MODEL 15RA2－43．8230A

Chassis View

SERVICEDATA

POWER SUPPLY．．．．．．．．．．．．．．． 115 volts，DC or $50-60$ cycle AC， 24 watts．
FREQUENCY RANGE．．．．．． 540 to 1600 Kc ．
INTERMEDIATE FREQ．．． 455 Kc ．
SELECTIVITY．．．．．．．．．．．．．．．．．．．．．At 1000 Kc ．， 60 Kc ．at $1000 \times$ sign SENSITIVITY．．．．．．．．．．．．．．．．．．．．．． 150 u．v．per meter．
POWER OUTPUT．．．．．．．．．．．．．． 0.8 watt undistorted， 1.0 watt mad LOUD SPEAKER．．．．．．．．．．．．．．．．4＂round PM．，v．c．impedance ：
TUBE COMPLEMENT．．．．．
12BE6，Converter．
12BAG，I－F Amplifier．
12AV6 or 12AT6，Detector，
AVC，Audio．
50C5，Output Amplifie 35Z5，Rectifier．

Dial Striuging Diagram
ALIGNMENT PROCEDURE

SIGNAL GENERATOR				TUNERSETTING	ADJUST FOR MAXIMUM OUTPUT	$\begin{aligned} & \text { INPUT FOR } \\ & \text { so MILLIW AT } \\ & \text { OUTPUT } \end{aligned}$
Frequency	$\begin{aligned} & \text { Coupling } \\ & \text { Capacitor } \end{aligned}$	$\begin{gathered} \text { Connection to } \\ \text { Radio } \end{gathered}$	$\begin{gathered} \text { Ground } \\ \text { Connection } \end{gathered}$			
455 kc.	.1 mf．	12BE6，Pin 7	$\begin{aligned} & \mathscr{0} \\ & 0 \\ & \hdashline y y y y y y y y \end{aligned}$	Capacitor full open （plates out of mesh）	Top and bottom Cores in output and input I．F．cans	65 microvolts
1620 kc ．	． 1 mf ．	12BE6，Pin 7	是	Capacitor full open （plates out of mesh）	Oscillator trimmer C1－D on gang	70 microvolts
535 kc ．	． 1 mf ．	12BE6，Pin 7	范	Capacitor fuily closed	$\begin{gathered} \text { Check for } \\ \text { adequate range } \end{gathered}$	70 microvolts
1400 kc ．		Lay Generator lead near back of cabinet		Tune in 1400 kc. signal	Antenna trimmer C1－C on gang	200 to 400 microvolts
400 cycles	． 1 mf ．	12AT6，Pin 1	岸		－	． 06 volts

SCHEMATIC DIAGRAM WITH VOLTAGES

PARTS LIST
Use Only Genuine Factory Replacement Parts

[^0]

GENERAL DESCRIPTION

Your new radio-phonagraph is a 5 tube (including rectifier tube) , receiver and 3 -speed automatic record changer housed in a beauti mahogany wood cabinet. Controls are provided on the front for sele ing radio or phonograph operation, for tuning and volume. Contr are provided on the phonograph for selecting speed and operation the record changer (for details see Instruction card placed on rece changer furntable).
Special features of the radio receiver include a buit-in loop anten automatic volume control, beam power output tube, and a perman magnet dynamic speaker. Provision has been made for connection an external antenna. It is designed for reception of radio stations the standard broadcast band between 540 and 1600 kilocycles.
The Automatic Record Changer is designed to play standard 78 RI fine groove 45 RPM, or long play 33 1/3 RPM records of stand commercial dimensions. The playing copacity of a single loading is 12" records either standard or long play, twelve $10^{\prime \prime}$ records eit standard or long play, or any mixture of ten $10^{\prime \prime}$ or $12^{\prime \prime}$ records of same type. The changer can olso accommodate a full stack of twi $7^{\prime \prime}$ long play ($331 / 3$ RPM) or twolve 7" fine groove (45 RPM) rece

ELECTRICAL SPECIFICATIONS

POWER SUPPLY:
117 volts A.C. 60 cyeles.
FREQUENCY RANGE
Broadcast 540-1600 Kc.
INTERMEDIATE FREQUENCY:
455 Kc .
ANTENNA:
High impedance loop.
TUNING:
2 section, solid mounted gang condenser.
SPEAKER:
5 inch PM Dynamic.
POWER CONSUMPTION:
60 wats:
POWER OUTPUT:
Undistorted- 8 watts
Maximum - 1 watt
SENSITIVITY-(Measured with signal injection at external antenna terminal and for 50 milliwatt output):
50 microvolts average
SELECTIVITY:

TUBE COMPLEMENT AND FUNCTION:
1 12BE6 Convertar
1 12BA6 I.F. Amplifier
1 12AT6 Detector-A.V.C.-Audio Amplifier
150 C 5 Audio Output
1 35W4 Reetifier

ALIGNMENT PROCEDURE

1. During the alignment of this receiver, the Pointer will have to be set to a specific frequency. Since the dial scale is mounted on the front of the cabinet, and the fact that the mass of the record changer may have an offect in the calibration, adjustment of the recillator and antenna trimmers should be performed with the chassis mounted in the cabinet.
2. To remove the chassis, for I. F. Alignment, proceed as follows: Take off cabinet back by removing screws around edges and disconnecting the two antenna leads from the chassis. Next, take off knobs and pointer by grasping firmly and pulling forward. Now, take out the two chassis mounting serews at bottom of cabinet. Chassis can be withdrawn from cabinet.
3. Connect an output meter across the speaker voice coil.
4. For I. F. alignment only, connect ground lead of signal generotor to B- lug (see voltage chart for convenient B- connection).

CAUTION: If your signal generator is designed with an AC.DC power supply, connect the ground lead to B- through a .25 Mfd . condenser.
5. Since the oscillatar and antenna alignment is performed with the chassis in the cabinet, it will be necessary to couple the signal generator to the receiver by connecting its output to several turns of wire formed in a circular shape so that it may be placed adjacent and paralial to the receiver loop antenna.
6. With the gang condenser fully meshed, (Tuning control turned to a fully counter-elockwise position) the dial pointer should be in a horizontal position at low end of dial, parallel to the bottom edge of dial scale. If it is set incorrectly, merely hold tuning control shoft sfeady and move pointer to correct position.
7. Sat volume control at maximum volume position and use a weak signal from the signal generator.

RANGE	SIGNAL GENERATOR		DUmmy ANTENNA	$\begin{aligned} & \text { GANG } \\ & \text { CONDENSER } \\ & \text { SETTING } \end{aligned}$	ADJUST sLugs or trimmers
	FREQuENCY SETTING	CONNECTION at radio			
${ }_{455 \mathrm{KC}}^{\text {I.F. }}$	455 KC	High side to trimmer No. 5. Ground lead as in step 4 above.	.02 Mfd . Condenser	Any point where it does not affiect the signal.	(2nd I.F.) \#18 \#2 for maximum output
	455 KC	High side to trimmer No. 5. Ground lead os in step 4 above.	.02 Mfd . Condenser	Any point where it does not affect the signal.	(1st I.F.) \#3 \& \#4 for maximum outpul
Reinstall chassis in cabinet, replace pointer and mounting screws for chassis and loop.					
$\begin{aligned} & \text { BROADCAST } \\ & 540-1600 \mathrm{kC} \end{aligned}$	1500 KC	Connect directly to coupling turn as described in step 5 above.	NONE	1500 KC	(Oscillator) Trimmer \#5 for maximum output
	1500 KC	Connect directly to coupling turn as described in step 5 above.	NONE	Tune to 1500 KC generator signal	(Antenna) Trimmer \#6 for maximum output
DIAL CORD ARRANGEMENT					

To string dial cord, turn the main drive drum to maximum counter-clockwise posifion and use following parts: 114955 Clip on end of cord
117057 Cord (2 feet) 505161 Tension Spring
To reinstall pointer on gang condenser shaft, see parograph 6 in introduction to Alignment Procedure.

SOCKET

VOLTAGES

1. All measurements made with a voltmeter having a sensitivity of 20,000 ohms per volt excopt where indicated by (*). The (*) symbol designates a vacuum tube voltmeter measurement.
2. Terminals on loop antenna are shorted together to minimize noise signal pickup.
3. Dial tuned to 540 Kc .
4. Volume control set to maximum with no signal.
NOTE A: The center stud of this tube must be connected to 8- to reduce capacity coupling between pins. Oscillotion may result if this connection is onsitted.

128
II. AMP.
$90 \quad 1.5$

REA OF CHMSSIS

Power Supply
Frequency Range
Intermediate Frequency
Antenna
Tuning
Speaker
Power Output
Sensitivity
Selectivity

SPECIFICATIONS
117 volts 60 cycle AC, 117 volts DC, 29 watts 535 KC to 1630 KC 455KC
Built-in Loop
Variable Capacity
$4^{\prime \prime}$, P.M. voice coil impedance 3.2 ohms
0.8 watt undistorted, 1.8 watts maximum $400 \mathrm{uv} / \mathrm{m}$ average for 50 milliwatts output
55 KC broad at 1000 times, signal at 1000 KC

Tubes used are as follows:

12BE6 Oscillator-Converter	$50 C 5$ Power Output
12AV6 or I2AT6 AVC, Detector, and Audio	35 W 4 Power Rectifier
12BA6 I.F. Amplifier	

12BA6 I.F. Amplifier

[^1]ALIGNMENT PROCEDURE
The following procedure is for use only by competent servicemen having the proper equipment.

CHASSIS LAYOUT TOP VIEW action from interfering with proper alignment. With the output meter con 400 e.p.s. Adjust all trimmers for maximum output. Repeat the alignment procedure git below as an al CAUTION: This is an AC/DC receiver, and when aligning the set it is necessary to isolate
line by use of a transformer, or to place a .2 MFD condenser in each test lead of the signal generator.

$$
\begin{aligned}
& \text { SIGNAL GENERATOR } \\
& \text { Dummy }
\end{aligned}
$$

Connection to Radio
12BE6 Grid Stator VCA
POSITION
Fully Open
Fully Open
ADJUST FOR
MAXIMUM
TI \& TL
VCR
Oscillator
VCR
Antenna

Tune in Signal Generator

Loosely Coupled to Loop
Connect low side of signal generator to common negative.

PAGE 23-8 GAMBLE-SKOGMO

MODELS 15RA33-43-8245A,

 15RA33-43-8246A

PARTS VALUES FOR TGB GAMBLE'S AC/DC CADET

SYMBOL	PART NO.
VCA-VCB	VCT68
C1	CO52
C2	C12
C3	C026
C4-C6-C7	C0056
C5	C2505M
C8	C40-20-1.5
C9	C40-20-1.5
C10	C054
R1	R223.5
R2	R391.5
R3	R105.5
R4	R106.5
R5-R9	R474.5
R6	R121.5
R7	R1032
R8	R1021
EI	CR1
VR	VRT67G
LA	LAT68A
LO	LOT67
TI-T2	T111-31-A
T3	E--81645-T
SW	VRT67G
SPK	SPKT67

CIRCUIT COMPONENTS	
DESCRIPTION	Value rating
Condensar, 2 gang	
Condenser, paper	. 05 MFD 200 volts
Condonser, paper	1 MFD 200 volts
Condenser, paper	. 02 MFD 600 volts
Condenser, paper	. $005 \mathrm{MFD} \quad 600$ volts
Condenser, mica	250 MMFD 500 volts
Condenser, electrolytic	20 MFD 150 volts
Condenser, electrolytic	$40 \mathrm{MFD} \quad 150 \mathrm{volts}$
Condenser, paper	. 05 MFD 400 volts
Resistor	22K ohm $1 / 2$ watt
Resistor	$390 \mathrm{ohm} \quad 1 / 2$ watt
Resistor	1 megohm 1/2 watt
Resistor	$10 \mathrm{mogohm} \quad 1 / 2$ watt
Resistor	$470 \mathrm{Kohm} 1 / 2$ watt
Resistor	120 ohm $1 / 2 \mathrm{waH}$
Resistor	10 Kohm 2 watt
Resistor	$1000 \mathrm{ohm} \quad 1 \mathrm{wath}$
Diode filtor unit	
Volume control	1 megohm
Oscillator coil	
I.F. transformer	
Switch S.P.S.T. on	
volume control	
4" P.M. spoaker	

MECHANICAL PARTS

SPECIFICATIONS

Power Supply

Frequency Range
Intermediate Frequency
Antenna
Tuning
Speaker
Power Output
Sensitivity
Selectivity
Tubes used are as follows:
6BA6 R.F. Amplifier
6BE6 Oscillator-Converter
6BA6 I.F. Amplifier

117 volts A. C. 60 cycle only, 45 watts 540 KC to 1630 KC 455 KC FERRI-ROD LOOP
Variable Capacity
$5^{\prime \prime} \times 7^{\prime \prime}$ P.M., voice coil impedance 3.2 ohms 4 watts undistorted, 4.5 watts maximum

200 uv/m for 500 milliwatts output
40 KC broad af 1000 times, signal at 1000 KC

6AV6 AVC. Detector, and Audio 6V6GT Power Output 6X4 Power Rectifier

BOTTOM VEW

VOLTAGE CHART

PAGE 23-10 GAMBLE-SKOGMO
MODEL 15RA33-43-8635,
Westerner

ALIGNMENT PROCEDURE

The alignment should be made with volume control fully on, and with the output from the signal generator as low as possible, to provent AVC action from interfering with proper alignment. With the output mater connected across the voice coil of the speaker, and the signal generator modulated at 400 c .p.s., adjust all trimmers for maximum output using the alignment procedure given below:				
SIGNAL GENERATOR Dummy Antequency			POSITION OF TUNING CONDENSER	ADJUST FOR MAXIMUM OUTPUT
455 KC	. 1 MFD	VC2 stator section	Fully open	Ti \& T 2
1630 KC	. 1 MFD	VC2 stator section	Fully open	osc Trimmer
1400 KC	Radiation Loop	None	Tune in Sig. Gen.	R.F. \& ANT. Trimmers
Connect low side of signal generator to common negative.				

