8PECIFICRTIONS

Power supply...	7 volts 50/60 cycles AC
Power consumption	160 watts
Power output.	20 watts
Intermediate frequency	$455 \mathrm{kc} . / 10.7 \mathrm{mc}$.
Tuning frequency range:	
Broadcast Band	$540-1620 \mathrm{kc}$.
FM Band	88-108 mc.
Tubes:	
R-F Amplifier	6BA6
Converter.	6BE6
1st I-F Amplifier (AM-FM)	6SG7
2nd I-F (FM), Detector and AVC (AM)	6SG7
Limiter	6SH7
Discriminator	$6 \mathrm{H6}$
First Audio.	6SR7
Inverter	6SN7GT
Power output (push-pull stage)	(2) 616
Rectifier	5U4G
Tuning Indicator	6U5
Dial Lamps	Mazda No. 44
Speaker: coaxial.	12" Dynamic 5" PM
Field coil resistance.	165 ohms None
Voice coil impedance (400 cycles)	6 shms 3.8 ohms
Output transformer	.. 5000/6

METEODEOREEMOVING

Model CR-234 radio chassis is designed for easy removal from the cabinet in which it is installed. As the radio panel is permanently fastened to the chassis, the control knobs need not be removed when the chassis is taken out of the cabinet for service.

To remove the chassis, first remove the antenna leads from their terminals and all plugs from the receptacles on the rear of the chassis. Then remove the two Phillips-head screws from the angular slots in the flange at the rear of the chassis. Lift the rear of the chassis about one inch and pull it straight back. Never remove the chassis tray from the cab-inet-it has been properly positioned to bring the

CHRSSISEROMCREINET

radio panel in place when the chassis is replaced. In replacing the chassis, slide it so that the small hooks near the front, ride inside the flanges ${ }^{\text {o }}$ on the sides of the chassis tray. Push the chassis forward as far as it will go and the hook should then engage the slots in the chassis tray. Replace the two Phillipshead screws and nuts and tighten securely. Replace all plugs in their receptacles and the antenna leads on their correct terminals. The antenna terminal board for the loop antenna connections is designated L-H. The two terminals on the loop are designated L and H; the leads connected to these terminals should be wired to the corresponding terminals (L and H) on the chassis.

AEIGNMENTPROCEDURE

Alignment of this receiver requires the use of an accurately calibrated r-f signal generator, range 455 kc . to 107 mc ., an output meter, and a vacuum tube voltmeter of greater than 10 megohm input impedance. All trimmer condensers can be identified by stampings on the chassis and gang condenser cover and are shown on the chassis layout diagram.

The pointer on the radio dial should line up with the first vertical mark on the low frequency end of the dial glass. If the pointer does not line up, loosen the pointer on the dial string and move it to correct position. Re-tighten and re-cement the pointer to the string. Be sure the gang is fully meshed for this pointer alignment. Align AM tirst.

RMAEIGNMENT

I-E AEIGNMENT

1. Set volume, treble, and bass controls to maximum. Set Band Switch to Broadcast position, and dial pointer to 1000 kc .
2. Tune the signal generator to EXACTLY 455 kc .
3. Connect output of modulated signal generator to the signal grid of the 6BE6 (pin 7) through a .01 mfd . capacitor and signal generator ground to radio chassis.
4. AM and FM i-f transformers on this model are separate and can be identified on the chassis layout diagram Figure 3.
5. Connect output meter across voice coil of speaker and adjust the i-f transformers for peak output as indicated on the output meter.

mETERNATEVISURE ALIGNMENTOFE-ESTHGES

1. Connect 455 kc . sweep generator having approximately 20 kc . sweep to signal grid of 6BE6 (pin 7) through a .01 mfd . capacitor. Connect an oscilloscope through a 1 megohm isolating resistor across the 150,000 ohm diode load resistor. Align for best possible peak and symmetry.

R-E BLIGMMENT

1. Remove the signal generator lead from the 6BE6 grid and connect it across H and L on terminal strip on the rear of the chassis. The high side of the signal generator should be connected to H and the signal generator ground to L .
2. Set the signal generator and the radio receiver to 1400 kc ., adjust the 1400 kc . oscillator trimmer and the 1400 kc . r-f trimmer for maximum output.
3. Set the signal generator and radio receiver to 600 kc . Adjust the oscillator and r-f coil slugs for maximum output. If considerable adjustment was necessary re-check the 1400 kc . trimmer settings.
4. Replace chassis in cabinet and connect loop antenna leads to proper terminals on the rear of the chassis.
5. Form three turns of wire into a loop, connect this loop to the signal generator and loosely couple it to the receiver loop antenna.
6. With the signal generator and dial at 1400 kc ., adjust the loop antenna trimmer for maximum output.

TM ALIGNMENT

DISCREMENATOR MEIGNMENT

1. Tune signal generator to EXACTLY 10.775 mc . and connect to pin 4 of the 6SH7 Limiter tube socket through a .01 mfd capacitor.
2. Connect a DC vacuum tube voltmeter between point " B " on schematic diagram and ground (across .00047 mfd . capacitor-Pin 6 on 6 H 6 to ground).
3. Peak both discriminator slugs at 10.775 mc .
4. Retune signal generator to exactly 10.7 mc . and adjust bottom slug for zero volts.
5. The DC voltage at 10.625 mc . should be within 10% of the voltage at 10.775 mc . and of opposite polarity.

Note: If the signal generator is not capable of sufficient output to produce a readable DC voltage, the amplification of the last i-f stage can be used to increase the signal input to the limiter for discriminator alignment. To accomplish this, align the last i-f stage as indicated in "IF Alignment". Then align discriminator as above leaving the signal generator connected to the grid of the 6SG7 2nd i-f tube.

I-F DEIGNBENT

1. Connect high side of signal generator, through α .01 mfd . capacitor and a 1000 ohm resistor in series, to pin 4 of the 6SG7 2nd i-f tube. Connect low side of generator to chassis.
2. Close gang condenser and connect vacuum tube voltmeter across 220,000 ohm limiter grid resistor: (Point "A" on schematic to ground). Adjust signal generator output until a reading of at least 3 volts is obtained. In order to reduce regeneration caused by the vacuum tube voltmeter leads, a l-megohm isolating resistor, connected with as short leads as possible to point "A" should be used in series with the vacuum tube voltmeter. Align the 3rd i-f transformer for best peak as indicated on voltmeter.
3. Repeat above for each succeeding transformer by connecting signal generator to signal grid of first i-f tube 6SG7 then to the signal grid of 6BE6 converter. The i-f stages should be aligned in this order.
WARNING--After each i-f stage has been aligned, do not repeak with the signal into the grid of the 6BE6.

ETFEBNGTETESTEE

1. Replace signal generator with sweep generator having approximately 300 kc . sweep and tune generctor to 10.7 mc . Connect oscilloscope across 220,000 'ohm limiter grid resistor through a 1 -megohm iso lating resistor. The order of alignment is the same as when using a vacuum tube voltmeter. Each i.f transformer should be individually aligned for best peak and symmetry.

R-T ALIGNMENT

1. Connect vacuum tube voltmeter across limiter grid resistor as in FM I-F alignment.
2. Ground one side of the FM Antenna by placing a wire jumper from one FM connection on the antenna terminal strip to the ground connection.
3. Connect unmodulated signal generator through a 300 ohm resistor to ungrounded antenna post and chassis, and tune signal generator to 107 mc .
4. Set radio dial to 107 mc . and tune oscillator trimmer to peak output on vacuum tube voltmeter. Adjust signal generator output until a reading of at least 3 volts is obtained.
5. Tune 107 mc . r-f and antenna trimmers for maximum indication on voltmeter-it may be necessary to rock the dial while adjusting the r-f trimmer.

sPECEAESERTICE ERYORMRTION

The following information is provided for the service man who has α vacuum tube voltmeter or α similar measuring instrument available.
STAGE GAINS*
Antenna Post to R•F Grid at:
600 kc. .. 5.00
98 mc . 1.15

R-F Grid to Converter Grid at: 600 kc . 14.5

98 mc . 9.4
R-F on Converter Grid to 455 kc . on I-F Grid at: 600 kc 25.0
98 mc 3.2
I-F on Converter Grid to lst I-F Grid at: 455 kc . (gang closed) 28.0
1st I-F Grid to 2nd I-F Grid** at: 455 kc 95
10.7 mc 33
2nd I-F Grid to Limiter Grid at: 10.7 mc 33.4
OSCILLATOR OUTPUT VOLTAGE

The DC voltage developed across the Oscillator Grid Resistor (105) at:
\qquad98 mc .6.0 V
or 0.3 ma . through $22,000 \mathrm{ohm}$ Oscilfator Grid Resistor at 600 kc . and 0.27 ma . at 98 mc .

AUDIO GAIN

Voltage required across the Volume Control to produce 0.1 watt speaker output*** at 400 cycles is .016 volt with Input Selector Switch in BDCST. setting.

Variatione of $\pm 20{ }_{c}$ are permiseible. All readings made with suffient input slanal to rovide 0.5 watt spoaker output. 0.5 watt mpalker output at 400 cycles is equivatent to reading of 2.74V. an measured by a hlgh resistance AC voltmeter aeroes the outpul tranaformer tecondary.

- Delector Plate on AM
- 0.1 watt mposker output at 400 cycles is equivaient to a reading of 1.25 volts as meacured by a high resiatance AC voltmeler acrose the voice coil of epeaker.

DIALCORDERPIRCEMRNT

Two separate drive cables are used in the CR-234 dial assembly. One cable is used to transmit the motion from the tuning knob to the large pulley that is coupled to the condenser gang; the other cable actuates the dial pointer whenever the large pulley on the condenser gang is rotated. Separate instructions for replacing either of these cables is given in the following paragraphs.

CONDENSER DRIVE CABLE REPLACEMENT

Remove dial assembly after taking out four screws on each side of chassis. Slide a short length (approximately $1 / 2$ inch) of sleeving over one end of a length of dial cable, form a small loop and tie a knot in the manner shown on Figure 1. Tie spring to opposite end of cable making length excluding spring $191 / 2$ inches. Hook loop over the metal hook in pulley " D " and lace the cable through the pulley slot and around the pulley in a counterclockwise direction when viewed from the rear of the dial assembly keeping the cable to the rear of the pulley groove. Lace the cable around the smaller diameter portion
of the tuning control shaft wrapping $21 / 2$ turns from front to back; then around the opposite side of pulley ' D " into the pulley through the slot. Hook the end of tension spring " F " in the hole provided in pulley " D ", completing this operation.

DIAL POINTER DRIVE CABLE REPLACEMENT

Remove dial assembly after taking out four screws on each side of chassis. Slip a one-half inch length of sleeving over $\alpha 42$-inch length of dial cable. Tie the two ends to the loop end of the cable spring " E " securely so that the cable doubled measures $195 / 8$ inches end to end excluding spring.
Place spring hook in top hole and draw cable through slot of pulley " D ". Loop one end of cable around pulley " D " in a clockwise direction in front of condenser drive cable (viewing dial assembly from front) then loop the remaining end around pulley in a counterclockwise direction. Secure both ends of cable to chassis at edge of pulley slot with scotch tape, keeping piece of sleeving on remaining loop of cable.

Replace dial assembly and loop cable over pulley " A ". While holding cable taut remove scotch tape and loop cable over pulleys " B " and " C " as shown in Figure 1.
Turn the tuning control shaft until the condenser gang is completely meshed and slide the dial pointer on its track until it is in line with the last calibration mark at the low frequency end of the dial. The short
piece of sleeving installed prior to the stringing operation should be slid to the rear of the dial pointer and the crimping lug on the pointer pressed over the sleeving. After checking to make certain that the condenser gang is completely meshed and the dial pointer is in the position specified previously, apply a few drops of cement to each end of the sleeving to which the dial pointer is fastened. This completes the operation.

FIOURE 1

FIGURE 2

PRRTSEIST

REFERENCE NO.
DESCRIPTION
MAGNAYOX
PART NO.
1 Coil Assembly, R-F (AM) 360348G1
2 Coil Assembly, Oscillator (AM) 360407G1
3 Coil Assembly, Oscillator (FM) 36032361
4 Coil Assembly, R-F (FM) 36032262
5 Coil Assembly, Antenna (FM) 36032162
6 Coil Choke 36028461
7 Transformer, First I.F. (AM) 360373G1
8 Transformer, Second I.F. (AM) 360373G2
9 Transformer, First I.F. (FM) 36037461
10 Transformer, Second I.F. (FM) 36037461
11 Transformer, Third I.F. (FM) 36037461
12 Transformer, Discriminator 360375G1
13 Transformer, Power 30005262
14 Capacitor, Variable Trimmer 250046G2
15 Capacitor, Variable Trimmer 26006766
16 Capacitor, Three Gong Tuning 26010361
17 Capacitor, Ceramic, 15mmf, $\pm 10 \%$, 500 V 250187643
18 Capacitor, Ceramic, 15mmf, $\pm 10 \%, 500$ V. 250187G43
19 Capacitor, Mica, $330 \mathrm{mmf}, 500 \mathrm{~V}$. 250159G101
20 Capacitor, Mica, 47 mmf , 500 V 250159696
21 Capacitor, Ceramic, $50 \mathrm{mmf}, \pm 10 \%$, 500 V 250088G39
22 Capacitor, Molded Paper, $.0015 \mathrm{mfd}, 600 \mathrm{~V}$. 25020162
23 Capacitor, Mica, 100 mmf , 500 V 250159698
24 Capacitor, Mica, 100 mmf , 500 V 250159698
25 Capacitor, Mica, $220 \mathrm{mmf}, 500 \mathrm{~V}$ 2501596100
26 Capacitor, Mica, $220 \mathrm{mmf}, 500 \mathrm{~V}$ 2501596100
28 Capacitor, Molded Paper, 001 mfd, 600 V 25020161
30 Capacitor, Mica, $.0022 \mathrm{mfd}, \pm 5 \%$, 500 V 250160646
31 Capacitor, Mica, $680 \mathrm{mmf}, 500 \mathrm{~V}$ 2501596136
32 Capacitor, Molded Paper, $.0068 \mathrm{mfd}, 600 \mathrm{~V}$ 25020166
33 Capacitor, Ceramic, $.004 \mathrm{mfd}, 350 \mathrm{~V}$ 250088634
34 Capacitor, Molded Paper, $0022 \mathrm{mfd}, 600 \mathrm{~V}$. 25020163
35 Capacitor, Paper, $.015 \mathrm{mfd}, \pm 10 \%, 200 \mathrm{~V}$ 25018561
36 Capacitor, Molded Paper, $.01 \mathrm{mfd}, 600 \mathrm{~V}$ 25020167
37 Capacitor, Molded Paper, $.01 \mathrm{mfd}, 600 \mathrm{~V}$. 25020167
38 Capacitor, Moided Paper, $.01 \mathrm{mfd}, 600 \mathrm{~V}$. 25020167
39 Capacitor, Molded Paper, $.01 \mathrm{mfd}, 600 \mathrm{~V}$. 25020167
40 Capacitor, Molded Paper, $.01 \mathrm{mfd}, 600 \mathrm{~V}$. 25020167
41 Capacitor, Molded Paper, .01 mfd, 600 V 25020167
42 Capaç力or, Molded Paper, $.01 \mathrm{mfd}, 600 \mathrm{~V}$. 25020167
43 Copacitor, Molded Paper, $.01 \mathrm{mfd}, 600 \mathrm{~V}$. 25020167
44 Capacitor, Molded Paper, $.01 \mathrm{mfd}, 600 \mathrm{~V}$. 25020167
45 Capacior, Moided Faper, .0i mfd, 600 V 25020167
46 Capocitor, Molded Paper, $01 \mathrm{mfd}, 600 \mathrm{~V}$. 25020167
47 Capacitor, Molded Paper, .01 mfd, 600 V 25020167
48 R. F. Choke 36028461
49 Trimmer, 10 K.C. 259610 G 2
50 Coil, 10 K.C. 360244G2
51 Capacitor, Molded Paper, $.01 \mathrm{mfd}, 600 \mathrm{~V}$ $250201 G 7$
52 Copocitor, Molded Paper, $.02 \mathrm{mfd}, 600 \mathrm{~V}$. 25012963
REFERENCE MAGNAVOX
PART NO.
53 Capacitor, Molded Paper, $02 \mathrm{mfd}, 600 \mathrm{~V}$. 25012963
54 Capacitor, Molded Paper, $.02 \mathrm{mfd}, 600$ V. 250129G3
55 Capacitor, Molded Paper, $033 \mathrm{mfd}, 600 \mathrm{~V}$ 250201G10
56 Capacitor, Molded Paper, $047 \mathrm{mfd}, 600$ V 250201G11
57 Capacitor, Molded Paper, $047 \mathrm{mfd}, 600$ V 250201G11
58 Capacitor, Molded Paper, 047 mfd, 600 V. 250201 Gl 1
59 Capacitor, Molded Paper, . 1 mfd, 600 V. 250201G13
60 Capacitor, Mica, 47 mmf 250159696
61 Capacitor-Resistor Filter 250170G1
62 Capacitor, Electrolytic, $30-10 \mathrm{mfd}, 475 \mathrm{~V}$. 27002362
63 Capacitor, Electrolytic, $10 \mathrm{mfd}, 475 \mathrm{~V} .-20 \mathrm{mfd}, 25 \mathrm{~V}$. 270023613
64 Capacitor, Electrolytic, $20-10 \mathrm{mfd}, 475 \mathrm{~V} .-20 \mathrm{mfd}, 25 \mathrm{~V}$. 270023G12
65 Capacitor, Electrolytic, $20 \mathrm{mfd}, 25 \mathrm{~V}$. 270027G2
66 Capacitor, Mica, $680 \mathrm{mmf}, 300$ V. $\pm 10 \%$ 250159G131
67 Capacitor, Mica, 470 mmfd 250159690
68 Capacitor, Mica, 270 mmf 250159687
69 Resistor, Composition, 270 Ohms, $\pm 10 \%$, $1 / 2 \mathrm{~W}$ 230104691
70 Resistor, Composition, 33 Ohms, $\pm 10 \%$, $1 / 2 \mathrm{~W}$. 230104644
71 Resistor, Composition, $680 \mathrm{hms}, \pm 10 \%, 1 / 2 \mathrm{~W}$. 230104648
72 Resistor, Composition, 68 Ohms, $\pm 10 \%, 1 / 2$ W. 230104648
73 Resistor, Composition, 82 Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104649
74 Resistor, Composition, 220 Ohms, $\pm 10 \%, 1 / 2$ W 230104654
75 Resistor, Wire Wound, 125 Ohms, 5 W 240021611
76 Resistor, Composition, 1000 Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104662
77 Resistor, Composition, 1000 Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104662
78 Resistor, Composition, 1000 Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104662
79 Resistor, Composition, 1000 Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. $230104 G 62$
80 Resistor, Composition, 1000 Ohms, $\pm 10 \%$, $1 / 2$ W. 230104662
81 Resistor, Composition, 1500 Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104664
82 Resistor, Composition, 3300 Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104668
83 Resistor, Composition, 3900 Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104669
84 Resistor, Composition, 4700 Ohms, $\pm 10 \%, 1 / 2$ W. 230104670
85 Resistor, Composition, 4700 Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104670
86 Resistor, Composition, 4700 Ohms, $\pm 10 \%, 1 / 2$ W. 230104670
87 Resistor, Wire Wound, 6500 Ohms, $\pm 10 \%$ 24003569
88 Resistor, Composition, 8200 Ohms, $\pm 10 \%$, 1 W. 230105673
89 Resistor, Composition, 8200 Ohms, $\pm 10 \%, 1$ W 230105673
90 Resistor, Wire Wound, 100 Ohms, 10 W. 240021617
91 Resistor, Composition, 10K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$ 230104674
92 Resistor, Composition, 6800 Ohms, IW. 230105672
93 Resistor, Composition, 15K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$ 230104676
94 Resistor, Composition, 22K Ohms, $\pm 10 \%, 1 / 2$ W. 230104G78
95 Resistor, Composition, 22K Ohms, $\pm 10 \%, 1 / 2$ W. 230104678
96 Resistor, Composition, 47K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$ 230105682
97 Resistor, Composition, 47K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$ 230104682
98 Resistor, Composition, 47K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$ 230104682
99 Resistor, Composition, 68K. Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$ 230104684
100 Resistor, Composition, 68K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104684
101 Resistor, Composition, $100 \mathrm{~K} 0 \mathrm{hms}, \pm 10 \%, 1 / 2 \mathrm{~W}$. 230104686
102 Resistor, Composition, 100 K Ohms, $\pm 10 \%$, I W. 230105686
103 Resistor, Composition, 100 K Ohms, $\pm 10 \%$, 1 W 230105686
REFERENCE mAGNAVOX NO. MART MOX
104 Resistor, Composition, 100K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104686
105 Resistor, Composition, 150K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104688
106 Resistor, Composition, 150K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. $230104 G 88$
107 Resistor, Composition, 150K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104688
108 Resistor, Composition, 150K Ohms, $\pm 10 \%, 1 / 2$.W. $230104 G 88$
109 Resistor, Composition, 220K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104690
110 Resistor, Composition, 220K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104690
111 Resistor, Composition, 270K Ohms, 土 10\%, 1/2 W. 230104691
112 Resistor, Composition, 820K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104697
113 Resistor, Composition, 1.2 Megohm, $\pm 10 \%, 1 / 2$ W. ... 234AA Only 230104699
Resistor, Composition, 1 Megohm, $\pm 10 \%, 1 / 2$ W. ... 234BB Only 230104698
114 Resistor, Composition, I Megohm, $\pm 10 \%, 1 / 2$ W. 230104698
115 Resistor, Composition, 1 Megohm, $\pm 10 \%, 1 / 2$ W. 230104698
116 Resistor, Composition, 1 Megohm, $\pm 10 \%, 1 / 2$ W. 230104698
117 Resistor, Composition, 1 Megohm, $\pm 10 \%, 1 / 2$ W. 230104698
118 Resistor, Composition, 560K Ohms, $\pm 10 \%, 1 / 2$ W. .. (In Tuning Eye Socket) 230104G95
119 Resistor, Composition, 820K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104697
120 Resistor, Composition, 470K Ohms, $\pm 10 \%, 1 / 2 \mathrm{~W}$. 230104694
125 Control Kolume 220072G18
126 Control, Treble 220072G8
127 Control, Bass, With Switch 220073G5
128 Switch, Selector 160194G1
129 Socket, Motor $180520 G 4$
Plug, Motor (4 Prong) $180502 G 5$
Plug, Motor (6 Prong) 180521G4
130 Socket, Speoker 180504616
Plug, Speaker 18050364
131 Socket, Exterñal 18006061
Plug, External 18031162
132 Socket, Phono 18974161
Plug, Phono 18031161
133 Loop Antenna * * * *
134 Socket, A.C. Output 180505G5
135 Socket \& Cable Assembly 18045862
Dial Glass 150353G1
Panel Escutcheon 63393463
Knob, Tuning
Maroon 14002564
Beige $140025 G 2$
Knob, Selector
Maroon 14372763
Beige $143727 G 2$
Knob, Ireble, Volume
Maroon 14002565
Beige 140025G3
Output Iransformer, Primary 5000 ohms, Secondary 6 ohms 623504G1

* * * * The part number of the Loop Antenna Assembly changes with different Cabinets. It is thereforeimportant that you specify the style number of the instrument when ordering a replacement LoopAntenna Assembly.
MODELS CR-242,
CR-243
JAN. 18811286

Power supply......... 117 volts 50/60 cycles AC
Power consumption................................ 160 watts
Power output .. 20 watts
Intermediate frequency.......... $455 \mathrm{kc} . / 10.7 \mathrm{mc}$.
Tuning frequency range:
Broadcast Band...........................540-1620 kc.
FM Band .. $88-108 \mathrm{mc}$.
Tubes:
R-F Amplifier................6BA6
Converter..6BE6
1st I-F Amplifier (AM-FM)......................6SG7
2nd I-F (FM), Detector and AVC (AM) 6SG7
Limiter... 6SH7
Discriminator..6H6

SPECIFICATIONS

First Audio 6SR7
Inverter. 6SN7GT
Power output (push-pull stage) (2) 6L6
Rectifier 5U4G
Tuning Indicator 6U5
Dial LampsCT242 Speaker: coaxial.....................15" Dynamic $5^{\prime \prime}$ PMField coil resistance.......................... 500 ohms NoneVoice coil impedance (400 cycles) 15 ohms 3.8 ohmsOutput transformer...5000/15
CT243 Speaker: coaxial..................... 12" Dynamic 5" PM
Field coil resistance.............................. 165 ohms NoneVoice coil impedance (400 cycles)....... 6 ohms 3.8 ohmsOutput transformer.. $5000 / 6$

GEMERET

CR-242 and CR-243 differ only in the speaker systems and audio response for different cabinets. It may become necessary to make minor changes in the electrical circuit of a chassis to provide the correct response for different cabinets.

METEODEOB BEMOVING

Model CR-242 and CR-243 radio chassis are designed for easy removal from th, cabinet in which it is installed. As the radio panel is permanently fastened to the chassis, the control knobs need not be removed when the chassis is taken out of the cabinet for service.
To remove the chassis, first remove the antenna leads from their terminals and all plugs from the receptacles on the rear of the chassis. Then remove the two Phillips-head screws from the angular slots in the flange at the rear of the chassis. Lift the rear of the chassis about one inch and pull it straight back. Never remove the chassis tray from the cab-inet-it has been properly positioned to bring the

If this becomes necessary such a variation from the original chassis is indicated by a suffix letter. Whenever necessary Service Bulletin Supplements will be issued with latest schematic drawings and parts lists indicating these changes.

II (L and H) on the chassis. (L and H) on the chassis.

Alignment of these receivers requires the use of an accurately calibrated r-f signal generator, range 455 kc . to 107 mc ., an output meter, and a vacuum tube voltmeter of greater than 10 megohm input impedance. All trimmer condensers can be identified by stampings on the chassis and gang condenser cover and are shown on the chassis layout diagrams.

pointer alignment. Align AM first.

AM AEIGNMENT

I-F BEIGNMENT

1. Set volume, treble, and bass controls to maximum. Set Band Switch to Broadcast position; and dial pointer to 1000 kc .
2. Tune the signal generator to EXACTLY 455 kc . 3. Connect output of modulated signal generator to the signal grid of the 6BE6 (pin 7) through a .01 mfd .

radio panel in place when the chassis is replaced. In replacing the chassis, slide it so that the small hooks near the front, ride inside the flanges on the sides of the chassis tray. Push the chassis forward as far as it will go and the hook should then engage the slots in the chassis tray. Replace the two Phillipshead screws and nuts and tighten securely. Replace all plugs in their receptacles and the antenna leads on their correct terminals. The antenna terminal board for the loop antenna connections is designated L-H. The two terminals on the loop are designated L and H; the leads connected to these terminals should be wired to the corresponding terminals

The pointer on the radio dial should line up with the first vertical mark on the low frequency end of the dial glass. If the pointer does not line up, loosen the pointer on the dial string and move it to correct position. Re-tighten and re-cement the pointer to the string. Be sure the gang is fully meshed for this
capacitor and signal generator ground to radio chassis.
4. AM and FM i-f transformers on these models are separate and can be identified on the chassis layout diagram Figure 3.
5. Connect output meter across voice coil of speaker and adjust the i-f transformers for peak output as indicated on the output meter.

ALTERNBTEVISURE ALIGNMENTOEI-ESTAGES

1. Connect 455 kc . sweep generator having approximately 20 kc . sweep to signal grid of 6BE6 (pin 7) through a .01 mfd . capacitor. Connect an oscilloscope through a 1 megohm isolating resistor across the 150,000 ohm diode load resistor. Align for best possible peak and symmetry.

R-F AEIGNMENT

1. Remove the signal generator lead from the 6BE6 grid and connect it across H and L on terminal strip on the rear of the chassis. The high side of the signal generator should be connected to H and the signal generator ground to L.
2. Set the signal generator and the radio receiver to 1400 kc ., adjust the 1400 kc . oscillator trimmer and the 1400 kc . r-f trimmer for maximum output.
3. Set the signal generator and radio receiver to 600 kc . Adjust the oscillator and r-f coil slugs for maximum output. If considerable adjustment was necessary re-check the 1400 kc . trimmer settings.
4. Replace chassis in cabinet and connect loop antenna leads to proper terminals on the rear of the chassis.
5. Form three turns of wire into a loop, connect this loop to the signal generator and loosely couple it to the receiver loop antenna.
6. With the signal generator and dial at 1400 kc ., adjust the loop antenna trimmer for maximum output.

FM AEIGNMENT

DESGRIMINTTOR REIGMMRNT

1. Tune signal generator to EXACTLY 10.775 mc . and connect to pin 4 of the 6 SH 7 Limiter tube socket through a .01 mfd . capacitor.
2. Connect a DC vacuum tube voltmeter between point " B " on schematic diagrom and ground (across .00047 mfd capacitor-Pin 6 on 6 H 6 to ground).
3. Peak both discriminator slugs at 10.775 mc .
4. Retune signal generator to exactly 10.7 mc . and adjust bottom slug for zero volts.
5. The DC voltage at 10.625 mc . should be within 10% of the voltage of 10.775 mc . and of opposite polarity.

Note: If the signal generator is not capable of sufficient output to produce a readable DC voltage, the amplification of the last i-f stage can be used to increase the signal input to the limiter for discriminator alignment. To accomplish this, align the last i-f stage as indicated in "IF Alignment". Then align discriminator as above leaving the signal generator connected to the grid of the 6SG7 2nd i-f tube.

I-7 ALGNMENT

1. Connect high side of signal generator, through a .01 mfd capacitor and a 1000 ohm resistor in series, to pin 4 of the 6SG7 2nd i-f tube. Connect low side of generator to chassis.
2. Close gang condenser and connect vacuum tube voltmeter across $220,000 \mathrm{ohm}$ limiter grid resistor; (Point "A" on schematic to ground). Adjust signal generator output until a reading of at least 3 volts is obtained. In order to reduce regeneration caused by the vacuum tube voltmeter leads, a l-megohm isolating resistor, connected with as short leads as possible to point " A " should be used in series with the
vacuum tube voltmeter. Align the 3rdi-f transformer for best peak as indicated on voltmeter.
3. Repeat above for each succeeding transformer by connecting signal generator to signal grid of first i-f tube 6SG7 then to the signal grid of 6BE6 converter. The i-f stages should be aligned in this order.

WARNING-After each i-f stage has been aligned, do not repeak with the signal into the grid of the 6BE6.

MTTERNGTRTETAE MEEGNMENGOTEFGTAGES

1. Replace signal generator with sweep generator having approximately 300 kc . sweep and tune gen. erator to 10.7 mc . Connect oscilloscope across 220,000 ohm limiter grid resistor through a 1 -megohm isolating resistor. The order of alignment is the same as when using a vacuum tube voltmeter. Each i-f trans. former should be individually aligned for best peak and symmetry.

B-T AETGNMENT

1. Connect vacuum tube voltmeter across limiter grid resistor as in FM I-F alignment.
2. Ground one side of the FM Antenna by placing a wire jumper from one FM connection on the antenna terminal strip to the ground connection.
3. Connect unmodulated signal generator through α 300 ohm resistor to ungrounded antenna post and chassis, and tune signal generator to 107 mc .
4. Set radio dial to 107 mc . and tune oscillator trimmer to peak output on vacuum tube voltmeter. Adjust signal generator output until a reading of at least 3 volts is obtained.
5. Tune 107 mc . r -f and antenna trimmers for maximum indication on voltmeter--it may be necessary to rock the dial while adjusting the r-f trimmer.

MODELS CR-242, CR-243

 SPECMAE SBRVEGM

 SPECMAE SBRVEGM INEORNTRON

 INEORNTRON}
The following information is provided for the service man who has a vacuum tube voltmeter or a similar measuring instrument available.

STAGE GAINS*

Antenna Post to R-F Grid at:

600 kc 5.00
98 mc 1.15
R-F Grid to Converter Grid at:
600 kc 14.5
98 mc 9.4
R-F on Converter Grid to 455 kc . on I-F Grid at:600 kc .25.0
98 mc 3.2
I-F on Converter Grid to lst I-F Grid at: 455 kc . (gang closed) 28.0
lst I-F Grid to 2nd I-F Grid** at:455 kc .95
10.7 mc 33
2nd I-F Grid to Limiter Grid at:
10.7 mc33.4

DEFECORD

Two separate drive cables are used in both the CR-242 and CR-243 dial assemblies. One cable is used to transmit the motion from the tuning knob to the large pulley that is coupled to the gang condenser; the other cable actuates the dial pointer whenever the large pulley on the gang condenser is rotated. Separate instructions for replacing either of these cables is given in the following paragraphs. CONDENSER DRIVE CABLE REPLACEMENT Remove dial assembly after taking out four screws on each side of chassis. Slide a short length (approximately $1 / 2$ inch) of sleeving over one end of a length of dial cable, form a small loop and tie a knot in the manner shown on Figure 1. Tie spring to opposite end of cable making length excluding spring $191 / 2$ inches. Hook loop over the metal hook in pulley " D " and lace the cable through the pulley slot and around the pulley in a counterclockwise direction when viewed from the rear of the dial assembly keeping the cable to the rear of the pulley groove. Lace the cable around the smaller diameter portion of the tuning control shaft wrapping $21 / 2$ turns from front to back; then around the opposite side of pulley " D " into the pulley through the slot. Hook the end of tension spring " F " in the hole provided in pulley ' D ", completing this operation.
DIAL POINTER DRIVE CABLE REPLACEMENT
Remove dial assembly after taking out four screws on each side of chassis. Slip a one-half inch length

OSCILLATOR OUTPUT VOLTAGE

The DC voltage developed across the Oscillator Grid Resistor (105) at:
600 kc .
6.6 V.
98 mc .
6.0V
or 0.3 ma . through 22,000 ohm Oscillator Grid Resistor at 600 kc . and 0.27 ma . at 98 mc .

AUDIO GAIN

Voltage required across the Volume Control to produce 0.1 watt speaker output ${ }^{* * *}$ at 400 cycles is .016 volt with Input Selector Switch in BDCST. setting.

[^0]REPKRGMENT
of sleeving over a 42 -inch length of dial cable. Tie the two ends to the loop end of the cable spring " E " securely so that the cable doubled measures $195 / 8$ inches end to end excluding spring.
Place spring hook in top hole and draw cable through slot of pulley " D ". Loop one end of cable around pulley " D " in a clockwise direction in front of condenser drive cable (viewing dial assembly from front) then loop the remaining end around pulley in a counterclockwise direction. Secure both ends of cable to chassis at edge of pulley slot with scotch tape, keeping piece of sleeving on remaining loop of cable.
Replace dial assembly and loop cable over pulley "A". While holding cable taut remove scotch tape and loop cable over pulleys " B " and " C " as shown in Figure 1.
Turn the tuning control shaft until the gang condenser is completely meshed and slide the dial pointer on its track until it is in line with the last calibration mark at the low frequency end of the dial. The short piece of sleeving installed prior to the stringing operation should be slid to the rear of the dial pointer and the crimping lug on the pointer pressed over the sleeving. After checking to make certain that the gang condenser is completely meshed and the dial pointer is in the position specified previously, apply a few drops of cement to each end of the sleeving to which the dial pointer is fastened. This completes the operation.

126	Control, treble		220072-8		Dial Glass	150353-1
127	Control, bass, with switch	assembly (CR-243 only)	220073-5		Panel Escutcheon.	
128	Switch, selector.		$160194-1$ $180520-4$		Knob, tuning	
129	Socket, motor		180521-4		Beige.	140025-2
130	Socket, speaker		180504-16		Knob, selector	
	Plug, speaker.		180503		Maroon	143727-3
131	Socket, external.		180060-1		Beige.	43727-2
	Plug, external. .		180311-2		Knob, treble, volume	
132	Socket, phono		. $1880311-1$		Meige.	.140025-3
	Plug, phono.			136	Reject switch.	.160224-1
133	Loop antenna.		180458-2	137	Socket, solenoid	182776-1
135	Socket and cable				Socket, solmid.	

*The part number of the Loop Antenna Assembly changes with different Cabinets. It is therefore important that you specify the style
number of the instrument when ordering a replacement Loop Antenna Assembly.

FIG. 2a

FIG. 2b

(3) Loosely couple the Signal Generator lead to the Loop and set to 1650 KC .
(4) With Variable Capacitor set at the extreme clockwise position, tune in the 1650 KC signal by means of the Oscillator Trimmer on the Variable Capacitor (front section).
(5) Set the Signal Generator to 1500 KC and turn the Tuning Control so that this frequency is indicated on the dial. Adjust the Antenna Trimmer on the Variable Capacitor (rear section) for maximum output. No other adjustments are necessary.

PAGE 22-4 MAJESTIC

MAJESTIC PACE 22

TUBES: The Tubes used, and their functions, are as
follows:

12AT7
6BE6
6BA6
6BA6
6AL5
6AV6
6V6GT
5Y3GT

R-F Amplifier and Mixer (F-M)
A-M Converter and F-M Oscillator
1st I-F Amplifier (A-M \& F-M)
2nd I-F Amplifier (F-M)
F-M Detector
A-M Detector, A.V.C. and Audio Amp. Beam Power Amplifier Rectifier

LINE VOLTAGE: This receiver is designed for operation on 105-125 Volts; 60 Cycles, Alternating Current (AC) only.

POWER CONSUMPTION INCLUDING RECORD CHANGER: 115 Watts.

TUNING RANGE:

Broadcast Band:	540 to 1650 Kilocycles $(182$ to 555 Meters)
F-M Band:	87.5 to 108.5 Megacycles
	$(2.7$ to 3.4 Meters)

(2.7 to 3.4 Meters)

FIG. I-FRONT PANEL CONTROLS

29.463

STEP	circuit ALIGNEO	RECEIVER DIAL AT	SIGNAL GENERATOR			METER		ADJUST	METER INDICATION
			TYPE	FREQ.	CONNECTIONS	TYPE	CONNECTIONS		
1	B.C. I.f	8.C. BAND MAX. FREQ:	A.M.	$\begin{aligned} & 455 \mathrm{KC} \\ & 30 \% \text { MOD. } \end{aligned}$	REAA B.c. SECTION OF VARIAOLE CONDENSER	OUT PUT	ACROSS VCICE COIL	$\begin{aligned} & \text { TOP a BOT. } \\ & \text { OF T4 a TS } \end{aligned}$	max. out put
$\begin{gathered} \hline \text { PREFERRED } \\ \text { METHOD } \\ 2 \\ \hline \end{gathered}$	FM.	F. M. BAND MAX.FREQ.	F.M.	10.7 MC . 30% MOD.	high side through . 005 MF (APPROX.) CAP TOPIN 7 OF I2AT7	OUTPUT	ACROSS VOICE COIL	topa bot.	max. output
$\begin{gathered} \text { ALTERNATE } \\ \text { METHOO } \\ 2 \end{gathered}$			R.F. OR A.M.	10.7 mc . UNMOD.		$\begin{gathered} \text { O.C. } \\ \text { V.T.V.N. } \end{gathered}$	negative to pin 7 of 6ALS; POSITIVE TO GROUNO	of tiat2; Bot.of 13	MAX. DEFLECTION
$\begin{gathered} \text { PREFERRED } \\ \text { METHOD } \\ 3 \end{gathered}$	$\begin{aligned} & \text { F. M. } \\ & \text { DET. } \end{aligned}$	$\begin{aligned} & \text { FM. BANO } \\ & \text { MAX. FREQ. } \end{aligned}$	F. M.	$\begin{gathered} 10.7 \mathrm{mc} . \\ 30 \% \text { mod. } \end{gathered}$		OUT PUT	ACROSS VOICE COIL	TOP	MAX. OUTPUT
$\begin{aligned} & \text { ALTERNATE } \\ & \text { METHOD } \\ & \mathbf{3} \end{aligned}$			R.F. OR A.m.	10.7 mc . UNMOD.		$\begin{gathered} \text { D.C. } \\ \text { v.f. v. M. } \end{gathered}$	NEG.TO JUNCTION OF 8.2 k 'S AT 6AL.5; POS. TO JUNCTION OF RIS a CIT.	$\begin{aligned} & O F \\ & T 3 \end{aligned}$	$\begin{aligned} & \text { 2ERO BETWEEN } \\ & \text { TWO OPPOSITE } \\ & \text { POLARITY PEAKS } \end{aligned}$
$\begin{aligned} & \text { PREFERRED } \\ & \text { METHOD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { F.M. } \\ & \text { osc. } \end{aligned}$	F.M. BAND MAX. FREQ.	F. M.	$\begin{aligned} & 108.5 \mathrm{mc} . \\ & 30 \% \mathrm{mOC} . \end{aligned}$	EACH SIDE OF GEN. OUTPUT THROUGH I5O OHM RESISTOR TO F.M. ANT. TERMINALS	OUTPUT	ACROSS VOICE CCIL	TRIMMER ON TOP	MAX. OUTPUT
$\begin{gathered} \text { ALTERNATE } \\ \text { METHOD } \\ 4 \end{gathered}$			R.F. OR A.M.	108.5 Mc . UNMOD.		$\begin{gathered} \text { O.C. } \\ \text { V.T.V.M. } \end{gathered}$	negative to pin 7 of 6AL5; MOSITIVE TO GROUNO	CENTER OF VAR. COND. (CII)	MAX. DEFLECTION
PREFERRED METHOD 5	$\begin{aligned} & \text { f. M. } \\ & \text { R.F. } \end{aligned}$	$\begin{aligned} & \text { F.M. BAND } \\ & 105 \mathrm{mC} \end{aligned}$	F. M.	$\begin{aligned} & 105 \text { MC. } \\ & \text { 30\% MOD. } \end{aligned}$		OUT PUT	ACROSS VOICE CRIL	TRIMmer at rear of VAR.CONO. (C 10)	MAX. output
$\begin{gathered} \text { ALTERNATE } \\ \text { METHOD } \\ 5 \\ \hline \end{gathered}$			R.F. OR A.M.	105 Mc . UNMOD.		$\begin{gathered} \text { о. C. } \\ \text { V.T. v. м. } \end{gathered}$	NEGATIVE TO PIN 7 OF 6AL5; POSITIVE TO GROUND		MAX.
6	$\begin{aligned} & \text { B.C } \\ & \text { osc. } \end{aligned}$	B.C. 8 AND MAX.FREQ.	A.M.	$\begin{array}{\|l\|} 1650 \mathrm{KC} \\ \text { 30\%. MOD. } \end{array}$	REAR b.C. SECTION OF variable condenser	OUTPUT	ACROSS VOICE COIL	TRIMMEA AT FRONT OF VAR COND. (C34)	max. OUTPUT
7	$\begin{aligned} & \text { B.C. } \\ & \text { R.F. } \end{aligned}$	$\begin{aligned} & \text { B.C.BAND } \\ & 1500 \mathrm{KC} \end{aligned}$	A.M.	$\begin{aligned} & 1500 \times c \\ & 30 \% \text { MOD. } \end{aligned}$	each siof or gen.output to 2 OR 3 -TURN LOOP (IFOOT DIA.) SEVERAL FEET FROM ANT.	Out put	ACROSS VOICE COIL	B.C.TRIM. AT REAR OF VAR CONU.(C 36).	

I- TURN VOLUME CONTROL FULLY CLOCKWISE.
3-UNLESS OTHERWISE NOTED CONNECT LOW SIDE OF SIGNAL GENERATOR TO CHASSIS.
4-UNLESS OTHERWISE NOTED, SET VARIABLE CONDENSER TO MINIMUM CAPACITY (MAX.FREO.)
5-USE PROPER TOOL FOR SMALL I.F. TRANS. ADJUSTMENTS - I.E., II50 DIA. BAKELITE WITH
6-MAINTAIN 60 CYCLE LINE VOLTAGE AT APPROX. 117 VOLTS.

LINE VOLTAGE: This receiver is designed for operation on 105-125 Volts, 50-60 Cycles, either Alternating or Direct Current (AC-DC).

POWER CONSUMPTION: 30 Watts.
TUNING RANGE: Broadcast: 540 to 1650 Kilocycles (180 to 555 meters). TUBES: The tubes used, and their functions, are as follows:

$$
\begin{array}{ll}
\text { 12BE6 Converter } & \text { 12AT6 Detector, Avc and Audio Amp. } \\
\text { 35W4 Rectifier } & 50 \mathrm{C} 5 \text { Power Amplifier }
\end{array}
$$

ALIGNMENT: Should it become necessary at any time to check the alignment of this receiver, proceed as follows:
(1) Connect the high side of $\alpha 455 \mathrm{KC}$ Signal Generator through a .1 mf capacitor to the stator lug on the rear section of the variable capacitor; the ground lead to one of the lugs on the line on-off switch. Connect a suitable output meter across the speaker voice coil. Turn the Volume and Tuning controls to their extreme clockwise positions.
(2) Adjust the trimmers located at the top and bottom of the I-F transformer for maximum indication on the output meter.
(3) Connect the Signal Generator high side to the antenna lug through a 47 mmfd capacitor; the low side remains as in step (1). Set the Signal Generator to 1650 KC .
(4) With Variable Capacitor set at the extreme clockwise position, tune in the 1650 KC signal by means of the Oscillator Trimmer on the Variable Capacitor (front section).
(5) Set the Signal Generator to 1500 KC and turn the Tuning Control so that this frequency is received. Adjust the Antenna Trimmer on the Variable Capacitor (rear section) for maximum output. No other adjustments are necessary.

ITEM	Part mo	description
(1)	2. 228	2 - gata Var. Condenser
(2)	L.445-2	h.F. TRANSFORMER
(3)	'6.201-9	VOLUME CONTRD $\mathrm{w} / 5 \mathrm{WITCH}$
(4)	30.332-1	4^{-}p.m. sfraken With QUTPUT TRANSFORMER
(5)	5.436-1	50-50 mFd ELECT, isov. o.c.
(6)	1.402-4	OSCILLATOR COIL
(7)	1.534	antenna coil

TRIMMER AND TUBE LOCATION DIAGRAM

MEISSNER T.R.F. BANDPASS TUNER
 MODEL 4 E

The Meissner Model $4 E$ T.R.F. Bandpass Tuner is designed for superior high fidelity broadcast reception. It is specifically designed for custom installation and may be used in connection with a power amplifier and speaker system to fit a wide variety of installations ranging from the simplest home installation consisting of a low power amplifier and a speaker, to the largest high power installations designed to serve large auditoriums and consisting of one or more high power amplifiers and multiple speakers. Although the designer of such an installation must be guided to a large extent by the requirements of the installation, the following general hints may prove helpful.

The Power Amplifier

The output impedance of the $L E$ Tuner is 100,000 ohms and should be worked into an amplifier having high impedance input. High impedance amplifiers usually have an input impedance of 500,000 ohms, but some have a lower impedance than this and the 4 E may be worked into an impedence as low as 100,000 ohms with no appreciable loss of low frequencies or increase in distortion. An amplifier having provision for phonograph input from a crystal pickup is satisfactory for use with the $4 E$, but under no conditions should the $4 E$ be worked into a microphone input channel. The relatively high output of the 4 E would cause overloading and severe distortion in the microphone input stage and the hum level would be too high to be a considered acceptable.

The Cabinet
No special precautions are necessary in the installation of the 4 E Tuner, although it should be borne in mind that sufficient ventilation is required to prevent the unit from overheating. The heat generated by the 4 E is low so thet only a small amount of ventilation is required and usually the ordinary open back type of cabinet is satisfactory.

One more thing which shovld be observed in planning an installation is to use the normal precautions against microphonics. Since the $4 E$ is a T.R.F. circuit end has no local oscillator, its téndency toward microphonism will te much less than in a similar superhet unit; but the GAT6 andio amplifier tube mey produce microphonics if subjected to severe vibration. This vibration may be transmitted through the cabinet or through the air from the speaker and the instellation layout should be planned to avoid it.

The Record Player (or Changer)
The phonograph system of the 4 E chassis is designed for use with crystal type pickups, and any record player or changer having this type pickup may be used. The following notes should be observed:

1. The record player frame must be connected to the tuner chassis in order to prevent hum pickup. In some record players the connecting lead from the phonograph pickup cartridge to the tuner chassis is a shielded lead with the shield connected to the pickup cartridge and to the record player frame. In this case the recotd player frame is automatically connected to the tuner chassis; but in record players which do not have this connection, a separate connecting lead between the record player frame and tuner may be used.
2. The record player motor may be plugged into the convenience outlet on the rear of the tuner chassis. A power switch must be provided on the record player to turn the motor on and off.
3. The connecting lead from the pickup cartridge must be provided with a miniature phonograph plug. The $4 E$ chassis is shipped with a proper plug in the input jack for use on phono units not so equipped. The outer band or shield is connected to the shell of the plug, and the center wire is soldered in the pin of the plug.

Antenna and Ground
For the best results it is strongly recommended that a good outdoor antenna be used with the 4 E . Although this practice has been virtually abandoned with present day receivers having built-in antennas, it is still good practice when the best reception is desired.

Equally important in insuring the best possible reception is the use of a good ground system. Cold water pipes or a rod driven several feet into the earth may be used for external ground, but hot water or steam pipes or electrical conduit should not ke used. A good ground connection will do much to minimize electrical interference, and is well worth the effort required for its installation.

Service Data - General

Power Supply 110-120 V 50-60 cycles.
Power Consumption 25 watts
Undistorted Output 2 to 15 volts.
Replacement Part Nunbers - as shown on circuit diagram.
Circuit T.R.F. Bandpass.
Audio Frequency Response - flat $\pm 2 \mathrm{db} .40$ to 15,000 cycles.
Hum Output .002 volts.
Tubes: 6BA6 R.F. Amplifier 6AT6 Detector - Audio Amplifier 6BA6 R.F. Amplifier 6X4 Rectifier

Alignment Procedure (use 200 uuf. dummy)

1. Using an F.M. Signal Generator and Oscilloscope:

Connect the vertical plates of the oscilloscope to the chassis and top of volume control. Connect the horizontal plates to the sync termingls of the F.M. signal generator.

Set the dial of the tuner to $1,400 \mathrm{kc}$ and the generator to $1,400 \mathrm{kc}$, using a sweep frequency of 400 cycles and deviation of about $\pm 50 \mathrm{kc}$. Set the output of the generator to the least that will give a useful picture, connecting generator to antenna terminal.

Adjust the 4 trimmers at the top of the gang condenser to obtain a pattern of the greatest amplitude, reducing generator input as alignment proceeds, and at the same time adjusting the trimmers to give a double-humped pattern with humps of equal magnitude and with the center of the pattern centered on the scope.
2. Using an A.M. Signal Generator:

Connect the signal generator as usual, with an output meter as indicator connected to top of volume control or audio cable.

Set generator at $1,385 \mathrm{kc}$ and tuner to $1,400 \mathrm{kc}$. Loosen the 4 trimmers on top of the gang and slowly tighten one at a time to obtain a maximum output reading. Keep each trimmer on the loose side of resonance until all trimmers are nearly peaked; then carefully peak each trimmer. Check
alignment by slowly tuning generator to about $1,415 \mathrm{kc}$, during which the output meter should show a slight drop and then a rise again. This alignment centers the response at $1,400 \mathrm{kc}$ so that the dial calibration will be accurate. If the generator had been set at $1,400 \mathrm{kc}$ initially, the center of the tuner's response would be below $1,400 \mathrm{kc}$ on the tuner dial.

Resistance and Voltage Chart
Resistance between pin and chassis
Tube
Pin Number

* Reading subject to position of hum balance control.
\because Reading subject to variation depending upon the filter condensers. GAUTION: Discharge filter condensers before making measurements.

Voltage between pin and chassis
No signal condition.
Measurements to ground with $20,000 \mathrm{ohm} / \mathrm{volt}$ meter, $1,000 \mathrm{ohm} / \mathrm{volt}$ on AC
Tube

	$\underline{1}$	$\underline{2}$	3	4	5	6	7
6BA6 1st RF	Sl.Neg.	0	$*$	$*$	200	132	3.5
6BA6 2nd RF	Sl.Neg.	0	$*$	$*$	200	132	3.9
6AT6 Detector	Sl.Neg.	0	$*$	$*$	Sl.Neg.	Sl.Neg.	85
6X4 Rectifier	185 VAC	Tle	$*$	$*$	Tie Point	185 VAC	237

$*$ Reading will range from 0 to 6.3 volts $A C$ depending on setting of hum control.

Parts List for TLEK

1. One chassis with bearing, \#06279.
2. One bracket and pulley assembly \#06282.
3. One 4 gang variable condenser \#21-5223.
4. One gang condenser shield assembly \#25-8208.
5. One dial plate assembly \#05939.
6. One input ant. coil \#9820.
7. One output ant. co11 \#9822.
8. One input R.F. coil \#9824.
9. One output R.F. coll \#9826.
10.0ne untuned R.F. coil \#9828.
10. One 500K volume control with switch \#29424.
11. One two-position switch \#29582.
12. One 100 ohm jum balance controi \#29260.
13. One power transformer \#29501.
15.0ne output cable assembly \#05554.
14. One length of shielded wire.
17.One length of braided shielding.
18.0ne line cord \#12434.
19.One $20-20-20 \mathrm{mfd} .250 \mathrm{~V}$. electrolytic condenser \#34102.
20.One .1 mfd .400 V . paper condenser \#28113GT.
15. One .05 mfd .600 V . paper condenser \#28115GT.
22.Two .05 mfd .400 V . paper condensers \#28103GT.
16. One . $047 \mathrm{mfd} .600 \mathrm{~V} . \mathrm{molded}$ condenser $\# 34160$.
17. One 8 mmf . molded mica condenser \#15149.
18. One 25 mmf . ceramic condenser \#27165.
19. One . 01 mfd . ceramic condenser \#34111.
20. Two . $01 \mathrm{mfd} .-470$ ohm type JGR-P capristors \#34150-5.
21. One $.005 \mathrm{mfd} .-10$ megohm type JCR-C capristor \#34151-7.
22. One $150 \mathrm{mmf} .-150 \mathrm{mmf} .-47,000 \mathrm{ohm}$ filpec \#34171-1.
23. One 2,000 ohm 5 watt wire wound resistor \#34149.
24. Two 47,000 ohm $1 / 2$ watt carbon resistors.
25. One $100,000 \mathrm{ohm} 1 / 2$ watt carbon resistor.
26. One 100,000 ohm 1 watt carbon resistor.
27. Two 470,000 ohm $1 / 2$ watt carbon resistors.
28. One 2 megohm $1 / 2$ watt carbon resistor.
29. One $10,000 \mathrm{ohm} \mathrm{1/2}$ watt carbon resistor.
37.0ne 15,000 ohm 1 watt carbon resistor.
30. One tuning shaft \#06285.
31. One AC receptacle \#19794.
32. Four miniature tube sockets \#29477.
33. One tube shield clip \#29530.
42.One tube-shield \#29531.
34. One phono jack \#29253.
35. One insulating washer for phono jack \#26624.
45.0ne 2 lug terminal strip $\# 16731$.
36. One bakelite mounting plate for electrolytic condenser \#19450.
37. One 1 -insulated tie lug \#25-5732.
48.Ons 3-insulated tie lug \#25-6715.
49.Two 2-insulated tie lugs \#25-5731.
50.Six single ended lugs.
38. One double ended lug \#16480.
52.0ne cable clamp \#16491.
39. One line cord strainrelief (2 pieces) \#29414.
40. One dial pointer $\# 29425$.
55.Two dial scale, retaining springs \#05938.
56.One dial drum assembly \#05817.
57.One diel cord assembly \#06286.
41. One dial scale \#23-8238.
42. Three felt washers \#19595.
43. Two knobs (plain) \#29270.
44. One knob with dot \#05878.
45. Ohe dial light socket \#29583.
63.One dial lamp \#29262.

64 . One 6×4 tube.
65. One 6AT6 tube.
66. Two 6BA6 tubes.
67. One hairpin cotter \#29493.

68, One piece of plastic tubing \#23440.
69. Supply of screws, nuts, lockwashers, and washers for assembly. 70. Instructions, including circuit and pictorial diagrams.
71. One mounting dimensions sheet printed full scale.

4 TUBE T.R.F. TUNER KIT.
MODEL 4EK.

SPECIFICATIONS

Power Requirement: 120 volts, 50 to 60 cycles, 110 watts. Frequency Coverage:

Band A - 540 to $1600 \mathrm{KC}, \mathrm{AM}$
Band B-1.6 to 4.7 MC Band D-11 to 22 MC
Band C-4.7 to $10 \mathrm{MC} \quad$ Band E-88 to 108 MC , FM
Audio Sensitivity: .05 volts for $1 / 2$ watt output.
Maximum Undistorted Audio: 7 watts.
AM Sensitivity: 2 to 4 microvolts.
FM Sensitivity: $\mathbf{2 0}$ microvolts, quieting signal. 5 microvolts, minimum signal.
Tube Complement:

.6BA6	FM Detector 6 AL5
Mixer12AT7	1st AF6C4
Oscillator12AT7	2nd AF6C4
1st IF6BA6	Phase Inv.6C4
2nd IF6BA6	AF output, two6V6GT
AM Detector6AL5	Rectifiers, two5Y3GT
3rd IF, FM6BA6	Tuning Ind.6U5

INSTALLATION

The Midwest Radio \& Television receivers have built-in antennae for satisfactory reception of signals on the broadcast band, short wave and FM bands where the location is not unfavorable. In homes or apartments where steel is used extensively, such as for beams and concrete reinforcements or lath, or in rural areas distant from the broadcasting stations an FM doublet must be installed. The straight doublet antenna is directional only on the FM broadcast band so that it need be

oriented only with respect to the FM transmitter location. The Midwest Model DP di-pole is a special design which is not directional and we recommend it for use with Midwest receivers for FM, broadcast and short wave reception.

PRECAUTIONS. Be sure that the speaker and Magna Tenna Loop are plugged in, also the flexible dipole leads must be connected to screw strip at "A-A". A ground wire may be connected to " G " but it is usually not needed. See that all tubes are seated and light up. Remove the packing inside the phonograph compartment and observe other warnings and cautions as advised by the tags attached to the receiver.
Plug the receiver into a 120 volt 60 cycle outlet. It you are not certain that your supply is 120 volts, 60 cycles alternating current (ac) call the local Electric Company.

ALIGNMENT

AM IF should be aligned at 456 KC . There are three transformers and six adjustments, the transformers are coupled with less than critical coupling and there is only one peak. Couple the generator into the mixer grid and use either AVC or audio for the output meter. FM IF should be aligned at 10.7 MC . There are four transformers and eight adjustments, the transformers are over-coupled and must be aligned with a scope and sweep generator.

Ch. KD-16

1. Connect generator to 3rd IF grid and vertical input of scope to the audio of the receiver at any point where sufficient signal is available and phasing can be properly adjusted.
2. Adjust the top screw for greatest length of straight line. This is the secondary winding, the bottom screw should give improvement in signal level.

A

8

C
A. does not have the hook indicating that the sweep generator has a greater deviation than the detector capability.
B shows improper phasing of the horizontal sweep with the audio output of the receiver.
C is preferred because it shows the limits of deviation and you obtain it simply by adjusting the deviation (sweep width) control on the signal generator. Approximately 150 KC is normal.
3. Connect generator to 2nd IF grid and adjust the 2nd IF slugs for maximum signal and band width. This you can be sure of by the amount of hook at the ends of the line on the scope. Repeat this procedure for 1st IF grid and mixer grid. Adjust for greatest signal without appreciable loss of band width.
Alternate Method: The IF response of the 1st, 2nd and
3rd transformer may be observed more directly if
you use a crystal detector at the plate of the tube following the transformer and feed the vertical plates of the scope from that point. Feed signal into grid of tube preceding transformer: Use a CW marker at 10.7 to be sure the double peaked response curve straddles the ratio detector response. Observe each stage separately. Discount the transformer in the plate of the tube following the transformer to be aligned and use 470 ohm resistor as plate load. Notice: Do not use AM or CW signal to peak the FM transformers. Regeneration may result and bandwidth and noise rejection will be poor, although signal strength will increase.
FM RF should be trimmed at 105 MC. There should not be any reason to adjust the low end but if this is neces. sary it can be done by distorting the FM coils on the tuning gang.
AM RF should be peaked at the high end with the trimmer and at the low end by core adjustment.
Notice: Use as low signal input as possible for readable output indication. Feed signal in from FM RF generator through 150 ohms in each lead to "A-A." Use 400 ohms in lead from AM RF generator and connect to either "A" terminal.

For dial stringing use a light weight dial cord such as Bevin-Wilcox 6-18 Imperial silk cord.

Radio Bend	Coil Adj.	Trimmar Adj.
A	560 KC	1500 KC
B	1.6 MC	4.7 MC
C	5 MC	10 MC
D	11.5 MC	22 MC
E	\ldots.	105 MC

If replacement parts of identical manufacture and rating are not available for service repairs these should be ordered from Midwest Radio \& Television Corporation, giving model number and serial number of the chassis and name of the part.
Repair data for the record changer mechanism is available separately, please specify Modet.

MIDWEST PAGE 22*
MODEL TK-16, Ch. KD-16

MODELS 1254, 1255, the Madrigal				5은 츨 ${ }_{8}^{8}{ }^{\circ}$ 영 筑	
					这
					-
				\sim	m

MITCHELL PAGE 22

BATTERY INSTALLATION

BATTERY INSTALLATION: Before installing new batteries or replacing old ones, turn the volume control to the extreme left or "OFF" position.

Attach the connector with the snap-on fasteners to the " B " battery (90 Volt) and insert battery into the left hand side of the battery retaining area of the cabinet back so that the connector faces in the direction of the top of the receiver. lnsert the prongs of the other battery connector into the socket of the " A " battery (4-1/2 Volt) and place battery in cabinet back so that the connector faces the outside wall of cabinet.

This receiver will accommodate any of the batteries listed below: (No preference is intended by the order of listing.)

MANUFACTURER	MANUFACTURER'S TYPE NUMBER	
	${ }^{\text {" }{ }^{\prime \prime} \text { Battery }}$	"B" Battery
National Carbon (Eveready)	746	490
General Dry Battery .	3 H 3	132
Ray-O-Vac	P83A	4390
Burgess Battery	G3	$\mathrm{N}-60$

BATTERY OPERATION

BATTERY OPERATION: To operate this receiver on battery, insert the power cord prongs into the power switch through the two slots provided in the bottom of chassis. These slots are at the right hand edge of chassis as viewed from rear.

TUEE REPLACEMENT

 Do not replace tubes or batteries unless switch on the volume control is turnedcompletely off. In case of tube failure be sure to turn the receiver off imnmediately.

Four tubes (Plus selenium rectifier) are used. Type numbers and locations are shown in the tube diagram label located inside the cabinet. If tubes are removed from their sockets for test or replacement purposes, make certain that the receiver is turned off when replacing the tubes in their proper sockets. Failure to replace tubes in their proper sockets may result in damage to the tube, or to the receiver, or both.

SERVICE DATA

Lack of sensitivity and poor tone quality may be due to any one or a combination of causes such as weak or defective tubes or speaker, open or grounded bias resistor, bypass condenser, etc. Never attempt to realign set until all other possible sources of trouble have been first thoroughly investigated and definitely proved not to be the cause.
NOTE: IT IS ABSOLUTELY NECESSARY THAT AN ACCURATELY CALIBRATED TEST OSGILLATOR WITH SOME TYPE OF OUTPUT MEASURING DEVICE BE USED WHEN ALIGNLNG THE RECEIVER AND THAT THE PRO. CEDURE BE CAREFULLY FOLLOWED, OTHERWISE THE RECEIVER WILL BE INSENSITIVE AND THE DIAL CALIBRATION WILL BE INCORRECT. THE TRIMMERS WILL BE REFERRED TO BY THEIR FUNCTION AS INDICATED ON THE PARTS DIAGRAM.

ALIGNMENT PROCEDURE

GENERAL DATA. The alignment of this receiver requires the use of a test oscillator that will cover the frequencies of $455,600,1400$ and 1620 kC and an output meter to be connected across the primary or secondary of the output transformer. If possible, all alignments should be made with the volume control on maximum and the test oscillator output as low as possible to prevent the AVC from operating and giving false readings.

ALIGNMENT PROCEDURE CHART

$\begin{aligned} & \text { STEP } \\ & \text { wo. } \end{aligned}$	$\begin{gathered} \text { Positien } \\ \text { of } \\ \text { owne } \end{gathered}$	sICAL cEnEtapa FAEPMET	camerator conaction	Dunar AMTENMA	ADUST* MEIT	TTPE OF ADUSTMEAT
1	Any moint chers no interfarimy signel is received	$\begin{aligned} & \text { Exat1y } \\ & 455 \text { act } \end{aligned}$	Migh side to grid of llis tube. tow side to coemon negative	.05 WD Condensar	PSlug at top of 2nd. I.F. (TZ) and then each of the slugs of the ist. 1. F.	For Maxime output.
2	$\begin{aligned} & \text { Exactly } \\ & 152 \text { ©x } \end{aligned}$	Exactly IGD MC.		2 Turns of hookup wire	Front Gang Trimer	for Maximen Output.
3	Abpros 10104	Aepros.	อยมสу	meter. (Place approximately		For Maxime output.
4	$\begin{aligned} & \text { Eactly } \\ & 0 \text { ex } \end{aligned}$	$\begin{aligned} & \text { Euxtly } \\ & 00 x \end{aligned}$	AUTEWMA	end of, and in same axis as loop.)	Slug in Oscillator Coil. (L2)	For Maximen ourtout.
5				.	Repest 3teps 2 and 3.	

PARTS LIST

$\begin{aligned} & 65 \\ & 66, C 13 \end{aligned}$	$\begin{aligned} & \text { N-8575 } \\ & \text { R-4094 } \end{aligned}$	Condeamer, Condenser,	Corvalc Papar	$\begin{gathered} 50 \mathrm{MLF3} \\ .006 \mathrm{MFa} \end{gathered}$	$500 V_{0}$ 000 V
$\begin{aligned} & 67, C \theta \\ & \infty \end{aligned}$	$\begin{aligned} & n-1845 \\ & n=1251 \end{aligned}$	Condenser, Condenser,	Paper Paper	.05 MFD. -I WFD.	$\begin{aligned} & 200 \gamma_{1} \\ & 200 \gamma_{0} \end{aligned}$
C10, 221	W-6777	Condenser,	Peper	. 002 MFD.	600
Cl_{1}	H -1846	Condenser,	Paper	. 05 MF\%	$400 V_{0}$
C12	N-6is 15	Condenser,	Paper	100 MFD.	500 V

(14) (15) (18) (17)	- 6841	$\left.\begin{array}{rllll} & (50 \mathrm{MFD} & 150 & \mathrm{~V}_{1}\end{array}\right)$
6)	$\begin{aligned} & N-6681 \\ & N-8328 \end{aligned}$	$\begin{aligned} & \text { Soeaker, 4" P.M. } \\ & \text { Coil, Loop = I ron Mod Type } \end{aligned}$
$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 2 \end{aligned}$	$\begin{aligned} & n-7981 \\ & n-8325 \end{aligned}$	Coil, Ist, I.F. Coil, 2nd, IVF.
$\frac{12}{T 3}$	$\begin{gathered} 4-8377 \\ M-8929 \end{gathered}$	Coll, Oeciliator Transformer, Output
	$\begin{aligned} & n-8331 \\ & n-5951 \end{aligned}$	Rectifior, Salentum Switch, Power Changeover

	PARTS LIST			
$\begin{aligned} & \text { SENDMTIC } \\ & \text { LOCATIOM } \end{aligned}$		DESCRIPTION		
R1	N-1973	Daststor	100,000 Ohm $/ / 2 \mathrm{~m}$.	10%
2	H-6012	masistor	22,000 ohm 1/2w.	10\%
03	$\mathrm{n}-\mathrm{H} 061$	masistor	4.7 Magotim $1 / 2 \mathrm{~N}$.	20\%
蚛, 的	W-4028	Resistor	6.8 Megoha I/2w.	20\%
R5	W-4023	Realstor	82 Ohm 2.0 w .	10\%
88	N-0333	Resistor	2,300 Ohm 5.6W. (Center Tapped)	5\%

PARTS LIST

SCHEMTIC PNRT
LOCATIOM MHEER DESCRIPTION

ELECTRICAL SPECIFICATIONS

105 to 125 volts A.C.

Record Changer
Power Output \qquad 1,1 ter

Loud Speaker 5" PM dynanic 1.47 oz Alnico 5 magnet, voice coil inpedance 3.2 ohes at 400 cycles
Tube Complement 1 - 126A7 Mixer
1 - 128K7 I.p. Anplifier 1-12SQ7 Det. A. A.P.

1-50L6 Power Anp.
1 - 35Z5 Rectifier
1 - No. 47 Dial Lanp
Three speed internix. (10" and 12")
(. 05 wett output with Hazeltine test loop) 350 Micravolt per meter average.
1.1 matts max. . 7 watts 10\% distortion.
Alnico 5 magnet. voice
(12)

Frequency Range 535 to 1620 KC
Intermediate Frequency , . . 455 KC times signal. 1000 KC

SPECIAL •INSTRUCTIONS

Remove two wood screws holding back board. This
RESOVAL OF RADIO CHASSIS
Remove two screws holding record changer. Lift record changer and move back, tilting at the same time. Remove changer power cord and pick up lead. will expose the antenns. Renove antenna plug.

Remove two wood screws holding back of chassis. Remove two nuts holding front panel. Chassis may now be removed.

ALIGNMENT PROCEDURE

The following equipment is required for aligning: A signal generator which will oride an accurately calibrated signal at the indicated test frequencies; an output indicating meter: a non-. metallic screwdriver.

Radiation Loop: 2-turn loop, 6 inches in diameter.
Conditions for Alignment:
Tone - Treble
Volume - Maximum
Selector Switch - "Radio" position
Test loop coupled loosely to receiver by spacing - receiver loop in same position as it will
be with chassis in cabinet.

SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR PREQUENCY	RADIO DIAL SETTING	OUTPUT METER	REMARXS	ADJUST FOR maximuk OUTPUT
LOOP	455 KC	Low End of Band	Across Voice Coil	Short out osc. tuning	$\begin{array}{ll} C-8, & C-7, \\ C-6, & C-5 \end{array}$
				gang section C-2: compress $\mathrm{C}-3$	
L00P	1620 KC	High End of Band	"	Remove short across C-2	C-4
L00P	1400 KC	Point of Maximum Output	"	Set pointer to 140 on dial	C-3
L00P	600 KC	point of Maximum Output	"	Knife C-1 plates for maximum output	
L00P	1400 KC	1400	"	Recheck Alignment	$\begin{aligned} & \text { C-3 if } \\ & \text { necessary } \end{aligned}$

LOCATION OF TUBES

REPLACEMENT PARTS LIST

MODEL OSGCE-1540A "RUDOLPH"
ALIGNMENT PROCEDURE AND RECEIVER STAGE SENSITIVITIES

ALIGNMENT: Should it become necessary at any time to check the alignment of this receiver, proceed as follows: (1) Connect the high side of 455 KC Signal Generator through a 1 mf capacitor to the stator lug on the rear section of the variable capacitor; the ground lead to one of the lugs on the line on-off switch. Use Isolation Transformer if available. If not, connect a capacitor in series with low side of signal generator and power lug on switch. Connect a suitable output meter across the speaker voice coil. Turn the Volume and Tuning controls to their extreme clockwise positions.
(2) Adjust the trimmers located at the top and bottom of the
1.F transformer for maximum indication on the output meter.
(3) Connect the Signal Generator high side to the antenna lug through a 47 mmfd capacitor; the low side remains as in step (1). Set the Signal Generator to 1650 KC .
(4) With Variable Capacitor set at the minimum capacity position, tune in the 1650 KC signal by means of the Oscillator Trimmer on the Variable Capacitor (front section).
(5) Set the Signal Generator to 1500 KC and turn the Tuning Control so that this frequency is received. Adjust the Antenna Trimmer on the Variable Capacitor (rear section) for maximum output. No other adjustments are necessary.

ELECTRICAL SPECIFICATIONS

Frequency Range	540 to 1650 KC
Intermediate Freq.	455 KC
Selectivity	At 1000 Kilocycles, 22 KC at 10 X signal
Sensitivity	400 Microvolts per meter average for .05 watt output.
Power Output	620 Milliwatts undistorted
Loud Speaker.....	$4^{\prime \prime}$ P.M., V.C. impedance 3.2 ohms
Tube Complement	..12BE6 Converter
	12AT6 or 12AVG Detector, AVC, audio amplifier
	50 C 5 Power Amplifier
	35W4 Rectifier
	\#47 Pilot Light

The signal source must be an accurately calibrated signal generator capable of supplying R.F. signals modulated $\mathbf{3 0 \%}$ with a 400 -cycle audio signal. A $\mathbf{4 0 0}$-cycle source is necessary for the audio measurements.

The table below lists the sensitivity at various points. All measurements are based on on output of 50 milliwatts. This
may be measured by disconnecting the speaker voice co and substituting a 3.2 ohm, 5 watt resistor across the sec ondary winding of the output transformer. A reading 0 .4 volts $A C$ across this resistor will be equivalent to a 50 milliwatt output with the speaker connected. Variation of plus or minus $\mathbf{2 5 \%}$ are usually permissible. Volume con trol ot maximum for all adjustments.

SIONAL GENERATOR				DHAL SETIING	ADJUST FOR MAXIMUM OUTPUT	\qquad
Frequency	Coupling	Connection to Radie	Ground Connection			
455 KC	.1 mfd condenser	Stator lug Var. Capactitor (rear section)	lug on Power Switch	Variable Condenser fully open	Trimmers on I.F. transformer	3000 microvolts
1650 KC	47 mmf condenser	To lug of Ant. Mank	Lug on Power Switch	Vorloble Condenser fully open	Oscillator Trimmer (front section)	---
1500 KC	47 menf condenser	To lug of Ant. Mank	lug on Power Switeh	1500 KC	Ant. trimmer (front section)	----
400 eycles	.1 mfd condenser	Migh side of volume centrol	Lug on Power Switch	-	-	. 03 volts

REPLACEMENT PARTS LIST

PAGE 22-6 MONTGOMERY WARD
MODELS 05GCB-1540A,
Rudolph; 05GCB-1541A,
Lone Ranger

NEVER LEAVE A DISCHARGED BATTERY IN THE SET. After a dry cell is completely exhausted the zinc outer case may be eaten through and the electrolyte inside may leak out. This fluid is very corrosive and can ruin the metal parts of the set if neglected.

BATTERY REQUIREMENTS. The Model I061A operates from a battery pack which delivers $71 / 2$ volts and 90 volts. Wards \#33 pack should be used. This battery can be obtained from any Wards Retail Store or Mail Order House. Other batteries which can be used are: RCA VSO19, General 60A6F6/5, Sears 6404, Burgess F6A60, Philco P84IA, Ray-o-vac B6460 and Western AB994. To install the battery in the set merely place it in position in the bottom of the cabinet and plug the battery cable into the socket in the top of the battery.

ELECTRICAL SPECIFICATIONS
POWER SUPPLY: 105-125 Volts AC or DC anc \#33 Battery

FREQUENCY RANGE: 540 to 1640 KC
INTERMEDIATE FREQUENCY: 455 KC
SENSITIVITY (For . 05 Watt Output)
150 Microvolts per Meter
POWER OUTPUT: . 190 Watt 10% Distortion
TUBE COMPLEMENT:
I-IR5 Converter
1-IT4 I.F. Amplifier
1-IUS Det. Avc. Ist AF.
1-3Q5 or 3Q4 Power Amplifier
LOUD SPEAKER: 4" PM Dynamic 3.2 VoiceCoi Impedance

ALIGNMENT PROCEDURE

Volume Control-Maximum All Adjustments.
Allow Chassis and Signal Generator to "Heat Up" for several Minutes.

Signal Generator which will provide an accurately cali brated signal at the test frequencies as listed.
Output Indicating Meter: Non-Metallic Screwdriver.
Dummy Antennas-. 1 mf .

SCHEMATIC DIAGRAM FOR MODEL NO. O5-GHM - 1061 A

GENERAL DESCRIPTION

This is a two band, eight tube (plus rectifier tube) AM and FM receiver. Controls are provided at the front of the cabinet for tuning, volume, tone and band or phono selection. A phono input socket is provided at the rear of the receiver to which a record player may be connected. The l-f stages use high gain miniature type tubes. Air Wave Aerials are provided for the FM and Broadcast bands. Features include, a grounded grid R-F amplifier stage on the FM band, compensator circuits to prevent oscillator drift, automatic volume control, beam power output stage, PM dynamic loud speaker and an electrostatic shield in the power transformer to reduce power line noise.

ELECTRICAL SPECIFICATIONS

Power Supply \qquad $105-125$ volts AC $50-60$ cycles, 40 watts.
$\begin{aligned} \text { Frequency Ranges............ } & \text { Broadcast } 540-1600 \mathrm{KC} \\ & \text { Frequency Modulation 88-108 MC } \end{aligned}$
Intermediate Frequency.... AM-455 KC
FM-10.7 MC
Selectivity \qquad AM-45 KC broad at 1000 times signal, measured at 1000 KC I.F. FM-200 KC broad at 2 times down
I.F. FM-950 KC broad af 200 times down
AM Sensitivity \qquad (For .5 watt output with external antenna) $\mathbf{2 5}$ microvolts average
FM Sensitivity \qquad (For .5 watt output) 25 microvolts average
Power Output................... 1.9 watts maximum 0.8 watts 10% distortion
Loud Speaker.-....-..........-6" PM Dynamic
Voice Coil Impedance..... 3.2 ohms 400 cycles

Tube and Dial Lamp 1 6BE6 AM Converter \& FM Osc. Complement

1 6BA6 1st I-F Amplifier
1 6BA6 2nd I-F Amplifier
1 6AL5 FM Discriminator
1 6AV6 Audio Amplifier, AM 2nd Detector and AVC
1 6V6GT Audio Output
1 6X5GT Rectifier
1 6AB4 R-F Amplifier
1 6AB4 Mixer
1 No. 47 Dial Lamp

TUBE SOCKET VOLTAGES

Socket voltages are shown on the schematic diagram at the tube sockat tanminals. All voliages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter.

Conditions of measurement are:
Line voltage 117 Volts AC
Signal Input
None
A variation of $\pm 10 \%$ is usually permissible.
(10)

FM SEC. ADJ.
T-1
LOOP ANTE AM SEC. ADJ.

AM PRI. ADJ.

DRIVE CORD REPLACEMENTS

POINTER CORD

Install the cord as shown in the illustration making sure that the center turn of the three turns rests in the groove of the brass pointer pulley.

DIAL CORD

Install the cord as shown in the illustration, winding three furns counterclockwise around the drive shaft with the turns progressing away from the chassis. After completing the installation rotate the drive shaft a few turns to take up the slack in the cord.

ALIGNMENT PROCEDURES
 AM STAGES

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indieating Meter, Non-Metallic Screwdriver, Dummy Antennas -.1 mf , and 50 mmf .

