cause the frequency of the oscillator to shift. Connect may cause the frequency of the oscillator to shift. Connect
he other end of the wire to the "r-f in" torminal of the signal enerator. Adjust L22 oscillator slug to obtain an audio beat ith the signal generator.
Turn on the sweep generator and set to Channel 13 .
Adjust Tl for maximum gain on the oscilloscope. Adjust mixer tank circuit L21 for maximum gain and flat-topped curve. Recheck Tl for maximum gain at center of band with the proper response. Maximum gaiin
should be obtained simultaneously. Adjust the oscillator to frequency on all VHF channels by
switching the receiver and signal generator to each VHF
channel and adjusting the appropriate oscillator slug to channel and adiusting the appropriate oscillator slug to
obtain a beat with the signal generator. Adjust the appropriate mixer slug where necessary to obtain maximum gain and proper curve shape as explained above.
Adjust the tunable I-F Trap C16.L7. To do this connect
the signal generator to the fixed I-F Trap C2.L2 at the end pposite the antenna terminal plug. Set the signal generator obtain sufficient indication on the osilloscope. Tune the \(I\). F
Trap Cl6-L7 for minimum indication on the oscilloscope.
Remove the signal generator and the oscilloscope
TUNER UHF ALIGNMENT.-To align the UHF inserts: Turn off the adapter switch, removing plate voltage from

Ground the AGC bias at the tuner terminal board using
dip lead to insure that the bias will remain constant. Complifier if needed Connect the oscilloscope, through the p
with oscilloscope used, to test point TP1.

Connect the UHF sweep generator to the antenna terminals. Use a 10 DB attenuator pad to assure proper alignment. Connect the UHF signal generator loosely to the antenna
terminals.
Set the channel selector to the desired position and the sweep generator to sweep the frequency of the insert being
used. Insert markers of
for desired channel.
Adjust UHF antenna link coupling and mixer adjustments for a symmetrical curve, with maximum gain, centered about
the pass band.
The responses are shown in Figure 12 . The curve shape
will usually vary from Fig. 12 (a) to Fig. i2 (c) going higher will usually vary from Fig. 12 (a) to Fig. 12 (c) going higher
in frequency, however any of these responses are acceptable. Repeat the above steps for all UHF inserts used adjusting he appropriate antenna, link coupling and mixer slugs for a ymmetrical curve, with maximum gain, centered about the pass band
Remove the oscilloscope and preamplifier if used, from
est point TP1 Remove the clip lead grounding the AGC bias on the tuner
terminal board. Connect the potentiometer arm of one of the bias supplies
o the AGC terminal on the tuner and ground the battery al to the tuner case. Adjust the bias potenti. meter to produce - 3.5 volts of bias,
"VoltOhmyst" at the AGC terminal.

Connect the potentiometer arm of the second bias supply
the junction of R143 and R144 (R193 and R194 on KCS74 chassis with 6CL6 for V110), and ground the positive battery erminal. Adjust the bias potentiometer to produce -5 volts
of i.f bias as indicated on the "Voltohmyst" at the juncof i.f bias
tion point.
tion pois
Connect the oscilloscope to pin 4 or V110 (pin 2 of V110
where 6 CL6 is used). Use 3 to 5 volts peak-to-peak output on the oscilloscope.
Turn the adapter switch on to apply plate voltage to Turn the channel selector to the lowest UHF channel to be used.
Set the fine tuning control to the center of its range.
Adjust the oscillator core to proper frequency. To do this,
onnect the VHF signal generator to the test point TPl in series with a 100 mmf . capacitor and with the shortest leads ossible. Insert a 45.75 mc . marker from the VHF generator. Set the UHF sweep generator to sweep the desired channel,
and observe the output on the oscilloscope. If the sweep generator is not sweeping the correct frequency range, it may be necessary to readjust the sweep in order to place
the 45.75 marker on the response curve as in Fig. 9 . Set the UHF marker gen, to the picture carrier of the
channel insert being adjusted and connect to TPI. Adjust the oscillator core until the markers for 45.75 mc . and the picture carrier coincide on the sweep pattern. Adjust mixer core for maximum gain with proper wave shape.
Connect the "VoltOhmyst" to test point TPl, using 1.5
volt D.C. scale. Set oscillator injection adjustment to read .1 volts on the
Voltohmyst" hmyst
Repeat the above steps for all UHF inserts adjusting the "Coltohmyst'extion control only if the reading on the

\section*{volts or less at TPI.}



 Capacitor Tixed, corramis. crystal holdor, 22 mmf ,
10\%. Tomp. coeff. -750 (C11)



 \({ }^{\text {Capasitito }}\)
 food thru, 100 spocitor-Fix.od. coramic. \(1000 \mathrm{mmf} .{ }^{+100 \%}-0 \%\) apacitor- Fixad. coramic. 10.000 mmf., \(+100 \%\). \(-0 \%\). Coil volt DC Hic
Coill trap (Lit)
Coil-IF trap (LZ)
Coil-IF neutralizing
Coil-1

Coil-Ozcillator hater coil (L15)
Coil-Ocillator haoter coil (LI14)
Coil-Ocillator plate coil (L11)
Coil-Osillator plate coill
Coil-Poaking coil (L6, R11
Coil-RF plate coil (Le)


Contact- Brachot and spring contact anombly for
rorounding rotor assembled to oscillator hhild

complote with two (2) contacts
Contact-Costanat and support asombly complote with
two (2) contacto and UHF antenn input connector
C
Contact- Contact and support assombly completo
four (4) connacts and holer or cor cryal rectitior
Confact-Contact and support artermbly complote with
five (5) contacts

Conioline tuning coro
Core-Fing
Cupling- Indicator zhaft coupling
Forrule-- Frrulicator for UhFt coupling
Gear-Ronna input cable




```

Mink-Fine tuning link

```
Ractifier- Sillicon roctifier IN82 (CR1)
Resisitor- - ITx





8.2 mogohm, \(\pm 10 \%\). \(1 / 2\) watt (R8) wat (R7)
Retainnor-Retoiner riny for fine turing
stud
Ring \({ }^{\text {tud }}\)-Cont


Shaft-Channol solector drive ehaft complote with two
(2) ocars
Shaft-Indicator shat

-undoreside of chaid
Shiold-Top shiold


Sochot Tube secket. 9 pin. miniature, saddle mountod.
mouldod mica for V1, 3 .

Spring-Formod Epring for holding rotor (on
Spring-Fine tuning link adjusting ppring
Spring-Retaining prring for oscillatoritube ehield
Spring-Rotor dotent opring and roller comploto



ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the ion trap magnet be adjusted to cause ony
loss of brightness since such operation may cause immediate loss of brightness since such operation may cause immediate
or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.
WIDTH, DRIVE AND HORIZONTAL LINEARITY ADIUST. MENTS. - Adjustment of the horizontal drive control aftects
the high voltage applied to the kinescope. In order to obtain the highest possible voitage hence the brightest and best locused picture, adjust horizontal drive trimmer cle
maximum drive (minimum capacity) consisteant with a linear raster. Compression of the raster due co excessive drive can be
seen as a white vertical bar or bars in the right half of the seen as a white verlical bar or bars in the right have of the
picture. Besides compression caused by excessive drive. picture. Besid to watch for is the change in linearity at the
another item to extreme left with changes of brightness control setting. By proper adjustment of the linearity coil, the changes in linearity
with changes in brightness can be made negligible. In genwith changes in brightess can be made condition, the linearity coll should be set
eral
slighty on the high inductance side (core slighly clockwise) slightiy on the high ind
of the optimum position
Preset the following adjustments as directed:
A.-Place the width plug P103 in the minimum width position (top).
B.--Set the width control coil L109 in approximately mid posinion.
C.-Set the linearity control coil L111 near minimum induc-
D.-Set the drive capacitor C186B in the maximum drive
position (counter-clockwise).

If the raster is cramped or shows compression bars on the right half of the picture turn C186B clockwise until this con-
dition is just eliminated
Adjust the linearity control coil Llll clockwise until best linearity and maximum deflection or best compromise are obtained then turn one quarter turn clockwise from this position. Retouch the drive trimmer C186B if necessary to obtain best
linearity and maximum width. inearity and maximum width
Check the horizontal linearity at various settings of the
brightness control R114A. There should be no compression of the right half and no appreciable change of linearity especially at the extreme left of the picture. If objectional change
does occur, turn linearity coil Lill slighly clockise and does occur, tur.
repeat the test.

Adjust the width control Llo9 to fill the mask.
If the line voltage is low and it becories impossible to fill the mask, move the width plug P103 to the bottom position. The width coil Llog is inoperative in this position.
height and vertical linearity adjustments. Adjust the height control (R190 behind front control panel) until
ae picture fills the mask vertically. Adjust vertical linearity he picture fills the mask vertically. Adjust vertical linearity
(R197 behind front control panel). until the test paltern is sym. metrical from top to bottom. Adjust
require a readjustment of the other.
FOCUS.-Adjust the focus magnet for maximum definition in test pattern vertical "wedge" and best focus in the white the test pattern vertical
areas of the pattern.
Recheck the position of the ion trap magnet to make sure hat maximum brightness is oblained.
If necessary readjust centering to align the picture with the mask.
CHECK OF R.F OSCILLATOR ADJUSTMENTS. - (Models
21-D. 305 to \(21-D .330\) incl. with KRK11B Tuner.) Tune in all available stations to see if the receiver r-4 oscillator is adiusted to the proper frequency on all channels. It adjusiments are to the proper frequency on all channels. It adjustments are
required, these should be made by the method outlined in the alignment procedure on page 8. The adjustments for
channels 2 through 12 are available from the front of the channels 2 through 12 are available from the front of the
cabinet by removing the station selector escutcheon as shown in Figure 3. Adjustment for channel 13 is on top of the chassis.


TO Rewove escurneon, slid


Figure 3-KRKllB R-F Oscillator Adjustments (Models 21-D. 305 U to 21-D.330U incl. with KRK12 Tuner) une in all available VHF stations to see if the receiver \(x\). If adjustments method outlined in the alignment procedure on page 60 . NOTE.-Some factory prealigned UHF inserts may require minor adjustment when installed in the tuner. This can be
accomplished by using the UHF stations as a signal source. CAUTION SHOULD BE TAXEN TO OBSERVE FOR REFERENCE,
THE INITIAL POSITION OF ALL CORES BEFORE MAKING ANY THE INTIIAL PD
ADUSTMENTS.
Set the fine tuning control to the center of ils range on each UHF channel to be adjusted. Adjust the oscillator core for each UHF channel to obtain maximum audio output without

AGC THRESHOLD CONTROL. - The AGC Threshold Control R180 is adjusted at the factory and normaily should not require \(T\) ore the adiustr
in a strong signal and sync the AGC Threshold Control, tune the signol by switching oft channel and then back. If the picture reappears immediately. the receiver is not over-loading
due to improper setting of R180. If the picture requires an appreciable portion of a second to reappear, or bends exces-
sively. 180 should be readisted sively. R180 should be readjusted.
Turn R180 fully counter-clockwise. The raster may be bent
slightly. This should be disregarded. Turn R180 clockwise until there is a very, very slight bend or change of bend in the chere is a very, very slight bend or change of bend in the
picture. Then turn R180 counter-clockwise just sufficiently to picture. Then lurn R180 counter-clock
remove this bend or change of bend.
If the signal is weak, the above method may not work as
it may be impossible to get the picture to hend In this case it may be impossible to get the picture to hend. In this case,
lum Al 180 clockwise until the snow in the picture becomes more pronounced, then counter-clockwise until the best signal to noise ratio is oblained.
The AGC control adjustment should be made on a strong signal it possible. If the control is set too far clockwise on a
weak signal. then the receiver may overload when a strong weak signal. then
signal is received.
FM TRAP ADIUSTMENT. - in some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is ob-
served and adjust the L58 core on top of the antenna matching served and adjust the L58 core on top of the antenna matching
transtormer for minimum interierence in the picture. ransformer for minimum interterence in the picture
CAUTION. - In some receivers. the FM trap 158 will tune down into channel or even into channel such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L58 to make sure that it does not affect sensitivity on these 58 to mm
wo chan
The FM trap on Models 21.D.305U to 21. D. 330 is attached 10 the receiver antenna cable and should be adjusted
same manner as 158 on Models \(21-D .305\) to \(21 \cdot D \cdot 330\).
Replace the cabinet back and connect the receiver antenna leads to the cabinet back. Make sure that the screws holding
it are up tight otherwise it may ratle or buzz when the xeceiver is operated at high volume.


John F. Rider


\section*{ALIGNMENT PROCEDURE}

To align T1 and T104, connect the sweep generator to the mixer grid test point TP2. Use the shorlest leads possible, with
not more than one inch of unshielded lead at the end of th sweep cable.
Adjust C121 until \(41.25 \mathrm{mc}\). is at \(85 \%\) response with respect
to the low frequency shoulder at approximately 41.9 mc. as to the low frequency
shown in Figure 20 .
Disconnect the diode probe, the 180 ohm and three 330 ohm resistors.
Models \(21 \cdot\) D. 305 U to 21-D.330U Incl.
Set the signal generator to each of the following frequencies and peak the specitied adjustment for maximum indication on the "Voltohmyst." During alignment, reduce the input signal
if neecsary in orde: to produce 1.0 volt of dec at pin 9 o
vilo with -1.0 voli of i.f bias at the junction of R133 and C133B.
43.7 mc.
45.5 mc.
.T109
T108
T107
To align T105 and T106, connect the sweep generator to the first picture i.t grid, pin 1 of V106 through a 1,000 mm
ceramic capacitor. Shunt R137, R141 and terminals " \(A\) "an " F ". of Tl 109 with 330 ohm composition resistors. Set the
Connect the oscilloscope to pin 9 of V110, the 6CL6 video
amplifier.
Adjust \(T 105\) and T106 top cores for maximum gain and
urve shape as shown in Figure 19. For tinal adjustment curve shape as shown in the output of the
peak-to-peak at the oscilloscope
enerminals. To align the crystal mixer and T2 and T104. connect the
HHF sweep generator to the front terminal of the 1N82 crysial
holder in series with a 1.500 mmf . ceramic capacitor. Use the holder in series with a 1.500 mmit ceramic capacitor. Use the
shortest leads possible, grounding the sweap generator to the shortest lea
tuner case.
Set the channel selector to channal 5 .
Connect a 180 ohm composition resistor between terminal
"B" of T105 and the junction of H 131 and C 133 A . "B" of T105 and the junction of R131 and C133A.
Connect the oscilloscope diode probe to terminal " B " of T 10 and ground. Couple the signal probe in order to obtain markers.
The shunt trimmer C121 across terminals A and B of T104 The shunt is provided as a bandwidth adjusiment. Pres the shunt trimmer 10 minimum capacity. Adjust T 2 (top) and
T104 (bottom) for maximum gain at 43.5 mc. and with 45.75 T104 (botlom) for maximum gain a
Adjust the shunt trimmer C 121 until 41.25 mc . is at \(85 \%\) response with respect to the low frequency shoulder at ap proximately \(41.9 \mathrm{mc}\). as shown in Figure 11. Adjust T 1 for proper wave shape see Figure 11 .
Disconnect the diode probe, the 180 ohm and the three 330
SWEEP ALIGNMENT Of PICTURE LF.-
Connect the oscilloscope to pin 9 of V110.
Adjust the bias potentiometer to obtain -6.0 volts of bias as mea
C133B.
Leave the sweep generator connected to the mixer grid test
point TP2 on KRK11B Tuner or to the front terminal of the IN82 crystal holder on KRK12 Tuner. Use the shortest leads possible with not more than one inch of unshieaded hoad abserved. the receiver may be unstable and the response curves obtained may be unreliable.

Adjust the output of the sweap generator to obtain 3.0 volts
peak-to-peak on the oscilloscope.
Couple the signal generator loosely to the grid of the firat
pix i - c amplifier. Adjust the output of the signal generator to

Retouch T108 and T109 to obtain the response shown in Fig ure 2di. Do not adjust T107 unless absolutely necessary. If T107 41.25 mc . sound i -f carrier and may create interterence in the picture. It will also cause poor adjacent channel picture rejec
tion. Till T107 is sion 41.25 mc . sound i . c carrier will be too low and may produc noisy sound in weak signal areas.
Remove the oscilloscope, sweep and signal generator con Remove

Set the Tl core for maximum inductance (core turned counter-
Connect the sweep generator through a suitable attenuator
as shown in Figure 14 to the input terminals of the antenna natching unit
Sot the sweep generator to cover channel 8 .
Set the oscilloscope to maximum gain and use the minimum input signal which will produce a useable pattern on the
oscilloscope. Excessive input can change oscillator injection oscilloscope. Excessive input can change oscillator injection
during alignment and produce consequent misalignment even hough the response as seen on the oscilloscope may look normal.
Insert markers of channel 8 picture carrier and sound carrier
181.25 mc . and 185.75 mc .

Adjust C9, C11, C15 and C18 for approximately correct curv
shape, frequency, and band width as shown in Figure 16 .
The correct adjustment of C18 is indicated by maximum amplitude of the curve mide circuit and affects the frequency of the pass band most noticeably. C9 tunes the mixer grid circuit and affects the tilt of the curve most noticeably (assum ing that C18 has been properly adjusted). C11 is the coupling
adjustment and hence primarily affects the response band adjustm
width.
ind
Set the receiver channel switch to channel
Adjust the signal generator to the channel 6 oscillator tre
quency 129 mc.
Turn the fine tuning control 30 degrees clockwise from the center of its mechanical range.
Adjust L 5 for an audible beat with the signal generator as betore.
Set the sweep generator to channel 6
From the signal generator insert channel 6 sound and picture carrier markers, 83.25 mc. and 87.75 m
Adjust L48, L50 and L53 for proper response as shown in Figure 16.
 grid and is adjusted to give maximum amplitude of the curve between the markers. L48 affects the tilt of the curve but no quile the same as C9 adjustment. When the circuits are co secting, the high frequency (sound carrier) end of the cury appears to remain nearly fixed in amplitude while the pictur carrier end tilts above or below this point.
Turn off the sweep and signal generators.
Connect the "Voltohmyst" to the r-t unit test point TPI Adjust the oscillator injection trimmer C8 for -3.5 volts or at maximum if -3.5 volts cannot be reached. This voltage should fall between - 2.5 and - 5.5 volts on all channels when
the alignment of all circuits is completed. the alignment of all circuits is completed.
Turn the sweep generator and signal generator back on
and recheck channel 6 response. Readjust L48, L50 and L53 if necessary.
Set the receiver channel selector switch to channel 8 and readjust C 2 for proper oscillator frequency. 227 mc .

Set the sweep generator and signal generator to channel 8 .
Readjust C9, C11, C15 and C18 for correct curve Readjust C9, Cl1, C15
requency and band width. hamn of the sweep and signal generators, switch back to it \(C 9\) was adjusted in the recheck of channel 8 response.
If the initial setting of oscillator injection trimmer \(\mathrm{C8}\) wat far oft, it may be necessary to adjust the oscillator frequency and response on channel 8. adjus a soral times betore on channel 6 and repeat the
proper setting is obtained.
Turn off the sweep generator and switch the receiver to channel 13.
Adjust the sicil
egrees clockwise from the Set the tine tuning control 30 degr
center of tis mechanical range. Adjust L46 10 obtain an audible beat. Slightly overshoot the adjustment of Li46 by tuming the slug a little more in the same
direction from the oriqinal setting, then reset the oscillator to direction remen the original seting, then reset the oscillator
proper frequency by adjusting C 2 to again obtain the beat.


\section*{ALIGNMENT PROCEDURE}

TUNER UHF ALIGNMENT. - To align the UHF inserts Turn oft the adapter switch, removing plate voltage from escillator.
Ground the AGC bias at the tuner terminal board using a Cond to insure that the bias will remain constanl. Connect the oscilloscope, through the preamplifier it needed
with oscilloscope used, to test point TPI . Connect the UHF sweep generator to the antenna terminals. Jse a 10 DB attenuator pad to assure proper alignment. Connect the UHF signal generator loosely to the antenna
Cerminals. erminals.
Set the channel selector to the desired position and the weep generator to sweep the frequency of the insert being
used. used.
Insert markers of the picture carrier and sound carrier for Adiust the UHF
Adjust the UnF antenna. link coupling and mixer adjustments
or a symmetrical curve, with maximum gain centered about the pass band.
The responses are shown in Figure 10. The curve shape
will usually vary from Figure 10 (a) to Figure 10 (c) going will usually vary from Figure 10 (a) to Figure 10 (c) going
higher in frequency, however any of these responses are higher in
acceptable.
Repeat the above steps for all UHF inserts used adjusting the appropriate antenno, link coupling and mixer slugs for a
symmetrical curve, with maximum gain, centered about the symmetrical
pass band.
Remove the oscilloscope and preamplitier if used, from test point TPI.
Remove the clip lead grounding the AGC bias on the tuner
erminal board. erminal board
Connect the potentiometer arm of one of the bias supplies ositive terminal to the tuner case. Adjust the bias potentiometer to produce the tuner case. Adjust the bits of bias, as measured by the Voltohmyst at the AGC terminal.
Connect the potentiometer arm of the second bias supply
the junction of R133 and C133B, and ground the positive 10 the junction of R133 and Cl33s, and ground the positive volts of i.1 bias as indicated on the "VoltOhmyst" at the juncon point
Connect the ossilloscope 10 pin 9 of VIIO. Use 3 to 5 volts
peak-topeak output on the oscilloscope. eak output on the oscilloscop
Turn the adapter switch on to apply plate voltage to the
oscillator. scillato
Turn the channel selector to the lowest UHF channel to be
used, and set the fine tuning control to the center of its range. Adjust the oscillator coie to proper frequency. To do this, shortest leads possible. Insert a 45.75 mc . marker from the shortest leads
VHF generator
Set the UHF sweep generator to sweep the desired channel. and observe the outpul on the oscilloscope. If the sweep generator is not sweeping the correct frequency range, it may be
necessary to readjust the sweep in order to place the 45.75 necessary to reajust the sweep in order to \(p\) p
marker on the response curve as in Figure 12.
Set the UHF marker gen. to the picture carrier of the
channel insert being adjusted and connect to test point TPI. Adjust the oscillctor core until the markers for 45.75 mc . and the picture carrier coincide on the sweep pattern on the scillosco
Adjust the mixer core for maximum gain with proper wave
shape. shape.
Connect the "VollOhmyst" to test point TPI, using 1.5 volt
Dcale.
Set oscillator injection adjustment to read .1 volts on the
VoliOhmyst." Voliohmyst.'
Repeat the above steps for all UHF inserts adjusting the
oscillator injection control only if the reading on the "Volt

Ohmyst" exceeds 3 volts. Adjust as necessary to read
volts or less at TP RATIO DETECTOR ALIGNMENT. - In order to obtain good hat is exceptionally free from FM modulation must be ployed. Set the signal generator at 4.5 mc . and connect it to the
second sound \(\mathrm{i}: \mathrm{f}\) grid. pin 1 of V102. Set the generator for \(30 \%\) second sound i.t grid. pi
400 cycle modulation.
As an alternate source of signnal, the RCA WR39B or WR39C
calibrator may be employed. II used, connect it to the grid of the 4 th pix \(i\)-f amplifier, pin 1 . Vlog. Set the frequency of the calibrator to 45.75 (pix carrier) and modulate with 4.5 me. crystal. Also turn on the internal AM audio modulation. The
4.5 mc . signal will be picked off at Tl 10 A and amplified through the sound i -f amplifier.
Connect the "VoltOhmyst" to the junction of R111 and C111. Connect the oscilloscope across the speaker voice coil and for maximum output
Tune the ratio detector primary. T102 top core for maximum the signal generator for minus 10 volts on the "VoltOhmyst" when finally peaked. This is approximately the operating level the ratio detector for average signal.
Connect the "VoltOhmyst" to the junction of R110 and C110. Adjust the Tl02 bottom core for zero d.c on the meter. Then,
turn the core to the nearest minimum AM output on the turn the cor
oscilloscope.
Repeat adjustments of T102 top for maximum DC and T102 Attom minimum output on adjustment with the 4.5 mc. input level adjusted to produce 10
volts d.c on the "VoltOhmyst" at the junction of R111 and Cll1. Connect the "VollOhmyst" to the junction of R110 and C110 and note the amount of d.c present. If this valtage exceeds
\(\pm 1.5\) volts, adjust R108 by turning it in until zero d-c is obained. Readjust the T102 bottom core lor minimum output on ore until the volitage at R110 and C110 is less than \(\pm 1.5\) volts when T102
oscilloscope.
Connect the "Vollohmyst" to the junction of R111 and C111 and repeak T102 top core for maximum d.c on the meter and
again reset the generator so as to have -10 volts on the meter.
Repear the adjustments in the above two paragraphs until 02 top core is set for maximum acc at the junction of Rill and C111 and the T102 bottom core is set for minimum indicaion on the oscilloscope

SOUND I-F ALIGNMENT.- - Connect the sweep generator to
he first sound i-f amplifier qrid, pin 1 of V101. Adjust the lirst sound i-f amplifier grid, pin 1 of V101. Adjust the 4.5 me .

Insert a 4.5 mc. marker signal from the sighal generator into
the first sound i - g grid. With the WR39B or WR39C calibrators he 4.5 mc. crystal signal may be obtained at the R-F out erminal by turning the variable osc. swith off, the calibrate
switch to 4.5 mc . and the volume control with mod. off.
Connect the oscilloscope in series with a 10.000 ohm resistor
to temmal a or Thor.
Adjus 101 top and boltom cores for maximum gain and pattern obtained should be similar to that shown in Figure 17.
The output level from the sweep should be set 10 produce
approximately 2.0 volt peak-to-peak at terminal \(A\) of TiOl when he final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the
specified values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.
Connect the oscilloscope to the junction of R110 and C110 and check the linearity of the response. The pattern obtained
hould be similar to that shown in Figure 18 .

\section*{ALIGNMENT PROCEDURE}

SOUND TAKE.OFF ALIGNMENT. - Connect the 4.5 mc . gen.
erator in series with a 1,000 ohm resistor to torminal \(1 . c\). , Short the fourth pix i.f grid to ground, pi
noise from masking the output indication.
As an alternate source of signal the RCA WR39B or WR39C calibrator may be used. In such a case. disregard the above A. B, and modulate 45.75 with 4.5 mc . crystal.

Connect the crystal diode probe of a "Voltohmyst" to the
plate of the video amplifier, pin 6 of v110. Adjust the core of Tilo for minimum output on the meter. Adjust the core of Tho for minimum oulput on the met
hemove the short from pin 1 V109 to ground, it used.
horizontal oscillator adjustment. - Normally the adjustment of the horizontal oscillator is not considered to be c
part of the alignment procedure, but since the oscillator wave part of the alignment procedure, but since the oscillator wave not be done conveniently in the field. The wavelopm adjust not be done convenienty in the notion and normally should not require readustment in the field. However, the wavelorm adjustmen
should be checked whenever the receiver is aligned or when should be checked whenever the receiver is aligned or whe
ever the horizontal oscillator operation is improper.
Horizontal Frequency Adjustment. - Tune in a station an sync the picture. It the picture cannot be synchronized with th
horizontal hold control R210, then adjust the T114 frequenc cone on the rear apron until the picture will synchronize. If the
picture still will not sync. turn the T114 wavelorm adjustment picture still will not sync. turn the \(T 114\) wavelorm adjustment
core (under the chassis) out of the coil several turns from its oricinal position and readjust the T 114 frequency core until th
picture is synchronized. icture is synchronized
Examine the width and linearity of the picture. If picture width or linearity is incorrect. adjust the horizontal drive con-
trol C C 1868 , the width control L109 and the linearity control LIII until the picture is correct.
Horizontal Oscillator Wavetorm Adiustment. - The horizontal oscililior wavelorm may be adjusted by either of two methods
The method oullined in paragraph A below may be employe The method oullined in paragraph A below may be employe
in the field when an oscilloscope is not available. The servic in the field when an ossilloscope is not available. The service
shop method oullined in paragraph B below requires the use
of an oscilloscope.
A.- Turn the horizontal hold contuol completely clockwise
Place adjustment tools on both cores of T114 and be prepared to maike simultaneous adjustments while watching the picture on the screen. First. turn the T114 trequency core (on the rea
apron) until the picture talls out of sync and one diagonal apron) until the picture falls out of sync and one diagona
black bar sloping down to the right appears on the screen Then, turn the wavelorm adjustment core (under the chassis into the coil while at the same time adjusting the irequenc
core so as to maintain one diagonal black bar on the screen core so as to maintain one diagonal black bar on the screen.
Continue this procedure until the oscillotor begins to motorboat. then turn the wavetorm adjustment core out until the
motorboating just stops. As a check turn the T114 trequency motorboating just stops. As a check, turn the T114 frequency
core until the picture is synchronized then reverse the direction of rotation of the core until the picture begins to tall out of sync with the diagonal bar sloping down to the right. Continue
to turn the frequency core in the same direction. Additional to turn the trequency core in the same direction. Additional
bass should not appear on the screen. Instead, the horizontal oscillator should begin to motorboat. . .etouch the adjustment of he T114 wavetor
dition is obtained.
B.- Connect the low capacity probe of an oscilloscope to
lerminal \(C\) of T114. Turn the horizontal hold control onequarte urn Irom the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Figure
22. Adjust the wavelorm adjustment core of T114 until the two peaks are at the same height. During this adjustment the pic-
ture must be kept in sync by readjusting the hold control if ture must
necessary.
This adjustment is very important ior correct operation of the
ccuit. If the broad peak of the wave on the oscilloscope wer than the sharp peak, the noise immunity becomes poore he stabilizing effect of the tuned circuit is reduced and drif of the oscillator becomes more serious. On the other hand. it
he broad peak is higher than the sharp peak, the oscillator
is overstabilized. the pullin range becomes inadequate and
is overstabilized. the pullin range becomes inadequate and
the broad peak can cause double triggering of the oscillator
when the hold control approaches when the hold control approaches the clockwise position

Horizontal Locking Range Adjustment. - Set the horizontal hold control to the full counterclockwise position. Momentarily remove the signal by switching off channel then back. The pic.
ture \(-i\) remain in sync. II so turn the T114 frequency core sure aremain and momentarily switch oft channel. Repeat until the picture falls out on synn wwh the diagonal lines sloping down
o the left. Slowly turn the horizontal hold control clockwise and o the left. Slowly turn the horizontal hold control clock wise and
note the least number of diagonal bars obtained just belore the picture pulls into sync.
If more than 3 bars are present just betore the picture pulls
into sync, adjust the horizontal locking range trimmer Clig6 into sync, adjust the horizontal locking range trimmer Clib6A
slighly clockwise. II less than 2 bars are present. adjust C186A slighty clockwise. II less than 2 bars are present, adjust \(C 186 \mathrm{~A}\)
slighly
counter-clockwise. Turn the horizontal hold control lighty counter-clockwise. Turn the horizontal hold conirol
oounter.clockwise, momentarily remove the signal and recheck
he number of bars present at the pull-in point. Repeat this the number of bars present at the pull.
procedure until 2 or 3 bars are present.
Turn the horizontal hold control to the maximum clockwise position. Adjust the T114 frequency core so that the diagonal part sloping down to the right appears on the screen and then
reverse the direction of adjustment so that bar just moves oft reverse the direction of adjustment so that bar jusi
the screen leaving the picture in synchronization. SENSITIVITY CHECK. - A comparative sensitivity check
can be made by operating the receiver on a weak signal from
a television station and comparing the picture and sound ob\(a\) television station and comparing the picture and sound ob-
tained to that obtained on other receivers under the same conditions.
This weak signal can be obtained by connecting the shop
antenna to the receiver through a ladder type attenuator pad. antenna to the receiver through a ladder type attenuator pad.
The number of stages in the pad depends upon the signal The number of stages in the pad depends upon the signal
strenglt available at the antenna. A suflicient number of stages should be inserted so that a somewhat less than normal
contrast picture is oblained when the picture control is at the contrast picture is oblained when the pieture control is at the
maximum clockwise position. Only carbon type resistors should maximum co constrict the pad.

RESPONSE CURVES. - The response curves shown on pages 14 and 15 and referred to throughout the alignment procedure
were taken from a production set. Although these curves are were taken from a production set. Altheugh
typical, some variations can be expected.
The response curves are shown in the classical manner of
presentation, that is with "response up" and low trequency presentation. that is with "response up" and low frequency to the left. The manner in which they wili be seen in a given test
setup will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted
and/or switched from left to right depending on the deflec. and/or switched from left to right depending on the deflec-
tion polarity of the oscilloscope and the phasing of the sweep tion polarit
generator.

NOTE ON TUNER RLIGNMENT. - Because of the Requency spectrum involved and the nature of the device, many of the
tuner leads and components are critical in some respects. Even the power supply leads form loops which couple to the tuned circuits, and if resonant at any of the irequencies involved in
the pertormance of the tuner, may cause serious departures the pertormance of the tunner, may cause serious departures
from the desired characteristics. In the design of the receive irom the desired characteristics. In the design of the receiver
these undesirable resonant loops have been shitted far enough
away in trequency to allow reasonable latiude in their com. away in frequency to allow reasonable latitude in their com
ponents and physical arrangement without being troublesome When the tuner is aligned in the receiver, no trouble from
resonant lops should be experienced. However, if the tuner is resonant loops should be experienced. However, it the tuner is
aligned in a jig separate from the receiver, attention should aligned in a jig separate from the receiver. attention should
be paid to insure that unwanted resonances do not exist which might present a faulty representation of tuner alignment. A resonant circuit exists between the KRK11B r.f tuner chassis
and the outer shield box, which couples into the antenna and and plate circuits. The trequency of this resonance depends on r.t plate circuits. The riequency of this resonance depends on
the structure of the shield box. This resonance is controlled by
using insulating washers ol proper thickness in the tont plate using insulating washers of proper thickness in the front plat to tuner chassis mounting. Obviously, it the tuner is removed
for service, the washers should be replaced in the correc lor
order.

\section*{VOLTAGE CHART}

The following measurements represent two sets of conditions. In the first condition, a 5000 microvolt test pattern signal was fed into the receive the picture synchronized and the AGC control properly adjusted. The second condition was oblained by removing the antenna leads and short the puiture senchronied and terminals. Voltages, shown are read with a type WV97A senior "Voltohmyst" between the indicated terminal and chassis grand and win the receever operails,
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { No. }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { Type }
\end{aligned}
\]} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operating Condition} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|l|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|l|}{E. Grid} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Plate } \\
\text { Plate } \\
\text { (ma.) }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\underset{\substack{\text { Screen } \\ \text { (ma.) }}}{\text { con }}
\]} & \multirow[t]{2}{*}{Notes on Measurements} \\
\hline & & & & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{array}{|l}
\hline \text { Pin } \\
\text { No. }
\end{array}
\] & Volts & \[
\begin{array}{|l|l}
\hline \text { Pin } \\
\text { No. }
\end{array}
\] & Volts & \[
\begin{array}{|c|}
\hline \text { Pin } \\
\text { No. }
\end{array}
\] & Volts & & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
vi \\
KRKIIB
\end{tabular}} & \multirow[t]{4}{*}{6x8} & \multirow[t]{2}{*}{Mixer} & \[
\begin{gathered}
5000 \mathrm{Mu} \text { Vignal } \\
\text { S. }
\end{gathered}
\] & 9 & 160 & 8 & 160 & 6 & 0 & 7 & \[
\begin{aligned}
& -2.410 \\
& -3.0
\end{aligned}
\] & - & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 9 & 145 & 8 & 145 & 6 & 0 & 7 & \[
\begin{aligned}
& -2.810 \\
& -3.5
\end{aligned}
\] & - & - & \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { R-F } \\
& \text { Oscillator }
\end{aligned}
\]} & \[
\begin{aligned}
& 5000 \mathrm{Mu} \text { V. } \\
& \text { Signal }
\end{aligned}
\] & 3 & 95 & - & - & 6 & 0 & 2 & \[
\begin{aligned}
& -3.810 \\
& -5.5
\end{aligned}
\] & - & - & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 3 & 90 & - & - & 6 & 0 & 2 & \[
\begin{array}{|l|}
\hline-3.0 \text { to } \\
-5.1 \\
\hline
\end{array}
\] & - & - & \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{V} 2 \\
& \mathrm{KRK} 1 \mathrm{~B}
\end{aligned}
\]} & \multirow[t]{4}{*}{6BQ7A} & \multirow[t]{2}{*}{\[
\stackrel{\text { R-F }}{\text { Amplifier }}
\]} & \[
\begin{aligned}
& 5000 \text { Mu. V. } \\
& \text { Signal }
\end{aligned}
\] & 6 & 170 & - & - & 8 & 0.1 & 7 & & - & - & \\
\hline & & & \[
\stackrel{\text { No }}{\text { Signal }}
\] & 6 & 133 & - & - & 8 & 1.1 & 7 & 0 & - & - & \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
R-F \\
Amplifier
\end{tabular}} & \[
\begin{gathered}
5000 \mathrm{Mu} \text { Signal }
\end{gathered}
\] & 1 & 270 & - & - & 3 & 170 & 2 & - & - & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 1 & 260 & - & - & 3 & 133 & 2 & - & - & - & \\
\hline \multirow[t]{2}{*}{V101} & \multirow[t]{2}{*}{6AU6} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 1st Sound } \\
& \text { I-F Amp. }
\end{aligned}
\]} & \[
\begin{gathered}
5000 \mathrm{Mu} \text { V V } \\
\text { Signal }
\end{gathered}
\] & 5 & 127 & 6 & 124 & 7 & 0.7 & 1 & -0.4 & 6.0 & 3.0 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 126 & 6 & 123 & 7 & 0.5 & 1 & \(-1.2\) & 5.0 & 3.0 & \\
\hline \multirow[t]{2}{*}{V102} & \multirow[t]{2}{*}{6AU6} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 2nd Sound } \\
& \text { I-F Fmp. }
\end{aligned}
\]} & \[
\underset{\substack{5000 \\ \text { Signal }}}{ }
\] & 5 & 132 & 6 & 60 & 7 & 0 & 1 & -10 & 2.8 & 1.2 & \\
\hline & & & \[
\xrightarrow[\text { Signal }]{\text { No }}
\] & 5 & 131 & 6 & 65 & 7 & 0 & 1 & -5 & 2.0 & 1.0 & \\
\hline \multirow[t]{2}{*}{V103} & \multirow[t]{2}{*}{6AL5} & \multirow[t]{2}{*}{Ratio Detector} & \[
\begin{gathered}
5000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & \[
\begin{aligned}
& 2 \\
& 7
\end{aligned}
\] & \[
\begin{array}{r}
-9.2 \\
1.0
\end{array}
\] & - & - & \[
\begin{array}{|l}
5 \\
1
\end{array}
\] & \[
\begin{aligned}
& 1.0 \\
& 9.2
\end{aligned}
\] & - & - & - & - & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 7 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
-8.0 \\
0
\end{gathered}
\] & - & - & \[
\begin{array}{|l|}
\hline 5 \\
\hline 1 \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
0 \\
8.0
\end{array}
\] & - & - & - & - & \\
\hline \multirow[t]{2}{*}{V104} & \multirow[t]{2}{*}{6Av6} & \multirow[t]{2}{*}{1st Audio
Amplifier} & \[
\underset{\text { Signal }}{5000 \mathrm{Mu}} .
\] & 7 & 90 & - & - & 2 & 0 & 1 & -0.7 & 0.65 & - & \multirow[t]{2}{*}{At min volume} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 7 & 88 & - & - & 2 & 0 & 1 & -0.7 & 0.65 & - & \\
\hline \multirow[t]{2}{*}{V104} & \multirow[t]{2}{*}{6Av6} & \multirow[t]{2}{*}{R-F Bias
Clamp} & \[
\begin{gathered}
5000 \mathrm{Mu} \mathrm{~V} \text { V. } \\
\text { Signal }
\end{gathered}
\] & 5.6 & \(-3.0\) & - & - & 2 & 0 & - & - & - & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5-6 & 0.3 & - & - & 2 & 0 & - & - & - & -- & \\
\hline \multirow[t]{2}{*}{v105} & \multirow[t]{2}{*}{6AQ5} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Audio } \\
& \text { Output }
\end{aligned}
\]} & \[
\underset{\text { Signal }}{5000 \mathrm{Mu.} \text { V. }}
\] & 5 & 327 & 6 & 342 & 2 & 146 & 7 & 136 & 28 & 2.0 & \multirow[t]{2}{*}{At \(\min\) volume} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 323 & 6 & 338 & 2 & 143 & 7 & 133 & 28 & 2.0 & \\
\hline \multirow[t]{2}{*}{V106} & \multirow[t]{2}{*}{6AU6} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 1st Pix. I-F } \\
& \text { Amplifier }
\end{aligned}
\]} & \[
\begin{gathered}
5000 \mathrm{Mu} \mathrm{~V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 160 & 6 & 215 & 7 & 0.17 & 1 & -6.6 & 1.4 & 4 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 85 & 6 & 115 & 7 & 0.98 & 1 & 0 & 6.5 & 3.3 & \\
\hline \multirow[t]{2}{*}{V107} & \multirow[t]{2}{*}{6Cb6} & \multirow[t]{2}{*}{\begin{tabular}{l}
2nd Pix. I-F \\
Amplifier
\end{tabular}} & \[
\begin{gathered}
5000 \mathrm{Mu} \text { V. } \\
\text { Signal }
\end{gathered}
\] & 5 & 227 & 6 & 225 & 2 & 0.1 & 1 & -6.6 & 1.5 & 25 & \\
\hline & & & \[
\xrightarrow[\text { No }]{\text { Signal }}
\] & 5 & 209 & 6 & 115 & 2 & 0.8 & 1 & 0 & 10.9 & 33 & \\
\hline \multirow[t]{2}{*}{V108} & \multirow[t]{2}{*}{6CB6} & \multirow[t]{2}{*}{\begin{tabular}{l}
3rd Pix. I-F \\
Amplifier
\end{tabular}} & \[
\begin{gathered}
5000 \mathrm{Mu} \text { Signal }
\end{gathered}
\] & 5 & 138 & 6 & 132 & 2 & 1.02 & 1 & 0 & 11.4 & 3.5 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 134 & 6 & 126 & 2 & . 98 & 1 & 0 & 10.4 & 3.1 & \\
\hline \multirow[t]{2}{*}{V109} & \multirow[t]{2}{*}{6Cb6} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 4th Pix. I-F } \\
& \text { Amplifier }
\end{aligned}
\]} & 5000 Mu . V. Signal & 5 & 168 & 6 & 165 & 2 & 2.32 & 1 & 0 & 8.85 & 2.2 & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 5 & 156 & 6 & 161 & 2 & 2.07 & 1 & 0 & 8.6 & 2.1 & \\
\hline
\end{tabular}


© John F. Rider


© John F. Rider

\section*{KCS81 CIRCUIT SCHEMATIC DIAGRAM (KCS81B WITH KRK12 TUNER)}


\section*{ELECTRICAL AND MECHANICAL SPECIFICATIONS}

\section*{INDEX}

\section*{PAGE}

ALIGNMENT INSTRUCTIONS . . . 71 INSTALLATION DATA....... 69
PARTS LIST . . . . . . . . . . . 78
PRODUCTION CHANGES. . . . . . 77
RESISTANCE MEASUREMENTS.. 77
SCHEMATIC SPECIFICATIONS 77

TRIMMER LOGATIONS 76
VOLTAGE MEASUREMENTS . . . 74,75






Models 21-T-323, 21.T-323U Maple, "Lexingion" Cherry


Models \(21 . T \cdot \mathbf{T} \cdot \mathbf{3 2 4 , 2 1 . 2 1 . T - 3 2 4 U}\) Mabogany, "Walust
Model 21 T. 303 GENERAL DESCRIPTION
 21-T-322. 21-T-323 and \(21-\mathrm{T}-324\) are identical except for cabinets and speakers. These receivers feature full twelve channel VHF cov
 inets and speakers. These receivers feature full twelve channel VHF coverage plus any four UHF channels.
ELECTRICAL AND MECHANICAL SPECIFICATI
ELECTRICAL AND MECHANICAL SPECIFICATIONS

\section*{PICTURE SZZE .... 227 square inches
TELEVISION R-F FREQUENCY RANGE
21-T-303, \(313,314,315,316,322,323,324\)}
 \(21 \cdot T \cdot 303 \mathrm{U}, 313 \mathrm{U}, 314 \mathrm{U}, 315 \mathrm{U}, 316 \mathrm{U}, 322 \mathrm{UC}, 323 \mathrm{U}, 324 \mathrm{U}\)
Any desired combination of 16 VF Ac. to 88 mc., 174 me. to 216 mc ., 470 mc . to 890 mc .
 RCA TUBE COMPLEMENT
Tube Usod Chassis KCS82 using KRK11B Function (1) RCA 6BQ7A


All Models \({ }^{\text {Ist Picture I-F Amplifier }}\)
Tube Used
(3) RCA 6 CB6
(4) RCA 12 AU 7
(5) RCA 6 CLL 6
(7) RCA 6 AUG
(8) RCCA GALS
(9) RCA GAVG
(10) RCA \(\mathbf{\text { ofbGT}}\)
(11) RCA 12AU7
(12) RCA 12AU7
(14) RCA GK6GT
(14) RCA 6SN7GT
(15) RCA GBQ6GT
(15) RCA \(6 B Q 6 G T\)
(16) RCA \(6 W 4 G T\)
(17) RCA 183-GT/801
18) RCA 21 AP
(20) RCA 5 Y 3 GT
\(\ldots \ldots \ldots .3\). \(\begin{gathered}\text { Function Picture } 1-\mathrm{F} \text { Amplifie } \\ \text { Picture }\end{gathered}\)
Picture 2nd Detector and Vert. Sync. Sep.
power supply rating
KCS82 chassis
KCS82B chassis

115 volts, 60 cycles, 215 watts

\section*{heceiver antenna input impedance} CCS82 chassis (KRK11B)
Choice: 300 ohms balanced or 72 ohms unbalanced.
KCS82B chassis (KRK12)
\(\mathrm{VHF}-\) Choice: 300 ohms balanced or 72 ohms unbalanced

\section*{LOUDSPEAKERS}

Models 21-T.303, 21-T.303U (971636-1) 5" PM. 3.2 ohms
Models 21-T-313, 21-T-313U ( \(971490-3\) )
 316U, 21-T-322, 11T T22U , \(91-\mathrm{T}-315\), 21-T-315U. 21-T-316, \(21-\mathrm{T}\) Models 21-T.323. 21-T.323U, 21-T-324, 21-T-324U ( \(92569-12\) ) \(12^{\prime \prime}\) aUDIO POWER OUTPUT RATING VIDEO RESPONSE SWEEP DEFLECTION To 3.5 mc . 3.5 mc.
Magnetic

\section*{INSTALLATION INSTRUCTIONS}

UNPRCKING.-These receivers are shipped complete in
cardboard cartons. The kinescope is shipped in place in the cardboard
receiver.

Take the receiver out of the carton and remove all packin materia.
Make sure that all tubes are in place and are firmly seated
in their sockets. in heir sockets.
Check to see that the kinescope high voltage lead clip is Plug a power cord into the 115 volt a-c power source and
into the receiver interlock receptacle. Turn the receiver pown switch to the "on" position, the brightness control fully clock wise, and the picture control counter-clockwise.
ION TRAP MAGNET ADJUSTMENT.-Set the ion trap mag net approximately in the position shown in Figure 1 . Starting
from this position immediately adjust the magnet by moving from this position immediately adjust the magnet by moving
it for ward or backward at the same time rotating it slightly it forward or backward at the same time rotating it slighty
around the neck o the kinescope for the brightest raster on
the screen. Reduce the brightness control setting until the the screen. Reduce the brighhtness control seetting untill the
raster is slightly above average brilliance. Turn the focus raster is slightly above average brilliance. Turn the focus
control (shown in Figure 1) untilit the line structure of the
raster is clearly visible. Readjust the ion raster is clearly visible. Readjust the ion trap magnet for
maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maxi
mum clockwise position with which good line tocus can be mum clock
maintained.


Figure 1-Yoke and Focus Magnet Adjustments
DEFLECTION YOKE ADJUSTMENT.-If the lines of the rasier are not horizontal or squared with the picture mask, rothe yoke adjustment wing screw
PICTURE ADJUSTMENTS.-It will now be necessary to obConnoct the antenna transmiseion line io properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn R152 on the rear apro (see Figure 2) counter-clockwise un
mally and the picture can be synced.
CHCE OF HOAZONTAL Osciuto Turn the horizontal hold clockwise position. The picture should the extreme counter sync. Momentarily remove the signal by switching orfizonta nel then back. Normally the picture will be out of sync. Turn bars will be gradually reduced and when only 2 or 3 bark sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the con trol. Pull.in should occur before the control has been turred
120 degrees from the extreme counterclockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme lockwise position, the picture should remain in sync, and


Figure 2-Rear Chassis Adjustments

If the receiver passes the above checks and the picture is "hip "A horizotal Oecillior" a properly aligned. 'Focus Magnet Adjustment."
ALIGNMENT OF HORIZONTAL OSCLLLATOR.-II in the above check the receiver failed to hold sync with the hold onid sync the extreme counter-clockwise position or failed to rom the pull-in point, it will be necessary to make the control gajustments.
Horizontal Frequency Adjustment-Turn the horizontal hold entrol to the extreme clockwise position. Tune in a television station and adjust the Til4 horizontal frequency adjustment and the horizontal blanking appears as a vertical or of syiagnc back bar in the rastor. Then turn the T114 core until the bar -
Horizontal Locking Range Adjuatment.-Set the horizontal hold control to the full counter-clockwise position. Momen-
arily remove the signal by switching off channel then back. The picture may remain in switching off channel then back.
core slightly and momentarily switch off channel. T114 rear
( John F. Rider

© John F. Rider


Connect a 300 ohm \(1 / 2\) watt composition resi.
ground, keeping the leads as short as possible.
stor from L58 to Connect an oscilloscope low capacity crystal probe from
L58 to ground. The sensitivity of the oscilloscope should be L58 to ground. The sensitivity of the oscilloscope should be
approximately 0.03 volts per inch. Set the oscilloscope gain to maximum.
Connect the VHF sweep generator to the matching unit
antenna input terminals. In order to prevent coupling react antenna input terminals. In order to prevent coupling react
ance from the sweep generator into the matching unit, it is ance from the sweep generator into the matching unit, it is
advisable to employ a resistance pad at the matching uni
teminals Figure advisable to employ a resistance pad at the matching uni
terminals. Figure 00 shows three different resistance pads for
use with sweep generators with 50 ohm co-ax output, 72 ohm use with sweep generators with 50 ohm co-ax output, 72 ohm
co-ax output or 300 ohm balanced output. Choose the pad to match the output impedance of the particular sweep employed. Connect the signal generator loosely to the matching unit
antenna terminals. terminal
Set the sweep generator to sweep from 45 mc . 1054 mc .
With RCA Type WR59A plished by returning channel number 1 to cover this range With WRS9B sweep generators this may be accomplished by
retuning channel number 2 to cover the range. In making retuning chanmenumber 2 to cover he range. In making core too far clockwise so that it becomes lost beyond the core retaining spring.
Adjust \(L 61\) and \(L 62\)
Adjust L61 and L62 to obtain the response shown in figure 15. L61 is most effective in locating the position of the shoulde maximum amplitude at 53 mm . and above consistent with the
specified shape of the response curve. The adjustments in the speciiied shape of the response curve. The adjustments in the
mathing unit interact to some extent. Repeat the above pro cedure until no further adjustments are necessary.
Remove the 300 ohm resistor and crystal. probe connections.
Restore the connection between L58 and S5. Replace V106.
picture l-f transformer adjustments. -
Models 21-T-303 to 21-T-324 incl.
Connect the i.f signal generator across the link circuit on terminals A and B of T104.
Connect the "Voitohmyst"
Connect the "VoitOhmyst" to the junction of R147 and R148 Obtain two 7.5 volt batteries capable of withstanding appre-
ciable current drain and connect the ends of a 1.000 ohm potentiometer across each. Connect the battery positive terminal of one to the chassis and the potentiometer arm to the junction
of R147 and R148. The second battery will be used later. Set the bias to produe approximately -5.0 volt of bias a Set the bias to produce approximately -5.0 volt of bias at
the junction of R147 and R144.
Connect the "Voltohmyst" to junction of R138 and L105 and Connect the "VoltOhmyst" to junction of R138 and L105 and
to ground. Set the VHF signal generator to each of the following fre quencies and peak the speciiied adjustment for maximum
indication on the "VoitOhmyst". During alignment, reduce the input signal if necessary in order to produce 3.0 volts of d-c R147 and R148.


Set the VHF signal generator to the following frequency and
adjust the picture if trap for minimum d-c output at R138, L105, adjust the picture if trap for minimum d-c output at Ri38, L105
Use sufficient signal input to produce 3.0 volts of \(d-c\) on the meter when the adjustrent is made.
47.25 mc . .T104 top core
Models 21-T-303U to 21-T-324U incl.
Connect the "VoltOhmyst" to the junction of R147 and R148. Turn the AGC control fully clockwise.
Obtain a 7.5 volt battery capable of
Obtain a 7.5 volt battery capable of withstanding appre
ciable current drain and connect the ends of a 1,000 ohm potentiometer across it Connect the battery positive termina
to chassis and the potentioneter arm to the junction R147 to chassis and the potentiometer arm to the junction R147 and
R148. Adjust the potentiometer for - 5.0 volts indication on the "VoltOhmyst".
Connect the "VoltOhmyst" to the junction of R138 and L105
and to ground. and to ground.
Connect the output of the signal generator to the front ter
minal of the crystal mixer in series with a 1500 mmf ceramic minal of
capacitor.

Set the VHF generator to each of the following frequencies and with a thin fiber screwdriver tune the specified adjustment
for maximum indication on the "Voltohmyst". In each in. or maximum indication on the "Voltohmyst". In each in-
stance the generator should be checked against a crystal cali. stance the generator should be checked against a
During alignment, reduce the input signal if necessary in
order to produce 3.0 volts of d-c at R138 and L105 with -5.0 order to produce 3.0 volts of \(\mathrm{d}-\mathrm{c}\) at \(\mathrm{R138}\) and
volts of i.f bias at the junction of R147 and R148.
44.5 mc.
45.5 mc.
43.0 mc.

T108
T107
T106
Set the signal generator to the following frequency and
adjust the picture i-f trap for minimum d-c output at junction of adiust the picture if trap for minimum d-c output at function of
Rj38 and Lio5. Use sufficient signal input to produce 3.0 volts R138 and L105. Use sufficient signal input to produce 3.0
of \(d-c\) on the meter when adjustment is made.
47.25 mc

T104 top core
SWEEP ALIGNMENT OF PICTURE I-F.-
Models 21-T-303 to 21-T-324 incl.
To align T1 and T104, connec: the sweep generator to the
mixer grid test point TP2. In series with a 1500 mmf. ceramic capacitor use the shortest leads possible, with not more than one inch of unshielded lead at the end of the sweep ca.
Connect the sweep ground lead to the rif unit outer shield.
Set the channel selector switch to channel 4.
Clip 330 ohm resistors across terminals \(A\) and B of T107
and T108. and T108.
Preset
Cl1
to minimum capacity.
Adjust the bias box potentiometer to obtain -5.0 volts of bias as measured by a "Voltonmyst "a the junction of R147
and R148. Set the AGC control fully clockwise. Connect a 180 ohm composition resistor from pin 5 of V106 to terminal A of T106. Gonnect.
to
pin
V 106 and to ground.
Couple the signal generator loosely to the diode probe in
order to obtain markers. order to obtain markers.
Adjust Tl ( top ) and T 104 (bottom) for maximum gain and Set the sweep output to give 0.3 volt peak-to-peak on the oscilloscope when making the final touch on the above adjust-
Adjust Cllig until 42.5 mc . is at \(70 \%\) response. with respect
to the low frequency shoulder of the curve as shown in to the low frequency shoulder of the curve as shown in
Figure 19 . Disconnect the diode probe, the 180 ohm and two 330 ohm esistors.
Leave the sweep generator connected to the mixer grid test point TP2 with the shortest leads possible.
Adjust the output of the sweep generator to obtain 3.0 volts Adjust the output of the sweep generator to obtain 3.0 volts Couple the signal generator loosely to the grid of the first
pix \(\mathrm{i}-\mathrm{f}\) amplifier. Adjust the output of the signal generator to pix i.f amplifier. Adjust the output of the sign
produce small markers on the response curve.
Retouch T106, T107 and T108 to obtain the response shown Retouch T1,
in Figure 20,

Models 21-T-303U to 21-T-324U incl.
To align the crystal mixer circuit and T2 and T104 con-
nect the VHF sweep generator to the front terminal of the nect the VHF sweep generator to the front terminal of the itor. Use the shortest leads possible, grounding the sweep generator to the tuner case.
Clip
and T 108 . and T IOB.
Set the channel selector to channel S.
Connect a 180 ohm composition resistor from pin 5 of V106
to terminal \(A\) of Tho6. Connect the ossilloscope diode probe to to terminal A A T T106. Comnect the oscilloscope diode probe to
pin 5 of \(V 106\) and to ground. pin 5 of
Couple the signal generator loosely to the diode probe in order to obtain markers.
The shunt trimmer C119 across terminals A and B of T104 The shunt trimmer C119 across terminals A and B of T 104 the shunt trimmer to minimum capacity. Adjust T2 (top) and
T104 (bottom) for maximum gain of 43.5 mc . and with 45.75 mc . at \(70 \%\) of maximum response

Adjust Tl for maximum gain. Readjust T 2 and T 104 if neces. sary to obtain proper wave shape, see Figure 11 .

104 if neces. Disconnect the diode probe, the 180 ohm and the two 330 hm resistors.
Adjust the bias as measured by a "Voltohmyst" at the junction of R147 and R148.
Leave the sweep generator connected to the front terminal
of the \(1 N 82\) crystal holder with the shortest leads possible and of the 1 N82 crystal holder with the shortest leads possible and
with not more than one inch of unshielded lead at the end
of the sweep cable. If these precautions are not observed the of the sweep cable. If these precautions are not observed, the eceiver may be
nay be unreliable.
Adjust the output of the sweep generator to obtain 3.0 to Adjust the output of the sweep gene
S. volts peak.to-peak on the oscilloscope. Couple the signal generator loosely to the grid of the first pix i.f amplifier. Adjust the output of the signal generator to produce small markers on the response curve.
Retouch T106, T107 and T108 to obtain the response shown in Figure 12.
Remove the oscilloscope, sweep and signal generator con-
nections. Remove the bias box employed to provide bias for alignment.

\section*{RREIIB TUNER ALIGNMENT}

Models 21-T-303 to 21-T-324 incl.
An r.f unit which is operative and requires only touch up
adjustments, requires no presetting of adjustments. For such units, skip the remainder of this paragraph. For units which are completely out of adjustment, preset all adjustments to the approximate center of their range with the following excep-
tions: Set C18 so that the screw head is approximately threetions: Set \(\mathrm{Cl8}\) so that the screw head is approximately three
eighths of an inch above chassis. Set \(\mathrm{Cl1}\) near maximum capacity (one-quarter turn from tight). Do not change any of the adjustments in the antenna matching uni
Disconnect the link from terminals "A" and "B" of T104 and
eerminate the link with a 39 ohm composition resistor. The rif unit is aligned with zero AGC bias. To insure that the
bias will remain constant take a clip lead and short circuit
the rit unit power terminal board terminal 3 to qround. the \(\mathrm{r}-\mathrm{t}\) unit power terminal board terminal 3 to ground.
Connect the oscilloscope to the lest point TP1 on top of the
rf unit. Set the oscilloscope gain to maximum.
Turn the receiver channel selector switch to channel 2.
Connect the output of the VHF signal generator to the grid of the r.f thelilitien, V2. To do this. remove the tube trom the socket and fashion a clip by twisting one end of a small piece
of wire around pin number 7 . Replace the tube in the socket of wire around pin number 7. Replace the tube in the socket
leaving the end of the wire protruding from under the tube. leaving the end of the wire protruding from under the tube.
Conect the signal generator to this wire through a \(1,500 \mathrm{mmf}\) capacitor.
Tune the signal generator to 43.5 mc . and modulate it \(30 \%\)
with a 400 cycle sine wave. Adjust the signal generator for maximum output.
Adjust L65 on top of the r-f unit for minimum 400 cycle
indication on the oscilloscope. If necessary this adjustment indication on the oscilloscope. If necessary, this adjustment can be retouched in the field to provide additional rejection
to one specific frequency in the i.f band pass. However, in such cases. care should be taken not to adjust it so as to reduce sensitivity on channel 2 .
Remove the wire clip from pin 7 of V 2 and replace the tube
and tube shield. Set the shann.
Turn the fine tuning control 30 degrees clockwise from the center of its mechanical range
adjusting the oscillator frequency
Adjust C2 for proper oscillator frequency 227 mc . This may Adjust C2 for proper oscillator frequency, 227 mc. This may
be done in several ways. The easiest way and the way which will be recommended in this procedure will be to une the signal generator as a heterodyne frequency meter and bea
the oscillator against the signal generator. To do this, tune the the osciliator against the signal generator. To do this, tune the
signal generator to 227 mc . with crystal accuracy. Insert one signal generator to 227 mc. with crystal accuracy. Insert one
end of a piece of insulated wire into the r- unit throug the
hole provided for the adjustment for Cll. Be careful that the end of a piece of insulated wire into the r-f unit through the
hole provided for the adjustment for Cli. Be careful that the
wire does not touch any of the tuned circuits as it may cause wire does not touch any of the tuned circuits as it may cause
the frequency of the r-f unit ocsillator to shift. Connect the the frequency of the r -f unit oscillator to shift. Connect the
other end of the wire to the " \(\mathrm{r}-\mathrm{in}\) in terminal of the signal

\section*{enerator. Adjust C2 to obtain an audio beat with the signal} enerator
Note.-If on some units, it is not possible to reach the prit annel 8 oscillator frequency by adjustment of \(C 2\) switch to channel 13 and adjust L46 to obtain proper channel 13 oscil. lator frequency as indicated in the table on page 11. Then,
switch to channel 12 and adust 11 to obtain proper chan switch to channel 12 and adjust Lll to obtain proper chan-
nel 12 oscillator frequency. Continue down to channel 8 nel 12 oscillator frequency. Conilinue down to channel \({ }^{2}\) requency on each channel. Then again on channel 8, adjust 2 to obtain proper channel 8 oscillator frequency. Switch
back to channel 13 and adjust L46 and back to chaninel 8 back to channe
and adjust \(C 2\).
Set the Tl core for maximum inductance (core turned counter lockwise).
Connect the sweep generator through a suitable attenuator
as shown in Figure 14 to the input terminals of the antenna as shown in
matching unit.
Connect the signal generator loosely to the antenna terminals.
Set the sweep generator to cover channel 8 .
Set the oscilloscope to maximum gain and use the minimum oscope. Excessive input can change oscillator injection durig alignment and produce consequent misalignment even hough the response as seen on the oscilloscope may look
Insert markers of channel 8 picture carrier and sound carrier,
81.25 mc. and 185.75 me. Adjust C9, C11. C15 and C18 for approximately correct curve
shape, frequency, and band width as shown in Figure 16 .
The correct adjustment of C18 is indicated by maximum
mplitude of the curve midway between the markers. C15 unes the r-f amplifier plate circuil and affects the frequency of the pass band most noticeably. C9 tunes the mixer grid
circuit and affects the tilt of the curve most noticeably (assum. circuit and affects the tilt of the curve most noticeably (assum-
ing that C 18 has been properly adjusted). C11 is the coupling ing that C18 has been properly adjusted). C11 is the coupling
adjustment and hence primarily affects the response band width.
Set the receiver channel switch to channel 6 .
Adjust the signal generator to the channel 6 oscillator fre-
quency 129 mc . Tuency 129 mc .
Turn the fine tuning control 30 degrees clockwise from the
enter of its mechanical range. Adjust \(L 5\) for an audible beat with the signal generator as Adjust
Set the swoep generator to channel 6 .
From the signal generator, insert channel 6 sound and pic-
ture carrier markers, 83.25 mc . and 8.7 mc .

Adjust L48, L50 and L53 for proper response as shown in L50 tunes the r-f amplifier plate circuit and primarily afects the frequency of the pass band. L53 tunes the r-f amplifier
grid and is adjusted to give maximum amplitude of the curve between the markers. L48 affects the tilt of the curve but not quite the same as C9 adjusiment. When the circuits proper setting, the high frequency (sound carrier) end of the proper setting, the high frequency (sound carrier end of the
curve appears to remain nearly fixed in amplitude while the picture carrier end tilts above or below this point.
Turn off the sweep and signal generator
Connect the "Voltohmyst" to the r-f unit test point TPI. Adjust the oscillator injection trimmer C8 for -3.5 volts or at maximum if -3.5 volts cannot be reached. This voltage
should fall between -2.5 and -5.5 volte on all channels when the alignment of all circuits is completed.
Turn the sweep generator and signal generator back on
nd recheck channel 6 response. Readjust L48, L50 and L53 and recheck
Set the receiver channel selector switch to channel 8 and Sel the receiver channel selecior swilch to chat
eadjust C 2 for proper oscillator frequency, 227 mc . Set the sweep generator and signal generator to channel 8 . Readjust C9, C11, C15 and C18 for correct curve shape,
requency and band width.
Turn off the sweep and

Turn off the sweep and signal generators, switch back to
channel 6 and chock the oscillator injection voltage of TPI
if C9 was adjusted in the recheck of channel 8 response.

If the initial setting of oscillator injection trimmer C8 was far oft, it may be necessary to adjust the oscillator frequency
and response on channel 8 , adjust the oscillator injection on channel 6 and repeat the procedure several times before the proper setting is obtained.
Turn off the sweep generator and switch the receiver to
channel 13 . Channel
Adjust the
\[
\begin{aligned}
& \text { quancy } 27 \mathrm{mc} \text {. } \\
& \text { Sel the fine. }
\end{aligned}
\]
me.
ator to the channel 13 oscillator fre-
Set the fine tuning control 30 degres clockwise from the Adjust L46 to obtain an audible beat. Slightly oversho the adjustment of L46 by turning the slug a little more in the same direction from the original setting, then reset the oscil
lator to proper frequency by adjusting C2 to again obtain lator to proper frequency by adjusting C2 to again obtai
the beat. Check the response of channels 7 through 13 by switching
the receiver channel switch. sweap the receiver channel switch, sweep generator and marke and oscillator injection obtained. See Figure 16 for typical response curves. It should be found that all these channels
have the proper shaped response with the markers above have the prope
\(80 \%\) reaponse.
If the makkers do not fall within this requirement, switch to channel 8 and readjust C9. C11. C15 and C18 as necessary. Turn off the sweep generator and check the channel
oscillator frequency. If C2 has to be readjusted for channel 8, the principle of overshooting the adjustment and then correct ing by adjusting L46 should be followed in order to establish the L/C ratio for the desired oscillator tracking.
just 15 for correct oscillator frequency, 129 mc. Tust
Turn the sweep oscillator irequency. 129 me.
the response curve. the response curpe. In necessary readjust L48, L.50 and LLLs.
Switch the receiver. the sweep and signal generators Switch the receiver, the sweep and signal qenerators to
channel 2 and adjust \(T\) clockwise to a point where there is
no change in the channel 2 response as Tl is turned. no change in the channel 2 response as \(T \mathrm{Tl}\) is whrned.
Swith the receiver through channel 6 don
Switch the roceiver through channel 6 down through chan
nel 2 and check for normal response curve shapes and oscil. lator injection voltage.
If excessive till in the same direction occurs on channels 2
3 and 4 adjust Cl 3 and 4, adjust Cl8 on channel 2 to overshoot the correction
of this till, then switch to channel 6 and adjust L53 for maxi of this tilt then switch to channel 6 and adjust 153 for maxi-
mum amplitude of curve between markers. This adjustmen should produce "flat " response on the low channels if the other
adjustments especially L48 are correct adjustments especially L48 are correct.
Likewise check channels 7 through 13 , stopping on 13 for the next step.
The next step.
With the receiver on channel 13, check the receiver oscil-
lator frequency. Correct by adjustment of 2 . lator irequency. Correct by adjustment of C2 if necessary.
Adjust the oscillator to frequency on all channels by switc ing the receiver and the frequency standard to each channe and adjusting the appropriate oscillator trimmer to obtain the
audible beat. It should be possible to adjust the audible beat. It should be possible to adjust the oscillator to
the correct frequency on all channels with the fine tuning the correct rrequency on all channels with the fine tuning
control in the middle third of its range. When employing WR39 calibrators to adjust the receiver. oscillator. tune the calibrator to one-half the receiver oscillator frequency on
channels 4,5 and 6 and to one-fourth the receiver oscillator channels 4,5 and 6 and to one-fourth
frequency on channels 11 . 12 and 13 .

\section*{KRK12 TUNER ALIGNMENT}

Models 21-T-303U to 21-T-324U incl.
TUNER VHF ALIGNMENT.--Remove the 6 S4 voltage control
tube from its socket and insert the adaper. Insert 654 in the tube from its
adapter. Connect the 0.50 milliampere meter to the adapter socket leads and turn the adapter switch on
Remove the tuner cover shield.

Remove the tuner cover shield.
Rotate the channel selector to a point midway between
channels, disengaging the insert contacts, and observe the non-oscillating plate current. Some tubes may oscillate eve with the tuned circuils disengaged. To be sure the oscillato is in a non-oscillatory state, short circuit the spring contact
12 and 13 . the two contacts nearest the tuner front, with finger.
(NOTE: The contacts are at zero dec potential.) Should the plate current rise, keep finger on the contacts while adjusting
the oscillator plate current. Adjust R6, oscillator voltage co the oscillator plate current. Adjust R6, oscillator
trol, for a 28 milliampere reading on the meter.

Replace the tuner cover shield.
Connect the VHF sweep generator to the antenna terminals. Connect the VHF signal generator loosely to the antenna terminals.
Connect the oscilloscope, through the preamplifier if needed
with oscilloscope used to with oscilloscope used, to test point TPl.
Ground the AGC bias at the tuner terminal board using a
clip lead to insure that the bias will remain constant.
Turn off the adapter switch, removing plate voltage from
the oscillator. This is required because of RF.IF interaction when a crystal is used as a mixer
Set the channel selector and the sweep generator to
channel 2.
Insert markers of channel 2 picture carrier and sound car-
rier, 55.25 mc and 59.75 mc . Adjust antenna T6, r-f amplifier plate L29 and mixer L30 adjustments for a symmetrical curve with maximum gain a
the center of the pass band. the center of the pass band. The curves will have a deep
valley because of no crystal loading and nonlinear detector characteristics. The limits for the \(100 \%\) response points are shown in Figure 9 . It the bandwidth is out of tolerance, it can usually be corrected by redressing the coupling capacito
of the double tuned circuit, C 40 on insert A. Maximum bandwidth occurs when the capacitor is centered in the inser chamber.
Repeat the above steps for all VHF channels adjusting the
appropriate antenna, \(r\) f. amplifier plate and appropriate antenna, r-f amplifier plate and mixer slugs for pass band.
Turn off the sweep generator.
Remove the oscilloscope and preamplifier if used, from test
point \(T P 1\)
Turn the AGC control fully clockwise
Remove the clip lead grounding the AGC bias on the tuner board.
Connect the potentiometer arm of one of the bias supplies
to the AGC terminal on the tuner and ground the battery positive terminal to the tuner case. Adjust the bias potentiometor to produce -3.5 volts of bias, as measured by the VoliOhmyst" at the AGC terminal on the tuner.
Connect the potentiometer arm of the second bias supply
to the junction R147 and R148, and ground the positive batto the junction R147 and R148, and ground the positive bat
tery terminal. Adjust the bias potentiometer to produce -5 tion point.
Connect the oscilloscope to the junction of R138 and L105
Use 3 to 5 volts peak-to-peak output se 3 to 5 volts peak-to-peak output on the oscilloscope. Turn the
oscillator.
Turn the channel selector to channel 13 .
Set the fine tuning control to the center of its range.
Adjust the oscillator slug L22 to proper frequency, 257 mc . This may be done in several ways. The easiest way and the
way which will be recommended in this procedure will be to use the signal generator as a heterodyne frequency meter
and beat the oscillator against the signal qenerator. To do and beat the oscillator against the signal generator. To do
this, tune the signal generator to 257 mc. with crysal accuracy. Insert one end of a piece of insulated wire into the tuner through either of the two holes next to the oscillator
tube on the righ front top corner of the tuner. Be careful tube on the right front top corner of the tuner. Be careful
that the wire does not touch any of the tuned circuits as it may cause the frequency of the oscillator to shift. Connec may cause the frequency of the oscillator to shift. Connect
the other end of the wire to the "rif in" terminal of the signal
generator. Adjust L22 oscillator slug to obtain an audio beat generator. Adjust L22 oscillator slug to obtain an audio beat
.

Turn on the sweep generator and set to Channel 13. Ad just Tl for maximum gain on the oscilloscope. Adjust mixer
tank circuit \(\mathrm{L21}\) for maximum gain and flat-topped curve Recheck TI for maximum main gain and flat-topped curve proper response. Maximum gain and center of band with the proper response. Maximum gain and flat-lopped response should
be obtained simultaneously.

Adjust the oscillator to frequency on all VHF channels by switching the receiver and signal generator to each VHF
channel and adjusting the appropriate oscillator slug to obtain beat with the signal generator. Adjust the appropriate mixe slug where necessary to obtain maximum gain and proper

Adjust the tunable 1-F Trap C16-L7. To do this connect the signal generator to the fixed 1-F Trap C2-L2 at the end oppo site the antenna terminal plug. Set the signal generator to
mc. and adjust the output of the signal generator to obtai mc. and adjust the output of the signal generator to obtain
sufficient indication on the oscilloscope. Tune the I-F Trap C16-L7 for minimum indication on the oscilloscope.
Remove the signal generator and the oscilloscope.

TUNER UHF ALIGNMENT.-To align the UHF inserts
Turn off the adapter switch, removing plate voltage from Turn off the
the oscillator.
Ground the AGC bias at the tuner terminal board using Connect the osciat the bias wint remain preamplifier if needed with oscilloscope used, to test point TP1
Connect the UHF sweep generator to the antenna terminals
Use a 10 DB attenuator pad to assure proper alignment. Use a 10 DB attenuator pad to assure proper alignment.
Connect the UHF signal geenrator loosely to the antenna
terminals.
Set the channel selector to the desired position and the
sweep generator to sweep the frequency of the insert being sweep
used.
Insert markers of the picture carrier and sound carrier
for desired channel. for desired channel.
Adjust UHF antenna, link coupling and mixer adjustments
for a symmetrical curve, with maximum gain, centered about for a symmetric
the pass band. The responses are shown in Figure 10 . The curve shape
will usually vary from Figure 10 (a) to Figure (c) going
higher in frequency, however any of these responses are higher in
acceptable.
Repeat the above steps for all UHF inserts used adjuating the appropriate antenna. link coupling and mixer slugs for a symmetrical
pass band.
Remove the oscilloscope and preamplifier if used, from
test point TPI.
Remove the clip lead grounding the AGC bias on the tuner
terminal board. Connect the potentiometer arm of one of the bias supplies
to the AGC terminal on the tuner and ground the battery
positive terminal to the tuner case. Adjust the bias potentipositive terminal to the tuner case. Adjust the bias potenti-
ometer to produce -3.5 volis of bias, as measured by the

Connect the potentiometer arm of the second bias supply
to the iunction of R147 and R148, and ground the positive to the junction of R117 and R148, and ground the pupsitive
battery terminal. Adjust the bias potentiometer to produce battery terminal. Adjust the bias potentiometer to produce
-5 volts of i.f bias as indicated on the "Voltohmyst" at the -5 volts of i-f
Connect the oscilloscope to junction of R138 and L105. Use 3 to 5 volts peak-to-peak output on the oscilloscope.
Turn the adapter switch on to apply plate voltage to the Turn the channel selector to the lowest UHF channel to be used.
Set the fine tuning cortrol to the center of its range. Adjust the oscillator core to proper frequency. To do this, connect the VHF signal generator to lest point TP1 with the
shorteat leads possible. Insert a \(45.75 \mathrm{mc}\). marker from the VhF generator.
Set the UHF swoep generator to sweep the desired channel,
and observe the output on the and observe the output on the osciloscope. If the sweep genrator is not sweoping the correct irequency range, it may be
necessary to readiust the sweep in order to place the 45.75
marker on neceasary to readuss the sweep in order
marker on the responae curve as in Figure 12 .
Set the UHF marker generator to the picture carrier of the
channel insort being adjusted and connect to test point TP1.

Adjust the oscillator core until the markers for 45.75 mc . and the pictur
oscilloscope.
Adjust mixer core for maximum gain with proper wave Connect the "VoltOhmyst" to test point TP1, using 1.5 volt D.C. scale.

Set oscillator injection adjustment to read .1 volt on the
"Voltohmyst." VoltOhmyst."
Repeat the above steps for all UHF inserts adjusting the oscillator injection control only it the reading on the "Volt.
Ohmyst" exceeds 3 volt. Adjust as necessary to read .3 volt Ohmyst exces
or less at TP1.
RATIO DETECTOR ALIGNMENT.-Set the signal generator at 4.5 mc. and connect it to the first sound i-f grid, pin As an alternate source of signal, the RCA WR39B or
WR39C calibrator may be employed. In such a case, conWr39C calibrator may be employed. In such a case, con-
nect the calibrator to the grid of the third pix i-f amplifier, nect the calibr
pin 1 of 108 .
Set the frequency of the calibrator to 45.75 mc . (pix car-
rier) and modulate with 4.5 mc. crystal. The 4.5 mc signal rier) and modulate with 4.5 mac. crystal. The 4.5 mc., signal
will be picked off at L104 and amplified through the sound i.f amplifier

Connect the "VoltOhmyst" to pin 2 of V103.
Tune the ratio detector primary. T102 top core for maximum d-c output on the "Voltohmyst". Adjust the signal level from
the signal generator for 6 volts on the "Voltohmst" when finelly peaked. This is approximately the operating level of the ratio detector for average signals.
Connect the "VoltOhmyst" to the junction of R106 and C108. Tune the ratio detector secondary T102 bottom core for zero
d-c on the "Voltohmyst". dec on the "VoltOhmyst".
Repeat adjustments of T102 top for maximum d-c at pin 2
of V103 and T102 bottom for zero d-c at the junction of R106 of V103 and T102 bottom for zero d-c at the junction of R106 and CIO8. Make the final adjustments with the signal input
level adjusted to produce 6 volta d-c on the "Voltohmyst" at
pin 2 of V103.

SOUND I.F ALIGNMENT.-Connect the signal generator to As an alternate source of signal, the RCA WR39B or WR39C calibrator may be employed as above.
Connect the "VoltOhmyst" to pin 2 of V103
Tune the Tl01 top core for maximum d.c on the "Volt
The output from the signal generator should be set to pro duce approximately 6.0 volts on the "Voltohmyst" when the
4.5 MC. TRAP ADJUSTMENT.-Connect the signal generator in series with a 1.000 ohm resistor to pin 2 of \(V 109\). Set the
generator to 4.5 mc. and modulate it \(30 \%\) with 400 cycles . Sel generator to 4.5 me. and modulate it
the output to approximately 0.5 volt.
Short the third pix i.f grid to ground, pin 1, V108, to preven
noise from masking the output indication. Connect the crystal diode probe of an oscilloscope to the
plate of the video amplifier, pin 6 of \(\mathrm{V} 1100^{\circ}\)
Adjust the core of L103 for minimum output on the oscillo scope.
hemove the short from pin 1, V108 to ground. point in the alignment procedure and the adjustment made "on the air" after the alignment is completed.
If this is done, tune in a station and observe the picture on
the kinescope. If no 4.5 mc . beat is present in the picture, when the fine tuning control is set for proper oscillator-frequency then LIO 3 requires no adjustment. If a 4.5 mc . beat is present. turn the fire tuning control slightly clockwise so as to
ate the beat and then adjust Llo for minimum beat.

KGC CONTROL ADJUSTMENT.-Disconnect all test equipment except the
pin 6 of vilo.
pin 6 of Vilo.
Connect an antenna to the recelver antenna terminals.

\section*{ALIGNMENT PROCEDURE}

Turn the AGC control fully counter-ciockwise
Tune in a strong signal and adjust the oscilloscope to see the video wavefor
Turn the AGC control clockwise until the tips of sync begin to be compre
is obtained.
horizontal oscillator adjustment. - Normally the adjustment of the horizontal oscillator is not considered to waveform adjustment may require the use of an oscilloscope. it can not be done conveniently in the field. The wavelorm adjustment is made at the factory and normally should not
require readjustment in the field. However. the wavetorm require readjustment in the field. However, the wavelorm
adjustment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper.
Horizontal Frequency Adjustment.-Tune in a station and Horizontal Frequency Adustment.- Cune
sync the picture. If the picture cannot be synchronized with the horizontal hold control R200, then adjust the T114 frequency core on the rear apron until the picture will syn-
chronize. If the picture still will not sync, turn the T114 wavechronize. If the picture still will not sync, turn the T114 wave-
horm adjustment core (under the chassis) out of the coil several turns from its original position and readjust the T114 frequency core until the picture is synchronized.
Examine the width and linearity of the picture, If picture Eidth or linearity is incorrect, adjust the horizontal drive
control Clina the width control L109 and the linearity con. control C174B, the width control

Horizontal Oscillator Waveform Adjustment.-The horizontal oscillator waveform may be adjusted by either of two meth ods. The method outlined in paragraph A below may be
employed in the field when an oscilloscope is not available. The service shop method outlined in paragraph B below requires the use of an oscilloscope.
A.-Turn the horizontal hold control completely clockwise. Place adjustment tools on both cores of T114 and be prepared to make simultaneous adjustments while watching the picture
on the screen. First, turn the T114 frequency core (on the rear on the screen. First, turn the T114 frequency core (on the rear
apron) until the picture falls out of sync and three or four diagonal black bars sloping down to the right appear on the screen. Then, turn the waveform adjustment core (under the chassis) into the coil while at the same time adjusting the fre.
quency core so as to maintain three or four diagonal black quency core so as to maintain three or four diagonal black
bars on the screen. Continue this procedure until the oscillator begins to motorboat, then turn the waveform adjustment core out until the motorboating just stops. As a check, turn the T114 frequency core until the picture is synchronized then reverse
the direction of rotation of the core until the picture falls out of sync with the diagonal bars sloping down to the right. Continue to turn the frequency core in the same direction. No more than three or four bars should appear on the screen. Instead, the horizontal oscillator should begin the motorboat.
Retouch the adjustment of the \(T 114\) waveform adjustment core Retouch the adjustment of the T114 waveform adjustment core it necessary until this condition is obtained.
B.-Connect the low capacity probe of an oscilloscope to quarter turn from the clockwise position so that control one in sync. The pattern on the oscilloscope should be as shown in Figure 21. Adjust the waveform adjustment core of T114
until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the ment, the picture musaty
hold control it necessary
This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope
is lower than the sharp peak. the noise immunity become is lower than the sharp peak, the noise immunity becomes
poorer, the stabilizing effect of the tuned circuit is reduced and dritt of the oscillator becomes more serious. On the othe hand. if the broad peak is higher than the sharp peak, the
oscillator is overstabilized, the pullin range becomes inade
quate and the broad peak can cause double triggering of th oscillator when the hold control approaches the clockwise position
Remove the oscilloscope upon completion of this adjustment. Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counterclockwise position. Mome tarily remove the signal by switching of channel then back quency core slightly and momentarily switch off channel Repeat unil the picture falls out of sync with the diagonal line sloping down to the left. Slowly turn the horizontal hold con ol clockwise and note the least number of diagonal bats otained just before the picture pulls into sync.
If more than 3 bars are present just before the picture pulls slightly clockwise. If less than 2 bars are present, adju 174A slightly counterclockwise. Turn the horizontal hold ontrol counter-clockwise, momentarily remove the signal and echeck the number of bars present at the pull-in point. Re bars are present.
Turn the horizontal hold control to the maximum clockwis bar sloping down to the right appears on the screen and then reverse the direction of adjustment so that bar just moves to the left side of the screen leaving the picture in synchronization. SENSITIVITY CHECK.-A comparative sensitivity check can be made by operating the receiver on a weak signal from
television station and comparing the picture and sound Television station and comparing the picture and sound nditions.
This weak signal can be obtained by connecting the sho ntenna to the receiver through a ladder type attenuator pad strength available at the antenna. A sutficient number of stages should be inserted so that a somewhat less than normal ontrast picture is oblained when the picture control is at the be used to construct the pad.
RESPONSE CURVES.-The response curves shown on page 14 and 15 and referred to throughout the alignment procedure were taken from a production set. Althou
ypical., some variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to he left. The manner in which they will be seen in a given tes and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the deflec ion polarity of the oscilloscope and the phasing of th sweep generator.

NOTE ON TUNER ALIGNMENT.--Because of the frequenc spectrum involved and the nature of the device, many he tuner leads and components are critical in some respects. Even the power supply leads form loops which couple to the volved in the performance of the tuners, may cause serious departures from the desired characteristics. In the design the receiver these undesiable resonant loops have been shifted far enough away in frequency to allow reasonabie out being troublesome. When the tuners are aligned in the receiver, no trouble from resonant loops should be experi nced. However, if the tuners are aligned in a jig separate wanted resonances do not exist which might present a faulty representation of tuner alignment.

The following measurements represent two sets of conditions. In the first condition, a 15000 microvolt test pattern signal was fed into the receiver,
the picture synced and the \(A\) GC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting
the receiver antenna terminals. Voltages shown are read with a type WV97A senior "Volto hmyst" between the indicated terminal and chassis the receiver antenna terminals. Voltages shown are read with a type . The symbol < means less than
ground and with the receiver operating on 117 volts, 60 cycles, \(a-c\). The
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { No. }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\underset{\substack{\text { Tube } \\ \text { Type }}}{ }
\]} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operating Condition} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|l|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{Notes on Measurements} \\
\hline & & & & \[
\begin{aligned}
& \text { Pin } \\
& \text { No }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \\
\hline \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\hline \text { V1 } \\
\text { KRK1IB }
\end{array}
\]} & \multirow[t]{4}{*}{6x8} & \multirow[t]{2}{*}{Mixer} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & 9 & 160 & 8 & 160 & 6 & 0 & 7 & \[
\begin{aligned}
& -2.4 \text { to } \\
& -3.0
\end{aligned}
\] & \\
\hline & & & \[
\stackrel{\text { No }}{\text { Signal }}
\] & 9 & 145 & 8 & 145 & 6 & 0 & 7 & \[
\begin{aligned}
& -2.8 \text { to } \\
& -3.5
\end{aligned}
\] & \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { R-F } \\
& \text { Oscillator }
\end{aligned}
\]} & \[
\begin{gathered}
\text { 15000 Mu. V. } \\
\text { Signal }
\end{gathered}
\] & 3 & 95 & - & - & 6 & 0 & 2 & \[
\begin{aligned}
& -3.8 \text { to } \\
& -5.5
\end{aligned}
\] & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 3 & 90 & - & - & 6 & 0 & 2 & \[
\begin{aligned}
& -3.010 \\
& -5.1
\end{aligned}
\] & \\
\hline \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\hline \text { V2 } \\
\text { KRK11B }
\end{array}
\]} & \multirow[t]{4}{*}{6BQ7A} & \multirow[t]{2}{*}{\[
\underset{\text { Amplifier }}{\text { R-F }}
\]} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 6 & 170 & - & - & 8 & 0.1 & 7 & & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 6 & 133 & - & - & 8 & 1.1 & 7 & 0 & \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { R-F } \\
& \text { Amplifier }
\end{aligned}
\]} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} . \mathrm{V} .}
\] & 1 & 270 & - & - & 3 & 170 & 2 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 1 & 260 & - & - & 3 & 133 & 2 & - & \\
\hline \multirow[t]{2}{*}{v101} & \multirow[t]{2}{*}{6AU6} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { lat Sound } \\
& \text { I-F Amp. }
\end{aligned}
\]} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 127 & 6 & 140 & 7 & 1.0 & 1 & 0 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 110 & 6 & 121 & 7 & . 9 & 1 & 0 & \\
\hline \multirow[t]{2}{*}{v102} & \multirow[t]{2}{*}{6AU6} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 2d Sound } \\
& \text { I-F Amp. }
\end{aligned}
\]} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 125 & 6 & 136 & 7 & 0 & 1 & -13 & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 5 & 105 & 6 & 115 & 7 & 0 & 1 & *-0.8 & *Unreliable measuring point Voltage depends on noise. \\
\hline \multirow[t]{2}{*}{V103} & \multirow[t]{2}{*}{6AL5} & \multirow[t]{2}{*}{Ratio Detector} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 7 & 0.3 & - & - & 1 & 7.2 & - & - & 7.5 kc deviation at 1000 cycles \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 7 & 0 & - & - & 1 & *2.8 & - & - & *Unreliable measuring point. Voltage depends on noise. \\
\hline \multirow[t]{2}{*}{V104} & \multirow[t]{2}{*}{6AV6} & \multirow[t]{2}{*}{lst Audio Amplifier} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & 7 & 89 & - & - & 2 & 0 & 1 & -0.8 & At min. volume \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 7 & 87 & - & - & 2 & 0 & 1 & -0.8 & At min. volume \\
\hline \multirow[t]{2}{*}{V105} & \multirow[t]{2}{*}{6K6GT} & \multirow[t]{2}{*}{Audio Output} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 3 & 217 & 4 & 225 & 8 & 15.2 & 5 & 0 & At min. volume \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 3 & 210 & 4 & 219 & 8 & 15.0 & 5 & 0 & At min. volume \\
\hline \multirow[t]{2}{*}{V106} & \multirow[t]{2}{*}{6CB6} & \multirow[t]{2}{*}{lat Pix. I-F Amplifier} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 202 & 6 & 225 & 2 & <0.1 & 1 & -7.5 & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 5 & 100 & 6 & 112 & 2 & 0.9 & 1 & *-0.1 & *Unreliable measuring point. Make measurement at Tl04-B. \\
\hline \multirow[t]{2}{*}{v107} & \multirow[t]{2}{*}{6CB6} & \multirow[t]{2}{*}{\begin{tabular}{l}
2nd Pix. I-F \\
Amplifier
\end{tabular}} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} . \mathrm{V} .}
\] & 5 & 205 & 6 & 225 & 2 & \(<0.1\) & 1 & -7.5 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 100 & 6 & 111 & 2 & 0.5 & 1 & -0.1 & \\
\hline \multirow[t]{2}{*}{V108} & \multirow[t]{2}{*}{6CB6} & \multirow[t]{2}{*}{\begin{tabular}{l}
3rd Piz. 1-F \\
Amplifier
\end{tabular}} & \[
\begin{gathered}
5000 \mathrm{Mu} . \mathrm{V} \text {. } \\
\text { Signal }
\end{gathered}
\] & 5 & 140 & 6 & 155 & 2 & 2.1 & 1 & 0 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 130 & 6 & 141 & 2 & 1.9 & 1 & 0 & \\
\hline \multirow[t]{2}{*}{V109A} & \multirow[t]{2}{*}{12AU7} & \multirow[t]{2}{*}{Picture 2d Det.} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 1 & -21 & - & - & 3 & 0 & 2 & -3.8 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 1 & -10 & - & - & 3 & 0 & 2 & -0.4 & \\
\hline \multirow[t]{2}{*}{v109B} & \multirow[t]{2}{*}{12AU7} & \multirow[t]{2}{*}{Vert. Sync Separator} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & 6 & 68 & - & - & 8 & 0 & 7 & -58 & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 6 & 62 & - & - & 8 & 0 & 7 & -5.6 & \\
\hline
\end{tabular}

\section*{ALIGNMENT DATA}

\section*{VOLTAGE CHART}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { No. }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { Type }
\end{aligned}
\]} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operating Condition} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|l|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{Notes on Measurements} \\
\hline & & & & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { Po. }
\end{aligned}
\] & Volts & \\
\hline \multirow[t]{2}{*}{V110} & \multirow[t]{2}{*}{6CL6} & \multirow[t]{2}{*}{\begin{tabular}{l}
Video \\
Amplifier
\end{tabular}} & \[
\underset{\substack{15000 \mathrm{Mu} . \mathrm{V} \\ \text { Signal }}}{\text {. }}
\] & 6 & 82 & 3-8 & 180 & 1 & 1.1 & 2.9 & -3.4 & AGC control set for normal operation \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 6 & 73 & 3.8 & 99 & 1 & 0.9 & 2.9 & -0.4 & AGC control set for normal operation \\
\hline \multirow[t]{2}{*}{V111A} & \multirow[t]{2}{*}{12AU7} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { AGC } \\
& \text { Amplifier }
\end{aligned}
\]} & \[
\begin{gathered}
15000 \mathrm{Mu} \mathrm{~V} . \\
\text { Signal }
\end{gathered}
\] & 1 & 42 & - & - & 3 & 148 & 2 & 115 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 1 & 0 & - & - & 3 & 125 & 2 & 82 & \\
\hline \multirow[t]{2}{*}{vills} & \multirow[t]{2}{*}{12AU7} & \multirow[t]{2}{*}{Hor. Sync Separator} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\mathrm{Signal}
\end{gathered}
\] & 6 & 267 & - & - & 8 & 171 & 7 & 101 & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 6 & 259 & - & - & 8 & 118 & 7 & 85 & \\
\hline \multirow[t]{2}{*}{V112A} & \multirow[t]{2}{*}{12AU7} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Sync } \\
& \text { Output }
\end{aligned}
\]} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & 1 & 60 & - & - & 3 & 0 & 2 & -2.7 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 1 & 58 & - & - & 3 & 0 & 2 & -2.1 & \\
\hline \multirow[t]{2}{*}{V112B} & \multirow[t]{2}{*}{12AU7} & \multirow[t]{2}{*}{Vertical Oscillator} & \[
\begin{gathered}
15000 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 6 & 76 & - & - & 8 & 0 & 7 & -16 & \[
\begin{aligned}
& \text { Depends on setting of Vert. } \\
& \text { hold control }
\end{aligned}
\] \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 6 & 75 & - & - & 8 & 0 & 7 & -15 & Voltages shown are synced pix adjustment \\
\hline \multirow[t]{2}{*}{V113} & \multirow[t]{2}{*}{6K6GT} & \multirow[t]{2}{*}{Vertical Output} & \[
\underset{\substack{15000 \mathrm{Mu} \\ \text { Signal V. }}}{ }
\] & 3 & 260 & 4 & 270 & 8 & 15.9 & 5 & -11 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 3 & 250 & 4 & 260 & 8 & 15.5 & 5 & \[
-10
\] & \\
\hline \multirow[t]{2}{*}{V114A} & \multirow[t]{2}{*}{6SN7GT} & \multirow[t]{2}{*}{Horizontal Osc. Control} & \[
\begin{aligned}
& 15000 \mathrm{Mu} . \mathrm{V} . \\
& \text { Signal }
\end{aligned}
\] & 2 & 172 & - & - & 3 & -2.2 & 1 & -25 & \\
\hline & & & \[
\begin{gathered}
\mathrm{No} \\
\text { Signal }
\end{gathered}
\] & 2 & 160 & - & - & 3 & 1.5 & 1 & -16 & \\
\hline \multirow[t]{2}{*}{V114B} & \multirow[t]{2}{*}{6SN7GT} & \multirow[t]{2}{*}{Horizontal Oscillator} & \[
\underset{\substack{15000 \mathrm{Mu} . \mathrm{V} \\ \text { Signal }}}{\text {. }}
\] & 5 & 180 & - & - & 6 & 0 & 4 & -74 & \\
\hline & & & \[
\stackrel{\text { No }}{\text { Signal }}
\] & 5 & 178 & - & - & 6 & 0 & 4 & -66 & \\
\hline \multirow[t]{2}{*}{v115} & \multirow[t]{2}{*}{6BQ6GT} & \multirow[t]{2}{*}{Horizontal Output} & \[
\begin{aligned}
& 15000 \mathrm{Mu} . \mathrm{V} . \\
& \text { Signal }
\end{aligned}
\] & Cap & * & 4 & 180 & 8 & 18 & 5 & -17.5 & *High Voltage Pulse Present \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & Cap & * & 4 & 175 & 8 & 17.5 & 5 & -17 & *High Voltage Pulse Present \\
\hline \multirow[t]{2}{*}{V116} & \multirow[t]{2}{*}{\[
\begin{gathered}
1 \mathrm{~B} 3 \mathrm{GT} \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{H. V. Rectifier} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & Cap & * & - & - & 2 \& 7 & 14,000 & - & - & *High Voltage Pulse Present \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & Cap & * & - & - & 2\&7 & 13,000 & - & - & *High Voltage Pulse Present \\
\hline \multirow[t]{2}{*}{V117} & \multirow[t]{2}{*}{6W4GT} & \multirow[t]{2}{*}{Damper} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} .}
\] & 5 & 270 & - & - & 3 & * & - & - & *High Voltage Pulse Present \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 260 & - & - & 3 & * & - & - & *High Voltage Pulse Present \\
\hline \multirow[t]{2}{*}{V118} & \multirow[t]{2}{*}{21AP4} & \multirow[t]{2}{*}{Kinescope} & \[
\begin{aligned}
& 15000 \mathrm{Mu} \text { V. } \\
& \text { Signal }
\end{aligned}
\] & Cap & 14,000 & 10 & 430 & 11 & 120 & 2 & 78 & At average Brightness \\
\hline & & & \[
\begin{gathered}
\mathrm{N} \circ \\
\text { Signal }
\end{gathered}
\] & Cap & 13,000 & 10 & 415 & 11 & 100 & 2 & 58 & At average Brightmess \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V} 119 \\
& \mathrm{~V} 120
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 5 \mathrm{U} 4 \mathrm{GG} \\
& 5 \mathrm{YGGT}
\end{aligned}
\]} & \multirow[t]{2}{*}{Rectifiers} & \[
\underset{\text { Signal }}{15000 \mathrm{Mu} . \mathrm{V} .}
\] & 4\&6 & - & - & - & \(2 \& 8\) & 285 & - & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 4\&6 & - & - & - & 2 \& 8 & 274 & - & - & \\
\hline
\end{tabular}


Figure 6-KRK11B Tuner Adjustments


Figure 7-KRK12 Tuner Adjustments


Figure 8-KRK11B R-F Oscillator Adjustments

© John P. Rider


\section*{PARTS}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { stocx } \\
\text { No. }
\end{gathered}
\] & description & \(\underset{\substack{\text { sTock } \\ \text { No. }}}{ }\) & deschiption \\
\hline & \begin{tabular}{l}
TUNER UNTT ASSEMBLIES KRK 11B \\
Models 21T303, 21T313, 21T314, 21T315, 1T316, 21T322. 21 T323. 21 T324
\end{tabular} &  & \begin{tabular}{l}
3300 ohms. \(\pm 10 \%, 1 / 2\) wath (R4, R11, R12) \\
4700 ohms. \(\pm 10 \% 1 / 1 / 2\) walt (R2)
100.000 ohms, \(\pm 10 \%, 1 / 2\) walt (R1, R5, R6) \\
470.000 ohms, \(\pm 10 \%, 1 / 2\) walt (RA) \\
Retainer-Fine tuning shaft retaining ring
\end{tabular} \\
\hline 76539 & Board-Antenna matching transformer terminal board-less coils and less capacitors & 75164 & Rod-Actuating plunger rod (fibre) for fine tuning link \\
\hline \({ }_{76845}^{7631}\) & Board-Terminal board, 5 contact and ground
Bracket-Vertical bracket for holding V1 tube & 76548 & \begin{tabular}{l}
Screw-\#4-40 \(\times 1 / 4\) " adjusting screw for coils \\

\end{tabular} \\
\hline 76965 & Capaciior-CCramic, variable, for fine tuning- & \({ }_{75549}\) & \begin{tabular}{l}
Screw-\#4-40 \(\times 3 / 8\) " adjusting screw for coils L1, \\
L2. L3, L4, L46
\end{tabular} \\
\hline 71504 & Capacitor-Fixed. headed.lad type, 0.68 mmf ., & 76519 & Shati-Channel selector shaft and plate \\
\hline 77151 & \({ }_{\text {a }}{ }^{\text {a }}\) 20\%, 500 volits ( \((7)\) & 76134
77147 & Shatt-Fine tuning shaft and cam
Shield-Front shield complete with shaft bushing \\
\hline & ( & & \\
\hline & Caplete with adiusting stud (C9) & 76530 & Socket-Tube socket, 9 pin, miniature, ceramic. \\
\hline & Capacitor-Adjustable trimmer, steatite, 1-4 (C18) & 76336 & \begin{tabular}{l}
saddle-mounted \\
Socket-Tube socket. 9 pin, miniature, bakelite,
\end{tabular} \\
\hline 93056 &  & & addle-mounted \\
\hline & \(0^{\prime}(\mathrm{C} 26)\) mis & 75163 & Spring-Friction apring (formed) tor fine tuning \\
\hline & O" \(\left(\frac{29}{}\right.\) & & Spring-Hairpin spring for \\
\hline 55326 & mit. \(\pm 1\) mmi.. 500 volts DC. Temp. & (75068 & Spring-Retaining spring for tube shield
Sprinq-Relum sping tor fine tuning con \\
\hline 54207 & 18 mmit. \(\pm 10 \%\), 500 volts DC. Temp. coot. \(=0\) & 77664 & Stator-Antionna stator complete \\
\hline 7655 & 22 mmi. \(\pm 10 \%\), 500 volts DC. T & & capacitor and resistor (SS. C20, L42, L43, L44, \\
\hline & \({ }_{22}{ }^{\text {(219) }}\) ) \({ }^{\text {a }}\) & 77922 & Stator-Converior stator complete with rotor, coils, \\
\hline & & & caper L15, L16, L17, L18, L19, L20, L21, L47, L48, \\
\hline & mit. \(\pm 10 \%\), 500 volts DC, Temp. coet. & \({ }^{77205}\) &  \\
\hline 76739 & \({ }^{33}\) mmit. \(\pm 10 \%\), 500 volts DC. Temp. coef. \(=0\) & & and capaciors (S1. C3, C7, L1, L2, 13, L4, L5, L6, \\
\hline \({ }^{76527}\) & caitor-Mica trimmer, \(55-80\) & 76556 & Stator-AF grid stator complete with rotor, capaci- \\
\hline 75199 &  & & tor, and resistors (S4, C19, L32, L33, L34, L355, \\
\hline 7564 & Capacitor-Fixed, coramic, , insulated. 390 mmi. & 7655 & Stator-RF plate stator compleete with rotor, coils, \\
\hline 75166 & \({ }^{ \pm 10 \% \text {, } 500 \text { volits } \mathrm{DC.} \text {. High " } \mathrm{K} \text { " type (Cl10) }}\) & &  \\
\hline & 21. C22, C28, С30) & 76561 & p-Channel \#13 RF grid strap \\
\hline 75610 & Capacitor-Fixed, ceramic, insulated, 1500 mmf . \(\pm 20 \% 500\) volts DC High "K" type (C6) & \({ }_{7}^{765525}\) & Strip-Coil segment mounting strip-r.i. entier \\
\hline 73748 & \begin{tabular}{l}
Capacitor-Fixed, ceramic, 1500 mmf ., \(+100 \%\). \\
\(-0 \%, 500\) volts DC. High " K " disc" (C16, C17.
\end{tabular} & 76544 & Strip-Ciil segment mounting strip-L.H. upper-
leass trim mer \\
\hline 76143 & \(\mathrm{Clip}^{\text {c20 }}\) Tubular & 76740 &  \\
\hline \({ }_{7}^{73991}\) & Coill Antonna malching coil ( 2 req'd) & 77152 & Terminal-Torminal \\
\hline 772 & Coil-Cilament coil & 76536 & \\
\hline \({ }_{7}^{76763}\) & Coil-Filiament choke coill (163. L64) & & plete (T2, C24, C25, C26, C27, L58, L59, L60, \\
\hline 77652 & \({ }_{\text {Coil-RF }}{ }_{\text {coil-RF }}\) amplifier coupling coil (L51) & & \({ }^{\text {L2012 }}\) L62, 11 ) \\
\hline \({ }_{76537}^{77153}\) & Coil-RF choke coil
Coil-Shunt coil
complete & 77663 & \(\xrightarrow[\substack{\text { Transiomer-Convertor } \\ \text { adiustable core (T1, } \\ \text { R }}]{ }\) \\
\hline & (L61) & 76535 & Trap -I.F \\
\hline 765 & \({ }^{\text {Coil-Shunt }}\) coill complete with adj & 76542 & Trap-I.F. trap ( 41.25 MC ) complete with core \\
\hline 76529 & Coil-Trimmer coil ( 3 turns) with adiustable & 76541 & Trap-IF. trap (45.75 MC) complete with core \\
\hline & ce core and capacior stud (scrow adiust. & 76540 & Trap-F.M. trap com \\
\hline 38853 & Connector-4 contact temale connector-part of & & (L58) \\
\hline 765 & Connector marcillator grid connector & & Washer-insulation \\
\hline 77 & Conta & & \\
\hline 77543 & Core-Adjustable core for & & SSEM \\
\hline \({ }_{7}^{76521}\) & Detent-Dotent mechanism and fib & & \\
\hline 73453 & Form-Coil form for L48. L50. L53 & &  \\
\hline 76728 & Link-Link assembly tor ine tuning & & \\
\hline & dstable trimmer & 77579 & Ball-Sloel ball (.187" dia.) \\
\hline &  & 77575
77589 & \(\xrightarrow{\text { Bracket-Drive mechanism mounting bra }}\) (1) \\
\hline 503115 & 150 ohms, \(\pm 10 \%\). \(1 / 2\) watt (R13) & 77619 & \({ }_{\text {Bracket-VHF }}\) input con \\
\hline 503210 & 1000 ohms, \(\pm 10 \%\), \(1 / 2\) watt ( H , R14) & 76845 & Bracket-Vertical bracket \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION & \[
\begin{aligned}
& \text { sTOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION \\
\hline \({ }_{77691}^{77591}\) & \multirow[t]{4}{*}{\begin{tabular}{l}
Cam-Fine tuning cam \\
Capacitor - Fixed, headed-lead type, .33 mml ., \(\pm 10 \%, 500\) volts DC (C33, C35) \\
Capacitor - Fixed, headed-lead type, .82 mmf ., \(\pm 10 \%, 500\) volts DC (C37) \\
Capacitor - Fixed, headed-lead type, 1.0 mmf. . \(\pm 10 \%, 500\) volts DC (C39, C40, C42)
\end{tabular}} & & APPLY TO YOUR RCA DISTRIBUTOR FOR information on uhf coil ASSEMBLY INSERTS \\
\hline 77669 & & 775 & \multirow[t]{3}{*}{\begin{tabular}{l}
Lever-Actuating lever for fine tuning link Link-Fine tuning link \\
Plate-Front plate and ball race
\end{tabular}} \\
\hline \multirow[t]{2}{*}{77690} & & 77582 & \\
\hline & & \({ }_{7}^{77489}\) & \\
\hline & Capacitor-Fixed, ceramic, non-insulated, 2 mmf . \(\pm 0.25 \mathrm{mml} ., 500\) volts DC. Temp. coel. \(=0\) (Cl5) & 50 &  \\
\hline \multirow[t]{2}{*}{77667} & \multirow[t]{2}{*}{Capacitor-Fixed, ceramic, insulated, comprising 1 section of 2 mmf ., and 1 section of 22 mml .} & 5031 & 100 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R10, R17) \\
\hline & & 503112
503210 & 120 ohms, \(\pm 10\)
1000 ohms . \(\pm 1\) \\
\hline 77616 & Capacitor-Adjustable, mica, \(4-40 \mathrm{mmf}\). (C16) & & \\
\hline \multirow[t]{2}{*}{77688} & \multirow[t]{2}{*}{Capacitor-Fixed, ceramic, non-insulated, 5 mmf ., \(\pm 0.5 \mathrm{mmf} ., 500\) volts DC, Temp. coef. \(=0\) (C34. C36, C38, C41)} & 503322
503410 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 22.000 \text { ohms } \pm 10 \%, 1 / 2 \text { watt (RI) } \\
& 100,000 \mathrm{hms}, \pm 10 \%, 1 / 2 \text { watt (R18, R19) } \\
& 120.000 \text { ohms, } \pm 10 \% .1 / 2 \text { watt (R5) }
\end{aligned}
\]} \\
\hline & & 50341 & \\
\hline \multirow[t]{2}{*}{74182} & \multirow[t]{2}{*}{Capacitor-Fixed, ceramic, non-insulated, 6 mmf ., \(\pm 0.5 \mathrm{mmf}\)., 500 volts DC. Temp. coef. \(=0\) (C5)} & 5034 & \multirow[t]{3}{*}{\begin{tabular}{l}
270,000 ohms, \(\pm 10 \%, 1 / 2\) watt (R4)
470,000 ohms, \(\pm 10 \%, 1 / 2\) watt (R8) \\
8.2 megohms, \(\pm 10 \%, 1 / 2\) watt (R3, R7) \\
Retainer-Retainer ring for fine tuning actuating
\end{tabular}} \\
\hline & & 50345 & \\
\hline 77621 & \multirow[t]{3}{*}{Capacitor-Fixed, ceramic, crystal holder, 22 mmf ., \(\pm 10 \%\), Temp. coef. \(=-750\) (Cll) Capacitor-Fixed, ceramic, non-insulated, 56 mmf . \(\pm 10 \%, 500\) volts DC, Temp. coef. \(=-750\) (C10)} & 503582
30340 & \\
\hline \multirow[t]{2}{*}{71924} & & 775 & \begin{tabular}{l}
Retainer-Retainer ring for fine tuning actuating lever stud \\
Ring-Contact ring
\end{tabular} \\
\hline & & & \multirow[t]{2}{*}{\begin{tabular}{l}
Rotor-Rotor frame \\
Screw-\#8-32 \(\times 1 / 4\) " cup point set screw for indi-
\end{tabular}} \\
\hline 77625 & Capacitor-Fixed, ceramic, 220 mmf., \(+100 \%\). \(-0 \%, 500\) volts DC, High " K " disc (C18) & 77574
77594 & \\
\hline 77 & Capacitor-Fixed, ceramic, 470 mmf., \(+100 \%\), \(-0 \%, 500\) volts DC, High " \(K\) " disc (C43) & 7757 & \\
\hline 77624 & Capacitor-Fixed, ceramic, \({ }^{680}\) mmi., \(+100 \%\). \(-0 \%, 500\) volts \(D C\). High " \(K\) " disc (C4) & 775 & \begin{tabular}{l}
two (2) gears \\
Shaft-Indicator shaft
\end{tabular} \\
\hline 77084 & Capacitor-Ceramic, feed-thru, 1000 mmf . (C21. C23. C25) & 77611 & Shield-Oscillator shield and grounding spring as-sembly-underside of chassis \\
\hline & Capacitor-Ceramic, stand-off, 1000 mmf ( \({ }^{\text {C24, }} \mathrm{Cl} 19\), & 76977
7697 & \begin{tabular}{l}
Shield-Top shield \\
Shield-Tube shield for V2
\end{tabular} \\
\hline \multirow[t]{2}{*}{77252} & \multirow[t]{2}{*}{Capacitor-Fixed, ceramic, 1000 mmf ., \(+100 \%\). \(-0 \%\), 500 volts DC. High "K" disc (C14, C20, C22. C27)} & 76534 & \\
\hline & & 仡 & Sleeve-lnsulating sleeve for fine tuning adjustable core \\
\hline 73960 & Capacitor-Fixed, ceramic, \(10.000 \mathrm{mmf} .,+1000 \%\). \(-0 \%\), 500 volts DC. High ' \(K\) " Disc (C17) & 727 & Socket-Tube socket, 7 pin, miniature, saddle mounted, steatite for V2 \\
\hline 77628 & \(\underset{\substack{\text { Coil-IF } \\ \text { Coil } \\ \text { IF } \\ \text { neap (tralizing coil (L12) }}}{ }\) & 7760 & Socket-Tube socket, 9 pin. miniature, saddle mounted, moulded mica for V1, V3, V4 \\
\hline 77634
77629 & Coil-Oscillator cathode coil (L9) & 7757 & \multirow[t]{2}{*}{Spring-Formed spring for holding rotor (on back of unit)} \\
\hline 77632 & \multirow[t]{2}{*}{Coil-Oscillator heater coil (L15)} & & \\
\hline 77631 & & 77584
76961 & Spring-Fine tuning link adjusting spring \\
\hline 77630
77627 & Coil-Oscillator plate coill (L11) & \({ }_{77598}^{76961}\) & Spring-heaining spring ining and roller complete \\
\hline 77627
77695 & Coil-Peaking coil (L6,R & & \multirow[t]{2}{*}{(taler} \\
\hline 77633 & \multirow[t]{3}{*}{Connector-Formed grounding connector Connector-UHF antenna input connector (Jl) Contact-Bracket and spring contact assembly for grounding rotor-assembled to base} & 77599
77587 & \\
\hline 77623 & & 77587 & Stud-Mounting stud for fine tuning link actuating \\
\hline 77 & & 77693 & \begin{tabular}{l}
lever \\
Sțud-\#6-32 \(\times 21 / 32^{\prime \prime}\) adjusting stud for trimmer
\end{tabular} \\
\hline 77618 & \multirow[t]{2}{*}{Contact-Bracket and spring contact assembly for grounding rotor-assembled to oscillator shield Contact-Contact and support assembly - "L"} & 776 & \begin{tabular}{l}
capacitor C9 \\
Stud- \# 6-32 \(\times 25 / 32^{\prime \prime}\) adjusting stud for trimmer
\end{tabular} \\
\hline 60 & & 77694 & \multirow[t]{3}{*}{\begin{tabular}{l}
Stud-\#10.32 \(\times 3 / 6\) " adjusting stud for coils L 20 . \\
L21, L22, L23, L24, L25, L26, L27, L28, L29, L30. \\
L31 and transformers T3, T4, T5, T6 \\
Transformer-Mixer I.F. transformer complete with
\end{tabular}} \\
\hline 77622 & \multirow[t]{2}{*}{Contact-Contact and support assembly complete with two (2) contacts and UHF antenna input} & \multirow[b]{2}{*}{77609} & \\
\hline & & & \\
\hline 7762 & Contact-Contact and support assembly complete with four (4) contacts and holder for crystal & 77610 & \begin{tabular}{l}
adjustable cores (TI) \\
Transformer-Primary I.F. link transformer complete with adjustable cores (T2, R15)
\end{tabular} \\
\hline 607 & Contact-Contact and support asseqmbly complete with five (5) contacts-rear of chassis & \[
\begin{aligned}
& 77626 \\
& 77585
\end{aligned}
\] & \multirow[t]{2}{*}{\begin{tabular}{l}
Trap-1.F. trap (L1, C1, L2, C2) \\
Washer-"C" washer for drive and indicator shafts ( 3 req'd) \\
列"
\end{tabular}} \\
\hline 77614 & \multirow[t]{2}{*}{\begin{tabular}{l}
Control-Oscillator voltage control (R6) \\
Control - UHF oscillator injection adjustment control
\end{tabular}} & \multirow[b]{2}{*}{775} & \\
\hline 77617 & & & Shatis ( 3 req \({ }^{\text {ceq }}\) washer for fine tuning link spring \\
\hline 77583 & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Core-Fine tuning core \\
Coupling-Indicator shaft coupling \\
Ferrule-Ferrule for UHF antenna input cable
\end{tabular}}} & \multirow[t]{3}{*}{\begin{tabular}{l}
CHASSIS ASSEMBLIES \\
KCS 82 (KRK11B Tuner Unit) KCS 82B (KR12 Tuner Unit)
\end{tabular}} \\
\hline 77593
77596 & & & \\
\hline 77596
77588 & \multirow[t]{2}{*}{\begin{tabular}{l}
Gear-Rotor drive gear-nylon \\
Insert-VHF coil assembly insert for channels 2, 3 or 4 (Includes C40, C41, C42, L29. L30. L31, T6)
\end{tabular}} & & \\
\hline 77602 & & 6456 & - Bracket - Channel indicator lamp bracket for KCS82 \\
\hline 77603 & Insert-VHF coil assembly insert for channels 5 or 6 (Includes C37, C38, C39, L26, L27, L28, T5) & 76490 & Bracket-Mounting bracket complete with insulator
for picture control \\
\hline 77604 & Insert-VHF coil assembly insert for channels 7, 8. 9 or 10 (Includes C35, C36, L23, L24, L25, T4) & \multirow[t]{2}{*}{\[
\begin{aligned}
& 71496 \\
& 33098
\end{aligned}
\]} & \multirow[t]{2}{*}{Capacitor-Mica trimmer, \(5-70 \mathrm{mmi}\) ( Cl 19 ) Capacitor-Fixed, ceramic, non-insulated, 10 mmf . \(\pm 1.0 \mathrm{mmf} . .500\) volts DC, Temp. coef. \(=-750\) (C136)} \\
\hline &  & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{PARTS (Continued)} & & & & \\
\hline \[
\begin{gathered}
\text { sTock } \\
\text { No. }
\end{gathered}
\] & Scripti & \[
\begin{aligned}
& \text { stock } \\
& \text { No. }
\end{aligned}
\] & DEsCription & STock
No. & description &  & DEsCRIPTION \\
\hline & \multirow[t]{27}{*}{\begin{tabular}{l}
Capacitor
(C174A,
C174B) Mica trimmer, dual \(10-160 \mathrm{mmf}\). Capacitior, Fixed. ceramic, non-insulated, 12 mmf .
\(\pm 10 \%\). 500 volts DC . Temp. coof. \(=-750\) Capacitor-Fixed, ceramic, non.insulated. 15 mmf. \(\pm 10 \%\). 500 volts DC. Temp. coef. \(=-750\)
(C141) Capacior-Fixed, ceromic, non.insulated, 39 mmi .
\(\begin{aligned} & \text { t10\% } \\ & 500 \\ & \text { volts } \\ & \text { DC. Temp. coof. }\end{aligned}=-750\) \(\stackrel{ \pm 10 \%}{(C 140)} 500\) volts DC. Temp. cooel. \(=-\) Capacitior - Fixed. mica, 68 mmi.. 1000 volis \\
 Capacior-Fixed, mica, 220 mmf ., 500 volts DC \\
 \\
 \\
 \\
 Capacitor-Fixed, mica, 330 mm ., 500 Volk
(C150)
- Fixed, mica, 330 mmf . 1000 volts Capacitor - Fixed, mica, \(330 \mathrm{~mm} ., 100 \mathrm{volis}\)
(C182) Capacitor-Fixed, mica, 390 mmf., 1000 volts DC \\
 \\
 \(\underset{\text { Capacilor }- \text { Fixed }}{\text { C193 }}\) \\
 Capacior- Fixed, ceramic, insulated, 470 mmf . \\
 (Cl106, C107), Capacitor- Fixed, ceramic, 10.000 mmf. \(+100 \%\). \(-10 \%\). 100 volts DCS High " K " disc (C104, C134, \\
 (C101A, C1018) Capachior-Glectrolytic, comprising
mid.
1 section of
10 \\

\end{tabular}} & & \multirow[t]{12}{*}{\begin{tabular}{l}
 \\
 \\
Paper. 0.088 mid. 400 volts (C165)
Paper, 0.11 mid. 200 volts (Cl171) \\
\({ }^{\text {Paper }}\) \\
Paper. 0.1 mid. . 600 volts (C160. C163. C186) \\
 \\
 Chokor Filler choke (L117)
Coil-Choke coil (1101) \\
Coil-Chore ocoll linarity coil complete with ad-
Coil Horzinala \\
 \\
Coil-Paeking coil ( 250 muh) ( LI 104 ) \\
 \\
Coil \({ }_{\text {RF }}\) choke coil ( 1.5 muh) (L110)
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{array}{|l|l|}
\hline 5032393 \\
\hline
\end{array}
\]} & \multirow[t]{41}{*}{\begin{tabular}{l}
3900 ohms. \(\pm 10 \%, 1 / 2\) watt (R202)
5600 ohms, \(\pm 10 \%, 1\) watt (R140) \\
5600 ohms, \(\pm 10 \%, 1\) watt (R140)
6800 ohms, \(\pm 10 \%, 1\) watt (R150)
6800 ohms, \(\pm 10 \%, 2\) watts (R211) \\
\begin{tabular}{l}
8200 ohms, \(\pm 10 \%, 2\) watts (R211) \\
R183) \\
\hline 102 watt (R159, R169, R180,
\end{tabular} \\
10.000 ohms, \(\pm 5 \%, 1 / 2\) watt (R107, R108) \\
10.000 ohms, \(\pm 10 \%, 1\) watt (R217) \\
15.000 ohms. \(\pm 10 \%, 1 / 2\) watt (R189) \\
18,000 ohms, \(\pm 10 \%, 1 / 2\) watt (R157, R172, R204)
22.000 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R162, R166, R171. \\
R201)
39.000 ohms, \(\pm 10 \%, 1 / 2\) watt (R106) \\
39,000 ohms, \(\pm 5 \%, 1 / 2\) watt (R147)
47,000 ohms, \(\pm 10 \%, 1 / 2\) watt (R136, R149, R165) \\
47,000 ohms, \(\pm 5 \%, 1\) watt (R206)
56,000 ohms, \(\pm 5 \%, 1 / 2\) watt (R129, R133) \\
56,000 ohms. \(\pm 10 \%\), 1/2 watt (R212) \\
56.000 ohms, \(\pm 5 \%, 1\) watt (R182)
68.000 ohms \(\pm 10 \%\), \(1 / 2\) watt (R151, R199) \\
82,000 ohms, \(\pm 10 \%, 1 / 2 / 2\) watt (R198)
100,000 ohms. \(\pm 10 \% .1 / 2\) watt (R178. R219) \\
100,000 ohms, \(\pm 10 \%\), 1 watt (R179) \\
120,000 ohms, \(\pm 10 \%, 1 / 2\) watt (R158) \\
150,000 ohms, \(\pm 5 \%, 1\) watt (R203) R194) \\
180,000 ohms, \(\pm 5 \%\), \(1 / 2\) watt (R125) \\
220.000 ohms, \(\pm 10 \%, 1 / 2\) watt (R190, R192)
270,000 ohms, \(\pm 5 \%\). \(1 / 2\) watt (R181) \\
270.000 ohms. \(\pm 10 \%\), \(1 / 2\) watt (R10 \\
330,000 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R112, R195.
R197) \\
390,000 ohms, \(\pm 10 \%, 1 / 2\) watt (R155)
470,000 ohms, \(+10 \%, 1 / 2\) watt (R1 \\
470.000 ohms, \(\pm 10 \%\). \(1 / 2\) watt (R113, R153,
R173, R193, 2208 ) \\
680.000 ohms. \(\pm 10 \%, 1 / 2\) watt (R160. R167)
820.000 ohms, \(\pm 10 \%, 1 / 2\) watt (R196, R207) \\
1 megohm. \(\pm 10 \%\). \(1 / 2\) watt (R161) \\
1.2 megohm. \(\pm 10 \%, 1 / 2\) watt (R184) \\
1.5 megohm, \(\pm 10 \%, 1 / 2\) watt (R175) \\
\(1.8 \mathrm{megohm}, ~ \pm 5 \%\), \(1 / 2\) watt (R124) \\
.2 megohm, \(\pm 10 \%, 1 / 2\) watt (R164, R170)
.9 megohm. \(\pm 10 \%, 1 / 2\) watt (R137, R152) \\
8.2 megohm, \(\pm 10 \%, 1 / 2\) watt (R122)
10 megohm, \(\pm 10 \%, 1 / 2\) watt (R109) \\
Shaft-Extension shaft for picture control
Shield-Hi-voltage shield less side and back \\
covers
Shield-Tube shield for V101, V102, V103, V108 \\
Socket-Channel indicator lamp socket Socket-Kinescope socket \\
Socket-Tube socket, 6 pin, moulded for V116
Socket - Tube socket, 6 pin, moulded, saddle \\
Socket-Tube socket, miniature, 7 pin, waier for
V101, V102, V103, V104, V106, V107, V108 \\
Socket-Tube socket, octal, wafer for V105, V115, \\
Socket - Tube socket, octal, moulded, saddle \\
Socket-Tube socket, octal, wafer for V114 \\
Socket-Tube socket, miniature, 9 pin, wafer for
V109, V110, V111. V112 \\
Switch-Phono-tone control switch (S101) \\
Transformer-Hi-voltage transformer (T115)
Transformer - Horizontal oscillator transformer \\
complete with adjustable core (T114) \\
Transformer-Output transiormer (T103)
Transformer - Power transiormer, 117 volt, 60 \\
Transiormer-Ratio detector transformer (T102.
C105) \\
C105)
\end{tabular}} & \multirow[t]{8}{*}{\[
\begin{aligned}
& 76981 \\
& 77636 \\
& 77737 \\
& 77638 \\
& 76433 \\
& 7693 \\
& 767535
\end{aligned}
\]} & \multirow[t]{41}{*}{\begin{tabular}{l}
Transformer - Sound I.F. transiormer complete with adjustable core (T101, C102, C103, R103)
Transformer-Vertical output transformer (T112) Transiormer-lst pix I.F. transformer complete with adjustable cores (T104, C120. R126)
Transformer-2nd pix I. \\
with adjustable core (Ti06) Transformer-3rd or th pix I.F. \\
Trap-4.5 MC trap (L105. C137) \\
shaft ( 2 req\({ }^{\text {washer }}\) ) for picture control extension \\
YOKE AND MAGNET ASSEMBLIES \\
Connector-Anode connector complete with contact and eyelet flection yoke (P102) \\
Cushion-Rubber cushion for deflection yoke hood cushions cushions
Magnet-Focus magnet \\
Magnet-Ion trap magnet
Screw-\# \(8.32 \times 7 / 1 G^{\prime \prime}\) \\
Screw-\#8.32 \(\times 7 / 16^{\prime \prime}\) wing screw for mounting
deflection \\
Stud-Adjusting stud complete with guard for tocus magnet \\
nector (L113, L114, L115, L116, C192, R214. R215, R216, P102) \\
SPEAKER ASSEMBLIES 971636-1W RL101C5 \\
RMA-274 21 T303, 21T303U ) \\
(For Models 21T303, 21T303U) Speaker-5" P.M. speaker
voice coil
\((3.2\) ohms) \\
SPEAKER ASSEMBLIES \\
(For Models 21 T313, 21T313U) \\
Cone-Cone
\(971490-3 \mathrm{~W}\) Cone-Cone \\
Speakern \(971490-3 \mathrm{R}\) voice coil .M. speaker \\
SPEAKER ASSEMBLIES 971692.1 \\
(For Models 21T314, 21 T314U, 21T315, 21 T315U. 21T316. 21T316U, 21T322, 21 T322U) \\
Speaker-10" P.M. speaker complete with cone
and voice coil ( 3.2 ohms) \\
SPEAKER ASSEMBLIES 92569-12W \\
RL111A1 \\
(For Models 21 T323. \(21 \mathrm{~T} 323 \mathrm{U}, 21 \mathrm{~T} 324,21 \mathrm{~T} 324 \mathrm{U}\) ) Cone-Cone and voice coil \\
Speaker-12" P.M. speaker complete with cone NOTE: 1 I stamping ( 3.2 ohms) not aqree with above spe in instruments does not agree with above speaker number, order
replacement parts by referring to Model number of instrument, number stamped
full description of part required.
\end{tabular}} \\
\hline & & & & & & & \\
\hline & & 929 & & & & & \\
\hline & & \({ }^{73394}\) & & \multirow[t]{2}{*}{\[
\begin{gathered}
502310 \\
\substack{5133010} \\
503312
\end{gathered}
\]} & & & \\
\hline & & & & & & & \\
\hline & & & & \multirow[t]{2}{*}{} & & & \\
\hline & & cintire & & & & & \\
\hline & & \begin{tabular}{c}
7776 \\
73477 \\
747 \\
\hline
\end{tabular} & & \multirow[t]{2}{*}{} & & & \\
\hline & & 76442 & & & & & \\
\hline \({ }^{39638}\) & & & & \multirow[t]{3}{*}{} & & & \\
\hline 47617 & & & & & & & \\
\hline & & (76640 & & & & & \\
\hline & & &  & \multirow[t]{2}{*}{} & & \({ }_{128}^{168}\) & \\
\hline & & \({ }^{35787}\) & Connector-Phono input ronnector ( (101) & & & & \\
\hline & & & & \[
\left.\begin{aligned}
& 513410 \\
& \text { S0190 } \\
& \text { S034812 } \\
& 503415
\end{aligned} \right\rvert\,
\] & & \multirow[t]{2}{*}{76636
7769} & \\
\hline & & & Connoctior-2 conlact male connector
cord & \multirow[t]{2}{*}{\[
\begin{aligned}
& 152415 \\
& \hline
\end{aligned}
\]} & & & \\
\hline & & &  & & & & \\
\hline & & &  &  & & & \\
\hline 77672 & & 77639 &  & \multirow[t]{2}{*}{503439
50347} & & & \\
\hline & & 76 & Control-Piturat entrol (cilta) & & & & \\
\hline 39644 & & 77 & Control-Vortical linaerity control (R166) & \multirow[t]{2}{*}{} & & 77000 & \\
\hline & & 76985 &  & & & & \\
\hline & & \begin{tabular}{l}
73860 \\
7645 \\
\hline
\end{tabular} &  & \multirow[t]{2}{*}{} & & & \\
\hline & & & Load-Anoctor lead comple & & & & \\
\hline & & &  & & & & \\
\hline & & \({ }_{76539}^{7675}\) &  & \multirow[t]{2}{*}{} & & & \\
\hline & & 77671 &  & & & \multirow[t]{2}{*}{75022} & \\
\hline &  & 77 & Reniator-Wire wound, 40000 mmm , 7 watis (R117 &  & & & \\
\hline 76970 & & & \(\underset{\substack{\text { Reoisitor } \\(1422)}}{ }\) - Wire wound, 6750 ohms, 10 wat & \multirow[t]{2}{*}{} & & & \\
\hline &  & & Remistor-Wire wound, 10,000 ohms, 5 watts (R11 & & & & \\
\hline &  & & & & & \multirow[t]{2}{*}{m} & \\
\hline cistis & & &  & 31251 & & & \\
\hline ( 77123 &  &  &  & \[
\begin{gathered}
31251 \\
50367
\end{gathered}
\] & & & \\
\hline  &  & \({ }_{5031}^{5021}\) &  & \multirow[t]{2}{*}{\({ }_{76971}^{77645}\)} & & & \\
\hline 7318
73996 &  & 503 & \({ }_{470} 70\) ohms \(\pm 10 \%\), 12 watt (R119 tor \(\mathrm{KCS8} 2\), & & & & \\
\hline \({ }^{73}\) &  & & \({ }_{560}\) Robms \(\pm 10 \%\), 1 watt (R114) & \[
77656
\] & & & \\
\hline \({ }_{7}^{7330851}\) &  & &  & \multirow[t]{2}{*}{\({ }_{7}^{76745} 7\)} & & 755822 & \\
\hline - 73594 &  & & & & & & \\
\hline 73562
73988 & Papor. 022 midi. 400 volts (C180) & &  & \multirow[t]{3}{*}{\({ }_{7}^{76997}\)} & & & \\
\hline ( 73810 &  & (5323 \begin{tabular}{|c}
5323 \\
503 \\
\hline
\end{tabular} & , & & & & \\
\hline &  & & 3300 ohms, \(\pm 10 \%\) \% \(1 / 2\) watt (1188) & & & & \\
\hline
\end{tabular}

F. Now disconnect voltmeter from Test-Socket, and replace with a matched pair of resistors. (NOTE: These resistors should be around 270 K each, and should be connected in series between pins 6 and 1 of the test-socket.)
G. Connect the positive lead of the voltmeter to the mid-point of these resistors, and the negative lead to pin 7 of the test-socket.
H. Use 5-volt range of meter, and proceed as follows:
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Step \\
Number
\end{tabular} & \begin{tabular}{c} 
Signal Generator \\
Frequency
\end{tabular} & Adjust & Remarks \\
\hline \hline 7 & 4.5 MC & T5-Top & \begin{tabular}{l} 
Adjust for zero which \\
occurs between a max- \\
imum negative and a
\end{tabular} \\
& & & \begin{tabular}{l} 
maximum positive feed \\
ing
\end{tabular} \\
\hline
\end{tabular}

\section*{III. Tuner Oscillator Alignment.}
(A) Set fine-tuning in mid-position of its range.
(B) Align all twelve channels with either an "off the air" station or a monoscope modulated local transmitter.
(C) Procedure: Tune oscillator screws until 4.5 MC sound 'wiggles" are just visible at all vertical edges.



© John F. Rider


© John F. Rider

ALIGNMENT CHART

\section*{CHASSIS MODELS}

The following table lists current models of Douglas Chairside Contro Television Receivers identifying the Tuner Chassis, Sweep Chassis, and picture tube used with each model.
\begin{tabular}{||c|c|c|c|}
\hline MODEL & \begin{tabular}{c} 
TUNER CHASSIS \\
MODEL
\end{tabular} & \begin{tabular}{c} 
*SWEEP CHASSIS \\
MODEL
\end{tabular} & \begin{tabular}{c} 
PICTURE TUBE \\
TYPE
\end{tabular} \\
\hline \(24-100\) Mahogony & \(\mathrm{T}-100\) & \(\mathrm{~S}-100\) & \(24 \mathrm{BP4}\) \\
\(24-100\) Maple & \(\mathrm{T}-100\) & \(\mathrm{~S}-100\) & \(24 \mathrm{BP4}\) \\
\(24-100\) Blonde & \(\mathrm{T}-100\) & \(\mathrm{~S}-100\) & 24BP4 \\
\(24-200\) Mahogony & \(\mathrm{T}-100\) & \(\mathrm{~S}-100\) & 24BP4 \\
\(24-200\) Maple & \(\mathrm{T}-100\) & S-100 & 24BP4 \\
\(24-200\) Blonde & \(\mathrm{T}-100\) & ASP4 \\
\(21-100\) Mahogony & \(\mathrm{T}-100\) & AS-100 & 21FP4A \\
\(21-200\) Mahogony & \(\mathrm{T}-100\) & & 21FP4A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { STEP } \\
\text { NO. }
\end{gathered}
\] & \begin{tabular}{l}
CW SIG. GEN. \\
FREQ. (MC)
\end{tabular} & \[
\begin{gathered}
\text { CONNECT } \\
\text { SIGNAL } \\
\text { TO }
\end{gathered}
\] & OUTPUT INDICATOR & ADJUST & PROCEDURE & SPECIAL CONNECTIONS
\& SETTINGS \\
\hline 1
2 & 21.6 & Conv. grid, pin 5 of 6 J 6 . & \begin{tabular}{l}
SOUND I- \\
VTVM between junction of R7, C7, C8, C9, \& pin 7 of V3 \& ground. \\
VTVM between junction of R7 \& R8 and junction of R10, C10 \& C11 (ground side of meter)
\end{tabular} & \begin{tabular}{l}
\& RATIO DE \\
L2 \& primary T2 (bottom). \\
Secondary T2 (top).
\end{tabular} & \begin{tabular}{l}
TECTOR \\
Tune for max. reading on VTVM. \\
Tune for zero meter reading. Use same signal level as in step 1.
\end{tabular} & \begin{tabular}{l}
Use 10 K resistor in series with VTVM lead. Signal level should be low enough to obtain approx. 6.0 volts deflection. \\
Repeat tuning of T2 primary and secondary, until reading does not vary.
\end{tabular} \\
\hline & & & TRAPS, ADJAC & NT CHANNEL & TRAPS \& VIDEO I-F & \\
\hline 3 & 21.6 & Conv. grid, pin 5 of 6 J 6 & VTVM between junction of L5 \& R20 \& ground. & L7 & Tune for min. reading on VTVM. & Set tuner between channels; contrast at min; keep sig. gen. level low. \\
\hline 4 & 21.6 & " & " & L1 1 (top) & & \\
\hline 5 & 20.1 & " & " & L9 & & \\
\hline 6 & 27.6 & " & " & L13 (top) & & " \\
\hline 7 & 25.9 & " & " & L6 & Tune for max. reading on VTVM. & Set tuner between channels; contrast at min; adjust signal level throughout I-F alignment, so that a 1.0 VDC output is maintained at the video det. \\
\hline 8 & 25.9 & " & " & L12 (bottom) & " & , \\
\hline 9 & 23.4 & " & " & & " & \\
\hline 10 & 22.5 & " & " & L10 (bottom) & & \\
\hline 11 & 23.7 & " & " & L14 &  & Tune conv. plate coil on tuner to 23.7 mc by turning slug in, before making this adjustment. \\
\hline 12 & 23.5 & " & " & Conv. plate coil & Tune for max. reading. & Conv. plate coil located on tuner. \\
\hline 13 & \multicolumn{6}{|l|}{REPEAT STEPS 3 THROUGH 12 UNTIL ADJUSTMENTS DO NOT CHANGE.} \\
\hline 14 & 10 MC sweep width. Center freq. approx. 25.0 MC & Conv. grid, pin 5 of 6 J 6 . & High gain scope between junction of L5 \& R20 to ground. & Conv. plate coil \& L14 first. Other coils only if necessary. & Set 26.1 MC marker at \(50 \%\) point with conv. plate coil. Eliminate tilt with L14. & Use markers to determine band pass at \(50 \%\) points. Band pass should be between 4.1 MC \& 3.9 MC wide. Adjust other I-F coils to obtain proper curve only when absolutely necessary. \\
\hline 15 & \multicolumn{5}{|l|}{READJUST L7, L11, L9, AND L13.} & \\
\hline
\end{tabular}
* The only difference between Sweep Chassis models S-100 and AS-100 is as follows:
1. The high-voltage lead on model \(\mathrm{S}-100\) is designed for a 24 -inch picture tube but on model AS-100 it is made for a 21 -inch picture tube.
2. The yoke assembly on model AS-100 has an additional lead which grounds the picture tube assembly.


15 READJUST L7, L11, L9, AND L13.

\section*{VOLTAGE CHART - SWEEP CHASSIS S-100 \& AS-100}
 are dc.
\begin{tabular}{||l|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ FUNCTION \& TUBE } & PIN 1 & PIN 2 & PIN 3 & PIN 4 & PIN 5 & PIN 6 & PIN 7 & PIN 8 & PIN 9 \\
\hline \begin{tabular}{l} 
V101 \& V109, Video Ampl \\
\& Remote Brightness \\
Control, 12AT7
\end{tabular} & & & & & & & & & \\
\hline
\end{tabular}

\section*{VOLTAGE CHART - TUNER CHASSIS T-100}

Note: Line voltage 117 vac. No. signal. Measurements taken with a 20,000 ohms per volt meter. Unless otherwise specified, all voltages listed are dc.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ FUNCTION \& TUBE } & PIN 1 & PIN 2 & PIN 3 & PIN 4 & PIN 5 & PIN 6 & PIN 7 & PIN 8 \\
\hline V1, 1st Sound I-F Ampl., 6BA6 & - & 0 & 6.3 vac & - & 130 & 130 & 2 & \\
\hline V2, 2nd Sound I-F Ampl., 6AV6 & - & 0 & 6.3 vac & - & 135 & 135 & 0.8 & \\
\hline V3, Sound Det., 6AL5 & -0.3 & -0.3 & 6.3 vac & - & - & - & -0.5 & \\
\hline V4, Audio Ampl., 12AU7 & 22 & -0.45 & - & 6.3 vac & 6.3 vac & 120 & - & 3.5 \\
\hline V5, Rectifier, 5Y3 & - & 180 & 6.3 vac & 210 vac & - & 210 vac & - & 180 \\
\hline V6, 1st Video I-F Ampl., 6BA6 & -0.35 & - & 6.3 vac & - & 95 & 100 & 0.5 & \\
\hline V7, 2nd Video I-F Ampl., 6CB6 & - & 0.7 & 6.3 vac & - & 100 & 100 & - & \\
\hline V8, 3rd Video I-F Ampl., 6CB6 & -0.3 & 0.6 & 6.3 vac & - & 65 & 108 & - & \\
\hline V9, 4th Video I-F Ampl., 6CB6 & - & 1.5 & 6.3 vac & - & 100 & 115 & - & \\
\hline V10, Video Det. \& AGC Det., 6AL5 & - & -0.5 & 6.3 vac & - & - & - & -0.4 & \\
\hline V11, Video Ampl., 12AU7 & 145 & 0 & 1.5 & 6.3 vac & 6.3 vac & 115 & - & 3 \\
\hline
\end{tabular}



DETAILED ALIGNMENT INSTRUCTIONS

\section*{FOR TUNER CHASSIS T-100}

This procedure describes detailed Alignment Instructions The cw signal generator must have an attenuation confor the sound \(i-f\) amplifier stages and the stagger-tuned trol which will vary the output signal level.
video i-f amplifier stages. The following discussion
also includes recommended methods and equipment to be used and precautions to be observed during the offers a ready reference alignment guide, to be followed after studying these more detailed Alignment Instructions.

In order to obtain satisfactory results it is recom mended that alignment be performed on a metal-topped bench with a good common ground connection betwee all instruments and equipment. All leads should be as short as is practicable, particularly in the input and output circuits. Allow about fifteen minutes for the test alignment. The input and output connections should be made through isolation circuits. Composition resistors ( \(1 / 2\)-watt), and disc-type ceramic capacitors should be used in the isolation networks, so that a minimum amount of external inductance is added to the tuned circuits being adjusted.

The following equipment will be required in order to properly align the sound and video \(i-f\) stages:
1. An accurate cw signal generator (marker generator) covering the following frequencies:
\[
\begin{aligned}
& 20.1 \mathrm{mc} \\
& 21.6 \mathrm{mc} \text { (Sound I-F) } \\
& 22.1 \mathrm{mc} \\
& 26.1 \mathrm{mc} \text { (Video I-F) } \\
& 27.6 \mathrm{mc}
\end{aligned}
\]
2. A sweep-frequency generator with a sweep centerrequency of approximately 25.0 mc and a \(10-\mathrm{mc}\) sweepwidth.
3. A cathode-ray oscilloscope with at least a moderately high vertical gain. It should have an external sweep input or internal sweep-frequency equal to the sweep generator sweep-frequency and capable of phase control.
4. A d-c voltmeter with sensitivity of 20,000 ohms per-volt, or higher, and voltage scale ranges which include approximately 10 volts and 3 volts (full-scale deflection). A VTVM with zero-center scale adjustment is an ideal type
5. A 0.005 mfd cw signal generator isolating capacitor.
6. A \(10-\mathrm{K}, 1 / 2\)-watt composition resistor and a 0.001 nfd \(\mathbf{r}\)-f filter capacitor for the detection-isolation network.

Before alignment is begun, turn the tuner to an offchannel position by turning the channel-selector shaft so that the detent roller rests on one of the high points of the drum disc.

\section*{ORDER OF A LIGNMENT}
1. Sound I-F and Ratio Detector Primary.
2. Ratio Detector secondary.
3. \(21.6-\mathrm{mc}\) Traps
4. \(20.1-\mathrm{mc}\) Trap.

\section*{. \(27.6-\mathrm{mc} \mathrm{Trap}\)}
. \(25.9-\mathrm{mc} 4\) 4th Video I-F Coil.
. \(25.9-\mathrm{mc}\) 1st Video I-F Plate Coil
. \(22.5-\mathrm{mc}\) 2nd Video I-F Coil.
10. 23.7 -mc 1st Video I-F Grid Coil
11. \(23.5-\mathrm{mc}\) Converter-Plate Coil

Since there is a slight amount of interaction between stages, it is strongly recommended that the alignment procedure be followed exactly as outlined here. Steps 13 and 15, of the Alignment Chart on page 1 , must be performed with special care.

\section*{NOTE}

It is NOT necessary to connect either Sweep Chassis S-100 or AS-100 to the Tuner Chassis while performing this alignment procedure

\section*{SOUND I-F ALIGNMENT}
1. Connect the "hot" lead of the cw signal generator to the converter grid, pin 5, of the 6J6 in r -f tuner through a 0.005 mfd isolating capacitor. Tune the generator frequency to 21.6 mc , unmodulated. If the generator does not have a low-impedance output, it is about 75 ohms resistance, be shunted across its output terminals. Connect the negative voltmeter lead in series with a \(10-\mathrm{K}\) isolating resistor to pin 7 of V3 (sound detector, 6AL5). It is important that the \(10-\mathrm{K}\) solating resistor be at the very end of the meter lead o avoid regeneration. Connect the positive voltmeter lead to ground.
2. Adjust the primary (bottom) of T 2 , and L 2 to obtain maximum voltmeter readings. The maximum voltage reasing the generator output while tuning the coils to resonance.

With the generator connected as in the preceding step and the input at the same level that produced 6.0 to 6.5 volts in the preceding step connect the voltmeter between the junction of R7 and R8 and R10, C10 and C11; polarity will depend upon which side of resonance the secondarry winding of T2 is tuned. If a VTVM is being used, set the readings may be observed without conging the polarity selector switch on the VTVM. Start with one of the higher scales of the meter and decrease the scale setting as the null point is obtained.
3. Tune the secondary (top) of T 2 for a zero reading n the voltmeter. Do not change the generator output level from that which produced the 6.0 to 6.5 volts in dhe first step. Repeat tuning of T2 primary and secon-

\section*{TUNING TRAPS}
1. Connect the "hot" lead of the cw signal generator to the converter grid, pin 5 , of the \(6 J 6\) in the \(r\)-f tuner through a 0.005 mfd isolating capacitor. Another method of coupling is to pull the 656 tube shield up on the tube until it is not grounded. Clip the 'hot" lead of the generator directly to the tube shield. The tube shield and tube electrodes form a capacitor which couples the signal to the mixer grid. A much higher level of gen-
erator output will be required if the latter method is
utilized.
2. Connect the negative lead of the voltmeter to pin 7 of V10 (video detector, 6AL5), using the \(10-\mathrm{K}\) isolating resistor at the end of the lead. Connect the positive voltmeter lead to ground.
3. Turn the contrast control to its minimum position (extreme counterclockwise) for the remainder of the alignment procedure.
4. Tune the traps by setting the trap frequency on the ew generator and adjusting each trap slug for a minimum voltmeter reading. The order of tuning the traps page 1.

\section*{VIDEO I-F COILS}
1. Instruments and set-up remain the same as for trap alignment during the first part of the procedure. For final adjustment the sweep-frequency generator is also used and the voltmeter is replaced by an oscilloscope.
2. Tune each i-f coil by setting the coil frequency on 2. Tune each i-f coil by setting the coil frequency on the cw signal generator and adjusting the colt ine a signal generator output must be attenuated so that the d -c output voltage of the video detector (indicated on the voltmeter), remains at 1 -volt as the \(i\) if coils are tuned. The order of tuning is from the last \(i-f\) stage toward the tuner. (See steps 8 through 12, page 1.) Before tuning the grid coil of the 1 st i-f stage, temporarily tune the converter plate coil for a minimum
voltmeter reading at 23.7 mc . After the 1 st video \(\mathrm{i}-\mathrm{f}\) rid coil has been tuned, tune the converter plate coil to 23.5 mc and repeat the trap and \(\mathrm{i}-\mathrm{f}\) alignment procedure until no additional change in adjustment is nec essary.
3. When no further change takes place, replace the voltmeter with the oscilloscope and replace the cw signal


Video I. F. Bandpass Curve
© John F. Rider
generator with the sweep-frequency generator. Use the same isolating capacitor and input connection to the converter grid. Loosely clip or connect the cw signa generator "hot" lead to the unshielded insulated end o afford a small amount of capacitive coupling. If the cw and sweep-frequency generators are both part of the same instrument it will only be necessary to switch on the sweep-frequency generator in order to continue the procedure. Tune the sweep-frequency generator to a center frequency of approximately 25 mc . Use a sweep width of 10 mc , so that the base of both response curve shirts is well within the ends of the oscilloscope trace. Check the over-all bandwidth, position of the video carrier, dip in bandpass, and trappage by using curve. (Refer to the accompanying curve.) Tune the cw signal generator to 26.1 mc . The marker pip should appear at approximately the \(50 \%\) point on the curve skirt. Adjust the \(1 \mathrm{st} \mathrm{i}-\mathrm{f}\) grid coil (L14) to eliminate any tilt of the response curve and adjust the converter-plate coil to set the picture carrier at the \(50 \%\) response point.
4. It should not be necessary to readjust the other video i-f coils. Once the picture carrier has been correctly positioned, tune the cw signal generator so
that the marker pip moves to the \(50 \%\) response point on the opposite skirt. Note the frequency calibration of the cw signal generator dial and subtract this value from 26.1 mc . The difference should be between 3.9 and 4.1 mc . If the bandpass does not lie within these limits, touch up the other i-f coils until correct curve is obtained. If other colis han the converter plat coil and the 1st i-f grid coil (L14) have to be readjusted to obtain the correct bandpass it will be necessary to go back and realign the traps.

\section*{ADJUSTMENT OF CONTROLS ON} SWEEP CHASSIS S-100 \& AS-100
The controls on Sweep Chassis S-100 and AS-100 have been carefully adjusted at the factory. These adjustments should be checked in the customer's home by the dealer or his service representative at the time of installation contring a service call. Once adjusted correctly, these or unless a specific changed over lerg developes. The location of the controls is clearly marked on the front flange of the chassis below each control. The ion-trap magnet and centering magnet are located on the neck of the picture tube. The horizontal linearity control is
located in the high-voltage cage and is accessable from located in the high-voltage cage and is accessable from
the rear of the chassis.

ION-TRAP MAGNET
The effects produced by the orientation of the focus control, ion-trap magnet, and centering magnet are slightly interacting. Consequently one or two compensating adjustments of each control may be necessary to obtain optimum results. Set the brightness and contrast controls to about mid-range, NEVER at over the "flags" of the picture tube first anode. Rotate the ion-trap magnet on the picture tube neck until light appears on the screen. After the initial light has been obtained, move the ion-trap magnet back and forth and rotate it until you obtain the brightest possible picture raster.

\section*{WARNING}

Final adjustment of ion-trap magnet must be made after the centering magnet has been properly adjusted.

\section*{FOCUS}

The picture tube in these chassistype uses electrostatic focusing. In addition to the usual number of electrodes the picture tube employs a focusing electrode very similar to that used by most cathode-ray tubes used in oscilloscopes. This additional focusing electrode is connected to pin six. The tube is designed for optimum focus at some fixed potential relative to its cathode, the value depending chiefly on the tube type, but there volts change in focus potential. The focus control in these chassis types is a 2 -megohm potentiometer connected between the B-boost voltage (approximately 600 volts) and ground. The arm of the potentiometer is connected to pin 6 of the picture tube.

With a picture on the cathode-ray tube screen, turn the focus control until the sharpest picture is obtained at the center of the picture tube

\section*{BRIGHTNESS ADJUSTMENT}

The brightness control sets the average background illumination of the picture.
1. Be sure the band switch on the tuner is in the TV position.
2. Temporarily turn the contrast control to its minimum setting (extreme counterclockwise)
3. Turn the brightness control so that a minimum usable picture is visible on the screen

This setting produces a picture with average back ground characteristics at about half-contrast setting. For individual tastes that vary from this recommendation, he brightness control may be set so the picture is mos pleasing to the customer.

\section*{HORIZONTAL DRIVE}

Turn the horizontal-drive control counterclockwise until a drive bar (thin, light vertical line) appears near until the drive bar just disappears, If no drive bar is obtained, set control at maximum counterclockwis position.

\section*{HORIZONTAL HOLD}

The horizontal-f requency control, L103, is a coars frequency adjustment relative to the horizontal-hol
control. Set the horizontal-hold control at mid-range and turn the horizontal-frequency control until vertical ines appearing near the top portion of the picture ap pear to be straight (no "hook"). At this setting the the should either hold syncronization at either end He hold control setting, or appear with an equal amber of ciagonal bars at either end of the hold contro setting after the channel selector is switched off channe and returned to the same channel.

\section*{HORIZONTAL WIDTH}

Adjust the picture width by turning the width control L109. Clockwise rotation of control increases the width. Counterclockwise rotation produces a decreas in width

\section*{NOTE}

When adjusting the width, remember to take the line voltage into account. If the line voltage differs by more than several volts from the value usually existing when and/or where the receiver is to be operated, make allowance for Remember, the width increases for higher line voltages. It is usually best to adjust for a slightly wider raster, which will automatically compensate for reductions in line voltage and component aging

\section*{HORIZONTAL LINEARITY}

Turn the horizontal-linearity control, L106, for best horizontal linearity as determined with a test pattern. and horizontal-hold controls after the linearity adjust ment has been made.

\section*{VERTICAL HOLD}

The vertical-hold control has a hold-in range over which he picture will stay in vertical sync. Turn the control so the picture is brought up just into synchronization rom a downward moving picture

\section*{VERTICAL HEIGHT \& VERTICAL LINEARITY}

The vertical height and linearity controls operate together to adjust the vertical height and proportion the entire picture but not in a linear manner. When the height control is turned the bottom portion of the picture is expanded at a greater rate than the top portion, and the center of the picture tends to move toward the top of the tube

Turn the height control counterclockwise to increase the height of the picture and clockwise to decrease picture height.

The vertical-linearity control affects the upper portion of the picture and compensates for non-linearity created by changes made by the height control

Turn the vertical-linearity control clockwise to expand the upper portion of the picture and counterclockwis to compress the upper portion of the picture.

The height of the picture is effected by line voltage fluctuations in much the same manner as the width of the picture as previously described. Consequently, it and width (approximately one inch) to compensate for possible "shrinkage" due to line voltage variations or tube and component aging.

\section*{CENTERING}

It is best to adjust the picture linearity and size usin a test pattern, before centering the picture. If pictur tilt exists, temporarily loosen the screw at the top o the deflection yoke and rotate the yoke until the tilt is eliminated. Make certain the deflection yoke is seate as far forward on the picture tube neck as possible
Bear in mind that picture non-linearity and poor centering are not always due to misadjustment in the receiver Occasionally the fault originates at the transmitter available when making receiver adjustments, and compromise the adjustment if necessary.

Raster centering is accomplished by adjusting two permanent-magnet rings that are part of a centering assembly which is placed on the neck of the picture tube just behind the yoke. The centering assembly should be postioned as near as possible the magnet are interacting, and it will be necessary to rotate both to obtain correct centering in most instances.

\section*{WARNING}

Never attempt to center the picture by misadjusting the ion-trap magnet. After the picture has been properly centered the ion-trap magnet should be readjusted as previously prescribed.

\section*{4.5-MC TRAP ALIGNMENT}

Detune the picture, by means of the fine-tuning contro in the tuner chassis, until slight sound bars are present in the picture. Under this condition the horizontal sweep lines will have an appearence of tweed cloth and sound carriers.

With the \(4.5-\mathrm{mc}\) trap, L108, slug all the way out, tune the slug in until the \(4.5-\mathrm{mc}\) beat just disappears or is the slug in until the
noticeably reduced.