PARTS VALUES FOR WESTERNER 15RA33-43-8365

Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Volume C
Antenna rod \& back
O.Fsillator Coil
I.F. transformer
Output transformer

Output transformer
Power transformer
Switch S.P.S.T. on
Switch S.P.S.T. on volume
Switch D.P.D.T. for phono
Speaker P.M. 5×7

Condenser, mica
Condenser, paper

Condenser, paper,

$\overline{0}$
0
0
0
0

MECHANICAL PARTS

PART NO.	DESCRIPTION	PART NO.	DESCRIPTION	PART NO.	DESCRIPTION
$\begin{aligned} & M-1901 \\ & M-1902 \end{aligned}$	Chassis Bracket,	P-1903	Knob, round insert, walnut	$\mathrm{H}-81641-29$ H .1903	\#29 terminal board
TIII-31-B	I.F. mounting clip	H-81644-9	Pilot light socket	$\mathrm{H}-1903$ $\mathrm{H}-1902$	Shaft, funing ${ }^{\text {Bushing, tuning shaft }}$
P. 1904	Dial pointer	H-81644-6	Miniature tube	H-1601	Trimount 5/8'
P. 1906	Dial scale		socket	W-1802	Line cord and plug
H.1904	Dial spring	H-81644-5	Octal tube socket.	SR-3P	Strain relief
P-1905	Escutchoon		wafer	P-1908	Baffle, speaker
P-1902	Knob, round hub,	H-81644-7	Phono socket	M-1903	Angle bracket
	walnut	H-81641.3	\#3 terminal	P-1901	Cabinet, walnut

GENERAL DESCRIPTION

This Clock Radio is an AC operated five-tube radio (including rectifier tube). It employs a Sessions Electric Clock Movement for switching AC power to the radio at any pre-set time.

The "Radio" Switch removes power from the unit entirely when in the "OFF" position, connects power to the receiver in the "ON" position, and switches power to the receiver through the clock contacter position.

ELECTRICAL SPECIFICATION
Power Supply:-117 Volts AC, 60 Cycles.
Frequency Range:-540-1650 Kilocycles.
Intermediate Frequency:- d 5 S Kilocycles.
Antenna:-Air loop mounted on rear of chassis.
Tuning:-Two gang, direct drive variable condenser.
Speaker:-4-inch PM round, 3.2 ohm Voice Coil.
Power Consumption:- 32 watts.
Power Output:- 85 watts undistorted, 1.25 watts maximum. Sensitivily:-50 Microvolts for 50 Milliwatt Output.
Selectivity:- 59 KC broad at 1000 times signal at 1000 KC .

TUBE COMPLIMENT

12BE6 - Converter
12AT6-2nd Detector, 1st Aud Amp. and AGC

12BA6 - I.F. Amplifier
50C5 - Audio Output
35W4 - Power Rectifier
(NOTE: Appliance outlet is rated for 1000 watts)

The "Sleep" Suitch is a time operated device which closes the line to the receiver for the period for which the adjustment is made. The "Sleep" Switch is in parallel with the clock switch.

ALIGNMENT PROCEDURE

- OUTPUT METER ACROSS VOICE COIL
- VOLUME CONTROL MAXIMUM
- REDUCE INPUT AS NEEDED
- AIL GROUND CONNECTIONS TO B-

Frequency	Dummy Antenna	Connection to Radio	Position of Variable	Adjuss for Maximum Ouspus
455 KC	05	Pin $7-$ 12BE6 Converter Grid	Rotor Open (Plates Out of Mesh)	T2 - Pri. and Sec.
455 KC	05	Pin 7 - 12BE6 Converter Grid	$\begin{gathered} \text { Rotor Open } \\ \text { (Plates Out of Mesh) } \end{gathered}$	T 1 - Pri. and Sec.
1650 KC	05	Pin 7-12BE6 Converter Grid	Rotor Open (Plates Out of Mesh)	C7B - Osc. Trimmer _
1500 KC		eral Turns ad Loop Ant.	1500 KC	${ }^{-}$C7A - Ant. Trimmer ${ }^{-}$

REPEAT STEPS 3 and 4

PAGE 23-14 GAMBLE-SKOGMO
MODEL 35RA40-43-8247A

VOLTAGE READINGS TAKEN WITH VTVM FROM PINS DESIGNATED TO B-
Line Voltage - 117 volts A.C.
Full Volume - No signal

Schematic Symbol No.	Description Part No.		LIST		
			Schematic Symbol No.	Description	Pari
R 1	22k Ohms $1 / 2$ W. 10\%-Carbon Resistor	RC-223-2	CV̇ 8	2-Gang Variable Condenser	CV
R 2	220 Ohms $1 / 2$ W. 10%-Carbon Resistor	RC-221-2	P 29	Potentiometer--Volume Control $1 / 2 \mathrm{Meg}$.	P-2
R 3	1 Meg Ohm 1/2 W. 10%-Carbon Resistor	RC-105-2	L0.9	Broadcast Oscillator Coil	LO
R 5	150 Ohms $1 / 2$ W. 10\%-Carbon Resistor	RC-151-2	T 135	Audio Output Transformer	T. 1
R 6	1800 Ohms 1 W. 20\%-Carbon Resistor	RC-182-4	T1\& T 2	I.F. Transformer	LII
R 7	18 Ohms $1 / 2 \mathrm{~W} .10 \%$-Carbon Resistor	RC-180-2	L 1	Antenna Loop	LA
C 1	. 05 Mfd. 400 V. - Paper Capacitor	CP-4-15	V 1	Tube-12BE6-Oscillator and Mixer	$12]$
C 2	. 05 Mfd. 200 V. - Paper Capacitor	CP-2-15	V 2	Tube-12BA6-I.F. Amplifier	12]
	. 02 Mfd .400 V. - Paper Capacitor	CP-4.12	V 3	Tube-12AT6-Detector and 1st Audio Amplifier	12.
C5A \& C5B	30.50 Mfd. 150 V . - Electrolytic Condenser with Mtg. Strap	CET-19	V 4	Tube-50Cs-Power Amplifier	501
C 6	. 02 Mfd .600 V . - Paper Capacitor	CP-6-12	V 5	Tube-35W4-Rectifier	35

SERVICING OF SESSIONS MOVEMENT

The Sessions Electric Clock Movement used in this unit will be repaired : no charge within the warranty period in the event of failure due to defects in workmanship and material, provided the unit has been subject to normal use

Service stations have been established that are qualified to repair these movements upon delivery to them.- The entire clock assembly first must be removed, as these stations positively will not service any clocks that are st mounted on the radio unit.

Figure 1

Figure 2

TO TAKE CLOCK MOVEMENT OUT OF CABINET PROCEED AS FOLLOWS: Remove the following:

1. Line cord from $A C$ receptacle.
2. Tuning and volume control knobs. Also the four small knobs on the clock setting controls.
3. Chassis from cabinet.
4. Clock power plug which fits into receptacle on top of chassis (Fig. 1).
5. Two nuts fastening clock to bracket (Fig. 2).

MISCELLANEOUS

Part No.
PMS 10 or PMS 11 4" PM Speaker
KM52
\qquad Tuning Knob
KM 53
Control Knob
CV8 \qquad Two-Gang Variable Condenser

SPECIFICATIONS

Model 409^{\prime} is a table model receiver providing reception on the AM band (540 to 1600 kc) and the FM band ($88-108 \mathrm{mc}$) The receiver is housed in a mahogany colored plastic cabinet.

The receiver has a built-in FM power-line antenna. To operate the receiver from the built-in FM power line antenna it is necessary to connect the power-line antenna wire to $\mathbf{F M}$ antenna terminal.

Notc: To remove the dial scale it is necessary to remove the escutcheon to gain access to the dial scale mounting screws. Remove the escutcheon by pushing forward on the escutcheon mounting stude from ingide of the cabinet.

TUBES

V1-R.F. Amplifier	6BJ6
V2-F.M. Converter-A.M.-F.M. Oscillator	12AT7
V3-1st F.M., I.F. Ampl. A.M. Conv.	12AU6
V4--2nd F.M., ist A.M.-I.F. Ampl.	12BA6
V5-F.M. Limiter	$12 \mathrm{AU6}$
V6-F.M. Discriminator, A.M. Detector and	$19 \mathrm{T8}$
V7-Audio Output	35 C 5

[^2]RDK-266 RDK-265 RDS- 111
RDK-267
75 microvolts per meter, at $975 \mathrm{kc} .30 \%$ mod. with 400 cyclea for $1 / 2$ watt audio output.
75 microvolts per meter at $1500 \mathrm{kc} .30 \%$ mod. with 400 cycles for $1 / 2$ watt audio output.
2. The following voltages are required at the point of input designated to produce one volt d-c at the test point on the rear of the chassis. This test point is connected to the limiter grid (V5 pin 1) through a $470,000 \mathrm{ohm}$ resistor. The one volt d-c can only be measured with a vacuum tube voltmeter
F.M.-I.F. Sensitivities at 10.7 Mc Unmod.
(a) 50,000 microvolts at $V 4$ grid (pin 1) for 1 volt d-c at the teat point.
(b) 1,000 microvolts at V 3 grid (pin 1) for 1 volt d-c at the test point.
(c) 100 microvolta at V2 grid (pin 7) for 1 volt d-c at test point.
Note pin 7 of V2 must be disconnected from the r-f tuner gang before attempting to measure the sensitivity at the converter grid (V2 pin 7).
F.M.-R.F. Sensitivity

For F.M.-R.F. alignment the input impedance of the signal generator should match the 300 ohm input impedance of the receiver.
25 microvolts at 88 megacycles for 1 volt d-c at the test point.
20 microvolts at 98 megacycles for 1 volt d-c at the test point.
30 microvolts at 108 megacycles for 1 volt d-c at the test point.

. Audio Gain

0.1 volt at 400 cycles applied across the volume control with the volume control aet at maximum should give approximately $1 / 2$ watt output.
4. Oscillator Grid Bias

The d-c voltage developed across $\mathbf{R} 2002$ should be approximately 8 volts at 1000 kc and 3 volts at 98 megacycles as measured with a vacuum tube voltmeter.
5. Hum Measurement

On A.M. with the volume control set at a minimum, the hum measured across the speaker leads should not exceed 7 millivolts.

On F.M. with the limiter grid pin 1 of V5 connected to chasais through a 0.1 mf capacitor and the volume control aet at a maximum, the hum should not exceed 15 millivolts measured across the speaker leads.

TO INDEX THE DIAL POINTER

The vertical mark on the front of the cabinet under the dial scale represents 98 mc on the F.M. scale. When the pointer is set to this point the receiver should be tuned to 98 mc on the F.M. band. At 98 mc the pointer should be vertical and equidistant from either end of its travel. The pointer will be horizontal et either end of its rotation.
Insert the chassis into the cabinet with the dial scale removed. Connect a 98 mc signal to the F.M. antenna terminals. With the band switch switched to F.M. tune the receiver to give maximum d-c output at the limiter grid test point on the rear of the chassis. Reduce the signal input so that the output at the limiter grid measures about 1 volt as measured by a vacuum tube voltmeter. Set the pointer onto the shaft opposite the 98 me mark on the cabinet.
If a 98 mc sweep signal is used tune the gang condenser for maximum amplitude of the response curve, of Fig. A on the scope, at the limiter grid test point. Keep input low to prevent limiting which will cause the response curve to flatten off.

FIG. 1. TOP VIEW

Fig. 2. DiAl stringing

dIAL STRINGING

The cord should be strung with both the AM and the FM drums in their full clockwise position. When the dial stringing is completed it may be necessary to slip the cord slightly around the AM drum to make sure that toth the AM capacitor and the FM capacitor are fully open or fully closed at the same time.

Step: 1, 2, 3, 4, and 5 are on the large FM drum as shown. Step 6 takes the dial cord around the axle between the drums as shown. Step 7 the cord comics through the notch on the small FM drum and around the axle in front of the small FM drum. Steps 8, 9, and 10 go around the small FM drum. Steps 11, 12, and 13 go around the AM drum as shown. Step 15 the cord goes through the notch in the small FM drum around the axle in front of the small FM drum and connects to the tension spring as shown.

A.M. METER ALIONMENT NOTH

1. Connect an output meter across the speaker leads to indicate maximum output during A.M. alignment.
2. Turn the volume control to maximum clockwise position and reduce signal input so that output meter does not indicate more than $1 / 2$ watt output during A.M. alignment.
3. For alignment of the antenna trimmer C2 it is necessary to inductively couple the signal generator output to the loop antenna by connecting a four turn, six inch diameter loop of wire across the generator output terminals and locating the loop about one foot from the radio loop. The position of loop should not be changed during alignment to prevent possible errors in peak readings.
4. Set the band switch in A.M. position.

F.M. MLIER ALIGNMENT NOTES

5. Connect a vacuum tuhe voltmeter between the test point on the rear of the chassis and chassis to read the d-c voltage developed at the limiter grid during F.M.-I.F. and R.F. align. ment. Dress the V.T.V.M. leads away from the r-f end of the
chassia to prevent regeneration. Reduce the signal input so that the V.T.V.M. reads approximately 1 volt d-c.
6. Connect a vacuum tube voltmeter across the volum control to read the discriminator output.

Fig. 3. TOP VIEW
7. To align the primary of T 6 (discriminator) detune the signal generator slightly either side of 10.7 mc until maximum d-c volts is read across the volume control then adjust the primary of T6 for max.
8. For F.M.-R.F. alignment the output impedance of the signal generator should be 300 ohms to properly match the unput impedance of this receiver.
9. The cover on the F.M. tuner must be in place during F.M.R.F. alignment.
10. Set the band switch to the F.M. position.