Volume Control Maximum all Adjustmenrs.
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR				GANG CONDENSER SETTING	ADJUST	
FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO	THROUEH DUMAYY ANTENNA	CONNECT GROUND TO			$\begin{aligned} & \text { ADJUST } \\ & \text { FOR } \end{aligned}$
455 KC	Control Grid 1st 6BA6 Pin No. 1	- 11 mf	Chossis Base	Rotor Fully Open	$\begin{aligned} & \text { 2nd I.f. Pri. (1) } \\ & \text { and Sec. (2) } \end{aligned}$	Maximum Output
455 KC	Control Grid OBE6 Pin No. 7 1 st Det.	. 1 mf	Chassis Base	Rotor Fully Open	1st I.F. Pri. (3) and Sec. (4)	Maximum Output
455 KC	Control Grid 6BE6 Pin No. 7	.1 mf	Chossis Base	Rotor Fully Open	2nd I-F Pri. (1) and Sec. (2)	Maximum Output
1620 KC	Control Grid 6BE6 Pin No. 7	.1 mf	Chassis Base	Rotor Fully Open	Oscillator C-41	Maximum Output
1400 KC	External Antenno Terminal	50 mmf	Chassis Base	Turn Rotor to Max. Output. Sont Pointer to 1400 KC See Note A	Antenna C-2	Moximum Output

FM STAGES

Zero center scale DC vacuum tube voltmeter having a range of approximately 3 velts.
(if a zere center seale meter is not available. a standard scale vocuum tube volimeter may be used by reversing the meter connectiont for negative readings).
Allow chassis and signal generator to "Heat Up" for several minutes.

recheck antenna \& osc. adjustments in order given

FM ALIGNMENT NOTES

NOTE A-The zero center scale $D C$ vacuum rube voltmeter is to be connected between chassis ground and the AVC line. A signal of .l volt must be fed into the receiver for this odjustment.
Note output voltage on the zero center DC vacuum tube valtmater

NOTE B-Disconnect zero center DC vacuum tube voltmeter from AYC and connect it at the audio takeoff point at the

27 K ohm resistor ($\mathrm{R}-10$) and its junction with the terminal strip. Adjust for zero voltoge indication.

NOTE C-AM I-F coils must be aligned before attempting to align the FM I-f coils.

NOTE D-Connect zero center DC vacuum tube voltmeter as in Note A. Adjust input to give same output on the zero center DC vacuum tube volimeter as in Note A.

REPLACEMENT PARTS LIST

NOTE-In later production C-33 is .02 mf

ELECTRICAL SPECIFICATIONS

Power Supply	105-125 volts AC 60 cycle 40 watts. 60 watts with reco changer.
Frequency Ranges...	Broadcast 540-1600 KC Frequency Modulation $88-108 \mathrm{M}$
Intermediate Frequency.	$\begin{aligned} & \text { AM-455 KC } \\ & \text { FM-10.7 MC } \end{aligned}$

GENERAL DESCRIPTION

This is a two band, eight tube (plus rectifieqr, tube) AM and FM receiver with automatic record changer. The I-F stages use high gain miniature type tubes. Built-in Air Wave Aerials are provided for the FM and Broadcast bands. AM Sensitivity \qquad
AM-45 KC broad of 1000 time signal, measured at 1000 KC I.F. FM-200 KC broad at 2 time down
I.F. FM-950 KC broad at 20 times down
(For . 5 watt output with externc antenna) 25 microvolts average Features include, a grounded grid R-F amplifier stage on the FM band, compensator circuits to prevent oscillator FM Sensitivity \qquad (For .5 watt output) drift, automatic volume control, beam power output stage, PM dynamic loud speaker and an electrostatic Power Output 25 microvolts overage shield in the power transformer to reduce power line noise.
1.9 watts maximum 0.8 watts 10% distortion

The receiver and record changer are housed in a console Loud Speaker
10" PM Dynamic combination cabinet with controls provided for tuning, volume, tone and band or phono selection.

Voice Coil Impedance...... 3.2 ohms 400 cycles

Tube and Dial Lamp 1 6BE6 AM Converter \& FM Osc Complement

1 6BA6 1st I-F Amplifier
1 6BA6 2nd I.F Amplifier
1 6AL5 FM Discriminator
1 6AV6 Audio Amplifier, AN 2nd Detector and AVC
1 6V6GT Audio Output
1 6X5GT Rectifier
1 6AB4 R-F Amplifier
1 6AB4 Mixer
2 No. 47 Dial Lamps

dRIVE CORD REPLACEMENT

DIAL POINTER CORD

Use a new 10X72 drive cord assembly or a new length of cord 44 inches long for the installation. Install the cord as shown in the illustration, winding three turns clockwise around the drive shaft with the turns progressing away from the chassis. After completing the installation rotate the drive shaft a few turns to take up the slack in the cord.

Socket voltages are shown on the schematic diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter. Conditions of measurement are:

> Line valtage . 17 Vone Signal Input

A variation of $\pm 10 \%$ is usually permissible.

ALIGNMENT PROCEDURES
 AM STAGES

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurataly Calibrated Signal at the Test Frequencies as Listed.
Oufput Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas - . 1 mf , and 50 mmf .

Volume Control Maximum all Adjustments.
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR				GANG CONDENSER SETTING	ADJUST	$\begin{gathered} \text { ADJUST } \\ \text { FOR } \\ \hline \end{gathered}$
$\begin{aligned} & \text { PREQUENCY } \\ & \text { SETIING } \\ & \hline \end{aligned}$	CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	$\begin{gathered} \text { CONNECT } \\ \text { GROUND } \\ \text { TO } \\ \hline \end{gathered}$			
455 KC	Control Grid lat 6BA6 Pin No. 1	. 1 mf	Chassis Base	Rotor Fuily Open	2nd I.F. Pri. (1) nad Sec. (2)	Maximum Output
455 KC	Control Grid 6BE6 Pin No. 7 1st Det.	. 1 mf	Chassis Base	Rotor Fully Open	Ist I.F. Pri. (3) and Sec. (4)	Maximum Output
455 KC	Control Grid 6BE6 Pin No. 7	. 1 mf	Chassis Base	Rotor Fuily Open	$\begin{aligned} & \text { 2nd I-F Pri. (1) } \\ & \text { and Sec. (2) } \end{aligned}$	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$
1620 KC	Control Grid 6BE6 Pin No. 7	. 1 mf	Chassis Base	Rotor Fully Open	Oscillator C-41	Maximum Output
1400 KC*	External Antenna Termina!	50 mmf	Chassis Base	Turn Rotor to Max. Output. Set Pointer to 1400 KC See Note A	Antanno C-2	-Maximum Output

FM STAGES

The following is required for oligning:
An accurately colibrated signal generator providing unmodulated ignels of the test frequencies listed below.

Non-metallic screwdriver.
Dummy Antennas and I-F Loading Resistor- $\mathbf{2 5 0 0} \mathbf{~ m m f , ~} \mathbf{3 0 0}$ ohms

Zare center scale DC vacuum iube voltmeter having o range of approximately 3 volts.
(If a zero center scale meter is not available, a standard scale vacuum tube voltmeter may be used by reversing the metor connectiens for nagative readings).
Aliow chassis and signal generator to "Heat Up" for several minutes.

SICNAL GEMERATOR			THROUGH DUMMY ANTENNA	$\begin{aligned} & \text { SAND } \\ & \text { SWITCN } \\ & \text { SETTINS } \\ & \hline \text { FM } \end{aligned}$	\qquad	ADJust	ADJUST FOR
Discriminator	FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO					
	10.7 MC	6846 2nd I-F Pin I and Chassia	2500 mmf		Rotor Fully Open	Disc. Pri. (5) Note A	Maximum Deflection
	10.7 MC	6BA6 2nd I-F Pin 1 and Chassis	2500 mmf	FM	Rotor fully Open	Disc. Sec. (6) \qquad	
I.F	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note C } \end{aligned}$	6BA6 lat l-F Pin 1 and Chassis	2500 mmi	FM	Rotor Fully - Open	2nd I-F Pri. (7) Sec. (8) Note D	Maximum Deflection
Discriminotor	10.7 MC	6BA6 lst I-F Pin 1 and Chessis	2500 mmi	FM	Rotor Fully Open	Disc. Pri. (5) Note D	Maximum Deflection
I-F	10.7 MC	Junction C-32A \& B (Dual 100 mm cond.) And chassis	2500 mmf	FM	Rotor Fully Open	1st I-F Pri. (9) 8 Sec. (10) 2nd I.F Pri. (7) 8 Sec. (8) Disc. Pri. (5) In Order Shown Note 0	Maximum Deflection
	10.7 MC	Same as above	2500 mmf	FM	Rotor fully Open	Disc. Sec. (6) Note B	

RECHECK I-F ADJUSTMENTS IN ORDER GIVEN

Orillater	108.5	Discennest bultein dipole entenna and connect gan--rator to dipole terminals with resistor in series.	300 ohms	\% M	Rotor Fully Opan	Orc. $\mathbf{C . 2 5}$	Doflection Moximum
Antenno	104.5	Same as above	300 rhms	FM	Tune rotor for max. AVC voltage	Ant. C-39	Maximum Deflection

RECHECK ANTENNA \& OSC. ADJUSTMENTS IN ORDER GIVEN

FM ALIGNMENT NOTES

NOTE A-The zero center scale DC vacuum tube voltmeter lis to be conneeted between chassis ground and the AVC line. A signel of . 1 volt must be fed into the recoiver for this odjustment.
Note output valtoge on the zero center DC vacuum tube voltmoter.
NOTE B-Disconnect zero center DC vacuum tube voltmeter from AVC and connect it at the audio takeoff point at the

27 K ohm rasistor ($\mathrm{R}-10$) and its justion with the terminal strip. Adjuat for zore voltage indicotion.

NOTE C-AM I-F coils must be aligned before attempting to align the FM I.F coils.

NOTE D-Cannect zero cente: DC vacuum tube voltmeter as in Note A. Adjust input to giva some output on the zero center DC vacuum tube voltmeter as in Nota A.

REPLACEMENT PARTS LIST

$\left.\begin{array}{l} C-18 A \\ C-16 B \end{array}\right\}$	47×112	50-50 mmf		Dual Mica.... 1
C-18		Part of T-6 (Discriminater Irans.)		
C. 19	47×492	2700 mmof		Molded Mica 1
$\left.\begin{array}{l} C-20 \\ C .35 \end{array}\right\}$	47X468	220 mmf		Ceramic........... 2
C-21	45×361	5 mf	100 V	Dry Electrolytic 1
$\left.\begin{array}{c} \mathrm{C}-22 \\ \mathrm{C}-42 \end{array}\right\}$	47×557	2.2 mmf		Ceramic........... 2
C. 23	47×558	30 mmf	-	Ceramic........... 1
c. 24	47×523	10 mmf		Ceramic
C-25	174255	1.8 mmf		Trimmer........... 1
$\left.\begin{array}{l} C-26 \\ C-44 \end{array}\right\}$	B66503	. 05 mf	200 V	Tubular........... 2
$\left.\begin{array}{c} C-28 A A \\ C-28 B \\ C-28 C \end{array}\right\}$	45×360	$\begin{aligned} & 20 \mathrm{mf} \\ & 40 \mathrm{mf} \\ & 40 \mathrm{mf} \end{aligned}$	$\begin{array}{r} 20 \mathrm{~V} \\ 150 \mathrm{~V} \\ 200 \mathrm{~V} \end{array}$	Dry Electrolytic 1
C-29	H66102	001 mf	800 V	Tubular............
C-30	47×470	330 mmf		Molded Mica.... 1
C.31	47×508	500 mmf		Ceramic........... 1

ELECTRICAL SPECIFICATIONS

Power Supply................... 105-125 volts AC 60 cycles,

60 watts. 80 watts with record
changer.

Frequency Ranges........... Broadcast $540-1600 \mathrm{KC}$ Frequency Modulation 88-108 MC

GENERAL DESCRIPTION

This is a two band, eight tube (plus rectifier tube) AM and FM receiver with automatic record changer. The I-F stages use high gain miniature type tubes. Built-in Air Wave AM Sensitivity \qquad ..(For .5 watt output with external Aerials are provided for the FM and Broadcast bands. Features include, a grounded grid R-F amplifier stage on the FM band, compensator eircults to prevent oscillator FM Sensitivity \qquad antenna) $\mathbf{2 5}$ microvolts average
drift, automatic volume control, beam power output stage, PM dynamic loud speaker and an electrostatic Power Output 25 microvolts average shield in the power transformer to reduce power line noise.

The receiver and record changer are housed in a console
Loud Speaker \qquad
4.5 watts maximum 2.5 watts 10% distortion combination cabinet with controls provided for tuning, volume, tone and band or phono selection.

Tube and Dial Lamp 1 6BE6 AM Converter \& FM Osc.
Complement 1 6BA6 1st I-F Amplifier
1 6BA6 2nd I-F Amplifier
1 6AL5 FM Discriminator
1 6AV6 Audio Amplifier, AM 2nd Detector and AVC
1 6V6GT Audio Output
1 5Y3GT Rectifier
1 6AB4 R-F Amplifier
1 6AB4 Mixer
2 No. 47 Dial Lamps

DRIVE CORD REPLACEMENT

DIAL POINTER CORD

Use a new 10×38 drive cord assembly or a new length of cord 48 inches long for the installation. Install the cord as shown in the illustration, winding three turns clockwise around the drive shaft with the turns progressing away from the chassis. After completing the installation rotate the drive shaft a few turns to take up the slack in the cord.

TUBE SOCKET VOLTAGES

Socket voltages are shown on the schematic diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voitoges were taken with a 1000 ohm-per-volt meier with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter.

Cunditions of measurement are:
Line voltage . None
Signal Input
A variation of $\pm 10 \%$ is usually permissible.

ALIGNMENT PROCEDURES
 \section*{AM STAGES}

The following is required for oligning:
An All Wave Signal Generator Which Will Provide on Aczurately Calbbrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Matallic Screwdriver, Dummy Antennos - 11 mf , and 50 mmf .

Valume Contral Maximum all Adjustmenrs.
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

	SIGNAL GENERATOR				ADJUST	ADJust FOR
FREQUENCY SETIING	CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	$\begin{aligned} & \text { CONNECY } \\ & \text { GROUND } \\ & \text { TO } \end{aligned}$			
455 KC	Control Grid Ist senat Pin No. 1	.1. mf	Chassis Bese	Rotor fully Open	$\begin{gathered} \text { 2nd I.f. Pri. (1) } \\ \text { wind } \mathrm{Sec} .(2) \end{gathered}$	Maximum Output
455 KC	Control Grid 6BE6 Pin No. 7 Ist Det.	. 1 mf	Chassis Base	Rotor Fully Open	1st I.F. Pri. (3) and Sec. (4)	Maximum Output
453 KC	Control Grid 6BE6 Pin No. 7	. 1 mf	Chassis Base	Rotor Fully Open	$\begin{aligned} & \text { 2nd J.F Pri. (1) } \\ & \text { and Sec. (2) } \\ & \hline \end{aligned}$	Maximum Output
1620 KC	Control Grid 6BEO Pin No. 7	1 mf	Chassis Base	Rotor Fully Open	Oscillator C-41	Moximum Output
1400 KC	External Antenna Terminal	50 mm '	Chassis Brse	Turn Rotor to Max. Output. Set Pointer to 1400 KC See Note A	Antenna C-2	Maximum Output

fM STAGES

The following is required for aligning:
An aceurately calibrated signal generator providing unmodu-
lated signals af the fest frequencies listed below.
Non-matallic scrowdriver.
Dummy Antennas and I-F Laading Rasistor- 2500 mmf, $\mathbf{3 0 0}$ ohms

Zero canter scale DC vacuum tube voltmater having a range of approximately 3 volts.
(If a zero center scale meter is not available, a standard scale vacuum tube voltmeter may be used by reversing the meter connections for negative readings).
Allow chassis and signal generator to "Heof Up" for several minutes.

SIGNAL GENERATOR			TMROUGH Dumery ANTENNA	BAND SWITCH sering	$\begin{aligned} & \text { GANG } \\ & \text { CONDENSER } \\ & \text { SETING } \end{aligned}$	ADJust	$\begin{aligned} & \text { AbJust } \\ & \text { FOR } \end{aligned}$
	FREPUENCY SETTING	CONNECT CENERATOR OUTPUT TO					
$\overline{\text { Diseriminator }}$	10.7 MC	6BA6 2nd I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Pri. (5) Note A	Moximum Deflection
	10.7 MC	6BA6 2nd i-F Pin 1 and Chassis	2500 mmf	FM	$\begin{gathered} \text { Ratar Fully } \\ \text { Open } \end{gathered}$	Disc. Sec. (6) Note B	
1-F	10.7 MC Note C	6BA6 1st I-F Pin I and Chassis	2500 mmf	FM	Rotor Fully Open	2nd I-F Pri. (7) Sec. (8) Note D	Maximum Deffection
$\overline{\text { Oiscriminator }}$	10.7 MC	6BA6 1st I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Pri. (\$) Note D	Maximum Deflaction
I.F	10.7 MC	Junction C.32A \& B (Dual 100 mmf cond.) And chassis	2500 mmf	FM	$\begin{gathered} \text { Rotor Fully } \\ \text { Open } \end{gathered}$	1st I-F Pri. (9) 8 Sec. (10) 2nd I-F Pri. (7) 8. Sec. (8) Disc. Pri. (5) In Order Shown Note D	Maximum Deflection
	10.7 MC	Same as above	2500 mmf	FM	Rotor Fully Open	$\begin{gathered} \text { Diac. Sac. (6) } \\ \text { Note B } \end{gathered}$	

RECHECK I-F ADJUSTMENTS IN ORDER GIVEN

Oscillator	108.5	Disconnect built-in dipole antenna and connect generator to dipole terminals with resistor in series.	300 ohms	FM	$\begin{aligned} & \text { Rotor fully } \\ & \text { Open } \end{aligned}$	Osc. C-25	Deflection Maximum
Antenna	104.5	Same as above	300 rhms	FM	Tune rotor for max. AVC voliage	Ant. C-39	Maximum Deflection

RECHECK ANTENNA \& OSC. ADJUSTMENTS IN ORDER GIVEN

FM ALIGNMENT Nptes

NOTE A-The zero center scale DC vacuum tube voltmeter is to be connected between chassis ground and the AVC line. A signal of .l volt must be fad into the receiver for this odjustment.
Note output voltage on the zero center DC voeuum tube voltmetor
NOTE B-Disconnect zero center DC vacuum pube voltmeter from AVC and connect it of the cudio takeoff point of the

27 K ohm resistor ($\mathrm{R}-10$) and its junction with the terminal strip. Adjunt for zero voltage Indleetion.

NOTE C-AM I-F coils must be aligned before attempting to align the FM I-F coils.

NOTE D-Connect zero centar DC vacuum tube voltmeter as in Note A. Adjust input to give same output on the zero center DC vacuum tube voltmater as in Note A.

REPLACEMENT PARTS LIST

Ref. No.	Part No.	-Description Gty. Used	$\left.\begin{array}{l} \mathrm{C}-14 \\ \mathrm{C}-15 \end{array}\right\}$		Part of T-4 (2nd I-F Trans. FM)		
		CAPACITORS	$\begin{aligned} & C-16 A \\ & C-16 B ; \end{aligned}$	47×112	50-50 mmf		ual Mica....
			C-18		Part of T. 6 (Discriminator Trans.)		
C-1	14A209	Gang Condenser Assembly 1	C-19	47×492	2700 mmf		Molded Mica 1
C-2	17A235	2.24 mmf Trimmer.......... 1	C-20	47×468	220 mmf		Ceramic........... 2
C. 3	47X559	130 mmf Ceramic........... 1	C.35	47×468	220 mm		Ceromic............
C. 4			C-21	45×361	5 mf	100 V	Dry Electrolytic
C. C. c			C.22	47×557	2.2 mmf		Ceramic........... 2
C-10	47×507	5000 mmf Ceramic........... 8	C-42				
C. 11			C-23	47X558	30 mmf		Ceramic........... 1
C. 17			C. 24	47×523	10 mmf		Ceramic........... 1
C-27							Trimmer............ 1
C-43			C.25	174255	$1-8 \mathrm{mmf}$		Trimmer............ 1
$\left.\begin{array}{c} C-6 \\ c-7 \end{array}\right\}$		Part of T-2 (lst I-F Trons. FM)	$\left.\begin{array}{c} C-26 \\ C-44 \end{array}\right\}$	B66503	. 05 mf	200 V	Tubular........... 2
C. 8		Part of T-3 (lat I-F Trans. AM)	C-28A]		20 mf	25 V	
		Part of T-5 (2nd I-F Trans. AM)	$\left.\begin{array}{l}\text { C.28B } \\ C-28 C\end{array}\right\}$	45×359	20 mf	350 V 350 V	Dry Electrolytic 1
C.13			C-28D		40 mf		

SERVICE DATA

GENERAL DESCRIPTION

This receiver is a single-band, AC-DC set which uses 4 tubes plus a rectifier. The antenna input and oscillator circuits are tuned by a two-gang capacitor. A loop antenna is built into the cabinet; provision is made also for the connection of an external antenna. AVC voltage is applied to the grid of the IF-amplifier and converter tubes.

ELECTRICAL SPECIFICATIONS

Power Supply
 115 volts, DC or $50-60$ cycles $A C$, 35 watts.

CHASSIS VIEW, SHOWING TUBE LOCATIONS

Frequency Range ... 540 to 1600 kc . Intermediate Freq. 455 kc .
Selectivity
Sensitivity
At $1000 \mathrm{kc}, 55 \mathrm{kc}$ at 1000 x signal
140 microvolts average for .05 wat output (By radiation.)
Power Output. 0.8 watts undistorted, 1 watt max imum.
Loud Speaker5" P.M., v.c. impedance 3.2 ohms
Tube Complement 12BE6, converter,
12BA6, I.F. amplifier.
12AV6, detector, AVC, audio am. plifier.
50C5, output amplifier.
35Z5, rectifier.

alignment procedure and recelver stage sensitivities

The signal source must be an accurately calibrated signal generator capable of supplying R. F. signals modulated 30% with a 400 -cycle audio signal. A 400 cycle source is necessary for the audio measurement.

The table below lists the sensitivity at various points. All measurements are based on an output of $50-\mathrm{milli}$ watts. This may be measured by disconnecting the
speaker voice coil and substituting a 3.2 -ohm, 5 -wat resistor across the secondary winding of the output transformer. A reading of .4 volts $A C$ across this resistor will be equivalent to a 50 -milliwatt output with the speaker connected. Variations of plus or minus 25% are usually permissable. Volume control at maximum for all adjustments.

SIGNAL GENERATOR				TUNER SETTING	ADJUST FOR MAXIMUM OUTPUT	INPUT FOR 50-MILLIWATT OUTPUT
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection			
455 kc.	. 1 mf.	Pin No. 7 of 12BE6	Buss wire	Rotor full opon	Trimmers on output and input I.F. cans	50 microvolts
1700 kc.	. 1 mf .	Pin No. 7 of 128E6	Buss wire	Rotor full open	$\begin{aligned} & \text { Oscillator trimmer C7 } \\ & \text { (on top) } \end{aligned}$	
1400 kc.	none	See note A	none	Sot dial at	Antenna trimmer C2 (on top)	-
1400 kc.	. lmf	Extornal antenna elip	Buss wire	1400 kc.	-	50 microvolts
400 eycles	. 1 mf.	12AV6, Pin 1	Buss wire	-	$\underline{\square}$. 03 volts
Note A: Lay output lead of generator in back of loop antenna.				Turn up generator output. Loop antenna will pick up onorgy.		

PAGE 22-26 MONTGOMERY WARD

REPIACING DIAL POINTER DRIVE CORD-

1. Rotate tuning knob to extreme clockwise position. This closes the tuning condenser $\mathrm{r}_{\text {. }}$ Knob should remain in this postion until installation of cord is completed.
2. Tie cord to loop in spring in drum. Pass around drum in direction shown.
3. Pass over idler pulley number 1 , then around idler pulley number 2 as shown.
4. Pass cord over idler pulley number 3, then down around drum as shown. Tie to loop in spring in such a manner that the spring is partly stretched.
5. Place pointer on top edge of dial plate. Guide cord through the three fingers on the back of the pointer.
6. Make sure the tuning knob is in the extreme clockwise position. Slide the dial pointer along the edge of the dial plate until the left edge of the pointer coincides with the right hand notch on the gold background plate, when viewed from the front.
7. Push the cord firmly into the three fingers and clamp them tightly together.

SEITING THE PUSHBUITIONS-The pushbuttons may be used, after proper adjustment, for the automatic tuning of any six stations which you select. They can be set up in any order.

1. Turn on the radio. Allow it to warm up for at least one minute.
2. Push out the call letters of the six stations from the call-letter sheets supplied with this manual.
3. Insert one call-letter tab in the rectangular opening in each of the pushbuttons, in any sequence. Press an acetate tab (supplied in small envelope) into each of the pushbuttons.
4. With the serewdriver supplied, check to see that the locking scrow in the center of the tuning knob (see iillustration) is loose. If it is not, turn it several turns to the left (counterclockwise).
5. Press the first pushbutton down all the way. Witt one hand hold the button down firmly and with the othe carefully tune in the desired station. Release the push button.
6. Follow this procedure for each of the five othe buttons, adjusting each one for a different station.
7. Rotate the tuning knob on the side of the cabinet as far to the right as it will go. Tighten the locking screw in the center of the knob. IT IS IMPORTAN THAT THIS SCREW BE TIGHTENED VERY FIRMLY.
8. The pushbuttons are now properly set for automatic tuning. Any of the six stations may now be tuned in simply by pressing the proper button down as far as it will go. If it is desired to reset any of the buttons for a new station, loosen the locking screw in the center of the tuning knob, set the pushbutton as described above, and re-tighten the locking screw.

REPLACEMENT PARTS LIST

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description
TUNER ASSEMBLY					
	${ }^{115448}$	End plate [right hand bracket)	R9	C-9B1-44 C.9B2.62	33 ohms, $1 / 2$ watt, 10%
	${ }_{1151468}$	End plate (left hand bracket)			
	$\begin{aligned} & 115146 \\ & 115143 \end{aligned}$	Cams Kay washers (12 used on cam.		TRANSFORMERS	
		Kay washers (12 used on camshaft)	T1	C-13E-18714	Loop antenna assembly
	115143 C	Key washer (one used)		B-138-17731	input if transtormer
	117528	Brass spacer (one used on cam-	T3 	$\begin{aligned} & \text { B-13B-17731 } \\ & \text { B-12C-18723 } \end{aligned}$	Output If transformer Output transformer
	117802	Brass spacer (four used on	T5	B-12D-18741	Oscillator coil
		shaft)		miscellaneous	
	131781	Spring washer for locking collar		A-18A-18712	5" PM speaker
	117600	Locking coliar		A-46A-10793	Pilot light, T-47
	115361	Lever with roller		A-47A-15451	Pilot light ensembly
	120283	Return spring for levers		A-15C.16007	7-prong, miniature tube socket
	A-2G-15449	Pointer (${ }^{\prime \prime}$)		A-2H-17588	Tube shield
	A-55A-10989	Dial cord (24 ")		A-2D-15279	Loop mounting bracket
	A-200-15463	Drum puiley		A-2M-17580	Coil locking clip
	A-3H-10299	Idler pulley		B-14M-10088-5	$A C$ line cord and plugs
	120285	Drum spring		$\begin{aligned} & \text { A-23A-10344 } \\ & \text { A-15B-10440 } \end{aligned}$	Line cord lock Octal tube socket
	8-2M-10383 A-2C-15450	Cinch button		CABINET ASSEmbly	
	CHASSIS ASSEMBLY CAPACITORS			5C-14286-36	Cabinet ($62-1536$)
				5C-14286-82	Cabinet (62-1537)
$\begin{aligned} & C-1 A, B, C, D \\ & C 2 \\ & C 3,8 \\ & C 4,5,6,7 \\ & C 9 \\ & C 10, A, B, C \end{aligned}$	B-8A-18708	2-gang, variable condenser		134123	Rubber bumper (bottom of
	C-8D-11111	$.18 \mathrm{mmf} \times 400$ volts			cabinet)
	C-8D-10774	$.02 \mathrm{mmf} \times 400$ volts		B-2M-15200	Cinch button (for dial scale)
	A-201-14397	Audio coupling plate		B-5B-18717-78	Volume knob (62-1537)
	C-8J-16081	. $047 \mathrm{mfd} \times 400$ volts		B-5B-18717-74	Volume knob (62-1536)
	A-8C-18713	Electrolytic condenser		A-5B-10994-77	Tuning knob (62-1537)
				B-5B-10994-36	Tuning knob (62-1536)
	C-981-82	47K ohms, $1 / 2$ watt, 10%		B-5b-14296.76	Pushbution
R2	C-987-27	220K ohms, $1 / 2$ watt, $1 / 2$ watt, 20%		120388	Locking spring (for tuning knob)
R3	C-981-33	2.2 megohms, $1 / 2$ watt, 20%		A-23L-11900	Call letters, set
R4	A-10A-10626	Volume control and switch		A-6C-14299	Acetate tabs (call letters set)
R5	C.981-36	6.8 mogohms. $1 / 2$ watt, 20%		A-2H-10996	Reset key
R6, 8	C-9B1-29	470 K ohms. $1 / 2$ watt, 20%		13141	Cinch buttons to cover trimmer
R7, 11	C-9B1-52	i 50 ohms, 1/2 watt, 10%			holes in cabinet

Front Cabinet Viaw

Top Chassis View

SERVICE DATA

Power Supply 115 volts, DC or $50-60$ cycle AC, 24 watts.
540 to 1600 Kc.
455 Kc .
At 1000 Kc., 60 Kc. at $1000 \times$ signal
150 u. v. per meter.
0.8 watts undistorted, 1.0 watt max.
4" PM., v.c. impedance, 3.2 ohms.
Loud Speaker
Tube Complement
12BE6, Converter
12BA6, IF Amplifier 12AV6 or 12AT6,
Detector, AVC, Audio

Dial Stringing Diagram

ALIGNMENT PROCEDURE

- Loop must be connected and set volume to maximum.

SIGNAL GENERATOR				TUNER SETTING	ADSUST FOR MaximuM OUTPUT	$\begin{aligned} & \text { INPUY FOR } \\ & \text { 50-MILIWAATT } \\ & \text { OUTPUT } \end{aligned}$
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection			
455 kc.	. 1 mf	12BE6, Pin 7		Capacitor fully open (plates out of mesh)	Top and bottom Cores in output and input I.F. cans	65 microvolts
1620 ke .	. 1 mf	12BEb, Pin 7		Capacitor fulily open (plates but of mash)	Osciliator trimmer C1-D on gang	70 microvolts
535 kc.	. 1 mf .	12BE6, Pin 7		Capacitor fully closed	Check for adequate tonge	70 microvolts
1400 kc.		Lay generator lead near back of cabinet		Tune in 1400 kc . signal	Antenna trimmer C-1C on gang	$\begin{aligned} & 200 \text { to } 400 \\ & \text { microvolts } \end{aligned}$
400 cycles	. 1 mf	12ATb, Pin 1				. 06 volts

NOTE: Capacitor C4 is included in filpec.
SCHEMATIC DIAGRAM

REPLACEMENT PARTS LIST

Please specify part number and chassis model number when ordoring replacements. Use only Genuine Factory Replacement Parts

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description
CAPACITORS				29E-17592	Spring washer
C1A, B C1C, D	8A-17377	2-gang condenser Trimmers on gang		43D-17609 29C-10630	Tinnerman clip
C2	8D-11111	. 18 mfd $\times 400$ volts		53A-18547	Dial string (approx 20")
C3	$8 \mathrm{D}-10770$	$.05 \mathrm{mfd} \times 200$ volts		49A-10078	Take up spring - .
$\mathrm{CH}^{\text {C5 }} 6$		Included in filpec		2C-19619	Pointer plate
C5-6-7-11and R5-6-8	201-19303	Filpec		$\begin{aligned} & 2 \mathrm{G}-19620 \\ & 3 \mathrm{M}-19623 \end{aligned}$	Pointer String guide
C8	8D-10774	. $02 \mathrm{mfd} \times 400$ volts		37A-19626	Dial background
$\mathrm{C9}$	8J-16081	. $047 \mathrm{mfd} \times 400$ volts		6D-19625	Dial scale
CiOA, B	8C-17391	Electrolytic condenser		2M-19624	Dial mounting strip
		SSISTORS		MISCELLANEOUS	
R1	981-82	47 K ohms, $1 / 2$ watt, 10%		5C-19532-9	Cabinet (Ivory)
R2	981-27	220K ohms, $1 / 2$ watt, 20%		5C-19532-36	Cabinet (Walnut)
R3	981-34	3.3 megohms, $1 / 2$ watt, 20%		58-19790-8	Knob (lvory)
R4	10A-19616	Volume control and switch		5B-19790-74	Knob (Walnut)
R5-6-8		See Filipec		23J-19627	Grill cloth and baffle board
R7	981-52	150 ohms, $1 / 2 \mathrm{watt}, 10 \%$		18A-19618	Speaker, 4" PM
R9	981-43	27 ohms, 1/2 watt, 10%		43D-12779	Tinnerman clip
R10	982.62	1000 ohms, 1 watt, 10%		$2 \mathrm{H}-17588$ or	Tube shield
R11	9B1-54	220 ohms, $1 / 2$ watt, 10%		$2 \mathrm{H}-19188$	Tube shiold
	TRANSFORMERS AND COILS			$\begin{aligned} & 2 \mathrm{M}-17589 \text { or } \\ & 2 \mathrm{M}-19187 \end{aligned}$	Tube shield base Tube shield base
T1	13E-19621	Loop antenna assembly		2M-17580	IF locking clip
T2-3	138-17731	IF transformer		15C-16007	7-prong, socket
T4	12C-19302 or	Output transformer		15B-10440	Octal socket
	12C-17595	Output transformer		14M-10088-4	AC line cord and plug
T5	13D-17583	Oscillator coil		2D-15432-1	loop mounting bracket
	DIAL PARTS			23A-10344 42 l	Line cord lock Chassis mounting bolt
	$\begin{aligned} & 3 A-19617 \\ & 40 A-17591 \end{aligned}$	Tuning shaft Bushing		$\begin{aligned} & \text { 29A-3528 } \\ & 29 \mathrm{~J}-16690 \end{aligned}$	Steel washer Rubber washer

SERVICE DATA ELECTRICAL SPECIFICATIONS

Power Supply
Frequency Range........ 540 to 1600 kc.
Intermediate Freq...... 455 kc .
Selectivity At 1000 kc. 50 kc. at $1000 \times$ signal Loud Speaker.

Power Output

20 microvolts average for .05 watts output.
1.0 watts undistorted, 2.0 watts maximum.
5×7 P. M., v.c. impedance 3.2 ohms.

ALIGNMENT PROCEDURE AND RECEIVER STAGE SENSITIVITIES Alignment must be done in the cabinet.

The signal source must be an accurately calibrated - Volume control at maximum for all adjustments. signal generator capable of supplying 455 Kc and up to 1620 Kc signals modulated 30% with a 400 -cycle audio signal.

To connect the output meter, disconnect the speaker and substitute a $3.2 \mathrm{ohm}, 5$ watt resistor across the secondary winding of the output transformer. Connect output meter across 3.2 ohm resistor.

- Align for maximum output. Reduce input as needed to keep output near 0.4 volts.
- Loop antenna should be connected to receiver and in its proper position when making adjustments.

SIGNAL GENERATOR				$\begin{aligned} & \text { TUNIR } \\ & \text { SETTING } \end{aligned}$	ADJUST FOR MAXIMUM OUTPUT
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection		
455 kc.	. 1 mf.	12BEb, Pin 7		Capacitor fully open (plates out of mesh)	Top and bottom Cores in output and input I.F. cans
1620 kc.	. 1 mf .	12BEb, Pin 7		Capacitor fully open (plates out of mesh)	Oscillator trimmer Cl-D on gang
535 kc .	. 1 mf .	12BE6, Pin 7		Capacitor fully closed	Check for adequate range
1400 ke.	-	Lay Generator lead near back of cabinet.		Set dial pointer at 1400 kc .	Antenna trimmer C1-C on gang

SCHEMATIC DIAGRAM WITH VOLTAGES

NOTE: Either a 12AT6 or a 12AV6 tube may be used.

tube complement

12BE6, Converter.
12BA6, I.F. Amplifier.
12AT6 or 12AV6, Detector, AVC, audio amplifier.

50L6, Output amplifier.
Selenium rectifier.

Top Chassis View

replacement parts list

Please specify PART number and chassis Model Number when ordering replacements.

ELECTRICAL SPECIFICATIONS

Power Supply
115 volts, $A C, 60$-cycles; radio only 75 watts, with phono operation 100 watts.
Frequency Ranges Broadenst Band- 540 to 1600 ke . FM Band- 88 to 108 mc .
Intermediate Freq.
Selectivity \qquad
AM-455 kc.; FM-10.7 mc.
AM-47 kc. broad at 1000 times signal, measured at 1000 kc . I.F. FM-230 kc. broad at 2 times down.
I.F. FM-470 kc. broad at 10 times down.
AM Sensitivity

ALIGNMENT PROCEDURE
 Broadcast Band Section I. F. and R. F.

The alignment procedure below includes the sensitivities at the inputs of various stages. All signal input values are based on an output of 500 milliwatts. This may be measured by disconnecting the speaker voice coil and substituting a 3.2-ohm resistor across the secondary winding of the output transformer. A reading of 1.27 volts $A C$ across this resistor will be approximately. equivalent to 500 milliwatt output with the speaker connected. The volume control must be set at maximum. The tone control must be set for maximum treble.

The signal source must be an accurately calibrated signal generator capable of supplying the frequencies designated, modulated 30% with a 400 -cycle audio signal. A 400 cycle audio signal is required for the audio

Chassis View measurement. Variations in sensitivities of plus or minus 25\% are usually permissable.

AM-I. F. ALIGNMENT
Band Switch in AM Position, Gang Open, Dummy Antenna . 1 Mfd .

SIGNAL generator FREQUENCY	CONNECTION TO RADIO	AdJUSTMENTS $T 0$ BE MADE	ADJUST FOR
400 cycles. Use 65 millivolts	High Side of Volume Control and chassis	None	Maximum output Should be 500 Milliwatts
$\begin{aligned} & 455 \mathrm{Kc} . \text { Use } \\ & 3300 \\ & \text { microvolts } \end{aligned}$	Pin 1 of 6BA6 I.F. Amp. and chassis	Primary and Secondary of T8. See chassis view.	Maximum output Should be 500 Milliwatts
455 Kc. Use 55 microvolts	Pin 7 of 6BA7 Converter and chassis	Primary and Secondary of T6. See chassis view.	Maximum output Should be 500 Milliwatts

BROADCAST BAND-R. F. ALIGNMENT
Check pointer so that the right hand edge of the pointer skirt coincides with the left hand edge of dial marker at the extreme left when gang is closed.

For adjustment, see dial mechanism illustration.

| SIGNAL GENERATOR
 FREQUENCY | SET POINTER AT | CONNECT TO RADIO | ADJUST |
| :---: | :---: | :---: | :---: | :---: |
| $1600 \mathrm{Kc}$. | Extreme Right
 Calibration Marker | RADIATION COUPLING
 Use six turn loop across
 gennarator output. | Oscillator trimmer
 C2-B for maximum |
| $1400 \mathrm{Kc}$. | Third Calibration
 from Right | Place close to cabinet back. | Antenna Trimmer
 C2-A for maximum |

Check tracking at $1000 \mathrm{Kc}, 600 \mathrm{Kc}$, and 535 Kc to be sure oscillator is set correctly.

ALIGNMENT PROCEDURE

FM Band Section I. F. and R. F.
A non-metallic alignment tool must be used.

IMPORTANT

NOTE

No alignment of the FM section of this radio should be The following alignment is based on the use of the vact attempted unless you are positive that the circuits are um tube voltmeter which has a "floating ground". I in need of adjustment and you have the necessary equip- other words, the meter, when used as a vacuum tube voli ment. meter, can have both the positive and negative side All components used in this radio are extremely stable connected to points above ground and still give tru and the tuned circuits should require no adjustment readings. (See note " C " below).
over a long period of time. A standard AM signal generator is required.
FM - I. .F. ALIGNMENT
Band Switch in FM Position. Dummy Antenna . 1 Mfd

SIGNAL GENERATOR FREQUENCY	CONNECTION -TO RADIO	VACUUM TUBE VOLT METER CONNECTION TO RADIO	ADJUSTMENTS TO BE MADE	ADJUST FOR
10.7 Mc . Use about .05 volt	Pin No. 1 of 6AU6	Pin No. 7 of 6AL5 and chassis	Bottom Core Primary of T9 Ratio Detector	Resonance should be about 3 volts
10.7 Mc. Use about .05 volt	Pin No. 1 of 6AU6	See note "A"	Top Core Secondary of T9 Ratio Detector	Zero. Use zero center scale See note "B"
10.7 Mc. Use about 1800 microvolts	Pin No. 1 of 6BA6	Pin No. 7 of 6AL5 and chassis	Primary and Secondary of T7. FM Driver IF See chassis view	Resonance should be about 3 volts
10.7 Mc. Use about 400 microvolts	Top end of C2-C	Pin No. 7 of 6AL5 and chassis	Primary and Secondary of T5. FM Input IF See chassis view	Resonance should be about 3 volts

NOTES ON FM - I. F. ALIGNMENT

NOTE "A"-Connect two resistors in series, 100K OHMS each, from Pin No. 7 of 6AL5 to chassis (Pin No. 5). These resistors must be matched within 5%. Connect vacuum fube voltmeter botween the midpoint of the resistors and point 22 .
NOTE "B"-If T9 has boen tampered with, it is possible that no crossover point will be found at first. Caroful adjustment of both primary and secondary is necessary.

NOTE "C"一To use a VTVM which does not hove the "floatin ground" feature, in stop 2 above, connect "ground" side of VTVI to midpoint of resistors (Note "A") and "high" side to point 2 GENERAL-Input signals should be adiusted to give approximatel 3 volts. The ratio detector is operating at a reasonable levol a this point and will give the truest indication of correct alignmer with the procedure specifiod.

FM-R.F. ALIGNMENT

Check pointer so that the right hand edge of the pointer skirt coincides with the left hand edge of dial marker at the extreme left when gang is closed. For adjustment, see dial mechanism illustration.

SIGNAL GENERATOR FREQUENCY	POINTER	CONNECFION 10 RADIO	ADJUST	VTVM CONNECTIONS
108 mc.	108 mc . Marker	FM antenna terminals	FM Osc. C3 for maximum	, 7
98 mc .	Tune in Gen. Signal	See Note "B' below	FM Mixer C2-C for maximum	6AL5 to chassis.

NOTE "A"-If a signal generator with the above fundamental frequency is not available, it is sometimes possible to use harmonics. An alternate procedure is to use a local station carrier of known frequency to align the FM Band and to use the vacuum tube voltmofor as above for rosonance indication. A weak carrier, howover, will not' produce 3 volts.

NOTE "B"-Connect 300 ohms in series with "hot" side of gene afor and connect to left hand screw of external FM Antenna To minals. Connect cold side of generator to right hand screw.

REPLACEMENT PARTS INFORMATION

Please specify PART number and chassis model number when ordering replacements.
REPLACEMENT PARTS LIST

Ref. No.	Part No.	Description
	CAPACITORS	
CIA,B,C,D	8-8A-17673	Gang tuning condenser
C2A,B.C,		Trimmers on gang
C3	A-201-15142	Trimmer condenser
C5	C-8G-12166	5 mmf , ceramic, 10%
C8	C-8G-14172	33 mmf , coramic. 10%
C9-31-41	C-86-12759	100 mmf , ceramic, 10%
C10	A-8G-12495-1	1.0 mmf , coramic, $\mathbf{2 0 \%}$
C11-16-36	C-8D-17270	. 01 mfd, 400 volts, 20%
Cl_{12}	C-8G-13131	100 mmf , ceramic, 10%
C13-49	C-8D-10770	. 05 mfd , 200 volts. 20%
C15-33	C-8D-11738	. $01 \mathrm{mfd}, 200$ volts, 20%
C17-18	A-8F-13127	100 mmf , dual mica $+30 \%-20 \%$
C19-34	C-86-11734	100 mmf , ceramic, 10%
C20	C-8D-19565	. $0016 \mathrm{mfd}, 600$ volts, 10%
C21	C.8G-18049	. 002 mfd , ceramic, 10%
C22	C-8F3-120	390 mmf , mica, 10\%
C23	A-8C-18128	$10 \mathrm{mfd}, 50$ volts
C24-40-42	A-8G-13962	. 005 mfd , ceramic
C26-27-28-30	C-8G-11732	470 mmf, ceramic, 20\%
C32	C-8G-13201	1000 mmf , ceramic
C37.A.B.C-D	A-8C-18125	$\begin{aligned} & 40 \mathrm{mfd} \times 25 \text { valts, } 40-40-40 \\ & \mathrm{mfd} \times 350 \text { volts } \end{aligned}$
C38	C-8D-10788	. $004 \mathrm{mfd}, 600$ volts, 20%
C39	C-8D-10935	$.005 \mathrm{mfd}, 600$ volts, $+40 \%-15 \%$
C45	C-8J-11321	. $02 \mathrm{mfd}, 600$ volts, 20%
C48	C-8D-11304	. $02 \mathrm{mfd}, 200$ volts, 20%
	RESISTORS	
R1	A.168.16615	Suppressor
R2-15	C-981.33	2.2 megohms, $1 / 2$ wath, 20%
R3	A-168-16616	Suppressor
R4.14	C.9B1-78	22K ohms, $1 / 2 \mathrm{watt}, 10 \%$
R5-10	C-981-43	27 ohms, $1 / 2$ watt, 10%
R6-8-12-19	C.981-58	470 ohms, $1 / 2 \mathrm{wath}, 10 \%$
R7	C. 981.48	68 ohms, $1 / 2$ watt, 10%
R9-32	C-981-82	47K ohms, $1 / 2$ watt, 10%
R11-23-24	C-981-94	470K ohms, $1 / 2$ watt, 10%
R 13	C-981-79	27K ohms, $1 / 2$ watt, 10%
R16	C-981-34	3.3 megohms, $1 / 2$ watt, 20%
R17	C.981-54	220 ohms. $1 / 2$ watt, 10%
R18	C.981-60	680 ohms, $1 / 2 \mathrm{watt}, 10 \%$
R20	A-10A.17971	1 megohm, (volume control and switch)
R21	C-981-36	6.8 megohms, $1 / 2$ watt, 20%
R22	A-118-16502	1 megohm, (tone control)
R25	C.981-55	270 ohms, $1 / 2$ watt, 10%
R26	C.9B1-27	220K ohms, $1 / 2$ watt. 20%
R28	C.9C2-1065	1.5 ohms, 1 watt, 10%
R30	C-9C12-2059	3000 ohms, 5 watts, 5%
R31	C-9C12-1102	1800 ohms, 5 watts, 10\%

SPECIAL INSTRUCTIONS

RELOVAL OF RADIO CHASSIS
Renove the four sheet metal screws at the edge of the metal panel. Remove the two machine screws from the front of the cabinet. Lift chassis enough to remove the small threeprong (antenna) plug from the top of the chassis. Then disconnect the three plugs from the rear of the chassis, and lift the chassis out of the cabinet.

HOFE: In cabinets that have a panel in botton, remove this panel and disconnect the four plugs through this opening; then proceed as above.

ElECTRICAL SPECIFICATIONS

Power Supply 105-125 volts AC, $60 \mathrm{cy}-$ cles, 45 watts normal, 7.5 watts recorder operating.
Frequency Range. . . 535-1620 KC
Intermediate
Frequency 455 KC
Selectivity 36 KC broad at 1000 times signal, 1000 KC

Sensitivity . . . (for 0.5 watt output with loop antenna) 200 microvalts per meter average.

REMOVAL OF RECORDER UNIT
Arter the radio chassis has been removed, unscrew the four machine screws at the corners of the unit. Lift "Recorder" arm three inches, swing it halfway towards the turntable center and then lower it. Grasp the unit at the edges and lift it out.

When testing the radio, the loop antenna should be removed from the cabinet and reconnected to the chassis.

OPERATING INSTRUCTIONS

Operating the AIRLINE Hadio Hecorder is not complicated or difficult. However, the better you understand it the better your results will
be. Read these ingtructions carefully so that you may derive the greatest pleasure and satisfaction from your Radio-Recorder.

INSTALLATION

IMPORTANT During shipment the base plate, on which are mounted the motor and the recording and play-back arns, is secured firmly to case by foup bolts located at each corner of the base plate. These bolts must be loosened about 2 complete turns to allow the recording assembly to ploat freely on the rubber shock absorbers under the plate.

Before connecting your Radio-Recorder, make certain that the line voltage is 105-125 volts AC, 60 Cycles.

For best results the unit must be operated on a firm and level support. This is important to insure proper "tracking" of the arms when making or playing recordings.

OPERATION

TO OPERATE RADIO
Turn "Pinction Selector" switch knob to Rodic position. Turn OPP-ON switch to the right and allow time for tubes to warm up, then tune in desired station. Adjust the fone and Volime controls to the most pleasing tonal balance.
to record from radio

1. Raise the Recording A ra and insert the cutting needle in the cutting head, making sure that the point of the retaining screw bears against the flattened shank of the needle. Tighten the screw firmly with your fingers - $D C$ NOI USE PLIERS. RE-IIGBTBH the screw after each recording.
2. Turn "Purction Selector" switch to Radio position and tune in station desired.
3. Turn "Pinction Selector" switch knob to Recond Radio position. Turn fone Control all the way to the right-Treble position. cHIS IS INPORFAMT. Recordings made with the fone Control in any nther postition will have a tendency to sound muffled. Adjust rolume control to a point where the lower neon indicator lamp will glow continuously while the upper one will light up only during loud passages of music or speech. The correct setting of the Volume Control is very IMPORTANT. Either excessive or insufficient volume will result in poor recording. Too much volume will produce distorted recordings while insurficient volume will cause excessive groove and surface noise. WARHINGBxcessive volume can permarently damage the crystal recording head. NEVER ADVANCE the DOLUNE COMTROL any farther than is required to light up the upper neon irdicator lamp on loud tassages of misic or speech.
4. Place a blank recording disc on the turntable so that the Retractable Pin protrudes through the small hole near the center hole of the recording disc.
5. The AIRLINE Radio-Recorder is equipped with a two-speed recording unit. Recordings can be made either at the standard speed (78 RPM) or the professional slow speed (33-1/3 RPM). At

33-1/3 RPM the recording time is almost doubled. For example: at 78 RPy on a 10 inch record the recording time is approximately $4 \frac{1}{2}$ minutes, while at 33-1/3 RPM on a 10 inch record the t ime is approximately $\theta \frac{1}{2}$ minutes. Select the recording apeed desired andstart the turntable. Raise the Recording Ara about three inches, move horizontally and place on the recording disc. The record is now being cut and a fine thread or shaving cut from the record will be directed toward the center post. Allow this shaving to collect around the center post until the recording is finished. When the recording is finished, raise the Recording Arm about 3 inches and returis it to the arm rest. Turn motor off and remove the shavings that have col lected around the center post.
TO RECORD FROM MICROPHONE
Turn "Punction Selector" knob to Record Microphone position and follow the same procedure as outlined in fo Reccrd from Radio. The microphone should be used as far away from the recorder as possible to reduce possible acoust ic feedback, a how that results from excessive sound from the loud speaker re-entering the microphone. For best results the microphone should be used from 6 to 8 inches from the source of the sound to be recorded.
tO PLAY RECORDS
Turn "Function Selector" knob to "Phonogroph" position. Select the proper speed 33 or 78 RPM, start the turntable and place the "Playback arm" on the record. Adjust tone and Volume to pleasing setting. LP microgroove records are played with speed selector in $33{ }^{\text {n }}$ position. TO USE AS PUBLIC ADDRESS STSTEM

Turn "Punction Seiector" knob to Public Address position. As in Recording from Microphone, the microphone should be used as far away from the recorder as possible to reduce possible acoustic feedback. The setting of the volume control will depend on the position and the distance of the microphone in relation to the loud speaker.

ALIGNMENT PROCEDURE
The following equipment is required for Conditions for Alignment: aligning:

A signal generator which will provide an accurately calibrated signal at the indicated test frequencies; an output indicating meter; a non-metallic screwdriver.

Radiation Loop: 2 -turn loop, 6 inches in' diameter.

SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	RADIO DIAL SETT ING	OUTPLT METER	REMARKS	ADJUST FOR MAXIMUK OUTPUT
L00P	485 ra	Low End of Band	Across Volce Coll	Short out osc. tuning gang section C-2; compress C-3	$\begin{array}{ll} C-8, & C-7, \\ C-6, & C-5 \end{array}$
L00P	1080 xS	High End of Band	*	Remove short across C-2	C-4
100P	1400 XC	Point of Maximus Out put	*	Set pointer to 140 on dial	C-3
100P	600 KC	Point of Max Imum output	-	Knife C-1 plates for max 1 mum output	
100P	1400 xc	1400	\cdots	Recheck alignment.	C-3 if necessary

RADIO REPLACEMENT PARTS LIST

$\begin{aligned} & C-9, C-10 \\ & R-2 \end{aligned}$	811	100 uur - 50 K OHM - 100 uuf Dual Shunt Connection
C-13, R-4	813	.01 ur - 5 Meg Ohm, Common Terminal Connection
$\begin{array}{ll} \mathrm{C}-14, & \mathrm{R}-5 \\ \mathrm{C}-20, & \mathrm{R}-18 \end{array}$	814	.01 uf - 250 K Ohn, Common Terminal Connection
C-21, H -23	812	. 001 uf - 6 Meg Ohm, Parallel Connection

R-1	517	22,000 ohm 0.5 watt Carbon	1
R-3, R-25	615	2.2 Meg. 0.5 Watt Carbon	2
R-10, R-12	501	610,000 Ohm 0.5 Watt Carbon	2
R-7	602	380 Ohm 1.0 Watt Carbon	1
R-8	527	10 Ohm 0.5 Watt Carbon	1
R-9	528	4.3 Ohm 1.0 Watt Wire	1
A-11	529	250,000 Oha 0.5 Watt Carbon	1
R-13	522	10,000 Ohm 0.5 Watt Carbon	1

RADIO REPLACEMENT PARTS LIST (Cont.)

GENERAL DESCRIPTION

This is a two band, nine tube (plus rectifier tube) $A M$ and FM receiver with an automatic record changer. The I-F stages use high gain miniature type tubes. Built-in Air Wave Aerials are provided for the FM and Broadcast bands. Features include, compensator circuits to prevent oscillator drift, automatic volume control, push-pull pentode power output stage, PM dynamic loud speaker and an electrostatic shield in the power transformer to reduce power line noise.
The receiver and record changer are housed in a console Voice Coil Impedance. . 3.2 ohms 400 cycles combination cabinet with controls provided for tuning, volume, tone and band or phono selection.

DRIVE CORD REPLACEMENT

Use a new 10X54 drive cord assembly or a new length of cord 48 inches long for the installation, winding three turns clockwise around the drive shaft with the turns progressing away from the chassis. After completing the installation, rotate the drive shaft a few turns to take up the slack in the cord.

ELECTRICAL SPECIFICATIONS

Power Supply
105-125 volts AC 60 cycles, 80 watts, 100 watts with record changer

Frequency Ranges
Broadcast 540-1600 KC Frequency Modulation 88-108 MC

Intermediate Frequency. .AM-455 KC
FM-10.7 MC
Selectivity AM-43 KC broad at 1000 times I.F. FM-200 KC broad at 2 times down
I.F. FM-760 KC broad at 200 times down

AM Sensitivity \qquad (For . 5 watt output with external antenna)
10 microvolts average
FM Sensitivity
. (For . 5 watt output) 30 microvolts average

Power Output 8.5 watts maximum 6.0 watts 10% distortion

Loud Speaker \qquad 12" PM Dynamic

Tube and Dial Lamp
1 6BA6 AM-FM R-F Amplifier
1 12AT7 FM \& AM Osc. \& Mixer
1 6BA6 FM-AM 1st I-F Amplifier
1 6BÁ6 FM 2nd I.F Amplifier
1 6AL5 FM Detector
1 6AVO Audio Amplifier, AM 2nd Detector and AVC
2 6K6-GT Audio Output
1.5Y3-GT Rectifier

1 6AV6 Phase Inverter
2 No. 47 Dial Lamps

NOTE-T-5 discriminator transformers with Part No. 9A1970 stamped on the can must be aligned as outlined in this service manual.
Discriminator transformers with Part No. 9A2064 stamped on the can have the primary adjustment at the top and the secondary adjustment at the bottom.

TUBE SOCKET VOLTAGES

Socket voltages are shown on the Schematic diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter. Conditions of measurement are:

Line voltage
.117 Volts $A C$
Signal Input . None
A variation of $\pm 10 \%$ is usually permissible.

ALIGNMENT PROCEDURE

AM STAGES

The following is required for aligning:
An All Wave Signal Generator. Which Will Provide an Accurately Calibrafed Signal at the Test Frequencies as Listed.
Output Indicating Mater, Non-Metallic Screwdriver, Dummy Antennas $-.1 \mathrm{mf}, 200 \mathrm{mmf}$.

Volume Controt-Maximum all Adjustments
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy lead.
Allow Chassis and Signal Generotor to "Heat Up" for Several Minutes.

SIONAL GENERATOR		CONNECT GENERATOR OUTPUT YO	THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	GANG CONDENSER SETTING	Adjust	ADJUSTYOR
	FREQUENCY SEYTING						
I.F	455 kc	$\begin{gathered} \text { 12AT7 } \\ \text { Pin } 7 \text { and Chassis } \end{gathered}$. 1 mf	Broadeast	Rotor Fully Open	$\begin{aligned} & \hline \text { 2nd I-F Pri. \& Sec. (1) \& (2) } \\ & \text { lst I-F Pri. \& Sec. (3) \& (4) } \\ & \hline \end{aligned}$	
Broodeast	1620 kc	External ant. term.	200 mmf	Broadcost	Rotor Fully Open	Broadcast Oscillator C-33	Maximum
	1400 kc	External ant. term.	200 mmf	Broadeast	Turn Rotor to Max. Output	Broadcast Interstage C-29	Output
	1400 kc	Extornal ant. term.	200 mmf	Broadcast	1400 ke See Note A	Loop Antenna C. 48	
	Note	A-If the pointer is	not of 1400	a dial, rese	pointer at the 1400 KC mark	on the dial scale.	

The following equipment is required for oligning:
An accurotely calibrated signal generator providing unmodulated signals at the test frequencies listed below.

Non metallis screwdriver.
Dummy Antennas and I-F Loading Resistor-. $01 \mathrm{mf}, 300$ ohms and 1000 ohms.

Zero center scale DC vacuum tube volimeter having a range of approximately 3 volts.
(If a zero center scale meter is not available, a standard scole vacuum tube voltmeter may be used by reversing the meter connections for negative readings.)
Allow chassis and signal generator to warm up for several minutes.

	SICNAL	GRNERATOR					
	$\begin{aligned} & \text { FREQUENCY } \\ & \text { SETTINS } \end{aligned}$	CONNECT GENERATOR OUTPUT 10	THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	\qquad	ADJUST	ADJUST FOR
Discrime inator	$\begin{gathered} 10.7 \mathrm{MC} \\ \text { Note B } \\ \hline \end{gathered}$	6BA6 2nd I-F Pin 1 ond Chassis	. 01 mf	FM	Rotar Fully Open	Ditc. Pri. (5) Note A	Maximum Deflection
	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note B } \end{aligned}$	6BAG 2nd J.F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	Disc. Sec. (8) Note C	Zero Centgr
I-F	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note F } \end{aligned}$	6BA6 lat I-F Pin: 1 and Chaseis	. 01 mf	FM	Rotor Fully Open	2nd I-F Pri. Note A and D (7) 2nd I-F Sec. Note A and E (8)	Maximum Deflection
Discriminator	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note F } \end{aligned}$	6BA6 1st I.F Pin 1 and Chassis	. 01 mf	FM	Rotor fully Open	Disc. Pri. (5) Note A	Maximum Doflection
	10.7 MC Note F	6BA6 1st I-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fulfy Open	Disc. Sec. (6) Note C	Zero Center
	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note F } \end{aligned}$	IM-RF Gang Condenser terminal	. 01 mf	FM	Rotor Fully Open	1st I-F Pri. (8) 1st I-F Sec. (10) Notes A, D 8	Maximum Deflection
Recheck l-F Adjustments in order given							
R-F \% Osc.	108.4 Note H	Disconnect dipole and connect generator to dipole terminals with resistor in series	300 ohms	FM	Rotor Fully Open	Oxillator C35 Note 6	Maximum Dofiection
-	104.5	Disconnect dipole and conneet generator to dipole terminals with resistor in series	300 ohms	FM	Tune Rotor for Max. AVC voltage	$\begin{array}{ll} \text { FM } & \text { Interstage } \\ & C-32 \end{array}$	Maximum Deflection
	104.5	Disconnect dipole and connect generator to dipole terminals with resistor in series	300 ohms	FM	Tune Rotor for Max. AVC voltage	Ans. C-47	Maximum Daflectipn

Recheck R-F and Osc. Adjustments in order given

NOTE A-Test Equipment connections are as given in the table. The zoro center scale DC vacuum tube voltmeter is to be connected between chassis ground and the AVC line af the junction of resistor R-22 and condenser C-18 for all adjustments except the discriminator secondary adjustment, for which See Note C.
NOTE B-A signal of 11 volt must be fed into the receiver for this adjustment.
NOTE C-Disconnect zero center DC vacuum tube voltmeter from AVC and connect to junction of R-18 and C-62. Adjust for zero voltage indicotion.

NOTE D-Before adjusting Pri. core connect 1000 ohm load resistor across the 2nd I.F. secondary terminals. Input may have to be increased to .1 volt if receiver is badly mis-aligned.
NOTE E-Disconnect 1000 ohm load resistor from secondary terminals and connect across the 2nd I.F. primary terminals. Input may have to be increased to . 1 volt if receiver is badly mis-aligned.
NOTE F-Input can be reduced to 10,000 microvolts.
NOTE G-Oscillytor frequency above signal frequency.
NOTE H-Remove the 1000 ohm load resistor before attempting to check the R-F and oteillator adjustments.

REPIACEMENT PARTS LIST

C. 4	47×497	100 mmf		Coramic. 1
C-5	47X499	47 mmf		Ceramic. . . . 1
C-8	47X498	47 mmf		Ceramic. 1
$\left.\begin{array}{l} c .80 \\ C .65 \end{array}\right\}$	Part of T-1 lst i-F (FM)			
$\left.\begin{array}{l} C-11 \\ C-28 \end{array}\right\}$	47X550	100 mm		Coramic...... 2
C-15	Part of T-3 2nd I-F (FM)			
C.21	Part of T-5 Discriminator			
$\left.\begin{array}{l}\text { C-22 } \\ \text { C-24 } \\ \text { c-31 }\end{array}\right\}$				
$\left.\begin{array}{c} \mathrm{C}-31 \\ \mathrm{C}-51 \end{array}\right\}$	47×501	68 mmf		Ceramic. 4
C. 23	45×361	5 mf	100 V	Dry Electrolytic 1

MISCELLANEOUS
TYPE W-28A175 RECORD CHANGER PARTS
W. 15×106-26 Motor Assembly, 60 cycles

S-P77V Crystal Carridge \& Neodlo..........
S-85.18 Needle, Microgroove (Red) 1
RECORD CHANGER: See Webster Chgo.
Model 100, Pgs. RCD.CH. $21-1$ to
RCD.CH.21-10.
Speaker $12^{\prime \prime}$ P.M. 1
Phone Socket-Single Pin Tip .. 1 Phono Socket-Single Pin Tip,
Tube Socket-Octal (8 prong)
Molded
Tube Shield-Noval
Tube Shield (minioture)
Tube Socket (miniature)
Band Change Switch ..
Line Cord \& Plug Assembly

12A502
34305
$3 A 435$
34436
$\frac{\square}{2}$

$0 ?$

GENERAL DESCRIPTION

This is a two band, seven tube (plus rectifier tube) AM and FM receiver with automatic record changer. The I-F stages use high gain miniature type tubes. Built-in Air Wave Aerials are provided for the FM and Broadeast bands. Features include, a grounded grid R-F amplifier stage on the FM band, compensator circuits to prevent oscillator drift, automatic volume control, beam power output stage, PM dynamic loud speaker and an electrostatic shield in the power transformer to reduce power line noise.

The receiver and record changer are housed in a console combination cabinet with controls provided for tuning, volume, tone and band or phono selection.

ELECTRICAL SPECIFICATIONS

Power Supply \qquad 105-125 volts AC 60 cycles 60 watts. 80 watts with recorc changer.

Frequency Ranges............Broadcast 540-1600 KC
Frequency Modulation 88-108 MC

Intermediate Frequency....AM-455 KC
FM-10.7 MC

Selectivity \qquad .. AM-45 KC broad at 1000 times signal, measured at 1000 KC
I.F. FM-200 KC broad at 2 times down
I.F. FM-950 KC broad at 20 C times down

AM Sensitivity \qquad (For .5 watt outpuः with external antenna) 25 microvolts average

FM Sensitivity \qquad (For . 5 watt output) 25 microvolts average

Power Output \qquad 4.5 watts maximum 2.5 watts 10% distortion

Loud Speaker \qquad 12" PM Dynamic

Voice Coil Impedance...... 3.2 ohms 400 cycles

Tube and Dial Lamp 1 6BE6 AM Converter \& FM Osc.

 Complement1 6BA6 1st I-F Amplifier
1 6BA6 2nd I-F Amplifier
1 6AL5 FM Discriminator
1 6AV6 Audio Amplifier, AM 2nd Detector and AVC
1 6VGGT Audio Output
1 5Y3GT Rectifier
1 12AT7 R-F Amplifier \& Mixer
2 No. 47 Dial Lamps

DRIVE CORD REPLACEMENT

DIAL POINTER CORD

Use a new 10×38 drive cord assembly or a new length of cord 48 inches long for the installation. Install the cord as shown in the illustration, winding three turns clockwise around the drive shaft with the furns progressing away from the chassis. After completing the installation rotate the drive shaft a few turns to take up the slack in the cord.

TUBE SOCKET VOLTAGES

Socket voltages are shown on the schematic diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter, Conditions of measurement are:

Line voltage 117 Volts AC
Signal lnput
.None
A variation of $\pm 10 \%$ is usually permissible.

ALIGNMENT PROCEDURES AM STAGES

The following is required for oligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal ot the Test Frequencies os Listed.
Output Indicating Meter, Non-Matallic Screwdriver, Dummy Antennas -.1 mf , and 50 mmf .

SIGNAL GENERATOR					ADJUST	$\begin{gathered} \text { ADJUST } \\ \text { for } \\ \hline \end{gathered}$
\qquad		$\begin{aligned} & \text { THROUGH } \\ & \text { DUMMYY } \\ & \text { ANTENNA } \\ & \hline \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { GROUND } \\ \text { TO } \\ \hline \end{gathered}$			
455 KC	Control Grid 1st 6846 Pin No. 1	! mf	Chat: Base	Rútor fully $\mathrm{O}_{\text {pen }}$	2nd i.f. Fri. (i) and Soc. (2)	maximum Output
455 KC	Control Grid 6BE6 Pin No. 7 Ist Det.	. 1 mf	Chassia Bane	Retor Fully Open	1st I.F. Pri. (3) and Sec. (4)	Maximum Output
455 KC	Contral Grid 68E6 Pin No. 7	. 1 mf	Chassis Base	Rotor fully Open.	2nd I-F Fri. (1) and Sec. (2)	Meximum Output
1620 KC	Control Grid 6BE6 Pin No. 7	. 1 mf	Chassis Base	Retor Fully Open	Oreillator C-41	Maximum Output
1400 KC	External Antenna Terminal	50 mmf	Chassis Base	Turn Rotor to Max. Output Set Pointer to 1400 KC See Note A	Antenna C-2	Maximum Output

NOTE A-If the pointor is not at 1400 KC on the dial, reset pointer to the 1400 KC mark on the dial scale.

FM STAGES

The following is required for aligning:
An accuratoly calibroted signal generator providing unmodulated signals at the test frequancies listed below.

Non-metallic serowdriver.
Dummy Antennas and I-F Loading Resistor-2500 mmf, $\mathbf{3 0 0}$ ohms

Zero center scale DC vacuum tube voltmeter having a range of opproximataly 3 volts.
(If a zero center scale metor is not avallable, a standard scale vacuum tube volimofer may be used by revarsing the moter connections for negative readings).
Allow chassis and signal generator to "Heat Up" for several minutes.

SIGNAL GENERATOR			$\begin{aligned} & \text { THROUGH } \\ & \text { OUMMYY } \\ & \text { ANTENNA } \end{aligned}$	BAND SWITCH sming		ADJUst ${ }^{\text {a }}$	$\begin{aligned} & \text { ADJust } \\ & \text { for } \end{aligned}$
	FREPUENCY SETING SOS	CONNECT GENERATOR OUTPUT TO					
$\overline{\text { Discriminator }}$	10.7 MC	6BA6 2nd I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Dise. Pri. (5) Note A	Maximum Deflection
	10.7 MC	$\begin{aligned} & \text { 6BA6 2nd } 1 . F \\ & \text { Pin } 1 \text { and Chassis } \end{aligned}$	2500 mmf	FM	Rotor Fully Open	Disc. Sec. (6) Note B	
H	10.7 MC Note C	6BA6 1st I-F Pin 1 and Chassis	4500 mmof	FM	$\begin{aligned} & \text { Rotor fully } \\ & \text { Open } \end{aligned}$	$\begin{aligned} & \text { 2nd i-f Pri. (7) } \\ & \text { Sec. (8) Note D } \end{aligned}$	$\begin{aligned} & \text { Maximum } \\ & \text { Defloction } \end{aligned}$
$\overline{\text { Discriminator }}$	10.7 MC	6BA6 Jat I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Pri. (5) Note D	Maximum Deflection
I-F	10.7 MC	Sunction C-32A \& B (Dual 100 mmf cond.) And chassis	2500 mmf	FM	Rotor Fully Open	$\begin{gathered} \text { 1st I-F Pri. (9) } \\ \text { \& Soc. (10) } \\ \text { 2nd I-F Pri. (7) } \\ \text { \& Soc. (8) } \\ \text { Dise. Pri. (5) } \\ \text { In Order Shown } \\ \text { Note D } \\ \hline \end{gathered}$	Maximum Deflection
	10.7 MC	Same os above	2500 mmf	FM	Rotor Fully Open	Disc. Sec. (6) Note B	

Oncillator	108.5	Disconnect built-in dipole antenno and connect generator to dipole terminala with resistor in series.	300 ahms	FM	$\begin{aligned} & \text { Rotor fully } \\ & \text { Open } \end{aligned}$	Osc. C-25	Deffection Maximum
Antosna	104.5	Same as above	300 chmm	FM	Tune rotor for max. AVC voltage	Ant. C-39	Maximum Deflection

RECHECK ANTENNA \& OSC. ADJUSTMENTS IN ORDER GIVEN

FM ALIGNMENT NOTES

NOTE A-The zere center scole DC vocuum tube voltmeter is to be connected batween chassis ground and the AVC line. A signai of . 1 volt must be fed into the receiver for this adjustanent.
Note output voltage on the zero ecenter DC vacuum rube voltmeter.

NOTE B-Disconnect zero center DC vacuum tube voltmoter from AVC and connect $t \mathrm{t}$ at the audia takeoff point of the

27 K ohm resistor ($\mathrm{R}-10$) and its junetion with the terminal strip. Adjust for zero voltoge indication.

NOTE C-AM I-F coils must be aligned before aftempting to align the FM I-F coils.

NOTE D-Connect zero center DC vacuum tube valtmeter as in Note A. Adjust input to give same output on the zero center DC vacuum tube volitmeter as in Note A.

REPLACEMENT PARTS LIST

Mef. Mo.	Part Ne.		
	CAPACITORS		
C. 1	14A209	Gang Coridenser	Assombly 1
C-2	17 A235	2.24 mmf	Trimmer........... 1
C-3	47×559	130 mmf	Ceramic........... 1
$\left.\begin{array}{l}C-4 \\ C-5 \\ C-9\end{array}\right\}$			
$\left.\begin{array}{l} C-10 \\ C-11 \\ C-17 \\ C-27 \\ C-43 \end{array}\right\}$	47×507	5000 mmf	Ceramic........... 8
$\left.\begin{array}{c} C-6 \\ c-7 \end{array}\right\}$	Part of T-2 (lst I-F Trans. FM)		
c-8	Part of Y-3 (lst I-F Trans. AM)		
$\left.\begin{array}{l} C .12 \\ C .13 \end{array}\right\}$	Part of T-5 (2nd l-F Trans. AM)		
$\left.\begin{array}{l} C-14 \\ C-15 \end{array}\right\}$	Part of T.4 (2nd I.F Trans. FM)		

$\begin{aligned} & \left.\begin{array}{l} C-16 A \\ C-16 B \end{array}\right\} \end{aligned}$	47×112	50.50 mmf		Dual Mica .-.. 1
C. 18		Part of T-6 (Discriminator Trans.)		
C.19	47×492	2700 mmf		Molded Mica
$\left.\begin{array}{l} c-20 \\ c-35 \end{array}\right\}$	47×468	220 mmf		Coromic........... 2
C.21	45×361	5 mf	100 V	ry Electrolytic
$\left.\begin{array}{c} C-22 \\ C .42 \end{array}\right\}$	47×557	2.2 mmf		Ceramic........... 2
C. 23	47×558	30 mmf		ramic
C-24	47×523	10 mmf		ram
C-25	17A255	1-8 mmf		immer
$\left.\begin{array}{c} C-26 \\ C-44 \end{array}\right\}$	B66503	. 05 mf	200 V	Tubular........... 2
$\left.\begin{array}{l}C-28 A \\ C-28 B \\ C-28 C \\ C .28 D\end{array}\right\}$	45x359	20 mf 20 mf 40 mf 40 mf	$\begin{array}{r} 25 \mathrm{~V} \\ 350 \mathrm{~V} \\ 350 \mathrm{~V} \\ 350 \mathrm{~V} \end{array}$	Dry Electrolytic
C-29	H66102	. 001 mf	800 V	Tubular............
C. 30	47×470	330 mmf		Molded Mica....
C-31	47×508	500 mmf		Ceramic...........

GENERAL DESCRIPTION

This is a two band, seven tube (plus rectifier tube) AM and FM receiver. Controls are provided at the front of the cabinet for funing, volume, tone and band or phono selection. A phono input socket is provided at the rear of the receiver to which a record player may be connected. The I-F stages use high gain miniature type tubes. Air Wave Aerials are provided for the FM and Broadcast bands. Features include, a grounded grid R-F amplifier stage on the FM band, compensator circuits to prevent oscillator drift, automatic volume control, beam power output stage, PM dynamic loud speaker and an electrostatic shield in the power transformer to reduce power line noise.

62Z-470-4 451

DRIVE CORD REPLACEMENT

DIAL POINTER CORD

Use a new 10×38 drive cord assembly or a new length of cord 48 inches long for the installation. Install the cord as shown in the illustration, winding three turns clockwise around the drive shaft with the furns progressing away from the chassis. After completing the installation rotate the drive shaft a few turns to take up the slack in the cord.

ELECTRICAL SPECIFICATIONS

Power Supply \qquad 105-125 volts AC 60 cycles, 60 watts. 80 watts with record changer.
Selectivity......................... AM-45 KC broad at 1000 times signal, measured at 1000 KC I.F. FM-200 KC broad at 2 times down I.F. FM-950 KC broad of 200 times down Intarmediate Frequency... AM-455 KC FM-10.7 MC

Record Changer See Manual 5096A
$\begin{array}{ll}\text { Tube and Dial Lamp } 1 \text { 6BE6 AM Converter \& FM Osc. } \\ \text { Complement } & 1 \text { 6BA6 ist l-F Amplifier }\end{array}$
1 6BA6 Ist l-F Amplifier
1 6BA6 2nd I-F Amplifier
1 6AL5 FM Discriminator
1 6AV6 Audio Amplifier, AM 2nd Detector and AVC
1 6V6GT Audio Output
1 5Y3GT Rectifier
I 12AT7 R-F Amplifier \& Mixer
2 No. 47 Dial Lamps

TUBE SOCKET VOLTAGES

Socket voltages are shown on the schematic diagram at the tube-socket términalis. All voliages are beiween the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter.
Conditions of measurement are:
Line voltage 117 Volts AC
Signal Input . None
A variation of $\pm 10 \%$ is usually permissible.

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas -.1 mf , and 50 mmf .

Volume Control Maximum all Adjustments.
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR				\qquad	ADJUST	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR } \end{aligned}$
$\begin{aligned} & \text { FREQUENCY } \\ & \text { SETTING } \end{aligned}$	CONNECT GENERATOR OUTPUT TO	THROUEH DUMMY ANTENNA	$\begin{gathered} \text { CONNECT } \\ \text { GROUND } \\ \text { TO } \\ \hline \end{gathered}$			
455 KC	Control Grld Ist 6BA6 Pin No. 1	. 1 mf	Chassis Base	Rator Fully Open	2nd I.F. Pri. (1) and Sec. (2)	Maximum Output
455 KC	Control Grid 6BE6 Pin No. 7 1st Det.	. 1 .mf	Chassis Base	Rotor Fully Open	1sf I.F. Pri. (3) and Sec. (4)	Maximum Output
455 KC	Control Grid 68 E 6 Pin No. 7	11 mf	Chostit Base	Rotor Fully Open	2nd I-F Pri. (1) and Sec. (2)	Maximum Output
1620 KC	Control Grid 6BE6 Pin No. 7	. 1 mf	Chassis Bdse	Rotor Fully Open	Oscillatar C-41	Maximum Output
1400 KC	External Antenna Terminal	50 mmf	Chassis Base	Turn Rotor to Max. Output. Set Pointer to 1400 KC See Note A	Antonna C-2	Maximum Ovtput

NOTE A-If the pointar is not of 1400 KC on the dial, reset pointer to the 1400 KC mark on the dial scole.

FM STAGES

The following is required for aligning:
An accurately calibrated algnal generator providing unmodulated signals at the test frequencies listed below.

Non-matallic serewdriver.
Dummy Antennas and l-F Loading Resistor- $\mathbf{2 5 0 0} \mathbf{m m f} \mathbf{3 0 0}$ ohms

Zaro center scale DC vacuum tube valtmeter having a range of approximately 3 volts.
(If a zero center seale meter is not available, a standard seale vacuum tube voltmeter may be used by reversing the meter connections for negative readings).
Allow chastis and signal generator to "Heat Up" for several minutes.