PARTS LIST
SWEEP CHASSIS S-100 \& AS-100
NOTE: Unless otherwise specified: all resistors are rated at \(1 / 2 \mathrm{~W}\), and are composition type; all values of resistance are in ohms; all values of capacitance are in micromicrofarads \(K\) equals 1,000 . Meg equals \(1,000,000\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Ref. Symbol & Part No. & Value & \[
\begin{gathered}
\mathrm{Tol} \\
(+3)
\end{gathered}
\] & Rating \& Type & Ref. Symbol & Part No. & Value & \[
\begin{aligned}
& \mathrm{Tol} \\
& \left.( \pm)^{2}\right)
\end{aligned}
\] & Rating \& Type \\
\hline R101 & 4702 & 150 & 10 & 10 W & R150 & RC20AE102M & 1 K & 20 & \\
\hline & & & & Wire Wound & R151 & RC4UAE270K & 27 & 10 & 2 W \\
\hline R1U2 & \(\because 703\) & 500 & 10 & 10 W , & R152 & RC2UAE1U5K & 1 Meg & 10 & \\
\hline & & & & Wire Wound & R153 & RC2UAE105 \% & 1 Meg & 10 & \\
\hline R103 & RC40AE822K & 8200 & 10 & 2 W & R154 & RC2UAE104K & 100 K & 10 & \\
\hline & & & & & R155 & RC2UAE104K & 100 K & 10 & \\
\hline R104 & RC20AE102M & 1 K & 20 & & R156 & RC2UAE103K & 1.15 & 10 & \\
\hline R105 & RC20AE104K & 100 K & 10 & & R157 & RC20AE224K & 220 K & 10 & \\
\hline R106 & RC20AE106M & 10 Meg & 20 & & R158 & See Controls & & & \\
\hline R107 & & & & & R159 & RC20AE124K & 120 K & 10 & \\
\hline R108 & Not Used & & & & R160 & RC20AE561K & 560 & 10 & \\
\hline R109 & & & & & R161 & RC20AE561K & 560 & 10 & \\
\hline R110 & RC2UAE224K & 220 K & 10 & & R162 & RC20AE475M & 4.7 Meg & 2 u & \\
\hline R111 & RC2UAE474K & 470 K & 10 & & R163 & RC2UAE1U2K & 1 K & 10 & \\
\hline R112 & RC30AE271K & 270 & 10 & 1 W & R164 & RC30AE184K & 18 UK & 10 & 1 W \\
\hline R113 & 4704 & 1900 & 10 & 5 W , & R165 & RC30AE684K & 680 K & 10 & 1 W \\
\hline & & & & Wire Wound & R166 & RC2UAE125K & 1.2 Meg & 10 & \\
\hline R114 & Not Used & & & & R167 & See Controls & & & \\
\hline R115 & RC2UAE391K & 390 & 10 & & R168 & RC20AE562K & 5.6 K & 10 & \\
\hline R116 & RC3UAE182K & 1.8 K & 10 & 1 W & R169 & See Controls & & & \\
\hline R117 & RC2UAE474K & 470 K & 10 & & R170 & RC30AE102K & 1 K & 10 & 1 W \\
\hline R118 & RC20AE151K & 150 & 10 & & R171 & See Controls & & & \\
\hline R119 & RC20AE272J & 2.7 K & 5 & & R172 & & & & \\
\hline R120 & RC20AE302J & 3 K & 5 & & R173 & Part of & & & \\
\hline R121 & RC20AE153K & 15 K & 10 & & R174 & Part No. 9513 & & & \\
\hline R122 & RC20AE475M & 4.7 Meg & 20 & & R175 & RC2UAE104K & 100 K & 10 & \\
\hline R123 & RC2UAE474K & 470 K & 10 & & R176 & RC20AE563K & 56 K & 10 & \\
\hline R124 & RC2UAE334K & 330 K & 10 & & R177 & RC40AE270K & 27 & 10 & 2 W \\
\hline R125 & RC20AE823K & 82 K & 10 & & R178 & RC2UAE474M & 470 K & 20 & \\
\hline R126 & RC20AE223K & 22 K & 10 & & R179 & RC20AE224M & 220 K & 20 & \\
\hline R127 & RC20AE331K & 330 & 10 & & R180 & RC30AE152K & 1.5 K & 10 & 1 W \\
\hline R128 & RC2UAE182J & 1.8 K & 5 & & R181 & See Controls & & & \\
\hline R129 & RC20AE182K & 1.8 K & 10 & & R182 & 4501 & 3.9 & 10 & \\
\hline R130 & RC2UAE222K & 2.2 K & 10 & & R183 & RC20AE225K & 2.2 Meg & 10 & \\
\hline R131 & RC20AE222J & 2.2 K & 5 & & R184 & RC20AE474M & 470 K & 20 & \\
\hline R132 & RC20AE104K & 100 K & 10 & & C101 & 4101-6103M & . 01 Mfd & 20 & 600 V , Molded \\
\hline R133 & RC20AE104K & 100 K & 10 & & C102 & 4101-6103M & . 01 Mfd & 20 & 600 V, Molded \\
\hline R134 & RC20AE474M & 470 K & 20 & & \({ }^{\text {C103 }}\) & & & & \\
\hline R135 & RC2UAE155M & 1.5 Meg & 20 & & C104 & & & & \\
\hline R136 & RC2UAE822K & 8.2 K & 10 & & C105 & Electrolytics & & & \\
\hline R137 & RC3UAE153K & 15 K & 10 & 1 W & C106 & & & & \\
\hline R138 & RC20AE184K & 180 K & 10 & & C107 & 4001 & . 005 Mfd & & HI-K. Ceramic \\
\hline R139 & RC2UAE222J & 2.2 K & 5 & & C108 & 4101-6103M & . 01 Mid & 20 & 600 V, Molded \\
\hline R140 & RC20AE473K & 47 K & 10 & & C109 & 4005 & 1500 & & HI-K Ceramic \\
\hline R141 & & & & & \({ }^{\text {C110 }}\), & See & & & \\
\hline R142 \({ }^{\text {R143 }}\) & See Controls & & & & C111 & Electrolytic: & & & \\
\hline R143 & RC2UAE474K & 470 K & 10 & & C112 & 4101-6472M & . 0047 Mid & 20 & 600 V, Molded \\
\hline R144 & RC20AE123K & 12 K & 10 & & C113 & See & & & \\
\hline R145 & RC2UAE101K & 100 & 10 & & & Electrolytics & & & \\
\hline R146 & RC40AE121K & 120 & 10 & 2 W & C114 & 4101-6393K & . 039 Mfd & 10 & 600 V, Molded \\
\hline R147 & RC20AE101K & 100 & 10 & & C115 & 4101-2104M & . 1 Mfd & 20 & 200 V, Molded \\
\hline R148 & RC40AE822K & 8200 & 10 & 2 W & C116 & 4101-4104M & . 1 Mfd & 20 & 400 V , Molded \\
\hline R149 & Not Used & & & & C117 & 4101-4222K & . 0022 Mfd & 10 & 400 V , Molded \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TUBES (17, plus 2 rectifiers)} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Function \\
R.F. Amplifier .6BC5 or
\end{tabular}}} & Type & \multicolumn{3}{|l|}{} & Type \\
\hline & & & G5 (V17) & \multicolumn{4}{|l|}{Sync Separator \& Sync Amplifier. . . . .12AU7 (V11)} \\
\hline \multicolumn{3}{|l|}{Oscillator/Mixer} & J6 (V18) & \multicolumn{3}{|l|}{Phase Detector} & 6ALs (V10) \\
\hline \multicolumn{3}{|l|}{First I.F. Amplifier} & CB6 (V1) & \multicolumn{3}{|l|}{Horizontal Oscillator} & 6SN7 (V13) \\
\hline \multicolumn{3}{|l|}{Second I.F. Amplifier} & CB6 (V2) & \multicolumn{3}{|l|}{Horizontal Output ..} & 6BG6 (V14) \\
\hline \multicolumn{3}{|l|}{Third I.F. Amplifier .} & CB6 (V3) & \multicolumn{3}{|l|}{Diode Damper ...} & .6W4 (V16) \\
\hline \multicolumn{3}{|l|}{Video Amplifier .} & C7 (V4) & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Vertical Blocking Oscillator}} & .6SN7 (V9) \\
\hline \multicolumn{3}{|l|}{Sound I.F. . .} & U6 (V8) & & & & .6SN7 (V9) \\
\hline \multicolumn{3}{|l|}{F.M. Detector \& 1st Audio} & T8 (V7) & \multicolumn{3}{|l|}{Vertical Output} & .6S4 (V19) \\
\hline \multicolumn{3}{|l|}{Audio Output} & Qs (V6) & \multicolumn{3}{|l|}{Picture Tube} & .20CP4 (Vs) \\
\hline \multicolumn{4}{|l|}{Low Voltage Rectifier . . . . . . . . . . . . . . SU4G (V12)} & \multicolumn{3}{|l|}{High Voltage Rectifier} & .1B3 (V15) \\
\hline & ISION & IANNEL & CARRIER & AND & AMPLIF & FREQU & NCIES \\
\hline \[
\begin{gathered}
\text { Channel } \\
\text { No. }
\end{gathered}
\] & Channel
Freq. (me) & \[
\begin{gathered}
\text { Picture } \\
\text { Carrier } \\
\text { Freq. (me) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Sound } \\
\text { Carrler } \\
\text { Freq. (mc) }) \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Receiver \\
Osc. \\
Freq. (me)
\end{tabular} & \[
\begin{gathered}
\text { Plefure } \\
\text { IF } \\
\text { Freq. (me) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Sound } \\
\text { IF } \\
\text { Freq. (mc) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Picture IF } \\
\text { less } \\
\text { Sound IF (mc) }
\end{gathered}
\] \\
\hline 2 & 54-60 & 55.25 & 59.75 & 81 & 25.75 & 21.25 & 4.5 \\
\hline 3 & 60-66 & 61.25 & 65.75 & 87 & 25.75 & 21.25 & 4.5 \\
\hline 4 & 66.72 & 67.25 & 71.75 & 93 & 25.75 & 21.25 & 4.5 \\
\hline 5 & 76.82 & 77.25 & 81.75 & 103 & 25.75 & 21.25 & 4.5 \\
\hline 6 & 82-88 & 83.25 & 87.75 & 109 & 25.75 & 21.25 & 4.5 \\
\hline 7 & 174-180 & 175.25 & 179.75 & 201 & 25.75 & 21.25 & 4.5 \\
\hline 8 & 180-186 & 181.25 & 185.75 & 207 & 25.75 & 21.25 & 4.5 \\
\hline 9 & 186-192 & 187.25 & 191.75 & 213 & 25.75 & 21.25 & 4.5 \\
\hline 10 & 192-198 & 193.25 & 197.75 & 219 & 25.75 & 21.25 & 4.5 \\
\hline 11 & 198-204 & 199.25 & 203.75 & 225 & 25.75 & 21.25 & 4.5 \\
\hline 12 & 204-210 & 205.25 & 209.75 & 231 & 25.75 & 21.25 & 4.5 \\
\hline 13 & 210-216 & 211.25 & 215.75 & 237 & 25.75 & 21.25 & 4.5 \\
\hline
\end{tabular}

\section*{CIRCUIT DESCRIPTION}
This television receiver operates with sixteen tubes, plus one high voltage rectifier, one low voltage rectifier and a rectangular picture tube. (See list above.) There are two dual operating controls on the front panel. On the CHANNEL SELECTOR (outer knob) and FINE TUNING (inner knob)
For convenience in tracing the circuit a block diagram of the complete receiver is shown in Fig. 2.
The antenna input system is designed to operate from either the built-in antenna or from an external antenna nstallation.
The built-in antenna system permits satisfactory local reception in most areas. It consists of three leads. Connect obtained and leave the leads connected in whichever position gives the best results. The best position will vary according to local reception conditions.
This receiver is designed to operate with an external antenna installation using a \(300-\mathrm{ohm}\) transmission line. This transmission line connects to the same antenna terminals (at the back of the cabinet) as the built-in antenna system. When an external antenna system is used, the leads of the built-in antenna system MUST BE DISCONNECTED from the antenna terminal strip.
The received signal is fed to the input of the RF tuner. The tuner is the turret type which switches in a separate set of coils for each channel. A description of the R.F. tuner and its operation will be found in a separate section of this manual
The unity coupled, stagger tuned I.F. amplifier stages amplify both video and sound carriers. At the video detector stage the video intermediate frequencies and the 4.5 mc . beat frequency, which is the difference between the picture carrier intermediate frequency ( 25.75 mc .) and the sound carrier intermediate frequency ( 21.25 mc .), are detected and passed on to the video amplifier stage. Note that the 4.5 mc . beat still contains the FM modulation at this point.
At the video amplifier plate, the 4.5 mc . signal containing the FM carrier is taken off and fed to one stage of IF amplification before being detected at the FM detector stage. The audio frequency signal is then fed through one stage of voltage amplification to the power output stage and speaker.
The video amplifier plate also carries the video signal which is fed to the cathode of the picture tube
Automatic gain control voltage is obtained from the rectified diode current flowing in the AGC detector stage (pins 6 and 7, V7). This negative voltage which is a function of signal level is applied to the grid of the RF amplifier in the tuner and to the first and second IF amplifier stages to control the over-all gain over large variations in received signal levels.


Fig. 2. Circuit Block Diagram
The synchronizing pulses transmitted by the TV station are carried along through the IF amplifier, video detector and video ampliner stage and they are separated from the video signal by the sync separator and DC restor er (right half of 12AU7-V11). The grid and cathode form a diode that clips the sync signal from the composite signal. The voltage developed across the resistor connected between cathode (pin 3, Vir) and ground is a function of the average applied signal and thus provides the required DC restoration. A small positive voltage is applied to the plate of this tube. During conduction, electrons are first drawn to the plate because it is positive with respect to the grid until its voltage drops to approximately that of the grid. At this point the excess electras grevents noise pulses from exceeding the peak amplitude of the sync signal. and prevents noise pulses from exceeding the peak amplitude of the sync signal.
The left half of the \(12 A U 7\) tube (V11) is used to amplify and reverse the phase of the vertical sync pulses that are taken from the plate in positive phase and fed through an integrating network to the vertical sweep oscillator The horizontal pulses are also taken from the plate and cathode in both positive and negative form of equal amplitude and fed to the horizontal phase detector.
A 6AL5 tube is used as a phase detector to compare the phase of the horizontal sync pulses with the phase of the A GALS tube is used as a phase detector to compare the phase of the horizontal derived from the pulses across the secondary of the horizontal output transformer. The D.C voltage developed by the difference in phase of the above two pulses is used to control the frequency of the horizontal oscillator.
A 6SN7 tube is used as a Horizontal oscillator. The output of the oscillator which is a sawtooth with a peaking component is fed to the grid of a 6BG6 Horizontal output tube.
The horizontal output stage is coupled to the horizontal deflection coils of the picture tube by the horizontal out put transformer. The output transformer serves the dual purpose of matching the output of V14 (6BG6) to the horizontal deflection coils of the picture tube and supplying high voltage for the second anode potential required by the picture tube.
When each horizontal sweep line is completed, the sweep voltage in the primary of T9 drops. The collapsing magnetic field thus produced generates a voltage of T9 which is stepped up by autotransformer action by the V15 (1B3) and applied to the high voltage anode of the picture tube. V15 also receives its filament voltage from a secondary winding on T 9 .
The vertical sync pulses taken from the plate of V11 are fed to the Vertical oscillator (right half of V9) through the blocking transformer T6. The blocking oscillator is tripped by the incoming sync signal. The oscillator is brought into sync by adjusting the grid resistor R42 (V. Hold). The left half of this tube is the vertical amplifier The height control in the plate circuit of this tube varies the amplitude of the signal by changing the load resist ance. The signal is then fed to the Vertical output tube. Vertical linearity is controlled in this stage by adjusting the bias on the vertical sweep output tube. The plate of the vertical output tube is connected to a transformer which in turn is connected to the vertical coils in the yoke and provides them with a saw tooth current.

Focusing is accomplished magnetically by an electro-magnet. The load current of the receiver flows through the focusing control and focus coil winding so that the amount of focus coil current is controlled by the setting of the focus control.
FUSE PROTECTION.
There are two fuses in this receiver. The 5 ampere fuse on the primary side of the power transformer protects the power transformer and associated components against damage from overload. For example, if either C42 or C43 should short circuit, the overload on the SU4G rectifier tube and the power transformer would destroy
both components. However, such a short circuit will blow the fuse before any damage is done. The \(1 / 8\) ampere fuse in the B plus lead to T9 protects that transformer and associated tubes from injury in case of overload caused by a short circuit. If either fuse blows, the circuit should be examined to determine the cause and correct it before inserting a new fuse.

\section*{CAUTION}

HIGH VOLTAGES are used in the operation of this receiver. The back cover, while in place, preents accidental contact with this voltage and therefore should not be removed by anyone except a qualified television serviceman.
THE HIGH VOLTAGE LEAD, which supplies 12 to 16 kilovolts to the picture tube, should be omentarily shorted to the chassis whenever it is disconnected for service purposes. This discharges he high voltage filter condenser and prevents a shock hazard when working on the receiver after it has been turned off.
THE PICTURE TUBE is highly evacuated and if broken, glass fragments will be violently expelled. Scratching, chipping, undue pressure, or careless handling such as lifting the tube by its neck is dangerous and should be avoided. If it is necessary to handle the picture tube, use safety goggles and and outer coating of the picture tube. This can be done by connecting the high voltage socket on the tube to the outer coating.

\section*{PICTURE TUBE INSTALLATION}

DISMANILNG front panel control knobs by pulling them straight from their shafts. They are dual control knobs and must be removed in two pieces, removing the outer unit first.
Remove the back cover, speaker plug and antenna leads.
Remove the four chassis bolts holding the receiver chassis in the cabinet and slide the entire assembly from the cabinet.

\section*{REMOVING THE PICTURE TUBE}

\section*{READ All WAPNING NOTICES.}

Disconnect the picture tube socket at the base of the picture tube
Slip the ion trap from the neck of the picture tube past the picture tube base connector.
Remove the rubber sleeve around the neck of the tube under the focus coil.
Loosen the three thumb screws on the yoke mounting.
Remove the steel band at the front rim of the picture tube and carefully slip the neck of the picture tube out of the focus coil and deflection yoke. If the tube fails to slip out smoothly, investigate and remove the cause of the trouble.

DO NOT USE FORCE.

\section*{NSTALLING THE PICTURE TUBE}

Position the tube so that the anode contact is to the left as viewed from the screen.
Slip the neck of the picture tube through the deflection yoke and focus coil. The flare of the tube should seat firmly against the rubber guard on the yoke mounting. The front edge of the tube should be against the turnedcause of the trouble DO NOT FORCE THE TUBE Tily
Temporarily tighten the two outside thumb screws on the yoke mounting so that the yoke mounting is held in erubber guards against the flare of the tube.
Replace the rubber sleeve on the neck of the tube under the focus coil
Slip the ion trap over the neck of the tube. The arrow points toward the screen of the tube. Reconnect the picture tube socket and anode connector.
Check the grounding springs mounted on the chassis under the tube. Be sure that they are making contact with the outside coating of the tube.
Make the adjustments outlined under "Television Service Adjustments" before reassembling the chassis in the cabinet.

\section*{TELEVISION SERVICE ADJUSTMENTS}

\section*{high voltage warning}

Operation of this receiver outside the cabinet or with covers removed involves a shock hazard from the receiver power supplies. Work on the receiver should not be attempted by personnel not thoroughly familiar with the precautions necessary when working on high-voltage equipment. Do not operate the television receiver with its compartment cover removed.

\section*{ION TRAP MAGNET ADJUSTMENT}

If the ion trap has an arrow stamped on its frame, the arrow should point toward the picture tube screen and approximately in line with the second anode contact. Turn the brightness control clockwise and start with the ion trap placed over the small ion trap flags in the picture tube. The ion trap flags are small, rectangular plates in the neck of the picture tube about one inch from the base of the tube. The new "bent gun" tubes do not have ion trap flags. The single magnet ion trap is intended for use with such tubes.
Starting from this position, adjust the trap by moving it forward or backward until the raster (Illuminated area of picture tube) is observed. Rotate it slightly about the axis of the tube as well as back and forth along the neck of the tube until the raster is the brightest. Back off the brightness control adjustment as required. With the brightness control set for slightly above average brilliance, adjust the focus control until the line structure of the raster is clearly visible. Readjust the ion trap for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.

\section*{DEFLECTION YOKE ADJUSTMENT}

If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Push the yoke as far forward toward the tube flare as possible. Tighten the yoke adjustment screw.

\section*{PICTURE ADJUSTMENTS}

A test pattern picture will be required to make the following adjustments. Normal picture contrast and brightness should be maintained during the adjustment for best results.

\section*{foCUS COIL ADJUSTMENT}

If a corner of the raster is shadowed, it indicates that the electron beam is striking the neck of the tube. Adjust the three focus coil adjustment screws for a centered evenly illuminated test pattern. Corner-cutting or shadows at the corners may be caused by misadjustment of either the ion trap magnet or the focus coil, and the two may require simultaneous adjustment to secure the brightest, yet evenly distributed light on the screen. Four selftapping screws on the focus coil U-bracket are provided to permit vertical movement of the focus coil when necessary.
CAUTION: While adjusting the focus coil, make sure that there is no strain exerted by the focus coil on the neck of the picture tube.


Fig. 3. Picture Tube Mounting Detail


Fig. 4. Rear Chassis View

\section*{HORIZONTAL OSCHLATOR ALIGNMENT}

If the horizontal hold control fails to restore sync. the horizontal oscillator adjustment should be reset. To re set this screwdriver adjustment (see Fig. 4, set the horizontal hold control in the center of its range and sync. the picture with the adjustment screw. Check the control action on varions stations and alter the screw adjustment as required to provide positive sync. on all channels with these two controls.

\section*{HORIZONTAL DRIVE ADJUSTMENT}

Adjust the HORIZONTAL DRIVE control counter clockwise (Fig. 4,). as far as possible without causing fold over of the test pattern. (Vertical white line). Insufficient horizontal drive will cause low second anode voltage with consequent loss of picture brilliance. After this adjustment is completed a minor readjustment of the horizontal oscillator may be required.

\section*{HORIZONTAL LINEARITY ADJUSTMENT}

Set the HORIZONTAL LINEARITY control (see L13, Fig. 13) for a symmetrical pattern from left to right.

\section*{WIDTH ADJUSTMENT}

Set the WIDTH control (Fig. 4,)
so that the test pattern fits the horizontal dimension of the picture tube escutcheon.

\section*{HEIGHT ADJUSTMENT}

Set the HEIGHT control (Fig. 4,
so that the test pattern fits the vertical dimension of the picture tube escutcheon. A minor adjustment of the focus coil position may be required to recenter the pattern.

\section*{VERTICAL LINEARITY ADJUSTMENT}

Set the VERTICAL LINEARITY control (Fig. 4) for a symmetrical test pattern in the vertical dimension. A slight readjustment of the height control may be required when making this adjustment.

\section*{focus}

Carefully adjust the receiver for best picture definition and set the picture and brightness controls for normal picture brilliance. Adjust the FOCUS control (Fig. 4,) for maximum picture definition watching the wedges of the test pattern. An alternate method for focusing consists of switching to an unused TV channel and with the brightness control turned up so that the raster is illuminated, set the focus control for well defined scanning lines.

\section*{TELEVISION ALIGNMENT PROCEDURE}

\section*{PRELIMINARY}

This aligoment is an exacting procedure and should be undertaken only when necessary. Before fully deciding that alignment is necessary and before removing the chassis from the customer's home:
1. Be sure of the antenna installation.
2. Check all operating controls and adjustments including the channel selector.
3. Check reception on all channels.
4. Check tubes by substitution of known good tubes.

In the repair shop.
5. Substitute a known good picture tube.
6. If the picture is still inadequate, observe the overall IF response curve of the receiver. (See Fig. 5).

\section*{TEST EQUIPMENT REQUIRED}
1. Signal generator (with an output variable and at least 0.1 volt max.) to provide the following frequen cies:
(a) 4.5 mc Sound IF
(d) 25.6 mc 2nd IF (T1)
(b) 21.25 mc Trap (L14)
(e) 23.3 mc 3 rd IF (T2)
(c) 22.8 mc 1st IF (L15)
(f) 24.6 mc 4th IP (T3)
2. R.F. Sweep Generator with a frequency range from 40 to 220 megacycles with a sweep width of 10 megacycles and an adjustable output of at least 0.1 volts.
3. Crystal controlled or crystal calibrated markers for the sound carrier of each channel. Picture carrier markers are desirable but not necessary.
4. Cathode ray oscilloscope, preferably with a wide band vertical amplifer and an input calibrating source.
5. Vacuum tube voltmeter (VTVM).


ALIGNMENT TABLE
DISCRIMINATOR AND SOUND I-F ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|}
\hline Stop & \[
\begin{gathered}
\text { Connect S1gnal } \\
\text { Gomereter to }
\end{gathered}
\] & \[
\begin{aligned}
& \text { slemel Gon. } \\
& \text { Preq. Me. } \\
& \hline
\end{aligned}
\] & Connect Volitmeter to & \[
\begin{aligned}
& \text { Miscellonoovs } \\
& \text { Connetions oned } \\
& \text { Instrections }
\end{aligned}
\] & Adjuet \\
\hline 1 & Video Grid (pin 1, V-4) & 4.5 . 1 volt output & \[
\begin{gathered}
\text { Pin } 2 \\
V-7
\end{gathered}
\] & Meter on 10 Volt scale & T4 (bottom) and L6 for max. on meter. Iffor min. \\
\hline 2 & Video Grid (pin 1, V-4) & \begin{tabular}{l}
4.5 \\
. 1 volt output
\end{tabular} & See Note 1 & Meter on 3 volt scale & T4 (top) for zero on meter \\
\hline
\end{tabular}

NOTE 1: Connect two 100 K resistors in series. Connect one end to pin 2 of V-7 (6T8) and the other end
to ground. Connect the hot side of the VTVM to center of the two 100 K resistors and ground side to juneto ground. Connect the hot side of the VTVM to center of the two 100 K resistors and ground side to junction of R29 ( 150 ohms) and R28 ( 47 K ohms).

ALIGNMENT PROCEDURE
I-F ADJUSTMENTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Stop Ne. & Connect Signal Gonerator to & Signal Gem. Freq. Mc. & \[
\begin{array}{|c}
\text { Connect } \\
\text { Voltmoter to } \\
\hline
\end{array}
\] & Misceiflaneous Connectlons ond Instructions & Adjust \\
\hline 3 & \multirow{5}{*}{Raise tube shield on V18 (tuner. oscillator), so that it is not grounded, then clip the "hot" lead of the signal generator to the tube shield.} & 24.6 & \multirow{5}{*}{Junction R13 and L2} & \multirow{5}{*}{Disconnect the antenna. Set channel selector to channel on which there is no signal and no interference (such as harmonics of I.F.).} & T3 (top)
maximum \\
\hline 4 & & 23.3 & & & \[
\begin{aligned}
& \text { T2 (top) } \\
& \text { maximum }
\end{aligned}
\] \\
\hline 5 & & 25.6 & & & T1 (top) maximum \\
\hline 6 & & 22.8 & & & \[
\underset{\text { maximum }}{\mathrm{L} 15}
\] \\
\hline 7 & & 21.25 & & & \[
\underset{\text { minimum }}{\text { L14 }}
\] \\
\hline
\end{tabular}

\section*{R. F. TUNER}

DESCRIPTION
The R. F. Tuner is a separate sub-chassis of the receiver. On this sub-chassis are located the R.F. amplifier, R.P. R.F., converter, oscillator, fine tuning control, channel drum, sound channel trap, cenverter transformer, and all R.F., converter, and oscillator adjustments. This tuner operates on all the television channels number two thru aumber thirteen. Its function is to select the desired picture and sound carriers, amplify and convert to the proper I.F. frequency. See Fig. 14

\section*{TUBE COMPLEMENT}
\begin{tabular}{lcl} 
No. & Tube & Function \\
V17 & 6AG5 or 6BC5 & R.F. Amplifier \\
V18 & \(6 J 6\) & Converter and Oscillator
\end{tabular}

\section*{R.F. AMPLIFIER - CONVERTER}

Referring to the Schematic diagram L20 is the center tapped primary coil inductively coupled, (by being wound on the same form) to L19. L19 is the grid coil of V17. It is series tuned to the desired channel by C59 fixed condenser and C65 variable condenser. It is also shunt tuned by the input capacitance of V17. The band-pass response of L19 is increased by shunting it with a 3900 ohm resistor R76.
In the plate circuit of the R.F. amplifier there is a coil L18 that is shunt tuned by the output capacitance of the tube and the variable capacitor C60. This coil is tuned to the same frequency as L19 and its band-pass is broadened by the \(\mathbf{1 0 , 0 0 0}\) ohm shunt resistor R77.
The coil L18 is inductively coupled (by being wound on the same form) to coil L17 in the grid of the converter tube. Coil L17 is shunt tuned to the same frequency as L 18 by the input capacitance of V18 and by the variable capacitor C61.

\section*{oscillator}

The oscillator coil L16 is inductively coupled to \(\mathrm{L}_{17}\) (by being wound on the same form). This provides the proper injection voltage. The coil is series tuned to its proper frequency by means of the variable capacitor C62 shunted by the fine tuning capacitor C63. The coil is also shrant tuned by the fixed capacitor C64 and its inductance is varied by means of an adjustable brass core.

\section*{BAND SWITCHING}

This tuner is switched from channel to channel by means of a rotating dram. This provides a different set of coils, L16, L17, L18, L19 and L20 for each channel. The oscillator tuning coil (L16) for each chanmel is indicoils (L17, L18, L19 and L20) for each channel are fixed inductances. For each channel, these fixed inductances are tuned to the proper frequency by capacitors C59, C60, C61, C65 and the tube and wiring capacitances, as explamed above. Since each set of coils must tune to its proper frequency in conjunction with only one set of tuning capacitances, the coil inductances must be very accurately adjusted at the factory. For this reason, it in important that the coils be handled with great care. When working on the tuner, do not do anything which will disturb these coils or shange their inductance.

\section*{TUNER ALIGNMENT PROCEDURE}

Before attempting to align the R.F. tuner it is necessary that the I.F. amplifier be correctly aligned. It is desirable that all adjustments of the trimmers be made at channel No. 12. To align the tuner proceed as follows:-
(1) Connect an R.F. sweep generator to the antnnna terminals
(2) If the generator is not provided with internal crystal controlled or crystal calibrated markers connect a marker generator to the antenna terminals.
(3) Connect a Cathode Ray Oscilloscope across the picture detector diode load resistor R13. (8200 ohms)
(4) Adjust the R.F. generator for a 10 MC . sweep width with a center frequency at approximately 207 MC .
(5) Adjust the marker generator for the sound carrier of channel 12 (209.75 MC.).
(6) Set the range switch to channel 12 with the fine tuning in the middle of its range.
(7) Set the PICTURE control for one volt measured from pin "7" to chassis. (V4-6AC7).
(8) Turn the receiver on and allow it about 15 minutes for the receiver to warm up and stabilize.
(9) Align C65, C60 and C61 for a curve similar to that shown in FIGURE 7.
(10) Adjust C62 until the sound carrier marker is at the base of the curve.
(11) Change the Station selector to the various channels and using the correct setting of the R.F. generator to center it in the channel and the correct marker frequency for the sound carrier, adjust the brass core in L16 so that the sound marker will be in the correct position on the curve. FIGURE 7.
NOTE: Each core is independent of the one in another channel. This enables you to adjust any channel without changing the adjustment of all other channels.
(12) This completes the alignment of the R.F. tuner with the exception of the converter transformer and sound channel trap which you have aligned when you aligned the I.F.


\section*{SERVICE NOTES}

\section*{READJUSTMENT OF R.F. OSCILLATOR WITHOUT EQUIPMENT}
(1) Tune the receiver to the channel you wish to align.
(2) Turn the fine tuning control to the center position.
(3) Adjust the oscillator brass core, located in the hole on the upper right side of the front of the tuner chassis, for the best picture.
(4) Proceed to the next channel you wish to adjust and repeat the operation above, etc. Each adjustment is independent so that you may adjust any one or all channels as desired.

\section*{CHANGING TUBES}

Due to the high frequencies at which the receiver operates the adjustments are critical and may be affected by a tube change. In replacement, if an old tube can be matched for frequency by trying several new ones, this pracice is recommended. At best, however, it will probably be necessary to adjust the oscillator slug for each active channel, when changing the oscillator tube.

\section*{REMOVING BOTTOM COVER OF TUNER}

The R.F. Tuner used with this receiver has a bottom cover plate. The cover plate is attached to the tuner at the rear by means of two tabs which fit into slots in the back apron of the tuner. At the front it is held in place by two screws which fasten to threaded holes in the front apron of the tuner. To take off the bottom cover, remove engage the tabs and the cover will come pull down slightly at the front, then slide the cover backward to disthe bottom cover off. To facilitate removal, two screwdriver access holes have been provided in the front apron of the receiver chassis. Insert a screwdriver through these holes to remove the screws at the front. It is, of course, necessary to remove the "V-shaped" shaft supporting bracket first. It is fastened to the chassis by means of two self-tapping screws.
Unfortunately the utility of the screwdriver access holes was not realized at the beginning of production and some chassis were made without them. It is suggested that servicemen in the field will find it more practical to drill the holes in such chassis than to remove the tuner from the chassis (each time the tuner is serviced) in order to get the bottom cover off. Therefore, the data for the location of the holes is given in Fig. 9 . The third hole shown in Fig. 9 (at the top) permits removal of the screw which holds the Fine Tuning ground plate in place.
The tuners used in later production do not use screws at the front to fasten the bottom cover. Instead, two dimples (or detent bumps) are stamped into the bottom cover at the same position that the screw holes occupy in the earlier model tuners. These dimples engage matching holes in the front apron of the tuner chassis. To remove thir merwise removal is the sams dow engaged. Otherwise, removal is the same as before.

\section*{REMOVING CHANNEL COIL UNITS}

To remove a channel coil unit insert a screwdriver blade between the coil retainer spring (on the outside end of each unit) and the turret plate. Twist the blade away from the turret and lift the end of the coil upward and remove. Do not lift the spring any more than is necessary.

\section*{OSCILLATOR SLUG IN TOO FAR}

If the oscillator slug is tuned in too far it will become disengaged with its retaining spring and fall into the coil To correct this condition proceed as follows:-
(1) Remove the channel coil unit as described above
(2) Move the slug retaining spring to one side.
(3) Tap the coil assembly until the slug slips forward.
(4) Set the slug retaining spring into position. It should rest firmly against the slug.
(5) Replace the channel coil unit.

\section*{REMOVING THE TURRET ASSEMBLY}

To remove the turret assembly proceed as follows:-
(1) Remove the screw holding the fine tuning control grounded stator plate.
(2) Slide the fine tuning rotor, spring, and bushing from the turret shaft.
(3) Remove the shaft retainer spring from the front and rear of the tuner.
(4) Grasp the turret shaft and slip the turret from the tuner chassis being careful not to loosen the deten roller.
(5) Reassemble by reversing the above operations.

\section*{RESETTING THE DETENT SPRING}
(1) Loosen the detent mounting screw.
(2) Grasp the turret and the roller end of the detent spring while observing the contacts on the contact plate. Rotate the drum slightly in both directions until a point is reached where the contacts appear to have the greatest rise.
(3) Check to see that the detent roller is setting in the center of the depression in the turret detent plate
(4) Tighten the detent spring mounting screw.
(5) Rotate the turret and check the contacts on all channels.

\section*{TUBE VOLTAGES}

All voltages are measured with a D.C. Vacuum Tube Voltmeter and with the PICTURE Control and BRIGHT NESS Control in the minimum position, unless otherwise specified. No incoming signals are being received at the time the measurements are being made. The following voltages were taken on a production
117 volts 60 cycle \(A C\) input. A variation of \(10 \%\) in the voltages should be considered normal.
\begin{tabular}{|c|c|c|c|}
\hline Tube No. & Tube Type & Function & Element \\
\hline V17 & \begin{tabular}{l}
6AG5 \\
or 6BC5
\end{tabular} & \begin{tabular}{l}
R.F. \\
Amplifier
\end{tabular} & \begin{tabular}{l}
Plate \\
Screen \\
Grid \\
Cathode
\end{tabular} \\
\hline V18 & \(1 / 26 J 6\) & Converter & \begin{tabular}{l}
Plate \\
Grid \\
Cathode
\end{tabular} \\
\hline & \(1 / 26 \mathrm{~J} 6\) & Oscillator & \begin{tabular}{l}
Plate \\
Grid
\end{tabular} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline
\end{tabular}

RESISTANCE CHART
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{9}{|c|}{pin numbers} \\
\hline SChEMATIC LOCATION & FUNCTION & TUBE & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline V1 & 1 ft 1 F . & 6CB6 & 1.5 M & 68 & 0 & 0 & 50K & 50 K & 0 & & \\
\hline V2 & 2nd I. F. & \({ }^{6} \mathbf{C B 6}\) & 1.5 M & 68 & 0 & 0 & 50K & 50K & 0 & & \\
\hline V3 & 3rd I. F. & 6 686 & . 2 & 82 & 0 & 0 & 50K & 50K & 0 & & \\
\hline V4 & Video Amp. & 6AC7 & 0 & 0 & 0 & 500k & 150 & 50K & 0 & 520k & \\
\hline V6 & Audio Output & 6AQ5 & 280K & 50\% & 50k & 50k & 510 K & 510 K & 280K & & \\
\hline V7 & Ratlo Defector a Ist Audlo & 678 & inf. & 12K & Inf. & 0 & 0 & 600K & 0 & 5 m & 320K \\
\hline V8 & Sound I. F. & 6AU6 & 150k & 50K & 50 K & 50k & 530k & 530k & 50K & & \\
\hline v9 & Vertical Oscillator & 6SN7 & 2 M & 530K & 0 & 2 m & * & 0 & 0 & 0 & \\
\hline V10 & Phase Detector & 6AL5 & 5 M & 5 M & 0 & 0 & 15K & 0 & 15K & & \\
\hline V11 & Sync Separator-Amplifier & \(12 \mathrm{AU7}\) & 700K & 1.2 M & 22K & 0 & 0 & 56K & 700k & 2.2 K & 0 \\
\hline V12 & Low V. Rectifier & 5046 & linf. & 510 K & Inf. & 25 & Inf. & 25 & Inf. & 510K & \\
\hline V13 & Horizontal Oscillator & 6SN7 & 5 m & 570K & 1.5 K & 130 K & * & 1.5K & 0 & 0 & \\
\hline V14 & Horlzontal Output & 6866 & * & 0 & 50 & * & 1 M & Inf. & 0 & * & \\
\hline V1s & High V. Rectifior & 183 & & Inf. & & Inf. & & Inf. & Inf. & & \\
\hline V16 & Damper & 6W4 & Inf. & Inf. & * & * & 510 K & Inf. & Inf. & Inf. & \\
\hline & & 654 & Inf. & 1K & 2 M & 0 & 0 & 2 M & Inf. & Inf. & 510 K \\
\hline
\end{tabular}

Conditions: 1. All readings taken with a vacuum tube voltmeter. 3. Swlith OFF; line cord disconnected.
2. All controls at "normal" setting.
4. All tubes left in sockets
 circuit. If the ohmmerer is leff conoected long eoough, it will evencually sive a readuag which is the leakage resistance of all the condeasers. The forsegoing read




Fig. 9. See "Removing Bottom Cover of Tuner"
Page



John F. Rider

\section*{SERVICE SUGGESTIONS}

NO RASTER ON PICTURE TUBE-If raster cannot be obtained, check below for possible causes.
1. Ion trap magnet adjustment is incorrect.
2. Check \(1 / 8 \mathrm{amp}\). fuse in plate circuit of V14.
3. No high voltage-check V14 (6BG6) and V15 (1B3-GT) tubes and circuits. If the horizontal deflection circuits are operacing as evidenced by horizontal output transformer (T9), the trouble can be isolated to the high voltage rectifier ciruit (V15). Either the high voltage winding (beween red and blue leads) on T9 is open, tube V 15 is defective or its filament circuit is open.
4. Damper tube V16 (GW4) defective. Plate voltage supply for V14 (6BGG) horizontal output tube is obtained through the damper tube. Check tube and heater winding on power transformer ( T )
5. Defective picture tube. Heater open, cathode re-
turn circuit open.
6. No plate voltage. Electrolytic capacitor shorted. underneath the chassis.

HORIZONTAL DEFLECTION ONLY - If only horizontal deflection is obtained as evidenced by a straight line across the face of the picture tube, it can be caused by the following:
1. Vertical oscillator V9 (6SN7-GT) inoperative. Check voltages on grid and plate.
2. Vertical output transformer (T5) open.
3. Yoke vertical coils (L7) open.
4. Vertical blocking transformer (T6) open or shorted.
5. Vertical output tube V19 (6S4) defective.

POOR VERTICAL LINEARITY-If adjustment of the vertical height and linearity controls will not correct this condition, any of the following may be the cause:
1. Vertical output transformer (T5), capacitors C30, C31, C32, or resistor R38.
2. V9 (6SN7GT) defective; check voltages.
3. Low plate and bias voltages. Check rectifier tube and capacitors in B supply.

POOR HORIZONTAL LINEARITY-Check the following
1. V14 (6BG6) screen voltage.
2. Horizontal drive (C56) for incorrect adjustment.
3. Horizontal output tube V14 (6BG6).
4. Damper tube V16 (6W4).

\section*{TRAPEZOIDAL OR NON-SYMMETRICAL RASTER-} Check for:
1. Improper adjustment of focus coil or ion trap magnet.
2. Defective yoke.

WRINKLES ON LEFT SIDE OF RASTER-This condition can be caused by incorrect adjustment of the horizontal drive C56.

SMALL RASTER-This condition can be caused by:
1. Low \(B\) or line voltage.
2. Insufficient output from horizontal output tube V14 (6BG6). Replace tube.
3. Insufficient output from vertical output tube V19 (6S4) or V9 (6SN7GT). Replace tube.
RASTER; NO IMAGE, BUT ACCOMPANYING SOUND-This condition can be caused by:
1. No signal on picture tube cathode. Check for open coupling condenser C13.
2. Bad contact to picture tube or lead to socket broken.
SIGNAL APPEARS ON PICTURE TUBE CATHODE BUT IMPOSSIBLE TO SYNCHRONIZE THE PICTURE HORIZONTALLY AND VERTICALLY-A condition of this nature can be caused by:
1. Defective sync limiter V11 (12AU7) or phase detector V10 (6AL5)
2. If tubes are O.K. check voltages and associated circuits.
SIGNAL ON PICTURE TUBE CATHODE AND HORIZONTAL SYNC ONLY-Check:

Vertical integrating network capacitors C31, C34, C35, and resistors R44, R45, R46.
PICTURE STABLE BUT WITH POOR RESOLUTIONIf the picture resolution is not up to standard, it may caused by any of the following
1. Defective picture detector (crystal 1N34) or video amplifier V4 (6AC7)
2. Open video peaking coil. Check coils L1, L2, L3, L4 and L5 for continuity. Note that L3 and L5 have shunting resistors. L4 is 4.5 MC trap.
3. Leakage in V4 (6AC7) grid capacitor C 11 , or C13 on V5 (picture tube)
f the above components are not found to be defecive, check the following
A. Check all potentials in video circuits.
B. Check the picture tube grid for poor or dirty contacts.
C. Check adjustment of focus control R58. It should be effective on either side of proper focus.
D. Check and re-align if necessary, the picture IF. and the local oscillator.
E. Check for proper coils in turret switch.

\section*{PICTURE SMEAR}
1. Normally, smear can be attributed to phase shift at the low frequency end of the video characteristic. This can be caused by improper values of resistors and capacitors in the video circuits.
2. This trouble can also originate at the transmitter. Check reception from another station.

\section*{PICTURE JITTER:}
1. Vertical instability may be due to loose connections or noise received with the signal.
2. Horizontal instability may be due to unstable transmitted sync or to noise.

\section*{TELEVISION RECEIVER}

\section*{ALTERNATE TUBES FOR VIDEO AMPLIFIER STAGE}

The 6AC7 Video Amplifier tube (V4) may be replaced by either a 6AH6 or a 6CB6. When either tube substitution is made, coils L3 and L5 must be changed as well as the socket and the socket wiring. When the 6CB6 is used, resistor R15 must be changed in addition to the coils.

\section*{SUBSTITUTION OF THE 6AH6}

REMOVE:
L3 10-566 Coil, peaking, 186 uh (gray) (on 12 K resistor)
L5 10-565 Coil, peaking, 380 uh (purple) (on 10 K resistor)
ADD:
L3 10-559 Coil, peaking, 230 uh (black) (on 18K resistor)
L5 10-548 Coil, peaking, 650 uh (white) Ion 10K resistor) 68-49 Socket, miniature, 7 pin


SUBSTITUTION OF THE 6CB6
REMOVE:
L3 10-566 Coil, peaking, 186 uh (gray) (on 12K resistor)
L5 10-565 Coil, peaking, 380 uh (purple) (on 10K resistor)
R15 60-776 Resistor, carbon, 82 ohm, \(1 / 2 \mathrm{w} .10 \%\) 68-18 Socket, octal

ADD:
L3 10-567 Coil, peaking, 210 uh (brow:) (on 15K resistor)
15 10-558 Coil, peaking, 375 uh (red)
R15 60-752 Resistor, carbon, 100 ohm, \(1 / 2 \mathrm{w} .10 \%\) 68-49 Socket, miniature, 7 pin

ALTERNATE TUBES FOR THE No. 3 I. F. STAGE
The 6CB6 I.F. Amplifier Tube may be replaced by a 6AG5 or 6BC5. When this substitution is made, the ground connection on pin 7 of the socket will be removed.

1. Use Correct Order Form.
2. On the Purchase Order always give the following information
(1) PART NUMBER (number printed on the part if differeot from that shown in this list) and DESCRIP. TION for cach parr ordered When no part
give PRICE of part (indicate if no selling).
(2) The CHASSIS NUMBER, which is 528.631 is found on a metal plate
at the rear of the chassis
REPAIR PARTS \& PRICE LIST
 C3, C16 C3, C26; C42,
C43,
C44, C49 C43,
C9
C 10
C 9
\(\mathrm{C10}\)
\(\mathrm{C11}, \mathrm{C} 3\)

\(\underset{\substack{\text { R1, R8, } \\ \text { R2, } \\ \text { R34 }}}{ }\)
R1, \(\mathbf{R 8}, 1\)
R2,
R3,
R3,
R7
\(\mathrm{R}, \mathrm{R7}\)
\(\mathrm{R4} 4\)
\(\mathrm{R}, \mathrm{R} 67\)
RS, R67
RG, R9,R69
R10, R15
R10, R1S
R11
R11
R12, R14, R49
R13, R37, R44, R45
R13, R37, R44, R45
R16, R27
\({ }_{\text {R18 }}^{\text {R17, }} \mathbf{R 7 2}\)
\(\left.\begin{array}{l}\text { R19, R22, R33, } \\ \text { R47, R48, R65 }\end{array}\right\}\)
R47, R48,
R20, R66
R21
R23
R23
R24,
R25
R25
R2S,
R23
R26
R28
R29
R30
R29
R30
R31
R31, R
R35
R36
R38
R38

\section*{CAPACITORS}

T16-177 Capacitor, ceramic; 5000 mmid
T16-188
T18-295
T15-186
T15.223

\section*{T155-263
T16-189}

T16-212
T188.76
T18-299
\begin{tabular}{l} 
T18.276 \\
T18.299 \\
\hline
\end{tabular}

\section*{\(\mathrm{T} 16-198\)
\(\mathrm{~T} 18-292\)
\(\mathrm{~T} 15-200\)}
\begin{tabular}{l} 
T1s-200 \\
T15-228 \\
T 15.230 \\
\hline
\end{tabular}
Capacitor, tubular; . 2-400 v. \(85^{\circ} \mathrm{C}\)
Capacitor, ceramic; 100 mmfd
Capacior, ceramic; 10 mmfd.
Capacitor, tubular; \(.05-400 \mathrm{v} .85 \circ{ }^{\circ} \mathrm{C} \ldots .\).
Part of L4 capacitor, ceramic 120
Capacitor, tubularit, \(2-600 \mathrm{v}. 85^{\circ} \mathrm{C} \ldots\)
Capacitor, electrolytic

Capacitor, electrolytic; 40 mitd. 250 v
Capacitor, tubular;
\(.002-600 \mathrm{v}. 85^{\circ} \mathrm{C}\).

Capacitor, , mixca; 470 mmfd.
Capacitor, ceramic; 2000 mmfd.
Capacitor, ceramic; 2000 mmfd.
Capacitor, mica; 220 mmfd.
Capacitor, , meramica; 22 mmfd. 5 mmdd.


Capacitor, molded tubular; \(22-600\) v.
Capacitor,
Capabar,



Capacitor, ceramic; 1000 mmfd .
Capacitor, tubular;
Col-600 v. 85
Capacitor, ceramic, 33 mmfd .
Capacitor, silver mica


Capacitor, tubular; . \(05-1000 \mathrm{v} .85{ }^{\circ} \mathrm{C}\)

Capacitor, electrulytic; 8 mfli, 500 vi
Capacitor, trimmer; HORIZONTAL DRIVE.
Capacior, \(\begin{gathered}\text { trimmer; } \\ \text { Capacitor, } \\ \text { electrolytic; } \\ \text { HORIZ }\end{gathered}\) mfd. 200 v .
pacitor, electroytyic; 60 mfd. 200 v .
\begin{tabular}{l} 
RESISTIORS \\
\hline
\end{tabular}
Resistor, carton; 4.7 K ohm, \(1 / 2 \mathrm{w}\).100
Resistor, carbon; 680 ohm, \(1 / 2 \mathrm{w} .100\)
Resistor, carbon; 56 ohm, \(1 / 1 / 2 \mathrm{w} 10 \% \\).
Resistor, carbon; 6 RK
Resistor, carbon; 6.8 Kohm ,
Resistor, carbon; 1 megohm,
Resistor, carbon
Resistor, carbon; 100 ohm, \(1 / 2 \mathrm{w}\).
Resistor, carton: \(82 \mathrm{ohm}, 1 / 2 \mathrm{w}\).
Restor,
Resistor, carbon; 120 K ohm, \(1 / 2\)
Resistor) carbon; 170 K ohm,
Rcsist
Ressistor, carbon; 8.2 K ohm, \(1 / 2 \mathrm{w} .10 \%\)..
Resistor, variable; (dual); VOLUME
Resistor, variable: (dual); VOLUME 500 K
CONTRAST 1000 ohm
Resistor, carbon; 10 K ohm, \(1 / 2 \mathrm{w} .10 \mathrm{C} ;\)
Resis orf, carton; 6.8 K uhm, \(2 \mathrm{w} .10 \%\)
Resistor, cartion; 100 K ohm, \(1 / 2\) w. 10
Resistor, variahle: 50 K ohm, BRILLIANCE and
HOIONTAL HOLD


Resistor, carbon; 4.7 menghm \(1 / 1 / 2\),
Resistor, carbon; 12 K ohm, \(1 / 2 \mathrm{w} .1\)


Resistor, variable; \(2.5 K\) ohm,
VERTICAL LINEARITY
Resistor, carron; 2.2 megohm, \(1 / 2 \mathrm{w}\).



© John F. Rider

\section*{CAUTION}

HIGH VOLTAGES are used in the operation of this receiver. The back cover while in place, prevents accidental contact with this voltage and therefore should ot be removed by anyone except a qualified television servicman

THE HIGH VOLTAGE LEAD, which supplies 12 to 16 kilovolts to the picture tube, should be momentarily shorted to the chassis whenever it is disconnected for a shock hazard when working on the receiver after it has been turned off.

THE PICTURE TUBE is highly evacuated and if broken, glass fragments will be violently expelled. Scratching, chipping, undue pressure, or careless handling such as lifting the tube by its neck is dangerous and should be avoided. If it is necessary to handle the picture tube, use safety goggles and heavy gloves. Be sure to discharge the voltage developed across the capacitor formed by the inner and outer coating of the picture tube. This can be done by connecting the high voltage socket on the tube to the outer coating.

fig. 4. Side View of Chassis.


Fig. 5. Rear View of Chassis.

\section*{HORIZONTAL OSCILLATOR ALIGNMENT}

If the Horizontal Hold control fails to maintain sync, the horizontal oscillator should be reset. To reset this screwdriver adjustment, set the horizontal hold control in the center of its range and sync the picture with the horizontal oscillator adjustment screw. Check the control (hanels and alter the screw adjustment as required to provide sync on all channels with these two controls.

\section*{DEFLECIION YOKE, ION TRAP AND FOCUS ADJUSTMENT}

Following is the proper procedure for adjusting the Deflection Yoke, Ion Trap and Focus.
The receiver should be turned on but not connected to an antenna. These steps should then be taken in the following order
. The Deflection Yoke should be moved as far forward as possible on the neck of the CRT
2. The Brilliance control should be turned to maximum (clockwise) and the Picture control should be turned to minimum (counterclockwise) 3. The Ion Trap should be rotated and at the same time moved forward and backward to find the position which produces the brightest raster 4. The Deflection
5. The Brilliance control should be rotated so that the top and bottom edges of the raster are parallel to the top of the chassis
5. The Brilliance control should now be reduced (ccw) to a point where the raster is slighly above normal brilliance.
6. Center the picture within the opening of the mask and eliminate shaded corners by adjusting the three positioning wing-nuts on the focus two may require simultaneous adjustment to secure the brightest, yet evenly distributed light on the screen. Four self-tapping screws on the focus coil U-bracket are provided to permit vertical movement of the focus coil when necessary.

HEIGHT, WIDTH AND LINEARITY
To adjust the overall size and linearity of the picture it is almost mandatory that a test pattern transmitted from a local station be used. Linearity adjustments, particularly, cannot be accurately made on moving transmissions. It should also be remembered that in areas where more han one station is being received, that pictures transmitted from different stations will vary slightly in size. The smallest transmitted picture The Width control (in He mask.
The Height and Victure that will fill the mask horizontally
At this point the Focus adjustment previously set, should be retouched for maximum definition of the lines in that will fill the mask vertically. pattern. Proper adjustment and alignment of the receiver should result in clear and sharp definition.

\section*{TELEVISION ALIGNMENT PROCEDURE}

\section*{PREIMINARY}

This alignment is an exacting procedure and should be undertaken only when necessary. Before fully deciding that alignment is necessary and before removing the chassis from the customer's home:
1. Be sure of the antenna installation.
2. Check all operating controls and adjustments including the channel selector.
3. Check reception on all channels.
4. Check tubes by substitution of known good tubes.

\section*{TEST EQUIPMENT REQUIRED}
1. Signal generator (with an output variable and at least 0.1 volt max.) to provide the following frequen cies:
(a) 4.5 mc Sound IF
(d) 25.5 mc 2nd IF ( T 1 )
(b) 21.75 mc Trap (L14)
(e) 23.8 mc 3rd IF (T2)
2. R.F. Sweep Generator with a frequency range from 40 to 220 megacycles with a sweep width of 10 megacycles and an adjustable output of at least 0.1 volts.
3. Crystal controlled or crystal calibrated markers for the sound carrier of each channel. Picture carrier markers are desirable but not necessary.
4. Cathode ray oscilloscope, preferably with a wide band vertical amplifier and an input calibrating source.
5. Vacuum tube voltmeter (VTVM).

ALIGNMENT PROCEDURE
I=F ADJUSTMENTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Stop No. & Connect Signal Generator to & SIgnal Gen. Fraq. Mc. & \[
\begin{array}{|c|}
\text { Connect } \\
\text { Volfmefer to } \\
\hline
\end{array}
\] & Miscelianeous Connections and Instructions & Adjust \\
\hline 3 & \multirow{5}{*}{Raise tube shield on V18 (tuneroscillator), so that it is not grounded, then clip the "hot" lead of the signal generator to the tube shield.} & 26.1 & \multirow{5}{*}{\begin{tabular}{l}
Junction \\
R13 and L2
\end{tabular}} & \multirow{5}{*}{Disconnect the antenna. Set channel selector to channel on which there is no signal and no interference (such as harmonics of I.F.).} & T3 (top) maximum \\
\hline 4 & & 23.8 & & & T2 (top) maximum \\
\hline 5 & & 25.5 & & & T1 (top) maximum \\
\hline 6 & & 24.0 & & & \[
\underset{\text { maximum }}{\text { L15 }}
\] \\
\hline 7 & & 21.75 & & & \begin{tabular}{l}
L14 \\
minimum
\end{tabular} \\
\hline
\end{tabular}

\section*{ALIGNMENT TABLE}

DISCRIMINATOR AND SOUND I-F ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { stop } \\
& \text { No. }
\end{aligned}
\] & Connect Signal Gonerator to & Signed Gon. & \[
\begin{gathered}
\text { Connoct } \\
\text { Voltmoter to }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Mlaselifanserse } \\
& \text { Connefions and } \\
& \text { Instructions }
\end{aligned}
\] & Adjust \\
\hline 1 & \begin{tabular}{l}
Video Grid \\
(pin 1, V-4)
\end{tabular} & \begin{tabular}{l}
4.5 \\
. 1 volt outpu:
\end{tabular} & \[
\begin{gathered}
\text { Pin } 2 \\
\text { V-7 }
\end{gathered}
\] & Meter on 10 Volt scale & T4 (bottom) and L6 for max. on meter. L4 for min. \\
\hline 2 & \begin{tabular}{l}
Video Grid \\
(pin 1, V-4)
\end{tabular} & 4.5 . 1 volt output & See Note 1 & Meter on 3 volt scale & T4 (top) for zero on meter \\
\hline
\end{tabular}

NOTE 1: Connect two 100 K resistors in series. Connect one end to pin 2 of V.7 (6T8) and the other end to ground. Connect the hot side of the VTVM to center of the two 100 K resistors and ground side to junc-
tion of R29 ( 150 ohms) and R28 ( 47 K ohms).
\[
\begin{array}{ll}
\text { 2110A } & \text { Brown Leatherette Table Model Television Receiver with Built-in Antenna } \\
2111 & \text { Black Leatherette Table Model Television Receiver with Built-in Antenna } \\
\text { 2112 } & \text { Blonde Leatherette Table Model Television Receiver with Built-in Antenna } \\
\text { 2115B } & \text { Mahogany Table Model Television Receiver with Built-in Antenna } \\
\text { M150B } & \text { Mahogany Consolette Model Television Receiver with Built-in Antenna } \\
2160 & \text { Mahogany Consolette Model Television Receiver with Built-in Antenna } \\
2162 & \text { Blonde Wood Consolette Model Television Receiver with Built-in Antenna }
\end{array}
\]

R.F. TUNER

TUNER


Fig. 2 Top View of Cascode Tuner T95-30.


Fig. 4 Exploded View Showing Location of Parts on T95-28, T95-29 and T95-30 R.F. Cascode Tuners.
© John F. Rider


© John F. Rider


Top View of. 12
\(528.632-3\)
\(528.632 A-3\)
\(528.632 \mathrm{~A}-3\)
\(528.632-4\)

Fig. 13
Bottom View of Chassis with Parts Identified by Schematis lacation for Chassis Nos 528.632 A 528.632 .4


\section*{REPAIR PARTS LIST}

\section*{HOW TO ORDER REPAIR PARTS}
1. Use Correct Order Form.
. On the Purchase Order always give the following information:
(i) PART NUMBER (number printed on the part if different from that shown in this list) and DESCRIP. TION for each part ordered. When no part number is assigned, order by description and rating. Also give PRICE of part (indicate if no selling).
(2) The CHASSIS NUMBER. This number is found on a metal plate (pictured on page one) at the rear of the chassis.


\begin{tabular}{|c|c|c|}
\hline COMP & REPAIR & S LIST - CHAS SIS 528.632 and 528.632A - (Cont'd) \\
\hline Schematle Locafion & \[
\begin{gathered}
\text { Part } \\
\text { Number }
\end{gathered}
\] & Description \\
\hline R21 & T60-816 & Resistor, 3.3K ohm, \(2 \mathrm{w} .10 \%\). \\
\hline R23 & T60-788 & Resistor, 180 K ohm, \(1 / 2 \mathrm{w} .5 \%\) \\
\hline R24, R62, R79 & T60-747 & Resistor, 270 K ohm, \(1 / 2 \mathrm{w} .10 \%\) \\
\hline R25, R50 & T60-779 & Resistor, 4.7 megohm, \(1 / 2 \mathrm{w} . .\). \\
\hline R26 & T60-811 & Resistor, 12 K ohm, \(1 / 2 \mathrm{w} .10 \%\) \\
\hline R28 & T60-730 & Resistor, 47 K ohm, \(1 / 2 \mathrm{w}\). \\
\hline R29 & T60-767 & Resistor, 150 ohm, \(1 / 2 \mathrm{w} .10 \%\) \\
\hline R30 & T60-810 & Resistor, 22K ohm, 2 w. \(10 \%\). \\
\hline R31, R32 & T60-758 & Resistor, 560 ohm, \(1 / 2\) w. \(10 \%\). \\
\hline R35 & T25-13 & Resistor, variable, 2.5 K ohm VERTICAL LINEARITY \\
\hline R36 & T60-726 & Resistor, 2.2 megohm, \(1 / 2 \mathrm{w}\). \\
\hline R38 & T60-872 & Resistor, 2.7 megohm, \(1 / 2 \mathrm{w}\). \\
\hline R39 & T25-15 & Resistor, variable, 2 megohm, HEIGHT \\
\hline R40, R63 & T60-802 & Resistor, 56K ohm, \(1 / 2\) w. 10\% ..... \\
\hline R41, R76 & T60-783 & Resistor, 15 K ohm, \(1 / 2 \mathrm{w}\). \(10 \%\)...... \\
\hline R42 & T25-17. & Resistor, variable, 1 megohm, VERTICAL HOLD \\
\hline R43, R57 & T60-782 & Resistor, 1.2 megohm, \(1 / 2\) w. \(10 \%\). . . . . . . . . . \\
\hline R46, R53 & T60-744 & Resistor, 22 K ohm, \(1 / 2 \mathrm{w} .10 \% \ldots\) \\
\hline R51 & T60-716 & Resistor, 15 K ohm, 1 w. \(10 \%\). \\
\hline R52, R55 & T60-714 & Resistor, \(\mathbf{2}\).2K ohm, \(1 / 2 \mathrm{w}\). \(10 \%\) \\
\hline R54 & T60-710 & Resistor, 3.9K ohm, \(1 / 2 \mathrm{w}\). \(10 \%\) \\
\hline R56 & T60-807 & Resistor, 680 K ohm, \(1 / 2 \mathrm{w} .10 \%\). \\
\hline R58 & T25-14 & Resistor, variable, 2250 ohm, 4 w. FOCUS \\
\hline R59 & T60-814 & Resistor, 330 ohm, 2 w. \(10 \%\)..... \\
\hline R60 & T60-800 & Resistor, wirewound, 800 ohm, 5 w. \(10 \%\) \\
\hline R61 & T60-729 & Resistor, 1.5K ohm, \(1 / 2\) w. 10\% \\
\hline R64 & T60-703 & Resistor, 1 K ohm, \(1 / 2 \mathrm{w} .10 \%\). \\
\hline R68 & T60-804 & Resistor, wirewound, 15 K ohm, \(5 \mathrm{w} .10 \%\). \\
\hline R70 & T60-853 & Resistor, wirewound, 25K ohm, 10 w. 10\%. \\
\hline R71 & T60-787 & Resistor, 330K ohm, \(1 / 2\) w. \(5 \% \ldots . . . . . . . .\). \\
\hline R74 & T60-667 & Resistor, 220K ohm, \(1 / 2\) w.... \\
\hline R75 & T60-877 & Resistor, 1 megohm, 1 w... \\
\hline R77 & T60-664 & Resistor, 15 megohm, \(1 / 2 \mathrm{w}\). \\
\hline R78 & T60-727 & Resistor, 100 K ohm, \(1 / 2 \mathrm{w}\). \\
\hline R80 & T60-878 & Resistor, 8.2K ohm, 2 w. 10\% \\
\hline R8: & T60-665 & Resistor, 390 ohm, \(1 / 2\) w. 10\%. \\
\hline & & TRANSFORMERS AND COILS \\
\hline T1 & T10-541 & Transformer, 2nd I.F. (blue) \\
\hline T2 & T10-542 & Transformer, 3rd I.F. (white) \\
\hline T3 & T10-543 & Transformer, 4th I.F. (red) ...... \\
\hline T4 & T10-552 & Transformer, ratio detector, 4.5 MC . \\
\hline T5 & T80-261 & Transformer, vertical output . \\
\hline T6 & T80-257 & Transformer, vertical blocking \\
\hline T \({ }^{7}\) & T80-264 & Transformer, power ....... \\
\hline T8 & T80-253 & Transformer, output (audio) \\
\hline & T80-265 & Transformer, horizontal output \\
\hline T9 & T80-263 & Transformer, horizontal output (alternate) \\
\hline L1 & T10-557 & Coil, peaking, 90 uh (orange) ..... \\
\hline L2 & T10-558 & Coil, peaking, 375 uh (red). \\
\hline L3 & T10-566 & \begin{tabular}{l}
Coil, peaking, 186 uh (grey) \\
(on \(12 \mathrm{~K} 1 / 2 \mathrm{w}\). resistor)
\end{tabular} \\
\hline L4 & T10-571 & Coil, 4.5 trap (includes C12)... \\
\hline L5 & T10-565 & \begin{tabular}{l}
Coil, peaking, 380 uh (purple) \\
(on 10K 1 w . resistor).
\end{tabular} \\
\hline L6 & T10-556 & Coil, 4.5 MC sound take-off, (includes 3 condensers). \\
\hline L7, L12 & T83-694 & Coil, deflection yoke ........... \\
\hline L9 & T10-560 & Coil, focus . . . . . . . \\
\hline L10 & T10-555 & \begin{tabular}{l}
Coil, horizontal oscillating \\
(includes 3900 mmfd and 5.6 K ).
\end{tabular} \\
\hline
\end{tabular}


\section*{CHASSIS 528.632-1 and 528.632A-1}

The parts list for chassis \(528.632-1\) and \(528.632 \mathrm{~A}-1\) is the same as for chassis 528.632 and 528.632 A . The dif. ference between these models was a change in the I.F. frequencies, which were changed to the following:
\[
\begin{aligned}
& \text { Ind IF } \\
& 25.5 \mathrm{Mc} \text {. } \\
& \text { 3rd } \\
& \begin{array}{l}
\text {.23.8 Mc. } \\
\text { 26.1 Mc. }
\end{array}
\end{aligned}
\]

The sound trap frequency has been changed to 21.75 Mc .

\section*{CHASSIS 528.632-2 and 528.632A-2}

The Parts List for Chassis \(528.632-2\) and \(\mathbf{5 2 8 . 6 3 2 A}\)-2 is the same as for 528.632 and 528.632 A except for the parts listed below:
\begin{tabular}{|c|c|c|}
\hline Schematic Location & \[
\begin{aligned}
& \text { Part } \\
& \text { Number }
\end{aligned}
\] & \[
\begin{gathered}
\text { Part } \\
\text { Description }
\end{gathered}
\] \\
\hline & & CAPACITORS \\
\hline C17, C38, C45 & T16-201 & Capacitor, tubular, .01 mfd ., 600 v . \\
\hline C39 & T16-189 & Capacitor, tubular, 05 mfd ., 400 v . \\
\hline C28, C50 & T16-208 & Capacitor, tubular, . 1 mfd ., 600 v . \\
\hline C29 & T16-229 & Capacitor, molded paper tubular, \(.05 \mathrm{mfd}, 600 \mathrm{v} .-5 \%\), \(30 \%\) \\
\hline C48 & T15-236 & Capacitor, ceramic, 180 mmfd . \\
\hline C51 & T16-223 & Capacitor, tubular, .025 mfd ., 1000 v . \\
\hline C52 & T16-216 & Capacitor, tubular, 05 mfd ., 1000 v . \\
\hline C54 & T16-217 & Capacitor, tubular, .25 mfd ., 400 v . \\
\hline C32 & T16-193 & Capacitor, tubular, .05 mfd ., 600 v . RESISTORS \\
\hline R43 & T60-782 & Resistor, 1.2 megohm, \(1 / 2 \mathrm{w} ., 10 \%\) \\
\hline R64 & T60-703 & Resistor, 1 K ohm, \(1 / 2 \mathrm{w} ., 10 \%\) \\
\hline R82 & T60-759 & Resistor, 4.7K ohm, \(1 / 2\) w., \(10 \%\) MISCELLANEOUS CHASSIS PARTS \\
\hline & T43-14 & Fuse, \(1 / 8 \mathrm{amp}\), 250 v . (Slo-Blo) 3 AG Type \\
\hline
\end{tabular}

\section*{CHASSIS 528.632-5 and 528.632A-5}

CHASSIS 528.632-2 and 528.632A-2 - (Cont'd)
\begin{tabular}{|c|c|c|}
\hline Schematic Location & \[
\begin{aligned}
& \text { Part } \\
& \text { Number } \\
& \hline
\end{aligned}
\] & Part
Description \\
\hline & & CAPACITORS \\
\hline C17. C38, C45 & T16-225 & Capacitor, tubular, . \(01 \mathrm{mfd} ., 600 \mathrm{v}\). \\
\hline C39, C32 & T16.224 & Capacitor, tubular, 05 mfd ., 600 v \\
\hline C28. C50 & T16-227 & Capacitor, . 1 mfd., tubular, 600 v . \\
\hline C29 & T16-230 & Capacitor, molded paper tubular, \(.06 \mathrm{mfd} ., 600 \mathrm{v} .10 \%\) \\
\hline C48 & T15-232 & Capacitor, mica, 120 mmfd \\
\hline C51 & T16-222 & Capacitor, tubular, \(025 \mathrm{mfd} ., 1000\) v. 10\%. \\
\hline C52 & T16.228 & Capacitor, molded tubular, 05 mfd ., 1000 v . \\
\hline C54 & T16-226 & Capacitor, tubular, .25 mfd., \(400 . \mathrm{v} . .\). RESISTORS \\
\hline R43 & T60-880 & Resistor, 1.5 megohm, \(1 / 2 \mathrm{w} .10 \%\) \\
\hline R64 & T60-675 & Resistor, 1 K ohm, \(1 / 2 \mathrm{w}\) \\
\hline R82 & T60.756 & Resistor, 1.2 K ohm, \(1 / 2 \mathrm{w} ., 10 \%\). MISCELLANEOUS CHASSIS PARTS \\
\hline & T43-13 & Fuse, 1/4 amp., 250 v., 3 AG type \\
\hline
\end{tabular}

\section*{CHASSIS 528.632-3 and 528.632A-3}

The Parts List for Chassis \(528.632-3\) and \(528.632 \mathrm{~A}-3\) is the same as for \(528.632-2\) and \(528.632 \mathrm{~A}-2\) except for the parts listed below:
OMIT THE FOLLOWING PARTS:
\begin{tabular}{lll}
\begin{tabular}{c} 
Schemoric \\
Cocotion
\end{tabular} & \begin{tabular}{c} 
Part \\
Number
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{c} 
Port \\
Description
\end{tabular}} \\
\hline C25 & T15-222 & \begin{tabular}{l} 
Capacitor, ceramic, 5 mmfd. \\
\end{tabular} \\
& T.5-29 & R.F. tuner (Cascode)
\end{tabular}

ADD THE FOLLOWING PARTS:
\begin{tabular}{|c|c|c|}
\hline Schematic Location & \[
\begin{gathered}
\text { Part } \\
\text { Numbar }
\end{gathered}
\] & \[
\begin{gathered}
\text { Part } \\
\text { Daccription }
\end{gathered}
\] \\
\hline C25 & T15-238 & Capacitor, ceramic, 3.3 mmfd . \\
\hline C71 & T16.177 & Capacitor, ceramic, . 005 mfd . \\
\hline & T95-30 & R.F. Tuner (Cascode) \\
\hline
\end{tabular}

\section*{CHASSIS 528.632-4}

SEE SCHEMATIC DIAGRAM
The Parts List for Chassis \(528.632-4\) is the same as for \(528.632-3\) and \(528.632 \mathrm{~A}-3\) except for the parts listed below OMIT THE FOLLOWING PARTS:
\begin{tabular}{|c|c|c|}
\hline Schematic Locotion & Part
Number
Tl & \[
\begin{aligned}
& \text { Pastiontion } \\
& \text { Description }
\end{aligned}
\] \\
\hline C53 & T15-233 & Capacitor, mica, 50 mmfd ., 800 v . \\
\hline C58 & T15-234 & Capacitor, ceramic, 500 mmfd ., 20,000 v . \\
\hline R31, R32 & T60-758 & Resistor, 560 ohm, \(1 / 2 \mathrm{w} ., 10 \%\) \\
\hline R51 & T60-716 & Resistor, 15K ohm, 1 w., 10\% \\
\hline T9 & T80-265 & Transformer, horizontal output \\
\hline & T80.263 & Transformer, horizontal output (alternate) \\
\hline & T37-122 & Insulator, ceramic socket support \\
\hline & T45-130 & Plug, color socket \\
\hline & T68-53 & Socket, octal, wafer (V15) (4 pins only) \\
\hline \begin{tabular}{l}
ADD THE \\
Schematic Locution
\end{tabular} & FOLLOWING PARTS:
\(\begin{gathered}\text { Part } \\ \text { Number }\end{gathered}\) & \[
\begin{gathered}
\text { Port } \\
\text { Description }
\end{gathered}
\] \\
\hline C53 & & Part of deflection yoke (T-83-694) \\
\hline C58 & T15-239 & Capacitor, ceramic, 500 mmfd ., \(20,000 \mathrm{v}\). \\
\hline R4 & T60-881 & Resistor, \(2.2 \mathrm{ohm}, 1 / 2 \mathrm{w} ., 10 \%\). \\
\hline R31, R32 & & Part of deflection yoke (T-83-694) \\
\hline R51 & T60-887 & Resistor, 15K ohm, 1 w., 10\%..... \\
\hline \multirow[t]{4}{*}{T9} & T80-279 & Transformer, horizontal output \\
\hline & T37-139 & Insulator, resistor support. .... \\
\hline & T68-56 & Shell, Corona ........... \\
\hline & T68.55 & Socket, Ring Mounting (Corona Shell) \\
\hline
\end{tabular}

The Parts List for Chassis 528.632-5 and 528.632A-5 is the same as for \(528.632-2\) and \(528.632 \mathrm{~A} \cdot 2\) excep: for the parts listed below
The improved Cascode Tuner (Part No. 'T95-30) was substituted for Part No. T95-29 in some receivers built with this chassis number.
OMIT THE FOLLOWING PARTS:
\begin{tabular}{|lll}
\begin{tabular}{c} 
Schomatic \\
Location
\end{tabular} & \begin{tabular}{c} 
Part \\
Number
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{c} 
Part \\
Doscription
\end{tabular}} \\
\begin{tabular}{lll} 
C58
\end{tabular} & T15-234 & Capacitor, ceramic, 500 mmfd., 20,000 v. \\
T9 & T80-265 & Transformer, horizontal output \\
& T37-122 & Insulator, ceramic socket support \\
& T68-53 & Socket, octal, wafer (V15) (4 pins only) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Part Number & \\
\hline \multicolumn{2}{|l|}{Number \(\quad\) Deseription} \\
\hline T32-21 & Back \\
\hline T42-515 & Cabinet \\
\hline T21-170 & Cover \\
\hline T48-58 & Glass, TV, Safety \\
\hline T52-351 & Knob, Channel Selector. \\
\hline T52-352 & Knob, fine tuning. \\
\hline T52.353 & Knob, Off-volume \\
\hline T52-354 & Knob, contrast . \\
\hline T31-197 & Mask \\
\hline T36-126 & Wire Screen (2 req.) \\
\hline T45-125 & Plug Speaker \\
\hline T79-397 & Speaker \\
\hline 5" P.M. & Sears No. 211 \\
\hline T32-21 & Back \\
\hline T42.524 & Cabinet \\
\hline T21-170 & Cover \\
\hline T48-58 & Glass, TV, Safety \\
\hline T52-373 & Knob, Channel Selector. \\
\hline T52-374 & Knob, fine tuning. \\
\hline T52-375 & Knob, off-volume \\
\hline T52-376 & Knob, contrast \\
\hline T31-197 & Mask \\
\hline T36-126 & Wire Screen ( 2 req) \\
\hline T45-125 & Plug speaker \\
\hline T79-397 & Speaker \({ }_{\text {Sears }}\) No..... S" \(^{\prime \prime}\) P.M. Sears No. 2112 \\
\hline T32-21 & Back \\
\hline T42-525 & Cabinet \\
\hline T21-170 & Cover \\
\hline T48-58 & Glass, TV, Safety \\
\hline T52-360 & Knob, channel selector \\
\hline T52.378 & Knob, fine tuning. \\
\hline T52-361 & Knob, off-volume \\
\hline T52-379 & Knob, contrast \\
\hline T31-197 & Mask \\
\hline \multicolumn{2}{|r|}{Sears No. 2160} \\
\hline T32-22 & Back \\
\hline T42.516 & Cabinet \\
\hline T21-170 & Cover \\
\hline T48-60 & Glass, TV, Safety \\
\hline T52-360 & Knob, channel sel \\
\hline T52.352 & Knob, fine tuning. \\
\hline T52-361 & Knob, off-volume \\
\hline T52-354 & Knob, contrast \\
\hline T31-196 & Mask \\
\hline T36.126 & Wire Screen (2 req.) \\
\hline T45-125 & Plug speaker \\
\hline T79-399 & Speaker \(\ldots \ldots . \mathrm{B}^{\boldsymbol{\prime \prime}} \mathrm{P} . \mathrm{M}\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Port
Number & Doscription \\
\hline T36-126 & Wire Screen (2 req.) ........ \\
\hline T45-125 & Plug speaker \\
\hline T79-397 & Speaker \\
\hline 5' P.M. & Sears No. 2115-8 \\
\hline T32-21 & Back \\
\hline T42.518 & Cabinet \\
\hline T21.170 & Cover \\
\hline T48-61 & Glass, TV, Safety \\
\hline T52.360 & Knob, channel Sel. \\
\hline T52.352 & Knob, fine tuning \\
\hline T52.361 & Knob, off-volume \\
\hline T52.354 & Knob, contrast \\
\hline T31-199 & Mask \\
\hline T36-126 & Wire Screen ( 2 req.) \\
\hline T45-125 & Plug speaker \\
\hline T79-398 & Speaker . . . . . . . . \(\mathrm{i}^{\prime \prime}\) P.M. \\
\hline & Sears No. 2150-B \\
\hline T32-21 & Back \\
\hline T42-517 & Cabinet \\
\hline T21-170 & Cover \\
\hline T48-59 & Glass, TV, Safety \\
\hline T52-351 & Knob, channel Sel \\
\hline T52-352 & Knob, fine tuning \\
\hline T52-353 & Knob, off-volume \\
\hline T52-354 & Knob, contrast \\
\hline T31-198 & Mask \\
\hline T36-126 & Wire Screen (2 req.) \\
\hline T45-125 & Plug speaker \\
\hline \[
\begin{aligned}
& \text { T79-398 } \\
& 6^{\prime \prime} \text { P.M. }
\end{aligned}
\] & Speaker \\
\hline & Sears No. 2162 \\
\hline T32-22 & Back \\
\hline T42.526 & Cabinet \\
\hline T21-170 & Cover \\
\hline T48-60 & Glass, TV, Safety \\
\hline T52-360 & Knob, channel sel. \\
\hline T52-378 & Knob, fine tuning \\
\hline T52-361 & Knob, of f-volume \\
\hline T52-379 & Knob, contrast . \\
\hline T31-196 & Mask \\
\hline T36-126 & Wire Screen (2 req.) \\
\hline T45-125 & Plug speaker \\
\hline T79-399 & Speaker . . . . . . 8' \({ }^{\prime \prime}\) P.M. \\
\hline
\end{tabular}



D100-375A


© John F. Rider


\section*{RECEIVER OPERATING CONTROLS}

The various contrals an the receiver may be divided into two classes, Operoting ond Pre-Set. Operating contrals are those which control program selection as well as sound and picture quolity.
All the operating cantrols of the receiver are located on the frant panel
and the name ond use of each ore described in Figure 1. More detailed instructions on the application of the operating cantrols are given in the
following section, while a descriptian ond function of each of the Preset controls will be found in the section entitled "Contral Adjustment Pro.


\section*{HOW TO TUNE THE RECEIVER}

This receiver is designed to be used for reception of sight and saund
pragrams from local television transmitting stations operating on any of pragrams fram local television transmitting stations operating on ony of
the twelve commercial television channels assigned by the Federol Communications Commission.
In order to select a porticular stotion ond adiust the various operating controls for correct picture and accompanying aural reception, proceed as follows:

Check to be sure that a television station is on the oir at the time you wish to operate the receiver. Progrom schedules are usually
published in daily newspapers and many stations will mail copies of published in daily newspapers and many stations will mail copies of heir weekly broodcast schedule to ee owners upon reques.

Rotate the "On-Of Switch and Volume" knob approximately dorn ing the tuning process. Allow several minutes for all tubes the receiver to warm up and far circuits to stobilize before ottempt ing to obtain a picture on the screen.
Turn the "Picture" contral knob approximately \(3 / 4\) turn clackwise. Set "Channel Selector" by turning this knob so that the desired television channel is of the top of the knob. Channel numbers fo Ill television slotions. operaing in your area wil be found in After "Channel Selector" knob has been set, then use the "Televi sion Fine Tuning"contral to obtain the correct tuning point fo is accamplished as follows:
Turn Televisian Fine Tuning" control in either direction until sound volume is maximum-if sound cannot be heard, advance the valume control and repeat fine tuning.
b. When the point of maximum sound volume has been reached
it will be noted that the pisture has a "ragged" ar "sow-tooth"

 pre-set "Brightness" control located under the Name Plate on the
fig. 4-INCREASE CONTRAST the Name Plote on the ADJUST PICTURE CONTROL the control, merely filt plate forwa
- After all af the ofarementianed cantrols have heen correatly iusted, the picture should be clear and steady and all shades
 permits much finer od. iustment than can be mode with ord
pictorial scenes. pictorial scenes
correctir adig. \(\mathbf{5}\) ( During intervals in which stations ore only televising their test pat. terns, the sound will be a sustained note. These test potterns (Fig. 5)
and special sound tronsmissions are used by television installation men to adiust certoin pre-set controls at the time a receiver is in. men to
stalled.

\section*{ANTENNA REQUIREMENTS}

\begin{abstract}
USE OF BUILT-IN ANTENNA-This televisian receiver is equipped with
weak, or retections prave troublesome, and the built-in antenno does
\end{abstract} the new built-in antenno intended to provide satisactary reception in ransmitting stations and where electrical interference is not excessive.
oo insure moximum performance of the built-in antenno it will be necessan to praperly orient the entire receiver. A trial will reveal the position of best reception with the least interference. Avoid locoring the receiver nea known to contain metol lath or steel beams.

USE OF AN OUTDOOR ANTENNA-In cases where station signals ore not pravide satisfactary receptian, then an outdoor antenno will be resignal or "of the outdaor type ontenno is particularly desirable e mow the signal or "fringe" areas as it can be located at greater height above the The atar The outdoor ontenna should have a broad requency respanse chorac-
teristic whose impedance closely maiches the 300 ohm input impedance of the receiver.
Befare connecting the leadin from on outdoor antenna to the re. ceiver's terminal strip, it first will be n
built-in antenno leods from this strip.

\section*{CONTROL ADJUSTMENT PROCEDURE}

The various contrals an the receiver may be divided inta twa classes, Oper.
ating and Pre-set. Operating contrals ore those which control pragram selection as well as sound and picture quality and their functions are in. dicated in Fig.
There are nine Pre-set controls, two of which ore lacoted ot the back of the chassis (see figure 16). Six controls ore locoted under the Name Plote on the front panel. This plate is hinged at the bottom; ta obtain occess to contrals, merely tilt plate forword. The Auxiliory Fine Tuning Screw can be reached by remaving the "Channel Selector" and "Tele. vision Fine Tuning" knobs.
To gain access to the centering adjustments and ion trap, it will be necessory to remove the back of the cabinet by toking out the screws around edges.
Operate the receiver accarding to the instructions given in the section of this manual entitled "Haw To Tune The Receiver" and make the following adiustments as required.

ADJUST ION TRAP-If screen remains dark ar is anly dimly illuminoted when" Brightness
The ian trap is located an the neck of the picture tube as shown in Figure 16 and consists of a mognet held in position by metol bands. hoty 'ighness" cantrol (locoted behind Nome Plote) set approximotely is turn clackwise, rotote the entire ion trop ossembly whine
sliding it back and forth until picture tube screen is illuminated to maximum brilliance. Reduce "Brightness" control setting and repeat this operation to assure accurate positianing of ion trap.
Do not turn "Brightness" control to its maximum clockwise
position until ion trap is correctly adjusted-failure to observe this precaution may result in damage to the picture
CAUTION: There is only ONE correct setting of the ion trop. This position is attained when maximum brilliancy occurs on the picture tube screen. If defocusing of picture or neck shadow results, DO NOT adiust position of ion trap-see
instructions located elsewhere in this manual for removing these aforementioned faults. Failure to observe this precaution will result in an ion burn (brown spot) on the face of the picture tube. Since this condition is brought about by lack of proper ion trap adiustment at time of receiver intallation, the picture tube will not be eligible for warranty diustment.
auxiliary fine tuning adjustment-if it is found that the tuning range of the "Fine Tuning" contral is inadequate to permit
correct tuning of a station in its ossigned channel, then adiustment of the "Auxiliary Fine Tuning" screw will be necessory. This special screw is accessible affer removal of the "Channel Selector" ond "Fine Tuning" knobs. They may be removed by merely pulling them forward. Adiustment of the "Auxiliary Fine Tuning" screw may be undor. token in accordance with the following procedure.
a. Set "Channel Selector" to desired channel; then remave this knob
b. Set "Fine Tuning" knob to the center of its range; then remove bet "Fine Tuning" knob to the center of its ronge; then remove
this knob. The flat partian af the main tuning shaft (auter shaft) should naw be in the uppermost pasition. Note the location of the "Auxiliary Fine Tuning" adiustment screw on receiver tion of the "Auxiliary
chassis-see Fig. 13


\section*{CAUTION} ing, chipping, undus pisisua, or careloss handilng suen as lititing the tube by is neck is dangerove

HIGH VOLTAGE ( 10 to 13 kilovoits) is praduced in a supply circuit of this receiver. Exercise care to entact with elements of this circuit and paiticularly the tube terminals which are labeled "CAUTION" eodioining valtage char
THE HIGH VOLTAGE LEAD, which supplies approximataly 10 to 13 kilovalts to the picture tube, should be momenlarily sharted to the chassis whenever it is disconnected for service purposes. This discharges the
igh voltage filter candenser and prevents a shock hazard when warking on the recoivar after it ho high voltage filt.
been turned aff.
INTERMEDIATE B+ VOLTAGES, are dangeraus and caution should be abserved when the receiver chassis campanents ore exposed for service purpase.

\section*{the voltages shown in the adjoining chart wer} MEASURED UNDER THE FOLLOWING CONDITIONS


EXPLANATION OF NOTES
\begin{tabular}{|ll|}
\hline B. & Brightness Control max. clockwise \\
\hline C. & Brightness Contral max. caunler-clockwise \\
\hline D. & Contrast Control max. clackwise \\
\hline E. & Contrast Control max. counter-clockwise \\
\hline G. & Height Control max. clockwise \\
\hline H. & Height Control max. counter-clockwise \\
\hline
\end{tabular}
J. Vertical Hold Control max. clockwise
K. Vert. Hald Contral max. caunter-clockwise
M. Vertical Linearity Cantral max. clockwiso
N. Vertical Linourity Contral max. counter-clockwise.
Q. Do not attempt to measure the voltage at the tube cap. There is a high R. F. patential at this point.
R. Channel Selector set to channel \#4
S. Channel Selector sat to channel \#9
T. Horiz. Drive Control max. clockwise
U. Horiz. Drive Control max. counter-clackwiso.
V. Before measuring this voltage, connect external antenne
W. The measurement should be made with a vacuum tube of 0.1 volits.
X. Grounding of center stud on tube socket is nocessary to reduce sapacity coupling betwoen
may result if this ground is omittod.
Y. Horiz. Hold Control furned in a clockwise direction until pieture approachos loss of sync.
Z. Horiz. Hold Control turned in a counter-clockwite direction Whtil picture opproaches loss of yyne


\section*{ALIGNMENT PROCEDURE}

Alignment of all RF and IF tuned circuits in this receiver may be occomplished by utilizing the procedures described in the following charts. sequence of alignment: These procedures should preferably be applied in the order in which they are presented, however, olignmen
of the Sound Channel or IF Channel may be accomplished individuolly if desired.

The RF Amplifier ond Mixer alignment may also be accomplished inde pendent of Sound or IF Channel alignment, but oscillator calibration can only be done after IF Channel has been correctly oligned. Proper IF
band pass characteristic is necessary for Oscillator olignment as results of RF circuit tuning are observed by means of an oscilloscope connected to the output of the crystal detector.
removal of chassis: The receiver chassis must be removed from the cabinet in arder to accomplish alignment of all funed circuits o there are odiusiment points located on the underside of the unit.

This can be accomplished by first removing all knobs ond disconnecting the receiver "built:in" antenna ond speoker. The chassis may then be of the cabinet chassis mounting board.

\section*{CAUTION}

The picture tube is highly evacuated and if broken, glass fragments will be violently expelled. Handie with care, using safety goggles and gloves.

INSTRUMENTS: The following instruments will be required as signal sources ond output indicatars during the alignment pracess. Since accurate alignment of a television receiver is heavily dependent upon the pertarmance of your instroment
1. standard signal generator to provide ommodulated (pure RF) signals at the following frequencies. Maximum autput on al ronges should be at least 11 valt with provisian for attenuation o desired. This instrument must have good frequency stobility and be accuratoly calibrated. Generators which incorporate a separate
crystal contralled oscillator and heteradyne circuit are self cali crystoing and therefare capable of praviding the accuracy of fre quency calibration required for television circuit alignment.
a. IF Frequencies:
4.5 Mc. Sound Channel
22.25 Mc. Sound IF marker
23.5 Mc. Converter and 1 st IF stages
26.75 Mc. Picture IF marker
b. RF Frequencies:

54 to 88 Mc .
174 to 216 Mc.
2. RF SWEEP generator to provide frequency modulated signo of the following frequencies,

20 to 30 Mc . with 10 Mc . sweep width.
54 to 88 Mc. with 10 Mc. sweep width.
Output adiustable with at least 1 volt moximum.
Output should be "fat" (na amplitude voriation) far all sel tings of the sweep width contral.
Provision far cannectian of generatar sweep modulating volt age to horizontal defection system of an ascillasope.

Provisian for blanking the output signal on each return sweep so that oscillogram will not show retrace.
3. CATMODE RAY OSCILLOSCOPE, preferably o unit with verti cal amplifier having wide range frequency response and low
- vacuum tuae volimeter. The lowest voltage range of this instrument should preferably permit a 1.0 valt reading to be indicated at not less than ane third of full scale deffection.
instrument connections: The methad of cannection, including de oils of matching and coupling netwarks, for instruments used in this procedure is given in several illustrotions on subsequent pages Specific instructions for each instrument opplication will be found in
general instructions: When aligning If and rf circuits it is necessary to apply a fixed bias valtage to the AGC system of the re eiver. This fixed bias is abtoined by using a 3 volt battery and con

\section*{MPORTANT}

When observing the receiver band pass characteristic on an oscilloscope, it is exceedingly important to avoid distortion of that characteristic which would occur when using a large input signal from the sweep generator or standard generator (marker signal). Always set attenuator on sweep generator so that the reading on the vacuum tube voltmeter does not exceed one-half volt (when meter is connected from high side of video detector load, symbal 122, to receiver chassis). The sweep width should never be set greater than that needed to fully display the receiver band pass characteristics on the oscilloscope. Standard generator output should also be attenuated so that marker signal does not pull or tear the band pass characteristic as shown on the' 'scope.

SOUND CHANNEL ALIGNMENT PROCEDURE
1. Short ontenna terminols together with a iumper wire
contrast control to Selector to any inoctive television channel and controls may be left at any desired setting.
3. No special aligning tool is required to adiust the cores in the Sound
IF and discriminotor transformers. The blade of a small screwdrivet If ond discriminotor transformers. The blade of a small screudriver
will fit the slot in these cores, however, the screwdriver should be of a non-metallic or insulated type to prevent detuning when inserted in the transtormer con.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multirow[b]{2}{*}{\(\underset{\substack{\text { Vivm } \\ \text { CONNECTIONS }}}{ }\)} & \multirow{2}{*}{miscellaneous instructions} & \multirow{2}{*}{TRIMMER OR SIUG} & \multirow[t]{2}{*}{TYPE OF ADJUSTMENT AND OUTPUT INDICATION} \\
\hline CONNECTIONS & frequency & & & & \\
\hline \multirow[t]{4}{*}{Connect os
shown in Fig.
I.} & \multirow[t]{4}{*}{} &  &  & \[
\underset{\substack{\text { Mc Sound } \\ \text { Irop }}}{\text { O. }}
\] & Adiust for minimum. reading \\
\hline & & & A "swishing" sound may be heord in the & \[
\begin{gathered}
\text { \#2 } \\
\hline \text { Discriminator } \\
\text { Secondary }
\end{gathered}
\] & Adiust for maximum reeding \\
\hline & &  &  & \[
\begin{gathered}
\text { \#3 } \\
\text { Discriminotor } \\
\text { primery }
\end{gathered}
\] & Adiust for moximum reading \\
\hline & & & sound & \begin{tabular}{l}
\#4 \\
Sound JF \\
Tronsformer
\end{tabular} & Adiust for \(\begin{aligned} & \text { ondoximum reading } \\ & \text { on }{ }^{\text {VTVM. }} \text {. }\end{aligned}\) \\
\hline Same as &  &  &  & \[
\begin{gathered}
\text { \#2 } \\
\substack{\text { Discriminator } \\
\text { Secondory }}
\end{gathered}
\] & No.e that or slug \#2 is rotated - point will be sound where the ly from or positive to a negative rect setting of slug \#2 is obtained the slug is moved thru this point. \\
\hline
\end{tabular}

\section*{REDUCTION OF INTERCARRIER BUZZ}

Slight "dynnomic" unbalance of the discriminator secondary can em. tion. Therefore it is vitally important ta obtoin on accurate setting of Disornén ill Disconnect all instruments (be sure that I.F. tube removed for the odiust-
ment of Sound Trap has been reploced) ond then connect on ontenna to the receiver to obtain pregrom recepption from a local station. If inter.
tarrier buzz is promineat a slight readiustment of the discrint corrier buzz is prominent, a slight readiustento of the discriminator
secondory slug (\#2) should be made to obtoin the "dip" point far the secondory slug (\#2) shauld be made to obtoin the "dip" point for the
buzing sound. Nate that progrom sound will be clear ond free from distortian art his pooint. Bunz should no
if stotion transmission is not at foult.


CIRCUIT DIAGRAM FOR CRYSTAL DETECTOR


INSTRUMENT CONNECTIONS FOR SOUND CHANNEL ALIGNMENT


Generator Connection for Sound Channel and 4.5 Mc . Sound Trap Alignment

John F. Rider



OJohn F. Rider


\section*{REPAIR DATA FOR W520450 RF TUNER UNIT}

\section*{all roplacemont parts for the re Tunor Unit are included in the complete receciver parts list}


\section*{R.F. TUNER CIRCUIT DESCRIPTION}

The turret type funer W520450 is of the latest dosign and incorporates a
©BK7 fube (V4) as the R.F. Amplifier ond a 616 (ube (V5) as the Mixer6BKK fube
Oscillator.
Channel selection is accomplished by rotation of the turret containing
two sels of easily remorable coil assemblies for each channel. The individual ontenna coil sections consisst of a balanced primary to minimize
noise pick-up on the transmission line and an R.F. grid coil which couples noise picomp signal to the grid af the first section of the SBK7 R.F.
the incoming
Amplifier tube. The induct Amplifier tube. The inductance and amount of coupling of the tuned
antenna input circuit are changed for each channal so that a constant antenna input circuif are changed or sach chandis provides maximum
input impodance of 300 ohms is mointined. This
transfer of energ to the R.F. Amplifer slage, partievlarly when intertransier of energy to the R.F. Amplififer slage. partievlarly when inter-
then connection between on
300 ohm transmission line.
The oBK7 R.F. Amplifier is a dual-triode tube ond is connected in the circrit as a direct coupled grounded -grid type amplifier. This circuit wos
developed to meet the demand for an R.F. Amplifier that would provide developed to meat the demand for an R.F. Amplifier that would provide
more nearly equal gain on both the low and high Televisian Channels, more nearly equal gain on both the low and high Teievisian Channels:
White kepening inherent tube noise to a minimum. The circuit can be
thought of very simply as two triode tubes in series, the first or driver thought of very simply as two triode tubes in series, the first or driver
unit acting not as an omplifier, but rather as on antenni \(i\) mpedace Unit acting not as an amplifier, but rather as an antenna impedance
mathothing device and also as a varible cathode impedance, or bias
outce, for the second, or grounded grid unit In oddition the first unit mathing device and also as a variable cathoode impedance, or bias
source, for the second, or grounded grid units In oddition the first unit
of the \(8 \mathrm{KK7}\) acts as a power amplifier due to its extremely low plate

SERVICE PRECAUTIONS
\begin{tabular}{|c|c|}
\hline Susject & precautions \\
\hline electrical COMPONENTS & The high frequencies used in the RF section of a television receiver moke it necessary that considerable care be exercised in servicing the tuner. Lead dress and location of components are very critical at these frequencies. When replacing parts, it is important to use components of identicol electrical characteristics and physical size. Always reconnect the replacement item in the same location and position in the tuner as the ariginal component. \\
\hline tuits & Replacement of tubes in the Tuner Unit may cause slight detuning of RF circuits due to inherent differences in inter-electrode capacitances. When replacing tubes (especially 8 J 6 mixer-oscillator tube) make sure that fine Tuning control will tune in television stations at approximately the middle of its range. It may be necessary to change the setting of the individual oxitlator coil slugs for some channels to accomplish this. \\
\hline Channel coils AND 5LUG5 & Channel Coils must be handled with care. Do not disturb coil windings. If an oscillator slug "falls into" its coil form during adiustment, remove the Channel Coil from the turret assembly and lift the Slug Retaining Spring aside. By tapping the coil form it should be possible to make the slug move toward the end so that its threads will be engaged by the Slug Retoining Spring when that spring is refurned to its normal position. \\
\hline fine tuning CONTROL & Rubbing of the bakelite Fine Tuning Cam against the Fine Tuning Condenser Plate is intentional in order to avoid vibration with resulting microphonics. However, the Fine Tuning Cam should not rub or contact the small circular plate located on the body of the tuner. \\
\hline
\end{tabular}
removat and replacement of parts
\begin{tabular}{|c|c|}
\hline ITEM & procedure \\
\hline rf tuner unit & \begin{tabular}{l}
To remove the Tuner Unit from receiver chassis, proceed as follows: \\
1. Remove screws which hold tuner to front and rear support brackets. \\
2. Disconnect the leads from the tuner to the main chossis. See illustration on circuit diagram page showing tuner cannections. \\
3. Tuner unit may now, be withdrawn from underside of chassis.
\end{tabular} \\
\hline
\end{tabular}
impedance, which is in reality the cothode circuit of unit two, and con verts the weak signal voltage from the antenna to a low vollage-high
current signal which is then opplied to the cathode of unit number two. The signal coupling unit between the first and second units is a series eokking coil, symboi 406 , similar to that found in a video amplifier
crevit. Its purpose is to form a series resonant circuit with the input circuacity of the second unit, The coil is so made as to resonate at a
frequency slighty higher than channel 13 . In a standard pentode type Srequency slighty higher than channel 13. In a slandard pentode trpe
amplifier, the gain falls of rapidly as progrosively higher channels ore
sele anplifier, the gain talks of rapialy as progrossively higher channels ar
selected. With the use of the plote to rathode pooking coil an almo:
equal gain can be realized for all channels. equal gain can be realized for all channels.
The oBK7 tube hos inherently low interelectrode capacity due to physical
design and this factor in conjunction with the low output impedance of the first section is responsible for the low noise foctor ot this stoge.
While neutroization of the first nnit is not necessality de While neutrolization of the first unit is not neessaraily due otio its low
plate to grid copocity, odditional noise reduction has been realized, with loate to sgid copocity, odditional noise reductition has been realized, wiin
only a slight decrease in gain, by the oddition of a neutrolizing con denser, item 405. Due to the low output impedonce of the stage, it is not necessary that the neutralizing condenser be tunable.
Because of the circuits excellent internal shielding, low input impedance
and radiation reiection, the second section of the \(6 B K 7\) is connected as riven grounded-grid omplifier. While this might not be apparent a sts glonce due to the fact that grid has no direct D.C. return, it will be found upon further examination that any high freq
lentiols are by-passed to ground through condenser 407 .
The second section of furret coils includes the IUned R.F. amplifier plari
coil, tuned mixer grid coil, ond oscillator coil. The output of the Res. coil, tuned mixer grid coil, and oscillotor coil. The output of the R. amplifier stage is coupled to the grid of the mixer stage, which utiizes
ane triode section of a o 06 tube (VS). The other half of the \(\delta \mathrm{Jo}\) is connected ose a modified Colpitts oscillator which iniects orcillator voltage no the mixer stage through coupling between the oscilltater coil and the mixer grid coil. Course ossillator tuning is accomplished by adiusting
ihe positions of the slugs in the individual ocxillator coils, while fine Uning is abtained when using condenser \#417 in the oxillator plati
circuit. This fine Tuning condenser is composed of two fixed plates, and circuit. This fine Tuning condenser is composed of two fixed plates, and
its capoctitnce is changed by the insertion of o bakelite cam between hese platos.
Signal output from the mixer stage is coupled to the 1 amplifiers through
the converter plate I.F. coil, diagram \#427. locatod on the tuner unit
3. Tunar unit may now be withdrawn from underside of chassis.
\begin{tabular}{|c|c|}
\hline ITEM & Procedure \\
\hline channels coils & \begin{tabular}{l}
It is not necessary to remove entire tuner unit to reploce o snop-in channel coil but removal of botiom shield will be required. This moy be accomplished by grosping the front end of the shield and pulling downward and unhooking it from reor of funer frame. \\
Insert a screwdriver blode between Coil Retainer Spring and the end of the Tuner Turret. Twist the blode so pull spring away from the molded body of Chonnel Coil. Lift this end of coil body upward and remove individual coil ossembly from tuner. When replacing Channel Coils, be sure they are reinstalled in their correct positions. Coil numbers should increose consecu tively in a counter-clockwise direction when tuner is viewed from the front. \\
If all the Channel Cails have been removed from the Tuner Turret, rotate turret until flot surface on end of tuner shaft points down. Install \#3 Channel Coils into bottom position on turret. Then follow the correct sequence indicated above to replace other coils.
\end{tabular} \\
\hline TUNER TURRET A55Embly & \begin{tabular}{l}
To remove turret from RF Tuner Unit, remove complete tuner and bottom shield os described in section entitled "Channel Coils" and proceed as follows: \\
1. Remove rear Turret Shaft Retoining Spring by disengaging straight end of spring from projection on tuner frame. \\
2. Remove Fine Tuning Condenser Plote from front of Tuner Unit. This plcte forms one side of Fine Tuning control condenser and is held in place by one screw. \\
3. Slide Fine Tuning Cam and Shoft off of main Chonnel Selector Shoft. \\
4. Remave Spring Contactor Washer ond Fiber Spacer Washer from Chonnel Selector Shoft. \\
5. Remove Shaft Retaining Spring at front of funer by disengaging straight end of spring from projection on frame. \\
6. Remove turret assembly fram frame. \\
To replace turret, reverse the above procedure. Tooth on bakelite Fine Tuning Cam should point downword during assembly so that it does not become locked between the stops on the Fine Tuning Condenser Plate. Also be sure to replace bottom shield.
\end{tabular} \\
\hline STATOR CONTACT ASSEMBLY & \begin{tabular}{l}
To remove this assembly, remove complete tuner as described in section entitled "Channel Coils" and proceed os follows: \\
1. Remove side shield by taking out the two retaining screws and unsolder shield at one point. Now, disengage shield from upper edge of tuner frame. \\
2. Remove the two screws at the front and rear of the Stator Contact Assembly. \\
3. Unsolder all electrical connections to contact plate. \\
4. Unsolder five soldered joints between Stator Contact Assembly and Tuner Unit. \\
5. Contact Assembly may now be withdrawn from frame. \\
To reinstall this assembly: \\
1. Place Stator Contact Assembly in position and replace, but do not tighten, the two screws of the front and rear of the assembly. \\
2. Remove 3 cansecutive pairs of Channal Coils from the turret (for example, the antenna and rfosc. cails for channels \#5, 6 and 7). \\
3. Position Tuner Turret so that the edges of the next highest Channel Coils (in this case, the coils for channel \#8) just pass the raw of 11 contacts on the Stator Contact Assambly. \\
4. Adjust position of the Stator Contaci Assembly so that there are a few thousandths of an inch spacing between the contacts on the contact plate and the molded body of the Channel Coils. \\
5. The Contact Assembly is now cofrectly positioned and screws at front and rear may be tightened. \\
6. Solder Stator Conlact Assembly to tuner frame at same points that were used previously. \\
7. Make all electrical connections to contact plate. \\
8. Replace Channel Coils. \\
9. Reploce side shield.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline  & Channel NUMBER & \[
\begin{gathered}
\text { ANTENNA } \\
\text { coll } \\
\text { PART } \\
\text { NUMBER }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RF \& OSC } \\
& \text { COIL } \\
& \text { PART } \\
& \text { NUMBER }
\end{aligned}
\] \\
\hline & 2 & 520502 & 520522 \\
\hline DETENT SPRING & 3 & 520503 & 520523 \\
\hline W508708 & 4 & 520504 & 520524 \\
\hline DETENT ROLLER - & 5 & 520505 & 520525 \\
\hline TUNER W20516 ONLY M CTM & 6 & 520506 & 520526 \\
\hline (LESS COILS) & 7 & 520507 & 520527 \\
\hline  & 8 & 520508 & 520528 \\
\hline FINE TUNING & - & 520509 & 520529 \\
\hline \(\underset{\text { PLATE }}{\text { CONDENER } \rightarrow} \quad-\) W507967 W507967- & 10 & 520510 & 520530 \\
\hline  & 11 & 520511 & 520531 \\
\hline W520515 & 12 & 520512 & 520532 \\
\hline SHAFT \& CAM & 13 & 520513 & 520533 \\
\hline
\end{tabular}

\section*{HOW TO ORDER PARTS}
1. Use Correct Order Form.
. On the Purchase Order always give the following information
(a) PART NUMBER (number printed on the part if different from that shown in this list) and DESCRIPTION for each part ordered. When no part number is assigned, order by description and rating. Also give PRICE
The CHÁSSIS NUMBER, which is 100.208 , will be found on a metal plate
at the rear of the chassis.

In all correspondence relating to cabinets, always mention the source code letter stamped into the bottom of table models, and the CATALOG NUMBER shown on the sticker on the back, bottom or inside of cabinet.

PARTS LIST FOR CHASSIS
Notice: Some parts listed below have special characteristics. Do not use substitutes for replacement purposes.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{ll}
\text { SCHE- } \\
\text { MARIC } & \\
\text { TOCA- } & \text { PART } \\
\text { TION } & \text { NOO. }
\end{array}
\] & description & \({ }_{\text {Llisi }}^{\text {PRICE }}\) & \[
\begin{array}{ll}
\text { SCHE- } \\
\text { MATII } \\
\text { LOCA- } & \text { PART TON } \\
\text { TION } & \text { NOO. }
\end{array}
\] & description & Lisice \\
\hline \multicolumn{3}{|c|}{CONDENSERS} & \multicolumn{3}{|c|}{ONDENSERS-Continued} \\
\hline ws &  & & 134 W512035 & mfd. 400 vol & \\
\hline 13.........W513002 & Condenser-ceramic 47 Mmfd .500 volt. & & 143.......W512019 & Condenser- \(02 \mathrm{Mfd}\).600 volt & \\
\hline 16, \(17 \quad\) W513013 & Condonser-ceromic 5000 Mmifd. 450 volt & \multirow[t]{2}{*}{3.00} & \multirow[t]{2}{*}{\(148 \times\) W513027} & Condenser-m 05 Mfd . 600 volt & \\
\hline 20-A.......W507706 & Condenser-eeromic 95 Mmfd . (part of sound diseriminator) & & & Condenser-ceramic 56 Mmfd. \(\pm 10 \% 1500\) voll Condenser-ceramic 270 Mmfd. 500 volt. & . 25 \\
\hline 20-B.......W509706 & Condenser-ceromic 10 Mmfd . (part of sound discriminator) & & \({ }_{153}^{153 . \quad . \quad \text { W512013 }}\) & Condenser-ceramic 270 Mmfd 500 volt. Condenser-. 01 Mfd. 600 volt. & \\
\hline 21.-- W513010 & Condenser-ceramic 1500 Mmfd .350 volt & & 156 & Condenser-. 05 mfd. 400 vollt........................ & \\
\hline 23.......W513010 & Condenser-coramic 1500 Mmpld . 350 volt. & & 162 & \multirow[t]{2}{*}{Condenser-.001 Mrd. 600 volt.} & \multirow[t]{2}{*}{} \\
\hline \(24 \quad\) W512027 & Condenier-. 05 Mfd 200 volt & & 165.......W512001 & & \\
\hline 26..........W512007 & Condenser- \(005 \mathrm{mpd}\).600 volt. & 25 & \multirow[t]{2}{*}{\(166 . . . . . . W 512009\)
169
W513013} & \multicolumn{2}{|l|}{} \\
\hline 28..........W512007 & Condensor-. 005 Mfd. 600 volt. & & & \multicolumn{2}{|l|}{Condenser-Seramic 5000 Mmfd . 450 volt.....).....} \\
\hline \(30 \quad\) W513006 & Condenser-ceramic 270 Mmfd . 500 volt. & & 171.......ws12027 & \multicolumn{2}{|l|}{Condenser-. 05 Mfd. 200 volt....................} \\
\hline 34.)......W513010 & Condenser-ceramic 1500 Mmidd. 350 volt. & &  & \multicolumn{2}{|l|}{Condenser-mica \(3900 \mathrm{Mmfd}. \pm 5 \% 500\) volt......} \\
\hline \({ }^{35 . . . . . . . . . . . . W 505174 ~}\) & Condenser-lectrolytic 10 Mfd . 150 volit. & & 173........w512540 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Condenser-mica \(390 \mathrm{Mmfd} . \pm 10 \% \mathbf{5 0 0}\) volt.... \\
Condenser-mica 390 Mmfd. \(\pm 10 \% ~ 500\) valt....
\end{tabular}}} \\
\hline \({ }_{30}^{36} \quad \mathbf{W 5 1 2 0 1 1}\) & Condensor-. 01 Mfd. 400 volt. & & \multirow[t]{2}{*}{\(178 \quad W 512535\)
\(179 . . . . . . . . . . . W 512515\)} & & \\
\hline \[
\begin{aligned}
& 39 . . . . . . . . . . . . . . . . W 512007 \\
& 92 . . . . . . . . . . . . . W 513013
\end{aligned}
\] &  & & & \multicolumn{2}{|l|}{Condenser-mica 1000 Mmid. \(\pm 10 \% 500\) volt....} \\
\hline \(94 \quad\) W513013 & Condenser-ceramic 5000 Mmfd . 450 volt & & \(180 \quad\) W520127 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Condenser--trimmer 25-280 Mmfd. (Horizontal Drive Control)}} \\
\hline 97.........W513016 & Condenser-ceromic \(82 \mathrm{Mmfd} . \pm 10 \% 050\) & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline 99.........W513013 & Condensor-seromic 5000 Mmfd . 150 volt & 36 & & & \\
\hline \(101 . \quad\) W513013 & Condenser-Ceramic \(5000 \mathrm{Mmfd}\).450 volt & 36 & 186.......w312045 & \multicolumn{2}{|l|}{} \\
\hline 104 W513016 & Condenser-ceramic \(82 \mathrm{Mmid} . \pm 10 \% 500\) v & 25 & 188, 189. W512031 & \multicolumn{2}{|l|}{Condenser-. \(05 \mathrm{mpd}\). . 600 volt} \\
\hline 107 WS13013 & Condenser-Ceramic 5000 Mmfd . 450 volt.... & & \multirow[t]{2}{*}{\(194 . \begin{aligned} & \text { WSI2045 } \\ & \text { W50838 }\end{aligned}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Condenser-. \(25 \mathrm{Mfd} . \pm 10 \% 200\) volt. Condenser-ceramic 500 Mmfd . 20,000 volt.......}} \\
\hline \(110 \quad\) W513013
\(111 \quad\) W513009 & Condenser-ceramic 5000 Mmfd .450 volf. & & & & \\
\hline 113, 114. W5130i6 & Condenser-creramic 82 Mmfd . \(\pm 10 \%\) 500 voll.. & . 25 & 195..........W508888 197..........W508680 & \multicolumn{2}{|l|}{Condenser-slectrolytic 10 mfd .600 voltr.]........ 2.55} \\
\hline 117........W5 & & & \multirow[t]{2}{*}{198.........W512255
200.......W512255} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Condenser-. 01 Mfd. 400 volt.......................... \\
Condonser-. 01 Mfd. 400 volt
\end{tabular}}} \\
\hline & (Temperature compensating)........ & & & & \\
\hline & Condonsor-. 25 Mfd. \(\pm 10 \% 200\) volt & & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Condenser-ceramic 5000 Mmfd. 450 vall............. Condenser-ceramic 5000 Mmf́d. 450 volt............}} \\
\hline  & Condenser-. 1 Mid. 200 volt. & & & & \\
\hline &  & . 45 & \(205 \ldots . . . . . . W 513013\)
207
ws13013 & Condenser-ceramic 5000 Mmfd .450 volt............ Condenser-ceromic 5000 Mmfd .450 volt............ & \\
\hline
\end{tabular}


MODELS 1176-21,1186-21, Ch. 100. 208
PARTS LIST FOR CHASSIS (Contd.)




PRODUCTION CHANGES
The following tabulation furnishes complete details on circuit changes which occur
The following change was incorporated so that proper centering can be obtained without introducing neck shadow and chassis that incorparate this change are coded "SERIES \(A\) " which is stamped on rear surface of chassis.
a. Yellow lead of focus coil 142 was disconnected from 315 volt supply and reconnected to pin 7 of deflection yok socket.

\section*{OSCILLOGRAMS}

All oscillograms taken with ground lead of 'scope connected to receiver chassis (unless otherwise indicated) and with receiver controls set for normal reception of a station transmitting its standard test pattern.
Number appearing below asterisk specifies setting of horizontal sweep frequency control on 'scope.
*-This symbol on illustration indicates that wave form was observed on a 'scope whose vertical amplifier had very limited high frequency response ( 50 to 100 Kc ).
indicates that wave form was observed on a 'scope whose vertical amplifier frequency response was flat to within \(20 \%\) up to 2 Mc .





\section*{CIRCUIT DIAGRAM FOR SILVERTONE RADIO CHASSIS 100.202-1}



MODEL 2195-21

\section*{GENERAL DESCRIPTION}
information contained in this service RL number 2195-21 This is a combination receiver containing a 21 picture tube, an A.C. operated AM-FM radio receiver and a three speed, inter-mix type phonograph.
The television section of this combination utilizes chassis \(100.208-1\) which is basically the same as chassis 100208
The differences are a change in the size of speaker, the length of the A.C. line cord, and a addition of a junction box and selecor switch to facilitate the changing from television to radio or phono operation. A complete circuit diagram and parts list, including prouction changes, for the 100.208-1 t

\section*{PRODUCTION CHANGES} The following tobulation furnishes complote
details on circuit changes which occurred
during early radio chassis production. The during early radio chassis production. The
circuit shown on this page includes all of these changes.
1. The following change was incorporated
io reduce hum. Rodio receiver chassis That incorporates this chongeo are coded
"'sERIES A" which is stamped on rear
a. Condenser 110 (. 01 Mfd .) was added to one side of the A. C. power sup poly.
terminal e is located \(11 / 4\) TURN FROM
TERMINAL A


FM ANT
COIL
s06353


AM R.F. AM OS
COIL
COIL


NOTE: For additional service data, see Chassis 100. 208

\section*{HOW TO ORDER PARTS FOR YOUR SILVERTONE TELEVISION RECEIVER}

These authorized replacement parts may be ordered through any Sears Retail Store or the Mail Order Store which serves the territory in which you live. Prices upon application from Sears, Roebuck and Co. The parts are shipped prepaid. When ordering parts, always give:
1. The PART NUMBER (number printed on the part if different from that shown in this list) and the DESCRIPTION When no number is assigned order by description and rating
2. The CHASSIS and CATALOG NUMBERS. The chassis number will be found on a metal plate at the rear of the chassis. This plate is pictured below. The catalog number will be found on a sticker on the back, inside or bottom of the cabinet.

PARTS LIST FOR TELEVISION CHASSIS 100.208-1
Notice: Some parts listed below have special chorocteristics. Do not use substitutes for replacement purposes.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SCHE- } \\
& \text { MATC } \\
& \text { COCAA } \\
& \text { TION }
\end{aligned}
\] & PART
No. & description & LIST
PRICE & SCHE.
MATIC toca. TION & PART & description & Llist \\
\hline \multicolumn{4}{|c|}{CONDENSERS} & \multicolumn{4}{|c|}{CONDENSERS-Continued} \\
\hline 11 & W513001 & Condenser-ceramic 2.2 Mmfd . 500 volt. & \$ . 16 & & W512035 & Condenser-. 1 mfd .400 volt & . 30 \\
\hline 13 & W513002 & Condenser-ceramic 47 Mmfd . 500 volt. & . 24 & 143 & W512019 & Condenser-. 02 Mfd . 600 volt & 30 \\
\hline 16, 17 & W513013 & Condenser-ceromic 5000 Mmfd . 450 voll & . 36 & 144 & W512031 & Condenser-. 05 Mfd .600 volt. & 35 \\
\hline 20.A & W509706 & Condenser-ceromic 95 Mmfd . (port of sound discriminator & 3.00 & & W513027 & Condenser-ceramic 56 Mmfd . \(\pm 10 \% 1500\) volt & 45 \\
\hline 20.8 . & W509706 & Condenser-ceramic 10 Mmfd . (port of sound & & & W512013 & Condenser-. 01 Mfd . 600 volt & \\
\hline 21 & W513010 & Condenser-ceramic 1500 Mmfd . 350 volt & 30 & 156 & W512029 & Condenser-. 05 Mfd .400 volt & . 35 \\
\hline 23. & W513010 & Condenser-ceramic 1500 Mmid .350 volt . & . 30 & & W512001 & Condenser-. 001 Mfd .600 volt... & \\
\hline & ws12027 & Condenser-. \(05 \mathrm{Mfd}\).200 volt. & 40 & 165 & W512001 & Condenser-- 001 Mfd .600 volt. & \\
\hline 26 & w512007 & Condenser-. 005 Mid. 600 volt... & . 25 & & W512009 & Condenser-. 01 mpd . 200 volt. & \\
\hline \({ }^{28}\) & W512007 & Condenser-. 005 Mfd .600 volt. & . 25 & 169 & W513013 & Condenser--ceramic 5000 Mmfd .450 volt. & \\
\hline 30 & W513006 & Condenser-ceramic 270 Mmfd . 500 volt & . 25 & 171 & w512027 & Condenser-. 05 mid .200 volt & \\
\hline 34 & W513010 & Condenser-ceromic 1500 Mmfd . 350 volt... & & 173 & w512540 & Condenser-mico 3900 Mmfd . \(\pm 10 \%\) 500 volt. & \\
\hline 35
36 & W505174 & Condenser-electrolytic 10 Mfd. 150 volt. & & 174 & W512535 & Condenser-mica 390 Mmidd. \(\pm 10 \%\) 500 volt. & \\
\hline \[
\begin{aligned}
& 36 \\
& 39
\end{aligned}
\] & W512011 & Condenser-. 01 Mfd .400 volt
Condenser- .005 mfd . 600 volt. & & 178 & W512535 & Condenser-mica 390 Mmfd . \(\pm 10 \% 500\) volt..... & . 35 \\
\hline 92 & w513013 & Condenser-ceromic 5000 Mmfd .450 volt & . 36 & 179 & WS12515 & Condenser-mica 1000 Mmfd . \(\pm 10 \% 500\) volt. & 0 \\
\hline 94 & W513013 & Condenser-ceramic 5000 Mmfd .450 volt. & & 180 & W520127 & Condenser-trimmer 25.280 mmfd . (Horizontal & \\
\hline 97 & w513016 & Condenser-ceramic 82 Mmfd . \(\pm 10 \% 500\) volt.... & . 25 & & & Drive Control) & 50 \\
\hline 99 & w513013 & Condenser-ceramic 5000 Mmfd .450 volt. \({ }^{\text {a }}\). \({ }^{\text {a }}\). & . 36 & & W512049 & Condenser-. \(25 \mathrm{Mfd} . \pm 10 \% 600\) volt & so \\
\hline 101 & W513013 & Condenser-ceromic 5000 Mmid . 450 vol & . 36 & & W512045 & Condenser-. \(25 \mathrm{Mfd}. \pm 10 \% 200\) volt & 36 \\
\hline 104 & W513016 & Condenser-ceramic 82 Mmid . \(\pm 10 \% 500\) volt.... & . 25 & & W512031 & Condenser-. 05 mpd .600 volt. & 5 \\
\hline 107
110 & W513013
W513013 & Condenser-ceramic 5000 Mmfd . 450 volt.........
Condenser-ceromic \(5000 \mathrm{Mmfd}\).450
volt...... & & & WS12045 & Condenser-. \(25 \mathrm{Mfd} . \pm 10 \% 200\) volt & 36 \\
\hline 111 & W513009 & Condenser-ceromic 1000 Mmid. 500 volit & . 28 & 195 & W508888 & Condenser-ceromic 500 Mmfd 20.000 volt & 2.00 \\
\hline 113, 114 & W513016 & Condenser-ceramic 82 Mmfd . \(\pm 10 \% 500\) volt.. & . 25 & & W508880 & Condenser-electrolytic 10 Mcd .600 volt & 2.55 \\
\hline 117 & wsi & Condenser-ceramic 5 Mmfd . \(\pm 10 \% ~ 500\) volt (Temperoture compensating) & & & W512255 & Condenser-. 01 mfd. 400 volt & . 25 \\
\hline 119 & W512045 & Condenserr-. 25 Mfd. \(\pm 10 \% 200\) volt \(\ldots\)........... & & & W512255 & Condenser- 01 Mfd. 400 volt. & . 25 \\
\hline 125 & w512033 & Condenser-. 1 mid. 200 volt. & & & & Condenser-ceramic 5000 Mmfd 450 volt. & \\
\hline 128 & W513438 &  & . 45 & 207 & - .-W513013 & Condenser-ceramic 5000 Mmfd. 450 volt.......... & .36
.36 \\
\hline
\end{tabular}

\footnotetext{
This is
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SCHEMaca. TION & PART & description & \({ }_{\text {PRICE }}^{\text {LIST }}\) & SCHE-location & Part & & Escription & \({ }_{\text {PRICE }}^{\text {Lilst }}\) \\
\hline & & CONDENSERS-Continued & & & & SIStors- & -Continued & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & & & \[
\begin{gathered}
98 \\
108
\end{gathered}
\] & ws1015 W51011 & \begin{tabular}{l}
Resistor-carbon \\
Resistor-carbon
\end{tabular} & 10,000 Ohms \(\pm 10 \%\) wott 47 Ohms \(\pm 10 \%\) 1/2 wat & \\
\hline & & 40 Mfd. 450 & \multirow[t]{2}{*}{4.00} & 102 & W510119 & Resistor-corbon 1 & 100 Ohms \(1 / 2\) wott.............. & \\
\hline & & \({ }_{10} \mathrm{Mfog} 450\) & & \multirow[t]{2}{*}{106
108} & WS10150 & Resistor-corbon & 5600 Ohms \(\pm 10 \% 1 / 2\) & 12 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\text { 212-A. } 8 \text { W } 509002
\]}} & Condenser-electrolytic 40 mfd . 300 & 2.00 & & W510119 & Resistor-carbon 1 & \(100 \mathrm{Ohms} 1 / 2\) war & - 12 \\
\hline & & & \multirow[b]{2}{*}{3.00} & 109 & W510118 & Resistor-carbon 1 & 100 Ohms \(\pm 10 \%\) 1/2 w & . 12 \\
\hline & & \({ }^{\text {A }} 880 \mathrm{Mmfd}\). 250 volt & & 118
120 & W510153 & Resistor-corbon & 8.200 Ohms \(\pm 10 \% 1 / 2\) & . 12 \\
\hline \multicolumn{2}{|l|}{\(213 . \quad\) W513009} & Condenser-ceromic 1000 Mmfld . 500 volt. & . 28 & \[
123
\] & W510186 & Resistor-corbon 5 & 560,000
8200 & . 12 \\
\hline \multicolumn{2}{|l|}{220.A W W508062} & Condenser-ceromic \(\begin{gathered}\text { Integrotor } U \text { Unit) }\end{gathered} 01 \mathrm{Mfd}\).450 volt (port & \multirow[t]{2}{*}{f. 1.40} & \[
\begin{aligned}
& 123 \\
& 124
\end{aligned}
\] & W510119 & Resistor-corbon
Resistor-carbon &  & 12
12
12 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{220.C W508062}} & & & \({ }_{126}\) & WS10191 & Resistor-carbon & 1 Meg. \(1 / 2\) wott & 12 \\
\hline & & Condensertegrotor Unit). & \multirow[t]{3}{*}{} & 1300 W & WS10745 & Resistor-corbon 1 & 18,000 Ohms \(\pm 5 \% 1 / 2\) & \({ }^{20}\) \\
\hline \multicolumn{2}{|l|}{220.E W508062} & Condenser-ceramic 5000 & & \multirow[t]{2}{*}{131
133} & w510154 & Resistor-corbon 1 & 10,000 Ohms \(\pm 10 \% 1 / 2\) & 12 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{220.G W508062}} & & & & W510753 & Resistor-wire wo & ound 4000 Ohms \(\pm 10 \% 5\) watt & . 12 \\
\hline & & Condenser-c-eramic of inteot & 1.40 & 135, 136.W & W510184 W510160 & Resistor-carbon & 470.000 Ohms \(\pm 10 \% ~ 1 / 2\) wott. 22,000 Ohms \(\pm 10 \% \frac{1 / 2}{}\) watt. & \[
\begin{aligned}
& .12 \\
& .12
\end{aligned}
\] \\
\hline & W512533 & Condenser-mica \(4700 \mathrm{Mmid} . \pm 5 \% 1000\) & & 145 & W510142 & Resistor-carbon 2 & 2200 Ohms \(\pm 10 \%\) 1/ & . 12 \\
\hline \multicolumn{2}{|l|}{229........w512308} & Condenser-. 05 mfd . \(\pm 10 \% 600\) vol & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{199,150
152} & W510132 & Resistor-carbon 5 & 560 Ohms \(\pm 10 \% ~ 1 / 2\) & . 12 \\
\hline \multicolumn{2}{|l|}{\(230 \quad\) W512037} & Condenser-. 1 mid. 600 volt. & & & ws & Resistor-carbon 2 & 270,000 Ohms \(\pm 10 \%\) 1/2 & \\
\hline \multicolumn{2}{|l|}{236} & Condenser-ceramic 5.1 Mmfd. \(\pm 10 \% 1500\) volt & \begin{tabular}{cc}
.14 \\
\hline It \\
.40 \\
\hline
\end{tabular} & \({ }^{152}\) & W510193 & Resistor-carbon & 2.2 Meg. \(1 / 2 \mathrm{wal}\) & . 12 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 237 \\
& 241
\end{aligned}
\]} & WS12019 & Condenser-. \(02 \mathrm{Mfd} .600 \mathrm{val}^{\text {chit }}\) & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(155 . \quad\) W510
157
W510}} & Resistor-carbon & 6e,000 Ohms \(\pm 10 \%\) & . 12 \\
\hline & WS12027 & Condenser-. 05 Mfd 200 volt & & & & Resistor-carbon & 270.000 Ohms \(\pm 10 \% \mathrm{l} / 2\) watt & . 12 \\
\hline & W513013 & Condenser-ceramic 5000 Mmfd .450 & \[
.36
\] & \multicolumn{2}{|l|}{\({ }_{158}^{15 . . . . . W 510187}\)} & Resistor-carbon 6 & 680,000 Ohms \(\pm 10 \% \mathrm{l} / 2\) wath & 2 \\
\hline \multicolumn{2}{|l|}{\({ }^{247}\) 37-....W512019} & Condenser-. 02 Mdd : 600 volt & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{159......w510748} & Resistor-carbon 3 & \(3900 \mathrm{Ohms} \pm 5 \%\) 1/2 watr & \\
\hline \multicolumn{2}{|l|}{\(320 \quad\) W508888} & Condenser-500 Mmfd. 20,000 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(160 \ldots \mathrm{~W}\) W10151
\(161 \ldots . . . . .\).
W 510750}} & Resistor-corbon 6 & 6800 Ohms \(\pm 10 \%\) & 12 \\
\hline & W513013 & Condenser--cercmic. 5000 Mmfd . 150 & \multirow[t]{2}{*}{\begin{tabular}{l}
2.36 \\
.30 \\
\hline 10
\end{tabular}} & & & Resistor-carbon & \(4700 \mathrm{Ohms} \pm 5 \% \mathrm{l} / 2\) wat & \\
\hline \multicolumn{2}{|l|}{\(402 \quad \mathrm{~W} 5093\)} & Condenser-trimmer 3.9 Mmid & & \multicolumn{2}{|l|}{163, 164. W510751} & Resistor-carbon & 100,000 Ohms \(\pm 5 \% 1 / 2\) & 20 \\
\hline \multicolumn{2}{|l|}{405 W51300} & Condenser-ceramic 2.2 Mmfd . 500 volt & \multirow[t]{2}{*}{r. \({ }^{.16}\)} & \multicolumn{2}{|l|}{\(167 \quad W 510162\)} & Resistor-carbon 27 & 27,000 Ohms \(\pm 10 \% 1 / 2 \mathrm{w}\) & 12 \\
\hline \multicolumn{2}{|l|}{} & Condenser-ceromic 800 Mmfd . (part of center shield) & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & Resistor-carbon 4 & 4.7 Meg. \(1 / 2\) wott & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{410
412}} & Condenser-rimmer 0.5.3 Mmfd. & . 40 & & & Resistor-carbon &  & \\
\hline & & Condenser-ceromic \(120 \mathrm{Mmfd} . \pm 5 \% 500\) (Temperature compensating) & . 30 & \multicolumn{2}{|l|}{\(175 . . . \quad W 510139\)
\(176 \ldots \ldots . . . W 510172\)} & \[
\begin{aligned}
& \text { Resistor-carbon } \\
& \text { Resistor-carbon }
\end{aligned}
\] & \[
\begin{aligned}
& 1500 \text { Ohms } \pm 10 \% \text { } 1 / 2 \text { wott.... } \\
& 100,000 \text { Ohms } \pm 10 \% ~ 1 / 2 \text { watt }
\end{aligned}
\] & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(414 . \quad\) W513446}} & Condenser-ceromic 100 Mmid . \(\pm 10 \% 500\) & & & W510187 & Resistor-carbon & 680,000 Ohms \(\pm 10 \%\) & 12 \\
\hline & & (Temperature compensating) & & & W510357 & Resistor-carbon & 15,000 Ohms \(\pm 10 \%\) & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{lll}\text { 415......W509063 } \\ 416 \ldots & \text { W513440 }\end{array}\)}} & Condenser-trimmer 0.5.3 Mmid. & & & W510184 & Resistor-corbon & 470,000 Ohms \(\pm 10 \% ~ 1 / 2\) watt & \\
\hline & & Condenser-ceramic 100 Mmfd . \(10 \% 500\) & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{184 W510116 185 W510218}} & Resistor--Carbon & \(68 \mathrm{Ohms} 1 / 2\) watt. & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
{ }_{420}^{417} \ldots \quad \text { w513441 }
\]}} & Condenser-Ceromic 3.5 Mmfd. (fine Tuning) & & & & Resistor-carbon 1 & 100 Ohms \(\pm 10 \%\) 1 wat & \\
\hline & & Condenser-ceromic 20 Mmfd . \(\pm 10 \% 500\) & \multirow[b]{2}{*}{\[
\begin{aligned}
& .30 \\
& .40
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & Resistor-Carbon
Resistor-wire & Ound 12000 ohms & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\({ }^{421} \times \quad\) W507908}} & Condenser-trimmer 0.5.3 & & & & & & \\
\hline & & Condenser-Ceromic 10 Mmid . \(\pm\) & & 196 & W510390 & Resistor-carbon 1
Resistor-carbon & \({ }_{1}^{1}\) Meg. \(\pm 10 \% 2{ }^{2}\) & \\
\hline \multirow[b]{2}{*}{} & & Temperature compensating) & & & & Resistor-wire wo & ound 600 Ohms \(\pm 10 \% 10\) & \\
\hline & & Condenser-ceromic 800 Mmfd . (Feed thru typ & & & WS10162 & Resistor-corbon & 27,000 Ohms \(\pm 10 \%\) & \\
\hline & & Condenser--ceramic 800 Mmfd . (Feed thru type) (part of center shield) & & 220.8 & W508 & Resistor-car & 22,000 Ohms & \\
\hline & & Condenser-ceramic 800 Mmfd . (Feed thru type) (part of center shield) & & 220.D & W508062 & Resistor-carbon Integrotor Unit & \[
\begin{aligned}
& 8200 \text { Ohms } \\
& \text { it) })
\end{aligned}
\] & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 431 \ldots \ldots \\
& 432 \ldots \ldots
\end{aligned}
\]}} & Condenser-ceromic 120 Mmfd & \multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { et } & .35 \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{220-F... W508062}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & ondenser-ceramic 800 Mmfo
(part of center shield) & & & & & & \\
\hline \multirow[t]{6}{*}{} & & & & 223 & WS107696 & Resistor-carbon & 2 Meg. \(\pm 5 \% 1 / 2\) watt
100,000 Ohms \(\pm 10 \% ~ 1 / 2\) & \\
\hline & W513009 & Condenser-ceromic 1000 Mmfd . 500 volt & & 226 & WS10768 & Resistor-corbon & 4.7 meg. \(\pm 10 \% \mathrm{y} / 2 \mathrm{w}\) & \\
\hline & & & & 227 & wstor & Resistor-carbon & \(1.5 \mathrm{Meg} . \pm 10 \% \mathrm{l} / 2 \mathrm{wot}\) & \\
\hline & & & & 228. & .ws10151 & Resistor-carbon & 6800 Ohms \(\pm 10 \%\) 1/2 w & \\
\hline & & RESISTORS & & 231 & W5101 & Resistor-carbon & 2.2 Meg. \(1 / 2\) watt......... & \\
\hline & & & & 234 & W51034 & Resistor-carbon & 2700 Ohms \(\pm 10 \%\) 2 walt & \\
\hline \multicolumn{2}{|l|}{} & Resistor-corbon 470,000 Ohms \(\pm 10 \% 1 / 2\) watt.. & & 235 & W510145 & Resistor-carbon & 3300 Ohms \(\pm 10 \% \mathrm{~L} / 2\) wat & 12 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{19}^{15 . . . . . . . . . . . W 5510219 ~}\)}} & Resistor-Carbon \(82 \mathrm{Ohms} \pm 10 \% 1 / 2\) watt. & . 12 & 238 & W5101 & Resistor-Carbon & 18,000 Ohms \(\pm 10 \% ~ 1 / 2\) wow & \\
\hline & & Resistor-corbon 4700 Ohms 1 watt. & . 12 & 243 & W510134 & Resistor-carbon & 680 Ohms \(1 / 2\) wott & 12 \\
\hline \multicolumn{2}{|l|}{22.........W510159} & Resistor-carbon 18.000 Ohms \(\pm 10 \% 1 / 2\) watt & 12 & 244. & .W510124 & Resistor-carbon & 220 Ohms \(\pm 10 \% \quad 1 / 2\) watt & \\
\hline \multicolumn{2}{|l|}{\(25 . \quad\) W51017} & Resistor-carbon 68,000 Ohms \(1 / 2\) watt............ & . 12 & 246 & W510134 & Resistor-carbon & 680 Ohms 1/2 w & 12 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{\text {31-..........W510184 }}\)}} & Resistor-carbon 10 Meg . \(1 / 2\) wotl & 12 & & WS10180 & Resistor-carbon & 270,000 Ohms \(\pm 10 \% 1 / 2\) wott & \\
\hline & & Resistor-corbon 470.000 Ohms \(\pm 10 \% 1 / 2\) watt. & . 12 & 322,323 & & Resisitor--Carbon & \(12,000 \mathrm{Ohms} \pm 10 \% 2\) watt & \\
\hline \multicolumn{2}{|l|}{\(32 \quad \mathrm{~W} 510160\)} & Resistor-carbon 22,000 Ohms \(\pm 10 \% \mathrm{l} / 2\) wott.... & 12 & 325 & w510263 & Resistor-33 Ohms & ms \(\pm 10 \% 1\) watt & \({ }^{6}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{- \(\begin{aligned} & \text { 37.........W510746 } \\ & \text { 38.......w510747 }\end{aligned}\)}} & Resistor-corbon 680,000 Ohms \(\pm 5 \% 1 / 2\) watt.. & 20 & 403. & W510160 & Resistor-carbon & 22,000 Ohms \(\pm 10 \% \mathrm{~h} / 2\) & 12 \\
\hline & & Resistor-carbon 820,000 Ohms \(\pm 5 \% \quad 1 / 2\) watt. & . 20 & 404 & .w & Resistor-carbon & 47,000 Ohms & 12 \\
\hline \multirow[t]{3}{*}{91
93} & W510723 & Resistor--carbon 12,000 Ohnis \(\pm 5 \%\) 1/2 watt & + 16 & 408 & \({ }^{W} 510179\) & Resistor--carbon & 220,000 Ohms \(1 / 2\) wott & -. 12 \\
\hline & W510116 & Resistor-carban 68 Ohms \(1 / 2\) & & 409 & W510177 & Resistor--carbon & 180,000 Ohms \(\pm 10 \% 1 / 2\) wat & - 12 \\
\hline & .W510129 & Resistor-ctarbon 390 Ohms \(\pm 10 \% 1 / 2\) watt & & 411 & ws & Resistor-Carbon & 1000 Ohms \(1 / 2\) watt.... & 12 \\
\hline
\end{tabular}

PARTS LIST FOR TELEVISION CHASSIS 100.208-1 (Contd.)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SCHEmanc tocas & PART & description & \({ }_{\text {PRILE }}^{\text {LIST }}\) & SCHELOCA. TION & Part \({ }_{\text {Nos }}\) & description & \({ }_{\text {PRILE }}^{\text {LIST }}\) \\
\hline & \multicolumn{3}{|l|}{mechanical parts of r.f. TUNER-Continued} & & \multicolumn{2}{|r|}{miscellaneous parts-Continued} & \\
\hline & \multicolumn{2}{|l|}{W507967 Spring-turret shaft retaining -} & . 03 & & w507422 & Rubber sleeve between neck of piciure tube and focus soil & . 30 \\
\hline & \multirow[t]{2}{*}{w20517
w520516} & Stator contact assembly (includes 11 contacts and metal frame)... & \multirow[t]{4}{*}{\[
\begin{array}{ll}
3.75 \\
\hdashline & 3.00 \\
\hdashline & .01
\end{array}
\]} & & w507793 & Rubber spacer support between flared neck of picture lube and yoke brackel & \\
\hline & & \multirow[t]{4}{*}{Tuner furret and shaft assembly (less coils) Washer, fiber spacer (on turrel shaft). \(\qquad\)} & & & W18796 & Screw-\#10 x 1 "; mounts TV chassis............ & \begin{tabular}{l}
.02 \\
.\(\quad .30\) \\
\hline
\end{tabular} \\
\hline & \multirow[t]{5}{*}{W520516 W507965} & & & & W162353 W162138 & Shield far 3rd I.F. coil and crystal detector.
Shield-H.V. Supply (front section) & . 30 \\
\hline & & & & & w500088 & Shield-H.V. supply (rear section).. & 1 \\
\hline & & & & & W520534 & Shield-tube; miniature for 636 tube & 15 \\
\hline & & \multirow[t]{2}{*}{miscellaneous Parts} & & & W520519 & Shield-lube; miniature for 6BK7 tube. & \\
\hline & & & & & W520429 & Sleeve, insslating for pisture
H.V.
contact) & \\
\hline & W301270 & \multirow[t]{2}{*}{\begin{tabular}{l}
Base for mounting electrolytic condenser \\
Bracket base for suppart of yoke and focus coil (left or right hand)
\end{tabular}} & 06 & & \multirow[t]{2}{*}{W509062 W507357} & Slug core for converter plate coill & \\
\hline & W508153 & & \multirow[b]{2}{*}{. 55} & & & \multirow[t]{2}{*}{Slug core for 1st, 2nd or 3rd video I.F. coil Slug core for Horizontal Hold coil} & . 20 \\
\hline & W520425 & Bracket, chassis extensian (left hand). & & & W508963 & & \\
\hline & W520426 & Bracket, chassis extension (right hand) & \begin{tabular}{l}
1.50 \\
1.50 \\
\hline
\end{tabular} & & W507429
W50976 & \begin{tabular}{l}
Slug care for Width coil. \\
Socket and cable assembly for picture tube
\end{tabular} & \\
\hline & W520312 & Bracket for mounting picture tube (left hand) & \multirow[t]{2}{*}{1.00
1.00} & & \multirow[t]{2}{*}{W162334} & \multirow[t]{2}{*}{Socket assembly for \(1 \times 2 \mathrm{~A}\) tube (includes mounting frame)} & \\
\hline & W520311 & Bracket for mounting picture fube (right hand). & & & & & 5 \\
\hline & W520424 & Bracket for mounting pre.set contrals. & \multirow[t]{2}{*}{.75
.16} & & W508879 & \multirow[b]{2}{*}{\begin{tabular}{l}
Socket for TV Channel Lite. \\
Socket ( 8 pin ) for yoke cable
\end{tabular}} & \\
\hline & W508081 & Bracket for mounting R.F.
Bracket for ( (frant) & & & & & \(\begin{array}{r}-3 \\ -\quad .70 \\ \hline\end{array}\) \\
\hline & W520233 & Bracket for mounting R.f. funer (rear).]-]
Bracket mounts roke and facus coil & .25
2.75 & & \multirow[t]{2}{*}{W507932 W507364} & Socket-male, pawer cord interlock. & . 25 \\
\hline & , & Bracket ("U"'s shaped) far support of yake and & \multirow[t]{3}{*}{- 10} & & & \multirow[t]{2}{*}{\begin{tabular}{l}
Socket-miniature (7 pin). \\
Sockef-miniature ( 7 pin) for 6.56 (includes base for maunting shield)
\end{tabular}} & \\
\hline & & Clip focus coil mounting electralytic condenser \#19 & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \\
\hline & W508964 & Clip for maunting Horizontal Hold ar Width coll & & & & & \\
\hline & w505101 & Clip for maunting sound take-aff transformer. & \[
.04
\] & & \({ }_{W}^{W} 509507\) & \multirow[t]{2}{*}{\begin{tabular}{l}
Socket-miniature (9 pin) \\
Socket-miniature ( 9 pin) (for \(12 \mathrm{AU7}\) tube) Sacket-miniature ( 9 pin) for 6BK7 (includes bose for maunting shield).
\end{tabular}} & \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & & \multirow[t]{2}{*}{} & & \\
\hline & & & & & & Socket-Octal (for color TV adapter)................. & . . 15 \\
\hline & W520428 & Cannector far H.V. terminal (includes cap and lead) & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{W506469 W509320} & \multirow[t]{2}{*}{\begin{tabular}{l}
Socket-actal (far 6W4 tube) \\
Spring-tension far focus coil maunting
\end{tabular}} & \\
\hline & & lead) & & & & & - 10 \\
\hline & 8688 & Jumper for colar sacket-11/4" of \#11 wire. & & & W509320 W520444 W520623 & \begin{tabular}{l}
Spring-tension far focus coil maunting \\
Strap, anchor far picture tube \(\qquad\)
\end{tabular} & \\
\hline & w508617 & Nut far retaining facus cail. & . 12 & & \multirow[t]{2}{*}{W520624} & Strap, tube retaining & \\
\hline & W508962 & Nut on end of Harizantal Hold control stog & & & & Terminal strip for TV antenna connection........... & \\
\hline & W508515 & Plug (3 pin) for facus cail loads Plug (8 pin) far yake cable. & & & \multirow[t]{2}{*}{W170817} & Wing nut- \(\mathbf{\text { cail }}\). & \\
\hline & W507699 & Power cord assembly (includes plugs at bo
ends) & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1.00 \\
& .10 \\
& 3.50
\end{aligned}
\]} & & & Wing screw-\#10.24; for height adi. af rake
and focus cail. & \\
\hline & \(\underset{W}{W} \mathbf{W} 50938313\) & Ring-corona shield Ring-coronating far mounting picture tube & & & W170741 & Wing serew-\#10-32; for mounting or forward adj. of yake & \\
\hline
\end{tabular}
--This part is not supplied as a Service replacement item.

PARTS LIST FOR JUNCTION BOX CHASSIS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SCHEE toca. TION & \[
\begin{gathered}
\text { PART } \\
\text { No. }
\end{gathered}
\] & description & \[
\underset{\text { LuICE }}{\text { LIST }}
\] & SCHELOCA. TION & PART & & DESCRIPTIO & & \(\underset{\text { PRICE }}{\text { LISt }}\) \\
\hline \[
\begin{aligned}
& 331 \\
& 332
\end{aligned}
\] & W520545 W505512 W520546 & Switch, Radio.TV Selectar. Spoaker-P. M. Dynamic (12 inch) Cover for swith & \[
\begin{array}{r}
\$ 2.50 \\
\ldots \quad 15.75 \\
\ldots \quad .10
\end{array}
\] & & W520262 w520541 & \begin{tabular}{l}
Socket (2 pin) \\
Sacket (2 pin)
\end{tabular} & for A. C. for Speaker & power........................... & \[
\begin{array}{r}
5.35 \\
.15
\end{array}
\] \\
\hline
\end{tabular}

\footnotetext{
-This part is not supplied as a Service replacement item.
}

PARTS LIST FOR RADIO CHASSIS 100.202-1


- -This part is not supplied as a Sorvice reptacement item
-This part is not supplied as a Service replacement item.

PARTS LIST FOR CABINET PARTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SCHELOCA. TION & PART. &  & \[
\begin{aligned}
& \text { SCHEE } \\
& \text { MATC } \\
& \text { LOCA } \\
& \text { TION }
\end{aligned}
\] & Part. & description & PRILET \\
\hline \multirow[t]{21}{*}{} & W520549 & Back for cabinet; radio comportment ........... \$1.40 & & W520633.A & Knob, "OFF-VOLUME-PICTURE" (TV) .-....... & 65 \\
\hline & W115238 & Back for cobinet; TV compartment................ 2.25 & & W520635-A & Knob, Picture (TV) & . 30 \\
\hline & W508217 & Bracket for mounting ON-OFF Indicator & & 520569 & Knob, "Radio-tv" Selector (Radio) ..... & . 50 \\
\hline & & at bose of cabinet.. & & 509044 & Knob, "TONE" (Rodio) & 30 \\
\hline & W117131 & Bulls eye for ON-OfF indicator Lite at base of & & W520567 & Knob, "TUNE" (Radio) & . 65 \\
\hline & &  & & W520565 & Knob, "VOL-ON" (Radio) & . 45 \\
\hline & 520547 & Corbinet for Stock No. 2195-21 \(\ldots\) - & & W520496-B & Mask for picture tube. & 7.00 \\
\hline & W508499 & Catch for door & & W52045s & Name plate & 2.00 \\
\hline & w520581 & Door, radio compartment (upper right hond). 24.00 & & W508408 & Rail for drawer ..............................per & 8.40 \\
\hline & W520582 & Door, record storage compartment (lower right & & w508531 & Record Adapter for 45 R.P.M. records..pk. of 12 & \(\infty\) \\
\hline & & hand) .-. & & W520579 & Record changer drower assembly (less hardware) & \\
\hline & 20580 &  & & W160496 & Rubber pad for mounting radio chassis...... & . \\
\hline & W50843 &  & & 520578 & Screw \(\# 6 \times 3 /\) oval hoad wood screw; mounts & \\
\hline & W520499 & Glass window ...) & & w17016 &  & . 05 \\
\hline & W520583 & Handle for door & & W18796 & Scrow \#10 \(\times 1^{\prime \prime}\); mounts TV chassis...... & . 02 \\
\hline & W520584 & Handle for drawer & & W520452 & Spring for hinge on nameplate............... & 15 \\
\hline & W520454 & Hinge bracket for name plate.. & & 85 & Strip, retains glass window (wood) & 1.50 \\
\hline & W509307 & Hinge for door .... & & 1488 & Tab, U.M.F., for Channel Solector Knob (TV) & . 15 \\
\hline & W520632-A & Knob, Chonnel Solector (TV) .......... & & 05924 & Terminal strip for Radio ontenna connec & \\
\hline & W520568 & Knob, "PHO-AM-FM" (Radio) .-.]. & & & (FM-FM-AM-AM) & . 25 \\
\hline & W520634-A & Knob, Fine Tuning (TV) & & W162163 & TV antenna connections & . 22 \\
\hline
\end{tabular}
© John F. Rider


\section*{GENERAL DESCRIPTION}

\section*{The infarmatian cantained in this service Supplement caver \\ number \(2170 . \mathrm{C}\)}

This ciovision reciver unizes chassis 100.209 which is basically the same
as chassis 100.208
Iwa chassis is that the 100.209 wifilizerences between the 'wa chassis is that the 100.209 utilizes a IB3GT type Nube far H.V. Rectificatian. The assaciated Harizantal Sweep Transformer was alsa changed
In addition the 100.209 chassis uses a new Pawer Transformer.
The carrect Tube Lacatian and Function Chart for the 100.209 chassis, and a new Sacket Valtage Measurement Chart, are included in this
Supplement.

When performing Oscillatar Alignment an a 100.209 chassis which urilizes
- W520645 R.F. Tuner (SERIES F or G) it will be nated that Ocillatar - W520645 R.F. Tuner (SERIES F or G) it will be nated that Oxillatar in the alignment procedure. On the W520645 R.F. Tuner instrument cannection, paint " \(v\) ", shawn in Fig. 12, has been maved to the lacation farmerly occupied by trimmer \#12.
The camplete Schematic and Parts List far the 100.209 chassis is included with this RL Supplement. All praductian changes except far SERIES H are included on the schematic page. The SERIES \(H\) change is itemized in
subsequent sectian entitled Additianal Praduction Changes.

For additional data, see Chassis 100. 208.

\section*{TUBE LOCATIONS AND FUNCTIONS}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{PRODUCTION CHANGES} \\
\hline \multicolumn{2}{|l|}{For a complete description of the changes as well as an explanation of the SERIES coding, refer to the heading "Production Changes," \(p \mathrm{~g} 4.7\).} \\
\hline LETTER INCIUDED IN SERIES DES IGNATION & LOCATION OF VOLTAGE INFORMATION OR effect of change on measurement \\
\hline " \({ }^{\prime}\) " & Voltage readings token on a chossis that incorporotes the letter " \(A\) " will be lower than those shown in the large chart by approximately \(10 \%\). \\
\hline "B" & SERIES B Change does not affect circuit voltages. \\
\hline "C" & Voltage readings taken on affected tube V26-6BL7 is shown in small chart below under the heading "SERIES C CHART." \\
\hline "D" & No chassis were produced with the SERIES D designation. \\
\hline "E" & No chassis were produced with the SERIES E designation. \\
\hline \[
\begin{gathered}
"{ }^{\prime \prime \prime} \\
\& \\
" \mathrm{G}^{\prime \prime}
\end{gathered}
\] & \begin{tabular}{l}
Although R.F. tuner 520645 uses a 6 BQ7 R.F. tube and tuner 520450 uses a 6 BK7 R.F. tube, all tuner voltages are identical with the following exception. \\
Pin 7 6BQ7 \\
1501 Volts.
\end{tabular} \\
\hline " \(\mathrm{H}^{\prime \prime}\) & SERIES H Change does not affect circuir voltages. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
ADDITIONAL PRODUCTION CHANGES \\
See schematic page for complete explanation of the SERIES coding as well as details on all previous changes
\end{tabular}} \\
\hline LETTER DESIGNATION & DESCRIPTION OF CHANGE \\
\hline " \(\mathbf{H}^{\prime \prime}\) & \begin{tabular}{l}
The following change was incorporated to provide increase width when operating receiver at a line voltage that is below normal. \\
1. Condenser 235, connected across the width coil 237, was changed from . 01 Mfd . 10.02 Mfd . \\
The above change is not to be undertaken if the SERIES coding at rear of chassis includes a letter " \(A\) ".
\end{tabular} \\
\hline
\end{tabular}

SERIES "C" CHART


rear of cuasels

\section*{CAUTION}

THE PICTURE TUBE is highly evacuated and if broken, glass fragments will be violently expelled. Scratch.
ing, chipping, undue pressure, or coreless handling such as lifting the tube by its neck is dangerous and ing, chiping, undue pressure, or careless handing such as lifting the wive by its neck is dangerous and
should be avoided. if it is neeessary to handle the picture tube, use sofely goggies and heavy gioves.
HIGH VOITAGE ( 10 to 13 kilovolts) is produced in a supply circuit of this receiver. Exercise care to ovoid contact with elements of this.
the adjoining voltage chart.
THE HIGH VOITAGE LEAD, which supplies approximately 10 to 12 kilovolts to the picture tube, should be momentarily shorted to the chassis whenever it is disconnected for service purposes. This discharges the
high voliage filter condenser and prevents a shock hazard when working on the receiver after it has been turned off.
INTERMEDIATE B+ VOLTAGES, are danger
components are exposed for serrice purposes.
the voltages shown in the adjoining chart were MEASURED UNDER THE FOLLOWING CONDITIONS
\begin{tabular}{|c|c|}
\hline 2. & All voltages are measured between socket terminals and chassis unless otherwise indicated on adjoining chart. \\
\hline 3. & \begin{tabular}{l}
* \\
Measurements made with voltmeter having sensitivity of 20,000 ohms per volt except where indicated by (*). The (*) symbol designates a vacuum tube volimeter measurement.
\end{tabular} \\
\hline 4. & Channel Selector and Fine Tuning Controls set for normal reception of o local station. \\
\hline 5. & All controls are set for normal reception of the tronsmitted signal unless the voltage shown on the chart is followed by a letter or letters indicoting a special condition of measurement as explained in subsequent notes. \\
\hline 6. & The external or built-in antenna should remain connected to the receiver only when taking voltage measurements in the sweep and sync circuits-for all other measurements, disconnect antenna, short antenna terminals together and connect them to ground. \\
\hline 7. & Certain voltages were measured with two different settings of specific controls. It should therefore be understood that in these instances all controls, with the exception of one or two, were set for normal reception-letters following the voltage shown on the chart indicate the exceptions and are explained below. \\
\hline
\end{tabular}
explanation of notes
B. Brightness Control max. clockwise
C. Brightness Control max. counter-clockwise
D. Contrast Control max. clockwise
E. Contrast Control max. counter-clockwiso
G. Height Control max. clockwise
H. Height Control max. counter-llockwise
J. Vertical Hold Control max. clockwise
K. Vert. Hold Control max. counter-clockwise
L. This vollage measurement was taken from the top of the
tuner chossis with the tube removed from its socket.
M. Vertical Linearity Control max. clockwise.
N. Vertical Linearity Control max. counter-clockwise.
Q. Do not attempt to measure the valtoge at the tube cop.
R. Channel Seloctor set to channel \#a
S. Channel Seloctor set to channel \#9
T. Horiz. Drive Control max. clockwise
U. Horiz. Drive Control max. counter-clockwise.
V. Before measuring this voltage, connect external antenna
W. On early production tuners, the value of resistor 409 wo 220,00 of ohm and consequently the voltage measured an
pin 7 of tube V 4 GBK7 R.F. Amp., may be reduced as low as 125 volis.
X. Grounding of conter stud on tube socket is nocossary to reduce copacity coupling between other pins. Oscillation
may result if this ground is omitted.
Y. Horiz. Hold Control turned in a clockwise direction unti picture approaches loss of sync.
Z. Horiz. Hold Control turned in a counter-clockwise direction 2. \(\quad \begin{aligned} & \text { Horiz. Hold Control turned in a count } \\ & \text { until picture approaches loss of sync. }\end{aligned}\)




\section*{SCHEMATIC DIAGRAM FOR W520450 R.F.TUNER}


\section*{OSCILLOGRAMS}

All oscillograms taken with ground lead of 'scope connected to receiver chassis (unless otherwise indicated) and with receiver controls set for normal reception of a station transmitting its standard test pattern.

Number appearing below asterisk specifies setting of horizontal sweep frequency control on 'scope.
*-This symbol on illustration indicates that wave form was observed on a 'scope whose vertical amplifier had very limited high frequency response ( 50 to 100 Kc ).
**-This symbol indicates that wave form was observed on a 'scope whose vertical amplifier frequency response was flat to within \(20 \%\) up to 2 Mc .




MODEL 2170-C, Ch. 100. 209

\section*{HOW TO ORDER PARTS FOR YOUR SILVERTONE TELEVISION RECEIVER}

These authorized replacement parts may be ordered through any Sears Retail Store or the Mail Order Store which serves the territory in which you live. Prices upon application from Sears, Roebuck and Co. The parts are shipped prepaid. When ordering parts, always give
The PART NUMBER (number printed on the part if different from that shown in this list) and the DESCRIPTION When no number is assigned order by description and rating.
2. The CHASSIS and CATALOG NUMBERS. The chassis number will be found on a metal plate at the rear of the chassis. This plate is pictured below. The catalog number will be found on a sticker on the back, inside or bottom of the cabinet.

PARTS LIST FOR CHASSIS
Notice: Some parts listed below have special characteristics. Do not use substitutes for replacement purposes.

CONDENSERS FOR R.F. TUNER

W509064 Condenser-trimmer 3.9 Mmfd .... \(10 \%\). 50
 Condenser- Ceramic 800 Mmfa .
(parn of Conter Shield).

W520719 Condenser-ceramic 47 Mmpd\() \pm 10 \%\). 500 volt

W520719 Condonser-ceramice 4 Mmpti, \(\pm 10 \%\) S00 volt
W520718 Condenser-Ceramic \(10 \mathrm{Mmfd}\). (Fine Yuning).... W507968 (Tempercer componsating) W520716 Condenser-coramic \(6.8 \mathrm{Mmfd} . \pm 5 \%\) (Tempera.