Fig. 4. AtIONMENT CURVES

SIGNAL METER ALIGNMENT CHART					
STEP NO.	SIGNAL GENERATOR FREQUENCY	SIGNAL INPUT POINT BETWEEN	TUNING CAPACITOR SETTING	ADJUST	$\begin{aligned} & \text { SEE } \\ & \text { NOTE } \\ & \text { NO. } \end{aligned}$
A.M.-I.F. ALIGNMENT					
1	$455 \mathrm{kc}, 30 \%$ mod. with 400 cycles	Pin 1 of V4 (12BA6) thru .02 mf . and chassis	Fully closed	Primary and secondary cores of T5 for maximum output meter reading	1, 2, 4
2		Pin 1 of V3 (12AU6) thru .02 mf . and chassia		Primary and secondary cores of T4 for maximum output meter reading	
3 A.M.-R.F. ALIGNMENT					
3	$1620 \mathrm{kc}, 30 \%$ mod. with 400 cyclea	Pin 1 of V1 (6BJ6)	Fully open (min. cap.)	(C4) oscillator trimmer for maximum output meter reading	1,2,4
4	$1500 \mathrm{kc}, 30 \% \mathrm{mod}$. with 400 cycles		For maximum output meter reading	R-f trimmer (C-3) for maximum output meter reading while rocking gang condenser	
5		Inductively coupled to the loop. See note 3		Adjust antenna trimmer (C2) on loop for maximum	1, 2, 3, 4
6 F.M.-I.F. ALIGNMENT					
${ }^{6}$	10.7 me unmodulated	Pin 1 of V4 (12BA6) thru 100 mmf . and chassis	Fully closed	Core of L3 for maximum d-c reading at test point on rear of chassis	5,10
7		Pin 1 of V3 (12AU6) thru 100 mmf . and chassis		Cores of T 3 for maximum d-c volts at test point on rear of chassis	
8		Stator of C2001 thru . 02 mf. thru hole in bottom af F.M. tuner cover		Cores of T2 for maximum d-c volts at test point on rear of chassis	
9 F.M. OISCRIMINATOR (T6) ALIONMENT					
9	10.7 mc unmodulated	Pin 1 of V4 (12BA6) thru 100 mmf . and chassis	Fully closed	T6 secondary core for zero output across volume control (R16)	6,10
10	Detune for maximum d-c at R16. See note 7			T6 primary core for maximum d-c volts across the volume control (R16)	6, 7, 10
11.1 F.M.-R.F. ALIGNMENT					
11	108.5 mc	At F.M. antenna terminals with built-in F.M. antenna disconnected	Fully open (min.cap.)	F.M. oscillator trimmer C2004 for maximum d-c volts at test point on rear of chassis	5, 8, 9, 10
12				F.M.-R.F. trimmer C2002 for maximum d-c volts at test point on rear of chassia while rocking signal generstor frequency	

A.M. VELUAL ALIGNMENT NOTES

1. Connect the vertical plates of the scope from the junction of R9 and R11 to chassis for steps 1 through 4 of the AM Visual alignment.
2. Set band switch to AM position.
3. Rock the gang condenser when making the r-f adjustments 98 in step 4.
4. When adjusting the loop trimmer C2 the loop and back should be in their corrcet position with respect to the chassis.
5. For alignment of the r-f trimmers as in step 4 the signal should be inductively coupled to the loop by connecting a four turn six inch loop of bell wire across the signal generator terminals. The position of this loop with respect to the radio loop should not be changed during alignment to prevent possible error in comparative readings.

f.M. VISUAL ALIENMENT NOTES

6 Sat hand euritnh in F M matitinn
7. When connecting the input to the recciver always make the chasais connection as close as possible to the point of input. Dress cables away from the r-f end of the chassis to prevent regeneration.
8. Connect the Vertical plates of the scope through meg to pin 3 of V6 (19T8) and to chassis to view the discriminator response curve
9. Connect the Vertical plates of the scope to the limiter test point on the rear of the chassis and to chassis to view the response curve during F.M.-I.F. and R.F. alignment.
10. During F.M. alignment keep the signal input low to prevent limiting.
11. The termination impedance of the signal generator should be 300 ohms to properly match the input impedance of this receiver.

MODEL 409

12. In some cases tuning of the converter grid will cause "pulling in" of the oscillator and will change the oecillator
frequency. If peaking of C3 or C2002 for max causes the curve to move off the screen it may be necessary to recalibrate the oscillator as in steps 3 or 11 .

VISUAL ALIGNMENT CHART

$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$	SIGNAL GENERATOR FREQUENCY	SIGNAL INPUT POINT BETWEEN	$\begin{aligned} & \text { TUNING } \\ & \text { CAPACITOR } \\ & \text { SETTING } \end{aligned}$	ADJust	$\begin{aligned} & \text { SEE } \\ & \text { NOTE } \\ & \text { NO. } \end{aligned}$
A.M.-I.F. ALIGNMENT					
1	455 ke F.M. modulated $\pm 20 \mathrm{kc}$ at 60 CPS	Pin 1 of V4 (12BA6) thru .02 mf . cap and chassis	Fully closed	Cores of T5 for curve of Fig. 4A with max. amplitude and symmetry	1,2
2		Pin 1 of V3 (12AU6) thru .02 mf . cap and chassis		Cores of T4 for curve of Fig. 4A with max. amplitude and symmetry	
A.M.-R.F. ALIGNMENT					
3	1620 kc A. M. modulated with 60 CPS	Pin 1 of V1 (6BJ6) thru .02 mf . and chassis	Fully open minimum capacity	Oscillator trimmer (C4) for stecpest slope of straight line trace on scope. See Fig. 4C	1,2,12
4	1500 ke F.M. modulated $\pm 20 \mathrm{kc}$ at 60 CPS	Inductively coupled to loop. See note	Adjust for max. amplitude of response curve	Adjust r-f trimmers C3 and C2 on loop for maximum amplitude and symmetry. See Fig. 4A	$\begin{gathered} 1,2,3,4,5 \\ 12 \end{gathered}$
F.M.-I.F. ALIGNMENT					
5	10.7 mc F.M. modulated $\pm 300 \mathrm{kc}$ at 60 CPS	Pin 1 of V4 (12BA6) thru 100 mmf . and chassis	Closed	Secondary core of T6 for curve of Fig. 4B	6, 7, 8
6				Primary core of T 6 for max. amplitude and symmetry of curve of Fig. 4B	$6,7,8,10$
7				Core of L3 for max. amplitude and symmetry of curve of Fig. 4A	6, 7, 9, 10
8		Pin 1 of V3 (12AU6) thru 100 mmf . and chassis		Cores of T3 for maximum amplitude and symmetry of curve of Fig. 4A	
9		Stator of C2001 thru 100 mmf. and chassis hole in tuner cover		Primary and secondary cores of T2 for maximum amplitude and symmetry of curve of Fig. 4A	
10				Retouch primary and secondary cores of T6 for maximum amplitude and symmetry of curve of Fig. 4B	6, 7, 8, 10
F.M.-R.F. ALIGNMENT					
11	$\begin{aligned} & 108.5 \mathrm{mc} \text { A.M. modu- } \\ & \text { lated at } 60 \mathrm{CPS} \end{aligned}$	At F.M. antenna terminals (built in F.M. antenna disconnected)	Fully open minimum capacity	Oscillator trimmer C2004 for steepest slope of straight line trace of Fig. 4C	$\begin{gathered} 6,7,9 \\ 10,11,12 \end{gathered}$
12	108 mc		For maximum amplitude of curve	C2002 for maximum amplitude and symmetry of curve of Fig. 4A	

GENERAL ELECTRIC PAGE 2:

PAGE 23-6 GENERAL ELECTRIC
MODEL 409

Fig. 7. Visual alignment connections
PARTS LIST

*PARTS USED ON PREVIOUS RECEIVERS

PAGE 23-8 GENERAL ELECTRIC

MODELS 754, 756

STAGE GAINS

Stage gain measurements using a vacuum tube voltmeter or oscilloscope with a calibrated signal generator may be used to check circuit performance and isolate trouble. Use small signals to eliminate AVC action. Tolerance 20%. Signal applied through 470 ohm resistor and 1000 mmfd . capacitor in serics.

STAGE	GAIN AM	GAIN FM
Ant. to V1 Grid		1 (98 MC)
V1-V2 Grid	6 (98 MC)
V1-V3 Grid	$14(1000 \mathrm{KC})$
V2-V3 Grid	10 (10.7 MC)
V3-V4 Grid	70 (455 KC)	45 (10.7 MC)
V4-V5 Grid	(455 KC)	20 (10.7 MC)
V6-V4 Grid	80 (455 KC)	

OSCILLATOR GRD RAS:

DC voltage developed across R2002. Use 100 K resistor to isolate meter. Tolerance 20%.
$1000 \mathrm{KC} \quad 7$ volts
$98 \mathrm{MC} \quad 3$ volts
20 K ohms $/$ voltmeter
4 volts
2 volts

IMUM MEASUREMENT

Hum measured across the voice coil of the speaker with the volume control set at minimum and band switch in the AM position should not exceed 7 millivolts.

On FM position ground the limiter grid through a .01 mfd . capacitor and measure the hum across the voice coil with volume control at maximum. Hum should not exceed 15 millivolts.

ANTENNA CONNECTIONS

This receiver is designed to operate on a buitt-in AM and a point as possible
meter alignmint chart

Stope No.	Signal Generator Frequency	Signal Input Point Botween	Tuning Gang Capacisar	Adjusi	$\begin{aligned} & \text { Seed } \\ & \text { Note } \end{aligned}$ No.
AM-IF ALIGNMENT					
1	$455 \mathrm{KC} \mathrm{30} \mathrm{\%} \mathrm{mod}$. with 400 cycle»	Pin 1 of V4 (6AUG) thru . 02 mf. and chassis	Closed	Primary and secondary cores of T7 for max. output meter reading	1, 2, 3
2		Pin 1 of V3 (6BA6) thru . 02 mf. and chassis		Primary and secondary cores of T6 for max. output meter reading. Recheck adjustment of T7 cores	
AM-RF ALIGNMENT					
3	$1620 \mathrm{KC} \mathrm{30} \mathrm{\%}$ mod. with 400 cycles	Pin 1 of V1 (6BJ6) thru . 02 mf. and chasais	AM gang cap. fully open. (Min. cap.)	Adjust oscillator trimmer (C36) for maximum output meter reading.	1, 2, 3
4	$1500 \mathrm{KC} 30 \%$ mod. with 400 cyclea		Tuning gang for max. output meter reading.	Adjust r-f trimmer (C7) for maximum output meter reading while rocking gang condenser.	
5	$580 \mathrm{KC} \mathrm{30} \mathrm{\%} \mathrm{mod}$. with 400 cycies	AM antenna terminals thru I. R. E. dummy antenna		Core of T1 for maximum	1, 2, 3, 4
6	$1500 \mathrm{KC} 30 \%$ mod. with 400 cycles			Adjust antenna trimmer CS for maximum	
FM.Jf Alignment chart					
7	10.7 me unmodulated	Pin 1 of V4 (6AU6) thru 100 mmf . and chassis	Clowed	Core of L3 for max. d.c voltage at test point on rear of chassis	5, 10, 11
8		Pin 1 of V3 (6BA6) thru 100 mmf . and chansis		Cores of T5 for max. d-c volts at limiter test point	
9		Stator of C2001 thru 100 mmf. thru hole in bottom of tuner cover		Cores of T4 for max. d-c volts at limiter test point	
10	10.7 mc unmodulated	Pin 1 of V4 thru 100 mmf . and chassis	Closed	T8 secondary core for zero output across the volume control R28 at 10.7 mc	6, 10, 11
11	Detune for max. d.c. at R28. See Note 7.			T8 primary core for max. d-c volte across the volume control R28	6, 7, 10, 11
FM-RF ALIGNMENT					
12	108.5 mc	At FM antenna terminals	Tuaing capacitor fully open	Oscillator trimmer C2004 for maximum d-c voltage at limiter grid test point.	5, 8, 9, 10, 11
13	108 mc		Tune for maximum	FM-RF trimmer C2002 for max. output at limiter grid test point while rocking signal generator	
14	Recheck oscillator alignment as in Step 12.				

PAGE 23-10 GENERAL ELECTRIC

MODELS 754, 756

EQUIPMENT REQUIRED FOR METER ALIGNMENT

1. Signal gencrator (G.E.-YGS-3 or equivalent)
2. Vacuum tube voltmeter
3. Output meter
4. One 18 microhenry choke to assimilate the loop
5. . 02 mf capacitor
6. 100 mmf capacitor

FIG. 1. TOP VIEW

VISUAL ALIGNMENT NOTES

1. Set the band switch to AM position.
2. Connect the vertical plates of the scope across the volume control for AM alignment.
3. Use a frequency modulated sweep with its center frequency, at the frequency specified. Connect the same frequency that modulates the signal to the horizontal plates of the scope.
4. Keep signal generator input low so that A.V.C. does not take place.
5. Visual oscillator alignment is done by using a signal amplitude modulated with 60 c.p.s. and sweeping the horizontal plates of the scope with the same frequency. As the receiver is tuned to the signal frequency the slope of the straight line trace will become steeper.
6. During AM-RF alignment connect an 18 microhenry

18 microhenry 11. Set the band switch to FM position.
VISUAL ALIGNMENT CHART

5 tep No.	Signal Generater Frequency	Signal Input Point Betwoen	Tuning Gang Copactior	Adivsi	$\begin{aligned} & \text { seo } \\ & \text { Neto } \\ & \text { No. } \end{aligned}$
AM-IF ALIGNMENT					
1	455 KC with FM sweep $=20 \mathrm{KC}$ at 60 cpe	Pin 1 of V4 (6AU6) thru .02 mf. and chassis		Primary and secondery cores of T 7 for max. amplitude and symmetry of curve of Fig. 3A.	
2		Pin 1 of V3 (6BA6) thru . 02 mf. and chassis		Primary and secondary cores of T6 for max. amplitude and aymmetry of curve of Fig. 3A.	
AM-RF ALIGNMENT					
3	1620 KC AM modulated at 60 cps	Pin 1 of V1 (6RJ6) thru . 02 mf. and chanais	AM gang cap. fully open (min. cap.)	Adjust oscillator trimmer (C36) for steepest slope of trace on screen See Fig. 3C	1, 2, 4, 5, 7
4	1500 KC freq. mod. $\pm 20 \mathrm{KC}$ at 60 cps		Tuning gang for max. ampl. of repponae curve	C7 r-f trimmer for max. amplitude and symmetry of curve of Fig. 3A	1,2, 3, 4, 7
5	580 KC freq. mod. $=20 \mathrm{KC}$ at 60 cps	AM antenna terminal through I. R. E. dummy antenna and chassis		Core of T1 for maximum amplitude and symmetry of curve of Fig. 3A	3
6	1500 KC freq. mod. $\pm 20 \mathrm{KC}$ at 60 cpa			C5 antenna trimmer for max. amplitude and symmetry of curve of Fite. 3A.	6,
FM-IF ALIGNMENT					
7	10.7 mc freq. mod. +.3 mc at 60 cps	Pin 1 of V4 (6AU6) thru 100 mmf. and chassis	Closed	Core of L 3 for max. amplitude and symmetry of curve of Fig. 3A.	4, 7, 8, 11
8		Pin 1 of V3 (6BA6) thru 100 mmf . and chassis		Cores of $\mathbf{T} 5$ for max, amplitude and symmetry of curve of Fig. 3A.	
9		Stator of C2001 thru 100 mmf. and chassis		Cores of T4 for max. amplitude and symmetry of curve of Fig. 3A.	
FM DISCRIMINATOR ALIGNMENT					
10	10.7 mc freq. mod. $\pm .3 \mathrm{mc}$ at 60 cps	Pin 1 of V4 thru 100 mmf. end chassis	Closed	T8 aecondary core for curve of Fig. 3B.	4.7.9,11
11				T8 primary core for max. ampl. and symmetry 3B.	
12				Retouch secondary core of T 8 for symmetry	
FM-RF ALIGNMENT					
13	108.5 mc ampl. mod. with 60 cps	At FM antenna terminals	Fully open (min. cap.)	Onc. trimmer C2004 for steepeat slope of trace Fig. 3C.	$\begin{gathered} 4,5,7,8, \\ 10,11 \end{gathered}$
14	108 mc freq. mod. $\pm .3 \mathrm{mc}$ at 60 cps		Tune for maximum	FM-RF trimmer C2002 for max. minpl. and symmetry of curve of Fig. 3A.	4, ${ }_{1 i}{ }^{\text {8, }} 10$,

FIG. 2. BOTTOM VIEW

FIO, 4. BOTTOM VIEW OF CHASSIS

DIAL STRINGING

When stringing the dial cord both the A.M. and the F.M. tuning capacitor drums should be turned fully clockwise (minimum capacity). When the dial stringing is completed both tuning capacitors should be fully open or fully closed at the same time.
Steps 1, 2, 3, 4 and 5 are as shown in Fig. 5. At step 6 the cord is brought from the large drum onto the small drum as shown. Step 7 takes the cord around the axie and on to step 8 around the small drum of the A.M. tuning capacitor. Steps 9, 10, 11 and 12 are as shown in Fig. 5.

