

TO REMOVE CLOCK FROM CABINET

(Radio chassis need not be removed when removing clock)

1. Remove the back from radio cabinet.
2. Remove the clock plug from the socket on top of the radio chassis, by removing screw from top of p'ug and gently prying plug out from socket.
3. Remove the 2 nuts which hold the clock back cover to the clock.
4. Pull the clock out through the front of the cabinet.

OPERATING RADIO WHEN CLOCK IS REMOVED FROM CABINET

If the radio must be operated without the clock, a wire jumper must be connected between contacts 1 and 4 on socket M2 io complete the circuit.
tube and trimmer location

Adjustments A and C made from underside of chassis.

Dial stringing and pointer with solid lines shown u. closed. Dashed line pointer positions (1400 KC and \mathbb{C}, \% shown when tuning condenser is tuned to generator sigra.

ALIGNMENT PROCEDURE

- Connect a wire jumper between contacts 1 and 4 on clock socket (M2) as shown in illustration.
- Turn receiver volume control full on (fully clockwise).
- Connect output meter across speaker voice coil.
- Use an isolation transformer if available, otherwise connect
- Use lowest output setting of signal generator capable producing adequate output meter indication and proceed i a 1 mfd . condenser in series with low side of signal generator and connect to chassis. the following sequence.
Caution: Do not connect a ground wire directly to chassis.
- Repeat adjustments to insure good results.

Stap	Dummy Antenne in Series with Signal Generator	Connection of Signal Generafor (High Side)	signal Generafor Frequency	Receiver Gang Setting	Trimmer Destription	Trimmer Designation	Type of Adjustmen
1	250 mmfd . condenser	Antenna stator of tuning condenser	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd } \\ & \text { list IF } \end{aligned}$	$\begin{aligned} & { }^{*} \mathrm{~A}, \mathrm{~B} \\ & { }^{\mathrm{C}}, \mathrm{D} \end{aligned}$	Maximum output
2	250 mmfd . condenser	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oscillator	E	Maximum output

Mount and set dial pointer :o horizontal position with tuning condenser toned to 1400 KC generator signal; see :lustration below.

3	Loop of several turns of wire, or place generator lead close to receiver loop for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC :	Tune in generator signal	Antenna	F	$\begin{aligned} & \text { Maximum } \\ & \text { output } \end{aligned}$

[^0]
*These readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.

VOLTAGEDATA

Voltages shown on schematic diagram

- All readings made between tube socket terminals and B minus (negative lead of electrolytic condenser C13).
- Measured on 117 Volt 60 Cycle AC line.
- Volume control minimum; dial turned to low frequency end.
- Voltages measured with Vacuum Tube Voltmeter.

RECORD CHANGER SERVICE DATA

The changer model number will be fourd stamped at the top rear of the changer base and also on the changer model label.

Cartridge and Needle

As shown in the illustrations, alternate cartridges may be used. Cartridgen are interchangeable when complete with needle.

WUR MWD DWHMHER LOCNHOM

Adjustments A and C made from underside of chas

DIAL STRINGING AND POINTER SETTIP

Dial stringing and pointer with solid lines shown with gang closed. Dashed line pointer positions (1400 KC and 900 KC) shown when tuning condenser is tuned to generator signal.

ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Antenns must be connected and placed in the same relative position to the chassis as when in cabinet.
- Use an isolation transformer if available, otherwise connect a .1 mfd. condenser in series with low side of signal generator and connect to chassis. Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable producing adequate output meter indication and proceer the following sequence.
- Repeat adjustments to insure good results.

Stop	Dummy Antenna in Sories with Signal Generator	Connection of Signal Generater (High side)	signal Generufor Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type © Adustm
1	250 mmfd . condenser	Tuning condenser, antenna stator	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { 1st IF } \end{aligned}$	$\begin{aligned} & * A, B \\ & { }^{*} \mathrm{C}, \mathrm{~B} \end{aligned}$	Maxima outpu
2	250 mmfd. condenser	Tuning condenser, antenna gtator	1620 KC	Gang fully open	Oscillator	E	Maximi outpu\|

Mount dial pointer. Set pointer to horizontal position with tuning condenser tuned to 1400 KC generator signal (see illustrat below). Rotate the tuning condenser until the pointer is in a vertical position (900 KC), then slip chassis in cabinet, carefu guiding the pointer so that it locates between the dial escutcheon and the cabinet. Install antenns and chassis mounting bo The pointer and escutcheon may be mounted after installing the chassis in cabinet as follows: Set pointer to horizontal posit with gang tuned to 1400 KC signal. Place escutcheon on cabinet. With long nose pliers slip the hairpin ends of the escutchi mounting springs in holes of escutcheon tabs.

$$
\mathbf{s} \quad \left\lvert\, \begin{aligned}
& \text { Loop of several turns of } \\
& \text { wire or place geners- } \\
& \text { tor lead close to re- } \\
& \text { ceiver antenna for } \\
& \text { adequate signal pickup. }
\end{aligned}\right.
$$

No actual connection (signal by radiation)
1400 KC
Tune in generator
signal

Antenna	$f F$	Maxima ouspo

[^1]PAGE 23-4 ADMIRAL

CHASSIS Gllo. $\frac{1}{2}$
These readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter
These recdinge will be gero on "Phono"; all other DC readings may be slieghty higher.
VOLTAGEDATA
Voltages given on schematic diagram.

- All readings made between tube socket terminals and B minus (terminal of On -Off switch).
- Switch S2 in "Radio" position.
- Measured on 117 Volt 60 Cycle AC line.
- Volume control minimum; dial turned to low end.
- Voltages measured with Vacuum Tube Voltmeter.

[^2]

SPECIFICATIONS

Models $6 \mathrm{~N} 25,6 \mathrm{~N} 26$ and 6 N 27 are combination sets consisting of a 5R2 radio chassis, a 1PA4 power supply and a RC550 record changer. The $5 R 2$ radio chassis is a 5 tube (AM only) superhetrodyne receiver used with a IPA4 (one tube) power supply. Operate the radio and record changer only from a 60 cycle $A C$ (alternating current) power line of from 110 to 120 volts. Power, 80 watts.

RECORD CHANGER SERVICE DATA

The changer model number will be found stamped at the top rear of the changer base and also on the changer model label.

Cartridge and Needle

As shown in the illustrations at right, alternate cartridges may be used. Cartridges are interchangeable when complete with needle.

Tone Arm with Cartridge
Port No. 409A13

Remove neadle by
pulling straight forward.

Tone Arm with Cartridge Part No. 409A13-1

IPA4 Power Supply

MODELS 6N25, 6N26,

6N27, Ch. 5R2

ALIGNMENT PROCEDURE

IMPORTANT: For IF alignment, it will be necessary to disassemble the radio chassis from the escutcheon and housing and also remove the chassis cover and dial scale assembly. The antenna, RF and oscillator trimmers are accessible from top of chassis; disassembly of chassis cover and dial scale will generally not be required.

- Connect output meter across speaker voice coil.
- Turn receiver Volume control fully on; Tone control fully clockwise.
- Radio-Phono switch in "Radio" position.
- Antenna must be connected and placed in the same relative
position to the chassis as when in the cabinet.
- Use lowest output setting of signal generator that gives a satisfactory reading on meter.
- Use a non-metallic alignment tool for IF adjustments.
- Repeat adjustments to insure cood results.

58ep	Demmy Antenng In series with Signal Generator	Connection of Signal Generufor (High side)	Signal Generafor Frequency	Raceiver Gang Setting	Trimmer Descripfion	Trimmer Designation	Type of Adjustment
1	.1 mfd . condenser	Pin 7 of 6BE6 tube	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { Ist IF } \end{aligned}$	$\begin{aligned} & * A, B \\ & * C, D \end{aligned}$	Maximum Output
2	.1 mfd . condenser	Tuning condenser, antenna stator	1620 KC	"	Oscillator	E	"
3	Loop of several turns of wire, or place generator lead close to receiver loop for adequate signal.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	RF	F	*
4	*	"	*	"	Antenna	G	*

"Adjustments " A " and " C " are made from underside of chasais.

REMOVING RADIO CHASSIS FROM HOUSING

To remove the radio chassis from the front housing proceed as follows:

1. Position the gang condenser drum as shown below.
2. Unhook spring at "A".
3. Keeping tension on dial cord, hook spring to edge of cut out at "B".
4. Remove six screws "C" and hex nuts " D " and " E ".
5. Remove front housing from chassis.
6. Reassemble in reverse order. See illustration below for pointer setting.

Radio Chassis With Front Housing Removed. Dial Stringing Also Shown.

Dial Scale and Pointer Setting.

ADMIRAL PACE 2

RESISTORS	
$\mathbf{S}_{\mathbf{Y} \text { mbol }}$	Deseription Part No.
HI	150 ohms, $1 / 2$ watt...............60B B-151
R2	39,000 ohms, 1 watt 60B 14.393
R3	10,000 ohms, 1 watt.............60B 14-103
R4	22,000 ohms, $1 / 2$ watt $\ldots608 ~ 8-223 ~$
H5	150 ohms, $1 / 2$ watt
R6	27,000 ohms, 1 watt.............608 14-273
+R7	47,000 ohms, 1/2 watt
R8	1 megohm, $1 / 2$ watt.............60B 8-105
R9	4.7 megohms, $1 / 2$ watt..........60B 8-475
$\begin{aligned} & \text { R10A } \\ & \text { R10B } \end{aligned}$	1 megohm, Volume ${ }_{2}$ megohms, Tone pot........75B 11-11
(R10 includes switch S2)	
811	82,000 ohms, $1 / 2 \mathrm{watt}$............608 8-823
R12	470,000 ohms, $1 / 2$ watt..........60B 8-474
R13	47,000 ohms, 1/2 watt.............608 8-473
R14	470,000 ohms, 1/2 watt..........608 8-474
R15	270 ohms, 2 watts................60E 20-271
R16	310 ohms, 5 watte
R17	310 ohmb, 5 watts $\}$.............618 5-10

CONDENSERS

8 Smbol	Description Part
C1	5 mmid, mica...................... 65B 1-62
C2	2 to 20 mmfd , trimmer
$\begin{aligned} & C 3 A \\ & C 3 B \\ & C 3 C \end{aligned}$	$\left.\begin{array}{l}120 \mathrm{mmfd} \text { max. } \\ 90.8 \text { mmid, max. } \\ 90 \text { mmid, max }\end{array}\right\}$ Gang......68B
	(Note: Dial drum spot-welded to gamg)
C4	. 1 mfd, 400 volts, paper.......64B 5-20
C5	50 mmfd , cercmic ----.-.......65B
C8	.1 mfd, 400 volts. paper.......64B
C7	. $005 \mathrm{mid}, \mathrm{min}$, ceramic.........65A
+C8	100 mmfd, ceramic
+C9	100 mmid ceramic
C10	. $1 \mathrm{mfd}, 200$ volts, paper \ldots. 648 s -3
C11	. 01 mfd , min, ceramic
C12	$100 \mathrm{mmid}, \mathrm{min}$, ceramic......65B
C13	. 005 mfd , min, ceramic........65A
C14	. 002 mfd , min, ceramic........65A 10-7
C15	. 01 mfd , min. ceramic..........65A 10.3
C16	. 1 mfd, 400 volta, paper $\ldots6485-20$
C17	. 1 mfd , 400 volts, paper.......64B 5-20
C18	$.002 \mathrm{mfd}, 600$ volte, paper....64B 5-14
C	50 mtd , 25 volts, elect.........67A 4-10
C20A	20 mid .350 volts ${ }^{\text {a }}$
C20B	$20 \mathrm{mfd}, 350$ volts \} Elect.......67C
C20C	$60 \mathrm{mtd}, 400$ volts ${ }^{\text {f }}$

COILS, IRANSFORMERS, ETC.

Symbol	Description Payt No.
11	Antenna Loop.......................69C116-2
L2	Coil. RF..............................69A 115-2
L3	Coil, Oacillator....................698 52-5
T1	Transformer, lst [F............. 728 28-7.
T2	Transformer, 2nd TF............728 28-7
T3	Transformer, Output.............79A 22
T4	Transformer, Powor.............808 22
M10	Speaker (9" PM)..................78B 49-3
S1	Switch, Radio-Phono.......... 77A 28-2
52	Switch. On-Off.................... Part of R10
	Diode Filtor.........................63A3-1

MISCELLANEOUS PARTS

\dagger Part of diode filter (part 263 A 3 -1). Heplace with exact duplicata or individual components.

 Operating Voltage: 117 volts, 60 cycle AC or DC. Power: 30 watts.

ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
- Turn receiver volume control full on.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to

chassis.

- Use lowest output setting of signal generator capabl of producing adequate output meter indication an then proceed as outlined in chart below.
- Repeat adjustments to insure good results.

Stop	Dummy Antenna in Series with Signal Generafor	Connection of Signal Generafor (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type c Adjustm
1	250 mmfd . condenser	Antenna stator of tuning condenser	455 KC	Gang fully open	$\underset{\text { lst IF }}{\text { 2nd IF }}$	$\begin{aligned} & { }^{*} \mathrm{~A}, \mathrm{~B} \\ & { }^{\mathrm{C}} \mathrm{C}, \mathrm{D} \end{aligned}$	Maxim Outpu
2	250 mmfd . condenser	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oscillator (on gang)	E	$\underset{\substack{\text { Maximı } \\ \text { Outpu }}}{ }$
3	Loop of several turns of wirc or place generator lead close to receiver loop for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	F	$\underset{\substack{\text { Maximim } \\ \text { Outpu }}}{ }$
4	Set dial pointer slide as shown in Dial Cord Stringing Diagram. Also see instructions below on "Setting Pointer Sli and on "Removing Or Installing Chassis In Cabinet."						

* Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core sluge, these adjustments may be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF : adjustment may be reached through the hollow core in the upper slug.

TUBE AND TRIMMER LOCATION

Adjustments A and C are made from underside of chassis.

REMOVING OR INSTALLING CHASSIS IN CABINET

Fully close the gang condenser before removing or installing the chassis in the cabinet. When installing, carefully slide the chassis in the cabinet, so that the tab on the pointer slide fits into the elongated hole at the center of the dial pointer. See the "Pointer Setting and Dial Stringing" diagram at the right. Parts which are shown in dotted lines a^{2} e, not assembled to the chassis. These parts are mounted on the inside of the cabinet.

POINTER SETTING AND dIAL CORD STRINGING

SETTING POINTER SLIDE

With the gang condenser fully closed, line up the cen of the pointer slide with the bottom hole in the pointer sl: bracket as shown in the figure above.

*These voltage readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.

VOltage data

Voltages shown on schematic diagram.

- All readings made between tube socket terminals and B minus (terminal of On.Off switch).
- Dial turned to low frequency end; volume control at minimum.
- Measured on 117 Volts AC line.
- Voltages measured with Vacuum Tube Voltmeter.

SPECIFICATIONS

Circula: Superheterodync using 4 miniature tubes and a setcnium rectifier.

Frequency Range: Standard broadcast band, 535 to 1620 KC . Intermodiate Frequency: 455 KC .
Power Supply: Power linie of 117 volus, 50 to 60 cycles AC or DC. Batteries using one $671 / 2$ volt "B" battery and one $71 / 2$ volt " A " battery.

Power Comsumption: 20 watt on operation from power line.
Antenna: Bulit-in Ferro-Scope (iron core) antenna.
Speaker: $312_{2}^{\prime \prime}$ PM, with a 1 oz . Alnico V magnet. Voice coil impedance, 3.2 ohms

REPLACING BATTERIES

Replacement batteries of the following types may be used in his set:
"A" Battery (71/2 Volts): General 31, Eveready 717, Burgess C5, Ray-O-Vac 751C or equivalent.
"B" Battery ($671 / 2$ Voles): Ceneral 108, Eveready 467, Burgeas XX45, Ray-O-Vac 4367 or equivalent.
The "A" and "B" batteries have been designed for equal life. Under normal operating conditions, hattery life should be approximately 40 operating hours. The " A " battery may give satisfactory performance with voltage as low as 5.5 volts. The "B" battery may give satisfactory performance with voltage as low as 19.5 volts. Replace the batteries when the reception is weak and the battery voltage has dropped below values given above
To install replacement batteries, slide the cover latch and open the hinged bottom cover. Then remove the wing nut which holds the battery support bracket in place.

Disconnect the battery connectors from the old worn out batteries. Batteries can easily be removed from the set by grasping them with long nose pliers or if necessary, removing the cabinet bottom. Install the new batteries so that the battery connectors are farthest away from the ends of the battery bracket. Batteries may become shorted if the bracket tonches the connectors.

Note: It is important that the run-down batteries bo removed from the set IMMEDIATELY because the chemical action inaide of the cells will cause some batteries to leak when they are worn out. The acid which leaks from arundown battery may damage parts of the set or the cabinet because of its corroaive action.

REPLACING TUBES

Tubes can most conveniently be removed or replaced by first removing the batteries and cabinet bottom. \mathbf{A} miniature tube puller or extractor will be of help in facilitating tube replacoment.

Models 4V12 Mahogany, 4V18 Green and 4V19 Ebony.

REMOVING AND INSTALLINE CHASSIS IN CABINET

Removal of the chassis from the cabinet is not required when replacing tubes or batteries. It will, however, be necessary to remove the chassis for making alignment or for taking voltage readings. For taking voltage readings, it will also be necessary to remove the metal cover enclosing the underside of the chassis.
To remove the chasois from the cabinet, proceed as follown:
(a) Remove the tuning knob, pointer hub and cabinet bottom (base). The apeaker prille nay be rensoved by pulling it down and away from the cabinet.
(b) Remove the 2 chassis mounting screwy located at the top inaide of the cabinet, just below the handle brackets.
(c) Carefully slide the chassis out of the cabinet, being carefal not to damage the built-in iron core antenna or the speaker.
Install the chassis in the cabinet in the reverse order. A screw. driver with a magnetic blade or a ecrew holding type screwdriver will be of help in inserting the chassis mounting screws when installing the chassis in the cabinet.
STRINGING THE VOLUME CONTROL DRIVE CORD
The illustration below shows the volume control drive cord

stringing used in 4V1 radio chassis. The arrows along the drive cord show the direction in which the volume control drive cord is strung.

Before stringing the drive cord, rotate the volume control fully counterclockwise until the on-off switch snaps in the of position. Place the volume knob over the gang condenser tuning shaft. To prevent the valume knob from slipping off during drive cord stringing, mount the dial pointer hub to the gang condenser tuning shaft. To prevent slipping of the volume control drive, it is important to maintain tension on the drive cord tension spring.

TRIMMER LOCATION

Adjustments A and C are made from other side of chassis.

- Use battcry power for alignment if fresh batteries are available. If using AC power, an isolation transformer should be used if available. If an isolation transformer is not used, connect a .1 mfd . condenser in series with the signal gencrator low side to B minus (pin 7 of 1U5 tube.) Batteries should be held in place on the chassis during alignment. - The metal chassis cover need not be removed during alignment. - Set volume control full on. - Connect output meter across speaker voice coil. - Use lowest setting of signal generator capable of producing adequate output meter indication. - Use a non-metallic alignment tool for IF transformers. - Repeat adjustunents to insure good results.							
500	Dummy Amtonna in Series with Signal Generator	$\begin{aligned} & \text { Commoction of } \\ & \text { staml Genempor } \\ & \text { (Migh side) } \end{aligned}$	Stamal Oomerntor Frequency	toceiver Can sotelm	TrAmemer Decerlipitem	$\begin{array}{\|c} \text { Trimamer } \\ \text { Dectigmation } \end{array}$	Adjustiment
1	.001 mid. when using AC. 1 mid. when using Battery	Antenna stator of tuning condenser	455 KC	$\begin{aligned} & \text { Geay } \\ & \text { fully } \\ & \text { opase } \end{aligned}$	$\frac{\operatorname{sed} I F}{\operatorname{lot}}$	${ }^{*}{ }^{*} \mathrm{C}, \mathbf{B}, \mathbf{B}$	$\begin{gathered} \text { Maxisumu } \\ \text { output } \end{gathered}$
2	.001 mid . when using AC. . 1 mid. when using Battery	Antenna stator of tuning condenser	1620 XC	Gang fully open	Ocillator (on gang)	E	$\begin{gathered} \text { Maximum } \\ \text { output } \end{gathered}$
Install the metal chassis cover if removed during IF Aligrment.							
3	Loop of several turns of wire, or place generator lead close to re ceiver for adequate signal pickup.	No actual connection (aignal by radiatioa)	1400 KC	Tune in generator signal	$\begin{aligned} & \text { Antennt } \\ & \text { (on gang) } \end{aligned}$	F	$\begin{gathered} \text { Maxizumm } \\ \text { output } \end{gathered}$

ADMIRAL PAGE 2:

ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Antenna must be connected and placed in the same relative position to the chassis as when in cabinet.
- Use an isolation transformer if available, otherwise connect a .1 mfd. condenser in series with low side of signal generator and connect to chassis. Caution: Do not connect a ground wire directly to chassie.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate ontput meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results.

Step	Dummy Antonna in Sarios with Signal Generator	Connection of Signal Generafor (High side)	Signal Generator Frequency	Recoiver Gang Sotting	Trimmer Description	Trimtar Designation	Type of Adiustment
1	250 mmfd . condenser	Tuning condenser, antenna stator	455 KC	Gang fully open	$\frac{\text { 2nd IF }}{\text { lst IF }}$	$\begin{aligned} & * \mathbf{A}, \mathbf{B} \\ & { }^{*} \mathrm{C}, \mathbf{D} \end{aligned}$	Maximum output
2	250 mmfd . condenser	Tuning condenser, antenna stator	1620 KC	Gang fully open	Oscillator	E	Maximum output

Mount dial pointer. Set pointer to horizontal position with tuning condenser tuned to 1400 KC generator signal (see Dial Stringing and Pointer Setting diagram below). Rotate the tuning condenser until the pointer is in a vertical position (900 KC), then slip chassis in cabinet, carefully guiding the pointer so that it locatea between the dial escutcheon and the cabinet. Install antenna and chassis mounting bolts.

:	Loop of several turns of wire, or place gen- erator leads close to receiver antenna for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna	+F

${ }^{*}$ Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug.
\dagger Antenna Trimmer " F " should be aligned after chassis and antenna are mounted in cabinet.

Adjustments A and C made from underside of chassis.

DIAL STRINGING AND POINTER SETTING

Solid lines show dial stringing and pointer position with gang closed. Dashed lines show pointer positions (1400 KC and 900 KC) when gang condenser is tuned to a generator signal.

RECORD CHANGER SERVICE DATA

The changer model number will be found stamped at the top rear of the changer base and also on the changer model label.

Models 5 Y22 and 5Y22A DIFFERENCES IN MODELS
Models 5 Y 22 and 5Y22A are the same with exception of the Radio-Phono switch and the record changer. Model 5 Y 22 has a 3 position Radio-Phono switch and uses the RC550 record changer. Model 5Y22A has a 2 posi. tion Radio-Phono switeh and uses the RC600 record changer. See circuit notes on schematic.

Cartridge and Needle

As shown in the illustrations, alternate cartridges may he used. Cartridges are interchangeable when complete with needle.

ADMIRAL PAGE 23 MODELS 5Y22, 5Y22A, Ch. ${ }^{5}$

*These readings will be lower if taken with a 1000 ohm-per-volt meter.
A These readings will be zero on "phono"; all other DC readings may be slightly higher.
117 volts, 60 cycles AC only; 50 w
VOLTACEDATA
Voltages given on schematic diagram.

- All readings made between tube socket terminals and B minus (terminal of O_{n}-Off switch).
- Radio Phono switch S2 in "Radio" position.
- Mea
- Volume control minimum; dial turned to low en
- Voltages measured with Vacuum Tube Voltmete

Symbol	Description Part No.		
R1	22,000 ohms, $1 / 2$ watt................608 8-223	M1 Speaker, (5' PM)78B 39-3	Escutcheon Hing (gold trim).............23A 53.
R2	$150,000 \mathrm{ohms}, 1 / 2$ watt	M5 Socket, Phono Input..................88A 1	Hinge ${ }^{\text {Hinge Screw }}$ ($6 / 32 \times 1 / 4$ BH MS).........365-250-C:
R3A	$\frac{1}{2}$ megohm, Volume $\}$............ 758 11-8	M8 Socket \& Leads, Motor.................88A Part of F	
	2 megohms Tone ${ }_{\text {(R3 }}$ includes switch Sl)	$\begin{array}{ll}\text { S2 } & \text { Switch, On-OtI... } \\ \text { Switch, Radio-P }\end{array}$	
\$R4	$47,000 \mathrm{ohms}, 1 / 2 \mathrm{watt}$		Knobs, Radio "Tuning" (outer knob)...................33D 55-
R5	1 megohm, $1 / 2$ watt...............608 6 elos	chanqer:...................... 71	"Tuning" (outer knob) 33D 55-1
R6	4.7 megohms. $1 / 2$ watt	for geis with mC600 record	"Off-On Volume" (inner knob).......33D ${ }^{\text {S5- }}$
R7	47,000 0hmis, 1/2 watt	S3	©" (outer knob)......................33D 55-1
R89	470,000 ohms, $1 / 2$ watt...............60B 68.474		ber Bumper
R10	150 ohms. 1 watt.....................60B 14-151	cho	or cabinet bottom....................... 128888
R1]	33 ohms, 1 watt608 ${ }^{28} 8$	Filter	Sor cabinet top.......................12A 120.8!
H12	220 ohms, 1 watt...................608 28.7		Spring, Escutcheon Retaining........... 19A 60
R13	1,000 ohms, 1 watt.....................60B 28-2	MISCELLANEO	Stay Arm and Plate.......................37A 9-1
	CONDENSERS Trimmar, 3 to 30 mmid.........66A 33	Carton and Fillers \qquad 44813 Clip,Electrolytic Mounting 188 10.8 Speod Nut (enc. mig.) \qquad \qquad 2B 10-28-50	Washer, Felt (for tuning knobs).......5A ${ }^{\text {4-18 }}$ PHONOGRAPH PARTS
$\underset{\mathrm{C}}{\mathrm{Cl}}$	Trimmer, 3 to 30 mmfd............66A 33 Ant. 324 mmfd max. $\}$ gang $68 B$	Dial Cord (40'4 length neoded).......... $50 \mathrm{LB}{ }_{27}^{1-3}$	M2 Cortridge Pickup (includes needle)
C2B	Osc., 108 mmid, max. \} gang.... 68 (Dial drum spotwolded to gang)	Gasket, Sponge Rubber (mounts on speaker) \qquad 12B 43	Cable,Shielded Pickup (includer plug) \qquad 413A 1
${ }^{C 3}$	$.05 \mathrm{mid}, 400$ volts, paper......... 648 1.7	Grommet, Rubber (gang mig.).........12R 1-2	M4 Plug, Pickup Cable..................88A 2-:
C4	50 mmid , ceramic..................65C ${ }^{6} \mathrm{C}$	Insulator, Phono Receptacle32A 46	M6 Motor, Phono (3 speed)
C5		Manual, Customer Instruction	for RC550 record changer $\ldots . .107 \mathrm{~B}$ for RC600 record changer
C7	. 1 mfd , 200 volta, paper..........64B 1.5	for RC600 record changer..............11B 20-25	48A 8.1
8	100 mmid , ceramic	Man	Mdapter, 45 GPM (envelope of 12)
SC9	$100 \mathrm{mmid}, ~ c e r a m i c ~$	C550 record ch	for RC550 record chanqer............ 48A 8-1
C		for RC600 recor	for RC600 record changer..............48A 8-4
${ }_{C 12}^{C 11}$		Piot Light, \#47................................81R 1.8	Button, Snap-in Plug........................13A 2-8
Cl^{1}	. $05 \mathrm{mid}, 400$ volte, paper......... 64 B 1-7	Pointer, Dial.....................................- 28 - ${ }^{\text {a }}$ 42	onterpo
C14	500 mmfd, ceramic \quad.-...........65C 6-6	Shiti, pilot Light..................................82A 15-1	for RCS50
C15		Sieeve, Pointer Shaía.....................................182-	idior Wheei ínciua
C16	. 03 mid. 400 volts, paper......... 648 1-8	Sleeve, Tuning (brasa).......................27A 123	for RC550 record changer.............G400A
C17A	30 mtd .150 volts	Sockat, Pliot Light...........................82A 2-2	for RC600 record changer..............G400A
$\begin{aligned} & \mathrm{Cl7B} \\ & \mathrm{Cl} 17 \mathrm{C} \end{aligned}$	$20 \mathrm{mid}, 150$ volts $\}$ elect.......67A 14-1	Spacor; "T" (gang	uc
	20 mid . 25 volts		for RC600
C18	. 002 mid, 600 volts, paper......648 ${ }^{\text {a }}$-14	g.	edie. Pick
19	. $01 \mathrm{mfd}, 400$ volts, paper........64B $1-10$	Washer, Epring.............................. 4A 6-10-0	tor 409A13 cartridge.............................. 9815
	TRANSFORMERS, TTC.	ABINET PARTS	Needle hetaining Nut (for 409A13 cartridge) \qquad
	fod Antenna (includes board and C1)	Cabinat, Plastie	Screw and Washer. Changer Mounting ($10-32 \times 11 / 4$ RH MS) \qquad
		Bottom, less lid... 28-6	Spring. Changer Float...................19A ic

[^3]

Model 5A32 Mahogany, 5A33 Ivory Operating Voltage: 117 volt AC only. Power: 30 watts.

ALIGNMENT PROCEDURE

- Turn receiver volume control full on (fully clockwise).
- Use an isolation transformer if available, otherwise connect a. 1 mfd. condenser in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed in the following sequence.
- Rcpeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generafor (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Dascription	Trimmer Designation	Type of Adjustment
1	250 mmfd . condenser	Antenna stator of tuning condenser	455 KC	Gang fully open	2nd IF	$\begin{aligned} & * \mathbf{A}, \mathbf{B} \\ & { }^{*} \mathbf{C}, \mathbf{D} \end{aligned}$	Maximum output
2	250 mmfd . condenser	Antenna slator of turning condenser	1620 KC	Gang fully open	Oscillator	E	Maximum output

Mount and set dial pointer to horizontal position with tuning condenser tuned to 1400 KC generator signal; see illustration below.

| $\mathbf{3}$ | Loop of several turns of
 wire, or ploce genera-
 ter lead close to re-
 ceiver loop for adequate
 signal pickup. | No actual
 connection (signal
 by radiation) | 1400 KC | Tune in
 generator
 signal | Antenna | F |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | Maximum |
| :---: |
| output |

* Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of the chassis, if you use alignment tool \# $98 \mathrm{~A} 30-7$ obtainable from your Admiral distributor. The bottom IF slug adjustment may be reachcd through the hollow core in the upper slug.

TUBE AND TRIMMER LOCATION

Adjustments A and C made from underside of chassis.
dIAL STRINGING AND POINTER SETTING

Dial stringing and pointer with solid lines shown with gang closed. Dashed line pointer positions (1400 KC and 900 KC) shown when tuning condenser is tuned to generator signal.

OPERATING RADIO MANUALLY

To operate the radio manually, the "Auto-Of-On" switch must be in the "On" position or the radio will not operate.
The radio on-off switch will turn the radio on or olf, but will have no control over the appliance or the clock.

'TO REMOVE CLOCK FROM CABINET

To remove the clock, proceed as follows:

1. Remove the radio chassis from the cabinet.
2. Remove the three hexagonal nuts and lock washers which mount the clock movement to the metal cover.
3. Carefully remove the clock movement from the cover. Do not unsolder Ieads unless complete removal of the clock is required. The metal cover mounting the clock to the chassis may be removed if more space is required for servicing the clock.

TO REMOVE FIELD AND COIL ASSEMBLY OR TO REMOVE ROTOR

The field and coil assembly and the rotor can be easily removed after the two screws which mount the nameplate arc removed.
Note that when the rotor is replaced, the gear on the rotor must drop into the hole in the center of the gear plate and mesh with the clock gear.

*These voltage readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.

VOLTAGE DATA

Voltages shown on schematic diagram.

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Measured on 117 Volt AC line.
- Volume control minimum; dial turned to low fre. quency end.
- Voltages measured with Vacuum Tube Voltmeter.

RESISTORS	
Symbol	Description
	22,000 ohms, $1 / 2$ watt $^{\text {a }}$
R2	100 ohms, $1 / 2$ watt
R3	1 megohm, 1/2 watt...............608 8-105
) megohm, Volume control.75B 1-41 (R4 includes switch S1)
	4.7 megohms, $1 / 2$ watt...........608 8-475
	500,000 ohms, $1 / 4 \mathrm{watt}$
8R7	500.000 ohms. $1 / 4 \mathrm{w}$
$\begin{aligned} & \text { R8 } \\ & \text { R9 } \\ & \text { ilo } \end{aligned}$	150 ohms, $1 / 1$ watt................60B 8-151
	33 ohms, l watt.....................608 28-3
	560 ohms, 2 watts..................608 20-561
R11	47,000 ohms, ${ }^{1 / 2}$ watt..............60B 8-473
	CONDENSERS
$\underset{\text { C1B }}{\text { C1A }}$	$290 \mathrm{mmfd}, \mathrm{max}$, Ant.
	104 mmid max., Osc. $\}$ gang...6BB 39
	(Dial drum spotwelded to
C2	47 mmfd , ceramic...................65C 6-79
C_{4}	. 05 mfd , 400 volts, paper......64B 1-22
	. 1 mid. 200 volts, paper........648 $1-30$
${ }^{\text {c }}$	220 mmfd , ceramic.................65C 6.80
	. 01 mfd, 400 volts, paper....64B 1-25
${ }^{\text {c } 6}$. $047 \mathrm{mfd}, 400$ volts, paper....65A 13-5
$8{ }_{8}{ }^{\text {c8 }}$. $005 \mathrm{mtd}, 400$ volts
${ }_{8}^{8 C 9}$	(Soe noto
${ }_{3}{ }^{\text {Cl10 }}$	on schomatic
	mid, 200 volts, paper.......64B 1-3
	. $02 \mathrm{mfd}, 400$ volts, paper ...64B 1-24
	$70 \mathrm{mfd}, 150$ volts $\}$ elect 67A
${ }_{\text {Cli3A }}$	30 mid, 150 volts $\}$ elect........67A 17 $\{.25$ mld, 200 volts, paper
C14	$\{$ (in later sets) -
	$\left\{\begin{array}{l}4 \text { mid, } 150 \text { volts, elect. } \\ \text { (in early seta)..................67A 4-2 }\end{array}\right.$
§Part of couplate (part No. 63A 5-4). Replace with exact duplicate or individual compon ents. Note that numbers 1, 2, 3, 4, on schematic correspond to load numbers print ed on lace of couplate.	

CABINET PARTS
Description Part No.
abinet, Plastic 34D
Washer, Felt (for tuning knobs) ..-5A 4-18
CLOCK PARTS
for 117 volts, 25 cyclea..................91C 4-19 Knob Clock
Mahogany ….. 91 C 7-11

PAGE 23-18 ADMIRAL.

 Operating Voltage: 117 volts, 50 to 60 cycles AC or DC . Power: 30 watts.

ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
- Turn receiver volume control full on.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to
chassis.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below.

Repeat adjustments to insure good results.

Stop	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Sido)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Dosignation	Type of Adiustment
1	250 mmfd . condenser	Antenna stator of tuning condenser	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { 1st IF } \end{aligned}$	$\begin{aligned} & { }^{*} \mathrm{~A}, \mathrm{~B} \\ & { }^{*} \mathrm{C}, \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \text { Marimum } \\ & \text { Output } \end{aligned}$
2	250 mmfd . condenser	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oscillator (on gang)	E	Maximum Output
3	Loop of several turns of wire or place generator lead close to receiver loop for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	F	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$
4	Mount and set dial pointer as shown in "Pointer Setting and Dial Cord Stringing" diagram.						

*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow cone in the upper slug.

TUBE AND TRIMMER LOCATION

Adjustments A and C made from underside of chassis.

POINTER SETTING AND DIAL CORD STRINGING

ADMIRAL PAGE 23.
MODELS 5Z22, 5Z23, Ch. 5Z

*These voltage readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.

VOLTAGE DATA

Voltages shown on sellematic diagram.

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Dial turned to low frequency end; volume control at minimum.
- Measured on 117 Volts AC line.
- Voltages measured with Vacuum Tube Volmeter.

ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Antenna must be connected and placed in the same relative position to the chassis as when in cabinet.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and connect to chassis. Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results.

Stop	Dummy Anfonno in Series with Signal Generatar	Connaction of Signal Generator (Migh Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Dasignation	Type of Adjustment
1	250 mmid. condenser	Tuning condenser, antenna stator	455 KC	Gang open	$\begin{aligned} & \text { 2nd IF } \\ & \text { lst } \end{aligned}$	$\begin{aligned} & * \mathbf{A}, \mathbf{B} \\ & { }^{\circ} \mathrm{C},{ }_{\mathbf{D}} \end{aligned}$	$\begin{aligned} & \text { Maximum } \\ & \text { output } \end{aligned}$
2	250 mmfd. condenser	Tuning condenser, antenna atator	1620 KC	Gang fally open	Oscillator	E	Maximum output

Mount dial pointer. Set pointer to horizontal position with tuning condenser tuned to 1400 KC generator signal (see illustration below). Rotate the tuning condenser until the pointer is in a vertical position (900 KC), then slip chassis in cabinet, carefully guiding the pointer so that it locates between the dial escutcheon and the cabinet. Install antenna and chassis mounting bolts. The pointer and escutcheon may be mounted after installing the chassis in cabinet as follows: Set pointer to borizontal position with gang tened to 1400 KC gignal. Place escutcheon on cabinet. With long nose pliers slip the hairpin ends of the escutcheon mounting springs in holes of escutcheon tebs.

3	Loop of several turns of wire, or place generator lead close to receiver antenna for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna	+F	$\begin{gathered} \text { Maximum } \\ \text { output } \end{gathered}$

*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core alugs, these adjustiments may all be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug.
\dagger Antenna Trimmer "F" should be aligned after chassis and antenna are mounted in cabinet.

Adjustments A and C made from underside of chassis.
dial stringing and pointer setting

Dial stringing and pointer with solid lines shown with gang closed. Dashed line pointer positions (1400 KC and $900^{\circ} \mathrm{KC}$) shown when tuning condenser is tuncd to zenerator signal.

RECORD CHANGER SERVICE DATA

The changer model number will be found stamped at the top rear of the changer basa and also on the changer model label

Cartridge and Needle

As shown in the illustrations, alternate cart ridges may be used. Cartridges are inter changeable when complete with needle.

These readings will be elther lower or practically sero if taken with a 1000 ohm-pwr-valt meter.
A These readings will be zero on "Phono"t all other DC readings may be ellghtly higher.

VOLTAGE DATA

Voltages given on schematic diagram.

- All readings made between tube socket terminals and
- Measured on 117 Volt 60 Cycle AC line.

B minus (terminal of On-Off switch).

- Volume control minimum; dial turned to low end.
- Switch S2 in "Radio" position.
- Voltages measured with Vacuum Tube Voltmeter.

