

GVERAL IRFCRMATMCN.
SR. 51 has been especially doskmed to fill the neel for a hiph quality replacement or cuatom tuner of such mechanicsi and circuit simplicity as to precluid the pos. sibility of init absolescence. Separate otandard compononts are used throuphout.

No special instructions for cirouit ad justrient are necessary. rimere are no triak efrcuits. To any teohnician

INSTALLLATI ON INSTRUCTICHS .

SK 51 control shafts and eacutcheon are designed for a face panel of not more that one quarter of an inch in thickoess. Carefully cheok the untt with the proposed cabinet placement using the furnished peper templet for cut-out marking.

The machine screws which now hold the bronse escutche on to the trensparent dial are for shf pping convenience only and may be discarded. Bronze oval head woolycrems are aupe plied to raster the eacutcheon to the cabinet panel.

The transparent control deaignation strip should be pleced over the control ahafts and fasterect into plece aftar the timer is in the cabinet to ingure perfect placoment.

Chasais mometing screws with retaining mashers should not be so tight as to nullify the cusinoning affect of the rubber feet.
cautick
VE: TILATICN IS EXTYEAELY IhYORTAT. No multi-tube unit should be housed in an insufficiently ventilated cabinet. Demage to the unit and the cabinet will reault.

ATSRNR RELUTRKAENTS.
For best non-directional standard an broadcast results a sinple wire tor to tronty rt -in langth cannected to antenne torctinal ANT will be aufficiont. Additiongl selectivity to this efficient input circuit would tens to restrict the wile band reception capabilities of the detector

1 be inv
For vest k. results a 100 v. C. dipols should be installed well above surrounding obstructions. The twistel 300 ohm ising from the dinole should be connectel tarminals 01 and $D P$. (CiND also prounds unit.) in consolt type folded dipole is supplied with the tuner and will prove \& satisfaciory substicut.

INPUT JiCKS.
All phono or TV aupio simals as well as the aft end Py radio are subject to the volume and tone controls of the tuner unlegs neprector output is used.

The jaak mariked "maG" 13 the input for a properi. compensatod pre amolifier when using the variable reluetance chrtridge,

The TV jack makes it possiblo to channel the audio of a telofision tuner thru the radios amplifior and spoaker.

The CUTPUT jack should be commected to the hiph imper once input control (250,000 to 500,000 ohms) of a quality audio mplifior. Use tho preparted onieldot lisad supplien With the tuner. Cboose s gheaker capablo of wide ranfe reprotuction.
A.C.COnSR. SP 51 is complatoly powerized for $110-125$ vplts 50-60 cyoles. The power switen on the volume Gontral) also controls the A.C.recepticie on the back of the chassis for convenisnce in amplifier installetion.

The A. M. or Standard Broadcast section consists of a pre-stage tunet Radio Frequency section and one broad band stage of I.F. terminating in a new LOW DISTORTION detector for those who insiat on the best in a Standard Broadcast Receiver. A'Null $\mathrm{T}^{\prime \prime}$ type 10 KC filter eliminates ad jacent station whistle without impairing maximum frequency response.

The Frequency Modulation section employs a tuned R. F. stage preceeded by an input coupling tube for added sensitivity and stability. An A.F.C. controlled Triode Oscillator, two stages of permiability tuned I. F. for superíor F.M. performance ard fully balanced static free Ratio Detector.

Input jacks are for phono pickups, either cryatal pickup or properly compensated pre-amp for Variable Reluctance type pickup and a jack for aural television.

Two output jacks, one direct from detector for feeding a high quality recording amplifier, etc., the other allowing for full tuner control. A phono pre-amplifier power supply socket is provided for SR 3 or similar unit.

SR 51 has the new SR tone-gate circuit for smooth electro-accoustical control of bass and treble emphasis allowing the controls of the mudio amplifier to be pre-set, The newest in TWO TUBE tone control. Base and treble variable from flat, minus 18 DB to plus 18 DB .
A. M. détector distortion only $.35 \%$ at 400 cycles and $.8 \%$ at 4000 cycles 100% modulation.
$10 \mathrm{~K} . \mathrm{C}$. filter attenuation zero at $9 \mathrm{~K} . \mathrm{C}$. and -47 DB at 10 K.C.
F. M. Sensitivity: - 5 microvolts. Ratio Detector A. M, absorption 70%.

Tubes: - Three 6BA6; two 6SN7GT and one each 6BE6; 6C4; 6J6; 6AL5; 6SA7; 6SK7; 6SF7; 6E5 and 5Y3.

Model 515 Radio-Phonograph

GENERAL FEATURES

The Model 515 is a combination designed for the reception of radio broadcast programs and for the reproduction of phonograph records, and other external sound. The receiver includes the following. separate pieces of equipment: (1) radio-phono chassis, (2) power amplifier, (3) record changer, and (4) coaxial high fidelity speaker.

TECHNICAL DATA

Power Input Tubes Circuits

Tuning Range

140-150 watts at $50-60$ cycles. (Phono motor 60 cycles. 25 watts additional.) Taps are available to accomodate power line voltages of $105,125,150,210$, and 250.

Total 11 and 2 rectifiers.
Superheterodyne with RF amplifier stage (three gang tuning condenser) on all bands. Two stage AM-IF (455 kc . Push-pull output with 6 db inverse feedback. Separate B plus supplies for power amplifier and tuner sections for reduction of temperatures and to prevent damage to components through surges. Sound input for phono and other external sound.

AM - 535 - 1620 kc
SW - 2-6 mc
SN - 6 - 18 mc
Output

Sensitivity
20 watts (2-6L6 tubes in push-pull). Less than 5% distortion at full output.
Less than 10 microvolts on any band. (Carrier modulated 30% at 400 cycles. Output 500 milifwatts with 10 db signal to noise ratio.)
Fidelity Overall 30 to $20,000 \mathrm{cps}$ plus or minus 1 db . Separate bass and treble control. Phono input equalized for elimination of objectionable scratch level.
Hi-fidelity l2-inch coaxial PM. 8 ohm voice coil.
Tuner chassis $121 / 4^{\prime \prime}$ wide $x 81 / 2^{\prime \prime}$ high $x 13^{\prime \prime}$ deep. Weight 10 lbs. Polished chrome. Power amplifier chassis 12 1/4" wide $x^{\prime \prime} 7^{\prime \prime}$ high $x 9^{\prime \prime}$ deep. Weight 23 lbs. Polished chrome.
Five controls - Station Selector, Function Switch, Volume, Trebie, off-On Bass.
Hum level 65 db below maximum output.
Antenna - AM (built-in) loop and SW (built-in) antenna. Provision for connection of external antenna.
Dial counter weighted - slide rule type - illuminated glass scale - full 7 inch travol - color dots to identify function - 0-100 logging scale. Unit construction of chassis, dial escutcheon, and knobs permits complete ease of installation, nothing to remove.

INSTALLATION

The Model 515 Radio-Phonograph comes complete with all equipment installed and ready for operation after taking the following few precautions:

1. Remove any packing material which may be used to hold the larger tubes in place.
2. Release the hold-down screws which hold the phono mechanism securely for shipment. These screws require only a few turns and when they are in the correct position the mechanism will be observed to float freely on the spring suspension. Do not remove the screws. Remove any tape or rubber bands which may be holding the pickup arm or accessories in place.
3. Check to make sure that power transformer tap is connected for the power line voltage.
4. Plug in the a.c. line cord.

ANTENNA CONNECTION

The Model 515 is equipped with built-in antennas for both AM and $S W$ reception. These antennas will be found adequate in most locations to receive all the stations in the service area. In locations remote from broadcast transmitters, or in locations shielded from the transmitters, outdoor antennas will give improved reception.

For reception under difficult conditions, the installation of a SCOTT Super Double Doublet All-Wave antenna is recommended. When this allwave antenna system is used, connections to the antenna terminal strip should be as follows: One of the wires in the twisted pair is connected to terminal marked "GND". The other wire in the twisted pair is connected to the terminal marked "2". A short wire jumper should be connected from terminal "1" to terminal "2".

For single wire antenna installation the connections at the antenna terminal strip should be as follows: Connect antenna lead to terminal marked " 2 ". A short wire jumper should be connected from terminal " 1 " to terminal "2".

OPERATION OF CONTROLS

Station Selector- The large center knob serves to adjust the receiver to the desired station. The dial pointer follows the rotation of the knob and indicates the frequency to which the receiver is tuned. Assigned frequencies of broadcast stations are listed on the radio page of your newspaper.

Volume Control - The knob directly to the left of the large station selector knob serves to adjust the volume of sound. Turned to the right the volume is increased, and turned to the left the volume is decreased. The control is designed as to give a smooth and gradual control of the sound volume.

Service Functions - The knob directly to the right of the large statior selector knob serves to adjust for the various functions desired. As indicated on the escutcheon, and identified by colored dots on escutcheon and dial glass, the functions are AM broadcast, shortwave 1, shortwave 2, phono reproduction, and an external connection which may be a separate record player or a crystal microphone.

Treble Control - Second knob to the left of station selector. This control acts to regulate the degree of higher audible tones sent to the loudspeaker. Turned completely to the right gives the maximum of high audio response. Turned to the left gives a minimum. The range of con. trol gives the user an opportunity of adjusting the reproduction to his own desires.

Off-On Bass Control - This knob is the second to the right of the station selector. Turned slightly from its extreme left position it serves to turn on the power to the radio receiver. Turned further to the right it increases the amount of low frequency audio, or bass reproduction. The control may, therefore, be set at the position giving the listener the amount of bass reproduction he desires. Generally the treble and bass controls, being independent, can be individually adjusted for the best balance in reproduction which, naturally, will vary somewhat with individual preferences.

TUNING THE RECEIVER

To receive broadcast stations after the Model 515 is installed proceed as follows:

1. Turn the knob marked "OFF-ON BASS" to the right and advance about half-way. The dial lights will illuminate indicating the receiver is correctly connected to a power source. Allow about thirty seconds as a warm-up time for the radio tubes.
2. Turn the function knob to the position where the arrow points to the blue dot on the escutcheon.
3. Turn the large knob, or station selector, to the frequency positios of one of the local broadcasting stations.
4. Turn the knob marked "VOLUNE" slowly to the right until the station is heard. Then readjust the large knob until reception is clearest.
5. Adjust "BASS" and "TREBLE" controls until the roproduction is most pleasing.

To receive shortwave stations turn the function knob to the green or yellow positions and proceed exactly as described.

RECORD CHANGER

The motor of the changer is permanently connected to the 125 volt tap so that it will not be necessary to modify this for various power line voltages. For 50 cycle operation a special drive wheel is required and is available.

FUSE REPLACEMENT

A fuse is provided for protection of the receiver against excessive power line voltages and against failure of any component in the receiver which would cause heavy current drain and fire hazard. This fuse is accessible at the rear panel of the tuner chassis. CAUTION: Always replace the fuse with one of the same rating in the ovent the fuse is blown. If the fuse continues to blow after replacement trouble is indicated and the equipment should be removed from the cabinet for examination.

TUBE REPLACEMENT

The Model 515 has the following tube complement:

Symbol	Tube	Application	Symbol	Tube	Application
v1	6BA6	RF Amplifier	V7	6SN7	2nd Audio Amplifier
V2	6 C 4	Converter	V8	6SN7	3rd Audio Amplifier
V3	$6 \mathrm{C4}$	Oscillator	v9	6L6G	Audio Power Output
V4	6BA6	IF Amplifier	V10	6L6G	Audio Power Output
V5	6BA6	IF Amplifier	V11	5Y3GT	Rectifier
V6	6SQ7	2nd Detector and lst	V12	25Z6GT	Rectifier
		Audio Amplificr	V13	6SC7	Preamplifier, reluctance pickup
		ALIGNMENT PROCEDURE			

Test Equipment

1. Electronic type voltmeter for DC measurements - RCA Voltohmyst.
2. AM signal generator for $455 \mathrm{kc}, 600 \mathrm{kc}, 1000 \mathrm{kc}, 1500 \mathrm{kc}, 2 \mathrm{mc}$, 6 mc , and 16 mc .
3. AC voltmeter such as Ballantine Output Meter.
4. An aligning tool is included with each receiver and is taped on the lst IF transformer can. Additional aligning tools may be ordered under part number 94V4707.
Alignment Procedure

The alignment is preferably performed in the followinz order: See
Figures 1 and 2 for location of adjustments on chassis.

1. 455 KC I.F. 3 . Band 2 R.F.
2. Band 1 R.F.
3. Band 3 R.F.

455 KC I.F. Alignment
A signal generator should be connected through a . Ol MFD mica capacitor to the junction of converter grid coupling capacitor (Cll) and middle gang condenser section (C2) which can be found on band selector switch (SW2). A good ground point for the generator is the rear support bracket of the switch assembly.

The AC voltmeter is connected across the secondary of the audio output transformer, which is loaded with an 8 ohm 10 watt resistor connected in place of the speaker voice coil. In the event this resistor is not available the speaker may be used if the sound volume can be tolerated. The volume, bass, and treble controls must be full on, the band selector switch in Band 1 position, and the receiver dial set at 1600 kc .

Apply sufficient input signal at 455 kc 400 cycles 30% modulation to give an indication of 2 volts r.m.s. AC on the AC output meter. With the use of the aligning tool peak the primary (bottom core) and secondary (top core) of the 455 kc I.F. transformers for maximum reading on the output meter. Begin alignment with peaking 3rd I.F. (T7), next the 2nd I.F. (T6) and last the lst I.F. (T5). As the I.F. stages approach correct alignment, reduce the input signal level so the output never exceeds 2 volts AC. Repeat above procedure if stages have been found to be badly mis-aligned.

The normal 455 kc I.F. sensitivity is 5 uv for 10 db signal to noise ratio with 400 cycles 30% modulation. An alternative method for determining sensitivity is to measure with the electronic voltmeter the DC voltage applied to the AGC line (solid white wiring in tuner chassis). With this method the 455 kc I.F. input is 15 uv for a reading of 1 V DC Band 1 R.F. Alignment
Connect the signal generator to terminal 1 on the antenna terminal strip through a . 01 MFD mica capacitor. The Band 1 loop antenna must be plugged into the receiver. Operating controls and AC voltmeter con. nections remain as for 455 kc I.F. alignment.

Set the signal generator and recelver dial at 1000 kc and adjust Band 1 oscillator (T3) core for maximum indication on the output meter. Reset generator and receiver dial at 600 kc and adjust Band 1 low frequency trimmer (C14). Reduce input signal so the output never exceeds $2 \mathrm{VAC}$. The Band 1 converter transformer (T1) is now adjustad for maximum read. ing. The signal generator and receiver dial are ry-set to 1500 kc and the Band 1 oscillator trimmer (C58), Band 1 converter trimmer (C55) and Band 1 loop trimmer (C52) are adjusted. Repeak C55 and C52 if considerable increase in output reading has been noted.

Normal sensitivity at any frequency on Band 1 is less than 0.5 uv for 10 db signal to noise ratio with 400 cycles 30% modulation. Band 2 R.F. Alignment
Comnect signal generator to terminal 2 on the antenna terminal strip through a dummy antenna load of 100 ohms resistor in series with 125 MMFD capacitor. Operating controls setting and AC voltmeter connections remain as for Band 1 R.F. alignment.

Set the signal generator and receiver dial at 2.2 mc and adjust in step procedure Band 2 oscillator coil (T4) core, next Band 2 converter trans former (T2) core and Band 2 antemna coil (L2) for marimum reading on output meter.

Reset signal generator and receiver dial at 5 mc and adjust in step pro cedure Band 2 oscillator trimmer (C59), Band 2 converter trimmer (C56) and Band 2 antenna trimmer (C53). Repeat above procedure until no further adjusting of cores and trimmers is needed.

Normal sensitivity at any frequency on Band 2 is less than 8 uv for 10 db signal to noise ratio with 400 cycles 30% modulation.

FIG. 1

Band 3 R.F. Alignment

The signal generator connection through dummy antenna, AC output voltmeter connections and operating controls setting remain as for Band 2 R.F. alignment.

Set signal generator and receiver dial at 6 mc and adjust in step procedure Band 3 oscillator coil (L5) core, next Band 3 converter transformer (L4) core and Band 3 antenna coil (L3) core for maximum indication on output meter.

Reset the signal generator and receiver dial at 15 mc and adjust in step procedure Band 3 oscillator trimmer (C60), Band 3 converter trimmer (C57), and Band 3 antenna trimmer (C54).

Repeat above procedure until the 6 mc and 15 mc points require no further adjusting of cores and trimmers.

Normal sensitivity at any frequency on Band 3 is less than 10 uv for 10 db signal to noise ratio with 400 cycles 30% modulation.

FIG. 2
C 52
(0)

1500 KC
Location of Tuning Adjustments

C 60 (O)
6 MC

VOLTAGE TABLE

Tube	Type	$\underset{1}{\operatorname{Pin}}$	$\underset{2}{\operatorname{Pin}}$	${ }_{3}$	Pin_{4}	Pin_{5}	$\underset{6}{\operatorname{Pin}}$	Pin_{7}	${ }_{8}^{\text {Pin }}$
V1	6BA6	-. 3	0	$\begin{gathered} \mathrm{AC} \\ 6.5 \end{gathered}$	0	120	120	1.25	-
V2	$6 \mathrm{C4}$	140	0	$\begin{gathered} \hline A C \\ 6.5 \end{gathered}$	0	140	-. 2	7	-
V3	$6 \mathrm{C4}$	130	0	$\begin{array}{\|c\|} \hline \mathrm{AC} \\ 6.5 \\ \hline \end{array}$	0	130	-3.5	0	-
V4	6BA6	-. 3	0	$\begin{gathered} \mathrm{AC} \\ 6.5 \\ \hline \end{gathered}$	0	120	120	3	-
V5	6BA 6	0	0	$\begin{gathered} A C \\ 6.5 \\ \hline \end{gathered}$	0	110	110	2.5	-
V6	6SQ7	0	-. 8	0	0	0	90	$\begin{array}{r} \mathrm{AC} \\ 6.8 \end{array}$	0
V7	6SN7	0	110	5	35	235	50	$\begin{array}{r} \text { AC } \\ 6.8 \end{array}$	0
V13	$65 C 7$	0	210	-. 5	-. 5	90	0	0	$\begin{gathered} 1 \mathrm{AC} \\ 6.8 \\ \hline \end{gathered}$
V8	6SN7	66	210	78	66	210	78	0	$\begin{array}{r} \mathrm{AC} \\ 6.8 \\ \hline \end{array}$
V9	6L6G	0	$\begin{array}{r} A C \\ 6.8 \end{array}$	360	275	0	73	0	15
V10	6L6G	0	$\begin{array}{r} A C \\ 6.8 \\ \hline \end{array}$	360	275	0	73	0	15
V11	5 Y 3	0	400	0	$\begin{aligned} & \text { AC } \\ & 390 \\ & \hline \end{aligned}$	0	$\begin{array}{r} A C \\ 390 \\ \hline \end{array}$	0	400
V12	2526	0	0	$\begin{gathered} A C \\ 170 \end{gathered}$	200	$\begin{gathered} \mathrm{AC} \\ 170 \\ \hline \end{gathered}$	0	0	200

Voltage readings made with Voltohmyst. Line voltage adjusted to 117 VAC. All voltages measured between indicated pin and chassis frame. Unless noted all voltages are DC and positive to chassis.

No signal input.
Voltages taken with the service selector switch in Band 1 position. Volume control in the counterclockwise position.
Tone controls clockwise.

RESISTANCE TABLE									
Tube	Type	P1n 1	Pin 2	$\begin{gathered} \text { Pin } \\ 3 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 4 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 5 \end{gathered}$	Pin 6	Pin_{7}	$\begin{gathered} \text { Pin } \\ 8 \end{gathered}$
V1	6BA6	1.75 M	0	0	0	inf.	inf.	82	-
v2	$6 \mathrm{C4}$	Inf.	inf.	0	0	inf.	3.5 M	4.7 K	-
V3	604	inf.	inf.	0	0	inf.	33 K	0	-
V4	6BA6	1.4 M	0	0	0	inf.	inf.	220	-
V5	6BA6	0	0	0	0	inf.	inf.	220	-
v6	6SQ7	0	4.7 m	0	0	0	inf.	0	0
V7	6SN7	19 K	inf.	2.2 K	500 K	inf.	12 K	0	0
V13	6SC7	0	inf.	3.3 k	3.3 M	inf.	0	0	0
v8	6SN7	230 K	inf.	11 K	230 K	inf.	11 K	0	0
V9	6L60	inf.	. 2	inf.	inf.	470 K	10 K	0	170
V10	6L6G	inf.	. 2	inf.	inf.	470 K	10 K	0	170
V11	5 Y 3	inf.	inf.	inf.	5	Inf.	5	inf.	inf.
V12	$25 \mathrm{Z6}$	inf.	inf.	2	inf.	2	inf.	inf.	inf.

Resistance readings taken with Voltohmyst connected between pin indicated and chassis frame. Values given are in ohms except where K indicates times 1000 and M indicates times 1 megohm.

All controls to the counterclockwise or off position.
Range switch in Band 1 position.

Parts List By Symbol Designation

Symbol	Function	Description	Part No.
C33	Coupling, Audio Amp.	Capacitor, paper 11 MFD 600 V , miniature tubular	15L3468
034	Coupling, Audio Amp.	Capacitor, paper . 02 MFD 200 V , miniature tubular	15U4580
C35	Grid coupling, Audio Amp:	Capacitor, paper . 01 MFD 200 V , miniature tubular	15L3463
C36	RF filter, Audio Amp.	Same as Cll	
C37	Grid coupling, Audio Amp.	Same as C33'	
C38	Bypass, Treble control	Same as C35	
C39	Bypass, Treble control	Same as Cl3	
C40	Bypass, Bass control	Same as Cl3	
C41	Bypass, Bass control	Same as C34	
C42A	Decoupling	Capacitor, electrolytic,	15L3588
C42B	Filter, low frequency	$4 \times 20 \mathrm{MFD}, 450 \mathrm{~V}$	
C43	Cathode bypass, Audio Amp.	Capacitor, electrolytic, $25 \mathrm{MFD}, 25 \mathrm{~V}$, tubular	158795
644	Grid coupling, Audio Amp.	Same as C8	
C45	Coupling, cathode follower	Same as C5	
C46	Shunt capacity	Capacitor, mica 25 MMFD $10 \% 500 \mathrm{~V}$	15E1849
647	Grid coupling, Audio Amp.	Same as C8	
C48	Grid coupling, Audio Amp.	Same as C8	
C49	Cathode bypass, Power Amp.	Capacitor, electrolytic $25 \mathrm{MFD}, 50 \mathrm{~V}$, tubular	15B638
C50A	Filter, low voltage	Capacitor, electrolytic,	15L3438
C50B	Filter, low voltage	2×60 MFD 200 V Same as C42	
C51A	Filter, high voltage Filter, high voltege	Same as C42	
C51B	Filter, high voltage		
C51C	Filter, high voltage		
C52	Trimmer, Band 1 Ant.	Capacitor, trimmer, 1-8 MMFD	15W5079
C53	Trimmer, Band 2 Ant.	Same as C52	
C54	Trimmer, Band 3 Ant.	Same as c52	
C55	Trimmer, Band 1 Conv.	Same as C52	
C56	Trimmer, Band 2 Conv.	Same as C52	
C57	Trimmer, Band 3 Conv.	Same as C52	
C58	Trimmer, Band l Osc.	Same as C52	
C59	Trimmer, Band 2 Osc.	Same as C52	
C60	Trimmer, Band 3 08c.	Same as C52	
C61	RF bypass, Audio	Same as C20	
E1	Dial light	$\begin{aligned} & \text { Lamp, } 6-8 \text { V . } 150 \text { A \#47 } \\ & \text { brown } \end{aligned}$	49 A 168
E2	Dial light	Same as El	
E3	Phono compt. light	Same as El	
E4	Overload protection	Fuse, $3 \mathrm{amp}, 3 \mathrm{AG}$	37A162

Symbol Desig.	Function	Description	Part No.
E5	Main tuning knob	Knob, station selector $17 / 8^{\prime \prime}$ dia. brass	47V4603
E6	Control knob	Knob, 1 1/8" dia. black	47V4604
E7	Align IF	Aligning tool	94 V 4707
J1	Loop connector to	Receptacle, 3 contact	6704716
J2	Phono plckup, external	Receptacle, dual, insulated	67 V 4657
J3	Phono compartment	Receptacle, single,	6783226
J4	light connector Power cable connector	insulated Socket, 12 contact	82S4305
J5	Speaker connector	Receptacle, 2 contact	67V4673
J6	Phono motor power connector	Receptacle, 4 contact	67B645
Ll	Signal interceptor	Loop	1V4594
L2	Band 2 antenna tuning	Coil	20W4915
L3	Band 3 antenna tuning	Coil	$20 W 4916$
L4	Band 3 conv. tuning	Transformer	20W 4918
L5	Band 3 osc. tuning	Coil	20W4920
L6	Filter choke, ripple	Choke	17 L 3312
LSI	Loudspeaker	Speaker, 12" coaxial, PM 8 ohm voice coil	85V4593
P1	Loop connector to receiver	Plug, 3 contact	$65 \cup 4714$
P2	Phono compartment	Plug, single contact	65E3225
P3	light connector Amplifier connector to tuner	Plug, 12 contact	$65 S 4301$
R1	Grid load, RF	Resistor, composition,	7023404
R2	Grid decoupling, RF	Resistor, composition,	$70 L 3401$
R3	Cathode bias, RF	Resistor, composition,	70 L 3391
R4	Plate decoupling, RF	Resistor, composition,	7043393
R5	Grid load, Conv.	Resistor, composition, $2.2 \mathrm{meg}, 20 \% \frac{1}{8}$ watt	$70 L 3408$

Parts List By Symbol Designation

$\begin{aligned} & \text { Symbol } \\ & \text { Desig. } \end{aligned}$	Function	Description	Part No.
R6	Grid decoupling, Conv.	Same as R2	
R7	Cathode bias, Conv.	Resistor, composition, 4700 ohms, $10 \% \frac{1}{2}$ watt	7013395
R8	Plate decoupling, Conv.	Same as R4	
R9	Grid decoupling, IF	Same as R2	
R10	Grid load, osc.	Resistor, composition, 33,000 ohms, $10 \% \frac{1}{2}$ watt	7013398
R11	Plate load, Osc.	Same as R4	
R12	Cathode blas, IF	Resistor, composition, 220 ohms, $5 \% \frac{1}{2}$ watt	70 V 4783
R13	Plate decoupling, IF	Same as R4	
R14	Cathode bias, IF	Same as Rl2	
R15	Plate decoupling, IF	Resistor, composition, 3300 ohms, $10 \% \frac{1}{2}$ watt	70L3394
R16	Diode load, IF	Resistor, composition, $.22 \mathrm{meg} 10 \% \frac{3}{2}$ watt	$70 L 3403$
R17	Diode decoupling, IF	Resistor, composition, 47,000 ohms 10% 골 watt	7013399
R18	Decoupling, AGC	Resistor, composition, $1 \mathrm{meg} 20 \%$ 흘 watt	$70 L 3406$
R19	Decoupling, Audio	Resistor, composition, 22,000 ohms $10 \% \frac{1}{2}$ watt	70 L 3397
R20	Power filter	Resistor, 750 ohms, 10% 5 watt, wirewound	7OW 4912
R21	Compensation, Phono Pickup	Resistor, composition, 6800 ohms, $10 \% \frac{1}{2}$ watt	70 L 3534
R22	Grid load, Phono Preamplifier	Resistor, composition, $3.3 \mathrm{meg}, 20 \% \frac{1}{2}$ watt	7013422
R23	Plate load, Phono Preamplifier	Resistor, composition, 68,000 ohms, $10 \% \frac{1}{2}$ watt	$70 L 3515$
R24	Plate load, Phono Preamplifier	Same as R10	
R25	Equalizing, Phono Audio Freq.	Same as Rl6	
R26	Grid load, Phono Preamplifier	Same as R2Z	
R27	Equalizing, Phono Audio Freq.	Same as R19	
R28	Volume control	Potentiometer, volume, $.5 \mathrm{meg}, 20 \%$	70V4583
R29	Grid load, Audio Amp.	Resistor, composition, $4.7 \mathrm{meg}, 20 \% \frac{1}{2}$ watt	70 L 3530
R30	Plate load, Audio Amp.	Same as R2	
R31	Tone cantrol network	Same as RI7	
R32 R33	Treble control	```Potentiometer, treble, . }5\textrm{meg},20 Potentiometer, bass off-on, . 5 meg, 20%```	$70 V 4584$ $70 \vee 4585$
R34	Bass control network	Same as Rl9	
R35 R36	Grid load, Audio Amp. Cathode follower	Same as R2 Resistor, composition, 56 ohms, $10 \% \frac{1}{2}$ watt	70V4628

Parts List By Symbol Designation

Symbol Desig.	Function	Description	Part No.
R37	Cathode bias, Audio Amp.	Resistor, composition, 2200 ohms, $10 \% \frac{1}{2}$ watt	7013432
R38	Plate load, Audio	Same as Ri7	
R39	Amp. Cathode follower	Resistor, composition,	70 L 3527
	decoupling	560 ohms, 10% 古 watt	
R40	Cathode circuit	Resistor, composition, 10,000 oms, $10 \% 1$ watt	70 L 3396
R41	Cathode blas, Cathode	10,000 ohms, 10% d watt	70V4700
	Follower	1800 ohms, $10 \% \frac{1}{2}$ watt	
R42	Grid load, Cathode Follower	Same as RI	
R43	Plate decoupling,	Same as R4	
	Audio Amp.		
R44	Grid load, Phase	Same as Rl6	
R45	Inverter Cathode bias, Phase	Resistor, composition,	70 V 4691
	Inverter	680 ohms, 10% 咅 watt	
R46	Cathode coupling	Resistor, composition, 10,000 ohms, $10 \% 1$ watt	7013427
R47	Plate load, Phase	Same as R46	
	Inverter Por		
R48	Grid load, Power Amp.	Same as R1	
R49	Grid load, Power Amp.	Same as RI Resistor, 167 ohms, 10%	
R50	Cathode bias, Power Amp.	Resistor, 167 ohms, 10% 5 watt, wirewound	70W 4910
R51	Filter	Resistor, 375 ohms, 10\%	7OW 4911
R52	Filter	Resistor, composition, 3900 ohms, $10 \% 2$ watt	70V4693
SW1	Band 1, 2, 3, Phono Switching	Switch, range, 4 position	89W 4899
T1	Interstage coupling, Band 1 Conv.	Transformer	20V4620
T2	Interstage coupling,	Transformer	20W 4917
T3	Oscillator, Band 1	Coil	20V4621A
T4	Oscillator, Band 2	Coil	20N4919
T5	Interstage coupling, IF	Transformer	20V4622A
T6	Interstage coupling, IF	Same as T5	
T7	Interstage coupling,IF	Same as T5	
T8	Power	Trans former	9174900
T9	Output	Transformer	$91 V 4667$

$|$| Tube - 6BA6 |
| :--- |
| Tube - 6C4 |
| Same as V2 |
| Same as V1 |
| Same as VI |
| Tube - 6SQ7 |
| Tube - 6SN7 |
| Same as V7 |
| Tube - 6L6G |
| Same as V9 |
| Tube - $25 Z 6 G T$ |
| Tube - $5 Y 3 G T$ |
| Tube - $6 S C 7$ |

Socket, 7 contact, miniature, bakelite
Socket, 7 contact, miniature
mica filled bakelite
Same as X 2
Same as XI
Same as X1
Socket, 8 contact octal, black bakelite, type MIP8
Same as X6
Socket, 8 contact octal,
bakelite
Same as X8
Same as X8
Same as X8
Same as X8
Same as X6

ALL RESISTORS $1 / 2$ W UNLESS NOTED ALL CAPACITORS IN MMAF UNLESS NOTED
$92 \mathrm{G2871}$ $92 B 597$

92V4632
92A230
92A233
9281419
923480
92 E4695
$82 B 663$
82V4636

8254412

82 E1322

Figure 3 Schematic Diagram Model 515 Amplifier

SEARS, ROEBUCK PAGE 22

Power Supply
105-125 Volts AC-DC 35 Watts
Frequenc y Range Broadcast

540-1600 KC

Specifications

Potier Output
Undistorted Maximun

Speaker Voice Coil Inpedance 3.2 ohms

ALIGIMENT DATA

With variable condenser olosed, set the pointer horizontally to the left.
Generator ground lead connected to floating ground.

Position of Variable	Generator Frequency	Dummy Antenna	Generator Connections	```Adjust \\ Trimers \\ (In order shown for max.output)```	Trimmer Function
Open	455 Kc	.05 mfd .	Mixer Grid	A1, $\mathrm{A}^{2}, \mathrm{~A} 3, \mathrm{~A} 4$.	I.F.
1400 Kc	1400 Kc	50 murd.	Ext.Ant.Conn.	A5,A6, A7	Osc.R.F.,Ant
600 Ko	600 Kc	50 mmfd .	Ext.Ant.Conn.	Cheok Point	

REPAIR PARTS LIST

Sahomatic Location	Part No.	Description	Sohemetic Location	Part Fo.	Description
W1	H23159	Antoma Loop Assembly Bracket, Ant enna Loop Litg, Bracket, Var. Con. dt $_{\mathrm{B}}$ Bracket, Dial Scaio R'tg, (left) gracket, DIal Scele wtg. (ricit) Cabinet Assectly (Brom - Cat. No. 15)			
	822953			N229150-2	Cover, Maar Cabinat (Ivory -2 ${ }^{2} 16$
	823207			$\mathrm{N} 22 \mathrm{hOL}-5 \mathrm{~S}$	Kncb, Cn-cir-Volure (3rown -
	122965				Fet $\mathrm{V}=15$ - 5) (3sown
	N23561			$\begin{aligned} & 122604-5 B \\ & -22604-5 \mathrm{c} \end{aligned}$	Knot, Tonc (Eremn - Cet.: 0.15)
	W23562	Cabinet Assembly (Crory -		12260-3	Knot, in-CSf-Yolumb (Ivory cat. $\mathrm{ic}, 16$)
	$\begin{aligned} & \mathrm{N} 22823-2 \\ & \mathrm{~N} 22 \mathrm{~S} 23-1 \\ & \mathrm{~N} 22369-1 \end{aligned}$	Cabinot (Bran - Cat.No. 15)		n22604-35	Knov, Fore (Ivory - Cat, No.lt)
		Cabinet (Ivory - Cat + No.16)		522604-3C	Knok, Munits (IvCPr-azt. Wc. $1 t$)
		cloth, Gmillo (Brown -	P	$\begin{aligned} & 123141 \\ & \because 203 \\ & =253 \end{aligned}$	Larflet, Inatruction Line Vord vit. Elug
	122369-2	cloth, Grillo (Ivory -		W22956	Pcirter, Dial
	N2293?	Cat. No. 16)	RL RL		
	122939$N 19361$		䜌		
		Glip, पalrpin	${ }_{-1}{ }_{8}$		Resistor, 6. megohns, matt
$\underline{L 2}$	923163	Coti, R.F.	R6		Resintor, 1730 sohm,
	W23160	Coil; Oscillator	ה7	\%22963	Rosistor, Yolume vortrol * 3vitcil, 500, 000 ohra
c2, ${ }^{\text {c5 }}$	H23155	Conderaer, Verimble, 3 gang	R.		
		Conderser, tos nrd., 200 Volt	810	423156	
CH_{4}		Condenser, . 00005 mfá., 500 Volt			500.000 ohrs
c6, c8		uica	R1l		Resietor, 150 ons, $\frac{7}{3}$ watt
		Condons er, 0002 rifa, 350 volt	R12		fosistor, i 200 ohns 2 rett
		Corandc		$\because 22054$	Scale, Disl
$\begin{aligned} & c 7, c 9, C 11 \\ & \text { C10 } \\ & \text { C12i, c12B } \end{aligned}$		Condenser, . 01 mifd., 400 velt		122057	Shart, zintte
	H22111	Condenser, . $003 \mathrm{mrd.}$,60 c volt		122:00-1	Spanker, 5"F.k.
		Canderser, Electrolytic, 50-50 nfd.		The133	Spring
		150 voit		:23162	Trassioncer, ist I.
	$\begin{aligned} & 319132 \\ & \text { N1? } 2940=1 \end{aligned}$	Cord, dial Drivo		123162	
		Cover, Roar Sabinot (irorm -		N23164	rusatcreer, (totit

TECHNICAL INFORMATION

```
Power Supply
    105-120 Volts AC 50 Watts
Frequency Renge
    equency Renge . . 540-1600 Kc
```

Specifications
Power Output
Undistorted . . . 1.0 Watt
Maximum 2.5 Watt
Speaker Voice Coil Impedance 3.2 ohms

AM Tuning range -540 Kc to 1600 Kc . Intermediate Frequency - 455 Kc . I.F. and R.F. measurements mad at 500 milliwatts output - approximately 1.27 volts on a rectifier type voltmeter connected across speakı voice coil.
Approximately input for 500 MW output: I.F. 300 uv ; R.F. with standard loop: at $\mathbf{6 0 0} \mathbf{K c}, \mathbf{1 2 0 0} \mathbf{u c} / \mathrm{n}$ at $1000 \mathrm{Kc}, 1050 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc}, 800 \mathrm{uv} / \mathrm{m}$.
Tuning range - 88 megacjcles to 108 megacycles. Intermediate Frequency 10.7 megacycles. I.F. ar R.F. measurements made at 500 milhiwatts output - approximately 1.27 volts on a rectifier type voltmet connected across speaker voice coil. Approximate input for 500 MW output: I.F. 300 uv ; R.F. "Abs lute Measurements': 91 megacycles, 125 uv ; 105 megacycles, 100 uv .

ALIGNMENT PROCEDURE

PRELIMINARY:

Output meter connection
Across speaker voice coi Output meter reading to indicate 500 MW

Position	Gencrator Frequency	Dummy Ant.	Cenerator Connection	Generator Connection	Adjust Trimmer In Order Shown	Trimmer Function
Variable			(high)	Ground Lead	For Max. Output	
Open	455 Kc	. 05 mfd .	Mixer Grid	Chassis	A1, A2, A3, A4,	I.F.
Open	1650 Kc		Test Loop	Test Loop	A5	Orcillator
1400 Kc	1400 Kc		*Test Loop	Test Loop	16	Antenna
-600 Kc	600 Kc		*Test Loop	Test Loop	Check Point	Antenna

- Connect generator lead to a Standard Hazeltine Test Loop, Model 1150, placed two feet from the set loop, or three turns wire about six inches in diameter, placed about one foot from the set loop. Or the generator can be connected with the hil side lead to the AM antenna screw terminal and the ground lead to the chassis.
- With a generator signal of 600 Xc , tune the set to the point where maximum output is obtained, which should be a proximately 60 Kc on the dial. Adjust antenm section places of variable for maximum output.
The aligmment procedure should be repeated in the original order for greatest accuracy.
Alweys keep the output from the signal generator at its lowest possible value to make the A. V. C. action of the receiver i effective.

FM ALIGNMENT

Detector and I.F. alignment using Signal Generator and Oscillo:cope.

1. Connect FM Generator, High side, to grid (pin 1) of 6BA6 2nd I.F. tube through .005 mfd . dummy.
2. Set generator frequency to 10.7 Mc . modulated either 60 cycles or 400 cycles, 250 Kc sweep (125 Kc . deviation).
3. Connect vertical input of scope across volume control of receiver (grounded terminal to chassis, ungrounded terminal to high side of control).
4. Set scope switch for internal synchronization and set horizontal oscillator to 2 X frequency of modulating voltage of generator. (120 or 800 cycles)
5. Turn variable condenser fully open, and band switch to right (FM).
6. Adjust frequency vemier of horizontal oscillator on scope until the pattern beconses stationary.
7. Adjust ratio detector primary slug No. A7 for maximum vertical sweep of the scope pattern.
8. Adjust ratio detector secondary slug No. A8 to center the cross over point of the pattern. Pattern should look like Fig. \mathbf{z}_{1} with the same amount of curve on both ends, and the cross over point in the center.
9. Connect generator, high side, to center antenna screw terminal on bottom of chassis.
10. Adjust I.F, slugs A9, A10 and All for the greatest vertical sweep of the pattern, consistent with linearity. If the I.F. slugs are adjusted for maximum sweep of the pattern, the pattern may become non-linear. Therefore, adjustment should be made for the greatest sweep which can be obtained and still have all four ends of the "X" pattern similar in size and shape.
11. Check the alignment of the I.F. and detector circuits by varying the signal generator frequency above and below the center frequency of 10.7 Mc . If the receiver is perfectly aligned, two smaller " X " patterns of similar size and shape will result, orie on either side of the center frequency. See Figure 2.