The pointer should be set opposite the last mark on the F.M. scale with the tuning capacitor in its fully clockwise position.

FIG. 5. DIAL STRINGING

am position
FRONT WAFER REAR VIEW

am position
REAR WAFER REAR VIEW

OSC. TRANSF. CONNECTIONS

Fig. 8 COIL CONNECTIONS

PARTS LIST

SPECIFICATIONS

Cabmett:
 Depth . $71 / 4 \mathrm{i}$ in.

electrical rating:

Voltage
Watts.
105-125, 50-60 cycles or DC

OPRRATING FREQUENCIES:
Standard Wave Band
I-F Amplifier.

540-1600 KC
. 455 KC

POWER OUTPUT:
Undistorted Maximum

LOUDSPEAKER:
Type.
Alnico \mathbf{P}
Outside Cone Diameter
Voice Coil Impedance © 400 cycles. 3.2 ohs
TUBE COMPLEMENT:
V1 Oscillator-Converter. 12B]
V2 I-F Amplifier. 12B
V3 Detector-Audio. 12 12A
V4 Rectifier . 35
V5 Audio Power Amplifier . 50
Il Dial Light. G. E. Mazda No.

PAGE 23-16 GENERAL ELECTRIC
MODEL 412

GENERAL ELECTRIC PAGE 23.

To SOCKET Of Reve, pin	
TO MOT LVE OF R4	$\cdots \stackrel{7}{2}$
109. Lue ofra	C10 = ${ }^{10000}$
	0_{2}
TO SOCNET Of SOCS. PW 2	

PAGE 23-18 GENERAL ELECTRIC

MODELS 614, 615

Always have volume control full on and reduce signal input so A-V-C will not affect output.

PAGE 23-22 GENERAL ELECTRIC MODELS 614. 615

PAGE 23-24 GENERAL ELECTRIC
MODELS 514,
542, 543

Fig. 1. Identification of Components, Model 514, Rear view

Fig. 2. Identification of Components, Models 542 and 543, Rear viow

PAGE 23-26 GENERAL ELECTRIC

MODELS 514,

542, 543

GENERAL ELECTRIC PAGE 23

SPECIFICATIONS

OVER-ALL CABINET DIMENSIONS	MODEL	514	542	543
	Color	Mahogany Mottle	Brown Mottle	Ivory
	Height	61/4 in.	$63 / 8$ in.	$63 / 8 \mathrm{in}$.
	Width	105/8 in.	$113 / 8 \mathrm{in}$.	$113 / 8$ in.
	* Depth	$61 / 4 \mathrm{in}$.	61/4in.	$61 / 2 \mathrm{in}$.
* Including knobs				
ELECTRICAL	Voltage . 60 cycles only 120Frequency . 30			
RATING				
OPERATING	Standard Broadcast 540-1600 kc I-F Amplifier . 455 kc			
FREQUENCEES				
POWER	Undistorted . 15 wattMaximum			
OUTPUT				
LOUDSPEAKER				
TUBE COMPLEMENT	Purpose			Type
	V1 Oscillator-Converter			12BE6
	V2 1-F Amplifier :			12BA6
	V3 Detector-1st Audio			12AV6
	V4 Audio Output			50C5
	V5 Rectifier			35W4

GENERAL INFORMATION

The Model 514, 542 and 543 clock-radio receivers employ four tubes, plus rectifier tube, in a superheterodyne circuit. A loop antenna, part of the cabinet back, provides excellent signal pickup, without the need of an external antenna. Each model has an electric alarm clock which is also connected to automatically turn on the radio as a Musical Alarm. The clocks of receiver Models 542 and 543 have the additional Sleep Control feature to permit one hour of radio operation, or a portion thereof, where upon the control mechanism will automatically shut off the radio.

PRODUCTION CHANGES-Two versions of the Models 517, 542 and 543 are noted in the tube socket construction, involving production methods.

MECHANIZED CHASSIG-Mechanized production uses sockets of the dip solder construction. In this operation components and wires are placed into tube pin connections of each socket. The chassis is inverted and dipped into molten metal, to solder the pins from the top. A plastic cover over the top of the sockets insulates these connections against shock hazard.

NONMECHANIZED CHASSIS-A part of production employed the standard method of the past, in socket wiring. In these chassis, components are wired, crimped and individually saldered to standard socket pin connections. Nonmechanized chassis have the letter "C" rubber stamped on the rear chassis apron for identification.

COMPONENT REPLACEMENT-When servicing mechanized chassis, the time and effort otherwise spent to remove the shield, heat tube pin connections and free the components may be spared. A neater job can be done without the risk of damage to the tube sockets by using the following method in wiring a replacement part.
Clip the defective unit out, leaving enough of its leads attached to the tube socket so an eye loop may be formed in the leads. Each lead of the new component may then be passed through the proper loop, pruned to length, crimped and soldered.

CAUTION: One side of the power line is connected to $\mathbf{B}-$. Avoid any ground connections direct to $B-$. Use an isolating transformer when making service adjustments with the chassis removed from the cabinet.

CIRCUIT ALIGNMENT
Always have volume control at maximum and use the minimum amount of signal input necessary to produce a suitable output response.

Fig. 7. Wiring Diagram

CIOCK SERVICE

Figures 8, 9 and 10 show clock parts referred to in the following paragraphs and the parts list.

CLOCK MOVEMENT DISASSEMBLY

1. Remove clock movement from case, and pull off knobs.
2. Remove Crystal, Hands and Dial Face.
3. Remove the motor assembly by removing two screws (13) and break two soldered joints on Field. The Field and Rotor Assembly (22 and 23) can now be removed. The Rotor is held by friction only, to the Field
4. Remove Switch Assembly
(4) by removing two screws from base plate.
5. Remove Switch Shaft Assembly (8) and spacer.
6. Remove Alarm-Set Shaft Assembly (31) and spacer.
7. Remove the three front plate assembly screws that are located under the Dial Face and then remove Front Plate.
8. Remove Alarm Gear Sleeve Assembly (17), Hour Gear Sieeve Assembly (18), Minute Gear Sleeve Assembly (19), and Sweep Second Gear Shaft Assembly (20).
9. Remove Alarm Cam Gear Assembly (26) and Spring Washer (25).
10. Remove Intermediate Gear (27).
11. Remove Time-Set Gear and Shaft Assembly (11).
12. Remove Switch Cam Lever (12).

CLOCK MOVEMENT REASSEMBLY

Reassemble in the reverse order of disassembly, observing the following precautions:

1. The spring washer (25) should curve away from the gear when placed on the Alarm Cam Gear Assembly (26).
2. The Switch Cam Lever (12) fork must straddle the base plate post as shown in the illustration.
3. After reassembly of front plate, check, the Sweep Second Gear (20) through the hole in the base plate to make sure it is free to turn.

4. Proceed with Alarm and Switch Adjustments as descril below before installing hands.

ALARM AND SWITCH ADMUSTMENTS

1. Turn Switch Knob to Wake-up position.
2. Slowly rotate Time-Set Shaft clockwise until the conta of the Switch Assembly (4) close.
3. Replace Dial Face, Alarm Dial, the Minute, Hour ε Second Hands. Set all Hands and Dial so that they indic 12 o'clock. Make sure all Hands and Alarm Dial are tight their respective shafts.
4. With Alarm-Set knob pulled out, continue to rotate Tir Set Shaft clockwise and note that the vibrator arm drops agai field core approximately 7-10 minutes later.
5. Set alarm at some other selected position and make s mechanism actuates within limits (± 1 minute).
6. Check alarm tone of vibrator. This can be adjusted either bending vibrator arm nearer or farther away from f core. Bend arm near anchor point.

CLEANING AND LUBRICATION

To clean, completely disassemble and clean all moving parts carbon tetrachloride or some similar cleaner.

The inside of the sleeves and shaft surfaces may be clear of oxidized oil by rubbing with a fine grade of steel wool damper in carbon tetrachloride.
Do not use too much oil and apply by means of a small w (drop oiler). Too much oil collects dust and later oxidizes. I only recommended clock oil, such as Nye's Celebrated Oil, wh may be purchased from Wm. F. Nye Co., Inc., New Bedford, an equivalent.

CLOCK TROUBLES

1. Clock will not operate-Defective field coil, defective rot binding of parts.
2. Clock loses time-Binding parts, too little friction minute hand sleeve assembly, defective rotor. Clock timeshaft bent and rubs against hole in clock bracket.
3. Noisy Clock-Rotor defective, alarm armature imprope adjusted, loose parts, or binding of moving parts.

Fig. 8. Back Viow of C51 Clacks

PAGE 23-30 GENERAL ELECTRIC
MODELS 514,
542, 543

CLOCK SERVICE

Figures 11, 12 and 13 show clock parts referred to in the following paragraphs and the parts list.

CLOCK MOVEMENT DSSASSEMBLY

1. Remove clock movement from case, and pull off knobs.
2. Remove Bezel, Hands and Dial Face.
3. Remove the motor assembly by removing two screws (12) and break two soldered joints on Field. The Field and Rotor Assembly (25 and 24) can now be removed. The Rotor is held by friction only, to the Field.
4. Remove Switch Assembly by removing two screws (5) from base plate.
5. Remove Switch Shaft Assembly (3) and apacer.
6. Remove Alarm-Set Shaft Assembly (33) and spacer.
7. Remove the three front plate assembly screws that are located under the Dial Face and then remove Front Plate.
8. Remove the following gear assemblie: and control levers in the order listed below:
(a) Sleep Control Shaft and Segment Gear (35)
(b) Alarm Dial Gear (17)
(c) Hour Hand Gear (18)
(d) Alarm Signal Cam and Gear, and Friction Washer $(28,27)$
(e) Sleep Control Switch Lever (30)
(f) Pinion Drive Gear Assembly (34) (drives Sleep Control Segment Gear)
(g) Alarm Control Switch Cam Lever (4)
(h) Time Set Shaft and Gear, and Spacer $(8,9)$
(i) Drive Gear and Pinion Assembly (29)
(j) Minute Hand Gear (20)
(k) Sweep Second Hand Gear (22)

CLOCK MOVEMENT REASSLMOLY

Reassemble in the reverse order of disassembly, observing the following precautions:

1. The spring washer (27) should curve away from the gear when placed on the Alarm Cam Gear Assembly (28).
2. The Switch Cam Lever fork (4) must atraddle the base plate post as shown in the illustration.
3. After reassembly of front plate, check the Sweep Second Gear (22) through the hole in the base plate to make sure it is free to turn.
4. Proceed with Alarm and Switch Adjustments as described below before installing hands.

ALARM AND SWITCH ADUSTMENTS

1. Turn Wake-Up Manual ahaft to WAKE UP position.
2. Slowly rotate Time Set Sheft clockwise until the contacts of the Switch Assembly (7) close.
3. Replace Dial Face, Alarm Dial, the Minute, Hour and Second Hands. Set all Hands so that they indicate 12 o'elock. Set figure 12 of the alarm dial to index with the smaller pointer of the hour hand. Make sure all Hands and Alarm Dial are tight on their respective shaftu.
4. With Alarm Set knob pulled out, continue to rotate Time Set Shaft clockwise and note that the Alarm vibrator arm drops against field core approximately $7-10$ minutes later.
5. Set alarm at some other selected pooition and make sure mechanism actuates within limits (± 1 minute).
6. Check alarm tone of vibrator. This can be adjusted by either bending vibrator arm nearer or farther away from field core. Bend arm near anchor point.

ClSaning and lumacatoon

To clean, completely disassemble and clean all moving parts in carbon tetrachloride or some similar cleaner.
The inside of the sleeves and shaft surfaces may be cleaned of oxidized oil by rubbing with a fine grade of ateel wool dampened in carbon tetrachloride.

Do not use too much oil and apply by means of a small wire (drop oiler). Too much oil collecta dust and later oxidizes. Use only recommended clock oil, wuch as Nye's Celebrated Oil which may be purchased from Wm. F. Nye Co., Inc., New Bedford, or equivalent.

CLOCK TROUBLES

1. Clock will not operate-Defective field coil, defective rotor, binding of parts.
2. Clock loses time-Binding parts, too little friction on minute hand sleeve assembly, defective rotor. Clock time-set shaft bends and rubs againat hole in clock bracket.
3. Noisy Clock-Rotor defective, alarm armature improperly adjusted, loose parts, or binding of moving parts.

Fig. 11. Back View, C57 Clocks

Fig. 12. Front View, C57 Clocks-Frent Plate Remeved

GENERAL ELECTRIC PAGE 23.3

PARTS LIST FOR MODELS 514, 542 AND 543

[^3]
CLOCK PARTS LIST-FOR RADIO MODELS 514, 542 AND 543

Any item bearing a Telechron catalogue number may be procured through a Telechron Service Station. Inasmuch as radio parts and clock parts procurement procedures may differ, it is suggested you contact your General Electric Radio Distributor for assistance. All or at least those items bearing General Electric catalogue numbers may also be procured directly through the General Electric Radio Distributor.

