
Abstract

SPECIFICATIONS Power supply 117 volts $50 / 60$ cycles AC Power consumption .95 watts Power output... 10 watts Intermediate frequency $455 \mathrm{kc} . / 10.7 \mathrm{mc}$. Tuning frequency range: Broadcast Band. \qquad $540-1620 \mathrm{kc}$. FM Band \qquad 88-108 mc.

Tubes: R-F Amplifier 6BA6 Converter...6E6 1st I-F Amplitier (AM-FM)................................6BA6 2nd I-F (FM), Detector and AVC (AM).....6BA6 Limiter ...6AU6 Discriminator.. First Audio.. Inverter ...6SNZGT Power output (push-pull stage)(2) 6V6GT Rectifier 5Y3GT Dial Lamps Mazda No. 44

\section*{Speaker:}

Field coil resistance. \qquad 500 ohms Voice coil impedance (400 cycles) 3.0 ohms Output transformer $8,000 / 3 \mathrm{ohms}$

ALIGNMENT PROCEDURE

Alignment of this receiver requires the use of an accurately calibrated r-f signal generator, range 455 kc . to 107 mc ., an output meter, and a vacuum tube voltmeter of greater than 10 megohm input impedance. All trimmer condensers can be identified by stampings on the chassis and gang condenser cover and are shown on the chassis layout diagram.

The pointer on the radio dial should line up with the first vertical mark on the low frequency end of the dial glass. If the pointer does not line up, loosen the pointer on the dial string and move it to correct position. Re-tighten and re-cement the pointer to the string. Be sure the gang is .fully meshed for this pointer alignment. Align AM first.

AM REIGNMENT

I-F ALIGNMENT

1. Set treble control to SHARP TUNE position. Set volume and bass controls to maximum, the Band Switch to Broadcast position, and dial pointer to 1000 kc .
2. Tune the signal generator to EXACTLY 455 kc .
3. Connect output of modulated signal generator to the signal grid of the 6BE6 (pin 7) through a . 01 mfd . capacitor and signal generator ground to radio chassis.
4. AM and FM i-f transformers an this model separate and can be identified on the chassis lay diagram Figure 3.
5. Connect output meter across voice coil of spea and adjust the i-f transformers for peak out as indicated on the output meter.

ALTERNATE VISUAL ALIGNMENT OF I-F STAGES

1. Connect 455 kc . sweep generator having appr, mately 20 kc . sweep to signal grid of 6BE6 (pin through a .01 mfd . capacitor. Connect an osci scope through a 1 meghom isolating resistor aci the 220,000 ohm diode load resistor. Align for k possible peak in sharp tune position and symm in full range position.

R-F ALIGNMENT

1. Remove the signal generator lead from the 61 grid and connect it across H and L on termi strip on the rear of the chassis. The high side of signal generator should be connected to H and signal generator ground to L.
2. Check the turing dial pointer adjustment. W] the plates of the tuning condenser are complel meshed, the dial pointer must be in line with last calibration mark at the low frequency end the dial. If it is not, slide the pointer on its str to the correct position. Be sure to crimp the lugs the rear of the pointer) tightly around the strinc hold the pointer in adjustment.
3. Set the signal generator and the radio recei to 1400 kc ., adjust the 1400 kc . oscillator trimz. and the 1400 kc . r-f trimmer for maximum outs
4. Set the signal generator and radio receiver 600 kc . Adjust the oscillator and r-f coil slugs maximum output. If considerable adjustment ; necessary re-check the 1400 kc . trimmer settings.
5. Replace chassis in cabinet and connect k antenna leads to proper terminals on the rear the chassis.
6. Form three turns of wire into a loop, connect 1 loop to the signal generator and loosely couple i the receiver loop antenna.
7. With the signal generator and dial at 1400 J adjust the loop antenna trimmer for maximum outy 10 KC FILTER ADJUSTMENT
This chassis incorporates a 10 kc . filter circuit eliminate the beat note heard as a whistle betwe stations on the broadcast band. If the trimmer is of adjustment, the following procedure should observed:
8. Set the Selectivity Switch to FULL RANGE turning the Treble Control knob clockwise as far possible.
9. Connect the output of an audio oscillator to the phonograph pickup socket on the radio chassis and adjust the oscillator to EXACTLY 10,000 cycles.
10. Set the band selector to PHONO and adjust the 10 kc . trimmer for minimum output.
11. If an audio oscillator is not available for making this adjustment, set the band selector to BDCST, connect an antenna to the receiver and set the gang condenser to a point between two stations on adjacent channels having approximately the same power. If the 10 kc . trimmer is out of adjustment, a whistle will be heard. Adjust the trimmer until the whistle is eliminated.

FM ALIGNMENT

DISCRIMINATOR ALIGNMENT

1. Tune signal generator to EXACTLY 10.775 mc . and connect to pin 1 of the 6AU6 Limiter tube socket through a .01 mid . capacitor.
2. Connect a DC vacuum tube voltmeter between point " B " on schematic diagram and ground.
3. Peak both discriminator slugs at 10.775 mc .
4. Retune signal generator to exactly 10.7 mc . and adjust bottom slug for zero volts.
5. The DC voltage at 10.625 mc . should be within 10% of the voltage at 10.775 mc . and of opposite polarity.
Note: If the signal generator is not capable of sufficient output to produce a readable DC voltage, the amplification of the last i-f stage can be used to increase the signal input to the limiter for discriminator alignment. To accomplish this, align the last i-f stage as indicated in "I-F Alignment". Then align discriminator as above leaving the signal generator connected to the grid of the 6BA6 2nd i-f tube.

I-F ALIGNMENT

1. Connect high side of signal generator, through a .01 mfd capacitor and a 1000 ohm resistor in series, to pin 4 of the 6SG7 2nd i-f tube. Connect low side of generator to chassis.
2. Close gang condenser and connect vacuum tube voltmeter across 220,000 ohm limiter grid resistor; (Point "A" on schematic to ground). Adjust signal generator output until a reading of at least 3 volts is obtained. In order to reduce regeneration caused by the vacuum tube voltmeter leads, a 1 -megohm isolating resistor, connected with as short leads as possible to point " A " should be used in series with the vacuum tube voltmeter. Align the 3rd i-f transformer for best peak as indicated on voltmeter.
3. Repeat above for each succeeding transformer by connecting signal generator to signal grid of first i-f tube 6BA6 then to the signal grid of 6BE6 converter. The i-f stages should be aligned in this order.

WARNING-After each i-f stage has been aligned, do not repeak with the signal into the grid of the 6BE6.
ALTERNATE VISUAL ALIGNMENT OF I-F STAGES

1. Replace signal generator with sweep generator having approximately 300 kc . sweep and tune generator to 10.7 mc . Connect oscilloscope across 220,000 ohm limiter grid resistor through a 1 -megohm isolating resistor. The order of alignment is the same as when using a vacuum tube voltmeter. Each i-f transformer should be individually aligned for best peak and symmetry.

R-F ALIGNMENT

1. Connect vacuum tube voltmeter across limiter grid resistor as in FM I-F alignment.
2. Ground one side of the FM Antenna by placing a wire jumper from one FM connection on the antenna terminal strip to the ground connection.
3. Connect unmodulated signal generator through a 300 ohm resistor to ungrounded antenna post and chassis, and tune signal generator to 107 mc .
4. Set radio dial to 107 mc . and tune oscillator trimmer to peak output on vacuum tube voltmeter. Adjust signal generator output until a reading of at least 3 volts is obtained.
5. Tune 107 mc . r -f and antenna trimmers for maximum indication on voltmeter-it may be necessary to rock the dial while adjusting the r-f trimmer.
SPECIAL SERVICE INFORMATION
The following information is provided for the service man who has a vacuum tube voltmeter or a similar measuring instrument available.

STAGE GAINS*

Antenna Post to R-F Grid at:
\qquad
98 mc . 1.15

R-F Grid to Converter Grid at:
600 kc... 14.5

R-F on Converter Grid to 455 kc . on I-F Grid at: 600 kc . 25.0

98 mc . 3.2
I-F on Converter Grid to lst I-F Grid at455 kc. (gang closed)...................................... 28.0
1st I-F Grid to 2nd I-F Grid** at:
455 kc95
10.7 mc 33
2nd I-F Grid to Limiter Grid at:10.7 mc .33.4
OSCILLATOR OUTPUT VOLTAGE
The DC voltage developed across the Oscillator Grid Resistor:
600 kc $6 . \epsilon$
98 mc 6.C
or 0.3 ma. through $22,000 \mathrm{ohm}$ Oscillator G_{1} Resistor at 600 kc . and 0.27 ma . at 98 mc .

AUDIO GAIN

Voltage required across the Volume Control to pl duce 0.1 watt speaker output*** at 400 cycles is .0 volt with Input Selector Switch in BDCST settir
${ }^{*}$ Variations of $i \mathbf{2 0}$ are permissible. All readings made with sufficlent input signa provide 0.5 watt speaker output. 0.5 speaker output at 400 cycles is equivalent to a rea of 1.25 V . as measured by a high resistance AC voltmeter across the voice coil of the spea **Detector Plate on AM.
** 0.1 watt speaker output at 400 cycies is equivalent to a reáding of 0.55 volts measured by a high resistance AC voltmeter across the voice coil of speaker.

DIAECORD REPERCEMENT

Two separate drive cables are used in the CR-321 dial assembly. One cable is used to transmit the motion from the tuning knob to the large pulley that is coupled to the condenser gang; the other cable actuates the dial pointer whenever the large pulley on the condenser gang is rotated. Separate instructions for replacing either of these cables is given in the following paragraphs.

CONDENSER DRIVE CABLE REPLACEMENT

Remove dial assembly after taking out four screws on each side of chassis. Slide a short length (approximately $1 / 2 \mathrm{inch}$) of sleeving over one end of a length of dial cable, form a small loop and tie a knot in the manner shown on Figure 1. Tie spring to opposite end of cable making length excluding spring $191 / 2$ inches. Hook loop over the metal hook in pulley " D " and lace the cable through the pulley slot and around the pulley in a counterclockwise direction when viewed from the rear of the dial assembly keeping the cable to the rear of the pulley groove. Lace the cable around the smaller diameter portion of the tuning control shaft wrapping $21 / 2$ turns from front to back; then around the opposite side of pulley " D " into the pulley through the slot. Hook the end of tension spring " F " in the hole provided in pulley " D ", completing this operation.

DIAL POINTER DRIVE CABLE REPLACEMENT

of sleeving over a 42 -inch length of dial cable. I the two ends to the loop end of the cable spring " ${ }^{\prime \prime}$ securely so that the cable doubled measures 19 inches end to end excluding spring.

Place spring hook in top hole and draw cable throus slot of pulley " D ". Loop one end of cable aroui pulley " D " in a clockwise direction in front of co denser drive cable (viewing dial assembly fro front) then loop the remaining end around pulley a counterclockwise direction. Secure both ends cable to chassis at edge of pulley slot with scote tape, keeping piece of sleeving on remaining loc of cable.

Replace dial assembly and loop cable over pull " A ". While holding cable taut remove scotch tar and loop cable over pulleys " B " and " C " as show in Figure 1.

Turn the tuning control shaft until the condense gang is completely meshed and slide the dial point on its track until it is in line with the last calibratio mark at the low frequency end of the dial. The sho piece of sleeving installed prior to the stringin operation should be slid to the rear of the dial point and the crimping lug on the pointer pressed over th sleeving. After checking to make certain that th condenser gang is completely meshed and the dic pointer is in the position specified previously, appl a few drops of cement to each end of the sleevin Remove dial assembly after taking out four screws to which the dial pointer is fastened. This complete on each side of chassis. Slip a one-half inch length the operation.

PAGE 23-6 MAGNAVOX
CHASSIS CR-321

$\begin{aligned} & \text { REFERE } \\ & \text { NO } \end{aligned}$	PRRTS LIST DESCRIPTION	MAGNAYOX PART NO.	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \end{aligned}$
T 101	Transformer, 1st i-f (FM)	. 360374-1	1.10
T 102	Transformer, 2nd i-f (FM)	360374-1	1.10
T 103	Transformer, 3rd i-f (FM).	360374-1	1.10
T 104	Transformer, discriminator	360375-1	1.40
T 105	Transformer, 1st i-f (AM)	360508-1	1.45
T 106	Transformer, 2nd i-f (AM).	360373-1	1.25
T 107	Transformer, power.	300050-2	12.00
L 101	Coil assembly, antenna (FM)	360321-2	. 65
L 102	Coil, choke	360284-1	. 20
L 103	Coil assembly, r-f (AM)	360348-1	1.00
L. 104	Coil assembly, r-f (FM)	360322-2	2.55
L 105	Coil assembly, oscillator (AM)	360407-1	. 55
L 106	Coil assembly, oscillator (FM).	360323-1	. 90
L 107	Coil assembly, 10 kc .	360244-2	1.55
C 101	Capacitor, tuning	$260103-1$	5.20
C 102	Capacitor, mica, 100 mmf .500 V .	250187-53	. 15
C 103	Capacitor, mica, 220 mmf .500 V .	250159-86	. 25
C 104	Capacitor, trimmer.	250046.2	. 20
C 105	Capacitor, ceramic, 5000 mmf .	250175-1	. 20
C 106	Capacitor, ceramic, 01 mfd .	250175-2	. 20
C 107	Capacitor, mica, 47 mmf .500 V .	250187-49	. 15
C 108	Capacitor, paper, . 047 mfd .200 V .	250205-11	. 20
C 109	Capacitor, mica, 15 mmf .	250187-43	. 15
C 110	Capacitor, mica, 15 mmf .	250187-43	. 15
C 111	Capacitor, trimmer	260067.6	. 70
C 112	Capacitor, ceramic, 5000 mmf .	250175-1	. 20
C 113	Capacitor, ceramic, $50 \mathrm{mmf} . \pm 10 \%, 500 \mathrm{~V}$.	250088-39	. 15
C 114	Capacitor, ceramic, . 01 mfd .	250175-2	. 20
C 115	Capacitor, ceramic, . 01 mfd .	250175-2	. 20
C 116	Capacitor, paper, 047 mfd .200 V .	250205-11	. 20
C 117	Capacitor, ceramic, 01 mfd .	250175-2	. 20
C 118	Capacitor, ceramic, 01 mdd .	250175-2	. 20
C 119	Capacitor, ceramic, 01 mfd .	250175-2	. 20
C 120	Capacitor, mica, 100 mmf .500 V .	250187-53	. 15
C 121	Capacitor, paper, 01 mfd .600 V .	250203-7	. 20
C 122	Capacitor, ceramic, 01 mfd .	250175-2	. 20
C 123	Capacitor, mica, $680 \mathrm{mmf} . \pm 10 \%, 500 \mathrm{~V}$.	250160-62	. 20
C 124	Capacitor, ceramic, . $01 \mathrm{mfd}$.	250175-2	. 20
C 125	Capacitor, mica, 47 mmf .500 V .	250187-49	. 15
C 126	Capacitor, ceramic, 01 mfd .	250175-2	. 20
C 127	Capacitor, ceramic, .01 mfd .	250175-2	. 20
C 128	Capacitor, mica, 330 mmf .500 V .	250159-88	. 25
C 129	Capacitor, paper, 02 mid .600 V .	250129-3	. 25
C 130	Capacitor, paper, . 02 mfd .600 V .	250129-3	. 25
C 131	Capacitor, paper, 02 mfd .600 V .	250129.3	. 25
C 133	Capacitor, paper, 015 mfd .200 V .	250185-1	. 20
C 134	Capacitor, paper, 220 mmf .500 V .	250159-86	. 20
C 135	Capacitor, paper, 3300 mmf .600 V .	250203-4	. 15
C 136	Capacitor, paper, 1500 mmf .600 V .	250203-2	. 15
C 137	Capacitor, paper, 1000 mmf .600 V .	250203-1	. 15
C 138	Capacitor, paper, 4700 mmt .600 V .	250203-5	. 15
C 139	Capacitor, paper, 3300 mmf .600 V .	250203.4	. 15
C 140	Capacitor, mica, 330 mmf .500 V.	250159-88	. 25
C 141	Capacitor, paper, . 1 mfd .600 V .	250203-13	. 25
C 142	Capacitor, paper, .033 mfd .600 V .	250203-10	. 20
C 143	Capacitor, paper, 2200 mmf .600 V .	250203-3	. 15
C 144	Capacitor, paper, 1000 mmf .600 V .	250203-1	. 15
C 145	Capacitor, electrolytic, 30-10 mfd. 475 V .	270023-2	1.60
C 146	Capacitor, electrolytic, 20 mfd .25 V . -10 mfd .475 V .	270023-13	. 85
C 147	Capacitor, electrolytic, $20-10 \mathrm{mfd} .475 \mathrm{~V}$. -20 mfd .25 V .	270023-12	1.65
C 148	Capacitor, trimmer, $10 \mathrm{kc} . \ldots .$.	259610-2	. 55
C 149	Capacitor, mica, 2200 mmf .600 V .	250203-3	. 15

$\begin{aligned} & \text { REFERE } \\ & \text { NO. } \end{aligned}$	CE DESCRIPTION	MAGNAVOX PART NO.	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \end{aligned}$
R 101	Resistor, carbon, 10,000 ohms, $1 / 2 \mathrm{~W}$.	230104-74	. 05
R 102	Resistor, carbon, 68 ohms, $1 / 2 \mathrm{~W}$.	230104-48	. 05
R 103	Resistor, carbon, $4700 \mathrm{ohms}, 1 / 2 \mathrm{~W}$.	230104-70	. 05
R 104	Resistor, carbon, 1 megohm, $1 / 2 \mathrm{~W}$.	230104-98	. 05
R 105	Resistor, carbon, 47,000 ohms, 1 W .	230105-82	. 10
R 106	Resistor, carbon, 1 megohm, $1 / 2 \mathrm{~W}$.	230104-98	. 05
R 107	Resistor, carbon, 33 ohms, $1 / 2 \mathrm{~W}$.	230104-44	. 05
R 108	Resistor, carbon, 68 ohms, $1 / 2 \mathrm{~W}$.	230104-48	. 05
R 109	Resistor, carbon, 1000 ohms, $1 / 2 \mathrm{~W}$.	230104-62	. 05
R 110	Resistor, carbon, 1 megohm, $1 / 2 \mathrm{~W}$.	230104-98	. 05
R 111	Resistor, carbon, 22,000 ohms, $1 / 2 \mathrm{~W}$.	230104-78	. 05
R 112	Resistor, carbon, 1000 ohms, $1 / 2 \mathrm{~W}$.	230104-62	. 05
R 113	Resistor, carbon, 4700 hms , $1 / 2 \mathrm{~W}$.	230104.70	. 05
R 114	Resistor, carbon, 1000 ohms, $1 / 2 \mathrm{~W}$.	230104-62	. 05
R 115	Resistor, carbon, 100 ohms, $1 / 2 \mathrm{~W}$.	230104-50	. 05
R 116	Resistor, carbon, 1000 ohms, $1 / 2 \mathrm{~W}$.	230104-62	. 05
R 117	Resistor, carbon, 1000 ohms, $1 / 2 \mathrm{~W}$.	230104-62	. 05
R 118	Resistor, carbon, 47,000 ohms, $1 / 2 \mathrm{~W}$.	230104-82	. 05
R 119	Resistor, carbon, 220,000 ohms, $1 / 2 \mathrm{~W}$.	230104-90	. 05
R 120	Potentiometer, volume control	220074-1	. 65
R 121	Resistor, carbon, 470,000 ohms, $1 / 2 \mathrm{~W}$.	230104-94	. 05
R 122	Resistor, carbon, 470,000 ohms, $1 / 2 \mathrm{~W}$.	230104-94	. 05
R 123	Resistor, carbon, $3300 \mathrm{ohms}, 1 \mathrm{~W}$.	230105-68	. 05
R 125	Resistor, carbon, 220,000 ohms, $1 / 2 \mathrm{~W}$.	230104-90	. 05
R 126	Resistor, carbon, 8200 ohms, 1 W .	230105-73	. 05
R 127	Resistor, carbon, 8200 ohms, 1 W.	230105-73	. 05
R 128	Resistor, carbon, 100,000 ohms, $1 / 2 \mathrm{~W}$.	230104-86	. 05
R 129	Resistor, carbon, 68,000 ohms, $1 / 2 \mathrm{~W}$.	230104-84	. 05
R 130	Resistor, carbon, 150,000 ohms, 1/2 W.	230104-88	. 05
R 131	Resistor, carbon, 150,000 ohms, 1/2 W.	230104-88	. 05
R 132	Resistor, carbon, 100,000 ohms, $1 / 2 \mathrm{~W}$.	230104-86	. 05
R 135	Resistor, carbon, $3300 \mathrm{ohms}, 1 / 2 \mathrm{~W}$.	230104-68	. 05
R136	Resistor, carbon, $150,000 \mathrm{ohms}, 1 / 2 \mathrm{~W}$.	230104-88	. 05
R 137	Resistor, carbon, 330,000 ohms, $1 / 2 \mathrm{~W}$.	230104-90	. 05
R138	Potentiometer, treble control, 1 megohm.	220071-4	1.15
R139	Potentiometer, bass control, 1 megohm.	220073-18	. 80
R 140	Resistor, carbon, 47,000 ohms, $1 / 2 \mathrm{~W}$.	230104-82	. 05
R 141	Resistor, carbon, 6.8 megohm, $1 / 2 \mathrm{~W}$.	230104-108	. 05
R 142	Resistor, carbon, $330,000 \mathrm{hms}, 1 / 2 \mathrm{~W}$.	230104-92	. 05
R 143	Resistor, carbon, 1500 ohms, $1 / 2 \mathrm{~W}$.	230104-64	. 05
R 144	Resistor, carbon, 100,000 ohms, 1 W .	230105-86	. 10
R 145	Resistor, carbon, 100,000 ohms, 1 W .	230105-86	. 10
R 146	Resistor, carbon, 4700, 0 mss, $1 / 2 \mathrm{~W}$.	230104-70	. 05
R 147	Resistor, carbon, 220,000 ohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$.	230094-215	. 10
R 148	Resistor, carbon, 15,000 ohms, $\pm 5 \%, 1 / 2 \mathrm{~W}$.	230094-187	. 10
R 149	Resistor, carbon, $270,000 \mathrm{hms}, 1 / 2 \mathrm{~W}$.	230104-91	. 05
R150	Resistor, carbon, 100 ohms, $1 / 2 \mathrm{~W}$.	230104-50	. 05
R 151	Resistor, carbon, 100 ohms, $1 / 2 \mathrm{~W}$.	230104-50	. 05
R 152a	Resistor, carbon, 680 ohms, 1 W .	230105-60	. 10
R 152b	Resistor, carbon, 680 ohms, 1 W.	230105-60	. 10
R 153	Resistor, wire wound, 6500 ohms	240035-9	. 50
R 154	Resistor, carbon, 1000 ohms, 1/2 W.	230104-62	. 05
RC 101	Printed circuit (capacitor-resistor filter).	250170-1	. 30
S 101	Selector switch	160194-1	2.25
J 101	Socket, speaker	180504-16	. 15
J 103	Socket, T.V.	180060-1	.10
J 104	Socket, phono.	189741-1	. 10
J 105	Socket, phono power	180520-4	. 20
F 101	Loop antenna.	*	

*The part number of the Loop Antenna Assembly changes with different cabinets. It is therefore important that you specify the style number of the instrument when ordering a replacement Loop Antenna Assembly.

SPECIFICRTIONS

ALIGNMENT PROCEDURE

Alignment of these receivers requires the use of an accurately calibrated r-f signal generator, range 455 kc . to 107 mc. , an output meter, and a vacuum tube voltmeter of greater than 10 megohm input impedance. All trimmer condensers can be identified by stampings on the chassis and gang condenser cover and are shown on the chassis layout diagram.

The pointer on the radio dial should line up with the first vertical mark on the low frequency end of the dial glass. If the pointer does not line up, loosen the pointer on the dial string and move it to correct position. Re-tighten and re-cement the pointer to the string. Be sure the gang is fully meshed for this pointer alignment. Align AM first.

AM ALIGNMENT

I-F ALIGNMENT

1. Set treble control to SHARP TUNE position. Set volume and bass controls to maximum, the Band Switch to Broadcast position, and dial pointer to 1000 kc
2. Tune the signal generator to EXACTLY 455 kc .
3. Connect output of modulated signal generator to the signal grid of the 6BE6 (pin 7) through a . 01 mfd. capacitor and signal generator ground to radio chassis.
4. AM and FM i-f transformers on these models are separate and can be identified on the chassis layout diagram Figure 3.
5. Connect output meter across voice coil of speaker and adjust the i-f transformers for peak output as indicated on the output meter.

ALTERNATE VISUAL ALIGNMENT OF I-F STAGES

1. Connect 455 kc . sweep generator having approximately 20 kc . sweep to signal grid of 6BE6 (pin 7) through a .01 mfd . capacitor. Connect an oscilloscope through a 1 meghom isolating resistor across the 220,000 ohm diode load resistor. Align for best possible peak in sharp tune position and symmetry in full range position.

R-F ALIGNMENT

1. Remove the signal generator lead from the 6BE6 grid and connect it across H and L on terminal strip on the rear of the chassis. The high side of the signal generator should be connected to H and the signal generator ground to L.
2. Set the signal generator and the radio receiver to 1400 kc ., adjust the 1400 kc . oscillator trimmer and the 1400 kc . $\mathrm{r}-\mathrm{f}$ trimmer for maximum output.
3. Set the signal generator and radio receiver to 600 kc . Adjust the oscillator and r-f coil slugs for maximum output. If considerable adjustment was necessary re-check the 1400 kc . trimmer settings.
4. Replace chassis in cabinet and connect loop antenna leads to proper terminals on the rear of the chassis.
5. Form three turns of wire into a loop, connect this loop to the signal generator and loosely couple it to the receiver loop antenna.
6. With the signal generator and dial at 1400 kc . adjust the loop antenna trimmer for maximum output.

10 KC. FILTER ADJUSTMENT'

This chassis incorporates a 10 kc . filter circuit to eliminate the beat note heard as a whistle between stations on the broadcast band. If the trimmer is out of adjustment, the following procedure should be observed:

1. Adjust the treble control switch to the No. 4 setting.
2. Connect the output of an audio oscillator to the phonograph pickup socket on the radio chassis and adjust the oscillator to EXACTLY 10,000 cycles.
3. Set the band selector to PHONO and adjust the 10 kc . trimmer for minimum output.
4. If an audio oscillator is not available for making this adjustment set the band selector to BDCST, set the treble control to position 4, connect the antenna to the receiver and set the gang condenser to a point between two stations on adjacent channels having approximately the same power. If the 10 kc . trimmer is out of adjustment, a whistle will be heard. Adjust the trimmer until the whistle is eliminated.

天M RETGNMENT
 DISCRIMINATOR ALIGNMENT

1. Tune signal generator to EXACTLY 10.775 mc . and connect to pin 1 of the 6AU6 Limiter tube socket through a .01 mfd . capacitor.
2. Connect a DC vacuum tube voltmeter between point " B " on schematic diagram and ground.
3. Peak both discriminator slugs at 10.775 mc .
4. Retune signal generator to exactly 10.7 mc. and adjust bottom slug for zero volts.
5. The DC voltage at 10.625 mc . should be within 10% of the voltage at 10.775 mc . and of opposite polarity.

Note: If the signal generator is not capable of sufficient output to produce a readable DC voltage, the amplification of the last i-f stage can be used to increase the signal input to the limiter for discriminator alignment. To accomplish this, align the last i-f stage as indicated in "I-F Alignment". Then align discriminator as above leaving the signal generator connected to the grid of the 6BA6 2nd i-f tube.

I-F ALIGNMENT

1. Connect high side of signal generator, through a .01 mfd . capacitor and a 1000 ohm resistor in series, to pin l of the 6BA6 2nd i-f tube. Connect low side of generator to chassis.
2. Close gang condenser and connect vacuum tube voltmeter across $220,000 \mathrm{ohm}$ limiter grid resistor; (Point "A" on schematic to ground). Adjust signal generator output until a reading of at least 3 volts is obtained. In order to reduce regeneration caused by
the vacuum tube voltmeter leads, a l-megohm isolating resistor, connected with as short leads as possible to point " A " should be used in series with the vacuum tube voltmeter. Align the 3rd i-f transformer for best peak as indicated on voltmeter.
3. Repeat above for each succeeding transformer by connecting signal generator to signal grid of tirst i-f tube 6BA6 then to the signal grid of 6BE6 converter. The i-f stages should be aligned in this order.

WARNING—After each i-f stage has been aligned, do not repeak with the signal into the grid of the 6BE6.

ALTERNATE VISUAL ALIGNMENT OF I-F STAGES

1. Replace signal generator with sweep generator having approximately 300 kc . sweep and tune generator to 10.7 mc . Connect oscilloscope across 220,000 ohm limiter grid resistor through a l-megohm isolating resistor. The order of alignment is the same as when using a vacuum tube voltmeter. Each i-f transformer should be individually aligned for best peak and symmetry.

R-F ALIGNMENT

1. Connect vacuum tube voltmeter across limiter grid resistor as in FM I-F alignment.
2. Ground one side of the FM Antenna by placing a wire jumper from one FM connection on the antenna terminal strip to the ground connection.
3. Connect unmodulated signal generator through a 300 ohm resistor to ungrounded antenna post and chassis, and tune signal generator to 107 mc .
4. Set radio dial to 107 mc . and tune oscillator trimmer to peak output on vacuum tube voltmeter. Adjust signal generator output until a reading of at least 3 volts is obtained.
5. Tune 107 mc . r-f and antenna trimmers for maximum indication on voltmeter-it may be necessary to rock the dial while adjusting the r-f trimmer.

SPECIAL SERVICE INFORMATION

The following information is provided for the service man who has a vacuum tube voltmeter or a similar measuring instrument available.

STAGE GAINS*

Antenna Post to R-F Grid at: 600 kc . 5.00

98 mc . 1.15
R-F Grid to Converter Grid at:
600 kc 14.5
98 mc 9.4
R-F on Converter Grid to 455 kc. on I-F Grid at:
600 kc 25.0
98 mc 3.2
I-F on Converter Grid to lst I-F Grid at: 455 kc . (gang closed) 28.0
1st I-F Grid to 2nd I-F Grid** at:
455 kc .95
10.7 mc 33
2nd I-F Grid to Limiter Grid at: 10.7 mc 33.4
OSCILLATOR OUTPUT VOLTAGEThe DC voltage developed across the Oscillator GridResistor:
600 kc 6.6V.
98 mc 6.0 V .
or 0.3 ma . through 22,000 ohm Oscillator GridResistor at 600 kc . and 0.27 ma . at 98 mc .

AUDIO GAIN

Voltage required across the Volume Control to produce 0.1 watt speaker output*** at 400 cycles is .016 volt with Input Selector Switch in BDCST setting.

- Variations of $\pm 20^{\circ}$ c are permissible. All readinga made with sutficient input signal to orovide 0.5 watt speaker output. 0.5 watt epeaker output at 400 cycles is equivalent to a reading of 2.74 V . as measured by high resistance AC voltmeter across the output
transformer secontary. transformer seconitary.
${ }^{* *}$ Detector Plate on AM.
**" 0.1 watt speaker output at 400 cycles is equivalent to a reading of 1.25 volts as moasured by a high resistance AC voltmeter acrost the voice coil of speaker.

DIAL CORD REPLACEMENT

Two separate drive cables are used in the CR-322 dial assembly. One cable is used to transmit the motion from the tuning knob to the large pulley that is coupled to the gang condenser; the other cable actuates the dial pointer whenever the large pulley on the gang condenser is rotated. Separate instructions for replacing either of these cables is given in the following paragraphs.

CONDENSER DRIVE CABLE REPYACEMENT

Remove dial assembly after taking out four screws on each side of chassis. Slide a short length (approximately $1 / 2$ inch) of sleeving over one end of a length of dial cable, form a small loop and tie a knot in the manner shown on Figure 1. Tie spring to opposite
end of cable making length excluding spring 15 inches. Hook loop over the metal hook in pul " D " and lace the cable through the pulley slot a around the pulley in a counterclockwise direct when viewed from the rear of the dial assem: keeping the cable to the rear of the pulley groo Lace the cable around the smaller diameter port. of the tuning control shaft wrapping $21 / 2$ turns frc front to back; then around the opposite side pulley " D " into the pulley through the slot. Hc the end of tension spring " F " in the hole provid in pulley " D ", completing this operation.

