Model 05RA4-43-9876B is the same as Model 05RA4-43-9876A except for the Battery/AC/DC changeover system and the substitution of 1L4 tubes for 1U4's. The hand-operated switch is replaced by a type which is operated by plugging the power cord into a chassis socket. This socket is near the back edge of the chassis. There is a slot for only one prong of the power cord plug; the other prong hangs over the back apron. The detachable power cord and the socket for it on the chassis are replaced by a conventional power cord.

The Replacement Parts List for Model 05RA4-43-9876B is the same as the List for Model 05RA4-43-9876A except for the following changes:
REMOVE:

Fig. 2. Chassis-top view

SPECIFICATIONS

Power Supply
Frequency Range
Intermediate Frequency
Antenna
Tuning
Speaker
Power Output
Sensitivity
Selectivity
Signal to Noise Ratio
6.3 volts DC

540 KC to 1600 KC
257.5 KC

Whip type
Permeability
4', P.M. voice coil impedance 3.2 ohms
2.5 watts undistorted, 3.5 watts maximum

1 uv for 500 milliwatts output
40 KC broad at 1000 times, signal at 1000 KC
10 to 1

Tubes used are as follows:
6BA6 R.F. Amplifier
6BE6 Oscillator-Converter
6BA6 I.F. Amplifier
6AVb A.V.C., Detector, and Audio Amplifier 6AQ5 Power Output 6X4 Power Rectifier

UNPACK CAREFULLY, YOU WILL FIND:

Radio

1 Mounting bracket
I Bag mounting parts:
Hardware, generator condenser, and distributor resistor.

MOUNTING

The chassis contains the complete radio, power supply, and speaker. This unit may be mounted to, and directly below, the instrument panel at any convenient location. Two holes must be drilled in the stiffening lip of the instrument panel about $3 / 4$ inch back from the front of the panel and spaced approximately 6 inches apart. These holes must be large enough to pass the two No. 8 machine screws provided in the bag of mounting parts for fastening the radio in place. After the holes are drilled, insert the mounting screws through the holes in the mounting plate of the radio and in the instrument panel lip, and place lock washers and nuts on screws. These nuts must be securely fastened. It is also very important that the paint be removed from the instrument panel lip directly under the nut so that a good ground connection is made.

Drill a hole to pass a No. 10 machine screw in the fire wall or some other convenient place, and bolt one end of the metal strap with series of holes to this place. Insert the $1 / 4-20$ stud in tapped hole in the back of the radio, and fasten the mounting strap to the back of the radio by means of this stud, lock washer, and nut. This is the back support for the radio, and good ground connections must also be considered in this assembly. CONNECTIONS

Connect the fused power lead from the radio to the ammeter or circuit breaker of the vehicle. A 10 ampere fuse is provided in this lead; never replace this fuse with one of another value.

The antenna lead is plugged into the antenna jack.
If a second, or external, speaker is desired, a speaker socket is provided. Just connect the proper plug onto this second speaker, and insert plug in the external speaker socket.

After installation, tune in a weak station near 1600 KC , and adjust antenna trimmer, TCI , for maximum volume. If, for any reason, the set is out of alignment, these adjustments must be made by a competent service man and with the use of a good signal generator.
ALIGNMENT PROCEDURE

The following is for use only by competent service men having the proper equipment:
The alignment should be made with volume control fully on and the output voltage from the signal generator as low as possible to prevent A.V.C. action from interfering with the proper alignment. With the output meter connected across the voice coil of the speaker, the output meter reading for 50 milliwatts is 0.4 volts using a signal which is modulated at 400 c.p.s.

Adjust all trimmers for maximum output. After adjusting IFI and IF2, "rock" the tuner to make sure that the I.F. roils are not tuned to an image. Repeat the alignment procedure given below as a final check.

SIGNAL GENERATOR

Frequency	Dummy Antenna
252.5 KC	100 MMFD
1610 KC	100 MMFD
1610 KC	100 MMFD
1610 KC	100 MMFD
1400 KC	100 MMFD

Connection	Position	Adjust for
To Radio	Of Tuner	Max. Output
6BE6 Grid Pin No. 7	Slugs Out	IFI \& IF2
Ant. Jack	Slugs Out	TC3
Ant. Jack	Slugs Out	TC2
Ant. Jack	Slugs Out	TCI
Ant. Jack	Tune in Signal Gen.	LA Slug \& LR Slug

PARTS NUMBERS

CIRCUIT COMPONENTS

SYMBOL	PART No.
TC2-TC3	VCI276-2
	VCI276-1
C9, $\mathrm{ClI}, \mathrm{Cl}_{2}$	$\begin{aligned} & \text { C-15-15-25-3.5-.25 } \\ & \text { C5G } \end{aligned}$
C14, CI5	C52
Cl	CO472
C2	CO474
C8	CO156
C7, Clo	COI6
Cl_{3}	COO5616
C5	CI4205M
C4	C3005M
C6	C505M
C3	C105M
C16	C2002OM
LA	1276LA
LR	1276LR
LO	1276LO
CH2	LV.1276
CHI	L47
1	PTI276
T2	OT1276
IFI, IF2	IF1276
R12, R13	R680.5
R5	R122.5
R1, R3	R223.5
R4	R333.5
R9	R474.5
R2	R185.5
R6	R225.5
R8	R106.5
R10	R4511
R11	R102I
R7	R2731
	R1035
VRI	VR1276
SI	VRI276
E2	CR2
EI	CRI
SPKR	SPK1276
VIB	E659
Fuso	

DESCRIPTION	VALUE	RATING
Dual Trimmer Trimmer		
Electrolytic	15-15-25 MFD	350-350-25 volts
Generator, capacitor	. 5 MFD	
Capacitor, paper	. 5 MFD	200 volts
Capacitor, paper	. 047 MFD	200 volts
Capacitor, paper	. 047 MFD	400 volts
Capacitor, paper	. 015 MFD	600 volts
Capacitor, paper	. 01 MFD	600 volts
Capacitor, buffer	. 0056 MFD	1600 volts
Capacitor, mica	1420 MMFD	500 volts
Capacitor, mica	300 MMFD	500 volts
Capacitor, mica	50 MMFD	500 volts
Capacitor, mica	10 MMFD	500 volts
Capacitor, spark	200 MMFD	2000 volts
Antenna coil R.F. cail		
Oscillator coil		
Permeability tuner, complete A choke		
Spark choke	4.7 MH	
Vibrator transformer		
Output transformer		
I.F. transformer		
Resistor	68 ohms	$1 / 2$ watt
Resistor	, 1200 ohms	$1 / 2$ watt
Resistor	22 K ohms	$1 / 2$ watt
Resistor	33 K ohms	$1 / 2$ watt
Resistor	470 K ohms	$1 / 2$ watt
Resistor	1.8 megohm	$1 / 2$ watt
Resistor	2.2 megohm	$1 / 2$ watt
Resistor Resistor	10 megohm	$1 / 2$ watt
Resistor	1000 ohms	\cdots watt
Resistor	27 K ohms	l watt
Resistor, suppressor	10 K ohms	
Volume control	1 megohm	
Switch SP.S.T. on volume control		
Capristor	270K ohm/100 MMFD	
Diode filter unit	100-100 MFD/47K ohm	
Speaker		
Vibrator		
Fuse 10 ampere		
Pilot light No. 47		

PART NO.	DESCRIPTION
M-1801	Chassis and wrapper
M-1802	TSo cover
M-1803	Speaker cover
M-1804	Panel
M-1805	Dial plate --
H-1801	I.F. Mounting clip
H-1802	Speed nut
H-1803	Eyelat
H-1804	Spade lug No. 10
P-1801	Dial scale
A-1801	Dial cord assembly
M-1806	Dial pointer

PART NO.	DESCRIPTION
H-81651	Dial rivet
P-1802	Knob
GR14	Rubber grommet
H-81644-5	Vibrator sockot
H-81644-6	Miniature tube socket
H-81644-9	Pilat light socket
H-81644-6	Antenna jack
H-91644-7	Speaker socket
H-81644-8	Fuse holder
H-81641-8	Terminal board No. 8
H-81641-3	Terminal board No. 3
H-81641-27	Terminal board No. 27
H 12754	Vibrator clamp

SPECIFICATIONS

Power Supply

Frequency Range
Intermediate Frequency
Antenna
Tuning
Speaker
Power Output
Sensitivity
Selectivity

117 volts 60 cycle $A C, 117$ volts DC, 29 watts 535 KC to 1630 KC

455KC
Built-in Loop
Variable Capacity
$4^{\prime \prime}$, P.M. voice coil impedance 3.2 ohms
0.8 watt undistorted, 1.8 watts maximum
$400 \mathrm{uv} / \mathrm{m}$ average for 50 milliwatts output
55 KC broad at 1000 times, signal at 1000 KC

Tubes used are as follows:
12BE6 Oscillator-Converter
12AV6 or 12AT6 AVC, Detector, and Audio
50B5 Power Output 35W4 Power Rectifier - I2BA6 I.F. Amplifier

PAGE 22-8 GAMBLE-SKOGMO
MODELS O5RA33-43-8136A,
-5RA33-43-8137A

all de voltages in reference to common ground

* AC EXCEPT WHEN USED ON DC
voltage chant chassis botton view

ALIGNMENT PROCEDURE

The following procedure is for use only by competent servicemen having the proper equipment.
The alignment should be made with volume control fully on, and the output from the signat generator as low as possible, to prevent AVC action from interfering with proper alignment.
With the output meter connected across the voice coil of the speaker, the output meter. reading for 50 milliwatts is 0.4 valts, using a signal which is modulated 400 c.p.s.
Adjust all trimmers for maximum output. Repoat the alignment procedure given below as a final check.
CAUTION: This is an AC/DC receiver, and when aligning the set it is necessary to isolate the signal generator or the receiver from the line by use of a transformer, or to place a , 2 MFD condenser in each test lead of the signal generator.

Frequency	SIGNAL G Dummy Antenna	ATOR Connection to Radio	$\begin{aligned} & \text { POSITION } \\ & \text { OF } \\ & \text { VARIABLE } \end{aligned}$	ADJUST FOR MAXIMUM OUTPUT
455 KC	. I MFD	12BE6 Grid Stator VCA	Fully Open	TI \& T2
1625 KC		12BE6 Grid Stator VCA	Fully Open	VCB Oscillator
1400 KC	. I MFD	Loosely Coupled to Loop	Tune in Signal Generator	VCA Antenna

Connect low side of signal generator to common negative.
PARTS VALUES FOR T67G GAMBLE'S AC/DC CLIPPER

CIRCUIT SYMBOL	COMPONENTS PART NO.	DESCRIPTION	Value	RATING	
VCA-VCB	VCT67G	Condenser, 2 gang			
Cl	CO52	Condenser, paper	. 05 MFD	200 volts	
C2	C12	Condenser, paper	.t MFD	200 volts	
C3	C026	Condenser, paper	. 02 MFD	600 volts	
C4-C6-C7	C0056	Condenser, paper	. 005 MFD	600 volts	
C5	C2505M	Condenser, mica	250 MMFD	500 volts	
C8	C40-20-1.5	Condenser, electrolytic	20 MFD	150 volts	
C9	C40-20-1.5	Condenser, electrolytic	40 MFD	150 volts	
C10	C054	Condenser, paper	. 05 MFD	400 volts	
RI	R223.5	Resistor	22 K ohm	$1 / 2$ watt	
R2	R391.5	Resistor	390 ohm	$1 / 2$ watt	
R3	R105.5	Resistor	1 megohm	$1 / 2$ watt	
R4	R106.5	Resistor	10 megohm	1/2 watt	
R5-R9	8474.5	Resistor	470K ohm	$1 / 2$ watt	
R6	R121.5	Resistor	120 ohm	$1 / 2$ watt	
RT	R1031	Resistor	10K ohm	1 watt	
R8	R1021	Resistor	1000 ohm	1 watt	
El	CRI	Diode filter unit	$2 \times 100 \mathrm{MMF}$	7K ohm	
VR	VRT67G	Volume control	1 megohm		
LA	LT67A	Antenna loop			
LO	LOT67	Oscillator coil			
TI-T2	T111-31-A	I.F. transformer			
T3	E-81645-T	Output transformer			
SW	VRT67E	Switch S.P.S.T. on volume control			
SPK	SPKT67	4' P.M. speaker			

MECHANICAL PARTS
PART NO. DESCRIPTION

M-1801	Chassis
M-1802	Chassis cover
H-1601	Trimount $5 / 8 "$

H-1601 Trimount 5/8"
H-1802 Trimount $1 / 4^{\prime \prime}$

PART NO.	DESCRIPTION	PART NO. DESCRIPTION	
H-1805	Ground lug	P-180il	Cabinet, ivory
H-81644-6	Miniature tube socket	P-1704AW Pointer knob, walnut	
W-1802	Line cord and plug	P-1704A1	Pointer knob, ivory
SR-3P	Strain relief	P-1704W	Round knob, walnut
P-180IW	Cabinet, walnut	P-17041	Round knob, ivory

GENERAL DESCRIPTION

This radio is an 8 tube (including rectifier tube) AC receiver with automatic record changer, designed for reception of stations in the standard broadcast band between 540 and 1600 kilocycles and FM (Frequency Modulation) stations in the FM Band of $88-108$ megacycles. Controls are provided on the front panel for tuning, tone, volume and band or phono selection. Special features include two built-in antennas, a grounded grid R-F amplifier stage on the FM Band, automatic volume control, compensator circuits to prevent oscillator drift, beam power output stage, permánent magnet dynamic speaker and an electrostatic shield in the power transformer to reduce power line noise.