MODEL 514 CLOCK ASSEMBLY
G.E. CAT. NO. RZC-022, TELECHRON NO. C51G22

APPEARANCE ITEMS			MOVEMENT ITEMS (Cont'd)		
Deacription	C.E.E.	Telechron Cat. No.	Description	Symbol	Telechron Cat. No.
$\underset{* \text { Crystal-Bezel }}{\text { Alarm Disc (Plack, white figures) . . }}$	R2A-013	55×48 58×129	${ }^{*}$ Base Plate Assembly	21 26	35×101 17×10
*-Crystal-Bezel (Plastic) ${ }^{\text {Dial }}$ (Face (Gold and black, Eold figurea)	R2A-013	${ }_{61 \times 1056}$	-Cam Shaft Assemby.	26 25	17×10 40×252
	RZJ-002	59×772	*Field and Coil	23	45×209
Hands, Hour and Minute (Black)	22J-002	32×308	Field Screw (2)...	13	1 x 1
*Hand. Sweep Second (Red)		${ }^{31 \times 81}$	Front Plate Assembly	16	34×287
*Knob, Alarm or Switch Set (Ivory)	RZK-003	59×716	* Hour Hand Sleeve.	18	13×11
${ }^{*}$ Knob, Time Set (Bronze)		3×36	(Intermediate Gear Assembly	27 19	40×87 14×32
			* Rotor Unit -600 cycle . .	22	14×32
MOVEMENT ITEMS			${ }^{\text {*Sporeader Post (2). }}$	14	40×201
			*Switch Contact Assembly.	4	16×14 40×32
Description	Symbol		*Switch Index Spring	12	40×185 40×88
Description	symbol	Cat. No.	*Switrh Shaft Assembly	12	+ ${ }_{\text {40X88 }}$
*Alarm Set Sleeve		15X3	*Switch Shaft Spacer	11	40×275 10×151
- Alarm Set Shaft (Slotted)	31	11×43	*Time Set Shaft Spac	119	+40×276

MODEL 542 AND 543 CLOCK ASSEMBLY
G.E. CAT. NO. RZC-021, TELECHRON NO. C57G76

APPEARANCE ITEMS			MOVEMENT ITEMS (Con't)		
Description	G.E.	Telechron Cat. No.	Description	Symbol	Telechron Cat. No.
Alarm Disc (Red, white figures) Bezel, Outer Ring (Metal, gold color finioh) Bezel, Numeral Ring (Metal, maroon, perforated numerals). Bezel, Numeral Color Ring (paper, ivory) Crystal (glasa, round) Dial Face (Gold color, red figuren). Hands, Hour and Minute (Black, radium trented tips) Hand, Sweep Second (white) *Knob; Alarm, Sleep or Switch Set (Ivory) *Knob, Time Set (Bronse).	$\begin{aligned} & \text { RZA-011 } \\ & \text { RAZ-012 } \\ & \text { RZW-005 } \end{aligned}$	${ }_{5}^{5 \times 48}$	*Base Plate Assembly ${ }^{*}$ Cam Shaft Assembly ${ }^{*}$ Cam Shaft Washer *Field and Coil (60 cycles) Fiont Plate Assembly *Hour Hand Sleeve. ${ }^{*}$ Intermediate Gear Ansembly *Minute Hand Sleeve ${ }^{*}$ Rotor Unit- 60 cycle *Sleep Switch Shaft *Sleep Switch Lever Assembly *Sleep Switch Friction Assy. *Spicader Post (2) *Sween Second Hand Shaft ${ }^{+}$Switch Contact Assembly - Switch Index Spring *Switch Yoke Lever. Switch Shaft Assembly *Switch Shaft, Spacer *Time Set Slaft *Time Set Shaft Spacer	23	35×93
				28	${ }^{17 \times 10}$
		53X163		27 25	40×252 45×209
		59×816		16	34×285
		58×146		18	13×11
		61×1058		29	40×87
				20	14×32 44×38
		32×306 31×103		24 35	44×38 40×308
	R2K-003	${ }_{59 \times 716}$		30	40×308 40×194
		3x36		34	40×196
MOVEMENT ITEMS				22	40×201
			7	${ }_{40 \times 322}$	
Description	Symbol	Telechron Cat. No.		11	40×185 40×197
					59×780
*Alarm Set Sleeve *Alarm Set Shaft (Slotted)				1	40×275
	33	11×41		9	10×141
				9	40×276

*Used on previous General Electric radio clocks

SPECIFICATIONS

CABINET	Mahogany mottle, plastic, $121 / 4 \times 7 \times 83 / 4 \mathrm{in}$.
INPUT	$105-125$ volts (using 50 L 6 GT) pr $90-110$ volts (using 35L6GT) AC or DC, 50-60 cycles, 30 watts
OUTPUT	Undistorted: 1 watt; Maximum: 2 watts
LOUDSPEAKER	4-inch Alnico PM; 3.2 ohms (3) 400 cps
TUBE COMPLEMENT	V1 Oscillator-Converter 12SA7 V2 I-F Amplifier 12 2SQ7 V3 Detector-Audio Amplifier V4 Audio Output For input voltages $105-125$ volts . 50L6GT For input voltages $90-110$ volts . 35L6GT V5 Rectificr. 35Z5GT

GENERAL INFORMATION

The normal input rating of this receiver is in the range of 105 to 125 volts. In the event of low power line voltage conditions, the receiver may be operated efficiently at 90 to 110 volts by substituting a 35 L 6 GT audio output tube in place of the 50L6GT tube.
Note: When seryicing or aligning this receiver always use an isolation transformer to protect test equipment.

ALIGNMENT

For r-f alignment, the low frequency limit of dial pointer travel should be checked with tuning gang fully closed and reset, if necessary, to a measured distance of $2 \frac{3}{16}$ inches from center of front plate to pointer. To facilitate alignment, this
 kc) measured along the front plate from low frequency end of dial scale, may be marked with pencil on the back of front plate at the edge of pointer slider.

The volume control should be kept at maximum and the signal generator output attenuated so that the output meter reading does not exceed $11 / 4$ volts.

After the chassis has been aligned and replaced into the cabinet, the pointer, at the low frequency end of its traved, should rest on the zero point of the logging scale. A slight inaccuracy in calibration may be corrected by moving the chassis slightly sideways.

ALIGNMENT CHART

Step	Signal Generator Output	Signal Gen. Setting	Band Switch Solting	Dial Pointer Setting	Adjust for Maximum Outpul
I-F ALIGNMENT					
1	Pin 8, 12SA7 grid, in series with .05 mfd	455 kc	BC	Tuning capacitor closed	Cores of $2 n$ i-f trans- former, T3
2					Cores of 1st i-f transformer, T2
3					Recheck adjustment of T3 and T2

R-F ALIGNMENT

4	In series with 200 mmf to antenna input (green wire lead)	18 mc	SW	18 mc	Oscillator ST trimmer, C2
5					Antenna SW trimmer, C24
6					Oscillator B trimmer, C 6
7					Antenna BC trimmer, C 1
8		580 kc	BC	For 꼬으․	Oscillator B padder, C3*
9		1500 kc		1500 kc	Recheck adjustment of trimmers C ϵ and C1, ste] 6 and 7

[^4]PAGE 23-36 GENERAL ELECTRIC

GENERAL ELECTRIC PAGE 23.

LeAAM of Rg	
TO SOCMET Of 12 SOIPM 2	
T0 Lug 2 Of T3	
TO SOCKET Of 12507 Pm 3	- MMF
TO SOCKET Of 12 SOTPING	
TC SOCKEt of SOLE, Pin	C140 $\frac{1}{7} 0005$

GENERAL INFORMATION

TYPE - AC-DC table model superheterodyne with loop antenna.

TUNING RANGE - 535 to 1620 Kc
IF FREQUENCY - 455 Kc
TUBE COMPLEMENT - 12pe6 - Converter
12BA6 - IF Amplifier
12AT6 - Detector, AVC \& 1st AF Anp
50 C 5 - Power Amplifier
$35 w 4$ - Rectifier
POWER SUPPLY - 117V AC (50 to 60 cycles) or DC, 30 watts

INSTALLATION € OPERATING INSTRUCTIONS

POWER SWITCH AND VOLUME CONTROL. The power switch and volume control are combined and operated with the left-hand knob. Turn radio $O N$ by rotating volume knob to the right until a click is heard. Continued rotation of this control to the right will increase volume. Turn receiver OFF by rotating volume knob to the left until a click is heard.

NOTE: When operating from AC line, reverse power line plug for minimum hum. If the receiver does not operate from a DC power line after being turned $O N$ for a few minutes, reverse the power line plug.

TUNING. Stations are tuned in with the right -hand knob. Tune carefully until you are exactly on the station; tuning to either side of it will result in noisy reception and poor tone quality. Do not regu-
late volume by detuning the station; always tu exactly on the station, then adjust volume contr to desired loudness.

ANTENXA. A loop antenne is built into this rece ver, eliminating the need for an external antenn Reception from some stations may be improved by r tating the whole receiver; this is due to the slig directional characteristic of the loop antenna. extremely noisy locations, rotate the entire rece ver till minimum noise and maximum signal pickare obtained. For additional pick-up, an extern antenna may be connected as shown on back of rece ver.

CAUTION: Never connect antenna or chassis water pipe, radiator or other ground.

figure i. string drive detail.

TO REMOVE CHASSIS FROM CABINET

1. Remove dial scale; it pulls off.
2. Remove the knobs; they pull off.
3. Remove the two split plugs that hold top of loop panel to cabinet.
4. Pemove the two screws that hold the chassis to the cabinet. These screws are accessible through slots in the loop panel.
5. Slide chassis out of cabinet.

ALIGNMENT

If AC power is used, use an isolation trans former between power line and receiver. If isolation transformer is not available, connect low side of signal generator to E - through . 1 mf capacitor.

Connect low range output meter across the speaker voice coil and set the volume control at
maximum. For greatest accuracy, keep output of receiver at approximately .05 watt (. 05 watt $=.40$ volt on output meter) throughout alignment by reducing signal generator output as stages are brought into aligment. Use a small fibre screwdriver for aligning IF \& diode transformers.

STEP	DUMNY ANTENNA	$\begin{aligned} & \text { GENERATOR } \\ & \text { CONXECTION } \end{aligned}$	GENERATOR FREQUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SET TO } \end{aligned}$	ADJUST	REMARKS
IF AL	GNMENT .1 mf	Rear stator of tuning cap	455 Kc	Gang opened	$1,2,3 \& 4$	Adjust for maximum.
$\begin{aligned} & \text { RF AL } \\ & 2 . \end{aligned}$	GMMENT .1 mf	Rear stator of tuning cap	1620 Kc	Gang opened	5	Adjust for maximum.
3.	None	Radiation loop*	1400 Kc	Tune for maximum	6	Adjust for maximum.

*Connect generator output to $5^{\prime \prime}$ diameter, 3 turn loop \& couple to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.

GOODRICH PAGE 2
MODELS 92-52
$-524,-525,-54$

$-524,-525,-526$
Ref.
$\left\lvert\, \begin{aligned} & \text { REF. PART NO. DE } \\ & \text { YO. } \\ & \text { CHASSIS PARTS - ELECTRICAL }\end{aligned}\right.$
CAPACITORS

RESISTORS

Note: All resistors are insulated carbon type unless otherwise specified.

SWITCH

S-1 - SPST Switch: part of volume

TRANSFORMERS

T-1	24B482863	IF, 455
T-2	24B482865	Diode, 455 Kc : complete
3	25K485973	Output Transformer

CHASSIS PARTS - MECHANICAL

7 K 690449	Br	10
7A690445	Bracket, pi	10
7A77337	Bracket, tuning shaft mt	05
11 M89 44	Cord, dial: 18 lb; blkyd	. 10
30A470651	Cord, line \& pluy: 6 ft long ...	75
46 K 680318	Core, iron: threaded (for T-1 \& T-2)	10
5A19658	Eyelet, spacer (gang mtg) ...doz	. 20
5A70404	Grommet, rubber (gang mtg) ..doz	. 60
4A48284		25

 rectifier
Power Supply 105-125 volts DC/50-60 cycle AC or 90 and $7 \frac{1}{2}$ volt batteries Frequency Coverage 540 KC to 1650 KC Intermediate Frequency 455 KC Speaker . 4 inch PM Voice Coil Impedance. 3.2 ohms Antenna . Built-in loop

REPLACEMENT BATTERIES
$7 \frac{1}{2} V{ }^{\prime \prime}$ " - Eveready 717, Burgess C5, RCA VS 065
$90 V{ }^{\prime B}$ " - Eveready 490, Burgess N60, RCA VS 090

Fig. I. Radio Receiver Model 5R24

ALIGNMENT PROCEDURE

- Connect output meter across poice coil. - Turn volume control at maximum. - Use a non-metallic alignment tool. - Loop antenna must be connected. - Refer to Fig. 2 for location of alignment adjustments.			Generator must have a modulated output. - Align for maximum output. To prevent AVC acti from interfering with alignment, use lowest out setting of generator that gives satisfactory reading output meter (approximately 50 milliwatts).	
STEP	SIGNAL GENERATOR CONNECTION	SIGNAL GENERATOR FREQUENCY	RECEIVER DIAL SE TTING	ADJUST FOR MAXIMUM OUTPU
1	High side to pin 6 of the 1R5 through a .1 mfd . capacitor. Ground side to B -.	455 KC	Tuning gang fully open.	A,B,C,D
2	Same as STEP 1.	1650 KC	Tuning gang fully open.	E
3	Place generator lead close to loop antenna. No actual connection.	1500 KC	1500 KC	F

9281515

Schematic Symbol	Description	Hallicrafters Part Number	Schematic Symbol	Description \quadHallicrafters Part Number	
	CAPACITORS			PLUGS AND SOCKETS	
C-1A, B	Tuning capacitor, 2 section	48-280		Plug assembly, "B" battery;	
C-2	. 05 mfd .200 V ., tubular	46AU503J		male (includes lead)	87-1972
C-3, 14	. 2 mfd .400 V ., tubular	46AW204J		Plug assembly, 'B' battery;	
C-4	. $01 \mathrm{mfd} .200 \mathrm{~V} .$, tubular	46AU103J		female (includes lead)	87-3508
C-5,13,15	. 05 mfd .400 V. , tubular	46AW503J		Plug assembly, "A" battery;	
C-6,8	$100 \mathrm{mmf} .500 \mathrm{~V} .$, mica	47X20B101M		includes leads	87-1971
C-7	. $002 \mathrm{mfd} .200 \mathrm{~V} .$, tubular	46AU202J	PL-1	Plug, line cord (part of	
C-8	$10,000 \mathrm{mmf} .450 \mathrm{~V}$.,			line cord 87-1973)	
	ceramic disc	47 A 224		Socket, tube; 7 pin	
C-10	. 002 mid .400 V. , tubular	46AW202J		miniature (for tubes V-1,	
C-11	5000 mmf . 450 V ., ceramic dise	47A168		$\mathrm{V}-3$ and $\mathrm{V}-4$) Socket, tube; 7 pin miniature	6-404
C-12A,B,C	Dual 40 mfd . 150V., 200 mfd. 15V., electrolytic	45-193		(for tube V-2)	6-403
				tubes And rectifiers	
	RESISTORS		V-1	1R5: converter	90X1R5
R-1	100,000 ohms $1 / 2$ watt, carbon		V-2	1U4: IF amplifier	90X1U4
		23X20×104M	V-3	1U5: detector, AVC and	
R-2	3.3 megohms $1 / 2$ watt, carbon			audio amplifier	90x1U5
		23x20x335M	V-4	3V4: audio output	90X3V4
R-3	8200 ohms $1 / 2$ watt, carbon	23X20X822M	SR-1	Selenium rectifier, 65 ma	27-162
R-4	2.2 megohms $1 / 2$ watt, carbon	23X20x225M		MISCELLANEOUS PARTS	
R-5	Volume control, 1 megohm; includes ON-OFF switch S-2			Cabinet; includes carrying strap and back cover, does	
		25-963			
R-6	10 megohms $1 / 2$ watt, carbon	23X20X106M		not include loop antenna or	
R-7	4.7 megohms $1 / 2$ watt,			front panel	$78 \mathrm{F684}$
	carbon	23X20X475M		Clip, mtg. (for T-1 and T-2)	76A385
R-8	220,000 ohms $1 / 2$ watt,			Dial scale	83D398
	carbon	23X20×224M		Front panel, cardboard; in-	
R-9	1 megohm $1 / 2$ watt, carbon	23x20x105M		cludes grille cloth	32 C 502
R-10	47 ohms 1 watt, carbon	23X30X470K		Grommet, rubber; for	
R-11*	33,000 ohms 1 watt, carbon	23X30X333M		mounting tuning capacitor	16A015
R-12*	2700 ohms 8 watts, wire wound			Knob, station selector	15C414
		24-937		Knob, volume control	15B413
R-13	2700 ohms 1 watt, carbon	23X30x272K		Line cord and plug PL-1	87-1973
R-14	1500 ohms $1 / 2$ watt, carbon	23X20X152K		Line cord lock	76-857
R-15, 16	1000 ohms $1 / 2$ watt, carbon	23X20X102K	LS-1	Speaker, 4" PM; 3.2 ohm voice coil (includes output transformer T-3)	85-121
	TRANSFORMERS AND COILS			Strip, front panel decorative	7 C 302
			S-1	Switch, spring slide; 3pdt	
T-1	Transformer, IF; input	50-521		(AC/DC-Battery)	60-466
T-2	Transformer, IF; output	50-521	S-2	Switch, ON-OFF; part of	
T-3	Transformer, audio			volume control R-5	
	output (part of speaker LS-1)		* In some	ceivers, $\mathrm{R}-11$ and $\mathrm{R}-12$ are	laced by
L-1	Loop antenna	57-154	one 2500	m 8 watt, wirewound resistor	part
L-2	Coil, oscillator	51-1483	\#24-938).		