 W513029 Condenser-ceramic \(120 \mathrm{Mmfd} . \pm 10 \% 500\) volt

 The following condensers ore used only in the W520450
R.F. Tuneer and
 stamped on roar of chas
W509004
\(W 51309\)
Condenser-



 W509063
W 513440 Condenser
Crime

 W507968



\(\qquad\)




\section*{resistors}
W510184 Resistor-carbon 470,000 Ohms \(\pm 10 \% ~ 1 / 2\) watt.





- -This part is not supplied as a Sorvice roplacement item

© John F. Rider

© John F. Rider

\section*{SOCKET VOLTAGES}

\section*{CAUTION}

the voltages shown in the adjoining chart were MEASURED UNDER THE FOLLOWING CONDITIONS
\begin{tabular}{|l|}
\hline 1.
\end{tabular} Power Supply- 117 volts 60 cycle AC.

EXPLANATION OF NOTES
\begin{tabular}{|ll|}
\hline A. & Range Boaster control max. clockwise \\
\hline B. & Brightness Contral max. clockwise \\
\hline C. & Brightness Control max. counier-clockwise \\
\hline D. & Contrast Control max. clockwise \\
\hline DD. & \begin{tabular}{l} 
Contrast control set to max. Voltage reading but not \\
necessarily max. clockwise seting of control
\end{tabular} \\
\hline E. & Contrast Control max. counter-clockwise \\
\hline F. & Range Booster control max. counter-lockwise. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline G. & Height Control max. clockwise \\
\hline H. & Height Control max. counter-clockwise \\
\hline J. & Vertical Hold Control max. clockwise \\
\hline K. & Vert. Hold Control max. counter-lockwise \\
\hline L. & This voltage measurement was taken from the top of the tuner chassis with the tube removed from its socket. \\
\hline M. & Verrical Linearity Control max. clockwise. \\
\hline N. & Vertical Linearity Control max. counter-clockwise. \\
\hline Q. & Do not attempt to measure the voltage at the tube cap. There is a high R. F. potential at this point. \\
\hline T. & Horiz. Drive Control mox. clockwise \\
\hline U. & Horiz. Drive Control max. counter-clockwise. \\
\hline \(v\). & Before measuring this voltage, connect external ontenna and adjust controls for normal reception of station signal. \\
\hline W. & This measurement should be made with a vacuum fube voltmeter. This voltage reading will fluctuate in the visinity of 0.15 volts. \\
\hline x. & Grounding of center stud on tube socket is necesasry to reduce eapacity coupling betweon other pins. Ostillation may result if this ground is omitted. \\
\hline Y. & Horiz. Hold Control furned in a clockwise direction until pieture approaches loss of sync. \\
\hline 2. & Horiz. Hold Control turned in a counter-clockwise direction until picture aproaches loss of sync. \\
\hline
\end{tabular}

PRODUCTION CHANGES
For a complete description of the changes as well as an explanation of the SERIES coding, refer to the circuit diagram page 9, under the heading "Production Changes.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l} 
LETTER IN- \\
CIUDED IN \\
SERIES DES. \\
IGNATION
\end{tabular} & LOCATION OF VOLTAGE INFORMATION \\
\hline OR
\end{tabular}

SERIES "E" CHART
\begin{tabular}{|c|c|}
\hline  &  \\
\hline  &  \\
\hline
\end{tabular}

© John F. Rider


\(\begin{array}{lll}\text { W301270 } & \text { Base for mounting electrolytic condenser } \\ \text { W508153 } & \text { Bracket base for support of yoke and focus }\end{array}\) W508153 Bracket base for support of yoke ond focus. \(\begin{array}{ll}\text { W520425 } & \text { Bracket, chossis extension (left hand)... } \\ \text { W520426 } & \text { Bracket, chassis extension (right hand). }\end{array}\) W520426
Bracket, chassis extension (right hand).
W520312
Wrack)
Brack for mount
Bracket for mounting picture fube (lift hand) W520424 Bracket for mounting pre-set controls....


 \(\begin{array}{ll}\text { WS08881 } & \text { Clip far mounting electrolytic condenser } \\ \text { W508984 } & \text { Clip for mounting Horizontal Hold or Width coil }\end{array}\) W508864 Clip for mounting Horizontal Hold or Watmer....
W50siol Clip for mounting sound tokeoof transfarmer... W507339 Clipi for mounting video converter plote, 1 st W524428 Connector for H.V. terminal (includes cop and

\[
\begin{aligned}
& \text { W50817 Nut for retoinin forcus coil } \\
& \text { W508962 } \\
& \text { Not on }
\end{aligned}
\]
\[
\begin{aligned}
& \text { W508788 Plug (3 pin) for focus coil lead } \\
& \text { w508515 Plug (8 pin) for youe cable }
\end{aligned}
\]
\[
\begin{array}{lll}
\text { W509290 } & \text { Rinds) } \\
\text { Ring }
\end{array}
\]
W507793 Rubber sool sper support between flared neck ofW508088
Whield-H.V. supply (rear section)
W52534
Shield-tube, minature forW520429 Sleeve, insulating for picture tube (includesW509062 Slug. care for converter plate coil
\begin{tabular}{|c|c|c|}
\hline w507357 & Slug core far 1st, 2nd & \\
\hline W508963 & Slug care for Horizontal Hald & 15 \\
\hline w507429 & Slug core for Width cail & . 60 \\
\hline & Socket ond cable assembly for picture tube & \\
\hline & & \\
\hline W16259 & Socket assembly for 183G1/8016 & \\
\hline W160039 & Socket-(1 pin) for Phono. pick-up & 析 \\
\hline W5088 & Socket-(3 pin) for focus coil leads & 35 \\
\hline 8419 & Sacket-(8 pin) for yoke cable & \\
\hline w507932 & Socket-male, power cord inter & \\
\hline W5073 & Socket-miniature ( 7 pin) & . 24 \\
\hline W507987 & Socket-miniature for ofo tube (includes
for maunting shield) & \\
\hline w508044 & Socket-miniature (9 pin) & \\
\hline w509507 & Socket-miniature (9 pin) (for 12AU7 tube & 25 \\
\hline 20521 & Socket-miniature ( 9 pin) for \(6 B Q 7\) ar \(\delta B Z 7\) tube (includes bose for mounting shield). & \\
\hline w508703 & Socket-octal & 15 \\
\hline W508469 & Sacket-octal (for ow4 tub & \\
\hline w509320 & Sping-tension for facus coil & \\
\hline W520444 & Strap, anchor for picture tube. & \\
\hline w520623 & Strap, tube retaining & \\
\hline W520443 & Support far funer shaft (plastic) & \\
\hline w1 & Terminal strip for TV antenna connection & . 22 \\
\hline w1 & Wing nut-\#8.32; for mounting yoke and focus. & . 10 \\
\hline W170817 & Wing screw-\#10.24; for height adi. of yoke & \\
\hline W17074 & Wing scrow \(=\$ 10.32\) for mounting or forward & \\
\hline
\end{tabular}

SEARS, ROEBUCK TV PAGE \(12-57,58\)






\section*{©John F. Rider}

MODELS \(121-17\), Ch. \(647.021 ; 122-20,122-20 \mathrm{~A}, 123-20,123-20 \mathrm{~A}, \mathrm{Ch} .647 .022 ; 2101,2101 \mathrm{~A}, \mathrm{Ch} .647 .023\)

\section*{SWEEP SYSTEM - HORIZONTAL}

The horizontal system is cathode coupled sine wave multivibrator combination, using one-half of a 6SN7 as a horizontal osc. and the other triode section as a discharge tube

\section*{A. G. C.}

This receiver uses an A.G.C. circuit operating on the first two I stages and the R.F. amplifier which proves quite effective

\section*{HIGH VOLTAGE POWER SUPPLY:}

This receiver used the "fly-back" type of high voltage power supply. The horizontal output tube is a 6BG6 with a 1B3 as a rectifier

\section*{LOW VOLTAGE POWER SUPPLY:}

The low voltage power supply is conventional, consisting of a center tapped power transformer used in conjunction with a 5 U 4 full wave rectifier. After power dissipations for filtering, approximately 360 volts are available for application to the deflection circuits. It is interesting to note that the I. F. -R.F. portions and the sound-audio portions of the receiver are in series across 360 volt supply, 220 volts being used for sound supply and the remaining 140 volts for I. F. and R.F. supply, supply potential. See Fig. 1.

\section*{CONTROL FUNCTIONS - FRONT PANEL CONTROLS:}

\section*{On-Off-Sound:}

The volume control is an audio control only and has no effect on the picture. It is connected in the grid circuit of the audio amplifier. The power on and off switch is combined with the volume control.

\section*{Picture:}

The contrast control is virtually a tone control for the picture. When set too low, it will give a weak, washy picture and when set too high, it will produce a stark black and white picture

\section*{Vertical:}

The vertical hold control should be adjusted in the event of picture roll. Slight readjustment will cause the picture to lock vertically

Horizontal
The horizontal hold control should be set in the center of its range. The control will be used only if the picture should resolve into a series of heavy, oblique black and white lines. A slight readjustment of the control will then cause the picture to correct itself.

\section*{Station Selector:}

The inner knob will activate the fine tuning control, which is a corrector for the R.F. oscillator. The (outer) indicator knob of this control will operate the station selector.

\section*{RECEIVER REAR CHASSIS CONTROLS:}

\section*{Brightness:}

This control operates by varying the D. C. potential on the cathode of the kinescope

\section*{Vertical Size or Height:}

This control is a variable resistor operating in the plate circuit of the vertical sweep oscillator. Since changes in height will affect picture linearity, this height control must be adjusted in conjunction with changes in height witl affect
the vertical linearity control.

Note: The height control will affect mainly the bottom half of the picture, and the vertical linearity control will affect mainly the top portion of the picture

\section*{Vertical Linearity Control}

This is a variable resistor control in the cathode of the vertical sweep amplifier. This control is to be adjusted as height control is adjusted.

\section*{RECEIVER REAR CHASSIS CONTROLS}

\section*{P. M. Focus Coil Adjustment:}

This receiver uses a permanent magnet type focus unit. This unit provides an easy method for both ocusing and centering adjustments. The unit is spring mounted for ease of positioning. A brass, screw driver slotted rod, is located to the right of the CR tube socket at the rear of the set, and may be adjusted for best focus. If the focusing ring (outer ring) is drawn completely to the rear and a focus is approached, but not obtained, the entire assembly should be moved to the rear. This may be accomplished by loosening all three wing nuts on the spring mounted assembly. Conversely, if focus is approached with the focus ring completely forward, tighten the three wing nuts. The raster may be centered by movement of the positioning ring (inside the focusing ring) with the "Wobble Stick" which is taped to an electrolytic condenser on the top of the chassis.

Horizontal Size:
The horizontal size adjustment should be attempted only when it is possible to receive a test pattern Horizontal Linearity
The horizontal linearity control is adjusted to give best linearity between the left and right wedges of the test pattern consistant with good width.

\section*{Check of AFC Control:}

The AFC control is located on the rear portion of the chassis under the yoke riser bracket. Set the horizontal hold control midway of its range. Tune in a station, then adjust the AFC coil until the pic ture is "locked in" on the screen

If at a later time, the horizontal size controls are changed it may be necessary to repeat the above Height, Width, Linearity Alignment:
To adjust the overall size and linearity of the picture it is mandatory that a test pattern transmitted from a local station be used. Linearity adjustments, particularly, cannot be made accurately on moving transmissions. In an area where more than one station is being received, the pictures transmitted from dif erent stations will vary slightly in size. The smallest transmitted picture should be made to fill the mask opening.
1. The horizontal hold control should be set at the center of its range and the AF coil adjusted until the picture locks in
2. The horizontal linearity coil should be adjusted until the left and right wedges of the test pattern are as nearly equal as possible consistant with good width.
3. If the center of the picture is compressed horizontally or if a white line is evident on the left side adjust the horizontal drive trimmer
4. The height and vertical linearity controls should now be adjusted for a linear picture that will fill the mask vertically. The focus adjustment should also be checked for maximum definition of lines in the vertical wedge of the test pattern.

\section*{Deflection Yoke Adjustment}

The deflection yoke should be placed in position closest to the "bell" of the picture tube, as far forward as possible. The yoke riser mounting should also be as far forward as possible.

If the lines of the raster are not horizontal or squared with the picture mask, loosen the deflection yok adjusting screw and rotate yoke until this condition is remedied. Tighten yoke adjustment screw

Torn Ride

\section*{INSTALLATION AND ADJUSTMENT}

UULT-IN ANTENNA -- This receiver is equipped the position of minimum capacity consistent with a built-in antenna which should provide fa vable reception of television signals within the rimary service area, and where local interfer nces are not excessive. Do not locate the reeiver near a large metal surface such as a radion will result.

RECEIVER INSTALLATION -- The receiver was解 from the factory with all components predjusted for normal operation. However, if in hecking receiver performance, it becomes evident that one or more of the installation controls are out of adjustment, due to handling, it is necessary to re-adjust the affected controls. A complete adjustment of installation controls is outlinedin the step by step procedure which follows. It will be noted that adjustment of some of the controls will interact on one or more of the others. These controls should be adjusted alternately, and in the given sequence of the procedure. Power should never be applied to the receiver for any great length of time, prior to the installation, without checking the ion trap adjustment for best screen llumination

\section*{SEQUENCE OF ADJUSTMENTS} Ion Trap Adjustment
Remove the cabinet back cover. (In some cases this will open circuit the A.C. interlock, and another line cord with appropriate fittings must be used temporarily until the necessary adjust ments have been completed). With power ap-warm-up time, set the brightness control in the center of its range and rotate the ion trap, or beam bender magnet, until light appears on the screen. After initial screen illumination is diroximately 130 volts, while its cathode is wired obtained, move the magnet forward or back - 140 volt drain due to A.G.C. fluctuations thu ward, and further rotate it to obtain the brightest changes the grid to cathode voltage of the 6 V 6 raster. If two positions are noted which seem almost instantaneously, and the resulting cathode to give equal screen brightness, the setting current change in this tube acts to maintain the closest to the picture tube base should be used. 140 volt supply substantially constant. It should This is the only setting of the ion trap that is therefore, become apparent that if the 140 vol correct. NEVER ATTEMPT TO COMPEN- supply measures considerably higher than 140 SATE FOR NECK SHADOWS OR FOCUS WITH volts, a short exists across the sound-audio cir THE ION TRAP OR BEAM BENDER ADJUST- cuits. If this voltage is considerably lower than MENT, IF BY SUCH ADJUSTMENT THE the nominal 140 volts, and the 390 ohm resistor SCREEN BRIGHTNESS IS DECREASED.

\section*{Horizontal Drive Adjustment}
2. Check the horizontal drive setting by turning the drive trimmer several turns counter-clockwise until one or more vertical white lines are obser the trimmer just far enough clockwise eliminate these "drive lines"
In the event that no drive lines are observed on the picture tube face, leave the trimmer set to


SYNC CLIPPER-AMPLIFIER--Half of a 12AU7 dual triode is used as the sync separator or sync clipper. This tube is biased approximately to cutoff at the pedestal level, and therefore, will conduct only on positive going sync pulses. The grid of this tube, by means of RC time constants, is rendered relatively immune to noise pulses of either long or short duration. The output of this triode is coupled to the cathode of the secondtriode section. The output of this section can never exceed the plate voltage, approximately 30 volts Thus additional sync clipping is obtained.

Sets employing a vertical blocking oscillator, will e found to contain a 6AL5 horizontal phase detector, while those using a vertical multivibrator will have a 12AX7 phase detector. A brief outline of the operation of both circuits will be described below. The wiring diagrams and wave forms of both systems are included in this manual

12AX7 HORIZONTAL PHASE DETECTOR-- The lipped, negative going horizontal sync pulses rom the plate of the 12AU7 are coupled by C53 o the cathode of one section of a 12 AX 7 phase detector. In the absence of a signal this triode s.held at approximately xxxx bias by virtue to its athode. The negative going sync pulses cause his tube to draw grid current, which will vary with changes in plate voltage. Thus, the horizontal reference sawtooth which is applied to this triode plate 25 to 30 volts peak to peak amplitude is compared as to phase and frequency with the incoming sync pulses. The changing grid current of the tube acts to correct the firing time of the orizontal oscillator, due to the D.C. connection between the grids of the two tubes

6AL5 HORIZONTAL PHASE DETECTOR -- The clipped sync pulses are coupled to the grid of one ection of the 6SN7 vert. osc. This triode provides mplication of the vertical sync pulses, and the output of this phase inverter provides pulses f equal amplitude and 180 phase defference, which are applied to the 6 AL 5 phase detector for phase and frequency comparison with sawtooth pulses from the horizontal deflection system. Any dif ference in phase or frequency results in the pro-
duction of a small correction bias which is applied to the horizontal oscillator, thus, maintaining correct horizontal frequency

\section*{ALIGNMENT PROCEDURE}

Necessary Equipment:
Television Sweep Generator
Marker Frequency Generator
Vacuum Tube Voltmeter
4.5MC Crystal Generator, or equivalent, Oscilloscope

\section*{SOUND I. F. ALIGNMENT}
1. Connect 4.5 MC generator to the grid of the video amplifier tube. Low signal level is important here. Metering may be accomplished at the sound take-off point of the ratiodetector (at the juncture of \(\mathrm{R}-155\) and \(\mathrm{C}-160\) ) with the meter ground connected to pin eight of the 6 V 6.
2. Adjust the slug of L-18 (sound take-off coil) for maximum negative meter indication. Attenuate the output of the generator so that not more than five volts is measured on the meter, as the alignment progresses
3. Adjust the top slug of T-5 (ratio det. primary) for the maximum negative reading
4. Move the meter ground to the juncture of \(\mathrm{R}-156\) and \(\mathrm{R}-157\) ( 6800 ohm resistors) in the sound etector circuit, and adjust the bottom slug of T-5 (Ratio Det.) for zero voltage. The other meter lead remains connected as in Step 1. No 4. 5 MC trap adjustment is necessary. The trap onsists of a coil L-17 which is self-resonant at 4.5 MC
VIDEO I. F. ALIGNMENT -- The I. F. amplifier contains five tuned circuits, no traps being necessary. The video carrier is passed through the F. at a freq. of 26.1 MC , and the sound carrier at 21.6 MC . Extreme care must be taken in alignment to assure that the sound carrier is attenuated substantially below the level of the video carrier. This is necessary to assure that the slight AM modulation on the sound carrier due to picture modulation, will be sufficiently low to be removed by the detector, and not produce spurious phase modulation of the sound I.F.

A band width of 3.4 MC ( 6 DB . Down) with a stage gain of from 12 to 15 times is attained. Earlier sets employed a staggered quintuple, which resulted in a different order of stagger of the I. F. coils. (See peaking frequencies below.) These sets may be identified by the values of the grid load resistors on the last two I. F. amplifier tubes, (R-109 and R-113) 6800 ohms. In the later sets,
gered double, the third I. F. grid resistor, R-109, is 10,000 ohms, while the fourth, \(\mathrm{R}-113\), remains 6800. Another diference which will serve to help identiry the quintuple stagger, hes in the wiring of the A.G. C. To the secondi.F. amplifier. In the staggered quintuple alignment, the grid return of his tube is wiredarecty the 1 mid. AGC capactor ( -106 ). In the staggered triplestag gad 005 mfd mercitor (C-105) have been added as additional A. G. C. decoupling

PEAKING FREQUENCIES -
\begin{tabular}{lcc} 
Peak & & at \\
& Quintuple & \\
L-10 & 25.9 MC & 25.8 MC \\
L-11 & 25.6 MC & 24.4 MC \\
L-12 & 23.1 MC & 22.8 MC \\
L-13 & 22.9 MC & 23.2 MC \\
L-14 & 24.4 MC & 25.4 MC
\end{tabular}

An I. F. alignment signal is best introduced to the chassis by means of a suitable cup, or tube shield floated over the mixer tube to capacity couple the signal to the plate circuit. It may be necessary to disable the local oscillator* to prevent R.F. harmonics from distorting the trace on the scope harmonics from distorting the trace on the scope
screen. The oscilloscope is connected the grid screen. The oscilloscope is connected the grid
of the video amplifier, through a 16 ohm of the video amplifier, through a 16 ohm
isolating resistor. Metering is done on ws. isolating resistor. Metering is done on ws. A.C.
line, keeping the input attenuated to produce no more than a negative 1 vol̂̀ reading. The resulting

overall response should coincide with the curve shown above.
*A dummy 6 J 6 may be substituted for the mixer tube with the \#1 pin removed, to facilitate alignment.

\section*{R. F. ALIGNMENT}

The R.F. tuner in the receiver has been prefield is not recommended. It may be necessary on occasional sets, however, to reset the local oscillator tuning slug. This may be accomplished without test equipment, if it is possible to receive a signal of good quality, and if the I. F. and R.F portions of the set are functioning correctly. Simply set the fine tuning in the center of its range and adjust the oscillator slug for best picture detail. The oscillator adjustment is recessed in a hole in the tuner front, directly to the right of the
tuner shaft. This adjustment must be checked on each channel to be received. It is important that a non-metalic alignment screwdriver be used to prevent de-tuning when the adjustment is completed and the screwdriver withdrawn. On sets using a wooden front panel, a small hole is provided under the flanged tuner knob, which will accommodate this alignment tool, and make possible re-setting the osc. slug without removing the set from its cabinet. If a signal of sufficient strength is not available, oscillator adjustment may be made with the sweep generator connected as for I. F. alignment, and the video R.F. carrier frequency applied to the antenna terminals of the receiver from an accurately calibrated signal generator. With the hook-up outlined above, a pip, or marker indicating the video carrier for the particular channel being set will appear on the I.F. response curve. This pip will ride up and down on the curve when the fine tubing control is moved, and the oscillator is correctly set when the pip is passing through the point on the curve marked 26.1 , with the fine tuning at the center of its rotation.

\section*{©John F. Rider}

\section*{TROUBLE SHOOTING}

\section*{DEFECTS OF THE I. F. AND R.F. CIRCUITS \\ 3. Open height or linearity control.}
A. NO PICTURE, NO SOUND, RASTER NORMAL 1. Check tuner, and all I.F. and R.F. Tubes
2. Check crystal detector
3. Check video amplifier tube V-30 and circuit.
B. SNOW IN THE PICTURE
1. Open or shorted antenna input circuit.
2. Defective antenna installation or transmission line.
3. Antenna orientation.
C. LACK OF PICTURE DETAIL (FOCUS SATISFACTORY
1. Misalignment of I. F.
2. Misalignment of R.F
3. Mismatch of antenna input impedances at antenna input terminals
D. SOUND BARS IN THE PICTURE
1. Check fine tuning setting.
2. Microphonic I. F. R.F. or video amplifier tubes.
3. \(\mathrm{C}-84\) open.

DEFECTS OF THE VIDEO AMPLIFIER
A. NO PICTURE, SOUND AND RASTER SATIS FACTORY
1. Open capacitor C-133-- L-17 open.
2. Picture tube defective.
B. LACK OF PICTURE DETAIL ( FOCUS SATISFACTORY
1. Open or shorted peaking coils L-15 or L-16.
DEFECTS OF SYNC SECTION
A. NO VERTICAL SYNC, OR WEAK VERTICAL SYNC (HORIZONTAL SYNC SATISFACTORY
Check integrator network.
. Check capacitor C-10 for leakage
B. WEAK OR NO HORIZONTAL OR VERTICAL SYNC
. Check V-9.
. Open capacitor C-50 or C-52
3. Improper \(\mathrm{B} f\) on tube \(\mathrm{V}-9\).
C. WEAK OR NO HORIZONTAL SYNC (VERT-

CAL SYNC SATISFACTORY)
. Check V-9 and V-10
. Check horizontal osc. coil L-3 for short
. Check capacitors C-54, C-30 for short
4. Check capacitor \(\mathrm{C}-53\) for open circuit.
. tinuity of reference pulse winding on the nuity of reference pulse windig on the horizontal output transformer. DEFECTS OF VERTICAL SWEEP
A. NO VERTICAL DEFLECTION 2. Open vertical output transformer.
4. Check V-2 and V-3.
5. Open or shorted vertical oscillator trans former.
6. Shorter Capacitor C-15B. (Resistor R-20 will overheat)
B. INSUFFICIENT HEIGHT
1. High resistance of R-20 or R-15
2. Incorrect voltage on V-2 or V-3
3. Open C-15A.
4. Shorted turns on yoke or vertical output trans.
5. Defective V-2 or V-3.
C. POOR VERTICAL LINEARITY
1. Defective V-2 or V-3.
2. Shorted capacitor C-15A.
3. Inadequate drive voltage from V-2.
D. FOLDOVER AT BOTTOM OF PICTURE 1. C-14 leaky.
2. V-3 defective.
3. \(\mathrm{R}-17\) off value

DEFECTS OF THE HORIZONTAL SWEEP
A. INSUFFICIENT SWEEP WIDTH
1. Low \(\mathrm{B} /\) boost voltage
3. Shorted turns of width coil.
4. Width coil partially effective, check for broken off slug
B. TOO GREAT A SWEEP WIDTH
1. Open width coil.
2. Low picture tube anode voltage

DEFECTS OF THE HORIZONTAL SWEEP (Cont'd.)
C. POOR HORIZONTAL LINEARITY
1. Check capacitors \(\mathrm{C}-40, \mathrm{C}-39\) and \(\mathrm{C}-36\). 1. Check horizontal drive adjustment.
D. KEYSTONE RASTER
1. Deflection yoke.

HALF SPEED OSCILLATION OF THE HORIZONTAL OSCILLATOR
1. Check V-10 and V-4
2. Resistor R-31, R-32 or R-33 off value, capacitor C-31 off value
3. Horizontal osc. coil shorted turns

DEFECTS OF THE AUDIO SYSTEM
A. NO SOUND, PICTURE NORMAL
1. This indicates a defect in the circuits of \(\mathrm{V}-40, \mathrm{~V}-41, \mathrm{~V}-10, \mathrm{~V}-11\), or the speaker
2. Misalignment of L-18 or T-5 will cause
weak sound to be received
3. Check for shorted capacitors C-80, or C-83. B. SYNC BUZZ
1. Check A. G. C. and all I. F.-R. F. Tubes
2. Check alignment of L-18 and T-5.
3. Check ground connection of picture tube aquadag.
4. Check germanium diode by substitution.
5. Shorted cathode bypass on last IF stage.
6. Check IF alignment.

\section*{PRODUCTION CHANGES.}
1. Resistor R-59 was changed from 1 meg. to 680 K and capacitor \(\mathrm{C}-53\) was changed from 430 mmf . to prevent " S " distortion
2. Capacitor C-11 was added to prevent vertical jitter.
3. Resistor R-15 was changed to 820 K and capacitor \(\mathrm{C}-13\) was changed to .1 mfd . to extend the range of the vertical size control
4. Capacitor C-16 was changed from 3900 mmf . to 5000 mmf . to increase bass response.

DC RESISTANCE MEASUREMENTS
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DC RESISTANCE} \\
\hline & Primary & Secondary & Notes \\
\hline Horizontal Oscillator Coil & 58 or 95 ohms & & \\
\hline Vert. Blocking Osc. Trans. & 230 ohms & 1000 ohms & \\
\hline Horiz. Output Trans. & 450 ohms tapped at 80 ohms & \#1-12.5 ohm tapped @ . 5 ohms \& 3 ohms \#2--. 1 ohms \#3-- 2 ohms & \\
\hline Vertical Output Trans. & 560 ohms & 6 ohms & \\
\hline Deflection Yoke Horiz. & 17 ohms & & \\
\hline Deflection Yoke Vertical & 68 ohms & & \\
\hline Audio Output Trans. & 295 ohms & . 4 ohms & Secondary Impedance 3.5 ohms Primary Impedance 5200 ohms \\
\hline Yellow Dot Peaking Coil & 7 ohms & & 120 Microhenries approx. \\
\hline Green Dot Peaking Coil & 18 ohms & & 300 Microhenries approx. \\
\hline 4.5 MC Self Resonant Trap & 9 ohms & & \\
\hline Sound Take-Off Coil & 2 ohms & & \\
\hline Ratio Detector 4 ohms & 4 ohms & . 2 ohms & \\
\hline Horiz. Size Coil & . 4 ohms & & \\
\hline
\end{tabular}


OJohn F. Rider
\begin{tabular}{|c|c|c|}
\hline Part No. & Description & \[
\begin{aligned}
& \text { Selling } \\
& \text { Price } \\
& \text { Each }
\end{aligned}
\] \\
\hline RC-3220.3 & \(220 \mathrm{~K} 1 / 2\) watt & . 17 \\
\hline RC-32203A & 220K \(1 / 2\) watt \(10 \%\) & . 17 \\
\hline RC-32703 & \(270 \mathrm{~K} 1 / 2\) watt & . 17 \\
\hline RC-32204 & 2.2 Meg \(1 / 2\) watt. & . 17 \\
\hline RC-34704 & 4. \(7 \mathrm{Meg} \mathrm{1/2} \mathrm{watt}\). & . 17 \\
\hline RC-36804 & 6. \(8 \mathrm{Meg} 1 / 2\) watt. & . 17 \\
\hline RC-31204A & 1. 2 Meg \(1 / 2\) watt \(10 \%\). & . 17 \\
\hline RC-31005 & \(10 \mathrm{Meg} \mathrm{1/2} \mathrm{watt} \mathrm{}\). & . 17 \\
\hline RXA-10019 & Resistor, wire wound 200 ohm 10W Pigtail FCB-10004 & \$0.51 \\
\hline THC-10000A & H-V Transformer & 10.10 \\
\hline THC-10002 & H-V Transformer & 10.10 \\
\hline THC-10003E & H-V Transformer & 9.24 \\
\hline TOA-10023\&C & Width Control & 1.11 \\
\hline TOA-10024 & Linearity Control & 1.03 \\
\hline TOC-10034\&C & Output Transformer & 1.71 \\
\hline TOB-10045D\&E & Output Vertical . . & 4.27 \\
\hline TOA-10051A & Vertical block, osc. trans. & 2.62 \\
\hline TOA-10053 & Width Control . & 1.11 \\
\hline TPC-10018 & Power Trans & 16.82 \\
\hline TPC-10005A & Power Transformer & 17.52 \\
\hline TS A-10054 & IF Coil . & . 94 \\
\hline TSA -10030B & IF Coil . & . 77 \\
\hline TSA-10050B\&C & Sound Driver Coil & . 77 \\
\hline TDB-10051\&A & Ratio Detector . & 3.52 \\
\hline TTA-10007B\&C & ST Tuner & 40.10 \\
\hline VCA-12120B & 5K slotted shaft & 1.03 \\
\hline VCA-12120C & 5K Slotted Shaft & 1.03 \\
\hline VCA-12121C\&D & 2.5 Meg Slotted Shaft . . & 1.03 \\
\hline VCA-12127B\&C & 250K SW Dual 750 tapped 250 front . & 3.00 \\
\hline VCA-12130C & 100K . & 1.11 \\
\hline VCA-12132CD\&E & 50K. & 1.11 \\
\hline VCA-12132CD\&E & 1.30 Meg & 1.11 \\
\hline VCA-12135A & 100K . & 1.03 \\
\hline YDB-10000A & Deflection yoke 10.5 MM \(70^{\circ}\) Horizontal \& Vertical Sweep & 10.05 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DESCRIPTION} & \multicolumn{2}{|c|}{PART NO.} & \multicolumn{2}{|c|}{PART NO.} \\
\hline & \[
\begin{gathered}
\text { MODEL } \\
2 \mathrm{i} 01
\end{gathered}
\] & \[
\begin{aligned}
& \text { MODEL } \\
& 2101 \mathrm{~A}
\end{aligned}
\] & MODEL
\[
122-20 \mathrm{~A}
\] & MODEL
\[
123-20 \mathrm{~A}
\] \\
\hline \begin{tabular}{l}
Safety Glass \\
Selling Price \\
M. U. Code .
\end{tabular} & \[
\begin{aligned}
& \text { DWC-10042 } \\
& \$ 4.15 \\
& \text { B5 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DWC-10042 } \\
& \$ 4.15 \\
& \text { B5 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DWC-10136 } \\
& \$ 8.40 \\
& \text { B5 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DWC-10136 } \\
& \$ 8.40 \\
& \text { B5 }
\end{aligned}
\] \\
\hline Knob - Fine Tuning • Selling Price Each & \[
\begin{gathered}
\text { KA }-10085 \\
.26
\end{gathered}
\] & \[
\begin{gathered}
\text { KB- } 10104 \\
.77
\end{gathered}
\] & \[
\begin{gathered}
\text { KB-10104 } \\
.77
\end{gathered}
\] & \[
\begin{gathered}
\text { KB-10104 } \\
.77
\end{gathered}
\] \\
\hline Knob-Channel Indicator Selling Price Each & \[
\begin{gathered}
\mathrm{KA}-10128 \\
.60
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{KB}-10103 \mathrm{~A} \\
.77
\end{gathered}
\] & \[
\begin{gathered}
\text { KB-10103A } \\
.77
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{KB}-10103 \mathrm{~A} \\
.77
\end{gathered}
\] \\
\hline Knob - Picture . . . . \(\dot{\text { Selling Price Each }}\) & \[
\begin{gathered}
\text { KA }-10086 \\
.26
\end{gathered}
\] & \[
\begin{gathered}
\text { KB-10106 } \\
.26
\end{gathered}
\] & \[
\begin{gathered}
\text { KB- } 10106 \\
.26
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{KB}-10106 \\
.26
\end{gathered}
\] \\
\hline Knob - Volume . . . . \({ }^{\text {Selling Price Each }}\) & \[
\begin{gathered}
\text { KA }-10087 \mathrm{~A} \\
. .77
\end{gathered}
\] & \[
\begin{gathered}
\text { KB- } 10105 \\
.77
\end{gathered}
\] & \[
\begin{gathered}
\text { KB- } 10105 \\
.77
\end{gathered}
\] & \[
\begin{gathered}
\text { KB- } 10105 \\
.77
\end{gathered}
\] \\
\hline Knob - Vertical \& Horizontal Hold . . . Selling Price Each & \[
\begin{gathered}
\text { KA }-10117 \\
.17
\end{gathered}
\] & \[
\begin{gathered}
\text { KA }-10117 \\
.17
\end{gathered}
\] & \[
\begin{gathered}
\text { KA }-10117 \\
.17
\end{gathered}
\] & \[
\begin{gathered}
\text { KA }-10117 \\
.17
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Mask \\
Selling Price Each \\
M. U. Code
\end{tabular} & \[
\begin{aligned}
& \text { MRD-10138 } \\
& \text { 4.32 } \\
& \text { AO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MRD-10138 } \\
& 4.32 \\
& \text { AO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MRD-10111 } \\
& 5.45 \\
& \text { B5 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MRD-10111 } \\
& 5.45 \\
& \text { B5 }
\end{aligned}
\] \\
\hline Escutcheon - Knob • Selling Price Each & \[
\begin{aligned}
& \text { NC-10092 } \\
& 2.57
\end{aligned}
\] & \[
\begin{gathered}
\text { NB- } 10074 \mathrm{~A} \\
.43
\end{gathered}
\] & \[
\begin{gathered}
\text { NB- } 10074 \mathrm{~A} \\
.43
\end{gathered}
\] & \[
\begin{gathered}
\text { NB- } 10074 \mathrm{~A} \\
.43
\end{gathered}
\] \\
\hline Sears Name Plate - Chassis . & NA-10105 & NA-10105 & NA-10105 & NA-10105 \\
\hline \begin{tabular}{l}
Speaker . \\
Selling Price Each M. U. Code .
\end{tabular} & \[
\begin{aligned}
& \text { SRC-10026 } \\
& 3.76 \\
& \text { A5 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SRC-10026 } \\
& \quad 3.76 \\
& \text { A5 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SRC }-10026 \\
& 3.76 \\
& \text { A5 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SRC-10026 } \\
& 3.76 \\
& \text { A5 }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Interlock Line Cord . \\
Selling Price Each
\end{tabular} & \[
\begin{gathered}
\text { WPA-10009A } \\
1.28
\end{gathered}
\] & \[
\begin{aligned}
& \text { WPA-10009A } \\
& 1.28
\end{aligned}
\] & \[
\begin{aligned}
& \text { WPA-1009A } \\
& 1.28
\end{aligned}
\] & \[
\begin{aligned}
& \text { WPA-10009A } \\
& 1.28
\end{aligned}
\] \\
\hline Instruction Book Kit. & XXA-10654 & XXA-10654A & XX-10692 & XX-10692 \\
\hline Wood Cabinet. Selling Price Each M. U. Code . . . . & \[
\text { B5 }{ }^{35.40}
\] & \[
\begin{aligned}
& 35.40 \\
& \text { B5 }
\end{aligned}
\] & \[
\begin{aligned}
& 36.80 \\
& \text { B5 }
\end{aligned}
\] & \[
\begin{aligned}
& 60.60 \\
& \text { B5 }
\end{aligned}
\] \\
\hline
\end{tabular}




No. 1189-21

\section*{SPECIFICATIONS}

Power Supply — \(105-125\) volts, 60 cycle AC
Power Consumption - 225 watts
Power Output (Audio) - 2 watts undistorted 3.5 watts maximum

Input Impedance - \(\mathbf{3 0 0}\) ohms
(some receivers may have a matching network at the antenna terminal strip to permit the use of either 72 ohm coaxial lead-in or 300 ohm flat twin lead-in.)
Picture Tube Size \(-\mathbf{2 1}^{\text {" }}\) rectangular
Picture Size - \(13-15 / 6^{\prime \prime} \times 183 / \mathbf{8}^{\prime \prime}\)
Speaker - 1175-21 5 inch round
182-21 \& 1189-21 10 inch round Permanent Magnet type, 3.2 ohms voice coil impedance
Vertical Scanning Frequency - 60 cycles per second
Horizontal Scanning Frequency - 15,750 cycles per second
Dimensions -
\(1175-2122^{\prime \prime}\) high \(\times 233 / 4^{\prime \prime}\) wide \(\times 1912^{\prime \prime}\) deep \(1182-2138^{\prime \prime}\) high \(\times 263 / 4^{\prime \prime}\) wide \(\times 20^{\prime \prime}\) deep 1189-21 28" high \(\times 25^{\prime \prime}\) wide \(\times 191 / 8^{\prime \prime}\) deep hipping Weight - 1175-21 Approx 104

1182-21 \& 1189-21 Approx. 125 lbs.

\section*{TUBE COMPLEMENT}
\begin{tabular}{|r|l|l|l|}
\hline \multicolumn{4}{|c|}{ TUBE COMPLEMENT } \\
\hline 1 & 6BC5 & V18 & RF Amplifier \\
2 & 6J6 & V19 & RF Oscillator and Mixer \\
3 & 6CB6 & V1 & 1st Video IF Amplifier \\
4 & 6CB6 & V2 & 2nd Video IF Amplifier \\
5 & 6CB6 & V3 & 3rd Video IF Amplifier \\
6 & 6AL5 & V4A & Video Detector \\
& & V4B & AGC Detector \\
7 & 12AU7 & V5 & 1st and 2nd Video Amplifier \\
8 & 6AU6 & V14 & 4.5 mc Amplifier \\
9 & 6AL5 & V15 & Ratio Detector \\
10 & 6AT6 & V16 & 1st Audio Amplifier \\
11 & 6K6-GT & V17 & Audio Output \\
12 & 6SN7-GT & V7 & Sync Separator \\
13 & 6SR7 & V6A & Sync Limiter \\
& & V6B & Vertical Sweep Oscillator \\
14 & 6S4 & V8 & Verical Sweep Amplifier \\
15 & 6SN7-GT & V9 & Horizontal Sweep Oscillator \\
16 & & & and Sync Guide \\
17 & 6BG6-G & V10 & Horizontal Sweep Output \\
18 & 6W4-GT & V16 & Damper \\
19 & SU4-GT & V11 & High Voltage Rectifier \\
20 & V13 & Power Rectifier \\
\hline
\end{tabular}

\section*{frequency chart}


MODELS 1175-21, Ch. 478. 380; 1182-21,1189-21, Ch. 478.381
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline schematic & TUBE function & TUBE & & & & PIN Nu & MBERS & & & & \\
\hline & & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline V 1 & lat Vid. I.F. & \({ }^{6}\) CB6 & 700K & 47 & 0 & Fi1. & 10K & 10K & 0 & & \\
\hline V 2 & 2nd Vid. I.F. & 6CB6 & 700 K & 47 & \(\bigcirc\) & Fil. & 10K & 10k & 0 & & \\
\hline \(\mathrm{V}^{3}\) & 3rd Vid. I.F. & 6СВ6 & 0 & 100 & 0 & Fil. & 10K & 10K & 0 & & \\
\hline \(\mathrm{v}^{4}\) & Vid.Detector \& A.G.C. & 6AL5 & 0 & 120 K & Fi1. & 0 & 1.15 & & 3.9K & & \\
\hline V 5 & 1st \(k\) 2nd Vid. Ampl. & \(12 A U 7\) & 12K & 1 Meg & 5K & Fil. & Fil. & 13 K & 1 Meg & 47 & 0 \\
\hline V 14 & \(4.5 \mathrm{M} . \mathrm{C}\). Ampl. & 6AU6 & 1.5 & , & 0 & Fil. & 10k & 10K & 180 & & \\
\hline V 15
V 16 & Ratio Detector & 6ALs & 15K & 15k & 0 & Fil. & inf. & 0 & Inf. & & \\
\hline V 16
V 17 & \({ }^{\text {Ist }}\) Audio Ampl. & 6at6 & 10 Meg & 0 & 13 & Fil. & 0 & 0 & 400K & & \\
\hline V 17
V
7 & Audio Outpur & 6K6 & & 0 & 13 K & 13K & 470K & & Fil. & 0 & \\
\hline v 7 & Sync. Separator & 6SN7 & 1.2 Meg & 27K & 0 & 5 Meg & 10K & 6.8 K & Fil. & 0 & \\
\hline v 6 & Sync. Limiter and Vertical Oscillator & \(65^{\text {R } 7}\) & 0 & 1.8 Meg & 0 & 4.7 Meg & 4.7 Meg & 600 K & Fil. & 0 & \\
\hline V 8 & Vertical Amplifier & 654 & & 3K & & Fil. & 0 & 2.7 Meg & & & 120K \\
\hline v9 & Hor. Oscillator and Sync. Guide & S7 & 1.6 Meg & 60K & 450K & 500K & 100 K & 800 & Fil. & 0 & \\
\hline v 10 & Horizontal Output & 6BG6 & & Fil & & & & & & & \\
\hline V 12 & Damper & 6w4 & & & 330 K & & \({ }_{10 \mathrm{~K}}\) & & 8K & \({ }_{\text {8K }}\) & \\
\hline V 13 & Power Rectifier & 504 & & 10k & & 850 & & 850 & & 10K & \\
\hline \multicolumn{6}{|r|}{\multirow[t]{3}{*}{\begin{tabular}{l}
1. Readings may be taken with a VTVM type multimeter, a Simpson meter or any reliable resistance measuring device. \\
2. Ali controls at "Normal Settine.
\end{tabular}}} & \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
3. Switch off-line cord disconrected. \\
4. All tubes left in sockets. \\
Note: Filament resistance too low to read.
\end{tabular}}} \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
voltage check chart
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SChematic LOCATION} & \multirow[b]{2}{*}{tube function} & \multirow[b]{2}{*}{TUBE} & \multicolumn{9}{|c|}{PIN NUMBERS} \\
\hline & & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline V & 1st Vid. I.F. & \({ }^{6 C B 6}\) & -. 5 & 1 & 0 & 6.3 A.C. & 110 & 110 & 0 & & \\
\hline \(\mathrm{V}^{2}\) & 2nd Vid. I.F. & \({ }^{6 C B 6}\) & -. 5 & , & 0 & 6.3 A.C. & 110 & 110 & 0 & & \\
\hline V 3 & 3 rd Vid. I.F. & \({ }^{6 C B 6}\) & 0 & 1.2 & 0 & 6.3 A.C. & 110 & 110 & & & \\
\hline V 4 & Vid.Detector \&A.G.C. & \({ }^{6 A L 5}\) & * & -. 2 & 6.3 A.C. & - & 1.2 & & -. 5 & & \\
\hline V 5 & 1 st \% 2 nd Vid. Ampl. & 12AU7 & 120* & -3.5 & 3.5* & 6.3 A.C. & 6.3 A.C. & 160 & -1* & . 8 & 0 \\
\hline V 14 & \(4.5 \mathrm{M} . \mathrm{C}\). Ampl. & \({ }^{6 A U 6}\) & 0 & 0 & 0 & 6.3 A.C. & 110 & 110 & 1.2 & & \\
\hline V15 & Ratio Detector
1st Audio Ampl. & \({ }^{6 A L 5}\) & . 4 & -. 4 & 1 A.C. & 6.3 A.C. & 0 & 0 & 0 & & \\
\hline V 17 & \({ }^{\text {Ist Audio Ampl. }}\) & \({ }_{6}^{64 \mathrm{~L} 6}\) & -0.9 & \(\stackrel{0}{0}\) & \({ }_{120}^{0}\) & 6.3 A.C. & -14 & 0 & 50 & & \\
\hline v 7 & Sync. Separator & 6SN7 & -3.5 & 0 & 12 & -130* & -145 & 4 & 6.3 A.C.
6.3 A.C. & 0 & \\
\hline V6 & Sync. Limiter and & 6 SR & 0 & -45+ & 0 & -15* & -15* & \(150+\) & & & \\
\hline V 8 & Vertical oscillat & & & & & & & & 6.3 A & & \\
\hline & Vertical Amplifier
Hor. Oscillator and & 654 & & & & 6.3 A.C. & 0 & -70 & & 410 & \\
\hline v9 & Sync. Guide & \(6^{65} 7\) & -100 & 35** & -125 & 180 & 110 & -105 & 6.3 A. & 0 & \\
\hline V 10 & Hor. Output & 68G6 & & 6.3 A.C. & -95 & & -110 & & & & \\
\hline V12
V 13 & Damper & \({ }_{5}{ }_{5}\) & & & 475 & & 280 & & 120 & 120 & \\
\hline V 13 & Power Rectifier & 504 & & 300 & & -90 & & & & & \\
\hline \multicolumn{12}{|l|}{Conditions:} \\
\hline \multicolumn{12}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{PARTS REMOVAL}

\section*{TO REMOVE THE CHASSIS FROM THE CABINET:}

1 - Remove the knobs on the front panel by pulling them straight forward, in line with the shafts on which they are mounted.
2 - Remove the screws holding the masonite back to the cabinet and remove the back.
3 - Loosen the screws holding the antenna terminal strip to the cabinet and slide out the antenna termina strip.
4 - Reach into the cabinet from the rear and remove the speaker plug from the front of the chassis.
5 - Remove the six chassis mounting screws from the bottom of the cabinet
6 - Slide the chassis straight out, being careful not to hit the picture tube

\section*{CAUTION}
the picture tube encloses a high Vacuum, and due to its large area s Subjected to considerable air pressure. Therefore, picture tube MUST BE HANDLED WITH EXTREME CARE.
he large end of the picture tube, particularly that part at the rim of the viewing surface, must not be subjected to any impact SCRATCH, OR MORE THAN MODERATE PRESSURE AT ANY TIME.
N installation or removing, if the tube sticks or fails to slip MOOTHLY INTO ITS MOUNTING OR DEFLECTION YOKE, INVESTIGATE AND RE move the cause of the trouble. do not force the tube.


\section*{TO REMOVE THE PICTURE TUBE FROM THE CHASSIS}
- Remove the chassis from the cabinet by following pro-

2 - Discharge the tube and filter capacitor by touching a lew driver from chassis ground to the metal jacket of the
ure tube (NOT from the picture tube to chassis ground).
3 -Disconnect the anode lead by unsnapping the fastener on
4- Remove the tube socket at the base of the tube by pulling
the socket straight back. the somer strigh back.
5 - Slip the ion trap from the neck of the tube.
6- Leosen the tube brace straps by unfastening the screws
on eicher side of the deflection yoke support.
7-Remove the mounting strap from the front rim of the
picture tube by removing the screws to the front brackets on buth sides of the tube. The bottom tube brace straps should emain fastened to the front brackets.

\section*{PICTURE ADJUSTMENTS}

\section*{oEfLECTION YOKE, ION TRAP AND FOCUS MAGNET ADJUSTMENTS}

If it should become necessary to readjust the picture tube adjustments (i.e. - after replacing the picture tube), proceed as follows:
1 -Turn the Off-On-Volume control to the On position. 2-Turn the Brightness control to maximum (clockwise). - Turn the Picture control to minimum (counterclockwise). - Rotate the Ion Trap on neck of the picture tube and at raster is obtained.
5 - The Deflection Yoke should be moved as far forward on 5- The Defiection Yoke should be moved as far forward on
the neck of the picture tube as possible and rotated so that
the top and bootiom edges of the raster are parallel to the the top and bottom edges of the raster are parallel to the
mask.
6-Reduce the Brightness control (counterclockwise) until
the raster is slightly above normal brilliance.

fig. 4 front panel controls

fig. 5 receiver rear chassis controls
(Using Focus Magnet TPM \(110-\mathrm{D}\) )

\section*{HEIGHT, WIDTH AND LINEARITY}

To adjust the overall size and linearity of the picture, it is necessary to use a test pattern transmitted from a local station. Linearity adjustments, particularly, cannot be made from moving transmissions. It will be noted that patterns transmitted from different stations will vary slightly in size. The smallest test pattern should be used, and made to fill the area delineated by the mask.

1 -Turn the Width control all the way in (clockwise). 2 - Turn the Horizontal Drive trimmer in either direction until the greatest width is obtained without a vertical line or
tear. The setting of this control should be at least \(1 / 2\) turn from its maximum clockwise position. This control will mainly affect
he
3- The Horizontal Linearity control should then be adjusted
so that both horizontal wedges are of the same lenget, and the so that both horizontal wedges are of the same length, and the
ceuter test pattern circles are horizontally symmetrical. This affect the right side of the picture primarily.
is - Turn the Horizontal Centering control so that the picture
is horzonally cented whin he mask opening.
Gill the mask horizontally. The picture may be made larger by use of the Width Switch which disconnects the widdh coil. in that case, the Width control will have no affect on the piccure, as the width coil is no longer in the circuit.

6 - Adjust the Height control until the picture fills the mask. 7-Adjust the Vertical Linearity Control until the test pattern circles are round. Note that the Height control primarily affecto the bottom half of the picture while the Vertical Linearity control primarily affects the top half of the picture. How-
ever, the Height and Vertical Linearity controls are interde pendent and an adjustment of either control usually requires a slight readjustment of the other.
\(\stackrel{y}{8}\) - The setting of the Horizontal Centering control and the Centering Lever of the focus magnet may be readjusted so that proper centering and vertical and horizontal linearity are ob
tained.

9-Retouch the Focus Adjustment Screw, previously set, fo maximum \({ }_{\text {test pattern. }}\)

\section*{RF TUNER}
(SARKES-TARZIAN TT5 TUNER, SILVERTONE PART NO. TTU 109-D)

\section*{TUNER CIRCUIT DESCRIPTION}


7 - Adjust the Forus Adjustment Screw for clearest definition of the horizontal sweep lines in the raster. It it recommended
that a brass screwdriver be used for this operation, as contact between this screw and a steel object will affect the forus of the picture. Shaded corners are eliminated at a later adjustment.
8 - Turn the Horizontal Centering control until it is at ap-
proximately the center of its range of rotation. Arm) Move the Centering Adjustment Lever (or Centering ate shaded corners.
8 8, and 9 madjust the Ion Trap for maximum brilliance. Steps, 7 , repair. tubes or parts are changed.


\section*{RF TUNER ALIGNMENT}

The alignment of the RF tuner has been carefully checked at the factory to give best possible performance. Do not tamper with the adjustments inasmuch as much of the alignment procedure consists of moving or spreading coils. If any major adjustment of the tuner must be made, it is recommended that the entire tuner unit be replaced, and the defective tuner returned to the source for

The following instructions are given for your information and in the event that some slight adjustment may be necessary afues

\section*{}

\section*{CONDITIONS OF ADJUSTMENTS:}

1 - Tube shields and the tuner cover are on.

of its ran Fine of runing control should be at approximately the center
- A non-metallic screwdriver is used for the actual adjurmen. 5 - Proper power supply voltages should be fed to the tuner from These are: \(\underset{\text { Filament }}{\text { B+ }}-135-160\) volts


PROCEDURE - LOCAL OSCILLATOR ALIGNMENT

 tor to the ancenna termiail lead.
3 - Connect the cathode ray ocilloceope between Teut Point B (of
 obm isolating resimor.


\({ }^{6}\) - Set the Channet Selecror switch of the runer to co chanel 13, with


 the Fine tuning channel Selector witch of the tuner to channel 6 . with
 11
of the Aplinure che pictrure carrier marker should fall at about the center





fig. Ta ideal waverorm


FIG. 71
acceptable variations


\section*{FIELD PROCEDURE}

It is posible to adjust the local oscillator of this runer in the theld by connecting the television receiver to a working, antenna and,
is ing the highest channel in each band operating in that particular area, adjust the high band (L404) and low band (L405) adjust using the highest channel in ench band operating in that particular area, adjust the high band (L404) and low band (L405) adjustments for the best picture and sound The
with the Fine Tuning control at the approximate ceater of its range of rotation. These two adjustments will provide sufficient with the Fine Tuning control at the approximate center of its range of rotation. These two adjustments will
range for the other channels on each band in addition to the ones on which the astual adjustments were made.

\section*{RF TUNER BANDPASS ALIGNMENT}

Tuner bandpass alignment should never be attempted in the feld. It is not even recommended that this type of adjustment be made in the service shop. When a tuner is found to be badly misaligned in 2 receiver and the local oscillator adjustments cannot bring it back into range, then the entire funer should be removed and returned to the source for repair. Followwing is the procedure to be followed in the eveat of a situation arising where replacement of the tuner is not feasible. It should be attemp
equipment is available.
If it is suspected that the RF Tuner bandpass is out of alignment, it may be checked in the following manner:

 \({ }^{3}\) - Ajo inst the RF sweep genentor for at least 12 mc sweep width,

\section*{PROCEDURE - RF TUNER BANDPASS ALIGNMENT}



















RF TUNER ALIGNMENT FREQUENCIES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Chomel Selector 5 witch & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline \[
\begin{aligned}
& \text { R.F. Sweep } \\
& \text { Generator } \\
& \text { Setting }
\end{aligned}
\] & \[
\begin{gathered}
57 \\
\mathrm{mc}
\end{gathered}
\] & 63 & 69 & 79 & 85 & 177 & 183 & 189 & 195 & 201 & 207 & 213 \\
\hline Marker Gemerator Setting (Sound) & 59.75 mc & 65.75 & 71.75 & 81.75 & 87.75 & 179.75 & 185.75 & 191.75 & 197.75 & 203.75 & 209.75 & 215.75 \\
\hline Marker Gemerator Setting (Picture) & \[
55.25
\] & 61.25 & 67.25 & 77.25 & 83.25 & 175.25 & 181.25 & 187.25 & 193.25 & 199.25 & 205.25 & 211.25 \\
\hline
\end{tabular}

\section*{ALIGNMENT PROCEDURE}

The alignment of this receiver can be broken down into three basic parts.
1 - Video IF Alignment (including Mixer output)
2 - RF Alignment
3 - Sound Alignment

\section*{TESTEQU|PMENT}

CATHODE RAY OSCILLOSCOPE - The tube size relatively unimportant however, anything under \(5^{n}\) usually makes fine adjustment quite difficult.
SWEEP GENERATOR - The sweep generator used hould have linear frequency coverage from a center range of 30 to 220 megacycles. The output should be
fairly flat over the maximum sweep width, which should be at least 10 mc . It should be capable of an adjustable output of about 0.1 volt maximum. It is preferable hat the generator provide the horizontal sweep for the est oscilloscope with provision for phase adjustment.

AM SIGNAL GENERATOR-This generator should have a frequency range of from 4.5 to 220 megacycles. As this generator is used occasionally as a marker gencapable of an adjustable output of 0.1 volt maximum.
VACUUM TUBE VOLTMETER-Almost any standard make VTVM will do. It should preferably have a polarity switch so that both positive and negative volt ges can be measured.
WAVE TRAP - 32.8 mc

\section*{TEST SOCKET}
n this model a Test Socket is provided which gives convenient access to the various points wher either a vacuum tube voltmeter or an oscilloscope should be inserted for proper alignment. A letter dia gram in the margin of the schematic will locate these points by means of corresponding letters in the schematic proper. A typical octal socket is used and it should be noted that the diagram shows a top view. Two ground points are supplied on separate pins of the test socket for easy metering. Reference
is made, in the following alignment procedures, to the pins on this Test Socket. is made, in the following alignment procedures, to the pins on this Test Socket.

OJohn F. Rider

\section*{VIDEO IF ALIGNMENT}

An adequate signal can be fed through the video IF Antring by feeding the output of the signal generator into (GJ6) (V10). C (V). The ground side of the generator output an conveniently grounded to the shield of the adjacent RF Amplifier tube.

The vacuum tube voltmeter should be connected across the 3900 ohm detector load resistor (R14, Pin B Test Socket) and should be set on the minus 3 volt scale. Set the channel selector to an unused low band channel.
The signal generator should be set to a frequency of 36.9 mc . The output of the generator should be adusted to the point where the reading on the VTVM is between -1 to -1.5 volts.

The first and third IF coils should be peaked for a maximum reading on the VTVM. As the voltage reading acreases with tuning, the generator should be attenuted to maintain a maximum of -1.5 volts.

Set the signal generator to a frequency of 34.8 mc and tune the second and fourth IF coils in the same manner. The generator should now be shut off (or uned to a different band) and the VTVM should read approximately -. 5 volt.

To look at the overall response curve including both the RF section and the IF Amplifier section connect th sweep generator to the antenna terminals and loosely
couple the AM signal generator to the antenna by clip ping the signal generator leads to the insulated portion of the antenna lead.
Then connect the "hot" or "high" side of the oscillo scope to Pin B of the Test Socket. The "low" or ground side should be connected to the nearest convenient ground point. Care should be taken to separate the oscilloscope leads from the generator leads.
The sweep generator is set at the approximate midfrequency of the unused low channel and the signal generator is set at the RF sound carrier frequency of the channel used. The sweep generator amplitude is set so that a VTVM will read - 1.5 volts DC at Test Point B. Loosely couple a wave trap tuned to 32.8 mc into trace (see Fig. 8). The fine tuning control on the tuner should now be adjusted to make the signal generator marker coincide with the trap valley. The signal generaor can now be tuned to the RF picture carrier frequency and the position of the picture carrier on the response curve noted. It should be between the- \(40 \% 0\) width between \(50 \%\) points should be approximately 3.2 mc . Slight readjustment of the IF transformers may be necessary to obtain the desired response. Small variations from the ideal are acceptable as shown in Fig. 8.
 IDEAL VIOEO IF RESPONSE CURVE
DOTTEO LINES INDICATE ACCEPTABLE VARIATIONS

FIG.
SOUND ALIGNMENT
Sound alignment on these receivers is best accomplished by using an actual transmission received on an antenna and fed in the normal manner to the antenna terminals. A vacuum tube voltmeter should first be inserted between the output plate of the Ratio Detector Diode (pin 2, V 15) and ground. This point may be reached through pin C of the Test Socker. The meter should be set on the minus 10 vol cale. With the equipment so placed the 4.5 mc pick-off coil ( \(\mathbf{T} 8\) ) and the primary of the ratio de using a relatively weak signal. The"hot"lead of the meter should now be moved to the junction point of R71, C60 and C61 (Pin A, Test Socket), and the secondary of the ratio detector transformer should be adjusted for a ZERO reading. (Note: There are 3 points at which the meter will zero. Only one of these is correct. At the proper setting the meter should swing negative on one side and positive on the other side of zero. See " S " curve, Fig. 10)


fic. 10


TEST SOCKET
(BOTTOM VIEW)
FIG. 11

In cases where it is necessary to align the sound section when no station transmission is available, a single frequency signal generator tuned to 4.5 mc raay be fed into the output circuit of the Video Derector (Pin B Test Socket) through a 2200 ohm isolating resistor. The receiver should then be aligned in the same manner as described above. The disadvantage of this method is that any inaccuracy in the signal generator will show up as misalignment when the set is in actual operation since proper adjust ment is extremely critical. This method is not recommended and should only be used when no alterna tive method is available.

\section*{CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT}

Turn the Horizontal Hold control (on the front panel) to the extreme counterclockwise position. The picture should remain in sync. Momentarily remove the signal by switching to another channel and then switching back again. The picture should break horizontal sync and the picture will be resolved into a series of black bars sloping down to the left.

Turn the Horizontal Hold control clockwise, slowly bringing the picture into sync again. At the ex treme clockwise position the picture will again show a tendency to break sync as indicated by anything from a shimmy to \(2-1 / 2\) black diagonal bars sloping down to the right.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is adjusted and need not be aligned.

\section*{HORIZONTAL OSCILLATOR ALIGNMENT}

1 - The Horizontal Hold Control should be set at approximately the center of its mechanical range. The Horizontal Locking Range and the Horizontal Drive trimmers should be set at two full turns counterclockwise from maximum capacity.

2- Turn the Horizontal Drive trimmer clockwise until any bright vertical bars in the picture are eliminaed. If, in so doing, the picture should fall out of sync it should be brought back by readjusting the Horizontal Oscillator Coil. This is the long screw adjustment which extends through the side of the chassis.

3 - Rotate the Horizontal Hold control (front pan el) to the maximum clockwise position. The Horizontal Oscillator Coil should now be adjusted to a point where the black horizontal blanking bar starts to come into the picture from the left side.

4 - The Horizontal Hold control should now be rotated to its maximum counterclockwise position. Tho picture should stay in sync. However, shorting the antenna terminals or rapidly switching to an unused channel and back should cause the picture to fall out of sync. If this condition does not exist, readjust in accordance with step 3 above.

5- When the Horizoncal Hold control is rotated to maximum clockwise position it is acceptable for the picture to vary in sync from a horizontal flutter to \(2-1 / 2\) bars sloping downward to the right. The picture should stay locked, however, through approximately \(3 / 4\) of the
mechanical rotation of the Horizontal Hold control.

\section*{HOW TO ORDER PARTS}

6 - If the Horizontal Drive trimmer must be re adjusted at this time for improved width or linearity, steps 3, 4 and 5 should be rechecked.

\section*{HORIZONTAL OSCILLATOR STABILIZING COIL ADJUSTMENT}

NOTE: In the foregoing Horizontal Oscillator Alignment procedure the Horizontal Oscillator Coil is mentioned several times. The adjustment referred to is the long screw which extends from the Horizontal Oscillator Coil (T6) through the side of the chassis below the high voltage cage (labeled "Hor Freq" in Fig. 1, Top View of chassis). This is adjusted from outside the chassis. There is an adjustment at the other (inside) end of the same coil can. This is the Horizontal Phase control, used in the stabilizing circuit of the horizontal oscillator. It is important to note that this latter adjustment is a factory adjustment and should not be attempted in the service shop. If this circuit is suspected of being defective or detuned the entire assembly, including C43, the .01 mfd 600 volt molded paper condenser, should be removed and returned to the source as a defective part. The following procedure is given in the event that replacement of the entire Horizontal Oscillator Coil is not feasible. It should be attempted only if proper equipment is available.
It is important that an oscilloscope with a bandwidth of at least 150 kc be used. The oscilloscope must also have a minimum input impedance of 1 megohm, and a maximum input capacitance of 10 mmfd . In cases where the bandwidth is ample but the input capacitance is large, a 10 mmfd condenser should be used in series with the oscilloscope lead. When this is done, a 200 mmfd condenser should be placed from the oscilloscope to ground to insure equal attenuation at all frequencies. Using an os cilloscope that meets these specifications, the following procedure should be used:

1 - Connect the 10 mmfd condenser going to the vertical input lead of the oscilloscope to terminal pin C of the Horizontal Oscillator Transformer.

2 - Adjust the Horizontal Phase control (horizontal oscillator frequency stabilizing adjustment, bottom adjustment of the Horizontal Oscillator Transformer) until the broad and narrow peaks of the waveform on the scope are of equal height as indicated in Fig. 12A below. If necessary during adjustment, the Hori zontal Oscillator Frequency (top adjustment) and the Horizontal Hold control may be reset to keep the picture in sync. Once set, realignment of any other component in the circuit will not affect this adjustment.

PROPER
FIG. 12 A



FIG. 12 B


STABILIZING COIL
FREQUENCY TOO HIGH
FIG. 12


\section*{SPECIAL NOTES}

The following changes were made to further reduce vertical buzz hum pickup in the audio circuits.

\section*{A-To reduce buzz:}

1-Return R28, (8.2K) in picture tube cathode-vertical retrace suppression network circuit, to +235 volts instead of to +140 volts.

2-Return C32, ( .01 mfd ) in vertical retrace suppression circuit, to pin 6 of deflection yoke socket instead of to ground.

3—Add tube shields to V15, 6AL5 (Ratio Detector), and to V16, 6AT6 (1st Audio Amplifier).

B-To reduce hum:
1-Return R79, (22K) from center tap of volume control to low end of control instead of to chassis.

2-Disconnect wire shields from chassis at Phono-TV switch, (front of chassis) clip short and tape up exposed ends.

3-Disconnect cable shield from jack at Phono Jack (rear of chassis)

C-The following are critical lead dress items which should be watched closely when servic ing in order that vertical buzz and hum may be eliminated:

1-All audio condensers should be behind the shield and as close to the chassis as possible.
2-C28, (.0047mfd) Vertical Oscillator coupling condenser and circuitry should be as close to the side of chassis as possible and as far away from the audio circuitry as possible.

3_V8, 6S4 Vertical Amplifier plate lead should be as short as possible and as close to the chassis as possible.

4-C31, .22mfd Vertical Amplifier grid coupling condenser should be pushed as close to the chassis as possible and as far away as possible from audio circuitry.



4. RESSISTANCE AEADINGS OF WINOINGS ARE APPROXimate
ANO MAY VARY \(\pm 15 \%\).





© John F. Rider

The picture carrier has been converted dom to 45.15 mc and the sound carriar to 41.25 mc . A ride band width is accomplishod by stagger tuning the IF stages - each to a different frequency of the band fram 42.25 to 45.75 mc. This wide flat band width is obtained by 6 The sound carrier is passed through at about \(5 \%\) of the level of the picture carrier. This is done to insure that there will be no amplitude modulation on the 4.5 mc sound carrier at the 2nd detector.
The IF response curve is adjusted to have a sound-porch at the 58 level for the 41.25 mc sound-carrior. This sound porch is formed by trape T103 and T107. The sound parch is tilted response curve to give a better picture, the sound will also ride higher on the tilited sound parch - thus giving greater sound sensitivity. This insures simultaneous good sound and pleture at all operating levels.
The alignoent of the IF strip is critical and the Video Alignment Chart should be carefully followed. The IF strip has 6 traps. Traps T105 and Tlos are adjacentechannel sound-traps
\((47.25 \mathrm{mc}\) ). Traps T104 and T106 are adjacent-channol picture-traps ( 39.75 me ). It should be noted that the screen-by-pass capacitors used in each IF stage ane to be replaced with exact values since they serve effectively to nneutralisen plate-to-grid interelectrode coupling at 41 me If frequencios. Pactory lead-dress and lengths should also be duplicated when repairs are necessary.

\section*{BLOCK 791}

P9A is used as a trin diode in this circuit. The 2nd det uses \(\frac{1}{2}\) of a 12A07. The grid (Pin 2) performs the operation of a diode piate for
dotection of the Video infornation. The plate (Pin 1) is ueed as another diode plate, detocting the IF aignal for use as an AGC Voltage.
Dolay of the AOC Voltage is accomplished by raising the cathode to a \(+2,4\) volts. The plate
(Pin 1) is returned to ground through Rلhe. The cathode (Pin 3) is +2.4 volts above ground (Pin 1) is returned to ground through Rlلhi4. The cathode (Pin 3) is t2. L volts above ground signal of 2.4 volts mast be developed before the ACC diode will conduct.

The grid (rideo diode) has no bias and will conduct current on a very low signal for video

\section*{BLOCK NO}

The video amplifier (nO) is a 6 ac7 television amplifier pentode.
The video signal fram the 2nd detector is capacity coupled to the grid of the 6AC7.
This stage amplifies the composite picture signal which is composed of horizontal and verti cal synchronizing pulses and picture information

The 4.5 mc sound present in the plate circuit could produce interfering herringbone pattern in the picture. A trap Lill is tuned to 4.5 mc which traps out this interference.
The composite vidoo signal from this stage is applied to the cathode of the picture tube

\section*{BLOCK \(\mathrm{VI}_{4}\)}

An automatic frequency control (AFC) is used in this roceiver to maintain stable horizontal framing. Two 1800 displaced horizontal sync pulses from V2A are fod to the 6al5 (Mul) phase discriminator. A pulse is taken from the secondary winding on the width coil which is
made into a saut woth wave shape by integration through Righ and clipl. Since pin 5 and pin of Vil are tied together, both sections of the diode are controlled by this sawtooth on which the two \(180^{\circ}\) out-of-phase sync pulses ride. The phase discriminator then is so designed that if the sawtooth arrives late relative to the sync pulses, a positive voltage will be fed to the horizontal oscillator to raise the frequency causing the horisontal oscillator to care back in
sync. Conversely, if the samtooth arrives early, a negative voltage is developed turn reduces the oscillator frequency. Any phase displacement between the sync pulses and the samtooth will result in a DC voltage change at the junction of R190 and R191. This voltage is the control voltage for the Horisontal oscillator.
This voltage which is \(f\) ed to the harisontal oscillator is essentially a well filtered \(D C\) voltage. Thus, ignition noise or other types of electrical interference will not cause 1 ines voltage. Thus, ignition noise or other types of electrical interference
to tear out because it is filtered out before it gets to the oscillator.

BLOCK 715
V15 operates as a cathode-coupled multivibrator utilizing a ringing tank-circuit, L213. This circuit allows for mone positive frequency contsol than is available from conventional multivibrator circuits. The irequency of the oscillator is controlled mamually by the Horizontal Hold Control, R198, and the Horisontal Lock, Lul3. The frequency is controlied automatically by the DC voltage on pin \(1, ~ W i 4\) as developed by Vil. The output of the oscillator is a sawamplitude of the sawtooth fed to the horizontal output tube

If this samtooth roitage is too high, the horizontal output tube will be overdriven and a vertical white line will show up on the raster. If the asautooth input to the horizontal out-
put is too low, the raster will be narrow and the high voltage will be low.

\section*{}

The Horizontal output stage, \(\operatorname{D16}\), supplies a current waveform through Till to the yoke
(LIll-Lil18) shaped to produce linear horizontal sweep. T112 serves as a width-control. By turning its mslug" in, its inductance will be increased Ferucing the loading on Tin and increasing the horizontal scan (width). \(N 17\) is the Hi-V Rectifier and 718 is the Damper Tube V18 serves effectively to demp-out the parasitic-oscillations occurring at the end of the "retrace" part of each horizontal swoep-cycle, The enorgy from these damped-oscillations is the schematic on one side of R177.

\section*{BLOCK V9B-71-V2}

At the second detector (V9A) the picture carrier ( 45.75 mc ) and sound carriers ( 41.25 mc )
beat to give a 4.5 mc "intercarrier" beat frequency difference. This frequency modulated beat to give a to clip off noise and other forms of amplitude modulation. W2 operates as a pelanced ratio detector. The output is the audio portion of the tranenitto

BLOCK 73 -V4
From the output of the balanced ratio-detector the audio signal is fed through the phonojack to the volwe control. The phono-jack itself acts as its own "switch". For TV operation stage chassis B+ cirouits by Lill minimizing the offects of audio on the picture from the other

\section*{BLOCK \(\operatorname{R1} 1-\mathrm{V}_{2} \mathrm{~A}\)}

N1 operates as a sync amplifior and separator. The sharp cut-off characteristics of its two triode sections combined with the grid-bias developed on pin 2 and the cathode-bias developed on pin 8 result in amplified sync-pulses completely separated from video. The operating voltages on 711 determine the waveforms illustrated on the schematic and both volitages and sync splitter. From the junction of R161 and R162 positive horizontal sync pulses are fed to V14, pin 2. From V12A, pin 6, negative horizontal sync-pulses are fed to Vi4, pin 1. These out-of-phase sync pulses are used in the "phase-comparator" circuit of V14 for Automatic Prequency control of the Horizontal Oscillator. From the plate, pin 5, of VI2A the sync pulsos are coupled through a vertical integrating netrork, CP-1, the output of which controls

> VERTICAL RETRACE BLANKINO
ertical retrace blaniding is soccaplished by cutting the picture tube off during vertical retrace ime. This is done by feeding a negative voltage pulse to the grid of the picture tube during vertical retre00. This pulse is taken off the vertical output choke and is shaped by pulse shapin etmork C166-C168-R185. No diagonal vertical retrace lines will appear in the picture BLOCK \(712 B\)
Tertical sync pulses from the output of the sync splitter aro separated from the horizontal Tertical sync pulses from the cutput of the sync splitter aro separated fram the horizontal
ync pulses by an integrating notwork (CP-1) compoeed of R168, R167, R166, C160, C159 and C158 these vertical syme puilses are used to control the frequency of a conventional type Blocking Oscillator. This oscillator utilises one triode soction of a GSN7 tube V12B and its freerunning frequoncy is determinod by the resistance and capacity time constant (including the ortical hold control) in the grid circuit. The sync pulses are inpressed at the tube grid just before the oscilhator would normaily trigger and are of surficiemt anplitude to drive amplitude or this stage is contralled by the height control.

BLOCK (713)
The blocidng oscillator drivas 684 triode, coanocted as a vortical scanning output stage. djustment of vertical-1inearity is accomplished in the cathode of this stage by varying the bias and thus changing the plato-current operating-point of the tubes non-linear characteristic
curve. semtooth current output is applied to the vertical defiection coils through the retion curve. Santooth current output is applied to the vertical deflection coils through the vorti-

\section*{YOKE ADJUSTMGNTS}

The picture tube cone should fit snugly into the large front hole rimmed in rubber in the Yoke Mount Frame. The "Yoke Mount Feat Adjustment" allows the frame to be properly positioned.
The Yole Redial Adjustment allows the yoke to be rotated right or left --- rotating the picture right or left. neck.
Proper positioning of the yoke is important so that picture corner-cutting and sideshadovis can be readily removed by the centerinc-ining.

\section*{ION-TRAP (BFAM BENDER)}

A single magnet -- "Beam-Bender" is used with the 17HP4A picture tube. The magnet should adjust to the left side of the tube neck (looking from the rear). The smooth heads of the rivets should be on top. Cereiully rotate and slide the trap for bright bakelite bese of the tube. A new trap should be used if it adjusts too far back to the bekelite.

\section*{CENTERING}

The Contering Ring should be positioned one-fourth inch to one-half inch from the yoke. Center the raster by turning the komrled knob on the Centering, Ring and at the same time rotatine the Ring around the tube neck. After the picture is centered, check the Ion Trap settinf.
The Horizontal Hold Control will move the picture horizontally and should be set first to the middle of its rance of movement of the picture. The Centering-Ring should then be used to center the picture within the mask and remove corner-shadows. If corner-shadows persist, check to see thet the Yoke and Mounting Frame are as far forward onto the cone of the picture tube as possible. When the Yoke and Ion-Trap are positit
shadovs.



HORIZONTAL TOCK ADJUSTMENT (11)
1. Set the Horizontal Hold Control (6) to the center of 1 ts range.
2. Adjust the Horizontal Lock (11) until picture is in sync. Then turn the orizontel Lock (Il) right until the picture goes out of sync. Corizontal Lock (11) to the left until the picture just pulls into sync
3. Turn the Horizontal Hold Control (6) full left. Switch the Channel Selector (4) off station then on again. The picture should go out of sync. furn the Horizontal Hold Control (6) full right. Switch the Channel Selector (4) off stetion then on again. The picture should go out of sync.
. Adjust the Horizontal Lock (ll) until the number of diagonel bars are the same for both the right and left out of sync positions.

WIDTH (13)
This control regulates the amount of deflection current flowing in the Horizontal Deflection coila controlling the horizontal dimension or width of the picture. Maximum widh occurs when the screm protrudes about \(1 / 2^{\prime \prime}\) from the coil mounting clip.

\section*{HORIZONTAL DRIVE (12)}

Adjust HORIZONTAL DRIVE TBIMMER (12) slightly beyond the point where "overdrive" lines just disappear. "Overdrive" lines appear as vertical white line in the left portio of the picture. The Horizontal Drive Trimmer is located in the control grid circuit f the Horlzong tube.

\section*{PHONO CONNECTION}

This receiver employs a Phono Jack on the back of the receiver chassis (see Rear This receiver the phono jack. The VOLUNE CONTROL (1) will control the volume. The phono lead must be removed from the phono jack for television sound reception. puring phono operation the light will remain on the screen. The Brightness Control (7) should be turned full left to darken the screen. For Chassis \(132.024-3\) only the TV-Phono switc (1) behind the control door must be turned to the left.


This control, loceted in the cathode of the Vertical Output Stage, ohanges the oper ating characteristics of this tube affecting vertical linearity of the top of the picture.

\section*{HEIGHT (9)}

This control, located in the plate circuit of the Vertical oscillator stage, determines the amplitude of the verticel sweep whioh governs the vertical dimension of the picture. This control arfects overall picture helght and the vertical innearity of

LOCAL-DISTANCE SWITCH (10)
In the "Local" position AGC voltage is connected to the grid of the R.F. Amplifier - preventing overload on strong signal input. In the "Distance" position the AGC voltage is removed from the R.F. Erid allowing the receiver to operate at maximam gain for Weiker signal areas. For "fringe" areas there will be no noticeable affect of the switch 1
voltage.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\text { CHANNEL } \\
\text { NO. }
\end{gathered}
\]} & \multicolumn{7}{|c|}{television channels and receiver operating frequencies} \\
\hline & \[
\begin{aligned}
& \text { CHANNEL } \\
& \text { FREQ. (me) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PICTURE } \\
& \text { CARRIER } \\
& \text { FRER. (me) }
\end{aligned}
\] & \[
\begin{gathered}
\text { SOUND } \\
\text { CARRIER } \\
\text { FREQ. (me) }
\end{gathered}
\] & \[
\begin{gathered}
\text { RECEIVER } \\
\text { OSC. } \\
\text { FREQ. (me) }
\end{gathered}
\] & \[
\begin{gathered}
\text { PICTURE } \\
\text { IF } \\
\text { FREQ. (me) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { SOUND } \\
& \text { IF } \\
& \text { FREQ. (ma) }
\end{aligned}
\] & INTERCARRIER
SOUND
(PICTURE IF
LESS
SOUND IF (me) \\
\hline 2 & 54-60 & 55.25 & 59.75 & 101 & 45.75 & 42.25 & 4.5 \\
\hline 3 & 60-66 & 61.25 & 65.75 & 107 & 45.75 & 41.25 & 4.5 \\
\hline 4 & 66-72 & 67.25 & 71.75 & 113 & 45.75 & 41.25 & 4.5 \\
\hline 5 & 76-82 & 77.25 & 81.75 & 123 & 45.75 & 41.25 & 4.5 \\
\hline 6 & 82-88 & 83.25 & 87.75 & 129 & 45.75 & 41.25 & 4.5 \\
\hline 7 & 174-180 & 175.25 & 179.75 & 221 & 45.75 & 47.25 & 4.5 \\
\hline 8 & 180-186 & 181.25 & 185.75 & 227 & 45.75 & 41.25 & 4.5 \\
\hline 9 & 186-192 & 187.25 & 191.75 & 233 & 45.75 & 41.25 & 4.5 \\
\hline 10 & 192-198 & 193.25 & 197.75 & 239 & 45.75 & 42.25 & 4.5 \\
\hline 11 & 198-204 & 199.25 & 203.75 & 245 & 45.75 & 42.25 & 4.5 \\
\hline 12 & 204-210 & 205.25 & 209.75 & 251 & 45.75 & 41.25 & 4.5 \\
\hline 13 & 210-216 & 211.25 & 215.75 & 257 & 45.75 & 42.25 & 4.5 \\
\hline
\end{tabular}


USE OF MARKER SIGNALS
The illustrpted response curves shov where markers fall. for sweep generators thet do not have built-in marker signals, calibrated signals from an R. F. generator must be used. The "hot-side" of the generstor output lead hooked to the chessis near the ist I.F. input will spray enough signal into the circuit to be seen on the scope. Marker beats will show best when the sweep-input is low and the scope gain set hiph.



\section*{TUNER OSCILLATOR ADJUSTMENT}

High-Channels adjustment, A3, and a Low-Channels adustment, A4, of the R.F oscillator is accessible when the channel tuning knobs are removed. These two adjustments are shown on the Tuner Unit View.

HIGH-CHANNELS
1. Set the Channel Selector Switch to the highest available station between channels 7 and 13.
2. Set the Fine Tuning to mid-position.
3. Adjust \(A 3\) for best picture definition
4. The remaining lower "High-Channels" should be within the rance of the FineTuning.

\section*{LOW-CHANNELS}
1. Set the Channel Selector Switch to the highest available stetion between channels 2 and 6 .
2. Set the Fine-Tuning to mid-position.
3. Adjust \(A 4\) for best picture definition.
4. The remaining lower "Low-Chennels" should be within the range of the Fine Tuning.
NOTE: The design purpose of A3 and A4 is to provide adjustment for chennel 13 and channel 6--- for optimum High and Low channels covernge. The above



CHASSIS 132.024, \(-1,-2,-3,-31\)

© John F. Rider
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & PARTS LIST CHANGS 132.024-2 & SELLIMG \\
\hline & & PARTS DELETED & PRICE EA. \\
\hline \(\underline{112}\) & N24991 & Width Control & \\
\hline R215 & & Resistor, 68 K ahm \(10 \% \frac{1}{2 m}\) & \\
\hline R161 & & Resistor, 1800 ohm \(108 \frac{1}{2}\) & \\
\hline R162 & & Resistor, 820 ohm \(10 \% \frac{1}{20}\) & \\
\hline R194-1 & & Resistor, 15 K ohm \(10 \%\) 2m & \\
\hline C171-1 & & Capacitor, 022ufd \(20 \% 400 \mathrm{~V}\) & \\
\hline R161-1 & & Resistor, 1500 ohm 108 & \\
\hline \(\mathrm{Rl}^{\mathrm{R} 162-1}\) & & Resistor, 1500 ohm \(10 \%\) \% & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{R193} \\
& \mathrm{Cl} 72
\end{aligned}
\]} & & Resistor, 470 K ohm \(10 \%\) 频 Capacitor, 01 ufd 2086007 & \\
\hline & N25548-1 & Tuner & \\
\hline \multicolumn{4}{|c|}{PARTS ADDED} \\
\hline L112-1 & N40027 & Width Control & 1.35 \\
\hline R215-1 & & Resistor, 22R ohm \(10 \% \frac{1}{20}\) & . 15 \\
\hline R161-1 & & Resistor, 1500 ohm 108 & . 15 \\
\hline R162-1 & & Resistor, 1500 ohm \(10 \%\) \% \({ }^{\text {a }}\) & . 15 \\
\hline R194-2 & & Resistir, 12 K ohm \(10 \%\) 2w & . 15 \\
\hline C171-2 & & Capacitor, \(0120 \% 400 \mathrm{v}\) & . 23 \\
\hline R161-2 & & Resistor, 1800 ohm 10\% \(\frac{1}{2 \pi}\) & . 15 \\
\hline R162-2 & & Resistor, 820 ohm \(10 \% \frac{1}{2 m}\) & . 15 \\
\hline \multirow[t]{4}{*}{C172-1} & & Resistor, 1 meg \(20 \% \frac{1}{2} \mathrm{~m}\) Capacitor, . 0047 ufd \(20 \% 6000\) & . 15 \\
\hline & N25731-1 & Tuner & 31.00 \\
\hline & & PARTS LIST CHANGE 132.024-3 & \\
\hline & \multicolumn{3}{|c|}{PARTS DETETED} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { A21677-1 } \\
& \text { R186 }
\end{aligned}
\]} & & \begin{tabular}{l}
Phono Socket \\
Resistor 22K ohn 10\% \(\frac{1}{2 m}\)
\end{tabular} & \\
\hline & \multicolumn{3}{|c|}{PARTS ADDES} \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { N19552 } \\
& \text { R186-1 }
\end{aligned}
\]} & \multirow{3}{*}{N40131-1} & Phono Jack & . 11 \\
\hline & & Resistor, 680 K obm \(10 \%\) 青 Phono-TV Switch & . 15 \\
\hline & & PARTS LIST CHANGE 132.024-31 & \\
\hline & & PARTS DEIETED & \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \text { R216 } \\
& \text { R116 }
\end{aligned}
\]} & \begin{tabular}{l}
N22820-1 \\
N24406
\end{tabular} & Color Socket Color Plug & \\
\hline & & Resistor, 68 ohme \(208 \frac{1}{21}\) & \\
\hline & N25596 & Resistor, 47 K ohm \(10 \% \frac{1}{2} \mathbf{T}\) Mask, Pix Tube & \\
\hline & \multicolumn{3}{|c|}{PARTS ADDED} \\
\hline R216-1 & N40211 & Resistor, 100K \(108 \frac{1}{2}\) Lask, Pix Tube & \[
4.15
\] \\
\hline
\end{tabular}

\section*{PRODUCTION CHANGES}
132.02l!-1 Chassis is the initial production run, and is an earlier chassia than 132.024 132.024 Chassis Incorporates the Following Production Changess
1. Cl71 changed from . 01 mfa . to . 022 mfd .
2. RJ.94 changed from 12 K . to 15 K .
3. R204 changed from 220 ohm to 300 ohm.
5. R216, 68 ohm , added from pin 5 of no to junction of R151 and \(\mathrm{Cl}_{4}\)

Color socket wired as follows:
a. Pin 2 to \(\mathrm{B}+\) source.
b. Pin 3 to \(\mathrm{B}+\) load.

> c. Pin 4 to junction of R151 and R216. d. Pin 5 to Pin 5 of VO. e. Pin 6 to ground f. Pin 7 to pin 5 of V12A. g. Pins 8 and 1 not wired.

Color plug wired as follows:
\[
\begin{aligned}
& \text { ains } 4 \text { and } 5 \text { shorted together. } \\
& \text { b. Pins } 2 \text { and } 3 \text { shorted together. }
\end{aligned}
\]
6. C192, 1000 uuf, added from RFAGC (in parallel with C188) to ground. 7. R217, 220 K , , added from junction of R154 and C153 to ground.
instead of to \(\$ 130 \mathrm{~F}\)
9. R189 wired to +300 V. through 100 K . (R218).
132.024-2 Chassis Incorporates the Following Production Changes:
1. T112 Width Control (N24991) changed to T112-1 Width Control (N40027).
2. R215, 68 K resistor changed to \(\mathrm{R} 215-1\), 22 K resistor to reduce horizontal jitter.
3. R161, 1800 ohm resistor changed to R151-1, 1500 ohm resistor.
4. R162, 820 ohm resistor changed to R162-1, 1500 ohm resistor.
5. Rl94-1, 15 K resistor changed to R194-2, 12 X resistor to improve horizontal
stability ( \(132.024-1\) only).
6. Cl51-1, .022 capacitor changed to C171-2, .Ol capacitor to improve horizontal stability ( \(132.024-1\) only).
Additional changes not shown on dash 2 schematic, but which ware made before pro duction of 132.021-2 chassis are as follows:
1. R161-1: 1500 ohm resistor changed back to R161-2, 1800 ohm resistor.
2. R162-1, 1500 ohm resistor changed back to Rl62-2, 820 ohm resistor.
3. R193, 470 K resistor changed to R193-1, 1 megohm resistor.
4. C172, 01 capacitor changed to C172-1, . 005 capacitor to remove vertical trist in picture.
132.024-3 Chassis Incorporates the Following Production Changes
1. Phono-TV switch added to chassis.
2. Kake-break phono socket changed to phono jack.

Additional changes not show on dash 3 schematic but which were made before pro duction of 132.0e4-3 chassis are as follows:
1. R186-1, 680K wes R186, 22K.
2. R186-1 rewired from TV contact of Ph-TV Switch to tap of Tl 10 .
3. C169 rewired from junction of R186-1 and TV contact of Ph-TV Switch to ground. 132.024-31 Chassis Incorporates the Following Production Changes:
1. R216 removed from Pin 5 of V1O and juretion of C4 and R151.
2. Rll 6 changed from 47K to R1l6-1, 100K.
3. Color scoket and colar plug removed
a. B+ source connacted to B+ load.
b. Lead from Pin 5 of Vi2A removed c. Pin 5 of ViO connected directly to junction of CL and Rl51.
4. Plicture tube mask changed fram 25596 to \(N 50211\).

Note - Later production of chassis 132.024-3 also incorporated this new mak. Masks are not interchangeable. The new mask has N4O21l stamped on the back side for Identifioation.

\section*{CHASSIS 132.024}



\section*{SCHEMATIC DIAGRAM FOR 132.024-2}
tuner umit






 RESISTACE






1957542235

䉞




 ST. AUDIO AMP. 6AV6 \(\sqrt{+125 \mathrm{~V}}\)

\section*{CHASSIS 132.024-3}


3 col he sistance vales less than (1) ohm are not show
crfows at contras moicate clockwise potation




- RESIITTANCE VALUES SHOWN ARE with mart disconnected







INDEX
PAGE
. . 89
UUT. . . 95
Th . . . . . . 95 VOLTAGE MEASUREMENTS ... 94 WAVEFORMS . . . . . . . . . . . 98

\section*{REAR OF CHASSIS}



\section*{CIRCUIT DESCRIPTION}

TUNER CIRCUIT DESCRIPTION IS GIVEN IN SECTION ON TUNERS.

\section*{intermediate frequency amplifiers -} BLOCKS V3, V4, AND V5:
The I. F. picture and sound signals are amplified by 3 stages of wide-band I. F. amplification, V3, V4, and V5. A stagger-tuned I. F. system is utilized in this receiver, and correct response is obtained by aligning the R.F. converter plate load inductance to 22.8 mc ., the plate load inductance of the \(1 \mathrm{st} \mathrm{I} . \mathrm{F}\). stage to 25.4 mc ., the inductance coupling the 2 nd and 3rd I. F. stages to 22.8 mc ., and the inductance in the video detector plate to 25.4 mc

\section*{VIDEO DETECTOR AND AUTOMATIC}

\section*{GAIN CONTROL VG:}

This Stage detects the video signal and acts as a condifference frequency between the 25.75 mc . and 21.25 mc . carrier frequencies. A portion of the demodulated signal from this stage is properly filtered and of proper polarity for effecting the grid bias on the R. F. amplifier of the tuner and the first two I. F. stages to accomplish Automatic Gain Control.

\section*{IDEO AMPLIFIER V7}

The output of the video detector is directly-coupled to the grid of the first triode amplifier. The signal is amplified and capacity-coupled to the grid of the second amplifier. The output of this triode amplifier is ca-pacity-coupled to the grid of the picture tube. In the lound trap which is adjusted to attenuate the 4.5 mc . beat pattern appearing on the screen. Contrast control setting regulates the amount of degenerative cathode feedback in the second video amplifier.

SOUND DETECTOR DRIVER - BLOCK V8:
The frequency-modulated 4.5 mc . difference between
the 25.75 mc . picture intermediate frequency and the 21.25 mc . sound intermediate frequency is separated rom the composite video amplifier output by means of plied to the grid of the Detector driver, V8. This stage amplifies the 4.5 mc . frequency-modulated signal for delivery to the following ratio detector stage. Plate limiting to clip unwanted AM interference is also provided in this detector driver stage.

\section*{SOUND RATIO DETECTOR - block Vg,}

The amplified and clipped 4.5 mc . frequency-modulated sound information is coupled through a tuned transformer to the twin donal ratio-type FM sound detector wherein the frequency modulated 4.5 mc . information is converted to audio.

\section*{AUDIO VOLTAGE AMPLIFIER - BLOCK VIO:}

The previously detected audio is taken from the tertiary winding of the discriminator transformer and delivered through a voltage dropping potentiometer. (ront panel Volume control) to the grid of the audio voltage amplifier. A 6SQ7 is used as the audio voltage
audio rube - block vil:
The previously amplified audio is fed to the grid of 6 V 6 -GT tube, which is used as a conventional singleended power amplifier. The output of this stage is coupled to the voice coil of the permanent magnet speaker through a speaker transformer.

SYNC AMP. - BLOCK VI2A:
To provide a sync signal which is independent of contrast control settings, the composite signal to be used for sync is taken-off at the video detector, (V6) and is fed sync negative to the sync amplifier, (V12A). Here it is amplified, inverted, and then fed through a noiseimmune double-time-constant coupling network to the grids of the Sync Separator.

The positive-going composite signal appearing at the rids of the sync separator is of such magnitude that only the sync information is permitted to be amplified by this stage V13; the video information being driven below cut-off of V13, and therefore not amplified Note that the iwo halves of V13 are connected es entially in parallel, forming a "dual-channel" sync eparato: to prowde superior impulse-noise-im munity.

\section*{PHASE INYEPTER -- BLOCK V12B:}

The negative sync pulses supplied to the grid of this tage fron: the previous stage are distributed to profor delivery to the borizontal phase detector, as well s aincle-ended vertical pulses to the vertical Swee Oscillator. The two out-of-phase horizontal pulses re sult from taking balanced outputs from both the cathode and plate of this stage. The long duration vertica pulses are taken from the plate circuit only, and are passed through a suitable integrating network for de iivery to the vertical oscillator.

\section*{VERTICAL SWEEP BLOCKING OSCILLATOR -}

\section*{BLOCK V14A:}

This is a conventional Blocking Oscillator wherein the integrated vertical pulse is used to trigger the grid of the oscillator. This oscillator frequency is controlled rom the rear chassis (Vertical Hold, which is a ente) of this grid. rate) of this grid.

VERTICAL SWEEP OUTPUT - BLOCK VI4B The oscillations from the Vertical Oscillator are coupled to the grid of this stage for amplification and delivery to the vertical output transformer. There is a control in the plate circuit of V14A (rear chassis "Height Control") which is a potentiometer affecting the plate voltage of the blocking oscillator. There is also a control in the cathode of V14B (rear chassi Vertical Linearity) which affects the gain of the stage

\section*{hORIZONTAL PHASE DETECTOR -}

\section*{block vis:}

The balanced, but out-of-phase horizontal sync pulse rom the phase inverter above are delivered to the plate of one section of this twin diode, and to the cath de of the other section. In this stage these two pulse (negative and positive) are compared with a portion of the output saw-tooth horizontal sweep. If the sub sequent horizontal sweep oscillator tends to drift,
there will result in tis phase detector a phase change in the relationship of the sync pulses to the sawth livered to the grid of the horizontal sweep oscillator thus correcting the frequency of the horizontal oscill tor.

ORIZONTAL SWEEP OSCILLATOR - BLOCK VI6: This oscillator is a conventional cathode-coupled multivibrator with control voltage derived from V15, the Horizontal phase detector. There is a rear chassis AFC control which provides frequency adjustment of this oscillator. This control is a tunable inductance which affects a resonant tank circuit in one of the plates of this stage.

\section*{RIZONTAL SWEEP OUTPUT - BLOCK VIT}

The sawtooth output of the horizontal oscillator is fed through the adjustable voltage-dropping horizontal put tuetwork to the grid of the Horizontal Sweep Out put tube. The amount of drive applied to this grid can capacitance in the voltage dividing network. The output of this stage is applied to the horizontal deflection coils through the impedance-matching Horizontal Output Transformer. A portion of the secondary of this transformer is shunted by a variable inductance (rear chassis "WIDTH" control) which offers an adjustment on the width of the picture.
HORIZONTAL DAMPER - BLOCK V19:
The 6 W 4 Horizontal Damping tube is connected across the transformer secondary to damp out oscillations created during rapid retrace of the sawtooth current linearity and also uses some of the inductive kickback voltage to supply additional \(\mathrm{B}+\) for the horizontal and vertical sweep systems.

\section*{WER SUPPLY - BLOCK V20}

This is a conventional power supply providing D.C. potential to all stages of the chassis with the exception of the picture tube 2nd Anode, the High Voltage rectifier and the Horizontal damper. In addition to provida separate 6.3 volt filament winding for the heater of the horizontal damper tube. Filter networks in the 117 volt 60 cycle supply, in the D.C. plate supply, and in the filament supply, minimize unwanted interference, interaction and fluctuation.

\section*{PARTS REMOVAL}

TO REMOVE THE CHASSIS FROM THE CABINET
1 - Remove the screws holding the back to the cabinet and interlock bracket.
2 - Remove the screws holding the antenna terminal strip to the cabinet.
3 - Reach into the cabinet from the rear and remove the speaker plug from the speaker socket. (In some table models it may be necessary to remove the speaker.)
4 - Remove all the knobs from the front of the cabinet by pulling them straight out.
5 - Remove the mounting screws from the base of the chassis. These screws will be found under the cabine in the table models and under the chassis mounting board in the console models.
6 - Slide the chassis straight out being careful not to hit the picture tube.
7 - To replace the chassis reverse the operations listed above.

\section*{to remove the picture tube from the chassis:}

1 - Remove the socket from the base of the tube by sliding the socket straight back.
2 - Slide ion trap magnet straight back off the neck of the tube.
3 - Remove the screw holding the strap around the face of the picture tube.
4 - Lift the picture tube slightly so as to clear the front brackets and slide the tube straight forward. 5 - To replace reverse the above operations making sure that the picture tube rests against its front stop bracket and that the yoke is as far forward on the tube as possible.

\section*{ADJUSTMENTS OF PICTURE TUBE CONTROLS If it Should become necessary to readjust the picture tube controls PROCEED AS FOLLOWS:}

\section*{ION TRAP MAGNET ADJUSTMENT:}

1 - Turn the OFF-ON switch to the ON position.
2 - Turn the PICTURE control fully counterclockwise
3 - Turn the BRIGHTNESS control fully clockwise. (This control will be found on the rear apron of the chassis.)
4 - The ion trap magnet should be approximately \(1 / 2\) inch from the top edge of the picture tube base. Starting from this position adjust the ion trap magnet by moving it forward and backward, at the same time rotating it slightly around the neck of the tube for the brightest raster on the screen.
5 - Reduce the Brightness control until the raster is slightly above average brilliance.
6 - The final touches on this adjustment should be made with the brightness control at the maximum position in which good line focus can be maintained. THIS ADJUSTMENT SHOULD BE MADE ONLY AFTER THE PICTURE IS PROPERLY CENTERED, FOCUSED, AND FRAMED AS DESCRIBED IN the following paragraphs.

NOTE: THE RECEIVER SHOULD BE TUNED TO A TEST PATTERN FOR ALL OF THE FOLLOWING ADJUSTMENTS:

A recommended sequence for the following operations is that the serviceman, set the horizontal and vertical controls for a picture lock-in position. Then adjust the focus, horizontal and vertical centering controls. Next adjust he horizontal and vertical size controls in conjunction with the respective linearity controls.

The serviceman should then go back and make the final adjustments so that the picture holds on all channels. The sequence of steps of the following operations is not significant.

\section*{CENTERING PICTURE AND REMOVAL OF NECK SHADOW:}

1 - Adjust the vertical and horizontal centering control located on the rear apron of the chassis Figure 5 , to the center of their range.
2 - Place the yoke as far forward as possible on the neck of the tube. BE SURE THAT IT IS NOT CATCHING ON THE MOUNTING HOOD. THE YOKE WINDING MUST BE IN CONTACT WITH THE FLARE OF THE PICTURE TUBE. Tighten the yoke in position by means of its adjusting thumb screw. BE SURE THAT THE PICTURE IS NOT TILTED. IF IT IS, ROTATE THE YOKE UNTIL THE PICTURE IS STRAIGHT BEFORE TIGHTENING THE THUMB SCREW, FIGURE 5.
3 - Center the picture by adjusting the horizontal and vertical centering controls on the rear apron of the chassis.

\section*{FOCUS ADJUSTMENT:}

THE PICTURE TUBE EMPLOYED IN THIS TELEVISION RECEIVER IS CONSTRUCTED TO PROVIDE PREFIXED FOCUSING. THE FOCUS CONTROL ON THE REAR CHASSIS APRON IS PROVIDED IF ADJUSTMENT is REquIRED.

\section*{HORIZONTAL AFC ADJUSTMENT}

1 - Adjust the AFC control screw on the rear of the chassis so that the picture locks into horizontal sync. 2 - Turn The Channel Selection Switch through the various stations and make sure that it always lock into horizontal sync. If it should fail to do this readjust the AFC control screw until this condition is obtained.

\section*{height and vertical linearity:}

1 - Adjust the height control, located on the rear of the chassis, until the picture fills the mask
- Adjust the vertical linearity control on the rear of the chassis, until the test pattern is symmetrical from top to bottom

\section*{note: an adjustment of either control may require readjustment of the other control.} VERTICAL HOLD CONTROL:

1 - Adjust the vertical hold control, on the rear apron of the chassis Figure 5, until the picture locks in ertically.
- Switch the "Channel Selector" through the various stations and make sure that the picture always locks into vertical sync. If it should fail to do this readjust the vertical hold control until this condition is

\section*{WIDTH, HORIZONTAL DRIVE AND LINEARITY:}
- Turn the horizontal drive control on the rear of the chassis Figure 5, in either direction until you obtain the greatest width without a vertical line or tear. Make sure this control is at least \(3 / 4\) of a turn from its maximum clockwise position to prevent damage to output tube and transformer

2 - Adjust the width control until the picture fills the mask horizontally. The width control is located in the rear of the high voltage shield. Figure 5.

3 - Adjust the horizontal linearity coil, located on top of the chassis near the high voltage shield, for the best picture. Figure 16.

\section*{NOTE: AN ADJUSTMENT OF THE HORIZONTAL DRIVE MAY} AFFECT THE ADJUSTMENT OF THE HORIZONTAL AFC CONTROL.

\section*{TELEVISION ALIGNMENT PROCEDURE}

Aligning a television receiver is an exacting procedure and involves tying up bench space, test equipment and skilled personnel at the service shop, as well as the cost of making two trips to the user's home. Before deciding that the chassis must be pulled and aligned at the shop, the serviceman should check these very common sources of trouble;

1 - The antenna and installation.
2 - Front panel and rear chassis controls, including Picture Tube adjustments.
3 - Reception on all available channels.
4 - Tube failures. Substitute from your kit of known good replacements.
5 - Visual inspection of under side of chassis for obvious faults, such as loose connections, etc.

CAUTION: THE SECOND ANODE LEAD TO THE PICTURE TUBE HAS A POTENTLAL OF APPROXIMATELY 12,000 VOLTS. DURING THIS ALIGNMENT IT IS ADVISABLE TO REMOVE THE 6BQ6 TUBE FROM TTS SOCKET, THUS ELIminating this high voltage. hazard.

\section*{SEQUENCE OF ALIGNMENT:}

It is recommended that the ratio detector driver be aligned first, followed by the ratio detector, I. F., and tuner alignments in that order unless the location of the misalignment is known.

\section*{AIDS IN SERVICING:}

In addition to step-by-step alignment procedures following, see the instrument connection figures, and voltages and waveshapes charts.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TELEVISION CHANNEL VS CARRIER AND I-F AMPLIFIER} \\
\hline CHANNEL NO. & \begin{tabular}{l}
CHANNEL \\
Freq. (mc.)
\end{tabular} & PICTURE CARRIER Freq. (mc.) & SOUND CARRIER Freq. (mc.) & \begin{tabular}{l}
RECEIVER OSC. \\
Freq. (mc.)
\end{tabular} & PICTURE
IF
Freq. (mc.) & \[
\begin{gathered}
\text { SOUND } \\
\text { IF } \\
\text { Freq.(mc.). }
\end{gathered}
\] & \[
\begin{gathered}
\text { PICTURE IF } \\
\text { less } \\
\text { SOUND IF (mc.) }
\end{gathered}
\] \\
\hline 2 & 54-60 & 55.25 & 59.75 & 81.0 & 25.75 & 21.25 & 4.5 \\
\hline 3 & 60-66 & 61.25 & 65.75 & 87.0 & 25.75 & 21.25 & 4.5 \\
\hline 4 & 66-72 & 67.25 & 71.75 & 93.0 & 25.75 & 21.25 & 4.5 \\
\hline 5 & 76-82 & 77.25 & 81.75 & 103.0 & 25.75 & 21.25 & 4.5 \\
\hline 6 & 82-88 & 83.25 & 87.75 & 109.0 & 25.75 & 21.25 & 4.5 \\
\hline 7 & 174-180 & 175.25 & 179.75 & 201.0 & 25.75 & 21.25 & 4.5 \\
\hline 8 & 180-186 & 181.25 & 185.75 & 207.0 & 25.75 & 21.25 & 4.5 \\
\hline 9 & 186-192 & 187.25 & 191.75 & 213.0 & 25.75 & 21.25 & 4.5 \\
\hline 10 & 192-198 & 193.25 & 197.75 & 219.0 & 25.75 & 21.25 & 4.5 \\
\hline 11 & 198-204 & 199.25 & 203.75 & 225.0 & 25.75 & 21.25 & 4.5 \\
\hline 12 & 204-210 & 205.25 & 209.75 & 231.0 & 25.75 & 21.25 & 4.5 \\
\hline 13 & 210-216 & 211.25 & 215.75 & 267.0 & 25.75 & 21.25 & 4.5 \\
\hline
\end{tabular}

\section*{RATIO DETECTOR DRIVER, RATIO DETECTOR,AND 4.5 MC TRAP ALIGNMENT}

In aligning this section of the television receiver, the sound take-off must be resonated at 4.5 mc . to separate the sound from the picture information, and the ratio detector transformer must be adjusted to complete balance in the secondary winding for maximum AM rejection. The sound take-off coil is L113, located between the video amplifie解 djusted in proper sequence to of 4.5 mc . beat pattern on screen, L110 is adjusted to attenuate the 4.5 mc . signal.

1 - Connect the VTVM across R126 with the positive lead from the meter to the chassis, and the negative lead to the other side of R126. This connection will be at pin 7 of the 6AL5, V9. See Figure 7A showing connection.
2 - Connect the signal generator output through a . 001 mfd mica capacitor to pin 2 of the 12BH7 Video Amp. (input to the first video amplifier, V7A): Ground the other side of the generator to the chassis.
3 - Set the signal generator to precisely 4.5 mc . and adjust its output to provide about 10 volts reading on he VTVM
4-Adjust sound take-off coil L113 for maximum reading on the VTVM. This coil can be peaked at two points, and the peak point selected should be the one closest to the full counter-clockwise position of the slug. This setting minimizes the possibility of intercarrier buzz.
5 - Adjust the bottom slug on the discriminator transformer T100 for maximum reading on the VTVM.
7 - Adjust L110 for minimum reading on VTVM.
8 - Connect two 100 K resistors across R126 as shown in figure 7B
9 - Reconnect the VTVM, running one lead to the junction point of these two 100 K resistors, and the other lead to the tertiary winding center lug of the discriminator transformer T100. See Figure 7B for these connections.
10 - Reconnect Signal Generator as in step 2, and adjust the top slug on T100. Note that during this adjustment, a point will be found where the VTVM will swing rather sharply from positive to negative, or vice versa. The correct setting of this adjustment is obtained when the VTVM pointer reads zero, as the slug is passed through this point.

\section*{INTERMEDIATE FREQUENCY ALIGNMENT}

The IF alignment of the models covered in this manual is based on peaking one set of \(\operatorname{F}\) coils at 22.8 mc , and the other set of IF coils at 25.4 mc . A signal generator feeds these frequencies to the IF strip, and a VTVM connected across the video detector load resistor R113 in proper polarity, serves as a measuring device ior this coaking operation. The 22.8 mc . coils are on the tuner sub-chassis, and L103, located between the second and third iF stages The 25.4 mc . coils are L101, located between the first and second IF stages, and L104. locaied between the third IF and the video detector. A recommended step-by-step procedure is given below:

1 - Set front panel "CONTRAST" control \(1 / 4\) turn clockwise.
2 - Connect the VTVM in proper polarity across the video detecter (V6) lvad insistor R! is. Connect posi8B.

3 - Connect the signal generator through a .001 mfd capacitor to the test loop located between the two tubes on top of the tuner sub-chassis. See Figure 8A.
4 - Inject minus 3 volt bias to AGC terminal on tuner. (Refer to tuner descriptions for location of AGC terminal.)
5 - Set the signal generator to 22.8 mc . and adjust its output so that the VTVM shows a reading of 2.5 volts maximum.
6 - Adjust L103 and 22.8 mc. coil on tuner for maximum reading on the VTVM.
7 - Reset the signal generator to 25.4 mc . and adjust its output so that the VTVM shows a reading of 2.5 volts maximum.
- Adjust L101 and L104 for maximum VTVM reading.

9 - Reset the signal generator to 21.25 mc . and adjust its output so that the VTVM reads 5 volts maximum 10 - Adjust L114 for minimum VTVM reading.

NOTE: In early production receivers, the 21.25 mc . IF trap (L114) was not incorporated. The alignment procedure described above remains unchanged, except that reference to the IF trap is ignored. However, the following components differ

WITH LII4 IF TRAP
R100
R101
R103
R104
3. 9 K 1/2w

33 Ohm 1/2w
\(47 \mathrm{~K} 1 / 2 \mathrm{w}\)
47 Ohm 1/2w

WITHOUT LII4 IF TRAP
5. \(6 \mathrm{~K} 1 / 2 \mathrm{w}\)
\(47 \mathrm{Ohm} 1 / 2 \mathrm{w}\)
22K \(1 / 2 \mathrm{w}\)
56 Ohm 1/2w

\section*{TEST INSTRUMENT CONNECTIONS FOR RATIO} DETECTOR ALIGNMENT


TEST INSTRUMENT CONNECTIONS FOR I. F. ALIGNMENT


FIG. 8A


FIG. 8B

\section*{TUNER ALIGNMENT - GENERAL INFORMATION}

DO NOT TOUCH TUNER ALIGNMENT UNLESS ABSOLUTELY NECESSARY. BEFORE ATTEMPTING FAULT

EQUIPMENT NEEDED FOR ALIGNMENT OF TUNERS
- SWEEP GENERATOR
- STANDARD SIGNAL - OSCILLOSCOPE
- INSULATED ALIGNMENT TOOL
- metal ground plate. all equipment and t. v. set to be put on this plate to prevent SPURIOUS SIGNALS PICK UP AND STANDING WAVES ON CONNECTIONS.

TEST INSTRUMENT CONNECTIONS FOR TUNER RF BANDPASS ALIGNMENT


R-F BANDPASS SWEEP-RESPONSE LIMITS

\begin{tabular}{|l|r|r|r|r|r|r|r|r|r|r|r|r|}
\hline \begin{tabular}{l} 
Channel \\
Selector \\
Switch
\end{tabular} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline \begin{tabular}{l} 
R. F. Sweep \\
Generator \\
Setting
\end{tabular} & 57 & 63 & 69 & 69 & 85 & 177 & 183 & 189 & 195 & 201 & 207 & 213 \\
\hline \begin{tabular}{l} 
Marker \\
Generator \\
Setting \\
(Sound)
\end{tabular} & 59.75 & 65.75 & 1.75 & 81.75 & 87.75 & 179.75 & 185.75 & 191.75 & 197.75 & 203.75 & 209.75 & 215.75 \\
\hline \begin{tabular}{l} 
Marker \\
Generator \\
Setting \\
(Picture)
\end{tabular} & 55.25 & 61.25 & 67.25 & 77.25 & 83.25 & 175.25 & 181.25 & 187.25 & 193.25 & 199.25 & 205.25 & 211.25 \\
\hline
\end{tabular}

\section*{SWITCH TYPE TUNER}

\author{
PART NO. 541114
}
R. F. AMPLIFIER

The signal from the Television receiving antenna is brought into the single-ended R. F. amplifier through a coupling transformer which couples the balanced-to-ground twin-lead transmission line to the unbalanced single-ended grid drive of this stage. The channel switch picks out suitable lumped resonant elements in duced at the grid of this stage also. The values of the shunt loading, the degree of the transformer coupling, and the values of the tuning inductances are chosen by the selector switch to provide uniform bandpass on all channels.


FIG. 12
R. F. CONVERTER

The amplified signals from the previous R. F. stage are delivered to the input grid of V2. The 2nd sectio of the V2 is a modified Hartley oscillator, and the output of this local oscillator is heterodyned with the amplified R.F. in the mixer load. The channel selector functions in this circuit to select suitable fixe tank circuit elements so that the local oscillator frequency is always above the R.F. frequencies by variable capacitor in this oscillator tank circuit to provide vernier adjustment on the local oscillator fre quency.

\section*{TUNER RF BANDPASS ALIGNMENT}

NOTE: DO NOT ATTEMPT RF BANDPASS ALIGNMENT UNTIL THE IF AMPLIFIERS ARE PROPERLY ALIGNED.
1 - Connect the R.F. Sweep Generator, Marker Generator, and Oscilloscope as shown in Fig. 9a. Fefer to Fig. 11 for instruments setting for each channel alignment. Put minus 3 volt bias between ground and AGC by means of the 3 volt battery
Set the RF sweep generator for 10 mc . sweep width, and its center frequency at 213 mc . rotation range
- Turn on the television receiver and test equipment and allow about 15 minutes for the set to warm up and stabilize.
- Set the oscilloscope gain control for a maximum gain and the sweep attenuator for minimum output necessary to give a convenient size trace.
- (See Note 1). See permissible response curves, Figure 10. If the response curve on the oscilloscope does not fall within these limits, the picture on the oscilloscope can be made to approach the desir able form by either spreading or compressing the particular coils in the tuner circuit at channel 13 setting. Referring to the 5 decks on the master switch in the tuner, note that the deck nearest the fron (shaft) end of the tuner contains those coils regulating the local oscillator, and these should NOT be touched during any bandpass adjustments. On the second, third and fourth decks of the master swith spectively for the mixer grid, the RF ampliner plate, and are the ones that should be compressed or expanded to achieve the desired bandpass characteristics Note that too broad a curve results in loss of sensitivity, and rejection.
- Proceed with Channel Selector switch at 12, and with Sweep and marker generators set per Figure 11, repeat 6 above to achieve proper curve. Repeat for channel 11, then 10, 9, etc. When completion of channel 2 is reached, the bandpass alignment is finished.

Note \#1 - Late model switch type tuners part \#541114 have an additional screw adjustment on the top of the tuner. These adjustments are in the end inductance of the RF and antenna coil. Before adjusting any individua coil, use these adjustments for aligning channel 13. It is likely that after this adjustment is made, it will not be necessary to touch the other coils. This is especially true in the misalignment developed because of a change in tubes as these adjustments will compensate for the interelectrode capacitance variations in tubes. Refer to the diagram for the location of the above mentioned screw adjustments.

\section*{TUNER RF LOCAL OSCILLATOR ALIGNMENT}

1 - Connect the RF sweep generator to the antenna terminals as in figure 9A. Put minus 3 volt bias between ground and an AGC terminal by means of the 3 volt battery
2 - If the sweep generator is not provided with internal crystal-controlled or connect a marker generator to the antenna terminals as in figure 9 A.

绪 213 mc .
Adjust the marker generator for the picture carrier of channel \(13(211.25 \mathrm{mc}\).
6 - Set the Channel Selector switch to channel 13, with the fine tuning control at the middle of its rotation range.
- Turn on the receiver and test equipment and allow about 15 minutes for it to warm up and stabilize.
- Set the oscilloscope gain control for a convenient size picture on the oscilloscope.
- Adjust the slug in channel 13 oscillator coil until the oscillator pip is at the middle of the picture side of the response curve on the oscilloscope.
10 - Set the channel Selector switch to channel 12, and using the frequencies shown in figure 11, adjust by displacing the channel 12 increment loop until the oscillator pip is at the middle of the picture side of the response curve on the oscilloscope.
11 - Repeat operation 10 above using the appropriate frequencies and increment loops for channel selector switch settings of \(11,10,9,8\), and 7 in that order. This completes the high band oscillator alignment.
1.2 - Set Channel Selector switch to 6 , and proceed as in 9 above, using the proper slug and frequencies.

RESISTANCE MEASUREMENTS ON \(110.817-1 \& 110.820-1\) CHASSIS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{TUBE
Loc.} & \multirow[t]{2}{*}{TUBE} & \multicolumn{9}{|c|}{PIN NUMBERS} \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline \(\mathrm{v}_{1}\) & 6BC & 50K & 0 & 0 & 0 & 25 K & 25K & 0 & & \\
\hline \(\mathrm{v}_{2}\) & 6 J 6 & 33K & \({ }^{23 \mathrm{~K}}\) & 0 & 0 & 220K & 15K & 0 & & \\
\hline \(\mathrm{V}_{3}\) & \(6 \mathrm{CB6}\) & 132 K & 47 & 0.3 & 0 & \({ }^{23 \mathrm{~K}}\) & \({ }^{23 \mathrm{~K}}\) & 0 & & \\
\hline \(\mathrm{V}_{4}\) & \({ }_{6} \mathrm{CB6}_{6}\) & 148 K & 56 & 0.3 & 0 & 23K & \({ }^{23 \mathrm{~K}}\) & 0 & & \\
\hline v5 & 6CB6 & 0.2 & 150C & 0.2 & 0 & 23K & 23K & & & \\
\hline - \({ }^{\text {b }}\) & 6 AL5 & 2.5 & 0 & & 0 & 0 & 0 & 4.7K & & \\
\hline v7 & 12BH7 & 26 K & 4.7K & 220 & 0 & 0 & 31 K & & & \\
\hline V8 & 6 AU6 & 100K & 0 & 0 & 0 & 25 K & 125K & \({ }^{0} \mathrm{~K}\) & & \\
\hline v9 & 6 6L5 & & \(\infty\) & 0.6 & 0 & 0 & 0 & 47K & & \\
\hline \(\mathrm{V}_{10}\) & 6SOTGT & 0 & 10M & 0 & & \({ }^{0}\) & 500 K & 0 & 33 & \\
\hline \(\mathrm{v}_{11}\) & \({ }^{6} \mathbf{V 6 G T}\) & x & 0 & 29K & 29 K & 470K & \({ }^{\mathrm{x}}\) & \({ }^{0}\) & 330 & \\
\hline \(\mathrm{V}_{12}\) & \({ }^{12 \mathrm{BH}} 7\) & 31 K & 0.5M & 2.7K & 0 & 0 & 91K & 11.5 K & & \\
\hline V13 & \(12 \mathrm{BZ7}\) & 20 K & \({ }^{2.2 \mathrm{M}}\) & K & 0 & 0 & \({ }^{20 \mathrm{~K}}\) & \({ }^{\text {4.7.7 }}{ }^{\text {F }}\) & 0 & \\
\hline V14 & 12BH7 & 216 K & 1.5 M & 3.3K & 0 & 0 & \(1.7 \mathrm{M}^{\text {E }}\) & \({ }^{2.19}\) & 0 & 0 \\
\hline V15 & 6AL5 & 3.4M & 3.4 M & 0 & 0.6 & 22K & 0 & 22 K & & \\
\hline V16 & 12BH7 & 32K & & & 0.0 & & 246 K & \[
\begin{aligned}
& 100 \text { to }{ }^{105} \text {. }
\end{aligned}
\] & & \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & \\
\hline V19 & 6W4GT & x & X & & x & \({ }^{26 \mathrm{~K}}\) & X & \({ }^{2044}\) & & \\
\hline v20 & 5U46 & x & 26K & \(x\) & 100 & \(x\) & 100 & X & & \\
\hline & & & & & \[
\begin{aligned}
& P i n 10: 5 \\
& \hline \text { Pin12:0 }
\end{aligned}
\] & 500K; & \[
\begin{aligned}
& \text { Pin11: } 3 \\
& 6: 210 \mathrm{~K}
\end{aligned}
\] & & & \\
\hline \multicolumn{11}{|l|}{NOTE: Resistances measured from Pin to ground with Phono-TV Switch, if any, in TV position.} \\
\hline \multicolumn{11}{|r|}{\(X\). Indicates that pin is not used as terminal post for another part of the Circuit.} \\
\hline \multicolumn{11}{|r|}{XX. Indicates that pin is used as terminal post for another part of the Circuit.} \\
\hline \multicolumn{11}{|c|}{\(\hat{\beta}\) Varies with contrast (picture) Setting. \(\quad\),} \\
\hline \multicolumn{11}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
c On 820 and \(820-1\) tube type is 20HP4A and Pin \(6=210 \mathrm{~K}\) \\
\({ }^{c}\) Varies with brightness setting.
\end{tabular}}} \\
\hline \multicolumn{11}{|c|}{\multirow[t]{3}{*}{- Varies with brightesss setting.}} \\
\hline & & & & & & & & & & \\
\hline \multicolumn{3}{|r|}{f Varies with vertical speed setting; reading given is nomin} & & & & & & & & \\
\hline \multicolumn{11}{|c|}{\multirow[t]{2}{*}{\({ }_{6}\) Varies with vertical speed seltiog; reading given is nomin}} \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|c|}{FIG. 13} \\
\hline
\end{tabular}

CHASSIS 110.817-1, 110.820-1
TUBE SOCKET VOLTAGES ON 110.817-1 \& \(110.820-1\) CHASSIS

NOTE: All voltages measured with V.T.Y.M. from pin to ground with
line voltage of 1117 ac and antenana terminals shored. Values are
DC unless otherwise noted. The Phono-TV switch, if provided, DC unless otherwis
in the TV poosition.
* Varies with contrast (piclure) setting.
\({ }^{8}\) Varies with contrast (picture) setting. 820 and \(820-1\) tube type is 20 HP 4 A and Pin \(6=515 \mathrm{~V}\)
\({ }^{\text {C }}\) V Varies with brightness setting.
E
Varies with linearity setting.
Varies with Horizontal Hold sett ing.
\({ }^{F}\) Fins 7 and 8 are fil ament termina
\({ }_{H}^{G}\) Varies with height setting.
\({ }^{*}\) Above voltages apply only when vertical output translormer is
marked PCIO152 II vertical output transfommer is marked
PC19115, the following voltages apply



REAR CONTROLS CHASSIS 110.817-1; 820-1


BOTTOM VIEW
\({ }_{800}\) SERIES

\section*{HOW TO ORDER PARTS}

Use Correct Order Form
2. On the Purchase Order always give the following information
(1) PART NUMBER (number printed on the part if different from that shown on this list) and DESCRIPTION for each part ordered. When no part is assigned, order by descripand rating. Also give PRICE of part (indicate if no selling).
(2) The CHASSIS NUMBER, is this tound on a metal plate at the rear of the Chassis.

\section*{TELEVISION REPAIR PARTS LIST}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
SCHEM. \\
Location
\end{tabular} & CHASSIS* & Part NO . & DESCRIPTION & SELLING PRICE \\
\hline \multicolumn{5}{|c|}{CAPACITORS (All Chassis)} \\
\hline c 100 & & PE190-133 & Mica, 270 mmf 500 V tio\% & 8.17 \\
\hline C 101 & & PA17147 & Ceramic, Shielded Dual disc, 1500 mm GMV & . 46 \\
\hline C 102 & & PESS6-234 & Ceramic Tubular, 680 mmf & \\
\hline & & & 350 V t10\% (Insul). & . 29 \\
\hline C 103
\(C\)
c & & PE190-133 & Mica, 270 mmf 500 V t10\% & . 17 \\
\hline C 105 & & PA19148 & \({ }_{\text {Mica, }}\) Ceramic, Siagle Disc 1500 mmt & . 17 \\
\hline & & & GMV & . 40 \\
\hline C 106
\(C 107\) & & \({ }^{\text {Pa } 201388}\) & Electrolytic, 1 mfd SoV & 1.74 \\
\hline C 107 & & PP 19163 & Ceramic, Shielded Dual Disc
5000 mmf GMV & 74 \\
\hline C 108 & & PE. 1900 - 140 & Mica, 510 mmf S \(500 \mathrm{~V} \pm 10 \%\) & . 19 \\
\hline C 109 & & PE190-107 & Mica, 22 mmf 500 V t10\% & . 20 \\
\hline
\end{tabular}


FIG. 17
C 11
\begin{tabular}{|c|c|}
\hline C 111 & PES55-136 \\
\hline \[
\begin{aligned}
& \text { C } 112 \\
& \text { C } 1113
\end{aligned}
\] & PE194-160
PP19201 \\
\hline C 114 & PES55.100 \\
\hline C 115 & PESS5-113 \\
\hline C 116 & PE194-160 \\
\hline C 117 & PE194-151 \\
\hline C 118 & PA19148 \\
\hline C 119 & PES56-236 \\
\hline C 120 & PE194-160 \\
\hline C 121 & P 120138 \\
\hline C 122 & PE194-156 \\
\hline C 123 & PE194-160 \\
\hline C 124 & PE194-155 \\
\hline C 125 & PE194-151 \\
\hline C 126 & PA20135 \\
\hline C 127 &  \\
\hline C 128 & PP19177 \\
\hline C 200 & PP19198 \\
\hline C 202 & PA19109 \\
\hline C 203 & PA20144 \\
\hline C 204 & PA19109 \\
\hline
\end{tabular}
- Used on all
indicated.
chassis ualess ocherwise specified in this column. If specified, the part is used only or the chass is


-Used on all
indicated
Above prices subieas to change T ihour notice

Above prices subject to change wishout notice.


INDEX
PAGE
ALIGNMENT INSTRUCTIONS ．．．3－5 INSTALLATION DATA ．．．．．．． 1 PARTS LIST ．．．．．．．．．．．． 6 SCHEMATIC ．．．．．．．．．．．． 10,11 SPECIFICATIONS ．．．．．．．．1， 2
TOP VIEW－TUBE LAYOUT．．
TRIMMER LOCATIONS．．．．．．． 5
VOLTAGE MEASUREMENTS ．．． 9 WAVEFORMS ．．．．．．．．．．．．10， 11



MODEL 552－562



MODEL 513－523

MODELS 500， \(510,511,512,513,515,520,521,522,523,525\)

\section*{TUBE COMPLEMENT}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
6 \mathrm{BQ7} \\
\text { or } \\
6 \mathrm{or} 7
\end{gathered}
\]} & \multirow[b]{2}{*}{R．F．Amplitier} & 6BQ6GT & Horizontal Output \\
\hline & & 6W4GT & Horizontal Damper \\
\hline \(6 \mathrm{6J6}\) & VHF Oscillator，Modulator & 12BH7 & Vertical Oscillator，Vertical Amplifier \\
\hline 6CB6 & Video I．F．Amplifier & 5U4G & Power Rectifier \\
\hline 6CL6 & Video Amplifier & 17HP4A & 17＂Picture Tube Model 500 \\
\hline 6AU6 & Sound I．F．Amplifier & & Electrostatic Focus \\
\hline 6AL5 & Sound Detector & or & \\
\hline 6SN7GT & A．F．Amplifier，Horizontal AFC Control & 21FP4A & 21＂Picture Tube Electrostatic Focus \\
\hline 6W6GT & Audio Amplifier & \[
\begin{gathered}
\text { or } \\
\text { 21YP4A }
\end{gathered}
\] & 21＂Picture Tube Models 510， 520 \\
\hline 6SN7GT & Sync Separator，Phase Splitter & & Electrostatic Focus \\
\hline 6SN7GT & Horizontal Oscillator & 6AF4 & UHF Oscillator \\
\hline 1B3GT & H．V．Rectifier & & UHF Oscillator \\
\hline
\end{tabular}

\section*{ELECTRICAL SPECIFICATIONS}

Loud Speaker
6＂PM Models 500， 510
Power Supply．．．．．．．．．．．．．．．．． 110 to 120 Volts 60 Cycle AC Power Consumption ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 225 Watts
Power Output ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Undistorted 2．2 Watts

Antenna Input Imp．．．．．．．．．．．．．．．．．．．．． 300 Ohms Balanced
Tuning Range ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 12 Channel

MODELS 520，521，522，523， 525
Tuning Range
82 Channel 511，520，52 PM Models 512， 513 515，522，523， 525

Voice Coil Impedance．．．．．．．．．．．．3．2 Ohm at 400 Cycles
I．F．CIRCUIT Inter－Carrier Sound
R．F．STAGE One
I．F．STAGES Three＂Combined Picture and Sound＂and one＂Sound＂ 1．25 M．C．Sound Carrier 5．75 M．C．Video Carrier
4．5 M．C．Inter－Carrier Sound

\section*{GENERAL INSTALLATION INSTRUCTIONS}

While each receiver is correctly aligned at the factory rough handling in transit，ageing，drift，etc．，may throw the receiver off．so we suggest that the proper oscillator
trimmers，ratio detector，and rear panel controls（see pages trimmers，ratio detector，and rear panel controls（see pages
4 and 5）be checked for correct adjustment with a trans－ mitted television pattern，in the customer＇s home at the
time of installation．Be sure to have the receiver oper－ time of installation．Be sure to have the receiver oper－
ating for one－half hour before making these adjustments． Listed below is the correct procedure to follow in making
these adjustments． hese adjustments．
（A）Check all operating channels，using FINE TUNING CONTROL for best picture detail．（See paragraph
PEAKING THE INDIVIDUAL OSCILLATOR TRIMMERS．）
（B）Check LOCALITY ADJUSTER CONTROL located on back of chassis for proper setting．
NOIE：The signal strength（too strong or too weak）
will be affected by location and distance from the station，type of antecna used，terrain obstructions such as tall buildings，electrical disturbances．
peaking the individual vhf oscillator

\section*{TRIMMERS}
（A）Set channel selector knob to the desired channel．
B）Set the FINE TUNING CONTROL to the center
（C）Remove the channel and fine tuning knobs．This will opening just to right of the channel shaft．See Fig． 1 ．
（D）Use a non－metallic screwdriver such as polysterene

Adjust the individual oscillator screw for best picture de tail．A slight adjustment in either direction is all that is
necessary．CAUTION：DO NOT ADJUST INDIS NATELY．CAUTION：DO NOT ADJUST INDISCRIM from its locking position．


THE PROPER AD SCREW FOR THE CHANNEL TUNED TO WILL APPEAR HERE

FIG．I

ADJUSTMENT FOR STATION BUZZ If station buzz is excessive and is NOT DUE to＂contrast
control＂being advanced too far in a clockwise direction or control＂being advanced too far in a clockwise direction o
the locality adjuster control in the incorrect position，ad
just just the ratio detector secondary adjustment screw located on top of the ratio detector for minimum buzz．MAKE
SURE THAT THIS POSITIOIN IS BETWEEN the two MAXIMUM buzz peaks that will be noticed when adjust－ ment screw is turned to the right or left of the minimum

\section*{MODELS 532，542，552，554，562， 564 TUBE COMPLEMENT}
\begin{tabular}{|c|c|c|c|}
\hline 6BQ7 & RF AMPLIFIER & 6SN7GT & HORIZONTAL OSCILLATOR \\
\hline 6BZ7 & R．F．AMPLIFIER & 1B3GT & HIGH VOLTAGE RECTIFIER \\
\hline 6 J 6 & VHF OSCILLATOR，MODULATOR & 6CD6G & HORIZONTAL OUTPUT \\
\hline 6CB6 & VIDEO I．F．AMPLIFIER & 6 V 3 & HORIZONTAL DAMPERS \\
\hline 6CL6 & VIDEO AMPLIFIER & BH7 & VERTICAL OSCILLATOR． SYNC AMPLIFIER \\
\hline 6AU6 & SOUND I．F．AMPLIFIER & 6BL7GT & VERTICAL AMPLIFIER \\
\hline 6AL5 & RATIO DETECTOR & 5U4G & POWER RECTIFIERS \\
\hline 6SN7GT & A．F．AMPLIFIER，HORIZONTAL AFC CONTROL & \[
\begin{aligned}
& \text { 27EP4A } \\
& \text { 24CP4A }
\end{aligned}
\] & \begin{tabular}{l}
27＂PICTURE TUBES MODELS 542，562， 564 \\
24＂PICTURE TUBE MODELS 532， 542
\end{tabular} \\
\hline 6W6GT & AUDIO OUTPUT & 24TP4A & 24＂PICTURE TUBE MODELS 532A，542A \\
\hline 6SN7GT & SYNC SEPARATOR，PHASE SPLITTER & 6AF4 & UHF OSCILLATOR \\
\hline
\end{tabular}
MODELS \(1 \mathrm{U}-500,-510,-511,-512,-513,-515,-520,-521,-522,-523,-525,-532,-542,-552,-554,-562,-564\)



24" AND 27" PICTURE TUBE
ADJUSTMENT PROCEDURE FOR FOCUS, DEFLECTION YOKE,
ION TRAP, HORIZONTAL AND VERTICAL CENTERING, CORNER SHADOW
AND PICTURE TUBE ALIGNMENT.


ADJUSTMENTS FOR CORNER SHADOW, VERTICAL AND HORIZONTAL Centering can be made without removing the cabinet back. the CENTERING TAB CAN BE REACHED BY REMOVING THE 4 SCREWS HOLDING cup to the cabinet back.

24" PICTURE TUBES
Except for repositioning and mounting of picture tube the above listed adjustments are used for \(24^{\prime \prime}\) picture tubes.

\section*{ALIGNMENT PROCEDURE}

All circuits are very stable and will seldom require adjust ment. Only when major parts of the tuner or the viden I-F strip have been replaced or tampered with will it be neces sary to realign the receiver.
Generally under normal conditions only the INDIVIDUAL CHANNEL TRIMMERS in the tuner unit may require adjustment by the service technician.

\section*{RATIO DETECTOR AND SOUND I-F ALIGNMENT}

In most cases only the secondary of the ratio detector coil will require adjustment. This can be done simply by admininum buzz with the sound carrier of a TV station. For complete alignment use steps 1,2 , and 3 in the alignmen table.

\section*{PICTURE I-F ALIGNMENT}

Receiver should be run for at least \(1 / 2\) hour before proceed ing with alignment.


FIG. 2

\section*{EQUIPMENT REQUIRED}

VACUUM TUBE VOLTMETER
For video IF alignment maintain readings in middle of low volt scale.

SIGNAL GENERATOR supplying a 4.5 MC . (within \(25 \%\) ) 40 to 216 MC . (within \(1 \%\) ) signal. With output adjustable to at least .1 volt maximum.

CATHODE-RAY OSCILLOSCOPE. Must have good frequency and phase response from 10 cycles to at least 2 MC .

SWEEP GENERATOR. Capable of covering 40 to 270 MC. with a 10 MC. sweep with output adjustable to at east 1 volt maximum.

3 VOLT "A" batcery to provide fixed thas during viden I-F and R-F alignment.


FIG. 3

VHF ALIGNMENT TABLE

\section*{RATIO DETECTOR AND SOUND ALIGNMENT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Step pp } \\
& \text { No. }
\end{aligned}
\] & Connect Signol Generotor to & Sig. Gen. Freq. & Connect Voltmeter to & Miscellaneous Instructions & Adiust \\
\hline 1 & In series with .001 Mfd . Cond. to junction of \(\mathrm{C}-97\) and L-13 terminal 3 of 4th I.F. See fig. 5 & 4.5 MC . & In series with 47,000 ohm res. across C .23 a 10 Mfd . cond. See fig. 5 & \begin{tabular}{l}
Maintain reading on 10 volt scale contrast at maximum \\
Remove 3rd video IF tube bCBb.
\end{tabular} & \[
\begin{aligned}
& T-7 \text { (top) and } T-8 \\
& \text { (bottom) for } \begin{array}{c}
\text { for max. } \\
\text { readig. } \\
\text { See fig. } 4 \& 5
\end{array}
\end{aligned}
\] \\
\hline 2 & In series with .001 Mfd. Cond. to junction of C. 97 and L. 13 terminal 3 of 4th I.F. See fig. 5 & 4.5 MC . & In series with 47,000 ohm res. to junction of R-30 and C-44. See fig. 5 & \begin{tabular}{l}
Maintain reading on 10 volt scale contrast at maximum. \\
Remove 3rd video IF tube bCB6.
\end{tabular} & T. 8 (top) for zero reading. See fig. 4 \\
\hline 3 & In series with . 001 Mfd . Cond. to cathode of picture tube yellow lead. See fig. 5 & 4.5 MC. & In series with 47,00 ohm res. across C .23 a 10 Mfd . cond. See fig. 5 & Maintain reading on low volt scale. Remove 3 ra video IF tube bCBb. & T.6 (top) for mini. mum reading. See fig. 4 \\
\hline
\end{tabular}

NOTE 1: For minimum buzz always adjust T. 8 (top) with the sound carrier of a TV station.
NOTE 2: Alternate 4.5 MC . trap alignment: Adjust T -6 (top) for minimum 4.5 MC . beat on picture with a strong station signal


\section*{VHF TUNER PARTS LIST FOR MODELS 500, 510,511,512,513,515, 532, 552, 554}

MAIN CHASSIS PARTS LIST

\section*{Wen Oris Pa the Cor}
TUNER UNIT CAPACITORS

\section*{CHOKES AND COILS-(Cont.)}

FOR MODELS 500, 510,511 , \(512,513,515,520,521,522,523,525\)

\section*{CAPACITORS} Fixed Ceramic,
Dry Electroytic
Moldod Tubula
Fixed Ceramic, Mired C
Fixed C
Fixed C
F

\section*{Pry Eloc
Moldod
INot}

(Not used in Models \(500,510,520\) ) 34
Moided Tubular. 00047 MFD 400 V .
(Not used in Models 500, 510,520 ). 27
Molded Tubular. 01
(Used MFD 400 V .
Fixed Ceramic, 005 MFD 500 V (Disc) 2 fixed Ceramic. . 001 MFD 500 V (Diss) Fixed Ceramic, .001 MFD 500 V . (
Fixed Ceramic, 470 MFD 500 V ..
 Fixed Ceramic, 470 MMF 500 V fixed Ceramic, 680 MMF 500 Fixed Ceramic. . 001 MFD 500 V . (Dixed Ceramic, 680 MMF 500 V
Fin Fixed Cerramic, 880 MMF 500 V
Fixed Ceramic, 470 MMF 500 V Fixed Coramic, 005 MFD 500 V . (Dis
 Fired Mica, 470 MMF 500 V. \(\pm 10 \%\)
Fixed Ceramic, .005 MFD 500 V. (Disc) Fixed Ceramic, . 001 MFD 500 V . (Disc) Fixed Ceramic, 0001 MFD 500 V . (Discs)
Fixed Ceramic, 005 MFD 500 . (Disc) Fixed Ceramic. .005 MFD 500 V . (Dis)
Fixed Ceramic, .001 MFD 500 V . (Tubular)
Molded Tubular, 0033 MFD 400 V Molded Tubular. II MFD 400
Fixed Paper 25 MFD 100 V ... Fixed Ceramic. .005 MFD 500 V. (Disc) Fixed Ceramic, 150 MMF 500 V . Molded Tubular, 0047 MFD 400 V Molded Tubular, 01 MFD 400 V Fixed Ceramic, 47 MMF 500 V . Fixed Mied, 680 MMF 500 V..\(士\)
Fixed Ceramic. .005 MFD 500 V.. Fixed Ceramic, 005 MFD 500 V.
Molded Tubular, 0047 MFD 600 Molded Tubular, 047 MFD 400 Fixed Mics, 470 MMF \(500 \mathrm{~V} \pm 10 \%\)
Fixed Mics, 390 MMF 50 V Fixed Mica, 390 MMF \(500 \mathrm{~V} . \pm 10 \%\) ixed Ceramic, 30 MMF 500 V
Molded Tubular. 1 MFD 400 V Fixed Mica, 470 MMF \(500 \mathrm{~V} . \pm 1\) Molded Tubular, 00047 MFD 400 V . Molded Tubulari. 0033 MFD 400
Molded Tubular, 01 MFD 400 V . Silver Mica, 3900 MMF \(500 \mathrm{~V} \pm\) Molded Tubular, . 01 MFD 400 V
Molded Tubular Molded Tubular, , 1 MFD 600 V .
Fixed C Ceramic 7 MFD 2000 V .
\[
\begin{aligned}
& \text { Fixəd Ceramic, } 47 \text { MFD } 2000 \mathrm{~V} \text {. (Disc } \\
& \text { Fixed Micos. } 470 \text { MMF } 50 \mathrm{O} . \pm 10 \% \text {. }
\end{aligned}
\]

Fixed Mics, 470 MMF 500 V. \(\pm 1\)
Molded Tubular, . 001 MFD 400
Molded Tubular, 047 MFD 400 V .
Molded Tubular, 0047 MFD. 400 V
Molded Tubular, 047 MFD 40 V
Molded Tubular, . 01 MFD 400 V .
Fixed Ceramic. 000 MFD 500 V. (Disc) .3 Dry Electrolytic. 20 MFD 450 V .
Dry Electrolytic. 30 MFD 200 V ..
10 MFD 350 V.
Dry Electrolytic, 5.60 MFS 250 V .
Dry Electrolytic, 100 MFD 200 V . Dry Electrolytic. 10 V .
40.40 MFD 350 V .
\begin{tabular}{l} 
Molded Tubular, 0047 MFD 600 V....... 4.72 \\
Fixed Coramic. \\
\hline
\end{tabular} \(\begin{array}{lll}\text { Fixed Coramic. } .001 \text { MFD } 500 \mathrm{~V} \text {. (Dise) } & .22 \\ \text { Fixed Ceramic. }\end{array}\) Fixed Ceramic. 1000 MMF 500 V .
(Not usod in Models \(500,510,520\) ) 22

CAPACITORS-(Cont.)
\begin{tabular}{|c|c|c|c|}
\hline No. & Part No. & Description & \({ }_{\text {chise }}^{\text {List }}\) \\
\hline -89 & 2353406 & Molded Tubular, . 0022 MFD 400 V . (Not used in Models 500, 510, 520) & . 28 \\
\hline C. 90 & 23E2027-12 & Fixed Ceramic, 1000 MFD 500 V . (Not used in Models 500, 510, 520) & . 22 \\
\hline C.91 & 23E3406 & Moided Tubular, 0022 MFD 400 V . (Not used in Models 500, 510, 520) & . 28 \\
\hline C. 92 & 23 E & Molded Tubular, 01 MFD 600 V . & 30 \\
\hline C. 93 & & Fixed Ceramic, 15 MMF 500 V. Part of 2nd IF Transformer & \\
\hline C.94 & & Fixed Ceramic, 15 MMF 500 V. & \\
\hline C. 95 & \(23 E 2025\) & Fixed Ceramic, 005 MFD 500 V . (Disc) & . 31 \\
\hline C. 97 & \(23 E 20\) & Fixed Ceramic, 3 MMF 500 V . & . 25 \\
\hline
\end{tabular}35
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{RESISTORS} \\
\hline Hus. & Part No. & Dessription & \(\xrightarrow{\text { List }}\) Price \\
\hline R-11 & 27E1009-35 & Carbon, 10,000 OHM 1/2W. \(\pm 5 \%\) & . 16 \\
\hline R-13 & 27E1009-8 & Carbon, 5.600 OHM 1/2 W. \(\pm 5 \%\) & . 10 \\
\hline R-14 & 27E1009-35 & Carbon, \(10,000 \mathrm{OHM} \mathrm{1/2W}. \pm 5 \%\) & . 16 \\
\hline R-15 & 27E223-2 & Carbon, 22,000 OHM \(1 / 2 \mathrm{~W} . \pm 10 \%\) & . 10 \\
\hline R-16 & 27EE70-2 & Carbon, \(47 \mathrm{OHM} 1 / 2 \mathrm{~W} . \pm 10 \%\) & . 08 \\
\hline R-17 & 27E183-2 & Carbon, \(18,000 \mathrm{OHM} 1 / 2 \mathrm{~W} . \pm 10 \%\) & . 07 \\
\hline R-18 & 27E560-2 & Carbon. \(56 \mathrm{OHM} \mathrm{1/2W}. \pm 10 \%\) & . 09 \\
\hline R-19 & 27E183-2 & Carbon, \(18,000 \mathrm{OHM} 1 / 2 \mathrm{~W}\). \(\pm 10 \%\). & . 07 \\
\hline R-20 & 27E122-2 & Carbon, \(1 ; 200 \mathrm{OHM} 1 / 2 \mathrm{~W} . \pm 10 \%\) & . 08 \\
\hline R-21 & 27E333-3 & Carbon, \(33,000 \mathrm{OHM}\) I W. \(\pm 10 \%\) & . 12 \\
\hline R-22 & 27E102-2 & Carbon, 1,000 OHM 1/2W. \(\pm 10 \%\) & . 07 \\
\hline R-23 & 27E102-2 & Carbon, \(1.000 \mathrm{OHM} \mathrm{1/2W}. \pm 10 \%\) & . 07 \\
\hline R-25 & 27E121-2 & Carbon, \(120 \mathrm{OHM} 1 / 2 \mathrm{~W} . \pm 10 \%\) & . 08 \\
\hline R-27 & 27E151-2 & Carbon, \(150 \mathrm{OHM} \cdot 1 / 2 \mathrm{~W} . \pm 10 \%\) & . 08 \\
\hline R-28 & \(28 \mathrm{E99}\) & Contrast Control, 1500 OHM (Dual See R-31) & 2.91 \\
\hline R-29 & 27E471-2 & Carbon, 470 OHM \(1 / 2 \mathrm{~W} . \pm 10 \%\) & . 08 \\
\hline R-30 & 27E333-2 & Carbon, \(33.000 \mathrm{OHM} 1 / 2 \mathrm{~W} . \pm 10 \%\) & . 07 \\
\hline R-31 & 28E99 & Off-On-Volume Control, 1 Megohm (Dual See R-28) & 2.91 \\
\hline R-32 & 28E100 & Tone Control I Megohm (Part of SW-2) (Not used in Models 500, 510, 520) & \\
\hline R-33 & 27E1022 & Wirewound, 4,000 OHM 5 W. & 1.27 \\
\hline R-34 & 27E683-2 & Carbon, \(68.000 \mathrm{OHM} \mathrm{1/2} \mathrm{W}. \pm 10 \%\) & . 08 \\
\hline R-35 & 27E102-2 & Carbon, 1.000 OHM 1/2W. \(\pm 10 \%\) & . 07 \\
\hline R.37 & 27E155-2 & Carbon, \(1.5 \mathrm{Megohm} \mathrm{1/2} \mathrm{~W} \mathrm{~W} . \pm 20 \%\). & . 07 \\
\hline R-38 & 27E1009-8 & Carbon, 5.600 OHM 1/2W. \(\pm 5 \%\) & . 10 \\
\hline R-39 & 27E474-2 & Carbon, \(470,000 \mathrm{OHM} 1 / 2 \mathrm{~W} . \pm 20 \%\) & . 07 \\
\hline R-40 & 27E183-5 & Carbon, \(18.000 \mathrm{OHM} 2 \mathrm{~W} . \pm 10 \%\) & . 24 \\
\hline R-41 & 27E103-2 & Carbon, 10,000 OHM \(1 / 2 \mathrm{~W} . \pm 10 \%\) & . 08 \\
\hline R-42 & 27E182-2 & Carbon, \(1.800 \mathrm{OHM} 1 / 2 \mathrm{~W} . \pm 10 \%\) & . 08 \\
\hline R-43 & 27E223-2 & Carton, 22.000 OHM 1/2 W. \(\pm 10 \%\) & . 07 \\
\hline R. 44 & 27E102-2 & Carbon, 1,000 OHM 1/2 W. \(\pm 10 \%\) & . 07 \\
\hline R-45 & 27E102-2 & Carbon, 1.000 OHM 1/2 W. \(\pm 10 \%\) & . 07 \\
\hline R-46 & 27E103-2 & Carbon, \(10,000 \mathrm{OHM} 1 / 2 \mathrm{~W} . \pm 10 \%\) & . 08 \\
\hline R-47 & 27E103-3 & Carbon, 10.000 OHM I W. \(\pm 10 \%\) & . 10 \\
\hline R-48 & 27E1009-10 & Carbon, \(100000 \mathrm{OHM} 1 / 2 \mathrm{~W}\). \(\pm 10 \%\) & . 08 \\
\hline R-49 & 27E684-2 & Carbon, \(680,000 \mathrm{OHM} 1 / 2 \mathrm{~W} . \pm 20 \%\) & . 07 \\
\hline R-50 & \(28 \mathrm{E87}\) & Brightness Control. 5 Megohm. & . 91 \\
\hline R-51 & 275474-2 & Carbon, 470,000 OHM 1/2 W. \(\pm 20 \%\) & . 07 \\
\hline R-52 & 27E682-2 & Carbon, \(6.800 \mathrm{OHM} \mathrm{1/2W}. \pm 10 \%\) & . 07 \\
\hline R-53 & 27E223-2 & Carbon, \(22,000 \mathrm{OHM} 1 / 2 \mathrm{~W} . \pm 10 \%\) & . 10 \\
\hline R.54 & 27E333-2 & Carbon, \(33,000 \mathrm{OHM} 1 / 2 \mathrm{~W} . \pm 10 \%\) & . 07 \\
\hline R-55 & 27E1016-13 & Wirewound, 15,000 OHM 5 W. & . 86 \\
\hline R-56 & 27E225-2 & Carbon, 2.2 Megohm 1/2 W. \(\pm 20 \%\) & . 08 \\
\hline R-57 & 27E223-2 & Carbon, 22,000 OHM \(1 / 2 \mathrm{~W} . \pm 10 \%\) & . 10 \\
\hline R-58 & 27E332-2 & Carbon, \(3.300 \mathrm{OHM} \mathrm{1/2W}. \pm 10 \%\) & . 07 \\
\hline R-59 & 27E823-2 & Carbon, 82,000 OHM 1/2 W. \(\pm 10 \%\) & . 08 \\
\hline R-60 & 27E682-3 & Carbon, 6.800 OHM I W. \(\pm 10 \%\) & . 12 \\
\hline R-61 & 27E1009-46 & Carbon, 150,000 OHM 1/2 W. \(\pm 10 \%\) & . 16 \\
\hline R.62 & 27E1009-8 & Carbon, 5,600 OHM 1/2W. \(\pm 5 \%\) & . 10 \\
\hline R.63 & 27E823-2 & Carbon, 82,000 OHM 1/2W. \(\pm 10 \%\) & . 08 \\
\hline R-64 & 27E1009-22 & Carbon, 8.200 OHM 1/2W. \(\pm 5 \%\) & . 14 \\
\hline R.65 & 27E475-2 & Carbon, \(4.7 \mathrm{Megohm} \mathrm{1/2W}. \pm 20 \%\) & . 07 \\
\hline R-66 & 23E1015-2 & Wirewound, 2.2 OHM \(1 / 2 \mathrm{~W} . \pm 5 \%\) & . 14 \\
\hline R-67 & 27E224-2 & Carbon, 220.000 OHM \(1 / 2 \mathrm{~W} . \pm 20 \%\) & . 08 \\
\hline R-68 & 27E222-2 & Carbon, 2.200 OHM \(1 / 2 \mathrm{~W} . \pm 10 \%\) & . 08 \\
\hline R-69 & 27E1009-11 & Carbon, \(560.000 \mathrm{OHM} \mathrm{1/2W}. \pm 10 \%\) & . 08 \\
\hline R-70 & 27E103-2 & Carbon, 10,000 OHM \(1 / 2 \mathrm{~W} . \pm 10 \%\) & . 08 \\
\hline R-71 & 27E823-2 & Carbon, 82,000 OHM \(1 / 2 \mathrm{~W} . \pm 10 \%\) & . 08 \\
\hline R-72 & 27E122-2 & Carbon, 1,200 OHM \(1 / 2 \mathrm{~W} . \pm 10 \%\) & . 08 \\
\hline R.73 & 27E474-2 & Carbon, 470,000 OHM \(1 / 2 \mathrm{~W}\). \(\pm 20 \%\) & . 07 \\
\hline
\end{tabular}

OJohn F. Rider


\section*{MAIN CHASSIS PARTS LIST FOR MODELS 532, 542, 552, 554, 562, 564}



\section*{RESISTORS-(Cont.)}

Part No.
2771009.47 27E1009-4
27E1009.8 \(\begin{array}{ll}\text { R.90 } & 27 E 1009.50 \\ 8.91 & 27 E 105.5\end{array}\) \(\begin{array}{ll}\text { R.91 } & \text { 27E105- } \\ \text { R- } 92 & 27 E 681-2\end{array}\) \(\begin{array}{ll}\text { R.9. } & 27 E 681-1 \\ \text { R.93 } & 27 E 881 \\ \text { R-94 } & 27 E 224 .\end{array}\) \begin{tabular}{ll}
94 & \(27 E 224-2\) \\
\(27 E 224-2\) \\
\hline
\end{tabular} \begin{tabular}{ll} 
\\
\hline 96 & \(27 E 684\). \\
97 & 277104. \\
\hline
\end{tabular} \begin{tabular}{ll}
-98 & \(27 E 104.2\) \\
\(275474-2\) \\
\hline 9
\end{tabular} \begin{tabular}{l}
-99 271474-2 \\
100 \\
\(2771009-5\) \\
\hline 101
\end{tabular} \(10127 E 332-2\)
102
104 27E472-2
27E225-2
 \(-104528 E 97\)
-106
\(27 E 271-3\) \(10627 \mathrm{E} 271-3\)
\(10727 \mathrm{ElO1-2}\) - 108 27E223-2 Dessription
Carbon, 120,000
 Wire Wound, \(8.6 \mathrm{Ohm} 1 / 2 \mathrm{~W} . \pm 5 \%\)
Part of H. \(V .50\). Part of H.V. Socket Asssmbly
Carbon, \(1800.000 \mathrm{Chm} 1 / 2 \mathrm{~W} . \pm 10 \% .\). Carbon,
Carbon,
Carbon,
Carbon,
Carbon,
Carbon,
Carbon,
Carbon
Carbon
Carbon
Carbo
Carbo
Carbo
Carbon
Vertical
Carbo
Carbo
Carb
Carb n. \(220,000 \mathrm{Oh}\) \(220,000 \mathrm{O}\)
\(n^{220.000} \mathrm{Oh}\)
\(n_{1}^{680.000} \mathrm{O}\)
100.000

1000

\section*{CHOKES AND COILS}
\begin{tabular}{|c|c|c|}
\hline Illus. & & , \\
\hline No. & Part No & Descripition Price \\
\hline L.6 & 20E363-25 & Video Series Choke .... . . . . . . 78 \\
\hline L.7 & 20E363-19 & Choke, Diode Shunt....................... 78 \\
\hline L.9 & 20E363-26 & Video Shu.i: Choke..........................\(^{78}\) \\
\hline L-10 & \(20 E 831\) & Coil. Horizontal Hold..................... 1.95 \\
\hline L-11 & \(22 E 83\) & Choke Filtar ................................ 4.90 \\
\hline L-12 & 20E820 & Coil, Horizontal Linearity ................. 1.65 \\
\hline L-13 & 20E883 & Tweet Trap .................................... 19 \\
\hline L. 14 & \(2 \mathrm{E92}\) & RF Choke \\
\hline T-2 & \(20 E 857\) & Transformer, 1st Video IF................ 84 \\
\hline T. 3 & 208858 & Transformer, 2nd Video IF ............. 1.94 \\
\hline T.4 & \(20 E 859\) & Transformer, \({ }^{\text {3rd }}\) Video IF.............. 1.92 \\
\hline T.5 & 206860 & Transformer, 4th Video IF.................. \({ }^{3.92}\) \\
\hline T. 6 & 20 E 785 & Transformer, 4.5 MC. Trap...... \(\quad 1.25\) \\
\hline T. 7 & 206785 & Transformer, Sound, I.F.................... 1.25 \\
\hline T.8 & 20E783 & Transformer, Ratio Detactor ............... 3.73 \\
\hline T-9 & 22 ETI & Transformer, Audio Output. ............. 1.95 \\
\hline T. 10 & 22 286 &  \\
\hline T-11 & 22 E84 & Transformer, Horizontal Output. \(\quad 14.8\) \\
\hline T-12 & \(20 E 814\) & Yoke, Deflection (Direct \\
\hline & & Interchangeable ) \\
\hline T-12 & 20E814-2 & Yoke. Deflection (Direct
Interchangeable) \(\quad 28.75\) \\
\hline \[
T \cdot 13
\] & \({ }_{22 E 81}\) & Tranformer, Vertical Output.......... \({ }^{6.50}\) \\
\hline
\end{tabular}

List
Prise

\section*{MISCELLANEOUS PARTS LIST FOR ALL MODELS}
\begin{tabular}{|c|c|}
\hline Descripition & List \({ }_{\text {Prise }}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Switch, Locality Adjuster \\
Tone and Hi-Lite Control (See R-32)
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fuse, 3 Ampere (Slo-Blo) Line Fuse...}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{Fuse (Slo-Blo) H.V. (Models 532.} \\
\hline & \\
\hline Crystal Diode iN60 \(\quad 1.00\) & . 00 \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Tuner Unit, VHF with Tubes for}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{532. 552, 554}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Tuner Unit VHF with Tubes for} \\
\hline \multicolumn{2}{|l|}{} \\
\hline 562. 564 & \\
\hline \multicolumn{2}{|l|}{uner Unit UHF with} \\
\hline \multicolumn{2}{|l|}{Models 520, 521, 522, 523, 525, 542.} \\
\hline 562.564 & \\
\hline \multicolumn{2}{|l|}{Line Cord with Femele Plug} \\
\hline Receptacle AC 2 Contact Ma & \\
\hline \multicolumn{2}{|l|}{Socket 9 Pin Miniature.....} \\
\hline \multicolumn{2}{|l|}{Socket, Octal .................} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Socket, Octal, Mica Filled Socket, Miniature 7 Pin}} \\
\hline & \\
\hline t, Miniature 9 Pin Noval & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Part No. & Description & \({ }_{\text {Price }}^{\text {List }}\) \\
\hline 18E25-2 & Terminal Antenna VHF & . 15 \\
\hline 18E25-3 & Terminal Antenna UHF & 15 \\
\hline 20E419.4 & Connector 2nd Anode Picture Tube & . 53 \\
\hline 20E419.5 & Connector 2nd Anode Picture Tube Models 532, 542, 552, 554, 562, 564 & . 75 \\
\hline 205517.12 & Socket Assembly Picture Tube & . 13 \\
\hline 20E517-14 & Socket Assembly Picture Tube Models 532, 542, 552, 554, 562, \(564 .\). & . 45 \\
\hline \[
\begin{gathered}
\text { I5E174-4 } \\
\text { or }
\end{gathered}
\] & lon Trap & . 93 \\
\hline 15E174.6 & Ion Trap & . 93 \\
\hline 15E174.7 & Ion Trap. Models 532, 542, 552, 554. 562, 564 & 85 \\
\hline 20E903-2 & Antenna Built-in VHF-UHF (For Models with UHF Tuner) & \\
\hline 20E891-2 & Antenna Built-in VHF-UHF & 1.66 \\
\hline 53 E 41 & UHF Tab Sheet. For Blonde Cabinets used for af VHF Models & . 24 \\
\hline 53E471-2 & UHF Tab Sheet for Mahogany Cabinets used for all VHF Models & 24 \\
\hline 5 E 78 & Cabinet Bottom Cover... & 1.16 \\
\hline \(20 E 823\) & Connector and Lead Assembly Female, For Yoke, Models 532, 542, 553 505, 562, 564 & 1.20 \\
\hline 62E8 & Focus Magnet Assembly Models 532, 542, 552, 562, 564 & 10.50 \\
\hline
\end{tabular}

©John F. Rider


©John F. Rider


\section*{TUBE COMPLEMENT}
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\text { 6BQ7 } \\
\text { or } \\
\text { 6BZ7 }
\end{gathered}
\] & R.F. AMPLIFIER \\
\hline 6 J 6 & OSCILLATOR, MODULATOR \\
\hline 6CB6 & VIDEO I.F. AMPLIFIER \\
\hline 6AH6 & VIDEO AMPLIFIER \\
\hline 6AU6 & SOUND I.F. AMPLIFIER \\
\hline 6AL5 & RATIO DETECTOR \\
\hline 6SN7GT & A.F. AMPLIFIER, HORIZONTAL AFC CONTROL \\
\hline 6W6GT & AUDIO OUTPUT \\
\hline 6SN7GT & SYNC SEPARATOR, PHASE SPLITTER \\
\hline 6SN7GT & HORIZONTAL OSCILLATOR \\
\hline 183GT & HIGH VOLTAGE RECTIFIER \\
\hline 6CD6G & HORIZONTAL OUTPUT \\
\hline 6V3 & HORIZONTAL DAMPERS \\
\hline 12BH7 & VERTICAl OSCILlATOR, SYNC AMPLIFIER \\
\hline 6BL7GT & VERTICAL AMPLIFIER \\
\hline 5U4G & POWER RECTIFIERS \\
\hline 27EP4A & 27" PICTURE TUBES \\
\hline
\end{tabular}

\section*{PICTURE TUBE HANDLING PRECAUTIONS}

\section*{XIREME CARE MUST BE EXERCISED WHEN HANDLING OR SERVICING THE PICTURE TUBE. ACCIDENTS} ARE ONLY CAUSED BY CARELESSNESS
Listed below are precautions which must be taken when removing the picture tube.