SEARS, ROEBUCK PAGE 22.

PAGE 22-10 SEARS, ROEBUCK
MODEL 1035,
Ch. 528.195

SEARS, ROEBUCK PAGE 22-11

ALIGNMENT PROCEDURE

PRELIMINARY:

Output meter reading to indicate 0.05 Watt across Voice Coil
Generator ground lead connection.
Generator Modulation $.30 \%, 400$ cycles
Position of Volume Control Fully on

IMPORTANT ALIGNMENT NOTES:

The Alignment must be done in the order given.
The entire Aligoment Procedure should be repeated step by step in the original order for greatest accuracy. Always keep the output from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.

POSITION OF TUNER	GENERATOR FREQUENCY	DUMMY					
OPEn	ANTENNA	GENERATOR	CONNECTION	TRIMMER	ADJUSTMENT		TRIMMER
:---:							
FUNCTION							

LOCATION OF PARTS OF TOP OF CHASSIS

PARTS LIST

SCHEMATIC IOCATION	$\begin{gathered} \text { PART } \\ \text { NUMBER } \end{gathered}$	DESCRIPTION	SCHEMATIC IOCATION	PART NUMBER	DESCRIPTION
$\begin{aligned} & \mathrm{C1A}, \mathrm{C} 18 \\ & \mathrm{C2} \\ & \mathrm{C}, \mathrm{C}, \mathrm{C} 15 \\ & \mathrm{C} 4 \end{aligned}$	T62-17	Bumper, foot Bushing, pulley Cabinat, less cover		788-171	Labal, schamatie Lamp, pilot Loop, antenna
	772-56			T89-7	
	142-486			T82-69	
	T19-212	Capacitor, variable (2 gang). Copacitor, 05 mfd .200 v.		T58.83	Pointer, dial
	116.197			T39-287	Pulley, pointer drive
	T16-189	Copacitor, $05 \mathrm{mfd}$.400 v	R1	T60-659	Resistor, 22K ohm, $1 / 2 \mathrm{w}$.
	T15-229	Capacitor, 47 mmfd mica.... Capacitor, .02 mfd .400 v....	R2	160-726	Resistor, 2.2 megohm, $1 / 2 \mathrm{w}$.
C6	T16-150		R 3	160-730	Resistor, 47K ohm, \mathbf{Y}_{2} w....
$\begin{aligned} & \mathrm{c}, \mathrm{C8}, \mathrm{c}, \mathrm{c} 10 \\ & \mathrm{c} 11, \mathrm{c} 12 \end{aligned}$	T17-104	Capacitor, .02 mfd .400 Capacitor, ceramic unit.	R4, R9	T60-731	Resistor, 470K ohm, $1 / 2 \mathrm{w} . .$.
	T16-190	Capacitor, . $005 \mathrm{mfd} .600 \mathrm{v} . .$. Capacitor, elecirolytic, $50-30 \mathrm{mfd}$. 150	${ }_{85}$	T60-728	Resistor, 10 megohm, $1 / 2 \mathrm{w} . .$.
	118-304		R8	$160-667$	Resistor, 220 K ohm, $1 / 2 \mathrm{w}$.
			R10	160-774	Resistor, 180 hmm , $1 / 2 \mathrm{w} .10 \%$
	711.187	Clamp, line cord, chassis......	811	T60-732	Resistor, 1000 ohm, 1 w. 10%
	711.232	Clamp, line cord, cabinet.....	212	180-690	Resistor, 27 ohm, $1 / 2 \mathrm{w} .10 \%$.
	T83-421	Clip, t.F. transformer mounting		775-85	Shaft, pulloy
${ }_{\text {R6, R7, S2 }}^{12}$	710-572	Coil, oscillator		71-39	Shield, pilot lamp..........
	T24-194	Control, dual, ON-OFFVOLUME and TONE		T87-33 T68-11	Socket, pilot lamp.
	T51-109	Cord, dial drive, approx. 30\%..		T68.41	
	T23-151	Cord, power line....		T22-142	Socket, phono motor
	T21.167	Cover, plote, chassis.		T77-151	Spacer (gang mounting)......
	T42-487	Cover, cabinet		779-391	Speaker, $5^{\prime \prime}$ P.M.....
	T47-108	Grommet (gang mounting).		770-135	Spring (dial cord).
	T83-690	Hinge, cobinat cover.		T84-513	Support, lid
	T48-54	Jowel, pilot light...	SIA, SIE, SIC	T69.188	Switeh, RADIO-PHONOO
	T52-321	Knob, ON-OFF-VOLUME	72	710-479	Transformer, 2nd I.F..
		and PHONO-RADIO.	11	110.508	Tronsformer, 1st l.F..
	$\begin{aligned} & 752.320 \\ & \text { T88-170 } \end{aligned}$	Knob, TUNING aad TONE.... Lobal, tube position.	13	780-268	Transformer, output
		MODEL 1045			
		PARTS LST			
SCHEMATIC LOCATION	$\begin{gathered} \text { PART } \\ \text { NUMBER } \end{gathered}$	DESCRIPTION	SCHEMATIC LOCATION	$\begin{gathered} \text { PART } \\ \text { NUMBER } \end{gathered}$	DESCRIPTION
$\mathrm{C1A}, \mathrm{C} 1 \mathrm{~B}$C 2$\mathrm{C}, \mathrm{C}, \mathrm{C} 15$C 1C 6$\mathrm{C}, \mathrm{C8}, \mathrm{C} 9, \mathrm{C} 10$$\mathrm{Cl1}, \mathrm{Cl2}$$\mathrm{Cl3}, \mathrm{C} 14$	T44-16	Baffle, wood	R1	T60-659	Resistor, $\mathbf{2 2 K}$ ohm, $1 / 2$
	T44-18	Baffle, cardboard	R2	T60.726	Resistor, 2.2 megohm, $1 / 2$
	T72-56	Bushing, pulley	R3	T60-730	Resistor, 47 K ohm, $1 / 2$
	T42.506	Cabinet	R4, R9	T60-731	Resistor, 470K ohm, $1 / 2$
	T19-212	Capacitor, variable (2 gang)...	RS	T60-728	Resistor, 10 megohm, $1 / 2 \mathrm{w}$.
	T16-197	Capacitor, 05 mfd .200 v..	R8	T60-667	Resistor, 220 K ohm, $1 / 2 \mathrm{w}$.
	T16-189	Capacitor, 05 mfd , 400 v..	210	T60-774	Resistor, 180 ohm, $1 / 2 \mathrm{w} .10 \%$
	715-229	Capacitor, $47 \mathrm{~mm} / \mathrm{d}$. mica....	R11	T60-732	Resistor, $1000 \mathrm{ohm}, 1 \mathrm{w} .10 \%$
	T16-150	Capacitor, $02 \mathrm{mfd}$.400 v.....	R12	T60-690	Resistor, 27 ohm, $1 / 2$ w. 10%.
	T17-104 T16-190	Copacitor, caramic unit.......		T97-171	Screw, wood-\# \# $83 / 4$ "
	T18-304	Capocitor electrolytic,			chassis mounting
	18-304	$50-30 \text { mfd. } 150 \text { v... }$		197-172	Screw, wood-\#6×3""cleat mounting \qquad
	183-700	45 RPM Record Inserts (package of 12)		174-228	
	711.187	Clamp, line cord, chasis.			dial plate mounting
	783-710	Cleat, wood (triangular		775-85	Shaft, pulley
		piece, supports baffe		771-39	Shield, pilot lamp..........
	783-421	Clip, 1.F. tronsformer mounting		787-33	Socket, pilot lamp..........
12	T10.572	Coil, osetllator Control, dual, ON-OFFVOLUME and TONE.		T68-11	Socket, octal, tuba.
	T24-194			T68-41	Socket, phono
				T22-142	Socket, phono motor........
	T51-109	Cord, dial dilve, approx. 30°.. Cord, power line.		$177-151$ $779-391$	Spacer (gang mounting).
	T23-10\%	Cover, piâto, chassis.......... Grille cloth		T79-391 $770-135$	Speaker, ${ }^{\text {S/ P P.M...... }}$
	T98-20		S1A, S1B, SIC	T69.188	Swith, RADIO-PHONO
	T47-108	Grommet (gang mounting) Jewel, pilot light.		710.479	Transformer, 2nd 1.F....
	T48-54		Ti	710.508	Transformer, 1st 1.F...........
	752-342	Knob, ON-OFF-VOLUME and PHONO-RADIO		$\begin{aligned} & \text { T80-268 } \\ & T 86-125 \end{aligned}$	Transformer, output Washer, fat-7/16" O.D.-
	T52-341	Knob, TUNING ond TONE....Label, tube position.........			dial plate screws
	T88-218			186-120	Washer, flat-3/4" O.D.-
	T88-219	Label, fube position Label, schematic			whipping holts
	189-7 $\mathbf{r 8 2 . 7 2}$	Lamp, pilof Loop, antonno		$\begin{aligned} & \text { T86.151 } \\ & \text { T56-161 } \end{aligned}$	Washer, "C"-shipping boits Wing-nut-1/"-28-
	T67.584	Plate, dial scale Pointer, dial			shipping bolts
	T58.83				
	T39-287	Pulloy, pointer drive..........			

PAGE 22-16 SEARS, ROEBUCK
MODELS 6286, Ch. 528.6286;
6287, Ch. 528.6287

Fig. I. Radio and Speaker

Fig. 2 Universal baffle. Catalog No. 62751

Fig. 4. Underdash Mounting

INSTALLATION

The speaker is mounted inside the radio case when it is shipped from the factory. The radio may be installed in your car with the speaker inside the case and it will render very satisfactory service. However, if you wish to take advantag! of the finer acoustical improvement that results when the speaker is mounted on the instrument panel it is simple to do so Simply take off the top cover of the radio case and remove the speaker, then replace the top cover. The speaker maj then be mounted on the instrument panel by means of an adapter plate and baffe kit (see Fig. 2) which is available ai the Sears Retail or Mail Order Store where you bought the radio. The special speaker baffle adapter plate and kit is solc as a separate item so that the purchaser of the radio is not put to unnecessary expense if he does not wish to mount thi spenker on the instrument panel.

SPECIFIC INSTRUCTIONS PERTAINING TO THE MOUNTINO OF THE SPEAKER AND RADIO IN THE CAR FOR WHICH YOU ORDERED YOUR RADIO ARE CONTAINED IN THE LEAFLET PACKED IN THE ESCUTCHEON KIT.

CONNECTINC THE RADHO

When the radio is mounted in the car, the antenna cable should be connected to the radio by inserting the plug ints the antenna receptacle on the side of the case. See Fig. 5. Then connect the " \boldsymbol{A} " lead to the ignition switch. (If the " A ' lead is connected to the switched or "cold" side of the ignition switch, the radio can be turned on only when the ignition switch is on. There is no danger then that the radio will be left on inadvertently while the car is parked and the batter. unnecessarily drained.) The fuse should then be inserted into the fuse holder in the " \mathbf{A} " lead. See Fig. 5.

Fig. 5. Connecting the Rodio

OPERATION

THE ON-OFF SWITCH AND VOLUME CONTROL

This is the righthand knob. When it is turned all the way to the left the receiver is switched off and there is no drain from the car's battery. Rotating the knob part of a turn toward the right switches the receiver on and illuminates the dial. Further rotation of the knob increases the volume. After a station has been tuned in properly the volume control knob should be adjusted to give the desired volume.

Fig. 6. Radio Front View

The Automatic Volume Control circuit, built into this receiver, will tend to maintain the volume once it has been adjusted by means of the Volume Control knob. However, because of the very great differences in receiving conditions encountered when driving a car, the volume may change beyond the limits for which automatic compensation is possible. As the sensitivity of the receiver automatically changes to compensate for changes in station strength, the background noise may also vary. When the station is strong, there will be little or no background noise but as the station becomes weaker, the background noise will increase. Reception may also be noisy when driving in "electrically noisy" districts. This will be particularly true when driving near trolley lines, high tension power lines, and power stations, etc.

TUNING IN STATIONS

Use the left knob to tune in stations. The dial is numbered in kilocycles minus the final two zeroes. Always tune carefully for the clearest sound and minimum background noise. This can be best accomplished by tuning in a station with the Volume Control turned down. The volume can be adjusted to the proper level when the station has been tuned in. Do not detune the station to reduce volume; use the Volume Control knob.

MATCHING THE ANTENNA

An adjusting screw for matching the receiver to the particular antenna used is accessible through a hole in the case. (See Fig. 5). Set the dial pointer between 1300 KC and 1400 KC , where no station is heard with the Volume Control fully on. Use a small screwdriver to turn the adjusting screw to the point giving the most hiss or noise. The set is now ready for operation.

S84-509 SUPPRESSION KIT AND MISCELLANEOUS PARTS

1 S84-233-"A" lead assembly
1 A43-10—Fuse
1 A81-13-Sleeve (for fuse)
2 A16-183-. 5 MFD condensers
1 A96-4-Distributor Suppressor
$20^{\prime \prime}$ wire braid

Fig. 7. Suppression Kit and Miscellaneous Parts

ELIMINATING MOTOR NOISE

Every precaution was taken in the design of this radio to eliminate motor noise interference. However, in the remote instance that it may be found desirable to take further steps, the following notes are added for your guidance. It may not be necessary to use all of the following suggestions to correct a noise condition in any one car. We recommend using these helpful hints in the manner of a process of elimination, using only those methods that correct your condition.
IMPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rust, etc, is removed from all mounting points. A good electrical contact at these points will aid materially in eliminating motor noise.

GENERATOR CONDENSER

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

DISTRIBUTOR SUPPRESSOR

Remove from distributor cap the high tension lead from coil to distributor. Cut the lead two inches from the end, and screw the distributor resistor on to the coil lead, then screw the short length into the resistor and plug the cable into the distributor cap.

AMMETER CONDENSER

A. 5 MFD bypass condenser is furnished for attaching to the ammeter. This should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby. In most cases the use of this condenser, the distributor suppressor, and the generator condenser, will eliminate all objectionable ignition interference.

VOLTAGE REGULATOR

It is normal to connect a .5 mfd condenser from the battery terminal on the voltage regulator to ground; however, in a number of cars the voltage regulator is mounted on rubber grommets. In such instances, the condenser should be grounded directly to the case of the regulator, rather than to some other ground point. Do not use a larger condenser than .5 mfd or else it will affect the timing of the regulator rendering it less useful.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays, or gauges, may cause interference while in oepration. Proper procedure in such cases is to try another by-pass condenser from ground to the suspected accessory until the source of the interference is found. The condenser then should be permanently mounted in this location.

HIGH AND LOW TENSION LEADS

Considerable ignition interference is experienced from leads in cables that run along the inside of the fire wall near the auto radio. For example, the battery lead to the low voltage side of the ignition coil on a 1950 Model Oldsmobile ' 88 ' runs through the fire wall and along the inside past the auto radio to a point beyond the steering column. This lead has heavy radiation. It can be disconnected at the ignition coil and pulled through the fire wall and pushed back through the fire wall at a point to the left of the steering column and run along the outside to its original point of connection on the ignition coil. Such types of leads should be watched for in all installations. They should be rerouted, if possible, or shielded with braid material. It is advisable in extreme cases to bond all leads by wrapping braid around them, and grounding the braid at the closest point. In wrapping a braid around a lead, do not remove the insulation from the leads as this is a radiation type of shield. Keep all ground leads as short as possible, or they will pick up interference.

IGNITION COILS

In cars where the ignition coil is located on the back side of the instrument panel it is often necessary to use an additional condenser. It must be installed from the battery side of the ignition coil to the closest ground on the instrument panel.
Short leads are very important. Where coils are mounted either on the instrument panel or in the driver's compartment, it may be necessary to shield the high tension lead from the coil to the distributor.

WHEEL STATIC

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

Bonding of Ungrounded Engine and Body Parts

The best rule is to keep the ignition interference underneath the hood as much as possible. This is best accomplished by using filters and suppressors on all points that would produce radiation as well as effectively bonding the hood, motor block, and any engine and body parts that are isolated from each other. It would be advisable to check all bolt-on fenders on which antennas are mounted, in that these fenders frequently are not sufficiently well grounded to the rest of the car. Use bonding braid wherever necessary to ground such fenders. Use wide bonding braid and keep all such braid as short as possible. Bonding all cables and tubes that go through the fire wall is necessary in some cases.

ELECTRICAL SPECIFICATIONS

The set contains the following:
1-6BA6-R.F. Amplifier.
1-6BEG-Converter.
1-6BA6 or 6AU6-I.F. Amplifier.
1-6AT6 or 6AV6-Detector-1st audio-AVC.
1-6AQ5-Power Output.

1-6X5-Rectifier.

SERVICE NOTES

Voltages taken at the various points of the circuit to chassis are measured with the volume control in maximum position, all tubes and the rectifier in their sockets and no signal applied. The voltages are shown on the schematic diagram (Fig. 12) and were measured with a Vacuum Tube Voltmeter. An input voltage of 6.6 volts D.C. should always be used when checking voltages.

ALIGNING INSTRUCTIONS

Never attempt any adjustments on this receiver unless it becomes necessary to replace the coils or transformer, or if the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, the rectifier, condensers, resistors, etc., are nomal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "ALIGNMENT PROCEDURE." After realignment has been completed repeat the procedure as a final check.

INSTRUCTIONS FOR REMOVING THE CHASSIS FROM THE CASE

Remove the two control knobs by pulling them straight from their shafts. Remove the cover. It is held in place by nine (9) screws; four (4) on each side and one at the back. Remove the four (4) screws, two (2) on each side which hold the chassis in place. Now to remove the chassis, hold the case with one hand, grasp the chassis by the power transformer, lift up and pull back and the chassis will slide out.

Fig. 10 Chassis-Bottom View

Fig. 11. Chassis-Top View

Fig. 12. Schematic Diagram-Control Unit
Volume control-Maximum, all adjustments.
No signal applied to antenna.
Power input- 6.6 volts.
Connect dummy antenna in series with output lead of signal generator.
Connect output meter across voice coil.
Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check.

Gang	Generator Frequency	$\underset{\text { Antenna }}{\substack{\text { Dummy }}}$	Generator Connections	Trimmer Reference	Trimmer Adjustment	Trimmer Function
1-Fully Open	455kC	. 1 MFD	6BE6 GRID (Pin 7)	$\begin{gathered} \text { T2 } \\ \text { Top \& bottom } \end{gathered}$	Maximum	Output I.F.
2-Fully Open	455KC	. 1 MFD	6BE6 GRID (Pin 7)	TI Top \& bottom	Maximum	Input 1.F.
3-Fully Open	1605KC	*	Antenna Input	$\underset{\text { (Trimmer) }}{\text { C3C }}$	Maximum	Oscillator
4-Tune in Signal from Generator	1400KC	*	Antenna Input	$\begin{gathered} \text { C3B } \\ \text { (Trimmer) } \end{gathered}$	Maximum	R.F.
5-Tune in Signal from Generator	1400KC	*	Antenna Input	Cl	Maximum	Antenna
6-Tune in Signal from Generator	600KC	*	Antenna Input	T4	Maximum	R.F.
7-Tune in Signal from Generator	600KC	*	Antenna Input	T3	Maximum	Antenna

Schemetic Localion	Pont Number	Description
R7	60-726	Resistor, 2.2 magohm, $1 / 2 \mathrm{~W}$.
R8	60-716	Resistor, 13K ohm, 1 W. 10%
810	60-728	Resistor, 10 megohm, $1 / 2 \mathrm{~W}$.
R11	60-727	Repister, 100 K ohm, $1 / 2 \mathrm{~W}$.
Q12	60-731	Realstor, 470K ohmi, 1/2 W.
R13	60-734	Reaistor, 270 ehm, I W. 10\%
R14	60-765	Reslator, 4790 otwin, I W. 10\%
R15	60-694	Reslister, 470 olvm 1 W. 10\%
Q16	$\begin{aligned} & 60-767 \\ & 83-646 \end{aligned}$	Reelster, 150 ohmin, $1 / 2$ W. 10\% Refainer, dilicl secilownefot
	83-647	Retalser, dial scalo-rigith
	83-516	Restaimer, vibrutor
	75-84	Shafturiuring, chassis 528.6286
	75-86	Shaft-funing, chasais 528.6287
	70-172	Steove-rubber-Tuning shuft
	81-13	Eleave-fuse
	4\%-39	Socketmaninleture-wwifor
	68-11	Seckes-actol-wefor
	68-33	Socket-wlbrutor
	87-46	Secket \& brackormpliot lamp, chassis 328.6286
	87-37	Sockefmpillot lamp, chassls 528.6287
	77.135	\$pacor-werlable condensor mouning
	79-390	Speakermin $\times \mathbf{8}^{\prime \prime}$ P.M.
	70-173	Spring-diel cord, chastis 528.6286
	70-174	Spring-dial cord, chassis $\mathbf{5 2 8 . 6 2 8 7}$
	88-163	Sticker-mehemeric
	88-178	Stickermeiube location, chassis $\mathbf{5 2 8 . 6 2 8 7}$
	88-164	Sticker-rube location, chassls 528.6286
	88-179	Sfickermeperts llat, chassis $\mathbf{5 2 9 . 6 1 8 7}$
	88-166	Sticker-morts list, chasels 328.6286
	31.185	Strap-wear mounting
	51-109	String-pelinter drive-12"
	84.309	Supprescion Kh
	96.4	Suppresser realstor-IOK ohm
11	10-321	Transformer-Ist 1.F.
72	10-329	Trensformer-ind I.F.
53	10-570	Trensformeen-h.f.
74	10-56	Trunsformer-antenave
T5	30-267	Trensformer-output
T6	80-266	Pranaforneer-mower
	34-105	Vibretor

$\begin{gathered}\text { Schomotic } \\ \text { location }\end{gathered}$

L1
L2
13
L
C1
C2
C3A, c3B, c3C

MODELS IU338-I, $1 \mathrm{U} 330-\mathrm{R}$, $1 \mathrm{U} 338 \mathrm{~W}, 338-\mathrm{I}, 338-\mathrm{R}$, 338-W
 OPERATION AND SERVICE INSTRUCTIONS FOR
 MODELS 338-W, 338-I, 338-R, 1U338-W, 1U338-I, 1U338-R, AC-DC SUPERHETERODYNE RECEIVER

VOLTAGE RATING
THIS RADIO IS DESIGNED FOR USE ON EITHER: 110-120 VOLTS 50-60 CYCLES ALTERNATING CURRENT (AC) OR
110-120 VOLTS DIRECT CURRENT (DC)

SPECIAL INSTRUCTIONS FOR "DIRECT CURRENT" OPERATION:

If the current supply is DIRECT CURRENT, and the radio does not play after it has been turned on for approximately one minute, simply reverse radio power cord plug in electric power receptacle.

LOOP AERLAL

THE LOOP AERIAL SUPPLIED with the radio should provide ample reception in average locations.

Loop aerials are directional-the volume of a weak station may be improved, or undesired electrical noise may be reduced, by lifting and turning the radio to a different position. A trial will reveal position of best reception with least interference.

FUNCTION OF CONTROLS ON RADIO

THE LEFT HAND KNOB controls the volume control and off-and-on switch.

THE RIGHT HAND KNOB is the station selector.

OPERATING INSTRUCTIONS

PLACE VOLUME CONTROL KNOB IN one-half to maximum volume position.

TURN TUNING CONTROL KNOB until the desired station is heard with greatest volume and clearest tone.

SENTINEL PACE 22.
MODELS 1U338-I, 1U338-R, 1U338-W, 338-I, 338-R, 338-W

PAGE 22-4 SENTINEL

```
MODELS 10338-I, 1U338-R,
fU338-W, 338-I, 338-R,
338-W
```

T'U SEIVVICE TUBES, it is necessary to remove the cabinet back by the cabinet, and detaching the two leads from the loop.
Before remounting the lack on the cabinet, be sure to properly reconnect these loads. The green-white wire must be attached to the terminal which has the word "GREEN" printed close to it. TO REMOVE CHASSIS FROM CABINET:

$$
\begin{aligned}
& \text { Daseriation } \\
& \begin{array}{l}
\text { dst I. F. Transformer... } \\
\text { end I. F. Transformer... } \\
\text { Oscillator }
\end{array} \\
& \text { Mica, } 00025 \mathrm{Mfd} .500 \mathrm{~V} \text {. } \\
& \text { Ceramic, } .00025 \mathrm{Mfd} .500 \mathrm{~V} \text {... } \\
& \text { Tubular, . } 01 \text { Mid. } 400 \mathrm{~V} \text {.. }
\end{aligned}
$$

(B) Unscrew the two screws holding the chassis to the rear of the cabinet. (D) Pull knobs off of control shafts.
(E) Unscrew and remove slotted nut on volume control shaftaccessible when knob is removed.
(F) Slide Chassis out of cabinet.
TO REINSTALL, reverse the above procedure. DO NOT tighten nut too much-otherwise, cabinet may crack.
PARTS LIST

Part We. Part Name

IMPORTANT: When ordering complete cabinet or cabinet parts, be sure to mention required color in addition to part number.

MISCELLANEOUS PARTS

Oscillator (used in IU338 only).................
Two Gang, Tuning..
sofpinsul dequiod 663E
Daserintion
Doweription

$$
\begin{aligned}
& \text { Doveription } \\
& \text { Walnut Plastic }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ivory Plastic } \\
& \text { Red Plastic .. }
\end{aligned}
$$ $\begin{aligned} \text { 37E52-15 } & \text { Knob } \\ 37 \text { E52-16 } & \text { Knob } \\ \text { 20Eb } 12 & \text { Speed }\end{aligned}$

19E
Pointer Tension

Plastic, used to mount and insulate Pointer
Tension Spring for Dial Cord.
For Ivory and Rad Cabinet............
Baffle Assembly with Grille Cloth

Dry Electrolytic, 50-50 Mfd. 150 Volt........... Ceramic, Coupling Plate............................... 13E103-8 $\begin{aligned} & \text { Pointer Tension } \\ & \text { Clip } \\ & \text { 65E2 } \text { Dial Spring }\end{aligned}$

205612 Speaker Baffle

Pant Mane
37E52-15 Knob
MOUNTING HARDWARE

Red Plastic
5 Ft. Rubber Line Cord...
Dial Drive Cord..................

Nut

win Grill Clot

$$
\begin{aligned}
& \text { Deserintion } \\
& \text { Slotted Head, used to hold Chassis in } \\
& \text { Cabinet .. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { from Chassis } \\
\text { Tension Spring for } 33 \text { E99 Pointer } \\
\text { Insulator }
\end{array} \\
& \begin{array}{l}
\text { from Chassis .. } \\
\text { Tension Spring for 33E99 Pointer } \\
\text { Insulator }
\end{array}
\end{aligned}
$$

PAGE 22-4 SONORA
MODELS 316,
317, Ch. YHU

ALL VOLTAGES EXCEPT HEATERS ARE MEASURED FROM SOCKET CONTACTS TO THE COMMON NEGATIVE WITH A 1000 OHM PER VOLT VOLTMETER. HEATER VOLTAGES ARE MEASURED DIRECTLY ACROSS SOCKET CONTACTS. * A.C. EXCEPT WHEN SET IS USED ON D.C.

PART NO. 4-A-90

Ch. YHU, YHAU
ALIGNMENT PROCEDURE
For allgnment procedure read tabulations from left to right and make the adjustments marked (1) first, (2) next, (3) third.
BFFORE STARTING ALIGNMENT:

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{E} \\ & \mathrm{P} \\ & \mathrm{~S} \end{aligned}$	Set Receiver dial to:		TEST OSCILLATOR		Dummy Antenna	Refer to parts designations in schematic drawing for trimmers mentioned below:
			$\begin{aligned} & \text { Adjust test } \\ & \text { Oscillator } \\ & \text { Frequency to: } \end{aligned}$	Attach Output of test oscillator to:		
1	Any poir no inter signal received	t where fering s	$\begin{aligned} & \text { EXACTLY } \\ & 455 \mathrm{KC} \end{aligned}$	High side to grid of Converter tube (*) . Low side to common regative	$\begin{aligned} & .1 \text { NFD } \\ & \text { CONDEN- } \\ & \text { SFR } \end{aligned}$	Adjust 2nd. I. F. (T2) and then each of the slugs of the 1st. I.F. (TI) for maximum output.
2	Exactly	1620 KC	$\begin{aligned} & \text { Exactly } \\ & 1620 \mathrm{KC} \end{aligned}$	Dummy Antenna	2 Turns of Hookup Wire $6^{\prime \prime}$ in Dia. (Plac	Adjust 1620 KC oscillator trimmer for maximum output.
3	Approx.	1400 KC	$\begin{aligned} & \text { Approx. } \\ & 1400 \mathrm{KC} \end{aligned}$	Durmy Antenna	$\begin{aligned} & \text { Foit from } \\ & \text { Same in } \\ & \text { Same Pane } \\ & \text { as Loop } \end{aligned}$	Adjust 1400 KC antenna trimmer for maximum output.

SONORA PAGE 22.

REAR OF CHASSIS

ALL VOLTAGES EXCEPT HEATERS.ARE
MEASURED FROM SOCKET CONTACTS TO THE COMMON NEGATIVE WITH A 1000 OHM PER VOLT VOLTMETER. HEATER VOLTAGES ARE MEASURED
DIRECTLY ACROSS SOCKET CONTACTS

* A.C. EXCEPT WHEN SET IS USED ON D.C.
(BOTTOM VIEW OF CHASSIS)

A.C.-D.C. LINE

PART NO. 4-A-90A

PAGE 22-8 SONORA
MODELS 316,
317, Ch. YHAU

BATTERY SUPPLIERS

The batifites for this receiver may be purchased fromany reitable dealer.

Eveready $671 / 2$ vit. \#467

Yurgess 67 1/2v1t. \#xx4s

General 671/2vit. \#W45A

Ray-0-vac $671 / 2$ vit: \#4387

4rcastle $671 / 2$ vit. \#1523

BATTERY SERVICING

(See Fig. No. 1)

To replace the hatteries in this receiver
Renove the bick.
 left is the B_{B} or $671 / 2$ volt battery.

To replace the "B" battery, disconnect the onap fastoner connectors. Replace with aresh battory and
 the connector end races the top of the cabinet
 botion of the back ritinto the slot near the botionedge or the cabinet.

ALIGNMENT AND SERVICE DATA

Reque chassis fromeabinet for alignaent.
 should be connected across the speaker
 falge peadings.
FIRST STEP:
. 1 VFD. condenser.

 button. Replace this button after adjustaent has been made. Nof further aditutis covered by a simil plug
 lignoent at the lower frequencies.

SChematic diagram - Model No. 459.5022

PARTS LIST

OPERATING INSTRUCTIONS

POWER SOURCES: This combination will operate on alternating (AC) current only, of 105 to 125 volts
at 60 cles.
CAUTION: Always predetermine yoltage of power source. Never try to plug this combination into a 220 volt line, thim will cause serious damage. (Check your local power company if vol tage is not known)

Never try to operate this conbination on 50 cycle current, as this will cause the motor to rotate at an incorrect apeed. The normal speed is 78 H.P.M. (revolutions per minute) and to insure proper reproduction of recordings 60 cycle current must be used.

Never plug the combination into direct current (DC) source, this will seriously damage the motor which has been designed for AC operation only

This receiver is equipped with a short hank of wire for an antenna and under ordinary conditions further external antenna is not reguired. However, in steel constructed buildings or if located some diatance fromstation, the reception may be improved by using an outside antenna. This should be a single wire not more than 50 feet long and should be connected to the antenna lead that projects from the back of the receiver. Do not attach to Radiator or other grounded object as this can burn out the antenna coil. No ground vire is required at any time.

INSTALLATION: Unwind power cord and plug into a convenient power outlet. Follow instructions under 'controls' to operate receiver.
CONTHOLS: Three controls are provided on the front panel for operation of this combination. The right hand control is the station selector which is used only in 'Radio' operation. The left hand control is a switch which selects operation of either 'Radio' or 'Phonograph'. The center control is used to edjust volume on either 'Radio' or 'Phonograph' and is also used as a pover switch to turn t he combination ' On ' or ' Off.
RADIO RECEPTION: After the power cord plug has been connected to your power outlet, turn the center control to the right in a clockwise direction and click will be heard. This indicates that the power is turned on, and che pilot light in the dial should begin to glow. After about 30 seconds, the set will be ready for operation.

Make sure chat the left hand control is turned to the left, in 'Radio' position. Turn the center control about hal fway on, in clockwise direction to increase volume. Rotate the right hand contrcl to the right or left to select the desired station. By mentally adding zero to the figures on the upper hall of the dial. the result will be read directly in kilocycles (i.e., 60 plus 0 equals 600kC or 140 plus 0 equala 1400 KC). After atation has been tuned in, adjust the center control to your desired volume.

ALIGNMENT AND SERVICE DATA

Remove chassis from cabinet for alignment.
A Signal Cenerator is required having the following frequencies: $455 \mathrm{KC}, 1400 \mathrm{KC}, 1720 \mathrm{KC}$. An nutput meter should be connected across the speaker.
The receiver volume control should be tumed to maximum during the I.E. and all subsequent alignatats to keep the AVC from working and giving false readings. Keep the generator output as low as posable to prevent overlaading.
FIRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser, through a. 1 MFD condenger. The ground lead from the generiator must be connected to the floating ground buss under the chassis. Turn the gang condenser to complete minimum capacity. Adjust the generator to 455 KC and adjust the trimmera of the lat and 2nd I.F. transformers until anamum reading is noted on the output meter.
SECOND STPP: With the leada from the generator atill connected in the ame manner, adjuat the Signal Generator to 1720 KC . The OSC. trimmer is locsted on the front of the chassis. Adjust this trimer until the 1720 KC signal is tuned in.
THIRN STEP: Remove the hot ilend of the generator from the ANT section of the gang condenaer. Connect this lead to the primary of the loopentenma through a 200 MMFD condenser. Adjuat the Signal Generator to 1400 KC . Protate the tuning control until this signal in tuned in. The ANT trimer is located on the top of the ANT. section of the gang condenser. Adjust this trimarer until amaximum reading is noted on the output meter. No further adjustment should be neceasary, unless the set has been damaged, as the coils and condenger in this receiver have been specially handled at the factory to ingure proper alignment at the lower frequencies.

PAGE 22-4 SPIEGEL

Instructions for Using Your RADIO-ALARM CLOCK Combination Receiver

This skillfully designed and carefully constructed combination will give you long and enjoyable service. Thi Receiver can perform the following services for the user:

1. Provide accurate time.

2. Receive broadcast programs being transmitted and within range-at any time.
3. Turn off radio program at will of user up to 60 -minute interval or less.
4. Turn on radio program for awakening.
5. Turn buzzer alarm on 10 mir utes after radio starts playins
6. Turn on buzzer alarm fc awakening - with radio s lenced.

INSTALLATION-Check the voltage and cycles of the electric opower supplied to your home. This combination will operate ONLY o 60 cycle alternating current (ac), from 105 to 125 volts. THIS SET WILL NOT OPERATE ON ANY OTHER TYPE OF CURRFN OR CYCI.ES. Your electric company will help you make certain that you have the correct kind of power.

This combination includes a sensitive five multi-purpose tube super-heterodyne radio including a rectifier tube. Your radio has a self cor tained duro-loop antenna capable of supplying sufficient volume in areas of normal reception. If you live in an area where tadio receptio is poor, you can improve the performance by connecting an outside antenna to the screw marked EXT. ANT. which you will find on th right hand side of the tear of the cabinet.
(1)

TO SET THE CLOCK

Your self-starting TELECHRON movement will begin operating when the set is plugged into the proper outlet and your sweep secon hand begins to rotate. Set the correct time hy means of the small knob at the right REAR of the cabinet. Turn ONLY in the direction show on the back cover.

TURN LULLABY KNOE CLOCKWISE (TO RIGHT) FOR PLAYING TIME DESIRED. ESTMATE TME OETWEEN O AND 60 MARKS ALONG ARFOW

(8) - To Turn Radio Off Automatically When Retiring and Awaken to Music

Set Controls as in Illustration 4.
Set "Lullaby" Knob as in Illustration 7.

(9)- To Turn Radio Off Automatically When Retiring and Awaken to Buzzer Alarm

Set Controls as in Illustration 5.
Set "Lullaby" Knob as in Illustration 7.

(10)-To Turn Radio Off Automatically When Retiring, Awaken to Music and Buzzer Alarm

Set Controls as in Illustration 6.
Set "Lullaby" Knob as in Illustration 7.

TUBECOMPLEMENT

12BE6 Converter 50C5 Power Output
12BA6 I.F. Amplifier
35W/4 Rectifier

SERVICE DATA ALIGNMENT PROCEDURE - Output meter across voice coil (3.2 ohm) - Volume control at, maximum for all adjustments. - Align for maximum output. Reduce input as needed					
	SIGNAL	GENERATOR			ADJUST TRIMMERS
Frequency	Coupling Capacitor	Connections to Receiver	Ground Connection	setting	TO MAXIMUM OUTPUT (in order shown)
455 kc	0.1 mfd .	12BE6 grid	B-	Rotor full open (Plates out of mesh)	Input and output slugs of IF cans
1650 kc	0.1 mfd .	12BE6 grid	B-	Rotor full mesh (Plates out of mesh)	Oscillator trimmer A2
1500 kc		Radiating Loop		$1500 \mathrm{kc}^{\text {* }}$	Antenna trimmer A1
* Seven markings on the dial bracker represent respectively $550 \mathrm{kc}, 600 \mathrm{kc}, 700 \mathrm{kc}, 900 \mathrm{kc}, 1100 \mathrm{kc} .1400 \mathrm{kc}$, and 1600 kc reading from left to right. These points are to be used for the alignment of the receiver.					

REPLACEMENT PARTS LIST

When ordering parts, specify part number and model number.

PAGE 22-8 SPIEGEL
MODELS 607-316, 607-316-1, $607-317,607-317-1$

C1,C4, ${ }^{1} 7$	N-1345	Condenser, Paper . 05 MFD .200 V.
C8	N-6015	Condenser, Ceramic 100 MMFD. 500 V. 20%
- C 9	$\mathrm{N}-7549$	Condenser, Ceramic 100 MMFD .500 V. 10%
C10	N-4894	Condenser, Paper . 005 MFD .600 V.
C11	N-6488	Condenser, Ceramic $\mathbf{2 5 0}$ MMFD. 500 V. $\mathbf{2 0 \%}$
C12,C13	N-1344	Condenser, Paper . 01 MMFD .400 V .
C14	N-1346	Condenser, Paper . 05 MFD 400 V .
C15	N-7889	Condenser, Dry Electrolytic (50 MFD. 150 V.)
C16		(30 MFD .150 V .)
R1	N-4025	Resistor, Carbon 22,000 Ohm 1/2 W. 20\%
H2	N-1262	Resistar, Carbon 1.0 Megohm 1/2 W. 20\%
R3	N-6485	Resistor, Carbon 68 Ohm $1 / 2 \mathrm{~W} .10 \%$
R4	N-7890	Volume Control 500,000 Ohm with \$witch
R5	N-4028	Resistor, Carbon 6.8 Megotm 1/2 W. 20\%
R6	N-4026	Resistor, Carbon 220,000 Ohm 1/2 W. 20\%
RT	$\mathrm{N}-4027$	Resistor, Carbon 470,000 $0 \mathrm{hm} \mathrm{1/2} \mathrm{W} .\mathrm{20} \mathrm{\%}$
R8	N-4024	Reststor, Carbon $220 \mathrm{Ohm} 1 / 2 \mathrm{~W} .10 \%$
R9	N-4800	Resistor, Carbon 1,200 Ohm $1.0 \mathrm{~W} .10 \%$
T1	N-7888	Transformer, ist I.F.
* T2	$\begin{aligned} & (\mathrm{N}-7542 \\ & (\mathrm{N}-\mathrm{B} 150 \end{aligned}$	Transformer, 2nd I.F. OR Transformer, 2nd. I.F.
T3		Output Transformer (Part of N-7824 Speaker Assembly)
L1	N-8138	Coil, Loop Antenna and Cablnet Back
L2	$\begin{aligned} & \mathrm{N}-7139 \\ & \$ 516 \end{aligned}$	Coil, Osculator Cablnet, Ivory Plastic
	\$17	Cabinet, Walnut Plastic
	N-7824	Speaker, 4" PM with Output Transformer

* C9 (N-7549 Ceramic Condenser) ts required oaly with N-7542 Transformer This capacity ta included in $\mathrm{N}-8150$ Transformer.