DESCRIPTION

Abstract

Your Hallicrafters Model S-80, the "Defender", is a super-sensitive, four tube battery operated radio specially designed for use in rural and remote areas where commercial power is not available. It covers both the standard broadcast band and the 6 to 18 megacycie shortwave range thus assuring 24 hour reception even in weak signal areas where the broadcast band "blacks-out" in daytime.

The receiver is designed to operate from any standard $1 \frac{1}{2}$ volt " A " - 90 volt "B" heavy duty battery pack such as listed below under BATTERY INSTALLATION. These batteries will provide over 1,000 hours or approximately one year of service and will fit inside the rear of the cabinet. A special feature is the battery saver switch, a sldde switch located on the chassis which will provide approximately 50 hours of additional battery operation at the normal end life of the battery.

Operation of the receiver in metropolitan areas from commercial power is eastly possible by the use of a moderate cost power converter

Model S-80 Defender
 such as Perma Power Model A or Sears "Power Shifter". Such a unit equips the receiver for $110-120$ volt, 50 or 60 cycle AC operation.

The tuning dial is of the slide rule type with separate dial scales for both the standard broadcast and shortwave bands. Major foreign cities are clearly indicated on the shortwave portion of the dial to facilitate tuning. Shortwave services covered by this receiver include the following international shortwave bands: 5.9 to $6.2 \mathrm{MC}, 9.5$ to 9.7 MC , 11.7 to $11.9 \mathrm{MC}, 15.1$ to $\mathbf{1 5 . 4 5} \mathrm{MC}$ and 17.7 to 17.9 MC .

To get the utmost enjoyment from your Hallicrafters receiver, carefully follow the instructions contained in this book.

OPERATING INSTRUCTIONS

BATTERY INSTALLATION

1. The réceiver is designed to operate from any one of the following combination 90 and $1 \frac{1}{2}$ volt farm battery packs: Sears 06308, Wards 51, Burgess 17GD60, RCA VSO 99, General 60DL-11L, Eveready 748, Ray-O-Vac AB-82, Bond 0528 or Ensign AB48.
2. Place the battery pack into the compartment provided in the rear of the cabinet and insert the BATTERY CABLE PLUG (see Fig. 3) into the receptacle located on the battery.
3. Set the BATTERY SAVER SWITCH on the top right of the chassis to the NEW POSITION. (See Fig. 3.) This switch should be set at NEW whenever a new battery pack is installed.

NOTE: Maximum battery life will be obtained if the receiver is operated intermittently, i.e., for short periods of time, instead of continuously for prolonged periods.
4. When the volume of stations decreases noticeably due to the battery approaching the end of its normal operating life, set the BATTERY SAVER SWITCH at USED.
5. When reception becomes weak even with the BATTERY SAVER SWITCH at USED, replace the battery pack.

ANTENNA INSTALLATION

Two leads have been provided at the top left of the chassis for antenna and ground connections. A satisfactory antenna in most cases is 30 to 60 feet of wire connected to the green lead and run about the room in any convenient manner. A good ground connection is required when this type of antenna is employed. For best results, an outside antenna should be used.

SINGLE WIRE ANTENNA

1. Construct the antenna as shown in Fig. 1 and connect it to the green lead located on the top left of the chassis. (See Fig. 3.)
2. Erect the antenna as high as possible and free from sur rounding objects.
3. Use an Underwriters approved lightning arrester designed for single lead-in at the point where the lead-in enters the house.
4. Connect the black lead located at the top left of the chassis to a cold water pipe or other good ground such as a six foot ground rod driven into moist soll.
For shortwave reception, a doublet antenna with a 300 ohm ribbon type transmission line is recommended. The doublet antenna, when properly constructed and installed, will provide excellent world-wide shortwave reception as well as standard broadcast reception.

DOUBLET ANTENNA

1. Construct the antenna as shown in Fig. 2. Note that the antenna is $19 \frac{1}{2}$ feet long each side of center, the two sections being insulated from one another.
2. Use a length of 300 ohm ribbon type transmission line, commonly called twin-lead, as the lead-in from the antenna to the receiver. Connect one end of the transmission line to the two $19 \frac{1}{2}$ foot antenna sections and the other end to the black and green leads located at the top left of the chassis.
3. Use an Underwriters approved lightning arrester designed for twin-lead at the point where the lead-in enters the house.
4. No ground connection is required with the doublet antenna.

TUNING DIAL

1. The standard broadcast band is calibrated in kilocycles with a zero deleted for convenience. To convert the dial reading to the station frequency in kilocycles, add one zero.
2. The shortwave band is calibrated directly in megacycles.

STANDARD BROADCAST AND SHORT WAVE RECEPTION

1. Set the SHORTWAVE-BROADCAST control knob to BROADCAST for standard broadcast reception or to SHORTWAVE for shortwave reception.
2. Turn the receiver ON by rotating the VOLUME control knob clockwise. Turn this control to a well advanced position and reset it for the desired volume after a station has been tuned in.
3. Tune in the destred station by turning the TUNING CONTROL knob slowly until the dial pointer indicates the station frequency.
4. Readjust the VOLUME control for the desired volume.
5. To turn the receiver OFF, turn the VOLUME control knob counterclockwise until a click is beard.
besti shórtwáve keceptioñ tásíle

BAND	MOST FAVORABLE TIME	MOST FAVORABLE DISTANCE	
6-7 MC	Night - Winter	Day - 400 Miles	Night - Over 1500 Miles
9-10 MC	Day - Late Afternoon and Night - Winter	Over 500 Mlles	
11-12 MC	Evenings or Late Summer Afternoons	Day - Under 1500 Miles	Night - Over 1500 Miles
15-18 MC	Early Mornings and Summer Evenings	Over 1500 Miles	

Fig. I. Single Wire Antenna Installation

92c.254

Fig. 2. Doublet Antenna Installation

SERVICE INSTRUCTIONS

SPECIFICATIONS

Tubes
.................................. Speaker . 5 inch PM Speaker Voice Coil Impedance 3.2 ohms Intermediate Frequency 455 KC Antenna Provision for external single wire or doublet antenna.
Power Supply. . . . 90 volt " B " - $1 \frac{1}{2}$ volt "A" battery pack Frequency Coverage. . . . $540-1620 \mathrm{KC}$ and 6 - 18 MC

TUBE REPLACEMENT - The tube types and their relative location in the recelver are shown in Fig. 3. To gain access to all tubes, slide the battery pack out of the cabinet. When installing a replacement tube, line up the seven pins on the tube with the socket holes and push down on the tube until the base of the tube rests firmly on the socket. Handle all tubes with care as they are fragile and will not withstand mechanical abuse.

REPLACEMENT BATTERY PACKS - Sears 06308, Wards 51, Burgess 17GD60, RCA VSO 99, General 60DL-11L, Eveready 748, Ray-O-Vac AB-82, Bond 0528 and Ensign AB48.

Fig. 3. Top View of Chassis Showing Location of Alignment Adjustments and Tubes

ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
- Set volume control at maximum.
- Use a non-metallic alignment tool.
- Signal generator must have a modulated output and cover 455 KC , $600 \mathrm{KC}, 1300 \mathrm{KC}$ and 14 MC .
- Keep the generator output as low as possible to avoid AVC action.
- Refer to Fig. 3 for location of alignment adjustments.

Fig. 4. RTMA Dummy Antenna

STEP	SGGNAL GENERA TOR CONNECTIONS	SIGNAL GENERATOR FREQUENCY	BAND SWITCH SETTING	RECEIVER DIAL SETTING	ADJUST FOR MAXIMUM OUTPUT
1	High side to stator plates of rear sec- tion of tuning capacitor through a . . mfd. capacitor. Low side to chassis.	455 KC	BROADCAST	1000 KC	A, B, C, D
2	High side to green antenna lead (Fig. 3) through a standard RTMA dummy antenna (Fig. 4). Low side to chassis.	14 MC	SHORTWAVE	14 MC	E, F
3	Same as STEP 2.	1300 KC	BROADCAST	1300 KC	G, H.
4	Same as STEP 2.	600 KC	BROADCAST	600 KC	J

DIAL CORD RESTRINGING

1. Set the tuning capacitor in a fully meshed position.
2. Tie one end of a 60 inch length of 30 lb . test dial cord to the tension spring at position 1. See Fig. 5.
3. Follow the stringing procedure 1 through 10. At position 10; stretch the spring and tie the cord securely to the spring.
4. With the tuning capacitor fully meshed, attach the dial pointer to the cord and align it with the left hand index marks on the dial. Cement the pointer to the cord with a drop of quick drying cement.

92 C 1543
Fig. 5. Dial Cord Stringing Procedure

Fig. 6. Bottom View of Chassis Showing Component Location
92×154

Schematic Symbol	Description	SERVICE PARTS LIST			Hallicrafter Part Numbe
		Hallicrafters Part Number	Schematic Symbol	Description	
	CAPACITORS		COILS AND TRANSFORMERS (Cons.)		
C-1A,B	Tuning capacitor, 2 section	48C274	T-2	Transformer, IF; output	50C516
$\mathrm{C}-2 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$	Trimmer assembly; includes mtg. bracket and 3 trimmers	44C406	T-3	Transformer, audio output; part of speaker LS-1	
C-3	10 mmf . 500 V ., ceramic	47B20A100K5		Plugs AND SOCKETS	
C-4	. $05 \mathrm{mfd} .200 \mathrm{~V} .$, tubular	46A091	PL-1	Plug, speaker; part of	
C-5,17	100 mmf .500 V. , ceramic	$47820 \mathrm{Al01K5}$		speaker LS-1	
C-6	2.2 mmf. $500 \mathrm{~V} .$, ceramic	47A160-4	PL-2	Plug, battery cable;	
C-7,12	. $02 \mathrm{mfd} .600 \mathrm{~V} .$, tubular	46AY203J		includes leads	8781555-1
C-8	1000 mmf . 500 V ., ceramic	47B20A102K5	SO-1	Socket, speaker	6A275
C-9,11	220 mmf . 500 V ., mica	47X208221M		Socket, tube; miniature	
C-10,13	. $005 \mathrm{mfd} .600 \mathrm{~V} .$, tubular	46AZ502J		7 pin	6A314
C-14	12 mfd .150 V ., electrolytic	45B194			
C-15	. 002 mid .600 V. , tubular	46AZ202J		SWITCHES	
C-18	$4700 \mathrm{mmf} .500 \mathrm{~V} ., \mathrm{mica}$.01 mfd .600 V., tubular	47X35B472K 46AY103J	S-1A,B,C,D	Switch, rotary wafer; SHORT WAVE-BROADCAST	60B461
	. 01 mid. 600 V , tubular		S-2	Switch, slide (spst); NEW-USED BATTERY	60A244
	RESISTORS		S-3	Switch, ON-OFF; part of	
R-1	```47,000 ohms 10%s,\frac{1}{2}}\mathrm{ watt; carbon```	23X20X473K		VOLUME control R-5	
R-2	2200 ohms 10%, $\frac{1}{2}$ watt; carbon carbon	$23 \times 20 \times 222 K$	MISCELLANEOUS PARTS		
				Cabinet	66A754
R-3,6	4.7 megohms 10%, $\frac{1}{2}$ watt; carbon	23X20X475K		Clip, mtg.; for dial glass Clip, mitg.; for coil L-3	$\begin{aligned} & 76 A 412 \\ & 76 A 326 \end{aligned}$
R-4,9	2.2 megohms 10\%, $\frac{1}{2}$ watt, carbon	23X20X225K		Clip, mtg.; for transformers T-1 and T-2	78A385
R-5	VOLUME control, 1 megohm, includes ON-OFF switch S-3	25B959		Clip, speed; for mounting front panel Dial cord, 57 inches	$\begin{aligned} & \text { 78A413 } \\ & \text { 38A001 } \end{aligned}$
R-7	1 megohm 10\%, $\frac{1}{2}$ watt,			Dial scale, glass	22 C 342
	carbon	23X20X105K		Grille assembly	7 C 318
R-8	5.6 megohms 20%, $\frac{1}{2}$ watt, carbon	23X20X565M		Grommet, rubber Knob, VOLUME and SHORT	16A125
R-10	. 75 ohms $10 \%, \frac{1}{2}$ watt; carbon	23A062		WAVE - BROADCAST	15B322
R-11	22,000 ohms 10%, $\frac{1}{2}$ watt; carbon	23x20x223K		Knob, TUNING CONTROL Pointer, dial	$\begin{aligned} & 15 \mathrm{~B} 323 \\ & 82 \mathrm{~A} 205 \end{aligned}$
R-12	330 ohms 10\%, $\frac{1}{2}$ watt; carbon	23X20×331K		Retaining ring; for tuning shaft Shaft, tuning	$\begin{aligned} & \text { 76A649 } \\ & \text { 74A5000 } \end{aligned}$
	COILS AND TRANSFORMERS		LS-1	Speaker, 5" PM; includes output transformer T-3	
L-1	Coil, antenna; BC and SW	5181459		and plug PL-1	85 C 085
L-2	Coil, oscillator; BC	5181460		Spring, dial cord	75A012
L-3	Coil, oscillator; SW	5181461			
T-1	Transformer, IF; input	50 C 233			

PAGE 23-10 HALLICRAFTERS
MODEL S-80, Defender

HALLICRAFTERS PAGE 23 MODELS 5R30, 5RA 5R32, 5R33, 5R34, Continental

GENERAL DESCRIPTION

Your Hallicrafters Continental provides reception of both the standard broadcast band and the 6 to 18 megacycle shortwave range. It is a 5 tube superheterodyne radio and is designed to operate from 105 to 125 volt direct current (DC) or 50/60 cycle alternating current (AC).