DIAL POINTER DRIVE CABLE REPLACEMENT

Remove dial assembly after taking out four scre on each side of chassis. Slip a one-half inch lenc of sleeving over a 42 -inch length of dial cable. . the two ends to the loop end of the cable spring ". securely so that the cable doubled measures 19 inches end to end excluding spring.

Place spring hook in top hole and draw cable throu slot of pulley " D ". Loop one end of cable arou pulley " D " in a clockwise direction in front of cc denser drive cable (viewing dial assembly frc front) then loop the remaining end around pulley a counterclockwise direction. Secure both ends cable to chassis at edge of pulley slot with scot tape, keeping piece of sleeving on remaining lo of cable.
, Replace dial assembly and loop cable over pul. "A". While holding cable taut remove scotch ta and loop cable over pulleys " B " and " C " as sho' in Figure 1.

Turn the tuning control shaft until the gang oc denser is completely meshed and slide the dial poin on its track until it is in line with the last calibrati mark at the low frequency end of the dial. The sh piece of sleeving installed prior to the stringi operation should be slid to the rear of the dial poinand the crimping lug on the pointer pressed over t sleeving. Äffer checking to make certain that t gang condenser is completely meshed and the d pointer is in the position specified previously, apl a few drops of cement to each end of the sleevi: to which the dial pointer is fastened. This comple the operation.

PAGE 23-14 MAGNAVOX
CHASSIS CR-322

$\begin{aligned} & \text { ZEFERENCE } \\ & \text { NO. } \end{aligned}$	PENCE PRETSEEST	magnayox PART NO.	LIsi PRICE	$\begin{aligned} & \text { CHASSE } \\ & \text { CR-322 } \end{aligned}$
T 101	Transformer, 1st i-f (FM)	.360374-1	\$ 1.10	
T 102	Transformer, 2nd i-f (FM).	360374-1	1.10	
T 103	Transformer, 3rd i-f (FM).	360374-1	1.10	
T 104	Transformer, discriminator	360375-1	1.40	
T 105	Transformer, 1st i-f (AM).	360508-1	1.45	
T 106	Transformer, 2nd i-f (AM).	360373-1	1.25	
T 107	Transformer, power.	300052-2	12.25	
L 101	Coil assembly, antenna (FM).	360321-2	. 65	
L 102	Coil, choke................	360284-1	. 20	
L 103	Coil assembly, r-f (AM)	360348-1	1.00	
L. 104	Coil assembly, r-f (FM).	360322-2	2.55	
L 105	Coil assembly, oscillator (AM)	360407-1	. 55	
L 106	Coil assembly, oscillator (FM).	360323-1	. 90	
L 107	Coil assembly, 10 kc .	. $360244-2$	1.55	
C 101	Capacitor, tuning.	260103-1	5.20	
C 102	Capacitor, mica, 100 mmf .500 V .	250187-53	. 15	
C 103	Capacitor, mica, 220 mmf .500 V .	250159-86	. 25	
C 104	Capacitor, trimmer	250046-2	. 20	
C 105	Capacitor, ceramic, 5000 mmf .	250175-1	. 20	
C 106	Capacitor, ceramic, . 01 mfd . .	250175-2	. 20	
C 107	Capacitor, mica, 47 mmf .500 V .	250187.49	. 15	
C 108	Capacitor, paper, .047 mfd .200 V .	250205-11	. 20	
C 109	Capacitor, mica, 15 mmf .	250187-43	. 15	
C 110	Capacitor, mica, 15 mmf .	250187.43	. 15	
C 111	Capacitor, trimmer.	260067-6	. 70	
C 112	Capacitor, ceramic, 5000 mmf .	250175-1	. 20	
C 113	Capacitor, ceramic, $50 \mathrm{mmf} . \pm 10 \%, 500 \mathrm{~V}$.	250088-39	. 15	
C 114	Capacitor, ceramic, . 01 mfd.	250175-2	. 20	
C 115	Capacitor, ceramic, . 01 mfd .	250175-2	. 20	
C 116	Capacitor, paper, 047 mfd .200 V .	.250205-11	. 20	
C 117	Capacitor, ceramic, 01 mfd .	250175-2	. 20	
C 118	Capacitor, ceramic, 01 mfd .	250175-2	. 20	
C 119	Capacitor, ceramic, . 01 mfd .	250175-2	. 20	
C 120	Capacitor, mica, 100 mmf .500 V .	.250187-53	. 15	
C 121	Capacitor, paper, 01 mfd .600 V .	250203-7	, 20	
C 122	Capacitor, ceramic, . 01 mfd .	250175-2	. 20	
C 123	Capacitor, mica, $680 \mathrm{mmf} . \pm 10 \%, 500 \mathrm{~V}$.	250160-62	. 20	
C 124	Capacitor, ceramic, 01 mfd .	250175-2	. 20	
C 125	Capacitor, mica, 47 mmf .500 V .	250187-49	. 15	
C 126	Capacitor, ceramic, . 01 mfd .	250175-2	. 20	
C 127	Capacitor, ceramic, . 01 mfd .	.250175-2	. 20	
C 128	Capacitor, mica, 330 mmf .500 V .	250159-88	. 25	
C 129	Capacitor, paper, 02 mfd .600 V .	.250129-3	. 25	
C 130	Capacitor, paper, .02 mfd .600 V .	.250129-3	. 25	
C 131	Capacitor, paper, 02 mfd. 600 V .	250129-3	. 25	
C 132	Capacitor, paper, .047 mfd .200 V .	.250205-11	. 20	
C 133	Capacitor, paper, 6800 mmf .600 V .	250203-6	. 15	
C 134	Capacitor, paper, 220 mmf . 500 V .	250159-86	. 20	
C 135	Capacitor, paper, 3300 mmf .600 V .	250203-4	. 15	
C 136	Capacitor, paper, 1500 mmf .600 V .	250203-2	. 15	
C 137	Capacitor, paper, 1000 mmf .600 V .	250203-1	. 15	
C 138	Capacitor, paper, 4700 mmf .600 V .	250203-5	. 15	
C 139	Capacitor, paper, 3300 mmf .600 V .	250203-4	. 15	
C 140	Capacitor, mica, 330 mmf .500 V .	250159-88	. 25	
C 141	Capacitor, paper, . 1 mfd .600 V .	250203-13	. 25	
C 142	Capacitor, paper, 033 mfd .600 V .	250203-10	. 20	
C 143	Capacitor, paper, 2200 mmf .600 V .	250203-3	. 15	
C 144	Capacitor, paper, 1000 mmf .600 V .	250203-1	. 15	
C 145	Capacitor, electrolytic, $30-10 \mathrm{mfd} .475 \mathrm{~V}$.	270023-2	1.60	
C 146	Capacitor, electrolytic, $20 \mathrm{mfd} .25 \mathrm{~V} .-10 \mathrm{mfd} .475 \mathrm{~V}$.	270023-13	. 85	
C 147	Capacitor, electrolytic, $20-10 \mathrm{mfd} .475 \mathrm{~V} .-20 \mathrm{mfd} .25 \mathrm{~V}$.	270023-12	1.65	
C 148	Capacitor, trimmer, 10 kc .	259610-2	. 55	
R 101	Resistor, carbon, 10,000 ohms, $1 / 2 \mathrm{~W} . \ldots$.	230104-74	. 05	

PAGE 23-16 MAGNAVOX

CHASSIS
 CR-322

[^0]ALL PRICES SUBJECT TO CHANGE WITHOUT NOTICE

SPECIFICATIONS

Intermediate frequency 455 kc.
Tuning frequency range:
Broadcast band $530-1610 \mathrm{kc}$.
Short wave band $4.9-18.1 \mathrm{mc}$.
Tubes:
R-F Amplifier 6SK7
Converter 6SA7
I-F Amplifier 6SK7
Detector and AVC 655
First Audio 655
Second Audio 6]5
Tuning Indicator 6U5
Dial lamps Mazda No. 51

GENERE

Model CR-188 radio chassis is a two-band tuner that must be used in conjunction with a power amplifier, such as the Model AMP-101 for speaker operation. Heater and plate voltages for the CR-188 radio chas-
sis are supplied from the amplifier chassis; it is the fore essential that the radio and amplifier chas be interconnected during alignment or for other el trical service operations.

METHODEOR REMOVING GHASSIS FROM CABINET

Model CR-188 radio chassis is designed for easy removal from the cabinet in which it is installed. As the radio panel is permanently fastened to the chassis, the control knobs need not be removed when the chassis is taken out of the cabinet for service. To remove the chassis, first remove the antenna leads from their terminals and all plugs from the receptacles on the rear of the chassis. Then remove the two Phillips-head screws from the angular slots in the flange at the rear of the chassis. Lift the rear of the chassis about one inch and pull it straight back. Never remove the chassis tray from the cab-inet-it has been properly positioned to bring the radio panel in place when the chassis is replaced. In replacing the chassis, slide it so that the small hooks near the front, ride inside the flanges on the
sides of the chassis tray. Push the chassis forwo as far as it will go and the hooks should then enga the slots in the chassis tray. Replace the two Philli head screws and nuts and tighten securely. Repla all plugs in their receptacles and the antenna leo on their correct terminals. The antenna termir board for the loop antenna connections is designal S-L.H. The end of the short wave antenna that fastened to the inside of the cabinet connects to Always disconnect this antenna from terminal when an outdoor antenna is used as it may pick noise. The two terminals on the loop are designat L and H . The leads connected to these termin should be wired to the corresponding terminals and H) on the chassis.

ALIGNMENT PROCEDURE

The alignment of this receiver requires the use of an accurately calibrated r-f signal generator and an output meter. All trimmer condenser locations are shown on the chassis layout diagram, Figure 5. The radio volume control should be turned to maximum and the signal generator output kept as low as possible during alignment to prevent the AVC from operating and giving false readings. Always set the Treble Control to SHARP TUNE before aligning the i-f stages. This is done by turning the Treble Control Knob to the No. 1 position.

I-F ALIGNMENT

1. Connect the output of the signal generator to the oscillator grid (pin No. 5) of the 6SA7 tube through $\alpha .00025 \mathrm{mfd}$. capacitor. The ground on the signal generator should be connected to the radio chassis ground.
2. Turn the condenser gang until it is completely meshed, (low-frequency end of dial calibration) and set the band selector switch to BDCST as for broadcast band reception.
3. Adjust the signal generator to EXACTLY 455 kc . and peak the second i-f transformer and the first i-f transformer trimmers in that order.
On early models of the CR-188 chassis, the two i-f trimmers are located in the top of the respective i-f transformers as shown in the layout diagram Figure 5. In later production, one trimmer is accessible from the top and the other from the bottom of each transformer.

BROADCAST BAND ALIGNMENT

1. Remove the signal generator lead from the 6SA7 grid and connect it to the radio antenna terminal through the .00025 mfd . capacitor. The ANT-LOOP switch (60) must be in the ANT. setting.
2. Check the tuning dial pointer adjustment. When the plates of the tuning condenser are completely meshed, the dial pointer must be in line with the last calibration mark at the low frequency end of the dial. If it is not. loosen the set screws in the hub of pulley "D" shown on Figure 1 and make the necessary adjustment.
3. With the band selector still set for broadcast band reception, adjust the signal generator and the radio receiver to 600 kc . While rocking the gang condenser a few degrees to the right and to the left, adjust the 600 kc . oscillator padder for maximum indication on the output meter.
4. Set the signal generator and the radio receiver to 1400 kc .; adjust the 1400 kc . oscillator trimmer and the 1400 kc . antenna trimmer for maximum output. If considerable adjustment was necessary, recheck the 600 kc . padder setting.
5. If the loop antenna trimmer is out of adjustment, it should be set after the radio chassis is in the cabinet. Set the ANT-LOOP switch (60) to the LOOP position. Adjust the signal generator to 1400 kilocycles and connect its output to α loop containing, approximately five turns of wire eight inches in diameter placed eighteen inches from the receiver loop and in the same plane.
6. Set the receiver to 1400 kc . and adjust the trimmer on the receiver loop for maximum output.

SHORT WAVE BAND ALIGNMENT

1. Set the band selector switch to SW as for short wave reception and substitute a 400 ohm resistor for the capacitor in series with the signal generator lead connected to the antenna terminal on the receiver. 2. Set the signal generator and the radio receiver to 15 mc .; then adjust the 15 mc . oscillator trimmer and the 15 mc . antenna trimmer for maximum output. While adjusting the 15 mc . oscillator trimmer two peaks may be observed; only one is the correct peak for 15 mc . alignment. Screw in the trimmer to maximum capacity-then decrease the capacity until the first peak is observed. This is the correct one.

10 KC FILTER ADJUSTMENT

This chassis incorporates a 10 kc . filter circuit to eliminate the beat note heard as a whistle between stations on the broadcast band. If the trimmer is out of adjustment, the following procedure should be observed.

1. Turn the Treble Control to FULL RANGE (No. 4 position)
2. Connect the output of an audio oscillator to the phonograph pickup socket on the radio chassis and adjust the oscillator to EXACTLY 10,000 cycles.
3. Set the band selector to PHONO and adjust the 10 kc . trimmer (8) for minimum output.
4. If an audio oscillator is not available for making this adjustment, set the band selector to BDCST, connect an antenna to the receiver and set the gang condenser to a point between two stations on adjacent channels having approximately the same power. If the 10 kc . trimmer is out of adjustment, a whistle will be heard. Adjust the trimmer until the whistle is eliminated.

SPECIAE SERVICE INFORMATION

The following information is provided for the service man who has a vacuum tube voltmeter or a similar measuring instrument available.

STAGE GAINS*

Antenna Post to R-F Grid at:
600 kc 7.0
6 mc 1.63
R-F to Converter Grid at:
600 kc 3.4
6 mc 3.4
R-F on Converter Grid to I-F Grid at:
600 kc 40.0
6 mc 35.5

6 mc .

I-F on Converter Grid to . F Grid ot: 455 kc . \qquad
I-F Grid to Detector Plate at: 455 kc .

AUDIO GAIN

Voltage required across Volume Control to produ .05 watt speaker output** at 400 cycles is .014 vi with Band Selector Switch in BDCST setting.

OSCILLATOR OUTPUT VOLTAGE

The DC voltage developed across Oscillator \mathbf{G}_{1} Resistor (40) at:

600 kc . \qquad
6 mc . provids . 05 watt speaker output.
-* 05 watt speaker output at 400 cycles is equivalent to a reading of 0.35 volts as mats by a high resistance AC voltmeter across the voice coll of either speaker.

DIAECORD REPIACEMENT

Rotate the brass pulley designated "A" in Figure 1 until the dial pointer strikes the stop at the high frequency end of the dial calibration. In this condition the slot in pulley " A " should be approximately ten degrees to the left of being vertical-see Figure 1. If the slot in the pulley is in some other position under the above mentioned conditions, the pointer set
screw is probably loose and has allowed the point to slip.
To correct this condition, first remove the glass di and loosen the pointer screw. Then while holdin pulley " A " so that its slot is approximately ten d grees to the left of vertical (when viewed from tt rear) adjust the pointer until it is resting against t t

CHASSIS CR－188

stop at the high frequency end of its travel．Then tighten the pointer．set screw securely and replace the glass dial．
Completely unmesh the condenser gang and check the location of the hole or slot in pulley＂D．＇If this hole is not approximately 45 degrees back from vertical as shown on Figure 1，loosen the two No． 6 Allen set screws in the hub of pulley＂D＂and slip the pulley on its shaft（while holding the condenser gang unmeshed）until the specified adjustment is obtained；then tighten one of the set screws securely． It will be shown later that this is a temporary setting． Next，tie α double knot in the exact center of α 25－inch length of dial cable and fold the cable back on itself so that the knot is at one end．The correct method for tying this knot is shown as an inset on Figure l．Grasp the cable near the knotted end and slide it into the pulley slot so that the knot is against the inside rim of the pulley as shown in the sketch． The piece of cable nearest the dial frame should be wound in the direction shown for one－half turn；then over the lower pulley＂B＂，around the bottom of the large pulley＂D＂and into the hole．Pull the cable
taut and wrap the end around the small hook on pulley＂D＂temporarily．
The remaining piece of cable should be wound around pulley＂A＂in the direction shown，for one complete turn，over the upper pulley＂ C ＂，and over the top of pulley＂D ．＇Thread the end through the small hole in pulley＂D＂and pull both ends of the cable taut．With one end of tension spring＂E＂fas－ tened to the hook on pulley＂D＇lace the two free ends of the cable through the opposite end of the spring and tie a knot at a point that will allow $1 / 4^{\prime \prime}$ to $5 / 16^{\prime \prime}$ of cable between the spring and the inside rim of pulley＂D．＂Be sure to tie the knot around one coil of the spring in the manner shown．
Now with the condenser gang completely meshed， check the position of the dial pointer．If it is not in line with the last calibration mark at the low fre－ quency end of the dial，loosen the set screw in pulley ＂D＂and turn it until the pointer is in the specified position．Be sure that the condenser gang does not move during this adjustment．Then tighten the two screws in pulley＂D＂securely completing the opera－ tion．

CONDENSER GRNG DRIVE

ADJUSTMENTS

Whenever any of the mechanical parts in the con－ denser gang drive assembly require replacement due to rough handling or for any other reason，it is extremely important that clearances and adjustments shown on Figures 2 and 3 are effected；otherwise the tuning mechanism will be sluggish or it may slip during operation．
In reassembling the mechanism after any part was replaced，follow the procedure outlined b ：low：
1．Assemble the Tuning Shaft，Drive Collar，Compres－ sion Spring，Spring Retainer and Flywheel in the manner shown on Figure 3．Note that the Tuning Shaft must extend $3 / 4$＂from the front of the assembly and that the spacing between the rear of the Drive Collar and the front of the Flywheel must be $3-5 / 64^{\prime \prime}$ ． Any excess length in the Tuning Shaft may extend beyond the rear of the Flywheel．See Figure 2.

2．The distance between the rubber－tired Drive Wheel and the smaller diameter section of the Spring Retainer must be $1 / 32^{\prime \prime}$ to $1 / 16^{\prime \prime}$（Figure 3）．This ad－ justment is effected by loosening the two No． 6 Allen set screws in the Drive Wheel hub and sliding the wheel on its shaft until the required clearance is obtained．When the adjustment is completed，tighten the two screws in the hub of the Drive Wheel． sure of the front surface of the Drive Collar，when the Tuning Shaft is pulled out．The function of this switch is to open the muting circuit when setting up the push buttons．As its contacts are wired in series with the large muting switch（contacts are shorted by pressing any push button），pulling out on the Tuning Shaft causes the small switch contacts to open the muting circuit so that a station can be heard while the push button is held in and tightened． On rare occasions it may be necessary to adjust the

FIGURE 2
3. While pressing down on the Treadle Bar at the location shown on Figure 3, adjust the Thrust Bracket until the clearance between the rear of the Flywheel and the projection on the Thrust Bracket is .010" as shown on the diagram. To make this adjustment, loosen the two No. 6 Allen set screws (use No. 6 Allen Wrench-Magnavox Part No. 800044G2) in the hub of Thrust Bracket and rotate the bracket until the specified clearance is obtained when the push buttons are NOT actuated. Tighten the two screws securely when the adjustment is completed. Press each push button and check that the Drive Collar is pushed away from the rubber-tired Drive Wheel.
4. Next, adjust the clearance in the muting switch contacts by turning the Phillips-head screw desig. nated Adjustment "A" on Figure 2, until the specified clearance of $.025^{\prime \prime}$ is obtained (when the push but-

tons are NOT actuated.)

5. While pressing any one of the push buttons in a far as possible, turn the screw designated Adjus ment " B " until a minimum clearance of .015 " is ol tained between the front surface of the Drive Collc and the switch spring directly in front of it. Thi setting should also cause a minimum clearance c . $010^{\prime \prime}$ between the switch contacts actuated by pres relation between the push button bars and the Trer dle Bar. Such adjustment might be required if whe: pushing any of the push buttons, sufficient motion \mathbf{j} not transmitted to the Treadle Bar to cause a diser gagement between the Drive Collar and the Driv wheel.
This can usually be accomplished by loosening th two screws designated "C" and "D" on Figure 3, an moving plate " B " in the direction required to correr this condition.

CHASSIS CR-188

PARTS LIST

REFERENCE No.	CEE DESCRIPTION	MAGNAVOX PART NO.
C	Coil Assembly, antenna, two band.	360254G1
c	Coil Assembly, r-f, two band.	360254G2
C	Coil Assembly, oscillator, two band.	360253G1
c	Coil Assembly, 10 kc . filter.	360244G1
5 T	Transformer, first i-f.	360266G1
T	Transformer, second i-f.	360267G1
C	Capacitor, variable, three-gang tuning.	26005461
C	Capacitor, variable, 10 kc . trimmer.	$259610 \mathrm{G1}$
C	Capacitor, ceramic, 50 mmf .	250088G25
10	Capacitor, molded mica, 510 mmF .	250159664
11	Capacitor, silvered mica, $490 \mathrm{mmf} . \pm 1 \%$	250085G32
12	Capacitor, molded mica, 220 mmf .	250159G100
13	Capacitor, molded mica, 100 mmf .	250159G98
14	Capacitor, paper, 008 mfd .	$250129 \mathrm{G11}$
15	Capacitor, paper, 005 mfd .	250129G10
16	Capacitor, molded mica, .0047 mfd.	250161G5
17	Capacitor, paper, 004 mfd .	250129G7
18	Capacitor, paper, 012 mfd .	250129G13
19	Capacitor, paper, 05 mfd .	25012965
20	Capacitor, paper, 01 mfd .	25012969
21	Capacitor, paper, 0.1 mfd .	250152 G 22
22	Capacitor, paper, 0.25 mfd .	250152G21
23	Capacitor, electrolytic, $20 \mathrm{mfd} .25 \mathrm{~V}-10 \mathrm{mfd} .450 \mathrm{~V}$.	27002366
31 R	Resistor, composition, 100 ohm 1/2 W.	23008467
32	Resistor, composition, 150 ohm 1/2 W.	230084G8
33	Resistor, composition, 470 ohm 11/2 W.	230084G11
34 R	Resistor, composition, 820 ohm 1/2 W.	230084661
35	Resistor, composition, 2200 ohm $1 / 2 \mathrm{~W}$.	230084G15
36 R	Resistor, composition, 4700 ohm $1 / 2 \mathrm{~W}$.	230084617
37	Resistor, composition, 10,000 ohm $1 / 2 \mathrm{~W}$.	230084G19
38 R	Resistor, composition, 10,000 ohm 1 W.	230085G19
39 R	Resistor, composition, 15,000 ohm 1 W .	230085G20
40 R	Resistor, composition, 22,000 ohm 1/2 W .	230084G21
41	Resistor, composition, 47,000 ohm $1 / 2 \mathrm{~W}$.	230084 G 23
42 R	Resistor, composition, $100,000 \mathrm{ohm} 1 / 2 \mathrm{~W}$.	230084 G 25
43 R	Resistor, composition, $100,000 \mathrm{ohm} 1 \mathrm{~W}$.	230085G25
44 R	Resistor, composition, $220,000 \mathrm{ohm} 1 / 2 \mathrm{~W}$.	230084627
46 R	Resistor, composition, $470,000 \mathrm{ohm} \mathrm{1/2} \mathrm{W}$.	230084 G 29
47 R	Resistor, composition, $560,000 \mathrm{ohm} \mathrm{1/2} \mathbf{~ W}$.	230084695
48 R	Resistor, composition, 1 megohm $1 / 2 \mathrm{~W}$.	230084631
49 R	Resistor, composition, 1.5 megohm $1 / 2 \mathrm{~W}$.	230084632
50 R	Resistor, composition, 33,000 ohm $1 / 2 \mathrm{~W}$.	230084 G22
56	Control, volume, 1 megohm. .	220044G15
57	Control, bass, 1 megohm with switch.	22004562
58	Switch, rotary, treble control.	160161G1
59 S	Switch, rotary, band selector.	160160G1
60 S	Switch, rotary, loop to outdoor antenna.	16015761
61	Switch assembly, muting.	160158G2
62	Socket, external input. .	180060G1
63	Socket, phonograph input.	189741G1
64	Plug, octal, amplifier connection. Antenna, loop assembly.	
	Dial glass assembly...	. 150285

*The part number of the loop antenna assembly changes with different cabinets. It is therefore important that you specify the Style Number of the instrument when ordering a replacement loop antenna assembly.

SPECIFICATIONS

Power supply.. 117 volts 50/60 cycles AC		
Power consumption.. 150 watts		
Power output.. 20 watts		
Intermediate frequency.. 455 kc.		
Tuning frequency range:		
Broadcast band.. 520-1620 kc.		
Short Wave band.		$5.0-18.2 \mathrm{mc}$.
Tubes:		
Converter ...6SA7		
I-F Amplifier ..6SK7		
Detector and AVC		6J5
First Audio ...-655		
Inverter ..-6SN7GT		
Power output (push-pull stage)..(2) 6L6G		
Rectifier ...-5U4G		
Tuning Indicator.. 6 . ${ }^{\text {. }}$ 5		
Dial lamps..Mazda No. 51		
Speakers:	No. 582815	No. 582847
Field coil resistance	250 ohms	250 ohms
Voice coil impedance (400 cycles).	. 5.7 ohms	5.4 ohms
Output transformer.	None	5,000/3 ohms

Method for Ramoving Chassis from Cabinet

Model CR-193 radio chassis is designed for easy removal from the cabinet in which it is installed. As the radio panel is permanently fastened to the chassis, the control knobs need not be removed when the chassis is taken out of the cabinet for service.

To remove the chassis, first remove the antenna leads from their terminals and all pluqs from the receptacles on the rear of the chassis. Then remove the two Phillips-head screws from the angular slots in the flange at the rear of the chassis. Lift the rear of the chassis about one inch and pull it straight back. Never remove the chassis tray from the cab-inet-it has been properly positioned to bring the radio panel in place when the chassis is replaced. In replacing the chassis, slide it so that the small hooks near the front, ride inside the flanges on the
sides of the chassis tray. Push the chassis forwar as far as it will go and the hook should then engac the slots in the chassis tray. Replace the two Phillip head screws and nuts and tighten securely. Replac all plugs in their receptacles and the antenna leac on their correct terminals. The antenna termin board for the loop antenna connections is designate S-L-H. The end of the short wave antenna that fastened to the inside of the cabinet connects to Always disconnect this antenna from terminal when an outdoor antenna is used as it may pick 1 noise. The two terminals on the loop are designate L and H. The leads connected to these termina should be wired to the corresponding terminals and H) on the chassis.

AHIGNMENT PROCEDURE

The alignment of this receiver requires the use of an accurately calibrated r-f signal generator and an output meter. All trimmer condenser locations are shown on the chassis layout diagram, Figure 5. The radio volume control should be turned to maximum and the signal generator output kept as low as possible during alignment to prevent the AVC from operating and giving false readings. Always set the Selectivity Switch to SHARP TUNE before aligning the i-f stages. This is done by turning the Treble Control counter-clockwise as far as possible.

I-F ALIGNMENT

1. Connect the output of the signal generator to tr oscillator grid (pin No. 5) of the 6SA7 tube throug a .00025 mfd . capacitor. The ground on the signi generator should be connected to the radio chass ground.
2. Turn the condenser gang until it is completel meshed, (low-frequency end of dial calibration) an set the band selector switch to BDCST as for broal cast band reception.
3. Adjust the signal generator to EXACTLY 455 kc . and peak the second i-f transformer and the first i-f transformer trimmers in that order.

On early models of the CR-193 chassis, the two i-f trimmers are loçated in the top of the respective i-f transformers. In later production, one trimmer is accessible from the top and the other from the bottom of each transformer as shown in the layout diagram, Figure 5.

BROADCAST BAND AEIGNMENT

1. Remove the signal generator lead from the 6SA7 grid and connect it to the radio antenna terminal through the .00025 mfd capacitor. The ANT-LOOP switch (70) must be in the ANT. setting.
2. Check the tuning dial pointer adjustment. When the plates of the tuning condenser are completely meshed, the dial pointer must be in line with the last calibration mark at the low frequency end of the dial. If it is not, loosen the set screws in the hub of pulley " D " shown on Figure 1 and make the necessary adjustment.
3. With the band selector still set for broadcast band reception, adjust the signal generator and the radio receiver to 600 kc . While rocking the gang condenser a few degrees to the right and to the left, adjust the 600 kc . oscillator padder for maximum indication on the output meter.
4. Set the signal generator and the radio receiver to 1400 kc ., adjust the 1400 kc . oscillator trimmer and the 1400 kc . antenna trimmer for maximum output. If considerable adjustment was necessary, recheck the 600 kc . padder setting.
5. If the loop antenna trimmer is out of adjustment it should be set after the radio chassis is in the cabinet. Set the ANT-LOOP switch (70) to the LOOP position. Adjust the signal generator to 1400 kilocycles and connect its output to a loop containing approximately five turns of wire eight inches in diameter placed eighteen inches from the receiver loop and in the same plane.
6. Set the receiver to 1400 kc . and adjust the trimmer on the receiver loop for maximum output.

SEORTWAVEBAND AEIGNMENT

1. Set the band selector switch to SW as for shont wave reception and substitute $\alpha 400$ ohm resistor for the capacitor in series with the signal generator lead connected to the antenna terminal on the receiver. 2. Set the signal generator and the radio receiver to 15 mc .; then adjust the 15 mc . oscillator trimmer and the 15 mc . antenna trimmer for maximum output. While adjusting the 15 mc . oscillator trimmer two peaks may be observed; only one is the correct peak
for 15 mc . alignment. Screw in the trimmer to maximum capacity-then decrease the capacity until the first peak is observed. This is the correct one.

10 KC FILTER ADJUSTMENT

This chassis incorporates a 10 kc . filter circuit to eliminate the beat note heard as a whistle between stations on the broadcast band. If the trimmer is out of adjustment, the following procedure should be observed.

1. Set the Selectivity Switch to FULL RANGE by turning the Treble Control knob clockwise as far as possible.
2. Connect the output of an audio oscillator to the phonograph pickup socket on the radio chassis and adjust the oscillator to EXACTLY 10,000 cycles.
3. Set the band selector to PHONO and adjust the 10 kc . trimmer (7) for minimum output.
4. If an audio oscillator is not available for making this adjustment, set the band selector to BDCST, connect an antenna to the receiver and set the gang condenser to a point between two stations on adjacent channels having approximately the same power. If the 10 kc . trimmer is out of adjustment, a whistle will be heard. Adjust the trimmer until the whistle is eliminated.

Specian service INFORMATION

The following information is provided for the service man who has α vacuum tube voltmeter or a simliar measuring instrument available.

STAGE GAINS*

Antenna Post to Converter Grid at:

6 mc. ... 2.0
R-F on Converter to I-F Grid at:
600 kc .28
6 mc 22
I-F on Converter Grid to I-F Grid at: 455 kc 34
I-F Grid to Detector Plate at:
455 kc 67
AUDIO GAIN
Voltage required across Volume Control to produce.05 watt speaker output** at 400 cycles is .010 voltwith Band Selector Switch in BDCST setting.
OSCILLATOR OUTPUT VOLTAGE
The DC voltage developed across Oscillator GridResistor (48) at:
600 kc 5.6
6 mc 6.0

[^1]
DIALCORD REPLACEMENT

Rotate the brass pulley designated " A " in Figure 1 until the dial pointer strikes the stop at the high frequency end of the dial calibration. In this condition the slot in pulley " A " should be approximately ten degrees to the left of being vertical-see Figure 1 . If the slot in the pulley is in some other position under the above mentioned conditions, the pointer set screw is probably loose and has allowed the pointer to slip.
To correct this condition, first remove the glass dial and loosen the pointer screw. Then while holding pulley " A " so that its slot is approximately ten degrees to the left of vertical (when viewed from the rear) adjust the pointer until it is resting against the stop at the high frequency end of its travel. Then tighten the pointer set screw securely and replace the glass dial.
Completely unmesh the condenser gang and check the location of the hole or slot in pulley 'D.' If this hole is not approximately 45 degrees back from vertical as shown on Figure 1, loosen the two No. 6 Allen set screws in the hub of pulley " D " and slip the pulley on its shaft (while holding the condenser gang unmeshed) until the specified adjustment is abtained; then tighten one of the set screws securely. It will be shown later that this is a temporary setting. Next, tie a double knot in the exact center of a 25 -inch length of dial cable and fold the cable back on itself so that the knot is at one end. The correct method for tying this knot is shown as an inset on

Figure 1. Grasp the cable near the knotted end slide it into the pulley slot so that the knot is agr the inside rim of the pulley as shown in the ske The piece of cable nearest the dial frame shoul, wound in the direction shown for one-half turn; over the lower pulley " B," around the bottom of large pulley " D " and into the bole. Pull the c taut and wrap the end around the small hool pulley " D " temporarily.
The remaining piece of cable should be wc around pulley " A " in the direction shown, for complete turn, over the upper pulley " C ", and, the top of pulley " D." Thread the end through small hole in pulley " D " and pull both ends of cable taut. With one end of tension spring ' E "' tened to the hook on pulley " D " lace the two ends of the cable through the opposite end al spring and tie a knot at a point that will allow $\%$ $5 / 16^{\prime \prime}$ of cable between the spring and the insids of pulley "D:' Be sure to tie the knot around one of the spring in the manner shown.
Now with the condenser gang completely mes check the position of the dial pointer. If it is n_{1} line with the last calibration mark at the low quency end of the dial, loosen the set screw in pi " D " and turn it until the pointer is in the spec position. Be sure that the condenser gang does move during this adjustment. Then tighten the screws in pulley "D" securely completing the of tion.