To remove the picture tube mounting assembly
(a) Disconnect the second anode lead, the picture tube
socket assembly, and the deflection yoke plug.
(b) Remove the main chassis and the two picture tube
support braces.
support braces.
(c) Remove the wool screws holding the picture tube
(d) Slide picture tule assembly to the cabinet
(d) Slide picture tube assembly out. Because of its dle this assembly. The balance or center of weight
is at the face of the picture tube
. Always wear goggles when handling picture tube

Tuning Range.
ring
Loud Speake
I.F. CIRCUIT Inter-Carrier Sound
R.F. STAGE One
I.F. STAGES Three "Combined Picture and Sound" and one "Sound" 21.9 M.C. Sound Carrier 26.4 M.C. Video Carrier 4.5 M.C. Sound

These Television receivers are equipped with the very latest type of CASCODE TUNER (with duo-matic control) which makes them instantly adjustable to any UHF channel.
Merely remove the small snap out strips from any VHF channel which is not operating in your locality and replace them with the proper small UHF snap-in strips designed for the UHF channel broadcasting in your area.
See parts list for information on ordering the correct UHF channel strips.
27EP4A 27" PICTURE TUBES
. Never hold the picture tube close to the body
. Never handle the picture tube by its neck.
5. Never bump or scratch the picture tube.
6. Always clean the neck of the picture tube before adjusting the ion trap.
i. If it becomes necessary to remove the picture tube from its mounting board, always place on a clean soft cloth face down
Power Supply........... 110 to 120 Volts 60 Cycle AC Power Consumption................................. 250 Watts Power Output........................Undistorted 2.2 Watts Maximum 4.0 Watts

While each receiver is correctly aligned at the factory rough handling in transit, ageing, drift, etc., may throv the receiver off, so we suggest that the proper oscillato
be cor for correct adjustment
be checked for correct adjustment with a trans time of installation. Be sure to have the receiver oper ating for one-half hour before making these adjustments Listed below is the correct procedure to follow in making hese adjustments.
(A.) Check all operating chammels, using FINE TUNING CONTROL for best picture detail. (See paragraph PEAKING THE INDIVIDUAL OSCILLATOR TRIMMERS.)
(B) Check LOCALITY ADJUSTER CONTROL located on back of chassis for proper setting.
NOTE: The signal strength (too strong or too weak will be affected by location and distance from the station, type of antenna used, terrain obstructio
such as tall buildings, electrical disturbances.

\section*{PEAKING THE INDIVIDUAL OSCILLATOR TRIMMER}
(A) Set channel selector knob to the desired channel
(B) Set the FINE TUNING CONTROL to the cente position.
(C) Remove the chammel and fine tuning knobs. This will expose the individual channel adjustment screw opening just to right of the channel shaft. See Fig. 1
(D) Use a non-metallic screwdriver such as polysteren or nylon.
didust the individual oscillator screw for best picture detail. A slight adjustment in either direction is all that is INATELY, this from its locking position.


\section*{ADJUSTMENT FOR STATION BUZZ}

If station buzz is excessive and is NOT DUE to "contrast control" being advanced too far.in a clockwise direction or the locality adjuster control in the incorrect position, adjust the ratio detector secondary adjustment screw located on top of the ratio detector for minimum buzz. MAKE URE THAT THIS POSITION IS BETWEEN the two ment screw is turned to the right or left of the minimum buzz position.

ADJUSTMENT PROCEDURE FOR FOCUS, DEFLECTION YOKE, ION TRAP, HORIZONTAL AND VERTICAL CENTERING, CORNER SHADOW, AND PICTURE TUBE ALIGNMENT.


ADJUSTMENTS FOR CORNER SHADOW, VERTICAL AND HORIZONTAL CENTERING CAN BE MADE WITHOUT REMOVING THE CABINET BACK. THE CENTERING TAB CAN BE REACHED BY REMOVING THE 4 SCREWS HOLDING CUP TO THE CABINET BACK.

(c) John F. Rider


\section*{PARTS LIST}

\section*{R.F. TUNER UNIT}
When Ordering Parts Give The Complete Part Number, Model Number and Description
\begin{tabular}{|c|c|}
\hline Description & \[
\begin{aligned}
& \text { List } \\
& \text { Price }
\end{aligned}
\] \\
\hline Fine Tuning Assembly ......... ....... \({ }^{\text {so }}\) & \$0.59 \\
\hline Drum \& Shaft Assembly Less Coils. & 3.83 \\
\hline Roller Detent & 18 \\
\hline Spring Detent & 18 \\
\hline Groundplate, Fine Tuning & . 23 \\
\hline Ground Spring. Fine Tuning & . 18 \\
\hline Mounting Strap. Ceramic Bushing & . 18 \\
\hline Fiber Washer & . 09 \\
\hline Spring, Shaft Rotaining & 18 \\
\hline Stator Contact Bracket Assemb & 3.38 \\
\hline Shield for 6B97 & . 18 \\
\hline Shield for bJb & 18 \\
\hline Shield, Bottom Cover & 1.35 \\
\hline Shield, Side & 1.13 \\
\hline CAPACITORS & \\
\hline Description & \(\underset{\text { Prise }}{\text { Pist }}\) \\
\hline Fixed Ceramic, 120 MMF \(\pm 10 \%\) 500 V. & 29 \\
\hline Trimmer R.F., .5-3 MMF & . 68 \\
\hline Fixed Ceramic, 6.8 MMF \(\pm .25 \mathrm{MMF}\) & MF. . 68 \\
\hline Silver Mica, 68 MMF \(\pm 5 \%\). & 34 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Nilus. & Part No. \\
\hline C.5 & CD89470K \\
\hline C.6 & 314.069 \\
\hline C. 7 & CD8C030C \\
\hline C.8 & CDBY102Z \\
\hline c. 9 & 31 A .079 \\
\hline C-10 & CD8Y102Z \\
\hline C. 11 & CDBCIR5M \\
\hline C. 12 & CD89470K \\
\hline C. 13 & CDIOClook \\
\hline C. 14 & CDBU050C \\
\hline C. 15 & CD8Y102Z \\
\hline C. 16 & 318.252 \\
\hline C. 17 & 130.153 \\
\hline C. 18 & 130-153 \\
\hline C. 19 & 13D.153 \\
\hline C. 20 & 13D. 153 \\
\hline
\end{tabular}
CAPACITORS-(Cont.)
\begin{tabular}{|c|c|}
\hline & Part No. \\
\hline & 31A-066-91 \\
\hline & 318.2302-91 \\
\hline & 318.016 \\
\hline & 31 B .005 \\
\hline & \(318-012\) \\
\hline & 318.008 \\
\hline & \(318-021\) \\
\hline & 11 D. 022 \\
\hline & 318.030 \\
\hline & 318.278 \\
\hline & 165.004 \\
\hline & 165.006 \\
\hline & 318.103 \\
\hline & 318.043 \\
\hline & \\
\hline No. & Part No. \\
\hline C. 1 & 138.055 \\
\hline c & \\
\hline C. 2 & 314 \\
\hline C. 3 & CD8C6R8C \\
\hline C. 4 & 13 B .052 \\
\hline
\end{tabular}
R.F. TUNER UNIT-(Cont.)
\begin{tabular}{|llllll}
\hline & & & R.F. TUNER \\
& \multicolumn{5}{c}{} \\
\multicolumn{5}{c}{} \\
RESISTORS
\end{tabular}

\section*{CHOKES AND COILS}
\begin{tabular}{|c|c|c|}
\hline L-1 & 318.638 & Choke, Mixer Plate. \\
\hline L-2 & 318.296 & Choke, Cathode \\
\hline L-3 & 318.230 & Choke, Mixar \\
\hline L-4 & 34A-546 & Choke, RF Filame \\
\hline L-5 & 34 A .575 & Choke, Oscillator Filament \\
\hline T. 1 & 31 - 095 & If Coil \\
\hline & 31 F .522 & Antenna Coil Assambly, Channel 2. Codo 0 \\
\hline & 31F. 523 & Antenne Coil Assembly, Channel 3. \\
\hline & & Code \\
\hline & 31F-524 & Antenna Coil Asse \\
\hline & 31F.525 & Antenna Coil Assembly, Channel Code 9 \\
\hline & 31 F .526 & Antenna Coil Assembly, Channel \\
\hline & 31F.527 & Antenne Coil Assembly, Channel \\
\hline & & Code Q \\
\hline & 31F-528 & Antenne Coil Assembly, Ch \\
\hline & 317.529 & Antenne Coil Assembly, Channel \\
\hline & & Code Q \\
\hline & 31F-530 & Antense Coil Asse \\
\hline
\end{tabular}


\section*{MAIN CHASSIS}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{CAPACITORS} \\
\hline Whus. & Part No. & Description & \({ }_{\text {Prise }}^{\text {List }}\) \\
\hline C. 21 & 23 E23 & Fixed Ceramic, 30 MMF 500 V . (Part of 4th Video IF) & \$0.29 \\
\hline C. 22 & 23 E21 & Fixed Ceramic, 2.2 MMF 500 V . & 84 \\
\hline C.23 & \(25 E 67\) & Dry Electrolytic, 10 MFD 50 V . & \\
\hline C-24 & 23E3216 & Molded Tubular, . 1 MFD 200 V . & 34 \\
\hline C. 25 & \(23 E 23\) & Fixed Ceramic, 30 MMF 500 V . & 29 \\
\hline C-26 & \(23 E 22\) & Fixed Ceramic. 20 MMF 500 V & 29 \\
\hline C-27 & 23 E2025 & Fixed Coramic, 005 MFD 500 V . (Disc) & \\
\hline C.28 & \(25 E 66\) & Dry Electrolytic. 10 MFD. 50 V . & 14
34
34 \\
\hline C. 29 & \({ }_{23}^{2353423}\) & Molded Tubular, 039 MFD. 400 V & \begin{tabular}{l}
34 \\
.37 \\
\hline 2
\end{tabular} \\
\hline C. 30 & \(23 E 3408\) & Molded Tubular. 0047 MFD. \({ }^{400}\) (D.c] & \\
\hline C. 31 & 23E2025-3 & Fixed Ceramic. 0001 MFD 500 V . (Disc) & . 22 \\
\hline C. 32 & 23E2025-3 & Fixed Ceramic. . 0001 MFD 500 V . (Dise) & \\
\hline C-33 & 23E2025-3 & Fixed Ceramic. .001 MFD 500 V . (Diss & 22 \\
\hline \[
\begin{aligned}
& \mathrm{C} .34 \\
& \mathrm{C} .35
\end{aligned}
\] & 23E2025-3 &  & . 22 \\
\hline C. 36 & 23E2025-3 & Fixed Ceramic. 001 MFD 500 V . (Disc) & . 22 \\
\hline C.37 & 23E2025-3 & Fixed Ceramic. 0001 MFD 500 V . (Disc) & \({ }_{22}^{22}\) \\
\hline C. 38 & 23E2025-3 & Fixed Ceramic, 001 MFD \(500 \mathrm{~V}^{\text {a }}\) ( Disc) & \\
\hline C-39 & \(23 E 25\) & Fixed Ceramic. 10 MMF \(5000^{\text {V }}\) & 31
19 \\
\hline C. 40 & \({ }_{\text {23E2027-10 }}^{23}\) & Fixed Ceramic, 150 MMF 500 V . & 19
31 \\
\hline C. 41 & \begin{tabular}{l}
23E2025 \\
23E2025-3
\end{tabular} & Fixed Ceramic, .005 MFD 500 V . (Dise)
Fixed Ceramic, .001 MFD 500 ( & 22 \\
\hline C. 43 & 23E3500-40 & Fixed Mica, \(470 \mathrm{MMF} \pm 10 \% 500 \mathrm{~V}\). & . 32 \\
\hline C. 44 & 23 E 2025 & Fixed Ceramic, . 005 MFD 500 V . (Disc) & 1 \\
\hline C. & 23E2025-3 & Fixed Ceramic. .001 MFD 500 V . (Disc) & 22 \\
\hline C. 46 & 23E2025-3 & Fixed Coramic, . 001 MFD 500 V V ( Disc) & . 22 \\
\hline C. 47 & \(23 \mathrm{E2025}\) & Fixed Ceramic. . 005 MFD 500 V V (Dise) & 31
22
22 \\
\hline C. 48 & 23E2027-9 & Fixod Ceramic. 001 M \({ }^{\text {a }} 500 \mathrm{~V}\). & \\
\hline C. 49 & 23 E3407 & Molded Tubular, 0033 MFD 400 & \\
\hline C-50 & \(23 \mathrm{E3416}\) & Molded Tubular, 17 MFD 400 & \begin{tabular}{l}
38 \\
42 \\
\hline
\end{tabular} \\
\hline C. 51 & 23E122 & Molded Tubular,. 25 MFD 100 V (dic) & \begin{tabular}{l}
42 \\
31 \\
\hline 1
\end{tabular} \\
\hline C-52 & \(23 \mathrm{E2025}\) & Fixed Ceramic. 0055 MFD 500 V . (Disc) & 31 \\
\hline C.53 & 2363404 & Molded Tubular, 0001 MFD 400 V & . 27 \\
\hline C-54 & \(23 \mathrm{E3408}\) & & \\
\hline \(\xrightarrow{\text { C.56A }} \mathrm{C}\) & 23E2037-6 & \[
500 \mathrm{~V} \text { (Dise) }
\] & 44 \\
\hline C. 57 & 23E2030-15 & Fixed Ceramic, 47 MMF 500 V . & 27 \\
\hline C. 58 & 23E2025-3 & Fixed Ceramic, 001 MFD 500 V. (Disc) & 22 \\
\hline 59 & \(23 E 2025\) & Fixed Ceramic, 005 MFD 500 V . (Disc) & 31 \\
\hline C-60 & 23E2027-10 & Fired Ceramic, 150 MMF 500 V .. & . 19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\({ }^{11145}\) No.} & \multicolumn{5}{|c|}{CAPACITORS-(Cont.)} & \\
\hline & Part No. & \multicolumn{4}{|c|}{estrion} & Prite \\
\hline C.62 & 23E3500-40 & Fixed & \multirow[t]{2}{*}{Mics. 470
Mica,
390} & \multicolumn{2}{|l|}{MMF \(\pm 10 \% 500\)} & \\
\hline & 23E3500-39 & & & & & 29 \\
\hline & \({ }^{23 E 53500.40}\) & \multicolumn{4}{|l|}{Fixad Micas \(470 \mathrm{MMF} \pm \pm 10 \% 500 \mathrm{~V}\).} & 32
33 \\
\hline C. & \({ }^{23 E 3414}\) & \multicolumn{4}{|l|}{} & . 32 \\
\hline C. C -66 & 23E3408 & \multicolumn{5}{|l|}{Molded Tubular, . 0047 MFD 400 V ....} \\
\hline C. 68 & \(23 E 3407\) & \multicolumn{5}{|l|}{Molded Tubular, 0033 MFD 400 V .... 28} \\
\hline C. 69 & \(23 E 3410\) & \multicolumn{5}{|l|}{Molded Tubulor. 001 MFD M \({ }^{400} \mathrm{~V} \ldots\).} \\
\hline C. 70 & 23E2033-4 & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Silver Mica, 3900 MMF \(\pm 5 \%\) \% 500 V . 1.35}} \\
\hline C. 71 & \(23 E 3410\) & & & & & \\
\hline C. 74 & 23E3500 & \multicolumn{5}{|l|}{Mixed Mica, 470 MMF \(\pm 10 \%\) 500 V. 32} \\
\hline C.75 & 23E3404 & \multicolumn{5}{|l|}{Molded Tubular, . 001 MFD 400 V.... 27} \\
\hline C.76 & \(23 E 3414\)
\(23 \in 3408\) & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Moided Tubular, 0477 M MP \(400 \mathrm{~V} \ldots \ldots\).}} \\
\hline C. 78 & 23 E23 & \multicolumn{3}{|l|}{Fixed Ceramic. 30 MMF 500 V.............} & & \\
\hline C-79 & \(23 E 3425\) & \multicolumn{5}{|l|}{Molded Tubular. 015 MFD} \\
\hline & 25654 & \multicolumn{5}{|l|}{Electrolytic, 20 MFD 450 V .} \\
\hline C-82 & \(25 E 71\) & \multicolumn{5}{|l|}{} \\
\hline & 25E62 & \multicolumn{5}{|l|}{} \\
\hline C-84 & 25E65 & \multicolumn{5}{|l|}{Electrolytic, 100 MFD 200 \(40 \times 40350 \mathrm{~V}\)} \\
\hline & \(23 E 3608\) & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Molded Tubular, 0047 MFD 600 V \\
Molded Tubular, 001 MFD 500 V . \\
(Dise)
\end{tabular}}} \\
\hline C-86 & 23E2025 & & & & & \\
\hline & 23E2039-3 & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Fixed Ceramic, 500 MMF 30,000 V. Molded Tubular, .047400 V .}} \\
\hline & \(23 E 3414\) & & & & & \\
\hline & 23E2025-7 & \multicolumn{5}{|l|}{\begin{tabular}{l}
Fixed Ceramic, 120 MMF \\
5000 V. (Dise) \(\qquad\) 1.20
\end{tabular}} \\
\hline C.90 & 23E2 & \multicolumn{5}{|l|}{Fixed Ceramic, 120 MMF 5000 V. (Dise)} \\
\hline & & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Molded Tubular, 047400 V .}} \\
\hline & \(23 E 3418\) & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline C.93 & \(23 E 3416\) & & & & & \\
\hline C.94 & 23E2027-1 & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Fixed Ceramic., 150 MMF 500 V ...}} \\
\hline C.95 & 23 E3415 & & & & & \\
\hline & 23 & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline C.97 & \(23 E 3410\) & & & & & \\
\hline & \(23 E 3424\) & \multicolumn{5}{|l|}{Molded Tubular, .01 Ohm \(\pm 10 \%\)} \\
\hline
\end{tabular}
MAIN CHASSIS-(Cont.)

Part No
\(27 E 1009\) \begin{tabular}{c}
2771009. \\
\(27 E 563-2\) \\
\hline
\end{tabular} \(\begin{array}{ll}1371009.8 \\ & 27 \in 1009.35 \\ 27 E 1009-26\end{array}\) \(277409-2\)
\(27 E 1009-22\)
 27E822-
\(27 E 221-2\)
\(27 E 223-2\)
\(27 E 151-2\)

\begin{tabular}{l} 
27E 233 \\
\hline
\end{tabular}
\(\begin{array}{ll}32 & 28 E 96 \\ 33 & 27 E 1009.4 \\ 34 & 27 E 683-2\end{array}\) 27EEB83-2
\(27 \in 102-2\)
27
 \begin{tabular}{ll}
8 & \(\begin{array}{ll}27 E 1009.8 \\
27 E 105-2 \\
27 E 333-3\end{array}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Hous & Part No. \\
\hline R. 69 & 27E102-2 \\
\hline R. 70 & 27E103-2 \\
\hline R-71 & 27E823-2 \\
\hline R.72 & 27E122-2 \\
\hline R-75 & 27E1009-10 \\
\hline R-76 & 27E333-2 \\
\hline R-77 & 27E222-2 \\
\hline R-78 & 27E1016-22 \\
\hline R.79 & 28 E88 \\
\hline R-82 & 28E90 \\
\hline R-85 & 27E271-2 \\
\hline R-86 & 27E102-2 \\
\hline R-87 & 27E1009-10 \\
\hline R-88 & 27E822-2 \\
\hline R-89 & \\
\hline R-90 & 27E274-2 \\
\hline R.91 & 27E1009-11 \\
\hline R. 92 & 27E681-2 \\
\hline R.93 & 27E68 1-2 \\
\hline R-94 & 27E224-2 \\
\hline R-95 & 27E224-2 \\
\hline R.96 & 27E684-2 \\
\hline R-97 & 27E104-2 \\
\hline R.98 & 27E104-2 \\
\hline R-99 & 27E474-2 \\
\hline R-100 & 27E225-2 \\
\hline R-101 & 27E332-2 \\
\hline R. 102 & 27E472-2 \\
\hline R-104 & 27E225-2 \\
\hline R-105 & 28 E97 \\
\hline R-106 & 27E271.3 \\
\hline R-107 & 27E101-2 \\
\hline
\end{tabular}
RESISTORS-(Cont

\section*{RESISTORS-(C}

hm \(1 / 2\)



27E \(233-3\)
\(27 E 1033\)
\(27 E 102-2\)
\(27 E 1020\) \begin{tabular}{ll}
2 & \(27 \mathrm{El} 102-2\) \\
\hline
\end{tabular}



 4 27E223-2
\(27104-2\)
\(27 E 10.23\)
\(27 E 1009-10\)

 \(27 E 333-2\)
\(27 E 820-2\)
27E1009-8 \begin{tabular}{lll}
2 & \(27 E 1009-8\) \\
\hline & & \\
\hline
\end{tabular} \(\begin{array}{ll}7 & 27 \text { E474-2 } \\ 27 E 222-2\end{array}\)


\(\begin{array}{ll}\mathrm{L}-\mathrm{b} & 20 \mathrm{E} 363.21 \\ \mathrm{~L}-7 & 20 \mathrm{E} 333 \mathrm{Si} \\ \mathrm{L}-8 & 2 \mathrm{E} 92\end{array}\)



\section*{CHOKES AND COILS}

miscellaneous




COVERING MODELS
\[
462 \text { and } 463
\]

\section*{SUBJECT:}

Manufacturers variations of 1B3GT high voltage rectifier tubes. REASON:

In all makes of 1B3GT tubes except General Electric pin \#5 is an open pin.

In General Electric 1B3GT tubes pins \#5 and \#7 are internally connected.

In the above listed models the 8.7 ohm filament current limiting resistor R 89 is connected between terminals \#5 and \#7 of the 1B3GT socket.

Because of this if a General Electric 1B3GT tube is used (with pins \#5 and \#7 internally connected) the current limiting resistor would be bypassed resulting in excessive filament voltage, and therefore short tube life.

We have been informed that General Electric will soon manufacture and distribute 1B3GT tubes that do not have pins \#5 and \#7 internally connected. However, until such GE 1B3GT tubes are available DO NOT USE GE 1B3GT TUBES AS REPLACEMENTS IN MODELS 462 and 463 , unless pin \(\# 5\) is clipped off the tube base.

SUBJECT: The 40E8-10 3 ampere slo-blo line fuse used in models 462 and 463 blowing under normal operating conditions.
REASON: Surge current when the receiver is turned ON or OFF may cause the 3 ampere line fuse to blow.
REMEDY: Always replace the 3 ampere fuse with a 4 ampere slo-blo fuse part no. 40E8-11.
The 4 ampere fuse is being used in currently produced models 462 and 463.


MODELS 462, 463, \(1 \mathrm{U}-462,1 \mathrm{U}-463\)

CENTERING OF PICTURE: The picture may be centered in relation with the opening of the glass panel at the
face of the receiver by shifting the centering magnet at the neck of the picture tube. The centering magnet should face of the receiver by shifting the centering magnet at the neck of the picture tube. The centering magnet shou
be rotated and the control adjusted until the picture is properly framed keeping in mind that the effect of the con trol is governed by the position of rotation. If the control is above or below the neck of the picture tube, the pic
ture will be moved up or down. To the left or right of the neck of the picture tube, the picture will be moved eithe to the left or right.

\section*{CONTROL ADJUSTMENT}
VERTICAL HEIGHT \& VERTICAL LINEARITY CONTROLS: The vertical height and linearity controls should both be adjusted at the same time. For best results adjust while a test pattern is being transmitted. The linearity control affects the upper portion of the picture while the height control affects the overall size especially the lower portion of the pic
screen vertically.
WIDTH ADJUSTMENT: Adjust width by turning slug either clockwise or counter-clockwise. A clockwise rota號
HORIZONTAL FREQ.: Tune in a station and adjust the horizontal hold control until the picture falls into sync momentarily remove the signal by switching off channel a nd then back. The picture should pull into sync. If in the
4.5 MC TRAP ALIGNMENT: 1. Connect the signal generator to the grtd (pin 1) of the video amplifier tube v-6 through a 1000 MMF . Capacitor. 2. Connect the germanium crystal detector and voltmeter, between the cathode through a 1000 MMF. Capacitor 2. Connect the germanium crystal detector and voltmeter, between the cathode ting of 4.5 MC must be accurate). Adjust 4.5 MC trap (L10) for minimum reading on the lowest voltage scale of

427
17" Table Model

423


14
Blonde

Combination, Consolette


Mahogany 21" Consolette \(\begin{array}{lll}\text { Mahogany 21" Consolette } & 425 & \text { Mahogany 21" Consolette } \\ \text { 21" }\end{array}\)


Blonde


TUNERASSEMBLYPARTS LIST
resistors


\section*{ondensers}


Amplifier Grid Trimmer 3-8Mmfd \({ }^{\text {Amplifier Plate Trimmer } .5-3 ~ M M F D ~}\) 120 MMFD. Ceramic Mixer Grid Trimmer 5.3 MMFD. 10 MmFD Ceramic
Fine Tuning Rotor 800 mmFD. Minimum (Feed thru Capacitors)
colls a transformers
\begin{tabular}{|c|c|}
\hline Part No. & Description \\
\hline N-9152 & Antenna Coil Strip \\
\hline N-9153 & Antenna Coil Strip \\
\hline N.9154 & Antenna Coil Strip \\
\hline N-9155 & Antenna Coil Strip \\
\hline N-9156 & Antenna Coil Strip \\
\hline N-9157 & Antenna Coil Strip \\
\hline N-9158 & Antenna Coil Strip \\
\hline N-9159 & Antenna Coil Strip \\
\hline N-9160 & Antenna Coil Strip \\
\hline N-9161 & Antenna Coil Strip \\
\hline N-9162 & Antenna Coil Strip \\
\hline N-9163 & Antenna Coil Strip \\
\hline N-9164 & Oscillator \& Miser Coil Strip \\
\hline N-916; & Oscillator \& Mixer Coil Strip \\
\hline N.9166 & Oscillator \& Mixer Coil Strip \\
\hline N-9167 & Oscillator \& Mixer Coil Strip \\
\hline N-9168 & Oscillator \& Mixer Coil Strip \\
\hline N-9169 & Oscillator \& Mixer Coil Strip \\
\hline N-9170 & Oscillator \& Mixer Coil Strip \\
\hline N-9171 & Oscillator \& Mixer Coil Strip \\
\hline N-9172 & Oscillator \& Mixer Coil Strip \\
\hline N-9173 & Oscillator \& Mixer Coil Strip \\
\hline N-9274 & Osciliator \& Mixer Coil Strip \\
\hline N-9175 & Oscillator \& Mixer Coil \\
\hline
\end{tabular}

MODELS \(413,414,415,416,421,422,423,424,425,426,427,428,429,445\)

©John F. Rider

TUNER ALIGNMENT PROCEDURE


\section*{Service Instructions for Radio and Phonograph of Models}
\begin{tabular}{lll}
413 & Mahogany 21" Combination, Consolette \\
414 & Blonde & 21" \\
Combination, Consolette \\
415 & Mahogany 21" Combination, Console \\
416 & Blonde & \(21^{\prime \prime}\) Combination, Console
\end{tabular}

These combination models have a 5 tube Radio (plus selenium rectifier), and a three speed automatic record changer. POWER SUPPLY: This receiver is designed to operate on an alternating current supply (AC) ranging from 110
to 120 volts, 60 cycles.

\section*{DESCRIPTION OF COMBINATION CONNECTIONS FOR OPERATION}

The television and radio receiver both operate off the same speaker. The television Off-Volume control switch (S3) and radio Off-Volume control switch (S2) both incorporate a double pole single throw switch. When television re-
ceiver is turned on the secondary of the audio output transformer in the television chassis is connected across the voice coil of the speaker. The radio receiver has a separate output transformer and the secondary connects across voice coil of speaker when turned on. For proper operation the television and radio receiver should not be turned on at the same time. The phono motor operates on power received from the radio chassis and is turned on by turning speed selector to speed indicated on record to be played and depressing start-reject button. Motor is turned off automatically when last record has played. Sound for phono is amplified through the audio section of
radio, when Radio-Phono/switch (S1) on radio chassis is turned to phono.

For servicing radio chassis when out of cabinet, (AC) source must be connected to the two prongs (CC) of male socket when removed from television chassis. The two leads with pin jacks can be connected directly across speaker.
For Servicing television chassis when out of cabinet (AC) source is applied to interlock socket. Speaker voice coil may be connected directly to two prongs (EE) of female socket on television chassis.

The signal source must be an accurately calibrated signal generator capable of supplying 455 Kc and up to 1620 Kc signals modulated \(30 \%\) with a 400 -cycle audio signal.

Volume control at maximum for all adjustments.

Align for maximum output. Reduce input as needed to keep output near 0.4 volts.

Loop antenna should be connected to receiver and in its proper position when making the adjustments.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Signal generator} & \multirow[b]{2}{*}{tuner setiling} & \multirow[b]{2}{*}{adust for
maximum output} \\
\hline frequenct & coupling capacior & CONNECTION to rado & GROUND CONNECTION & & \\
\hline 455 Kc & . 05 mfd . & Rear stator plates of tuning condensar. & B Minus Buss lood & Any point near conter where no interfering signal is recesived. & Slugs at top and bottom of 2nd I. F. (T2) and then both slugs of ist I. F. (TI). \\
\hline 1620 Kc & . 05 Mfd . & Rear stator plates of tuning condenser. & B Minus Buss Lead & Fully Open & Oscillator trimmer of Gang. (C5). \\
\hline 1400 Kc & & Lay Generator lead neor back of cabinet. & \begin{tabular}{l}
B Minus \\
Buse load
\end{tabular} & Tune in signal from generator. & Antenna trimmer of Gang. (C2). \\
\hline
\end{tabular}

PARTS LIST-RADIO CHASSIS

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{resistors} & \multicolumn{3}{|r|}{capactiors} \\
\hline Ref. No. & Part No. & \multicolumn{3}{|l|}{Description} & Ref. No. & Part No. & Description \\
\hline R5 & N-6485 & 68 & Ohm & . 5 w. 10\% & C1, C4 & \multirow[t]{2}{*}{N-8784} & Gang Tuning Condenser \\
\hline & & & & & c2, c5 & & Trimmers on Gang Condenser \\
\hline R13 & N-4668 & 180 & Ohm & . 5 W. 10\% & C17 & N-9082 & Electrolytic ( \(10 \mathrm{MFD} .-150 \mathrm{~V}\).) \\
\hline R15 & N-4066 & 470 & Ohm & . 5 W. \(20 \%\) & C18, C19 & N-9880 &  \\
\hline R14 & N-4228 & 680 & Ohm & .5 W. 10\% & C10 & N-905, & Ceramic 220 MmFD . \(10 \%\) \\
\hline R3. R3 & N-4063 & & & . 5 W. \(20 \%\) & C12 & N-6015 & Ceramic \(\quad 100\) MmFD. 500 V . \(\mathbf{2 0 \%}\) \\
\hline & & & & & C13, C14 & N-4994 & Paper . 005 MFD . 600 V. \(20 \%\) \\
\hline R6 & N-4230 & 330к & Ohm & .5 w. \(20 \%\) & c6, c20 & N-1344 & Paper . 01 MFD. 400 V. 20\% \\
\hline R4 & N-1262 & 1 & Megohm & .5 w. \(20 \%\) & c3, c7, C8, c9 & N-1345 & Paper . 05 MFD. 200 V. \(20 \%\) \\
\hline & & & & & C21 & N-1346 & Paper . 05 MFD. 400 V. \(20 \%\) \\
\hline 1:1 & N-4062 & 3.3 & Mesohm & .5 w. 20\% & C11 & N-8092 & Paper . 08 MFD. 200 V. \(20 \%\) \\
\hline ks & N-4028 & 6.8 & Mexóhm & . 5 W. 20\% & \(\bullet{ }^{\text {C15 }}\) & N-6488 & Ceramic 250 MmFD .500 V . \\
\hline & & & & & -C16 & N-4894 & Paper \({ }^{.005} \mathrm{MFD} .600 \mathrm{v}\). \\
\hline \({ }^{16}\) & N-5631 & 22 & Ohm & 1.0 w. 10\% & \multicolumn{3}{|l|}{- Part of Couylate \(\mathrm{N}-8215\)} \\
\hline R10, 1217 & N-4023 & 82 & Ohm & 2.0. w. \(10 \%\) & & & \\
\hline \multirow[b]{2}{*}{-ri1} & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{220K Ohm}} & \multirow[b]{2}{*}{. 5 W. \(20 \%\)} & \multicolumn{3}{|r|}{coils and transformers} \\
\hline & N.4026 & & & & L1 & N-8769 & Lood Antenna \\
\hline -R1? & N-4027 & \({ }^{470 \mathrm{~K}}\) & & .5 w. 20\% & L2 & N-8571 & Oscillator Coil \\
\hline \multirow[t]{2}{*}{Ri} & \multirow[t]{2}{*}{N-9077} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Volume Control Of-On . 5 Merohm}} & T1. T2 & N-7981 & 1. F. Tranaformers \\
\hline & & & & & \multirow[t]{2}{*}{т3} & N-9085 & Output transformer \\
\hline R9 & N-9078 & Tone & Control 1 & Megohm & & N-9112 & Record Changer \\
\hline
\end{tabular}

OJohn F. Rider





> Sparion crestwood MODEL 5384 MAhogany VENEER 21 INCH TELEVISION CONSOLE

\section*{CHASSIS DESCRJPTION AND SPECIFICATIONS}

\section*{CHASSIS DESCRIPTION} the Sparton Ultra-tuner for superior long range reception 6 L3 radio chassis and VM950 record player


Spaflon cambridee MODEL 5390 MAHOGANY VENEER MODEL S391 GOLDEN WHEAT
21 INCH TELEVISION CONSOLE

Chassis type 25D213 with a self-contained power supply, contains twenty-five tubes and two Selenium Rectifiers, full range tone control and is equipped with Models 5390 \& 5391 are Television-Radio Phonograph combinations using the

\section*{ELECTRICAL SPECIFICATIONS}

Power Supply.................................105-125 Volts AC 60 Cycle only
Power Consumption........................ 230 Watts
Audio Power Output.......................Maximum Undistorted 25 Wat
uning Range................................V. Channels 2 thru 13
Antenna Input Impedance................ 300 Ohms Balanced
Intermediate Frequencies...............Picture 26.25 Mc .
Intercarrier Sound System..........4.4.5 Mc.
Voice Coil Impedance...................3.2 Ohms at 400 Cycles

\section*{OLTAGE TEST SPECIFICATIONS}
1. Line Voltage \(=117\) Volts A.C.
2. Channel Switch Position = Channel \#2.
3. Brightness Control Position \(=\) Maximum Brilliance on Picture Tube.
4. Contrast Control Position \(=\) Maximum (Clockwise)
5. Horizontal and Vertical Hold Control Positions lock in picture.
6. Horizontal width control position \(=\) Set for Maximum

Vertical size and Linearity Control Position \(=\) Set for normal size \& Best
linearity. linearity.
8. Focus Control Position = Properly focused.
9. Volume Control Position ( Maximum Counter-Clockwise.
10. Tone Control Position \(=\) Maximum Counter-Clockwise.
11. Instrument (Meter) used \(=\) (V.T.V.M.) Vacuum Tube Volt Meter.
12. No signal input applied to set.
13. Unless otherwise designated all voltages measured in respect to Chassis Ground

NOTE: The points indicated by the letters \(A, B, C, D, E, F \& G\) are the alignment test points referred to in the following alignment procedure. These points indicate the terminals for attaching test shown in Figure 2.

(A) Pin \#5 of V2 (6J6) Osc. \& Mixer Tube.

Apply signals here for spot I.F. Alignment or I.F. Sweep.
(B) Apply minus 3 volts through 220 K Ohms to test terminal, located between the tubes on top of R.F. Tuner (See Fig. 3, suggested input adapter Fig. 5)
(C) Diode Load Resistor

Read D.C. output here for spot I.F. Alignment.
Connect scope here for visual I.F. Alignment.
D) Cathode of Picture Tube

Read A.C. Output here for overall sensitivity.
Read 4.5 Mc . output here for aligning 4.5 Mc . Trap
(E) Ratio Detector Output

Read D.C. here for alignment of sound take-off trap, inter-stage sound I.F trans. and primary of ratio det. trans.

(F) Ratio Detector Balanced Output

Read D.C. here for alignment of secondary of ratio det. trans.
(G) A.G.C. Line Apply 4.5 volts bias here for visual check of I.F. or overall with oscilloscope.
B. R. F. Frequencies

Picture Carrier
\(55.25 \mathrm{Mc}\).
61.25 Mc.
67.25 Mc.
77.25 Mc.
83.25 Mc.
175.25 Mc.
181.25 Mc.
187.25 Mc.
193.25 Mc.
199.25 Mc.
205.25 Mc.
211.25 Mc.

Sound Carrier
59.75 Ḿc. 65.75 Mc .
71.75 Mc
71.75 Mc.
81.75 Mc.
87.75 Mc .
87.75 Mc .
179.75 Mc .
185.75 Mc .
185.75 Mc .
191.75 Mc .
191.75 Mc .
197.75 Mc .
203.75 Mc
203.75 Mc .
209.75 Mc .

\section*{ALIGNMENT EQUIPMENT AND TEST SET UP}

THIRD: A CATHODE-RAY OSCILLOSCOPE of good quality that has a fairly wide band vertical amplifier and a low capacity input probe.

FOURTH: AN ELECTRONIC VOLTMETER with ranges to read IV. DC, 1OV. DC and 7V. AC at 400 cycles and 4.5 Mc .
FIFTH: A CRYSTAL CALIBRATOR that can be used for checks on the accuracy of the output frequencies of the R.F. signal generator.
GENERAL INSTRUCTIONS: Practically all servicing with the exception of some tube replacement will require removal of the recelver chassis from the cabinet.


TEST EQUIPMENT. In order to align and service Sparton television receivers properly
FIRST: AN R.F. SWEEP GENERATOR or reliable quality that performs the following functions:
A. Provides sweep outputs in the following frequency ranges:
19 to 30 Mc .
10 Mc . sweep width
40 to 90 Mc .
170 to 225 Mc .
10 Mc . sweep width
10 Mc . sweep width
B. Provides an output signal that can be varied by means of an attenuator up to a maximum of at least . 1 volt.

SECOND: AN R.F. SIGNAL GENERATOR That will provide an adjustable output signal up to a maximum of at least . 1 volt on the following fixed frequencies:
A. I.F. Frequencies
\begin{tabular}{ll}
21.75 Mc. & Sound Trap \\
22.5 & Mc.
\end{tabular}

A convenient arrangement that makes both the top and bottom of the chassis accessible for alignment and servicing can be realized by orienting the receiver chassis in such

ALIGNMENT REQUIREMENTS: Under normal conditions complete receiver realignment will seldom be necessary in the field. However, a detailed description of the overall alignment procedure is included to provide all necessary information if it should be required.
In general it is not recommended that the R.F. and the converter circuits of the R.F. tuner be realigned by the service engineer unless absolutely necessary. In cases where tuner components have been damaged or where complete realignment is indicated, the R.F. tuner assembly should be removed from the chassis and sent back to the factory in exchange for a new unit which will be shipped complete with tubes.
When the now R.F. unit is assembled to the chassis it will be necessary in all cases to realign 16 which is located on the tuner chassis. Normally this is the alignment and sensitivity should be made for the sake of certainty and assured customer satisfaction.

EFFECTS OF TUBE REPLACEMENT ON THE ALIGNMENT OF R.F. TUNER CIRCUITS: The alignment of the R.F. and converter circuits of the R.F. tuner is critical and may be affected by a tube change, In cases where these tubes (6BK7 or bubare replaced, it will be if realignment is indicated it can usually be avoided by selection of replacement tubes until correct receiver operation is realized.
ORDER OF ALIGNMENT: When complete receiver realignment is indicated it should be performed.in the following order:
1. Sound Traps
3. Sound I F. and 4.5 Mc . Trap
4. Ratio Detector Transformer

Retouch Picture I.F.
Sound and Picture I. F. Sensitivity Check
7. R.F. and Converter Circuits (not recommended)

PRELIMNARY ADJUSTMENR: Before alignment the receiver controls should be adjusted to the approximated operation positions specified in the table below. The controls should remain in these positions for all checks unless otherwise specified.

Contrist Control - to maximum clockwise
rightnes Control to position where raster is visible on
Focus Control - to position where focus is obtained
Vertical Hold - to center position
Vertical Linearity -
Vertical Size
Horizontal Hold to center position
adjusted to give normal raster height to center position
Horizontal Size - adjusted to give normal raster width

TEST EQUIPMENT SET UP: A certain amount of experimentation must be employed to secure a stable test set up before alignment or service of the receiver is attempted. It is recommended that the top of the test bench be covered with a sheet of aluminum to insure good grounds between the various pieces of test equipment and the receiver chassis. In general all test signal input leads should be kept away from output leads as much as possible.
SOUND TRAP ALIGNMENT: FIRST, Connect the R.F. Signal generator to the grid of V-2 by means of the I.F. input adapter as shown in Figure 5.


Figure 5 I.F. Input Adapter

SECOND: Set the R.F. tuner to channel \#13.
THIRD: Connect a 4.5 volt bias battery between the A.G.C. buss(Point G.Fig. 2 ) and chassis ground so that the voltage on the A.G.C. buss is 4.4 volts in respect to the chassis. Remove AGC tube 6AU6 V8.

FOURTH: Connect the electronic voltmeter across the picture detector load resistor Connect the electronic voltmeter across the picture detector load resi
R4l, Point C, Fig. 2 and set the voltmeter on the low D.C. volt scale.
FIFTH: Set the R.F. signal generator to the frequency shown below and tune the specified adjustment for minimum indication on the voltmeter. It is
advisable to check the output of the generator with the crystal calibrator to make certain that it is exactly on frequency.
\[
\begin{aligned}
& 27.75 \mathrm{Mc} . \\
& \text { L9 (Top of chassis Fig. 3) } \\
& 21.75 \mathrm{Mc} . \mathrm{LlO} \text { (Top of chassis as shown in } \\
& \text { Figure 3). }
\end{aligned}
\]

PICTURE I.F. ALIGNMENT: FIRST: Connect the R.F. Signal generator, voltmeter and blas battery to the receiver as described in steps \(1,2,3\) and 4 of the sound trap alignment instructions.
SECOND: Set the signal generator to each of the following frequencies and peak the specified adjustments for maximum indication of the voltmeter.
\begin{tabular}{|c|c|}
\hline 22.5 Mc. L6 & (Top of tuner as shown in Fig. 3) \\
\hline 25.25 Mc. Lll & (Top of chassis as shown in Fig. 3) \\
\hline 24.25 Mc . Ll2 & (Top of chassis as shown in Fig. 3 ) \\
\hline 23.25 Mc. Ll3 & (Top of chassis as shown in Fig. 3) \\
\hline 26.0 Mc. Ll4 & (Top of chassis as shown in Fig. 3) \\
\hline
\end{tabular}

SOUND I.F. ALIGNMENT FIRST: Connect the R.F. signal generator to Point C Fig. 2. SECOND: Set the signal generator accurately to 4.5 Mc . This is very important because the picture and sound carriers sent out from the television stations are
exactly 4.5 Mc . apart.

THIRD: Connect the electronic voltmeter across R69 from Point E to ground as shown in Fig. 2. Set, the voltmeter on the 10 volt scale.
FOURTH: Peak the following coils for maximum reading on the voltmeter.
Ll7 Top of chassis as show in Fig. 3.
TI Top of chassis as shown in Fig. 3 and
T2 (Pri. Ratio Det) Top of chassis as shown in Fig. 3.
RATIO DETECTOR TRANSFORMEF ALIGNMENT: FIRST: Connect the R.F. signal generator to the receiver as described In Step \(1 \frac{1}{0}\) the sound I.F. alignment instructions.
SECOND: Connect the electronic voltmeter from Point F, Fig. 2 to ground. Set the voltmeter on the lowest DC scale.

THIRD: Set the signal generator output to 4.5 Mc . Adjust the secondary of T2 (Bottom view of chassis as shown in Fig. 4) Notice that it is possible to produce a positive or negative voltage indication on the meter by varying this adjustmen As the voltage swings from positive to negative, adjust T2 for detector output and indicates correct alignment of T2 transformer If the secondary of T2 is found to be way out of alignment it will be necessary to re-peak the primary as described in the preceeding section on sound I.F. alignment.
4.5 MC. TRAP ALIGNMENT FIRST: Connect the R.F. signal generator as described SECOND: Connect the electronic voltmeter from the cathode of the picture tube to ground (Point D Fig. 2) The voltmeter must be capable of giving a reading at 4.5 Mc . at approximately 1 to 2 volts.
THIRD: Yeak L2l(Top of chassis as shown in Fig. 3) for minimum output the voltmeter.

PICTURE I.F. TOUCH UP: Connect the R.F. sweep generator output to the grid of -2 by means of the I.F. input adapter shown in Figure 5.
SECOND: Apply bias to A.G.C. line as described in Step 3 of sound trap aligiment THIRD: Connect the oscilloscope across the picture detector load resistor R4l (Point C Fig. 2) by means of the shielded cable and the filter system shown in
Figure 6.


\section*{© John F. Rider}

CABINET WIRING DIAGRAM
FOURTH: Set the R.F. sweed generator so that it sweeps from approximately 20 to 30 Mc.
FIFTH: Adjust the oscilloscope so that the swept I.F. response is visible on the cathode-ray tube screen.

SIXTH: Loosely couple the output of the R.F. signal generator to the grid of V-2 so that marker signals of proper frequency can be mixed in with the R.F. sweep signal.
SEVENTH: Observe the band width, relative position of the picture carrier, and flatness of the overall I.F. response curve. If necessary slightly vary the tuning of the picture I.F. coils L6, Lll, L12, L13, Lll until the picture I.F. responseshown in Figure 7 is obtained. The solid curve in Fig. 7 depicts
the ideal I.F. response while the dotted curves show permissable variations.


FIGURE 7 IDEAL I.F. RESPONSE WITH PERMISSABLE VARIATIONS The picture I.F. carrier should appear approximately half way dow the I. F. response curve as shown in Figure 7. Variation in the pix carrier position should not exceed
\(t\) lo\% from the half way point.

PICTURE I.F. SENSITIVITY CHECK: Connect the R.F. signal generator to the receiver as specifled in Steps 1 and 2 of the sound trap alignment instructions. (When making sensitivity checks no bias battery is connected to the A.G.C. buss).
\(\qquad\) Connect the electronic voltmeter across the picture detector load resistor R41 Point C, Fig. 2 and set the meter on the low D.C. volts scale.
THIRD: Set the generator output frequency at approximately 23 Mc . Adjust the generator output until the voltmeter reads approximately 1.0 volt. Record the R.F. signal input in microvolts. Repeat the procedure with the generator output frequency set at 24.2 and 25.4 Mc . In all cases the I. F. input voltage should be 100 Microvolts or less. The sensitivity at the I.F. Picture carrier 26.25 Mc . should be approximately half of the I.F.sensitivity
between 24.2 Mc (Maximum of 100 microver between 24.2 Mc (Maximum of 100 microvolts.)
ity measurements can be made by using another merovolts, comparative sensitivin good operating condition as a standard. This applies to all sensitivity measurements and good results can be obtained if sufficient care is used.
R.F. TUNER (S.W. CO. PART NO. PD93158-1)

This Sparton chassis is equipped with a Standard Coil R.F. tuner. With exception to L-6 slug ( 22.5 Mc .) as shown in Fig. 3, field alignment for this tuner has been purposely omitted from the alignment procedure. Factory experience dictates that this unit can not be properly aligned in the field as special test equipment is required. Therefore any R.F.

Field Alignment for Standard Coil Tuners has appeared in some set manufacturers service manuals; it is not recommended by our Engineering Department.
After receiver analysis proves the R.F. Tuner to be defective, and in need of realignment, the complete tuner assembly (With tubes) should be returned to Our Factory Service Department for repair or


MODELS 5390 \& 5391


SPARTON TELEVISION SCHEMATIC DIAGRAM MODELS

25D213 5342, 5343, 5382, 5383, 5384,

R.F. TUNER


VIT
6AUS
1ST SONO: :



VOLTAGE CHART
Position of volume control: Full with set tuned to quiet channel. \(\qquad\)
Voltage of Sockets Prongs to Ground
See Prong Nos. on Schematic.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 0 & 0 & \(* 6.3\) & 250 & 50 & 0.5 \\
\hline & 0 & 0 & \(* 6.3\) & 250 & 100 & \(* *\) \\
\hline 0 & \(* 6.3\) & 0 & 250 & 60 & 1.0 \\
\hline & 0 & \(* 6.3\) & 0 & \(* *\) & -0.3 & 80 \\
\hline & 8 & \(* 6.3\) & 0 & 250 & 165 & \(* *\) \\
\hline NC & \(* 6.3\) & 0 & NC & \(* 225\) & 270 \\
\hline
\end{tabular}

Voltage readings are for Schematic Diagram in this Bulletin. Allow 15\% or - on all measurements. Always use meter scale which will give greatest der volt within scale limits. All DC measurements made with 0000 ohms * AC Volts

\section*{ALIGNMENT PROCEDURE}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { OPER- } \\
& \text { ATION }
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { GEMEIATOK } \\
& \text { COMLATED } \\
& \text { TO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DUMMY } \\
& \text { ANTENNA }
\end{aligned}
\] & Generator FREQJENCY & tuning serting & \[
\begin{gathered}
\text { TRIMMERER } \\
\text { SLINGG }
\end{gathered}
\] & HEmARKS \\
\hline 1 & \# 2 IF & V2 P1n 7 & . 02 uf. & 456 kc . & Open & 12 Pri. \& Sec. & Tune ior Niax. Output \\
\hline 2 & \({ }^{12} 1 \mathrm{IF}\) & V2 Pin? & . 02 uf. & 456 kc . & Open & T1 Pri. \& Sec. & rune for Max. Output \\
\hline 3 & Osc. & Ant. Term. & . 02 uf. & 1620 kc . & Open & \({ }^{\text {c }} 3\) T & Tune for Max. Output \\
\hline 4 & M1x. & Ant. Term. & . 02 uf. & 1500 kc . & 1500 kc . & c2T & Tune for Max. Output \\
\hline 5 & af. & Driver Loop & & 1500 kc . & 1300 kc . & C1T & Tune for Max. Output \\
\hline 6 & osc. & Driver Loop & & 538 kc . & Closed & None & Check for Coverage \\
\hline 7 & Mix. & Oriver Loop & & 600 Kc . & 600 Kc . & None & Check tracking \\
\hline 8 & ar & Driver Loop & & 600 kc . & 600 kc . & 12 & Tune for Max. Output \\
\hline 9 & \({ }^{\text {RF }}\) & Jriver Loop & & 1500 kc . & 1500 kc . & C1T & Recheck Step 5 \\
\hline
\end{tabular}

plate to the anjustent only. The slug in this coll should not be varied from the
factory setting unless equipment 1 s available to check mutual inductance or the coil
after read justment. Improper ad justment may cause vartous symptoms of poor


\section*{WHEN ORDERING PARTS ALWAYS SPECIFY PART NUMBER AND MODEL FOR WHICH PART IS INTENDED•}


John F. Rider


Sparton Moort 5220 MAHO MODEL 5241 GOLDEN WHEAT


Spatoron MODEL 5280 MAHOGANY VENEER
MODEL 5281
LIMED OA, 21 INCM TELEVISOO CONSOIE

\section*{BRIEF DESCRIPTION}
Television chassis type \(21 S 212\) is a twenty-one tube "Standard" chassis With a self-contained power supply, an Electro-Static type focusing the Sparton Ultra-tuner for superior iong range reception. The witra tuner will receiver telecasts on all present channels and, with the insertion of simple tuner strips on new U.H.F. channels.
ELECTRICAL AND MECRLANICAL SPECIFICATIONS
R.F. FREQUENCY RANGE
\begin{tabular}{cclll}
\begin{tabular}{llll} 
Channel \\
Number
\end{tabular} & \begin{tabular}{l} 
Channel \\
Freq. Mc.
\end{tabular} & \begin{tabular}{l} 
Picture \\
Carrier
\end{tabular} & \begin{tabular}{l} 
Sound \\
Carrier
\end{tabular} & \begin{tabular}{l} 
Receiver \\
R.F.Osc.
\end{tabular} \\
2 & \(54-60\) & 55.25 & 59.75 & 81.5 \\
3 & \(60-66\) & 61.25 & 65.75 & 87.5 \\
Freq.Mc.
\end{tabular} Freq.Mc.

POWER SUPPLY RATING


John F. Rider

TRMMER AND SLUG LOCATIONS (BOTTOM VIEW)


A convenient arrangement that makes both the top and bottom of the chassis accessible for alignment and servicing can be realized by orienting the receiver chassis in such ALIGNENT RBQUIREMEM
ALIGNMENT REQUIREMENTS: Under normal conditions complete receiver realignment will seldom be necessary in the field. However, a detailed description of the overall
alignment procedure is included to provide all necessary information if it should be alignment
required.
In general it is not recommended that the R.F. and the converter circuits of the R.F. tuner be realigned by the service engineer unless absolutely necessary. In cases
where tuner components have been damaged or where complete realignment is ind where tuner components have been damaged or where complete realignment is indicated, factory in exchange for a new unit which will be shipped amplete with tubes.

When the new R.F. unit is assembled to the chassis it will be necessary in all cases to realign 16 which is located on the tuner chassis. Normally this is the only adjustment that will be required with tuner change but a check on overall receiver allgnment and sensitiv
customer satisfaction.

EFFECTS OF TUBE REPLACEMENT ON THE ALIGNMENT OF R.F. TUNER CIRCUITS: The alignment of the R.F. and converter circuits of the R.F. tuner is critical and may be affected by
a tube change. In cases where these tubes ( 6 BK 7 \& \(6 \mathrm{BQ7}\) or 6 J 6 ) are replaced, it will b a tube change. In cases where the se tubes (6BK7 \& 6BQ7 or 6J6) are replaced, it will be realignment is indicated it can usually be avoided by selection of replacement tukes until correct receiver operation is realized.

ORDER OF ALIGNMENT: When complete receiver realignment is indicated it should be performed in the following order:
2. Sound Traps
3. Sound I.F. and 4.5 Mc . Trap
4. Ratio Detector Transformer
5. Retouch Picture I.F
6. Sound and Picture I.F. Sensitivity Check
7. R.F. and Converter Circuits (not recommended)

PRELIMINARY ADJUSTMENTS: Before alignment the receiver controls should be adjusted to the approximated operation positions specified in the table below. The controls should remain in these positions for all checks unless otherwise specified.
\begin{tabular}{|c|c|}
\hline Contrast Control Brightness Control & \begin{tabular}{l}
to maximum clockwise \\
- to position where raster is visible the kinescope
\end{tabular} \\
\hline Focus Control & to position where focus is obtained \\
\hline Vertical Hold & to center positio \\
\hline Vertical Linearity & to center position \\
\hline Vertical Size & adjusted to give nor \\
\hline Horizontal Hold & to center position \\
\hline Horizontal Size & ad, asted to give normal raster width \\
\hline
\end{tabular}

\section*{ALIGNMENT PROCEDURE}

TEST EQUIPMENT SET UP: A certain amount of experimentation must be employed to secur a stable test set up before alibnment or service of the receiver is attempted. It is recommended that the top of the test bench be covered with a sheet of aluminum to
insure good ground between the various pieces of test equipment and the receiver insure good grounds between the various pieces of test equipment and the receiver
chassis. In general all test signal input leads should be kept away from output leads as much as possible.
SOUND TRAP ALIGMMENT: FIRST, Connect the R.F. signal generator to the grid of V-2 by means of the I.F. input adapter as show in Figure 5.

\[
\text { Figure } 5 \text { I.F. Input Adapter }
\]

SECOND: Set the R.F. tuner to Channel \#13.
THIRD: Connect a 3.0 volt bias battery between the A.G. buss (Point F. Fig. 2) and chassis ground so that the voltage on the A.G.C. buss is 3.0 volts in respect to the chassis.
FOURTH: Connect the electronic voltmeter across the picture detector load resistor R-32 P Connect the electronic voltmeter across the picture detector

FIFTH: Set the R.F. signal generator to the frequency shown below and tune the specified adjustment for minimum indication on the voltmeter. It is advisable to check the output of the generator with the crystal calibrator to make certain that
it is exactly on frequency.
21.75 Mc. Ll2 (Top of chassis as shown in Figure 3 ).
PICTURE I.F. ALIGNMENT: FIRST: Connect the R.F. Signal generator, voltmeter and bias battery to the receiver as described in Steps 1, 2, 3 and 4 of the sound trap

SECOND: Set the signal generator to each of the following frequencies and peak th specified adjustments for maximum indication of the voltmeter.
\begin{tabular}{lll}
23.0 Mc. & \(\mathrm{L6}\) & (Top of tuner as shown in Fig. 3) \\
25.0 Mc. & \(\mathrm{Ll3}\) & (Top of chassis as shown in Fig. \\
23.8 Mc. & \(\mathrm{Ll4}\) & (Top of chassis as shown in Fig. 3) \\
26.0 Mc. & \(\mathrm{Ll5}\) & (Top of chassis as shown in Fig. 3)
\end{tabular}

SOUND I.F. ALIGNMENT: \(\quad\) FIRST: Connect the R.F. signal generator to Pin \#l of V-6.
SECOND: Set the signal generator accurately to 4.5 Mc . This is very important because the picture and sound carriers sent out from the television stations are exactly 4.5 Mc . apart.

THIRD: Connect the electronic voltmeter across C58 from Point D to ground as shown in Fig. 2.
Set the voltmeter on the 10 volt scale.
FOURTH: Peak the following coils for maximum reading on the voltmeter.
\[
\text { L } 25 \text { Top of chassis as shown in Fig. } 3 \text {. }
\]

T-1 (Pri. Ratio Det) Top of chassis as shown in Fig. 3.
RATIO DETECTOR TRANSFORMER ALIGNMENT:
to the receiver as described in Step 1 of the Sound I.F.Alignment instructions.
SECOND: Connect the electronic voltmeter from Point E, Fig. 2 to ground. Set the voltmeter on the lowest DC scale.
THIRD: Set the signal generator output to 4.5 Mc . Adjust the secondary of T-1 (Bottom view of chassis as shown in Fig. 4.) Notice that it is possible to produce a positive or negative voltage indication on the meter by varying this adjustment. As the voltage swings from positive to negative, adjust T-1 for zero output as ind cated by the voltmeter. This point is called zero ratio detector output and indicates correct alignment of T-1 transformer. If the sacondary of \(T-1\) is found to be way out of alignment it will be necessary to re-peak
primary as described in the preceeding section on sound I.F. alignment.
4.5 MC. TRAP ALIGMMENT: FIRST: Connect the R.F. signal generator to Pin \#l of V-7.

SECOND: Connect the electronic voltmeter from the cathode of the picture tube Connect the electronic volt
to ground (Point C Fig. 2)
to ground (Point C Fig. 2) voltmeter must be capable of giving a reading at 4.5 Mc . at approximately The voltmeter 2 volts.

THIRD: Peak L-19 (Top of chassis as shown in Fig. 3)for minimum output on the voltmeter.
PICTURE I.F. TCUCH UP: Connect the R.F. Sweep generator output to the grid of解
SECOND: Apply bias to A.G.C. line as described in Step 3 of sound trap alignment. Set R.F. selector to Channel \#13.
THIRD: Connect the oscilloscope across the picture detector load resistor R-32 in Figure 6.


\section*{FOURTH: Set the R.F. sweep generator so that it sweeps from approximately 20 to 30 Mc .}

FIFTH: Adjust the oscilloscope so that the swept I.F. response is visible on the
SIXTH: Ioosely couple the output of the R.F. signal generator to the grid of \(\nabla-2\) so that the marker signals of proper frequency can be mixed in with the R.F. sweep signal.
SEVENTY: Observe the band width, relative position of the picture carrier, and flatness of the overall I. F. response curve. If necessary slightly vary the tuning of in picture I.F. coils LE, Ll, Lle Lli, Ll5, until the picture I.F. response show the ideal I.F. response whils the dotted curves show permissable variations.


Figure 7 IDEAL I.F. RESPONSE W'ITH PERMISSABLE VARIATIONS
The picture I.F. Carrier should appear approximately half way down the I.F. res?onse curve as show in Figure 7 . Variation in the pix carrier position should not exceed
l0, from the half way point.
\(\frac{\text { PICTURE I.F. SENSITIVITY CHECK: FIRST: Connect the R.F. signal generator to the }}{\text { receiver as specifled in Steps } 1 \text { and } 2 \text { of the sound trap alignment instructions. (whe }}\) receiver as specifled in Stepsiand 2 of the sound trap alignment instructions. (when making sensitivity checks no bias battery is connected to the A.G.C. buss.)
SECOND: Connect the electronic voltmeter across the picture detector load resistor R-32 Point B, Fig. 2 and set the meter on the low D.C. volts scale.

THIRD: Set the generator output frequency at approximateiy 24.5 Mc . Adjust the generator output until the voltmeter reads approximately 1.0 volt. Record the R.F. signal input in Microvolts. Repeat the procedure with the generator output frequency set at 24.2 and 25.4 Mc. In all cases at the I.F. picture carrier 26.25 Mc . should be approximately half of the I. F. Sensitivity between 24.2 Mc . (Maximum of 100 Microvolts.)

If the generabor output is not calibrated in microvolts, comparative
sensitivity measurements can be made by using another receiver that is known to be in good operating condition as a standard. This applies to care is used.
R.F. TUNER (S.W. CO. PART NO. PD93158-1

Sparton chassis type \(21 S 212\) is equipped with a standard coil R.F. tuner (Series 2000). With exception to L- 6 slug ( 22.5 Mc .) as shown in Fig. 3, field alignment for this tuner has been purposely
that this unit can not be properly aligned in the field as special test equipment is required. Therefore any R.F. tuner adjustment in the field should be held to a minimum.
Field Alignment for Standard Coil Tuners has appeared in some set manufacturers service manuals: it is not recommended by our Engineering Department.
After receiver analysis proves the R.F. tuner to be defective, and in et of realignment, the complete tuner assembly (with tubes) should be returned to our Factory Service Department for repair or replacement.
© John F. Rider

WHEN ORDERING PARTS ALWAYS SPECIFY PART NUMBER AND MODEL FOR WHICH PART IS INTENDED-

\section*{DESCRIPTION}
\begin{tabular}{|c|c|}
\hline Condenser- & C20, 23, 24, 25, 27, 28, 29 30, 31, \(38,52,55,78,122\) 123, 124, 1255 K . Ceramic \\
\hline Condenser- & C21 3.3 MMF . Ceramic \\
\hline Condenser- & C22 100 MMF . Ceramic \\
\hline Condenser- & C26 270 MMF. Ceramic \\
\hline Condenser- & C32 . 1 MFD . 200V. Tubular \\
\hline Condenser- & C33 100 MMF. Cevamic \\
\hline Condenser- & C34, 108.01 NFD. 400V. Tubular \\
\hline Condenser- & C35, 364.7 MMF . Ceramic \\
\hline Condenser- & C37, 42.1 PFD. 200V. Tubular \\
\hline Condenser- & C39 470 LIMF. Mica \\
\hline Condenser- & C40 47 MMF . Ceramic \\
\hline Condenser- & C41 .1 MFD. 400V. Tubular \\
\hline Condenser- & C43A,B,C,D 10-20-40-40 MFD. Elect. \\
\hline Condenser- & C44 . 003 MFD. 600V. Tubular \\
\hline Condenser- & C50 2.2 MMF. Ceramic \\
\hline Condenser- & C51 33 MMF . Mica \\
\hline Condenser- & C53 120 MMF. Ceramic \\
\hline Condenser- & C54 1K MMF. Ceramic \\
\hline Condenser- & C56 . 02 MFD . 400V. Tubular \\
\hline Condenser- & C57 . 03 MFD . 200V. Tubular \\
\hline Condenser- & C58 5 MFD. 50V. Elect. \\
\hline Condenser- & C59 . 01 MFD. 400V. Tubular \\
\hline Condenser- & C60 . 02 MFD . 600V. Tubular \\
\hline Condenser- & C61 68 MMF. Mica \\
\hline Condenser- & C62 . 001 MFD . 600V. Tubular \\
\hline Condenser- & C70, 80, 103, 104.05 MFD .400 V . Tubular \\
\hline Condenser- & C71 150 MMF . Mica \\
\hline Condenser- & C72 . 25 MFD . 200V. Tubular \\
\hline Condenser- & C73, 81 . 1 MFD .400 V . Tubular \\
\hline Condenser- & C74, 75 1K MMF. Mica \\
\hline Condenser- & C76A, B, C . 002-.005-.005 Ceramic \\
\hline Condenser- & C77 4.7K MMF. Mica \\
\hline Condenser- & C79 2K. MMF. Mica \\
\hline Condenser- & C82A,B,C 100-20-20 MFD. Elect. \\
\hline Condenser- & C83 1 MFD. 200V. Tubular \\
\hline Condenser- & Cl00 56 MMF. 2000V. Disk \\
\hline Condenser- & Cl01 . 25 MFD. 400V. Tubular \\
\hline Condenser- & Cl02 500 MMF . 20KV. Ceramic \\
\hline Condenser- & C105 1800 MMF. Mica \\
\hline Condenser- & Cl06 . 05 MFD. 400V. Tubular \\
\hline Condenser- & C107 . 47 MFD. 200V. Tubular \\
\hline Condenser- & Cl09, 110, 112270 MMF . M1ca \\
\hline Condenser- & Clll 3.3K MMF. Silver Mica \\
\hline Condenser- & Cll3 .1 MFD. 200V. Tubular \\
\hline Condenser- & Cll4 5.1K MMF. Mica \\
\hline Condenser- & Cl15 .01 MFD. 400 V . Tubular \\
\hline Condenser- & Cl20A, B 40-40 MFD. Elect. \\
\hline Condenser- & Cl21 . 047 MMF . 600V. Tubular \\
\hline
\end{tabular}

\section*{121, 047 MMF 600V Mubular}

\section*{R31 - Control- Contrast}

R43 - Control- Brightness
R46 - Control- Focus
57 - Control- Volume
R83 - Control- Vertical Hold (1 Meg.)
R94 - Control- Vertical Size (2.5 Meg.
R94 - Control- Vertical Linearity (5K)
Rll6- Control- Horizontal Hold

PART NO.
\begin{tabular}{|c|c|c|c|c|}
\hline & & \[
\begin{aligned}
& \mathrm{L} \cdot 12 \\
& \mathrm{~L}-13
\end{aligned}
\] & \[
\begin{aligned}
& \text { Coil - } \\
& \text { Coil }
\end{aligned}
\] & \[
\begin{align*}
& 21.75 \mathrm{Mc} . \operatorname{Trap} \\
& 25.0 \mathrm{Mc} . \mathrm{P} . \mathrm{I} . \mathrm{F} . \tag{1}
\end{align*}
\] \\
\hline PA4334-1 & & \(\mathrm{L}-14\) & Coil - & 23.8 Mc. P.I.F. (2) \\
\hline PA4326-4 & & L-15 & Coil - & 26.0 Mc. P.I.F. (3) \\
\hline PA4332-3 & & L. 16 & Choke - & 200 uh \\
\hline HK36M-271 & & L. 17 & Choke - & 600 uh \\
\hline PC40GK-104 & & L-18 & Choke - & 175 uh \\
\hline HK36M-101 & & I-19 & Coil - & 4.5 Mc. Trap \\
\hline PC40GL-103 & & L-20 & Choke - & 600 uh \\
\hline PA4328-11 & & L-25 & Coil - & 4.5 Mc. Trap \\
\hline PC4OHK-104 & * & L-30 A \& B & Coil - & Vertical \& Horizontal Yoke \\
\hline MC60F-471 & & L. 34 & Coil - & Width Control \\
\hline CC30A-470F & & L-35 & Coil - & Hor. Lin. Control \\
\hline PC4OHL-104 & & L-36 & Coil - & Horizontal Osc. \\
\hline PA4307-29 & & Lat & Choke - & Choke-Filter \\
\hline PC40GM-302 & & L-41,42 \& 43 & Choke- & Heater \\
\hline PA4326-1 & & & & \\
\hline MC60E-330 & & & & \\
\hline PA4332-4 & & T-1 & Transfor & er- Ratio Det. \\
\hline HK36M-102 & & T-2 & Transfor & er- Audio Output \\
\hline PC4OHL-203 & & T-3 & Transfor & er- Vertical Output \\
\hline PC40GK-303 & & T-4 & Transfor & - Field Block Oscillator \\
\hline PA4308-2 & & T-5 & Autotran & former \\
\hline PC4OHL-103 & & T-6 & Transfor & er-Power \\
\hline PC40HM-203 & & & & \\
\hline MC60E-680 & & & & \\
\hline PC40GM-102 & & Ion Trap & & \\
\hline PC40GL-503 & & Fuse 1/4 Amp & & \\
\hline MC60F-151
PCLOHK-254 & & R. F. Tuner & ssembly & \\
\hline
\end{tabular}

© John F. Rider


Sharation danbury
MODEE 5331 DURON M
17 INCH TABIE MODEL

\section*{DESCRIPTION}

Chassis Type 215173 is a \(17^{\prime \prime}, 21\) tube receiver with all electrical characteristics Chassis Type 210173 is chassis type 215212 .
Dual brightness, contrast and syncronization controls are employed on the front panel instead of individual controls as on the 215212 .

PARTS LIST

Tuner
Kinescope 17 HPL or \(17 \mathrm{KP4}\)
Ion Trap
R31 - Contrast Control Dual
R43- Brightness Control
R83- Vert. Hold Control
R57 - Volume Control
Knob-Infrequent Control - Inner
Knob-Infrequent Control - Outer
Knob-Fine Tuning
Knob-Dummy
nnob-Tuner Assembly
Knob-
Safety Glass
Sparton Emblem Name Plate
*Speaker -6" P.M. Round

Complete Speaker and R.F. Tuner Assemblies may be returned to Factory Service Department for repair or replacement.


Sharlfoll genhurst
MODEL S3AO MAHOGANY FINISH WHEAT
DESCRIPTION


Spartullil courtiand
model 5380 mahogany MODEL \(538^{\circ}\) LIMED OAK
21 INCH CPEN FACE CONSOL

Chassis type 215213 is a \(21^{\prime \prime}\), 21 tube receiver. All electrical characteristics are identical to that of chassis type 21S212. panel instead of individual controls as on the 215212 .
\begin{tabular}{|c|c|c|}
\hline Kinescope 21FP4A PART & LIST & PD93172-2 \\
\hline R31 - Contrast Control & Dual & PA4458 \\
\hline R43 - Brightness Control & & \\
\hline R83 - Vert. Hold Control & Dual & PA4456 \\
\hline R116 - Horiz. Hold Control & & \\
\hline R57 - Volume Control & & PA4436-4 \\
\hline Knob - Infrequent Control-Inner & (Models 5340 \& 5380 ) & PA5659-1 \\
\hline Knob - Infrequent Control-Inner & (Models 5341 \& 5381 ) & PA5659-2 \\
\hline Knob - Infrequent Control-Outer & (Models 5340 \& 5380 ) & PA5660-1 \\
\hline Knob - Infrequent Control-Outer & (Models 5341 \& 5381 ) & PA5660-2 \\
\hline Knob - Fine Tuning & (Models 5340 \& 5380 ) & PB40363-1 \\
\hline Knob - Fine Tuning & (Models 5341 \& 5381\()\) & PB40363-2 \\
\hline Knob - Dummy & (Models 5340 \& 5380 ) & PB40366-1 \\
\hline Knob - Dummy & (Models 5341 \& 5381 & PB40366-2 \\
\hline Knob - Tuner Assy. & (Models 5340 \& 5380 ) & AB43593-1 \\
\hline Knob - Tuner Assy. & (Models 5341 \& 5381 ) & AB43593-2 \\
\hline Knob -Off-On-Volume & (Models 5340 \& 5380 ) & AB43596-1 \\
\hline Knob -Off-On-Volume & (Models 5341 \& 5381) & AB43596-2 \\
\hline Mask & & PD93058 \\
\hline Safety Glass & & PB40354-3 \\
\hline Sparton Emblem Name Plate & & PB40359 \\
\hline *Speaker-6" Round & (Models 5340 \& 5341) & PC63000-43 \\
\hline *Speaker-10" Round & (Models 5380 \& 5381) & PC63000-41 \\
\hline
\end{tabular}


Sparton Derby
Model 15312 Duron Mahogany Model 15314 Duron Limed Oak
21 Inch Table Model



Sparton Dorset
Model 11322 Duron Mahogany Model 11324 Duron Limed Oak 21 Inch Console




\section*{VOLTAGE TEST SPECIFICATIONS}
1. Line Voltage \(=117\) Volts A.C.
2. Channel Switch Position \(=\) Channel \#2.
3. Brightness Control Position \(=\) Maximum Brilliance on Picture Tube.
4. Contrast Control Position = Maximum (Clockwise).
5. Horizontal and Vertical Hold Control Positions = Set correct position to lock in picture.
6. Horizontal width and Vertical Size Controls Positions = Set for Maximum Size.
7. Vertical Linearity Control Position = Set for Best Linearity.
8. Focus Control Position \(=\) Properly focused.
9. Volume Control Position \(=\) Maximum Counter-Clockwise.
10. Tone Control Position \(=\) Maximum Counter-Clockwise.
11. Instrument (Meter) used \(=\) (V T.V.M.) Vacuum Tube Volt Meter.
12. No signal input applied to set
13. Unless otherwise Designated All Voltages Measured In Respect To Chassis Ground.

NOTE: The points indicated by the letters A,B,C,D,E F \& G are the alignment test points referred to in the following ailignment procedure. These points indicate the terminals for attaching generator leads and are shown in Figure 2.
(A) Pin \#5 of V2 \((6 \mathrm{~J} 6)\) osc. \& Mixer Tube. Apply signals here for spot I.F. alignment ar I.F. sweep.
(B) Diode Load Resistor

Read D.C. output here for spot I.F. alignment.
Connect scope here for visual i r. alignment.
Apply 4.5 Mc . here for sound I. F . trap alignment.
(C) Cathode of Picture Tube

Read A.C. output ere for overall sensitivity.
Read 4.5 Mc . output here for aligning 4.5 Mc . trap.
(D) Ratio Det. Output

Read D.C. here for alignment of sound take-off trap inter-stage sound I.F. transformer and primary of Ratio Det. Trans.
(E) Ratio Det. Balanced Output Read D.C. here for alignment of secondary of Ratio Det. Trans.
(F) A.G.C. Line

Apply 4.5 volts bias here for visual check of I.F. or overall with oscilloscope.
(G) Appl minus 3 volts through 220K Ohms to test terminal, located between the tubes on top of R.F. Tuner (See Fig. 3)
voltage chart and alignment test points



TEST EQUIPMENT: In order to align and service Sparton television receivers properly
FIRST: AN R.F. SWEEP GENERATOR or reliable quality that performs the following functions:
. Provides sweep outputs in the following frequency ranges:
\[
\begin{array}{ll}
19 \text { to } 30 \mathrm{Mc} . & 10 \mathrm{Mc} . \text { sweep width } \\
40 \text { to } 90 \mathrm{Mc} & 10 \mathrm{Mc} \text {. sweep width } \\
170 \text { to } 225 \mathrm{Mc} . & 10 \mathrm{Mc} . \text { sweep width }
\end{array}
\]
B. Provides an output signal that can be varied by means of an attenuator up to a maximum of at least .l volt.

SECOND: AN R.F. SIGNAL GENERATOR That will provide an adjustable output signal up to a maximum of at least . 1 volt on the following fixed frequencies:
A. I.F. Frequencies
21.75 Mc.
22.5 Mc.
25.25 Mc.
24.25 Mc.
23.25 Mc.
26.0 Mc.
26.25 Mc.
4.5 Mc.
27.75 Mc.

Sound Trap
Sound Trap
lst Video I.F. Coil
2nd Video I.F. Coil
3rd Video I.F. Coil
4th Video I.F. Coil
Picture I.F. Carrier
Adjacent Channel Sound Trap
B. R. F. Frequencies Channel No.


Picture Carrie
Sound Carrier
59.75 Mc.
65.75 Mc.
71.75 Mc.
81.75 Mc.
87.75 Mc.
179.75 Mc.
185.75 Mc.
191.75 Mc.
197.75 Mc
203.75 Mc
2095
215.75 Mc.
215.75 Mc

THIRD: A CATHODE-RAY OSCILLOSCOPE of good quality that has a fairly wide band vertical amplifier and a low capacity input probe.

FOURTH: AN ELECTRONIC VOLTMETER with ranges to read IV. DC, 10V. DC and 7V. AC at 400 cycles and 4.5 Mc .
FIFTH: A CRYSTAL CALIBRATOR that can be used for checks on the accuracy of the output frequencies of the R.F. signal generator

GENERAL INSTRUCTIONS: Practically all servicing with the exception of some tube replacement will require removal of the receiver chassis from the cabinet.
A convenient arrangement that makes both the top and bottom of the chassis accessible or alignment and servicing can be realized by orienting the receiver chassis in such manner that it rests on its side and on the horizontal output shield can.
ALIGNMENT REQUIREMENTS: Under normal conditions complete receiver realignment will eldom be necessary in the field. However, a detailed description of the overall alignment procedure is included to provide all necessary information if it should be required.

In general it is not recommended that the R.F. and the converter circuits of the R.F. tuner be realigned by the service engineer unless absolutely necessary. In cases where tuner components have been damaged or where complete realignment is indicated, the R.F. tuner assembly should be removed from the chassis and sent back to th

When the new R.F. unit is assembled to the chassis it will be necessary in all
cases to realign L6 which is located on the tuner chassis. Normally this is the nly adjustment that will be required with tuner change but a check on overall reieeiver alignment and sensitivity should be made for the sake of certainty and assured customer satisfaction.

EFFECTS OF TUBE REPLACEMENT ON THE ALIGNMENT OF R.F. TUNER CIRCUITS: The alignment of the R.F. and converter circuits of the R.F. tuner is critical and may be affected by a tube change. In cases where these tubes (6BK7 or 6J6) are replaced, it will be necessary for the service engineer to check for satisfactory receiver operation if realignment is indicated it can usually be avoided by selection of replacement tubes until correct receiver operation is realized.
ORDER OF ALIGNMENT: When complete receiver realignment is indicated it should be performed in the following order:
```

1. Sound Traps
2. Picture I.F
3. Sound I.F. and 4.5 Mc. Trap
4. Retouch Picture I.F.
5. Sound and Picture I.F. Sensitivity Check
6. R.F. and Converter Circuits (not recommended)
7. Overall Sensitivity Check
```

PRELIMINARY ADJUSTMENTS: Before alignment the receiver controls should be adjusted to the approximated operation positions specified in the table below. The controls should the approximated operation positions specified in the table specified.

Contrast Control - to maximum clockwise
Brightness Control - to position where raster is visible on
Focus Control - to position where focus is obtained
Vertical Hold - to center position
Vertical Linearity
Horizontal Hold adjusted to give normal raster height adjusted to give adjusted to give normal raster widch

\section*{ALIGNMENT PROCEDURE}

TEST EQUIPMENT SET UP: A certain amount of experimentation must be employed to secure stable test set up bere alienment or service of the receiver is attempted. It is recommended that the top of the test bench be covered with a sheet of aluminum to recommended that the top of the test bench be covered with a insure good grounds between the various pieces of test equipment and the receiver as much as possible.
SOUND TRAP ALIGNMENT: FIRST, Connect the R.F. signal generator to the grid of V-2 by means of the I.F. input adapter as shown in Figure 5 .


Figure 5 I. F. Input Adapter

\section*{© John F. Rider}

\section*{ALIGNMENT PROCEDURE（CONT＇D）}

SECOND：Set the R．F．tuner to Channel \＃l3．
THIRD：Connect a 4.5 volt bias battery between the A．G．C．buss（Point F．Fig．2）and chassis ground so that the voltage on the A．G．C．buss is -4.5 volts in respect to the chassis．Remove A．G．C．tube（6AU6）V8．
FOURTH：Connect the electronic voltmeter across the picture detector load resistor
IFTH：Set the R．F．signal generator to the frequency show below and tune the specified adjustment for minimum indication on the voltmeter．It is advisable to check certain that it is exactly on frequency．

> 21.75 Mc . L12(Top of chassis as shown in Figure 3

PICTURE I．F．ALIGNMENT：
FIRST：Connect the R．F．signal generator，voltmeter and
年 alignment instructions．
SECOND：－Set the signal generator to each of the following frequencies
specified adjustments for maximum indication of the voltmeter．
\begin{tabular}{lll}
22.5 Mc. & \(\mathrm{L6}\) & （Top of tuner as shown in Fig．3） \\
25.25 Mc. & Ll3 & （Top of chassis as shown in Fig．3） \\
24.25 Mc ．Ll4 & （Top of chassis as shown in Fig．3） \\
23.25 Mc ．Ll5 & （Top of chassis as shown in Fig．3） \\
26.0 Mc ．Ll7 & （Top of chassis as shown in Fig．3）
\end{tabular}

SOUND I．F．ALIGNNENT：FIRST：Connect the R．F．signal generator to Point B，Fig． 2.
SECOND：Set the signal generator accurately to 4.5 Mc ．This is very important because the picture and sound carriers sent out from the television stations are xactly 4．5 i．c．apart．
THIRD：Connect the electronic voltmeter across R65 from Point D to ground as Set the voltmeter on the 10 volt scale．

FOURTH：Peak the following coils for maximum reading on the voltmeter．
L 27 Top of chassis as shown in Fig． 3.
T 6 Top of chassis as shown in.\(~\)
T 6 op of chassis as shown in Fig．3．
T 7 （pri．Ratio Det）Top of chassis as shown in Pig． 3.
RATIO DETECTOR TRANSFORMER ALIGNMENT：FIRST：Connect the R．F．signal generator to the receiver as described in Step 1 of the Sound I．F．Alignment instructions．

SECCND：Connect the electronic voltmeter from Point E，Fig． 2 to ground． Set the voltmeter on the lowest DC scale．
THIRD：Set the signal generator output to 4.5 Mc ．Adjust the secondary of \(T 7\) produce a positive or negative voltage indication on the meter ty varying this adjustment．As the voltage swings from positive to negative，adjust T7 for zero output as indicated by the voltmeter．This point is called zero ratio detector output and indicates correct alignment of T7 transformer．If the secondary primary as described in the preceeding section on sound I．F．alignment． 4.5 Mc ．TRAP ALIGNMENT FIRST：Connect the R．F．signal generator as described in Step 1 of the sound I．F．alignment．
SECOND：Connect the electronic voltmeter from the cathode of the picture tube to ground（Point C Fig．2） 1 to 2 volts．

THIRD：Peak L22（Top of chassis as shown in Fig．3）for minimum output on the voltmeter．
PICTURE I．F．TOUCH UP：Connect the R．F．sweep generator output to the grid of
SECOND：Apply bias to A．G．C．line as described in Step 3 of sound trap alignment．
SECOND：Apply bias to A．G．C．\＃line

\section*{ALIGNMENT PROCEDURE（CONT＇D）}

THIRD：Connect the oscilloscope across the picture detector load resistor R37 in Figure 6．


\section*{FIGURE 6 FILTER SYSTEM FOR SCOPE CONNECTION}

FOURTH：Set the R．F．sweep generator so that it sweeps from approximately 20 to 30 Mc ．
FIFTH：Adjust the oscilloscope so that the swept I．F．response is visible on the
SIXTH：Loosely couple the output of the R．F．signal generator to the grid of V－2 so that the marker signals of proper frequency can be mixed in with the R．F． sweep signal．
SEVENTH：Observe the band width，relative position of the plcture carrier，and flatness of the overall．I．F．response curve．If necessary slightly vary the tuning of the picture I．F．coils L6，L13，L14，L15，Ll7 until the picture I．F．response shown in Figure 7 is obtained．The solid curve in Figure 7 depicts the


\section*{FIGURE 7 IDEAL I．F．RESPONSE WITH PERMISSABLE VARIATIONS}

The picture I．F．carrier should appear approximately half way down the I．F．response curve as shown in Figure 7 ．Variation in the pix carrier position should not expeed
tlo；from the half way point．

PICTURE I．F．SENSITIVITY CHECK：FIRST：Connect the R．F．signal generator to the making senoitivity checks no bias battery is connected then信

SECOND：Connect the electronic voltmeter across the picture detector ioad resistor r37 Point B，Fig． 2 and set the meter on the low D．C．volts scale．
THIRD：Set the generator output frequency at approximately 23 Mc ．Adjust the generator output until the voltmeter reads approximately 1.0 volt． the generator output frequency set at 24.2 and 25.4 Mc ．In all cases the I．F．input voltage should be 100 Microvolts or less．The sensitivity at the I．F．picture carrier 26.25 Mc ．Should be approximately half of the If the generator output is not calibrated in microvoltsoits．）
sensitivity measurements can be made by using another receiver comparive known to be in good operating condition as a standard．This applies to all sensitivity measurements and good results can be obtained if

\section*{R.F. TUNER (S.W. CO. PART NO. PD93158}

Sparton chassis type 25D173A is equipped with a standard coil R.F. tuner (Ser:es 2000). With exception to L-6 slug ( \(\because 2.5 \mathrm{Mc}\).) as shown in Fig. 3, field alignment for this tune. has been pirposely mitted from the alignment procedure. Factory experience dictates test equipment is required. Therefore any R.F. tuner adjustment in the field should be held to a minimum.

Field Alignment for Standard Coil Tuners has appeared in some set manufacturers service manuals; it is not recommended by our Engineering Department.
After receiver analysis proves the R.F. tuner to ke defective, and in need of realignment, the complete tuner assembly (with tubes) should be
returned to our Factory Service Department for repair or replacement.

\section*{DESCRIPTION}


WHEN ORDERING PARTS ALWAYS SPECIFY PART NUMBER AND MODEL FOR WHICH PART IS INTENDED

DESCRIPTION
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{20}{*}{}} \\
\hline & \\
\hline
\end{tabular}

Choke-Filter

Transformer- Sound I.F.
Transformer- Ratio Det.
Transformer- Audio Output
Transformer-Vert. Block Osc.
Transformer- Horiz. Auto.
Transformer- Power
** R.F. Tuner Assembly (Cascode)
Rinescope \((17 \mathrm{HPL})\)
Kinescope \((17 \mathrm{KP4})\)
Ion Trap
Ion Trap
Knob-Inf. Control - Inner (Models 5325 \& 5362 )
Knob-Inf. Control - Inner
Knob-Inf. Control - Outer
Knob-Inf. Control - Outer
Knob-Inf. Control -
Knob-Tone Control -
Knob-Fine Tuning
Knob-Fine Tuning -Knob-Channel Tuning nob-Chanin- uuning nob-Off-On-Volume
Sparton Emblem
Sparton Emblem
Mask (Models
Mask
Mask
(Models
53
5325 \& 53363 ) 5326 )
Safety Glass
Safety Glass
**
\(* *\)\(\quad\) Speaker-6" Round

PART NO.

AA6667-5
AA6684-4
AB4
AB4066-3
AB4 \(062-7\)
AB4 \(706-4\)
PC70015
AB4 \(4030-1\)

PD93158
PD93158
PD93167-1 \& 16
PD
PD93168-11
PA124
\(\& 16\)
* Deflection Yoke Coil PC70016 supplied only as complete assembly.
** Complete speaker \&R.F. Tuner Assemblies may be returned to Factory Service Department for repair or replacement



OJohn F. Rider


© John F. Rider

\section*{BRIEF DESCRIPTION}


TELEVISION CHASSIS TYPE 26SSI72 is a twenty-six tube standard chassis with a \(\frac{\text { TELEVISION }}{\text { self-contained power supply, an Electro-magnet type focusing system, and uses a }}\) self-contained power supply, an Electro-magnet type focusing system, and uses superior long-range reception. The Ultra-Tuner will receive telecasts on all present channels and, with the insertion of simple tuner strips on new U.H.F. present channels.

TELEVISION CHASSIS TYPE 26SSI72A is equipped as described above, however,
relocation of both the operating and non-operating controls accounts for the difference in chassis type designation.

NOTE: For the reason stated above this chassis may not be interchanged with chassis type 26 SSl 72 SPECIAL NOTE

Initial production of the above chassis included a color socket, which thru use of a convertor, would have permitted the reception of color television. ational Production Authority Order M-90 prohibited the use of such a device therefore, in order to conform to the terms of Order M-90 the use of the includes the hook-up of the col However then

A knock-out plug has been retained in the chassis for future use when color knock-out plug has been retained in the ch



VOLTAGE TEST SPECIFICATIONS
1. Line Voltage \(=217\) Volts A.C.
2. Channel Switch Position = Channel \#2.
3. Brightness Control Position = Maximum Prilliance on Picture Tube.
4. Contrast Control Position \(=\) Maximum (Clockwise).
5. Horizontal and Vertical Hold Control Positions = Set correct position to lock in picture.
6. Horizontal width and Vertical Size Controls Positions \(=\) Set for Maximum Size.
7. Vertical Linearity Control Position = Set for Best Linearity.
8. Focus Control Position \(=\) Properly focused.
9. Volume Control Position \(=\) Maximum Counter-Clockwise.
10. Tone Control Position = Maximum Counter-Clockwise.
11. Instrument (Meter) used \(=\) (V.T.V.M.) Vacuum Tube Volt Meter.

CHASSIS TYPE 26SSI72 \& 26SSIT2A

12. No signal input applied to set.
13. Unless otherwise Designated All Voltages Measured In Respect To Chassis Ground.

NOTE: The points indicated by the letters \(A, B, C, D, E, F \& G\) are the alignment test points referred to in the following alignment procedure. are shown in Figure 2 .
(A) Pin \#5 of V2 ( 0 Jb ) osc. \& Mixer Tube Apply signals here for spot I.F. alignment or I.F. sweep
(B) Diode Load Resistor

Read D.C. output here for spot I.F. alignment.
Connect scope here for visual I.F. alignment.
Apply 4.5 Mc . here for sound I.F. trap alignment
(C) Cathode of Picture Tube

Read 4.5 Mc . output here for aligning 4.5 Mc . trap
(D) Ratio Det. Output
for alignment of sound take-off trap, inter-stage sound I.F. transformer and primary of Ratio Det. Trans.
(E) Ratio Det. Balanced Output

Read D.C. here for alignment of secondary of Ratio Det. Trans.
(F) A.G.C. Line

5 fols bias here for visual check of I.F. or overall with oscilloscope.
(G) Apply minus 3 volts through 220K Ohms to test terminal, located between the tubes on top of R.F. Tuner (See Fig. 3).

\section*{ELECTRICAL AND MECHANICAL SPECIFICATIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{R. F. FSECUENCY RANGE} & \multicolumn{2}{|r|}{TUBE COMPLEMENT} \\
\hline Channel & Channel & Picture & Sound & Receiver & TUBE & TYPE &  \\
\hline \multirow[t]{2}{*}{Number} & Freq.Mc. & Carrier Freq.Mc. & Carrier Freq.Mc. & R.F. Osc. Freq.Mc. & V1 & 6AG5 & \begin{tabular}{l}
R.F. Amplifier \\
Osc. \& Mixer
\end{tabular} \\
\hline & & & & & V3 & 6CB6 & lst I.F. Amplifier \\
\hline 2 & 54-60 & 55.25 & 59.75 & 81.5 & \(V_{4}\) & 6BA6 & 2nd I.F. Amplifier \\
\hline & \(60-66\) & 61.25 & 65.75 & 87.5 & V5 & 6BA6 & 3rd I.F. Amplifier \\
\hline 4 & 66-72 & 67.25 & 71.75 & 93.5 & v6 & 6CB6 & 4 th I.F. Amplifier \\
\hline 6 & \(76-82\)
\(82-88\) & 77.25
83.25 & 81.75
87.75 & 103.5
109.5 & \(\checkmark 7\) & 6AL5 & Video Detector \\
\hline 7 & 174-180 & 175.25 & 179.75 & 201.5 & 88 & 6aub & A.G.C. \({ }^{\text {a }}\) \\
\hline 8 & 180-186 & 181.25 & 185.75 & 207.5 & V10 & 17BPLA & Picture Tube \\
\hline 9 & 186-192 & 187.25 & 191.75 & 213.5 & V11 & 6AU6 & lst Sound I.F. \\
\hline 10 & 192-198 & 193.25 & 197.75 & 219.5 & V12 & 6aU6 & 2nd Sound I.F. \\
\hline \multirow[t]{2}{*}{11} & 198-204 & 199.25 & 203.75 & 225.5 & V13 & 6aL5 & Ratio Detector \\
\hline & 204-210 & 205.25 & 209.75 & 231.5 & V14 & 6at6 & Audio Amplifier \\
\hline \multirow[t]{2}{*}{13} & 210-216 & 211.25 & 215.75 & 237.5 & V15 & 6V6GT & Power Amplifier \\
\hline & \multicolumn{4}{|c|}{POWER SUPPLY RâTING} & V16
V17 & \[
\begin{aligned}
& 12 \mathrm{AU} 7 \\
& 6 \mathrm{SN} 7 \mathrm{GT}
\end{aligned}
\] & Sync.Strip. Amp. \& Clipper Vert. Osc. Disc.\& Phase \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{117 Volts................. 60 Cycles... 250 Watts}} & V18 & 6V6GT & Splitter Vertical Output \\
\hline & & & & & V19 & 6WLGT & Damper Tube \\
\hline \multicolumn{5}{|c|}{AUDIO POWER OUTPUT RATING} & v20 & 183GT & Hi-Voltage Rectifier \\
\hline \multirow[t]{4}{*}{Maximu} & & & & & V21 & 6BQ6GT & Horizontal Output \\
\hline & Undist & & & 2.5 Watts & V22 & 6BQ6GT & Horizontal Output \\
\hline & & & SFEAKERS & & V23 & 6SN7GT & Horiz. Osc. \& Disc. Tube \\
\hline & \multicolumn{4}{|c|}{LOUD SFEAKERS} & V24 & 6AL5 & Horiz. Phase Detector \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Model 5207 \& 5208..........................5nP.M.Round Models 5262 \&5263...........................10"P.M.Round}} & V25 & 593 GT & Lo-Voltage Rectifier \\
\hline & & & & & & & Med. Voltage Rectirier \\
\hline Voice & Coil Impe & rce...3.2 &  & 00 Cycles & & OPERA & FRONT PANEL \\
\hline \multicolumn{6}{|c|}{PICTURE I.F. FREQUENCIES} & & Volume............... \\
\hline & & & & & & & Vertical Hold....... \\
\hline \multicolumn{6}{|l|}{Picture Carrier Frequency........ 26.25 Mc.} & & Horiz. Hold.......... \\
\hline \multicolumn{6}{|l|}{Accompanying Sound Traps..........21.75 Mc.} & & Brightness........... \\
\hline \multicolumn{6}{|c|}{\multirow[t]{2}{*}{SOUND I.F. FREQUENCIES}} & & Channel Tuning. \\
\hline & & & & & & & Fine Tuning.... \\
\hline \multicolumn{6}{|l|}{Sound Carrier Frequency........... 4.5 Mc.} & NON- & OPERATING CONTROLS \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Sound Discriminator Band Width \\
(Between Peaks) .................... 200 Kc.
\end{tabular}} & iNot Inc & luding R.F. \& I.F. Adjust) \\
\hline \multicolumn{6}{|l|}{Video Response.......................to 4 Mc.} & Chassis & 26SS172 Chassis 26SS172A \\
\hline \multicolumn{6}{|l|}{Focus................................. Magnetic} & & Focus........ \\
\hline \multicolumn{6}{|l|}{Sweep Deflection. . . . . . . . . . . . . . . . Magnetic} & & Vert. Size... \\
\hline \multicolumn{6}{|l|}{Scanning.....Interlaced 525 Lines} & & Vert. Lin.... \\
\hline \multicolumn{6}{|l|}{Horizontal Scanning Frequency.....15,750 Cps.} & & Horiz.Width.. \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Vertical Scanning Frequency.............. 60 Cps. Frame Frequency (Picture Repetition Rate)}} & & Horiz.Cent... \\
\hline & & & & & & & Horiz.Drive.. \\
\hline \multicolumn{6}{|l|}{Receiver Antenna Input Impedance.....300 30 Cps .} & & Horiz.Osc.... \\
\hline Recei & Antenn & Input Imp & dance... & 300 Ohms alanced & & & Defl. Coil... \\
\hline
\end{tabular}

CBASBIS TYPE 26SS172



ALIGNMENT EQUIPMENT AND TEST SET UP

TEST EQUIPMENT: In order to align and service Sparton television receivers properly保
FIKST: AN K.F. SWEEP GENERATOR of reliable quality that performs the following
A. Provides sweep outputs in the following frequency ranges:
19 to 30 Mc.
40 to 90 Mc .
10 Mic. sweep width
40 to \(90 \mathrm{Mc}\).
170 to 225 Mic .
10 Mc . sweep width

Provides an output signal that can be varied by means of an attenuato up to a maximum of at least .l volt.

SECOND: AN R.F. SIGNAL GENERATOR that will provide an ad justable output signal up to a maximum of at least. .1 volt on the following fixed frequencies
A. I.F. Frequencies
21.75 Mc.
22.5 Mc.
25.25 Mc.
24.25 Mc.
23.25 Mc.
26.0 Mc.
26.25 Mc.

Sound Trap
lst Video I.F.Coil
3nd Video I.F.Coil
4th Video I.F.Coil
5th Video I.F.Coil
Picture I.F. Carrier
Sound I.F. \& Traps
B. R.F. Frequencies R.F. Frequenc
Picture Carrier
\(55.25 \mathrm{Mc}\).
\(61.25 \mathrm{Mc}\).
\(67.25 \mathrm{Mc}\).
\(77.25 \mathrm{Mc}\).
\(83.25 \mathrm{Mc}\).
\(175.25 \mathrm{Mc}\).
\(181.25 \mathrm{Mc}\).
\(187.25 \mathrm{Mc}\).
\(193.25 \mathrm{Mc}\).
\(199.25 \mathrm{Mc}\).
\(205.25 \mathrm{Mc}\).
211.25 Mc.

Sound Carrier
annel
2
3
3
4
5
6
7
8
9
9
10
11
12
13
59.75 Mc.
65.75 Mc .
61.75 Mc
71.75
81.75 Mc
87.75 Mc
87.75 Mc
179.75 Mc
185.75 Mc
185.75 Mc
191.75 Mc
197.75 Mc
197.75 Mc
203.75 Nc
209.75 Mc .
209.75 Mic

THIRD: A CATHODE-RAY OSCILLOSCOPE of good quality that has a fairly wide band vertical amplifier and a low capacity input probe.

FOURTH: AN ELECTRONIC VOLTTETER with ranges to read \(1 V . D C, 10 V . D C\) and
FIFTH: A CHYSTAL CALIBRATOR that can be used for checks on the accuracy of the output frequencies of the R.F. Signal generator.

GENERAL INSTRUCTIONS: Practically all servicing with the exception of some tube replacement will require removal of the receiver chassis from the cabinet.

A convenient arrangement that makes both the top and bottom of the chassis accessibl for alignment and servicing can be realized by orienting the receiver chassis in such a manner that it rests on its side and on the horizontal output shield can.

ALIGNMENT REQUIREMENTS: Under normal conditions complete receiver realignment will seldom be necessary in the field. however, a detailed description of the overall alignment procedure is included to provide all necessary information if it should be required.

In general it is not recommend that the R.F. and the converter circuits of the R.F. tuner be realigned by the service engineer unless absolutely necessary. In cases where tuner components have been damaged or where complete realignment is indicated, the R.F. tuner assembly shovid be removed from the chassis and sent back to th factory in exchange for a new unit which will be shipped complete with tubes. in all ases to realign 16 which is located on the tuner chassis. Normally this is the only adjustment that will be required with tuner change but a check on overall receiver alignment and sensitivity should be made for the sake of certainty and assured customer satisfaction
EFFECTS OF TURE REFLACENENT ON THE ALIGNMENT OF R.F. TUNER CIRCUITS: The alignment of the R.F. and converter circuits of the R.F tuner is critical and may be affected by a tube change. In cases where these tubes (6AG5 or 6J6) are replaced it will be necessary for the service engineer to check for satisfactory receiver operation. If realignment is indicated it can usually be avoided by selection of replacement tubes until correct receiver operation is realized.

ORDER OF ALIGNMENT: When complete receiver realignment is indicated it should be performed in the following order:
\[
\begin{aligned}
& \text { 1. Sound Traps } \\
& \text { 2. Pictura I.F. } \\
& \text { 3. Sound I.F. and } 4.5 \mathrm{Mc} \text {. Trap } \\
& \text { 4. Ratio Detector Transformer } \\
& \text { 5. Retcuch Ficture I. F. } \\
& \text { 6. Sound and Picture I. Fensitivity Check } \\
& \text { 7. R. F. and Converter Circuits (not recommended) } \\
& \text { 8. Overall Sensitivity Check }
\end{aligned}
\]

PRELIMINARY ADJUSTNENTS: Before alignment the receiver controls should be adjusted to Fe approximated operation positions specified in the table below. The controls shoulc remain in these positions for all checks unless otherwise specified.

Contrast Control - to center position
Brightness Control - to position where raster is visible on
the kinescope Brightness Control - to position kine
Vertical hold - to center position
Vertical Linearity - to center position \(\quad\) vertical Size - adjusted to give normal raster height
Vertical Size - adjusted to give normal raster height
Horizontal Hold - to center position Horizontal Centering- to center raster on tube

\section*{ALIGNMENT PROCEDURE}

TEST EQUIPMENT SET UP: A certain amcunt of experimentation must be employed to secure stame test set up nefore alignment or service of the receiver is attempted. It is ecomended that the top of the test bench be covered with a sheet of aluminum to chassis. In general all test signal input leads should be kept away from output leads as much as possible.
SOUND 'TRAP ALIGNMENT: FIRST, Connect the R.F. signal generator to the grid of V-2 y means of the I. F. input adapter as shown in Figure 6.


\section*{Figure 6 I.F. Input Adapter}

SECOND: Set the R.F. tuner to Channel \#13.
THIRD: Connect a 4.5 volt bias battery between the A.G.C. buss (Point F. Fig. 2) and hassis ground so that the voltage on the A.G.C. buss is -4.5 volts in respect to chassis ground

FOURTH: Connect the electronic voltmeter across the picture detector load resistor R37. Point B, \(515 z\) and set the voizmeter on the low D.C. volt scale.

FIFTH: Set the R.F. sipnal generator to the frequency shown below and tune th specified adjustment for minimum indication on the voltmeter. advisable to crieck the output of the generator
21.75 Mc. Ll2 (Top of chassis as shown in

PICTURE I.F. ALIGNMENT: FIRST: Connect the R.F. Signal generator, voltmeter and las battery to the rec
lignment instructions.
secciv: Set the simal gererator to each of the following frequencies and peak the specified adjustments for maximum indication of the voltmeter.


SOUND I.F. ALIGNMENA: FIRST: Connect the R.F. signal generator to Point B, Fig. 2 SECOND: Set the signal generator accurately to 4.5 Mc . This is very important because the picture and sound carriers sent out from the television stations are exactly 4.5 Mc . apart.

THIRD: Connect the electronic voltmeter across C7l from Point D to ground as shown in Fig. 2 ,

FOURTH: Peak the following coils for maximum reading on the voltmeter.
L 27 Top of chassis as shown in Fig.
T 6 Top of chassis as shown in Fig.
3
T \(7 \quad \begin{aligned} & \text { Bottom of chassis as shown in Fig. } \\ & \text { (Pri Ratio Det) Top of chassis as shown in Fig. } 3 .\end{aligned}\)
RATIO DETECTOR TRANSFORMER ALIGNMENT: FIRST: Connect the R.F. signal generator to the receiver as described in Step I of the Sound I.F. Alignment instructions.

SECOND: Connect the electronic voltmeter from Point E, Fig. 2 to ground Set the voltmeter on the lowest DC scale.
THIRD: \(S e^{+}\)the signal generator 0 t.put 504.5 Yic . Adjust the secondary of \(T 7\) produce a positive or negative voltage indication on the meter by varying this adjustment. As the voltage swings from positive to negative, adjust \(T 7\) for zero output as indicated by the voltmeter. This point is called zero ratio detector output and indicates correct alignment of \(T 7\) transformer. If the secondary of \(T 7\) is found to be way out of alignment it will be necessary to re-peak the primary as described in the preceeding section on sound I.F. aligniment
4.5 MC . TRAP ALIGNMENI FIRST: Connect the R.F. signal generator as described in Step 1 of the sound I.F. alignment.

SECOVD: Connect the electronic voltmeter from the cathode of the picture tube
to ground (Point C Fig. 2)
The voltmeter must be capable of giving a reading at 4.5 Mc . at approximately 1 ta 2 volts.

THIRD: Peak L22 (Top of chassis as show in Fig. 3) for minimum output OH the voltmeter.

\section*{ALIGNMENT PROCEDURE (CONT'D)}

\section*{PICTURE I.F. TOUCH UP: Connect the R.F. Sweep generator output to the grid of -2 by means of the I.F. input adapter shown in Figure 6 .}

SECOND: Apply bias to A.G.C. Iine as described in Step 3 of sound trap alignment.
THIRD: Connect the oscilloscope across the picture detector load resistor R3 (Point b Fig. 2) by means of the shielded cable and the filter system shown in Figure 7.


FIgure 7 FILTER SYSTEM FOR SCOPE CONNECTION
FOURTH: Set the R.F. sweep generator so that it sweeps from approximately 20 to 30 Mc . Adjust the oscilloscope so that the swept I.F. response is visible on the

Loosely couple the output of the R.F. signal generator to the grid of V-2 so that the marker signals of proper frequency can be mixed in with the R.F. sweep signal.
SEVENTH: Observe the band width, relative position of the picture carrier, and flatness of the overall I.F. response curve. If necessary slightly vary the tuning of the picture I.F. coils 16, Ll3, L14, L15, Ll7 until the picture I.F. response shown in Figure 8 is obtained. The solid curve in Figure 8 depicts

\section*{ALIGNMENT PROCEDURE (CONT'D)}


Figure 8 IDEAL I.F. RESPONSE WITH PERMISSABLE VARIATIONS
The picture I.F. carrier should appear approximately half way down the I.F. response curve as shown in Figure 8 . Variation in the pix carrier position

PICTURE I.F. SFNSITIVITY CHECK: FIRST: Connect the R.F. signal generator to the receiver ds specified in Steps I and 2 of the sound trap alignment instructions. (When making sensitivity checks no bias battery is connected

保
SECOND: Connect the electronic voltmeter across the picture detector load resistor R37 Point A, Fig. 2 and set the meter on the low D.C. volt scale.

THIRD:
Set the generator output frequency at approximately 23 Mc . Adjust the generator output until the voltmeter reads approximately 1.0 volt. Record the f.F. signal input in microvolts. Repeat the procedure with the generat \(r\) output frequency set at 24.2 and 25.4 Mc. In all cases t.e 1. F. irput vol age should be 100 microvolts or less The rersitivity at the I F picture arrier 26.25 Mc . should je approxiratily hadf of the I.F. Sensitivity between 24.2
Mc. (Maximum of 100 mxcrovolts) If the generator output is not calibrated in microvolts comparative sensitivity measurements can be made by using another receiver that is known to be in good operating condition as a standard. This applies to all sensitivity measurements and good results can be obtained if
sufficient care is used.
R.F.TUNER
(S.W. Co. Part No. PD93157)

Sparton Chassis types 26SS172 \& 26SS172A are equipped with a standard coil R.F. tuner (Type 1311) With exception to L-6 slug ( 22.5 Mc .) as shown in Fig. 3, page 28, fleld aligament for this tuner has been purposely omitted from the alignment procedure. Factory experience dictates that this unit can not be properly aligned in the field as special test equipment is required Therefore any R.F. suner adjustment in the field should be held

Field Alignment for Standard Coil tuners has appeared in some set manufacturers service manuals; it is not recommended b. our Eng. Dept. After receiver analysis proves the \(R\) F. tuner to be def ctive, and in need to our Factory Service Department for repair or


WHEN ORDERING PARTS ALWAYS SPECIFY PART NUMBER AND MODEL FOR WHICH PART IS INTENDED•



 7＂Toloviiten Console

\section*{BRIEF DESCRIPTION}


Sparton rutiedge
MODEL 5268 MAHOGANY
17 INCH TEIEVISION CONSOI

TELEVISION CHASSIS TYPE 26SD172 is a twenty－six tube＂Deluxe＂chassi with a self－contained power supply，an electro－magnet type focusing system，full range tone control，built－in adjustable Dipole antenn and uses a 17BP4A picture tube．This chassis is equipped with the Sparton Ultra－tuner for superior long range reception．The witra－ insertion of simple tuner strips on new U．H．F．channels．
ELEVISION CHASSIS TYPE 26SD172A is equipped as described above owever relocation of both the operating and non－operating controls accounts for the difference in chassis type designation．

NOTE：For the reason stated above this chassis may not be inter
changed with chassis type 26SD172．



© John F. Rider

\section*{BRIEF DESCRIPTION}
TELEVISION CHASSIS TYPE 26SSI72B is a twenty-six tube "Standard" chassis with a self-contained power supply and uses a 17BP4A picture tube. This chassis is equipped with a line cord antenna and uses an Electro-magnet type focusing system.

\section*{SPECTAL NOTE}
Initial production of the above chassis included a color socket, which thru use of a convertor, would have permitted the reception of color television. National Production Authority Order M-90 prohibited the use of such a device, therefore, in order to conform to the terms of Order M-90 the use of the color socket was discontinued. However the accompanying Schematic diagran
A knock-out plug has been retained in the chassis for future use when color television is again available to the Public.

R. F. FREQUENCY RANGE

TUBE COMPIENS

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
PICTURE I.F. FREQUENCIES \\
Picture Carrier Frequency.....26.25 Mc. Accompanying Sound Traps.....21.75 Mc.
SOUND I.F. FREQUENCIES \\
Sound Carrier Frequency.........4.5 Mc. Sound Discriminator Band Width \\
(Between Peaks).................. 200 Kc . \\
Video Response...................to 4 Mc. \\
Focus........................................... \\
Sweep Deflection...............Magnetic \\
Scanning...........Interiaced 525 Lines \\
Horizontal Scanning Frequency..15,750 Cps. \\
Vertical Scanning Frequency.......... 60 Cps. \\
Frame Frequency (Picture Repetition Rate) \\
Receiver Antenna Input Impedance.. 300 Ohms. Belanced \\
Volume ............. \\
Vert. Hold........ \\
Horiz. Hold...... \\
Brigitness....... \\
Contrast.......... \\
Channel Tuning... \\
NON-OPERATING CONTROLS \\
(Not including R.F. \& I.F. Adjust) \\
Focus............. \\
Vert. Size........ \\
Vert. Lin......... \\
Horiz. Width..... \\
Horiz. Cent....... \\
Horiz. Drive..... \\
Horiz. Osc........ \\
Defl. Coil......... \\
VOLTAGE TEST SPECIFICATIONS \\
1. Line Voltage \(=117\) Volts A.C. \\
2. Channel Switch Position = Channel \#2. \\
3. Brightness Control Position \(=\) Maximum Brilliance on Picture Tube. \\
Contrast Control Position = Maximum (Clockwise). \\
Horizontal and Vertical Hold Control Positions = Set correct position to lock in picture. \\
6. Horizontal width and Vertical Size Controls Positions = Set for Haximum Size. \\
7. Horizontal and vertical Linearity Control Position = Set for Best Linearity. \\
R. Focus Control Position = Properly focused. \\
9. Volume Control Position \(=\) L:aximum Counter-Clockwise. \\
10. Tone Control Position \(=\) Maximum Counter-Clockwise. \\
11. Instrument (Meter) used \(=\) (V.T.V.M.) Vacuum Tube Volt Meter. \\
12. No signal input applied to set. \\
13. Unless Otherwise Designated All Voltages Measured In Respect To Chassis Ground. \\
NOTE: The Points indicated by the letters A, B, C, E \& F F are the alignment test points referred to in the following alignment procedure. These points indicate the terminals for attaching Generator Leads and are shown in Figure 4 on the reverse side of this sheet. \\
(A) Pin \#2 of 12 AT7 \\
Apply signals here for spot I.F. alignmert or I.F. sweep. Apply -3 volts bias through 100,000 Ohms. \\
(B) Diode Load Resistor \\
Read D.C. output here for spot I.F. alignmela. \\
Connect scope here for visual I.F. alignment. \\
Apply 4.5 Mc . here for sound I.F. trap alignment \\
(C) Cathode Of Picture Tube \\
Read A.C. output here for overall sensitivity. \\
Read 4.5 Mc. output here for aligning 4.5 Mc. trap.
\end{tabular} & \begin{tabular}{l}
(D) Ratio Det. Output \\
Read D.C. here for alignment of sound take-off trap, inter-stage sound I.F. transformer and primary of Ratio Det. Trans. \\
(E) Ratio Det. Ralanced Output \\
Read D.C. here for alignment of secondary of Ratio Det. Trans. \\
(F) A.G.C. Line \\
Apply 4.5 volts bias here for visual check of I.F. or overall \\
with oscilloscope. \\
ALIGNMENT EQUIPMENT AND TEST SET UP \\
TEST EQUIPMENT: In order to align and service Sparton television receivers properly the following test equipment should be available: \\
FIKST: AN K.F. SWEEP GENERATOR of reliable quality that performs the following functions: \\
A. Provides sweep outputs in the following frequency ranges: \\
B. Provides an output signal that can be varied by means of an attenuator up to a maximum of at least . 1 volt. \\
SECOND: AN R.F. SIGNAL GENERATOR that will provide an adjustable output signal up to a maximum of at least.I volt on the following fixed frequencies: \\
A. I.F. Frequencies \\
B. R.F. Frequencies \\
THIRD: A CATHODE-RAY OSCILLOSCOPE of good quality that has a fairly wide band vertical amplifier and a Iow capacity input probe. \\
FOURTH: AN ELECTRONIC VOLTFETER with ranges to read \(1 V . D C, 10 V . D C\) and 7V. AC at 400 cycles and 4.5 Nc . \\
FIFTH: A CRYSTAL CALIBRATOR that can be used for checks on the accuracy of the output frequencies of the K.F. Signal generator. \\
GENERAL INSTRUCTIONS: Practically all servicing with the exception of some tube replacement will require removal of the receiver chassis from the cabinet. \\
A convenient arrangement that makes both the top and bottom of the chassis accessible for alignment and servicing can be realized by orienting the receiver chassis in such a manner that it rests on its side and on the horizontal output shield can. \\
ALIGMEENT KEQULKEAENTS: Under normal conditions complete receiver realignment will seldom be necessary in the field. However, a detailed description of the overall alionment procedure is included to provide all necessary information if it should be required.
\end{tabular} \\
\hline
\end{tabular}
© John F. Rider

In general it is not recommended that the K.F. and converter circuits of the K.F. where tuner components have been damaged, or where complete realignment is indicated the R.F. . tuner assembly should be removed from the chassis and sent back to the factory in exchange for a new unit which will be shipped complete with tuhes.
When the new!
f.F. unit is assembled to the chassis it will be necessary in as to only adjustment that will be required with tuner change but a check on overall receiver aligninent and sensitivity should be made for the sake of certainty and assured customer satisfaction.
EFYECTS OF TUBE REPLACENENT ON THE ALIGNAENT OF R.F. TUNER CIRCUITS: The alignment of the R.F. and converter circuits of the R.F. tuner is critical and may be affected by a tube change. In ceses where these tubes (6CB6 or 12AT7) are replaced it will be necessary for the service it can usually be avoided by selection of replacement tubes until receiver operation is realized.

6. Sound and Ficture I.F. Sensitivity Check
7. il. F. and Converter Circuits(not recommended)
8. Overall Sensitivity Check

ORDEA OF ALIGNRENT: When complete receiver realignment is indicated it should be performed in the following order:
```

2. Picture I.F
```
2. Picture I.F
. Sound 1.F. and 4.5 lic. Trap
. Sound 1.F. and 4.5 lic. Trap
. Ratio Detector Transformer
```

. Ratio Detector Transformer

```

PRELIMINARY ADJUSTMENTS: Before alignment the receiver controls should be adjusted to the approximated operation positions specified in the table below. The controls shoul remain in these positions for all checks unless otherwise specified


MODEL 5210, Ch. 26SS172B

MODEL 5210, Ch. 26SS172B

Vertical Size - adjusted to give normal raster height Horizontal Hold - to center position
Horizontal Size - adjusted to give normal raster width Horizontal Centering - to center raster on tube

\section*{ALIGNMENT PROCEDURE}

TEST EQUIPMENT SET UP: \(\lambda\) certain amount of experimentation must be employed to secure a stable test set up before alignment or service of the receiver is attempted. It is insure good grounds between the various pieces of test equipment andthe receiver chassis. In general all test signal input leads should be kept away from output leads as much as possible.




\(\qquad\)
(O) REGHOKEL L-35
 \(\qquad\)


6AL5


6V6GT

chasbie diagram (botrom vien
FIG. 6


SOUND TRAP ALIGMENT: FIRST, Connect the R.F. Signal generator to the grid of V-2 by means of the I.F. input adapter as shown in Figure 7 .


Figure 7 I.F. Input Adapter
SECOND: Set the R.F. tuner to channel \#13.
THIRD: Connect a 4.5 volt bias battery between the A.G.C. buss(Point F.Fig. 4 ) and chassis ground so that the voltage on the A.G.C. buss is-4.5 volts in respect to
tho
FOURTH: Connect the electronic voltmeter across the pieture detector load resistor R37, Point B, Fig. 4 and set the voltmeter on the low D.C. volt scale
FIFTH: Set the R.F. signal generator to the frequency shown below and tune the specified adjustment for minimum indication on the voltmeter. It is to make certain that it is exactly on frequency.
21.75 Hic. Ll2 (Top of chassis as shown in

PICTURE I.F. ALIGNENT. FIRST: Contect the
to the reciver as described in steps ignal generator, voltmeter and lignment instructions.
SECOND: Set the signal generator to each of the following frequencies and peak the specified adjustments for maximum indication of the voltmeter.


SOUND I.F. ALIGNMENT FIRST: Connect the R.F. signal generator to Point B. Fig. 4. SECOND: Set the signal generator accurately to 4.5 \%c. This is very important because the picture and sound carriers sent outfrom the television stations are exactly 4.5 ifc. apart.

THIRD: Connect the electronic voltmeter across C7l from Point D to ground as shown in Fig. 4. Set the voltmeter on the 10 volt scale

FOURTH: Peak the following coils for maximum reading on the voltmeter.

> L 27 Top of chassis as shown in Fig. 5. T 6 Top of chassis as showm in Fig. 5 and bottom of chassis as shown in Fig. 6.

T 7 (Pri. Ratio Det) Top of chassis as shown in Fig. 5
\(\frac{\text { RATIO DETECTOR TRANSFOR:ER ALIGN:SNT: }}{\text { to the receIver as described in step } 1} \frac{\text { FIRST: Connect the R.F. signal generator }}{\text { of the }}\)
SECOND: Connect the electronic voltmeter from Point E, Fig. 4 to ground.
THIRD: Set the voltmeter on the lowest PC Scale. Adjust the secondary of \(T 7\) (Bottom view of chassis as shown in Fig. 6). Notice that it is possible to produce a positive or negative voltage indication on the meter by varying this adjustment. As the voltage swings from positive to negative, adjust T 7 for
zero output as indicated by the voltmeter. This point iscalled zero ratio detector output and indicates correct alignment of T7 transformer. If the secondary of in is found to be way out of alignment it will be necessary to re-peak
sound \(I . F\). alignment.
4.5 MC. TRAP ALIGN.ENT FIRST: Connect the R.F. signal generator as described

SECOND: Connect the electronic voltmeter from the cathode of the picture tube to ground (Point C Fig. 4)
The voltmeter must be capable of giving a reading at 4.5 kc. at approximately THIRD: Peak on the voltmeter.
PICTURE I.F. TOUCH UP: Connect the R.F. sweep generator output to the grid of \(\sqrt{-2}\) by means of the I.F. input adapter shown in Figure 7.
SECOND: Apply bias to A.G.C line as described in Step 3 of sound trap alignment. Set R.F. selector to channel \#13.
THIRD: Connect the oscilloscope across the picture detector load resistor R37 Proint B Fig. 4) by means of the shielded cable and the filter system shown
in Figure 8.


Fig. 8 FILTER SYSTEM FOR SCOPE CONNECTION
FOURTH: Set the R.F. sweep generator so that it sweeps from approximately 20 to 30 Mc . FIFTH: Adjust the oscilloscope so that the swept I.F. response isvisible on the cathode-ray tube screen.
SIXTH: Loosely couple the output of the R.F. signal generator to the grid of V-2 so that marke

SEVENTH: Observe the band width, relative position of the picture carrier, and flatness of the overall I.F. response curve. If necessary slightly vary the tuning of the picture I.F. coils I6, L13, L14, L15, Ll7 until the picture I.F. response shown in Figure 9 is obtained. The solid curve in Fig. 9 depicts the ideal I.F. response while the dotted curves show 22.7 Mc .


Figure 9
IdEAL I.F. RESPONSE WITH PERMISSABLE VARIATIONS

The picture I.F. carrier should appear approximately half way down the I.F. response curve as shown in Figure 9 . Variation in the pix carrier position should not exceed \(t 10 \%\) from the half way point.
PICTURE I.F. SENSITIVITY CHECK: FIRST: Connect the R.F. signal generator to the receiver as specified in Steps 1 and 2 of the sound trap alignment instructions. (When making sensitivity checks no bias battery is connected to the A.G.C. buss.)

SECOND: Connect the electronic voltmeter across the picture detector load resistor R37 Point A, Fig. 4, and set the meter on the low D.C. volts scale.
THIRD: Set the generator output frequency at approximately 23 Mc . Adjust the generator output until the voltmeter reads approximately 1.0 volt. Record che R. F. signal input in microvolts. Repeat the procedy e with the generato voltage should be 100 Microvolts or less. The sensitivity at the I.F. picture carrier 26.25 Mc. should be approximately half of the I.F. sensitivity between 24.2 Mc . (Naximum of 100 microvolts.)
If the generator output is not calibrated in microvolts, comparative sensitivity measurements can be made by using another receiver that is known to be in good operating condition as a standard. This applies to all sensitivity meas

En AITCMENT. The alignt of the \(F\). ircuits of the tuner
IUNER ALIGNMENT: The alignment of the R.F. circuits of the tuner is a difficult equipment. For this reason it is not recommended that the realignment of these circuits be attempted by the service engineer. The information provided in the paragraphs below is intended primarily for descriptive purposes and cases where light adjustments may be necessary.
An overcoupled tuned circuit is used between the R.F. plate and the converter grid. This overcoupled circuit is tracked with the oscillator. All circuits curves of the gang condenser sections and the high frequency series tracking condensers have been carefully chosen to guararitee a minimum of tuning condenser mistracking. It should never be necessary to adjust the gang condenser capacity
by knifing the plates.
In order to correctly track the R.F. and mixer coils to achieve maximum tuner gain and to obtain best response curve symmetry, a system of padding double tuned overcoupled transformers is used utilizing capacity loading. Capacity loading may touching the screw driver shank with one or more of the fingers. This additional capacity severely detunes one side of the double tuned, overcoupled transformer, so that the single peaked, resonant response of the other side may be observed.
TO ALIGN THE TUNER PROCEED AS FOLLOWS: FIRST: Picture I.F. must be properly aligned.
SECOND: Connect R.F. sweep generator to antenna Terminals through 300 ohm balanced dummy antenna. Dummy antenna may consist of two 150 ohms carbon resistors,

THIRD: Connect oscilloscope across the picture detector ioad resistor R-37 (point B Connect oscilloscope across the picture detector load resistor R-37 (point B
Fig. 4) by means of the shielded cable and the filter system shown in Fig. 8.

FOURTH: Perform the operations listed below. In each case adjust for flat wide band overall response with maximum gain as indicated on the oscilloscope screen The shape of the overall response curve on all channels should be approx-
imately the same as that of the video I.F. response curve shown in Fig. 9 . Marker pulses of proper frequency should be mixed in with the R.F. sweep input to check overall band width and relative position of the picture carrier on each channel. Always keep the R.F. input signal low so that slight variations in the tuning of the circuits are easily discernable on the oscilloscope screen. The physical location of all the adjustments

FIRST: Rotate the tuner to the channel 6 index position.
SECOND: Capacity load the R.F. coil(first stator plate) and adjust the low band mixer trimmer so that the single peaked response curve falls midway between the R.F. carrier markerso(See Figure 10

THIRD: Capacity load the mixer coil(second stator plate) and adjust the low band R.F. trimmer, so that the single peaked response curve falls midway beR.F. trimmer, so that the single


FOURTH: With no loading on the double tuned circuits adjust the low band oscillator trimmer so that the channel 6 picture carrier marker falls at the \(50 \%\) trimmer so that
voltage reference level. Without loading, the response curve should have
ghe symmetrical double humps, the valley between them not being more than \(30 \%\) down from the peaks.

FIFTH: Check all low band channels. The response curve should remain substantially unchanged through all channels.
HIGH BAND ALIGNMENT: FIRST: Rotate the tuner to the channel 13 index position.
SECOND: Capacity load the R.F. coil (\#7 switch lug) and adjust the high band mixer trimmer so that the single peaked response curve falls midway between the R.F. carrier markers.

THIRD: Repeat step 2, loading the mixer coil(\#4 switich lug) and adjust the high band R.F. trimmer.

FOURTH: With no loading on the double tuned circuits adjust the high band oscillator trimmer so that the channel 13 picture carrier marker falls at the \(50 \%\) voltage reference level.

FIFTH: Check all high band channels. The response curve should remain substantFIFTH: Check all high band channels. ially unchanged through all channels. OVERALL PICTURE SENSITIVITY CHECK:
After alignment of the various sections of the receiver has been completed, the following overall sensitivity checks should be made. (In cases where the signal generator output is not calibrated in microvolts comparative sensitivity measurements can be made by using another receiver which is known to be in good operating
condition as a standard.).

FIRST: Connect the R.F. signal generator to the receiver antenna terminals through 300 ohm balanced dummy antenna as described in step \(\# 2\) of tuner alignment.
SECOND: Connect the D.C. voltmeter across R37 as previously described. Set the voltmeter on the low D.C. volts scale.

THIRD: Set the signal generator at the center frequency of the channel to be measured and tune receiver dial for maximum reading of the D.C. meter. adjust R.F. level until meter reads 1.0 volts (contrast control in maximum in all bands. in all bands.
SOUND SENSITIVITY CHECK:
Two R.F. signal generators are required, one of which shall be frequency modulated
\(\neq 7.5 \mathrm{Kc}\). at 400 cycles. . 200 cycles.

FIRST: Connect both R.F. signal generators to the receiver antenna terminals used figh separate dumm antenna resistors, doubling the resistance value used for the picture sensitivity test.
SECOND: Open speaker voice coil and connect a \(3.0 h m\) audio output meter across output transformer secondary.
THIRD: Connect the D.C. voltmeter across R-37 as previously described.

FOURTH: Set the unmodulated signal generator at the picture carrier frequency of the channel desired. Set the F.M. modulated signal generator at the sound carrier frequency. Keep the two generator outputs equal at all times. a lower frequency until the D.C. meter reading is reduced to half. Rock dial of frequency modulated generator for maximum reading on audio meter. Set signal generator outputs for 1.0 watt reading on audio meter. Divide generator microvolts by two since there is a GDB insertion loss due to the dummy antenna used. This sensitivity reading should be 100 microvolts or less in all channeis.

\section*{MAXIMUM AUDIO OUTPUT:}

With signals applied as in the sound sensitivity check above, and the output of each generator set at 10,000 microvolts, the audio power output should be 3 watts or more.






will vary slightly in size. The smallest transmitted picture should be made to fill the area delineated by the mask.

The first step in linearity and size adjustment is to turn the Width Control (rear of chassis) all the way in. (clockwise)

The Morizontal Drive trimmer should then be adjusted or the best compromise between maximum brightness and good horizontal linearity. Misodjustment of the Horizontal good horizontal linearity. Misadjustment of the Horizontal
drive condenser will show as bright vertical bors on the left hand side of the picture. The Width Control should then be backed out until the picture is the correct width.

Vertical Linearity and height adjustment are made in the conventional manner. It will be noted that there is some interaction between these controls.
HORIZONTAL OSCILLATOR ADJUSTMENT
The set should hold horizontal sync over approximately one turn of the horizontal hold control. This will vory with signal strength of the received station. The control will bind at the extreme ends of its rotation. Do not attempt to force it to turn ofter binding is encountered or setious domoge will antrol range it indicates truble in the horizontal oscillito control range it indicar.
VOLTAGE CHART
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{TUBE} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline VI & 6 C86 & \(0{ }^{4}\) & \(0^{8}\) & \(0^{\dagger}\) & 6.3AC \({ }^{6}\) & \(105^{6}\) & \(105^{\circ}\) & \(0^{6}\) & - & - \\
\hline V2 & 6 J 6 & \(105^{\text {¢ }}\) & \(10{ }^{\text {¢ }}\) & \(0^{¢}\) & 6.3AC \({ }^{\text {b }}\) & \(0^{6}\) & \(0^{4}\) & \(0^{\circ}\) & - & - \\
\hline V3 & 6C86 & -0.4 & 0.5 & 6.3AC & 0 & 90 & 90 & 0 & - & - \\
\hline V4 & \(6 \mathrm{CB6}\) & -0.4 & 0.5 & 6.3AC & 0 & 95 & 95 & 0 & - & - \\
\hline V5 & \(6 \mathrm{CB6}\) & 0 & 1.4 & 6.3AC & 0 & 100 & 100 & 0 & - & - \\
\hline V6 & 6AL5 & 0 & 0 & 6.3AC & 0 & 0 & 0 & -0.5 & - & - \\
\hline V7 & 6 AC7 & 0 & 6.3AC & 0 & -0.5 & 1.4 & 100 & 0 & 225 & - \\
\hline v8 & 6AU6 & -0.3 & 0 & 6.3AC & 0 & 100 & 100 & 0.6 & - & - \\
\hline v9 & 678 & -0.4 & -0.8 & -0.4 & 0 & 6.3AC & 0 & 0 & -0.8 & 75 \\
\hline vio & 6 V 6 & NC & 0 & 225 & 250 & 0 & NC & 6.3AC & 10 & - \\
\hline VII & \(12 \mathrm{AU7}\) & 60 & 10 & 10 & 6.3AC & 6.3AC & 10 & -0.7 & 0 & 0 \\
\hline V12 & 6BL7 & -0.9 & 320 & 19 & -30 & 75 & 0 & 0 & 6.3AC & - \\
\hline V13 & 6AU6 & 235 & 250 & 250 & 6.3AC* & + & 350 & 250 & - & - \\
\hline V14 & 6AL5 & 0 & 0 & 5.3AC & 0 & 6 & 0 & -4 & - & - \\
\hline V15 & 6 SN7 & -7 & 120 & 13 & 1.3 & 320 & 13 & 6.3AC & 0 & - \\
\hline V16 & 6BG6 & -25 & 0 & 0 & NC & -25 & NC & 6.3AC & 270 & - \\
\hline V17 & 183 & \(\dagger\) & \(+\) & - \\
\hline V18 & 6 W 4 & NC & NC & 550 & NC & \(\dagger\) & \(+\) & 250 & 6.3AC & - \\
\hline V19 & 504 & NC & 5AC \(\triangle\) & NC & 355AC & Ne. & 355AC & NC & 360 & - \\
\hline
\end{tabular}

> TEST CONDITIONS:
NOTES :

LIME 117V. - 60 CYCLE A.C
ANTENMA SHORTED-TUNE TO CHANMEL 13
contrast, brightness, \& volume at himimum.
OTHER CONTROLS IM MORMAL OPERATING POSITION
VOLTAGES TAKEN WITH VTVM FROM POINT INDICated to chassis except where noted.

\section*{PICTURE TUBE REPLACEMENT}

Importont: After replacing ony picture tube, be sure to moke all deflection adjustments -- Picture Centering, Deflection Yoke, and ion Trap --

WARNING: Becouse of the high 2nd anode valtage used (approximately 12 KV ) and the possibility of danger of implosion due to high vacuum, the following precoutions should be noted when removing or replacing picture tubes:
a. Before handling a picture tube, remove the 2nd anode static charge from both the picture tube and the 2nd anode connector by shorting them to chos-
b. Sh
. Shatterproof goggles and heavy gloves should be . Always handle the picture tube very carefully DO NOT pick the tube up by the neck.
mode by feeding the swoep signol through the entire RF and IF (Step 1)". The overall check should be made offer making al other alignments.
a. Make all control seltings and connections as given in "a through " \(c\) ' ' the IF amplifier alignment chart qpove.
Comect oscilloscope' between point ' \(T\) "' and chassis ground eef fig. 4. Keep leads oway from rece iver.
Connect sweep generator high side to tube shield of \(66(\mathrm{~V} 2)\)
osc-mixer tube. Be sure to insulate tube shield from chossis. osc-mixer tube. Be sure to insulate tube shie
Connect sweet generator low side to chossis close to 656 tubs base. Sel sweep generator to sweep the if band poss (19 10 29 MC).
d. If sweep generator does not have a built-in marker generato loosely couple marker generator high side to the sweep generator lead connected to tube chassis ground.
Terator and marker generator outputs at a very minimum. generarker pips should be just kept borely visible. To mini-
Mat mize distortion, set sweep generator output for VTVM reoding of approximately .6 volt DC, measured between test point "T" hassis. Connecting a \(1-1 / 2\) volt battery (negative - OSCILLOSCOPE NOT
- In dealing with RF and IF response eurves, it is well \({ }^{\text {to }}\) remember that an inverted or mirror imazge may resulth
depending on the sweep generator and osellioseope used. The general waveform should still be identical. When using a wide band oseilloscope for alignment, marter plps will be more distinet if eondemser from 100 to 1,000 mmid. is eonnected seross the oseilloseope inpat.
capaeity will affect the shape of the responso curve.

\section*{ALIGNMENT HINT}
After becoming familiar withalignment procedure, some servicemen simplify ubsequent alignment of sets by merely using the essential alignment data siven in figures below.

neasure from mentsi rat
Figure 3 IF Response Curve.


Figure 4 3ottom View Showing Test Point Connections

25.2 Mc Max.
\(\qquad\) (v)


AGC Line, positive to chossis) will allow greater signal
in figure 3 obrained agoinst the ideal if response curve shown it are 3. Since it is not always possible to get ideal curves, within \(30 \%\) of each other. The dip or valley in the center of the curve should not be greater than \(30 \%\) down from the high est peak of the curve. Check video and sound IF carrie points by meons of marker generator. It is important that marker pips be in the proper location on the response curve The 25.75 MC marker, should be \(50 \%\) below the highest peak hould high frequency side of the curve. The 22 MC marke approximately \(85 \%\) below the highest peak. The 2125 MC marker should be located at least \(95 \%\) below the highest peak, and moy ar may not be visible. markers, the response curve should preferably have maximum amplitude, symmetry, and flat top appearance.
If the procedure given hos been carefully followed and the resporse curve obtained differs greatly from the curve shown, re peat the IF Amplifier Alignment, making sure generator frequen peat the IF Amplifier Alignment, making sure generator frequen-
cies are precise and ad justments are accurately mode.
Figure 5 Top View of Chassis Showing Aligerment Date. 23.0Mc.Max.

Disconnect antenna. Connect jumper wire across terminals.
Connect signal generator high side to Pin 4 V 7 connect low side to chassis.
. Allow about 15 minutes for receiver and test equipd.
d. Set Picture control fully to the right (clockwise).
\begin{tabular}{|l|l|l|}
\begin{tabular}{c} 
Signal Gen. \\
Freq. (MC)
\end{tabular} & VTVM Connections & Instructions
\end{tabular}\(\quad\) Adjust

Since the transmitted video and sound carriers have an acrurate 4.5 MC frequeney differenee, It it advien
able to use a TV station signal instead of a signal generator for accurate alignment of stepa below. When usin\& a television signal, it may be necessary to use a higher seale on the VTVM. ( 30 V ) IMPORTANT: When using a signnal generator, be sure to check it against a crystal calibrator or other fre
quency standard for accurate frequency ealibration at 4.5 MC . Aceuracy required is within one kilocycle.
\begin{tabular}{|c|c|c|}
\hline High side to test point "Y"; common to chassis. & Use 3 volt DC scale on VTVM. Keep VTVM leads well sepa. rated from siknal kenerator (if
uned) and chassis wiring. & L6 and top of T1 for maximum (keep reducing generator output tokep
VTVMatapprox. 1 volt). \\
\hline  & Use 3 volt zero center seale on VTVM, if available. Keep VTVM
lead= well neparated from signal generator (if used) and chassis & Bottomof ti for zero onforvicthe correct
zeropoint is located zeropoint is iocated
\(\qquad\) \\
\hline
\end{tabular}
(See MC Chart, Fig. 6. RF Response Curve, Fig. 7. Front view of \(T\) Y Tuner and Fig. 8 . Top of TV Tuner, Showing Adjustment

Location) Fig. 4 For Test Point Location.

\section*{RF AND MIXER ALIGNMENT}
a. If used earlier, disconnect \(1-1 / 2\) volt battery.

Disconnect antenna from receiver
c. Connect sweep generator to antenna terminals. If sweep generator does not have a built-in marker generator, loosely couple a marker generator to the antenna terminals. To avoid distortion of
curve, keep sweep generator outpu a
Connect oscilloscope through a 10,000 ohm resistor lo test point ' 'W'' on tun
for receiver and test equip ment to worm up.
\begin{tabular}{|c|c|c|}
\hline Step & \begin{tabular}{c|c}
\hline \begin{tabular}{c} 
Marker Gen. \\
Freq. (MC)
\end{tabular} & \begin{tabular}{c} 
Sweep Gen. \\
Frequency
\end{tabular} \\
\hline
\end{tabular} & Instructions \\
\hline 1 & \begin{tabular}{c|c}
205.25 \\
(Video Carrier) & \\
\begin{tabular}{c} 
209.75 \\
Sweepling
\end{tabular} \\
(Sound Carrier)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Channel 12
\end{tabular} & Check for curve resembling RF Response Curve shown below. If necessary, adjust A8, A9 and A10 (figure 9) as required. Note that adjusting A9 will shift the center of the response curve in relation to the video and sound earrier markers. A8 and A10 should be alternately adjusted for pest gain with flat top appearance. Consistent with proper band width and correct mariker location, response curve should have inaximum amplitude and flat top appearance. \\
\hline 2 & \begin{tabular}{l}
See frequency table below. \\
Set the sweep generaior to sweep the channel to be checked. Set the marker generator for the corresponding video carrier frequency and sound carrier frequency.
\end{tabular} & \begin{tabular}{l}
Check each channel operating in the service area for curve resembling RF Response Curve shown below. \\
In general, the adjustment performed in step 1 is sufficient to give astisfactory response curves on all channels. However, if reasonable alignment is not obtained on a particular channel, (a) check to see that coils have not been intermixed, or (b) try replacing the pair of coils for that particular channel, or (e) repeat step 1 for the weak channel as a compromise adjustment to favor operating in the service area should be checked to make certain that they have not been appreciably affected.
\end{tabular} \\
\hline
\end{tabular}

\section*{OVERALL RF and IF RESPONSE CURVE CHECK (Step 1)} and HF OSCILLATOR ALIGNMENT (Step 2)
(Using sweep generator and oscilloscope.)

\section*{IMPORTANT}

Since HF Oscillator alignment requires absolute frequency accuracy station signal is generally best suited for alignmentoof the indi:
a vidual channel oscillatoraslugs A3. Theprocedureforusing a station signal (and without removal of chassis) is given in "Individual Chan-
nel Slug Adjustment Using Television Signal on pagel.

The procedure for HF Oscillator alignment with an oscilloscope and
The procedure for HFOscillato.
a sweep generator is givenobelow.
a. Disconnect antenna
b. Disconnect signal generator and VTVM (if used earlier).
c. Set the Tuning control at half ratation by rotating approximately \(150^{\circ}\) as shown in Figure 7 .
d. Connect sweep generator to antenna terminals. If sweep generator does nat have a built-in marker generator, loosely couple a marker generator to the antenna terminals. To avoid distortion of the respońse curve, keep sweep generator output at a minimum, marker pips just barely visible. Con-
\begin{tabular}{|c|c|}
\(\begin{array}{c}\text { Marker Gen. } \\
\text { Freq. (MC) }\end{array}\) & \(\begin{array}{c}\text { Swaep Gen. } \\
\text { Froquency }\end{array}\) \\
\hline
\end{tabular}
Sweep the RF band pass (channel 13 or other anasiened hich channel) and check the shape of the overall
response curve obtained response curve obtained sagainst the ideal curve shown below. If shape of curve is not within limits shown, it
will be neecsary to repat the IF Amplifier Alignment. The IFs must be aecurately alisned before correct oscillator adjustment can be made
necting a \(1-1 / 2\) volt battery (negative to \(A G C\) Line; positive to chassis) will allow greater signal input without distorting response curve.
e. Connect oscilloscope between point "T T and chassis ground (see Figure 4). Keep oscilloscope leads away from chassis.
f. Allow about 15 minutes for receiver and test equipment to warm up.
g. When odjusting A3, use a NON-METALLIC alignment screwdriver with a \(1 / 8\) inch blade.


Fig. 7. From View of TV Tuner.


Figure 8. Top of TV Tuner, Showing

\section*{TELEVISION TUNER SERVICE}

\section*{GENERAL}

The TV tuner is a sub-chassis consisting of an RF amplifier stage and a mixer-ascillator stage.

Three different RF amplifier tubes, either 6AG5, 6BC5, or \(6 C B 6\), are used in this tuner. Although these tubes have similar characteristics and are generally interchangeable, it is advisable to check the RF amplifier curve with a sweep generator and oscilloscope after replacement.

Chel selection is accomplished by
Charrel assembly, which has a shed by rotation of the for eorch of the 12 television channels. Each set consists of an antenna coil in one assembly, and a mixer-oscillator coil in another. Coils are the snap-in type. Coils can be identified as to channel by the number stamped on the outside of the coil assembly. A Tuning control permits fine adiustment of oscillator frequency

The high frequencies used in television make it necessary that extreme care be exercised in servicing tuners.

Location and lead dress of components and wiring are usually very critical. Wiring leads, acting as small inductances or capacities, may appreciably alter electrical characteristics of critical circuits at high frequencies.
Parts location and ground connections should be as originally made. When replacing components, it is importart
that they be replaced with parts of identical electrical characteristics and physical size.

Refer to parts list for temperature coefficients, tolerances, and other essential description
Note resemblance between some ceramic conNers and resistors. IN
Also note that replacement of tubes (especially 6 J 6 oscil-lator-mixer tube) may cause some slight detuning of tuner circuits. This is due to the inherent differences of interelectrode capacitances. When replacing \(6 J 6\) tube, it is rec which will cause least oscillator frequency shift. This is easily checked by noting the amount of rotation of the Tuning control required to tune in the television signal. It is recommended thot this check be made on the high channels. Make individual channel slug adjustments as instructed on page

Channel snop-in coils must be handled with care. Do not disturb coil windings. Also be sure the coils are properly poired for the indicated channel number, and that coils follow proper sequence when reassembled in the turret drum. For proper reference of tuner shaft in relation to coil position reproper reference
fer to figure 7 .

\section*{TUNER REPLACEMENT}

Replacement of the complete tuner should generally never become necessary since electrical and mechanical parts are easily replaceable.

\section*{TUNING CONTROL}

The Tuning control is a variable dielectric type condenser. The normal tuning range of the Juning control for high chanels is plus or minus 3 MC , for low channels plus or minus 1.5 nels is
MC.

Slight rubbing of the dielectric rotor of M104 against the grounded stator plate M107 is intentional, in order to ovoid vibration with resulting microphonics. However the dielectric otor should not be allow
o the body of the tuner.
The Tuning control is permanently set at the foctory and connot be readjusted for frequency tuning range.

\section*{REMOVING CHANNEL COILS}

Insert a screwdriver blade between the coil retoiner spring and the turret end plate. Twist the blode away from the furret and lift the end of the coil upward.

\section*{CLEANING CONTACTS}

Kemove several sets of coils from turret and rotate turret to position making contact points of contact plate accessible or cleoning.

Using a small, stiff brush and carbon tetrachloride, clean ontact surfaces of stationary contacts.

Remove occumulated dust or grease from stationary conlocts and contact plate with a soft convas cloth dampened with carbon tetrachloride. Accumulated rosin may be removed with a soft cloth dampened with alcohol.

Clean contact surfaces of rotating coils in same manner.

\section*{TUNER LUBRICATION}

In general the lubrication applied to points of wear or riction at time of manufacture should make lubrication seldom, if ever necessary. However, should tuner lubrication become necessary, it is important that the correct amount and type of lubricant be used.

Using a clean brush, opply a film of switch contact oil, Viscosity Oil Co. '7069) to the surfoces of the coil contacts and stationary contact points.

Lubricate bearing surfoces of all other moving parts with light yaseline or preferably Viscosity Oil Co. "8857 lubricant. CAUTION: Do not use lubriplate or any similar lubricant containing zinc or cadmium.

\section*{ADJUSTING CONTACT SPRINGS}

Should the stationary contact springs make poor contact due to insufficient tension, remove several sets of coils from the turret. Rotate the furret to position making the bottom of the contact strip occessible for observation. With a narrow blade screwdriver, odjust the contact spring tension by carefully bending the spring inword until highest point on the spring extends about \(9 / 64\) of an inch above the plastic surface of the contact plate. With correct tension of the contact spring, the spring should clear the flat surface of the turret coil by about \(1 / 64\) of an inch.

\section*{OSCILLATOR SLUGS IN TOO FAR}

If HF oscillator slugs 'fall into'" coil form, remove the hannel coil, move the slug retaining spring M112 aside, and top the cail assembly until the slug slips forward. Set the slug retaining spring inta position; it shouldrest firmly against the slug.

\section*{REMOVING TUNER TURRET ASSEMBLY}
a. Remove retoining bracket Ml 107 in front of the tuner b. Remove rotor shaft ossembly M104, rotor contact sping M124 and fibre
of parts remova
. Remove front ond rear turret retaining springs M125 by pressing stroight end oway from tab on chossis.
. Using a screwdriver blade of the side of the tuner, press the detent spring M122 and roller M121 oway from the turret detent plate
e. Grasp tuner shoft and slip out of end plate bearings

\section*{REPLACEMENT OF THE UNGROUNDED STATOR PLATE OF TUNING CONTROL}

Stator plate M118 is reploced with wiring lead and trimmer condenser C5 attached, becouse it is difficult to solder the wire lead to the silver plated surface on the ceramic stato plate disc.

To replace the stator plate, remove the turret assembly. Remove mounting rivets from stotor plate by drilling out or clipping them out with diagonal wire cutters. Remove trimmer screw M115 ond locking nur M114 from trimmer condenser C5. Unsolder wiring lead connecting trimmer to terminal on contact plate.
Assemble the replacement stator plate (MII8) by placing the cerdmic button over the \(5 / 8^{\prime \prime}\) hole in the chassis with the wiring lead extending into the chassis. Place the mounting \(4 \times 3 / 16\) round head machine screws with \(44-40 \times 3 / 16\) hex nuts and ' 4 shake proof lock woshers. Mount trimmer condenser C5 in chossis and solder wire lead to its originat terminol on the contact plate making this lead as short as possible. Dress wiring lead from ceramic stator plate to trimmer condenser C 5 so it does not come in contact with the turret drum. After replacement of the stotor plate, adjust trimmer condenser C5 (overall oscillator adjustment).

\section*{REMOVING CONTACT PLATE ASSEMBLY M128}

\section*{. Remove turret}
b. Remove the mounting screws at the front and rear of Contoct Plote and Bracket Assembly M123.
. Unsolder both ends of contact plate assembly. ward the front and rear tuner chassis end plates.
d. Ta free contact plate assembly, release the contact plate tabs by pushing them oway from the slots in the end plates.
. Unsolder all connections to contact plate. Unsolder the solder joint holding contact plate to the center portition of the tuner chassis.
Reossemble in the


\section*{INTERMITTENT PICTURE AND SOUND}

This trouble is most commonly due to on intermittent be, loose tube socket contacts, dirty or loose coil contacts, loose or cold (rosin) soldered joints, or loose or vibrating parts
in the underside of the tuner chassis.

When replacing tubes, see tube note under "General"
Loose tube socket contacts may sometimes be iightened by compressing contocts with on ice pick or a large needie. Defective tube socket contacts con sometimes be replaced individually.

For cleaning and adiusting coil contacts, see "Cleaning Contacts" and "Adjusting Contact Springs"

Loose or intermittent connections con be found by tapping components or rotating the channel selector and watching the pottern on on oscilloscope. A visual inspection or a continuity check will also be helpful.

Apply a hot soldering iron to soldered joints which appear doubtful. Caution: Do not change lead lengths or move amponents other than to slightly separate ports or leads which the chassis or other parts. see discussion under "General"

\section*{SOUND BARS IN PICTURE
(DUE TO MICROPHONICS)}

Microphonics in the TV Tuner will generally produce sound bars in the picture or a ringing sound as the volume is furned up or as the cabinet is topped lightly.

Check for microphonic oscillator mixer tube, V2 (6/6). It is recommended thot several tubes be tried, in order to seect a tube which will be least microphonic and ot the same time, causes a minimum of acillator frequency shift, as noted with rotation of Tuning control. In some coses, replacement of the oscillator mixer tube, may necessitote readjustment of rimmer condenser Al (C5) (overall oscillotor adjustment).

Microphonics can also be due to vibration of loose wires or loose components. In some instonces, the ceramic stotor plate M118 (tuning stator) has been a source of microphonics since the rivets which fasten this port to the tuner chassis may be loose. This can be remedied by soldering the plate mounting bracket to the tuner chassis. To solder the plate mounting bracket to the tuner chassis, remove the grounded Tuning stator plate M107, and move the tuner shaft M104 forward.

Also, check for any mechanical "rub" such as loose screws which hold the tuner sub-chassis to the main chassis, extremely dry tuner shoft.

\section*{CHASSIS 317B, 317D, 321B, 321D}

These chassis use a keyed AGC system and unless certain precautions are observed some difficulties may be encountered when IF or RF alignment adjustments are made. First be sure to read carefully the "Television Alignment Procedure"

A \(11 / 2\) volt bias battery should be connected across the AGC line (negative to junction of C24 and R52, positive to chassis), when making all alignment adjustments. This will prevent the amplifiers from overloading in the event that it is not possible to attenuate the signal generator sufficiently. Also, when the RF or IF amplifiers are sweep aligned the response curves will be distorted if a fixed bias is not applied to the AGC line due to the fact that the time constant of the keyed AGC circuit is short compared to the sweep frequency of the sweep generator. Therefore, the gain of the IF and RF amplifiers will not remain constant while the signal is sweeping through the response curve. When a sweep generator which does not have blanking is used, it will be impossible to make the forward and reverse response curves coincide unless a fixed bias is used.

In order to check the keyed AGC circuit for proper operation, the following simple test will be useful. When the grid of the AGC key tube (pin 1 V 13 ) is shorted to the cathode (pin 7) the voltage on the AGC bus (across C24) should be approximately 40 to 70 volts negative as measured with a VTVM. In the event that this voltage is not obtained the trouble will probably be in the key tube V13, the horizontal output transformer T5, in one of the coupling or bypass condensers in the AGC line, or R52.

It may be found that in some cases there are minor deviations in the receivers in part values from those specified in the schematic. For example, a . 047 mfd condenser may be used in place of a . 05 mfd condenser or a .22 mfd condenser in place of a . 25 mfd condenser. In decoupling circuits in the AGC and B+ lines 100 ohm or 200 ohm resistors may be used in place of the 150 ohm resistors specified with negligible ef fect on the performance. When such substitutions are made they are always made in locations where the value of the part is not critical for it to effectively perform its function. There are many locations where tolerances of \(100 \%\) or more are permissible. However, when replacements are made, if there is any doubt as to the suitability of the replacement part, the value as specified in the manual should be used.

Occasionally 6AG5 tubes are used in place of the 6CB6 tubes specified for the IF amplifiers V3, V4, and V5. It should be noted that these tubes are not directly interchangeable due to the different internal wiring of the tubes. Therefore, when replacing these tubes, be sure to use the same type that was originally supplied in the receiver. If 6AG5 tubes were originally used this type number will appear on the chassis near the tubes.

On chassis serial numbered approximately 79,600 or greater the following changes were made referring to the schematic diagram and the parts list.
1. Capacitor C24 was 1.0 mfd 200 volts in early production and has been changed to .5 mfd 200 volts as indicated
2. Capacitor C 50 has been changed from a \(10,000 \mathrm{mmf}\) ceramic disc to a. 01 mfd 400 volt paper part \#CPZ04103M.
3. Capacitor C34 has been changed from a . 001 mfd paper condenser to a 220 mmf \(\pm 20 \%\) mica condenser part\#CMA03221M.
4. Video load resistor R29 has been changed from 6800 ohms 1 watt to 5600 ohms 1 watt \(\pm 10 \%\) part \#RCF562K.
5. Peaking coil L12 has been changed from a 36 microhenry coil to a 120 microhenry coil part \#A-1482-10.
6. Peaking coil L13 has been changed from a 120 microhenry peaking coil to a 600 microhenry peaking coil part \#A-1485-10.
7. The hot end of R31 is now connected to the junction of C32, C33, and R30.
8. A decoupling filter consisting of an 8 mfd 450 volt condenser and a 1000 ohm 2 watt resistor has been added in series with the \(B+240\) volt lead to the audio output tube V10 on all chassis.