Symbol	RESISTORS Deseription Part No.
R1	1,600 ohms, $1 / 2$ watt, 5\%--...608 7.162
H2	47,000 ohms, $1 / 2$ watt_..._.608 B-473
+R3	47,000 ohms, $1 / 4$ watt
R4	1 megohm, $1 / 2$ watt _-_.__...608 8-105
R5	
R6	470,000 ohms, $1 / 2 \mathrm{watt}$ _-..608 80474
R7	
R8	470.000 ohms, $1 / 2$ watt __608 8-474
H9	150 ohms, 1 watt._-_-603 14-151
RIOA	2 megohms, tone ${ }^{\text {a }}$-_-....75B 11-8
R10B	1 megohm, volurne \}-..... 608 B 8-273
R11	
R12	150,000 ahms, $1 / 2$ wath $\quad 60 \mathrm{~B} 8-154$
H_{14}	220 ohms, 1 watt --608 608
H15	1,000 ohms, 1 watt _____608 28-2

CONDENSERS

Symbol	Description	Part No.
Cl	Trimmer, 3 to 30 m	afd. - Port of L1
${ }_{5 C 2}$	Antenra and Oscill	or gang
C3	. 005 mid., min., Ce	mic-65A 10
C4	50 mmfd ., Ceramic	65B 6-4
C5	. 05 mfd. . 400 volts,	paper.-64B 1-22
C6	. 1 mfd., 200 voits, p	per
C7	$75 \mathrm{mmid} . .3 \%$. Cera	ic.--_- Part of T1
C8	75 mmid., 3\%, Cer	nic ...-Part of T1
C9	75 mmid., 3\%, Cera	aic._- Part of T2
C10	75 mmid., 3\%, Cera	ic___Part of T^{2}
+C11	100 mmtd . Ceramic	
+C12	100 mmid., Ceramic	
C13	. 002 mid., 600 volts.	paper_...64B 1.14
C14	. 01 mid., 400 volts,	aper
C15	. 1 mfd. 200 Yolte. p	may- - 64 B 1.3n
C16	. 01 mid., 400 volts,	aper__64B 1-25
C17	. $03 \mathrm{mfd}$. . 400 voltz.	caper - 648 1-23
C18	. 01 mid., 400 volts,	caper -...64B 1-25
C19	. 1 mid ., 200 volts,	deer_-64B 1.30
C20	500 mmfd ., Cerami	65 B 6-6
C21	. $05 \mathrm{mfd} ., 400$ volts.	apper_-648 1-22
C22	.18 mfd., 200 volts.	paper__64A 2-2
C23a	30 mid .150 volts	
C23b	30 mfd .150	Elect ...67A 14.1
$\mathrm{C}^{2} 23 \mathrm{c}$	20 mid., 150 volts	

COILS, TRANSFORMERS, ETC.
 MISCELLANEOUS

Cacuic, Cable
for 6I21, 6122
$-23 C^{2} \quad 81.1$
$51-1$
 Hinge
Hinge Screw ($6 / 32 \times 1 / 4$ BH MS) $-\cdots365-250-C 2-1$
 Knob, Radio, for Ebony 6J21
"OH-On Volume" (inner knob)33C 55-22 "Tone" (outer-knob) - knob) "Tuning" (outer knob) Knob. Radio, for Mahogany 6J22 'Ott-On Volume' (inner knob)33C $55-18$ "'Radio-Phono" (inner knob) -.......33C 55.16 Knob, Radio for Mahogany 6M22 "OH-On Volume" (inner knob) "Tone" (outer knob) $\quad 33 \mathrm{C}$ 55-9 'Radio-Phono" (inner knob) …--.......33C 55-8 5 Aubber Bumper for cabinet bottom

PHONOCRAPH PARTS

$\underset{\text { M2 }}{\text { Symbol }}$	I	
	Cartridge Pickup (includes needle)	
M3	Cable, Shielded Pi (includes plug)	
M4	Plug. Pickup Cable	
	Motor, Phono (3 mp	
M7 Plug, Motor (Male) --_-........88A 8.1		
Adapter. 45 RPM (envelope of 12)-48A 8-1		
Euton, Snap-in Fluy - 1388 2-0.		
Idier Wheel (Includ		
Needle. Pickup		
Needle cartr	Retaining Nut (for ridge) \qquad	
Service Manual. RC550 Chang		
Screw and Washer, Changer		

\dagger Part of Diode Filter 63A3-1. This unit consisting of C11, C12 and R3 may be replaced with individual components.
§ 6M2 chassis use part number 68B30-1 gang (antenna 324 mmfd. max., oscillator 108 mmid. max.) with part number $69 B 144$

SPECIFICATIONS

CIRCUIT

5 tube AC-DC Superheterodyne covering two bands, 540 KC to 1730 KC and 5.8 MC to 18 MC (16 to 52 meters).

OPERATING VOLTAGE

110-120 Volts AC or 110-120 Volts DC. It can be operated on 220 Volts AC or DC only if a special line resistance cord is used. (See Parts List.)

ALIGNMENT PROCEDURE

- Connect output meter across voice coil.
- Turn receiver volume control full on.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and attach to E minus of chassis.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below.
- Repeat adjustments to insure good results.

Step	Dunmy Antenna in Series with Signal Generator	Conncetion of Signal Generator (High Side)	Band Switch Position	Signal Generator Frequency	Rrceiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd . condenser	$\begin{aligned} & \text { Grid Cap 12A8 } \\ & \text { Tube } \end{aligned}$	BC	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd } \mathrm{IF} \\ & \text { 1st } \mathrm{IF} \end{aligned}$	$\begin{aligned} & { }^{*} \mathrm{~A}, \mathrm{~B} \\ & { }^{*} \mathrm{~B}, \mathrm{D} \end{aligned}$	Maximum Output
2	250 mmfd . condenser	End of Ant. Wire	BC	1730 KC	Gang fully open	$\begin{gathered} \mathrm{BC} \\ \text { Oscillator } \\ \text { (on gany) } \end{gathered}$	E	$\underset{\text { Output }}{\text { Maximum }}$
3	250 mmfd . condenser	End of Ant. Wire	BC	1400 KC	Tune in generator signal	BC Antenna (on gang)	F	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$
4	250 mmfd . condenser	End of Ant. Wire	BC	600 KC	Tune in generator signal	$\underset{\text { pad }}{\text { BC }}$	G	Maximum Output Rock gang while adjusting
Recheck alignment at 1400 KC (in step 3 above)								
5	400 ohm carbon resistor	End of Ant. Wire	SW	15 MC	Tune in generator signal	$\underset{\text { Antenna }}{\text { SW }}$	$\dagger \mathrm{H}$	Maximum Output. Rock gang while adjusting

* Adjustments A and C are made from underside of chassis.
\dagger Be sure that trimmer is aligned at correct frequency and not on image which should be approximately 910 KC lower than correct frequency, as indicated on the dial. Check to see that image appears 910 KC . lower than alignment frequency.

TUBE AND TRIMMER LOCATION

POINTER SETTING AND DIAL CORD STRINGING

ADMIRAL PAGE 23-

VOLTAGE DATA
Voltages shown on schematic diagram.

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Dial turned to low frequency end; volume control at minimum.
- Band switch set in "BC" position.
- Measured on 117 volts AC line.
- Voltages measured with Vacuum Tube Voltmeter.

PAGE 23-24 ADMIRAL
MODELS 5A22, 5A23, Ch. 5A2

ALIGNMENT PROCEDURE

- Turn receiver volume control full on (fully clockwise).
- Use an isolation transformer if available, otherwise connect a .1 mid condenser in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed ir the following sequence.
- Use a NON-METALLIC alignment tool for IF transformers See asterisk * note below.
- Repeat adjustraents to insure good results.

srop	Dummy Anteana in Series with Signal Generator	Connection of Signal Generafor (High Side)	Signal Generator Frequency	Recoiver Gang 3etting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd . condenser	Antenna stator of tuning condenser	455 KC	Gang fully open	$\text { 2nd }{ }_{\text {lst }} \mathrm{IF}$	$\begin{aligned} & { }^{*} \mathbf{A} \mathbf{C}, \text {, B } \\ & \mathbf{D} \end{aligned}$	Maximum output
2	250 mmid . condenser	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oscillator (on gang)	E	Maximum output
3	Loop of several tums of wire, or place generator lead close to receiver antenna for adoquate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	F	Maximum output

*Adjustments A and C made from the underside of the chassis. To avoid spliting the slotted head of the powdered iron core tuning slugg in IF transformers, use an alignment tool having a blade $1 / 8^{\prime \prime}$ wide.

TUBE AND TRIMMER LOCATION

Adjustments A and C made from underside of chassis.

dial stringing and pointer setting

Dial stringing and pointer setting is shown with the gang condenser closed. The 1400 KC poirter setting is shown in dashed lines.

OPERATING THE RADIO

The radio is turned on manualiy when the "Off-Auto-On" switc is set to the "ON" position. The radio is turned on and off aut matically when the switch is set to the "AUTO" position.

REMOVING THE CLOCK FROM CABINET

To remove the clock, proceed as follows:

1. Remove the radio chassis from the cabinet.
2. Remove the two hexagonal nuts and lock washers whic mount the clock movement to the metal cover.
3. Carefully remove the clock movement from the cover. Do no unsolder leads unless complete removal of the clock is r quired. The metal cover mounting the clock to the chass may be removed if more space is required for servicing tu clock.

replacing the clock motor

To remove the clock motor, press the motor inwardly and rotal it to the left (counterclockwise).

Mount the clock motor by pressing the motor inwardly an rotating it to the right (clockwise).

Caution: The gear on the motor must mesh with the fiber ge: on the clock mechanism. If the gears are not properly meshe damace mav result.

*These voltage readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.

voltage data

Voltages shown on schematic diagram.

- All readings made between tube socket terminals and B minus (negative of electrolytic condenser C13).
- Measured on 117 Volt AC line.
- Volume control minimum; dial turned to low frequency end.
- Voltages measured with Vacuum Tube Voltmeter.

Symbol RESISTORS Description Part No.		
R1 22,000 ohms, ${ }^{1 / 3}$ watt \ldots _-....608 8-223		Spring, Dial Cord Tension --…........19C 1-5
R2 100 ohms, i/ wott608 $6-101$	(in later cets) - .ina.......	C' (for tuning shatt) .-
	COLL, TRANSFORMERS, ETC	
	11 Rod Anterna and	CABINET PARTS
$8_{886}^{8 R 6} 500,000$ ohmm, $1 / 2 \mathrm{wctt}$...-...	12 Coll, Oselllator .-..--	Cabinot, Plastic
8R7 ${ }_{\text {R9 }} 500.000$ ohmm, 150 ohms, $1 / 2 \mathrm{watt}$		Ebony-
R9 33 ohms, 1 watt608 6883		Mahogany - _-.............34D 55-2
R10 560 ohmy, 2 wottic		
CONDENSERS		
$\left.\begin{array}{ll}\text { C1A } & 290 \text { mmid, max; Ant. } \\ \text { C1B } & 104 \text { mmid, max; Onc. }\end{array}\right\}$ gang. 683 $\$ 1$ (Dial drum epot welded to gang)		
$\mathrm{C} 2 \quad 47 \mathrm{mmfd}$, coramic...$--\quad 65 \mathrm{C} \quad 6.79$	Description Carton and Fillers48B 259	
	Clip. If Tremsformer Mounting .-...-72B 28 -10	LOCK PARTS
C6 $0101 \mathrm{mfd}, 400$ volts, papor -648 $1-10$		Ŝymbol Dencripion Fariono.
	Grommet, Rubber (for	M2 Clock Complete.
${ }_{8} \mathrm{C9}$ Sen note on		${ }^{50}$ cyeloz
	Polntor, Dial- - - 25 - 49-2	Knob, Clock ${ }^{\text {for }}$ (1)
		Ehony
	Snap Button (for mitg.	Mvory
C13B $30 \mathrm{mfd}, 150$ volt $\}$ olect.	cabinet back)13A 1-5-71	
§Part of couplate (part number 63A5-4). Re place with exact duplicate or individual	Sockot, Tube plain \qquad 87A 24-2	
components. Note that numbers $1,2,3,4$	With grounding., ztrap87A 24-3	Snap Button (for mig.
on schematic correspond to lead numbers printed on faze of couplate.	Spacer, Metal "I". (for mounting gang) \qquad 29A 2-3-24	clock window)

GENERAL

This receiver employs the very latest in radio circuitry and printed circuit wiring technique. The printed circuit wiring used in this receiver replaces the hookup wire type of circuit wiring used in earlier receivers. See figures 1 and 2 . The printed circuit wiring is permanently adhered to the underside of the plastic chassis base by a photo engraving process. This new method of wiring has produced greater uniformity of chassis wiring, fewer wiring troubles and simplifies circuit tracing and trouble shooting. All circuit components are of standard size and design. For servicing convenience, all parts are mounted on the top side of the chassis; see figure 3. Audio circuit components are contained in a printed circuit couplate.

Trouble shooting and parts replacement will in general be the same as for receivers wired with hookup wire. However, when servicing, it is important to read the service information given in this manual with respect to servicing technique printed circuit receivers. A top view of the chassis is shown in figure 3. A bottom view of early and later production chassis is shown in figures 1 and 2. The early and later production chassis have some minor differences in the routing of the printed circuit wiring but however, are the same electrically.

REPLACEMENT OF COMPONENTS

All components used in this receiver are of standard size and design. For servicing convenience, all components are iffounted on the top side of the chassis, see figure 3.

To avoid damage to printed circuits by application of excessive heat when replacing components, use a soldering iron (60 watts or less) with a small tip. Do not use a soldering gun.

To remove a defective component, apply the tip of the soldering iron to the connection point at the underside of the chassis. Keep soldering iron on connection just long enough to melt the solder, then quickly tap the chassis against the service bench to shake the solder away from the connection. After the solder is removed, untwist or separate connections. A pick will be helpful for untwisting or separating connections. After discorinecting connecting wires or lugs, carefully remove components from the top side of the chassis.

Before installing replacement components, clean the solder from the connection point, so that the leads or lugs can be pushed through the holes in the chassis panel. To avoid running solder into adjacent leads of the printed circuit, use as little solder as possible.
For quick replacement, resistors and condensers may be replaced by clipping out the defective pari and soldering the new part to the connecting leads remaining from the original part.
An open or damaged section of printed circuit wiring can be replaced by soldering a jumper of ordinary hookup wire across the connection points. To avoic need for complete tube socket replacement, defective tube socket pin clips may be replaced individually. Tube socket pin clips are available under part number 87A35-2.

Note: The tubular shield (center connection) al the bottom of each tube socket must be securely soldered to the printed circuit wiring, otherwise hum or oscillation' will result.

Figure 1. Bottom View of (Early Production) Chassis.

Figure 2. Aotinm View of thater Production Chastas

ALIGNMENT PROCEDURE

- Connect output meter across speaker voice coil.
- Turn receiver volume control full on.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to chassis.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below.
- Use a NON-METALLIC alignment tool for IF transformers.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Oenerutar	Connection of Signal Generator (High Side)	signal Generutor Frequency	Receiver Gang Senting	Trimmer Description	Trimmer Designation	Type of Adiustiment
1	250 mmfd. condenser	Antenna stator of tuning condenser	455 KC	Gang fully open	$\begin{gathered} \text { 2nd IF } \\ \text { lat IF } \end{gathered}$	$\begin{aligned} & * \mathbf{A}, \mathbf{B} \\ & * \mathbf{C}, \mathbf{D} \end{aligned}$	Maximum Output
2	250 mmfd. condenser	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oncillator (on gang)	E	Maximum Output
3	Loop of several turns of wire or place generator lead close to receiver loop for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator aignal	Antenna (on gang)	F	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$
4	Set dial pointer slide as shown in Pointer Setting and Dial Cord Stringing Diagram below. Also see instructions below on "Removing Or Installing Chassis In Cabinet" and on "Setting Pointer Slide."						

*Adjustments A and C made from the underside of the chassis. To avoid splitting the stotted head of powdered iron core tuning slugs in IF transformers, nse an alignment tool with a blade $1 / \mathrm{s}^{\prime \prime}$ wide.

Figure 3. Top View of Chassis. Location of Components and Alignment Adjustments Shown. Adjustments A and C made from underside. See figures 1 and 2.

REMOVING OR INSTALLING CHASSIS IN CABINET

Fully close the gang condenser before removing or installing the chassis in the cabinet. When installing, carefully slide the chassis in the cabinet, so that the tab on the pointer slide fits into the elongated hole at the center of the dial pointer. See the "Pointer Setting and Dial Stringing" diagram at the right. Parts which are shown in dotted lines are not assembled to the chassis. These parts are mounted on the inside of the cabinet.

POINTER SETTING AND

 DIAL CORD STRINGING

SETTING POINTER SLIDE

With the gang condenser fully closed, line up the center of the pointer slide with the bottom hole in the pointer slide bracket as shown in the figure above.

ADMIRAL PACE 23.

SPECIFICATIONS

Circuit: Superheterodyne using 5 miniature tubes. See additional circuit information on front page.

Frequency Range: Standard broadcast band, 535 to 1620 KC .

Intermediate frequency: 455 KC .
Power Supply: Power line of 117 volts, 50 to 60 cycles AC or DC.

Power Consumption: 30 watts.
Anfenna: Built-in loop antenna.
Speaker: 5" PM, with Alnico V magnet. Voice coil impedance, 3.2 ohms.

RESISTORS

Symbol	Description Part No.
R1	22,000 ohms, $1 / 2$ watt...............60B 8-223
R2	$150 \mathrm{ohms}, 1 / 2$ watt....................60B 8-151
R3	2.2 megohms, $1 / 2$ watt...............60B 8-225
R4	1 megohm, Volume control........75B 1-52 (includes switch S1)
\$R5	6.8 megohms, $1 / 2$ watt
\$R6	470,000 ohms, $1 / 2$ watt
§R7	470,000 ohms, $1 / 2$ watt
R8	150 ohms, $1 / 2$ watt....................60B 8-151
R9	1,000 ohms, l.watt...................60B 28-2

CONDENSERS

C1A	420 mmid , max, Ant. \} gang......68B 48
ClB	108 mmfd, max, Osc. (Dial drum spot welded
	to gang.) ,
C2	.05 mfd , 400 volts, paper..........64B 1-7
SC3	. $005 \mathrm{mfd}, 450$ volts
§C4	$220 \mathrm{mmfd}, 450$ volts
SC5	$.005 \mathrm{mfd}, 450$ volts
\$C6	(See note on
\$C7	¢ schematic.
C8	$.05 \mathrm{mfd}, 400$ volts, paper..........64B 1-7
C9	. 047 mfd , 400 volts, paper.........65A 13-5
Cl0A	$50 \mathrm{mfd}, 150$ volts $\}$ elect. ${ }^{\text {a }}$ 67A 10
Cl0B	$30 \mathrm{mfd}, 150$ volts $\}$ elect.67A 10
Cll	. $02 \mathrm{mfd}, 400$ volts, paper...........64B 8-11

Ll	Antenna, Loop............................69C 159 (mounted on cardboard back)
L2	Coil, Oscillator. \qquad 69A 158-1 (includes R1)
T1	Transformer, lst IF................. 72B 28-63
T2	Transformer, 2nd IF................72B 28-63
T3	Transformer, Output................98A 4
M1	Speaker (5" PM) and Output Transformer 78B 26-3
Sl	Switch, On-Off.. 6 R4 Couplate.......... (Includes R5, R6, R7, C3, C4, C5, C6, C7)

MISCELLANEOUS PARTS

[^4]
$6 \mathrm{C} 22,6 \mathrm{C} 22 \mathrm{~A}$ Mahogany, $6 \mathrm{C} 23,6 \mathrm{C} 23 \mathrm{~A}$ Ivory Operating Voitage: 117 volts, 50 to 60 cycles, AC or DC. Power: 30 watts.

ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and connect to B minus (terminal of On-Off switch).
Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below.
- Repeat adjustments to insure good results.
- Use a non-metallic alignment tool for IF trans. formers.

Stop	Dummy Antenna in Serios with Signal Generator	Connection of Stgnal Gensrator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd . condenser	Pin 8 of 12SA7 tube	455 KC	$\begin{gathered} \text { Gang fully } \\ \text { open } \end{gathered}$	$\begin{gathered} \text { 2nd IF } \\ \text { lst } \\ \text { IF } \end{gathered}$	$\begin{aligned} & * \mathrm{~A}, \mathrm{~B} \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum Output
2	250 mmfd . condenser	Tuning condenser Antenna stator	1620 KC	Gang fully open	Oscillator (on gang)	E	Maximum Output
3	Loop of several turns of wire, or place gencrator lead close to receiver antenna for adequate signal pickup.	No actual connection (signal hy radiation)	1400 KC	Tune in generator signal	$\begin{gathered} R F \\ \text { (on gang) } \end{gathered}$	F	Maximum Output
4	\cdots	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	G	Maximum Output
*Adjustments A and C are made from underside of chassis.							

POINTER SETTING
AND DIAL CORD STRINGING

POINTER SETTING
Before installing the chassis in the cabinet, fully close the gang condenscr. Slide the chassis in the cabinet and mount the dial pointer in a horizontal position (pointed at the dot and dall. below 55 on the radio dial scale).

TUBE AND TRIMMER LOCATION

Adjustments A and C are made from underside of chassis.

DIAL STRINGING

When stringing the dial cord, the gang condenser and pointe: dram mast be in the position shown in the dial stringing an pointer setting diagram at right. Starting at the tension sprin on the gang condenser drum, string the dial cord in the directio shown by the arrows. Maintain sufficient tension on the dia cord tension spring to prevent slipping of the dial cord.

PAGE 23-32 ADMIRAL
MODELS 6C22, 6C22A, 6C23, 6C23A, Ch. 6C2, 6C2A

*These voltage readings will be either lower or practically zero if taken with a 1000 ohms-per-volt meter.

VOLTAGE DATA

Voltages shown on schematic diagram

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Measured on 117 Volt 60 Cycle AC line.
- Volume control minimum; dial turned to low frequency end.
- Voltages measured with Vacuum-tube Voltmeter.

ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Antenna must be connected and placed in the same relative position to the chassis as when in cabinet.
- Use an isolation transformer; otherwise, connect a .1 mfd . capacitor in series with low side of signal generator and connect to chassis. Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output of signal generator necessary to produce midscale meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results.

Step	Dummy Amfenna in Serles with Signal Generator	Connection of Signal Generator (High Side)	Signal Generafor Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	.001 mfd . capacitor	Tuning capacitor, antenna stator	455 KC	Gang fully open	2nd IF	* A, B *	Maximum output
2	.001 mfd . capacitor	Tuning capacitor, antenna statur	1620 KC	Gang fully open	Oscillator	E.	Maximum output
3	Loop of several turns of wire, or place generator leads close to receiver antenna for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator gignal	Antenna	$\dagger F$	$\underset{\text { output }}{\text { Maximum }}$

* Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug. If IF transformers have slotted tuning slugs, use an alignment tool with a blade $3 / 32^{\prime \prime}$ wide.
\dagger Anterina Trimmer " F " should be aligned after chassis and antenna are mounted in cabinet.

RECORD CHANGER SERVICE DATA

The record changer model number is found stamped at the top rear of the changer pan and on the changer model label.

Models 5D31 Ebony, 5D32 Mareon, 5D33 Ivory

TUBE AND TRIMMER LOCATION

Adjustments Λ and C made from underside of chassis. Adjustment F on antenna

Solid lines, show dial stringing and pointer position with' tuning gang open. Ibashed lines show pointer position (1400 KC) when tuning gang is tuned to a generator signal.

CARTRIDGE AND NEEDLE
Cartridges complete with needle are interchangeable.

PAGE 23-34 ADMIRAL
MODELS 5D31, 5D32, 5D33, Ch. 5D3

-These readings will be lower if taken with a 1000 ohms-per-volt meter.
OPERATING VOLTAGE
AThese readinge will be zero on "Phono": other DC readings may be slightly higher.
VOLTAGEDATA

- All readings made between tube socket terminals and B minus (terminal of On - Oft switch).
- Radio-Phono switch S2 in "Radio" position.
- Measured on 117 Volt, 60 Cycle AC line.
- Volume control minimum; dial turned to low end.
- Voltages measured with vacuum-tulie voltmeter.

ALIGNMENT PROCEDURE

- Turn receiver volume control full on (fully clockwise).
- Use an isolation transformer if available; otherwise, connect a .1 mfd . capacitor in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output of signal generator required for midscal meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Siganal Gemerator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Sefting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd. condenser	Antenna stator of tuning capacitor	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { lst IF } \end{aligned}$	$\begin{aligned} & * \mathrm{~A}, \mathrm{~B}, \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum output.
2	250 mmfd. condenser	Antenna stator of tuning capacitor	1620 KC	Gang fully open	Oscillator	E	Maximum output

Set tuning pointer with tuning gang tuned to 1400 KC generator signal; see illustration below.

3	Loop of several turns of wire, or place genera- tor lesd close to re- ceiver loop for adequate signal pickup.	No actual connection (gignal by radiation)	$\mathbf{1 4 0 0 ~ K C}$	Tune in generator signal	Antenna	F	Maximum output

*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of the chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug. If IF transformers have slotted head tuning slugs, use an alignment tool with a blade $3 / 32^{\prime \prime}$ wide.

Adjustments A and C made from underside of chassis.
OPERATING RADIO MANUALLY
When the "Auto-Off-On" switch is set to the "On" position, the radio may be operated manually with the "Off-Volume" knob. The On-Off switch in the radio will not control the clock or the appliance outlet.

TO REMOVE CLOCK FROM CABINET

To remove the clock, procecd as follows:

1. Remove the radio chassis from the cabinet.
2. Remove four Phillips screws which mount the clock to the cabinet.
3. Carefully remove the clock. Do not unsolder electrical connections unless complete removal of the clock is required.

Dial stringing and pointer with solid lines shown with gal closed. Dashed line pointer position (1400 KC) shown wh tuning gang is tuned to generator signal.

PARTS AND SERVICE FOR CLOCK
Consult your Admiral distributor for the address of the neare parts and service station for clocks used in Admiral radios.

PAGE 23-36 ADMIRAL
MODELS 5E31, 5E32, 5E33, Ch. 5E3

*These voltage readings will be either lower or practically zero if taken with a 1000 ohms-per-volt meter.

VOLTAGE DATA

- Voltages shown on schematic diagram.
- All readings made between tube socket terminals and B minus (terminal of On-Of switeh).
- Measured on 117 Volt AC line.
- Volume control minimum; dial set at low frequency end.
- Voltages measured with vacuum-tube voltmeter.

§Part of couplate (part No. 63B 6-7). Numbers on schematic correspond to lead numbers on couplate.
Transiormers difter slightly. For best results, order exact part

GENERAL

This receiver incorporates the latest radio circuitry with printed circuit technique. The printed circuit used in this receiver replaces the hookup wire used in earlier receivers. See figures 1 and 2 . The printed circuit is permanently fixed to the plastic chassis base by a photoengraving process. This new method of circuitry offers uniform chassis wiring, fewer wiring troubles and simplifies circuit tracing and trouble shooting. All circuit components are standard size and design. For servicing convenience, all parts are mounted on the top of the chassis; see figure 2. Audio circuit parts are contained in a printed circuit couplate, part number 63B6-6.

In general, trouble shooting and parts replacement will be the same as for receivers wired with hookup wire. However, when servicing, it is important to read the service information given in this manual concerning servicing technique for printed circuit receivers. A top view of the chassis is shown in figure 2. A bottom view of the chassis is shown in figure 1 .

REPLACINC PARTS

To avoid dámaging printed circuits with excessive heat, use a soldering iron (60 watts maximum) with a small tip when replacing parts.

To remove defective parts, apply the tip of the soldering iron to the connection at the underside of the chassis. Keep soldering iron on connection just long enough to melt the solder, then quickly tap the chassis against the service bench to shake the solder away from the connection. After the solder is removed, untwist or separate connections. A pick will be helpful for untwisting or separating connections. After disconnecting wires or lugs, carefully remove parts from the top of the chassis.

SPECIFICATIONS

Circuit: Superheterodyne using 4 miniature tubes. additional circuit information
Frequency Renge: Standard broadcast band, 535 1620 KC .
Intermediate Frequency: 455 KC .
Powor Supply: Two $11 / 2$ volt " A " batteries and $671 / 2$ volt battery.
Antenna: Built-in Ferro-Scope (iron-core) antenna Speaker: $31 / 2^{\prime \prime} \mathrm{PM}$, with Alnico V magnet. Voice impedance, 3.2 ohms.

Before installing replacement parts, clean solder from the connection, so the wires or lugs 1 pass through the holes in the chassis panel. To at running solder into adjoining circuits, use as l solder as necessary.

For quick replacement, resistors and capaci may be replaced by clipping out the defective] and soldering the new part to the connecting w remaining from the original part.

An open or damaged section of the printed cir can be repaired by soldering a jumper of ordir hookup wire across the connection points. To a need for complete tube socket replacement, defec tube socket terminals may be replaced individus Tube socket terminals are available under part n ber 87A35-2.

Note: The tubular shield (center connection) the bottom of each tube socket must be secu soldered to the printed circuit, otherwise hum oscillation will result.

Figure 1. Bottom View of Chassis.

ALIGNMENT PROCEDURE

- Use FRESH batteries when alignment adjustments are made.
- Connect output meter across speaker voice coil.
- Turn receiver volume control full on.
- Use lowest output of signal generator necessary
for producing adequate output meter indication and then proceed as outlined in chart below.
- Lise a NON-METALLIC alignment tool for IF transformers.
- Repeat adjustments to insure good alignment.

Step	Dummy Antenna in Series with Signal Gemerator	Connection of sigmal Gemerafor (High side)	signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designofion	Type of Adjustment
1	. 1 mfd. capacitor	Stator of antenna tuning capacitor	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { let IF } \end{aligned}$	$\begin{aligned} & * \mathrm{~A}, \mathrm{~B} \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum Output
2	. 1 mfd . capacitor	Stator of antenna tuning capacitor	1620 KC	Gang fully open	Oscillator (on gang)	E	Maximum Output
3	Loop of several turns of wire or place generator lead close to receiver loop for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenua (on gang)	F	Maximum Output

*Adjustments A and C made from the underside of the chassis. To avoid splitting the slotted head of powdered iron core tuning slugs in IF transformers, use an alignment tool with a blade $3 / 32^{\prime \prime}$ wide.

Figure 2. Top View of Chassis. Location of Components and Alignment Adjustments Shown.
Adjustments A and C made from underside. See figure 1.

REPLACING BATTERIES

In normal use, batteries for this set should furnish about 80 operating hours. Batteries of the type given below, or an equivalent substitute may be used in this set.
"A" Battery ($11 / 2$ volts) : R.C.A. VS236, Burgess 21R, Eveready 964.
"B" Battery ($671 / 2$ volts) : R.C.A. VS216, Burgess P45, Eveready 477.

ADMIRAL PAGE 23

Symbol	RESISTORS Description
R1	100,000 ohms, $1 / 2$ watt........603 8-104
R2	18,000 ohms. $1 / 2$ watt..........60B 8-183
R3	3.3 megohms, $1 / 2$ watt..........60B 8.335
R4	10 megohms, $1 / 2$ watt...........60B 3-106
R5	I megohm, Volume control.75B 19.1 (includes switch Sl)
\$R6	4.7 megohms
\dagger R7	1 megohm
\dagger R8	10 megohms
+R9	3.3 megohms
R10	390 ohms, $1 / 2$ watt..............60B 8.391
	CAPACITOR5
Symbol	Description Part No.
Cla	197 mmfd, max, ant. \} gang..68B 56
C1B	97.8 mmfd , max, osc. $)^{\text {gang..68B }} 56$
C2	100 mmfd , ceramic.............65C $6-3$
C3	. 01 mfd , ceramic.................65A 10-3
C4	. 005 mfd , ceramic................65A 10-5
C5	. 005 mfd , ceramic................65A $10-5$
C6	. 01 mfd , ceramic..................65A 10-3
†C7	150 mmfd
$\dagger{ }_{\dagger} \mathrm{C} 8$. 002 mfd
+C9	. 01 mfd
+C10	150 mmfd
$\dagger{ }_{+} \mathrm{Cl} 1$. 005 mfd
C12	. 002 mfd , ceramic...............65B 0.37
Cl 3	$10 \mathrm{mfd}, 75$ volts, electrolytic67A 4-11

COILS, TRANSFORMERS, ETC.

Symbol	Deseription Port No.
Ll	Antenna, Iron Core.............69B 166-1
L2	Coil, Oscillator....................69A 165-1
T1	Transformer, 1st IF.............728 28-64
T2	Transformer, 2nd IF.............72B 28-64
T3	Transformer, Output...........98A 21
M1	Speaker ($31 / 2^{\prime \prime}$ PM) and Output Transformer. \qquad
SI	Switch, On-Off........................Part of R5 Couplate......................63B 6.6 (includes R6, R7, R8. R9 C7, C8, C9, C10, C11)

MISCELLANTOUS PARTS

Models 4Y11 Ebony, 4 Y 12 Maroon, 4Y18 Green and 4Y19 Gray

SPECIFICATIONS

Circuit: Superheterodyne receiver with 4 miniature tubes and a selenium rectifier.

Frequency Range: Standard broadcast band, 535 to 1620 KC .

Intermediate Frequency: 455 KC .

Power Supply: This receiver will operate on 117 volt AC or DC or on one $671 / 2$ volt " B " battery and onc $71 / 2$ volt "A" battery.

Power Consumption: 20 watts on 117 volt AC or DC line.

Antenna: Built-in Ferro-Scope (iron core) antenna.
Speaker: $31 / 2^{\prime \prime}$ PM, with Alnico V magnet. Voice coil impedance, 3.2 ohms.

, REPLACING BATTERIES

Note: Run-down batterics should be removed from the set. Corrosive material may leak from a run-down battery and parts of the chassis or the cabinet are likely to be damaged.

In normal use, batteries for this set should furnish about 40 operating hours. Batteries listed below, or an equivalent substitute may be used in this set.
"A" Battery ($71 / 2$ volts) : Burgess C5, Eveready 717 or equivalent.
"B" Battery ($671 / 2$ volts) : Burgess XX45, Eveready 467 or equivalent.

REPLACING TUBES

Any tube may be removed or replaced after the knur] knobs are pulled off the tuning and volume control shat Some type of tube extracting device may be useful, or tube may be removed by carefully working a slenc screwdriver between the base of the tube and its sock

Tube and Battery Lacation

REMOVING THE CHASSIS

The chassis need only be removed from the cabin when servicing the underside of the chassis.

To remove the chassis, proceed as follows:
(a) Remove one screw from the chassis to disconnt the bead chain fastened to the cabinet.
(b) Remove and disconnect the " A " and "B" batterie remove the knurled tuning knob and the 1U4 tut
(c) Remove the chassis mounting screw located in ea battery case and behind the tubes. The enti chassis may be lifted out of the cabinet.

The chassis cover must be removed to align the 1

ALIGNMENTPROCEDURE

- Battery power is preferable for alignment; use FRESH batteries. If this set is to be aligned while operating on an AC power line, an isolation transformer should be used. If an isolation transformer is not available, connect a .1 mfd . capacitor in series with the signal generator low side to B minus (pin 7 of lU5 tube.)
- The chassis cover must be removed to align trimmers A and C.
- Set volume control full on.
- Connect output meter across speaker voice coil.
- Use lowest setting of signal generator capable of producing adequate output meter indication.
- Use a non-metallic alignment tool for IF transformers.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Recelver Gang Sefting	Trimnner Description	$\underset{\text { Desigmation }}{\text { Triman }}$	Type of Adjustment
1	.001 mfd when using AC. .1 mfd. when using Battery.	Stator of antenna tuning capacitor	455 KC	$\begin{gathered} \text { Gang } \\ \text { fully } \\ \text { open } \end{gathered}$	$\begin{aligned} & \text { 2nd } \\ & \text { list } \end{aligned}$	${ }^{*}{ }^{*} \mathrm{~A}, \mathrm{~B}, \mathrm{~B}$	Maximum output
2	.001 mfd . when using AC . .1 mfd . when using Battery.	Stator of antenna tuning capacitor	1620 KC	Gang fully open	Oscillator (on gang)	E	$\underset{\substack{\text { Maximut } \\ \text { Mat }}}{ }$ output
Install the metal chassis cover removed during IF Alignment.							
3	Loop of several turns of wire, or place generator lead close to receiver for adequate sig. nal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal.	Antenna (on gang)	F	Maximum output output

*Adjustments A and C are made from underside of chassis. To avoid splitting the slotted head of powdered iron tuning slug in
IF transformers, use an alignment tool with a blade $3 / 32^{\prime \prime}$ wide.
ceiver or check voltages, etc. Remove the remaining two screws which hold the cover on the chassis. Press the switch button to disengage the chassis cover.

When replacing the chassis cover, press the switch button to permit the cover to fit on the chassis at all points. Three tabs on the chassis cover must fit in slots along the edge of the chassis at either side of the speaker. Caution: Be sure the lead wires from the output transformer (on the speaker) are not caught between the chassis and the cover.

Dial Cord Stringing

DIAL CORD STRINGING

To string the dial cord, close the tuning gang. Start stringing at the tension spring and run the dial cord in the direction indicated by the arrow. See illustration below. Draw the dial cord tight to apply tension on the spring and prevent slipping at the tuning shaft.

TUBE AND TRIMMER LOCATION

Adjustments A and C are made from underside of chassis.

ADMIRAL PAGE 23
MODELS 4Y11, 41

MANUFACTURER

BATTERY INSTALLATION

BATTERY INSTALLATION: Before installing new batteries or replacing old ones, turn the volume control to the extreme left or "OFF" position.

Attach the connector with the snap-on fasteners to the "B" battery (90 Volt) and insert battery into the left hand side of the battery retaining a rea of the cabinet back so that the connector faces in the direction of the top of the receiver. Insert the prorgs of the other battery connector into the socket of the " $A^{\prime \prime}$ battery ($4-1 / 2$ Volt) and place battery in cabinet back so that the connector
faces the outside wall of cabinet.

This receiver will accommodate any of the batteries listed below: (No preference is intended by the order of listing.)

ALIGNMENT PROCEDURE

GENBRAL DATA．The alignment of this receiver requires the use of a test oscillator that will cover the frequencies of $455,600,1400$ and 1620 KC and an output meter ta be connected across the primary or secondary of the output transformer．If possible，all alignments should be made with the volume con－ trol on maximum and the test oscillator output as low as possible to prevent the AVC from operating and giving false readings．

ALIGNMENT PROCEDURE CHART

$\begin{aligned} & \text { STEP } \\ & \text { M. } \end{aligned}$	Pest 5 in ef en		cameator comection	$\begin{aligned} & \text { מunwr } \\ & \text { autenua } \end{aligned}$	$\begin{aligned} & \text { налиst* } \\ & \text { mali } \end{aligned}$	TPE of ADAUSTMEAT
I	my moint \rightarrow mose interferian signal is recoivat	$\begin{aligned} & \text { Exactiy } \\ & \text { wst © } \end{aligned}$	Migh side to grid of ins trame 10 cos sine to cose mannotive	． 05 ND Condenser	slug at top of 2nd．1．F．（TZ） and then each of the slugs of the lst． I．F．	For Mniame Outent．
2	$\begin{aligned} & \text { Fractiy } \\ & \text { texe } \end{aligned}$	EnactIy 1620 ect		2 Turns of hookug wirs	Front 6 Trimer	for Maxime output．
3		$\begin{aligned} & \text { Aporon: } \\ & \text { Ineo Ex } \end{aligned}$	BUMMY	${ }^{\circ}$ o in ois－ meter． （Flace ap－ proximately	Rear Gang Trimer	For Maximum outevit．
－	$\begin{aligned} & \text { Euatly } \\ & 00 \end{aligned}$	$\begin{aligned} & \text { Exactiy } \\ & 00 \text { er } \end{aligned}$	AKTEWMA	and of，and In same axis as loop．）	Slug in oscillator Coit．（L2）	For Murime output．
5					Repeat Steps 2 and 3.	

PARTS LIST

$\begin{aligned} & \text { scuеwitic } \\ & \text { Location } \end{aligned}$			DESCRIPTIOM
C14			（．0001 mFa．）
C19，CDP）			（．005 MFO．）
RII ）	H－8330	Cocplate	（ 4.07 Magoina）
R12			（ 1.00 magohas ）
R14 ）			（ 22 Mapoha）

－Iron hod Type

He833s Coil，2nd，r．Fo
M－63z Coil，Dacillator
n－832 Trensformer，Output

M－ss81 Ractifler，selenlum
H－5951 Switch，fower Changeower

PARTS LIST

scmbutic pant
 LCATIOA MUEER

PARTS LIST

schemitic LOCATIOM	$\begin{gathered} \text { PART } \\ \text { MMBESR } \end{gathered}$	DESCRIPTIOM			
87	$\mathrm{N}-489$	Qesistor	2，200	On＝ $1 / 2 \mathrm{wn}$ ． 1	
¢	W－8332				
810	$\mathrm{H}-4086$	Resistor	470	Onm $1 / 2 \mathrm{~m}$ ．	
R13．R16	H－678	Rasistor	1，200	$0 \mathrm{~mm} 1 / 2 \mathrm{~m}$ ．	
R15	M－4026	Aesistor	200.000	One 1／2w．	20\％
N17	H－6792	Desistor	7	Ona $1 / 2 \mathrm{~m}$ ． 10	10\％
Wis	H－4420	Reslator	330	Ohe $1 / 2 \mathrm{~L}$ ． 10	10\％

This
receiver may be operated on either AC or DC. $105-125$ volts, $50-60$ cycles.