CONDENSERGANGBRYE ADJUSTMENTS

Whenever any of the mechanical parts in the condenser gang drive assembly require replacement due to rough handling or for any other reason, it is extremely important that clearances and adjustments shown on Figures 2 and 3 are affected; otherwise the tuning mechanism will be sluggish or it may slip during operation.
In reassembling the mechanism after any part was replaced, follow the procedure outlined below:

1. Assemble the Tuning Shaft, Drive Collar, Compres sion Spring, Spring Retainer and Flywheel in the manner shown on Figure 3. The Tuning Shaft must extend $3 / 4$ " from the front of the assembly and that the spacing between the rear of the Drive Collar and the front of the Flywheel must be $3-5 / 64^{\prime \prime}$ as specified on Figure 2. Any excess length in the Tuning Shaft may extend beyond the rear of the Flywheel.
2. While pressing down on the Treadle Bar at the location shown on Figure 3, adjust the Thrust Bracket until the clearance between the rear of the Flywheel and the projection on the Thrust Bracket is .010" as shown on the diagram. To make this adjustment, loosen the two No. 6 Allen set screws (use No. 6 Allen Wrench-Magnavox Part No. 800044G2) in the hub of Thrust Bracket and rotate the bracket until the specified clearance is obtained when the push buttons are NOT actuated. Tighten the two screws securely when the adjustment is completed. Press each push button and check that the Drive Collar is pushed away from the rubber-tired Drive Wheel.
3. Next, adjust the clecrance in the muting switch contacts by turning the Phillips-head screw designated Adjustment " A " on Figure 2, until the specified clearance of $.025^{\prime \prime}$ is obtained (when the push but-

4. The distance between the rubber-tired Drive Wheel and the smaller diameter section of the Spring Retainer must be $1 / 32^{\prime \prime}$ to $1 / 16^{\prime \prime}$. This adjustment is effected by loosening the two No, 6 Allen set screws in the Drive Wheel hub and sliding the wheel on its shaft until the required clearance is obtained. When the adjustment is completed, tighten the two screws in the hub of the Drive Wheel. See Figure 3.
tons are NOT actuated.)
5. While pressing any one of the push buttons in as far as possible, turn the screw designated. Adjustment " B^{\prime} " (Figura 3) until a minimum clearance of .015" is obtained between the front surface of the Drive Collar and the switch spring directly in front of it. This setting should also cause a minimum clearance of $.010^{\prime \prime}$ between the switch contacts actuated
by pressure of the front surface of the Drive Collar, when the Tuning Shaft is pulled out. The function of this switch is to open the muting circuit when setting up the push buttons. As its contacts are wired in series with the large muting switch (contacts are shorted by pressing any push button), pulling out on the Tuning Shaft causes the small switch contacts to open the muting circuit so that a station can be heard while the push button is held in and tightened On rare occasions it may be necessary to adjust the
relation between the push button bars and the Trec dle Bar. Such adjustment might be required if whes pushing any of the push buttons, sufficient motion i not transmitted to the Treadle Bar to cause a diser gagement between the Drive Collar and the Drivi wheel.
This can usually be accomplished by loosening th two screws designated "C" and "D" on Figure 3, an moving plate " B " in the direction required to correr this condition.

FIGURE 3

MAGNAVOX PAGE 23-3

Model 9030 Radio-Phonograph

GENERAL FEATURES

The Model 9030 is a combination designed for the reception of radio broadc: programs and reproduction of phonograph records, television or other external sound. The combination includes: (1) radio-phono chassis, (2) record changer, and (3) high fidelity loudspeaker.

TECHNICAL DATA

Power Input

100 watts at 117 volts, $50-60$ cycles. (Phono motor 60 cycles, 25 watts additiona

Tube Complement

Seven including one rectifier: (1) 6BE6 osc. converter, (1) 6BA6 I.F. amplifier, (1) 6SQ7 detector 1 st audio, (1) 6SN7 phase splitter, (2) 6V6 power amplifier,
(1) 5Y3GT rectifier.

Tuning Range
AM - 540-1600 kc
Speaker
10 inch high fidelity PM type.
Controls
Five - station selector, function switch, on-off bass control, volume control.treble control.

INSTALLATION

The Model 9030 Radio-Phonograph comes complete with all equipment insta and ready for operation after taking the following precautions:

1. Remove any packing materiā which may be used to hold the tubes in plar
2. Remove any tape or rubber bands which may be holding the pickup arm a accessories in place.
3. Insert the a.c. line plug into convenient electrical outlet.

The large center knob adjusts the receiver to the desired station. The dial pointer follows the rotation of the knob and indicates the frequency to which the receiver is tuned. Assigned frequencies of AM broadcast stations are on the radio page of your newspaper.

Volume Control

The knob directly to the left of the large station selector knob adjusts the volume of sound. Turn clockwise to increase volume and counter-clockwise to decrease volume. The control is designed to give smooth and gradual control of sound volume.
Function Switch
The knob directly to the right of the large station selector knob adjusts for the various functions desired. As indicated on the front escutcheon panel the positions are AM, TV and Phono. Turn to desired position.

Treble Control

The second knob to the left of the station selector controls the amount of high audio tones to be reproduced. Turn clockwise to increase high tones or counterclockwise to decrease high tones. Set for individual preference.

Off-On Bass Control

This knob is the second knob to the right of the station selector. This control regulates the amount of low frequency or "Bass" response to be reproduced. Turn clockwise to increase Bass response and counter-clockwise to decrease. Set for individual preference.

TUNING THE RECEIVER

To receive broadcast station programs proceed as follows:

1. Turn the knob marked ' Off-On Bass'' clockwise about half way. The dial will illuminate indicating that the receiver is connected to the power source. Allow about thirty seconds as warm-up time for tubes.
2. Turn the function switch to AM position.
3. Turn the large station selector knob to a dial number of a local station.
4. Turn the volume control-clockwise slowly to the desired level. Re-adjust the station selector knob until reception is clearest.
5. Adjust the "Bass" and "Treble" controls until the reproduction is most pleasing.

For phonograph or TV sound operation turn the function knob to the desired position and use Volume, Bass \& Treble controls as described.

FUSE REPLACEMENT

A fuse is provided for the protection of the receiver against excessive powed line voltages or failure of any component which would cause heavy current drain and fire hazard. CAUTION: Always replace the defective fuse with one of the same rating. If the fuse continues to blow after replacement, remove the receive chassis for examination and service by qualified personnel. The fuse is accessil at the rear panel of the chassis.

A license and rating label located on the cabinet wall gives the tube socket locations. Consult this chart when testing or replacing tubes.
I.F. Alignment - 455 kc

1. Connect suitable output meter with 8 ohm shunt load across speaker terminals located on rear of chassis.
2. Connect signal generator 'hot side'" through a .01 mfd . paper condenser to pin 7 on the 6BE6 socket. Connect generator ground to receiver chassis. Bas Treble and Volume in maximum position.
3. Set signal generator to 455 kc and receiver dial to 1600 kc . Adjust T2 Tc and Bottom Cores for maximum output. Adjust T1 Top and Bottom Cores for ma mum output. Always keep generator output at low level to assure sharp tuning of the cores. Repeat procedure until no increase in output is noted.

VOLTAGE CHART

Tube	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin
6BE6	-15	0	$\begin{gathered} \text { A.C. } \\ 6.3 \end{gathered}$	0	140	140	0	--
6BA6	. 3	0	$\underset{6.3}{\text { A.C. }}$	0	130	140	1.6	--
6SQ7	0	-1	0	-5	-5	70	0	A.C 6.3
6SN7	0	80	3	22	120	30	0	A.C 6.3
6V6	0	0	230	240	6	30	A.C. 6.3	13
6V6	0	0	230	240	1.7	120	A.C. . .3	13
5Y3GT	270	--	$\begin{aligned} & \hline \text { A.C. } \\ & 280 \\ & \hline \end{aligned}$	--	$\begin{aligned} & \text { A.C. } \\ & 280 \end{aligned}$	--	270	--

All voltages taken with Voltohmyst or equivalent VTVM between indicated pin a chassis frame. Unless indicated, voltages are d.c. and positive in respect to chassis.

Line voltage - 117 V a.c.
Selector switch in AM position with no signal input.
R.F. Alignment

1. Connect signal generator "hot side" loosely to the loop antenna coil. (Clipping to the sleeving about $1 / 4$ " from coil winding gives adequate coupling.) Output meter connections remain the same as for I.F. alignment. Bass, Treble and Volume controls in maximum positions.
2. Set signal generator and receiver dial to 1600 kc . Adjust C 1 trimmer on tuning gang for maximum output.
3. Set signal generator and receiver dial to 600 kc . Remove tape from Ferrite Rod coil L1 and slide to a position giving maximum output. Secure coil with tape after adjustment.
4. Set signal generator and receiver dial to 1400 kc . Adjust C2 trimmer on tuning gang for maximum output. Repeat steps $3 \& 4$ until uniform sensitivity is obtained across the entire tuning range.

PART NO.
ALA-10032A
CC-15500
CM-15680
CC-15101
CCX-10005
CL-10075
CM-15391
CM-15430
CMX-10002
CVB-10028
DB-10000
DD-10015
DD-10016
DDA-10017
DI-10012
DM-10002
DP-10015
DSB-10119
FA-10000
KA-10131
KA-10132
RX-10030
TOB-10059
TP-10021
TRC-10026
TSA-10058
VCA-11110
VCA-11111
VCA-11112
VSA-10021A
6BE6
6BA6
6SQ7
6V6
5 Y 3

DESCRIPTION
Antenna Ferrite Kod
50MMF 500V. Ceramic Condenser
68MMF 500V. Ceramic Condenser 100MMF 500V. Ceramic Condenser
2 X 100MMF 500V. Condenser Ceramic
Electrolytic Condenser 40-20-40-450V
Mica Cap. 390MMF 500V
Mica Cap. 430MMF 500V
Herlic .005MFD 500V Condenser
Cond. Variable 2 Gang AM
Lamp-6-8V . 150 Amp .
Idler Pulley Shaft
Dial Shaft Collar
Shaft-Dial Drive
Dial Pointer
Dial Cord Tension Spring
Dial Idler Pulley
Dial Glass With Calibration
Fuse-3 Amp. 3 AG
Knob-Brown-Red Arrow
Knob-\#3000-Brown
Wire Wound Resistor- 2500 Ohm 10 Watt
Output Transformer
Power Transformer
AM-Oscillator Coil
IF-AM Coil
Pot. Volume . 5 Meg .
Pot. Treble . 5 Meg.
Pot. Bass Off \& On . 5 Meg .
Switch Selector
Tube
Tube
Tube
Tube
Tube

SETTING OF CLOCK
This clocis-ractio is equipped with a self-starting clock. As soon as the power plug is inserted
into the wall outlet, the sweep second hand will begin to operate,
To set the time hands, rotate the time set knob located at the rear of cabinet. Once the clock
is set, it needs no further attention unless you remove the plug or there is a power interrup-
tion.
INSTRUCTIONS FOR USE OF CLOCK WITH RADIO OR EXTERNAL APPLIANCE
By carefully following the instructions illustrated below, the clock may be used to perform any
of the following functions:

Before connecting the set be sure that your house is wired for the voltage and current for which the set is designed. If in doubt, call your local power company for the necessary in result in improper operation or damage.
ANTENNA. This receiver has a built-in "loop" aerial. Its excellent design is such as to in selectivity of the loop provide outstanding reception without the use of an external aerial.
TUBES. FQur tubes (including rectifier) are used. Type numbers and locations are shown in the tube location diagram on the cabinet back.
GROUND. No ground connection should be used when operating this recelver. The receiver
gets its ground connection through the power line and any external connection to the chassis may cause a short circuit and consequent damage.
CAUTION. Do not place receiver on hot objects such as stoves, radiators, etc. Heat will
damage the cabinet and the internal components of the receiver. $=$
USE AUTO-OFF-ON SWITCH KNOB At 9 o'clock position on clock face. Turn this knob to the right (clockwise), so that the indicator points to "ON", to turn on the radio. To turn off the radio, turn this knob so that the indicator points to "OFF".
VOLUME CONTROL KNOB (Bottom Knob an Side of Cabinet). This knub controls the volume of the signal received. To reduce the volume, rotate tilis knob to the left (counter-clock-
wise). When this knob is rotated to the right it will increase the volume.
STATION SELECTOR KNOB (Large Knob on Side of Cabinet). Rotate this knob over a narrow range of the dial where the desired station is located, until the station is received with a maximum volume and clarity. Then readjust the volume control to the proper level.
NEVER use the station selectior knob to adjust the volume as this will result in the signal being received with distorted tone quality.
The dial scale is callbrated in Kilocycles with the last zero of the actual irequency omitted.
For instance, the numeral 55 on the scale indicates 550 Kilocycles and 160 indicates 1600

RIGHT HAND KNOB. (Volume Control and "On-Off" Switch). Turn knob to the extreme right, wait for tubes to become heated, then adjust volume as desired.

LEFT HAND KNOB. (Station Selector). Rotate knob until desired station is received with maximum volume; then readjust volume to desired level. Never use the station selector to adjust volume as this practice results in distorted tone quality and deficient bass response.

LAMP SWITCH. (Small knob near base of receiver). Turn knob to right to turn on lamp. Turning knob again to right
will turn off lamp. Lamp operates independently of radio.

TUNING RANGE

This receiver is designed to operate cuer the standard broadcast band which extends from 540 to 1600 Kilocycles (KC). DIAL CALIBRATION. The scale is calibrated from 55 to 160 (Standard Broadcast). This band covers all Standard Broadcast frequencies of the United States, Canada, Mexico, Cuba and many Central and South American Countries. Add a zero to figures on the scale to obtain kilocycles.

TUBE AND LAMP DATA

 numbers and locations are shown in the tube location diagram on the cabinet. If tubes are removed for test purposes, make certain each tube is replaced in its proper socket. Failure to replace tubes in their proper sockets may result in damage to the tube, or to the receiver, or both.

LAMP. This receiver uses a show case lamp of 120 volts, 25 watts with medium screw base. The lamp is accessible for replacement after removing shade. (Never use a lamp larger than 25 watts).

SHADE REMOVAL. Place thumbs at outside top edges of shade and pull down slowly until shade snaps out of upper slot.

SHADE REPLACEMENT. Insert shade into bottom slot and with fingers of both hands spaced along top edge of

CARE MUST BE TAKEN NOT TO BOW SHADE MORE THAN NECESSARY.

SERVICE DATA

Lack of sensitivity and poor tone quality may be due to any one or a combination of causes such as weak or defective tubes or speaker, open or grounded bias resistor, bypass condenser, etc. Never attempt to realign set until all other possible sources of trouble have been first thoroughly investigated and definitely proved not to be the cause.
NOTE: IT IS ABSOLUTELY NECESSARY THAT AN ACCURATELY CALIBRATED TEST OSCILLATOR WITH SOME TYPE OF OUTPUT MEASURING DEVICE BE USED WHEN ALIGNING THE RECEIVER AND THAT THE PROCEDURE BE CAREFULLY FOLLOWED, OTHERWISE THE RECEIVER WILL BE INSENSITIVE AND THE DIAL CALIBRATION WILL BE INCORRECT. THE TRIMMERS WILL BE REFERRED TO BY THEIR FUNCTION AS INDICATED ON THE PARTS DIAGRAM.

ALIGNMENT PROCEDURE

REF. но.	Part mo.
Cl, $4,4,67$	N-1345
C2, C 5	N -8801
C3, 66	-.
C8	N-6015
C9	Part of
C10,* ${ }^{\text {C12 }}$	N-4894
${ }^{*} \mathrm{Cl1}$	N-6488
C13	$\mathrm{N}-1344$
C14	N -1346
c15)	N-8873
C16)	
R1	N-4025
R2,R10	$\mathrm{N}-1262$
R3	N-64\%

description			
Condenser, Paper ${ }^{\text {. } 05}$ MFD. 200 V .Condenser, Gang Tuning			
Trimmers on Gang Condensor			
Condenser,	Coramic	100 MMFD.	500 V. 20\%
N-8796 2md L.F. Coll			
Condenser, P	Paper	. 005 M FD.	600 v .
Conden ser,	Ceramic	250 MMFD.	500 V .
Condenser, P	Paper	. 01 MFO.	400 y .
Conden ser, P	Paper	. 05 MFD.	400 V .
Electrolytic		(50 MFD.	150 V.$)$
		(30 MFD.	150 y.$)$
Resistor	22,000	ms $1 / 2$ Watt	
Resistor	1.0 w	ahm 1/2 Watt	20\%
Resistor		mas $1 / 2$ Watt	10%

[^2]

C John F. Rider

Cabinet View

NERVICE DATA

Power Supply	115 volts DC or $50-60$ cyeles $A C$, 24 watts.
Frequency Range	540 to 1600 kc .
Intermediate Freq.	. 455 kc .
Selectivity	At $1000 \mathrm{kc}, 60 \mathrm{kc}$ at $1000 \times$ signal
Sensitivity	150 u.v. per meter.
Power Output.	0.8 watts undistorted, 1.0 watts maximum.
Loud Speaker	4" PM., v.c. impedance, 3.2 ohms.
Tube Complement	12BE6, converter, 12BD6, IF Amplifier, 12AT6 or 12AV6, detector, AVC, audio, 50C5, Output amplifier $35 Z 5$ or $25 Z 6$, Rectifier

GENDIEAR DESCLRIPTION

The above mentioned models are a 5 tube, AC, superheterodyne receiver, designed to operate on volts. The sets contain a built-in loop antenna and operate in the standard broadcast band of 540 to ${ }^{4}$ kilocycles.

The only difference between the B and C series la at the end of each model number is the rectifier . being used. The B series sets use a $35 Z 5$ rectifier while the C series sets use a $25 Z 6$.
 to extreme left, then set pointer of losi marker shown. Secure pointer to string with glue.

Dial Stringing Diagrı
ALIGNMENT PROCEDURE

- Loop must be connected and volume set to maximum.

SIGNAL GENERATOR				TUNER SETTING	ADJUST FOR MAXIMUM OUTPUT
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection		
455 kc.	. 1 mf	12BEb, Pin 7		Capacitor fuily opon \{plates out of mash\}	Top and botłom Coros in output and input'I.F. cans
1620 kc .	. ${ }^{\text {mf }}$	12BE6, Pin 7		Capacitor fully open (plates out of mesh)	Oscillator trimmer C1-D on gang
535 kc.	. 1 mf.	12BE6, Pin 7		Capacitor fully closed	Check for adequate ranga
1400 kc.		Lay generator lead neer back of cabinet		Tune in 1400 ke . signal	Antenna trimmer C-1C on gang

WOTICE:
THIS MODEL USES ONE OF THE TWO
RECTEFIE CIRCUITS SHOWN.

SCHEMATIC DIAGRAM

[^3]

After stringing,turn tuning shoft to extreme left, then set poinler of lost marker shown. Securt pointer to string with glue.

SERVICE DATA

Power Supply
Frequency Range Intermediate Freq. Selectivity

Sensitivity
Power Output
Loud Speaker
Tube Complement 12BE6, Converter 12BA6, IF Amplifier

115 volts, DC or $50-60$ cycle A 24 watts.
540 to 1600 Kc .
455 Kc .
At 1000 Kc. 60 Kc. at 1000 signal
150 u. v. per meter.
0.8 watts undistorted, 1.0 wat max.
4" PM., v.c. impedance, 3.2 oh 12AV6 or 12AT6,

50C5, Audio output 25Z6, Rectifier

Dial Stringing Diagram

ALIGNMENT PROCEDURE

- Loop must be connected and volume set to maximum.

SIGNAL GENERATOR				TUNER SETting	ADJUST FOR Maximum output
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection		
455 tc.	. 1 mf	12BE6, Pin 7	$\begin{aligned} & \check{\sim} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Capacitor fully open (plates out of mesh)	Top and bottom Cores in output and input I.F. eans
1620 kc.	. 1 m	12BE6, Pin 7	$\begin{aligned} & \text { 足 } \\ & \text { 恿 } \end{aligned}$	Capacitor fully open (plates out of mash)	Oscillator trimmer $\overline{C l}-\bar{D}$ on gang
535 kc.	. 1 mf .	128E6, Pin 7		Capacitor fully closed	Check for adequate range
1400 kc.		Lay generator lead near back of cabinot\|	$\begin{aligned} & \mathbb{Z} \\ & \text { 픈 } \end{aligned}$	Tune in 1400 ke. signal	Antenna trimmer C-1C on gang

MODELS 15BR-1525D, 15BR-1526D,
 15BR-1531D, 15BR-1532D

SCHEMATIC DIAGRAM
PARTS LIST
Please specify part number and Model Number when ordering replacements.

[^4]not place the phonograph near a radiator, or othe heater, since certain elements may be damaged.

Power Supply: This phonograph is designed fo operation from 105-125 volt, 60-cycle alternatin current (ac) supply only. If you are not sure o the power voltage and frequency at your home, you power company will furnish the information.

ELECTRICAL SPECIFICATIONS

Remove two wood screws holding back board. This

REMOVAL OF RADIO CHASSIS

Remove two screws holding record changer. Lift record changer and move back, tilting at the same time. Remove changer power cord and pick up lead.
will expose the antenna. Remove antenna plug.

Remove two wood screws holding back of chassis. Remove two nuts holding front panel. Chassis may now be removed.

ALIGNMENT PROCEDURE

The following equipment is required for aligning: A signal generator which will provide an accurately calibrated signal at the indicated test frequencies; an output indicating meter: a nonmetallic screwdriver.

Radiation Loop: 2-turn lood, 6 inches in diameter,
Conditions for Alignment:
Tone - Treble
Volure - Maximum
Selector Switch - "Radio" position
Test loop coupled loosely to receiver by spacing - receiver loop in same position as it will
be with chassis in cabinet.

sIGNAL	SIGNAL	RADIO	OUTPUT		JUST POR
GENERATOR	GENERATOR	DIAL		REMARKS	MAXIMUM
COUPLING	FREQUENCY	SETTING	METER		OUTPUT
L00P	455 KC	Low End of Band	Across Voice Coll	```Short out osc. tuning gang section C-2; compress C-3```	$\begin{array}{cc} c-8, & c-7, \\ c-6, & c-5 \end{array}$
LOOP	1620 KC	High End of Band	"	Remove short across C-2	C-4
L00P	1400 KC	Point of Maximum Output	"	Set pointer to 140 on dial	C-3
LOOP	600 KC	Point of Maximum output	"	Knife C-1 plates for maximum output	
LOOP	1400 KC	1400	"	Recheck Alignment	$\begin{aligned} & \text { C-3 if } \\ & \text { necessary } \end{aligned}$

HOW TO REPAIR ORDER PARTS

Repair Parts may be ordered from your nearest Wards Retail Store. Catalog Order Office, or Mail Order House. To have your order filled promptly and correctly, please furnish the following information:

1. MODEL NUMBER which appears on nameplate.
2. PART NUSBER AND NAME OF PART (see Re pair Parts

List).

PARTS LIST

SCHEMATIC LOCATION	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	LIST PRICE	SCHEMATIC LOCATION	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	LIS PRI:
		RESISTORS		85. C12	813	. 01 倠 5 Neg OHAM	
R1	517	22,000 OHN $/ 2$ Watt	\$. 11			Comon Tersinsl Connection	\$.
R2	615	2.2 Meg OHf $/ 2 / 2 \mathrm{Watt}$. 14	R10, C15		.01 19P 100,000 ОНम	
R3		See Capristors		R10, C15	814	Common Terminal Connection	
R4	520	47 OHM ${ }^{2}$ Watt	. 14			TRANSFORMERS	
R5		See Capristors		T1	1201	Output Transformer	2.:
R6	401	500.000 OHin Vol. Control		T3, T4	1402	I.F. Transformers	2.1
		with Switch	1.12			MISCELLANEOUS	
P.7	516	1 meg OHM \% Watt	. 14	S1	401	On-Off Switch on volume	
R8. R11	502	510,000 OHA $/ 2 /$ watt	. 14			Control	1.1
R9	408	500,000 OHE Tone Control	. 90	S2	407	Motor Switch on	
R10		See Capristors				Changer Assembly	
R12	505	150 OHW $1 / 2$ Watt	. 14	S3	1892	Radio-Phono Slide Switch	
R13	607	1000 OHN 1 Watt	. 18	PL1	307A	Loop Antenna Plug	
814	602	270 OH* 1 Watt	. 18	PL2	307	Changer A.C. Plug	
R15	534	30 Ohm 1/2 W.	. 14	PL3	305	Pickup Plug	
		CAPACITORS		RE1	106A	Loop Antenna Receptacle	
C1, C2		Tuning Gang and Trimmer		RE2	106	Changer A.C. Receptacle	
C3, 64	1004A	Assembly	4.96	RE3	104	Pickup Receptacle	
C5, C6		Trimmer Condensors in		X1	2534	Pickup Cartridge EV-334	6.1
C7. C8		I.F. Cans.			62-349	. 0023 veedle	1.1
C9, C22	804	. 1 MPD .200 V .	. 28	V2503BZ		Tone Arm less Cartridge	1.1
C10, $\mathrm{Cl1}$		See Capristors		V-2917		Strengthener and Bracket	
C12		See Capristors				Assembly	
C13	817	250 Maf. Ceramic	. 28	LSI - T1	2607	5". Speaker and Output	
C14	'825	. 01 AFP. Ceramic	. 40			Transformer	6.
C15		See Capristors			2411	Knob	
C17	824	. 005 MF. Ceramic	. 40	T2	1512	Loop Antenna	2.
C18, C19	1003	40-40-20 MFD/ 150 volts	2.34		1736A	Dial Pointer	
C20, C16		$20 \mathrm{MPD} / 25$ volts			2307	Dial Bezel	
C21	803A	.05400 V . Tubular	. 28		2146	Front Panel	2.1
		CAPRISTORS			1722C	Dial	
R3, C10	811	100 Msp. 50,000 OiM 100 map	. 72				

Important - all prices in this literature are subject to change without notice and are subject to an additional charge to cover any applicable sales tax, use. occupation, or other tax affecting our purchase or sale of merchandise.

ELECTRICAL SPECIFICATIONS

POWER SUPPLY: $105-125$ Volts AC or DC and \#33 Battery

FREQUENCY RANGE: 540 to 1640 KC
INTERMEDIATE FREQUENCY: 455 KC
SENSITIVITY (For . 05 Watt Output)
175 Microvolts per Meter
POWER OUTPUT: . 190 Watt 10% Distortion
TUBE COMPLEMENT:
I-IR5 Converter
I-IT4 I.F. Amplifier
I-IU5 Det. Avc. Ist AF.
1-3V4 or 3Q4 Power Amplifier
LOUD SPEAKER: 4" PM Dynamic 3.2 VoiceCoil Impedance
TUBE AND TRIMMER CONDENSER LAYOUT

ALIGNMENT PROCEDURE

Volume Control-Maximum All Adjustments.

The equipment in column at right is required for aligning:

Signal Generator which will provide an accurately calibrated signal at the test frequencies as listed.
Output Indicating Meter: Non-Metallic Screwdriver.
Dummy Antenna -. 1 mf .

Frequency Setting	SIGNAL GENERATOR		Ground Connection	Variable Condenser Setting	ADJUST TRIMMERS TO MAXIMUM See Trimmer lllustration
	Coupling Capacitor	Connection tó Radio			
455 KC	. 1	CONTROL GRID OF IR5	$\begin{gathered} \text { TO B-BUS } \\ B A R \end{gathered}$	CLOSED	I st AND 2nd I.F. $\mathrm{ClI}-\mathrm{Cl} 2-\mathrm{Cl} 3-\mathrm{Cl} 4$
540 KC	. 1	CONTROL GRID OF IR5	$\begin{gathered} T O_{B A R}^{B-B U S} \\ \hline \end{gathered}$	CLOSED	$\begin{aligned} & \text { OSCILLATOR COIL } \\ & \text { SCREW } \end{aligned}$
1640 KC	. 1	CONTROL GRID OF IR5	$\underset{B A R}{T O}$	WIDE OPEN	OSCILLATOR TRIMMER-CIO
1400 KC	. 1	CONTROL GRID OF IR5	$\underset{\substack{\text { BAR }}}{\text { TO BUS }}$	TO 1400 KC SIGNAL	ANTENNA TRIMMER-C3

PARTS LIST

when ordering part, state model no. of radio and part no.

HOW TO ORDER REPAIR PARTS

[^5]MAPORTANT-Alf prices in this literature are subject to thange without notice and are subject to an additional chorge to cover any applicable sales tax, use, occupation, or ofther tax affecting our purchase or sale of merchandise.

MONTGOMERY WARD PACE 23 MODELS 15GSL-1564A, 15GSL-1565. 15GSL-1566A, 15GSL-1567A

ELECTRICAL SPECIFICATIONS
$\begin{aligned} & \text { POWER SUPPLY }=- 115 \text { Volts, either } D C \text { or } \\ & 50 \text { to } 60 \text { cycles } A C\end{aligned}$
FREQUENCY RANGE - 540 to 1600 kc
INTERMEDIATE FREQ. - 455 kc
SELECTIVITY - At $1000 \mathrm{kc}, 100 \mathrm{ke}$ at 1000 X signal.

SENSITIVITY - 3000 microvolts average for . 05 vatt output.

POWER OUTPUT -
Undistorted - 0.9 Watt
Maximum - 1.8 Watts

LOUD SPEAKER - 4 Inch Round P.M.

VOICE COIL IMPEDANCE - 3.2 Ohmat

TUBE COMPLEMENT
$12 A U 6$ - Converter
12AV6 - Diode - lat. Audio
be used when operating this receiver. The receiver gets its ground connection through the power line and any external connection to the chassis may cause a short circuit and consequent damage.

Diode - 1st. Audio

50C5 - Power Output

35Z5GT - Rectifier

PAGE 23-12 MONTGOMERY WARD.
MODELS 15GSL-1564A, 15GSL-1565A,
15GSL-1566A, 15GSL-1567A

ALIGNMENT PROCEDURE

The signal source must be an eccurately calibrated aignal generator capable of supplying 455 Kc and up to 1620 Kc signals modulated 30% with a 400 -cycle audio signal.
Volume control at maximun for all adjuatments.

Align for maximum output. Reduce input as needed to keep output near 0.4 volts.

Loop antenna should be connected to receiver and in its proper position when making the adjustwents.

SIGNAL GENERATOR				TUNER SETTING	ADJUST FOR MAXIMUM OUTPUT
FREOUENCY	COUPLING CAPACITOR	CONNECTION ro radio	GROUND CONNECTION		
455 Kc	. $05 \mathrm{Mfd}$.	Rear stator plates of tuning condenser.	Buss Lead	Any point near center where no interfering aignal is received.	Slugs at top and bottom of I.F. Coil T-1
1620 Kc	. 05 Mfd .	Rear atator plates of tuning conden. ser.	Busa Lead	$\begin{aligned} & \text { Exactly } \\ & 1620 \mathrm{Kc} . \end{aligned}$	Oscillator trimer of Gang. (C62
1400 Kc	\cdots	Lay Generator lead near back of cabinet	Buss Lead	$\begin{aligned} & \text { Exactly } \\ & 1400 \mathrm{Kc} . \end{aligned}$	Antenna trinmer of Gang. (C3)

HOW TO ORDER PARTS - Should it be necessary to write us or to order any repair parta, it is important that the complete model number which appears on the cabinet back of this
receiver be specified, Repair parts should be ordered from your nearest Wards Retail Store, Catalog Order Office or Mail Order House.