SIGNAL GENERATOR			THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	\qquad	ADsust	$\begin{aligned} & \text { ADjust } \\ & \text { FOR } \end{aligned}$
	$\begin{aligned} & \text { FREQUENĊY } \\ & \text { SETIINE } \\ & \hline \end{aligned}$	CONNECT GENERATOR OUTPUT TO					
$\overline{\text { Discriminator }}$	10.7 MC	6BA6 2nd I-F Pin 1 and Chasais	2500 mmf	FM	Rotor Fully Open	Disc. Pri. (5) Note A	Maximum Defection
	10.7 MC	$\begin{aligned} & \text { 6BA6 2nd I-F } \\ & \text { P1n } 1 \text { and Chassis } \end{aligned}$	2500 mmf	FM	Rotor Fully Open	$\begin{aligned} & \text { Disc. Sec. (6) } \\ & \text { Note : } \end{aligned}$	
1.7	10.7 MC Note C	68A6 1st l-F Pin 1 and Chassis	2500 minf	FM	Rotor Fully Open	2nd I-F Pri. (7) Sec. (8) Note D.	Maximum Deflection
$\overline{\text { Discriminator }}$	10.7 MC	6BA6 lst 1.F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Pri. (5) Note D	Maximum Deflection
I-F	10.7 MC	Junction C.32A \& B (Dual 100 mmf cond.) And chassis	2500 mmf	FM	Rotor Fully Open	lst I.F Pri. (9) \& Sec. (10) 2nd I-F Pri. (7) 8 Sec. (8) Dise. Pri. (5) In Order Shown Note D	Maximum Diflection
	10.7 MC	Same as obove	2500 mmp	FM	Rotor Fully Open	$\begin{gathered} \text { Disc. Sec. }^{(6)} \\ \text { Note } \end{gathered}$	

Oscillotor	108.5	Disconnect built - in dipole antenna and connect generator to dipole terminals with resistor in series.	300 ohms	FM	Rotor Fully Opan	Osc. C-25	Doflection Maximum
Antenna	104.5	Same as above	300 ohms	FM	-Tun rotof for max. AVC velfage	Ant. C-39	Maximum Deflection

RECMECR ANTENNA : OEC. ADJUSTMZANTS IN OREDEER GIVEN

FM ALIGNMENT NOTES

NOTE A-The zero center scole DC vocuum tube voltmeter is to be connected between chassis ground and the AVC line. A signal of . 1 volt must be fed into the recelver for this adjustment.
Note output voltage on the zaro canter DC vocuum tube voltmeter.
NOTE B-Disconnect zero center DC vacuum tube voltmeter from AVC and connect it at the cudio takeoff point of the

27 K ohm resistor ($\mathrm{R}-10$) and its junction with the forminal strip. Adfus for zero voltoese Indicetion.

NOTE C-AM I-F coils must be aligned before attempting to align the FM I.F coils.

NOTE D-Connect zero center DC vacuum fube voltmeter as in Note A. Adjust input to give same output on the zero center DC vecuum tube voltmeter at In Note A.

MONTGOMERY WARD PAGE 22.5

GENERAL DESCRIPTION

This is a two band, seven tube (plus rectifier tube) AM and FM receiver with automatic record changer. The I.F stages use high gain miniature type tubes. Built-in Air Wave Aerials are provided for the FM and Broadcast bands. Features include, a grounded grid R-F amplifier stage on the FM band, compensator circuits to prevent oscillator drift, automatic volume control, beam power output stage, PM dynamic loud speaker and an electrostatic shield in the power transformer to reduce power line noise.

The recoiver and record changer are housed in a console combination cabinet with controls provided for tuning, volume, tone and band or phono selection.

DRIVE CORD REPTACEMENTI

DIAL POINTER CORD

Use a new 10×38 drive cord assembly or a new length of cord 48 inches long for the installation. Install the cord as shown in the illustration, winding three turns clockwise around the drive shaft with the furns progressing away from the chassis. After completing the installation rotate the drive shaft a few turns to take up the slack in the cord.

HECTRURHSYCUICATIOWU

Power Supply	105-125 volts AC 60 cycles, 60 watts. 80 watts with record changer.
Frequency Ranges..	Broadeast. 540-1600 KC Frequency Modulation 88-108 MC
Intermediate Frequency....	$\begin{aligned} & A M-455 \mathrm{KC} \\ & F M-10.7 \mathrm{MC} \end{aligned}$
Selectivity	AM-45 KC brodad at 1000 times signal, measured at 1000 KC 1.F. FM-200 KC broad at 2 times down I.F. FM-950 KC broad at 200 times down
AM Sensitivity	.(For .5 watt output with external antenna) 25 microvolts average
FM Sensitivity	(For .5 waft output) 25 microvolts average
Power Output.................	4.5 watts maximum 2.5 watts 10% distortion

Loud Speaker.................... 12" PM Dynamic
Voice Coil Impedance
. 3.2 ohms 400 cycles

Tube and Dial Lamp 1 6BE6 AM Converter \& FM Osc. Complement
 1 6BA6 2nd I-F Amplifier
 1 6AL5 FM Discriminator
 1 6AV6 Audio Amplifier, AM 2nd Detector and AVC
 1 6V6GT Audio Output
 1 5Y3GT Rectifier
 1 12AT7 R-F Amplifier \& Mixer
 2 No. 47 Dial Lamps

TUBE SOCKET VOLTAGES

Socket voltages are shown on the schematic diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter. Conditions of measurement are:

Line voltage . None 117 Volts AC
Signal Input
A variation of $\pm 10 \%$ is usually permissible.

ALIGNMENT PROCEDURES
 AM STAGES

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas -.1 mf , and 50 mmf .

Volume Control Maximum all Adjustments.
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat UP" for Several Minutes.

SIGNAL GENERATOR				GANG CONDENSER SETTING Rotor Fully Open	ADJUST	ADJUST FOR
FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO	THROUEH DUMMY ANTENNA	$\begin{gathered} \text { CONNECT } \\ \text { GROUND } \\ \text { TO } \end{gathered}$			
455 KC	Control Grid Ist 6BA6 Pin No. 1	. 1 mf	Chassis Base		2nd I.F. Pri. (1) जand Soc. (2)	$\begin{gathered} \text { Maximum } \\ \text { Outpu: } \end{gathered}$
455 KC	Control Grid 6BEG Pin No. 7 1st Det.	. 1 mf	Chassis Base	Rotor fully Opan	1st I.F. Pri. (3) and Sec. (4)	Maximum Oułput
455 KC	Control Grid 6BE6 Pin No. 7	. 1 mf	Chassis Base	Rotor Fully Open	$\begin{aligned} & \text { 2nd I-F Pri. (1) } \\ & \text { and Sec. (2) } \\ & \hline \end{aligned}$	Maximum Output
1620 KC	Control Grid 6BE6 Pin No. 7	. 1 mf	Chossis Base	Rotor Fully Opon	Oncillator C-41	Maximum Outpur
1400 KC	Extornal Antenna Terminal	50 mmf	Chassis Base	Turn Rotor to Max. Output Set Pointer to 1400 KC See Note A	Antenno C-2	Maximum Output

FM STAGES

The following is required for aligning:
An occurotely calibrated signal generator providing unmadu. lated signals at the tent frequencies listed bolow.

Non-metalitic serowdriver.
Dummy Antennas and I-F Loading Resistor- 2500 mmf , $\mathbf{3 0 0}$ ohms

Zero center seale DC vacuutn tube voltmeter having a range of approximately 3 volts.
(if a zere centor scale meter is not available, a standard scole vacuum tube voltmeter may be used by reversing the moter connec. tions for negative readings).
Allow chassis and signal genarator to "Heat Up" for several minutes.

SIGNAL GENERATOR			THROUGH DUMAY ANTENNA$2500 \mathrm{mmf}$	BAND SWITCH SETTING FM		ADJUST	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR } \end{aligned}$
Discriminator	$\begin{aligned} & \text { FREQUENCY } \\ & \text { SETTING } \\ & \hline \end{aligned}$	CONNECT GENERATOR OUTPUT TO					
	10.7 MC	6BA6 2nd I-F Pin 1 and Chassis			Rotor Fully Open	Disc. Pri, (5) \qquad Note A	Maximum Deflection
	10.7 MC	6BAG 2nd 1.F Pin 1 and Chassis	2500 mmf	FM	Rotor fully Open	$\begin{aligned} & \text { Dise. Sec. }(0) \\ & \text { Note B } \end{aligned}$	
1-F	10.7 MC Note C	6BA6 1st l-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	2nd I-F Pri. (7) Sec. (8) Note D	Moximum Deflection
Discriminator	10.7 MC	6BA6 1st I-F Pin 1 and Chasis	2500 mmf	FM	Rotor Fully Open	Disc. Pri. (5) \qquad Note D	Maximum Deflection
t-F	10.7 MC	Junction C-32A \& B (Dual 100 mmf cond.) And ehassis	2500 mmf	FM	Rotor Fully Open	$\begin{aligned} & \text { Ist I-F Pri. (9) } \\ & \text { \& Soc. (10) } \\ & \text { 2nd I-F Pri. (7) } \\ & \text { \& Soc. (8) } \\ & \text { Disc. Pri. (5) } \\ & \text { in Order Shown } \\ & \text { Note D } \\ & \hline \end{aligned}$	Maximum Defloction
	10.7 MC	Same as above	2500 mmf	FM	Rotor Fully Open	Disc. Sec. (6) Note B	

RECHECK I.F ADJUSTMENTS IN ORDER GIVEN

Oscillator	108.5	Disconnect built-in dipole antenna and connect generator to dipole terminals with resistor in series.	300 ohms	FM	Rotor Fully Open	Osc. C-25	Deffection Maximum
Antenna	104.5	Same os obove	300 shms	FM	Tune rotor fer max. AVC voltage	Ant. C-39	Maximum Deflection

RECHECK ANTENNA \& OSC. ADJUSTMENTS IN ORDER GIVEN

FM ALIGNMENT NOTES

NOTE A-The zero center scale DC vacuum tube voltmeter is to be connected between chassis ground and the AVC line. A signat of il volt must be fed into the receiver for this adjustment.
Note autput voltage on the zero center DC vacuum tube voltmeter.
NOTE B-Disconnect zero canter DC vacuum tube voltmeter from AVC and connect it at the audio rakeoff point at the

27 Kohm resistor (R-10) and its junction with the terminal strip. Adjunt for zero voltage Indicetion.

NOTE C-AM I.F coils must be aligned before attempting to align the FM I-F coits.

NOTE D-Connect zero center DC vacuum tube voltmeter as in Note A. Adjust input to give same output on the zero center DC vocuum tube voltmeter as in Note A.

REPLACEMENT PARTS LIST

Ref. No.	Part No.	Desertpil		$\text { acy. } \mathrm{y}$
	CAPACITORS			
C-1	14A209	Gang Condenser	Assembly 1
C-2	17A235	2.24 mmf	Trimmer.- 1
C-3	47X559	130 mmf	Ceramic. 1
$\left.\begin{array}{l} C-4 \\ C-5 \\ C .9 \\ C-10 \end{array}\right\}$	47×507	5000 mmf	Ceramic........... 8	
$\left.\begin{array}{c}\text { C. } 10 \\ \text { C. } 11 \\ \text { c-17 }\end{array}\right\}$				
C-17				
c. 27				
C-43				
$\left.\begin{array}{l} c-6 \\ c-7 \end{array}\right\}$		Part of T-2 (Ist I-F Trans. FM)		
C-8		Part of T-3 (lst t-F Trans. AM)		
$\left.\begin{array}{l} \mathrm{C}-12 \\ \mathrm{C}-13 \end{array}\right\}$		Part of $\mathrm{Y}-5$ (2nd I.F Trans. AM)		

$\left.\begin{array}{l} C-14 \\ \text { C. } 15 \end{array}\right\}$		Part of T-4 (2nd 1-f Trans. FM)		
$\left.\begin{array}{l} C-16 A \\ C-16 B \end{array}\right\}$	47×12	50-50 mm		Dual Mica... 1
C-18		Part of	(Disc	minator Trans.)
C. 19	47X492	2700 mmf		Molded Mica 1
$\left.\begin{array}{l} \text { C. } 20 \\ \text {. } 35 \end{array}\right\}$	47X468	220 mmf		Ceramic........... 2
C. 21	45×361	5 mf	100 V	Dry Electrolytic 1
$\left.\begin{array}{l} \mathrm{C}-22 \\ \mathrm{C}-42 \end{array}\right\}$	47×357	2.2 mmf		Ceramic........... 2
C-23	47×558	30 mmf		Ceramic........... I
C-24	47×523	10 mmf		Ceramic........... 1
C. 25	17A255	1.8 mmf		Trimmer........... I
$\left.\begin{array}{c} c-26 \\ c-44 \end{array}\right\}$	B66503	. 05 mf	200 V	Tubular........... 2
C.28A		20 mf	25 V	
C.288	45×359	20 mf	350 V	Dry Electrolytic
$\left.\begin{array}{l} C .28 C \\ C .280 \end{array}\right\}$	45X359	$\begin{aligned} & 40 \mathrm{mf} \\ & 40 \mathrm{mf} \end{aligned}$	$\begin{aligned} & 350 \mathrm{~V} \\ & 350 \mathrm{~V} \end{aligned}$	Dry Eliactrolytic
C-29	H66102	. 001 mf	800 V	Tubular............ 1

GENERAL DESCRIPTION

This is a two band, seven tube (plus rectifier tube) AM and FM receiver. Controls are provided at the front of the cabinet for tuning, volume, tone and band or phono selection. A phono input socket is provided at the rear of the receiver to which a record player may be connected. The I-F stages use high gain miniature type tubes. Air. Wave Aerials are provided for the FM and Broadcast bands. Features include, a grounded grid R-F amplifier stage on the FM band, compensator circuits to prevent oseillator drift, automatic volume control, beam power output stage, PM dynamic loud speaker and an electrostatic shield in the power transformer to reduce power line noise.

DRIVE CORD REPLACEMENT

DIAL POINTER CORD

Use a new 10×38 drive cord assembly or a new length of cord 48 inches long for the installation. Install the cord as shown in the illustration, winding three furns clockwise around the drive shaft with the furns progressing away from the chassis. After completing the installation rotate the drive shaft a few furns to take up the slack in the cord.

ELECTRICAL SPECIFICATIONS

Power Supply.................. | 105-125 volts AC 60 eycles, 60 |
| :--- |
| watts. 80 watts with record |
| changer. |

Frequency Ranges........... Broadcast 540 -1 600 KC

Frequency Modulation 88 -108 MC

replacement parts list

A variation of $\pm 10 \%$ is usually permissible.
Socket voltages are shown on the schematic diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voitages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter.

Cunditions of measurement are:
Line voltage . None

REPLACEMENT PARTS LIST (continued)

ALIGNMENT PROCEDURES AM STAGES

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurataly Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antonnas -.1 mf , and 50 mmf .

Volume Control Maximum all Adjustments.
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR				\qquad	ADJUST	ADJust
FRERUENCY semine	CONNLCT GENERATOR OUTPUT TO	$\begin{aligned} & \text { THROUOH } \\ & \text { DUMHY } \\ & \text { ANTENNA } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { CROUND } \\ \text { TO } \\ \hline \end{gathered}$			
453 KC	Control Grid ist 68A6 Pin No. 1	. 1 mf	Chassis Base	Rotor Fully Open	2nd I.F. Pri. (1) and Sec. (2)	Maximum Output
455 KC	Control Grid 6 BE6 Pin No. 7 1st Det.	1 mf	Chassis Base	Rotor Fully Open	1sf I.F. Pri. (3) and Sec. (4)	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$
455 KC	Control Grid 68E6 Pin No. 7	11 mf	Chassis Base	Rotor fully Open	2nd I-F Pri. (1) and Sec. (2)	Maximum Output
1620 KC .	Control Grid $68 E 6$ Pin No. 7	. 1 mf	Chassis Base	Rotor Fully Open	Oxilifator C-41	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$
1400 KC	External Antenna Terminal	50 mmf	Chascis Base	Turn Rotor to Max. Output. Sot Pointer to 1400 KC See Note A	Antenna C-2	$\begin{aligned} & \text { Maximum } \\ & \text { Output } \end{aligned}$

NOTE A-If the pointer is not at 1400 KC on the dial, reset pointer to the 1400 KC mark on the dial seale.

PM STAGES

The following ls required for aligning:
An accurately calibrated signal generator providing unmodulated signals at the test frequencies listed below.

Non-metallic serowdriver.
Dummy Antennas and I-F Loading Resistor-2500 mmf, $\mathbf{3 0 0}$ ohms

Zero center ccale DC vacuum tube voltmeter hoving a range of approximately 3 volts.
(If a zere center scale meter is not available, a standard scale vacuum fube voltmeter may be used by reverting the meter connections for nagative readings).
Allow chassis and signal genarator to "Heat Up" for several minutes.

RECHECK IF ADJUSTMENTS IN ORDER GIVEN

RECHECK ANIINHA \& OSC. ADJUSTMENTS IN ORDER GIVEN

FM ALIGNMENT NOTES

NOTE A-The zero center scale DC vacuum fube valtmeter it to be connected between chassia ground and the AVC line. A signal of .1 volt must be fed inta the receiver for this adjustment.
Note output voltoge on the zere eenter DC vacuum tube voltmeter.
NOTE B-Disconnect zero center DC vacuum tube voltmetor from AVC and connect it at the audio takeoff point of the

27 K ohm resistor ($\mathrm{R}-10$) and its junction with the terminal strip. Adjust for zero voltoge indiection.
NOTE C-AM I-F coils must be aligned bufore attempting to align the FM I-F coils.

NOTE D-Connect zero center DC vacuum tube voltmetar as in Note A. Adjust input to give same output on the zero center DC vacuum tube voltmeter as in Note A.

MONTGOMERY WARD PAGE 22-

ELECTRICAL SPECIFICATIONS

Power Supply	105-125 volts AC 60 cycles, 40 watts. 60 watts with record changer.
Frequency Ronges......	Broadcast 540-1600 KC Frequency Modulation 88-108
Intermediate Frequency.	$\begin{aligned} & A M-455 \mathrm{KC} \\ & \mathrm{FM}-10.7 \mathrm{MC} \end{aligned}$
Selectivity	AM-45 KC broad at 1000 times signal, measured at 1000 KC I.F. FM-200 KC broad at 2 times down I.F. FM-950 KC broad at 200 times down
AM Sensitivity	(For .5 watt output with external antenna) $\mathbf{2 5}$ microvolts average
FM Sensitivity	(For . 5 wath output) 25 microvolts average
Power Output..	1.9 watts maximum 0.8 watts 10% distortion
Loud Speaker... .	10" PM Dynamic
Voice Coil Impedance...... 3	3.2 ohms 400 cycles
Record Changer	See Manual 5089A
Tube and Dial Lamp Complement	1 6BE6 AM Converter \& FM Osc. 1 GBAO Ist I-F Amplifier 1 6BA6 2nd I-F Amplifier 1 6AL5 fM Discriminator 1 6AVG Audio Amplifier, AN. 2nd Detector and AVC I OVOGT Audio Output 1 6X5GT Rectifier 1 12AT7 R-F Amplifier \& Mixer 2 No. 47 Dial Lamps

TUBE SOCKET VOLTAGES

Socket voltages are shown on the schematic diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter. Conditions of measurement are:

$$
\begin{aligned}
& \text { Line voltage . None } \\
& \text { Signal Input }
\end{aligned}
$$

A variation of $\pm 10 \%$ is usually permissible.

DRIVE CORD REPLACEMENT

DIAL POINTER CORD

Use a new 10×72 drive cord assembly or a new length of cord 44 inches long for the installation. Install the cord as shown in the illustration, winding three turns clockwise around the drive shaft with the turns progressing away from the chassis. After completing the installation rotate the drive shaft a few turns to take up the slack in the cord.

ALIGNMENT PROCEDURES
 AM STAGES

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately
Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas . 1 mf , and 50 mm .

Volume Control Maximum all Adjustments.
Connest Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Atlow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR					ADJUST	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR } \end{aligned}$
frequency sEItING	$\begin{aligned} & \text { CONNECT } \\ & \text { OENERATOR } \\ & \text { OUTPUT TO } \end{aligned}$	THROUGH DUMMY ANTENNA	CONNECT GROUND TO			
455 KC	Control Grid Ist 6BA6 Pin No. 1	1 mf	Chassis Base	Rotor Fully Open	2nd I.F. Pri. (1) and Sec. (2)	Maximum Output
455 KC	Control Grid 6BE6 Pin No. 7 1st Dat.	. 1 mf	Chassis Base	Rotor Fully Oper	1st I.F. Pri. (3) and Sec. (4)	Maximum Output
455 KC	Control Grid 6BEG Pin No. 7	. 1 mf	Chassis Base	Rotor Fully Open	2nd I-F Pri. (1) and Sec. (2)	$\begin{gathered} \text { Maximum } \\ \text { Output } \end{gathered}$
1620 KC	Control Grid 6BEG Pin No. 7	. 1 mf	Chassis 8ase	Rotor Fully Open	Oscillator C-41	Maximum Output
1400 KC	External Antenna Terminal	50 mmf	Chassis Bate	Turn Rotor to Max. Output. Set Pointer to 1400 KC See Note A	Antenna C-2	Maximum Output

NOTE A-If the painter is not af 1400 KC on the dial, reset pointer to the 1400 KC mark on the dial scale.
FM STAGES

The following is required for aligning:
An accurately calibrated signal generator providing unmodulated signals at the rest frequencles listed below.

Non-matallic screwdriver.
Dummy Antonnas and I-F Loading Resistor- $\mathbf{2 5 0 0} \mathbf{~ m m f , ~} \mathbf{3 0 0}$ ohms

Zera center scale DC vacuum tube voltmeter having o range of approximately. 3 volts.
(If a zero center scale meter is not available, a standard acale vacuum tube voltmater may be used by reversing the meter connections for negative readings).
Allow chassis and signal genarator to "Heat Up" for several minutes.

SIGNAL GENERATOR			THROUGH DUMAY ANTENNA	BAND SWITCH SETTING	\qquad	ADJUST	$\begin{gathered} \text { ADJUST } \\ \text { FOR } \end{gathered}$
	FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO					
Discriminator	10.7 MC	6BA6 2nd 1.F Pin 1 and Chassis	2500 mmf		Rotor Fully Open	Disc. Pri. (5) Note A	Moximum Deflection
	10.7 MC	6BA6 2nd I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Sec. (6) Note B	
I-F	10.7 MC Note C	6BA6 1st I.F Pin 1 and Chassis	2500 mmf	FM	Rotor fully Open	2nd I-F Pri. (7) Sec. (8) Note D	Maximum Deflection
$\overline{\text { Discriminator }}$	10.7 MC	6BA6 lst I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Pri. (5) Note D	Maximum Deflection
I.F	10.7 MC	Junction C-32A \& B (Dual 100 mminitcond .) And chassls	2500 mmf	fM	Rotor Fully Open	1st I-F Pri. (9) \& Sec. (10) 2nd I-F Pri. (7) 8. Sec. (8) Disc. Pri. (5) In Order Shown Note D	Maximum Deflection
	10.7.MC	Same as above	2500 mmf	FM	Rotor Fully Open	Disc. Sec. (6) Note B	

RECHECK L.F ADJUSTMENTS IN ORDER GIVEN

Oscillator	108.5	Disconnect built-in dipole antenno and connect generotor to dipole terminals with resistor in saries.	300 ohms	FM	Rotor Fully Opan	Ose. C. 25	Deflection Maximum
Antenna	104.5	Some as above	300 rhms	FM	Tune rotor for mox. AVC voltage	Ant. C-39	Maximum Deflection

RECHECK ANTENNA : OSC. ADJUSTMENTS IN ORDER GIVEN
FM ALIGNMENT NOTES

NOTE A-The zero center scale $D C$ vacuum tube voltmeter is to be connected between chassis ground and the AVC line. A signai of .1 volt must be fed into the receiver for this adjustment.
Note output voltoge on the zero center DC vacuum tube voltmater.
NOTE B-Disconnect zero center -DC vacuum rube voltmeter froth AVC and connect it at the audio takeoff point af the

27 K ohm resistor ($\mathrm{R}-10$) and its junction with the terminal strip. Adjust for zero voltoge indication.

NOTE C-AM I-F coils must be aligned before attempting to align the FM I-F coils.

NOTE D-Connect zero center $D C$ vacuum tube valtmeter as in Note A. Adjust input to give same output on the zero center DC vacuum tube voltmeter as in Note A.

MODEL 15WG-2758A

replacement parts list

REPACCMEWL PARTS UST

GENERAL DESCRIPTION

This is a two band, nine tube (plus rectifier tube) AM and FM receiver with an automatic record changer. The I-F stages use high gain miniature type tubes. Built-in Air Wave Aerials are provided for the FM and Broadcast bands. Features include, compensator circuits to prevent oscillator drift, automatic volume control, push-pull pentode power output stage, PM dynamic loud speaker and an electrostatic shield in the power transformer to reduce power line noise.
The receiver and record changer are housed in a console combination cabinet with controls provided for tuning, volume, tone and band or phono selection.

ELECTRICAL SPECIFICATIONS

Power Supply	105-125 volts AC 60 cycles, $8 C$ watts, 100 watts with record changer
Frequency Ranges..	.Broadcast 540-1600 KC Frequency Modulation 88-108 MC
Intermediate Frequency. .AM-455 KC FM-10.7 MC	
Selectivity	AM-43 KC broad at 1000 time: signal, measured at 1000 KC I.F. FM-200 KC broad at 2 time: down
	I.F. FM-760 KC broad at 20 (times down
AM Sensitivity (For . 5 watt output with externa antenna) 10 microvolts average	
FM Sensitivity (For . 5 watt output) 30 microvolts average	
Power Output 8.5 watts maximum 6.0 watts 10% distortion	
Loud Speaker 12" PM Dynamic	
Voice Coil Impedance. . 3.2 ohms 400 cycles	
Record Changer See Manual No. 5098A	
Tube and Dial Lamp Complement	1 6BA6 AM-FM R-F Amplifier 1 12AT7 FM \& AM Osc. \& Mixe
	1 6BA6 FM-AM 1st I-F Amplifier
	1 6BA6 FM 2nd I-F Amplifier
	1 6AL5 FM Detector
	1 6AV6 Audio Amplifier, AM 2n Detector and AVC
	2 6K6-GT Audio Output
	1 5Y3-GT Rectifier
	1 6AV6 Phase Inverter
	2 No. 47 Dial Lamps

TUBE SOCKET VOLTAGES
Socket voltages are shown on the Schematic diagrar at the tube socket terminals. All voltages are betwee the socket terminal and chassis ground. Plate, screen ans cathode voltages were taken with a 1000 ohm-per-val meter with a 300 volt scale used for plate and screes voltages. Audio grid voltages were read with a vacuun tube volt-meter. Conditions of measurement are:

```
Line voltage 117 Volts AC
Signal Input .................................... None
A variation of \(\pm 10 \%\) is usually permissible.
```


ALIGNMENT PROCEDURE

 AM STAGES

 AM STAGES}

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas $-.1 \mathrm{mf}, 200 \mathrm{mmf}$.

Volume Centrol-Maximum all Adjustments
Connect Rodio Chassis to Ground Post of Signal Generator with o Short Heavy Lead.
Allow Chassis and Signal Generator to "Meat Up" for Several Minutes.

SIGNAL GENERATOR		CONNECTGENERATOROUTPHT TO	THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	GANG CONDENSER SETTING		
	frequency SETYING					ADJUST	FOR
I.F	455 kc	Pin 7 and Chassis	. 1 mf	Broadcast	Rotor Fuily Open	2nd I.F Prl. \& Sec. (1) 8 (2) 1st I-F Pri. \& Sec. (3) \& (4)	Maximum Oułput
Broadcast	$\frac{1620 \mathrm{kc}}{1400 \mathrm{kc}}$		200 mmf	Broodcost	Rotor fully Open	Broadcast Oscillator C-33	
		External ont. term.	200 mmf	Broadcast	Turn Rotor to Max. Output Set pointer to	Broadcast Interstage C. 29	
	1400 kc	External ant. term.	200 mmf	Broodeast	1400 kc See Note A	Loop Antenna C-48	

FM STAGES

The following equipment is required for aligning:
An accurately calibroted signal generator providing unmodulated signals at the test frequencies listed below.

Non-metallic screwdriver.
Dummy Antennos and I-F Loading Resistor-. 01 mf, 300 ohms ond 1000 ohms.

Zero center scale DC vacuum tube voltmeter having o range of approximately 3 volts.
(If a zero center scale meter is not ovailable, a standard seale vacuum tube voltmeter may be used by reversing the meter connections for negative readings.)
Allow chassis and signal generator to warm up for several minutes.

Discriminator	SIGNAL GENERAYOR		THROUSH DUMMY ANTENNA	SAND SWITCH SETTING	GANG CONDENSER SETTING	ADSUST	ADJUST FOR
	FREGUENCY SETTING	CONNECT GENERATOR OUTPUT TO					
	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note B } \end{aligned}$	6BA6 2nd l.F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	Disc. Pri. (5) Note A	Maximum Deflection
	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note } \mathrm{B} \end{aligned}$	6BA6 2nd I.F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	Dise. Sec. (6) Note C	Zero Center
1.F	10.7 MC Note f	6BA6 Ist I-F Pin 1 and Chassis	. 01 mf	FM	Rotor fully Open	2nd I-F Pri. Note A and D (7) 2nd I-F Sec. Note A and E (B)	Maximum Deflection
Discriminctor	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note } \mathrm{F} \end{aligned}$	6BA6 lst I-F Pin 1 and Chassis	. 01 mf	FM	Rotor fully Open	Dise. Pri. (5) Note A	Maximum Deflection
	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note } \mathrm{F} \\ & \hline \end{aligned}$	6BA6 ist I-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	Disc. Senc. (6) Note C	Zero Conter
	10.7 MC Note F	FM-RF Gang Condenser terminal	. 01 mf	FM	Rotor Fully Open	1st 1-F Pri. (9) Ist I-F Sec. (10) Notes A, D \& E	Maximum Deflection
			Recheck I-F	justments in	given		
R-F 8 Osc.	108.4 Note H	Disconnect dipole and connect generator to dipole torminals with resistor in series	300 ohms	FM	Rator Fully Open	Orcillator C. 35 Note G	Maximum Deflection
	104.5	Disconnect dipole and connect genarator to dipole terminals with resistor in series	300 ohms	FM	Tune Rotor for Max. AVC voltage	FM Interstage C. 32	Maximum Daflection
	104.3-	Disconnect dipole and connect generator to dipole terminala with resistor in series	300 ohms	FM	Tune Rotor for Max. AVC voltage	Ant. C-47	Maximum Daflection

Rectiock R-f and Ose. Adpustments in ordar given

NOTE A-Test Equipment connections are as given in the table. The sero center scale DC vacuum tube voltmeter is to be connected between chassis ground and the AVC line of the junction of resistor R-22 and condenser C-10 for all ad. justments excapt the discriminator secondary adiustment, for which Sae Note C.

NOTE B-A signal of . 1 volt must be fed into the receiver for this adjustment.
NOTE C-Ditconnect zero center DC vacuum tube voltmeter from AVC and connect to junction of R-18 and C.62. Adiust for zero voltage indication.

NOTE D-8efare adjusting Pri. core connect 1000 ohm lood resistor aeross the 2 nd I.F. secondary terminals. Input may have to be increased to .1 volt if recaiver is badly mis-aligned. NOTE E-Disconnect 1000 ohm load resistor from secondary terminals and cannect across the 2nd I.F. primary terminals. input may have to be increased to . 1 volt if receivar is badly mis-aligned.
NOTE F-Input can be reduced to 10,000 microvolts.
NOTE G-Oscil!ator frequency above signal frequency.
NOTE H-Remove the 1000 ohm load resistor before attempting to check the R-F and oscillator odjustments.

REPLACEMENT PARTS LIST

Ref. No.	Part No.	Descriptio	Qty. Used in Set
	CAPACITORS		
C. 1	14A207	Gang Condenser	, 1
c. 2			
C. 3			
C-7			
C. 9			
C.16	47×507	5000 mmf	Ceramic. 11
C-17			
C. 18			
C. 19			
C-27			
C. 42			
C-4	47×497	100 mmf ,	Ceramic...... 1
C. 5	47×499	47 mmf	Ceramic. 1
C-8	47X498	47 mmf	Ceramic. 1
$\left.\begin{array}{l} C-10 \\ C-65 \end{array}\right\}$	Port of T-1	1st I-F (fM)	
$\left.\begin{array}{l} \text { C.11 } \\ \text { C. } 28 \end{array}\right\}$	47×550	100 mmf	Ceramic. 2
C. 15	Port of T.3	2nd l-F (FM)	
C-21	Part of T-5	Discriminator	
$\left.\begin{array}{l}\text { C-22 } \\ \text { C.24 }\end{array}\right\}$			
$\left.\begin{array}{l} \mathrm{C}-31 \\ \mathrm{C}-51 \end{array}\right\}$	47×501	68 mmf	Ceramic..... 4
C-23	45×361	5 mf 100 V	Dry Electrolytic 1
C-25			
C-26 ${ }_{\text {C-45 }}$ (47X496	500 mmf	Ceramic...... ${ }^{3}$

TUBE AND TRIMMER CONDENSER LAYOUT

ELECTRICAL SPECIFICATIONS:

POWER SUPPLY:	$105-125$ volts A. C. 60 cycle	
POWER OUTPUT:	1.8 watts	
LOUD SPEAKER:	$5^{\prime \prime}$ P.M. with transformer	
TUBE COMPLEMENT:	$1-12 \mathrm{BE} 6$	$1-50 \mathrm{~B} 5$
	$1-12 \mathrm{BAb}$	$1-35 \mathrm{~W} 4$
	$1-12 A V 6$	

MONTGOMERY WARD PAGE 22.
MODELS O5GFM-934A

ALIGNMENT PROCEDURE

Volume Control-Maximum All Adjustments.
Allow Chassis and Signal Generator to "Heat Up" for several Minutes.
The equipment in column at right is required for aligning: Dummy Antennas-I mf,

Frequency Setting	SIGNAL GENERATOR		Ground Connection	Variable Condenser Setting	ADJUST TRIMMERS TO MAXIMUM See Trimmer Illustration
	Coupling Capacitor	Connection to Radio			
455 KC	. 1	CONTROL GRID OF 12 BE6	$\begin{gathered} \text { TO B-BUS } \\ B A R \end{gathered}$	CLOSED	\|st AND 2nd I.F. C9-C10-C11-Cl2
540 KC	.1	CONTROL GRID OF 12 BE6	$\begin{gathered} \text { TO B-BUS } \\ \text { BAR } \end{gathered}$	CLOSED	OSCILLATOR COIL SCREW
1640 KC	. 1	CONTROL GRID OF 12 BE6	$\begin{gathered} \text { BAR } \\ \text { TO B-BUS } \end{gathered}$	WIDE OPEN	OSCILLATOR TRIMMER C7
1400 KC	. 1	CONTROL GRID OF 12 BE6	$\begin{gathered} \text { TO B-BUS } \\ \text { BAR } \end{gathered}$	$\begin{gathered} \text { TO } 1400 \mathrm{KC} \\ \text { SIGNAL } \end{gathered}$	ANTENNA TRIMMER C5

REPEAT PROCEDURE

PARTS LIST

$\begin{aligned} & \text { gef. } \\ & \text { MO. } \end{aligned}$	PART No.	DESCRIPTION
		RESISTORS
R 1	RA10	22 ohm 1 watt
R 2-10.11	RAl1	470K ohm $1 / 2$ watt
R 3	RA12	20K " $1 / 2$ watt
R 4	RA13	2.2 meg. ohm $1 / 2$ watt
R 6	RA15	50K ohm $1 / 2$ wott
R 7	RA16	220k " $1 / 2$ watt
R 8	RA17	1 mag . valume control
R 9	RA18	5 meg. ohm $1 / 2$ watt
R 13	RA19	$150 \mathrm{chm} 1 / 2 \mathrm{watt}$
R 14	RA20	IK, * $1 / 2$ watt
R 15	RA21	200 " $1 / 2$ watt
R 16	RA22	25K " tone control with switch
R 17	RA9	75K " $1 / 2$ watt
		CONDE'NSERS
C 1	RA23	. MFD-200 valts
62	RA24	. $05-208 \mathrm{v}$.
c 3	RA25	.25-100v.
c 4-5-6-7	RA26	Varioble tuning cond. 2 gang
c 8		47MMF-200v.
c 9-10-11-12		I.F. trimmers
C 14-15-17	RA28	100MMF-200v.
c 16	RA29	.005-150v.
C 18-20	RA30	.01-200v.
C 21	RA31	.1-400v.
C 22-23	RA32	80/40MFD-200v. filter block

$\begin{aligned} & \text { REF. } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
\mathbf{X}	RA33	MISCELLANEOUS
		Pickup cartridge, Electro-Voice $\# 167 \mathrm{~T}$ (Use 60 H 19)
	RA33A	Needle for $\# 16$ cortridge (Use 61H10)
\mathbf{x}	RA34	Pickup cartridge, Electro-Voice $\# 33-4 \text { (Use } 60 \mathrm{H} 21 \text {) }$
	RA34A	Needle for \#33-4 cartridge (Use 6IH12)
\mathbf{x}	RA35	$\begin{aligned} & \text { Pickup cartridge, Electro-Vaice } \\ & \neq 13(\text { Use } 60 \mathrm{H} 21) \end{aligned}$
	RA35A	Needle for \#13 cartridge (Use 61H12)
	R436	Pickup orm complete with Electro-Voice \# l6Tt cartridge)
$\begin{aligned} & \text { PS } \\ & \text { S } \end{aligned}$	RA37	Phono-radio switch, 3 pale D.T. Line switch ion tone control)
	RA38T	Knob, Tone
	RA38V	Knob, Volume
	RA38PR	Knob, Phono-Radio
	RA38P	Knob, Plain
	RA39	Speoker with output transformer
M OC $T 1$	RA40	Three speed motor (Alliance)
	RA41	Oscillator coil
	RA42	1.f. Transformer, input (450 KC - 4 lugs)
r2	RA43	I.F. Trnasformer, output (450KC-6 lugs)
	RA44	Dial pointer Dia! face
	RA45	Motor speed indicator plote
	RA46	Loop antenna
	RA47	Cabinet
	RA48	Line cord, with plag
	RA49	Tube socket, 7 prong - miniature
	RA50	45 RPM record disc odapter

INSTALLATION

UNPACKING - Check all shipping instruction tags carefully be fore removing them.

Abstract

POWER SUPPLY - This radio must be operated from a 105 ; 125 volt DC or $105-125$ volt. 60 cycle AC outlet. If you are i doubt or unfamiliar with the voltage and frequency rating of you utility service, consult your local power company. Attemptin to operate from other sources of power than specified above ma involve costly repairs to the receiver, If the receiver does nc respond after a one minute warm up period when operated fror a 105-125 volt DC (Direct-Current) source, the power plug ma have to be reversed at the wall outlet to obtain proper polarization

ANTENNA - The receiver is equipped with a loop type antenn eliminating the use of an external antenna. Due to the directiona effect of a loop antenna, it may be necessary to rotate the re ceiver to obtain maximum performance from some particula station. To place the receiver in operation, simply connect th power plug to the wall receptacle and operate.

VOLUME control - This is the left hand control. It serves the function of power switch as well as volume control. To turn on the receiver, turn this control to the right past the point at which it clicks and similarly when turning off the set turn it to the left until the tell-tale click is heard and the dial light is extinguished. Turn the control clockwise to increase volume and counter-clockwise to decrease volume.
TUNING control - This is the control knob on the right. To tune in a station, turn the volume control to the right until the background noise is audible, then turn the tuning knob back and forth across the station frequency until the station is heard the clearest. Reset the volume control for the desired volume level. Never set the volume by detuning the receiver from the station. Undesired distortion results from this practice.

The dial is calibrated so that a zero must be added to the number appearing on the dial to obtain the station frequency in kilocycles. This will be helpful when setting the receiver dial to

dIAL CORD STRINGING INSTRUCTIONS

To restring the dial cable, pull the two control knobs and di pointer from their shafts remove the chassis bolts and pull tt chassis from the cabinet. Restring the dial drive with a $12-\mathrm{in}$, length of 30 lb . test dial cord following the stringing sequenc shown in the accompanying illustration. Reinstall the receive chassis and replace the knobs. Set the tuning condenser at max mum capacity and clip on the dial pointer so that its pointer fal: on the left hand limit of the dial scale.

OPERATION

ELECTRICAL SPECIFICATIONS

For placement of these tubes, see the diagram showing tube layout.

hOTE- mesistor values are in ohms.
ALL HESISTORS ARE $1 / 2 \mathrm{~W}$. UNLESS OTHERWISE SPECIFIED.
GAPACITOR VALUES ARE IN MFD. UNLESS OTHERWISE SPECIFIED.

PAGE 22-84 MONTGOMERY WARD

SCHEMATIC

REPLACEMENT PARTS

Ref. No.	Part No.	Description
C-7	45 Bl 28	$60-2 \mathrm{C}-20 \mathrm{mfd} 175 \mathrm{~V} .$, electrolytic
R-II	RC40AF27IK	276 ohms 2 watts, carbon

NOTE - Some sets will use condenser 458151 with an additional single 10 mfd condenser unit. For service replacement use condenser 45Al28 wired as shown.

SCHEMATIC DIAGRAM
REPLACEMENT PARTS LIST
Please specify part number and chassis model number when ordering replacements.

GENERAL INTORMATION

Automatic Tuner AT-81 is used in Motorola auto re ceiver, Model IMF.

This is a 3-gang permeability type tuner, mechanically 1. Turn receiver "on" and allow it to warm up for a few minutes.
2. With the tuning knob, tune in the station you desire to set up. Tune carefully until you are exactly on the station; tuning to either side of it will reault in poor tone quality. The pointer will indicate the station being set up.
3. Loosen by turning counterclockwise the automatic tun-
operated by movement of its push buttons or manual tuning control. Five pre-set tuning positions are provided. Stations can also be selectedsimply by turning manual control until desired station is tuned in.

PUSR BUTTONS

ing push button you wish to use.
4. Push the automatic push button in as far as it will go and tighten by turning clockwise until moderately tight.
5. Push button now will automatically bring atation selected simply by pushing button all the way in.
6. Remaining push buttons can be set up in the same manner.

8ERVICE INFORMATIOR

CORE REPLACEMENT

When tuner is in the set, the following method of removing cores is recommended:

1. Remove knobs, dial escutcheon and background.
2. Mark core insulator and core bracket to re-mount core assembly the same as before removal.
3. Remove the two $14-40 \times 3 / 16^{\prime \prime}$ core ascembly mounting screws.
4. Gently pull out core and insulator aseembly through holes of core mounting' bracket.
5. Soften cement hoiding core screw to insuiator and unscrew from insulator.
6. Replace core and insulator asaembly into ame position as before removal.
7. Realign tuner.
8. Cement core screws to insulator.

COIL REPLACEMENT

First remove tuning cores by following steps l through 4 of CORE REPLACEMENT, With cores out of the way, push coil out of rubber grommet and gently ease out of tuner. CAUTION: in replacing coils, be careful not to nick or damage coil by hitting sides of shields, ete. Cement coil to rubber grommet with any houschold rubber cement, replace cores, and realiga tuner.

TUNER ALIGNMENT

The tuner cores have been correctly aligned at the factory. Field alignment is not recommended unless components have been replaced or tampered with. If found necesalary to realign, construct two core alignment tools. These are made by gluing strips of rubber to two wood sticks, as shown in Figure 1. Refer to Figure 1 for proper use of tools. Alignment instructions are given in Model iMF service manual.

GEMERAL IMFORMATION

TYPE - An automotive superheterodyne receiver, designed for 1951 Chevrolet. An external speaker is used.

TUNING RANGE - 540 to 1600 Kc
IF $=455 \mathrm{Kc}$
TUBE COMPLEMENT - 6BA6 - RF Amplifier
6BE6 - Converter
6BA6 - IF Amplifier
6AT6 - Detector-AVC-AF Amp
6AQ5 - Power Amplifier
6×4 - Rectifier
POWER INPUT - 6.3 volts DC, 5 amperes

FIGURE 1. DIAL CORD RESTRIEGIMG DETAIL

AEIGMMEATS

Equipment Required:

1. A small fibre acrewdriver for IF and RF adjustments.
2. An accurately calibrated $\mathbf{A M}$ signal generator.
3. A low range output meter.
4. A dummy antenna for RF and tuncr alignment. (Construct dummy antenia as shown in Figure 3.)

Procedure:

1. Remove top and bottom covers to expose alignment ad-
justments.
2. Connect output meter across voice coil of the speaker.
3. Connect a 6 volt DC source of power between "A" lead and receiver ground. Turn receiver on and permit it to warm up for a few minutes. Then proceed as per instructions in the alignment chart.

NOTE: Keep output of receiver at approximately 1 watt (1 watt $=1.79$ volts on output meter) throughout alignment by reducing signal generator output as stages are brought into alignment.

FIGURE 2. TUBE \& TRIMAER LOCATIONS.

INSTALLATION INFORMATION

INSTALL DISTRIBUTOR SUPPRESSOR

Cut the high tension lead, which runs from the center terminal of the car distributor to the ignition coil, approximately $1-1 / 2$ inches from the distributor. See Figure 6. Screw the distributor suppressor in series with the two pieces of high tension wire, and plug the end terminal of the lead into the center receptacle of the distributor.

INSTALL CAPACITOR ON GENERATOR

Mount the noise suppression capacitor (Motorola Part Number 8A4491) on the generator frame, under the ground lead screw. See Figure 7. Connect the capacitor lead to the armature terminal of the generator. WARNING: DO NOT CONNECT THE CAPACITOR LEAD TO THE FIELD TERMINAL.

ADDITIONAL MOTOR NOISE HINTS

1. When checking the car for motor noise, clamp the
hood down tight.
2. Hood Bonds (Motorola Part Number 39A4205) may be installed at the shoulders so that the hood makes a good ground to the cowl of the car.

TIRE STATIC
After completion of radio installation, road test car for tire static on dry concrete and blacktop pavements, under the following conditions:

1. At both low and high car speeds.
2. With antenna extended to operating position.
3. With radio at full volume and tuned off station.

If tire static noise is encountered, inject Tire Static Elimination Powder (evailable in kit form - Motorola Part No. 51B591494) into tires, following instructions given on the package.

FIGURE 6. DISTRIBUTOR SUPPRESSOR INSTALLATION.

FIGURE 8. TOP VIEW OF CHASSIS.

PAGE 22-6 MOTOROLA
MODEL CTM1M, Chevrolet

FIGURE 9. BOTTOM VIET OF CHASSIS.

REPLACPMENT PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.
Ref. Part

No. Number Description

MOTOROLA PACE 22 MODELS 16VF8B, 16 VFSH. Ch. HS-2.11; 19Fl, 19 11 S . Ch. HS-230

GENERAL INFORMATION

NOTE: This manual contains complete service information and replacement parts list for AM-FM radio chassis HS-21l and HS-230, Service data for the television chassis and the record changers will be found in their respective service manuals.

RECEIVER MODELS

Model	Radio Chassis Used	Record Changer Used	TV Chassis Used
16VF8R	HS-211	MBRC	TS-16 series
16 VF 8 B	HS-211	M3FC	TS-16 series
19 Fl	HS-230	RC-36	TS-67 series
19 F 1 B	HS-230	RC-36	TS-67 geries

RADIO CHASSIS - HS-211: Radio chassis HS-211 contains 9 tubes and receives both AM and FM broadcast programs. Except for common speakers, it operates entirely independently of the television receiver.

HS-230: Similar to chassis HS-211 except for the addition of a separate phono motor power switch, connected to the AM-FM-PHONO switch control shaft.

RADIO TUKING RANGE - AM -535 to 1620 Kc
RADIO IF FREQUENCIES = AM IF - 455 Kc FM IF = 10.7 Mc

RADIO ANTENNAS - Separate AM and FM loop antennas, mounted in cabinet
SPEAKERS - Dual $12^{\prime \prime} \mathrm{PM}$ and $5^{\prime \prime} \mathrm{PM}$, common to both radio and television chassia.
POWER SUPPLY - 117 volts, 60 cycle alternating current only
RADIO POWER CONSUMPTION - 100 watts, including phono motor
RADIO AUDIO OUTPUT - 8 watts
RADIO CHASSIS TUBE COMPLEMENT - 6AU6 - FM-AM RF Amplifier
6BA7 - FM-AM Converter
6BA6 - FM-AM IF Anplifier
6AU6 - FM IF Amplifier
6AL5 - FM Ratio Detector
6AV6 - AM Detector \& lat Audio Amp
6V6GT - Power Amplifier
6V6GT - Power Amplifier
724 - Rectifier

INSTALLATION \& OPERATING INSTRUCTIONS AMTENMAS

No outside antenna or ground is normally required for standard broadcast (AM) reception, as a loop antenna is located inside the cabinet. Antenda connections are shown in Figure l. In loca* tions where additional pick-ap is desired, an external antenna may be connected to the clip marked "EXT BC AMT" on the loop antenna.

An FM loop antenna, mounted inside the cabinet, eliminates the need for an external FM antenna when the receiver is used in norasal FM service areas such as are found in and for a few miles around metropolitan areas.

In "fringe" or weak aignal areas, improved $P M$ reception can be obtained by using an outside $F M$ antenna. The loop connections ahould be removed frow the terminal strip on the rear of the chassis and the outside antenna should be connected, through - 300 ohm twin transmisaion line, to the terminal strip, as shown in Figure 1 . Orient the antenna to obtain maximum volume of the FM stations.

FIGURE 1. EXTERMAL AMTENAA CONMECTIONS

SERVICE NOTE

1. Pull off the four radio knobs on the front of the combinet.
2. Remove the $A C$ power plug from the receptacle attached to che cabinet.
3. Remove the large panel covering the rear of the cabinet.
4. Disconnect the AM and FM loop leads from the
receiver.
5. Disconnect the phono power plug from the chas* sia.
6. Disconnect the speaker leads.
7. Remove the three chassis mounting screvs.
8. Slide the chassia from the cabinet.

COMTROLS

Refer to Figure 2 for the location of the radio controls.

POWER SWITCH AND YOLIME CONTROL. The volume control and power switch for both radio and phonograph operation are combined and are operated with the extreme left-hand knob. CAUTION: The power avitches on the AM-FM radio and on the television receiver are independent. Make sure both are turned off when the set is not in use.

TONE COMTROL. Tone is varied by edjusting the aecond knob from the left.

AM-FM-PHONO SWITCH. The third control from the left operates a three-position switch. The extrese counterclockwite position selects the AM (Standard

Broadcast) band, the center position melects the FM (Frequency Modulation) band, and the extreme clockwise position is used for phonograph operation. NOTE: On the 19Fl model, rotating the control to the "PHONO" poaition also atarta the phono motor, whereas model 16 VF has a separate power switch on the record changer itself.

TUNING CONTROL. The extreme right hand control selecta the desired FM or AM station. The standard broadcast scale (AM) is read in kilocycles by adding one ' 0 ' to the figures. The frequency modula tion scale (FM) is read in megacycles (88 to 108).

Tuning of $F M$ stations should be done very carefully, for best sound reproduction, not necessarily for atrongest volume received.

FIGURE 2. RADIO CONTROLS

MOTOROLA PAGE 22.
MODELS 16VF8B, 16VF8R
Ch. HS-211; 19F1,
loFlB, Ch. HS-230

ALIGNMENT

GENERAL INFORMATION

1. Maximum performance can be obtained only if 3. Refer to Figure 4 for the location of all alignextreme care is exercised during alignment. ment trimmers and cores.
2. Use a small fibre screwdriver for aligning the 4. As the stages are brought into alignment, reIF transformers. duce the signal generator output to a low value to avoid overloading the receiver.

ORDER OF ALIGNMENT AND EQUIPMENT REQUIRED

1. Broadcast Band IF \& RF Alignment
a. 455 to 1620 Kc AM Signal Generator
b. Low range stput meter

2 (A) FM Band IF \& RF Alignment (Preferred Method)
a. $\quad 10.7$ to 108 Mc FM signal generator
B) FM Oscilloscope
(B) FM Band IF \& RF Alignment (Alternate Me thod)
a. 10.7 to 108 Mc signal generator (unmod.)

BROADCAST BAND - IF \& RF ALIGNMENT

1. With the gang fully closed, adjust the pointer to coincide with the calibration marks at the left of the " 55 " on the dial scale.
2. Connect the $A M$ signal generator as in chart below, with 400 cycle, 30% modulation.
3. Connect the output meter acrosa the speaker voice coil. Throughout alignment reduce the genera-
tor output to level which produces less thar 1.27 volts (. 5 watt) across the voice coil, to avoi overloading the receiver.
4. Set the bandswitch to the AM position.
5. Turn the receiver volume control to maximum.
6. Proceed as shown in the following chart.

STEP	DUAMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
$\text { IF } A$	$.1 \mathrm{mf}$	Grid of conv. V-2 (pin 7, 6BA7)	455 Kc	Fully opened	$\begin{aligned} & 1,2,3, \& \\ & 4(\text { IF cores }) \end{aligned}$	Adjust for maximum.
$\begin{aligned} & \text { RF AL } \\ & 2 . \end{aligned}$	$.1 \mathrm{mf}$	Grid of conv. V-2 (pin 7. 6BA7)	1620 Kc	Fully opened	$\text { (AM }{ }^{5} \text { osc) }$	Adjust for maximum.
3.	. 1 mf	Grid of conv. V-2 (pin 7, 6BA7)	1400 Kc	Tune in signal	$\text { (AM }{ }^{6} \mathrm{RF} \text {) }$	Adjust for maximum.
4.					-	Connect AM loop to chassis.
5.	-	Acroses radia tion loop*	1400 Kc	Tune in signal	(AM ant)	Adjust for maximum.
*Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.						

1. The following FM alignment procedure, using an FM signal generator and an oscilloscope, is to be preferred because the actual responae pattern may be observed on the scope and adjuated for best symetry and maximum amplitude.
2. Connect the vertical input terminals of the oscilloscope between the chassis and the junction of resistor $\mathrm{R}-17$ (47 K) and capacitor C-21 (1000 mmf).
3. Connect the FM signal generator sync voltage output terminals, through a phase shifting network, to the horizontal input terminala of the scope, as in Figure 5. (Other values of resistance and capa-
citance may be required, depending upon the acope). The phasing control should be adjusted to give only one trace on the sope. NOTE: If the FM generator has a built-in phase control, the phase shifting network is not necesaary.
4. Set the bandawitch to the FM position.
5. Throughout alignment, reduce the generator output to keep the aignal just above the noise level. to avoid overloading the receiver.
6. Proceed as shown in the following chart.

GEMERATOR CONNECTION	STEP	$\begin{aligned} & \text { DUMAY } \\ & \text { ANTEMMA } \end{aligned}$	GENERATOR FREQUENCY	$\begin{aligned} & \text { TTNER } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARKS
	if aligmment					
Grid of 2nd IF Amp V-4 (pin 1, 6AU6)	1.	1000 mf	$\begin{gathered} 10.7 \mathrm{mc} \\ \pm 100 \mathrm{Kc} \mathrm{dev} . \end{gathered}$	Fully opened	$\underset{\substack{\text { (ratio } \\ \text { pri) }}}{8}$	Adjust for maximum amplitude of pattern.
Grid of 2nd IF Amp V-4 (pin 1, 6AU6)	2.	1000 mf	$\begin{gathered} 10.7 \mathrm{mc} \\ \pm 100 \mathrm{Kc} \mathrm{dev} . \end{gathered}$	Fully opened		Adjugt for symetrical curve, as shown in Figure 6.
-	3.	-	-	-	-	Repeat steps $1 \& 2$ for maximum amplitude and best symmetry.
Grid of lst IF Anp V-3 (pin 1, 6BA6)	4.	1000 mmf	$\begin{gathered} 10.7 \mathrm{sc} \\ \pm 100 \mathrm{Kc} \text { dev. } \end{gathered}$	Fully opened	$\begin{gathered} 10 \& 11 \\ (2 \mathrm{nd} \mathrm{IF} \mathrm{sec} \\ \text { \& } \mathrm{pri}) \end{gathered}$	Adjust for maximum amplitude of pattern. ${ }^{\text {* }}$
Grid of conv. V-2 (pin 7. 6BA7)	5.	1000 maf	$\begin{gathered} 10.7 \mathrm{nc} \\ \pm 100 \mathrm{Kc} \text { dev. } \end{gathered}$	Fully opened	$\begin{aligned} & 12 \& 13 \\ & \left(\begin{array}{lll} 12 t & \text { IF } \\ \& & \mathrm{pri}) \end{array}\right. \end{aligned}$	Adjust for maximum amplitude of pactern.*
$\begin{aligned} & \text { Grid of conv. } \\ & V-2(\text { pin } 7 \text {, } \\ & 6 B A 7) \end{aligned}$	6.	1000 mf	$\begin{gathered} 10.7 \mathrm{mc} \\ \pm 100 \mathrm{Kc} \mathrm{dev} . \end{gathered}$	Fully opened	$\begin{aligned} & 10,11 \\ & 12 \& 13 \end{aligned}$	Readjust for maximum amplitude and best symmetry.
PM terminal 19 on rear of chassis	$\mathrm{RFF}_{7}^{\mathrm{AL}}$	EMT 270 ohms	$\begin{gathered} 105 \mathrm{mc} \\ \pm 22 K \mathrm{Kc} \text { dev. } \end{gathered}$	$\begin{aligned} & 105 \mathrm{mc} \\ & \text { on dial } \end{aligned}$	$\begin{gathered} 14 \\ \text { (osc core) } \end{gathered}$	Adjust for maximum amplitude of pattern.*
-	8.	-	-	Fully closed	$\begin{gathered} 15 \& 16 \\ (\mathrm{RF} \& \\ \text { cores) ant } \end{gathered}$	Turn counterclockwise until cores are at bottom of pipe, then turn two turns clockwise.
FM terminal 19 on rear of chessis	9.	270 ohns	$\begin{gathered} 90 \mathrm{mc} \\ \pm 22 \% \mathrm{kc} \text { dev. } \end{gathered}$	Ture in signal	$17 \& 18$ (RF \& ant tuning pluge)	Adjust for maximum moplitude of pattern."
FM terminal 19 on rear of	10.	270 ohms	$\begin{gathered} 105 \mathrm{mc} \\ \pm 22 \% \mathrm{kc} \text { dev. } \end{gathered}$	Tune in aignal	$15 \& 16$ (RF \& ant corea)	Adjust for maximum amplitude of pattern.*
-	11.	-	-	-	-	Repent ateps $9 \& 10$ until no further idjustment is necessary.

An output meter across the speaker voice coil will also indicate maximum amplitude. It should not be used in place of the scope, however, since it will not show symmetry of the curve.

MOTOROLA PACE 22.

PAGE 22-14 MOTOROLA
MODELS 16VFSB, I6VF8R,
Ch. TS-211; 1SFl,
19F1B, Ch. ES-230

FM BAND - IF \& RF ALIGNMENT (ALTERNATE METHOD)

1. The following procedure for FM alignment, with an unmodulated carrier generator and a DC electronic voltmeter, is not as desirable as the preceding method; but it may be used if no FM generator is available.
2. Connect the signal generator as in chart below, with no modulation.
3. Set the bandswitch to the FM position.
4. Except in step 2 below, connect the electronic voltmeter across resistor $\mathrm{R}-21$ (33K) in the ratio detector stage.
5. Throughout alignment reduce the signal generator output to value which produces no more than a 5 volt rise above no signal voltage, to avoid overloading the receiver.
6. In step 2 below, connect two 100K ohm resistors in series across R-21. Connect the electronic volt meter between the volume control side of resistor R-17 (47K) and the junction of the two 100 K re. sistors, with the low side of the meter at the 100 K resistors.
7. Proceed as shown in the following chart.

STEP	$\begin{aligned} & \text { DUNAY } \\ & \text { ANTENHA } \end{aligned}$	GEMERATOR CONHECTIO	$\begin{aligned} & \text { GENERATOR } \\ & \text { FREQUEMCY } \end{aligned}$	$\begin{aligned} & \text { TUMER } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARKS
If ALIGMENT						
1.	1000 manf	Grid of conv. V-2 (pin 7, 6BA7)	10.7 mc	Fully opened	$\left.\right\|_{8,10,11,12} ^{8}(15 \text { cores })$	Adjust for maximum.
2	1000 mf	Grid of conv. V-2 (pin 7, 6BA7)	10.7 mc	Fully opened	$\text { (ratio }^{9} \text { det sec) }$	Adjust for zero. (Connect meter as in step 6 above)
RF AL 3.	ENT 270 ohms	FM terminal 19 on rear of chassis	105 mc	$\begin{array}{r} 105 \mathrm{mc} \\ \text { on dial } \end{array}$	$\begin{gathered} 14 \\ \text { (osc core) } \end{gathered}$	Adjust for maximum.
4.	-	-	-	Fully closed	$\begin{aligned} & 15 \& 16 \\ & \text { (RF \& ant } \\ & \text { cores) } \end{aligned}$	Turn counterclockwise unti] cores are at bottom of pipe, then turn two curns clockwise.
5.	270 ohms	FM texminal- 19 on reer of chassis	90 me	Tune in signal	$17 \& 18$ (RF \& ant tuning plugs)	Adjust for maximion.
6.	270 ohms	FM terminal 19 on rear of chassis	105 mc	Tune in aignal	$15 \& 16$ (RF \& ant cores)	Adjust for maximur.
7.	-	1 -	-	-	-	Fepeat steps $5 \& f$ unt: : no further edjustment is necessary.

PAGE. 22-16 MOTOROLA
MODELS 16VF8B, 16VF8R, Ch. HS-211; 19Fl,
19F1B, Ch. HS-230

MOTOROLA PAGE 22-17
PART
NUMBER
CHASSIS PARTS - MECHANICAL

1×690717	Bracket Aasembly, tuning core meg: includes shoulder rivet and aingle anti-backlash clip \qquad	3S7462	on dial plate) Screw, machine: $6 \mathbf{- 3 2} \times 3 / 16$ plain hex head; cad pl (electrostatic
1×691127	Bracket \& Pullies Aasembly: includes two pullies and shoulder rivet (cord guides on chassis front)	$3 S 7326$	shield mtg) Screw, machine: 8-32 $\times 3 / 16$ plain locking hex head; cad pl (gang
7C690567 7A77337	Bracket, tuner meg (gang mtg).......... Bracket, tuning shaft	357163	Screw, machine: $8-32 \times 1 / 4$ plain hex head; cad pl (pointer drive pulley
434890397	43A890397) Bushing, line cord strain relief (use -ith 43K890398)	352695	mtg) Screw, sheet metal: H $_{6} \times 3 / 16$ PKZ plain hex head; cad pl (tuner brkt
42A690560	Clip, anti-backlash: double (on tuner counting brkt) \qquad	3S7454	Screw, sheet metal:
42K690561	Clip, anti-backlash: single (on core motg brkt)		plain hex head; cad pl (dial plate assembly meg)
428482867	Clip, spring: blued finish (holds If transformer)	357475	Screw, sheet metal: 紬 x l/4 PKZ slotted acorn head; cad pl (power
11 M 488137	Cord, dial (core drive)	357103	
11198944	Cord, dial (pointer drive)..........		pl (core drive pulley mtg)
$\begin{aligned} & 30 K 21859 \\ & 46 \mathrm{~B} 692164 \end{aligned}$	Cord, line: with plug: 9 ft long.....	357113	Setscrew: 8-32 $\times 1 / 4 \mathrm{slab}$ head; cad
46K692165	osc tuning core) Core, iron and screw (FM RF and ant tuning core)	47A690893 1X691134 26K485936	pl (bandswitch link assembly mtg). Shaft, bandswitch actuating (HS-211). Shaft, tuning: complete with pulley...
346690897	Dial scale: glapa	264470013	Shield, coll: for if transformer Shield, dial light
1×691	Dial Scale and Plate Assembly: complete	26 K 690984	Shield, electroatatic (gan
557866	Eyelet: . $125 \times .091$; brass; nkl pl (core drive cord retainer).	266690981	Shield, tube: spring type Shield, tube (for V-9)
1X600081	Link Assembly, bendswitch actuatin		Socket, dial light: includes brkt..... Socket, tube: loctal
459751	complete with bushings; less setacre Lockwasher, int-ext: \% m cad pl $^{\text {a }}$		Socket, tube: midget; 7 prong (${ }^{\text {a }}$,
	(pointer drive pulley mig)	9A485495	Socket, tube: miniature; 7 prong Socket, tube: noval; 9 -prong
$2 S 7019$	Nut, 'hex: $4-40 \times 1 / 4$; ced pl (FM tuning core atg)	9A176209 414690598	Socket, tube: octal'
257051	Nut, hex palnut: $3 / 8-32 \times 9 / 16$; cad pl (bandawitch, toae and volume control atg) \qquad	41K691840	Spring, coil: 7 turna; cosmoline dipped (FM RF \& ant core mtg) Spring, coil: 8 turns; copper plated
52H481704	Pointer, dial ${ }^{\text {a }}$	41 A14244	
49 A 21741	Pulley, cord: $3 / 8^{n}$ groove (on chassis front)	41K692081	drive cord) Spring, tube shield retaining (for
49A73807	Pulley, cord: $1 / 2^{n}$ groove (on chas: sis side and on dial plate)	41 K 692081	Spring, tube shield retaining (for V-9 shield)
49A26433	Pulley, cord: 21/32" groove (on chassis front) \qquad	31K37504	Strip, channel: rubber; $1^{\prime \prime}$ long (dial scale mig)
$49 \mathrm{A690562}$	Pulley, core drive: bras	31к37	Strip, terminal: l insulated
IK691145	Pulley, pointer drive: 3-1/2" diameter		
9K592170	Receptacle, phono pick-up: 1 prong.		Strip, terminal: 1 insulated lug, "l
${ }_{5}^{9127674}$	Peceptacle, phono power: 3-prong......	31K471565	
5S8497	Rivet: . $088 \times 1 / 8$ st]; nkl pl (single anti-backlash clip meg)	690	\#4 gnd; $3 / 8^{n}$ spacing
SS7771	Rivet: . $088 \times 3 / 16 ; \mathrm{stl}$; nkl pl (min and midget tube socket mtg)....		微 \& 9 gnd; $3 / 8^{n}$ spacing
557707	Rivet: $122 \times 5 / 32$; stl; nkl pl (loctal tube socket, terminal strip, output transformer mig)	21K4714985412	Strip, terminal: 3-acrew (antenna input) Terminal, plain pin (ōn speaker
5S7701	Rivet: $.122 \times 3 / 16$ at 1 ; nkl pl (power receptacle, ant cerm strip, and tuning shaft bracket atg).......	4470015	Jeads) Washer, ' C ' (tuning ahaft retainer) \qquad
557700	Rivet: . $122 \times 1 / 4$; stl; nkl pl (octal tube socket mig).		
SK13896	Rivet, shoulder (tuning core cord guade and pulley atg on front of chas-	CAbIRET P	
5K71246	Rivet, ahoulder (pulley ntg on side of chassia and on left side of dial plate)	$\begin{aligned} & 39 \mathrm{~K} 17396 \\ & \text { 13C791478 } \\ & \text { 5A71081 } \end{aligned}$	Contact, pin terminal (in molded phono motor receptacle)(19F1).. Escutcheon, radio dial: brasa... Eyelet (radio chassis mtg)......

PAGE 22-18

CHASCTS	S-211,		
LS-230,	S-230A		
PART			
Nutiser	DESCRIPTION	PART Number	DESCRIPTION
5 S71092	Crommet, rubber (radio chassis mig)		Plor
14K791482	Insulator, fibre (clamps phono and antenna leads)	28×30736	Plug, phono motor: 3-pin; includes shell (on phono motor lead)......
36B790569	Knob, control: no dot; beige plastic (radio controls)	9K470402	Peceptacle, phono motor: 5 -prong; melded; includes contacts (19F1)
36K791630	Knob, control: with dot; beige plastic (radio controls)	9A600040 ${ }^{\text {a }}$	Receptacle, phono motor: 3-prong; includes shell (19F1)
1X792530	Lead and Plugs Assembly, phono pickup (shielded lead with two phono pick-up plugs)(19F1) \square	3S7536	Screw, sheet metal: \#6 x 3/8 PKA slot. ted acorn head; antique copper finish (cabinet back panel mtg).
640791510	Panel, cabinet back: fibre (covers radio and phono compartments)(16VF8)	3S7534	Screw, sheet metal: \#8 x 1-3/8 PKA plain hex head; cad pl (radio chas-
64K792522	Panel, cabinet back: fibre (cnvers radio and phono compartments)(19F1)..	15K74443	sis mtg) Shell, plug (on 28K30736 phono motor
28K71775	Plug, phono pick-up (short plug on phono lead) (19F1)	154690616	plug) ...
28K22183	Plug, phono pick-up (long plug on phono lead)(19F1)	45490513	motor receptacle)(19F1) Washer, flat: $3 / 4 \times 7 / 32 \times .042$ stl; cad pl (radio chassis mtg)...

GENERAL ITFORMATION

AM-FM radio chassis HS-230A is the same as chassis ing is connected for use with one speaker instead of dual HS-230 except that the output transformer secondary wind- speakers.

SERVICE MOTE

The following service note applies only to television- be induced into the speaker from the power line because of radio combinations, where both chassis use the same apeak- coupling between the radio and TV chassis. This AC hum will be noticed even with both the radio and the TV power switches turned off.
One side of the output transformer secondary winding is grounded in some HS-230A chassis. If the leads to the speaker are not correctly polarized, a 60 cycle hum may at the receptacles on the speaker.

GENERAL INFORMATION

TYPE - AM-FM Radio-Phonograph Combination
CHASSIS - HS-230A. Refer to HS-230 \& HS-230A Service
Manual for service information.

$$
\begin{aligned}
\text { PHONOGRAPH - } & \text { Model RC-37, three-speed; } 33,45 \text { \& } 78 \\
& \text { RPM. Refer to RC-37 Service Manual for } \\
& \text { record changer service inforination. }
\end{aligned}
$$

RECORD CHANGER: See Model RC-37, on Pgs. RCD.CH.21-17,18 to RCD.CH.21-29。

REPLACEMENT PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part. For hassis \& record changer replacement parts, refer to their respective service manuals.

Part Number	Description	Part Number	Description
CABINET PARTS		$62 \mathrm{K70581}$	Logotype: "Motorola"; gold finish.
		$24 \mathrm{C690896}$	Loop Antenna, AM.........
16F610008	Cabinet, console: redubra mahogany;	24C482890	Loop Antenna, FM; with lead.......
	complete, less escutcheon, loop	$55 C 790564$	plate, door: brass plated
	'antennas, and speaker.	28K22183	Plug, phono pick-up.
55872307	Catch, bullet: statuary bronze	28427573	Plug, phono motor: 3-pin..........
	finish (door latch on cabinet)	9A600040	Receptacle, phono motor: 3-prong.
13×700763	Cloth; grille: 22-5/8 x 7-5/8; mahogany \& gold...............	3K791011	Screw, machine: 8-32 x 1-1/4; oven head cross slot (door pull mtg)
$\begin{aligned} & \text { 15D610006 } \\ & \text { 13B72750 } \end{aligned}$	Cover, cabinet back	3S7526	Screw, sheet metal: \#8 x 1-1/8;
	Escutcheon, dial		plain hex head (chassis mtg).
5471081	Eyelet, chassis mtg: plain; 9/32" long \qquad	15A690616	Shell, receptacle: with insulator (phono motor receptacle).........
54600963	Eyelet, chassis mtg: pierced; 1/8"	15K74442	Shell, receptacle: with insulator
	long. .		(phono motor plug)...............
$\begin{aligned} & 5 A 71092 \\ & 55 \times 790566 \end{aligned}$	Grommet, chassis mtg.	500610000	Speaker, PH: 6" x 9' oval.........
	Handle, door: brass plated.		
55K791499RH	Hinge, stop: statuary bronze'finish (upper right \& lower left).......	55K72308	Strike, bullet; statuary bronze finish; with $1 / 2^{\prime \prime}$ nail (door latch
55K791499LH	Hinge, stop: statuary bronze finish (upper left \& lower right).......	55K601672	Track \& Channel, record changer
$36 \mathrm{C701150}$	Knob, control......................		drawer
1×601844	Lead Assembly, phono motor: complete	4S490513	Washer, flat: $3 / 4 \times 7 / 32 \times .042$.
1×601843	Lead \& Plug Assembly: phono pick-up (includes shielded lead and plugs)		cad pl (chassis mtg).....

MODEL KRI,
Ch. 1A

TYPICAL RECEIVER USING CHASSIS IA. MODEL KR1 ILLUSTRATED

GEMERAL IMFORMATION

TYPE - Automotive type universal radio chassis. In addition to Model KR1, this chassis will be used on subsequent models. Separate service manuals covering these models will be issued as required.

TUNING RANGE - 540 to 1600 Kc
IF - 455 Kc

TUBE COMPLEMENT .

6BA6 - RF Amplifier
6BE6 - Converter
6BA6 - IF Amplifier

6AT6 - Diode, detector, AVC ist AF Amp 6AQ5 - Power Amplifier 6X4 - Rectifier

POWER INPUT - 6.8 amps at 6. 3V DC

POWER OUTPUT - 3.5 watts (max)
TUNER - Model AT-86 or AT-90. See AT-86 or AT-90 Ser vice Manual for Replacement Parts.

OPRRATIMG IMSTRUCTIOAS

TO TURN RADIO 'ON'

The On-Off switch is combined with the volume control Turn the knob clockwise until a "click" indicates the receiver is "on". Wait a few seconds for the tubes to heat up; before tuning-in a station.

STATION SELECTOR

Turn the volume "up" until stations can be heard; then turn the station selector knob until the desired station is received. After station is tuned in properly, adjust the vol ume control to the desired level.

SET AUTOMATIC TUNING

The receiver has 5 buttons for automatic station selection. To set the push buttons on automatic tuning, proceed as follows:

1. Turn volume up until stations can be heard
2. Pull out button to unlock tuner and with the station selec tor, tune to the station desired.
3. Push button in to lock tuner. This station is now set for automatic tuning.
4. Follow the ame procedure for the remaining four buttons.

NOTE: The numbers on the dial scale indicate the frequency range of the receiver. Tune carefully until you are exactly on the station; tuning to either side of it will result in poor tonequality and excessive noise. When setting automatic tuning, it is preferred that the left-hand buttons tune in the lower KC stations and the right-hand buttons tune in the ligher KC stations.

TO TURN THE RADIO "OFF"

Turn the volume knob counterclockwise until a "click" indicates that the receiver is "off".

ALIGNMENT

EQUIPMENT REQUIRED:

1. A special tool for adjusting the tuner cores. Use alignment tool, Motorola Part No. 66A76278.
2. A small screwdriver for $I F$ \& RF alignment.
3. An accurately calibrated $A M$ modulated signal generator.
4. A low range output meter.
5. A special dummy antenna for RF alignment. Construct dummy antenna as shown in Figure 2.

PROCEDURE:

1. To expose the alignment adjustments, remove the top 7. Antenna Trimmer Adjustment. Once alignment has been and bottom covers. If the tuner cores require adjustment, satisfactorily performed, nofurther adjustment of any alignremove the escutcheon and dial scale bracket assembly. ment screws should be made except to align the antenna trimmer (7) to car antenna after receiver is installed in car.
2. Connect a PM speaker (3.2 ohm VC) to "VC" and "GND' terminals of the receiver.
3. Connect 6.3 volts to the receiver " A " lead terminal and chassis.
4. Turn the receiver "on" and allow it to warm up for a few minutes. Set receiver volume control at maximum and tone contral to "high" position.
5. For greatest accuracy, keep the output of the receiver at 1 watt (1 watt $=1.79$ volts on output meter) by reducing signal generator output (not receiver volume control) as stages are brought into alignment.

IMPORTANT: Do not push in on the alignment tool when adjusting the tunercores. The slightest inward pressure on the alignment tool may move the tuner carriage and result in inaccurate alignment.
3. Connect an output meter across the speaker voice coil. noise between stations.

FIGURE 1. TUBE AND TRIMIER LOCATIONS

MODEL KR1,
Ch. IA

ALIGNMENT CHART

2.	Dummy see Fig. 1	Ant. receptacle thru dummy anterna	1605 kc	Extreme high frequency end of travel	5	Peak for maximum.
3.	"	"	1300 kc	With tuning knob, tune to maximum signal	627	Peak for maximum in order indicated.
4.	-	-	-	-	-	Repeat steps 2 \& 3.
5.	Dummy see Fig. 1	Ant receptacle thru dummy.antenna	1605 kc	Extreme high frequency end of travel	$\begin{aligned} & 5,6, \\ & \& 7 \end{aligned}$	Remove escutcheon and dial scale bracket. Peak for maximum in order indicated.
6.	"	"	1300 kc	With tuning knob, move carriage "in' 5/16" from position in step 5.	$\begin{array}{cc} 8, & 9 . \\ \& & 10 \end{array}$	Peak for maximum in order indicated.
7.	"	-	1605 kc	With tuning knob, tune for maximum signal at high frequency end.	$\begin{aligned} & 5.6, \\ & 87 \end{aligned}$	Peak for maximum in order indicated.
8.	"	" 1	1300 kc	With tuning knob, tune to maximum signal	$\begin{aligned} & 8,9,9 \\ & \&=10 \end{aligned}$	Peak for maximum in order indicated.
9.	-	-	-		-	Repeat atep 7.

POINTER ADJUSTMENT

10. Tune receiver to 1300 kc and adjust pointer by means of eccentric cam (11) on the tie plate to the 1300 kc calibration mark on dial scale.
11. With set installed in car, peak ant trim (7) for maximum signal at approximately 1400 kc . Car antenna should be fully extended.

FIGURE 2. DUMMY ANTRNNA DRTAIL

FIGURE 3. TOP VIEN OF CHASSIS

REPLACEMENT PARTS LIST

NOTE: When ordering parts, apecify model number of set in addition to part number and description of part

Ref No

part
No. $\frac{\text { Number }}{\text { CRASBis la ELECTRICAL PART }}$
Capacitors

$\overline{\mathbf{C}-1}$	21A591682	Mica, metal: 90 mil 500 v
C-2	844529	Paper: 006 mf 100 v
C-3	20A501419	Mica, variable: 50 to 280 maf; includes bracket
C-4	8R13514	Paper: . 05 mf 100V
C-5	8R13166	Paper: . 1 mf 400V
C-6	-	Variable, mica: RF trimmer (See AT-86 or AT-90 Service Manuals)
C-7	$21 \mathrm{K70720}$	Molded, miniature: 5 mmf 500 v
C-8	-	Ceramic: temperature coapensating (See AT-86 or AT-90 Tuner Service Manuals).....
C-9	2186513	Hica: 50 mmf 500 V
C-10	-	Variable, mica: osc trimmer (See AT-86 or AT-90 Tuner Service Manuals)
C-11	8K17028	Paper: . 5 mf 100V
C-12	8R472754	Paper: . $01 \mathrm{mf} \mathrm{100V}$
$\mathrm{C}-13$	21K70720	Molded; miniature: 5 mmf 500 V
C-14	8K17028	Paper: . 5 mf 100V
C-15	8R490449	Paper: . 02 mf 1000V
C-16	8R51209	Paper: . 02 mf 100V
C-17	8K71910	Paper: .006 mf 400V
C-18	8R23690	Paper: . 01 mf 400V
C-19	2186590	Mica: '500 mmf 500V
C-20	8K71909	Paper: . 004 mf 400 V
C-21	23A485677	Electrolytic: $\mathbf{1 5 - 1 0} \mathrm{mf} / 350 \mathrm{~V}$;
Fuse		$20 \mathrm{mf} / 25 \mathrm{~V}$
F-1Vibrator		9 amp
$\overline{\mathrm{G}-1}$	4883333	Vibrator, non-sync: 4-pin ..
pilot Light		
I-1	65×10867	Bulb: 6.3V .25A
Coils 65X10867 Bulb 6.3V .25A		
L-1	\sim	Antenna coil (See AT-86 or AT-90 Tuner Service Manuals)
L-2	-	RF coil (See Tuner AT-86 or AT-90 Tuner Service Manuals)
L-3	-	Oscillator coil (See AT-86 or AT-90 Tuner Service Manuals)
L-4	24K592269	Choke, hash
L-5	24A472535	Choke, hash
Resistors		

32 ess otherwise specified.
$\left.\begin{array}{llllll}\mathrm{R}-1 & 6 R 6032 & 470,000 & 20 \% & 1 / 2 W & \ldots \\ \mathrm{R}-2 & 6 R 3992 & 150 & 20 \% & 1 / 2 W & \ldots\end{array}\right] \cdot$.