FM	.
AM	.
.	88 to 108 MC.

Antenna Connections:
It is equipped
with built-in $A M$ and $F M$ antennae so that in primary listening areas an outside antenna is not necessary. WHEN LISTENING TO FM BY USING THE BUILT.IN ANTENNA. KEEP THE ELECTRIC LINE CORD EXTENDED TO ITS FULL LENGTH.

For weak or distant stations there are provisions made in the rear for antenna connections. A terminal strip with two screw connections for the lead-in wires from the FM antenna, also a wire coming out the back of the receiver for an external AM antenna.

When using the built-in antenna on FM, the lug coming out between the two screw connections on the terminal strip in the rear, must be connected to the screw connection marked "ANT." When using an external FM antenna disconnect this wire and connect external antenna lead-in wires to the two screw connections.

Station Selector:

The knob on the extreme right hand side of the cabinet operates the tuning condenser on both $A M$ and $F M$ and simultaneously moves the indicating pointer. Ease and accuracy in tuning is made possible due to a reduction drive.

Band Switch:

The second knob from the right is the AM-FM band switch. This is a two position switch. When the switch is in the counterclockwise position, AM [Standard Broadcast) stations may be tuned in. When the switch is in the clockwise position, FM (Frequency Modulation) stations may be łuned in.

Volume Control and Power Switch:

The third knob from the right is the volume control and power switch. When the control is in the extreme counterclockwise position the power is "OFF." From this position, a slight clockwise rotation will turn the power "ON." By further rotation in this direction volume may be increased to any degree until the full output of the receiver is obtained.

Tone Switch:

The fourth knob from the right is the tone switch. For normal operation the switch should be clockwise. For increased bass response turn switch fully counterclockwise.

Notes:

Since this receiver has a loop-tenna on AM which has e directional effect, it may be necessary at times to turn the receiver for best reception. This set will operate properly only affer the tubes are sufficiently heated. This may take two minutes after the power switch is turned "ON." If the receiver is being operated on DC (Direct Current) and no signals are heard after two minutes, reverse the line cord plug in the power
outlet. Should noticeable hum be detected when operating on AC (Alternating Current), reverse the line cord plug in the power outlet.

Servicing

(For Use of Radio Technician):

Alignment of the receiver will, in most cases, be unnecessary unless an RF or IF transformer is replaced or the adjustment has been tampered with. The IF slugs are slotted for a small size fiber screwdriver. Do not put excessive pressure on the aligning tool or the threads in the coil-form will be stripped and adjustments will be impossible.

IF Alignment:

Set bandswitch to $A M$ position. Connect the signal generotor, modulated at 400 cycles, through a 0.01 Mfd condenser to the grid of the 12AT7 converter tube. Connect the low side of the generator through a 0.1 Mfd condenser to the receiver chassis. Adjust the signal generator to 455 KC . Tune primary and secondary slugs of T3 \& T5, AM-IF Transformers, for maximum output.

For FM alignment set bandswitch to FM position and leave generator connected to the grid of the 12AT7 converter tube. Adjust generator to 10.7 MC . Connect 20,000 ohm per volt or VTVM meter as in note " 1 " of schematic diagram. Tune primary of TI, bottom slug, and both primary and secondary of T2 \& T4 for maximum indication on meter. To align secondary of Ratio Detector Transformer connect meter as in note "2" of schematic diagram. Tune top slug through positive and negative indication and then slowly return until meter reads zero. This is in the center of the " S " curve.

RF Alignment:

Set bandswitch to AM position. Connect signal generator, modulated at 400 cycles, to external antenna lead and to ground through a 0.1 Mfd condenser and adjust to 1700 KC . Set dial pointer to 1700 KC and tune signal for maximum output with oscillator trimmer. Next set generator to 1500 KC and tune in this signal on the receiver. Then adjust RF trimmer for maximum output.

Set bandswitch to FM position. Connect in series with each, generator lead a carbon 150 ohm resistor and connect to rear antenna terminal board. Adjust generator and dial pointer to 108 MC. Peak oscillator trimmer for maximum signal output. Next set generator to 105 MC and tune in this signal on receiver. Then peak RF trimmer for maximum output. No adjustment is necessary at the low end because a special compensated fixed padder is used. Set the generator to 94 MC and tune the FM antenna coil for maximum.

In all the IF and RF adjustments it is important to keep the signal generator output as low as possible. It is extremely necessary in making the RF adjustments, that the fundamental oscillator signal be tuned in and not the image frequency. This can be checked by the use of a calibrated wavemeter.

general information

TYPE - FM-AM Radio Phonograph Combination

6K6GT - Power Amplifier SY3GT - Rectifier

POWER SUPPLY - 117 volts, 60 cycles AC only; 85 watts, including phono motor

INSTALLATION 5 OPERATING INSTRUCTIONS

ANTENNAS

No outside antenna or ground is normally required for standardbroadcast (AM) reception, as a loop antenna is located inside the cabinet. Antenna connections are shown in Figure 1. In locations where additional pick-up is desired, an external antenna may be connected to the clip marked "EXT BC ANT" on the loop antenna.

An FM antenna, built into the power cord, eliminates the need for an external FM antenna when the receiver is used in normal FM service areas, such as are found in and for a few miles around metropolitan areas. In "fringe" or weak signal areas, improved FM reception can be obtained by using an outside FM antenna. The external antenna should be connected through a 300 ohm twintransmission line to the lst and 2nd screws on the terminal strip on the chassis, as in Figure 1 . The linkbetween the 2nd and 3rd screws should be opened. Orient the antenna to obtain maximum volume of the FM stations,

For best FM reception from the built-in power line cord antenna, it is important to stretch the cord to its full length. Changing the direction or position of the line cord, or reversing the plug in the wall outlet, will often improve reception from weak stations. Connect the link between the 2nd and 3 rd screws on the terminal strip on the chassis when the built-in antenna is used.

FIGURE 1. ANTENNA CONNECTIONS

CONTROLS

Refer to Figure 2 for the locations of the radio operatin ontrols.

Power for both the radio and the record changer is con trolled by the VOL-ON-OFF knob.

The phonograph motor will not operate, however, unt: the PHONO-TONE-RADIO knob is rotated also to "PHONO"

Tuning of FM stations should be done very carefully for best sound reproduction, not necessarily for the strong est volume received.

FIGURE 2. OPERATING CONTROLS

ALIGNMENT
 GENERAL INFORMATION

1. Maximum performance can be obtained only if extreme care is exercised during alignment.
2. Refer to Figure 4 for the location of all alignment trimmers and cores.
3. As the stages are brought into alignmeat, reduce the signal generator output to a low value to avoid overloading the receiver.

ORDER OFALIGNMENTANDEQUIPMENTEEOUIRED

1. AM Broadcast Band IF \& RF Alignment
a. 455 to 1620 Kc AM signal generator
b. Low range output meter.

2(A) FM Band IF \& RF Alignment (preferred method)
a. 10.7 to $108 \mathrm{Mc} F \mathrm{M}$ signal generator
b. Oscilloscope
(B) FM Band IF \& RF Alignment (alternate method) a. 10.7 to 108 Mc signal generator (unmodulated) b. Low range DC electronic voltmeter

AM BROADCAST BAND - IF\&RFALIGNMENT

1. Connect the AM signal generator as in chart below, with 400 cycle, $\mathbf{3 0 \%}$ modulation.
2. Connect the output meter across the speaker voice coil. Throughout alignment, reduce the generator output to a level which produces less than 1.27 volts (. 5 watt) across the voice coil to avoid overlonding
the receiver.
3. Set the bandswitch to the AM position.
4. Turn the receiver volume control to maximum.
5. Proceed as shown in the following chart.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FRDOUENCY	GANG SETTING	ADIUST	REMARKS
$\begin{aligned} & \text { IF ALIC } \\ & \text { i. } \end{aligned}$	NMMENT .1 mf	Grid of conv. v-2 (pin 7, 6BA7)	455 Kc	Fully opened	$\begin{aligned} & 1,2,3 * 4 \\ & (\text { IF cores }) \end{aligned}$	Adjust for maximum.
RF ALI	GNMENT .1 mi	Grid of conv. V-2(pin 7, 6BA7)	1620 Kc	Fully opened	$\stackrel{5}{(A M O s c)}$	Adjust for maximum.*
3.	-	-	-	-	-	Connect AM loop to chasais.
4.	-	Across adiation loop**	1400 Kc	Tune in signal	$\stackrel{6}{(A M \text { Ant) }}$	Adjust for maximum.

5. If, after the receiver has been aligned as above, it is found to be badly off calibration, it will be neceasary to adjust oscillator core (7) as follows: connect the generator to the grid of the converter tube and, with the gang fully cloaed, adjuat core (7) at 535 kc . It is advisable to repest the oscillator adjustments at 1620 kc and 535 kc several times until the tunimg range is correct. Core (7) han been pre-aet at the factory and normally should require no retuning.

* If difficulty is encountered in tuning trimmer (5), adjust trimmer (6) to $1 / 2$ turn from tight.
** Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.

FMBAND-IF\&RFALIGNMENT (PREFERREDMETHOD)

1. The following FM alignment procedure, using an FM signal generator and an oscilioscope. is to be pre-ferred because the actual response pattern may be observed on the scope and adjusted for best symmetry and maximum amplitude.
2. Connect the vertical input terminals of the oscilloscope between the chassis and the junction of resistor R-18 (47K) and capacitor C-23 (1000 mmI).
3. Connect the FM signal generator sync voltage output terminals, through a phase shifting network, to the
horizontal input terminala of the scope, as in Figure 5. fóher values ớl résintincé añ capacitance may be required, depending upon the scope). The phasing control should be adjusted to give only one trace on the scope. NOTE: If the FM generator hat a built-in phase control, the phase shifting network is not necessary.
4. Set the bandswitch to the FM position.
5. Throughout alignment, reduce the generator output to keep the signal just above the noise level, to avoid

SERVICE NOTES

TO REMOVE CHASSIS FROM CABINET:

1. Remove the screws from the cabinet back.
2. Disconnect the phono power lead, the phono pick-up lead, the speaker leads, the line cord, and the antenna loop leads.
3. Remove the pointer escutcheon by pulling it downward.
4. Turn the tuning knob counterclockwise until the pointer reaches the extreme low frequency end of the dial scale.
5. From the back of the cabinet, loosen the pointer adjustment setscrew (see Figure 3) and pull the pointer and shaft assembly from the chassis. CAUTION: Do not remove the nut from the front of the pointer, Is the detent ball and spring will fall out, and may become lost.
6. Pull off the control knobs.
7. Remove the three chassis mounting screws, from
beneath the chassis.
8. Slide the chassis from the cabinet.

TO CALIBRATE DIAL:

1. Turn the tuning knob counterclockwise until the er of its travel is reached.
2. From the back of the cabinet, loosen the pointer ad justment setscrew (see Figure 3). CAUTION: E not remove the nut from the front of the pointer.
3. Move the pointer until it is in a horizontal positic (at the low frequency end of the dial acale).
4. Tighten the adjustment setscrew.

NOTE: If the pointer is moved by hand accidentally. will bereleased from a detent in the pointer col lar, and nodarnage to the tuning mechanism wi result. To reset the pointer, move it back ar forth until it again engages in the detent.

FIGURE 3. POINTER AND DRIVE CORD RESTRINGING DETAIL

FIGURE 4. TUBE AND TRIMMER LOCATIONS

FIGURE 5.
FM SIGNAL GENERATOR OSCILLOSCOPE HOOK-UP

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { TUNER } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARKS
IF ALI 1.	NMENT $1000 \mathrm{mmf}$	Grid of 2nd IF Amp V-4 (pin 1 , 6BA6)	$\begin{gathered} 10.7 \mathrm{mc} \\ \pm 100 \mathrm{kc} \mathrm{dev} \end{gathered}$	Fully opened	$\stackrel{9}{\text { (ratio det pri) }}$	Adjust for maximum amplitude of pattern.
2.	1000 mmf	Grid of 2nd IF Amp V-4 (pin 1 , 6BA6)	$\begin{gathered} 10.7 \mathrm{mc} \\ \pm 100 \mathrm{kc} \mathrm{dev} \end{gathered}$	Fully opened	$\stackrel{10}{(r a t i o ~ d e t ~ s e c)}$	Adjust for aymmetrical curve, as shown in Figure 6.
3.	-	-	-	-	-	Repeat steps 1 for maximum amplitude and best symmetry.
4.	1000 mmf	Grid of 1st IF Amp V-3 (pin 1, 6BA6)	$\begin{gathered} 10.7 \mathrm{mc} \\ \pm 100 \mathrm{kc} \mathrm{dev} \end{gathered}$	Fully opened	$\begin{aligned} & \text { 11 \& } 12 \\ & \text { (2nd IF } \mathrm{sec} \text { \& } \\ & \text { pri) } \end{aligned}$	Adjust for maximum amplitude of pattern.
5.	1000 mmf	Grid of conv. V-2 (pin 7. 6BA7)	$\begin{gathered} 10.7 \mathrm{mc} \\ \pm 100 \mathrm{kc} \mathrm{dev} \end{gathered}$	Fully opened	$\begin{aligned} & 13 \& 14 \\ & \text { (lst } \mathrm{LF} \sec \mathrm{k} \\ & \text { pri) } \end{aligned}$	Adjuat for maximum amplitude of pattern.
6.	1000 mmf	Grid of conv. V-2 (pin 7, 6BA7)	10.7 mc $\pm 100 \mathrm{kc}$ dev	Fully opened	$\begin{gathered} 11, ~ 12,13 \\ \& 14 \end{gathered}$	Readjust for maximum amplitude and best aymmetry.
RF AL 7.	NMENT 270 ohms	FM terminal 18 on rear of chassis (open link)	$\begin{gathered} 87.5 \mathrm{mc} \\ \pm 22-1 / 2 \mathrm{kc} \mathrm{dev} \end{gathered}$	Fully closed	(osc core)	Adjust for maximum amplitude of pattern.
8.	-	-	-	Fully closed	$\begin{gathered} 16 \\ \text { (RF core) } \end{gathered}$	Turn counterclockwise until core is at bottom of pipe, then turn four turns clockwise.
9.	270 ohms	FM terminal 18 on rear of chassis	$\begin{gathered} 90 \mathrm{mc} \\ \pm 22-1 / 2 \mathrm{kc} \mathrm{dev} \end{gathered}$	Tune in signal	$\begin{gathered} 17 \\ \text { (RF tuning } \\ \text { plug) } \end{gathered}$	Adjust for maximurn amplitude of pattern.
10.	270 ohms	FM terminal 18 on rear of chassis	$\begin{aligned} & 105 \mathrm{mc} \\ & \pm 22-1 / 2 \mathrm{kc} \mathrm{dev} \end{aligned}$	Tune in signal	$\text { (RF } \begin{gathered} 16 \\ \text { core }) \end{gathered}$	Adjust for maximum amplitude of pattern.
11.	-	-	-	-	-	Repeat steps 9 \& 10 , until no further adjustment is necessary

An output meter across the speaker voice coil will also indicate maximum amplitude. It should not be used in place of the scope, however, since it will not show symmetry of the curve.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { TUNER } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARKS
IF ALIGNMENT						
1.	1000 mmf	Grid of conv. V-2 (pin 7, 6BA7)	10.7 me	Fully opened	$\begin{aligned} & \text { 9. } 11,12,13 \text { \& } 14 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
2.	1000 mmf	Grid of conv. V-2 (pin 7, 6BA7)	10.7 mc	Fully opened	$\begin{gathered} 10 \\ \text { (ratio det sec) } \end{gathered}$	Adjust for zero (connect meter as in step 6 above.)
RF ALIGNMENT						
3.	270 ohms	FM terminal 18 on rest of chassis (open link)	87.5 mc	Fully closed	$\begin{gathered} 15 \\ \text { (osc core) } \end{gathered}$	Adjust for maximum.
4.	-	-	-	Fully closed	$\begin{gathered} 16 \\ (R F \operatorname{core}) \end{gathered}$	Turn counterclockwise until core is at bottom of pipe, then turn four turns clockwise.
5.	270 ohms	FM terminal 18 on rear of chassis	90 mc	Tune in .signal	17 (RF tuning plug)	Adjust for maximum.
6.	270 ohms	FM terminal 18 on rear of chassis	105 mc	Tune in signal	$\begin{gathered} 16 \\ \text { (RF core) } \end{gathered}$	Adjust for maximum.
7.	-	-	-	-	-	Repeat steps 56 until no further adjustment is necessary.

ALIIED RADIO PAGE 23-1

REPLACEMENT PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

$\begin{aligned} & \text { Part } \\ & \text { Number } \end{aligned}$	Description
424485548	p,
428482867	Clip, epring: blued finiah (holds FM IF transtarmer
12148944	Cord, dial (pointer drive)
1144881	Cord, dial (core drive)
30K21859	Cord, line: with plug; 9 ft long
468692164	Core, iron and screv: green dot (NN osc tuning core) \qquad
46×692165	Core, iron and screv (FM Rr tuning core)
154600877	Cover, volume control: with insulator...
587866	Eyelot: . $125 \times$. 091 brass; nkl pl (core drive cord retainer)
2x600	Lead and Plug Absembly, phono pick-up...
459751	Lockwasher, int-ext: f8; cad pl (pointer drive pulley mtg)
287019	Nut, hex: $4-40 \times 1 / 4$; cad Pl (PM tunting core mtg)
257051	Nut, hex palnut: $3 / 8-32 \times 9 / 16$; cad p1 (control mtg)
35K691846	pad, rubber: 1-hole (gang mtg)
35A691845	Pad, rubber: 2-hole (gang wtg)
$28 \mathrm{K71775}$	Plug, phono plck-up
1×600828	Pulley Aocembly, pointer \& gang drive (1ncluden $3-1 / 2^{\prime \prime} \& 1-1 / 4^{" ~ p u l l e y s) ~}$
494690562	Pulley, core drive: braas
	cludes shell
Ss8497	Rivet: . $088 \times 1 / 8 \mathrm{Btl}$; nkl pl (antibecklash clip mig)
55777	Rivet: . $088 \times 3 / 16$ stl; nkl pl (ain socket atg)
587774	Rivet: . $088 \times 1 / 4$ etl; nkl pl (noval cocket ntg)
5S7707	Rivet: . $122 \times 5 / 32$ atl; nkl pl (ters strip wtg
587701	R1vet: . $122 \times 3 / 16$ eth; nki pl (ant terse $\operatorname{strip} \operatorname{mtg})$
\$57700	Rivet: $122 \times 1 / 4$ stl; nkl pl (octal socket atg)
5K13896	Rivet, shoulder (an care tig brkt)..
357103	Screw, mechine: $8-32 \times 1 / 4$ pladn hox hoed; cad pl (pointor drive pulley utg).
367205	Screv, machine: $8-32 \times 1 / 4$ elotted locking hex head; cad pl (gang mta)
352695	Screv, abeet metal: $76 \times 3 / 16$ PKZ pialn hex head; cad pl (tuner brkt mtg)..
357454	Screv, sheet metal: $48 \times 1 / 4 \mathrm{FKZ}$ plain hax head; cad pl (pur trank \& pointer brkt mtg) \qquad
357103	Seticrew: $8-32 \times 1 / 8$ Allen head; cad $p 1$ (care drive pulley \& pointer witg).......
$1 \mathrm{K601085}$	Shart and Pulley Assembly, pointer
1×500489	Shaft, tuning: complete with pulley......
154690616	Shell, recoptacle (on phono motor recep'tecle) ..
26 K 485936	Shield, coil (for PM IF tranaformara)....
96600968	Socket, pllot light
9K484167	Socket, tube: miniature; 7-prong.
94485495	Socket, tube: noval; 9-prong
9476209	Socket, tube: octal
414690598	Spring, coll: 7 turne; coemoline dipped (PM RF core wtg)
41K691840	Spring, coil: 8 turns; cop Pl (PM ouc core mitg) \qquad
41014244	spring, tene10n (cere o polnter drive cord)
3LK37504	Strip, terminal: 1 insulated lus; \#l mis 3/8" apacing
31876194	strip, terminal: 2 inculated lugs; \#1 gnd; $3 / 8^{\prime \prime}$ apacing
31126235	Strip, terminal: 3 insulated luga; "l gnd; 3/8" apacing
31K26658	Strip, teradnal: 5 insulated lugs; \#3 end; 3/8" apacing
314470403	Strip, terminal: 3-bcrow (antenna input).

Part Numer	Description
585405	eaker 10
4470025	Weaher, "C" (tuoning obart wig).
4 A 219 hl	
4×600676	pulley) :OMOM.........
457582	Wenher, fiat: $1 / 2 \times .195 \times .033 \mathrm{et1}$; cad pl (pointar arive puiley mets)
MODEL 8 PMEI.	CAbILET PARTS
4304326	Ball, oteel: $1 / 8^{\prime \prime}$ diameter (pointer detent)
386691915	Button, plug (an record chenger)
16F600649	Cabinet, concole: red-brown mahogany: complete leas pointer encutchen and dial ecale
13 K 600651	Cloth, grille: $17-1 / 2^{\prime \prime} \times 18-1 / 4^{\prime \prime}$; Mahogany
159600874	Cover, cabinet back
$34 D 600819$	Dral ecale
34K600817	Fecutcheon, pointer
557870	Byelet: brana (on RC draver panel-holda extra epindle)
SATOBI $5 A 600963$	Ryelet, chacele atg: plain; $9 / 32^{n 1}$ loogtyelet, chans1a etg: plerced; $1 / 8^{m}$
5471098 36×601052	Gramet, chaosie mtg: rubber
36 K 601052	Knob, control (Yol-Oa-Orf): velnut-mbog.
$36 \mathrm{K601056}$	Knob, control (Fhono-Tose-Redio) : walmut-
364601057	Knob, control (AM-FM) : valmut-mahoyany...
$\begin{aligned} & 36 K 601055 \\ & \end{aligned}$	Knob, control (Tuning): valnut-mahogeny.. Lochracher, ext: AB; cad pl (epler
287005	Mut, hax: 6-32 $\times 1 / 4$ ot1; cad pl (pointer utg)
2S7003	Nut, hax: $8-32 \times 5 / 16$; cad pl (splr
62K70581	
12600851	Pointer and Collar Aesembly (iene sbaft
55×600653	Pull, record changer drawer: satin brash.
34600655	Scrow, mechline: $8-32 \times 1 / 2$ croes slot haed; statuary brooze fincoh (RC draver pull atg)
387536	Screv, eheet metal: $16 \times 3 / 8 \mathrm{FSh}$ ilotted accorn heed; antique copper finiuh (beck cover titg
3×653	Screw, apmaker utg: $8-32 \times 1-1 / 3^{4}$; coppor orice tinieh
14690738	Shaft and sleeve Aoscmbly, pointer; lees detent apring and bell, and pointar.....
551600654	slide, record changer (on slden of RC draver)
29400199	Speedmut: for . 050 etud (dial acal. ats)
414690732	Spring, compreasion (pointer detent)...
451765	Washer, Hat: $1 / 2 \times .147 \times .015 \mathrm{stl}$; cad pl (pointer mitg)
457629	Wather, rlat: $172 \times 3 / 16 \times$. $0+18$ otl; ced
41690729	Weaber, apring (pointer mits)

16K600650 Cabinet, causole: bloode; complete, leas pointer escutcheon and dial scale....... $13 k 600652$ Cloth, grille: $17-1 / 2^{\prime \prime} \times 18-1 / 4^{\prime \prime}$; eggehell 36N601058 $36 K 601063$ 361601064
36K601062
3K600656 Knob, control (Vol-On-0rf): tan Knob, control (Phono-Tone-Redio): tan.... Knob, control (AM-MM): tan
Knob, control (Tuning): tan Screv, machine: 8-32 $\times 1 / 2$ croes alot head; brana (RC draver pull witg).............

ARVIN PAGE 23.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

FREQUENCY RANGE

POWER OUTPUT
Type: Beam tube

CHASSIS FEATURES

Automatic Volume Control
Built-in Loop
Underwriter's Listed
OPERATING CONTROLS

1. Right knob \qquad Tuning and Phono-Radio
2. Left knob \qquad ON-OFF, Volume and Tone

PHYSICAL DIMENSIONS

Length--------.----................---------1/-15 inches	
Wid	8 in
Height	9-5/8 inches

PAGE 23-2 ARVIN

MODEL 551T, Ch. RE-297

*Standard Hazeltine Test Loop Model 1150 of 3 turns of wire about $6^{\prime \prime}$ in diameter, placed about one foot from the st loop.

The alignment procedure should be repeated in the original order for greatest accuracy. Always keep the output fror the signal generator at its lowest possible value to make the AVC action of the receiver ineffective.

HOW TO ORDER PARTS

Replacement parts should be ordered by Arvin part number, description and model number of receiver from your Arvin Distributor. The Distributor will order direct from the factory. All prices subject to changes in accordance with O.P.S. regulations. Parts shipments are F.O.B. Columbus, Indiana.

PARTS LIST-553T

Sche-
Location

Part

Location Number Description

$$
\text { C20138-18 } \quad \text { Line Cord }
$$

List Price

R1 C20060-223 Resistor, 22 K ohm, 20\%, $1 / 4 \mathrm{~W}$. .10
R2 C20060-225 Resistor, 2.2 megohm, 20\%, 14 W. W. 10
$\begin{array}{lll}\text { R2 } & \text { C20060-225 Resistor, } 2.2 \text { megohm, 20\%, } 1 / 4 \mathrm{~W} . \\ \text { R3 } & \text { C20060-471 } & 10 \\ \text { Resistor, } 470 \mathrm{mhm}, 20 \%, 1 / 4 & \mathrm{~W} . & .10\end{array}$
R4 C20060-334 Resistor, 330 K ohm, 20%, $1 / 4 \mathrm{~W}$. 10
R6 C20060-475 Resistor, 4.7 megohm, $20 \%, 1 / 4 \mathrm{~W} .10$
R7 C20060-222 Resistor, 2200 ohm, $20 \%, 1 / 4 \mathrm{~W}$.
R8 C20120-121 Resistor, $120 \mathrm{ohm}, 10 \%$, $1 / 4 \mathrm{~W}$
R9 $\quad \mathrm{C} 20060-150$ Resistor, $15 \mathrm{ohm}, 20 \%, 1 / 4 \mathrm{~W}$
R10
R11
C20070-122 Resistor, 1200 ohm, $10 \%, 1$ W.
C20060-470 Resistor, 47 ohm, 20%, $1 / 4 \mathrm{~W}$. .10
C24513 Speaker, 4" P.M.
$\begin{array}{ll}\text { AA24607-1 Pointer Shaft } \& \text { Pulley Assembly } \\ \text { C21797-16 } & \text { Transformer, I. F. }\end{array}$
T1, T2
.20
T3 AC24542 Transformer, Output $\quad 1.25$
A24533 Tuning Shaft
A19361 Tuning Shaft Hair Pin Clip

SPECIFICATIONS

Colors are as follows:
Ivory, Willow Green, Sandalwood and Rosewood.

THE ANTENNA

AM-This receiver has a built-in loop which gives satisfactory reception in most locations. If the receiver is located some distance from a broadcasting station, or where the electrical interference is high, an outside antenna connected to the terminal marked AM on the antenna terminal strip will improve reception.
FM-A Built-in Line Cord Antenna is connected to the FM antenna. Terminals are provided on the antenna terminal sta to connect an outside FM antenna, they are labeled FM \& G.

TECHNICAL INFORMATION

AM Tuning range - 540 Kc . to 1600 Kc . Intermediate Frequency 455 Kc . I. F. and R. F. rieasurements made at 50 M milliwatts output - approximately 1.27 volts on a receiver type voltmeter connected across speaker voice coil. Approximate input for 500 MW output: I.F. 300 uv ; R.F. with standard loop: at 600 Kc . $1200 \mathrm{uv} / \mathrm{m}$; a $1000 \mathrm{Kc} .900 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc} .800 \mathrm{uv} / \mathrm{m}$.
FM Tuning range - 88 megacycles to 108 megacycles. Inter mediate frequency 10.7 megacycles .I.F. and R.F. measure ments made at 500 milliwatts output - approximately 1.27 volts on a rectifier iype voltmeter connected acios speaker voice coil. Approximate input for 500 MW output: I. F. 300 uv ; R.F. "Absolute Measurements": 9 megacycles 100 uv ; 105 megacycies, 100 uv .

ALIGNMENT PROCEDURE

Output meter connection Across speaker voice coil Output meter reading to indicate 500 MW 1.27 volts Generator Modulation 30%, 400 cycles Position of volume control Fully clockwise

Set dial pointer Horizontal, variable condenser closed
Set band switch
.......To left for AM alignment, right for FM alignment

AM ALIGNMENT

Position of Variable	Generator Frequency	Dummy	Generator Connection (high)	Generator Connection Ground Lead	Adjust Trimmers In Order Shown For Max. Output	Trimmer Function
Open	455 Kc	. 05 mfd .	Mixer Grid	Chassis	A1, A2, A3, A4,	I. F.
Open	1650 Kc		*'Test Loop	Test Loop	A5	Oscillator
1400 Kc	1400 Kc		*'Test Loop	Test Loop	A6	Antenna
** 600 Kc	600 Kc		*'Test Loop	Test Loop	Check Point	Antenna

* Connect generator lead to Standard Hazeltine Test Loop, Model 1150, placed two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the set loop. Or the generator can be connected with the high side lead to the AM antenna screw terminal and the ground lead to the chassis. **Wich a generator signal of 600 Kc , tune the set to the point where maximum output is obtained, which shoul be apprơximately 600 Kc on the dial. Adjust antenna section plates of variable for maximum output. The alignment procedure should be repeated in the original order for greatest accuracy.
Always keep the output from the signal generator at its lowest possible value to make the A. V.C. action of the receiver ineffective.

FM ALIGNMENT

1. Turn band switch to FM, (right).
2. Connect (FM) I. F. generator to the second 6BA6 I. F. amp. grid, (lug No. 1) through a 01 uf mica dummy. Connect oscilloscope across volume control. With the I. F. generator tuned to 10.7 mc with 150 Kc deviation, and the same audio voltage used as horizontal sweep on the scope that is used to modulate the generator, adjust the ratio detector transformer slugs $\mathbf{\Lambda} 7 \cdot \mathbf{A 8}$ for the characteritstic " S " curve (See Fig. 1), with maximum vertical height on the scope. After this adjustment the top slug of the ratio detector should not be moved during the rest of the alignment.
3. Connect I. F. generator to mixer grid through .01 mica dummy. Using 23 Kc deviation at 10.7 Mc , adjust for maximum output. Maximum output may be indicated by maximum vertical height on the scope or maixmum voltage on a standard output meter across the voice coil of the receiver. After the two I. F. transformers have been aligned the bottom slug A8 of the ratio detector should also be peaked.
The characteristic " S " curve of the complete I. F. channel should be checked by applying a 10.7 Mc signal with 150 Kc deviation to the mixer grid and observing the " S " curve on the scope. It should not be very much different from that observed in step 2.

Connect R.F. (FM) generator (88 to 108 Mc) to the antenna terminals through the standard 300 ohm dummy (150 ohm in each side of generator leads).

Use R.F. generator with 23 Kc deviation. With the variable condenser completely open and Signal Generator tuned to 108.5 Mc adjust oscillator trimmer A12 (small ceramic trimmer) for maximum reading on output meter.

Then tune receiver to low end of band (variable completely closed) and Signal Generator to 87.5 Mc . If the receiver does not tune to this frequency the FM oscillator coil L4 will either have to be squeezed together or lengthened to cover the band, (squeezing lowers and lengthening raises the frequency). Any change in the coil will have to be completed by the trimmer at the high end of the band.
5. With the same Signal Generator connections as per paragraph 4 tune Signal Generator and set to 105 Mc . Tune R.F. trimmer A13 for maximum output at the same time rock variable back and forth through the frequency (Rocking is necessary because slight oscillator pulfing causes erroneous maximum readings).
Tune Signal Generator and set to 90 Mc . Adjust R.F. coil 13 length for maximum output by squeezing or lengthening. Any change in the coil will have to be compensated at 105 Mc by the R.F. trimmer A13.
6. Aiter Steps 4 and 5 are finished check calibration and band coverage. Steps 4 and 5 may have to be repeated if set is off calibration. Band coverage should be 87.5 Mc to 108.5 Mc. Sensitivity should be approximatcly 100 uv at $105 \mathrm{Mc}, 98 \mathrm{Mc}$ and 90 Mc .

PAGE 23-8 ARVIN
MODEL 580TFM, Ch. RE-313

SPECIFICATIONS

FREQUENCY RANGE

POWER OUTPUT

Undistorted	3.5 Wa
Maximum	4.5 Wa
Plate load	5000

LOUD SPEAKER
Type: Pemmanent magnet, 2.15 oz . Alnico 5
Size: 8 Inch
Voice coil impedance .. 3.2 Ohn

CHASSIS FEATURES

Automatic Volume Control
Built-in Loop
Underwriters' Listed
OPERATING CONTROLS

1. Left knob.

ON-OFF, Volume and To
2. Right knob \qquad Tuning and Phono-Rac

PHYSICAL DIMENSIONS

Length	22 inch
Height	34 inch
Depth	16 inch

Models 554CCM and 554 CCB have the same radio chassis and changer. They differ only in cabinet trim, and knobs 554 CCM with Mahogany Cabinet and 554CCB with Blonde Cabinet.

PRELIMINARY:

ALIGNMENT PROCEDURE
Output meter connection \qquad Across loudspeaker voice coil
Output meter reading to indicate .5 W (standard output) 1.26 volts

Connection of gencrator ground lead Chassis
Generator modulation $30 \% 400$ cycles
Position of volume and tone control \qquad Fully clockwise
Position of dial pointer with variable fully closed To left

1. Connect signal generator lead through a .05 uf. condenser to converter grid. Open tuning condenser. Set signal generatos to 455 Kc . Tune I. F. Trimmers AI, A2, A3, and A4 for maximum output.
2. Close tuning condenser and set pointer to left. Open tuning condenser. Connect signal generator to test loop or to blue leac on set loop. Set signal generator to 1650 Kc . Tune A 5 trimmer on oscillator section of tuning condenser for maximum output
3. Set signal generator to 1400 Kc . Adjust tuning shaft until maximum output is obtained. Tune antenna trimmer A6 on tun ing condenser for greatest outpur. Reset tuning shaft until output is again maximum. Retune antenna trimmer. Repeat this cycle of operations at 1400 Kc . until no further increase of output can be obtained. Keep generator output at a low valut to prevent detuning by A. V. C. action.
4. Set signal generator to 600 Kc . Adjust tuang shaft for maximum output. Adjust tuning condenser plates for maximum out put if necessary.

Approximate sensitivities with 117 V . AC line voltage and .5 W . output across voice coil, should be: Antenna lead 600 Kc .$600 \mathrm{uv} / \mathrm{m} ., 1000 \mathrm{Kc}-400 \mathrm{uv} / \mathrm{m}$., 1400 Kc . $-300 \mathrm{uv} / \mathrm{m}$.

SPECIFICATIONS

FREQUENCY RANGE
Broadcast (AM)-...-.-...................... 5 540-1600 kc
IF ... 455 kc
FM ... 88-108 mc
IF-... 10.7 mc
TUBES AND FUNCTIONS
6BA6 .-... FM R. F. Amp.
12AT7
6BE6-.................................... AM Converter
6BA6-....... AM-FM-IF Amp.
6BA6 ... FM, IF Amp.
$6 T 8$...-...................... FM-AM DET, IST Audio AVC
6VGGT-..............--................................. Output
POWER OUTPUT
Undistorted ... 1.5 Watts
Maximum 2.5 Wetts
Plate load ..-.........-... 2000 Ohms

LOUD SPEAKER
Type: Permanent magnet, 1.47 oz. Alnico 5
Size: 8 Inch
Voice coil impedance .. 3. Oh
CHASSIS FEATURES
Automatic Volume Control
Built-in Loop
Underwriters' Listed

OPERATING CONTROLS

1. Left knob \qquad ON-OFF Sw and Volu
2. Right knob

3. Center knob ...

PHYSICAL DIMENSIONS
Width
Width
Height
Depth
22 incl
34 incl
16 incl

Models 582CFM, and 582CFB have the same Chassis, they differ only in Cabinet, trim and knobs.

THE ANTENNA

AM - This receiver has a built-in loop which gives satisfactory reception in most locations. If the receiver is local some distance from a broadcasting station, or where the electrical interferance is high, an outside antenna connected the cerminal marked AM on the antenna serminal strip will improve reception.
FM-An 8 ' length of wire is connecred to the FM antenna terminal for an indoor FM antenna. Terminals are provid on the antenna terminal strip to connect an outside FM antenna, they are labeled FM \& G.

TECHNICAL INFORMATION

 milliwatts output - approximately 1.27 volts on a receiver type volemerer connected across speaker voice coil Approximate input for 500 MW output: I. F. 300 uv ; R. F. with standard loop: at $600 \mathrm{Kc} .1200 \mathrm{uv} / \mathrm{m}$; $1000 \mathrm{Kc} .900 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc} .800 \mathrm{uv} / \mathrm{m}$.FM Tuning range - 88 megacycles to 108 megacycles. Inter mediate frequency 10.7 megacycles .I.F. and R.F. measu ments made at 500 milliwatts output - approximately 1.27 voles on a rectifier type voltmeter connected acri speaker voice coil. Approximate input for 500 MW outpur: 1. F. 300 uv; R.F. "Absolute Measurements": megacycles 100 uv; 105 megacycles, 100 uv.

ALIGNMENT PROCEDURE

Output meter Output meter Generator M Position of	nection ding to indica ation e control \qquad	ross speake MW \qquad Full		dial pointer band switch To left for A	Horizontal, variab alignment, right	ondenser clos FM alignme
			M ALIGN	ENT		
Position			Generator	Generator	Trimmers	
of	Generator	Dummy	Connection	Connection	In Order	Trimmer
Variable	Frequency	Ant.	(high)	Ground Lead	Shown For	Function
					Max. Output	
Open	455 Kc	. 05 mfd .	Mixer Grid	Chassis	A1, A2, A3, A4,	I. F.
Open	1650 Kc		*Test Loop	Test Loop	A5	Oscillator
1400 Kc	1400 Kc		*Test Loop	Test Loop	A6	Antenna
**600 Kc	600 Kc		*'Test Loop	Test Loop	Check Point	Antenna

* Connect generator lead to Standard Hazeltine Test Loop, Model 1150, placed two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot fiom the set loop. Or the gencrator can be connected with the high side lead to the AM antenna screw terminal and the ground lead to the chassis. **With a generator signal of 600 Kc , tune the set to the point where maximum output is obtained, which shoul be approximately 600 Kc on the dial. Adjust antenna section plates of variable for maximum output. The alignment procedure should be repeated in the original order for greatest accuracy.
Always keep the output from the signal generator at its lowest possible value to make the A. V. C. action of the receiver ineffective.

FM ALIGNMENT

1. Turn band switch to FM, (right).
2. Connect (FM) I. F. generator to the second GBA6 I.F. amp. grid, (lug No. 1) through a 01 uf mica dummy. Connect oscilloscope across volume control. With the I. F. generator tuned to 10.7 mc with 150 Kc deviation, and the same audio voltage used as horizontal sweep on the scope that is used to modulate the generator, adjust the ratio detector transformer slugs A7-A8 for the characteristic " S " curve (See Fig. 1), with maximum vertical height on the scope. After this adjustment the top slug of the ratio detector should not be moved during the rest of the alignment.
3. Connect I. F. generator to mixer grid through .01 mica dummy. Using 23 Kc deviation at 10.7 Mc , adjust for maximum output. Maximum output may be indicated by maximum vertical height on the scope or maixmum voltage on a standard output meter across the voice coil of the receiver. After the two I.F. transformers have been ligned the bortom slug 18 of the ratio detector should also be peaked.
The characteristic " S " curve of the complete I. F. channel should be checked by applying a 10.7 Mc signal with 150 Kc deviation to the mixer grid and observing the " S " curve on the scope. It should nor be very much different from that observed in step 2.
4. Connect R.F. (FM) generator (88 to 108 Mc) to the antenna terminals through the standard 300 ohm dummy (150 ohm in each side of generator leads).