PARTS LIST

IMPORTANT: All prices in this literature are subject to change without notice and are subject to an additional charge to cover any mplicable sales tax, use, occupation, or other tax affecting our purchase or eale of merchandise.

GENERAL DESCRIPTION

This is a two band, seven tube (plus rectifier tube) AM and FM receiver. Controls are provided at the front of the cabinet for tuning, volume, tone and band or phono selection. A phono input socket is provided at the rear of the receiver to which a record player may be connected. The I-F stages use high gain miniature type tubes. Air Wave Aerials are provided for the FM and Broadcast bands. Features include, a grounded grid R-F amplifier stage on the FM band, compensator circuits to prevent oscillator drift, automatic volume control, beam power output stage, PM dynamic loud speaker and an electrostatic shield in the power transformer to reduce power line noise.

500A

ELECTRICAL SPECIFICATIONS

Power Supply \qquad 105-125 volts AC $50-60$ cycles, 40 watts.

Frequency Ranges \qquad Broadcast 540-1600 KC Frequency Modulation 88-108 MC

Intermediate Frequency....AM-455 KC
FM-10.7 MC

Selectivity \qquad AM-45 KC broad at 1000 times signal, measured at 1000 KC I.F. FM-200 KC broad at 2 times down I.F. FM-950 KC broad at 200 times down

AM Sensitivity \qquad (For .5 watt output with externai antenna) 25 microvolts average
FM Sensitivity....................(For .5 watt output)

Power Output........... 1.9 watts maximum
0.8 watts 10% distortion

Loud Speaker
5" PM Dynamic
Voice Coil Impedance.
3.2 ohms 400 cycles

Tube and Dial Lamp 1 12AT7 R-F Amplifier \& Mixer
Complement 1 6BE6 AM Converter \& FM Osc.
1 6BA6 1st I-F Amplifier
1 6BA6 2nd I-F Amplifier
1 6AL5 FM Discriminator
1 6AV6 Audio Amplifier, AM 2nd Detector and AVC
1 6V6GT Audio Output
1 6X5GT Rectifier
2 No. 47 Dial Lamps

DRIVE CORD REPLACEMENT

DIAL POINTER CORD

Use a new 10×80 drive cord assembly or a new length of cord 52 inches long for the installation. Install the cord as shown in the illustration, winding three turns counter-clockwise around the drive shaft with the turns progressing toward the chassis. After completing the installation rotate the drive shaft a few turns to take up the slack in the cord.

ALIGNMENT PROCEDURES
 am stages

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequancies as Listed.
Output Indisating Meter, Non-Matallic Screwdriver, Dummy Antennas -.1 mf, and 50 mmf .

Volume Control Maximum all Adjustments.
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL EENERATOR				\qquad	ADJUST	ADiUSt FOR
FREOUENCY STITNE	CONNECT GENERATOR OUTPUT TO	TMROUGH DUMMY ANTENNA	$\begin{aligned} & \text { CONNECT } \\ & \text { GROUND } \\ & \text { TO } \end{aligned}$			
455 KC	Control Grid lst 68A6 Pin No. 1	. 1 mf	Chassis Sone	Rotor Fully Open	$\begin{aligned} & \text { 2nd I.F. Pri. (1) } \\ & \text { and Sec. (2) } \\ & \hline \end{aligned}$	Maximum Output
453 KC	Control Grid 6 BE6 Pin No. 7 lat Det.	. 1 m	Chassis Base	Rotar Fully Opan	1st I.f. Pri. (3) and Sec. (4)	Maximum Output
455 KC	Control Grid 6BE6 Pln No. 7	. 1 mf	Chasis Base	Rotor fully Open	$\begin{aligned} & \text { 2nd I-F Pri. (1) } \\ & \text { and Soc. (2) } \end{aligned}$	Moximum Output
1620 KC	Control Grid 68 E (Pin No. 7	. 1 mf	Chatcis Ease	Rotor fully Open	Orcillator C-41	Maximum Output
$1400 \times$	External Antenna Terminal	50 mmf	Chasais Bose	Turn Rotor to Max. Output. Set Pointer to 1400 KC See Note A	Antonna C-2	Maximum Output

NOTE A-If the pointer is not at 1400 KC on the dial, reset pointer to the 1400 KC mark on the dial seale.

FM STAGES

The following is required for aligning:
An aceuratoly colibrated signal generator providing unmodulated signols at the test frequencies listed below.

Non-metallic cerewdriver.
Dummy Antennas and I-F Loading Resistor- $2500 \mathrm{mmf}, 300$ ohms

Zero cenrer scale DC vocuum sube voltmerer having a range of opproximatoly 3 volss.
(If a zero centar seale meter is not avoilable, a standard scale vacuum tube voltmeter may be used by reversing the meter connections for negative readings).
Allow chassis ond signal generator to "Heot Up" for several minutes.

SICNAL GENERATOR			THOUGH DUMMY ANIENNA 2500 menf	BANDsWITCHSETIINOFM		ADJUST	ADJUSTFOR
$\overline{\text { Diseriminator }}$	FREOUENCY SETTING	$\begin{aligned} & \text { CONNECT } \\ & \text { GENERATOR } \\ & \text { OUTPUT TO } \end{aligned}$					
	10.7 MC	6846 2nd l-f Pin 1 and Chassis			Rotor Fully Open	Disc. Pri. (5) Note A	Maximum Deflection
	10.7 MC	6BA6 2nd 1.f Pin 1 and Chasis	2500 mmp	FM	Rotor Fully Open	Dise. Sec. (6) Nate 8	
1-F	10.7 MC Note C	6846 lat lff Pin 1 and Chassis	2500 mmoff	FM	$\begin{aligned} & \text { Rator Fully } \\ & \text { Open } \end{aligned}$	2nd I-F Pri. (7) Sec. (8) Note D	Maximum Defiection
Discriminetor	10.7 MC	$68 A 6$ lst l-F Fin 1 and Chassis	2500 mmi	FM	Rotor Fully Open	Disc. Pri. (5) Note D	Maximum Deflection
I-F	10.7 MC	Junction C-32A at 8 (Dual 100 monf eond.) And chassis	2500 mmf	FM	Rotor fully Open	1st J.F Pri. (9) \& Sec. (10) 2nd 1-F Pri. (7) 8. Sec. (8) Disc. Pri. (5) In Order Shown Note D	Maximum Duflection
	10.7 MC	Same as above	2500 mmf	FM	Rotor Fully Open	Disc. Sec. (6) Note B	
RECHECK l.f ADJUSTMENTS IN ORDER GIVEN							
Oncillator	108.5	Disconnect built-in dipole antenna and connect generotor to dipole terminals with resistor in series.	300 ohmi	FM	$\begin{aligned} & \text { Rotor Fully } \\ & \text { Open } \end{aligned}$	Osc. C.25	Deffection Maximum
Antenna	104.5	Some as above	300 chms	FM	Tune rotor for max. AVC voltoge	Ant. C-39	Maximum Daffection

RECHECK ANTENNA a OSC. ADJUSTMENTS IN ORDER GIVEN

FM ALIGNMENT NOTES

NOTE A-The zero center seale DC vacuum rube voltmeter is to be connected between chassis ground and the AVC line. A signal of .1 volt must be fod into the receiver for this adjustment.
Note output voltage on the zere canter DC vocuum tube voltwoter.
NOTE B-Disconnect zero center DC vacuum tube voltmeter from AVC ond connect it at the audio takeoff point of the

27 K ohm resistor ($\mathrm{R}-10$) and its junction with the terminal strip. Adjust for zero voltage indication.
NOTE C-AM I.F coils must be aligned before attempting to align the FM I.F coils.

NOTE D-Connect zero center DC vacuum tube voltmeter as in Note A. Adjust input to give some output on the zero center $D C$ vacuum rube voltmoter as in Note A.

PAGE 23-16 MONTGOMERY WARD

PARTS INFORMATION

HOW TO ORDER REPAIR PARTS
Repair Parts may be ordered from your nearest Wards Retail Store, Catalog Order Office, or Mail Order House. To have your order filled promptly and correctly, please furnish the following information:

PARTS LIST

Use only genuine factory tested parts to insure service jobs you can depend on and to obtain original set performanc Prices subject to change without notice.

1. MODEL NUMBER which oppears on model label o the rear of the chassis.
2. PART NUMBER AND NAME OF PART.

GENERAL DESCRIPTION

This is a two band, nine tube (plus rectifier tube) AM and FM receiver with an automatic record changer. The 1-F stages use high gain miniature type tubes. Built-in Air Wave Aerials are provided for the FM and Broadcast bands. Features include, compensator circuits to prevent oscillator drift, automatic volume control, push-pull pentode power output stage, PM dynamic loud speaker and an electrostatic shield in the power transformer to reduce power line noise.
The receiver and record changer are housed in a console combination cabinet with controls provided for tuning, volume, tone and band or phono selection.

DRIVE CORD REPLACEMENT

Use a new 10X54 drive cord assembly or a new length of cord 48 inches long for the installation, winding three turns clockwise around the drive shaft with the turns progressing away from the chassis. After completing the installation, rotate the drive shaft a few turns to take up the slack in the cord.

ELECTRICAL SPECIFICATIONS

Power Supply	105-125 volts AC 60 cycles, 80 watts, 100 watts with record changer
Frequency Ranges	Broadcast 540-1600 KC Frequency Modulation 88-108 MC
Intermediate Frequency.	$\begin{aligned} & A M-455 K C \\ & F M-10.7 \mathrm{MC} \end{aligned}$
Selectivity	AM-43 KC broad at 1000 times signal, measured at 1000 KC 1.F. FM-200 KC broad at 2 times down
	I.F. FM-760 KC broad at 200 times down
AM Sensitivity	(For . 5 watt output with external antenna) 10 microvolts average
FM Sensitivity	(For . 5 watt output) 30 microvolts average
Power Output	8.5 watts maximum 6.0 watts 10% distortion
Loud Speaker 12" PM Dynamic	
Voice Coil Impedance . 3.2 ohms 400 cycles	
Tube and Dial Lamp Complement	1 6BA6 AM-FM R-F Amplifier 1 12AT7 FM \& AM Osc. \& Mixer
	1 6BA6 FM-AM 1st I-F Amp
	1 6BA6 FM 2nd I-F Amplifier
	1 6AL5 FM Detector
	1 6AV6 Audio Amplifier, AM 2nd Detector and AVC
	2 6K6-GT Audio Output
	1 5Y3-GT Rectifier
	1 6AV6 Phase Inverter
	2 No. 47 Dial Lamps

ALIGNMENT PROCEDURE aM Stages

The following is required for aligning:
An All Wove Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas $-.1 \mathrm{mf}, 200 \mathrm{~mm}$.

Volume Control-Maximum all Adjustments
Connect Radio Chassis to Ground Post of Signal Generator with Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up", for Sever Minutes.

SIGNAL GENERATOR		CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	GANS CONDENSER sETTING	ADJust	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR } \end{aligned}$
	$\begin{aligned} & \text { FREQUENCY } \\ & \text { SETTING } \end{aligned}$						
I.F	455 kc	$\begin{gathered} \text { 12AT7 } \\ \text { Pin } 7 \text { and Chassis } \end{gathered}$. 1 mf	Broadeast	Rotor Fully Open	$\begin{aligned} & \text { 2nd I-F Pri. \& Sec. (1) \& (2) } \\ & \text { Ist I-F Pri. \& Sec. (3) \& (4) } \end{aligned}$	
Broadcast	1620 kc	External ant. term.	200 mmf	Broadcast	Rotor Fully Open	Broodeast Oscillator C-33	Maximum
	1400 kc	External ant. term.	200 menf	Broodeast	Turn Rotor to Max. Output	Broadcast Interstage C-29	Output
	1400 kc	External ant. term.	200 mmf	Broadcost	1400 kc See Note A	Loop Antenna C-48	

FM STAGES

The following equipment is required for aligning:
An accurately calibrated signal generator providing unmodulated signals at the test frequencies listed below.

Non-motallic screwdriver.
Dummy Antennas and I.f Loading Resistor-. $01 \mathrm{mf}, 300$ ohms and 1000 ohms.

Recheck R-F and Osc. Adiustments in order given

Zero center scale $D C$ vacuum tube valtmeter having a range of approximately 3 volts.
(If a zero center scale meter is not available, a standard scala vacuum tube voltmeter may be used by reversing the meter connections for negotive readings.)
Allow chassis and signal generator to warm up for several minutes.

NOTE A-Twat Equipment connections are as given in the table. The zero center scole DC vacuum tube voltmeter is to be connected between chossis ground and the AVC line of the iunction of resistor R-22 and condenser C-18 for all ad. justments except the discriminator secondary adjustment, for which See Note C.
NOTE B-A signal of .1 volt must be fed into the receiver for this odjustment.
NOTE C-Disconnect zero center $D C$ vacuum tube voltmeter from AVC and connect to junction of R-1B and C-62. Adjust for zero voltage indication.

NOTE D-Before adjusting Pri. core connect 1000 ohm load resistol ocross the 2nd I.F. cecondary terminols. input may hove to be increased to . 1 volt if receiver is badly mis-aligned
NOTE E--Distonnect 1000 ohm load resistor from secondary ter. minals and connect across the 2nd i.f. primary terminals Input may have to be increased to 1 volt if rectiver in badly mis-aligned.
NOTE F-input can be reduced to 10,000 meterovolts.
NOTE G-Oscil!马tor frequency above signal frequency.
NOTE H-Remove the 1000 ohm load resistor befori attempting tc check the R-F and oscillator adjustments.

PAGE 23-20 MONTGOMERY WARD MODELS 15WG-2761A, 15WG-2765B, 15WG-

2765C, 25WG-2765D

TUBE SOCKET VOLTAGES
Socket voltages are shown on the Schematic diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audia grid voltages were read with a vacuum tube volt-meter. Conditions of measurement are:

Line voltage . None Signal Input

A variation of $\pm 10 \%$ is usually permissible.

PARTS INFORMATION

HOW TO ORDER REPAIR PARTS
Repair Parts may be ordered from your nearest Wards Retail Store, Catalog Order Office, or Mail Order House. To have your order filled promptly and correctly, please furnish the following information:

1. MODEL NUMBER which appears on the model lal on the rear of the chassis.
2. PART NUMBER AND NAME OF PART.

PARTS LIST
se only genuine factory tested parts to insure service jebs you can depend on and to abtain original set performa Prices subject to change without notice.

Ref. No.	Part No.	Deseriptio	Qty. Used in 501	Solling
CAPACITORS				
C. 1	144207	Gang Condenzer	1 \$ 5.26	
${ }^{\mathrm{C} .7}$				
$\begin{gathered} C-13 \\ C-16 \end{gathered}$	47X507	5000 mmf	Ceramic......ll	. 18
c-17				
C-18				
c. 19				
$\begin{aligned} & \mathrm{c}-27 \\ & \mathrm{c}-42 \end{aligned}$				
C-4	47X497	100 mmf	Ceramic...... 1	. 14
c. 5	47X499	47 mmf	Ceramic...... 1	. 18
C-8	47X498	47 mmf	Ceramic...... 1	. 16
C-10 6.50 Part of T-1 1st l-F (FM)				
$\left.\begin{array}{l} c-11 \\ c-28 \end{array}\right\}$	47×550	100 mmf	Ceramic...... 2	. 16
C-15	Part of T	-3 2nd 1.F (FM)		
¢-21	Part of T	-5 Diseriminator		
C-22				
c. 31	47×501	68 mmf	Ceramic...... 4	. 12
C.51				
c. 23	45x361	5 mf 100 V	Dry Electrolytic 1	. 60
$\left.\begin{array}{l} \mathrm{c}-25 \\ \mathrm{C}-26 \end{array}\right\}$	47X496	500 mmf	Coramic...... 3	. 16
C.45				
C.29				
$\left.\begin{array}{l}\mathrm{C}-32 \\ \mathrm{C} .33\end{array}\right\}$	Part of	Gang Condenser	\because	
C-47				
c. 30	47×552	15 mmf	Ceramic...... 1	. 14
$\left.\begin{array}{l} C-34 \\ C-46 \end{array}\right\}$	47×516	20 mmf	Coramiz...... 2	. 16
C.35	26^489	1.8 mmf	Trimmer...... 1	. 30
$\left.\begin{array}{l} c-36 \\ c-64 \end{array}\right\}$	47×549	5 mmf	Ceramic...... 2	. 22
$\left.\begin{array}{l} c-37 \\ c-65 \end{array}\right\}$	F66403	. 04 mf 600 V	Tubular....... 2	. 16
$\left.\begin{array}{l} c .38 \\ C .39 \end{array}\right\}$	Part of	T.2 lst l-F (AM)		
C. 40	866503	. 05 mf 200 V	Tubular...... 1	. 16
$\left.\begin{array}{l} c .41 \\ c .43 \end{array}\right\}$	Part of	T. 4 2nd 1.F (AM)		
$\left.\begin{array}{l} C-4 A A\} \\ C-44 B \end{array}\right\}$	47×112	50.50 mmf	Dual Miea.... 1	. 12

Ref. No.	Part No.		-ascripti	Cty. Used in set	Sallin Price
	CAPACITORS-COnt.				
$\left.\begin{array}{l} C-48 \\ C-50 A \\ C-50 B \\ C-50 C \end{array}\right\}$	Part of	T. 7 (Loop	Antenna)	Dry Electrolytic 1	2.22
	45×374	40 mf $40 \mathrm{mf}^{f}$ 40 mf	$\begin{array}{r} 450 \mathrm{~V} \\ 450 \mathrm{~V} \\ 25 \mathrm{~V} \end{array}$		
C. 52	F66103	. 01 mf	600 V	Tubutar. 1	. 10
C. 53	47X468	220 mmf		Ceramic. . . . 1	. 18
$\left.\begin{array}{l} C-54 \\ C-59 \end{array}\right\}$	F66203	. 02 mf	600 V	Tubular...... 2	. 16
$\begin{aligned} & C .53 \\ & C-60 \end{aligned}$	F66102	. 001 mf	600 V	Tubular. 2	. 12
C-56	866203	. 02 mf	200 V	Tubular...... 1	.12
C-57	F66602	. 006 mf	600 V	Tubular...... 1	. 12
C.58	B66502	. 005 mf	200 V	Tubular...... 1.	. 12
C-61	47X471	68 mmf		Ceramic. 1	. 18
C. 62	47X492	2700 mmf	f	Molded Miea. . 1	. 34
C. 63	46X328	. 01 mf	120 V	Tubular...... 1	. 12
	RESISTORS				
	Ohms		Watts		
$\left.\begin{array}{l} R-1 \\ R-10 \\ R-22 \end{array}\right\}$	B85105	1 meg.	0.5	Carbon...... 3	. 06
$\left.\begin{array}{l}R-2 \\ R-12 \\ R-15\end{array}\right\}$	B83680	68	0.5	Carben...... 3	. 10
$\left.\begin{array}{l} R-3 \\ R-11 \end{array}\right\}$	884563	56K	0.5	Carbon...... 2	. 08
$\left.\begin{array}{l} R-4 \\ R-6 \\ R-8 \\ R-13 \end{array}\right\}$	884102	1000	0.5	Carbon...... 4	. 08
R. 5	885104	100K	0.5	Carbon...... 1	. 06
R-7	884103	10K	0.5	Carben. 1	. 08
R-9	895225	2.2 meg.	0.5	Carbon...... 1	. 06
R-14	885473	47K	0.5	Carbon. 1	. 06
R-16	C84393	39X	1.0	Carban...... 1	. 10
R. 17	B85222	2200	0.5	Carbon....... 1	. 06
R. 18	B84273	27K	0.5	Carbon...... 1	. 08
R-19	43×233	3.6	0.5	Wirewound. . 1	. 14
$\left.\begin{array}{l} \text { R. } 20 \\ R-21 \end{array}\right\}$	B83682	6800	0.5	Carbon...... 2	. 10
R-23	43×242	1400	5.0	Wirewound... 1	. 40
R-25	36×372	0.5 meg.		Volume Control 1	. 74
R-26	B85153	15K	0.5	Carbon..... 1	. 06
R-27	40×285	3 meg.		Toine Control. . 1	. 48

$\left.\begin{array}{l} R-28 \\ R-33 \end{array}\right\}$	RESISTORS-Cont.				
	885106	10 meg .	0.5	Corbon. 2	. 06
$\left.\begin{array}{l} R-29 \\ R-34 \end{array}\right\}$	885274	270K	0.5	Carbon...... 2	. 06
R-30	D83561	560	2.0	Carbon. 1	. 20
$\left.\begin{array}{l} R-31 \\ R-35 \\ R-38 \end{array}\right\}$	B85474	470K	0.5	Carbon. 3	. 06
R-32	884822	8200	0.5	Carbon. 1	. 08
R-36	884682	6800	0.5	Carbon...... 1	. 08
R-37	884562	5600	0.5	Carbon...... 1	. 08
R-39	B84221	220	0.5	Carbon. 1	. 08

L-2	942025	Interstage Coil (AM) 1
L-3	9 A 2024	Interstage Coil (FM)
L.4	9 92022	Oscillator Coil (AM)
L. 5	35A5	Insulated Choke 1
L-6	9A1881	Filament Choke
1.7	942023	Oscillator Coil (FM) 1
L-8	35A7	Mixer Choke (FM)
1.9	9 92027	Antenna Coil (FM)
T-1	9 92043	1st I-F Trans. (FM)
T-2	9 A 2029	Int I.F Trans. (AM) 1
T-3	9A2030	2nd I-F Trans. (FM) 1
T. 4	942042	2nd l-F Trans. (AM) 1
T-5	9 92064	Disariminator Coil 1
T-6	942004	Dipole Antenno 1
T.7	942041	"B" Range Loop Antenno 1
T-8	53×286	Power Transformer
T-9	51×142	Output Transformer 1

DIAL AND DRIVE ASSEMBLY

58×723	Dial Glass	. 50
25×1634	Diat Bracket	1.06
41×88	Dial Light Reflector	. 10
15×251	Pointer	. 10
10×54	Drive Cord Assembly	12
28×113	Drive Cord Spring	. 02
7 Al 103	No. 47 Pilot Light 2	. 16
7 A199	Pilot Light Socket Assembly	. 28
19×192	" $\mathrm{C}^{\prime \prime}$ Washer (mfg. Drive Shaft) 2	. 02
26×512	Drive Shaft	30
6×67	Rubber Gromm	. 02

MISCELLANEOUS

GENERAL DESCRIPTION

RADIO

Four tubes including tube rectifier. Built-In loop antenna. Permanent Magnet Dynamic Speaker.

AUTOMATIC CLOCK

Self Starting.
Turns on radio automatically.
Turns on radio, and buzzer alarm sounds 10 minutes later.

TUBE COMPLEMENT

12AU6
12AV6
50 C 5
35W4

Converter
Diode - 1st Audio
Power Output
Rectifier

ELECTRICAL SPECIFICATIONS

POWER SUPPLY - 110 to 120 volts $\mathbf{6 0} \mathbf{~ c y I ~}$ (Alternating Current)

FREQUENCY RANGE - 540 to 1600 F

INTERMEDIATE FREQ. -
455 F

POWER OUTPUT - Undistorted - 0.9 Wa

- Minimum -1.8 Wa

SENSITIVITY - $\mathbf{3 0 0 0}$ microvolts avera for .05 watts output

SELECTIVITY -At $1000 \mathrm{KC}, 100 \mathrm{KC}$ 1000 X signal

LOUD SPEAKER - 4 Inch Round P. 1

VOICE COIL IMPEDANCE - 3.2 Ohms 400 cycle:

ALIGNMENT PROCEDURE

The signal source must be an accurately calibrated signal generator capable of supplying 455 Kc an up to 1620 Kc signals modulated 30% with a 400 -cycle audio signal.

Volume control at maximum for all adjustments.

Align for maximum output. Reduce input as needed to keep output near 0.4 volts.

Loop antenna should be connected to receiver and in its proper position when making the adjustments.

TOP VIEW OF CHASSIS

BOTTOM VIEW OF CHASSIS

 receivers.

IMPORTANT: All prices in this literature are subject to change without notice, and are subject to an additional charge to cover any applicable sales tax, use, occupation, or other tax affecting our purchase or sale of merchandise.

GENERAL DESCRIPTION
4 Tubes Plus Selenium Rectifier. Operates Either On Electric Current or Self-Contained Batteries.
Built-in Iron Core Rod Type Antenna. Permanent Magnet Dynamic Speaker. Automatic Volume Control.

BATTERY INFORMATION		
BATTERY TYPE	A-BATT. 4-1/2V	B BATT. 90 V
MONTGOMERY WARD	$62-26$	$62-46$
Eveready	736	490
Burgess	F3	N-60
Ray-O-Vac	P93A	4390
General Dry Bettery	38 OR 3F3	132

ELECTRICAL SPECIFICATIONS

POWER SUPPLY: VOLTAGE - 110-12 Volt Direct Currei or 110-120 Volt 50-6 Cycle Alternating Cu rent. 12 Watts OR
BATTERIES - Or 4-1/2 Volt "A" Bar tery (Cat. No. 62-26 One 90 Volt "B" Ba tery (Cat. No. 62-4t

FREQUENCY RANGE: 540 to 1600 K
INTERMEDIATE FREQ: 455 K
POWER OUTPUT
Undistorted - $\quad 180 \mathrm{M}$ Maximum - 300 M

LOUD SPEAKER - 4 Inch Round P. M
VOICE COIL IMPEDANCE -3.20 hms 400 Cycle

TUBE COMPLEMENT
1R5 - Converter
1U4 - I. F. Amplifier
1U5 - Diode-Audio Amplifier
3V4 - Power Output
Rectifier - Selenium Type

ALIGNMENT PROCEDURE

For alignment procedure read tabulations from left to right and make the adjustmen marked (1) first. (2) next. (3) third.

Before starting alignment:
(A) Remove the chassis and loop antenna from the cabinet at the same time by r moving the battery connectors from the batteries, pulling off knobs and remo ing the two screws on the chassis tabs which fasten the chassis to the cabint
(B) Use an accurately calibrated test oscillator with some type of output measuri: device.

	长宫				
		感			
$\begin{aligned} & \text { A } \\ & \text { 罗 } \\ & \text { 品 } \end{aligned}$	－	N	∞	\pm	\cdots

MONTGOMERY WARD PAGE 23-

PARTS LIST

IMPORTANT: All prices in this literature are subject to change without notice and are subject to an additional charge to cover any applicable sales tax, use, occupation, or other tax affecting our purchase or sale of merchandise.

GENERAL DESCRIPTION

RADIO

- Six tubes including tube rectifier.
- Built-In loop antenna.
- Permanent Magnet Dynamic Speaker.
- Variable Tone Control.

PHONO

Motor Speeds of 33, 45 and 78 RPM.
Automatically plays either ten $12^{\prime \prime}$, twelve $10^{\prime \prime}$ or fourteen 7 records at either 33-1/3, 45 or 78 RPM.

Automatically shuts off after last record has played.
Automatically intermixes ten $10^{\prime \prime}$ and $12^{\prime \prime}$ records of samı speed.

Spindle adapters for 45 RPM record.
VM950 Changer -

ELECTRICAL SPECIFICATIONS

POWER SUPPLY - 110 to 120 volts 60 cycles (Alternating Current)

FREQUENCY RANGE - 540 to 1600 KC
INTERMEDIATE FREQUENCY - 455 KC
POWER OUTPUT - Undistored . 8 Watt
Maximum 1.4 Watis
SENSITIVITY - 18 microvolts average for .05 watts output
SELECTIVITY - $1000 \mathrm{KC}, 44 \mathrm{KC}$ at 1000 X signal
LOUD SPEAKER - 8 Inch Round P.M.
VOICE COIL IMPEDANCE - 3.2 Ohms at 400 cycles

TUBE COMPLIMENT

12BA6 R. F. Amplifier
12BA6

12BE6

12AV6

35C5 Power Output
35W4 Rectifier

ALIGNMENT PROCEDURE

The signal source must be an accurately calibrated signal Align for maximum output. Reduce inpul as needed to keep generator capable of supplying 455 Kc and up to 1620 Kc output near 0.4 volts. signals modulated 30% with a 400 -cycle audio signal.

Volume control at maximum for all adjustments.
Loop antenna should be connected to receiver and in its proper position when making the adjustments.

SIGNAL GENERATOR				TUNER SETTING	ADJUSTMENT
Fraquency	Coupling Capecitor	Connection To Radio	Ground Connection		
455 Kc.	. 05 MFD.	Pin 7 of 12BE6 Converter	B Minus Euss Lead	Any Point Near Center Where No Interfering Signal Is Received	Stugs at Top and Bottom of 2nd ł. F. (T2) and then both Slugs of lst 1. F. (TI) for Maximum Output.
455 Kc.	--	Lay Generator Lead Near Loop	B Minus Buss Lead	Set At Maximum Capacity	I. F. Trap Slug (L3) for MINIMUM Output.
1620 Kc.	. 05 MFD.	Antenna Shator Plates of Tuning Condenser	B Minus Buss Lead	1620 Kc.	Oscillator Yrimmer of Gang (C3) for Maximum Output.
1400 Kc.	-	Lay Generator Lead Near Loop	B Minus Buss Lead	1400 Kc.	Antenna Trimmer of Gang (C1) For Maximum Oufput.

DIAL STRINGING

REAR OF CHASSIS

rer. NO. C1, C3	part no.	dESCRIPTION CONDENSERS Trimmers on Gang Condenser	PRICE EACH
C2, C 4	N-9658	Assembly, Variable Gang Condenser \& Puliey	\$2.38
C5		Paper 05 MFD. 200 Volts	
C6	N-8092	Paper 08 MFD. 200 Volts	. 19
C7, C17, Cl4		Paper 01 MFD. 400 Volts	
C8, C11	N-9655	Ceramic 220 MMFD. 500 Volts 20%	. 14
C9	N-9577	Ceramic 33 MMFD. 600 Volts 10%	. 14
C10		Paper $\quad 02$ MFD. 400 Volts	
C 12		Ceramic 100 MMFD. 500 Volts 10%	
C13, ${ }^{\text {Cl }} 6$		Paper $\quad .005$ MFD. 600 Volts	
*C15		Ceramic 250 MMFD. 500 Voits	
$\left.\begin{array}{l}\text { C18 } \\ \text { C19 }\end{array}\right\}$	N-9641	Electrolytic $\begin{cases}50 & \text { MFD. } 150 \\ 50 & \text { MFD. } 150 \text { Volts }\end{cases}$	1.80
C20		Paper $\quad 05$ MFD. 400 Volts	
		RESISTORS	
R1		33 Ohms $1 / 2$ Watt 10%	
R2		33 K Ohms $1 / 2$ Watt 10\%	
R3		6800 Ohms $1 / 2$ Watt 10\%	
R4, *R11		220K Ohms $1 / 2$ Watt 20%	
R5		22K Ohms $1 / 2$ Watt 20%	
R6		68 Ohms 1/2 Watt 10\%	
R8	N-9639	Volume Control \& Switch 1.0 Megchm	. 97
R7, R15, R18		1 Megohm 1/2 Watt 20\%	
R9		3.3 Megohms 1/2 Watt 20\%	
R10	N-9642	Variable Tone Control 1.0 Megohm	. 65
*R12		470K Ohms $1 / 2$ Watt 20\%	
R13		150 Ohms 1/2 Watt 10\%	
R14		1000 Ohms 1.0 Wait 10\%	
216		33 Ohms $1 / 2$ Watt 20%	
R17		100 Ohms $1 / 2$ Wott 20%	
		TRANSFORMERS \& COILS	
T1, 32	N-9657	1st \& 2nd I. F. Transformers	1.28
T3	N-9664	Output Transformer	1.73
11	N-9652	Loop Antenna Coil	1.40
12	N-8709	Oscillator Coil	. 70
13	N-9650	1. F. Trap Coil	. 70
		MISCELLANEOUS PARTS	
	N-8215	Audio Couplate (R11, R12, C15, C16)	. 42
	N-9651	8" P.M. Speaker	**7.26
	N-7334	Tube Socket, 7 Pin Miniature W/ Center Shield	. 14
	N-7336	Tubes Socket, 7 Pin Miniature W/O Center Shield	. 14
	N-1147	Dial Lamp	. 16
		Cartridge Shure P76V-60H24 W/Needles	
		Needle (For 78 RPM Records) 61H29 Sapphire	
		Needle (For 33-45 RPM Records) 61H30 Sapphire	
	N. 1090	Line Cord \& Plug	. 46
	N-7925	Fiber 45 RPM Record Adapter	. 14
	N-9648	Dial Scale	. 32
	N-9629	Dial Pointer	. 24
	N. 9732	Knob, Volume, Tuning, Tone \& Switch	. 14

[^6]NOTE: Use Universal Parts Where No Part Numbers or Prices Are Shown.
IMPORTANT: All prices in this literature are subject to change without antice, and are subject to an additional charge to cover any appicable sales tox, use, occupation, or other tax affecting our purchase or sale of merchandise.