Note: In some receivers the following components - R6,R7,C11, and C12 are replaced by the assembly listed below:

N-6477 Audio Coupling Plate

TUBE LOCATION CHART

607.316 .1
607.317 .1

ALIGNMENT PROCEDURE

$$
607.317
$$

Step No.	Position of Gang	SLgnal Generator Frequency	Generator Connection	Dummy Antenna	Adjustment	Type of Adjustment
1.	Open	455 KC.	Rear Gang Terminal	.1 Mid.	I. F. Slugs	Adjust for Maximum Output
2.	Open	1620 KC.	Dummy Antenna	2 Turns of Hookup Wire $6^{\prime \prime}$ in Dia. (Place Approx. a Foot from \& parallel to loop.)	Front Gang Trimmer	Adjust for Maximum Output
3.	1400 KC	1400 KC .			Rear Gang Trimmer	Adjust for Maximum Output
4.	600 KC	600 KC.				Check Gang Alignment

DESCRIPTION

Your new AIRCASTLE Receiver is a 6-tube (including rectifier) superhetrodyne, designed to operate from the 6-volt storage battery in your car. It is custom-huilt to mount behind the instrument panel in the place provided for a radio by the automobile manufacturer. It has a self-contained PM oval speaker and covera the frequency range 538 to 1600 KC. Two simple controls are provided for operating the receiver. (See Fig. 1.)

This receiver has been designed with a tuned RF stage and a 3-gang tuning condenser thereby insuring the finest in sensitivity and selectivity. Any standard two or three section whip or "fish pole" antenna will provide good reception of distant or weak stations. The unit is simple to install and requires no electrical adjustment after installation.

VOLUME CONTROL KNOB

This knob is located on the left side of the radio. Turning this knob slightly to the right until a slight click is heard will put the radio into operation. Turning this knob further to the right will increase the volume and turning it to the left will decrease the volume. After a station has been selected, thie volume control should be adjusted to the required loudness. The volume should never be reduced by detuning the station selector knob.

STATION SELECTOR KNOB

This knob is located on the right side of the radio. This knob should be turned until a desired station has been selected. Adjust this knob very carefully until the station comes in with the most natural tone.

INSTALLATION
 PLYMOUTH P18 SPECIAL DELUXE

1. Remove four screws securing Radio Grill in place and remove Radio Grill.
2. Remove dummy plates covering radio dial and control openings.
3. Enlarge holes in radio control cover plate to $1 / 2$ inch.
4. Remove knobs, cup washers, hex nuts and washers from control shafts and mounting bushings.
5. Secure two mounting brackets to Radio Grill with $3 / 8$ inch long $10-32$ self-tapping screws and cup washers as shown in detail assembly drawing.
6. Place radio control cover plate over mounting bushings.
7. Position receiver behind Radio Grill so that mounting bushings and shafts protrude through the grill.
8. Attach receiver by replacing washers and hex muto on moumting businings.
9. Replace cup washers and knobs over shafts.
10. Secure receiver to mounting brackets with two No. 8 se lf-tapping wing nuts.
11. Insert radio with attached grill through front opening on instrument panel.
12. Replace grill mounting screws.
13. Connect battery lead to terminal marked "ACC" on irnition switch.
14. Plug antenna cable into receiver.

PAGE 22-10 SPIEGEL
MODEL 610. D200,
Dodge, Plymouth

COMPLETE ASSEMBLY

DETAIL ASSEMBLY

DODGE "CORONET"

Install in the same manner as outlined for the P18 DeLuxe Plymouth except do not remove radio grill.

PLYMOUTH P17, P18 4-DOOR DELUXE AND
 P18 CLUB COUPE DELUXE DODGE "WAYFARER" AND "MEADOWBROOK"

These models are not equipped by the car manufacturers with a radio grill or a radio control cover plate.
The following parts must be obtained from any authorized Plymouth or Dodge dealer before an installation can be made in any of these cars.

Plymouth P17, P18 4-Door DeLuxc, P18 Club Coupe DeLuxe
Radio Grill No. 1299913
Radio control cover No. 1248700
Dodge "Meadowhrook" or "Wayfarer"
Radio Grill No. 1301360)
Radio control cover No. 1255080

ACCESSORIES FURNISHED FOR INSTALLATION

Mounting Parts Kit
The following mounting hardware parts are shipped attached to the receiver.
(See detail assembly drawing FIG. 2)
2 Washers
${ }^{7}{ }^{7}$ - -28 hex nuts
2 Cup washers
Knobs
2 Mounting Brackets
No. 8 self-tapping wing nut screws
in envelope containing additional mounting hardware is supplied with this receiver.

MOTOR NOISE ELIMINATION

GENERATOR CONDENSER

DISTRIBUTOR SUPPRESSOR

NOTE: 1950 Dodge and Plymouth automobiles do not require distributor suppressors.

1949 DODGE AND PLYMOUTH

Remove metal tip from the distributor center tower lead and screw lead into the suppressor. Plug suppressor with attached lead back into distributor head.
The generator condenser and distributor suppressor should eliminate all objectionable motor noise in most cases. If the motor noise persists the following steps should be taken. Check operation of radio as each step is made.

WHEEL STATIC

Wheel static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present, it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

AMMETER CONDENSER

A . 5 MFD by-pass condenser should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a .5 MFD by-pass condenser from ground to the suspected accessory until the source of interference is found. The condenser then should be permanently mounted in this location.

ALIGNMENT PROCEDURE

Volume control-Maximum, all adjustments.
No signal applied to antenna.
Power input- 6.3 volts.
Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check.

The following equipment is necessary to proper alignment: Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%.
Non-metallic screwdriver.
Output meter. (1.8 volt for 1 watt output.)
Dummy antennas-. 1 MFD., 100 MMFD.
For alignment points refer to Schenatic Diagram

Dial Setting.	Generator Frequency	$\begin{gathered} \text { Dummy } \\ \text { Ant. } \end{gathered}$	Generator Connector	Trimmer Reference	Trimmer Adjustment	Trimmer Function
1) Fully open	455 KC	. 1 MFD	6BE6 Grid	T4 Top \& bottom	Maximum	Output I.F.
2) Fully open	455 KC	. 1 MFD	6BE6 Grid	T3 Top \& bottom	Maximum	Input I.F.
3) Fully open	1600 KC	100 MMFD	Ant. lead	CV2	Maximum	Oscillator
4) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CV3	Maximum	RF Stage
5) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CV1	Maximum	Antenna
6) Tune in signal from generator	600 KC	100 MMFD	Ant. lead	T2	Maximum	RF Stage
7) T'une in Signal from generator	600 KC	100 MMFD	Ant. lead	Tl	Maximum	Antenna
8) Repeat steps 4 a						

PARTS AND PRICE LIST

COILS AND TRANSFORMERS

L1-Cl	\ldots	L200	
L2			
L3	\ldots		57FB-3

Motor noise elimination unit
Antenna Coil RF coil
RF Oscillator coil
Choke, vibrator hash
Choke, "A" line
lst IF transformer
2nd IF transformer
Output transformer (Part of speaker not furnished separately) Vibrator transformer

SPIEGEL PACE 22.

DESCRIPTION

Your new Antomobile R ceiver is a 6-tube (including rectifier) superhetrodyne, designed to operate from the 6 -volt storage battery in your car. It is custom-built to mount behind the instrument panel in the place provided for a radio by the automobile manufacturer. It has a self-contained PM speaker and covers the frequency range 538 to 1600 KC . Two simple controls are provided for operating the receiver. (See Fig. 1.)

This receiver has been designed with a tuned RF stage and a 3-gang tuning condenser thereby insuring the fineat in sensitivity and selectivity. Any standard two or three sectioa whip or "fish pole" antenna will provide good reception of distant or weak stations. The unit is simple to install and requires no electrical adjustment after installation.

Fig. 1

VOLUME CONTROL KNOB

OPERATION

This knob is located on the left side of the radio. Turning this knob slightly to the right until a slight click is heard will put the radio iato operation. Turning this knob further to the right will increase the volume and turning it to the left will decrease the volume. After a station has been selected, the volume control should be adjusted to desired level. The volume should never be reduced by detuning the station selector knob.

STATION SELECTOR KNOB

This knob is located on the riyht side of the radio. This kuoh should be turned until a desired station has been selected. Adjust this knob very carefully until the station comes in with the most natural tone.

INSTALLATION

1. Remove the radio opening cover plate by removing the speed nuts at the rear of the instrument panel.
2. Remove and discard radio bezel cups on car by removing hex nuts securing bezel cups to instrument panel.
3. Remove knobs, hex nuts, and bezel cups from tuning unit.
4. Carefully position tuning unit behind instruntent panel so the mounting bushings and shafts protrude through the front panel.
5. Place bezel cups over mounting bushings.
6. Attach tuning unit and bezel cups to instrument panel with a hex nut on each mounting bushing.
7. Replace knobs.
8. Position mounting bracket over mounting stud located behind instrument panel and secure with a $1 / \mathbf{4}^{\prime \prime}$ lockwasher and a $1 / 4-20$ nut.
9. Secure mounting bracket to side of tuning unit with hex head No. 8 self tapping screw, as shown in Fig. 2
10. Place speaker and power pack unit over three threaded stud bolts behind the instrument panel. (Pooition power pack unit so that power cable is located near the tuning unit.) Sce Fig. 2.
11. Secure power pack into position with the wing nuts supplied in the kit of mounting hardware.
12. Insert power cable plug into socket on rear of tuning unit.
13. Secure power cable under cable clamp and tighten clamp screw.
14. Plug antema cable into tuning unit.
1.i. Commect "A" lead to terminal on ignition switch.

Fig. 2
DETAIL ASSEMBLY

ACCESSORIES FURNISHED FOR INSTALLATION

Moliniting Parts Kit
The following mounting hardware parts are shipped allacherd to the receiver.
(Seedetail assembly drawing FIG. 2)
2 Bezel cups
2 7/16-28 hex nuts
2 Knobs
1 Cable clanup

An envelope containing additional mounting hardware is supplied with this receiver. It contains the following parts:

1 Supporting bracket
1 No. 8 selif-tapping screw
l $1 / 4^{\prime \prime}$ lockwasher
$11 / 4-20$ nut
3 No. $8-32$ wing nuts

MOTOR NOISE ELIMINATION

A suppression kit is shipped with this receiver. It contains the following parts:
1 Generator Condenser
1 Distributor suppressor

Disconnect high tension wire that runs from the ignition coil to the center hole of the distributor head. Cut lead one and one-half inches back from metal tip end for 8 cylinder Ford or two and one-half inches back for 6 cylinder Ford. Screw suppressor into cut end of long lead. Screw cut end of short lead into suppressor. Plug lead with attached suppressor, back into distributor head.

MODELS 610, F151, 1951 Ford

DISTRIBUTOR SUPPRESSOR

Fig. 4

GENERATOR CONDENSER

Loosen the top assembly bolt from the rear end plate of the generator. DO NOT REMOVE. Mount . 5 MFD generator condenser under this bolt. Tighten bolt and connect condenser lead to the armature terminal of the generator.

The generator condenser and distributor suppressor will normally eliminate all objectionable motor noise. If the motor noise persists, a .5 MFD by-pass condenser may be connected to either side of the ammeter with the ground lug fastened to a good ground nearby.

WHEEL STATIC

Wheel static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present, it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a .5 MFD by-pass condenser from ground to the suspected accessory until the source of interference is found. The condenser then should be permanently mounted in this location.

SERVICE DATA ELECTRICAL SPECIFICATIONS

Power Supply	6.3 Volts DC	This receiver contains the following:
Current..........	5.5 Amp. average	1-6BA6-RF Amplifier
Frequency Range		1-6BE6-Converter
Speaker	51/4' PM	1-6BA6-I. F. Amplifier
Power Output	$\ldots . \quad 2$ watts, undistorted 3 watts, maximum	1-6AT6-Detector-AVC-lst Audio 1-6AO5--Power Output
Sensitivity ... 2	2-3 microvolts average for 1 watt output	1-6X4-Rectifier
Selectivity ... 40	40 KC broad at 1000 times signal, at 1000 KC	(6AV6 used in place of 6AT6 on some modela)
SERVICE NOTES		

Voltage taken from the different points of the circuit to the chassis are measured with volume control in maximun position, all tubes in their sockets, no signal applied, and with a voltmeter having a resistance of $\mathbf{2 0 , 0 0 0}$ Ohms por valt. These voltages are clearly shown on the voltage chart, (Fig. 7 and 7A).
All voltages should be measured with an input voltage of 6.3 volts DC.
To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, surh as tubes, condensers, resistors, etc., are normal before proceeding with realignment.
If realignment is necessary follow the instructions given under the heading "Alignment Procedure." After realignment has been completed repeat the procedure as final check.

DIAL CORD DRIVE

Always give the part No. (No. printed on the part if different from that shown on this list) and the name of the part. When No. is not available, give complete description of part and the Model No. of this receiver.

REPLACEMENT PARTS LIST

GCHEMATIC UIAGRAM RYF. NO	part mo.	descriotion
CONDENSERS		
$\begin{aligned} & \mathrm{C} 2, \mathrm{C3}, \mathrm{C} 5 \\ & \mathrm{C4}, \mathrm{Cl} \\ & \mathrm{Cb} \\ & \mathrm{C7}, \mathrm{C} 9 \\ & \mathrm{Ca} \\ & \mathrm{ClO}, \mathrm{Cl} \\ & \mathrm{Cl1} \end{aligned}$	C207	. 05 MFD 200 valt condenser
	C209	. 5 MFD 100 volt condenser.
	CC200	100 MMFD ceramic condenser.
	CC201	200 MMFD ceramic condenser.
	C203	. 002 MFD 400 volt condenser.
	C206	. 01 MFD 400 volt condenser.
	C205	.008 MFD 1600 volt condenser
CE-86		$\left\{\begin{array}{r}20 \text { MFD } 350 \text { volt electrolytic } \\ \text { condenser }\end{array}\right.$
	CE.86	$\left\{\begin{array}{l}20 \text { MFD } 350 \text { volt electrolytic } \\ \text { condenser } \\ 20 \text { MFD } 25 \text { volt electrolytic } \\ \text { condenser }\end{array}\right.$
$\begin{gathered} \text { CVI-cv2. } \\ \text { CV3 } \end{gathered}$	CV.100A	3 section variable ...
	RESISTORS	
R1 ' R309		$\left\lvert\, \begin{aligned} & 1 \\ & \text { megohm } \\ & 330 \mathrm{ohm} 1 / 2 \text { watt } 20 \% \text { resistor... } 20 \% \text { resistor.... }\end{aligned}\right.$
R2, RI4	R303	
R3	R306	20 K ohm $1 / 2$ watt 20% resistor....
R4	R314 RV. 100	1.5 K ohm $1 / 2$ watt $\mathbf{2 0 \%}$ resistor.
R5	RV-100	Volurne control $1 / 4$ magohm with switch
R6	R310	2 megohm $1 / 2$ watt 20% resistor...
R7	R311	10 megohm $1 / 2$ watt 20% resistor...
R8	R313	20 K ohm 2 watt 20% resistor...
R9	R307	250: ohm $1 / 2$ watt 20% resistor
R10. RII	R301	100 ohm $1 / 2$ watt 20% resistor
$R 12$	R312	1 K ohm I watt 20% resistor...
R13	RJ03	500K ohm $1 / 2$ watt 20% resistor
	IIS	AND TRANSFORMERS
$11 . \mathrm{Cl}$	1200	Motor noise elimination unit.
L2	$\begin{aligned} & 15353 \text { or } \\ & 57 \mathrm{FB}-3 \end{aligned}$	3 Antenna coil
13	$\begin{aligned} & 15054 \text { or } \\ & 57 \mathrm{FB}-4 \end{aligned}$	R R.F. coil
14	1201	R.F. oscillator coil
L5	L203	Choke "A" line
16	L202	Choke, vibrator hash

PART NO.	OESCRIPTION
T2	14977 or $1655-16$
TI	14977 or
	1655.16 Ist IF transformer
T3	TV.100 or $318 \mathrm{~V}-2$ Vibrator transformer
T4	Output transformer (Part of speaker not furnished separately).....
$\begin{aligned} & \text { D151 } \\ & \text { H151 } \\ & \text { PS151 } \\ & \text { T47 } \\ & \text { HI14 } \\ & H 203 \\ & H 204 \\ & H 115 \end{aligned}$	Dial Scalo
	Dial Scale Holder
	Dial Pointer
	Pilat Light
	Pilot Light Socket
	Pulley, idler
	Spring, Dial drive String Tension String, dial drive
	MISCEILANEOUS
$\begin{aligned} & \text { A300 } \\ & \text { H152 } \\ & \text { H153 } \\ & \text { H154 } \end{aligned}$	"A" lead assembly
	Bezel Cup
	Case. less covers for Power Supply Unit Case, complete with covers for R.F. tuning
	unit
$\begin{aligned} & \mathrm{H} 207 \\ & \mathrm{H} 208 \\ & \mathrm{H} 102 \end{aligned}$	Clip. Anti-rattle
	Clip, coil mounting
	Covar, power supply unit mounting (with speaker lourres)
A201	Fuse 15 Amp.
H155	Knob . . .
H156 5ū¢PC-300	Mounting Bracket Fower Cable Assombiy ícomplete with
50̄¢PC-300	rower Cable Assembly (complete with plug)
$\begin{aligned} & \mathrm{H} 212 \\ & 504-\mathrm{FC} \end{aligned}$	Receptacle, Antenna cable Socket, power cable
PM. 705	Speaker, 51/4" PM fincludes output transformer)
$\begin{aligned} & V .83 \\ & H 311 \end{aligned}$	Vibrator Cup washer
HII3	7/16-28 Hex nut
Cl00	5 MFD generator condenser
R100	Distributor suppressor

ALIGNMENT PROCEDURE
Volume control- Maximum, all adjustments. The following equipment is necessary for proper alignment: Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%. Non-metallic screwdriver.
Output meter. (1.8 volt for 1 watt output.) Dummy antennas-. 1 MFD., 100 MMFD.
$\begin{array}{cc}\substack{\text { Trimmer } \\ \text { Sijiustment }} & \begin{array}{c}\text { Trimmer } \\ \text { Fiunction }\end{array}\end{array}$

$\begin{array}{c}\text { T2 Top } \\ \text { bottom }\end{array}$	Maximum	Ottput I.F.

T1 Top \& Maximum Input I.F.
$1600 \mathrm{KC} \quad 100 \mathrm{MMFD} \quad$ Ant. lead \quad CV2 \quad Maximum \quad Oncillator Maximum RF Stage

BOTTOM VIEW OF GHASSIS

Fig. 7A

SPIEGEL PAGE 22-1
MODELS 6́10,

PAGE 22 20 SPIECEL
MODEL 672.053

SPIEGEL PACE 22.2
FODEL 072.053

VOLTAGE CHART

PIN	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	$\# 6$	$\# 7$
12BE6	-7.5	0	$12 A C$	$23 A C$	90	90	0
12BA6	-0.8	0	$23 A C$	$35 A C$	90	90	0
12AT6	-0.8	0	0	$12 A C$	-0.8	-0.5	45
50C5	6	0	$35 A C$	$83 A C$	0	90	120
$35 W 4$	0	0	$83 A C$	$117 A C$	$115 A C$	0	130

NOTES:

1. Measured with VTVM from indicated pin to B - line.
2. Phono-radio switch in radio position.
3. Line voltage set at $117 \mathrm{~V} 60 \sim \mathrm{AC}$.
4. Voltage s may vary considerably due to variations in line voltage and components.

PARTS LIST

CAPACITORS

REF. NO.	PART NO.	DESCRIPTION
C_{1}	A.1200-6	TUNING CAPACITOR
C_{2}	CWZ 04203 M	. 02 Mfd 400 volts
C_{3}	CWZ 04503 M	. $05 \mathrm{Mfd} \quad 400$ volts
C_{4}	CWZ 06502 M	. 005 Mfd 6600 volts
C_{5}^{4}	CWZ 04203 M	.02 Mfd 400 volts
C_{6}	CED -4415	DUAL 40 Mfd 150 volt electrolytic capacitor
${ }^{C} 7$	CWR - 04503 M	. 05 Mfd resonant
C_{8}	CCC, 05050 M	5 Mmf ceramic or mica

RESISTORS

COILS AND TRANSFORMERS

REF. NO.	PART NO.	DESCRIPTION
L_{1}	A-1493-10	Loop Antenna
L_{2}	A-1492-10	Oscillator Coil
T_{1}	A-1490-10	Input IF Transformer
T_{2}^{2}	A-1491-10	Output IF Transformer
T_{3}	A-1656-13	Audio Output Transformer 2500 Ω to 3.2

MISCELLANEOUS

C-2500-14
A- $1059-4$
A. $1060-4$
$100-84$

Record changer - VM
Control knob
Pointer knob
Record Changer - Webster

PRODUCTION CHANGES

The Models $9150-\mathrm{D}$ and $9150-\mathrm{DZ}$ chassis have been designed to provide greater stability in the oscillator circuit and to adapt a single needle, ceramic type cartridge in the phono circuit, making it possible to play both standard and long playing records without changing cartridge or needle position. The phono pick-up filter circuit has been eliminated.
The circuit shown on this page applies to Models 9150-D and 9150-DZ chassis.
The following tabulation furnishes complete details on the circuit differences between the Model 9150-B chassis and the Models 9150-D and 9150-DZ chassis. Chassis incorporating these changes have the letter " A " stamped on rear surface of the chassis.

\begin{tabular}{|c|c|c|c|}
\hline Diagram No. \& Description \& Used On 9150-B \& Used On 9150-D and/or 9150-DZ

\hline 39 \& Resistor \& 1,000 Ohms \& 4,700 Ohms

\hline 75 \& Resistor \& 68,000 Ohms \& Omitted

\hline 76 \& Condenser \& . 01 MFD \& Omitted

\hline 77 \& Resistor \& 220,000 Ohms \& Omitted

\hline 95 \& Resistor \& 4,700 Ohms $\pm 20 \%$ \& 4,700 Ohms $\pm 10 \%$

\hline 108 \& Resistor \& Omitted \& 68 Ohms

\hline 109 \& Condenser \& Omitted \& 5000 Mmfd .

\hline \multirow[t]{2}{*}{79
80} \& \multirow[t]{2}{*}{Pick-Up Cartridge} \& \multirow[t]{2}{*}{Crystal} \& Ceramic

\hline \& \& \& $$
\left\{\begin{array}{l}
509301 \text {-Used with VM- } \\
509032 \text { Record Chang- } \\
\text { er on Model } 9150-\mathrm{D} .
\end{array}\right.
$$

\hline \multirow[t]{2}{*}{80

81} \& \multirow{2}{*}{Phono Motor} \& \multirow[t]{2}{*}{508120—Used with VM508222 Record Changer.} \& 520053 -Used with GI-
509522 Record Chang-
er on Model $9150-\mathrm{DZ}$.

\hline \& \& \& 509205-Used with VM509032 Record Changer on Model 9150-D

\hline \& for Record Changer \& 508222 Record Changer. \& 520037 -Used with GI-
509522 Record Changer on Model 9150-DZ.

\hline
\end{tabular}

PARTS LIST

These parts are common to Models 9150-D and
9150-DZ only.
(Complete parts list given on service data sheet tor Model 9150-B, Page 1950-48.)
DIA.
GRAM PART
NO. NO.

EEECTRJCAL PARTS

$39 \ldots510249$	Resistor-carbon 4,700 ohms $\pm 20 \%, 1 \quad \mathrm{~W} \ldots$.
$95 \ldots . .510148$	Resistor-carbon 4,700 ohms $\pm 10 \%, 1 / 2 \mathrm{~W} . .$.
$108 \ldots . .510115$	Resistor-carbon 68 ohms $\pm 10 \%, 1 / 2 \mathrm{~W} \ldots .$.
$109 \ldots . .513013$	Condenser-seramis 5,000 Mmfd. 450 Voli....

RECORD CHANGER PARTS

(For mechanical parts, see page 129 in Recard Changer Section of manual for information on VM-509032 used on Madel $9150 \cdot \mathrm{D}$; or page 145 in Recard Changer Saction of manual for information on G1-509522 used on Model 9150-DZ.) 509032 Record Changer (3 speed) for Model 91500. 509522 Record Changer (3 speed) for Model 9150-D2 79....... 509160 Cartridge, ceramic (includes needle)... 80... $\{509301$ Motor- 115 Valt, 60 Cycle; Model 9150-D... ... $\left\{\begin{array}{l}509053 \text { Motor-115 Volt, } 60 \text { Cycle; Model } 9150-\mathrm{DZ} \\ 520051\end{array}\right.$ 509161 Needle, phonograph; Models $9150-\mathrm{D}$ and 9150-DZ 81. $\left\{\begin{array}{l}509205 \text { Switch-changer, "OFF.ON"; Madel 9150-D } \\ 520037\end{array}\right.$ 508533 Inserts for 45 R.P.M. record's; package of 12

	CABINET PARTS
508991	Bracket-tie, for record changer pull-out mech onism; Models 9150-D and 9150-DZ
509033	Cabinet for Model 9150-0
509533	Cabinet for Model 91
509025	Door, changer compartment; Models 9150-D and 9150-DZ
509026	Door, radio tilt, assembly (less pivot screws and door puli); Models 9150-D and 9150-DZ
509027	Door, record compartment; Models 9150-0 and 9150-DZ
509051	Record changer base assembly; Model 9750-D
509781	Record shanger base assembly; Madel 9150D2
508990	Rod-tie, for record changer pull-out mechanism; Models 9150-D and 9150-DZ.

ALIGNMENT PROCEDURE								
1. With the gang condenser fully meshed, the dial pointer thould be in a horizontal position at low end of dial, parallel to the bottom edge of dial scalo. If it is set incorrectly, merely hold tuning control shaft steady and turn pointer to correct position. 2. Connect an output meter across the speaker voice coil or from the plate of the bVoGt tube to chassis through o. 1 mfd. condenser. 3. Connect the ground lead of signal generator to the receiver chassis. 4. Set volume control at maximum position and use a weak signal from tho signal generator.								
DUMMY ANT. in SERIES WITH SIGNAL generator		signal generator frequencr	$\begin{gathered} \text { RECEIVIR } \\ \text { DIAL } \\ \text { SFITING } \end{gathered}$	trimmer NUMBER	trimmer dESCRIPTION	trpe of adjustment		
$\begin{gathered} .1 \mathrm{MFD} . \\ \text { Condenser } \end{gathered}$	Lug on trimmer No. 6 on antenna section of gang (see figure below for location of trim mer).	455 KC 400 cycle Modulation	Any point where it does not affect the signol.	1-2	$\frac{\text { 2nd I.F. }}{\text { 1st I.F. }}$	Adjust for maximum output. Then repeat adjustment.	HolitTOP view of culssis	
200 MMFD. Mica Condenser	External Antenna Clip	1400 KC 400 cycle Modulation	1400 KC	5	Broadeast Oscillator	Adjust for moximum output.	(1)	
	External Antenna Clip	1400 KC 100 cycle Modulation	Tune to 1400 KC generator signal	6	Broadcast Antenna	Adjust for maximum output.		
To string dial open position 114 117 119 505 To replace and DIAL AND A The audio system important to mo nections to the rive instead hat occurs.	cord, set gang condenser to 8955 Clip on ent of cord 7057 Cord (3 fest) 9087 Ring for dial cord 161 Tension spring properly position pointer se above. POINTER DRIVE CO RRANGEMENT SIDE VIEW	fully step RD SCILLATION two stage ty eploce the sp arsed of if t conditions by reversing					\square TRIMMER LOCATIONS SOCKET VOLTAGES All measurements made with a voltmeter having a sensifivity of 1000 ohms per volt except where indicated by (*). Tube volitmeter symbol designates a vacuum tube measurement. DIAL TUNED TO 540 KC . VOLUME ON FULL WITH NO SIGNAL DADIO-PHONO \& TONE SWITCH IN "RADIO-BASS" POSIIION	

MODELS 9154-C,
9154-心Z
 pins. Oscillation may result if this ground is omitted.

I.F. 455 KC.

SPECIFICATIONS

Voltage Rating.117 Volts, 60-Cycle	
Type of Circuit	Superhetrodyne
Tuning Range	$\left\{\begin{array}{l} \text { AM - } 535 \mathrm{KC} \text { to } 1630 \mathrm{KC} \\ \mathrm{FM}-87 \mathrm{MC} \text { to } 109 \mathrm{MC} \end{array}\right.$
Input Power Rating	$\ldots\left\{\begin{array}{l} \text { Radio } 80 \text { Watts } \\ \text { Phono } 110 \text { Watts } \end{array}\right.$
Intermediote Frequency	$\left\{\begin{array}{l} A M-455 \quad K C \\ F M-10.7 \quad M C \end{array}\right.$
Speaker Voice Coil Impedance	
Power Output	3.8 Watts at 10% Distortion

TUBE COMPLEMENT

4 6BA6 RF \& IF Amplifiers
12 AT7 FM Converter

68E6 AM Converter
6 Al5 Ratio Detector
1 OAU6 Audio Amplifier
1 6V6GT Power Output
1 5Y3GT Rectifier

On IF and Radio Defector transformers, primary slugs are under chassis and secondary slugs above chassis.
Adjust AM loop trimmer after chassis is in cabinet for best reception at $\mathbf{1 5 0 0} \mathbf{K c}$.
Adjust dial pointer to marker of top left of dial with condenser plates fully meshed.

F.M. - R.F.

1. FM 100 mc .	100 Mc .400 cy . mod. to FM Ant. Terms., thru 270 ohm resistor.	Across C-72.	Adj. C- 27 (Osc.) C. 21 (RF) and C. 2 (Ant.) on low -DC scale.

Align both IF channels if either is out of adjustment.
Use a non-metallic screwdriver and light pressure for slug adjustment.
If FM ose. coil is replaced, adjust placement of its ground tead for tracking at 88 mc .

No. 1507 TUBE LOCATION CHART

No. 1507 VOltage Chart

ALL MEASUREMENTS MADE WITH SWITCH IN FM POSITION UNLESS OTHERWISE SPECIFIED VOLTAGES MEASURED WITH RESPEGT TO GHASSIS GROUND. DOTS ON I.F TRANSFORMERS INOICATE THE POSITION OF THE COLOR CODED TERMINAL

\&ODELS 1507PLA,
1507PLM, Crı. 112113

TUBE COMPLEMENT

1	GBA6	RF Amplifier
1	GBE6	Converter
1	6BA6	IF Amplifier
1	6AV6	Detector and Phase Inverter
1	6AV6	Audio Amplifier
2	6V6-GT	Push Pull Power Output
1	$5 Y 3-G T$	Rectifier

SPECIFICATIONS

Voltage Rating	117 Volts, 60 Cycle
Type of Circuit	Superhetrodyne
Tuning Range.	540 KC to 1630 KC
Input Power Rating	115 Watts
Intermediate Frequency.	455 KC
Speaker Voice Coil Impedonce.	3.2 Ohms
Power Output.	at 10% distortion

Adjust dial pointer to marker at extreme low frequency end of dial with variable condenser fully meshed.
Adjust AM loop trimmer after chassis is in cabinet for best reception at 1500 Ke .
Use a non-metallic serewdriver and light pressure for slug adjustment.
Set valume and tane controls for maximum.

A.M. - I.F.			
Pointer	Signai Generatar	VTVM Connection	Adjustment and Notes
1. Pointer at 1000 Kc. opprox.	455 Kc. 400 cy . modulation to grid of converter (pin 7 of V -2, 6BE6).	Terminal 2 of T-3.	Adjust top and bottom slugs of T-3 and T. 4 for maximum oulput on VTVM.
2. Pointer at 1400 Kc.	1400 Kc .400 cy , modulation to stator terminal of C-1-A.	Same as 1.	Adjust C-1-F and C.1-D for maximum output on VTVM.
3. Pointer at 1400 Ke.	1400 Kc. 400 cy . coupled through radiating loop.	Same as 1.	Readjust C.1-F, C-1-D, and C-I-B for maximum output on VTVM.

No. 1608 TUBE LOCATION CHART

No. 1608 VOLTAGE CHART

VOLTAGES MEASURED TO CHASSIS GROUND WITH VTVM TYPE METER.
DOTS ON I.F. TRANSFORMERS INDICATE THE POSITION OF COLOR CODED TERMINAL.

SYLVANIA PAGE 22-1

GENERAL DESCRIPTION

Models 1-250, 1-251 and 1-252 are compact, 5 tube AC-DC type broadcast receivers. The models are the same except for cabinet color. Model 1-250 is a black molded plastic. Model 1-251 is walnut finish and Model 1-252 is finished in ivory. The receiver has a built-in loop antenna and once the station is tuned in, the receiver should be rotated and left in the position where the signal is received with maximum volume. There is no provision for an external antenna connection. The circuit is of the isolated chassis type. Controls are provided for tuning and on-off and volume.

SPECIFICATIONS

POWER SUPPLY 117 Volts DC,
FREQUENCY RANGE 535-1620 Kc.
INTERMEDIATE FREQUENCY
455 Kc.

POWER OUTPUT

SPEAKER \qquad 5" P. M. , 4.7 oz. magnet

SYLVANIA TUBE COMPLEMENT Function Type

Converter 12BE6
I. F. Amplifier 12BA6

2nd Det. - A.V.C. 1st A.F.... 12AT6
Audio Output 50C5
Rectifier 35W4

ALIGNMENT PROCEDURE

PRELIMINARY ADJUSTMENTS

Set volume control to maximum position.
Allow chassis and signal generator to warm up for several minutes.

No output meter need be used.

I. F. ALIGNMENT

1. Tune receiver to approximately $\mathbf{1 0 0 0} \mathbf{~ K c . ; ~}$ where no audible reception is heard.
2. Tune signal generator to $\mathbf{4 5 5} \mathrm{Kc}$. with 400 cycle modulation and connect output between receiver B- and control grid (pin 7) of 12BE6 converter tube through a 0.1 mfd . capacitor.
3. Align I. F. transformers T1 \& T2 by aligning first the cores accessible from under
the chassis and then the top cores.
4. Keep the output from the generator at its lowest possible value to prevent the AVC from interfering with accurate alignment.

R. F. ALIGNMENT

1. Connect a Hazeltine Loop to the output of the signal generator to radiate the signal into the receiver.
2. Set receiver variable capacitor to minimum capacity.
3. Tune the signal generator to $\mathbf{1 6 5 0} \mathbf{K c}$. with 400 cycle modulation and adjust the oscillator trimmer C 4 for maximum output.
4. Tune the receiver to a frequency between 1420 Kc . and 1500 Kc .; where no audible reception is heard.
5. Adjust antenna trimmer C2 for maximum output.

ANTENNA LOOP

PAGE 22－2 SYLVANIA
MODELS 1－250，1－251，1～ 252，510B，510H，510W， Ch．1－215

$9 \cdot 6$
-01
SUPPL EM ADDITION TO SERVICE INFORMATION FOR CHASSIS $\mathbf{1 - 2 1 5}$

Repair Parts for the I．F．Transformers in the Repair Parts List should read as follows：
DESCRIPTION
 pair
 The＂R＂number above is stamped on the shield in each case．Replacement must．
with a transformer having the same＂R＂number stamped on the shield as the old part．
CODE CHANGES FOR CHASSIS $1-215$
C01－certain changes to meet Underwriter＇s requirements
C02－factory information only，does not affect service
ADDITION OF NEW MODELS
 models $1-250,1-251$ and $1-252$ in later production．Mode！ 510 B is finished in black，model 510 H
Reference for all service data and repair parts should be made to Bulletin 9－6．
$\begin{gathered}\mathrm{F} \\ \mathrm{N} \\ \mathrm{F} \\ \mathrm{F}\end{gathered}$

 Transformer

$\varepsilon 100-z Z 1$
$100-121$

$143-0011$
$623-0012$

－

REPAIR PARTS LIST
FIG． 2 －CHASSIS BOTTOM LAYOUT
Loop－Antenna 150 Ohm $-1 / 2 \mathrm{~W}$
Resistor－
Resistor－ 1,200 Ohm -1 W.

Knob（For Black Cabinet）
Knob（For Black Walnut Cabinet）
\ggg
$\ggg>898$

DESCRIPTION

Base－12BA6 Tube Shield
Bushing \＆Retainer－Line Cord Cabinet－Black－Molded Cabinet－Wainut－Molded

Cabinet－Ivory－Molded 1 merd．－
Capacitor－Paper
Capacitor－Paper－
Capacitor－Paper－
． 02 Mid．－
Capacitor－Paper－． 05 Md． Capacitor－Electrolytic－ 40 Mrd ． Capacitor－Z Gang Variable Coil－Oscillator \＆Volum

Control－On－Off \＆
Cord－A．C．Line
Dial－Station－Plastic

SCHEMATIC PART
LOCATION NUMBER
482－0002
$497-0005$
$482-0002$
$497-0005$
$813-0001$
$813-0002$
$813-0003$
$162-04247$

影

N

苞会

C13
C15
C5
C16
C7，C14，C19
C6
C17
＂
ज
\％

schematic diagram for l-2IS

FIG. 3 - SCHEMATIC DIAGRAM OF 1-215 CHASSIS

MODEL 430L,

Ch. 1-254

GENERAL DESCRIPTION

Model $430-\mathrm{L}$ is a compact 4 tube AC-DC-Battery 3 way portable type broadcast receiver. The receiver has a built-in loop antenna and once the station is tuned in, the receiver should be rotated and left in the position where the signal is received with maximum volume. There is no provision for an external antenna. Battery operation is obtained by inserting the line cord plug in the socket at the rear of the chassis. Controls are provided for tuning and on-off and volume.

SPECIFICATIONS

POW ER SUPPLY
AC-DC Operation, 117 Volts DC, 60 cycle AC
Battery Operation
"A" Battery, 7 1/2 Volt Eveready 717
"B" Battery, 90 Volt Eveready 490
FREQUENCY RANGE 540-1650 KC.
INTERMEDIATE FREQUENCY
455 KC :

SPEAKER
4" P. M. , 0.68 oz. magnet
SYLVANIA TUBE COMPLEMENT Function Type

Converter 1R5
I. F. Amplifier $1 \mathrm{U4}$

2nd Det. -AVC-1st A. F. $1 \mathrm{U5}$
Audio Output

ALIGNMENT PROCEDURE

PRELIMINARY ADJUSTMENTS

Set volume control to maximum position.
Allow chassis and signal generator to warm up for several minutes.

No output meter need be used.

I. F. ALIGNMENT

1. Tune receiver to 540 Kc . (variable capacitor fully closed).
2. Tune signal generator to 455 Kc . with 400 cycle modulation and connect output between receiver ground and control grid of 1R5 converter tube (pin 6 or antenna trimmer) through a 0.25 capacitor.
3. Align I. F. transformers T1 \& T2 by adjusting the top and bottom slugs to give maximum readings.
4. Keep the output from the generator at its lowest possible value to prevent the AVC from interfering with accurate alignment.

R. F. ALIGNMENT

1. Connect a Hazeltine Loop to the output of the signal generator to radiate the signal into the receiver.
2. Set receiver variable capacitor to minimum capacity.
3. Tune the signal generator to 1650 Kc . with 400 cycle modulation and adjust the oscillator trimmer for maximum output.
4. Close the variable capacitor and check for-540 Kc.
5. Set signal generator to 1500 Kc . Rotate variable capacitor until signal is brought in and peak antenna trimmer to give maximum reading.