Use R.F. generator with 23 Kc deviation. With the variable condenser completely open and Signal Generator tuned to 108.5 Mc adjust oscillator trimmer $\mathbf{A 1 2}$ (small ceramic trimmer) for maximum reading on output meter.
Then rune receiver to low end of band (variable completely closed) and Signal Generator to 87.5 Mc . If the receiver does not tune to this frequency the FM oscillator coil 14 will either have to be squeezed together or lengthened to cover the band, (squeezing lowers and lengthening raises the frequency). Any change in the coil will have to be completed by the trimmer at the high end of the band.
5. With the same Signal Generator connections as per paragraph 4 tune Signal Generator and set to 105 Mc . Tune R.F. trimmer A13 for maximum output at the same time rock variable back and forth through the frequency. (Rocking is necessary because slight oscillator pulling causes erroneous maximum readings).
Tune Signal Generator and set to 90 Mc . Adjust R.F. coil L 3 length for maximum output by squeezing or lengthening. Any change in the coil will have to be compensated at 105 Mc by the R.F. trimmer A13.
6. After Steps 4 and 5 are finished check calibration and band coverage. Steps 4 and 5 may have to be repeated if set is off calibration. Band coverage should be 87.5 Mc to 108.5 Mc . Sensitivity should be approximately 100 uv at $105 \mathrm{Mc}, 98 \mathrm{Mc}$ and 90 Mc .

ARVIN PAGE 23.

HOW TO ORDER PARTS
Replacement parts should be ordered by Arvin part number, description and model number of instrument from your Arvin Distributor.

Replacement parts for the V-M Changer must be obtained direct from the V-M Corporation, Benton Harbor, Michigan.

[^5]

SPECIFICATIONS

FREQUENCY RANGE

Broadcast

IF
.540-1600 Kc 455 Kc

TUBES AND FUNCTIONS

POWER SUPPLY
"B" 90 Volts $\quad 2$ No. 455 Ever Ready or Equal "A" 9 Volts. Six $11 / 2$ volt size "C" Flashlight Cells

Or 115 Volts A.C. or D.C.

POWER OUTPUT

CHASSIS FEATURES
Automatic Volume Control Iron Core Rod Antenna

CONTROLS

PHYSICAL DIMENSIONS
Width

Height
Depth

inch
inch

Depth
4 inch

TUNING

TUBE LAYOUT

PLUG LINE CORD IN HERE FOR BATTERY OPERATION

MODELS 650P, 652P, 654P, Ch. RE-292

ALIGNMENT

A. Connect to 117 V. A.C. line and turn set on with volume control at full volume.
B. With variable condenser closed set pointer to end mark on dial back.
C. Connect signal generator high side through . 05 uf or larger condenser to Pin 6 on 1R5 tube.
D. Open variable condenser.
E. With signal generator set at 455 KC , increase output of generator until output is heard in speaker. Adjust all I.F. trimmers until maximum output meter reading is obtained, reducing signal generator output as adjustment progresses so that final adjustment is made with lowest input consistent with good signal to noise ratio.

NOTE: After I.F. alignment, the set must be provided with a bottom cover, or test jig which is the equivalent of the bottom cover, and the rest of the R.F. alignment carried out with this in place.
F. With signal generator at 455 KC and connected to a radiating loop, adjust R.F. transformer coupling condenser until output meter reading is a minimum. Final adjustment is to be made with high signal input so that an accurate adjustment can be made.
G. With signal generator connected to radiating loop and set to 1650 KC adjust oscillator trimmer on variable condenser until output is maximum. Variable condenser is to be fully opened during adjustment.
H. Set signal generator to 1400 KC and rotate variable condenser until output is maximum. Adjust R.F. trimmer on variabie condenser until output increases to a new maximum. Rotate variable condenser slightly to obtain another maximum output. Re-adjust trimmer until output is again a maximum. Repeat this cycle until no further increase in output can be obtained. Final adjustment to be made with signal generator output at sensitivity limit given below or lower.
I. Set signal generator to 1000 KC and tune radio to maximum output. Read sensitivity. Adjust R.F. section of variable blades for maximum output.
J. Set signal generator to 600 KC and proceed as in I. above.
K. Set signal generator to 540 KC and make sure that radio will tune to maximum output slightly before variable condenser is fullv closed.

LOCATION OF PARTS UNDER CHASSIS

ARVIN PAGE 23.

PAGE 23-18 ARVIN
MODELS 650P, 652P, 654P, Ch. RE-292
HOW TO ORDER PARTS

MODEL 657-T, Ch. RE-307

ALIGNMENT PROCEDURE

1. Connect to 117 V. AC line and turn set on with volume control at full volume.
2. Connect output meter across the speaker voice coil.
3. Connect the signal generator to the mixer grid, pin 7 , using a .05 mfd condenser in series with the "hor" generator load. Connect the ground side ot the generator to floating ground.
4. Set generator to 455 Kc modulated $\mathbf{4 0 0}$ cycles at 30%, tune the I.F. transformers for maximum output. Reduce the generator output as the signal increases so that final adjustment is made with lowest input possible to give a good signal to noise ratio at the output.
5. Connect generator to a radiating loop, set to 1400 Kc . Close the variable condenser and set the pointer to $\mathbf{5 4 0} \mathbf{K c}$. This is indicated by a notch in the top of the dial plate. First notch to the left is 540 , second $600 \mathrm{Kc}, 1000 \mathrm{Kc}$, and 1400 Kc . After setting the pointer tune to 1400 Kc trim the oscillator and antenna stages for maximum output. Repeat trimmer adjustments until no further increase is obtained.
6. Set generator at 600 Kc . Tune receiver to 600 Kc . Adjust antenna section condenser plates for maximum output.
7. Check calibration and coverage after alignment coverage must be 535 Kc to 1650 Kc .

ELECTRICAL TEST FOR CLOCK

A. By turning right hand knob set alarm disc to an even hour number.
B. Turn left hand clock knob to the "AUTO" position:
C. Turn rear knob or time set knob until radio goes on.
D. There should not be more than seven minutes difference between alarm disc and time shown by the hands on clock face.
E. Check sleep switch by setting to the 60 minute position. Rotate time set knob until radio shuts off. Time shown by the hands on the clock face should be one hour plus or minus seven minutes.
F. Clock switch must have a definite snap action on the ON-OFF-AUTO switch.

HOW TO ORDER PARTS

Replacement parts should be ordered by Arvin part number, description and model number of receiver from your Arvin Distributor. The Distributor will order direct from the factory, except in the case of tubes, which should be obtained through regular tube distribution channels.

Part No.	\quadDeseription AD25191-1
R25169-1	Antenna Rod and Rear Cover
Cabinet, Willow Green	
R25169-2	Cabinet, Ivory
C20065-680	Capacitor, 68uuf 500V Mica, C3
C20292-103	Capacitor, .01 400V, C4
C20292-473	Capacitor, .047 400V, C7 C6
C20291-473	Capacitor, .047 200V, C2
A25196	Capacitor, Electrolytic 50-30/150, C5
C25195	Capacitor, Variable, C1
D25171	Clock Crystal
C25229	Clock Face Mat
D25189-1	Clock Timer
AC25192-1	Coil, Oscillator, L2
A20222-1D	Clip, Push on (Mtg. Clock Crystal)
A19361	Clip, Hairpin (Tuning Shaft)
A21792	Clip, Spring (IF Mtg.)
C25197	Control, Volume, R4
A25257	Couplate, CP2
A25264	Couplate, CP1
C25185-2	Dial Plate (All Willow Green)
A22941	Flapper Stud, Read Cover Mtg.

Part No.

A25233-1	Knob, Clock Knob, Radio
A25170-1	Line Cord
C20138	Pointer (Radio)
IF25259	Resistor 47 ohm 1/2w 20\%, R2
C20061-470	R20.
C22381-121	Resistor 120 ohm 1/2w 10\%, R6
C20061-334	Resistor 330 ohm 1/2w 20\%, R9
C20070-122	Resistor 1200 ohm 1w 10\%, R7
C20061-223	Resistor 22K ohm 1/2w 20\%, R1
C20061-225	Resistor 2.2 meg 1/2w 20\%, R3 R5
A19551	Socket, Power
C25194	Speaker 5" PM
A25186	Speaker Mtg. Bracket
AC25174-1	Speaker Baffie Assy.
A25263	Shielded Lead
A19133	Spring (Dial Cord Tension)
A19124	Snap Buttons, Speaker Baffe Mtg.
A25633	Tuning Shaft
C21797-6	Transformer, IF, T1, T2
A25263	Transformer, Audio Output, T3

CLOCK REPAIR AND PARTS

For the address of the Telecron service station nearest you, contact your Arvin Distributor or write to the Arvin Factory.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

FREQUENCY RANGE	
Broadcast 540-1600 kc
IF	... 455 kc
TUBES AND FUNCTIONS	
6BE6	Mixer-oscillator
GBA6	I...- I.F. AMP
6AV6	ctor - AVC-AF.
6V6 Output
5Y3'	Rectifier
POWER OUTPUT	
Type: Beam tube	
Undistorted 3.5 Watts
Maximum 4.5 Watts

ALIGNMENT PROCEDURE

PRELIMINARY:

Output meter	Across loudspeaker voice coil
Output meter reading to indicate 5 W (standard output)-..... 1.26 volts
Connection of generator ground lead.	Chassis
Generator Modulation.	30\% 400 cycles
Position of volume \& tone cont	Fully clockwise
osition of dial pointer with variable fully	To lefi

1. Connect signal generator lead through a 05 uf condenser to converter grid. Open tuning condenser. Set signal generator to 455 Kc . Tune I.F. Trimmers A1, A2, A3 and A4 for maximum output.
2. Close tuning condenser and ser pointer to left. Open tuning condenscr. Conncct signal generator to test loop or to bluc lead on set loop. Set signal generator to 1650 Kc . Tune A5 trimmer on oscillator section of tuning condenser for maximum output.
3. Set signal generator to 1400 Kc . Adjust tuning shaft until maximum output is obtained. Tune antenna trimmer A6 or tuning condenser for greatest output. Reset tuning shaft until output is again maximum. Retune antenna trimmer. Repea1 this cycle of operations at 1400 Kc . until no further increase of output can be obtained. Keep generator output at a low value to prevent detuning by A.V.C. action.
4. Set signal generator to 600 Kc . Adjust tuning shaft for maximum output. Adjust tuning condenser plate for maximum output if necessary.
Approximate sensitivities with 117 V . AC line voltage and .5 W . output across voice coil should be: Antenua lead 600 KG - $600 \mathrm{uv} / \mathrm{m}$., 1000 Kc . $-400 \mathrm{uv} / \mathrm{m}$., 1400 Kc . $-300 \mathrm{uv} / \mathrm{m}$. 751TM, Ch. RE 343

LOCATION OF PARTS UNDER CHASSIS

parts should be ordered by Arvin part number, description and model number of receiver from your Arvin Distributor. The Distributor will order direct from the factory. All prices subject to changes in accordance with O.P.S. regulations. Parts shipments are F.O.B. Columbus, Indiana.

ARVIN PAGE 23-:

SPECIFICATIONS

TECHNICAL INFORMATION FOR SERVICE MEN

AM Tuning range- 540 Kc to 1600 Kc . Intermediate Frequency - 455 Kc . I.F. and R.F. measurements made at 500 milliwatts output-approximately 1.27 volts on a rectifier rype voltmeter connected across speaker voice coil.
Approximately input for 500 MW output: R.F. with standard loop: at $600 \mathrm{Kc}, 480 \mathrm{uv} / \mathrm{m}$, at $1000 \mathrm{Kc}, 360 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc}, 240 \mathrm{uv} / \mathrm{m}$.
PRELIMINARY:
Output meter connection
Across speaker voice coil
Output meter reading to indicate 500 MW
1.27 volts

Generator Modulation
$30 \%, 400$ cycles
Position of volume control. Fully clockwise
Set band switch. \qquad To left for AM alignment, to right for SW alignment

AM Alignment

Position of Variable	Generator Frequency	Dummy Ant.	(high) Generator Connection	Generator Connection Ground Lead	Adjust Trimmer In Order Shown For Max. Output	Trimmer Function
Open	455 Kc	. 05 mid .	Mixer Grid	Flouting Grad.	A1, A2, A3, A4,	I.F.
Open	1670 kc	-- --	T-Lent -	Teut Lesp	$\underline{15}$	OPalipur
Closed	535 kc		Test Loop	Tett Loop	15	Osc. Pad.
1400 Kc	1400 Kc		Test Loop	Teat Loop	A7	Antennt
$600 \times 1 \times$	600Kc		Text Loop	Fest Loop	A5	Osc. Pac.

[^6]ARVIN PAGE 23.
SHORT WAVE R.F. ALIGNMENT
A. Before attempting short wave alignment, the Broadcast IF Alignment procedure must be completed.
B. Connect the Signal Generator to the antenna terminals (hank disconnected). A 50 MMF "Dummy" must be used in the "high-side" of the generator-lead and the generator "groundlead connects directly to the ground-terminal. separated from the desired frequency by a 910 Kc disference. on ore the incoming signal: use the following procedure to assure the receiver oscillator is above the incoming signal:
a. With variable condenser completely open and the trimmer, A8, loose set the signal generator to 18 Mc . Then gradually tighten the trimmer until a signal is heard. This is the correct frequency. Now if the variable condenser is closed sightly. another signal will be picked up. This it the image frequency and must not be cong procedure. 3. Set generator to 6 Mc . The set must tune to maximum output slightly before variable is completely closed. 4. Set Generator to 16 Mc . Rotate variable until the 16 Mc signal is heard at two points near the open position of the variable. Again the desired signal is the one with the variable open the farthest. Adjust the trimmer, A9, as for maxi-
mum outut. Rotate variable very slightly for a new maximum and repeak trimmer A9. Repeat this operation until no further increase can be obtained. TUNING SW-BC ON-OFF VOLUME

응으윽

8
Part
Number
Schomatic
Location Description

$18 \quad$ Capacitor, $0.047 \mathrm{mfd}, 400 \mathrm{~V}$

TUBE LAYOUT
parts should be ordered by Arvin part number, description and model number of receiver from your Arvin
Prices are subject to change without notice.
Resistor,
Resistor,
1.2 megohm
megohm Caner Cabinet, Sea-Mist
Cabinet, rear cover

Antenna coil S.W.

4

chassis
ould be or
Prices ax
Pres

MODEL 655SWT, Ch. RE-327

SPECIFICATIONS

THE ANTENNA

This receiver has a built-in loop which gives satisfactory reception in most locations. If the receiver is located some distance from a broadcasting station or where the electrical interference is high, an outside antenna connected to the pickup lead on the loop will improve reception.

This receiver is designed to operate without a ground connection and no artempt should be made to use one.

ALIGNMENT PROCEDURE

PRELIMINARY:

Output meter reading to indicate 500 milliwatts (standard output) ... 1.27 volts

Generator modulation... $30 \% 400$ cycles

Position of dial pointer with variable fully closed Lest mark at left end of dial

ALIGNMENT PROCEDURE

PRELIMINARY:

Output meter connection Across speaker voice coil
Output meter reading to indicate 500 milliwatts (standard output) 1.27 volts

Dummy antenna value to be used in series with generator output. See chart below
Connection of generator output lead See chart below
Connection of generator ground lead Floating ground
Generator modulation. 30\% $\mathbf{4 0 0}$ cycles
Position of volume control. Fully clockwise
Position of dial pointer with variable fully closed. \qquad Last mark at left end of dial

Position of Variable	Frequency of Generator	Dummy Antenna	Generator Output Connection	Trimmers Adjusted in Order Shown for Maximum Output	Function of Trimmer
Open	455	.05 mfd	12BE6 Grid (Stator of CIA)	A1, A2, A3, A4	IF
1400	1400		*Test Loop	Variable Condenser	Osc. Ant.
600	600		TTest Loop	Check Point	

*Standard Hazeltine Test Loop Model 1150 or 3 turns of wire about $6^{\prime \prime}$ in dimmeter placed about one foot from the set loop.

The alignment procedure should be repeated in the original order for greatest accuracy. Always keep the output from the signal generator at its lowest possible value to make the AVC action of the receiver ineffective.

HOW TO ORDER PARTS

parts should be ordered by Arvin part number, description and model number of receiver from your Arvin Distributor. The Distributor will order from the factory.
Parts shipments are F.O.B. Columbus, Indiana. Prices are subject to change without notice.

REPLACEMENT PARTS LIST FOR 651T

Part Number	Schematic Location	Description	List	$\begin{gathered} \text { Part } \\ \text { Number } \end{gathered}$	Schematic Location	Description	List	
Capacitors				AD25559-1		Baffle ass'y. with cloth \&		
C25569	C1, A, B	Capacitor, variable	2.25			numerals	3.10	
C23470	C 11	Capacitor, Elect. 20-40-20 150V	1.45			Ebony (Ch-gold cloth)		
C20065-251	C5	Capacitor, Mica 250 mmf . 500V	. 15	AD25559-3		Baffle ass'y. with cloth \&		
C20067-503	C2, C10	Capacitor, paper tubular, 05 mf . 200 V	. 20			numerals California Tan (Mahogany-	3.10	
C20068-503	C3, C4	Capacitor, paper tubular, 05 mf . 400 V		A25558-1		Knobs, ivory	30	
C20068-103	C6, C8	Capacitor, paper tubular, 01 mf .	. 20	A25558-2		Knobs, willow green	.30	
C20068-103	C6,	400 V , paper tubular, 01 mm .	. 20	A25558-3		Knobs, California Tan	. 30	
A20238-6	C 12	Capacitor, 4.7 mmf .	. 10	A25558-4		Knobs, Ebony	. 50	
A24084	C.P.	Couplate	. 50	D25579		Numerals Dial (Specify Number	. 25	
A24084	C.P.	Couplate	.	D25556-1		Pointer, Ivory	1.50	
Resistors				D25556-2		Pointer, Willow Green	1.50	
C20061-223	R1	Resistor, 22 K 1/2W. 20\%	. 10	D25556-3		Pointer, California Tan	1.50	
C20061.225	R2	Resistor, 2.2 meg. $1 / 2 \mathrm{~W} .20 \%$.10	D25556-4		Pointer, Ebony	1.50	
C20061-471	R3	Resistor, 470 1/2W. 20\%	. 10					
C20061-334	R4	Resistor, 330K $1 / 2 \mathrm{~W} .20 \%$. 10	Misc.				
C20061-151	R5	Resistor, $1501 / 2 \mathrm{~W} .20 \%$. 10	D25572	11	Antenna loop \& rear cover	1.50	
C20120-121	R11	Resistor, 120 1/2W. 10%	. 10	B23456		Antenna loop mtg. brkt.	. 10	
C20061-150	R12	Resistor, $151 / 2 \mathrm{WW} .10 \%$. 10	E25565		Carton \& filler	75	
C20070-121	R13	Resistor, 120 IW. 10%	. 10	AC24210-1	L2	Coil, Oscillator	. 60	
C20070-122	R14	Resistor, 1200 1W. 10%	. 10	C20138-16		Cord, line	45	
C20061-470	R15	Resistor, $471 / 2 \mathrm{~W} .20 \%$. 10	A19351		Dial light bulb No. 47	. 20	
C20061-475	R7	Resistor, 4.7 meg. $1 / 2 \mathrm{~W} .20 \%$. 10	A25481-2		Dial light socket	. 35	
C20061-222		Resistor, $22001 / 2 \mathrm{~W}$. 20%	. 10	A20243-3		Socket, wafer, center pin shielded	. 15	
Cabinet parts				$\begin{aligned} & \text { A20243-1 } \\ & \mathbf{C 2 3 4 6 7} \end{aligned}$		Socket, wafer, plain	.153.00	
A25579-1		Arvin Name	. 20			Speaker 5"		
R25546-1		Cabinet, Ivory	4.20	AD25574-1		Speaker brkt. \& pointer shaft		
R25546-2		Cabinet, Willow Green	4.20			ass'y.	1.15	
R25546-3		Cabinet, California Tan	4.20	A40474		Spring clip mtg. I.F. transf.		
R25546-4		Cabiner, Ebony	4.20			(5 for)	. 10	
AD25559-1		Baffle ass'y. with cloth \& numerals		$\begin{array}{ll}\text { C21797-16 } \\ \text { A19361 } & \text { T1, T2 }\end{array}$		Transformer I.F. Tuning shaft hair pin clip (10for) . 15		
		Ivory (Ch -gold cloth)		AC23464-1	T3	Transformer outputVolume		
AD25559-2		Baffle ass'y. with cloth \&		C25576 R6		Volume control 1 meg. $1 / 4 \mathrm{~W}$. 20\%	1.00	
		Willow Green (green-gold clo		A25575		Tuning shaft	. 30	

AUTOMATIC PAGE 23-

ELECTRICAL SPECIFICATIONS

Power Supply

Frequency Range

115 to 125 volts 60 cycles AC only 538 to 1650 KC
Speaker \qquad 5 inch PM
Power Output

This receiver contains the following tubes:
1-12BE6 Mixer
1-12BA6 I.F. Amplifier

1-12AT6 Detector-AVC-1st Audio
1-50C5 Power Output
1-35W4 Rectifler

SERVICE NOTES

Voltages taken from different parts of the circuit to the common ground above chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a voltmeter having a resistance of 20,000 ohms per volt. These voltages are shown on the voltage chart on the back of this sheet. All voltages should be measured with an input voltage of 118 volts AC only. To check for open bypass condensers, shunt each condenser with a known good condenser of the same capacity and voltage rating.

ALIGNING INSTRUOTIONS

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other components, such as tubes, resistors, condensers, etc., are normal before proceeding with re-alignment. If re-alignment is necessary follow the instructions given below under the heading "Alignment Procedure." After the re-alignment has been completed, repeat the procedure as a final check.

To remove the chassis for servicing, remove the three chassis screws from the bottom of the cabinet and remove the cabinet back, volume control knob and tuning knob. Remove the bracket securing the clock to the cabinet and slide out the chassis and clock.

ALIGNMENT PROCEDURE

Volume Control - Maximum, all adjustments.
No signal applied to antenna.
Power Input - 115 to 125 volts, 60 cycle AC.
Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal generator to common ground above chassis.
Repeat alignment procedure as a final check.

The following equipment is necessary for proper alignment:
Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%.
Non-metallic screwdriver.
Output meter.
Dummy antenna-. 1 MFD condenser.
For alignment points refer to Schematic Diagram

Dial Setting	Generator Frequency	Dummy Antenna	Generator Connection	Trimmer Reference	Trimmer Adjustment	Trimmer Function
1. Fully open	455 KC	. 1 MFD	12BE6 Grid	L3 Top \& Bot.	Maximum	Output I.F.
2. Fully open	455 KC	. 1 MFD	12BE6 Grid	L2 Top \& Bot.	Maximum	Input I.F.
3. Fully open	1650 KC	. 1 MFD	12BE6 Grid	CV2	Maximum	Oscillator
4. Tune in signal from generator	1400 KC		Loosely couple signal generator to '"Magna Loop"	CV1	Maximum	Antenna R.F Trimmer

		PARTS LIST	
Schematic Diagram Reference	Part No.	Description	List Price
CONDENSERS			
C1	CC200	100 MMFD Ceramic	\$. 25
C2	C208	. 1 MFD 400 volt	. 35
C3	CC500	500 MMFD Ceramic	. 25
C4	CC201	200 MMFD Ceramic	. 25
C5, C6, C7	C206	. 01600 volt	. 30
C8	C204	. 05400 volt	. 35
C9L	C14L	. 1 MFD 400 volt con-denser-choke assbly.	. 50
CE-601	CE-601-U	Dual 50 MFD 150 volt electrolytic	2.50
CV1, CV2	CV-149	2 section variable	2.75
RESISTORS			
R1	R306	20 K ohm $1 / 2$ watt 20%	. 10
R2	R310	2 megohm $1 / 2$ watt 20%	. 10
R3	R311	10 megohm $1 / 2$ watt 20%	. 10
R4, R9	R307	250 K ohm $1 / 2$ watt 20%	. 10
R5	R308	$500 \mathrm{~K} \mathrm{ohm} 1 / 2$ watt 20%	. 10
R6	R320	$150 \mathrm{ohm} 1 / 2$ watt 20%	. 10
R7	R321	$27 \mathrm{ohm} 1 / 2$ watt 20%	. 10
R8	R314	1.5 K ohm 1 watt 20%	. 20
RV-152	RV-152	3/4 megohm volume control	1.00
COILS AND TRANSFORMERS			
L1	L-A51	Magna-Loop Antenna	1.50
L2	1655-16	1st I.F. Transformer	2.00
L3	1655-16	2nd I.F. Transformer	2.00
L4	L201	R.F. Oscillator Coil	1.00
MISCELLANEOUS			
$\begin{aligned} & \text { T-47 } \\ & \text { PM-300 } \end{aligned}$	T-47	Pilot Light	. 15
	PM-300	Speaker, $5^{\prime \prime}$ PM, includes Output Transformer	6.40
	H-152B	Blond Cabinet	10.50
	H-152M	Mahogany Cabinet	9.50
	H-164B	De Luxe Blond Cabinet	12.00
	H-101	Knob	. 20
M	C57G27	Electric Clock	9.00
M	C57G84	Electric Clock	10.00
AR-152	AR-152	Appliance Socket	. 40
DIAL PARTS			
	H-102	Dial Pointer	. 35
	H-103	Dial Pulley	. 05
	H-152	Dial Window	. 30
	H-104	String, Dial Drive	. 05
	H-105	Spring, Dial Drive String Tension	. 10

Model 753F_"The Cascade'"-Cherry Cabinet
Model 753M-"The Marion'"-Mahogany Cabinet
Model 753W-"The Bedford" - Blond Oak Cabinet

SPECIFICATIONS

POWER REQUIREMENTS:

$105-120$ volts, 60 eyeles A.C. only POWER CONSUMPTION:

Radio and Clock--35 Watts
Appliance outlet may be used for any electrical appliance rated at 1100 Watts or less.
RADIO I.F. FREQUENCY:

RADIO TUNING RANGE:

MAXIMUM POWER OUTPUT:

1 Watt undistorted
LOUDSPEAKER:
TUBE COMPLEMENT:
455 KC

$$
4^{\prime \prime} P M
$$

V1 12BE6 Converter V2 12BA6 I.F. Amplifier

V3 12AT6 Demodulator, AVC, and Ist Audio Amplifier
V4 50C5 Audio Output
V5 35W4 Rectifier

> Special Switch Permits Use of Automatically Controlled Appliance Outlet without Turning on Radio.

Realizing the importance of prompt dissemination of service information to the field, this first in a series of newsletters is released. We suggest that the information furnished in this and subsequent releases be passed on to your dealers and service organizations to assist them in their service problems on our products. These releases will, if properly filed, serve a ready reference for your future use.
Model 753 Clock Radio
If set remains on regardless of position of Off-Auto-On switch, check to see that production jumper is still connected across the lines to this switch. The jumper must be removed for proper switch operation.

Failure of oscillator, when receiver is tuned to the low end of the band, may be corrected by substituting a lead $63 / 4^{\prime \prime}$ in length for the original one connecting pin *7 of the 12BE6 to the antenna section of the gang condenser. Sets involved, will only be those with serial numbers from 10,001 to 11,550 .

Switch Adiustment for the Clock Radio

When this switch fails to operate in the "Auto" or "On" position it can be adjusted in the following manner.

1. Locate the slotted adjusting screw which is on the back of the clock just to the left of the lower mounting bolt for the switch assembly.
2. With a small screw driver turn this screw in the clockwise direction approximately $3 / 4$ of a turn. (Take precautions not to over adjust this screw, to do so will not permit the switch to operate in the "Off "position)

CAUTION: For any further adjustments or repairs to the clock mechanism it will be necessary to disassemble the clock from the radio completely and send it to the nearest Sessions clock repair station. Information concerning the repair stations locations may be obtained from the Bendix distributor.

PAGE 23-2 BENDIX
MODELS 753F, 753M, 753W

FIC. 2 - aOTTOM
vie of chass

Removal of the Clock and Switch Assembly
l. Remove the two top screws from the cabinet back.
2. Unscrew the four chassis bolts and take the radio from the cabinet.
3. Remove the clock mounting board by turning the four clip springs around the outer edge in either direction with a screw driver until they are free from the grooves in the top and sides of the cabinet. (Since this mounting board also holds the dial glass in place precautions must be taken to prevent it from falling and breaking.)
4. The clock is dismantled from the mounting board by turning the four clip springs located around the inside opening with a screw driver until they are free from the clock face.
5. Unsolder the three leads (Brown, Black and Blue) from the radio.
6. Securely pack the assembly for shipment to the nearest Sessions clock repair station.
7. In order to reassemble the clock in the radio cabinet, just reverse the procedure outlined above making sure that the three leads are fed through the mounting board before they are connected to their respective points within the radio chassis.

ALIGNMENT PROCEDURE

An isolation transformer should be used between the $A C$ power line and the receiver for protection of any test equipment that must be operated from the same power line.
Tum tuning gang fully closed and set pointer
directly over reference mark on dial (see Fig. 4). Volume control should be set at maximum position. Keep output of signal generator as low as practical at all times and make adjustments with an insulated alignment screw driver.

Signal Generator Coupling	Signal Generator Frequency	Dial Setting	Conneet	Adjusf	Remarks
High side through . 01 to pin 7 (Grid) of 12BE6 Low side to B -	455 KC	Max. to right	Output Meter across voice coil	T3, T2	Adjust in order given for max meter reading
A loop fashioned of several turns of wire radiating the signal into the receivers antenna	1640	To the correct dial marking See Fig. 4	Same	Cld	Adjust for max. meter reading
Same	1475	To correct dial marking See Fig. 4	Same	Clb	Adjust for max. meter reading

FIG. 4 - DIAL BACK PLATE REFERENCE MARKS

FIG. 5 - DIAL CORD DIAGRAM PARTS LIST
ELECTRICAL COMPONENTS

PART NUMBER	SYMBOL NUMBER	DESCRIPTION	LIST PRICE
RC23A223M	R1	RESISTOR-Comp. 22 K 1/2W $\pm 20 \%$. 10
RC23A335M	R2	RESISTOR_Comp. $3.3 \mathrm{Meg} \mathrm{1/2W} \pm 20 \%$. 10
RC23A680M	R3	RESISTOR-Comp. 68 ohms $1 / 2 \mathrm{~W} \pm 20 \%$. 10
RC23A473M	R4	RESISTOR-Comp. 47K 1/2W $\pm 20 \%$. 10
CH262022-5	R5	PQTENTIOMETER-. $5 \mathrm{Meg} 1 / 4 \mathrm{~W} \pm 30 \%$, Volume	. 80
RC23A475M	R6	RESISTOR-Comp. $4.7 \mathrm{Meg} \mathrm{l} / 2 \mathrm{~W} \pm 20 \%$. 15
RC24A151K	R9	RESISTOR-Comp. 150 ohms IW $\pm 10 \%$. 15
RC24A220M	R10	RESISTOR-Comp. 22 ohms $1 \mathrm{~W} \pm 20 \%$. 15
RC25A152M	R11	RESISTOR-Comp. 1.5K $2 \mathrm{~W} \pm 20 \%$. 20
CH274249-1	$\left\{\begin{array}{l} \mathrm{R7} \\ \mathrm{R8} \\ \mathrm{C} 10, \mathrm{Cl} 1, \\ \mathrm{Cl2} \end{array}\right.$	$\text { MOLDED COUPLING UNIT-500K } \left.\begin{array}{r} 250 \mathrm{~K} 1 / 5 \mathrm{~W} \\ -125 \mathrm{mmf} 5 \mathrm{~K} \end{array}\right\}$. 54
L.H260016	Cla, b, c, d	CAPACITOR-Variable	2.70
CM22A470M	C2	CAPACITOR-Mica $47 \mathrm{mmf} \pm 20 \% 500 \mathrm{~V}$. 25
CH267001-503	C3, 14	CAPACITOR-Tub. Paper . $05 \mathrm{mfd} \pm 20 \% 400 \mathrm{~V}$. 29
CH267003-602	C9	CAPACITOR-Tub. Paper . $006 \mathrm{mfd}+40 \%-20 \% 600 \mathrm{~V}$. 24
CH267001-203	C13	CAPACITOR-Tub. Paper . $02 \mathrm{mfd} \pm 20 \% 400 \mathrm{~V}$. 26
CH267013-2	C15a, b	CAPACITOR-Electrolytic (40-60, 150V)	1.20
CH267001-104	C16	CAPACITOR-Tub. Paper . $1 \mathrm{mfd} \pm 20 \% 400 \mathrm{~V}$. 38
LH259151-1	T1	TRANS. ASSY.-Oscillator	. 83
CH259038-1	T2, C4, 5	TRANS.-I.F. Input	1.42
LH259152-1	T3, C6, 7, 8	TRANS.-I.F. Output	1.56
LH265062-1	T4	TRANS.-Audio Output	1.89
NH274248		TIMER ASSY.-Sessions Clock Co.	7.50
CH268910-6	P1	CORD-Power (\#16 wire)	. 70
LH251234-1		BACK \& LOOP ASSEMBLY	1.20
LH256017-3		SPEAKER-4* PM	4.00
CH270629-1		POINTER	. 15
AH266055	J2	RECERTACLE-2 contacts "Appliance Outlet"	. 29
AH258033	S2	SWITCH-Slide - S.P.S.T. "Radio Off-On"	. 21

CABINET COMPONENTS

PART NUMBER	753 M	753 W	753 F	DESCRIPTION	LIST PRICE
LH257636-1	X	X	X	DIAL-Glass	2.50
CH269081-1	X	X	X	KNOB-Clock Controls	.29
LH269082-1	X	X	X	KNOB-Radio Controls	.28
RH255122-1	X			CABINET-Nathagany	8.10
RH255122-3		X		CABINET-Blond	8.55
RH255122-4			X	CABINET-Cherry Wood	8.55

TUBES

		LIST PRICE		LIST PRICE	
V1	12BE6	1.90	V4	$50 C 5$	2.00
V2	12BA6	1.90	V5	$35 W 4$	1.30
V3	12AT6	1.55			

ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE

R7OI SPECIFICATIONS

POWER CONSUMPTION: 60 watts, 117 volts, 60 cps.
TUBES: 1.6BK7.A, 1-6AB4, 4-12AT7, 2-6BA6, 1-6BE6, 3-6AU6, 1-6AL5, 1-6X4 (14 tubes including rectifier).
SENSITIVITY: FM: Input required for 30 db quioting: 3 microvolts.
AM: 5 microvalts.
FREQUENCY RANGE: FM: 86-108 MC.
HUM \& NOISE: FM, AM: $\mathbf{- 6 5}$ db below 100% modulation
TV, PMONO: -65 db below 2 volts.
AUDIO OUTPUT: 3 volts of 6000 ohms.
DISTORTION: 3 volts at . 2%
TONE CONTROL: At 60 cycles: 17 db boost, 19 db cut.
At 10.000 cycles: 15 db boost, 18 db cut
At 15,000 cyclos: 17 db boost, 21 db cut
FREQUENCY RESPONSE: FM: $\mathbf{2 0 - 2 0 , 0 0 0} \mathrm{cps} \pm .5 \mathrm{db}$
AM: $20-4,000 \mathrm{cps} \pm .5 \mathrm{db}$ normal position.
chennections are made at the rear of the chassis.
Power input: $A C$ power is supplied to the tuner through the attached line cord. Plug this cord into an AC receptacle.
$A C$ power output: The two $A C$ receptacles are supplied with $A C$ power when the tuner is turned on. By plugging other units of the reproducing system into these receptacles, power control can be centralized.

Antenna: All antenna connections are made to the numbered terminal strip. In areas of normal signal strength a loop antenna, made from the cable supplied with the tuner, will provide good reception with low noise on both the $A M$ and $F M$ bands. Tack the cable around the rear of the cabinet to form a single or double turn loop of the largest possibie cross-sectional area. Connect the two lead lugs to terminals 1 and 4 , and the shorting jumper between terminals 2 and 3.
In areas where FM signals are weak, an outdoor FM antenna may be used in conjunction with the indoor loop for AM. Connect an FM antenna to terminals 1 and 2, the shorting jumper between terminals 2 and 3, and the loop to terminals 3 and 4 .
In AM fringe areas an external antenna may be used to increase AM sensitivity. Connect the AM antenna to terminal 4, disconnect the jumper from terminals 2 and 3, and connect the FM antenna to terminals 1 and 2.

Audio input: The signals from a TV set and a record player can be connected to the tuner at the jacks marked TV and PHONO. When the connections are made, the signal to be delivered to the amplifier is selected by the control knob on the front of the chassis.

Audio output: The amplifier used with the tuner is to be connected to the jack marked OUTPUP. The output of the tuner may be simultaneously recorded without affecting the operation of the amplifier by connecting a recorder to the DETECTOR jack. In order to reduce the possibility of hum pickup, the connections to the tuner should be made with single conductor shielded wire, not exceeding 7 feet in length.

CONTROLS:
Selector: Turning the selector knob from OFF to PHONO:

1) Supplies power to the A.C. receptacles on the rear of the chassis.
2) Supplies power to warm up the tuner tubes.
3) Supplies signal from the record player to the OUTPUT and DETECTOR jacks.

Further movement of the selector knob selects AM NORM, AM HI_FI, FM, and TV. For most programs the AM NORM position will provide reception with a minimum of background noise and interference. The AM HI_FI position enables the listener to take full advantage of the high-fidelity programs broadcast by some AM stations.

AFC DEFEAT: If, while attempting to tune in a weak FM station, the tuner "Jumps" to a stronger adjacent station, hold down the pushbutton marked AFC DEFEAT, located on the front of the chassis. This will disconnect the Automatic Frequency Control and permit tuning of the weak station. Release the button when the station is tuned in. The AFC will then center the station and hold it in tune.
If recordings are being made, it is recommended that the tuner be adjusted to the exact frequency of the station being recorded. This may be accomplished by defeating the AFC as described above, tuning the station to its exact frequency, and releasing the AFC DEFEAT pushbutton.

PREAMPLIFIER: A preamplifier is included in the Model R701 to supply the additional amplification and equalization needed when a magnetic type phono pickup, such as the G.E. cartridge is used. Since the preamplipier is not required when the phono pickup is a crystal type, it can be disconnected by the switch at the rear of the chassis. Place this switch in the MAG position when using a magnetic pickup, and in the CRYS position when using a crystal pickup.

SERVICE: The tuner should not require any service other than a periodic check of vacuum.tubes. The critical adjustments all have a high degree of stability over long periods of time and should not be tampered with. The adjustment of a modern high fidelity receiver such as the R701 should be made by competent, experienced personnel with proper visual aligment equipment. Ordinary meters or aural methods are in general unsatisfactory for alignment.