GENERAL

This radio is a personal receiver for broadcast re- tuning Range from 540 to 1640 KC and is equippe ception, operated from batteries only. It has a with the latest type Ferrite antenna.

TUBE COMPLIMENTS: IR5-Converter IT4 or IL4 I.F. Amplifier IU5 Det.-AVC Ist A.F. puantity puantity trpe manufacturer $211 / 2$ Volt " A " Airline \#62-23 Evereac size "D", Burgess \# Ray-O-Vac size "[or equivalent.
I $671 / 2$ Volt " B " Airline $\# 62-43$ Everead \#467, Burgess tyf XXD, Ray-O-Vac tyF \#4367 or equivalent
SENSITIVITY: $\quad .320$ Microvolts per meter

BATTERY REQUIREMENTS

The following batteries are required:

$$
3 V_{4} \text { Power Amp. }
$$

POWER SUPPLY: Batteries as listed on pg. POWER OUTPUT: 70 Milliwatt undistorted SPEAKER: $31 / 2^{\prime \prime}$ P.M.-V.C. impedance 3.2 ohm for .05 watt output
ALIGNMENT PRO
Volume Control--Maximum All Adjustments.
The equipment in column at right is required for aligning: ALIGNMENT

Signal Generator which will provide an accurately cà brated signal at the test frequencies as listed. Output indicating Meter: Non-Métallic Screwdriver.
Dummy Antenna -. 1 mf .

Frequency Setting	SIGNAL GENERATOR		Ground Connection	Variable Condenser Sotting	ADJUST TRIMMERS TO MAXIMUM See Trimmer lllustration
	Coupling Capacitor	Connection to Radio			
455 KC	. 1	$\begin{aligned} & \text { CONTROL GRID } \\ & \text { OF IR5 } \end{aligned}$	$\begin{aligned} & \text { TO } \\ & \text { CHASSIS } \end{aligned}$	CLOSED	1st AND 2nd I.F. Al-A2-A3-A4
540 KC	.1	CONTROL GRID OF IR5	$\begin{aligned} & \text { TO } \\ & \text { CHASSIS } \end{aligned}$	CLOSED	$\underset{\text { OSCILLATOR COIL }}{\text { SEREW }}$
1640 KC	. 1	CONTROL GRID OF IR5	$\begin{gathered} \text { TO } \\ \text { CHASSIS } \end{gathered}$	WIDE OPEN	OSCILLATOR TRIMMER A5
1400 KC	. 1	CONTROL GRID OF IR5	$\begin{gathered} \text { TO } \\ \text { CHASSIS } \end{gathered}$	TO 1400 KC SIGNAL	ANTENNA TRIMMER Ab

BATTERY INSTALLATION

HOW TO ORDER REPAIR PARTS

Repair Parts may be ordered from your nearest Wards Retail Store, Catolog Order Office, or Mail Order House. To have your order filled promptly and correctly, please furnish the following information:

1. Model Number which appeärs on nameplate.*

PARTS LIST

REF. NO.	part no.	description	Price
		CONDENSERS	
Cl	1067-99	10 MFD- 100 Volt	. 64
$\mathrm{Cb}_{6} \mathrm{C}_{2} \mathrm{Cl} 1 \mathrm{l}$	1067-100	.05-150 Volt	. 26
C3-C10	1067.101	50 MMF - 150 Volt	. 26
C5	1067-103	100 MMF - 150 Volt	. 26
C7-C4	1067-105	.005-150 Volt	. 26
C8	1067-106	.001-150 Volt	. 26
C9-A	1067-107	Variable Condenser	1.60
C9-B			
		RESISTORS	
RI	1067.1C8	$100 \mathrm{~K}-1 / 4$ Watt	. 20
R2-R6	1067-109	2.2 Meg.- $1 / 4$ Watt	. 20
R3	1067-110	$10 \mathrm{Meg.-1/4} \mathrm{Watt}$. 20
R4	1067-111	4.7 Meg.-1/4 Watt	. 20
R5	1067-112	1 Meg.-1/4 Watt	. 20
R7	1067-113	390 Ohms-1/4 Watt	. 20
R 8	1067-114	Volume Control and Switch 2 Meg .	1.00
R9	1067-114-A	680 K-1/4 Watt MISCELLANEOUS	. 20
LI	1067.115	Antenna Assembly	1.24
L2	1067-116	Oscillator Coil Assemb'y	. 60
SPR	1067-117	Speaker 31/4" P.M. with Output Transformer T3	3.80
T1 T2	1067-118	I.F. Transformer	1.40
	1067-119	Cabinet	6.50
	1067-120	Handle	1.00
	1067-121	" ${ }^{\text {" }}$ " Battery Container	. 76
	1067-123	' B^{\prime} ' Battery Clips \& Terminal Strip	. 30
	1067.124	Dial 'Tuning"	. 76
	1067-125	Dial "Volume"	. 76
	1067-126	Handle Thumb Screw	. 26
	1067-127	Socket, Tube	. 10

MPORTANT-All prices in this literature are subject to change without notice and are wbject to an additional charge to cover any applicable se tax, use, occupation, or other tax affecting our purchase or sole of merchandise.
2. Part Number and Name of Part (see Repair Ports List).

You pay charges from shipping point. Shipping charges are based on sixe and total weight of order. Use any one of the following shipping methods:

ALIGNMENT PROCEDURE
 fres (2) next. (b) third.

Weore stathe mignment:

(A) Check tuning dial adjustment by tuning gang condenser until plates are completely in mesh, at which point the dial needle must be exactly even with the last line at the low frequency end of the dial calibration. If dial needle does not point exactly to last line move to correct position.
(B) Use an accurately calibrated test oscillator with some type of output measuring device.
(C) When the chassis is removed from the cabinet the loop must be mounted on the loop mounting brackets, and the two wires connected to the loop.
(D) When aligning the 1660 KC OSCILLATOR TRIMMER or the 1400 KC ANTENNA TRIMMER, couple test oscillator to receiver loop by: (1) make loop consisting of five to ten turns of NO. 20 to NO. 30 size wire, wound on a $2^{\prime \prime}$ to $3^{\prime \prime}$ form; (2) connect this loop across output of test oscillator; (3) place test oscillator loop near radio loop. BE SURE THAT NEITHER LOOP MOVES WHILE ALIGNING.
The 1400 KC ANTENNA TRIMMER should only be adjusted after all other adjustments are made.

ELECTRICAL SPECIFICATIONS

MONTGOMERY WARD PAGE 23-
Model 25GSE-1555A
25GSE-1556A

HOW TO ORDER PARTS-Should it be necessary to write us or to order any repair parts, it is important that the complete model number which appears on the label attached to the back of the radio chassis be specified. Repair parts should be ordered from your nearest Wards Retail Store, Catalog Order Office or Mail Order House.

PARTS LIST

$\begin{gathered} \text { Ref.f. } \\ \text { No. } \end{gathered}$	Part No.	deschiption	Ref. No.	Part No.	DESCRIPTION	$\begin{aligned} & \text { Selling } \\ & \text { Price } \end{aligned}$
		CAPACITORS		MISCELLANEOUS		
C.I	MW23E18	Fixed Ceramic, 200 MMF 500 V.... $\$ 0.18$		MWIE50	Speaker, 5" P.M.	5.42
$\left.\begin{array}{l} \mathrm{C}-2 \mathrm{~A} \\ \mathrm{C}-2 \mathrm{~B} \end{array}\right\}$	Part of MW23E2041-2 Couplate (See Mise. Parts)			MW23E2041-2	Ceramic Coupling Plate.	
$\begin{aligned} & C-3 A] \\ & C-3 B j \end{aligned}$	MWi4E58	Capacitor, 2 gang Condenser........ 2.70		MW4IEI4	Line Cord and Plug Assembly....	. 54
C-4	MW23E411	Tubular, 01 MFD 400 V .		MWI7EI-31	Tube Socket, Miniature for 35W4, $50 B 5$ or 12AT6.	. 16
C. 6	MW23E2II	Tubular, . 01 MFD 200 V20		MWITEI. 22	Tube Socket, Miniature for 12BA6	
C. 7	MW23E216	Tubular, . 05 MFD 200 V............... . 22			2BE6	. 14
C-8	MW25E24	Electrolytic, 50-50 MFD 150 V....... 2.10		MW7E306-2	Cabinet, Green	8.92
C-9	MW23E416	Tubular, . 05 MFD 400 V................ . 24		MW7E306-3	Cabinet, White	8.92
C-10	MW23E202I	Tubular, . 2 MFD 400 V.............. . 80		MW IOE42	Trimount Stud.	. 02
		RESISTORS				
$\left.\begin{array}{l} \mathrm{R}-[\mathrm{A}] \\ \mathrm{R}-I \mathrm{~B} \end{array}\right\}$	Part of MW23E2041-2 Couplate (See Misc. Parts)			MW20E736	Baffle Assembly for Green Cabinet \qquad	3.92
R-2	MW27E105	Carbon, 1 Megohm I/3 W........... 06		MW20E736-2	Baffle Assembly for White	
R-3	MW27E223	Carbon, 22,000 Ohm 1/3 W.......... . 06			Cabinet	4.14
R-4	MW28E82	Control, Volume, 500,000 Ohm...... 1.06		MW35E32	Dial Pointer	. 50
$\left.\begin{array}{l} R-5 \\ R-7 \end{array}\right\}$	MW27E335	Carbon, 3.3 Megohm 1/3 W........ . 06		MW37E76	KnoB for Green Cabinet	. 24
R-6	MW27E151	Carbon, 150 Ohm 1/3 W............ . 06		MW37E76-2	Knob for White Cabinet	. 24
R-8	MW27E222-5	Carbon, 2200 Ohm 2 W............ . 22		MW48E25		
R-9	MW27E181-2	Carbon, 180 Ohm I/2 W............ . 06		MW48E2		
	COILS	AND TRANSFORMERS		MW48E25-2	Dial Bezel for White Cabinet	1.76
$\left.\begin{array}{l}\text { T.1 } \\ \text { T-2 }\end{array}\right\}$	MW20E732	Ist \& 2nd I.F. Transformer........... 1.56			Diai Drive Shaft \&̂ Êrackei Assembly \qquad	. 34
T-3	MW22E49-2	Transformer, Output 1.50		MW20E253-39	Dial Drive Cord	2
T-4	MW20E733	Coil, Oscillator I. 34				
L-I	MW7E308	Cabinet Back \& Loop................... 1.22		MW65E2	Dial Cord Tension Spring.....	. 06
PRICES SUBJECT TO CHANGE WITHOUT NOTICE,						

OBNERAL INFORMATION

TYPE - Three-power (AC/DC, Battery) portable radio receiver. Four miniature type tubes and a selenium rectifier are used in a superheterodyne circuit.

RECEIVER MODELS

Model	Color
52M1U	Green
52M2U	Maroon
52M3U	Gray

TUNING RANGE - 535 to 1620 Kc IF - 455 Kc POWER SUPPLY -

```
Operates from ll7Y AC/DC (15 watts)
or from the following batteries:
    2-1-1/2 volt flashlight cells
        Use: Eveready 950
        or Burgess 2
        or Ray-O-Vac 2LP
        or any equivalent size 'D" flash-
            light cell.
    1-67-1/2 volt "B" battery
        Use: Eveready 467
        or Burgess XX45
        or Ray-O-Vac 4367
        or equivalent.
```


OPRRATINE ENGTRUCTIONS

TO OPEN FRONT COVER. The front cover is opened by pushing up on the cover release button, located in the center of the front cover. The receiver is automatically turned on when the front cover is opened and raised to a vertical position.

TO OPEN BACK COVER. The back cover is opened by grasping it at the top and gently pulling cover open. When closing the cover, be careful not to pinch the power line cord or other leads between the cover and the cabinet.

HOUSE CURRENT OPERATION. The power cord is located inside the cabinet and can be reached by opening the back cover. Pass the line cord through the slot on the side of the receiver beforgclosing the cover. Plug the power cord into any 117 volt AC or DC power outlet. Reverse the line cord plug in power outlet if the receiver does not operate from DC power. When operating from AC power, reception may sometimes be improved by reversing the power plug in power outlet. It is not necessary that batteries be installed if the receiver is to be operated only from house power lines.

BATTERY OPERATION. Open the back cover and insiail batteries by following the instructions found on labellocated on back cover or as shown in Figure 2. Plug the power line cord into the receptacle on the receiver chassis, as shown fon label, or the receiver will not play from batteries. If the receiver is to be operated for a long period of time from AC or DC house power lines, or is to be placed in storage, remove the batteries and store them in a cool place.

IMPORTANT: Never leave low or run-down batteries your receiver because they will leak or swell and darni your receiver.

TUNING CONTROL. Stations are tuned in with the rig hand knob. Tune carefully until you are exactly on a s tion; tuning to eitherside of it will result in poor tone qu ity and excessive noise. Do not regulate volume by detun the station; always tune exactly on the station, then adj volume control to desired loudness.

VOLUME CONTROL. The left-hand knob controls volur Rotation to the right will increase volume; rotation to left will decrease it.

TO TURN OFF. Closing the front cower will automatica turn off the receiver.

ANTENNA. A super-sensitive "Aerovane" loop antenna built into the front cover of this receiver. Because of slightly directional characteristics of the loop antenna, 1 ception from some stations may be improved by rotating receiver. In extremely noisy locations, rotate the receis until minimum noise and maximum signal pick-up is , tained.

BATTERY REPLACEMENT. If low volume or fuzzy ts is noticed when operating from batteries, replace the fla light cells. Normally, the 67-1/2 volt "B" battery will 1 for 3 or 4 changes of the flashlight cells.
NOTE: The condition of the batteries will not affect oper tion of receiver from 117 volts AC or DC. Complete b_{i} tery replacement instructions will be found inside the r ceiver back cover.

service hotes

The chassiz of this receiver is isolated from the AC TO REMOVE THE CHASSIS FROM THE CABINET: power line circuit by a capacitor-choke assembly to eliminate the shock hazard when handing the receiver. How- 1. Open the rear cover and remove the batteries. ever, as an additional precaution when aligning or servicing the receiver from AC, an isolation transformer should be inserted between the power line and the chassis.
2. Remove the two hex head screws that mount the chassis

The tubes are exposed when the rear cover is opened. It is not necessary to remove the chassis to replace tubes.
3. Slide the chassis from the cabinet.
4. Disconnect the two loop antenna leads from the hinges.

ALIGNMENT

NOTE: The receiver may be operated either from batteries 4. Turn the receiver volume control to maximum. or from the commercial power lines during alignment. If
AC power is used, it is recommended that an isolation
transformer be placed between the power line and the re- 5. Use a small fibre screwdriver for aligning the lF and ceiver. If an isolation transformer is not available, connect diode transformers.
the low aide of the signal generator to B-through a. 1 mf
capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to \mathbf{B}-.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Adjust the signal generator output to produce . 40 volts (. 05 watts) across the voice coil. As stages are aligned, to avoid overloading the receiver. reduce the generator output to maintain the .40 volt level.
5. See Figure 1 for adjusting locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANT ENNA.	GENERATOR CONNECTION	GENERATOR FREOUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIGNMENT						
1.	.1 mf	Grid of conv (pin 6, 1R5)	455 Kc	Fully open	$\begin{aligned} & 1,2: 3 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
2.	. 1.1 mf	Grid of conv (pin 6, IR5)	1620 Kc	Fully open	4 (Osc)	Adjust for maximum.
3.	-	-	-	-	-	Install chassis in cabinet, leaving output meter connected to apeaker.
4.	-	Radiation \qquad loop*	1400 Kc	$\begin{aligned} & \text { Tune for } \\ & \text { max } \end{aligned}$	5 (Ast)	Adjust for maximum. Trimmer is reached through hole under plug button on side of cabinet.

*Connect generator output across 5 " diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.

MOTOROLA PAGE 23 MODELS 52M1U, 52M2t 52M3U, Ch. HS-300

FIGURE 1. TLBE AND TRIMMER LOCATYONS

PAGE 23-4 MOTOROLA
MODELS 52M1U, 52M2U,
52M3U, Ch. HS-300

PIGURE 3. PARTS LOCATIOAS

MOTOROLA PAGE 2 MODELS 52M1U, 52M2 52M3U, Ch. HS -300

PAGE 23-6 MOTOROLA
MODELS 52M1U, 52M2U
52M3U, Ch. HS-300

aLvid yolsisct-

MOTOROLA PAGE 2

PARTK LIsT

NOTE: When ordering parts, specify model and chassis numbers of, set in addition to part number and description of part.

PAGE 23-8 MOIOROLA

MODELS 52M1U, 52M2U,

 52M3U, Ch. HS-300

GENERAL INFORMATION

TYPE - FM-AN table model receiver

| THNING RANGE - AM | 535 to 1620 Kc | IF $=455 \mathrm{Kc}$ |
| ---: | ---: | ---: | ---: |
| FM | 88 to 108 Mc | IF $=10.7 \mathrm{Mc}$ |

TUBE COMPLEMEKT - 12BAG - FM-AM RF Amplifier
12BA7 - FM-AM Converter
12BA6 - FM-AM IF Anplifier
12BA6 - FM IF Anplifier
19 T 8 - FM Ratio Detector, AM
Detector \& 1:t Audio Amp
50 C 5 - Power Amplifier
Rectifier - Selenium type
POWER SUPPLY - 117Y AC or DC, 40 watta

INSTALLATION \& OPERATING INSTRUCTIONS

ANTENHA \& GROUND

No outside antenna or ground ia required for atandard broadcast (AM) reception. A loop antenna for broadcast reception is located at the rear of the cabinet.

An FM antenna, built into the power cord, eliminates the need for an external $F M$ antenna when the receiver is used in normal FM service areas such as are found in and for few miles arourd metropolitan areas. In firínge" or weak tignal areas, improved $F M$ reception can be obtained by using an FM antenna mounted as high as possible. The FM antenni should be connected through a 300 ohe twin transmission line to the two screws on the rear of the set. Refer to the instructions on the antenna panel for proper tranatisaion line connections. Orient the antenna so that maximum volume of FM station or stations is obtained.

NOTE: When the built-in FM antenna is used, connect the green lead from the chassis to the RICHT-HAND terminal on the loop. Since the FM antenna ia incorporated in the power line cord, stretch the line cord to its full length to obtain strong $F M$ reception.

CAUTION: Do not connect antenna or chassis to water pipe, radiator, or other ground.

CONTROLS

POWER SWITCH \& VOLUME CONTROL. The power switch and volume control are combined and are operated by the left-hand knob.

BANDSWITCH. The small (inner) right-hand knob aelects FM or AM reception. Rotate the knob clockwise for AM or counterclockwise for FM.

TUNING. Tuning of boch $F M$ and $A M$ is accomplished with the large (outer) right-hand knob. The atandard broadcast dial (AM) is read in kilocycles by adding two zeros to the figures. The frequency modulation (FM) dial scale is read in megacycles (88 to 108).

Tuning of FM stations should be done very carefully, for best sound reproduction, not necessarily for strongest volume received.

SERVICE NOTES

OPERATING MOTES:

The chassis of this receiver is connected directly to the power line. When operating the chase sis (from AC line) outside of its cabinet, use on isolation transformer between the power line and the receiyer to reduce the poasibility of electrical shock. If an isolation transformer is not available, check the $A C$ voltage between the chassis and the bench ground. If there is any indication of voltage, raverae the line plug before handling the set.

When operating the receiver from on AC power line, reception can sometimes be improved by reversing the plug in the power outlet. If the receiver does not operate from a DC power line, after being turned on for a few minutes, reverse the plug in the power outlet.
TO CALIBRATE DIAL:

1. Turn the tuning knob counterclockwise until the end of its travel is reached.
2. Through the hole in the bottom of the cabinet, loosen the Allen head setscrew in the pointer sleeve. 3. Move the pointer until it coincides with the center of the " 5 " on the AM broadcast scale.
3. Tighten the setscrew.

NOTE: If the pointer is accidentally moved
by hand, it will be released from a detent in the pointer collar assembly, and no damage to the tuning mechanism will result. To reset the pointer, merely move it back and forth until it again engages in the detent.

TO REMOVE CHASSIS FROM CABINET:

1. Remove the pointer, as deacribed above.
2. Pull off the control knobs.
3. From the rear of the cabinet, remove the two screws holding the chassis to the cabinet.
4. Remove the two split plugs at the top of the loop, which hold the loop to the cabinet.
5. Slide the chassis from the cabinet.

TO REMOVE POINTER:

1. Remore the two screws holding the medallion, from beneath the cabinet.
2. Turn the tuning knob until the pointer reaches the low frequency end of its range.
3. Through the hole in the botton of the cabinet, insert an Allen head wrench into the setscrew in the pointer sleeve and hold the wrench. This keeps the sleeve from turning and breaking the dial string. 4. Remove the nut and washers from the front of the pointer.
4. Pull off the pointer.

figure i. string drive detail

ALIGNMENT

GENERAL INFORMATION

1. Maximun performance can be obtained only if extreme care is exerciaed during alignment.
2. If $A C$ power is used, it is recommended that an isolation tranaformer be placed between the power line and the receiver during alignment to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to the receiver chassis through a . l mf capacitor.
3. Use a small fibre screwdriver for aligning the IF transformers.
4. Refer to Figure 2 for the location of all align* ment trimmers and cores.
5. As the stages are brought into alignment, reduce the signal generator output to a low value to avoid overloading the receiver.

ORDER OF ALIGNMENT AND EQUIPMENT REQUIRED

1. Broadcast Band IF \& RF Alignment
a. 455 to 1620 Kc AM signal generator
b. low range output meter

2 (A) FM Band IF \& RF Alignment (Preferred Method)
a. 10.7 to 108 Mc FM signal generator b. Oscilloscope
(B) FM Band IF \& RF Alignment (Alternate Method)
a. 10.7 to 108 Mc signal generator (unmod.)
b. Low range $D C$ electronic voltmeter.

BROADCAST BAND - IF \& RF ALIGNMENT

1. Connect the AM signal generator as in chart below, with 400 cycle, 30% modulation.
2. Connect the output meter across the speaker voice coil. Throughout alignment reduce the generator output to a level which produces less than. 40 volts across the voice coil, to avoid overloading
the receiver.
3. Set the bandswitch to the AM position.
4. Turn the receiver volume control to maximum.
5. Proceed as shown in the following chart.

MOTOROLA PAGE
MODELS 72XM21

STEP	DIMAN ANTENN	$\begin{aligned} & \text { GENERATOR } \\ & \text { CONNECTION } \end{aligned}$	GENERATOR FREQUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SETYING } \end{aligned}$	ADJUST	72XM22, Ch. HS REMARKS
IF A	$\begin{aligned} & \text { IENT . } \\ & .1 \mathrm{mf} \end{aligned}$	$\begin{aligned} & \text { Grid of conv. } \\ & \mathrm{V}-2 \text { (pin } 7, \\ & 12 B A 7 \text {) } \end{aligned}$	455 Kc	Fully opened	$\begin{aligned} & 1,2,38 \\ & 4 \text { (IF cores) } \end{aligned}$	Adjust for maximum.
RF 2.	. 1 mf	Grid of conv. V-2 (pin 7, 12BA7)	1620 Kc	Fully opened	$(B C \stackrel{5}{\mathrm{osc}})$	Adjust for maximum.*
3.		Across radiation loop**	1400 Kc	Tune in signal	$\left(B C^{8} \mathrm{ant}\right)$	Adjust for maximum.

4. If, after the recoiver has been aligned as above, it is found to be badly off calibration, it will be necessary to adjust oscillator core (7) as follows connect the generator to the grid of the converter tube and, with the geng fully cloaed, adjust core (7) at 535 Kc . It ia advisable to repeat the oscillator adjustmenta at 1620 Kc and 535 Kc several times until the tuning range is correct. Core (7) has been pre-set at the factory and normally should require no retuning.

* If difficulty is encountered in tuning trimmer (5), adjuat trimerer (6) to $1 / 2$ turn from tight.
*"Connect generator output acroas 5^{n} diameter, 5 turn loop and couple inductively to receiver loop, Keep loops at least $12^{\prime \prime}$ apart.

FIGURE 2. TURE TRIMMER LOCATIONS

MODELS 72XM21,

72XM22, Ch. HS-303
FM BAND - IF \& RF ALIGNMENT (PREFERRED METHOD)

1. The following $F M$ alignment procedure, using an FM signal generacor and an oscilloscope, is to be preferred because the actual response pattern may be observed on the scope and adjusted for best symmetry and maximum amplitude.
2. Connect the vertical input terminals of the oscilloscope between the chassis and the junction of resistor R-24 (33 K) and capacitor C-29 (1000 mmf)
3. Connect the FM signal generator sync voltage output terminals, through a phase shifting network, to the horizontal input terminals of the scope, as -in Figure 3. (Other values of resistance and capa-
citance may be required, depending upon the acope). The phasing control should be adjusted to give only one trace on the acope. NOTE: If the FM generator has a built-in phase control, the phase shifting network is not necessary
4. Set the bandswitch to the FM position.
5. Throughout alignment, reduce the generator output to keep the signal just atove the noise level, to avoid overloading the receiver.
6. Proceed as shown in the following chart.

STEP	$\begin{aligned} & \text { OUMNY } \\ & \text { ANTENNA } \end{aligned}$	GEMERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { TUNER } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARXS
If Alignment						
1.	1000 mmf	Grid of 2nd IF Amp V-4 (pin 1, 12BA6)	10.7 Mc $\pm 100 \mathrm{Kc}$ dev.	Fully opened	$\begin{aligned} & \text { (ratió }{ }^{9} \text { det } \\ & \text { pri) } \end{aligned}$	Adjust for maximum amplitude of pattern.*
2.	1000 mmf	$\begin{aligned} & \text { Grid of 2nd IF } \\ & \text { Amp V-4 (pin 1, } \\ & 12 \mathrm{BA} 6 \text {) } \end{aligned}$	10.7 Mc $\pm 100 \mathrm{Kc}$ dev.	Fully opened	$\underset{\substack{\text { ratioc }}}{10}$	Adjust for symmetrical curve, as shown in Figure 4.
3.	\bullet	-	-	-	-	Repeat steps $1 \& 2$ for maximum amplitude and best symmetry.
4.	1000 mmf	Grid of lst IF Amp V-3 (pin 1, 12BA6)	$\begin{gathered} 10.7 \mathrm{Mc} \\ \pm 100 \mathrm{Kc} \mathrm{dev} \end{gathered}$	Fully opened	$\begin{aligned} & 11 \text { \& } 12 \\ & \text { (2nd IF sec } \\ & \text { \& pri) } \end{aligned}$	Adjust for maximum amplitude of pattern.*
5.	1000 max	Grid of conv. V-2 (pin 7, 12BA7)	$\begin{gathered} 10.7 \mathrm{Mc} \\ \pm 100 \mathrm{Kc} \text { dev } \end{gathered}$	Fully opened	$\begin{gathered} 13 \& 14 \\ \left(\begin{array}{l} 13 \mathrm{IF} \\ \text { \& } \mathrm{pri}) \end{array}\right. \\ \hline \end{gathered}$	Adjust for maximum amplitude of pattern.*
6.	1000 mmf	Grid of conv. $\mathrm{V}-2$ (pin 7 , 12BA7)	$\begin{aligned} & 10.7 \mathrm{Mc} \\ & \pm 100 \mathrm{Kc} \mathrm{dev} \end{aligned}$	Fully opened	$\begin{aligned} & 11,{ }^{12} \\ & 13 \end{aligned}$	Readjust for maximum amplitude and best symmetry.
${ }_{7}^{\text {RF }}$ ALI	270 ohms	FM terminals on loop	$\begin{gathered} 87.5 \mathrm{Mc} \\ \pm 22 \% / 2 \mathrm{Kc} \mathrm{dev} \end{gathered}$	Fully closed	$\begin{gathered} 15 \\ \left(\begin{array}{c} \text { osc adj } \\ \text { nut }) \end{array}\right. \end{gathered}$	Adjust for maximum amplitude of pattern.*
8.	-	-	-	Fully closed	$\begin{gathered} \text { (RF adj } \\ \text { nut) } \end{gathered}$	Turn counterclockwise until core is at botton of pipe, then turn four turns clockwise.
9.	270 ohms	FM terminals on loop	$\begin{gathered} 90 \mathrm{Mc} \\ \pm 22 \% \mathrm{Kc} \text { dev } \end{gathered}$	Tune in signal	$\begin{aligned} & 17 \\ & \text { (RF tun- } \\ & \text { ing plug) } \end{aligned}$	Adjust for maximum amplitude of pattern.*
10.	270 ohms	FM terminals on loop	$\begin{aligned} & 105 \mathrm{Mc} \\ & \pm 22 \% / \mathrm{Kc} \mathrm{dev} \end{aligned}$	Tune in sigtal	$\begin{gathered} \mathrm{RF}_{\text {and }} \\ \text { nut) } \end{gathered}$	Adjust for maximum amplitude of pattern.*
11.	-	-	-	-	-	Repeat stepa $9 \& 10$ until no further adjustment is necessary.

*An output meter across the speaker voice coil will also indicate maximum amplitude. It should not be used in place of the acope, however, since it will not show aymetry of the curve.

FM SIGNAL GENERATOR \& OSCILLOSCOPE HOOK-UP

FM BAND - IF \& RF ALIGNMENT (ALTERNATE METHOD)

1. The following procedure for FM alignment, with an unmodulated carrier generator and a DC electronic voltmeter, is not as desirable as the preceding method; but it may be used if no FM generator is available.
2. Connect the signal generator as in chart below, with no modulation.
3. Set the bandswitch to the FM position.
4. Except in step 2 below, connect the blectronic voltmeter across resistor R-23 (15K) in the ratio detector stage.
5. Throughout alignment reduce the signal generator output to a value which produces no more than a 5 volt rise above no signal volcage, to avoid overloading the receiver.
6. In step 2 below, connect two 100 K ohm resistors in eeries across R-23. Connect the electronic voltmeter between the volume control side of resistor R-24 (33K) and the junction of the two 100K resistors, with the low side of the meter at the 100 K resistors.
7. Proceed as shown in the following chart.