R-7 6R6394 12,000 10\% 1/2W
R-8A,B 18B501206 Volume-On-Off-Tone Control (R-8A 250,000 ohms; R-8B 1 meg)

IF Transformer, 455 kc : complete with padding capacitor and tuning cores

MOTOROLA PAGE 22.2
MODEL KRI
Ch. IA

PAGE 22-26 MOTOROLA
MODEL CTI, Ch. 1A,
Chevrolet

GENERAL INFORMATION

TYPE - Automotive type superheterodyne receiver specifically designed for installation in the 1951 Chevrolet.

CHASSIS USED - Chassis 1A. Refer to Chassis 1A Service Manual, Part No. 54 P501584 for schematic, alignment, push button set-up, operating instructions, and replacement parts list.

INSTALLATION INFORMATION

FIGURE 1. RECEIVER INSTALLATION DETAIL

INSTALL DISTRIBUTOR SUPPRESSOR

Cut the high tension lead, which runs from the center terminal of the car distributor to the ignition coil, approximately 1-1/2 inches from the distributor. See Figure 2. Screw the distributor suppressor in series with the two pieces of high tension wire, and plug the end terminal of the lead into the center receptacle of the distributor.

INSTALL CAPACITOR ON GENERATOR

Mount the noise suppression capacitor (Motorola Part Number 8A4491) on the generator frame, under the ground lead screw. See Figure 3. Connect the capacitor lead to the armature terminal of the generator. WARNING: DO. NOT CONNECT THE CAPACITOR LEAD TO THE FIELD TERMINAL.

ADDITIONAL MOTOR NOISE HINTS
l. When checking the car for motor naice, clamp the

FIGURE 2. DISTRIBUTOR SUPPRESSOR INSTALLATION
hood down tight.
2. Hood Bonds (Motorola Part Number 39A4205) me be installed at the shoulders so that the hood makes a goc ground to the cowl of the car.

TIRE STATIC

After completion of radio installation, road test car f f tire static on dry concrete and blacktop pavements, unde the following conditions:

1. At both low and high car speeds.
2. With antenna extended to operating position.
3. With radio at full volume and tuned off station.

If tire static noise is encountered, injeci Tire Stati Elimination Powder (available in kit form -Motorola Pa, No. 51B591494) into tires, following instructions given o the package.

FIGURE 3. GENERATOR CAPACITOR INSTALLATION

REPLACEMENT PARTS LIST

For Chassis replacement parts, refer to Chassis 1 A Service Manual.
NOTE: When ordering parts, specify model number of set-in addition to part number and description of part.

Part Number	Description	Part Number	Description
7B510025	Bracket, dial background.	3S2956	Screw, machine: $\frac{1}{4-20 \times 3 / 4}$ plain
7C510040	Bracket, dial scale mtg		hex head; stl; cad pl (receiver
7A472857	Bracket, receiver, mitg (on rear of set) \qquad	3S9694	mtg)...........................
7A484424	Bracket and Stud Assembly, receivez mtg.		hex head; stl; cad pl (receiver $m \mathrm{~m}$).
43K510047	Bushing, tuning shaft and volume control mtg.	3S488298	Screw, sheet metal: $\$ 8 \times \frac{1}{4}$ slotte hex head; stl; cad pl (mtg brkt -
1X510098	Button, push: complete		rear)
8A4491	Capacitor, noise suppression	358176	Screw, sheetmetal: \#10 x 3/8;
42A500196	Clip, dial scale mtg		cad pl (speaker mtg)........
$32 \mathrm{C5} 10039$	Gasket, speaker	3S7104	Setscrew: 8-32 $\times 3 / 16$; headless:
36K592302	Knob, dummy: chrome pl (behind tuning knob).	518502001	stl; cad pl (knobs).............. Shaft Assembly, manual drive: com
36K473550	Knob, tone: chrome pl.............		plete...................................
$36 \mathrm{K510051}$	Knob, tuning and volume: includes setscrew.	51A502012	Shaft and Drive Disc Assembly: wit pinion on one end (for AT-90)....
$9 \mathrm{K510086}$	Lead Assembly fuse: fuse \qquad	1×510096	Shield and Crystal Assembly, light
457668 457688	Lockwasher, ext: 3/8; sti; cad pl (tuning and volume control mtg)	$41 A 77592$	Socket, pilot light: with bracket Spring, compression (behind contro knobs)
4S7688	Lockwasher, int-ext: $\frac{1}{4}$; stl; cad pl (receiver mtg)................	$\begin{gathered} 50 B 510063 \\ \text { or } \end{gathered}$	Speaker, PM: $5 \times 7 ; 3.2$ ohm vC
282878	Nut, hex: $1-20 \times 7 / 16 ; s t l$; cad pl (receiver mtg)....................	50B510577	Speaker, EM: 5×7 3.2 ohm vC
1×510555	Plate, front: includes wiper (tuner mtg - for AT-90).........	1X511064	Speaker Plate \& Gasket Assembly: less speaker.......................
648510022	Plate, push button trim	42A485718	Strap, receiver mtg..............
1×510092	Pointer	6A4141	Suppressor, distributor..........
348510021	Scale, dial.	42A510531	Wiper, spring (on front plate)..

PAGE 22-28 MOTOROLA

OPERATIMG IMSTRUCTIOH

VOLUME CONTROL \& ON-OFF SWITCH. The volume control and on-off switch are combined and are operated with the inner right-hand knob. Turn radio on by turning knob to the right until a "click" is heard. Continued rotation to the right will increase volume. To turn radio off, turn knob fully to left until "click" is heard.

TONE CONTROL. The outer right-hand knob operates the tone control.

TUNING. Tune stations with the left-nand knob. Always tune carefully until you are exactly on the station; tuning to either side of it will result in poor tone quality.

FIGURE 1. OPERATING CONTROLS

SERVICE HOTES

TO REPLACE TUBES. To replace tubes, it will be necessary to remove radio from car. Froceed as follows:

1. Disconnect "A" lead from car terminal located behind instrument panel.
2. Remove antenna plug from antenna receptacle located on left side of radio.
3. Pull off control knobs and pointer.
4. Remove two nutis, two washers and dial scale assembly.
5. Remove radio from behind instrument panel.
6. Remove large cover from radio to expose tubes.

RADIO NOISE SUPPRESSION, A capacitor installed on the car generator, a capacitor on the ignition coil, and a suppressor in the car's ignition system distributor circuit, eliminate motor noise from these sources.

TO REPLACE VIBRATOR OR FUSE. The plug-in type vibrator and radio fuse are accessible from the rear of the instrument panel. Should those require replacement, it is only necessary to pull out old vibrator or fuse and plug in a new one.

ALIGNMENT

EQUIPMENT REOUIRED

1. A small screwdriver for IF and RF alignment.
2. An accurately calibrated 400 cycle. AM modulated signal generator.
3. A low range output meter.
4. A special dummy antenna for RF alignment. Construct
dummy antenna as shown in Figure 2.
PROCEDURE
5. All adjustments are accessible without removing the
covers, through holes provided.
6. Connect an output meter across the voice coil.
7. Connect a 6 volt storage battery to chassis and BATT terminal of receiver; turn receiver on and allow it to warm up for a few minutes.
8. For greatest accuracy, keep output of receiver at approximately $1 / 2$ watt ($1 / 2$ watt $=1.25$ volts on output meter) throughout alignment by reducing generator output (not receiver volume control) as stages are brought into alignment.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SET TO } \end{aligned}$	ADJUST	REMARKS
IF ALI 1	IGNMENT . 1 mf	Hi side -6BE6 grid (pin ${ }^{(7)}$ Lo side-chassis	455 Kc	High freq. end	$\begin{aligned} & 1,2 \\ & 3 \& 4 \end{aligned}$	Peak for maximum in order indicated. Check by repeating procedure.
$\begin{aligned} & \text { RF AL } \\ & 2 . \end{aligned}$	IGNMENT Special-sec Figure 2	Ant receptacle through special dummy	1605 Kc	Gang open	5	Peak for maximum.
3.	"	11	1400 Kc	Tune in signal	6	Peak for maximum.
4.	*	"	600 Kc	"	7	Peak antenna padder for maximum while rocking gang.

5. Repeat steps 3 t 4 until maximum output is obtained. The last adjustment should be trimmer (6).
6. With set installed in car, peak antenna trimmer (6) for maximum noise or volume of a weak station. Car antenna should be fully extended.

FIGURE 2. TUBE \& TRIMMER LOCATION AND DUMMY

PAGE 22-30 MOIOROLA
MODEL NHIC, 1951
Nash Rambler

MOTOROLA PAGE 22.31

Washer；flat： $3 / 4 \times 19 / 32 \times .042$
thick；stl；cad pl（receiver
to instrument panel）．．．．．．．．．．
M－470C ANTENNA $\begin{array}{ll}\text { IB592409 Antenna Lead－In Assenbly ．．．．．．} \\ \text { IB592622 } & \text { Antenna Tube Assembly ．．．．．．．．}\end{array}$ 15A592617 Cap，antenna trim 42×500171 Clip，speed

Washer，flat： $1-1 / 160 . D . x$ ． 317 I．D
$x .032$ thick；stl；cad pl ．．．． x .032 thick；st1；cad p1 ．．．．
Washer，gasket...............

$35 K 591519$
$35 K 591518$
8 8A500108
8A500109
15D501838
1×502097
$32 B 501848$
$36 B 502202$

N
认
品 ■80ZOSVZ
T0ZZ0sX9E 52A502203
557701 58490641 $34 C 502204$
357454 9A5022B4
$6 A 4141$ $4 S 400868$
 $\begin{array}{lll}220,000 & 20 \pi & 1 / 22 \\ 470,000 & 20 \pi & 1 / 22\end{array}$ $\begin{array}{llll}470,000 & 10 \% & 1 W \\ 330 & \ldots . .\end{array}$

 Output Transformer
Power Transformer
meCHANICAL mechanical

45490837
$4 \AA 592619$
$4 K 592453$

Chassis parts－
Description
$7 ห x q$
$0 L: ~ © ~$ Trimmer，variable mincludes mounting brkt

 $\begin{array}{lll}\text { Paper：} & .25 \mathrm{mf} & 100 \mathrm{~V} \\ \text { Paper：} & .03 \mathrm{mf} & 600 \mathrm{~V} \\ \text { Paper：} & .01 \mathrm{mf} & 100 \mathrm{~V}\end{array}$ $\begin{array}{lll}\text { Paper：} & .01 \mathrm{nf} \\ \text { Paper：} & .006 \mathrm{nf} & \mathbf{0 0 V}\end{array}$

帚 $\begin{array}{ll}\mathrm{C}-11 & 8 \mathrm{R} 23053 \\ \mathrm{C}-12 & 8 \mathrm{R} 23050 \\ \mathrm{C}-13 & 8 \mathrm{R} 23690\end{array}$ $\begin{array}{ll}\mathrm{C}-13 & 8 \mathrm{R} 23690 \\ \mathrm{C}-14 & 23 \mathrm{~A} 500059\end{array}$ aper：0l mf $10 \mathrm{mf-10} \mathrm{mf}$

Bulb：6－8V；． 25 amp；round；
bayonet base；clear ．．．．．．．
65×10867
\qquad Choke，hash ．． Choke，antenna spark 250v；
Fuse：
vc ．．．

 $\begin{array}{lllll}\text { R2035 } & 82 & \text { 10／} & 1 / 2 \pi & \cdots \\ \text { R6004 } & 1 \text { meg } & 20 \% & 1 / 2 W^{2}\end{array}$ $\begin{array}{llll}6 R 60128 & 6800 & 10 \% & 1 / 2 W \\ 6 R 64214 & 56 & 1 / 2 W\end{array}$ $\begin{array}{lll}56 & 10 \% & 1 / 2 \mathrm{~W} \\ 56 & 10 \% & 1 / 2 \mathrm{~W}\end{array}$ 188501837 Volume Control： 250,000 ohms apped at 25,00 and tone col－ | $6 R 6394$ | 12,000 | $10 q$ | $1 / 2 \bar{\prime}$ |
| :--- | :--- | :--- | :--- |
| $6 R 3987$ | $6 . B$ | meg | 20% |

TYPYCAL RECEIVIR USIRG CHASBIS 1B. vODIG SR1B HLUSTRATAD

GENERAL INFORMATION

TYPE - Automotive type universal, manually tuned, radio chassis. In addition to Model SRIB, this chassis will be used on subsequent models. Supplements covering these models will be issued as required. An external speaker is used.

TUNING RANGE - 540 to 1600 Kc

```
TUBE COMPLEMENT - 6BA6 - RF Amplifier
6BE6 - Converter
6BA6 - IF Amplifier
6AV6 - Det-AVC \& AF Amp
6AS5 - Power Amplifier
6X4 - Rectifier
```

POWER INPUT - 5 amps at 6. 3V DC
POWER OUTPUT - 2 watts

FIGURE 1. STRING DRIVE DETAIL FOR MODEL SRIB

ALIGRMENT

Remove receiver top and bottom housing covers, escutcheon and speaker plate to expose all alignment adjustments.

Connect a 6 volt storage battery to BAT terminal and chassis of receiver.

Connect a 3.2 ohm PM speaker to VC terminal and chas sis of receiver.

Connect a low range output meter across speaker voice coil and set volume control at maximum; For greatest ac-
curacy, keep output of receiver at approximately 1 watt (1 watt $=1.79$ volts on output meter) throughout alignment by reducing signal generator output as stages are brought into alignment. Use a small fibre screwdriver when aligning IF and diode transformers. A special tool, Motorola Part No. 66A 76278, is required for adjusting the tuner cores. IMPORTANT: Do not push in on the alignment tool when adjusting the tuner cores; the slightest inward pressure may move the tuner carriage and result in inaccurate alignment.

MODEL SRIB,
Ch. 1B

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	TUNER SET TO	ADJUST	REMARKS
IF ALIG	GNMENT .1 mf	6BE6 grid (pin 7) 7) chassis	455 Kc	High freq end (cores out)	$1,2,3 k$	Peak for maximum in order indicated, Check by repeating step.
RF ALIC	IGNMENT See Fig. 2	Antenna receptacle through dummy	1610 Kc	High freq end; cores should project 1-1/8" from cans (Screw out if necessary)	5,6 \& 7	Peak for maximum in order indicated.
3.	"	"	1425 Kc	1425 Kc -per Figure 2	$\begin{gathered} 8,9, \\ 10 \end{gathered}$	Peak for maximum in order indicated,

4. When receiver is installed in car, extend antenna fully, set dial to approximately 1400 Kc and repeak antenna trimmer (7) for maximum volume of a weak station or noise between stations.

OUMMY ANTENNA

FIGURE 2. TURE \& TRIMMER LOCATIONS AND DUMMY ANTENNA DETAIL.

slectrical parts of the tuner ara
cluded in the Electrical Chassis parts
List. 77 Manual Tuor.
Model rr-77 Manual Tuner: complete.
game, Sleeve, Bhields \& Channels

Carriage plate, Slug Insulitor
Center Guide Rod Assembly
Clip; core adjustment
Core, iron thcrew
Ingulator, coill alee
Inguiator, slug: bakelite
Nut, floating: without oar (on
 lead screw)
Plate, tuner
Plate, tuner front
Rivet: $.088 \times 5 / 32$;
Rivet: . $088 \times 5 / 32$; stl; poi nk
(slug insulator meg)
(slug ingulator mig)........
Rod, carriage guide...........
 (87E
1×592120 1×78034
 14470876 14878007
$2 A 77596$ 2A78005
64×592064
$5 \$ 7770$
$47 A 78002$
387352
$3 A 591998$ $43 A 70881$ $41 A 77595$
$41 A 77592$ 4121577 4470873 4 474571 Washer, fishpaper 4 470956 Washer, slug insulator MODEL SALB MORATIEG PARTS, ACCEBSORIESS, ETC, Bracket, escutcheon mig (mounts escutcheon to speaker plate)........ Capacitor, notse suppression (gener) Clip, dial scale retaining Cord, dial: 20 lb; nylon;black Crystal, transparent green (fow Escutcheon, dial: chrome plated, Gasket, speaker: rubber Knob, control: tuning \& volume..... Pointer \& Slider Assembly
Scale, dial; glass
 hex head; cad pl (escutcheon
mtg) TUNER PAET

MOTQROLA PAGE 22-3
MODEL SHIE
Ch. IB

GENERAL

Solenoid Tuners ST-60 and ST-78 are used in Motorola electric pash-button standard auto receivers.

Fundamentally ST - 60 and ST- 78 tuners are the same. The two tuners differ in push-button switch lead lengths, oscillator coil, sleeve and shield, tuning cores, antenna trimmer and cover over ST-60 carriage. These tuners are similiar to the original Motorola ST-54 solenoid tuner.

This is a 3 gang permeability type tuner operated by a solenoid. Five pre-set and one manual tuning positions are provided. The frequency range is 535 to 1600 kc . The preset positions can be set to any frequency within this range.

The tuner is designed to operate satisfactorily with 4. 5 to 7.3 volts input. Before attempting any service work on a tuner that operates too slowly or one that doesn't operate at all, check the battery voltage directly at the receiver
spark plate, Normally, this voltage is 6.3 volts. At the moment any push-button is pressed, the voltage at the spark plate should not drop to less than 4.5 volts. If the voltage is less than 4.5, it is an indication of poor wiring between the car battery and receiver or a defective car battery.

This tuner depends on "dash-pot" action between the plunger and the solenoid for proper operation. When the fit between the plunger and solenoid is too tight, the air can't get out fast enough. The result is a slow or sluggish operating tuner. All ST-60 and ST-78 tuners have an adjustable air release in the solenoid end plate. See Figures 1 \& 3.

The tuner solenoid coil must be in a horizontal or near horizontal position or the tuner will not operate properly. If it is operated with the coil in a vertical position, the solenoid and cartiage return spring may not be strong enough to operate the tuner.

TO SET UP AUTOMATIC TUNER

a. Turn receiver on and allow it to warm up for a few minutes.
b. Collapse antenna until signal is weak.
c. Press Manual " M " button on control head.
d. Turn tuning knob until desired station is tuned in. (Make a mental note of the program). For best results choose only local stations.
e. Press desired button and wait until tuning mechanism completes its operation.
f. Press automatic tuner set-up button until "click" is heard. (See detail above.)

cY:FOET 1 OPMEATIOA

NOTE: Throughout these paragraphs, it is suggested that constant reference be made to Figure 1.

When any push-button is pressed, current flows through the solenoid coil, causing the plunger to pull into the coil. Near the end of the plunger travel, through a ratchet mechanisminside the plunger, the selector switch shaft is rotated 60°, moving the selector switch and stop plate to their new position.

An instant later, the solenoid switch is opened breaking solenoid current and the carriage return spring then pulls
the plunger out, closing the solenoid switch again. if the selector switch is now resting at the position selected by the push-button (cut awaysection of selector switch resting in front of contect selected by push-button), the solenoid plunger will continue to be pulled out until the stop plate is resting on the selected lead screw stop. In the event the selector switch is not resting in the position aelected by the push-button when the solenoid plunger is on ita return trip, the moment the plunger moves out far enough to actuate the solenoid switch, current will again flow through solenoid causing the plunger to be pulled in again. The plungers inward motion again rotates the stop plate and selector switch
through another 60°. This last operation is repeated automatically until the selector switch comes to rest at the position selected by the push-button, at which time the solenoid circuit is opened and the plunger moves out until the stop plate is resting on the selected lead screw stop. The stops areadjusted to the desired positions during the station setting up procedure, through the set-up gear train assembly.

Refer to Figure 2 for mechanica behind station settingup mechanism detail.

When the button on which a station is to be set up is first pressed, the tuner operates and the stop plate comes to rest against the selected lead screw stop. The pressure of the stop plate against the lead acrew stop moves the lead screw forward until its shoulder reats against the tuner end
plate. The square end of the lead screw doea not engage is the square hole of the set-up gear until the set-up button is pushed in and the station set-up knob is turned. A latch ol one end of the detent lever engages the gear lever, holding the set-upgear train in contact with the selected lead screw, Now the selected lead screw stop can be moved on its lear screw by turning the station set-up knob. None of the othe, lead screws turn because the stop plate is not resting a. gainst them. After the button is set up, pressing any othes button will unlatch the gear lever and disengage the lear strew from the set-up gear. See Figure 2.

Since the coil tuning iron cores are attached to the car. riage plate and move in unison with the plunger, the poin 1 at which they are brought to a stop (by means of the leac acrew atop) determines the frequency to which the coils are tuned.

FIGURE 1. TUNER FUNCTIONAL DETAIL

ST-78, Tuners
 plate releases gear lever AS SHOWN, DISENGAGING LEAD SCREW FROM SET-UP GEAR.

FIGURE 2. STATION SET-UP MECHANISM TO REMOVE TUMER FROM CEASsIS

Should it become necessary to remove the solenoid tuner from the receiver chassis, proceed as follows:

1. Remove the covers from the set, completely exposing the chassis.
2. Mark all leads connecting tuner to receiver.
3. Disconnect all leads connecting tuner to receiver. The control head connecting receptacle is to be removed by unscrewing the two self-tapping screws. Do not unsolder leads from the tuner selector switch.
4. The tuner is held to the chassis by self-tapping screws driven into the sides of the tuner. Do not remove any other screws.

MOTOROLA PAGE 22-4
MODELS ST-OO,
ST-78, Tuners

ADJUETMENTS

AIR RELEASE ADJUSTMENT

The speed at which the tuner operstes is governed by dash-pot action of the solenoid plunger within the closed solenoid coil form. The rate at which air is allowed to enter or escape determines the speed of the plunger.

An adjustable air release is provided on all ST-60 and ST-78 tuners. See Fig. 3. To adjust, loosen the screw and move the eccentric washer which covers the air release hole to expose or cover more of the air release hole as required.

1. If tuner operates too slowly, open the air release hole. Open it only far enough to secure reliable operation. Too little "dash-pot" action (air release open too much) may cause the plunger to hammer and sometimes even to make the tuner operate continuouslydue to the selector switch rotor being turned so rapidly as to overshoot its contacts.
2. If the tuner operates too rapidly increase dash-pot action by closing the air release hole slightly. Close it only enough to eliminate hammering.

PLUNGER RATCHET ADJUSTMENT

The plunger ratchet mechanism is shown in Figure 4. This mechanism rotates the actuator rod which, in turn, rotates the carriage stop plate and the selector switch 60° for each inward motion of the plunger.

If this adjustment is incorrect, tuner may operate continuously once current is applied.

- Correct ratchet adjustment is indicated when $1 / 64^{\prime \prime}$ to $1 / 32^{\prime \prime}$ clearance is observed between selector switch contacts and the selector switch rotor as shown in Figure 5 . Slowly work the plunger by hand and observe clearance at each contact position. If the average clearance is not $1 / 64$ " to $1 / 32^{\prime \prime}$, correction can be made by loosening ratchet ad(justment setscrew and turning actuator rod by hand until correct clearance is observed.

Before ratchet adjustment setscrew is finally tightened, push fixed ratchet $1 / 32^{\prime \prime}$ back into plunger. This increases spring tension against rotating ratchet, thus insuring more positive operation.

SOLENOID SWITCH TRIP ADJUSTMENT

The solenoid switch tripping mechanism should be adjusted as shown in Figure 6.

If the solenoid switch is tripped too early, the ratchet mechanism may fail to operate; if it trips too late, the plunger may hammer violently or should the solenoid switch fail to trip, the plunger would be held within the solenoid.

FIGURE 3. AIR RELEASE ADJUSTMENT

FIGURE 4. PLUNGER RATCHET MECHANISM

FIGURE 5. PLUNGER RATCHET ADJUSTIENT

ADJUSTMENT OF GEAR LEVER LATCH

The gear lever latch holds the station set-up gear train in position while setting up stations. Failure of the latch to engage properly when the set-up button is pushed in will result in the inability to set up pre-set stations. Failure of
the latch to disengage after station is set-up will result in faulty automatic tuning because the lead screws might not seat themselves properly against the tuner end plate. Figure 7 shows the latch detail and adjustment.

FIGURE 6. BOLENOID SWITCH ADJUETMETT

SERVICR MOTEA

FAILURE OF SOME LEAD SCREW TO ENGAGE IN SET-UP GEARS

If some of the lead screws fail to engage in the set-up gears during station setting up procedure, check the gear lever to see if it is bent. When the set-up button is pushed in and the gear lever latches on the detent lever, the et-up gear train should be parallel with the tuner end plate and the bottom of the gear train should be resting on the raised portions of the tuner end plate.

LUBRICATION

Should lubrication ever be required, it is recommended that a very fine grease, commercially called DOW-CORNING Silicone (DC 44 Medium Grade), or its equivalent be used.

Remove all old and aticky lubricant with a solvent auch as carbon tetrachloride and then, very aparingly, lubricate only the following point :

1. Carriage guide rods.
2. Actuator rod.
3. Manual lead screw.

IMPORTANT

Do not lubricate or permit lubricant to get on Selector Switch contacts. The friction drag is required for proper operation of tuner.

LEAD DRESSING

Make sure that the selector switch and solenoid coil leads are dressed so that carriage plate does not rubagainst them. Leads rubbing against the carriage plate may cause the tuner to stick, especially at the high frequency

REPLACEMENT OF SOLENOID COIL OR SOLENOID PLUNGER

Should replacement of the solenoid cail or solenoid plunger be required, it will be neceasary to replace the entire tuner. A close fit between solenoid plunger and solenoid coid form is required; a proper match can only be secured at the factory. When service of this kind is required, return the tuner to the factory for exchange.

ALIGNMENT

In the event that some part of the R.F. circuithas been changed or the adjustments shifted by mishandling, it is suggested that the receiver be realigned. Follow the alignment instructions found in the receiver service manual.

The tuncr must be in good working order and assembled onto the chassis before attempting alignment of its tuned circuits.

TO REPLACE ANT. R.F., OR OSC. COILS
IMPORTANT:
When ordering replacement coils, order by part number and also specify the color coding (paint dots) on old coil. THE REPLACEMENT COIL SHOULD CARRY THE SAME COLOR CODING AS THE ORIGINAL OR THE TUNER WILL NOT TRACK PROPERLY.

1. Unsolder the two lugs holding the coil to the tuner plate. 2. Carefully remove the old coil. Save the thin paper washer that is found at the base of the coil.
2. Slip the paper washer over the replacement coil and slip coil into shield can.
3. Orient coil so its lugs are in same position as before and resolder to tuner plate.
4. Reassemble tuner and install in receiver.
5. Realign ANT., R.F. and OSC. stages per instructions found in the receiver service manual.

TO REPLACE ANT. R.F. OR OSC. COIL TUNING CORES
IMPORTANT: When ordering coil tuning cores, order by part number and also specify the color coding (paint spot) on the old core. ALL 3 TUNING CORES MUST CARRY THE SAME COLOR CODING OR THE TUNER WILL NOT TRACK PROPERLY.

1. Remove the carriage return spring.
2. Move the carriage plate back as far as it can go. The tuning cores can now be screwed "out" or "in" by grasping the portion that sticks out the back of the coil. When installing a new core, make sure that the insulating washer and adjustment clip are replaced properly. The insulating washer goes on the core side; the core adjustment clip has an ear on it and this car must fit into a hole in the bakelite insulator on the carriage plate. Refer to Figure 8.
3. Replace the carriage return spring.
4. Install tuner in receiver.
5. Realign ANT., R.F. and OSC. stages following the instructions found in the receiver service manual.

PLUNGER RATCHET REMOVAL

To remove ratchets, proceed as follows: (Refer to Figure 8 for parts identification).

1. Remove gear plate mounting screw (55).
2. Pull out actuator rod (46). Don't lose washers (83 (88) and (89).
3. Remove stop plate bracket (4) by sliding it out of tr retaining slots.
4. Loosen setscrew (50).
5. The large fixed ratchet (34), small floating ratchet (3! and ratchet spring (70) can now be removed.
6. Reassemble in reverse order.

TUNER HANGS UP

The beginning of this trouble is usually a conditio where the tuner "runs wild" (fails to stop at a station). E ventually, the stop plate gets "hung up" by getting on tr wrong side of the station stops (56). The cause of the trou ble is that the selector switch (74) does not turn the correl amount with each dash of the plunger.

Since the actuator rod (46) determines the rotation the selector switch, it is usually at fault. Check the twis in the actuator rod. It should be 82 degrees. Also chec the fit between the "head" end of the actuator rod (46) an the rotary section of the selector switch (77). We hav found that some sloppiness sometimes occurs at this poin If the fit is loose, replace the actuator rod (46). This ca be easily done by removing gear plate mounting screw (55

REPLACEMEXT PARTS LIST

MOTOROLA PACE 22.4 MODEES ST-60;
ST-73, Tuner:

PAGE 22-46 MOTOROLA
MODEL WSIC, 1951
Willys-Overland

GENERAL INFORMATION

TYPE - Automotive type radio receiver designed for installation in 1951 Willys-Overland cars. An external speaker is used.

TUNING RANGE $=540$ to 1600 Kc IF -455 Kc
TUBE COMPLEMENT -

```
6BA6 - RF Amplifier
6BE6 - Converter
6BA6 - IF Amplifier
6AT6 - Diode detector, AVC & lst AF Amp
6AO5 - Power Amplifier
6X4 - Rectifier
```

POWER INPUT - 6.8 amps at 6.3 V DC
POWER OUTPUT - 3.5 watts (max)
TUNER - Model AT-90, See AT-90 Service Manual for Replacement Parts.

TO SET TER PUSERDTTOMS

Receiver has 5 buttons for automatic station selection. To set the push buttons, proceed as follows:

1. Turn volume up until stations can be heard.
2. Pull button out and with the station selector, tune to the station desired.
3. Push button in. This station is now set for automatic tuning.
4. Follow the same procedure for the remaining four buttons.

NOTE: The numbers on the dial scale indicate the frequency range of the receiver. Before setting the pushbutton, tune carefully until you are exactly on the station; tuning to either side of it will result in poor tone quality and excessive noise. When setting automatic tuning, it is preferred that the left-hand buttons tune in the lower KC stations and the right-hand buttons tune in the higher KC stations.

ALIGMMENT

EQUIPMENT REQUIRED

1. A special tool for adjusting the tuner cores. Use alignment tool, Motorola Part No. 66A76278.
2. A small screwdriver for IF and RF alignment.
3. An accurately calibrated $A M$ modulated aignal generator.
4. A low range output meter.
5. A special aummy antenna for RF alignment. Construct dummy antenna as shown in Figure 1.,

PROCEDURE

1. To expose the alignment adjuatmenta, remove the top and battom covers. If the tuner cores require adjustment, remove the dial scale bracket assembly and dial background.
2. Counect a PM speaker (3,2 ohm VC) to speaker cable terminals of the receiver.
3. Connect an output meter across the speaker voice coils.
4. Connect 6.3 volts to the receiver " A " lead terminal and chassis.
5. Turn the receiver "on" and allow it to warm up for a few minutes. Set receiver volume control at maximum and tone control to "high" position.
6. For greatest accuracy, keep the output of the receiver at 1 watt (1 watt 1.79 volts on output meter) by reducing signal generator output (not receiver volume control) as tages are brought into alignment.

IMPORTANT: Do not push in on the alignment tool when adjusting the tuner cores. The slightest inward pressure on the alignment tool may move the tuner carriage and result in inaccurate alignment.
7. Antenna Trimmer Adjustment. Once alignment has been satisfactorily performed, no further adjustment of any alignment screws should be made except to align the antenna trimmer (7) to car antenna after receiver is installed in car. This adjustment should be made with antenna fully extënded and receiver set to appronimately 1400 Ḱc. Feaik the trimmer for maximum volume of a weak station or background noise between stations.

MOTOROLA PAGE 22-4 MODEL WSIC, 195 Willys-Overland

ALIGNMENT CHART

POINTER ADJUSTMENT

10. Tune receiver to 1300 Kc and adjust pointer by meana of eccentric cam (11) on the tie plate to the 1300 Kc calibra tion mark, on dial scale.
11. With set installed in car, peak ant trim (7) for maximum signal at approximately 1400 Kc . Car antenna should be fully extended.

PAGE 22-48 MOTOROLA
MODEL WSIC, 1951
Willys-Overland

FIGURE 2. TUBE AKD TRIMMER LOCATIONS

MOTOROLA PAGE 22.4

FIGURE 3. CHASSTS PARTS LOCATIONS

PAGE 22-52 MOTOROLA
MODEL LMF, Ford
Part No. 1A-18805-A2

TYPE - Automotive superheterodyne receiver with external speaker.
TUNING RANGE - 540 to 1610 Kc IF - 265 Kc

TUBE COMPLEMENT - 6SK7GT - RF Amplifier
6SA7GT - Converter
6SK7GT - IF Amplifier

6SQ7G'T - Det. AVC \& AF Amp
6V6GT - AF Output Amplifier
6X5GT - Rectifier

OPERATES FROM - 6 volt storage battery
TUNER - Model AT-81 Service Manual for Replacemfent Parts.

TO SET THE PUSE BUTTONS

Automatic push button tuning is provided for selection qf five favorite local stations. The five push buttons may be adjusted to any of the desired stations. In order to simplify the identification of these stations, it is advisable to set the push buttons insequence according to their frequencies, beginning with the station broadcasting on the lowest frequency and progressing to the station broadcasting on the highest frequency. The push buttons should be set up during the daytime because at night, distant stations will be heard with the same intensity as local stations. making it difficult to select local stations. To set the push buttons proceed as follows:

1. Collapse the antenna.
2. Turn the receiver on and allow it to operate for at least fifteen minutes in order for each part to reach normal operating temperature.
3. Loosen the first push button on the left by turning it 54P501535
(with your fingers) counterclockwise one turn.
4. Select the station desired and with low volume tune it in by turning the manual tuning knob. Tune very carefully for clearest reception.
5. Press the first push button in firmly, then release and tighten (with your fingers) by turning clockwise.

The first pushbutton is now set for this station selection Follow the above procedurefor setting each of the other four buttons.

When the five push buttons have been set to the desired stations, return the antenna to the lowest position necessary for good reception. It is only necessary to press a push button to receive the station for which the adjustment was made. The dial pointer will automatically indicate the frequency of the selected station.

ALIGNMENT

Connect the receiver "A" lead and receiver chassis to a 6 volt storage battery. Rotate volume and tone controls to maximum clockwise position. Connect an output meter across the speaker voice coil. Use an insulated screwdriver for making all adjustments. For greatest accuracy, keep output of receiver at approximately 1 watt (1 watt $=$ 1.79 volts on output meter) throughout alignment by reducing generator output (not receiver volume control) as stages are brought into alignment. Remove receiver es-
cutcheon, dial scale, and top \& bottom covers to expose a! alignment adjustments. See Figure 1 .

To adjust the pointer, tune the receiver to a 1300 F signal, and rotate the adjusting cam (see Figure 1) until tl pointer coincides with the 1300 Kc marker on the dial scal This cam may be adjusted thru a hole provided in the ts cover.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	TUNER SET TO	ADJUST	REMARKS
\|F ALI $1 .$	NMENT .1 mf	Converter grid (6SA7GT pin 8)	265 Kc	HF end stop	1,2,3\&4	Adjust for maximum. Repeat fos greater accuracy.
$\begin{aligned} & \text { RF AL } \\ & 2 . \end{aligned}$	GNMENT See Fig. 1	Ant. receptacle	1608 Kc	HF end stop*	$\begin{aligned} & C-12, C-8 \\ & C-1 \end{aligned}$	Adjust for maximum.
	See Fig. 1	Ant. receptacle	1300 Kc	Move carriage "in" $21 / 64$ " from HF end stop position. See Fig. 1.	$\begin{aligned} & \mathrm{L}-4, \dot{\mathrm{~L}}-3 \\ & \mathrm{~L}-1 \end{aligned}$	Adjust for maximum.
4.	See Fig. 1	Ant. receptacle	1608 Kc	HF end stop	$\begin{aligned} & C-12, C-8 \\ & C=1 \end{aligned}$	Adjust for maximum.
	eat steps 3 e with speal IVITY CON'	4 until no further rement. OL	increase is obt	nable. After fina	adjustment	made, cement core adjustments
6.	See Fig. 1	Ant. receptacle	Set to 600 ke 4 microvolts output	Tune for max	Sensitivity control	Set sensitivity control for l watt output (1. 79 volts on output meter).
ANTE $7 .$	A TRIMM	ADJUSTMENT	-	Weak station at approx. 1400 Kc	C-1	With receiver installed in car, peak antenna trimmer for maximum valume. Ant. should be fully extended.

* Tuner cores should be backed out to project $1-3 / 8^{\prime \prime}$ from end of coil forms so they will have no effect on t_{f} immer adj.

PAGE 22-54 MOTOROLA

REPLACENENT PARTE LIET

Description	Motorola Part Number	Description
	316490147	strip, terminal, 3 insulated luge,
Tube, vacuum: 68K7GT (RT	315490151	strip, terminal: 4 iomulated lugs, "2 wtg; $3 / 8^{\prime \prime}$ spacing
Tubs, vacuum: 6sitait (con-	28A501322	Terminal, bullet type (on dial light lead)
Tube, vacuum: sskper (ir amp) Tube, vacuum: 6s97GT (detec-	4A501321	Washer, insulating (fuse retainer)
(-AVC-AT anp) 3	39A591398	Wiper, ground (pwr transformer
Tube, vacuuay exsct (reckur		
	hous ing	S 4
Bracket, front cover mounting......		e, fuse: includes knob 4
racket and socket Aaserbly, dial:	8A590751	$51 A F-18871)$ Capacitor, fuel gauge (rord s1ap-18871)
complete with leads a buinet ter minal; less bulbs	8859137	Capacitor, senerator (Ford s1AF-18827)
Clip, cotl cap		
Clip, vibrator ground	${ }_{8} 8500737$	Capacitor, voilage regulator (Ford
Escutcheon and Dial Scale Anaembl		8418832)
Fusebody retainer: includen body, spring and contact aseembly	42A591234	Clip, cover tension
Gromet, rubber (dial light lead		Cover, brounding viper
Nut, hex: $1 / 2 \mathrm{z} 2 \mathrm{~s} \times 11$ 16; ati; cad	15C591222	Cover, bottom rear
pl (volume control und escutcheo	15D500675	Cover, top
ntg)	1 C 501211	Baffle and Gasket assenbly.
	96	Bezel, cup ; chrome pl (Ford 1A-18835)
(grounding niper шtg)........	7C500695	Bracket, receiver mets: RH (Ford 14-18888)
Rivet: . $122 \times 3 / 32 ;$ stl; $n k 1 \mathrm{pl}$ (tub. socket, apark plate, mbield, front	76500697	Bracket, receiver intg: LH (Ford (A -18890)
cover bracket, seafitivity contro terainal strip and antenna socket	1×501261	Knob, manual tuning: chrome pl (Ford 1A-18824)
	36B500598	aob, tone control: chrome pl
brator clip met)		1A-18830)
Hivet: . $122 \times 9 / 32 ; 8 t 1 ; ~ n k l p l$	1×501262	(Ford 1A-18820)
peaker	437693	Lockwasher, split: $1 / 4$
Screw, machine: 6-32 $\times 1 / 4$; slotted		Nut, hex: $1 / 4-20 \times 7 / 16$; st2; cod pl
hex head; lockink type; stl; cad	232878	(receiver mtg) (ford 33795-S8)..
	252882	Nut, hex: 1/2-28 x 11/16: st 1 ; ca
platn hex head: stl: cad pl (pwr transformor ntg		p) (receiver otg to instrument panel and bezel cup $m(g)$ (Ford 356098-88)
screv, sheet metal: $78 \times 1 / 4$ PK		Nut, \#ing: B-32; stl;
slotted hex hendi stl; cad pl (out		(18) (Ford 33900-S8)
put trans, tuner mits and housins	34580587	crew, cap i cad pl tbotton cuv
		mre \cdots chet metal $8 \times 1 / 4$ PKZ
```plain ber head; stl; cad pl (dial brkt assem mtg) ..............```	8298	Screw, sheet netal: "8 x 1/4 PKZ;   slotted hex head; stl; cad pl
sticid,	6A912121	Suppressor, dis
Socket, antenni connecto		16A-18811-A) .....
Socket, speaker: 3-prong   Socket, tube: octal; mold	30070	Washer, serrated (receiver it
Socket, tube: 4-prong, wafer		Static Collector Assembly
Strip, terainal: 2 insulated tugs.	39A51490	Wiper kround (on botion tront cover)



PAGE 22-58 MOTOROLA
MODELS 5C4, Ch. HS-270;
5C5, Ch. HS-271;
5C6, Ch. HS-272

## GENERAE INFORMATION

TYPE - AC table model superheterodyne with appliance outlet and self-contained electric clock for controlling automatically the operation of the radio and the outlet.
receiver models -

Model	Color	Chassis
5 C4	Green	HS-270
5 C5	Ivory	HS-271
5 C6	Walnut	HS-272

TUNING RANGE - 535 to 1620 Kc
$I F=455 \mathrm{Kc}$
TUBE COMPLEMENT -

12BE6	Converter
12BA6	IF Amplifier
12AT6	Det, AVC \& AF Amp
50C5	Power Amplifier
35W4	Rectifier

POWER SUPPLY - Operates from 117 volts, 60 cycle, alternating current only. Power consumption 37 watts.

APPLIANCE OUTLET - For use with 117 volt AC appliances only, rated at 1100 watts or less.


CLOCK ~ Telechron self-starting electric clock (Telechron basic movement No. C-57, with Motorola face, hands, and escutcheon).

## INETALIATYON \& OPERATING INSTRUCTIONS

The locations and functions of the clock and radio controls are shown in Figure 1.

## NORMAL RADIO OPERATION

Knob " $A$ " on the clock turns the radio on or off. Select stations with the TUNING knob, and adjust volume with the VOLUME contral.

A built-in loop antenna eliminates the need for an outside antenna in most locations. When receiving a weak station, rotate the receiver slightly for best signal strength. If additional pick-up is necessary, connect an external antenna to the radio by following the instructions printed on the rear panel. CAUTION: Never connect the radio chassis to a water pipe, radiator, or other ground.

## CLOCK OPERATION

The clock will start as soon as the receiver is plugged into an electrical outlet. To set the hands to the correct time, rotate the TIME SET knob (on the rear of the radio) in a clockwise direction only.

## ALARM OPERATION

To set the alarm, pull out knob "C" and rotate it in a counterclockwise direction to the desired time on the alarm dial scale. The alarm will ring for one hour, or until knob "C" is pushed in. The alarm function is completely independent of the other controls on the clock.


FIGURE 1. OPERATING CONTROLS

MOTOROLA PAGE 22.3
MODELS 5C4. Ch. HS- 77 505, Ch. HS-271;
5C6, Ch. HS-272
Turn knob "A" to the "OFF" position and rotate kny प


FIGURE 2. REAR VIEW

## APPLIANCE OUTLET

To control anelectrical appliance automatically, plug it into the receptacle on the back of the radio. See Figure 2. It will then be turned on or off simultaneously with the radia. CAUTION: Note that the rating of the outlet is 1100 watts or less.

If radio reception is not desired when operating the appliance, rotate the radio volume control to the minimum volume position.

## BEDTIME CONTROL

The BEDTIME control will turn the radio and appliance off after any pre-set interval of time up to one hour.
to any period of time between 0 and 60 minutes, $\mathbf{T r}$, $\boldsymbol{r} \boldsymbol{d}$ and appliance will be turned off automatically after the,$\quad+\quad$, er time has elapsed, and they will remain off until tur wod again manually.

## AUTOMATIC RADIO OPERATION

The clock controls may be pre-set to turn the radio o automatically at any time up to twelve hours in advance.

If an appliance is plugged into the receptacle on the bac of the receiver, it will be turned on automatically, alon; with the radio.

Pull out knob "C", rotate it counterclockwise to the de sired time on the alarm dial scale, and push the knob bac in. Rotate knob "A" first to the "OFF" and then to th" "AUTO" position. At the pre-set time, the radio will com" on and will continue to play until turned off manually. Thi alarm will ring also if the knob " C " is left pulled out. Thi radio will come on first and, after an interval of about ter minutes, the alarm will ring.

## BEDTIME AND AUTOMATIC OPERATIONS COMBINED

By combining the operations in the two sections above the radio may be turned off automatically and on again auto matically.

When setting the BEDTIME control, rotate knob "A" $t_{1}$ the "AUTO" position instead of "OFF". IMPORTANT: It $i_{i}$ necessary to turn knob "A" first to the "OFF" position be fore proceeding to "AUTO". otherwise the radio may not shu off.

## ALIERMEXT

NOTE: It is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to $B$ through a. 1 mf capacitor.

1. Connect low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to $B-$ -
3. Set the aignal generator for 400 cycle, $30 \%$ modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF anc diode transformers.
6. As stages are brought into alignment, reduce the signa generator output to a level which produces less than. 41 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 3 for adjustment locations and the following chart for procedure.

## ALIGNMENT CHART

STEP	$\begin{aligned} & \text { DUMMY } \\ & \text { ANTENNA } \end{aligned}$	GENERATOR CONNECTION	GENERATOR   FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALI   1.	NMENT 1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & \text { 1. } 2,3 \text { \& } \\ & 4 \text { (IF cores) } \end{aligned}$	Adjust for maximum.
RF AL $2 .$	ME NT		-	Fully closed	-	Set pointer to horizonta position.
3.	-	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	5 (Osc)	Adjust for maximum.
4.	-	Radiation loop*	1400 Kc	Tune for max	6 (Ant)	Adjust for maximum.

*Connect generator output across 5" diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.

PAGE 22-60 MOTOROLA


## SERVICE BOTES

TO REMOVE RADIO CHASSIS FROM CABINET

1. Pull off the two radio control knobs.
2. Remove the three hex head screws which hold the loop to the cabinet.
3. From the back of the cabinet, remove the two hex head
screws at the rear edge of the radio chassis.
4. Slide the radio chassis and loop from the cabinet. 5. Disconnect the power leads to the radio chassis and to the appliance receptacle.

## TO REMOVE CLOCK FROM CABINET

1. Remove radio chassis as above.
2. Remove the three nuts and lockwashers holding the shield behind the clock.
3. Slide the shield from the cabinet.
4. Turn the BEDTIME control knob to " 60 ".
5. Pull out the ALARM set knob.
6. Turn the RADIO control knob to "AUTO"
7. While observing the clock from the back to avoid bending or breaking any parts, gently push the clock forward, at the same time twisting it slightly to eliminate binding.

## TO REPLACE CLOCK DLAL FACE

1. Remove the clock from the cabinet as above.
2. Pull off the RADIO control and BEDTIME knobs,
3. Turn the ALARM set knob clockwise to remove
4. Remove the escutcheon and crystal.
5. Carefully pull off the three hands.
6. Remove the alarm dial and the clock face.
7. Turn the radio control shaft to "AUTO" position.
8. Slowly rotate the time set shaft clockwise until the switch
contacts behind the radio control shaft close.
9. Reassemble the clock face, alarm dial and three hands. Set all the hands to indicate 12 o'clock. Set the figure " 12 " on the alarm dial to index with the small pointer on the hour hand.
10. Replace the crystal, the escutcheon, and the knobs. 11. Check the automatic operation to be sure the switch contacts close at the time indicated on the alarm dial.




FIGURE 6. BOTTOM VIEW OF CHASSIS USING MULTIPLE CERAMIC CAPACITOR PLATE



CABINET PARTS
 $16 \times 600199$
$16 \times 600791$ $16 \times 600791$
284600064 284600064
614600001

 Encutcheon，radia dial：wainut（5C6）．．．． Gromet，fibre（on clock shield．．．．．．．．．．．
Knob，racio control：green plactic（SC4）．
Knob，radio control：ivory plastic $(5 \mathrm{C}$, ．

 medg）…．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．îér

 ing hox heed；cad P1（radio chassis

Stg ）$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ ，machine ： $6-32 \times 1 / 2$ plain hex head；
cad pl（mounts loop to cabinet）．．．．．
Shield，clock：with gromet（covers rear

Speednut：for $1 / 16^{" 1}$ atud（medallion
ntg）
Tape，aluminum foll（inside top of
cabinet）$\ldots$ ．．．．．．．．．．．．．．．．．．．．．．．．．．
Wabher，flat： $9 / 16 \times 11 / 64 \times .033$ stl；
cad pil（mounta loop to cabinet）．．．．．． $13 \times 600790$
14416304 364600065
366600092
366600787 ${ }_{4}^{36 \times 600787}$ 134792195 257019 35476083


Note：The following Notorola perte are for use with
the basic Telechron clock movement No．C－57． $\qquad$ Alaru dial：green color（5C4）$\ldots \ldots \ldots .$. ．．．．．
Alarry dial：fvery color（ $5(5$ ）
Alarm dial：valmut color（SC6） Cord，line：with plug； 6 ft long ．．．．．．．．．． Crystal Face：green color（5C4）．．．．．．．．．．．．．． Dial ace：walnut color（5CE）．．．．．．．．．．．．．

 0
0
0
0
0
0
0
0
0
0
0
0
0
0 fand，minute：11ght green color（SC4 e



 （SC4）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Knob，clock control：with arrow；ivory

象 614600001
34 K 600990
 Z夢 8 す黄宽

8

Transformers		
T－1	248482863	IF Traneformer（brown dot）：
		455 Kc ：complete with capacitor and
		cores；lest ohield
T－2	248482865	Diode Transformer（rod dot）：
		455 Kc ：complete vith capacitors
		and cores；less shield
T－3	25K680345	Output Transformer ．4．e．＊．．．．．．．

## 

 Clip，spring：blued finioh（holde if Inmulator，loop brkt witg：fibre ．．．．．．．t Lochwasher，internal：3／8；cad pl（vol liut，knurled（voi controi．．．．．．．．．．．．．．．．． Plate，dial background：fvory（ HS －271）． Plate，dial background：valnut（HS－272）．．
Pointer，dial：light green color （HS－270 $\&$ HS－272）…．．．．．．．．．．．．．．．．．．．．． Pointer，dial：dark green color（hs－271）．
Receptacle，applance（on loop panel）．．． Rivet：． $088 \times 3 / 16 \mathrm{st1}$ ；nk1 pl（tube nocket itg）
Rivet： $122 \times 5 / 32$ etl；nki pl（output

 Rivet：．122 x $1 / 4$ stl；nki pl（applience
 ing hex head；cad Pl（gang witg）…… Screu，theet metal：\＃6 $\times 1 / 4$ PKZ plain
hex heed；ced pl（dial background plate mig）…．．．．．．．．．．．．．．．．．．．．．．

 Shleld，electrostatic（on rear or chas sleeve，paper：black（on pointer ahaft） （HS－270 \＆HS－272）．．．．．．．．．．．．．．．．．．．．．．．．．．．
Sleeve，paper：ivory（on pointer bhart） （HS－27）paper．．．．．．．．．．．．．．．．．．．．．．．． Socket，tube：ministure；7－prong
Spring，tension（electrolytic metg）
 Washer，liat： $9 / 16 \times 11 / 64 \times .033$ sti；
 7A478128 11489444
54884268
144478119

 557707 587701 557703 8帚曷 357467
若
尔

 m
总
等

## eacription

## chassis parts－electrical

## Capacitore $\frac{1000}{1960001}$ variable：a gang；vith pulley ．．．．．



$\begin{array}{ll}C-5 & 889802 \\ C-6 & 238600855\end{array}$
$\frac{\text { Capacitor－Resiator }}{\text { CR－1 }} \frac{2 \mathrm{~B} 601007}{}$
Capac itor－Fesistor：2000，220，110， 470，000 ohms …．．．．．．．．．．．．．．．．．．．．
Electric Clock Aseembly：Telechron
movement No．C－57，with Motorola
face，hands，crystal，eacutcheon
and knobs（for green cabinet）$(5 \mathrm{C} 4)$

## Same an above except color（for ivory cabinet）（5c5） <br> 59K600198

Same as above except color（for
valnut cabinet）（5c6）．．．．．．．．．．
Choke \＆． 15 wr paper capacitor
$\frac{\text { Clock }}{\text { E－1 }} 59 C 600007$
59K600788

## $\frac{\text { hoke \＆Capac itor }}{\text {－2 }}$

 Antemn l．ocry and Panel Absengly： Oscillator coil ．．．．．．．．．．．．．．．．．．．．．．．．．．． $24 \times 601023$ 248680364

## or $50 c 600017$ $50 c 600857$ speaker：

Realstore
Note：All resiators are inaulated carbon type unless
晜
$\begin{array}{ll}6 R 6028 & 22,00020 \% \quad 1 / 2 \mathrm{~N} . \\ 6 R 6018 & 10020 \% \\ 6 R 2 / 2 W\end{array}$

$16 R 2109$	10 meg	$20 \%$
$6 R 6032$	$1 / 2 W$	

 $15020 \% 1 /$ W


## GEMERAL IMFORMATION

TYPE - AC-DC table model superheterodyne receiver with loop antenna.

RECEIVER MODELS

Model	Color
5H11	Walnut
5H12	Ivory
5H13	Green



POWER SUPPLY - 117 volts AC or DC, 35 watts

## HMETALLATION \& OPERATME IMSTRTCTIONS

VOLUME CONTROL * OFF-ON SWITCH. The "off-on" hand knob. switch and volume control are combined and are operated with the left-hand knob. NOTE: If the receiver does not ANTENNA. A built-in loop antenna eliminates the need for operate from DC power, reverse the piug in the power out- an outside antenna in most locations. When receiving a weak let. When operating from AC power, reception may some- station, rotate the receiver slightly for best signal strength. times be improved by reversing the power plug in the out let.

TUNING CONTROL. Stations are tuned in with the right- a water pipe, radiator, or other ground.


FIGURE 1. STRING DRIVE DETAIL

## SERYICE MOTE

The chassis of this receiver is connected directly to the power line. When operating the chassis (from an AC line) outside of its cabinet, use an isolation transformer between the power line and the receiver to reduce the possibility of an electrical shock.

## TO REMOVE THE CHASSIS FROM THE CABINET:

1. Pull off the two radio control knobs.
2. Pull off the brass cover over the pointer.
3. Pull off the pointer.
4. Remove the split plugs which hold the loop to the cabinet.
5. From the back of the cabinet, remove the two hex head screws at the rear edge of the radiochassis.
6. Slide the radio chassis and loop from the cabinet.

## ALIENMENT

NOTE: If AC power is used, it is recammended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to chassis through a. I mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to chassis.
3. Set the signal generator for $\mathbf{4 0 0}$ cycle, $\mathbf{3 0 \%}$ modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than. 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 2 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIGNMENT						
1.	. 1 mf	Grid of conv, (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3, \\ & \text { \& } 4 \text { (IF } \\ & \text { cores }) \end{aligned}$	Adjust for maximum.
RF ALIGNMENT ( $\quad$ (0atl						
2.	-	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	5 (Osc)	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for max	6 (Ant)	Adjust for maximum.

*Connect generator output acrose 5" diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart.


FIGURE 2. TUBE \& TRIMMER LOCATIONS

MOTOROLA PAGE 22-6:




## REPLACEMENT PARTS LIST

NOTE: When ordering parts specify model number of set in addition to part number and description of part.

CHASSIS PARTS - ELECTRICAL		
Capacitors		
C-1.	198600483	Variable: 2 gang; with pulley
C-2	8R9821	Paper: . 05 mi 200V.
C-3	8R9816	Paper: . 05 mf 400V..
C-4	$21 \mathrm{B482847}$	Ceramic, multiple: 200 $220 \text {, } 5000 \text { maif . . . . . . . . }$
C-5	8R9802	Paper: . $02 \mathrm{mf} \mathrm{400V.}$.
C. 6	23B600855	Electrolytic: 50-30 mf

## Capacitor-Resistor

CR-1 $218601007 \quad$ Capacitor-resistor: 2000,	
	$220,110,110,5000 \operatorname{mgf} ; 6.8$

Coils

L-1	$24 C 600518$	Loop Antenna Assembly:   includes back panel.......
L-2	24 K 600896	Oscillator coil(green dot).

Speaker
LS-1 50C691401 Speaker: 4" PM; 3.2 ohm VC.

Resistors
Note: All resistors are insulated carbon type unless other specified.

n-1	6R6028	22,000 20\% 1/2w.......
R-2	6R6018	100 20\% 1/2w.
R-3	6 R 2118	3.3 meg 20\% 1/2w
R-4	18K600473	Volume control: 1 meg; in cludes on-off switch...
R-5	6R2109	$10 \mathrm{meg} 20 \% 1 / 2 \mathrm{w}$.
R-6	6R6032	470,000 20\% 1/2W.
R-7	6R6032	470,000 20\% 1/2W.
R-8	6R3992	$15020 \% 1 / 2$ \%
R-9	6R5683	27 10\% 1/2W
R-10	6R3953	1000 20\% 1\%..

Transformers


Ref. NO.	Description
42A485548	Clip, IF coil mig
1118944	Cord, dial: 18 lb; black
304470651	Cord, line: with plug; 6 ft long
5A19658	Eyelet, spacer (gang mig)......
5470404	Grommet, rubber (gang mimg)....
14A482844	Insulator, line cord: fibre
29R3010	Lug, soldering (under gang $\begin{aligned} & \text { mg }\end{aligned}$ screw)
2S7051	Nut, hex palnut: 3/8-32 $\times$ 9/16 (volume control mtg)..........
$1 \times 600590$	Pulley and Bushing Assembly, pointer drive................
557771	Rivet: . $088 \times 3 / 16 \mathrm{stl}$; nkl pl (tube socket mitg)...........
557707	Rivet: . $122 \times 5 / 32$ stl; nkl pl (tube shield, output transformer, and tuning shaft bracket mtg)....
3S2294	Screw, machine: 6-32 $\times 1 / 2$ plain hex head lock screw; cad pl (gang mtg)......................
357477	Screw, machine: 3-32 $\times 1 / 4$; type \#1; plain hex head; cad pl (back panel mtg).............................
3S2695	Screw, sheet metal: \#6 x 3/16 PKZ plain hex head; cad pl (pointer bracket mtg).......................
3S3398	Screw, sheet metal: \#6 x 3/8 PKZ plain hex head; cad pl (loop bracket mtg)..................
357454	Screw, sheet metal: \%8 $\mathbf{x} 1 / 4$ PKZ plain hex head; cad pl (speaker mtg)................................
357148	Setscrew: 6-32 x 1/8; Allen head; cad pl (pointer drive pulley mtg)
47K600598	Shaft, pointer
1K600594	Shaft, tuning....................
26A481521	Shield, spring (for l2BA6 tube)
$9 \mathrm{A472534}$	Socket, tube: miniature; 7-prong.
41473996	Spring, tension(electrolytic mtg)
41 114244	Spring, tension (pointer drive cord)
4K692188	Washer, "C" (tuning shaft and pointer shaft mig)............
4S7633	Washer, flat: 9/16 x 11/64 x . 033 sti; cad pl (back panel mtg)..
4K482859	Washer, shoulder: fibre (loop bracket mtg)....................

## CABINET PARTS

16E600461	Cabinet, table model: walnut (5H11)
16 K 600463	Cabinet, table model: ivory (5H12)
16K600465	Cabinet, table model: green (5Hi3)
158600569	Cover, pointer
36B600566	Knob, control: walnut (5
36K600567	Knob, control: ivory (5H12)
36K600568	Knob, control: green (5H13)
38A25507	Plug, split (back panel mtg)...
$52 \mathrm{B600537}$	Pointer, dial
3S3371	Screw, sheet metal: *8 x 3/8 PKF plain hex head; cad pl (chassis mtg). $\qquad$

MOTOROLA PAGE 22-7

$\begin{aligned} & 51 \\ & 5 \mathrm{~J} \end{aligned}$

5L1 \& 51L1
SERIES

$5 J 1$ SERIES

## GEINERAL INFORMATION

TYPE - Three-power (AC/DC, Battery) portable receiver. Four miniature type tubes and a selenium rectifier are used in a superheterodyne circuit.

MODEL	COLOR	CHASSIS
5L1	Tan	HS-250
5L1U	Tan	HS-224
5L2	Maroon	HS-250
5L2U	Maroon	HS-224
51L.1U	Green	HS-224
51L2U	Maroon	HS-224
5J1	Black	HS-250
551U	Black	HS-224
5J2	Green	HS-250
5J2U	Green	HS-224

TUNING RANGE - 535 to $1620 \mathrm{Kc} \quad \mathrm{IF}-455 \mathrm{Kc}$

TUBE COMPLEMENT

Type	Function
1R5	Converter
1U4	IF Amplifier
IU5	Det. AVC \& lst AF Amp
3S4	Power Amplifier
Rect	Selenium type
	(for AC/DC Operation)

POWER SUPPLY - Operates from II7V AC/DC (15 watts) or from the following batteries:
$2-1-1 / 2 V$ flashlight cells (Eveready *950 or equivalent)

1-67-1/2V "B" battery (Eveready 467 or equivalent)

## OPERATIMG INSTRUCTIONS

TO OPEN FRONT COVER (5Jl 5.2 Series). The front covers of the models 5 Jl and 5 J 2 Series contain the loop antenna. They may be opened simply by lifting them upward with the fingers. A special hinge holds the covers in either the closed, half-opened, or fully open position.

VOLUME CONTROL \& OFF-ON SWITCH. The "off-on" awitch and volume control are operated with the left-hand kiob.

TO TURN OFF. .Turn the receiver "off" by rotating the volume knob to the left until a click is heard.

TUNING CONTROL. Stations are tuned in with the righthand knob.

TO OPEN BACK COVER. The back cover may be opened by inserting the fingertips into the slots in the cover and pulling it open. When cloaing the cover be careful not to pinch the power line cord or other leads between the cover and the cabinet.

117 VOLT AC OR DC OPERATION. The power cord is located inside the cabinet and may be reached by opening the
back cover. Pass the line cord through the slot on the side of the receiver, and plug it into any 117 volt AC or DC power outlet. If the receiver does not operate from DC power, reverse the plug in the power outlet. When operating from AC power, reception may sometimes be improved by reversing the power plug in the outlet. It is not necessary that batteries be installed if the receiver is to be operated only from house power lines.

BATTERY OPERATION. Open the back cover and install the batteries, following the instructions on the label inside the back cover (or see Figure 1). Insert the line cord plug into the receptacle on the chassis, or the receiver will not play from batteries. If the receiver is to be operated for a long period of time from 117 volts $A C$ or $D C$, or is to be placed in storage, remove the batteries and store in a cool place. IMPORTANT: Never leave low or run-down batteries in the receiver, as they will leak or swell and damage it.

ANTENNA. A loop antenna is built into the front cover of models 5 J 1 and 5 J 2 series and into the rear cover of models 5L1, 5L2 and 51L1U and 51L2U Series. Because of the slightly directional characteristics of the loop antenna, re-

## PAGE 22-72 MOTOROLA

MODELS 5Ll, 5LlU, Rev.;
5L2, 5L2U, 5lLIU, 5lL2U;
5Jl, $5 \mathrm{JlU}, \mathrm{Rev.;} \mathrm{5J2}$,
5J2U; Ch. HS-224, HS-250
ception from some stations may be improved by rotating the entire receiver. In extremely noisy locations, rotate the receiver until minimum noise and maximum signal pickup are obtained.

BATTERY REPLACEMENT. If low volume or fuzzy tone
is noticed when operating from batteries, replace the flashlight cells. Normally, the $67-1 / 2 \mathrm{~V}$ " $B$ " battery will last for 3 or 4 changes of the flashlight cells. The condition of the batteries will not affect the operation of the receiver from 117 volts $A C$ or DC. Complete battery replacement instructions will be found inside the cabinet back cover (or see Figure 1).


NOTE:- A BATTERIES USE TWO $1-1 / 2 \mathrm{~V}$ FLASHLIGHT
CELLS-EVEREAOT 950 OR EQUIVALENT.
INSTALL 'A BATTERIES SO SPRING CONTACTS BOTTOM OF BATERIES.

## FIGURE 1. BATTERY INSTALLATION AND CHASSIS REMOVAL IMSTRUCTIONS ALIGNMEAT

NOTE: The receiver may be operated either from a bat- 2. Connect the low side of the signal generator to $B$-. teryor from the commercial power lines during alignment. 3. Set the signal generator for $\mathbf{4 0 0}$ cycle, $\mathbf{3 0 \%}$ modulation. If $A C$ power is used, it is recommended that an isolation 4. Turn the receiver volume control to maximum.
transformer be placed between the power line and the re- 5. Use a small fibre screwdriver for aligning the IF and ceiver. If an isolation transformer is not available, con- diode transformers.
nect the low side of the signal generator to B - through a .1 6. As stages are brought into alignment, reduce the signal mf capacitor. generator output to keep the output of the receiver at approximately .05 watt (. 05 watt $=.40$ volts on the output meter) to avoid overloading the receiver.

1. Connect a low range output meter across the speaker 7. See Figure 2 for adjustment locations and the following voice coil. chart for procedure.
ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR   FREQUENCY	$\begin{gathered} \text { GANG } \\ \text { SETTING } \end{gathered}$	ADJUST	REMARKS
IF ALI	NMENT .1 mf	Grid of conv. (pin 6, 1R5)*	455 Kc	Fully open	$\begin{aligned} & 1,2 \& 3 \\ & \text { (IF Cores) } \end{aligned}$	Adjust for maximum.
RF AL $2 .$	NMENT .1 mf	Grid of conv. (pin 6, 1R5)*	1620 Kc	Fully open	4 (osc.)	Adjust for maximum.
3.	-	-	-	-	-	Install chassia in cabinet, leaving output meter connected to speaker. NOTE: Batteries should be in cabinet.
4.	-	Radiation loop**	1400 Kc	Tune for maximum	5 (Ant.)	Adjust for maximum. Trimmer is reached through hole under plug button on side of cabinet.

*On chassis HS-250 return the grid of the converter tube to AVC either through the loop or through a 4. 7 meg resistor (as, in chassis HS-224).
**Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart.

MOTOROLA PAGE 22-7.
MODELS 5LI, 5 LIU, Rev.; $5 \mathrm{~L} 2,5 \mathrm{~L} 2 \mathrm{U}, 5 \mathrm{LLIU}, 51 \mathrm{~L} 2 \mathrm{U}$; 5J1, 5J1U, Rev.; 5J2, 5J2U; Ch. HS-224, HS-250


FIGURE 2. TUBE AND TRIMIER LOCATIONS

## SERVICE NOTES

GENERAL
The chassis of this recejver is isolated from the AC 1. Pull off the two controlknobs on the front of the cabinet. power line circuit by a capacitor-choke assembly to elim- 2. Open the rear cover and remove the batteries.
inate the shock hazard when handling the receiver. How- 3. Disconnect the two loopantenna leads from the chassis. ever, as an additional precaution when aligning or servicing 4, Remove the two hex head screws holding the chassis to the receiver from $A C$, an isolation transformer should be the cabinet (" $A$ " - ' $A$ " in Figure 1). inserted between the power line and the chassis.

The tubes are exposed when the rear cover is opened. It is not necessary to remove the chassis to replace tubes. PRODUCTION REVISIONS


HINGE INSTALEATIUN FOR 5LI AND 5ILIU SERIES
5. Slide the chassis from the cabinet.

TO REMOVE THE CHASSIS FROM THE CABINET:

The following revisions in the chassis and cabinets have been made from early production receivers:

1. Alternate IF and diode transformers have been added, with connections as shown on the circuit diagrams. Electrically, the original and the alternate transformers are interchangeable.
2. A multiple capacitor-resistor plate is used in some chassis to replace several resistors and capacitors in the audio circuit. Refer to the appropriate circuit diagram when servicing a chassis.
3. A battery retainer spring, which clips to the rear edge of the chassis, has been provided for the 5 J 1 and 532 series models to prevent the " $B$ " battery from forcing off the rear cover.
4. The rear cover locking clips on the early 5 Jl and 5 J 2 series models were replaced with a different type to provide better locking. The new type clips are interchangeable with the old clips.

## REAR COVER HINGE INSTALLATION

The proper method for installing a new hinge in the 5Ll, 5 L 2 and 51 l 1 U , 51L2U series is shown in Figure 3. Note that the under side of the cabinet should rest on an iron blockduring the heating process to prevent the formation of a heat bubble on the bottom of the cabinet.

PAGE 22-74 MOTOROLA
MODELS 5LI, 5LIU, Rev.;
$5 \mathrm{E} 2,5 \mathrm{~L} 2 \mathrm{U}, 5 \mathrm{LLIU}, 51 \mathrm{~L} 2 \mathrm{U}$;
$5 \mathrm{Jl}, 5 \mathrm{JlU}, \mathrm{Rev} ; 5 \mathrm{~J}, 5 \mathrm{~J} 2 \mathrm{U}$;
Ch. HS-224, HS-250


FIGURE 4. 5L1 AND 5L2 REAR VIEW





## PAGE 22-76 MOTOROLA

MODELS 5Ll, 5LIU, Rev.;
5L2, 5L2U, 51LIU, 51L2U;
5J1, 5J1U, Rev.; 5J2,
5 J2U; Ch. HS-224, HS-250


FIGURE 8. BOTTOM VIEW OF CHASSIS HS-224 AND HS-250 SHOWING MULTIPLE CAPACITOR PLATE


MOTOROLA PAGE 22-:
MODELS 5LIU, 5L2U, $51 \mathrm{LlU}, 51 \mathrm{~L} 2 \mathrm{U}, 5 \mathrm{JlU}$勺J2U, Ch. HS-224
FIGURE 10. SCEEMATIC DIAGRAM OF ES-224 USING MULTIPLE CAPACITOR PLATE.


PAGE 22-78 MOTOROLA
MODELS SLIU, 5L2U, $51 \mathrm{LlU}, 51 \mathrm{~L} 2 \mathrm{U}, 5 \mathrm{~J} \mathrm{U}$,
5J2U, Ch. HS-224
FIGURE 11. SCHEMATIC DIAGRAM OF CHASSIS HS-224 USING MULTIPLS CAPACITOR-RESISTOR PLATE


MOTOROLA PAGE 22-:
MODELS 5LI, 5L'
5J1, 5J2, Ch.
HS-250


PAGE 22-80 MOTOROLA
MODELS 5LI, 5L2, 5J1,
5J2, Ch. HS 2550


MOTOROLA PAGE 22-


## REPLACEMENT PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.


PAGE 22-82 MOTOROLA

$\begin{aligned} & \text { CASSIS } H S= \\ & 224, \quad 15-250 \end{aligned}$					
Ref. No.	Part Number	Description	Ref. No.	Part   Number	Description
8	2S7051	Nut, hex: Palnut; 3/8-32 x 9/16; volume control mtg)		2S7089	Speednut: for . 187 stud;   black (loop mtg).......
			115	41A480094	Spring, hinge (rear cov
9	9 A 691988	```Receptacle, 2 pin (antenna lead receptacle)..........```	116	55B692068	Spring, rear cover latch..
10	15B481896	Retainer, "A" battery......			
11	43 K 692013	Retainer, strain relief (on line cord bushing).........			
12	26K600155	Shield, back (on rear of chassis)(HS-250 only).....	MODEL	5ILIU CABINE	ET PARTS - Same as 5Ll \& 5LlU except
13	26C691983	```Shield, bottom: black (over chassis bottom) (HS-224 only).....................```	121	$\begin{aligned} & 38 \mathrm{~K} 692050 \\ & 16 \mathrm{~K} 610023 \end{aligned}$	Button, plug: green........   Cabinet \& Grille Assembly,   front section: complete,
14	26A692005	Shield, heat (around R-7)			less carrying handle; green plastic........................
	26K691997	Shield, switch: (over AC/DC Battery switch)............		16K610024	Cabinet, front section: less grille \& carrying handle;
16	9A690129		125	16K601704	Cover, cabinet back: less latch spring and loop antenna; green plastic........
17	41K680029	Spring, battery contact (in "A" battery retainer).....			
18	31K691985	Strip, "B" battery terminal with leads..................		16K610025	Grille, speaker: green plastic..........................
	31 K 37504	Strip, terminal: 1 insulated lug; \#l mtg..................	127	$1 \times 610018$	Handle Assembly, complete: green...............................
	31K470746	Strip, terminal: 3 insulated lugs \#2 mtg...................		36K610022	Knob, tuning: green.........
	4K470939	Washer, fibre (antenna receptacle $\mathrm{mtg} \& \mathrm{R}-7 \mathrm{mtg}$ )	MODEL	5L2 \% 5L2U	CABINET PARTS
			131	78600059	Bracket, chassis support (on sides of chassis)..
			132	38K600108	Button, plug: maroon......
MODELS	5L1 \& 5LlU	CABINET PARTS		16K600410	Cabinet \& Grille Assembly, front section: complete,
101	$7 \mathrm{B600059}$	Bracket, chassis support (on sides of chassis).........			less carrying handle; maroon plastic............
102	$\begin{aligned} & 38 \mathrm{~K} 692051 \\ & 16 \mathrm{E} 691902 \end{aligned}$	Button, plug: tan.......... Cabinet \& Grille Assembly, front section; complete, less carrying handle; tan plastic.....................		16 K 600411	Cabinet, front section: less grille and carrying
			135	1X600431	Cover and Loop Assembly, cabinet back: complete
	16 K 691903	Cabinet, front section: less grille \& carrying handle; tan plastic...................			with latch spring, and stop cord;maroon plastic
			136	16K600413	Cover, cabinet back: less
105	$1 \times 600168$	Cover and Loop Assembly cabinet back: complete with latch spring and stop cord; tan plastic..................			latch spring and antenna loop; maroon plastic.....
				$5 S 7855$	Eyelet: . $156 \times .484$ (on loop leads). . . . . . . . . . .
106	16D691905	```Cover, cabinet back: tan plastic; less latch spring and loop antenna...........```		16 K 600412 $1 \times 600429$	```Grille, speaker: maroon plastic.................... Handle Assembly, complete:```
	587855	```Eyelet: . }156\times.484\mathrm{ (on loop leads)...................```	139	36K600406	maroon   Knob, tuning: maroon plastic
	$1 \times 600082$	Handle Assembly, complete: tan............................	141	3S8175	Screw, sheet metal: \#4 $x$ 3/16 PKZ; plain hex head (chassis support bracket mtg) $==-\infty=-=. .$.
109	$\begin{aligned} & \text { 36B691906 } \\ & 358175 \end{aligned}$	Knob, tuning: tan plastic.. Screw, sheet metal: \#4 x 3/16 PKZ; plain hex head (chassis support bracket mtg). ...................   Screw, thread-cutting: \#4 x 3/8; type 25 phillips round head(speaker grille mtg)		3S490390	Screw, thread-cutting: \#4 x 3/8; type 25 phillips
111					round head; (speaker grille mtg).....................
	3S490390			38488009 257089	Screw, thread-cutting: \#6 x   3/8; type 25 plain hex head (mts chassis to cabinet).   Speednut: for . 187 stud:   black (loop mtg).......
	3S488009	Screw, thread-cutting: \#6 x $3 / 8$; type 25 plain hex head (mounts chassis to cobinet)	145 146	414480094 558692068	Spring, hinge (rear cover). ¢pring, rear cover latch.

MOTOROLA PAGE 22-1


PAGE 22-84 MOTOROLA
MODELS 5R11, 5R12,
5R13, 5R14, 5R15,
5R16, Ch. HS-254

## GENETRAL IMFORDATIOM

TYPE - AC-DC table model superheterodyne receiver with loop antenna.

RECEIVER MODELS -	
Model	Color
5R11	Walnut-Mahogany
5R12	Ivory
5R13	Maroon
5R14	Gray
5R15	Green
5R16	Yellow


TUBE COMPLEMENT -	12BE6	Converter
12BA6	IF Amplifier	
12AT6	Det, AVC \& AF Amp	
	50C5	Power Amplifier
	35 W 4	Rectifier



TUNING RANGE - 535 to $1620 \mathrm{Kc} \quad \mathrm{IF}-455 \mathrm{Kc}$

POWER SUPPLY - 117 volts, AC or DC; 35 watts

## INSTALLATIOM \& OPERATIMC IMETRUCTIOMS

POWER SWITCH \& VOLUME CONTROL. The "off-on' upper knob.
switch and the volume control are combined and are operated with the small lower knob. NOTE: If the receiver does not operate from DC power, reverse the plug in the power outlet. When operating from AC power, reception may sometimes be improved by reversing the power plug in the outlet.

TUNING CONTROL. Stations are tuned in with the large

ANTENNA. A built-in loop antenna eliminates the need for an outside antenna in most locations. When receiving a weak station, rotate the receiver slightly for best signal strength. If additional pick-up is necessary, connect an external antenna to the radio by following the instructions printed on the rear panel. CAUTION: Never connect the radio chassis to a water pipe, radiator, or other ground.

## sERVICE MOTES

The chassis of this receiver is connected directly to the power line. When operating the chassis (from an AC line) outside of its cabinet, use an isolation transformer between the power line and the receiver to reduce the possibllity of an electrical shock.

TO REMOVE CHASSIS FROM CABINET:

1. Pull of the two control knobs from the front of the re-
ceiver.
2. Remove the two split plugs which hold the loop to the cabinet.
3. Remove the two hex head screws at the rear edge of the chassis.
4. Slide the chassis from the cabinet.

## AEIGNMENT

NOTE: If AC power is used, it is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is notavailable, connect the low side of the signal generator to chassis through a .1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to chassis.
3. Set the signal generator for 400 cycle, $30 \%$ modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF an diode transformers.
6. As stages are brought into alignment, reduce the signa generator output to a level which produces less than. 4 volts (. 05 watt) across the voice coil to avoid overloadin. the receiver.
7. See Figure 1 for adjustment locations and the followin: chart for procedure.

## ALIGNMENT CHART

STEP	DUMMY   ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIC   1.	NMENT   .1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3, \\ & 4 \text { (IF } \\ & \text { cores) } \end{aligned}$	Adjust for maximum
RFALI z.	NMENT	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully Open	5 (Osc)	Adjust for maximum
3.	-	Radiation loop*	1400 Kc	Tune for max	6 (Ant)	Adjust for maximum

*Connect generator output across 5" diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12 " apart.


FIGURE 1. TUBE AND TRIMMER LOCATIONS