Fine performance of both standard and shortwave broadcasts can be obtained with the 15 foot antenna wire included with your receiver. It is merely necessary to uncoil this wire, connect one end of it to terminal A1 on the back of the set and then run it about the room in any convenient manner. To complete the antenna installation, the jumper should be connected between terminals A2 and G on the back of the set.

HALLICRAFTERS CONTINENTAL
Models 5R30, 5R31, 5R32, 5R33 and 5R34

For your convenience, the principal shortwave stations of the world have been clearly marked on the dail. Since shortwave reception conditions vary with the season of the year and even with the time of day, shortwave programs may not be heard with the same regularity as standard broadcasts. It is important, therefore, that you refer to the table below as it provides an easy means of selecting the shortwave band most suitable to the time of day.

To get the maximum enjoyment from your Hallicrafters radio, carefully follow the instructions contained in this book.

BEST SHORTWAVE RECEPTION TABLE

BAND	MOST FAVORABLE TIME	MOST FAVORABLE DISTANCE
$6-7 \mathrm{MC}$	Night - Winter	Day-400 Miles Night - Over 1500 Miles $9-10 \mathrm{MC}$
Day - Late Afternoon and Night - Winter	Over 500 Miles	
11-12 MC	Evenings or Late Summer Afternoons	Day - Under 1500 Miles Night - Over 1500
15-18 MC	Early Mornings and Summer Evenings	Over 1500 Miles

INSTALLATION INSTRUCTIONS

UNPACKING - Check all shipping labels and tags for instructions before removing or destroying them.
LOCATION -- Do not locate the receiver close to sources of heat such as radiators and heating vents. Allow for proper ventilation of the receiver by placing it at least two or three inches away from the wall.

ANTENNA - The terminals marked A1, A2 and G on the back of the receiver are for antenna and ground connections. Satisfactory results can be obtained in most localities with the 15 foot antenna wire included with your receiver. This wire should be uncoiled for maximum signal pickup. An outside antenna 30 to 60 feet long may be necessary if the receiver is to be operated in a steel constructed building or in an area surrounded by numerous steel structures. The antenna used should be connected to terminal A1 on the antenna terminal strip. The jumper provided on this strip should be connected between terminals A2 and G. In some locations, reception may be improved by connecting a lead from terminal G to a cold water pipe or other good ground.

Fig. 1. Rear View of Receiver Showing Antenna and Ground Connections

PAGE 23-12 HALLICRAFTERS
MODELS 5R30, 5R31,
5R32, 5R33, 5R34,
Continental

OPERATING INSTRUCTIONS

TUNING DIAL

1. The standard broadcast band is calibrated in kilocycles with a zero deleted for, convenience. To convert the dial reading to the station frequency in kilocycles, add one zero.
2. The shortwave band is calibrated directly in megacycles.

STANDARD BROADCAST AND SHORTWAVE RECEPTION

1. Plug the power cord into a convenient electrical outlet which provides 105 to 125 volts DC or 50/60 cycles AC. If in doubt about your power supply, call your power company before plugging in the receiver. The wrong power source may cause damage to the receiver.
2. Set the $\mathrm{SW} / \mathrm{BC}$ control to BC for standard broadcast reception or to SW for shortwave reception.
3. Turn the receiver on by turning the VOLUME control clockwise to the ON position. Allow about a minute for the receiver to warm up.

NOTE: If the receiver does not operate after the one minute warm up when connected to a DC source, the power plug should be reversed in the wall outlet to obtain proper polarity.
4. Rotate the VOLUME control clockwise about $1 / 2$ turn as a preliminary setting. Turning this control clockwise increases volume.
5. Tune in the desired station by rotating the TUNING control slowly until the dial pointer indicates the station frequency.
6. After the station has been accurately tuned in, adjust the VOLUME control for the desired volume.
7. To turn the receiver off, turn the VOLUME control counterclockwise to the OFF position.

Fig. 2. Top View of Chassis Showing Location of Tubes and Dial Lamp

SERVICE INSTRUCTIONS

SPECIFICATIONS

TUBE AND DIAL LAMP REPLACEMENT - Refer to Fig. 2. for the location of the tubes and dial lamp used in the receiver. It will be necessary to remove the back cover from the cabinet to gain access to the tubes and dia: lamp. To prevent damage to the tuning capacitor, set the TUNING control fully counterclockwise befort making any replacement. When replacing tubes, check the tube type carefully and replace it with the correct type. The dial lamp and socket can be removed by compressing the side springs on the socket. Replacement of the dial lamp should be made with a 6-8 volt, Mazda \#47 (brown bead) pilot lamp or equivalent.
ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
Set volume control at maximum.
- Use a non-metallic alignment tool.
Signal generator must have a modulated output and cover 455 KC,
$600 \mathrm{KC}, 1300 \mathrm{KC}$ and 14 MC .
- Keep the generator output as low as possible to avoid AVC action.
- Refer to Figs. 6 and 7 for location of alignment adjustments.

STEP	SIGNAL GENERATOR CONNECTIONS	SIGNAL GENERATOR FREQUENCY	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { RECEIVER } \\ & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	ADJUST FOR MAXIMUM OUTPUT
1	High side to stator plates of rear section of tuning capacitor through a .01 mfd. capacitor. Low side to chassis.	455 KC	BROADCAST	1000 KC	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \\ & \mathrm{C}, \mathrm{D} \end{aligned}$
2	High side to Al on antenna terminal strip on rear of chassis through a standard RTMA dummy antenna (Fig.5). Low side to chassis. Connect the jumper between A2 and G.	14 MC	SHORTWAVE	14 MC	\mathbf{E}, \mathbf{F}
3	Same as STEP 2.	1300 KC	BROADCAST	1300 KC	G,H
4	Same as STEP 2.	600 KC	BROADCAST	600 KC	J

PAGE 23-14 HALLICRAFTERS MODELS 5R30, 5R31, 5R32, 5R33, 5R34, Continental

$92 C 1570$
Fig. 6. Top View of Chassis Showing Location of Alignment Adjustments

BC OSC. BC OSG BC ANT
PADDER TRIMMER TRIMMER
9281588
Fig. 7. Front Right View of Chassis Showing Location of Alignment Adjustments

Fig. 8. Bottom View of Chassis Showing Component Location

HALLICRAFTERS PAGE 23.

PAGE 23-16 HALLICRAFTERS
MODELS 5R30, 5R31, 5R32, 5R33, 5R34, Continental

Schematic Symbol	Description	Hallicrafters Part Number	Schema Symbo
CAPACITORS			
$\underset{\&}{\mathrm{C}}-\mathrm{C}, \mathrm{~B}$	Trimmer assembly, 3 section	44C408	V-1
C-2	Tuning capacitor, 2 section	48 C 282	V-3
C-3,8,9,11	100 mmf .500 V. , ceramic	47X20UJ101K	
C-4	50 mmf .500 V ., ceramic	47X20UJ500K	V-4
$\begin{gathered} C-5,10,12 \\ 14 \end{gathered}$.01 mfd .600 V. , tubular paper	46AY103J	V-5
C-6,7	. 05 mfd .200 V ., tubular paper	46AU503J	
C-13A, B	20 mfd . $25 \mathrm{~V} ., 60-40 \mathrm{mfd}$.		
\& C	150 V.; electrolytic	$45 \mathrm{B1} 97$	
C-15	5600 mmf . 500 V., mica	47X30A562	
C-16	.01 mfd .600 V., molded tubular paper	$\begin{aligned} & \text { 46BR103L6 or } \\ & 46 \mathrm{BR} 103 \mathrm{~J} 6 \end{aligned}$	
C-17	Resonant capacitor	46A150	
C-18	$2.2 \mathrm{mmf}$.500 V ., bakelite	47A160-4	
RESISTORS			
$\mathrm{R}-1$	1 megohm $\frac{1}{2}$ watt, carbon	23X20X105M	
R-2	22,000 ohms $\frac{1}{2}$ watt, carbon	23X20X223M	
R-3	1200 ohms $\frac{1}{2}$ watt, carbon	23X20X122M	
R-4,12	56 ohms $\frac{1}{2}$ watt, carbon	23X20X560K	
R-5	2.2 megohms $\frac{1}{2}$ watt, carbon	23X20×225M	
R-6	47,000 ohms $\frac{1}{2}$ watt, carbon	23X20X473M	
R-7	VOLUME control, 1 megohm; includes OFF-ON switch S -2	25 B 965	
R-8	10 megohms $\frac{1}{2}$ watt, carbon	23X20×106M	
R-9,13	270,000 ohms $\frac{1}{2}$ watt, carbon	23X20X274M	
R-10	470,000 ohms $\frac{1}{2}$ watt, carbon	23X20X474M	
R-11	150 ohms $\frac{1}{2}$ watt, carbon	23X20X151K	
R-14	15 ohms $\frac{1}{2}$ watt, carbon	23X20X150M	
R-15	22 ohms $\frac{1}{2}$ watt, carbon	23X20X220M	
R-16	820 ohms 1 watt, carbon	23X30X821M	
COILS AND TRANSFORMERS			
L-1	Coil, antenna; BC and SW	5181494	
L-2	Coil, oscillator; SW	$51 \mathrm{B1493}$	
L-3	Coil, oscillator; BC	51B1495	
T-1	Transformer, IF; input	$50 \mathrm{B524}$	
T-2	Transformer, IF; output	$50 \mathrm{B5} 25$	PL-1
T-3	Transformer, audio output	55 C 181	LM-1
SWITCHES			
$\underset{\& D}{S-1 A, B, C}$	Switch, rotary; SW-BC	60B472	
S-2	Switch, OFF-ON; part of VOLUME control R-7	---------	$\begin{gathered} \mathrm{LS}-1 \\ \mathrm{TS}-1 \end{gathered}$

SERVICE PARTS LIST

23X20X105M
23X20X223M
23X20X122M
23X20X560K
23X20×225M

25B965
23X20X106M
3K20×274M
23X20X151K
23X20X150M
23X20X220M
23×30X821M

51B1494
51 B1493
50B524
50B525
55 C 181

60B472

VOLUME control R-7

INSTALLATION INSTRUCTIONS

UNPACKING - Observe all shipping labels and tags for instructions before removing or destroying them.
LOCATION - Your Hallicrafters Clock Radio should be placed in a convenient location away from radiators or other hot air sources. It should be positioned at least 2 inches from the wall to permit proper air circulation.

POWER SOURCE - The power plug should be inserted into a power outlet that will supply 105 to 125 volts 60 cycle AC ONLY. If in doubt about your power supply, call your power company before connecting the receiver. The wrong source of power may cause serious damage to both the radio receiver and the clock motor.

fig. 2. Rear View Showing Antenna Connections and "Time Set" Knob
ANTENNA - The terminals marked A1, A2 and G on the back of the receiver are for antenna and ground connections. Satisfactory results can be obtained in most localities with the 15 foot antenna wire included with your receiver. This wire should be uncoiled for maximum signal pickup. An outside antenna 30 to 60 feet long may be necessary if the receiver is to be operated in a steel constructed building or in an area surrounded by numerous steel structures. The antenna used should be connected to terminal A1 on the antenna terminal strip. The jumper provided on this strip should be connected between terminals A2 and G. In some locations, reception may be improved by connecting a lead from terminal G to a cold water pipe or other good ground.

CLEANING - The cabinet, dial glass, and clock face should be cleaned with mild soap and water taking care to prevent excess moisture from entering the cabinet. Chemical cleaning solutions should not be used on your Hallicrafters Clock Radio.

OPERATING INSTRUCTIONS

CLOCK - Your clock will start automatically as soon as the power cord is plugged into the proper outlet. The correct time may be set by rotating the TMME SET knob that protrudes from the rear of the cabinet. The self starting feature will re-start the clock if there is a temporary interruption of the electric power.

ELECTRIC ALARM - - The control regulating the electric alarm is located at the "three o'clock" position on the clock face. To set the alarm pull the knob to the "OUT" position and rotate the knob in the counterclockwise direction until the desired alarm time appears under the pointer near the center of the clock face. Leave the knob in the "OUT" position. When the alarm rings it may be turned off simply by pushing the control knob. If the alarm is not turned off after sounding for about forty five minutes it will turn off automatically.

Fig. 3. Clock Face Showing Controls and __Coffee Time" Outlet

IMPORTANT

The alarm will begin to sound approximately ten minutes later than the time indicated on the alarm set dial. This period is to allow for a time difference between the turning on of the radio and "coffee time" appliance outlet and the sounding of the alarm. Refer to the instructions below.

RADIO AND "COFFEE TIME" APPLIANCE OUTLET - The RADIO switch, located at the "nine o'clock" position on the clock face, controls the mode of operation of the radio and the "coffee time" appliance autlet. When this switch is set to the "OFF" position neither radio nor outlet will operate. When set to the "ON" position the outlet will supply power and the radio may be operated by advancing the OFF-VOLUME control. When set to the "AUTOMATIC" position both radio and outlet will turn on automatically at the time to which the alarm has been set. If the alarm control has been left in the "OUT" position the alarm will begin to sound ten minutes later.

SLUMBER SWITCH - The SLUMBER switch, located at the "six o'clock" position on the clock face, may be used to turn the radio and/or the "coffee time" appliance outlet off automatically after operation for any desired period of time up to one hour. The SLUMBER switch will operate only when the RADIO switch is set to either the "OFF" or to the "AUTOMATIC" position. Operation of the SLUMBER switch is accomplished simply by advancing the knob until the pointer is at a position corresponding to the number of minutes that operation of the radio or outlet is desired. For example if you desire the radio to operate for one hour and then shut off advance the SLUMBER switch all of the way to the " 60 " position. If only 30 minutes operation is desired advance the SLUMBER switch only to the half way position, etc.