PAGE 23-14 MOTOROLA

FIGURE 5. PARTB LOCATIONS

PART8 EIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part,

Rei. No.	Part Number	Description	$\begin{array}{r} \text { List } \\ \text { Price } \\ \hline \end{array}$	Ref. No.	Part Number		Description	$\begin{gathered} \text { Lis } \\ \text { Pric } \end{gathered}$
CHASSIS HS-303 PARTS - ELECTRICAL				Speaker				
				LS-1	$50 c 692180$			
Capacitors				or	50 K 610050	Speaker	5-1/4" PM; 3.2	
$\overline{\mathrm{C}}$-1A, B	19B691877	Variable: 2-gang.	3.00			ohn VC		4.21
C-2	8R9821	Paper: . 05 mf 200v	. 20				exch	3.1
C-3	214470323	Ceramic: 15 mmf 500 V	. 25					
C-4	21K478410	Ceramic: 1000 maf 500V	. 25	Resistors				
C-5	8X470606		.25					
C-6	21177373	Ceramic: 47 mmf 500v.20	Note: All resistors are insulated carbon				
C-7	21877286	Ceramic: 100 mmi 500V.......	. 20		type	nless oth	erwise specified.	
C-8	21877286	Ceramic: 100 mmf 500 V .	. 20					
C-9	2182743	Hica: $50 \mathrm{mmf} \mathrm{5} \mathrm{\%} \mathrm{300V}$.	. 25	R-1	6 6 2039	68 10\%	1/2w.............doz	1.2
C-10	21R114992	Ceramic: 24 maf 500V	. 25	R-2	6R6068	$2200 \quad 10$	\%\% 1/2w...........doz	1.2
C-11	214690888	Ceramic: 85 maf 500V	.30	R-3	6R6028	22,000	20\% 1/2\%........doz	1.2
C-12	211478410	Ceramic: 1000 maf 500v	. 25	R-4	6R6012	33,000	20\% 1/2W........doz	1.2
C-13	21K478410	Ceramic: 1000 mant 500V.	. 25	R-5	6R6056	47,000	20\% 1/2w........doz	1.2
C-14	214470789	Ceranic, disc type: 3000 maf		R-6	GR3933	220 20\%	1/2W...........doz	1.2
		450 V .	. 30	R-7	6R3927	2.2 meg	20\% 1/2w doz	1.2
C-15	214470789	Ceranic, disc type: 5000 mat		R-8	6 R2122	4.7 meg	20\% 1/2\%.........doz	1.2
		450 V .	. 30	R-9	17A690578	Wire wou	and: 22 10\% 1.5	21
C-16	21K482726	Ceramic, disc type: 20,000		R-10	6R3963	100 10\%	2 T	2
		mif 450V. 30	R-11	6R476116	270 10\%	2w.	21
C-17	21K691948	Ceramic: 150 maf 500V.	. 20	R-12	6R2039	68 10\%	1/2wdor	1.21
C-18	21K482726	Ceramic, disc-type: 10,000		R-13	682039	68 10\%	1/2W............dioz	1.21
		mif 450v.	.30	R-14	6R3933	220 20\%		1.2
C-20	8x9824	Paper: . 002 nif 400 V ..	.20	R-15	6R6028	22,000	20\% 1/2w........ .doz	1,2
	23B690539	Electrolytic: 50-50-50 mf/		R-16	6R6032	470,000	20\% 1/2w....... doz	1.21
		150V..........	1.65	a-17	6R6291	560 10\%	1/2W............doz	1.21
C-21	$8 \mathrm{R9813}$	Paper: . 005 mi 600v.........	. 20	A-18	686032	470,000	20\% 1/2\%........doz	1.21
C-22	8R9802	Paper: . $02 \mathrm{mf} \mathrm{400V}$.	. 20	R-19	625660	180 10\%	1/2w...........doz	1.21
C-23	214790912	Ceramic: 2000 mil 500V	. 20	R-20	6 6 5683	27 10\%	1/2W.............doz	1.21
C-24	8 K 9824	Paper: ,002 mf 400v..	. 20	B-21	6R6036	330020	\% 1/2w..........doz	1.21
C-25	21K482726	Ceramic, disc type: 10,000		R-22	882122	4.7 meg	20\% 1/2w.......doz	1.21
		maf 450V.....................	.30	R-23	686477	15,000	10\% 1/2w........doz	1.21
C-26	21×77375	Ceramic: 220 mif 500v.	.20	E-24	686012	33,000	20\% 1/2W.........doz	1.21
C-27	218484337	Ceramic, dual: 250 maf,250 manf.	. 30	8-25	181690549	Volume c on-off	control: 1 meg; with switch.	1.01
C-28	23k690543	Electrolytic: 3 nf 50v	. 65	R-26	685554	390 10\%	1/2W.......... . doz	1.21
C-29	21K478410	Ceramic: $1000 \mathrm{mmf} \mathrm{500V.....}$.	. 25	R-27	6R6373	150 10\%	1/2w...........didoz	1.21

PAGE 23-16 MOTOROLA
MODELS 72XM21,
72XM22, Ch. HS-303

MOTOROLA PACE 2

GENERAL INFORMATION

TYPE - AC table model superheterodyne with appliance outlet and self-contained electric clock for controlling automatically the operation of the radio and the outlet.

RECEIVER MODELS

TUNING RANGE - 535 to 1620 Kc
IF -455 Kc

TUBE COMPLEMENT - Type Function

- Type	Function
12BE6	Converter
12BD6	IF Amplifier
12AT6	Det, AVC \& AF Amp
50C5	Power Amplifier
35W4	Rectifier

POWER SUPPLY = Operates from 117 volts, 60 cycle, alternating current only. Power consumption 37 watts.

CLOCK - Telechron self-starting electric clock, 4 Motorola face and hands.

OPERATING INSTRUCTIONS

The locations and functions of the clock and radio controls are shown in the photo above.

NORMAL RADIO OPERATION
Knob "A;" on the clock turns the radio on or off. Select stations with the TUNING knob, and adjust volume with the VOLUME control.

A built-in loop antenna eliminates the need for an outside antenna in most locations. When receiving a weak station, rotate the receiver slightly for best signal strength. If additional pick-up is necessary, connect an external antenna to the radio by following the instructions printed on the rear panel. CAUTION: Never connect the radio chassis to a water pipe, radiator, or other ground. .

CLOCK OPERATION

The clock will start as soon as the receiver is plugged into an electrical outlet. To set the hands to the correct time, rotate the TIME SET knob (on the rear of the radio)
in a clockwise direction only.

ALARM OPERATION

To set the alarm, pull out knob "C" and rotate it i counterclockwise direction to the desired time on the ala dial scale. The alarm will ring for one hour, or until k " C " is pushed in. The alarm function is completely in pendent of the other controls on the clock.

APPLIANCE OUTLET

To control an electrical applianceautomatically, plu into the receptacle on the back of the radio. See Figur. It will then be turned on or off simultaneously with the ra CAUTION: Note that the rating of the outlet is 1100 w . or less.

If radio reception is not desired when operating the pliance, rotate the radio volume control to the minimum , ume position.

FIGURE 1. REAR YIET
BEDTIME CONTROL
The BEDTIME control will turn the radio and appliance off after any pre-set interval of time up to one hour.

Turn knob "A" to the "OFF" positionand rotate knob "B" to any period of time between 0 and 60 minutes. The radio and appliance will be turned offautomatically after the proper time has elapsed, and they will remain off until turned on again manually.

AUTOMATIC RADIO OPERATION

The clock controls may be preaset to turn the radio on automatically at any time up to twelve hours in advance.

If an appliance is plugged into the receptacle on the back of the receiver, it will be turned on automatically, along with the radio.

Pull out knob "C", rotate it counterclockwise to the desired time on the alarm dial scale, and push the knob back in. Rotate knob "A" first to the "OFF" and then to the "AUTO" position. At the preset time, the radio will come on and will continue to play until turned off manually. The alarm will ring also if the knob "C" is left pulled out. The radio will come on first and, after an interval of about ten minutes, the alarm will ring.

BEDTIME AND AUTOMATIC OPERATIONS COMBINED

By combining the operations in the two sections above, the radio may be turned off automatically and on again automatically.

When setting the BEDTIME control, rotate knob "A" to the "AUTO" position instead of "OFF". IMPORTANT: It is necessary to turn knob "A" first to the "OFF" position before proceeding to "AUTO", atherwise the radio may not shut off.

ALIGNMENT

NOTE: It is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low aide of the signal generator to B through a. 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to B-。
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than . 40 volts (. 05 watt) across the voice doil to avoid overloading the receiver.
7. See Figure 2 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATÓR CONNECTION	GENERATOR. FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIGNMENT						
1.	. 1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \mathrm{k} 4 \\ & (\mathrm{IF} \text { coren) } \end{aligned}$	Adjust for maximum.
$\begin{aligned} & \text { RF AL } \\ & \text { 2. } \end{aligned}$	GNMENT \because	-	-	Fully closed	-	Set pointer to horizontal position.
3.	. 1 mf	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	5 (Osc)	Adjust for maximum.
4.	-	Radiation loop*	1400 Kc	$\begin{aligned} & \text { Tune for } \\ & \text { max } \end{aligned}$	6 (Ant)	Adjuat for maximum,

*Connect generator output across 5" diameter, 5 turn loop and couple inductively to receiver loop, Keep loops at least 12" apart.

MOTOROLA PAGE 2 MODELS 52 $\overline{\mathrm{C}} 6,52 \mathrm{C7}$ 52C8, Ch. HS-310

FIGURE 2. TUBE AND TRIMMER LOCATION

SRRVICE NOTES

TO REMOVE RADIO CHASSIS FROM CABINET

1. Pull off the two radio control knobs,
2. Remove the three hex head screws which hold the loop to the cabinet.
3. From the back of the cabinet, remove the two hex head screws at the rear edge of the radio chassis.
4. Slide the radio chassis and loop from the cabinet.
5. Disconnect the power leads to the radio chassis and to the appliance receptacle.

TO REMOVE,CLOCK FROM CABINET

1. Remove the radio chassis as above.

FIGURE 3. STRING DRIVE DETAIL.
4. Install new background.
5. Turn the radie control shaft to "AUTO" position,
6. Slowly rotate the time set ahaft clockwise until switch contacts behind the radio control shaft close.
7. Reassemble the alarm dial and three hands. Set all hands to indicate 12 o'clock. Set the figure " 12 " or alarm dial to index with the small pointer on the hour h
8. Check the automatic operation to be aure the switch tacts close at the time indicated on the alarm dial.

PAGE 23-20 MOTOROLA
MODELS 52C6, 52C7, A,
52C8, Ch. HS-310

MOTOROLA PACE 26 MODELS 52C6, 52C7. 52C8, Ch. HS-310

PARTS LIET

NOTE: When ordering parts, specify model and chassis numbers of set in addition to part number and description of part.

Ref. No.	Part Number	Description	$\begin{array}{r} \text { List } \\ \text { Price } \\ \hline \end{array}$	Part Number	Description	$\begin{array}{r} \text { List } \\ \text { Price } \end{array}$	
CHASSIS PARTS - ELECTRICAL				54484268	Grommet, speaker mtg: rubber...doz	. 20	
				14.478119	Insulator, loop brkt mtg:fibre.doz	. 15	
Capacitors				287051	Nut, hex painut: 3/8-32 \times 9/16 (vol-		
C-1	198610820	Variable: 2-gang; with pulley	2.85	$35 A 601669$	ume control mtg)..............didoz	. 15	
C-2	8R9821	Paper: . $05 \mathrm{mf} \mathrm{200V}$.	. 20		cushion	. 10	
C-3	8R490232	Holded paper: 47,000 mir 400V	. 25	64B610782	plate, radio dial background:		
C-4	218482847	Ceramic, multiple: 2000-220-			silver color..........	. 55	
		220-5000 mmp/400v.	. 65	524610809	pointer, radio dial: light green.	. 25	
C-5	8R9802	Paper: . 02 mf 400 V .	. 20	$9 \mathrm{A601018}$	Receptacle, appliance (on loop		
C-6	23B600855	Electrolytic: 50-30 mi/150V.	1.10		panel).	. 50	
				14610808	Shaft, tuning: with pulley	. 15	
$\frac{\text { Clock }}{\tilde{E}-\overline{1}}$	59K610835			9×580218	Socket, tube: miniature; 7-prong;		
		Electric Clock Assembly: Telechron; with hands;			With dummy lug and center shield; wafer type...............................	. 15	
		less line cord..........	11.95	41473996	Spring, tension (electrolytic mig)	. 05	
		exch	8.95	41A73619	Spring, tension (gang drive cord)		
Choke-Capacitor				 doz	. 40	
E-2	$8 \mathrm{A690487}$	Choke and . 15 mf paper capacitor \qquad	. 30	$\begin{aligned} & 4 A 70015 \\ & 14 A 11493 \end{aligned}$	Washer, "C" (tuning shaft mig) per/c Wesher, shoulder: fibre (loop	. 50	
Coils						.35	
L-1	1X610854		Antenna Loop, Panel, and	1.95*			
		Receptacle Assenbly: comp..	1.15	CABINET PARTS			
L-2	248680364	Oscillator coil.............	. 90				
				1×610839	Cabinet, table model: walnut;		
Speaker					less overlays and clock and		
LS-1	50×610558	or			radio scales (52C6)	4.75*	
	50x610557	Speaker: 4" PM; 3.2 ohm VC. exch	$\begin{aligned} & 3.90 * \\ & 2.95 \end{aligned}$	1×610855	Cabinet, table model: ivory; less overlays and clock and radio scales (52C7).	6.30*	
Resistors				1×610856	Cabinet, table model: green; less		
Not	: All resistors are insulated carbon type				overlays and clock and radio scales (52C8)....................	6,30*	
	- All re	istors are insulated carbon type otherwise specified.		28A600064	Connector, wire (connects clock \% radio power leads)..................	. 05	
R-1	6R6028	22,000 20\% 1/2w. doz	1.20	148611368	Insulator, clock: fibre (over back		
R-2	6R6018	100 20\% 1/2w.............doz	1.20		of clock)	. 25	
-3-3	6R3927	2.2 meg 20\% 1/2w.......doz	1.20	368610817	Knob, clock control: black	.20	
R-4	18A600018	Volume control: 1 meg.......	. 80	368610815	Knob, radio control: black	. 20	
R-5	6 R 2109	10 meg 20\% 1/2w.........doz	1.20	13K610803	Overlay, clock background: gold		
R-6	6R6032	470,000 20\% 1/2W.......doz	1.20		color	. 10	
R-7	6R6032	470,000 20\% 1/2W........doz	1.20	13A610804	Overlay, radio background: gold		
R-8	6R3992	150 20\% 1/2w.............doz	1.20		color...	. 10	
R-9	6R5683	27 10\% 1/2w..............doz	1.20	$34 C 610821$	Scale, clock dial: plastic	1.45	
R-10	$6 R 3953$	100020% 1w...........eeach	. 20	34C610791	Scale, radio dial: plastic	1.50	

Transformers

T-1,2	$24 C 485553$	IF and diode transformer: 455 Kc ; complete with capacitors, cores, and shield. \qquad
T-3	25K680345	

CLOCR PARTS

Note: The following Motorola parts are for use With Telechron clock movement, Part No. 59×610835.

Part	Description
Number	List Price

CHASSIS PARTS - MECHANICAL

74478118	Brack	100	. 05
7477337	Bracket	tuning shaft	. 05
428485548	Clip,	trans metg.............do	. 20

34×610826	Alarm dial: silver color	. $40{ }^{\circ}$
42x601734	Clamp, line cord	. 05
30x600980	Cord, line: with plug; 6 ft long..	. 85
64E620049	Dial background: silver color	. 40
52k610836	Hand, hour: luminous	. 40
525610837	Hand, minute: luminous	. 40
52x610829	Hand, second: black	. 15 '
365601002	Knob, time get	. 20
59X610568	Motor, clock (rotor assembly only)	3.40

S U P P L E M N T

This manual contains a supplementary Replacement Parts List covering production revisions in the 52C6series of receivers.

OUTPUT TRANSFORMER

An alternate output transformer, interchangeable with the original, has been added. Both transformers are listed below.

SPEAKER

Four alternate speakers have been added. All speakers are listed below.

DIAL BACKGROUND

In later production Model 52C7 receivers, the dial background color was changed from gold to silver. The color remains gold for Models 52C6 and 52C8.

PARTS LIST SUPPLEMENT
NOTE: When ordering parta, apecify model number of set in addition to part number and deacription of part.

NOTE: When ordering parts, specify model number of set in addition to part number and description of part. The following parts are revisions of or additions to the original itemedigted in the HS-310 Service Manual.

GENERAE INFORMATION

Model 52C7A is the same as Model 52C7 except for styling. A complete listing of 52C7A cabinet parts is given below.

Refer to HS-310 Service Manual for service instractions, chassis teplacement parts, and clock replacement parts.

Part Number	Detacription	List Price
CABINET PARTS		
1V621721	Cabinet, table model: ivory; with medallion; less overlaye and ciocik tadio cryztaln............	
610621528	Crystal, plastic (clock face cover)	1.45
618621529	Crystal, plastic (radio face cover)	. 85
36E621520	Knob, clock control (black).......	. 20
13E621670	Medallion (on spkr grille)........	. 55
13 K 621669	overlay, clock background: ©ilver color	. 80
$13 \mathrm{C621668}$	Overlay, radio background: silver color	. 80
28490840	Speednut: for 1/16" ntud (medallion ntg).................... doz	. 15

MODELS 52H11U，52H12U，
$52 \mathrm{H} 13 \mathrm{U}, 52 \mathrm{H} 14 \mathrm{U}, \mathrm{Ch}$ ．HS－313

GENERAL INFORMATION

TYPE－AC－DC table model superheterodyne receiver with loop antenna．

RECEIVER MODELS

Model	Color
$52 \mathrm{H11U}$	Walnut
52H12U	Ivory
52H13U	Green
52 H 14 U	Gray

TUNING RANGE－ 535 to 1620 Kc IF－ 455 Kc

| TUBE COMPLEMENT－Type | Function |
| ---: | :--- | :--- |
| $12 B E 6$ | Converter |
| 12BD6 | 1F Amplifier |
| 12AT6 | Det，AVC \＆1st AF Amp |
| 50C5 | Power Amplifier |
| 35W4 | Rectifier |

POWER SUPPLY－ 117 volts AC or DC， 35 watts

OPERATINC INSTRUCTIONS

POWER SWITCH AND VOLUME CONTROL．Operated with the inner knob．NOTE：Reverse the line cord plug in the wall outlet if radio does not operate from DC．When oper－ ating from AC，reversing the line cord plug in the wall out－ let may sometimes improve reception．

TUNING．Tune stations with the outer knob．

ANTENNA．A built－in loop antenna eliminates the need for an outside antenna in most locations．When receiving a weak station，rotate the receiver slightly for best signal strength．If additional pick－up is necessary，connect an external antenna to the radio by following the instructions printed on the rear panel．CAUTION：Never connect the radio chassis to a water pipe，radiator，or other ground．

The chassis of this receiver is isolated from the $A C$ power line circuit by a capacitor to eliminate the shock hazard when handling the receiver．However，as an addi－ tional precaution when aligning or servicing the receiver from AC，an isolation transformer should be inserted be－ tween the power line and the chassis．

TO REMOVE CHASSIS FROM CABINET：
1．Pull off the two radio control knobs．A flat head screw holding the dial scale will be exposed．

2．Remove the flat head screw，

3．Remove the dial scale．

4．Pull off the pointer．

5．Remove the split plugs which hold the loop to the cabi－ net．

[^7]7．Slide the radio chassis and loop from the cabinet．

ALIGNMENT

NOTE: If $A C$ power is used, it is recommended that an isolation transformer be placed between the power line and the recerver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to $\mathrm{B}-\mathrm{through}$ a. 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to \mathbf{B}-.
3. Set the signal generator for $400 \mathrm{cycle}, \mathbf{3 0 \%}$ modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF ar diode transformers.
6. As stages are brought into alignment, reduce the sign. generator output to a level which produces less than. 6 volts (. 05 watt) across the voice coil to avoid overloadir the receiver.
7. See Figure 2 for adjustment locations and the followir chart for procedure.

ALIGNMENTCHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST

*Connect genesator output across 5 " diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.

FIGURE 2. TUBE AND TRIMMER LOCATIONS

PAGE 23-26 MOTOROLA MODELS 52H11U, 52H12U, 52H13U, 52H14U, Ch. HS-313

FIGURE 3. PARTS LOCATIONS

MOTOROLA PAGE 23.
MODELS 52H11U, 52 H 12 U , $52 \mathrm{H} 13 \mathrm{U}, 52 \mathrm{H} 14 \mathrm{U}, \mathrm{Ch} . \mathrm{HS}-31$

PARTS LIST

NOTE: When ordering parts specify model and chassis numbers of set in addition to part number and description of part

Ref.	Part Number	Description	$\begin{array}{r} \text { Ligt } \\ \text { Price } \end{array}$	Part Nunber	Description	$\begin{array}{r} \text { List } \\ \text { Price } \end{array}$
Chassis parts - ELECTRICAL				$30 \wedge 470651$	Cord, line: with plug; 6 ft 1g....	. 75
Capacitors					Gyelet, snap-in (vol control insulator mtg)	15
C-1	198610878	Vaxiable, 2-gang: with		SA 19658	Eyelet, spacer (gang mtg)......doz	. 20
		pulley.	2.70	$5 A 70404$	Grommet, gang mig: rubber..........	. 05
$\mathrm{C}-2$ $\mathrm{C}-3$	$8 \mathrm{8R9821}$	Paper: . 05 mf 200V..........	.20	14A482844	Insulator, line cord outlet:	
C-4	218482847	Ceramic, multiple: 2000, 220, 220, 5000 maf..................	.25 .65	14A611064	fibre..............................doz Insulator, volume control: fibre (over vol control)	.25 .10
C-5	8R9802	Paper: . $02 \mathrm{mf} \mathrm{400V...'....}$.	. 20	287051	Nut, hex:palnut: 3/8-32 $\times 9 / 16{ }^{\text {a }}$	
C-6	23B600855	Electrolytic: $\mathbf{5 0 - 3 0} \mathrm{mf} / 150 \mathrm{~V}$.	1.10		(volume control ntg)...........didoz	
C-7	8K72686	Paper: . 15 mf 200V.........	. 25	1X611087	Pulley and Bushing Assembly, pointer drive.	
Coils				47A611028	Shaft, tuning	.20 .15
L-1	$24 C 610884$ $24 K 600812$	Antenna Loop and panel Assembly.	1.30*	9 K 580218	Socket, tube: miniature; 7-prong; with duman lug and center shield;	
L-2	24K600812	Oscillator	. 85		wafer type..	. 15
Speaker				414471681 447369	Spring, tension (drive cord)...doz	. 40
LS-1	$50 \mathrm{B611018}$			2A73639	Washer, " C " (tuning shaft retainer)................................doz	. 20
or	$50 \mathrm{C611450}$	Speaker: 4" PM ; 3.2 ohn vC..	3.90*	4421491	Washer, flat (on tuning shaft), doz	. 15
		exch	2.95	4K482859	Washer, insulated shoulder (loop brkt atg)	. 15

Note: All resistors are insulated carbon type unless otherwise specified.

R-1	6R6028	22,000	20\%	1/2W........ .doz	1.20
R-2	6R2039	68 10\%	1/2w	doz	1.20
R-3	6 R 3927	2.2 meg	20\%	1/2W.......d	1.20
R-4	18B611017	Volume c cludes	ontrol	l: 1 meg; inf switch.....	1.50
R-5	6R2109	10 meg	20\%	1/2w........doz	1.20
R-6	6R6032	470,000	20\%	1/2W....... doz	1.20
R-7	6R6032	470,000	20\%	1/2W........doz	1.20
R-8	6R6373	150 10\%	1/2N	W.doz	1.20
R-9	6R5683	27 10\%	1/2w.	doz	1.20
R-10	6R6327	1000 10\%	\% 1W.		. 20

Transformers

T-1,2	$24 \mathrm{C485553}$	IF and Diode Transformer: 455 Kc ; complete with capacitors, cores and shield...
T-3	25K485973	Output transformer.

Part	Description	List
Number	Price	

CHASSIS PARTS - MECHANICAL
7K485971
7A610861
7A610865
7K610875
7K610870
42A610858
42A485548

Bracket,	. 05
Bracket, speaker mig (top).........	. 10
Bracket, speaker mig (bottom).....	. 10
Bracket, tuning shaft mtg.	.05
Bracket, volume control mtg.......	. 05
Clip, electrolytic mtg.............	. 05
Clip, IF trans mtg..............doz	. 20

CABINET PARTS

$64 A 611499$	le, apeaker: car	. 05
168610760	Cabinet, table model: plastic; walnut; less speaker grilide and dial scale (52Hllu)..............	4.30*
16\$610761	Cabinet, table model: plastic; ivory; less speaker grille and dial scale (52H12U)	5.95*
$16 \mathrm{K610762}$	Cabinet, table model: plastic; green; less speaker grille and dial acale (52H13U).............	5.95*
16K610763	Cabinet, table model: plastic; gray; less speaker grille and dial scale (52H14U)...........	5.95*
134610872	Grille, epeaker: perforated metal	20
36B610880	Knob, tuning: walnut (5\%H110)	. 25
36×610881	Knob, tuning: ivory (52H12U)	. 25
36x610882	Knob, tuning: green (52⿴13U)	. 25
$36 \mathrm{E610883}$	Knob, tuning: gray (52H14U)	. 25
368611024	Knob, volume: walnut (52H1lU)	.25
36x611025	Knob, volune: ivory (52H120)	. 25
368611026	Knob, volume: green (52H13V)	. 25
36x611027	Knob, volume: gray (52H14U)	. 25
38A25507	Plug, split (loop panel meg)...doz	. 15
52A61.1011	Pointer, dial: red (52Halu)	. 20
52K611088	Pointer, dial: dark gray (52H12U - 52 H 14 U)	. 20
52K611089	Pointer, dial: light gray (52Rl3U)	. 20
34D610859	Scale, dial: plastic (52Hilu)	1.35
345611077	Seade, dial: plastie (52 H 12 J \& 52H140)	1.35
34K611078	Scale, dial: plastic (52H13U)	1.35
257092	Speednut (speaker grille mtg)., doz	. 15

GHAERAL INFORMATION

TYPE - AC-DC operated table model superheterodyne receiver with loop antenna.

RECEIVER MODELS -

Model	Color
$62 \times 11 \mathrm{U}$	Walnut
$62 \times 12 \mathrm{U}$	Ivory
62X13U	Green

TUNING RANGE - 535 to 1620 Kc
LF-455 Kc
TUBE COMPLEMENT -

Type	Fu
12BD6	RF
12BE6	Co
12BD6	IF
12AT6	De
35C5	Po
35W4	Re

Function
RF Amplifier
Converter
12BD6 IF Amplifier
$12 A T 6$ Det, AVC \& 1 st AF Amp
Power Amplifier
Rectifier

POWER SUPPLY - 117 volts AC or DC, 35 watts

OPERATINE INETRUCRYONS

POWER SWITCH AND VOLUME CONTROL. Operated with left-hand knob, NOTE: Reverse the line cord plug in the electrical outlet if the radio does not operate from DC. When operating from AC, reversing the plug in the wall outlet may sometimes improve reception.

TUNING. Tune stations with right-hand knob.

ANTENNA. A built-in loop antenna eliminates the need for an outside antenna in most locations. When receiving 1 weak station, rotate the receiver slightly for best signa strength. If additional pick-up is necessary, connect an ex. ternal antenna to the radio by following the ingtructiont printed on the rear panel. CAUTION: Never connect thi radio chassis to a water pipe, radiator, or other ground

FIGURE 1. DIAL RESTRINGING DETAIL

MODELS 62X11U, 62X12U,

62X13U, Ch. HS-314

SERVICE NOTES

The chassis of this receiver is isolated from the AC power line circuit by a capacitor to eliminate the shock hazard when handing the receiver. However, as an additional precaution when aligning or servicing the receiver from AC, an isolation transformer should be inserted between the power line and the chassis.

TO REMOVE THE CHASSIS FROM Iiit CABINET

1. Pull off the two contral knobs.
2. Remove split plugs which hold the loop to the cabinet.
3. From the back of the cabinet, remove the two hex head
screws at the rear edge of the radio chassis.
4. Slide the radio chassis and loop from the cabinet.

ALIGNMEATT

NOTE: If AC power is ased, it is recommended that an isolation transformer beplaced between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B - through a . 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to $\mathrm{B}=$.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the $I F$ and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 2 for adjustment lacations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIGNMENT						
1.	. 1 mf	Rear stator of tuning capacitor	455 Kc	Fully оред	$\begin{aligned} & 1,2,3 \& 4 \\ & \text { (IF cares) } \end{aligned}$	Adjust for maximum.
WAVETRAP						
	.1 mf	Rear stator of tuning capacitor	455 Kc	Fully open	$\begin{gathered} 5 \\ \text { (Wavetrap) } \end{gathered}$	Adjust for minimum.
RF ALIGNMENT						
3.	. 1 mf	Rear stator of tuning capacitor	1620 Kc	Fully open	$\stackrel{6}{(\mathrm{Osc})}$	Adjust for maximum,
4	-	Radiation loop*	1400 Kc	$\begin{aligned} & \text { Tune for } \\ & \text { max } \end{aligned}$	$\begin{gathered} 7 \\ (\mathrm{Ant}) \end{gathered}$	Adjust for maximum.

*Connect generator output to $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.

FIGURE 2. TUBE AND TRIMGER LOCATIONS

MOTOROLA PAGE 2 MODELS 62X11U, 62X1، 62X13U, Ch. HS-314

MODELS 62X11U, 62X12U,
$62 \mathrm{X13U}$, Ch. HS-314

MOTOROLA PAGE 23-:
MODELS 62X11U, 62X12U
62X13U, Ch. HS-314

PARTS LIST

NOTE: When ordering parts, specify model and chassis number of set in addition to part number and description of part.

MODELS 62X11U, 62X12U,
62X13U, Ch. HS-314

MOTOROLA PACE 23.

GENERAL INFORMATION

TYPE - AC-DC table model superheterodyne receiver with "printed" circuit and Ferrite Magnetic Iron Core Antenna.

RECEIVER MODELS - Model | Color | |
| ---: | :--- |
| | 52R11 |
| 52R12 | Walnut |
| 52R13 | Maryon |
| 52R14 | Gray |
| 52R15 | Green |
| 52R16 | Red |

TUBE COMPLEMENT TyPE Function

Type	Function
12BE6	Converter
12BD6	IF Amplifier
12AT6	Det, AVC \& AF Amp
50C5	Power Amplifier
35W4	Rectifier

INSTALLATION \& OPERATING INSTRUCTIONS

POWER SWITCH \& VOLUME CONTROL. Operated with the small lower knob. NOTE: Reverse the line cord plug in the wall outlet if radio does not operate from DC. When operating from $A C$, reversing the line cord plug in the wall outlet may sometimes improve reception.

TUNING. Stations are tuned in with the large upper knob.

ANTENNA. A built-in Ferrite Magnetic Iron Core Antenn: eliminates the need for an outside antenna. When receiving - a weak station, rotate the receiver slightly for best signa strength.

CAUTION: Never connect the radio chassis to a wates pipe, radiator, or other ground,

service notes

TO REMOVE CHASSIS FROM CABINET:

1. Remove the four screws which hold the back cover, and remove the cover and line cord.
2. Pull off the two control knobs from the front of the receiver.
3. Remove the Phillips head screw under the tuning knob, on the front of the receiver.
4. From the back, remave the screw which holds the line cord plug.
5. Disconnect the leads from the speaker.
6. From the back, remove the three screws which mount the chassis. CAUTION: Do not lose the insulating washers on the screws -they prevent damage to the printed circuit
by the heads of the screws. See Figure $\mathrm{l}_{\text {. }}$
7. Slide the chassis from the cabinet.

CIRCUIT DESCRIPTION

1. The circuit of this chassis is conventional - there ar no built-in resistors or capacitors, Leads are printed o both sides of the chassis base, thereby replacing the usua connecting wires and making wiring more uniform.
2. The metal printing extends through all the holes on th chassis. connecting circuits on the front with those on th rear.
3. Reference to the schematic diagram and to Figures and 4 will permit the circuit to be traced easily. Figure 3 and 4 show the front and rear of the chassis, wired an unwired.

PAGE 23-36 MOTOROLA

MODELS 52R11, 52R12, 52R13, 52R14, 52R15, 52R16, Ch. HS-289

SAFETY PRECAUTIONS

1. The chassis of this receiver is connected directly to the power line. However, the power cord circuit is broken by an interlock when the cabinet back is removed for replacing tubes. When aligning or servicing the chassis'from AC, an isulation transformer should be inserted between the power line and the chassis.
2. Do not service the chassis on a metal plate, because of the possibility of a short circuit.
3. Use caution when handling the chassis with power applied, because all high voltage leads are exposed.
4. The outer edges of the chassis and the large printed areas in the center are at ground potential.

COMPONENT REPLACEMENT

1. To prevent tube breakage, remove them before replacing components. CAUTION: Remove the tubes only by pulling them straight out. Wiggling a tube may bend a socket clip, causing poor contact with the tube pin,
2. WHEN REMOVING DEFECTIVE COMPONENTS USE ONLY A SMALL SOLDERING IRON (60 WATTS OR LESS) TO AVOID DAMAGE TO THE WIRING. DO NOT USE A SOLDERING GUN. WARNING: THE LEADS ARE VERY THIN, AND EXGESSIVF HEAT WILL BURN THEM OR LOOSEN THEM FROM THE BASE MATERIAL.
3. Printed connections or leads, if damaged, may be replaced with a jumper of regular hookup wire.
4. It is recommended that IF transformers, the volume control, or the electrolytic capacitor be removed by immersing all the lugs simultaneously into a small soldering pot. The component may then be lifted off the chassis easily. If a soldering pot is not available, heat each lug individually with a small soldering iron, and shake off as much molten solder as possible. Then, by alternately heat-
ing and loosening each lug, the entire component will be freed. The disadvantage of using a soldering iron instead of a soldering pot is that the printed connections may be pulled loose from the chassis.
5. An individual tube clip may be removed by squeezing it with a pliers and then unsoldering it. The new clip snaps inta the hole.
6. Resistors or capacitors may be removed by unsoldering one end at a time.