Tube and Dial Lamp Complement
 1 6BE6 AM Converter \& FM Osc.
 1 6BA6 1st I-F Amplifier
 1 6BA6 2nd I-F Amplifier
 1 6AL5 FM Discriminator
 1 6AV6 Audio Amplifier,
 AM 2nd Detector and AVC 1 6V6GT Audio Output
 1 6X5GT Rectifier
 1 12AT7 R-F Amplifier \& Mixer
 2 No. 47 Dial Lamps

ELECTRICAL

 SPECIFICATIONSPower Consumption -
117 volts AC-60 cycles 40 Watts 60 watts phono operating
Power Output -
1.5 watts maximum
.8 watts 10% distortion
Speaker-8" PM dynamic
Frequency Ranges -
Broadcast 540-1600 KC
Frequency modulation 88-108 MC
Intermediate Frequency -
AM 455 KC - FM 10.7 MC
Selectivity - AM - 45 KC broad at 1000 times signal, measured at 1000 KC
I.F. FM- 200 KC broad at 2 times down
I.F. FM -950 KC broad at 200 times down
AM Sensitivity-(For . 5 watt output with external antenna)
25 microvolts average
FM Sensitivity-(For . 5 watt output) 25 microvolts average
Record Changer -
See Manual No. 619-12

TUBE SOCKET VOLTAGES

Socket voltages are shown on the Schematic diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter. Conditions of measurement are:

Line voltage
.117 Volts AC
Signal Input None A Variation of $\pm 10 \%$ is usually permissible.

ALIGNMENT PROCEDURES AM StAges

The following is required for aligning:
An All Wave Signal Generator Which Will Provide on Accurately Calibrated Signal of the Test Frequencies as Listed.
Output Indicoting Meter, Non-Metallic Screwdriver, Dummy Antennas -. 1 mf , and 50 mmf .

Volume Control Maximum all Adjustments.
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR				GANG CONDENSER SETTING	ADJUST	$\begin{gathered} \text { ADSUST } \\ \text { FOR } \\ \hline \end{gathered}$
FREGUENCY SETTING	$\begin{aligned} & \text { CONNECT } \\ & \text { GENERATOR } \\ & \text { OUTPUT TO } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { THROUGH } \\ & \text { DUMMMY } \\ & \text { ANTENNA } \end{aligned}$	CONNECT GROUND TO			
455 KC	Control Grid 1st 6BAO Pin No. 1	. mf	Chassis Base	Rotor Fully Open	$\begin{aligned} & \text { 2nd I.F. Pri. (1) } \\ & \text { and Sec. (2) } \\ & \hline \end{aligned}$	Maximum Output
455 KC	Control Grid 6BE6 Pin No. 7 1st Det.	1 mf	Chassis Bose	Ratar Fully Open	1st 1.F. Pri. (3) and Sec, (4)	Maximum Output
455 XC	Control Grid 6BES Pin No. 7	. 1 mf	Chassis Base	Rotor futly Open	$\begin{aligned} & \text { 2nd I.F. Pri. (1) } \\ & \text { and Sec. (2) } \end{aligned}$	Maximum Output
1620 KC	Control Grid 6BEG Pin No. 7	. 1 mf	Chassis Base	Rotor Fully Open	Oscillator C. 41	Moximum Output
1400 KC	External Antenna Terminal	50 mmf	Chassis Base	Turn Rotor to Max. Output. Set Pointer to 1400 KC See Note A	Antenna C-2	Maximum Output

NOTE A-If the pointer is not at 1400 KC on the dial, reset pointer to the 1400 KC mark on the dial scale.
FM STAGES

The following is required for aligning:
An accurately colibrated signal generator providing unmodu-
lated signals at the test frequencies listed below.
Non-metallic scrawdriver.
Dummy Antennas and I.F Loading Resistor-2500 mmi, $\mathbf{3 0 0}$ ohms

Zero center scole $D C$ vacuum tube voltmeter having a range of approximately 3 voits
If a zero center scale meter is not available, a standard scale vacuum tube voltmeter may be used by reversing the meter connectiens for negative readings).
Allow chassis and signal generator to "Heat Up" for several minutes.

SIGNAL GENERATOR			THROUGH DUMMY ANTENNA	sAND SWITCH SETTING	GANECONDENSERSETTING	ADSust	$\begin{gathered} \text { ADJUST } \\ \text { FOR } \\ \hline \end{gathered}$
	FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO					
Discriminator	10.7 MC	6BAC 2nd I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Pri. (5) Note A	Maximum Deflection
	10.7 MC	6BA6 2nd I-F Pin 1 and Chassis	2500 mmf	FM	Rotor fully Open	Disc. Sec. (6) Note B	
I-F	10.7 MC Note C	6 6A6 lst l-F Pin 1 and Chassis	2500 mmf	FM	Rotor fully Open.	2nd 1-f Pri. (7) Sec. (8) Note D	Maximum Deflection
Discriminator	10.7 MC	6BA6 1st 1.F Pin 1 and Chassis	2500 mmf	FM	Rotor fully Open	$\begin{gathered} \hline \text { Diec. Pri. (5) } \\ \text { Note D } \end{gathered}$	Moximum Deflection
I.F	10.7 MC	Junctior C.32A \& B (Duat 100 mmf cond.) And chassis	2500 mmf	FM	$\begin{aligned} & \text { Rotor fully } \\ & \text { Open } \end{aligned}$	$\begin{aligned} & \text { 1st l.F Pri. (9) } \\ & \text { \& Sec. (10) } \\ & \text { 2nd I-F Pri. (7) } \\ & \text { \& Sec. (8) } \\ & \text { Disc. Pri. (5) } \\ & \text { In Order Shown } \\ & \text { Note D } \end{aligned}$	Maximum Deflection
	. 10.7 MC	Some as above	2500 mmf	FM	Rotor Fully Open	$\begin{aligned} & \text { Dise. Sec. (0) } \\ & \text { Note } 8 \end{aligned}$	
RECHECK I-F ADJUSIMENTS IN ORDER GIVEN							
Oscillator	108.5	Disconnect built-in dipole antenna and connect generator to dipole terminals with resistor in series.	300 ohms	FM	$\begin{aligned} & \text { Rotor Fully } \\ & \text { Open } \end{aligned}$	Osc. C-25	Moximum Deflection
Antenna	104.5	Same as above	300 ohms	FM	Tune rotor for max. AVC voltage	Ant. C.39	Maximum Deflection

RECHECK ANTENNA \& OSC. ADJUSTMENTS IN ORDER GIVEN

FM ALIGNMENT NOTES

NOTE A-The zero center scale DC vacuum tube voltmeter is to be connected between shassis ground and the AVC line. A signal of .1 volt must be fed into the receiver for this adjustment.
Note output voltage on the zero center DC vacuum tube voltmeter.
NOTE B-Disconnect zero center DC vacuum tube voltmeter from AVC and connect it of the oudio takeoff point at the

27 K ohm resistor ($\mathrm{R} \cdot 10$) and its iunction with the terminal strip. Adiust for zero voltage indication.
NOTE C-AM I.F coils must be aligned before attempting to align the FM I-F coils.

NOTE D-Connect zero center DC vacuum tube voltmeter as in Note A. Adjust input to give same output on the zero center $O C$ vacuum tube voltmeter as in Note A.

DRIVE CORD RETPLACEMENT

Replacement of the drive cord may be accomplished as shown in the illustration. For this purpose use the new drive cord assembly listed in the Replacement Parts List. Turn the gang condenser until the plates are fully meshed. Then install the string as shown, winding three turns clockwise around the tuning shaft with the turns progressing away from the chassis. After the cord is installed, rotate the tuning shaft several times in order to take up any slack in the cord.

GAMBLE-SKOGMO PAGE 22-13

REPLACEMENT PARTS LIST

MODERN OAK RADIO PHONO CONSOLE

DRIVE CORD REPLACEMENT

Use a now 10×38 drive cord assembly or a new length of cord 46 inches long for the installation, winding three turns clockwise around the drive shaft with the turns progressing away from the chassis. After completing the installation, rotate the drive shaft a few turns to take up the slack in the cord.

ELECTRICAL SPECIFICATIONS

Power Supply
105-125 voits AC 60 cycles, 80 watts, 100 watts with record changer
Frequency Ranges. Broadcast 540-1600 KC Frequency Modulation 88-108 MC
Intermediate Frequency. $A M-455 \mathrm{KC}$ FM-10.7 MC

Selectivity AM-43 KC broad at 1000 times signal, measured at 1000 KC I.F. FM-200 KC broad of 2 times down
I.F. FM-760 KC broad at 200 times down

AM Sensitivity \qquad (For . 5 watt output with external antenna)
10 microvolts average
FM Sensitivity
. (For . 5 watt output) 30 microvolts average
Power Output
. 8.5 watts maximum 6.0 watts 10% distortion

Loud Speaker \qquad 12" PM Dynamic
Voice Coil Impedance. . 3.2 ohms 400 cycles
Record Changer
See Manual No. 619-12
Tube and Dial Lamp Complement

6BA6 AM-FM R-F Amplifier
1 12AT7 FM \& AM Osc. \& Mixer
1 6BA6 FM-AM Ist I-F Amplifier
1 6BA6 FM 2nd I-F Amplifier
1 6AL5 FM Detector
1 6AVG Audio Amplifier, AM 2nd Detector and AVC
2 6K6-GT Audio Output
1 5Y3-GT Rectifier
1 6AV6 Phase Inverter
2 No. 47 Dial Lamps

ALIGNMENT PROCEDURE AM STAGES

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Oufput Indicating Meter, Non-Metallic Serewdriver, Dummy Antennas $-.1 \mathrm{mf}, 200 \mathrm{~mm}$.

Volume Control -Maximum all Adjustments
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy lead.
Allow Chassis and Signol Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR		CONNECT cenerator OUTPUT TO	THROUGH DUMMY ANTENNA	BAND SWitch SETTING	GANG CONDENSER SETTING	ADJUSt	ADJUST FOR
	FREQUENCY STTINO						
I-F	455 kc	Pin 7 and Chassis	1 mf	Broadcost	Rotor Fully Open	2nd I-F Pri. \& Sec. (1) \& (2) Ist I.F Pri. \& Sec. (3) \& (4)	
Broodeast	1620 kc	External ont. term.	200 mmf	Broadcast	Rotor Fully Open	Broadcast Oseillator C 33	Maximum
	1400 kc	External ant. term.	200 mmf	Broadcast	Turn Rotor to Max. Output Set pointer to	Broadcast Interstage C-29	Output
	1400 kc	External ant. term. \|	200 mmf	Broadeast	1400 kc See Note A	Loop Antenno C-48	

Note A-lit the pointer is not at 1400 KC on dial, reset pointer at the 1400 KC mark on the dial scale.