```
MODELS 5RIl, 5R12,
```

5R13, 5R14, 5R15,
5R16, Ch. HS-254


FIGURE 2. TOP VIEW OF CHASSIS


MOTOROLA PAGE 22-8. MODELS 5R11, SR12. 5R13, 5R14, 5R15, 5R16, Ch. HS-254


FIGURE 4. SCHEMATIC DIAGRAM OF CHASSIS USING MULTIPLE CERAMIC CAPACITOR PLATE


## REPLAGEMTRT PARTs LIST

NOTE:* When ordering parts, specify model number of set in addition to part number and description of part.


## Capacitors

C-1	$19 \mathrm{B600458}$	Variable: 2 gang; with pulley.
C-2	8R9821	Paper: . 05 mf 200V.
C-3	8R9816	Paper: . 05 mf 400V
C-4	21B482847	```Ceramic, multiple: 2000, 220,220, 5000 mmf.........```
C-5	8R9802	paper: . $02 \mathrm{mf} \mathrm{400V........}$.
C-6	23B600855	Electrolytic: 50-30 mf/150V

Capacitor-Resistor
CR-1 21B601007 Capacitor-Resistor: 2000, 220, 5000, 110, 110 mmf , 6.8 meg, $470,000,470,000$ ohms..

## Coils



## Speaker

LS-1 50B690661 Speaker: 4" PM; 3.2 ohs VC.

## Resistors

Note: All resistors are insulated carbon type unless otherwise specified

R-1	6R6028	22,000 20\% 1/2w........
R-2	6R6018	$11020 \% 1 / 2 W$
R-3	$6 R 2118$	3.3 meg 20\% 1/2W
R-4	18K600449	```volume control: l meg; with switch..................```
R-5	6R2109	$10 \mathrm{meg} 20 \% 1 / 2 \mathrm{w}, . . . . . .$.
R-6	6R6032	470,000 20\% 1/2\%
R-7	6R6032	470,000 20\% 1/2\%
R-8	6R3992	150 20\% 1/2W.
R-9	6 R 5683	27 10\% 1/27.
R-10	6R3953	$100020 \%$ 1\%

Transformers
T-1,2 24B485553 IF and Diode Transformer (green dot): 455 KC ; com~ plete with capacitors, cores, and shield
T-3 25B478121 outbut Transformer

PAGE 22-90 MOTOROLA

```
MODELS 5RI1A, 5Rl2A,
5R13A, 5R14A, 5R15A,
5R16A, Ch. HS-280
```


## OEMERAL INFORMATION

TYPE - AC-DC table model superheterodyne receiver with loop antenna.

| RECEIVER MODELS - Model | Color |
| :--- | :--- | :--- |
| 5R11A | Walnut-Mahogany |
| 5R12A | Ivory |
| 5R13A | Maroon |
| 5R14A | Gray |
| 5R15A | Green |
| 5R16A | Yellow |



TUBE COMPLEMENT -	Type	Function
	12EE6	Converter
	12BA6	IF Amplifier
	12AT6	Det, AVC \& AF Amp
	50C5	Power Amplifier

TUNING RANGE - 535 to $1620 \mathrm{Kc} \quad \mathrm{FF}=455 \mathrm{Kc}$

POWER SUPPLY - 117 voits AC or DC; 35 watts

## IMSTARLATION \& OPERATEME IRSTRUCTIOXS

ON-OFF SWITCH \& VOLUME CONTROL. Operated with the small lower knob. NOTE: To operate on DC, the line plug must be inserted in the electrical outlet for correct polarity. If the set does not function, reverse the plug. When operating from AC, reversal of the line plug may improve reception.

TUNING CONTROL. Stations are tuned in with the large upper lnob.

ANTENNA. The built-in loop antenna provides satisfactory reception in most locations. When receiving a distant or weak station, rotate the receiver slightly to get maximum signal pick-up. If additional pick-up is necessary, connect an external antenna by following the instructions printed on the rear panel. CAUTION: Never connect the chassis to a water pipe, radiator or other ground.

## BERVICE MOTES

This receiver has one lead of the power line connected directly to the chassis. If AC power is used, it is recommended, when operating the chassia outside of its cabinet, that an isolation transformer be placed between the power line and the receiver to reduce the possibility of an electrical shook.

TO REMOVE CHASSIS FROM CABINET:

1. Pull off the two control knobe from the front of the re-
ceiver.
2. Remove the two split plugs which hold the loop to the cabinet.
3. Reyfove the two hex head screwa at the raar edge of the chasais.
4. Slide the chassis from the cabinet.

MOTOROLA PAGE 22-9
MODELS 5R11A, 5R12A
5R13A, 5R14A, 5R15A
5R16A, Ch. HS-280

## ALIGNMENT

NOTE: If AC power is used, it is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to chassis through a. 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to chassis.
3. Set the signal generator for 400 cycle , $\mathbf{3 0 \%}$ modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the $I F$ anc diode transformers.
6. As stages are brought into alignment, reduce the signa generator output to a level which produces less than. 4 ( volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 1 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY   ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG   SETTING	ADJUST	REMARKS
IF ALIGNMENT						
1.	. 1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3, \\ & 4(\text { IF } \\ & \text { cores }) \end{aligned}$	Adjust for maximum.
RF ALI	GNMENT		「			
2.	. 1 mf	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	5 (Osc)	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for $\max$	6 (Ant)	Adjust for maximum.

*Connect generator output across 5" diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart.


MOTOROLA PAGE 22-93


PAGE 22-94 MOTOROLA
MODELS 5R11A, 5R12A, 5R13A, 5R14A, 5R15A, 5R16A, Ch. HS-280


FIGURE 5. SCHEMATIC DIAGRAM OF CHASSIS USING MULTIPLE CERAMIC CAPACITOR-RESISTOR PLATE

## REPLACEMEMT PARTS LIST

MODELS SRIIA, 5Rl2A, $5 R 13 A, 5 R 14 A, 5 R 15 A$,
5R10A, Ch. HS-280
NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

Ref. Part

No.	Nuaber	Description
CHASSIS PARTS - ELECTRICAL		
Capacitors		
C-1	198600485	Variable: 2 gang; with pulley
C-2	$8 \mathrm{R9821}$	Paper: . 05 mf 200V..
C-3	8R9816	Paper: . 05 nf 400V.........
C-4	218482847	Ceramic, multiple: 2000 minf, $220 \mathrm{mmf}, 220 \mathrm{mmf}$, 5000 maf
C-5	8R9802	Paper: . 02 mf 400V.........
C-6	23B600855	Electrolytic: 50-30 mf/li50V

## Capacitor-Resistor

CR-1 Recti	218601007 er	Capacitor-Resistor:   2000 mif, 220 mmf , 5000 $\mathrm{mmf}, 110 \mathrm{mmf}, 110 \mathrm{mmf}$, $6.8 \mathrm{meg}, 470,000$ ohms, 470,000 ohms.
E-1	48B791092	Rectifier, selenium: half wave. $\qquad$
Colls		
L-1	24K601662	Antenna Loop and Panel Assembly $\qquad$
L-2	24A478129	Oscillator coil...........

## Speaker

LS-1 50B690661 Speaker: 4" PM; 3.2 ohm


Note: All resistors are insulated carbon type unless otherwise specified.

R-1	6R6028	22,000 20\% 1/2w.
R-2	6R6018	100 20\% 1/2W
R-3	6R21 38	$3.3 \mathrm{meg} 20 \% 1 / 2 \mathrm{w}$
R-4	18K600449	Volume control: 1 meg; with switch
R-5	6R2109	10 meg $20 \% 1 / 2 W$.
R-6	6R6032	470,000 20\% 1/2W
R-7	$6 \mathrm{R6032}$	470,000 20\% 1/2W.
R-8	6R3992	150 20\% 1/2W
R-9	6R6415	$10010 \%$ IW.
R-10	6R3953	1000 20\% 1W.
R-11	17A601647	Wirewound: 235 10\% 5W

## Transformers


part
Mo. Description

30K478137
5A484268
14A478119
287051
557771
557707

537703

357247

3S490507

26A478117 Shield, electrostatic (on rear of chassis)
9A472534 Socket, tube: miniature; 7 prong.
41473996 Spring, tension (electrolytic mtg)
$31 K 83993$ Strip, terminal: 2 insulated lugs, \#l gnd; 3/8" spacing.
46A478145 Stud, tri-mount (loop meg to bracket).
14A11493 Washer, shoulder: fibre (loop bracket mtg).

CABINET PARTS
16K600181 Cabinet, table model : walnutmahogany (5R11A).
16E600157 Cabinet, table model: ivory (5R12A)
16K600183 Cabinet, table model: maroon (5R13A) Cabinet, table model: gray (5A14A) Cabinet, table model: green (5R15A). ...................... Cabinet, table model: yellow (5R16A).
Knob, tuning; ivory (5R11A, 5R13A, 5R14A, and 5R15A).
Knob, tuning: red (5R12A)
Knob, tuning: blue (5R16A)
Knob, volume control: walnut (5R11A)
36K600545 Knob, volume sontrol: ivory (5R12A)
36K6005st Knob, volume control: maroon (5R13A)
36x600547 Enob, volume control: gray (5R14A)
...............................
(5R) (5R15A) $\qquad$
36K600s49 Knob, volume control: yellow (5A16A)
38476083 Screw, machine: 6-32 $\times 5 / 16$; slotted bex head; stl; cad pl; locking type (chassis netg)....
$38 A 25507$ Plug, split (back atg to cabinet
11M4882s3 Tape; aluminum foil: 2 1/2" wide
Cord, line and plug: 6 feet long
Grommet, rubber (speaker wtg).
Insulator, fibre (loop bracket mtg)
Nut, hex: 3/8-32 x 9/16; st1; cad pl (volume control mtg)
Rivet: . $088 \times 3 / 16 ;$ stl; nkl pl (tube socket mig)..........
Rivet: . $122 \times 5 / 32 ;$ stl; nkl pl (output trans mig \& rect bracket mtg).
Rivet: . $122 \times 7 / 32$; sti; nki pl (loop bracket and speaker ntg)

Screw,machine: 6-32 x 3/16 slotted hex head; locking type; stl; cad pl (gang mtg). plain sheet metal: $x$ x plain hex head; stl; cad pl (rectifier mtg) . .

PAGE 22-96 MOTOROLA
MODELS 5RI1AU, 5R12AU, $5 \mathrm{Rl} 3 \mathrm{AU}, 5 \mathrm{Rl} 1 \mathrm{AU}, 5 \mathrm{Rl} 5 \mathrm{AU}$,
5RIGAU, Ch. HS-281

## OENERAL INFORMATION

TYPE - AC-DC table model superheterodyne receiver with loop antenna.

RECEIVER MODELS -	Model	Color
5R11AU	Walnut-Mahogany	
5R12AU	Ivory	
5R13AU	Maroon	
5R14AU	Gray	
5R15AU	Green	
5R16AU	Yellow	


TUBE COMPLEMENT - Type	Function
12BE6	Converter
12BA6	IF Amplifier
12AT6	Det, AVC \& AF Amp
S0C5	Power Amplifier
Rectifier	Selenium Type



TUNING RANGE - 535 to $1620 \mathrm{Kc} \quad$ IF $=455 \mathrm{Kc}$
POWER SUPPLY - 117 volts AC or DC; 35 watts

## IMSTALLATION \& OPERATING INETRUTIONS

ON-OFF SWITCH \& VOLUME. Operated with the small lower knob. NOTE: To operate from DC, the line plug must be inserted in the electrical outlet for correct polarity. If the receiver does not function, reverse the plug. When operating from AC, reversal of the line plug may improve reception.
TUNING. Stations are tuned in with the large upper kitb.

ANT ENNA. The built-in loopantenna provides satisfactory reception in most locations. When receiving a distant or weak atation, rotate the receiver slightly to get maximum signal pick-up. If addjtional pick-up is necessary, connect; an external antenna by following the instructions printed on the rear panel. CAUTION: Never connect the chasais to a water pipe, radiator or other ground.

## service motes

The chassis of this receiver is isolated from the power line by a capacitor to eliminate the shock hazard, when handing the chassis outside the cábinet. However, ain añ additional precaution when aligning or servicing the receiver from $A C$, an isolation transformer should be inserted between the power line and the receiver.

TO REMOVE CHASSIS FROM CABINET:

1. Pull off the two control knobs from the front of the re-

## ceiver.

2. Remave the two split plugg which hold the loop to the cabinet.
3. Remove the two hex head screws at the rear edge of the chassis.
4. Slide the chasais from the cabinet.

MOTOROLA PAGE 22.97
MODELS 5R11AU, 5R12AU, $5 \mathrm{Rl} 3 \mathrm{AU}, 5 \mathrm{R} 14 \mathrm{AU}, 5 \mathrm{Rl5AU}$,

## ALIGNMENT

NOTE: If AC power is used, it is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B - through a .1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to $\mathbf{B}-$.
3. Set the signal generator for 400 cycle, $\mathbf{3 0 \%}$ modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the $I F$ and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than. 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 1 for adjustment locations and the following chart for procedure.

## ALIGNMENT CHART

STEP	DUMMY ANT ENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIG 1.	NMENT   .1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & (\text { IF cores) } \end{aligned}$	Adjust for maximum.
$\begin{aligned} & \text { RF ALI } \\ & 2 . \end{aligned}$	NMENT   .1 mf	Grid of conv. (pin 7. 12BE6)	1620 Kc	Fully open	5 (Osc)	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for max	6 (Ant)	Adjust for maximum.

[^1] 12" apart.


FIGURE 1. TUBE AND TRIYMER LOCATIONS

PAGE 22-98 MOTOROLA
MODELS 5RllAU, 5R12AU,
$5 \mathrm{R} 13 \mathrm{AU}, 5 \mathrm{R} 14 \mathrm{AU}, 5 \mathrm{R} 15 \mathrm{AU}$;
5R16AU, Ch. HS-281


FIGURE 3. BOTTOM VIEW OF CHASSIS USING MULTIPLE CBRAMIC CAPACITOR PLATE

MOTOROLA PAGE 22-9
MODELS 5R11AU, 5R12At, $5 R 13 A U, 5 R 14 A U, 5 R 15 A U$, 5R16AU, Ch. HS-281


MODELS 5RIIAU, 5R12AU, 5R13AU, 5R14AU, 5R15AU,
5R16AU, Ch. HS-281


MOTOROLA PAGE 22-10
MODELS 5RIIAU, 5Rl2AU, 5R13AU, 5R14AU, 5R15A 5RlGAU, Ch. HS-281

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

Ref. Part


CR-1 $218601007 \quad$ Capacitor-Resistor: 7 lead;	
	$2000 \mathrm{mmf}, 220 \mathrm{mgf}, 5000 \mathrm{mmf}$,
	$110 \mathrm{mmf}, 110 \mathrm{mmf}, 6.8 \mathrm{meg}$,

## CHOKE \& CAPACITOR

E-1 8A690487 Choke \& . 15 mf paper capacitor

## -RECTIFIER

E-2 48B791092 Rectifier, selenium .........
COYLS

L-1 24K601662 Antenna Loop and Panel Assem.
L-2 24B680364 Oscillator coil ...............

## SPEAKER

LS-1 50B690661 Speaker :.4" PM; 3.2 ohm VC...

## Resigtors

Note: All resistors are insulated carbon type unless otherwise specified.

R-1	6R6028 ${ }^{\prime}$	22,000 20\% 1/2\%
R-2	6R3992	150 20\% 1/8\%
R-3	6R2118	$3.3 \mathrm{meg} \mathrm{20} \mathrm{\%} \mathrm{1/2} \mathrm{\%}$
R-4	18 K 600449	Volume control: 1 meg; with switch
R-5	6R2109	$10 \mathrm{meg} 20 \%$ 1/27
R-6	6R6032	470,000 20\% 1/2T
R-7	6R6032	470,000 20\% 1/2W
R-8	6R6415	100 10\% 1\%
R-9	6R3953	10000
R-10	6 R 3992	150 20\% 1/2w
R-11	17A601647	Wirewound: 235 10\% 5\%...
TRANBFORMERS		
T-1, 2	24B485553	IF and Diode, 455 Xc: complete with capacitors, cores and shield
T-3	254680345	Output Transformer

Part
Number

## Description

## CHABSIS PARTS - MECHANICAL

74478118 Bracket, loop mtg ......................
7B601649 Bracket, rectifier mtg ...............
$43 A 692012$ Bushing, strain relief (line cord)
43K692013 Bushing, retainer: strain relief (line cord)
42A485548 Clip, coil can mig (for T-1 $T-2$ )
30K680352 Cord, line and plug: 6 it long ..
5A484268 Gromet, rubber (spkr mitg).......
$14 \AA 478119$ Insulator, fibre (loop bracket. mtg)
287051 Nut, hex: $3 / 8-32 \times 9 / 16$; stl; cad pl (volume control mtg)........
587771 Rivet: .088 x 3/16; sti; nkl pl (tube socket $\operatorname{mtg}$ ) ..............
587707 Rivet: . $122 \times 5 / 32$; sti; nkl pl (output trans and shield ntg)
587703 Rivet: . $122 \times 7 / 32$; st1; nkl pl (loop bracket and speaker mtg)
Screw, sheet metal: \#6 $x$ l; plain hex head; stl; cad pl (rectifier

387247 Screw, machine: 6-32 x 3/16 slotted hex head; locking type; sti; cad pl (gang mtg)
$26 A 478117$ Shield, electrontatic (on rear of chassis)
9A472534 Socket, tube: 7-pron
$41 A 73996$ Spring, tension (electrolytic atg)
46A478145 Stud, tri-mount (back mig to chas-

14 All493 Washer, shoulder: fibre (loop brkt (tg)

## CABINET PARTS

16K600181 Cabinet, table model: molded; walnutmahogany finish (5R11AU)............
16E600157 Cabinet, table model: molded; ivory finish (5R12AU)
16K600183 Cabinet, table model: molded; maroon finish (5R13AJ)
16K600184 Cabinet, table model: molded; gray finish (5R14AU)
16K600185 Cabinet, table model: molded; green finigh (5R15AU)
16x600186 Cabinet, table model: molded; yellow tinish (5R16AU) :.........................
36B600485 Knob; tunlag: ivory (5R11AU, 5R13AU, 5R14AU, and 5R15AU)
36K600486 Gnob, tuning: red (5R12AU)
$36 K 600487$ Knob; tuning: blue (SR16AU),
36B600544 Knob, volume control: walnut (5R11AU)
$36 K 600545$ Knob, volume control: ivory (5R12AU)
36K600546 Knob, volume control: maroon (ER13AU) 36K600547 Knob, volume control: gray (5R14AU).
36x600548 Knob, volume control: green (5R15AU)
36K600549 Knob, volume control: yellow(5R16AU)
38476083 Screw, machine: 6-32 x 5/16; slotted hex head; stl; cad pl; locking type (chasgis $\quad$ (tg)
$38 A 25507$ Plug, split (back mtg to cabinet)
11M488253 Tape, aluninum foil: $2-1 / 2^{\prime \prime}$ wide.

## GENERAE INPORMATION

TYPE - Five tube, three-power (AC/DC, Battery) portable, with a selenium rectifier. A loop antenna is housed in the back cover.

MODEL	COLOR
6 Ll	Green plastic
6 LL	Brown plastic
61 LL	Green plastic
61 LL	Maroon plastic
-535 to 1620 Kc	IF -455 Kc

TUBE COMPLEMENT - IU4 - RF Amplifier
1R5 - Converter
1U4 - IF Amplifier
1U5 - Det, AVC \&e 1st AF Amp
3V4 - Power Amplifier
Rectifier - Selenium type


POWER SUPPLY - Operates from 117 volts AC or DC ( 15 watts), or self-contained battery pack. Use an Eveready \#753, A General \#60A-6F6-5, or equivalent battery pack.

## OPERATING IRSTRUCTIONS

CONTROLS. The volume control and power switch are combined and are operated with the left-hand knob. Select stations with the right-hand knob.

TO OPEN BACK COVER. With your finger, press down on the latch button located at the top of the cabinet and pull the cover open: to close, press the latch button down and snap the cover shut.

CAUTION: When closing the cover, be careful not to pinch the line cord or other leads between the cover and cabinet.

HOUSE CURRENT OPERATION. The power cord is located inside the cabinet and can be reached by opening the back cover. Pass the cord through the slot in the side of the cabinet before closing the cover. Insert the power plug into any 117 volt AC or DC outlet. If the receiver does not operate from DC power, reverse the line cord plug in the power outlet.
BATTERY OPERATION. Open the back cover and install the battery pack, following the instructions in Figure 1. Insert the line cord plug into the receptacle on the receiver chassis or the receiver will not operate from its battery. If the receiver is to be operated for a long period of time from $A C$ or $D C$, or is to be placed in storage, remove the battery and store it in a cool place. Replace the battery when low volume or fuzzy tone is noticed. The condition of the battery will not affect the operation of the receiver from AC or DC. Never leave a low or run-down battery in the receiver because it will leak or swell and damage the receiver.

ANTENNA. A loop antenna is built into the rear cover of this receiver. Because of the slightly directional characteristics of the loop antenna, reception frbm some stations may be improved by rotating the receiver. In extremely noisy locations, rotate the entire receiver until minimum noise and maximum signal pickup are obtained.


FIGURE 1. BATTERY REPLACRMENT \& TUBE LOCATIONS

MOTOROLA PAGE 22.1
MODELS 6L1, 6L2 Rev., 61ril, 61L2, Ch. HS-22

## ALIGNMENT

NOTE: The receiver may be operated either from a battery or from the commercial power lines during alignment. If AC power is used, it is recommended that an isolation transformer be placed between the power line and the receiver. If an isolation transformer is net available, connect the low side of the signal generator to B-through a. 1 mf capacitor.

PROCEDURE:-

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to $\mathbf{B}-$.
3. Set the signal generator for 400 cycle, $30 \%$ modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator input to keep the output of the receiver at approximately . 05 watts (. 05 watt -.40 volis on the outpur meter) to avoid overloading the receiver.
7. See Figure 2 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY   ANTENNA	GENERATOR CONNECTION	GENERATOR   FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIGNMENT						
1.	. 1 mf	Grid of conv. (pin 6, 1R5)	455 Kc	Fully open	$\begin{aligned} & 1,2 \\ & 3 \& 4 \end{aligned}$	Adjust for maximum.
RF AL	MENT					
2.	-	-	-	Fully   closed	Pointer	Set pointer as shown in Figu 3.
3.	. 1 mf	Grid of RF Amp (pin 6, 1U4)	1620 Kc	Fully open	5	Adjust for maximum.
4.	. 1 mf	$\square$	1400 Kc	Tune for maximum	6	Adjust for maximum.
5.	-	Radiation loop*	"	"	7	With chassis installed in cabinet and output meter connected to speaker, open rear cover slightly and adjust for maximum. NOTE: Battery pack should be in cabinet.

*Connect generator output across 5" diameter, 5-turn loop and couple inductively to receiver loop. Keep loops at least 12 " apart.


FIGURE 2. TUBE \& TRIMMER LOCATIONS

PAGE 22-104 MOTOROLA

## MODELS 6LI, 6L2 Rev.;

 61L1, 61L2. Ch. HS-226

FIGURE 3. DIAL CORD RESTRINGING DETAIL

## SERVICE NOTES

The chassis of this receiver is isolated from the AC power line circuit by a capacitor to eliminate the shock hazard when handling the receiver. However, as an additional precaution when aligning or servicing the receiver from AC, an isolation tranaformer should be inserted between the power line and the chassis.

The tubes are exposed when the rear cover is opened. It is not necessary to remove the chassis to replace tubes.

## TO REMOVE THE CHASSIS FROM THE CABINET:

1. Open the rear cover and remove the battery pack.
2. Disconnect the two leads from the chansis to the loop antenna.
3. Remove screw holding stop cord to chassis.

CAUTION: With stop cordremoved back cover may be seriously damaged if it is allowed to fall back.
4. Pull off the two control knobs on the front of the cabinet.
5. Remove the two hex head screws located under the knobs.
6. Slide the chassis out of the cabinet.

## PRODUCTION REVIŚIONS (6L.1 \& 6L2)

## REAR COVER LATCH ASSEMBLY

The rear cover latch was revised to provide better locking and to eliminate breakage of the projecting studs on the cover.

The new latch may be added to early cabinets by refer ring to Figure 5 and following the instructions below:

1. Remove the locking clips from the cabinet (optional).
2. File away the tongue in the top center of the back cover.
3. Drilla. 136" hole in the top of the cabinet.
4. Drill a $5 / 16^{\prime \prime}$ hole in the top of the back cover.
5. Rivet the spring and stud assembly to the cabinet.

## REAR COVER STOP CORD

A cord, fastened to the chassis and to the rear cover, was added to prevent the cover from opening too far and becoming damaged.

## REAR COVER HINGE INSTALLATION

The proper method for installing a new hinge is shown in Figure 4. Note that the under side of the cabinet should rest on an iron block during the heating process to prevent the formation of a heat bubble on the bottom of the cabinet.


FIGURE 4. REAR COVER HINGE INSTALLATION

MOTOROLA PAGE 22.10



FIGURE 5. REAR COVER Latch Installation


PAGE 22-106 MOTOROLA


NOTE：When ordering parts，specify model number of set in addition to part number and description of part．

R－10	17A76986	Wire wound： 150 10\％2－考W．
R－11	18X480039	Volume control： 1 meg；with
R－12	6R2109	
R－13	$17 \mathrm{B692047}$	Wire wound：2000；center tapped．
R－14	6R6269	820 10\％${ }^{2} \mathrm{~W} . . . . . . . . . . .$.
R－15	6R3927	2.2 meg $20 \%$ 孝 W
R－16	6R6004	1 meg 20\％$\frac{1}{2} \mathrm{~W}$
R－17	6 R 2118	$3.3 \mathrm{meg} 20 \%$ 年 m
R－18	6R3933	220 20\％交W．
R－19	6R3949	470 20\％$\frac{1}{2}{ }^{1}$
R－20	6R6010	330 20\％交w．
Switches		
$\overline{\mathbf{S - 1}}$	$40 \mathrm{A27114}$	Slider Switch：3PDT．
S－2	－	Power Switch：on volume con trol．．．．．．．．．．．．．．．．．．．．．．．．．
Transformers		
T－1，2	$24 \times 600013$	IF \＆Diode Transformer， 455   Kc：includes capacitors；
		leas shield．．．．．．．
T－3	258692076	Output Transformer．

## CHASSIS PARTS－MECHANICAL

16K692102 Baffle，speaker：includes cloth．． $1 \times 692121$ Bottom Cover Assembly：includes brackets \＆battery strap．．．．．．．．．． 78600711 Bracket，chassis front（sel rect mtg）．
43A692012 Bushing，line cord strain relief （use with 43K692013）
$1 \times 692118$ Cable Assembly，battery：includes 9－pin plug．
42A485548 C1ip，coil can mtg（IF coils）．． 1148944 Cord，dial：18\＃；black．．．．．．．．．． 30x692049 Cord，line：with plug 6 ft long 5A19658 Eyelet，spacer（gang mtg）．．．．． $5 A 70404$ Grommet，ruber（gang mig）．．．．． $9 A 22056$ Insulator，electrolytic mtg．．．． 2S7051 Nut，hex（Palnut）：3／8－32 $\times 9 / 16$ ； cad pl（vol cont $\begin{aligned} & \text {（tg）}\end{aligned}$

29K5401	Pin，loop
64A692072	Plate，output
28K77272	Plug，9－pin（on battery cable）
$1 \times 601811$	Pointer，dial：red
49 A 21741	Pulley，cor
49A692078	Pulley，pointer driv
14692119	Pulley Assembly（on gang）
1X692120	Pulley and Plate Assembly：pointer drive：lncludes mtg plate and 3

43 K 692013 Retainer，strain relief bushing （use with 43A692012）
$5 K 74560$ Rivet，shoulder（drive cord pulley mtg）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
5A692104 Rivet，shoulder（pointer drive pulles mig）．．．．．．．．．．．．．．．．．．．．．
 cad pl（gang pulley mtg）．．．．．．．．．

9 9690129 Socket，tube：miniature；7－prong．
41A14244 Spring，tension（dial drive）．．
35K692125 Strap，oattery：with button．．．．．．．
31K692075 Strip，terminal：l insulated lug； end mtg；3／8＂spacing．．．．．．．．．
464600011 Stud，chassis mtg（on front of chassis）．．．．．．．．．．．．．．．．．．．．．．．．．．
$4 A 70015$ Washer，＂C＂（on tuning shaft）
458253 Washer，flat： $5 / 8 \times .390 \times .020$ brass（vol cont ntg）．．．．．．． 4K71133 Washer，spring（on tuning shaft）

## CABINET PARTS

16E691796 Cabinet，front section：green
168600109 hardware（6L1 \＆61L1）．．．．．．．．．．．．．．．．
16K600109 Cabinet，front section：browa plastic；lest grille，handle and hardware（6L2）
16K610027 Cabinet，front mection：maroon plastic；less grille，handle and hardware（61L2）．．．．．．．．．．．．．．．．．．．．．．．．．．
$16 \mathrm{D691797}$ Cabinet，rear section：greon plastic；less antenna loop and hardware（6L1 \＆61L1）


16K601710 hardware（6L2）．．．．．．．．．．．．．．．．．．．．．．．．

16K601710	Cabinet，rear section：maroon plastic；less antenna loop and hardware（61L2）．
35A692073	Channel，rubber（i）

Iront），rubber（inside cabinet

42 K 891863 Clip，cabinet locking（inside cabinet front）（early models）
42 A 480078 Clip，cabinet locking（inside cabinet back）（early models）． 42A600010 Clip，retainer（spenker grilie）．．
$1 \times 600798$ Cord，cover stop：complete．．．．．．．
55A692127 Cover，handle mig（over ends of carrying handle）

55A691943 Handle，carrying：green plastic； less apring（6L1 \％61L1）．．．．．．．．
55K600111 Handle，carrying：brown plastic； less spring（6L2）．．．．．．．．．．．．．．．．．．．．
55x601711 Handie，carrying：maroon plastic （61L2）
14A600096 Insulator：fibre（on carrying
368691956 Knob，control：green plastic（6Ll \＆ 61L1）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
36K600112 Knob，control：brown plastic（6L2）．
36K601713 Knob，control：maroon plastic（61L2）
487650 Lockwasher，internal： 6 ；cad pl （handle mtg）
13K691929 Medallion（on front of cabinet）．
$64 A 692129$ Plate，handle mtg：cad pl（under ends of carrying handle）．．．．．．
64A691941 Plate，medallion（under Medaliion）
5s400302 Rivet：． $122 \times 7 / 32$ ；stl；brs pl （mts back cover latch）．．．．．．．．
382949 Screw，nachine；6－32 $\times$ 5／16 plan hex head；cad pl（handle mig） 3S476083 Screw，machine：6－32 x 5／16 slotted locking hex head；cad pl（chassis ntg）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Screw，thread cutting：\＃4 x $\frac{1}{4}$ Phillips round head；cad pl（cover stop cord ntg）．
28490840 Speednut ：for $1 / 16^{\prime \prime}$ stud（medalifion mig）．
2S400170 Speednut：for is6＂stud（spkr grilie and ant loop mtg）（replaces 28476112）．

1X600686	Spring ${ }^{\text {d }}$ Stud Assembiy：rear cover
	latch．

414692126 Spring，handle（inside carrying handle）
41A691939 Spring，hinge（on bottom of cabi－ net）．
4K780040
457610
Washer，felt（under knobs）．．．．．
Washer，flat： $3 / 8 \times 5 / 32 \times .015$ stl；cad pl（chassis mtg）．．
4S490841 Washer，flat： $3 / 4 \times .156 \times .032$ ； cad pl（handle mtg）．

PAGE 22-108 MOTOROLA


MOTOROLA PAGE 22-1C
MODELS 51C1, 51C2, 51C3, $51 \mathrm{cl} 4, \mathrm{Ch} . \mathrm{HS}-22$

## GENERAL INFORMATION

TYPE - AC table model superheterodyne with appliance outlet and self-contained electric clock for controlling automatically the operation of the radio and the outlet.

RECEIVER MODELS

Model	Color
$51 C 1$	Walnut
$51 \mathrm{C2}$	Ivory
$51 C 3$	Tan
$51 C 4$	Green

TUNING RANGE - 535 to 1620 Kc IF - 455 Kc

TUBE COMPLEMENT -| Type | Function |
| :--- | :--- |
| 12BE6 | Converter |
|  | 12BA6 |
|  | 1F Amplifier |
|  | 50C5 |
|  | Det, AVC \& AF Amp |
|  | 35W4 |
|  | Rewer Amplifier |

POWER SUPPLY - Operates from 117 volts, 60 cycle, alternating current only. Power consumption 37 watts.


> APPLIANCE OUTLET - For use with 117 volt AC appliances only, rated at 1100 watts or less. CLOCK - Telechronself-startingelectric clock(Telechron  basic movement No. C-57, with Motorola face, hands, and escutcheon).

## OPERATING INSTRUCTIONS

The locations and functions of the clock and radio controls are shown in Figure 1.

## NORMAL RADIO OPERATION

Knob "A" on the clock turns the radio on or off. Select stations with the TUNING knob, and adjust volume with the VOLUME control.

A built-in loop antenna eliminates the need for an outside antenna in mostlocations. When receiving a weak station, rotate the receiver slightly for best signal strength. If additional pick-up is necessary, connect an external antenna to the radio by following the instructions printed on the rear panel. CAUTION: Never connect the radio chassis to a water pipe, radiator, or other ground.

## CLOCK OPERATION

The clock will start as soon as the receiver is plugged into an electrical outlet. To set the hands to the correct time, rotate the TIME SET knob (on the rear of the radio) in a clockwise direction only.
ALARM OPERATION
To set the alarm, pull out knob " C " and rotate it in a counterclockwise direction to the desired time on the alarm dial scale. The alarm will ring for one hour, or until knob " $C$ " is pushed in. The alarm function is completely independent of the other controls on the clock.
APPLIANCE OUTLET
To control an elactrical applignce automatically, plug it into the receptacle on the back of the radio. See Figure 2. It will then be turned on or of simultaneously with the radio. CAUTION: Note that the rating of the outlet is 1100 watts. or less.

If radio reception is not desired when operating the appliance, rotate the radio volume control to the minimum volume position.

BEDTIME CONTROL
The BEDTIME control will turn the radio and appliance off after any pre-set interval of time up to one hour.


Figure 2. REAR visw

Turnknob "A" to the "OFF" position and rotate knob "B to any period of time between 0 and 60 minutes. The radi and appliance will be turned off automatically after the prop er time has elapsed, and they will remain off until turne on again manually.

## AUTOMATIC RADIO OPERATION

The clock controls may be presest to turn the radio on automatically at any time up to twelve hours in advance.

If an appliance is plugged into the receptacle on the back of the receiver, it will be turned on automatically, along with the radio.

Pull out knob "C". rotate it counterclockwise to the desired time on the alarm dial scale, and push the knob back in. Rotate knob "A" firat to the "OFF" and then to the "AUTO" position. At the pre-set time, the radio will come on and will continue to play antil turned off manually. The
alarm will ring also if the knob "C" is left pulled out. The radio will come on first and, after an interval of about ten minutes, the alarm will ring.

## BEDTIME AND AUTOMATIC OPERATIONS COMBLNED

By combining the operations in the two sections above the radio may be turned off automatically and on again automatically.

When setting the BEDTIME control, rotate knob "A" to the "AUTO" position instead of "OFF". IMPORTANT: It is necessary to turn knob "A" first to the "OFF" position before proceeding to "AUTO", otherwise the radio may not shut off.

## ALIGNMENT

NOTE: It is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to Bthrough a. I mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to B-.
3. Set the signal generator for 400 eycle, $\mathbf{3 0 \%}$ modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the $L$ and diode transformers.
6. As atages are brought into alignment, reduce the signal generator output to level which produces less than. 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 3 for adjustment locations and the following chart for procedure.

ALIGNMENT CHART

STEP	DUMMY   ANTENNA	GENERATOR CONNECTION	GENERATOR   FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIGNMENT						
1.	. 1 mf	Grid of conv.   (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \mathrm{z} \\ & 4(\text { IF cores }) \end{aligned}$	Adjust for maximum.
RF AL   2.	GNMENT	-	-	Fully closed	-	Set pointer to horizontal position.
3.	. 1 mi	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	5 (Osc)	Adjust for maximum.
4.	-	Radiation loop*	1400 Kc	Tune for max	6 (Ant)	Adjust for maximum.

*Connect generator output arross 5" diameter, 5 tarn loop and couple inductively to receiver loop. Keep loopa at least $12^{\prime \prime}$ apart.


FYGURE 3. TUPE \& TRIMER LOCATIONS

MOTOROLA PAGE 22.
MODELS 51Cl, 51C2, 51C3, 51C4, Ch. FiS-2

FIGURE 4. STRING DRIVE DETAIL


1. Pull off the two radio control knobs.
2. Remove the three hex head screws which hold the loop to the cabinet.
3. From the back of the cabinet, remove the two hex head
the two hex head the appliance receptacle.
TO REMOVE CLOCK FROM CABINET
4. Remove radio chassis as above.
5. Remove the three nuts and lockwashers holding the shield behind the clock.
6. Slide the shield from the cabinet.
7. Turn the BEDTIME control knob to " 60 ".
8. Pull out the ALARM set knob.
9. Turn the RADIO control knob to "AUTO".
10. While observing the clock from the back to avoid hens ing or breaking any parts, gently push the clock forwar at the same time twisting it slightly to eliminate binding.
11. Remove the clock from the cabinet as above.
12. Pull off the RADIO control and BEDTIME knobs.
13. Remove the ALARM set knob.
14. Remove the escutcheon and crystal.
15. Carefully pull off the three hands.
16. Remove the alarm dial and clock face.
17. Turn the radio control shaft to "AUTO" position.
18. Slowly rotate the time set shaft clockwise until the switch
screws at the rear edge of the radio chassis.
19. Slide the radio chassis and loop from the cabineto
20. Disconnect the power leads to the radio chassis and


PAGE 22-112 MOTOROLA
MODELS 51C1, 51C2,
5lC3, 5lC4, Ch. HS-228


FIGURE 6. BOTTOM VIEW OF CHASSIS USING MULTYPLE CERAMIC CAPACYTOR PLATE
REPLACEMENT PARTS LIST
NOTE: When ordering parts, specify model number of set in addition to part number and description of part.



PAGE 22-114 MOTOROLA



## GENERAL INFORMATION

TYPE - Three-power (AC/DC, Battery) portable radio re ceiver. Four miniature type tubes and a selenium rectifier are used in a superheterodyne circuit.

Model	Color
5IM1U	Green
51M2U	Maroon



TUNING RANGE - 535 to 1620 Kc
TUNING RANGE - 535 to 1620 Kc IF - 455 Kc

TUBE COMPLEMENT - Type	Function
IR5	Converter
$1 U 4$	IF Amplifier
$1 U 5$	Det, AVC \& lat AF Amp
3S4	Power Amplifier
Rectifier	Selenium type for
	AC/DC operation


POWER SUPPLY - Operates from 117V AC/DC (15 watts) or from the following betteriea:
2-1-1/2V flashlight cells (Eveready *950 or equivalent)
1-67-1/2V "B" battery (Eveready \#467 or equivalent)

## OPREATIAC IASTRUGTIONS

TO OPEN FRONT COVER. The front cover is opened by cool place. MMPORTANT: Never leave low or run-down pushing upward on the " $M$ " bar located in the center of the batteries in the receiver, as they will leak or swell and cover. The receiver is automatically turned on when the damage it.
front cover is opened and raised to a vertical position.
TO OPEN BACK COVER. The back cover may be opened by gently pulling it at the top. When closing the cover, be careful not to pinch the power line cord or other leads be tween the cover and the cabinet.

117 VOLT AC OR DC OPERATION. The power cord is located inside the cabinet and may be reached by opening the back cover. Pass the line cord through the slot on the side of the receiver, and plug it into any 117 volt $A C$ or $D C$ power outlet. If the receiver does not operate from DC power, reverse the plug in the power outlet. When operating from AC power, reception may sometimes be improved by reversing the power plug in the outlet. It is not necessary versing the power plug in the outlet. It is not necessary only from house power lines.

TUNING CONTROL. Stations are tuned in with the righthand knob. The markings around the tuning knob may be read in kilocycles by adding one zero to the figures.

VOLUME CONTROL. The left-hand knob controle volume.
TO TURN OFF. Closing the front cover will automatically turn off the receiver.

ANTENNA. A loop antenna is built into the front cover. Because of the slightly directional characteristics of the loop antenna, reception from some stations may beimproved by rotating the entire receiver. In extremely noisy lacations, rotate the receiver until minimum noise and max-

BATTERY REPLACEMENT. If low volume or fuzzy tone BATTERY OPERATION. Open the back cover and install is noticedwhen operating from batteries, replace the flashthe batteries, following the instructions on the labelinside light cells. Normally, the 67-1/2V "B" battery will last for the back cover (or see Figure 1). Insert the line cord plug 3 or 4 changes of the flashlight cells. The condition of the into the receptacle on the chassis, or the receiver will not batteries will not affect the operation of the receiver from play from batteries. If the receiver is to be operated for a $1 / 77$ volts AC or DC. Completebatteryreplacement instruclong period of time from 117 valts AC or DC, or is to be tions will be found inside the cabinet back cover (or see Figplaced in storage, remove the batteries and store them in a ure l).


ALIGNMENT

NOTE: The receiver may be operated either from batteries or from the commercial power lines during alignment. If AC power is used, it is recommended that an isolation transformer be placedbetween the power line and the receiver. If an isolation transformer is not available, connect the low side of the signal generator to $B$ - through a . l mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to $\mathbf{B -}$ -
3. Set the signal generator for 400 cycle, $\mathbf{3 0 \%}$ modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF a diode transformers.
6. As stages are brought into alignment, reduce the sign generator input to keep the output of the receiver at appro imately .05 watt (. 05 watt $=.40$ volts on the output mete to avoid overloading the receiver.
7. See Figure 2 for adjusting locations and the followin chart for procedure.

ALIGNMENT CHART

STEP	DUMMY   ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALI $1 .$	GNMENT   . 1 .mf	Grid of conv (рin 6, 1R5)	455 Kc	Fully open	$\begin{aligned} & 1,2 \& 3 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
RF ALI $2 .$	NMENT   . 1 mf	Grid of cony (pin 6, 1R5)	1620 Kc	Fully open	4 (Osc)	Adjust for maximum.
3.	-	- .	-	-	-	Install chassis in cabinet, leavir output meter connected to speak
4.	-	Radiation loop*	1400 Kc	Tune for max.	5 (Ant)	Adjust for maximum. Trimmer reached through hole under plug button on side of cabinet.

* Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at lea 12" apart.


FIGURE 2. TUBE \& TRIMMER LOCATIONS

## SERVICE NOTES

The chassis of this receiver is isolated from the AC power line circuit by a capacitor-choke assembly to eliminate the shock kazard when handling the receiver. However, as an additional precaution when aligning or servicing the receiver from $A C$, an isolation transformer should be inserted between the power line and the chassis.

TO REMOVE THE CHASSIS FROM THE CABINET:

1. Pull off the two control knobs on the front of the cabinet 2. Open the rear cover and remove the batteries.
2. Remove the two Phillips head screws holding the chassis to the cabinet ("A" - "A" in Figure 1).
3. Slide the chassis out of the cabinet.

The tubes are exposed when the rear cover is opened. 5. Disconnect the two leads from the chassis to the loop It is not necessary to remove the chassis to replace tubes. antenna hinges.


FIGURE 3.



FIGURE 6. SCHEMATIC DIAGRAM OF CHASSIS USING MULTIPLE CERAMIC CAPACITOR PLATE


## REPLACEMRMT PARTS LIST

NOTE: When ordering parts, sperify model number of set in addition to part number and description of part.

Ref. No.	Part   Number	Description
Chassis parts - ELECTRICAL		
C-1	19K692007	Variable,
C-2	21K481377	Ceramic: 500 mmf 50
C-3	8K471635	Paper: . 05 mf 400 V
C-4	238691995	$\begin{gathered} \text { Electrolytic } 40-40 \mathrm{mf} \quad 150 \mathrm{~V} / \\ 250 \mathrm{mf} \quad 10 \mathrm{~V}, \ldots \ldots \ldots \end{gathered}$
c-5	$21 \times 482726$	```Ceramic, disc type: 10,000 mmf 450v...................```
C-6	$21 \mathrm{K77373}$	Ceramic: 47 maf 500 v
C-7	$8 \mathrm{K71213}$	Paper: . 05 ml loov........
C-8	$21 K 482726$	Ceramic, disc type: 10,000 mmf 450v......................
C-9	21877286	Ceramic, disc type: 100 mmf loov...........................
C-10	8K24966	Ceramic, disc type: . 005 mf 100v.
C-11	214470789	
$\mathrm{C}-12$	$8 \times 71213$	Paper: . 05 mf 100v.......
C-13	21K482726	$\begin{aligned} & \text { Ceramic, disc type: } 10,000 \\ & \operatorname{mmf} 150 \mathrm{Y} . \ldots \ldots \ldots \ldots \ldots \ldots \end{aligned}$
c-14	2116691992	$\begin{aligned} & \text { Ceramic, multiple: } \quad 2000 \mathrm{mmf}, \\ & 100 \mathrm{mmf}, 100 \mathrm{mmf}, \quad 5000 \mathrm{~mm} 1 \end{aligned}$


Cr-1	218601036	Capacitor-Resistor: 5000 mmf , $5000 \mathrm{mmf} ; 100 \mathrm{mmf}, 100 \mathrm{mmf}$, $4.7 \mathrm{meg}, 2.2 \mathrm{meg}, 1 \mathrm{meg} . . . .$.
Choke Capacitor		
E-2	24K691986	Choke \& . 05 mf 200v paper capacitor
Rectifier		
$\overline{\mathbf{E}-1}$	48 B 791092	Selenium Rectifier: halfwave...........................
$\frac{\operatorname{Cot} 1 \mathrm{~s}}{\mathrm{~L}-1}$		
	1x692159	Antenna Loop \& Front Cover Assembly: complete; green plastic (51M1U)..............
	2X692160	Antenna Loop, Panel \& Hinge Assembly: less front cover; green plastic (51wlu)......
	24B692200	Antenna Loop \& Panel Assembly: less hinges: green plastic (5lhle)..............
	$1 \times 600129$	Antenna Loop \& Front Cover Assembly: complete: maroon plastic (5im2U).
	$1 \times 600130$	Antenna Loop, panel \& Hinge Assembly: less front cover; maroon plastic (51W2U).....
	24K600132	Antenna Loop \& Panel Assembly: less hinges; maroon plastic (51m2U). $\qquad$
	4K60009	Oscillator Coil (yellow code)



Part Number

## Description

$31 \mathrm{K470880}$	Strip, "B" battery terminal: leads...........................
31K37504	Strip; terminal: 1 insulate \#l mtg..........................
31 K 470746	Strip, terminal: 3 insulated \#2 mtg.........................
4K470939	Washer, fibre (R-3 m

MODEL 5IMIU CABINET PARTS
7A600092 Bracket, escutcheon support (cab-
inet front support). .........................

38K692050 Button, plug: green finish (loop trimmer adj hole cover)............
$1 \times 601812$ Cabinet: complete; less handle, grille and antenna loop and front cover assembly; green plastic.....
42A600094 Clip; grille retainer (holds grilie to cabinet)
55A692058 Cover, handle mtg (over ends of
130691949 Escutcheon, dial \& volume (on front of cabinet)
55A27113 Foot, cabinet bottom: felt.....
$1 \times 692162$ Front Cover Assembly: complete;
less loop; green plastic.............
MODEL 51M2U CABINET PARTS-Same as Model 51miU Except
38K600106 Button, plug: maroon finish (loop trimmer adj hole cover)............
$1 \times 601816$ Cabinet: complete, less handle, grille and antenna loop and front cover assembly; maroon plastic....
13K600956 Escutcheon, dial \& volume (on front of cabinet)
$1 \times 600131$ Front Cover Assembly: complete, less loop; maroon plastic.........
1X600128 Grille Assembly: complete with
55 K 600107 Handle, carrying: . maroon plastic; less spring..................................
36K600105 Knob, control: maroon plastic.....
552827 Rivet: . $088 \times 5 / 32$; sti; statuary bronze (front hinge mig).....
$5 S 2828$ Rivet: . $088 \times 3 / 16$; stl; statuary bronze (front cover hinge mtg)

3540033
Screw, sheet metal: $2 \times 5 / 16$; Phillips flat head; statuary bronze (mounts loop to front cover).
46K680035 Stud, trimount: statuary bronze (on loop panel - for operating onoff switch)

## Speaker

$\overline{\mathrm{LS}-1} 50 \mathrm{~K} 600141$
or 50 K 600142
or 50B610070 Speaker: $3 \frac{1}{2}{ }^{\prime \prime}$ PM; 3.2 ohm VC

MODELS 59XII,
59X12I, Ch. HS-180

## GENERAL INFORMATION

TYPE - AC-DC table model superheterodyne receiver with loop antenna

TUNING RANGE - 535 to 1620 Kc IF - 455 Kc
TUBE COMPLEMENT - 12BE6 Converter
12BA6 IF Amplifier
12ATG Detector, AVC \& lst AF Amp 50C5 Power Amplifier
35W4 Pectifier


MODEL $59 \times 11$
蛙H2 $59 \times 12 \mathrm{I}$
(Mahogany Plastic Cabinet) (Ivory Plastic Cabinet)


FIGURE 1. STRING DRIVE

## INSTALLATION \& OPERATING INSTRUCTIONS

POWER SWITCH AND VOLUME CONTROL. Operated with the left-hand knob. NOTE: Reverse the line cord plug in the wall outlet if radio does not operate from $D C$. When operating from $A C$, reversing the line cord plug in the wail outlet may sometimes improve reception and reduce hum.

TUNING. Tune stations with right-hand knob.
ANTENNA. A loop antenna is built into this receiver, eliminating the need for an external antenna. Reception from some stations me improved by
rotating the whole receiver; this is due to the slight directional characteristic of the loop antenna. In extremely noisy locations, rotate the entire receiver till minimum noise and maximum signal pickup are obtained. For additional pickup, an external antenna may be connected by winding leadin wire in slots on radio back panel.

GROUND. Never connect antenna or chassis to water pipe, radiator or other ground, as one side of the power line is connected directly to chassis.

## SERVICE NOTES

The chassis of this receiver is connected directly to the power line. Hhen operating chassis (from AC line) outside of its cabinet, use an isolation transformer between power line and receiver to reduce possibility of electrical shock. If
isolation transformer is not available, check the $A C$ voltage between chassis and bench ground; if there is any indication of voltage, reverse the line plug before handling set.

## ALIGNMENT

If $A C$ power is used, use an isolation transformer between power line and receiver. If isolation transformer is not available, connect low side of signal generator to chassis through . 1 mf capacitor.
voice coil and set volume control at maximum. For greatest accuracy, keep output of receiver at approximately .05 watt (. 05 watt $=.40$ volt on output meter) throughout alignment by reducing signal generator output as stages are brought into alignment. Use a small fibre screwdriver for aligning IF 8 diode transformers.

STEP	DUMMY ANTEMNA	GEMERATOR CONWECTION	GENERATOR fREQUENCY	GANG SET TO	ADJUST	REMARKS
IF AI	GMMENT .1 mf	Rear stator of tuning capacitor	455 Kc	Gang opened	$1,2,^{3}$	Adjust for maximum.
$\begin{aligned} & R F A 1 \\ & 2 . \end{aligned}$	GHMERT	$\begin{aligned} & \text { Raciation } \\ & \text { locp** } \end{aligned}$	1620 Kc	Gang fudly opened	5	Adjust for maximum
3.	-	Radiation $100{ }^{*}$	1400 Kc	Tune for maximum	6	Adjust for maximum

[^2]

FIGURE 2. TUBE \& TRIMMER LOCATIONS


## REPLACEMENT PARTS LIST

nef.
No.

CHASSIS PARTS - ELECTRICAL		
CAPACITORS		
C-1	1X690759	Variable: 2 gang; with pulley
C-2	8.59821	Paper: . 05 mf 200V ..........
C-3,5,		
6,7	21B482847	Ceramic, multiple: includes 220 mmf ( $\mathrm{C}-3$ ), . 002 mf ( $\mathrm{C}-5$ ) 220 mmf (C.-6) \& . 005 mf ( $\mathrm{C}-7$ )
C-4	$8 \mathrm{S9816}$	Paper: .05 mf 400 V .....
C-8	8 S 9802	Paper: . $02 \mathrm{mf} \mathrm{400V}$
C-9	23K482857	Electrolytic: 50-30 mf 150 V ..
C-10	8A470504	Paper: . $25 \mathrm{mf} \mathrm{50V}$. $\ldots$. . . .
PILOT Light		
I-1	65K11854	Bulb: 6.3V-. 15 amp; tubular, clear, *47
OILS		
L-1	24K690657	Loop Antenna: includes back panel
L-2	24K482855	BC Oscillator roil ...........
SPEAKER		
LS-1	$50 \mathrm{C478138}$	Speaker: 4" PM; 3.2 ohm voice coil
RESISTORS		
Note:	All resist unless oth	ors are insulated carbon type, 20\%, hwise specified.
R-1	6R6028	22,000 $1 / 2$ watt
R-2	6R6018	100 1/2 watt ....
R-3	6R2118	3.3 meg $1 / 2$ watt .........
R-4	18A70032	Volume Control: l meg with SPST switch
R-5	6R2109	10 meg $1 / 2$ watt ...........
R-6	6R5683	27 10\% 1/2 watt
R-7	6R6032	470,000 1/2 wate ..........
R-8	6R6032	470,000 1/2 watt
R-9	6R3992	150 1/2 watt ...
R-10	6R3953	10001 watt
R-11	6H6028	100 1/2 watt
R-12	6R6161	1500 1/2 watt
R-13	6R6161	1500 1/2 watt .............
TRANSPORMERS		
T-1	24B482863	IF, 455 Kc: complete with tuning cores \& padding capacitors but less shield ...................
T-2	248482865	Diode, 455 Kc : complete with tuning cores \& padding capacitors but less shicld .....
T-3	25K485973	Output Transformer

CHASSIS PARTS - hechanical

7 4 485971	Bracket, loop mtg
7 777337	Bracket,
1X690679	Bracket and Insulator Assembly, pointer shaft mtg $\qquad$
46K680318	Core, iron (for T-1 \& T-2)
1148944	Cord, dial: 18*; blk
30K482856	Cord, line \& plug: 6 ft
5A19658	Eyelet, spacer (gang mtg
5A70404	Grommet, spacer (gang mt
144482844	Insulator, cord outlet
29R3010	Lug, soldering: \%6 hot-tinn

REF
NO.

## PART No.

257051
$5 S 7771$
5S7707

557701

357477

3S2294

3S7454

3 S3398
$1 \times 690775$
X690774
26K485936
26A470013
26A481521
9 K 690673
9A472534
41A14244
41 A73996
4 A 70015
$4 S 7633$
$4 K 482859$

CABINET PARTS

16E690504	Cabinet, table model: molded; mahogany (59X11)
16K690659	Cabinet, table model: wolded; ivory (59XI2I)
36K690668	Knob, control: mahogany (59x1i)
36K690669	Knob, control: ivory (59X12I)
64B690666	Plate, trim
38A25507	Plug, split (antenna panel to cabinet meg)
52k690744	Pointer and Hub
34 C 690662	Scale, dial
357148	Setscrew: 6-32 $\times 1 / 8$ Allen head; stl; cad pl (pointer and hub
3S490381	Screw, drive: $00 \times 1 / 4$ PKC: plain round head; brass (dial scale mig)
3S488098	Screw, sheet metal: $\$ 8 \times 3 / 8$ type 25; plain hex head; stl; cad pl (chassis mtg) ........
46K690772	Stud, trimount (trim plate mtg)

## MODELS 59X21U,

59X22IU, Ch. HS-192

## GENERAL INFORMATION

TYPE - A combination standard broadcast and short wave table model receiver.

TUNING RANGE - Standard broadcast - 535 to 1620 Kc
Shortwave - 5.85 Mc to 18.1 Mc
IF - 455 Kc
TUBE COMPLEMENT - 12RE6 - Converter
12BA6 - IF Amplifier
12AT6 - Detector, AVC \& 1st Audio Aup
50C5 - Power Amplifier
35W4 - Rectifier


POWER SUPPLY - 117 V AC/DC 35 watts

## INSTALLATION $\varepsilon$ OPERATING INSTRUCTIONS

ANTENNAS. For short wave reception, it is necessary to connect length of wire (at least 10 feet long) to the screw terminal located on the radio rear panel. A commercial short wave antenna is recommended for best results.

No outside antenne is noraally required for standard broadcast station reception. A loop antenna for receiving broadcast stations is built into the radio. If radio is located at considerabie distance from broadcast stations, it may be necessary to secure additional signal pickup by uning an external antenna. The same antenna that is used for short wave reception can be used for additional pickup of standard brasdcast stations by leaving it connected to the short wave terminal screw and winding two turns of the sume wire in the alots located at the top of the radio rear panel.

CAUTION: Do not connect antenna or chassis
to water pipe, radiator or other ground.
POWER SWITCH \& VOLUME CONTROL. The power switch and volume control are combined and operated by the left hand knob. If radio does not play from a DC power line after being turned on for a few minutes, reverse the power cord plug in the power outlet. When operating from AC power lines, reception can sometimes be improved by reversing the power cord in the power outlet.

BANDSWITCH. The small (inner) right-hand knob selects standard broadcast or short wave reception, as desired. Rotate this knob to the left for standard broadcast or to the right for short wave reception.

TUNING. The large (outer) right -hand knob is used for tuning both standard broadcast and short wave stations.

## TO REMOVE CHASSIS FROM CABINET

1. Set pointer to extreme low frequency end to expose pointer setscrew. Loosen pointer setscrew through hole in bottom of cabinet.
2. Remove the knobs; they pull off.
3. Remove the two split plugs that hold the top of loop panel to cabinet.
4. Remove the two screws that hold the chassis to the cabinet. These acrews are accessible through slotis in the loop panel.

MOTOROLA PAGE 22-120

## ALIGNMENT

Use an isolation transformer between power line and receiver. If isolation transformer is not available, connect low side of signal generator to B. through . 1 mf capacitor.

Connect low range output meter across speaker voice coil and set volume control at maximum. For greatest accuracy, keep output of receiver at approximately .05 watt (. 05 watt $=.40$ volt on output meter) throughout alignment by reducing signal generator output as stages are brought into alignwent. Use a small fibre screvdriver for aligning IF \& diode transformers.


STEP	$\begin{aligned} & \text { DUANY } \\ & \text { MNTENMA } \end{aligned}$	GENERATOR CONHECTION	GEMERATOR FREQUENCY	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \end{aligned}$	$\begin{aligned} & \text { GANG } \\ & \text { SET TO } \end{aligned}$	ADJUST	REMARKS
$\begin{aligned} & \text { IF Al } \\ & \text { l. } \end{aligned}$	GMMENT $\text { . } 1 \text { mf }$	Rear stator of tuning capacitor	455 Kc	-	Gang opened	1, 2, 3\& 4	Adjust for maximum.
$\begin{aligned} & \mathrm{SW} \\ & 2 \mathrm{BA} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RF ALIO } \\ & 400 \\ & \text { ohms } \end{aligned}$	ENT   SW Ant ter minal	18.1 Mc	SW	Fully opened	$5 \& 6$	Adjust for maximum.
$10 c$   3.	RF ALII .1 af	ENT   Rear stator of tuning capacitor	1620 Kc	BC	Fully opened	7	Adjust for maximum.
4.	None	Radiation loop*	1400 Kc	BC	Tune for maximum	8	Adjust for maximum.

- Connect generator output to $5^{\text {n }}$ diameter, 3 turn loop and couple to receiver loop. Keep loops at least $12^{\text {n }}$ apart.




## REPLACEMENT PARTS LIST

REF.
NO. PART NO.

## CHASSIS PARTS - ELECTRICAL

CAPACITORS

C-1	21k77373	Ceramic; 50 maf 500 V
C. 2	214690643	Mica: 775 maf 3\% 300V
C-3	20K69065S	Mica, variable: 3 to 20 mf
C-4	1X690682	Variable: 2 gang \& pulley
C. 5	21677373	Cerceic: 50 mmf 500 V
C-6	204680362	Mica, veriable: 10 to 50 maf
C.7	8 S 9807	Paper: . 1 mf 400 V
C-A	859821	Paper: . 05 of 200V
C-9	8S9816	Paper: . 05 af 400 V
C-10	8472686	Paper: . 15 of 200V
C-11, 12.		
13.1	4 218482847	Ceranic, multiple: . 002 mf. 220 min, 220 mi \& . 005 mf ........
C. 15	8A670504	Paper: . 25 mf 50V
C-16	899802	Paper: .02 af 400 V
C-17	23K690671	Electrolytic: 40-20-20 $\mathrm{m} / \mathrm{l}$ ( 50 V
DIAL LICHT		
I-1	$65 \times 11854$	Bulb: 6.3V . 15 mp; tubular bayonet base
coils		
L-1	$24 \times 690656$	Loop Antenne Assembly: includea back papel $\qquad$
L-2	248690641	Coil, short wave antenna
L-3	248690651	Cail, short mave oncillator
L-4	244690652	Coil, BC oacillator
SPEAKER		
LS-1	50C478138	Spenker, PM: 4n: 3.2 ohn VC. ....

## RESISTORS

Note: All resistora are insulated carbon type uniest otherwise apecafied.

A. 1	9R6075	100,000 20x 1/2w
R-2	6R2108	47 20\% 1/2w
R-3	6R5028	22,000 20\% 1/2w
A-4	6R6326	100 10\% $1 / 2 \mathrm{~m}$
R -5	6R2118	3.3 meg 20 㐌 $1 / 2 \mathrm{w}$
A-6	18AT0032	Volume Control: leg; includea ( A -OtF awatch .....................
R-7	6R2109	10 eg 208 1/2w
R-8	6R6032	470.000 20x 1/2w
R-9	6 65683	27 10\% 1/2\%
R-10	5R6032	470,00n 20\% 1/2\%
R-11	6R3992	15020 F
R-12	6R3953	1000 20\% 1W
R-13	6R3933	
P-14	6R6326	100 10\% 1/2w
R-15	6R6038	1500 10\% 1/2w
R-16	6R6038	1500 10\% 1/2*
SwITCH		
S-1	40K690672	Switch, band: 2 -position .........
TRANSFOREAS		
T-1	248482863	IF. 455 Kc: complete with tuning cores and padding capacitors but lees shield
T-2	248482865	Diode, 455 Kc: complete mith tunin cores and padding capecitors but less shiejd
T-3	25K471947	Transformer, output
CHASSIS PARTS - MECHANICAL		
	$1 \times 690679$	Bracket and Insulator Assembly, pointer shaft mig
	7K485971	Heseker, loop meg...
	$11 \mathrm{Ma944}$	Cord, dial: 18f, black ...........
	304470651	Cord, line s plug: $6 \mathrm{ft} \mathrm{Ig}_{\mathrm{g}} \ldots .$.
	46K680318	Core, iran: threaded (for Tol   T-2)
	5419658	Eyelet, spacer

REF.
NO.
PART NO.

54,0404	Gromet, rubber (gang	
29R3010	Lug, solderim	
144482844	Insulator, cord of	
2S7051	Nut, hex: 3/8-32 x 9/16; st1; cad pl (band switch and volume control atg)	
457019	Nut, hex: $\$-40 \times 1 / 4$; atl; cad pl (coil and trimer atg).....	
5S7771	Rivet: . $088 \times 3 / 16$; atl; akl pl (tube socket atg)	
557707	Rivet: . $122 \times 5 / 32$; at!; nkl pl Spointer bracket $\&$ insulator assembly and apring mtg)	
452950	Screv, machine: $4-10 \times 1 / 4$ slotted binderhead; locking type; att; cad pl (coil and tritaber atg) ...................	
3 S 2294	Screw, eachine: $6.32 \times 1 / 2$ plain hex head; locking eype; atl; cad pl (gang wtg) ................	
357477	Screv, machine: $8-32 \times 1 / 4$; cype 1; plain hex head; stl; cad pl (loop beck meg)	
3S3398	Screw, sheet metal: 做 $x$ 3/B FkZ plain hex head; atl; cad pl (bracket and ingulator mtg). .	
3S7454	Screw, sheet antal: $\\| 8 \times 1 / 4$ PRZ plain hex head; arl; cad pl (apkr meg and diode shield	
47A690645	Shaft, pointer	
47K690573	Shaft, tuning ................	
24K485936	Shicld, coil (for T-1 \& T-2)	
26A690748	Shield, diode	
204470013	Shield, dight .....................	
26A481521	Shield, tube: spring	
\$K600673	Socket, pilot light: includes leads.	
94472534	Socket, tube	
41414111	Spring, cord tension ...........	
41173996	Spring, tension (electrolytic mitel.	
4070015	Wamer ' C ' (pointer shaft retainer)	
4073639	Washer ' $C$ ' (tuning ahaft retain-	
457633	Washer, flat: $9 / 16 \times 11 / 64 \times .033$ thick; stl; cad p! (loop beck	
4K482859	Washer, shoulder: insulated (loop bracket and inaulatar atg).....	

## CABIMET PARTS

16E690504	Cobinet, coble model: molded; manogany (59x2 2 C ) ............
15K690659	Cabinet, cable model: molded; ivory (59X22IU)
36K482767	Knob, band contral: gahogeny (59X21U)
364482788	Knob, band control: ivory (59X22IU).
36K690668	Knob, tuning control: mahogany(59x21U
36K690669	Knob, tuning control: ivory (59X22IU)
36B690664	Knob, volume \& ON-OFF control:   mohogany (59X21U) .....................
364690665	Knob, volume \& (N-OFF concrol: ivory (59×22IU)
64B690666	Place, crim
	Piug, spilic (loop back to cabinet e(g)
52X690744	Pointer and hub
34K690663	Scale, dial
3S490502	Screw. drave; WOO $^{2} 1 / 4$ PKU plain round bead; brast (dial scele meg)
3 S488098	Screw, sheec metal: 8 : $3 / 8$; type 25; plain hex head; Etl; cad pl (chassis mtg)
357148	Setscrew: $6.32 \times 1 / \mathrm{g}_{\text {; }}$ Allen head; atl; cad pl (pointer s hub atg)
46K690772	Stad, erimount: bruse pl (trin plate mt )

## GENERAL IMFORMATION

TYPE - Universal automotive type superheterodyne receiver with self-contained speaker. Designed for underdash mounting. Receiver may be mounted behind instrument panel of some cars by using Trim Plate AK-38.

TUNING RANGE - 535 to 1605 Kc
IF $=455 \mathrm{Kc}$
TUBE COMPLEMENT - 6BA6 - RF Amplifier 6BE6 - Converter 6BA6 - IF Amplifier 6AT6 - Detector-AVC-AF Amp 6AQ5 - Power Amplifier 6X4 - Rectifier

POWER INPUT - 6.3 volts DC, 5 amperes


FIGURE 1. DIAL CORD RESTRINGING DETAIL

## AEIOMEENE

## Equipment Required:

1. A small fibre screwdriver for IF and RF adjustments.
2. An accurately calibrated AM signal generator
3. A low range output meter.
4. A dummy antenna for RF and tuner alignment. (Construct dummy antenna as shown in Figure 3.)
Procedure:
5. Remove top and bottom covers to expose alignment ad-
justments.
6. Connect output meter across voice coil of the speaker.
7. Connect a 6 volt DC source of power between "A" lead and receiver ground. Turn receiver on and permit it to warm up for a few minutes. Then proceed as per instructions in the alignment chart.

NOTE: Keep output of receiver at approximately 1 watt ( 1 watt $=1.79$ volts on output meter) throughout alignment by reducing signal generator output as stages are brought into alignment.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	TUNER SET TO	ADJUST	REMARKS
$\begin{aligned} & \text { IF ALIC } \\ & \text { 1. } \end{aligned}$	GNMENT .1 mf	6BE6 grid (pin \#7)	455 Kc	High frequency end of dial (cores out)	1,2,3 \& 4	Peak for maximum in order indicated
$\begin{aligned} & \text { RF ALI } \\ & 2 . \end{aligned}$	IGNMENT   See Fig. 3	Antenna receptacle through dummy	1605 Kc	"	5	Peak for maximum.
3.   TUNER	"   ALIGNME	'	1400 Kc	Tune for max.	$6 \& 7$	"

NOTE: The tuner cores have been correctly aligned at the factory. Field alignment of the tuner is not recommended unless components have been replaced or tampered with. Construct two core alignment tools as shown in Figure 4 . Refer | 4. | See Fig. 3 | Antenna recep- | 1610 Kc | High frequency |
| :--- | :--- | :--- | :--- | :--- |

5,6 \& 7
Peak for maximum in order indicated.
6. With receiver installed in car, the antenna fully extended and dial set to approximately 1400 Kc , adjust antenna trimmer (7) for maximum signal of a weak station or noise between stations.


FIGURE 2. TUBE \& TRIMMER LOCATIONS

PAGE 22-1 34 MOTOROLA


MOTOROLA PAGE 22-1: MODEL 40




## GENERAL INFORMATION

> TYPE - Universal automotive type superheterodyne receiver. Designed for underdash mounting. Uses an external speaker. Receiver may be mounted behind instrument panel of some cars by using Trim Plate Kit AK-38.


## ALIGNMENT

1. A small fibre' screwdriver for IF and RF adjustments.
2. An accurately calibrated AM signal generator.
3. A low range sutput meter.
4. A dummy antenna for RF and tuner alignment. (Construct dummy antenna as shown in Figure 3.$)$

Procedure:

1. Remove top and bottom covers to expose alignment ad-
justments.
2. Connect output meter acress voice coil of the spenker.
3. Connect a 6 volt $D C$ source of power between "A" lead and receiver ground. Turn receiver on and permit it to warm up for a few minutes. Then proceed as per instructions in the alignment chart.

NOTE: Keep output of receiver at approximately 1 watt (I watt $=1.79$ volts on output meter) throughout alignment by reducing signal generator output as stages are brought into alignment.

ALIGNMENT CHART

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	TUNER   SET TO	ADJUST	REMARKS
$\begin{aligned} & \text { IF } \mathrm{ALI} \\ & 1 . \end{aligned}$	GNMENT   . 1 mf	6BE6 grid (pin \#7)	455 Kc	High frequency end of dial   (cores out)	1. 2,3 \& 4	Peak for maximum in order indicated.
$\begin{aligned} & \text { RF AL } \\ & 2 . \end{aligned}$	IGNMENT   See Fig. 3	Antenna receptacle through dummy	1605 Kc	"	5	Peak for maximum.
3.	"	${ }^{\prime}$	1400 Kc	Tune for max.	$6 \& 7$	"
TUNER ALIGNMENT						
NOTE:	components have been replaced or tampered with. Construct two core alignment tools as shown in Figure 4. Reler to Figure 4 for proper use of tools, and procred to align as follows:					
4.	See Fig. 3	Antenna receptacle through dummy	1610 Kc	High frequency end of dial;cores should project 1-1/32" from end of coil form screw out if necessary	$5,6 \& 7$	Peak for maximum in order i indicated.
5.	"	,	1400 Kc	1400 Kc -per Figure 2	8, 9\% 10	"

6. With receiver installed in car, the antenna Yully extended and dial set to approximately 1400 Kc , adjust the antenna trimmer (7) for maximum signal of a weak station or noise between stations.


FIGURE 2. TUBE \& TRIMMER LOCATIONS

PAGE 22-140 MOTOROLA



NOTE: When ordering parts, specify model number of set in addition to part number and description of part

Ref. Part
No. Number
Description

CHASSIS PARTS - ELECTRICAL
Capacitors

C-1	21A591682	Ceramic: 90 mmf 500V.
C-2	8A4529	Paper: . 006 mf 100 V
C-3	$20 A 502338$	Trimmer, mica: 20 to 180 mmf
C-4	21K70720	Molded: 5 mmf 500V.
C-5	20A481526	Trimmer, mica: 20 to 80 mmf
C-6	$21 \mathrm{K77373}$	Ceramic: 47 mmf
C-7	20A485708	Trimmer, mica: 395 to 470 mmf
C-8	8K14791	Paper: . 05 mf 400 V .
C-9	8R13514	Paper: .05 mf 100V
$\mathrm{C}-10$	8K17028	Paper: . 5 mf 100V
C-11	8R472754	Paper: . 01 mf 100V
C-12	8K17028	Paper: . 5 mf 100 V
C-13	8R23690	Paper: , 01 mf 400V
C-14	21K481377	Ceramic: 500 mmf
C-15	8R9883	Paper: . 03 mf 1000 V
C-16	23A485677	$\begin{gathered} \text { Electrolytic: } 15-10-20 \mathrm{mf} / \\ 350-350-25 V . \ldots \ldots \end{gathered}$
C-17	8K71909	Paper : . 004 mf 400V
Fuse		
F-1	65 K 16248	Fuse: 9 amp

$\frac{\text { Vibrator }}{\text { G-1 }} 48 \mathrm{~B} 3333$
Vibrator: 4-pin; non-sync...
$\frac{\text { Dial Light }}{\text { I-1 }} \frac{65 \times 10867}{}$
Bulb: 6.3V; .25A; tubular;
bayonet base; \#44 ........
Coils

Note: All resistors are insulated carbon type unless otherwise specified.
$\left.\begin{array}{llllllll}\mathrm{R}-1 & 6 R 6032 & 470,000 & 20 \% & 1 / 2 W & \ldots\end{array}\right]$.

## MODEL 451



Part
Number

## Eescription

housing parts

43A501295	Bushing, mounting (on control
150501282	Cover, housing bottom
15 K 501310	Cover, housing top
130501197	Escutcheon, dial: chrome pl
368501297	Knob, control: includes setsc
64 K 501447	Plate, dial scale retaining: ivory.
34B501360	Scale, dial: glass
358114	Screw, sheet metal: \#8 x 1/4; slotted acorn head; antique copper finish (housing screws)
3S490733	Screw, sheet metal: \#8 x 1/4 Phillips head; chrome pl (escutcheon mtg)
357118	Setscrew (control knob)
257087	Speednut (dial scale mtg)

MOUNTING PARTS AND ACCESSORIES
7B501298 Bracket, receiver mtg ( recvr to instrument panel)
7A 72256 Bracket, receiver mtg (on hsng)....
7A484424 Bracket and Stud Assembly (receiver mtg)
8A4491 Capacitor, noise suppression (generator cap)
$9 K 592648$ or
9K580705 Lead Assembiy: complete with fuse..
4 S7688 Lockwasher. int-ext: $1 / 4$; cad pl (receiver mtg).
2S2878 Nut, hex: 1/4-20 x 7/16; stl; cad pl (receiver mtg)
357475 Screw, sheet metal: \#8 $x$ 1/4 slottea acorn head; cad pl (mig brkt mtgrear)
3S8109 Screw, sheet metal: "8 x 3/8; PKZ; slotted acorn head; cad pl (mtg brkt mtg-front)
357295 Screw, machine: $1 / 4-20 \times 3 / 4 ;$ plain hex head; stl; cad pl (receiver mtg strap)
359694 Screw, machine: 1/4-20 $\times 1-1 / 2$; plain hex head; stl; cad pl (receiver mtg to firewall)
42A485718 Strap, receiver mtg
6A4141 Suppressor, noise (distributor).
TUNER - MODEL MT-87
Note:
Electrical parts of the tuner are included in the Electrical Chassis Parts List
51D502490 Tuner, Modei mT-87: complete.......
$43 A 502513$ Bushing, stop (stop on manual drive shaft)
42A502507 Clip, spring (manual drive shaft retainer)
46A502505 Core, iron (L-1, $2 \& 3$ tuningspecify color coding on old core when ordering)
5A502510 Grommet (L-1 $\bar{\varepsilon}$ L- L mtg )
5K502516 Grommet ( $\mathrm{L}-3 \mathrm{mtg}$ )
5A501503 Grommet (L-1, $2 \& 3$ core mtg)...
2A502508 Nut, tension drive (on tuner carriage)
47A502509 Shaft, manual drive
$46 A 502506$ Sleeve, iron (inside L-1 \& L-2 shields)
4K502518 Washer, fibre (on manual drive shaft)
4 A 502517 Washer, paper (inside L-1 \& L-2 (hinlds)


## GENERAL INFORMATION

TYPE - Compact automotive type superheterodyse receiver with self-contained speaker. Receiver is designed for installation in any car when used with appropriate Motorola control head.

TUNING RANGE - 535 to $1600 \mathrm{Kc} \quad$ IF -455 Kc
TUBE COMPLEMENT - 6BA6 - RF Amplifier
6BE6 - Converter
6BA6 - IF Amplifier
6AT6 - Det, AVC \& AF Amp
6AQ5 - Power Amplifier
6 X4 - Rectifier
POWER INPUT - 6.8 amps at 6.3 volts
POWER OUTPUT - 3.5 watts (max)


## REPLACEMENT PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.



Part Number	Description
housing parts	
42A472033	Clip, chassis retainer
138501659	Cloth, speaker escutcheon
13 D 501358	Escutcheon, speaker ...
$1 \times 501347$	Housing and Bushing Assembly, rear.
1X501349	Housing, front: includes escutcheon.
357456	Screw, sheet metal: \#8 x 1/4 PKA slotted acorn head; antique copper finish (housing screws).....
ACCESSORIES	
65×4151	Bulb, pilot light: 6-8V; clear bayonet base
8A4491	Capacitor, generator
$9 \mathrm{B473111}$	Lead Assembly, fuse: complete with 9 amp fuse
$1 \times 74340$	Lead Assembly, dial light: complete with bulb
4S7653	Lackwasher, int-ext: 5/16; sti; cad pl (receiver mtg) ...............
4S7657	Lockwasher, ext: \#8; stl; cad pl (speaker mtg)
2S7003	```Nut, hex: #8 x 5/16; stl; cad pl (speaker mtg)```
252863	Nut, hex: 5/16-18 x 9/16; st1; cad pl (receiver mtg)
$1 \mathrm{K75148}$	Shaft, flexible: with housing 24" 18
50K500415	Speaker, PM: 5-1/4; 3.2 ohm vC....
$3 \mathrm{A77542}$	Stud, receiver mtg
6X4141*	Suppressor, distributor

## tuner parts - mechanical

Note: Electrical parts of the tuner are tncluded in the Electrical Chassis Part List.

$1 \times 592301$	nual
$1 \times 592099$	Base, Sleeve, Shields and Channels Assembly
$1 \times 78034$	Carriage Plate, Slug Insulator and Center Guide rod Assembly.....
42A70184	Clip, core adjustment
46 K 592080	Core, iron and screw.
$58 \mathrm{K78012}$	Coupling, manual lead screw
$14 \wedge 70876$	Insulator, coll sleeve
14B78007	Insulator, slug: bakelite
2A77596	Nut, floating: without ear (on manual lead screw).
2A78005	Nut, floating: with ear (on manual lead screw)
$64 A 77593$	plate, tuner front
557770	Rivet: . $088 \times 5 / 32$; stl; nkl pl (slug insulator mtg) .........
47A78002	Rod, carriage guide
387352	Screw, machine: 8-32 x 2 slot ted round head; stl; cod pl (front plate mtg)
43 A 70881	Sleeve, coll (iron)
41477595	Spring, coil slug
41477592	Spring, compression ............
42A21577	Washer, "C": spring (manual lead screw mtg)
4 A 70873	Washer, coll spacer
4A74571	Washer, fishpaper
4 4 70956	Washer, slug insulator
4K485653	Washer, spring (manual lead screw ute)

## ALIGNMENT

Remove receiver front and rear housings to expose all adjustments.

Connect a 6 volt battery to BAT terminal and chassis.

Connect a low range output meter across speaker voice coil and set volume control at maximum. For greatest accuracy, keep output of receiver at approximately 1 watt
( 1 watt $=1.79$ volts on output meter) throughout alignment by reducing signal generator output as stages are brought into alignment. Use a small fibre screwdriver when aligning $I F$ and diode transformers. A special tool, Motorola Part No. 66A76278, is required for adjusting the tuner cores. IMPORTANT: Do not push in on the alignment tool when adjusting the tuner cores; the slightest inward pressure may move tuner carriage and result in inaccurate alignment.

STEP	DUMMY   ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	TUNER   SET TO	ADJUST	REMARKS
IF ALIGNMENT						
1.	. 1 mf	6BE6 grid (pin   *7) \& chassis	455 Kc	High frequency end (cores out)	$1,2,3 \& 4$	Peak for maximum in order indicated. Check by repeating step.
2.	See Fig. 1	Antenna receptacle through dummy	1610 Kc	High frequency end: cores should project 1-1/8' from cans (Screw out if necessary)	5, $6 \& 7$	Peak for maximum in order indicated.
3.	"	"	1425 Kc	1425 Kc -per Fig. 1	8, 9 \& 10	Peak for maximum in order indicated.

4. When receiver is installed in car, extend antenna fully, set dial to approximately 1400 Kc and repeak antenna trimmer (7) for maximum volume of a weak station or noise between stations.


Figure 1. TUBE \& TRIMMER LOCATIONS AND DUMMY ANTENNA


FIGURE 2. TOP VIEW OF CHASSIS


FIGURE 3. BOTTOM VIEW OF CHASSIS


## GENERAL INTORMATION

TYPE - Compact automotive type superheterodyne receiver with self-contained speaker. Receiver is designed for installation in any car when used with appropriate Motorola control head.

TUNING RANGE - 540 to 1600 Kc IF - 455 Kc

TUBE COMPLEMENT - 6BA6 - RF Amplifier
6BE6 - Converter
6BA6 - IF Amplifier
6AT6 - Det, AVC \& AF Amp
6AQ5 - Power Amplifier
6X4-Rectifier
POWER INPUT - 6.8 amps at 6.3 volts
POWER OUTPUT - 3.5 watts (max)


FIGURE 1. TUBE AND TRIMRER LOCATIONS AND DUNYY ANTENNA

## ALIGNMENT

Remove receiver front and rear housings to expose all (1 watt $x 1.79$ volts on output meter) throughout alignmel
adjustments.

Connect a 6 volt battery to BAT terminal and chassis.
Connect a low range output meter across speaker voice coil and set volume control at maximum. For greatest accuracy, keep output of receiver at approximately 1 watt
by reducing signal generator output as stages are brougl into alignment. Use a small fibre screwdriver when aligr ing IF and diode transformers. A special tool, Motorol Part No. 66A 76278, is required for adjusting the tuner core IMPORTANT: Do not push in on the alignment tool whe adjusting the tuner cores; the slightest inward pressure ma move tuner carriage and result in inaccurate alignment.

ALIGNMENT CHART

STEP	DUMMY   ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	TUNER SET TO	ADJUST	REMARKS
$\begin{aligned} & \text { IF ALIC } \\ & 1 . \end{aligned}$	NMENT   . 1 mf	6BE6 grid (pin   *7) \& chassis	455 Kc	High frequency end (cores out)	1,2,3 \& 4	Peak for maximum in order indicated. Check by repeating step.
$\begin{aligned} & \text { RF ALI } \\ & 2 . \end{aligned}$	GNMENT   See Fig. 1	Antenna receptacle through dummy	1610 Kc	High frequency end; cores should project 1-1/8" from cans (screw out if necessary)	5, 6\&7	Peak for maximum in order indicated.
3.	"	"	1425Kc	1425 Kc -per Fig. 1	8, $9 \& 10$	Peak for maximum in order indicated.

4. When receiver is installed in car, extend antenna fully, set dial to approximately 1400 Kc and repeak antenna trimmer (7) for maximum volume of a weak station or noise between stations.

INSTALLATION INFORMATION


FIGURE 2. RECEIVER INSTALLATION DETAIL

## INSTALL DISTRIBUTOR SUPPRESSOR

Cut the high tension lead, which runs from the center terminal of the car distributor to the ignition coil, approximately $1-1 / 2$ inches from the distributor. See Figure 3. Screw the distributor suppressor. in series with the two pieces of high tension wire, and plug the end terminal of the lead into the center receptacle of the distributor.

## INSTALL CAPACITOR ON GENERATOR

Mount the noise suppression capacitor (Motorola Part Number 8A4491) on the generator frame, under the ground lead screw. See Figure 4. Connect the capacitor lead to the armature terminal of the generator. WARNING: DO NOT CONNECT THE CAPACITOR LEAD TO THE FIELD TERMINAL.
ADDITIONAL MOTOR NOISE HINTS

1. When checking the car for motor noise, clamp the
hood down tight.
2. Hood Bonds (Motorola Part Number 39A4205) may be installed at the shoulders so that the hood makes a good ground to the cowl of the car.

## TIRE STATIC

After completion of a adio insiallation, road test car for tire static on dry concrete and blacktop pavements, under the following conditions:

1. At both low and high car speeds.
2. With antenna extended to operating position.
3. With radio at full volume and tuned off station.

If tire static noise is encountered, inject Tire Static Elimination Powder (available in kit form - Motorola Part Number 5lB591494) intatires, following instructions given on the package.

MOTOROLA PACE 22.
MODEL $501 \%$


NOTE：When ordering parts，specify model number of set in addition to part number and description of part．

CHASSIS PARTS－BLECTRICAL		
Capacitors		
C－1	21A591682	Ceramic： 90 mel 500V．
C－2	8A4529	Paper：． $006 \mathrm{mf} \mathrm{100V}$ ．
C－3	20K592078	Trimmer，variable： 50 to 280 mif on same brkt as C－4 and 7 （sold only as a assen）．．．
C－4	20 K 592078	Trimmer，variable： 20 to 180 maf；on same brkt as C－3 and 7 （sold only as a assem）
C－5	21870720	Molded： 5 mmf 500V．
C－6	2186513	Yica： 50 maf 10\％300V．
C－7	20K592078	Trimmer，variable： 500 to 580 maf；on same brkt 28 $C-3$ and 4 （sold only on as a assem）．
C－8	8R13514	Paper：$\quad 05 \mathrm{mf}$ 100V．．．．．．．
C－9	8K17028	Paper：． 5 mi 100V．
C－10	8R13166	Paper：． 1 mp 400V．．．．．．．．．
C－11	8R472754	Paper：． 01 mf 100V．．．．．．．．
C－12	$21 R 410089$	Molded Disc．： 27 mmf
C－13	8R472035	Paper： 1 mf 100V．．．．．．．．．．．
C－14	8K17028	Paper：． 5 mf 100V．
C－15	8R 490449	Paper ：． $02 \mathrm{mf} 1000 \mathrm{~V} . . . .$.
C－16	8R472035	Paper：． 1 mf 100V．．．．．．．．．
C－17	8R9809	Paper：． $01 \mathrm{mf} \mathrm{400V}$.
C－18	BR23690	Paper：． $01 \mathrm{mf} \mathrm{400V......}$.
C－19	23A485677	Electrolytic： $15-10-20 \mathrm{mf} /$ 350-350-25v . . . . . . . . . . . . . . .
Fuse $350-350-251 . .$.		
F－1	65 K 16248	9 mmp
Vibrator		
G－1	$48 \mathrm{B3} 333$	Non－sync：4－pin．
Coils		
L－1，2	24B71881	RF and Antenna Coil（Specify color of paint dots on old coil when ordering）．．．．．．．．．
L－3	24B592153	Oscillator Coil（specify color of paint dots on old coil when ordering）．．．．．．．．
L－4	24 K 78026	Choke，（＂A＂lead）
L－5	24K78026	Choke（dial light）
L－6	244472535	Choke，hash．
Resistors		

Note：All resistors are insulated carbon type， $\mathbf{2 0 \%}$ ，unless otherwise specified．

R－1	6R6032	470，000 20\％	$\frac{1}{3}$ W．
R－2	6R6432	270 10\％$\frac{1}{2}$ W．	
R－3	6R6075	100，000 20\％．	12m．．．．．．．
R－4	6R6056	47，000 20\％	
R－5	6R3933	220 20\％冎	
R－6	GR6004	1 meg 20\％	
R－7	6R6287	6800 20\％17．	
R－8	6R6074	68，000 10\％	
R－9	6R6015	220，000 20\％	2
R－10	18A510819	Volume control： Spst switch；	： 1 mes；$\overline{\text { n }}$   incl mtg nu
R－11	6R5554	390 10\％$\frac{1}{2}$	
R－12	6R6004	1 meg 20\％	
R－13	6R5614	56 10\％咅面．	
R－14	6R5614	56 10\％盏	
R－15	6R6039	4700 20\％$\frac{1}{2}$	
R－16	686075	100，000 20\％	
R－17	6R6075	100，000 20\％	17\％．．．．．．．．
R－18	6R6389	220 10\％1\％	
R－19	6R6406	22 10\％考W．	
R－20	6R6184	1000 20\％	


537770 Rivet: . $088 \times 5 / 32$; st1; nk1 pl
(slug insulator mitg).........
od, carriage guide.............
Screw,
round head; sti; cad pl (front
 spring, compression (on manual


47 A 78002
357352
43A70881 $41 \Lambda 77592$
42421577
4A70873
4A74571
Es958by
4485653 -tg)...............................


## GENERAL INFORMATION

TYPE - Compact automotive type superheterodyne receiver designed for installation in any car when used with appropriate Motorola control head and speaker.

TUNING RANGE - 535 to $1600 \mathrm{Kc} \quad$ IF -455 Kc

TUBE COMPLEMENT - 6BA6 - RF Amplifier
6BE6 - Converter
6BA6 - IF Amplifier
6AT6 - Det, AVC \& AF Amp
6AQ5 - Power Amplifier
$6 \times 4$ - Rectifier
POWER INPUT - 6.8 amps at 6.3 volts


POWER OUTPUT - 3.5 watts (max)

## REPLACEMENT PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.


Ref. No.	Part   Number	Description
R-2	6R6432	270 10\% 1/2N
R-3	6R6075	100,000 1/2w
R-4	6R6056	47,000 1/2w
R-5	6R6090	470 10\% 1/2W
R-6	6R6287	6800 1T N.I.
R-7	6R6004	$1 \mathrm{meg} 1 / 2 \mathrm{~W}$
R-8	1A472531	Volume Control: 500,000 ohms; includes SPST switch...
R-9	6R6056	47,000 1/2w.
R-10	6R6004	$1 \mathrm{meg} 1 / 2 \mathrm{~W}$
R-11	6R5614	56 10\% 1/2w
R-12	6R5614	56 10\% 1, 2 W
R-13	6 R 5577	2700 10\% 1/2w
R-14	6R2118	3.3 meg 1/2w
R-15	6R6032	470,000 1/2w
R-16	6R6015	220,000 1/2w
R-17	6R6336	270 10\% 1w
R-18	6R6184	1000 1w N. 1.
Spark	Plate	
SP-1	1x78041	```Spark plate Assembly: com- plete ......................```
Transformers		
T-1	24B485553	IF, 455 Kc : complete with tuning cores and padding capacitors
T-2	248485555	Diode, 455 Kc : complete with tuning cores and padding capacitors
T-3	25870171	Output Transformer .........
T-4	25B472533	Power Transformer
Part		
Number		Description

CHASSIS PARTS - MECHANICAL

42A13177	Clip, center post
42A485548	clip, coil can mtg
42A421	clip, vibrator groundi
4S7695	Lockwasher, int: "5; stl; cad p] (terminal strip mtg) $\qquad$
$9 \mathrm{A472148}$	Receptacle, antenna
587771	Rivet: . $088 \times 3 / 16$ sti; $n k 1$ pl   (tube socket mtg)
557706	Rivet: . $122 \times 1 / 8 ;$ st1; nkl pl (center post ground clip mtg)
5S7707	Riyet: . $122 \times 5 / 32 ;$ stl; nkl pl (terminal strip and output trans mtg)
5S7701	Rivet: $122 \times 3 / 16 ;$ sti; nkl pl (vibrator grounding clip mtg)
358140	Screw, sheet metal: \#8 x 3/16 pKZ plain hex head; cad pl (tuner mtg)
357454	Screw, sheet metal: \#8 x $1 / 4$ plain hex head; stl; cad pl (capacitor. bracket assembly and spark plate mtg)
353397	Screw, sheet metal: \#8 x 5/16 PKZ plain hex head; cad pl (power transformer mtg) ............
9A70208	Socket, tube: 4-pin; with grounding lug (vibrator socket)
91472534	Socket, tube: miniature; 7-prong
9 K 580218	Socket, tube: miniature; 8-prong.
31C4079	```Strip, terminal: l insulated lug, end motg```
314472573	Strip, terminal: 2 insulated


part   Nupiber	Description
housing parts	
42 A 501270	Clip, escutcheon retainer
42A:72033	Clip, chassis retainer
13D501271	Escutcheon, complete
$1 \times 501390$	Housing and Bushing Assembly, rear.
1X501375	Housing, front; with escutcheon.
35400356	Screw, sheet metal: \#4 x $1 / 4$ plain hex head; stl; cad pl (escutcheon mtg )
357456	Screw, sheet metal: \#8 x 1/4 pKA slotted acorn head; antique copper finish (housing screws) .....
AcCessories	
65×4151	Bulb, pilot light: 6-8V; clear; bayonet base
8A4491	Capacitor, generator
98473111	Lead Assembly, fuse: complete with 9 amp fuse
1X74340	Lead Assembly, dial light: complete with bulb
1X76859	Lead Assembly, speaker: 2-conductor, 36" long, with pin terminals on one end $\qquad$
4S7653	Lockwasher, int-ext: 5/16; stl; cad pl (receiver mtg) $\qquad$
252863	Nut, hex: 5/16-18 x 9/16; cad pl (receiver mig)
$1 \mathrm{K75148}$	Shaft, flexible: with housing: 24 " long ....................................
508500708	or
50B500684	Speaker: 6" PM ; 3.2 ohm VC; less speaker lead
3 A 77542	Stud, receiver mtg
$6 \times 4141$	Suppressor, distributor
TUNER PARTS - yechanical	
Note:	Electrical parts of the tuner are includs in the Electrical Chassis Parts List
1X592301	Manual Tuner Mr-75
$1 \times 592099$	Base, Sleeve, Shields and Channels Assembly
$1 \times 78034$	Carriage Plate, Slug Insulator and Center Guide Rod Assembly .....
42A70184	Clip, core adjustment
46 K 592080	Core, iron and screw
58 K 78012	Coupling, manual lead screw
14A70876	Insulator, coil sleeve
14B78007	Insulator, slug: bakelite
2A77596	Nut, floating: without ear (on manual lead screw).
2 A 78005	Nut, floating: with ear (on manual lead screw)
64 A 77593	Plate, tuner front
5S7770	Rivet: . $088 \times 5 / 32$; st1; nkl pl   (slug insulator mtg)
47A78002	Rod, carriage guide
357352	Screw, machine: 8-32 x 2 slotted round head; st1; cad pl (front plate mtg)
43470881	Sleeve, coil (iron)
41477595	Spring, coll slug
41477592	Spring, compression ............
42A21577	Washer, "C": spring (manual lead screw mtg)
4A70873	Washer, coil spacer
4474571	Washer, fishpaper
4 A 70956	Washer, slug insulator
4K485653	Washer, spring (manual lead screw

## ALIGNMENT

Remove receiver front and rear housings to expose all adjustments.

Connect a 6 volt battery to BAT terminal and chassis.

Connect a low range output meter across speaker voice coil and set volume control at maximum. For greatest accuracy, keep output of receiver at approximately 1 watt
(1 watt $=1.79$ volts on output meter) throughout alignment by reducing signal generator output as stages are brought into alignment. Use a small fibre screwdriver when aligning $1 F$ and diode transformers. A special tool, Motorola Part No, 66A76278, is required for adjusting the tuner cores. IMPORTANT: Do not push in on the alignment tool when adjusting the tuner cores; the slightestinward pressure may move tuner carriage and result in inaccurate alignment.

ALIGNMENT CHART

STEP	DUMMY ANT FNNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	TUNER SET TO	ADJUST	REMARKS
IF ALIGNMENT						
1.	. 1 mf	6BE6 grid (pin   (7) \& chassis	455 Kc	High frequency end (cores out)	1,2,3, \& 4	Peak for maximum in order indicated. Check by repeating step.
RF ALIGNMENT						
2.	See Fig. 1	Antenna receptacle through dummy	1610 Kc	High frequency end: cores should project 1-1/8" from cans (Screw out if necessary)	$5,6, \& 7$	Peak for maximum in order indicated.
3.	'	"	1425 Kc	1425 Kc -per Fig. 1	8, $9 * 10$	Peak for maximum in order indicated.

4. When receiver is installed in car, extend antenna fully, set dial to approximately 1400 Kc and repeak antenna trimmer (7) for maximum volume of a weak station or noise between stations.


FIGURE 1. TUBE \& TRIMAER LOCATIONS AND dUMEY ANTENNA

MOTOROLA PAGE 22.157


FIGURE 2. TOP VIET OF CHASSIS


FIGURE 3. BOTTOM VIEW OF CHASSIS
MODEL 601


GENERAL INFORMATION
TYPE Automotive type superheterodyne receiver, designed to operate from a 6 volt storage battery. Thes receiver is specifically designed to fit Plymouth P-19, P-20 and Dodge D-33 and D-34 cars.
TUNiNG RANGE - 535 to 1605 Kc
If FREqUENCY - 455 Kc