FIG. 1 - CHASSIS TOP LAYOUT

fig. 2 - Chassis bottom layout

$$
\begin{aligned}
& \text { MODEL } 430 L, \\
& \text { Ch. } 1-254
\end{aligned}
$$

REPAIR PARTS LIST

SCHEMATIC	SERVICE	
LOCATION	PART NUMBER	DESCRIPTION
	814-0001	Cabinet - Wood
C5, C7	162-0622	Capacltor - Paper - . $002 \mathrm{Mfd} .-600 \mathrm{~V}$.
C8	162-0425	Capacitor - Paper - . 005 Mfd . - 400 V .
C4, 66	162-0411	Capacitor - Paper - . $01 \mathrm{Mfd} .-400 \mathrm{~V}$.
C2	162-0215	Capacitor - Paper - . $05 \mathrm{Mfd} .-200 \mathrm{~V}$.
C3, C9, C11	162-0415	Capacitor - Paper - . 05 Mfd - 400 V .
C10, C16	162-0402	Capacitor - Paper - . 2 Mfd . - 400 V .
C12, C13	163-0100	Capacitor - Mica - . 0001 Mfd - 500 V .
	170-0003	Capacitor - 2 Gang - Variable
C14	161-3009	$\begin{array}{r} \text { Capacitor - Electrolytic }-40 \mathrm{Mfd} .-150 \mathrm{~V} . \\ 40 \mathrm{Mfd} .-150 \mathrm{~V} . \end{array}$
		200 Mfd . - 15 V .
L2	113-0017	Coil - Oscillator
R15	152-0009	Control - On-Off \& Volume
	195-0002	Cord - Line
	722-0016	Dial
	776-0001	Front Plate \& Baffle Board Assy. (with Metal Trim Plate)
	740-0009	Knob - Dial
	740-0010	Knob - On-Off \& Volume
L1	581-0001	Loop - Antenna (without back cover)
	196-0008	Plug - Lead Assy. - "A" Battery
	196-0009	Plug - Lead Assy. - 'B' Battery
M1	517-0002	Rectifier - Selenium
R9	182-0470	Resistor - 47 Ohm - 1 W .
R13, R14	181-0102	Resistor - 1,000 Ohm - 1/2 W.
R12	181-0152	Resistor - 1,500 Ohm - 1/2 W.
R10	189-0022	Resistor - 2,700 Ohm - W. W.
R11	182-0272	Resistor - 2,700 Ohm - 1 W .
R4	181-0822	Resistor - 8,200 Ohm - $1 / 2 \mathrm{~W}$.
R1	182-0104	Resistor - 100, $000 \mathrm{Ohm}-1 \mathrm{~W}$.
R7	181-0224	Resistor - 220, $000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
R8	181-0105	Resistor - 1 Megohm - $1 / 2 \mathrm{~W}$.
R3	181-0225	Resistor - 2.2 Megohm - $1 / 2 \mathrm{~W}$.
R2	181-0335	Resistor - 3.3 Megohm - $1 / 2 \mathrm{~W}$.
R6	181-0475	Resistor - 4.7 Megohm - 1/2 W.
R5	181-0106	Resistor - $10 \mathrm{Megohm} \mathrm{-} 1 / 2 \mathrm{~W}$.
	412-0013	Socket - Tube
	539-0400	Speaker
sw2	573-0002	Switch - 3 P.D.T. (AC -DC-Bat.)
	143-0015	Transformer - Output
	623-0018G	Tube - 1R5
	623-0019G	Tube - 1U4
	623-0020G	Tube - 1U5
	623-0021G	Tube - 3V4

GENERAL DESCRIPTION

Models 540B (Black), 540 H (Ivory), and 540M (Mahogany) are plastic-cased 5 tube clock radios which tune the standard broadcast band. The receivers have built-in lorp antennas and once a station is tuned in, the receiver should be rotated and left in position where the signal is received with maximum volume. If desired, an external antenna may be connected to the terminal provided for that purpose on the back cover.

The clock may be used to:
(A) Provide correct time.
(B) Turn on radio program for awakening.
(C) Turn the buzzer alarm on 10 minutes after the radio starts playing.
(D) Turn on the buzzer alarm for awakening with the radio silenced.

Front panel controls are provided for tuning and volume. On the clock face are the alarm set and operating selector controls.

SPECIFICATIONS

POWER SUPPLY
105-125 Volts, 60 cycle AC, 30 Watts
FREQUENCY RANGE \qquad $540-1650 \mathrm{Kc}$.

INTERMEDIATE FREQUENCY \qquad 455 Kc .

SPEAKER. \qquad 4" P.M., 1.0 oz. Magnet

SYLVANIA TUBE COMPLEMENT

Function	Type
Oscillator-Converter	12BE6
I.F.Amplifier	12BA6
Detector-AVC - 1st Audio	12AT6
Audio Output	50 C 5
Rectifier	35 W 4

ALIGNMENT PROCEDURE

PRELIMINARY INSTRUCTIONS

Set volume control to maximum position.
Allow chassis and signal generator to warm up for several minutes.

Connect an A.C. voltmeter across voice coll terminals.
I.F. ALIGNMENT

1. Set the variable tuning capacitor to fully open position (capacitor plates out of mesh).
2. Tune signal generator to 455 Kc . with 400 cycle modulation and connect output between receiver B - and control grid (pin 7) of 12BE 6 converter tube through a 0.1 mfd. capacitor.
3. Align 1.F. transformers T1 and T2 by aligning first the cores accessible from under the chassis and then the top cores.
4. Keep the output from the generator at its lowest possible value to prevent the AVC from interfering with accurate alignment.

R.F. ALIGNMENT

1. With the variable tuning capacitor fully open and the signal generator connected between receiver B - and control grid (pin 7) of 12BE6 converter tube through a 0.1 mifd. capacitor, tune signal generator to 1650 Kc.
2. Adjust the oscillator trimmer C5 (on front section of variable capacitor) for maximum output.
3. Tune the receiver to 1500 Kc .
4. Connect a Hazeltine Loop to the output of the signal generator to radiate a 1500 Kc . signal into the receiver.
5. Adjust antenna trimmer C3 (on rear section of variable capacitor) for maximum output.

DIAL CORD HOOKUP

CHASSIS TOP LAYOUT

CHASSIS BOTTOM LAYOUT

SCHEMATIC DIAGRAM FOR MODELS 540B, $540 \mathrm{H}, 540 \mathrm{M}$

SYLVANIA RAGE 22-
MODELS 540B, 540 H 540M, Ch. 1-253

FIGURE A
blue

FIGURE B

Ta take clock movement out of cabinet proceed as follows:

Remove the following:

A - Line cord from power line
B - Tuning knob, volume control knob, and chassis from cabinet.
C - 2 nuts holding clock clamping shield shown in Figure A.
D - As this shield is suffictently pulled back, unsolder red and blue wires and power cord shown in Figure B

E - The movement may then be withdrawn through the opening in the front of the cabinet.
F - In shipping a movement to a service station, be certain that it is suitably packed to withstand transportation. Care should be taken with the glass crystal so that it is not subject to strain during shipment.

GENERAL DESCRIPTION

Models 540BA (Black), 540HA (Ivory), and 540MA (Mahogany) are plastic cabinet 5 tube clock radios which tune the standard broadcast band. Each receiver has a built-in loop antenna, and once a station is tuned in, the radio should be rotated and left in position where the signal is received with maximum volume. If desired, an external antenna may be connected to the terminal provided for that purpose on the back cover.

The clock may be used to:
(A) Provide accurate sweep second time.
(B) Turn off radio or appliance up to 60 min ute period or less.
(C) Turn on radio program for awakening.
(D) Turn on buzzer alarm 10 minutes after radio starts playing.
(E) Turn on buzzer alarm for awakening with radio and appliance turned off.

(F) Turn radio off automatically after retiring.
(G) Turn radio off automatically and awaken to music with appliance operating.
(H) Turn appliance on and off with radio off.

Front panel controls are provided for tuning and volume. On the clock face are the alarm set, operating selector, and rock-a-bye controls.

SPECIFICATIONS

POWER SUPPLY105-125 Volts, 60 Cycle AC, 30 WattsAPPLIANCE OUTLETMaximum Load 1100 Watts
FREQUENCY RANGE $540-1650 \mathrm{Kc}$.
INTERMEDIATE FREQUENCY 455 Kc.

LOUD SPEAKER..... 4" P.M., 1.0 oz. Magnet

SYLVANIA TUBE COMPLEMENT

Function	Type
Oscillator-Converter	12BE6
I.F. Amplifier	12BA6
Detector - AVC - 1st Audio	12AT6
Audio Output	50 C 5
Rectifier	$35 W 4$

ALIGNMENT PROCEDURE

PRELIMINARY INSTRUCTIONS

Set volume control to maximum position.
Allow chassis and signal generator to warm up for several minutes.

Connect an A.C. voltmeter across voice coil terminals.

I.F. ALIGNMENT

1. Set the variable tuning eapacitor to minimum capacity position (plates fully out of mesh).
2. Tune signal generator to 455 Kc . with 400 cycle modulation and connect output between receiver B- and control grid (pin 7) of 12 BE 6 converter tube through a 0.1 mfd . capacitor.
3. Align I.F. transformers $T 1$ and $T 2$ by aligning first the cores accessible from under the chassis and then the top cores.
4. Keep the output from the generator at its lowest possible value to prevent the AVC from interfering with accurate allgnment. R.F. ALIGNMENT
5. With the variable tuning capacitor fully open and the signal generator connected between receiver B - and control grid (pin 7) of 12 BE 6 converter tube through a 0.1 mfd. capacitor, tune signal generator to 1650 Kc .
6. Adjust the oscillator trimmer C5 (on front section of variable capacitor) for maximurn output.
7. Tuns the receiver to 1500 Kc .
8. Connect a Hazeltine Loop to the output of the signal generator to radiate a 1500 Kc . signal into the receiver.
9. Adjust antenna trimmer C3 (on rear section of variable capacitor) for maximum output.

SYLVANIA PACE 22.1
MODELS $540 B A, 540 \mathrm{HA}$, 540MA, Ch. 1-253

CHASSIS TOP LAYOUT

FIGURE A

To take clock movement out of cabinet proceed as follows:

Remove the following:

A - Line cord from power line.
B - Tuning knob, volume control knob, and chassis from cabinet.

FIGURE B

C - Three nuts holding clock clamping shield shown in Figure a above.
D - As this shield is sufficiently pulled back, unsolder red, blue, and green wires shown in Figure B above.

E - Before movement can be withdrawn from the cabinet, it is necessary to have the rock-a-bye control in the full 60 minute position.

F - In shipping a movement to a service station, be certain that it is suitably packed to withstand transportation. Care should be taken to insure that the glass crystal is not subject to * strain during shipment.

PAGE 22-14 SYLVANIA

REPAIR PARTS LIST

SCHEMATIC	PART NUMBER	DESCRIPTION
	813-0004	Cabinet - Plastic - Mahogany (Grille Insert not included)
	813-0005	Cabinet - Plastic - Black (Grille Insert not included)
	813-0006	Cabinet - Plastic - Ivory (Grille Insert not included)
C2,C4	172-0004	Capacitor - Variable - 40 Mfd - 150 V .
$\mathrm{C18}$	161-3010	Capacitor - Electrolytic - 40 Mfd . - 150 V .
C19		20 Mfd - 150 V .
C20	162-0625	Capacitor - Paper - . $005 \mathrm{Mfd} .-600 \mathrm{~V}$.
C14,C15	162-0411	Capacitor - Paper - $\quad .01 \mathrm{Mfd}$ - 400 V .
C8	162-0415	Capacitor - Paper - $\quad .05 \mathrm{Mfd}$ - 400 V .
C16	160-0415	Capacitor - Phenolic - . 05 Mfd - 400 V .
C17	162-0402	Capacitor - Paper - $\quad .0005 \mathrm{Mfd}$ - 500 V .
C11,C13	163-0500	Capacitor - Mila Coill Oscilator
R3	153-0012	Control - Volume - 500,000 Ohm
	195-0005	Cord - Line
	717-0001	Glass (Clock Crystal)
	776-0002	Insert - Plastic (Grille - Dial - Cloth Insert)
	740-0015	Knob - Alarm Set
	743-0005	Knob - Operating Selector \& Rock-A-Bye Switch
	740-0008	Knob - Volume and Tuning Controls
	582-0007	Loop \& Back Cover Assembly Capacitor - . 000005 Mfd .
C1	714-0004	Metal Bezel (Clock Numerals)
	792-0003	Pointer - Dial
R9	181-0220	Resistor - 22 Ohm - $1 / 2 \mathrm{~W}$.
R10	183-0101	Resistor - 100 Ohm - 2 l W.
R2,R7	181-0151	Resistor - $1,150 \mathrm{Ohm}$ - $1 / 2 \mathrm{~W}$.
R11	182-0152	Resistor - ${ }^{\text {Resistor - }} \mathbf{2 2 , 0 0 0} \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
R1	181-0223	Resistor - 470,000 Ohm - $1 / 2 \mathrm{~W}$.
R5,R6	$181-0474$ $181-0335$	Resistor - 3.3 Megohm - $1 / 2 \mathrm{~W}$.
R4	181-0106	Resistor - 10 Megohm - $1 / 2 \mathrm{~W}$.
	493-0010	Shaft - Dial Drive
	482-0006	Shield - Miniature Tube
	417-0013	Socket - Appliance
	412-0013	Socket - Tube
	539-0401	Speaker (includes Output Transformer)
	496-0023	Spring - String Drive
	571-0006	Switch - Radio
$\begin{aligned} & \mathrm{T} 1, \mathrm{~T} 2 \\ & \mathrm{~T} 3 \end{aligned}$	121-0101	Transformer - I.F. - Input \& Output
	143-0010	Transformer - Output
	623-0016G	Tube - 12at6
	623-0012G	Tube - 12BA6
	623-0013G	Tube - 12BE6
	634-0002G	Tube - 35W4
	623-0015G	Tube - 50C5
Some cases have been reported where the chassis holddown bolts plus their washers were longer than the plastic legs. To remedy, remove washers, as required.		

MODEL CH749,

Hudson \#225908

FIG. 1 MODE 225908

GENERAL

The Hudson model 225908 receiver is a six tube, twin unit, superhetrodyne receiver. The antenna, RF, and oscillator circuits are inductively tuned (manually and push button) by iron cores over a frequency range of 540 to 1600 kilocycles.

The speaker is mounted above the receiver and both units are mounted behind the instrument panel. The on-off, volume and tone controls are on concentric shafts at the left of the receiver. The manual tuning control and trim knob are at the right.

A special compensating capacitor in the oscillator circuit minimizes frequency drift due to normal variations in temperature and car battery voltage.

Sylvania built CH749 Hudson receiver serial numbers start at CH1001 and up.

TUBE COMPLEMEMT

6SK7GT
6SA7GT
6SK7GT
6SQ7GT
5V6GT
6X5GT
R. F. Amplifier

Converter
I. F. Amplifier

Detector, AVC \& AF Amplifier
Output
Full Wave Rectifier

POWER sUPPLY

The power supply uses a 6X5GT full wave rect fifier tube in conjunction with a four prong, full wave primary type vibrator.

ALIGNMENT

Maximum performance depends on accurate alignment of the receiver; therefore, follow these instructions carefully.
CAUTION: Make all alignment adjustments to the receiver with the " A " lead connected to a 6.6 volt negative source and ground the chassis to the positive side of this source. Rotate the volume and tone controls
to their maximum clockwise positions. Keep the output from the signal generator at its' lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment. Use an insulated screw driver, or the prescribed tool, for making all alignment adjustments.

IF ALIGNMENT PROCEDURE

1. IF ALIGNMENT AT 265 KILOCYCLES

(a) Remove top and bottom covers from the receiver.
(b) Set the signal generator at 265 kilocycles.
(c) Connect the signal lead of the signal generator through a 0.1 Mfd. capacitor to the 6SA7GT converter grid (pin $\% 8$ on the socket). Connect output indicator across speaker voice coll.
(d) Connect the ground lead of the signal generator to the chassis or case.
(e) Position the dial pointer at the high frequency end of the dial.
(f) With core alignment tool 898-0003 adjust the IF cores "A," "B," "C," and "D" in order named for maximum output. (See Parts Layout - Bottom of Chassis, page 5).

Repeat this adjustment until maximum output reading does not change.
2. RF AND OSCILLATOR ALIGNMENT
(a) Connect the signal lead of the signal generator through the dummy antenna, illustrated in Fig. 2 to the antenna connector on the receiver.
(b) Adjust the signal generator to 535 kilocycles.
(c) Rotate the manual tuning control to tune the receiver at 535 kilocycles.
(d) Adjust the oscillator trimmer C 9 for maximum response (See Parts Layout - Bottom of Chassis, Page 5).
(e) Adjust the signal generator to 1400 kilocycles.
(1) Rotate the manual tuning control to tune the receiver at 1400 kilocycles.
(g) Adjust the converter trimmer C 6 and
the antenna trimmer Cl for maximum the antenna trimmer C1 for maximum output (See Parts Layout - Top and Bottom of Chassis, Pages 4 and 5).
(h) If dial calibration is off after making the above adjustments, corrections can be made by turning the eccentric screw at the fulcrum of the dial pointer (See Parts Layout - Top of Chassis, Page 4).

SENSITIVITY CONTROL

Sensitivity control R9 is factory set and should not be changed. If it is necessary for this control to be readjusted, it should be set to 2 volts DC positive on the cathode of the 6SK7GT IF Amplifier tube.

ALIGNMENT AFTER CORE REPLACEMENT

WARNING: The following adjustments are to be made ONLY if a core has been replaced.
(a) Adjust the signal generator to 1675 kilocycles.
(b) Connect the signal lead of the signal generator through the dummy antenna, see Fig. 2, to the antenna connector of the receiver.
(c) Rotate the manual tuning control to stop at 1600 kilocycles (maximum high frequency end of the dial).
(d) Screw the cores completely out of the antenna coil, the converter coil, and the oscillator coil.
(e) Adjust the oscillator trimmer C9 at 1675 kilocycles (see Parts Layout Bottom of Chassis, Page 5).
(f) Adjust the converter trimmer C6, and the antenna trimmer C1 for maximum output (see Parts Layout - Top of Chassis and Bottom of Chassis).
(g) Replace cores to approximately their

FIG. 2 DUMMY ANTENNA

SYLVANIA PAGE 22-1

COILS AND CHOKES

SCHEMATIC LOCATION	PRODUCTION PART NO.	$\begin{aligned} & \text { SERVICE } \\ & \text { PART NO. } \end{aligned}$	DESCRIPTION
L9	71630	148-0007	Choke - Filament
L8	71628	147-0007	Choke - Main Hash
L7	71629	147-0001	Choke - Motor Noise
L1	71642	148-0001	Choke - Motor Noise - Antenna
L5	71517	113-0016	Coil - Oscillator
L4	71949	146-0010	Coil - Oscillator Series
$L 6$	71631	116-0002	Coil - Oscillator Shunt
L2, L3	71515	112-0007	Coil - RF
L2, L3, L5	75060	117-0011	Coil Assembly - Tuner Unit

CAPACITORS

C13, C15	71915	$166-4000 \mathrm{D}$
C2, C17	71632	$168-0002 \mathrm{D}$
C4, C7	14140	$163-0100$
C3	13228	$163-0100$
C16	71660	$163-0220$
C5	11691	$163-0250$
C8	71920	$165-0230$
C21	71662	$160-16282$
C18	71950	$162-0625$
C14	20987	$162-0212$
C11	71955	$162-0215$
C12	71954	$162-0401$
C10	71953	$162-0401$
C22, C23	71763	$169-0001$
C19, C20	71916	$161-2000$
C1	71917	$172-0027$
C6	71918	$172-0028$
C9	71919	$172-0029$

| Capacitor - Ceramic - | $.004 \mathrm{Mfd} .-500 \mathrm{~V}$. |
| :--- | ---: | :--- |
| Capacitor - Ceramic - | $.01 \mathrm{Mfd} .-500 \mathrm{~V}$. |
| Capacitor - Mica - | $.0001 \mathrm{Mfd} .-500 \mathrm{~V}$. |
| Capacitor - Mica - | $.0001 \mathrm{Mfd} .-500 \mathrm{~V}$. |
| Capacitor - Mica - | $.00022 \mathrm{Mfd} .-500 \mathrm{~V}$. |
| Capacitor - Mica - | $.00025 \mathrm{Mfd} .-500 \mathrm{~V}$. |
| Capacitor - Compensating - | 000230 Mfd. |
| Capacitor - Molded Paper - | $.0082 \mathrm{Mfd} .-1600 \mathrm{~V}$. |
| Capacitor - Paper - | $.005 \mathrm{Mfd} .-600 \mathrm{~V}$. |
| Capacitor - Paper - | $.02 \mathrm{Mfd} .-200 \mathrm{~V}$. |
| Capacitor - Paper - | $.05 \mathrm{Mfd} .-200 \mathrm{~V}$. |
| Capacitor - Paper - | $.1 \mathrm{Mfd} .-200 \mathrm{~V}$. |
| Capacitor - Paper - | $.1 \mathrm{Mfd} .-400 \mathrm{~V}$. |
| Capacitor - Paper - | $.5 \mathrm{Mfd} .-100 \mathrm{~V}$. |
| Capacitor - Electrolytic | $10 \mathrm{Mfd} .-300 \mathrm{~V}$. |
| | $20 \mathrm{Mfd} .-350 \mathrm{~V}$. |
| Capacitor - Trimmer - Antenna | |
| Capacitor - Trimmer - Converter | |
| Capacitor - Trimmer - Oscillator | |
| RESISTORS | |

R20, R21	BY38201	$181-0820$
R6	BY38211	$181-0821$
R5,R8, R13	BY32231	$181-0223$
R11	BY33331	$181-0333$
R1, R3, R15,	BY33342	$181-0334$
R16		
R10,	BY31052	$181-0105$
R4	BY35651	$181-0565$
R14	BY31562	$181-0156$
R18	ZY32711	$182-0271$
R2	ZY31031	$182-0103$
R19	VY31821	$183-0182$
R7	VY31231	$183-0123$

Resistor - insulated -	$82 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
Resistor - insulated -	$820 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
Resistor - insulated -	$22,000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
Resistor - insulated -	$33,000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
Resistor - insulated -	
Resistor - insulated -	$1 \mathrm{Megrohm}-1 / 2 \mathrm{~Wh}-1 / 2 \mathrm{~W}$.
Resistor - insulated -	$5.6 \mathrm{Megohm}-1 / 2 \mathrm{~W}$.
Resistor - insulated -	$15 \mathrm{Megohm}-1 / 2 \mathrm{~W}$.
Resistor - insulated -	$270 \mathrm{Ohm}-1 \mathrm{~W}$.
Resistor - insulated -	$10,000 \mathrm{Ohm}-1 \mathrm{WI}$.
Resistor - insulated -	$1,800 \mathrm{Ohm}-2 \mathrm{~W}$.
Resistor - insulated -	$12,000 \mathrm{Ohm}-2 \mathrm{~W}$.

MISCELLANEOUS

SP1	71964	$539-0006$	Speaker - 6" x 9" PM
SK2	71926	$193-0008$	Cable - Speaker
	71640	$562-0006$	Cable - Battery - Fuse
R12, R17, S1	75752	$157-0013$	Control - Volume, Tone and On-Off
R9	71645	$159-0004$	Control - Sensitivity
	71503	$192-0002$	Core - Perm. Tuner
	71699	$416-0002$	Socket - Antenna Connector
	71696	$412-0016$	Socket - Octal - Tube
	71697	$413-0003$	Socket - Vibrator

PAGE 22-22 SYLVANIA
MODEL CH749,
Hudson \#225908

T1	71702
T2	71703
T3	71938
T4	71941
V1	$71942-1$

INSTALLATION \& SUPPRESSION

75744	$569-0014$	Installation Kit Assembly (complete) includes mounting brackets, hardware and volume and tuning knob
75759	$561-0008$	Cable - Battery - Fuse to Circuit Breaker
71961	$569-0004$	Capacitor - Generator and Ignition Coil
75152	$191-0002$	Fuse - 14 Amp. - Type SFE - 14
71962	$744-0009$	Knob - Tone Control
71963	$744-0010$	Knob - Trim
75133	$749-0012$	Knob - Volume and Tuning
75756	$496-0050$	Spring - Knob Tension
71899	$563-0004$	Suppressor - Distributor

TUNER ASSEMBLY

71819
71818
71823
71587
71979
71991
71835
71990
71847
44638
71846
71815

333-0008	Clutch Plate \& Washer Assembly
333-0007	Clutch Release Bracket \& Roller Assembly
333-0006	Gear \& Bushing Assembly
331-0003	Lock - Cam
$752-0021$	Plunger Screw \& Knob Issembly
493-0009	Shaft - Drive
496-0045	Spring - Release Bar
313-0015	Unit - Tuner Assembly
$554-0015$	Washer - "C"
$553-0010$	Washer - Fiber
$553-2008$	Washer - Tuning Shaft
$484-0005$	Worm Gear \& Bracket Assembly

DLAL ASSEMBLY

Escutcheon Assembly (complete)
Light - Dial (Mazda *44)
Link - Pointer Drag \& Stud Assembly
Escutcheon Window Retaining
Pointer \& Bracket Assembly
Scale - Dial
Socket - Dial Light \& Lead Assembly
Spring - Pointer Tension
Washer - Pointer Tension Spring
Window - Escutcheon

TUBE COMPLEMENT

45238G	$622-0001 G$
41332G	$622-0002 \mathrm{G}$
$45238 G$	$622-0001 \mathrm{G}$
45239 G	$622-0003 \mathrm{G}$
71226 G	$622-0004 \mathrm{G}$
71227 G	$633-0001 \mathrm{G}$

6SK7GT - R. F. Amplifier
6SA7GT - Converter
6SK7GT - I. F. Amplifier
6SQ7GT - Detector, AVC \& A. F. Amplifier
6V6GT - Audio Output
6V6GT - Audio Ou

INSTALLATION

Figure 6 illustrating the installed receiver and its related parts is given here to facilitate removal and reinstallation of the receiver when service or repairs are necessary.

1. Loosen set screws and remove volume control knob, tone control knob, tuning knob, trim knob, and knob tension spring.
2. Remove speaker leads, antenna lead and
"A" lead.
3. Remove four speaker mounting screws and speaker grille.
4. Lift speaker out of recess in dash panel.
5. Remove four $1 / 4^{\prime \prime}$ hex bolts and slide receiver to the rear, down and remove.

OPERATING INSTRUCTIONS

VOLUME CONTROL

To turn the receiver on, turn the volume control knob to the right until it clicks and the dial is illuminated. Allow the receiver to reach the operating stage and adjust the volume control knob for the desired volume. To turn the receiver off, rotate the volume control knob to the left until the control clicks.

MANUAL TUNING

To tune the receiver manually it is only necessary to rotate the manual tuning knob (smaller of the two right hand knobs). Tune the receiver to the exact frequency for the best tonal quality. Manual tuning can be done at any time and will not distrub the setting of the push buttons.

TONE CONTROL

The tone control knob is located directly behind the volume control knob. Rotating this control to the right or left will change the tone
of the receiver. Right hand rotation whll emphasize the high nates, left hand rotation emphasizes the bass notes. Turn in either direction for most pleasing tone.

AUTOMATIC TUNING

There are six automatic tuning positions, each of which may be adjusted to a desired station. In order to simplify station identification, it is advisable to set the automatic tuning mechanism in sequence according to frequencies of the stations, beginning with the station broadcasting on the lowest frequency, and progressing to the station broadcasting on the higher frequency. If these positions have not been previously adjusted, proceed as follows:

1. Loosen the first push button (left side of receiver) by turning it counterclockwise with your fingers, not more than two turns.
2. Turn the manual tuning control knob to tune in the desired station. (Carefully tune to the middle of the signal for clearest reception).
3. Push this push button in to its extreme bottom position and then release. Tighten the push button by turning it clockwise (with fingers only). This completes the operation of setting this push button.
4. Repeat the above procedure for each of the five remaining push buttons.

INTERFERENCE SUPPRESSION

There should be no motor noise or interference from the ignition system if the receiver has been installed in the car according to the instructions furnished with it. The interference suppression equipment may be further checked for proper installation by referring to the following instructions and illustration.

IMPORTANT: Use the utmost care in the following operations to insure freedom from motor noise. Be sure that good ground contacts are made between the interference capacitors and the car body. If necessary, clean away paint and dirt with emery paper.- Tighten all nuts and bolts securely.

The voltage regulator capacitor 568-0004 should be installed as shown in Fig. 7. Make certain the contacts are clean and the capacitor is attached to the terminal marked A.

fig. 7 VOLTAGE REGULATOR

All 6 cylinder Hudson cars have a suppressor built into the anstributor cap; thus the information given on page 12, for installation of Suppressor 563-0004 applies only to eight cylinder models.

Item 2. The following revisions should be made to the Repair Parts List:

SCHEMATIC LOCATION	PRODUCTION PART NUMBER	SERVICE PART NUMBER	DESCRIPTION
Delete			
	71640	562-0006	Cable - Battery - Fuse
L1	71642	148-0001	Choke - Motor Noise - Antenna
	71907	711-0020	Escutcheon Assembly (complete)
	71929	477-0003	Escutcheon Window Retaining
	75063	722-0014	Scale - Dial
	71991	493-0009	Shaft - Drive
	71990	313-0015	Unit - Tuner Assembly
	71815	484-0005	Worm Gear and Bracket Assembly
Add			
L1	75955	148-0001	Choke - Motor Noise - Antenna
	75725	722-0018	Dial
	75741	711-0024	Escutcheon
	71640	562-0006	Holder - Fuse
	71929	477-0003	Plate - Escutcheon Window Retaining
	75757	493-0014	Shaft Assembly - Drive '
	75730	313-0019	Tuner Unit Assembly - mechanical portion only includes push buttons, driven clutch disc, worm gear, tuning control shaft
	75523	484-0005	Worm Gear and Bracket assembly

FIG.1 OCF751-1

GENERAL

The Ford model 1A-18805-D receiver is designed for use in the 1951 Ford Station Wagons and cars. If Adapter Kit 1C-18819-A is used, this receiver may be installed in all 1951 Ford Trucks except parcel delivery trucks. The Sylvania serial numbers of the model covered in this bulletin are OCF40, 001 and up.

This receiver is a twin unit, 8 tube superheterodyne with a vibrator power supply and a push puil output stage employing 6V6GT tubes. The antenna, radio frequency and oscillator circuits in this receiver are tuned by means of iron corés both manually and with push buttons, over a range from 540 to 1600 kilocycles.

TUBE COMPLEMENT

6SK7GT
6SA7GT
6SK7GT
6SQ7GT
6J5GT
6V6GT
6X5GT

6SK7GT
6SA7GT
GI
6J5GT
6X5GT

R. F. Amplifier
Converter
I. F. Amplifier
Det., AVC \& 1st A.F. Amplifier Inverter
Output - Push Pull (2)
Rectifier
\section*{POWER SUPPLY}

The power supply uses a 4 prong, full wave, non-synchronous vibrator in conjunction with a 6X5GT full wave rectifier tube. The wiring for the power transformer and vibrator, the main hash choke and its by-pass, and the buffer capacitor are mounted in a shielded compartment on the chassis to reduce interference.

ALIGNMENT

Optimum períormance depends on aceurate alignment of the receiver; therefore, follow these instructions carefully.

PRELIMINARY INSTRUCTIONS

Make all alignment adjustments to the receiver with the " A " lead connected to a 7.2 volt negative source and ground the chassis to the positive
side of this source. -Rotate the volume control to its maximum clockwise position. Rotate the tone control fully clockwise. Connect the output meter across the speaker voice coil. Keep the output from the signal generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment. Use aninsulated screw driver and special alignment tool 898-0003 for making adjustments.

SENSITIVITY CONTROL

The sensitivity control R6 is factory preset and should not be readjusted unless it has been tampered with. If it is definitely determined that readjustment is necessary, set the control to obtain 3.5 volts at the cathode of the I.F. Amplifier (pin \#5 of the second 6SK7GT tube).

I F ALIGNMENT

1. Remove the top and bottom covers of the receiver.
2. Set the signal generator to 265 Kc .
3. Connect the signal lead of the signal generator through a . 1 Mfd . capacitor to the converter grid (pin \#8, 6SA7GT).
4. Adjust the primary and secondary IF cores "A," "B," "C" and "D" in order named for maximum output. Both the primary and secondary of each transformer are adjusted from the top of the transformer using special alignment tool. (See Parts Layout - Bottom of Chassis, Page 3).

Repeat this operation until no further increase in output is obtained.

R F AND OSCILLATOR ALIGNMENT

1. Connect the signal generator leads through a dummy antenna which consists of two, 30 Mmfd . capacitors in a grounded shield, wired so that one is between the antenna lead-in socket of receiver and the signal generator, and the other is shunted from antenna lead to ground.
2. Turn the manual control until the high frequency stop is reached.
3. Set the signal generator to 1625 Kc .
4. Adjust the oscillator trimmer C7, the converter trimmer $C 6$, and the antenna trimmer $C 1$, respectively for maximum response.
5. If dial calibration is off after making above adjustments, corrections can be made by turning eccentric stud of fulcrum of dial pointer.

IRON CORE AND ADJUSTING SPR!NE

ADJUSTMENT OR REPLACEMENT

1. Remove the top cover from the receiver.
2. Remove the escutcheon assembly.
3. Break cement seal and screw the core in or out to the desired position.
4. If the cores are replaced or have been tampered with, the adjustments under coil and core replacement must be made.
5. After all adjustments have been made recement core springs.

CORE ALIGNMENT

CAUTION: The following adjustments are to be made only after a core or coil has been replaced or tampered with.

1. Set signal generator to 1625 Kc .
2. Connect signal generator through a dummy antenna which consists of two 30 Mmfd . capacitors inside a grounded shield so that one is connected directly from antenna socket on receiver to ground while the other capacitor is connected from signal generator to receiver antenna socket.
3. Rotate the manual tuning control to set dial pointer at 1610 Kc . (Maximum highfrequency end of dial).
4. Screw the cores completely out of the antenna coil, the converter coil, and the oscillator coil.
5. Adjust the oscillator trimmer C7 at 1625 Kc .
6. Adjust the converter trimmer C6 and the antenna trimmer C 1 for maximum output reading.
7. Set the signal generator and the receiver dial to 1410 Kc .
8. Replace the cores to their original position (approximately $11 / 16^{\prime \prime}$ from the end of the coil form.)
9. Adjust the oscillator core L6 to scale at 1410 Kc .
10. Adjust the antenna core L2 and RF core L 5 for maximum output reading.
11. Repeat steps 9 and 10 to insure that tracking and calibration are correct.
12. After alignment is complete, the maximum high frequency tuning range shourd be checked. If the range is greater or less than 1610 Kc ., the lug stop near the volume control should be bent to limit the frequency coverage to 1610 Kc .

IMPORTANT: After installing the receiver in the car, allow it to operate for approximately 15 minutes to reach normal operating temperature. Extend antenna to maximum height. Check the antenna trimmer alignment on a weak station at approximately 1410 Kc .

FIG. 2 PARTS LAYOUT - BOTTOM OF CHASSIS

REPAIR PARTS LIST

TUNER UNIT AND PARTS

SCHEMATIC
LOCATION

PRODUCTION PART NUMBER

SERVICE
PART NUMBER

DESCRIPTION

313-0016 Tuner Unit Assembly - Mechanical portion only (includes clutch plate, push buttons, On-Off switch, worm gear and bracket, tuning control shaft)
Ball - bearing - . 125"
Bracket - Clutch release and Roller Assembly

PAGE 22-30 SYLVANIA
MODET OCF751-1,
Ford \#lA-18805-D

FIG. 3 PARTS LAYOUT - TOP OF CHASSIS

75842	$492-0027$
71626	$481-0006$
71627	$481-0007$
75082	$752-0022$
71650	$487-0010$
71649	$487-0009$
65966	$333-0005$
71503	$192-0002$
75094	$722-0013$
71651	$711-0019$
75106	$485-0002$
75530	$333-0006$
75009	$-484-0004$
75531	$484-0006$
71723	$489-0011$
71652	$744-0008$
71653	$741-0004$
71654	$742-0002$
75797	
71587	$472-0007$
	$331-0003$

Bracket - Pointer Support Assembly
Bushing - Tuning Shaft
Bushing - Volume Control Shaft
Button - Push and Screw Assembly
Clip - Dial Window Retaining (L.H.)
Clip - Dial Window Retaining (R.H.)
Clutch and Disc Assembly - Driven
Core \& Adjusting Spring Assembly
Drum - Tone Shaft and Gear Assembly
Escutcheon
Filter - Dial Scale
Gear - Drive and Bushing Assembly
Gear - Tone Assembly
Gear - Worm
Glass - Dial Window
Knob - Control - Tone
Knob - Control - Tuning - includes Spring - Knob retaining
Knob - Control - Volume - includes Spring - Knob retaining
Link - Pointer Drag \& Stud Assembly
Lock - Cam

SYLVANIA PAGE 22-A MODEL OCF751-1, Ford \#1A-18805-I

FIG. 4 OCF751-1 TUNER

75031
71847
75103
65975
71838
75873
71701
71700
75102
71827
71831
75037
75793
71529
71865
71837
71180
71853

552-0023
791-0018
554-0015
722-0011
551-0017
551-0017
493-0007
497-0007
497-0006
411-0009
496-0043
496-0046
496-0065
496-0066
476-0003
571-0004
553-3000
553-4009
553-5005

Nut - 3/8-32 Hex
Pointer Assembly
Ring - Retaining - Tuning Shaft
Scale - Dial
Screw - Adjusting
Screw - Pivot
Shaft Assembly - Manual Drive
Sleeve - Tuning Shaft
Sleeve - Volume Control Shaft
Socket - Dial Light
Spring - Clutch Release
Spring - Clutch Release Bracket
Spring - Cross Arm Tension
Spring - Pointer Tension
Strip - Fibre Retainer (Pointer Pivot Tension Spring)
Switch - On-Off
Washer - Felt
Washer - Shim
Washer - Tension

HODEL OCF7SI-1, Ford \#1A-18805-D			
TUBE COMPLEMENT			
SChEmATIC	Production	SERVICE	
LOCATION	PART NUMBER	PART NUMBER	- DESCRIPTION
	45238H	622-0001H	6SK7GT - R.F. Amplifier
	41332H	622-0002H	6SA7GT - Converter
	45238H	622-0001H	6SK7GT - I.F. Amplifier
	45239H	$622-0003 \mathrm{H}$	6SQ7GT - Detector - AVC - 1st A. F. Amplifier
	44547H	$622-0010 \mathrm{H}$	6 J 5 GT - Inverter
	71226H	$622-0004 \mathrm{H}$	6V6GT - Audio Output
	71226 H	$622-0004 \mathrm{H}$	6V6GT - Audio Output
	71227H	633-0001H	6X5GT - Rectifier
CAPACITORS			
C88	75961	165-0230	Capacitor - Ceramic - Temp. Comp. - . 00023 Mfd .
	71632	168-0002D	Capacitor - Ceramic - . 01 Mfd . 200 V .
	75825 or 71633	161-3005	Capacitor - Electrolytic
$\begin{aligned} & \mathrm{C} 18 \\ & \mathrm{C} 21, \mathrm{C} 22 \end{aligned}$			$\begin{aligned} & 20 \mathrm{Mfd} .-25 \mathrm{~V} . \\ & 20 \mathrm{Mfd} .-350 \mathrm{~V} \end{aligned}$
C5	71472	163-0033	Capacitor - Mica - . 000033 Mfd. - 500 V .
C15	71660	163-0220	
C29	20548	163-0250	Capacitor - Mica - . 00025 Mfd - 500 V .
C28	71399	164-0010	Capacitor - Silver Mica - . 00001 Mfd . - 500 V .
C26	71661	164-0150	Capacitor - Silver Mica - . 00015 Mfd . - 500 V .
C10	75064	160-04215	Capacitor - Molded Paper - . 0015 Mfd . - 400 V .
C11, 114	75098	160-02256	Capacitor - Molded Paper - . 0056 Mfd. - 200 V .
C23	71662	160-16282	Capacitor - Molded Paper - . 0082 Mfd - 1600 V .
C3	71666	160-02122	Capacitor - Molded Paper - . $022 \mathrm{Mfd} .-200 \mathrm{~V}$.
C16, C17	71664	160-06122	Capacitor - Molded Paper - . 022 Mid . - 600 V .
C9	71663	160-0201	Capacitor - Molded Paper - . $1 \mathrm{Mfd} .-200 \mathrm{~V}$.
C4	71685	160-0401	Capacitor - Molded Paper - . 1 Mfd. - 400 V .
C24	HT71763	169-0001	Capacitor - Paper - . 5 Mfd. - 100 V.
C1	71636	172-0026	Capacitor - Trimmer - Antenna
C6, C7	75824	173-0002	Capacitor - Trimmer and Fixed
C20, C25		167-0008	Capacitor - Spark Plate Kit Consists of Silvered mica washer, Shouldered washer, flatwasher, screw, lockwasher-nut
	MISCELLANEOUS CHASSIS PARTS		
F2	71639	561-0003	Cable - Battery (Fuse to Ammeter)
	75786	562-0007	Holder - Fuse
	71699	416-0002	Socket - Antenna Connector
SK1	71698	414-0001	Socket - Speaker
	71693	412-0016	Socket - Tube - 8 Prong Octal - Molded Bakelite
	66423	413-0005	Socket - Vibrator
MISCELLANEOUS ELECTRICAL PARTS			
PL1,PL2	14914	611-0044	Bulb - Dial Light (Mazda \#44)
L1	75955	148-0001	Choke - Antenna
L8	71628	147-0007	Choke - Hash - Main
L7	75850	145-0005	Choke - Heater
	75796	117-0012	Coils - Permeability Tuning (includes)
L2		111-0010	Antenna Coil
L5		112-0008	R.F. Coil
L6		113-0020	Oscillator Coil
L3,C27	75918	118-0008	I. F. Trap Coil

MISCEL LANEOUS ELECTRICAL PARTS (continued)

SCHEMATIC LOCATION
 LOCATION

R6
R13, S1
F1
SP1
T1
T2
T3
T4
V1

PRODUCTION PART NUMBER

71645
71893
17392
$75674-2$
71702
71703
75931
75787
71712

PART NUMBER

DESCRIPTION

$159-0004$	Control - Sensitivity
$152-0008$	Control - Volume and Tone Switch
$191-0002$	Fuse - 14 Amp
$539-0001$	Speaker - $6^{\prime} \times 9^{\prime \prime}$ PM
$121-0015$	Transformer - 1st I.F.
$122-0015$	Transformer - 2nd I.F.
$143-0012$	Transformer - Output
$141-0010$	Transformer - Power
$511-0001$	Vibrator

INSTALLATION PARTS

75938	$569-0015$
71617	$492-0014$
75162	$567-0005$
71456	$564-0002$
71604	$569-0012$
75156	$569-0004$
71460	$568-0003$
71610	$552-0006$
75663	$552-0001$
75935	$563-0006$
71615	$553-2006$
$400-14$	$553-0003$
71669	$552-0020$
71414	$563-0004$
71491	$553-1250$

Installation and Suppression Kit (includes)
Bracket - Installation
Capacitor - Fuel Gauge
Capacitor - Generator
Capacitor - Oil Gauge
Capacitor - Voltage Regulator
Collector - Wheel Static
Nut - Hex - 1/4-20
Nut - Wing - 8-32
Suppressor Lead - Distributor
Washer - Flat
Washer - Lock - 1/4 Split
Nut - Hex - 1/2 - 28
Suppressor-Distributor
Washer - Lock - 1/2 - Int. Tooth

RESISTORS

R16	BY34701	181-0470	Resistor -	47 Ohm - 1/2 W.	. - insulated
R28, R29	BY38201	181-0820	Resistor -	$82 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.	. - insulated
R21	BY31521	181-0152	Resistor -	1,500 Ohm - $1 / 2 \mathrm{~W}$.	. - insulated
R18	BY32221	181-0222	Resistor -	2,200 Ohm - $1 / 2 \mathrm{~W}$.	W. - insulated
R4	BY32231	181-0223	Resistor -	22,000 Ohm - 1/2 W.	. - insulated
R7, R11	BY33331	181-0333	Resistor -	33, $000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.	- insulated
R25	BY33931	181-0393	Resistor -	39, $000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.	. - insulated
R17	BY35631	181-0563	Resistor -	56,000 Ohm - 1/2 W.	. - insulated
R10, R19	BY31041	181-0104	Resistor -	100, 000 Ohm - 1/2 W.	- insulated
R12	BY32241	181-0224	Resistor -	220, 000 Ohm - 1/2 W.	. - insulated
$\begin{aligned} & \text { R3, R22, R23, } \\ & \text { R24 } \end{aligned}$	BY33341	181-0334	Resistor -	330, $000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.	. - insulated
R14	BY34741	181-0474	Resistor -	470,000 Ohm - 1/2 W.	- insulated
R1, R9	BY31051	181-0105	Resistor -	1.0 Megohm - $1 / 2 \mathrm{~W}$.	. - insulated
R5	BY31061	181-0106	Resistor -	$10 \mathrm{Megohm} \mathrm{-} 1 / 2 \mathrm{~W}$.	. - insulated
R15	BY31561	181-0156	Resistor -	$15 \mathrm{Megohm} \mathrm{-} 1 / 2 \mathrm{~W}$.	. - insulated
R20	ZY33311	182-0331	Resistor -	330 Ohm - 1 W .	- insulated
R2	ZY31031	182-0103	Resistor -	10,000 Ohm - 1 W .	- insulated
R30	71676	189-0014	Resistor -	5.1 Ohm - 2 W . -	W. W.
R27	VY31821	183-0182	Resistor -	1,800 Ohm - 2 W.	- insulated
R8	VY31231	183-0123	Resistor -	12,000 Ohm - 2 W .	- insulated

PAGE 22-34 SYLVANIA
MODEL OCF751-1,
Ford \#la-18830 ${ }^{\circ}$-D

FIG. 5 SCHEMATIC DIAGRAM MODEL OCF751-1

FIG. 6 MODEL OCF751-1 INSTALLATION

RECEIVER INSTALLATION

Figure 6 illustrates the installed receiver to facilitate removal and reinstallation of the receiver when service is necessary.