PM STAGES

The following equipment is required for aligning:
An accurately calibrated signol generator providing unmodulated
signals at the test frequencies listed below.
Non-matallic screwdriver.
Dummy Antennas ond 1-F Loading Resistor-. $01 \mathrm{mf}, 300$ ohms and 1000 ohms.

Zero center scale DC vacuum tube voltmeter having a range of approximately 3 veits.
(If a zero eenter scale meter is not availoble, a stondard scale vacuum tube voitmeter may be used by reversing the meter connections for negative readings.)
Allow chassis and signal generator to warm up for several minutes.

	SICNAL	GENERATOR					
	$\begin{aligned} & \text { FREQUENCY } \\ & \text { SETTING } \end{aligned}$	CONNECT EINERATOR output 10	THROUGH DUMMY ANTENNA	EAND SWITCH SETTINE	GANG CONDENSER SETTING	ADJust	$\begin{aligned} & \text { ADJUST } \\ & \text { fOR } \end{aligned}$
Discriminator	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note B } \end{aligned}$	6BA6 2nd I.F Pin 1 and Chassis	. 01 mf	FM	Rotor fully Open	Disc. Pri. (5) Note A	Moximum Deflertion
	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note } \mathrm{B} \end{aligned}$	obAo 2nd I-F Piñ 1 and Chossis	. 01 mf	FM	Rotor fully Open	Disc. Sec. (6) Note C	Zero Center
I-F	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note } \mathrm{F} \end{aligned}$	6BA6 lst I-F Pin 1 and Chassis	. 01 mf	FM	Retor Fully Open	2nd I-F Pri. Note A and D (7) 2nd I-F Sec. Note A and E (8)	Maximum Deflaction
Discriminator	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note } \mathrm{F} \end{aligned}$	68A6 lat l-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	Dise. Pri. (5) Note A	Maximum Deflection
	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note F } \end{aligned}$	6BA6 1st I-p Pin 1 and Chassis	. 01 mf	FM	Rotor Fully, Open.	Disc. Sec. (6) Note C	Zero Center
	10.7 MC Note F	FM-RF Gang Condenser terminal	. 01 mf	FM	Rotor Fully Open	lat I-F Pri. (9) Ist I-F Sec. (10) Notes A, D \& E	Maximum Deflection
Recheck l-F Adjustments in order given							
R-F \& Oxc.	108.4 Note H	Distonnect dipole and connect generator to dipole tarminals with resistor in series	300 ohms	FM	Rotor folly Open	Oscillotar C. 35 Note G	Moximum Deflection
	104.5	Disconnect dipole and connect generator to dipole terminals with resistor in suries	300 ohms	FM	Tune Rotor for Max. AVC voltoge	FM interstoge	Moximum Deflection
	104.5	Disconnect dipole and connect generotor to dipole terminals with resistor in zeries	300 ohms	FM	Tune Rotor for Max. AVC voltoge	Ant. C-47	Maximum Deflection

Recheck R-F and Ore. Adjustments in order given

NOTE A-Test Equipment connections are os given in the table. The zero center scale DC vacuum tube voltmeter is to be connected between chassis ground and the AVC line of the junction of resistor R-22 and condenser C-18 for all adjustments except the discriminator secondary adjustment, for which See Note C.
NOTE B-A signal of . 1 volt must be fed into the raceiver for this odjusiment.
NOTE C-Disconnect zero center DC vacuum tube voltmeter from AVC and connect to junction of R-18 and C.62. Adjust for zaro voltog* indication.

NOTE D-Before adjusting Pri. core connect 1000 ohm load resistor ocross the 2nd J.F. secondary terminals. Input may hove to be increased to .1 volt if receiver is bodly mis-aligned.
NOTE E-Distonnect 1000 ohm load resistar from secondary terminals and connect across the 2nd I.F. primary terminals. Input may have to be increased to .1 volt if receiver is bediy mis-aligned.
NOTE f-Input can be reduced to 10,000 microvolts.
NOTE G-Oscillator frequency above signal frequency.
NOTE H-Remove the 1000 ohm load resistor before atrempting to check the R-F and oscillator adjustments.

REPLACEMENT PARTS LIST

Ref. No.	DESCRIPTION Part Mo.	Ref. No.	DESCRIPTION Part No.
	CAPACITORS	C-52	Capacitor, Tubular, 01 mf 600 V. 566103
C-1	Gang Condenser and Pulloy 14A20	C-53	Copacitor, Ceramic, $220 \mathrm{mmf} \pm \mathbf{2 0 \%}47 X 468$
C-2	Ong Condenser and Pulloy 14 A203	$\left.\begin{array}{r} \text { C-54 } \\ \text { C } 59 \end{array}\right\}$	Capacitor, Tubular, 02 mf 600 V 666203
C. C		C-55	
C.9		C-60	Capacitor, Tubular, . 001 mf 600 V.........F66102
$\left.\begin{array}{l}\text { c. }-13 \\ \text { c. } 16\end{array}\right\}$	Capacitor, Silvered Mica, 5900 mmf 47×507	C.56	Capacitor, Tubular, . 02 mf 200 V.......... . . 886803
C-17		C-57	Capacitor, Tubular, . 006 mf 600 V......... F66602
C. 19	-	C. 58	Capacitor, Tubular, . 005 mf 200 V........ . 666592
C. 27 C. 42		C-61	$88 \mathrm{mmf} \pm 20 \%$. 47X471
C. 4	eramic,	C-62	Capacitor, Molded Mica, $2700 \mathrm{mmf} \pm 10 \%$. . 47×492
C. 5	Capacitor, Ceramic, $47 \mathrm{mmf} \pm \mathbf{5 \%}$. 47×499	C. 63	Capacitor, Tubular, . 01 mf 120 V46X328
C-8	Capacitor, Ceramic $47 \mathrm{mmf} \pm 10 \%$. 47×498		
$\left.\begin{array}{l} c .10 \\ c .65 \end{array}\right\}$	Part of T .1		RESISTORS
c-11			
C-28 $\}$	Capocitor, Ceramic, $100 \mathrm{mmf} \pm 10 \%47 \times 550$	$\left.\begin{array}{l}\text { R-10 } \\ \mathbf{R}-22\end{array}\right\}$	Resistor, Carbon 1 Megohm . 5 W. 885105
C. 15	Part of 1-3		
C-21	Part of T-5	$\left.\begin{array}{l}R-2 \\ R-12\end{array}\right\}$	Resistor, Carbon 68 Ohms . 5 W. 883680
C.22		R-15 J	
C.24			
$\left.\begin{array}{l}\text { C-31 } \\ C-51\end{array}\right\}$	Capacitar, Ceramic, $68 \mathrm{mmf} \pm 10 \%47 \times 501$	R-11	Resistor, Carbon 56K Ohms . 5 W. 884563
		R-4	
C-23	Capacitor, Dry Electrolytic, 5 mf 100 V45×361	R-6	Resistor, Carbon 1000 Ohms . 5 W. 884102
C-25		R-8 R-13	
C.26	Copacitor, Ceramic, $500 \mathrm{mmf} \pm \mathbf{2 0 \%} \ldots47 \times 496$		
C.45		R. 5	Resistor, Carbon 100K Ohms .5W.B85104
C-29)		R.7	Resistor, Carbon 10K Ohms . 5 W. 884103
C.32	Part of C.1	R.9	
C-33		R.9	Resisior, Carbon 2.2 Megohm . 3 W. $B 858225$
C		R. 14	Rosisfar, Carbon 47K Ohms . 5 W. ${ }^{\text {P85473 }}$
C.30	Cepaeifor, Ceramic, $15 \mathrm{mmf} \pm 10 \%47 \times 532$	R-16	Resistor, Carbon 39K Ohms 1.0 W...... C84393
$\left.\begin{array}{l} C-34 \\ C .46 \end{array}\right\}$	Copacitor, Coramic $20 \mathrm{mmf} \pm 10 \% \ldots47 \times 516$	R. 17	Resistor, Carbon 2200 Ohms . 5 W. 885222
C-35	Capacitor, Trimmer, 1-8 mmf 26489	R-18	Resistor, Carhon 27K Ohms . 5 W. 884273
C.36)	Capocior, Trimmer, 1-8 mmf 26A489	R-19	Resistor, Wire Wound 3.6 Ohms . 5 W. 43×233
C-64 $\}$	Capacitor, Ceromic, $5 \mathrm{mmf} \pm 10 \%$. 47×549	R.20)	
C-37)		R-21 $\}$	Resistor, Carbon 6800 Ohms . 5 W. ${ }^{\text {B83682 }}$
C.65 $\}$	Capacitor, Tubular, 04 mf 600 VF66403	R-23	Resistor, Wire Wound 1400 Ohms $5.0 \mathrm{~W} .1 . . .43 \times 242$
$\left.\begin{array}{l}\text { C.38 } \\ \text { C. } 39\end{array}\right\}$	Part of T-2	R-25	Volume Control \& Switch . 5 meg. 36×379
		R-26	Resistor, Carbon 15K Ohms . 5 W. 885153
C. 40	Capacitor, Tubular, . 05 mf 200 V.. 866503	n-27	
$\left.\begin{array}{c} c-41 \\ c-43 \end{array}\right\}$	Part of T-4	$\left.\begin{array}{l} \text { R-28 } \\ R-33 \end{array}\right\}$	Resistor, Carbon 10 Megohm . $5 \mathrm{~W}885106$
$\left.\begin{array}{l} C-44 A \\ C-44 B \end{array}\right\}$	Copecitor, Dual Mica, 50-50 mmf. 47×112	$\left.\begin{array}{l} R-29 \\ R-34 \end{array}\right\}$	Resistor, Carbon 270K Ohms . 5 W. 8858274
C-48	Pant of T. 7	R-30	Resistor, Carbon 560 Ohms 2.0 W. D83561
$\left.\begin{array}{l}\text { c.50A } \\ C .60 t \\ C .50 C\end{array}\right\}$	$\begin{aligned} & \text { Capacitor, } 3 \text { section } \\ & \text { Eloctrolytic }\end{aligned} \quad\left\{\begin{array}{llll}40 & \mathrm{mf} & 450 & \mathrm{~V}: \\ 40 & \mathrm{mf} & 450 & \mathrm{~V} . \\ 40 & \mathrm{mf} & 25 & \mathrm{~V} .\end{array}\right\} 45 \times 374$	$\left.\begin{array}{l}\text { R-31 } \\ \text { R-35 } \\ \mathrm{R}-38\end{array}\right\}$	Resistor, Carbon, 470 K Ohms 5 W 885474

REPLACEMENT PARTS LIST (continued)

Rof. No.	DESCRIPTION	Part No.
R-32	Resistor, Carbon 8200 Ohms .5 W .	. . 884822
R.36	Resistor, Carbon 6800 Ohms . 5 W .	. . 884682
R-37	Resistor, Carbon 5600 Ohms . 5 W .	. . 884562
	COILS AND TRANSFORME	
L-2	Coil, Interstage (AM)	9A2025
L-3	Coil, Interstage (FM)	.9A2024
L. 4	Coil, Oscillator (AM)	.9A2022
L-5	Choke, Insulated	35A5
L-6	Choke, Filament	.9A1881
1.7	Coil, Oscillator (FM)	.9A2023
L-8	Choke (FM Mixer Plate)	.35A7
1-9	Coil, Antenna (FM)	. 9A2027
T-1	lst I.f. Coil Assembly (FM)	. 9A2043
T-2	1st I.F. Coil Assembly (AM) ..	. 9A2029
T.3	2nd I.F. Coil Assembly (FM)	9A2030
T-4	2nd I.F. Coil Assembly (AM)	. 9A2042
T-5	Discriminator Coil Assembly	.9A2161
T-6	Dipole Antenna Assembly	.9A2004
5.7	"B" Ronge Loop Antenna Assembly	. 9 91972
т-8	Power Transformer	.53x286
T. 9	Output Transformer51×142
	DIAL AND TUNING PARTS	
Eseutchoon		.4×1073
Rubber Or	mets	6x67
	Mtg. Bracket $\{$ Mrg. Gang Condenser	25×1630
Drive Cord	Assembly	. . 10×38
Pointer		.15x251
"C" Wash	(Drive Sheft)	.19×192
Drive Shatt		. 26×509
Drive Cord	Temsion Spring	.28×113

The Model 15RA2-43-9105A is a television, AM radio and phonograph combination The television chassis is in no way connected to the radio or phonograph, as the phono TV switch and audio input plug on the rear of the television chassis is not utilized.