The following changes are incorporated on chassis marked 317D and 321D:
1. High Voltage filter condenser returns to damper plate (pin \#5) instead of to chassis ground.
2. AGC keying coil removed from horizontal output transformer and wound on width coil. Both the pulse to AGC keyer and feed back to horizontal multivibrator are taken off AGC winding on width coil. (Part No. B-1467-10)
3. Horizontal output transformer part no. \(\mathrm{B}-1675-13 \mathrm{~A}\) or \(\mathrm{B}-1676-13 \mathrm{~A}\) is used.
4. A type \(6 \mathrm{BZ7}\) RF amplifier tube is used in tuner rather than 6 BQ 7 . These tubes are directly interchangeable.


© John F. Rider


©John F. Rider


\section*{KEYED" AUTOMATIC GAIN CONTROL}

Outstanding new development; minimizes "airplane futter"; reduces contrast variation when changing from one chonnel to onother; in

\section*{INTERMEDIATE FREQUENCIES}

Sound Carrier 22.25 Mc .
Picture Corrier 26.75 Mc.
I.F. SYSTEM

Four Stage-stagger tuned-for composite signal.
Two odditional stoges for sound channel.

\section*{VIDEO AMPLIFIER}

Two Stoge-broad band

\section*{RETRACE LINE SUPPRESSOR}

Eliminates refrace lines thruout the normal range of picture brightinos

\section*{DEFLECTION \& FOCUS}

Mognetic

HORIZONTAL SYNCHRONIZATION
Automatic frequency control and "keyod" A.G.C. provide oxcellont
picture stobility and noise immunity.

HIGH VOLTAGE POWER SUPPLY
"Fly-bock" type. Completoly enclosed in a shiolded compartment.
2. auxiliary fine tuning adjustment-lt it is tound that the tuning range of the "Fine Tuning" control is inadequate to parmit correct funing of a stotion in its assigned channel, then adiustment of
the "Auxiliary Fine Tuning" scrow will be necessary. This special the "Auxilicy Fine Tuning" scrow will be necessary. This special
serow is accessible after removal of the "Channol Selector" ond "Fine Tuning" knobs. They max be removed by meroly pulling them forward.

Adiustment of the "Auxiliory Fine Tuning" scrow may be under.
taken in occordonce with the following procedure,
a. Set "Channel Selector", to dosired chonnel; then remove this knob
b. Set "Fine Tuning" knob to the center of its rango; then remove this knob. The flot portion af the moin tuning shaft (outer shaft) should now be in the uppormost position. Note the loco chassis-see Fig. 14.

Using a thin screwdriver (preferably non-metallic), adjust the set. ing of "Auxiliary Fine Tuning" scrow for correct tuning of the desired television station-CAUNON: Do not arrempt to rotate further ratation may releose it from the thread clip with in the tuning mechanism and the coll for that channal (located in R.F. Tuner Unit) would then have to be reposition. If order to restore the screw to the corroct the screwdriver is remorved but it will beo noted that this degre of defuning con now bo compensoted by rosetting the "Tolevision
Fine Tuning" control (outar shat). Thus the range of the Fine Tuning" control (outor shaft). Thus the ronge of the
"Television Fine Tuning" control (offer knob is roplaced on the shoft) will be adequate to tune in the station.
d. This completes the odiustment of the "Auxiliary Fine Tuning" scrow for one channel. Identicol screws ore provided on eoch channel and they are all accessible thru the same opening in the funing "Channel Selector" knob is rotated.

4. VERTICAL HOLD-Should the piture appear to roll by in a vertical direction or cause multiple vertical images as shown in Figure 11 .
it will be necomary to Hold" control located behind the Name Plate (soe Figure 14).
After this adiustment is mode, reduce contrast until picture is barely visible and check set. ting of "Vortical Hold" control for proper ple-

Fig. II-VERTICAL MOVEMENT;
ADJUST VERTICAL HOLD CONTROL
5. INITIAL FOCUS-Adj name plate, until ple-
ture is clearty dofined. Funzy picture moy olso of poor quality film whon stotion is televising a motion picture. Incorrect tuning of reaver produces a similar affect. Check for
proper tuning point as described in stop 5 of To Tune the Receiver."


TONE-This television receiver is equipped with a tone contro located under the nome plate-see Fig. 14. This control should be control counter-clockwise.

The following odjustmons should ransmitting its circulor test pattorn
7. straightening tilted raster - if the pattorn should op. peor on the scroen in
a filied position os
 bosen the deffection oke locking scrow
labeled \(A\) in Fig. 19 and rotate the yoke sufficiently to correct this condition. Be sure
to re-tighten the scrow securoly.

Fig. 13-titted picture, ADIG. 13-TITRD PICIVRE POSIION


©John F. Rider


TUBE LOCATIONS


\section*{CIRCUIT DESCRIPTION FOR 520645 RF TUNER}
 twbe (V6) as the Mixer-Oxilllator.

Channel selection is occomplished by rotation of the turet contoining
Iwo sets of easily removable coil ossemblies for each channol. The inIwo sets of easily removable coil ossemblies for each channel. The in noise pick-up on the tronsmission line and on R.f. grid cail which couple the incoming signol to the grid of the first section of the R.F. Ampli fier tube (V). The inductance ond omount of coupling of the toned
ontenno input circuit ore chonged for eoch channel io that a constont antenno input circuit ore changed for each channel so thot a constont
input impeadance of 300 ohms is mointained. This provides moximum tronsfer of energy to the R.f. Amplifer stoge, particulorly when inter. onnection between on ourdoor ontenna ond the receiver is made witt

The R.F. Amplifier tube is a duol.triode tube and is connected in the
 more nearly equal goin on both the low and high Television Chonnels, while keeping inherent twbe noise to o minimum. The circuir con bo hought of very simply as two triode twbes in series, the first or driver
nit octing not os on amplifer, but rother os an antemno impedonce matching device and also os a a varioble cothode impednonce, or bios Source, for the second, or grounded.grid unit, In oddition the frry unit
 verts the weak signol voltoge form the ontenana to of tow vologesehigh The signol coupling is hien opplied to the catho of of unit number two. The signol coupling unit berween the first and second units is a series
 capocity of the second unit. The coill is so made as to resonote of o
fequency slighty higher than channel 13 . In a standord pentode trpe equal goin can be realized for all channels.

The R.f. Amp. tube has inherently low interelectrode capacity due to physithe first section is responsible for the low noise foctor of this stage. While neutrolization of the first unit is not necessarily due to its law plote to grid copocity, additional noise reduction has been realized, with nly a sigh decrese in goin, by che not necessary that the neutralizing condenser be turnable.
Because of the circuits' excellent internal shielding, low input impedance as a driven grounded.grid omplifier. While this might not be apparent at first glance due to the fact that grid has no direct D.C. return, it will tentiols are by-passed to ground through condenser 407.
The second section af turret coils includes the funed R.F. amplifier plate coil, tuned mixer grid coil, and ossillator coil. The output of the R.F. ne triode section of a 610 tube (V)). The other half of the 856 is connected as a modified Colpitts oscillator which injects ostillator voltage into the mixer stage through coupling between the oscillator coil and the the positions of the slugs in the individual oscillatar cails, while fing runing is abtained when using condenser \#417 in the ascillotor plate its capacitance is changed by the insertion af a bokelite com between these plates.
Signal output from the mixer stoge is coupled to the If amplifiers through
REPAIR DATA FOR 520645 RF TUNER
All replacement parts for the RF Tuner Unit are included in the complete receiver parts list


SERVICE PRECAUTIONS
\begin{tabular}{|c|c|}
\hline Susject & precautions \\
\hline \multirow[t]{2}{*}{ELECTRICAL COMPONENTS} & The high frequencies used in the RF section af a television receiver make it necessary that considerable care be exercised in servicing the tuner. Lead dress and location of campanents are very critical at these frequencies. \\
\hline & When replacing parts, it is important to use components af identical electrical charocteristics and physical size. Always re. connect the repiacement item in the same locatian and position in the tuner as the original campanent. \\
\hline tuies & Replacement af tubes in the Tuner Unit may cause slight detuning af RF circuits due to inherent differences in inter-electrode capacitonces. When replacing tubes (especially 0 JJ mixer-oscillatar tube) make sure that fine Tuning contral will tune in televisian stations at approximately the middle of its range. It may be necessary to change the setting of the individual oscillator coil slugs for some channels to accomplish this. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline B. & Brightness Control max. clockwise \\
\hline c. & Brightness Control max. counter.clockwise \\
\hline D. & Contrast Control max. clockwise \\
\hline E. & Contrast Control max. counterclockwise \\
\hline G. & Height Control max, clockwise \\
\hline H. & Height Control mox. counter-clockwise \\
\hline J. & Verrical Hold Control max. clockwise \\
\hline K. & Vert. Hold Control max. counter-clockwise \\
\hline L. & This voltage measurement was taken from the top of the tuner chassis with the tube removed from its socket. \\
\hline M. & Vertical Linearity Control max. clockwise. \\
\hline N. & Vertical Linearity Control max, counter-clockwise. \\
\hline & The measurement should be made with. a vacuum tube voltmeter. The voltage reading will fluctuate in the vicinity of 0.05 volts. \\
\hline Q. & Do not attempt to measure the voltage at this position. There is a high R. F. potential at this point. \\
\hline T. & Horiz. Drive Control max, clockwise. \\
\hline U. & Horiz. Drive Control max. counter-clockwise. \\
\hline v. & Before measuring this volloge, connect external antenno and adjust controls for normal reception of station signal. \\
\hline w. & Before making this measurement, remove 6CB6 (V10 4ih I.F. Amp.). This will provent noise in the R.F. and I.F. stages from affecting voltage measured at this point. \\
\hline X. & Grounding of center stud on tube socket is necessary to reduce capacity coupling between other pins. Oscillation may result if this ground is omitred. \\
\hline Y. & Horiz. Hold Control turned in a clockwise direction until picture approaches loss of sync. \\
\hline z. & Horiz. Hold Control turned in a counter-elockwise direction until picture approaches loss of sync. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline subject & PRECAUTIONS \\
\hline CHANNEL COILS AND slugs & Chonnel Coils must be hondled with core. Do nat disturb cail windings. If on oscillotor slug "folls into" its soil form during odjustment, remove the Cho:nel Coil from the turret ossembly ond lift the Slug Retoining Spring oside. By topping the coil form it should be possible to moke the slug move toword the end so thot its threads will be engoged by the Slug Retain. ing Spring when thot spring is returned to its normol position. \\
\hline FINE TUNING
CONTROL & Rubbing of the bokelite Fine Tuning Com ogoinst the Fine Tuning Condenser Plote is intentionol in order to ovoid vibration with resulting microphonics. However, the Fine Tuning Com should not rub or contoct the smoll circulor plote locoted on the body of the tuner. \\
\hline
\end{tabular}
removal and replacement of parts
\begin{tabular}{|c|c|}
\hline ITEM & procedure \\
\hline RF tuner unit & \begin{tabular}{l}
To remove the Tuner Unit from receiver chossis, proceed as follows: \\
1. Remove channel selector dial lomp socket. \\
2. Remove screws which hold tuner to front and rear support brackets. \\
3. Disconnect the leods from the funer to the main chassis. See illustration on circuit diagrom poge showing funer connec. tions. \\
4. Tuner unit may now be withdrawn from underside of chossis.
\end{tabular} \\
\hline channils coils & \begin{tabular}{l}
It is not necessary to remove entire tuner unit to replace a snap-in channel coil but removol of bottom shield will be re. quired. This may be accomplished by grasping the front end of the shield and pulling downward and unhooking it from rear of tuner frame. \\
Insert a screwdriver blade between Coil Retainer Spring and the end of the Tuner Turret. Twist the blade to pull spring awoy from the molded body of Channel Coil. Lift this end of coil body upward and remove individuol coil assembly from tuner. When replocing Channel Coils, be sure they are reinstalled in their correct positions. Coil numbers should increase consecu. tively in a counter.elockwise direction when tuner is viewed fram the front. \\
If all the Channel Coils have been removed from the Tuner Turret, rotate turret until flat surface on end of tuner shoft points down. Install \#3 Chonnel Coils into bottom position on turret. Then follow the correct sequence indicated obove to replace other coils.
\end{tabular} \\
\hline TUNER TURRET
ASSEMALIT & \begin{tabular}{l}
To remove turret from RF Tuner Unit, remove camplete tuner and bottom shield as described in previous sections ond proceed as follows: \\
1. Remove rear Turret Shaft Retaining Spring by disengaging straight end of spring from proiection on tuner frame. \\
2. Remove Fine Tuning Condenser Plate from front of Tuner Unit. This plete forms one side of Fine Tuning control candenser and is held in place by one screw. \\
3. Slide Fine Tuning Cam ond Shaft off of main Channel Selector Shaft. \\
4. Remove Spring Contoctor Washer and Fiber Spacer Washer from Channel Selector Shoft. \\
5. Remove Shaft Retaining Spring of front of tuner by disengaging straight end of spring from projection on frome. \\
6. Remove turret assembly from frome. \\
To reploce furret, reverse the above procedure. Tooth on bakelite Fine Tuning Com should point downward during ossembly so that it does not become locked between the stops on the Fine Tuning Condenser Plate. Also be sure to replace bottom shield.
\end{tabular} \\
\hline \(\underset{\substack{\text { STATOR CONTACT } \\ \text { ASSEMBLY }}}{ }\) & \begin{tabular}{l}
To remove this cssembly, remove complete tuner as described in previaus sections and proceed as follo : \\
1. Remove side shield by taking out the two retaining screws and unsolder shield ot one point. Now, disongage shield fram upper edge of tuner frame. \\
2. Remove the two screws of the front and rear of the Stotor Contoct Assembly. \\
3. Unsolder all electrical connections to contact plate. \\
4. Unsolder five soldered joints between Stator Contoct Assembly and Tuner Unit. \\
5. Contact Assembly may now be withdrawn from frame. \\
To reinstall this assembly: \\
1. Place Stator Contact Assembly in position and replace, but do not tighten, the two screws at the front and rear of the assembly. \\
2. Remove 3 consecutive pairs of Channel Coils from the turret (for example, the ontenna and rfosc. coils for channels \#5, 6 ond 7). \\
3. Position Tuner Turret so that the edges of the next highest Channel Coils (in this cose, the coits for channel \#8) just pass the raw of 11 contacts on the Statar Contact Assembly. \\
4. Adjust position of the Statar Contact Assembly so that there ore of few thousondths of on inch spacing between the contacts on the contoct plate and the molded body of the Channel Coils. \\
5. The Contact Assembly is now correctly pasitioned and screws at front and rear may be tightened. \\
6. Salder Stator Contact Assembly to tuner frame ot same points that were used previously. \\
7. Make all electrical connections to contact plate. \\
8. Replace Channel Coils. \\
9. Replace side shield.
\end{tabular} \\
\hline
\end{tabular}

\section*{ALIGNMENT PROCEDURE \\ MODEL 9132-A}

Aignment of oll RF ond IF tuned circuits in this receiver moy be accom. plished by utilizing the procedures described in the following charts sequence of alignment: These procedures should preferobly be applied in the order in which they ore presented, however, alignmen
of the Sound Chonnel or IF Chonnel may be accomplished individually if desired.

The RF Amplifer and Mixer alignment moy also be accomplished inde pendent of Sound or IF Channel olignment, but oscillotor colibrotion ca only be done offer IF Channel has been correctly aligned. Proper I band poss charocteristic is necessory for Oscillotor alignment as results of to the output of the detector stage.
emoval of chassis: The receiver chossis must be removed from he cabinet in order to accomplish alignment of all tuned circuits a there ore adiustment points locoted on the underside of the unit

This can be occomplished by first removing all knobs and disconnecting the receiver "builtin" ontenna ond speoker. The chassis may then be moved by releasing the hold-down screws locoted on the underside of the cabinet.

\section*{CAUTION}

The picture tube is highly evacuated and if broken, glass fragments will be violently expelled. Handle with care, using safety goggles and gloves.

NSTRUMENTS: The following instruments will be required as signol ources and output indicotors during the alignment process. Since accurate alignment of a television receiver is heavily dependent upon the per rmance of your insiruments, is imperive that they meet the onentid pecifications described here

STANDARD SIGNAL GENERATOR to provide unmodulared (pura RF) signols of the following frequencies. Maximum output on all ronges should be of least I volt with provision for attenuation of desired. This instrument must hove good frequency stability and be accurately calibroted. Generators which incorporate a soparate crystol controlled oscillotor and heterodyne circuit are self caliauency colibration required for televisison circuit alignment.
o. If Frequencies:
4.5 Mc . Sound Chonnel
22.25 Mc. Sound IF marke
\(22.4 \mathrm{Mc} . \mathrm{Ist}\) IF Trop Coil
23.5 Mc . Ist and 3rd IF stoge
24.9 Mc . dth IF stoge
24.9 Mc . 4 th IF stoge
26.75 Mc . Picture IF marter IF stoge
b. RF Frequencies:

54 to 88 Mc .
174 to 216 Mc .
2. RF SWEEP GENERATOR to provide frequency modulated signal of the following frequencies:

20 to 30 Mc . with 10 Mc . sweep width.
54 to 88 Mc. with 10 Mc. sweep width.
th \({ }^{2} 1 \mathrm{Mc}\). Wih to Mc. sweep widr.
Output adiustable with of least 1 volt maximum.
Output should be "hat" (no amplitude voriation) for all sat tings of the sweep width control.
Provision for connection of generator sweep modulating vol oge to horizontal deflection system of on oscilloscope.
Provision for blanking the output signal on each retur Provision tor blanking the output signal on sact
3. CATHODE RAY OSCilloscope, preferably a unit with vent amplifier hoving

VACUUM TUBE VOLTMETER. The lowest valtage range of this instrument should preferably permit a 1.0 volt reading ta b indicated at not less than one third af full scale defection
INSTRUMENT CONNECTIONS: The method of connection, including de bils of matching and caupling networks, for instruments used in thi for eoch instrument application will be found in various sections of the alignment charts.
eneral instructions: When oligning If and rf circuits it ecessory to opply ofixed bias voltoge to the AGC system of the re eiver. This fixed bios is obtoined by using a 3 volt battery and co necting it as described in Fig. 14

\section*{MPORTANT}

When observing the receiver band pass characteristic on an oscilloscope, it is exceedingly important to avoid distortion of that characteristic which would occur when using a large input signal from the sweep generator or standard generator (marker signal). Always set attenuator on sweep generator so that the reading on the vacuum tube voltmeter does not exceed one volt (when meter is connected from high side of video detector load, resistor symbol 196, to receiver chassis). Standard generator output should also be attenuated so that marker signal does not pull or tear the band pass characteristic as shown on the 'scope

\section*{SOUND CHANNEL ALIGNMENT PROCEDURE}
1. Short antenna terminals logether with a jumper wire

Set receiver Channel Selector to any a ingetive wire television channel:
other controls may be left at any desired setting.
No special aligning tool is required to adjust the cores in the Sound
Not
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multirow[b]{2}{*}{\(\xrightarrow[\text { VTVM }]{\text { CONNECTIONS }}\)} & \multirow[b]{2}{*}{miscellaneous instructions} & \multirow[t]{2}{*}{TRIMMER OR SLUG} & \multirow[b]{2}{*}{TYPE OF RDJUSTMENT and output indication} \\
\hline CONNECTIONS & frequency & & & & \\
\hline \multirow{6}{*}{\[
\left|\begin{array}{c}
\text { Connect as } \\
\text { shown in Fig }
\end{array}\right|
\]} & \multirow{6}{*}{4.5 MC . unmodulated This signal must be accu-
rate within \(1 / 4\) of \(1 \%\) of 4.5 Mc
Ch heck quen lor calibration against acryad signal source by
zero beating" (heterodyning) of the crystal frequency} & \multirow{6}{*}{Connect as shown in Fig. 2.} & \multirow{6}{*}{A "swishing" sound may be heard in the speaker Alignment. This spurious oscillation is caused by horizontal sweep voltage
being picked up in the audio system thru stray coupling of instrument garded as it will have no ent of the ound channel.} & \[
\begin{gathered}
\text { \#1 } \\
\substack{\text { Discriminator } \\
\text { Secondary }}
\end{gathered}
\] & Adjust for \({ }_{\text {on }}\) maximum \({ }^{\text {VTVM. }}\) ( reading \\
\hline & & & & \[
\underset{\substack{\text { Discriminator } \\ \text { Primary }}}{\text { \#2 }}
\] & Adjust for maximum reading \\
\hline & & & & \[
\begin{gathered}
\text { \#3 } \\
\begin{array}{c}
\text { 2nd } \\
\text { Secoundary IF }
\end{array}
\end{gathered}
\] & Adjust for maximum reading \\
\hline & & & & \[
\underset{\substack{\text { 2nd sound IF } \\ \text { Primary }}}{\text { \#4 }}
\] & Adjust tor maximum reading \\
\hline & & & & \[
\underset{\substack{\text { 1sts Sound IF } \\ \text { Secondary }}}{\text { S5 }}
\] & Adjust tor maximum reading \\
\hline & & & & \[
\underset{\substack{\text { 1stsound IF } \\ \text { Primary }}}{\text { \#6 }}
\] & Adjust tor maximum reading \\
\hline Same as
above. & Same as above. & Connect as shown in Fig 3. & To obtain zero balance of wo 68,000 ohm resistors will be required. These resistors mus bedich tances do not differ by more than \(1 \%\)-the accu racy of the total resistance
is not critical. Connet the wo resistors in series from pin 2 to the 6T8 tube to in Fig. 3 . & \[
\begin{gathered}
\text { \#1 } \\
\substack{\text { Discriminator } \\
\text { Secondary }}
\end{gathered}
\] & Note that as slug \(\# 1\) is rotated a point will be found where the
voltmeter will swing rather sharply from a positive to a negative
reading or vice versa. The cor rect setting of slug \(\# 1\) is obtcined when the meter reads zero as
the slug is moved thru this point \\
\hline
\end{tabular}

\section*{REDUCTION OF INTERCARRIER BUZZ}

Slight "dynamic" unbalance of the discriminator secondary can em
pinasize intercarrier buzz due to incomplete amplitude modulation re piasize intercarrier buzz due to incomplete amplitude modulation re jection. Therefore it is vitally important to obtain an accurate setting
of the discriminator secondary slug under actual reception conditions. Disconnect all instruments and then connect an antenna to the receive 10 obtcin program reception from a local station. It intercarrier buzz is prominent, a slight readjustment of the discriminctor secondary
slug (\#1) should be made to obtain the "dip", piont for the buzzing lug (\#1) should be made to obtain the "dip" point for the buzzing
ound. Note that program sound will be clear and free from distortion at this point. Buzz should now be at an acceptable minimum it station ransmission is not at fault.


\section*{INSTRUMENT CONNECTIONS FOR} SOUND CHANNEL ALIGNMENT


FIG. 1
Generator Connections
for Sound Channel isolating RESISTOR IN SERIES WITH METER PROBE



FIG. 9
Generator Connections for IF Channel Alignmen


FIG. 10
VTVM and Oscilloscope Connections for IF Channel Alignment

FIG. 3
VTVM Connections
for Sound Discriminator
Alignment

\section*{© John F. Rider}

\section*{If CHANNEL ALIGNMENT PROCEDURE}
 \(t\) that vollage due to
Where If oscillation is encountered. in is generally possible 10 correct
the condition by detuning the IF coils in different directions. If that






Turn receiver Channel Selector to television cha
anten na terminals together with \(\alpha\) jumper wire.
 of battery connects
point of connection

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
STANDARD SIGNAL \\
generato
\end{tabular}} & \multicolumn{2}{|l|}{SWEEP Generator} & \multirow[b]{2}{*}{\(\xrightarrow[\text { VTvM }]{\text { CONNETIONS }}\)} & \multirow[t]{2}{*}{OSCILLOSCOPE CONNECTIONS} & \multirow[t]{2}{*}{miscellaneous instructions} & \multirow[t]{2}{*}{TRIMMER
OR SLUG} & \multirow[t]{2}{*}{TYPE OF ADUST:
MENT AND OUTPUT indication} \\
\hline \[
\begin{aligned}
& \text { CONNEC } \\
& \text { TIONS }
\end{aligned}
\] & frequency & CONNEC
TIONS & freq. & & & & & \\
\hline & &  & & & & & \(\underset{\substack{\text { converer } \\ \text { ncoiter } \\ \text { coil }}}{\text { 7 }}\) & Adivs for maximum \\
\hline & &  & & & & & \(\underset{\text { 2nd }}{\text { \# } 1 .}\) & Adiust \(\begin{aligned} & \text { Aror maximum } \\ & \text { reding on VivM. }\end{aligned}\) \\
\hline Same as. & 24.9 MC . &  & - & \({ }_{\text {Same }}^{\substack{\text { Same } \\ \text { above. }}}\) & Nou used. & - & \# &  \\
\hline \multirow[b]{2}{*}{\(\underbrace{\substack{\text { cas } \\ \text { abve. }}}_{\text {Same }}\)} & \multirow[b]{2}{*}{23.5 MC .} & \multirow[b]{2}{*}{\({ }_{\text {Samma }}^{\substack{\text { Same } \\ \text { aboes }}}\)} & & \multirow[b]{2}{*}{Same cis} & \multirow{2}{*}{Not used.} & & \#10. &  \\
\hline & & & & & & & \(\underset{\text { \# }}{\text { \# } 11 . \mathrm{F}}\) &  \\
\hline Same as & 22.4 MC. &  & & Same asi & Not used. & - &  & Adiust for minimum \\
\hline Samo \({ }_{\text {a }}^{\text {as. }}\) & 26.75 MC . &  &  &  &  & IMPORTANT:
1. Adjust output
attenuator on
sweep generator
so that reading
on VTVM is ap-
proximately one
volt.
2. Setattenuator
on stendard sig-
nal generator to
that marker sig.
nal does not dis
tort the pattern
on ine oscillo-
scope.
3. Be sure inat a
3 volt battery
is connected to
A GC line ar
specified in in-
struction 43 at
the head of thls
chart. Do not use
a battery of any
other voltage. & \multicolumn{2}{|l|}{} \\
\hline Same & 22.25 MC . & Sama as. & \(\mathrm{Sa}_{\substack{\text { Samo } \\ \text { aboves }}}\) & Samo as. & Samo as. & Samo as. &  &  \\
\hline
\end{tabular}

\section*{RF CHANNEL ALIGNMENT PROCEDURE}

Connect a 3 volt battery to the receiver AGC system so that terminal of battery connects to receiver chassis. (See Fig. 14 for convenient point of connection.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multicolumn{2}{|l|}{SWEEP GENERATOR} & \multirow[t]{2}{*}{VTVM CONNECTIONS} & \multirow[t]{2}{*}{OSCILLOSCOPE CONNECTIONS} & \multirow[t]{2}{*}{MISCELLANEOUS INSTRUCTIONS} & \multirow[t]{2}{*}{trimmer OR SLUG} & \multirow[t]{2}{*}{TYPE OF ADJUST. MENT AND OUTPUT INDICATION} \\
\hline CONNEC
TIONS & Frequency & CONNEC. TIONS & FREQ. & & & & & \\
\hline \multicolumn{9}{|c|}{RF AMPLIFIER AND MIXER ALIGNMENT} \\
\hline \[
\begin{aligned}
& \text { Connect as } \\
& \text { shown is } \\
& \text { sig. } 10 \text { in. }
\end{aligned}
\] & -209.75 MC. &  & \[
\underset{\# 12}{\text { CHANNEL }}
\] & Not used. & Connect as
shown in Fig.
11. &  & \[
\begin{gathered}
\text { \#15 } \\
\text { RFAmp. } \\
\text { Grid. }
\end{gathered}
\] &  \\
\hline \multirow{11}{*}{Same as above.} & - 215.75 Mc +2125 & \multirow{11}{*}{Same an above.} & \[
\underset{\# 13}{\text { CHANEL }}
\] & \multirow{11}{*}{Not used.} & \multirow{11}{*}{Same as above.} & Set Channel Selec- & \multicolumn{2}{|l|}{\multirow[t]{11}{*}{\begin{tabular}{l}
The RF band pass characteristic of now be checked without disturbing the settings of trimmers \#13. 14 and
15. Adjust the RF sweep generator on the other television channels, ob carrier and picture carrier markers. FIG. 7. \\
Band pass characteristic of these response curve in Fig. 7. If necesto compensate for small variations in channel \#12 and making slight
changes in the settings of trimmers
\(\# 13\). 14 and 15 .
\end{tabular}}} \\
\hline & *203.75 MC. & & \[
\overline{\mathrm{CHANNEL}} \underset{\# 1}{ }
\] & & & \[
\begin{aligned}
& \text { Set Channel Selec- } \\
& \text { tor to } \# 12
\end{aligned}
\] & & \\
\hline &  & & \[
\begin{gathered}
\text { CHANNEL } \\
\# 10
\end{gathered}
\] & & & Set Channel Selec-
tor to \(\# 10\) & & \\
\hline &  & & \[
\overline{\text { CHANNEL }}
\] & & & \[
\begin{aligned}
& \text { Set Channel Selac- } \\
& \text { tor to \#9 }
\end{aligned}
\] & & \\
\hline &  & & \[
\begin{array}{|c|c|}
\hline \text { CHANNEI } \\
\# \# \\
\hline
\end{array}
\] & & & Set Channel Selec. & & \\
\hline & +179.75 MC.: & & \[
\begin{gathered}
\text { CHANNEL } \\
\# 7
\end{gathered}
\] & & & \[
\begin{aligned}
& \text { Set Channel Selec- } \\
& \text { tor to \#7 } \\
& \hline
\end{aligned}
\] & & \\
\hline &  & & \[
\begin{gathered}
\text { CHANNEL } \\
\# 6 \\
\hline
\end{gathered}
\] & & & Set Channel Selec- & & \\
\hline &  & & \[
\begin{gathered}
\text { ChanNEL } \\
\# 5 \\
\hline 5
\end{gathered}
\] & & & \[
\begin{array}{|l|}
\hline \text { Set Channel Selec. } \\
\text { tor to } \# 5 \\
\hline
\end{array}
\] & & \\
\hline &  & & \[
\underset{\# 4}{\underset{\#}{\text { CHanNEL }}}
\] & & & \[
\begin{gathered}
\text { Set Channel Selec- } \\
\text { tor to } \# 4
\end{gathered}
\] & & \\
\hline &  & & \[
\underset{\substack{\text { CHANNEL } \\ \# 3}}{ }
\] & & & \[
\begin{gathered}
\text { Sel Channel Selec- } \\
\text { tor to } \# 3 \\
\hline
\end{gathered}
\] & & \\
\hline & \(\underset{\sim}{\text { * }}\) & & \[
\underset{\neq 2}{\substack{\text { CHANNEL }}}
\] & & & \[
\begin{gathered}
\hline \text { Set Channel Selec- } \\
\text {. tor to } \# 2 \\
\hline
\end{gathered}
\] & & \\
\hline
\end{tabular}
-Sound Carrier Marker
picture
Parrier Marker

FIG. 8 Front view o RF Tuner Uni


© John F. Rider

Notice: Same parts listed belaw have special characteristics. Do not use substitutes far replacement purposes.


\section*{PARTS LIST (Cont.)}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{|l|l}
\text { DIA } \\
\text { GRAM } \\
\text { NOO. }
\end{array}
\] & PART & DESCRIPTION &  & \[
\begin{aligned}
& \text { DiA- } \\
& \text { GRAM } \\
& \text { NO. }
\end{aligned}
\] & Part & description &  \\
\hline \multirow[t]{47}{*}{} & 520521 &  & . 50 & & & & \\
\hline & 507960 & Spring-contactor wosher (on front turret shoft) & . 08 & & & miscellaneous pa & \\
\hline & 507990 & Spring-retains osc. fine tuning slug & 10 & & 508515 & Plug (8 pin) for yake cable & 70 \\
\hline & 507967 &  & . 03 & & 508878 & Plug ( 3 pin) far focus coil leads. & 25 \\
\hline & 520517 & Stator cantact assembly (includes 11 contacts
and metal frame) & 3.75 & & 507899 & Power cord assembly (includes plugs at both
ends & \\
\hline & 520516 & Turner furret and shaft assembly (less cails) & 3.00 & & 509290 & Ring-corono shield for 183GT/8016 tube socket & 10 \\
\hline & 507965 & Washer, fiber spacer (on turret shoft) .......... & . 01 & & 520313 & Ring, insulating for mounting picture tube. & 3.50 \\
\hline & & cabinet parts & & & 507422 & Rubber sleeve between neck of picture tub & \\
\hline & 115238 & Back for cabinet & & & & focus coil & 30 \\
\hline & 520650 - & Cabinet for Model 9132.A & 50.00 & & 507793 & Rubber spacer support between flored neck of picture tube and yoke brocket & . 15 \\
\hline & 507132 & Call letter tabs. & . 40 & & 18796 & Screw-\#10 \(\times 1\) "; mounts TV chassis & 02 \\
\hline & 520476 & Glass window for Model 9132-A & 0.00 & & 162324 & Shield for TV Channel Lite. & 20 \\
\hline & 509016 & Knob-Channel Selector . ...................... & . 80 & & 162138 & Shield--H.V. supply (front section).... & 2.70 \\
\hline & 509017 & Knob-"F". (Fine Tuning) - .n - & . 45 & & 508088 & Shield-H.V. supply (rear section) & 2.10 \\
\hline & 509018 & Knob-"OFF VOLUME.ON & . 75 & & 520519 & Shield-tube; miniature for \(68 Q 7\) or 8827 tube & 20 \\
\hline & \({ }_{5209019}^{509 .}\) &  & \(\begin{array}{r}.45 \\ \hline 6.50 \\ \hline\end{array}\) & & \({ }_{5200534}\) & Shield-tube; minioture for 066 tube Slind. & 15 \\
\hline & \({ }_{509898} 5\) & Mask for picture tube; Model 9132-A . & \begin{tabular}{l}
6.50 \\
2.25 \\
\hline 2
\end{tabular} & & 520429 & Sleeve, insulating for picture tube (includes
Hiver & \\
\hline & 509698 &  & 2.25
.30 & & 509062 & Slug core far converter plate coill & 12 \\
\hline & 18796 & Screw-\#10 \({ }^{1 \prime \prime}\); mounts TV chassis & . 02 & & 507357 & Slug core for 1st, 2nd, 3rd or 4th vide & \\
\hline & 162163 & Terminal strip for TV antenno connection. & . 22 & & & or trap coil & \\
\hline & & & & & 508963 & Slug core for Horizontal Hold ca & . 15 \\
\hline & & miscellaneous parts & & & 507429 & Slug core for Horizontol Linearity coill
Slug core for Horizontal Width coil (includes & \\
\hline & 301270 & Base for mounting electrolytic conde & . 06 & & & Slugounting clip) (izontal Widit coill (includas & . 65 \\
\hline & 508153 & Bracket base for support of yoke and focus coil (left or right hand & & & 508049
50244 & Socket and coble ossembly for picture tubè Socket and mounting bracket for TV Channel & \\
\hline & 520669 & Bracket mounis yoke ond facus cail ........ & 2.75 & & & lite … & . 25 \\
\hline & 508081
52023 & Bracket for mounting R.F. funer (front) & . 16 & & 162259 & Socket assembly for 183GT/8016 tube (includes & . 20 \\
\hline & \({ }_{508154}^{52023}\) & Bracket for mounting R.F. funer (rear)
Bracket ("'U" shaped) for suport of yoke and & & & 508419 & Socket (8 pin) for deflection yoke cable .-..... & 70 \\
\hline & & bracker
focus coil & . 55 & & 508879 & Socket (3 pin) for focus coil leads.............. & 35 \\
\hline & 520425 & Bracket, chassis extensian (left hand) .-..... & 1.50 & & 507932 & Socket-male, power cord interlock & 25 \\
\hline & 520426 & Bracket, chassis extension (right hand) & 1.50 & & 507364 & Socket-miniature (7 pin) & 24 \\
\hline & 520312 & Bracket for mounting piefure tube \{left hand) & 1.00 & & 507987 & Socket-miniature ( 7 pin) for 6 J 6 (includes base for mounting shield) & \\
\hline & 520311
520424 & Bracket for mounting picture tube (right hand) & & & & Socket-miniature (9 pin) ................. & 35 \\
\hline & 520424 & Bracket for mounting pre-set controls .... & . 70 & & 509507 & Socket-miniature (9 pin) (for 654 tube). & 25 \\
\hline & 508681 & Clii for mounting electrolytic condenser \(=197\) & . 10 & & 520521 & Socket-minioture (9 pin) for \(88 \mathrm{BQ7}\) or 68 BZ & \\
\hline & 508715
505101 & Clip for mounting fuse holder Cla sound & & & 508703 & Socket-octal \({ }^{\text {a }}\) (ives bar mounting shied) & 15 \\
\hline & 505101 & Clip for mounting
tronsformers 1st and 2nd Sound & . 05 & & 508703 & Socket-octal; for color TV adapter & 15 \\
\hline & 339 & Clip for mounting video converter plole, \({ }^{\text {spt }}\) & & & \({ }^{500469}\) & Socket-atal (for ow 4 tube) .a. .a. & 18
12
12 \\
\hline & &  & & & 160039
509320 & Socket-(1) pin) for phono. pick-up cable
Soring-tension for focus coil mounting. & 12 \\
\hline & 507592 & Clip for mounting 4th video I.F. coil & . 04 & & 520672 & Strap, anchor for picture tube ..... & 45 \\
\hline & 508964 & Clip for mounting Horizontal Hold & & & 520623 & Strap, tube retaining & 50 \\
\hline & 504691 & Clip for* mounting Width coill & & & 520443 & Support for tuner shaft (plastic) ................ & . 04 \\
\hline & 508714
509888 & Fuse halder
lon trap & & & 162163 & Terminal strip for TV antenna connections...... & 20 \\
\hline & & Jumper for coior socket \(11 / /^{\prime \prime}\) of \(=11\) wire. & & & 170195 & Wing nut-\#8-32; for mounting yoke and focus & . 10 \\
\hline & 508617
508962 & Nut-for retaining focus cail & & & 170817 & Wing screw-\# \({ }^{\text {a }}\)-24; for height adi. of yoke & \\
\hline & \multirow[t]{3}{*}{520428} & Connector for H.V. terminal (includes cap and ead) & 1.00 & & & & \\
\hline & & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{--This part is not sunplied as a Service replacement item.
ALL PRICES ON THIS PARTS LIST \(/\) RE SUBJECT TO CHANGE WITHOUT NOTICE.}} \\
\hline & & & & & & & \\
\hline
\end{tabular}

In those
cases where the mask of a particular original mask, the series letter stamped model was changed during production on the rear of the chassis, which identiand it is not inter changeable with the
fies this change, will also be shown.

\section*{© John F. Rider}

\section*{PRODUCTION CHANGES}

The following tabulation furnishes complete details on changes which occurred during receiver production. The re ceivers incorporating these changes are identified by coding stamped on rear surface of chassis. This coding consists of one or more letters following the word SERIES, as SERIES B, SERIES AC, etc., and corresponds to similarly lettered change shown below. Chassis incorporate only that change indicated by letter designation; i.e., chassis stamped "SERIES BE" does not include changes " \(A\) " or " \(C\) " or " \(D\) ".

The circuit shown on this page applies
to "UNCODED" chassis.
A letter following the component circuit diagram number thus \(-201^{\mathrm{A}}\), indicates that this particular item was affected by a circuit change. The letter corresponds to the series code letter listed in the production change column, from which complete change information can be obtained.
\(\left.\begin{array}{|c|c|}\hline \text { LETTER INCLUDED } \\
\text { IN DESIGNATION } \\
\text { FOLLOWING THE } \\
\text { WORD "SERIES"" } & \text { CHANGE INCORPORATED } \\
\hline \text { UNCODED } & \text { IN CHASSIS }\end{array}\right]\)\begin{tabular}{ll} 
INITIAL PRODUCTION \\
\hline\(\ddagger\) & \begin{tabular}{l} 
On some chassis the Color Adaptor Socket was not \\
incorporated. There is no series letter identification \\
on rear of chassis to identify this change.
\end{tabular} \\
\hline
\end{tabular}

ettered terminals in illustrotions correspand to similarly lettered terminols on the circuit diagram.

ALTERNATE HORIZONTAL SWEEP TRANSFORMERS


RESISTANCE MEASUREMENT \(\begin{array}{lll}\text { Between terminal } & \text { \& } & 2-40 \mathrm{Ohms} \\ \text { Between terminal } & \text { 2 } & 3-375\end{array}\) \(\begin{array}{lllll}\text { Between terminal } & 2 & \text { \& } & 3-375 & \mathrm{Ohms} \\ \text { Between terminal } & 5 & 8 & 8-5.5 & \mathrm{Ohms}\end{array}\)


resistance measuremen Between terminal \(1 \& 2-40\) Ohms
Between terminal \(2 \& 3-375\) Ohms \(\begin{array}{llll}\text { Between terminal } 2 \& \& 3-375 & \mathrm{Oms} \\ \text { Between terminal } \\ 5 & \& & 8-2.2 & \mathrm{hmms}\end{array}\) Between terminal o \& 8-4.5 Ohms

These three types af transformens all carry the same Part Na. 508679 and are di-
rectly interchangeable. Cannectian terminals are numbered ta carrespand to simicomplete circuit diogrom



OJohn F. Rider

Due to the operating characteristic of the \(27^{\prime \prime}\). picture tube, additional
modifications have been incorporated. A different power transformer
 were utilized. The horizontal sweep transformer, defiection yoke and

\section*{NTERMEDIATE FREQUENCIES} Sound Carrier- 22.25 Mc .
I.F. SYSTEM

Three Stages-stagger tuned-for composite signal.
One additional stage for sound channel.

\section*{DETECTOR}

Sound-Ratio Type
Picture-Germanium Crystal Type

\section*{RETRACE LINE SUPPRESSOR}

Eliminates retrace lines thruout the normal range of picture brightness
DEFLECTION \& FOCUS
Magnetic
HORIZONTAL SYNCHRONIZATION
Automatic frequency control provides excellent picture stability.
HIGH VOLTAGE POWER SUPPLY
"Fly-back" type. Completely enclosed in a shielded compartment.

\section*{SOCKET VOLTAGES \\ MODEL 27C-9212A}
CAUTION
\begin{tabular}{|c|}
\hline THE PICTURE TUBE is highly evacuated and if broken, glass fragments will be violently expelled. Scratch ing, chipping, undue pressure, or careless handling such as lifting the tube by its neck is dangerous and should be avoided. If it is necessary to handle the picture tube, use safety goggles and heavy gloves. \\
\hline HIGH VOLTAGE ( 10 to 18 kilovolts) is produced in a supply circuit of this receiver. Exercise care to avoid contact with elements of this circuit and particularly the tube terminals which are labeled "CAUTION" in the adjoining voltage chart. \\
\hline THE HIGH VOLTAGE LEAD, which supplies approximately 10 to 18 kilovolts to the picture tube, should be momentarily shorted to the chassis whenever it is disconnected for service purposes. This discharges the high voltage filter condenser and prevents a shock hazard when working on the receiver after it has been turned off. \\
\hline INTERMEDIATE B+ VOLTAGES, are dangerous and caution should be observed when the receiver chassis components are exposed for service purposes. \\
\hline
\end{tabular}
its associated circuits and components were modified. The Horizontal Scanning Output fube, V15, was changed to a type SCDOG, the Hori-
Eontal Domping tube, V17, was changed to a type \(6 A X 4 G T\), and the vental Damping tube, V17, was changed to a type \(6 A \times 4 G T\), and the
Vertical Scanning Output fube, V21, was changed to a type \(6 B Q 6 G T\).


EXPLANATION OF NOTES
\begin{tabular}{|c|c|}
\hline A. & Power Booster control mox. clockwise \\
\hline B. & Brighness Control mox. clockwise \\
\hline c. & Brightness Control mox. counter-clockwise \\
\hline D. & Controst Control mox. clockwiss \\
\hline DD. & Controst control set to mox. valtoge reoding but not necessorily mox. clockwise setting of control \\
\hline E. & Controst Control mox. counter-clockwise \\
\hline F. & Power Booster control mox. counter.clockwise. \\
\hline G. & Height Control mox. clockwise \\
\hline H. & Height Control mox. counter-clockwise \\
\hline J. & Verticol Hold Control mox. clockwise \\
\hline K. & Vert. Hold Control mox. counter-clockwise \\
\hline L. & This voltage meosurement was taken from the top of the tuner chassis with the tube removed from its socket \\
\hline M. & Vertical Linearity Control mox. clockwise. \\
\hline N. & Vertical Linearity Control max. counter-clockwise. \\
\hline Q. & Do not attempt to meosure the voltoge ot this position There is a high R. F. potentiol at this point. \\
\hline T. & Horiz. Drive Control max. clockwise \\
\hline U. & Horiz. Drive Control max. counter.clockwise. \\
\hline v. & Before measuring this voltoge, connect external antenno and odjust controls for normal reseption of station signal. \\
\hline w. & This meosurement should be made with a vocuum tube voltmeter. This voltage reading will fluctuate in the vicinity of 0.15 volts. \\
\hline x. & Grounding of center stud on tube socket is necesassy to reduce capacity coupling between other pins. Oscillation moy result if this ground is omitted. \\
\hline & Horiz. Hold Control turned in o clockwise direction until picture approaches loss of sync. \\
\hline z. & Horiz. Hold Control turned in a counter-elackwise direction until picture aproaches loss of sync. \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline SUbject & PRECAUTIONS \\
\hline channel coils and slugs & Channel Cails must be handled with care. Do not disturb coil windings. If an oscillatar slug "falls inta" its coil form during adjustment, remave the Channel Cail fram the turret assembly and lift the Slug Retaining Spring aside. By tapping the cail form it should be passible to make the slug move toward the end so that its threads will be engaged by the slug Retaining Spring when that spring is returned to its narmal pasitian. \\
\hline fine tuning CONTROL & Rubbing of the bakelite Fine Tuning Cam against the Fine Tuning Candenser Plate is intentianal in arder to avaid vibratian with resulting microphanics. Hawever, the Fine Tuning Cam shauld not rub ar contact the small circular plote lacated on the bady of the tuncr. \\
\hline
\end{tabular}
removal and replacement of parts
\begin{tabular}{|c|c|}
\hline item & procedure \\
\hline RF TUNER UNIt & \begin{tabular}{l}
To remave the Tuner Unit from receiver chassis, praceed as follows: \\
1. Remave channel selectar dial lamp sacket. \\
2. Remave screws which hald tuner to frant and rear support brackets. \\
3. Discannect the leads from the tuner to the main chassis. See illustratian an circuit diagram poge shawing tuner connectians. \\
4. Tuner unit may now be withdrawn from underside of chassis.
\end{tabular} \\
\hline channels coils & \begin{tabular}{l}
It is not necessary ta remave entire tuner unit to replace a snop-in channel coil but remaval af batsom shield will be required. This may be accamplished by grasping the frant end af the shield and pulling dawnward and unhoaking it from rear of tuner frome. \\
Insert a screwdriver blade between Cail Retainer Spring and the end of the Tuner Turret. Twist the blade to pull spring away fram the malded bady of Channel Cail. Lift this end af coil bady upward and remave individual coil assembly fram tuner. When replacing Channel Cails, be sure they are reinstalled in their correct positions. Coil numbers should increase consecu tively in a counter-clockwise direction when tuner is viewed fram the frant. \\
If all the Channel Cails have been remaved fram the Tuner Turret, rotate turret until flat surface an end of tuner shaft paints down. Install \#3 Channel Coils into battam position an turret. Then fallaw the correct sequence indicated above ta replace other coils.
\end{tabular} \\
\hline tuner turret assembly & \begin{tabular}{l}
Ta remave turret from RF Tuner Unit, remave camplete tuner and bottam shield as described in previaus sections and praceed as fallows: \\
1. Remove rear Turret Shaft Retaining Spring by disengaging straight end of spring fram prajectian on tuner frame. \\
2. Remove Fine Tuning Condenser Plate fram front of Tuner Unit. This plate forms one side of Fine Tuning contral condenser and is held in place by one screw. \\
3. Slide Fine Tuning Cam and Shaft off of main Channel Selectar Shaft. \\
4. Remove Spring Cantactor Washer and Fiber Spacer Washer from Channel Selectar Shaft. \\
5. Remave Shaft Retaining Spring at front of tuner by disengaging straight end af spring fram prajectian on frame. \\
6. Remave turret assembly from frame. \\
To replace turret, reverse the above procedure. Tooth on bakelite Fine Tuning Cam should paint downward during assembly so that it does nat became lacked between the staps on the Fine Tuning Candenser Plate. Alsa be sure ta replace bottom shield.
\end{tabular} \\
\hline stator contact ASSEMBLY & \begin{tabular}{l}
To remove this cssembly, remove complete tuner as described in previaus sections and proceed as follows: \\
1. Remave side shield by taking out the two retaining screws and unsolder shield at ane painf. Naw, disengage shield from upper edge of tuner frame. \\
2. Remove the two screws of the frant and rear of the Stator Cantact Assembly. \\
3. Unsalder all electrical connections ta contact plate. \\
4. Unsolder five soldered joints between Statar Cantact Assembly and Tuner Unit. \\
5. Contast Assembly may now be withdrawn from frome. \\
To reinstall this assembly: \\
1. Place Stator Contact Assembly in position and replace, but da nat tighten, the two screws at the front and rear of the assembly. \\
2. Remove 3 cansecutive pairs of Channel Coils from the turret (for example, the antenna and rfasc. coils for channels \(=5,6\) and 7). \\
3. Position Tuner Turret sa that the edges of the next highest Channel Cails (in this case, the cails for channel \(\mathcal{F}\) ) just pass the row of 11 cantacts an the Stator Cantact Assembly. \\
4. Adjust positian of the Statar Cantact Assembly sa that there are a few thousandths of an inch spacing between the cantacts on the contact plate and the malded body of the Channel Cails. \\
5. The Contact Assembly is naw carrectly positioned und screws at front ond rear may be tightened. \\
6. Solder Stator Contact Assembly to tuner frame at same paints that were used previausly. \\
7. Make all electrical connections ta contact plate. \\
8. Replace Chonnel Coils. \\
9. Replace side shieid.
\end{tabular} \\
\hline
\end{tabular}

\section*{ALIGNMENT PROCEDURE}

Alignment of all RF ond IF tuned circuits in this receiver may be accomplished by utilizing the procedures described in the following charts. SERUENCE OF ALIGNMENT: These procedures should preferobly be applied in the order in which they are presented, however, alignment
of the Sound Channel or IF Channel may be accomplished individually if desired.

The RF Amplifier and Mixer alignment may also be accomplished inde. pendent af Sound or IF Channel alignment, but oscillator calibration can only be done after If Channel has Leen correctly aligned. Proper if
bond pass charocteristic is necessary for Oscillator alignment as results of RF circuit tuning are observed by means of an oscilloscope connected to the output of the crrstal defector.
removal of chassis: The reeciver chassis must be removed from the cabinet in order to accomplish alignment of all tuned circuits as there are adiustment points located on the underside of the unit.

This can be accomplished by first removing all knobs and disconnecting the receiver "built-in" antenna ond speaker. The chasis may then be
removed by releasing the holddown screws lacated on the underside of the cabinet chassis mounting board.

\section*{CAUTION}

The picture tube is highly evacuated and if broken, glass fragments will be violently expelled. Handle with care, using safety goggles and gloves.
INSTRUMENTS: The following instruments will be required as signal sources and output indicators during the alignment process. Since accurate alignment of a television receiver is heavily dependent upon the per-
formance of your instruments, it is imperative that they meet the essential specifications described here.

STANDARD SIGNAL GENERATOR to provide unmodulated (pure RF) signols at the following frequencies. Maximum output on all ranges should be of least .1 volt with provision for attenuation as
desired. This instrument must have desired. This instrument must have goad frequency stability ond
be accurately calibrated. Generators which incarporate a separate crystal controlled oscillator and heteradyne circuit are self calibrating and therefore capable of providing the accuracy of frequency calibratian required for television circuit alignment.
o. IF Frequencies:
4.5 Mc. Sound Chonnel
21.6 Mc . Sound IF marker
23.5 Mc . Converter ond 1 st IF stoges
25.9 Mc. 2nd ond 3rd IF stages
26.1 Mc. Picture If marker
b. RF Frequencies:

54 ta 88 Mc .
174 to 216 Mc
2. RF SWEEP GENERATOR to provide frequency modulated signals at the following frequencies:

20 to 30 Mc . with 10 Mc . sweep width.
to
Output adiustable with at least .1 volt maximum.
Output should be "flat" (no amplitude variation) for all settings of the sweep width control.
Provision for connection of generator sweep modulating volt age to horizontal deflection system of an oscilloscopo. sweep so that oscillogram will not show retrace.
3. Cathode ray oscilloscope, preferably a unit with vertical amplifier having wide range frequency response and low

VACUUM TUBE VOLTMETER. The lowest voltage range of this instrument should preferably permit a 1.0 volt reading to be
indicated at not less than one third of full scale deflection.
instrument connections: The method af connection, including details of matching and coupling networks, for instruments used in this alignment procedure is given in several illustrations on subis Specific instructions far each instrumen
various sections of the alignment chorrs.
general instructions: when aligning if and rf circuits it is necessary to apply a fixed bias voltage to the AGC system of the re. ceiver. This fixed bias is obtained by using a 3 volt battery and con necting it as described in Fig. 15.

\section*{SOUND CHANNEL ALIGNMENT PROCEDURE}
1. Short ontenna terminols together with \(\circ\) jumper wire.
2. Set receiver Chonnel Selector to ony inoctive television chonnel and conirost control to its maximum counterclackwise position; other
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Standard signal GENERATOR} & \multirow[t]{2}{*}{VTVM
CONNECTIONS} & \multirow[b]{2}{*}{miscellaneous INSTRUCTIONS} & \multirow[b]{2}{*}{trimmer OR SLUG} & \multirow[t]{2}{*}{type of adjustment AND OUTPUT INDICATION} \\
\hline CONNEC TIONS & frequency & & & & \\
\hline \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} &  &  & \[
\underset{\substack{\text { Mc } \\ \text { Mrop } \\ \text { Tround }}}{\# 1}
\] & Adiust for minimum reoding \\
\hline & & \multirow{3}{*}{\({ }_{\text {Connect }}\) fis, as, 3 Shewn in} & \multirow{3}{*}{\begin{tabular}{l}
A "swishing". sound mar be heard in the speoker during Sound Chonnel Alignment:
This spurious oscillation is coused 'by hori: xontol sweep valuge being picked up in
The audio system thru stroy coupling of \\
 the sound chonnel
\end{tabular}} & \begin{tabular}{l}
\#2 \\
Secondary
\end{tabular} & Adiust for moximum reading \\
\hline & & & & \[
\begin{gathered}
\text { \#3 } \\
\text { Discriminotor } \\
\text { Primary }
\end{gathered}
\] & Adiust for moximum reading \\
\hline & & & & \begin{tabular}{l}
\#4 \\
Sound JF
\end{tabular} & Adiust for norimum reading \\
\hline Same as
above. & Some as &  &  & \[
\begin{gathered}
+2 \\
\text { Discriminatar } \\
\text { Secandary }
\end{gathered}
\] & Note thot as slug \(=2\) is rototed, - point will be tound where the vol froner o posisive to a negotive rect setting of slug \(=2\) is obboined when the meter reads tero ast the slug is moved hiru this point. \\
\hline
\end{tabular}

\section*{IMPORTANT}

When observing the receiver band pass characteristic on an oscilloscope, it is exceedingly important to avoid distortion of that characteristic which would occur when using a large input signal from the sweep generator or standard generator (marker signal). Always set attenuator on sweep generator so that the reading on the vacuum tube voltmeter does not exceed one-half volt (when meter is connected from high side of video detector load, symbol 122, to receiver chassis). The sweep width should never be set greater than that needed to fully display the receiver band pass characteristics on the oscilloscope. 5tandard generator output should also be attenuated so that marker signal does not pull or tear the band pass characteristic as shown on the 'scope.

\section*{REDUCTION OF INTERCARRIER BUZZ} Slight "dynamic" unbolance of the discriminator secondary can em. phosize intercorrier buzz due to incomplete amplitude modulation reiec.
tion. Therefore it is vitolly important to obtain an accurote setling of the discriminotor secondary slug under octual reception conditions. Disconnect all instruments (be sure that I.F. tube remaved for the adiust. ment of Sound Trap has been replaced) and then connect an ontenna to
the reeceiver to obtain. program reception from a local station. If inter. carrier buzz is prominent/ a slight readiustment of the discejminotor
seondary slug (\#) should be made to obtoin the "dip" point for the secondary slug (=2) should be mode to obtain the "dip" point for the
buzzing sound. Note that program sound will be clear ond free from buzzing sound. Note that progrom sound will be clear ond free from
disortion ot this ooint Buzs should now be at on acceptoble minimum
if station tronsmission is not at fault.
 SOUND CHANNEL ALIGNMENT


FIG. 1
Generator Connections
for Sound Channel and 4.5 Mc . Sound Trap Alignment


\section*{RF AMPLIFIER AND MIXER ALIGNMENT}

Connect a 3 volt bottery to the receiver \(A G C\) system so that negative
terminal of battery connects to \(A G C\) line and positive terminal of battery
connects
nection.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multicolumn{2}{|l|}{sweep generator} & \multirow[b]{2}{*}{vivm CONNECTIONS} & \multirow[b]{2}{*}{OSCILLOSCOPE CONNECTIONS} & \multirow[b]{2}{*}{MISCELLANEOUS
INSTRUCTIONS} & \multirow[b]{2}{*}{TRIMMER OR SLUG} & \multirow[t]{2}{*}{TYPE OF ADJUSTMENT AND OUTPUT INDICATION} \\
\hline CONNECTIONS & frequency & CONNECTIONS & frea. & & & & & \\
\hline \[
\left\lvert\, \begin{aligned}
& \text { Connect } \\
& \text { shos } \\
& \text { sho. } \\
& \text { Fig. } \\
& \text { In." }
\end{aligned}\right.
\] & -209.75 MC. &  & \[
\left|\begin{array}{cc}
\text { CHANNEL } \\
\# 12
\end{array}\right|
\] & Not used. &  &  &  &  \\
\hline \multirow{11}{*}{\begin{tabular}{l}
Same as \\
above.
\end{tabular}} & - 215.75 Mc : & \multirow{11}{*}{Same as} & \[
\begin{array}{|c|c|}
\hline \text { CHANNEL } \\
\# 13 \\
\hline
\end{array}
\] & \multirow{11}{*}{Not used.} & \multirow{11}{*}{Some as
above.} & Sot Channol Selec- & \multicolumn{2}{|l|}{\multirow[t]{11}{*}{\begin{tabular}{l}
FIG. 8 \\
Band pass characteristic of these response curve in Fiog. 8 B If noces.
sary, a compromise may be obtained chonnel response by returning channel \#12 and making sight
changes in tha settings of trimmars
\(\qquad\)
\end{tabular}}} \\
\hline & (203.75 Mc. & & \[
\begin{gathered}
\text { CHANNE } \\
\# 11
\end{gathered}
\] & & & Sot Channoll Solec. & & \\
\hline & (190.75 Mc. & & CHANNEL & & & Sot Channol Solec. & & \\
\hline & - 1719175 & & \[
\begin{gathered}
\text { Channel } \\
\# 9
\end{gathered}
\] & & & Sot Channoli Soloc- & & \\
\hline & (18. & & \[
\begin{gathered}
\text { CHANNEL } \\
\# \mathrm{\#}
\end{gathered}
\] & & & Sot Channal Solec & & \\
\hline &  & & \[
\begin{array}{|c|c|}
\hline \text { CHANNEL } \\
\# 7
\end{array}
\] & & & Sot Channol Solec. & & \\
\hline &  & & \[
\begin{array}{|c|c|}
\hline \text { CHANNEL } \\
\hline
\end{array}
\] & & & Set Channel) Soloc| & & \\
\hline &  & & \[
\begin{gathered}
\text { CHANNEL } \\
\# 3
\end{gathered}
\] & & & Sot Channel Solec. tor to \(\# 5\). & & \\
\hline &  & & CHANNE & & & Sol Channol Solec & & \\
\hline &  & &  & & & Set Channol Solec. & & \\
\hline & - & & \[
\underset{\# 2}{C H A N N E L}
\] & & & Set Channol. Selec. & & \\
\hline
\end{tabular}
:Sound Carrier Marker
: Picture
Corrier Marker


\section*{R:F. OSCILLATOR ALIGNMEN}
1. IMPORTANT: Betore undertaking ascillator alignment be sure if
downward (correct position for this control is shown in Fig. 9). 3. Connect a 3 volt battery to the receiver AGC system so that negative
terminal of boattery connects to A.C.C line and pasitive terminal of battery connects to receiver chassis. (See Fig. 15 for convenient point
2. During astillator alignment, it is necessary to set the Fine Tuning
control so that the tooth on the bakelite fine tuning com paints of connection).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{STANDARD SIGNAL GENERATOR} & \multicolumn{2}{|l|}{sweep generator} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { VTVM } \\
& \text { CONNECTIONS }
\end{aligned}
\]} & \multirow[b]{2}{*}{OSCILLOSCOPE CONNECTIONS} & \multirow[b]{2}{*}{miscellaneous instructions} & \multirow[b]{2}{*}{trimmer or slug} & \multirow[t]{2}{*}{TYPE OF ADJUSTMENT AND OUTPUT INDICATION} \\
\hline CONNEC TIONS & frequenct & CONNECTIONS & frea. & & & & & \\
\hline \multirow{11}{*}{\[
\left\lvert\, \begin{aligned}
& \text { Connoct } \\
& \text { sho } \\
& \text { sig. wn } \\
& \text { fig. }
\end{aligned}\right.
\]} & -215.75 Mc. & \multirow{11}{*}{} & \[
\begin{gathered}
\text { channel } \\
\# 13
\end{gathered}
\] & \multirow{11}{*}{Connect as.
shown in Fig.
13} & \multirow{11}{*}{Connect as
shown in Fig. 13.} & Set Channel Solec- & \multicolumn{2}{|l|}{\multirow[t]{11}{*}{}} \\
\hline & -2093.75 Mc. & & CHANNEL & & & Set Chonnol Solec- & & \\
\hline &  & & \[
\begin{gathered}
\text { CHANNEL } \\
\# 10
\end{gathered}
\] & & & \[
\begin{aligned}
& \text { Set Channel Selec } \\
& \text { tor to } \# 10
\end{aligned}
\] & & \\
\hline &  & & CHANNEL & & & Set Channol Solec. & & \\
\hline & - 1185.75 Mc (181.25 MC. & & \[
\underset{\sim}{\text { CHANNEL }}
\] & & & Set Channol Solec. & & \\
\hline & -17995 Mc. & & \[
\underset{\# 7}{\text { CHANNEL }}
\] & & & Set Channal Selec. & & \\
\hline &  & & \[
\begin{gathered}
\text { CHANNEL } \\
\# \# 6
\end{gathered}
\] & & & Set Chonnot. Solec.) & & \\
\hline & ; 81.75 Mc ( 7.25 Mc - & & \(\underset{\substack{\text { Channet } \\ \text { \#S }}}{ }\) & & & Set Channol Seloc. & & \\
\hline &  & & \(\underset{\text { channel }}{\text { \# }}\) & & & Set Chonnol. Selec. \({ }_{\text {cor }}\) Sor & & \\
\hline &  & & \[
\underset{\substack{\text { CHANNEL } \\ \# 3}}{ }
\] & & & Set Channel Seloc. & & \\
\hline &  & & \[
\underset{~ C H A N N E L}{ }
\] & & &  & & \\
\hline
\end{tabular}
 chonnel, observe RF Amp. ond Mixer response curve for thot channel
cos dejeribed on preceding page). If charocteristic does not conform rea-

Sound Corrier Marker
tpicture Carrier Marker


FIG. 11
Generator Connections
for RF Channel Alignment


FIG. 12
Oscilloscope Connections


FIG. 14


FIG. 15

\section*{HIGH VOLTAGE ARCING ON MODEL 27C-9212A}

Several cases of high voltage failure, reduced brightness and intermittant arcing have been traced to a faulty H. F. condenser, circuit diagram \#195, part 508888 ( 500 Mmfd . \(-20,000\) volts). If this occurs, replace with part 521479 ( 500 Mmfd . 20,000 volts). This new condenser should be mounted in the hole above and to the right of the previous position. Model 9212 receivers which contain the Letter " \(D\) " in the "SERIES" coding, already incorporate this modification.

\section*{PRODUCTION CHANGES}

The following tabulation furnishes complete details on changes which occurred during receiver production. The receivers incorporating these changes are identified by coding stamped on rear surface of chassis. This coding consists of one or more letters following the word SERIES, as SERIES B, SERIES AC, etc., and corresponds to similarly lettered changes shown below. Chassis incorporate only that change indicated by letter designation; i.e., chassis stamped "SERIES BE" does not include changes " \(A\) " or " \(C\) " or " \(D\) ".

The circuit shown on this page applies to "SERIES ABC" chassis.
A letter following the component circuit diagram number thus \(-201^{A}\), indicates that this particular item was affected by a circuit change. The letter corresponds to the series code letter listed in the production change column, from which complete change information can be obtained.
\begin{tabular}{|c|c|}
\hline LETTER INCLUDED IN DESIGNATION FOLLOWING THE WORD "SERIES" & CHANGE INCORPORATED IN CHASSIS \\
\hline UNCODED & INITIAL PRODUCTION \\
\hline " \({ }^{\prime}\) " & \begin{tabular}{l}
The fallowing change was incorporated to minimize the ringing effect of the horizontal sweep transformer. \\
1. Disconnect condenser 351 (. 25 mfd .) in horizontal sweep circuit from terminal \#3 of horizontal sweep transformer and reconnect it to terminal \#1 of this transformer.
\end{tabular} \\
\hline "B' & \begin{tabular}{l}
The following change was incorparated to facilitate pro. ductian I.F. alignment. \\
1. Change resistor 106 in grid circuit of V8 (3rd I.F. Amp.) from 4700 Ohms to 5600 Ohms.
\end{tabular} \\
\hline "C" & \begin{tabular}{l}
The following chonge was incorporated to eliminate fuse blow-aut during surge valiages. \\
1. Change fuse 193 in harizantal sweep circuit fram \(1 / 4\) Amp. 250 valt ta \(1 / 2\) Amp. 250 valt.
\end{tabular} \\
\hline
\end{tabular}



\section*{John F. Rider}

note: use a non metallic aligning tool and light pressure on all slugs.



© John F. Rider


Dial Type: Calibrated Coarse Tuning Knob.
Antenna: Built-in Stromberg Carlson Telatenna.
Provision also available to employ present Channel 2-13 antenna for UHF reception or, if necessary, a separate UHF antenna.

Voltage Rating: 117 Volts, 60 Cycles, 20 Watts.
Tuning Range: Continuous tuning covering all proposed UHF Channels 14-83 (470 mc. to 890 mc .)

Number of Tubes: 2 tubes plus 1 selenium power rectifier and 1 germanium crystal mixer.

Tubes and Functions:
\begin{tabular}{ll} 
Tube & Function \\
& \\
\(1-6\) AF4 & UHF Local Oscillator \\
1-6BQ7 & Lo-Noise Cascode Pre-Amplifier \\
1-1N72 Crystal & UHF Mixer \\
1-Selenium Rectifier & Power Rectifier
\end{tabular}


The UHF tuner is housed in a sturdy wood cabinet. This cabinet is covered with a rich gold embossed simulated leather.

Padded mounting feetare used to prevent the UHF tuner from marring any polished cabinet top.

CIRCUITS:
A. The converter uses a double-superheterodyne circuit employing Channel 5 or C Channel 6 of an existing television receiver as the first IF. Instant selection of either 5 or 6 is provided by a simple slide switch in the rear of the converter.
B. All proposed UHF channels can be received. (Channel \(14-83,470 \mathrm{mc} .-890 \mathrm{mc}\).)
C. Low-noise 1 N 72 crystal is used as a UHF mixer.
D. Very low-noise cascode IF pre-amplifier used in converter to provide excellent fringe area reception.
E. Three possible UHF antenna combinations are provided for varying reception conditions:
(1) Built-in Telatenna for strong signal areas.
(2) Built-in facilities for using present Channel 2-13 antenna for medium signal areas.
(3) Facilities for using separate high-gain UHF antenna for fringe area reception.
F. AC power supply using power transformer eliminates the possibilities of short circuits, hum, and shock hazard between converter and television receiver.
G. Easy customer installation
H. Jewel-box cabinet styling harmonizes with all receivers.
I. Function switch on converter turns on television receiver and selects Channel 2-13 or Channel 14-83.
J. Pilot light which also acts as channel ınarker.
K. After the initial warm-up period has passed, the user can switch from VHF to UHF at will and at no time encounter any delay in operation.

The cabinet is styled in green leatherette and proportioned to harmonize with the television receiver. The outside cabinet dimensions are approximately \(8^{\prime \prime}\) wide, \(4^{\prime \prime}\) high and \(6^{\prime \prime}\) deep. The unit weighs \(51 / 2\) pounds and has a power consumption of about 10 watts. Channel indicator, vernier tuning knob and function switch are all located on the right side of the unit.

\section*{GENERAL}

The converter is designed for connection between the antenna lead-in and the television receiver. Receiver power is obtained from a socket in the rear of the converter chassis which in turn is plugged directly into the AC line. A single three position function switch provides the following combinations:
1. Off - Both converter and television receiver
2. VHF - AC power to television receiver on, VHF antenna directily connected to television input. Converter heaters on.
3. UHF - AC power to both units and choice of separate UHF antenna, VHF antenna or built-in cabinet antenna depending upon signal conditions.

The converter can be operated by tuning the receiver to either of two channels (\#5 or 6) which is not occupied by a local station. This choice is made during installation by a switch in the rear of the converter chassis, which shifts the first IF tuning 6 mc . The bandwidth of the UHF pre-selector circuits is 12 mc ., allowing this shift without loss of tracking. Selection of this IF is a compromise providing a mean between the extremes of the high noise factor in the high channels and the undesirable spurious responses of the very low frequency channels. The rapid attenuation with increasing distance of UHF signals which might cause spurious interference appears to make it practical to use a lower IF than would otherwise be possible.

\section*{RF PRE-SELECTION AND MIXER CIRCUITS}

In both the antenna and mixer circuits, the tuning elements are inductively padded in order to secure the proper tuning range. This is accomplished by extending both conductors of the antenna section and one of the conductors of the mixer section about \(7 / 8^{\prime \prime}\) external to thetuning unit. The balanced 300 ohm antenna is coupled into the extended section of the tuning unit with the aid of an ungrounded loop.

A combination of high-side capacitive and inductive coupling is used between the antenna and mixer tuned circuits in order to provide a bandwidth of 12 mc . throughout the UHF band.

The 1N72 crystal mixer is coupled capacitively to the mixer tuned circuit, and an RF choke provides a D. C. return path for this circuit.

Grounding of the low frequency ends of the antenna and mixer lines and the grounding of the rotor of the antenna section eliminate spurious suckouts within the band.

\section*{LOCAL OSCILLATOR}

The oscillator design utilized a miniaturized version of the 6F4. A series trimmer condenser effectively sets the low frequency end of the tuning range, and a series trimmer inductance consisting of the grid and plate leads control the total range and the high frequency limit. This adjustment consists of varying the separ ation between these leads. "Holes" in the frequency range are avoided by using resistors rather than chokes in the plate and grid return circuits and by using dissimi lar chokes in the cathode and ungrounded heater leads. A special UHF low-capacity tube socket is used to prevent bypassing the tuned circuit by the grid-plate socket capacity.

Tube "warm-up" drift, although somewhat a function of individual tubes, is nearly complete within one minute after application of plate voltage, with heaters previously warmed up. This initialadrift is minimized by using the lowest plate power which will give reliable performance.

Complete shielding of the oscillator tube, circuit, and tuner section together with low oscillator plate voltage reduces oscillator radiation.

\section*{CASCODE PRE-AMPLIFIER}

The conversion loss of the crystal mixer is overcome by the addition of allow noise amplifier. A "cascode" circuit using a 6BQ7 tube was selected because of its inherently good noise factor. This circuit consists of a neutralized grounded cathode input section followed by a grounded grid stage.

Both the input grid and the interstage circuit of the cascode are adjusted to have bandwidths of about \(12 \mathrm{mc} .\), i.e., to include both Channels \#5 and 6 . The plate of the output triode, however, is adjusted for a 6 mc . bandwidth and a switch is provided on the rear of the chassis to select the desired channel.

Economy is achieved by the use of a simple slide switch as a channel selector which varies the value of capacity in series with the plus \(B\) end of the plate tuning coil

Balanced output is used in order to eliminate interference pickup on the lead coupling the converter to the VHF receiver.

\section*{POWER SUPPLY}

Since most television receivers have no provision for supplying power to an external converter, this converter is self-powered. Both chassis height limitations and power economy dictated the use of a selenium rectifier in preference to a vacuum tube but a power transformer is used to eliminate hum interference between converter and television receiver
AC power for the television receiver can be secured from the rear of the chassis and a switch on the converter energizes both units and selects either VHF or UHF reception．
The heaters of the converter tubes remain on for both types of reception with a plus B switch being provided in the ground return of the power transformer secondary． Switching in this manner allows instantaneous change from VHF to UHF and also re－ moves the voltage from the converter filter condensers during VHF operation． ANTENNA SELECTION
Input terminals for both VHF and UHF antennas are provided on the rear of the chassis．When receiving signals on Channels \＃2 to 13 ，the VHF antenna is directly connected to the television receiver input．For reception on Channels \＃14 to 84，a separate UHF antenna may be used，or if signal conditions allow，either the VHF CAPACITORS
Symbol No．Part No．Description
\begin{tabular}{|c|c|c|}
\hline C1 & 110052 & ． \(5-3 \mathrm{mmf}\) ，trimmer \\
\hline C2 & 110686 & 1.0 mmf 500 V ，ceramic \\
\hline C3 & 110439 & 2.2 mmf 500 V ，ceramic \\
\hline C4 & 110440 & \(3.3 \mathrm{mmf} \mathrm{550V}\) \\
\hline C5 & 110052 & ． \(5-3 \mathrm{mmf}\) ，trimmer \\
\hline C6 & 110812 & 1000 mmf ，feed－thru \\
\hline C7 & 110812 & 1000 mmf ，feed－thru \\
\hline C8 & 111100 & 100－100mf，electrolytic \\
\hline C9 & 171158 & 1000 mmf 500 V ，ceramic \\
\hline C10 & 110486 & 33 mmf 400 V ，ceramic \\
\hline C11 & 110813 & 5.6 mmf ，special \\
\hline C12 & 110599 & 1000 mmf ，350V，cerami \\
\hline C13 & 171158 & 1000 mmf ， 500 V ，cerami \\
\hline C14 & 110455 & 470 mmf 350 V \\
\hline C15 & 171158 & 1000 mmf 500 V ，ceramic \\
\hline C16 & & See detail on 112141 \\
\hline C17 & & Detail No． 6 on 112141 \\
\hline C18 & & Detail No． 7 on 112141 \\
\hline C19 & 110440 & 3.3 mmf 500 V ，ceramic \\
\hline C20 & 110686 & 1.0 mmf 500 V ，ceramic \\
\hline C21 & 110686 & 1． 0 mmf 500 V ，ceramic \\
\hline C22 & 110686 & 1.0 mmf 500 V ，ceramic \\
\hline C23 & 110686 & 1.0 mmf 500 V ，ceramic \\
\hline C24 & 110437 & ． 68 mmf 500 V ，ceramic \\
\hline
\end{tabular}
NOTES：

\section*{Chassis assembly 112141
Tube voltage chart S－98039 \\ Gube voltage chart S－98039}
Mfg．J spec． 2067
1．C－18 to be altered in length when adjusting capacity in circuit．
2．L－1 formed from detail 10 shown on 112141 ． Adjust loop for circuit inductance．
3．L－2 formed from detail 9 shown on 112141. Adjust loop for circuit inductance．
4．L－13 formed from long ribbon lead of C－11． Adjust loop for circuit inductance． COILS
\begin{tabular}{ll} 
L1 & See detail 10 on 112141 \\
L2 & See detail 9 on 112141
\end{tabular}
L2 \(\quad 114733\) See detail 9 on 112141
L4 11133 Coil assem．（R．F．）
L5 114731 Ant．coupling coil
L6 114729 R．F．filament choke
L7 114734 R．F．
L8 114729 R．F．coil assem
L9 11410 R．F．choke
114115 Cascode output
10114114 Cascode input
L11 114735 Neutralizing coil
L12 114693 Choke \(2.2 \mu \mathrm{~h}\)
L13 Ribbon lead of C11

\section*{RESISTORS}
\begin{tabular}{lrl} 
& 149102 & \(1500 \Omega 1 / 2 \mathrm{w}\) \\
R1 & 149101 & \(1000 \Omega 1 / 2 \mathrm{w}\) \\
R2 & 1410 w \\
R3 & 28178 & \(56 \mathrm{~K} \Omega 10 \% 1 / 2 \mathrm{w}\) \\
R4 & & Part of \(\mathrm{L}-720 \Omega 1 / 2 \mathrm{w}\) \\
R5 & 149027 & \(22 \Omega 10 \% 2 \mathrm{w}\) \\
R6 & 14173 & \(560 \Omega 1 \mathrm{w} 10 \%\) \\
R8 & 28155 & \(560 \Omega 10 \% 1 / 2 \mathrm{w}\) \\
R9 & 28146 & \(100 \Omega 10 \% 1 / 2 \mathrm{w}\) \\
\hline
\end{tabular}

\section*{Miscellaneous}
\begin{tabular}{lrl} 
M1 & 164018 & Tuning unit \\
M2 & 162164 & 1N72 crystal diode \\
M3 & 158040 & Slide switch \\
M4 & 162158 & Selenium rect． \\
M5 & 29956 & Pilot lamp \\
M6 & 158047 & Range switch \\
M7 & 161432 & Power transformer
\end{tabular}



(C)John F. Rider

\section*{CIRCUIT DESCRIPTION}

The Sylvania television receiver chassis 1－508－1 and 1－508－2 operate with twenty－three and twenty－four tubes，respectively．In addition here are two high voltage rectifiers，two lo voltage rectifiers，one germanium diode and
one picture tube on each chassis．Television chassis \(1-510-1\) and \(1-510-2\) operate with nineteen and twenty－one tubes，respectively On these chassis，two high voltage rectifiers one low voltage rectifier，one germanium diode and one picture tube are included．The opera－ ing controls on the front panel of the televi－ ion receiver on all models are the Volume and Tone controls，with the 1－508－1 and 1－508－2 chassis featuring a Brightness control and the 1－510－1 and 1－510－2 a Contrast control on the front panel also．On models with HaloLight＊， the control for this is also incorporated on he ront panel．The remaining controls which the chassis．

Combination－models include an AM－FM radio which operates with seven tubes plus one rec－ tifier．The AM－FM radio controls are ON OFF－Volume，Tone，AM－FM radio tuning and function switch，all located on the front panel．

All models include a broad－band VHF built－in antenna．In addition，a di－fan type UHF an－ na is built－in for all 1－508－2 and 1－510－2 in in models also inten as will provide satisfactory reception in most strong signal locations

For convenience in tracing circuits，Figure 1 shows a block diagram of chassis \(1-508-1\) and 1－508－2，and Figure 2 shows a block diagram of chassis 1－510－1 and 1－510－2．The antennas VHF tuners．The VHF tur of the UHF and the ired television fine tuning conal by swith taning and tuner is at intermediate froutputy ond of suf ficient bandwidth to pass both picture and sound carriers of the desired channel When the UHF tuner is in operation，the oscillator in the VHF tuner becomes inoperative and the output of the UHF tuner，which is also at intermediate frequency，is fed through the R．F．and bandpass stages of the VHF tuner．

On the 1－508－2 and 1－510－2 chassis，the UHF tuners，while differing physically，function es－ sentially the same．The desired UHF channel is preselected by continuous tuning．The incoming signal is combined with a local os－ cillator signal．A crystal in the 1－508－2 and a triode in the 1－510－2 function as mixers．
＊Sylvania Trade．Mark


FIGURE 2 －BLOCK DIAGRAM FOR 1－510－1 AND 1－510－2 TV CHASSIS

The output of each tuner is fed to the VHF tuner on the respective chassis

The output of the VHF tuner is applied to the Video IF Amplifier consisting of 4 stagger－ tuned stages．The adjacent channel carriers and co－sound carrier are attenuated by this IF Amplifier．

The amplified signal at the output of the Video IF Amplifier is fed to a crystal diode functioning as the Video Detector

The video signal out of the Video Detector is amplified by a single stage and applied to the Picture Tube．

On the \(1-510-1\) and \(1-510-2\) ，an automatic gain control voltage is obtained from the Vide Detector load resistor and applied to the RF and IF Amplifiers．

On the 1－508－1 and 1－508－2，automatic gain control is obtained from the AGC Rectifier amplified by the AGC Amplifier and applied to the R．F．and IF Amplifiers．The Tuner AGC Clamp prevents the tuner AGC line from going positive under weak signal conditions．

The sync pulses are separated from the video signal，amplified，and clipped and then fed to the Horizontal Discriminator and On the \(1-510-1\) and \(1-510-2\) chassis the sync pulses are separated from the video signal amplified and fed to the Horizontal phase Detector and Vertical Integrator Plate The vertical sync information from the Vertica Integrator Plate is applied to the Vertical Oscillator to keep this oscillator in step with the vertical sync pulses from the station．The Vertical Oscillator produces a peaked saw－
tooth wave which is applied to the Vertical Output stage energizing the vertical deflection coils．

On chassis 1－508－1 and 1－508－2，horizontal sync information from the Sync Clipper is supplied to the Horizontal Discriminator．A oltage from the Horizontal Oscillator is also suppled to the Horizontal Discriminator．The output of the Horizol Corminator is then function to hald the Horizonal Osillator synchronism with the incoming horizontal syme pulses．

On the \(1-510-1\) and \(1-510-2\) chassis，a pair of horizontal sync pulses of opposite polarity from the Sync Amplifier are sunplied to the

Horizontal Phase Detector. Also supplied to
Horizontal phase Detector iso supplied to the Horizontal Phase Detector is a saw-tooth voltage coupled back from the horizontal out put circuit. The Horizontal Phase Detector compares the phase of the two pulses with the resultant correction voltage. This correction voltage is applied to the Horizontal Oscillator and functions to hold its multivibrator circuit in synchronism with the incoming transmitted signal.

On the 1-510-2 and 1-510-2, the Horizontal Oscillator produces a peaked saw-tooth wave which is applied to the Horizontal Output tube. part of the saw-tooth component of this wave auses current to flow in the plate circuit of the Horizontal Output tube. For the 1-508-1 and 1-508-2, the Horizontal Oscillator actuates he Horizontal Discharge tube through the Horizontal Ringing Coil producing a peaked saw-tooth wave. Approximately one-half of the saw-tooth component of this wave causes current o flow in the plate circuit of the Horizontal Output tube. On all chassis, this curren energlzes the horizontal denlecton colls through he right half of the horizontal scan. During the right half of the scan a small current is lso flowing through the Damper tube. At the nd of the saw-tooth the negative pulse component acts on the grid of the Horizontal Output tube to cut off plate current flow. When this occurs, the energy in the horizontal deflection circuit transfers rapidly from the inductive branch of the circuit to the capacitive branch.

\section*{SPECIAL INSTALLATION AND SERVICE INSTRUCTIONS}

\section*{Chassis Handling Precaution}

Whenever handling a \(1-508-1,1-508-2,1-510-1\) or 1-510-2 chassis exercise extreme caution at all times. The chassis should be carried by means of the handle provided on the rear tube mounting bracket and the front center lower mounting of the picture tube. When carrying a chassis in this manner care should be observed that the hands are free of dirt and grease to prevent slipping on the smooth surface of the glass.

\section*{Alignment of Picture Tube To Mask}

\section*{(All Models)} Replacement of the chassis after normal sermask and picture tube. However, if the tube support members have been disturbed as in the case of tube replacement it will be necessary to observe the following procedure. See Figure 3

The transfer of energy in the horizontal deflec tion circuit results in a voltage peak of approximately 3,000 volts across the horizontal deflection coils. This voltage is stepped up to approximately 9,000 volts by the turns ratio of the horizontal scanning transformer and is fed to the voltage doubling rectifier circuit to provide approximately 17,000 volts for the Picture Tube H.V. anode.

The Damper tube does not conduct during the high voltage pulse period because of the polarity of the pulse. During this pulse period, when the energy transfers from the inductive branch of the horizontal deflection circuit to the capacitive branch and back again to the inductive branch, the electron beam in the Picture Tube is moved rapidly from the right to the left edge of the raster to accomplish retrace.

At the completion of retrace, energy again flows out of the inductive branch of the circuit. The Horizontal Output tube is still cut off during this time and a high current flows creases to zero in a linear manner, to provide the left half of the scan. As the current approaches zero, the Horizontal Output tube again begins to conduct and the entire cycle is repeated.

The Horizontal Regulator tube protects the Horizontal Output tube from excessive plate current due to line voltage fluctuations.
that no space remains between them. Complete the tightening of the mounting assemblies listed in step one, exercising caution when drawing down the holddow strap rod CAUTION. DURING THE ABOVE OPERATIONS CARE SHOULD BE TAKEN AT ALL TIMES TO AVOID PUTTING ANY STRAIN ON NECK OF THE TUBE.
5. Correctly position deflection yoke and adjust ion trap, pin cushion corrector, centering and focus magnets as described

UHF Tuner
The use of the Ultra-High Frequency band for
television broadcasting necessitates a high degree of precision in the manufacture of suitable tuners. This precision manufacture applies expecially to component placement, lead lengths, lead dress, and component size. Thus, the servicing of a UHF tuner results in problems not usually encountered in conventional radio and television receivers. Also, because of the high cost and scarcity of suitable UHF test equipment, the alignment of the UHF tuner presents unusual problems. Therefore, it is recommended that no servicing or alignmen of a UHF tuner be attempted in the field. Sylvania stocks a number of UHF tuners which are available to Sylvania set distributors on an exchange basis
1. Locate the tube and its associated mounting brackets in their approximate normal brackets in their approximate normal
position, with the front face of the tube tilted forward about 3 degrees, then tighten the following just enough to permit further adjustment in the cabinet.
a. Mounting stud nuts on tube holddown strap.
b. Nuts on holddown strap rods
c. Nut on rear mounting bracket rod.
d. Wing nuts on yoke.
e. Screws at base of rear mounting bracket, if previously loosened.
2. Carefully slide chassis in cabinet, replace and tighten chassis holddown screws.
3. Replace all knobs and electrical connec tions. If tuner shaft does not center, loosen tuner rear bracket wing nuts and shift tuner until knobs function freely.
4. By carefully moving the tube in its mountings align the mask and face of the tube


SYLVANIA TV PAGE 12.5

bottom view


TOP VIEW

FIGURE 6 - HIGH VOLTAGE ASSEMBLY 1-508-1, 1-508-2


FIGURE 7 - HIGH VOLTAGE ASSEMBLY 1-510-1, 1-510-2

\section*{Preset Controls Adjustments}

All preset controls except the Horizontal Fre quency adjustment 1-510-1, 1-510-2, a re located at the rear of the receiver and are readily available without removing the interlock cover. However, the Horizontal Frequency adjustmen (L68) necessitates the removal of this cover for adjustment. See top layout for 1-510-1, \(1-510-2\) TV chassis on page 5 for physical location.
AGC (1-508-1, 1-508-2 only) - See "AGC control Adjustment'". (Page 9.)

Horizontal Hold (1-508-1, 1-508-2 only) - See 'Check of Horizontal AFC Operation'.(Page 16 )

Horizontal Hold and Horizontal Frequency (1-510-1, 1-510-2 only) - With a normal air signal rotate the Horizontal Hold control to mid-position. Adjust the Horizontal Frequency lug (L68 on top of chassis) until the picture locks in.

Horizontal Drive (1-508-1, 1-508-2 only) - Turn the Horizontal Drive control clockwise as far as possible without crowding the center of the picture or causing a vertical white line to appear.
Horizontal Drive (1-510-1, 1-510-2 only) - Turn the Horizontal Drive trimmer counterclockwise as far as possible without crowding the center of the picture or causing a vertical white line to appear.

Picture (Contrast: 1-508-1, 1-508-2) - Adjust to obtain best contrast with a good picture or test pattern.

Picture (Brightness: 1-510-1, 1-510-2) - Adjust

\section*{to obtain most pleasing picture.}

Vertical Linearity and Height (All models) Adjust the Height control until the picture fills the screen vertically. Adjust the Vertical Linearity control until the pattern is symmetrical from top to bottom. The Vertical Linearity and Height controls are interdependent and adjustment of one will necessitate readjustment of the other
Vertical Hold (All models) - Rotate the Vertical Hold control until the pattern is slowly moving downward. Back off on the control to a point just beyond where the picture moves upward and locks in.

Horizontal Size (All models) - Adjust the Horizontal Size slug until the picture fills the mask horizontally. This adjustment must be made with the mask and bezel in place and chassis in position in cabinet.

Horizontal Linearity (1-508-1, 1-508-2 only) Adjust the Horizontal Linearity control until the picture is symmetrical left to right.
The Horizontal Drive Adjustment of all models should be rechecked after adjusting Horizontal Size or Linearity controls or both.

Note: On the 1-508-1 and 1-508-2 models, the Horizontal Linearity control and the Pincushion Corrector Magnets are interdependent. If the Pincushion Corrector Magnets have been moved, it is recommended that they be repositioned according to instructions under "Adjustment of Ion Trap Magnet, Focus Magnet, Centering Shutter and Pincushion Corrector Magnets" (page 8 ) before proceeding with adjustment of Horizontal Linearity control.



\section*{Adjustment of Ion Trap Magnet, Focus Magnet, Centering Shutter, and Pincushion Corrector Magnets}

The Ion Trap Magnet, Focus Magnet, and Centering Shutter adjustments are interdependent so all three must be checked at the same time.

Before making any adjustments, the function of each magnet should be noted.

The Ion Trap Magnet is used to obtain maximum brilliance of the raster or picture and should be adjusted to obtain maximum brilliance as described below.
The Focus Magnet is used to obtain correct focus of the picture.

The Centering Shutter is an integral part of the focus magnet assembly. Its function is to position the picture, both horizontally and vertically.

Before making any adjustments, check that the deflection yoke is positioned so that it is pressing against the flare of the picture tube. To ensure this, loosen the wing-fasteners located at each side of the yoke and push the yoke as far forward as it will go. If the picture is not square with the screen mask, ro-
tate the yoke and then tighten the wing-fasteners.
Next, check that the Focus Magnet is firmly held in position.
When adjusting the focus of the receiver it is to be noted that optimum focus of the picture is not necessarily attained when either the
vertical or horizontal definition is adjusted to maximum. Optimum focus is frequently to compromise between these two settings. It is highly desirable, therefore, that a transmitted picture, containing both vertical and horizontal lines, be available for correct focusing of the receiver. Make sure the Ion Trap Magnet is correctly
adjusted before proceeding with the receiver focus adjustment.

Adjust the Picture control (Contrast) on the 1-508-1 and 1-508-2 chassis and the Contrast control on the \(1-510-1\) and \(1-510-2\) chassis to approximately \(3 / 4\) maximum position. Position the Ion Trap Magnet on the picture tube neck approximately \(1 / 2^{\prime \prime}\) forward of the tube base. Set the Brightness control on the \(1-508-1\) and
\(1-508-2\) chassis and the Picture control (Bright-\(1-508-2\) chassis and the Picture cont rol (Bright-
ness) on the \(1-510-1\) and \(1-510-2\) chassis to ness) on the 1-510-1 and 1-510-2 chassis to
maximum. maximum.

Do not operate receiver longer than necessary with brightness at maximum. Rotate and move the Ion Trap Magnet backwards and forwards on picture tube neck until picture or raster is vap until screatest Consinue brilliance is obtained. Adjust brightness to less than normal and readjust Ion Trap Magnet for maximum brilliance.

The adjustment screw on the Focus Magnet should now be turned to obtain a picture which is focused - this preliminary adjustment will not be necessary if the picture is already in focus.
If the picture is not centered on the screen, properly position it by adjustment of the Centering Shutter, and with brightness at a low level, check to see that no corner cutting exists.

Adjust contrast and brightness controls to obtain a normal picture and then adjust Ion Trap Magnet to obtain the highest possible brilliance level. The focus should now be adjusted to obtain the best horizontal and vertical focus, as previously mentioned.

Note:
(a) In some cases optimum adjustment of the Ion Trap Magnet may be obtained with the magnet located on either side of the diagonal slot in the picture tube electrode assembly; it is permissible for the magnet to be ocated either between the slot and the tube base or over the slot. Do not locate
magnet between slot and Focus Magnet.
(b) Optimum adjustment of the Ion Trap Magnet may be obtained irrespective of which way a round it is placed on the picture tube neck. It should be noted, however, that in some cases one way around will result in a better focus characteristic than the other.
(c) Some receivers may have the facility to allow the Focus Magnet to be rotated. On such receivers a better focus charac eristic may be obtained by rotating the Focus Magnet to a different angular position and again adjusting the Focus screw. This will require a check of the centering shutter to make sure that there is no corner cutting with the picture properly centered on the screen. Recheck the lon Trap Mas and contrast adjustments set for brightness and contrast adjustments set for
a normal picture. Carefully adjust the focus for the best possible compromise between horizontal and vertical focus. rince the all three until the best possible picture is obtained.

The Pincushion Corrector Magnets eliminate curvature of the edges of the raster. Move the Centering Shaft on the Focus Magnet so that one edge of the raster is approximately

\section*{ADJUSTMENT OF HORIZONTAL AFC CIRCUIT \\ 1.508-1, 1.508-2|}

\section*{Check of Operation}

The operation of the AFC circuit should be checked as follows:
A. Tune the receiver to a channel on which no signal is received and return to the original channel. The picture should immediately fall into synchronization.
B. Switch off the power to the receiver for about five minutes and then switch back on. picture should immediately fall into synchronization.
C. Check for correct phasing of Horizontal AFC Circuit by noting that there is approximately \(1 / 4^{\prime \prime}\) of blanking visible on the right hand edge of the picture. It will be necessary to turn the Picture (Contrast) Brightness Control to see the blanking.

NOTE: Before making check " C " above, be sure the Horizontal Drive control is correctly adjusted. Refer to "Preset Controls Adjustments, page 6. If the justments to the Horizontal AFC Circuit need be made.

If the receiver cannot pass checks "A, "B," or "C" the adjustment of the Horiizontal Hold Adjustment" should be made.

\section*{Horizontal Hold Adjustment}
A. Tune in a station and adjust the Channel Selector for best picture quality. Adjust the Picture Contrast and Brightness controls for normal picture.
B. Remove V18 - 6AL5 - Horizontal Discriminator tube.
C. Turn the Horizontal Hold control until the picture moves back and forth across
\(1 / 2^{\prime \prime}\) from the edge of the picture tube screen. Adjust the Pincushion Corrector Magnet on he corresponding side of the picture tube and line edge of the raster is a straight ver cal using the magnet on the opposite side edge, using the magnet on the opposite side then down the screen to check the top and bottom edges. The Pincushion Corrector Magets should be adjusted for the best overal compromise.
the screen with blanking bar vertical.
D. Replace the Horizontal Discriminator tube and repeat \(A, B\), and \(C\) under "Check of Operation" above.
E. If receiver still will not pass these checks, It will be necessary to proceed with "Phase Adjustment".

\section*{Phase Adjustment}
A. Turn the core in Ringing Coil - L69-all the way out (counterclockwise). Short out the 4,700 ohm horizontal charge circuit peaking resistor - R264.

With the horizontal size coil set for approximately the correct picture width and with the horizontal linearity coil adjusted for best linearity, rotate the Horizontal Drive control fully counterclockwise. Slowly turn the drive control clockwise until crowding is visible in the center of the picture. Now carefully turn the control back (counterclockwise) just enough to remove the crowding or vertical line in the picture or pattern.

NOTE: Do not operate the receiver with the Horizontal Drive control maladjusted.
B. Remove the Horizontal Discriminator tube V18-6AL5 from its socket.
C. Carefully turn the horizontal hold (frequency adjustment) screw top of Horizontal the picture moves back and forth across the screen with the blanking bar vertical
D. Replace the 6AL5 in its socket.
E. Adjust the phase adjustment screw bottom of Horizontal Discriminator Transformer - T62 until approximately \(1 / 4^{\prime \prime}\) of "blanking" is visible on the right-hand edge of the picture. In order to see the
"blanking" it will be necessary to readjust the Brightness Control and turn the Picture (Contrast) control towards minimum
F. Check the "free-running" of the horizontal oscillator as described under paragraphs "B," "C," and "D," and, if necessary, readjust the frequency adjustment screw on top of Horizontal Discriminator Transformer - T62.
G. Make a final check of the phasing as described in paragraph " E " above. It is important that both the "free-running" and the phasing are correct.
H. Remove the short from across the 4,700 ohm resistor R264 and readjust the Hori Turn the core in the described in "A". Coil - L69 - clockwise until approximging \(1 / 4\) " of "blanking' is again visible on the right-hand edge of the picture.
I. Before the horizontal synchronization circuit is adjusted to the final position, it will be necessary to check the operation as follows:
lowly turn the oscillator frequency ad justment screw (top of transformer T62) In either direction until the picture sud denly falls out of synchronization as in
dicated by the presence of a number o
diagonal bars. Slowly turn the adjustment crew so as to decrease the number of ars and note the total number of bar into synchronization. The last number of bars visible must not be less than three or more than six. The two half-bars a the top and bottom of the screen are counted as only one bar. In order to get an accurate indication of the minimum number of bars obtainable, the adjustment screw must be turned very slowly and carefully nce the number of bars has been re duced to six or seven. Turn the adjust ment screw in the opposite direction until the picture suddenly falls out of synchronization in the opposite direction and repeat the foregoing procedure. Again, not less than three or more than six bars must be visible just before the picture falls into synchronization
J. After checking the operation as in "I," it is necessary to repeat the procedure deis necessary to repeat the procedure de-
scribed in paragraphs "B," "C," and "D."
K. Remove the signal by tuning to a "free" channel, then retuning to the original channel. The picture should immediately fall into synchronization.
L. Switch off the power to the receiver for about five minutes and then switch receiver on and check that the picture pulls nto synchronization.

\section*{AGC CONTROL ADJUSTMENT}

\section*{The AGC control should be readjusted accord} ing to the following procedure each time the receiver is connected to a different antenna installation
1. Connect a good antenna installation to the receiver.
2. Set Picture (Contrast) control to approx imately \(7 / 8\) of maximum position.
3. Tune receiver to the strongest station. available in area.
4. Turn AGC control fully clockwise so that picture is "blacked" out.
5. Retard control to a point where the picture reappears and does not tear or fall out of ynchronization as the fine tuning contro is rocked through the picture.
6. If, when the AGC control is finally ad-
justed, the picture has too much contrast, reduce the contrast with the Picture (contrast) control. DO NOT use the AGC control as a contrast control.
7. Turn Volume control to normal level Intercarrier buzz should be negligible as the Fore runing control is rocked near carrier buzz is merely. Note. Intercorrect adjustment of the AGC control and only a slight touch up should be neces sary. If much adjustment is required to remove intercarrier buzz, the sound section is maladjusted and requires realignment.)

Note: The intent of the AGC control adjustment is to ensure proper AGC voltage consistent with correct synchronizing action and negligible intercarrier buzz. This condition ensures the best possible synchronization under interference conditions, and also the greatest amount of picture contrast.

\section*{TEST EQUIPMENT REQUIREMENTS}
1. RF Sweep Generator or Generators with frequency range from 4-220 Mc. having sweep width adjustable from 50 Kc . to 10 Mc . with an output of at least 0.1 volt, a marker system, either built-in or external type and flat within \(\pm 1 \mathrm{Db}\).
2. Signal Generator or Generators with a frequency range from \(4-222 \mathrm{Mc}\). and an adjustable output of at least 0.1 volt.
3. Sylvania Cathode Ray Oscilloscope type

400 or equivalent capable of passing a 60 cycle square wave.
4. Sylvania Polymeter type 221 or equivalent Vacuum Tube Voltmeter
5. Sylvania High Voltage Probe Adapter type 225 or equivalent with \(0-30 \mathrm{KV}\) DC range.
6. Sylvania Tube Tester type 220 or equivalent capable of testing shorts with proper voltages and performance under dynamic conditions.

\section*{ALIGNMENT PROCEDURE}

Should any chassis under service require realignment, carry out the alignment procedure in the following listed order.

PREALIGNMENT INSTRUCTIONS - READ CAREFULLY BEFORE ATTEMPTING ALIGNMENT.
1. Lay chassis on side for under chassis adjustments.
2. Ground all test equipment unless otherwise stated.
3. When constructing detector circuit, keep leads short.
4. Use proper insulated alignment tools for powdered iron cores with hex holes or slots and metallic screw drivers for those cores adjusted by brass screws. The sound interstage transformer T51 (chassis \(1-508-1\) and \(1-508-2\) ) may have either hex holes in the cores and thus be adjustable rom elther top or bottom, or slots which the bottom of the chassis and the secondary rom the top of the chassis.
5. Before attempting alignment, allow the receiver approximately fifteen minutes warm up time.


FIGURE 11 - DETECTOR CIRCUIT - IF ALIGNMENT
4.5 MC. TRAP ALIGNMENT

(C) John F. Rider
ferred to in subsequent text as the "IF" and ' RF " positions respectively.
4. The marker generator coupling capacitors should be as small a value as possible to prevent any effect on tuner response, but must be large enough to permit easy response or overall RF response. (Approximately 2 or 3 Mmfd . should be satisfactory in most cases).
5. During tuner alignment, remove the second IF amplifier tube to prevent coupling back from the receiver IF system.
6. In all of the following tests the oscilloscope vertical gain should be as close to maximum gain as possible, consistent with hum and synchronous voltage interference limiuse of low levels from RF sweep Generator and increase the visibility of IF and RF markers.
7. Disconnect the primary winding of T55 by unsoldering lead from plate (pin 5) of 6CB6 1st video IF Amp. Connect 330 ohm resistor in place of primary winding.
8. Refer to the VHF Tuner Layout, Figure 15 for location of adjustment points.

VHF TUNER ALIGNMENT - CHASSIS 1-508-1, 1-508-2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & TUNER & \multicolumn{3}{|c|}{generators} & SCOPE & & ACCEPTABLE & \\
\hline STEP & \[
\left\lvert\, \begin{gathered}
\text { SET TO } \\
\text { CHANNEL }
\end{gathered}\right.
\] & \[
\begin{gathered}
\text { SWEEP } \\
(10 \text { Mc.) }
\end{gathered}
\] & \[
\underset{\text { MARKER }}{\text { IF }}
\] & \[
\begin{gathered}
\text { RF } \\
\text { MARKER }
\end{gathered}
\] & SWITCH POSITION & ADJust & RESPONSE CURVES & COMMENTS \\
\hline 1 & 4 & \[
\begin{gathered}
\text { Channel } \\
69 \mathrm{Mc} .
\end{gathered}
\] & - & \[
\begin{aligned}
& 67.25 \mathrm{Mc} \text { (P) } \\
& 71.75 \mathrm{Mc} \text { ( } \mathrm{S} \text { ) }
\end{aligned}
\] & \[
\begin{gathered}
\text { RF } \\
\text { Output }
\end{gathered}
\] & C15, C12, C6 C4, then C9 (wire loop near C12) & sec page & Connect 330 Ohm Resis. tor across Antenna Leads. Passband should be somewhat broader than that witt. antenna circuit operating, with picture marker inside. \\
\hline
\end{tabular}

VHF TUNER ALIGNMENT - CHASSIS 1-508-1, 1-508-2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & TUNER & \multicolumn{3}{|c|}{generators} & SCOPE & & \multirow[t]{2}{*}{acceptable RESPONSE CURVES} & \\
\hline STEP & SET TO
CHANNEL & \[
\begin{gathered}
\text { SWEEP } \\
(10 \mathrm{Mc.})
\end{gathered}
\] & \[
\underset{\text { MARKER }}{\text { IF }}
\] & \[
\underset{\text { MARKER }}{\text { RF }}
\] & SWITCH POSITION & ADJust & & COMMENTS \\
\hline 2 & 13 & \[
\begin{gathered}
\text { Channel } \\
13 \\
213 \mathrm{Mc} .
\end{gathered}
\] & - & \[
\left|\begin{array}{l}
211.15 \mathrm{Mc} .(\mathrm{P}) \\
215.75 \mathrm{Mc} .
\end{array}\right|
\] & Same as 1 & \[
\left\lvert\, \begin{gathered}
\text { C9 and L9 } \\
\text { (See } \\
\text { (Somments") }
\end{gathered}\right.
\] &  & C9 determines passband. If band width is too narrow, move C8 and C10 apart. A valley that is too deep can be flattened by adjusting turns spacing on L9. Overall band width also depends on antenna selectivity. Adjust interstage band width so proper overall band width occurs with antenna circuit aligned. \\
\hline 3 & 4 & Same as & - & Same as 1 & Same as 1 & \[
\underset{\text { Trimmer }}{\text { C4_Antenna }}
\] & 30\% TILT & Obtain symmetrical response curve. \\
\hline 4 & 4 & Same as &  & - & \[
\underset{\text { Output }}{\text { IF }}
\] & L8, then L54 and L53 (both on TV Chassis) &  & Adjust for symmetrical overcoupled, double peaked response curve with markers on peaks L8 and L53 determine position of 45.75 Mc . marker. L54 determines band width or position of 42.1 Mc . marker. \\
\hline 5 & 2 & \[
\begin{gathered}
\text { Channel } \\
2 \\
57 \mathrm{Mc} .
\end{gathered}
\] & \[
\begin{gathered}
\text { Same } \\
\text { as } \\
4
\end{gathered}
\] & \[
\begin{aligned}
& 55.75 \mathrm{Mc} .(\mathrm{P}) \\
& 59.75 \mathrm{Mc} \text { ( })
\end{aligned}
\] & Same & L7 & & Check Passbands on each channel. If necessary slightly readjust C15, C12, C6 and C4 for satisfactory compromise on all channels. \\
\hline 6 & 3 & \[
\begin{gathered}
\text { Channel } \\
3 \\
63 \mathrm{Mc} .
\end{gathered}
\] & \[
\begin{gathered}
\text { for } \\
\text { steps }
\end{gathered}
\] & \[
\begin{aligned}
& 61.25 \mathrm{Mc} .(\mathrm{P}) \\
& 65.75 \mathrm{Mc} .(\mathrm{S})
\end{aligned}
\] & \[
\begin{gathered}
\text { for } \\
\text { steps }
\end{gathered}
\] & L7 &  & See note below. \\
\hline 7 & 4 & \[
\begin{aligned}
& \text { Channel } \\
& 4{ }^{4} \mathrm{Mc} .
\end{aligned}
\] & \[
\begin{gathered}
5 \\
\text { through }
\end{gathered}
\] & \[
\begin{aligned}
& 67.25 \mathrm{Mc} \text { ( } \mathrm{P} \text { ) } \\
& 71.75 \mathrm{Mc} \text { ( } \mathrm{S})
\end{aligned}
\] & \[
\stackrel{5}{\text { through }}
\] & L7 & \[
30 \%--\frac{y}{4}
\] & \\
\hline 8 & 5 & \[
\begin{gathered}
\text { Channel } \\
79 \mathrm{Mc} .
\end{gathered}
\] & 16 & \[
\begin{aligned}
& 7,15 \mathrm{Mc}(\mathrm{P}) \\
& 81.75 \mathrm{Mc}(\mathrm{~S})
\end{aligned}
\] & 16 & L7 & & Same as 5 and 6. \\
\hline 9 & 6 & \[
\begin{gathered}
\text { Channel } \\
8{ }^{6} \mathrm{Mc} .
\end{gathered}
\] & & \[
\begin{aligned}
& 83.25 \mathrm{Mc}(\mathrm{P}) \\
& 87.75 \mathrm{Mc} .(\mathrm{S})
\end{aligned}
\] & & L7 & & \\
\hline 10 & 7 & \[
\begin{aligned}
& \text { Channel } \\
& 7 \\
& 177^{\mathrm{Mc}} .
\end{aligned}
\] & & \[
\begin{aligned}
& 175.25 \mathrm{Mc} .(\mathrm{P}) \\
& 179.75 \mathrm{Mc} .(\mathrm{S})
\end{aligned}
\] & & L7 & \begin{tabular}{l}
P=PICTURE MARKER \\
S=SOUND MARKER
\end{tabular} & \\
\hline 11 & 8 & \[
\begin{gathered}
\text { Channel } \\
8 \\
183 \mathrm{Mc} .
\end{gathered}
\] & & \[
\begin{aligned}
& 181.25 \mathrm{Mc} .(\mathrm{P}) \\
& 185.75 \mathrm{Mc} .(\mathrm{S})
\end{aligned}
\] & & L7 & MARKER WITH PICTURE MARKER & \\
\hline 12 & 9 & \[
\begin{aligned}
& \hline \text { Channel } \\
& 99 \\
& 189 \mathrm{Mc} .
\end{aligned}
\] & & \[
\begin{aligned}
& 187.25 \mathrm{Mc}(\mathrm{P}) \\
& 191.75 \mathrm{Me} .(\mathrm{S})
\end{aligned}
\] & & L7 & & \\
\hline 13 & 10 & \[
\begin{array}{c|}
\hline \text { Channel } \\
10 \\
195 \mathrm{Mc} .
\end{array}
\] & & \[
\left\lvert\, \begin{aligned}
& \text { 193.25 Mc. (P) } \\
& \text { 197.75 Mc. (S) }
\end{aligned}\right.
\] & & L7 & & \\
\hline 14 & 11 & \[
\begin{array}{|c|}
\hline \text { Channel } \\
11 \\
201 \mathrm{Mc} . \\
\hline
\end{array}
\] & & \[
\begin{array}{|l|}
199.25 \mathrm{Mc} .(\mathrm{P}) \\
203.75 \mathrm{Mc} .(\mathrm{S})
\end{array}
\] & & L7 & & \\
\hline 15 & 12 & \[
\begin{gathered}
\text { Channel } \\
12 \\
207 \mathrm{Mc} .
\end{gathered}
\] & & \[
\left|\begin{array}{l}
205.25 \mathrm{Mc} .(\mathrm{P}) \\
209.75 \mathrm{Mc} .(\mathrm{S})
\end{array}\right|
\] & & L7 & & \\
\hline 16 & 13 & \begin{tabular}{l}
Channel
13 \\
213 Mc .
\end{tabular} & & \[
\left\lvert\, \begin{aligned}
& 211.25 \mathrm{Mc} .(\mathrm{P}) \\
& 215.75 \mathrm{Mc} .(\mathrm{S})
\end{aligned}\right.
\] & & L7 & & \\
\hline \multicolumn{9}{|r|}{NOTE: If one or more coil strips cannot be made to track properly, replace strips. Do not peak coils to correct passbands. If Channels 7 and 8 show deep valley, adjust \(L, 9\) as in step 2 . If this does not correct condition, change V2, the 6 J 6 Oscillator-Mixer Tube. This will necessitate repetition of steps 1 through 5.} \\
\hline
\end{tabular}


FIGURE 13 - TUNER STRIP
REMOVAL 1-508-1

\section*{NOTES ON VHF TUNER DISASSEMBLY}

To remove turret drum from VHF tuner it is not necessary to remove the tuner from the chassis. With the chassis lying on its side, remove the following items in the order given See Figure 15.
1. Bottom cover plate.
2. Shaft retaining springs (front and rear).
3. Front bearing plate.



Note: This R.F. tuner has been thoroughly tested at the factory and should provide trouble-free reception. However, if service other than alignment is required, return the complete tuner to your Sylvania Distributor for replacement.

FIGURE 15 - VHF TUNER LAYOUT 1-508-1,1-508-2

The drum should now be free of its mounting
and readily removed from the tuner housing through the slots provided.

To replace the turret, reverse the above steps, exercising caution when inserting in housing to make sure that the rotor of the fine tuning capacitor meshes with the stator plates.
Replacement of Coil Strips in Tuner
When received from the front the coil strips are numbered consecutively from 2 to 13 in clockwise rotation with one blank strip between numbers 13 and 2. The flat on the channel selector shaft (as viewed from the front) is in line with coil strip for channel 3.

To remove and replace coil strips proceed as follows: (Note: It is not necessary to remove tuner from chassis)
1. Remove bottom cover plate.
2. Rotate channel selector shaft so that coil to be removed is in line with slots in end of tuner case.
3. Using needle nose pliers release base on strip from detent plate as shown in Figure 13 .
4. Carefully lift strip up and then free from rear retaining spring.

To replace strip, insert boss on rear of strip into retaining spring and apply only enough pressure against spring so that from boss so that front boss engages slot in detent plate. Replace bottom cover.

\section*{RF TUNER ALIGNMENT}
(1-510-1, -2)
NOTES ON VHF TUNER ALIGNMENT

Observe the following procedure in making the equipment setup shown in Figure 16 for the 1-510-1 and 1-510-2 chassis.
1. The detector circuits should be constructed and connected so as to maintain leads as short as possible.
2. Use shielded leads for the following connections in order to minimize hum and synchronous voltage pickup.
a. Lead from "looker" point to detector \#1.
b. Lead from detector \#1 to scope switch.
c. Lead from detector \#2 to scope switch
d. Lead from sweep generator to the horizontal input of the scope. (To obtain synchronization use externally generated sweep instead of internal oscilloscope sweep).
3. The single pole double throw"ScopeSwitch" should be located at the vertical input terminals of the scope. This switching arrangement will permit observation of either the IF response or the overall RF response. These switch positions will be referred to in the tuner alignment charts as the "IF" and "RF" positions respectively.
4. The marker generator coupling capacitors should be as small in value as possible, to prevent any effect on tuner response, observation of markers in either the "IF"
or "RF" switch positions. (2 or 3 Mmfd . should be satisfactory in most cases.

Observe the following general instructions for alignment of the \(1-510-1\) and \(1-510-2\) VHF tuner.
1. Connect a sweep generator with a \(\mathbf{3 0 0} \mathbf{O h m}\) balanced output impedance to the antenna erminals of the tuner. Use a 10 Mc sweep setting.
2. Connect the negative terminal of a 1.5 volt battery to the AGC terminal (terminal "C" on schematic and tuner layout drawings) and positive terminal to ground.
3. Set the fine tuning control, C19, to hal capacity by noting that the variable capacitor plates are approximately half meshed
4. Use a non-metallic pick to spread or compress the necessary coils.
5. During tuner alignment, remove the 2nd Video IF Amplifier tube - V4-6CB6, to prevent coupling back from the receiver IF system.
6. In all of the following tests the oscillo scope vertical gain should be as close to maximum setting as possible, consistent with hum and synchronous voltage interference limitations. This precaution will permit the use for bility of IF and RF markers.


FIGURE 16 - RF TUNER ALIGNMENT SETUP 1-510-1,1-510-2

VHF TUNER ALIGNMENT - CHASSIS 1-510-1, 1-510-2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{HIGH BAND OSCILLATOR ALIGNMENT} \\
\hline STEP & TUNER SET TO channel & SWEEP ( 10 Mc. ) & \begin{tabular}{l}
Generators \\
If MARKER
\end{tabular} & \[
\begin{gathered}
\text { RF } \\
\text { MARKER }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { SCOPE } \\
\text { SWITCH } \\
\text { POSITION }
\end{array}
\] & adjust & ACCEPTABLE RESPONSE CURVES & COMMENTS \\
\hline 1 & 13 & \[
\begin{aligned}
& \text { Channel } \\
& 133 \mathrm{Mc} .
\end{aligned}
\] & 45.75 Mc . & 211.25 Mc. & \[
\begin{aligned}
& \text { RF } \\
& \text { Output }
\end{aligned}
\] & L9 Screw & See Curves
below & Coincide Markers as shown. \\
\hline \multicolumn{9}{|l|}{NOTE: Refer to VHF Tuner Layout (Fig. 18) and VHF Tuner Schematic for location of specified Wafers, Coil Increments, and Screw Adjustments mentioned in the following steps. As Channels 12 to 7 and 5 to 2 are aligned by means of consecutive coil increments, the aligned increments that precede must not be disturbed.} \\
\hline 2 & 12 & \[
\begin{gathered}
\text { Channel } \\
12{ }_{12} \mathrm{Mc} .
\end{gathered}
\] & 45.75 Mc . & 205.25 Mc. & Same as 1 & \[
\begin{aligned}
& \text { Chan. } 12 \\
& \text { loop on } \\
& \text { Wafer } 5
\end{aligned}
\] & \multirow[t]{3}{*}{} & Squeeze or spread loop for Channel 12 on Wafer 5 to coincide Markers as shown. \\
\hline 3 & 11 & \[
\begin{gathered}
\text { Channel } \\
11 \\
201 \mathrm{Mc} .
\end{gathered}
\] & 45.75 Mc . & 199.25 Mc. & Same as 1 & \[
\begin{aligned}
& \text { Chan. } 11 \\
& \text { loop on } \\
& \text { Wafer } 5
\end{aligned}
\] & & \multirow[t]{5}{*}{Adjust each succeeding Hi-Channel Loop on Wafer 5 (steps 3 to 7) to coincide appropriate Markers for that Channel.} \\
\hline 4 & 10 & \[
\begin{gathered}
\text { Channel } \\
10 \\
195 \mathrm{Mc} .
\end{gathered}
\] & 45.25 Mc . & 193.25 Mc. & Same as 1 & \[
\begin{aligned}
& \text { Chan. } 10 \\
& \text { loop on } \\
& \text { Wafer } 5
\end{aligned}
\] & & \\
\hline 5 & 9 & \[
\begin{gathered}
\text { Channel } \\
9 \\
189 \mathrm{Mc} .
\end{gathered}
\] & 45.25 Mc. & 187.25 Mc . & Same as 1 & \begin{tabular}{l}
Chan. 9 \\
loop on \\
Wafer 5
\end{tabular} & \multirow[t]{3}{*}{\begin{tabular}{l}
 \\
TYPIGAL CURVES NOTE: CURVES MAY NOT BE SYMMETRICAL UNTIL R.F. ALIGNMENT IS COMPLETE.
\end{tabular}} & \\
\hline 6 & 8 & \[
\begin{aligned}
& \text { Channel } \\
& 88 \\
& 183 \mathrm{Mc} .
\end{aligned}
\] & 45.25 Mc . & 181.25 Mc. & Same as 1 & Chan. 8
loop on
Wafer 5 & & \\
\hline 7 & 7 & \[
\begin{aligned}
& \text { Channel } \\
& 7^{7} \mathrm{Mc} .
\end{aligned}
\] & 45.25 Mc . & 175.25 Mc. & Same as 1 & \[
\begin{aligned}
& \text { Chan. } 7 \\
& \text { loop on } \\
& \text { Wafer } 5
\end{aligned}
\] & & \\
\hline
\end{tabular}

LOW BAND OSCILLATOR ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 8 & 6 & \[
\begin{aligned}
& \text { Channel } \\
& 85 \mathrm{mc} .
\end{aligned}
\] & 45.25 Mc . & 83.25 Mc. & Same as 1 & \[
\begin{gathered}
\text { L11 } \\
\text { Screw }
\end{gathered}
\] & \multirow{3}{*}{See Curves above} & Coincide Markers as shown. \\
\hline 9 & 5 & \[
\begin{aligned}
& \text { Channel } \\
& 79 \mathrm{Mc} .
\end{aligned}
\] & 45.25 Mc . & 77.25 Mc . & Same as 1 & Chan. 6 Coil on Wafer 5 & & Squeeze or spread turns of Channel 5 Coil on Wafer 5 to coincide Markers as shown. \\
\hline 10 & 4 & \[
\begin{aligned}
& \text { Channel } \\
& 69 \mathrm{Mc} .
\end{aligned}
\] & 45.75 Mc . & 67.25 Mc . & Same as 1 & Chan. 4 Water 5 Water 5 & & Adjust each succeeding Lo-Channel Coil on Wafer 5 (steps 10 to 12) to coincide appropriate Markers for that Channel. \\
\hline
\end{tabular}



\section*{AM-FM Radio}
(1-603-1)

\section*{ALIGNMENT PROCEDURE}

WARNING: No attempt should be made to adjust the alignment of this receiver without using the following equipment: Signal Generator, FM Sweep Generator, Output Meter, Insulated Screw Driver.

\section*{AM ALIGNMENT}

Output meter connection
Generator ground lead connection
Generator modulation
Position of volume control
Position of tone control
Position of FM-AM-PHO Switch

Across speaker voice coil Receiver chassis \(30 \% 400\) cycles Extreme Clockwise

A Hazeltine Loop may be used to radiate a signal into the receiver loop instead of dummy antenna connections listed below.

Keep generator output at lowest usable value and obtain maximum output meter indication.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { TUNER } \\
\text { POSITION }
\end{gathered}
\] & GENERATOR FREQUENCY & \[
\begin{gathered}
\text { DUMMY } \\
\text { ANTENNA }
\end{gathered}
\] & GENERATOR CONNECTION & \begin{tabular}{l}
CORE \& \\
TRIMMER \\
ADJUSTMENTS \\
(IN ORDER SHOWN)
\end{tabular} & CORE OR TRIMMER FUNCTION \\
\hline Open & 455 KC . & 0.1 Mfd . & Signal Grid (Pin 7) 6BE6 & \[
\begin{aligned}
& \text { T28-A Bot., T28-B Top } \\
& \text { T26-A Top, T26-B Bot. }
\end{aligned}
\] & I. F. \\
\hline 1650 KC . & 1650 KC . & 50 Mmfd . & Ext. Ant. & C60 & Osc \\
\hline \(1400 \mathrm{KC}\). & 1400 KC . & 50 Mmfd . & Ext. Ant. & C52 & Ant. \\
\hline
\end{tabular}

FM IF ALIGNMENT
Sweep generator frequency
Sweep generator deviation
Dummy antenna
Sweep generator ground lead connection
Position of tuner
Position of volume contro
Position of tone control
Position of FM-AM-PHO switch
\[
\begin{array}{r}
10.7 \mathrm{MC} . \\
300 \mathrm{KC} .
\end{array}
\]
ake shielded probe shown in Figure for use with Oscilloscope where indicated below.
Keep generator output at lowest usable value and obtain maximum vertical amplitude for curves in Figures A and B.
\begin{tabular}{llcccc}
\begin{tabular}{l} 
GENERATOR \\
CONNECTION
\end{tabular} & \begin{tabular}{c} 
OSCILLOSCOPE \\
CONNECTION
\end{tabular} & \begin{tabular}{c} 
CORE \\
ADJUSTMENTS
\end{tabular} & \begin{tabular}{c} 
ADJUST FOR \\
CURVE IN
\end{tabular} & \begin{tabular}{c} 
CORE
\end{tabular} & FUNCTION
\end{tabular}

\section*{FM RF ALIGNMENT}

Output meter connection
Sweep generator deviation
Sweep generator modulation
Dummy antenna Sweep generator connection Position of volume control Position of tone control Position of FM-AM-PHO switch

Across speaker voice coil 22.5 KC . 400 cycle
Two 120 ohm resistors FM antenna board Extreme Clockwise
Extreme Counterclockwise

Keep generator output at lowest usable value and obtain maximum output meter indication
POSITION
\begin{tabular}{c} 
OF \\
TUNER \\
\hline
\end{tabular}
Open
108 MC.
Closed
88 MC .

\section*{GENERATOR FREQUENCY \\ 108. 5 MC . \\ 108. 0 MC . \\ 88. 5 MC . \\ 88. 0 MC .}

TRIMMER \& COIL ADJUSTMENT

\author{
\(C 58\)
\(C 56\) \\ L29
}

TRIMMER OR COIL FUNCTION

Osc.
Mixer Osc. Mixer


FIGURE A


FIGURE B


FIGURE 21 - AM-FM RADIO DIAL CORD HOOKUP


REPAIR PARTS LIST AM-FM RADIO
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
SCHEMATIC \\
LOCATION
\end{tabular} & \begin{tabular}{l}
SERVICE \\
PART NUMBER
\end{tabular} & DESCRIPTION \\
\hline & 949-0001 & Adaptor - Record \\
\hline & 726-0003 & Background - Dial \\
\hline & 416-0011 & Board - Antenna - FM \\
\hline & 497-0005 & Bushing - Line Cord \\
\hline & 487-0013 & Button - Snap \\
\hline C64, C65 & 165-0006A & Capacitor - Ceramic - . 000006 Mfd . - 500 V . \\
\hline C61 & 166-0010P & Capacitor - Ceramic - . 00001 Mfd . - 500 V . \\
\hline C75 & 166-0270N & Capacitor - Ceramic - . 00027 Mfd . - 500 V . \\
\hline C68, 884 & 166-0470N & Capacitor - Ceramic - . 00047 Mfd . - 500 V . \\
\hline C83 & 166-2000P & Capacitor - Ceramic - . 002 Mfd . - 500 V . \\
\hline C85 & 166-3300P & Capacitor - Ceramic - . 0033 Mfd - 500 V . \\
\hline \[
\begin{aligned}
& \text { C66, C78, C79, } \\
& \text { C81, C91, C92 }
\end{aligned}
\] & 166-4700D & Capacitor - Ceramic - . 0047 Mfd . - 500 V . \\
\hline C69, C70, C71, & 168-0002D & Capacitor - Ceramic - . 01 Mfd . - 500 V . \\
\hline C86 & 161-1008 & Capacitor - Electrolytic - 4 Mfd . - 50 V . \\
\hline C89 & 161-3011 & Capacitor - Electrolytic - 60 Mfd . - 250 V . \\
\hline C90 & &  \\
\hline C87 & & \(25 \mathrm{Mfd} .-25 \mathrm{~V}\). \\
\hline C54 & 163-0022 & Capacitor - Mica - . 000022 Mfd. - 500 V . \\
\hline C63, C77 & 163-0047 & Capacitor - Mica - . 000047 Mfd . - 500 V . \\
\hline C73, C74, C80 & 163-0100 & Capacitor - Mica - . 0001 Mfd . - 500 V . \\
\hline C50, C51, C62, & 163-0470 & Capacitor - Mica - . 00047 Mfd . - 500 V . \\
\hline C67 & & \\
\hline C72 & 163-3900 & Capacitor - Mica - . 0039 Mfd . - 500 V . \\
\hline C88 & 160-0411 & Capacitor - Paper - Molded - . 01 Mfd . - 400 V \\
\hline C52 & 172-0031 & Capacitor - Trimmer - Loop \\
\hline & 170-0008 & Capacitor - Variable - 4 Gang \\
\hline & 487-0004 & Clip - IF Transformer Can Mounting \\
\hline & 554-0019 & Clip - Tuning Shaft Retaining \\
\hline L31 & 146-0014 & Coil - AM Antenna \\
\hline L30 & 113-0011 & Coil - AM - Oscillator \\
\hline L25 & 111-0012 & Coil - FM - Antenna \\
\hline L29 & 113-0021 & Coil - FM - Oscillator \\
\hline L32 & 146-0013 & Coil - FM - Oscillator - Cathode Choke \\
\hline L27 & 146-0014 & Coil - FM RF - Plate Choke \\
\hline L28 & 112-0009 & Coil - Assembly - FM RF Grid \\
\hline & 417-0006 & Connector - Pin - Antenna Lead \\
\hline R62, R64 & 157-0017 & Control - Dual - Tone, Volume and On-Off \\
\hline & 195-0002 & Cord - Line \\
\hline & 760-0022 & Cover - Record Changer Compartment \\
\hline & 722-0020 & Dial - Station \\
\hline & 714-0007 & Escutcheon \\
\hline & 497-0012 & Grommet - Rubber \\
\hline & 740-0028 & Knob - Center \\
\hline & 743-0002 & Knob - Function \\
\hline & 744-0017 & Knob - Outer - Radio \\
\hline & 611-0047 & Lamp - \#47 \\
\hline L26 & 582-0012 & Loop - Antenna - AM \\
\hline & 792-0007 & Pointer - Dial \\
\hline & 494-0007 & Pulley \\
\hline R74 & 189-0007 & Resistor - 4.3 Ohm - \(1 / 2 \mathrm{~W}\). - W. W. \\
\hline R58 & 181-0680 & Resistor - 68 Ohm - 1/2 W. \\
\hline R53, R65 & 181-0101 & Resistor - \(100 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). \\
\hline R50 & 181-0121 & Resistor - \(120 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). \\
\hline R51, R56, R68 & 181-0181 & Resistor - \(180 \mathrm{Ohm}-1 / 2 \mathrm{~W}\). \\
\hline R55, R59 & 181-0272 & Resistor - 2,700 Ohm - 1/2 W. \\
\hline R52, R69, R70 & 181-0223 & Resistor - 22,000 Ohm - 1/2 W. \\
\hline
\end{tabular}

MODELS 178B, BU, M, MU, Ch. 1-508-1, -


FIGURE 23 -. SCHEMATIC DIAGRAM 1-603-1 AM-FM RADIO

\section*{R60, R63} R61, R67, R72 R54
R57
R66
R66
R71
R73

SERVICE
PART NUMBER

\section*{DESCRIPTION}
181-0473 Resistor - 47, 000 Ohm - 1/2 W. 181-0474 Resistor - 470,000 Ohm - 1/2 W. 81-0105 Resistor - 1.0 Megohm - 1/2 W. 181-0225 Resistor - 2.2 Megohm - 1/2 W
\(\begin{array}{lll}181-025 & \text { Resistor - } & 10 \mathrm{Megohm}-1 / 2 \\ 182-0181 & \text { Resistor - } & 180 \text { Ohm }-1 \mathrm{~W} .\end{array}\)
Resistor - \(\quad 180 \mathrm{Ohm}-1 \mathrm{~W}\).
Resistor - \(\quad 1.850 \mathrm{Ohm}-5 \mathrm{~W}\). - W. W
Retainer - Line Cord
Shaft - Tuning
Shield - Tube - Miniature
Slide - Record Changer
Socket - Dial Light
Socket-1 Prong
Socket - 2 Prong - Phono
Socket - 7 Prong - Miniature
Socket - 7 Prong - Miniature - Mica filled
Socket - 8 Prong - Octal
Socket - 8 Prong - Lock-in

419-0003 496-0023 495-0005 573-0004 143-0018 128-0007 \(128-0007\)
\(121-0018\) \(121-0018\)
\(122-0019\) \(122-0019\)
\(121-0017\) 122-0017 141-0017

Socket - 8 Prong - Speaker Spring - Drive String Tension Spring - Drive String Switch - Function - FM, AM, P Transformer - Audio Output Transformer - Discriminator - FM Transformer - Discriminato Transformer - IF - AM - \#1
Transformer - \(1 F-A M-\# 2\)
Transformer - IF - FM - \#1
Transformer - IF - FM - \#2
Transformer - Power-117 V. - 60 Cycle
Tube - 6AL5
Tube - 6AU6
Tube - 6AT6
Tube - 6BA6
Tube - 6BE6
Tube - 6W6GT
Tube - 7Z4

Note 1: The terms "Horizontal," "Vertical," or "60 cps sine wave" refer to the oscilloscope sweep employed.

Note 2: All waveforms are taken with the oscilloscope horizontal sweep direction upward deflection corresponding to positive polarity.

Note 3: In some instances the waveforms obtained will not be identical with those shown, due to the electrical characteristics of the oscilloscope used.

Note 4: All waveforms are measured with respect to chassis unless otherwise indicated.
Note 5: Have Picture Contrast control at maximum

*12BY7 (V7) Video Amplifier Control Grid (Pin 2) 7.5 Volts (PP) Horizontal


12AU7 (V12) Sync Separator Plate (Pin 6) 60 Volts (PP) Vertical



6AL5 (V15) Horizontal Phase Detector (Pin 7) 28 Volts (PP) Horizontal


6SN7GT (V16) Horizontal Oscillator Plate (Pin 2) 150 Volts (PP) Horizontal


UHF TUNER SCHEMATIC


6AL5 (V15) Horizontal Phase Detector (Pin 5) 28 Volts (PP) Horizontal


6SN7GT (V16) Horizontal Oscillator Plate (Pin 5 ) 65 Volts (PP) Horizontal

*12BY7 (V7) Video Amplifier Plate (Pin 7) 60 Volts (PP) Vertical


6C4 (V13) Vertical Oscillator Plate (Pin 5) 250 Volts (PP) Vertical


12AU7 (V12) Sync Amplifier Cathode (Pin 3) 27 Volts (PP) Horizontal


6SN7GT (V16) Horizontal Oscillator Cathodes (Pin 3 or 6) 25 Volts (PP) Horizontal


12AU7 (V12) Sync Separator Plate (Pin 6) 60
\(V\) Volts (PP) Horizontal Volts (PP) Horizontal


6AH4GT (V14) Vertical Output Grid (Pin 1) 80
Volts (PP) Vertical Volts (PP) Vertical


6SN7GT (V16) Horizontal Oscillator Grid (Pin 1) 65 Volts (PP) Horizontal

© John F. Rider

\section*{REPAIR PARTS LIST}


\section*{© John F. Rider}

Note 1: The terms "Hori zontal"" "Vertical"" "Hori zontal, sine wave", refer to the oscilloscope sweep employed.

Note 2: All waveforms are taken with the oscilloscope horizontal sweep direction from left to right and with upward deflection correponding to positive polarity

*12BY7 (V7) Video Am plifier Plate (Pin 7) 75 Volts (PP) Vertical


6C4 (V16) Vertical Oscil lator Plate (Pin 1) 180 Volts (PP) Vertical


6AL5 (V18) Horizontal Discriminator Plate (Pin 7) 55 Volts (PP) Horizontal

Note 3. In some instances the waveforms obtained will not be identical with those shown, due to the the oscilloscope used. Note 4: All waveforms are measured with respect to chassis unless rest indicated.
Note 5: Have Picture (Contrast) control at maximum.

*12BY7 (V7) Video Am plifier Plate (Pin 7) 75 Volts (PP) Horizontal


12 AX 7 (V14) Sync Separator Plate (Pin 6) 40 Volts (PP) Vertical


6AH4GT (V17) Vertical Output Grid (Pin 1) 85 Volts (PP) Vertical

\section*{M}

6CB6 (V19) Horizonta Control Plate (Pin 5) 70 Volts (PP) Horizontal

The peak to peak (PP voltages of these wave forms are dependent on the depth of modulation of the transmitted signal; voltage shown are obtained when modulation is approx mately 90 percent.


12AX7 (V14) Hor. Sync Separator and AGC RectiVolt Cathode (Pin 3) 6 Volts (PP) Vertical


12AU7 (V15) Sync An 12AU7 (V15) Sync Amplifier and Clipper Plate Vertica


AH4GT (V17) Vertical OAH4GT (V17) Vertical Volts (PP) Vertical


2AU7 (V20) Horizontal Oscillator Plate (Pin 1) 80 Volts (PP) Horizontal

*12BY7 (V7) Video Am plifier Control Grid (Pin 2) 3.5 Volts (PP) Vertical


12AX7 (V14) Hor. Sync Separator and AGC Recti fier Cathode (Pin 3) 4.0 Volts (PP) Horizontal


12AU7 (V15) Sync An
12AU7 (V15) Sync Am (Pin 1) 80 Volts (PP) Horizontal


Vertical Deflection Coils Test Point 1) 70 Volts (PP) Vertical


2AU7 (V20) Horizonta Discharge Plate (Pin 6 85 Volts (PP) Horizontal

*12BY7 (V7) Video Am. plifier Control Grid (Pin 2) 3.5 Volts (PP) Horizonta


12AX7 (V14) Hor. Sync Separator and AGC Rectifier Plate (Pin 1) 45 Volts (PP) Vertical


6C4 (V16) Vertical Oscillator Grid (Pin 6) 180 Volts (PP) Vertical

6AL5 (V18) Horizontal Discriminator Plate (Pin 2) 55 Volts (PP) Horizontal


AGC Winding of Hor zontal Output Transforme (Point X to Ground) 300 Volts (PP) Horizontal




REVISIONS AND CODE CHANGES TO CHASSIS 1.508-1, 2, 1.510-1, 2 AS NOTED

CHASSIS 1-508-1, 1-508-2,1-510-1,1-510-2
All chassis covered are now using a \(1 / 4 \mathrm{Amp}\) slow blow fuse, Servic Part 191-0014 instead of the original type.

C267A and C267B (chassis 1-508-1 and 1-508-2) and 263A and C263B (chassis 1-510-1 and 1-510-2), . 1 Mfd. 600 V . capacitors are com 600 V . capacitors, Service Part 160-06022.

These revisions bear no code change numbers. CHASSIS 1-508-1 C01, C02, C03 AND 1-508-2

Reduction of sound interference in the picture is accomplished under code change C01 on chassis 1-508-1 and in original production of chassis \(1-508-2\) by connecting pin 6 of V11, the 6AV6 1st A. F. Amplifier and Tuner AGC Clamp as indicated in Figure 27. Correct the note on AGC delay (at junction of resistors R127, 1.5 megohm and R131, 100 M ohms) to
read "To pin 5 on V11".


FIGURE 27 - PARTIAL SCHEMATIC DIAGRAM CHASSIS 1-508-1 C01

R215, the Vertical Hold control on chassis 1-508-1 and 1-508-2 is changed from \(1.5 \mathrm{meg}-\) ohms to 2.0 megohms, Service Part 153-0018, to increase its range. This revision is caded nitial production of chassis 1-508-2.

Under code change C03, a high pass filter, Service Part 114-0001 is now used on chassis 1-508-1 between the VHF antenna and the VHF tuner to improve IF rejection of the tuner.
C218A and C218B, 470 Mmfd , 500 V . capacitors are combined into C218, a 220 Mmfd ., 1000 V . capacitor, Service Part 160-1032 on chassis -508-1 and 1-508-2. This revision bears no code change number in either chassis.

CHASSIS 1-510-1 C01, C02, C03,C04 AND 1-510-2
C215, . 0047 Mfd , 500 V . ceramic capacitor is changed to a. 0047 Mfd ., 600 V . paper unit, C 01 and in original in chassis \(1-510-1\) as 1-510-2. The revision provides reater volt tolerance for this capacitor.

The following revisions constitute code change C02 in chassis \(1-510-1\). These revisions will be included in initial production of chassis 1-510-2.
1. C106, 2 Mfd. capacitor and R105, 68 M hm resistor are now connected as in Figure 28 to prevent possible sound interference in the picture at high volume levels


FIGURE 28 - RATIO DETECTOR CIRCUIT CHANGE CHASSIS \(1-510-1 \mathrm{CO}\)
2. The ventilation of R176, 68 ohm resistor (75 ohms in certain initially produced chassis) is improved by physically relocating both this resistor and C136, . 22 Mfd. capacitor.
3. R255, 5,600 ohm resistor has been physically relocated as a factory change.

Sensitivity in chassis \(1-510-1\) and \(1-510-2\) is increased by the following component changes. These changes constitute code C03 in chassis 1-510-1 and are incorporated in initial production of chassis 1-510-2.
1. R126-680 ohm resistor is removed.
2. R130, R135 and R140 are changed from 6,800 ohms to 4,700 ohms Service Part 181-0472.
3. R136 and R141 are changed from 12,000 ohms to 6, 800 ohms, Service Part 183-0682

A factory revision under code change C03 als eliminates C215 - . 0047, 600 V . capacitor, previously added by code change C01.

Code change C04 in Chassis 1-510-1 and initial production of chassis 1-510-2 includes the following changes.
1. R222 has been changed from 680 ohms to 1000 ohms, Service Part 182-0102 to im prove the range of R220, the Vertica inearity control.
2. The stability of the horizontal oscillator has been improved by changing R258 from 680 ohms to 820 ohms, Service Part 181-0821
3. A high pass filter, Service Part 114-0001 is now incorporated between the VHF antenna terminals and the VHF tuner to improve rejection of \(I F\) by the tuner.

Revise the Repair Parts Lists appearing on pages 21 and 24 to include hese changes as noted below.


© John P. Rider

CHASSIS 1－508－2，1－510－2
The two Bearing Rings，Service Part 554－0022 employed on the VHF－UHF drive assembly of TV chassis 1－508－2 and 1－510－2，have bee replaced by two new parts as listed below：

1．A new Bearing Ring，Service Part 554－0024 is used in place of the old front bearing ring．

2．A new Bushing Ring，Service Part 554－0025 is used in place of the old rear bearing ring．

These new parts provide for easier assembly and disassembly of the．VHF－UHF drive assembly．

\section*{CHASSIS 1－504－1，1－504－2}

To bring the 1－504－1 and 1－504－2 Repair Parts List up to date，add the following service part numbers for the appropriate part：

1．Service Part Number 163－4700，Capacitor－ Polystyrene－． 0047 Mfd．－500 V．－C255

2．Service Part Number 554－0024，Ring－ Bearing（1－504－2 only）．

3．Service Part Number 554－0025，Ring－ Bushing（1－504－2 only）．
To include the changes contained in this supple－ ment，revise the Repair Parts Lists appearing on pages 21 and 24 as
noted below．

VHF channels 2 through 13．Chassis 1－510－2
is used in Model 225 MU ，providing reception of all commercial television channels－VHF

channels 2 through 13 and UHF channels 14 through 83.

MODEL 225M


To include the models listed in this supplement
the following parts should be added
REPAIR PARTS LIST CHASSIS 1－504－1，1－504－2
SCHEMATIC
SERVICE
LOCATION
PART NUMBER

\section*{DESCRIPTION}
\begin{tabular}{ll} 
714－0018 & Bezel Assembly－17＇ \\
\(487-0023\) & Clip－Bezel Mounting \\
\(491-0016\) & Gasket－Dust－Tube Mask \\
818－0010 & Insert－UHF \\
\(743-0024\) & Knob Assembly－Outer（Channel Selector） \\
\(744-0022\) & Knob Assembly－Outer（Volume \＆On－Off） \\
\(539-0503\) & Speaker－5＇P．M．
\end{tabular}

REPAIR PARTS LIST CHASSIS 1－510－1，1－510－2
SCHEMATIC SERVICE
PART NUMBER
DESCRIPTION
714－0020 Bezel Assembly－21＇
\(\begin{array}{ll}\text { 487－0023 } & \text { Clip－Bezel Mounting } \\ \text { 491－0015 } & \text { Gasket－Dust－Tube Mask }\end{array}\)
818－0010 Insert－UHF
743－0024 Knob Assembly－Outer（Channel Selector）
744－0022 Knob Assembly－Outer（Volume \＆On－Off）
539－0503 Speaker－5＇P．M．

CHASSIS 1－510－1 C07，CO8

\section*{CHASSIS 1－504－1 C01}

Code change C01 for TV chassis 1－504－1 in－ tivity：

1．C139－． 0047 Mfd ．capacitor is removed．
2．R146－1000 ohm resistor is changed to a 6800 ohm resistor．
Refer to the revised 1－504－1，－2 schematic diagram included in this supplement for re－ visions in B＋connections to the plate circuits of V4，V5，and V6 accompanying these com－ ponent changes

\section*{CHASSIS 1－510－1 C07}

The following component changes constitut code change C 07 for the \(1-510-1 \mathrm{TV}\) chassis and result in improved sensitivity：

1．R113－ 680 ohm， 10 watt resistor is changed to a 680 ohm， 2 watt resistor

2．R114－680 ohm， 2 watt resistor is added and connected in parallel to R113．

3．R136－6，800 ohm resistor is changed to a 1,000 ohm resistor．

4．R140－4，700 ohm resistor is changed to a \(1,000 \mathrm{ohm}\) resistor
5. R141-6,800 ohm resistor is changed to a 1,000 ohm resistor.
6. R138-1,000 ohm resistor is removed.
7. R139-47 ohm resistor is changed to a 180 ohm resistor.
8. R146-1,000 ohm resistor is changed to a \(6,800 \mathrm{ohm}\) resistor.
9. C135-. 0047 Mfd . capacitor is changed to a 270 Mmfd . capacitor.
10. C139 - . 0047 Mfd capacitor is removed.

Refer to the revised 1-510-1, -2 schematic diagram included in this supplement for revisions in \(\mathrm{B}+\) connections to the plate circuits of V4, V5, and V6 accompanying these component changes.
A factory change also identified as code change C 07 for the \(1-510-1 \mathrm{TV}\) chassis removes the high pass filter, Service Part 114-0001.

\section*{\(\frac{\text { CHASSIS 1-508-1 C07, C08, C09 }}{\text { CHASSIS } 1-508-2 \mathrm{C} 02, \mathrm{C} 03}\) \\ CHASSIS 1-508-2 C02, C03}

Code change C07 for the 1-508-1 TV chassis removes the high pass filter, Service Part 114-0001, as a factory change. This filter was formerly added by code change C03.
Code change C08 for 1-508-1 chassis changes the voltage rating for C256-. 22 Mfd . capacitor from 200 V . to 400 V .

Code change C09 for the 1-508-1 chassis consists of the following revisions:
1. C121 - . 047 Mfd capacitor is added and connected across R131 - 100,000 ohm resistor as a factory change.
2. C122-. 22 Mfd . capacitor is added and connected from the VHF tuner AGC line nate a white flash type of interference in the picture.
Under code change C02 for TV chassis 1-508-2, the VHF tuner, Service Part 323-0017, is changed to Service Part 323-0031. This version of the 1-508-2 VHF tuner includes the 40 Mc . IF strip.

Code changes C08 and C09 for the 1-508-1 have been incorporated in the 1-508-2 chassis; however, they are identified on the \(1-508-2\) as code change C03.

On both chassis 1-508-1 and 1-508-2, the shield has been removed from the lead connecting of the Vertical Oscillator transformer T60.

This factory revision bears no code change number for either chassis.

See schematic on page 35.
CHASSIS 1-504-1 C02; CHASSIS 1-510-1 C08
Code changes C02 for TV chassis 1-504-1 and C08 for chassis 1-510-1 add a Noise Inverter stage, plus an improved filtering circuit for stage, plus an improved intering circuit for
the +125 V . source, on the respective chassis. The Noise Inverter stage improves sync stability under noise conditions, and improved filtering of +125 V . removes possible vertical scan instability caused by sound interference.

Component revisions under these code changes on both chassis series are as follows:
1. C253 - . 001 Mfd. capacitor is changed to . 0047 Mfd .
2. C254-. 01 Mfd . capacitor is changed to .047 Mfd.
3. R205-10,000 ohm resistor is changed to 33,000 ohms.
4. R115 - 68 ohm resistor is inserted in series with pin 8 of V11-A.F. Output 6 Y 6 G and +125 V . source.
5. C115-20 Mfd. capacitor is connected to pin 8 of V11-A.F. Output 6Y6G. (This capacitor consists of the \(\triangle\) section of electrolytic C111-C112-C260, formerly wired as C112 to pin 4 of V11.)
6. C112-20 Mfd. capacitor, \(\triangle\) section of C111 - C112 - C260, is replaced by a wire-in type electrolytic rated at 10 Mfd 350 V .
7. C111-200 Mfd. capacitor is rewired to +125 V . source side of R115 - 68 ohm resistor.
8. R200 - 470,000 ohm resistor on chassis \(1-510-1\) and 2.2 megohm on chassis \(1-504-1\), is replaced by a 1.2 megohm resistor.
9. C203 - 680 Mmfd . is changed to a 70 to 470 Mmfd . variable capacitor and becomes the Sync Balancing adjustment. Adjus C203 as described in the procedure o

See schematic on page 36.
Component revisions peculiar to the \(\mathbf{C} 02\) change on chassis 1-504-1 are as follows:
-1. C200-470 Mmfd. capacitor is changed to a 220 Mmfd . capacitor
2. C201 - . 047 Mfd . is replaced by a .01 Mfd. capacitor.
3. R201 - 220,000 ohm resistor is changed to a \(470,000 \mathrm{ohm}\) resistor.

\section*{See schematic on page 37.}

In addition to the above listed component revisions, an entire new stage consisting of a has been added to both chassis neries. Inverter coding assigned to components in this stage are. capacitors - C230 to C232, resistors - R230 to R237, and the 12AU7 tube - V24.

Refer to the complete revised schematic diagrams of TV chassis 1-504-1, -2 and 1-510-2,-2 for both new and revised circuits accompanying the 1-504-1 C 02 and 1-510-1 C 08 changes.

\section*{ADJUSTMENT OF C203}

\section*{SYNC BALANCING TRIMMER}
1. Tune in air signal.
2. Short pin 2 of V15 Horizontal Phase Detector 6AL5 to chassis.
3. Connect VTVM from pin 4 of V \(\mathbf{1 6}\) Horizontal Oscillator 6SN7GT to chassis
4. Adjust C203 for minimum voltage
5. Remove VTVM from circuit.
6. With Horizontal Hold control in mechanical center position, adjust L68 Horizontal Frequency control until picture moves back and forth across screen with blanking bar vertical.
7. Remove short from pin 2 of V15 Horizontal Phase Detector 6AL5
8. With Contrast control in extreme counterclockwise position, rotate Horizontal Hold control until picture.locks in and appears normal.
9. Advance Contrast control to normal position and check Horizontal Hold control on all available channels. A slight readjustment of Horizontal Hold control may be necessary.

\section*{CHASSIS 1-504-1, 1-504-2}

A factory change on the 1-504-1 and 1-504-2 television chassis adds two pincushion corrector magnets to eliminate curvature of the edges of on page 8.

The type designation for the D440 germanium diode functioning as the Video Detector on all chassis covered
has been clianged to the RTMA assigned number 1N105. All references to the D440 number should be changed to 1 N 105

\section*{CHASSIS 1-504-1, -2; 1-510-1, -2}

As mentioned previously, a coding of V24 has been assigned to the new 12AU7 Noise Inverter stage on chassis 1-504-1, -2 and 1-510-1,-2. To eliminate confusion, the coding assigned to the UHF tuner tubes, i.e. - V24 for the 6AN4 UHF Mixer, and V25 for the 6AF4 UHF Oscillator - has been changed to V30 and V31, respectively. All references to these tubes should be changed to the new coding numbers.

Production of 1-504-1, -2 and 1-510-1, -2 chassis now include VHF tuners with the terminal board lugs identified by numbers stamped on for these chassis use the new numbers for terminal locations, Figure 31 provides means of cross-checking the former schematic letter designations against later production tuners with numbers.


FIGURE 31 - VHF TUNER TERMINALS \(1-504-1,-2 \& 1-510-1,-2\)

Note: For convenience in servicing, complete Note: For convenience the \(1-504-1\) and -2 \(1-508-1\) and -2 , and \(1-510-1\) and -2 TV chassis are included in this supplement. All revisions described in this supplement are incorporated on the respective schematic diagrams and Revised Repair Parts Lists.

\section*{© John F. Rider}


\section*{© John F. Rider}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (enten &  & R & \multicolumn{3}{|r|}{REVISED REPAIR PARTS LIST CHASSIS \(1.508 .1,1.508 .2\)} & \begin{tabular}{l}
SCHEMATIC
LOCATION \\
LOCATION
\end{tabular} & \(\xrightarrow{\text { spryice }}\) (ART Numbr & DEscriptow \\
\hline  & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
161-2004 161-3012 \\
\(163-0100\)
\(163-0680\) \(162-0621\)
\(162-0233\)
\(182-06247\) 162-0611 \(162-02147\)
\(162-0202\) \(162-0402\)
\(160-10222\) \begin{tabular}{l}
\(160-06222\) \\
\(160-06133\) \\
\(160-04147\) \\
\\
\hline
\end{tabular} \(160-0001\)
\(160-00022\)
\(1100-08022\)
\(169-0.010\)
\(190-0006\) 190-0007 \(145-0006\)
\(145-0002\) 4477.0022
\(196-0007\) \(196-0010\)
\(487-0019\)
487 \(487-0020\)
\(487-0004\) \(1133-0002\)
\(132-0002\) \\
\(131-2010\)
\(131-2007\)
\(146-0005\)
\(130-0001\) \\
\(118-0011\)
\(119-0002\)
\(196-0014\)
\(153-0009\) \\
\(157-0019\)
\(153-0015\)
\(153-0014\)
\(153-0007\)
\(153-3007\)
\(153-0018\)
\(153-3011\)
\(195-0008\)
\(195-0001\)
\(760-0036\)
\end{tabular} &  &  &  &  &  &  &  \\
\hline
\end{tabular}

© John F. Rider

CHASSIS 1-508-1 C04, C05 \& 1-508-2 C00
C110, 2 Mfd . capacitor and R109, 68 M ohm resistor are now connected as shown in Figure 29 to eliminate a 4.5 Mc . harmonic interference in the picture. This revision is coded in initial production of chassis 1-508-2.

Code change C05 for chassis \(1-508-1\) adds a shield that extends over the 3rd and 4th Vide F Amplifier tube sockets on the underside the chassis in addition to the existing Video Detector circuit shield. Original production of chassis 1-508-2 incorporates this change

\section*{CHASSIS 1-510-1 C05 \& 1-510-2 C00}

A shield over the 3rd and 4th Video IF Amplifier tube sockets on the underside of the chassis has been added to the 1-510-1 chassis. Use n addition to an existing shield over the Vide Initial production of chassis 1-510-2 will include this change.

To bring the 1-508-1, 1-508-2, 1-510-1 and 1-510-2 Parts Lists up to date, add the following item

\section*{SERVICE \\ PART NUMBER}

483-0024

DESCRIPTION
Shield - Video IF

ADDITION OF CHASSIS 1-504-1, 1-504-2 \& MODELS 105 B, 105 BU, 105 M, 105 MU

\section*{GENERAL DESCRIPTION}

Sylvania television chassis 1-504-1 and 1-504-2 are the 17 inch versions of the \(1-510-1\) an -510-2 TV chassis, respectively. Electrically the two chassis series are very similar; and all specifications, service, and adjustment 1-510-1 and 1-510-2 apply to the for the and 1-504-2 chassis, except as noted in this supplement.

Chassis 1-504-1 provides reception of the welve commercial VHF television channels 2 through 13 inclusive. In this chassis, provisions are made for the simple addition of a UHF tuner, thus permitting reception of channels 14 to 83 of the UHF band.


MODEL 105 M

Chassis 1-504-2 includes the UHF tuner and thus provides reception of all commercial television channels - VhF channels 2 through 13 and UHF channels 14 through 83

The 105 series of models are direct viewing
table model TV receivers varying only in cabinet finish and frequency range. Models \(105 B\) and 105 M contain the \(1-504-1\) chassis and models 105 BU and 105 MU contain the 1-504-2 chassis. All 105 models feature a 6-1/2" P.M. speaker.

\section*{CHASSIS 1.508-1 CO6 \& 1-508-2 CO1 - CHASSIS 1.510-1 CO6}

\section*{CHASSIS 1-508-1 C06 \& 1-508-2 C01}

Code change C06 for TV chassis 1-508-1 and code change C01 for chas.sis \(1-508-2\) revise the circuits of V14 12AX7 - the Sync Separator \& AGC Rectifier, and V15 12AU7 - the Sync Ampliker \& Clipper. The change, in effect take-off circuit and the sync separator circuit, and functions to stabilize vertical and horizontal sync and AGC operation under interference conditions.

Component changes are as follows.
1. C203 - . 047 Mfd . capacitor is changed from a 200 volt to a 400 volt capacitor. (A 400 volt replacement part is already called for in the Repair Parts List.)
2. R208-10M ohm resistor is changed to a 15 M ohm resistor.
3. R199 - 33M ohm resistor is added and connected in parallel with R208.
4. R198-360M ohm resistor is added and
connected between +560 volts and V14 and V15 as shown in the partial schematic

Wiring revisions for these 1-508-1 and 1-508-2 code changes are illustrated in the partial schematic in Figure 30.

\section*{CHASSIS 1-510-1 C06}

Code change C06 for TV chassis 1-510-1 changes the values of the following components in the sync separator circuit to improve sync stability.
1. C200-470 Mmfd. capacitor is changed to a 220 Mmfd . capacitor.
2. C201-. 047 Mfd. capacitor is replaced by a .01 Mfd. capacitor.
3. R200-2.2 Megohm resistor is replaced by a 470 M resistor
4. R201 - 220 M resistor is changed to 470M resistor.