BOGEN PAGE
2
MODEL R70
AM-FM Tun

ALCGNMENT PROCEDURE

Note: Dee insulated sorevdriver for adjustmant

Step No.	Bandmoltch Setting	Qenerator Prequency	Generator Modulation	Signal Input Point	Indicator	Indicator Connection Point	$\begin{aligned} & \text { Dyal } \\ & \text { Setting } \end{aligned}$	Adjust	Ranarics
1	AM NORM	$455 \mathrm{~K}_{0}$	301 AM	$6 \mathrm{BE} 6 \mathrm{PAn} \frac{\mathrm{AMA}}{7}$	COMMTENT AC VTVM or PA + output meter	Audio output	-	$\begin{aligned} & \text { 2. AM IF } \\ & \text { trand- } \\ & \text { formera } \end{aligned}$	For maxdmun outpat
2	same	600 Kc	sene	AM Antenna terminal thru 200 mif condenser:	830	same	600 Kc		8 ± 0
3	save	1500 Ke	samis	sane	same	same	1500 K0		롱․․․․․ Repeat stepa 2 and 3
4	FM	10.7 Mc	300 Kc doviation FHat 60 cycles	6RA6 IP AMP Pin H2	IGMMENT OSCCIIloscope	" ${ }^{\prime \prime}$ " on schamatic through 100 K	-	AII MM IF transformers	For maximum gain and symuatry
5	sama	sama	samm	samo	tama	"B"	-	Pliscr. transformer + 2nd LM 0011	For balanced diseriminator S pattom of max. amplitude
6	serte	106 Mc	83180	FM antenna terminal through 300 ohers	sars	"A" on ochematio through 100 K	106 Mc	$\begin{aligned} & \mathrm{M} \text { ose }+\mathrm{RF} \\ & \text { Antenns } \\ & \text { trimuner } \end{aligned}$	For maximun output
7	same	90 Mc	same	samp	sane	\%ane	90 Mc	-	Check for tracking
8	M MORM	10 Kc	none	${ }^{\circ} \mathrm{CN}$ " on schematic	AC VTVM	Autio output	-	10 ke mistie filter	For maximum dip

MODEL R701,

 AM-FM TunerINSTALLATION INSTRUCTIONS: Installation of the R701 tuner should be carefully planned, specifically with the following in mind:

1) Ventilation: Adequate air circulation will prolong the life of the tuner. This can best be accomplished by providing air vents near the top and bottom of the cabinet enclosure.
2) Ease of manipulation: Tuner should be mounted so that the dial can be read easily; control knobs should be kept clar of any cabinet projections.
3) Ease of accessibility: Tuner should be mounted in such a way that it may be easily removed for servicing. Tubes, pilot lights and connections at the rear of the chassis should be readily accessible.
4) Loop antenna: If a loop antenna is used, it should be kept as far as possible from any metal parts to insure good signal pick up.
5) Tuner position: Tuner may be mounted either horizontally or vertical ASSEMBLY INSTRUCTIONS:
6) Cut out front panel in accordance with attached front panel template.
7) Mount 4 shockmounts on side of chassis as indicated by dotted sketch on front panel template.
8) Mourrt the escutcheon in the opening of the escutcheon plate. Fasten securely by bending the tabs at the top and bottom edges of the escutcheon firmly over the escutcheon plate.
9) Place the escutcheon assembly on the mounting surface, carefully aligning all cutouts. Fasten to the mounting surface with two \#2 woodscrews as indicated on the template. Bend the tabs extending from the protruding angle bracket of the escutcheon plate firmly over the mounting surface.
10) Move the tuner forward on the mounting surface until the glass dial is $1 / 16^{\prime \prime}$ behind the protruding bracket. Check centering of shafts and dial in the cutouts. Mark with an awl the position of 4 holes on the chassis mounting board through the center of the shock mounts.
11) Cut out the 4 marked holes with a $\frac{11}{4}$ drill, and fasten the tuner chassis by inserting the \#10 machine screws from the bottom of the mounting board.
12) Mount knobs on shafts and make all rear connections.

MATERIAL SUPPLIED WITH TUNER:
5 knobs
1 escutcheon
1 escutcheon plate with two \#2 woodscrews
4 phono plugs
4 shockmounts with 8 self-tapping screws
4 \#10 machine screws
1 loop antenna cable

PAGE 23-6 BOGEN

ALIGNMENT DATA

I. F. Alignment:

T1 and T2 at 455 Kc - tuning condenser plates completely closed. Connect generator with modulated RF signal to pin 8 - mixer grid 12SA7. Keep output of signal generator as low as possible so as not to overload IF amplifier or audio amplifier stages, volume control at maximum. Peak by audio signal from speaker, or an A.C. voltmeter connected across speaker.
R. F. Alignment:

1. Set pointer with condenser plates completely closed so that it is horizontal.
2. Turn tuning drive so that pointer reads 1400 KC .
3. Adjust tuning condenser trimmer C_{O} for maximum response. Volume control at maximum, modulated signal from generator as small as possible.
4. Adjust $\mathrm{C}_{\mathbf{T}}$ for maximum response as in step 3.
5. Repeat if necessary steps 1-5.

DIAL STRING

PAGE 23-2 CBS-COLUMBIA
MODELS 533, 534, 535, 536, 530 Series

(C) Tahn T Ridan

MODELS 533,534,
535, 536, 530 Series

SCHEMATIC LOCATION	PART MUMBER	DESCRIPTIOM		
	1686	Cablnet (Walnut or Ivory)		
Cl	PE 196-98	Capacitor, Paper, . 002 MFD 400 V		
C 2	1666	Capacitor, Variable		
C 5	PE 191-15	Capacitor, Mica 47 MMF		
C 6	PE \|9	-3		Capacitor, Mica 220 MMF
C 7	PE 196-112	Capacitor, Paper. 05 MFD 400 V		
C 8	PE 191-35	Capacitor, MIca 330 MmF		
c 9	PE 196-97	Capacitor, Paper. 001		
C10	PE 191-40	Capacitor, Mica 510 MmF		
Cll	PE 196-107	capacitor, Papor.01		
C 12	PE 196-108	Capacitor, Paper. 02 MFD 400 V		
C 13	PA 20136	Capacitor, Electrolytic 40-40 -150		
C14	PP 19105	Capacitor, Paper . 05 MFD 600 V		
L2	28210	coll, osclllator		
R 5	2471	Control, Volume w/switch		
	4275	Dial Crystal		
	54172	Drive Shaft Assembly		
	39137	Knob (Walnut or lvory)		
LI	28159	Loop Antenta		
	4145	Pointer		
RI	PE 230-2281	Resistor, 22000 ohm $\frac{1}{4} \mathrm{w}$		
R 2	PE 230-2325	Resistor, 1,500,000 ohm $\frac{1}{} \mathrm{~N}$		
R 3	PE 230-2309	Resistor, 330,000 ohm $\frac{1}{} \mathbf{w}$		
R 4	PE 230-2333	Resistor, $3.3 \mathrm{megohm} \frac{1}{4}$		
R 6	PE 230-2305	Resistor, 220,000 ohm $\frac{1}{4 w}$		
R 7	PE 233-2257	Resistor, 2200 ohm 2 w		
R 8	PE 230-2337	Resistor, 4.7 megohm ${ }^{\text {dw }}$		
R 9	PE 232-1107	Resistor, 18 ohm iw		
	18110	Socket, octel wafer		
T 3	5868	Speaker w/output transformer		
TI	1770	Transformer, lst. l.f.		
T 2	3535	Transformer, 2nd. I.F.		

CHASSIS DESCRIPTION

C-305, C-318
The C-282 and C-318 are both 11 tube AM-FM Radio Chassis. The C-305 is a 10 tube AM-FM Radio Chassis and the C-284 is an 11 tube chassis designed for reception of AM signals only.

All of these chassis contain push-pull audio output amplifiers which are us for radio and phonopraph reproduction and al so television sound when the chass are used in " 3 -way" combination instruments. The $\mathrm{C}-282$ and $\mathrm{C}-305$ chassis are wir for use of the C- 295 Phono Pre-Amplifier Chassis which is used in conjunction wi the Model 333A-VR Record Changer employing the Variable Reluctance type picku: The C- 284 and C- 318 chassis are wi red for use with the Model 333A Record Chang which employs a crystal pickup. In all of the above models, the on-off switch the radio chassis controls the power source for all functions of the receive Volume and Tone controls on the radio chassis also function for phonograph a television as well as radio operation.
Note: With the Operation Selector (Band Switch) in the phonograph position, t record changer will antomatically shut off the power source to the entire instr ment when it has played the last record. When the Oper ation Selector is th switched to either TV or Radio, the power source will again, automatically, turned on.

Radio Tuning Range:
$A M$ Band 540 KC to 1620 KC
FM Band 88 MC to 108 MC
C-282 \& C-318 Radio Chassis Tube Complement:
6BA6
6RE6 .
12 T
6BA6
6BA6
6AL5
6SQ7. 1 st Audio AM Detecter \& Gas G4
6SQ7
6V6GT (2).. . Power Amplifiers (Push-Pu」
5Y3GT. Full Wave Rectif:
Total: 11 tubes, including one Rectifier.
C-305 Radio Chassis Tube Complement:
Type Description
6BA6 . AM- FM RF Aniplij j
6J6 . AM-FM Oscillator-Mi,
6BA6 . 1 st AN-FM IF Amplif j
6BA6 . And AN-FM IF Amplifi
6AL5 . FM Ratio Detec1
6SQ7 . 1st Audio, AM Det. \& Gas G4
6SQ7
6V6-GT (2). Power Amplifiers (Push-Pı
5Y3-GT. Full Wave Rectifi
Total: 10 tubes, including one Rectifier C- 284 Radio Chassis Tube Complement:
Type Description
6SK7. RF Amplif

6SA7. .
6SK7. Ist IF Amplifi
6SK7. 2nd IF Amplifj
6SR7. Detect
6SQ7 . 1st Audio Amplifi
6SQ7 . Phase Inver
6V6 (2) . Power Amplifiers (Push-Pud
5Y3GT. Full Wave Rectifj
Total: 11 tubes, including one Rectifier.

CHASSIS C-282, C-284, C-305, C-318
C- 295 Pre-Amplifier Chassis Tube Complement:
Type Description
6SC7. 1st \& 2nd Pre- Amplifiers
Speaker (Used for all types of operation).. 12 inch FM
Audio Output. 12 watts
Power Source.. 105 to 125 volts, 60 cycle AC only
Equipment Required
AM (broadcast band) IF and RF Alignment

1. Calibrated RF Signal Generator (range, 455 KC to 1620 KC)
2. Low Range Output Meter

FM (Frequency Modulation) IF \& RF Alignment

1. FM Sweep Generator (range $\mathbf{1 0 . 7} \mathrm{mc}$ to $\mathbf{1 0 8 . 5} \mathrm{mc}$)
2. Oscilloscope
3. RF Signal Generator (range 10.7 mc to 108.5 mc)
4. Vacuum tube Voltmeter

AMAlignment ($I F$ a RF)
C. 305
a. Set Operation Selector to AM position
b. See that the dial pointer coincides with the calibration marks at the extremes of the dial scale.
c. Connect the Output Meter cable to Speaker socket on receiver.
d. Turn set on and adjust Volume to maximum.

STEP	CONNECT GENERATOR	$\begin{gathered} \text { SET } \\ \text { GENERATOR } \\ \text { AT } \end{gathered}$	$\begin{aligned} & \text { SET } \\ & \text { GANG } \\ & \text { AT } \end{aligned}$	ADJUST	$\operatorname{TO}_{\text {OBTAIN }}$
1	Green lead on mixer coil	455 KC	fully open	T104, T105 \& T108 Top \& Bottom slugs	M
2	Loose Couple to loop Ant.	1620 KC	1620KC	C102F, AM OSc. coll Trimmer	M
3	Same	1500 KC	1500KC	C102B, Ant. Trimmer, C102D. AM mixer coil Trimmer	M 0 0
4	Same	600KC	600KC	T102, AM Mixer coil Slug	$\begin{aligned} & T \\ & P \end{aligned}$
5	Same	537KC	fully closed	T101 AM 0sc. coil Slug	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~T} \end{aligned}$

C- 282 and C-318

ST EP	CONNECT GENERATOR	SET GENERATOR AT	$\begin{aligned} & \text { SET } \\ & \text { GANG } \\ & \text { AT } \end{aligned}$	ADJUST	$\mathrm{TO}_{\text {OBTAIN }}$
1.	Grid of AM Conv., 6 BE6 (p in 7 of V103) Through .1 mfd .	455KC	Fully Open	$\begin{aligned} & \text { T102, T } 104 \& \text { T } 106 \\ & \text { (IF Slugs) } \end{aligned}$	M A O
2.	ant. Section of Gang (through . 1 mfd .)	1620KC	16 गnKC	C156, AM OSC. Trim. $\&$ Cist, AM Conv. Trinim	$\begin{array}{ll} X & U \\ I & T \end{array}$
3.	- Same -	1500kC	1500 KC	C 152. AM Ant. Trim.	
4.	- Same -	600 KC	600 KC	L 103, Loop Loading Coil \& L111* AM Osc. Coil	$\begin{array}{ll} \mathrm{U} & \mathrm{U} \\ \mathrm{M} & \mathrm{~T} \end{array}$
5.	"Ant" Terminal (on rear of chassis) with Loop connected.	455 KC	Quiet Point	L 102, Wave Trap (on Loop Ant.)	Minimum Output

* Adjust while rocking gang condenser.

CAPEHART-FARNSWORTH PAGE 2

C-284			CHASSIS C-282, C-284, C-305, $\overline{\mathrm{C}}$-31		
STEP	CONN ECT GENERATOR	$\begin{gathered} \text { SET } \\ \text { GEN ERATOR } \\ \text { AT } . \end{gathered}$	$\begin{gathered} \text { SET } \\ \text { GANG } \\ \text { AT } \end{gathered}$	ADJUST	$\begin{gathered} \text { T0 } \\ \text { OBTAIN } \end{gathered}$
1.	Grid of Mixer, 6SA7 (Din 5 of V102) through . 1 mfd .	455 KC	Fully Open	IF Slugs T102, T103 \& T104	MAXIMUM OUTPUT
2.	RF Section of Gang through 1. mfd.	1620 KC	1620KC	$\begin{aligned} & \text { C102C osc. Trim. } \\ & \text { (on gang) } \end{aligned}$	$\begin{aligned} & \text { MAXIMUM } \\ & \text { OUTPUT } \end{aligned}$
3.		1500 KC	1500KC	C 10 2A, Ant. Trim. C102B, RF' Trim. (on gang)	MAXIMUM OUTPUT
4.		600KC	600KC	L103, Loop Loading Coil and L104* Osc. Coil	MAXIMUM OUTPUT
5.	Terminal "A" ant. Term. Strip (with Loop connected)	455 KC	Quiet Point	L 102, Wave Trap on l.oop	MINIMUM OUTPUT

FM Alignment

a. Connect the oscilloscope and FM or RF Generator as shown in the chart.
b. Set the Operation Selector in the FM position.
c. Turn the Receiver on.
d. During alignment, reduce the gencrator output to keep the signal just above noi: level to avoid overloading.
e. For maximum signal transfer, Signal Generator should be balanced to 300 ohm 1 Antenna terminal input.
C-282 and C-318
IF SECTION

STEP	CONNECT FM (SWEEP GENERATOR	$\begin{aligned} & \text { SET } \\ & \text { GENERATOR } \\ & \text { AT } \end{aligned}$	$\begin{aligned} & \text { SETT } \\ & \text { GANG } \\ & \text { AT } \end{aligned}$	CONNECT OSCILLOSCOPE	ADJUST	REMARKS
1	Grid 6Bag 2nd I-F Amp. pin \#1, V105	$\begin{gathered} 10.7 \mathrm{MC} \\ \pm 100 \mathrm{KC} \\ \mathrm{dev} . \end{gathered}$	fully open	Across C138 (Grd. lead to chassis)	```Top & bottom slugs of T105```	Adjust for " S " curve and centered so that the two curved portions are symmetrically spaced from the center.
2	Grid of 6BA6 (1st IF amp) pin \#1, V104	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \pm 100 \mathrm{KC} \\ & \mathrm{dev} . \end{aligned}$	open	Same	Top \& bottom slugs of T 103	Adjust for Max. Ampplitude of "S" curv $\leqslant 10.7 \mathrm{MC}$
3	Grid of 12AT7 ('FM Mixer) pin \#2, V102, through 1000 uuf.	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \pm 100 \mathrm{KC} \\ & \mathrm{dev} . \end{aligned}$	open	Same	Top \& bottom slugs of T101	Ratio Det. "S" Curve

$\mathrm{C}-282$ and $\mathrm{C}-318$
RF SECTION

STEP	CONN ECT SI GNAL generator	$\begin{gathered} \text { SET } \\ \text { GENERATOR } \\ \text { AT } \end{gathered}$	SET GANG AT	CONNECT VTVM	ADJUST	REMARKS
1.	High Side of FM dipole thru 330 ohms	106MC	$\begin{aligned} & 106 \\ & \text { MC } \end{aligned}$	Across R132	$\begin{aligned} & \text { C155, FM } \\ & \text { Osc. Trim. } \end{aligned}$	Adjust for Maximam
2.	-Same-	105MC	105MC	- Same -	C153. FM Mixer Trim. \& C151, FM Ant. Trim.	Adjust for Maximum while rocking gang condenser

CHASSIS C-282, C-284, C-305, C-318					C-305 LIF SECTION	
STEP	$\begin{aligned} & \text { CONNEET } \\ & \text { FM (SWEEP) } \\ & \text { GENERATOR } \end{aligned}$	$\begin{aligned} & \text { SET } \\ & \text { GENERATOR } \\ & \text { AT } \end{aligned}$	$\begin{aligned} & \text { SETT } \\ & \text { GANG } \\ & \text { AT } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \end{gathered}$	ADJUST	REMARKS
1	Grid 6BA6 (2nd I-F Amp) pin \#1, V104	$\begin{gathered} 10.7 \mathrm{MC} \\ \pm 100 \mathrm{KC} \\ \text { dev. } \end{gathered}$	$\begin{aligned} & \text { fully } \\ & \text { open } \end{aligned}$	Across Cl30 (Grd lead to chassis)	$\begin{gathered} \text { Top \& } \\ \text { bottom } \\ \text { S lugs } \\ \text { of } \\ \text { T107 } \end{gathered}$	Ādjust for "S"' curve and centered so that the two curved portions are symmetrically spaced from the center.
2	$\begin{aligned} & \text { Grid of 6BAG } \\ & \text { (IF amp) pin } \\ & \text { \#1, V103 } \end{aligned}$	$\begin{aligned} & 10.7 \mathrm{MCC} \\ & \pm 100 \mathrm{KC} \\ & \mathrm{dev} . \end{aligned}$	open	Same	$\begin{aligned} & \text { Top } 8 \\ & \text { bottom } \\ & \text { sing } \\ & \text { of T105 } \end{aligned}$	Adjust for Max. Ampplitude of " S " curve \qquad
3	Contact D10 of section 2 rear of the Band Switch	$\begin{aligned} & 10.7 \mathrm{MCC} \\ & \pm 100 \mathrm{KC} \\ & \text { dev. } \end{aligned}$	open	Same	Top \& bottom slugs of T103	Ratio Det. "S" Curve

C-305
RF SECI ION

STEP	$\begin{gathered} \text { CONNECT } \\ \text { RF } \\ \text { GENERATOR } \end{gathered}$	$\begin{aligned} & \text { SETT } \\ & \text { GENERATOR } \\ & \text { AT } \end{aligned}$	SET GANG A'	ADJUST	REM ARK S
1.	To FM Ant. Teminals	Modulated 106MC	106MC	*L103 osc. coil by adj. spacing of tums	For Max. Sound Output
2.	Same	$\begin{aligned} & \text { Modulated } \\ & 90 \mathrm{MC} \end{aligned}$	90 MC	Plates of FM Osc. tuning capacitor	If necessary adjust the end plates of the FM OSC. Section of the gang for Max. Output.

3.	Repeat adjustment of L 103 (Step 1) to calibrate dial pointer at 90 MC and 106 MC respectively, with the R-F Unit Shield in place.				
4.	To FMAnt. terminals	$\begin{aligned} & \text { Modul ated } \\ & 106 \mathrm{MC} \end{aligned}$	106 MC	C102D FM trimmer on Mix. Sec.	Max. output while rocking gang
5.	Same	Same	Same	C102A FM trimmer on Ant. section	Maximum Output
6. 7.	$\begin{aligned} & \text { Same } \\ & \text { Same } \end{aligned}$		Same	* L103 (mixer) L 102 FM Ant. Coil	Check coils with a runing wand. If neccessary expand or com press coil turns for max. output

- Cement both coils on L103 after adjusting.

Check calibration of dial against known AM and FM stations.

CAPEHART-FARNSWORTH PAGE :

PAGE 23-6 CAPEHART-FARNSWORTH
MODELS 1007AM, Ch. C-318;

* PEAK AT GOOKC WHILE ROCKING GANG CONDENSER

DIAL STRINGING C-284

CAPEHART-FARNSWORTH PAGE 2

PAGE 23-10 CAPEHART-FARNSWORTH

PARTS LIST RADIO CHASSIS C-282 \& C-318

 - CAPACITORS -

Parts List Radio Chassis C-282 \& C-318 Cont'd.

Description Part no
List

- INDUCTANCES -

T101	T 104	Transformer, ist FM IF.	650251 A-1	1. 40
T102,		Transformer, 1st \& 2nd AM IF..	4520 19A-1	1. 60
T103		Transformer, 2nd FM IF.	$45202^{\prime}(\mathrm{A}-1$	1. 45
T105		Transformer, Ratio Detector.	452028A-1	2.00
T106		Transformer, 3rd AM IF.	450 336A-1	1. 50
T107		Transformer, AM Converter	38961	1.20
T 108		Transformer, Power.	750 182A-1	11. 10
T 109		Transformer, Output.	650 245A-1	3.50
L 101		Loop Antenna Assembly (AM)	$750165 A-1$	5.35
L 102		Wave Trap Coil (Part of Ass'y,		
L 103		Coil Assembly, Loop loading.	. 38963	. 60
L 104		Coil Assembly, FM Antenna...	. 38958	. 55
L 106		Coil Assembly, FM Mixer...	. 38959	. 50
L 107		Coil Assembly, FM Oscillator.	. 38960	. 55
L 111		Coil Assembly, AM Oscillator.	. $452030 \mathrm{~A}-1$. 80
L 105,	L 108.			
L110,	L 112,	-RF Choke Coil.	. 38884	. 20

MISCELLANEOUS

Deacription	Part no.	List
Printed Circuit.	77462	1.60
Band Switch.	750 158B1	4. 15
Cable--Pre Amp ($\mathrm{C}-282$ only)	650259A-1	1. 10
Cord--Phono AC.	22193	1. 25
Line Cord.	65017 iA 2	. 60
Pointer.	650252A1	. 20
Pointer Sleeve.	452043A2	. 10
Pointer Rod.	55383	. 15
Drive Cord Assembly	452041 AGI	. 65
Dial Glass (AM) (C-282 only).	75016181	. 35
Dial Glass (FM) (C-282 only).	75016 1B2	. 35
Channel (Dial Glass).	452042 A 2	. 15
Hum Shield.	05147	. 10
Speaker Socket.	80030	. 10
Connector (Phono-Tel.)	450972A1	. 20
Dial Glass (AM) (C-318 only).	$750284 \mathrm{~A}-1$. 36
Dial Glass (FM) (C-318 only).	. 750 284A-2	. 36

PARTS LIST PRE-AMPLIFIER CHASSIS C-295

- RESISTORS -

Ref. no.
R106
R105
R102, R104
R103.
R108-
R101
R107, R109

List
. 10
. 10
. 10
. 10
. 10
.10
. 10

- CAPACITORS .

Ref. no.	Description	Part no.	Li
C102	OPT, . 047 ufd, 200 V .	2246A-4730	
C 103	OPT, .001 ufd, 600 V .	2248A-1020	
C10 1, C105	OPT, . $0022 \mathrm{ufd}, 600 \mathrm{~V}$	2248A-220	
C104	Mica, 330 uuf, 500 V .	650 162A-9	
C106	Elect, 10 ufd, 450 V .	452203A-1	1.

- miscellaneous .

Description	Part no.
Pickup Cable.	22169
Output Cable.	22170
Power Cable.	650258A-1

PARTS LIST RADIO CHASSIS C-305

- RESISTORS -

CONDENSERS -

C 10 1ABDCEF
C102 AGCDEF Tuning Gang \& Trimmers 650278A-1
C103 240 mmf Ceramic ... 650501A-3
C104, 105, 106, 107
118, 119, 121,122 ,

123,	125,	126,
132,	127,	

132, 1505000 mmf, Ceramic Disc 450469A-1
C108 4.7 mmf Ceramic . 650030A-10
C109, $130 \quad 150 \mathrm{mmf}$, Mica .. 650 162A-8
C112 68 mpf, Cer. $\mathrm{N}-330$.. . . 224 1A-558
C111 4. 7 monf Cer. $\mathrm{N}-750$. 650030A-12

SPECIFICATIONS

Tube Complement: Type IR5 \qquad
\qquad Oscillator-Converter
1U4 \qquad 1U5 \qquad Detector, AVC \& Ist Audio Amplifier 3V4 \qquad ..Power Output
Frequency Range:
AM Broadcast Band \qquad .532 KC to 1620 KC

Power Source:

Rating

0.25 Amp. at $11 / 2$ VDC \& 9.8 Milliamps at $671 / 2$ VDC
"A" Battery \qquad .1.5 volts (Flashlight type D)
"B" Battery \qquad 67.5 volts

STAGE GAIN

To facilitate troubleshooting and to determine proper operation of circuits, the following data is presented. To make these measurements, a signal generator (covering the specified frequencies) and a VTVM are required. The signal generator output should be maintained low to avoid AVC action. The listed values of gain may have tolerances of 20%.

Loudspeaker:
Size and type \qquad .Elliptical 2×3 inch
Voice coil impedance . 3.2 ol

Antenna:

Built-in "ferrite rod" antenna in rear of cabinet.
Cabinet Dimensions:
Height: 5\% inches Width: 7\% inches
Depth: $21 / 4$ inches

Weight:

Including batteries: $31 / 2$ pounds

MEASUREMENTS

Gain Measurements:

1R5 Conv. Grid (pin 6) to 1U4 Grid (pin ©) 25 @ 1000
$1 \mathrm{U4}$ Grid (pin 6) to 1U5 Diode plate (pin 4)
1U5 Diode Plate (pin 4) to 3V4 Grid (pin 6)

MODEL 10, Ch. C-312

1. Remove the cabinet back cover and pull off the tuning knob.
2. Remove both the "A" and "B" batteries.
3. Remove the 3 chassis mounting screws (refer to the chassis layout drawing below.
4. Lift the chassis nut of the cabinet from the bottom first
and pull down to clear the volume knob at the top. To operate the chassis outside the cabinet, solder two shor clip leads to a flashlight cell and connect them to the "A" battery leads on the chassis (observe polarity). The " B " battery can be connected normally. Note: To prevent damage to the gang condenser, do not place the chassis face down on the service bench.

Equipment required:

1. Calibrated R.F. Signal Generator (Signal from 455 KC to 1620 KC).
2. Low Range Output Meter.

Alignment:
a. Turn set on. adiust volume to maximum.
b. See that dial pointed coincides with calibration marks at extremes of dial scale.
c. Connect output meter across the speaker voice coil.

Step No.	Set RF Generator At	Connect RF Generator To	Set Gang Condenser To	Adjust	To Obtain
1	$\begin{gathered} 455 \mathrm{KC} \\ (400 \sim \mathrm{Mod} .) \\ \hline \end{gathered}$	To Grid of 1 U4 (pin 6 of V102)	Fully Closed	$\begin{gathered} \text { IF S'ugs } \\ \text { T103 } \\ \hline \end{gathered}$	Max. Output
2	$\begin{gathered} 455 \mathrm{KC} \\ (400 \sim \text { Mod. }) \end{gathered}$	To Grid of 1R5 (pin 6 of V101)	Fully Closed	$\begin{aligned} & \text { IF Slugs } \\ & \text { T102 } \end{aligned}$	Max. Output
3	1620 KC	To Grid of 1R5 ($\sin 6$ of V101)	1620 KC (Gang fully open)	$\begin{aligned} & \text { Osc. Trimmer } \\ & \text { C101C } \end{aligned}$	Max. Output
4	532KC	To Grid of 1 R5 (pin 6 of V101)	$\begin{gathered} 532 \mathrm{KC} \\ \text { (Gang fully closed) } \end{gathered}$	Ose. Slug T101	Max. Output
5	1500 KC	See Note 1	1500 KC	$\begin{gathered} \text { RF Trimmer } \\ \text { C101A } \\ \hline \end{gathered}$	Max. Output
6	600 KC	See Note 1	6800 KC	Compress or spread turns on Rod Antenna (at end next to Vol. Control)	Max. Output
7	Repeat Step 5				

Note 1: Make a loop of the R-F Generator leads (Connect the leads together through a .01 mfd capacitor) and loosely couple to the Rod Antenna.

MODEL 10,
Ch. C-312

BATTERY REPLACEMENT

Both the " A " and " B " batteries are easily removable from the rear of the cabinet. To remove the cabinet back grasp the handle with the fingers, placing the thumb on the top of back cover (see illustration) exert thumb pressure down and away from the case. To replace the case, insert the bottom first. Exert downward pressure on back and close at top. A drawing showing proper location of the batteries is included on the inside of the back cover. When replacing batteries always try the "A" battery first. Under intermittent operating conditions, battery life is estimated at approximately 40 hours for the " B " battery and approximately 10 hours for the " A " battery. The batteries can be replaced with the following types or their equivalent: "A" battery-Everyready type 950. "B" batteryEveryready type 467. Do not allow run down batteries to remain in the cabinet. If the receiver is not to be used for a long period of time, the batteries should be removed.

The C-297 \& CR-36 are 5 tube radio chassis, designed for reception of AM (Broadcast Band) signals only. Since the chassis are operated in conjunction with an electric clock mechanism, they are to be operated only from an alternating current (AC) source. The two chassis are identical with exception that the CR-36 includes an appliance outlet.

The power source for the chassis is turned "on" and "off" by the Control Knob on the clock. When the Control Knob is in the "On" position, the radio
chassis power source is on and it is not controlle by the clock. When the Control Knob is in th "Off" position, the power source to the chassis off and it cannot be turned on by the clock. Whe the Control Knob is in the "Auto" position, th power source is off, however, it will be turned o automatically by the clock mechanism at the tim to which the clock alarm is set.

NOTE: The clock motor will be energized at a times when the line cord is connected t the power source.

SPECIFICATIONS

Tube Compliment:

Type | Purpose |
| :---: |
| 12BE6Oscillator-Converter |
| 12BA6 ...F Amplifier |

12AV6..Detector, AVC \& 1st Audio Amplifier
50 C 5 \qquad Power Outjut
35W4 \qquad Rectifier

Frequency Range:
AM Broadcast Band \qquad 540 KC to 1620 KC

Power Source:
Rating \qquad 105-125 volts, 60 cycle AC only Power Consumption 35 watts

Appliance Outlot: (Model TC-101 only) Maximum Rating 1100 wat

Loudspeaker:

Size and type 4 inch P

Voice Coil Impedance3.2 ohn
Power Output:
1.5 wat

Antenna:

Built-in loop in rear of cabinet.

Cebinet Dimensions:

Height $5 \% / 3$ inches, Width $117 / 8$ inches, Depth $57 / 8$ inches.

TO SET ALARM FOR EITHER AUTOMATIC RADIO

 OPERATION OR "BUZZER" OR COMBINATION OF BOTHPull out Aiarm Knob and Turn to the left; this motion will rotate the small disk in the center of the clock face. Turn the knob until the small red pointer indicates the desired time on the disk. When the Control Knob is on "AUTO", the radio will turn on automatically. Of course, the radio should be pre-tuned to a station and the Volume Control should be pre-set to the desired level to obtain proper automatic radio operation. If the

Alarm Knob is in the out position, the "buzzer will be sounded shortly after the radio turns ol

If it is desired to have the alarm only, indeper dent of the radio, pull the Alarm Knob out and st the Control Knob to "Off".

TO SET CLOCK

Rotate the knob on the rear of the cabinet in tr clockwise direction. This will cause the cloc hands to move in the normal direction. Do nc cause the clock hands to move backward.

TO PLAY RADIO MANUALIY
1．Set the Control Knob to the＂ON＂position．
2．Adjust the Tuning Knob for the desired station．

3．Set the Volume Control so that some sound is heard from the speaker．Then re－adjust the Tuning Knob for the desired station，in the conventional manner，by setting the cali－ brations on the outer ring of the Tuning Knob against the small indicator located directly above it．Slight mis－adjustment of tuning will cause distortion，therefore，the

Tuning Knob should be used to adjust for the clearest sound and the Volume Control for the proper sound volume．

TO TURN ON APPLIANCE AUTOMATICALEY （TC－IOI ONLY）

Plug electrical appliance into outlet on rear of radio，set Control Knob at＂Auto＂position and the appliance will be turned on at the time determined by the setting of the Alarm Knob．The radio will operate at the same time，but if radio music is not desired the Volume Knob should be turned fully to the left．

ALIGNMENT INSTRUCTIONS

Equipment required：

1．Calibrated R．F．Signal Generator（Signal from 455 KC to 1620 KC ）．
2．Low Range Output Meter．

Alignment：

a．Turn set on，adjust volume to maximum．
b．Connect output meter across the speaker voice coil．
c．Make a loop of the R－F Generator leads（con－ nect the leads together through a .01 mfd ca－ pacitor）and loosely couple to the Loop An－ tenna．

Step	Set RF Generator At	Set Condenser Gang At	Adjust	To Obtain
1	455 KC		$\begin{aligned} & \text { IF Slugs } \\ & \text { T1030 } \\ & \text { T102 } \end{aligned}$	Max． Output
2	1620 KC	Fully Open	Ose．Trim－ mer C103D	Same
3	1500	1500	$\begin{gathered} \text { RF Trimmer } \\ \text { C103B } \end{gathered}$	Same
4	600 KC	600 KC	$\begin{aligned} & \text { *T101 } \\ & \text { Osc. Slug } \end{aligned}$	Same．

[^7]

REMOVAL AND SERVICE OF CLOCK MECHANISM

SERVICE

When it is determined that the clock requires adjustment or repair, remove the clock mechanism from the cabinet (as per the following instructions) and return the clock mechanism to your Capehart distributor or an agency specified by him. If the clock mechanism is to be shipped by mail or express, be certain that it is adequately protected and properly packed.

TO REMOVE CLOCK

1. Remove the back of the cabinet by pulling off.

Note the loop antenna is fastened to the cabinet back and care should be exercised not to break off the leads.
2. Remove the two hex nuts which fasten the clock to the metal cover. Keep the metal cover and hardware (2 hex nuts, and 2 fibre washers) with the cabinet, do not return this material with the clock.
3. Pull clock out from the front of the cabinet.
4. Unsolder four (4) electrical leads from the clock. (See sketch below).
5. Remove clock.

NOTE: To re-install the clock follow the above procedure in reverse.

Hef. No.	DESCRIPTION	Part No.	List
INDUCTANCES			
L101	Loop Antenna	750207A-1	\$1.00
T101	Oscillator Coil	452242A-1	. 75
T102	1st IF Transformer	452243A-1	1.40
T103	2nd IF Transformer	452243A-1	1.40
T104	Output Transformer (Part of	204A-1)	
RESISTORS			
R102	22K, $1 / 2 \mathrm{~W}, 10 \%$	3229-223	. 10
R103	$1 \mathrm{Meg} ., 1 / 2 \mathrm{~W}, 10 \%$	3229-105	. 10
R104	3.3 Meg., $1 / 2 \mathrm{~W}, 10 \%$	3229-335	. 05
R105	500 K Volume Control	452241A-1	. 80
R106	$220 \mathrm{~K}, 1 / 2 \mathrm{~W}, 10 \%$	3229-224	. 10
R107 \& R109	$150 \mathrm{Ohm}, 1 / 2 \mathrm{~W}, 10 \%$	3229-151	. 10
R108	1500 Ohm, $1 \mathrm{~W}, 10 \%$	3232-152	. 10
	Printed Circuit	452244A-1	. 90
CAPACITORS			
C103A, B, C, D	Variable Tuning Capacitor	650327A-1	2.85
C101	$470 \mathrm{mmf} .20 \%$ Ceramic	2239-013	. 20
C102	$56 \mathrm{mmf} .10 \%$ Ceramic	2241-554	. 25
C104	. 047 mf .200 V (MOPT)	2246A-4730	. 20
C105	$150 \mathrm{mmf} .20 \%$ Ceramic	2240-021	. 20
C106	(a. 50 mf .150 V Electrolytic)		
	(b. 50 mf .150 V Electrolytic)	650326A-1	2.10
C 107	. 01 mf. 600V Paper	2248-1030	. 20
C108	. 022 mf .600 V (MOPT)	2244-2230	. 30
C109	. 047 mf .600 V (MOPT)	2244-4730	. 35

MISCELLANEOUS

PM Speaker and Output Trans. Assy. 750204B-1 5.90
Clock Mechanism
Line Cord (TC-100)
Line Cord (TC-101)
Capehart Insignia
Clock Knob
TC-100 Cabinet Assy. (Brown)
TC-100 Cabinet Assy. (Ivory)
750311A-1
1.65

TC-101 Cabinet Assy. (Grey Blue)
650171A-4

T-101 Cabinet Assy. (Grey Blue)
650171A-3
.60

TC-100 Dial Knob (Brown)
452188B-1 .25
452233A-2 . 10

TC-100 Dial Knob (Ivory)
TC-101 Dial Knob (Grey Blue)
TC-100 Radio Knob (Brown)
850206A-1
4.85

850206A-4 4.85
850206A-6 4.85
650325A-8 . 3
650325A-10 . 35

TC-100 Radio Knob (Ivory)
TC-101 Radio Knob (Grey Blue)
650325A-1
.30
452240A-8 . 15
452240A-10 . 15

Loop Antenna (TC-100)
452240A-1
. 10

Loop Antenna (TC-101)
750310A-1
1.10

Appliance Outlet 117 V AC

MODEL 15, Ch. CR-48

GENERAL DESCRIPTION

The Capehart Portable Radio, Model 15, consists of a five tube superheterodyne chassis housed in a molded polystyrene case. The radio can be operated from self-contained batteries or from 117 volts A.C. or D.C. Reception is obtained on the standard broadcast band of 537 Kc . to 1620 Kc . Three normal operating controls are available for use: On-Off Volume Control, Tone Control and Station Tuning. A three gang vari-
able tuning capacitor is used in conjunction with seven tuned circuits to provide the high selectivity and image rejection needed in a portable type radio. To aid in providing this selectivity a "ferrite rod" type built-in antenna is used. In addition to being small in size and providing excellent signal pickup, this antenna eliminates the pickup of electrostatic type interference.

Warning! Do Not Remove Any Circuit Tubes While
 Instrument Is Turned On

MODEL 15
 SPECIFICATIONS

Tube Complement:
Type
1T4 R.F. Amplifier
1R5 Osc.-Convertor
1U4 I.F. Amplifier
1U5 Det AVC Audio
3V4 Power Output
Frequency Range:
AM Bdcst. Band $537 \mathrm{Kc}-1620 \mathrm{Kc}$

Loudspeaker:
Size \& Type
V. C. Impedance

4 inch PM 3.2 ohms

Antenna:
Built-in "Ferrite Rod"
Cabinet Specificentions:
Height $71 / 2$ in. Width $101 / 2$ in.
Depth $41 / 2 \mathrm{in}$. Weight (tot) $71 / 2 \mathrm{lbs}$.
Power Source:
AC/DC Operation
.12 watts at $105-125 \mathrm{~V}$ DC or 60 cycle A.C.
Battery Operation .50 MA at 9 V DC \& 11 MA at 90 V
Battery Type \qquad
\qquad .Eveready No. 756 or equivalent

TO RĒMŌVE C̄HĀS̄̄̄̄ FRŌM CABBINET

1. Remove cabinet back cover by lifting the handle up and pulling outward at the top rear of the cabinet. After the top is disengaged the back is completely removed by disengaging the hinges at the bottom.
2. Remove two screws that hold chassis to cabinet (see chassis layout drawing).
3. With the cabinet front setting upright, the
chassis can be removed by grasping the handle and sliding the chassis out the back.
4. The battery can be removed or left on the chassis as desired. Care must be exercised that the battery does not slide from the battery carrier when the chassis is being removed. Damage to the battery cable can result.

Equipment Required:

1. Calibrated R.F. Signal Generator.
(455 KC to 1620 KC)
2. Low Range Output Meter

Alignment:

1. Turn set on and adjust to maximum volume.
2. Connect output meter across speaker voice coil
3. If alignment is done with A.C. power an isolation transformer should be used.