The phonograph obtains its $A C$ power through a connection to the radio chassis and also uses the audio section for amplification.

This manual covers only the service and repair parts information for the radio chassis. For service and repair parts information for the television receiver refer to television service manual

MAINTENANCE

SERVICE DATA

ELECTRICAL SPECIFICATIONS

Power Supply

Frequency Range
Intermediate Freq.
Selectivity
Sensitivity
115 volts; 60 -cycles $A C, 60$ watts.
(Including phonograph)
540 to 1600 kc .
455 kc .
At 1000 kc .50 kc . at $1000 \times$ signal. 20 microvolts average for .05 watts
output.

Chassis View

DIAL LIGHT- If the dial lamp burns out, the set should not be operated until a new lamp has been installed. Failure to heed this caution may result in a burned-out rectifier tube. To replace the lamp, pull out the back cover inside the changer compartment. Use only a type T-47 lamp for replacement.

Power Output.......... 0.75 watts undistorted, 1.25 watts maximum.
Loud Speaker12" P.M., v.c. impedance 3.2 ohms.
Tube Complement 12BE6, converter.
12BA6, I.F. amplifier.
12AV6, detector, AVC, audio amplifier.
50 C 5 , output amplifier.
$35 \mathrm{Z5}$ or 35 W 4 , rectifier.
Pilot lite, 6-8 volts, T-47.

Dial Cord Stringing

PRODIJCTMON CEANGE

Due to procurement difficulties the 35 W 4 rectifier tube was replaced by a $35 Z 5$. The only change in parts list is a A-15B-10440 octal tube socket. Refer to the drawing at the left for the $35 Z 5$ wiring diagram.

ALIGNMENT PROCEDURE AND RECEIVER STAGE SENSITIVITIES
 Alignment must be done in the cabinet.

The signal source must be an accurately calibrated signal generator capable of supplying both RF and 455 kc signals modulated 30% with a 400 -cycle audio signal. Variations of plus or minus $\mathbf{2 5} \%$ are usually permissable.

The table below lists the sensitivity at the input of each stage. All measurements are based on an output of 50 milliwatts. This may be measured by disconnecting the speaker voice coil and substituting a 3.2 -ohm, 5-watt resistor across the secondary winding of the out-
put transformer. A reading of 0.4 volts $A C$ across this resistor will be equivalent to a 50 -milliwatt output with the speaker connected.

- Volume control at maximum for all adjustments.
- Align for maximum output. Reduce input as needed to keep output near 0.4 volts.
- Loop antenna should be connected to receiver and in its proper position when making adjustments.

SIGNAL GENERATOR				$\begin{aligned} & \text { TUNER } \\ & \text { SETTING } \end{aligned}$	ADJUST FOR MAXIMUM OUTPUT	$\begin{aligned} & \text { INPUI FOR } \\ & 50 \text { MILLIWAIT } \\ & \text { OUTPUT } \end{aligned}$
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection			
455 kc.	. 1 mf.	12BE6, Pin 7		(Capacitor fully open) (plates out of mesh)	Top and bottom Cores in output and input I.F. cans	60 microvolts
1620 kc.	. 1 mf.	12BE6, Pin 7		[Capacitor fully open] (plates out of mesh)	Oscillator trimmer C1-D on gang	67 microvolts
535 kc.	. 1 mf .	12BE6, Pin 7		Capacitor fully closed	Check for adequate range	61 microvolts
1400 kc.		Lay Generator lead near back of cabinet		Set dial pointer at 1400 kc .	Antenna trimmer C1-C on gang	200 to 400 microvolts
400 cycles	1 mf .	12AV6, Pin 1		——n	———	. 03 volts

SCHEMATIC DIAGRAM WITH VOLTAGES

Please specify PART number and chassis model number when ordering replacements.

> REPIACEMENT PARTS LIST

Rof. No.	No.	Description	Ref. No.	Part No.	Description
CAPACITORS				3129.H	Motor assembly
$\begin{aligned} & \text { C1A-B } \\ & \text { C1C. } \\ & \text { C2.7 } \end{aligned}$	B-8A-18997	Gang tuning condenser Trimmers on gang $.05 \mathrm{mfd} \times 200$ volts			Electro voice 33-4 crystal cartridge Electro voice 0-2, reedle
C3-4-8 24	A-201-15005	Filpec $\times 200$ volts		Miscellaneous	
C5	C.8D-11304	. $02 \mathrm{mfd} \times 200$ volts		B-2C-19053	
C6	C-8G-14459	220 mmf, ceramic		$\begin{aligned} & \text { B-2C-19053 } \\ & \text { A-3A-19003 } \end{aligned}$	Background plate Tuning shaft
C8-9	C-8D-10935	. $005 \mathrm{mfd} \times 600$ volts		B.47A-19060	Pilot light assembly
C10-A-B-C-D	A-BC-19085	Electrolytic condenser		A-46A-10793	Pilot light, T-47
Cll	C-8J-16081	. $047 \mathrm{mfd} \times 400$ volts		A-2H-10974	Tube shieid
C12	C-8D-10761	. $01 \mathrm{mfd} \times 400$ volts		A-15C-16007	7-prong socket
C13	C-8D-11111	. $18 \mathrm{mfd} \times 400$ volts		A-23A-10344	Line cord lock
C14	C-8D-11251	. $09 \mathrm{mfd} \times 400$ volts		B-14M-19479-5	A.C. line cord and plug
RESISTORS				A-19B-12170 A-19B-12468	Phono sockeł Phono motor sacket
R1	C-9B1-82	47K ohms, $1 / 2$ watt, 10%		B-2D-15432-1	Loop mounting bracket
R2-8	C.981-52	150 ohms $1 / 2$ watt, 10%			
R3	C-981-33	2.2 megohms, 1/2 watt, 20%		CABINET PARTS	
R5	C.981-36	6.8 megohms $1 / 2$ watt, 20%		R-24D-19482 Cabinet	
R6-15	C-9B1-90	220K ohms, $1 / 2$ watt, 10%		$\begin{aligned} & \text { C-2M-18944 } \\ & \text { D-2M-18943 } \end{aligned}$	EscutcheonEseutcheon mask
R7	C.981-79	470K ohms, $1 / 2$ watt, 20%			
R9	C-982-62	1000 ohms, 1 watt, 10\%		$\begin{aligned} & \text { C-30M-18966 } \\ & \text { B-2M-18768 } \end{aligned}$	Picture glass Channel indicator plate
R10	C.982-52	150 ohms, 1 watt. 10\%			
R11	C-9B1-43	27 ohms, 1/2 watt, 10\%		$\begin{aligned} & \text { B-2M-1 } 7068 \\ & \text { B-18A-19130 } \end{aligned}$	Contrast off volume plate
R12	A-11A-19004	Tone control and radio phono switch			12" PM speaker Pointer
R13	A-10A-19005	Volume control and switch		B-5B-18781-76	Tuning knob
R14	C-9B1-80	33K ohms, 1/2 watt, 10\%		B-5B-17761-76	Off-on volume knob
	TRANSFORMERS AND COILS			B-5B-17762-76 A-25M-18172	Contrast knob
$\begin{aligned} & T 1 \\ & T 2 \\ & T 3 \\ & T 4 \\ & T 5 \end{aligned}$	$\begin{aligned} & \text { C-13E-19087- } \\ & \text { B-13D-19064 } \\ & \text { B-13B-17731 } \\ & \text { B-13B-17731 } \\ & \text { B-12C-19009 } \end{aligned}$	Loop antenna assembly		A-25M-18177	Red rubber knob
				A-25M-18178	Blue rubber knob
		Input IF transformer		C-23J-19178	Cabinet back
		Output IF transformer		B-14M-17758	Line cord and plugs
		Output transformer		N-43E-15569	Wing nut, 6.32 T.V. inside antenna
	DIA	PARTS		$\begin{aligned} & \text { B-5B-1 } 18382-36 \\ & \text { A-3M-19398 } \end{aligned}$	Antenna knob Centering adjusting rod
	$\begin{aligned} & \text { A-2D-17627 } \\ & \text { B-2M-19006 } \end{aligned}$	Pointer bar bracket Pointer bar		B-2C-19362	Centering adjusting rod Cover plate
	A-3H-10299	Pulley		8-30A-19481	Radio dial scale Radio escutcheon
	B-2G. 19433	Dial pointer		B-201-18874-1	Radio escutcheon Record changer
	8-53A-18547	Dial string		B-5B-18876-76	Record changer
	A-49A. 11324	Tension spring		B-5B-18877-76	Radio knob
	RECOR	CHANGER		B-23M-19163 A-55L-16671	Bottom cover Plug receptacle
	B-201-18874	Record changer (Viv1 Modet -950)		$\begin{aligned} & \text { B-14M-11479 } \\ & \text { A-23A-10344 } \end{aligned}$	Radio line cord Line cord loek

PAGE 22-22 GAMBLE-SKOGMO

MODELS 43-37I-1, 43-37I-2, $43-8175,43-8176$

Model 43-37I-I Yahoyany Cabinet (Illustrated)
Model 43-37I-2 Ivory Cabinet (Not Illustrated)
CAUTION: One side of the power line is connected to the chassis. Avoid any ground connection to the radio unless an isolating transformer is used in the dower line.

SPECIFICATIONS

5 Tube Superheterodyne, including rectifier tube Speaker--4 inch P.M. Dynamic, voice coil impedance 3.2 intenna---Self contained loop antenna, al so provision

 Frequency on $A C-\cdots-$

Power Consumption------------------------------30 30 watts
Power Output-----0.8 watts undistorted, 1.4 w . maximum

 Antenna Sensitivitv---140.mv. averaue for 0.5 w output Selectivity 70 KC at 1000° times siqnal at 1000 KC

ALIGNMENT PROCEDURE

Allow unit to heat for a few minutes before starting alignment.
Volume control set to maximum.
Output meter across speaker.
Align for maximum output.
Keep input as low as readable meter reading of output will permit.

Note: If signal generator is AC operated, use an isolating transformer between the power supply and the radio receiver power input. The use of an isolating capacitor is not recommended as AC through the capacitor will introduce hum and/or create the possibility of a burned out signal generator attenuator.

FREQUENCY	SIGNAL COUPLING CAPACITOR	ENERATOR CONNECTION TO RADIO	GROUND CONNECTION	TUNING CONDENSER SETTING	ADJUST TRIMMERS FOR MAXIMUM OUTPUT (in order shown)
455 KC	0.1 mf	Converter grid	Chassis	Wide open	2nd $1 F$ transformer trimmers 1st IF transformer trimmers
1725 KC	200 mmf	Receiver antenna post	Chassis	Wide open	Oscillator trimmer C4
1500 KC	200 mmf	Receiver antenna post	Chassis	Tune for maximum output	Antenna trimmer C2

GAMBLE-SKOGMO PAGE 22.2

```
MODELS 43-37I-1, 43-
37I-2, 43-8175, 43-8176
```


DRIVE CORD

TUBE AND
TRIMMER
LOCATION

$\begin{aligned} & \text { VALUE } \\ & .02 \mathrm{mf} . \end{aligned}$
220 mmf.
. 05 m
. 05 mf
220 mmf.
$\bigcirc 01 \mathrm{mf}$.
.01 mf .
. 02
3 mmF m.
. 05 mf
22,030 ohm
2.2 megohm
1.0 meyohm
4.7 meyohm
2700 oh
18 oham

Fig. 1 Front View

OPERATION

To turn the receiver on, rotate the volume control and switch knob (left hand knob) to the right about half its range. After allowing about 30 seconds for the tubes to warm up, the desired station may be tuned by rotating the tuning control (right hand knob) to the desired frequency. The dial scale is calibrated in kilocycles minus the final two zeros. After the station has been properly tuned, the volume may be adjusted by means of the volume control knob. To increase the volume, turn the control to the right; to decrease the volume, turn it to the left. Turning this control to the left as far as it will go, turns the radio off.