CAUTION: Clean all the solder from the holes before installing a new component. Do not let the solder run onto an adjacent lead, as a short circuit will be created.
7. Be careful, when removing or replacing the volume control mounting nut or gang mounting screws, that the printing around the holes is not damaged.
8. When the chassis is fastened into place in the cabinet, be sure the insulating washers are on the mounting screws, otherwise the heads of the screws may damage the printing. ANTENNA

1. A Ferrite Magnetic Iron Core Antenna replaces the conventional "pancake" loop in this receiver. This newer loop is more compact and efficient than the previous type. Its inductance has been pre-set at the factory and requires no adjustment in the field.
2. Under certain circumstances, in early models, AC hum was induced into the loop antenna. This condition was corrected in later models by repositioning the loop. Figure 3 shows the revised location.
3. The service man may convert early models, if neces. sary, by replacing the loop mounting insulator with the later type, shown in Replacement Parts List. The loop coil itself remains the same.

ALIGNMENT

NOTE: If AC power is used, insert anisolation transformer between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to ground (the outer edges of the chassis) through a. 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to ground.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers (a "K-Tran" alignment tool is recommended).
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than . 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 2 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARKS
$\begin{aligned} & \text { IF ALI } \\ & \text { I. } \end{aligned}$	NMENT .1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \circ \frac{4}{4} \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
RF ALI $2 .$	NMENT . 1 mf	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	5 (Osc)	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	$\begin{aligned} & \text { Tune for } \\ & \text { max } \end{aligned}$	6 (Ant)	Adjust for maximum.

[^8] 12" apart.

MOTOROLA PAGE 23 MODELS 52R11, 52R: 52R13, 52R14, 52R15
52R16, Ch. HS-289
(A) = CHASSIS MOUNTING SCREWS

FIGURE 1, REAR VIEW OF RECEIVER (LATE MODEL)

PAGE 23-38 MOTOROLA
MODELS 52R11, 52R12,
52R13, 52R14, 52R15,
52R16, Ch. HS-289

MOTOROLA PAGE 2 a MODELS 52R11, 52R 52R13, 52R14, 52R15
52R16, Ch. HS-289

PAGE 23-40 MOTOROLA MODELS 52R11, 52R12,
52R13, 52R14, 52R15, 52R16, Ch. HS-289

FIGURE 5. FRONT VIEW OF CHASSIS (EARLY MODEL)

FIGURE 6. REAR VIEW OF CHASSIS (EARLY MODEL)

PARTS IIST

NOTE: When ordering parts, specify model and chassis numbers of set in addition to part number and description of part.

PRICES SUBJECT TO CHANGE WITHOUT NOTICE *Plus Federal Excise Tax At Current Rate
1
Chastis HS-289A is the same as HS-289 except for the A dual 250 mmideramic capacitor replaces capacitors Forations of electrical components (see Figures I and 2). $\quad \mathrm{C}-3$ and $\mathrm{C}-6$ used in chassis HS-289. All other chasais
Formation on Operating Instructiona, Service Notes

NOTE: When ordering parts, specify model and chassis number of set in addition to part number and description of part. the HS-289 Service Data.

GENERAL INFORMATION

TYPE - Three-power (AC/DC, Battery) portable radio re-
ceiver. Four miniature-type tubes and a selenium ceiver. Four miniature-type tubes and a selenium rectifier are used in a superheterodyne circuit.

```
TUNING RANGE - 535 to 1620 Kc IF - 455 Kc
POWER SUPPLY - Operates from 117V AC/DC (15 watts)
    or from the following batteries:
        Two 1-1/2V size 'D" flashlight cells
        Use: Eveready 950
                or Burgess 2
                or equivalent.
        One 67-1/2V 'B' battery
        Use: Eveready 457
        or Burgess K45
        or equivalent.
```

TUBE COMPLEMENT - Type | Function | |
| ---: | :--- |
| | |
| $1 F: 5$ | Converter |
| $1 U 4$ | IF Amplifier |
| $1 U 5$ | Det, AVC \& 1st AF Amp |
| $3 S 4$ | Power Amplifier |
| Rectifier | Selenium type -for |
| | AC/DC operation |

FIGURE 1. 52BIU RECEIVER

OPERATING INSTRUCTIONS

TO REMOVE LOWER HOUSING. Insert a large coin into the fastener on the bottom of the receiver (see Figure 1 for location), and ratate it counterclockwise until the housing is released. Then pull off the housing.

TO REPLACE LOWER HOUSING, Make certain, when the lower housing is assembled to the upper portion of the set, that the fastener is on the side of the housing which faces the speaker. Rotate the fastener clockwise until the housing is locked into place.

HOUSE CURRENT OPERATION. The power cord is located inside the cabinet and can be reached by removing the lower housing. Uncoil the line cord from its retainer and pass it through the slot in the end of the housing. Plug the cord into any 117 volt AC or DC power outlet. Reverse the plug in the outlet if the receiver does not operate from DC power. When operating from $A C$, reception may sometimes be improved by reversing the power plug in the outlet. It is not necessary that batteries be installed if the receiver is to be operated only from house power lines.

BATTERY OPERATION. Remove the lower housing and install batteries by following the instructions on the label lo. cated inside the housing, or refer to Figure 2. Plug the power line cord into the receptacle on the chassis, or the receiver will not play from batteries. If the radio is to be operated for a long period of time from house power lines,
or is to be placed in storage, remove the batteries and keep them in a cool place. IMPORTANT: Never leave low or run-down batteries in the receiver, as they will leak or swell and damage it.

CONTROLS. The volume control and power switch are combined and are operated with the VOLUME knob (see Figure 1). Select stations with the TUNING knob. The markings around the TUNING knob can be read in kilocycles by adding one zero to the figures.

ANTENNA. A Ferrite Magnetic Iron Core Antenna is built into this receiver. Because of the slightly directional characteristics of the built-in antenna, reception from some stations may be improved by rotating the receiver. In extremely noisy locations, rotate the set until minimum noise and maximum signal pickup are obtained.

BATTERY REPLACEMENT. If Low volume or fuzzy tone is noticed when operating from batteries, replace the flashlight cells. Normally, the 67-1/2 volt "B' battery will last for 3 or 4 changes of the flashlight cells. Complete battery replacement instructions will be found inside the lower housing of the receiver, or refer to Figure 2. NOTE: The condition of the batteries will not affect operation of the receiver from the horise power lines.

SERVICE NOTES

The chassis of this receiver is isolated from the AC power line circuit by a capacitor-choke assembly to eliminate the shock hazard when handling the receiver. However, as an additional precaution when aligning or servicing the receiver from $A C$, an isolation transformer should be inserted between the power line and the chassis.

The tubes are exposed when the lower housing is removed. It is not necessary to remove the chassis to replace tubes.

TO REMOVE THE CHASSIS FROM THE CABINET:

1. Remove the lower housing (see Operating Instructions
2. Pull off the knobs.
3. Remove the two hex head screws under the knobs.
4. Pull outward on the two studs which hold the handle ar lift off the top housing.

ALIGNMENT

NOTE: The receiver may be operated either from batteries or from the commercial power lines during alignment. If $A C$ power is used, it is recommended that an isolation transformer be placed between the power line and the receiver. If an isolation transformer is not available, connect the low side of the signal generator to B-through a . 1 mf capacitor.

1. Connect a low range output meter across the speaker vaice coil.
2. Connect the low side of the signal generator to B-.
3. Set the signal generator for 400 cycle, $\mathbf{3 0 \%}$ modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF ant diode transformers.
6. Adjust the signal generator output to produce .40 volt: (. 05 watts) across the voice coil. As stages are aligned reduce the generator output to maintain the. 40 volt level to avoid overloading the receiver.
7. See Figure 3 for adjusting locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALI	NMENT .1 mf	Grid of conv (pin 6, 1R5)	455 Kc	Fully open	$\begin{aligned} & 1,2 \& 3 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
$\begin{aligned} & \text { RF AL } \\ & \text { Z. } \end{aligned}$	GNMENT .1 mf	Grid of conv (pin 6, 1R5).	1620 Kc	Fully open	4 (Osc)	Adjust for maximum.
3.	-	-	-	-	-	Install batteries in chas sis, leaving output mete connected to speaker.
4.	-	Radiation loop*	1400 Kc	Tune for max.	5 (Ant)	Adjust for maximum.

*Connect generator output across 5 " diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12 " apart.

PAGE 23-46 MOTOROLA
MODELS 52B1U, 52B2U,
52B3U, 52B4U, Ch. HS-305

FIGURE 2. REAR VIET OF RECEIVER

FIGURE 3. TUBE AND TRIMIER LOCATIONS

MOTOROLA PAGE 23. MODELS 52B1U, 52B2U, 52B3U, 52B4U, Ch. HS-3

MODELS 52B1U, 52B2U,
52B3U, 52B4U, Ch. HS-305

MOTOROLA PAGE 23
MODELS 52B1U, 52B2U, 52B3U, 52B4U, Ch. HS-3I

PARTS LIST

NOTE: When ordering parts, specify model and chassis number of set in addition to part number and description of part

This supplement contains a complete cabinet Replace- Cabinet colors are: ment Parts List for receiver models 52B2U, 52B3U, and 52B4U. Except for the lower housing locking nut, the chas sis parts and 52 Bl U cabinet parts are the same as listed in

On later model HS-305 chassis, the welded "tee" nut, with a removable nylon nut and its retainer. The nut and retainer are listed below.

PART§ LIST SUPPTEMANT

NOTE: When ordering parts, specify model and chassis number of set in addition to part number and description of Manual.

Part

GENERAL INFORMATION

TYPE - AC-DC table model superheterodyne receiver with loop antenna.

TUNING PANGE - 535 to 1620 Kc IF - 455 Kc
TUBE COMPLEMENT - 12BE6 - Converter
12BA6 - IF Amplifier
12AT6 - Detector, AVC \& lst AF Amp
50C5 - Power Amplifier
35W4 - Rectifier
POWER SUPPLY - 117 volts $A C$ or $D C, 35$ watts

INSTALLATION \& OPERATING INSTRUCTIONS

POWER SWITCH AND VOLUME CONTROL. Operated with the left-hand knob. NOTE: Reverse the line cord plug in the wall outlet if radio does not operate from $D C$. When operating from $A C$, reversing the line cord plug in the wall outlet may sometimes improve reception and reduce hum.

TUNING. Tune stations with right hand knob.
ANTENNA. A loop antenna is built into this receiver, eliminating the need for an external antenna. Reception from some stations may be improved by
rotating the whole receiver; this is due to slight directional characteristic of the loop tenna. In extremely noisy locations, rotate entire receiver till minimum noise and maximums nal pickup are obtained. For additional pick an external antenna may be connected by wind lead-in wire in slots on radio back panel.
GROUND. Never connect antenna or chassis to wa pipe, radiator or other ground, as one side of power line is connected directly to chassis.

SERVICE NOTE

The chassis of this receiver is connected directly to the power line. When operating chassis (from AC line) outside of its cabinet, use an isolation transformer between power line and receiver to reduce possibility of electrical shock. If iso-
lation transformer is not available, check the AC voltage between chassis and bench ground; if there is any indication of voltage, reverse the line plug before handling set.

TO REMOVE CHASSIS FROM CABINET

1. Set pointer to extreme low frequency end to expose pointer setscrew. Loosen pointer setscrew with a slab head wrench.
2. Remove the knobs; they pull off.
3. Remove the two split plugs that hold top of loop panel to cabinet.
4. Remove the two screws that hold the chassis to the cabinet. These screws are accessible through slots in the loop panel.

ALIGNMENT

If $A C$ power is used, use an isolation transformer between power line and receiver. If isolation transformer is not available, connect low side of signal generator to chassis through . 1 mf capacitor.

Connect low range output meter across speaker
voice coil and set volume control at maximum. For greatest accuracy, keep output of receiver at approximately .05 watt (. 05 watt $=.40$ volt on output meter) throughout alignment by reducing signal generator output as stages are brought into alignment. Use a small fibre screwdriver for aligning IF \& diode transformers.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SET TO } \end{aligned}$	ADJUST	REMARKS
IF ALIC 1	GNMENT .1 mf	Rear stator of tuning capacitor	455 Kc	Gang opened	1, 2, 384	Adjust for maximum.
$\begin{aligned} & \text { RF ALIC } \\ & 2 . \end{aligned}$	GNMENT	Radiation loop*	1620 Kc	Gang fully opened	5	Adjust for maximum.
3.	-	Rediation loop*	1400 Kc	Tune for maximum	6	Adjust for maximum.

* Connect generator output to 5^{n} diameter, 3 turn loop and couple to receiver loop. Keep loops at least 12^{n} apart.
(3) SEC. (BOT)
(4) PRI. (TOP)

FIGURE 2. TUBE \& TRIMMER LOCATION

MOTOROLA PAGE 23-5

GHNERAL INFORMATION

TYPE - Three-power (AC/DC, Battery) portable radio receiver. Four miniature type tubes and a selenium rectifier are used in a superheterodyne circuit.

RECEIVER MODELS

Model	Color
52L1	Green
52L2	Maroon
52L3	Gray

TUNING RANGE - 535 to $1620 \mathrm{Kc} \quad \mathrm{IF}=455 \mathrm{Kc}$

POWER SUPPLY - Operates from l17V AC/DC (15 watts) or from the following batteries:

2-1-1/2V "A" batteries (Eveready \$964 or equivalent)

1-67-1/2V "B" battery (Eveready \$477 or equivalent)

TUBE COMPLEMENT - TYpe	Function
1R5	Converter
$1 U 4$	IF Amplifier
$1 U 5$	Det, AVC \& Ist AF Amp
$3 S 4$	Power Amplifier
Rectifier	Selenium type -for AC/DC
	operation

OPHRATLIE INSTRUCTIONS

TO OPEN BACK COVER. Press the release button on the top of the cabinet and, "with the fingera, pull the back cover open. When closing the cover, be careful not to pinch the power line cord or other leads between the cover and the cabinet.

HOUSE CURRENT OPERATION. The power cord is loceted inside the cabinet and can be reached by opening the back cover. Pass the cord through the alot on the side of the receiver before closing the cover. Plug the cord into any 117 volt AC or DC power outlet. Reverse the plug in the outlet if the receiver does not operate from DC power. When operating from AC, reception may sometimes be improyed by reversing the power plug in the outlet. It is not necessary that batteries be installed if the receiver is to be operated only from house power lines.

BATTERY OPERATION. Open the back cover and install the batteries by following the instructions on the label located inside the cover, or refer to Figure 2. Plug the power line cord into the receptacle on the chassis, or the receiver will not operate from batteries. If the radio is to be operated for a long period of time from house power lines, or is to be placed in storage, remove the batteries and keep
them in a cool place. IMPORTANT: Never leave low a run-down batteries in the receiver, as they will swell o leak and damage the set.

CONTROLS. The volume control and power switch are com bined and are operated with the VOLUME knob (see Fig ure 1). Select atations with the TUNING knob. The mark ings on the dial scale can be read in kilocycles by adding tw zeros to the figures.

ANTENNA, A Ferrite Magnetic Iron Core Antenna is buid into this receiver. Because of the slightly directional char acteristics of the built-in antenna, reception from som stations may be improved by rotating the receiver. In ex tremely noisy locations, rotate the set until minimum nois and maximum signal pickup are obtained.

BATTERY REPLACEMENT, Replace the batteries whe low volume or fuzzy tone is noticed. Complete battery re placement instructions will be found inside the back cover or refer to Figure 2. NOTE: The condition of the batterie will not affect operation of the receiver from the hous power lines.

SHRVICE NOTES

The chassis of this receiver is isolated from the AC power line circuit by a capacitor to eliminate the shock hazard when handling the receiver. However, an additional precaution when aligning or servicing the receiver from AC, an isolation transformer should be inserted be-

The tubes are exposed when the rear cover is opened. It is not necesaary to remove the chassis to r eplace tubes.

TO REMOVE THE CHASSIS FROM THE CABINET

Refer to Figure 2 for the locations of the items mentioned below.

1. Open the back cover and remove the batteries.
2. Remove the two wire clips which hold the plastic retainer blocks at each end of the "A" battery compartment.
3. Remove the screw holding the cover stop cord to th chassis.
4. Remove the chassis mounting screws, at the four coz ners of the chassis.
5. Slide the chassis, with knobs and escutcheon, from th cabinet.
6. Remove one of the handile clips. (Squeeze the sides , the clip until it is released from the escutcheon.)
7. Remove the two screws located under the handle, al lift off the escutcheon.
8. Pull off the knobs.

REAR COVER HINGE INSTALLATION

The proper method for installing a new hinge is shov in Figure 3. Note that the under side of the cabinet shou rest on an iron block during the heating process to preve the formation of a heat bubble on the bottom of the cabine

PAGE 23-56 MOTOROLA MODELS 52L1, 52L2, 52L3, Ch. HS-327

FIGURE 2. REAR VIEW OF RECEIVER

FIGURE 3. REAR COVER HINGE INSTALLATION

ALIGNMENT

NOTE: Thereceiver may be operated either from batteries or from the commercial power lines during alignment, If $A C$ power is used, it is recommended that an isolation transformer be placed between the power line and the receiver. If an isolation transformer is not available, connect the low side of the signal generator to B - through a . 1 mf capacitor.

PROCEDURE:-

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to $B-$.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. Adjust the signal generator output to produce .40 volts (. 05 watts) across the vaice coil. As stages are aligned, reduce the generator output to maintain the .40 volt level, to avoid overloading the receiver.
7. See Figure 4 for adjusting locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREOUENCY	GANG SETTING	ADJUST	REMARKS
IF ALI $1 .$	NMENT .1 mf	Ant section of gang (green loop lead)	455 Kc	Fully open	$\begin{gathered} 1,2 \text { \& } 3 \\ \text { (IF cores) } \end{gathered}$	Adjust for maximum,
RF AL $2 .$	GNMENT	-	-	-	-	Attach chassis bottom cover.
3.	-	-	-	-	-	Install batteries in chassis.
4.	. 1 mf	Ant section of gang (green loop lead)	1620 Kc	rully open	$\stackrel{4}{(\mathrm{Osc} \operatorname{trim})}$	Adjust for maximum.
5.	-	Radiation loop*	1400 Kc	Tune for maximum	$\begin{gathered} 6 \\ \text { (Ant trim) } \end{gathered}$	Adjust for maximum.
6. **	-	Radiation loop*	600 Kc	Tune for maximum	$\left(\mathrm{Osc}^{5} \operatorname{core}\right)$	Simultaneously tune gang and adjust core for maximum signal.
7. **	-	Radiation loop*	1620 Kc	Fully open	$\stackrel{4}{(\text { Osc trim) }}$	Readjust for maximum, if necessary.
8. **	-	Radiation loop*	1400 Kc	Tune for maximum	$\begin{gathered} 6 \\ \text { (Ant trim) } \end{gathered}$	Readjust for maximum, if necessary.

*Connect generator output across 5" diameter, 5-turn loop and couple inductively to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.
**Steps 6, 7, \& 8 need not be performed unless receiver is off calibration or mistracks badly at low frequencies.

FIGURE 4. TUBE \& TRIMER LOCATIONS

PAGE 23-58 MOTOROLA
MODELS 52L1, 52L2,
52L3, Ch. HS-327

PIGURE 5. PARTS LOCATIONS

FIGURE 6. SCHEmatic diagram

PAGE 23-60 MOTOROLA
MODELS 52L1, 52L2,
52 上. $3, ~ C h . ~ H S-327 ~$
Ref.
$\begin{array}{ll}\text { Ref. } & \text { Part } \\ \text { No. } & \text { Number } \\ \text { CHASSIS } & \text { PARTS } \\ \text { - ELECTRICAL }\end{array}$
CHASSIS PA
Capacitcrs

$\overline{\mathrm{C}-1}$	158611239	Variable: 2-gang............. 2.65
C-2	$2 \times \mathrm{H} 115856$	Ceramic: $470 \mathrm{mmf} \mathrm{500V......}. \mathrm{}$.
$\mathrm{C}-3$	21R482726	Ceramic, disc: $10,000 \mathrm{mmf} 450 \mathrm{v} .30$
C-4	21R482726	Ceramic, disc: 10,000 mmf 450V . 30
C-5	8 R 9861	Paper: . $05 \mathrm{mf} 400 \mathrm{v}$.
C	21R482726	Ceramic, disc: $10,000 \mathrm{mmf} 450 \mathrm{~V} .30$
C-7	21R482726	Ceramic, disc: $10,000 \mathrm{mmf} 450 \mathrm{~V} .30$
C-8	21K691992	$\begin{aligned} & \text { Ceramic, multiple: } 2000,100 \text {, } \\ & 100,5000 \mathrm{mmf..................} 65 \end{aligned}$
C	23A701029	Ceramic, disc: 1500 mmf 500 V . 25
C-10	8K471635	Paper: . $05 \mathrm{mf} \mathrm{400V.........}. \mathrm{}$.
C-11	8R490234	Molded paper: 68,000 mmf 400V . 30
$\mathrm{C}=12$	238611270	Electrolytic: $40-40 \mathrm{mf} / 150 \mathrm{~V}$, $250 \mathrm{mf} / \mathrm{lov}$.
C-13	8R9814	Paper: . 1 mf loov............ . 25

Rectifier
E-1 48B791092 Rectifier, selenium: halfwave; 65 ma..................... 1.40

Coils

$\overline{\mathrm{L}-1}$	24 B 611234	Antenna Loop: with core......
$\mathrm{L-2}$	$24 \mathrm{B6} 11273$	Oscillator coil..............

$\frac{\text { Speaker }}{\text { LS-1 }}$
$\overline{\mathrm{LS}-1} 50 \mathrm{B611272}$
or 50B620039 Speaker: 3年" PM; 3.2 ohm VC. 3.75* exch 2.80

Resistors
Note: All resistors are insulated, carbon type unless otherwise specified.

R-1	6R2122	$4.7 \mathrm{meg} 20 \%$ 1/2w.......doz	1.20
R-2	6R6031	100,000 10\% 1/2w........doz	1.20
R-3	6R6397	22,000 10\% 1/2W.........doz	1.20
R-4	6R2109	10 meg 20\% 1/2w.........dioz	1.20
R-5	6 R 2118	3.3 meg 20\% 1/2w.......doz	1.20
R-6	18X611379	Volume control: 1 meg ; with switch \qquad	1.20
R-7	6R2109	10 meg 20% 1/2w.........doz	1.20
R-8	6R2122	4.7 meg 20\% 1/2m.......didoz	1.20
R-9	6R6004	$1 \mathrm{meg} 20 \%$ 1/2W..........doz	1.20
R-10	6R2118	3.3 meg $20 \% 1 / 2 \mathrm{~m} d$ doz	1.20
R-11	6R5581	3300 10\% 1/2W...........doz	1.20
R-12	17 K 611149		
or	178620181	Wire wound: tapped; 2150 5\% 10W \qquad	1.10
R-13	6R6407	220,000 10\% 1/2w........doz	1.20
R-14	6R6040	680 10\% 1/2w............doz	1.20
R-15	6R6432	270 10\% 1/2N.............doz	1.20
16	6R6040	680 10\% 1/2w...........didoz	1.20
R-17	6R5683	27 10\% 1/2W.............doz	1.20
R-18	6R5554	390 10\% 1/2w............doz	1.20
Switch			
$\overline{s-1}$	408611284	Rotary switch, 5PDT (AC/DC, battery selector)...........	1.10
Transformers			
T-1	24K600824	1F Transformer: 455 Kc : complete. \qquad	1.35
T-2	24K620020	Dinde Transformer: 455 Kc ; cosplete. \qquad	1.35
T-3	25B611271	Output Transformer...........	1.50

CHASSIS PARTS - meChanical
7ab11194 Bracket, volume control mtg....... . 10
43A611210 Bushing, insulating: threaded (on
chassis bottom cover)................ 30
$43 A 692012$ Bushing, line cord strain relief (use with 43K692013 retainer).... . 05
42K620265 Clamp, antenna loop: plastic (loop mtg)...
Clip, battery contact retainer mtg: spring wire........................per/c . 50

Part Number	Description ${ }^{\text {Li }}$	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$
42B485548	C1ip, if trans mtg..............doz	. 20
42A620155	Clip, spring (holds "A" battery)..	. 05
30 K 611285	Cord, line: with plug; 6 ft long..	. 75
$9 \mathrm{Al2705}$	Insulator, electrolytic mtg....doz	.30
29R3020	```Lug, soldering ("A" battery con- tact).............................doz```	. 20
2S7051	Nut, hex: Palnut; 3/8-32 x 9/16 (volume control mtg)............doz	.15
1V620172	Retainer, battery: fibre; complete with brackets; less antenna loop.	1.60
43K692013	Retainer, line cord strain relief bushing (use with 43A692012 bushing). \qquad	. 05
42A620149	Retainer, lug: plastic ("A" battery contact lug mtg)..............	. 25
42A620150	```Retainer, spring: plastic ("A" battery contact spring mtg)......```	.25
26A611262	Shield, resistor (over R-12)......	. 10
9A690129	Socket, tube: miniature; 7-prong..	. 15
2S118403	```Speednut: for 3/8" stud (insulating bushing mtg)......................doz```	. 30
41 K 680029	Spring, " A " battery contact....doz	.20
314620153	Strip, 'B' battery terminal: with	
	leads.	.30

CABINET PARTS

648611269	Baffle,speaker: fibre.............. . 10
1v620730	Cabinet Ascembly: green; complete with grille and back cover (52Ll) 5.80*
1V620750	Cabinet Assembly: maroon; complete with grille and back cover (52L2) 5.80*
1V620751	Cabinet Assembly: gray; complete with grille and back cover (52L3) 5.80*
16E611142	```Cabinet, front section: green;```
16K611144	Cabinet, front section: maroon; less grille (52L2).................... 1.75
16K611146	```Cabinet, front section: gray; less grille (52L3)............................ 1.75```
42A611333	Clip, handle (handle mitg).......... . 15
1V611583	Cover Assembly, cabinet back: green; complete with latch spring and stop cord (52Ll)..................... 2.75
1V611588	Cover Assembly, cabinet back: maroon; complete with latch spring and stop cord (52L2)................ 2.75
IV611593	Cover Assembly, cabinet back: gray; complete with latch spring and stop cord (52L3)....................... 2.75
13C611335	Escutcheon, knob (on top of cabinet) 1.15
138611267	Grille, speaker: light green (52L) . 50
13 K 620046	Grille, speaker: red (52L2)........ . 50
13K620047	Grille, speaker: dark green (5213) . 50
55B611236	Handle, carrying: green; less clips (52L1 \& 52L3).......................... . 55
55K611237	Handie, carrying: maroon; less clips (52L2).................................... . 55
36K611228	Knob, control: green (52L1 \& 52L3) . 20
36K611229	Knob, control: maroon (52L2)...... . 20
1v611584	latch spring, back cover: with release button. \qquad
3S488092	Screw, machine: 8-32 x 9/16 plain binder head; nickel plated_(knob escutcheon nitg)...................doz
35488009	Screw, thread cutting: 6-20 $\times 3 / 8$ plain hex head; cad pl (chassis mtg).................................doz
2S7089	Speednut: for 3/16" stud (spkr baffle mtg)..........................doz . 20
41A691939	Spring, hinge (back cover hinge).............................. doz . 30
When orderin number and	parts, specify model number of set in addition to part escription of part.

MOTOROLA PAGE 2:
MODELS 52CW1, 52CV 52CW3, 52CW4, Ch. HS-329

GANERAS INFORMATION

TYPE - Wall mounted, "Pin-Up" model superheterodyne radio, combined with an electric clock which may be set to automatically turn the radio on.

RECELVER MODELS | - Model |
| :--- |

TUNING RANGE - 535 to $1620 \mathrm{Kc} \quad \mathrm{IF}-455 \mathrm{Kc}$
TUBE COMPLEMENT

Type	Function
12BE6	Converter
12BD6	IF Amplifier
12AT6	Det, AVC \& AF Amp
50C5	Power Amplifier
35W4	Rectifier

CLOCK - Sessions self-starting electric clock, with Motorola, face and hands.

MOUNTING

Mount the "Pin-Up" clock radio in a suitable location on the wall with two "10 $\times 1-1 / 4^{\prime \prime}$ round head wood screws or two l" long picture hangers (furnished with each new "PinUp" clock radio). Use the screws for fastening the clock radio to a wooden wall or into a stud in a plastered wall, and the picture hangers for attaching the set to a plastered or plasterboard wall. The spacing between the two screws or hangers should be $6-7 / 8^{\prime \prime}$, as shown in Figure 2.

OPERATING ENSTRUCTIONS

The locations and functions of the clock and radio controls are shown in Figure 1.

NORMAL RADIO OPERATION
Knob " B " on the clock turns the radio on or off. Select stations with the TUNING knob, and adjust volume with the VOLUME control.

A built-in ferrite magnetic iron core antenna eliminates the need for an outside antenna. CAUTION: Never connect theradio chassis to a water pipe, radiator, or other ground.

FIGURE 2. MOUNTING LOCATIONS

CLOCK OPERATION

The clock will start as soon as the reçeiver is plugged into an electrical outlet. To set the hands to the correct time, pull out knob " A " and rotate it in a clockwise direction only.

AUTOMATIC RADIO OPERATION
automatically at any time up to ten hours in advance.

Rotate knob "C" clockwise to the desired time or automatic time dial scale. Rotate knob " B " to the "AU position. At the pre-set time the radio will begin to F

If the radio has been turned on automatically and is unattended, with knob "B" in the "AUTO" position, it shut off after approximately two hours. To permit , tinuous operation, rotate knob "B" to the "ON" posil

PAGE 23-62 MOTOROLA

MODELS 52CW1, 52CW2,
 52CW3, 52CW4, Ch. HS-329

SERVICE NOTES

The chassis of this receiver is isolated from the AC 4. Remove the three speed nuts which fasten the clock to power line circuit by a capacitor, to eliminate the shock hazard when handling the receiver. However, as an additidnal precaution when aligning or servicing the receiver, an isolation transformer should be ingerted between the power line and the chassis.

TO REMOVE CHASSIS FOR SERVICE

1. Pull off the two radio control knobs.
2. Remove the four screws from the back cover of the cab inet.
3. Pull off the back cover. See Figure 3.
4. Disconnect the speaker leads,
5. Disconnect the three leads to the clock

TO REMOVE CLOCK FROM CABINET

1. Remove the radio chassis as above.
2. Pull off the three clock control knobs.
3. Remove the clock dial scale.
the cabinet.
4. Remove the clock carefully, to prevent damage to its hands or face.

TO REPLACE CLOCK DIAL BACKGROUND

1. Remove the clock from the cabinet as above.
2. Carefully pull off the four hands.
3. Remove the clock dial background.
4. Install new background.
5. Turn the radio control shaft ("B") to "AUTO" position.
6. Slowly rotate the automatic time set shaft ("C") clockwise until a "click" is heard, indicating that the switch contacts have closed. Do not overshoot this point.
7. Reassemble all four hands in the 12 o'clock position,
8. Check the operation of the clock to be sure the radio turns on at the time indicated on the automatic time dial scale.

FIGURE 3. BACK COVER REMOVAL

MOTOROLA PAGE 23 MODELS 52CW1, 52CW2, 52CW3, 52CW4, Ch. HS-3

ALIGNMENT

NOTE: It is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B- through a . 1 mf capacitor.

1. Connect a law range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to \mathbf{B}-.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small tibre screwdriver for aligning the IF diode transformers.
6. As stages are brought into alignment, reduce the sig generator output to a level which produces less than volts (. 05 watt) across the voice coil to avoid overloac the receiver.
7. See Figure 4 for adjustment locations and the follow chart for procedure.
ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FRECUENCY	GANG SETTING	ADJUST	REMARKS
$\begin{aligned} & \text { IF AL } \\ & 1 . \end{aligned}$	GNMENT .1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
$\begin{aligned} & \text { RF AL } \\ & 2 . \end{aligned}$	GNMENT .1 mf	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	5 (Osc)	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	$\begin{aligned} & \text { Tune for } \\ & \text { max } \end{aligned}$	6 (Ant)	Adjust for maximum.