FIGURE 30 - PARTIAL SCHEMATIC OF CHASSIS 1-508-1 C06, 1-508-2 C01

\section*{SUPPLEMENTARY SERVICE INFORMATION}
CHASSIS
\(1-504-1,-2,-4\)
\(1-508-1,-2,-3\)
\(1-510-1,-2,-4\)
covering

\section*{MODELS}

ALL
ALL
ALL

TEM 4 SUBJECT. The following components should be added to the part REASON: To pickup parts rhanges noted in items 2 and 3
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
SCHEMATIC \\
LOCATION
\end{tabular} & \begin{tabular}{l}
SERVICE \\
PART NUMBER
\end{tabular} & DESCRIPTION \\
\hline & 480-0001 & Board - Terminal - HaloLight Transformer \\
\hline & 487-0019 & Clip - HaloLight Tube mounting \\
\hline R49 & 153-0015 & Control - HaloLight \\
\hline R257 & 153-0021 & Control - Horizontal Hold (knob-adjusted) \\
\hline R159 & 153-0020 & Control - Picture (Brightness) (knob-adjusted) \\
\hline & 744-0025 & Knob - HaloLight Control \\
\hline & 740-0038 & Knob - Horizontal Hold Control \\
\hline & 740-0039 & Knob - Picture (Brightness) Control \\
\hline & 552-0031 & Nut - HaloLight Control knob mounting \\
\hline & 415-0010 & Plug - 2 Prong - HaloLight Tube connector \\
\hline & 415-0015 & Plug - 4 Prong - HaloLight Transformer connector \\
\hline R47, R48 & 189-0026 & Resistor - 33,000 Ohm - 2 W . \\
\hline & 483-0019 & Shield - Mask \\
\hline & 413-0006 & Socket - 4 Prong - HaloLight Transformer connector \\
\hline T30 & 141-0039 & Transformer - HaloLight Power \\
\hline & 611-2100 & Tube - Cold Cathode - HaloLight \\
\hline
\end{tabular}

ITEM 2 SUBJECT: Horizontal Hold and Picture Controls of Later Production Chassis
REASON: To Facilitate Adjustment.
DESCRIPTION: New Horizontal Hold and Picture (Brightness) controls are incorporated in initial production of chassis \(1-504-4,1-510-4\) and later production of chassis 1-504-1, 1-510-1 and 1-510-2. The new controls are provided with a knob to permit finger adjustment and are electrically equivalent to the old controls.

ITEM 3
SUBJECT: Models 270 and 271 Added to Line
DESCRIPTION: Sylvania models in the 270 and 271 series are HaloLight versions of the 120 and 126 series, respectively - differing only by the addition of HaloLight


WIRING OF HALOLIGHT COMPONENTS IN \(1-510\) TV CHASSIS

ITEM 1 SUBJECT: Code Changes 1-504-1 C05 and 1-504-4 C01.
REASON: Reduction of Possible Microphonism.
DESCRIPTION: Horizontal Oscillator tube socket is changed from a rigid to a shock-mounted type and this stage, plus the Audio Output transformer T53 are physically relocated on the chassis.

ITEM 5 SUBJECT: Picture Tube Replacement on 1-508 and 1-510 Chassis. REASON: Glass Weld on Later 21EP4A Tubes
REASON: Glass Weld Decsita . not initially incorporating the beveled type support. When replacement with this type tube becomes necessary, grind or file off the rear edge of each support to clear this glass weld; thus, any irregular strain on the tube will be avoided when tightening the picture tube hold down strap.
First, remove the rubber pad on each support and then scribe two lines as shown. Grind or file down the support to these lines. Before the supports are reinstalled, cement the rubber pads to the reworked supports





\section*{SPECIAL INSTALLATION AND SERVICE INSTRUCTIONS}

\section*{Picture Tube Replacement}

Use extreme caution at all times when handling these Use extreme caution at all times when handling these massis. Carry 21 chassis by handle on rear tube ture tube. Make sure hands are free of dirt and grease to prevent slipping on smooth surface of glass. Carry 17' chassis by the two side picture tube braces.

PAGE
ALIGNMENT INSTRUCTIONS . . . 47
NSTALLATION DATA . . . . . . . 38 PARTS LAYOUT . . . . . . . . . . 40 PARTS LIST . . . . . . . . . .... 48 UMH PRODUCTION CHANGES. . . . . . SCHEMATIC . . . . . . . . . . . TOP VIEW - TUBE LAYOUT. . . TRIMMER LOCATIONS. . . . . . . 39 VOLTAGE MEASUREMENTS .... 49 WAVEFORMS . . . . . . . . . . . . 49 Alignment of the mask and picture tube should not be necessary after normal servicing of the chassis. However, if tube support members have been disturbed during picture tube replacement, observe the following procedure. See Picture Tube Installation illustrations.


Position tube with face tilted forward about 3 degrees with brackets in approximately normal pong just enough to permit further adjustment in cabinet.
Tube holddown strap mounting nuts ( \(21^{\prime \prime}\) chassis only).
(b) Holddown strap rod or rod nuts.
(c) Rear tube mounting rod nut.
(d) Yoke mounting wing nuts.
(e) Rear tube mounting bracket screws if previously loosened.
Carefully slide chassis into cabinet, replace and tighten chassis holddown screws.
Replace all knobs and electrical connections. If tuner does not center, loosen tuner rear bracket wing screws and shift tuner until knobs function freely. Retighten wing screws
4. Carefully move tube in mountings to elign face of tube with mask so that no space remains between them. Tighten mounting assemblies listed in step one completely. Make sure that equal tension is applied to tube holddown strap rod nuts

CAUTION: DURING ALL ABOVE OPERATIONS AVOID PUTTING ANY STRAIN ON NECK OF TUBE.

Correctly position deflection yoke. Adjust ion trap, focus, centering and pincushion corrector magnets

HaloLight Tube Replacement
1. Remove chassis from cabinet.
1. Remove chassis from cabinet.
2. Unfasten the nuts that hold the bezel assembly to the cabinet and remove assembly.
Lay bezel assembly face down on a surface that will not scratch bezel.
Remove clamps holding light shield and mask to Remove HaloLight plug, and transformer and control assembly.
Remove retaining channels and lift HaloLight shield from assembly
Remove tape holding HaloLight tube mounting clips and leads to shield.
Remove vinyl tubing from ends of tube and carefully lift tube from shield. Unsolder leads from tube.
10. To replace tube, follow the foregoing steps in reverse order. It is important that all tape removed from assembly be replaced to minimize dust collection on picture tube face.



HIGH VOLTAGE ASSEMBLY

© John F. Rider


1. Code and unsolder leads to VHF tuner.
2. Remove dial cord.
3. Remove tuner from chassis by unscrewing one front and two rear (wing) mounting screws.
4. Remove drive components as shown in UHF Drive Assembly drawing.

NOTE: To remove bushing ring and bearing ring, first loosen set screws in pinion and then slide both pinion, and pulley and sleeve assembly toward tuner case; thus exposing front bearing ring. Remove bear tuning sleeve to expose nd sleeve assembly of ring bushing ring. Caution: Do not spread front bearing ring any more than is necessary to slide it off the front of the fine tuning sleeve

When replacing the drive assembly, reverse the above procedure, making sure that the front bearing ring is fully seated in the end of the pulley and sleeve assembly. Proper action of the anti-backlash gears is obtained by holding one gear stationary and advancing the other one tooth, so that tension is applied to the springs. This must be done during assembly when engaging pinion and gear
REMOVAL OF SWITCH ASSEMBLY
1. Code and unsolder leads to switch.
2. Remove switch and cam as shown in UHF Switch Assembly drawing

After replacing the switch assembly, rotate the cam through its complete travel to insure that it clears all projections and that the switch operates freely. Note allel to and facimg is fully engaged (ase) the switch is in the down (UHF) position.

TURRET DRUM REMOVAL - VHF TUNER

To remove turret drum from VHF tuner, it is not necessary to remove the tuner from the chassis. With the chassis lying on its side, remove the following items in the order given. See the VHF Tuner Layout illustration
1. Bottom cover plate.
2. Shaft retaining springs (front and rear)
3. Front bearing plate

The drum should now be free of its mounting and readily removed from the tuner housing through the slots provided.


\section*{UHF TUNER ALIGNMENT}

\section*{HASSI: 1-514-4; CHASSIS 1-520-4; CHASSIS \(1-520-8\)}

\section*{Notes on VHF Tuner Alignment}

Observe the following general procedure for connecting equipment for VHF tuner alignment setups.
1. The detector circuits should be constructed to maintain leads as short as possible.
2. Use shielded leads where indicated to minimize hum and synchronous voltage pickup.
3. The single pole double throw "scope switch" should be located at the vertical input terminal of the scope. This switching arrangement will permit observation of either
IF response or the overall RF response.
4. Use very loose coupling for the marker generators to prevent any affect on tuner response. A turn or two of wire around the points indicated in the tuner alignment setup should be sufficient.
5. Disconnect the primary winding of \(T 55\) by unsoldering lead from plate (pin 5) of 6CB6 1st Video IF Amplifier. Connect 330 ohm resistor in place of primary winding.
6. During tuner alignment, remove the 2nd Video IF Amplifier tube - V2 - 6CB6, to prevent coupling back from the receiver IF system.
7. In all of the following tests the oscilloscope vertical gain should be as close to maximum setting as possible, consistent with hum and synchronous voltage interference limitations. This precaution will permit the use of low creasing visibility of IF and RF markers.

The Fine Tuning control on all chassis should be set to mid-capacity as follows:
1. On 1-514-3, 1-514-4, 1-520-3, 1-520-4 and \(1-520-8\) chassis, orient Fine Tuning Shaft as shown in VHF Tuner Layout illustration.
2. On 1-514-1, 1-520-1 and 1-520-7 chassis, set the Fine Tuning variable capacitor plates to halfmeshed nosition

PRELIMINARY INSTRUCTIONS
Allow receiver to warm up before performing UHF alignment
2. Check Video IF bandpass response as outlined in step 2 of "Video IF Alignment" Leave detector circuit WhF tuner alignment
Wecked, switch VHF adjustments have been and proceed with UHF tuner to "UHF" position and the following ura alignment as indicated in the following paragraphs.

\section*{OUTPUT CIRCUIT ALIGNMENT}

Apply 43. 25 MC sweep ( 10 MC sweep width) into Test Point on UHF tuner.
Apply 42. 1 MC and 45.75 MC markers as shown in "VHF Tuner Alignment Setup". Adjust T25 on UHF tuner for response curve shown in Figure A

\section*{PRESELECTOR ALIGNMENT}

Inject 42. 1 MC and 45.75 MC markers as shown in "VHF Tuner Alignment Setup".
. Apply UHF sweep signal to UHF antenna terminals through a properly terminated output cable (matched to 300 Ohms) or through the Ture UHF sweep eneratore B simultaneously across entire tuning tuner from 464 MC to 896 MC and observe response curve.
4. Adjust trimmers C37, C38 and C39 for best compromise on dip and tilt; if necessary, additional adjustment may be accomplished by bending the rotor plates slightly. Overall response curves should appear as in Figure C. CAUTION - Do not attempt to correct for excessive tilt in overall UHF response curves by adjusting band pass circuit (L8, L53, L54). Readjustment of these circuits will adversely affect VHF reception of receiver.
. Disconnect test equipment, remove 330 Ohm resistor and reconnect T55 into circuit.

\section*{OSCILLATOR ALIGNMENT}

Apply UHF RF signal to UHF antenna terminals through a properly terminated output cable (matched to 300 Ohms ) or through the matching pad in Figure B
Connect DC VTVM across video detector load resistor R147-4.7K. Turn UHF tuning shaft to extreme high frecapacitor plates are fully unmeshed.
4. Adjust C 28 on UHF tuner for maximum reading on VTVM.



VHF TUNER ALIGNMENT SETUP - CHASSIS 1-514-3,
1-514-4, 1-520-3, 1-520-4, 1-520-8




VHF TUNER SCHEMATIC - 1-514-1, 1-520-1, 1-520-7 CHASSIS



Some tuners use small wire coil for \(L\)


VHF TUNER LAYOUT - 1-514-1, 1-520-1, 1-520-7 CHASSIS

VHF TUNER ALIGNMENT
CHASSIS \(1-514-3,1-514-4,1-520-3,1-520-4,1-520-8\)

*In order to adjust C8, C9, C10 and L9, it is necessary to remuve side cover of tuner. Remove side cover screw by means of a small wrench and slide cover out between chassis and tuner. The above mentioned adjustments may then be made through hole in chassis opposite tuner. Replace cover when adjustments are complete.

\section*{VHF TUNER ALIGNMENT}

\author{
CHASSIS \(1-514-1\); 1-520-1; 1-520-7
}

HIGH BAND OSCILLATOR ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline STEP & TUNER SET TO CHANNEL & SWEEP & \[
\begin{aligned}
& \text { ENERAT } \\
& \text { IF } \\
& \text { MARER }
\end{aligned}
\] & \[
\begin{gathered}
\text { RF } \\
\text { MARKER }
\end{gathered}
\] & SCOPE
SWITCH
POSITION & ADJUST & \[
\begin{aligned}
& \text { ACCEPTABLE } \\
& \text { RESPONSE } \\
& \text { CURVES }
\end{aligned}
\] & COMMENTS \\
\hline 1. & 13 & \[
\begin{aligned}
& \text { Channel } 13 \\
& 213 \mathrm{MC}
\end{aligned}
\] & 45.75 MC & 211.25 MC & RF Output & L9 Screw & See Curves below & Coincide Markers as shown. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline NOTE & \multicolumn{8}{|l|}{Refer to VHF Tuner Layout and VHF Tuner Schematic for location of specified Wafers, Coil Increments, and Screw Adjustments mentioned in the following step. As Channels and 5 to 2 are aligned by means of consecutive coil increments, the aligned increments that precede must not be disturbed.} \\
\hline 2. & 12 & \[
\begin{aligned}
& \text { Channel } 12 \\
& 207 \mathrm{MC}
\end{aligned}
\] & 45.75 MC & 205. 25 MC & RF Output & Channel 12 Loop on Wafer 5 & \multirow[t]{6}{*}{Note: Curves may not be symmetrical until RF alignment is complete.} & Squeeze or spread loop for Channel 12 on Wafer 5 to coincide Markers as shown. \\
\hline 3. & 11 & \[
\begin{aligned}
& \text { Channel } 11 \\
& 201 \mathrm{MC}
\end{aligned}
\] & 45.75 MC & 199.25 MC & RF Output & Channel 11 Loop on Wafer 5 & & \\
\hline 4. & 10 & \[
\begin{aligned}
& \text { Channel } 10 \\
& 195 \mathrm{MC}
\end{aligned}
\] & 45.75 MC & 193.25 MC & RF Output & Channel 10 Loop on Wafer 5 & & \\
\hline 5. & 9 & \[
\begin{gathered}
\text { Channel } 9 \\
189 \mathrm{MC}
\end{gathered}
\] & 45.75 MC & 187. 25 MC & RF Output & Channel 9 Loop on Wafer 5 & & Adjust each succeeding Hi-Channel Loop on Wafer 5 (steps 3to 7) to coincide appropriate Markers for that Channel. \\
\hline 6. & 8 & \[
\begin{aligned}
& \text { Channel } 8 \\
& 183 \mathrm{MC}
\end{aligned}
\] & 45.75 MC & 181.25 MC & RF Output & Channel 8 Loop on Wafer 5 & & \\
\hline 7. & 7 & \[
\begin{gathered}
\text { Channel } 7 \\
177 \mathrm{MC} \\
\hline
\end{gathered}
\] & 45.75 MC & 175.25 MC & RF Output & Channel 7 Loop on Wafer 5 & & \\
\hline \multicolumn{9}{|c|}{LOW BAND OSCILLATOR ALIGNMENT} \\
\hline 8. & 6 & \[
\begin{gathered}
\text { Channel } 6 \\
85 \mathrm{MC} \\
\hline
\end{gathered}
\] & 45.75 MC & 83.25 MC & RF Output & L11 Screw & \multirow{5}{*}{See Curves above} & Coincide Markers as shown. \\
\hline 9. & 5 & \[
\begin{gathered}
\text { Channel } 5 \\
79 \mathrm{MC}
\end{gathered}
\] & 45.75 MC & 77. 25 MC & RF Output & Channel 5 Coil on Wafer 5 & & Squeeze or spread turns of Channel 5 Coil on Wafer 5 to coincide Markers as shown. \\
\hline 10. & 4 & \[
\begin{gathered}
\text { Channe! } 4 \\
69 \mathrm{MC}
\end{gathered}
\] & 45.75 MC & 67.25 MC & RF Output & Channel 4 Coil on Wafer 5 & & \multirow{3}{*}{Adjust each succeeding Lo-Channel Coil on Wafer 5 (steps 10 to 12) to coincide appropriate Markers for that Channel.} \\
\hline 11. & 3 & \[
\begin{gathered}
\text { Channel }{ }^{3} \\
63 \mathrm{MC}
\end{gathered}
\] & 45.75 MC & 61.25 MC & RF Output & Channel 3 Coil on Wafer 5 & & \\
\hline 12. & 2 & Channel 2 57 MC & 45.75 MC & 55.25 MC & RF Output & Channel 2 Coll on Wafer 5 & & \\
\hline
\end{tabular}

HIGH AND LOW BAND RF ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1. & 13 & Channel 13 213 MC & - & \[
\begin{aligned}
& 211.25 \mathrm{MC} \text { (P) } \\
& 215.75 \mathrm{MC} \text { (S) }
\end{aligned}
\] & RF Output & \[
\begin{aligned}
& \text { L3, L7, L8 } \\
& \text { Screws }
\end{aligned}
\] &  & \begin{tabular}{l}
Adjust L3 for maximum mid-band height regardless of of skirts. \\
Adjust L7 for proper skirt figuring. Adjust L8 for flat top. Pix carrier must be at \(100 \%\); sound carrier may ride down \(30 \%\).
\end{tabular} \\
\hline 2. & 13 & Same as 1 & 45.75 MC and 42.1 MC & & IF Output & T2 on Tuner and L54 on Main Chassis &  & Adjust for response curve shown. \\
\hline 3. & 13 & Same as 1 & - & \[
\begin{aligned}
& 211.25 \mathrm{MC}(\mathrm{P}) \\
& 215.75 \mathrm{MC}(\mathrm{~S})
\end{aligned}
\] & RF Output & L8 Screw &  & Touch up for flat top if necessary. There must not be more than \(5 \%\) dip. \\
\hline 4. & 12 & Channel 12 207 MC & - & \[
\begin{aligned}
& 205.25 \mathrm{MC}(\mathrm{P} \\
& 209.75 \mathrm{MC}(\mathrm{~S})
\end{aligned}
\] & RF Output & Channel 12 Loops on Wafers 1,3 and 4 & PICTURE SOUND
\(100 \%\) & \\
\hline 5. & 11 & \[
\begin{aligned}
& \text { Channel 1i } \\
& 201 \text { MC }
\end{aligned}
\] & - & \[
\begin{aligned}
& 199.25 \mathrm{MC}(\mathrm{P}) \\
& 203.75 \mathrm{MC}(\mathrm{~S})
\end{aligned}
\] & RF Output & Channel 11 Loops on Wafers 1,3 and 4 & \[
1
\] & \\
\hline 6. & 10 & Channel 10 195 MC & - & \[
\begin{aligned}
& 193.25 \mathrm{MC}(\mathrm{P}) \\
& 197.75 \mathrm{MC}(\mathrm{~S})
\end{aligned}
\] & RF Output & Channel 10 Loops on Wafers 1,3 and 4 &  & \\
\hline 7. & 9 & Channel 9 189 MC & - & \[
\begin{aligned}
& \text { 187.25 MC (P) } \\
& 191.75 \mathrm{MC}(\mathrm{~S})
\end{aligned}
\] & RF Output & Channel 9 Loops on Wafers 1,3 and 4 & \[
\int \begin{aligned}
& 70 \% \\
& 70
\end{aligned}
\] & \\
\hline 8. & 8 & Channel 8 183 MC & - & \[
\begin{aligned}
& 181.25 \mathrm{MC}(\mathrm{P}) \\
& 185.75 \mathrm{MC}(\mathrm{~S})
\end{aligned}
\] & RF Output & Channel 8 Loops on Wafers 1,3 and 4 &  & \\
\hline 9. & 7 & \[
\begin{gathered}
\text { Channel } \\
177 \mathrm{MC}
\end{gathered}
\] &  & 175.25 MC (P)
\(179.75 \mathrm{MC}(\mathrm{S})\) & RF Output & Channel 7 Loops on Wafers 1,3 and 4 & \[
70 \%
\] & Squeeze or spread loops for Channel 12 to acquire acceptable response curve. Loop on Wafer 1 adjusts mid-band amplitude; Loop on Wafer 3 adjusts skirt \\
\hline 10. & 6 & Channel 6
85 MC & - & \[
\begin{aligned}
& 83.25 \mathrm{MC}(\mathrm{P}) \\
& 87.75 \mathrm{MC}(\mathrm{~S})
\end{aligned}
\] & RF Output & Channel 6 Coils on Wafers 1,3 and 4 & PICTURE OR SOUND & \begin{tabular}{l}
frequency; Loop on Wafer 4 adjusts for flat top. \\
Align each succeeding channel (steps 5 to 14) adjusting inductances of appropriate loops or coils on
\end{tabular} \\
\hline 11. & 5 & Channel 5 79 MC &  & \(77.25 \mathrm{MC}(\mathrm{P})\) 81.75 MC (S) & RF Output & Channel \({ }^{\text {S Coils }}\) on Wafers 1,3 and 4 &  & and Parts Layout for locations of specified loop increments. Picture and Sound carriers must remain on top of curve. \\
\hline 12. & 4 & Channel 4 69 MC & - & \[
\begin{aligned}
& 67.25 \mathrm{MC}(\mathrm{P}) \\
& 71.75 \mathrm{MC}(\mathrm{~S})
\end{aligned}
\] & RF Output & Channel 4 Coils on Wafers 1, 3 and 4 & & \\
\hline 13. & 3 & Channel 3 63 MC & - & \[
\begin{aligned}
& 61.25 \mathrm{MC}(\mathrm{P}) \\
& 65.75 \mathrm{MC}(\mathrm{~S})
\end{aligned}
\] & RF Output & Channel 3 Coils on Wafers 1, 3 and 4 & & - \\
\hline 14. & 2 & \[
\begin{gathered}
\text { Channel } 2 \\
57 \mathrm{MC}
\end{gathered}
\] & - & \[
\begin{aligned}
& 55.25 \mathrm{MC}(\mathrm{P}) \\
& 59.75 \mathrm{MC}(\mathrm{~S})
\end{aligned}
\] & RF Output & Channel 2 Coils on Wafers 1,3 and 4 & & \\
\hline
\end{tabular}

\footnotetext{
NOTE: As each Channel is aligned by adjustment of its inductance increments in the order listed in steps 4 to 14 , care must be exercised not to disturb the aligned increments preceding the one being adjusted.

Recheck all channels for flat top response curve, touching up L8 for Channel 13 and appropriate coil increments. Dip up to \(30 \%\) is permissible for all channels. If bandwidth on any hannel is insumfich a or away from C6 and C11
}

\section*{VIDEO IF, 4.5MC TRAP AND SOUND ALIGNMENT PROCEDURES}
\begin{tabular}{|l|}
\hline \begin{tabular}{l} 
PREALUGNMENT \\
BEFORE ATTEMPTING ALTIGNMENT,
\end{tabular} \\
1. Lay chassis on side with H. v. supply down for under- \\
chassis adjustments. \\
2. Ground all test equipment unless otherwise stated.
\end{tabular}
\begin{tabular}{|ll|} 
3. & Keep detector leads short. \\
4. & \(\begin{array}{l}\text { Use proper non-metallic alignment tools for powdered } \\
\text { tron cores with hex holes or slots. Metallic screw } \\
\text { drivers may be used for cores adjusted by brass screws. }\end{array}\) \\
\(\begin{array}{ll}\text { 5. } & \text { Receiver should warm up for approximately } 15 \text { minutes }\end{array}\) \\
\hline
\end{tabular}
VIDEO IF ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline STEP & \multicolumn{2}{|l|}{SIGNAL GENERATOR} & \multicolumn{2}{|l|}{\begin{tabular}{l}
SWEEP GENERATOR \\
Connection Freq.
\end{tabular}} & \[
\begin{aligned}
& \text { VTVM } \\
& \text { CONNECTION }
\end{aligned}
\] & OSCILLOSCOPE CONNECTION & ADJUST & \begin{tabular}{l}
OUTPUT \\
READING
\end{tabular} & COMMENTS \\
\hline 1. & To raised tube shield on Osc. /Mix. tube. & \[
\begin{gathered}
\text { 39. } 75 \\
\text { MC }
\end{gathered}
\] & & & Across diode load resistor R147-4.7K. & & \[
\stackrel{\text { L54 }}{\text { (Top Core) }}
\] & Min. & Set VHF tuner to free channel. Apply - 3 V . between C130-. 22 Mfd. and chassis. Use sufficient output for satisfactory reading. \\
\hline 2. & \begin{tabular}{l}
CHASSIS 1-514-1, 1-52 \\
Loosely couple marker to Looker Point "B" on VHF tuner. \\
CHASSIS 1-514-3, 1-51 \\
Loosely couple marker to pin 5, 6J6 thru hole in VHF tuner.
\end{tabular} & \(0-1\) AND
\begin{tabular}{l}
42.18 \\
45.75 \\
MC
\end{tabular}
\(14-4,1-\)
42.18
45.75
MC & \begin{tabular}{l}
1-520-7 ONLY: \\
Looker Point "B" on VHF tuner. \\
520-3, 1-520-4, 1-520 \\
Pin 5, 6J6 thru hole in VHF tuner.
\end{tabular} & \begin{tabular}{l}
43.25 MC 10 MC Sweep \\
8 ONLY \\
43.25 MC 10 MC Sweep
\end{tabular} &  & \begin{tabular}{l}
Pin 5 of 1st Video IF Amp. thru detector circuit.
\(\qquad\) \\
Pin 5 of \(\overline{1 s t}\) Video If Amp. thru detector circuit.
\end{tabular} & L54 (Bot. Core); T2 (VHF tuner)
\(\qquad\) Ot Core); L8 (VHF tuner); L53 & Response curve shown in Fig. A.
\(\qquad\) & Remove AGC voltage, Disconnect T55 primary lead from pin 5 of V1-6CB6; connect 330 Ohm resistor in its place (from R128 - 1 K to pin 5 of V1). Lower Osc. /Mix. tube shield to normal position. On chassis 1-514-1 and 1-520-1 and -7, set VHF tuner to any free high channel; on chassis \(1-514-3,1-514-4,1-520-3\), 1-520-4 and 1-520-8, set VHF tuner between any two channels. L53 controls width of curve on 1-514-3, 1-514-4, \(1-520-3,1-520-4\) and \(1-520-8\) chassis. \\
\hline
\end{tabular}

4.5MC TRAP ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Signal generator} & \multicolumn{2}{|l|}{VTVM CONNECTIONS} & & OUTPUT & COMMENTS \\
\hline STEP & Connection & Freq. & RF Probe & Ground Lead & ADJUST & READING & Comments \\
\hline 1. & To Pin 2 of 12BY7 Video Amplifier. & 4.5 MC & RF Probe connected to Cathode (Pin 11) of Picture Tube. & To chassis. & L61 & Min. & Short Pin 1 of V4-6CB6 4th Video IF Amplifier to Chassis. \\
\hline
\end{tabular}

SOUND ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline STEP & \multicolumn{2}{|l|}{SIGNAL GENERATOR CONNECTION} & \multicolumn{4}{|r|}{\begin{tabular}{l}
VTVM CONNECTIONS \\
\begin{tabular}{l|l|} 
DC Probe & Ground Lead
\end{tabular}
\end{tabular}} & ADJUS? & & outpur READING & COMMENTS \\
\hline 1. & \multicolumn{2}{|l|}{\begin{tabular}{l}
45 MC and 4.5 MC generators each connected through a 1000 ohm resistor to pin 1 of V1-6CB6 1st video IF Amplifier \\
or \\
45 MC generator with 4.5 MC marker (preferably crystal controlled) through 1000 ohm resistor to pin 1 of V 1 .
\end{tabular}} & \multicolumn{2}{|l|}{To pin 5 of V7-6AL5.} & \multicolumn{2}{|l|}{To pin 7 of V7.} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { T52 Sec. (Top Core) } \\
& \text { T52 Pri. (Bot. Core) } \\
& \text { L82 }
\end{aligned}
\]} & Max. & Set tuner to free channel with minimum interierence. \\
\hline 2. & \multicolumn{2}{|l|}{Same 231} & \multicolumn{2}{|l|}{To junction of two matched 100 K resistors connected in sertes across R104.} & Thru 100 sistor to minal 5 & \[
\begin{aligned}
& \mathrm{K} \text { r- } \\
& \text { ter } \\
& \mathrm{f} 5 \mathrm{t} 52
\end{aligned}
\] & T52 Sec. (Top & & Zero & Use lowest meter scale set to zero center. At correct setting, a slight turn of core will give either a positive or negative reading. \\
\hline 3. & \multicolumn{10}{|l|}{Remove test equipment and resistors.} \\
\hline \multicolumn{11}{|c|}{ALTERNATE SOUND ALIGNMENT} \\
\hline STEP & SIGNAL SOURCE & \multicolumn{4}{|l|}{VTVM CONNECTIONS} & \multicolumn{2}{|r|}{adJust} & \multicolumn{2}{|l|}{\begin{tabular}{l}
OUTPUT \\
READING
\end{tabular}} & COMMENTS \\
\hline 1. & \multicolumn{10}{|l|}{Connect a good antenna installation to the receiver.} \\
\hline 2. & Strong station & \multicolumn{2}{|l|}{To pin 5 of V7-6AL5.} & \multicolumn{2}{|l|}{To pin 7 of V7-6AL5.} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { T52 } \\
\text { L62 }
\end{gathered} \text { Pri. (Bot. Core) }
\]} & \multicolumn{2}{|c|}{Max.} & Repeat all adjustments until maximum is reached. \\
\hline 3. & Strong station & \multicolumn{2}{|l|}{Thru 100 K resistor to terminal 5 of T52.} & \multicolumn{2}{|l|}{To junction of two matched 100 K resistors connected in series across R104.} & \multicolumn{2}{|l|}{T52 Sec. (Top Core)} & \multicolumn{2}{|c|}{Zero} & Use lowest meter scale set to zero center. At correct setting, a slight turn of core will give either a positive or negative reading. \\
\hline 4. & \multicolumn{10}{|l|}{Remove test equipment and resistors.} \\
\hline
\end{tabular}

CHASSIS \(1-514-1,-3,-4,1-520-1,-3,-4,-7,-8\)

© John F. Rider


\section*{SUPPLEMENTARY SERVICE INFORMATION}

EARLY PRODUCTION PARTS REVISIONS
SCHEMATIC
LOCATION
SERVICE
PART NUMBER DESCRIPTION
C261 \(\quad 161-10\) DELETIONS


R2138
T50

TEM 3 SUBJECT: Code Changes as Noted in Above Chart
REASON: To Increase Wattage Tolerance
DESCRIPTION: R269-1,000 Ohm \(1 / 2 \mathrm{~W}\). resistor is changed to \(1,000 \mathrm{Ohm} 1 \mathrm{~W}\). resistor

ITEM 4 SUBJECT: Code Changes as Noted in Above Chart
REASON: Additional RF Filtering for Tuner B + Lead.
DESCRIPTION: C114-. 0047 Mfd. capacitor is added and connected from junction of tuner B+ lead and R120-2.7K, to ground.

ITEM 5 SUBJECT: Addition of New Chassis
DESCRIPTION: The following chassis should be added to the "Chassis Variations" chart on sheet 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHASSIS & PICTURE TUBE & \multicolumn{2}{|l|}{TUNERS} & HALOLIGHT & MODELS \\
\hline & & VHF & UHF & & \\
\hline 1-520-0 & 21EP4A(Cyl.) & G.I. & & Yes & Same as 1-520-7. (326 Models) \\
\hline
\end{tabular}

All parts peculiar to \(1-520-7\) chassis are used in the \(1-520-0\) with the exception of the VHF tuner This component is the same as that used in the \(1-520-8\) chassis.

ITEM 6 SUBJECT: Omission of Specific UHF RF Generator Setting
DESCRIPTION: In Oscillator Alignment section of \(U \mathrm{HF}\) Tuner Alignment", change step 4 to read, "Set UHF RF signal generator to 896 MC and adjust C28 on UHF tuner for maximum reading on VTVM."
ITEM 7 SUBJECT: Light Shield on 326 HaloLight Models.
DESCRIPTION: D 326 models becomes necessary.

\section*{ITE}

Items \(1,2,3\) and 4 are incorporated in the chassis and identified by code change numbers as indicated in the following chart.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline DESCRIPTION OF CHANGE & \(1-514-1\) & \(1-514-3\) & \(1-514-4\) & \(1-520-0\) & \(1-520-1\) & \(1-520-3\) & \(1-520-4\) & \(1-520-7\) & \(1-520-8\) \\
\hline See Item 1. & C 05 & C 01 & C 05 & C 01 & C 04 & I.P. & C 04 & C 03 & \(\mathrm{C03}\) \\
\hline See Item 2. & C 05 & C 01 & C 05 & C 01 & C 04 & I.P. & C 04 & C 03 & \(\mathrm{C03}\) \\
\hline See Item 3. & C 05 & C 01 & C 05 & C 01 & C 04 & I.P. & C 04 & C 03 & \(\mathrm{C03}\) \\
\hline See Item 4. & & C 01 & C 05 & C 01 & & I.P. & C 04 & & C 03 \\
\hline I.P. - Change incorporated in initial production.
\end{tabular}

TEM 1 SUBJECT: Code Changes as Noted in Above Char
REASON: Prevention of Possible Audio Interference in Horizontal Oscillator Circuit.
DESCRIPTION: C111 - . 0047 Mfd., formerly across primary of T53, is reconnected from blue lead of T53 to +290 V . (This change is incorporated on the initial \(514 / 520\) schematic)

SUBJECT: Code Changes, as Noted in Above Chart.
REASON: Improved Video IF Response. cluded under "Early Production Parts Revisions'")

SUBJECT: Outer Knob and Dial Assemblies
DESCRIPTION: The outer knob and dial assemblies for the various \(514 / 520\) models are outlined

743-0022: 1-514-3, - 4 (105-14; 300 models)
743-002. 1-520-0, -3, -4, - 8 (120-20; 320; 325; 326 models)
43-0023: \({ }^{1-514-1}\) (105-14 models only)
743-0024: \(\quad 1-520-1,-7(120-20 ; 320 ; 325 ; 326\) models
(Note that the same models may contain different chassis. This condition necessitates a close check on chassis type when ordering this particular knob.

SUBJECT: The parts list should be revised as shown below. REASON: To include parts changes noted in items 3,4,5 and 7 of this supplement.

\section*{SCHEMATIC SERVICE}

LOCATION PART NUMBER DESCRIPTION
ADDITIONS
C114
166-4700D . \(0047 \mathrm{Mfd} .-500 \mathrm{~V}\). Ceramic 483-0019 Shield - Light (326 Models)

CHANGES
182-0102 1,000 Ohm - 1 W .

\section*{SUPPLEMENTARY SERVICE INFORMATION}

NO. 2
couering

\section*{CHASSIS}
1.514.1, -3, . 4 1-520-0, -1,-3, -4, -7, -8,

MODELS ALL TO DAT ALL TO DATE

ITEM 6 SUBJECT: Addition of 306 Model Series
REASON: Revise the "Chassis Variations" chart as follows:
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multirow{2}{*}{ CHASSIS } & \multirow{2}{*}{ PICTURE TUBE } & \multicolumn{2}{|c|}{ TUNERS } & \multirow{2}{*|}{ HALOLIGHT } & MODELS \\
& & VHF & UHF & & \\
\hline \(1-514-3\) & 17YP4 (Cyl.) & G.I. & - & No & \begin{tabular}{l}
\(105-14 ; 300 ; 306\) \\
\(1-514-4\)
\end{tabular} \\
& 17YP4 (Cyl.) & G.I. & G.I. & No & \(105-14 ; 300 ; 306\) ("U" Models) \\
\hline
\end{tabular}

All parts peculiar to 306 models are listed in item 7 of this supplement.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline DESCRIPTION OF CHANGE & 1-514-1 & 1-514-3 & 1-514-4 & 1-520-0 & 1-520-1 & 1-520-3 & 1-520-4 & 1-520-7 & 1-520-8 \\
\hline See Item 1. & - & CO2 & CO6 & - & C05 & - & C05 & - & CO4 \\
\hline See Item 2. & - & CO2 & C06 & - & C05 & - & CO5 & - & C04 \\
\hline See Item 3. & - & CO2 & CO6 & - & C05 & - & C05 & - & CO4 \\
\hline See Item 4. & - & CO3 & CO6 & - & C06 & - & CO6 & - & CO4 \\
\hline
\end{tabular}
(一) Designates no change from previous issue.

ITEM 1 SUBJECT: Code Changes as Noted in Above Chart. REASON: To Reduce Excessive Horizontal Drive REASON: To Reduce Excessive Horizontal Drive

\section*{EFF. CHASSIS} SERIAL NO.

SERVICE
PART NUMBER

DESCRIPTION

ITEM 2 SUBJECT: Code Changes as Noted in Above Chart.
REASON: To Improve Video Response.
DESCRIPTION: R150, R151 and R152-12, 000 Ohm 2 Watt resistors are changed to new type units smaller physically than original type. This substitution effectively reduces the combined in-
ductance of this resistor group; however, resistance and wattage ratings remain the same. smaller physically than original type. This substitution effectively reduces the combined in-
ductance of this resistor group; however, resistance and wattage ratings remain the same.
ITEM 3 SUBJECT: Code Changes as Noted in Above Chart. REASON: To Standardize Vertical Hold Control Types REASCRIPTION: R221-1.5 Megohm Vertical Hold control is changed to 2.0 Megohm

ITEM 4 SUBJECT: Code Changes as Noted in Above Chart. REASON: To Improve Audio Performance
DESCRIPTION: C111-. 0047 Mfd . capacitor is changed to .015 Mfd . capacitor
ITEM 5 SUBJECT: Change in Power Transformer Type.
REASON: Thange in Power Transformer Type. Rectifier Tube Mounting
REASON: To Provide a More Satisfactory L. V. Rectifier Tube Mounting
DESCRIPTION: Early production of \(1-514\) and \(1-520\) chassis Substitute a new type power transfimilar to the original but features an external bracket This new transformer is electrically Rectifier Tube. (These components are included under "Early Production Parts Revisions".)

514302-, 514406-,
520105-, 520405-,
\(520804-\)
\(514302-\),
\(514406-\)
\(514302-\),
\(520105-\),
\(520405-\), 520804--
514302-, 514406-, 520105-, 520405-,'

\section*{ADDITIONS ( 306 Models)}
714-0025 Bezel Assembly

715-0010 Bezel Lens
760-0037
\(743-0022\)
\(415-0010\)
539-0802
CHANGES
160-06115 . 015 Mfd. -600V. -Molded Paper
C259
163-0820
820 Mmfd. -500V. -Mica
R150, R151, R152 189-0038
\(12,000 \mathrm{Ohm}-2 \mathrm{~W}\).

R221
153-0018
Minimum Brightness level on rear skirt of chassis is set by serviceman for at least mirimum picture brightness when front brightness level control 1 s ion of Free-Viewer.
Master Volume Control on rear akirt of chassis; set by serviceman for maximum permissible volume when front volume control is at maximum, Have the operator advise proper volume maximum desired. To service chassis make certain shorting plug, or similar shorting device is inserted in UFCOLOR socket on rear skirt of chassis, otherwise there will be open circuit in primary power.
The Yoke-Focus-Coil plug contains provision for interlock. In use this is properly insert ed in socket next to the power transformer. In oved. If absolutely necessary to mork in \(j i g\) then octal extension cord should be
Picture Touch-Up. Set your tuning on a Test attern. Use fine tuning for best response. A non-metallic screwdriver should then be used for all adjustments: Adjust A-4 slug (tilted) on the tuner, watching especially for clear-cut lines on vertical wedges of pattern. Adjust A-3 slug next to \(b A A_{5} 5\) tube. The first hole in top of can 175 (AI) is peaked for best pix. The second hole in top of can 174 is similarly peaked for best pix. A-9 slug under focus coil removes sound bars in
TRANSVISION C-1 alignment INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{UN} & \multirow[t]{2}{*}{\[
\frac{\text { using A.M. Generator }}{\text { Measuring Instrument }}
\]} & eep Generator, & V.T.V.M. and Scope. \\
\hline Step & Signal & Frequency & & Adjust & Procedure \\
\hline 1 & A.M. Generator through . 01 ufd. capacitor to pin 4 of Video Amplifier V-10. & 4.5 MC & Connect VTVM through 10 K external resistor to V-3 grid return, junction of R98 and C81. & Sound Takeoff top \& bottom 3092, A9. Audio I.F. top \& bottom 3093. & Adjust for maximum voltage. Reduce A.M. Generator output so that VTVM does not read over 20 volts. \\
\hline 2 & \begin{tabular}{l}
Swe ep Generator. \\
A.M. Generator In Par- \\
allel as Marker.
\end{tabular} & \[
\begin{gathered}
4.5 M C \\
1 M C \text { wide } \\
4.5 \mathrm{MC}
\end{gathered}
\] & Replace VTVM with scope connected through 10 Kex ternal resistor to Audio Detector output, junction of R4 and C5. & Ratio detector transformer 874 top \& botom. & Bosition 4.5 MC marker at center of \(S\) curve by adjusting secondary. Peak primary for maximum amplitude and \(l\) inearity. Disconnect one end of C8 for test to avoid incorrect curve. Fig. 2. \\
\hline \multicolumn{6}{|c|}{TRAP ADJUSTMENT, using A.M. Generator and V.T.V.M.} \\
\hline 3 & \begin{tabular}{l}
Sweep Generator \\
A.M. Generator in Parallel as Marker.
\end{tabular} & \[
\begin{gathered}
4.5 M C \\
1 M C \text { wide } \\
4.5 M C
\end{gathered}
\] & Use VTVM DC Probe at AGC Bus; point 'G'. & \begin{tabular}{ccc} 
Top of 175 & can \\
A1. \\
Top of 174 & can \\
A2.
\end{tabular} & Adjust for MINIMUM deflection. \\
\hline \multicolumn{6}{|c|}{4.5 MC TRAP ADJUSTMENT, using Scope.} \\
\hline 4 & A.M. Generator to pin 4 (grid) of 6SN7 Video Amplifier V10A. & \begin{tabular}{l}
\[
4.5 \mathrm{MC}
\] \\
unmodu lated
\end{tabular} & Apply Scope through Detect tor probe to pin 2 of CRT. (See Probe, Fig. 1.) & Sound Takeoff 3092, bot tom. & Adjust for MINIMUM deflection \\
\hline \multicolumn{6}{|c|}{I.F. Alignment, using Sweep Generator and Scope.} \\
\hline 5 & Swe ep Generator to ungrounded tube shield floating over mixer tube 6BK7. A.M. Generator in Parallel as Marker. & \[
\begin{gathered}
23 \mathrm{MC} \\
10 \mathrm{MC} \text { sue ep } \\
21.9 \mathrm{MC} \\
22.5 \mathrm{MC} \\
26.4 \mathrm{MC} \\
\hline
\end{gathered}
\] & Apply Scope to point \(D\), Video Detector output at junction of R38 and the 125 uH Peaking Coil. & A3, top of 603 coil, next to 6AG5 tube. A4, tilted slug on tuner. & Adjust for response curve similar to Fig. 3. \\
\hline
\end{tabular}


Transvision FREE-VIEWER
- Gently unscrew Center Screw. Lift off time wheel. See set pins on every \(1 / 4\) hour slot on 24 hour face.
To remove Set Pin lift it up while pulling it. away outward from center. REMOVE ALL SET PINS FROM 10 EVENING THROUGH alternate pins remaining for Free-Viewer ACTION OPERATING FROM 10AM TO 10PM, REMAINING INOPERATIVE ALL NICHT.
3. If the set operator requests different Free-Viewer timing from STANDARD METHOD shown above, pins may be re-set.
4. Replace Time Wheel remembering that it must rotate only in direction of arrow. Screw Center Screw back on gently.
5. To SET Time Wheel turn it in counter-clockwise direction, FIRMLY. Hear internal click of wheel ratchet. Now listening VERY INTENTLY hear the Trip Lever click even BEFORE trips past Set Pin. A click here means INTERNAL OONTACT. Ident ify this click positively by gently rocking without tripping Set Pin. THIS SETTING IS 1-MINUTE BEFORE THE TIME OF THAT SET PIN. Insert line plug in A.C. receptacle in the wall, watching an external correct clock setting for co-ordination. Reset if for co-ordination. Reset if out plug for a few seconds.
- Power interruption will make it necessary to re-set Free Viewer as in (5) above.
- At these settings Television Set will turn on every 1 hhour remaining on for 4 minutes.
8. The line plug of Free-Viewer goes to A.C. receptacle. The 6-pin female socket receives the Coin Box plug. A female unit remains for the T.V set line-cord plug. Thus, set's current must be fed via this unit.
9. When a QUAKTER in fed in the COIN BOX a circuit is closed by-passing FREE-VIEMER, permitting OOIN BOX to exercise control of current to set. ended FREE-VIEWER takes over automatically.


The Coin Box key is different from the TV Set back key. Thus only the
operator can open the Coin Box. The serviceman may use the Coin Box key only upon specific individual consent of operator and must be returned , and muperator after to the operator after use.
The Coin- Box terminates in box blug maleplug orprong inserted in 6-pintis insertedin 6-pin female
socket in Free-Viewer (IF FREE-VIEHER IS USED). In that case the UHF COLOR socket on the back skirt of the chassis has a dummy plug inserted, 6
shorting out pins 3 and 6 of 6-pin chassis socket.

HOSPITAL SET with BEDSIDE OONTHOL (may be operated as shown extreme right without removing control from cubicle). Above schematic are shown the cable plugs. Essentially the control is a self-powered complete front end (plugged into A.C like portable radio). The antenna is connected here. Cathode Follower supplies output to chassis proper in console through 25 to \(50^{\prime}\) , if control cable.
QUIET SUUND is individual small speaker in Control, smath swn volume control.
Automatic Contrast wired as CONTRAST CONTROL inchassi schematic may be adjusted by serviceman on rear skirt for opt imum setting.
This set is Transvision's
only one where the chassis
is installed sideways, mak-
ing room for Hospital Control.

\section*{Dual Revenuer}

This exclusive Transuision device consists of switching arrangement in parallel with CONTACTS on Coin Box Mechanism (see drawing). A key kept by the TV Set Operator may 'se inserted in the slot in the Coin box. Turning the key closes these contacts, by-passing both Coin \(B \alpha\) and Free. Viewer, putting the TV Set on straight operation.
You can tell if set has Dual Revenuer by simple inspecion. Look on outside door. If there is provision ther for THO KEYS then they are Coin Box and Dual Revenuer.
Horizontal und Vertical Hold Controls are set in back in mid range. No front controls are required for either. Th hold stays put. Blocking oscillatorsmost stable sort are used with blocking transformers.
Hidth Coil is between 504 and Yoke Plug socket. Adjust slug for picture width. There is also auxiliary width slug between Vertical Size and Horizontal Drive controls on back skirt. Normally this is half-way in.


む Nix mit mas
RESISTOR-CONDENSER COLOR CODE
\begin{tabular}{|c|c|c|c|c|}
\hline Coler & Siemificant Figure & \[
\underset{\substack{\text { Ducimal } \\ \text { Mulipion }}}{ }
\] & \[
\begin{aligned}
& \text { Toleranceas } \\
& (\%)
\end{aligned}
\] & Voltage
Ratingo \\
\hline Blinek & 0 & 1 & & \\
\hline \({ }_{\text {Bremin }}^{\text {Bred }}\) & \(\frac{1}{2}\) & 10
100 & \({ }_{2 *}\) & \({ }_{200}^{100}\) \\
\hline & 8 & 1000 & \(8^{*}\) & 300 \\
\hline Yeilow & , & 10,000 & \({ }^{*}\) & 400 \\
\hline Oreem & 5 & 100,000 & \(5^{\circ}\) & 500 \\
\hline Blue & 6 & 1,000.000 & \({ }^{\circ}\) & 600 \\
\hline Violet & 7 & 10.000,000 & \(7{ }^{\circ}\) & 700 \\
\hline Gry & 8 & 100,000,000 & \({ }^{\circ}\) & 30 \\
\hline Whito & - & 1,000,000,000 & 9 & 00 \\
\hline Gold & - & 0.1 & 5 & 1000 \\
\hline Bilver & - & 0.01 & 10 & 200 \\
\hline
\end{tabular}
© John F. Rider

\section*{STANDARD CASCODE TUNER}

\section*{R.F. AND MIXER ALIGNMENT}
1. Set station selector to Channel 12 .
2. Connect oscilloscope through 10,000 ohms to test point \(T\) (Wire loop on top of tuner).
3. For negative bias connect -3 volts DC to A.G.C. lead (white covered wire) trom tuner.
4. Feed sweep generator into antenna terminals, sweeping Channel 12.
5. Adjust 3 upright screws on top of tuner (not Al山 or A16) for flat top response curve and maximum gain. Check markers on all channels. They should fall in automatically on all channel:
 IBION SIONAL

b. Sm ine CHANNEL tnob lor a motion in oseration.

Remore ine CHANNEL and FUNING Lmole.

Overold urilistor dijeument thout onl| bus no



\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{RESISTOR CHART} \\
\hline No & value & Panta \\
\hline R1 & 56k & 54 \\
\hline R2 & 1 k & 457 \\
\hline R 3 & 47 & 337 \\
\hline R4 & 47K & 53 \\
\hline RS & ik. & 45 \\
\hline R6 & Ik & 45 \\
\hline R 7 & 6800 & 49 \\
\hline \({ }^{18}\) & 6800 & 49 \\
\hline 89 & 3.3 ME6 & 62 \\
\hline R10 & 220 K & 57 \\
\hline R11 & 3.3 K & 47 \\
\hline R12 & 220k & 57 \\
\hline R13 & 470 K & 59 \\
\hline R19 & 22k 1-w & 1007 \\
\hline Ris & 390 & 43 \\
\hline R16 & Ik-10w & 343 \\
\hline R17 & 100 K & 96 \\
\hline R18 & 56 k & 54 \\
\hline R19 & 4.7k & 48 \\
\hline R20 & 6.8 K & 49 \\
\hline R21 & 100k & 56 \\
\hline R 22 & 47 & 337 \\
\hline R23 & 1 K & 45 \\
\hline R24 & 10k-10w & 344 \\
\hline R25 & 100k & 58 \\
\hline R28 & 10 K & 50 \\
\hline R27 & 100 & 41 \\
\hline 928 & 56k & 54 \\
\hline R29 & 130 & 42 \\
\hline R30 & 22K & 31 \\
\hline R31 & 100 & 41 \\
\hline R32 & 56 K & 54 \\
\hline R33 & 150 & 42 \\
\hline R34 & 150 & 42 \\
\hline R 35 & 150 & 42 \\
\hline R38 & 56k & 54 \\
\hline R37 & 100k & 56 \\
\hline R38 & 4.7 K & 48 \\
\hline R39 & 330 & 1260 \\
\hline R 40 & 10k & 50 \\
\hline R41 & 3.3k & 47 \\
\hline R 42 & 1.0 MEE & 60 \\
\hline R43 & \({ }^{10 \mathrm{~K}}\) (300-2m & 30
843 \\
\hline R48 & 1.0 ME8 & 60 \\
\hline & & \\
\hline
\end{tabular}

Resistance Chart
All resistance values taken with reference to chassis as GROUND.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline :ket P & Pins & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \\
\hline V-1 & 6AC7 & 0 & . 1 & 0 & 210K & 100 & 100 K & . 1 & 30K & 2nd Vid. IF \\
\hline -2 & 6AU6 & 1 & 0 & . 1 & 0 & 48K & 48 K & 82 & & lst Aud. IF \\
\hline V-3 & 6AU6 & 47K & 0 & . 1 & 0 & 26K & 80K & 47 & & 2nd Aud. IF \\
\hline V-4 & 6AL5 & --- & --- & 0 & . 1 & 7800 & --- & 7800 & & Aud. Detec. \\
\hline V -5 & 6SL7 & 3 meg & 250K & 0 & 0-1 meg & 250K & 3300 & .1 & 0 & Aud. Amp. \\
\hline V-6 & 6V6 & 0 & J & 25K & 25K & 470K & --- & . 1 & 390 & Aud. Output \\
\hline V-7 & 6AC7 & 0 & 0 & 0 & 2 meg & 100 & 80K & . 1 & 30K & 3rd Vid. IF \\
\hline V-8 & 6AC7 & 0 & 0 & 0 & 0 & 150 & 80 K & . 1 & 30K & 4th Vid. IF \\
\hline V-9 & 6AL5 & 0 & 0 & 0 & . 1 & 1 meg & 0 & 5K & & Vid. Detec. \\
\hline V-10 & 6SN7 & 1 meg & 24K & 0-10K & 5K & 13K & 330 & . 1 & 0 & Vid. Amp. \\
\hline 者 V -11 1 & 6SN7 & 1 meg & 15K & 0 & -- & 60K & 10K & . 1 & 0 & Sync. Amp. \\
\hline V-12 & 6SN7 & 470K & 80K & 1K & 470k & 60K & 5 K & . 1 & 0 & Sync. Amp. \\
\hline V-13 & 6AL5 & --- & --- & 0 & . 1 & 100K & 0 & 100K & -- & Phase Conv. \\
\hline V-14 & 6SN7 & 80K & 400K & 0 & 80K & 150K & 0 & 0 & 1 & Hor. Osc. \\
\hline V-15 & 6PG6 & --- & 0 & 68 & 60K & 1 meg & 125K & . 1 & -- & Hor. Output \\
\hline V-16 & 1 1 3 & --- & --- & -- & -- & -- & -- & -- & -- & H.V. Rect. \\
\hline \(\mathrm{V}-17\) & 6AX4 & --- & --- & -- & -- & 60 K & -- & -- & -- & Hor. Damper \\
\hline V-18 & 5L4 & --- & 69 K & -- & 17 & -- & 17 & -- & 60 K & L. V. Rect. \\
\hline \(V-19\) & 5L4 & --- & 60K & -- & 17 & -- & 17 & -- & 60 K & L. V. Rect. \\
\hline V-20 & 6SN7 & \[
\begin{gathered}
680- \\
1.6 \mathrm{meg}
\end{gathered}
\] & \[
\begin{aligned}
& 1 \mathrm{meg}- \\
& \mathrm{I} . \mathrm{l} \mathrm{meg} \\
& \hline
\end{aligned}
\] & 0 & \[
\begin{array}{r}
680 \mathrm{~K}- \\
1.6 \mathrm{meg} \\
\hline
\end{array}
\] & 180 K & 0 & . 1 & 0 & Vert. Osc. \\
\hline V-21 & 6V6 & --- & . 1 & 60K & 60 K & 1 meg & - & 0 & 0-5K & Vert. Out. \\
\hline V-22 & 6AG5 & 310K & 47 & 0 & 1 & 70K & 80K & -- & -- & lst Vid. IF \\
\hline V-23 & 6AU6 & 23 K & 19 K & . 1 & 0 & 100K & 24K & 10K & & Keyed AGC \\
\hline \multicolumn{4}{|l|}{C.R.T. 1 black 0, 2 freen} & meg, & red 20 & K, 11 & llow & 0K. & rown & . 1 \\
\hline
\end{tabular}


\section*{© John F. Rider}

TELEVISION RECEIVERS: MODEL 160A

\section*{SERVICE DATA}

\section*{I. GENERAL DESCRIPTION}

The following Series of Television Receivers are distinguished by related chassis types:
(a) Model 160A: A 32 tube receiver (including picture tube and three rectifiers). Features include: full 12 channel coverage; latest Standard Coil Cascode Circuit RF tuner, with high signal to noise ratio, UHF adaptable; limiter-discriminator FM sound system; high second anode potential for full picture brilliance and definition; automatic frequency control of the horizontal oscillator (Syncrolok); full 4 mc . bandwidth of the picture channel; noise saturation circuits; keyed A.G.C.; and a phonograph input connector by means of which the sound section may be used as an audio amplifier. Reference is made to the overall Circuit Diagram of the 160A.
(b) Model 160A Loran: Includes all features of Model 160A except that the Video IF alignment, and other factors are designed for greater overall reception sensitivity for long range (Loran), as is described in Section VIII.
II. ELECTRICAL SPECIFICATIONS

RF Frequency Range: Channels 2 to 13 in 12 steps
Power Supply Rating: 117 volts, 60 cycles, 275 watts
Audio Power Rating: Undistorted - 5 watts
Maximum - 8 watts
Antenna Input Impedance: 300 ohms


important


\section*{III. TUBE COMPLIMENT}
\begin{tabular}{|c|c|c|}
\hline Circuit Symbol & Tube Type & Function \\
\hline V101 & 6BA6 & 1st Sound IF Amplifier \\
\hline V102 & 6BA6 & 2nd Sound IF Amplifier \\
\hline V103 & 6AU6 & 3rd Sound IF Amplifier \\
\hline V104 & 6AL5 & Sound Discriminator \\
\hline V105 & 6AT6 & 1 st Sound Amplifier \& Syncrolok Damper \\
\hline V107 & 6CB6 & 1 st Pix IF Amplifier \\
\hline V108 & 6CB6 & 2nd Pix IF Amplifier \\
\hline V109 & 6CB6 & 3rd Pix IF Amplifier \\
\hline V110 & 6CB6 & 4th Pix IF Amplifier \\
\hline V111 & 6 AL5 & Pix 2nd Det. and D. C. Restorer \\
\hline V112 & 6AU6 & 1st Video Amplifier \\
\hline V113 & 6K6 & 2nd Video Amplifier \\
\hline V114 & 6AU6 & AGC Keying Tube \\
\hline V115 & 6J5-GT & High Frequency Sync. Clipper \\
\hline V116 & 6J5-GT & Low Frequency Sync. Clipper \\
\hline V117 & 6SN7-GT & 2nd Sync. Amplifier \& Horizontal Discharge \\
\hline V118 & 6J5-GT & Vertical Oscillator \& Discharge Tube \\
\hline V119 & 6K6 6 6L5 & Vertical Output Tube \\
\hline V121 & 6K6-GT & Horizontal Sync. Discriminator Horizontal Oscillator \\
\hline V122 & 6BG6-G & Horizontal Output \\
\hline V123 & \(6 \mathrm{AC7}\) & Horizontal Oscillator Control \\
\hline V124 & 1B3-GT/8016 & High Voltage Rectifier \\
\hline V125 & 6W4-GT & Damper \\
\hline V126 & 5U4-G & Rectifier \\
\hline V127 & 5U4-G & Rectifier \\
\hline V128 & 6 J 5 & Phase Inverter) Located \\
\hline V129 & 6K6 & Audio Output \(\{\) in A-130 \\
\hline V130 & 6K6 & Audio Output ( Amplifier \\
\hline
\end{tabular}

RF amplifier and RF oscillator - Mixer tubes are also supplied. These are the 6J6, oscillator and mixer, and 6BK7 or 6BQ7, RF amplifier in the tuner.

\section*{IV. CIRCUIT DESCRIPTION}

\section*{1. Video I. F}
that of the incoming horizontal sync pulses. If there is a difference between the two, V-108, V-109, and V-110. This video I. F. section provides ample gain and gives very lator frequency.
satisfactory pictures in all TV signal reception areas. The I. F. sound is taken off at

 eliminate interference from channels on either side of the station being received. The usually being too short to affect the average output level.
video I. F. picture carrier frequency is 26.25 megacycles. Also, a 4.5 mc trap (L205 and C152) is incorporated to eliminate sound "pebble" from the picture.

\section*{6. High Voltage Circuit}

\section*{2. Video Detector and Amplifiers}

All 160A Models employ a 6AL5 half-wave detector ( \(V-111 \mathrm{~A}\) ); and a 6AU6 first video amplifier (V-112). A 6K6 (V-113) is employed as the second video amplifier. The gain of the video is controlled in the cathode of this stage by degeneration with high frequency compensation.

\section*{3. Sound Section}

The sound section of the 160A Models consists of two 6BA6, (V101) (V102) sound I. F. amplifiers and one 6AU6 limiter (V103) tuned to 21.75 megacycles; a phase discrimina tor using a 6AL5 duodiode (V104); a 6AT6 (V105) first audio amplifier and a 6K6 (V106) audio output tube.

Provision has been made to allow the audio section to be used as a phonograph amplifier. Phono input is located on the rear of the chassis, the picture tube and video amplifier are inactivated by turning the brightness control to the extreme counterclock wise position until phono-switch snaps into position.

\section*{4. Syncronizing Circuits}

The vertical and horizontal syncronizing pusles are taken off in the plate circuit of the
 one 6SN7 triode stage (V117A) for shaping and amplification. The vertical sync pulse sure that no damage has occurred in shipment. is removed after the second stage of amplification and is applied to the grid of a 6 J 5 (V118) triode functioning as the vertical blocking oscillator. The resulting saw-tooth waveform is fed through a 6 K 6 (V119) vertical amplifier which drives the vertical deflection coils.

The horizontal sync pulse is clipped and amplified by the \(\mathrm{V}-115, \mathrm{~V}-116\), and \(\mathrm{V}-117 \mathrm{~A}\) and then fed to the horizontal discriminator described below. The horizontal sweep voltage is applied to the grid of a 6BG6-G (V122) horizontal amplifier which drives the horizontal deflection coils.
5. Horizontal Oscillator and Frequency Control Circuit
1. Antenna

An efficient antenna installation is essential to good picture reception. In most locations, a good outdoor antenna will produce the best pictures; however, if an outdoor antenna is not feasible, an indoor or window mounted antenna can be used as a substitute. The indoor type selected should be easily adjustable in any direction; the window antenna usually proves more satisfactory for operation in steel-framed buildings. The 160A chassis uses a 300 ohm impedance line input.

When the antenna has been installed and connected to the chassis, connect the set to a 117 V 60-cycle AC outlet.
2. Adjust the front panel controls, and obtain a picture.

The horizontal oscillator and frequency control system of 160 A Model receivers is

 immunity and phase control.
necessary to re-adjust the rear panel controls. The names and locations of these controls are shown on the accompanying diagram, Fig. III.

\section*{OJohn F. Rider}

\section*{4. Adjust the Ion Trap}

In order to prolong the life of the picture tube, it is important that the following adjustment be made on every receiver upon installation and every time the receiver is serviced:

Very carefully move the ion trap forward or backward, and at the same time, rotate it in either direction; adjust for the brightest picture possible with the brightness con trol set for average brightness.

Note that there may be two locations where the brightest picture can be produced. The ion trap location that is further forward on the picture tube neck should not be used; use the location nearer the rear

IMPORTANT: If the corners of the picture are shaded, be sure the ion trap has been properly adjusted. Do not sacrifice picture brightness when adjusting the ion trap to remove shaded corners. To eliminate shaded corners, see discussion under "Check Picture Centering". Be sure to readjust the ion trap each time after adjusting the focus coil.
5. If the picture or raster is off-center with respect to the mask, to the right or left, or too high or too low, it may readily be repositioned by adjustment of the Horizontal and Vertical centering controls located on the rear apron of the chassis. (See Fig. III.)
6. If the picture has a slightly blurred or fuzzy appearance, this may be cleared up by adjustment of the FOCUS control on the rear panel. The focus control should be adjusted for sharpest and clearest picture while viewing the face of the picture tube at close range, using a mirror if necessary. A good indication can be gotton by closely observing the scanning lines of the picture and adjusting for the sharpest and thinnest lines across the entire face of the picture tube.
7. When the height of the picture is not sufficient to fill the mask, or if vertical nonlinearity is present (evidenced by unequal heights of the vertical wedges in the test pattern, or heads and bodies being out of proportion in a picture), the VERTICAL LIN EARITY AND HEIGHT controls must be adjusted. These two controls affect each other and when one is adjusted, it is usually necessary to readjust the other to obtain a satisfactory picture. The HEIGHT CONTROL has its greatest effect on the bottom half of the picture, while the LINEARITY CONTROL mostly affects the top half. If the picture width is not right, or if horizontal non-linearity is present, (ie. one side of the picture expanded and the other side squeezed in), adjustment of the HORIZONTAL WIDTH, HORIZONTAL LINEARITY and/or HORIZONTAL DRIVE controls will be necessary (See Fig. III).
8. Check Picture Tilt

If the picture is tilted, loosen the wing screw on the deflection yoke coil and slightly rotate the yoke until the picture is straight. Before tightening the wing screw, be sure that the yoke is moved as far forward as possible, otherwise corners of the picture may become shaded.
9. If the picture does not hold in sync throughout the range of the HORIZONTAL HOLD control, it may be possible to make it do so by adjusting the SYNCROLOK control on the rear panel. If this cannot be done, a detailed adjustment of the sync system, as described in Section VI must be made.
10. Using a Record Player with the 160A Series Chassis

Provision is made on the chassis for playing a record player through the receiver. The record player may be placed at, a remote point, or near the set. The means of connecting the record player to the 'receiver is as follows:

A terminal-link board at the central rear chassis apron is the external means for connecting the record player through the audio amplifier of the television receiver. This is so labeled on the rear chassis apron. Also, see Fig. III. Use a shielded phono lead between the player and the television chassis. This is to minimize extraneous pickup into the sensitive audio system of the chassis. Connect the shield end of the phono lead to the link board Terminal \#1, which is at ground. Connect the phono output lead to Terminal \#3.

Operation: The procedure for using the record player through the television receiver after the preceding connections are installed is as follows:

A phono switch is provided on the Brightness Control. When the Brightness Control is turned to its extreme counterclockwise positon, a click will be heard at this point, as the phono switch is thus turned on. With this simple motion all reception and light are entirely extinguished from the picture tube, and the phono circuit is put into operation. Reference may be made to the Schematic Circuit Diagram for the simple circuit involved.

The record player is now ready to be used. To adjust the phono volume, use the regular volume control on the television receiver.

When resumption of television is desired, simply turn and reset the Brightness Control clockwise in the normal manner.

\section*{VI. SERVICE INFORMA TION}

This television set is pre-aligned and pre-adjusted before being shipped from the factory, and should give satisfactory performance upon installation. However, should it at any time become necessary to realign either the Sound or Video I. F. stages, or readjust the horizontal syncronizing circuits, it is suggested that the following procedures be used as guides.

HIGH VOLTAGE WARNING: OPERATION OF THE TELEVISION RECEIVER OUTSIDE THE CABINET, OR WITH COVERS REMOVED INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WHEN WORKING ON THE CHASSIS, ALL PRECAUTIONS SHOULD BE TAKEN TO PREVENT CONTACT WITH HIGH VOLTAGE POINTS. DO NOT OPERATE THE CHASSIS WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED
1. Adjustment of Horizontal Oscillator

Connect a suitable antenna to the receiver and tune to an operating television station. A picture or test pattern should appear on the screen. The picture should remain in horizontal sync with the HORIZONTAL HOLD control in both the extreme clockwise and extreme counterclockwise positions. The picture should also pull into sync with the hold control in either of these positions when the signal is momentarily removed.

If the above check reveals a lack of sync in the set, make the following adjustments:
(a) Tune in a television station and adjust the fine tuning control for best sound quality.
(b) Turn the syncrolok frequency control (on the rear of the chassis) until the picture is syncronized.
(c) If the blanking bar appears in the picture, turn the "phase adjustment" (rear slug of syncrolok transformer under the chassis) until the blanking bar moves to the right and off the raster.
(d) Turn horizontal hold to extreme counterclockwise position and turn "syncrolok frequency adjustment" (located on rear apron of the chassis) clockwise until the picture falls out of sync. Then turn the adjustment slowly counterclockwise to the point where the picture falls into sync again.
(e) Readjust the phase adjustment so that the left side of the picture is close to the left side of the raster, but does not begin to fold over.
(f) Turn HORIZONTAL HOLD to its extreme clockwise position. The right side of the picture should be close to the right side of the raster, but should not begin to fold over. If it does, readjust the phase.
(g) Momentarily remove the signal by tuning the station selector off channel and then returning. When the signal is restored, the picture should fall into sync. If it doesn't, then turn the sync frequency adjustment counterclockwise until it does.
(h) Turn horizontal hold to extreme counterclockwise position. Remove the signal momentarily. When the signal is restored, the picture should fall into sync.

\section*{2A. Video I. F. Alignment: Model 160A}

The following procedures should be followed when aligning the Video I. F. sections of Model 160A. Refer to Figure 1. The next paragraph 2B describes procedure for Model 160A Loran.

Connect the FOCUS COIL and DEFLECTION YOKE to the set. Speaker and picture tube connections need not be made for I. F. alignment.
(a) Plug set into \(117 \mathrm{~V}, 60\) cycle line; turn set on.
(b) Disable A GC by shorting Pin \#1 of 6AU6 (V114) Keying Tube, to ground.
(c) Connect -1.5 volt bias between chassis and AGC strip. (Junction of R122 and C127)
(d) Connect a calibrated signal generator to the tuner by connecting the "hot" lead to the tuner mixer tube shield, and the ground lead to the chassis. Shield must be disconnected from ground so that signals can be coupled into the mixer through the shield to tube capacity.
(e) Connect one lead of a vacuum tube voltmeter to the plate side of the 3900 ohm video detector lead resistor (R139), the other lead to ground, using lowest voltage range on meter.
(f) Adjust traps first. Inject trap frequencies of \(20.25 \mathrm{mc} ; 21.75 \mathrm{mc}\); and 27.75 mc , into tuner and adjust the respective traps for minimum deflection on meter.
(g) Inject video I. F. amplifier frequencies of \(25.8 \mathrm{mc} ; 22.8 \mathrm{mc} ; 22.3 \mathrm{mc} ; 25.7\) mc , and 23.9 mc into the tuner, adjust each stagger tuned stage at its respective frequency for maximum deflection on vacuum tube voltmeter.
(h) Repeat step (f).
(i) Connect 4.5 mc generator to grid of first video amplifier (Pin \#2 of V112).
(j) Connect VTVM with crystal probe across R141 and ground.
(k) Tune 4.5 mc trap (L205) for minimum deflection of the VTVM.

NOTE: In all alignment procedures, use as low a signal input as possible to prevent overload.
（a）Switch channel selector on set to Channel Six（6）and adjust the sweep generator to sweep Channel Six．
（b）Connect horizontal input of oscilloscope to＂Scope＂terminal of sweep generator
（c）Connect vertical input of oscilloscope across the video detector load resistor （R139）．
（d）Slight adjustment of the Video I．F．coils should bring the I．F．curve into proper shape．Check trap frequencies and half voltage point frequencies with crystal markers only．

The curves that should be obtained from a properly aligned I．F．are shown in Figs．I and II，depending on the Model．


Fig．II I．F．Alignment Curve Model 160－A Loran．

The sound I．F．curves can be observed by connecting the vertical input of the oscillo－ scope in series with a 50 K resistor between the grid side of the 6AU6 limiter tube， grid resistor（R106）and ground．The discriminator curve can be observed by connect－ ing the vertical input of the oscilloscope across the discriminator diode load resistors （Junction R111 and R109）．

\section*{5．Tuner Channel Slug Adjustment}

Individual channel tuner oscillator adjustments of the television receiver should be checked，upon its installation or servicing，If such adjustments are properly made， it is possible to tune from one station to another by merely turning the CHANNEL Selector and，if necessary，slightly readjusting the fine TUNING control．With correct oscillator channel adjustment，best picture and satisfactory sound will be located a the approximate center（half rotation）of the range of the FINE TUNING control．

Channel slug adjustment can be made without removing the chassis from the cabinet． Adjust as follows：
（a）Turn the set on and allow 15 minutes to warm up．
（b）Set the CHANNEL SELECTOR knob for a station；set other controls for normal picture and sound．
（c）Set FINE TUNING control at center of its range by rotating it approximately half way．
（d）Remove the CHANNEL SELECTOR and FINE TUNING knobs
（e）Insert a \(1 / 8^{\prime \prime}\) blade，non－metallic screwdriver in the \(1 / 4^{\prime \prime}\) hole（to the right of the channel tuning shaft）．For each channel in operation，carefully adjust the channel slug for best picture with clear detail and best sound．Be sure that the FINE TUNING control is set at the center of its range before adjusting each channel slug．Generally，
only a slight rotation of the slug will be required，turning the slug in too far will cause it to fall into its coil．（If the slug falls into the coil，remove the coil strip from the tuner，move the retaining spring aside，lightly tap the open end of the coil until the slug slips out．Replace slug and reset retaining spring．）

\section*{6．Troubleshooting Data}

Reference is made to Section IX＂Resistance Measurement Chart＂，and Section X， ＂Voltage Measurement Chart＂for the 160A series．These charts are useful in lo－ cating the section of the chassis which may be inoperative．Any resistance or volt－ age measurements which do not correspond to these charts will help indicate where the source of trouble is located．

\section*{VII．TUNER DESCRIPTION}

The latest type cascode circuit Standard Coil tuner is used in all models of the 160A Series．It is a rugged，sensitive 12 －position turret tuner．Each channel has its indi－ vidual set of coils，connected into the television circuit，when selected．The cascode circuit of this tuner provides higher gain and greater signal－to－noise reception ratios than ever before practicable．The fine tuning control permits crisp，sharp pictures to be brought in individually for each channel，at the point of best and truest sound reception．Correct UHF sets may be inserted in place of any unused VHF channel， for direct reception through this receiver of any ultra high frequency（UHF）channels that will be authorized by the F．C．C．

\section*{VIII．MODEL 160A LORAN LONG RANGE CONSIDERA TIONS}

These long range television receivers are an evolution of Model 160A．They embody basically the construction and components of the Model 160A．Reference is made to the Schematic Circuit Diagram for the 160A Loran．The tuner is the 12 －channel cas－ code turret tuner described in Section VII（c）above，specifically designed for high gain，low noise，full bandwidth television reception．The Video I．F．section is a 4－ stage stagger－tuned circuit designed and aligned for maximum Video I．F．gain．Ref－ erence is made to Sections IV－1 and VI－2（b）as to this part of the chassis，and Fig． II．

The overall gain of both the video and sound television signals as ampli fied by the 160 A Loran chassis，provides a gain of ten times that of the average stand－ ard receiver on the market．The resultant video sensitivity is of the order of 4 micro volts，as measured by RTMA standards．Excellent reception is provided in remote fringe areas，in＂dead＂spots in city areas，or with indoor antennas in metropolitan areas．The keyed AGC materially aids in providing uniform reception against fading or interference．The strong horizontal＂Syncrolok＂hold keeps＇weak＂signals in rock－ steady condition，with excellent noise immunity．All these features in the 160A Loran Models combine to produce outstanding DX television reception．Where only one dis－ tant channel is available in an installation，a Yagi type antenna tuned to that channel is recommended



© John F. Rider



Fig. 2-Front Panel Controls.


\section*{TUNING PROCEDURE}

To furn the television receiver on, turn the OFF-ON VOLUME control clockwise until a click is heard. Allow approximately 30 seconds for the tubes to warm up.
2. Turn the STATION SELECTOR control to the desired channel. This control may be turned in either direction.
3. Turn the CONTRAST control clockwise until activity or definite form is noted on the screen.
4. Adjust the FINE TUNING control for clearest picture and the VOLUME control for desired volume.
5. To turn off the receiver, turn the OFF-ON VOLUME control counterclockwise until a click is heard.

\section*{OCCASIONAL ADJUSTMENTS TO IMPROVE PICTURE RECEPTION}

There are six controls at the front of the chassis. These con trols are accessible after the removal of the control panel cover at the front of the cabinet. Control panel may be removed with fingers. Pull both ends at once. (See illustration on Page . The controls are pre-set at the factory and may occasionally need adjustment due to aging of the
components in the receiver and the flucturting line voltages
in different areas. If any adjustments are necesary, in different areas. If any adjustments are necessary, follow the instructions under "Controls and Functions."

IMPORTANT-Be sure that the FINE TUNING control has PICTURE TUBE REPLACEMENT - To replace the picture tube been set for the clearest picture before adjusting any it is necessary to remove the chassis from the cabine controls. This may be accomplished in the following manner:

Picture tube safety glass - it will be necessary to clean this glass and the face of the picture tube occasionally Remove the safety glass carefully as outlined in the illus tration on page.
THE ON-UPON REMOVAL OF THE LAST SCREW AND THE CLEAT THE GLASS WILL FALL FORWARD. SUPPORT FROM THE CABINET. Clean the safety glass and the face of the picture tube with a soft lint-free cloth dampened with water or mild soapsuds.

\section*{CONTROLS AND FUNCTIONS}

HORIZONTAL HOLD-Stops horizontal movement (diag onal bars.)
BRIGHTNESS-Adjusts for desired picture brilliance.
VERTICAL LINEARITY-Adjusts picture symmetry, top to bottom.

HEIGHT-Adjusts picture to fit mosk vertically.
VERTICAL HOLD-Stops upward or downward picture move ment.

TONE-Adjusts for tonal quality bass or treble.

\section*{RECORD PLAYER CONNECTION} AND TV-PHONO SWITCH
This receiver has a PHONO socket located at the rear of the chassis. When it is desired to play records through the chassis. When it is desired to play records through
the receiver, insert the connector on the cable of any standard record player or changer into this socket. Push the TV-PHONO switch (at rear of receiver) to PHONO and use the volume control to adjust the sound level. NOTE - Be sure to push the TV-PHONO switch back to the TV position when thr
receiver will not operate.
1. Remove the front panel control knobs by pulling them straight from their shafts.
2. Remove the cabinet back. You will note that the inter locked line cord disconnects the power when the cabi net back is removed
Disconnect the leads from the speaker, remove the antenna terminal board at the rear of the cabine and then the five chassis mounting bolts. Pull chassis CAREFULLY out of the cabinet.
4. Remove the picture tube as shown and outlined in the illustration. To install a new picture tube, reverse the pro cedure making sure that the picture tube fits close
against the picture tube cushion. If the picture tube sticks or
ails to slip into place smoothly, investigate and remove the source of the trouble. Never force the tube. It is important that all the clips and shims used in mounting the tube be replaced, otherwise difficulty may be encountered when horizontal or vertical centering is required.

WARNING - Before handling the picture tube, it will be necessary to remove the static charge. In receivers with glass picture tubes, ground the anode lead to chassis, and insert an insulated wire from the well in the tube to chassis. In receivers with metal picture tubes, remove the static charge by grounding an insulated wire from the chassis to the metal portion of the tube.

\section*{FRONT OF CHASSIS}
(Accessible After The Reinoval of Front Panel Control Cover)
\begin{tabular}{|c|c|}
\hline Horizontal Hold & R-80 \\
\hline Brightness & R-32 \\
\hline Vertical Linearity & R-54 \\
\hline Height & R-47 \\
\hline Tone & R-115 \\
\hline Vertical Hold & R-43 \\
\hline
\end{tabular}

\section*{NON-OPERATING CONTROLS REAR OF CHASSIS}


Fig. 4-Adjustments Rear of Chossis

ION TRAP MAGNET ADJUSTMENT - The ion trap magnet should be positioned close to the base of tube. From this position adjust the magnet by moving it back and forth and at the same time rotating it slightly around the neck of the picture tube until the brightest raster is obtained on the picture screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Readjust the inn trap magnet for maximum raster brilliance
deflection yoke adjustment - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

CENTERING ADJUSTMENT - If horizontal or vertical centering is required, adjust each ring in the centering device until proper centering is obtained.

PICTURE ADJUSTMENT - For further adjustments, obtain a test pattern on the receiver. Turn on receiver and follow tuning procedure on page 2. When a test pattern is obtained it may be necessary to slightly re-adjust the fine tuning control for clearest picture.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT -Tune in a station and adjust the horizontal hold control until the picture falls into sync. Momentarily remove the signal by switching off channel and then back. The picture should pull into sync over a range of \(90^{\circ}\) rotation of the horizontal hold control. If in the above check the receiver fails to hold sync or the pull-in range is at the extreme end of the control, and is less than \(60^{\circ}\), it will be necessary to make the following adjustment.
hORIZONTAL FREQUENCY ADJUSTMENT - With the horizontal hold control set to the center of its range of rotation, adjust the horizontal frequency control (L-17) until the picture pulls into sync. Recheck the "Horizontal Oscillator Alignment."
height and vertical linearity adjustments - adjust the height control ( \(R\)-47) until the picture fills the mask vertically. Adjust the vertical linearity control ( \(\mathrm{R}-54\) ) until the picture is symmetrical from top to bottom. Adjust the picture centering device to align picture with the mask. Adjustment of any control will require a re-adjustment of the other controls.

WIDTH, DRIVE AND LINEARITY ADJUSThieNTS - Turn the horizontal drive control clockwise (R-77) until white bars appear at the left center portion of the raster. Then turn counterclockwise until the white bars just disappear. This adjustment will allow the horizontal system to operate at maximum efficiency. Adjust width control (L-19) until the picture fills the mask. Adjust the horizontal linearity control (L-18) for best linearity. Adjust picture centering device o align the picture with the mask.

\section*{CHECK OF R-F OSCILLATOR ADJUSTMENTS}

The oscillator is preset at the factory and normally needs no adjustment. However, if adjustments are required, they can be made without removing the chassis from the cabinet. Remove the channel selector and fine tuning knobs from the tuning shaft.

TEST PROCEDURE:
1. Set channel selector to receive desired station.
2. Set fine tuning control in center of its range.
3. Adjust oscillator slug, with bakelite type screwdriver for best picture resolution.
4. Repeat steps 1,2 and 3 on all channels used.


Fig. 7 - Block Diogram.

\section*{SERVICE SUGGESTIONS}

\section*{NO RASTER ON PICTURE TUBE - If raster cannot be obtained} check below for the possible causes.
1. Ion trap magnet adjustment is incorrect.
2. No \(+B\) voltage. Check \(1 / 4\) ampere fuse. Replace if defective. If fuse continually burns out, check (A) Horizontal output tube V-18 (6BG6-G). (B) Check damper tube V-20 ( \(6 \mathrm{~W} 4-\mathrm{GT}\) ). (C) Check horizontal oscillator V-16 (6SN7-GT) for proper operation. (D) With an ohm-meter, check for a short between terminal 4 of the horizontal output transformer ( \(\mathrm{T}-5\) ) and the chassis. (E) Check DC resistence of T-9.
3. No high voltage. Check V-18, 19 and V-20 tubes and circuits. If the horizontal deflection circuits are operating as evidenced by the correct voltage measured on pin 3 of the damper tube ( \(\mathrm{V}-20\) ), the trouble can be isolated to the high voltage rectifier V-19 circuit. Either the high voltage winding to the 6BG6-G plate and 1B3 plate is open, tube V-19 is defective, its filament circuit is open, or the high voltage filter capacitor \(\mathrm{C}-83\) is shorted.

Defective picture tube. Heater open or cathode return circuit open.

HORIZONTAL DEFLECTION ONLY -If only horizontal deflection is obtained as evidenced by a straight line across the face of the picture tube, it can be caused by the following:
1. Vertical oscillator V-9A (6SN7-GT) or vertical output tube \(V\) - 10 (6S4) inoperative. Check voltages on grid and plate.
2. Vertical oscillator transformer (T-7) defective.
3. Vertical output transformer ( \(T-4\) ) open or shorted.
4. Yoke vertical coils open.
5. Vertical hold, height or linearity controls may be defective.

POOR VERTICAL LINEARITY - If adjustment of the height and linearity controls will not correct this condition, any of the following may be the cause.
1. Check variable resistors R-47 and R-54
2. Vertical output transformer (T-4) defective
3. Capacitors C-40, C-77 or C-88A defective.
4. V-9A (6SN7-GT) or V-10(6S4) defective, check voltoges.
5. Excess leakage or insorrect volue \(0^{\circ}\) capacitor C-41 or open or incorrect value of resistors R-50 \& R-51.
6. Low plate voltages. Check rectifier tubes and capacitors in \(+B\) supply circuits.
7. Capacitor C-42 defective
8. Vertical deflection coils defective (port of L-16 yoke)

POOR HORIZONTAL LINEARITY - If adjustment of the Horizontal drive and linearity controls does not correct this condition, check the following:
1. Check or replace horizontal output tube V18.
2. Check or replace damper tube V-20 (6W4-GT).
3. Check capacitors C-81, C-82, C-84 ond horizontal linearity control ( \(\mathrm{L}-18\) ) for defects.
4. Horizontal deflection coils defective (part of L-20 yoke)

\section*{TRAPEZOIDAL OR NONSYMMETRICAL RASTER}
1. Improper adjustment of focus coil or ion trop magnet.
2. Defective yoke.

WRINKLES ON LEFT SIDE OF RASTER -This condition can be 1 . Defective pix I-F tubes V-1, \(2 \& 3\), ( \(6 C B 6\) 's). caused by:
1. Defective yoke due to C-85 or R-92 (internal in yoke assembly) being wrong value or open. These components are mounted in rear of yoke assembly.
2. \(\mathrm{V}-20(6 \mathrm{~W} 4)\) defective.

SMALL RASTER - This condition can be caused by:
1. Low \(+B\) or line voltage. Check V-21 (5U4G).
2. Insufficient output from horizontal output tube V18. Replace tube.
3. Insufficient output from vertical oscillator tube V-9A or vertical output tube V-10. Replace tubes.
4. Incorrect setting of horizontal drive control R-77
5. V-20 (6W4) defective.
picture stable but with poor resolution -if the picture resolution is not up to standard, it may be caused by any of the following:
RASTER; NO IMAGE, BUT ACCOMPANYING SOUND -This condition can be caused by:
1. No signal on picture tube grid. Check V-5A (12AT7) \& V6A (12AU7) tubes and associated circuits.
2. Bad contact to picture tube grid (lead to socket broken).
signal appears on picture tube grid but impossible to SYNCHRONIZE THE PICTURE VERTICALLY AND HORIZONTAllY -A condition of this nature can be caused by:
1. Defective sync amplifier V-5B or separator V-6A or phase splitter V-9B.
2. If tubes are O.K. check voltages, and associated circuits.
3. AGC system inoperative. Check V-8 (6AU6) AGC tube and associated circuits.

\section*{Ignal on picture tube grid and horizontal sync oniy} -If this condition is encountered, check:
1. Vertical integrating network capacitors C-38A, B \& C, and resistors R-44 A, B \& C.
2. Vertical hold control R-48 defective.
2. Defective picture detector V -4A (6AL5) or video amplifier V-5A or video output V-6B (12AU7).
3. Defective picture tube

TEST EQUIPMENT -To service this receiver properly, it is recommended that the following test equipment be available:
R-f SWEEP GENERATOR meeting the following requirements: (a) Frequency ranges:

18 to \(30 \mathrm{mc}, 10 \mathrm{mc}\) sweep width
40 to \(90 \mathrm{mc}, 10 \mathrm{mc}\) sweep width
170 to \(225 \mathrm{mc}, 10 \mathrm{mc}\) sweep width
(b) Output adjustable with at least .1 volt maximum. (c) Output constant on all ranges.
(d) Flat output in all attenuator positions.

CATHODE-RAY OSCILLOSCOPE preferably one with a wide band vertical deflection and an input calibrating source
4. Open video peaking coil. Check all peaking coils L-S L-6, L-7, L-8, L-10 and L-11 for continuity. Note that L.7, L-8 and L-10 have shunting resistors.
5. Leakage in V-6A (12AU7) grid capacitor C-24. If the above component is not found to be defective, check the following:
1. Check all potentials in video circuits.
2. Check picture tube grid circuit for poor or dirty contact.
3. Check and realign, if necessary, the picture I-F and R-F circuits.

\section*{PICTURE SMEAR:}
1. Normally, smear can be attributed to phase shift at the low frequency end of the video characteristic. This can be caused by improper values of resistors and capacitors in the video circuits. Check for grid current on video output tube V-6B (12AU7).
2. This trouble can also originate at the transmitter Check reception from another station.
3. Check and realign, if necessary, the picture I-F and R-F circuits.

\section*{PICTURE JITTER:}
1. If regular sections at left of the picture are displaced. replace the horizontal oscillator tube V-16.
2. Vertical instability may be due to loose connection or noise received with the signal.
3. Horizontal instability may be due to unstable trans. mitted sync or to noise.
4. Check receiver AGC system for proper operation.
5. Check phase splitter V-9B (6SN7-GT).

\section*{ALIGNMENT PROCEDURE}

SIGNAL GENERATOR to provide the following frequencies: (Output on these ranges should be adjustable and at least .1 volt maximum.)
(a) Intermediate alignment frequencies.
23.1 mc first picture I-F coil.
24.1 mc third picture I-F coil.
25.9 mc second picture I-F coil.
21.7 mc sound trop.
4.5 mc video trap \& sound I-F.
25.1 mc converter plate coil (Tuner).

\section*{© John F. Rider}


\section*{ALIGNMENT PROCEDURE (continued)}


Fig. 14 - Overall Response Curve
Observe overall I-F response, which should be as shown bove: A slight touch-up may be required. At no time should the trap coil be re-adjusted, nor should it be necessary to turn any of the picture I-F coils more than \(1 / 2\) urn of the slug. The following comments are suggestions only:
1. The height of the 26.2 MC marker is controlled by the The height of the 26.2 MC marker is controlled by the
25.1 MC (Converter Plate Coil on funer) and the 25.9 MC (2nd P.I.F.) coils.
2. The uniformity of response (flatness across top and position of 23.5 MC ) marker is controlled for the most part by the 24.1 MC third picture I-F coil
3. The 23.0 MC marker position is controlled by the first picture I-F ( 23.1 MC coil). However, it is NOT
advisable to change the setting of the coil, due to effect on sound rejection. Its adjustment should sary.

\section*{YIDEO}

With 4.5 MC unmodulated signal from a high impedance source, ( 10,000 ohms in series with generator), into plate of pix det. tube (Pin 7 of 6AL5 second detector) and chassis) for minimum response. VTVM on \(0-10 \mathrm{~V}\) AC scale.

\section*{AUDIO I-F}

Ground sound AGC (bottom of sound take-off coil) With signal generator set to 4.5 MC and de V.T.V.M. connected to ratio detector (6AL5 Pin No. 7) adjust sound take-off coil (L-15), sound T-F primary and secondary ( \(\mathrm{T}-2\) ), and ratio detector primary (T-3 bottom) for max. voltage. Select output levels on signal generator which will maintain d -c voltage about 10 volts.

With same setup as above except de V.T.V.M. is connected as follows: Ground side of V.T.V.M. is connected to junction of 5600 ohm resistors (R-63 \& R-64) across pins 5 and 7 of 6AL5 ratio detector and high side of V.T.V.M. is connected to ratio detector audio output at junction of 68,000 ohm resistor (R-62) and 470 mmf condenser (C-55). Align ratio detector secondary (T-7 Top) for crossover ( 0 voltage) as read on V.T.V.M. lowest scale (3 V.).

\section*{TUNER ALIGNMENT}
A. Sweep generator with balanced 300 ohm output to antenna terminals. Marker generator output to an tenna terminals. Oscilloscope to "tie point" (Figure 15) on tuner. Connect \(11 / 2 \mathrm{~V}\) bias to AGC line at junction on the receiver.
I TIE POINT

RF AND CONVERTER ADJUSTMENT
1. With channel selector on Channel 12 , adjust C -1 slightly favoring the Pix carrier, then adjust C-10 sound markers at \(90 \%\) maximum response.
2. Check response on all channels. If markers are below \(70 \%\) on any channel, readjust C-1, C-10 and C.8. Recheck all channels.


Fig. 16 - Pix and Audio Markers
C. OSCILLATOR ADJUSTMENT
1. Apply -3 volts on IF AGC line
2. Connect oscilloscope to output of video detector Place fine tuning in center of range. Check response on all channels. Sound marker should be in notch and picture marker at \(50 \%\). (See Figure 14). If markers are all off in some directions set channel selector on Channel 13 and adiust C-14.
3. If some channels are off, individual oscillator coil slugs will require adjustment. Adjust each channel slug, accessible through hole in front of chassis with a non-metallic screwdriver to bring sound marker to correct position.

ig. 18 - Cascode Tuner Schamatic Diagram

\section*{TUNER ASSEMBLY PARTS LIST}


\section*{© John F. Rider}





2D1315A, 21" TV Mahogany. 2D1325A, 21" TV Blond.

\section*{GENERAL DESCRIPTION}

The models covered in this manual are an 18 tube, including the picture tube, 20 tubes with the UHF Tuner incorporated, \(A C\) operated, direct view, 17 and 21 -inch rectangular television receivers. The receivers are complete in one unit and feature full coverage of all 12 V.H.F. channels and complete coverage of the entire UHF band with the UHF Tuner, automatic gain control, automatic horizontal frequency control, inter-carrier sound system,
ectrostatic focusing, magnetically deflected picture tube and a ync stabilizer switch and control to adjust the opetational charac eristics of the receiver for various signal areas.

At the rear of the receivers is a safety interlock to prevent dangerous electrical shock and as an added safety measure, usible tesistor is located in the low voltage power supply to prorect the receiver in case of overloading.

\section*{WARNING}

At all times during operation the top chassis plate is at 125 volt DC potential above ground and it also may be at the line-voltage potential depending on how the line cord plug is inserted in the power receptacle.

Extreme caution must be observed when working with the chassis outside the cabinet and when power is applied to the receiver with the cabinet back removed. SEVERE SHOCK may result from contact with chassis.

Use an isolation transformer between the line cord plug and powe receptacle when service is required. This removes all shock hazards and is the ONLY safeguard. Damage to the receiver and tes equipment may result without the use of an isolation transformer.


2D2321A, 21* TV Mahogany Finish 2D2322A, \(21^{\circ}\) TV Mahogany Finish with UHF Tuner installer.

MODEL IDENTIFICATION CHART
\begin{tabular}{|c|c|l|c|}
\hline MODEL & CHASSIS & CABINET & TYPE \\
\hline \hline 2D-1315A & \(21 \mathrm{T1A}\) & Console & Mahogany \\
\hline 2D-1325A & 21T1A & Console & Blond \\
\hline 2D-2312A** & \(17 \mathrm{T1B}\) & Mantel & Leatherette \\
\hline 2D-2314A & 21 T1A & Mantel & Leatherette \\
\hline 2D-2321A & 21 TlA & Mantel & Mahogany \\
\hline 2D-2322A* & 21 T 2 A & Mantel & Mahogany \\
\hline
\end{tabular}
- IHF Turier Incorporated
** 17-Inch Receiver


On-OA Volume - Turns the receiver on or off and adjusts the sound volume le vel.
Contrast or Picture - Varies the contrast between the light and Tuning - Tunes the receiv
to the desired station or channel. May be tumed in either direction.

Brightness - Controls the brilliance of the picture
V. Hold - Controls synchronization of the picture vertically.
H. Hold - Controls synchronization of tae picture horizontally

\section*{SERVICEMAN'S CONTROLS}
V. Size - Controls the size of the picture vertically.
H. Size - Controls the size of the picture horizontally. To some extent, affects the vertical size control setting.
H. Linearity Magnet - (17" only) - Controls horizontal distribuion of right side of picture.
Anti-Pin Cushion Magnet - (21' only) - Eliminates pin-cushioning nd keystoning.
Centering Magnet - Controls positioning of the picture for proper framing.
on Trap Magnet - Controls focus and picture tube illumination


Figure 2. Rear Controls.

SERVICE DATA

\section*{SPECIFICATIONS}

\author{
Sensitivity at the Antenn \\ Video- 150 microvolts \\ Audio- 150 microvolts \\ (one volt above noise at detector) \\ Antenna Impedance Requirements \\ Balanced 300 -ohm \\ Audio Power Output Rating \\ 2 watts undistorted \\ Speaker \\ Permanent magnet type \\ 3.2 ohm voice coil impedance
}

Power Supply Rating 115 volts 60 Cycles, AC Power Consumption, 220 watts termediate Frequencies
Video -26.75 mc .
Audio - 22.25 mc .
Intercarrier Sound- 4.5 mc .
Dimensions
\(17^{\prime \prime}\) ' Chassis - \(16^{\prime \prime} \times 16^{\prime \prime} 2^{\prime \prime} \times 2 \frac{1}{2}\)
\(21^{\prime \prime}\) Chassis \(-19^{\prime \prime} \times 171 / 2^{\prime \prime} \times 21 / 2^{\prime}\)

The front and rear controls are located as shown in figures
, 2 and 3. Refer to figure 6 for the location of the vertical lin-

Figure 1. Front Controls.

\section*{OPERATOR'S CONTROLS}


Figure 3A. 17-inch Tube Assembly
earity control. Note that the vertical hold control in figure 2 has a red rubber knob for easy identification,


Figure 3B. 21-inch Tube Assembly.

Schomotic
\begin{tabular}{|c|c|}
\hline Schemotic Ref. No. & RTMA Typo \\
\hline 1 & 6BK7 \\
\hline 2 & \(12 \mathrm{AT7}\) \\
\hline 3-4-5 & 6CB6 \\
\hline 6 & GAHIGV \\
\hline 7 & 17 HP 4 \\
\hline 7 & 21FP4A \\
\hline 8 & G.AU6 \\
\hline 9 & 6AL. 5 \\
\hline
\end{tabular}

\section*{TUBE COMPLEMENT}

\section*{Tube Function}

VHIF, RF Amplifiet VHF Oscillator-Con verter IF Amplifiers Video Amplifier
Cathode-Ray Tube
Cathode-Ray Tube
Cathode-Ray Tube
Audio Detector
\begin{tabular}{lll}
10 & 6AVG & Audio Amplifier \\
11 & 2SL6GT & Audio Outpur \\
12 & 6BE6 & Sync Clipper \\
13 & 12SN7GT & Vert. Blocking Osc. and Output. \\
14 & 6AL5 & A.F.C. Discriminator \\
15 & 6SN7GT & Horizontal Multivibrator \\
16 & 25BQ6GT & Horizontal Pulse Amplifier \\
17 & 6AX4GT & Damper \\
18 & \(1 \times 2 A\) & High Voltage Rectifier \\
19 & \(6 A F 4\) & UHF Oscillator \\
20 & \(6 B K 7\) & UHF Pre-IF Amplifier
\end{tabular}

Audio Output Sync Clipper Horizontal Multivibrato torizontal Pulse Amplifier
tigh Voltage Rectifie UHF Pre-IF Amplifie

\section*{WARNING：}

High voltage on the plate caps of the 1X2A high voltage rectifie and the 25BQ6 horizontal pulse amplifier．DO NOT MEASURE this voltage．

\section*{Schematic Diagram：}

The schematic diagram located at the rear of this manual shows all the values of resistance and capacitance and gives all the proper voltages at the pins of the tube sockets．The voltage readings were taken with a \(20,000 \mathrm{ohm} / \mathrm{volt}\) voltmeter with normal operation，no signal input，and line voltage at 115 volts A．C

\section*{Replacing Tubes}

Before replacing the tubes the cabinet back must first be re moved．Removing the cabinet back disengages the safety interlock and removes the power to the receiver．Do not camper with of ttempt to defeat the purpose of the safety interlock as severe shock may result．

Before replacing the High Voltage tubes first be sure th ower is turned off and then short the corona ring of the IX2A o the chassis．

\section*{WARNING：}

Do not remove any tubes while the receiver is in operation as over－loading and component failures may result．Also contact with the top chassis plate during operation may produce a severe shock．

If the receiver has been in operation for some time，the tubes become hot and gloves should be used when replacing tubes to prevent finger bums．

\section*{Picture Tube Handling}

Due to the large surface and extreme high vacuum of the picture tube，care should be used when handling the chassis outside the cabinet．Do not subject the tube to excessive pressure of rough handling as an implosion may result causing serious personal injury．

\section*{High Voltage Power Supply：}

In the process of inspection，repairs，changing of cubes or transformers，or for any other reason where it is necessary to work within the high voltage power supply，the following should be closely observed．
1．Terminals on the 1X2A socket must be dressed toward the inside of the corona ring and be free of sharp protrusions． 2．The corona ring must be dressed in such a way as to make its presence useful；that is，properly centered and about \(1 / 8\)－ inch below the socket terminals．

3．All leads must be dressed as far away as possible from the transformer winding．Excess lead length should be transferred to the tod side of the chassis．
When replacement of the H．V．deflection transformer is neces sary，be sure to closely follow the precautions listed above．Th transformer can easily be replaced with the chassis in the cabine by the following procedure．

Remave ino（2）hex head screws on sither side of the H．Size control．
2．Disengage the H．V．lead holder ring．（back side of shield can）
3．Remove 25 HQ6 plate cap．
4．Remove shield can by pushing back side of shield can toward front and lifting up．

\section*{SERVICE ADJUSTMENTS}

Vertical Size and Vertical Linearity Controls（R－73 and R－7S）：
The vertical size and linearity concrols should both be adjusted at the same time while a test pattem is being transmitted．The linearity control affects the upper portion of the picture while the size control affects the overall size especially the lower portion of the picture．Adjust both controls simultaneously until the tes pattern is symmetrical and fills the entire screen vertically． Readjust the vertical hold control if necessary

\section*{CAUTION：}

The vertical linearity control is on the top chassis plate，there fore，severe shock may resulc from contact．If an isolation trans former is unavailable，use an insulated screwdriver for the djustment to reduce shock hazards．The adjustment can be made from either the top or bottom of the chassis．

\section*{Fringe－Suburban－Local Switch（Figure 2）：}

The three position switch selects the proper operational character istics of the receiver for the signal strengch area in which located The position of the switch is governed by the signal strength vailable．

In the Fringe position the A．G．C．voltage is reduced to a bare inimum and the sync stabilizer adjust control affects the sync clipping level to reduce noise affects．

In the Suburban position full A．G．C．is applied and the sync tabilizer adjust control functions as in the fringe position

In the Local position full A．G．C．is applied and the sync stabilizer adjust control is disabled．

\section*{Sync Stabilizer Adjust Control（R－61）：}

The control varies the operational characteristics of the sync clipper stage to obtain the optimum operation point for the leas effect of noise interrupting synchronization．The control should be adjusted for a steady picture．

\section*{lon Trap Magnet（Figure 3）：}

The position of the ion trap magnet MUST be over the grid f the picture tube（second cylinder from the base identified by a flared forward lip）．If the adjustment is necessary，loosen the wing nut and rotate until the position which gives maximum illumi－ nation is found．Adjust the screw for maximum illumination．Re－ peat the above two steps．Rotate and slide magnet until the best focus position is found．Tighten wing nut．Adjustment should be made with brightness and picture controls set for normal viewing

Hbrizontal Size Control（Figure 2）
The horizontal size control should be adjusted until the picture ills the entire screen horizontally．A clockwise rotation will decrease size．To some extent the vertical size control setting may be affected by a major horizontal size adjustment

\section*{Horizontal Hold Control（L－30）}

The horizontal hold control is located on the rear flange of the chassis and should be adjusted in the following manner．
Set the picture control to its normal operating position．Tum the thumb screw clockwise until it reaches its stop．Tum two the thumb screw clockwise until it reaches its stop．Tum two
complete tums counter－clockwise．The thumb screw is a vernie adjustment and will then be in the cencer of its range
Tum the iron core with a small screwdriver or adjusting tool until the picture is steady（no horizontal movement）．Set the core to the middle of its range．

After the iron core has been properly adjusted the thumb screw should then be used as a vernier adjustment to control synchro－ nization when necessary．

\section*{Centering Magnet（Figure 3）}

The centering magnet should be rotated and the control adjusted until the picture is properly framed keeping in mind that the effect of the control is governed by the position of rotation．If the con－ trol is above or below the neck of the picture tube，the picture will be moved up or down．To the left or right of the neck of the picture tube，the picture will be moved either to the left or right．

\section*{Deflection Yoke（Figure 3）：}

The correct position for the deflection yoke is as far forward on the neck of the picture cube as the shape of the tube will allow． Tube shadow or a cilted raster may result from an incorrectly． positioned yoke．If a positioning adjustment is necessary，loosen the yoke wing nut located at the top of the picture tube assembly （fig 2）．

Horizontal Linearity Magnet－17＇only（Fig．3A）：
The horizontal linearity magnet affects the linearity of the right side of the picture only．The magnet pulls or stretches the right side and has a greater effect closer to the picture tube．

\section*{Anti－Pin Cushion Magnet－21＂only（Figure 3B）}

Adjust centering until an edge of the raster is visible．Loosen the positioning screws and slide the magnet backward or forward until the edge of the raster is vertically straight．If keystoning is noticed adjust magnets in vertical plane．
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\begin{tabular}{l}
SERVICE DATA TELEVISION FREQUENCY RANGES \\
(All figures represent megacycles)
\end{tabular}} \\
\hline Channel & Channel Frequencies & Picture Carrier Frequency & Sound Carrier Frequency & Receiver RF Oscillator Frequency \\
\hline Low Band
2
3
4
5
6 & \(54-60\)
\(60-66\)
\(66-72\)
\(76-82\)
\(-82-88\) & \begin{tabular}{l}
55.25 \(\qquad\) \\
61.25 \\
67.25
\(\qquad\) \\
77.25 \(\qquad\) \\
83.25 \(\qquad\)
\end{tabular} & 59.75
65.75
71.75
81.75
87.75 & \begin{tabular}{r}
82 \\
\(\quad 88\) \\
-94 \\
-104 \\
\hline 10
\end{tabular} \\
\hline High Band
7
8
9
10
11
12
13 & \(174-180\)
\(-180-186\)
\(186-192\)
192198
\(198-204\)
\(204-210\)
\(210-216\) & 175.25
181.25
187.25
193.25
199.25
205
21.25
21.25 & \(179.75=\)
185.75
\(191.75=\)
197.75
\(203.75=\)
\(209.75=\)
\(215.75-\) & \begin{tabular}{r}
202 \\
\(-\quad 208\) \\
\(\quad 214\) \\
220 \\
226 \\
\hline 232 \\
\hline 238
\end{tabular} \\
\hline
\end{tabular}

COIL DC RESISTANCE CHART
The DC resistance readings shown in the chart below have been taken with a ohmmeter directly across the coil being measured. The coils not listed in the chart have a DC resistance reading of less than one ohm. A tolerance of \(\pm 5 \%\) is per missible.

To clean the inside of the safety glass or the face of the picture tube, simply follow the procedure below.
1. Remove the three (3) phillips head screws in the safety glass holder directly above the escutcheon.
2. Remove the safety glass holder.
3. Carefully remove the safety glass by pulling out and down from the bottom.


Figure 4, Dial Stringing.

\section*{DIAL CORD REPLACEMENT}

DIAL CORD STRINGING: If dial, cord replacement is necessary turn the tuning shaft counter-clockwise. Two separate dial cords are used and can be restrung separately

Ider Pulloy Stringing: Follow the diagram and start by attaching the dial cord to the tension spring, route to idler pulley and make \(21 / 2\) clockwise turns around pulley. Route under tuning shaft to small drive pulley, make \(21 / 2\) clockwise turns around pulley and connect to tension spring.

「uner Pulley Stringing: Follow the diagram and start by attaching the dial cord to the tension spring shown at the extreme right on the tuner pulley. Route the cord through the opening in the pulley and make a \(1 / 2\) counter-clockwise turn around the pulley and route to the large drive pulley. Make \(21 / 2\) counter-clockwise turns around

\section*{GENERAL DESCRIPTION}

\section*{VHF Tuner:}

The Tuner is composed of a separate sub-chassis consisting of a 6BK7 (twin triode) cascode RF Amplifier and a 12AT7 tube (twin triode) for the oscillator and coaverter. Separate high and low band
the pulley and route under the tuning shaft. Make \(5 / 2\) counterclockwise turns around the tuning shaft in front of the washer. Make one counter-clockwise turn around lug on washer and continue in the counter-clockwise direction and make \(1 \frac{1}{2}\) turns around the uning shaft behind the washer. Route to the tuner pulley and make one complete tum before routing through the opening and then attach to the tension spring. Add second tension spring as shown.

MECHANICAL TRACKING: If for any reason the stop washers do not correspond to the stop position of the tuner, loosen the set screws on the tuner pulley and bushing assemblyand reposition. urn the tuning shaft to the extreme counter-clockwise position stop washers in position shown in diagram) and tuner shaft also to the extreme counter-clockwise position. Retighten set screws.
oils and wimmers are used wid and change bands. The tuner selects and amplifies the stations signal and converts it to the carrier IF frequency of 26.75 MC for video and 22.25 MC for sound which in turn is chen fed to the IF amplifiers for further amplification.

\section*{Video IF Amplifier:}

The Video IF Amplifiers are mounted on a separate sub-chassis along with a crystal video detector and the A.G.C. network. The IF amplifier section consists of three (3) staggered tuned stages with an over coupled output IF transformer using 6CB6 (pentode) tubes with self resonant core tuned coils. Since the receiver is of the intercarrier type both the video and sound IF frequencies re amplified simultaneously and then detected by a Raytheon CK-706 crystal. The signal is then coupled to the video amplifier and the first grid of the sync clipper. The A.G.C. network of R-59 and \(\mathrm{C}-78\) develops a negative bias voltage proportional to the verage composite video signal.

\section*{Video Amplifier:}

The Video Amplifier section consists of a 64H6V (pentode) tube with a degenerative picture (or contrast) control ( \(\mathrm{R}-33\) ) to vary the signal to the cathode of the picture tube. The audio signal is also amplified in this stage and then separated by a 4.5 MC trap (L-29). This trap also serves to separate or keep the audio from appearing in the picture.

\section*{Sound Section:}

The Sound Section consists of a 6AU6 (pentode) 4.5 MC audio IF amplifier, 6AL5 (twin diode) ratio detector, 6AV6 (triode) audio amplifier and a 25 L 6 (beam power amplifier) output tube. Due to the hetrodyne action between the video and sound IF frequencies at the video detector a 4.5 MC signal is obtained containing the audio information. After the video detector the audio information is amplified by the video amplifier, separated from the video by the trap (L-29), amplified, detected and further amplified before being coupled to the speaker.

\section*{Sync Clipper:}

The Sync Clipper stage utilizes a 6BE6 (heptode) tube which functions as a sync separator and noise clipper. The signal from the output of the video amplifier is coupled to pin 7 through R-34 and C-77. With the positive going signal at pin 7 and the low plate voltage sync separation is accomplished. When noise bursts are present the negative going signal from the video detector coupled through R-58 to pin 1 , cuts the tube off and eliminates false sync information in the output. A sync stabilizer adjust conrol ( \(\mathrm{R}-61\) ) is provided to adjust the cut-off or clipping level by varying the bias voltage to pin number 1. A three position F -S-L switch is also provided to change the operational characteristics of the receiver for various signal level areas. The switch discon ects the control ( \(\mathrm{R}-61\) ) from the circuit and applies a fixed bias voltage orly in the "local" position. In the "fringe" position the .G.C. source is connected to 240 volt B plus through 10 megohms of iesistance ( \(\mathrm{R}-56, \mathrm{R}-60\) ). No bias voltage to the RF and IF tubes is utilized in this position allowing maximum amplification. In the "suburban" and "local" positions, full A.G.C. is applied. sync pulses are separated from the video signal without the noise effects and then coupled to the vertical blocking oscillator cathode and horizontal A.F.C.
 triode) tube, one-half being used as a blocking oscillator and the other half as an output amplifier. The signal from the plate of the sync clipper is coupled through \(\mathrm{R}-67\) and \(\mathrm{C}-81\) to the cathode of the blocking oscillator. The vertical hold control ( \(\mathrm{R}-69\) ) in the grid circuit varies the oscillator operating frequency, thus providing adjustment for synchronization. The vertical size control (R-73) varies the amplitude of the pulse to the grid of the amplifier and controls the amount of vertical deflection. The vertical linearity control ( R -75) varies the cathode resistance, thus adjusting the operating characteristics of the amplifier to provide the prope wave shape to obtain a linear picture vertically. The network of \(\mathrm{C}-84, \mathrm{C}-85\) and \(\mathrm{R}-70\), \(\mathrm{R}-71\) is designed to eliminate vertical retrac lines at high brightness levels.

\section*{AFC Discriminator:}

The Automatic Frequency Control section utilizes a 6ALS (twi diode) tube which functions as a discriminator. The horizontal sync pulses from the output of the sync clipper are coupled to the AFC tube through capacitor C-79. At the same time two feed back voltages of opposite polarity are intergrated and applied to the plates of the AFC tube. The two feed back voltages are obtained from a separate winding (terminals 7 and 10 ) of the HV deflection transformer and are of the same frequency as the horizontal multi-
vibrator. Any phase shift between the horizontal sync pulses and the horizontal multivibrator signal will cause one diode section to conduct more than that of the other. This will result in a DC bias voltage applied to the grid of the multivibrator and change the operating frequency. The output of the AFC discriminator thus synchronizes the horizontal multivibrator to the incominghorizontal sync Dulse.

\section*{Morizontal Multivibrator:}

The Horizontal Multivibrator uses a 6SN7 (twin triode) tube and is of the conventional cathode coupled type. The core tuned parallel resonant circuit ( \(\mathrm{L}-30\) and \(\mathrm{C}-97\) ) is used as a hold adjus ment to stabilize the frequency of oscillation. Because of the wide pull-in range of the automatic frequencv control tube a fin hold control is not necessary. The output signal of the multuiv brator is coupled to the horizontal pulse amplifier through capacito C -106. Capacitor \(\mathrm{C}-107\) is a negative peaking device to aid in cutting off the pulse amplifier tube at the proper time.

\section*{Horizontal Pulse Amplifier}

The Horizontal Pulse Amplifier utilizes a 25BQ6 (beam pentode) tube to develop the necessary power for the fly back pulse and the horizontal winding of the deflection yoke.

\section*{Damper:}

The Damper tube ( \(6 \mathrm{~A} \times 4\)-diode) performs three functions: aids in horizontal scanning, suppresses oscillations which occur over part of the horizontal scanning cycle and gives an increase in plate supply voltage for the vertical blocking oscillator, vertical output amplifier and first anode of the picture tube.

\section*{Hi-Voltage Supply:}

The High Voltage (second anode) is obtained from the autotransformer type primary winding of the HV deflection transformer (T-8). When the plate current of the H pulse amplifier tube is cut off, the field built up in the primary winding collapses and induces a high voltage surge which is rectified by the 1X2A tube, filtered
by the capacity of the aquadag coating of the picture tube and applied to the second anode. The 1X2A is a conventional halfwave high voltage rectifier and obtains its filament power from a separate secondary winding of the HV deflection transformer.

\section*{Low Voltage Supply:}

The B plus voltage for the receiver is obtained from the voltage doubler arrangement of two selenium rectifiers and filter capacitors \(\mathrm{C}-90\) and \(\mathrm{C}-91\). The majority of the receivers tubes obtain its filament power from the filament transformer (T-9), however, three tubes are connected in series with resistor \(\mathrm{R}-101\) and placed across the 115 volt AC line. A safety interlock is provided to reduce shock hazards and a resistor type fuse is connected in series to protect the receiver in case of overloading.

\section*{SERVICE HINT}

\section*{V.H.F. Tuner:}

Before looking into the tuner for a particular trouble, first make the following observations. Since the receiver is of the intercarrier type both the sound and video information are amplified simultaneously by the tuner, IF and video amplifiers. Therefore, if the sound section is functioning normally it can be assumed that there are no defects in the tuner, IF or video amplifiers. If the receiver is "dead" (no sound or picture - raster normal) first determine whether a signal is being transmitted and then check the antenna, lead-in and connections to the receiver. Next, rotate the contrast or picture control completely to the left (counter-clockwise) and observe the face of the picture tube. Advance the control to the extreme clockwise position and again observe the face of the picture tube. If no "snow" appears check the video amplifier, detector and second and chird IF amplifiers. If, however, an increase of "snow" appears check the first IF amplifier before looking into the tuner.

The tuner can easily be serviced by removing the three hexhead nuts on top and the one on the bottom which holds bottom cover in place. Removing the bottom cover makes all the tuner components within easy reach and all parts can be serviced. When working inside the tuner do not move any component a great distance as a change in the distributed capacity may result and offset the alignment. When replacing components be sure to obtain the same lead length and replace them in the same position.

A majority of tuner troubles are often open and high resistance ground or coil solder connections, defective trimmers or coils and defective switch contacts.

Open or high resistance connections can easily be repaired by placing a hot soldering iron at the solder connection.

Defective switch contacts may cause an intermittent condition or the loss of one or both bands. Contact replacement is easily accomplished by removing the two switch plate tension springs, the hex-head bolt and the switch plate bracket. Lift up the switch plate assembly and remove the switch contact holder and replace contacts.

\section*{A. G.C.}

The A.G.C. is a negative bias voltage proportional to the average composite video signal, developed by the network of R-59 and \(\mathrm{C}-78\) and applied to the RF and first and second 1 F amplifiers. The magnitude of the A.G.C. voltage will vary according to the strength of the signal being received. However, it will closely correspond to the detector output voltage (across R-27). As a fast and simple check to determine whether the A.G.C. voltage is normal, measure both the A.G.C. and detector output voltage. Under normal operating conditions these two voltages will be approximately the same.

\section*{Sync Stability:}

For optimum sync stability the following points should be considered. A three position F-S-L switch and a sync stabilizer adjust control are provided along with the two hold controls. The position of the switch is governed by the strength of the signal being re ceived and the control should be adjusted for a steady picture. The position of the switch and the adjustment of the control are important for good sync stability (control will not function in "local" switch position).

For good horizontal sync stability both the horizontal hold thumb screw and coil core should be set to the center of their respective ranges. (Center position before going out of sync in either direction).

For good vertical sync stability the vertical hold control can be adjusted to reduce the effect of noise that may interrupt syn chronization in reception areas where noise conditions exist Rotate the vertical hold control until the picture is moving upward and just locks into place. At this control setting, the noise will have the least tendency to interrupt vertical synchronization.

\section*{Vertical Distribution:}

A fast and simple method to check the vertical distribution of TV picture, without a test pattern, rotate the vertical hold control until the picture is moving slowly downward. Observe the black horizontal bar. If tie vertical size and linearity controls are properly adjusted, the bar will not change in thickness as it moves from top to bottom.

\section*{WAVE FORM ANALYSIS}
\begin{tabular}{|c|c|}
\hline Trouble & Probable Location \\
\hline No Sync & \begin{tabular}{l}
1. Defective tube 12 . \\
2. Improper voltages or resistances at socket of tube 12 . \\
3. Defective F-S-L switch or in wrong position. \\
4. Sync stabilizer adjust control misadjusted.
\end{tabular} \\
\hline Insufficient or no Vertical Sweep & \begin{tabular}{l}
1. Defective tube 13. \\
2. Defective transformer \(\mathbf{T 5 - 6}\) or yoke T7. \\
3. Defective capacitor C70-85-86-87. \\
4. Defecrive resistor R68-73-74-75-76-77.
\end{tabular} \\
\hline Picture Cannot be Centered & \begin{tabular}{l}
1. Defective picture tube. \\
2. Defective centering magnet. \\
3. Defective ion trap magnet.
\end{tabular} \\
\hline Poor Focus & \begin{tabular}{l}
1. Improper adjustment of Ion trap. \\
2. Defective picture tube.
\end{tabular} \\
\hline Poor Horizontal Linearity & \begin{tabular}{l}
1. Improper adjustment of linearity magnet ( \(17^{\prime \prime}\) ) or anti-pin cushion magnets (21'). \\
2. Defective tube 16-17. \\
3. Defective capacitor C105-106-111. \\
4. Defective transformer T8 or coil L31.
\end{tabular} \\
\hline Snow or Poor Picture & \begin{tabular}{l}
1. Insufficient signal input. \\
2. Defective antenna or lead-in. \\
3. Improper alignment of \(\mathrm{C} 1-\mathrm{A}-\mathrm{B}\). \\
4. Weak tubes \(1-2-3-4-5\). \\
5. Improper video IF alignment.
\end{tabular} \\
\hline Lack of Contrast & \begin{tabular}{l}
1. Defective tube 6 . \\
2. Defective crystal detector. \\
3. Improper video IF alignment.
\end{tabular} \\
\hline Washed Out or Picture Smear & \begin{tabular}{l}
1. F-S-L switch in wrong position. \\
2. Defective crystal detector. \\
3. Gassy tube 1-3-4. \\
4. Improper video IF alignment.
\end{tabular} \\
\hline
\end{tabular}

The drawings on this page illustrate the wave forms at various positions within the receiver. The wave forms are not theoretical but exact copies of that shown by an oscilloscope and were taken under normal operating conditions, with a transmitted signal and the picture in sync at all times.

When checking the wave forms, connect the ground lead from
the oscilloscope to the top chassis plate and the hot lead to the position indicated. The wave shapes may vary somewhat depending on the strength of the signal, the picture information being transmitted and the adjustments of the various controls.

Under each wave form is the schematic reference, position taken at, peak-to-peak voltage and the type of wave form indicated (Vertical - 60 cycles and Horizontal \(-15,750\) cycles).


VERTICAL PULSE
Pin 5 of Tube 12.
Plate of Sync Clipper
25 volts Peak-to-Peak


VERTICAL PULSE
Pin 4 of Tube 13
Grid of V. Output
95 volts Peak-to-Peak


HCRIZONTAL PULSE
Pin 7 of Tube 14
Plate of A.F.C. Discr.
6 volts Peak-to-Peak


HORIZONTAL PULSE
Pin 5 of Tube 12.
Plate of Sync Clipper
25 volts Peak-to-Peak


HORIZCNTAL PULSE
Pin 1 or 5 of Tube 14
Cathode of A.F.C. Discr.
15 volts Peak-to-Peak


HORIZONTAL PULSE
Pin 5 of Tube 15
Plate of H. Mult.
35 volts Peak-to-Peak


VERTICAL PULSE
Pin 3 of Tube 13 Cathode of V. Blocking Osc. 125 volts Peak-to-Peak


HORIZONTAL PULSE
Pin 2 of Tube 14 Plate of A.F.C. Discr. 4 volts Peak-to-Peak


HORIZONTAL PULSE
Pin 5 of Tube 16 Grid of H. Pulse Amp. 100 volts Peak-to-Peak


If sweep generator does not have a balanced ouput, connect 3. Connect signal generator through a 1000 mmf capacitor 150 ohm resistor in series with the ground lead and 150 ohms inus the internal resistance of the generator in series with he hot lead.
4. Set F-S-L switch to "Fringe" position.

Connect a 1000 mmf capacitor across scope terminals and a 10K ohm resistor in series with hot scope lead as close to test
5. When aligning the IF Amplifier be sure tuner is turned to high band channel 13.

Amplifier be sure band channel 13.
oint as possible.

VHF TUNER DIAGRAM


Dwo. No. 2387-6A
Figure 8. VHF Tuner Diagram.

\section*{TUNER ALIGNMENT}
．Preset trimmer screws C11－14－18－22－28－31－to dimensions shown on page 10 ．
（a）In low band position，turn tuner to top of stroke（cores furthest out of coil）．
（c）Aditch will be in low band position．
LOW BAND RF TRACKING Turn Tuner to channel 6.
NOTE：Low Band must be aligned before high band．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{LOW BAND RF TRACKING Turn Tuner to channel 6. NOTE：Low Band must be aligned before high band．} \\
\hline \begin{tabular}{l}
No． \\
Step
\end{tabular} & Signal Generator Freq．（me．） & Sweep Generator Freq．（mc．） & Signal Input Point & Output Point & Remarks & Adjus \({ }^{\text {t }}\) & Response \\
\hline 1 & \[
\begin{aligned}
& v-83.25 \\
& S-87.75
\end{aligned}
\] & Channel 6 & \begin{tabular}{l}
Antenna \\
Terminals
\end{tabular} & Test Point （terminal 6） & Adjust for maximum response & C－2B &  \\
\hline 2 & \[
\begin{aligned}
& \text { V-83.25 } \\
& \text { S-87.75 }
\end{aligned}
\] & Channel 6 & Antenna
Terminals & Test Point （terminal 6） ＊ & Adjust for maximum response & \[
\begin{aligned}
& \mathrm{C}-18 \\
& \mathrm{C}-22
\end{aligned}
\] &  \\
\hline 3 & \[
\begin{aligned}
& \text { v-77.25 } \\
& \text { S-81.75 } \\
& \text { v-67.25 } \\
& \text { S-71.75 } \\
& \text { v- } 61.25 \\
& \text { S-65.75 } \\
& \text { v- } 55.25 \\
& \text { S-59.75 }
\end{aligned}
\] & \begin{tabular}{l}
Channel 5 \\
Channel 4 \\
Channel 3 \\
Channel 2
\end{tabular} & \begin{tabular}{l}
Antenna \\
Terminals
\end{tabular} & \begin{tabular}{l}
Test Point \\
（terminal 6） \\
See sketch on schematic
\end{tabular} & Adjust tuner until re－ sponse curve appears on scope． Adjust trimmers for compromise which will give the best overall response across band． & \[
\begin{aligned}
& C-18 \\
& C-22
\end{aligned}
\] &  \\
\hline
\end{tabular}

HIGH BAND RF TRACKING Turn Tuner to channel 13
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & \[
\begin{aligned}
& \mathrm{V}-211.25 \\
& \mathrm{~S}-215.75
\end{aligned}
\] & Channel 13 & \begin{tabular}{l}
Antenna \\
Terminals
\end{tabular} & Test Point （terminal 6） & Adjust for maximum response & C．2A &  \\
\hline 2 & \[
\begin{aligned}
& \mathrm{V}-211.25 \\
& \mathrm{~S}-215.75
\end{aligned}
\] & Channel 13 & Antenna Terminals & Test Point （terminal 6） & Adjust for maximum response & \[
\begin{aligned}
& \text { C-11 } \\
& \text { C-14 }
\end{aligned}
\] &  \\
\hline 3 & \[
\begin{aligned}
& \mathrm{V}-205.25 \\
& \mathrm{~S}-209.75 \\
& \mathrm{~V}-199.25 \\
& \mathrm{~S}-203.75 \\
& \mathrm{~V}-193.25 \\
& \mathrm{~S}-197.75 \\
& \mathrm{~V}-187.25 \\
& \mathrm{~S}-191.75 \\
& \mathrm{~V}-181.25 \\
& \mathrm{~S}-185.75 \\
& \mathrm{~V}-175.25 \\
& \mathrm{~S}-179.75
\end{aligned}
\] & \begin{tabular}{l}
Channel 12 \\
Channel 11 \\
Channel 10 \\
Channel 9 \\
Channel 8 \\
Channel 7
\end{tabular} & \begin{tabular}{l}
Antenna \\
Terminals
\end{tabular} & \begin{tabular}{l}
Test Point （terminal 6） \\
See sketch on schematic
\end{tabular} & Adjust tuner until re－ sponse curve appears on scope． Adjust trimmers for compromise which will give the best overall response across band． & \[
\begin{aligned}
& \mathrm{C}-11 \\
& \mathrm{C}-14
\end{aligned}
\] &  \\
\hline
\end{tabular}



The DC resistance readings shown in the chart below have been taken with a ohmmeter directly across the coil being measured. The coils not listed in the chart have a DC resistance reading of less than one ohm. A tolerance of \(\pm 5 \%\) is permis sible.
\begin{tabular}{|c|c|c|c|}
\hline coils & RESISTANCE IN OHMS & COILS RESISTA & RESISTANCE IN OH \\
\hline L17 & 1.5 & T3 pri. & 4.7 \\
\hline L20 & 1.5 & T4 pri. & 170 \\
\hline L22 & 2.2 & TS pri. & 960 \\
\hline L23 & 2 & sec. & 160 \\
\hline L24 & 2 & T6 pri. & 1100 \\
\hline L25 & 2 & sec. & 6.6 \\
\hline L27 & 8 & T7A & 68 \\
\hline L28 & 8 & 13 & 12.5 \\
\hline L29 & 1.5 & T8 2513Q6 plate to 1 X 2 A plate & 180 \\
\hline L30 & 80 & 25 BQ 6 plate to term 4 & 9.5 \\
\hline L.31 & 2.3 & 25BQ6 plate to term 3 & 17.5 \\
\hline L 32 & 72 & 25 BQ6 plate ro term 1 & 25.5 \\
\hline L33 & 8.5 & term 7 to term 8 & 2.6 \\
\hline L34 & 2.3 & term 7 to term 10 & 5.4 \\
\hline T3 pri. & 4.7 & T9 pri. & 7 \\
\hline
\end{tabular}

\section*{REMOVABLE SAFETY GLASS}

To clean the inside of the safety glass or the face of the picture tube, simply follow the procedure below. 1. Remove the three (3) phillips head screws in the safety glass holder directly above the escutcheon.
2. Remove the safety glass holder.
3. Carefully remove the safety glass bypulling out and down from the botrom. CAUTION

Before the chassis can be removed from the cabinet, the escutcheon, on-off-volume and tuning knobs must be removed. Pull knobs straight out and remove the DIAL CORD REPLACEMENT

DIAL CORD STRINGING: Two separate dial cords are necessary.
POINTER PULLEY STRINGING: Follow the above dia gram (front view) and start by attaching the dial cord to clockwise turns around pulley. Route under tuning shat to small pulley of driven pulley assembly, make \(21 / 2\) clock wise turns around pulley and connect to other end of ten-
sion spring. Tension spring must be in location sho tuning shaft is rotated to extreme clock wise position.

MECHANICAL TRACKING: If for any reason the stop washers do not correspond to the stop position of the tuner oosen the two (2) drive puley allen head set screws and
reposition. Turn both the tuning shaf and tuner shaft to the extreme counterclock wise position. Turn tuning shaft only 16 turn clockwise. Tighten allen head set screws.
POINTER POSITIONING: If when a station is properly
tuned in and the pointer is off calibration, reposition the tuned in and the po
pointers as follows.

\footnotetext{
1. Remove the on-off volume and tuning knobs. (pull
2. Remove two outside escutcheon screws and es
3. Remove pointer indicator and reposition
}

© John F. Rider


© John F. Rider

\section*{UHF TUNER SERVICE MANUAL \\ MODEL NO. 3D6000 \\ CAN BE USED WITH MODELS}

2D-1091A, 2D-1095A, 2D-1191A, 2D-1195A, 2D-1224A, 2D-1225A, 2D-1228A, 2D-1315A, 2D-1325A, 2D-2043A, 2D-2047B, 2D-2049A, 2D-2052A, 2D-2052B, 2D-2052C, 2D-2052D, 2D-2052E, 2D-2149A, 2D-2152A, 2D-2215A, 2D-2219A, 2D-2223A, 2D-2312A, 2D-2312A, 2D-2314A, 2D-2321A, 2D-2322A, 2D-23223.


GENERAL DESCRIPTICN

The UHF Tuner is a single conversion, continuous
tuning device which niechanically mounts directly tuning device which mechanically mounts directly
over the VHF tuner in he receiver. The over the VHF tuner in the receiver. The tuner is coupled
to the VHF tuner by drive gears which thus provides tuning of both UHF and VIIF by the same tuning knob. The tuner obtains its filament and plate supply voltages from the TV chassis and a switch is provided to select
the desired tuner for operation. Signal points and filathe desired tuner for operation.
ment leads are not switched.

Two variations of turers may be encounteres.
Only minor differences exist as can be seen by referOnly minor differences exist as can be seen by reie
ring to figures 3 (early version and a tlater versive The later version tuner can easily be identified by the terminal strip below resistor k - 2 . (see figure 5 )
The LHF Tuner selects the LHF stations video and sound carrier and converts them to the carrier 1 F fre-
quency of 26.75 MC for ideo and 22.25 MC for sound quency of 26.75 MC for video and 22.25 MK for sound which is coupled to the 10 inches of RG-62U cable.

If the receiver is "dead" when attempting to view a UHF program, first check the position of the selector switch, then determine whether a signal is being trans mitted and then check the antenna and lead-in
nections before suspecting the tuner for trouble.
Also as a fast check, view the face of the picture tub at minimum contrast or picture control setting and ad
vance the control to maximum. Compare the difference vance the control to maximum. Compare "he difference.
If there is litcle or no difference (no "snow") check the video detector and IF amplifiers. If an increase of "snow" appears at maximum control setting, check the first if stage before looking to the tuner for
defect.
If the UHF tuner is not functioning properly, firs substitute the oscillator (6AF4) and cascode amp UHF
\((6\) I.K7) tubes. Next check the voltages at the UHI

The UHF Tuner employs a double coaxial line RF cavity pre-selector. The coaxial line arrangement has th. advantages of high selectivity, low insertion losses,
uniform band-width and good shielding a aainst oscillator radiation. The coaxial cavity is basically a one quarter wave shorted tuned stub. The electrical length of the cavities is varied by a ribbon which is attached to the dial cord and pulley arrangement. In this manner
tuning is accomplished similar to varying the length of a tuned stub which would change the resonant length for various frequencies. The dial cord is of a special material which is not affected by temperature or nois-
ture and is locked to the pulleys which eliminates the possibility of slippage. Tracking screws are provided in the cavities to obtain uniform band width and sensitivity. The triacking screws vary the capacity between trical length of the ribbon.
The oscillator tube used is a 6AF4 which is simila to the 6F4. Oscillator tuning is accomplished by a
one-quarter wave shorted parallel wire transmission line arrangement. It differs from the RF cavities, in that a shorting bar is used to vary the electrical lengt of the lines. This method provides very stable opera Inductive or link coupling is employed to rransfer the
signal between stages. The arrangement of link coup signal between stages. The arrangement of link coup
width over the entire UHF band. The signal tom the utput coupling link is mixed and detected by a CK-710 he cascode \(P_{r e-I F}\) amplifier which is tuned to a center requency of 25 MC and has the features of low noise and broad band-width. The signal is amplified by the cascode amplifier and then coupled to the IF amplifier
section in the receiver through 10 inches of RG-62U coaxial cable.

The UHF Tuner maintains a fairly constant antenna input impedance of 300 ohms, has an overall band-
width of 6 to 8 megacycles and has an oscillator inection current ratiog of approximately 2 to 1 . The only amplification of the signal takes place in the cascode
amplifier. The signal is not amplified in the RF cavities, therefore, the sensitivity of the receiver on UHF will UHF equal that of VHF. A receiver equipped will F sensitivity of pproximately 150 microvolts.
ervice features of this tuner provides a convenien heck point for measuring the oscillator grid curtent to determine whether the oscillator is functioning.
Also provisions have been made for measuring the oscillator injection current to check both the crystal detector and the oscillator. An opening is also provided for coupling to the inpur coil when alignment the cascode amplifier is necessary.

\section*{SERVICE HINTS}
power socket or cable connections in the receiver.
If soldering iron servicing, crystal detector or component patts replacement is necessary, the picture ponbe must be removed. Removing the picture tube makes the majority of the UHF Tuner components within easy reach and most of the parts can be serviced.
The tuner should not be temoved from the chassis The tuner should not be removed from the chass erved not to lay the chassis on the tuner side. Damage oo the UHF Tunet may result.

CAUTION: When attempting to service the Tuner, do not move or rearrange components or mechanical parts
as a change in distributed capacity may result and offa change in distributed capacity may result and of set the alignment. When replacing a component, be
sure to obtain the same lead lengths and replace in the same physical position.


Figure 2 -- Early Version


Figure 3 -- Later Version

Both the oscillator and crystal detector can easily be
checked by measuring the oscillator injection current.
Place a Simpson Model 260 Multimeter (or equivalent) Place a Simpson Model 260 Multimeter (or equivalent) on the 100 microamp scale across the 22 ohm resistor
( R 10) at the terminal indicated in Figure \(5 A\) or \(5 B\) depending on the version of the tuner. A reading of 5 to 40 microamperes should be obtained if both oscillator and crystal are functioning normally.


Figure 5B Later Version

To determine whether the oscillator section is functioning, a convenient check point has been provided where the oscillator grid current can be measured. To measure
the oscillator grid current, place a Simpson Model 260 the oscillator grid current, place a Simpson Model 260
Multimeter (or equivalent) on the 100 microamp scale across the 22 olm resistor ( R 2 ). See figure 4. A reading of 10 to 30 microamperes slould be obtained if the oscillator is functioning normally.

Figure 4



Figure 5A
Early Version

Figure 6


CRYST:1 DETECTOR: If replacement of the CK-710 Crystal ! )etector is necessary, the picture tube must he removed along with the crystal cover (refer to figure 6). The crystal is soldered into place and should be
carefully resol dered a fter replacement. Overheating carefully resoldered after replacement. Overheating
may damage the crystal. To dissipate the heat, grasp may damage the crystal. To diesipate the hear, grasp each
place.



© John F. Rider


\section*{INSTALLATION INSTRUCTIONS} TION
TION:
These models are shipped in operating con ition. There is no shipping material to be re moved. Simply remove the receiver from its carton, and connect the \(A C\) plug to a 105 to 120 volt 60
cycle \(A C\) outler. ycle \(A C\) outlet.

The receiver contains a built-in antenna for use in areas of normal reception. In such areas when the built-in antenna provides good reception external antenna is not required. However, in weak signal areas or under adverse conditions, it may e necessary to use an outside antenna

Two sets of antenna terminals are located on the back of the receiver, one labeled UHF and the other labeled STD. If an external antenna is to be connected to the receiver, the built-in antenna wires must be disconnected from the STD terminals. This can be accomplished by loosening the terminal screws and removing the wires. The built in antenna wires should be dressed chassis or position that they The lead-in wires from the external antenna should then be connected to the STD terminals. The UHF antenna terminals are not used unless UHF units are installed (see note under FREQUENCY RANGES on front cover)
TO CHECK THE OPERATION OF THE RECEIVER:
1. Turn on the receiver by rotating the off 1. Turn on the receive
-volume control clockwise
2. Rotate the channel selector to the desired channel number. The two channel selector posiunits have been installed (see note on front cover of this booklet). It should be noted that the channel selector position between 6 and 7 and the position between 13 and UHF are blank positions although positions.

\section*{ADJUSTMENTS}

\section*{CATHODE RAY TUBE CUSHION}

The CRT cushion must fit snugly against the flare of the CRT in order that the rear of the tube will be supported firmly. If this condition is not obtained, loosen the CRT cushion adjustment screws and the deflection yoke adjustment screw,
slide the CRT cushion forward as far as possible, slide the CRT cushion forward as far as possible, and re-tighten the screws
DEFIECTION YOKE
The deflection yoke must be positioned as close as possible to the flare in the CRT. If adjustment is required, loosen the deflection yoke adjustment screw, slide the deflection yoke forward as far as possible, and re-tighten the screw. Note that the CRT cushion must fit snugly against the CRT flare as described previously.

The deflection yoke adjustment screw also permits the picture to be rotated to make it square with respect to the mask. To rotate the picture, loosen the deflection yoke adjustment screw and move it to the left or right. The picture will tilt
3. Adjust the brightness control to a position where the picture screen is moderately lighted. 4. Check the ion trap magnet adjustment as out lined under ADJUSTM ENTS.
5. Rotate the picture control to the position that provides best picture contrast.
6. If the picture moves up or down on the screen, the vertical hold control should be ad justed as explained under ADJUSTMENTS.
7. If the picture is pulled into diagonal hars or if the edge of the picture quivers or tends to fold over, adjust the horizontal control for correc that it will seldom be necessary to re-adjust it thereafter. To obtain this adjustment, tune in TV station, and rocate the control to the middle of the range over which the picture is synchronized If the middle of the sync range does not correspond range, make the adjustments described under Horizontal Ringing Coil in the ADJUSTMENTS section Check the adjustment of the horizontal control by \(s\) witching to another channel and then back again The picture should be stable when switching from channel to channel.
8. Rotate the fine tuning control to the posiion that provides best picture detail
9. Re-adjustment of the brightness and pic ture controls may improve the picture shading The correct balance between these controls pro-
duces the best picture. Once the brightness conduces the best picture. Once the brightness con-
trol has been adjusted to suit the preference of the user, it will seldom be necessary to re-adjust it.
10. Adjust the off-on-volume control for the desired sound volume.
11. Check the operation on all available TV stations.
12. If necessary, adjust the vertical linearity ght, horizened under ADJUSTMENTS, or cente
the left or right with the movement Tighten the screw when the picture is squared in the mask FOCUS

The focus control is located on the back of the chassis as shown in Fig. 4. With the brightness and picture controls set at the ir normal operating porsivest focus. QUIETING CONTROL

The quieting control is located at the lowe left on the back of the receiver and is ad justed by means of a screwdriver inserted through the hole in the back cover. This control, which determines the AM rejection characteristics of the sound sys tem, is normally adjusted during alignment of the sound system as described under SOUND ALIGN MENT PROCEDURE and will not ordinarily require further adjustment. In very weak signal areas, may be obtained by slightly re-adjusting the contro.


FIG. 1 - CRT ADJUSTMENTS

\section*{CENTERING}

Centering is accomplished by rotating the entering magnet adjusting rings clockwise o counterclockwise as required. The two adjusting rings are located on the back of the deflection yoke as shown in Fig. 1. A tab projection on each of the rings serves to facilitate adjustment.

If difficulty is experienced in centering the picture or eliminating "neck shadows", make certain the CRT cushion is tight against the flare in the CRT. Also make certain that the deflection yoke is as far forward as possible. ION TRAP MAGNET

It is extremely important that the ion trap magnet be correctly adjusted immediately after the set is first turned on during installation. This is true even though the set appears to be operating satisfactorily. When the magnet is not correctly aperture in the anode top disc instead of moving cleanly through the hole. The resultant heat vapor izes the metal of the disc, thus releasing gas which has a harmful effect on the tube. Some of the vaporized material may be deposited on the screen of the tube and be apparent as darkened area. An excessively high setting of the brightness contro will aggravate this condition. From this it is be turned up to compensate for an incorrectly ad justed ion trap magnet. The tube can be ruined in a very short time under this condition.

To adjust the ion trap magnet, position the magnet approximately as shown in Fig. 1 with the magnet and move it forward and backward until the position is found where the picture is brightest If the brightness peaks at two positions of the magnet, the position nearer the base of the tube is the correct one. Never move the ion trap magnet to remove a shadow from the raster if the brightness is decreased by so doing. Shadows should
be removed by adjusting the position of the deflection yoke. The ion trap magnet must always be idjusted for maximum picture brightness.

HEIGHT AND VERTICAL LINEARITY
The height adjustment on the back of the chassis controls the overall height of the picture, and the vertical linearity adjustment controls the relaionship between the vertical dimensions of the balance between the two controls is necessary to make the picture symmetrical and fill the mask vertically.

\section*{WIDTH AND HORIZONTAL LINE ARITY}

The width adjustment on the back of the chassis controls the overall width of the picture, and the horizontal linearity adjustment controls the the left and the right sections of the picture. A balance between the two controls is necessary to make the picture symmetrical with correct horizontal dimensions. These controls can be adjusted with a \(1 / 4^{n}\) Spintite-type wrench.

\section*{VERTICAL HOLD}

The vertical synchronization is controlled by the vertical hold adjustment. To adjust, rotate the control clockwise or counterclockwise until the picture is stabilized vertically. The adjustment that is available, and a check should be made to ee that the receiver pulls into sync on all chan nels.
HORIZONTAL RINGING COIL
The horizontal ringing coil (L401) should be djusted as follow \(s\) :
1. Shiort out the ringing coil with a short jumper wire.
2. Set the horizontal hold control to the middle of its range, and leave it in this position during the steps that follow.
3. Connect a VTVM to the junction of R477 and C456, located in the pin \#2 grid circuit of the horizontal multivibrator, so as to measure the DC
voltage between this point and ground. voltage between this point and ground
4. With the receiver tuned to a TV station, adjust C 457 (located near the horizontal multivibrator cube as shown in Fig. 4) for zero voltage on the meter. If zero voltage can be approached but not quite reached at one extreme of the C457 adjust ment, it may be necessary to set the horizontal hold control slightly to one side of mid-position to obtain zero voltage.
5. Remove the jumper from across the ringing coil.
6. Adjust the ringing coil for zero voltage on he meter, and check the adjustment by switching to another channel and then back again. The receiver should pull into horizontal synchronization

\section*{© John F. Rider}

\section*{CRITICAL LEAD DRESS}

Leads that are susceptible to R-F pickup with esulting interaction between stages must be dressed close to the chassis mounting plate. Lead this category include heater, AGC, B plus, and enough to permit dressing most of the path length close to the mounting plate. The heater wiring arrangement should not be altered

Leads associated with the 41.25 mc . trap must
be as short as possible and dressed away from the chassis.

Video peaking coils should be dressed away from the chassis and clear of adjacent parts.

The lead-in from the antenna terminals to the tuner must be dressed away from the I-F chassis to prevent an R-F "tweet" from interfering with the picture.

\section*{ALIGNMENT}

\section*{TEST EQUIPMENT}

To service these chassis, the following test equipment should be available:
1. R-F sweep generator that is capable of proucing a 10 mc . sweep at a center frequency of 44 mc . The output must be adjustable from at least 100,000 microvolts down to a very low minimum, and the out
of the attenuator.
2. Cathode ray oscilloscope, preferably on with a wide-band vertical deflection amplifier and a low-capacitance input probe. The oscilloscope should have good low-frequency response charac eristics.
3. Signal generator or generators capable of producing an accurate unmodulated signal at 4.5 mc., \(41.25 \mathrm{mc} ., 42.25 \mathrm{mc} ., 43.0 \mathrm{mc} ., 44.0 \mathrm{mc}\). 45.0 mc ., and 45.75 mc . The accuracy of these frequencies is very important. If the signal generator does not include a crystal calibrator, heterodyne frequency meter equipped with a crysta calibrator should be used to insure accuracy. The output level must be adjustable from at leas 100,000 microvolts down to a very low minimum
4. Vacuum tube voltmeter equipped with igh voltage multiplier probe for measurements \(R-F\) voltages.

\section*{GENERAL INFORMATION}

The chassis and the test equipment should be bonded together by short lengths of heavy braided copper ribon, and all interconmecting leads should consistent with sase in making connections. The effectiveness of the bonding can be checked during alignment by placing the hand on the chassis of test equipment case. If the response curve or meter reading changes, the bonding must be improved before the circuits are aligned.

It is important that the coaxial cable used to couple the sweep generator output to the receiver eristic circuit To accomplish this, connect the appropriat value of resistance across the output leads at the open end of the cable. The oscilloscope vertical inpue cable and the generator output cables mus be well separated from each other.

ALIGNMENT TOOL
To adjust the slugs in the common I-F transformers a special tool is required. This tool mus fit into the \(.035^{\prime \prime} \times .093^{n}\) slot in slug. An incor slug A suitablea is will cause chipping of the part number V-8345. part number V-8345.

\section*{COMMON I-F ALIGNMENT PROCEDURE}

The common I-F system uses over-coupled I-F transformers to obtain the required band width. In the alignment of this type system, the visual method of stage-by-stage alignment is used. A sweep generator is used to develop the I-F response curve on the oscilloscope, and an unmodulated signal generator (marker) is used to provide spot fre quency indications on the curve.

With some of the I-F transformers, peaks may be obtained at two positions of the adjustmen slugs. If a transformer is badly out of adjustment it is advisable to turn the slug out (counterclock wise) as far as possible before beginning align ment. Then turn the slug clockwise until the first peak is reached. This procedure is recommended to obtain the correct peak rather than an undesired second peak which is sometimes obtained when the slug is turned farther clockwise.

The alignment procedure to be used is given in the following steps:
1. To avoid undesirable beat response during alignment, remove the \(6 \mathrm{BZ7}\) R-F amplifier tube fom its socket and rotate the channel selector to 13 when the flat of the shaft is facing straight up


FIG. 2 - OSCILLOSCOPE CONNECTIONS
2. Connect the vertical inpur of the oscil Fig. 4) through the dest terminal (point Fig. 2. The oscilloscope horizontal input should be connected to the sweep (synchronizing) output from the sweep generator through well shielded leads. Turn the sweep control on the oscilloscope to the " \(x\) " or "off" position.
3. Connect the negative terminal of a 9 volt bias battery to the AGC line, and connect the posi tive terminal to chassis ground.
4. Couple the marker generator output to the sweep generator outpur so that the two signals are applied together to the points specified in the facilitios for conecting the maker ourput directly into the sweep generator. With other sweep gener tors, the marier can be coupled to the sweep by wrapping a few turns of insulated wire around the center conductor of the sweep generator output cable and connecting the marker generator to this wire. The loose coupling obtained in this manner s desirable because excessive marker signal in ection will distort the response curve
5. Adjust the sweep generator for a center frequency of 44 mc . with a sweep deviation of 10 mc .
. Connect the high side of the sweep gen erator output cable directly to the control grid of he 3rd I-F amplifier, and connect the ground sid f the cable to the chassis partition as close as possible to the ground point for the 3rd I-F am plifier tube. Keep the leads from the cable as hort as possible
7. Detune the plate circuit of the 2nd I-F am plifier by attaching an alligator or similar type clip to pin 5 of the \(6 C B 6\) 2nd \(1-F\) amplifier tube. se care to avoid shock. This step is necessay o avoid absorption of the signal that is applied the 3rd I-F grid.
8. Adjust the oscilloscope vertical gain and he sweep generator ourput level to obtain a curve on the oscilloscope. To avoid a distorted curve, the recommended practice is to use maximum oscilloscope vertical gain and only enough sweep signal amplitude to obtain a good curve
9. Set the marker generator to 44 mc . With the output attenuated until the marker pip is barely isible on the curve, and adjust the primary of the 3rd common I-P transformer, T304, until the 44 mc . marker pip is at the highest point on th esponse curve
10. Adjust the secendary of T304 to make the top of the response curve symmetrical.
11. Make certain that the response curve coin cides with Fig. SA, using the marker to check a the appropriate frequencies. The 44 mc . pip mus strike the center of the flat response region, th 42.25 mc . and 45.75 mc . points must be at equal heights, and the 43 mc . and 45 mc . points must b at equal heights. Re-adjust the primary and sec ondary of T304 if necessary to obtain these conditions.
12. Remove the detuning clip from the plate
the 2nd I-F amplifier rube, and attach it to the late of the lst I-F amplifier tube.
13. Move the sweep output connection from grid of the 3rd I-F amplifier to the grid of the 2nd F amplifier. Connect the ground side of the cable o the chassis partition as close as possible ge ground point for the \(2 n d\) I-F amplifier tube
14. Adjust the primary of the 2 nd common I-F ransformer, 1303 , for maximum height of the re ponse curve at 44 mc ., and adjust the secondary
.
15. Make certain that the curve corresponds to ig. SB. The 44 mc . pip must strike the cente f the flat response region, the 42.25 mc . and 5.75 mc . points must have equal heights, and heights. Ke-adjust the primary and secondary o 303 if necessary
16. Remove the detuning clip from the plate of the 1 st \(\mathrm{I}-\mathrm{F}\) amplifier.
17. Move the sweep output connection from the rid of the 2 nd I-F amplifier to the grid of the 1st the ground side of th sible to the ground point for lst I-F amplifier tube
18. Adjust the primary of the lst common I-F ransformer, T302, for maximum height of the re ponse curve at 44 mc ., and adjust the secondary T302 to make the top of the curve symmetrical If difficulty is experienced in aligning T302, adjust the adjacent channel interference trap, L308 a higher frequency by rotaring the slug com letely counterclockwise. Complete information o the adjustment of L308 is given in step 26.
19. Make certain that the curve corresponds to Fig. SC. The 44 mc . pip must strike the center the flat response region, the 42.25 mc . and 5.75 mc . points must have equal height, and th 3 mc . and 45 mc . points must have equal heights. Re-adjust the primary and secondary of T302 is necessary.
20. Rem
20. Remove the sweep output connection from he lst I-F amplifier grid, and couple it to the system illustrated in Fig. 3. This system prosystem illustrated in Fig. 3. This system proime provides shielding which prevents radiation of the signal. The device is constructed by flar ing a piece of tubular copper braid over the top of he 6X8 tube and wrapping gummed tape over the braid to serve as insulation. The tube shield is hen replaced over the tube with the braid protrud ing through the hole in the top of the shield. The baid must not contact the cbassis or the tube shield at any point. The tube shield should be ocked securely to its mounting base. Connect he high side of the sweep generator output cable o the copper braid, and connect the ground side
nearest point on chassis.
21. Rotate the slug of the 41.25 mc . trap (L301) ompletely clockwise.
22. It is possible to obtain two peaks when adusting the primary of the \(1-F\) input coupling net ork, T101, located on the R-F tuner. These peaks

MODELS H-740T21, H-742K21, H-743K21, Ch. V-2233-1
 ERATOR TO MIXER TUBE
produce different overall bandwidths. The correct peak to use is normally the peak that occurs with the adjustment screw turned further counterclockwise.

Turn the adjustment screw of T101 completely counterclockwise. Then adjust T101 for maximum height of the response curve at 44 mc ., and adjust the secondary of the I-F input coupling network, T301, to make the top of the curve symmetrical. If necessary, re-adjust T101 and T301 to make 44 mc . strike the center of the flat response region
23. Set the marker generator to 41.25 mc ., and
increase the output until the pip is readily visible on the curve.
24. Adjust L301 to minimize the amplitude of 41.25 mc. trap.
25. Make certain that the final response curve corresponds to Fig. 5D. Use the marker to check at the frequencies shown on the drawing. If nec essary, re-adjust T101 and T301 to obtain the correct curve.

If the bandpass of the response curve is too narrow so that the 45.75 mc . marker occurs at less than 40 percent of maximum response, turn T101 lockwise Adiust 301 for flat response at the top of the curve, and re-adjust T101 to center 44 mc . on the flat re sponse.
26. L308 is the adjustment for the adjacent channel interference trap. If adjacent channel interference does not constitute a problem in the areas where the receiver is to be opehace, howe the wap must nor be mis-adjusted into the I-F response region. In areas where adjacent channel interference is not troublesome, L308 can be set to its highest tuneable frequency by rotating the slug completely counterclockwise, and it can be left in this position.

In areas where adjacent channel interference is evident, however, L308 should be adjusted to 47.25 mc . This can be accomplished in either of two ways. One is to connect an amplitude modulated signal generator that has an output of 02 volt or higher to the grid of the list -rcurately to 47.25 mc . This will produce an indication on an oscilloscope connected to the video test terminal.

Adjust L308 for minimum response on the oscilloscope. If a signal generator capable of this high output is not available, connect a good antenna to he receiver, and tune the receiver to the TV station on which the adjacent channel interference occurs carefully adjusting the fine tuning control to its correct setting. Then, beginning with L308 in its olockwise until the position is found where the adjacent channel interference is elimirated In some cases, the trap adjustment may affect the adjustment of T 302 . If this occurs, it will he nec essary to repeat steps 17,18 and 19.
4.5 MC. TRAP ALIGNMENT PROCEDURE
1. Connect the high side of the signal generator to the video test terminal (point "D' on Fig. 4) through a . 001 mfd mica capacitor, and ground
2. Adjust the signal generator to 4.5 mc . (unmodulated). The accuracy of this frequency is very important. If a crystal controlled signal generator ith a accurate frequency meter. ith an accurate frequency meter.
3. Connect the common lead from the VTVM to the chassis, and connect the \(R-F\) probe from the VTVM to the cathode of the CRT. This point is shown as point "E." on Fig. 6. Note that this point is above ground potential and, therefore
4. Using a strong 4.5 mc . signal, adjust the 4.5 mc . trap, L309, for minimum indication on the meter.

SOUND ALIGNMENT PROCEDURE
The sound system can be aligned using either locally generated signals or a received TV signal. Since the latter method does not require signal generating equipment, it will be described first and will be followed by the procedure using locally generated signals.

To use an "air" TV signal for alignment:
1. Tune the receiver to a TV station and connect an attenuator between the receiver and-the antenna so that the strength of the signal can be varied from weak to strong.
2. Set the quieting control (R201) located on he back of the chassis approximately to its midposition.
3. Adjust the 4.5 mc . IF slugs (L201 and L202) for maximum program sound. If peaks occur at two different positions of the slug, use the peak wise. Reduce the signal to its lowest useable level and recheck the adjustments.
4. Apply a strong signal to the receiver, and adjust the quadrature coil (L204) for maximum program sound. If peaks occur at two different posioccurs withe widely separated, use the one that two peaks occur within a narrow range of adjustment, sufficient signal is not being applied to the receiver or the quieting control is not set at the
desired position.
5. Apply a very weak signal that allows noise o be heard and adjust the quieting control (R201) or minimum noise. The position at which the noise is minimized depends on the strength of the signal heretore, the weakest useable station in the area determines the AM rejection characteristics of the sound system, and its correct setting is normally about mid-position. Do not leave the quieting con rol set at its maximum counterclockwise position

To use locally generated signals for alignment
1. Connect an oscilloscope or an \(A C\) voltmeter across the volume control for use as an indicator.
2. Apply a 4.5 mc . FM signal (deviation approx mately 7.5 kc .) to the video test point (D on Fig. 4)
3. Using the lowest signal level that will pro-
and uce an indication, adjust L201 and L202 for max mum out put.
4. Using a strong signal, adjust L204 for max imum output.
5. Apply a 4.5 mc . AM signal (modulated apx. 30 percent) to the video test point.
6. Beginning with a very low signal level, in rease the generator output, while rotating the quieting control back and forth, until the signal control dips to zero with a rise on each side as the quieting control is rotated Set the quieting control for zero output at this signal level.


If the 6X8 oscillator tube is replaced, the dif ferent inter-electrode capacitance of the new tub may change the oscillator frequency enough to ecessitate re-alignment of the oscillator.

Alignment of the oscillator on the high band is accomplished by adjusting the brass slug lo ated adjacent to the vernier drive wheel on th ront of the tuner. Alignment of the oscillator on the low band is accomplished by adjusting the brass slug on the lower front of the tuner. djustment procedure is as follows
1. Set the fine tuning control to the middle of its range, and keep it in this position during the ollowing adjustments. The control is set to th middle of its range when the setuning drive wheel is straight up.
2. Set the selector switch to the highest of he low-band (channels 2 through 6) stations oper ting in your vicinity
3. Peak the low band adjustment slug (L109) or the best picture detail.
4. Set the selector switch to the highest of he high-band (channels 7 through 13) station perating in your vicinity
5. Peak the high band adjustment slug (L110) for the best picture detail.
6. Check the previously made low band adjust ment, and if the tuning has changed repeat step 2 and 3.