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Set R.F. Generator At	Connect R.F. Generator To	Set Gang Condensor To	Adjust	To Obtain
1.	455 Kc . (400 Cy Mod)	Pin 6 V103 thru 1 mfd capacitor. Ground lead to B-.	Fully Closed	I.F. Transformer	Maximur
2.	"	Pin 6 V102 thru, 1 mfd capacitor. Ground lead to B-.	"	I.F. Transformer	"
3.	$\underset{\text { (400 Cy Mod) }}{537 \mathrm{Kc}}$	"	"	$\begin{gathered} \text { T102 } \\ \text { Osc. Slug } \end{gathered}$	"
4.	$\begin{gathered} 1620 \mathrm{Kc} . \\ (400 \mathrm{Cy} \mathrm{Mod}) \end{gathered}$	"	Fully Open	C101F Osc. Trimmer	"
5.	$\begin{gathered} 1500 \mathrm{Kc} . \\ (400 \mathrm{Cy} \mathrm{Mod}) \end{gathered}$	Pin 6 V101 thru 1 mfd capacitor. Ground lead to B -.	1500 Kc . Rock Gang	$\begin{aligned} & \text { C101D } \\ & \text { Mixer Trimmer } \end{aligned}$	"
6.	600 Kc . (400 Cy Mod)	"	600 Kc . Rock Gang	$\stackrel{\text { T101 }}{\text { Mixer Slug }}$	"
7.	1500 Kc . (400 Cy Mod)	Form a loop and loosely couple to antenna.	1500 Kc .	$\begin{gathered} \text { C101B } \\ \text { Antenna Trimmer } \end{gathered}$	"
8.	600 Kc . (400 Cy Mod)	"	600 Kc .	Adjust turns on loop Ant.	"

[^8]MODEL 15,
Ch. CR-48

SCHEMATIC DIAGRAM

CAPEHART-FARNSWORTH PAGE 23-:

MODEL 15

PARTS - PRICE LIST

Ch. CR-48

CAPACITORS

R101
R102
R103 106
R105
R107
R109
R110
R111
R112
R113
R114
R115
R116
R117 118

L101	
T101	
T102	
T103	104
T105	

1105
RESISTORS

1.5 Meg. $1 / 2 \mathrm{~W} 10 \%$..3229A-155
6.8 Meg. $1 / 2 \mathrm{~W}$ 10\% ... 3229A-685

100K 1/2W 20%...3230A-104
$22 \mathrm{~K} 1 / 2 \mathrm{~W} 10 \%$..3229A-223
3.3 Meg. $1 / 2 \mathrm{~W}$ 20\% ..3230A-335

Volume Control \& Sw. ...750276A-2
$10 \mathrm{Meg} .1 / 2 \mathrm{~W} 20 \%$..3230A-106
4.7K 1W 10\% ...3232A-472

33 1W 10\% WW ...650101A-19
2.4K 10W WW ..750288A-4
1.2K 1/2W 10\% ...3229A-122
3.3K 1/2W 10\% ...229A-332
2.7K 1/2W 10\% ...3229A-272

INDUCTANCES

SW2 Switch (AC-DC Bat.) ...452625A-1
SW3 , Switch (Tone Control) 453029A-1 80
SR101 Rectifier (Selenium) 650150D-5 1.60
PC101Speaker650546A-1
452171A-1
Battery Cable 650548A-1
Cabinet, front (Taupe) 453037A-G1

Cabinet, front (Burgundy)453037A-G2

CABINET
 CABINET

Cabinet, back (Taupe) ...453038A-G1
Grille Clothe \& Baffle $650541 \mathrm{~A}-1$ 1.60 60
Carrying Handle Knob (tuning)
$650599 \mathrm{~A}-1$
$650599 \mathrm{~A}-1$
Knob (volume) 452749C-3
Knob (tone) 30904.20 8555 .65
1.451.252.409030

List Price
$\$ 3.20$
3.40

CHASSIS DESCRIPTION

The C-300 chassis used in the Model T-30 is a five tube radio chassis designed for reception of AM (Broadcast band) signals. The chassis contains a single ended 50L6 Power Output amplifier in conjunction with a $5^{\prime \prime}$ speaker for sound reproduction. It can be operated on either AC or DC.

SPECIFICATIONS

TUBE COMPLIMENT:

Type:
12BE6 \qquad Oscillator-Converter
12BA6 \qquad Detector, AVC \& 1st Aud Amp 12SQ7 ..Power Output 35Z5 \qquad Rectifier

FREQUENCY RANGE:

AM Broadcast Band
540 KC to 1620 KC
POWER SOURCE
Rating \qquad .105-125 volts, AC-DC
Power Consumption 35 watts

ALIGNMENT INSTRUCTIONS

EQUIPMENT REQUIRED:

1. Calibrated RF Signal Generator (Signal from 455KC to 1620 KC).
2. Low Range Output Meter.

ALIGNMENT:

a. Turn set on, adjust volume to maximum.
b. See that dial pointer coincides with calibration marks at extremes of dial scale.
c. Connect output meter across the speaker voice coil.
d. Make a loop of the RF Generator leads (connect the leads together through a .01 mfd capacitor) and loosely couple to the Loop Antenna.

sTEP	SET RF GENERATOR AT	SET CONDENSER GANG AT	ADJUST	OBTAIN
1	455 KC	Fully Open at some quiet point	IF Slugs Tlos T102	Maximum Output
2	1620 KC	1620 KC	Osc. Trim- mer C103D	Same
3	1500	1500	Ant. Trimmer C103B (on loop)	Same
4	537 KC	537 KC	T101 Osc. Slug	Same

PARTS LIST C-300 (T-30)

REF. NO.
PART DESCRIPTION

TRANSFORMERS

L101
T101
T102
T103
T104
Loop Antenna
Oscillator Coil
IF Transformer
IF Transformer
Output Transformer-(Part of 750220A-1)

RESISTORS

R102
R103
R104
R105
R106
R107, R109
R108

PART NO.
LIST

$750219 \mathrm{~A}-1$	$\$ 1.60$
$452242 \mathrm{~A}-1$.75
$452243 \mathrm{~A}-1$	1.40
$452243 \mathrm{~A}-1$	1.40

$3229 \mathrm{~A}-223$.10
$3229 \mathrm{~A}-105$.10
$3229 \mathrm{~A}-335$.05
$452312 \mathrm{~A}-1$.80
$3229 \mathrm{~A}-224$.10
$3229 \mathrm{~A}-151$.10
$3232 \mathrm{~A}-152$.10
$452244 \mathrm{~A}-1$.90

CONDENSERS

C101, C110
C102
C103, A B C D
C104
C105
C106, A B

C107
C108
C112
$470 \mathrm{mmf} ., 20 \%$, Ceramic
$56 \mathrm{mmf} ., \quad 10^{\mathrm{ri}}$, Ceramic
Tuning Gang
$.047 \mathrm{mfd} ., \quad 200 \mathrm{~V}, \mathrm{MOPT}$
150 mmf ., 20%, Ceramic
Electrolytic
(a) 50 mfd 150 V
(b) 50 mfd 150 V
$.01 \mathrm{mfd} ., 600 \mathrm{~V}, \mathrm{MOPT}$
$.022 \mathrm{mfd} ., 600 \mathrm{~V}, \mathrm{MOPT}$
$.1 \mathrm{mfd} ., 600 \mathrm{~V}, \mathrm{MOPT}$

MISCELLANEOUS

Cabinet Ass'y (Green)	452554A-G1	5.75
Knobs (2) (Green)	452321A-G1	. 35
Cabinet Ass'y (Burgundy)	452554A-G2	5.75
Knobs (2) (Burgundy)	452321A-G2	. 35
Cabinet Ass'y (Ivory)	452554A-G3	5.75
Knobs (2) (Ivory)	452321A-G3	. 35
Cabinet Ass'y (Black)	452554A-G4	5.75
Knobs (2) (Black)	452321A-G4	. 35
Back Cover	850135A-1	. 35
Speaker, PM 5" \& Output Transformer	750220A-1	8.00
Line Cord	650171A-4	. 60
Mounting Clips for IF Transformers	58514	. 10

CHASSIS DESCRIPTION

The CR-71 is a 6 tube radio chassis, designed for reception of AM (Broadcast Band) signals only. Since the chassis is operated in conjunction with an electric clock mechanism, it is to be operated only from an alternating current (AC) source.

The power source for the chassis is turned "on" and "off" by the Control Knob on the clock. When the Control Knob is in the Manual position, the radio chassis power source is on and it cannot be turned on or off automatically by the clock. When the Control Knob is in the Off position, the power source to the chassis is off and it cannot be turned on by the clock. However, with the Control in the Off position the power source can be turned on by
adjusting the Sleep Knob for a time period up t 60 minutes and at the expiration of this tim period, the power source will be turned off. (Th Sleep control is a mechanical timing device whic mechanically actuates the "on-off" switch whic is also manually actuated by the Control Knob When the Control Knob is in the Wake-Up pos tion, the power source is off, however, it will l turned on automatically by the clock mechanis at the time to which the clock alarm is set. Tl function of the Sleep Knob is the same in th Control Knob position as it is in the Off positio

NOTE: The clock motor will be energized at $:$ times when the line cord is connected the power source.

SPECIFICATIONS

Tube Compliment:
Type
12BA6 \qquad R-F Amplifier
12BE6Oscillator-Converter
12BA6 \qquad I-F Amplifier
12AV6..Detector, AVC \& 1st Audio Amplifier
35 C 5 \qquad Power Output
35W4
Rectifier

Frequency Range:

AM Broadcast Band \qquad .540 KC to 1620 KC

Power Source:

Rating \qquad 105-125 volts, 60 cycle AC only Power Consumption \qquad .35 watts

Appliance Outiet:

Maximum Rating 1100 wal

Loudspeaker:

Size and type 4 inch F
Voice Coil Impedance3.2 ohi
Power Outputs

Antenna:

Built-in loop in rear of cabinet
(terminal on rear of cabinet for connection of-outdoor aprial.)

Cabinet Dimensionsa

Height $5_{\mathrm{T}}^{\mathrm{T}}$ inches, Width $123 / 8$ inches, Depth 51/2 inches.

OPERATING INSTRUCTIONS

TO SET ALARM FOR EITHER AUTOMATIC RADIO OPERATION OR "BUZZER" OR COMBINATION OF BOTH

Pull out Alarm Knob and turn to the left, this motion will rotate the small disk in the center of the clock face. Set the pointer attached to the hour hand to the desired time indicated on the disk. When the Control Knob is on Wake-Up the radio will turn on automatically. Of course, the radio should be pre-tuned to a station and the Volume Control should be pre-set to the proper level to obtain proper automatic radio operation.

If the Alarm Knob is in the out position the "buzzer" will be sounded shortly after the radio goes on.

If it is desired to have the alarm only, independent of the radio pull the Alarm Knob out and set the Control Knob to Off.

Another combination of operations is provided with the Sleep Knob, which will turn off the radio automatically at night (see "TO TURN RADIO AND APPLIANCE OFF AUTOMATICALLY") and, provided the Control Knob is in Wake-Up position, the radio will turn on automatically in the morning.

TO TURN RADIO AND APPLIANCE OFF AUTOMATICALLY

Turn the Sleep Knob to the right and if the small projection on the Sleep Knob is used as a rough indicator a reasonable degree of accuracy can be obtained in adjusting for any period of operation up to 60 minutes. For instance, if 15 minutes of operation is desired the Sleep Knob should be adjusted approximately one-quarter of its full rotation. If it is not desired to have the radio turned on automatically in the morning, then set the Control Knob to Off before you set the Sleep Knob for automatic turnoff.

TO TURN ON APPLIANCE AUTOMATICALLY

Plug electrical appliance into outlet on rear of radio, set Control Knob at Wake-Up position and the appliance will be turned on at the time determined by the setting of the Alarm Knob. The radio will operate at the same time, but if radio music is not desired the Volume Knob should be turned fully to the left.

TO PLAY RADIO MANUALLY

1. Set the Control Knob to the manual position.
2. Adjust Tuning Knob for desired station.
3. Set the Volume Control for desired sound volume.

removal and service of clock mechanism

SERVICE

The clock mechanism used in this unit is not to be serviced by anyone other than an authorized Telechron Service Agency (see pages 7 and 8 of this manual for a listing of these agencies). When it is determined that the clock requires adjustment or repair, remove the clock mechanism from the cabinet (as per the following instructions) and return the clock mechanism to your Capehart distributor or an agency specified by him. If the clock mechanism is to be shipped by mail or express, be certain that it is adequately protected and properly packed.

TO REMOVE CLOCK

1. Remove (pull off) the three knobs from the front of the clock.
2. Remove the six (6) Phillips-head screws which fasten the back of the cabinet.
3. Remove the four (4) Phillips-head screw which secure the clock to the inside of th cabinet.
4. Remove the 35 W 4 and 35 C 5 tubes to facil: tate removal of the clock.
5. Pull clock out of the cabinet by sliding it t the left and back.
6. Remove the three hex nuts which fasten th metal cover to the clock. Keep the metal cove and hardware (4 Phillips screws, 3 hex nut and 3 fibre washers) with the cabinet, do nc ,return this material with the clock.
7. Unsolder four (4) electrical leads from tr clock.

NOTE: To re-install the clock follow the abor procedure in reverse.

TO REMOVE CABINET BACK: REMOVE SIX (6) PHILLIPS SGREWS

TO REMOVE CLOCK FROM CABINET: REMOVE FOUR (4) PHILLIPS SCREWS

MODEL TC-62,
Ch. CR-71

TC-62 ALIGNMENT INSTRUCTIONS

Equipment required:

1. Calibrated R.F. Signal Generator (Signal from 455 KC to 1620 KC).
2. Low Range Output Meter.

Alignment:

a. Turn set on, adjust volume to maximum.
b. See that dial pointer coincides with calibration marks at extremes of dial scale.
c. Connect output meter across speaker voice coil.

Step No.	Set R.F. Generator At	Connect Generator To	Set Gang Condenser To	Adjust	To Obtain
1	$455 \mathrm{Kc}$	Antenna section of Gang Condenser	Fully open. Disable osc. section of tuning gang.	$\begin{aligned} & \text { I.F. slugs } \\ & \text { T103 } \\ & \text { T104 } \end{aligned}$	Max.
2	1620 Kc.	Antenna section of Gang Condenser	Fully open.	Osc. Trimmer C103D	Max.
3	537 Kc.	Antenna section of Gang Condenser	Fully closed.	Osc. Coil T102	Max.
4	1500 Kc.	Antenna section of Gang Condenser	1500 Kc .	Mixer Trimmer C103F	Max.
5	600 Kc .	Antenna section of Gang Condenser	600 Kc .	Mixer Coil T101	Max.
6	1500 Kc .	Loosely couple to Loop antenna	1500 Kc .	Antenna Trimmer C103F	Max.

CHASSIS LAYOUT

PAGE 23-38 CAPEHART-FARNSWORTH
MODEL TC-62,

Ch. CR-71

Ref. No.	Description PAPTS PRICE LIST Part No.	List
INDUCTANCES		
L101		
T101		\$ 1.30
T102	Oscillator Coil ..	1.30
T103	1st I. F. Transformer ...	1.90
T104 T105	1nd I. F. Transformer ..2243A-1	1.40 1.40
T105	Output Transformer (Part of Assembly No. 750373A-1)	1.40
RESISTORS		
R101, 109, 110	$150 \mathrm{ohm} 1 / 2 \mathrm{w} .10 \%$..........	
R102		. 10
R103 R104		. 10
R105		10 .10
R107	1500 ohm $1 \mathrm{w} .10 \%$.. $422241 \mathrm{~A}-1$.80
R108	3.3 meg. $1 / 2 \mathrm{w} .20 \%$..3232-152	.10 .10
CAPACITORS		
C101	5000 mmif . Ceramic Disc	
C102. 110		. 25
C103 A,B,C,D,E,F		. 25
${ }_{C}^{C 104}$. 047 mfd. 200 V . ..2246-4730	$\begin{array}{r}3.50 \\ 20 \\ \hline 1\end{array}$
C106	150 mmf . Ceramic	. 20
C107	. 01 mfd. 600 V . ..650326A-1	2.10
C108		.20
C109 C111	.047 mfd. 600 V. ..2248-2230	
C111	25 mifd 25 V. Electrolytic ...452132A-3	. 30

Cabinet Assembly	(Grey-Blue) ...453246A-G1	7.20
	(Ivory) ...453246A-G4	7.20 7.20
		7.20
	(Sage Green) ...453246A-G7	7.20
Cabinet Back	(Grey-Blue) ...850130A-1	2.75
	(vory) ..850130A-4	.2.75
	(Sage Green) ...850130A-5	2.75
	(Sage Green) ..850130A-7	2.75
Knob, Tuning Dial	(Grey-Blue) ..650325A-1	. 35
		.35
		. 35
Knob, Radio		
	(Ivory) .-..452240A-1	. 15
	(Ebony) ..452440A-4	. 15
		.15
Knob Clock	(Grey-Blue) ..453184A-1	
	(Ivory) ..453134A-4	. 10
	(Ebony) ...453134A-5	10
	(Sage Green) ..453134A-7	10
Use only genuine Capehart replacement parts. All prices subject to change without notice.		

Cabinet

Model No.	Cabinet Color
E30BE	Blue
E30GN	Green
E30MN	Maroon
E30TN	Tan

DESCRIPTION

TYPE: Seven-tube, two-band, superheterodyne.
FREQUENCY RANGE: Standard Broadcast Band (AM); 540 to 1620 kc .
Frequency Modulation Band (FM); 88 to 108 megacycles.
INTERMEDIATE FREQUENCY: St andard Broadcast Band; 455 kc.
Frequency Modulation Band; 10.7 mc .
FM ANTENNA INPUT IMPEDANCE: 75 ohms balanced.
POWER SUPPLY: a.c.-d.c.
VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 40 watts at normal power supply voltage (117 volts).
POWER OUTPUT: 1 watt maximum.

TUBE COMPLEMENT:

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Type	Function
V1	12BE6	Converter (AM)
V2	35C5	Audio Output
V3	12BA6	R.F. Amplifier (FM)
V4	12BA6	I.F. Amplifier (AM \& FM)
V5	12BA6	2nd I.F. Amplifier \& AVC (FM:
V6	12AT7	Oscillator \& Mixer (FM)
V7	1978	Detector \& 1st A.F. Ampl. (AM \& FM); AVC (AM)
SR1	Selenium Rectifier	

DIAL BULB: 7 w., 120 v., Candelabra Base

NOTES: 1. BOTTOM VIEW OF TUEE SOCKETS.

NO SIGNAL, VOLUME CONTROL AT MINIMUM.
3. SUPPLY VOLTAGE 117 VOLTS , 60 CYCLES.
4. ALL VOLTAGES MEASURED WITH TME SELECTOR SWITGH iN TME AM.
4. POSITION EXCEPT WHERE MARKED WITH DELTA (A).
5. a = VOLTAGE WITH SELECTOR SWITCH IN FM. POSITION
6. $\#$ = AL. VOLTAGES.
7. - OENOTES ALIGNMENT LOCATIONS
8. SOCKET VOLTAGE TOLERANCE $\pm 6 \%$.
9. PLATE VOTAGE ON THE $35 C 5 \cdots$....-CHASSIS $30 E=115$ VOLTS
9. PLATE VOTAGE ON THE $35 C 5$
CHASSIS $30 E: 1=76$ VOLTS.

SOCKET VOLTAGE CHART

MODELS E30BE, E30GN, E30MN, E30TN, Ch. 30E, 30E-1

When using direct current it may be necessary to reverse the position of the power plug in the electric outlet for correct polarity.

Reversing the position of the power plug when alternating current is used may reduce power hum.
Under no circumstances should a ground be connected to this receiver.

Never place the receiver chassis on a metal bench or grounded object when the power plug is connected to the electric outlet. To avoid shock when making repairs or adjustments, do not permit any part of the body to contact grounded metal objects.

ALIGNMENT PROCEDURE

This receiver has been aligned at the factory for best performance and no attempt should be made to realign it unless the proper test equipment is available.

1. Turn the tuning condenser to full mesh, against stop, and set the dial pointer to the reference point at the " 88 " end of the dial.
2. Set the tone control knob to the full treble position (extreme right).
3. For Amplitude Modulated signal readings, connect output meter across voice coil (3.2 ohms).

MODELS E30BE, E30GN, E30MN
E30TN, Ch. 30E, 30E-1
4. All Amplitude Modulated input signals are modulated 30% at 400 cycles with the High side of the signal generator connected to receiver as indicated in the alignment chart. Connect the low side of signal generator through a 0.1 mfd . condenser to the receiver chassis. If hum is encountered, use a 1 to 1 isolating transformer between the power line outlet and the receiver power line cord. Then connect the low side of the signal generator directly to the receiver chassis.
5. All Frequency Modulated signals are modulated 30% at 400 cycles. 30% modulation is equal to a deviation of 22.5 kilocycles.
6. Turn the volume control to maximum clockwise position and adjust signal generator output to produce a noticeable output meter reading. Keep signal generator output as low as possible to prevent AVC action in the receiver.
7. Disconnect short wire, with spade lug, from F.M. Antenna Terminal.

ALIGNMENT CHART

Alignment Sequence	Sichal Generator Output			Position of		Adjust	Type of Selectivity Curve	Remarks
	Frequency	In Series	To	Range Switch	$\begin{gathered} \text { Tuning } \\ \text { Diail or } \\ \text { Tun. Cap. } \\ \hline \end{gathered}$			
1	455 kc .	.05 mfd .	V4 grid pin 1	AM	Open	A \& B	Single peak	
2	455 kc .	. 05 mfd .	V1 grid pin 7	AM	Open	C \& D	Single peak	Retouch A \& B
3	10.7 mc .	. 05 mfd .	V5 grid pin 1	FM	Closed	E	Single peak	See note 1 \& 2
4	10.7 mc .	. 05 mfd .	V5 grid pin 1	FM	Closed	F	-	Balance to zero volts. Note 3
5	10.7 mc .	. 05 mfd .	V4 plate pin 5	FM	Closed	E\&G	Single peak	See note 4 repeat adj. of $\mathrm{E} \& \mathrm{G}$ for max. alignment
6	10.7 mc.	. 05 mfd .	V4 grid pin 1	FM	Closed	H	Single peak	Note 4
7	$10.7 \mathrm{mc} .$. 05 mfd .	Stator center gang section	FM	Closed	$\underset{\&}{\mathbf{J}, \mathrm{~K}} \underset{\mathbf{H}}{ }$	Single peak	Note 4 \& 5
8	98 mc .	FM Dummy *Antenna	FM Ant. Term.	FM	98 mc .	L	-	Note 6
19	104 mc .	FM Dummy *Antenna	FM Ant. Term.	FM	104 mc .	M	-	Note 7
10	92 mc .	FM Dummy *Antenna	FM Ant. Term.	FM	92 mc.	P	-	Note 8
11	Repeat steps 9 and 10 until no further improvement is noted:							
12	1400 kc .	200 mmf .	Ext. Ant. Term.	AM	1400 kc .	R \& S	--	Adjust S for max output

* DUMMY ANTENNA

ALIGNMENT NOTES

1. Use an unmodulated signal generator with approximately $100,000 \mathrm{mv}$. output.
2. Connect the electronic voltmeter across the 27,000 ohm diode load resistor (R6).
3. Connect two $100,000 \mathrm{ohm} 5 \%$ carbon resistors in series, connect these resistors across the 4 mfd . stabilizing capacitor (C17) in the diode circuit, connect the electronic voltmeter between the output of the RF filter network (C22) and the midpoint of the two 100,000 ohm resistors. Align secondary core (F) of T3 for zero volts, first using a high scale on the electronic voltmeter and then switching to the lowest scale for close balance.
4. Use an unmodulated signal. Electronic voltmeter connected across 27,000 ohm load resistor (R6). Limit output of signal generator so that the reading on the electronic voltmeter will not exceed 5 volts.
5. Remove the two $100,000 \mathrm{ohm}$ resistors and electronic voltmeter after alignment .
6. Adjust turns on FM oscillator coil by spreading or squeezing together, so that 98 megacycle signal falls on 98 megacycles on the dial.
7. Rock gang while adjusting FM. RF trimmer until maximum output meter reading is obtained, or align for maximum noise level at zero signal.
8. Adjust turns on FM. RF coil until maximum output meter reading is obtained.

MEGACYCLES TO CHANNEL NUMBERS "FM" BAND

Frequency in Megacycles	Channel No.	Frequency in Megacycles	Channel No.
87.9	200	98.9	255
88.9	205	99.9	260
89.9	210	100.9	265
90.9	215	101.9	270
91.9	220	102.9	275
92.9	225	103.9	280
93.9	230	104.9	285
94.9	235	105.9	290
95.9	240	106.9	295
96.9	245	107.9	300
97.9	250		

To find the frequency in megacycles for CHANNEL NUMBERS between those given above, add . 2 megacycles for every whole number added to the CHANNEL NUMBER; for example Channel 204 would be 88.7 megacycles and 251 would be 98.1 megacycles.

MODELS E30BE, E30GN, E30MN, E30TN, Ch. 30E,

Symbol No.	Part No.	Description	$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Part No.	Description
C1	W-145913-2	Capecitor, $110 \mathrm{mmf} ., 5 \%, 500$ v., ceramic	R19	39373-67	Resistor, 47,000 ohm
C3	C-137727-1	Capacitor, $100 \mathrm{mmf} ., 500$ v., ceramic	R20	39373-87	Resistor, 470,000 ohm, $1 / 2 \mathrm{w}$
C4	C-144675-2	Capacitor, . 005 mfd ., 500 v., disc ceramic	R21	39374-15	Resistor, 150 ohm, $10 \%, 1 / 2 \mathrm{w}$.
C5A	C-152824	Capacitor, Variable	R22	39373-87	Resistor, $470,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.
C5B		Capacitor, Variable Four Section	R23	39373-107	Resistor, 10 megohm, $1 / 2 \mathrm{w}$.
C5C		Capacitor, Variable $\}$ Four Section	R24	$39374-185$	Resistor, $47 \mathrm{ohm}, 10 \%, 2 \mathrm{w}$.
C5D		Capacitor, Variable	R25	39374-202	Resistor, $1200 \mathrm{ohm}, 100$, 2.w.
C6A	C-144873-7	Capacitor, 001 mfd ., 500 v . ${ }^{\text {a }}$ Two section	R26	39374-25	Resistor, 1000 ohm, $10 \%, 1 / 2 \mathrm{w}$.
C68		Capacitor, .001 mfd ., 500 v . cisc ceramic	R27	39374-33	Resistor, 4700 ohm, $10 \%, 1 / 2 \mathrm{w}$
C7	C-137727-98	Capacitor, 22 mmf ., $2 \%, 500 \mathrm{v}$., ceramic	R29	39373-3	Resistor, 15 ohm, $1 / 2 \mathbf{w}$ (chassis 30E-1
C8	$\mathrm{C}-137727-109$	Capacitor, 39 mom., $10 \%, 200 \mathrm{v}$., ceramic			only)
C9	C-137727-121	Capacitor, 5000 mmf , 500 v ., ceramic	CAI	C-132300-6	Cable t Plug Assy., Power
C10	C-137727-90	Capacitor, 100 mmf ., $5 \%, 500$ v., ceramic	CA4	B-139727-9	Cable \& Plug Assy (chassis 30E-1 only)
$C 11$	39001-17	Capacitor, $05 \mathrm{mfd} ., 600$ v., paper	11	W-145851	Bulb (Dial), 7 w., 120 v., Candelabra
${ }_{C 12}$	${ }^{39001-17}$	Capacitor, 05 mfd ., 600 v ., papet .			Base Speaker
C18A	C-144675-7	Capacitor, $.001 \mathrm{mfd} ., 500 \mathrm{v}$. 1 Two section	SP1	$\text { C- } 145768$	Speaker Speaker 5 1/4"E M
C13B		Capacitor, 001 mfd .500 v . $\}$ disc ceramic	SP2 SR1	$\begin{aligned} & \text { AD- } 151190-1 \\ & \text { B-145370 } \end{aligned}$	Speaker 5 1/4"E.M Rectiffer, Selenium
C14	C-137727-121	Capacitor, 5000 mmf ., 500 v ., ceramic	SRI	$\begin{aligned} & B-145370 \\ & W-145300-2 \end{aligned}$	Rectifier, Selenium Switch, Band Change
C15	C-137398-5	Capacitor, 3.3 mmf ., 500 v .	$\begin{aligned} & \text { SW } 1 \\ & \text { SW, } \end{aligned}$	W-145300-2 Part of R18	Switch, Band Change Switch, Power
C18A	C-144875-7	Capacitor, $0001 \mathrm{mfd} ., 500 \mathrm{v}$.) Two section	$\begin{aligned} & \text { SW2 } 2 \\ & \mathrm{~T} 1 \end{aligned}$	Part of R18 AC-139919-3	Switch, Power Transformer, 1st I.F. (455 kc.)
C16B C 17	B-142958	Capacitor, $.001 \mathrm{mfd} ., 500$ v. disc ceramic Capacitor, 4 mfd, 50 v., Electrolytic	T1	$\begin{aligned} & A C-139919-3 \\ & D-145025-1 \end{aligned}$	Transformer, ist I.F. (405 kc.)
C18	C-137727-121	Capactor, 5000 mmf ., 500 v ., ceramic	T3	C-145193-1	Transformer, Ratio Detector
C22	C-144875-12	Capacitor, $.001 \mathrm{mfd} ., 500 \mathrm{v}$. Two section	T4	D-145025-3	Transformer, ist I.F. (10.7 mc.)
C22		Capacitor, $0001 \mathrm{mfd} ., 500 \mathrm{v}$, disc ceramic	T5	AC-139919-3	Transformer, 2nd I.F. (455 kc.)
C24	C-137727-109	Capactior, $39 \mathrm{mmf} .10 \%, 200 \mathrm{v}$., ceramic	T6	138131-1	Transformer, Output
C25A	C-144675-18	Capactior, $.0001 \mathrm{mfd}, 500 \mathrm{v}$] Three sec-	L1	B-143322	Coil, F.M. Antenna Primary
C25B		Capacitor, .004 mid., 500 v . Ation disc	L2	AW-145724	Coil Assy., F.M. Antenna Secondary
C25C		Capacitor, 004 mfd ., 500 v . ceramic	L3	AW-143837	Choke Assy., R.F. (F.M.)
C26	39001-13	Capacitor, $.01 \mathrm{mfd} ., 600 \mathrm{v}$. , paper	L4	AA-151747	Coll Assy., R.F. (F.M.)
C27A	C-144675-1	Capacitor, .0002 mfd ., 500 v . Four sec-	L5	$\text { AA- } 151746$	Coll Assy., Oscillator (F.M.) Coll Assy., Oscillator (A.M.)
C27B C 27 C		Capacitor, 002 mfd ., 500 v . tion disc	L6	$\begin{aligned} & A C-152448 \\ & A W-143934 \end{aligned}$	Coll Assy., Osctllator (A.M.) Choke Assy., R.F.
C27C C27D		Capacitor, $0005 \mathrm{mfd} ., 500 \mathrm{v}$. ${ }^{\text {Capacitor, }} .0002 \mathrm{mfd} .50 \mathrm{v}$ ceramic	L8	AW-143934	Choke Assy., R.F.
C28	39001-13	Capacitor, . 01 mid., 600 ч., paper	1.9	AC-152873	Loop Antenna, Back \& Power Cable Assy
C29	39001-17	Capacitor, 05 mid., 600 v., paper	L10	AW-149187	Choke Assy.
C30A	B-149183	Capacitor, 100 mfd ., 150 v . Three sec-	L11	AW-149187	Choke Assy.
C30B		Capacitor, 30 mfd ., 150 v . tion elec-	L12	AC-149187	Choke Assy.
C30C		Capacitor, $10 \mathrm{mfd} ., 150 \mathrm{v} . \int$ trolytic	L13	AC-143837	Choke Assy.
C31	E-143686-1	Capacitor, 50 mmf ., 500 v , molded disc ceramic	P1	$\begin{aligned} & W-139900 \\ & C-152811 \end{aligned}$	Background, Dial
C32	39001-85	Capacitor, 08 mid., 600 v., paper		AB-149145-2	Bafle Assembly, Speaker
C33	C-144875-14	Capacitor, 1000 mmf ., 500 v ., disc ceramic		AW-149073	Bracket Assembly, Dial Pointer
C34	39001-20	Capacitor, .15 mfd , 600 v., paper		AW-145697	Bushing \& Insulator, Drive Shaft
C35	W-137398-5	Capacitor, 3.3 mmf ., 500 v.		AC-152861-4	Cabinet (E 30 BE)
C36	39001-74	Capacitor, .002 mfd ., 600 v., paper		AC-152861-3	Cabinet (E 30 GN)
C38	Part of T4	Capacitor, 17 mmf., 3%		AC-152861-2	Cabinet (E 30 MN)
C39	Part of ${ }^{\text {T1 }}$	Capacitor, 106 mmf ., 5%		AC-152861-1	Cabinet (E 30 TN)
C40	Part of T1	Capactor, $131 \mathrm{mmf} .5 \%$		W-131154-1	Cotter (External), Drive Shaft
C41	Part of T2	Capacitor, 17 mmf ., 3%		C-152832-4	Dial (E 30 BE)
C42	Part of T2	Capacitor, 17 mmi ., 3%		C-152832-3	Dial (E 30 GN)
C43	Part of T5	Capacitor, $131 \mathrm{mmf} ., 5 \%$		C-152832-2	Dial (E 30 MN)
C44	Part of T5	Capactor, 106 mmi , 5%		C-152832-1	Dial (E 30 TN)
C45	Part of T3	Capacitor, 43 mmf , 5%		W-138853	Insulator, Volume Control
46A	B-151870	Capacitor, 20 mfd ., 150 v.] Two section		B-149065-1	$\text { Knob (E } 30 \text { TN) }$
48 B		Capacitor, $20 \mathrm{mfd} ., 150 \mathrm{v}$. Electrolytic		B-149065-2	Knob (E 30 GN)
C47	C-137727-121	Capacitor, 5000 mmf ., 500 v., ceramic		B-149065-6	Knob (E 30 MN)
C48	C-137727-121	Capactor, 5000 mmf ., 500 v ., ceramic		$\begin{aligned} & \text { B-149065-7 } \\ & \text { C-151652 } \end{aligned}$	Knob (E 30 BE) Lens, Dial
CR49A	C-142951-12	Capacitor, 500 mmf ., 500 v . CapacitorResistor, $680,000 \mathrm{ohm}, 1 / 5 \mathrm{w}$ Resistor unit.		$\begin{aligned} & C-151652 \\ & B-148080-4 \end{aligned}$	Lens, Dial Medallion
R2	39373-92	Reststor, 1 megohm, $1 / 2 \mathrm{w}$.		A-152814	Pointer, Dial
R3	39373-44	Resistor, 3300 ohm, $1 / 2 \mathrm{w}$.		W-143206-4	Shaft, Dial Drive
R4	39373-92	Resistor, 1 megohm, 1/2 w.		${ }_{W} \mathrm{AB}-152842$	Shaft \& Gear Assy., Dial Pointer
R5	39373-14	Resistor, 100 ohm, $1 / 2 \mathrm{w}$.		W-139040 AB-152902	
R6	39374-42	Resistor, $27,000 \mathrm{ohm}, 10 \% 1 / 2 \mathrm{w}$.		${ }_{\text {W-1 }} \mathrm{W}-144732$	Socket, Tube (V6)
R7	39374-41 $39373-26$	Resistor, $22,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$. Resistor, $470 \mathrm{ohm}, 1 / 2 \mathrm{w}$.	.	W-145607	Socket, Tube (V7)
R9	39873-97	Resistor, 2.2 megohm, $1 / 2$ w.		w-14270̂i	Sucket, Tuiue (Vi, V3)
R10	39373-100	Resistor, 3.3 megohm, $1 / 2 \mathrm{w}$.		39462-1	Socket, Tube (V2)
R11	39373-35	Resistor, 1000 ohm, $1 / 2 \mathrm{w}$.		39462-2	Socket, Tube (V4, V5)
R12	39373-67	Resistor, 47,000 ohm, 1/2 w.		$\mathrm{W}-149096$ $\mathrm{w}-51752$	Spring, Gear Spring, Drive Cord
R13	39373-67 $\mathbf{3 9 5 7 3 - 3 8}$	Resistor, 47,000 ohm, $1 / 2 \mathrm{w}$. Resistor, $1000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-51752	Stud (Insulated), Chassis Mtg.
R14 R15	$39373-38$ $39373-92$	Resistor, $1000 \mathrm{ohm} ,1 / 2 \mathrm{w}$. Resistor, $1 \mathrm{megohm}, 1 / 2 \mathrm{w}$		W-138976	Washer (Shouldered), Volume Control
R16	39373-80	Resistor, $22,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-134916	Washer (Spring), Drive Shaft
R17	30373-33	Reststor, $1000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.			
R18	B149184	Control, Volume (3 megohm-Tap. $300,000 \mathrm{ohm}$)			

Model	Color
E15 WE	White
E15 BE	Blue
E15TN	Tan
E15SL	Steel Blue
E15CE	Chartreuse

Model	Color
E20 MN	Maroon
E20 GN	Green
E20GY	Grey
E20 TN	Tan

DESCRIPTION

TYPE: Five-tube, single band, Superheterodyne.
FREQUENCY RANGE: 540 to 1600 kc .
INTERMEDIATE FREQUENCY: 455 kc .
POWER SUPPLY: a.c.-d.c.
VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 30 watts maximum.
POWER OUTPUT: 1 watt maximum.

TUBE COMPLEMENT:

Type	Function
12BE6	Converter
12BA6	I. F. Amplifier
12AV6	Detector, AVC, 1st A. F. Amplifier
50C5	A.F. Power Output
35W4	Rectifier

When using direct current it may be necessary to reverse the position of the power plug in the elec outlet for correct polarity.

Reversing the position of the power plug when alternating current is used may reduce hum.
Under no circumstances should a ground be connected to this receiver.
PHONOGRAPH CONNECTION - To use a record player with this receiver insert the pickup plug the record player into the Phono jack on back of receiver. Then slide the Radio-Phono Switch on back of the receiver to the "Phono" position. Connect the power cord of the record player to a conv ent electric outlet of the correct voltage and frequency. Operate the record player in the nor manner.

ALIGNMENT PROCEDURE

Note: Before removing the chassis from the cabinet, turn the tuning control completely count clockwise and push the dial pointer down so as to clear opening in grille.

1. Connect an output meter across the speaker voice coil.
2. The r.f. signal input from the signal generator should be connected as indicated in the alignr chart. Connect the signal generator ground to lug as shown in Chassis Top View.
3. Turn the volume control on full and adjust the signal generator output to produce approximal midscale deflection of the output meter, but maintain signal generator output as low as possi to prevent AVC action in the receiver.
ALIGNMENT CHART

Alignment Sequence	Signal Generator Output			Position of Dial pointer	Adjust for Maximum Output
	Frequency in KC	In Series with	To		
1	455	200 mmf .	External Ant. Screw	1620	A, B, C \& D (See Note 1.)
2	1620	200 mmf .	External Ant. Screw	1620	E (See Note 2.)
3	1400	200 mmf .	External Ant. Screw	Tune to Signal	F (See Note 2.)

ALIGNMENT NOTES
 ALIGNMENT NOTES

> 1. Repeat adjustments ($A, B, C \& D$) in sequence, until maximum output is obtained. 2. The loop antenna must be positioned with respect to the chassis to simulate its position when
> chassis and loop are fastened in cabinet.
> 3. After the chassis is installed in the cabinet, set the pointer for proper dial calibration. Alignment adjustment locations are shown on page 9 "CHASSIS, TOP VIEW."