For your convenience in becoming acquainted with the use of the various controls the following table has been provided showing the proper control position for various types of operation.
table 1, SHOWING OPERATING POSITIONS

MODE OF OPERATION	SET EACH CONTROL TO THE POSITION INDICATED AND FOLLOW THE SIMPLE INSTRUCTIONS				
	$\begin{aligned} & \text { RADIO } \\ & \text { CONTROL } \end{aligned}$	$\begin{gathered} \text { ALARM } \\ \text { CONTROL } \end{gathered}$	SLUMBER SWITCH	RADIO OFF-VOLUME CONTROL	"COFFEE TIME" OUTLET WILL BE:
To operate the radio manually	On	In	Off	On	On
To turn the radio on automatically at a desired time	Automatic	Set for desired time and push in	Off	On	Off, but will turn on with the radio
To sound the alarm only at a desired time	Off	Set for ten minutes earlier than the desired time and leave out	Off	Off	Off
To automatically turn on the radio at a desired time and sound the alarm ten minutes later	Automatic	Set for desired time and leave out	Off	On	Off, but will tum on with the radio
To automatically turn on the "Coffee Time" outlet only at a desired time and sound the alarm ten minutes later	Automatic	Set for desired time and leave out	Oft	Off	Off, but will turn on at the desired time
To automatically time off the radio and "Coffee Time" outlet after operating for any desired length of time up to one hour	Off	In	Set for desired length of operating time	On	On, but will tum off with the radio
To automatically turn off the radio and "Coffee Time" outlet after operation for any desired period of time (up to one hour) and to turn them on again automatically at a later time (up to twelve hours) and to sound the alarm ten minutes later	Automatic	Set for the desired "TURN ON" time and leave out	Set for desired length of operating time before turning off	On	On, then off, then on automatically

RADIO OPERATION
 IMPORTANT

Before operating the radio be sure that the clock controls are set to an appropriate position. Refer to the above table. The radio will not operate if the RADIO switch on the clock face is set to the "OFF" position and may not operate if this switch is set to the "AUTOMATIC" position.
TUNING DIAL - The standard broadcast band is calibrated in kilocycles with the last zero deleted for convenience in reading the dial. To convert the dial reading to the station frequency in kilocycles simply add one zero.

The short wave band is callibrated directly in megacycles.
STANDARD BROADCAST AND SHORTWAVE RECEPTION - Turn the BAND SWITCH (right hand knob) clockwise for standard broadcast reception and counterclockwise for short wave reception.
The OFF-VOLUME control (large center knob) turns the receiver on and off and also controls the volume. Turn this knob in the clockwise direction to turn the receiver on and to increase volume. Allow about sixty seconds for the set to warm up.
Tune in the desired station with the TUNING control (left hand knob).
After the desired station has been tuned readjust the VOLUME control as desired.
The receiver may be turned off either by turning the OFF-VOLUME control to the extreme counterclockwise position (until a click is heard) or by setting the RADIO switch, located at the "nine o'clock" position on the clock face, to the "OFF" position.

SERVICE INSTRUCTIONS

SPECIFICATIONS

Speaker 5 inch PMVoice Coil Impedance . . . 3.2 ohmsIntermediate Frequency . . . 455 KCAntennaSingle wire or doubletPower Supply 105-125 volts60 cycles AC only

Fig. 4. Dial Cord Stringing Diagram 92C1509-A

Fig. 5. Top View of Chassis Showing Locotion of Tubes ${ }^{9}$ and Alignment Adjustments

92B1588-4

Fig. 6. Front View of Chossis Showing Location of Alignment Adjustments

TUBE AND DIAL LAMP REPLACEMENT - Refer to Fig. 5. for the location of the tubes and dial lamp used in the receiver. It will be necessary to remove the back cover from the cabinet to gain access to the tubes and dial lamp. To prevent damage to the tuning capacitor, set the TUNING control fully counterclockwise before making any replacement. When replacing tubes, check the tube type carefully and replace it with the correct type. The dial lamp and socket can be removed by compressing the side springs on the socket. Replacement of the dial lamp should be made with a 6-8 volt, Mażda \#47 (brown bead) pilot lamp or equivalent.

PAGE 23-22 HALLICRAFTERS
MODELS 5R50, 5R51,
5R52, Runs 1, 2

Fig. 9. Tube Socket Voltage Chart for
920:703 Chassis Using Miniature Tubes

Fig. 10. Tube Socket Voltage Chart for Chassis Using Octal Tubes

PAGE 23-24 HALIICRAFTERS
MODELS 5R50, 5R51,
5R52, Runs 1, 2
 (Chassis Using Miniature Tubes)

Fig. 12. Bottom View of Chassis Showing Component Location (Chassis Using Octal Tubes)

GENERAL DESCRIPTION

World-wide radio reception is yours with the Hallicrafters Model $\mathrm{S}-38 \mathrm{C}$. This 5 tube communications recetver tunes from 540 kilocycles to 32 megacycles to bring you standard broadcast programs, foreign and domestic shortwave broadcasts, amateurs, police, ships, aircraft and countless other exciting distant stations. It receives both voice and code broadcasts and is designed to operate from 105 to 125 volt direct current (DC) or 60 cycles alter ${ }^{-}$ nating current (AC). A 5 -inch Alnico V permanent magnet speaker is built into the top of the cabinet and tip jacks have been provided on the back of the set for plugging in a pair of headphones. The RECEIVE-STANDBY switch on the front panel is a special feature which permits you to silence the receiver without turning the
 set off.

Good reception of both standard and shortwave broadcasts can be obtained in most localities with the 15 foot antenna wire included with your recelver. It is merely necessary to uncoil this wire, connect one end of it to terminal A1 on the back of the set and then run it about the room in any convenient manner. To complete the antenna installation, connect the jumper between terminals A2 and G.

Your set is provided with two tuning knobs for greater ease of tuning. Wide tuning is done with the knob marked TUNING and fine tuning with the knob marked BAND SPREAD. The BAND SPREAD knob permits you to accurately tune in stations on crowded bands by spreading them out so that they may be more easily separated. In this way you are able to hear many more stations than you would on an ordinary radio with just one tuning knob.

The amateur bands and principal shortwave channels of the world are clearly marked on the dial for your convenfence. Since shortwave conditions vary with the season of the year and even with the time of day, shortwave programs may not be heard with the same regularity as standard broadcasts. A special table has been provided on page 3 to aid you in determining the most favorable times for shortwave listening.

INSTALLATION INSTRUCTIONS

ANTENNA - The terminals marked A1, A2 and G on the back of the set are for antenna and ground connections. Good results can be obtained in most localities with the 15 foot antenna wire included with your receiver. This wire should be uncoiled to provide maximum signal pickup. An outside aptenna 50 to 100 feet long (ordinary copper wire) may be necessary if the receiver is operated in a difficult reception area or steel constructed building. Connect the antenna wire to terminal A1 on the back of the set and then connect the jumper between terminals A2 and G. In some locations, reception may be improved by connecting a lead from terminal G to a cold water pipe or outside ground rod.

For really top performance, there is no substitute for an outside antenna such as used by the commercial radio stations. provision has been made on your receiver for the connection of this type of antenna, commonly called a doublet. When a doublet antenna is used, the jumper is removed and the antenna is connected to terminals Al and A2. Consult your radio dealer for further information.

Fig. 1. Rear Viaw of Receiver Showing Antennc and Ground Terminals

OPERAIING INSTRUCTIONS

TUNING DIAL - All dial readings are in megacycles. To convert the readings on the standard broadcast band (band 1) to kilocycles, simply remove the dot and add two zeros; thus, 7 on the dial corresponds to 700 kilocycles.

AM-CW SWITCH - Set this switch at AM to listen to voice and musical broadcasts. Set it at CW only if you wish to hear code slgnals.

SPEAKER-PHONES SWITCH - For operation of the built-in speaker, set the switch at SPEAKER. Tlp jacks are provided on the back of the set for plugging in a pair of headphones. Use any 500 to 5000 ohm headphones. For headphone speration set the switch at PHONES.

BAND SELECTOR CONTROL- Set this control for the band you wish to tune.

VOLUME CONTROL - Turn this control clockwise to turn the set on. Allow about 30 seconds for the tubes to reach operating temperature and then advance the control to increase volume. To turn the set off, turn this control counterclockwise until a click is heard.

> NOTE - If the receiver does not operate after the 30 second warm up when connected to a DC source, the power plug should be reversed in the wall outlet to obtain proper polarity.

RECEIVE - STANDBY SWITCH - Set this switch at RECEIVE for radio reception. If you wish to silence the receiver without turning the set off, set the switch at STANDBY. To resume radio reception, simply return the switch to the RECEIVE position.

TUNING KNOB - Your receiver has been provided with two tuning knobs - The TUNING knob which operates the pointer on the left hand dial and a separate BAND SPREAD knob which operates the pointer on the right hand dial. The TUNING knob is for wide tuning and the BAND SPREAD knob for fine tuning. Use the TUNING knob to tune in the desired station. Tune for the clearest and strongest signal. If the signal is too strong, reduce it by means of the VOLUME control, not by using the TUNING knob. For code reception, adjust the TUNING knob for the desired pitch of the CW code signal when tuning in the station.

> IMPORTANT - The dial readings will correspond to the exact station frequencies only if the BAND SPREAD dial pointer is set at 0 .

BAND SPREAD KNOB - The BAND SPREAD knob permits you to accurately tune in stations on crowded bands by spreading them out so that they can be more easily separated. The BAND SPREAD knob can be used in two different ways. First, it may be left with the pointer at 5 while you partially tune in the desired station with the TUNING knob. Then, by "rocking" the BAND SPREAD knob back and forth (turn it a few degrees to the left and right through the desired station), you will be able to tune in the desired station with precision accuracy.

The second way to operate the BAND SPREAD knob is to use it to cover a group of stations. Set the BAND SPREAD knob so that the pointer reads 0 and then turn the TUNING knob to tune in the highest frequency station in the group. The other stations can be heard by slowly turning the BAND SPREAD knob from 0 to 100.

BEST SHORTTWAVE REECETION TÀBLE

Band	Most Favorable Time	Most Favorable Distance
$6-7 \mathrm{MC}$	Night - Winter	Day - 400 Miles - Night - Over 1500 Miles
$9-10 \mathrm{MC}$	Day - Late Afternoon and Night - Winter	Over 500 Miles
$11-12 \mathrm{MC}$	Evenings or Late Summer Afternoons	Day - Under 1500 Miles Night - Over 1500
$15-18 \mathrm{MC}$	Early Mornings and Summer Evenings	Over 1500 Miles

SERVICE INSTRUCTIONS

Fig. 2. Dial Cord Stringing Diagram

DIAL CORD STRINGING - Refer to Fig. 2 for the stringing diagram. Both sections of the tuning gang should be fully meshed. To restring the TUNING dial cord, tie one end of an 18 inch length of 30 lb . dial cord to the dial spring at 1 on the drive pulley. Follow the stringing sequence 1 through 4. At 4, stretch the spring and tie the cord securely to the spring. Cut off the excess cord and apply a drop of quick drying cement to the knot.

To restring the BAND SPREAD dial cord, cut a 15 inch length of dial cord and follow the procedure as explained above, starting at A and proceeding through D.

Fig. 3. Top View of Chassis Showing Location of Alignment Adjustments, Tubes and Dial Lamp

TUBE AND DIAL LAMP REPLACEMENT Refer to Fig. 3 for the location of the tubes and dial lamp used in the receiver. To gain access to the tubes and lamp, remove the back cover from the cabinet. Before attempting to make any replacement, set the BAND SPREAD control fully clockwise and the TUNING control fully counterclockwise to prevent damage to the tuning gang. To replace a tube, insert the center guide pin into the center hole of the tube socket, rotate the tube until the key drops into position and then push down until the tube is held firmly in the socket. To make a dial lamp replacement, remove the dial lamp socket by compressing the side springs. Make replacement only with a type 47 pilot lamp.

Fig. 4. Boftom View of Chassis Showing Location of Alignment Adjustments

ALIGNMENT INSTRUCTIONS

- Use an amplitude modulated generator covering 455 KC to 30 MC .

Use a modulated output for every step except Step 2.

- Connect output meter across speaker voice coil.
- Use a non-metallic alignment tool.
- Set the AM/CW switch at AM, (except for BFO adjustment), SPEAKER/PHONES switch at SPEAKER, VOLUME control at maximum, RECEIVE/STANDBY switch at RECEIVE and the BAND SPREAD control at 0.
- See Figs. 3 and 4 for location of alignment adjustments.

Fig. 5. RMA Dummy Antenna

Stop	Signal Generator Connections	Generator Frequency	Band Selector Setting	Receiver Dial Setting	Adjust
IF ALIGNMENT					
1	High side thru a .01 mfd . capacitor to stator plates of front section of TUNING gang. Low side to chassis.	455 KC	1	1.0 MC	A, B, C and D for maximum output. Keep reducing gen. output so that the reading on the output meter does not exceed 50 milliwatts
BFO ADJUSTMENT					
*2	Same as Step 1.	455 KC (No Mod.)	1	1.0 MC	Set the AM/CW switch at CW. (Reset the switch at AM when Step 2 is completed.) For correct BFO operation, vary the coupling between lead E and pins 4 and 8 of the 12SG7 tube for a maximum beat note. Pushing lead E toward pin 4 increases the strength of the beat.
RF ALIGNMENT					
3	High side thru RMA dummy antenna (Fig. 5) to terminal A1 on back of chassis. Low side to chassis. Connect jumper between A2 and G.	30 MC	4	30 MC	F and G for maximum output as in Step 1.
4	Same as Step 3.	14 MC	3	14 MC	H and J for maximum output as in Step 1.
5	Same as Step 3.	5 MC	2	5 MC	K and L for maximum output as in Step 1.
6	Same as Step 3.	1500 KC	1	1.5 MC	M and N for maximum output as in Step 1.
	-	500 XC	1	. 6 MC	P for maximum output as in Step 1.

* Step 2 is usually unnecessary. Adjustment should be made ONLY if a weak beat note is obtained on strong CW signals indicating lack of coupling between wire lead E and pins 4 and 8 of the 12SG7.

Fig. 6. Bottom View of Chassis Showing Component Location

[^0]: Please specify part number and chassis model number when ordering replacements.

[^1]: all oc voltages in reference to common ground
 ac except when used on dc power line
 voltage chant chassis bottom view

[^2]: 1. A.M.-I.F. Sensitivity

 100 microvolts at $455 \mathrm{kc} .30 \%$ mod. with 400 cycles at the grid (pin 1) of V3 for $1 / 2$ watt audio output.
 A.M.-R.F. Sensitivity

 100 microvolts per meter at $580 \mathrm{kc} .30 \%$ mod. with 400

[^3]: * Used en provious receivers.

[^4]: * ALIGNMENT NOTE:

 This adjustment is "rocked in" for maximum output.