John F. Rider

\section*{ALIGNMENT CHARTS}

The information in these charts is condensed from the foregoing detailed information as a convenience to the service technician. It is recommended that the detailed information be studied before using the charts

\section*{COMMON I-F SECTION}

Remove the 6BZ7 RF amplifier tube from its socket, and turn the channe selector to channel 13.

Connect the oscilloscope to the video test terminal through the decoupling network shown in Fig. 2.

Connect a 9 volt bias battery to the AGC line.
Adjust the sweep generator for a center frequency of 44 mc . with a 10 mc sweep deviation, and couple the marker generator to the sweep generator.
\begin{tabular}{l|l|l|l|l}
\hline Step & \begin{tabular}{l} 
Connect Sweep \\
and Marker \\
Generators to
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Marker Use
\end{tabular}} & \begin{tabular}{c} 
Connect \\
Detuning \\
Clip to
\end{tabular} & \multicolumn{1}{c}{ Adjust - }
\end{tabular}
7. Tunc \(\mathbf{L 3 0 8}\) to 47.25 mc . as described in step 26 of detailed information.
4.5 MC. TRAP

Connect the signal generator to the video test terminal (point "D" on Fig. 4) through a . 001 mfd capacitor.
\begin{tabular}{c|c|c|c|c}
\hline Step & \begin{tabular}{c} 
Sional Gen. \\
Frequency
\end{tabular} & VTVM Cònnections & Remarks & Adjust - \\
\hline 1. & \begin{tabular}{c} 
4.5 me. \\
unmodulated
\end{tabular} & \begin{tabular}{c} 
RF probe to point "E"' (see \\
Fig. 6) and common lead to \\
chassis.
\end{tabular} & \begin{tabular}{l} 
Use strong signal from gen- \\
erator
\end{tabular} & L309 for minimum voltage \\
\hline
\end{tabular}

\section*{SOUND SECTION}

Refer to SOUND ALIGNMENT PROCEDURE
Using a weak signal, adjust L201 and L202 for maximum response to a 4.5 mc . FM signal. Using a strong signal, adjust L 204 for maximum response to a 4.5 mc . FM mum response to a
signal. Using a weak signal, adjust the quieting control for minimum \(A M\) noise.


Fig. 6 - bOTTOM VIEW OF CHASSIS

\section*{PEAK.TO-PEAK VOLTAGE MEASUREMENTS USING AN OSCILLOSCOPE}

To determine whether or not a television cir cuit is functioning correctly, it is sometimes nec essary to compare the waveforms observed on an oscilloscope with those shown on the schematic diagram. In some cases, the complete story is not revealed unless peak ropeak voltages are comon ascilloscope by proceeding as follows
1. Place a graph screen over the face of the cathode ray tube. A graph screen is a transparent sheet with lines drawn on it to form equal-sized squares, and it is normally 2. Conest
2. Connect the vertical input terminals of the scilloscope to a source of calibrating voltage. The heater supply line in the television receiver is a convenient source. If. the peak-to-peak voltage of the waveform to be measured is expected to be 20 volts or less connect the vertical input terminals as to one in 63 volts AC. If the expected peak-to peak voltage is greater than 20 volts, connect the vertical input terminals across the two branches of the heater line so as to obtain 12.6 volts \(A C\)
3. Compute the peak-to-peak voltage of the calibrating source. The calibrating voltage as me 2.828 ( 2.83 is sufficiently accurate) to determine its peak-to-peak voltage. Thus, the peak-to-peak voltage corresponding to 6.3 volts r.m.s. is 17.8 volts, and the peak-to-peak voltage corresponding to 12,6 volts \(\mathrm{r}: \mathrm{m} . \mathrm{s}\). is 35.6 volts.
4. Adjust the vertical attenuator and vertica gain controls on the oscilloscope until the sine wave calibrating voltage is the desired size on the oscilloscope. Assuming there are 20 squares vertically and 20 squares horizontally on the usable area of the graph screen (this is common) the oscilloscope if the calrespor 17.8 volts peak-to-peak ( 6.3 volts r.m.s.) and the vertical gain of the oscilloscope is adjusted so that the calibrating sine wave occupies 17.8 squares vertically. If the calibrating voltage is 35.6 volts peak-to-peak ( 12.6 volts r.m.s.) and the oscilloscope gain is adjusted so the sine wave occupies 17.8 squares vertically (one-half of 35.6), the oscilloscope response is 2 volts per square. If the calibracing voltage is 35.6 volts peak-to-peak and occupies 8.9 squares vertically (one-fourth of 35.6), the oscilloscope response is 4 volts per square. This illustrates the manner in which the voltage per square response is determined. Once the voltage per square respons gain or vertical attenuator controls.
5. Disconnect the vertical input leads from he calibrating source, and connect them across the voltage to be measured. If necessary, center the waveform by adjusting the vertical centering ontro
6. Multiply the number of vertical squares that the waveform occupies by the volage per square response which was established in step 4.


CHASSIS NO. V-2233-1
\[
\text { FIG. } 7 \text { - SCHEMATIC DIAGRAM }
\]

IMPORTANT - Since many of the components are very critical, exact duplicates must be used for replacement purposes. However, any substiture supplied by westinghouse orill assure performance equal to or better than the list part.

PARTS LIST FOR MCDELS H-740T21, H-742K21 AND H-743K21
When ordering parts, specify model number of set in addition to part number and description of part.

MODEL PARTS

+ New part number listed for the first time in Westinghouse radio or television service imformuntom.
- Sold only as complete assembly. Price shown covers complete assembly.
-* Price includes Federal Excise Tax.
-O. Price furnished on request.

SECTION 1 - R.F
\begin{tabular}{|c|c|c|c|}
\hline Description & Function & \multicolumn{2}{|l|}{List Pric Each} \\
\hline Capacitor, . 005 mfd & Tuner decoupling & \$ & . 25 \\
\hline Capacitor, 005 mfd & Tunes coupling & & . 25 \\
\hline Capacitor, .00s mfd & Tuner decoupling & & . 25 \\
\hline Capacitor, 005 mfd & Heater bypass & & . 25 \\
\hline Capacitor, 01 mfd 400 v . & AGC filter & & . 20 \\
\hline Resistor, 150 ohms \(1 / 2 \mathrm{~m}\). & Tuner decoupling & & . 05 \\
\hline Resistor, 1.5 megohms \(1 / 2 \mathrm{w}\). & AGC decoupling & & . 15 \\
\hline Resistor, 18 megohms \(1 / 2 \mathrm{w}\). & AGC divider & & . 15 \\
\hline Resistor, 2200 ohms 2 w . & B plus dropping & & . 25 \\
\hline RF tuner assembly & Tuner decoupling & & 4.50 \\
\hline
\end{tabular}

SECTION 2 - SOUND I-F AND AUDIO
\begin{tabular}{lll} 
Capacitor, 4.7 mmf & Sound take-off & .07 \\
Capacitor, & .005 mfd & Cathode bypass \\
Capacitor, & .005 mfd & .25 \\
Capacitor, & .01 mfd 400 v & Screen bypass \\
Capacitor, & Tone compensation & .25 \\
\hline
\end{tabular}

Capacitor, 01 mfd 400 v .
Capacitor, 20 mfd 50 v . (assy. consists
Filter
Capacitor, 005 mfd 600 v .
Capacitor, 005 mfd
Capacitor, 47 mmf
Capacier, \(47 \mathrm{~mm} \quad\) Bypass
Capacitor, \(47 \mathrm{mmf} \quad\) IF tank
\(\begin{array}{ll}\text { Capacitor, }, 002 \text { mfd } 600 & \text { v. } \\ \text { Capacitor, }, 005 \mathrm{mfd}\end{array} \quad \begin{aligned} & \text { Screen bypass } \\ & \text { Cathode bypas }\end{aligned}\)
Capacitor,, 005 mfd
Capacitor, \(30 \mathrm{mfd} 450 \mathrm{v}\). elec. (assy.
consists of C220, C441, C501, C502)
Capacitor, .005 mfd
Capacitor,
.02 mfd 400 v
Capacitor, \({ }^{15 \mathrm{C}} \mathrm{mmf}\)
Capacitor, \(0005 \mathrm{mfd} 400{ }^{\circ}\) Reactor
Reactor
Reactor
Reactor, 350 microhenries Reactor, 350 mic
Coil, quadrature Coil, quadrature
Resistor, variable ( 0.500 ohms ) Resistor, 27,000 ohms 2 w. Resistor, 10,000 ohms \(1 / 2 \mathrm{w}\).
Control, 500,000 ohms (assy. consist of R208, SW501)
Resistor, 220,000 ohms \(1 / 2 \mathrm{w}\).
Resistor, 1200 ohms \(1 / 2 \mathrm{~m}\).
Resistor, 1200 ohms \(1 / 2 \mathrm{~m}\).
Resistor, 120 ohms \(1 / 2 \mathrm{~m}\).
Resistor, 680 ohms 2 w .
Control, 1 megohm
Resistor, 180 ohms \(1 / 2 \mathrm{~m}\).
Resistor, 22,000 ohms 2 .
Resistor, 22,000 ohms 2
Resistor, 470 ohms \({ }^{2} / \mathbf{w a}^{2}\)
Resistor, 470 ohms \(1 / 2\) w.
Resisto
ransformer
\begin{tabular}{|c|c|}
\hline Capacitor, 3.3 mmf & 1st IF tank \\
\hline Capacieor, 0.47 mmf & IF trap eoupling \\
\hline Caparitor, 800 mmf & AGC decoupling \\
\hline Capacitor, 800 mmf & IF screen bypass \\
\hline Capacitor, 800 mmf & AGC decoupling \\
\hline Capacitol, 800 mmf & IF screen bypass \\
\hline Cepacitor, 800 mmf & IF screea bypas \\
\hline Capacitor, . 1 mfd 400 v . & CRT grid bypass \\
\hline
\end{tabular}
PARTS LIST FOR MODELS H-740T21, H-742K21 AND H-743K21 (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& R e . \\
& \mathrm{No} .
\end{aligned}
\] & Part No. & Description & Function \\
\hline & C315 & RCP 10 W 4104 M & Capacitor, . \(1 \mathrm{mfc}{ }^{\text {c }} 400 \mathrm{v}\). & Video bypass \\
\hline & C317 & V-5596 & Capacitor, 005 mtd & \({ }^{\text {B p plus bypass }}\) \\
\hline & C318 & R3CC20SL120K & Capacitor, 12 mmf & 41.25 mc . trap \\
\hline & C320 & V-5658.1 & Capacitor, 1.0 mmf & Adjacent channei trap \\
\hline & C321 & R3CC20sL120K & Capacitor, 12 mmf & Adjacent channel trap \\
\hline & C322 & RCP10w4203M & Capacitor, . 22 mfd 400 v . & AGC anti-hunt \\
\hline & C323 & RCM20B560K & Capacitor, 56 mmf & 4.5 mc . trap \\
\hline & C 325 & V-5590 & Capacitor, 005 mfd & AGC bypass \\
\hline & C326 & V-9863-1 & Capaciter, 800 mmf & Cathode bypass \\
\hline & C327 & V-9926-2 & Capacitor, 3.3 mmf & \({ }_{\text {IF }} \mathrm{F}\) tank \\
\hline & C328 & R3CC20SL120K & Capacitor, 12 minf & Plate bypass \\
\hline & C329 & v-9926-3 & Capacizor, 4.7 mmf & Det. plate filter \\
\hline & & V -10916-1 & Crystal & Video detector \\
\hline & C330 & RCM20B471K & Capacitor, 470 mmf & Cathode bypass \\
\hline & C331 & V-5658-12 & Capacitor, 6.8 mmf & Vid. amp. plate \\
\hline & C335 & V-5596 & Capacitor, 0005 mifd & Switch bypass \\
\hline & C336 & V-5596 & Capacitor, . 005 mld & Bypass \\
\hline & L301 & V-10771-1 & Reactor, slug cuned & 41.25 mc . triap \\
\hline & L302 & v -9915-i & Reactor, 100 microhenries & Video peaking \\
\hline & L303 & V -5902-1 & Reactor, 140 microhenzies & Video peaking \\
\hline & L304 & V-5902-5 & Reacror, 250 microhenries & Video peaking \\
\hline & L305. & V -4886-1 & Reactor, 14 microhenries & Sync decuupling \\
\hline & L307 & V-4986-1 & Reactor, 14 microhenries & Video amp. decoupling \\
\hline & L308 & V-10771-1 & Reactor, slug tuned & Adjacent channel trap \\
\hline & L309 & V-0882-3 & Reactor, tuned & 4.5 mc . trap \\
\hline & L310 & V-4836-1 & Reactor, 14 microhenries & Decoupling \\
\hline & R301 & RC20AE 104] & Resistor, 100,000 ohms \(1 / 2 \mathrm{w}\). & AGC divider \\
\hline & R305 & RC20AE680K & Resistor, 68 ohnns \(1 / 2 \mathrm{w}\). & Cathode bias \\
\hline & R306 & RC20AE471M & Resistor, 470 ohms \(1 / 2 \mathrm{w}\). & Decoupling \\
\hline & R307 & RC20AE103M & Resistor, 10,000 ohmis \(1 / 2 \mathrm{w}\). & Grid decoupling \\
\hline & R308 & V-9927-2 & Resistor, 4700 ohms \(1 / 2 \mathrm{w}\). & IF damping \\
\hline & R309 & RC20AE 680K & Resistor, 68 ohms \(\frac{1}{2}\) / w. & Cathode bias \\
\hline & R310 & RC20AE471M & Resistor, 470 ohins \(1 / 2 \mathrm{w}\). & Screen decoupling \\
\hline & R311 & V-9927-2 & Resistor, 4700 ohms \(1 / 2 \mathrm{w}\). & IF damping \\
\hline & R312 & RC20AF. 151 K & Resistor, 150 ohns \(1 / 2 \mathrm{w}\). & Cathode bias \\
\hline & R313 & RC20AE471M & Resistor, 470 ohms \(1 / 2 \mathrm{w}\). & Screen decoupling \\
\hline & R316 & RC20AE123K & Resistor, 12,000 chms \(1 / 2 \mathrm{w}\). & Sync take-off \\
\hline & R317 & RC20AE332K & Resistor, 3300 ohms \(1 / 2 \mathrm{w}\). & Det. load \\
\hline \multirow[t]{6}{*}{\(+\)} & R319 & V-11537-1 & Control, 1500 ohms & Picture control \\
\hline & R320 & RC20AE223K & Resistor, 22,000 ohms \(1 / 2 \mathrm{w}\). & Damping \\
\hline & R322 & KC40AE 822 X & Resister, 3200 ohms 2 w . & Plate load \\
\hline & R323 & RC20AE334K & Resistor, 330,000 ohms 1/2 w. & Divider \\
\hline & R324 & RC20AE334K & Resistor, 330,000 ohms 1/2w. & Divider \\
\hline & R 326 & RC30AE683K & Resistor, 68,000 ohms 1 w . & Divider \\
\hline \multirow[t]{12}{*}{\(+\)} & R327 & v-11536-1 & Control, 50,000 ohms & Brightness \\
\hline & R331 & RC20AE 155 K & Resistor, 1.5 megohms \(1 / 2 \mathrm{w}\). & Retrace suppression \\
\hline & R332 & kC20AE564] & Resistor, 560,000 ohms \(1 / 2 \mathrm{w}\) 。 & AGC divider \\
\hline & R335 & RC40AE822K & Resistor, 8200 ohnis 2 w . & Video plate load \\
\hline & R336 & V -9927-10 & Resistor, 10,000 ohins \(1 / 2 \mathrm{w}\). & IF damper \\
\hline & R341 & RC20AE100K & Resistor, 10 ohnis \(1 / 2 \mathrm{w}\). & 1 lst IF grid \\
\hline & R342 & RC20AE221K & Resistor, 220 ohms \(1 / 2 \mathrm{w}\). & Video amp. grid \\
\hline & R343 & V.9894-2 & Control, 2 megohms & Focus \\
\hline & T301 & V -9882-7 & Reactor & IF input \\
\hline & 'T302 & V -9879 & Transformer & Ist IF \\
\hline & T303 & V-9879 & Transformer & 2nd IF \\
\hline & T304 & V -9880 & Transformer & 3rd IF \\
\hline & \multicolumn{4}{|c|}{SECTION 4 - SWEEP} \\
\hline & C401 & RCP10w 4104 M & Capacitor, . 1 mfd 400 v . & Noise clipper coupling \\
\hline & C403 & RCM20B271K & Capacitor, 270 mmf & Sync sep. grid \\
\hline & C404 & RCP10W 4103 M & Capacitor, 001 mfd 400 v . & Vert. sync coupling \\
\hline & C408 & RCP10W4103K & Capacitor, 01 mfd 400 v . & Vert. MV coupling \\
\hline & C410 & RCP10W4503M & Capa citor, 05 mfd 400 v . & Cathode bypass \\
\hline & C411 & RCP10M6104M & Capacitor, . 1 mfd 600 v . & Vert. coupling \\
\hline & C412 & RCP10W4503K & Capacitor, 05 mfd 400 v . & Pulse shaping net \\
\hline \multicolumn{5}{|r|}{\begin{tabular}{l}
+ New part number listed for the first time in Westinghouse radio or television service information. \\
* Sold only as complete assembly. Price shown covers complete assembly. \\
* Price includes Federal Excise Tax. \\
** Price furnished on request. \\
E: All prices are subject to change without notice.
\end{tabular}} \\
\hline
\end{tabular}


PARTS LIST FOR MODELS H-740T21, H-742K21 AND H-743K21 (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { Ref. } . \\
\text { No. }
\end{gathered}
\] & Part No. & Description & Function & \[
\begin{aligned}
& \text { List Price } \\
& \text { Each }
\end{aligned}
\] \\
\hline \multirow[t]{17}{*}{\(+\)} & R419 & V-11539-1 & Control, 750,000 ohms & Vert. hold & \\
\hline & R420 & RC20AE332K & Resistor, 3300 ohms \(1 / 2 \mathrm{~m}\). & Pulse shape net & . 05 \\
\hline & R 421 & RC20AE225K & Resistor, \(2.2 \mathrm{megohms} 1 / 2 \mathrm{~m}\). & Grid return & . 05 \\
\hline & \({ }^{\text {R422 }}\) & RC20AE102K & Resistor, 1000 ohms \(1 / 2 \mathrm{w}\). & Cach. bias & . 05 \\
\hline & R423 & V-6463 & Control, 5000 ohms & Vert. linearity & . 76 \\
\hline & R424 & RC40AE 153 K & Resistor, 15,000 ohms 2 w . & Decoupling & . 20 \\
\hline & R425 & RC20AE561K & Resistor, 560 ohms \(1 / 2 \mathrm{w}\). & Transieni damping & . 05 \\
\hline & \({ }^{\text {R426 }}\) & \(\mathrm{RC}^{\text {RCOAE561K }}\) & Resistor, 560 ohms \(1 / 2 \mathrm{~m}\). & Transient damping & . 05 \\
\hline & R433 & RC20AE821K & Resistor, 820 ohms \(1 / 2 \mathrm{w}\). & Cathode bias & . 05 \\
\hline & R434 & RC20AE274] & Resistor, 270,000 ohms \(1 / 2 \mathrm{~m}\). & HMV grid & . 15 \\
\hline & R435 & V -11538-1 & Control, 125,000 ohms & H. hold & . 75 \\
\hline & R436 & RC20AE563K & Resistor, 56,000 ohms \(1 / 2 \mathrm{w}\). & Plate load & . 10 \\
\hline & \({ }^{\text {R4337 }}\) & RC20AE682K & Resistor, 6800 ohms \(1 / 2 \mathrm{w}\). & Horiz. di scharge & . 05 \\
\hline & R438 & RC20AE333K & Resistor, 33,000 ohms \(1 / 1 / \mathrm{w}\). & Boost decoupling & . 05 \\
\hline & \({ }^{\text {R439 }}\) & RC20AE474K & Resistor, 470,000 ohms \(1 / 2 \mathrm{~m}\). & Grid retum & . 05 \\
\hline & \({ }^{\text {R440 }}\) & RC20AE151M & Resistor, 150 ohms \(1 / 2 \mathrm{w}\). & Suppressor & . 06 \\
\hline & R441 & RC20AE273K & Resistor, 18,000 ohms \(1 / 2 \mathrm{w}\) & HMV decoupling & . 06 \\
\hline \multirow[t]{6}{*}{\(+\)} & R442 & V -11328-9 & Resistor, 8200 ohms 5 m . & Bleeder & .is \\
\hline & R444 & v -9927-7 & Resistor, 330,000 ohms 1 m . & HV filter & . 10 \\
\hline & \({ }^{\mathrm{R} 445}\) & RC20AE472K & Resistor, 4700 ohms \(1 / 2 \mathrm{~m}\). & Decoupling & . 05 \\
\hline & \({ }^{\text {R446 }}\) & \(\mathrm{RC}^{\text {R } 20 A E 273 K}\) & Resistror, 27,000 ohms \(1 / 2 \mathrm{w}\). & Plate load & . 06 \\
\hline & \({ }^{\text {R452 }}\) & \(\mathrm{RC}^{\text {R } 20 A E 102 K}\) & Resistor, 1000 ohms \(1 / 2 \mathrm{~m}\). & AGC filter & . 05 \\
\hline & \({ }^{\text {R455 }}\) & RC20AE473K & Resistor, 47,000 ohms \(1 / 2 \mathrm{w}\). & Decoupling & . 05 \\
\hline \multirow[t]{25}{*}{\(+\)} & \({ }^{\text {R457 }}\) & V -9375-4 & Resistor, 3000 ohms 20 m . & Bleeder & 1.35 \\
\hline & R460 & RC30AE330K & Resistor, 33 ohms 1 m . & Cachode bias & . 11 \\
\hline & R461 & RC20AE223K & Resistor, 22,000 ohms \(1 / 2 \mathrm{w}\). & Coil shunt & . 06 \\
\hline & R471 & RC20AE105K & Resistor, 1 megohm \(1 / 2 \mathrm{w}\). & AFC bleeder & . 0 : \\
\hline & \({ }^{\text {R472 }}\) & \(\mathrm{RC}^{\text {20AE }} 105 \mathrm{~K}\) & Resistor, \(1 \mathrm{megohm} 1 / 2 \mathrm{~m}\). & AFC cathode & . 0 S \\
\hline & \multirow[t]{2}{*}{R474} & \(\mathrm{RCO}^{\text {R } 20 A E 183 K}\) & Resistor, \(18,000 \mathrm{ohms} 1 / 2 \mathrm{~m}\). & Error takeoff & .0s \\
\hline & & RC20AE391K & Resistor, 390 ohms \(1 / 2\) w. (used only & Transient damping & \\
\hline & R475 & RC20AE224K & Resistor, 220,000 ohms \(1 / 2 \mathrm{w}\). & Plate decoupling & . 05 \\
\hline & \multirow[b]{2}{*}{R477} & RC20AE474K & Resistor, 470,000 ohms \(1 / 1 / \mathrm{m}\). & AFC delay & . 05 \\
\hline & & RC20AE473K & Resistor, 47,000 ohms \(1 / 2 \mathrm{w}\). & Plate load & . 05 \\
\hline & R482 & \(\mathrm{RC}^{\text {20AE }} \mathbf{1 0 5} \mathrm{K}\) & Resistor, 1 megohm \(1 / 2 \mathrm{w}\). & Load & . 05 \\
\hline & R483 & RC20AE 393 K & Resistor, 39,000 ohms \(1 / 2 \mathrm{w}\). & Decoupling & . 05 \\
\hline & \multirow[t]{2}{*}{R485} & RC20AE 103K & Resistor, 10,000 ohms \(1 / 2 \mathrm{w}\). & Decoupling & . 05 \\
\hline & & RC20AE104K & Resistor, 100,000 ohms \(1 / 2 \mathrm{w}\). & Plate load & . 05 \\
\hline & R487 & RC20AE682K & Resistor, 6800 ohms \(1 / 2 \mathrm{~m}\). & Pulse shape net & . 05 \\
\hline & \({ }^{\text {R488 }}\) & RC20AE334K & Resistor, 330,000 ohms \(1 / 2 \mathrm{~m}\). & Sync control plate & . 05 \\
\hline & \multirow[t]{2}{*}{R489} &  & Resistor, 68,000 ohms 1 w. & Bleeder & . 09 \\
\hline & & RC20AE222K & Resistor, 2200 ohms \(1 / 2 \mathrm{w}\). & Signal divider & . 05 \\
\hline & \multirow[t]{2}{*}{\({ }_{\text {R493 }}\)} & RC20AE222K & Resistor, 2200 ohms \(1 / 2 \mathrm{w}\). & Cathode bias & . 05 \\
\hline & & RC20AE274K & Resistor, 270,000 ohms \(1 / 2 \mathrm{w}\). & Divider & . 06 \\
\hline & \({ }_{\text {R496 }}^{\text {R494 }}\) & RC40AE 153 K & Resistor, 15,000 ohms 2 m . & Vert. decoupling & . 20 \\
\hline & \multirow[t]{2}{*}{\({ }_{\text {R4998 }}^{\text {R497 }}\)} & \({ }^{\mathrm{RCC2} 20 \mathrm{AE}} 103 \mathrm{~K}\) & Resistor, 10,000 ohms \(1 / 2 \mathrm{w}\). & Divider & . 05 \\
\hline & & RC20AE470K & Resistor, 47 ohms \(1 / 2 \mathrm{w}\). & Divider & . 05 \\
\hline & R499 & RC40AE392K & Resistor, 3900 ohms 2 w . & Dropping & . 22 \\
\hline & \({ }^{1401}\) & V-10909-1 & Transformer & Vertical output & 3.90 \\
\hline \multirow[t]{3}{*}{\(+\)} & \({ }^{1402}\) & V-11548-2 & Transformer & Hor. output \& HV & 13.75 \\
\hline & T403 & v -9902 & Control & Widh & 1.55 \\
\hline & \({ }^{2401}\) & V -11192-1 & Filter & Integrating & 1.30 \\
\hline & 2402 & v-11570-1 & \begin{tabular}{l}
Yoke assembly (contains V-11571-1 \\
defl. yoke) \\
SECTION 5 - POWER
\end{tabular} & Deflection & 13.50 \\
\hline \multirow{3}{*}{+} & -C501 & V-9891 & Capacitor, 40 mfd 450 v. (assy. con- & & \\
\hline & \multirow[t]{2}{*}{\(\bullet{ }^{\text {C502 }}\)} & \multirow[t]{2}{*}{v -9891} & \multirow[t]{2}{*}{Capacitor, 40 mid 450 v. (assy. consists of C220, C441, C501, C502)} & Filter output & \(4.35{ }^{\circ}\) \\
\hline & & & & Filter input & \(4.35^{\circ}\) \\
\hline & \({ }^{\text {c503 }}\) & V-5040-15 & Capacitor, 0101 mfd 600 v . & Line filter & . 35 \\
\hline & C504 & V-5040-15 & Capacitor, 01 mfd 600 v . & Line filter & . 35 \\
\hline & L501 & V -6471-2 & Reactor & LV filter & 2.35 \\
\hline & \({ }^{\text {R401 }}\) & RC30AE224M & Resistror, 22,000 ohms 1 w . & Protection & . 10 \\
\hline \multirow[t]{3}{*}{\(\pm\)} & \({ }_{\text {R }}^{\text {R } 5 \text { O2 }}\) & V-1132888 & Resistor, 50 ohms 10 m . & Current limiter & . 75 \\
\hline &  & \(\mathrm{V}=11540-1\)
\(\mathrm{~V}-11544-1\) & Switch (assy. consists of SW501, R208) & Onooff & \(1.20^{\circ}\) \\
\hline & & \multicolumn{4}{|l|}{+ New part number listed for the first time in Westinghouse radio or television service information.} \\
\hline
\end{tabular}
+ New part number listed for the first time in Westinghonse radio or television service information.
-. Sold only as complete assembly. Price shown covers complete assembly.
... Price includes Federal Excise Tax.

NEW FEATURES IN V.2233-1 CHASSIS

FUSE
A \(1 / 4\) ampere fuse is used to protect the horizontal output tube and associated circuits. The fuse is located on top, near the center of the sweep chassis.

\section*{PHONO PROVISIONS}

A record player can be connected to the phono jack located on the back of the IF chassis. position, plate voltage is removed from the 3rd IF amplifier, screen voltage is removed from the video amplifier, the grid of the CRT is grounded, and the GAU6 sound IF amplifier serves as an audio amplifier for the phono signal. Thus, during phono operation, the face of the CRT is complete ly darkened.
16 KV HIGH VOLTAGE
A high-efficiency auto-transformer provides approximately 16,000 volts for the second anode of the CRT. This high voltage is desirable for good picture definition. A new tube ( 6 AX4GT) which features a higher cathode to heater voltage rating is used in the horizontal damper circuit. Along with these circuit variations from previous Mestinghouse chassis, the 15 , taken from the horizontal multivibrator rather than the horizontal output stage. NEW CIRCUIT

If 60 cycle vertical sync pulses reach the horizontal sweep circuits, they may cause improper operation which appears as a bend in the ated by taking some 60 cycle pulse voltage ated by taking some 60 cycle pulse voltage
from the cathode of the vertical multivibrator dividing it to the correct amplitude (R497 and R498), and applying it to the grid of the horizontal multivibrator so as to cancel any 60 cycle sync pulses feeding through to this point.

\title{
SUPPLEMENTARY INFORMATION CHASSIS ASSEMBLY V-2233-1
}

\section*{PRODUCTION CHANGES}

The changes that follow are incorporated in \(\begin{gathered}\text { TUNER VOLTAGE - To prevent excessive } \\ \text { power dissipation in the RF amplifier tube under }\end{gathered}\) ater production of the V-2233-1 chassis and are included on the schematic diagram in this supplement.
power dissipation in the RF amplifier tube under
conditions of high line voltage, a 1000 ohm 1 watt resistor. (R113) is inserted in series with R112 which connects to terminal \(\# 10\) of the tuner.

NOTE: All prices are subject to change without notice.

AUDIO TONE - To improve the tone control action and eliminate excessive high tones, C215 in the plate circuit of the 6 BN6 6 md capacitor (C235) is added in parallel's with C215.

RESISTOR CHANGE - The audio load resistor (R232) located in the plate circuit of the 60 18,000 ohms to decrease power dissipation in the resistor.

PARASITIC SUPPRESSION - To suppress parasitic oscillations in the audio output stage at high volume levels, a 150 ohm resistor ( R 219 ) is inserted in series with the control grid of the 6BK5 tube and a 1000 ohm resistor (R234) is inserted in series with the screen grid.

FM DETECTOR - To improve the limiting action in the 6BN6 FM detector, the plate load resistor ( R 210 ) is changed to 330,000 ohms.

PHONO INPUT - To insure against overload on phonograph operation, the phono input voltage in series with the phono input jack.

TWEET ELIMINATION - To eliminate tweet interference which appears on the picture in some instances, an 800 mmf capacitor (C238) is added accelerator voltage to the 6BN6 FM detector.

RESISTOR CHANGE - To lower power dissipation in the video amplifier plate load resistance when the picture control is set at minimum resistance, a 10 ohm resistor (R334) is added in series with the picture control.

RESISTOR CHANGE - A single 3900 ohm 5 watt resistor (R322) is used as a video amplifier
plate load resistor in place of the two 8200 ohm resistors (R322 and R335) that had been used in parallel.

INCREASED BRIGHTNESS RANGE - To improve the range of the brightness control, a 10,000 ohms resistor ( R 325 ) is inserted between the control and ground.

HORIZONTAL OVERDRIVE ELIMINATION To eliminate a white vertical line which appears approximately one third of the way from the left in the horizontal multivibrator plate circuit (pin \# 6 ) is changed to 27,000 ohms, decreasing the drive to the horizontal output stage.

VERTICAL BAND ELIMINATION - To eliminate a vertical band that appears on the right side of the raster under some conditions, a 100,000 voltage line and the 290 volt line.

RIPPLE ELIMINATION - To reduce hum at the plate of the horizontal multivibrator which may cause vertical lines in the picture to wave slightly when the receiver is operated on a nonsynchronous AC line, C466 located in the pin. \#6 plate circuit of the horizontal multivibrator is changed to 0.25 mfd .

WIDTH REACTOR - To reduce temperature rise in the horizontal output transformer, the width reactor, L 413 , is changed to part number \(\mathrm{V}-11546-3\).

In the original parts list for the V-2233-1 chas sis, reference number T403 is erroneously listed V - a width control. Since 1403 is no used is the should be deleted from the parts list to avoid confusion

DAMPER TUBE SUBSTITUTE - A GAS4GT ube can be substituted in place of the 6AX4GT horizontal damper tube.

PARTS LIST CORRECTIONS AND ADDITIONS
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Ref. } \\
& \text { No. }
\end{aligned}
\] & Part No. & Description & Function & List Price Each \\
\hline & V-6171-6 & Fuse, \(1 / 4 \mathrm{amp} .250 \mathrm{v}\). & & \$ . 27 \\
\hline & V-11966-1 & Holder, fuse & & . 20 \\
\hline C142 & RCP10M6103M & Capacitor, . 01 mfd 600 v . & AGC filter & . 21 \\
\hline R113 & RC30AE 102M & Resistor, 1000 ohms 1 w . & B plus dropping & . 09 \\
\hline C208 & RCP10M6103M & Capacitor, . 01 mfd 600 v . & Tone compensation & . 21 \\
\hline C213 & RCP 10 M 6502 M & Capacitor, .005 mfd 600 v . & Tone compensation & . 20 \\
\hline C215 & RCM20B271K & Capacitor, 270 mmf & RF bypass & . 20 \\
\hline C222 & RCP10M6203M & Capacitor, . 02 mfd 600 v . & Audio coupling & . 25 \\
\hline C224 & RCP10M6502M & Capacitor, . 005 mfd 600 v . & Tone control coupling & . 20 \\
\hline C234 & RCP 10M6102M & Capacitor, . 001 mfd 600 v . & Decoupling & . 18 \\
\hline C235 & RCP10M6102M & Capacitor, 0001 mfd 600 v . & Audio bypass & . 18 \\
\hline C238 & V-9863-1 & Capacitor, 800 mmf & Audio bypass & . 20 \\
\hline R210 & RC20AE334K & Resistor, 330,000 ohms \(1 / 2 \mathrm{w}\). & Plate load & . 05 \\
\hline R219 & RC20AE151K & Resistor, 150 ohms 1/2w. & Suppressor & . 05 \\
\hline R232 & RC40AE183K & Resistor, 18,000 ohms 2 w . & Dropping & . 18 \\
\hline R234 & RC20AE102K & Resistor, 1000 ohms \(1 / 2 \mathrm{w}\). & Decoupling & . 05 \\
\hline R245 & RC20AE474K & Resistor, 470,000 ohms \(1 / 2 \mathrm{w}\). & Divider & . 05 \\
\hline C315 & RCP10M4104M & Capacitor, . 1 mfd 400 v . & Video bypass & . 25 \\
\hline C322 & RCPP10M6203M & Capacitor, . 02 mfd 600 v . & AGC anti-hunt & . 25 \\
\hline R322 & V-5924-3 & Resistor, 3900 ohms 5 w . & Plate load & 1.15 \\
\hline R325 & RC20AE103K & Resistor, 10,000 ohms \(1 / 2 \mathrm{w}\). & Brightness bleeder & . 05 \\
\hline R344 & RC20AE100K & Resistor, 10 ohms \(1 / 2 \mathrm{w}\). & Cathode bias & . 06 \\
\hline C404 & RCP10M6103M & Capacitor, . 01 mfd 600 v . & Sync coupling & . 21 \\
\hline C408 & RCP10M6103K & Capacitor, . 01 mfd 600 v . & VMV coupling & . 25 \\
\hline C415 & V-9792-10430J & Capacitor, 43 mmf (used only with V-11571-2 defl. yoke) & Transient damping & \\
\hline C416 & RCP10M4254M & Capacitor, 25 mfd 400 v . & Hor. yoke return & . 40 \\
\hline C432 & RCP 10M4603M & Capacitor, .06 mfd 600 v . & Linearity net work & . 25 \\
\hline C443 & RCP10M6103M & Capacitor, .01 mfd 600 v . & AGC delay & 21 \\
\hline C454 & RCP 10M6103M & Capacitor, . 01 mfd 600 v . & MV grid & . 21 \\
\hline C455 & RCP10M6502M & Capacitor, .005 mfd 600 v . & Coupling & . 20 \\
\hline C466 & RCP 10074254M & Capacitor, . 25 mfd 400 v . & HMV decoupling & . 40 \\
\hline C470 & RCP 10M4403M & Capacitor, 04 mfd 400 v . & Linearity network & . 25 \\
\hline L413 & V-11546-3 & Reactor & Width & 1.40 \\
\hline R410 & RC30AE104K & Resistor, 100,000 ohms 1 w . & Bleeder & . 10 \\
\hline R485 & RC20AE 273 K & Resistor, 27,000 ohms \(1 / 2 \mathrm{w}\). & Plate decoupling & . 06 \\
\hline
\end{tabular}
- Price furnished on request.

NOTE: All prices are subject to cbange without notice.


\section*{SUPPLEMENTARY INFORMATION CHASSIS ASSEMBLY V-2232-2}

A V-2232-2 chassis is used in later production of Model H-737T17. Included in this supplement are a schematic diagram, top view, bottom view and chassis parts list covering the V-2232-2 chassis.

For alignment, odjustment and other service information on the V-2232-2 chassis, refer to the H-740T21, H-742K21 and 11.743 K 21 service notes.


V.2232-2 CHASSIS PARTS

- Newt part number listed for the first time in Westinghouse radio or television service information.
- Sold only as complete assembly. Price shovn covers complete assembly.
\(\therefore\) Price includes Federal Excise Tax.
... Price furnished on request.
NOTE: All prices are subject to change without notice

PARTS LIST FOR V-2232-2 CHASSIS (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Ref.} & \multicolumn{9}{|c|}{PARTS LIST FOR V-2232-2 CHASSIS (continued)} \\
\hline & Part No. & Description & Function & List Price
Each & \[
\begin{aligned}
& \text { Ref. } \\
& \text { No. }
\end{aligned}
\] & Part No. & Description & Function & Each \\
\hline -C413 & v-11535-1 & \multirow[t]{2}{*}{Capacitor, 150 mfd 50 v . (as sy, consists of C413, C414, C440, C211)} & \multirow[t]{2}{*}{Filter} & \multirow[t]{2}{*}{\$3.75*} & R419 & V-9894-3 RC20AE332K & Control, 750,000 ohms & \multirow[t]{2}{*}{\begin{tabular}{l}
Vert. hold \\
Pulse shape net \\
Grid return
\end{tabular}} & \\
\hline \({ }^{\text {C }}\) 414 & v-11535-1 & & & & R421 & RC20AE225K & Resistor, 2.2 me gohms \(1 / 2 \mathrm{w}\). & & \\
\hline & & sists of C413, C414, C440, C211) & Filter & 3.75 - & R422 & RC20AE102K & Resistor, 1000 ohms \(1 / 2 \mathrm{w}\). & Cath. bias & . 05 \\
\hline C415 & v -9792-10510J & Capacitor, 11 mmf (used only with & & & R423 & \({ }^{\mathrm{V}-6463}\) & Controi, 5000 ohms & Vert. linearity & .76 \\
\hline + C 415 & v-9792-10430 & (the V-11.571-1 defli. yoke) & Transient damping & . 25 & R424 &  & Resistor, 15,000 ohms 2 w.
Resistor, 560 ohms \(1 / 2 \mathrm{w}\). & Decoupling
Transient damping & . 20 \\
\hline & & V-11571-2 defl. yoke) & Transient damping & .. & R426 & RC20AE561K & Resistor, 560 ohms \(1 / 2 \mathrm{w}\). & Transient damping & .05 \\
\hline C416 & RCP 10 W 4254 M & Capacitor, 25 mfd 400 v . & Hor. yoke return & . 35 & R433 & RC20AE821K & Resistor, 820 ohms \(1 / 2 \mathrm{w}\). & Cathode bias & . 05 \\
\hline \({ }^{4} 421\) & \({ }^{\text {RCM }}\) 208101K & Capacitor, 100 mmf & MV plate bypass & . 22 & R434 &  &  & \({ }_{\text {HMV grid }}^{\text {Hocizo }}\) & . 15 \\
\hline \(\mathrm{C}_{4} 22\) & RCM20B101K & \({ }_{\text {Capacitor }}{ }_{\text {Capacitor, }} 100 \mathrm{mmf}\) mid 450 v . & MV coupling
MV decoupling & .22
1.25 & R435
R 436 & V-10915-1 RC20AE563K &  & \({ }_{\text {Horiz. }} \begin{aligned} & \text { Hold } \\ & \text { Plate load }\end{aligned}\) & . 80 \\
\hline \({ }_{C}{ }_{C 424}\) & \begin{tabular}{l}
V-10293-1 \\
RCM30C392
\end{tabular} &  & MV decoupling & \begin{tabular}{l}
1.25 \\
1.17 \\
\hline
\end{tabular} & (R436 & RC20AES63K
RC20AE682K & Resistor, 56,000 ohms \(1 / 2 \mathrm{w}\). & Plate load
Horiz. discharge & . 10 \\
\hline C425 & RCP 10W4104M & Capacitor, .1 mfd 400 v . & MV plate decoupling & . 25 & R438 & RC20AE333K & Resistox, 33,000 ohms \(1 / 2 \mathrm{w}\). & Plate decoupling & . 05 \\
\hline C426 & RCM20B391K & Capacitor, 390 mmf & Pulse shaping & . 23 & \({ }^{\mathrm{R} 439}\) & RC200E474K & Resistor, 470,000 ohms \(1 / 2 \mathrm{~m}\). & Grid return & . 05 \\
\hline C427 & RCP 10 MG 103 M & Capacitoc, .01 mfd 600 v . & Coupling & . 21 & R440 & RC20AE151M & Resistor, 150 ohms \(1 / 2 \mathrm{~m}\). & Suppresso & . 06 \\
\hline C428 & RCP10w4104M & Capacitor,, 1 mfd 400 v . & Screen bypass & . 25 & \({ }_{\text {R44 }}\) & RC20AE273K & Resistor, 18,000 ohns \(1 / 2 \mathrm{~m}\). & HMV decoupling & . 06 \\
\hline \({ }^{4} 429\) &  & Capacitor, 1 md 600 v . & Screen bypass & .35
1.70
1 & R442 & V-11327-9 &  & Screen decoupling & . 75 \\
\hline \({ }_{\text {C }}\) C432 & RCP 10 O 4603 M & Capacitor, 006 mfd 400 v . & Linearity network & . 22 & R445 & RC20AE472K & Resistor, 4700 ohms \(1 / 2 \mathrm{w}\). & Decoupling & . 05 \\
\hline C433 & RCP 10 W 4104 M & Capacitor, 11 mfd 400 v . & Filter & . 24 & R446 & RC20AE273K & Resistor, 27,000 ohms \(1 / 2 \mathrm{w}\). & Plate load & . 06 \\
\hline C434 & v -9863-1 & Capacitox, 800 mmf & Heater bypass & . 20 & R452 & \(\mathrm{RC}^{\text {R } 20 A E 102 K}\) & Resistor, 1000 ohms \(1 / 2 \mathrm{w}\). & AGC filter & . 05 \\
\hline C435 & V -9863-1 & Capacitor, 800 mmf & Heater bypass & . 20 & R455 & RC20AE473K & Resistox, 47,000 ohms \(1 / 2 \mathrm{w}\). & Decoupling & . 05 \\
\hline \({ }^{437}\) & V.5596 & Capacitos, . 0005 mfd & He ater bypass & . 25 & R457
R 460 & \({ }_{\text {V }}^{\text {V-9375-4 }}\) & Resistor, 3000 ohms 20 m .
Resistor,
S & \({ }^{\text {Bleeder }}\) & 1.35 \\
\hline C.438 \({ }_{\text {- } 440}\) &  &  & Heater bypass & . 25 & \({ }_{\text {R4661 }}\) & \({ }_{\text {RCC }}\) & Resistor, 22,000 ohms \(1 / 2 \mathrm{w}\). & \({ }_{\text {Cothode bias }}^{\text {Coil shunt }}\) & . 11 \\
\hline & & sists of C413, C414, C440, C211) & Decoupling & 3.75 - & \({ }^{\text {R47 }}\) & RC20AE105K & Resistor, 1 me gohm \(1 / 2 \mathrm{w}\). & AFC bleeder & .05 \\
\hline \({ }^{\text {- }} 4411\) & V -9891 &  & Filter & \(4.35{ }^{\circ}\) & R472 & \(\stackrel{\text { RC20AE10sK }}{\text { RC20AE183K }}\) & Resistor, \(1 \mathrm{megohm} 1 / 2 \mathrm{mi}\). & \(\mathrm{AFC}^{\mathrm{AFCathode}}\) & . 05 \\
\hline C443 & RCP 10 W 4103 M & Capacitor, 011 mfd 400 v . & AGC delay & . 20 & R474 & RC20AE391K & Resistor, 390 ohms \(1 / 2 \mathrm{w}\). & Transient damping & . 08 \\
\hline C444 & RCP 10 W 4104 M & Capacitor, .1 mfd 400 v . & Cathode bypass & . 24 & \({ }^{\text {R } 475}\) & RC20AE224K & Resistor, 220,000 ohms \(1 / 2 \mathrm{w}\). & Plate decoupling & . 05 \\
\hline C445 & RCP 10w4254M & Capacitor, 25 mfd 400 v . & \({ }^{\text {Filter }}\) & . 35 & R476
R477 &  & Resistor, 4700000 ohms \(1 / 1 / \mathrm{w}\). & \({ }_{\text {AFC delay }}\) & . 05 \\
\hline \(\mathrm{C}_{446}\) &  &  & Cathode bypass
Control bypass & . 224 & R477
R 482 & RC20AE473K
RC20AE105K & Resistor, 47,000 ohms \(1 / 2 \mathrm{w}\). \({ }^{\text {Resistor, }} 1\) megohm \(1 / 2 \mathrm{w}\). & Plate load & . 05 \\
\hline C447 & \({ }_{\text {RCM20B101K }}\) & Capacitor, 11 mfa 400 v . & AFC cathode & . 22 & R483 & RC20AE393K & Resistor, 39,000 ohms \(1 / 2 \mathrm{w}\). & Decoupling & . 05 \\
\hline C452 & RCM20B681K & Capacitor, 680 mmf & AFC plate bypass & . 25 & \({ }^{\text {R485 }}\) & RC20AE 103 M & Resistor, 10,000 ohms \(1 / 2 \mathrm{w}\). & Decoupling & . 05 \\
\hline \(\mathrm{C}_{4} 53\) & \({ }^{\text {RCM203391K }}\) & Capacitior, 390 mmf & AFC coupling & . 23 & R486 & RC20AE104K & Resistor, 100,000 chms \(1 / 2 \mathrm{w}\). & Plate load & . 05 \\
\hline C454 & \({ }^{\text {RCP }} 10\) O/4103M & Capacitor, 0.01 mfd 400 v . & MV grid & . 210 & R487
R488 &  &  & Pulse shape net & . 05 \\
\hline C455 & RCP 10044502 M
RCP &  & MV grid & . 24 & \({ }_{\text {R } 492}\) & RC20AE222K & Resistor, 2200 ohms \(1 / 2 / \mathrm{w}\). & Signal divider & . 05 \\
\hline \({ }^{4} 457\) & V -11228-1 & Capacitor, \(5-40 \mathrm{mmf}\) & MV trimmer & . 35 & \({ }_{\text {R493 }}\) &  & Resistor, 2200 ohm \(1 / 2 \mathrm{w}\). & Cathode bias & . 05 \\
\hline \({ }_{\text {C }}\) &  &  & AFC coupling & . 20 & R494 & RC20AE 274 K
RC 40 AE 153 K & Resis sor, 270,000 chms \(1 / 2 \mathrm{w}\).
Resistor, 15,000 chms 2 w . & Divider & .06 \\
\hline C466 &  &  & \({ }_{\text {Cathode }}\) Hypass & . 20 & R497 &  & Resistor, 15,000 dhms 21 w . & Vert. dec oupling & . 205 \\
\hline C470 & RCP \(10 W 4403 \mathrm{M}\) & Capa citor, 04 mfd 400 v . & Linearity network & . 20 & R498 & RC20AE470K & Resistor, 47 ohms \(1 / 2 \mathrm{w}\). & Divider & . 05 \\
\hline C472 & RCM208470K & Capacitor, 47 mmf & Sync sep. plate & . 22 & R499 & RC40AE222K & Resistor, 2200 ohms 2 w . & Dropping & \\
\hline \({ }^{1} 401\) & V-6764 & Coil & Ringing & 1.45 & T401 & V -10909-1 & Transformer & Vertical output & P.
3.90 \\
\hline \(\mathrm{L}^{402}\) & V-11545-1 & Reactor
Reactor, 1.1 microhenries & H. linearity \({ }_{\text {Heater }}\) & \(\begin{array}{r}1.30 \\ \\ \hline 88\end{array}\) & \({ }_{7401}^{\text {T402 }}\) & V-11548-2 & \({ }_{\substack{\text { Transformer } \\ \text { Filter }}}^{\text {cer }}\) & Hor. autput \& HV & 13.75 \\
\hline L406 & V -4886-2 & Reactoor, 1.1 mictohenties & Heater decoupling & . 38 & z402 & V -1 1570-1 & Yoker assembly (contains V-11571-1 & & 1.30 \\
\hline L407 & V -4886-2 & Reactor, 1.1 microherries & Heater isolation & . 38 & & & defl. yoke) & Deflection & 13.50 \\
\hline \begin{tabular}{l} 
( \\
\(+\begin{array}{l}\text { L413 } \\
\text { R401 }\end{array}\) \\
\hline
\end{tabular} & V-11546-3 \({ }_{\text {RCOME }}\) & Reactor
Resistor, 4700 ohms \(1 / 2 \mathrm{w}\). &  & 1.40 & & & & & \\
\hline R402 & RC40AE183K & Resistor, 18,000 ohms 2 w . & AGC cathode & . 18 & & & section 5 - power & & \\
\hline R403 & RC30AE472K & Resistor, 4700 ohms 1 w . & AGC screen & . 09 & & & & & \\
\hline \({ }^{\text {R } 404}\) & \(\mathrm{RC}^{\text {RCOAE }}\) 224K & Resistcx, 220,000 ohms \(1 / 2 \mathrm{w}\). & \({ }^{\text {Pos. }}\) Dias limiting & . 05 & \(\bullet\) C501 & V -9891 & Capacitor, 40 mfd 450 v . (assy. con- & Fil & \\
\hline \({ }_{\text {R406 }}\) &  & Resistor, 470,000 ohms \(1 / 2 / 2 \mathrm{w}\). & Sync sep. grid & . 05 & -C502 & \(\mathrm{v}-8891\) & Capacitox, 40 mid 450 v. (assy. con- & Filter output & 4.35 - \\
\hline R407 & RC20AE474K & Resistor, 4700000 ohms \(1 / 2 \mathrm{w}\). & Coupling limiter & . 05 & & & sists of C220, C441, C501, \({ }^{\text {c }}\) ( \({ }^{\text {a }}\) & Filter input & 4.35* \\
\hline R408
R409 &  &  & Decoupling \({ }_{\text {Sync sepe }}\) & . 05 & C503 & V-5040-15 &  & \({ }_{\text {Line }}\) Liliter & . 35 \\
\hline R411 & RC20AE682K & Resistor, 6800 ohms \(1 / 2 \mathrm{w}\). & Sig. divider & . 05 & 1501 & V6471-2 & Reactort, 01. & LV filter & \(\begin{array}{r}\text { 235 } \\ \\ \\ \hline .35\end{array}\) \\
\hline R413 &  & Resistox, 100,000 ohms 1 w . & Decoupling & -10 & R501 & RC30AE224M & Resistor, 22,000 ohms 1 m . & Procection & . 10 \\
\hline R415
R416 & RC20AE224K & Resistror, \(220,000 \mathrm{ohms} 1 / 2 \mathrm{w}\).
Control, 250,000 ohms & Bleeder
Height & . 75 & \({ }_{-}^{\text {R } 565501}\) & V - 11328 -8 & Resistor, 50 ohms 10 w . & Current limit & . 75 \\
\hline R417 & RC20AE564K & Resistor, 560,000 otms \(1 / 2 \mathrm{w}\). & Grid return & . 05 & & & R319, SW501) & Offoon & \\
\hline R418 & RC20AE122K & Resistor, 1200 ohms \(1 / 2 \mathrm{w}\). & Cathode bias & . 05 & + T501 & V -11544-2 & Transiormer & Power & 19.00 \\
\hline  & number listed ly as complete \(a\) ncludes Federal es are subject to & \begin{tabular}{l}
first time in Westinghouse radio or te ly. Price shown covers complete asse Tax. \\
ge without notice.
\end{tabular} & vision service informa ly. & & ¢оד̇E: &  & first time in Westinghouse radio or te ly. Price shown covers complete asse Tax. & vision service infor b. & \\
\hline
\end{tabular}
© John F. Rider



\section*{MODEL} H-755K21
```

SERVICE NOTES

```


FIG. 1 - SOUND I-F AND AUDIO CIRCUITS IN V-2233-2 CHASSIS

For service information on the V-2233-2 chassis, refer to the H-740T21, H-742K21 and H-743K21 service notes and any supplementary information thereto. With a few exceptions the V-2233-2 chas-
sis is the same as the \(V-2233-1\) chassis used in sis is the same as the V-2233-1 chassis used in Models H-740T21, H-742K21 and H-743K21. As include the phono operation provisions nor the not
control which are in the V-2233-1 chassis. Another control which are in the \(V\) 2233 chassis. Anothe difference is the location of the horizontal hold,
brightness, off-on-volume, and picture controls. In brightness, off-on-volume, and picture controls. In
the \(V-2233-2\) chassis, these controls are located as indicated in the Model H-723K21 service notes.

The following parts are used in the V-2233-2 chassis in lieu of the corresponding parts listed for the V-2233-1 chassis.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Ref. } \\
& \text { No. }
\end{aligned}
\] & Part No. & Description & Function & List Price Eacb \\
\hline & V-11338-1 & Belt, dial drive & & \$. 30 \\
\hline C215 & RCP10W4102M & Capacitor, . 001 mfd 400 v . & Tone compensation & . 17 \\
\hline C235 & RCM20B471K & Capacitor, 470 mmf & Bypass & . 31 \\
\hline *R208 & V-9877-4 & Control, 500,000 ohms (assy consists of R208, R319, SW S01) & Volume & 2.15* \\
\hline *R319 & V-9877-4 & Control, 1500 ohms (assy consists of R208, R319, SW501) & Picture & 2.15* \\
\hline R327 & V-10914-1 & Control, 50,000 ohms & Brightness & \$ . 80 \\
\hline R 419 & V-9894-3 & Control, 750,000 ohms & Vert. hold & . 75 \\
\hline R435 & V-10915-1 & Control, 125,000 ohms & Horiz. hold & . 80 \\
\hline *SW501 & V-9877-4 & Switch, (assy consists of R208, R319, SW501) & On-off & 2.15* \\
\hline
\end{tabular}

\section*{H-755K21 MODEL PARTS}

The following parts are used in Model H-755K21 in lieu of the model parts listed in the H-740T21, H-742K21 and \(\mathrm{H}-743 \mathrm{~K} 21\) service notes:

Part No.
V -10924-3
\(+V-1274-2\)
V-5860-14
V-5684-2
\(V-5522\)
\(V-10962-15\)
\(V-10962-15\)
\(V-11501-1\)
V - \(11501 \cdot 1\)
V-9938-5
V-9939-6
V-10926-1
V-9940-4
V-11146-2
V -1 0929-2
V-10932-2
V-11690-1
V-9770-1
V-10034-3
+ New part number listed for the first time in Westinghouse radio or television service information
* Sold only as complete assembly.
* Price includes Federal Excise Tax.

NOTE: All prices are subject to change without notice.


Base, channel selector
Description

Cabinet Assembly, speake....................
Cable Assembly, sp
Clip, Plate to ma
Cord, AC power
Cover Assembly, bac
Gasket, dust seal
Grille Clorh
Knob, off-on-volume
Knob, picture
Knob, horiz. hold and brightness
Knob, fine tuning (rear)
Knob, channel selector
Mask, picture tube
Plate, mask ..........
Plate, front glass
Plate, front glass
Spring, channel se.......................
- 30
\(\$ .30\)
\(65.47 * *\)
\(65.47^{* *}\)
.40
.40
.03
.03
1.25
1.25
4.75

\section*{MODELS H-760TU21 AND H-761TU21}

These models are the same as H-760T21 and H-761T21 except that theycontain a built-in all-channel UHF tuner.

SERVICE NOTES


FIG. 1 - SOUND I-F AND AUDIO CIRCUITS IN y-2233-2 CHASSIS

For service information on the V-2233-2 chassis, refer to the H-740T21, H-742K21 and H-743K21 service notes and any supplementary information thereto. With a few exceptions the V-2233-2 chas-
sis is the same as the \(\mathrm{V}-2233-1\) chassis used in sis is the same as the \(-2233-1\) chassis
Models H-740T21, H-742K21 and H-743K21. As Modeln in Fig 1, he V-2233-2 chassis does not hown in Fig. 1, the V-2233-2 chassis does not
control which are in the V-2233-1 chassis. Anothe difference of the location of the horizontal hold, brightness, off-on-volume, and picture controls V 2233-2 chass is, the se controls are located as indicated in the \(\mathrm{H}-723 \mathrm{~K} 21\) service notes.

The following parts are used in the V-2233-2 hass is in lieu of the corresponding parts listed for the V-2233-1 chass is:


\section*{H-760T21 AND H-761T21 MODEL PARTS}

The following parts are used in Models \(\mathrm{H}-760 \mathrm{~T} 21\) and \(\mathrm{H}-761 \mathrm{~T} 21\) in lieu of the MODEL PARTS listed in the The following parts are used in Models H-760
Part No.

V-10841-1
V-11698-1
V-10924-2
V-1282-6
V-5860-3
V-5684-2
+ V-10962-15
V -11501-1
V -9938-4

Description
Baffle and grille cloth assembly
Baffle and grille cloth assembly (ventilation)
Cabinet ( H -760T
Cabinet (H-761T21)
Cable Assembly, speake
Clip, plate to mask
Cover Assembly, back
Gasket, dust seal

\section*{V-9939-5}

V-10926-1
V-9940-3
V-10929-1
V-10929-1
-10932-1
V-11888-1
V-10030-1
V-10934-3
+ New part number listed for the first time in Westinghouse radio or television service information
- Sold only as complete assembly. Price shown covers complete assembly
** Price includes Federal Excise Tax.
*** Price furnished on request.
NOTE: All prices are subject to change without notice

\section*{SUPPLEMENTARY INFORMATION CHASSIS ASSEMBLY V-2233-2}


FIG. 1 - SOUND IF AND AUDIO CIRCUITS IN V-2233-2 CHASSIS

\section*{SUPPLEMENTARY INFORMATION CHASSIS ASSEMBLY V-2233-3}


FIG. 1 - CONNECTIONS TO V-11485-1 TUNER

A V-2233-3 chassis is used in later production of Model H-750T21 and \(\mathrm{H}-753 \mathrm{~K} 21\).

For service information on the V-2233-3 chas sis, refer to the H-740T21, H-742K21 and H-743K21 service notes and any supplementary information thereto. The information given for the V-2233chassis applies also to the \(V-2233-3\) cept as follows:
1. The V-2233-3 chassis contains a V-11485-1 RF cuner assembly. This tuner does not provide for the use of UHF sockets. Electrical connections to the tuner are as shown in Fig. 1.
\begin{tabular}{ll} 
Ref. & \\
No. & Part No. \\
& V-11485-1 \\
C215 & RCP10W4102M \\
C235 & RCM20B471K \\
*R208 & V-9877-4 \\
R219 & RC20AE151K \\
R234 & RC20AE102K \\
-R319 & V-9877-4 \\
R327 & V-10914-1 \\
R419 & V-9894-3 \\
R435 & V-10915-1 \\
*SW501 & V-9877-4
\end{tabular}


FIG. 2 - SOUND IF AND AUDIO CIRCUITS IN V-2233-3 CHASSIS
2. As shown in Fig. 2, the V-2233-3 chassis does not include the phono operation provisions chassis. ass is
3. The locations of the horizontal hold, brightness, off-on-volume and picture controls are different. In the V-2233-3 chassis, these controls are located as indicated in the \(\mathrm{H}, 723 \mathrm{~K} 21\) servic notes.
The following parts are used in the V-2233-3 chassis in lieu of the corresponding parts listed for the V-2233-1 chassis:

In later production, a different front glass plate is used. This part, listed under MODEL PARTS in the origi nal \(\mathrm{H}-750 \mathrm{~T} 21\) and \(\mathrm{H}-753 \mathrm{~K} 21\) service notes, should be changed to read as follows:
+V -11858-1 Plate, front glass
\begin{tabular}{lc} 
Function & \begin{tabular}{c} 
Lisi Price \\
Each
\end{tabular} \\
& \(\$ 47.50\) \\
Tone compensation & .17 \\
Bypass &. .31 \\
Volume & \(2.15^{*}\) \\
Suppressor & .05 \\
Decoupling & .05 \\
Picture & \(2.15 *\) \\
Brighness & .80 \\
Vert. hold & .75 \\
Horiz, hold & .80 \\
On-off & 2.85
\end{tabular}

The new front glass plate and the other MODEL PARTS apply regardless of which chassis is used.
- New part number listed for the firt time in Westinghouse radio or television service information.
- Sold omly as complete assembly. Price shown covers complete assembly

NOTE: All prices are subject to change without notice.


MODEL H-716T17
CHASSIS ASSEMBLY
V-2208-1
SERVICE NOTES
SPECIFICATIONS
frequency ranges
\begin{tabular}{c|c|c|c|c}
\hline \\
\begin{tabular}{c} 
CHANNEL \\
NUMBER
\end{tabular} & \begin{tabular}{c} 
CHANNEL \\
FREQUENCY \\
(MC.)
\end{tabular} & \begin{tabular}{c} 
VIDEO \\
CRARRIER \\
(MC.)
\end{tabular} & \begin{tabular}{c} 
SOUND \\
CARRIER \\
FREQUENCY \\
(MC.)
\end{tabular} & \begin{tabular}{c} 
RECEIVER H-F \\
OSCILLATOR \\
FREQUENCY \\
(MC.)
\end{tabular} \\
\hline 2 & \(54-60\) & 55.25 & 59.75 & 101 \\
3 & \(60-66\) & 61.25 & 65.75 & 107 \\
4 & \(66-72\) & 67.25 & 71.75 & 113 \\
5 & \(76-82\) & 77.25 & 81.75 & 123 \\
6 & \(82-88\) & 83.25 & 87.75 & 129 \\
7 & \(174-180\) & 175.25 & 179.75 & 221 \\
8 & \(180-186\) & 181.25 & 185.75 & 227 \\
9 & \(186-192\) & 187.25 & 191.75 & 233 \\
10 & \(192-198\) & 193.25 & 197.75 & 239 \\
11 & \(198-204\) & 199.25 & 203.75 & 245 \\
12 & \(204-210\) & 205.25 & 209.75 & 251 \\
13 & \(210-216\) & 211.25 & 215.75 & 257 \\
\hline
\end{tabular}

Fine TUNING RANGE:
OPERATING VOLTAGE:
1 mc . minimum; 2 mc . maximum
OS to 120 volts, 60 cycles A-C

POWER CONSUMPTION: ........................ 240 watts
AUDIO POWER OUTPUT:
Undistorted
..............
1.8 watts 2.8 watts

LOUDSPEAKER:
Type
oice Coil Impedance .................................1/4" P.M.
RECEIVER ANTENNA INPUT IMPEDANCE:
…. 300 ohms balanced or 72 ohms unbalanced

\section*{TUBE COMPLEMENT:}



VIDEO CARRIER INTERMEDIATE FREQUENCY:
45.75 mc .

VIDEO RESPONSE:
.3 .5 mc .
SOUND CARRIER INTERMEDIATE FREQUENCY

FOCUS:
... 4.5 mc .

SWEEP DEFLECTION
Electrostatic

SCANNING: \(\qquad\) Magnetic
SCANNING: \(\quad\) Interlaced 525 line HORIZONTAL SCANNING FREQUENCY
\(15,750 \mathrm{CPS}\)
VERTICAL SCANNING FREQUENCY: 60 CPS
FRAME FREQUENCY:
(picture repetition rate):
30 CPS

\section*{HIGH VOLTAGE WARNING}

The danger accompanying shock is always present when the receiver is operated outside the cabinet or when the rear cover is removed from the cabinet. Only a person familiar with the precautions to be observed when working with high-voltage equipment should service this receiver.

\section*{CATHODE RAY TUBE HANDLING PRECAUTIONS}

Shatterproof goggles and heavy gloves should be worn at all times when handling a cathode ray tube. The tube should not be handled in the vicinity of any person not so equipped. When handling the tube, always keep it away from the body.

Due to the large surface area of the tube and the high vacuum contained within, more than ordinary care is required to prevent shattering the tube. The large end of the bulb, particularly the rim of the viewing surface, must not be struck, scratched, or subjected to more than moderate pressure. If the tube binds during removal or replacement, determine the cause of the erate pressure. If the tube binds during rem
trouble - DO NOT FORCE THE TUBE.

An additional precaution is required when handling a cathode ray tube that has an aquadag coating on the outside of the tube. The outside aquadag coating forms one plate of a capacitor, and the inside coating to which the high voltage is applied serves as the other plate. The high voltage charge may be retained in this capacitor for a long time after the high voltage lead is disconnected. Since the charge could produce a shock that would startle the handler into dropping the tube, the charge should be dissipated before any handling of the tube is attempted. To dissipate the charge, place a jumper from the outside aquadag coating to the high voltage button on the tube. Due to the relatively high resistance of the aquadag, the iumper should be held in place for some time to insure complete discharge.

\section*{INSTALLATION INSTRUCTIONS}
S. Rotate the picture control to the position TO PREPARE THE RECEIVER FOR OPERATION:

Model H-716T17'is shipped in operating condition. There is no shipping material to be removed. Simply remove the receiver from its carton, moved. Simply remove the receiver fom 120 volt 60
and connect the AC plug to a 105 to AC outlet.

The receiver contains a built-in antenna for use in areas of normal reception. In such areas when the built-in antenna provides good reception, an external antenna is not required. Howe ver, in weak signal areas or under adverse conditions, it may be necessary to use an outside antenna.

The antenna terminals are located on the back of the receiver. If an external antenna is to be of the receiver. If an external antenna is to be
connected to the receiver, the built-in antenna wires must be disconnected from the terminals. This can be accomplished by loosening the terminal screws and removing all wires that can be removed without completely removing the terminal screws. The built-in antenna wires should be dressed in such a position that they do not touch the chassis or metal components. The lead-in wires from the external antenna

TO CHECK THE OPERATION OF THE RECEIVER:
1. Turn on the receiver by rotating the off on-volume control clockwise.
2. Rotate the channel selector to the desired channel number.
3. Adjust the brightness control to a position where the picture screen is moderately lighted
4. Check the ion trap magnet adjustment a outlined under ADJUSTMENTS.

\section*{CATHODE RAY TUBE CUSHION}

The CRT cushion must fit snugly against the llare of the CRT in order that the rear of the tube will be supported firmly. If this condition is not obtained, loosen the CRT cushion adjustment screws and the deflection yoke adjustment screw, lide the CRT cushion forward as far as possible and re-tighten the screws

\section*{DEFLECTION YOKE}

The deflection yoke must be positioned as close as possible to the flare in the CRT. If adjustment is required, loosen the deflection yoke adjustment screw, slide the deflection yoke for ward as far as possible, and re-tighten the screw. Note that the CRT cushion must fit snugly against the CRT flare as described previously

The deflection yoke adjustment screw also permits the picture to be rotated to make it square with respect to the mask. To rotate the picture loosen the deflection yoke adjustment screw and move it to the left or right. The picture will tilt
that provides best picture contrast.
6. If the picture moves up or down on the screen, the vertical hold control on the back of the receiver should be adjusted as explained under ADJUSTMENTS.
7. If the picture is pulled into diagonal bars or if the edge of the picture quivers or tends to fold over, adjust the horizontal control for correct synchronization. This control can be adjusted so that it will seldom be necessary to re-adjust it thereafter. To obtain this adjustment, tune in a if starion, and rotate the picture is synchronized. If the middle of the sync range does not correspond approximately to the middle of the mechanical range, make the adjustments described under Horizontal Ringing Coil in the ADJUSTMENTS section. Check the adjustment of the horizontal control by switching to another channel and then back again The picture should be stable when switching from channel to channel.
8. Rotate the fine tuning control to the position that provides best picture detail.
9. Re-adjustment of the brightness and picture controls may improve the picture shading. The correct balance between these controls produces the best picture. Once the brightness control has been adjusted to suit the preference of the user, it will seldom be necessary to re-adjust it
10. Adjust the off-on-volume control for'the desired sound volume.
11. Check the operation on all available TV stations.
12. If necessary, adjust the vertical linearity, height, horizontal linearity, width, focus, or center

\section*{ing as explained under ADJUSTMENTS.}

\section*{ADJUSTMENTS}
to the left or right with the movement. Tighten the screw when the picture is squared in the mask.

\section*{FOCUS}

The focus control is located on the back of the hassis as shown in Fig. 4. With the brightness and picture controls set at the ir normal operating posi tions, the focus control should be adjusted for bes ocus.

\section*{QUIETING CONTROL}

The quieting control is located at the lower left on the back of the receiver and is adjusted by means of a screwdriver inserted through the hole in the back cover. This control, which determines AM rejection characteristics of the sound system is normally adjusted during alignment of the sounc system as described under SOUND ALIGNMENT adjustment. In wery weak signal areas, however, reduction in noise or hiss on the sound may be ob tained by slightly re-adjusting the control.

fig. 1 - CRT adjustments

\section*{CENTERING}

Centering is accomplished by rotating the centering magnet adjusting rings clockwise or counterclockwise as required. The two adjusting rings are located on the back of the deflection yoke as shown in Fig. 1. A tab projection on each f the rings serves to facilitate adjustment.

If difficulty is experienced in centering the picture or eliminating "neck shadows", make certain the CRT cushion is tight against the flare in the CRT. Also make certain that the deflection yoke is as far forward as possible.
ION TRAP MAGNEI
It is extremely important that the ion trap magnet be correctly adjusted immediately after the
set is first iurned on during installation. This is rue even though the set appears to be operating satisfactorily. When the magnet is not correctly oriented, the electron beam strikes the edge of the aperture in the anode top disc instead of moving cleanly through the hole. The resultant he at aporch has a harmful effect on the tube. Some of the vaporized material may be deposited on the screen of the tube and be apparent as darkened area. An excessively high setting of the brightness control will aggravate this condition. From this it is apparent that the brightness control should neve be turned up to compensate for an incorrectly adusted ion trap magnet. The tube can be ruined in very short time under this condition.
To adjust the ion trap magnet, position th argnet approximately as shown in Fig. 1 with the color code mark facing upward, then rotate the magnet and move it forward and backward until the position is found where the picture is brightest If the brightness peaks at two positions of the magnet, the position nearer the base of the tube is the correct one. Never move the ion trap magne oremove a shadow from the raster if the bright
height and vertical linearity
The height adjustment on the back of the chassis controls the overall height of the picture, and the vertical linearity adjustment controls the relationship between the vertical dimensions of the upper and the lower sections of the picture. A balance between the two controls is necessary to make the picture symmetrical and fill the mask vertically.

\section*{WIDTH AND HORIZONTAL LINEARITY}

The width adjustment on the back of the chassis controls the overall width of the picture, and the horizontal linearity adjustment controls the relationship between the horizontal dimensions of the left and the right sections of the picture. A balance between the two controls is necess horizontal dimensions. These controls can be adjusted with a \(1 / 4^{n}\) Spintite-type wrench.

VERTICAL HOLD
The vertical synchronization is controlled by the vertical hold adjustment on the back of the chassis. To adjust, rotate the control clockwise or counterclockwise until the picture is stabilized vertically. The adjustment should preferably be made on the weakest signal that is available, and a check should be made to se
pulls into sync on all channels.
HORIZONTAL RINGING COIL
The horizontal ringing coil (L401) should be adjusted as follow s:
1. Short out the ringing coil with a short umper wire.
2. Set the horizontal hold control to the middle of its range, and leave it in this position during the steps that follow
3. Connect a VTVM to the junction of R477 and C456, located in the pin \#2 grid circuit of the voltage between this point and ground.
4. With the receiver tuned to a TV station, adjust C 457 (located near the horizontal multivibrator tube as shown in Fig. 4) for zero volcage on the meter. If zero voltage can be approached but not quite reached at one extreme of the C457 adjust别, it may be necessary to side of mid-position oo obtain zero voltage.
5. Remove the jumper from across the ringing coil.
6. Adjust the ringing coil for zero voltage on he meter, and check the adjustment by switching another chan pull into horizontal synchronization on all channels.

\section*{© John F. Rider}

\section*{CRITICAL LEAD DRESS}

Leads that are susceptible to R－F pickup with esulting interaction between stages must be in ssed close to the chassis mounting plate．Lead
in this category include heater，AGC，B plus，and the 100 volt bus leads．These leads must be long enough to permit dressing most of the path lengt close to the mounting plate．The heater wiring arrangement should not be altered．

Leads associated with the 41.25 mc ．trap must
e as short as possible and dressed away from the chassis

Video peaking coils should be dressed away from the chassis and clear of adjacent parts．

The lead－in from the antenna terminals to the tuner must be dressed away from the l－F chassis to prevent an \(\mathrm{R}-\mathrm{F}\)＂tweet＂from interfering with the picture．

\section*{ALIGNMENT}

\section*{TEST EQUIPMENT}

To service these chassis，the following test equipment should be available

1．R－F sweep generator that is capable of pro ducing a 10 mc ．sweep at a center frequency of 44 mc ．The output must be adjustable from a east 100,000 microvolts down to a very low mini－ mum，and the output must be flat at all positions of the attenuator

2．Cathode ray oscilloscope，preferably one with a wide－band vertical deflection amplifier and a low－capacitance input probe．The oscilloscope should have good low－frequency response charac eristics

3．Signal generator or generators capable of producing an accurate unmodulated signal at 4.5 mc．， \(41.25 \mathrm{mc} ., 42.25 \mathrm{mc} ., 43.0 \mathrm{mc} ., 44.0 \mathrm{mc}\) ． 45.0 mc ．，and 45.75 mc ．The accuracy of these frequencies is very important．If the signal gen erator does not include a crystal calibrator， heterodyne frequency meter equipped with a crystal calibrator should be used to insure accuracy．The output level must be adjustable from at leas

4．Vacuum tube voltmeter equipped with high voltage multiplier probe for measurements up to 15,000 volts and an R－F probe for measuring R－F voltages．

\section*{GENERAL INFORMATION}

The chassis and the test equipment should be bonded together by short lengths of heavy braided be shielded and should be as short as possible consistent with ease in making connections．The effectiveness of the bonding can be checked during alignment by placing the hand on the chassis or est equipment case．If the response curve or meter reading changes，the bonding must be improved before the circuits are aligned．

It is important that the coaxial cable used to couple the sweep generator output to the receiver be terminated at its output end in the charac circuit．To accomplish this，connect the appropriate value of resistance across the output leads at the open end of the cable．The oscilloscope vertical input cable and the generator output cables must be well separated from each other．

\section*{ALIGNMENT TOOL}

To adjust the slugs in the common I－F trans－ formers a special tool is required．This tool must fit into the \(.035^{\prime \prime} \times .093^{\prime \prime}\) slot in slug．An incor－ sluge A suitable tool is will cause chipping of the part number \(V=8345\) ．

\section*{COMMON I－F ALIGNMENT PROCEDURE}

The common I－F system uses over－coupled I－F transformers to obtain the required band width．In the alignment of this type system，the visual method of stage－by－stage alignment is used．A sweep gen－ erator is used to develop the I－F response curve on the oscilloscope，and an unmodulated sinal generator（marker）is used to
quency indications on the curve．

With some of the I－F transformers，peaks may be obtained at two positions of the adjustment slugs．If a transformer is badly out of adjustment， it is advisable to turn the slug out（counterclock－ wise）as far as possible before beginning align－ ment．Then turn the slug clockwise until the first peak is reached．This procedure is recommended to obtain the correct peak rather than an undesired second peak which is sometimes obtained when the slug is turned farther clockwise．

The alignment procedure to be used is given in the following steps

1．To avoid undesirable beat response during alignment，remove the \(6 B Q 7\) R－F amplifier tube from its socket and rotate the channel selector to 13．The channel selector is on channe 13 when the flat of the shaft is facing straight up．


FIG． 2 －OSCILLOSCOPE CONNECTIONS

2．Connect the vertical input of the oscil－ oscope to the video test terminal（point＂\(D\)＂＇on Fig．4）through the decoupling network shown in Fig．2．The oscilloscope horizontal input shoul be connected to the sweep（synchronizing）outpu rom the sweep generator through well shielded eads．Turn the sweep control on the oscilloscope o the＂x＂or＂off＂position．

3．Connect the negative terminal of a 9 vol tas battery to the AGC line，and connect the posi ive terminal to chassis ground．

4．Couple the marker generator output to the sweep generator output so that the two signal are applied together to the points specified in the steps that follow．Some sweep generators hat facilities for connecting the marker output directl into the sweep generator．With orher sweep gener ators，the marker can be coupled to the sweep by wapping a few turns of insulated wire around the enter conductor of the sweep generator outpu ire The loose coupling obtained in this manar wise．The loose couphing obsine int this ection will distort the response curve．

5．Adjust the sweep generator for a cente requency of 44 mc ．with a sweep deviation 10 mc ．

6．Connect the high side of the sweep gen－ rator output cable directly to the control grid of he 3 rd I－F amplifier，and connect the ground sid of the cable to the chassis partition as close as ossible to the ground point for the 3 rd I－F am short as possible．

7．Detune the plate circuit of the 2nd I－F am－ plifier by attaching an＂alligator＂，or similar type lip to pin 5 of the 6CB6 2nd I－F amplifier tube care to avoid sbock．This step is necessary o avoid absorption of the signal that is applied 8．Adjust the oscilloscope vertical gain and the sweep generator output level to obtain a curve on the oscilloscope．To avoid a distorted curve he recommended practice is to use maximum scilloscope vertical gain and only enough sweep signal amplitude to obtain a good curve．

9．Set the marker generator to 44 mc ．with the output attenuated until the marker pip is barely isible on the curve，and adjust the primary of 4 mc ．marker pip is at the highest point on the esponse curve．
10．Adjust the secondary of T304 to make the op of the response curve symmetrical．
11．Make certain that the response curve coin ides with Fig．5A，using the marker to check a he appropriate frequencies．The 44 mc ．pip must strike the center of the flat response region，th 2.25 mc ．and 45.75 mc ．points must be at equa heights，and the 43 mc ．and 45 mc ．points must be ar equal heights．Re－adjust the primary and sec－ ondary of T304 if necessary to obtain these con ditions

12．Remove the detuning clip from the plate
of the 2nd \(1-\mathrm{F}\) amplifier tube，and attach it to the plate of the 1 st I－F amplifier tube．

13．Move the sweep output connection from grid of the 3rd I－F amplifier to the grid of the 2nd －F amplifier．Connect the ground side of the cable the ground point for the \(2 \mathrm{nd} \mathrm{I}-\mathrm{F}\) amplifier tube．

14．Adjust the primary of the 2 nd common I－F transformer，T303，for maximum height of the re－ sponse curve at 44 mc ．，and adjust the secondary of T303 to make the top of the curve symmetrical
15．Make certain that the curve corresponds to Fig． 5 B ．The 44 mc ．pip must strike the center of the flat response region，the 42.25 mc ．and the 43 mc ．and 45 mc ．points must have equal heights．Re－adjust the primary and secondary of T303 if necessary．

16．Remove the detuning clip from the plate of the 1 st I－F amplifier

17．Move the sweep output connection from the grid of the 2nd -F amplifier to the grid of the 1 st I－F amplifier，and connect the ground side of the cable as close as possible to the ground point for the 1 st I－F amplifier tube．
18．Adjust the primary of the 1 st common I－F transformer，T302，for maximum height of the re－ sponse curve at 44 mc ．，and he curve symmetrical． If difficulty is experienced in aligning T302，ad－ just the adjacent channel interference trap，L308， to a higher frequency by rotating the slug com－ pletely counterclockwise．Complete information on the adjustment of L308 is given in step 26.

19．Make certain that the curve corresponds to Fig．SC．The 44 mc ．pip must strike the center of the flat response region，the 42.25 mc ．and .75 mc ．points must have equal height，and the 43 mc ．and 45 mc ．points must have equal heights necessary．
20．Remove the sweep output connection from the ist I－F amplifier grid，and couple it to the 6 J 6 mixer－oscillator tube through the coupling system illustrated in Fig．3．This system pro－ vides adequate signal injection and at the same the signal The device is constructed by flar－ he sief of cubular copper braid over the top of the GJ6 tube and wrapping gummed tape over the braid to serve as insulation．The tube shield is then replaced over the tube with the braid protrud． ing through the hole in the top of the shield．The braid must not contact the chassis or the tube bield at any point．The tube shield should be locked securely to its mounting base．Connec he high side of the sweep generator output cable o the copper braid，and connect the ground sid o the nearest point on the chassis．
21．Rotate the slug of the 41.25 mc ．trap（L301） completely clockwise．
22．It is possible to obtain two peaks when adjusting the primary of the \(I-F\) input coupling net work，T101．located on the R－F tuner．These peaks


FIG． 3 －COUPLING SIGNAL GEN－ ERATOR TO MIXER TUBE
produce different overall bandwidths．The correct peak to use is normally the peak that occurs with the adjustment screw turned further counterclock－ wise．

Turn the adjustment screw of T101 completely counterclockwise．Then adjust T101 for maximum height of the response curve at 44 mc ．，and adjust
the secondary of the I－F input coupling network， T301，to make the top of the curve symmetrical． If necessary，re－adjust T101 and T301 to make 44 mc ．strike the center of the flat response region．
23．Set the marker generator to 41.25 mc ．，and increase the output until the pip is readily vis－ ible on the curve．
24．Adjust L301 to minimize the amplitude of the 41.25 mc ．marker pip．L301 furictions as a 41.25 mc ．trap．

25．Make certain that the final response curve corresponds to Fig．SD．Use the marker to check at the frequencies shown on the drawing．If nec－
essary，re－adjust T101 and T301 to obtain the essary，re－adjust T101 and T301 to obtain the correct curve．

If the bandpass of the response curve is too narrow so that the 45.75 mc ．marker occurs at less than 40 percent of maximum response，turn T101 clockwise until a second peak at 44 mc ．is ob－ tained．Adjust T301 for flat response at the top
of the curve，and re－adjust T101 to center 44 mc ． on the flat response．

26．L308 is the adjustment for the adjacent channel interference trap．If adjacent channel in－ terference does not constitute a problem in the areas where the receiver is to be operated，L308 will not ordinarily require adjustment；however，the
trap must not be mis－adjusted into the I－F response trap must not be mis－adjusted into the I－F response
region．In are as where adjacent channel interfer－ region．In areas where adjacent channel interfer－
ence is not troublesome，L308 can be set to its ence is not troublesome，L308 can be set to slug
highest tuneable frequency by rotating the sher completely counterclockwise，and it can be left in this position．

In areas where adjacent channel interference is evident，however，L308 should be adjusted to 47.25 mc ．This can be accomplished in either of two ways．One is to connect an amplitude modu－ lated signal generator that has an output of 02 and adjust the outpur frequency accurately to 47.25 mc ．This will produce an indication on an oscilloscope connected to the video test terminal．

Adjust L308 for minimum response on the ascil－ loscope．If a signal generator capable of this high the receiver，and tune the receiver to the TV station on which the adjacent channel interference occurs， carefully adjusting．the fine tuning control to its correct setting．Then，beginning with L308 in its completely counterclockwise position，rotate L308 clockwise until the position is found where the adjacent channel interference is eliminated．In some cases，the trap adjustment may affect the adjustment of T302．If this occurs，it will be nec－ essary to repeat steps 17,18 and 19.
4．5 MC．TRAP ALIGNMENT PROCEDURE
1．Connect the high side of the signal gener－ ator to the video test terminal（point＂ D ＂on Fig．
4）through a .001 mfd mica capacitor，and ground 4）through a ． 001 mfd mica capacitor，and ground the low side to the chassis．

2．Adjust the signal generator to 4.5 mc ．（un－ modulated）．The accuracy of this frequency is very important．If a crystal controlled signal generator is not available，the frequency should be checked with an accurate frequency meter．

3．Connect the common lead from the VTVM to the chassis，and connect the R．F probe from the VTVM to the cathode of the CRT．This point point is above ground potential and，therefore the R－F probe must contain a blocking capacitor．

4．Using a strong 4.5 mc ．signal，adjust the 4.5 mc ．trap，L309，for minimum indication on the meter．

\section*{SOUND ALIGNMENT PROCEDURE}

The sound system can be aligned using either locally generated signals or a received TV signal． Since the latter method does not require signal generating equipment，it will be described first and will be followed by the procedure using locally generated signals．

To use an＂air＂TV signal for alignment：
1．Tune the receiver to a TV station and con－ nect an attenuator between the receiver and the antenna so that the strength of the signal can be varied from weak to strong．

2．Set the quieting control（R201）locaced on the back of the chassis approximately to its mid－ position．

3．Adjust the 4.5 mc ．IF slugs（L201 and L202）for maximum program sound．If peaks occur at two different positions of the slug，use the peak
that occurs when the slug is farthest counterclock－ wise．Reduce the signal to its lowest useable level and recheck the adjustments．

4．Apply a strong signal to the receiver，and adjust the quadrature coil（L204）for maximum pro－ gram sound．If peaks occur at two different posi－ occurs with the slug farthest counterclockwise．If two peaks occur within a natrow range of adjust－ ment，sufficient signal is not being applied to the receiver or the quieting control is not set at the

\section*{desired position}

5．Apply a very weak signal that allows noise to be heard and adjust the quieting control（R201） for minimum noise．The position at which the noise is minimized depends on the strength of the signal； theretore，the weakest useable station in the area should be used for this adjustment．This control
determines the AM rejection characteristics of the sound system，and its correct setting is normally bout inid－position．Do not leave the quieting con－ ol set at its maximum counterclockwise position．

To use locally generated signals for alignment：
1．Connect an oscilloscope or an \(A C\) voltmeter across the volume control for use as an indicator．

2．Apply a 4.5 mc ．FM signal（deviation approx－ imately 7.5 kc ．）to the video test point（D on Fig．4）

3．Using the lowest signal level that will pro－ duce an indication，adjust L201 and L202 for max imum outpur．

4．Using a strong signal，adjust L204 for max－ imum output．

5．Apply a 4.5 mc ．AM signal（modulated apx． 30 percent）to the video test point．

6．Beginning with a very low signal level，in－ crease the generator output，while rotating the level is such that the AM output across the volume control dips to zero with a rise on each side as the quieting control is rotated．Set the quieting control for zero output at this signal level．


H．F．OSCILLATOR ALIGNMENT PROCEDURE
If the 6 J 6 oscillator tube is replaced，the dif－ ferent inter－electrode capacitance of the new tube may change the oscillator frequency enough to
necessitate re－alignment of the oscillator necessitate re－alignment of the oscillator．

Alignment of the oscillator on the high band is accomplished by adjusting the brass slug lo－ cated adjacent to the vernier drive wheel on the front of the tuner．Alignment of the oscillator on the low band is accomplished by adjusting the adjustment procedure is as follows：
1．Set the fine tuning control to the middle of its range，and keep it in this position during the following adjustments．The control is set to the tuning drive wheel is straight up．

2．Set the selector switch to the highest of the low－band（channels 2 through 6）stations oper－ ating in your vicinity．

3．Peak the low band adjustment slug（L109） for the best picture detail．

4．Set the selector switch to the highest of the high－band（channels 7 through 13）stations operating in your vicinity．

5．Peak the high band adjustment slug（L110） for the best picture detail．

6．Check the previously made low band adjust－ 2 and 3.

\section*{© John F．Rider}

\section*{ALIGNMENT CHARTS}

The information in these charts is condensed from the foregoing detailed information as a convenience to th service technician. It is recommended that the detailed information be studied before using the charts.

\section*{COMMON I-F SECTION}

Remove the 6BQ7 RF amplifier tube from its socket, and turn the channel selector to channel 13.

Connect the oscilloscope to the video test terminal through the decoupling network shown in Fig. 2.

Connect a 9 volt bias battery to the AGC line.
Adjust the sweep generator for a center frequency of 44 mc . with a 10 mc . sweep deviation, and couple the marker generator to the sweep generator.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Comnect Sweep and Marker Generators to - & Marker Use & \begin{tabular}{l}
Connect \\
Detuning \\
Clip to -
\end{tabular} & Adjust - \\
\hline 1. & 3rd I-F amp. grid & Check for equal responseat 42.25 mc and 45.75 mc using weak signal. Also 43 mc and 45 mc . & 2nd I-F amp. plate & Pri. of T304 for max. response and sec. of T304 for symmetrical curve shown in Fig. 5A. \\
\hline 2. & 2nd I-F amp. grid & Same as step 1 & 1 st \(1-F\) amp. plate & Pri. of T303 for max. response and sec. of T303 for symmetrical curve shown in Fig. 5B. \\
\hline 3. & \[
\begin{aligned}
& \text { 1st I-F amp. } \\
& \text { grid }
\end{aligned}
\] & Same as step 1 & Not used & Pri. of T302 for max. response and sec. of T302 for symmetrical curve shown in Fig. 5C. \\
\hline 4. & 6 J 6 mixer chrough coupling de. vice shown in Fig. 3. & Check at 44 mc . Marker pip must be at center of fla region on curve & Nor used & Turn L301 adj. completely clockwise and adjust T101 for max. response. Adjust T301 for symmetrical top. \\
\hline 5. & Same as preceding step & Adjust to 41.25 mc . and increa se output until pip is readily visible. & Nor used & L301 to minimize amplitude of 41.25 mc . marker pip. \\
\hline 6. & Same as preceding step & Check curve at fre quencies shown on Fig. 5. & Not used & Re-adjust T101 and T301 to obtain curve shown in Fig. SD. \\
\hline
\end{tabular}

\subsection*{4.5 MC. TRAP}

Connect the signal generator to the video test terminal (point " \(D\) " on Fig. 4) through a .001 mifd capacitor
\begin{tabular}{c|c|c|c|c}
\hline Step & \begin{tabular}{c} 
Signal Gen. \\
Frequency
\end{tabular} & VTVM Connections & Remarks & Adjust - \\
\hline 1. & \begin{tabular}{c} 
4.5 mc. \\
unmodulated
\end{tabular} & \begin{tabular}{c} 
RF probe to point "E"' (see \\
Fig. 6) and common lead to \\
chassis.
\end{tabular} & \begin{tabular}{c} 
Use strong signal from gen- \\
erator
\end{tabular} & L309 for minimum voltage \\
\hline
\end{tabular}

\section*{SOUND SECTION}

Refer to SOUND ALIGNMENT PROCEDURE on page 7. Using a weak signal, adjust L201 and L202 for maximum response to a 4.5 mc . FM signal. Using a strong signal, adjust L 204 for maximum response to a 4.5 mc . FM mum response to a 4.5 mc . FM signal. Using a strong signal, adjust L204 for
signal. Using a weak signal, adjust the quieting control for minimum AM noise.



FIG. 6 - BOTTOM VIEW OF CHASSIS PARTS LIST FOR MODEL H-716T17



OJohn F. Rider
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
P A
\] \\
Part No．
\end{tabular}} & \multicolumn{2}{|l|}{LIST FOR MODEL H．716T17（continued）} & \multirow[b]{2}{*}{List Price Each} & \multirow[b]{3}{*}{Ref.
No.} & \multirow[b]{3}{*}{Part No．} & \multirow[b]{3}{*}{Description} & \multirow[b]{3}{*}{Function} & \multirow[b]{3}{*}{st Price
Each} \\
\hline No． & & Description & Function & & & & & & \\
\hline R311 & V－9927－2 & Resistor， 4700 ohms \(1 / 2 \mathrm{w}\) ． & 1 F damping & ． 11 & & & & & \\
\hline R312 & RC20AE151K & Resistor， 150 ohms \(1 / 2 \mathrm{w}\) ． & Cathode bias & ． 05 & C447 & RCP10\％4104． & Capacitor，． 1 mfd 400 v ． & Control bypass & ． 24 \\
\hline R313 & RC20AE471M & Resistor， 470 ohms \(1 / 2 \mathrm{w}\) ．
Resistor， 12,000 ohms \(1 / 2 \mathrm{w}\). & Screen decoupling & ． 05 & C451 & RCM120B101K & Capacitor， 100 mmf & AFC cathode & ． 22 \\
\hline R316
R317 & RC20AE123K & Resistor， 12,000 ohms \(1 / 2 \mathrm{w}\) ．
Resistor， 3300 ohms \(1 / 2 \mathrm{w}\) ． & Sync take－off
Det．load & ． 05 & C．452 & RCM208681K & Capacitor， 680 mmf & AFC plate bypass & ． 25 \\
\hline \multirow[t]{2}{*}{－R319} & \multirow[t]{2}{*}{V －9877－1} & \multirow[t]{2}{*}{Control， 1500 ohms（assy．consists of R208，R319，SW／S01）} & \multirow[t]{2}{*}{} & ． 05 & C454 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { RCP10W4103M }
\end{aligned}
\]
\[
\text { RCP } 10 W^{\prime} 4502 \mathrm{M}
\]} & \multirow[t]{2}{*}{Capacitor， .01 mfd 400 v ． Capacitor， .005 mfd 400 r ．} & \multirow[t]{2}{*}{NV grid \({ }_{\text {a }}\)} & ． 20 \\
\hline & & & & \multirow[t]{2}{*}{2.10
.06
.00} & C455 & & & & ． 17 \\
\hline R320 & RC20AE223K & \multirow[t]{2}{*}{Resistor， 22,000 ohms \(1 / 2 \mathrm{w}\) ． Resistor， 8200 ohms 2 w ．} & Picture control
Damping & & C456 &  & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{MV grid
MV trimmer} & ． 24 \\
\hline R322 & RC40AE822K & & Plate load & ． 206 & C457 & V－11228－1 & & & ． 35 \\
\hline R323
R324 & RC20AE274K & Resistor， \(270,000 \mathrm{ohms} 1 / 2 \mathrm{w}\) ． & Divider & ． 06 & \(\mathrm{C}_{462}\) & RCM20B101K & Capacitor， \(5-40 \mathrm{mmf}\) Capacitor， 100 mmf & MV trimmer
AFC coupling & ． 22 \\
\hline R326 & RC30AE683K & Resistor， 270,000 ohms \(1 / 2 \mathrm{w}\) ． & Divider & ． 09 & \({ }_{C} \mathbf{C} 465\) & \(\stackrel{\mathrm{V}-5596}{\mathrm{~V}-2926-4}\) & Capacitor， 0.005 mfd & Screen bypass & \multirow[t]{2}{*}{． 07} \\
\hline R327 & V －9916－1 & Resistor， \(68,000 \mathrm{hms}\)－w．
Control， \(50,00 \mathrm{cms}\) & Brightness & ． 65 & L401 & V－6764 & Coil & Feedback Ringing & \\
\hline R331 & RC20AE155K & Resistor， \(1.5 \mathrm{megohms} 1 / 2 \mathrm{w}\) ． & Retrace suppression & ． 05 & L402 & V－9960 & Reactor & \multirow[t]{2}{*}{Hor，linearity Heater isolation} & 1.25 \\
\hline R334 & RC40AE822K & \multirow[t]{2}{*}{Resistor， 8200 ohms 2 w ．
Resistor， \(10 \mathrm{ohms} 1 / 2 \mathrm{w}\).} & Plate load & ． 20 & L404 & V－4886－2 & Reactor， 1.1 microhenries & & ． 38 \\
\hline R341 & RC20AE100K & & lst IF grid
Video amp．grid & ． 06 & L406 & V－4886－2 & Reactor， 1.1 microhenries & \multirow[t]{2}{*}{Heater de coupling
Heater isolation} & \multirow[t]{2}{*}{． 38} \\
\hline R342 & RC20AE221K & Resistor， 220 ohms \(1 / 2 \mathrm{~m}\) ． & Video amp．grid & ． 75 & L407 & V －4886－2 & Reactor， 1.1 microhenries & & \\
\hline R343 & V．9894－2 &  & Focus & ． 75 & L408 & V－9099－5 & Reactor， 2.7 microhenries & \multirow[t]{2}{*}{HV filament} & ． 20 \\
\hline R344 & RC20AE220K & \multirow[t]{2}{*}{Resistor， 22 ohms \(1 / 2 \mathrm{w}\) ．
Transformer} & Cathode bias & ． 69 & L411 & V －9099－5 & Reactor， 2.7 microhenries & & \\
\hline T301 & \(\mathrm{V}-9882 \mathrm{C}\)
\(\mathrm{V}-9879\) & & \({ }_{\text {1st }}\) IF input & 1．30 & \({ }^{\text {L4 }} 12\) & V －4886－2 & Reactor， 1.1 microhenries & Suppressor & ． 38 \\
\hline \multirow[t]{5}{*}{T303
T304} & \(\mathrm{V}-9879\) & \multirow[t]{3}{*}{Transformer Transformer} & \multirow[t]{3}{*}{\({ }_{\text {3 }}^{\text {2d I IF }}\)} & \multirow[t]{5}{*}{1.30
1.40} & R401
R404 & RC20AE472K & Resistor， 4700 ohms \(1 / 2 \mathrm{w} .0\) ． & \multirow[t]{2}{*}{Positive bias limiting DC divides} & \multirow[t]{2}{*}{． 05} \\
\hline & \multirow[t]{3}{*}{V －9880} & & & & R405 & RC 20 AE 273 K & Resistor， 27,000 ohms ！\(/ 2 \mathrm{w}\) ． & & \\
\hline & & & & & R406 & RC20AE10sK & Resistor， 1 me gohm \({ }^{1 / 2} \mathbf{w}\) ． & Sync sep．grid return & ． 05 \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SECTION 4 －SWEEP}} & & R407 & RC20AE474K & Resistor， 470,000 ohms \({ }^{1 / 2} \mathbf{w}\) w． & Coupling limiter & ． 05 \\
\hline & & & & & R408 & RC20AE473K & Resistor， 47,000 ohms \(1 / 2 \mathrm{w}\) ． & Decoupling & ． 05 \\
\hline \multirow[t]{2}{*}{C401
C403} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Capacitor， .1 mfd 400 v ． Capacitor， 270 mmf} & \multirow[t]{2}{*}{Noise clipper coupling Sync sep．grid} & \multirow[t]{2}{*}{． 24} & R 409 & \multirow[t]{2}{*}{RC20AE 394 K RC20AE 682 K} & \multirow[t]{2}{*}{Resistor， 390,000 ohms \(\frac{1}{2} \mathbf{w}\) ． Resistor， 6800 ohms \({ }^{1 / 2}\) w．} & \begin{tabular}{l}
Decoupling \\
Signal divider
\end{tabular} & ． 05 \\
\hline & & & & & R411 & & & Signal divider & ． 10 \\
\hline C404 & \multirow[t]{2}{*}{\[
\text { RCP } 10 \mathbb{R}^{\prime} 4103 M
\]
\[
\text { RCP10W } 4103 \mathrm{~K}
\]} & \multirow[t]{7}{*}{\begin{tabular}{l}
Capacitor， .01 mfd 400 v ． \\
Capacitor， .01 mfd 400 v ． \\
Capacitor， 100 mm m \\
Capacitor， .05 mfd 400 v ． \\
Capacitor，． 1 mfd 600 v ． \\
Capacitor， 05 mfd 400 v ． \\
Capacitor， 150 mfd 50 v ．（assy．con－ \\
sists of C414，C413 and C440）
\end{tabular}} & Vert．sync coupling & \multirow[t]{2}{*}{S ． 24} & R415 & \multirow[t]{2}{*}{\[
\text { RC } 20 \mathrm{AE} 224 \mathrm{~K}
\]} & \multirow[t]{2}{*}{Resistror， 220,000 ohms \(1 / 2 \mathrm{w}\) ．
Control， 250,000 hms} & & \multirow[t]{2}{*}{． 75} \\
\hline C408 & & & \multirow[t]{2}{*}{Verr．MV coupling
AGC grid} & & R416 & & & Height & \\
\hline C409 & \multirow[t]{2}{*}{RCM20B101K
RCP \(10 \mathbb{4} 4503 \mathrm{M}\)} & & & \[
\begin{aligned}
& .19 \\
& .22
\end{aligned}
\] & R417 & V－9813－4 & Control， 250,000 ohms Resistor， 560,000 ohms \({ }^{1 / 2} \mathbf{w}\) ． & \multirow[t]{2}{*}{Grid return} & ． 05 \\
\hline \(\mathrm{C}_{410}\) & & & Cathode bypass & & \multirow[t]{2}{*}{R418} & RC20AE 122 K & \multirow[t]{2}{*}{Resistor， 1200 ohms ！＇w．} & & \multirow[t]{2}{*}{． 05} \\
\hline \(\mathrm{C}_{4} 111\) & \multirow[t]{2}{*}{RCP10M6104． 1 RCP10W4503K V－10306－1} & & \multirow[t]{2}{*}{\begin{tabular}{l}
Vert．coupling \\
Pulse shaping net．
\end{tabular}} & ． 35 & & V．9894－3 & & \multirow[t]{3}{*}{Vertical hold Pulse shape net Grid return} & \\
\hline \({ }^{\text {－}{ }^{\text {C412 }} \text {（13 }}\) & & & & \multirow[b]{2}{*}{\(3.25 *\)} & R419
R420 & \multirow[b]{2}{*}{RC20AE332K
RC20AE225} & Control，750，000 ohms & & ． 05 \\
\hline & \multirow[b]{2}{*}{V－10306－1} & & \multirow[t]{2}{*}{Cathode bypass} & & R421 & & Resistor， 2.2 megohms \(1 / 2\) w． & & ． 05 \\
\hline －C414 & & Capacitor， 30 mfd 450 v ．（assy．con－ sists of C414，C413 and C440） & & \multirow[t]{2}{*}{\(3.25{ }^{\circ}\)} & \({ }^{\text {R } 422}\) & \multirow[t]{2}{*}{\(\underset{\mathrm{V} .6463}{\text { RC2AE471K }}\)} & \multirow[t]{2}{*}{Resistor， 470 ohms \(1 / 2 \mathrm{w}\) ．
Control， 5000 ohms Control， 5000 ohms} & \begin{tabular}{l}
．Cathode bias \\
Vert．linearity
\end{tabular} & ． 76 \\
\hline C415 & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Capacitor， 56 mmf
Capacitor， 25 mfd 400 v ．} & Plate decoupling Transient damping & & R423 & & & w．Vert．decoupling & ． 66 \\
\hline \(\mathrm{C}_{4} 16\) & & & \multirow[t]{2}{*}{Hor．yoke return IV plate bypass} & ． 3.5 & R424 & \[
\begin{aligned}
& V-6984-5 \\
& V-11328-2
\end{aligned}
\] & Resistor，（dog－bone type）， 10,000 ohms 5 w ． Resistor（flat metal type）， 10,000 ohms 5 w ． & w．Vert．decoupling & \multirow[t]{2}{*}{． 90} \\
\hline \(\mathrm{C}_{421}\) & \multirow[t]{2}{*}{RCP1208101K} & \multirow[t]{2}{*}{Capacitor， 100 mmf} & & \multirow[t]{2}{*}{． 222} & R425 & RC20AE561K & Resistor， 560 ohms \(1 / 2 \mathrm{w}\) ． & \multirow[t]{2}{*}{\begin{tabular}{l}
Transient damping \\
Transient damping
\end{tabular}} & \\
\hline \(\mathrm{C}_{422}\) & & & MV coupling & & R426 & \multirow[t]{2}{*}{\begin{tabular}{l}
RC20．4E 561 K \\
RC20AE821K
\end{tabular}} & \multirow[t]{2}{*}{} & & ． 05 \\
\hline \({ }^{\text {C423 }}\) & V－10293－1 & Capacitor， 100 mmf
Capacitor， 10 mfd 450 v ． & \multirow[t]{2}{*}{MV decoupling MV plate tank} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1.25 \\
& 1.17
\end{aligned}
\]} & R433 & & & Cathode bias Grid return & ． 05 \\
\hline C424 & \multicolumn{2}{|l|}{} & & & R434
R435 & \begin{tabular}{l}
RC20AE821K \\
RC20AE304J
\end{tabular} & Resistor， 820 ohms \(\frac{1 / 2}{} \mathrm{wi}\)
Resistor， 300000 hms \(1 / 2 \mathrm{w}\). & Grid return & \multirow[t]{2}{*}{.75
.06} \\
\hline C426 & RCP10N4104M
RCM120C821K & Capacitor，, 1 mfd 400 v ．
Capacitor， 820 mmf & \multicolumn{2}{|l|}{Pulse shaping \({ }^{\text {a }} 40\)} & R435
R436 & \[
\begin{aligned}
& \text { V-10509-1 } \\
& \text { RC20AE } 274 \mathrm{~K}
\end{aligned}
\] & \begin{tabular}{l}
Control，125，000 ohms \\
Resistor， 270,000 ohms \(1 / 2 \mathrm{w}\) ．
\end{tabular} & MV plate & \\
\hline C427 & RCP10．M6103M & \multirow[t]{2}{*}{\begin{tabular}{l}
Capacitor， 01 mid 600 v ． \\
Capacitor， 11 mfd 400 v.
\end{tabular}} & \multicolumn{2}{|l|}{Coupling \({ }^{\text {Cl }}\)} & R43 \({ }^{-}\) & \multirow[t]{2}{*}{\begin{tabular}{l}
RC20AE274K \\
RC20AE 123 K
\end{tabular}} & \multirow[t]{2}{*}{Resistor， 12,000 ohms \({ }^{\text {d }} / 2 \mathrm{w}\) ．} & \multirow[t]{2}{*}{Pulse shaping net Plate decoupling Grid return} & .06
.05
.05 \\
\hline C428 & RCP 10 M 4104 M & & Screen bypass & ． 25 & R438 & & & & \multirow[t]{2}{*}{． 05} \\
\hline C429 & RCP 10．M6 104M & Capacitor， .1 mfd 600 v ． & Screen bypass & ． 35 & R439 & RC20AE 333 K
RC20AE474 & Resistor， 33,000 ohms \(1 / 2 \mathrm{w}\) ．
Resistor， 470,000 ohms \(1 / \mathrm{w}\) ． & \multirow[t]{2}{*}{Grid return Suppressor} & \\
\hline C430 & RCP10M6603M & Capacitor， 06 mfd 600 v ． & 15,750 ripple filter & ． 25 & R 440 & RC20AE151K & Resistor， 150 ohms 1！w． & & ． 10 \\
\hline \({ }^{\text {C431 }}\) & V－9901－3 & Capacitor， 500 mmf & \({ }^{\text {HV }}\) Cathoder \({ }^{\text {filt }}\) & 1.70
.25 & R441 & RC30AES63K & & & ． 95 \\
\hline \({ }_{\text {C432 }}\) & RCP10916603M & Capacitor， 0.06 mfd 600 v ． & Cathode bypass & ． 25 & R442 & V－9600－11 & Resistor，（aog－bone type），12，000 & 0 w. Screen decoupling & 1.15 \\
\hline \({ }^{\text {C433 }}\) & RCP100 2504 M & Capacitor， .5 mfd 200 v ． & AGC filter \({ }_{\text {Filament }}\) bypass & ． 50 & \({ }^{\text {R } 442}\) & V－11328－1 & Resistor（flat metal type）， 12,000 & w．AGC filter & ． 06 \\
\hline C434 & \(\mathrm{V}-9863 \mathrm{l}\)
\(\mathrm{V}-9863-1\) & Capacitor， 800 mmf
Capacitor， 800 mmf & Filament bypass
Filament bypass & ． 20 & \({ }_{\text {R44 }}\) &  &  & HV filter & ． 10 \\
\hline C435
C 437 & V－986936 & \({ }_{\text {Capacitor，}}\) Capacitor， 000 mmf & Heater bypass & ． 25 & \({ }_{\text {R444 }}\) & V－9927－7 \({ }^{\text {R } 20 \text { AE } 392 \mathrm{~K}}\) &  & Decoupling & ． 04 \\
\hline C438 & V－5596 & Capacitor，． 005 mfd & Heater bypass & ． 25 & R446 & RC20AE 273 K & Resistor， 27,000 ohms \(\frac{1 / 2}{} \mathbf{w}\) ． & \({ }^{\text {Plate load }}\) & ． 06 \\
\hline －C440 & V－10306－1 & Capacitor， 10 mfd 450 v ．（assy．con－ & & & R452 & RC20AE103K & Resistor， 10,000 ohms \(1 / 2 \mathrm{w}\) ． & AGC filter & ． 05 \\
\hline & & sists of C413，C414，C440） & Filter & \(3.25 *\) & R454 & RC20AE 273 K & Resistor， 27,000 ohms \(1 / 2 \mathrm{w}\) ． & Decoupling & \\
\hline －\({ }^{\text {c44 }} 1\) & V－9891 & Capacitor， 30 mfd 350 ve ．（assy．con－ & & & R455 & RC20AE 104K & Resistor， 100,000 ohms \({ }^{1 / 2} \mathbf{w}\) ． & Voltage dropping & 1.55 \\
\hline & & sists of C220，C441，C501 C502） & Filter \({ }_{\text {AGC delay }}\) & \(\begin{array}{r}4.35 \\ .20 \\ \hline\end{array}\) & R457 & V－11229－2 & Resistor， 3000 ohms 25 w ． & Cathode bias & ． 11 \\
\hline C444 & RCP10\％ 4104 M &  & Cathode bypass & ． 24 & R460 & RC30AE330K & Resistor， 33 ohms 1 w． & Coil shunt & ． 06 \\
\hline & RCP1044104．． & Capacitor，．1 mfd 400 v ． & & & \({ }_{\text {R461 }}\) & RC20AE223K & Resistor， 1 megohm \(1 / 2 \mathrm{w}\) ． & AFC bleeder & ． 05 \\
\hline & & & & & R472 & RC20AE 105 K & Resistor， 1 megohm \({ }^{1 / 2} \mathrm{w}\) ． & \({ }_{\text {Arc }}^{\text {AFO }}\) cathode & ． 05 \\
\hline & & & & & R473 & RC30AE154K & Resistor， 150.000 ohms 1 w ． & & ． 10 \\
\hline NOTE： & \(w\) part number lis d only a．s comple ice includes Fed ice furnished on prices are subie & \begin{tabular}{l}
the first time in Westinghouse radio smbly．Price shoum covers complete xise Tax． \\
bange without notice．
\end{tabular} & relevision service inform ssembly． & & NOT & New part number lis Sold only as comple Price includes Fed Price furnished on All prices are sub & \begin{tabular}{l}
for the first time in Westinghouse assembly．Price shoun rovers com Excise Tax． \\
est． \\
to change without notice．
\end{tabular} & ar television service info assembly． & \\
\hline
\end{tabular}




SHRVICE NOTHS
\begin{tabular}{|c|c|}
\hline 1 & 1B3GT .................... High voltage rectifier \\
\hline 1 & SU4G ....................... Low voltage rectifier \\
\hline 1 & 6AKS ..................................R-F amplifier \\
\hline 1 & 6AL5 ...............................Horizontal AFC \\
\hline 1 & 6AUSGT .........................Horizontal output \\
\hline 1 & GAUG ................... 1st sound I-F amplifier \\
\hline 1 & 6AU6 ................... 2nd sound I-F amplifier \\
\hline 1 & GAU6 ......................................Keyed AGC \\
\hline 1 & 6C4 ......................................Sync clipper \\
\hline 1 & 6CB6 ............................. 1st I-F amplifier \\
\hline 1 & 6CB6 ............................. 2nd I-F amplifier \\
\hline 1 & 6CB6 .............................3rd I-F amplifier \\
\hline 1 & 6SN7GT .................. Vertical multivibrator \\
\hline 1 & 6T8.. Ratio detector and lst audio amplifier \\
\hline 1 & 6W4GT ..........................Horizontal damper \\
\hline 2 & 6W6GT ................................. Audio output \\
\hline 1 & 6X8 .....................HF oscillator and mixer \\
\hline 1 & 12AT7 .. Sync amplifier and sync separator \\
\hline 1 & 12AU7 .................. Horizontal multivibrator \\
\hline 1 & 12BH7 ........ Vert. output and noise clipper \\
\hline 1 & 12BY7 ................................. Video output \\
\hline 1 & 21FP4A ........................ Cathode ray tube \\
\hline & fm Chassis: \\
\hline
\end{tabular}

\section*{SPECIFICATIONS}

TELEVISION FREQUENCY RANGES:
\begin{tabular}{|c|c|c|c|c|}
\hline Channel NUMBER & \[
\begin{aligned}
& \text { CHANNEL } \\
& \text { FREQUENCY } \\
& \text { (MC.) }
\end{aligned}
\] & VIDEO CARRIER frequency (MC.) & \[
\begin{gathered}
\text { SOUND } \\
\text { CARRIER } \\
\text { FREQUNCY } \\
\text { (MC.) }
\end{gathered}
\] & RECEIVER H.F OSCILLATOR FREQUENCY (MC.) \\
\hline 2 & \(54 \cdot 60\) & 55.25 & 59.75 & 101 \\
\hline 3 & 60-66 & 61.25 & 65.75 & 107 \\
\hline 4 & 66-72 & 67.25 & 71.75 & 113 \\
\hline 5 & 76-82 & 77.25 & 81.75 & 123 \\
\hline 6 & 82-88 & 83.25 & 87.75 & 129 \\
\hline 7 & 174-180 & 175.25 & 179.75 & 221 \\
\hline 8 & 180-186 & 181.25 & 185.75 & 227 \\
\hline 9 & 186-192 & 187.25 & 191.75 & 233 \\
\hline 10 & 192-198 & 193.25 & 197.75 & 239 \\
\hline 11 & 198-204 & 199.25 & 203.75 & 245 \\
\hline 12 & 204-210 & 205.25 & 209.75 & 251 \\
\hline 13 & 210-216 & 211.25 & 215.75 & 257 \\
\hline
\end{tabular}

NOTE: Provisions for UHF reception are included. To activate UHF positions of the cbannel selector, small UHF units can be inserted into the UHF sockets at the rear of the RF tuner. The receiver will accommodate two sucb units, and eacb unit provides reception of one UHF cbannel. Installation instructions are furnisbed with the units.
operating voltage:
.. 105 to 120 volts, 60 cycles \(A C\)

POWER CONSUMPTION: .... 250 watts

AUDIO POWER OUTPUT:
Undistorted
Maximum

INTERMEDIATE FREQUENCIES:
TV Video Carrier ............ 45.75 mc .
TV Sound .............................. 4.5 mc . Frequency Modulation ....... 10.7 mc .

AM/FM FREQUENCY RANGES:
Standard Broadcast ....................... 540 to 1600 kc .
Frequency Modulation ............ 108 mc .

SPEAKER:
Type ....................................................... \(10^{n}\) PM
Voice Coil Impedance .. 3.2 ohms at 400 cycles

1 6AVG .... AM det., AVC, and 1st audio amp.
2 6BAG ...................................IF amplifier
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}

TV ANTENNA INPUT IMPEDANCE:
300 ohms balanced or 72 ohms unbalanced

TV VIDEO RESPONSE:
\(\qquad\)

TV SWEEP DEFLECTION: ....................... Magnetic
TV SCANNING: ..................... Interlaced, 525 Line
TV HORIZ. SCANNING FREQ: .......... 15,750 CPS
TV VERT. SCANNING FREQ: .................. 60 CPS

TV FRAME FREQ:
(picture repetition rate)
30 CPS

1 6ALS

\section*{HIGH VOLTAGE WARNING}

The danger accompanying shock is always present when the receiver is operated outside the cabinet or when the rear cover is removed from the cabinet. Only a person familiar with the precautions to be observed when working with high-voltage equipment should service this receiver.

\section*{CATHODE RAY TUBE HANDLING PRECAUTIONS}

Shatterproof goggles and heavy gloves should be worn at all times when handling a cathode ray tube. The tube shoüld not be handled in the vicinity of any person not so equipped. When handling the tube, always keep it away from the body.

Due to the large surface area of the tube and the high vacuum contained within, more then ordinary care is required to prevent shattering the tube. The large end of the bulb, particularly the rim of the viewing surface, must not be struck, scratched; or subjected to more than mad. erate pressure. If the tube binds during removal or replacement, determine the cause of the trouble .- DO NOT FORCE THE TUBE.

An additional precaution is required when handling a cathode ray tube that has an aquadag coating on the outside of the tube. The outside aquadag coating forms one plate af a capacitor, and the inside coating to which the high voltage is applied serves as the other plate. The high voltage charge may be retained in this capacitor for a long time after the high voltthe lead is disconnected. Since the charge could produce a shock that would startle the age lead is disconnected. Since the charge could produce a shock the into dropping the tube, the charge shauld be dissipated before any handling of the tube is attempted. To dissipate the charge, place a jumper from the outside aquadag coating tube is attempted. To dissipate the charge, place a voltage button on the tube. Due to the relatively high resistance of the aquadag, the jumper should be held in place for some time to insure complete discharge.

6．Rotate the picture control to the position that provides best picture contrast．

7．If the picture moves up or down on the screen，the vertical hold control on the back of the receiver should be adjusted as explained
under ADJUSTMENTS．

8．If the picture is pulled into diagonal bars or if the edge of the picture quivers or tends to fold over，adjust the horizontal control for correct synchronization．This control can be adjusted so that it will seldom be necessary to re－adjust thereafter．To obtain this adjustment，tune in the range over which the picture is synchronized If the middle of the sync range does not correspond approximately to the middle of the mechanical range，make the adjustments described unde Horizontal Ringing Coil in the TELEVISION AD． JUSTMENTS section．Check the adjustment of the horizontal control by switching to anothe channel and then back again．The picture should be stable when switching from channel to channel

9．Rotate the fine tuning control to the posi－ tion that provides best picture detail．

10．A re－adjustment of the brightness and pic ture controls may improve the picture shading．
11．Adjust the off－on and TV volume contro for the desired sound volume．
12．Check the operation on all available TV stations．
13．If necessary，adjust the vertical linearity， 13．If necessary，adjust the vertical linearity ing as explained under TELEVISION ADJUST－ MENTS．
14．Rotate the TV－radio－phono selector to the center position（radio）．

15．Rotate the FM－AM selector to its counter－ clockwise position（FM）and check the operation of the radio section on the FM band．

16．Rotate the FM－AM selector to its clock wise position（AM）and check the operation of the radio section on the broadeast band．
17．Rotate the TV－radio－phono selector com－ pletely clockwise（phono），and completely check the operation of the record changer．

The receiver contains built－in antennas for
in areas of normal reception．In such areas use in areas of normal reception．In such areas anternal built－in antennas provide good reception， ak simal areas or nor required．However，is may be necessary to use an outside antenna．

Two sets of TV antenna terminals are located near the upper left corner of the TV section back cover，one marked UHF and the other marked STD． If an external TV antenna is to be used，disconnect he buil－in TV antenna wires from the SID termi－ hey do not touch the chassis or metal components． The lead－in wires from the external antenna should then be connected to the STD terminals．The UHF antenna terminals are not used unless UHF units ere installed（see note under TELEVISION FRE－

NCY RANGES on front cover）．
If an external FM antenna is to be used，dis－ connect the built－in FM antenna wires from the the shelf that supports the radio chassis，and connect the external antenna to these terminals． If desired，an external AM antenna can be con－ aected to the solder terminal marked＂EXTERNAL ANTENNA＂on the loop antenna

\section*{TO CHECK THE OPERATION OF THE RE－ CEIVER：}

1．Rotate the TV－radio－phono selector located （TV position）．

2．Turn on the receiver by rotating the off－on and TV volume control clockwise．

3．Rotate the channel selector to the desired channel number．The two channel selector posi－ units have been installed（see note on front cover of this booklet）．It should be noted that the channel selector position between 6 and 7 and the posi－ tion betweon 13 and UHF are blank positions although the channel selector will come to rest in these positions．

4．Adjust the brightness control to a position where the picture screen is moderately lighted．

5．Check the ion trap magnet adjustment as outlined under ADJUSTMENTS．

TELEVISION ADJUSTMENTS

\section*{CATHODE RAY TUBE CUSHION}

The CRT cushion must fit snugly against the flare of the CRT in order that the rear of the tube will be supported firmly．If this condition is not obtained，loosen the CRT cushion adjustment screws and the deflection yoke adjustment screw， slide the CRT cushion forward as far as possible， and re－tighten the screws．
DEFLECTION YOKE
The deflection yoke must be positioned as close as possible to the flare in the CRT．If ad－
justment is required，loosen the deflection yoke adjustment screw，slide the deflection yoke for ward as far as possible，and re－tighten the screw． Note that the CRT cushion must fit snugly against the CRT flare as described previously．

The deflection yoke adjustment screw also permits the picture to be rotated to make it square with respect to the mask．To rotate the picture loosen the deflection yoke ad justment screw and move it to the left or right．The picture will tilt to the left or right with the movement．Tighten the screw when the picture is squared in the mask．


FIG． 1 －CRT ADJUSTMENTS FOCUS

With the brightness and picture controls set at the ir normal operating positions，the focus con trol located on the back of the chassis should be adjusted for best focus．

\section*{CENTERING}

Centering is accomplished by rotating the centering magnet adjusting rings clockwise o counterclockwise as required．The two adjusting rings are located on the back of the deflection yoke as shown in Fig．1．A tab projection on each of the rings serves to facilitate adjustment．

If difficulty is experienced in centering the picture or eliminating＂neck shadows＂，make certain the CRT cushion is tight against the flare in the CRT．Also make certain that the de flection yoke is as far forward as possible．

\section*{ION TRAP MAGNET}

It is extremely important that the ion trat agnet be correctly adjusted immediately after the set is first turned on during installation．This is true even though the set appears to be operating satisfactorily．When the magnet is not correctly oriented，the electron beam strikes the edge of the aperture in the anode top disc instead of moving
cleanly through the hole．The resultant heat vapor－ izes the meral of the disc，thus releasing \(\hat{g}\) as which has a harmful effect on the tube．Some of the vapor－ ized material may be deposited on the screen of the tube and be apparent as darkened area．An excessively high setting of the brightness control will aggravate this condition．From this it is apparent that the brightness control should never be turned up to compensate for an incorrectly ad－ usted ion trap magnet．The tube can be ruined in a very short time under this condition

To adjust the ion trap magnet，position the magnet approximately as shown in Fig． 1 with the color code mark facing upward，then rotate the
magnet and move it forward and backward until
the position is found where the picture is brightest If the brightness peaks ac two positions of che magnet，the position nearer the base of the tube is the correct one．Never move the ion trap magne to remove a shadow from the raster if the brigh be removed by adjusting the position of she de flection yoke．Tbe ion trap magnt must alws be adjusted for maximum pičture brigbtness．

\section*{height and vertical Linearity}

The height adjustment on the back of the chas－ sis controls the overall height of the picture，and the vertical linearity adjustment controls the rela upper and the lower sections of the picture． balance between the two controls is necessary to make the picture symmetrical and fill the mas vertically．

WIDTH AND HORIZONTAL LINEARITY
The width adjustment on the back of the chas－ sis controls the overall width of the picture，and the horizontal linearity adjustment controls the relationship between the horizontal dimensions of the left and the right sections of the picture．A balance between the two controls is necessary to make the picture symmetrical with correct hori zontal dimensions．These controls can be adjuste with a \(1 / 4\)＂Spintite－type wrench．

\section*{VERTICAL HOLD}

The vertical synchronization is controlled by the vertical hold adjustment on the back of the chassis．To adjust，rotate the control clockwis or counterclockwise until the picture is stabilized vertically．The adjustment should preferably be made on the weakest signal that is available，and check should be made to see that the receive pulls into syac on all channels．

HORIZONTAL RINGING COIL
The horizontal ringing coil（L401）should be adjusted as follows：

1．Short out the ringing coil with a short jumper wire．

2．Set the horizontal hold control to the middle of its range，and leave it in this position during the steps that follow．

3．Connect a VTVM to the junction of R477 and C456，located in the pin \＃2 grid circuit of the voltage between this point and ground．

4．With the receiver tuned to a TV station， adjust C4S7（located near the horizontal multi on the meter．If but not quite reached at one extreme of the C45 adjustment，it may be necessary to set the hori－ zontal hold control slightly to one side of mid－ position to obtain zero voltage．

5．Remove the jumper from across the ringing coil．

6．Adjust the ringing coil for zero voltage on

\section*{CRITICAL LEAD DRESS IN TV CHASSIS}

Leads that are susceptible to \(\mathrm{R}-\mathrm{F}\) pickup with resulting interaction between stages must be dressed close to the chassis mounting plare. Leads in this category include heater, AGC, B plus, and the 125 volt bus leads. These leads must be long enough to permit dressing most of the path length close to the mounting plate. The heater wirin arrangement should not be altered.

Leads associated with the 41.25 mc . trap must be as short as possible and dressed away from the chass is

Video peaking coils should be dressed away from the chassis and clear of adjacent parts.

The lead from the width transformer to pin \#5 of the GAUG AGC keying tube must be dressed close to the chassis and away from the ringing coil.

The lead-in from the antenna terminals to the tuner must be dressed away from the I-F chassis to prevent an R-F "tweet" from interfering with the picture.

\section*{TELEVISION ALIGNMENT}

\section*{TEST EQUIPMENT}

To service these chassis, the following test equipment should be available:
1. R-F sweep generator that is capable of producing a 10 mc . sweep at a center frequency of 44 mc . The output must be adjustable from a least 100,000 microvolts down to a very low mini mum, and the output must be flat at all positions of the attenuat
2. Cathode ray oscilloscope, preferably one with a wide-band vertical deflection amplifier and a low-capacitance input probe. The oscilloscope should have good low-frequency response charac teristics.
3. Signal generator or generators capable of producing an accurate unmodulated signal at 4.5 \(\mathrm{mc} ., 41.25 \mathrm{mc} ., 42.25 \mathrm{mc}\)., 43.0 mc ., 44.0 mc ., 45.0 mc ., and 45.75 mc . The accuracy of these frequencies is very important. If the signal gen erator does not include a crystal calibrator, a calibrator should be used to insure accuracy. The output level must be adjustable from ar leas 100,000 microvolts down to a very low minimum
4. Vacuum tube voltmeter equipped with a high voltage multiplier probe for measurements u R-F voltages.

\section*{GENERAL INFORMATION}

The chassis and the test equipment should be bonded together by short lengths of heavy braided be shielded and should be as short as possible consistent with ease in making connections. The effectiveness of the bonding can be checked durin alignment by placing the hand on the chassis or test equipment case. If the response curve or mete reading changes, the bonding must be improved before the circuits are aligned.

It is important that the coaxial cable used to
couple the sweep generator output to the receiver couple the sweep generator output to the receiver teristic impedance of the sweep generator output circuit. To accomplish this, connect the appropriate value of resistance across the output leads at the open end of the cable. The oscilloscope vertical input cable and the generator output cables must be well separated from each other.

\section*{ALIGNMENT TOOL}

To adjust the slugs in the common I-F and 4.5 mc . I-F transformers a special tool is required. This tool must fit into the .035" x .093 " slot in slug. An incorrectly designed tool will cause
chipping of the slug. A suitable tool is stocked under Westinghouse part number V-8345.

\section*{COMMON I-F ALIGNMENT PROCEDURE}

The common I-F system uses over-coupled I-F transformers to obtain the required band width. In the alignment of this type system, the visual method of stage-bytstage alignment is used. A sweep genon the oscilloscope, and an unmodulated signal generator (marker) is used to provide spot frequency indications on the curve.

With some of the I-F transformers, peaks may be obtained at two positions of the adjustment slugs. If a transformer is badly out of adjustment it is advisable to turn the slug out (counterclock-


FIG. 2 - OSCILLOSCOPE CONNECTIONS
wise) as far as possible before beginning alignment. Then turn the slug clockwise until the first peak is reached. This procedure is recommended to obtain the correct peak rather than an undesired
second peak which is sometimes obtained when the slug is turned farther clockwise.

The alignment procedure to be used is given in the following steps:
1. To avoid undesirable beat response during alignment, remove the 6 AKS R-F amplifier tube from its socket and rotate the channel selector to channel 13. The channel selecor is on channel
13 when the flat of the shaft is facing straight up.
2. Connect the vertical input of the oscil2. Connect the vertical input of the oscilFig. 4) through the decoupling network shown in Fig. 2. The oscilloscope horizontal input should be connected to the sweep (synchrowizll sbielded leads. Turn the sweep control on the oscilloscope to the " \(x\) " or "off" position.
3. Connect the negative terminal of a 9 volt bias battery to the AGC line (point marked AGC Test Terminal on Fig. 4), and connect the positive terminal to chassis ground.
4. Couple the marker generator output to the sweep generator output so that the two signals are applied together to the points specified in the steps that follow. Some sweep generators have facilities for connecting the marker output directly into the sweep generator. With other sweep generators, the marker can be coupled to the sweep by wrapping a few turns of insulated wire around the center conductor of the sweep generator output cable and connecting the marker generator to this is desirable because excessive marker signal injection will distort the response curve.
5. Adjust the sweep generator for a center frequency of 44 mc . with a sweep deviation of 10 mc .
6. Connect the high side of the sweep gen erator outpur cable directly to the control grid of the 3rd I-F amplifier, and connect the ground side of the cable to the chassis partition as close as possible to the ground point for the 3rd I-F am phort as possible.
7. Detune the plate circuit of the 2nd I-F amplifier by attaching an "alligator" or similar type clip to pin \(S\) of the \(6 C B 6\) this step is necessary to avoid absorption of the signal that is applied at the 3 rd I-F grid.
8. Adjust the oscilloscope vertical gain and the sweep generator output level to obtain a curve on the oscilloscope. Ractice is to use maximum oscilloscope vertical gain and only enough \(s\) weep signal amplitude to obtain a good curve.
9. Set the marker generator to 44 mc . with the 9ut attenuated

4 mc . marker pip is at the highest point on the response curve.
10. Adjust the secondary of T304 to make the 10p the response curve symmetrical
11. Make certain that the response curve coin cides with Fig. 5A, using the makker to check a the appropriate frequencies. The 44 mc . pip mus strike the center of the flat response region, the 4.25 mc . and 45.75 mc . points mc . points must be requal heights. Re-adjust the primary and sec ndary of T304 if necessary to obtain these con ditions.
12. Remove the detuning clip from the plate f the 2nd I-F amplifier tube, and attach it to the plate of the 1st I-F amplifier tube.
13. Move the sweep output connection from grid of the 3rd I-F amplifier to the grid of the 2nd 1-F amplifier. Connect the ground side of the cable ot the chassis partition as close as possible
14. Adjust the primary of the 2nd common I-F transformer, T303, for maximum height of the response curve at 44 mc ., and adjust the secondary of T303 to make the top of the curve symmetical.
15. Make certain that the curve corresponds to Fig. SB. The 44 mc . pip must strike the center of the flat response region, the 42.25 mc . and 45.75 mc . points must have equal heights, and the 43 mc . and 45 mc . points must have equal heights. Re-adjust the primary and secondary of T303 if necessary.
16. Remove the detuning clip from the plate the 1st I-F amplifier.
17. Move the sweep outputconnection from the grid of the 2 nd I-F amplifier to the grid of the lst cable as the 1 st \(\mathrm{I}-\mathrm{F}\) amplifier tube.
18. Adjust the primary of the 1 st common I-F transformer, T302, for maximum height of the response curve at 44 mc ., and adjust the secondary of T302 to make the top of the curve symmerrical. If difficulty is experienced in aligning T302, adjust the ad jacent channel interference trap, L30, to a higher frequency by rotating the slug completely counterclockwise. Complete informa
19. Make certain that the curve corresponds to Fig. SC. The 44 mc . pip must strike the center of the flat response region, the 42.25 mc . and 45.75 mc . points must have equal height, and the 43 mc . and 45 mc . points must have equal heights. Re-adjust the primary and secondary of T302 if necessary.
20. Remove the sweep output connection from the 1st I-F amplifier grid, and couple it to the 6X8 mixer-oscillator tube through the coupling system illustrated in Fig. 3. This system provides adequate signal injection and at the same of the signal. The device is constructed by flar-

\section*{© John F. Rider}


FIG. 3 - COUPLING SIGNAL GENERATOR TO MIXER TUBE
ing a piece of tubular copper braid over the top of the 6 X8 rube and wrapping gummed tape over the braid to serve as insulation. The tube shield is then replaced over the tube with the braid protruding through the hole in the top of the shield. Tbe braid must not contact the chassis or the tube shield at any point. The tube shield should be locked securely to its mounting base. Connect the high side of the sweep generator output cable to the copper braid, and connect the ground side
to the nearest point on the chassis.
21. Rotate the slug of the 41.25 mc .trap (L301) completely clockwise.
22. It is possible to obtain two peaks when adjusting the primary of the I-F input coupling network, Ti01, located on the R-F tuner. These peaks produce different overall bandwidths. The correct peak to use is normally the peak that occurs with
the adjustment screw turned further counterclockthe ad
wise.

Turn the adjustment screw of Ti01 completely counterclockwise. Then adjust T101 for maximum height of the response curve at 44 mc ., and adjust the secondary of the I-F inpat coupling network, T301, to make the top of the curve symmetrical. If necessary, re-adjust T101 and T301 to make 44 mc . strike the center of the flat response region.
23. Set the marker generator to 41.25 mc ., and
ane increase the output until the pip is readily visible on the curve.
24. Adjust L301 to minimize the amplitude of the 41.25 mc . marker pip. L301 functions as a 41.25 mc . trap.
25. Make certain that the final response curve corresponds to Fig. SD. Use the marker to check at the frequencies shown on the drawing. If nec-
essary, re-adjust T101 and T301 to obtain the correct curve.

If the bandpass of the response curve is too narrow so that the 45.75 mc . marker occurs at less than 40 percent of maximum response, turn T101
clockwise until a second peak at 44 mc . is obtained. Adjust T301 for flat response at the top of the curve, and re-adjust T101 to center 44 mc . on the flat response.
26. L308 is the adjustment for the adjacent
channel interference trap. If adjacent channel in terference does not constitute a problem in the area where the receiver is to be operated, L 308 trap must not be mis-adjusted into the I-F response trap must not be mis-adjusted into the \(1-\mathrm{F}\) response
region. In areas where adjacent channel interference is not troublesome, L308 can be set to its highest tuneable frequency by rotating the slug completely counterclockwise, and it can be left in this position.

In areas where adjacent channel interference is evident, however, L308 should be adjusted to 47.25 mc . This can be accomplished in either of two ways. One is to connect an amplitude modulated signal generator that has an outpur of . 02 volt or higher to the grid of the Ist I-F amplifier, and adjust the output frequency accurately to 47.25 mc . This will produce an indication on an oscilloscope connected to the video test terminal. Adjust L308 for minimum response on the oscilloscope. If a signal generator capable of this high the receiver, and tune the receiver to the TV station on which the adjacent channel interference occurs, carefully adjusting the fine tuning control to its correct setting. Then, beginning with L308 in its completely counterclockwise position, rotate L308 clockwise until the position is found where the adjacent channel interference is eliminated. In some cases, the trap adjustment may affect the adjustment of T302. If this occurs, it will be necessary to repeat steps 17,18 and 19 .

SOUND I-F AND 4.5 MC. TRAP ALIGNMENT PROCEDURE
In the sound I-F alignment, a VTVM is used as the indicator instead of an oscilloscope. The procedure is as follows:
1. Connect the high side of the signal generator to the video test terminal (point "D" on Fig. 4) through a .001 mfd mica capacitor, and ground the low side to the chassis.
2. Connect the VTVM to the points indicated on the bottom view of the chassis, Fig. 6. The common lead should be connected to point "C" and the high lead should be connected to
Set the meter on its 5 volt ( \(-D C\) ) scale.
3. Adjust the signal generator to 4.5 mc . (unmodulated). The accuracy of this frequency is very important. If a crystal controlled signal generator with an accurate frequency meter.
4. Adjust L201, L202 and the primary of T201 for maximum indication on the meter. During these adjustments keep the signal generator output ad-
justed so that the meter reading does not exceed justed so
5 volts.
5. Connect the common lead from the VTVM to point "A", (Fig. 6), and connect the high lead to point Bonents of the VTVM are not grounded to the receiver chassis. Otherwise point " \(A\) " would be
shorted to the chassis through the common lead.
6. Using the same signal generator amplitude and frequency as in step 4, adjust the secondary of T201 for zero voltage on the VTVM. As the ad ustment is tuned through resonance, the voltage will rapidly change from one polarity to the oppo site polarity. The point where the voltage is zer
is the correct setting.
7. Connect the common lead from the VTVM o the chassis, and connect the R-F probe from the VTVM to the cathode of the CRT. This point is shown as point "se" on Fig. 6. Note that this R-F probe must contain a blocking capacitor.
8. Using a strong 4.5 mc . signal applied as in step 1 , adjust the 4.5 mc . trap, L309, for mini mum indication on the meter.
H. F. OSCILLATOR ALIGNMENT PROCEDURE

If the 6X8 oscillator tube is replaced, the different inter-electrode capacitance of the new tube may change the oscillator frequency enough to necessitate re-alignment of the oscillator.

Alignment of the oscillator on the high band
is accomplished by adjusting the brass slug located adjacent to the vernier drive wheel on the ront of the tuner. Alignment of the oscillator on the low band is accomplished by adjusting the brass slug on the lower front of the tuner. The adjustment procedure is as follows:
1. Set the fine tuning control to the middle of its range, and keep it in this position during the oiddle of its range when the set-screw in the fine tuning drive wheel is straight up.
2. Set the selector switch to the highest of the low-band (channels 2 through 6) stations operating in your vicinity.
3. Peak the low band adjustment slug (L109) for the best picture detail.
4. Set the selector switch to the highest of and high-band (channels 7 through 13) stations operating in your vicinity.
5. Peak the high band adjustment slug (L110) or the best picture detail.
6. Check the previously made low band adjustent and if the tuning has changed repeat steps 2 and 3.


\section*{AM/FM ALIGNMENT}

\section*{BROADCAST BAND}

Connect an output meter across the speaker voice coil.
While making the following adjustments, keep the volume control set for maximum output and the signal generator output atten uated to avoid AVC action.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Connect Signal Generator to - & Signal Generator Frequency & Radio Dial Setting & Adjust \\
\hline 1 & \multicolumn{4}{|l|}{Set the AM-FM switch to AM and the phono-radio-TV control to RADIO} \\
\hline 2 & Stator of tuning capacitor ( \(A\) ) through a 0.1 mfd capacitor & 455 kc . & minimum capacity & Pri. and sec. of T7 and T6 for max. output in order given \\
\hline \multicolumn{5}{|l|}{NOTE: If the I-F transformers are badly mis-aligned, it may be impossible to obtain sufficient output using the abrve system. In this event, it will be necessary to align each transformer separately. Start with the last l-F transformer and work foruard, connecting the signal generator to the control grid of the tube preceding the transformer under alignment.} \\
\hline 3 & Radiated signal (no actual connection) & 1615 kc . & minimum capacity & AM osc. trimmer (D) for max. output \\
\hline 4 & Radiated sigral (no actual connection) & 1400 kc . & tune to signal & AN ant. trimmer (B) for output max. (rock-in adjustment) \\
\hline
\end{tabular}

\section*{FM Band}

Do not align the FM circuits until all AM adjustments have been completed.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Connect Signal Generator to - & Signal Generator Frequency & \[
\begin{aligned}
& \text { Radio } \\
& \text { Dial } \\
& \text { Setting }
\end{aligned}
\] & Adjust \\
\hline 1 & \multicolumn{4}{|l|}{Set the AM-FM switch to FM} \\
\hline 2 & \multicolumn{4}{|l|}{Connect two 100,000 ohm resistors (the resistances must be equal within 5 per cent) between pin No. 7 of the 6Al5tube and ground as shown on the schematic diagram.} \\
\hline 3 & \multicolumn{4}{|l|}{Connect a V.T.V.M. between points "X' and "Y" (see schematic diagram).} \\
\hline 4 & Pin No. 2 of 12AT7 through a 0.1 mid mica capacitor & 10.7 mc. & minimum capacity & Sec. of T4 for zero (use medium strength signal) \\
\hline 5 & \multicolumn{4}{|l|}{Connect the V.T.V.M. between point " Z ' and ground} \\
\hline 6 & Same as step 4 & 10.7 mc . & minimum capacity & Pri. of T4 and pri. and sec. of T3 and T2 for max. \\
\hline 7 & \multicolumn{4}{|l|}{Reconnect the V.T.V.M. between points ' X ' \({ }^{\text {and ' }} \mathrm{Y}\) ' and increase the signal strength 10 times} \\
\hline 8 & Same as step 4 & 10.7 mc . & minimum capacity & Recheck sec. of T4 for zero voltage \\
\hline 9 & \multicolumn{4}{|l|}{Reconnect the V.T.V.M. between point " 2 " and ground} \\
\hline 10 & Same as step 4 & 10.7 mc . & minimum capacity & Pri. of T4 for maximum voltage \\
\hline 11 & \multicolumn{4}{|l|}{Remove the two 100,000, ohm resistors chat were inserted in step 2} \\
\hline 12 & FM int. terminal through a 300 ohm noninductive resistor & 98 mc . & 98 mc . & FM osc. core for maximum voltage \\
\hline 13 & Same as step 12 & 98 mc . & 98 mc . & FM. R-F trimmer (C46) for maximum voltage \\
\hline 14 & Same as step 12 & 105 mc . & tune to signal & FM R-F core for maximum voltage \\
\hline 15 & Same as step 12 & 90 mc . & tune to signal & FM R-F trimmer (C46) for maximum voltage (rock-in) \\
\hline 16 & \multicolumn{4}{|l|}{Recheck steps 14 and 15 for tracking} \\
\hline
\end{tabular}

\section*{O John F. Rider}

\section*{TELEVISION ALIGNMENT CHARTS}

The information in these charts is condensed from the foregoing detailed information as a convenience to the service technician．It is recommended that the detailed information be studied before using the charts．

\section*{COMMON I．F SECTION}

Remove the 6 AK 5 RF amplifier tube from its socket，and turn the chan－ nel selector to channel 13

Connect the oscilloscope to the video test terminal through the de－ coupling network shown in Fig． 2.

Connect a 9 volt bias battery to the AGC line．
Adjust the sweep generator for a center frequency of 44 mc ．with a 10 mc．sweep deviation，and couple the marker generator to the sweep generator．
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Connect Sweep and Marker Generators to－ & Marker Use & \begin{tabular}{l}
Connect \\
Detuning Clip to－
\end{tabular} & Adjust－ \\
\hline 1. & 3rd I－F amp． grid & Check for equal re－ sponse at 42.25 mc and \(45.75 \mathrm{mc} u\) sing weak signal．Also 43 mc and 45 mc ． & 2nd I－F amp． plate & Pri．of T304 for max． response and sec．of T304 for symmetrical curve shown in Fig． 5A． \\
\hline 2. & 2nd I－F amp． grid & Same as step 1 & 1st I－F amp． plate & Pri．of T303 for max． response and sec．of T303 for symmetrical curve shown in Fig． SB． \\
\hline 3. & 1st I－F amp． grid & Same as step 1 & Not used & Pri．of T302 for max． response and sec．of T302 for symmetrical curve shown in Fig． 5C． \\
\hline 4. & \(6 \times 8 \mathrm{mixer}\) through coupling de e vice shown in Fig． 3. & Checkat 44 mc Marker pip must be at center of flat region on curve & Not used & Turn L301 adj．com＊ pletely clockwise and adjust T101 for max．response．Ad－ just T301 for sym＊ metrical top． \\
\hline 5. & Same as pre－ ceding step & Adjust to 41.25 me． and increase output until pip is readily visible． & Not used & L301 to minimize am－ plitude of 41.25 mc ． marker pip． \\
\hline 6. & Same as pre－ ceding step & Check curve at fre－ quencies shown on Fig． 5. & Not used & Re－adjust T101 and T301 to obtain curve shown in Fig．SD． \\
\hline
\end{tabular}

Thune L308 to \(\mathbf{4 7 . 2 5} \mathbf{~ m c}\) ．as described in step 26 of detailed information


SOUND I－F SECTION AND 4.5 MC ．TRAP
Connect the signal generator to the video test terminal（point＂D＂on Fig．4）through a .001 mfd capacitor
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Signal Gen． Frequency & VTVM Connections & Remarks & Adjust－ \\
\hline 1. & 4.5 mc ． unmodulated & Common lead to point＂C＂ and high lead to point＂\(A\)＂ as shown in Fig． 6. & Use 5 v ．（－DC）scale on meter．Set sig．gen．output accordingly． & L201，L202 and pri．of T201 for max．voltage． \\
\hline 2. & \[
4.5 \mathrm{mc} .
\] unmodulated & Common lead to point＂\(A\)＂ and high lead to point＂\(B\)＂ as shown in Fig． 6. & Use same sig．gen．output as in step 1 & Sec．of T201 for zero voltage． \\
\hline 3. & \[
\begin{gathered}
4.5 \mathrm{mc} . \\
\text { unmodulated }
\end{gathered}
\] & RF probe to point＂\(E\)＂（see Fig．6）and common leadto chassis． & Use strong signal from gen－ erator & L309 for minimum voltage \\
\hline
\end{tabular}


MODEL H－730C21 PARTS LIST
When ordering parts，specify model number of set in addition to part number and description of part．

Description
 V －10924－3 Base，channel selector …．．．．．．．．．．．．．．．．．．30 \(\quad\) ． C V－10408－9 Knob，radio volume ．．．．．．．．．．．．．．．．．．．．．．．．．．． 30




V－8610 Doors，center section（less hardware） \(0: 0\)
\(\begin{array}{lll}\text { V－10942－2 } & \text { Drawer，record changer（less hardwart } \\ \text { Gasket，dust seal }\end{array}\) ．．．．．．．．．．．．．．．．．．．．．．．．75 \(\neq \mathrm{V}-11194-3\) Pull，record changer drawer ．．．．．．．．．．．．．．．

\(+\mathrm{V}-9938-5\)
\(+\mathrm{V}-9939-6\)
\(\nrightarrow \mathrm{V}-9939-6\)
\(\nrightarrow \mathrm{~V}-9940-4\)
\[
\begin{aligned}
& \text { nge, upper LH and lower RH } \\
& \text { Hinge. upper RH and lower LH }
\end{aligned}
\]

Hinge，upper LH and lower RH
Hinge，upper RH and lower LH
Hinge，continuous \(\qquad\)
\(\qquad\) （．．．．．．．．．．．
V．2218－2

V－10934－1 Spring，channel selector base ．．．．．．．．．．． 10
\(\begin{array}{cc}\text { V－4900－1 } & \text { Strike，bullet ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．：} \\ \text { V－11417－1 } & \text { Wing，dial }\end{array}\)
－2218－2 CHASSIS PARTS
－6090－1 Base，miniature tube（ 6 T 8 ）MISCELLANEOU
V－54268－1
\(\mathrm{V}-11356-1\)
\(\mathrm{~V}-5906-7\)


Cushion，yoke hood
Hood，yoke mounting
Magnet，ion trap
\[
\begin{aligned}
& +\quad \mathrm{V} \\
& \begin{array}{l}
\text { V-4349-16 Cord, phono AC power .................... . } 50 \\
\neq \mathrm{V}-10962-10 \text { Cover Assembly, back ................ 4.75 } \\
\neq \mathrm{V} \text {-11134-1 Dial, AM-FM .......................... } 50 \\
\neq \mathrm{V}-8609 \text { Doors, matched pair (less hardware) }
\end{array} \\
& \text { V-8610 Doors, matched pair (less hardware) ** }
\end{aligned}
\]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & V-2218-2 CHASSIS PARTS (con & inued) & & R402 & RC40AE153K & & AGC cathode & \\
\hline Ref. & & V-2218-2 CHASSIS PARTS (cont & (inued) & List Price & R403
R404 & RC 30 AE472K RC20AE224K & \begin{tabular}{l}
Resistor, 4700 ohms 1 w. \\
Resistor, 220,000 ohms \(1 / 2 \mathrm{w}\).
\end{tabular} & AGC screen & .20
.09
.05 \\
\hline No. & No. & Description & Function & Each & R404
R405 & \({ }_{\text {RC20AE273K }}\) & Resistor, 220,000 ohms \(1 / 2 \mathrm{w}\). & Positive bias limiting
DC divider & . 05 \\
\hline R324 & RC20AE224K & Resistur, 220,000 ohms \(1 / 2 \mathrm{~m}\). & Divider & . 05 & R406 & RC20AE225K & Resistor, 2.2 megohms \(1 / 2 \mathrm{w}\). & Grid return & . 05 \\
\hline R325 & RC20AE 123 K & Resistor, 12,000 ohms \(1 / 2 \mathrm{w}\). & Brightness bleeder & . 05 & R407 & RC20AE474K & Resistor, 470,000 ohms \(1 / 2 \mathrm{w}\). & Coupling limiter & . 05 \\
\hline R326 & RC30AE683K & Resistor, 68,000 ohms 1 m . & Brightness divider & . 09 & R408 & RC20AE 473 K & Resistor, 47,000 ohms \(1 / 2 \mathrm{w}\). & Decoupling & . 05 \\
\hline R327 & V-10014-1 & Control, 50,000 ohms & Brightness & . 80 & R409 & RC20AE394K & Resistor, 390,000 ohms \(1 / 2 \mathrm{w}\). & Sync sep. screen & . 05 \\
\hline R 331
R332 & RC20AE474K & Resistor, 470,000 ohms \(1 / 2 \mathrm{w}\). & Recrace line suppression & . 05 & R411 & RC20AE682K & Resistor, 6800 ohms \(1 / 2 \mathrm{w}\). & Simal divider & . 05 \\
\hline R332
R335 & RC20AE683K & Resistor, 68,000 ohms \(1 / 2 \mathrm{w}\). & \({ }^{\text {AGC divider }}\) & . 05 & R413 & RC30AE104K & Resistor, 100,000 ohms 1 w . & Decoupling & 3.10 \\
\hline R335
R336 & \[
\begin{aligned}
& \text { RC40AE } 822 \mathrm{~K} \\
& \text { V- } 9927-10
\end{aligned}
\] &  & Plate load & . 20 & R415
R416 & \({ }_{\text {R } 2004 E 224 K}\) & Resisistor, 220,000 ohms \(1 / 2 \mathrm{w}\). & Bleeder & . 05 \\
\hline R341 & RC20AE 100 K & Resistor, 10 chms \(1 / 2 \mathrm{w}\). & 1st IF grid & . 06 & R416
R417 & V-9813-4 & Concrol, 250,000 ohms & Height & . 75 \\
\hline R342 & RC20AE221M & Resistor, 220 ohms \(1 / 2 \mathrm{w}\). & Video amp. grid & . 05 & R418 & RC20AE122K &  & Grid return & . 05 \\
\hline R343 & V -9894-2 & Control, 2 megohms & Focus & . 75 & R419 & \({ }_{\mathrm{V}-9894-3}\) &  & Cathode bias
Vertical hold & . 75 \\
\hline T301 & V-9882-7 & Transformer & IF input & . 60 & R420 & RC20AE332K & Resistor, 3300 ohms \(1 / 2 \mathrm{w}\). & Pulse shape net. & .05 \\
\hline \({ }^{1302}\) & V-9879 & Transformer & & 1.30 & R421 & RC20^E225K & Resistor, 2.2 megohms \(1 / 2 \mathrm{w}\). & Grid return & . 05 \\
\hline T303 & v-9879 & Transformer & 2nd IF & \$1.30 & R422 & RC20AE471K & Resistor, 470 ohms \(1 / 2 \mathrm{w}\). & Cathode bias & . 06 \\
\hline T304 & V-9880 & Transformer & 3rd IF & 1.40 & R423 & V-6463 & Control, 5000 ohms & Vert. linearity & . 76 \\
\hline & & & & & R424 & V-11328-2 & Resistor, 10,000 ohms 5 m . & Vert. decoupling & .90 \\
\hline & & SECTION 4 - SWEEP & & & R425 & RC20AES61K & Resistor, 560 ohms \(1 / 2 \mathrm{w}\). & Transient damping & . 05 \\
\hline \({ }^{4} 401\) & RCP10\%4104M & Capacitor, , 1 mfd 400 v . & Noise clipper coupling & . 25 & \({ }_{\text {R4436 }}\) & RC20AE561K & Resistor, 560 ohms \(1 / 2 \mathrm{w}\).
Resistor,
R20 ohms
d & Transient damping & . 05 \\
\hline C403 & RCM20B271K & Capacitor, 270 mmf & Sync sep. grid & . 20 & R433 & RC20AE821K & Resistor, 820 ohms \(1 / 2 \mathrm{w}\). & Cathode bias & . 05 \\
\hline \(\mathrm{C}_{4} 4\) & RCP10W4103M & Capacitor, 01 mfd 400 v . & Vert. sync coupling & . 24 & R434 & RC20AE304] & Resistor 300,000 ohms \(1 / 2 \mathrm{w}\). & Grid return & . 15 \\
\hline \({ }^{\text {C408 }}\) & RCP10W 4103K & Capacitor, 0.01 mfd 400 v . & Vert. MV coupling & . 19 & R435
R436 & V-10915-1 & Control, 125,000 ohms & Horiz. hold & . 80 \\
\hline C410 & RCP1004503M & Capacitor, 005 mfd 400 v . & Cathode bypass & . 24 & R436
R437 & RC20AE274K & Resistor, 270,000 ohms \(1 / 2 \mathrm{w}\). & MV plate load & . 06 \\
\hline \({ }_{C}^{C 411}\) & RCP 10 M 6104 M
RCP 10 W 4503 K &  & Verr., coupling
Pulse shaping net. & . 35 & R437
R 438 & RC20AE123K
RC20AE333 & Resistor, 12,000 ohms \(1 / 2 \mathrm{w}\).
Resistor, 33,000 ohms \(1 / 2 \mathrm{w}\). & Pulse shaping net.
Plate decoupling & .05 \\
\hline -C413 & V-10306-1 & Capacitor, 150 mfd 50 v. ( & & & R439 & RC20AE474K & Resistor, 470,000 ohms \(1 / 2 \mathrm{w}\). & Grid return & . 05 \\
\hline & & consists of C414, C413 and C441 & Cathode bypass & \(3.25{ }^{\circ}\) & R440 & RC20AE1SIK & Resistor, 150 ohms \(1 / 2 \mathrm{w}\). & Suppressor & . 06 \\
\hline -C414 & V-10306-1 & Capacitor, 30 mfd 400 ra . (assy.
consists of C414, C413 and C441) & & \(3.25 *\) & R4412 & \({ }_{\text {R.11328-1 }}^{\text {RC30AES63 }}\) & Resistor, 56,000 ohms 1 w .
Resistor, 12,000 ohms 10 w. & Hor. MV decoupling & . 10 \\
\hline C415 & V-9792-10330K & Capacitor, 33 mmf , & Trans ient damping & . 30 & R444 & v -9927-7 & Resistor, 330,000 ohms 1 w . & HV filter & \(\xrightarrow{10}\) \\
\hline C416 & RCP 10 W 4254 M & Capacitor, 25 mfd 400 v . & Hor. yoke return & . 35 & R445 & RC20AE472K & Resistor, 4700 ohms \(1 / 2 \mathrm{w}\). & Decoupling & . 05 \\
\hline \(\mathrm{C}_{421}\) & RCM20B101K & Capacitor, 100 mmf & MV plate bypass & . 22 & \({ }^{\text {R446 }}\) & RC20AE273K & Resistor, 27,000 ohms \(1 / 2 \mathrm{w}\). & Plate load & . 06 \\
\hline C422 & RCM20в101K & Capacitor, 100 mmf & MV coupling & . 22 & R452 & RC20AE103K & Resistor, 10,000 ohms \(1 / 2 \mathrm{w}\). & AGC filter & . 05 \\
\hline C423 & V-10293-1 & Capacitor, 10 mfd 450 v. & MV decoupling & 1.25 & R455 & RC20AE104K & Resistor, 100,000 ohms \(1 / 2 \mathrm{w}\). & Decoupling & . 05 \\
\hline \(\mathrm{C}_{4} 42\) & RCM30C392K & Capacitor, 3900 mmf & MV plate rank & 1.17 & R457 & \({ }^{\text {V }-11328-3 ~}{ }_{\text {RC30 }}\) & Resistor, 15,000 ohms 5 m . & AGC decoupling & . 95 \\
\hline \({ }^{4} 425\) & RCP 10044104 M & Capacitor,, 1 mfd 400 v . & MV plate decoupling & & R460
R461 & RC30AE330K
RC20AE223K & Resistor, 33 ohms 1 w.
Resistor, 22,000 ohms \(1 / 2 \mathrm{w}\). & Cathode bias & . 11 \\
\hline C426 & \({ }_{\text {RCM20C821 }}\) & Capacitor, 820 mmf
Capacitor,
cold
mfd 000 v . & \({ }^{\text {Pulse shaping }}\) Coupling & . 40 & R461
R471 & RC20AE223K
RC20AE105K & Resistor, 22,000 ohms \(1 / 2 \mathrm{w}\). & Coil shunt & . 06 \\
\hline C427 & RCP \(10 \mathrm{M6103M}\)
RCP10W4104M & Capacitor, 01 mfd 600 v .
Capacitor,, 1 mfd 400 v . & Coupling \({ }^{\text {Screen bypass }}\) & . 212 & R472 & RC20AE105K & Resistor, \(1 \mathrm{megoghm} 1 / 2 \mathrm{w}\). & AFC cathode & . 05 \\
\hline C429 & RCP10M6104M & Capacitor, 11 mfd 600 v . & Screen bypass & . 35 & \({ }^{\mathrm{R} 473}\) & RC30AE154K & Resistor, 150,000 ohms 1 w . & Error take-off & . 10 \\
\hline C430 & RCP10M6603M & Capacitor, 060 mfd 600 v . & 15,7s0 ripple filter & . 25 & R474 & RC30AE154K & Resistor, 150,000 ohms 1 w . & Limiting & . 10 \\
\hline C431 & V -9901-3 & Capacitor, 500 mmf & HV filter & 1.70 & R475 & RC20AE224K & Resistor, 220,000 chms \(1 / 2 \mathrm{w}\). & Plate decoupling & . 05 \\
\hline \({ }^{4} 432\) & RCP \(10 \mathrm{M6603M}\) & Capacitor, 006 mfd 600 v . & Cathode bypass & . 25 & \({ }_{\text {R476 }}\) & RC20AE474K & Resistor, 470,000 ohms \(1 / 2 \mathrm{w}\). & AFC delay & . 05 \\
\hline \({ }^{C 433}\) & RCP10W4504M & Capacitor, . 5 mfd 400 v . & AGC filter & . 59 & R477 & RC20AE473
RC20AE 684 K & Resistor, 47,000 ohms \(1 / 2 \mathrm{w}\). \({ }^{\text {Resistor, }} 680,000 \mathrm{chms} 1 / 2 \mathrm{w}\). & Plate load & . 05 \\
\hline \({ }^{\text {C434 }}\) & V-9863-1 & Capacitor, 800 mmf
Capacitor, 800 mmf & Heater bypass
Heater bypass & . 20 & R483 & RC20AE393K & Resistoc, 39,000 ohms \(1 / 2 \mathrm{w}\). & Decoupling & . 05 \\
\hline C437 & V-5596 & Capacitor, . 005 mfd & Heater bypass & . 25 & R485 & RC40AE393K & Resistor, 39,000 ohms 2 w . & Bleeder & . 20 \\
\hline C438 & V -5596 & Capacitor, 0005 mfd & Heater bypass & . 25 & R486 & RC20AE 104 K & Resistor, 1000000 ohms \(1 / 2 \mathrm{w}\). & Plate load & . 05 \\
\hline -C440 & v-10786-1 & Capacitor, \(10 \mathrm{mfd} 450 \mathrm{v} .\), elec. (assy. consists of C231, C310 and C440) & & & \({ }_{\text {R487 }}\) & RC20AE682K & Resistor, 6800 ohms \(1 / 2 \mathrm{w}\).
Resistor, 5600 ohms 2 w . & Pulse shape net.
Tuner dropping & . 05 \\
\hline -C441 & V-10306-1 & Capacitor, 10 mfd 450 va (assy. & Decoupling & \(3.10{ }^{\circ}\) & R492 & RC20AE 222 K & Resistor, 2200 ohms \(1 / 2 \mathrm{w}\). & Signal divider & . 05 \\
\hline & & consists of C441, C413 and C414) & Filter & 3.25 * & R493 & RC20AE182K & Resistor, 1800 ohms \(1 / 2 \mathrm{w}\). & Cathode bypass & . 05 \\
\hline \(\mathrm{C}_{44}\) & RCP10W4103M & Capacitor, 0101 mfd 400 v . & AFC delay & . 20 & R494 & RC20AE274K & Resistor, 270,000 ohms \(1 / 2 \mathrm{w}\). & Divider & . 06 \\
\hline C444 & RCP10W4104M & Capacitor, .1 mfd 400 v . & Cathode bypass & . 24 & R495 & RC20AE333M & Resistor, 33,000 ohms \(1 / 2 \mathrm{w}\). & Tuner dropping & . 05 \\
\hline C446 & V-5596 & Capacitor, .005 mfd & Cathode bypass & . 25 & T401 & V-10909-1 & Transformer & Vertical output & 3.90 \\
\hline C447 & RCP 10W4104M & Capacitor, 11 mfd 400 v . & Control bypass & . 24 & T402 & V-10214-1 & Transformer & Hor. output and HV & 13.15 \\
\hline \({ }_{\text {C451 }}\) & RCM20B101K
RCM20B681K & Capacitor, 100 mmf
Capacitor, 680 mmf & AFC cathode
AFC plate bypass & . 22 & 1403

2401 & \(\xrightarrow{\mathrm{V} \text {-5902 }} \mathrm{V}\)-11192-1 & Control & Width
Integrating & 1.55
1.30 \\
\hline \({ }_{6} 453\) & RСм20В331K & Capacitor, 330 mmf & AFC coupling & . 25 & 2402 & V-10911-3 & Yoke Assembly (contains V-10538-6 & & \\
\hline \({ }^{\text {C454 }}\) & RCP 10 W 4103 M & Capacitor, 01 mfd 400 v . & MV grid & . 20 & & v-10911-4 & deflection yoke) & Deflection & 12.50 \\
\hline C45s
\(C 456\) & \({ }_{\text {RCP }}^{\text {RCP } 10 W 45002 M}\) & Capacitor, 0005 mfd 400 v . & MV grid & . 24 & 2402 & V-10911-4 & Yoke Assembly (contains V-10538-7
deflection yoke) & Deflection & 12.50 \\
\hline C457 & V-11228-1 & Capacitor, \(5-40 \mathrm{mmf}\) & MV trimmer & . 35 & & & & & \\
\hline C461 & V-5596 & Capacitor, 005 mfd & Heater bypass & . 25 & & & & & \\
\hline \({ }_{6} 462\) & RCM20B101K & Capacitor, 100 mmf & AFC coupling & . 22 & & & SECTION 5 - POWER & & \\
\hline C46s & V. 5596 & Capacitor, .005 mfd & Screen bypass & . 25 & & & SECTON 5 - Power & & \\
\hline \begin{tabular}{l} 
C469 \\
\hline 1401
\end{tabular} & \({ }_{\text {V-6764 }}^{\text {RCM208271K }}\) & Capacitor, 270 mmf
Coil & Cathode bypass
Ringing & .20
1.45 & - Csol & V-9891 & Capacitor, \(40 \mathrm{mfd} \mathbf{4 5 0}\) v. (assy consists of C211, C212, C501 and C502) & Filter input & \(4.35^{\circ}\) \\
\hline L402 & V.9960 & Reactor & Hor. linearity & 1.25 & -C502 & \(\mathrm{V}-9891\) & Capacitor, 40 mfd 450 v . (assy consists & & \\
\hline L404 & V -4886-2 & Reactor, 1.1 microhenries & Heater isolation & . 38 & & & of C211, C212, C501 and C502) & Filter input & \(4.35{ }^{\circ}\) \\
\hline L406 & V -4886-2 & Reactor, 1.1 microhenries & Hea ter decoupling & . 38 & \({ }_{C} \mathrm{C503}\) & V -5040-15 & Capacitor, 0101 mfd 600 v . & Line filter & . 35 \\
\hline L407
L408 & \(\underset{\mathrm{V}-4886-2}{\mathrm{~V}-9099-5}\) & Reactor, 1.1 microhenries
Reactor, 2.7 microhenries & Heater isolation
HV filament & . 38 & Cs04
Ls01 & V-5040-15 &  & Line filter
LV filter & .35
2.35 \\
\hline L410 & V -4886-2 & Reactor, 1.1 microhenries & Heater decoupling & . 38 & RSO1 & RC30AE224M & Resistor, 220,000 ohms 1 & Protection & . 10 \\
\hline L411 & V -9099-5 & Reactor, 2.7 microhenries & Suppressor & . 20 & -Sws01 & V-9877-4 & Switch (assy consists of R208, & & \\
\hline \({ }_{\text {R401 }}\) & V-4886-2 & Reactor, 1.1 microhenries
Resistor, 4700 ohms \(1 / 2 \mathrm{w}\). & Suppressor \({ }_{\text {Keyed AGC }}\) & . 38 & & & R319, SW501) & Offon & \(2.15{ }^{\circ}\) \\
\hline & K-201E472 & Resista, 400 mins \(1 / 2 \mathrm{w}\). & Key & & TS01 & v-9988-2 & Transformer & Power & 19.50 \\
\hline
\end{tabular}

© John F. Rider


\section*{GENERAL DESCRIPTION}

Model H-803 All-Channel UHF Television Tuner is designed for use with Westinghouse television receiver that contain specific provisions for its use. Receivers positions on the channel selector and two UHF socket mounted on the rear of the tuner bracket. When the UHF tuner is correctly installed in such a receiver, reception of all the UHF television channels ( 14 through 83) is provided in addition to the VHF channels (2 through 13).