*Connect generator output across 5 " diameter, 5 turn loop and couple inductively to receiver loop. Keep generator l perpendicular to axis of and at least 12 inches from receiver iron core loop.

FIGURE 4. TUBE AND ALIGNMENT LOCATIONS

PAGE 23-64 MOTOROLA
MODELS 52CW1, 52CW2,
52CW3, 52CW4, Ch. HS-329

FIGURE 5. PARTS LOCATIONS

MOTOROLA PAGE 23 MODELS 52CW1, 52CW2, 52CW3, 52CW4, Ch. HS-3

MODELS 52CW1, 52CW2,
52CW3, 52CW4, Ch. HS-329
NOTE: When ordering parts, epecify model number of set in addition to part number and description of part.

Ref.	Part	
No.	Number	Description

CHASSIS PARTS - RLBCTRICAL

Capacitors			
C-1	198620710	Variable: 2-gang............	2.65
$\mathrm{C}-2$	8R9821	Paper: . 05 mf 200V.........	. 25
C-3	8R9816	Paper: . $05 \mathrm{mf} \mathrm{400v........}$.	.25
C-4	21B482847	```Ceramic, multiple: 2000-220- 220-5000 mmf/400v...........```	. 65
C-5	21R482726	Ceramic, disc: 10,000 mmf 450 V	v . 30
C-6	23B600855	Electrolytic: 50-30 mf/150V.	1.60
C-7	8K72686	Paper: . $15 \mathrm{mf} \mathrm{200V}$.	. 25
Clock			
E-1	$72 \mathrm{D620276}$	```Electric Clock Assembly: Sessions; complete, with hands & dial background```	
		exch	7.70
Coils			
L-1	24 K 620703	Antenna loop: with core.....	. 85
L-2	24B680364	oscillator coil.............	. 90
Speaker			
$\begin{gathered} \mathrm{LS}-1 \\ \text { or } \end{gathered}$	50B620713		
	50B620714	Speaker: 3年" PM ${ }^{\text {a }} 3.2$ ohm VC.	$3.75 *$

Resistors

Note:
All resistors are insulated carbon type unless otherwise specified.

CHASSIS PARTS - MECHANICAL

42 A 75825	Clip, electrolytic mt	. 05
$42 \mathrm{B485548}$	Clip, IF trans mtg.............doz	20
5S7805	```Eyelet, snap-in (ant insulator mtg)..```	. 15
1 V 620976	Insulator, antenna loop: fibre; with lead.........................	. 10
2S 7051	Nut, hex: Palnut; 3/8-32 x 9/16 (volume control mtg)...........doz	. 15
294620057	Pin, terminal (on spkr leads)..doz	.25
28K712319	Plug, line interlock	. 15
9A690129	Socket, tube: miniature; 7-prong.	. 15

Part
Number

Description
CABINET PARTS
7B620705
1V621298
1V621312
1V621313

1V621314

28A600064
30B620711
15 K 620285
15K620286 $15 K 620287$ 15 K 620288
15K620289
$15 K 620290$
15K620291
15K620292
43A620298
42A620709
36B620717
36C620718
36K620297
284620712
15K790011
$34 C 620284$
3S488012

3S115237

35488009

3S 119885

35118636

25476112
$2 S 400014$

ClOCK PARTS
Note:
The following Uotorola garts are for use with Sessions clock movement, Motorola Part No. 72D620276.
72K620280 Hand, automatic time set: red.....
72K620279 Hand, hour: black......................
Hand, minute: black.
Hand, second: chrome Motor, clock (electrical only).
plate, dial background: white

ceptacle mtg (on spkr)

speaker cover, less clock dial scale (52CT1).
Cabinet, wall clock: white; with
speaker cover, less clock dial scale (52CT2)
Cabinet, wall clock: green; with speaker cover, less clock dial scale (52CT3)
Cabinet, wall clock: red; with speaker cover, less clock dial scale (52CW4)
Connector, wire (clock and radio
power leads solderless connector) Cord, line: with interlock receptacle; less plug; 6 ft long...... Cover, cabinet back: yellow (52CW1) 1.90
Cover, cabinet back: white (52CW2).
Cover, cabinet back: green (52Cw3)
Cover, cabinet back: red (52CW4)..
Cover, speaker: yellow (52CW1)..
Cover, speaker: white (52CW2)..... 1.45
Cover, speaker: green (52CW3).....
Cover, speaker: red (52CW4)........
Ferrule, chassis mtg (mounts chassis to back cover)................doz
Hanger, picture: $]^{\prime \prime}$ long; with nail
(mounts radio to wall).
Knob, clock control: black........
Knob, tuning.
Knob, volume control
Plug, line cord: removable type...
Rivet, shoulder (interlock recep-
tacle mtg)............................ doz
Scale, clock dial: plastic.........
Screw, thread-cutting: $6-20 \times 1 / 4$
plain hex head; cad pl (spkr
ratg). doz
Screw, thread-cutting: 6-20 x 5/16
plain hex head; cad pi (inne cord
interlock piug mtg)...............doz
Screw, thread-cutting: 6-20 x 3/8
plain hex head; cad pl (chassis
mtg)..
Screw, thread-cutting: 6-20 $\times 5 / 8$
Phillips head; cad pl (back
cover mtg)..........................doz
Screw, wood: \#10 x 1-1/4 round
head; cad pl (mounts radio to
wall)...............................doz
Speednut: for .156" stud (clock

Speednut: for 3/8" stud ($5, \mathrm{pkr}$
cover mtg)

72K620278
72K620277
59 K 621297
64C620270
3.55
3.55
3.55
.05

GENERAL INFORMATION

TYPE - AC table model superheterodyne with self-contained electric clock for controlling automatically the operation of the radio.

COLOR - Walnut
TUNING RANGE - 535 to 1620 Kc IF - 455 Kc

| TUBE COMPLEMENT - Type | Function |
| ---: | :--- | :--- |
| 12BE6 | Converter |
| 12BD6 | IF Amplifier |
| 12AT6 | Det, AVC \& AF Amp |
| 50C5 | Power Amplifier |
| 35W4 | Rectifier |

POWER SUPPLY - Operates from 117 volts, 60 cycle. ternating current only. Power consus tion 37 watts.

CLOCK - Telechron self-starting electric clock, Motorola face and hands.

OPERATING INSTRUCTIONS

The locations and functions of the clock and radio con- ALARM OPERATION trols are shown in the photo above.

NORMAL RADIO OPERATION

Knob "A" on the clock turns the radio on or off. Select stations with the TUNING knob, and adjust volume with the VOLUME control.

A built-in loop antenna eliminates the need for an outside antenna in most locations. When receiving a weak station, rotate the receiver slightly for best signal strength. If additional pick-up is necessary, connect an external antenna to the radio by following the instructions printed on the rear panel. CAUTION: Never connect the radio chas. sis to a water pipe, radiator, or other ground.

CLOCK OPERATION

The clock will start as soon as the receiver is plugged into an electrical outlet. To set the hands to the correct time, rotate the TIME SET knob (on the rear of the radio) in a clockwise direction only.

To set the alarm, pull out knob "B" and rotate it counterclockwise direction to the desired time on the al: dial scale. The alarm will ring for one hour, or until y " $B^{\prime \prime}$ is pushed in. The alarm function is completely in pendent of the other controls on the clock.

AUTOMATIC RADIO OPERATION

The clock controls may be pre-set to turn the radis automatically at any time up to twelve hours in advance.

Pull out knob "B"; rotate it counterclockwise to the sired time on the alarm dial scale, and push the knob b in. Rotate knob "A" first to the "OFF" position and thel the "AUTO" position. At the pre-set time, the radio, come on and will continue to play until turned off manua The alarm will ring also if the knob " B " is left pulled ; The radio will come on first and, after an interval of ab ten minutes, the alarm will ring.

PAGE $23-68$ MOTOROLA
MODE LS 52C1, 52C1A,
Ch. HS-309

ALIGNMENT

NOTE: It is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to chassis through a . 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to chassis.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than. 40 volts (. 05 watts) across the voice coil to avoid overloading the receiver.
7. See Figure 1 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{gathered} \text { GANG } \\ \text { SETTING } \end{gathered}$	ADJUST	REMARKS
IF ALIGNMENT						
1.	.1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$1,2,3 \& 4$ (IF cores)	Adjust for maximum.
RF AL 2.	GNMENT	-	-	Fully closed	-	Set pointer to horizontal position.
3.	. 1 mf	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	$5(\mathrm{osc})$	Adjust for maximum.
4.	-	Radiation loop*	1400 Kc	Tune for max	6 (Ant)	Adjust for maximum.

$698620311-0$

MOTOROLA PAGE 2. MODELS 52C1, 52C1 Ch. HS-309

The chassis of this receiver is connected directly to the power line. When operating the chassis outside of its cabinet, use an isolation transformer between the power line and the receiver to reduce the possibility of an electrical shock.

TO REMOVE RADIO CHASSIS FROM CABINET

1. Pull off the two radio control knobs.
2. Remove the three hex head screws which hold the loop to the cabinet.
3. From the back of the cabinet, remove the two hex head screws at the rear edge of the radio chassis.
4. Slide the radio chassis and loop from the cabinet.
5. Disconnect the power leads to the radio chassis.

TO REMOVE CLOCK FROM CABINET

1. Remove the radio chassis as above.
2. Pull off the two clock control knobs.
3. From the back of the cabinet, remove the three hex head screws which hold the clock and its fibre insulator.
4. Carefully remove the clock, to prevent damage to its hands or face.

TO REPLACE CLOCK DIAL BACKGROUND

1. Remove the clock from the cabinet as above.
2. Carefully pull off the three hands.
3. Remove the alarm dial and dial background.

FIGURE 2. STRING DRIVE DETAIL
4. Install new background.
5. Turn the radio control shaft to "AUTO" position.
6. Slowly rotate the time set shaft clockwise until th switch contacts behind the radio control shaft close.
7. Reassemble the alarm dial and three hands. Set all th hands to indicate $120^{1} c l o c k$. Set the figure "12" on th alarm dial to index with the small pointer on the hour hand
8. Check the automatic operation to be sure the switch con tacts close at the time indicated on the alarm dial.

figure 3. parts location

PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

Ref. Part	Dumber	List Resigetors
No.		

CHASSIS PARTS - ELECTRICAL

NOTE: When ordering parts, specify model and chassis number of aet in addition to part number and deacription of part. The following parts are revisions of or additions to the original items listed in the HS 309 Service Manual.

Part	Description	List
Number	Price	

CABINET PARTS

1v622095	Cabinet, table modeI: wainut; with medallion; less overlays.........
$61 \mathrm{K621891}$	Crystal, plastic (clock face cover)
.61K621529	Crystal, plastic (radio face cover)
64 K 621523	Dial background.
59K621787	Electric Clock Assembly: Telechron;

GENERAL INFORMATION

APPLIANCE OUTLET - For use with 117 volt AC appliances
only, rated at 1100 watts or less.
CLOCK - Telechron self-starting electric clock, with
Motorola face and hands.
OPERATING INSTRUCTIONS
OCK OPERATION
The clock will st
The clock will start as soon as the receiver is plugged into an electrical outlet. To set the hands to the correct time, rotate the TIME SET knob (on the rear of the radio)
in a clockwise direction only. ALARM OPERATION
To set the alarm, pull out AUTO SET knob and rotate it in a counterclockwise direction to the desired time on the alarm dial scale. The alarm will ring for one hour, or uncompletely independent of the other controls on the clock.
SLEEP CONTROL
The SLEEP control will turn the radio and appliance off
after any pre-set interval of time up to one hour.
The locations and functions of the clock and radio con-
TYPE - AC table model superheterodyne with appliance outlet and self-contained electric clock for automatically controlling the operation of the radio and the outlet.

RECEIVER MODELS - Model \quad Color

$\begin{array}{ll}\begin{array}{ll}\text { 12BA6 } \\ \text { 12AT6 } \\ \text { 50C5 } \\ \text { 35W4 }\end{array} & \begin{array}{l}\text { IF Amplifier } \\ \text { Det, AVC \& AF Amp } \\ \text { Power Amplifier } \\ \text { Rectifier }\end{array} \\ \text { POWER SUPPLY - Operates from } 117 \text { volts, } 60 \text { cycle, al - } \\ \text { ternating current only. Power consump- } \\ \text { tion } 37 \text { watts. }\end{array}$

53C9 Tan

TUNING RANGE - 535 to $1620 \mathrm{Kc} \quad 1 F-455 \mathrm{Kc}$

TUBE COMPLEMENT - Type $\overline{\text { Function }}$ tion 37
trols are shown in the photo above.
NORMAL RADIO OPERATION
The OPERATION SELECTOR knob on the clock turns the radio on or off. Select stations with the TUNING knob,
and adjust volume with the VOLUME control.
A built-in loop antenna eliminates the need for an outside antenna in most locations. When receiving a weak station, rotate the receiver slightly for best signal strength. tenna to the radio by winding the antenna lead-in around the tongue on the rear panel. (This couples external antenna capacitively to loop.) CAUTION: Never connect the radio
chassis to a water pipe, radiator, or other ground.

PAGE 23-74 MOTOROLA

MODELS 53C6, 53C7,

 53C8, 53C9, Ch. HS-338
TO SET SLEEP CONTROL

Turn OPERATION SELECTOR knob counterclockwise. The farther the control is turned, the longer the radio will play, up to a maximum of 60 minutes.

AUTOMATIC RADIO OPERATION

The clock controls may be pre-set to turn the radio on automatically at any time up to twelve hours in advance.

If an appliance is plugged into the receptacle on the rear of the receiver, it will be turned on automatically along with the radio.

TO SET RECEIVER FOR AUTOMATIC OPERATION:

1. Turn OPERATION SELECTOR knob to ON. Allow a short period of time for tube warm-up.
2. Set the radio dial to the station you would like to hear at any pre-determined time, up to twelve hours in advance, and adjust volume to desired loudness.
3. Pull out and turn AUTO SET knob until RADIO ALARM SET POINTER indicates time radio is to be turned on auto matically.
4. Turn OPERATION SELECTOR to OFF and then pull OPERATION SELECTOR out for AUTO. Leave in AUTO position.
5. The radio is now set to turn on automatically at the time indicated by RADIO ALARM SET POINTER. The radio will turn on at the pre-set time and will continue to play until

OPERATION SELECTOR is pushed in and located in the OFF position.

SLEEP CONTROL AND AUTOMATIC OPERATIONS COMBINED

By combining the sleep control and automatic radio operation, it is possible to turn the radio off automatically and to turn it on again automatically.

TO USE THIS FEATURE, SET CONTROLS AS FOLLOWS:

1. Pull out and turn AUTO SET knob until RADIO ALARM SET POINTER indicates time radio is to be turned on automatically; push knob back in (if you wish alarm to ring, leave AUTO SET knob pulled out).
2. Turn OPERATION SELECTOR to OFF and then pull OPERATION SELECTOR out for AUTO.
3. Turn OPERATION SELECTOR counterclackwise for SLEEP CONTROL.
4. Tune in desired station and adjust volume.

APPLIANCE OUTLET

To control an electrical appliance automatically, plug it into the receptacle on the back of the radio. It will then be turned on or off simultaneously with the radio.

CAUTION: Note that the rating of the outlet is 1100 watta or less.

If radio reception is not desired when operating the appliance, rotate the radio volume control to the minimum volume position.

SERVICE NOTES

TO REMOVE RADIO CHASSIS FROM CABINET

1. Pull off the two radio control knobs.
2. Remove the four hex head screws which hold the loop to the cabinet, disconnect leads, and remove loop.
3. From the back of the cabinet, remove the two hex head screws at the rear edge of the radio chassis.
4. Disconnect clock plug from radio chassis.
5. Slide the radio chassis from the cabinet.
6. To service chassis when clock, is disconnected, connect jumper wire between pins 3 \& 4 of clockreceptacle on chas sis to complete power circuit.

TO REMOVE CLOCK FROM CABINET

1. Remove radio chassis from cabinet as described above.
2. Remove clock control knobs. They pull off.
3. Carefully pry of the plastic crystal.
4. Lift off the clock background overlay.
5. From the inside of cabinet, remove two nuts that mount clock.
6. Carefully remove clock from cabinet.

TO SYNCHRONIZE HANDS AND ALARM
If the hands have been moved accidentally, it will be
necessary to re-synchronize them with the alarm dial, as outlined below:

1. Pull out the OPERATION SELECTOR knob to the "AUTO" position.
2. Slowly rotate the time set knob clockwise (as viewed from rear) until the clock switch contacts close. This is indicated by an audible click, or an ohmmeter connected to pins 3 \& 4 of the clock plug, can be used as a visual indicator.
3. Set all the hands to indicate 12 a'clock.
4. Check the automatic operation to be sure the switch contacts close at the time indicated on the alarm dial.

CLOCK REPAIR INFORMATION

Telechron timers can be repaired at Authorized Telechron Service Stations or at the Product Service Department, Ashland, Mass. Consult your Motorola Distributor for the name of the nearest Telechron Service Station, or reier to the ciassified section of the telephonc directory in large cities.

The timer should beremoved from the radio cabinet and packed carefully in order that no further damage results during shipment.

An acknowledgement with quotation and a request for payment will be sent to the dealer before the repair is made. The timer will be returned to the dealer on receipt of pay ment. If the timer is within warranty, repaira will be made on a no-charge basis.

NOTE: Use an isolation transformer placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B-through a . 1 mf capacitor.

1. Connect low range output meter across speaker voice coil.
2. Connect the low side of the signal generator through a . 1 mf capacitor to \mathbf{B} -
3. Set the signal generator for 400 cycle, 30% modulation. ALIGNMENT
4. Turn the receiver volume control to maximum
5. Use a small fibre screwdriver for aligning the IF diode transformers.
6. As stages are brought into alignment, reduce the sif generator output to a level which produces less than volts (. 05 watt) across the voice coil to avoid overloac the receiver.
7. See Figure 1 for adjustment locations and the follow chart for procedure.

CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREOUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SETTING } \end{aligned}$	ADJUST (SEE FIG. 1)	REMARKS
$\begin{aligned} & \text { IF ALII } \\ & \text { l. } \end{aligned}$	NMENT .1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
RF AL $2 .$	GNMENT .1 mf	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	$5 \text { (Osc) }$	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for \max	6 (Ant)	Adjust for maximum.

*Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at leas 12" apart.

FIGURE 1. TUBE \& TRIMER LOCATIONS

PAGE 23-76 MOTOROLA
MODELS 53C6, 53C7,
$53 \mathrm{C} 8,53 \mathrm{C} 9$, Ch. HS-338

MOTOROLA PAGE 23 MODELS 53C6, 53C7 53C8, 53C9, Ch. HS-3

MODE LS 53C6, 53C7,

53C8, 53C9, Ch.
HS-338

PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

GENERAL INTORMATION

TYPE - AC table model superheterodyne with appliance outlet and self-contained electric clock for controlling automatically the operation of the radio and the outlet.

RECEIVER MODELS

Model	Color
62 Cl	Walnut
62 CZ	Iyory
$62 \mathrm{C3}$	Green

TUNING RANGE $=535$ to $1620 \mathrm{Kc} \quad \mathrm{IF}=455 \mathrm{Kc}$
TUBE COMPLEMENT - Type \quad Function
12BD6 RF Amplifier
12BE6 Converter
12BD6 IF Amplifier
$12 A T 6$ Det, AVC \& AF Amp
35C5 Power Amplifier
35W4 \mid Rectifier
POWER SUPPLY - Operates from 117 volts, 60 cycle, alternating current only. Power consumption 30 watts.

FIGURE 1. FROAT VIEW OF RECEIVER

APPLIANCE OUTLET - For use with 117 volt AC appl ances only, rated at 1100 watts less.

CLOCK - Telechron self-starting electric clock, w: Motorola face and hands.

OPERATING INSTRUCTIONS

The locations and functions of the clock and radio controls are shown in Figure 1 .

NORMAL RADIO OPERATION

Knob "A" on the clock turns the radio on or off. Select stations with the TUNING knob, and adjust volume with the VOLUME control.

A built-in ferrite magnetic iron core antenna eliminates the need for anoutside antenna. When receiving a weak station, rotate the receiver slightly for best signal strength. CAUTION: Never connect the radio chassis to a water pipe, radiator, or other ground.
CLOCK OPERATION
The clock will start as soon as the receiver is plugged into an electrical outlet. To set the hands to the correct time, rotate the TIME SET knob (on the rear of the radio) in a clockwise direction only.

ALARM OPERATION

To set the alarm, pull out knob "C" and rotate it in a counterclockwise direction to the desired time on the alarm dial scale. The alarm will ring for one hour, or until knob " C " is pushed in. The alarm function is completely independent of the other controls on the clock.
APPLIANCE OUTLET
To control an electrical appliance automatically, plug it into the receptacle on the back of the radio. It will then be turned on or off simultaneously with the radio.

CAUTION: Note that the rating of the outlet is 1100 watts or less.

If radio reception is not desired when operating the appliance, rotate the radio volume control to the minimum volume position.

AUTOMATIC RADIO OPERATION

The clock controls may be pre-set to turn the radic automatically at any time up to twelve hours in advance.

If an appliance is plugged into the receptacle on the b of the receiver, it will be turned on automatically, al with the radio.

Pull out knob "C", rotate it counterclockwise to the sired time on the alarm dial scale, and push the knob b in. Rotate knob "A" first to the "OFF" position and the, the "AUTO" position. At the pre-set time, the radio, come on and will continue to play until turned off manua The alarm will ring also if the knob " C " is left pulled. The radio will come on first and, after an interval of al ten minutes, the alarm will ring.

BEDTIME CONTROL

The BEDTIME control will turn the radio and applia off after any pre-set interval of time up to one hour.

Turn knob "A" to the "OFF" position and rotate knob to any period of time between 0 and 60 minutes. The ra and appliance will be turned off automatically after the pr er time has elapsed, and they will remain off until tur on again manually.

AUTOMATIC AND BEDTIME OPERATIONS COMBINED

By combining the operations in the two sections abc the radio may be turned off automatically and on again at matically.

When setting the BEDTIME control, rotate knob "A' the "AUTO" position instead of "OFF". IMPORTANT: I necessary to turn knob "A" first to the "OFF" position for proceeding to "AUTO", otherwise the radio may shut off.

ALIGNMENT

NOTE: It is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B through a.l mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to B -.
3. Set the signal generator for $\mathbf{4 0 0}$ cycle, $\mathbf{3 0 \%}$ modulation.

ALIGNMENT
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than. 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 2 for adjustment locations and the following chart for procedure.

CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARKS
IF ALIGNMENT						
1.	.1 mf	Grid of conv (RF section of gang)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & (\text { IF cores) } \end{aligned}$	Adjust for maximum.
RF ALIGNMENT						
2.	.1 mf	Grid of conv. (RF section of gang)	1620 Kc	Fully open	5 (Osc trim)	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for max	6 (RF trim)	Adjust for maximum.
4.	-	Radiation loop*	1400 Kc	$\begin{aligned} & \text { Tune for } \\ & \text { max } \end{aligned}$	$7 \text { (Ant }$ trim)	Adjust for maximum.

*Connect generator output across 5 -inch diameter, 5 turn loop and couple inductively to receiver loop. Keep generator loop perpendicular to axis of and at least 12 inches from receiver iron core loop.

SERVICE NOTES

The chassis of this receiver is isolated from the AC power line circuit by a capacitor to eliminate the shock hazard when handling the receiver. However, as an additional precaution when aligning or servicing the receiver, an isolation transformer should be inserted between the power line and the chassis.

TO REMOVE CHASSIS FOR SERVICE

1. Remove the two screws from the bottom of the cabinet.
2. Remove the two screws from the back of the cabinet.
3. Pull the chassis and front cover from the cabinet.
4. Pull off radio and clock control knobs.
5. Insert a screwdriver into the loops on the ends of the front cover retainer springs, and pry the springs from their slots in the chassis.
6. Pull off the front cover.

TO REPLACE CLOCK DIAL BACKGROUND

1. Remove the clock from the chassis.
2. Carefully pull off the three hands.
3. Remove the alarm dial and dial background.
4. Install new background.
5. Turn the radio control shaft to "AUTO" position,
6. Slowly rotate the time set shaft clockwise until the switch contacts behind the radio control shaft close.
7. Reassemble the alarm dial and three hands. Set all the hands to indicate 12 o'clock. Set the figure "12" on the alarm dial to index with the small pointer on the hour hand.
8. Check the automatic operation to be sure the 5 witch contacts close at the time indicated on the alarm dial.

PAGE 23-82 MOTOROLA
CHASSIS HS-299

PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

Transformers

T-1,2 24C485553 IF and Diode Transformer:
455 Kc: complete............. 1.45
T-3 25K610738 Output transformer............ 1.50

PRICES SUBJECT TO CHANGE WITHOUT NOTICE *Plus Federal Excise Tax At Current Rate

PAGE 23-2 OLYMPIC
MODEL 489

PARTS LIST

Part No.	Doscription	Part No.	Description
$\begin{aligned} & \text { CL-2531 } \\ & \text { CO-1323 } \end{aligned}$	Coil-Oscillator Coil Condenser-8 MFD 100 W.V. Electrolytic Condenser	$\begin{aligned} & \text { MS- } 1403 \\ & \text { PC- } 2489 \\ & \text { PO. } 1310 \end{aligned}$	I.F. Mounting Clip Pentode Couplate Network Pointer
$\begin{aligned} & C V-1291-1 \\ & E S-1288 \\ & K N-1309 \\ & L P-1316 \\ & M P-1290 \\ & M P-1292 \\ & M P-1302 \\ & M P-1306 \end{aligned}$	Condenser-Variable Condenser [2 Section) Escutcheon Knob Loop Moulded Cover Moulded Case Plastic Handle Loop Cover, Moulded	PP. 1317 PT-1313 SH. 1284 SK-1283 SP-1286 SW. 1280 TR. 1279 TR. 1314	"B" Battery Snap Connector Assembly 1 Meg. Volume Control Drive Shaft Assembly Speaker-31/2" P.M. Speaker (. 68 oz. Alnico) Spring-Pointer Drive Spring Switch-Door Switch Transformer-Output Transformer Transformer-I.F. Transformer

Model 9.435 is a 5 tube lfour tubes plus rectifier) a-c or $d-c$ operated 2 band superheterodyne receiver employing a
built in loop antenna which will provide satisfactory reception under normal operating conditions. This type of antenna is directional and noise or interference from other stations can be minimized by rotating the receiver. If the receiver is used in locations where signal strength is very low, as in steel buildings, or in locations remote from broadcast stations, an outside antenna may be connected to a tead protruding through the back of the cabinet. For satisfactory reception on short wave, an outside antenna is essential. A ground connection is unnecessary.
On' d-c operation, if no signal is heard afler about one minute warm up period, reverse the line plug. If a slight hum is heard on a-c apesation a similar reversal of the plug may reduce the hum.

CONTROLS

2. $B C-S W$

Power Requirement $105-125$ Volts d.s or 50 to 00 cycles a-c
Power Consumption 50 watt
Frequency Range Broadkast $540 \mathrm{k} \cdot \mathrm{c}$ to $1610 \mathrm{k} \cdot \mathrm{c}$ - Shortwove $4.75 \mathrm{~m}-\mathrm{c}$ to 16.1 m-c

PAGE 23-4 OLYMPIC

Port No.
BU-187
CA.327W
CA-327V
CL. 933

CL940
CO.1715

CT-389

DL-934
KN-1077
KN-1078
KN-1085
KN-1103
KN-1 104
KN-1105
LP-937
PO.259W
PO.259V
PT-102
RCM20A101M
RCM20A221M
RCM20A331M

CT-440 Condenser - 350.780 minfd. padder condenser
CT-939 Condenser-3-35 mmfd. trimmer condenser
CV-772 Condenser-2 section ganged variable con' denser

Description
Bulb-447 Mazda pilot light bulb
Cabinet-walnut bakelite cabinet
Cabinet-ivory bakelite cobinet
Coil-broadcast and shortwave oscillator coil Coil-sheriwave antenna coil
Condenser - 40/40/150 W.V. electrolytic condenser
Condenser - 3-35 mmid. duel trimmer condenser

Dial-dial scale
Knob-walnut knob marked "Off-On-Volume"
Knob-wolnut knob marked "Tuning"
Knob-walnut knob marked "EC-SW"
Knob-ivory knob marked "OF-On-Volume"
Knob-ivory knob marked 'Tuning"'
Knob-ivory knob marked "SC-SW"
Loop-loop antenna
Pointer-- moulded pointer (walnut)
Pointer-molded pointer (ivory)
Contral-w $1 / 2$ megohm volume control with offon switch
Condenser- $100 \mathrm{mmfd} . \pm 20 \%$ mica condenser
Condenser- $\mathbf{2 2 0}$ mmfd. $\pm \mathbf{2 0 \%}$ mica conden. ser
Condenser- $\mathbf{3 3 0}$ mmfd. $\pm \mathbf{2 0 \%}$ mica condenser

Part No.
RCM20A470M
RCM30B402J
RCP10W4104L
Condenser- $\mathbf{4 0 0 0}$ minfd. $\pm 5 \%$ mice conde ser

RCPIOW4203A Condenser-. 02 / 400 W.V.tubular paper co denser
RCPIOW4503A Condenser- $0.05 / 400 \mathrm{~W} . \mathrm{V}$. tubular paper co denser
RCP10W6103A Condenser-. 01 /600 W.V. tubular paper co denser
RCPIOW6502A Condenser-.005/600 W.V. tubular pap condenser
REB-105M Resistor-I megohm $\pm 20 \% 1 / 2$ watt resister
REB-106M Resistor- 10 megohms $\pm 20 \% 1 / 2$ woft resist
REB.151K Resistor- 150 ohms $\pm 10 \% 1 / 2$ watt resistor
REB-223M
REB.224M
REB-225M
RE-473M
REB-474M
REC.221K
RED-102M
SK-838-1
SP. 191
SP-295
ST-255-1
SW. 839
TR-1644

Resistor- 22,000 ohms $\pm 20 \% 1 / 2$ watt resist
Resistor-220,000 ohms $\pm 20 \% ~ 1 / 2$ watt ! sistor
Resistor- 2.2 megohms $\pm 20 \% ~ 1 / 2$ watt , sistor
Resistor- 47,000 ohms $\pm 20 \% 1 / 2$ watt resist
Resistor- 470,000 ohms $\pm 20 \% 1 / 2$ wall । sistor
Resistor- 220 ohms $\pm 10 \% 1$ watt resistor
Resistor- 1000 ohms $\pm 20 \% 2$ watt resistor
Speaker-5" p.m. speaker
Spring-drive shaft retaining spring
Spring-dial drive spring
Back-cardboard back
Switch-4 P.D.T. band switeh
Transformer-455 k-c I.F. transformer

PAGE 23-6 OLYMPIC.

[^0]: *The part number of the Loop Antenna Assembly changes with different cabinets. It is therefore important that you specify the style number of the instrument when ordering a replacement Loop Antenna Assembly.

[^1]: - Variations of $\pm 20 \%$ are permissible. All readings made with sufficient input signal to
 provide . 05 watt speaker output at 400 cycies is equivalent to a reading of 0.4 volts as measured by a high resistance $A C$ voltmeter across the voice coil of either speaker.

[^2]: - Some sets wore produced with an Audio Couplate, part aumber K -8215, to replece resistors (Illus. No. R5 ad R7) and Condensers (Illus. No. C1! and C12).

[^3]: IMPORTANT-All prices in this literature are subject to change without notice and are subject to an additional charge to cover any applicable sales tax, use, occupation, or other tar affecting our purchase or sale of merchandise.

[^4]: IMPORTANT-All prices in this literature are subject to change without notice and are subject to an additional charge to cover any applicable sales tax, use, occupation, or other tax affecting our purchase or sale of merchandise.

[^5]: Repair Parts may be ordered from your nearest Wards Retail
 Store, Catalog Order Office, or Mail Order House. To have your order filled promptly and correctly, please furnish the following information:

 1. Model Number which appears on namepiate.
 2. Part Number and Name of Part (see Repair Parts List).
[^6]: * Replacement Parts for Couplate N-8215
 ** Excise Tax Included

[^7]: 6．From the back of the cabinet，remove the two hex head screws at the rear edge of the radio chassis．

[^8]: *Connect generator output across 5" diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least