CROSLEY PAGE 2
MODELS E15BE, CE, SL, TN, W E20GN, GY, MN, TN, Ch. 15-20F

PARTS LIST

Symbol No.	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
C1A	151844	Capacitor, Variable Two Section		151773-4	Bridge (E20GY)
C1B		Capacitor, Variable Two Section		151773-2	Bridge (E20TN)
C2	137727-109	Capacitor, $39 \mathrm{mmf}, 10 \%, 200$ v., ceramic		153567-1	Cabinet (E15WE)
C3	Part of T1	Capactior, 106 mmf .		153567-2	Cabinet (E15BE)
C4	Part of T1	Capacitor, 131 mmf .		153567-3	Cabinet (E15TN)
C5	39001-85	Capacitor, $08 \mathrm{mfd} ., 600$ v., paper		153567-4	Cabinet (E15SL)
C6	Part of T2	Capacitor, 131 mmf .		153567-5	Cabinet (E15CE)
C7	Part of T2	Capacitor, 106 mmf .		153007	Cabinet (E20MN)
C8A	144675-1	Capacitor, $0002 \mathrm{mid} ., 500 \mathrm{v}$. Four Sec		153008-3	Cabinet (E20GN)
C8B		Capacitor, .002 mfd , 500 v . $\mathrm{F}_{\text {Four Sec }}^{\text {tion disc }}$		153008-4	Cabinet (E20GY)
C8C		Capacitor, $.005 \mathrm{mfd} ., 500 \mathrm{v}.\} \begin{aligned} & \text { tion disc } \\ & \text { ceramic }\end{aligned}$		153008-2	Cabinet (E20TN)
C8D		Capacitor, .0002 mfd . 500 v .		139921	Clip, I.F. Transformer Mtg.
C9	143686-3	Capacitor, 100 mmf ., 500 v ., Molded disc ceramic		$\begin{aligned} & 131154-1 \\ & 153291-1 \end{aligned}$	Cotter (External), Pointer Pulley Escutcheon, Dial (E15WE)
C10	39001-85	Capacitor, 08 mfd., 600 v ., paper		153291-2	Escutcheon, Dial (E15BE, E15TN,
C11	39001-74	Capacitor, . 002 mfd ., 600 v., paper			E15SL, E15CE)
C12	142951-12	Capacitor-Resistor		151674-1	Escutcheon (E20MN)
C13	142951-11	Capacitor-Resistor		151674-3	Escutcheon (E20GN)
C14	39001-85	Capacitor, 08 mfd., 600 v., paper		151674-4	Escutcheon (E20GY)
C15	39001-17	Capacitor, 05 mfd ., 600 v., paper		151674-2	Escutcheon (E20TN)
C16A	147174	Capacitor, $100 \mathrm{mfd} ., 150 \mathrm{v}$.) Three Sec-		150423	Foot (Felt in metal cup)
C16B		Capacitor, $30 \mathrm{mfd} ., 150$ v. tion Elec-		153862	Grille Assembly
C16C		Capacitor, $10 \mathrm{mfd} ., 150 \mathrm{v}$. ${ }^{\text {c }}$ trolytic		151627	Grille Cloth \& Baffle Assy.
C17	39001-13	Capacitor, 01 mfd ., 600 v ., paper		153552-1	Knob (E15WE)
R1	39374-41	Resistor, $22,000 \mathrm{hm}, 10 \%, 1 / 2 \mathrm{w}$.		153552-2	Knob (E15BE)
R2	39374-69	Resistor, 2.2 megohm, $10 \%, 1 / 2 \mathrm{w}$.		153552-3	Knob (E15TN)
R3	39374-49	Resistor, $100,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		153552-4	Knob (E15SL)
R4	39374-34	Resistor, $5600 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		153552-5	Knob (E15CE)
R5	39374-85	Resistor, 10 megohm, $10 \%, 1 / 2 \mathrm{w}$.		152996-1	Knob (E20NN)
R6	151845	Control, Volume(3 megohm, Táp 300,000 ohm)		152996-3	Knob (E20GN)
R7	Part of C13	Resistor, 47,000 ohm, $1 / 2 \mathrm{w}$.		152996-4	Knob (E20GY)
$\mathrm{R8}$	39374-57	Resistor, $470,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		152996-2	Knob (E20TN)
R9	39374-57	Resistor, 470,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.		$153540-2$	Medallion (E15WE)
R10	39374-15	Resistor, $160 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		153540-3	Medallion (E15BE, E15TN, E15SL, E15CE)
R11	Part of C12	Resistor, 680,000 ohm, $1 / 2 \mathrm{w}$.			E15SL, E15CE) Moulding, Trim (E15WE)
R12	39374-189	Resistor, $100 \mathrm{ohm}, 10 \%, 2 \mathrm{w}$.		153289-1	Moulding, Trim (E15WE)
R13	39374-114	Resistor, $1200 \mathrm{ohm}, 10 \%, 1 \mathrm{w}$.		153289-2	Moulding, Trim (E15BE, E15TN,
R14	39374-25	Resistor, 1000 ohm, $10 \%, 1 / 2 \mathrm{w}$.			E15SL, E15CE)
R16	39374-1	Resistor, 10 ohm, $10 \%, 1 / 2 \mathrm{w}$.		147275 45580-2	Mounting, Rubber (2 used) Mounting, Rubber (1 used)
CA1	$\begin{aligned} & 132300-1 \\ & 136998 \end{aligned}$	Cable \& Plug Assy., Power Connector, Phono		$\begin{array}{\|l} \hline 45580-2 \\ 94704-19 \end{array}$	Mounting, Rubber (1 used) Nut (Push-On), Escutcheon
L1	153571	Loop \& Back Assy. (E15WE, E15BE, E15TN, E15SL, E15CE)		153380-2	$\begin{aligned} & \text { Pointer, Dial (E15BE, E15TN, } \\ & \text { E15SL, E15CE) } \end{aligned}$
11	152994	Loop \& Back Assy.,(E20MN, E2OGN, E20GY, E20TN)		$\begin{aligned} & 153380-1 \\ & 151854 \end{aligned}$	Pointer, Dial (E15WE) Polnter, Dial (E20MN, E20GN,
L2	153405	Coil, Oscillator			E20GY, E20TN)
SP1	145956-2	Speaker (5-1/4' P.M.)		151946	Pulley, Shaft Assy., Dial Pointer
SW1	Part of R6	Switch, Power		39482-18CL	Screw, Bridge Mtg. (E15WE)
SW2	148260 $139819-3$	Switch, Phono ${ }^{\text {Transformer, }}$ 1st I. F.		39178-29CL	Screw, Bridge Mtg. (E20MN, E2OGN, E20GY, E20TN)
T2	139919-3	Transformer, 2nd I.F.		39462-2	Socket, Tube
T3	147171	Transformer, Output		51752	Spring, Drive Cord
$\begin{aligned} & \text { TS1 } \\ & \text { TS2 } \end{aligned}$	147784	Shield, Tube (V2) Shield, Tube (V3)		136630	Stud, Trimount (E20MN, E20GN, E20GY, E20TN)
	$\begin{aligned} & 147934 \\ & 153290-1 \end{aligned}$	Bottom, Chassis Bridge (E15WE)		153582	Stud, Trimount (E15WE, E15BE, E15TN, E15SL, E15CE)
	153290-2	Bridge (E15BE, E15TN, E15SL, E15CE)		147216	Suction Cup
	$\begin{aligned} & 151773-1 \\ & 151773-3 \end{aligned}$	$\begin{aligned} & \text { Bridge (E20MN) } \\ & \text { Bridge (E20GN) } \end{aligned}$		148775-2	Support \& Bushing Assy., Pointer Pulley

Model	
No.	Color
E10BE	Blue
E10CE	Chartreuse
E10RD	Red
E10WE	White

DESCRIPTION

TYPE: Five-tube, single band, Superheterodyne. FREQUENCY RANGE: 540 to 1600 kc . INTERMEDIATE FREQUENCY: 455 kc . POWER SUPPLY: a.c.-d.c. VOLTAGE RATING: 105-125 volts. POWER CONSUMPTION: 30 watts maximum. POWER OUTPUT: 1 watt maximum.

TUBE COMPLEMENT:

Type	Function
12BE6	Converter
12BA6	I.F. Amplifier
12AV6	Detector, AVC, 1st A. F. Amplifier
50C5	A.F. Power Output
35W4	Rectifier

CHASSIS, TOP VIEW

MODELS E10BE, CE, RD,

WE, Ch. 10E, 10E-1
When using direct current it may be necessary to reverse the position of the power plug in the electric outlet for correct polarity.

Reversing the position of the power plug when alternating current is used may reduce hum.
Under no circumstances should a ground be connecied to this receiver.

ALIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil.
2. The r.f. signal input from the signal generator should be connected as indicated in the alignment chart. Connect the signal generator ground through a 0.1 mfd . condenser to $\mathrm{B}-(\mathrm{pin} 2$ on 12BAG tube socket).
3. Turn the volume control on full and adjust the signal generator output to produce approximately midscale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action in the receiver.

ALIGNMENT CHART

Alignment adjustment locations are shown on page11, "CHASSIS, TOP VIEW."

Alignment Sequence	Frequency in KC	In Series with	To	Position of Dial pointer	Adjust for Maximum Out put
	455	200 mmf	High Side of Loop	1620	A, B, C \& D (See Note 1.)
2	1620	Radiated to Loop	1620	E (See Note 2.)	
3	1400	Radiated to Loop	Tune toSignal	F (See Note 2.)	

ALIGNMENT NOTES

1. Repeat adjustments (A, B, C \& D) in sequence, until maximum output is obtained.
2. Place signal generator output lead near the loop antenna. The loop antenna must be positioned with respect to the chassis to simulate its position when chassis and loop are fastened in cabinet.

CROSLEY PAGE 23-'
MODELS E10BE, CE, RL WE, Ch. 10E, 10E-1

MODELS E10BE, CE, RD, WE, Ch. 10E, 10E-1

PARTS LIST

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
C1A C1B	153497	$\left.\begin{array}{l}\text { Capacitor, Tuning \& Pulley } \\ \text { Capacitor, Tuning \& Pulley }\end{array}\right\}$ Assembly	$\begin{aligned} & \mathrm{R} 12 \\ & \text { CA1 } \end{aligned}$	$\begin{aligned} & 39374-1 \\ & 142769-4 \end{aligned}$	Resistor, $10 \mathrm{ohm}, 1 / 2 \mathrm{w}$. (10E-1 chassis) Cable \& Plug Assembly, Power
C2	137727-109	Capacitor, 39 mmf ., 10\%, 200v., Ceramic	L1	153872	Loop \& Back Assembly
C3	Part of T1	Capacitor, 106 mm .	L2	153405	Coil, Oscillator
C4	Part of T1	Capacitor, 131 mmf .	SP1	148400-1	Speaker (4"PM), 10E chassis
C5	39001-85	Capacitor, 08 mfd , 600v., paper	SP2	135632	Speaker (4"EM), 10E-1 chassis
C6	Part of T2	Capacitor, 131 mmf .	T81	147784-1	Shield, Tube (V5)
C7	Part of T2	Capacitor, 106 mmf .	SW1	39379-1	Switch, ON-OFF
C8A	151550-1	Capacitor, 220 mmf .)	T1	139919-3	Transformer, 1st I.F.
C8B		Capacitor, 002 mmf .	T2	139919-3	Transformer, and I.F.
C8C		Capacitor, 125 mmf . Assembly	T3	138131-1	Transformer, Audio, Output
C8D		Capacitor, 5000 mmf .		153866	Baffle \& Grille Cloth Assembly
C8E		Capacitor, 125 mmf .		153851	Bracket \& Baffle Assembly, Pointer Shaft
C11	39001-80	Capacitor, $.02 \mathrm{mfd} ., 600 \mathrm{v}$., paper			Bushing
C12	39001-85	Capacitor, 08 mfd ., 600 v ., paper		153887-1	Cabinet, Model E-10WE
C13	39477-45	Capacitor, 047 mfd .600 v ., molded paper		153887-2	Cabinet, Model E-10CE
C14A	154280	Capacitor, $50 \mathrm{mfd} ., 150 \mathrm{v} .$,$\} Electrolytic$		153887-3	Cabinet, Model E-10RD
C14B		Capacttor, $30 \mathrm{mfd} ., 150 \mathrm{v} ., \mathrm{h}$ (10E chassis)		153887-4	Cabinet, Model E-10BE
C15A	151617	Capactior, $20 \mathrm{mfd} ., 150 \mathrm{v} .$,$\} Electrolytic$		131154-1	Cotter (External), Drive Shaft
C15B		Capacitor, $20 \mathrm{mfd} ., 150 \mathrm{v}$. $\}$ (10E-1 chassis)		153855-1	Knob (2 used), Model E-10WE
R1	39374-41	Resistor, 22,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.		153855-2	Knob (2 used), Model E-10CE
R2	39374-1	Resistor, 10 ohm, 10\%, $1 / 2 \mathrm{w}$.		153855-3	Knob (2 used), Model E-10RD
R3	39374-69	Resistor, 2.2 megohm, $10 \%, 1 / 2 \mathrm{w}$.		153855-4	Knob (2 used), Model E-10BE
R4	39374-45	Resistor, 47,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.		94704-7	Nut (Push on type), 4 used
R5A	Part of C8	Resistor, 6.8 megohm \}		153846	Polnter, Dial
R5B	Part of C8	Resistor, 470,000 ohm $\}$ Assembly		153848	Pulley \& Shaft Assembly, Dial Pointer
R5C	Part of C8	Resistor, 470,000 ohm		153588-1	Shaft, Dial Cord Drive
R6	39378-13	Control, Volume (1 megohm, tapped 300,000 ohm)		$\begin{aligned} & 39462-2 \\ & 51752 \end{aligned}$	Socket, Tube Spring, Drive Cord
R9 R11	$\begin{aligned} & 39374-15 \\ & 39374-26 \end{aligned}$	Resistor, 150 ohm, $10 \%, 1 / 2 \mathrm{w}$. Resistor, 1200 ohm, $10 \%, 1 / 2$ w. (10E chassis)		132124	Stud (Trimount, 4 used), Back \& Loop Assembly

Ch. 85E

Chassis 75E

Models: E-75 CE, E-75 RD, E-75 GN, E-75-TN

Chassis 85E
Models: E-85 CE, E-85 RD, E-85 GN, E-85 TN

DESCRIPTION

TYPE: Five-tube, single band, Superheterodyne.
FREQUENT RANGE: 540 to 1600 kc .
INTERMEDIATE FREQUENCY: 455 kc .
POWER SUPPLY: 60 cycle, a.c. only.
VOLTAGE RATING: 105-125 volts.
POWER OUTPUT: 1 watt maximum.
POWER CONSUMPTION. 35 watts.

SLEEP SWITCH. Set it for up to 90 minutes operation of radio or appliance - turns them off automatically. (85E only.)

ELECTRIC CLOCK of highest accuracy. The jewel-like clock has a black face set off by hour and minute hands in blue, sweep-second hand in gold, and alarm set hand in red. Clock controls in sparkling clear plastic.

ALARM CONTROL. Set it for time radio (or appliance 85 E only) is to turn on automatically.

RADIO SWITCH has three positions: "Off" to turn off radio; "Auto" to turn radio (or appliance 85E only) on automatically at pre-s-4 " A a; "On" for manual radio operation.

APPLLANCE OUTLET is provided at rear of set for connecting any appliance (not exceeding 1100 watts) to be controlled by timing device. (85E only.)

TUBE COMPLEMENT:

Type	Function
12BE6	Converter
12BD6	I. F. Amplifier
12AT6	Detector, AVC, Ist. A. F. Amplifier
50C5	A. F. Power Output
35W4	Rectifier

TIME SET, for setting clock to time of day.
DRIFT-FREE TUNING, accomplished by Crosley' frequency stabilized oscillator, keeps receive aligned precisely with station to which you havi tuned.

ECEPTIONALLY FINE TONE - the result o advanced engineering of the Crosley circuit ant components.

INCREASED SENSITIVITY AND STABILITY Permeability tuned (iron core) I.F. transformer give greater stability and sensitivity so that dis tant station can be received with minimum inter ference.

AUTOMATIC VOLUME CONTROL holds the vol ume as you set it.

BUILT-IN ANTENNA consists of a sturdy high efficiency loop which receives stations sharpl and clearly.

CHASSIS 75E, 85E

ALIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil (3.2 ohms).
2. Feed an R.F. signal modulated 30% at 400 cycles to the high side of loop (inside winding of loop) as indicated in the alignment chart. Connect signal generator ground through a 0.1 mfd capacitor to B- .
3. Turn the Radio Switch (top knob on clock dial) to the "ON" position.
4. Turn the volume control to maximum clockwise position and adjust the signal generator output to produce approximately mid-scale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action.

ALIGNMENT CHART

Alignment locations are shown on page 17.

Alignment Sequence	Signal Generator Output		Position of Tuning Gang	Adjust for Max. Output	Remarks	
	455	200 mmf.		Open	A\&B	See note 1
2	455	200 mmf.	Hi side of loop	Open	C\&D	See note 1
3 Repeat adjustments 1 and 2 until maximum output is obtained.						
4	1620	Radiated Signal	Loop	Open	E	See note 2
5	1400	Radiated Signal	Loop	Tune in Sig.	F	See note 2

Notes:

1. The speaker must be removed from the chassis in order to adjust the bottom slugs on the $I_{.} F$. Transformers. DO NOT REMOVE THE WIRES FROM THE SPEAKER.
2. The signal can be radiated to the loop antenna by placing the output lead of the signal generator close to the loop.

For oscillator and antenna trimmer alignment, the loop antenna must be positioned with respect to the chassis to simulate position when chassis and loop are fastened in the cabinet so that no further adjustment of the antenna trimmer (F) will be necessary when the chassis and loop are mounted in the cabinet.

TOP VIEW - CHASSIS 75E

TOP VIEW - CHASSIS 85E

PAGE 23-18 CROSLEY
MODELS E-75CE, GN, RD, TN,
Ch. 75E; E-85CE, GN, RD, TN,
Ch. 85E
SOCKET VOLTAGE CHART

PARTS LIST

$\begin{gathered} \text { Syublel } \\ \text { No. } \end{gathered}$	Part No.	Description	$\begin{gathered} \text { Bymbol } \\ \text { No. } \end{gathered}$	Part No.	Description
C1A	154982	Capacitor, Tuning $\}$ Assembly	12	158405	Coll, Oscllitator
C18		Capacitor, Tuning Assembly	$8{ }^{81}$	138782-8	Speaker P.M. (4')
C8	137727-109	Capacitor, 39 MMF., 10\%, 200 v., Ceramic	T81	147784	8hield, Tube
C4	Part of Tl	Capacitor	8W1	Part of CLI	8witch, ON-OFF, Power
C5	30477-46	Capacitor	T1	155007-1	Transformer, 18t I.F.
C6	Part of 12	Capacitor, .088 MFD.,600 V., Molded Paper	T2	155007-1	Transformer, 2nd I.F.
C7	Part of 12	Capacitor	CO1	155015 155016	Transformer, Audio Output
C8A	151550-1	Capacttor, 220 MMF.	COI	150016	Appliance Outlet \& Bracket Assembly (Chassis 85E only)
C8B C8C		Copactior, , 002 MFD.	CL1	154971	Clock Assembly (Chassis 75E)
C8D		Capacitor, 125 MMF. Assembly	CL1	155107	Clock Assembly (Chassis 85E)
C8E		Capactitor, 000 MFD.		155214-1	Cabinet, Model E-75CE
C9	137727-8	Capacitor, $1000 \mathrm{MMF} .10 \%, 300 \mathrm{v}$. Ceramic		155814-2	Cabinet, Model E-75RD
C11	39477-43	Capacitor, 002 MFD., 600 V ., Molded Paper		155214-4	Cabinet, Model E-75TN
C12	39477-45	Capacitor, . 047 MFD.,600v.,Molded Paper		155214-5	Cabinet, Model E-75GN
C13	39477-46	Capacitor, 068 MFD., 600 v ., Molded Paper		155214-6	Cabinet, Model E-B5RD
C14A	155008	Capacitor, 50 MFD., 150 v . $\}$ Electrolytic		155214-7	Cabinet, Model E-85TN
C14B	30374-61	Capacitor, 30 MFD., 150v. Electrolytic		155214-8	Cablnet, Model E-85GN
R2	39374-41	Resistor, 1 meg OHM, $10 \%, 1 / 2 \mathrm{w}$.		155017-1	Grille, Model E-75CE
R3	39374-1	Resistor, $22,000 \mathrm{OHM}, 10 \%, 1 / 2$ Resistor, $10 \mathrm{OBM}, 10 \%, 1 / 2 \mathrm{w}$		155017-2	Grille, Model E-75RD
R4	39374-69	Resitar, $2.2 \mathrm{Meg} \mathrm{OHM}, 10 \%, 1 / 2 \mathrm{w}$.		156017-3	Grille, Model E-75TN
R5	39374-45	Resistor, 47,000 Offi, i0\%, $1 / 2 \mathrm{w}$:		1550̂ilil	Grille, Model E-76GN
R6	154961	Control, Volume, 1 Meg OHM		155021-2	Grule \& Bar Assembly, Model E-85RD
R7	39374-15	Restator, $150 \mathrm{OHM}, 10 \%, 1 / 2 \mathrm{w}$.		155021-3	Grille \& Bar Assembly, Model E-85TN
R8A	Part of C8	Resistor, 6.8 Meg OHM		155021-4	Grille \& Bar Assembly, Model E-85GN
R8B R8C		Resintor, 470,000 OHM		155061-1	Knob, Volume Control
R9	39374-114	Realistor, 470,000 OBM		154062-1	Knob, Tuning
CA1	$149780-3$	Catistor, 1200 OHM, $10 \%, 1$ V.		155003	Name Plate, Crosley (Used on 75 models only)
CA1	142769-5	Cable \& Plug, Power (858 only) Cable E Plug, Power (75z only)		154847-3	Name Plate, Crosley (Used on 85 models only)
L1	154987	Loop Antenn \% Back Assembly (75E ouly)		39482-2 132124	Socket, Tube (V1, V2, V3, V4, V5)
LI	155042	Loop Antemna \& Back Arsembly (85E only)		154963	Washer, Extruded (4 used), Clock Mounting

subject: TO ADD CLOCK REPLACEMENT PARTS TO CHASSIS 75E AND CHASSIS 85 E PARTS LIST.

The following parts are now available for replacement on Clock Assemblies, part numbers 154971 and 155107.

PARTS LIST

Part No.	Description	Part No.
Description		
$156208-1$	Dial Crystal (Plastic)	$156208-8$
$156208-2$	Bezel (Model E-75)	Sleeve, Hand (Second)
$156208-3$	Knob (3 used on model E-75)	$156208-9$
14 used on model E-85)	Minute, Hand	
$156208-4$	Timer Switch	$156208-11$
$156208-6$	Adjusting Screw For Timer	Indicator, Hand (Alarm)
	Switch	$156208-13$
$156208-14$	Filler	
Biller (Black)		

A glass crystal is found on some of the above clock assemblies which were used in early production. Since the glass is not available, the following parts must be used for replacement.

\[

\]

The filler, 156208-14, with the black surface, should be placed next to the bezel, with the black surface facing the bezel. Figure 1 shows the assembly of these parts.

Figure 1

CHASSIS 90E
Models: E-90WE, E-90CE, E-90GY, E-90RD, E-90BK

DESCRIPTION

TYPE: Five-tube, single band, Superheterodyne.
FREQUENCY RANGE: 540 to 1600 kc .
INTERMEDIATE FREQUENCY: 455 kc .
POWER SUPPLY: 60 cycle, a.c. only.
VOLTAGE RATING: 105-125 volts.
POWER OUTPUT: 1 watt maximum.
POWER CONSUMPTION:

SLEEP SWITCH - Set it up to 60 minutes operation of radio or appliance - turns them off automatically.

ELECTRIC CLOCK of highest accuracy. Framed in gold-color, the jewel-like clock has a black face set off by hour and minute hands in blue and sweep second hand in gold. Clock controls in clear plastic.
RADIO SWITCH has three positions: "Off" to turn off radio; "Auto" to turn radio or appliance on automatically; "On" for manual radio operation.

APPLIANCE OUTLET is provided at rear of set for connecting any appliance (not exceeding 1100 watts) to be controlled by timing device.
TIME SET, for setting clock to time of day.
ALARM CONTROL - Set it for time radio or appliance is to turn on automatically. Pull out

TUBE COMPLEMENT:

Type	Function
12BE6	Converter
12BD6	I. F. Amplifier
12AT6	Detector, AVC, 1st. A. F. Amplifier
50C5	A. F. Power Output
35W4	Rectifier

to have buzzer sound a few minutes after radic turns on.
DRIFT-FREE TUNING, accomplished by Crosley frequency stabilized oscillator, keeps receive: aligned precisely with station to which you hav tuned.
EXCEPTIONALLY FINE TONE - The result o advanced engineering of the Crosley circuit anc components.
INCREASED SENSITIVITY AND STABILITY
Permeability tuned (iron core) IF transformer: give greater stability and sensitivity so that distan stations can be received with minimum inter ference.
AUTOMATIC VOLUME CONTROL holds the vol ume as you set it.
BUILT-IN ANTENNA consists of a sturdy high efficiency loop which receives stations sharply anc clearly.

MODELS E-90BK, CE, GY, RD, WE, Ch. 90E
Under no circumstances should a ground be connected to this receiver.

ALIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil (3.2 ohms).
2. Feed an $\mathbf{R}-\mathbf{F}$ signal modulated 30% at 400 cycles to the high side of loop (inside winding of loop) as indicated in the alignment chart. Connect signal generator ground through a 0.1 mfd capacitor to B -.
3. Turn the Radio Switch to the "ON" position.
4. Turn the Volume Control to maximum clockwise position and adjust the signal generator output to produce approximately mid-scale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action.

ALIGNMENT CHART

Alignment locations shown on page 23,

Alignment Sequence	Signal Generator Output			Position of Tuning Gang	Adjust for Max. Output	Remarks
	Freq. in KC.	In Series With	To			
1	455	200 mmf .	Hi side of loop	Open	A \& B	See note 1
2	455	200 mmf .	Hi side of loop	Open	C \& D	See note 1
3 Repeat steps 1 and 2 until maximum output is obtained						
4	1620	Radiated Sig.	Loop	Open	E	See note 2
5	1400	Radiated Sig.	Loop	Tune in Signal	F	See note 2

Notes:

1. The speaker must be removed from the chassis in order to adjust the bottom slugs on the I-F Transformers. DO NOT REMOVE THE WIRES FROM THE SPEAKER.
2. The signal can be radiated to the loop antenna by placing the output lead of the signal generator close to the loop. For oscillator and antenna trimmer alignment, the loop antenna must be positioned with respect to the chassis to simulate position when chassis and loop are fastened in the cabinet so that no further adjustment of the antenna trimmer (F) will be necessary when the chassis and loop are mounted in the cabinet.

SOCKET VOLTAGE CHART

SCHEMATIC DIAGRAM

CLOCK ADJUSTMENTS

Procedure for checking timer switch and vibrator：

1．With the time set knob，turn the clock hands so as to advance the time at least one（1）hour． （For ease in checking，it is recommended that the time be set to the hour．）
2．Attach test light to switch leads．
3．Turn switch knob to＂ON＂position－light must go on．
4．Turn switch knob to＂OFF＂position－light must go out．
5．Set alarm disc so that small pointer on hour hand reads two（2）hours in advance of the time of the clock．EXAMPLE：If the clock hands are set to read 7 o＇clock，set the alarm $^{\prime}$ disc to read 9 o＇clock．
6．Turn sleep switch to＂ 60 ＂－test light must go on．
7．Turn time set knob advancing clock hands to next hour－light must go out and SLEEP SWITCH SEC TOR GEAR must be completely disengaged within one（1）hour plus or minus eight（8）minutes．
8．Manually push SLEEP SWITCH SECTOR GEAR in until it touches its mating pinion WITH－ OUT meshing－light must go on．
9．Turn switch knob to＂AUTO＂position．
10．Turn time set knob to advance clock hands so they read 15 minutes until the next hour． Then slowly advance the hands until the test light lights，which indicates the contacts are closed．The contacts must close somewhere between 14 minutes to the hour and 4 minutes past the hour．
11．Remove test light and connect 110 volt supply to the motor terminals．
12．Turn time set knob to advance the clock hands 4 minutes－vibrator must NOT buzz．Then advance the hands 14 minutes－vibrator MUST buzz within this 14 minute period．

Adjusting Contacts

1．Set the switch to＂AUTO＂position so that the SWITCH CAM FOLLOWER rests on the TIMING CAM．Contacts shall be adjusted at $.020^{\prime \prime}$ minimum gap．
2．With switch in＂OFF＂position contacts shall remain open as in step one and there shall be clearance between SWITCH CAM FOLLOWER and TIMING CAM．
3．With switch in＂ON＂position，contacts shall be closed．Check for proper contact pressure by depressing LOWER CONTACT strip，using a small pointed tool．If UPPER CONTACT strip follows the LOWER CONTACT strip，a noticeable amount before the contacts sep－ arate，the pressure is sufficient．
4．Set the switch to＂AUTO＂position；pull out and turn alarm set knob counter－clockwise until the SWITC H CAM FOLLOWER drops into the slot of TIMING CAM．The contacts shall be closed．Check contact pressure as previously described in step three．
5．SWITCH ARM should clear CAM by ．008＂minimum when in the＂AUTO＂position．

Timing

1．Adjust timer for contact closure at 6：55 o＇clock．On repeat tests，contacts shall close at 6：55 plus or minus 3 minutes．At all other settings the contacts shall close between 12 minutes before and 2 minutes after the setting time．
2．Check time keeping for a minimum of twelve hours with power applied to the motor．Clock must be run with vibrator（buzzer）shut off．

Vibrator Adjustment:

1. Vibrator shall start buzzing 10 minutes plus or minus 5 minutes after contact closur occurs.
2. When the alarm set knob is pushed in ("shut-off" position of vibrator) the shut-off sprin shall lift the vibrator sufficiently above the cam, so that the cam will not contact the $\mathrm{v} j$ brator in any position.
3. Adjust vibrator for good sounding position.
4. Vibrator shall be manually shut off before completion of buzzing period.

CLOCK LUBRICATION

1. Center stack bearing in base plate and hole in back gear pinion should be lubricated wi Nye watch oil or equivalent.
2. Path of switch locating spring on bracket should be lubricated with Dixon graphite greast

Symbol No	Part No.	Description	Symbol No.	Part No.	Description
E1A	154962	Capacitor, Tuning $\}$ Assembly	L 1	155042	Loop Antenna \& Back Assembly
E18		Capacitor, Tuning Assembly	L^{2}	153405	Oscillator Coil
2	137727-109	Capacitor, 39 mmf ., 10\%, 200 V., Ceramic	SP1	138762-8	Speaker 4 inch (P.M.)
c3	part of 11	Capacitor	TS1	147784	Shield Tube
$\bigcirc 4$	Part of T1	Capacitor	SW1	Part of CL1	Switch, ON - OFF, Power
65	39477-46	Capacitor, 68 mfd., 600 V., Molded Paper	T1	155007-1	Transformer, 1st IF
\%6	Part of $\mathbf{T} 2$	Capacitor	T2	155007-1	Transformer, 2nd IF
27	Part of T2	Capacitor	T3	155015	Transformer, Audio Output
28A	151550-1	Capacitor, 220 mmf .)	COI	155016-2	Bracket \& Appliance Outlet, Assemk
C8B		Capacitor, .002 mfd .	CL1	155631	Clock Assembly
C8C		Capacitor, 125 mmf . ${ }^{\text {c }}$ Assembly		155214-9	Cabinet, Model E-90 CE
280		Capacitor, . 005 mfd .		155214-10	Cabinet, Model E-90 RD
28 E		Capacitor, 125 mmf .		155214-11	Cabinet, Model E-90 GY
C9	137727-8	Capacitor, $1000 \mathrm{mmf} ., 10 \%, 300$ V., Ceramic		155214-12	Cabinet, Model E-90 WE
C11	39477-43	Capacitor, $022 \mathrm{mfd} ., 600$ V., Molded Paper		155214-13	Cabinet, Model E-90 BK
012	39477-45	Capacitor, $047 \mathrm{mfd} ., 600$ V., Moided Paper		155022	Gasket, Grille
C13	39477-46	Capacitor, 068 mfd ., 600 V., Molded Paper		155074	Grille, Metal
C14A	155006	Capacitor, $50 \mathrm{mfd} ., 150 \mathrm{~V}$. $\}$ Electrolytic		155061-1	Knob, Volume Control, Model E-90 :
C14B		Capacitor, $30 \mathrm{mfd} ., 150 \mathrm{~V}$.		155061-2	Knob, Volume Control, Model E-901
C15	143686-1	Capacitor, 50 mmf ., 500 V., Ceramic		155061-3	Knob, Volume Control, Model E-90'
R1	39374-61	Resistor, 1 Megohm, 10\%, 1/2 W.		155061-4	Knob, Volume Control, Model E-90
R2	39374-41	Resistor, $22,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{~W}$.		155061-5	Knob, Volume Control, Model E-90
R3	39374-1	Resistor, $10 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{~W}$.		154062-1	Knob, Tuning, Model E-90 BK
R4	39374-69	Resistor, 2.2 Megohm, $10 \%, 1 / 2 \mathrm{~W}$.		154062-2	Knob, Tuning, Model E-90 GY
R5	39374-45	Resistor, 47,000 ohm, $10 \%, 1 / 2 \mathrm{~W}$.		154062-3	Knob, Tuning, Model E-90 WE
R6	154961	Control, Volume, 1 megohm		154002-4	Knob, Tuning, Model E-90 RD
R7	39374-15	Resistor, $150 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		154062-5	Knob, Tuning, Model E-90 CE
R8A	Part of C8	Resistor, 6.8 megohm		155003	Name Plate (Crosley), Model E-90
R8B		Resistor, 470,000 ohm ${ }^{\text {a }}$ (Assembly		155347-3	Name Plate (Crosley), Models E-90
R8C		Resistor, 470,000 ohm			E-90 WE, E-90 RD, \& E-90 CE
R9	39374-114	Resistor, $1200 \mathrm{ohm}, 10 \%, 1 \mathrm{~W}$.		39402-2	Socket, Tube (V1, V2, V3, V4, V5)
R10	39374-9	Resistor, $47 \mathrm{ohm}, 10 \%$ 1/2 W.		132124 Stud	rimount 3 Used), Loop \& Back Assen
CA 1	149780-3	Cable \& Plug, Power		154983 Was	, Extruded (4 Used), Clock Mounting

CLOCK REPLACEMENT PARTS

Part No.	Description	Part No,	Description
$151389-15$	Alarm Dial	$151389-19$	Knob, Radio Switch
$151388-11$	Bezel	$151389-18$	Knob, Sleep Switch
$151389-12$	Bezel Color Ring	$151389-8$	Knob, Time Set
$151389-13$	Crystal	$151389-10$	Rotor Unit (60 cycte)
$151389-14$	Dial, Black		
$151389-9$	Fietd \& Coll (60 cycle)		
$151389-16$	Hands, Hour \& Minute		
$151389-17$	Hand, Sweep Second		
$151389-18$	Knol, Alarm Set		

MODELS F-100BE, BK,
CE, GN, RD, Ch. 100F

DESCRIPTION

The above models are four-tube superheterodyne, battery portable radio receivers combined with a spring wound clock timer that can be set to automatically turn the radio on or off. The receiver is designed for reception of Standard Broadcast (AM) stations with frequencies between 540 and 1600 kilocycles.

The receiver uses long-life "A" batteries, with provision made to use standard flash-light batteries (" D " cells) in localities where the long-life batteries are not available, with a resultant decrease in "A" battery life.

TYPE: Four-tube, single band Superheterodyne.
FREQUENCY RANGE: 540 to 1600 Kc .
INTERMEDIATE FREQUENCY: 455 Kc .
MAXIMUM POWER OUTPUT: 170 Milliwatts.
"A" BATTERY: Two 1½ Volt Ever eady \#964.
"B" BATTERY: One 75 Volt Eveready \#437.
NOTE: Complete Battery Kit No. EV-1
(Crosley Part No. 156292)
Consists of $\left\{\begin{array}{l}\text { Two } 11 / 2 \text { volt "A" Batteries \# } 964 . \\ \text { One } 75\end{array}\right.$
Available at your Crosley Distributor.

SOCKET VOLTAGE CHART

NOTES:
1. DOTTOM VEW OF TUBE SOCKETS.
2. VOLTAGES MEASURED WTH AN ELECTRONIC VOLTMETER FROM
SOCKET LUG TO CHASSIS.
3. BATTERY SUPPLYY VOLTAGES "A" BATTERY LSV. "B" BATTERY 75 V
4.BATTERY SWITGH IN "MAX. FOWER OUTPUT" POSITION. "OUTDOOR
INDOOR" SWITCH WN OUTDOOR"POSITION
5. N.C. = NO CONNECTION, IW. J. $=$ WIRE JUNCTION.
6. SOCKET VOLTAGE TOLERANCE $\pm 10 \%$

REMOVING THE CHASSIS

1. Slip the tuning knob from the shaft of the tuning gang, and pull the knobs from the clock.
2. Open the cabinet back by lifting up on the handle and pushing down and out with the thumb on the top edge of the cabi back; then remove the back.
3. Remove the " A " and " B " batteries.
4. Remove the chassis (Chassis is fastened to the front of the cabinet by five cross recess screws)

ALIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil (3.2 ohms).
2. Connect " A " and " B " batteries to the receiver.
3. Turn the "TIMER SWITCH" to the on position.
4. Apply an R-F signal, modulated 30% at 400 cycles to the receiver as indicated in the alignment chart. Connect signal generator ground lead to chassis.
5. Turn the volume control to maximum, set the POWER SAVER SWITCH for maximum power output and the INDOO OUTDOOR SWITCH to the Outdoor position.
6. Adjust the signal generator to produce mid-scale deflection on the output meter, but maintain output as low as possil to prevent AVC action.

ALIGNMENT CHART

A LIGNMENT SEQUENCE	SIGNAL GENERATOR			POSITION OF TUNDNG GANG	ADJUST FOR MAX. OUTPUT	REMARKS
	FREQ. IN KC.	SIGNAL	TO			
1.	455	$\begin{aligned} & \text { in series } \\ & \text { with . } 05 \mathrm{MFD} \end{aligned}$	Mixer Grid	OPEN	A \& B	
2.	455	in series with . 05MFD	Mixer Grid	OPEN	C\& D	

3. Repeat steps i and 2 untilmaximum output is obiained.

4.	1620	Radiated	Built-in Antenna	OPEN	E	See Note 1
5.	1400	Radiated	Built-in Antenna	Tune-in sig.	F	See Note 1 \& 2

NOTES:

1. The signal can be radiated to the built-in antenna by placing the output lead of the signal generator close to the antent
2. Replace the chassis in the cabinet by reversing the order of the removal procedure listed above.

MODELS F-100BE, BK,
CE, GN, RD, Ch. 100F

CHASSIS, REAR VIEW

To install a new insert, first remove the old insert; then remove the paper backing from the adhesive on the new insert and press the insert firmly in place. NOTE: When replacing a tuning knob insert, it is possible to install the new insert up-side-down. To eliminate this possibility, do not remove the tuning knob from its shaft while changing the insert.

```
\begin{tabular}{llll} 
MODEL & \begin{tabular}{l} 
ORIGINAL \\
PART NO.
\end{tabular} & \begin{tabular}{l} 
CORRECT \\
PART NO.
\end{tabular} & DESCRIPTION \\
F-100BE & \(155238-1\) & \(156779-1\) & Cabinet front \\
F-100BK & \(155238-2\) & \(156779-2\) & Cabinet front \\
F-100GN & \(155238-3\) & \(156779-3\) & Cabinet front \\
F-100RD & \(155238-4\) & \(156779-4\) & Cabinet front \\
F-100CE & \(155238-5\) & \(156779-5\) & Cabinet front \\
& & \(156545-1\) & \\
F-100BE & \(155272-1\) & \(156545-2\) & Knob, tuning \\
F-100BK & \(155272-2\) & \(156545-3\) & Knob, tuning \\
F-100GN & \(155272-3\) & \(156545-4\) & Knob, tuning \\
F-100RD & \(155272-4\) & & Knob, tuning \\
F-100CE & \(155272-5\) & & Knob, tuning \\
& & \(156545-5\) & \\
F-100BE & \(155286-1\) & \(15689-1\) & Handle \\
F-100BK & \(155286-1\) & \(156289-2\) & Handle \\
F-100GN & \(155286-1\) & \(156289-4\) & Handle \\
F-100RD & \(155286-1\) & \(156289-5\) & Handle \\
F-100CE & \(155286-1\) & Handle
\end{tabular}
```


SUBJECT: WARNING AGAINST PARTIAL WINDING OF THE CLOCK USED ON THE F-100 SERIES CLOCK RADIOS.

Several cases have been noted where the user of a F-100 Series Clock Radio failed to wind the clock completely and then reported that the clock was defective and would not continue running more than a few hours. To meet such complaints and to prevent future complaints of the same sort, the following information is directed to all Sales and Service personnel.

On the F-100 Series Clock Radio, both the clock and the alarm are operated by the same spring. Generally, the first few turns of the wind shaft (until a click is heard after each revolution) store the energy needed for alarm operation, while any further turns store energy for the clock.

Here is why the user may fail to wind the clock completely.
Example A: Let us assume the clock is run-down, including the alarm, and that we begin winding it. For the first few turns, a certain amount of resistance in the wind shaft is felt. Then a point is reached where more resistance is noted and where a click is heard each time the wind shaft makes one revolution. A careful user would, most likely, stop winding for fear of causing damage. In actuality the clock has, at this point, been wound only enough for the alarm and a small portion of the clock's running time. If we want to get the full running time of 30 hours, we must continue winding comparatively for a much longer time - until the spring is fully wound (wind shaft will no longer turn without literally forcing it). Only then can the clock be considered fully wound.