The UHF tuner contains an oscillator and a mixer ircuit and can be tuned over the entire UHF TV spectrum. mediate frequency of the television receiver (center IF is 44 mc .), and this IF output is fed into the VHF tuner in the receiver. When the channel selector on the receiver is set to the UHF positions, the VHF oscillator in the receiver is disabled and the RF amplifier and mixer circuits serve as IF amplifier stages at 44 mc . Thus, the output of the UHF tuner is amplified in the VHF tuner and fed into the IF strip in the receiver.

\section*{DENTIFICATION}

In production, several different UHF tuners are used. They are designated V-11390-1, V-11390-2, V-11390-3, on each tuner. Figures 1,2 and 4 ind icate the elec. trical and mechanical variations between tuners.

Model H-803 tuner assemblies are divided into six categories depending on the type of tuner employed and the type of receiver with which the assembly can be used. On tuner assemblies packed for field installation, the category is identified by a number following the basic molel number ( \(\mathrm{H}-803\) ) marked on the outside of
the carto. The coding is as follows:

MODEL H-803

\section*{ALL-CHANNEL} UHF TELEVISION TUNER installation and SERUICE NOTES


FIG. 1 - V-11390-1 TUNER
\begin{tabular}{|c|c|c|}
\hline Marking on Outside of Catton & Tuner Type & Type of Receiver With Which the Assembly Can Be Used \\
\hline H-803-1 & V-11390-1, -2, or -3 & \(21^{\text {" Models }}\) \\
\hline H-803-2 & V -11390-1, -2, or -3 & 17" Models Except Those With Plastic Cabinets \\
\hline H-803-3 & V-11390-1, -2, or -3 & \(17^{\text {" }}\) Models With Plastic Cabinets \\
\hline H-803-4 & V-11613-1 & \(21^{\prime \prime}\) Models \\
\hline H-803-5 & V-11613-1 & 17" Models Except Those With Plastic Cabinets \\
\hline H-803-6 & V-11613-1 & 17" Models With Plastic Cabinets \\
\hline
\end{tabular}

\section*{V.11390-1, -2 AND -3 CIRCUIT DESCRIPTIONS}

As indicated in Figs. 1 and 2, the incoming UHF ignal is coupled into the tuner through a 300 ohm he desired RF bandpass. Operating 45.75 mc . higher than the video carrier frequency of the received signal the oscillator tuning is ganged with that of the band pass circuit. A portion of the oscillator voltage is coupled into the bandpass circuit where it mixes with (center IF is 44 mc .) is extracted in the mixer circuir (center 1 F is 44 mc .) is extracted in the mixer circuit
and fed through a shielded cable to the UHF socket on


FIG. 2 - V-11390-2 AND V-11390-3 TUNERS
the television receiver. In the \(\mathrm{V}-11390-1\) tuner, a germanium crystal serves as the mixer, while the \(V-11390-2\) and \(V-11390-3\) tuners use a GAN4 tube in a groundedgrid mixer circuit. Otherwise, the three tuners are basically alike.

\section*{V.11613.1 CIRCUIT DESCRIPTION}

The bandpass circuit in the \(V-11613-1\) tuner consists of two tuned sections as indicated on Fig. 3. Fach section is a capacitor-tuned quarter-wave coaxial line, and the sections are over-coupled through the coupling loops, L3 and L4. Coupling of the UHF signal into the the circuit is effected through the antenna input coupl ing loops, L 1 and L 2 , and the signal is
bandpass circuit to the mixer through L6.

Also fed to the mixer (through L.7) is a locally generated signal which is 45.75 mc . higher than the video carrier frequency of the received signal. This signal is not the fundamental output frequency of the oscillator, however. Instead, the oscillator operates at one-half frequency and its second harmonic is utilized. The increased by the action of the harmonic generating increased by coupled into the oscillator doubler section through L8. Consisting of a quarter-wave coaxial line which is capacitor-tuned 45.75 mc . above the video carrier of the received signal, the oscillator doubler section selects the second harmonic of the oscillator and discriminates against the fundamental.

In the crystal mixer circuit, the difference frequency (center IF is 44 mc .) is derived from the UhF signal and the He IF signal to the UHF socket on the television receiver.

\section*{INSTALLATION}

To install a Model \({ }^{\prime} \mathrm{H}-803\) tuner, proceed as follows
1. Remove the back cover, and remove the chassis from the cabinet.
2. Remove the wheel from the back end of the UHF shaft.
. Nout
3. Mount the tuner support bracket to the tuner and mounting plate assembly as shown in Fig. 4. The bracket


FIG. 3 - V-11613-1 TUNFR
grommets in the two large mounting holes, inserting metal spacers inside the grommets, and using \(1 / 2^{n}\) selftapping screws.
4. On models that have the on-off-volume and picure control mounted above the channel selector, loosen the \(3 / 8^{\prime \prime}\) palnut which holds the control to the chassis.
5. Make certain the dial background bracket is fitted into the correct slots in the mounting plare assembly. 11 " rcaceivers Fid the " B ", slots are used for all 21 " receivers.
6. Place the tuner assembly as shown in Fig. 4. The slots in the mounting plate assembly must be op of the LHF bracket and pressed down until firmly locked in place.
7. On models that have the on-off-volume and picture control mounted above the channel selector, the slot in the front lip of the mounting plate assembly must be positioned down over the shank of the control, between the palnut and the vertical section of chassi
8. On models that have the on-off-volume and pic ure controls located other than above the channe. selector, use a 6.32 screw, 6.32 nut and \(\# 6\) lockwasher to secure the front lip of the mounting plate assembly to the vertical section of chassis. Insert the screw hrough the slot located near the center of the mounting plate lip and through the similar slot iocated near the ackwasher and nus.
9. Insert a \(1 / 4 "\) self-tapping screw into the hole located to the right of the palnut mentioned in step 7 or the screw mentioned in step 8 , and tighten the screw.
10. Insert a \(1 / 4^{n}\) self-tapping screw into the hole located in front of the mounting plate assembly slots which engage the tongues of the UHF bracket, and tighten the screw.
11. With the large pulley rotated to its maximum counterclockwise position, install the \(19^{\prime \prime}\) drive string and spring as shown in Fig. 5 .
12. Insert the UHF plug into the UHF socket farthest from the side of the chassis as indicated in Fig. 4. This socket corresponds to the UHF position next to channel 2 on the channel selector. The socket nearer the side of the chassis is left unoccupied
13. With the large pulley rotated fully counterclockwise, see that the dial pointer is positioned as in-

14. Remove the plastic plate from the picture mask facture of UHF television tuners. Critical factors in inside the cabinet by removing the clips which hold it clude lead lengths, lead and component dress, anc in place.
15. Install the calibrated UHF dial in place of the lastic plate which was removed in step 14, and replace he clips.
16. Replace the chassis in the cabinet
17. Connect a suitable antenna to the UHF antenna ead (SEE ANTENNA INFORMATION), and check the REPLACING V.11390-1, V-11390-2, OR V.11390-3 operation. If the dial pointer does not indicate the TUNER USED WITH MODELS H-803-1, H-803-2, correct channel, turn off the receiver, reach in along he left side of the cabinet, and slide the pointer to the correct position.
18. Roure the ribbon type antenna lead from the UHF tuner through the opening above the UHF antenna rerminals on the back cover, and attached the lead to the UHF antenna terminals.
19. Replace the back cover.

\section*{ADJUSTMENTS}

Model H-803 All-Channel UHF Television Tuner is shipped pre-adjusted to receive UHF channels 14 required. In some cases, however, it may be desirable
reme to adjust the IF trimmer, LS located as shown in Fig 4 for best picture detail and sound.

\section*{SERVICE}
componeñt sizes. In servicing UHF tuners, problem arise which are not encountered in ordinary servic work. Therefore, troubleshooting inside the tuner is not recommended. Defective tuners should be returne through a Westinghouse distributor.
1. Remove the two drive strings and springs fro large pulley.
2. Remove the tuner support.
3. Remove the UHF plug from its socket.
4. Unsolder the ground strap from the tuner.
5. Release the tuner from the mounting plate assembly by removing the two self-tapping screws used oshock-mount the tuner
6. Loosen the two small set screws in the hub pulley and remove the pulley
. With the tuning shaft of the replacement tun rotated completely counterclockwise, place the larg pulley on the shaft so that the opening in the rim of
the pulley is as indicated in Fig. 5. Tighten the set screws in is as indicated in
8. Place the tuner in position, and install the

A high degree of precision is used in the manu- shock-mount screws.

Solder the ground strap to the tuner, and install the turer support.
10. String the two dial drive cords, and see hat the dial pointer is positioned as shown in Fig. 4 with the arse oulley rotated completcly counterclockwise
11. Insert the UHF plug into the UHF socket farthest from the side of the chassis.
12. Check the dial calibration using an air signal. If the dial pointer does not indicate the correct channel, cabinet, and slide the pointer to the correct position.

\section*{REPLACING V.11613-1 TUNER USED WITH MODELS} H-803-4, H-803-5 AND H-803.6
1. Remove the UHF plug from its socket.
2. Remove the two drive strings and springs from the large pulley.
3. Remove the self-tapping screw which secures the front lip of the mounting plate to the vertical sectio of chassis.
4. Loosen the off-on-volume and picture control planut or remove the \(6-32\) screw (whichever is used to secure the front lip of the mounting plate).
5. Remove the self-tappingscrew which secures the he mounting plate to the UHF bracket.
6. Remove the two self-tapping screws that secure tuner support to the receiver chassis.
7. Release the mounting plate assembly from the UHF bracket by pulling straight up
8. Remove the tuner by iemoving the three screws from the side of the tuner.
9. Mount the replacement tuner by replacing the screws in the side.
10. Mount the assembly to the chassis by replac ing the items removed in the preceding steps.
11. Check the dial calibration using an air signal. If the dial pointer does not indicate the correct chanef, turn porthe receiver, reach in along the left side position.

\section*{ANTENNA INFORMATION}

Anrenna requirements for satisfactory UHF television reception are determined by the signalconditions in the particular locality. Some of the possibilities are
1. In areas where signals are strong and reflections
1. In areas where signals are strong and reflections tained by using the existing VHF antenna (built-in or connecting two jumper wires from the UHF antenna terminals to the STD antenna terminals so as to conis used, make certain that it does not adversely affect

fig. 6 - Uhf dipole antenna length
reception on the standard VHF channels.
If an external antenna is used for VHF reception, satisfactory UHF reception may be obtained by con necting the built-in VHF antenna to the UHF antenna terminals.
2. A simple, resonant dipole antenna may provide satisfactory reception in medium-signal areas. The lemen for any frequency in the UHF televis trum.
3. Where signals are weak or reflections are troublesome, a high-gain, directive antenna system corner reflector, the rhombic, and the Yagi

\section*{PARTS LIST FOR MODEL H-803}
Part No.
Description
East Pric
\begin{tabular}{|c|c|c|}
\hline + V-11431-1 & & \$ \\
\hline + V-11424-1 & Cabl & . 90 \\
\hline \(V-3219 \mathrm{~S}\) & Cord, dial drive (100' & 1.40 \\
\hline + V-11430-1 & Dial, UHF 21" (H-803-1, H-803 & 00 \\
\hline + V-11580-1 & Dial, UHF \(17^{\prime \prime}\) (H-803-2 & \\
\hline + V-11581-1 & \[
\begin{aligned}
& \text { Dial, UHF } 17^{\text {" P Plastic ( } \mathrm{H}-803-3 \text {, }} \begin{array}{l}
\text { H-803-6) }
\end{array} .
\end{aligned}
\] & \\
\hline + V-11426.2 & Pointer & . 25 \\
\hline + V-11428-1 & Pulley Assembly, large (V-11390
tuners) ................................ & 15 \\
\hline + V-11422.1 & Pulley, UHF drive string & 45 \\
\hline V-10076-1 & Spring, dial drive & . 03 \\
\hline 11390- & Tuner Assembly (H-803 & \\
\hline
\end{tabular}
\(\qquad\)
+V -11613-1 Tuner Assambly ( \(\mathrm{H}-803-4,-5,-6\) )
+ New part number listed for the first time in Westing. house radio or television service information.
OTE. All pishes on reques
NOTE: All prices are subject to change without notice.


\section*{DESCRIPTION}

Model H-802 UHF Receptors are designed for use with Westinghouse television receivers that contain specific provisions for the ir use. Receivers that contain the necessary provisions will accommodate two UHF Receptors, and each receptor used will provide reception on one UHF television channel. If only one UHF station is active in a particular locality, only one UHF Receptor is required. If two UHF stations transmit in the locality, they can both be received by installing two UHF Recepin addition to the standard VHF reception provided by ine VHF tuner in the television receiver.

Each receptor contains a local oscillator which employs a 6AF 4 tube and operates 45.75 mc . higher than the video carrier frequency of the received UHF signal. The oscillator frequency is initially adjusted by the oscillator trimmer, C10, and fine tuning is provided by the the fine tunging control on the television coupled Suitable band-pass circuits tuned to the frequency of the received signal by the \(\mathrm{R}-\mathrm{F}\) trimmers ( C 1 and C 2 ) serve as the antenna input circuit in each receptor The incoming UHF signal mixes with the local oscillator signal in a crystal mixer circuit, and the resultant I-F output (center frequency is 44 mc .) is fed to the R-F amplifier in the television receiver. When the channel selector on the television receiver is set to either of the UHF positions, the R-F amplifier and mixer circuits in the television receiver serve as I-F amplifiers at 44 mc ., and the VHF oscillator is disabled. Thus, the 44 mc . Outpur of the UHF Receptor is amplified in these circuits and fed into the I-F strip in the receiver.

\section*{IDENTIFICATION}

Model H-802 Receptors are shipped pre-adjusted to eceive a particular UHF channel. The channel to which the receptor is tuned is marked on the label which is
attached to the unit. atrached to the unit.
In addition, the receptors are divided into categories depending on the frequency range covered by each. The identifying markings which are stamped on the receptors and the corresponding frequency coverages are as follows:

\section*{MODEL H-802} UEF RECEPTOR

\section*{SERVICE NOTES}

FIG. 1 - MODEL H-802 UHF RECEPTOR
Receptors Marked -

Channels 14 through 29 Channels 28 through 43 Channels 43 through 58 Channels 58 through 7 Channels 73 through 83
V-11213 (early production) Special ranges

\section*{INSTALLATION}

To install a UHF Receptor:
1. Remove the rear of the television receiver.
2. Plug the receptor into either of the two UHF sockets located on the rear of the VHF tuner mounting plate in the television receiver. If the receptor is plugged position nearer channel 13 on the channel selector is activated. If the receptor is plugged into the socket nearer the center of the chassis, the UHF position next to channel 2 on the channel selector is activated. The receptor should be seated firmly in the socket with the slots in the top of the receptor engaging the top of he VHF tuner bracket. If the center tongue of the tune it will catch the top of the recepter and of the cabinet,
insertion. In this event, bend the center tongue toward insertion. In this event, bend the center tongue toward of the receptor. The sharp bend in the center tongue must bear on the top of the receptor when the receptor is fully seated. The fine tuning wheel on the receptor must engage the drive wheel located on the shaft bet ween the two sockets. If the two wheels are not correctly aligned, undue pressure will be required to mesh the wheels, and the drive torque will be excessive. In this event, loosen the set screw in the metal drive wheel and slide the wheel to the correct position on the shaft.
3. Connect the ribbon-type antenna lead from the receptor to the UHF antenna terminals on the back cover
of the receiver. To prevent impaired reception which of the receiver. To prevent impaired reception which zhassis, the lead should be passed through the sanie clip that supports the VHF antenna lead, but do not allow the two antenna leads to run close together for any appreciable distance.
4. Replace the rear cover of the television receiver. 5. Make appropriate antenna arrangements (see ANTENNA INFORMATION)

\section*{ADJUSTMENTS}

It is desirable to check for best adjustment each time a receptor is installed. This is accomplished as follows:
1. Rotate the fine tuning wheel on the receptor to its center frequency position. The fine tuning capacitor wheel is straight up from the center of the wheel.
2. Rotate the channel selector on the receiver to the appropriate UHF position (see step 2 under INTALLATION).
3. Rotate the oscillator trimmer \((\mathrm{C10)}\) to the position that provides best picture detail. NOTE: Since the units are pre-adjusted for a particular frequency, only a slight re-adjustment at most should be needed to bring in the station. If the station is not received, nake ing the oscillator trimmer far from its original setting
4. Rotate the R-F trimmers ( C 1 and C 2 ) to the po sitions that provide best picture detai!. NOTE: I/ the R-F trimmers are rotated too far counterclockwise, they will be detacbed from the unit, and the procedure given under dervice must be followed to avoid damage when replacing the screws.
5. Rotate the I-F trimmer (L6) for best picture de rail. This trimmer has a broad tuning characteristic and is effective mostly in weak signal areas.

\section*{SERVICE}

Troublesbooting inside the UHF Receptor is not recommended.

There are critical adjustments inside. One critical adjustment consists of two shield vanes located be coupling between the coils. Since special equipment and techriques are required to make the adjustments care must be exercised to avoid altering the original factory placement of wires and components.

The R-F trimmers ( C 1 and C 2 ) will detach from the unit if they are rotated too far counterclockwise. If this occurs, the following procedure should be used to avoid


FIG. 2 - UHF DIPOLE ANTENNA LENGTH
damaging the ceramic part of the trimmer when replacing the screw:
1. With the screw removed from the unit and the tal locking device placed on the screw, rotate the locking device until it is near the head of the screw.
2. Insert the screw in place and rotate it clockwise several full turns.
3. While keeping the screw from turning, rotate the locking device clockwise until it is moderately tight against the outside of the receptor.

\section*{antenna information}

Antenna requirements for satisfactory UHF television reception are determined by the signal conditions in the particular locality. Some of the possibilities are as follows:
1. In areas where signals are strong and reflections are not troublesome, satisfactory reception may be obtained by using the existing VHF antenna (built-in or external) for both VHF and UHF. This can be done by connecting two jumper wires from the UHF antenna terminals to the STD antenna terminals so as to connect the two sets of terminals in parallel. If this method is reception on the standard VHF channels

If an external antenna is used for VHF reception, satisfactory UHF reception may be bHF anrenna terminals
2. If the above methods are not satisfactory, a simple, resonant dipole antenna may provide satisfactory reception in medium-signal areas. The chart, Fig. 2, gives the total length of a dipole element for any frequency in the UHF television spectrum.
3. Where signals are weak or reflections are troublesome, a high gain, directive antenna system should be used. Typical of this type of antenna are the corner reflector, the rhombic, and the Yagi.


\footnotetext{
© John F. Rider
}

* vertical mane not

Fig. 2 Control Panel Layout 19L25, 19L27 \& 22L20 Chassis. UHF DIAL DRUM


CHANNEL INDICATOR SELECTOR
REGISTER CONTROL SCREEN REGISTER CONTROL FINE TUNING A.G.C. DELAY CONTROL
CONTRAST -VERTICAL LINEARITY
\(\qquad\) \(\checkmark\)
VERTICAL HOLD析
VERTICAL RANGE NOT
USED ON MOOEL \(22 L 20\)
Fig. 3 Control Panel Layout 19L25U, 19L27U \& 22L20U Chassis.


Fig. 4 Control Panel Layout 19L26 \& 19L28 Chassis.

VERTICAL HOLD
Fig. 5 Control Panel Layout 19L26U \& 19L28U Chassis.


Fig. 6 Control Panel Layout 21L21 Giassis.


Fig. 7 Control Panel Layout 21L21U Chassis.

\section*{INTRODUCTION}

The 19L25, 19L26, 19L27, 19L28, 21 L 21 and 22L20 chassis described in this manual are basically alike. Alignment and adjustment procedures are identical. The slight differences which exist are as follows:
19L25: This chassis utilizes a 17 inch rectangular picture tube and is the basic chassis.

19L26: This chassis is the same as the 19L25 without the screen and tone register controls.

19L27: This is the 19L25 chassis with a 21 inch picture tube.

19L28: This is the 19L26 chassis with a \(21^{\prime \prime}\) picture tube.

21L21: This chassis is the same as the basic 19L25 chassis except for the 21 inch picture tube and the addition of a 5U4G low voltage rectifier and a 1X2A tube in the high voltage circuit. The 1X2A is used in conjunction with the 1 B3GT rectifier to boost the clure lube se 0 D 0 , hassis uses a circuit. PM

22L20: This chassis is similar to the 21 L 21 chassis but has a separate power supply and utilizes either vertical oscillator in all other "L L " chassis is used in the interlace circuit of this chassis. This circuit is designed to utilize the actual vertical pulse for triggering, rather than depending on the voltage build-up across an intergrating network. In this circuit the first of the six serration of the vertical pulse is differentiated, clipped by the 12AX7 (used as a diode) and applied to the 6SN7GT vertical oscillator. By using the actual pulse or triggering, the time relationship between alternate ields remains constant and positive interlacing results. This chassis utilize than GASAGT damper

All models have provisions for reception of the new Ultra High Frequency stations by the simple addition UHF strips as required. Connections are also provided for easy addition of Phonevision.

TUBE COMPLEMENT
19L25-19L26-19L27-19L28 CHASSIS
\begin{tabular}{|c|c|c|}
\hline SYMBOL & TUBE & FUNCTION \\
\hline V1 & 6BK7A & RF Amplifier \\
\hline V2 & 6U8 & V2A Mixer \\
\hline v3 & \(6 \mathrm{CB6}\) & 1st IF Amplifier \\
\hline V4 & 6CB6 & 2nd IF Amplifier \\
\hline V5 & 6CB6 & 3rd IF Amplifier \\
\hline V6 & 12BY7 & Video Amplifier \\
\hline V7 & 6AU6 & Sound Limiter \\
\hline V8 & 6BN6 & Audio Detector \\
\hline v9 & 6BK5 & Sound Output \\
\hline
\end{tabular}

12AX7
6BE6 6AH4GT AH4GT 6AQ7GT

6SN7GT
6BQ6GT/G
1B3GT
6 AX4GT
5 U 4 G
21 YP4
V10A AGC Amplifie 10B Vertical Oscillator Vertical Output V13A Horiz. Phase Detector V13B Horizontal Control 14A Horizontal Oscillator 14B Horizontal Discharg Horizontal Output High Voltage Rectifier Damper
Low Voltage Rectifier 19L25 and 19L26 Chassis 19L27-19L28 Chassis

\section*{TUBE COMPLEMENT}

21L21 CHASSIS
\begin{tabular}{|c|c|c|}
\hline SYMBOL & TUBE & FUNCTION \\
\hline V1 & 6BK7A & \multirow[t]{2}{*}{RF Amplifier V2A Mixer V2B RF Oscillator} \\
\hline V2 & 6U8 & \\
\hline v3 & 6CB6 & 1st IF Amplifier \\
\hline V4 & \(6 \mathrm{CB6}\) & 2nd IF Amplifier \\
\hline V5 & 6CB6 & 3rd IF Amplifier \\
\hline V6 & 12BY7 & Video Amplifier \\
\hline V7 & 6AU6 & Sound Limiter \\
\hline V8 & 6BN6 & Audio Detector \\
\hline v9 & 6BK5 & \multirow[t]{2}{*}{\begin{tabular}{l}
Sound Output \\
V10A AGC Amplifier \\
V10B Vertical Oscillator
\end{tabular}} \\
\hline V10 & 12AX7 & \\
\hline V11 & 6BE6 & Sync Clipper \\
\hline V12 & 6AH4GT & Vertical Output \\
\hline V13 & 6AQ7GT & \begin{tabular}{l}
V13A Horiz. Phase Det. \\
V13B Horizontal Control
\end{tabular} \\
\hline V14 & 6SN7GT & V14A Horizontal Osc. V14B Horizontal Disch. \\
\hline V15 & 6CD6G & Horizontal Output \\
\hline V16 & 1B3GT & High Voltage Rectifier \\
\hline V17 & 6AX4GT & Damper \\
\hline V18 & 1X2A & High Voltage Adder \\
\hline V19 & 5U4G & Low Voltage Rectifier \\
\hline V20 & 5U4G & Low Voltage Rectifier \\
\hline V21 & 21EP4A & Picture Tube \\
\hline \multicolumn{3}{|c|}{TUBE COMPLEMENT 22L20 CHASSIS} \\
\hline SYMBOL & TUBE & FUNCTION \\
\hline V1 & 6BK7A & \\
\hline V2 & 6 U 8 & V2A Mixer \\
\hline V3 & 6CB6 & 1st IF Amplifier \\
\hline V4 & 6CB6 & 2nd IF Amplifier \\
\hline V5 & 6CB6 & 3rd IF Amplifier \\
\hline V6 & ¿2BY7 & Video Amplifier \\
\hline V7 & 6AU6 & Sound Limiter \\
\hline V8 & 6BN6 & Sound Detector \\
\hline V9 & 6BK5 & Sound Output \\
\hline V10 & 12AX7 & V10A AGC Amplifier V10B Vertical Sync \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\hline V11 & 6BE6 & Sync Clipper \\
V12 & 6SN7GT & Vertical Oscillator \\
V13 & 6AV5GT & Vertical Output \\
V14 & 6AQ7GT & V14A AFC \\
V15 & 6SN7GT & V14B Horizontal Control \\
V15A Horizontal Osc. \\
V16 & 6CD6G & V15B Horizontal Disch. \\
V17 & Horizontal Output \\
V18 & 6AS4GT & High Voltage Rectifier \\
V19 & 1X2A & Damper (or 6AX4GT) \\
V20 & 5U4 & Low Voltage Adder \\
V21 & 5U4 & Low Voltage Rectifier \\
& 24CP4A & \\
V22 & 27EP4 & Picture Tube \\
& 24TP4 & \\
& &
\end{tabular}

\section*{CONTROLS AND FUNCTIONS}

Location of the various receiver controls is shown on Page 2. After the receiver has been properly adjustd, the serviceman should remove the Horizontal Hold, Brightness, Fine Tuning, Vertical Hold, and Contrast Control knobs and re-position them so that the knob markers face upward. The positioning of the knobs will id the customer in resetting the controls should they be accidentally moved. A brief description of each control follows
CHANNEL SELECTOR SWITCH: Is used to switch the pre-tuned RF strip into operating position for reception of the particular channel desired

SCREEN REGISTER: This control is used to vary he response of the video amplifier much the same as a tone control varies the audio response. Clockwise rotation accentuates the high frequencies thus adding crispness to the picture, oftentimes improving he quality of the transmitted picture, particularly old ilms, etc. Counterclockwise rotation of this control is instrumental in reducing the ringing effect (halos, c.) of certain transmissions and is particularly useful in fringe areas where some smearing of the nder noise results in a much improved picture. ontrol is usually near the center of its range MSDJUSTMENT OF THIS CONTROL ON A NORMAL PICTURE MAY RESULT IN A SMEARED OR OTHERWISE INFERIOR PICTURE. (NOTE-A number of 21L21 Chassis have been produced in which the screen register action is in reverse to the above. These receivers can be identified by a 100 ohm resistor which is connected to the screen register cable connecting plug)

FINE TUNING CONTROL: Provides a means of varying the frequency of the locial oscillator to compensate or any frequency deviation which may result from ube and circuit variations. in operating this control Prill be foud is the range of so is is quite broad. obtained within the range of best sound.

TONE REGISTER: The tone control is used on all chassis except the 19L26 and 19L28. This control, which consists of a 1 Megohm potentiometer and a . 004 Mid capacitor across the audio detector output, is to be
adjusted to the user's preference. Clockwise rotatio accentuates the high audio frequencies while counterclockwise rotation accentuates the lows. In fringe or noisy areas, the tone control may be effectively used in the reduction of background noise which may accompan the sound.

VERTICAL HOLD CONTROL
VERTICAL HOLD RANGE CONTROL: The combina tion of these controls provide a means of changing the cathode resistance of the vertical osciliator to effec mitted symc pulses. Adjustment is made by setting the Vertical Hold Control in the center of its range and ad justing the Vertical Hold Range Control for proper sync Improper adjustment will cause the picture to "roll vertically.

HEIGHT CONTROL: The Height Control is par of the vertical osciliator plate load. It is used in conjunction with the vertical linearity control to adjust the size of the picture vertically
VERTICAL LINEARITY CONTROL: The Vertica Linearity Control is in the cathode circuit of the ver of the tube so that the sweep is amplified along tha portion of the plate current curve which results in linear output.
HORIZONTAL LINEARITY CONTROL: The Horizon tal Linearity Control should be adjusted for best hor izontal symmetry while observing a test pattern on the screen. The posifen or the horizontal drive and widt of these controls must be taken into consideration when making linearity adjustments.

WIDTH CONTROL: Two windings in a series shunt arrangement are used to vary the current through the deflection yoke.
HORIZONTAL DRIVE CONTROL: The Horizonta Drive Control is a capacitive divider which is used to regulate the magnitude of horizontal sweep voltage Counterclockwise rotation of this control increase drive while clockwise rotation reduces drive. To


Fig. 9 Receiver Correctly Adjusted On Test Pattern.
obtain the greatest possible life out of the horizontal output tube, the drive should be adjusted to obtain maximum picture width. After this has been done for with the Width Control
FOCUS CONTROL: A three position tap is used to obtain proper focusing on all 19L series receivers. obtain proper focusing on als in best focus.

In the 21 L 21 and 22 L 20 chassis, PM focusing is utilized. The adjustment is made at the neck of the picture tube.

BRIGHTNESS CONTROL: Controls the cathode volt age of the picture tube to afford control of picture brilliance. Must be operated in conjunction with the Contrast Control for best picture contrast.
CONTRAST CONTROL: Control is in the plate circuit of the 12BY7 video amnlifier. It regulates the magnitude of video signal applied to the cathode of the picture tube.
HORIZONTAL HOLD CONTROL: The Horizontal Hold Control is used to tune the horizontal oscillator to the Control is used to tune the horizontal osc

\section*{ADJUSTMENTS AND ALIGNMENT}

\section*{THE FRINGE LOCK CIRCUIT}

The fringe lock is a newly developed circuit, utilizing a 6BE6 heptode, which can be adjusted to assure sync stability over the wide range of noise and signal levels put of the crystal detector peak to peak is fed to grid \#1 of the 6BE6. The sam signal after it has been inverted and amplified to approximately 40 volts peak to peak by the first video amplifier, is applied to grid \#3 which in this circuit is the signal grid. The fringe lock control is used to pre-set the bias on grid \#1 so that the normal 3 volt signal allows proper sync clipping action, i.e. the sync
pulses, which have been stripped from the composite video signal appearing at grid \#3, will appear at the plate. If a noise pulse drives grid \#1 beyond the 2 vol level, plate current cutoff occurs and the noise puls cannot get through to falsely trigger the sweep oscillators. On rare occasions, a strong noise pulse may occur at the time of the sync pulse and the tube like wise will cut off, however, the flywheel action of the sweep oscillators will maintain sync during this brief period. The entire fringe lock system is based on the fact that the loss of an occasional sync pulse is to be preterred over having a noise pulse get through to falsely trigger the sweep oscillator.


Fig. 10 Adjustments on Neck of Picture Tube 22L20 Chassis. FocusFig. 10 Adjustments on Neck of Picture Tube 22L20ssis are similar.

\section*{FRINGE LOCK ADJUSTMENT}
1. Turn the fringe lock control fully clockwise and hen back it off approximately \(1 / 4\) turn. Adjust the vertical and horizontal hold controls and check operaion of the receiver to see that it syncs normally when the turret is switched from channel to channel.
2. If the picture jitters or shows evidence of delay, earing, split phase, etc., back down the fringe lock control further, a few degrees at a time, each time readjusting the hold controls and switching from channel to channel until normal sync action is obtained. It will be found that under normal signal conditions, the correct adjustment will be near the counterclockwise position of the control.
3. In fringe and noisy areas, the best adjustment will e found at or near the maximum clockwise position of the control, however, do not automatically turn the ringe lock fully clockwise in fringe areas as has been done on previous models. Always follow the procedure outlined.

\section*{CORRECTOR MAGNET ADJUSTMENT}
wo corrector magnets (See Fig. 8) are used in chassis to obtain straight, sharply focused sweep nes across the face of the picture tube. In the 22L20 hassis, the corrector magnets are mounted top and bottom. The corrector magnets are mounted on the deflection coil mounting brackets and can be moved in and out or up and down by bending the flexible arms wich support them. The corrector magnets are adjusted at the factory and should not require re-ad-


With the vertical and horizontal size controls reduce the size of the picture to a soint controls, uur corners and sides of the picture are visable. (In some receivers it may not be possible to reduce the picture size sufficiently to see all the sides and in this case it may be necessary to shift the picture with the centering control to view one side at a time.)
. Bend the corrector magnet arms until the corners pecome right angles and the top of the raster is parallel with the bottom and the left side is parallel with the right side. After adjustment, the picture should be restored to normal size
NOTE: Mis-adjustment of the corrector magnets may cause pincushioning, barreling, keystoning, poor linearity, etc.

\section*{CENTERING ADJUSTMENT}

In the 19L series, the centering assembly is built into the yoke housing. This assembly is made up of two magnetic rings which can be rotated by means of tabs.* Centering is accomplished by gradually rotating the tabs with respect to each other then rotating both tabs simultaneously until the picture is centered.

In the 21L and 22L series, PM focusing and centering is utilized. The top screwdriver adjustment on the centering assembly is used to move the picture up or dow The center adjustment is for focusing.

In some 21 L and 22 L receivers, a single centering leve is used for both vertical and horizontal centering. The up down movement of this lever moves the picture horizontally while a left-right movement moves the picture vertically. A screwdriver adjustment is provided for focusing

\section*{BULLS EYE TUNER ADJUSTMENTS}

To adjust the receiver for bulls-eye tuning, set the fine tuning control to its approximate center position as shown in Fig 2. Without further adjustment of the fine tuning control insert a 68-21 alignment wrench into the tuner (See Fig. 11 ) and adjust each operating channel to resonance. It wilt be noted that tung picture with the spacing between the wedge lines fogged and tuning in the opposite direction causes the spaces between the lines to clear up. However, going beyond this point causes the picture to take on a "wormy" appearance from sound getting into the picture. Correct adjustment is obtained by tuning to the "wormy" picture and then backing the control off slightly until the picture clears up.


Fig. 11 Bulls-eye Tuning Adjustment.

\section*{AFC ADJUSTMENT}

The AFC adjustment can effectively be made by set ting the horizontal hold control L26 to a position where it is virtually impossible to "throw" the re ceiver out of horizontal sync when switching from channel to channel.


\section*{REMOVING TURRET TUNER}

\section*{FROM CHASSIS}
1. Pull out the power and IF connector cables and disconnect the antenna transmission line
2. Look through the U shaped opening (See Figure 12) in the top of the tuner and rotate the fine tuning control until the allen head set screw (or paint mark on some tuners) is straight up.
3. Loosen (do not remove) the hex head set screw in the turret dial cord pulley assembly.
4. Slide the pulley towards the front of the chassis until it clears the fine tuning shaft.
5. Remove the four hex nuts and gently pull the tuner assembly straight out of its case.

\section*{REMOVING CHANNEL STRIPS}
1. To insure proper indexing, carefully note the channel to which the receiver is tuned so that the tuner drum can be rotated back to this channel before the unit is reassembled.
2. Rotate the turret drum until the strip to be removed is readily accessible.
3. Insert a small screwdriver in the slot (See Fig.13) Push in the direction of arrow until the channel strip clears the drum slot then lift straight out in direction of screwdriver shaft. Some strips have a round hole instead of a slot and a pointed tool is used in place of the screwdriver.
CAUTION: TO AVOID DAMAGE TO CHANNEL STRIPS DO NOT USE PRYING ACTION IN REMOVING STRIPS.

\section*{REMOVING TURRET DRUM ASSEMBLY}
1. Use long nose pliers and remove the two tur shaft tension springs from the front and rear of the tuner assembly. Unsolder and slide the bronze turret shaft grounding springs out of their slots at the front and rear of the tuner.
2. With a pair of long nose pliers, grasp the first turn of the spiral index spring and lift spring of its hook. This takes pressure off the detent arm and may cause the roller to fall out and become lost
3. Slide the drum out of its slot. Reverse this procedure to re-assemble the tuner.

\section*{SERVICING THE TURRET TUNER}

In servicing tuners, satisfactory operation can be obtained by removing the tuner from its case and plugging in the power and IF connectors. For furthe convenience, it may be desirable to use a test chassis in which these leads have been extended 10 to 20 inches. IMPORTANT: It must be remembered that most repairs in the turret tuner will require realignment of the tuned circuits.


Fig. 13 Removing Channel Strips.
in replacing a 22-2404 feed through capacitor, unsolde the top and bottom leads and the center ground con nection. Do not use excess heat or solder when making connections.
Some of the component parts in the tuner cannot be replaced without removing the fine tuning control and bracket assembly. This bracket can be removed as follows:
1. Unsolder the fine tuning capacitor lead.
2. Loosen the Allen head set screw on the fine tuning shaft collar and remove fine tuning shaft.
3. Remove the self tapping screw from the center top of the tuning capacitor mounting bracket, loosen the three remaining screws and remove the bracket. Reverse the above procedure when the tuner is reassembled.

\section*{DOUBLE DELAYED GATED AGC}

In order to obtain the best possible performance in fringe and weak signal areas, it is important that the application of AGC voltage to the 6BK7A RF tube be 500 microvolts at the antenna input. The noise figure of the tuner will be optimized only under this condition of no AGC voltage. To accomplish this, the cathode of the 6CB6 1st IF tube is approximately 8 volts positive by virtue of the drop through the 8 volts positive by virtue of the drop through the cathode resistor of the 6 CB6 3 rd IF. This voltage through the tube makes the grid of the 6CB6 1st IF approximately 9.3 volts negative with respect to its cathode. It should be noted here that the bias voltage or the 3rd IF is obtained across the 100 ohm portion of the cathode resistor only. The voltage at the junction of the two resistors varies from 8 volts with no signal to 4 volts with strong signals. The 2nd IF tube is in series with the 1st IF tube and any changes in the plate current of the 1st IF tube will also change

© John F. Rider
the 2nd IF tube thus the 2nd IF tube is also controlled indirectly by the AGC．

Under weak signal conditions，the output of the AGC tube at point＂\(E\)＂is approximately 8 volts positive This positive voltage however，does not reach the grid of the 6BK7A because of the 2.2 megohm resistor． Actually the grid of this tube is slightly negative because of contact potential developed as a result of the high resistance in its grid circuit（ 2.2 megohms） The 8 volts positive voltage howece，is the cathode is 9 volts positive the grid is actually 1.3 volts is. ．ive with respect to its cathode and AGC control of the IF results under weak signal conditions．

When the receiver is used with normal signals，the signal voltage applied to the grid of the AGC tube will increase and as a result the output of the AGC tube will become 4 to 5 volts negative．This negative voltage will be applied to the 6BK7A through the 2.2 megohm resistor thus both the RF and IF stages wil then be controlled by the AGC．

With the application of a negative AGC voltage to the 6BK7A tube under normal signal conditions，the noise figure of the tuner will not be optimized as under weak signal conditions，however，this is not a consideratio with normal signal levels．

\section*{AGC ADJUSTMENTS}

IMPORTANT：THE AGC CONTROL CANNOT BE USED IN ANY WAY TO IMPROVE THE RECEIVER SENSITI－ VITY．The sole function of this control is to set the level applied to the video amplifier（12BY7）tube so that （ \(100 \%\) modulated video signal）for application to the picture tube cathode．

The adjustment can also be made by connecting a cali－ brated oscilloscope through a 10 K isolation resistor，to test point＂D＂（See Fig．16）and，while receiving the strongest TV signal adjust the AGC delay control for 2.5 volts（ 2.75 V on 19 L 26 and 28 models）peak output．

Satisfactory adjustment can also be made by observing the picture and slowly turning the AGC delay control the picture and slowly turning the AGC，delay control
from its maximum clockwise position，counterclock－ from its maximum clockwise posin， ，picture dis torts and buzz is heard in the sound．The control should then be turned slowly clockwise and set at a point comfortably below this level of intercarrier buzz，picture distortion and improper sync．

CAUTION：Misadjustment of the AGC delay control can result in a washed－out picture，distorted picture buzz in sound OR COMPLETE LOSS OF PICTURE AND SOUND．

\section*{ALIGMMEMT}


Fig． 15 IF－RF Alignment Fixtures

A suitable sweep generator in conjunction with an accurate marker must be used for alignment work It is very important to have the sweep generator out－ or not its attenuator is reactive，If the attenuator is reactive or if the output cable is improperly ter－ minated，correct alignment cannot be made since the minated，correct alignment cannot be made since the
degree of attenuation then may change the shape as degree of attenuation then may change the shape as
well as the amplitude of the response curve．The position of the attenuator should only vary the ampli－ tude and not the shape of the response curve．

\section*{CALIBRATING THE OSCILLOSCOPE}

When aligning the RF and IF stages of the receiver， it is necessary to measure detector peak output．
This may be done with a voltage calibrator used in conjunction with an oscilloscope．If a calibrator is not available，the oscilloscope can be calibrated with a known DC voltage．To make the calibration，connect the ground lead of the vertical input cable to the nega－ tive side or a ＂hot＂lead，make a momentary contact to the positive connection on the battery and observe the instantan－ eous spot deflection on the screen．Discharge the scope input capacitor by shorting out the leads and repeat the procedure，each time readjusting the scope vertical gain until the spot deflects 3 large divisions on the screen．Each division then represents 1 vol peak．The position of the vertical gain control should be marked for future reference．

\section*{VIDEO IF ALIGNMENT}

1．Connect the negative lead of a 2 volt battery supply to terminal＂E＂（Fig．36）and the positive lead to chassis．The bias supply should be made variable so that it can be varied from negative 3 volts to positive 3 volts．Keep the supply leads short．


Fig． 16 IF Alignment Guide．

2．Connect the calibrated oscilloscope through a \(10,000 \mathrm{ohm}\) isolation resistor between terminal＂ D ＂ and chassis．The sweep generator input to the re－ ceiver should be adjusted for 3 volts peak to peak detector output．Do not exceed this output level during any of the adjustments．
3．Feed the output from the sweep generator through the special termination unit shown in Fig． 15 to point until a pattern similar to Fis． 17 is obtained．

4．Set the Marker Generator to 45.75 Mc and alter－ nately adjust the top and bottom slugs of the 4th IF transformer for maxdmum gain with the 41.25 Mc and 45.75 Mc markers positioned as shown in fig． 17


Fig． 17 4th IF Response．

If the correct response curve cannot be obtained in his step，check the position of the two slugs to see hat they are entering their respective coils from the opposite ends of the coil form．The position of the lugs near the center of the coils may change the coefficient of coupling，making correct alignment

5．Connect the sweep generator cable to terminal ＂A＂（Mixer Grid）．In this step it may be necessary to temporarily reduce the bias to zero or even to go to a slightly positive voltage in order to see the highly attenuated trap slots with the oscilloscope vertical gain near maximum．

6．Adjust the \(47.25 \mathrm{Mc}, 41.25 \mathrm{Mc}\) and 39.75 Mc traps for minimum marker amplitude（See Fig． 18 ．It can
be seen that maximum oscilloscope gain has been used and as a result the top of the respon in order to see "blow-up" of the trap slots.
7. Readjust the bias to -2 volts and set the oscilloscop vertical gain to the calibrated position. Adjust the weep generator for a 3 volt peak to peak output from the video detector
8. With the test equipment set up as in Step 7, alternately adjust the 2nd IF, 3rd IF, 1st IF and the conver ter plate coil until an overall response curve similar to Fig19is obtained. It will be foumd that the 2nd IF affects the low side ( 42.75 Mc ) and the 3 rd IF the high side of the response curve. If the proper response curve cannot be obtained by an alternate adjustment of the above trimmers, it may be necessary to retouch the 4th IF transformer.


Fig. 19 Overall IF Response.

\section*{TURRET TUNER AND}

\section*{RF CHASSIS ALIGNMENT}

The RF chassis adjustments have been made at the actory and normally do not require readjustment in the field unless tampered with. If adjustment becomes necessary check the overall IF response and proceed as follows:
1. Temporarily ground the turret AGC by connecting a jumper between the AGC bus (yellow lead) and chassis.

Connect the calibrated oscilloscope to the feed hrough terminal "H" (Fig. 1) through a 10 K isolation resistor. This terminal is the screen of the 6U8 mixer.
3. Use the S-15369 matching transformer (Fig. 15) and feed the output from the sweep generator to the antenna terminals of the receiver
4. Turn the channel selector to Channel 4 and adjust 4. Turn the channel selector to Channel 4 and adjust
the sweep generator until a response curve somewhat similar to Fig. 20 is obtained.
5. Study Fig. 1 and adjust the converter grid capacitor (C9), the RF plate capacitor (C7) and the RF grid capacitor (C3) until a response curve similar to Fig. 20 capactar
is obtained. position


Fig. 20 Channel 4 RF Response.
6. Turn the channel selector to Channel 11 and adjust the sweep generator until a response somewhat similar to Fig. 21 is obtained. Adjust L5 and L6 to obtain
symmetry. If the band pass is too great or too narrow also adjust L7.


Fig. 21 Channel 11 RF Response.
7. Repeat steps 5 and 6 until the best overall symmetry is obtained. REMOVE AGC JUMPER.

MASTER OSCILLATOR ALIGNMENT
The master oscillator adjustment is to be made only if resonance cannot be obtained with the strip oscillator adjustment wrench with the fine tuning control in its center position, and after it has been determined that the channel strip itself is not at fault.

If channels 2 through 6 can be made to resonate with the bull's-eye adjustment at the rear of the turret and the high channels do not resonate, a slight remay be necessary to affect resonance on the high channels.

If the fine tuning capacitor is replaced, proper alignment of the fine tuning mechanism can be made as follows:
1. Remove the turret from the chassis (See Page 13).
2. Turn the tuning capacitor shaft until the allen head screw, as viewed through the \(U\)-shaped opening, is straight up. NOTE: On those models with a paint mark on the shaft see page 18.
3. Insert an allen wrench through the opening and loosen the screw. Leave the allen wrench in, partially slide out the shaft and tape it to prevent the stop
4. The tuning capacitor bracket can be removed by removing the four self-tapping screws which hold it in place. Unsolder the tuning capacitor lead replace capacitor and re-assemble bracket on the RF chassis capacitor and re-assemble brack SCREW. 5. Use a sweep generator on Channel 4 or tune in a
station on the lowest available channel and turn the station on the lowest available channel and turn the turret shaft until resonance is obtained. fine tuning capacitor range. Turn the collar until the allen head screw is straight up as viewed through the opening and tighten screw.
6. Check the fine tuning knob to see that it is in the center of its mechanical range.
7. Insert the dial cord pulley over the turret shaft and tighten set screw. If the set screw is in a position where aip the dial cord until the pulley is in a position wher the set screw is readily accessible.
. It may be necessary to readjust the oscillator inductance L10 (See Fig. 1 ) for proper bull's-ey operation on the high channels (7-13).

NOTE: On some models, the mechanism described NOTE: On some models, the built-in stop. Proper mechanical alignm ent is indicated when the paint mark, as viewed through the \(U\)-shaped opening in the turret, is straight up when the ine tuning knob is in the position as shown in Figure 2 If adjustment becomes necessary, proceed as follows

Loosen (do not remove) the hex head set screw in the turret dial cord pulley assembly.
. Slide the pulley towards the front of the chassis until t clears the fine tuning capacitor shaft.
3. Turn the fine tuning capacitor shaft fully counter clockwise then rotate \(1 / 2\) turn clockwise. At this point the paint mark on the shaft should be straight up as viewed through the \(U\) shaped opening.
4. See that the fine tuning knob is in the position shown in Figure \(\angle\), replace the drive pulley on the tuning in Figura 2 , replace the drive pult

\section*{SOUND ALIGNMENT}

Proper alignment of the 4.5 Mc intercarrier sound channel can only be obtained if the signal to the receiver antenna terminals is reduced a level below This level can be easily identified by the "hiss" which then accompanies the sound

Various methods may be used to reduce the signal level, however. it is recommended that a step atten-
uator similar to the S-17203 unit be used for most satisfactory results. To prevent leakage, certain use as short a lead as possible between the attenser and receiver antenna terminals and approximately 6 feet of 300 ohm shielded line between the ntenna transmission line and the attenuator. The hield from the transmission line should be connected to the attenuator and the attenuator itself grounded to the TV chassis under test.

After the connections have been made, proceed as follows:
1. Tune in a tone modulated TV signal and adjust the 1. Tune in a tone modulated ral is reduced to a level step attenuator until the sigs" is heard with the sound.
2. Adjust the sound take-off coil L19 (top and bottom slugs), intercarrier coil L22, quadrature coil L23 and buzz control R39 for the cleanest sound and minimum buzz. It must be remembered that any of these adjustments may cause the "hiss" to disappea and further reduction of the signal will be necessary so that the "hiss" does not disappear during alignment

If intercarrier buzz is in evidence, after all norma ound adjustments have been made, the cause may be attributed to one or more of the following:
1. Improper adjustment of the AGC delay control.
2. Defective 6AU6 sound limiter.
3. Extremely high signal levels which require atten uation in the antenna circuit.
Transmitter over modulation

\section*{ADJUSTMENT OF THE S19670 CONTINUOUS TUNER}

The Zenith continuous tuner has been aligned at the factory with precision test equipment. Adjustments should not be attempted in the field unless adequate est equipment is available. Any attempt to peak one articular channel will cause serious degradation of the other channels.

In aligning the UHF continuous tuner, it may be difficult to obtain a UHF marker generator for alignment. If a marker generator is generator for alignment. If a se a TV signal or anor receiver, suipped with a - 19670 tuner, which is. known to be calibrated as a marker. If the latter method is used, all that is necessary is to loosely couple the two tuners (operate them close together) to inject a marker. The oscillator in the UHF tuner operates fundamental plus the IF frequency, i.e., when the tuner is tuned to channel 14, its oscillator frequency is 517 MC . When the tuner is on channel 83, its oscillator operates on 931 MC . Therefore, a marker source from 517 to 931 MC for all channels above 22 is available. In practical use, the dial of the signal source tuner is set to channel 14 when an oscillator frequency for channel 22 is needed.
i.e., subtract 8 channels for the oscillator frequency
required. To obtain a channel 83 marker, set the source receiver to channel 75 .

If alignment becomes necessary, the 6BK7A and 6AU6 40 MC IF stages are to be aligned first before the UHF RF alignment is attempted. The complete IF-RF alignment is as follows:
1. Switch the receiver to the UHF position. (The UHF tuning knob is also used to actuate the UHF-VHF changeover switch. When the knob is pushed in, the receiver is in VHF position and when pulled out to the stop, in the UHF position).
2. Set up the test equipment as outlined under Video IF alignment on page 15 .
3. Connect the signal generator to test point " \(X\) " (See Figure 25 ) and adjust \(L 9\) to obtain a response curve similar to the overall response as in Figure 19 Use only enough signal to obtain 3 volts peak detector output.
4. Through the matching network as shown in Figure 22 couple the tuner to the sweep generator. The


Fig. 22 Matching Network Required for UHF alignment. matching network can be made by using a coaxial connector (without cable) and the necessary resistors. The 300 Ohm miniature line, which is part of the tuner terminal strip is removed from chassis) for connecting directly to the terminating network when the network is plugged directly into the sweep generator.
5. Set the UHF tuning knob to channel 54. When this is done, the rocker arm on the tuner should be in the horizontal position. If the rocker arm is not horizontal loosen the set screw (See Figure 24) and adjust tuner shaft so that arm is horizontal with the indicator on channel 54.
6. Do not adjust the oscillator unless it is known that it is off calibration by more than 3 channels as checked by receiving a UHF station or by use of a UHF marker generator.
7. Adjust sweep generator to obtain a band pass response on channel 54 and set C3 so that the marker (osc.) falls at the \(50 \%\) point on the response curve (See Figure 23). When adjusting the oscillator, the image (weaker response) and the fundamental will appear. The response towards the counter-clockwise position of C3 in the proper response.
8. Adjust C2 (mixer), C1 (ant.) and C8 (IF) for maxi mum amplitude of the response curve using just enough


Fig. 23 UHF Response Curve.
signal to obtain 3 volt detector output. Adjustment C8 is very broad, however, it has an important bearing on noise figure.
9. Turn the UHF tuning indicator to channel 14 (or 22 if markers are not available). Adjust sweep to obtain response as in step 8 and check calibration. If the slip joint pliers and adjust the oscillator travel adjust ment to scale. CAUTION when adjusting the travel adjustments, it is possible to move the rocker arm out of its bearing and get an incorrect setting. Check to see that the rocker arm remains seated at all times. After the oscillator is adjusted, set the mixer and antenna travel adjustments for maximum response.
10. Turn the UHF tuning indicator to channel 83 and check for calibration as on 54 and 14. Set C13 to scale and adjust C11 and C12 for maximum response.
11. Check calibration on channels 14, 54 and 83. It may be necessary to repeat steps \(7,8,9\) and 10 to obtain best overall performance

SPECIAL TEST EQUIPMENT FOR TV

11-118
9ft. AC Test Cord
68-13
Alignment Tool
68-14
Tuning Wand
68-19 Nylon Alignment Wrench
68-20 Nylon Alignment Wrench
68-21 Nylon Alignment Wrench
95-1234 250 Watt Isolation Transformer


Fig. 24 "U'" Models with S-19670 Continuous Tuner Installed


\section*{CIRCUIT LEGEND}


\footnotetext{

}



Fig. 30 S- 17203 Zenith Step Attenuator.

The Zenith Diplexer is a high quality matching unit which makes it possible to use a single, low-los tubular transmission line, part number 91-1514, for a combination UHF-VHF antenna system. (Certain tubular lines do not have double wall construction and cannot be sealed in the manner outlined below.)

The finest low-loss materials are employed in the Zenith Diplexer. Plexiglass insulation is used at the UHF connection points to prevent moisture absorption. The capacitors in the filter portions of the Diplexer of the highest quality ceramics and the inductance are especially treated for humidity.

The Diplexer has three pairs of terminals
a. The pair marked "VHF" are to be connected to the VHF antenna.
b. The middle pair marked "Output" are to be connected to the transmission line leading to the TV receiver
c. The pair marked "UHF" are for the UHF antenna connection.

\section*{INSTALLATION PROCEDURE}

Transmission lines for UHF frequencies must be of the low-loss tubular type. The flat ribbon line such as is used on VHF seriously attenuates the UHF signals when wet or contaminated by foreign material, such as soot, etc

When installing a Diplexer, it is of utmost importance to seal the 300 ohm tubular line to prevent water from entering the hollow interior of the tube. In order to do this, the tube must not be cut or punctured for its entire length from the UHF antenna to the TV receiver. It is necessary, however, to pull the wires out to mak without puncturing the tube, proced as follows:
1. Approximately 6 feet (length determined by distance between Diplexer and UHF antenna terminals) from one end of the tubular line, slice off one inch of ridge on both sides until the wires are exposed. Use extrem the ridge. The knife should not be to slicing
2. Insert a pointed tool and pull up the center of each wire and cut it in half.
3. Pull out the four ends and solder to the connecting
terminals as shown in the illustration. When the wires are pulled out in this manner, the inner wall is
4. Affix the two plastic clamps to secure the line.
5. Mount the Diplexer on the mast FACE DOWN to prevent rain or snow from collecting on the plexiglass insulator.
6. Cut off excess tubular line and prepare the line for making connections to the UHF antenna. To do this, refer to step 1 and peel off approximately two inches of wire from each side, at the end of the cable. Cut off the tube so that it extends one inch. With a pair of long nose pliers, grasp the tube and flatten it. While


UHF-VHF Antenna Connections.

\section*{ANTENNA CONNECTIONS}

On TV receivers incorporating the UHF continuous tuner there are three pairs of terminals at the rear, labeled A, B and C which enable the receiver to operate with any one of the following antenna combinations:
1. USE OF THE BUILT-IN ANTENNA FOR VHF AND UHF

See illustration for connections. The receiver is shipped from the factory connected in this manner.
2. USE OF A COMBINED VHF AND UHF ANTENNA SYSTEM WITH A ZENITH DIPLEXER AND A SINGLE TRANSMISSION LINE

Disconnect the built-in antenna from terminals " A " and connect the combined UHF-VHF antenna transmission line at this point. If you are near the station, it may be found that an existing VHF antenna works satisfactorily on UHF and should be connected in this same manner.
3. USING THE BUILT IN ANTENNA FOR VHF IN CONJUNCTION WITH EXTERNAL UHF ANTENNA Connections are made as in illustration. Disconnec "C," green leads and connect the UHF antenna to termina .
4. USE OF THE BUILT-IN ANTENNA FOR VHF IN CONJUNCTION WITH AN EXTERNAL VHF ANTENNA

See illustration. Disconnect red leads and connect VHF antenna to terminals "B'"
5. USE OF SEPARATE EXTERNAL ANTENNAS FOR VHF AND UHF

Disconnect both the red and green leads and connect the external VHF antenna to terminals ' B " and the external UHF antenna to terminals "C". This type of connection is recommended in fringe areas since the UHF-VHF changeover switch (which introduces a slight loss on some channels) is by-passed.
holding the line flat, run a hot iron over the end until the tube is permanently sealed. Connect the leads to the terminals of the UHF antenna.
7. Run a piece of flat 300 ohm line from the VHF terminals on the Diplexer to the VHF antenna. Secure connections.
8. When running the line from the Diplexer to the receiver, use stand-off insulators and use extreme care to keep the line as far from metal pipes, gutters, etc. as is practical. Outside, at the point of entrance to the house, cut off the tubular line and splice on a fla the tubular line open and facing downward so that any water which results from condensation can run out

OJohn F. Rider


Fig. 34 Signal Path Chart 22L20 Chassis.

VHF-UHF FREQUENCY ALLOCATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Chan. No. & \begin{tabular}{l}
Frequency \\
Band (Mc)
\end{tabular} & Video Carrier & Audio Carrier & Chan. No. & \begin{tabular}{l}
Frequency \\
Band (Mc)
\end{tabular} & Video Carrier & Audio Carrier \\
\hline 2 & 54-60 & 55.25 & 59.75 & 43 & 644-650 & 645.25 & 649.75 \\
\hline 3 & 60-66 & 61.25 & 65.75 & 44 & 650-656 & 651.25 & 655.75 \\
\hline 4 & 66-72 & 67.25 & 71.75 & 45 & 656-662 & 657.25 & 661.75 \\
\hline 5 & 76-82 & 77.25 & 81.75 & 46 & 662-668 & 663.25 & 667.75 \\
\hline 6 & 82-88 & 83.25 & 87.75 & 47 & 668-674 & 669.25 & 673.75 \\
\hline 7 & 174-180 & 175.25 & 179.75 & 48 & 674-680 & 675.25 & 679.75 \\
\hline 8 & 180-186 & 181.25 & 185.75 & 49 & 680-686 & 681.25 & 685.75 \\
\hline 9 & 186-192 & 187.25 & 191.75 & 50 & 686-692 & 687.25 & 691.75 \\
\hline 10 & 192-198 & 193.25 & 197.75 & 51 & 692-698 & 693.25 & 697.75 \\
\hline 11 & 198-204 & 199.25 & 203.75 & 52 & 698-704 & 699.25 & 703.75 \\
\hline 12 & 204-210 & 205.25 & 209.75 & 53 & 704-710 & 705.25 & 709.75 \\
\hline 13 & 210-216 & 211.25 & 215.75 & 54 & 710-716 & 711.25 & 715.75 \\
\hline 14 & 470-476 & 471.25 & 475.75 & 55 & 716-722 & 717.25 & 721.75 \\
\hline 15 & 476-482 & 477.25 & 481.75 & 56 & 722-728 & 723.25 & 727.75 \\
\hline 16 & 482-488 & 483.25 & 487.75 & 57 & 728-734 & 729.25 & 733.25 \\
\hline 17 & 488-494 & 489.25 & 493.75 & 58 & 734-740 & 735.25 & 739.75 \\
\hline 18 & 494-500 & 495.25 & 499.75 & 59 & 740-746 & 741.25 & 745.75 \\
\hline 19 & 500-506 & 501.25 & 505.75 & 60 & 746-752 & 747.25 & 751.75 \\
\hline 20 & 506-512 & 507.25 & 511.75 & 61 & 752-758 & 753.25 & 757.75 \\
\hline 21 & 512-518 & 513.25 & 517.75 & 62 & 758-764 & 759.25 & 763.75 \\
\hline 22 & 518-524 & 519.25 & 523.75 & 63 & 764-770 & 765.25 & 769.75 \\
\hline 23 & 524-530 & 525.25 & 529.75 & 64 & 770-776 & 771.25 & 775.75 \\
\hline 24 & 530-536 & 531.25 & 535.75 & 65 & 776-782 & 777.25 & 781.75 \\
\hline 25 & 536-542 & 537.25 & 541.75 & 66 & 782-788 & 783.25 & 787.75 \\
\hline 26 & 542-548 & 543.25 & 547.75 & 67 & 788-794 & 789.25 & 793.75 \\
\hline 27 & 548-554 & 549.25 & 553.75 & 68 & 794-800 & 795.25 & 799.75 \\
\hline 28 & 554-560 & 555.25 & 559.75 & 69 & 800-806 & 801.25 & 805.75 \\
\hline 29 & 560-566 & 561.25 & 565.75 & 70 & 806-812 & 807.25 & 811.75 \\
\hline 30 & 566-572 & 567.25 & 571.75 & 71 & 812-818 & 813.25 & 817.75 \\
\hline 31 & 572-578 & 573.25 & 577.75 & 72 & 818-824 & 819.25 & 823.75 \\
\hline 32 & 578-584 & 579.25 & 583.75 & 73 & 824-830 & 825.25 & 829.75 \\
\hline 33 & 584-590 & 585.25 & 589.75 & 74 & 830-836 & 831.25 & 835.75 \\
\hline 34 & 590-596 & 591.25 & 595.75 & 75 & 836-842 & 837.25 & 841.75 \\
\hline 35 & 596-602 & 597.25 & 601.75 & 76 & 842-848 & 843.25 & 847.75 \\
\hline 36 & 602-608 & 603.25 & 607.75 & 77 & 848-854 & 849.25 & 853.75 \\
\hline 37 & 608-614 & 609.25 & 613.75 & 78 & 854-860 & 855.25 & 859.75 \\
\hline 38 & 614-620 & 615.25 & 619.75 & 79 & 860-866 & 861.25 & 865.75 \\
\hline 39 & 620-626 & 621.25 & 625.75 & 80 & 866-872 & 867.25 & 871.75 \\
\hline 40 & 626-632 & 627.25 & 631.75 & 81 & 872-878 & 873.25 & 877.75 \\
\hline 41 & 632-638 & 633.25 & 637.75 & 82 & 878-884 & 879.25 & 883.75 \\
\hline 42 & 638-644 & 639.25 & 643.75 & 83 & 884-890 & 885.25 & 889.75 \\
\hline
\end{tabular}

The 8L 20 chassis incorporates a superheterodyne circuit with two tages of IF, on the FM Band, and one stage on the AM Band. There is one stage of RF amplification on all Bands.
When adjustments are made on the 8L 20 chassis, a Hne isolation transformer ( 110 V input to 110 V output) is recommended in order to check the AC voltage between chassis and bench oround and if there is any indication of voltage, reverse the plug before handling the set.
FM RF Allgnment: The tunning slugs are attached to threaded shafts and the slugs are varied in the field of the colls by turning the shafts clockwise or counter-clockwise. After adjustment the shafts must be secured with a drop of speaker cement
AM and FM IF Alignment: The AM and FM IF transformers in this recelver are of the new permeability tuned type. The advantage of humidity and temperature conditions. The upper coll is the secondary
and the lower the primary. When adjusting these IF transformers the tuning wrench 68-19 can be inserted into the top slug, rotated lug and the same operation repeated. The tuning wrench ts so designed that turning one sluq does not affect the adjustment of the other.
FM IF Alignment: Because of the wide band pass, it is desirable 1o use a FM signal generator and a cathode ray oscilloscope when alligning the FM IF channel
If visual alignment equipment is unavallable, rea made by following the procedure outlined below.
FM Discriminator Allgnment: When the secondary of the discrimnator is aligned (operation 5) use sufficient signal input to get a good positive and negative indication before setting the slug for zero eading. A center zero indicating meter is recommended for this anjustment, but is not absolutely necessary. Reversing the leads a non-zero center meter, or observing closely when the met tarts to go to the left (negative) of zero will give the same results.
ALIGNMENT PROCEDURE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Operation & Connect Oscillatar To & \begin{tabular}{l}
Dummy \\
Antenna
\end{tabular} & Input Signal Frequency & Band & Set Dial To & Adj. Trimmers & Purpose \\
\hline 1 & Pin 2 12AT7 Converter & . 05 mfd . & 455 Kc . Modulated & BC & 600 Kc . & \[
\begin{aligned}
& \mathrm{L} 10,11,13, \\
& 16 \& 17
\end{aligned}
\] & Align I.F. channel for maximum output. \\
\hline \({ }^{2}\) & 2 turns loosely cpld. to wavemagnet & & 1600 Kc . Modulated & BC & 1600 Kc. & C2F & Set osclllator to dial scale. \\
\hline 3 & 2 turns loosely cpld. to wavemagnet & & \[
\begin{aligned}
& 1400 \\
& \text { Modulated }
\end{aligned}
\] & BC & 1400 Kc. & C2D, C2B & Align detector and antenna stage. \\
\hline 4 (a) & Pin 1 (grid) on 12AU6 Limiter. & . 05 mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100 \\
& \hline
\end{aligned}
\] & & L18 coil slug Primary discr. & Align primary af discriminator for moximum reading. \\
\hline 5 (b) & Pin 1 (gidd) on 12AU6 limiter & . 05 mfd . & \[
10.7 \mathrm{Mc} .
\]
Unmodulated & \[
\begin{aligned}
& F M \\
& 100
\end{aligned}
\] & & L19 coll slug sec. of discr. & Adjust secandary of discriminator for zero reading \\
\hline 6 (c) & Pin 1 (grid) on 12BA6 2nd I.F. & . 05 mfd . & \begin{tabular}{l}
\[
10.7 \mathrm{Mc} \text {. }
\] \\
Unmodulated
\end{tabular} & \[
\begin{aligned}
& F M \\
& 100
\end{aligned}
\] & & L 14 and L15 Pri. \& Sec. of 3rd IF trans. & Align 3rd. IF transformer for maximum reading. \\
\hline 7 (c) & ```
Pin I (grid) on 12BA6
1st IF.
``` & . 05 Mfd . & \begin{tabular}{l}
\[
10.7 \mathrm{Mc} .
\] \\
Unmodulated
\end{tabular} & \[
\begin{aligned}
& \hline \text { FM } \\
& 100 \\
& \hline
\end{aligned}
\] & & Ad just L 12 for moximum reading. & Align 2nd IF transformer for maximum reading. \\
\hline 8 (c) & Pin 2 (grid) on 12AT7 converter tube socket. & . 05 Mfd. & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & L8 and L9 Prim and Sec. of lst IF transformer & Align lst IF transformer for maximum reading. \\
\hline 9 (c) & Antenna Post FM (Remove line ant.) & 270 ohms & 98 Mc . Unmodulated & \[
\begin{array}{|l|}
\hline \text { FM } \\
100 \\
\hline
\end{array}
\] & 98 mc . & L6 Osc. Coll Slug. & Set Oscillator to dial scale. \\
\hline 10 (c) (d) & Antenna Post FM (Remove line ant.) & 270 ohms & 98 Mc. Unmodulated & \[
\begin{array}{|l|l|}
\hline \text { FM } \\
100 \\
\hline
\end{array}
\] & 98 Mc . & L4 Dei. Coll Slug & Align det. stage to max imum reading. \\
\hline
\end{tabular}

\section*{IMPORTANT}

Allgnment of this chassis will in most cases be unnecessary unless an IF or RF transformer ir replaced or the adjustments have been tampered with.
Correct allgnment can only be made if the following procedure ts followed:
A vacuum tube voltmeter with an isolation resistor of \(2,000,000\) ohms in serles with the hot lead will serve for \(F M\) adjustments.
This lead should be shielded.
An AC output meter connected across the primary or secondary
of the
ments.

© John F. Rider

Fig. 36 Schematic Diagram 19L26 \& 19L28 Chassis.

Fig. 37 Schematic Diagram 19L25 \& 19L27 Chassis.

ALIGNMENT PROCEDURE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Operation & Connect Oscillator To & Dummy Antenna & Input Signal Frequency & Band & Set Dial To & Adj. Trimmers & Purpose \\
\hline 1 & Pin 2 12AT7 Converter & . 05 Mfd . & 455 Kc . Modulated & BC & 600 Kc. & \[
\begin{gathered}
\mathrm{L} 14,15,18,19, \\
22 \& 23
\end{gathered}
\] & Alian I. F. channel for maximum مutput. \\
\hline 2 & 2 turns loosely cpld. to wavemagnet & & 1600 Kc . Modulated & BC & 1600 Kc . & C2E & Set oscullator to dial scale. \\
\hline 3 & 2 turns loosely cpld. to wavemagnet & & 1400 Kc . Modulated & BC & 1400 Kc . & C2C, C2B & Align detector and antenna stage. \\
\hline 4 (a) & Pin 1 grid on 6AU6 Ismiter & . 05 Mfd . & \begin{tabular}{l}
10.7 Mc. \\
Unmodulated
\end{tabular} & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & L24 & Align primary of discriminator for maximum reading. \\
\hline 5 (b) & Pin 1 (grid) on 6AU6 limiter & . 05 Mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & L25 & Adjust secondary of discriminator for zero reading. \\
\hline 6 (c) & \[
\begin{aligned}
& \text { Pin } 1 \text { (grid) on } 6 \text { BA6 } \\
& \text { 2nd. IF. }
\end{aligned}
\] & . 05 Mfd . & \begin{tabular}{l}
10.7 Mc. \\
Unmodulated
\end{tabular} & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & L20, 21 & Align 3rd. IF transformer for Maximum reading. \\
\hline 7 (c) & Pin 1 (grid) on 6BA6 lst. IF. & . 05 Mfd . & 10.7 Mc : Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & L16. 17 & Align 2nd IF transformer for nacaimum reading. \\
\hline 8 (c) & Pin 2 (grid) on 12AT7 convertd & . 05 Mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& F M \\
& 100 \\
& \hline
\end{aligned}
\] & & L.12, 13 & Align lst. If transformer for maximum reading. \\
\hline 9 (c) & Antenna Post FM (Re- & 270 ohms & 98 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & 98 Mc . & L8 Osc. Coll Slug. & Set Oncluotor to dial scale. \\
\hline 10 (c) (d) & move line ant.) & 370 ohms & \begin{tabular}{l}
98 Mc . \\
Unmodulated
\end{tabular} & \[
\begin{aligned}
& F M \\
& 100
\end{aligned}
\] & 98 Mc . & L5 Det. Coll Slug & Align det. stage to maximum reading. \\
\hline
\end{tabular}

\section*{IMPORTANT}

\footnotetext{
Alignment of this chassis will in most cases be unnecessary unlese an IF or RF transformer is replaced or the adjustmente have oeen tampored with. Correct allgment can only be made if the following procedure is followed: A racuum tube voltmeter with an isolation resistor of \(2,000,000\) ohms in arles with the hot lead will serve for FM adjustments. This lead should be shielded.

An AC output meter connected across the primary or secondery of the output
The algnal generator output should be kept fugt high enough to get an indico tion on the meter.
This position of an omellation will sometimen vary with different cartridges, and in this case readjustment of C16 must be mode.
(a) Vacuum Tube Voltmeter Lug 7 on diseriminator transformer to chasals
(Hall discriminator load).
(b) Vacuum Tube Volt
(c) Vacuum Tube Voltmeter from Limiter Grid to Chasels.
(d) Loosen Sluge by applying a hot iron to the cement.
}

Radio Ch. 10L20

The 10 L 20 chassis incorporates a superheterodyne circuit with two stages of IF, on the FM Band, and two stages on the AM Band. There is one stage of RF amplification on all bands.
FM RF Alignment: The tuning slugs are attached to threaded shafts and the slugs are varied in the field of the colls by turning the shafts clockwise or counter-clockwise. After adjustment the shafts must be secured with a drop of speaker cement.
\(A M\) and \(F M\) Alignment: The \(A M\) and \(F M\) IF transformers in this receiver are of the new permeability tuned type. The advantage of an IF transformer of this type is its extreme stability under various humidity and temperature conditions. The upper coil is the secondary and the lower the primary. When adjusting these IF transformers the tuning wrench 68-19 can be inserted into the top slug, rotated until maximum output is obtained and then dropped down to the lower slug and the same operation repeated. The tuning wrench is so designed that turning one slug dues not affect the adjustment of the other.
FM IF Alignment: Because of the wide band pass, it is desirable to use a FM signal generator and a cathode ray oscilloscope when aligning the FM IF channel.

If visual alignment equipment is unavailable, reasonably accurate alignment can be made by following the procedure outlined below.

FM Discriminator Alignment: When the secondary of the discriminator is aligned (operation 5) use sufficient signal input to get a good positive and negative indication before setting the slug for a zero reading. A center zero indicating meter is recommended for this adjustment, but is not absolutely necessary. Reversing the leads of a nonzero center meter, or observing closely when the meter starts to go to the left (negative) of zero will give the same results.

© John F. Rider

© John F. Rider

\section*{© John F. Rider}

\footnotetext{
©John F. Rider
}

This is the latest service data on the " \(K\) " series TV receivers. In using the information, it must be remembered that the suggestions offered are to be used only in those instances where the particular problem may lead to further difficulties.

21 K 20 Z CHASSIS

This chassis is the same as the 21 K 20 chassis, except for the utilization of a 21 EP 4 A magnetically focused picture tube, and the S-19961 PM focus and and adjusted in the same way, as the unit previously used in the 20 H 20 chassis.

\section*{PROPER ADJUSTMENT OF CONTRAST CONTROL}

The " \(K\) " series receivers have been designed with considerable contrast reserve which, when properly used, results in an outstanding picture. However, if the contrast setting is advanced too far in noisy areas, more snow and noise will be in evidence than in a receiver having limited contrast range. Therefore, when making comparison checks, always adjust both
receivers to the same contrast level.

\section*{ARCING IN NECK OF \(21^{n}\) PICTURE TUBES}

This condition is usually caused by loose particles inside the picture tube shifting into the gun structure, causing high voltage breakdown. Arcing does not necessarily indicate that the picture tube is defective, as in many instances the short burns itself out. There have been many cases where the "short" was cleared by removing the picture tube from the chassis, holding it face down and gently tapping the bell. The picture tube should only be replaced if it has been determined that the shor cannot be cleared in the afore mentioned manner.

\section*{TEMPORARY CHANGE IN VERTICAL HOLD RANGE CONTROL CIRCUIT}

Several thousand " \(K\) " chassis have been shipped in which the vertical hold range control has been left disconnected, and in its place a single 2200 or 3300 ohm resistor, or a parallel combination of these two substituted. The reason the controls were left unused is that they were found to be sub-standard after
being riveted to the chassis.

PICTURE SHRINKS HORIZONTALLY
This condition may be caused by an increase in value of the 150 K resistor in the plate (pin 2) circuit of the

6SN7GT horizontal discharge tube. Replace with a 150 K 1 W resistor.

HORIZONTAL PULL ON TOP OF RASTER
With certain types of transmitted signals, a definite pull can be noticed on top of the raster. To correct this condition, replace the .01 mfd . coupling capaoitor C44 in the grid circuit of the 6BE6 sync clipper) with a .0022 mfd . capacitor.

\section*{HORIZONTAL PULLING AND INSTABILITY \\ ON COMMUNITY ANTENNA SYSTEMS}

On some community distribution systems, consider able hum may be introduced into the receiver input. If this hum appears in the detector output it may cause yne instabity or puling on top of the raster. Cor ection can be made by replacing the .01 mfd . cap lipper with a 0022 mfd unit. clipper with a .0022 mfd. unit.

\section*{PICTURE FLICKER}

Muctuations in line voltage often cause picture flicker. This condition can be remedied by increasing the 2nd video plate decoupling capacitor (C23) from 20 to 100 mfd .

\section*{AIRPLANE FLUTTER}

It may be desirable to speed up the AGC action in some areas to compensate for rapid changes in signal level caused by fading and airplane reflections. To C18 with a 047 replace the .47 mid. AGC capacitor tion change the 01 mfd 6BE6 coupling. capacitor (C44) to 0022 mfd C44) to .0022 mfd .

\section*{RINGING OR WHITE STRIPES}

This condition can usually be corrected by readjusting the horizontal drive control, or by replacing the 6CD6 tube. In more stubborn cases, it may be necessary to dress peaking coil L22 and the contrast and picture control leads as far from the sweep transormer cage as is practical. Also to insert the following network in series with the red-white lead of the weep transformer.

\section*{SERVICING "K" TUNERS}

Many tuners can be satisfactorily repaired in the field, thus eliminating unnecessary delays, handling and shipping charges.
in some tuners, the bulls eye adjustment had been screwed too far into the strip causing the slug to remain in a fixed position when turned. To correct this condition, remove the channel strip, lift up the spring clip which holds the adjustment screw in place and reinstall the slug so that it moves in and out when turned.

In servicing tuners, satisfactory operation can be obtained by removing the tuner from its case and plugging in the power and IF connectors. For furthe convenience, it may be desirable to use a test chassis in which these leads have been extended 10 to 20 inches In replacing a 22-2404 feed through capacitor, unsolder the top and bottom leads and the center ground con nection. Do not use excess heat or solder when making connections.

Some of the component parts in the tuner cannot be replaced without removing the fine tuning control and bracket assembly. This bracket can be removed as follows:
1. Unsolder the fine tuning capacitor leads
2. Loosen the Allen head set screw on the fine tuning shaft collar and remove fine tuning shaft.
3. Remove the self tapping screw from the center top of the tuning capacitor mounting bracket, loosen the three remaining screws and remove the bracket. Reverse the above procedure when the tuner is re-assembled

\section*{CHANGE IN PICTURE TUBE GASKET}

The upper half of the gasket was removed to comply with Underwriters specifications which require the picture tube to have sufficient air relief should an mplosion occur. Insufficient air relief could cause the safety glass to be blown out.

\section*{LOW SENSITIVITY ON UHF}

A number of tuners have been returned to the factory because of poor performance on UHF. These tuners
had excessive leakage in the coaxial cable which is sed to inject the oscillator signal on UHF. To check the cable, switch the tuner to a VHF position, unsolder the ground end of the 22 K resistor R7, and check for leakage using the highest megohm scale on a vacuum tube voltohmeter. If the meter shows anything but infinite resistance, replace the cable.

\section*{ARCING BETWEEN THE 1X2A TUBE} AND ADJACENT COMPONENTS

In areas of high humidity, high voltage breakdown may occur between the 1X2A tube and adjacent components, particularly the 6SN7GT tube. To correct his condition, install a \(83-2102\) polystyrene corona shield around the 1X2A tube and socket assembly.

To install the corona shield, bend on broken line, (See illustration) and hold down one half of the shield, slip this half under the filament leads and wrap around the 1X2A tube. Insert tongue through the slot to secure shield.

REMOVAL OF CATHODE TRAP L13 In late production " K " receivers, cathode trap L13 moved from the rear of the chassis to the position originally occupied by L13. Recent improvements in inter-carrier sound transformer design obviates the need for a cathode trap.

\section*{SPURIOUS RADIATION FROM THE}

HORIZONTAL OUTPUT TUBE
We have received reports from fringe areas of float ing visible disturbance in various shapes and forms screen. This condition is caused by 15.75 Kc tube monics radiated by the horizontal output tube and usually appear when the receiver is switched to an unused channel, and disappearing when a station is tuned in. If it does not disappear when a station is tuned in, readjust the horizontal drive control, or replace the horizontal output tube.

\section*{ADJUSTMENTS AND ALIGNWENT}
the fringe lock circuit
The fringe lock is a newly developed circuit，utilizing The fringe lock is a newly developed which can be adjusted to assure sync stability over the wide range of noise and signal levels encountered in different areas．In this circuit the out－ put of the crystal detector，approximately -2 volts peak to peak，is fed to grid \＃1 of the 6BE6．The same signal，after it has been inverted and amplified to approximately 40 volts peak to peak by the first video
amplifier，is applied to grid \＃3 which in this circuit is the signal grid．The fringe lock control is used to is the signal grid．The fringe lock control is used to
ore－set the bias on grid \＃1 so that the normal 2 volt pre－set the bias on grid \＃1 so that the normal 2 volt
signal allowis proper symc clipping action，i．e．the sync pulses，which have been stripped from the composite video signal appearing at grid \(\# 3\) ，will appear at the plate．If a noise pulse drives grid \＃1 beyond the 2 volt level，plate current cutoff occurs and the noise pulse cannot get through to falsely trigger the sweep oscil－ lators．On rare occasions，a strong noise pulse may occur at the time of the sync pulse and the tuhe iike－ wise will cut off，however，the flywheel action of the sweep oscillatars will maintain sync during this brief period．The entire fringe lock system is based or：the fact that the loss of an occasional sync pulse is to be preferred over having a noise pulse get through to
falsely trigger the sweep oscillator．

\section*{fRINGE LOCK ADJUSTMENT}

1．Turn the fringe lock control fully clockwise and then back it off approximately \(1 / 4\) turn．Adjust the vertical and horizontal hold controls and check opera－ the turre is witched from channel to channel

2．If the picture jitters or shows evidence of delay， tearing，split phase，etc．，back down the fringe lock control further，a few degrees at a time，each time re－ adjusting the hold controls and switching from channel to channel until normal sync action is obtained．It will oe found that under normal signal conditions，the correct adjustment will be near the counterclockwise position of the control．

3．In fringe and noisy areas，the best adjustment will be found at or near the maximum clockwise position of the control．

> CORRECTOR MAGNET ADJUSTMENT

Two corrector magnets are used（See Fig． 7 ）to obtain straight，sharply focused sweep lines across the face of the picture tube．These magnets are mounted on the deflection coil mounting bracket and can be moved in and out or up and down by bending the flexible arms which support them．The corrector magnets are adjusted at the factory and should not require re－adjustment uns， of position．If thi made as follows：

1．With the vertical and horizontal size controls， 1．With the vertical and horizontal size controls， four corners and sides of the picture are visable．

2．Bend the corrector magnet arms until the corners become right angles and the top of the raster is parallel with the bottom and the left side is parallel with the right side．After adjustment，the picture should be restored to normal size．
NOTE：Mis－adjustment of the corrector magnets may cause pincushioning，barreling，keystoning，poor linearity，etc．

\section*{CENTERING ADJUSTMENTS}

Two types of centering assemblies have been used in production．

The S－18118 assembly consists of two magnetic rings mounted in two movable washers．The washers are provided with tabs so that the magnets can be turned flux．This unit is installed approximately \(3 / 4^{\prime \prime}\) behind the yoke to prevent the yoke from demagnetizing the ring type magnets．Adjustment is made by gradually rotating the tabs with respect to each other and ro－ tating the entire unit until the picture is centered

WING OR HEX NUTS

OJohn F．Rider

The S-18439 assembly (See Fig. 7) utilizes a smal bar type magnet which can be turned by means of \(1 / 8^{\prime \prime}\) of the yoke and is adjusted by turning the knurle shaft and rotating the entire unit until the picture is centered on the screen.

\section*{AFC ADJUSTMENTS}

The AFC adjustment can effectively be made by setting the horizontal hold control L27 to a position where it is virtually impossible to "throw" the re ceiver out of horizontal sync when switching from channel to channel.

\section*{BULLS-EYE TUNER ADJUSTMENTS}

To adjust the receiver for bulls-eye tuning, set the ine tuning control to its approximate center positio as shown in Fig. 4 . Without further adjustment of he fine tuning control insert a 68-21 alignment wrench into the tuner (See Fig. Io) aid adust each opening to chan side of resonance results in a faded, washed-out picture with the spacing between the wedge lines fogged and tuning in the opposite direction causes the spaces between the lines to clear up. However, going beyond this point causes the picture to take on a "wormy" appearance from sound getting into the picture. Correct adjustment is obtained by tuning o the "wormy" picture and then backing the contro off slightly until the picture clears up.

\section*{removing turret tuner from chassis}
1. Pull out the power and IF connector cables and disconnect the antenna transmission line
2. Look through the U-shaped opening (See Fig. 8 in the top of the tuner and rotate the fine tuning control until the allen head screw on the fine tuning shaf is straight up.
3. Loosen (do not remove) the hex head set screw in the turret dial cord pulley assembly.
4. Slide the pulley towards the front of the chassis until it clears the fine tuning shaft.
5. Remove the four wing or hex nuts and gently pull the tuner assembly straight out of its case.

\section*{REMOVING CHANNEL STRIPS}
1. Remove the tuner from the case and lay on its side.
2. Rotate the turret drum until the strip to be removed is readily accessible.
3. Insert a small screwdriver in the slot (See Fig. 9) Push in the direction of arrow until the channel strip lears the drum slot then lift straight out in direction of screwdriver shaft.

Fig. 9 Removing Channel Strips CAUTION: DO NOT PRY

\section*{CAUTION: TO AVOID DAMAGE TO CHANNEL STRIPS, DO NOT USE PRYING ACTION IN REMOVING STRIPS.}

\section*{REMOVING TURRET DRUM ASSEMBIY}

Use long nose pliers and remove the two turret shaft tension springs from the front and rear of the tuner assembly. Slide the bronze turret shaft grounding spring out of its slot at the rear of the tuner.
2. With a pair of long nose pliers, grasp the first turn of the spiral index spring and lift spring off its hook. This takes pressure off the detent arm and may cause the roller to fall out and become lost.
3. Slide the drum out of its slot. Reverse this procedure to re-assemble the tuner.

\section*{DOUBLE DELAYED GATED AGC}

In order to obtain the best possible performance in fringe and weak signal areas, it is important that the application of AGC voltage to the 6BK7 RF tube be withheld until the signal level reaches approximately 500 microvolts at the antenna input. The noise figure of the tuner will be optimized only under this condition of no AGC voltage. To accomplish this, the cathode of the 6CB6 1st \(1 F\) tube is approximately 8 volts positive by virtue of the drop through the cathode resistor of the 6CB6 3rd IF. This voltage plus the voltage which results from current flow through the tube makes the grid of the 6CB6 1st IF approximately 9.3 volts negative with respect to its

Fig. 10 Bull's-eye Tuning Adjustment
cathode. It should be noted here that the bias voltage for the 3rd IF is obtained across the 100 ohm portion of the cathode resistor only. The voltage at the junction of the two resistors varies from 8 volts with no signal to 4 volts with strong signals. The 2nd IF tube is in series with the 1st IF tube and any changes in the plate current of the 1st IF tube will also change the 2nd IF tube thus the 2nd IF tube is also controlled indirectly by the AGC.

Under weak signal conditions, the output of the AGC tube at point " \(F\) " is approximately 8 volts positive. This positive voltage howe ver, does not reach the grid of the \(6 \mathrm{BK7}\) because of the 2.2 megohm resistor. Actually the grid of this tube is slightly negative because of contact potential developed as a result of The 8 volts positive vits grid circuit (2.2 megohms). The 8 volts posit volage howe ver, is apphed to is 9.3 volts positive the grid is actually 1.3 volts negative with respect to its cathode and AGC control of the IF results under weak signal conditions.

When the receiver is used with normal signals, the signal voltage applied to the grid of the AGC tube will increase and as a result the output of the AGC tube will become 4 to 5 volts negative. This negative voltage will be applied to the 6BK7 through the 2.2 megohm resistor thus both the RF and IF stages will then be controlled by the AGC.

With the application of a negative AGC vortage to the 6BK7 tube under normal signal conditions, the noise figure of the tuner will not be optimized as under weak signal conditions, however, this is not a consideration with normal signal levels.

\section*{AGC ADJUSTMENTS}

The AGC delay control can be adjusted from the front of the cabinet.

Connect the calibrated oscilloscope through a 10 K isolation resistor to terminal "E" (Fig. 25). Select the strongest TV signal and observe the deflection on the oscilloscope screen. Adjust the AGC delay zontrol for 2 volt peak output

Satisfactory adjustment can also be made by observing the picture and slowly turning the AGC delay control rom its maximum clockwise position, counterclockwise until a point is reached where the picture distorts and buzz is heard in the sound. The control should then be turned slowly clockwise and set at a point comfortably below this level of intercarrier buzz, picture distortion and improper sync.

CAUTION: Misadjustment of the AGC delay control can result in a washed-out picture, distorted picture buzz in sound OR COMPL ETE LOSS OF PICTURE AND SOUND.

Fig. 11 IF-RF Alignment Fixtures
A suitable sweep venerator in conjunction with an accurate marker must be used for alignment work. It.is very important to have the sweep generator output cable properly terminated and to check whether or not its attenuator is reactive. If the attenuator is eactive or if the output cable is improperly ter minated, correct alignment cannot be made since the well as the amplitude of the response curve. The position of the attenuator should only vary the amplitude and not the shape of the response curve.

\section*{Calibrating the oscilloscope}

When aligning the RF and IF stages of the receiver

Fig 12 IF Alignment Guide
it is necessary to measure detector peak output.
Ihis may be done with a voltage calibrator used in conjunction with an oscilloscope. If a calibrator is not a vailable, the oscilloscope can be calibrated with a known DC voltage. To make the calibration, connect the ground lead of the vertical input cable to the negative side of a 3 volt battery supply. Turn the horizontal gain control fully counterclockwise. With the "hot" lead, make a momentary contact to the positive connection on the battery and observe the instantaneous spot deflection on the screen. Discharge the scope input capacitor by shorting out the leads and repeat the procedure, each time readjusting the scope on the screen. Each division then represents 1 volt peak. The position of the vertical gain control should be marked for future reference.

\section*{VIDEO IF ALIGNMENT}
1. Connect the negative lead of a 2 volt battery supply to terminal "F" (Fig. 25) and the positive
lead to chassis. The bias supply should be made variable so that it can be varied from negative 3 volts to positive 3 volts. Keep the supply leads short.
2. Connect the calibrated oscilloscope through a 10,000 ohm isolation resistor between terminal " E " and chassis. The sweep generator input to the receiver should be adjusted for 2 volts peak to peak detector output. Do not exceed this output level during any of the adjustments.
3. Feed the output from the sweep generator through the special termination unit shown in Fig. 11 to point until a pattern similar to Fig. 14 is obtained
4. Set the Marker Generator to 44 Mc and alter nately adjust the top and bottom s'ugs and the couping adjustment of the 4 th IF transformer for max mum gain and symmetry with the 44 Mc Marker in the center of the response curve. The wire rod sleeve by means of which coupling can be changed

Fig. \(13 \cdot 41.25 \mathrm{Mc}\) Trap

Fig. 14 4th IF Response
by turning the rod in or out
If the correct response curve cannot be obtained in this step, check the position of the two slugs to see that they are entering their respective coils from the opposite ends of the coil form. The position of the slugs near the center of the coils may change the coefficient of coupling, making correct alignment difficult if not impossible.
5. Connect the sweep generator cable to point "C" Adjust the attenuator for a 2 volt peak to peak detector output
6. As a preliminary adjustment for the 3rd IF, turn the bottom slug half way into its coil and the top slug completely out of its coil. Alternately adjust the top and bottom slugs until a pattern some what similar to Fig. 15 is obtained. When the tuning slugs are properly positioned each slug will move both humps of the response curve.
7. Connect the sweep generator cable to terminal " \(\mathrm{B}^{\text {" }}\) (Converter Grid). In th is step it may be necessary to disconnect the bias battery and temporarily ground the AGC in order to see the highly attenuated trap slots with the oscilloscope vertical gain near maximum.
8. Adjust the \(47.25 \mathrm{Mc}, 41.25 \mathrm{Mc}\) and 39.75 Mc traps for minimum marker amplitude (See Fig. 16). It can be seen that maximum oscilloscope ga in has been used and as a result the top of the response curve has been "run off" the oscilloscope screen in order to see a "blow-up" of the trap slots

Fig. 16 Exploded View of Traps
9. Re-connect the bias battery and readjust the oscil loscope to the calibrated position. Adjust the sweep generator for a 2 volt peak to peak output from the video detector. Bear in mind that only one tuning slug is used in each of the following stages to be aligned.
10. With the test equipment set up as in Step 10 alternately adjust the converter plate coil, the 2nd IF and the 1st IF transformers until an overall response curve similar to Fig. 17 is obtained. If the proper response curve cannot be obtained, it may be necessary to retouch the 4th IF coupling adjustment or make a slight readjustment of the other stages to obtain the correct overall response curve.
11. Adjust the bias so that point " \(F\) " is 3 volts positive with respect to ground. Reduce the signal generator input to obtain 2 volts peak to peak output at terminal " \(E\) ". The response curve should be similar to the solid line portion of Fig. 18. At this point, adjust the cathode trap L13 to flatten the 45 Mc hump in the response curve as much as possible. It will be noted that with proper alignment some tuned circuits will flatten out more than others, as illustracircuits will flatten out
ted bv the broken lines.
12. Readjust the bias to negative 2 voits as in Step 9 and check the overall response as in Step 10. A sligh readjustment may be necessary after trap L13 has been aligned.

Fig. 18 Cathode Trap Response

MPORTANT: The purpose of this procedure is to btain a response curve similar to Fig. 17.. The curves for the other stages may or may not be the same as those shown in the manual after the overal urve has been obtained.
turret tuner and rf chassis alignment
The RF chassis adjustments have been made at the factory and normally do not require readjustment in the field unless tampered with. If adjustment becomes necessary proceed as follows:
1. Connect the negative lead of a 1 volt bias supply to terminal "F" (Fig. 25) and the positive lead to chassis.
2. Connect the calibrated oscilloscope to the feed through terminal " X " (Fig. 1) through a 10 K isolation resistor. This terminal is the screen of the 6 U 8 mixer and is used in preferance to terminal "A" \(i\) order to obtain greater amplification for the average oscilloscope.
3. Use the S-153G9 matching transformer (Fig. 11) and feed the output from the sweep generator to the antenna terminals of the receiver
4. Turn the channel selector to Channel 3 and adjust he sweep generator until a response curve somewha similar to Fig. 19 is obtained
. Study Fig. 1 and adjust the converter grid capacitor (C22), the RF plate capacitor (C5) and the RF grid capacitor (C2) until a response curve similar to Fig. 19 is obtained.

Fig. 19 Channel 3 RF Response
6. Turn the channel selector to Channel 13 and adjus the sweep generator until a response somewha similar to Fig. 20 is obtained. Adjust L3 and L4 to obtain symmetry.

Fig. 20 Channel 13 RF Response
7. Repeat steps 5 and 6 until the best overall symmetry is obtained.

Fig. 17 Overall IF Response

\section*{MASTER OSCILLATOR ALIGNMEN}

The master oscillator adjustment is to be made only if resonance cannot be obtained with the strip oscillator adjustment wrench with the fine tuning control in its center position (the allen head screw on the ne tuning shaft straight up as viewed through the \(U\) has been determined that the cha nnel strip itself is not at fault.

If channels 2 through 6 can be made to resonate with the bull's-eye adjustment at the rear of the turret and the high channels do not resonate, a slight readjustment of the oscillator inductance L7 (See Fig. 6) may be necessary to affect resonance on the high channels.

Ithe fine tuning capacitor is replaced, proper align ment of the fine tuning mechanism can be made as ollows

\section*{1. Remove the turret from the chassis}
2. Turn the turret tuning shaft until the allen head screw, as viewed through the \(U\)-shaped opening, is straight up.
3. Insert an allen wrench through the opening and loosen the screw. Leave the allen wrench in, partially loosen the screw. Leave the allen wrenchin, partially mechanism from falling out or being turned out of position.
4. The tuning capacitor bracket can be removed by removing the four self-tapping screws which hold it in place. Unsolder the tuning capacitor leads eplace capacitor and re-assemble bracket on the RF chassis: DO NOT TIGHTEN ALLEN HEAD SCREV
5. Use a sweep generator on Channel 3 or tune in a station on the lowest available channel and turn the turret shaft until resonance is obtained. This should be approxi mately 2-1/4 turns from either end of the ine tuning capacitor range. Turn the collar until all the opening and tighten screw.
6. Check the fine tuning knob to see that it is in the position shown in Fig. 4 . (Center of mechanical range)
7. Insert the dial cord pulley over the turret shaft anc tighten set screw. If the set screw is in a positior where it is difficult to tighten, the fine tuning shaft can be held in place and the pulley can be made tc slip the dial cord until the pulley is in a position whert the set screw is readily accessible.
8. Remove the allen wrench. Proper alignment is indicated when the fine tuning control is in its center position and the allen head screw is straight up as viewed through the \(U\)-shaped opening.
9. It may be necessary to readjust the oscillator inductance L7 (See Fig. 6) for proper bull's-eye operation on the high channels (7-13).

\section*{SOUND ALIGNMENT}

Proper alignment of the 4.5 Mc intercarrier sound hannel can only be obtained if the signal to the re eiver antenna terminals is reduced to a level below he limiting point of the 6BN6 Gated Beam Detector This level can be easily identified by the "hiss" which then accompanies the sound.

Various methods may be used to reduce the signal evel, however, it is recommended that a step attenatorisfactory res precautions must be take prevent leakage, certain Use as short a lead as possible between the made uator and receiver antenna terminals and approxi mately 6 feet of 300 ohm shielded line between the antenna transmission line and the attenuator. The shield from the transmission line should be co. The o the attenuator and the attenuato itself groud to the TV chassis under test.

After the connections have been made, proceed as follows:
1. Tune in a tone modulated TV signal and adjust the step attenuator until the signal is reduced to a leve where "hiss" is heard with the sound.
2. Adjust the sound take-off coil L12 (top and bottom slugs), intercarrier coil L19, quadrature coil L20 and buzz control R30 for the cleanest sound an minimum buzz. It must be remembered that any these adjustments may cause the "hiss" to disappear and further reduction of the signal will be necessary so that the "hiss" does not disappear during alimment.

If intercarrier buzz is in evidence, after all norma sound adjustments have been made, the cause may be attributed to one or more of the following:
1. Improper adjustment of the AGC delay control
2. Defective 6 U 8 intercarrier sound amplifier
3. Extremely high signal levels which require attenuation in the antenna circuit.
4. Transmitter overmodulation.

\author{
11-118 9 ft . AC Test Cord for " K " Models \\ 68-13 Alignment Tool \\ 68-14 Tuning Wand \\ 68-19 Nylon Alignment Wrench
}

The waveforms illustrated on this page and the peak to peak voltages indicated thereon represent an average 19 K 20 chassis. These waveforms and voltages however, are applicable to other chassis in the " K " line. For best results, the oscilloscope horizontal sweep should be adjusted to a sub-multipie frequency of the waveform under observation.

Pin 5 6AH4 (V12) 60 cycles

Pin 2 6AQ7GT (V13B) 15.75 Kc .

Pin 2 6SN7GT (V14B) 15.75 Kc .

Pin 5 6AX4GT (V16) 15.75 Kc.

Pin 1 6AQ7GT (V13B) 15.75 Kc .

Junction of R66 \& C16 15.75 Kc .

Junction of R62 \& C29AD 60 cvcles

Pin 4 6SN7GT (V14A) 15.75 Kc .

Pin 8 6BQ6GT (V15) 15.75 Kc .

Junction of C37AD \&

Pin 2 6U8 (V6A) 60 cycles

Pin 2 12AU7 (V10A)
60 cycles

Pin 7 12AX7 (V9A) 60 cycles

Pin 5 6BE6 (V11) 15.75 Kc .

68-20 Nylon Alignment Wrench
68-21 Nylon Alignment Wrench
95-1234 250 Watt Isolation Transformer

in 1 6SN7GT (V14B) 15.75 Kc .

Junction of R61 \& L28 15.75 Kc

Fig. 21 Waveforms and Peak to Peak Voltages

The 10 H 20 Z chassis incorporates a superheterodyne circuit with two stages of IF , on the FM Band, and two stages on the AM Band one stage of \(R F\) amplification on all band.

FM RF Alignment: The tuning slugs are attached to threaded shafts and the slugs are varied in the field of the coils by turning the shafts clockwise or counter-clockwise. After adjustment the shafts must be secured with a drop of speaker cement.

AM and \(F M\) Alignment: The \(A M\) and \(F M\) IF transformers in this reciever are of the new permeability tuned type. The advantage of an IF transformer of this type is its extreme stability under various humidity and temperature conditions. The upper coil is the
secondary and the lower the primary. When adjusting these IF transformers the tuning wrench 68-19 can be inserted into the top slug, rotated until maximum output is obtained and then dropped down to the lower slug and the same operation repeated. The tuning wrench is so designed that turning one slug does not affect th adjustment of the other.

FM If Alignment: Because of the wide band pass, it is desir able to use a \(F M\) signal generator and a cathode ray oscilloscope ith Model 800 Signal Generator (Form Z8001) covers complete FM alignment procedure. If visual alignment equipment is una vailable, easonably accurate alignment can be made by following the proedure outlined below.
FM Discriminator Alignment: When the secondary of the dis criminator is aligned (operation 5) use sufficient signal input to get a good positive and negative indication before setting the slug
for zero reading. A center zero indicating meter is recommended or this adjustmen. A center zero indicating meter is recommended leads of a non-zero center meter, or observing closely when the meter starts to go to the left (negative) of zero will give the same results.

ALIGNMENT PROCEDURE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Operation & Connect Oscillator To & \begin{tabular}{l}
Dummy \\
Antenna
\end{tabular} & \begin{tabular}{l}
Input Signal \\
Frequency
\end{tabular} & Band & Set Dial To & Adj. Trimmers & Purpose \\
\hline 1 & Pin 2 12AT7 or 12AV7 Converter & . 05 Mfd . & 455 Kc . Modulated & BC & 600 Kc . & Adj. Pri. and Sec. T1B, T2B, T3B & Align I. F. channel for maximum output. \\
\hline 2 & 2 turns loosely cpld. to wavemagnet & & 1600 Kc . Modulated & BC & 1600 Kc . & C4 & Set oscillator to dial scale. \\
\hline 3 & 2 turns loosely cpld. to wavemagnet & & 1400 Kc . Modulated & BC & 1400 全c. & C 3, C2 & Align detector and antenna stage. \\
\hline 4 (a) & Pin 1 (grid) on 6 AU6 limiter. & . 05 Mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & Adj. Primary of Discriminator \(T 4\) & Align primary of discriminator for maximum reading. \\
\hline 5 (b) & Pin 1 (grid) on 6 AU6 limiter. & . 05 Mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \mathrm{FM} \\
& 100 \\
& \hline
\end{aligned}
\] & & Adj. Secondary of Discriminator T4 & Adjust secondary of discriminator for zero reading. \\
\hline 6 (c) & \[
\begin{aligned}
& \text { Pin } 1 \text { (grid) on } 6 \text { BA6 } \\
& \text { 2nd. } 1 \mathrm{~F} \text {. }
\end{aligned}
\] & . 05 Mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & \[
\begin{gathered}
\text { Adj. Pri. and Sec. } \\
\text { T3A }
\end{gathered}
\] & Align 3rd. IF transformer for maximum reading. \\
\hline 7 (c) & Pin 1 (grid) on 6BA6 lst. IF. & . 05 Mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
&
\end{aligned}
\] & & Adj. Pri. and Sec. T2A & Align 2nd IF transformer for maximum reading. \\
\hline 8 (c) & Pin 2 (grid) on 12AT7 or 12AV7 converter tube socket & . 05 Mfd . & 10.7 Mc. Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & Adj. Pri. and Sec. T1A & Align 1st. IF transformer for maximum reading. \\
\hline 9 (c) & Antenna Post FM (Re- & 270 ohms & 98 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & 98 Mc . & L7 Osc. Coil Slug. & Set Oscillator to dial scale. \\
\hline 10 (c) (d) & move line ant.) & 270 ohms & 98 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & 98 Mc . & L4 Det. Coil Slug & Align det. stage to maximum reading. \\
\hline
\end{tabular}

\section*{IMPORTANT}
```

Al
ve been tampered with.
NOTE: If 12AT7 is replaced by a 2 12AV7 or vice versa tie RF
Correct alignment can only be made if the following procedur
Correctal
A vacum, wue voltmeter with ni isolation resistor of 2,000-
\an AC outur nieter connected across the primary or secon-
MThe signal gener ator output slould be kept just high enougla :%
In the event the reeeiver oscillates during phono operation,
This position of no oscillation will sometimes vary with dif-
$$
\begin{subarray}{c}{\mathrm{ ferent,}}\\{made.}\end{subarray}
$$
(a)Vacum Tube Voltmeter Lug 7 on discriminator trans-
*)
l

```

TUBE AND TRIMMER LOCATION

DIAL CORD DRIVE
\(\qquad\)

© John F. Rider

The 8 H 20 Z chassis incorporates a superheterodyne circuit with two stages of \(1 F\), on the FM Band, and one stage on the AM Band. There is one stage of RF amplification on all Bands.

When adjustments are made on the 8 HzO chassis, a line isolation transformer (110 V input to 110 V output) is recommended in order to avoid a hot chassis. If an isolation transformer is not available, check the AC voltage between chassis and bench ground and if there is any indication of voltage, reverse the plug before handling the set.
FM RF Alignment: The tunning slugs are attached to threaded shafts and the slugs are varied in the field of the coils by turning the shafts clockwise or counter-clockwise. After adjustment the shafts must be secured with a drop of speaker cement.

AM and FMIF Alignment: The AM and FM IF transformers in this receiver are of the new permeability tuned type. The advantage of an IF transformer of this type is its extreme stability under various humidity and temperature conditions. The upper coil is the secondary and the lower the primary. When adjusting these
IF transformers the tuning wrench 68-19 can be inserted into the
top slug, rotated untilmaximum output is obtained and then dropped down to the lower slug and the same operation repeated. The tun ing wrench is so designed that turning one slug does not affect the adjustment of the other.

FM IF Alignment: Because of the wide band pass, it is desirable to use a FM signal generator and a cathode ray oscilloscope when aligning the FM IF channel. The instruction book for the Zenith lignment procedure. If visual alignment equipment is unavailable lignment procedure. If visual alignment equipment is unavailable, cedure outlined below.

FM Discriminator Alignment: When the secondary of the dis criminator is aligned (operation 5) use sufficient signal input to get a good positive and negative indication before setting the slug for zeroreading. A center zero indicating meter is recommended for this adjustment, but is not absolutely necessary. Reversing the leads of a non-zero center meter, or observing closely when the meter starts to go to the left (negative) of zero will give the same results.

ALIGNMENT PROCEDURE

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Operation & Connect Oscillator To & \begin{tabular}{l}
Dummy \\
Antenna
\end{tabular} & \begin{tabular}{l}
Input Signal \\
Frequency
\end{tabular} & Band & Set Dial To & Adj. Trimmers & Purpose \\
\hline 1 & Pin 212 AT 7 Converter & . 05 Mrd . & \begin{tabular}{l}
455 Kc . \\
Modulated
\end{tabular} & BC & 600 Kc . & \[
\begin{array}{ccc}
\text { L9. } & 10,12 \\
15 \& 16
\end{array}
\] & Align I. F. channel for maximum output. \\
\hline 2 & 2 turns loosely cpld. to wavemagnet & & 1600 Kc . Modulated & BC & 1600 Kc . & C4 & Set oscillator to dial scale. \\
\hline 3 & 2 turns loosely cpld. to wavemagnet & & 1400 Kc . Modulated & BC & 1400 Kc . & C3, C2 & Align detector and antenna stage. \\
\hline 4 (a) & Pin 1 (grid) on 12AU6 limiter. & . 05 Mfd . & 10.7 Mc. Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & L17 coil slug Primary discr. & Align primary of discriminator for maximum reading. \\
\hline 5 (b) & Pin 1 (grid) on 12AU6 limiter. & . 05 Mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & Lly coil slug sec . of discr. & Adjust secondary of discriminator for zero reading. \\
\hline 6 (c) & \[
\begin{aligned}
& \text { Pin } 1 \text { (grid) on 12BA6 } \\
& \text { 2nd. } 1 \mathrm{~F} .
\end{aligned}
\] & . 05 Mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & \begin{tabular}{l}
Ll 3 and Ll4 Pri. \\
\& Sec. of 3rd. IF trans.
\end{tabular} & Align 3rd. IF transformer for maximum reading. \\
\hline 7 (c) & Pin 1 (grid) on 12BA6 lst. IF. & . 05 Mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & Adjust Lll for maximum reading. & Align 2nd IF transformer for maximum reading. \\
\hline 8 (c) & Pin 2 (grid) on 12AT7 converter tube socket. & . 05 Mfd . & 10.7 Mc. Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & & L7 and L8 Prim. and Sec . of 1 st . IF transformer & Align lst. IF transformer for maximum reading. \\
\hline 9 (c) & Antenna Post FM (Re- & 270 ohms & 98 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & 98 Mc . & L5 Osc. Coil Slug. & Set Oscillator to dial scale. \\
\hline 10 (c) (d) & move line ant.) & 270 ohms & 98 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & 98 Mc . & L3 Det. Coil Slug & Align det. stage to maximum reading. \\
\hline
\end{tabular}

\section*{IMPORTANT}

Alignment of this chassis will in most cases be unnecessary unless an IF or RF transformer is replaced or the adjustments have been tampered with.
Correct alignment can only be made if the following procedure is followed:
A vacuum tube voltmeter with an isolation resistor of \(2,000,000\) ohms in series with the hot lead will serve for FM adjustments. This lead should be shielded
An AC output meter connected across the primary or secondary of the output transformer will be satisfactory for all AM adjust -

The signal generator output should be kept just high enough to get an indication on the meter.
(a) Vacuum Tube Voltmeter Lug 7 on discriminator transformer to chassis (half discriminator load).
(b) Vacuum Tube Voltmeter Lug 5 on discriminator transformer to chassis (full discriminator load).
(c) Vacuum Tube Voltmeter from Limiter Grid to Chassis (d) Loosen Slugs by applying a hot iron to the cement.

DIAL CORD DRIVE

\section*{OJohn F. Rider}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{3}{*}{Model K2258RZ same as Model K2258R
19K23-3 MAIN CHASSIS}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { R1 } \\
& \text { R5 }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 63-1856 \\
& 63-1869
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 47 \mathrm{~K} \text { ohm } \quad 1 / 2 \mathrm{w} \quad 20 \% \\
& (2 \mathrm{used}) \\
& 100 \mathrm{~K} \text { ohm } 1 / 2 \mathrm{w} \quad 10 \% \\
& \text { (2 used) }
\end{aligned}
\]} & \multirow[t]{3}{*}{} & & \multirow[t]{4}{*}{\[
\begin{aligned}
& S-19636 \\
& S-19743 \\
& S-19898
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
Socket shell \& mtg. plate (sweep) \\
Horiz. osc. coil assem. \(\quad 1.50\) \\
Centering device \& yoke cover
\end{tabular}} & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\begin{tabular}{l}
58-204 \\
63-1055 \\
63-1101
\end{tabular}}} & \multicolumn{3}{|l|}{Connector plug (part of S-19709)} & \multirow[t]{2}{*}{} \\
\hline & & & & & & & & & & & & & & 22 K ohm & & 20\% Ins & \\
\hline & & & & & & & & & L27 & & & & & 8200 ohm & 2w & 10\% \({ }^{\text {n }}\) & ". 36 \\
\hline \multicolumn{5}{|c|}{19K23-3 MAIN CHASSIS} & & 63-1870 & 10 & & & & & R21 & 63-1573 & 2700 ohm & 1 w & 10\% & ". 24 \\
\hline \multirow[t]{2}{*}{C30} & \multirow[t]{2}{*}{22-3} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{. 01 mfd ceramic disc (2 used) \({ }_{500 \mathrm{~V}} .26\)}} & R94 & 63-1880 & 180 K ohm \(1 / 2 \mathrm{w} 10 \%\) & ". 21 & & \multirow[t]{2}{*}{S-20016} & \multirow[t]{2}{*}{\begin{tabular}{l}
(part of 95-1335) \\
Yoke brkt. assem.
\end{tabular}} & R26 & 63-1579 & 6200 ohm & 2w & 5\% & ". 33 \\
\hline & & & & & R29 & 63-1883 & 220 K ohm 1/2w \(10 \%\) & . 21 & & & & R16 & 63-1708 & 15 ohm & 1/2w & 10\% & ". 21 \\
\hline C36 & 22-4 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{. 002 mfd ceramic dis}} & sc 500 V .26 & R31 & 63-1890 & 330 K ohm 1/2w \(10 \%\) & ". 21 & & & TUBES & R43 & 63-1733 & 56 ohm & 1/2w & 10\% & ". 21 \\
\hline C39 & 22-8 & & & sc 500V . 26 & R49 & 63-1898 & 470 K ohm \(1 / 2 \mathrm{w} 20 \%\) & & & \(112 \mathrm{AX7}\) & 1 TSNTVGT 1 B3GT & R12 & 63-1737 & 68 ohm & 1/2w & 20\% & . 21 \\
\hline C53 & 22-1256 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{75 mmfd molded mica
.047 mfd molded}} & ca 500 V .20 & & & (3 used) & . 21 & & \(112 \mathrm{AV7}\) & \(16 \mathrm{SNTG7GT}{ }^{1} \mathrm{lB3G5}\) & R75 & 63-1740 & 82 ohm & 1/2w & 10\% & ". 21 \\
\hline C63 & 22-1775 & & & 400V . 26 & R37 & 63-1904 & 680 K ohm 1/2w \(10 \%\) & ". 21 & & \(16 \mathrm{AX} 4 \mathrm{G}^{\prime}\) & & R19 & 63-1743 & 100 ohm & 1/2w & 10\% & ". 21 \\
\hline C5S & 22-1777 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& .1 \mathrm{mfd} \text { molded } \\
& .0015 \mathrm{mfd} \text { molded }
\end{aligned}
\]}} & 200V . 26 & R42 & 63-1911 & 1 Meg. 1/2w \(10 \%\) & & & 1 6BE6 & 16 BQ 6 GT or 6BQ6G & R44 & 63-1757 & 220 ohm & 1/2w & 10\% & \\
\hline C57 & 22-1785 & & & 400 V .20 & & & (3 used) & . 21 & & \(1{ }^{1}\) & 7LP4 \({ }^{\text {C }}\) C. R. Tube \({ }^{\text {c }}\) & & & (2 used) & & 10\%" & ". 21 \\
\hline C52 & 22-1831 & \multicolumn{2}{|l|}{.0015 mfd molded 56 mmfd molded mica} & ca 500 V .26 & R50 & 63-1918 & \(1.5 \mathrm{Meg} .1 / 2 \mathrm{w} \quad 10 \%\) & \%. 21 & & & LLP4 C. R. Tube & R20 & 63-1764 & 330 ohm & 1/2w & 10\% & ". 21 \\
\hline C49 & 22-1841 & \multicolumn{2}{|l|}{} & 600 V .45 & R56 & 63-1922 & 1.8 Meg. \(1 / 2 \mathrm{w} 10 \%\) & ". 21 & & & VIDEO CHASSIS & & 63-1772 & 470 ohm & 1/2w & & \\
\hline \multirow[t]{3}{*}{C46} & 22-1842 & \multicolumn{2}{|l|}{. 10047 mfd mold molded} & 200V . 26 & R76 & 63-1939 & 4.7 Meg. \(1 / 2 \mathrm{w} 10 \%\) & ". 21 & C30 & 22-3 & .01 mfd. ceramic disc 500V 26 & R27 & 63-1777 & 680 ohm & & & ". 21 \\
\hline & \multirow[t]{2}{*}{22-1845} & \multicolumn{3}{|l|}{. 0022 mfd molded (2 used)} & R67 & 63-1970 & 3300 ohm 2 w 20\% & ". 33 & & & & R111 & 63-1779 & 680 ohm & 1/2w & 20\% & ". 21 \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{. 001 mfd ceramic}} & 600 V .26 & R38 & 63-1928 & 100 K ohm \(2 \mathrm{w} \quad 10 \%\) & ". 33 & C12 & 22-6 & 470 mmfd. ceramic 500V . 26 & R91 & 63-178 & 1 K ohm & & 20\% & \\
\hline C82 & 22-2112 & & & 500 V .30 & R68 & 63-2129 & 1.2 ohm ww 1/2w 10\% & ". 21 & & & Or 22-2470 470 mmfd . & R10 & 63-1799 & 2200 ohm & 1/2w & & \\
\hline C81 & 22-2125 & \multicolumn{2}{|l|}{680 mmfd mica} & 500 V .35 & R74 & 63-2130 & 150 K ohm \(1 \mathrm{w} \quad 10 \%\) & ". 24 & & & ceramic 500V & R39 & 63-1810 & 3900 ohm & 1/2w & 10\% & \\
\hline C51 & 22-2127 & \multicolumn{3}{|l|}{. 001 mfd molded (2 used)} & R35 & 63-2145 & 10 K ohm \(2 \mathrm{w} \quad 20 \%\) & ". 33 & C15 & 22-7 & . 001 mfd ceramic disc & R14 & 63-1821 & 6800 ohm & 1/2w & 20\% & \\
\hline & & & & 600 V .26 & R40 & 63-2159 & Vertical range control & 1.20 & & & (5 used) 500V . 26 & 8 & 63-1823 & 8200 ohm & \(1 / 2 \mathrm{w}\) & 5\% & ". 21 \\
\hline \multirow[t]{2}{*}{C69} & \multirow[t]{2}{*}{22-2128} & \multicolumn{3}{|l|}{. 001 mfd molded (2 used)} & R60 & 63-2290 & \(680 \mathrm{ohm} \mathrm{1w} 10 \%\) Ins. Res & es.. 24 & C71 & 22-1762 & 1 mmfd . molded \(\quad 500 \mathrm{~V} .20\) & R71 & 63-1834 & 15 K ohm & 1/2w & 10\% & ". 21 \\
\hline & & & & 600 V .26 & R64 & 63-2364 & 18 K ohm \(2 \mathrm{w} 10 \%\) " & & C45 & 22-1778 & . 047 mfd . molded 200 V .26 & R23 & 63-1841 & 22 K ohm & 1/2w & 10\% & \\
\hline \({ }^{6} 67\) & 22-2129 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{. 022 mfd molded}} & 600V . 35 & & & (2 used) & . 36 & C42 & 22-1825 & .22 mfd molded \(\quad 400 \mathrm{~V}^{\circ} .50\) & & & (2 used) & & & . 21 \\
\hline C54 & 22-2166 & & & 200V . 45 & R55 & 63-2394 & Vertical size control & 1.20 & C40 & 22-1844 & . 047 mfd . molded 600 V .35 & R15 & 63-1845 & 27 K ohm & 1/2w & 10\% & \\
\hline C31 & 22-2167 & \multicolumn{2}{|l|}{. 22 mfd molded} & 200V . 45 & R34 & 63-2398 & 470 ohm 1w 10\% & " . 24 & C24 & 22-1874 & 7 mmfd ceramic 500 V .26 & & & (2 used) & & " & ". 21 \\
\hline C70 & 22-2248 & \multicolumn{2}{|l|}{. 0033 mfd molded} & 600 V .26 & & & Or 63-1222 470 ohm 1w ww & & & & Or 22-2375 7 mmfd ceramic & R78 & 63-1859 & 56 K ohm & 1/2w & 10\%" & ". 21 \\
\hline C64 & 22-2340 & \multicolumn{2}{|l|}{. 1 mfd molded} & 400 V .40 & R33 & 63-2777 & 10\% Ins. Res. & .24
1.81 & C34 & 22-1895 & \(\begin{array}{ll}\text { disc } \\ 10 \mathrm{mmfd} . & \text { ceramic } \\ & 500 \mathrm{~V} .26 \\ 500 \mathrm{~V}\end{array}\) & R5 & 63-1869 & 100 K ohm & 1/2w & 10\% & ". 21 \\
\hline C65 & 22-2341 & \multicolumn{2}{|l|}{. 15 mfd molded} & 400V . 45 & R62 & 63-2794 & Candohm & 1.81
.85 & & & Or 22-2378 10 mmfd . ceramic & R4 & 63-1873 & 120 K ohm & 1/2w & 10\% & ". 21 \\
\hline C37AD, & \multirow{3}{*}{22-2358} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Electrolytic 80/400V 40/400V}} & R57 & 63-2815 & Vertical linearity control & 1.20 & & & 500 V .35 & R29 & 63-1883 & & & & \\
\hline BD,CD, & & & & & R73 & 63-2834 & Vertical hold control & 1.20 & C13 & 22-2050 & 5 mmfd ceramic (2 used) & R36 & 63-1884 & 220 K ohm & \(1 / 2 \mathrm{w}\) & 10\% & ". 21 \\
\hline \({ }^{\text {D }}\) C \({ }^{\text {a }}\) AD & & 30/400V 4 & 40/25V & 5.50 & R51 & 63-2835 & & & & & 500 V .30 & R31 & 63-1890 & 330 K ohm & 1/2w & 10\% & ". 21 \\
\hline C50AD, & 22-2368 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Electrolytic 40/400V 10/475V \\
\(100 / 50 \mathrm{~V} \mathrm{10} / 25 \mathrm{~V} \quad 3.75\)
\end{tabular}}} & R69 & 63-2836 & Screen control & 1.20
1.20 & & & Or 22-2380 5 mmfd ceramic & R93 & 63-1896 & 470 K ohm & 1/2w & 5\% & ". 21 \\
\hline \[
\begin{aligned}
& \mathrm{BD}, \mathrm{CD}, \\
& \mathrm{DD}
\end{aligned}
\] & & & & & R48 & 63-2837 & Brightness control & 1.20 & C14 & 22-2 & disc 500 V .30 & R49 & 63-1898 & 470 K ohm & 1/2w & 20\% & ". 21 \\
\hline C56 & 22-2387 & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{680 mmfd ceramic 1080 mmfd mica}} & 500v . 35 & & & & & & 22-2051 & 6 mmfd . ceramic (2 used) 500 V .35 & R42 & 63-1911 & 1 Meg . & 1/2w & 10\% & ". 21 \\
\hline C58 & 22-2416 & & & 500V . 60 & A1 & 87-1 & Integrator unit & . 26 & & & Or 22-2381 6 mmfd ceramic & R53 & 63-1912 & 1 Meg . & 1/2w & 20\% & ". 21 \\
\hline C76AD, & & \multicolumn{4}{|l|}{\multirow[b]{3}{*}{\begin{tabular}{l}
Electrolytic \(50 / 350 \mathrm{~V} 20 / 400 \mathrm{~V}\) \\
\(80 / 25 \mathrm{~V} 40 / 25 \mathrm{~V}\)
\end{tabular}}} & 93-2 & Brass washer (1 on S-19636 & \& & & & Or
disc & \[
\begin{aligned}
& \text { R3 } \\
& \text { R92 }
\end{aligned}
\] & 63-1926 & 2.2 Meg. & 1/2w & 20\% & ". 21 \\
\hline BD,CD, & 22-2443 & & & & & & 1 to mt. 63-2794) & . 01 & C18 & 22-2146 & 47 mfd molded 200V . 60 & 112 & 63-1969 & 1800 Meg . & 1/2w & 10\% & \({ }_{n}{ }^{\circ} .21\) \\
\hline DD & & & & & & & Rubber washer (1 for sweep) &) .02 & C1 & 22-2217 & 470 mmfd . ceramic (2 used) & & 63-215 & 1800 hm & & & \\
\hline C66 & 22-2452 & \multicolumn{2}{|l|}{.015 mmfd molded} & 200V . 25 & & 94-767 & Fibre washer (2 ea. 78-709) &) 01 & & & 500V . 25 & & & AGC & d) & & \\
\hline C79 & 22-2457 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Trimmer
220 mmfd ceramic}} & . 55 & T9 & \({ }^{95-1280}\) & Rubber bushing (2 for sweep) & p) \(\begin{array}{r}\text {. } 15 \\ 3 \\ 50\end{array}\) & C33 & 22-2276 & \(2 \times .01 \mathrm{mfd}\) ceramic 500 V .50 & & 63-2379 & 3900 ohm & 1/2w & 10\% & \\
\hline C80 & 22-2458 & & & 500 V .20 & T8 & 95-1298 & & 32.50 & C20 & 22-2302 & 470 mmfd ceramic 500V. 35 & & 63-2791 & 12 K ohm 1 & 1/2w & 10\% & \\
\hline \multirow[t]{2}{*}{C83} & \multirow[t]{2}{*}{22-2469} & \multicolumn{2}{|l|}{220 mmfd ceramic
1 mfd molded} & 200V 1.20 & & 95-1298 & Power trans. & 22.50 & C16 & 22-2309 & 330 mmfd ceramic 500 V .26 & & & & & & \\
\hline & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{22 Kohm 1 w 10\% Ins. Res. 24}} & T6 & 95-1309 & Vertical output trans. & 5.00 & C25 & 22-2310 & 560 mmfd ceramic 500 V .35 & R24 & 63-2805 & Fringe lock & \(k\) contr & & 1.20 \\
\hline R61 & 63-958 & 22K ohm & & Ins. Res. 24 & T7 & 95-1335 & Deflection coil 1 & 13.50 & C38 & 22-2320 & 680 mmfd. ceramic 500V . 26 & R115 & 63-2833 & Contrast co & ontrol & & 1.20 \\
\hline R97 & 63-1192 & 27 K ohm & 1w 10\% & ". 24 & T5 & 95-1339 & Audio output trans. & 2.25 & & 22-2343 & & R30 & 63-3167 & Bias contro & & & . 50 \\
\hline R77 & 63-1194 & 47 K ohm & 1w 10\% & ". 24 & & & & & C32 & \[
22-2431
\] & .0082 mfd molded 200 V .30 & X & 103-1 & Crystal dio & ode (1N & & 1.20 \\
\hline R66 & 63-1744 & 100 ohm (3 used) & 1/2w \(20 \%\) & & L33 & \[
\begin{aligned}
& S-17164 \\
& S-17343
\end{aligned}
\] & Beam bender unit
1st video peaking coil & 1.65 & C77
C 28 & 22-2456 & 180 mmfd mica \({ }^{\text {che }}\) & L14 & S-15128 & Choke coil S-18590) & asse & (part of & \\
\hline R46 & 63-1750 & 150 ohm & 1/2w 10\% & ". 21 & & S-18566 & Winding only for S-18567 & \(\stackrel{.35}{ }\) & C28 & & & & S-16092 & & & & \\
\hline R18 & 63-1771 & 470 ohm & 1/2w \(10 \%\) & & T10 & S-18567 & Horiz. sweep trans. & 6.50 & & & disc 500 V . 45 & & & S-19736) & & & . 30 \\
\hline & & (2 used) & & & L29 & S-18570 & Horiz. Linearity control coil & & C78 & 22-2460 & 50 mmfd . molded 500 V .20 & L17 & S-16984 & Filament & hoke coil & & . 30 \\
\hline R80 & 63-1774 & 560 ohm & 1/2w & & & S-18576 & Mtg. brkt. \& lug for sweep & . 35 & C26 & 22-2466 & 47 mmfd ceramic 500V . 35 & T2. & S-17907 & 2nd video I & \(F\) tran & & . 90 \\
\hline R59 & 63-1775 & 560 ohm (2 used) & 1/2w \(10 \%\) & \[
21
\] & L28 & \[
\begin{aligned}
& S-18579 \\
& S-18748
\end{aligned}
\] & Plug \& brkt. (interlock) Horiz. width control coil & .50
1.00 & & & \begin{tabular}{l}
Or 22-2467 47 mmfd . ceramic disc \\
500 V
\end{tabular} & L15 & S-17911 & Detector sh (part of S- & \[
\begin{aligned}
& \text { hunt pe } \\
& \text { 18590) }
\end{aligned}
\] & king coil & . 40 \\
\hline R39 & 63-1810 & 3900 ohm & 1/2w \(10 \%\) & ". 21 & & S-18761 & Strap \& brkt. L.H. & . 30 & & 24-572 I & I F. trans. shield cover . 05 & & S-17916 & Coil shield & \& lug & assem. & \\
\hline R41 & 63-1824 & 8200 ohm & 1/2w 10\% & ". 21 & & S-18762 & Strap \& brkt. R.H. & . 30 & & 24-588 I & I F trans. shield top cover . 10 & & & (S-17907 \& & S-18730) & & . 20 \\
\hline R91 & 63-1834 & 15 K ohm & 1/2w 10\% & ". 21 & & S-18763 & Corrector magnet assem. & & & 25-2 C & Cotter pin 03 & L22 & S-17958 & 2nd video sh & hunt pe & & \\
\hline R113 & 63-1835 & 15 K oh.n & 1/2w \(20 \%\) & ". 21 & & & (2 for sweep) & . 30 & & 54-139 3 & \(3 / 8 \times 32 \times 9 / 16\) hex palnut (1 ea. & L9 & S-18209 & Associated & sound & & \[
.60
\] \\
\hline R7 & 63-1842 & 22K ohm & 1/2w \(20 \%\) & ". 21 & & S-18926 & Dust seal strip assem. & 1.30 & & & \(63-2805\) \& 63-2833) . 01 & L11 & S-18210 & & & & \\
\hline R52 & 63-1848 & 33 K ohm & 1/2w \(10 \%\) & " ". 21 & & S-19293 & Socket, resistor \& wire & & & 54-271 6 & \(6-32 \times 1 / 4\) hex palnut (12 used) . 01 & & & & & & \\
\hline R95 & 63-1849 & 33K ohm & 1/2w \(20 \%\) & \(\cdots{ }^{7} .21\) & & & (sweep) & . 60 & & 54-326 1 & \(1 / 4-28 \times 7 / 16\) hex nut (1 for gear & L12 & S-18568 S & Sound take & off coil & & . 75 \\
\hline R17 & 63-1855 & 47 K ohm & 1/2w 10\% & " 21 & & S-19545 & C.R. tube socket assem. & 1.60 & & & \& brkt. assem.) . 02 & T4 & S-18590 & 4th video I & \(F\) trans & & 5.25 \\
\hline
\end{tabular}
(C) John F. Rider

CHASSIS \(19 \mathrm{~K} 20,-3,19 \mathrm{~K} 22,-3,19 \mathrm{~K} 23,-3,19 \mathrm{~K} 24,-3,21 \mathrm{~K} 20,-3,28 \mathrm{~K} 20\)

\section*{© John F. Rider}

\begin{tabular}{|c|}
\hline \multicolumn{21}{|c|}{} \\
\hline \multicolumn{21}{|c|}{\(\pm=\)} \\
\hline Ona & Patt & oescription & ค．F． & vioco & & & Oiose & \({ }_{\text {PART }}^{\text {PNT }}\) & ofscription & r．f． & & & & Oine． & pant & description & a．f． & viofo & & wer \\
\hline \％ & \({ }^{2122217}\) & & & \(\cdots\) & & & \({ }^{1}\) & 62，19x & & － & & Akror & & \({ }^{\prime}\) & 5－1058 & －1．atam coin asome & \(\cdots\) & & & \\
\hline \％ & 22.281 & & 3 & \(\cdots\) & & & \％ & （2） & \(\frac{1080}{}\) & \({ }^{3}\) & & \％ & & 12 & \(\frac{0}{x+0.101}\) & \(\frac{1}{}\) & 13 & & & \\
\hline \％ & （22－2007 & 50 ws s & \(\cdots\) & & & & \(\cdots\) & \(\frac{62.196}{0.888}\) & & 0 & \(\cdots\) & & & & & － & \({ }^{13}\) & & & \\
\hline \({ }^{4}\) & 22－283i & & \({ }^{13}\) & & & & 3 & （1）26 & （1200 & a & 13 & 13 & & \(\stackrel{15}{ }\) & & matise & 碞 & & & \\
\hline \(0^{6}\) & \({ }^{22-230000}\) & & \({ }_{13}\) & & & & \({ }^{\prime}\) & \％ave & & \({ }^{3}\) & & & & ． & \(\frac{5}{50.4}\) & & \({ }^{1}\) & & & \\
\hline \(\square\) & 22.2411 & & \(\stackrel{3}{0}\) & & & & \(\cdots\) & avo & & 13 & \({ }^{3}\) & & & \(\stackrel{1}{6}\) & －ates & Oisturite mutit cost & \(\cdots\) & & & \\
\hline \({ }^{\text {cio }}\) & \(\frac{}{22.819}\) & － & \(\stackrel{1}{13}\) & & & & 4 & \(\frac{0}{021204}\) & \({ }_{\text {Nox }}\) & \(\stackrel{1}{4}\) & \({ }^{1}\) & & & \(\stackrel{4}{4}\) & 5 & － & & \({ }^{3}\) & & \\
\hline \％11 & & \({ }^{2 \mathrm{~mm} .5 \mathrm{smo}}\) & \({ }^{3}\) & & & & U16： & ， & － & ． & \(\cdots\) & ： & & Li1 & S． & 为 & & \％ & & \\
\hline \({ }^{1.1}\) & \({ }^{\frac{122.0}{22.2000}}\) & \％ & & 13 & & & 120 & & \(\bigcirc\) & & \({ }^{13}\) & ＂ & & 4.1 & 5，104 & & & 1 & & \\
\hline cis & \({ }^{22-285}\) & \({ }^{\text {cme }}\) & & \(\cdots\) & & & Hiv & 82m & Nenom & & \({ }^{13}\) & & & Li． & \({ }^{3} \cdot 151208\) & Camat coul & & \(\cdots\) & & \\
\hline \({ }^{215}\) & & 退 & & \(\stackrel{13}{13}\) & & ， & nis & \({ }^{\text {a } 21045}\) & & & \({ }_{4}^{4}\) & & & Li．6 & \(\frac{5}{5 \times 199}\) & Oiliction fatit cinc & & 13 & & \\
\hline \({ }^{\text {c，}}\) & & & & 4 & aral & ， & W & ation & ， & & & ， & 1 & \(\cdots\) & S－189 & ， & & \(\cdots\) & & \\
\hline \％ & 22.2268 & & & & 10 & & \％ & aterem & （100\％ & & 3 & \(\stackrel{1}{1}\) & & & & & & 6 & & \\
\hline \({ }^{\text {cox }}\) & & & & \(\cdots\) & & ， & \(\cdots\) & cava & \％omely & & 1 & & & － 1.0 & 5 & anomatime cin & & 3 & & \\
\hline \({ }_{2}\) & 22－283 & & & & & & & & 20， & & & & & u． & \(\frac{3}{3-1989}\) & －i．Cout & \({ }^{1}\) & & & \\
\hline & \(\frac{222.176}{22.178}\) & & & － & \(\stackrel{8}{8}\) & & u． & －1．ay & 2nemer & & \(\cdots\) & ， & & \({ }^{123}\) & \(\frac{5}{5 \cdot 1020}\) & & & ， & & \\
\hline \({ }^{2} 28\) & \({ }^{2} 2.2310\) & 500 an 06 & & \(\stackrel{\square}{\square}\) & & & － & － & \({ }_{\text {a }}^{2.3}\) & & & ； & & \({ }^{123}\) & \(\frac{51096}{10}\) & \％ & & & \({ }^{4}\) & \\
\hline 2.26 & 22：246 & & & \(\because\) & & & 2.8 & 62158 & 6.26 cm － 8 & & & & & 126 & 1.17 & 123 Or verice oftheriac coin & & & ， & \\
\hline \({ }^{212}\) & & 2\％ & & \(\stackrel{3}{3}\) & & & sh & vilu & & & & & & 127 & 5，983 & & & & & \\
\hline Como & & & & & ＂ & & － & & & & \({ }^{3}\) & 13 & ， & \％ & \(\frac{5}{5.1045}\) & 边 & & & 4 & \\
\hline & \({ }^{12,248}\) & & & & & & － & \({ }^{653.367}\) & －00 omm wivz cantix & & 4 & & & － & \(\cdots\) & & & & & \\
\hline \(\frac{2 \times 00}{12900}\) & no oor & \({ }^{\text {a }}\) & & & － & & a1 & （1） & \({ }^{\text {arem }}\) & & \(\stackrel{1}{1}\) & «＂ & & vir & & In in men & & 1 & & \\
\hline \({ }_{0}^{0}\) & & －0，wo ary & & \({ }^{3}\) & \({ }^{3}\) & & 13 & \({ }_{62}^{622 m}\) & Soor ow rame cortex & & & & & 3 & 51230 & & & & & \\
\hline \({ }^{4}\) & & \({ }^{\text {a }}\) & & & anor & & N315 & cosme & －remer or & & & \％ & & － & －it & & & & & \\
\hline 0 & \({ }^{22} 22.276\) & \(\bigcirc\) & & \({ }_{3}\) & & & \({ }^{3}\) & & \(x^{20}\) & \(\square\) & 4 & & & 1.16 & ＂14111 & IV2er nalich ontection cois & & & & \\
\hline 0 & & － & \(\cdots\) & 1 & & & \(\stackrel{*}{* *}\) & （tatiot & \({ }^{\text {a }}\) & & & \({ }^{3}\) & & 15 & \(\frac{1211}{4.10 .10}\) & （2） & & & & \\
\hline cex & 22.4 & Somer & & & \％ & & & － & －M & & 13 & 0 & & \(1 \times\) & come & meatratum lutanir corisa & & & & \\
\hline \({ }^{\text {cina }}\) & & 边 & & 4 & ata & & － & S． & －itiom & & \({ }^{3}\) & \({ }^{3+}\) & & 1.0 & （1－9．909 & Hodit cor tiol cin & & & & \\
\hline ateo & \({ }^{22-234}\) & & & ！ & 200 & & \(\cdots\) & （62， 1911 & imicam \({ }^{\text {a }}\) & & 1 & ， & & 1.2 & 14.19 & & & & & \\
\hline cis & 220．20x & 边 & & 20， 1 & \({ }^{2}\) & & \％ & & & & \(\stackrel{1}{3}\) & ， & & ＋．． & 1519 & & & & & \\
\hline \({ }^{19}\) & 22．－1 & & & & \(\square\) & & （10： 8 & （2）2102 & Sis satur taisita costioa & & & ． & & 13 & 1．7atex & vior comeat coll & & & 6 & \\
\hline & & Ommo & & \(\cdots\) & & & \(\cdots\) & arue & \(1{ }^{10 \mathrm{cman}}\) & & & uki & & \％ & \({ }^{\frac{3}{19} 19723}\) & & & & & \\
\hline \({ }^{\circ}\) & \({ }^{22-193}\) & \({ }^{22460}\) & & \(\stackrel{\square}{1}\) & & & Sis & \({ }^{\text {cien }}\) & － & & & & & & & & & & & \\
\hline 4 & 22－4，41 & Oer 7100808080 & & & & ， & 1 & （8）， 188 & & & 3 & \(\cdots\) & ． & ．0． & & & & & & \\
\hline \％ 9 & \({ }^{22-178}\) & \({ }^{(077 \mathrm{WO}}\) & & \(\because\) & ， & & \({ }_{\text {cis }}\) & \({ }^{651.918}\) & \({ }^{1.5}\) & & & \(\cdots\) & & \(\frac{15}{15}\) & & & & 1 & \({ }^{\circ}\) & \\
\hline 4.6 & 220．as & & & & & & \％\({ }^{2}\) & 6xam & & & & H00 & & & 3－6432 & & & & ： & \\
\hline & \({ }^{2 \times 2}\) & & & & \({ }^{\circ}\) & & \({ }^{13}\) & \({ }^{6521912}\) & 1．ntow & & \({ }^{3}\) & & & 13 & ＋1714 & & & & & \\
\hline \％ & \({ }^{22-8301}\) & Twio & & & 13 & & \({ }_{4}{ }_{5}\) & \％10， & & & ． & aco & & & & & & & & \\
\hline \({ }^{55040}\) & & \％erso & & & \({ }^{2 \times 1}\) & & （46） & & \({ }^{\text {a }}\) & & & 2actor & & & & & & & & \\
\hline cemo & \({ }^{2 \times 2}\) & \(\frac{10}{10}\) & & & \％oil & & \％ & \(\underbrace{\text { a }}\) & \％ & & & ＋1 & & & & & & & & \\
\hline （5， & & & & & \％ & & 50 & －20000 & tiom & & & tue & & & & & & & & \\
\hline & & （emer & & & & & & 5230． & Q & & & & & & & & & & & \\
\hline 5 & \({ }^{22} 2.216\) & & & & 13 & & \％ & － & & \({ }^{3}\) & & \(\cdots\) & & & & & & & & \\
\hline & \({ }^{\frac{1}{2}}\) & \({ }^{\text {a }}\) & & & ， & & \％ & & & & & 2aco & & & & & & & & \\
\hline ［s］ & \({ }^{22} 2.185\) & 1500 CO & & & 1 & & \({ }_{4}^{68}\) & \({ }^{\text {cosem }}\) & & & & i） & ， & & & & & & & \\
\hline & & & & & \(\stackrel{1}{1}\) & & riv & （3）2080 & （may on－ 21 & & & \(\ldots\) & & & & & & & & \\
\hline 50 & & & & & 1 & & \％ 68 & & & & & \({ }^{120}\) & & & & & & & & \\
\hline \％61 & \({ }^{\frac{1220,62}{}}\) & ，－a， \(1 \times 1008\) & & & ＋6air & ， & \(\cdots\) & （020100 & Lox omm & 1 & & & & & & & & & & \\
\hline 6.6 & & 边－ & & & Acm & & \％ & \({ }^{\text {cherem }}\) & Hsaty & & & Heror & 4 & & & & & & & \\
\hline cos & \({ }^{\frac{122-2300}{20201}}\) & & & & \％ & 1 & ， & （2）2080 & & & & went & & & & & & & & \\
\hline \({ }^{268}\) & \({ }^{22}\) & 边 & & & & ， & ＊ & （1）2x & & & & ，بк\％ & & & & & & & & \\
\hline 8 & \({ }^{222}\) & \({ }^{\text {a }}\) & & & \(\frac{1400}{60}\) & － & u & －1．018 & Premican & & － & 4 & & & & & & & & \\
\hline \({ }^{36}\) & \({ }^{22-2288}\) & & & & \({ }^{\text {atatiol }}\) & & \({ }^{\text {and }}\) & \({ }^{\text {a }}\) & & & 13 & & & & & & & & & \\
\hline \％ 61 & & Oty & & 13 & & & 0 & （2－2es & \％ & & \({ }^{3}\) & & & & & & & & & \\
\hline 2720 & & Weotectrathic mor． & & & & & \％ & \％2am & Hewe corex－ & & & ！ & & & & & & & & \\
\hline \({ }^{2}\) & \({ }^{22-2317}\) & \％moter & & & ， & & \({ }_{4}\) & & & & & & & & & & & & & \\
\hline Sine－ & & & & & ， & & \％． & （3，202 & & & & & & & & & & & & \\
\hline caver & nilum & & & & & & \({ }_{\text {a }}^{2}\) & － 3.485 & \(\frac{100}{130 \mathrm{om}}\) & － & & \(\cdots\) & & & & & & & & \\
\hline & & & & ， & & & \({ }^{\text {ar }}\) & & － 210 & & & ＋ & & & & & & & & \\
\hline Sed & & & & & & & 0 & & & & & ＋ & & & & & & & & \\
\hline cise & & & & & & \(!\) & 0 & \({ }^{2} 293\) & & & & － & & & & & & & & \\
\hline \({ }^{\text {cosen }}\) & & \％ & & & & & 38 & & \(\cdots\) & & \(\frac{13}{13}\) & & & & & & & & & \\
\hline 50， & & \(\frac{50}{50}\) & & & asco & & & & & & 0 & & & & & & & & & \\
\hline 2500－ & \({ }^{232}\) & \％ & & & \({ }^{1200}\) & & －is & \({ }^{\text {a }}\) & \({ }_{\text {ar }}\) & & & & ． & & & & & & & \\
\hline & & － & & & Nato & & 0 & （12109 & & & & － 14. & & & & & & & & \\
\hline \％ & & Som & & 3 & & & 5 & ， & ，es er & & & & \(!\) & & & & & & & \\
\hline \％ & & 边 & & & \({ }^{4.0}\) & & \％ise & \(\xrightarrow{\text { ata }}\) & & & & t． & & & & & & & & \\
\hline \(\frac{41}{20}\) & （2， & 退 & & & \(\stackrel{13}{13}\) & & \({ }^{1100}\) & & ｜c｜c｜ & & & \(!\) & & & & & & & & \\
\hline \％ & & & 13 & & ＊ & & \％ & （2） & & & & ！ & & & & & & & & \\
\hline \％ & \({ }^{222.288}\) & 趁 & 3 & & & & & \(\frac{62124}{1+2017}\) & & & & ， & & & & & & & & \\
\hline & & & & & & & \(\xrightarrow{1+108}\) & & & & & ！ & & & & & & & & \\
\hline & & & & & & & nes & & （10） & & & & & & & & & & & \\
\hline & & & & & & & \％at & & \(\stackrel{\text { arem }}{ }\) & & & \(\stackrel{10}{6}\) & & & & & & & & \\
\hline & & & & & & & \({ }^{4} 1.112\) & － & & & \({ }^{3}\) & & & & & & & & & \\
\hline & & & & & & & 4 & & & & & A．ant & & & & & & & & \\
\hline & & & & & & & \({ }^{\text {and }}\) & \(\frac{62129}{62213}\) & & \(\cdots\) & No & & & & & & & & & \\
\hline & & & & & & & \％， & （012， 26 & 2200 mma & & & & ， & － & & & & & & \\
\hline & \\
\hline & & & & & & & & & & & & & & \(\frac{18}{12}\) & & & & & & \\
\hline & & & & & & & & & & & & & & （12） & & & & & & \\
\hline & & & & & & & & & & & & & & \(\frac{180}{19}\) & \(\frac{3}{5+170}\) & fink cant & & & & \\
\hline & & & & & & & & & & & & & & \(\frac{119}{119}\) & & dita & & & \(\vdots\) & \\
\hline & & & & & & & & & & & & & & \({ }^{1} 1.6\) & 9，193 & tive api & & & & \\
\hline & & & & & & & & & & & & & & ［1．3 & \(\frac{3}{3,10000}\) & Heot & & & & \\
\hline & & & & & & & & & & & & & & III & 3－1311 & momer mastiocil & & & & \\
\hline & & & & & & & & & & & & & & \(\frac{112}{110}\) & & ） & & & & \\
\hline & & & & & & & & & & & & & & \({ }^{10}\) & \(\frac{5}{51589}\) & & & & & \\
\hline & & & & & & & & & & & & & & \(\stackrel{\square}{\square}\) & & & & & & \\
\hline & & & & & & & & & & & & & & \(\stackrel{\square}{6}\) & & Heticat witri tessiome & & & \({ }_{\text {Ala }}\) & \\
\hline & & & & & & & & & & & & & & \({ }^{18}\) & & & & & & \\
\hline n－1 & \({ }^{100.67}\) & \({ }^{\text {Preot }}\) & & Hetr & & & & & & & & & & \％ & \(\frac{1}{\substack{\text { ander }}}\) & & & 遃 & & \\
\hline \(\stackrel{\sim}{4}\) & & & & & ， & & & & & & & & & \({ }^{1}\) & \({ }^{\text {chem }}\) & & & & & \\
\hline & & Lrepectusm & & \(\square\) & & & & & & & & & & & & Im．． & & & & \\
\hline
\end{tabular}

©John F. Rider


```


[^0]:    The T14-10 Chassis has all of the necessary mechanical provisions for accommodating the 258052-1 UHF Tuner. Please order by type No. CT-14.

[^1]:    Bottom View, UHF Converter

[^2]:    Prices subiect to change without notice
    -Denotes new port number

[^3]:    © John F. Rider

[^4]:    -Prerts ueved on previous modelasiv
    Normal diccount doees not apoliv.

[^5]:    Note 1: Instoll receppocie if not in chossis.
    Note 2: Gold dial with brown lettering and brown tuning knob. Early models-green dial ond green Iuning knob.