ELECTRICAL SPECIFICATIONS
The tube compliment of this receiver is as follows:
Power Supply
6.3 voits DC

Current
4.8 amp. average

Frequency Range 540 to 1600 KC
I. F. Frequency. 455 KC

Speaker . ${ }^{\prime \prime}$ P. M.
Power Output 1.2 watts, undistorted 2.5 watts, maximum

Sensitivity. 10 microvolts average for 1 watt output
Selectivity. . . 20 KC broad at 1000 times signal, at 1000 KC

SERVICE NOTES

Voltages taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a volt meter having a resistance of $20,000 \mathrm{ohms}$ per volt. These voltages are clearly ṣhown on the voltage chart, (Fig. 5).

All voltages should be measured with an input voltage of 6.3 volts $D C$.

INSTRUCTIONS FOR REMOVING CHASSIS FROM THE CASE

The bottom cover (the one with the speaker louvers) can be removed to permit servicing of major components, such as tubes and vibrator, by removing the eight (8) screws holding it to the top cover. There are three (3) screws on each side, one (1) in the rear, and one (1) in the front.

FINAL ADJUSTMENTS

The input circuit has been especially designed to be used with a low capacity antenna, of the fish pole or whip type.

To adjust the antenna trimmer condenser, carefully tune the receiver to a weak station at approximately 600 kilo cycles (K.C.). Remove the snap button covering the anteona trimmer (See Figure 2) and adjust the trimmer for maximum volume. A small screw driver will be needed for this purpose.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unle it becomes necessary to replace a coil or transformer, the adjustments have been tampered with in the fiel
 Always make certain that other circuit components, su as tubes, condensers, resistors, etc., are normal before pr ceeding with realignment.

CAUTION: Before attempting to remove the top covi to service condensers, resistors, etc., the screw connecti the spark plate to the " A " terminal (inside case) must removed. This is a round head screw, and is located on t rear of the case, close to the mounting stud bolt. It recessed in a $1 / 2$ inch hole in the case itself, thereby p mitting contact with the spark plate.

After removing the spark plate screw, remove the to knobs by pulling forward and remove the-eight (4 screvs securing the cover to the chassis. Lift the chassis the rear, at the same time moving it away from the fro
Dial Stringing 43-5006B \& 43-5006C

Dial Pointer Stringing
43-5006B \& 43-5006C of the case so that the volume and tuning shafts will cle the holes in the cover.

NOTE: When reinstalling the chassis into the case, sure the screw connecting the spark plate to the "A" t minal (inside case) is tightened very securely, otherw. the receiver will not operate properly.

Figure 3 Schematic Drawing 43-5006B

ALIGNMENT PROCEDURE

Volume conirot-Maximum, all adjusiments.
No signal applied to ontenno.
Power Inpur- 6.3 volts.
Connect dummy antenna in series with output lead of signal generator.
Connect outpot imeter across voice coil.
Connmet ground tead of signal generator to chassis.
Cepeot allgnment procedure as o finel check.

The following equipment is necessary for proper alignment:
Signal penematar that will provide the test frequencies as listed modulated 400 eycies, 30%.

Non-metallic serewdriver.
Oufput mater.
Dummy intennas- 1 MFD., 75 MMFD.
for alignment points refer to Figures 5 and 6.

$\begin{gathered} \text { Diol } \\ \text { sefting } \\ \hline \end{gathered}$	Generotor Frasuancy	Dummy Ant.	Generetor Connections	Trimotur Reference	Trimmer Adjuatment	Frimater Function
Fully Open	455 KC	1 MFD.	OSA7 Grid	12	Maximum	Output 1.F.
Fuily Open	455 KC	1 MFD.	6SA7 Grid	11	Maximum	input 1.F.
Fully Open	455 KC	75 MMFD.	Ant. Jead	13	Minimum	Wove trap
Fully Open	1600 KC	75 MMFD.	Ans. lead	C1B	Maximum	Oscillator
Tune in signol from generator	1400 KC	75 MMFD.	Ant. load	C3	Maximum	Antenna

NOTE: The antenna trimmer condenser, C3, (see Fig. 2) should be adjusted after the radio is installed in the car. Tune the receiver to a weok station at about 1100 KC and adjust this trimmer for maximum volume.

Figure 6 Tube \& Trimmer Locations 43-5006B \& 43-5006C
CONOENSERS
model 50063
5006C

Descridtion
Variable condenser

- 01 MFD 400 volt condenser

Trimmer condenser
. 05 MFO 400 volt condenser
100 MMFD ceramic condenser
20 MMFD ceramic condenser
50 MMFD ceramic condenser
12 MMED; ceramic condensser, temp. comp.

- 2 MFD 400 VOIt condenser

250 MMFD mica condenser
. 005 MFD 600 volt condenser
. 001 MFD ceramic condenser
.05 MFD 600 yolt condenser
20 MFD 25 volit electrolytic condenser
10. MFD 350 volt ulectrolytic condenser

15 MFD 350 volt electrolytic condenser
20 MFD 25 volt electrolytic condenser
20 MFD 350 volt electrolytic condenser
30 MFD 350 volt electrolytic condenser
.01 MFO 400 valt condenser
-5 MFO 100 volt condenser
. 005 MFD 1600 volt oil filied condenser

Part Number

A19-201	A19-201
A16-192	A16-192
A 20-145	A20-145
A16-189	A16-189
A15-196	A15-196
A15-202	A15-202
A15-204	A15-204
A15-205	A15-205
A16-187	A16-187
A15-176	A15-176
A16-190	A16-190
A16-195	A16-195
A16-193	A16-193
A18-293	
	A18-289
	A16-192
A16-184	A16-184
A16-185	A16-185

RESISTORS

| R1, | R3 |
| :--- | :--- | :--- |
| R2 | |
| R4 | |
| R5 | |
| R6 | |
| R7 | |
| R8 | |
| R8 | |
| R9 | |
| R10 | |
| R11 | |
| R11 | |
| R12 | |
| R13, | R1 |
| R15 | |

$A 60-659$	$A 60-659$
$A 60-685$	$A 60-685$
$A 60-769$	$A 60-769$
$A 60-726$	$A 60-726$
$A 24-177$	$A 24-177$
$A 60-728$	$A 60-728$
$A 60-768$	
	$A 60-767$
$A 60-667$	$A 60-667$
$A 60-731$	$A 60-731$
$A 60-767$	$A 60-771$
	$A 60-770$

Antenna Loading coil	A10-527	A10-527
Antenna coil	B10-511	810-511
1. F. Trap Coil	A10-510	A10-510
oscillator coil	A10-512	A10-512
Choke "A" Line	A33-229	A33-229
Choke vibrator hash	A33-228	A33-228
1st I. F. Transformer	A10-508	A10-508
2nd 1. F. Transformer	A10-509	A10-509
Output Transformer (Part of Speaker,		
not furnished separatevy)	B80-242	B80-242
Power transformer	B80-243	880-243
DIAL PARTS	50068	5006C
Bracket, Dial Scale	A11-303	A11-303
Bracket, String guide	B11-328	B11-328
Bushing, Tuning Shaft Bearing	172-29	A72-29
clip, Spring, for Tuning Shaft	A70-130	A70-130
Dial Escutcheon	D40-141	D40-141
Dial Pointer	A50-55	A58-55
Dial Scale	B67-522	667-522
Gasket for Speaker	A 28-101	A 28-101
Knob	A5-257	A 52-257
Link, String Guide	A11-329	A11-329
Pilot Light, No. 47 Bayonet	A89-10	A89-10
Rivet, Shoulder, for Dial Pointer		
Stringing	A65-37	A65-37
Rivet, Shoulder, for String Guide Brkt. and Link	A65-41	
Rivet: Shoulder, for. String Guide Brkt.		
and Link		A65-42
Rivet, Shoulder, for Dial Drive Stringing	A65-12	A65-12
Shaft, tuning	A75-70	A $75-70$
Shaft, for Dial Pointer	A $75-74$	A $75-74$
Spring, for Pilot Light Socket	A70-132	A70-132
Spring, Dial Drive string Tension	A $70-135$	A $70-135$
Spring, Pointer Drive String Tension		A $70-137$
Spring, Pointer Drive string Tension	A70-142	
String, Pointer Travel, 17"		A51-105
String, Condenser Drive, 19"		A51-108

MISCELLANEOUS

"An lead assembly	S84-233	S84-233
Clip, 1. F. Transformer Mounting	A83-421	A83-421
Clip, oscillator coil Mounting	A83-517	A83-517
Fuse, 15 Amp.	A43-10	А43-10
Grommet, rubber, (Spkr. \& Gang Mounting)	A47-112	A47-112
Mounting strap, rear	B31-134	B31-134
Mounting Plate, Front	B31-139	831-139
Mounting parts kit	S84-192	584-192
Receptacle, Antenna Cable	A87-38	A87-38
Speaker, 4" P.M. (includes output Trans-		A87
former)	879-362	879-362
Suppression kit Assembly	S84-322	584-32.?
viorator	A34-105	A34-105
Wiper, groundina, for case covers	A83-519	A83-519

ALIGNMENT PROCEDURE
The following allgnment procedure is for use only by competent servicamen having the proper
equipment
equipment
The all

generator as low as-possible, to provent A.V.C. action from interfering with correct allemment. Adjust all tifmmers for maximum output. Repeat allgnment procedure given below as a final CAUTION: This is an A.C.-D.C. receiver and when aligning the set it in neceasary to Lsolate the MFD. condenser in both test leads of the Signal Geinerator. | Geaerator | $\begin{array}{c}\text { Dummy } \\ \text { Rnt } \\ \text { Rnta }\end{array}$ |
| :---: | :---: |

$\begin{aligned} & \text { Poaition } \\ & \text { of } \\ & \text { Variable } \end{aligned}$	Generator Frequeng	Dummy Rnt Mat.	Generator Connections	Trimmer Adjustment	Trlmmar Function
Fully open	455 KC	. $]$	- 12SA7 Grid (Stator of CIA)	T1	I.F.
Pully open	1625 KC	. 00025	- Antenna Wire	C1B	Oscillator
Tune in signal from generator	1400 KC	. 00025	- Antenna Wire	CIA	Antenna

*Connect ground lead of signal generator to chassis.
Model 12801 is a superheterodyne receiver, designed for use on 105-125 volt 60 cycle AC or DC current.
The tubes used are:
12SA7-Oscillator-Mixer
50L6-Power Output
35Z5-Rectifier is callbrated in kilocycles, minus the final zero.
This receiver covers the frequency range from 540 to 1625 KC . The dial scale

LOSZI < SSZI

SPECIFICATIONS

SOCKET VOLTAGE DIAGRAM

5 Tube Superheterodyne, including rectifier tube
Speaker -...-- 4 inch "Alnico 5" Magnet Dynamic, voice coil impedance 3.5 ohms (400 cycles)
Antenna _.-. Self contained loop antenna, also provision
Tuning -. Direct drive external antenna
Power supply 105 to 125 Volts, AC or DC
Frequency on AC
 Power Output __-. 0.6 w undistorted, 1.5 w minimum full power output
Frequency range 540 to 1720 KC Intermediate Frequency 455 KC Antenna Sensitivity Selectivity -75 KC broad at 1000 times signal at 1000 KC

ALIGNMENT PROCEDURE

Allow unit to heat for a few minutes before starting alignment.
Volume control set to maximum.
Qutput meter across speaker.
Align for maximum output.
Keep input as low as readable meter reading of output will permit.

Note: If signal generator is AC operated, use an isolating transformer between the power supply and the radio receiver power input. The use of an isolating capacitor is not recommended as AC through the capacitor will introduce hum and/or create the possibility of a burned out signal generator attenuator.