TO REMOVE THE RECEIVER FROM THE CAR:

1. Disconnect the "A" lead at the receiver. Remove the speaker plug from the receiver.
2. Remove control knobs, front mounting nuts and lockwashers from the radio control

shafts. (See Fig. 6)

3. Disconnect the bottom of the set rear mounting bracket by removing the hex nut and lockwasher from the set rear mounting stud. (See Fig. 6)
4. Remove set by pushing it back and down behind instrument panel.
5. To take the speaker from the Ford car, remove the four wing nuts that hold the speaker to the rear of the instrument panel.

OPERATING INSTRUCTIONS

TO TURN RADIO ON

The radio is connected to the accessory terminal of the ignition switch, therefore, it is necessary to turn the ignition key to the left, if the engine is not running, before turning the radio on. Press any one of the five automatic push-buttons. Allow approximately 20 seconds for the receiver to reach operating temperature.

To turn the receiver off, press the "Off" pushbutton. (See Fig. 1)

MANUAL TUNING

To operate the manual tuning control simply turn the tuning knob (see Fig. 1). When tuning
in a station, be sure to tune to the exact frequency for the best tone quality.

VOLUME CONTROL

Turn the volume control knob for the desired volume.

TONE CONTROL

The tone control knob is located directly behind the volume control knob. Turning this control to the right or left will change the tone of the receiver. This control has four positions and the position to which the control is set is indicated in the window in the center of the dial scale.

AUTOMATIC TUNING

Automatic push button tuning is provided by means of 5 push buttons located directly under the dial scale and to the right of the "Off" push button (see Fig. 1). These five buttons permit the selection of five favorite local stations. When the push buttons have been set to the desired stations it is only necessary to press a push button to turn the set "On" and to receive the station for which the adjustment was made. The dial pointer will automatically indicate the frequency of the selected station.

SETTING THE PUSH BUTTON TUNER

The five push buttons may be adjusted to any of the desired stations. In order to simplify the identification of these stations, it is ad-
visable to set the push buttons in sequence according to their frequencies, beginning with the station broadcasting on the lowest frequency and progressing to the station broadcasting on the highest frequency.

The push buttons should be set up during the daytime because at night, distant stations will be heard with the same volume as local stations, making it difficult to identify local stations.

Allow the receiver to operate for at least fifteen minutes before adjusting the push buttons. This will allow each part in the receiver to reach normal operating temperature.
a. Collapse the antenna.
b. Select a station at the low end of the broadcast band and manually tune it in so its signal is heard without distortion.
c. Loosen the second push button from the left side by turning it, with your fingers, counterclockwise one turn.
d. Press the loosened push button in firmly to its extreme position and release. Tighten the push buttons as much as possible by turning clockwise with your fingers.
e. The push button is now set for this sta-
tion selection. Follow the above procedure for setting each of the four remaining push buttons.
f. Check that the push button setting corresponds to the best manually tuned signal for each station and repeat steps "b" through " e " where necessary.

When the five push buttons have been set tc the desired stations, return the antenna to the lowest position necessary for good reception. It is only necessary to press a push button tc receive the station for which the adjustment was made. The dial pointer will automatically indicate the frequency of the selected station.

INTERFERENCE ELIMINATION

There should be no motor noise or interference from the ignition system if the receiver has been installed in the car according to the instructions furnished with the receiver. The interference suppression equipment may be checked for proper installation by referring to the following instruction and illustrations.

FIG. 7 "A" LEAD CONNECTION

The " A " lead to the receiver should be installed in each car as illustrated in Fig. 7.

FIG. 8 WHEEL STATIC COLLECTOR

Remove both the outer and the inner hub caps from both front wheels. Clean the inner caps
and spindles. Snap static collector spring 568-0003 in inner hub caps.
IMPORTANT: Bend cotter key away fror center hole so it will not interfere with stati collector. Replace hub caps.

Two types of distributor suppressors are use with the Ford model OCF751-1 receiver. Sup pressor 563-0004 was used for receivers wit serial numbers up to OCF-51,341-751-1. Sup pressor 563-0006 is used for all receivers wit serial numbers above this number. Suppresso 563-0004 may be replaced with suppressor lea 563-0006.

FIG. 9 DISTRIBUTOR SUPPRESSOA 563-0004

To install Suppressor 563-0004 shown in Fig. 9 cut the high tension wire running from the ig. nition coil to the center hole of the distributos cap, one and one half inches from the coil Cut one inch from the coil end of the wire Screw the cut ends of the wire into both ends of Suppressor 563-0004. Replace the wire is the coil.

FIG. 10 DISTRIBUTOR SUPPRESSOR LEAD 563-0006

To install Suppressor lead 563-0006, remove the high tension wire that runs between the innition coil and the center hole of the distributor cap. Thoroughly clean the contacts on the coil and distributor. Make an overhand loop in Suppressor lead 563-0006 as shown in Fig. 10 and insert the lead in place of the high tension wire.

FIG. 11 GENERATOR CAPACITOR

The generator capacitor 564-0002 is installed by loosening (do not remove) the top assembly bolt from the rear end plate of the generator. Mount the capacitor under this bolt and connett the lead to the armature terminal of the generator.

3-20-51 2-19

to

Technical Service Bulletin

fig. 12 OIL GAUGE CAPACITOR
Connect capacitor 569-0012 to the oil gauge sender unit as shown.

FIG. 13 FUEL GAUGE CAPACITOR
Connect capacitor 567-0005 to the fuel gauge sender unit as shown in Fig. 13 and seal tightly with compound.

FIG. 14 VOLT. REG. CAPACITOR
Mount capacitor 569-0004 between voltage regulator and dash panel. Connect lead to "ARM" terminal on regulator as shown.

Suppressor Lead 563-0006 was available for production earlier than originally anticipated. As a result, the serial numbers given under "Interference Elimination" in Bulletin 2-19 are changed. Distributor Suppressor 563-0004 is used with receivers having serial numbers up to and including OCF 49, 260 751-1. Receivers with serial numbers above OCF 49, 260 751-1 use Suppressor Lead 563-0006.

GENERAL

The Ford model 1A-18805-B, Mercury model 1M-18805, and Lincoln model $1 \mathrm{H}-18805$ radio receivers are designed for use in the 1951 Ford, Mercury, and Lincoln cars respectively. The serial numbers covered by this bulletin are: Ford 1CF 1001 and up; Mercury 1CM 1001 and up; and Lincoln 1CH 1001 and up. These receivers are all similar electrically, but differ mechanically, in the appearance of the control knobs, escutcheon and dial assemblies, and method of mounting the receivers and speakers in the cars.
These radios are eight tube, two unit, superhetrodyne receivers with vibrator power supply and full wave rectifier. The antenna, RF, and oscillator circuits are inductively tuned (push button and manual) over a frequency range of 540 to 1600 kilocycles by means of iron cores. A special compensating capacitor in the oscillator circuit minimizes frequency drift due to normal variations in temperature and battery voltage.

TUBE COMPLEMEMT

6SK7GT	R. F. Amplifier
6SA7GT	Converter
6SK7GT	I. F. Amplifier
6SQ7GT	Det. AVC, \& A. F. Amplifier
6J5GT	Phase Inverter
6V6GT	Output - Push Pull (2)
6X5GT	Rectifier

FIG. 2 ICM747 \&1CH748

POWER SUPPLY

The power supply uses a 6 X5GT full wave rectifier tube in conjunction with a four prong, full wave, non-synchronous vibrator.

Maximum performance depends on accurate alignment of the receiver; therefore, follow these instructions carefully.

PREMmIMARY IMstructions

Make all alignment adjustments to the receiver with the "A" lead connected to a 7.2 volt negative source and ground the chassis to the positive side of this source. Rotate the volume control to its maximum clockwise position. Rotate the tone control to the treble position. Connect the output meter across the speaker voice coil. Keep the output from the signal generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment. Use an insulated screw driver and special alignment tool 898-0003 for making adjustments.

SEMSITAVITY CONTROL

The sensitivity control R8 is factory preset and should not be readjusted unless the control has been tampered with. If it is definitely determined that readjustment is necessary, set the control to obtain 3.5 volts at the cathode of the IF Amplifier (pin ${ }^{*} 5$ of the second 6SK7GT tube).

IF ALIOMMENT

1. Remove the top and bottom cover of the receiver.
2. Set the signal generator to 265 Kc .
3. Connect the signal lead of the signal generator through a. 01 Mfd . capacitor to the converter grid (pin \#8, 6SA7GT).
4. Adjust the primary and secondary IF cores "A," "B," "C" and 'D" in order named
for maximum output. Both the primary and secondary of each transformer are adjusted from the top of the transformer using special alignment tool. (See Parts Layout - Top of Chassis \& Bottom of Chassis,

Repeat this operation until no further increase in output is obtained.

R F AND OscilaATOR AEIBNMEMT

1. Connect the signal generator leads through the dummy antenna illustrated in Fig. 3, to antenna lead-in socket on receiver.
2. Set signal generator to 535 Kc .
3. Rotate the manual tuning control to stop at 535 Kc .
4. Adjust oscillator trimmer $\mathbf{C 8}$ for maximum response.
5. Set signal generator to 1300 Kc .
6. Rotate the manual tuning control to stop at 1300 Kc .
7. Adjust the converter trimmer C 5 and antenna trimmer C2 for maximum response.
8. If dial calibration is off after making above adjustments, corrections can be made by turning eccentric stud of fulcrum of dial pointer.

IRON CORE AND ADJUSTINE SPRING ADUSTMENT OR REPLACEMENT

1. Remove the top cover from the receiver.
2. Remove the escutcheon assembly.
3. Break cement seal and screw the core in or out to the desired position.
4. If the cores are replaced or have been tampered with, the adjustments under coll and core replacement must be made.
5. After all adjustments have been made recement core springs.

CORE ALBMMENT

CAUTION: The following adjustments are to be made only after a core or coil has been replaced or tampered with.

1. Set signal generator to $\mathbf{1 6 7 5} \mathrm{Kc}$.
2. Connect signal generator leads through dummy antenna illustrated in Fig. 3, to antenna lead in socket of receiver.
3. Rotate the manual tuning control to set dial pointer at 1600 Kc . (Maximum high frequency end of dial).
4. Screw the cores completely out of the antenna coil, the converter coil, and the oscillator coil.
5. Adjust the oscillator trimmer C8 at 1675 Kc.
6. Adjust the converter trimmer C5 and the antenna trimmer $\mathbf{C 2}$ for maximum output reading.
7. Set the signal generator and the receiver dial to 1300 Kc .
8. Replace the cores to their original position (approximately $11 / 16^{\prime \prime}$ from the end of the coil form.
9. Adjust the oscillator core L4. to scale at 1300 Kc .
10. Adjust the antenna core $L 2$ and $R F$ core L3 for maximum output reading.
11. Set the signal generator to 600 Kc .
12. "Rock in" the shunt oscillator core 16 for maximum output reading. Note: This is the same as rocking in the padder capacitor in a four gang capacitor receiver.
13. Check receiver at 1300 Kc . for calibration and gain. If the receiver is off scale or weak, repeat operations 9,10 and 11.
14. After aligqment is complete, the maximum high frequency tuning range should be checked. If the range is greater or less than 1605 Kc ., the lug stop near the volume control should be bent to limit the frequency coverage to 1605 Kc .

IF TRAP ADJUBTMEMT

1. Set the signal generator to 265 Kc .
2. Connect the signal generator leads through the dummy antenna as illustrated in Fig. 3, to antenna lead-in socket on receiver.
3. Rotate the manual tuning control to tune the set to approximately 900 Kc .
4. Connect the output meter across the speaker voice coll and tune the IF trap core T1 with alignment tool 898-0003 for minimum output.
Note: In certain localities it may be necessary to shift the IF trap adjustment slightly in order to reject the interfering signal from a local station whose broadcasting frequency, or range frequency, is a few kilocycles higher or lower than 265 Kc.

IMPORTANT: After installing the receiver in the car, allow it to operate for approximately 15 minutes to reach normal operating temperature. Extend antenna to maximum. Check the antenna trimmer alignment on a weak station at approximately 1300 Kc .

SYIVANIA PAGE 22MODELS ICF743, Ford \#1A-13805-B; lCM747, IIercury \#1M-18805; 1CH748, Lincol \#1H-18805

FIG. 3 DUMMY ANTENNA

PAGE 22-42 SYLVANIA

PAGE 22-44 SYLVANIA
MODELS 1CF743,
1CM747, 1CH748

SCHEMATIC
LOCATION

気雳定
SERVICE DESCRIPTION
$\begin{array}{ll}\text { 611－0055 } & \text { Bulb－Dial Light（Mazda } 175 \text { ）} \\ 117-0010 & \text { Coils－Permeability Tuning（includes）}\end{array}$
Antenna Coil
MISCELLANEOUS ELECTRICAL PARTS

INSTALLATION PARTS－ICF743
3
0
0
0
0
0
0
0
0
0
0
0
0

711－0022	Bezel－Control
584－0002	Capacitor－Generator
569－0012	Capacitor－Oll Gauge
569－0004	Capacitor－Voltage Regulator
567－0005	Capactor－Fuel Gauge
741－0005	Knob－Tuning（complete）
742－0003	Knob－Volume Control（complete）
744－0012	Knob－Tone Control
552－0008	Nut－1／4－20 Hex
INSTALLATION PARTS－ICF747（continued）	
552－0020	Nut－1／2－28 Special
552－0001	Nut－ $18-32$ Wing
492－0022	Bracket－Mounting－Receiver－R．H．
492－0023	Bracket－Mounting－Receiver－L．H．
583－0004	Suppressor－Distributor
553－2007	Wagher－Serrated
553－1014	Wesher－Lock－1／4－Split
588－0003	Spring－Wheel Static Grounding
776－0003	Baffle and Gasket Assembly－Speaker
INSTALLATION PARTS－ICM747	
492－0017	Bracket－Speaker Mounting
492－0015	Bracket－Receiver Mounting－L．H．
492－0016	Bracket－Receiver Mounting－R．H．

$\begin{array}{ll}\text { SCHEMATIC } & \text { PRODUCTION } \\ \text { LOCATION } & \text { PARTNO．}\end{array}$
 $\begin{array}{ll}\text { 492－0019 } & \text { Bracket－Receiver Mounting } \\ \text { 492－0018 } & \text { Bracket－Receiver Mounting }\end{array}$ $\begin{array}{ll}\text { 492－0019 } & \text { Bracket－Receiver Mounting } \\ \text { 492－0018 } & \text { Bracket－Receiver Mounting }\end{array}$ 582－0018 Bracket－Receiver Mounting Capacitor－Genition Coil
Capacitor－Ignition Coil
Capacitor－Oll Gauge
Capacitor－Oll Gauge
Capacitor－Fuel Gauge
Knob－Tone Switch \＆Spea

Screw－\＄8－1／2 Binder Head Self－Tapping Screw－ $1 / 4-20 \times 1 / 2$ ．Hex Head $\begin{array}{ll}\text { 193－0007 } & \text { Spring－Hood Bonding } \\ \text { 569－0004 } & \text { Suppressor－Distributor } \\ 559-2007 & \text { Washer－Serrated } \\ 553-1014 & \text { Washer－Lock－} 1 / 4 \text {－Split } \\ 568-0003 & \text { Spring－Wheel Static Grounding }\end{array}$ $\begin{array}{ll}\text { 193－0007 } & \text { Spring－Hood Bonding } \\ \text { 569－0004 } & \text { Suppressor－Distributor } \\ 559-2007 & \text { Washer－Serrated } \\ 553-1014 & \text { Washer－Lock－} 1 / 4 \text {－Split } \\ 568-0003 & \text { Spring－Wheel Static Grounding }\end{array}$

道
옹ㅇㅇㅇ
©
©
析
～ $\begin{array}{ll}181-0222 & \text { Resistor－insulated－} \\ 181-0223 & \text { Resistor－insulated－} 22,000 \mathrm{Ohm}-1 / 2 \\ 181-0333 & \text { Resistor－insulated－} 33,000 \mathrm{Ohm}-1 / 2\end{array}$

$\begin{aligned} & \text { SERVICE } \\ & \text { PART NO } \end{aligned}$	DESCRIPTION
MISCELLANEOUS ELECTRICAL PARTS	
611－0055	Bulb－Dial Light（Mazda \＃55）
117－0010	Coils－Permeability Tuning（includes）
112－0007	Antenna Coil
112－0007	R．F．Coil
113－0018	Oscillator Coil
146－0010	Oscillator Series Coll
118－0008	I，F．Trap Coil
116－0002	Oscillator Shunt Coil
172－0028	Antenna Trimmer
172－0024	Osclllator Trimmer
172－0025	R．F．Trimmer
147－0001	Choke
147－0007	Choke－Hash－Main
145－0005	Choke \＆Core Assembly－Heater
148－0007	Choke－Motor Noise
148－0001	Choke－Motor Noise－Antenna
153－3006	Control－Dual－Speaker（ICM 747，ICH748）
159－0004	Control－Sensitivity
152－0008	Control－Volume and Tone Switch（ICM 747，
152－0011	Control－Volume and Tone Switch（ICF743）
191－0002	Fuse－ 14 Amp．
538－0001	Speaker－PM－6＇\times 9＇$^{\prime \prime}$（ICF743）
539－0005	Speaker－PM－ $\mathbf{6}^{\prime \prime} \times \mathbf{9 ' ~}^{\prime \prime}$（1CM747，ICH748）
121－0015	Transformer－Ist I．F．
122－0015	Transformer－2nd I．F．
143－0012	Transformer－Output
141－0010	Transformer－Power
511－0001	Vibrator
Inst	LLATION PARTS－ICF743

DFSCRIPTION
Generator
Fuel Gauge Nut－ $10-32$ Hex
Nut－1／4－20 Hex
Nut－ $18-32$ Wing
Nut－1／2－28－Special Suppressor－Distributor Washer－Lock－ 10 －Int．Tooth
 웅 $740-0017$
$552-0006$
 5
5
0
5
5
5 $\begin{array}{ll}\text { 193－0007 } & \text { Spring－Hood Bonding } \\ \text { 569－0004 } & \text { Suppressor－Distributor } \\ 559-2007 & \text { Washer－Serrated } \\ 553-1014 & \text { Washer－Lock－} 1 / 4 \text {－Split } \\ 568-0003 & \text { Spring－Wheel Static Grounding }\end{array}$ $\begin{array}{ll}\text { 193－0007 } & \text { Spring－Hood Bonding } \\ \text { 569－0004 } & \text { Suppressor－Distributor } \\ 559-2007 & \text { Washer－Serrated } \\ 553-1014 & \text { Washer－Lock－} 1 / 4 \text {－Split } \\ 568-0003 & \text { Spring－Wheel Static Grounding }\end{array}$

浯安
NNSD

嘏

FIG. 9 ICF743 INSTALLATION

FIG. 11 ICH748 INSTALLATION RECEIVER INSTALLATION

Figures 9, 10, and 11 illustrate the installed receivers to facilitate removal and reinstallation when service is necessary.
TO REMOVE THE FORD RECEIVER

1. Disconnect the speaker plug, dial light lead, antenna lead, and "A" lead.
2. Remove control knobs, front mounting nuts, and lockwashers from the radio control shafts.
3. Disconnect the receiver from the receiver mounting brackets by removing the hex nut and lockwasher from the receiver mounting stud.
4. Remove receiver by sliding it back and down behind the instrument panel.
5. To remove the speaker, remove the four wing nuts holding the speaker to the instrument panel.

TO REMOVE THE MERCURY RECEIVER

1. Remove the car heater plenum chamber.
2. Disconnect speaker plug, antenna lead, and

FIG. 10 ICM747 INSTALLATION
"A" lead.
3. Loosen the two speaker mounting clamps and remove the speaker.
4. Remove control knobs, front mounting nuts and lockwashers from the radio control shafts.
5. Loosen the nuts holding the receiver to the mounting brackets.
6. Remove receiver by sliding it back and down behind the instrument panel.

TO REMOVE THE LINCOLN RECEIVER

1. Remove the car heater plenum chamber.
2. Disconnect the speaker plug, antenna lead, and " A " lead.
3. Remove control knobs, front mounting nuts and lockwashers from the radio control shafts.
4. Loosen the hex nuts holding the receiver to the mounting brackets.
5. Remove receiver by sliding it back and down behind the instrument panel.
6. To remove the speaker, remove the four wing nuts holding it to the instrument panel.

OPERATING INSTRUCTIONS

TO TURN RADIO ON

The radio is connected to the accessory terminal of the ignition switch, therefore, it is necessary to turn the ignition key to the left, if the engine is not running, before turning the radio on. Press any one of the five automatic push buttons. Allow approximately 20 seconds for the receiver to reach operating temperature.

To turn the receiver off, press the "Off" pushbutton.

MANUAL TUNING

To operate the manual tuning control simply turn the tuning knob (see Fig. 1). When tuning in a station, be sure to tune to the exact frequency for the best tone quality.
VOLUME CONTROL
Turn the volume control knob for the desired volume.
TONE CONTROL
The tone control knob is located directly behind the volume control knob. Turning this control to the right or left will change the tone of the receiver. This control has four positions and the position to which the control is set is
indicated in the window in the center of the dial scale.

REAR SPEAKER CONTROL

The rear speaker control disc, located behind the tuning control knob on the Mercury and Lincoln receivers, is provided to control an auxiliary rear shelf speaker (available from Mercury-Lincoln dealer).
The speaker socket located on the rear of the receiver case will accommodate both the front speaker and rear speaker. When the rear speaker is plugged into the socket, a switch in the socket connects the rear speaker con.. trol into the circuit.

AUTOMATIC TUNING

Automatic push button tuning is provided by means of push buttons located directly under the dial scale and to the right of the "Off" push button (see Fig. 1). These five buttons permit the selection of five favorite local stations. When the push buttons have been set to the desired station it is only necessary to press a push button to turn the set "on" and to receive the station for which the adjustment was made. The dial pointer will automatically indicate the frequency of the selected station.

SETTING THE PUSH BUTTON TUNER

The five push buttons may be adjusted to any of the desired stations. In order to simplify the identification of these stations, it is advisable to set the push buttons in sequence according to their frequencies, beginning with the station broadcasting on the lowest frequency and progressing to the station broadcasting on the highest frequency.

The push buttons should be set up during the day since at night distant stations will be heard with the same volume as local stations, making it difficult to identify local stations.

Allow the receiver to operate for at least fifteen minutes before adjusting the push buttons. This will allow each part in the receiver to reach normal operating temperature.

TO SET THE PUSH BUTTONS

1. ICF743 RECEIVER

a. Collapse the antenna.
b. Select a station at the low end of the broadcast band and manually tune it in so its signal is heard without distortion.
c. Loosen the second push button from the left side by turning it counter-
clockwise-one turn with your fingers.
d. Press the loosened push button in firmly to its extreme position and release. Tighten the push button as much as possible by turning clockwise with your fingers.
e. The push button is now set for this station selection. Follow the above procedure for setting each of the four remaining push buttons.
f. Check that the push button setting corresponds to the best manual tuned signal for each station and repeat steps " b " through" e " where necessary.

2. ICM747 \& ICH748 RECEIVERS

a. Collapse the antenna.
b. Select a station at the low end of the broadcast band and manually tune it in so its signal is heard without distortion.
c. Unlock the second push button from the left by pushing the button to the left and pulling it out.
d. Press the unlocked push button in firmly to its extreme position and release.
e. The push button is now set for this station selection. Follow the above procedure for setting each of the four remaining push buttons.
f. Check that the push button setting corresponds to the best manual tuned signal for each station and repeat steps " b " through " e " where necessary.

When the five push buttons have been set to the desired stations, return the antenna to the lowest position necessary for good reception. It is only necessary to press a push button to receive the station for which the adjustment was made. The dial pointer will automatically indicate the frequency of the selected station.

INTERFERENCE ELIMINATION

There should be no motor noise or interference from the ignition system if the receiver has been installed in the car according to the instructions furnished with the receiver. The interference suppression equipment may be checked for proper installation by referring to the following instructions and illustrations.

The " A " lead to the receiver should be installed in each car as illustrated in Fig. 12.

FIG. 12 "A" LEAD CONNECTION
Cut the high tension wire running from the ignition coil to the center hole of the distributor cap, one and one half inches from the coil for the Ford "8", two and one half inches from the coil for the Ford " 6 ", and one and one half inches from the cap for the Mercury and Lincoln. Cut one inch from the coil end of the wire. Screw the cut ends of the wire into both ends of suppressor, 563-0004. Replace the wire in the coil.

Fic. 13
DISTRIRUTOR SUPPRESSOR

The generator capacitor 564-0002 is installed by loosening (do not remove) the top assembly bolt from the rear end plate of the generator. Mount the capacitor under this bolt and connect the lead to the armature terminal of the generator.

FIG. 14 GENERATOR CAPACITOR
Connect capacitor 569-0012 to the oil pressure gauge unit as shown.

FIG. 15 OIL GAUGE CAPACITOR
Connect capacitor 567-0005 to the fuel gauge unit as shown.

FIG. 16 FUEL GAUGE CAPACITOR

Remeve both outer and inner hub caps from both front wheels. Clean inner caps and spindles. Snap static collector springs 568-0003 in inner hub caps.
IMPORTANT: Bend cotter key away from center hole so it will not interfere with static collector. Replace hub caps.

FIG. 17 WHEEL STATIC EQUIPMENT

Install wheel static powder as needed. Available at your Ford, Lincoln or Mercury dealer. Place one package of anti-static powder 559-0004 in applicator 559-0006. Deflate tire to about 10 pounds. Attach applicator to tire as shown. Reinflate tire to normal pressure. Tap applicator gently while reinflating tire to allow all of the powder to be blown into the tube. Inject powder into all five tubes. One injection is good for the life of the tube.

Remove the screw from the hood pad on the cowl and install the hood bonding spring 193-0007.

FIG. 18 LINCOLN HOOD BOND

Mount capacitor 569-0004 between voltage regulator and dash panel. Connect lead to "ARM" terminal on regulator as shown.

FIG. 19 VOLT. REG. CAPACITOR

Mount capacitor 569-0004A as shown for the 1H or 1L Lincoln. Be sure to connect the lead to the battery terminal of the coil. If the lead is connected to the Distributor terminal the performance of the car engine will be impaired.

il LINCOLN

IH LINCOLN
FIG. 20 IGNITION COIL CAPACITOR - LINCOIN

MODELS 1CF743, Ford; 1CM747, Mercury;
1CH748, Lincoln

Supplement Na. 1
 ta
 Technical Service

 Bulletin

 Bulletin}

Subject: Pointer Slippage and Binding
11-10-50

In order to prevent pointer slippage and binding due to warping of the two red fibre retaine 'strips which hold the pointer pivot tension spring in place, metal guard springs have been incorporated in the production of sets with the serial numbers which are listed below. The guard springs are inserted between the screws which secure the retainer strips, and the retainer strips themselves. These guard springs prevent warping of the retainer strips and consequent pointer slippage. Both the retainer strips and the metal guard springs are available through local Sylvania Parts Distributors.

Supplement Na. 2
 ta
 Technical Service Bulletin
 2-16
 4-16-51

Subject: Water Seepage into Mercury and Lincoln Receivers
In order to prevent seepage of water into Mercury 1CM747 and Lincoln 1CH748 receivers, with consequent damage to the I. F. Trap Coil (T1), a piece of waterproof ceillulose tape may be placed over the ventilating holes in the top cover of the receiver directly above the I.F. Trap Coil, as shown in the figure below. In later production of Lincoln and Mercury cars this seepage has been eliminated. A new design replacement I.F. Trap Coil will shortly be available through your local Sylvania Parts Distributor. If the I.F. Trap Coil is replaced by one of the new design, the tape may be removed from the ventilating holes in the receiver top cover.

TOP VIEW OF RECEIVER SHOWING I. F. TRAP COIL

SCHEMATIC
LOCATION

DESCRIPTION

PAGE 22-52 SYLVANIA
MODELS 1CF743-1, Ford
1A-18805-B; $1 \mathrm{CM} 747-1$,
Mercury lm-I8805; teChNICAL SERVICE BULLETIN
1CH748-1, Lincoln 1H18805

FIG. 1 1CF743-1

GENERAL DESCRIPTION

The Ford model 1A-18805-B, Mercury model $1 \mathrm{M}-18805$, and Lincoln model $1 \mathrm{H}-18805$ radio receivers are designed for use in the 1951 Ford, Mercury and Lincoln cars respectively. The serial numbers covered by this bulletin are: Ford 1CF 28,001, and up; Mercury 1CM 51,001 , and up; and Lincoln $1 \mathrm{CH} 9,501$, and up. These differ mechanically, in the appearance of the control knobs, escutcheon and dial assemblies, and method of mounting the receivers and speakers in the cars.

These radios are eight tube, two unit, superhetrodyne receivers with vibrator power supply and full wave rectifier. The antenna, RF, and oscillator circuits are inductively tuned (push button and manual) over a frequency range of 540 to 1610 kilocycles by means of iron cores.

A special compensating capacitor in the oscillator circuit minimizes frequency drift due to normal variations in temperature and battery voltage.

FIG. 2 ICM747-1
\& ICH748-1

TUBE COMPLEMENT

6SK7GT
6SA7GT
6SK7GT
6SQ7GT
6J5GT
6V6GT
6X5GT
R. F. Amplifier Converter I. F. Amplifier Det. , AVC, \& 1st. A.F. Amplifier Inverter
Push Pull (2) - Audio Output Rectifier

POWER SUPPLY

These receivers employ a four prong, full wave, non-synchronous vibrator in conjunction with a $6 \times 5 \mathrm{GT}$ full wave rectifier tube. The wiring for the power transformer and vibrator, the main hash choke and its by-pass, and the buffer capacitor are mounted in a shielded compartment on the chassis to reduce interference.

Optimum performance depends on accurate alignment of the receiver; therefore, follow these instructions carefully.

PRELIMIMARY INETRUCTIOMS

Make all alignment adjustments to the receiver with the " A " lead connected to a 7.2 volt negative source and ground the chassis to the positive side of this source. Rotate the volume
control to its maximum clockwise position. Rotate the tone control to the treble position. Connect the output meter across the speaker voice coil. Keep the output from the signal generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment. Use an insulated screw driver and special alignment tool 898-0003 for making adjustments.

SCHEMATIC DIAGRAM MODEL ICF743-1

PAGE 22-58 SYLVANIA

PAGE 22-60 SYLVANIA
MODELS 1CF743-1,
1СМ747-1, 1CH748-1

SCHEMATIC
LOCATION_
CAPACITORS (continued)
 MISCELLANEOUS CHASSIS PARTS
 INSTALLATION PARTS ICF743-1

PRODUCTION
RART NUMBER
75961
\circ
$\underset{\sim}{\circ} \underset{\sim}{\circ}$
$\underset{\sim}{\circ}$

SYLVANIA PAGE 22-6
MODETAS 1CF743-1, 1CM747-1, 1 CH748-

SCHEMATIC	PRODUCTION
LOCATION	PART NUMBER

R10 BY34701

R16	BY34701	181-0470	Resistor - insulated -	$47 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
R28, R29	BY38201	181-0820	Resistor - insulated -	$82 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
R21	BY31521	181-0152	Resistor - insulated -	1,500 Ohm - 1/2 W.
R18	BY32221	181-0222	Resistor - insulated -	2,200 Ohm - $1 / 2 \mathrm{~W}$.
R4	BY32231	181-0223	Resistor - insulated -	22, $000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
R7. R11	BY33331	181-0333	Resistor - insulated -	33, 000 Ohm - 1/2 W.
R25	BY33931	181-0393	Resistor - insulated -	39, 000 Ohm - 1/2 W.
R17	BY35631	181-0563	Resistor - insulated -	56,000 Ohm - $1 / 2 \mathrm{~W}$.
R10, R19	BY31041	181-0104	Resistor - insulated -	100, 000 Ohm - 1/2 W.
R12	BY32242	181-0224	Resistor - insulated -	220,000 Ohm - 1/2 W.
R3, R23	BY33342	181-0334	Resistor - insulated -	330,000 Ohm - 1/2 W.
R22, R24	BY33341	181-0334	Resistor - insulated -	$330,000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
R14	BY34741	181-0474	Resistor - insulated -	470, $000 \mathrm{Ohm}-1 / 2 \mathrm{~W}$.
R1, R9	BY31052	181-0105	Resistor - insulated -	1.0 Megohm - $1 / 2 \mathrm{~W}$.
R5	BY31061	181-0106	Resistor - insulated -	10 Megohm - 1/2 W.
R15	BY31562	181-0156	Resistor - insulated -	15 Megohm - $1 / 2 \mathrm{~W}$.
R20	$\begin{gathered} \text { ZY33311 } \\ \text { or } \\ 66041 \end{gathered}$	$\begin{gathered} 182-0331 \\ \text { or } \\ 189-0011 \end{gathered}$	Resistor - insulated - Resistor - insulated -	330 Ohm - 1 W. $330 \mathrm{Ohm}-1 \mathrm{~W}$ (W W. $)$
R2	ZY31031	182-0103	Resistor - insulated -	10,000 Ohm - 1 W . ${ }^{\text {(W.W. }}$
R27	$\begin{aligned} & \text { VY31821 } \\ & \text { or } \end{aligned}$	$\begin{gathered} 183-0182 \\ \text { or } \end{gathered}$	Resistor - insulated -	1,800 Ohm - 2 W .
	71677	189-0002	Resistor - insulated -	1.800 Ohm - $2 \mathrm{~W} .(\mathrm{W} . \mathrm{W}$.
R8	VY31231	183-0123	Resistor - insulated -	12,000 Ohm - 2 W .

FIG. 7 ICF743-1 INSTALLATION

FIG. 9 1CH748-1 INSTALLATION

RECEIVER INSTALLATION

Figures 7, 8 and 9 illustrate the installed receivers to facilitate removal and reinstallation when service is necessary.

TO REMOVE THE FORD RECEIVER

1. Disconnect the speaker plug, dial light lead, antenna lead, and " A " lead.
2. Remove control knobs, front mounting nuts, and lockwashers from the radio control shafts.
3. Disconnect the receiver from the receiver mounting brackets by removing the hex
nut and lockwasher from the receiver mounting stud.
4. Remove receiver by sliding it back and down behind the instrument panel.
5. To remove the speaker, remove the four wing nuts holding the speaker to the instrument panel.

TO REMOVE THE MERCURY RECEIVER

1. Remove the car heater plenum chamber.
2. Disconnect speaker plug, antenna lead, and "A" lead.
3. Loosen the two speaker mounting clamps and remove the speaker.
4. Remove control knobs, front mounting nuts and lockwashers from the radio control shafts.
5. Loosen the nuts holding the receiver to the mounting brackets.
6. Remove receiver by sliding it back and down behind the instrument panel.