Example B: For a slightly different situation let us assume that, six hours after the clock has been fully wound, the alarm goes off and runs down completely. Most of the potential energy for the clock's operation is still stored in the spring. If we wish to re-set the alarm and fully rewind the clock, we experience the same resistance as before, i.e., when starting with the clock run down. Now, when that point is reached where maximum alarm potential energy is again stored in the spring, the resistance increases more sharply than it would if the whole spring were run down. At this point, the same clicking as described in Example A is heard.

Mechanically the alarm and the clock are both operated by only one spring; three turns of the wind shaft are required to complete one revolution of the spring shaft. Fifteen to twenty complete revolutions of the spring shaft are required to wind the clock to its maximum running time of 30 hours. But, when the alarm goes off, it uses only one complete revolution of the spring shaft for its operation. When the spring shaft has been wound the first complete turn, maximum potential energy is stored in the spring for the operation of the alarm, but less than 10% is stored for clock operation. It is here that there is the tendency to stop winding.

DESCRIPTION

The above Models are four tube superheterodyne, battery operated portable radio receivers. The receiver is designed for reception of Standard Broadcast (AM) stations with frequencies between 540 and 1600 kilocycles.

The receiver uses long-life " A " batteries, with provision made to use standard flash-light batteries (" D " cells) in localities where the long-life batteries are not available, with a resultant decrease in "A" battery life.

TYPE: Four-tube, single band, Superheterodyne
FREQUENCY RANGE: 540 to 1600 Kc INTERMEDIATE FREQUENCY: 455 Kc

POWER OUTPUT: 200 Milliwatts
"A" BATTERY: Two $1 / 2$ volt Eveready \#964.
"B" BATTERY: One 75 volt Eveready \#437.
TUBE COMPLEMENT

Type	Function
1U5	Detector, AVC, 1st Audio Ampl.
1R5	Converter
3V4	Audio Output
$1 U 4$	IF Amplifier

NOTE: Complete Battery Kit No. EV-1
(Crosley Part No. 1506292)
Consists of ST"wo 11/2 volt "A" Batteries \# 964.

Available at your Crosley Distributor.

REMOVING THE CHASSIS

1. Slip the tuning knob from the shaft of the tuning gang.
2. Open the cabinet back by lifting up on the handle and pushing down and out with the thumb on the top edge the cabinet back; then remove the back.
3. Remove the "A" and " B " batteries.
4. Remove the chassis (Chassis is fastened to the front of the cabinet by five cross-recess screws).

ALIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil (3.2 ohms).
2. Connect " A " and " B " batteries to the receiver.
3. Slide the "ON-OFF SWITCH" to the "ON" position.
4. Apply an R-F signal, modulated 30% at 400 cycles to the receiver as indicated in the alignment chas Connect the signal generator ground lead to chassis.
5. Turn the volume control to maximum, set the POWER SAVER SWITCH for maximum power outpı
6. Adjust the signal generator to produce mid-scale deflection on the output meter, but maintain output : low as possible to prevent AVC action.

ALIGNMENT CHART

ALIGNMENT SEQUENCE	SIGNAL GENERATOR			POSITION OF TUNING GANG	ADJUST FOR MAX. OUTPUT	REMARK
	FREQ. IN KC.	IN SERIES WITH	TO			
1	455	. 05 mfd .	Mixer grid	Open	A \& B	
2	455	. 05 mfd .	Mixer grid	Open	C \& D	
3 . Repeat steps 1 and 2 until maximum output is obtained.						
4	1620	Radiated	Built-in Ant.	Open	E	Note 1
5	1400	Radiated	Built-in Ant.	Tune-in Sig.	F	Note 1 \& :

NOTES:

1. The signal can be radiated to the buit-in antenna by placing the output lead of the signal generator close the antenna.
2. Replace the chassis in the cabinet by reversing the order of the removal procedure listed above.

MODELS F-110BE,BK,
CE, GN, RD, Ch. 110F

CHASSIS, REAR VIEW
(B) ENDITF TRANS.

CHASSIS, BOTTOM VIEW

MODELS F110BE, BI
CE, GN, RD, Ch. 110

PARTS LIST

$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Part No.	Description	Symbol No.	Part No.	Description
C1A Cl	155290	Capacitor, Tuning Capacitor, Tuning		155254-2	Button, "Indoor - Outdoor Switeh", Model F-110 BE
C 2	137727-109	Capacitor, 39 mmf., 10\%劵. 200 V . . ceramic		155254-3	Button, "Max Battery Life Switch",
C3 $C 4$	Part of T1 Part of T1	Capacitor			Model F-110 BK
C5	Part of T1	Capacitor, . 002 mfd .150 V. , paper		155254-4	Button, "Indoor - Outdoor Switeh", Model F-110 BK
C6	144675-2	Capacitor, . $005 \mathrm{mfd}$. . 500 V. , disc ceramic		155254-5	Button. "Max Battery Life Switch".
C7	Part of T2	Capacitor			Model F-110 GN
C8	Part of T2	Capacitor 5000 mmf		155254-6	Button, "Indoor - Outdoor Switch",
C9A	151550-3	Capacitor, 5000 mmf .450 V .1			Model F-110 GN
C98		Capacitor, 5000 mmf .450 V. Capacitor, Cassembly		155254-7	Button, "Max Battery Life Switch",
C10A C10B	142951-2	Capacitor, $100 \mathrm{mmf}$. , $450 \mathrm{~V} .\{$ Assembly		155254-8	Model F-110 RD Button, "Indoor - Outdoor Switch",
C11	39433-11	Capacitor, $.005 \mathrm{mfd} ., 150 \mathrm{~V}$., paper		155254-9	Model F-110 RD Button, "Max Battery Life Switch"
C12	39433-14	Capacitor, $.05 \mathrm{mfd} ., 150 \mathrm{~V} .$, paper			Button, "Max Battery Life Switch", Model F-110 CE
C13	39433-14	Capacitor, $05 \mathrm{mfd} ., 150 \mathrm{~V}$. , paper		155254-10	
C14	144675-28	Capacitor, . 001 mfd . 500 V ., disc ceramic			Model F-110 CE
C15	137727-121	Capacitor, . $005 \mathrm{mfd} ., 10 \%, 500 \mathrm{~V}$., ceramic		155811-1	Cabinet Assembly, Model F-110 BE
C16	155355	Capacitor, 10 mfd. + 80 V ., Electrolytic		155811-2	Cabinet Assembly, Model F-110 BK
R1	39374-49	Resistor, $100,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{~W}$.		155811-3	Cabinet Assembly, Model F-110 GN
R2	39374-77	Resistor, 4.7 megohm, $10 \%, 1 / 2 \mathrm{~W}$.		155811-4	Cabinet Assembly, Model F-110 RD
R4	Part of C10	Resistor, $1000 \mathrm{ohm}, 10 \% .1 / 2 \mathrm{~W}$. Resistor, $47,000 \mathrm{ohm}$		155811-5	Cabinet Assembly, Model F-110 CE
R5	39374-39	Resistor, 15,000 $\mathrm{ohm}, 10 \% .1 / 2 \mathrm{~W}$,		155239-2	Cabinet, Back, Model F-110 BE
R6	39374-73	Resistor, 3.3 megohm. 10\%, 1/2W.		155239-3	Cabinet, Back, Model F-110 BK Cabinet, Back. Model F-110 GN
R7.	155786	Control, Volume, 1 megohm		155239-4	Cabinet. Back, Model F-110 RD
R9A	Part of C9	Resistor. 1 megohm,		155239-5	Cabinet. Back, Model F-110 CE
R98		Resistor, 2.2 megohm; Assembly		155813-1	Cabinet, Front, Model F-110 BE
R9C		Resistor, 4.7 megohm		155813-2	Cabinet, Front, Model F-110 BK
R11	39374-45	Resistor, $47.000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{~W}$.		155813-3	Cabinet, Front, Model F-110 GN
R12	39374-20	Resistor, 10 megohm, $10 \%, 1 / 2 \mathrm{~W}$. Resistor, 390 ohm., $10 \%, 1 / 2 \mathrm{~W}$.		155813-4	Cabinet, Front, Model F-110 RD
R13	39374-20	Resistor, 390 ohm, 10% \% $1 / 2 \mathrm{~W}$.		156182-1	Cabinet, Front, Model F-110 CE
R14	39374-25	Resistor, $1000 \mathrm{ohm}, 10 \%$, 1/2W.		156182-2	Escutcheon, Model F-110 BK
L1	155415	Antenna \& Rod, Assembly		156182-3	Escutchone, Model F-110 GN
L2	155329	Oscillator Coil, Assembly - --		156182-4	Escutctioun, Modtl F-i10 nd
SP1	155159	Speaker, 4 inch (P. M.)		156182-5	Escutcheon, Model F-110 CE
SW1	155242	Switch. ON- OFF. Power		155286-1	Handle
SW2	155315	Switch Bracket Assembly, "Max Battery Life"		156088-1	Knob, Tuner Model F-110 EE
T1	145025-7	Transformer, 2nd. IF		156086-2	Knob, Tuner Model F-110 BK
T2	1450025-8	Transformer, 1st. IF		156086-3	Knob, Tuner Model F-110 GN
COI	Part of SP1 155314	Transformer, Audio Output		156086-4	Knob, Tuner Model F-110 RD
CO2	155210	Connector Assembly, "A" Battery Spring Grounding, "A" Battery		156086-5	Knob, Tuner Model F-110 CE
CO3	155210	Spring Grounding, "A" Battery		155262-1	Knob, Volume Control Link (2 used), Handle Mtg.
CO4	155205	Connector, "B" Battery		153540-3	Mtg.
	155254-1	Button, 'Max Battery Life Switch',		94704-35	Nut, Push On Type
		Model F-110 BE		$\begin{aligned} & 155340-1 \\ & 155308 \end{aligned}$	Pin, Indicator

sUBJect- CORRECT PART NUMBERS FOR CABINET FRONTS, TUNING KNOBS FOR F-110 SERIES

MODEL	ORIGINAL PART NO.	CORRECT PART NO.	DESCRIPTION
F-110BE	$155813-1$	$156779-1$	Cabinet front
F-110BK	$155813-2$	$156779-2$	Cabinet front
F-110GN	$155813-3$	$156779-3$	Cabinet front
F-110RD	$155813-4$	$156779-4$	Cabinet front
F-110CE	$155813-5$	$156779-5$	Cabinet front
F-110BE	$156086-1$	$156547-1$	Knob, tuning
F-110BK	$156086-2$	$156547-2$	Knob, tuning
F-110GN	$156086-3$	$156547-3$	Knob, tuning
F-110RD	$156086-4$	$156547-4$	Knob, tuning
F-110CE	$156086-5$	$156547-5$	Knob, tuning
F-110BE	$155286-1$	$156289-1$	Handle
F-110BK	$155286-1$	$156289-2$	Handle
F-110GN	$155286-1$	$156289-3$	Handle
F-110RD	$155286-1$	$156289-4$	Handle
F-110CE	$155286-1$	$156289-5$	Handle

subject- ADDITIONAL PART NUMBERS PORTABLE RADIOS

The part numbers in the table below should be added to the parts list

MCDEL	PART NO.	DESCRIPTION
F-110 Series	156179	Insert, Tuning Knob
	156173	Insert, Escutcheon

To install a new insert, first remove the old insert; then remove the paper backing from the adhesive on the new insert and press the insert firmly in place.

NOTE: When replacing a tuning knob insert, it is possible to install the new insert up-side-down. To eliminate this possibility, do not remove the tuning knob from its shaft while changing the insert.

MODELS F-25BE, BK,
GN, MN, Ch. 25F

DESCRIPTION

TYPE: Five-tube, single band, Superheterodyne. FREQUENCY RANGE: 540 to 1600 kc .

INTERMEDIATE FREQUENCY: 455 kc .
POWER SUPPLY: 60 cycle, a.c. only.
VOLTAGE RATING: $105-125$ volts.
POWER OUTPUT: 1 watt maximum. POWER CONSUMPTION:

Radio and Clock.. 2 watts
Clock
SLEEP SWITCH - Set it up to 60 minutes operation of radio or appliance - turns them off automatically.

ELECTRIC CLOCK of highest accuracy. The face is provided with luminous hour and minute hands for easy reading in the dark. Sweep second hand of red; clock controls of same color as cabinet.

RADIO SWITCH has three positions: "Off" to turn off radio; "Auto" to turn radio or appliance on automatically; "On" for manual radio operation.

APPLIANCE OUTLET is provided at rear of set for connecting any appliance (not exceeding 1100 watts) to be controlled by timing device.

TIME SET, for setting clock to time of day.
ALARM CONTRQL - Set it for time radio or appliance is to turn on automatically. Pull out

TUBE COMPLEMENT:

Type	Function
12BE6	Converter
12BA6	I. F. Amplifier
12AT6	Detector, AVC, 1st. A. F. Amplifier
50C5	A. F. Power Output
35W4	Rectifier

to have buzzer sound a few minutes after radio turns on.

DRIFT-FREE TUNING, accomplished by Crosley frequency stabilized oscillator, keeps receiver aligned precisely with station to which you have tuned.

EXCEPTIONALLY FINE TONE - The result of advanced engineering of the Crosley circuit and components.

INCREASED SENSITIVITY AND STABILITY. Permeability tuned (iron core) IF transformers give greater stability and sensitivity so that distant stations can be received with minimum interference.

AUTOMATIC VOLUME CONTROL holds the volume as you set it.

BUILT-IN ANTENNA to provide satisfactory rereption from AM broadcast stations within range of the receiver.

Under no circumstances should a grownd be connected to this receiver.

ALIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil (3.2 ohms).
2. Feed an R-F signal modulated 30% at 400 cycles to the receiver, as indicated in the alignment char Connect signal generator ground through a 0.1 mfd capacitor to B -.
3. Turn the Radio Switch to the "ON" position.
4. Turn the Volume Control to maximum clockwise position and adjust the signal generator output produce approximately mid-scale deflection of the output meter, but maintain signal generator ou put as low as possible to prevent AVC action.

ALIGNMENT CHART

Alignment locations shown on page 41.

Alignment Sequence	Signal Generator Output			Position of Tuning Gang	Adjust for Max. Output	Remarks
	Freq. in KC.	$\begin{aligned} & \text { In Series } \\ & \text { With } \end{aligned}$	To			
1	455	200 mmf .	Mixer grid, pin 7 of V5	Open	A \& B	See note 1
2	455	200 mmf .	Mixer grid, pin 7 of V5	Open	C \& D	See note 1
3 Repeat steps 1 and 2 until maximum output is obtained.						
4	1620	Radiated Sig.	Antenna	Open	E	See note 2
5	1400	Radiated Sig.	Antenna	Tune in Signal	F	See note 2

Notes:

1. The bottom slugs of the I. F. Transformers can be adjusted through the holes in the front pla opposite the transformers.
2. The signal can be radiated to the antenna by placing the output lead of the signal generator close the antenna rod.

CLOCK ADJUSTMENTS

Procedure for checking timer switch and vibrator:

1. With the time set knob, turn the clock hands so as to advance the time at least one (1) hour. (F ease in checking, it is recommended that the time be set to the hour.)
2. Attach test light to switch leads.
3. Turn switch knob to "ON" position - light must go on.
4. Turn switch knoid to "OFF" position - light must go out.
5. Set alarm disc so that small pointer on hour hand reads two (2) hours in advance of the time of t clock. EXAMPLE: If the clock hands are set to read 7 o'clock, set the alarm disc to read 9 o'clor
6. Turn sleep switch to " 60 " - test light must go on.
7. Turn time set knob advancing clock hands to next hour-light must go out and SLEEP SWIT(SECTOR GEAR must be completely disengaged within one (1) hour plus or minus eight (8) minut

MODELS F-25BE, BK,
GN, MN, Ch. 25F
8. Manually push SLEEP SWITCH SECTOR GEAR in until it touches its mating pinion WITHOUT meshing - light must go on.
9. Turn switch knob to "AUTO" position.
10. Turn time set knob to advance clock hands so they read 15 minutes until the next hour. Then slowly advance the hands until the test light lights, which indicates the contacts are closed. The contacts must close somewhere between 14 minutes to the hour and 4 minutes past the hour.
11. Remove test light and connect 110 volt supply to the motor terminals.
12. Turn time set knob to advance the clock hands 4 minutes - vibrator must NOT buzz. Then advance the hands 14 minutes - vibrator MUST buzz within this 14 minute period.

Adjusting Contacts

1. Set the switch to "AUTO" position so that the SWITCH CAM FOLLOWER rests on the TIMING CAM. Contacts shall be adjusted at .020' minimum gap.
2. With switch in "OFF" position contacts shall remain open as in step one and there shall be clearance between SWITCH CAM FOLLOWER and TIMING CAM.
3. With switch in "ON" position, contacts shall be closed. Check for proper contact pressure by depressing LOWER CONTACT strip, using a small pointed tool. If UPPER CONTACT strip follows the LOWER CONTACT strip a noticeable amount before the contacts separate, the pressure is sufficient.
4. Set the switch to "AUTO" position; pull out and turn alarm set knob counter-clockwise until the SWITCH CAM FOLLOWER drops into the slot of TIMING CAM. The contacts shall be closed. Check contact pressure as previously described in step three.
5. SWITCH ARM should clear CAM by . 008" minimum when in the "AUTO" position.

Timing

1. Adjust timer for contact closure at $6: 55 o^{\prime}$ clock. On repeat tests, contacts shall close at 6:55 plus or minus 3 minutes. At all other settings the contacts shall close between 12 minutes before and 2 minutes after the setting time.
2. Check time keeping for a minimum of twelve hours with power applied to the motor. Clock must be run with vibrator (buzzer) shut off.

Vibrator Adjustment

1. Vibrator shall start buzzing 10 minutes plus or minus 5 minutes after contact closure occurs.
2. When the alarm set knob is pushed in ("shut-off" position of vibrator) the shut-off spring shall lift the vibrator sufficiently above the cam, so that the cam will not contact the vibrator in any position.
3. Adjust vibrator for good sounding position.
4. Vibrator shall be manually shut off before completion of buzzing period.

CLOCK LUBRICATION

1. Center stack bearing in base plate and hole in back gear pinion should be lubricated with Nye watch oil or equivalent.
2. Path of switch locating spring on bracket should be lubricated with Dixon graphite grease.

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description	$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Part No.	Description
C1A			SW1	Part of CL1	Switch, on-off
C1B	154559	Capactor, 2 Eection, Tuning	T1	139919-3	Transformer, 1 st. 1. F.
C2	137727-109	Capacitor, Ceramic 39 mmi ., 10\%,	T2	139919-3	Transformer, 2nd. I. F.
			T3	147171 $154916-1$	Transformer, Audio Output Clock Assembly, Model F-25BK
C3	Part of T1	Capacitor, 106 mmf	CL1	154916-2	Clock Assembly, Model F-25MN
C4	Part of T1	Capacitor, 131 mmf. 600 v	CL1	154916-3	Clock Assembly, Model F-25BE
C5	39477-47	Capacitor, 0.1 mfd., 600 v., Molded Paper	CL1	154916-4	Clock Assembly, Model F-25GN
C6	Part of T2	Capacitor, 131 mmf .	CO1	154639	Appliance Outlet \& Bracket Assembly
C7	Part of T2	Capacitor, 106 mmf .		155180	Bracket, speaker Mounting Cabinet (Model F-25BK)
C8A		Capacitor, 220 mmi .		155180	Cabinet (Model F-25BK) Cabinet (Model F-25MN)
C8B		Capacitor, 002 mfd .		155285-2	Cabinet (Model F-25GN)
$\left.\begin{array}{l}\text { C8C } \\ \text { C8D }\end{array}\right\}$	151550-1	Capacitor, 125 mmf . Capacitor, 005 mfd		155285-3	Cabinet (Model F-25BE)
C8D		Capacitor, . 005 mifd.		157013	Clamp, Power Cable
C9	142951-12	Capacitor Resistor Unit; 500 mmf .		154320 149339	Face, Clock Dial
		$500 \mathrm{v.} 680,,000 \mathrm{ohm}, 1 / 5 \mathrm{w}$. Min.		149339-11	Knob, Alarm Set (Model F-25BE)
C10	142951-11	Capacitor Resistor Unit; 005 mid ,		149339-12	Knob, Alarm Set (Model F-25GN)
		$500 \mathrm{v} ., 47,000 \mathrm{ohm}, 1 / 5 \mathrm{w} . \mathrm{Min}$.		149399-13	Knob, Alarm Set (Model F-25MN)
C11	39477-41	Capacitor, . 01 mfd., 600 v., Molded Paper		154993-2	Knob, Small, Tuning (Model F-25MN)
C12	39477-45	Capacitor, 047 mfd , $600 \mathrm{v}$. ,		154993-4	Knob, Small, Tuning (Model F-25BE)
		Molded Paper 600 v		154993-5	Knob, Small, Tuning (Model F-25GN)
C13	39477-46	Capacitor, . $068 \mathrm{mfd} ., 600 \mathrm{v}$., Molded Paper		149311-2	Knob (2 used), Radio Switch \& Sleep Switch (Model F-25BK)
C14A	154561	Capacitor, 100 mfd , $150 \mathrm{v} .$, Assem-		149311-11	
C148	154561	Capacitor, $30 \mathrm{mfd} ., 100 \mathrm{v}$. , $\}$ bly			Sleep Switch (Model F-25BE)
R1	39374-41	Resistor, 22,000 ohm, $\frac{1}{2} \mathrm{w}$.		149311-12	
R2	39374-1	Resistor, 10 ohm , $\frac{1}{2} \mathrm{w}$. 4 w			Sleep Switch (Model F-25GN)
R3	39374-69	Resistor, 2.2 megohm, $\frac{1}{2}$ w.		149311-13	
R4	39374-69	Resistor, 2.2 megohm, $\frac{1}{2} w$.			Sleep Switch (Model F-25MN)
R5	39375-45	Resistor, 47, $000 \mathrm{ohm}, \frac{1}{2} \mathrm{w}$.		154998-1	Knob, Tuning Dial (Model F-25MN)
R6	154560	Control, Volume, 3 megohm		154998-2	Knob, Tuning Dial (Model F-25BK)
R7	39374-16	Resistor, 180 ohm, $\frac{1}{2}$ w.		154998-3	Knob, Tuning Dial (Model F-25BE)
R8A	Part of C8	Resistor, 6.6 megolum		154998-4	Knob, Tuning Dial (Model $\overline{\mathbf{F}}$-25GN)
R8B	Part of C8	Resistor, 470,000 ohm		154993-1	Knob, Volume Control (Model F-25MN)
R8C	Part of C8	Resistor, 470, 000 ohm		154993-6	Knob, Volume Control (Model F-25BK)
R10	39374-97	Resistor, $47 \mathrm{ohm}, 1 \mathrm{w}$.		154993-7	Knob, Volume Control (Model F-25BE)
R11	39374-114	Resistor, 1200 ohm, 1 w.		154893-8	Knob, Volume Control (Model F-25GN)
CA1	149780-2	Cable \& Plug, Puwer		154521-2	Molding, Trim
11	155014	Antenna Coil \& Support Assembly		154313	Nail, Channel Indicator
12	153405	Oscillator Coil Assembly		155988	Rod, Support
8P1	154812-1	Speaker, $5 \frac{1}{4}{ }^{\prime \prime}$ P. M.		39452-2	Socket, Tube (5 used)
181	147784-1	Shield, Tube		45580-2	Washer, Rubber, Speaker Mtg. (2 used)

DESCRIPTION

These Crosley Models are five-tube, two band portable radio receivers employing a superheterodyne circu: and are designed to operate on an "A-B" battery pack or to operate directly from 105 to 125 volts, alternatin current (50 to 60 cycles) or direct current power lines. A selenium rectifier supplies the " A " and " B " voltag when the receiver is being operated on the power lines. The tuning range covers the AM Broadcast Band, 540 t 1600 kilocycles, and the Shortwave Band, 8.4 to 15.4 megacycles.

Civilian Defense Emergency frequencies fall within the AM Broadcast Band, and the markers " CD "o the dial at 1240 Kc . and 640 Kc . designate the spot on the dial where stations may be received when they ar operating on the emergency frequencies. Reception points for Standard Time Signal transmitted by U. S. Burea of Standards' Station WWV are marked in red at 10 and 15 megacycles on the shortwave portion of the dial.

FREQUENCY RANGE: 540 to 1600 Kc . 8.4 to 15.4 Mc .

INTERMEDIATE FREQUENCY: 455 Kc .
POWER OUTPUT: 300 milliwatts
POWER CONSUMPIION: 13 watts at 117 volts A.C. or D.C. POWER REOUIREMENTS; $105-125$-yolts, 50 to 60 cycles A.C. 105-125 volts D.C.
Battery Pack (Crosley part number 156745) with 9 volts "A" and 90 volts "B".

TUBE COMPLEMENT:

$\begin{aligned} & \text { TUBE } \\ & \text { TYPE } \end{aligned}$	FUNCTION
$1 \mathrm{U4}$	R. F. Amplifier
1L6	Oscillator \& Mixer
1 U 4	I. F. Amplifier
145	Diode Detector - AVC - 1st Audio Amplifier
3V4	Audio Output

SERVICE ALIGNMENT PROCEDURE

1. Connect output meter across speaker voice coil (3.2 ohms).
2. Feed an R-F signal modulated 30% at 400 cycles to the receiver as indicated below in the alignment chart.
3. Preset gang trimmers, oscillator section open, mixer and R-F section closed.
4. Turn the volume control to full on and the tone control to high frequency position. Adjust the generator to produce approximately mid-scale deflection of the output meter, but maintain generator output as low as possible to prevent a-v-c action.
5. The "Dummy" shown in Fig. 1 is to be used in steps $2 \& 3$ in the alignment procedure.

Fig. 1. Shortwave Dummy

ALIGNMENT CHART

SEQUENCE	SIGNAL GENERATOR OUTPUT			POSITION OF		ADJUST FOR MAX. OUTPUT	REMARKS
	FREQUENCY	$\begin{aligned} & \text { IN SERIES } \\ & \text { WITH } \end{aligned}$	TO	$\begin{aligned} & \text { RANGE } \\ & \text { SWITCH } \end{aligned}$	TUNING DIAL		
1	455 Kc	. 05 mfd	Note 1	S.W.	Gang open	A,B,C,D	Note 1
	Repeat adjustments to obtain maximum output						Note 2
2	15.7 Mc	Dummy	S.W. Antenna	S.W.	Gang open	E	Note 3 \& 6
3	15 Mc	Dummy	S.W. Antenna	S.W.	Tune in Sig.	F,G	Note 3 \& 4
4	1620 Kc	Radiated	B.C. Antenna	B.C.	Gang open	H	Note 5
5	1400 Kc	Radiated	B.C. Antenna	B.C.	Tune in Sig.	I, J	Note 5

NOTES:

1. Low side of generator returned to B - on electrolytic capacitor, high side of generator connected to stator of gang capacitor, center section.
2. After aligning I-F Transformers, replace bottom cover of chassis.
3. Low side of generator returned to chassis, high side of generator connected to shortwave antenna through dummy.
4. Peak center trimmer (mixer section) and rear trimmer (antenna section by rocking gang to secure maximum output.)
5. Radiate signal from generator to rod antenna by placing wire attached to high side of generator close to the rod antenna opposite to the end that is wired to the gang stator.
6. Do not align the shortwave oscillator to image at 14 megacycles.

MODELS F-115GN, MN, TN, Ch. 115F

BATTERY INSTALLATION

To open the cabinet, lift up on the handle and use the thumb to push down and out on the top edge of the cabinet back. The back is hinged at the bottom. Place the battery pack under the flexible webbing strap, and insert the battery cable plug into the battery socket. To replace the back, place the curved portion of the hinge plates on the bottom of the cabinet back over the hinge pins on the bottom of the cabinet. Push the back forward until it locks into the top of the cabinet.

CAUTION: Never allow run-down batteries to remain in the cabinet, and remove the battery pack when the receiver is stored for an extended period.

ANTENNAS

Two built-in antennas are provided: an iron core, high efficiency rod antenna for standard broadcast reception, and for shortwave reception, a vertical telescoping antenna that can be pushed down in the cabinet when not in use.

When removing or opening the back of the cabinet, be sure that the clip on the wire from the coil next to the tuning gang, is on the pin of the bracket that supports the telescoping antenna.

OPERATION

Battery Operation:

- Open the back of the cabinet. It will be noted that a flat spring is located on the back of the chassis on the battery cable side, and also a slot in the chassis on the underside. For battery operation, one of the prongs of the power cord plug must be inserted in this slot and the other prong over the spring. This operates the line-battery switch (SW1). After inserting the plug, close the cabinet back.

AC or DC Operation: - For 105 to 125 volt, 50 to 60 cycle alternating current or direct current power line operation, remove the power cord plug from the receptacle on the chassis and connect to the electrical outlet. The power cord may be brought out of the cabinet through the slot provided at the lower right hand corner of the cabinet.

CROSLEY PAGE 23. MODELS F-115GN MN, TN, Ch. 115]

PARTS LIST

Symbol No.	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
C1A	156174-1	Ca	R23	39374-12	Resistor, 82
C1B		and Short wave Trimmers \} Assembly	R24	39374-15	Resistor, 150 ohm, $10 \%, 1 / 2 \mathrm{w}$
C1C			R25	156307-1	Tone Control (5 megohm)
C2	137499-43	Capacitor, 397 mmf ., 2\%, 500v., Mica	R26	39374-16	Resistor, 180 ohm, $10 \%, 1 / 2 w$
C3	137727-99		L1	156533	Rod Antenra (Broadcast)
		Ceramic	$\underline{L 2}$	156653-1	Antenna Coil (Short-wave)
C4	137727-142	Capacitor, 1000 mmf ., 300v.,	13	156714	R.F. Choke
		Ceramic $5000 \mathrm{mmf}, 500 \mathrm{v}$.,	L4	156691-1	Oscillator Coil (Broadcast)
C5	137727-121	Capacitor, $\mathbf{5 0 0 0} \mathrm{mmf}, 500 \mathrm{v} .$, Ceramic	A1	156390-1	Telescopic Antenna
C6A	156491-1	Trimmer (Broadcast), 2-18 mmi.	P1	156689	Plug (Battery) and Cable
C6B		Trimmer (Broadcast), 1-8 mmf.	T1	145025-7	Transformer, 2nd I.F.
C6C		Trimmer (Broadcast), 2-18 mmf.	T2	156756-1	Transformer, R.F.
C8	137499-46	Capacitor, 470 mmf ., 2%, 500 v ., Mica	$\begin{aligned} & \text { T3 } \\ & \text { T4 } \end{aligned}$	$\begin{aligned} & 145025-8 \\ & 156321-1 \end{aligned}$	Transformer, ist I.F. Transformer, Audio Output
C9	152999-2	Capacitor, 39 mmf ., $\mathrm{N} 5600,300 \mathrm{v}$.	SR1 SP1	156366-1	Selenium Rectifier, 75 ma . Speaicer 5" PM
C10	137398-3	Capacitor, 1.5 mmf ., 500 v ., Disc Ceramic	SP1 CA1	$\begin{aligned} & 156420 \\ & 142789-6 \end{aligned}$	Spealser 5" PM Power Cable and Plug
C11	137727-99	Capacitor, 20 mmf , $\mathbf{N O B O}, 500 \mathrm{v}$., Ceramic	$\begin{aligned} & \text { SWI } \\ & \text { SW2 } \end{aligned}$	$153347-1$ Part of 156260	Switch, Line-Battery Switch, On-OIf
C12	Part of T3	Capacitor, 47 mmf .	SW3	156523-1	Switch, Range
C13	Part of T3	Capacitor, 62 mmf . 500 v Ceramic		156745	Battery Pack Bracket, Chassis Maunting (R.H.)
C14	137727-121	Capacitor, $5000 \mathrm{mmi} ., 500 \mathrm{v}$, Ceramic		156285-1	Bracket, Chassis Mounting (L.H.)
C15	39001-17	Capacitor, . 05 mfd , 150 v ., Paper		156397	Bracket, Telescopic Antenna
C16	39433-14	Capacitor, 05 mfd ., 150v., Paper		156368-1	Cabinet, Back (Model F-115MN)
C17 C 18	137727-121	Capacitor, 5000 mmf ., $500 \mathrm{v} ., \mathrm{Ceramic}$ Capacitor, 62 mmf .		156368-2	Cabinet, Back (Model F-115GN)
C19	Part of T1	Capacitor, 47 mmi .		156368-3	Cabinet, Back (Model F-115TN)
C20A	142951-13	Capacitor, $100 \mathrm{mmf}, 500 \mathrm{v} .$, Resistor (R10).		156367-1	Cabinet, Front (Model F-115MN) Cabinet, Front (Model F-115GN)
C208		$100 \mathrm{mmf} ., 500 \mathrm{v} .$, Capacitor, Resistor (R10)- Capacitor Unit		156367 -3	Cabinet, Front (Model F-115TN)
C208		Capacitor, $100 \mathrm{mmi} ., 500 \mathrm{v.},)^{\text {Capacior }}$		145420	Clip (Fuse Type), Cabinet (2 used)
C21	137727-121	Capacitor, 5000 mmf ., 500v., Ceramic		157055	Dial
C22A	151550-4	Capacitor, 5000 mmi .1 (156467 156363	Dial Background Escutcheon
C22B C 22 C		Capacitor, $2000 \mathrm{mmf.}$, (Couplate		156363-1	Escutcheon External Cotter (Dial Drive Shaft)
${ }_{C 23}$	39477-45	Capacitor, . 047 mfd ., $600 \mathrm{v} .$,		155286-3	Hantlle
		Molded Paper		156378 156378	Hinge Clip, Cabinet Back (2 used)
C24	39433-25	Capacitor, , 002 mfd, , 400v., Paper		$\begin{aligned} & 156379 \\ & 156302-1 \end{aligned}$	Knob, Range Switch (Model F-115MN)
C25A	150975-1	Capacitor, $50 \mathrm{mfd} ., 150 \mathrm{vg}$.		156302-3	Knob, Range Switch (Model F-115GN)
C25B		$\left.\begin{array}{l}\text { Capacitor, } 30 \mathrm{mid} ., \\ \text { Capacitor, } 200 \mathrm{mfd} ., 10 \mathrm{v} .\end{array}\right\}$ Electrolytic		156302-5	Knob, Range Switch (Model F-115TN)
C25D		Capacitor, 30 mfd , 100 v .		156315-1	Knob, Tone Control (Model F-115MN)
C26	39477-45	Capacitor, .047 mfd ., 600 v ., Molded Paper		$156315-2$ $156315-3$	Knob, Tone Control (Model F-115GN) Knob, Tone Control (Model F-115TN)
C 27 C 28	$39433-14$ $39433-14$			156302-2	Knob, Volume and Tuning Controls (Model F-115MN)
C 28 C 29	39433-14	Capacitor, $.05 \mathrm{mid} ., 150 \mathrm{v}$., Paper Capacitor, .002 mfd , 400 v ., Paper		156302-4	Knob, Volume and Tuning Controls
C29 C30	$39433-25$ 137727-121	Capacitor, ${ }^{\text {Capacitor, }} \mathbf{5 0 0 0} \mathrm{mmg}$., 400 v. , Paper			(Model F-115GN)
C30 C31	-137727-121	Capacitor, 22 mmf ., N080, 500v., Ceramic		158302-6	Knob, Volume and Tuning Controls (Model F-115TN)
C32	137727-139	Capacitor, 100 mmf ., 500 v ., Ceramic		$\begin{aligned} & 155280 \\ & 94704-39 \end{aligned}$	
C33 C34	$137727-121$ $137727-141$	Capacitor, . 005 mifd., $500 \mathrm{v} .$, Ceramic Capacitor, 5000 mmf ., 500v., Ceramic		94704-38	(4 used)
C34 C35	$137727-141$ $137727-121$	Capacitor, 5000 mmf ., 500 v ., Ceramic		94704-45	Nut (Push-on), Speaker Mounting
R1	39374-73	Resistor, 3.3 megohm, $10 \%, 1 / 2 \mathrm{w}$.			(4 used)
R2	39374-77	Resistor, 4.7 megohm, $10 \%, 1 / 2 \mathrm{w}$.		$\begin{aligned} & 156669 \\ & 156724 \end{aligned}$	Plate (Metal) Battery Strap
R3	39374-25	Resistor, $1000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$ Resistor, $180,000 \mathrm{hm}, 10 \%, 1 / 2 \mathrm{w}$.		156461	Pointer, Dial
R4	$39374-52$ $39374-40$	Resistor, $180,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$. Resistor, $18,000 \mathrm{hm}, 10 \%$.		137939-2	Pulley, Idler (2 used)
R6	39374-77	Resistor, 4.7 megohm, $10 \% ; 1 / 2 \mathrm{w}$.		137940-1	Rivet, Idler Pulley (2 used)
R7	39374-46	Resistor, $56,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		156481	Shaft, Dial Drive ${ }^{\text {Shield }}$ Tube (V1, V2, V5)
R8	39374-25	Resistor, $1000 \mathrm{ohm}, 10 \%$, $1 / 2 \mathrm{w}$.		147784	Socket, Tube (5 used)
R9	39374-73	Resistor, 3.3 megohm , $10 \%, 1 / 2 \mathrm{w}$.		156612	Spring, Contact (Receptacle on
R10	Part of C20	Resistor, 47,000 ohm		156612	chassis for line-cord)
R11	156260	Volume Control (1 megohm, Tapped at $300,000 \mathrm{ohm}$)		145757	Spring, Dial Drive Cord
R12	$39374-45$ $39374-85$	Resistor, $47,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		1576662-1	Strap, Battery
R13	39374-85	Resistor, 10 megohm, $10 \mathrm{~s}, 1 / 2 \mathrm{w}$. Resistor, $1 \mathrm{megohm}, 1 / 2 \mathrm{w}$.		156595	Strip (Fish Paper), Dial Pointer
R14B	Part of 2	Resistor, 4.7 megohm, $1^{/ 2} \mathbf{w}$. Resistor, 2.2 megohm, $1 / 2$ w.		156692	Support and Bracket Assembly (Rod Antenna)
R14C R17	39374-187	Resistor, 2.2 megohm Resistor, $68 \mathrm{ohm}, 10 \%$, 2 w .		156278-1	Support, Handle \& Chassis
R18	39374-117	Resistor, 2200 ohm, 10%, 1 w.			Brackel (R.H.) Chasis
R19	156643-1	Resistor, $2200 \mathrm{ohm}, 3 \%, 7$ w., Wire Wound		158	Support, Handle \& Chassis Bracket (L.H.)
R20	$39374-19$ $39374-16$	Resistor, 330 ohm, $10 \%, 1 / 2 \mathrm{w}$. Resistor, $180 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		156884	Support and Terminal Assembly (Rod Antenna)
R21	39374-14	Resistor, Reststor, $120 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		155308-2	Washer, Felt (3 used)
				134916	Washer (Spring), Dial Drive Shaft

[^0]: *Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of the chassis, if you use alignment tool \# 98A30.7 obtainable from your Admiral distributor. The botton IF slug adjustment may be reached through the hollow core in the upper slug.

[^1]: * Adjustments \mathbf{A} and C made from the underside of the chassis. II IF transformers have hollow core slugs, these adjustments in all be made from the top of chassis, if you use alignment tool $\# 98 \mathrm{~A} 30-7$ obtsinable from your Admiral distributor. The bott if slug adjustment may be reached through the hollow core in the upper slug. \dagger Antenna Trimmer " F " should be aligned after chassis and antenna are mounted in cabinet.

[^2]: \dagger Part of Diodo Filter 63A3-1. This unit consisting of $\mathrm{C}, \mathrm{C} 9$ and R4 may be replaced with individual components.

[^3]: §Part of Diode Filter 33A 3.1. This unit consiating of $\mathrm{C} 8, \mathrm{C} 9$ and F 4 may be replaced with individual components.

[^4]: §Part of couplate, part number 63B6.7. Numbers 1, 2, 3, 4 on schematic correspond to lead numbers printed on face of couplate 63B6.7.

[^5]: © Tonn \boldsymbol{F}. Riden

[^6]: Connect generator lead to a Standard Hazeltine Test Loop, Model 1150, place two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the set loop.
 The alignment procedure should be repeated in the original order for greatest accuracy. Always keep the output from the signal generator at its lowest possible value to make the A.V.C. action of the receiver ineffective.

[^7]: ＊Adjust as Tuning Gang is Rocked

[^8]: * Adjust coil winding on right end of rod antenna (see sketch above). Twist the winding about the rod to loosen and then slide either to left or right.