TREQUENCY	SIGN.AL COUPIING CAPACITOR	GENERATOR CONNECTION TO RADIO	$\begin{gathered} \text { GROUND } \\ \text { CONNECTION } \end{gathered}$	rIINING: CONDENSER SETTING	ADJUST TRIMMERS FOR MAXIMUM OUTPUT (in order shown)
455 KC	0.1 mf	Converter grid	B -	Wide open	2nd IF transformer trimmer 1st IF transformer trimmer
1720 KC	200 mmf	Receiver antenna post	Chassis	Wide open	Oscillator trimmer C3
1500 KC	200 mm	Receiver antenna post	Cruassis	Tune for maximum output	Antenna trimmer Ci

SPECIFICATIONS FOR CORONADO RADIO MODEL 43-8201

5 Tube Superheterodyne, including rectifer tube
Speaker --.-.-- 4 inch "Alnico 5" Magnet Dynamic, voice coil impedance 3.5 ohms (400 cycles)
Antenna \qquad external hank antenna
Tuning Direct drive- 2 gang condenser Power supply -.-.-.-.-....- 105 to 125 Volts, AC or DC Fiequency on AC

Power Consumption -----....-......---- 28 watts at 117 V Power Output …-....- 0.8 w undistorted, 1.5 w minimum full power output
Frequency range \qquad 540 to 1720 KC Intermediate Frequency -.......................... 455 KC Antenna Sentivity --..... 50 mv . average for $0.5^{-} \mathrm{w}$ output Selectivity .. 50 KC broad at 1000 times signal at 1000 KC

$\begin{gathered} \text { SYMBOL } \\ \mathrm{C}_{\mathrm{C} 2 \mathrm{~A}} \end{gathered}$
C2B
C3
C4
C5
C6
C7
C8
C9
C10A
C10E
C11
C12
C18
C19
R1
$\mathrm{R2}$
R3
R4
R5
R6
R7
R8
R9
L2
L3
L4
15
T1
S1

TITLE

Paper capacitor Electrolytic capacito
Electrolytic capacito
Paper capacitor
Mica capacitor
Paper capacitor
Paper capacitor
Mica capacitor
Mica capacitor
Antenna Trimmer
Variable condenser, ant. sect.
Variable condenser, osc. sect.
Oscillator trimmer
Paper capacitor
Paper capacitor
Paper capacitor
Carbon resistor
Carbon resistor
Carbon resistor
Carbon resistor
Carbon resistor
Carbon resistor
Volume control
Carbon resistor
Carbon resistor
1st IF transformer
2nd $1 F$ transformer
Oscillator coil
Antenna coil
Output transformer
Power switch, with R7
4" PM speaker
Back Cover for cabinet
Baffle for speaker
Socket-octal base tube socket
Speed nuts-for fastening grill in cabinet
Fasteners--for fastening
hack cover fastening $\quad \#$ Part of $\mathrm{SCT}-003$
TOLERANOB
$+40-10 \%$
$+100-10 \%$
$+100-10 \%$
$+40-10 \%$
$\pm 20 \%$
$+40-10 \%$
$+40-10 \%$
$\pm 20 \%$
$\pm 20 \%$

PART NO.
PARTS DESCRIPTION LIST

VALUE	RATING
.05 mf	600 WDVC
40 mf	150 WVDC
40 mf	150 WVDC
.02 mf	600 WDVC
330 mmf	500 WVDC
.01 mf	600 WDVC
.005 mf	600 WDVC
430 mmf	500 WVDC
47 mmf	500 WVDC

UCC-0 45
SCE-003
05
.

ALIGNMENT PROCEDURE

Allow unit to heat for a few minutes before starting alignment.
Volume control set to maximum
Output meter across speaker.
Align for maximum output.
Keep input as low as a readable meter reading of output will permit.

Note: If signal generator is AC operated, use an isolating transformer between the power supply and the radio receiver power input. The use of an isolating capacitor is not recommended as AC through the capacitor will introduce hum and/or create the possibility of a burned out signal generator attenuator.

FREQUENCY	SIGNAL COUPLING CAPACITOR	GENERATOR CONNECTION TO RADIO	$\begin{gathered} \text { GROUND } \\ \text { CONNECTION } \end{gathered}$	TUNING CONDENSER SETTING	ADJUST TRIMMERS FOR MAXIMUM OUTPUT (in order shown)
455 KC	0.1 mf	Converter grid	Chassis	Wide open	2nd IF transformer trimmer 1st IF transformer trimmer
1720 KC	200 mmf	Receiver antenna post	Chassis	Wide open	Oscillator trimmer Cll
1500 KC	200 mmf	Receiver antenna post	Chassis	Tune for maximum output	Antenna trimmer C9

TUBE 8. TRIMMER LOCATION
$\left\{\begin{array}{l}\text { RII }\end{array}\right.$

SCHEMATIC DIAGRAM

PAGE 22-34 GAMBLE-SKOGMO

MO DELS 43-8330, 43-8420

ALIGNMENT PROCEDURE

Allow unit to heat for a few minutes before starting alignment
Volume control set to maximum.
Output meter across speaker.
Align for maximum output.
Keep input as low as readable meter reading of output will permit.

Note: If signal generator is AC operated, use an isolating transformer between the power supply and the radio receiver power input. The use of an isolating capacitor is not recommended as AC through the capacitor will introduce hum and/or create the posslbility of a burned out signal generator attenuator.

FREQUENCY	SIGNAL COUPLING CAPACITOR	GENERATOR CONNECTION TO RADIO	GROUND CONNECTION	TUNING CONDENSER SETTING	ADJUST TRMMMERS FOR MAXIMUM OUTPUT (in order shown)
455 KC	0.1 mf	Converter grid	B-	Wide open	2nd IF transformer trimmer 1st IF transformer trimmer
1720 KC	200 mmf	Receiver antenna post	Chassis	Wide open	Oscillator trimmer C3
1500 KC	200 mmf	Receiver antenna post	Chassis	Tune for maximum output	Antenna trimmer C1

GAMBLE-SKOGMO PAGE 22-3

SPECIFICATIONS

CHASSIS VIEW

DRIVE CORD REPLACEMENT

GAMBLE-SKOGMO PAGE 22.37

SCHEMATIC DIAGRAM

$X-1045$ GAMBLES 4.7-8353.54

ALIGNMENT PROCEDURE
 (Refer to Chassis View)

- Output meter across 3.2 -ohm output load.
- Volume control at maximum.
- Connect ground post of signal generator to \mathbf{B} - of radin.
- Align for maximum output. Reduce input as needed to keep output near 0.4 volts.

SIGNAL GENERATOR			$\begin{gathered} \text { TUNER } \\ \text { SETTING } \end{gathered}$	ADJUST FOR MAXIMUM OUTPUT (in order shown)
Frequency	Dummy Antenna	Connection to Radio		
455 kc	0.1 mf	Stator of antenns section of gang	Rotor full open (plates out of mesh)	Trimmers on output and input I.F. cans
1650 kc	0.1 mf	Stator of antenna section of gang	Rotor full open (plates out of mesh)	Oscillator trimmer C3B
1400 kc	200 mmf	External antenna clip	1400 kc	Antenna trimmer COA

$\mathfrak{M O D E L S} 43-8353$,
part No.

$$
\begin{aligned}
& \text { COILS \& TRANSFORMERS } \\
& \text { Loop loading coil } \\
& \text { Walnut loop antenna assembly } \\
& \text { WVory loop antenna assembly } \\
& \text { output transformer for speaker } \\
& \text { Broadcastosc. coil } \\
& \text { Input IF. coil } \\
& \text { output i. . . coil }
\end{aligned}
$$

Part No．	Description	Qty．		
	OlAL \＆TuNing PaRTS			

SPEAKER
Description
CONDENSERS
RESI STORS

$$
\begin{aligned}
& \text { Resistor } 220 \text { ohms, } 1 \text { watt } 10 \% \\
& \text { Resistor } 1200 \text { ohms, } 1 \text { watt } 10 \%
\end{aligned}
$$

コニーロロッツき

FIG.I RECEIVER IN OPERATING POSITION

FIG 2 REAR VIEW - back COVER REMOVED SHOWINg LOCATION OF BATTERIES

BATTERY REQUIREMENTS: The following batteries are required:

QUANTITY	TYPE	MANUFACTURER
1	$1^{1 / 2}$ volt " A "	Eveready size " D ", Burgess No. 2, Ray-C Vac size " D " or equivalent.
1	$671 / 2$ volt." B "	Eveready \#467, Burgess Type XXD, Ray O-Vac Type 4367 or equivalent.

TUNING RANGE: Broadcast 540 to 1650 Kilocycles (180 to 555 meters).
dial scale: The dial scale is calibrated in kilocycles. Example: Read " 60 " as 600 Kc .
TUBES: The tubes used and their functions are as follows:

1R5 Converter
1T4 I.F. Amplifier

1S5 Detector, AVC and Audio Amp. 3S4 Power Amplifier
ALIGNMENT: (Receiver removed from cabinet.) Should it become neces-
sary at any time to check the alignment of this receiver, proceed as follows:
(1) Set the signal generator to 455 KC and connect to the stator lug (rear section) of variable capacitor. Extend the loop leads and solder to original points. Connect the signal generator ground lead to the
 coil connections. Turn the volume control to the maximum position. Turn the variable capacitor to the extreme clockwise position (minimum capacity).
(2) Adjust the trimmers located at the top of the first and second I.F.
Transformers for maximum output, as indicated on the output meter.
(3) Loosely couple the signal generator lead to the loop and set to
(4) With the variable capacitor set at minimum capacity, tune in the 1650 KC signal by means of the oscillator trimmer on the variable capacitor (rear section).
(5) Set the signal generator to 1500 KC and turn the tuning control until this frequency is heard. Adjust the antenna trimmer on the variable capacitor (front section) for maximum output.
(6) Install the chassis into the cabinet and re-adjust the antenna trimmer at 1500 KC . No other adiustments are necessary.

INSTALLATION: The Model 4A is a complete personal receiver for broadcast reception, after battery installation. The complete receiver is housed in a small attractive case with a self-contained loop antenna concealed in the recessed portion of the hinged plastic front cover. A plastic handle located at one end of the case is provided for ease in carrying. The receiver is automatically turned on when the hinged front cover is opened, and in addition is instantaneous in its operation. Space is provided on the plastic front panel for inserting your initials if desired. The following procedure should be followed for the installation of the " A " and " B " batteries (see Fig. 2,
(a) Remove the back cover by depressing the back cover release bution adjacent to the handle while sliding the back upward and out.

CRUTION: In removing the back cover, raise the lock ond of the back cover only enough to clear the case edge before amding the cover toward the strap handle to release the opposite end from the two protruding botiom case tabs that hold it down. Failure to obsorve this procaution may result in breaking out the two bottom holes from the coves.
(b) Insert the $11 / 2$ volt " A " battery into the spring holder with the protruding center contact at the top of the " A " battery always facing the position shown on the diagram rear of back cover or Fig. 2, opposite page. Do not insert the "A" battery in the opposite position in the spring holder.
(c) Connect the " B " battery contact strip fitted with snap tasteners to the corresponding contacts on the " B " battery.

Insert the "B" battery into the compariment provided as shown on
the diagram rear of back cover or Fig. 2, opposite page.
(e) Replace back cover by inserting the two holes at the bottom edge of the back cover into the two protruding case tabs at the rear edge of the case and slide forward while depressing the back cover release button. The receiver is now ready for operation.

CONTROLS:

A description of the four controls from left to right on the front panel is given below:
(A) On-Oft Switch and Volume Control: This control combiries the line On-Otf Switch and Volume Control.
(B) Tone Control: When turaed to the zight (clockwine). a deep baes offect is produced. while rotation to the lett (counter-clockwise) produces a more brilliant tone. Vaxious shadings between the extremet may be obtained at intermediate settinge of the control
(C) Band Selector Switch: This three-position control selects the frequency band to be ueed, and also connects the "Phono" pickup into the circuit for use of the record changer. The extreme left hand position is the "Broadcast" band, the middle position the "Shon Wave" band. and the extreme right hand position if the "Phono" position.
(D) Tuning Control: This control is coupled to the tuning capacitor through a reduction drive and terves to melect the demired broadeast or short wave station along the slide-rule dial, the frequency of which is indicated by the dial pointer.
(a) Line voltage as indicated on instruction sheet.
(b) Volume Control at maximum ponition.
(c) Tone Control ot extreme left position (brilliant).
(d) Minimum input from signal generotor. This procedure should be odhered to. otherwise adjubtments will be broad. due to the action of the cutomatic volume control.