TO REMOVE THE LINCOLN RECEIVER

1. Remove the car heater plenum chamber.
2. Disconnect the speaker plug, antenna lead, and "A" lead.
3. Remove control knobs, front mounting nuts and lockwashers from the radio control shafts.
4. Loosen the hex nuts holding the receiver to the mounting brackets.
5. Remove receiver by sliding it back and down behind the instrument panel.
6. To remove the speaker, remove the four wing nuts holding it to the instrument panel.

OPERATING INSTRUCTIONS

TO TURN RADIO ON

The radio is connected to the accessory terminal of the ignition switch, therefore, it is necessary to turn the ignition key to the left, if the engine is not running, before turning the radio on. Press any one of the five automatic push buttons. Allow approximately 20 seconds for the receiver to reach operating temperature.

To turn the receiver off, press the "Off" pushbutton.

MANUAL TUNING

To operate the manual tuning control simply turn the tuning knob. When tuning in a station, be sure to tune to the exact frequency for the best tone quality.

VOLUME CONTROL

Turn the volume control knob for the desired volume.

TONE CONTROL

The tone control knob is located directly behind the volume control knob. Turning this control to the right or left will change the tone of the receiver. This control has four positions and the position to which the control is set is indicated in the window in the center of the dial scale.

REAR SPEAKER CONTROL

The rear speaker control disc, located behind the tuning control knob on the Mercury and Lincoln receivers, is provided to control an auxiliary rear shelf speaker (available from Mercury-Lincoln dealer).

The speaker socket located on the rear of the receiver case will accommodate both the front speaker and rear speaker. When the rear speaker is plugged into the socket, a switch in the socket connects the rear speaker control into the circuit.

AUTOMATIC TUNING

Automatic push button tuning is provided by means of push buttons located directly under the dial scale and to the right of the "Off" push button (see Fig. 1). These five buttons permit the selection of five favorite local stations. When the push buttons have been set to the desired station it is only necessary to press a push button to turn the set "on" and to receive the station for which the adjustment was made. The dial pointer will automatically indicate the frequency of the selected station.

SETTING THE PUSH BUTTON TUNER

The five push buttons may be adjusted to any of the desired stations. In order to simplify
the identification of these stations, it is advisable to set the push buttons in sequence according to their frequencies, beginning with the station broadcasting on the lowest frequency and progressing to the station broadcasting on the highest frequency.

The push buttons should be set up during tie day since at night distant stations will be heard with the same volume as local stations, making it difficult to identify local stations.

Allow the receiver to operate for at least fifteen minutes before adjusting the push buttons. This will allow each part in the receiver to reach normal operating temperature.

1CM747-1, 1CH7L8-1
TO SET THE PUSH BUTTONS

1. 1CF743 RECEIVER
a. Collapse the antenna.
b. Select a station at the low end of the broadcast band and manually tune it in so its signal is heard without distortion.
c. Loosen the second push button from the left side by turning it counterclockwise one turn with your fingers.
d. Press the loosened push button in firmly to its extreme position and release. Tighten the push button as much as possible by turning clockwise with your fingers.
e. The push button is now set for this station selection. Follow the above procedure for setting each of the four remaining push buttons.
f. Check that the push button setting corresponds to the best manual tuned signal for each station and repeat steps " b " through" e " where necessary.

2. 1 CM 747 \& 1 CH 748 RECEIVERS

INTERFERENCE ELIMINATION

There should be no motor noise or interference from the ignition system if the receiver has been installed in the car according to the instructions furnished with the receiver. The interference suppression equipment may be checked for proper installation by referring to the following instructions and illustrations.

The " A " lead to the receiver should be installed in each car as illustrated in Fig. 10.

Two types of distributor suppressors are used with the Ford (743-1), Mercury (747-1) and Lincoln(748-1) receivers. Suppressor 563-0004 was used for Ford receivers with serial numbers up to 1CF 60,757 743-1 (approx.), Mercury receivers with serial numbers up to 1CM 103,500 747-1 (approx.) and Lincoln receivers with serial numbers up to $1 \mathrm{CH} 15,500$ 748-1 (approx.). All Ford, Lincoln and Mercury receivers with serial numbers above those listed use suppressor lead 563-0006.

FIG. 10 "A" LEAD CONNECTION

b. Select a station at the low end of the broadcast band and manually tune it in so its signal is heard without distortion.
c. Unlock the second push button from the left by pushing the button to the left and pulling it out.
d. Press the unlocked push button in firmly to its extreme position and release.
e. The push button is now set for this station selection. Follow the above procedure for setting each of the four remaining push buttons.
f. Check that the push button setting corresponds to the best manual tuned signal for each station and repeat steps " b " through" e " where necessary.

When the five push buttons have been set to the desired stations, return the antenna to the lowest position necessary for good reception. It is only necessary to press a push button to receive the station for which the adjustment was made. The dial pointer will automatically indicate the frequency of the selected station.

a. Collapse the antenna.

> FIG. 11 DISTRIBUTOR SUPPRESSOR 563-0004

To install suppressor 563-0004 shown in Fig. 11, cut the high tension wire running from the ignition coil to the center hole of the distributor cap one and one half inches from the coil for the Ford " 8 ", two and one half inches from the cap for the Mercury and Lincoln. Cut one inch from the coil end of the wire. Screw the cut ends of the wire into both ends of suppressor 563-0004. Replace the wire in the coil.

FIG. 12 DISTRIBUTOR SUPPRESSOR LEAD 563-0006

To install suppressor lead 563-0006, remove the high tension wire that runs between the ignition coil and the center hole of the distributor cap on the Ford, Lincoln and Mercury cars, Thoroughly clean the contacts on the coil and distributor. Make an overhand loop in suppressor lead 563-0006 as shown in Fig. 12 and insert the lead in place of the high tension wire.

FIG. 13 OIL GAUGE CAPACITOR
Connect capacitor 569-0012 to the oil gruge sender unit as shown.

FIG. 14 FUEL GAUGE CAPACITOR

Connect capacitor 567-0005 to the fuel gauge sender unit as shown in Fig. 14 and seal tightly with compound.

FIG. 15 GENERATOR CAPACITOR

The generator capacitor 564-0002 is installed by loosening (do not remove) the top assembly bolt from the rear end plate of the generator. Mount the capacitor under this bolt and connect the lead to the armature terminal of the generator.

FIG. 16 WHEEL STATIC COLLECTOR
Remove both outer and inner hub caps from both front wheels. Clean inner caps and spindles. Snap static collector springs 568-0003 in inner hub caps.
IMPORTANT: Bend cotter key away from center hole soit will not interfere with static collector. Replace hub caps.

REMOVE SCREW FROM HOOD PAD ON COWL AT LOCATION SHOWN AND

FIG. 17 LINCOLN HOOD BOND

Remove the screw from the hood pad on the cowl and install the hood bonding spring 193-0007.

Mount capacitor 569-0004 between voltage regulator and dash panel. Connect lead to "ARM" terminal on regulator as shown.

Mount capacitor 569-0004A as shown for the 1H or 1L Lincoln. Be sure to connect the lead to the battery terminal of the coil. If the lead is connected to the Distributor terminal the performance of the car engine will be impaired.

FIG. 18 VOLT. REG. CAPACITOR

FIG. 19 IGNITION COIL CAPACITOR - LINCOLN

Supplement No. 1

Suppressor Lead 563-0006 was available for production earlier than originally anticipated. As a result, the serial numbers given under "Interference Elimination" in Bulletin 2-18 are changed. Distributor Suppressor 563-0004 is used with receivers having the following serial numbers:

Ford (743-1) receivers with serial numbers up to and including 1CF 49, 221 743-1
Mercury (747-1) receivers with serial numbers up to and including 1CM 86, 501 747-1
Lincoln (748-1) receivers with serial numbers up to and including $1 \mathrm{CH} 17,865748-1$
Receivers with serial numbers higher than those listed above use Suppressor Lead 563-0006.

GENERAL

MOUNTING-All 1951 Kaiser Cars.
TUBES-Seven, Plus Rectifier.
SPEAKER-6" $\times 9^{\prime \prime}$ Elliptical, Permanent Magnet.

TUNING-Manual and 5 Push Button Mechanical.
ANTENNA TRIMMER COMPENSA. TION - For Antennas Between 0.000060-0.000095 Mfd.

TUNING RANGE-550-1600 KC.

PUSHBUTTON SET-UP

Pull button to the left and out. Tune in desired station manually. Push button in as far as it will go.

MODEL 100170

ALIGNMENT PROCEDURE

Output Meter Connections \qquad Across Voice Coil
Generator Ground \qquad Receiver Chassis
Dummy Antenna \qquad In Series With Generator

Volume Control Position \qquad Maximum Volume
Tone Control Position \qquad Minimum for Readable Indication

Steps	Sories Condenser or Dummy Antenna	Connect to	Signal Generator Frequency	Tune Receiver To	Adjust in Sequence for Max. Output
1	0.1 Mfd.	6BE6 Grid (Pin \#7)	260 KC	High Freq. Stop	A, B, C, D
2	0.000068 Mfd.	Antenna Connector	1615 KC	High Freq. Stop	${ }^{*} E, F, G$
3	0.000068 Mfd.	Antenna Connector	1000 KC	Signal Gen. Signal	J, K
4	0.000068 Mfd.	Antenna Connector	1615 KC	High Freq. Stop	F, G
5	0.000068 Mfd .	Antenna Connector	1000 KC	Signal Gen. Signal	L**

*Before making this adjustment check the mechanical setting of the oscillator core "H." The slotted end of the core should be $125 / 32^{\prime \prime}$ from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form). If adjustment is necessary be sure to first dissolve the glyptal seal on the core studs. Core adjustments are made from the mounting end of the coil form with an insulated screwdriver, and core studs should be resealed with glyptal or household cement after alignment.
**"L" is the pointer adjustment screw on the pointer connecting link (see tuner drawing). Adjust so pointer reads 1000 KC .
With the radio installed and the car antenna plugged in adjust antenna trimmer " G " (see sticker on casc) for maximum volume with the radio tuned to a weak station from 600 to 1000 KC .

PAGE 22-2 UNITED MOTORS
MODEL 100170,
1951 Kaiser-
Frazer

ESCUTCHEON CROSS SECTION

parts layout - CHASSIS VIEW

Illus.
No.
Production Part No.

SERVICE PARTS LIST
Service
Part No.
Description

ELECTRICAL PARTS

Coils

7258914
7255738
7240251
7258914
7258911
7258188
7258198
7260510
7260511
7259597
7236842
1219293
7242454
7258223
7257424
7258125
7258602
1217848
7238789
7257699
7237836
7237836
1209309
7240724
25A
$25 B$
$25 C$
26
27
28
29
30

7258124
1219084
1219822
1217848
7240906
1215558
12111147
7237595
7240732
1211192
7233653
7238873
1214555
1213270
1214555

7237835
7241937
1214555
7238873
1215560

1219690
1214555
1214556
1213270
1214543
1214545
1213483
1219738
1214573

1214573
7258914
7255738
7240251
7258914
7258911

1218725
1218726
1217846
1217846

Condensers
7259597
$E 503$
$G 100$
7242454
$G 390$

7257424
$E-503$
$G 470$
1217848
$E 104$

$E 302$
$E 202$
$E 202$
$E 103$
$M 908$

E 203
H 602
1219822
1217848
H 602

Resistors

1215558	68 Ohms 1/2W Insulated
A 225	2.2 Megohms 1/2W Insulated
B 153	15,000 ohms 1W Insulated
A 334	330,000 ohms 1/2W Insulated
A223	22,000 ohms 1/2W Insulated
C 153	15,000 ohms 2W Insulated
A 105	1 Megohm 1/2W Insulated
A 224	220,000 ohms $1 / 2 \mathrm{~W}$ Insulated
A 104	100,000 ohms 1/2W Insulated
A 224	220,000 ohms 1/2W Insulated
A 221	220 ohms 1/2W Insulated
A 685	0.8 Megohms 1/2W Insulated
A 224	220,000 ohms 1/2W Insulated
A 105	1 Megohm 1/2W Insulated
1215560	180,000 ohms 1/2W Insulated
1219690	390 ohms 2W Wire Wound
A 224	220,000 ohms 1/2W Insulated
A 274	270,000 ohms 1/2W Insulated
A 104	100,000 ohms 1/2W Insulated
A 681	680 ohms 1/2W Insulated

A $222 \quad 2200$ ohms 1/2W Insulated
$1213483 \quad 6800$ ohms $1 / 2 \mathrm{~W}$ Insulated
B $221 \quad 220$ ohms 1W Insulated
$\left\{\begin{array}{l}\text { B } 562 \\ \text { C } 272\end{array}\right.$

Antenna
Antenna Series Choke Antenna Spark Choke R.F.

Oscillator
1st I.F.
2nd I.F.
"A" Spark Choke
Hash Choke

Antenna Trimmer
.05 mfd 200 V Tubular
.000010 mfd Molded
Dual Trimmer
.000039 mfd Molded
.000180 mfd Compensating
.05 mfd 400 V Tubular
.000047 mfd Molded
Chassis Plare Condenser
.1 mfd 400 V Tubular
.003 mfd 600 V Tubular
.002 mfd 600 V Tubular
.002 mfd 600 V Tubular
.01 mfd 400 V Tubular
Electrolytic

$$
\begin{aligned}
& 20 \mathrm{mfd} 25 \mathrm{~V} \\
& 20 \mathrm{mfd} 400 \mathrm{~V} \\
& 20 \mathrm{mfd} 400 \mathrm{~V} \\
& .02 \mathrm{mfd} 400 \mathrm{~V} \text { Tubular } \\
& .006 \mathrm{mfd} 800 \mathrm{~V} \text { Tubular }
\end{aligned}
$$

Spark Plate
Chassis Plate
.006 mfd 1600 V Tubular

680 ohms $1 / 2$ W Insulated

1800 ohms 2W Wire Wound (Replace with
5600 ohm 1 W and 2700 ohm 2 W in parallel).

SERVICE PARTS LIST

GENERAL

MOUNTING-All 1951 Henry J cars.
TUBES-Five, plus rectifier.
SPEAKER-6" x $9^{\prime \prime}$ Elliptical, Permanent Magnet.
TUNING-Manual and 5 P. B. Mechanical.
ANTENNA TRIMMER COMPENSA-
TION-For Antennas Between 0.000058 - 0.000090 Mfd .

TUNING RANGE- 550.1600 KC .
PUSH BUTTON SET.UP PROCEDURE
Pull Push Button right and our. Tune in desired station manually. Push button all the way in.

ALIGNMENT PROCEDURE

Generator Return \qquad To Receiver Chassis

Dummy Antenna \qquad In Series With Generator
Volume Control Position \qquad Maximum Volume
Tone Control Position. Treble

Generator Output \qquad Minimum for Readable Indication

Steps	Series Condenser or Dummy Antenna	$\begin{gathered} \text { Connect } \\ \text { Signal Generator } \\ \text { to } \end{gathered}$	Signal Generator Frequency	Tune Receiver to	Adjust in Sequence for Max. Output
1	0.1 Mfd .	6SA7 Grid (Pin \#8)	260 KC	High Frequency Stop	A, B, C, D
2	0.000068 Mfd.	Antenna Connector	1615 KC	High Frequency Stop	E, F, G
3	0.000068 Mfd.	Antenna Connector	1000 KC	Signal Generator Signal	J, K
4	0.000068 Mfd.	Antenna Connector	1615 KC	High Frequency Stop	F, G
5	0.000068 Mfd.	Antenna Connector	1100 KC	Signal Generator Sigrial	L**

-

[^0]UNITED MOTORS PAGE 22
MODEL 100205
1951 Henry J

SERVICE PARTS LIST

SERVICE PARTS LIST

GENERAL

MOUNTING-982698 - All 1951 - 88 Seties Oldsmobile Cars. 982697 - All 1951-98 Series Oldsmobile Cars.
TUBES-Six, Plus Rectifier.
SPEAKER- $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical Permanent Magnet.

TUNING-Manual and 5 P. B. Mechanical.
ANTENNA TRIMMER COMPENSA.
TION-For Antennas Between 0.000050 - 0.000070 Mfd .

TUNING RANGE-540-1600 KC
PUSHBUTTON SET.UP
Pull pushbutton to the left and out. Tune in desired station manually. Push button all the way in.

ALIGNMENT PROCEDURE:

Output Meter Connection \qquad Across Voice Coil
Generator Return \qquad
\qquad To Receiver Chassis
Dummy Antenna \qquad
Volume Control Position \qquad . Maximum Volume
Tone Control Position Minimum for Readable Indication
Generator Output

MODELS ${ }_{982698}^{982697}$

Steps	Series Condenser or Dummy Antenna	Connect to	Signal Generator Frequency	Tune Receiver to	Adjust in Sequence For Max. Output
1	0.1 Mfd.	6SA7 Grid (Pin \#8)	260 KC	High Frequency Stop	A, B, C, D
2	0.000068 Mfd .	Anterna Connector	1615 KC	High Frequency Stop	${ }^{*} \mathrm{E}, \mathrm{~F}, \mathrm{G}$
3	0.000068 Mfd .	Antenna Connector	1400 KC	Signal Generator Signal	J, K
4	- 0.000068 Mfd.	Antenna Connector	1615 KC	High Frequency Stop	F, G
5	0.000068 Mfd.	Antenna Connector	1000 KC	Signal Generator Signal	**L

*Before making this adjustment check the mechanical setting of the oscillator core "H." The slotted end of core should
be 1 召" in the mounting end of the coil form.) If adjustment is necessary, first dissolve the glyptal seal on the studs. Core adjustments should be made with an insulated screwdriver and core studs should be re-sealed in place with giyptal or
ks"L" is the peinter adjustment screw which is on the poiner connecting link (see tuner drawing) and should be adjusted
so the pointer reads 1000 KC . (On first " 0 " of " 100 .") " 0 " of " 100. ")
With the radio installed and the car antenna plugged in adjust the antenna trimmer " G " for maximum volume with the radio tuned to a weak station between 600 and 1000 KC . (See sticker on case.)

PARTS LAYOUT - CHASSIS VIEW

The tube socket voltages as measured at the factory and under the conditions shown on the schematic diagram
are shown here.
The blank spaces are provided so the serviceman may fill in the actual readings as taken with his own equipment. A normal operating radio thould be used for these measurements.

VOLTMETER RESIST. ANCE \qquad OHMS PER VOLT. READING TAKEN WITH \qquad VOLTS AT SPARK pLATE. THE VOLTAGES ARE MEAS. URED FROM TUBE SOCKET TERMINALS TO CHASSIS AND ARE POSITIVE UN. LESS MARKED OTH. ERWISE.

ESCUTCHEON MOUNTING

SPECIAL INSTRUCTIONS

Unless special precautions are taken in removing the dial escutcheon, there is a possibility that the dial pointer tip will be broken. Therefore, in removal of the escutcheon, the following procedure is recommended:

1. Loosen, but do not remove, the two screws holding the pointer back plate ("X" in Escutcheon Mounting drawing above) and loosen the shellac so that the back plate is free to move.
2. Remove the escutcheon mounting screws " Y " (see Escutcheon Mounting).
3. Carefully lift off the escutcheon (DO NOT FORCE). If the dial backplate is free to move slightly downward the escutcheon will come off easily.
The same caution should be exercised when replacing the escutcheon.

SERVICE PARTS LIST

$\begin{gathered} \text { III. } \\ \text { No. } \end{gathered}$	Production Part No.	Service Part No.	Description
		ELECT	
	Coils		
1	7255738	7255738	Antenna Series Choke
2	7240251	7240251	Antenna Spark Choke
3	7258914	7258914	Antenna
4	7258914	7258914	R.F.
5	7259687	7259687	Oscillator
6	7258849	1219508	1st I.F.
7	7258850	1219509	2nd I.F.
8	7237846	1217846	Hash Choke
*9	7259187	* 7259187	Spark Choke
		Condersers	
* 12	7260251	* 7260251	Antenna Trimmer
13	7236842	6537	. 05 mfd 200 V Tubular
14	7258221	G 390	.000039 mfd Molded
15	7242454	7242454	Dual Trimmer
$\begin{aligned} & 15 \mathrm{~A} \\ & 15 \mathrm{~B} \end{aligned}$			R.F. Section Oscillator Section
16	7258221	G 390	.000039 mfd Molded
17	7257424	7257424	. 000180 mfd Compensating
18	7230892	6537	. 05 mfd 400 V Tubular
19	1217848	1217848	Chassis Plate
20	1215189	G 100	. 000010 mfd Molded
21	7237870	6533	. 01 mfd 400 V Tubular
22	1219495	6539	.1 mfd 400 V Tubular
23	7232956	6531	. 005 mfd 600 V Tubular
24	7238881	6533	. 01 mfd 400 V Tubular
25	7237836	E 202	.002 mfd 600 V Tubular
26	7240724	M 908	Electrolytic
26A			$20 \mathrm{mfd} 25 \mathrm{~V}$
26B			20 mfd 400 V
26C			20 mfd 400 V
27	7236134	7236134	. 0015 mfd 800 V Tubular
28	7241259	1219768	Spark Plate
29	1217848	1217848	Chassis Plate
30	7240906	H 602	. 006 mfd 1600 V Tubular
		Resistors	
35	1213217	A 101	100 Ohms $1 / 2 \mathrm{~W}$ Insulated
36	1211147	A 225	2.2 Megohms 1/2W Insulated
37	7237595	B153	15,000 Ohms 1W Insulated
38	7240732	A 334	330,000 Ohms 1/2W Insulated
39	1211192	A 223	22,000 Ohms 1/2W Insulated
41	7233653	C 153	15,000 Ohms 2W Insulated
42	1213220	A 151	150 Ohms 1/2W Insulated
43	7238873	A 105	1 Megohm 1/2W Insulated
44	7240731	A 473	47,000 Ohms 1/2W Insulated
45	7238873	A 105	1 Megohm 1/2W Insulated
46	1213235	A 102	1,000 Ohms 1/2W Insulated
47	1213235	A 102	1,000 Ohms 1/2W Insulated
48	1214561	1214561	820,000 Ohms 1/2W Insulated
49	7238873	A 105	1 Megohm 1/2W Insulated
50	1213480	A 393	39,000 Ohms 1/2W Insulated
51	7236080	B 273	27,000 Ohms 1W Insulated
52	7234563	7234563	360 Ohms 1W Insulated
53	1219738	B 221	220 Ohms 1W Insulated
54	1214573	$\left\{\begin{array}{l}\text { C } 272 \\ \text { B } 562\end{array}\right.$	1800 Ohms 2W Wire Wound (Or replace with 2700 Ohm 2 W and 5600 Ohm IW in parallel).
		Tubes	
	7237751	6SK7	R.F. and I.F. Amplifier
	7237752	6SA7	Oscillator Modulator
	1218107	6SR7	Detector - Audio
	1213793	6V6GT	Output
	1211924	0'Z4	Rectifier

SERVICE PARTS LIST

$\begin{aligned} & \text { Ill. } \\ & \text { No. } \end{aligned}$	Production Part No.	Service Part No.		Description
	Miscellaneous Electrical			
* 60	7260270	* 7260270	(Model 982697)	Control-Volume, Tone, \& Switch
*60	7260250	*7260250	(Model 982698)	Control-Volume, Tone, \& Switch
60 A				Volume Control
60 B				Tone Control
60 C (Switch				
61	187189	44		Lamp. Dial Light
62	7258146	7258146		Speaker - 6×9 P. M.
63	7258941	7258941		Transformer. Input
64	7259419	7259419		Transformer - Output
65	7259375	7255881		Transformer-Power
66	7239124	8542		Vibrator - Non-Synchronous
MECHANICAL PARTS				
Chassis				
*70	7260133	*7260328		Connector - "A" Lead
71	7256742	7256742		Connector - Antenna
	7236279	7236279		Socket- Octal Tube
	7239125	7239125		Socket. Vibrator
Tuner				
\% 81	7260134	*7260134	(Model 982697)	Backplate-Pointer
*81	7260247	*7260247	(Model 982698)	Backplate-Pointer
	147481	147481		Bali Bearings (12)
*82	7260352	*7260352	(Model 982697)	Bushing and Manual Drive Shaft
	7260354	*7260354	(Model 982698)	Bushing and Manual Drive Shaft
	7260351	* 7260351	(Model 982697)	Manual Drive Shaft
	7260238	*7260238	(Model 982698)	Manual Drive Shaft
83	7258072	7258072		Clutch Disc-Driven
84	7258211	7258211		Core Guide Bar - Parallel
85	7256271	7256271		Pointer Connecting Link
86	7255992	7255992		Spring - Pointer Connecting Link
87	7258468	7258468	(Model 982697)(Model 982698)	Core-Powdered Iron
*88	7260371	*7260371		Escutcheon Assy.
*88	7260367	*7260367		Escutcheon Assy.
89	7260245	*7260245		Dial
90	7259496	7259496		Dial Backplate
91	7256495	7256495		Gear and Bushing. Clutch
*92	7260212	*7260212		Gear and Bracket - Worm
*93	7260360	*7260360	(Model 982697)	Pointer Assy.
*93	7260361	*7260361	(Model 982698)	Pointer Assy.
	1219174	1219174		Pointer Tip Pkg. Push Button and Slide Assy. Push Button and Slide Assy. Socket - Dial Spring-Clutch
94	1219173	1219173	(Model 982697)(Model 982698)	
94	1219856	${ }^{} 1219856$		
95	1219758	1219758		
96	7258756	7258756		
9798	7257415	7257415		Spring - Core Bar Conncting Link
	7255984	7255994		Spring - Slide Return
		INSTALLATION PARTS		
	7260632	* 7260632		"A" Lead and Condenser Assy.
	1911095	6030		Condenser-Generator
	$\begin{array}{r} 1912757 \\ 7260190 \end{array}$	6030 6030		Condenser-Ignition Coil Condenser-Voltage Regulator
	120151	120151		Fuse - 15 Amps
	555348	555348		Hood Ground Clip
	7259818	*7259818		Knob - Control
	7260192	${ }^{*} 7260192$		Knob. Tone Control and Dummy
	7240138	7240138		Static Collector
	7258815	7258815		Trim Plate Model 982697
	7259789	*7259789		Trim Plate Model 982698

* Parts first used in 1951

GENERAL

MOUNTING-982700 - All 195188 Series Oldsmobile Cars. 982699 - All 195198 Series Oldsmobile Cars.
TUBES-Seven, Plus Rectifier.
SPEAKER-6 $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical Permanent Magnet.
TUNING--Manual and Electronic.
ANTENNA TRIMMER COMPENSA. TION-For Antennas Between $0.000050 \cdot 0.000070$ Mfd.
TUNING RANGE-540.1600 KC.
PUSHBUTTON SET.UP
No Pushbutton Set-up is required. However, the number of stations on which the tuner will stop can be regulated by use of the Sensitivity
 Control.

SIGNAL SEEKING TUNER ALIGNMENT PROCEDURE:

NOTE: When aligning the signal seeker tuner type radio, be sure to use a vacuum tube voltmeter as indicated and be sure to follow the alignment sequence given-(Notice that the primaty of the 2 nd I.F. is aligned first.)

Output Meter ConnectionVTVM From 2 To Chassis (see Parts layout page 2)
Generator Return \qquad Receiver Chassis
Dummy Antenna In Series With Generator
Volume Control
\qquad
Tone Control Maximum Volume

Generator Outpu Not to Exceed 2 Volts at VTVM

Step	Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust in Sequence For Max. Output
1	0.1 mfd	6SA7 Grid (Pin 8)	260 KC	*High Frequency Stop	A, B, C, D
2	0.000068 mfd	Antenna Connector	1615 KC	High Frequency Stop	**E, F, G
3	0.000068 mfd	Anterina Connector	600 KC	Sigrial Generator Signal	J, K
4	0.000068 mfd	Antenna Connector	1615 KC	Signal Generator Signal	F, G
5	. 0.000068 mfd	Antenna Connector	1000 KC	Signal Generator Signal	***L

[^1]TUBE SOCKET VOLTAGE CHART

The tube socket voltages, as measured at the factory and under the conditions shown on the schematic diagram, are shown above. The blank apaces are provided so that the serviceman may fill in actual voltage readings as taken with his own equipment. A normal operating radio should be used for these measurements.

Voltmeter resistance \qquad Ohms Per Volt.

Readings taken with \qquad Volts at Spark Plate.

All voltages measured from socket terminals to chassis.

NOTE: For Complete Tuner Information See Bulletin 6D.620.

pARTS LAYOUT - CHASSIS VIEW
*Resistor and condenser are included in the 2nd IF Assy.
**Connect vacuum tube voltmeter between this point and ground during alignment.

PARTS LAYOUT - TUNER VIEW

UNITED MOTORS PAGE 22-19

PAGE 22-20 UNITED MOTORS
MODELS 982699,
982700, 01dsmobile

NO'TE: For a complete discussion of the Signal Seeking Tuner see Bulletin 6D-620.

SERVICE PARTS LIST

Illus.	Production
No.	Part No.

Service
Part No.
ELECTRICAL PARTS
Coils

7257979
7255738
7240251
7257979
7259184
1219508
1219602
1217846
1217846

Antenna
Antenna Series Choke
Ancenna Spark Choke
R.F.

Oscillator
1 st I.F. Assy.
2nd I.F. Assy
"A" Spark Choke
Hash Choke

UNITED MOTORS PAGE 22-2

Illus. No.	Production Part No.
*	
111^{*}	7260133
111^{*}	7260300
112^{*}	7260285
112^{*}	7260301
112 A	7260294
112 B	
112 C	
114	7259009
125	7259010
115	7259164
116	7258146
117	7259012
122^{*}	7260813
18	7258941
119	7259324
120	7239124

7260632	7260632^{*}
1911093	6030
1912757	6030
7260190	6030
555348	555348
120151	120151
7259818	7259818^{*}
7260191	7260191^{*}
7260193	7260193^{*}
7240138	7240138
7258815	7258815
7259789	7259789^{*}

(Model 982699)
(Model 982700)

[^2]GENERAL
MOUNTING-All 1951 Pontiac Cars.
TUBES--Seven, Plus Rectifier.
SPEAKER- $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical, Permanent Magnet.
TUNING-Manual and 5 Push Button Mechanical.

ANTENNA TRIMMER COMPENSA. TION - For Antennas Between 0.000060-0.000090 Mfd.

TUNING RANGE - 550-1600 KC.

PUSHBUTTON SET-UP

Pull button to the right and out. Tune in desired station manually. Push button in as far as it will go.

MODEL 984592

ALIGNMENT PROCEDURE

Output Metrr ConnectionsGenerator Ground
\qquad Receiver ChassisDummy AntennaIn Series With GeneratorVolume Control Position
\qquad Maximum Volume

Tone Control Position \qquad
\qquad TrebleGenerator OutputMinimum for Readable Indication

Steps	Series Condenser or Dummy Antenna	Connect to	Signal Generator Frequency	Tune Receiver To	Adjust in Sequence for Max. Output
1	0.1 Mfd.	6SA7 Grid (Pin \#8) or 7Q7 Grid (Pin \#6)	260 KC	High Freq. Stop	A, B, C, D
2	0.000068 Mfd.	Antenna Connector	1615 KC	High Freq. Srop	*E, F, G
3	0.000068 Mfd.	Antenna Connector	1000 KC	Signal Gen. Signal	J, K
4	0.000068 Mfd.	Antenna Connector	1615 KC	High Freq. Stop	F, G
5	0.000068 Mfd.	Antenna Connector	1100 KC	Signal Gen. Signal	L**

[^3]PAGE 22-24 UNITED MOTORS

UNITED MOTORS PAGE 22.2

SERVICE PARTS LIST

Service
Part No.
ELECTRICAL PARTS
Coils
7258914
7255738
7240251
7258914
7258911
1219508
1219509
121784
7241708

7257959
7236842
1218348
7242454
14 A
14B
15
16
17
18
19
20
21
22
23
24
25
$25 A$
$25 B$
$25 C$
26
27
28
29
30
36
37
38
39
40
41 .

41
42
43
44
7258221
7258914
7255738
7240251
7258914
7258911
7258849
7258850
1217846
7241708

7257959
7236842
1218348
7242454

SERVICE PARTS LIST

Illus No.	Production Part No.	Service Part No.	Description
	Tubes		
	7237751	5229	6SK7
	7237753	5231	6SQ7
	7237752	5222	6 SA 7
	1213981	5301	7Q7 (Alternate)
	1213793	5241	6V6GT
	1213568	5295	7C5 (Alternate)
	1211924	5003	0Z4
	Miscellaneous Electrical		
*71	7260043	* 7260043	Control - Volume, Tone and Switch
71A			Tone Control
71 B			Volume Control
71 C			Switch
72 $* 73$	187189	* 424	Lamp-Dial Light
* 73	7260410	*7260410	Speaker 6x9 Eliiptical PM
74	7259249	7240453	Transformer - Output
75	7259375	7255881	Transformer - Power
76	7239124	8542	Vibrator - Non-Synchronous
	MECHANICAL PARTS		
	Chassis		
79	7257746	7257746	Socket-Antenna
	7241356	7241356	Socket-Loctal Tube
	7236279	7236279	Socket-Octal Tube
	7239125	7239125	Socket - Vibrator
	Tuner		
81°	7257722	7257722	Back Plate-Pointer
*82	7260039	*7260039	Bushing \& Manual Drive Shaft
83	7258072	7258072	Clutch Disc-Driven
84	7258203	7258203	Connecting Link-Core Bar
85	7258210	7258210	Core Guide Bar - Parallel
86	7256271	7256271	Pointer Connecting Link
87	7255992	7255992	Spring - Pointer Conn. Link
88	7258468	7258468	Core - Tuning
89	7257717	7257717	Escutcheon Assy.
90	7257721	7257721	Dial
91	7257719	7257719	Dial Backplate
	7257718	7257718	Spring-Dial Retainer
92	7256495	7256495	Gear and Bushing-Clutch
*93	$\begin{aligned} & 7260209 \\ & 1219120 \end{aligned}$	$\begin{gathered} 7260209 \\ 1219120 \end{gathered}$	Pointer Assy. Pointer Tip Pkg.
94	7258756	7258756	Spring - Clutch
95	7257415	7257415	Spring-Core Bar Conn. Link
96	7255984	7255984	Spring - Slide Return
*97	1219740	*1219740	Socket - Dial Light
*98	1219739	*1219739	Push Button \& Slide Assy.
*99	7260037	*7260037	Worm Gear \& Bracket Assy.
	INSTALLATION PARTS		
	1911095	6030	Condenser - Generator
	1913140	6030	Condenser - Voltage Regulator
	147685	147685	Fuse 14 Amps.
	514608	*514608	Knob-Control
	514782	*514782	Knob - Dummy
	514784	*514784	Knob - Tone Control
	511836	*511836	Trim Plate
	513486	513486	Washer - Anti Ractle

*Parts first used in 1951

GENERAL

MOUNTING-All 1951 Pontiac Cars.
TUBES--Seven, Plus Rectifier.
SPEAKER-6" $\times 9^{\prime \prime}$ Elliptical, Permanent Magnet.

TUNING-Manual and 5 Push Button Mechanical.

ANTENNA TRIMMER COMPENSA-
TION - For Antennas Between $0.000060 \cdot 0.000090 \mathrm{Mfd}$.

TUNING RANGE $\mathbf{~ 5 5 0 - 1 6 0 0 ~ K C . ~}$

PUSHBUTTON SET-UP

Pull button to the right and out. Tune in desired station manually. Push button in as far as it will go.

MODEL 984688

SERVICE INFORMATION: This model is identical to the 1951 Pontiac Model 984592 radio covered in Bulletin 6D-1035 except for the parts shown below. However, it may use several miniature tubes on an alternate basis and when these are used additional components are altered as shown. For service information reference should be made to Bulletin 6D-1935 except that the schematic diagram using the miniature tubes is included on page 2 of this bulletin.

Parts changed on all 984688 radios

Illus. No.	Production Part No.	Service	
98	1218885	Part No.	Description
	515718	518885	Push Button and Slide Assy.
	511831	515718	Knob - Control
	511833	511831	Knob - Dummy
		511833	Knob - Tone

	Additional parts changed only when miniature tubes are used		
${ }^{*} 13$	1219862	$* 1219862$	*.000005 Mfd. Molded Capacitor
36	1213217	A 101	100 Ohms $1 / 2$ W. Insulated Res.
40	1215548	A 106	10 Megohms I/2W Insulated Res.
	1217690	6 BA6	R.F. and I.F. Tube
	1217691	$6 B E 6$	Oscillator-Modulator Tube
	1218506	6 AV6	Detector-Auto \& P.H. Inv. Tube
	7261021	$* 7261021$	*Socket Miniature Tube.

PAGE 22-30 UNITED MOTORS

Figure 1

This radio is a five tube (plus rectifier) superheterodyne automobile receiver designed expressly for 1951 Chevrolet passenger car installation. The receiver is of the single unit design for ease of installation and service. In this type of design the speaker is integral with the receiver and instrument panel by means of a special rubber gasket which, due to location and baffling, permits exceptionally good tone quality.

ELECTRICAL DESCRIPTION

The circuit used in this receiver is the superheterodyne type and uses no regeneration. The tuning circuits are of the permeability type and are tuned by varying the iron cores in and out of the antenna, radio frequency and oscillator coils like pistons. (See Figure 2.)

Figure 2
The Intermediate frequency stages are tuned by means of two iron cores being adjusted from the top and bottom sides of the I.F. transformer, both the first (input) and second (output) Intermediate frequency transformers are tuned by this method. (See Figure 3.)

Figure 3
The antenna circuit is capacity coupled to the antenna by means of an antenna trimmer condenser to take care of normal variations in antenna and antenna coil capacity. The antenna condenser is adjustable by means of a small screwdriver, and is located on the bottom of the radio case. The audio stage is transformer coupled to the output tube to take advantage of all the gain and tone quality that the receiver

MODEL 986515 ,
Chevrolet
is capable of developing. The automatic volume control is of the delayed signal type and is very capable of maintaining a constant level of volume at all times. Very high frequency filter chokes are used in the radio frequency and oscillator grid circuits to discriminate against ignition interference in the receiver, thus eliminating the use of spark plug suppressors. The vibrator is the full wave nonsynchronous type using an OZ4 rectifier tube and will operate on either a negative or positive ground.

TUBE COMPLEMENT AND FUNCTION

6BA6	Radio frequency amplifier.
6BE6	Oscillator - modulator.
6BA6	Intermediate frequency amplifier.
6AV6	Detector - automatic volume control -
	and first audio
6V6GT	Audio output.
OZ4	Cold cathode rectifier.

GENERAL INFORMATION

Tuning range 540-1615 Kilocycles. Intermediate frequency 262 Kilocycles. Maximum power output 5 watts. Undistorted power output 3 watts.
Current drain with permanent magnet speaker 6.5 amperes at 6 volts.

Speaker size $6^{\prime \prime} \times 9^{\prime \prime}$ elliptical permanent magnet type.
Voice coil impedance 4 ohms at 400 cycles.
Fuse protection 14 amperes 25 volt.

PUSH BUTTON TUNING

An outstanding feature of the 986515 radio is the new simplified method of setting up the push buttons, which can be done easily by anyone, without any tools With this type of push button tuning which is completely mechanical, no cords or pulleys are used thus assuring trouble-free operation and constant calibration of the radio stations set on the push buttons at all times.

PROCEDURE FOR SETTING PUSH BUTTONS

Turn on the receiver for ten minutes or long-

1. Pull button slightly to the left and out as far as it will go.

Figure 5
3. Push button in firmly to end of travel. Repeat same procedure for remaining four buttons

Figure 6

PROCEDURE FOR INSTALLATION OF 986515 RADIO AND ANTENNA

All 1951 Chevrolet passenger cars will use the fender type antenna which will mount on the left front fender.

INSTALLATION PROCEDURE 986257 ANTENNA

After the antenna has been unpacked, proceed as follows:

1. Assemble lead-in cable to antenna mast and tighten securely, place spacer " F " over antenna rod assembly. (See Figure 7.)

2. Place template on top of left front fender, at front door edge and line up template as indicated. Center punch and drill 13/16 inch hole.
3. Locate two dimples in top of left front fender baffle and drill two $5 / 16$ inch holes for mounting brackets.
4. Place antenna thru $13 / 16$ inch hole from bottom side of fender.
5. Place rubber pad " E," insulator " D " and nut ' C ' on antenna rod and tighten securely, making sure antenna is in a vertical position. (See Figure 7.)