```
TUBE COMPLEMENT - 6BA6 - RF Amplifier
 6BE6 - Oscillator-Modulator
 6BA6 - IF Amplifier
```

6AT6 - Detector, AVC \& lst Amplifier
6V6GT - Power Amplifier
6X4 - Rectifier

POWER SUPPLY - Inpue is 6.3 V DC at 7.1 amperes

## INSTALLATION छ OPERATING INSTRUCTIONS

Refer to Figure 1 for operating control locations.
TO TURN THE RADIO ON. Turn the left-hand knob (volume control) clockwise until a click is heard.

MANUAL TUNING. Tune stations with the right-hand knob.

PUSH BUTTON TUNING. After stations have been set up, it is only necessary to push in the button ( 1 , 2,3 or 4) that has been set to the desired station. Push the button all the way in, to make sure that the station will be tuned in correctly.

TONE CONTROL. The TONE push button operates a three-position tone control. Push the button until the most pleasing tone is obt ained.


## TO SET THE PUSH BUTTONS

Push buttons should preferably be set up in daytime since weak station signals are stronger at night and the button may be set on distant station carrying the same program as the desired station.

1. Turn radio $O N$ (see Operating Instructions) and allow it to warm up for at least 15 minutes. Antenna should be fully extended and tone control in high position.
2. Pull off the chrome plated push button caps from buttons $1,2,3$ and 4 , exposing the kuurled metal buttons. See Figure 1 .
3. With the tuning knob, tune in the station to be set up on No. 1 button. Select only the best and most powerful local stations.
4. Push in the No. l button as far as it will go and tighten knurled button securely.
5. Perform steps 4 and 5 for the remaining three push buttons.
6. After all buttons have been set up, check if they can be tuned in more accurately with the tuning knob. If so, unlock button and reset it.
7. Unlock the four push button settings by turning each knurled button counterclockwise about one turn.
8. A push button may be reset at any time by unlocking the push button, tuning in a new station, and resetting as in step 5 .

CAUTION: Never turn buttons more than two turns 9. Replace push button caps with the notched side in a counterclockwise direction.

## ALIGNMENT

## EQUIPMENT REQUIRED

1. A special tool for adjusting the tuner cores. Use Alignment Tool, Motorole Part No. 66A76278.
2. A small fibre screwdriver for IF \& $R F$ alignment.
3. An accurately calibrated $A M$ modulated signal generator.
4. A low range output meter.
5. A dummy antenna for RF alignment. Construct dummy antenna as shown in Figure 2.

PROCEDURE
l. Remove the husing and dial scale to expose aili alignment adjustment screws.
2. Connect the outfut meter across speaker voice coil.
3. Connect a 6 volt storage battery to receiver battery receptacle and chassis. Turn receiver on and allow it to warm up for a few minutes. Set receiver volume control at maximum and tone control
to treble (high) position.
4. For greatest accuracy, keep output of receiver at approximately 1 watt ( 1 watt $=1.79$ volts on output meter) throughout alignment by reducing generator output (not receiver volune control) as stages are brought into alignment.
5. IF \& RF ALIGNMENT. See Alignment Chart \& Figure 2.
IMPORTANT: Do not push in on the alignment tool when adjusting the tuner cores. The slightest inward pressure on the alignment tool may move the tuner carriage and result in inaccurate alignment. CAUTION: Do not press hard on the alignment screwe driver when aligning the If \& diode transformers as damage to the core or transformer may result.

6 ANTENNA TRIMMER ADJUSTMENT. Once alignment has been satisfactorily performed, no further adjustment of any alignment screws should be made except to align the antenna trimmer (7) to car antenna after receiver is installed in car. This ad. justment should be made with antenna fully extended and receiver set to approximately 1400 Kc . Peah the trimmer for maximum volume of a weak station or background noise betwren stations.

## ALIGMMENT CHART

STEP			$\begin{aligned} & \text { DNMNY } \\ & \text { ANTENHA } \end{aligned}$	$\begin{aligned} & \text { SIGAL } \\ & \text { GENERATOR } \\ & \text { CONBECTED TO } \end{aligned}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { FREQUENCY } \end{aligned}$	$\begin{aligned} & \text { ADUUST } \\ & \text { TRIMMER } \\ & \text { OR CORE } \end{aligned}$	REMARKS		
IF AL 1.	High frequency end (cores out)		. 1 就	Hi side - 6FE6 grid (pin ${ }^{\prime \prime}$ )   Lo aide-chassis	455 Kc	1, 2, 38	Peak for maximum in order indicated. Check by repeating procedure.		
RF AL 2.	High frequency end, cores should project 1-1/8" from cans. (Screw out)		See $\text { Fig. } 2$	Ant receptacle through dumny	1605 Kc	5, 68	Peak for maximum in order indi cated.		
3.8	Set spacing between treadle bar \& tuner frame to 21/32". See Fig. 2		"	N	1300 Kc	$8,9_{10}^{8}$	Peak for maximum in order indicated. Replace dial scale and set pointer to 1300 Kc by means of pointer adjustiment eccentric. See Figure 2-		
$\begin{aligned} & \text { REF. } 2 \\ & \text { MO. PART MO. } \end{aligned}$			DESCRIPTION		REF. NO.	PART NO .	DESCRIPTION		
CHASSIS PARTS - ELECTRICAL					R-3	6R6012	$33,00020 \% 1 / 2 W$.		
CAPACITORS					R-6	6R55554	390 10\% $1 / 2 w$.		
$\mathrm{C}-1$	21877562				R-?	6 R6287	6800 20\% IW N.		
C-2	8 C 4529				R-8	6R6004	1 meg 20\% 1/2W		
C-3	20A77536	Variable, mica: 50 mmf to 280 mmf 500 V $\qquad$			R-9	6R5614	56 10\% 1/2W, .............		
C-4	8K13514	Paper: . 05 mf 100V ..............			R-10	6R5614 184485390	56 10\% 1/2w ................		
C-5	21K70720	Molded:	$5 \mathrm{mmf} \quad 50$	V .........	R-12	$\begin{aligned} & 18 A 485390 \\ & 6 \mathrm{R} 6056 \end{aligned}$	Volume Control: . 5 meg; with sw. $47,000 \quad 20 \% \quad 1 / 2 W$		
C-6	20A481526	Variable, mica: 20 mmf to 180maf 500 V ................			R-13	6R2118	3.3 meg $20 \% 1 / 2 w . . . . . . . . . . . .$.		
C-7	8 K 13166	Paper:	1 mf 40		$\mathrm{R}-14$ $\mathrm{R}-15$	6R6428 6R6054	$\begin{array}{ll} 6800 & 10 \% \\ 10.000 & 1 / 2 w \\ 1 / 2 w \end{array}$		
C-8	8C580845	Paper:	5 mf 10		R-16	6R6032	$470,000 \quad 20 \% \quad 1 / 2 w$		
C-9	8 K 13514	Paper:	05 mf 1	V . . . . . . . .	R-17	6R6032	$\begin{array}{llll}470,000 & 20 \% & 1 / 2 W\end{array}$		
C-10	20A77537	$\begin{aligned} & \text { Variable, } \\ & 500 \mathrm{~V} . . \end{aligned}$	$\text { , mica: } 5$	mof to 88 mmf	R-18	6R6434	27,000 10\% 1/2W		
C-11	21 K 74661	Ceramic:	50 mmf	00V .........	R-19	6R6004 6R6389	${ }_{220}{ }^{\text {meg }} 10 \% 1 \mathrm{~W}^{1 / 2 W}$		
C-12	21K580276	Ceramic:	220 mmf	5\% 500V ...					
C-13	$8 \mathrm{C5} 80845$	Paper:	.5 mf 10	V . . . . . . . . . .	R-21	6R476004	1000 20\% 2W		
C-14	8 K 13514	Paper:	. 05 mf 1		R-22	6R6432	270 10\% 1/2W		
C-15	21K74661	Ceramic:	50 mmf	300 V	-22		270 10\% 1/2w		
C-16	8 K 12840	Paper:	. 006 mf	600V . . . . . . . .	SWITC				
C-17	21 K 481377	Ceramic:	500 mmf	… ..........	S-1				
C-18	8 K 71910	Paper:	. 006 mf	00V . . . . . . . .			control R-11)		
C-19	8 K 71911	Paper:	. 03 mf	0V . . . . . . . . .	S-2		Tone Control (see Tuner AT-63A		
$\mathrm{C}-20$	8K71910	Paper:	. 006 mf	00V .........			Parts List) ...................		
C-21	23A473015	Electrolytic: $30-30-20 \mathrm{mf} /$			SPARK PLATE				
	FUSE				SP-1 IB485528		Spark Plate Assembly		
F-1	$65 \times 12894$	Fuse, tubular: 14 amp .........			TRUNSFORUERS				
VIBRA TOR		Vibrator, non-symc: 4-pin			T-1	24B485553	IF, 455 Kc : complete		
G-1	$48 \mathrm{B3} 333$				T-2	24 K 485554	Diode, 455 Kc : complete		
PILOT LICWT		Bulb: 6.3V .25A tubular; bayonet base; clear; 44 ...........			T-4	256580517	Output Transformer		
		PART   NLMBER		Power Transformer					
I-1	$65 \times 10867$			DESCRIPTION					
COILS					CHASSIS PARTS - MECHANICAL				
L-1	24R580278	Antenna on old	coi] (spe coil when	fy color coding ordering) . . . . .					
L-2	24K580557	$\begin{gathered} \text { RF coil } \\ \text { old coi } \end{gathered}$	(specify   1 when or	olor coding on ering)	$\begin{aligned} & \text { 43A489 } \\ & 43 A 580 \end{aligned}$	19 Bearin	g, pointer link mtg ...............   g, receiver mounting $\qquad$		
L-3	24B580279	Oscillatn	or enil (	pecify color	42A485	48 Clip ,	can mounting ( $T-1$ \& $T-2$ mtg). ${ }^{\text {c }}$		
		coding of	on old co	1 when ordering)	42A421	Clip,	vibrator grounding .........		
L-4	24A472535	Choke, he	ash ....	. . . . . . . . .	29R528	Lug, tab	oldering: W10; plain long		
SPEAKER					52A580636 Pointe		r, dial		
LS-1	$50 \mathrm{B5} 80175$ or50 R 580176 or				$1 \mathrm{C580507}$ Pointe		r Link Plate, Arm and Rivets		
					bly: less pointer.				
	50B485788	Speaker: $5 \times 7$ oval type; PM;3-2 ohm voice coil					$\begin{array}{ll}\text { 9A472148 } & \text { Recept } \\ \text { 5S7771 } & \text { Rivet: }\end{array}$		
	RESISTORS					Rivet tube	$.088 \times 3 / 16$; stl; nkl pl (mia socket mig)		
R-1	E: All resistors are carbon insulated type				5S7701	Rivet: strip Rivet:	$.122 \times 1 / 8$; stl; nkl pl (ground and light shield mtg) $.122 \times 3 / 16$; stl; nkl pl		
	6R6032	470,000	20\% 1/2	..........		(vibrator socket mtk) .........			
R-2	6R6075	100,000	20\% 1/2	........					


Part   NUMBER	DESCRIPTION
7707	Rivet: $.122 \times 5 / 32$; stl; nkl pl (octal tube socket and terminal strip mtg)
5S7700	Rivet: . $122 \times 1 / 4$; stl; nkl pl (output trans mtg)
$34 C 591923$	Scale, dial .........................
3S7506	Screw, sheet metal: \# $x$ 1/4 PKZ plain hex head; stl; cad pl (dial scale mtg )
357454	Screw, sheet metal: \#8 x $1 / 4 \mathrm{PKZ}$ plain hex head; stl; cad pl (tuner, spkr plate and wiper mtg) ............
353397	Screw, sheet metal: * $\times 5 / 16 \mathrm{PKZ}$ plain hex head; stl; cad pl (power trans mtg ) $\qquad$
388176	Screw, sheet metal: $\# 10 \times 3 / 8 \mathrm{PKZ}$ plain hex head; stl; cad pl (spkr mtg)..
26A485262	Shield, light: end; (on.spkr plate)
24B48526	Shield, light: painted (on spkr plate)
308580838	Shield, spira] (lead shield)..........
26A5924	Shield, tube: spring ty
4485228	Socket, pilot light: includes bra
72534	Socket, tube: minfature; 7-prong
9 K 580218	Socket, tube: miniature; 7-prong (for 6EE6 tube) $\qquad$
9 A 6788	Socket, tube: octal
08	Socket, vibrator: 4-pr
$1 \times 485536$	Speaker Plate, Stud and Shield Assembly
41 A 59038	Spring, pointer arm backlagh
42A580578	Strip, ground (grounds tuner to chassis)
31K86126	Strip, terminal: 2 insulated lugs, *2 mtg
314472573	Strip, terminal: 2 insulated lugs, *2 mtg (choke mrg) .....................
46 A 485229	Stud, speaker plate mt
4 S 1719	Washer, flat: $3 / 8 \times .140 \times$. 030 thick; stl; cad pl (output trans mtg).
4A590466	Washer, spring (pointer bearing retainer)
39	Wiper, gr
OUSING	
4	Clip,
39A28036	Clip, grounding (on rear cov
39A580575	Clip, tension (on front hsng)
15 K 591954	Cover, housing bottom
615580238	Crystal, dial: plas
$13 \mathrm{DS904}$	Fscutcheon, push button: chrome
32	Gasket, radio mounting: rubber .......
$1 \times 580506$	Housing, front: includes receiver mtg gasket \& crystal
590344	Housing, rear ....
2S2869	Nut, mounting: 7/16-28; round; knurled (PB escutcheon mtg) .................
32A580577	Pad, dial crystal cushion; 6-1/4n long
320590510	Pad, dial crystal
557706	Rivet: . $122 \times 1 / 8$; stl; nkl pl (front housing clip mtg)
357205	Screw, machine: $8-32 \times 1 / 4$; slotted hex head; locking type; stl; cad pl (front housing mtg)
357475	Screw, sheet metal: \#8 $\times 1 / 4$ PKZ slotted acorn head; stl; cad pl (housing screws)
2A580224	Thumbscrew (br
ACC	PARTS
7 B 580009	Bracket, radio mounting (Dod
$7 \mathrm{B580877}$	Bracket, radio mounting (Plymouth)....
15A485225	Cap, push button: chrome plated
8 A 580014	Capacitor, radio interference
15 A 485342	Cover, receiver mounting nut: chrone pl
$1 \times 580809$	Knob, control: chrome plated .........
9 K 591242	Lead Assembly, radio to ignition sw...
4S2641	Lockwasher, int-ext tooth: 3/4 x 1/4; stl; cad pl (for radio mtg brkt mt.g screw)
257022	Nut, hex: 1/4-20 x $7 / 16$; st1; cad pl (for radio mitg brkt mtg screw)


RT	
NUMBER	DESCRIPTION
$2 \mathrm{S1393}$	Nut, hex: 5/16-18 x 1/2; stl; cad pl (radio mtg)
2A485540	Nut, hex: 7/16-28 $\times 9 / 16$; cad $p$ l
3 A591799	Screw, machine: special; with cup washer; 21/32" lg ; stl; cad pl (radio
3K591900	$\mathrm{mtg})$   Screw, machine: special; with cup washer; $15 / 16^{\prime \prime} \mathrm{lg}$; stl; cad pl (radio bracket meg)
44590795	Washer, cup: stl: cad pl (radio me)
automatic	TUNER AT-63A
Note:	uner replacement electrical parts not listed ere are listed under Chassis Parts - Electrial. When ordering replacement coils or turing cores, specify color coding on old coil or ore.
51D590440	AT-63A Automatic Tuner Assembly: comp
45A485508	Arm, push button cap su
42A70184	Clip, core adjustment (on tuning core screws)
42A472671	Clip, guide rod retainer: spring
1A580751	Core Rar Assembly: complete with bakelite core insulator, carriage guide brkt, pointer actuating arm with link drive pin, pointer adjustment eccentric \& 2 bearing eyelets ..............
46K580518	Core, Iron \& Screw (ant, RF \& osc tuning cores) (specify color coding on old core when ordering)
557862	Eyelet: . $130 \times .155$; brass (coil shield mtg)
557819	Eyelet: . $185 \times .187$; brass (core bar bearings)
$51 \times 591557$	Gear Assembly, crown drive
5K580504	Grommet, insulating: rubber (ant \& RF coil mtg) $\qquad$
5K580503	Grommet, insulating: rubber (osc coil mtg)
29A580756	Lug, carriage retainer ....
51A591149	Pinion Shaft \& Drive Disc Assembly...
$51 \times 590124$	Ratchet \& Contact Assembly (tone control)
558497	Rivet: $088 \times 1 / 8 ;$ stl; nkl pl (ratchet stop spring mounting) $\qquad$
557771	Rivet: $088 \times 3 / 16$; stl; nkl pl (tone control assem mtg) $\qquad$
557707	Rivet: . $122 \times 5 / 32$; stl; nkl pl (term strip mtg)
47K580230	Rod, guide (core bar guide)
1A580209	Screw, push button locking
$3 \mathrm{S8140}$	Screw, sheet metal: \#8 x $3 / 16$ PKZ; plain hex head; cad pl (trimmer $\mathrm{mtg})$
S1A591148	Shaft Assembly, tuning (manual tuning shaft)
26A485610	Shield, coil
41477595	Spring, coil core.
414580287	Spring, ratchet stop (tone control)
41A580220	Spring, treadle bar tension
41 A580223	Spring, tuner locking screw (on push button locking screw)
31 AT1802	Strip, terminal: 1 insulated lug,
	\#2 mtg
46A485513   $51 \times 590123$	Stud, tone switch push arm ........ Tone Control Contact Assembly .....
$\begin{aligned} & 4 K 24124 \\ & 4 A 21577 \\ & 4 A 70956 \end{aligned}$	Washer, ' $C$ ' (tone ratchet retainer)   Washer, ' $C$ ' (on core bar assembly)   Washer, core nnsulator: bake-
4 Al11189	Washer, fibre (on core bar assembly)
4A580644	Washer, spring (on core bar assembly)
4K580283	Washer, sprine (tone control assembly)

PAGE 22-162 MOTOROLA


MOTOROLA PAGE 22-163



## GENERAL INFORMATION

TYPE - Two-piece automotive type receiver, specifically designed for installation in Plymouth P-22 and P-23 cars.

TUNING RANGE - 540 to 1600 Kc . IF FREOUDNCY - 455 Kc

POWER OUTPUT - 1.25 watts undistorted

TUNER - Model AT-84 or AT-89. See AT-84 and AT-89 Service Manuals for Replacement Parts.

TUBE COMPLEMENT - Control Unit
6BA6 - RF Amplifier
6BE6 - Converter
6BA6 - IF Amplifier
6AT6 - Det, AVC\& AF Amplifier
Speaker \& Power Unit
6AQ5 - Power Amplifier
6X4 - Rectifier

OPERATES FROM - 6.3 volts DC; 7.1 amperes

## ALIGNMENT

## EQUIPMENT REQUIRED:

1. A special tool for adjusting the tuner cores. Use alignment tool, Motorola Part No. 66A76278.
2. A small screwdriver for IF \& RF alignment.
3. An accurately calibrated AM modulated signal generator.
4. A low range output meter.
5. A special dummy antenna for RF alignment. Construct dummy antenna as shown in Figure 1.

## PROCEDURE:

1. To expose the alignment adjustments, remove the rear housing, escutcheon and dial scale \& bracket assembly.
2. Connect Control Unit \& Speaker and Power Unit together by means of the power cable.
3. Connect an output meter across the speaker voice coil.
4. Connect 6.6 volts (measured at the "on-off" switch) to the receiver "BAT" terminal and chassis.
5. Turn the receiver on and allow it to warm up for a few minutes. Set receiver volume control at maximum and tone control to "high" position.
6. For greatest accuracy, keep the output of the receiver at 1 watt ( 1 watt $=1.79$ volts on output meter) by reducing signal generator output (not receiver volume control) as stages are brought into alignment.

IMPORTANT: Do not push in on the alignment tool when adjusting the tuner cores. The slightest inward pressure on the alignment tool may move the tuner carriage and result in inaccurate alignment.
7. Antenna Trimmer Adjustment. Once alignmeni has been satisfactorily performed, nofurther adjustment of any alignment screws should be made except to align the antenna trimmer (7) to car antenna after receiver is installed in car. This adjustment should be made with antenna fully extended and receiver set to approximately 1400 Kc . Peak the trimmer for maximum volume of a weak station or background noise between stations.


MOTOROLA PAGE 22-16:
MODEL 606,
Plymouth

## ALIGNMENT CHART


7. With set installed in car, pesk ant trim (7) for maximum signal at approximately 1400 Kc . Car antenna should be fully extended.

## OPERATING IESTROCTIOAS

ON-OFF SWITCH AND VOLUME CONTROL. To turn the receiver on, turn the left-hand control knob to the right until it "clicks" and the dial is illuminated. Allow the receiver to reach operating temperature (approximately 20 sec onds). To increase the volume, continue to turn this control to the right. To turn the receiver off, turn this control knob to the left until it "clicks".

TUNING. Tuning is accomplished manually or automatically. Any one of four stations may be selected automatically by means of pushbution control. To receive stations that are not set for automatic selection, use Manual tuning.

MANUAL TUNING, Select the desired atation or program by turning the manual tuning knob (right-hand knob). Tune to the exact frequency position for clearest reception. The
pointer indicates the frequency to which the receiver is tuned.

AUTOMATIC TUNING. The four pushbuttons, located beneath the dial scale, may be set to four favorite local stations. Firmly pressing one of the pushbuttons automatically selects the station for which the pushbutton was set. The dial pointer will automatically indicate the frequency of the selected station.

TONE CONTROL. The TONE pushbutton operates a threeposition tone control. Push the button until the most pleas ing tone is obtained. You will find that static and other types of electrical interference will be minimized in the "Bass" position.

## TO SET THE PUSHBUTTONS

The receiver has 4 buttons for autornatic station selection.

To aet the puahbuttons for automatic tuning, proceed as follows:

1. Turn volume up until stations can be heard.
2. Pull out button and with the manual tuning knob tune to the station desired.
3. Push button in. This station is now set for automatic
tuning.
4. Follow the same procedure for the remaining three buttons.

NOTE: The numbers on the dial acale indicate the frequency range of the receiver. Before setting the pushbutton, tune carefully until you are exactly on the station; tuning to either side of it will result in poor tone quality and excessive noise. When setting automatic tuning, it is preferred that the lefthand buttons tune in the lower KC stations and the right-hand buttons tune in the higher KC stations.

PAGE 22-166 MOTOROLA


MOTOROLA PAGE 22.16 MODEL 606
Plymouth
TIRE STATIC
After completion of Radio installation, road test car for tire static on dry concrete and blacktop pavements, under the following conditions:
2. With antenna extended to operating position.
3. With radio at full volume and tuned off station.
If tirestatic noise is encountered, inject Tire Static Supto tires with Injector (Chrysler Part No, 1233 884), following instructions given on package.
(a)-CONTROL KNOB
MTG NUT (2)
NTAF
SHAFT


_SPEAKER GASKET

$\stackrel{\stackrel{3}{3}}{2}$


PAGE 22-168 MOTOROLA


MOTOROLA PAGE 22.18
MODEL 606



MOTOROLA PAGE 22-17
MODEL 606
Plymouth



GENERAL INFORMATION

TYPE - Compact two-piece automotive type superheterodyne receiver. Receiver consists of a tuning unit and audio \& power unit which are connected together by means of an interconnecting cable. This receiver is designed for installation in any car by using with appropriate Motorola control head and speaker kit.

TUBE COMPLEMENT - Tuner Unit
6BA6 - RF Amplifier
6BE6 - Converter
6BA6 - IF Amplifier
6AT6 - Det-AVC-AF Amp
Audio \& Power Unit
6AC - Power Amplifier
6X4 - Rectifier

POWER INPUT - 7.0 amps at 6.3 volts
POWER OUTPUT - 3.5 watts (max)

## TO SET UP AUTOMATIC TUNING

To set push buttons to the desired stations:
a. Turn receiver on and allow it to warm up for a few minutes.
b. Collapse antenna until signal is weak.
c. Press Manual ' $M$ " button on control head.
d. Turn tuning knob until desired station is tuned in, (Make a mental note of the program). For best results choose only local stations.
e. Press desired button and wait until tuning mechanism completes its operation. .
f. Press automatic tuner set-up button until "click" is heard, (See detail above.)
g. Turn automatic tuner set-up knob until previously noted program is heard. NOTE: Check the setting of the automatic button just set up by pressing the " $M$ " button and manually tune in the station. There should be no difference in volume or clarity when the station is tuned in either manually or automatically. If a difference is noted, reset the automatic tuner pushbutton more accurately by repeating above procedure. Also make sure the push button is set to same station that was selected manually and not to a weak distant station carrying the same network program.
h. Repeat steps $c, d, e, f \& g$ for balance of buttons.

## TONE CONTROL

This receiver has a three-position tone control which may be operated by pushing "in" volume knob. Do not hold the knob "in"; merely push in and release. Each push changes the tone one step.

To operate the tone control, push in on the volume control knob. Make certain the volume control knob is properly adjusted to operate the tone switch. Adjust the knob in or
out on the shaft, to allow the minimum amount of travel to actuate the switch when the knob is depressed. Too much motion may cause the shaft to stick and prevent the toneswitch from opening when the knob is released. CAUTION: Failure of the tone switch to release will cause the tone relay to overheat. If the tone control knob does not operate the tone' control switch, with a reasonable amount of pressure, loosen the acorn nuts and adjust the outer housing of the flexible shaft until proper action is obtained.

## ALIGNMENT

Remove tuner unit front housing and bottom cover to expose all alignment adjustments. Connect power and audio unit to tuner unit. Connect a 6 volt battery to "A" lead and power \& audio unit chassis.

Connect a low range output meter across speaker voice coil and set volume control at maximum.

Place tuner in manual position, either by actuating carriage plate manually or by connecting a control head to receiver and pressing " $M$ " button.

For greatest accuracy, keep output of receiver at ap proximately 1 watt ( 1 watt $=1.79$ volts on outputmeter throughout alignment by reducing generator output as stage. are brought into alignment. Use a small fibre screwdrive when aligning IF and diode transformers. A special tool Motorola Part Number 66A 76278, is required for adjustin! the tuner cores.

IMPORTANT: Do not pushin on the alignment tool wher adjusting tuner cores; the slightest inward pressure may move tuner carriage and result in inaccurate alignment.

STEP	DUMMY   ANTENNA	GENERATOR CONNECTION	GENERATOR   FREQUENCY	TUNER   SET TO	ADJUST	REMARKS
IF ALI   1.	GNMENT   .1 mf	6BE6 grid (pin   \#7) \& chassis	455 Kr	High frequency end (cores out)	$1,2,3 \& 4$	Peak for maximum in order indicated. Checl by repeating step.
$\begin{aligned} & \mathrm{RF} A L I \\ & 2 . \end{aligned}$ $2 .$	IGNMENT   See Fig. 1	Antenna receptacle through dummy	1610 Kc	High frequency end; cores should project 1-1/8" from cans (Screw out if necessary)	$\begin{gathered} 5,6, \& \\ 7 \end{gathered}$	Peak for maximum in order indicated.
3.	"	"	1425 Kc	1425 Kc -per Figure 1	8, 9 \& 10	Peak for maximum in order indicated.

4. When receiver is installed in car, extend antenna fully, set dial to approximately 1400 Kc and repeak antenna trimmer ( for maximum volume of a weak station or noise between stations.


FIGURE 1. TUBE \& TRIMMER LOCATIONS AND DUMMY ANTENHA DETAIL



FIGURE 3. PARTS LOCATION - AUDIO \& POWER UNIT


## REPLACEMENT PARTS EIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.


## Transformers

T-3	25 K 59
T-4	$25 B 50$
Part	
Number	

CHASSIS PARTS - MECHANICAL

74592127	Bracket, volume control mtg .
42A485548	Clip, coil can mtg .........
4S7657	Lockwasher, ext: \#8; stl; cad pl (tone relay mtg) ............
2S7000	Hut, hex: $8-32 \times 5 / 16 ;$ stl; cad pl (tone relay mtg)
1×70646	Feceptacle, antenna
557771	Rivet: . $088 \times 3 / 16 ; ~ s t l ; ~ n k l ~ p l ~$   (tube socket mtg) ..........
557719	Rivet: . 088 x 5/32; stl; nkl pl (terminal strip mtg) .......
557728	Rivet: . $122 \times 5 / 16 ; s t l ; n k l$ pl (spark plate mtg) ...........
387152	Screw, machine: 6-32 $\times 1 / 4$ plain hex head; stl; cad pl (volume control bracket and capacitor bracket mtg) ............................
3S8140	Screw, sheet metal: \#8 x 3/16; plain hex head; stl; cad pl (tuner mtg)
3S7454	Screw, sheet metal: \#8 x 1/4; PKZ plain hex head; 3 tl; ad pl (tuner bracket mig)
$9 \mathrm{A472534}$	Socket, tube: 7-prong; miniature.
9K580218	Socket, tube: 8-prong; miniature.
31441318	Strip, terminal: 1 insulated lug, \#2 mtg

housing parts

8A71874	Button, push: includes spring clamp
AA501255	Clip, escutcheon retainer .........
15K592124	Cover, bottom: with bushing
$13 \mathrm{C501269}$	Escutcheon
$1 \times 501273$	Housing and Escutcheon Assembly   (Tuner Unit)
$1 \times 501275$	Housing and Escutcheon Assembly   (Power \& Audio Unit) ..........
3S400356	Screw, sheet metal: \#4 $\times 1 / 4$; plain hex head; stl; cad pl (escutcheon matg) $\qquad$
3S7454	Screw, sheet metal: \#8 $\times 1 / 4 \mathrm{PKZ}$; plain hex head; stl; cad pl (bottom cover mtg) ...........
358114	Screw, sheet metal: \#8 x 1/4 PKZ slotted acorn head; antique copper finish (housing screws) .......

Chassis parts - mechanical

1×590362	Cable and Plug Assembly: includes fuse lead, power cable and plug.	ACCESSORIES	
4244215	Clip, vibrator grounding.........	8A4491	Capacitor, generator
14A592132	Insulator, connector plug.	457653	Lockwasher, int-ext: $5 / 16 ;$ stl; cad
9K592646	Lead Assembly, fuse: includes " $A$ " lead and fuse receptacle..........	4S7653 $2 S 2863$	pl (receiver mtg)
1×76859	Lead Assembly, speaker ...........	2 S 2863	ceiver mtg)
457666	Lockwasher, ext: \#6; st1; cad pl (power transformer mtg)......	$1 \times 75148$	Shaft and Housing Assembly, flexible 24" long
$2 S 7005$ 284592119	Nut, hex: 6-32 x 1/4; st1; cad pl (power transformer mtg)	$\begin{aligned} & 50 K 502269 \\ & 50 B 502802 \end{aligned}$	or Speaker, PM ; 6"; 3.2 ohm Vc....
28K71775	Plug, insulated ......		
5 57771	Rivet: . $088 \times 3 / 16$;stl; nkl pl   (tube socket mtg)	$\begin{aligned} & 3577542 \\ & 6 A 4141 \end{aligned}$	Stud, threaded (receiver mtg).. Suppressor, distributor ........
5S7706	Rivet: . $122 \times 1 / 8$; stl; nkl pl (terminal strip mtg)		



## GENERAL INFORMATION

TYPE - Compact two-piece automotive type superheterodyne receiver. Receiver consists of a tuning unit and audio \& power unit which are connected together by means of an interconnecting cable. This receiver is designed for installation in any car by using with appropriate Motorola control head and spaker kit.

TVNING RANGE - 535 to $1600 \mathrm{Kc} \quad \mathrm{IF}-455 \mathrm{Kc}$
POWER INPUT - 8. 2 amps at 6.3 volts
POWER OUTPUT - 4.5 watts. (max)
TUBE COMPLEMENT - Tuner Unit
6BA6 - RF Amplifier
6BE6 - Converter
6BA6 - IF Amplifier
6AT6 - Det-AVC-AF Amp
Audio \& Power Unit
6AT6 - Audio Inverter
6AQ5 - Power Amplifier
6AQ5 - Power Amplifier
6X4 - Rectifier

## TO SET UP AUTOMATIC TUNING

To set push buttons to the desired stations:
a. Turn receiver of and allow it to warm up for a few minutes.
b. Collapse antenna until signal is weak.
c. Press Manual " $M$ " button on control head.
d. Turn tuning knob until desired station is tuned in. (Make a mental note of the program). For best results choose only local stations.
e. Press desired button and wait until tuning mechanism completes its operation.
f. Press automatic tuner set-up button until "click" is heard. (See detail above).
g. Turn automatic tuner set-up knob until previous noted program is heard, NOTE: Check the setting the automatic button just set up by pressing the "l button and manually tune in the station. There shot be no difference in volufne or clarity when the stati is tuned in either manually or automatically. If a d: ference is noted, reset the automatic tuner pushbutt more accurately by repeating above procedure. Al make sure the push button is set to same station th was selected manually and not to a weak distant st tion carrying the same network program.
h. Repeat steps $c, d, e, f \& g$ for balance of buttons.

## TONE CONTROL

This receiver has a three-position tone control which may be operated by pushing "in" volume knob. Do not hold the knob "in"; merely push in and release. Each push changes the tone one step.

To operate the tone control, push in on the volume control knob. Make certain the volume control knob is properly adjusted to operate the tone switch. Adjust the knob in or
out on the shaft, to allow the minimum amount of travel actuate the switch when the knob is depressed. Too mu tnotion may cause the shaft to stick and prevent the to switch from opening when the knob is released. CAUTIO Failure of the toneswitch to release will cause the tone $r$ lay to overheat. If the tone control knob does not operi the tone control switch, with a reasonable amount of pre sure, loosen the acorn nuts and adjust the outer housing the flexible shaft until proper action is obtained.

## ALIGNMENT

Remove tuner unit front housing and bottom cover to expose all alignment adjustments. Connect power and audio unit to tuner unit. Connect a 6 volt battery to " $A$ " lead and power \& audio unit chassis.

Connect a low range output meter across apeaker voice coil and set volume control at maximum.

Place tuner in manual position, either by actuating carriage plate manually or by connecting a control head to receiver and pressing ' $M$ ' button.

For greatest accuracy, keep output of receiver at ap" proximately 1 watt ( 1 watt $=1.79$ volts on output meter) throughout alignment by reducing signal generator output as stages are brought into alignment. Use a small fibre screwdriver when aligning $I F$ and diode transformers. A special tool, Motorola Part Number 66A76278, is required for adjusting the tuner cores.

IMPORTANT: Do not push in on the alignment tool when aligning the tuner cores; the slightest inward pressure may move tuner carriage and result in inaccurate alignment.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { TUNER } \\ & \text { SET TO } \end{aligned}$	ADJUST	REMARKS
$\begin{aligned} & \text { IF ALI } \\ & \text { i. } \end{aligned}$	GNMENT .1 mf	6BE6 grid (pin   *7) \& chassis	455 Kc	High frequency end (cores out)	1,2,3 \& 4	Peak for maximum in order indicated. Check by repeating step.
$\begin{aligned} & \text { RF ALi } \\ & 2 . \end{aligned}$	GNMENT   See Fig. 1	Antenna receptacle through dummy	1610 Kc	High frequency end; cores should project 1-1/8'1 from cans (Screw out if necessary)	$\text { 5. } 6 .$	Peak for maximum in order indicated.
3.	"	"	1425 Kc	i1423 Kc:-per Figure 1	8, $9 * 10$	Peak for maximum in order indicated

4. When receiver is installed in car, extend antenna fully, set dial to approximately 1400 Kc and repeak antenna trimmer (7) for maximum volume of a weak station or noise between stations.


FIGURE 1. TUBE \& TRIMMER LOCATIONS AND DUMMY ANTENNA DETAIL

MOTOROLA PAGE 22-11


FIGURE 2. PARTS LOCATION - TUNING UNIT

PAGE 22-182 MOTOROLA



## MODEL 801

## REPLACEMENT PARTS LIST

NOTE: When ordering parts, specify model number of set in addition to part number and description of part.

$\frac{\text { Pilot Light }}{\text { I-1 } 65 \times 4151} \quad$ Bulb: 5-8V; bayonet base; $\quad$ IX592280 Solenoid Tuner sT-78 $\ldots, \ldots$

## POWER \& AUDIO UNIT

Coils		
L-1, 2*	24B71881	RF \& Antenna Coil (specify color of paint dot on old coil when ordering)......
L-3*	24B592153	Oscillator Coil (specify color of paint dot on old coil when ordering) .....
L-4	24K592269	Choke ("A" lead)
L-5	24K592269	Choke (dial light)

CHASSIS PARTS - ELECTRICAL


## Resistors

$\frac{\text { Vibrator }}{\text { G-1 }}$ unless otherwise specified.

R-1	6R6032	470,000 20\% 1/2w
R-2	17K484497	Wirewound: 5.6
or	6R488139	5.6 10\% $2 W$
R-3	6R6090	$470 \quad 10 \% \quad 1 / 2 \%$
R-4	6R6075	100,000 20\% 1/2W
R-5	6R6056	47,000 20\% 1/2w
R-6	6R6090	$470 \quad 10 \% \quad 1 / 2 \%$
R-7	6R6004	$1 \mathrm{meg} 20 \% 1 / 2 \mathrm{~F}$
R-8	$6 \mathrm{R6287}$	6800 20\% 17 N.I.
R-9	1A472531	Volume Control and Shaft
		Assembly: . 5 meg .

$\frac{\text { Coi } 1}{L-6} \quad 244472535$ Choke, hash ....................
$\qquad$
*Part of Solenoid Tuner ST-78

## Resistors

Note: All resistors are carbon insulated type unless otherwise specified.

R-17	6R5614	56 10\%	1/2W	
R-18	6R5614	56 10\%	1/2w	
R-19	6R3949	470 20\%	1/2	T
$\mathrm{R}-20$	6R6054	10,000	20\%	1/2W
R-21	6R6286	$150020 \%$	\% 1W	N. I
R-22	6R6069	$220010 \%$	\% 1/	$2 W$
R-23	6R6015	220,000	20\%	1/2W
R-24	6R6015	220,000	$20 \%$	1/2W
R-25	6R6054	10,000	20\%	1/2II
R-26	6R6336	270 10\%	17	
R-27	6R6015	220,000	20\%	1/2W
Transformers				
T-3	25K5906	Power Transformer		
T-4	2585023	Output Transformer		


$1 \times 76859$	Lead Assembly, speaker ............
4876	Lockwasher, ext: \#6; stl; ead pl (power transformer mtg) .....
2S7005	Nut, hex: 6-32 x 1/4; st1; cad pl (power transformer mtg) .....
28A592119	Plug, connector: 4-pin
28K71775	Plug, insulated
557771	Rivet: . $088 \times 3 / 16$; stl; nkl pl   (tube socket mtg)
557706	Rivet: . $122 \times 1 / 8$; stl; nkl pl (terminal strip mtg) .......
5S7707	Rivet: . $122 \times 5 / 32$; 3tl; nkl pl (output transformer mtg) ...
557701	Rivet: . $122 \times 3 / 16$; stl; nkl pl   (vibrator clip mtg)
9A472534	Socket, tube: miniature; 7-prong
9A70208	Socket, tube: 4-pin (for vibrator)
31 K 490143	Strip, terminal: 2 insulated lugs, \#2 mtg; 1-1/8" long
31A592258	Strip, terminal: 2 insulated lugs. \#2 mtg; l-3/8" long ............
29A76280	Terminal, insulated pin: black (on speaker leads)
29K76282	Terminal, insulated pin: white (on speaker leads)

## housing parts

71874	Button, push
42 A501255	Clip, escutcheon retain
15 K 592124	Cover, bottom: with bushing .......
13 C 501302	Escutcheon (golden voice)
$1 \times 501276$	Housing and Escutcheon Assembly   (Power \& Audio Unit)
$1 \times 501278$	Housing and Escutcheon Assembly   (Tuner Unit)
3S400356	Screw, sheet metal: \#4 x 1/4; plain hex head; stl; cad pl (escutcheon mtg )
357454	Screw, sheet metal: \#8 x 1/4 PKZ plain hex head; stl;cad pl (bottom cover mtg) ...............
3S8114	Screw, sheet metal: \#8 x 1/4 PK2 slotted acorn head; antique copper finish (housing screws)....

ACCESSORIES

$8 \mathrm{A4491}$	Capacitor, generator
4S7653	Lockwasher, int-ext: 5/16; stl;cad pl (receiver mtg)
2S2863	Nut, hex: 5/16; stl; cad pl (receiver mitg)
1K75148	Shaft and Housing Assembly, flexible 24" long
50B502802	or
50 K 502269	Speaker, PM: 6"; 3.2 ohm vC
3A77542	Stud, threaded (receiver mtg)
6 64141	Suppressor, distributor

## PAGE 22-186 MOTOROLA

MODEL 814,
De Soto


## GENERAL INFORMATION

TYPE - Two-piece automotive type receiver, specifically TUBE COMPLEMENT - Control Unit designed for installation in DeSoto $\mathbf{S - 1 5}$ cars.

TUNING RANGE - 535 to 1605 Kc . IF FREQUENCY - 455 Kc
OPERATES FROM - 6.3 volts DC; 9 amperes
POWER OUTPUT - 4 watts undistorted
TUNER - Model AT-82. A breakdown of the tuner will be found in the Replacement Parts List.

6BA6 - RF Amplifier
6BE6 - Converter
6BA6 - IF Amplifier
6AT6 - Det, AVC \& AF Amplifier
Speaker \& Power Unit
6AT6 - Audio Inverter
6AQ5 - Power Amplifier
6AQ5, - Power Amplifier
6X4 - Rectifier

## ALIGNMENT

## EQUIPMENT REQUIRED:

1. A special tool for adjusting the tuner cores. Use alignment Tool, Motorola Part No. 66A76278.
2. A small fibre screwdriver for IF \& RF alignment.
3. An accurately calibrated AM modulatedsignal generator.
4. A low range output meter.
5. A dummy antenna for RF alignment. Construct dummy antenna as shown in Figure 1.

## PROCEDURE:

1. Remove the front and rear housings and dial scale to expose alignment adjustment screws.
2. Connect the Control Unit \& Speaker and Power Unit together by means of the power cable.
3. Connect an output meter across speaker voice coil
4. Connect 6.6 volts (measured at the "on-off" switch) to receiver feed wire assembly and chassis.
5. Turn receiver on and allow it to warm up for a few minutes. Set receiver volume control at maximum. Push DIAL button to place tuner in manual position. Turn tone control to VOICE position.
6. For greatest accuracy keep output of receiver at approximately 1 watt ( 1 watt $=1.79$ volts on output meter) throughout alignment by reducing generator output (not receiver volurne control) as stages are brought into alignment.
7. IMPORTANT: Do not push in on the alignment tool when adjusting the tuner cores. The slightest inward pressure on the alignment tool may move the tuner carriage and result in inaccurate alignment. CAUTION; Do not press hard on the alignment screwdriver when aligning IF \& diode transformers as damage to the core or transformer may result.
8. ANTENNA TRIMMER ADJUSTMENTS. Once alignment has been satisfactorily performed, no further adjustment of any alignment screws should be made except to align the antenna trimmers ( $7 \& 12$ ) to car antenna after receiver is installed in car. These adjustments should be made with antenna fully extended. Trimmer (7) is adjusted with the DLAL button pushed in and dial set to approximately 1400 Kc ; trimmer (12) is adjusted with $\# 5$ push button pushed in and tuned
to approximately 1400 Kc . Peak these trimmers for maximum volume of a weak station or background noise between stations.
9. POINTER ADJUSTMENT. Pointer should be calibrated to dial scale by tuning in 1400 Kc signal and then adjusting pointer to 1400 Kc .

ALIGNMENT CHART



FIGURE 1. DUMMY ANTENNA


FIGURE 2. TUBE \& TRIMAER LOCATION

## OPERATING INETRUCTIONS

TO TURN THE RADIO ON. The on-off switch is combined with pushbutton operation. Pushing any button, other than the OFF button, will turn the radio on. Allow the receiver to reach operating temperature (approximately 20 seconds) before selecting a station.

TUNING. Tuning is accomplished manually or automatically. Any one of five stations may be selected automatically by means of pushbutton control. To receive stations that are not set for automatic selection, use Manual Tuning.

MANUAL TUNING. Push in the DIAL button (extreme lefthand button) then select the desired station or program by turning the manual tuning knob. Tune to the exact frequency or position for clearest reception. The pointer indicates the frequency to which the receiver is tuned.

AUTOMATIC TUNING. The five pushbuttons (1, 2, 3, 4 \& 5) located beneath the dial scale, may be set for five favorite local stations. Firmly pressing one of the pushbuttons automatically selects the station for which the pushbutton
was set.
VOLUME CONTROL. To increase the volume, turn the volume knob (located concentrically and behind the manual tuning knob) to the right.

TONE CONTROL. The knurledhorizontal control at the left side of the dial escutcheon operates a variable tone control. Tuning this control to the right or to the left will change the tone of the receiver, as indicated on the dial escutcheon. With the control set at midway, the full tonal range is obtained. Static and other types of electrical interference will be minimized in the MELLO position.

DIMMER CONTROL. The knurled horizontal control at the right side of the dial escutcheon controls the intensity of the dial light. Turning this control to the left or right will vary the dial light intensity.

TO TURN THE RADIO OFF. Push in the OFF button (extreme right-hand button).

## TO SET THE PUSEBUTTONS

The pushbuttons should preferably be set up during the day, since weak station signals are stronger at night and the button may be set to a distant stationcarrying the same program as the desired station.

1. Turn radio ON (see Operating Instructions) and allow it to warm up for at least 15 minutes. Antenna should be fully extended and tone control in VOICE position.
2. Pull off the chrome plated pushbutton caps from buttons $1,2,3,4$ and 5 , exposing the knurled metal buttons.
3. Push in DIAL button and tune in station selected for No. 1 button, making sure it is within the 535 to 1020 kilocycle range as shown in Figure 2. Select only the most powerful local stations.
4. Push in No. 1 button. Turn No. 1 knurled button to right or left to tune in station already tuned in with manual control. Turning button counterclockwise will increase the frequency and turning clackwise will decrease the frequency. Check station by pushing in the DLAL buttonagain to identify program. Tune carefully and do not force button beyond stop.
5. Perform steps 3 and 4 for the remaining four push buttons.

IMPORTANT: Check with Figure 2 for frequency range of each button.
6. Replace chrome plated pushbutton caps.

## INTERFERENCE ELIMINATION

## GENERATOR INTERFERENCE

Install radio interference filter capacitor on generator as shown in Figure 3. Mount the capacitor on the generator frame under the ground lead screw. Connect the eyelet terminal on the capacitor lead to the armature terminal of the generator.

WARNING: Do not connect to field terminal; to do so will result in darnage to voltage regulator.

## TIRE STATIC

After completion of Radio installation, road test car for tire static on dry concrete and blacktop pavements, under the following conditions:

1. At both low and high car speeds
2. With antenna extended to operating position
3. With radio at full volume and tuned off station.

If tirestatic noise is encountered, inject Tire Static Suppression Powder (Chrysler Package Part No. 1233 883) in-
to tires with Injector (Chrysler Part No, 1233 884), following instructions given on package.


FIGURE 3. GENERATOR CAPACITOR INSTALLATION

## PAGE 22-190 MOTOROLA

## MODEL 814,

 De Soto

FIGURE 4. RADIO INSTALLATION



PAGE 22-192 MOTOROLA


NOTE: When ordering parts, specify model number of set in addition to part number and description of part.



Resistors
Note: All resistors are carbon insulated type unless otherwise specified.


CONTROL UNIT - Chassis parts - mechanical

	Bracket, dimmer and tone control retainer.
30K501917	Cable and Plug Assembly
2B485548	Clip, coil can mtg.
42A501781	Clip, hatr-pin (dial scale bracket retainer). $\qquad$
$1 \mathrm{M8944}$	Cord, dial: \#18; nylon; black....yd
$1 \times 502120$	Dial Scale and Bracket Asse
$\times 502091$	Dial Scale Support Bracket Assembly: includes dimmer control resistor and shoulder rivets.
9K471264	Grommet, insulating (on power \& battery leads).
36B501748	Knob, dimmer cont
36	Knob, tone contro
9 K 5020	
9 K 502241	Lead Assembly, radio to ignition switch: includes fuse.
18	Pointer and Slider Assembl
$1 \times 502121$	Pushbutton and Arm Assembly (for OFF and DIAL)
1X502122	Pushbutton and Arm Assembly (for 1 , $2,3,4 \& 5)$
5K71246	```Rivet, shoulder: stl; nkl pl (dial cord guide).```
348501752	Scale, dial: plasti
43 5 01785	Sleeve, pushbutton coupling
9 A 502226	Socket, pllot light: includes bracket; R.H; 2-1/4" \& 4-1/2" lea
9A502227	Socket, pilot light: includes bracket; L.H; 7" $10^{\prime \prime}$ leads......
9K580218	Socket, tube: 7-prong; miniature; with dummy lug.
$1 \mathrm{A502228}$	Stud and Spring wiper Assembly   (dimmer control contact arm).

CONTROL UNIT - HOUSING PARTS

1A501709	Cryst
$1 \times 502102$	Escutcheon \& Dial Crystal Assembly.
78501715	Frame, dial crystal retainer
15D501724	Housing, front: painted white
15K501732	Housing, rea
2A485540	Nut, hex: special; 7/16-28 x 9/16; stl; cad pl (escutcheon mtg).
2S7999	Speednut (dial crystal retainer)doz

## Speaker and poner unit - mechanical parts

42A501782 Clip, speed (rain shield mtg)...
42A4215 Clip, vibrator grounding.............
32B501634 Gasket, speaker: rubber...............
$1 \times 510121$ Plate $\mathrm{Br}_{\mathrm{c}}$ Gasket Assembly, spkr mtg..
$9 A 501887$ Receptacle, 5 -prong (for power cable).....................................
$3 S 7457$ Screw, sheet metal: \#8 x 7/8 plain hex head; stl; cad pl (chassis mtg)
3 38188 Screw, sheet metal: \#10 x $1 / 2$ plain hex head; stl; cad pl (spkr $m t g)$
1X502364 Shield, rain: includes pads........
9A70208 Socket, tube: 4-prong (for vibrator)
8A472534 Socket, tube: 7-prong; miniature...
8K580218 Socket, tube: 7-prong; miniature;

3A501915	```Bolt, "J" (control unit assembly mtg)```
7B501623	
7 K 501624	Bracket, spkr plate top mtg: righthand.
Part	
Number	Description
7K501626	or
K501627	Bracket, spkr plate top mtg: lefthand.
$1 \times 502104$	Bracket and Ciinch Nut Assembly (spkr \& power unit mtg).......
15A485225	Cap, pushbutton: chrome pl
8 B 580014	Capacitor, radio interferen
2K501944	Clinch Nut: 1/4-20 (lower mounting bracket support mig). $\qquad$
$1 \times 500387$	Knob, tuning control: chrome pl
368501858	Knob, volume control: chrome pl.
4S7652	Lockwasher, ext: tooth; \#10; stl; cad pl (spkr \& power unit assembly mtg) $\qquad$
4S400449	Lockwasher, split: 1/4"; stl; cad pl (bracket and clinch nut assembly, lower mounting bracket support mtg \& speaker plate top mounting bracket mitg).
2S7009	Nut, hex: $10-32 \times 3 / 8$; stl; cad pl (speaker \& power unit assembly mtg)
2S2890	Nut, hex: 1/4-20 x 7/16; stl; cad pl (speaker plate top mounting bracket mtg)
2K502076	Nut, wing: $10-24 ;$ stl; cad pl (control unit assembly mtg)
$3 S 400938$	Screw, machine: $10-32 \times 3 / 8$; Phillips round head; stl; cad pl (lower mounting bracket support mtg).
4S400495	Screw, machine: $10-32 \times 1 / 2$; slotted hex head; stl; cad pl (speaker \& power unit assembly mtg)......
357297	Screw, machine: 1/4-20 x 1/2; plain hex head; stl; cad pl (bracket \& clinch nut assembly, speaker top mounting bracket and lower mounting bracket support mtg).............doz
7C502482	Support, lower mounting bracket

Ref. Part
No. Number Description
TUNER - MODEL AT-82
510502140 Automatic Tuner Model AT-82, complete: includes 51K510170 \& S1K510171

51K510170 Manuai Tuner Assembly only: complete; includes $L-1,2,8$, 15, C-1,2,3,26 \& ant receptacle
$51 \times 510171$ Pushbutton Tuner Assembly, only : complete; includes $L-3$, $4,5,6,7,9,10,11,12,13,14$, PB switch, $\mathrm{C}-5,6,8 \& 10 \ldots$
Ref. Part
No. Number

Capacitors	
$\mathrm{C}-1$	$2 \overline{1 K} 74661$
$\mathrm{C}-2$	8 C 4529
$\mathrm{C}-3$	20 A 501889
$\mathrm{C}-5$	21 K 580178
$\mathrm{C}-6$	21 K 502851
$\mathrm{C}-8$	20 A 501888

$$
\begin{aligned}
& \begin{array}{ll}
\text { Ceramic: } 50 \mathrm{mmf} & 500 \mathrm{~V} \ldots . . . . \\
\text { Paper: } . & . . . .
\end{array} \\
& \begin{array}{l}
\text { Paper: } 006 \mathrm{mf} \quad 100 \mathrm{~V} \ldots . . . \\
\text { Variable, mica: } 20-80 \mathrm{mmf} \text {; }
\end{array} \\
& \text { includes brkt.............. }
\end{aligned}
$$

$\frac{\text { Coils }}{\mathrm{L}-1}$	- $24 \mathrm{B580540}$	Choke, antenna
L-2	24A510162	Antenna coil, ma
L-3 thru		
L-7	-	Antenna coil, PB (part of 5lK510171; not replaceable separately) $\qquad$
L-8	24K510163	RF coil, manual.
L-9	24K501921	Oscillator padder coil, manual
L-10 thru		
L-14	-	Oscillator coil, PB (part of 5lK510171; not replaceable separately)....................
L-15	24A510164	Oscillator coil, manual.....

## Miscellaneous Tuner Parts

42A502507	Clip, spring (manual drive shaft retainer)............
46A510160	Core, powdered iron: with screw (L-2, $8 \& 15$ tuning)
5A501013	```Grommet, rubber (L-2,8 & 15 tuning core mtg).......```
2S9647	Nut, hex: 12-28 x 5/16 (PB osc coil mtg \& tracking nut)
2A510167	Nut, floating: lear (on manual drive shaft)........
2A510165:	Nut, lock: 2 ears (on manual drive shaft)................
9A472148	Receptacle, antenna........
5A470101	Rivet, shoulder (pointer cord guide)..............
47B501910	Shaft, manual dri
46A510161	Sleeve, cqil: powdered iron (inside L-2, $8 \& 15$ coil shield cans)
41A510169	Spring, loading (on manual drive shaft)
314502144	Strip, terminal: 1 insulated lug, *2 mtg...................
31K590446	Strijp, terminal; 2 insulated lugs, \#2 mtg..................
31A502143	Strip, terminal: 2 insulated lugs, \#3 mtg...................

MOTOROLA PACE 22. 15
MODEL 314 De Soto


## GENERAL INFORMATION

TYPE - FM-AM table model receiver


POWER SUPPLY - 117V AC or DC, 40 watts


INSTALLATION § OPERATING INSTRUCTIONS

ANTENNA \& GROUND
No outside antenna or ground is required for standard broadcast (AM) reception. A loop antenna for broadcast reception is located at the rear of the cabinet.

An FM antenna, built into the power cord, eliminates the need for an external $F M$ antenna when the receiver is used in normal $F M$ service areas such as are found in and for a few miles around metropolitan areas. In 'fringe' or weak signal areas, improved FM reception can be obtained by using an FM antenna mounted as high as possible. The FM antenna should be connected through a 300 tohn twin transmission line to the two screws on the rear of the set. Refer to the instructions on the antenna panel for proper transmission line connections. Orient the antenna so that maximum volume of FM station or stations is obtained.

NOTE: When the built-in FM antenna is used, connect the green lead from the chassis to the RIGHT-HAND terminal on the loop. Since the FM antenna is incorporated in the power line cord,
stretch the line cord to its full length to obtain strong FM reception.

CAUTION: Do not connect antenna or chassis to water pipe, radiator, or other ground. CONTROLS

POWER SWITCH \& YOLUME CONTROL. The power gitch and volume control are combined and are operated by the loft-hand knob.

BANDSWITCH. The small (inner) right-hand knob selects FM or AM reception. Rotate the knob clockwise for AM or counterclockwise for FM.

TUNING. Tuning of both FM and $A M$ is accomplished with the large (outer) right-hand knob. The standard broadcast dial (AM) is read in kilocycles by adding two zeros to the figures. The frequency modulation (FM) dial scale is read in megacycles ( 88 to 108).

Tuning of FM stations should be done very carefully, for best sound reproduction, not necessarily for strongest volume received.

## SERVICE NOTES

## OPERATING NOTES:

The chassis of this receiver is connected directly to the power line. When operating the chassis (from $A C$ line) outside of its cabinet, use an isolation transformer between the power line and the receiver to reduce the possibility of electrical shock. If an isolation transformer is not available, check the $A C$ voltage between the chassis and the bench ground. If there is any indication of voltage, reverse the line plug before handling the set.

When operating the receiver from an $A C$ power line, reception can sometimes be improved by reversing the plug in the power outlet. If the receiver does not operate from a DC power line, after being turned on for a few minutes, reverse the plug in the power outlet.

## TO CALIBRATE DIAL:

1. Turn the tuning knob counterclockwise until the end of its travel is reached.
2. Through the hole in the bottom of the cabinet, loosen the Allen head setscrew in the pointer sleeve. 3. Move the pointer until it coincides with the center of the " 5 " on the $A M$ broadcast scale.
3. Tighten the setscrew.

NOTE: If the pointer is accidentally moved
by hand, it will be released from detent in the pointer collar assembly, and no damage to the tuning mechanism will result. To reset the pointer, merely move it back and forth until it again engages in the detent.

## TO REMOVE POINTER:

1. Remove the two screws holding the medallion, from beneath the cabinet.
2. Turn the tuning knob until the pointar reaches the low frequency end of its range.
3. Through the hole in the bottom of the cabinet, inaert an Allen head wrench into the setacrew in the pointer sloeve and hold the wrench. This keeps the sleeve from turning and breaking the dial string. 4. Remove the nut and washers from the front of the pointer.
4. Pull off the pointer.

## TO REMOVE CHASSIS FROM CABINET:

1. Remove the pointer, as described above.
2. Pull off the control knobs.
3. From the rear of the cabinet, remove the two screws holding the chassis to the cabinet.
4. Remove the two split plugs at the top of the loop, which hold the loop to the cabinet.
5. Slide the chassis from the cabinet.

54P600253


ALIGNMENT
GENERAL INFORMATION

1. Maximum performance can be obtained only if
2. Use small fibre acrewdriver for aligning the extreme care is exercised during alignment.

IF transformers.
2. If $A C$ power is used, it is recommended that an isolation transformer be placed between the power line and the receiver during alignment to avoid hum and electrical shocks. If an isolation cransformer is not available, connect the low side of the signal generator to the receiver chassis through a .1 mf capacitor.

ORDER OF ALIGNMENT AND EQUIPMENT REQUIRED

1. Broadcast Band IF \& RF Alignment
a. 10.7 to 108 Mc FM signal generator
a. 455 to $1620 \mathrm{Kc} A M$ signal generator
b. Low range output meter
2. Refer to Figure 2 for the location of all align ment trimers and cores.
3. As the stages are brought into alignment, reduce the signal generator output to low value te avoid overloading the receiver.
(B) FM Band IF \& RF Alignment (Alternate Methor

2 (A) FM Band IF \& RF Alignment (Preferred Method)
a. 10.7 to 108 Mc signal generator (unmod.) b. Low range $D C$ electronic voltmeter.

BROADCAST BAND - IF \& RF ALIGNMENT the receiver.

1. Connect the AM signal generator as in chart below, with 400 cycle, $30 \%$ modulation.
2. Connect the output meter across the speaker voice coil. Throughout alignment reduce the generator output to a level which produces less than 40 volts across the voice coil, to avoid overloading
$\square$

STEP	DU ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	SETTING	ADJUST	REMARKS
$\begin{aligned} & \text { IF AL } \\ & \text { 1. } \end{aligned}$	$\mathrm{ENT}^{1} \mathrm{mf}$	Grid of conv. $\mathrm{V}-2$ (pin 7. 12BA?	455 Kc	Fully opened	$\begin{aligned} & 1,2,3 \& \\ & 4(\text { If cores }) \end{aligned}$	Adjust for maximum.
$\begin{aligned} & \text { RF AL } \\ & 2 . \end{aligned}$	. 1 mf	Grid of conv. $\mathrm{V}-2$ (pin 7 , 12BA7)	1620 Kc	Fully opened	$\left({ }_{(B C}^{5} \mathrm{osc}\right)$	Adjust for marimum.*
3.	-	Across radiation lonn**	1400 Kc	Tune in		Adjust for maximum.

3. Set the bandawitch to the AM position.
4. Turn the receiver volume control to maximuw
5. Proceed as shown in the following chart.
6. If, after the receiver has been aligned as above, it is found to be badly off calibration, it will be necessary to adjust oscillator core (7) as follows: connect the generator to the grid of the converter tube and, with the gang fully closed, adjust core (7) at 535 Kc . It ia advisable to repeat the oncillator adjustments at 1620 Kc and 535 Kc several times until the tuning range is correct. Core (7) has been pre-tet at the factory and normally should require no retuning.

* If difficulty is encountered in tuning trimmer (5), adjuat trimmer (6) to $1 / 2$ turn from tight.
* Connect generator output acrosa $5^{n}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.

FM BAND - IF \& RF ALIGNMENT (PREFERRED METHOD)

1. The following $F M$ alignment procedure, using an FM signal generator and an oscilloscope, is to be preferred because the actual response pattern may be observed on the scope and adjusted for best symmetry and maximum amplitude.
2. Connect the vertical input terminals of the oscilloscope between the chassis and the junction of resistor R-24 (33K) and capacitor C-29 ( 1000 mmf ).
3. Connect the FM signal generator sync voltage output terminals, through a phase shifting network, to the horizontal input terminals of the scope, as in Figure 3. (Other values of resistance and capa-
citance may be required, depending upan the scope). The phasing control should be adjusted to give only one trace on the scope. NOTE: If the FM generator has a built-in phase control, the phase shifting network is not necessary.
4. Set the bandswitch to the FM position.
5. Throughout alignment, reduce the generator output to keep the signal just above the noise level, to avoid overloading the receiver.
6. Praceed as shown in the following chart.

STEP	DUAMY ANTENNA	GEMERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{gathered} \text { TUNER } \\ \text { SETTING } \end{gathered}$	ADJUST	REMARKS	
IF AL $\\| 1$	$\begin{aligned} & \text { ENT } \\ & 1000 \mathrm{mmf} \end{aligned}$	Grid of 2nd IF Amp V-4 (pin 1, 12BA6)	10.7 Mc   $\pm 100 \mathrm{Kc}$ dev.	Fully opened	$\begin{aligned} & \quad{ }^{9} \\ & \text { (ratio det } \\ & \text { pri) } \end{aligned}$	Adjust for maxianm amplitude of pattern.*	
2.	1000 mmf	Grid of 2nd IF Amp V-4 (pin 1, 12BA6)	$\begin{gathered} 10.7 \mathrm{Mc} \\ \pm 100 \mathrm{Kc} \mathrm{dev} . \end{gathered}$	Fully opened	$\begin{gathered} 10 \\ (\text { ratio det } \\ \text { sec }) \end{gathered}$	Adjust for symetrical curve, as shown in Figure 4.	
3.	-	-	-	-	-	Repeat steps $1 \& 2$ for maximun amplitude and best symmetry.	
4.	1000 mmf	Grid of 1st IF Amp V-3 (pin 1, 12BA6)	$\begin{gathered} 10.7 \mathrm{Mc} \\ \pm 100 \mathrm{Kc} \text { dev } \end{gathered}$	Fully operied	11 \& 12 (2nd IF sec \& pri )	Adjust for maximum amplitude of pattern.*	
5.	1000 mmf	Grid of conv. V -2 (pin 7, 12BA7)	$\begin{gathered} 10.7 \mathrm{Mc} \\ \pm 100 \mathrm{Kc} \mathrm{dev} \end{gathered}$	Fully opened	$13 \& 14$ (lst IF sec \& pri)	Adjust for maximum amplitude of pattern."	
6.	1000 mmf	Grid of conv. V-2 (pin 7, 12BA7)	$\begin{gathered} 10.7 \mathrm{Mc} \\ \pm 100 \mathrm{Kc} \mathrm{dev} \end{gathered}$	Fully opened	$\begin{aligned} & 11,12, \\ & 13 \& 14 \end{aligned}$	Readjust for maximum amplitude and best symmetry.	
$\begin{aligned} & \text { RF ALI } \\ & 7 . \end{aligned}$	ENT 270 ohms	FM terminals on loop	87.5 Mc $\pm 221 / x \mathrm{Kc}$ dev	Fully closed	$\begin{gathered} 15 \\ \binom{\text { osc }}{\text { nut })} \end{gathered}$	Adjust for maximum amplitude of pattern.*	
8.	*	-	-	Fully closed	$\underset{\substack{\text { (RF } \\ \text { nut) } \\ \text { adj }}}{ }$	Turn counterclockwise until core is at bottom of pipe, then turn four turns clockwise.	
9.	270 ohms	FM terminals on loop	90 Mc $\pm 221 / 2 \mathrm{Kc}$ dev	Tune in signal	$\begin{gathered} 17 \\ \text { (RF tun- } \\ \text { ing plug }) \end{gathered}$	Adjust for maximum amplitude of pattern.*	
10.	270 ohms	FM terminals on loop	$\begin{gathered} 105 \mathrm{Mc} \\ \pm 221 / 2 \mathrm{Kc} \mathrm{dev} \end{gathered}$	Tune in signal	$\begin{gathered} 16 \\ \text { (RF adj } \\ \text { nut) } \end{gathered}$	Adjust for maximum anplitude of pattern.*	
11.	-	-	-	-	-	Repeat steps 9 \& 10 until no fur ther adjustment is necessary.	

*An output meter across the speaker voice coil will also indicate maximumamplitude. It should not be used


MODEL 7XM21,
Ch. HS-218


FIOURE 3.
FM SIGMAL GEMERATOR \& OSCILLOSCOPE HOOK-UP


FIGURE 4.
RATIO DETECTOR WAVEFORM

## FM BAND - IF \& RF ALIGNMENT (ALTERNATE METHOD)

1. The following procedure for FM alignment, with an unmodulated carrier generator and a DC electronic voltmeter, is not as desirable as the pres. ceding method; but it may be used if no FM generator is available.
2. Connect the aignal generator as in chart below, vith no modulation.
3. Set the bandawitch to the $I M$ position.
4. Except in step 2 below, connect the electronic voltmeter acress resistor $R-23$ (15K) in the ratio detector stage.
5. Throughout alignment reduce the signal generator output to a value which produces no more than a 5 volt rise above no signal voltage, to avoid overloading the receiver.
6. In step 2 below, connect two 100 K ohm resistors in series across R-23. Connect the electronic voltmeter between the volume control side of resistor R-24 (33K) and the junction of the two l00K resistors, with the low side of the meter at the 100 K resistors.
7. Proceed as shown in the following chart.

STEP	DUNMY AMTENHA	GENERATOR CONNECTION	GENERATOR   FREQUENCY	$\begin{aligned} & \text { TUNER } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARKS
IF ALIGMENT						
1.	1000 mmf	Grid of conv. V-2 (pin 7, 12BA7)	10.7 Mc	Fully opened	$\begin{aligned} & 9,11,12,13 \& \\ & 14 \text { (IF cores) } \end{aligned}$	Adjust for maximum.
2.	1000 mmf	Grid of conv. V-2 (pin 7, 12BA7)	10.7 Mc	Fully opened	$\begin{array}{ll} 10 \\ \text { (ratio det ser) } \end{array}$	Adjust for zero. (Connect meter as in step 6 above).
RF AL 3.	ENT 270 ohms	FM terminals on loop	87.5 Mc	Fully closed	(oso adj nut)	Adjust for maximum.
4.	-	-	-	Fully closed	$\begin{gathered} 16 \\ \text { (PF adj nut) } \end{gathered}$	Turn counterclockwise until core is at bottom of pipe. then turn four turns clockwise.
5.	270 ohms	FM terminals on loop	90 Mc	Tune in. signa]	$\begin{gathered} 17 \\ (\mathrm{RF} \text { tuning plug } \end{gathered}$	Adjust for maximum.
6.	270 ohms	iM terminals on Joop	105 Mc	Tune in signal	$\text { (RF adj } \frac{16}{n u t)}$	Adjust for maximum.
7.	-	-	-	-	-	Hepeat steps $5 \& 6$ until nb further adjustment is necessary.

MOTOROLA PAGE 22-20

# REPLACEMENT PARTS LIST 


PART
MIMBER

## DESCRIPTIOW

## CHASSIS PARTS - MECHANICAL

$43 A 4326$	Ball, steel: 1/8" dia (pointer detent).
1X690717	Bracket Assenbly, tuning core metg: includes shoulder rivet \& antibacklash clip $\qquad$
7 K 692144	Bracket, loop
7 K 692146	Bracket, rect
$7 \mathrm{C690567}$	Bracket, tuner
43A692172	Bushing, pointer shaft
42K690561	Clip, anti-backlash: single (on core mtg bracket)
42A690560	Clip, anti-backlash: double (on tuner mtg bracket)
42B482867	Clip, spring: blued finish (holds IF transformers)
1X692227	Collar Assembly, pointer detent: with pin
11 M 48813	Cord, dial: core
11 M89	Cord, dial: pointer driv
30	Cord, line: with plug; 9 ft
46K692165	Core, iron and screw ( RF tuning
46B692164	Core, iron and screw: green dot (osc tuning core)
557866	Eyelet: . $125 \times .091$ brass; nkl pl (core drive cord retainer).
5A19658	Eyelet, apeaker mtg
12691	Grommet, rubber (apkr
14A690548	Insulator, hakelite (vol control \& bandswitch mtg)
14A48284	Insulator, line cord: fibre; without lugs
$\begin{aligned} & \text { 14K692187 } \\ & \text { 4S9751 } \end{aligned}$	Insulator, line cord: fibre; with lug Lockwasher, int-ext: \#8; cad pl (pointer drive pulley mtg).
29 R 3036	Lug, soldering: \#8 (on spkr mtg screw)
29R52	Lag, soldering: \#8 (on FM ant lead
$2 \mathrm{S70019}$	Nut, hex: 4-40 $\times 1 / 4$; cad pl (tuning core mtg)
257051	Nut, hex palnut: $3 / 8-32 \times 9 / 16$; cad pl (vol control \& bandswitch mtg).
35K691846	Pad, rubber: 1 hole (ga
35A691845	Pad, rubber: 2 hole (gang mtg)
1X692216	Pulley Assembly, pointer drive: $312^{n}$ dia:

49 A 90562 Pulley, core drive: brass
5S8497 Rivet: $088 \times 1 / 8$ stl; nkl pl (antibacklash clip meg)
5S7771 Rivet: . $088 \times 3 / 16$ stl; nkl pl (min sockex mtg) .......................
$5 S 7774$ Rivet: $088 \times 1 / 4$ stl; nkl pl (noval
 strip mtg ) …......................
5K13896 Rivet, shoulder (on core mig brkt)
3S7477 Screw, machine: $8-32 \times 1 / 4$ plain hex head; thread cutting type; cad pl (loop mtg)
$3 S 7205$ Screw, machine: 8 -32 $\times 1 / 4$ slotted
357163 Screw head; cad pl (gang mtg)...
357163 Screw, machine: $8-32 \times 1 / 4$ plain hex head; cad pl (focinter ditive pulley mtg) ........................ $3 \mathrm{~S} 488011 \quad \begin{aligned} & \text { Screw, machina: } 8-32 \times 18 \\ & \text { locking hex head; cad } \mathrm{pl} \\ & \text { (spkr mtg) }\end{aligned}$ 352695 Screw, sheet metal: \#6 x 3/16 PKZ plain hex head; cad pl (tuner bracket mtg)
$3 S 490851$ Screw, sheet metal: $\# 6 \times 1 / 2$ PKA plain hex head; cad pl (loop mtg brkt) 3 S490325 Screw, sheet metal: \#6 x 1-1/8 PKZ plain hex head; cad pl (selenium rectifier mtg)
Setscrew: $8-32 \times 1 / 8$ Allen head; cad pl (core drive pulley mtg).

PART
NUMBER

## DESCRIPTION

389705	Setscrew: 8-32 $\times 1 / 4$ Allen head; cad pl (pointer adj sleeve mtg).
1X692225	Shaft \& Pulley Assembly, pointer: com-
47K690573	Shaft, tuning: brass (fits over bandswitch shaft).
9 K 485936	Shield, coil (for If trensformers).
264481521	Shield, tube: spring type
43K692185	Sleeve, pointer: die cast; less pointer adj setscrew
$9 \mathrm{K484167}$	Socket, tube: miniature; 7-p
$9 \mathrm{B692196}$	Socket, tube: noval; 9 -prong (for V-5)
9 K 692197	Socket, tube: noval; 9 -prong (for V-2)
41A690598	Spring, coil: 7 turns; cosmoline dipped ( FM -RF core mtg).
41K691840	Spring, coil: 8 turns; copper plated (FM asc core mtg). $\qquad$
41A690732	Spring, compression (in pointer sleeve).
41A14244	Spring, tension (core \& pointer drive cord).
31K85348	Strip, terminal: 1 insulated lug: *2 meg; 3/8" spacing ............
31K86126	Strip, terminal: 2 insulated lugs; \#2 mtg; $3 / 8^{\prime \prime}$ spacing
31K37493	Strip, terminal: 2 insulated lugs; ${ }^{2} 2$   mtg; $1 / 2^{\text {" }}$ spacing
31K14655	Strip, terminal: 3 insulated lugs; *3 mtg; $3 / 8^{\prime \prime}$ spacing
31K22174	Strip, terminal: 4 insulated lugs; \#4 mtg; $3 / 8^{n}$ spacing
31K470747	Strip, terminal: 5 insulated luga; *3 mtg; $3 / 8^{n}$ spacing
29A70422	Terminal, screw (antenna termina) on loop back)
4473639	Washer, ' C ' (holds tuning shaf
4 K 692188	Washer, ' $C$ ' (pointer shaft mtg)
4A70873	Washer, fibre (pointer drive pulle mtg)
$4 \mathrm{S7582}$	Washer, flat: $X_{2} \times 195 \times .033$; cad pl (pointer drive pulley mtg)
457614	$\begin{aligned} & \text { Washer, flat: } 11 / 16 \times 11 / 64 \times .036 \text { stl; } \\ & \text { cad pl (loop mtg)...................... } \end{aligned}$
4K690571	Washer, shoulder: fibre (vol control \& bandswitch mtg):
4 K 482859	Washer, shoulder: fibre (loop mtg brkt)
4B600149	Washer, spring (under pointer shaft pulley)
CABINET P	

16E691951 Cabinet, table model: plastic; brown...
36B692149 Knob, control: brown plastic (tuning knob) ......................................
Knob, control: brown plastic (AM-FM selector)
36B692181 Knob, control: brown plastic (volume control)
Lockwasher, internal: ${ }^{2} 6$; cad pl
(pointer mtg) .......................
Nut, hex: $6-32 \times 1 / 4 \times 11 ;$ cad pJ (pointer mtg).
13B692039
38A25507 Plug, split (mounts loop to cabinet)
$\begin{array}{ll}\text { 52B692173 } & \text { Pointer. dial } \ldots \ldots \ldots \ldots \ldots \ldots \\ \text { 3S2999 } & \text { Screw, machine: } 6-32 \times 5 / 8 \text { slotted }\end{array}$ locking hex head; cad pl (nedallion mig)
Screw, thread cutting: $\# 8 \times 3 / 8$ plain hex head; cad pl (chessis mtg)... Washer, flat: $3 / 8 \times .156 \times .030$ stl; cad pl (medallion mtg).............
Washer, flat: $1 / 2 \times .147 \times .015 \mathrm{st} 1$; cad pl (pointer mtg).
Washer, spring (pointer mt g)........

## GENERAL INFORMATION

TYPE - Automotive superheterodyne receiver with external speaker.
TUNing Ravge - 540 to $1610 \mathrm{kc} \quad$ IF $=265 \mathrm{Kc}$

TUBE COAPLEMENT -	6SA7GT - RF Amplifier		6SOTGT - Detector, ANC \& AF Amplifier
	6SA7GT - Converter		6VGGT - AF Output Amplifier
	6SK7GT - IF Amplifier		6X5GT - Rectifier

OPERATES FROM - 6 volt storage battery