BROADCAST (Band Switch in extreme loft position)

I, F. Adjustment:

(I) Set the signal generator to 455 KC and connect to the lowar zide of the Loop Antenna Tximmer through a 1 MFD capacitor. Connect the signal generator ground lead to the chasais. Connect a suikable output meter across the epeakey voice coil connections. Turn the Variable Capacitor to the entreme clockwise position (minimum capacity).
(2) Adjust the trimmers located at the top of the first and second I. F. Tranformere tor marmuma output as indicated on the output meter

EC. R. F. Adjustment: It is desirable to align this band on the loop.
(1) Couple the signal generator to the rectiver loop by means of o two or three turn loop.
(2) With the Variable Capacitor set of the extrems clockwise position (minimum capacity), tune in the 1650 XC signal bY means of the broadeas oncillator trimmer (C2).
(3) Set the aignal generator to 1500 KC and turn the Tuning Control no that thim irequency is indicated on the dial. Adjuat the Antenna Trimmer (Cli on the loop for maximum oulput.
(4) Set the signal generator to 600 KC and iurn the Tuning Control so that this frequency is indicated on the dial. Adjust the broadcast oecillatar padder capacitor (C3) for maximum response while "rocking" the Variable Capacitor. Recheck the 1500 KC high frequency adjuetment trimmer (C2).

SHORT WAVE (Band Switch in the middle position)

(1) Connect the siqnal generator through a standard short wave dummy antenna to the antenna (green wire) and the ground lead to the chassis of the receiver. Set the signal generatos to 18.5 MC .
(2) With the Variable Capacitor set ot the extreme clockwise position (mınimum capacity), tune in the 18.5 MC signal by means of the S. W. oscillator trimmer (C4).

LINE VOLTAGE: This receiver is designed for operation on $105-125$ Volts, 60 Cycles. Alternating Current (AC) only.

POWER CONSUMPTION INCLUDING RECORD CHANGER: 85 Watts.

TUNING RANGE: Broodcast: 540 to 1650 Kilocycles (180 to 555 Meters)

DIAL: The dial scale is calibrated in Kilocycles times 10 for the Broadcast Band, and in Megacycles for the Short Wave Band, corresponding with newspaper or periodical listings.

TUBES: The tubes used, and their functions, are as follows:

6SG7 R. F. Amplifier
6SA7 Converter
6SK7 I. F. Amplifier
6SQ7 Detector, Avc and Audio Amplifier
6V6 Beam Power Amplifier
5Y3GT Rectifier

ALIGNMENT:

Realignment of this receiver should not be attempted unless all other possible causes have been tharoughly investiqated. An accurately cali and washers are located on the same panel below the brated signal generator. which will cover the necessary bands. and on outpul meter for indicating the effect of adjusiments are required.

During the ajginment procedure, all adjustments should be made under the following conditions (refer to Tnmmer and Tube Localion Diagram below for trimmer location):
installation to cabinet and reconnect changer cables to chassis sockets.

GAROD PAGE 22

SPECIFICATIONS
CABINET:

MODEL 414	MATERIAL Plastic	COLOR Mahogany
415	Plastic	Ivory
416	Plastic	Maroon
430	Wood	Mahogany

ETLECTRICAL Voltage..105-125, 50-60 cycles or DC RATING: Watts.

OPERATING Standard Wave Band....... 540-1600 KC FREQUENCIES: I-F Amplifier..................... 455 KC

POWER
OUTPUF:
Undistorted......................... 1 watt
LOUNSPEAKER: TYPe........................... Alnico PM Outside Cone Diameter....... 4 inches Volce Coil Impedance © 400
cycles.......................... 3.2 ohms
TUBE $V 1$ Oscillator-Converter..... I2SAT
COMPLEMANT: V2 I-F Amplifler................ 12RA6

$\begin{array}{ll}\text { V4 } & \text { Rectiflier......................... } 35 \mathrm{~W} 4 \\ \text { V5 Audio Power Amplifie.... }\end{array}$
II DIal Light..... GE Mazda No. 47

EIECTRICAL CIRCUIT. ALIGNMENT

EQUPPMENT REQUTRED

1. Test oscillator, tone amplitude-modulated.
2. A-C output meter, $11 / 2$ volts full scale.
3. .05 mfd., paper capacitor.
4. Insulated screwariver.
5. Coupling loop for test oscillator (see text).
6. Isolation power transformer.

ALIGNMENT PROCEDURE
The allignment steps are given in the table form of the Alignment Chart. Adjustment points are shown in the 1llustration of Fig. 1.

1. The chassis is removed from the cabinet with the antenna loop and back attached and the speaker leads reconnected.
2. An isolation transformer should be used for the receiver power source when aligning or servicing AC-DC recelvers, to prevent short circuiting of equipment and'shock hazard.
3: The output meter is connected across the terminals of the loudspeaker voice coil.
3. The receiver volume control should be turned to maximum and test oscillator sigreal output attenuated during aligriment to develop not more than $11 / 4$ volts output meter reading at the loudspeaker.
4. For 1-f allgnment, the high side of the signal generator output cable should be connected through a .05 mfd. paper capeicitor to the points indicated in the Ailgnment Chart. The low slde of the output cable is connected to the receiver BBus.
5. To align the oscillator and r-f trinmers, the signal generator output is inductively coupled to the radio loop, Lh, by connecting a four-turn, six-inch diameter loop of bell wire across the generator's output terminals and then locating the loop about one foot from the radio loop antenna.

To prevent possible errors in comparative readings, the position of signal generator loop with respect to the radio loop antemn should not be changed during measurement.
7. Relocate dial pointer on tuning shaft at 1500 KC on the dial to correspond to the tuning capacitor setting in step 5.

ALIGNMENT CHART

Step	Connect Test Oscillator to	Test Osc. Setting	$\begin{gathered} \text { Radio } \\ \text { Dial } \\ \text { Setting } \end{gathered}$	Adjust for Maximum
I-F ALIGNMENT				
1	V2,12BA6 grid (Pin 1), in series with .05 mfd .	455 KC		Cores of second 1-f transformer T3
2	V1,12SA7 grid (Pin 8), in series with .05 mfd .	455 KC	-•...	cores of firgt 1-f transformer T2
3	$\begin{aligned} & \text { V1,12SA7, grid } \\ & (\text { Pin } 8 \text {), In } \\ & \text { series with } \\ & .05 \text { mfd. } \end{aligned}$	455 KC	Recheck adjustment of $T 1$ and 72 , for maximum
R-F ALIGNMENT				
4	Inductively coupled to radio loop	1620 kC	Mintmum capacity C2A,C2B	$\begin{aligned} & \text { C3, oscil- } \\ & \text { lator trim- } \\ & \text { mer } \end{aligned}$
5	Inductively coupled to radio loop	1500 KC	For Maximum	$\begin{aligned} & \text { C1, r-f } \\ & \text { trinmer } \end{aligned}$
6	set pointer to. 150. See Note 7.			

STAGE GAINS AND VOLIAGE CHECKS

Stage gain measurements by vacuum tube voltmeter or similar measuring device may be used to check circuit performance and isolate trouble. The gain values insted may have tolerances of 20 per cent. Readings are taken with low signal input so that AVC is not effective.

1. I-F GAIN

12SA7 Grid to 12BA6 Grid
12BA6 Grid to 12SQ7 Diude Plate 100 @ 455 KC

2. AUDIO GAIN

Input of 0.15 volts at 400 cycles across volume control (R4) with control set at maxinum will develop approximately $1 / 2$ watt output across the speaker voice coil terminals.
3. OSCIILATOR GRID BIAS

D-C voltage developed across the oscillator grid leak (RI) averages 7.5 volts at 1000 kc dial getting (no signal).
4. TUBE SOCKET PIN VOLTAGES

The schematic diagram of Fig. 3 shows voltages from tube pins to $B-$. Voltage readings differing greatly from those specified may help localize de-

GENERAL ELECTRIC PAGE 22.

REPLACEMENT PARTS IIST
MODETS $414,415,416$ and 430

PAGE 22-4 GENERAL ELECTRIC

MODELS 422, 423

SPECIFICATIONS			
CABINET:	Model 422. Mahogany plastic Model 423.		
POWER SUPPLY:	Voltage...... 105-120 volts a-c or d-c Frequency. 50 or 60 cycles Wattage. 30 watts		
OPERATING F'REQUENCIES:	Broadcast Band. 540-1600 KC I.F. Amplifier. 455 KC		
POWER OUTPUT:	Undistorted........................... 1 watt Maximum. 1.75 watts		
IOUDSPEAKER:	Type. Alnico 5 PM Outside cone Diameter... 5 1/4 inches Voice coil impedance at 400 cycles............... . . 3.2 ohms		
$\begin{aligned} & \text { TUBE } \\ & \text { COMPLEMENT: } \end{aligned}$	SYMBOL	PURPOSE	TYPE
	V1 RF Amplifler V2 Oscillator Converter V3 IF Amplifier V4 Detector-Audio Ampl. V5 Rectifier V6 Audio Power Ampl. II P1lot Lamp		
			12SA7
			$12 \mathrm{SQ7}$
			3575
			GE Mazda
			No. 47

GENERAL INFORMATION
The Models 422 or 423 is a five-tube (plus rectifier tube) a-c or d-c superheterodyne AM standard broadcast receiver equipped with an efficient builtin antenna loop and incorporating automatic volume control, a permanent magnet speaker, and beam power output.
$\begin{array}{ll}\text { CAUTION: } & \text { USE ISOLAATION TRANSFORMER TO ISOLATE THE } \\ & \text { RECEIVER FROM THE POWER LINE. }\end{array}$

ELECTRICAL CIRCUIT ALIGNMENT

Equipment required:

1. Test oscillator with tone modulation.
2. AC voltmeter, $11 / 2$ volts full scale.
3. Paper capacitor, 0.05 mf .
4. Insulated screwdriver.
5. Coupling loop for test oscillator (see text)
6. Isolation transformer.

Alignment Procedure:
The alignment steps are given in table form of Alignment Chart. Adjustment trimmers are shown in the illustration of Fig. 3

1. The chassis is removed from the cabinet with the antenna loop and back attached and the speaker leads reconnected.
2. An isolation transformer should be used for the receiver power source when aligning or servicing $A C-D C$ receivers to prevent short circuiting of equipment and shock hazard.
3. The output meter is connected across the ter minals of the loudspeaker voice coll.
4. The recelver volume control should be turned to maximum and test oscillator signal output atten uated during alignment to develop not more than $11 / 4$ volts output meter reading at the loudspealen
5. For 1-f alignment, the high side of the signal generator output cable should be connected through a .05 mfd . paper capacitor to the points indicated in the Alignment Chart. The low side of the output cable is connected to the receiver chas sis.
6. To allgn the oscillator and r-f trimaners, the signal gexerator output is inductively coupled to the radio loop, Ll, by connecting a four-tiurn, six-1nch diameter loop of bell wire across its out put terminals and then locating the loop about one foot from the radio loop antenna. To prevent possible errors in comparative peak readings, the position of signal generator loop with respect to the radio loop antenns should not be changed during measurement.

Step	Connect Test Oscillator to:	Test Osc. Setting	$\begin{gathered} \text { Radio } \\ \text { Dial } \\ \text { Setting } \end{gathered}$	Adjust Trimmers for Maximum
I-F ALIGNMEINT				
1	V3, 12Ba6 grid (Pin 1), in series with 0.5 mfd .	455 KC	-•••••	C9 and 08 of second 1-f transformer $T 3$.
2	V2, 12SA7 grid (Pin 8) in series with .05 mfd .		. ${ }^{\text {. } ~}$	C7 and C6 of first 1-f transformer, T2.
3				Recheck adjustment of C9, $\mathrm{C} 8, \mathrm{C} 7, \mathrm{C} 6$, for maximum
R-F ALIGNMENT				
4	Inductively coupled to radio loop.	1620 KC	Minimum capacity CLA,CLB	C3, oscillator trimmer
5		1500 KC	$\begin{aligned} & \text { Tune } \\ & \text { for } \\ & \text { Maximum } \end{aligned}$	C1, r-f trimmer C2, ant. trimmer

FRONT OF CHASSIS

IT VOLTS AC LINE. NO SIGMAL IMPUT. VOLTAGES MEASUREO BETWEEN GOCKET TERMINALS AND O-WITH 20,000 OHMS PER VOLT METER. VOLUME CONTROL MIMIMUM - moicates ac volts.