Figure 8
6. Be sure seal " G " is in place, then screw insulator " B " in place. (See Figure 7.)
7. Place nuts "H" and lockwashers " K " on braces "J" and place in $5 / 16$ inch holes in fender baffle. (See Figure 8.)
8. Place braces " J " to stud on antenna mast base with washer " M " and nut "L," place washers " O ," nuts " N " and tighten securely. (See Figure 8.)

INSTALLATION OF RECEIVER AND NOISE SUPPRESSION EQUIPMENT

After unpacking and checking radio, place on bench and hook-up radio to 6 volt power unit (or fully charged battery) and allow radic to play while installing suppression equipment. Fill out the warranty label on the cover to show owner's name and date of installation. RADIOS THAT WILL PLAY FOR 15 MINUTES BEFORE INSTALLATION WILL GIVE MANY MONTHS OF UNINTERRUPTED SERVICE. CHECK ALL RADIOS BEFORE INSTALLATION.

INSTALLATION NOISE SUPPRESSION EQUIPMENT

1. Mount voltage regulator condenser on voltage regulator. (See Figure 9.)

Figure 9
2. Mount generator condenser on generator. (See Figure 10.)

Figure 10
3. Install rubber nipple and distributor suppressor on high tension coil wire. (See Figure 11.)

Figure 11
4. Remove front wheel hub and dust caps and install front wheel static collectors. Remove any grease from hole center of spindle to make a good connection, bend cotter pin to clear static collector. (See Figure 12.)

Figure 12
5. Mount ignition coil condenser on ignition coil. (See Figure 13.)

6. Drill $11 / 32$ inch hole on right hand side of dash and pierce dash mat for radio mounting bracket. (See Figure 14.)

Figure 14
7. From inside of car cut dash mat around 11/32 inch hole, large enough to insert tubing spacer. (See Figure 16.)
8. Remove nut and lockwasher from two studs located on inside of instrument panel on lower portion of radio grille. DO NOT REMOVE SPECLAL SPACERS. Save nuts and washer for reassembling. (See Figure 16.)
9. Remove cardboard radio grille cover from inside of radio grille and discard. (THIS IS IMPORTANT.)

Figure 15

Figure 16
10. Assemble left and right hand brackets to studs (BEING SURE SPACERS ARE IN PLACE) with nuts and washers removed from studs as outlined in paragraph 8. (See Figure 16.) It is important that these brackets be mounted in a vertical position to allow radio receiver to enter into slots of brackets and as these brackets MUST be tightened before the receiver is installed, we suggest that you take a piece of hardwood and make a jig for holding the brackets while tightening. In Figure 15 complete dimensions and procedure for making a jig is outlined.
11. From inside of instrument panel below brackets just mounted, remove two stamped nuts which hold radio control cover plate assembly, remove plate and discard all these parts.
12. Install radio receiving set by inserting radio between mounting brackets being sure that studs on sides of radio are aligned with slots in mounting brackets.
13. Slide the set into place so that the tuning shafts and push buttons are protruding through the instrument panel in the opening provided. If radio escutcheon is too close or against radio grille opening, use thin
flat washers provided to shim radio fo proper clearance. (See Figures $17 \& 20$.)
14. Install trim place and hex nuts on tuning and volume shaft bushings. DO NOT TIGHT EN. (See Figure 17.)
15. Place slotted end of long brace on righ hand stud of radio, placing tubing space 1 between dash and brace, then insert $5 / 16$. $18 \times 1-1 / 2$ inch bolt through brace, tubing spacer and dash. Place plain washer lockwasher and hex nut on engine side o dash and tighten securely. (See Figure 16.
16. Install internal tooth lockwasher and nu on right hand stud, then install serrater block, lockwasher and nut on left hanc stud, adjust the radio so that it appears in a level position with regard to dial space around radio grille and tighten the hex nuts on tuning shafts and on the sides of thi receiver.
17. Put the dummy knob on left-hand tuning shaft and tone control knob on right-hanc shaft, install felt washer and knobs on botl shafts. (See Figure 18.)
18. Install dial light lead terminal to the instrument light terminal of light switch. (Ser Figure 16.)

Figure 17

Figure 18
19. Attach male end of fuse holder to accessory junction block in either of optional positions (Figures 16 and 21) and then- insert fuse in male end of fuse holder and screw female end with " A " lead onto male fuse holder. (See Figures 20 and 21.)
20. Plug antenna into antenna socket on side of receiver (Figure 20), turn on receiver and tune in a weak station near 140 on the dial with volume in maximum position and an-
tenna extended to full height. With a small screwdriver adjust antenna trimmer for maximum volume. (See Figure 19).

Figure 19
Select five good stations and set push buttons starting with left-band button and a station near 55 on the dial, set remaining buttons in sequence with stations on dial, refer to page 4 for procedure to set push buttons.

UNITED MOTORS PAGE 22.37

Figure 20

Figure 21

Figure 22

USE SAME INSTRUCTIONS FOR INSTALLING BOTH 986515 AND 986516 RADIOS.

PROCEDURE FOR CHECKING AND SERVICING 986515 RADIO

The most important operation in servicing automobile radios is, to talk with the customer and let him tell you what is wrong with his radio. The customer will save you untold time in locating the trouble and fixing the radio. You will find that complaints will come under one of the four following categories:

1. Fuse blown.
2. Weak, no volume.
3. Noisy.
4. Receiver completely dead.

Blown fuse is caused by one of the following three:

1. Vibrator points sticking or burning. Check vibrator on a vibrator analyzer, or if none is available, remove vibrator from radio
and replace fuse, turn on radio and if the fuse does blow, replace vibrator with new one.
2. Excessive voltage from generator. Check voltage regulator and set to proper voltage, as outlined in Chevrolet shop manual.
3. Short in 6 volt circuit of radio. It will be necessary to remove radio from car and check all 6 volt wires, hash condensers and chokes in radio.

The noise can be caused by one or more of the following:

1. TIRE STATIC is caused by friction between the tires and pavement, is almost a continuous roar while car is in motion, and does not vary appreciably with car speed.

The intensity of the noise is greater on a dry sunshiny day and not so noticeable on humid or rainy days. To eliminate this noise be sure that the front wheel static collectors have been installed, being sure that they are free of grease at the spindle and are making good contact to the front wheel spindle. If the static still persists, install tire static powder in all five tires. It is impossible to determine in advance which cars will need tire static powder and for this reason it is recommended that the static powder be installed in all cars and trucks in which a radio is to be installed.

Figure 23
Tire static powder part number 986087 and injector part number 986033 are both available through General Motors Parts Warehouses.
2. NOISY ANTENNAS can be located by turning on the radio receiver and tuning in a station, then by tapping the antenna rod with a screwdriver handle, if noisy will crash in the radio each time you tap the antenna rod. The antenna lead-in can also cause noise in the radio if the shield is broken or unsoldered from the ends or if the leadin wire in cable is loose or broken. Replace antenna rod or lead-in.
3. MOTOR INTERFERENCE in Chevrolet radios is usually caused by poor grounds when installing the antenna or receiver, or not using all the suppression material furnished with the receiver. Check to make sure all suppression material has been installed and that all grounds are bright, clean and tight.
4. GENERATOR INTERFERENCE is a whining noise similar to a siren and increases or decreases with speed of the engine. Install or replace generator condenser. (If generator brushes and armature are worn, true armature and replace generator brushes.)
5. NOISY RADIO TUBES can be located by turning on the radio and tuning in a station, then remove the tube inspection plate and
with a small screwdriver, use the handle end to tap each of the tubes lightly. I noisy, it will cause a crashing noise in the radio as you tap the tube. Replace tube or tubes. If the foregoing does not eliminate the noise, it will be necessary to remove the radio from the car and hook-up radic on service bench, remove covers and checl for loose or poorly soldered connections.
6. WEAK - NO VOLUME usually is caused by three things, weak tubes or vibrator or antenna being partially grounded.

PROCEDURE FOR CHECKING THE VOLTAGE OF 986515 RADIO

The same procedure is used for operating radic test equipment as outlined on pages 9 througr 14 of the 1950 Chevrolet Radio Service anc Shop Manual (P\&A 15).

It will be necessary to remove the front cover of the radio case to check the voltages. Hookup the radio on the service bench to a 6 voll power unit, or a fully charged battery. It is important that you have 6 volts at the spark plate of the radio or the voltage readings will be correspondingly lower.

Set the master selector switch of the volt-ohmmeter to the 12 position, set the voltage selector switch to D.C. $1 \mathrm{~K} \sim \sim / \mathrm{v}$. Place the tesi leads in jack marked "Test Leads," ground the "-" negative lead to radio chassis for ground, with red lead check all tube pins markec " H " which show a reading on the voltage chart. (See Figure 24.)

If no voltage or incorrect check or replace the following:

1. Check or replace On and Off switch (Item 51C on circuit diagram and 51 on parts layout).
2. Check or replace Condensers. (Items 26A -26B-27 on circuit diagram and parts layout.)
3. Check or replace chokes. (Items 8 and 9 on circuit diagram and parts layout.)

- Next check will be the A.C. voltage on secondary winding of the power transformer. Set the Master selector switch to the 600 position, set the voltage selector switch to A.C. $1 \mathrm{~K} \sim / \mathrm{v}$. With red lead check the tube pins marked "p"

Figure 24
on OZ4 tube. Each terminal should read 270 to 280 volts A.C. If incorrect or no voltage, check or replace the following:

1. Check or replace condenser. (Item 28 on circuit diagram and parts layout.)
2. Check or replace vibrator. (Item 57 on circuit diagram and parts layout.)
3. Check or replace power transformer. (Item 56 on circuit diagram and parts layout.)
4. Check or replace $0 Z 4$ tube socket.

Next change the Master selector switch to the 300 position and the voltage selector switch to D.C. $1 K \sim / v$ position. With the black lead to the radio chassis for ground, with the red lead check the tube pin marked " K " on OZ4 tube. It should read 255 to 265 volts, if incorrect or no voltage, check or replace the following:

1. Check or replace the OZ 4 tube.
2. Check or replace the 0 Z 4 tube socket.

Next check the tube pin marked "P" on 6V6GT tube, should read 240 to 250 volts. If incor-
rect or no voltage, check or replace the following:

1. Check or replace Electrolytic condenser. (Item 19B on circuit diagram and 19 on parts layout.)
2. Check or replace audio transformer. (Item 55 on circuit diagram and parts layout.)
3. Check or replace condenser. (Item 21 on circuit diagram and parts layout.)

Next check tube pin marked "S" on 6VGGT tube, should read 207 to 217 volts. If incorrect or no voltage, check the following:

1. Check or replace Electrolytic condenser. (Item 19C on circuit diagram and 19 on parts layout.)
2. Check or replace resistor. (Item 48 on circuit diagram and parts layout.)

Next check the tube pin marked " K " on 6V6GT tube, should read 10 to 12 volts. If incorrect or no voltage check or replace the following:

1. Check or redlace Electrolvtic condenser

UNITED MOTORS PACE $22-4$
(Item 19A on circuit diagram and 19 on parts layout.)
2. Check or replace resistor. (Item 43 on circuit diagram and parts layout.)

Next check tube pin marked "P" on 6AV6 tube, should read 75 to 85 volts. If incorrect or no voltage check or replace the following:

1. Check or replace resistor. (Item 40 on circuit diagram and parts layout.)
2. Check or replace condensers. (Item 18 and 20 on circuit diagram and parts layout.)

Next, check tube pin marked "P" on 6BA6 Intermediate frequency amplifier tube, should read 205 to 215 volts. If incorrect or no voltage, check the following:

1. Check or replace Intermediate Frequency Transformer. (Item 7 on circuit diagram and parts layout.)

Next check tube pin marked " S " on 6BA6 I.F. Amplifier tube, should read 70 to 80 volts. If incorrect or no voltage check or replace the following:

1. Check or replace resistor. (Item 33 on circuit diagram and parts layout.)
2. Check or replace condenser. (Item 12 on circuit diagram and parts layout.)

Next check tube pin marked "P" on 6BE6 tube, should read 207 to 217 volts. If incorrect or no voltage, check or replace the following:

1. Check or replace Intermediate Frequency Transformer. (Item 6 on circuit diagram and parts layout.)

Next check tube pin marked " S " on 6BE6 tube, should read 70 to 80 volts. If incorrect or no voltage, check the following:

1. Check or replace resistor. (Item 33 on circuit diagram and parts layout.)
2. Check or replace condenser. (Item 12 on circuit diagram and parts layout.)

Next check tube pin marked " p " on 6BA6 Radio Frequency amplifier tube, should read 110 to 120 volts. If incorrect or no voltage, check or replace the following;

1. Check or replace resistor. (Item 34 on circuit diagram and parts layout.)

Next check tube pin marked "S" on 6BA6 R.F. tube, should read 70 to 80 volts. If incorrect or no voltage, check the following:

Figure 26

1. Check or replace resistor. (Item 33 on the following: circuit diagram and parts layout.)
2. Check or replace condenser. (Item 12 on circuit diagram and parts layout.)

We have now checked the tubes, vibrator and voltages, with these being correct and the radio still does not play, the trouble will be in the grid circuit of the radio. To continue, it will be necessary to check the grid circuit by means of Signal Tracing.

PROCEDURE FOR SIGNAL TRACING 986388 RADIO

Turn on Signal Generator On and Off switch, place the modulation switch in the modulated position, set Signal Generator tone control to .5 , place the shielded lead assembly in jack marked "Audio." Ground the black lead of Signal Generator to the radio chassis.

With the red lead touch tube pin marked " P " on 6V6GT tube. If no signal check or replace

1. Check or replace Audio transformer. (Item 55 on circuit diagram and parts layout.)
2. Check or replace speaker. (Item 54 on circuit diagram and parts layout.)

Next touch tube pin marked " G " on 6V6GT tube. If no signal check or replace the following:

1. Check or replace 6 V 6 GT tube.
2. Check or replace 6 V 6 GT tube socket.

Next touch tube pin marked " p " on 6AV6 tube. If no signal check or replace the following:

1. Check or replace condenser. (Item 18 on circuit diagram and parts layout.)
2. Check or replace resistor. (Item 41 on circuit diagram and parts layout.)

Next touch tube pins marked "G" and "DP" on 6AV6 tube. If no signal at either point check.
or replace the following:

1. Check or replace 6AV6 tube.
2. Check or replace 6 AV6 tube socket.
3. Check or replace resistors. (Items 45 and 46 on circuit diagram and parts layout.)

Next remove the shielded lead-in assembly from the audio jack, and move to the jack marked "I.F.". Set the band switch to "A" position, turn Signal Generator volume control about a third open, tune Signal Generator to exactly 262 Kilocycles.

With the red lead, touch tube pin marked "P" on 6BA6 Intermediate Frequency Amplifier tube. If no signal, check or replace the following:

1. Check or replace Intermediate Frequency Transformer. (Item 7 on circuit diagram and parts layout.)
2. Check or replace resistors. (Items 38, 39 42 and 44 on circuit diagram and part: layout.)
3. Check or replace condensers. (Items 22 23, 24 and 25 on circuit diagram and part: layout.)
4. Check or replace volume and tone control (Items 51A and 51B on circuit diagram ant 51 on parts layout.)

Next touch tube pin marked " G " on 6BA6 I.F tube. If no signal check or replace the follow. ing:

1. Check or replace 6BA6 tube.
2. Check or replace 6BA6 tube socket.
3. Check or replace sensitivity control. (Iten 53 on circuit diagram and parts layout.)

Next touch tube pin marked "P" on 6BE6 tube If no signal check or replace the following:

Figure 28

1. Check or replace Intermediate Frequency transformer. (Item 6 on circuit diagram and parts layout.)
2. Check or replace resistor. (Item 37 on circuit diagram and parts layout.)

Next touch tube pin marked "G" on 6BE6 tube. If no signal check or replace the following:

1. Check or replace 6 BE 6 tube.
2. Check or replace 6 BE 6 tube socket.

Now change the shielded lead-in assembly from I.F. jack to jack marked "R.F.," tune Radio receiver and Signal Generator to 1000 kilocycles, set band switch to "B" position. Next touch tube pin marked "P" on 6BA6 Radio Frequency Amplifier tube. If no signal check or replace the following:

1. Check or replace Radio Frequency Coil. (Item 4 on circuit diagram and parts layout.)
2. Check or replace Oscillator coil. (Item 5 on circult diagram and parts layout.)
3. Check or replace condensers. (Items 14, 15A, 15B, 16 and 17 on circuit diagram and parts layout.)

Next touch tube pin marked "G" on 6BA6 R.F. tube. If no signal check or replace the following:

1. Check or replace 6 BA 6 tube.
2. Check or replace 6BA6 tube socket.
3. Check or replace resistor. (Item 31 on circuit diagram and parts layout.)

Leaving the Signal Generator set as above and radio still tuned to 1000 kilocycles, place a .000075 mfd . condenser on red lead of Signal Generator and plug into antenna socket. If no signal check or replace the following:

UNITED MOTORS PAGE 22.

Tune radio to 1000 kilocycles

POINT SIGNAL STOPS - CHECK OR REPLACE ITEMS LISTED

No signal at point 1 - check or replace items - 21-54-55
No signal at point 2 - check or replace 6V6GT tube or tube socket
No signal at point 3 - check or replace items - 18-41
No signal at point 4 - check or replace items - 45-46-6AV6 tube or tube socket No signal at point 5 - check or replace 6AV6 tube or tube socket
No signal at point 6 - check or replace -items-7-22-23-24-25-38-39-42-44-51A-51B

No signal at point 7 - check or replace item - 53-6BA6 tube or tube socket No signal at point 8 - check or replace items - 6-37 No signal at point 9 - check or replace 6BE6 tube or tube socket
No signal at point 10 - check or renace items - 4-5-14-15A-15B-16-17-35-36 No signal at point 11 - check or replace item - 31-6BA6 tube or tube socket
No signal at point 12 - check or replace items - 1-2-3-11-13-32

Figure 29

MODEL 086515 ,

Chevrolet

1. Check or replace antenna coil. (Item 1 on circuit diagram and parts layout.)
2. Check or replace chokes. (Items 2 and 3 on circuit diagram and parts layout.)
3. Check or replace condensers. (Items 11 and 13 on circuit diagram and parts layout.)
4. Check or replace resistor. (Item 32 on circuit diagram and parts layout.)

PROCEDURE FOR ALIGNMENT OF 986515 RADIO

All receivers are properly aligned at the factory and should require no further adjustments, unless the adjustments have been tampered with, or new coils, I.F. Transformers or tuning cores have been installed.

To properly align the receiver, it will be necessary to have an output meter and signal generator. If any of the tuning coils or cores have been replaced, see "Capacity and Inductance Alignment Procedure." If only the adjustments have been tampered with or an I.F. transformer has been replaced the receiver is aligned as follows:

Set the Volt-Ohm-Milliammeter Master selector switch in the 30 position, the voltage selector switch in A.C. $1 \mathrm{~K} \sim / V$ position and place the "leads in the jack marked "output meter," place the other end of the black lead to radio chassis for ground. Place the red lead to the terminal of the speaker to which the green lead of the audio output transformer is connected, as outlined in the 1950 Chevrolet Radio Service and Shop Manual. (Speaker is item 54 and audio output transformer item 55 on circuit diagram and parts layout.)

Turn on the Signal Generator On and Off switch and turn on the radio receiver, turn volume control to maximum position. Set modulation switch in the modulated position, turn the band selector to the "A" position and tune the Signal Generator to exactly 262 Kilocycles. Place the Signal Generator shielded lead .in jack marked "I.F." and place the black lead to the radio chassis for ground. Place red lead to tube pin marked " G " on the 6BE6 tube.

Adjust the Signal Generator volume control so that the meter reads about 10 on the meter scale. Adjust in sequence trimmers "A, B, C and $D^{\prime \prime}$ (on circuit diagram and parts layout)
for maximum meter reading. Repeat adjustment to get best alignment. (Keep the Signal Generator volume turned down so that during adjustments, the meter does not read more than 10 on the meter scale.)

Now place Signal Generator shielded lead assembly in the jack marked "R.F.", set the band selector switch in " $B^{\prime \prime}$ position, tune the Signal Generator to exactly 1615 kilocycles, place a .000075 mfd . condenser on the red lead and connect to the antenna connector. Tune the radio receiver to the stop at the 1600 kilocycle end of the dial. (Keep the Signal Generator volume control adjusted so the meter reads about 10 on the meter scale.)

Now adjust trimmers "E, F and G" (on circuit diagram and parts layout), in sequence for maximum reading on the meter scale. Repeat for best alignment. Tune the Signal Generator and radio receiver to exactly 1000 kilocycles and repeat adjustments of trimmers " F and G " only for maximum meter reading.

After the receiver has been installed in the car, tune in a weak station near 1000 kilocycles, with volume control turned to maximum position and antenna extended to full height. Readjust trimmer " G " only for maximum volume.

CAPACITY AND INDUCTANCE ALIGNMENT PROCEDURE

This alignment procedure is to be used only when any of the following parts have been replaced in the radio, antenna coil, radio frequency coil, oscillator coil or any of the tuning cores.
The Intermediate Frequency alignment at 262 kilocycles are the same as outlined in "Alignment procedure" on page 18. After completing the alignment at 262 kilocycles for the intermediate frequency transformers "A, B, C and $D^{\prime \prime}$ proceed as follows:

Connect Signal Generator red lead to a . 000075 mfd. condenser and connect to antenna connector.
Mechanically align iron cores " H, J and K " (on circuit diagram and parts layout) to measure 1-25/32 inches in coil forms from rear mounting edge of coil forms. (See Figure 26.) Now set the Signal Generator to exactly 1615 kilocycles, set band switch to " B " position. tune radio receiver to the stop on the 1600 kilocycle end of the dial. Have output meter

hooked up as outlined in "Alignment Procedure."			19	7260065	MODEL 986515 Electrolytic	
Now adjust iron cores "H, J and K" (on circuit diagram and parts layout) in sequence for			19A		20 mfd .25 V .	
			19B		20 mfd .400 V .	
maximum meter reading.			19C		20 mfd .400 V .	
			20	1217848	Hash plate (chassis)	
Now adjust trimmers "E, F and G" (on circuit diagram and parts layout) in sequence for			21	1219693	. 015 mfd .800 V . Tubular	
			22	1218499	. 0015 mfd . 200 V . Tubula	
maximum reading on meter scale. Now tune			23	7230767	. 005 mfd .600 V . Tubular	
Signal Generator and radio receiver to 1000			24	7232957	. 000330 mfd . molded	
kilocycles, and readjust iron cores "J and K" oniy for maximum reading on meter scale.			25	7230767	. 005 mfd .600 V . Tubular	
			26	1219369	Dual Spark Plate	
DO NOT READJUST IRON CORE "H" ON THIS			27	1217848	Hash plate (chassis)	
ADJUSTMENT. Repeat the adjustment of iron cores "J and K" at 1000 kilocycles for maximum reading on meter scale.			28	7240906	. 006 mfd .1600 V . Tubular	
					RESISTORS	
Reset Signal Generator to 1615 kilocycles and tune radio receiver to stop on 1600 kilocycle			31	1215558	68 ohms 1/2W. Insulat	
end of dial, then readjust trimmers "F and G"			32	1214563	2.2 megohms $1 / 2 \mathrm{~W}$. Insulated	
only until no further increase in the meter			33	7233653	15,000 ohms 2W. Insulated	
reading can be ottained.			34	7237595	15,000 ohms 1W. Insulated	
			35	1214557	330,000 ohms 1/2W. Insulated	
After the radio receiver has been installed in			36	1214550	22,000 ohms 1/2W. Insulated	
			37	1213282	1 megohm 1/2W. Insulated	
the car, tune in a weak station near 1000 kilocycles, with volume control turned to maximum			38	1214553	47,000 ohms $1 / 2 \mathrm{~W}$. Insulated	
position and antenna extended to full height.			39	1214557	330,000 ohms 1/2W. Insulated	
Readjust trimmer " G " only for maximum volume.			40	1214555	220,000 ohms 1/2W. Insulated	
			41	1214555	220,000 ohms $1 / 2 \mathrm{~W}$. Insulated	
			42	1213270	100,000 ohms 1/2W. Insulated	
			43	7233773	330 ohms 1W. Insulated	
SERVICE PARTS LIST 986515 RADIO			44	1215563	6.8 megohms $1 / 2 \mathrm{~W}$. Insulated	
			45	1213240	2,700 ohms $1 / 2 \mathrm{~W}$. Insulated	
Illus.No.	Service		46	1215559	180 ohms $1 / 2 \mathrm{~W}$. Insulated	
	Part No.	Description	47	7237994	220 ohms 1W. Insulated	
			48	USE	7242844-2700 ohms 2W.	
	COILS				7240918 - 5600 ohms 1W. in parallel	
1	7258914	Antenna				
2	7258502	Antenna Series Choke				
3	7240251	Antenna Spark Choke			TUBES	
4	7258914	Radio Frequency				
5	7258911	Oscillator		1217690	6BA6 R.F. and I.F. Amplifier	
6	1218725	1st. I.F.		1217691	6BE6 Oscillator-Modulator	
7	1218726	2nd I.F.		1218506	6AV6 Detector-A.V.C.-1st	
8	7260470	Hash Choke			Audio	
9	7260090	Hash Choke		1213793	6V6GT Audio Output	
				1211924	Rectifier	
	CONDENSERS					
				MISCELLANEOUS ELECTRICAL PARTS		
11	7260172	Antenna Trimmer				
12	7230592	. 05 mfd .600 V . Tubular	51	7260084	Control - Volume, Tone and	
13	7230592	. 05 mfd .600 V . Tubular			Switch	
14	1215189	. 000010 mfd . molded	51A		Tone Control	
15	7242454	Dual Trimmer	51 B		Volume Control	
15A		R.F. Section	51C		Switch	
15B		Oscillator Section	52	125588	Lamp - Dial	
16	1217736	. 000039 Mfd. Molded	53	7242204	Sensitivity Control	
17	7257424	. 000180 Mfd . Compensating	54	7259381	Speaker - 6" x 9" P.M.	
18	7230592	. 05 mfd .600 V . Tubular	55	7260060	Transformer - Audio Output	

Figure 31

Figure 32

Chevrolet

CUSTOM DELUXE RADIO
 MANUAL TUNING 986516

This radio is a single unit five tube (plus rectifier) superheterodyne automobile receiver designed expressly for 1951 Chevrolet passenger car installation. In this type of design the speaker is integral with the receiver and instrument panel by means of a special rubber gasket which, due to location and baffling, permits exceptionally good tone quality.

Figure 34

ELECTRICAL DESCRIPTION

The circuit used in this receiver is the superheterodyne type and uses no regeneration. The tuning circuits are of the permeability type and tuned by varying the iron cores in and out of the antenna, radio frequency and oscillator coils like pistons. (See Figure 35.)

Figure 35
The Intermediate Frequency stages are tuned by means of two iron cores being adjusted the top and bottom sides of the I.F. transformer, both the first (input) and second (output) Intermediate Frequency transformers are \therefore ned by this method. (See Figure 36.)

Figure 36
The antenna circuit is capacity coupled to the antenna by means of an antenna trimmer condenser to take care of normal variations in antenna and antenna coil capacity. The antenna condenser is adjustable by means of a small screw driver, and is located at the rear of the radio case. The audio stage is transformer coupled to the output tube to take advantage of all gain and tone quality that the receiver is capable of developing. The automatic volume control is of the delayed signal type and is very capable of maintaining a constant level of volume at all times. Very high frequency filter chokes are used in the radio frequency and oscillator grid circuits to discriminate against ignition interference in the receiver, thus eliminating the use of spark plug suppressors. The vibrator is the full wave non-synchronous type using a $6 X 5 G T$ rectifier tube and will operate on either a negative or positive ground.

TUBE COMPLEMENT AND FUNCTION

6BA6 Radio Frequency Amplifier
6BE6 Oscillator - Modulator
6BA6 Intermediate Frequency Amplifier
6AT6 Detector - Automatic Volume Control and First Audio
6V6GT Audio Output
6X5GT Rectifier

GENERAL INFORMATION

Tuning range 540-1610 Kilocycles.

MODEL 986516,
Chevrolet

Intermediate Frequency 257.5 Kilocycles.
Maximum Power Output 3.5 Watts. Undistorted Power Output 2.5 Watts.
Current Drain Permanent Magnet Speaker 6.5 Amperes at 6 Volts.
Voice Coil Impedance 3.2 ohms at 400 Cycles Fuse protection 14 Amperes 25 Volt.

PROCEDURE FOR INSTALLATION OF 986516 RADIO AND ANTENNA

The installation procedure for the antenna and receiver are the same as for 986515 receiver.

PROCEDURE FOR SERVICING 986516 RADIO

The same procedure for operating radio test equipment as outlined for 986515

PROCEDURE FOR CHECKING THE VOLTAGE OF 986516 RADIO

It will be necessary to remove the front cover with the dial and speaker assembly to check the voltages.

Hookup radio on the service bench to a 6 volt power-unit, or a fully charged battery. It is important that you have at least 5.9 volts at the spark plate of the radio, or the voltage readings will all be low.

First set the Master selector switch of the volt-ohm-milliammeter to the 12 position, set the voltage selector switch to D.C. $1 \mathrm{~K} \Omega / \mathrm{V}$. Place the test leads in jack marked "test leads," ground the "-" negative lead to radio chassis for ground, with the red lead check all tube pins marked " H " which show a reading on the voltage chart. (See Figure 37.) If no voltage or incorrect, check or replace the following:

1. Check or replace On and Oifi switch. (Item 51 C on circuit diagram and 51 on parts layout.)
2. Check or replace condensers. (Items 24, 25 and 26 on circuit diagram and parts layout.)
3. Check or replace choke. (Item 5 on circuit diagram and parts layout.)

Now set the Master selector switch to the 600 position and the voltage selector switch to A.C. $1 \mathrm{~K} \sim / V$. position. With the red lead check the two terminals marked " p " on the 6X5GT tube, both terminals should read 270 to 280 volts A.C. If incorrect or no voltage check the following:

1. Check or replace condensers. (Item 26 and 27 circuit diagram and parts layout.)
2. Check or replace choke. (Item 5 on circuit diagram and parts layout.)
3. Check or replace power transformer. (Item 55 on circuit diagram and parts layout.)
4. Check or replace resistors. (Items 43 and 44 on circuit diagram and parts layout.)
5. Check or replace vibrator. (Item 56 on circuit diagram and parts layout.)

Now change the Master selector switch to the 300 position, and the voltage selector switch to D.C. $1 \mathrm{~K} \sim / V$. position, leaving the leads in the same jacks and the black lead grounded to the radio chassis. Now with the red lead check the voltage on the 6X5GT tube, pin marked 'K." It should read 245 to 255 ' volts D.C. If incorrect or no voltage check the following:

1. Check or replace $6 \times 5 \mathrm{GT}$ tube.
2. Check or replace 6 X5GT socket.

Next check the voltage on the 6V6GT tube, pin marked "P." It should read 225 to 235 volts D.C. If incorrect or no voltage check the following:

1. Check electrolytic condenser. (Item 21 on parts layout, 21A on circuit diagram.)
2. Check or replace audio transformer. (Item 54 on circuit diagram and parts layout.)
3. Check or replace condenser. (Item 23 on circuit diagram and parts layout.)
4. Check or replace "B" choke. (Item 6 on circuit diagram and parts layout.)

Now check pin marked "S" on 6V6GT tube, should read 215 to 225 volts D.C. If incorrect or no voltage check the following:

1. Check or replace electrolytic condenser.

READINGS TAKEN FROM TUBE SOCKET CONTACTS TO CHASSIS WITH A D.C. VOLTMETER HAVING A RESISTANCE OF 1000 OHMS PER VOLT. "A" SUPPLY AT SPARK PLATE 5.9 VOLTS, "B" SUPPLY DRAIN APPROXIMATELY 50 MA.

Figure 37

(Item 21B on circuit diagram, 21 on parts layout.)
2. Check or replace resistor. (Item 42 on circuit diagram and parts layout.)

Next check pin marked " K " on 6V6GT tube, should read 10 to 12 volts D.C. If incorrect or no voltage, check the following:

1. Check or replace electrolytic condenser. (Item 21A on circuit diagram, 20 on parts layout.)
2. Check or replace resistor. (Item 40 on circuit diagram and parts layout.)

Now check pin marked ' P ' on 6AT6 tube, should read 25 to 28 volts D.C. If incorrect or no voltage check the following:

1. Check or replace condensers. (Item 19 and 20 on circuit diagram and parts layout.)
2. Check or replace resistor. (Item 39 on circuit diagram and parts layout.)

Next check pin marked "P" on 6BA6 I.F. tube, should read 215 to 225 volts D.C. If incorrect or no voltage check the following:

1. Check or replace Intermediate frequency transformer. (Item 4 on circuit diagram and parts layout.)

Now check pin marked " S " on 6BA 6 l.F. tube,
should read 62 to 72 volts D.C. If incorrec or no voltage check the following:

1. Check or replace resistor. (Item 35 of circuit diagram and parts layout.)
2. Check or replace condenser. (Item 11 ol circuit diagram and parts layout.)

Next check pin marked "P" on 6BE6 tube should read 215 to 225 volts D.C. If incorrec or no voltage check the following:

1. Check or replace Intermediate frequenc! transformer. (Item 3 on circuit diagran and parts layout.)

Next check pin marked " S " on 6BE6 tube should read 62 to 72 volts D.C. If incorrect or no voltage check the following:

1. Check or replace resistor. (Item 35 on cir. cuit diagram and parts layout.)
2. Check or replace condenser. (Item 11 oi circuit diagram and parts layout.)

Next check pin marked "P" on 6BA6 radi frequency tube, should read 145 to 155 volts D.C. If incorrect or no voltage check or re. place the following:

1. Check or replace condensers. (Items 1: and 13 on circuit diagram and parts lay. out.)

PAGE 22-54 UNITED MOTORS
MODEL 986516,
Chevrolet

Figure 38
2. Check or replace resistor. (Item 31 on circuit diagram and parts layout.)

Next check pin marked " S " on 6BA6 radio frequency tube, should read 62 to 72 volts D.C. If incorrect or no voltage check or replace the following:

1. Check or replace resistor. (Item 35 on circuit diagram and parts layout.)
2. Check or replace condenser. (Item 11 on circuit diagram and parts layout.)

We have now checked the tubes, vibrator and voltages, with these being correct and radio does not play, the trouble will be in the grid circuit of the radio. To continue it will be necessary to check the grid circuit by means of Signal Tracing.

Figure 40

PROCEDURE FOR SIGNAL TRACING RADIO 986516

Turn on Signal Generator On and Off switch, place the modulation switch in the modulated position, set Signal Generator tone control to .5, place shielded lead assembly in jack marked "Audio." Ground the black lead of Signal Generator to the radio chassis.

With red lead touch tube pin marked "p" on 6 V 6 GT tube. If no signal check or replace the following:

1. Check or replace condenser. (Item 23 on circuit diagram and parts layout.)
2. Check or'replace audio transformer. (Item 54 on circuit diagram and parts layout.)
3. Check or replace speaker. (Item 53 on circuit diagram and barts layout.)

Next touch tube pin marked "G" on 6V6GT tube. If no signal check or replace the following:

1. Check or replace 6 V 6 GT tube.
2. Check or replace 6V6GT tube socket.

Next touch tube pin marked "p" on 6AT'6 tube. If no signal check or replace the following:

1. Check or replace condensers. (Items 19, 20 and 22 on circuit diagram and parts layout.)
2. Check or replace resistor. (Item 41 on circuit diagram and parts layout.)
3. Check or replace tone control. (Item 51B on circuit diagram and 51 on parts layout.)

Next touch tube pin marked " G " on 6AT6 tube. If no signal check or replace the following:

1. Check or replace 6AT6 tube.
2. . Check or replace 6AT6 tube socket.

Next touch the ungrounded tube pin marked "DP" on the 6AT6 tube. If no signal check or replace the following:

1. Check or replace 6AT6 tube.
2. Check or replace 6AT6 tube socket.

Now change the shielded lead assembly to the jack marked "I.F." Intermediate Frequency on the Signal Generator, tune the Signal Generator to exactly 257.5 kilocycles, set band switch in "A" position, turn Signal Generator volume control about one third open.

Next touch tube pin marked "P" on 6BA6 I.F. amplifier tube. If no signal check or replace
the following:

1. Check or replace intermediate frequency transformer. (Item 4 on circuit diagram and parts layout.)
2. Check or replace resistors. (Items 37 and 38 on circuit diagram and parts layout.)
3. Check or replace condenser. (Item 18 on circuit diagram and parts layout.)
4. Check or replace volume control. (Item 51A on circuit diagram and 51 on parts layout.)

Next touch tube pin marked " G " on 6BA6 I, F. amplifier tube. If no signal check or replace the following:

1. Check or replace 6BA6 tube.
2. Check or replace 6BA6 tube socket.
3. Check or replace resistor. (Item 36 on circuit diagram and parts layout.)

Next touch tube pin marked "P" on 6BE6 tube. If no signal check or replace the following:

1. Check or replace intermediate frequency transformer. (Item 3 on circuit diagram and parts layout.)

Next touch tube pin marked " G " on 6BE6 tube. If no signal check or replace the following:

1. Check or replace 6BE6 tube.
2. Check or replace 6BE6 tube socket.

Now change shielded lead assembly to the "R.F." radio frequency jack on the Signal Generator, set band switch to " B " position, tune Signal Generator to 1000 kilocycles.

Tune radio receiver to 1000 kilocycles. Next touch tube pin marked " P " on 6BA6 radio frequency tube. If no signal check or replace the following:

1. Check or replace coil and core assembly. (Item 1A, 1B and 1C on circuit diagram and 1 on parts layout.)
2. Check or replace condensers. (Items 12, 13, 14, 15, 16 and 17 on circuit diagram and parts layout.)

POINT SIGNAL STOPS - CHECK OR REPLACE ITEMS LISTED

No signal at point 1 - check or replace items 23-53-54	No signal at point 7 - check or replace item 36-6BA6 tube or tube socket
No signal at point 2 - check or replace 6V6GT tube or tube socket	No signal at point 8 - check or replace item 3
No signal at point 3 - check or replace items 19-20-22-41-51B	No signal at point 9 - check or replace 6BE6 tube or tube socket
No signal at point 4 - check or replace 6AT6 tube or tube socket	No signal at point 10 - check or replace items 1B-1C-12-13-14-15-16-17-32-33
No signal at point 5 - check or replace 6AT6 tube or socket	No signal at point 11 - check or replace 6BA6 tube or tube socket
No signal at point 6 - check or replace items 4-18-37-38-51A	No signal at point 12 - check or replace items 1A-2-9-10

Figure 42
3. Check or replace resistors. (Items 32 and 34 on circult diagram and parts layout.)
Next touch tube pin marked " G " on 6BA6 radio frequency tube. If no signal check or replace the following:

1. Check or replace 6BA6 tube.
2. Check or replace 6BA6 tube socket.
3. Check or replace resistor. (Item 30 on circuit diagram and parts layout.)

Next place red lead to antenna socket. If no signal check or replace the following:

1. Check or replace coil assembly. (Items 1A, $1 B$ and $1 C$ on circuit diagram and 1 on parts layout.)
2. Check or replace condensers. (Items 9 and 10 on circuit diagram and parts layout.)
3. Check or replace choke. (Item 2 on circuit diagram and parts layout.)

PROCEDURE FOR ALIGNMENT OF 986516 RADIO

All receivers are aligned at the factory and should require no further adjustment, unless the adjustments have been tampered with, or new coils, I.F. Transformers or tuning cores have been installed.

To properly align the receiver it will be necessary to have an output meter and signal generator. If any of the tuning coils or cores have been replaced, see "Capacity and Inductance Alignment Procedure." If only the adjustments have been tampered with or an I.F. transformer has been replaced, the receiver is aligned as follows: Set the volt-ohm-meter Master selector switch in 30 position, the voltage selector switch in A.C. $1 \mathrm{~K} \Omega / V$. , place leads in jacks marked "output meter." place the other end of the black lead to the radio chassis for ground. Place red lead to the terminal of the speaker to which the green wire of the Audio transformer is connected, as outlined in the 1950 Chevrolet Radio Service and Shop Manual. (Speaker is item 53 and audio output transformer item 54 on circuit diagram and parts layout.)