## TO SET THE PUSH BUTTONS

Automatic push button tuning is provided for selection of five favorite local stations. The five push buttons may be adjusted to any of the desired stations. In order to simplify the identification of these stations, it is advisable to set the push buttons in sequence according to their frequencies, beginning with the station broadcasting on the lowest frequency and progressing to the station broadcasting on the highest frequency. The push buttons should be set up during the daytime because at night, distant stations will be heard with the same intensity as local stations, making it difficult to select local stations. To set the push buttons proceed as follows:

1. Collapse the antenna.
2. Turn the receiver on and allow it to operate for at least fifteen minutes in order for each part to reach normal operating temperature.
3. Loosen the first push button on the left by
turning it (with your fingers)counterclockwise one turn.
4. Select the station desired and with low volume tune it in by turning the manual tuning knob. Tune very carefully for clearest reception.
5. Press the first push button in firmly, then release and tighten (with your fingers) by turning clockwise.

The first push button is now set for this station selection. Follow the above procedure for setting each of the other four buttons.

When the five fush buttons have been set to the desired stations, return the antenna to the lowest position necessary for good reception. It is only necessary to press a push button to receive the station for which the adjustment was made. The dial pointer will automatically indicate the frequency of the selected station.

## IF TRANSFORMER CHANGES

The Detrola lst If transformer T-1, Detrola Part No. D71193-1 and the Detrola 2nd IF transformer T-2. Detrola Part No. D71192-1 have been replaced by transformer of another make, Motorola Part Nos. 24B580193 and 24 K 580194 respectively. The above mentioned Motorola Transformers are mectranicully and electrically not interctiangeable with the Detrola Transformers. A 33,000 ohm re. sistor, which was mounted internally on the Detrola 2nd If transformer, will be mounted externally to the transformer where the Motorola transformer Part No. 24K580194 is used.

## ALIGNMENT

Connect the receiver ' $A$ ' lead and receiver chassis to a 6 volt storage battery. Rotate volume and cone controls to maximum clockwise position. Connect an output meter across the speaker voice coil. Use an insulated screwdriver for making all adjustments. For greatest accuracy, keep output of receiver at approximately 1 wat (l watt = 1.79 volts on output meter) throughout alignment by reducing generator output (not re-
ceiver volume control) as stages are brought into alignment. Remove receiver escutcheon and top \& bottom covers to expose all alignment adjustments. See Figure 1.

Pointer is calibrated by tuning in a 1300 Kc signal and then set pointer to 1300 Kc after loosening its adjusting screw. See Figure 1.

STEP	DUMMY ANTENHA	GENERATOR CONNECTION	generator FREQUENCY	TUNER   SET TO	ADJUST	REMARKS
$\begin{aligned} & \text { IF AL } \\ & 1 . \end{aligned}$	IGNMENT   . 1 mf	Converter grid (6SA7GT pin 8)	265 Kc	HF end stop	1,2,3\& 4	Adjust for maximum. Repeat for greater accuracy.
RF AL $2$	IGMENT   See Fig. 1	Ant. recept	1610 Kc	HF end stop*	$\begin{aligned} & C-14, C-11 \\ & C-1 \end{aligned}$	Adjust for maximum.
3.	See Fig. 1	Ant. recept	1400 Kc	Move carriage 'in' 5/16" from HF end stop position. See Figure 1.	$\begin{aligned} & \mathrm{L}-6, \mathrm{~L}-5, \\ & \mathrm{~L}-2 \end{aligned}$	Adjust for maximum.
4.	See Fig. 1	Ant. recept	1610 Kc	HF end stop	$\begin{aligned} & C-14 \\ & C-11 \\ & C=1 \end{aligned}$	Adjust for maximum.
5.   SEMSI	Repeat st adjustmen   TIVITY	$3 \& 4$ until in place with IROL	further i   eaker cem	rease is obtai t.	able. After	final adjustment is made, stake core
$6 .$	See Fig. 1	Ant. recept	Set to 600 Kc \& 4 microvolts output	Tune for maximum	Sensitivity control	Set sensitivity control for 1 watt output (1.79 volts on output meter)
ANTE 7.	A TRIM	ADJUSTMENT	-	Weak station at approx. 1400 Kc	C-1	With receiver installed in car, peak antenna trimmer for maximun volume. Ant, should be fully extended.

Tuner cores should be backed out to project $1-3 / 8^{\circ}$ from end of coil forms so they will have no effect on trimmer adj.



[^3]TAKEN AT ANT, SOCKET, A.F GABO AMO CONV Qmio AT 1000 KC
MUMD.
30 mimfo. senies eso mird shumt at $\triangle N T$. societ a o.imfl. series at tube getid
7.2 volts measured getween ent of an" Lean and chassis

REF. FORD
DETROLA MOTOROLA
PARTMO. PART MO. PART MO.

## TUBES

$A-54514-2$
A-5417-2
A-54517-2
A-54518-2
A-5419-3
A-54577-2

VIERATOR
V-1 51A18885 B-70347
CHASSIS PARTS - MECHANICAL

	A-71086-1	A-912109	Bracket, front cover mou
	B-71088	B-912132	Bracket, dial scele ....
	A-71191	A-912110	Clip, pointer retaining
	A-55261	A-912111	Clip, vibrator grouhd
	C-71062-1	C-912145	Cover, bottom front
	B-71035	1 $\times 580306$	Cover, power supply
	B-71039	B-912133	Crystal, dial ..
	X-71230	1X580303	Escutcheon Assembly: includes bracket \& grounding spring.
	A-71076	30K580711	Housing, fus
	A-55247	A-912112	Insulator, armite (volume control mounting)
8A-18824-A2	B-71090-1	1X580525	Knob, manual: includes spring; chrome plated
8A-18830-A2	B-71057-1	B-912134	Knob, tone control: chrome plated
8A-18817-A2	X-71235	$1 \times 580521$	Knob, volume control: includes spri
	EK122E02	457666	Lockwasher, external: \#6; steel; cad pl (filter capacitor mounting)
	A-54901	29R3025	Lug, soldering: hot tin
	EN141T02	2A590913	Nut, hex: 1/2-28 $\times 11 / 16-1 / 8$ thick; stl; cad $p$ ) (vol, cont mtg)
	- EN111702	2 S 2876	Nut, hex: $1 / 2-28 \times 3 / 4$; steel; cad pl
	BHIA120A	$2 \mathrm{S488296}$	Nut, speed
	B-71189	B-912135	Pointer, diel
	ER393003	558497	Rivet: $088 \times 1 / 8$ steel; $n k l$ plated (dial scale brkt mtg
	Ev321005	X910007	Rivet: $.122 \times 1 / 8$ steel; black dip (spring grounding mtg)
	BV321002	X910022	Rivet: . $122 \times 1 / 8$ steel; cad pl (power supply cover spring mounting)
	BV321002	X910002	Rivet: $.122 \times 5 / 32$ steel; cad pl (tube socket $\mathrm{mt} g$, dial light socket mitg, filter capacitor mtg, sensitivity control mtg, terminal strip meg and antenna socket meg)....
		$5 S 7703$	Rivet: . $122 \times 7 / 32$ steel; pol nkl (vib. clip mtg., soldering lug mounting)
	EV321H02	X910006	Rivet: . $122 \times 9 / 32$ steel; cad pl (spark plate mtg)
	D-71045	D-912146	Scale, dial
	RSF14002	357205	Screw, machine: $8-32 \times 1 / 4$ slotted hex head; steel; cad pl (power transformer mounting and variable clapacitor bracket nounting)
	EP928002	35488298	Screw, sheet metal: $\% 8 \times 1 / 4 \mathrm{PKZ}$ slotted hex head; steel cad pl (output transformer mounting, shield mounting, etc.)
	B-71089	B-912136	Shield, dial
	B-71044	B-912137	Shield, interference
	A-70302	A-912113	Socket, antenna connector
	B-71074-1	B-912138	Socket, dial light \& lead (4n)
	B-71074-2	B-912139	Socket, dial light \& lead (12*)
	A-71079	A-912114	Socket, speaker: 3-prong
	A-55366	9A590099	Socket, tube: octal; molded
	A-70301	A-912116	Socket, tube: 4-prong, wafer
	A-71096	A-912150	Spring, grounding (used on escutcheon)
51 118847	$\begin{aligned} & \mathrm{A}-70300 \\ & \mathrm{~A}-70277 \end{aligned}$	$\begin{aligned} & 41 \wedge 485380 \\ & A-912115 \end{aligned}$	Spring, knob retaining (used on manual and volume cont) Spring, shield (used on power supply cover) $\qquad$


BY510101	X910003	
BY520102	X910004	Strip, terminal: 2 insulated lugs, 2 gnd; $3 / 8^{\prime \prime}$ spacing..
BY550104	X910005	Strip, terninal: 4 insulated lugs, \#2 mtg, 3/8" spacing..
A-54901	2983025	Terminal, ground
Hex+12HJ02	$44_{1719}$	Washer, flat: 3/4-6/64-1/32; steel; cad pl (spark plate mounting)
A-70311	A-912149	Washer, flat: armite (fuse housink)
A-71048	A-912117	Washer, shoulder: nylon (spark plate mounting)

## HOUSIMG, MOUATING PARTS ACCESSCRIES


G. I. TMNER LWIT \& PARTS - MECHANICAL - 8072

X-71280	B-912080	Bracket - Shaft Stip
X-71276	B-912043	Bushing \& Disc Assembly Clutch
X-71275	B-912037	Clutch Disc Assembly (Crown Gear)
X-71277		Clutch Pressure Spring
$\mathrm{X}-71256$		Grommet - Coil Mtg - Osc
B-51427-12		Grommet - Coil Mtg RF \& Ant
B-71240	B-912065	Push Button \& Screw Assembly 8-32 thd
X-71278	B-912013	Shaft \& Bush. Assembly - Manual Drive
X-71279	B-912044	Spring - Tension Drive Shaft
A-71198	41A912090	Spring - Pointer
X-71285	B-912084	Spring - Pointer Link
X-71281	B-912033	Pinion \& Shaft Assembly

## SMTAY TUNER UNIT \& PARTS - MECHANICAL - 8072

B-71160		Bushing \& Disc Assembly Clutch
B-71150		Clutch Disc Assembly (Crown Geer)
A-71137		Clutch Pressure Spring
B-51427-12		Grommet - Coil Mounting Osc.
B-51427-8		Grommet - Coil Mtg. RF \& Ant
A-71198	414912090	Pointer Spring
B-71145	B-912160	Push Button \& Screw Assembly 8-40 thd
B-71195		Shaft \& Bushing Assembly, Man. Drive
A-71251	A-912123	Spring Tension Drive Shaft
B-71168		Spring Tension
8-71155		Pinion \& Shaft Assembly

G. I. or santay tumer uwit \& parts - electrical - 8072

A-55495	A-912101	Capacitor - Compensating 180 mmfd
B-55523-4	A-912158	Capacitor - Trimmer
X-71258	A-912153	Coil - Antenna
X-71259	A-912155	Coil - Osc.
$\mathrm{X}-71257$	A-912154	Coil - RF
X-71262	A-912156	Cores
X-71286	X-912159	(Cores Kit - Hardware   (T-nut   (Core Spring   (Flat Washer

# THE HRO-50-I RADIO RECEIVER 

SECTION 1. DESCRIPTION

## 1-1. GENERAL

The HRO-50-1 is a deluxe radio receiver featuring performance and versatility. sixteen tubes, including a rectifier and a voltage regulator tube, are utilized in a superheterodyne circuit for the reception of code and phone signals throughout its frequency range of 50 to 430 kilocycles and 480 to 35,000 kilocycles. The HRO type receivers have long been outstanding and proven performers in Communication and Amateur services. This new series of HRO-50-1 receivers feature many desirable innovations emanating from the latest advances in receiver circuitry and mechanical design. It is housed in a new and enlarged cabinet styled in an attractive gray finish with a self-contained power supply adequately isolated from the R.F. circuits. A calibrated, illuminated slide-rule dial provides direct reading in megacycles for each of the General coverage coil sets as well as an additional bandspread scale for those coil sets incorporating this feature. A front-panel mounted oscillator trimmer control is provided to assure precise calibration. of course, the dial-driving mechanism still features the micrometer dial. Temperature compensation and voltage regulation of the high-frequency oscillator as well as utilization of ceramic insulation in the coil sets and associated connecting brush blocks provide stable operation and freedom from drift. A single front-panel mounted Control switch selects any one of the four modes of operation, C.W.. Phone, Narrow-Band F.M. or Phono. Sockets are mounted on the receiver chassis to accommodate the National Type NFM-83-50 FM adaptor and the National Type $x C U-50-2$ crystal Caliorator unit. These accessories may be permanently installed and switched on and off by means of the front-panel switches. At the rear of the receiver sockets are available for external use of the National Type soJ-3 select-0-Ject and National Type 650 S vibrator Power Supply or oattery power supply. The s-meter circuit is designed so that the operator may adjust the sensitivity of the s-Meter. A push-pull audio system delivers the utmost in audio frequency response and undistorted power output from the built-in output transformer. other highlights include a six-position crystal filter, maximum bandspreading of the amateur bands, a quick-acting bandspread switch and a dimmer control for the slide-rule dial and s-meter lamps.

A standard equipment consists of a receiver, loudspeaker and coil sets A, B, C and D. Coil sets Type E, F, G, H, J, AA, AB and $A C$ may be oDtained as desired. Accessories available include the National types NFM-83-50 Narrow-Band F.M. adaptor, xCu-50-2 Crystal Calibrator. Soj-3 Select-0ject and 650 S vibrator Power supply.

## 1+2. CIRCUIT

For all frequency ranges the circuit utilizes two tuned stages of radio frequency amplification, a tuned mixer stage, a high-frequency oscillator employing a tube separate from the mixer tube, a first intermediate frequency amplifier stage employing a variable-selectivity crystal filter and two additional l. F'. amplifier stages all operating at 455 kilocycles, a combined second detector-automatic volume control stage, an s-Meter amplifier, a double-action adjustable threshold double-diode noise limiter, a first audio amplifier, a phase inverter, a push-pull audio amplifier and a beat frequency oscillator coupled to the second detector to provide, for C.W. reception.

All voltages required by the receiver are supplied by a built-in power supply. A voltage regulator tube is used to regulate the plate supply to the high-frequency oscillator and the s-meter amplifier stages.

## 1-3. Antenna input

Antenna input terminals are provided at the rear of the receiver. The input circuit is suitable for operation with a single-wire antenna, a balanced feed line or a low impedance 72-ohm unbalanced concentric transmission cable. The actual antona input impedance is between 300 and 600 ohms depending on the frequency of the input signal.

1-4. TUBE COMPLEMENT

The HRO-50-1 receiver is supplied complete with tubes which are tested in the receiver at the time of alignment.

The tubes employed are as follows:

First R.F. Amplifier	6 BA6
Second R.F. Amplifier	6 BA6
Mixer	68 E 6
High-Frequency Osciliator	$6 \mathrm{C4}$
First 1.F. Amplifier	$6 \mathrm{K7}$
Second I.F. amplifier	6SG7
Third I.F. Amplifier	6SG7
Second Detector - A.V.C.	$6 \mathrm{H6}$
Noise Limiter	6 $\mathrm{H6}^{\prime}$
S-Meter Anplifier - Phase Inverter	6SN 7GT
First A.F. Amplifier	6 SJ 7
Audio Output (2)	6V6GT
Beat Frequency oscillator	6 J 7
Voltage Regiulator	082
Rectifier	$5 \vee 4 \mathrm{G}$

1-5. TUMING SYSTEM

The frequency coverage of the $H R O-50-1$ is covered in twelve bands as follows:

COIL SET	GEMERAL COVERAGE				BANDSPREAD			
A	14.0	-	30.0	Mc.	27.0	-	30.0	Mc.
$B$	7.0	-	14.4	Mc.	14.0	-	14.4	Mc.
C	3.5	-	7.3	Mc.	7.0	-	7.3	Mc.
D	1.7	-	4.0	Mc.	3.5	-	4.0	Mc.
E	900	-	2050	Kc.				
$F$	480	-	960	Kc .				
6	180	-	430	KC.				
H	100	-	200	Kc.				
$J$	50	-	100	Kc.				
AA					27.5	-	30	MC.
AB	25	-	35	MC.				
$A C$					21.0	-	21.5	Mc.

As shown above plug-in coil set types AA, AC, A, B, C and $D$ provide bandspread coverage of the 10-11, 15, 20, 40 and 80 meter amateur bands. The $A A, A C, B, C$, and D bands are spread out so as to cover 400 dial divisions while the $A$ dand is spread 430 divisions on the 500 -division main tuning dial. This is accomplished by switching a small variable capacitor in series with each section of the main tuning capacitor, thus reducing its effective capacity range. All of the coil sets are factory aligned in the receiver using accurate crystal-controlled test oscillators thus assuring precise alignment.

The micrometer type dial drives the main tuning capacitor through a wom drive having a reduction ratio of approximately 20 to 1 . Backlash is eliminated by the use of a spring-loaded split
 tive scale length of approximately twelve feet and is calibrated from zero to 500.

A slide-rule type dial is synchronized with the micrometer dial by means of an anti-backlash gear and an efficient string drive arrangement to the main tuning dial. A dial drum provides a
means of mounting eight scales. Each of these scales is caliorated in megacycles for the general coverage andor bandspread frequencies depending on the coil set. Mounted on the front panel is a band selector switch for ease in rotating the dial drum to select the proper band scale to correspor to the coil set in use. Each scale is clearly marked with the band designation. Two pilot lamps are used, one at each end of the dial scale drum, for illumination. the degree of illumination is controlled by the front-panel mounted Dimmer control.

## 1-6. CRYSTAL FILTER

The selectivity characteristics of the HRO-50-1 are made adjustable by means of a crystal filter. Located in the first intermediate frequency amplifier this crystal filter is designed for extreme flexibility and efficiency of operation. A six-position selectivity switch and a crystal Phasing control are front-panel mounted for adjustment of the filter. Figure Number i shows the selectivity characteristics of the rec-iver for each of the six degrees of selectivity.

The crystal filter may be used for either C.W. or phone reception; any degree of selectivity from true single-signal to wide band A.M. broadcast reception being available. operation of the Phasing control provides for efficient suppression of interfering C.W. signals or M.C.W. signals which may produce objectionable neterodynes.


1-7. NOISE L!M!TER
The noise limiter in the HRO-50-1 receiver uses an automatic type double-action circuit result ing in the limiting of noise pulses on doth the positive and negative peaks. it is equally effectiv on both C.W. and phone reception. The usefulness of this limiter will be most appreciated on the higher frequency bands of the receiver where automodile ignition noise and other high frequency disturbances are effectively suppressed. A threshold control on the front panel permits adjustment of the level at which limiting action starts.

## 1-8. TONE CONTROL

The Tone control circuit has been especially designed to provide a versatile variance of the frequency characteristics of the audio amplifier output. In the extreme caunter-clockwise position the greatest degree of high audio frequency response is obtained. Rotating the control clockwise until the switch mounted on the control just closes provides a comparatively flat response over the entire usable audio frequency range. Further clockwise rotation will result in the high audio frequencies being attenuated as illustrated in Figure Number 2. This control is particularly helpful when receiving weak signals through interference. If a signal is weak and partially obscured by background noise or static, an improvement in signal-to-noise ratio will be obtained by rotating the Tone control in a clockwise direction thereby attenuating the higher audio frequencies.


Figure No. 2. Audio Amplifier Response

## 1-9. TEMPERATURE COMPEKSATION

The HRO-50-1 is compensated for frequency drift due to temperature changes which may detune the receiver from the desired signal over long or short periods of reception. The most objectionable cause of frequency drift is'the change of inductance of the high-frequency oscillator coil as heat from the tubes causes the interior of the receiver to increase in temperature. This undesirable heating effect in the R.F. coils is minimized by the position of the plug-in coil sets in that they are placed at the bottom of the receiver underneath the chassis in a separately shielded compartment. A further safeguard against frequency drift is proyided for on bandspread opleration. The heat which is dissipated in the high-frequency oscillator may change the inter-electrode capacity of the tube and thus cause frequency drift. To offset this effect a small negative temperature coefficient capacitor is placed adjacent to the nigh-frequency oscillator tube to compensate for any change caused by the internal heating of the tube.

The coil set terminal connecting boards of each shielded coil can as well as their mating brush blocks have been made of ceramic type material. As a result freedom from any possible leakage due to poor insulation assures a low degree of drift. This will be found especially true of the coils operating at the higher frequencies.

## 1-10. SIGNAL STRENGTH METER

Signal input readings are indicated in S-units from 1 to 9 and in decibels above $5-9$ from zero to 40 db . on the panel-mounted signal strength meter. A reading of $\mathrm{s}-\theta$ is obtained with an input signal of approximately 25 microvolts. The meter employs a zero to 1 milliampere movement with its mechanical zero at 40 db , on the dial scale. The s-Meter is connected in series with the plate input of the s-Meter Amplifier tube $\vee-8 A$ and measures the plate current of this tube. With the A.C. supply switch on and the A.V.C. switch set at A.V.C. the S-Meter will read zero in the absence of signal input. A variable resistor is shunted across the meter and with no antenna connected this resistor allows correct adjustment of the pointer to its electrical zero. Any increase in a.v.c. voltage caused by signal input will give a corresponding increase in the meter reading. At the 40 db. meter reading the A.v.C. grid voltage applied reaches the cut-off point of the amplifier tube. Therefore the pointer cannot be harmed by violent contact with the full-scale meter pin. For the purpose of comparing strong signals (which cause the meter to contact the full-scale meter pin) with other stronger and/or weaker signals the sensitivity of the $S$-Meter may be lowered by retarding the R.F. Gain control. The meter dial lamp illumination is regulated oy a Dimmer control mounted on the front panel of the receiver.

## 1-11. NARROW-BAND F.M. SOCKET

A standard octal socket, $x-1$, is mounted inside the receiver on the center portion of the power supply compartment chassis. it is designed to mount the National Type NFM-83-50 Narrow-Band F.M. adaptor. A control switch is front-panel mounted to provide a means of switching the adaptor into the output of the intermediate amplifier circuit. With the control switch set at the N.F.M. position the receiver is adjusted for the reception of narrow-band F.M. signals. With the A.V.C. switch set at A.V.C. the S-Meter is operative in the N.F.M. position and the receiver should be tuned for maximum meter reading to assure efficient operation. Further information concerning the MFM-50 unit is contained in a separate data sheet at the rear of this manual.

## 1-12. CRYSTAL CALIBRATOR SOCKET

The Crystal Calibrator socket, $x-2$, is of the standard octal type mounted on top of the power supply compartment chassis inside the receiver. It is designed to accommodate a National Model XCU-50-2 Crystal Calibrator. The Model XCU-50-2 is compactly constructed and furnished with a drive screw clampling arrangement to hold it firmly in place. A double-pole, three-position toggle type front-panel mounted Calibrate switch marked $100-0 f f-1000$ provides a means of connecting $\mathrm{B}-\mathrm{pl}$ us to the unit for instantaneous use. At the same time by using this toggle switch a resonant crystal-control led frequency of either 100 or 1000 kcs . may be selected. The output of this unit is loosely coupled to the first R.F. amplifier stage through the socket wiring. Further information concerning the Model XCU-50-2 unit is covered by a separate data sheet included at the rear of this manual.

## 1-13. SELECT-O-JECT SOCKET

The Select-0-Ject socket, $x-3$, is a standard octal type socket accessible at the rear of the receiver. it is primarily designed to accommodate a National Model soj-3 select-0-Ject unit. The mating plug attached to the soJ-3 permits a direct connection into this socket in place of the audio jumper plug originally plugged into the Select-0-Ject socket. By proper adjustment of the controls any single audio frequency selected in the range of approximately 80 to 10,000 cycles may be boosted or rejected. Detalled instructions for proper operation of the select-0-Ject are contained with the unit.

For convenience a source of 6.3 V.A.C. filament voltage, a 240 V.D.C. high voltage as well as the 105 V.D.C. regulated voltage is available for operation of external apparatus. The schematic diagram, Figure Number 13, shows a pin view of the select-0-Ject socket thus providing the information necessary for making the proper connections. External equipment MUST NOT be utilized if the Narrow-Sand F.M. adaptor, Crystal Calibrator and Select-0-Ject units are all operated at the same time Consideration must also be given to the fact that the $105-\mathrm{volt}$ requlated power supply cannot

De switched off by the $8+$ On - off switch.

## 1-14. PHONO IMPUT JACK

A Phono jack is mounted at the rear of the Receiver and can be used for connecting auxiliary apparatus, such as a record player pick-up or microphone into the audio system of the receiver. This input circuit is of high-impedance providing a suitable match for such external equipment into the high-gain first audio amplifier stage. The front-panel mounted control switch must be set at the Phono position when using the Phono jack. Both the A.F. Gain and Tone controls are operative with this type of operation.

The majority of record player pick-ups are terminated in a single snielded wire. The phono jack on the HRO-50-1 is the type that accommodates a standard phono tip plug and if the record player to be used is not fitted with such a plug one can easily be attached. If the output circuit of the record player is of low impedance (less than 100,000 ohms) improved efficiency will be obtained if a suitable resistor, with a value as specified for the particular record player, is connected across the phono tip plug or its mating jack to properly load the record player output circuit.

1-15. AUDIO OUTPUT

The HRO-50-1 features a push pull output amplifier using inverse feed-back. See figure no. 2 for the audio system response characteristic. The matching transformer located inside the receiver provides two audio output circuits as follows:
(1) The transformer secondary leads are brought to a three-terminal output board located at the rear of the receiver, having both $\theta$ and 500 -ohm terminals and a common ground terminal. The eight-ohm terminal provides output for the speaker voice coil. The $500-0 \mathrm{hm}$ terminal is available for connection to a $500-0 n m$ line. Approximately 8 watts of undistorted audio output power is available at the output terminal board and a maximum power of 10 watts is obtainable.
(2) A headphones jack is front-panel mounted and is wired so as to silence the Loudspeaker upon insertion of the headphones plug. The headphones output load impedance is not critical and varying types of headphones may be used including crystal types, as no direct current flows through the headphones.

## 1-16. POWER SUPPLY

The power supply is duilt in a separate compartment inside the neceiver cabinet incorporating a neat-resistant shielded barrier isolating it from the R.F. chassis portion. it is designed for operation from a $110 / 120$ or $220 / 240-v o l t$, $50 / 60$ cycle A.C. supply source. A toggle switch is mounted on top of the chassis for seleçtion of either $110 / 120$ or $220 / 240-v o l t$ operation. Normal power consumption is approximately 115 watts. The built-in power unit supolies all of the voltages required by the heater and $B$ supply circuits, 5.1 amperes at 6.3 volts and 145 milliamperes at 240 volts respectively. In addition this supply is al so capable of furnishing all voltages required by the accessories such as the MFM-83-50, $\mathrm{XCU}-50-2$ and SOS-3. A 2 -ampere fuse $i s$ connected in one side of the A.c. input supply to protect the receiver circuits against possible voltage surges in the power line or short circuits in the receiver. it is located at the rear of the receiver and is easily removed for examination or replacement.

A Power Socket, $x-4$, is provided at the rear of the receiver so that either a battery or vibrator power supply may be utilized for portable or emergency service. The National type 650 S vibrator Power Supply is designed to provide efficient operation of the receiver with the use of a 6-volt storage battery input. Further information concerning the 650 S is contained at the rear of this manual on a separate data sheet.

## 1-17. LOUDSPEAKER

The HRO-5OTS of HRO-50RS loudspeakers in table or rack mounting styles respectively are designm ed for use with the receiver. These are both permanent-magnet type loudspeakers furnished with a shielded connecting cable from the $\theta$-ohm voice coll for connection to the output terminal board located at the rear of the receiver. If desirable a 500 -ohm shielded line may be used from the receiver output terminals to the speaker and/or externally operated equipment. In the event a dynamic type loudspeaker is used external means for supplying field excitation voltage will be necessary.

A cabinet finished to match the receiver design houses the HRO-50TS loudspeaker for table mounting. The cabinet is lined with sound absorbent material to avoid mechanical resonance.

## SECTION 2. INSTALLATION

## 2-1. GEMERAL

All HRO-50-1 receivers are supplied with the following eight scales mounted on the slide-rule dial drum, irrespective of the type of coil sets ordered, $A, B, C, D, E-F, A A, A B$ and $A C$. If a coll set or coil sets are ordered with the receiver and the corresponding scale does not appear on the dial drum it will be found packed with the coil set. The new scale is installed in place of any one of the unused scales previously mounted on the dial drum. A Phillips head type screw at one end and a spring clip at the other end of the scale hold it oroperly in place. The orum scales for the $A$, $B$, $C$ and $D$ coil sets are frequency calibrated in megacycles for both of the available ranges i.e., General Coverage and Bandspread. The $E$ and $f$ coil set ranges are on the same scale, while the remain ing scales carry just the one frequency range calibrated in megacycles. Each scale is clearly marked with the band designation.

## 2-2. LOCATION

The receiver should not be installed in small, unventilated or warm spaces. wherever practicable placement should be made to allow freedom of air circulation on all four sides. The loudspeaker may be located in any desirable position although it is not recommended that it be placed on top of the receiver as undesirable microphonics may result. The loudspeaker should not be placed near the antenna terminals.

## 2-3. ANTENNA RECOMMENDATIONS

The radio frequency input of the receiver is designed for operation from either a single-wire antenna or other types employing transmission lines having impedances of 70 ohms or more. There is an antenna terminal panel at the rear of the receiver with three screw-type terminals marked $A$, $A$ and $G$ respectively. $A$ link is provided on the antenna terminal panel to allow connection of two-wirt or single-wire type antennae to the receiver.

For best impedance matching to the receiver input circuit an antenna with a 300 to 600 ohm transmission line is recommended. The antenna should be cut to the proper length for the most used frequency. The antenna transmission line feeders should be connected to the two antenna terminals marked $A$ : the grounding link is not used. It must be remembered, however, that an antenna installation of this type will have maximum efficiency over a band of frequencies near that frequency for which it is designed and will be most useful in installations where the receiver is tuned to one frequency or band of frequencies. For other frequencies, it would be desirable to connect the two transmission line leads together at the antenna terminal at the left of the antenna terminal panel, grounding the other terminal by means of the link. The antenna is thus utilized as a single wire type.

The most practicable antenna for use in installations where the receiver is to be used over a wide range of frequencies is the single-wire type. An antenna length of from 50 to 100 feet is recommended. The antenna lead-in should be connected to the antenna terminal marked at the left of the antenna terminal panel; the other terminal marked $A$ should be grounded by means of the link.

When a doublet is used, the antenna feeders or balanced transmission line are connected to the two terminals marked $A$. The grounding link is not used.

The inner conductor of a concentric transmission line should be connected to the terminal marked A at the left of the antenna terminal panel. The outer conductor should be connected to the other terminal marked $A$ and grounded by means of the link to $G$.

In some cases where a doublet antenna is used with a low impedance concentric or other type transmission line it may be necessary to re-trim the first R.F. amplifier stage at the high end of each band to provide a better impedance match between antenna and receiver input circuit. Paragraph $4-6$ describes this procedure.

In an installation where the receiver is to be used as the receiving unit in a transmitting station the most efficient operation will result from use of the transmitting antenna as receiving antenna also. This is especially true if the transmitting antenna is of the multi-element, directional type since the same antenna gain is available for doth receiving and transmitting - a very desirable condition. For switching the antenna from the receiver to transmitter, an antenna change-over relay should be used. A double-pole, double-throw relay possessing good high-frequency insulation is suitable. A second relay and a three position switch may be used to control the transmitter plate supply and the receiver $\mathrm{B}+$ circuits. This second relay should be a single-pole, single-throw type having one normally open pair of contacts. The schematic diagram of this type of control circuit is shown in Figure 3. With $\mathrm{S}-1$ in the receive position the antenna transmission line is connected to the receiver by contacts 2, 3, 5 and 6 on relay RY-1; the $B+$ circuit of the receiver is completed by the switch. (the $B+$ switch on the receiver should de at $B+O f f$ ). With the switch in the transmit position RY-1 contacts $1,3,4$ and 6 are closed transferring the antenna transmission line to the transmitter; contacts 7 and 8 of relay RY-2 close to complete the plate supply circuit to the transmitter. contacts 7 and 8 of relay $\mathrm{RY}-2$ should be in series with the primary of the transmitter plate supply transformer. Thus, the station is in the receiving condition with switch $s-1$ in the receive position and in the transmitting condition with s-1 in the transmit position. With s-1 in the mid-position the receiver $\mathrm{B}+\mathrm{circuit}$ and transmitter plate supply circuit are both open thus permitting coil set changing in the receiver and transmitter. In the mid-position the receiver s+circuit is controlled by the $B+$ switch on the front panel of the receiver.

## NOTE

> The high-frequency oscillator, c.w. oscillator, s-meter amplifier and the push-pull audio output amplifier are not affected by the external relay connection to the B.S.W. terminal block, Unless the A.C. On-off switch is set at off these circuits will obtain an uninterrupted B-plus supply.

2-4. A.C. OPERATION
After unpacking the HRO-50-1 receiver and associated equipment proceed as follows:
(1) Make sure that all tubes are firmly seated in their sockets, tube clamps are properly in place and all grid clips securely fastenen.
(2) Make sure the plug-in coil set used in the receiver is firmly in position by pressing down the lever type handes on the front panel to their maximum vertical position.


Figure No. 3. Typicsl Antenria Switching System
(3) Connect the antenna as recommended in Section 2-2.
(4) Connect the loudspeaker cable to the output terminal board at the rear of the receiver This is accomplished by connecting the outer shield lead to the common terminal and the other to the 8 -ohm terminal. A 500 -ohm terminal is also available on the output terminal doard in cases where a 500 -ohm line is utilized for loudspeaker connection.
(5) Connect the receiver A.C. lire cord to the proper source of voltage. The Primary switch, s-10, must be set at the position corresponding to the line voltage to be used i.e., 110/120 or $220 / 240$ volts, $50 / 60 \mathrm{cps}$.
(6) Set the controls as recommended in Section 3 for reception of signals.
$\square$
NOTE
Where the receiver is located in the R.F. field of a relatively powerful transmitter, it is advisable to provide some means of preventing damage to the receiver R.F. coil. If a separate receiving antenna is used a means of disconnecting or grounding it during transmission periods should be provided.

2-5. BATTERY OPERATION

The HRO-50-1 is readily adaptable for emergency, portable operation or operation in localities where a 115 or 230 -volt $A . C$. power source is not available. It may be operated directly from batteries or a National Type 650 S vibrator Power Supply designed for oderation from a $6-v o l t$ storage battery. The Type 6505 power unit draws 9.5 amperes at b-volts when furnishing power to the receiver if the Narrow-Band F.M. Adaptor, Crystal caliorator and select-0-Ject units are not used. If these plug-in units are utilized typical operating conditions and power consumption data will be found in Section 6.

## PAGE 22-10 NATIONAL

The Schematic Diagram Figure Number 13 illustrates pin connections of the receiver Power Socket $x-4$. This provides the information necessary for wiring the octal type battery plug which is used to place of the regular A.c. jumper plug. To conserve battery power the battery plug must be disconnected when the receiver is not being used. For stand-by operation in all cases it is recommended that a switch be placed in the battery B-plus lead as the B-plus switch in the receiver does not open the B-plus circuit supplying the high-frequency oscillator, c.w.oscillator, S-Neter Amplifier or the push-pull audio output tubes. A suggested refinement is to include a switch in the A-plus input lead so that the tube heaters may be turned off when the receiver is not in use without the necessity of removing the battery plug from the Power socket.

## 2-6. ACCESSORY SOCKETS

Three octal type sockets are available for additional accessories as follows:
(1) A N. B. F.M. socket, $X-1$, is mounted on top of the chassis inside the power supply compartment. A National Type NFM-83-50 Narrow-Band F.M. adaptor is designed to fit into this socket and is supplied with a mounting bracket and drive screws to hold ft firmly in place. The front-pane mounted control switch, $S-7$, provides a means of switching the $N F M-50$ unit into instant service, as required.
(2) A Crystal Calibrator socket, $x-2$, is top chassis mounted in the power supply compartment. This socket is wired to accommodate a National plug-in Type xcu-50-2 crystal caliorator unit. A slotted head screw arrangement bolts the unit firmly in place. The front panel calibrate switch provides a means of applying 8-plus to the unit as well as the selection of either a 100 or 1000 kc . marker signal.
(3) A Select-0-Ject socket, $x-3$, of the standard octal type is mounted so as to be accessible from the rear of the receiver. This socket is designed primarily for the use of a mational Model SOJ-3 Select-0-Ject unit. The SOJ-3 is fitted with an interconnecting cable and plug for direct connection to the Select-0-Ject socket.

Reference to the Schematic Diagram will show the various connections made to the socket if it is desired to use the voltages available for accessories other than the Select-o-Ject. It will be noted that $B+(240$ V.O.C. and 105 V.D.C. regulated) and filament voltages are available. There is a definite limitation on the drain permissible at this socket. The total permissible drain (if the NFM-83-50, XCU-50-2 and SOJ-3 are not used) is 1.8 amps at 6.3 V.A.C., 10 milliamperes at 240 V. D. C. and 5 milliamperes at 105 V.D.C. If the 105 -volt supply is used it must be remembered that it cannot be switched off by the B+ on-0ff switch or external switching devices connected to the B. S. W. panel unless an àdditional relay is used.


## SECTION 3. OPERATION

## 3-1. CONTROLS

All controls are identified by front-panel markings for ease of identification. The controls are located in a symmetrical manner and are arranged for ease of operation.

The main tuning $H R O$ type micrometer dial is arranged so that the frequency to which the receiver tunes increases as the dial reading increases. The slide-rule dial pointer mechanism is synchronized with the main tuning dial using an anti-backlash gear plus an efficient string-drive arrangement to provide an accurate relationship between the main tuning dial and the direct frequency calibrated scales on the slide-rule drum assembly. Front-panel mounted is a Band selector switch for switching the proper scale in place for the coil set to be used.

The R.F. Gain control serves to adjust the amplification of the second R.F., first, and second and third l.F. amplifier stages. Maximum sensitivity is obtained by rotating the control knob to the extreme clockwise position (10 on its circular scale). At the extreme clockwise position all tubes are operating at maximum gain with minimum oias. As the control is rotated counter-clockwise, increasing bias is applied to the cathodes of the second R.F., first, second and third l.f. tubes, thus reducing their amplification.

The A.C. On-Off switch is associated with the A.F. Gain control and A.C. power is turned on as the A.F. Gain control is advanced from A.C. off to zero on its scale.

The $B+$ on-off switch is connected in the positive lead of the power supply circuit and its purpose is to disconnect the B-plus during periods of transmission or WHEN CHANGING COIL SETS. This last function is important. The $B+c i r c u i t s$ are completed when the switch is set at on. However, the B-plus circuits of the high-frequency oscillator, S-Meter amplifier, C.w. oscillator and pushpull audio output tubes remain on at all times regardless of the position of the $B+$ on-off switch providing the A.C. On-Off switch is set at On.

Connected in parallel with the $B+s w i t c h$ and mounted at the rear of the chassis is a pair of contacts marked B.S.W. intended for use with relay control of the receiver. The 8.S.W. panel is covered by a metal shield to prevent accidental contact with the terminals by the operator. Two slots are provided in this shield to bring out wires to connect to an external switch or relay. care should be taken that these wires for external connection do not short to the B.S.W. shield.

The Rhasing control and Selectivity switch are part of the crystal filter. When the selectivity switch is set at off the crystal is switched out of the circuit. With the crystal switched out the Phasing control has no influence on receiver performance. With the selectivity switch set at any point between 1 and 5 , inclusive, the crystal filter is in operation, selectivity increasing as the switch'is progressively advanced to position 5. The Phasing control is then tised to palance the crystal oridge circuit and eliminate interfering signals or heterodynes. it is recommended that the Tone control be rotated counter-clockwise until the switch is turned off. This will provide optimum reception of the high audio frequencies when using the crystal filter for A.M. reception. The resultant boost of the higher frequencies tends to compensate for the side-band cutting action of the crystal filter.

The C.W. oscillator is turned on by setting the front-panel mounted control switch at the C.W. position. The c.w. O. control provides a vernier tuning adjustment for the C.W. oscillator transformer. This oscillator is used to produce an audible beat note when receiving $C$. W. signals or to locate the carrier of a weak phone station. With the control switch set at the C.W. position, 8-plus is applied to the C.W. oscillator tube providing a constant B-plus supply regardless of the $8+$ on-off witch setting or the B.S.W. external control devices. Normally the C.W. O. control is set at zero, iowever by rotating it either to the right or left of zero the operator can select an audio tone suitable to the ear, or he may set the control for best reception. The c.w. code characters are made audible through the heterodyning action of the C.W. oscillator with that of the incoming signal. care

should be taken te retard the $R$. $F$. Gain control to a point where the receiver does not overload.

The Limiter control serves to switch on the limiter and following this, to adjust the threshold at which limiting action starts. With the Limiter control turned on (at position on the dial scale) limiting action automatically takes place at a relatively high percentage modulation. Rotating the control clockwise progressively lowers the threshold, or percentage modulation, at which imiting action starts unil maximum clipping is achieved at 10 . This limiter is double-acting in that limiting is accomplished by clipping of both positive and negative peaks. Limiting action is equally effective for both phone or $C . W$. reception.

The Tone controi is used to vary the audio frequency characteristic of the audio system. In the extreme counter-clockwise position the greatest degree of high audio frequency response is obtained. Rotating the control clockwise until the switch mounted on the control just closes provides a comparatively flat response over the entire usable audio frequency range. Rotating the control further in a clockwise direction will attenuate the high audio frequencies as shown in figure Number 2 . If a signal is weak and partially obscured by background noise or static an improvement in signal-to-noise ratio is possidle by the attenuation of the higher audio frequencies. Excessive attenuation of these frequencies, however, may result in an impairment of A. M. speech intelligibility. When receiving C.W. signals it will be possible to advance the Tone control considerabiy further than is possible in A.M. reception since audio distortion is relatively unimportant.

The A.V.C. switch is a two-position toggle marked A.v.C. -off. the automatic volume control circuits are operative with the toggle switch in the A.v.C. or upper position.

The A.F. Gain control adjusts the volume level of the signal at both the Phones jack and loudspeaker terminals. Clockwise rotation of this control increases the signal applied to the grid of the first audio amplifier tube. The A.F. Gain control is operative when an audio signal is applied to the Phono infut jack with the control switch set at the Phono position.

A Bandspread switch is mounted on the $A, B, C$ and $D$ coil sets. Inspection of the coil set ceramic terminal panel will show a silver-plated spring metal strip with a slotted center. screw. Four silver-plated contacts are provided on the terminal panels; two for each type of reception i.e., General Coverage or Bandspread. The metal strip may be turned either to the right or left thereby selecting the type of reception required. A spring tension detent arrangement provides for proper placement and a firm trouble-free electrical contact in each position. It is only necessary to switch this from the right to the left hand side to change from General Coverage to Bandspread. The
lower calibrated scale on the slide rule dial is used when operating in the Bandspread position. A typical coil set showing adjustment locations is illustrated in figure Number 7 contained in section 4.

The Ant. Trim. control operates a turting capacitor which is connected across the first R.F. amplifier section of the main tuning capacitor. This trimmer control is used to tune the first r.f. amplifier stage property under a wide variety of antenna loading conditions over the entire frequency range of the receiver.

The Dimmer control is a variable resistor actuated by a front-panel mounted dial. it is connected in series with one of the filament supply wires to the s-Meter and slide-rule dial pilat lamps and furnishes a means of varying the degree of illumination as desired by the operator.

The front-panel mounted Osc. trimmer control drives a variable air capacitor connected in parallel with the oscillator main tuning capacitor. Assuming that the receiver is properly aligned this compensating trimmer may be used for minor calibration adjustments. Calibration can be checked by the use of accurate crystal-controlled test oscillators or by using the National model xCu-50-2 Crystal Calibrator. Use of the osc. trimmer should not be attempted until the receiver has had a warm-up period of at least five minutes.

> A four position control switch is mounted on the front panel of the receiver. In the c.w. position the C.W. oscillator is placed in operation. The A.M. position provides normal reception of phone or broadcast signals. In the N.F.M. position the reception of narrow-band F.M. signals is possible provided a National Type NFM-83-50 adaptor is plugged into the N.B.F.M. socket. with the control switch in this position the adaptor is connected between the output of the intermediate amolifier and the input of the audio system. When the control switch is set in the phono position the phono jack is connected to the input of the audio amplifier. In the Phono position all of the receiver circuits except the audio system are rendered inoperative. The A.F. Gain and Tone controls remain operative. If it is so desired the record player may remain connected to the receiver and normal receiving operation resumed by setting the control switch to any of the other positions.

## 3-2. PMONE RECEPTION

After the HRO-50-1 is properly installed as outlined in section 2, it is placed in operation by the following adjustments:

1. Set the Control switch at A.M.
2. Set the A.V.C. switch at A.V.C.
3. Set the selectivity switch at off.
4. Set the Phasing control at zero.
5. Set the Limiter control at off.
6. Set the R.F. Gain control at 10.
7. Check the position of the Osc. trimmer control pointer. It is aligned at the factory so that proper calioration is obtained with the pointer in a vertical position with the arrow head pointed to the ' $S$ " in the Osc. panel engraving.
8. Turn the A.C.-On-Off switch mounted on the A.F. Gain control to on i.e., zero on the dial scale.
9. Set the receiver $B+$ switch at on.
10. Adjust the Band control to select the scale corresponding to the plug-in coil set in use.
11. Turn the A.F. Gain control to the position giving the desired audio volume.
12. Adjust the Ant. Trim. control for a maximum S-Meter reading after the desired station has been selected. Alternately in the absence of a signal the Ant. Trim. control may be set for maximum receiver background noise.
13. Turn the Tone control to a position giving the desired audio output response.

The receiver is now adjusted for the reception of phone signals and will tune to the frequency
corresponding to the plug-in coil set in use and the settling of the main tuning dial. If a dualcoverage plug-in coil set is used the position of the Bandspread switch, as previously described in paragraph 1 of this section, will determine the frequency coverage i.e., General coverage or Bandspread.

The settings given above are for the reception of signals of average strength. Exceptionally strong or weak signals may require modification of the above settings. Very strong signals may cause overload or distortion in the receiver with the R.F. Gain control at 10. If this case retarding this control slightly until the overload or distortion disappears is recommended. However, the operator must remember that automatic volume control action will be restricted unless the R.f. Gair control is fully advanced. Audio output should be adjusted entirely by means of the A.F. Gain control.

The A.v.C. - Off switch may be set at the off position to provide increased sensitivity in some cases. With such a setting the operator must be careful not to advance the R.F. Gain control to a point where l.F. or audio amplifier overload occurs. Such overload is indicated by distortion.

Various types of interference which may be encountered due to adverse receiving conditions can be minimized by utilization of the following controls in the manner described.

Noise Limiter - when a signal is accompanied by static peaks or noise pulses of high intensity and short duration, the best signal-tonoise ratio will be obtained by turning on the limiter control. In general, it will be found that.turning the Limiter control on to 0 on the dial scale will effectively minimize interference caused by external noise pulses. In cases where the noise pulses are extremely pronounced a higher degree of noise suppre,sion will be realized by advancing the limiter control to a higher dial setting.

Tone control - An improvement in signal-to-noise ratio can be realized by setting the tone control to attenuate the nigh audio frequencies. When receiving weak signals which are partialiy obscured by background noise or static an improvement in reception will be noticed by rotating the Tone control in a clockwise manner. However, too much attenuation of the high audio frequencies may impair the intelligioility of speect.

Selectivity and Phasing - The selectivity of the receiver is adjusted by means of the crystal filter selectivity switch. The norrial setting of the selectivity switch in phone or broadcast reception is at one of the positions affording broad selectivity. Positions marked off, 1 or 2 are recommended. Selectivity may be progressively increased by turning the selectivity switch to position 3 4 or 5. Increasing selectivity will result in the attenuation of the higher audio frequency tones of the signal as well as sharper tuning. If the selectivity is increased too much these higner frequency audio tones will oe attenuated to such an extent that phone ar broadcast signals may become unintelligible due to excessive side-band cutting. The Phasing control is part of the crystal filter and is used to eliminase or attenuate interfering neterodynes. The phasing control is inoperative with the selectivity switch set in the off position but is operative in all other settings. The normal setting of the phasing control with the crystal filter on (i.e., the Selectivity switch set at $1,2,3,4$ or 5 ) in phone reception is at zero on its scale. lf, after a desired signal has been tuned in, an interfering signal causes a heterodyne or whistie the phasing control should be adjusted until this interference is reduced to a minimum. The setting of the Phasing control should be that which provides a maximum attenuation of the objectionable heterodyne. If the heterodyne is below 1,000 cycles the optimum phasing control setting will be near either one or the other end of the dial scale, depending upon whether the interfering signal has a higher or lower frequency than the desired signal.

## 3-3. C.W. RECEPTION

The initial adjustment of the receiver controls for c.W. reception is the same as given in section 3-2 except that the control switch must be set at c.w.

For the reception of $C . W$. signals the action of the crystal filter is similar to that for phone reception except that full use of the sharp selectivity position may be used without the loss of intelligibility experienced in phone reception. When maximum selectivity is used, (selectivity switch at position 5) care must be exercised since tuning is very critical. When the receiver is slowly tuned across the carrier at the received signal the beat-note produced will be very sharply peaked in output at a particular audio pitch. This peak in response indicates the correct receiver dial setting. The setting of the C.W.O. control must be such that the beat-note peak is well within the audible range so that the receiver peak response may be readily observed. A C.W.O. dial setting near zero is recommended. After the receiver has been correctly tuned, the pitch of the beatnote peak may be adjusted by means of the C.W.O. control to provide an audio tone which is pleasing to copy or coincides with any response peaks in the speaker or headphones. Under these conditions the receiver will exhibit pronounced single-signal properties which may be demonstrated by tuning the receiver to the other side of "zero-beat" so that the pitch is the same as before and observe the marked reduction in output. This dial setting is not recommended for use other than to demonstrate the single-signal properties of the receiver. With the receiver tuned to "crystal peak", an interfering signal may be attenuated by proper setting of the phasing control since this control has little effect on the desired signal.

Similar to phone reception the Limiter control can be used to great advantage in c.W. reception for the reduction of interference due to external noise pulses. For C.W. reception, however, the Limiter control may be set at a well advanced position on the dial scale as excessive clipping of the modulation peaks will not be experienced as might be the case in phone reception. Also the Tone control maxy be advanced considerably further for C.W. reception since audio distortion is relatively unimportant.

## 3-4. N.B.F.M. OPERATION

The HRO-50-1 receiver is adaptable for Narrow-Band F.M. reception by utilizing a National Type NFM-83-50 Narrow-Band F.M. adaptor. Operating instructions as given in paragraph 3-2 of this section are applicable for the reception of narrow-band F.M. signals except that the Control switch must be set at N.F.M. It is recommended when the operator is scanning a band for signals that the control switch is set at A.M. An F.M. signal is indicated by the presence of an audio null in the center of the signal carrier. When an F.M. signal is encountered the control switch should then be set at M.F.M. and with the A.V.C. switch set at A.V.C. the signal tuned for maximum S-Meter reading.

## 3-5. Measurement of signal stremgth

To measure the strength or intensity of a signal the R.F. Gain control must be advanced to 10 , the control switch set at A.M. and the A.V.C. -0 ff switch at A.V.C. The crystal filter should be turned off by means of the selectivity switch and the phasing control set at zero. The ant. Trim. control should be adjusted for a maximum s-Meter reading after a signal has been tuned in. The Limiter, Tone and A.f. Gain controls do not affect the s-Meter reading.

Tuning the receiver to a signal will cause the s-Meter to read, indicating the signal input in s-units from 1 to 9 and in decibels above the s-9 level from zero to 40 db . With no r.F. input to the receiver, or with the antenna disconnected, the s-Meter should read zero plus or minus one-half an s-unit. If it does not the s-Meter circuit compensator requires adjustment. See section 4-7 for adjustment procedure.

Design of the s-Meter actuating circuit is such that a signal stronger than 40 db . above s-9 cannot cause the meter pointer to come in violent contact with the full-scale meter stop pin thus preventing the possible bending of the meter pointer.

For the purpose of comparing strong signals, which cause the meter pointer to read full scale, with other stronger and/or weaker signals the sensitivity of the s-Meter may be lowered by retarding the R.F. Gain control.

Measurements of the signal strength of C.W. signals cannot be made with the C.W. oscillator in operation.

With the receiver A.C. -On-0ff switch set at off the meter pointer will return to its mechanical zero located on the right hand or 40 db . end of the meter.

## SECTION 4. ALIGNMENT DATA

4-1. GENERAL

All circuits in the HRO-50-1 receiver are carefully aligned before shipment using precision test equipment insuring accurate conformability to the alignment frequency. No realignment of the various adjustments will be required unless the receiver is tampered with or component parts or tube replacements have been necessary.

A definite need for realignment can be determined by checking the performance of the receiver against its normal operation as outlined in Section 3. A simple check to assure the need of realignment of the I.F. Amplifier is provided in paragraph 4-2 of this section. In no case should realignment be attempted unless tests. indicate that such realignment is necessary. Even then it must be remembered that the HRO-50-1 is a communications receiver and should not be serviced or realigned by by any individual who does not have a complete understanding of the functioning of the equipment and who has not had previous experience adjusting receivers of this type.

Complete alignment of the receiver can be divided into phree steps as follows:
(a) Intemediate Frequency Amplifier alignment including crystal filter adjustments.
(b) General Coverage Alignment
(c) Bandspread Alignment

All circuits must be tuned in the above order when complete alignment is required. All alignment adjustments and controls are shown on Figure Numbers 6, 7 and 10.

4-2. I.F. AMPLIFIER CHECK

The making of any adjustment indiscriminately is cautioned against and no circuit should be real igned unles's tests definitely indicate that realignment is necessary.

The alignment of the intermediate frequency amplifier may be easily checked in the following manner:

1. Adjust the receiver for normal operation with the antenna disconnected.
2. Connect a pair of headphones to the Phones jack.
3. Set the A.V.C. switch at off.
4. Set the control switch at C.W.
5. Set the Phasing control at zero.
6. Set the Selectivity switch at 5.
7. Set the R.F. Gain control at 10.

The setting of the $A . F$. Gain control does not affect the measurement and may be adjusted to provide sufficient headphone output to make the required observations, adjust the C.W. 0 . control
until a point is found where the predominant pitch of the background noise is lowest and a distinct crystal ring is heard. Note this setting of the C.W.O. control. Disconnect the crystal filter from the circuit by turning the selectivity switch to the off position once more adjust the C.W.O. control for the lowest predominant pitch of background noise and note the setting. if the l.f. amplifier is correctly aligned to the crystal filter frequency the setting of the C.W.O. control will be the same for both tests outlined above. If the two settings differ perform the complete l.f. amplifier alignment procedures in the following paragraph 4-3.


## 4-3. I.F. AMPLIFIER ALIGNMENT

The intermediate frequency of the HRO-50-1 is 455 kilocycles prus or minus 2 kilocycles. The exact irequency is determined oy the quartz crystal resonator, $Y-1$, used in the crystal filter.

The crystal filter and C.W. oscillator transformer are fitted with air-type variable trimmer capacitors for alignment purposes. The I.F. transformers are aligned by means of variable iron cores. These adjustments are located on Figure Numbers 6 and 10.

The preliminary alignment procedure is as follows:
(1) Connect the high output lead of an accurately calibrated signal generator to the stator portion of the mixer section of the main tuning capacitor, $\mathrm{C}-5 \mathrm{C}$, and the grounded lead to any convenient point on the chassis. This is a direct connection.
(2) Connect an output meter having an 8 or 500 onm resistive load to the matching output terminals on the receiver. As an alternative a high-impedance A.C. voltmeter may be connected to the phones jack.
(3) Set the Control switch at C.w.
(4) Set the A.V.C. switch at off.
(5) Set the Phasing control at zero.
(6) Set the Selectivity switch at 5 .
(7) Set the A.F. Gain control at 10.
(8) Set the R.F. Gain control at 9 .
(9) Jurn the modulation of the signal generator of $f$ to provide a steady C.W. test signal
tuned to approximately 455 kilocycles.

Adjust the output attenuator of the signal generator to provide a signal of approximately 100 microvolts. The C.W.O. control must be set to provide an audio beat-note at some frequency between 400 and 1000 cycles per second. The presence of this beat note can readily be determined by temporarily connecting headphones or a loudspeaker to the receiver. If difficulty is encountered in obtaining such a beat-note an adjustment of the C.W.O. transformer trimmer capacitor, c-61, must be made.

Vary the tuning control of the signal generator very slowly between the frequencies of 453 and 457 kilocycles. At one frequency between these limits the l.F. amplifier of the receiver will show a very definite sharply peaked response, as indicated on the output meter. This frequency is that of the crystal filter crystal, Y-1, and I.F. alignment, as outlined below, is made at this frequency.

While making l.F. amplifier adjustments it will be necessary to retard the attenuator of the signal generator if I.F. amplifier gain increases to a point where overload occurs. without altering the frequency setting of the signal generator set the selectivity switch at off, the control switch at A.M. and turn the modulation of the signal generator on. Capacitors C-33, C-39 and inductors $\mathrm{L}-2$ through $\mathrm{L}-13$ should at this point each be carefully adjusted to give a maximum reading on the output meter. The order in which these adjustments are performed is not important.

Upon completion of the above adjustments set the selectivity switch at 1 . Set the frequency of the signal generator 2 kilocycles higher and adjust the crystal filter trimmer capacitor $\mathbf{c}-39$ for a maximum output meter indication. After making this adjustment set the selectivity control at of and return the signal generator to the exact crystal frequency ( 2 kilocycles lower). Tune the Selectivity compensating trimer capacitor $\mathbf{C}-38$ for a maximum reading on the output meter.

The Phasing control as set at the factory should need no further attention. When correctly set a predominant decrease in background level will be found with the Selectivity switch at position 5 and the phasing control set at zero. This same null point should be found by rotating the phasing control exactly 180 degrees. If not, a slight adjustment of the phase dalancing capacitor c-36 will provide the proper setting.

Turn the modulation of the signal generator off and set the control switch at C.W. Rotate the c.W.O. control to its full clockwise position. If in this position the dial control does not coincide with 5 on its scale loosen the dial knob and reset it at s. Set the C.W.O. control to zero beat with the signal generator signal. If zero deat does not occur at on the control dial carefully readjust the air trimer capacitor C-61 of the C.W. oscillator transformer T-B.

4-4. GENERAL COVERAGE ALIGNMENT
The data given in this section applies to the General Coverage alignment of the H.F. oscillator and R.F. ampilier stages of all coil sets. The original alignment at the National Laboratories is accomplished by the use of precision, crystal-controlled test oscillators. No realignment should be attempted unless a reliable test signal source is available. In the case of General coverage H.f. oscillator alignment, a test signal source with an accuracy of $1 \%$ or better is required. For Bandspread alignment the calibration accuracy demands that the test signal source have the accuracy of precision-calioratea crystals. The entire range of test frequencies required may be obtained by the use of nine crystals operating at their fundamental and harmonic frequencies. The frequency of these crystals is as follows: 0.05, $0.1,1.0,2.0,3.5,5.0,6.8,7.0,7.3,14.4$ and 15 megacycles..

The need for realignment of the H.F. oscillator of any band is indicated when the frequency calibration of the receiver dial is in error by more than is at the high frequency end of the band in question. If it is determined that realignment is necessary proceed as follows:
(1) Connect an output meter to the receiver as described in paragraph 4-3 of this Section and disconnect the antenna.

## PAGE 22-20 NATIONAL

## MODEL HRO-50-1

coil set. It may be desirable to align the R.F. Amplifier trimmers $\mathbf{C - 2}$ and $\mathbf{C - 1 5}$ and the mixer trimmer C-21 using receiver Dackground noise as an indication of maximum gain, rather than the signal source. If this alternate method of alignment is used the point of maximum gain is that setting of the trimmers which provides the loudest receiver background noise. However, it is possible to align the R.F. amplifier and mixer stages to the image frequency using background noise as an indicator. A check of this possibility is to tune in the image signal - if the image is weaker than the fundamental signal the R.F. amplifier and mixer stages are correctly aligned.