Turn on the On and Off switch of the Signal Generator, turn radio receiver on with volume
control turned to maximum position, set modulation switch in modulated position, turn band selector switch to "A" position, tune Signal Generator to exactly 257.5 kilocycles. Place shielded lead in "I.F." jack, place black lead to radio chassis for ground, red lead to 6BE6 tube pin marked "G."

Adjust Signal Generator volume control so that the meter reads about 10 on the meter scale. Adjust in sequence trimmers " A, B, C and D " (on circuit diagram and parts layout) for maximum reading on the meter scale. (Keep the Signal Generator volume control turned down so that during adjustments the meter does not read more than 10 on the meter scale.)

Now place Signal Generator shielded lead assembly in the jack marked "R.F.", set band selector in "B" position, tune Signal Generator to exactly 1610 kilocycles, place the red lead to a . 000075 mfd . condenser and connect to the antenna connector. Tune radio receiver to stop on the 1600 kilocycle end of dial. (Keep Signal Generator volume control adjusted so the meter reads about 10 on the meter scale.)

Now adjust trimmers "E, F and G" (on circuit diagram and parts layout) for maximum reading on meter scale. Repeat for best alignment. After the receiver has been installed in the car tune in a weak station near 1400 kilocycles, with volume control turned to maximum and antenna extended to full height. Readjust trimmer " G " only for maximum volume.

CAPACITY AND INDUCTANCE ALIGNMENT

This alignment procedure is to be used only when the tuner unit with the antenna, radio frequency, oscillator coils and tuning cores have been changed.

The intermediate frequency alignment at 257.5 kilocycles is the same as outlined in "Alignment Procedure" on page 18. After completing the alignment at 257.5 kilocycles for the intermediate frequency transformers "A, B, C and $D^{\prime \prime}$ proceed as follows: Connect Signal Generator red lead to a .000075 mfd. condenser, and connect to antenna connector. Set Signal Generator to exactly 1610 kilocycles, tune radio receiver to stop at 1600 kilocycle end of dial. Have output meter hooked-up as outlined in "Alignment Procedure." Adjust trimmers " E, F and G " for maximum reading on meter scale.

UNITED MOTORS PAGE 22-5

Next tune Signal Generator to exactly 1400 kilocycles, tune radio receiver to exactly 1400 on the dial and adjust iron cores " H, J and K " for maximum reading on output meter scale. NOTE: The front end of the iron cores are slotted so that these adjustments can be made with a non-metallic screw driver that fits loosely in the coil form.

Repeat alignment procedure at 1610 and 1400 kilocycles until the maximum reading has been attained at 1600 and 1400 kilocycles adjustments.

After the receiver has been installed in the car, tune in a weak station near 1400 kilocycles, with volume control turned to maximum position and antenna extended to full height. Readjust trimmers " G " only for maximum volume.

SERVICE PARTS LIST 986516 RADIO

Illus. Service \quad Description
No. Part No.

1	1219701	Coil Assembly - Permability Tuning
1A		Antenna Coil
1 B		R.F. Coil
1C		Oscillator Coil
2	1218639	Antenna Spark Choke
3	1219702	1st I.F. Transformer
4	1219703	2nd I.F. Transformer
5	1219704	Hash Choke
6	1219705	B Choke CONDENSERS
9	1219706	Antenna Trimmer
10	7230592	. 05 mfd . 600V. Tubular
11	7230592	. 05 mfd. 600V. Tubular
12	1215189	. 0001 mfd . Molded
13	7232957	. 0003 mfd . Molded
14	1218636	R.F. Trimmer
15	1219566	.00033 mfd . Temperature Compensating
16	1218635	Oscillator Trimmer
17	1207625	. 00005 mfd . Molded
18	7230767	. 005 mfd . 100V. Tubular
19	7230592	.05 mfd .600 V . Tubular
20	7230767	. 005 mfd .400 V . Tubular
21	1218009	Electrolytic Condenser
21A		20 mfd , 25V.
21B		15 mfd .350 V .
21C		10 mfd .350 V .
22	1216881	.0005 mfd . Molded
23	1208600	. 01 mfd .600 V . Tubular
24	1219707	Spark Plate
25	1219707	Spark Plate
26	1214939	. 5 mfd . 100V. Tubular
27	7240906	. 006 mfd . 1600 V . Tubular

30	1213224	$330 \mathrm{ohm} \mathrm{1/2W}$.
31	1216156	22,000 ohm 1W. Insulated
32	1213282	1 megohm $1 / 2 \mathrm{~W}$. Insulated
33	1214550	22,000 ohm 1/2W. Insulated
34	1213282	1 megohm 1/2W. Insulated
35	7240590	22,000 ohm 2W. Insulated
36	1213235	$1000 \mathrm{ohm} 1 / 2 \mathrm{~W}$. Insulated
37	1213289	15 megohm 1/2W. Insulated
38	1213282	1 megohm 1/2W. Insulated
39	1213846	270 ohm 1W. Insulated
40	1214555	220,000 ohm 1/2W Insulated
41	1214573	1800 ohm 2W. Insulated
42	1214541	82 ohm 1/2W. Insulated
43	1214541	82 ohm 1/2W. Insulated
44	1214553	47,000 ohm $1 / 2 \mathrm{~W}$. Insulated TUBES
	1217690	6BA6 R.F. Amplifier
	1217691	6BE6 Oscillator - Modulator
	1217690	6BA6 I.F. Amplifier
	1218105	6AT6 Detector A.V.C. 1st Audio
	1213793	6V6GT Audio Output
	1213794	6X5GT Rectifier
MISCELLANEOUS ELECTRICAL PARTS		

511219708 Control-Volume, Tone, Switch 51A Volume Control
51B Tone Control
52125588
$53 \quad 1219709$
54
55
56

60

1218651	Socket - Antenna Connector
7236279	Socket - Octal Tube
1219570	Socket - Miniature Tube
7239125	Socket - Vibrator
1219713	Socket - Pilot Lamp
1219714	Case - Wraparound (includes
	spark plates)
1219586	Clip - I.F. Transformer Mtg.
1219716	Cover - Front
1219717	Cover - Rear
1219718	Spring - Tension, Pointer
	Return
1219719	Link - Pointer
1219720	Pointer
1219722	Dial
1219723	Escutcheon
1219724	Nut - Control Mounting
1219725	Background - Dial
1219727	Clip - Pointer Adjust
1219728	Lever - Pointer
1219731	Spring - Dial Retaining R.H.
1219732	Spring - Dial Retaining L.H.

CUSTOM DELUXE TRUCK PUSH BUTTON RADIO MODEL 986443

This radio is single unit five tube (plus rectifier) radio designed expressly for 1951 Chevrolet Trucks, and can also be installed on 1947-48-49 and 50 Chevrolet Trucks. The receiver has been designed in conjunction with the truck and when installed, becomes an integral part of the instrument panel, with dial, push buttons and controls extending through the instrument panel. In this type of design, the speaker is integral with the receiver and instrument panel by means of a special rubber gasket which, due to location and baffling, permits exceptionally good tone quality. The receiver incorporates a five station mechanical tuning unit which permits easy instant tuning.

Figure 52

PUSH BUTTON TUNING

An outstanding feature of the 986443 radio is the new simplified method of setting up the push buttons, which can be done easily by anyone, without any tools. With this type of push button tuning which is completely mechanical, (no cords or pulleys are used), assures trouble free operation and constant calibration of the radio stations set on the push buttons at all times.

PROCEDURE FOR SETTING PUSH BUTTONS

Turn on the receiver for ten minutes or longer to allow circuits to stabilize.

1. Pull button slightly to the left and out ai far as it will go.
2. Tune in station desired with manual tunin knob to clearest and loudest point.
3. Push button in firmly to end of travel. Re peat same procedure for remaining fou buttons.

ELECTRICAL DESCRIPTION

The circuits used in this receiver are of th super-heterodyne type and use no regeneration The tuning circuits are of the permeabilit type and are tuned by varying the iron tunin cores in and out of the antenna, radio frequenc and oscillator coils, like pistons. (See Figur 53.)

Figure 53
The intermediate frequency stages are tunc by means of two adjustable iron cores, or located on the top side and the other on tt bottom side of the transformer. Both the fir: (input) and second (output) intermediate fre quency transformers are tuned by this metho (See Figure 54.)

The antenna circuit is capacity coupled to tl antenna by means of an antenna trimmer coi denser to take care of normal variations antenna and antenna coil capacity. The antent condenser is adjustable by means of a sma screw driver, and is located on the bottom sis of the radio case. The audio stage is tran: former coupled to the output tube to take al vantage of all the gain and tone quality th

MODEL 986443, Chevrolet Truck

Figure 54
the receiver is capable of developing. The automatic volume control is of the delayed signal type and is very capable of maintaining a constant level of volume at all times. Very high frequency filter chokes are used in the radio frequency and oscillator grid circuits to discriminate against ignition interference in the receiver, thus.eliminating the use of spark plug suppressors. The vibrator is the full wave non-synchronous type using an OZ4 rectifier tube and will work on either a negative or positive ground.

TUBE COMPLEMENT AND FUNCTION

6SK 7 Radio Frequency Amplifier
6SA7 Oscillator - Modulator
6SK7 Intermediate Frequency Amplifier
6SQ7GT Second Detector - Automatic Volume Control, First Aúdio
6V6GT Audio Output
OZ4 Cold Cathode Rectifier

GENERAL DESCRIPTION

Tuning range 540 to 1615 kilocycles. Intermediate frequency 262 kilocycles. Maximum power output 4.5 watts.
Undistorted power output 3 watts.
Current drain with permanent magnet speaker 6.1 amperes at 6 volts.

Speaker size 6" x 9" Elliptical type, permanent magnet.
Voice coil impedance 4 ohms at 400 cycles.

Fuse protection 14 amperes 25 volt.

INSTALLATION PROCEDURE TRUCK RADIO AND ANTENNA

All 1951 Chevrolet trucks will use the cowl type antenna, which will mount on the left-hand side of cab cowl. (See Figure 55.)

Figure 55

1. Assemble lead-in cable "P" and bracket " N " to antenna mast, then place spacer " F " over rod assembly
2. Place template on outside of cowl, left-hand side, lining up with body contour as indicated and drill $13 / 16^{\prime \prime}$ hole, scrape sound deadening from underside of cowl to insure good ground for antenna.
3. Pass antenna mast from inside cab thru $13 / 16$ " hole in cowl and attach bracket " O " to bracket " N " with bolt and nut " J " and " Q," fasten bracket " O " to side panel with self-tapping screws "L" and "M." DO NOT TIGHTEN. (See Figure 56.)
4. Place rubber pad "E," spacer "D" and nut " C " over antenna mast and tighten nut " C ," make sure seal "G" is placed, then slip top insulator " B " over antenna and tighten. (See Figure 56.)
5. Tighten self-tapping screws " L " and " M " also bolt and nut " J " and " Q " making sure antenna is perpendicular.

Figure 56

INSTALLATION OF RECEIVER AND NOISE SUPPRESSION EQUIPMENT

After unpacking and checking radio, place on bench and hook-up radio to 6 volt power unit (or fully charged battery) and allow radio to play while installing suppression equipment. Fill out the warranty label on the rear cover to show owner's name and date of installation.

RADIO THAT WILL PLAY FOR 15 MINUTES BEFORE INSTALLATION WILL GIVE MANY MONTHS OF UNINTERRUPTED SERVICE. CHECK ALL RADIOS BEFORE INSTALLATION.

1. Mount generator condenser on generator. (See Figure 57.)

Figure 57
2. Install distributor suppressor and rubber nipple on high tension coil wire. (See Figure 58.)

Figure 58
3. Remove front wheel hub and dust caps and install front wheel static collectors. Remove any grease from hole center of spindle to make a good connection, bend cotter pin to clear static collector. (See Figure 59.) These cannot be used on the 1-1/2 and 2 ton models.

Figure 59
4. Install ignition coil condenser on ignition coil. (See Figure 60.)

Figure 60
5. Install voltage regulator condenser on voltage regulator. (See Figure 61.)

Figure 61
6. Install ammeter condenser and male fuse holder body to ammeter by first placing hex nut on discharge terminal of ammeter about 3/8." Connect one lug of ammeter condenser to same terminal and then assemble male portion of fuse holder to ammeter stud. Connect other end of ammeter condenser to instrument panel for ground. (See Figure 62.)

Figure 62
7. Remove the decorative plate, the two buttons from the center of the instrument panel and the black cardboard baffle from the rear side of the radio grille.
8. Assemble the two lower mounting spacers with the bolts, lockwashers and rubber washers, to the proper holes in lower flange of instrument panel, with the bolts just short of sticking through the spacers. (See Figure 63.)

Figure 63
9. Assemble the two upper mounting spacers on the manual tuning control and volume control bushings. (See Figure 64.)

Figure 64
10. Open cowl ventilator. Place the receiver behind the instrument panel and insert the control bushings and dial escutcheon into the proper panel openings. (See Figure 65.)
11. Assemble one control bushing escutcheon and one hex nut on each control bushing. Tighten hex nuts. (See Figure 65.)
12. Assemble the two lower mounting bolts in the weld nuts in bottom of receiver and tighten securely. (See Figure 64.)
13. Install the tone control knob, felt washer and volume control knob on the left-hand shaft. Install the dummy knob, felt washer and manual tuning knob on the righthand shaft. (See Figure 65.)
14. Insert fuse in male fuse holder on ammeter, connect female fuse holder on receiver

Figure 65
" A " lead to male fuse holder. (See Figure 64.)
15. Plug the antenna lead into the antenna socket on side of the receiver. (See Figure 64.)
16. Connect dial light lead to the instrument panel light terminal on the truck lighting switch. (See Figure 66.)

Figure 66
17. Raise antenna to full height and tune in a weak station near 140 on the dial, with volume turned to maximum position. Adjust antenna trimmer for maximum volume.

PROCEDURE FOR SERVICING 986443 TRUCK RADIO

The same procedure for operating radio test equipment as outlined for 986515

PROCEDURE FOR CHECKING VOLTAGES OF 986443 TRUCK RADIO

It will be necessary to remove the front cover of the receiver.

Hook-up radio on the service bench to a 6 volt power unit or a fully charged battery.

Now set the Master selector switch of the

Figure 67
volt-ohm-milliammeter to the 12 position, set the voltage selector switch to D.C. $1 \mathrm{~K} \sim / V$. position. Place test leads in jacks marked "Test leads," ground the "-" negative lead to the radio chassis for ground, with the red lead check all tube pins marked " H " which show a reading on the voltage chart. (See Figure 67.)

If no voltage or incorrect check or replace the following:

1. Check or replace On and Off switch. (Item 55 C on circuit diagram and 55 on parts layout.)
2. Check or replace condensērs. (İtems $\overline{\mathbf{z}} \hat{\mathrm{A}}$, 26B and 27 on circuit diagram and parts layout.)
3. Check or replace choke. (Item 10 on circuit diagram and parts layout.)
4. Check or replace condensers 26A, 26B and 27 on circuit diagram and parts layout.
5. Check for open or loose connection in the 6 volt circuit.

Now set the Master selector switch to 600 position and the voltage selector switch to A.C. $1 \mathrm{~K} \sim / V$. position. With red lead check the OZ4 tube pins marked "p," each should read 270 to 280 volts A.C. If incorrect or no voltage check or replace the following:

1. Check or replace condenser. (Item 28 on circuit diagram and parts layout.)
2. Check or replace resistor. (Item 48 on circuit diagram and parts layout.)
3. Check or replace power transformer. (Item 60 on circuit diagram and parts layout.)
4. Check or replace vibrator. (Item 61 on circuit diagram and parts layout.)
5. Check or replace vibrator socket.

Now change the Master selector switch to the 300 position and the voltage selector switch to D.C. $1 \mathrm{~K} \Omega / \mathrm{V}$. position. Now check the voltage on tube pin marked " K " of the $\mathrm{OZ4}$ tube. It should read 250 to 260 volts D.C. If incorrect or no voltage check or replace the following:

1. Check or replace OZ 4 tube.
2. Check or replace $O Z 4$ tube socket.

Next check tube pin marked "P" of the 6V6GT tube. It should read 240 to 250 volts D.C. If incorrect or no voltage, check or replace the following:

1. Check or replace electrolytic condenser. (Item 20B on circuit diagram and Item 20 on parts layout.)
2. Check or replace audio output transformer. (Item 59 on circuit diagram and parts layout.)

Next check tube pin marked "S" on 6V6GT tube, should read 202 to 212 volts D.C. If incorrect or no voltage, check or replace the following:

1. Check or replace electrolytic condenser. (Item 20C on circuit diagram and Item 20 on parts layout.)
2. Check or replace resistor. (Item 49 on circuit diagram and parts layout.)

Next check tube pin marked "K" on 6V6GT tube, should read 10 to 14 volts D.C. If incorrect or no voltage, check or replace the following:

Figure 69

1. Check or replace electrolytic condenser. (Item 20A on circuit diagram and Item 20 of parts layout.)
2. Check or replace resistor. (Item 46 on circuit diagram and parts layout.)

Next check tube pin marked "P" on 6SQ7GT tube, should read 82 to 90 volts D.C. If incorrect or no voltage, check or replace the following:

1. Check or replace condensers. (Items 19, $21,22,23$ and 24 on circuit diagram and parts layout.)
2. Check or replace resistor. (Item 44 on circuit diagram and parts layout.)

Next check tube pin marked "p" of the 6SK7 intermediate frequency amplifier tube, should
read 200 to 210 volts D.C. If incorrect or no voltage, check or replace the following:

1. Check or replace intermediate frequency transformer. (Item 7 on circuit diagram and parts layout.)

Next check tube pin marked " S " of the 6SK7 I.F. amplifier tube, should read 65 to 75 volts D.C. If incorrect or no voltage check or replace the following:

1. Check or replace resistor. (Item 37 on circuit diagram and parts layout.)
2. Check or replace condenser. (Item 12 on circuit diagram and parts layout.)
Next check tube pin marked " P " of the 6SA7 tube, should read 200 to 210 volts D.C. If incorrect or no voltage check or replace the following:
3. Check or replace intermediate frequency transformer. (Item 6 on circuit diagram and parts layout.)

Next check tube pin marked " S " on 6SA7 tube, should read 65 to 75 volts D.C. If incorrect or no voltage check or replace the following:

1. Check or replace resistor. (Item 37 on circuit diagram and parts layout.)
2. Check or replace condenser. (Item 12 on circuit diagram and parts layout.)

Next check tube pin marked " P " on 6SK7 radio frequency amplifier tube, should read 117 to 127 volts D.C. If incorrect or no voltage, check or replace the following:

1. Check or replace resistor. (Item 38 on circuit diagram and parts layout.)
2. Check or replace condenser. (Item 13 on circuit diagram and parts layout.)

Next check tube pin marked "S" on 6SK7 R.F. amplifier tube, should read 65 to 75 volts D.C. If incorrect or no voltage, check or replace the following:

1. Check or replace resistor. (Item 37 on circuit diagram and parts layout.)
2. Check or replace condenser. (Item 12 on circuit diagram and parts layout.)

We have now checked the tubes, vibrator and

Figure 70

Figure 71
voltages of the receiver, with these being correct and radio does not play, the trouble will be in the grid circuit of the radio. To continue, it will be necessary to check the grid circuit by means of signal tracing.

PROCEDURE FOR SIGNAL TRACING RADIO 986443

Turn on Signal Generator On and Off switch, place the modulation switch in the modulated position, set Signal Generator tone control to .5 , place shielded lead assembly in jack marked "Audio." Ground the black lead to radio chassis for ground. Turn on radio receiver with volume to maximum position.

With red lead touch tube pin marked "P" of 6V6GT tube, if no signal, check or replace the following:

1. Check or replace condenser. (Item 25 on circuit diagram and parts layout.)
2. Check or replace audio transformer. (Item 59 on circuit diagram and parts layout.)
3. Check or replace speaker. (Item 58 on circuit diagram and parts layout.)

Next touch tube pin marked "G" of 6V6GT tube, if no signal, check or replace the following:

1. Check or replace 6V6GT tube.
2. Check or replace ovogT tube socket.

Next touch tube pin marked " p " of 6SQ7GT tube, if no signal, check or replace the following:

1. Check or replace condensers. (Items 19,

21, 22, 23 and 24 on circuit diagram and parts layout.)
2. Check or replace tone control. (Item 55B on circuit diagram and 55 on parts layout.)

Next touch tube pin marked "G" of 6SQ7GT tube, if no signal, check or replace the following:

1. Check or replace 6 SQ 7 tube.
2. Check or replace 6 SQ 7 tube socket.
3. Check or replace resistor. (Item 45 on circuit diagram and parts layout.)

Now change the Signal Generator shielded lead to the intermediate frequency "I.F." jack, then tune Signal Generator to exactly 262 kilocycles, set band switch on " A " position.

Turn the Signal Generator volume control about $1 / 3$ open. Next touch tube pin marked " P " of 6SK7 intermediate frequency amplifier tube, if no signal, check or replace the following:

1. Check or replace intermediate frequency transformer. (Item 7 on circuit diagram and parts layout.)
2. Check or replace volume control. (Item 55 A on circuit diagram and 55 on parts layout.)
3. Check or replace condenser. (Item 18 on circuit diagram and parts layout.)
4. Check or replace resistors. (Items 42 and 43 on circuit diagram and parts layout.)

Next touch tube pin marked " G " of 6SK7 I.F. amplifier tube, if no signal, check or replace the following:

1. Check or replace 6 SK7 tube.
2. Check or replace 6 SK 7 tube socket.
3. Check or replace sensitivity control. (Item 56 on circuit diagram and parts layout.)

Next touch tube pin marked " P " of 6SA7 tube, if no signal, check or replace the following:

1. Check or replace intermediate frequency transformer. (Item 6 on circuit diagram and parts layout.

Next touch tube pin marked " G " of 6SA7 tube, if no signal, check or replace the following:

1. Check or replace 6SA7 tube.
2. Check or replace 6SA7 tube socket.

Now change the Signal Generator shielded leac to the radio frequency "R.F." jack, tune signal generator to exactly 1000 kilocycles, sel band switch to "B" position.

Now tune radio receiver to 1000 kilocycles, then touch tube pin marked " p " of the 6SK' radio frequency amplifier tube, if no signal. check or replace the following:

1. Check or replace radio frequency coil (Item 4 on circuit diagram and parts layout.
2. Check or replace oscillator coil. (Item ! on circuit diagram and parts layout.)
3. Check or replace condensers. (Items 14 A $14 \mathrm{~B}, 15$ and 16 on circuit diagram ant parts layout.)
4. Check or replace resistors. (Items 39 anc 40 on circuit diagram and parts layout.)

Next touch tube pin marked " G " of 6SK7 radi frequency amplifier tube, if no signal, checl or replace the following:

1. Check or replace $6 \mathrm{SK}^{7}$ tube.
2. Check or replace 6SK7 tube socket.
3. Check or replace resistor. (Item 35 ol circuit diagram and parts layout.)

Now place a . 000075 mfd . condenser on th end of red lead and plug in antenna socket, i no signal, check or replace the following:

1. Check or replace chokes. (Items 1 and on circuit diagram and parts layout.)
2. Check or replace antenna coil. (Item 20 : circuit diagram and parts layout.)
3. Check or replace condenser. (Item 11 o circuit diagram and parts layout.)
4. Check or replace resistor. (Item 36 on cir cuit diagram and parts layout.)

PROCEDURE FOR ALIGNMENT 986443 RADIO

All receivers are aligned at the factory and should require no further adjustments, unless the adjustments have been tampered with, or new coils, I.F. transformers or tuning cores have been installed. To properly align the receiver it will be necessary to have an output meter and Signal Generator. If any of the tuning coils or cores have been replaced, see "Capacity and Inductance Alignment Procedure." If only the adjustments have been tampered with or an I.F. transformer has been replaced, the receiver is aligned as follows:

Set the volt-ohm-milliammeter Master selector switch in the 30 position, the voltage selector switch in A.C. $1 \mathrm{~K} \sim / V$. position, and place the leads in the jacks marked "output meter," place the other end for the black lead to radio chassis for ground. Place the red lead to the terminal of the speaker to which the green lead of the audio output transformer is connected, as outlined in the 1950 Chevrolet Radio Service and Shop Manual. (Speaker Item 48, audio output transformer 59 on circuit diagram and parts layout.)

Turn on the Signal Generator On and Off switch and turn on the radio receiver, turn volume control to maximum position. Set modulation switch in the modulated position, turn the band selector to the "A" position and turn the Signal Generator to exactly 262 kilocycles. Place the Signal Generator shielded lead in the jack marked "1.F." and place the black lead to the
radio chassis for ground. Place red lead to tube pin marked " G " on the 6SA7 tube.

Adjust the Signal Generator volume control so that the meter reads about 10 on the meter scale. Adjust in sequence trimmers A, B, C and D (on circuit diagram and parts layout) for maximum meter reading. Repeat adjustment to get best alignment. (Keep the Signal Generator volume turned down so that during adjustments the meter does not read more than 10 on the meter scale.)

Now place Signal Generator shielded lead in the jack marked "R.F.", set the band selector switch in " B " position, tune the Signal Generator to exactly 1615 kilocycles, place a .000075 mfd . condenser on the red lead and connect it to the antenna connector. Tune the radio receiver to the stop at the 1600 kilocycle end of the dial. (Keep the Signal Generator volume control adjusted so the meter reads about 10 on the meter scale.)

Now adjust trimmers "E, F and G" (on circuit diagram and parts layout) in sequence for maximum reading on the meter scale. Repeat for best alignment. Tune the Signal Generator and radio receiver to exactly 1000 kilocycles and repeat adjustments of trimmers " F and G " only for maximum meter reading.

After the receiver has been installed in the truck, tune in a weak station near 1000 kilocycles, with volume control turned to maximum position and antenna extended to full height, readjust trimmer " G " only for maximum volume.

Figure 72

CAPACITY AND INDUCTANCE ALIGNMENT PROCEDURE

This alignment procedure is to be used only when any of the following parts have been replaced in the radio; antenna coil, radio frequency coil, oscillator coil or any of the tuning cores.

The intermediate frequency alignment at 262 kilocycles is the same as outlined in "Alignment Procedure" on page 18. After completing the alignment at 262 kilocycles for the intermediate frequency transformers "A, B, C and D' proceed as follows:

Connect Signal Generator red lead to a . 000075 mfd. condenser and connect to antenna connector.

Mechanically align iron cores " H, J and K " (on circuit diagram and parts layout) to measure $1-25 / 32$ inches in coil forms from rear mounting edge of coil forms. (See Figure 72.) Now set Signal Generator to exactly 1615 kilocycles, set band switch to " B " position, tune radio receiver to the stop on the 1600 kilocycle end of the dial. Have output meter hooked up as outlined in "Alignment Procedure." Now adjust iron cores " H, J and K " (on circuit diagram and parts layout) in sequence for maximum meter reading.

Now adjust trimmers "E, F and G" (on circuit diagram and parts layout) in sequence for maximum reading on meter scale. Now tune Signal Generator and radio receiver to 1000 kilocycles, and readjust iron cores "J and K " only for maximum reading on meter scale. DO NOT READJUST IRON CORE "H" ON THIS ADJUSTMENT.

Repeat the adjustment of iron cores " J " and " K " only at 1000 kilocycles for maximum reading on meter scale.

Reset Signal Generator to 1615 kilocycles and tune radio receiver to stop on 1600 kilocycle end of dial, then readjust trimmers " F and G " only until no further increase in the meter reading can be obtained. After the radio receiver is installed in the truck, tune in a weak station near 1000 kilocycles, with volume control turned to maximum position and antenna extended to full height, readjust trimmer " G " only for maximum volume.

SERVICE PARTS LIST 986443

Illus. No.	Service Part No.	Description
		COILS
1	7255738	Antenna Choke
2	7258914	Antenna
3	7240251	Antenna Spark Choke
4	7258914	R.F.
5	7258911	Oscillator
6	1218725	1st I.F.
7	1218726	2nd I.F.
8	7241708	Hash Choke
9	1217846	"A" Spark Choke
10	1217846	"A" Spark Choke

CONDENSERS

Antenna Trimmer \& Bracket
.05 mfd .600 V . Tubular
.000068 mfd . Mica
Dual Trimmer - R.F.
Dual Trimmer - Oscillator
.000039 mfd . Mica
.000180 mfd. Compensating
.05 mfd .600 V . Tubular
.004 mfd .600 V . Tubular
Chassis Plate Condenser
Electrolytic
20 mfd .25 V .
20 mfd .400 V .
20 mfd .400 V .
.001 mfd .600 V . Tubular
.04 mfd .600 V . Tubular
.002 mfd .600 V . Tubular
.004 mfd .600 V . Tubular
.004 mfd .800 V . Tubular
Spark Plate Condenser
Pilot Light Section
"A" Lead Section
Chassis Plate Condenser
.005 mfd .1600 V . Tubular

RESISTORS

220 ohms $1 / 2 W$. Insulated 2.2 megohms $1 / 2 W$. Insulated 15,000 ohms 2 W . insulated 15,000 ohms 1 W . Insulated 330,000 ohms $1 / 2 W$. Insulated 22,000 ohms $1 / 2 \mathrm{~W}$. Insulated 1 megohm $1 / 2 W$. Insulated 47,000 ohms $1 / 2 \mathrm{~W}$. Insulated 6.8 megohm $1 / 2 \mathrm{~W}$. Insulated 220,000 ohms $1 / 2 W$. Insulated

7237835
1214563
7233653
7237595
1214557
1214550
1213282
1214553
1215563
1214555

```
7257959
7230592
1212359
7242454
7242454
1217736
7257424
7230592
7230767
1217848
7240724
1217790
7230592
7237836
7230767
7233243
7258332
1217848
7240906
```

36	1214563
37	7233653
38	7237595
39	1214557
40	1214550
41	1213282
42	1214553
43	1215563
44	1214555

PAGE 22-74 UNITED MOTORS
MODEL 986443,
Chevrolet Truck

Figure 73
Tuner Unit - Top View

PAGE 22-76 UNITED MOTORS
MODEL 986443.
Chevrolet Truck

UNITED MOTORS PAGE 22.7
MODEL 536443 ,
Chevrolet Truck

POINT SIGNAL STOPS - CHECK OR REPLACE ITEMS LISTED

No signal at point 1 - check or replace items 25-58-59.	No signal at point 7 - check or replace 6SK7 tube or tube socket.
No signal at point 2 - check or replace 6V6GT tube or tube socket	No signal at point 8 - check or replace item 6
No signal at point 3 - check or replace items 21-22-23-24-55B.	No signal at point 9 - check or replace 6SA7 tube or tube socket.
No signal at point 4 - check or replace 6SQ7 tube or tube socket.	No signal at point 10 - check or replace items 4-5-13-14A-14B-15-16-39.
No signal at point 5 - check or replace 6 SQ 7 tube or tube socket.	No signal at point 11 - check or replace 6SK7 tube or tube socket.
No signal at point 6 - check or replace items 7-18-42-43-55A.	No signal at point 12 - check or replace items 1-2-3-11-17-36-41

Figure 76

Circuit Diagram 986443 Truck Radio

GENERAL

MOUNTING-Model 7260405-All 1951 Cadillac Sedans. Model 7260905 - All 1951 Cadillac Convertibles.
TUBES-Seven, plus Rectifier and Trigger. SPEAKER - $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical, Permanent Magnet.
TUNING-Electronic.
ANTENNA TRIMMER COMPENSA.
TION - $0.000060 \cdot 0.000085 \mathrm{Mfd}$.
TUNING RANGE-540-1600 KC.

PUSHBUTTON SET-UP

No pushbutton set-up is necessary. However, the number of stations on which the tuner will stop can be controlled by the use

MODEL 7260405 of the Sensitivity Control.

SIGNAL SEEKING TUNER ALIGNMENT PROCEDURE:

NOTE: When aligning the signal seeker tuner type radio, be sure to use a vacuum tube voltmeter as indicated and be sure to follow the alignment sequence given-(Notice that the primary of the 2nd I.F. is aligned first.)
Output Meter Connection ... To Chassis (see parts layout page 2)

Volume Control Maximum Volume

Tone Control Treble
Generator Output
Not To Exceed 2 Volts at VTVM

Step	Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust in Sequence for Max. Output
1	0.1 mfd	6SA7 Grid (Pin 8)	260 KC	*High Frequency Stop	A, B, C, D
2	0.000068 mfd	Antenna Connector	1615 KC	High Frequency Stop	**E, F, G
3	0.000068 mfd	Antenna Connector	600 KC	Signal Genn. Signal	J, K
4	0.000068 mfd	Antenna Connector	1615 KC	Signal Gen. Signal	F, G
5	0.000068 mfd	Antenina Connector	1000 KC	Signal Gen. Signal	***

[^4]PAGE 22-80 UNITED MOTORS

UNITED MOTORS PAGE 22.6

> MODELS 72601105 7260905,195 Cadillac

PAGE 22-82 UNITED MOTORS

NOTE: For complete service information on the Signal Seeking Tuner see Bulletin 6D-620
SERVICE PARTS LIST

Hlus. No.	Production Part No.	Service Part No. ELECTRICAL PARTS	Description
Coils			

PAGE 22-84 UNITED MOTORS

This Model Same as Model 7260905, Bulletin 6D-1064, Except as Indicated by This Bulletin

MODELS 7260705 and 7261005

GENERAL

MOUNTING-1951 Cadillac 75 Series Cars.
TUBES-Seven, Plus Rectifier and Trigger.
SPEAKER- $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical, Permanent Mag. net, Front - $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical, Permanent Magnet, Rear.

TUNING-Electronic.

ANTENNA TRIMMER COMPENSATION-$0.000060-0.000085 \mathrm{Mfd}$.
TUNING RANGE-540-1600 KC.

PUSHBUTTON SET-UP-No pushbutton set-up is necessary. However, the number of stations on which the tuner will stop can be controlled by the use of the Sensitivity Controls.
ALIGNMENT PROCEDURE-Alignment procedure same as that of Model 7260905, Bulletin 6D.1064.

FUNCTIONAL OPERATION

The Cadillac renote control signal seeker type radio has all the controls of the Cadillac Syncro-Matic Model 7260905 Radio for front seat operation and in addition has a control head mounted in the left or right rear seat arm rest for rear seat, operation. This remote control head has a switch, volume control, and station selector button.
After the rear seat control switch is turned on, only the rear controls operate the radio. The radio cannot be operated from the front seat again until the rear control switch is turned off. Two controls that are always operated at the receiver are the tone control and the antenna control.
This radio operates from the front instrument panel in exactly the same manner as the 7260905 Model except for a front speaker switch on the right hand control knob. This switch is used only when the rear control is in operation, and it gives the front seat occupants the choice of listening at a reduced voiume from normal outpur to the stations se. lected by the person operating the rear selector button or completely disconnecting the front speaker.

THEORY OF OPERATION

The energizing of relays, illustration numbers 125 and 126, is accomplished by turning the rear control switch (123C) to the "on" position. When this switch is turned on, the "A" voltage is applied actoss the relays, energizing the relays and closing the contacts to the rear controls. With the relays 125 and 126 energized, the rear scat controls are operative and not the front seat controls.
Once these relays are energized, the "A" supply is connected to the power transformer center-tap through conracts 1.2 and 3.4 of relay 126, regardless of the position of the front switch (112B); therefore the radio cannot be turned off until the relays are de-energized by turning off the rear switch (123C). With the relays in the de-energized position, all controls are operative at the receiver, while all remote controls in the rear arm rest are inoperative.

SCHEMATIC DATA

All voltages measured from sockets terminals to chassis with a $20,000 \mathrm{Ohm}$ per volt voltmeter. Measurements taken with no signal and 6.0 volts at spark plate. Oscillator grid voltage taken with the set tuned to 1000 KC . Tuner not seeking and remote controls in "off" position.

Total "A" Drain 7.3 Amps.
Total "B" Drain 67MA.
Tolerance on voltages $\pm 10 \%$.
*-Indicates lead from tuner coil assy.
\square-Colors of terminals on service part.
Note the red and black circuits are exactly the same as those of Model 7260905. The blue circuit has been added so that the tuner can be controlled from the rear seat location. This circuit is switched in or out of control by the relays which are energized from the rear seat.

Relay leads' destinations and colors are to the respective contacts as numbered on the achematic.

parts layour - tube view

[^5] alignment.

UNITED MOTORS PACE 22.g
MODELS 7260705,
7261005, Cadillac

CADILLAC REMOTE CONTROL SYNCROMATIC MODEL SERVICE PARTS LIST

The Service Parts List of the Cadillac Remote Control Syncromatic Radios are identical to the Cadillac Syncromatic Radio, Model 7260905 , except for the illustration numbers and parts listed below: Those parts marked with a cross (\dagger) are changed from Model 7260905-the others are added parts.

[^6]
[^0]: *Before making this adjustment check mechanical setting of oscillator core "H." The rear of the core should be 1 多" from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form.) If adjustment is necessaty, first dissolve the glyptal seal on the core studs. Core adjustments should be made with an insulated screw driver, and core studs should be cemented in place with glyptal or household cement after alignment.
 **L is the pointer adjustment screw which is on the connecting link, between the pointer assembly and core guide bar (See tuner Dwg.) It should be adjusted so that when looking directly at the dial the pointer is on the 1100 KC mark. This setting is to give the correct relationship between the pointer and the dial when the radio is installed in a car.
 With the radio installed and the car antenna plugged in adjust the antenna trimmer " G " for maximum volume with the radio tuned to a weak station between 600 and 1000 KC (see sticker on case).

[^1]: *To tune to high frequency, put a $0.070^{\prime \prime}$ feeler gauge (or bare \#1j wire) in slct against the high frequency stop. (Sec tuner pictures). Depress station selector bar and allow the planetary arm to tun against the feeler gauge. Turn the radio off and then on.
 **Before making this adjustment, check the setting of osciilator core " H ." The rear of the core should be lāis" from the mounting end of the coil form. This measurement is readily made by inserting a suitable plug in the mounting end of the coil form. The core adjustment is made from the mounting end of the coil form with an insulated screw driver. (It will be necessary to steady the core guide bar by applying a downward pressure at the antenna core end of the bar while making these adjustments.) If this adjustment is necessary, first dissolve the glyptal seal on the core stud and be sure to reseal after making the adjustment.
 ***"L" is the pointer adjustment screw on the end of the core guide bar-adjust so pointer reads 1000 KC .
 With the radio installed and the antenna plugged in, adjust the anrenna trimmer "C" for maximum. volume with the radio tuned to a weak station between 600 and 1000 KC (see sticker on case).

[^2]: * Parts first used in 1951

[^3]: *Before making this adjustment check the mechanical setting of the oscillator core "H." The slotted end of the core should be $125 / 32^{\prime \prime}$ from the mounting end of the coil form. (This measurement is readily made by insercing a suitable plug in the mounting end of the coil form). If adjustment is necessary be sure to first dissolve the glyptal seal on the core studs. Core adjustments are made from the mounting end of the coil form with an insulated screwdriver, and core studs should be resealed with glyptal or household cement after alignment.
 *s"L" is the pointer adjustment screw on the pointer connecting link (see tuner drawing). Adjust so pointer reads 1100 KC . With the radio installed and the car antenna plugged in ad just antenna trimmer "G" (see sticker on case) for maximum volume with the radio tuned to a weak station between 600 and 1000 KC .

[^4]: *To tune to high frequency, put a $0.070^{\prime \prime}$ feeler gauge (or bare \#13 wire) in slot against the high frequency stop. (See tuner picture). Depress station selector bar and allow the planetary arm to run against the feeler gauge. Turn the radio off and then on.
 **Before making this adjustment, check the setting of oscillator core "H." The rear of the core should be 135 " from the mounting end of the coil form. This measurement is readily made by inserting a suitable plug in the mounting end of the coil form. The core adjustment is made from the mounting end of the coil form with an insulated screwdriver. (It will be necessary to steady the core guide bar by applying a downward pressure at the antenna core end of the bar while making these adjustments.) If this adjustment is necessary, first dissolve the glyptal seal on the corestud and be sure to re-seal after making the adjustment.
 ***"L" is the pointer adjustment screw on the end of the core guide bar-adjust so pointer reads 1000 KC .
 With the radio installed and the antenna plugged in, adjust antenna trimmer " G " (See sticker on case) for maximum volume with the radio tuned to a weak station between 600 and 1000 KC .

[^5]: ** Connect a VIVM from this point to ground for output indications duting

[^6]: * Parts First Used in 1951.