Correction of tracking errors of the R.F. amplifier and mixer stages at the low frequency limit of each coil set is accomplished by the adjustments listed on the Alignment chart. The actual tracking of these stages may be checked by pressing the outside rotor plates of the main tuning capacitor section toward or away from the stator in a manner assurina that the rotor plates will spring back to their original position. Any change in capacity should decrease the receiver gain if the stage is tracking properly.

The locations of the adjustments referred to on the General Coverage chart are shown on figure Number 7. Each variable on the chart is followed by a number in parenthesis to identify its position on the respective coil set. Schematic diagrams of each of the plug-in coil sets are furnished on Figure Numbers 11 and 12.

GENERAL COVERAGE CHART

Step	$\begin{aligned} & \text { coil } \\ & \text { set } \end{aligned}$	Adjust signal Source and Receiver To:	Adjust to Receive Test Signal	Adjust for Maximum Output
1	A	$30,0 \mathrm{Mc}$.	Trimmer capacitor C-26 (Pos. 8).	Trimmer capacitors C-21 (Pos. 6). c-15 (Pos. 4).
2	A	14.4 Mc.	linductance at Pos. No. 16.	Inductance at Pos. Nos. 13, 11, 9.
3	A	30.0 Mc.		Check step 1. Repeat steps 1 and 2.if necessary.
1	8	14.4 Mc.	Trimmer capacitor C-26 (Pos. 8).	Trimmer capacitors C-21 (Pos. 6) C-15 (Pos. 4), C-2 (Pos. 2).
2	B	7.0 M	Inductance at Pos. No. 16.	Inductance at Pos. Nos. 13, 11 , 9.
3	B	14.4 Mc.		Check step 1. Repeat steps 1 and 2 if necessary.
1.	c	7.3 Mc.	Trimmer, capacitor C-26 (Pos. 8).	Trimmer capacitors C-21 (Pos. 6), C-15 (Pos. 4), C-2 (Pos. 2).
2	c	3.5 Mc.	Inductance at Pos. No. 16.	Inductance at Pos. Mos. 13, 11, 9.
3	C	7.3 MC.		Check step 1. Repeat steps 1 and 2 if necessary.
1	D	$4.0 \mathrm{MC}$.	Trimmer capacitor C-26 (Pos. 8).	Trimmer capacitors C-21 (Pos. 6), $\mathrm{C}-15$ (Pos. 4), $\mathrm{C}-2$ (Pos. 2).
2	D	1.8 MC.	Inductance at Pos. No. 16.	Inductance at Pos. Nos. 13, 11 9.
3	D	4.0 Mc.		Check step 1. Repeat steps 1 and 2 if necessary.

GENERAL COVERAGE CHART (CONT'D)

step	$\begin{aligned} & \text { coil } \\ & \text { Set } \end{aligned}$	Adjust signal Source and Receiver to:	Adjust to Receive Test signal	Adjust for Maximum Output
1	E	2.0 Mc	Trimmer capacitor C-26 (Pos. 8).	Trimmer capacitors C-21 (Pos. 6) C-15 (POS. 4).
2	E	1.0 MC.	Padder capacitor C-100 (Pos. 7).	
3	E	1.4 MC.	Inductance at Pos. No. 16.	
4	$E$	2.0 MC.		Check step 1. Repeat steps 1, 2 and 3 if necessary.
1	F	0.9 MC .	Trimmer capacitor C-26 (Pos. 8).	Trimmer capacitors C-21 (Pos.   6), $\mathrm{C}-15$ (Pos. 4), $\mathrm{C}-2$ (Pos. 2)
2	F	0.5 MC.	Padder capacitor C-100 (Pos. 7).	
3	F	0.7 Mc.	Inductance at POS. No. 16.	
4	F	0.9 Mc .		Check step 1. Repeat steps 1, 2 and 3 if necessary.
1	G	$\therefore 00 \mathrm{Kc}$.	Trimmer capacitor C-26 (pos. 8).	Trimmer capacitors C-21 (Pos. 6), $C-15$ (Pos. 4).
2	G	200 Kc .	Padder capacitor C-100 (Pos. 7).	
3	G	300 Kc.	Inductance at Pos. No. 16.	
4	G	400 Kc.		Check step 1. Repeat steps 1 , 2 and 3 if necessary.
1	H	200 Kc.	Trimmer capacitor C-26 (Pos. 8).	Trimmer capacitors C-21 (Pos.   6), C-15 (Pos. 4), C-2 (Pos. 2).
2	H	100 kc.	Padder capacitor C-100 (Pos. 7).	
3	H	150 Kc.	Inductance at Pos. No. 16.	
4	H	200 kc .		Check step 1. Repeat steps 1 , . 2 and 3 if necessary.
1	J	, 100 Kc .	Trimmer capacitor C-26 (Pos. 8).	Trimmer capacitors C-21 (Pos.   6). $C-15$ (Pos. 4), $C-2$ (Pos. 2)
2	$J$	50 Kc.	Padder capacitor $\mathrm{C}-100$ (Pos. 7).	
3	$J$	75 Kc.	Inductance at Pos. NO. 16.	
4	J	100 kc .		Check step 1. Repeat steps 1, 2 and 3 if necessary.

general coverage chart (COnt'd)

Step	$\begin{aligned} & \text { coil } \\ & \text { set } \end{aligned}$	Adjust signal Source and Receiver to:	Adjust to Receive Test Signal	Adjust for Maximum Output
1	AA	30 Mc .	Trimmer capacitor C-26 (Pos. 7).	Trimer capacitors C-21 (Pos.   6), C-15 (Pos. 4), C-2 (Pos. 2).
2	AA	27.2 Mc.	Padder capacitor C-100 (Pos. 8).	Padder capacitors C-99 (Pos. 5), C-98 (POS. 3), C-97 (POS. 1).
3	AA	26 Mc.	Inductance at Pos. No. 16.	Inductance at pos. Nos. 13, i1, 9.
4	AA	30 Mc.		Check step 1. Repeat steps 1 , 2 and 3 if necessary.
1	AB	35 Mc .	Trimmer capacitor C-26 (Pos. 8).	Trimmer capacitors C-21 (Pos. 6), $C-15$ (Pos. 4), $C-2$ (Pos. 2).
2	${ }^{4} 8$	25 Mc 。	Padder capacitor C-100 (Pos. 7).	Padder capacitors $\mathrm{C}-99$ (Pos. 5), C-98 (Pos. 3), C-97 (Pos. 1).
3	$A B$	30 Mc.	Inductance at Pos.No. 16.	Inductance at Pos. Nos. 13. 11. 9.
4	AB	35 Mc .		Check step 1. Repeat steps 1, 2 and 3 if necessary. Check step 1.
1	${ }^{\text {A }}$	21.5 Mc .	Trimmer capacitor $C-26$ (Pos. 7).	Trimmer capacttors C-21 (Pos.   6), $C-15$ (Pos. 4), $C-2$ (POS. 2).
2	${ }^{\text {A }}$	21 Mc.	Padder capacitor C-100 (Pos. 8).	Padder capacitors $\mathrm{C}-99$ (Pos. 5), C-98 (Pos. 3), C-97 (Pos. 1).
3	${ }^{\text {A }}$	21.3 Mc .	Inductance at Pos. No. 16.	Inductance at Pos. NOS. 13. 11, 9.
4	AC	21.5 Mc.		```Check step 1. Repeat steps 1, 2 and 3 if necessary. Check step 1.```

## 4-5. BAMDSPREAD ALIGNMENT

The data given in this section applies to the Bandspread Alignment of the high-irequency oscillator, R.f. amplifier and mixer stages of coil sets A, B, C and 0 . it is important that no Bandspread adjustments are made until after completion of General Coverage alignment as general coverage adjustments affect Bandspread alignment.

The need for realignment of the H.F. oscillator of any band is indicated when the frequency calioration of the main tuning dial is in error by more than $\pm 5$ divisions. To effect alignment the receiver controls are adjusted the same as outlined in Section 4-4. except that the Bandspread switch on each of the plug-in coils must be in the right-hand or Bandspread position.

The procedure in effecting Bandspread alignment is accomplished by adhering to the instructions given in the Bandspread Alignment Chart. The procedure is similar to that for General Coverage except for the method followed in checking tracking errors of the R.F. amplifier and mixer stages at the low-frequency limit of each coil set. To secure an indication of proper tracking, check the setting of the Bandspread trimmer capacitors $\mathrm{C}-3, \mathrm{C}-16$ and $\mathrm{C}-22$ for the position of maximum receiver gain. Any change in capacity should decrease the receiver gain indicating proper tracking. The use of the trimmer capacitors C-3, C-16 and C-22 for a tracking check may destroy their proper settings therefore they must be carefully rechecked at the high-frequency limit of the coil set. The location

## bandspread alignment chart

NOTE: Do not effect Bandspread Alignment until after completion of General coverage.

Step	coil   Set	Adjust signal Source and Receiver to:	Adjust to Receive Test Signal	Adjust for Maximum Output
1	A	30.0 Mc.	Trimmer capacitor C-27 (Pos. 7).	Trimmer capacitors C-22 (Pos. 5) C-16 (Pos. 3), C-3 (Pos. 1).
2	A	27.2 Mc.	Padder capacitor $\mathrm{C}-25$ (Pos. 15).	Padder capacitors C-20 (Pos. 14) $\mathrm{C}-14$ (Pos. 12), $\mathrm{C}-1$ (Pos. 10).
3	A	30.0 Mc.		Check step 1. Repeat steps 1 and 2 if necessary. Check step 1.
1	$B$	14.4 MC.	Trimmer capacitor C-27 (Pos. 7).	Trimmer capacitors C-22 (Pos. 5) C-16 (Pos. 3), C-3 (Pos. 1).
2	B	14.0 Mc.	Padder capacitor C-25 (Pos. 15).	Padder capacitors $C-20$ (Pos. 14), C-14 (POS. 12), C-1 (POS. 10).
3	B	14.4 Mc.		Check step 1. Repeat steps 1 and 2 if necessary. Check step 1
1	C	7.3 Mc.	Trimmer capacitor C-27 (Pos. 7).	Trimer capacitors C-22 (Pos. 5) C-16 (Pos. 3), C-3 (ROS. 1).
2	$C$	7.0 Mc.	Padder capacitor C-25 (Pos. 15).	Padder capacitors $C-20$ (Pos. 14) C -14 (Pos. 12), C-1 (Pos. 10).
3	C	7.3 Mc.		Check step 1. Repeat steps 1 and 2 if necessary. check step 1.
1	0	4.0 Mc.	Trimmer capacitor 6-27 (Pos. 7).	Trimmer capacitors $\mathrm{C}-22$ (Pos. 5) $\mathrm{C}-16$ (Pos. 3), C-3 (Pos. 1).
2	D	3.5 Mc.	Padder capacitor C-25 (Pos. 15).	Padder capacitors C-20 (Pos. 14) C-14 (Pos. 12), C-1 (Pos. 10).
3	0	4.0 Mc.		Check step 1. Repeat steps 1 and 2 if necessary. Check step 1.

of the adjustments referred to in this section are shown on figure Number 7. Each variable on the chart is followed by a number in parenthesis to identify its position on the respective coil set. Schematic diagrams of each of the four combination Bandspread and General Coverage coil sets A, B, C and 0 are furnished on Figure Number 11.

## 4-6. First r.f. stage alignment with low impedance transmission line

If a low impedance transmission line is to be used with the receiver, it may be necessary to realign the first R.F. amplifier at the high-frequency end of each bans. The tracking of the first R.F amplifier stage on each of the coil ranges may be checked by rotating the Ant. Trim. control. If twc definite peaks in output are observed while rotating the ant. Trim. control, the first r.f. amplifier stage is tracking correctly and the setting at either peak is correct. The lack of a peak in output or the presence of only one peak indicates the stage is not tracking properly and correction should be made. The General Coverage adjustments affect the Bandspread adjustments and must therefore be performed first. The following procedure should be adhered to:

## PAGE 22-24 NATIONAL

MODEL HRO-50-1
(a) gemeral coverage
(1) Set the bandspread switch on each coil to the left-hand side or General Coverage position. Adjust the receiver for normal operation as follows: Control switch at A.M., Selectivity switch at off, Ant. Trim. control polnter set in a vertical position with the arrow head towards the top of the receiver, A.F. Gain control set at 10 and the R.F. Gain control set to provide a suitable signal level.
(2) Connect the antenna feeders to the receiver antenna terminals and tune the receiver to the signal shown in step 1 on the General Coverage Alignment Chart for the coil set to be aligned. Adjust the trimmer capacitor $C-2$ for maximum signal output, Coil sets $A$ and $D$ do not use a first R.F. amplifier General Coverage trimmer but are peak-tuned by the Ant. Trim. control over the full frequency range of each coil set.
(b) BANDSPREAD
(1) with the receiver adjusted in the same manner as for General Coverage shift the Bandspread switch on each coil terminal panel to the right-hand side or Bandspread position.
(2) Connect the Antenna feeders to the receiver antenna teprminal and tune the receiver to the signal shown in step $i$ on the Bandspread Alignment Chart for the coil set being aligned. Adjust the Bandspread trimmer capacitor $C-3$ for maximum signal output. If no signal can be received the trimmer may be adjusted for maximum background noise.

## 4-7. S-METER ADJUSTMENT

The s-Meter balancing resistor $\mathrm{R}-21$ is used to obtain a.zero meter reading in the absence of signal input to the receiver. To make this adjustment set the controis as follows: set the R.f. Gain control at O, A.V.C. switch at A.V.C., Control switch at A.M. and the A.C. switch at on. Adjust the S-Meter balancing resistor $R-21$ for a zero reading on the s-Meter. This is a screwdriver type adjustment located on the top of the chassis.

## SECTION 5. MAINTENANCE

## 5-1. GENERAL MAIMTENANCE dATA

Any repairs in the $H R O-50-1$ receiver which necessitates resoldering of joints must be made with care. A good mechanical connection must be made before the solder is applied.

Failure of a vacuum tube in the receiver may reduce the sensitivity, produce intermittent operation or cause the equipment to be completely inoperative. In such cases, all tubes should be checked either in an analyzer or similar tube testing equipment or by replacement with tubes of proven quality. When any tube is tested, it should be tapped or jarred to make sure that it has no internal loose connection or intermittent short circuit.

Tubes of the same type will vary slightly in their individual characteristics and this fact should be borne in mind when replacements become necessary. The c:w. oscillator, high-frequency oscillator and "I.f. tubes stould be chosen with care to seiect a repiacement which most nearly approachd es the characteristic of the original tube. A replacement high frequency oscillator tube can be readily checked by noting any change in dial calibration, particularly on the amateur bandspread bands. Substitution of new I.F. amplifier tubes may possibly alter overall gain and selectivity characteristics. The necessity for realignment as well as alignment procedures is discussed in section 4.

In case of breakdown or failure of the receiver, the fault must first be localized. This can
often be accomplished by observation of some peculiar action of one of the controls Reference to the circuit diagram will aid in checking voltages at the various tube elements. Measurement of voltages in accordance with Section 5-4, will most likely indicate where fallure has occurred.

## 5-2. CIRCUIT FAILURES

All components parts in the HRO-50-1 receiver have been selected to assure an ample factor of safety. Failure may occur in individual cases and the most common cause of failure, excluding tubes, will probably be due to breakdown of a capacitor or resistor.

Bypass or filter capacitors which develop poor connections internally, or which become open-circuited, will cause decreased sensitivity, oscillation or poor stability. The defective unit can de located by temporarily connecting a good capacitor in parallel with each capacitor that is under suspicion.

Failure of any bypass or filter capacitor may seriously overload resistors in associated circuits. overload of sufficient magnitude to permanently damage a resistor will cause the surface of the resistor to be scorched, making the defective unit easy to locate by visual inspection.

Open or short-circuited resistors can be definitely located by measuring the resistance of each individual resistor. The schematic diagram should be consulted to make sure that any particular resistor under test is not connected in parallel with some other circuit element which might produce a false measurerent

Loose connections which cause intermittent or noisy operation can often be found by tapping or shaking any component under suspicion with the receiver adjusted for normal operation.

## 5-3. Stage gain measurements

The sensitivity measurements listed herein are made with the receiver set up as specified in Section 3-2 except that the A.F. Gain control is set at 10 . Connect an output meter with an impedance to match the receiver output circuit i.e., B or 500 ohms to the output terminal panel in place of the loudspeaker. It is important that the proper output impedance match be observed.
connect the high output lead of the signal generator through a 0.1 mf coupling capacitor to the grid of each tube as specified in the following table. The ground lead of the generator is connected to any convenient chassis point.

The signal generator, using modulation, is varied between 453 and 457 kilocycles until a pronounced peak reading is obtained on the output meter.

With the generator attenuated to provide a one watt reading on the output meter the signal generator attenuator should read within the limits specified on the following table:


## 5-4. voltage tabulation

All voltage measurements should be made using a high-impedance vacuum tube voltmeter. Readings taken with any other type of instrument will differ somewhat depending upon the input resistance of the meter. Voltmeter resistance should de ten times larger than the resistance of the circuit across which the voltage is measured otherwise the voltmeter will indicate a voltage lower than the


Figure No. 8. Tube Socket Voltages
actual voltage present. The tube socket voltage tabulations contained in figure Mumber 8 were taken using a vacuum tube voltmeter with an input resistance of 11 megohms. All voltages are measured between specified socket terminals and chassis. The control settings to be observed are shown on Figure Number 8.

## 5-5. MAIN TUMING DIAL

The main tuning dial should normally give no trouble, if, however, the dial should become removed from the receiver it must NOT bf operated until mounted on the capacitor shaft WITH SET-SCREWS TIGHT. This is because the dial is only designed to rotate for ten revolutions (0 to 500 ) and if turned farther than this the mechanism will be damaged. When mounted on the capacitor, limit stops protect the dial provided the assembly is made properly. The procedure for re-mounting the dial is as follows:
(a) Place the dial on the capacitor shaft, tighten set-screws and turn the dial counterclockwise to fully mesh capacitor rotor plates so that the tips of the rotor plates are flusn with the edge of the stator plates.
(b) Loosen set-screws and rotate dial slowly until the dial reading has decreased to zero.
(c) Tighten the set-screws.
(d) Check position of rotor plates at zero. The tips of the rotor plates must be flush with the edge of the stator plates. A slight adjustment may be necessary and this is done by loosening the set-screws, adjusting the position of the dial and tightening the set-screws again.

If it is necessary to remove the dial at any future time, turn to 250 before removing the dial
and do not disturb the setting of either the dial or capacitor until reassembled. If in doubt aboul the correct position, inspect the springs on the back of the dial. when the dial reads 250 these springs should be straight-up-and-down, they must not be tipped to one side.

It is important that the backplate and dial do not become separated. The backplate is held in place by two springs so that its gear teeth mesh with the dial gear teeth in correct relationship for proper dial operation. If this backplate snould be sprung out of place, it may return to an in correct position and the proper dial numbers will not appear in the windows when the dial is used. To ascertain that the two parts are in correct position proceed as follows:
(a) Locate small window near outer periphery of dial backplate and also locate dial number window on face of dial which is $180^{\circ}$ removed from the small backpiate window.
(b) Hold dial so backplate lies flat in palm of left-hand and with right hand rotate dial knob until 250 appears in previously located dial window.
(c) if dial is properly adjusted it will be noted that the pointer at the outer edge of the small window lines up with a marked tooth on the dial itself. it will be found that the dial and Dackplate can be moved so that the Dackplate pointer will mesh between teeth at points equidistant from marked tooth in either direction.
(d) If by checking as in paragraph (c) the dial is found not properly adjusted, it will be necessary to separate the backplate from the dial far enough to bring the two gears out of mesh and then remesh the two parts until the proper setting is found. humber of trial settings may be required before the correct mesh is found.

## 5-6. SLIDE-RULE TUNING DIAL

The slide-rule tuning dial assembly has been adjusted at the factory for accurate synchranization with the microneter dial. If not tampered with this mechanism will provide complete freedom of mechanical trouble over a long period of continuous use. it is driven by an anti-backlash tunin gear ganged with the main tuning dial. The slide-rule dial pointer is controlled by a string-drive assembly.

If replacement of the string-drive cord is required it will be necessary to remove the receivel chassis from its cabinet or wraparound. Before removing the micrometer dial reference should be made to Paragraph 5 of this section for proper method of removal. Figure Number 9 illustrates the proper method of replacing the cord. After the cord has Deen replaced and before the receiver is returned to its cabinet the micrometer dial should temporarily be replaced (see paragraph 5-5) and the slide-rule pointer correctly set in the following manner:

## NOTE

This procedure may also de used if a check is desired to assure that the slide-rule dial pointer is properly synchronlzed with that of the main tuning dial.
(a) Check the main tuning dial at zero on its dial scale. The tips of the rotor plates should be flush with the edge of the stator plates.
(b) Set the Band Selector control so that the $D$ coil set scale appears.
(c) Set the main tuning dial at 490 on its dial scale. Correct setting of the slide-rul dial pointer is 4 megacycles on the dial scale. oraw the sliderule pointer along the cord to its proper position being careful not to disturb the setting of themicrometer dial. After the eorrect setting has been obtained use a small amount of glyptol or household cement to fasten the dial pointer securely in place on the cord.


$$
\begin{aligned}
\text { NOTE: } & \text { CORD SHOWN EXPOSED FOR CLARITY } \\
& \text { CORD LENGTH } 337 / 8^{\prime I} / N C L U D / N G \\
& \text { SPRING AND CLIP }
\end{aligned}
$$

Figure No. 9. Instructions for Dial Cord Replacement

PARTS LIST

SYMBOL	FUNCTION	OESCRIPTION	ORAWING NO.
CAPACITORS			
C-1	T-1 Bandspread Padder used on $A$,   B, C, D coil sets	Mica, variable, 3.5-35 mmf	D832-2
$\mathrm{C}-2$	T-1 General Coverage Trimmer used on $B, C, F, H, J, A A, A B, A C$ coil sets	variable, air dielectric	
c-3	T-1 Bandspread Trimmer used on $A$, B, C, 0 coil sets	Variable, air dielectric	
C-4	Antenna Trimmer.	Variatle, air dielectric	SA: 6577
C-5	Main Tuning	Four section ganged	SA:6592
$C-5 A$	$v-1$ Tuning	Air dielectric, 225 mmf . max.	
C-58	$v-2$ Tuning	Air dielectric, 225 mmf . max.	
C-5C	$v-3$ Tuning	Air dielectric, 225 mmf . max.	
C-50	$v-4$ Tuning	Air dielectric, 225 mmf. max.	
C-6	$v-1$ Gric Filter	Ceramic, . $01 \mathrm{mfd}$.	K946-2
C-7	Not Used		
C-8	V-1 Grid Filter	Mica, 0101 mfd .300 vdcw	J666-56
C-9	$V-1$ Cathode Bypass	Paper, . $1 \mathrm{mfd}$.	D827-12
$C-10$	$v-1$ Screen Bypass	Ceramic. $.005 \mathrm{mfd}$.	K946-1
C-11	$\vee-1$ Screen Bypass	Paper, i 1 mff .400 votcw	0827-12
C-12	$V-1$ Plate Filter	Paper. $11 \mathrm{mfd}$.600 vocw	0827-13
$C-13$	$V-2$ Grid Return Bypass	Ceramic, . $005 \mathrm{mfd}$.	K946-1

NATIONAL PACE 22.2

PARTS LIST (CONT'D)


PAGE 22-30 NATIONAL
MODEL HRO-50-I

PARTS LIST (CONT'D)

SYMBOL	function	description	drawing no.
CAPACITORS (CONT'D)			
C-45	L-2 Tuning	Mica, 510 mmf .500 vdcw	H500-5
C-46	L-3 Tuning		H500-5
C-47	L-4 Tuning	Mica, 510 mmf .500 vdcw	H500-5
C-48	L-5 Tuning	Micá. 510 mmf .500 vdcw	H500-5
C-49	v-6 A.V.C. Filter	Ceramic, . 01 mfd .450 vdcw	K946-2
C-50	v-6 Cathode Bypass	ceramic, .01 mfd .450 vdcw	K946-2
C-51	$v$-6 screen Bypass	ceramic, .01 mfd .450 vdcw	K946-2
c-52	$v-6$ Plate filter	ceramic, . 01 mfd .450 vdcx	K9 46-2
C-53	$v-7$ Load	ceramic. 270 mmf .500 vacw	J633-2
C-54	$v-7$ coupling	Ceramic, 100 mmf .500 vdcw	08250-421
C-55	A.v.c. Filter	Paper, 01 mfd .600 vdcw	D827-7
c-56	$v-9$ to v-7 Coupling		J695-4
C-57	$v-9$ screen bypass	Mica, 01 mfd .300 vdcw	J666-56
C-58	C.W. Osc. Control	Variable, air dielectric	SA: 6580
C-59	V-9 Grid	Mica, . $001 \mathrm{mfd}$.	J666-14
c-60	T-9 Fixed Tuning	variable, air dielectric	D825C-304
C-61	T-9 Tuning		
C-62	D.C. Bypass	Paper, 01 mfd. 600 vdcw	0827-7
c-63	A.C. Line Bypass	Mica, 01 mfd .300 vdcw	J666-56
c-64	A.C. Line Bypass	Mica, .01 mfd .300 vdcw   Electrolytic. 40 + 40 mfd .475 vdcw	J666-56
C-65	Power Supply filter		K945-3
C-65A	Power Supply Input filter	Part of C-65	
C-658	Power Supply Output Filter	Part of C-65	
C-66	v-7 to $v-10$ coupling	Paper, . 01 mfd .600 vdcw	D827-7
C-67	$v-10$ Threshold filter	Paper, 11 mfd .400 vdcw	0827-12
C-68	$V-10$ Plate Filter	Paper, . 1 mfd .400 vdcw	0827-12
C-69	$v-10$ to $x-3$ Coupling	Paper, .01 mpd .600 vdcw	-0827-7
C-70	Tone Compensator	Electrolytic, 25 mfd .50 vdcw	E338-4
C-71	$v \rightarrow 11$ cathode Bypass	Paper, 5 mfd. 100 vdcw	0827-49
C-72	$v-11$ Screen Bypass	Paper, . 1 mfd .400 vdcw	0827-12
C-73	$v-11$ Plate filter	Paper, . 1 mfd .400 vdcw	0827-12
c-74	Tone	Paper, 001 mfd .600 vdcm	D827-7
C-75	$v-88$ to $v-11$ coupling	Paper, . 01 mpd. 600 vdcw	D827-7
c-76	V-8B Grid		D8250-421
C-77	$V-88$ to $v-12$ coupl ing	Paper, $.01 \mathrm{mfd}$.	D827-7
c-78	$V-8 B$ to $v-13$ coupl ing	Paper, .01 mfd .600 vdcw	D827-7
C-79	$V-12$ and $v-13$ Cathode Bypass	Electrolytic, 25 mfd .50 vdcw Mica, . 0024 mfd .1000 vdcw	E338-4
C-80	Tone Compensator		J667-68
C-81	Temperature Orift Compensator	Ceramic, 5 mmf .500 vdcm	H872-3
C-82	T-1 Fixed Bandspread Padder: A coil set	Ceramic 12 mmf .500 vdcw	08250-404.
	B coil set	12 mmf .500 vdcw 5 mmf .500 vdcw	08250-401
	C coil set	5 mmf .500 vdcw   $12 \mathrm{mmf}$.   200 vdcw	08250-404
	0 coil set	25.7 mmf .500 vdcwCeramic	08250-412
C-83	T-2 Fixed Bandspread Padder:		
	A coil set B coil set	21 mmf .500 vdcw 5 mmf .500 vdcw	$\text { 0825 D-40 } 1$
	c coil set	12 mmf . 500 vdcw	D8 250 -404
	0 coil set	25.7 mmP .500 vdcw	08250-412

## PARTS LIST (CONT'O)

SYMBOL	FUNCTION	OESCRIPTION	DRAWING NO.
C-84	T-3 Fixed Bandspread Padder:   A coil set   B coil set   $C$ coil set   D coil set	Ceramic   21 mmf. 500 vdcw   5 mmf .500 vdcw   12 mmf .500 vdcw   25.7 mmf .500 vdcw	$\begin{aligned} & D 8250-410 \\ & D 8255-401 \\ & \text { D825D-404 } \\ & \text { D825D-412 } \end{aligned}$
C-85	T-4 Bandspread Padder used on A coil set	Ceramic, 10 mmf .500 vdcw	D825 D-437
$C-86$ $c-87$	T-4 Fixed Divider used on D coil set	Ceramic, 21 mmf. 500 vdcw Ceramic	08250-410
C-87	T-4 Fixed General Coverage Trimmer:	Ceramic	
	A coil set	20 mmf . 500 vdcw	D8250-446
	B coil set	$5 \mathrm{mmf}$.500 vdew	D825D-440
	As coil set	10 mmf .500 vdcw	D8250-402
	As coil set	35 mmf .500 vdcw	D8250-413
	AC coil set	68 mmf . 500 vdcw	0825D-439
C-88	T-1 Fixed General Coverage Padder:		
	A coil set	Mica, 1200 mmf .500 vacw	J666-16
	AB coil set	Céramic, 120 mmf .500 vdcw	0825C-305
C-89	T-4 Fixed Temperature Compensator:	Ceramic	
	B coil set	5 mmf . 500 vdcw	DB250-440
	A coil set	5 mmf .500 vdcw	08250-440
C-90	T-2 Primary Trimmer used on H coil set	Ceramic, $21 \mathrm{mmf}$.	08250-410
C-91	T-1 General Coverage Trimmer:	ceramic	
	AA coil set	$5 \mathrm{mmf}$.	08250-401
	$A B$ coil set	$21 \mathrm{mmf}$.	08250-410
	$A C$ coil set	50 mmf .500 vdcw	08250-417
C-92	T-2 coupling used on AB coil set	Mica, $470 \mathrm{mmf}$.	J665-56
C-93	T-2 General Coverage Padder used on $A B$ coll set	Ceramic, 100 mmf . 500 vdcw	0825C-304
C-94	T-3 coupling used on AB coil set	Mica, 470 mmf . 500 vdcm	J665-56
C-95	T-3 General Coverage Trimmer:	Ceramic 10 mmf 500 vdcw	
	$A B$ coil set	Ceramic, 10 mmf .500 vdcw	08250-402
	AC coil set	Ceramic, 68 mmf .500 vdcw	D825 D-429
C-96	$\mathrm{V}-2$ Cathode Bypass	Ceramic, .005 mfd .450 vdcw	K946-1
C-97	T-1 General Coverage Padder used on $A A, A B$ and $A C$ coil sets	variable, air dielectric	
C-98	T-2 General Coverage Padder used on $A A$ and $A B$ coll sets	Variable, air dielectric	
C-99	T-3 General Coverage Padder used on $A A, A B$ and $A C$ coil sets	Variable, air dielectric	
$C-100$	T-4 General Coverage Padder used on E, F, G, H, J and AA, AB, AC coil sets	Variable, air dielectric	
C-101	T-3 General Coverage Pader used on $A B$ coil set	Ceramic. ${ }^{\text {c }} 100 \mathrm{mmf}$.	D825C-304
$\mathrm{C}-102$	T-2 General Coverage Trimmer:	Ceramic	
	$A C$ coil sets	68 mmf .500 vdcw	08250-439
	$A B$ coil sets	10 mmf . 500 vdcw	D8250-402
C-103	1.F. coupling to $x-1$	Ceramic, $100 \mathrm{mmf}$.	08250-402


MODEJ, HRO-5O-1			
PARTS LIST (CONT'D)			
SYMBOL	FUNCTION	DESCRIPTION	DRAWING NO.
CAPACITORS (CONT'D)			
C-104	T-4 General Coverage Padder used on a coil set	ceramic, 20 mmf. 500 vdcw	08250-446
C-105	$V-5$ plate filter	Paper, . 25 mfd .600 vocw	D827-19
C-106	L-8 Tuning	Mica, 510 mmf . 500 vdcw	H500-5
C-107	L-9 Tuning	Mica, 510 mmf , 500 vdcw	H500-5
$\mathrm{C}-108$	$V-16$ AVC Filter	Ceramic, . $01 \mathrm{mfd}$.	K946-2
C-109	$V-16$ cathode Bypass	ceramic, . 01 mfd .450 vdcw	K946-2
c-110	R.F. Filter	Paper, 25 mfd. 200 vdew	0827-15
$C-i 11$	$v-16$ Screen	Ceramic, .01 mfd .450 vdcw	K946-2
C-112	$v-16$ Plate filter	ceramic, . $01 \mathrm{mfd}$.	K946-2
C-113	L-10 Tuning	Mica, 510 mmf . 500 vdcw	H500-5
C-114	L-11 Tuning	Mica, 510 mmf . 500 vdcw	H500-5
C-115	L-12 Tuning	Mica, 510 mmf . 500 vdcw	H500-5
$C-116$	L-13 Tuning	Mica, $510 \mathrm{mmf}, 500 \mathrm{vdcw}$	H500-5
C-117	$V-2$ Plate Filter	Ceramic, . $005 \mathrm{mfd}$.	K946-1
C-118	$V-15$ Plate Filter	Paper, $11 \mathrm{mfd}$.	D827-13
$c-119$	0sc. Padder	Ceramic, 10 mmf .500 vdcw	D8250-437
C-120	L-6 Tuning	Mica, 510 mmf . 500 vdcw	H500-5
c-121	L-7 Tuning	Mica, $510 \mathrm{mmf}$.500 vocw	H500-5
C-122	$\vee-5$ Screen Bypass	Ceramic, . 01 imfd. 450 vdew	K946-2
C-123	$\checkmark-3$ Platc filter	ceramic, . $01 \mathrm{mfd}$.	K946-2
C-124	$v-5$ Screen Bypass	Paper, . 1 mfd . 400 vdew	0827-12
RESISTORS			
$\mathrm{R}-1$	$V-1$ Grid Filter	Fixed, 470,000 ohms, 1/2 W	J569-57
R-2	$V-1$ cathode	Fixed, 100 ohms, 1/2 W	J569-13
R-3	$v-1$ and $v-2$ screen	Fixed, 2, 200 ohms, 1/2 W	J569-29
$R-4$	$V-2$ grid	Fixed, 470,000 ohms, 1/2 W	J569-57
R-5	$V-2$ cathode	Fixed, 560 ohms, $1 / 2 \mathrm{~W}$	J 569-22
R-6	RF Gain control	variable, W.W. 10,000 ohms	K349-3
R-7	$V-3$ injector Grid	Fixed, 22,000 onms, 1/2 W	J569-4 1
$R-8$	$v-3$ cathode	Fixed, 220 ohms, 1/2 W	J569-17
R-9	$v-3$ screen	Fixed, 33,000 ohms, 1 W	J57 1-43
R-10	$V-4$ Grid	Fixed, 22,000 onms, $1 / 2 \mathrm{~W}$	J569-41
R-11	$V-4$ Plate	Fixed, 22 ohms, 1/2 W	J 569-5
R-12	$V-5$ Grid filter	Fixed, 470,000 ohms, 1/2 W	J569-57
$\mathrm{R}-13$	$v-1, ~ v-2, ~ v-5 ~ s c r e e n ~ B l e e d e r ~$	Fixed, 27,000 ohms, 2 W	J572-42
$\mathrm{R}-14$	$v-5$ cathode	Fixed, 220 ohms, 1/2 W	J569-17
R-15	$v-5$ cathode	Fixed, $330 / 1000$ ohms, 1/2 W	
R-16		Fixed, 15.000. ohms, 2 W	J572-39
R-17	$V-5$ Plate filter	Fixed, 2,200 ohms, 1/2 W	J569-29
$\mathrm{R}-18$	$V-6$ Grid Filter	Fixed, 470,000 ohms, 1/2 W	J569-57
R-19	$V-6$ cathode	Fixed, 68 ohms, $1 / 2 \mathrm{~W}$	J569-11
$R-20$	$\checkmark-8 \mathrm{~A}$ Plate Load	Fixed, 47,000 ohms, 1/2 W	J 569-4 5
$\mathrm{R}-21$	"S" Meter Zero Adjustment	Variable, W.W. 1000 ohms, 1 W	0831-2
$R-22$	$\checkmark-7$ Plate Load	Fixed, 1.5 meg. $1 / 2 \mathrm{~W}$	J569-63
$R-23$	AVC Filter	Fixed, 1.5 meg. 1/2 W	J569-63
$R-24$	$V-9$ Plate	Fixed, 220,000 ohms, 1/2 W	J569-53
$R-25$	$\vee-9$ Screen Filter	Fixed, 100,000 ohms, 1/2 W	J569-49
R-26	$v-9$ Screen Bleeder	Fixed, 100,000 ohms, 1/2 W	J569-49
$\mathrm{R}-27$	V-9 Grid	Fixed, 47,000 ohms, $1 / 2 \mathrm{~W}$	J569-45
R-28	Dimmer control	Variable, W.W. 25 onms	K915-13

NATIONAL PACE 22. ${ }^{2}$

## PARTS LIST (CONT'D)

SYMBOL	FUNCTION	OESCRIPTION	DRAWING NO.
RESISTORS (CONT'D)			
R-29	V-7 Filament Dropping	Fixed, 4.3 onms, 1 W	K098-48
$\mathrm{R}-30$	V -10 Filament oropping	Fixed, 4.3 ohms, 1 W	K098-48
R-31	$v-14$ Dropping	Fixed, 5,000 ohms, 10 W	E959-10
R-32	$v-7$ Load	Fixed, 22,000 ohms, 1/2 W	J569-4 1
$R-33$	$v-7$ Load	Fixed, 470,000 ohms, 1/2 W	J569-57
R-34	$V-10$ Plate	Fixed, 220,000 ohms, $1 / 2 \mathrm{~W}$	J569-53
$R-35$	$V-10$ Cathode	Fixed, 220,000 ohms, 1/2 W	J569-53
R-36	Limiter inreshold control	variable, 500,000 ohms	J681-2
R-37	Limiter Threshold filter	Fixed, 220,000 ohms, 1/2 W	J 569-53
R-38	Limiter plate filter	Fixed, 820,000 ohms, 1/2 W	J569-60
$\mathrm{R}-39$	$V-10$ Plate Load	Fixed, 470,000 ohms, $1 / 2 \mathrm{w}$	J569-57
$R-40$	Audio gain control	variable, 500,000 ohms	k347-1
R-41	Limiter Output Divider	Fixed, 220,000 ohms, 1/2 W	J569-53
R-42	$v-11$ Cathode	Fixed, 2200 ohms, $1 / 2 \mathrm{~W}$	J569-29
R-43	$v-11$ Cathode Divider	Fixed, 150 ohms, 1/2 W	J569-15
R-44	Degeneration Feedback	Fixed, 6800 ohms, 1/2 W	J569-35
R-4 5	$v-1 i ~ s c r e e n ~ f i l t e r ~$	Fixed, 470,000 onms, $1 / 2 \mathrm{~W}$	J 569-57
R-46	$v-11$ plate Load	Fixed, 100,000 ohms, $1 / 2 \mathrm{~W}$	1569-49
R-47	$v-11$ plate filter	Fixed, 47,000 ohins, $1 / 2 \mathrm{~W}$	J 569-45
R-48	Tone control	variable, 500,000 ohms	K347-1
R-49	$v-88$ Grid	Fixed, 220,000 ohms, 1/2 W ${ }^{\text {W }}$	J569-53
R-50	$v-8 \mathrm{~B}$ cathode sias	Fixed, 4700 ohms, 1/2 W	J569-33
$\mathrm{R}-51$	$V-88$ cathode Load	Fixed, 47.000 ohms, $1 / 2 \mathrm{~W}$	J569-45
R-52	$V-88$ Plate Load	Fixed, 47,000 ohms, 1/2 W	J569-45
R-53	$V-13$ Grid	Fixed, 220,000 ohms, 1/2 W	J569-53
R-54	$v-12$ Grid	Fixed, 220,000 ohms, 1/2 W	J569-53
R-55	$v-12$ and $v-13$ cathode Bias	Fixed, 220 onms, 2 W	J572-17
R-56	output Load	Fixed, 470 ohms, 2 W	J572-21
R-5 7	T-1 Ant. Load used on A coil set	Fixed, 22 ohms. $1 / 2 \mathrm{~W}$	J569-5
$R-58$	$v-6$ screen oropping	Fixed, 47,000 onms, 1/2 W	J569-45
R-59	$v-16$ AVC Filter	Fixed, 470,000 ohms, 1/2.W	J569-57
$\mathrm{R}-60$	$v-16$ Cathode	Fixed 68 onms, 1/2 w	J569-11
R-61	V -16 Screen Dropping	Fixed, 47,000 ohms, 1/2 W	J 569-4 5
R-6 2	$v-16$ Plate Filter	Fixed, 2200 onms, 1/2 W	J569-29
	,		

Miscellaneous

E-1	Antenna Input Terminal	Screw type, three terminals	E261-3
ع-2	B+ Switch Terminal	screw type, two terminals	E265-19
$E-3$	Audio output Terminai	Screw type, three terminals	E259-2
F-1	Fuse 3 AG	2 Amps at 250 V	F135-4
1-1	Dial Lamp	147	F136-6
1-2	Dial Lamp	W47	F136-6
1-3	"S" Meter Lamp	\#47	F136-6
J-1	Phono Jack	Single circuit	J993-1
J-2	Phone Jack	Multi-circuit	F316-1

PARTS LIST (CONT'O)

SYMBOL	function	déscription	graming no.
miscellaneous (COnt'd)			
$\mathrm{L}-1$	Filter Choke	17 Henries	SA: 1694
L-2	T-6 Tuning	variable iron-core inductor	SA:3905
L-3	T-6 Tuning	variable iron-core inductor	SA:3366
L-4	T-6 Tuning	variable iron-core inductor	SA:3905
L-5	T-6 Tuning	variable iron-core inductor	SA:3366
L-6	T-7 Tuning	variable iron-core inductor	3A:3905
L-7	T-7 Tuning	variable iron-core inductor	SA:3366
L-8	T-7 Tuning	variable iron-core inductor	SA:3905
L-9	T-7 Tuning	variable iron-core inductor	SA:3366
L-10	T-8 Tuning	variable iran-core inductor	SA:3905
L-11	T-8 Tuning	variadle iron-core inductor	SA:8951
L-12	T-8 Tuning	variable iron-core inductor	SA:3905
L-13	T-8 Tuning	variable iron-core inductor	SA:8951
L-14	T-6 coupling	R.f. choke, 1.1 uh.	SA:6072
L-15	T-7 Coupling	R.F. choke, 1.1 uh.	SA:6072
L-16	T-8 coupling	R.F. chake, 1.1 uh.	SA:8952
M-1	"S' Meter	0-1 ma. w/s: scale	J984-5
$\mathrm{P}-1$	Select-0-Ject Plug	octal	SA:6569
$\mathrm{P}-2$	A.C. Jumper Plug	Octall	SA:3731
S-1	T-1 B.S. - G.C. Switch	Twist Type, Two position	SA:6748
S-2	T-2 B.S. - G.C. Switch	Twist Type, Two pasition	SA: 6749
S-3	T-3 日.S. - G.C. switch	Twist Type, Two position	SA:6749
S-4	T-4 日.S. - G.C. Switch	Twist Type, Two position	SA:6749
S-5	Selectivity Switch	Six Position, Double Pole	E195-3
S-6	A.V.C. ON-OFF switch:	SPST Bat Handle, Toggle	E230-2
S-7	Control Switch	Oouble-wafer, four-position	SA:6564
S-8	Calibrator switcett	DPDT Bat Handle, roggle center position open	P738-1
S-9	A.C. Line Switch	Part of R-40	
s-10	T-10 primary Sel ector switch	OPDT, roggle	H340-4
S-11	B+ Switch	SPST, eat Handle, Toggie.	E230-2
T-1	First r.F. Amplifier Transformer		
T-2	- Band	$14.0-30 \mathrm{Mc}$.	SA:6654
	B Eand	$7.0-14.4 \mathrm{Mc}$.	SA: 6755
	${ }^{\text {c B B B }}$	3.5 - 7.3 MC .	SA:6759
	D Band	1.7 - 4.0 Mc .	SA:6635
	E Band	$900-2050 \mathrm{Kc}$.	SA:6513
	$F$ Band	480 - 960 kc .	SA:6660
	$G$ Band	180 - 430 kc .	SA: 6665
	${ }^{\text {H B Band }}$	100 - 200 kc .	SA:6803
	$J$ Band	$50-100 \mathrm{Kc}$.	SA:6806
	AA Band	27 - 30 Mc .	SA:6814
	$4 B$ Band	25 - 35 Mc ,	SA: 6675
	AC Band	21 - 21.5 Mc .	SA: 8073
	Second R.F. Amplifier Transformer		
	A Band	14.0-30 Mc.	SA:6751
	$B$ Band	7.0 - 14.4 MC .	SA: 6650
	C Band	$3.5-7.3 \mathrm{Mc}$.	SA:6641
	0 Band	1.7 - 4.0 Mc . -	SA:6637

PARTS LIST (CONT'D)

SYMBOL	FUNCTI ON	DESCRIPTION	DRAWING NO.
Miscellaneous (CONT'D)			
T-2	cont ${ }^{\text {d }}$ d		
	$E$ Band	$900-2050 \mathrm{Kc}$.	SA: 6540
	$F$ Band	$480-960 \mathrm{Kc}$.	SA: 6662
	$G$ Band	$180-430 \mathrm{kc}$.	SA: 6667
	$H$ Band	$100-200 \mathrm{Kc}$.	SA: 6669
	$J$ Band	$50-100 \mathrm{kc}$.	SA:6809
	AA Band	27 - 30 Mc .	SA: 6673
	$A B$ Band	$25-35 \mathrm{Mc}$.	SA:6818
	$A C$ Band	21 - 21.5 Mc .	SA: 8074
T-3	Mixer Transformer		
	A Band	$14.0-30 \mathrm{MC}$.	SA: 6752
	$B$ Band	$7.0-14.4 \mathrm{MC}$.	SA:6756
	C Band	$3.5-7.3 \mathrm{Mc}$.	SA:6642
	D Band	$1.7-4.0 \mathrm{Mc}$.	SA:6638
	$E$ Band	$900-2050 \mathrm{KC}$.	SA:6789
	F Band	$480-960 \mathrm{KC}$.	SA: 6794
	G.Band	$180-430 \mathrm{Kc}$.	SA: 6800
	4 Band	$100-200 \mathrm{KC}$.	SA: 6804
	$J$ Band	$50-100 \mathrm{KC}$.	SA:6810
	AA Band	27 - 30 Mc .	SA:6815
	$A B$ Band	$25-35 \mathrm{Mc}$.	SA: 6676
	$A C$ gand	21 - 21.5 Mc .	SA: 8075
$T-4$	H.F. Oscillator Transformer		
	A Band	$14.0-30 \mathrm{Mc}$.	SA: 6656
	$B$ Band	7.0 - 14.4 Mc .	SA: 6678
	C Band	$3.5-7.3 \mathrm{MC}$.	SA: 6760
	D Band	1.7 - 4.0 Mc .	SA: 6776
	$E$ Band	$900-2050 \mathrm{KC}$.	SA: 6631
	$F$ Band	$480-960 \mathrm{KC}$.	SA:6795
	$G$ Band	180 - 430 KC.	SA: 6785
	$H$ Band	100-200 Kc.	SA:6805
	$J$ Band	$50-100 \mathrm{KC}$.	SA:6811
	AA Band	$27-30 \mathrm{Mc}$.	SA:6816
	$A B$ Band	$25-35$ Mc.	SA: 6819
	$A C$ Band	21-21.5 MC.	SA: 8076
T-5	Crystal Filter	455 kc .	SA:3654
T-6	2nd. I.F. Amp. Transformer	455.kc.	SA:8448
T-7	3rd. l.F. Transformer	455 kc .	SA:8448
T-8	Det. Input Transformer	455 kc .	SA: 8948
T-9	C.W. Osc. Transformer	455 kc .	SA:3361
T-10	Audio Output Transformer	Pri. 10,000 ohms Sec. $8 / 600$ ohms 10 watts	P187-1
T-11	Power Transformer	Primary: 44 and $\$ 5,115$ volts	SA: 6566
		\$4 and 3.230 volts   Secondary: 1 and 3.6 .3 V at 6.5 A .   Secondary: 18, 19 and $10,275-0-275 \mathrm{~V}$.   Secondary: $\$ 11$ and 12,5 V. at 2 A.   *2 electrostatic shield	
$v-1$	First R.F. Amplifier	6846	
$\checkmark 2$	Second R.F. Amplifier	6846	

PAGE 22-36 NATIONAL


PARTS LIST (CONT•D)



NATIONAL PAGE 22-3


Figure No. 10B. Capacitor and miscellaneous component Locations, Bot tom view of Receiver


Figure No. 11. Schematic Diagrams, Coil $\operatorname{sets} A, B, C, D, E$ and $F$


NATIONAL PAGE 22-41,42


## INSTRUCTIONS <br> FOR THE <br> NATIONAL XCU-50-2 <br> CRYSTAL CALIBRATOR UNIT

## GENERAL

The type XCU-50-2 Crystal Caliorator Unit is designed expressiy for use within the HRO-50 receiver. It utilizes an electron-coupled oscillator circuit controlled by a dual crystal (valpey type DFS). This type of crystal provides two crystal-controlled marker frequencies of 100 kilo cycles and 1 megacycle. When plugged into the crystal Calibrator Socket, $x-2$, the $X C U$ output is loosely coupled to the first R.F. amplifier input circuit. Selection of either the 100 kilocycle or 1000 kilocycle erystal-controlled signal is made possible by the front-panel mounted caliorate switch on the receiver.

## InSTALLATION

The $\mathrm{XCU}=50-2$ calibrator is installed in the HRO-50-1 receiver by plugging the unit into the crystal calibrator socket, $x-2$, on top of the chassis. A slotted-head screw mounted through the top of the unit is provided to bolt the unit to the chassis.

A trimmer capacitor, C-1, is connected across the crystal to permit adjustment of the frequency of the 100 kilocycle output marker when the unit is operated at locations where the temperature is vastly removed from that of normal room temperature. This capacitor should never require adjustment unless such abnormal temperatures are experienced. To make the adjustment proceed as follows:
(1) Plug in a coil set suitable for the reception of wWV on one the various frequencies utilized by this standard frequency station.
(2) Adjust the receiver for normal A.M. operation as explained in section 3-3.
(3) Set the front-panel mounted Caliorate switch at the 100 kilocycle position.
(4) Tune in the signal from WWV at a time when the signal is unmodulated.
(5) Adjust the trimmer capacitor, $C-1$, located at the top of the calibrator unit so that the 100 kilocycle marker signal harmonic is zero beat with the signal received from wiv.

## OPERATION

The XCu-50-2 crystal caliorator provides a means of checking the accliracy of the frequency calibration of the receiver. The front-panel mounted Calibrate switch marked 100-0ff-1000 connects B-plus to the Calibrator for instantaneous service. At the same time this switch selects either the 100 or 1000 kilocycle marker signal. To check calibration accuracy tune in the desired marker signal with the control switch set at C.W. and zero beat the receiver with the harmonic marker. If the micrometer dial and the slide-rule dial do not read accurately correction should be made by adjusting the front-panel mounted 0sc. trimmer control. only a slight adjustment of the osc. trimmer control should be necessary. If calibration is way off the plug-in coil set probably requires realignment and reference should be made to section 4.

SYMBOL	FUNCTION	DESCRIPTION	NAT. CO. TYPE
C-1	100 Kc . Tuning	Ceramic, variable, 6 -20 mmf.	E311-2
C-2	E+ Filter	Paper, . $1 \mathrm{mfd}$.	0827-12
c-3	Cathode by-pass	Paper, . 1 mfd. 400 vdcw	0827-12
C-4	output coupling	Ceramic, $10 \mathrm{mmf}$.	H872-1
C-5	Feedback	Ceramic, 3 mmf . 500 vdcw	J695-4
L-1	100 Kc . inductor	5 mh , type R-100	SA: 2608
L-2	1000 Kc. inductor	.5 mh . type $\mathrm{R} \rightarrow 50$	SA: 2514
$\mathrm{P}-1$	Plug	Octal	K 783-1
$\mathrm{R}-1$	Grid	Fixed. 4.7 megohms, i/2 W.	J569-69
R-2	Not Used		
R-3	Screen dropping	Fixed, 22,000 ohms, 1 W.	J571-41
R-4	Plate	Fixed. 470,000 ohms, 1 W.	小571-57
$V-1$	Oscillator tube	6AK6	
$\mathrm{Y}-1$	Crystal Resonator	Quartz, $100-1000 \mathrm{Kc}$.	Q560-1

PAGE 22-44 NATIONAL


## imstallation

The NFM-83-50 is installed in the HRO-50-1 receiver by plugging the adaptor unit into the N.B.F.M. Socket $x-1$ on the top of the chassis. A mounting bracket is furnished to hold the adaptor unit securely in position. The adaptor unit is aligned at National company laboratories and realignment is not necessary.

## ALIGAMENT

The NFM-83-50 is carefully aligned before shipment and no realignment is required unless the adaptor is accidently misaligned. The necessity of realignment can be determined by the A.M. rejection capadilities of the adaptor unit. proper alignment will be indicated when the maximum A.M. rejection occurs at the center of the A.M. carrier. Maximum S-meter reading will indicate the center of the carrier.

The equipment required for alignment is a high-impedance vacuum tube voltmeter and an A.M. signal generator. The signal generator used should have an output reasonably free of any frequency modulation. The use of a oroadcast station as a signal source, in place of a signal generator, would provide a test signal meeting the above requirement. In any case, the signal strength of the test signal should be of the order to provide an s-meter reading of from 2 to 5 s-units when the HRO-50-1 is correctly tuned to the test signal.

The preliminary alignment procedure is as follows:

1. Connect the high-impedance voltmeter between the test point jack, J-1, and chassis. The solarity of the voltage will depend on the alignment of the adaptor, connect the voltmeter to Apora: an m-scale reaoing.
2. Connect a signal source to the antenna terminals, $A$ and $A$, at the rear of the HRO-50-1. If a signal generator is used make the connection through a 300 ohm dummy load and select a frequency in the standard broadcast band.
3. Set the Control switch at N.F.M.
4. Set the Selectivity switch at Off.
5. Set the Limiter control at off.
6. Plug in the $E$ coil set, 900 to $2,050 \mathrm{Kc}$. If this coil set is not available use the $D$ coil set, 1.7 to 4.0 Mc .
7. Set the B plus switch at Or.
8. Ser the A.V.C.-uff switcn at A.V.C.
9. Turn the r.f. Gain control to 10.
10. Adjust the A.F. Gain control for the desired volume.
11. Tune the test signal by adjustment of the Main Tuning knob. The correct tuning point
is the setting that produces maximum $S$-meter reading.
Alignment is effected as folfows:
12. Detune both primary, L-1, and secondary L-2, l.F. trimmers by rotating the scraw adjustments until they are withdrawn from the shield can as far as possible. The adjustment with the dot of red paint opposite it is the primary trimmer L-1.
13. Tune the primary trimmer, L-1, for maximum reading on the voltmeter. If two peaks in output are observed, the correct peak will be the first one encountered when rotating the screw adjustment into the shield can.
14. Tune the secondary trimmer, L-2, for a zero reading on the voltmeter. It will be noted that there is a crossover in the polarity of the test voltage at this point.
15. Adjust the capacitor, c-9, for a null in the audio output. This capacitor is accessidle after removal of the button plug on the side of the adaptor unit.
16. Adjustment of capacitor, C-9, may affect the zero voltage reading obtained by adjustment of the secondary trimmer, L-2. Retrim L-2 and $C-9$, as necessary, until both a zero voltage reading on the voltmeter and a null in the audio output are ootained.

PARTS LIST

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	function	DESCRIPTION	$\begin{aligned} & \text { NAT. CO. } \\ & \text { TYPE } \end{aligned}$
c-1	1.F. Amp. Coupling	Ceramic, $10 \mathrm{Mmf}, 500 \mathrm{vdcw}$	08250-402
C-2	Input Divider	Ceramic, $38.5 \mathrm{Mmf}, 500 \mathrm{vdcw}$	D8250-414
c-3	1.F. Amp. Cathode Bypass	Mica, $0.01 \mathrm{Mfd}, 300 \mathrm{vdcw}$	J666-56
C-4	1.F. Amp. Screen Bypass	Mica, $0.001 \mathrm{Mfd}, 300 \mathrm{vdcw}$	J665-71
C-5	T-1 Primary Tuning	Mica, 100 Mmf , 500 vdcw	H500-7
c-6	T-1 Secondary Tuning	Mica, $180 \mathrm{Mmf}, 500 \mathrm{vdcw}$	H500-3
$\mathrm{C}-7$	T-1 Secondary Tuning	Mica, $180 \mathrm{Mmf}, 500 \mathrm{vacw}$	H500-3
C-8	T-1 Secondary Tuning	Ceramic, $38 \mathrm{Mmf}, 500 \mathrm{vdcw}$	D8250-424
C-9	T-1 Sec. Balance Adjustment	Ceramic, variadie, 7-35 Mmf.	E311-4
C-10	Disc. Cathode Filter	Elect. $1 \mathrm{Mfd}, 450 \mathrm{vdcw}$	E338-10
c-11	B Supply Bypass	Mica, $0.01 \mathrm{Mfd}, 300 \mathrm{vdcw}$	J666-56
C-12	R.F. Filter	Mica, $470 \mathrm{Mmf}, 500 \mathrm{vdcw}$	J665-56
c-13	Audio Coupl ing	Mica, $0.01 \mathrm{Mfd}, 300 \mathrm{vdew}$	J666-56
R-1	f.F. Amp. Grid Leak	Fixed, 1 Megohm, 1/2 W.	K379-61
R-2	I.F. Amp. Cathode Bias	Fixed, 1,000 Onms, 1/2 W.	K379-25
R-3	I.F.. Amp. Screen Dropping	Fixed, 47,000 0hms, 1/2 W.	K379-45
R-4	R.F. Filter	Fixed, 47,000 0nms, 1/2 W.	K379-45
R-5	Diode Load	Fixed, 15,000 0hms, 1/2 W.	K379-39
R-6	Diode Load	Fixed, 15,000 0hms, 1/2 W.	1379-39
R-7	Decoupling	Fixed, 4,700 Ohms, 1/2 W.	J569-33
J-1	Test Point	Tip Jack, Bakelite	K421-1
L-1	T-1 Primary Inductor	Adjustable Iron-Core	SA: 4892
L-2	T-1 Secondary Inductor	Adjustable Iron-Core	SA: 4891
$\mathrm{P}-1$	adaptor Unit Plug	8 Prong Octal	K783-1
T-1	Discriminator Transformer	Ratio Type 455 Kc .	SA:4890
$v-1$	l.F. Amplifier	6Sk7	
$v-2$	Discriminator	6H6	



## INSTALLATION

The 650 s unit is supplied with a battery connecting cable as well as an interconnecting cable to facilitate connection to the receiver.
sattery clips are provided on the battery connecting cable $W-1$ for convenient connection to a 6-volt storage battery or similar source of power. The interconnecting cable $\mathbf{W - 2}$ is terminated at one end In a four-prong plug to mate with the socket $x-1$ of the 650 S . The other end utilizes an octal plug to mate with the power socket $x-1$ at the rear of the HRO-50-1 receiver. The receiver A.c. jumper plug $P-1$ used for A.C. operation must be removed from the power socket. Figure Number 16 shows the Schematic Wiring Diagram.

The 650 S vibrapack Unit has been completely tested and adjusted at the factory to provide efficient and economical servíce when used with the HRO-50-1 receiver. An adjustment control switch has been furnished for increasing the B-plus output. This is a screw oriver control available through and entry hole provided at the rear of the 650 S. The control switch has four steps from approximately 150 volts of filtered D.C. at 70 milliamperes in the extreme counterclockwise position (step 1) to approximately 210 volts at 90 milliamperes in the fully clockwise position (step 4 ). it is recommended that the receiver be operated at the lower $B$ voltage of step 1. The total battery drain is approximately 11 amperes when furnishing power to the receiver if the MFM-83-50, XCU-50-2 and soJ-3 units are used. If the receiver is used without these accessories the total drain is approximately 9.5 amperes. The V.R. tube does not light under these conditions but the receiver wlll operate normally and operation from a storage battery becomes practical. In step 4 the V.R. tube will light and full receiver output will be obtained but the drain on the storage battery will be approximately 15.5 amperes when all accessories are utilized. Without these acessories the total receiver drain from the battery will be approximately 13.8 amperes.

The two intermediate control switch steps 2 and 3 should not be used as the voltage obtained is approximately the value required to fire the v.f. tube in the receiver. Under this condition the $V$. R. tube may fire on and of sporadically resulting in erratic operation of the receiver.
parts list

SYMBOL	FUnCTION	DESCRIPTION	NAT. CO.   TYPE
C-1	Filter Capacitor	Elec. 500 mfd .15 vdcw	E338-7
E-1	vibrapack unit	6 V.D.C. Mallory Type VP554	Q371-1
F-1	Fuse	20 Amperes 25 volts type 3 AG	F135-18
L-1	6-volt Line Filter	16 microhenries, iron core	SA: 869
S-1	6-volt Line Switch	Toggle S.P.S.t.	E230-2
$\mathrm{v}-1$	Rectifier Tube	Type 024A	
$w-1$	6-volt Line Connector	Two-Contact	SA: 1999
$\mathrm{W}-2$	Interconnecting cable	One end terminated in four prong plug; other in an octal plug	
$Y-1$	vibrator	6 V.D.C. Mallory Type 825C	
$x-1$	Output Socket	Four Prong Female	E319-9



Figure No. 16. Schematic Diagram, 650 S vibrator Power Supply

1-1. INSTALLATION PROCEDURE
The SW-54 Receiver is designed to operate from a $105 / 130$ volt, $50 / 60$ cycle, A.C. source of supply or a $105 / 130 \mathrm{volt}, ~ D . C$. Source of supply. Normal power consumption is approximately 25 watts at 115 volts.

Installation of the SW-54 is accomplished as follows:

1. Connect the antenna as recommended in section 1-2.
2. Connect a good external ground ( radiator or water pipe) to the cabinet. A screw-type terminal is provided at the top center of the cabinet back to facilitate this connection. This connection, if used, serves two purposes:
a. Achieves a considerable reduction in noise interference in certain localities.
b. Eliminates the possibility of shock occurring if the operator makes bodily contact between the Receiver and ground.
3. Connect the power cable and plug to the proper source of supply i.e., $105 / 130 \mathrm{volts}$, $50 / 60$ cycles, A.C. or $105 / 130$ volts D.C. Proper polarity of the plug should be observed when connection is made to a power source although no damage to the Receiver will occur if the polarity is reversed. Reversed polarity will be evidenced as follows and is corrected by simply reversing the plug prongs in the power outlet.
a. D.C. Power Source - The Receiver will be inoperative, although the tubes and pilot lamp will light.
D. A. C. Power source - A hum may be heard in the output of the Receiver.

Proper polarization of the plug will eliminate the possiollity of shock occurring in installations where one side of the power line is grounded, if the operator should make bodily contact between the receiver and ground.
4. Adjust controls as recommended in section 2 for the reception of signals.

## 1-2. ANTENMA RECOMMENDATIONS

The antenna input circuit of the $5 W-54$ is arranged for operation from either a single-wire type, doublet type or other types of antennas having impedances of 70 ohms or more. The input impedance of the antenna circuit is approximately 300 ohms.

The most practical antenna for use in installations where the Receiver is to be used over a wide range of frequencies is the single-wire type. An antenna length of from 50 to 75 feet is recommended although the length is not critical and any length from 25 to 75 feet may be used. If the Receiver is to be operated on one frequency or a narrow band of frequencies, best results will be obtained by the use of a tuned antenna, such as the folded doublet or half-wave dipole type, designed for the operating frequency.

The methods of connecting the various types of antennas to the antenna terminal strip at the rear of the Receiver are as follows:

1. Single-wire type - Connect the antenna to terminal at the left of the strip and connect the metal link to the unused $A$ terminal.
2. Doublet-type - Connect the antenna feeders to the two terminals marked $A$; the metal link is not used.
3. Concentric transmission line type -- Connect the inner conductor to terminal a at the left of the strip and the outer conductor to the other $A$ terminal. Connect the metal link to the center a terminal.

2-1. GENERAL DESCRIPTION
The SW-54 is an A.C./D.C. superheterodyne Receiver having a complement of four tubes plus a rectifier with a continuous frequency range of from 540 kilocycles to 30 megacycles. The Receiver is designed to provide reception of amplitude modulated voice or music and code telegraphy signals throughout its entire frequency range.

A stage outline of the circuit employed in the Receiver is given below together with the tube type associated with each stage.

Converter	12BE6
C.W. Osc. - 1.F. Amplifier (455 KC.)	12BA6
Second Det. - A.V.C. - First Audio	12 Av6
Audio Output	50 C 5
Rectifier	3525

Two audio output circuits are provided in the SW-54:

1. The built-in loudspeaker is a permanent magnet type.
2. Phone tip jacks are mounted at the rear of the receiver to accommodate headphones. The headphones load impedance is not critical, permitting the use of various types of headphones including crystal types.

## 2-2. TUNING SYSTEM

The two-gang main tuning capacitor and four set of coils are used to cover the frequency range of the SW-54 in four tuning bands as shown on the following table. A bandspread tuning dial scale calibrated from 0 to 100 is provided to permit bandspread tuning of any portion of the frequency range of the receiver.

band	FREQUENCY	coverage
A	. 54 to	1.6 mc .
B	1.6 to	4.7 mc .
C	4.6 to	14.5 mc .
D	12 to	30 mc .

The main dial has four scales accurately calibrated directiy in megacycles. The respective scales are marked with neavy black scorings to clearly locate for the operator such short-wave features as the Amateur, Police, Foreign Broadcast and ship bands. These locating markers are identified by letters AM, P, F and S respectively.

2-3. operating instructions

After the $\operatorname{SW}-54$ has been installed as outlined in Section 1 , it is placed in operation for voice


## MODEL SW-54

or music reception by adjustment of the receiver controls. Figure No. 1 gives the step-by-step procedure to follow for the reception of signals. The same procedure is outlined betow with a brief description of the function of each control.

1. Set the Standby-Receive switch at Receive. This switch, in the standby position is used to quiet the Receiver for a period of time such as during a transmitting period, when it is desirable to resume reception immediately without waiting for the tubes to warm up.
2. Set the speaker-Phones switch at speaker. Should headphone operation be desired set the switch at Phones and connect headphones to the Phones jack located at the rear of the receiver.
3. Set the $A M-C W$ switch at $A M$.
4. Set the Band switch at the band of frequencies to be tuned. The four positions of the Band switch select the proper set of coils to cover the frequency range of the four tuning bands of the SW-54. Each position is marked with a band letter designation which corresponds to the markings appearing on the main dial.
5. Turn the volume control from the A.C. of position to the point providing the desired audio volume. In the A.C. off position the $S W-54$ is turned off: advancing the control knob in a clockwise direction turns on the Receiver and increases the audio output volume to a maximum at the extreme clockwise position.
6. Set the main tuning dial pointer at the desired frequency. The main tuning control knob and dial scale are used to tune the entire frequency range of the Receiver and tunes at any one time the band of frequencies selected by the Band switch.
7. To utilize the advantages of bandspread (fine) tuning and logging provided by the SW-54 proceed as follows:
(a) Set the main tuning dial pointer at the Low erequency limit of the band of fequencies to be tuned.
(D) Hold the main tuning control knob (or the outer edge of the gandspread dial) firmly enough to prevent the main.tuning dial pointer from moving and set the bandspread dial at zero by rotating the inner segment of the Bandspread dial.
(c) Bandspread tuning can now be accomplished by rotation of the entire Bandspread dial in a clockwise direction. Logging of stations is accomplished by noting the frequency setting of the main dial pointer and the numerical setting of the bandspread dial.

## 2-4. CODE TELEGRAPHY RECEPTIOM

The adjustment of the receiver controls for code reception is the same as that for voice and music except that the AM-CW switch must be set at CW.


NOTE , ALTERNATE IF TRANS. HAVE L-9 a L-/I AT BOTTON OF CAN, L-10 a L-I2 AT THE TOP.

Figure No. 2. Tube and Alignment Adjustment Locations

NATIONAL PAGE 22-5


Figure No. 3. R.f. Alignment Trimmer Locations


## ALIGNMENT AND TEST INSTRUCTIONS

Note: l. An isolation transformer should be used wherever possible:
If the transformer is not available, the set may be handled with safety
if the following precautions are observed:
a. Find out with an AC volt meter which side of power socket is at ground potential.
b. With receiver plug out of power socket, turn on power switch and with an ohmmeter find which tab of power cord is connected directly to the chassis through the volume control switch. Insert the cord into the power socket so that both grounds come together. When these precautions have been taken one may connect other grounds to receiver chassis without danger. If the power source is DC, the set will not operate unless proper polarity of the plug is observed.
2. A dummy antenna of 300 ohms is also needed.

Alignment should not be made without this resistor.
3. A blocking condenser . 01 to .1 mfd . should be used. This condenser should be used in series with the hot lead of the signal source at all times. Having observed polarity of plug as under Note \#l, the ground lead of the signal source may be connected directly to the chassis.

I Check tuning condenser and dial pointer setting--
a. Rotate tuning dial fully counter-clockwise against stop.
b. Look at tuning condenser. The rotor should be fully meshed. This is very, very important. This is your reference, and will avoid tracking and calibration troubles. When we say fully meshed, we do not mean $1 / 2$ of a degree or one degree, but that the plates be flush.
c. To set the condenser rotate dial fully counter-clockwise. Loosen the two set screws on dial shaft. Hold the collar, which has the two set screws, against the stop. Turn dial until tuning condenser hits its stop. Tighten set screws.
d. Set the pointer over the first calibration mark on band "B".

II Connect the power to the receiver.
III Connect headphones and output meter to output jack.
IV Connect the 300 ohm dummy to hot antenna terminal.
$V$ Put band change switch in the "A" position.
VI Set dial to 1000 kc .
VII Set signal to $455 \mathrm{kc} \pm 1 \mathrm{kc}$.
Caution: Do not depend on the accuracy of your signal generator, unless you know it is good.
VIII Connect the signal source to the top contact on the front switch wafer (flue le,ad). This is the mixer grid connection with the band change switch at "A".

IX Adjust L9, 10, 11 and 12 or C-37A C37B, C38A and C38B for maximum output. The maximum input required for 50 mw output should not be over 75 micro-volts. The minimum may run as low as 10 micro-volts. If the set is stable-10 micro-volts will be all right. A normal set will require 25 micro-volts. Use epproximately 100 micro-volts input when making $I F$ adjustments. The IF silignment is now complete.
$X$ Set the frequency at the high end of band "A" with condenser c-8 (osc.) Adjust det. trimmer C-2 for maximum gain. Check calibration at the low end of band. 600 kc should fall within $\pm 10 \mathrm{kc}$.

Note: A chart is being supplied which will show calibration and alignment points for each band. This chart will also show tolerances on calibration.
XI Set the band change switch at "B". Set the frequency at the high end of the band. Peak mixer trimmer while rocking the dial for maximum outout. Check the calihration at tho 1 now ond $n$ fotha hama

XII Repeat Operation XI for band "C" (Band switch at "C".)
XIII Set band switch at "D". Set the frequency at the high end of the band. Peak the mixer trimmer on signal for maximum output while rocking the dial. Check the frequency at the low end of band. On Band " $D^{\prime \prime}$, adjust loop in det. coil at 14 me for maximum gain.

Check chart below for calibration and alignment points.

Band	Set	Peak Det.   Trimmer at	$\begin{aligned} & \text { Check Cal. } \\ & \text { at Tol. } \end{aligned}$	Check   Tracking at
"A"	1.5 mc .	1.5 mc .	$.5 \mathrm{mc} \pm 10 \mathrm{kc}$.	.6 mc .
"B"	4.0 mc .	3.8 mc .	2.0 mc 20 kc .	1.8 mc .
${ }^{\text {m }}{ }^{\text {m }}$	14.0 mc .	13.5 mc .	$5.0 \mathrm{mc} \pm 60 \mathrm{kc}$.	5.5 mc .
"D"	28.0 mc .	29.0 mc .	$14.0 \mathrm{mc} \pm 150 \mathrm{kc}$.	13.5 mc .

The above tolerances apply to the whole band.
SELECTIVITY
Input: 100 micro-volts
Output: level 10 milliwatts

$$
\begin{array}{rrr}
6 \mathrm{db} & 3.4 & \mathrm{kc} . \\
20 \mathrm{db} & 14.0 & \mathrm{kc} . \\
40 \mathrm{db} & 28.2 \mathrm{kc} .
\end{array}
$$ 60 db 49.5 kc . AVC at 2 MC 300 ohm dummy-

Measurement taken here to avoid noise pick-up. 10 micro-volts $=0 \mathrm{db}=1 \mathrm{mw}$.

100	-	$n$	-
1000	-	$n$	-15
10000	-	$\prime \prime$	-
100000	-	+24	
1	-	+28.0	

Overall distortion at 1 MC
$30 \%$ mod. 1000 CPS Overall fidelity at 2 mc.

100 mw.	2	100	-11.0
200	2.2	200	-5.0
300	2.6	400	$\mathrm{cp} . \mathrm{s}$
500	2.8	0	Ob
.7	3.5	2000	-2.0
.8	4.2	3000	-6.0
1.0	4000	-12.5	
1.5 watts	$10+$	5000	-18.0

GAIN Dial set at 1000 kc .

Location	Frequency	Input	Output
Mixer   Grid	455 kc .	26 uv	50 mw
IF Grid	455 kc .	3000 uv	50 mm
irst Audio	400 cps	. 8.5 volts	50 mw

Audio response from first audio grid.
Input constant at .4 volts. 100
-12.0
$-5.5$
400
$+1.8$
$2000+1.0$
3000 - . 75
4000
5000
-3.5
-6.5
10000

HUM
As measured on 4 ohms with Ballantine volt meter IF grid grounded Audio gain off $\quad 1.8$ micro-watts Audio gain full $\quad 1.8$ micro-watts Line cord reversed 1.8 micro-watts

## OVERALL GAIN, S/N RATIO, AND IMAGE RATIO

$\begin{aligned} & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	$\begin{array}{r} \text { GAIN FOR } \\ 50 \mathrm{MW} \\ \hline \end{array}$	$\begin{gathered} 10 \mathrm{DB} \\ \text { SIG/NOISE } \\ 300 \text { OHMS } \\ \hline \end{gathered}$	$\begin{aligned} & 10 \text { DB } \\ & \text { SIG/NOISE } \\ & \text { NO. DUMMY } \end{aligned}$	$\begin{gathered} \text { IMAGE } \\ \hline \end{gathered}$	$\begin{aligned} & 50 \mathrm{MW} \\ & \text { DIRECT } \\ & \hline \end{aligned}$	OSC. VOLTS
BAND "A"						
. 6	21.5 uv	18 uv	18 uv	43	22	6.6
1.0	11	10	10	42	16.5	9.0
1.5	15	10	10	35	19	9.6
BAND "B"						
1.7	11	11	3.1	30	5.5	4.2
2.5	6	6	2.8	32	2.8	6.2
4.0	7.2	7.7	4.5	20	4.0	7.2
BAND "C"						
5.0	14.0	13	4.5	22	5.5	2.6
8.0	9.4	7.0	2.4	16.0	4.5	3.6
14.0	4.0	4.0	3.8	18.0	3.0	2.2
BAND "D"						
15	28.0	28.0	8.5	8.0	13.5	2.4
20	10	10	8.5	12.0	6.5	2.6
29	4.5	4.5	4.0	6.0	6.0	1.6
SOCKET VOLTAGES						

Meter - High impedance D.C. 100 ohms per volt A.C.
All measurements to ground
Bandswitch at "A"
No signal
Dial at 1000 kc .
Audio gain turned down.

Tube	Pin \#l	Pin \#2	Pin \#3	Pin \#4	Pin \#5	Pin \#6	Pin \#7	
12BE6	9 DC	. 6 AC	11 AC	22 AC	98 DC	98 DC		
12BA6	. 3DC	0 AC	22AC	35 AC	35 AC	105 DC	1.	1 DC
12AV6	.9DC	0	11 AC	0	.45DC	. 45 DC	72	DC
50 C 5	7.0DC	0	80AC	35 AC	0	100 DC	120	DC
35 Z	100 DC	115 AC	110AC	,	110 AC	125 DC	80	AC
		SISTANCE	MEASURE	TS TA	N TO CHASSIS (POWER		REMOVED).	


Tube	$\begin{aligned} & \quad \text { Ban } \\ & \text { Pin \#1 } \\ & \hline \end{aligned}$	witch at Pin\#2	A" ${ }^{\text {Pin \#3 }}$	Pin \#4	Pin \#5	Pin \#U'	Pin \#7	Pin \#3
12BE6	22K	. 2	11	22	20K	20K	3 meg	
12 BA 6	2.5 meg .	0	20	30	20K	20K	100	
12VA6	10 meg .	0	11	0	.5 meg	. 5 meg	260K	
5065	150	.5 meg	100	40	.5 meg	. .5 meg	20K	
$35 \mathrm{Z5}$	22K	120	120	Open   cir.	120	120	85	20K

$$
\begin{array}{lr}
\text { Primary-output trans. } & 100 \text { ohms } \\
\text { Secondary } & .2 \text { ohms }
\end{array}
$$

RESISTANCE OF RF COILS


Caution: Be sure that no part of the metal frame of the speaker touches the chassis.

Never substitute $10 \%$ condensers for the $5 \%$ as called for on the parts list. These $5 \%$ condensers are used as padders and are $C-12, C-13$ and $4 . . .470 \mathrm{mmfd}$ ... 1000 mmfd and 3000 mmfd .

Length of wires on tuning condenser should not be changed.
SOME TROUBLES AND FAULTY PARTS WHICH COULD BE THE CAUSE
Mushy audio and loud hum.
Defective condenser C-29C or C-29D.
Off signal, audio not mushy on signal.
Be sure the shield on the 12AV6 tube V-3 is properly seated.
Hum modulation in broadcast band.
Try replacing C-33.
Hum modulation in the higher frequency bands-check c-32.
C-39 may be defective.
Oscillation in the IF stage.
C-36 defective
C-35 defective
CW switch does not ground the feed back wire with the CW off. Plate and grid leads should be down near the chassis. Pin \#2 and center shield on the socket not grounded.
Shorted cathode resistor.
Poor sensitivity at low end of band "B" with almost normal gain at the high end of the band. C-1 may be open.

Poor sensitivity on all hands and trimmers C-2, 3 and 4 do not peak properly.
C-6 open.
High frequency oscillator does not work at some spot in one of the bands.
Poor contact on shorting rotor on band change switch.
PARTS LIST

Symbol No.	Dascriptioñ	$\begin{aligned} & \text { Nat. Co. } \\ & \text { Type } \end{aligned}$	c-7	Ceramic 10 mmf 500 vdcw Variable mica $2.2-40 ~ m m r ~$	
CAPACITORS			C-9	Variable mica 2.2-40 mmf	0832-5
			C-10	Variable mica $2,2 \cdots 40 \mathrm{mmf}$	0832-5
			C-11	variable mica 2. 2-40 mmf	D832-5
C-1	Paper . 02 mfd 400 vocw	0827-5	$\mathrm{c}-12$	Mica 470 mmf 500 vdew	J665-55
$\mathrm{C}-2$	Variable mica 2, 2-40 mmf	0832-5	C-13	Mica 1000 mmf 300 vdcw	1665-70
	500 vdcw		C-14	Mica 3000 mmf 500 vdcw	J666-30
c-3	Variable mica $2.2-40 \mathrm{mmf}$	0832-5	$C-15$	Ceramic 21 mmf 500 vocw	0825D-410
C-4	Variable mica 2. 2-40 mmf	0832-5	C-16	2 section variable	K577-2
C-5	variable mica 2.2-40 mm?	D832-5	C-16A	12 to 441.7 mmf	Part of
C-6	Paper . 02 mfd 200 vdcw	10827-51.			$c-16$





[^0]:    CR-242- ${ }^{*}$ Variations of $\pm 20_{c}^{c}$ are permistible. All readinge made with sufficient input signal to provide 0.5 watt speaker output. 0.5 watt speaker output at 400 cycles ia equivalent to a reading of 2.74 V . as measured by a high resistance $\mathbf{A C}$ voltoneter acroes the output transformer secondary.
    *-Detector Plate on AM
    ***O.1 watt speaker output at 400 cycles is equivalent to a reading of 1.25 volts as measured by a high resistance AC voltmeter across the voice coil of apeaker.
    CR-243- "Variations of $\pm 20 \%$ are permissibls. All readings made with sufficient input aignal to provide 0.5 watt speaker output. 0.5 watt speaker output at 400 cycles is guivaiont to a reading of 1,22 . as measured by a high resistance ac voltmeter acroas the output transformer secondary.
    **Detector Piate on AM,
    ***0.1 watt epeaker output at 400 cyclee it equivalent to a reading of .57 volte as measured by a high resistance AC voltmeter acrosa the voice coil of apeaker.

[^1]:    *Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least

[^2]:    *Connect generator output to $5^{"}$ diameter, 3 turn loop and couple to receiver loop. keep loops at least 12" apart.

[^3]:    NOTES.
    resistance values are in ohws unless otherwise noted
    "K'EQUALS 1,000 OHMS." WES" EQUALS $1,000,000$ OHMS.
    capacity values are in microfanaos unless otherwise noted.
    STAGE GAINS