MODELS 422 AND 423 REPLACEMENT PARTS LIST

*Parts used on previous models.

MODEL 5IOF (Brown) MODEL 511F (Ivory)

MODEL 512F (Mahogany Mottle) MODEL 513F (Antique Ivory)

SPECIFICATIONS

OVER-ALL CABINET DIMENSIONS	Model	$\begin{aligned} & 510 \mathrm{~F}, \\ & 511 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 515 \mathrm{E}, 516 \mathrm{~F}, \\ & 517 \mathrm{~F}, 518 \mathrm{~F} \end{aligned}$	$\begin{cases}521 F, & 522 F \\ 512 F, & 513 F\end{cases}$
	Height Width Depth	$61 / 4 \mathrm{in}$. $113 / 8 \mathrm{in}$. $5_{\frac{5}{16}} \mathrm{in}$.	6_{16}^{3} in. $11 \frac{15}{16}$ in $4 \frac{1}{4}$ in	$6 \frac{3}{16} \mathrm{in}$. $10 \frac{1}{2} \mathrm{in}$. 6 in.
electrical RATING				
OPERATING frequencies	R-F Broadcast 540-1600 kc			
POWER OUTPUT				
LOUDSPEAKER	TypeOutside Cone Diameter Alnico PM 4 inches Voice Coil Impedance @ 400 Cycles. 3.5 ohms			
tube COMPLEMENT	Purpose			Type
	Oscillator-Converter I-F Amplifier. Detector 1st Audio Audio Output Rectifier			$\begin{aligned} & \text { 12BE6 } \\ & \text { 12BA6 } 6 \\ & \text { 12AV6 } \\ & \text { 50C5 } \\ & \text { 35W4 } \end{aligned}$

GENERAL INFORMATION

The Models $510 \mathrm{~F}, 511 \mathrm{~F}, 512 \mathrm{~F}, 513 \mathrm{~F}, 515 \mathrm{~F}, 516 \mathrm{~F}, 517 \mathrm{~F}, 518 \mathrm{~F}$, 521 F and 522 F clock-radio receivers employ four tubcs, plus rectifier tube in an a-c/d-c superheterodyne circuit using a Bearn-a-scope antenna. Each model has an electric time clock with wake-up alarm. The cabincts are of plastic composition in the finishes and design shown in the photos.
A special feature of the Model $515 \mathrm{~F}, 516 \mathrm{~F}, 517 \mathrm{~F}, 518 \mathrm{~F}, 521 \mathrm{~F}$ and 522 F receivers includes a receptacle at the rear of the receiver which is controlled by the clock to provide automatic power control to an external appliance. The slide switch adjacent to the receptacle is used to turn off the radio if desired, while using the appliance. When radio operation is to be resumed, this switch must be set to the "ON" position. In addition, the
clocks of this group of receivers are equipped with a sleep control which may be used to automatically turn off the radio and/or appliance.
The Models 510F, $511 \mathrm{~F}, 512 \mathrm{~F}, 513 \mathrm{~F}, 515 \mathrm{~F}, 516 \mathrm{~F}, 517 \mathrm{~F}, 518 \mathrm{~F}$, 521 F and 522 F receivers employ a new type chassis construction and change of tube type from that of other General Electric clock radios, described in ER-S-510, ER-S-515 and ER-S-521, bearing the same model number but without the suffix " F."

The distinguishing feature of this new type chassis construction may be noted in the connection to components and layout. Resistors and capacitors are connected directly by their leads to special tube sockets or terminal board in contrast to previous conventional methods using conventional tube sockets.

The cabinets and clocks of this series receivers whose model numbers are suffixed by " F " are identical to respective model numbers which do not bear the letter " F " as shown upon the identification label.

CAUTION: One side of the power line is connected to $B-$. Avoid any ground connections direct to $B-$. Use an isolating transformer when making service adjustments with the chassis removed from the cabinet.

COMPONENT REPLACEMENT-Except for tube socket replacement, it should not be necessary to remove the doughnut shaped shields over the tube sockets in servicing the chassis. The time and effort otherwise spent to remove shields and heat connections to free components may be spared and a neater job done without the risk of damage to the socket, by using the following method in wiring a replacement.

Clip the defective unit out, leaving enough of its leads to remain attached to the tube socket or terminal strip so an eye loop may be formed in each lead. Each lead of the new component may then be passed through the proper loop, pruned to length, crimped and soldered.

PRODUCTION WIRING CHANGE-Some early receivers will be found with one lead of the power cord connected to the pin 2 socket connection of the 35 W 4 rectifier tube. This connection has been known to be the cause of damage to the rectifier tube due to a 110 volt a-c are within the tube between pin 2 and one of the tube elements. For this reason, it is recommended that the following change in wiring be made when the receiver is in the shop for service.

The power cord lead is removed from pin 2 of the rectifier tube socket by clipping it off close to the socket connection. The a-c power lead to the clock is similarly removed from pin 8 of the 50C5 output tube socket. Strip, splice, and solder the two leads together, properly taping the connection for adequate insulation. At least two wraps of standard friction tape is required. The remaining bus wire between pin 2 of the 35 W 4 tube and pin 8 of the 50 C 5 should then be clipped off close to the socket connection and removed. Some later sets have both leads inserted in pin No. 8 of the 50C5 socket and still later sets utilize pin No. 8 of the 35W4 socket and pin No. 8 of the 12AV6 socket for this connection. Both of these methods are satisfactory and should cause no trouble.
It is only when a solid B-connection is made to pins 1 or 2 of the 35W4 that the arc occurs. A direct short to one of these pins might by coincidence cause this phenomena.
OSCILAATOR COLA, T4-The oscillator coil is wired to be selfsupporting through the use of solid bus wire connections. With the exception of some early receivers, the coil lugs are spaced sixty degrees from each other so that they are grouped over one half of the coil circumference as shown in Figure 2. An early type coil may occasionally be found whose lug spacing is eighty degrees. However this presents no difficulty in lug identification, if one bears in mind that the wider space of one hundred and twenty degrees is to be oriented with that half of the coil form which is bare of lugs in the illustration.
CLOCK SERVICE AND REPLACEMENT PARTS-For clock service data and repair parts, contact your local Wholesale General Electric Radio Distributor.

Fig. 1. Oscillator Cail Cannectlans
C17, C19, C20, AND C26
The lead identification for the four-section ceramic capacitor RCW-3048 (K71 J670) can be observed from the illustration of Figure 2.

Fig. 2. Capacifor RCW-3040

RADIO CIRCUIT ALIGNMENT

ALIGNMENT FREQUENCHES:

R-F	1500 kc
R-F	1620 kc
I-F.	455 kc

EQUPMENT REQUIRED

1. Test oscillator with tone modulation.
2. A-c output meter, $11 / 2$ volts full scale.
3. 0.05 mf . paper capacitor.
4. Loop. (See note 6.)
5. Insulated screwdriver.

PROCEDURE-GENERAL:

1. With the tuning scale control wheel turned so that the gang condenser plates are fully meshed, the last calibration mark on the scale (low frequency side of 550 kc) should face directly to the front of the chassis so that the mark will align with the index tab or mark located on the cabinet over the tuning control wheel. If it does not, remove the control wheel from the gang condenser shaft and replace it for correct position. CAUTION: Do not attempt to correct the position by rotating the wheel on the shaft as this will cause the knob to slip.
2. For i-f alignment, it is necessary to remove the chassis from the cabinet.
3. Connect the output meter across the loudspeaker voice coil terminals.
4. Keep radio volume control at maximum and attenuate the test oscillator signal output so that the output meter reading never exceeds 1.0 volt.
5. Connect the capacitor, listed in column 2 of the alignment chart, between the output "High Side" of the test oscillator and the point of input specified. The oscillator output cable ground lead is connected to receiver chassis.
6. For alignment of the oscillator and antenna trimmers, the input signal should be inductively coupled to the radio loop antenna, L1, by connecting a four-turn, six-inch diameter loop of bell wire across the signal generator output terminals, and then locating the loop to face the radio antemn loop about one foot away.

ALIGNMENT CHART

Step	Connect Test Oscillator to		$\begin{gathered} \text { Dial } \\ \text { Drum } \\ \text { Setting } \end{gathered}$	Adjust for Maximum Output
1	12BA6 grid (1) in series with 0.05 mf . cap.	455 kc	Minimum Capacity	2nd I-F transformer cores
2	12BE6 grid (7) in series with 0.05 mf . cap.	455 kc	Minimum Capacity	1st I-F transformer cores
3	Inductively coupled to radio loop	1620 kc	Minimum Capacity	C4 (oscillator)
4	Inductively coupled to radio loop	1500 kc	Tune for Maximum	C3 (antenna)

STAGE GAIN AND VOLTAGE CHECKS

Stage gain measurements by vacuum tube voltmeter or similar measuring devices may be used to check circuit performance and isolate trouble. The gain values listed may have tolerances of 20%. Readings taken with low signal input so that AVC is not effective.
(1) I-F Stage Gains.

12BE6 Grid to 12BA6 Grid 50 @ 455 kc 12RAs Grid to 12AVE Diode Dlate. 50 @ 455 kc
(2) Audio Gain.
0.15 volts at 400 cycles across the volume control (R11) with control set at maximum will give approximately $1 / 2$ watt output across the loudspeaker, LS1, voice coil.
(3) Oscillator Grid Bias.

D-c voltage developed across the oscillator grid leak (R1) averages 6 volts at 1000 kc .
(4) Socket Pin Voltages.

Figure 4 shows voltages from all tube pins to \mathbf{B} - unless otherwise specified. Voltage readings much higher or lower than those specified may help localize defective components or tubes.

GENERAL ELECTRIC PAGE 22-1

REPLACEMENT PARTS LIST-MODELS 510F, 511F,

 512F, 513F, 515F, 516F, 517F, 518F, 521F, AND 522F| Cat. No. | Symbol | Deacription |
| :---: | :---: | :---: |
| RAB-149 | $\bar{L} 1$ | CABINET BACK-Back cover to cabinet, includes antennz loop, L1; for Modela 510F, 511 F |
| RAB-150 | L1 | CABINET BACK-Back cover to cabinet, includes antenna loop, L1, for Models |
| *RAB-151 | L1 | CABINET BACK- 515 Back cover to cabinet, includes antenna loop, for Models 512 F , |
| *RAC-085 | | $513 F, 521 F, 522 F$ BRACKET- Clock m |
| | | (metal shield cover over back of clock) |
| - | | RILLE-Cabinet grille cloth (dark ma- |
| *RAG-034 | | GRILLE-Cabinet grille cloth (ivory) for |
| *RAG-035 | | Models $511 \mathrm{~F}, 516 \mathrm{~F}$ (1le cloth (white) for |
| RAG-037 | | Model 518 F (${ }^{\text {GRILLE-Cabinet grille cloth (sold finish) }}$ |
| *RAU. 336 | | for Models 521F or 522 F (|
| | | Model 510 F - ${ }^{\text {a }}$, plastic cabinet for |
| *RAU-337 | | CABINET - Ivory plastic cabinet for |
| *RAU-338 | | CABINET-Brown mottie, dlastic cabinet |
| *RAU.339 | | for Model 515F |
| *RAU-340 | | Model 516 F |
| | | CABINET- Maroon, plastic rabinet for Model 517 F |
| *RAU-341 | | CABINET-White, plastic cabinet for |
| ${ }^{*}$ RAU-342 | | CABINET-Dark mahogany, plastic |
| *RAU-343 | | CABINET-Blonde mah mat |
| | | cabinet for Model 522F |
| RAU-348 | | CABINET-Mahogany mottle, plastic |
| RAU-349 | | CABINet for Model 512 F (${ }^{\text {cabique }}$ ivory, plastic cabinet |
| | | for Model 513 F Que ivory, plastic |
| RCC-107 | C21 | CAPACITOR-. 047 mf ., 600 v ., paper |
| ${ }_{\text {RCC- }}$ | $\mathrm{C}_{\mathrm{C} 22}$ | CAPACITOR -. 003 mf ., 600 v ., paper |
| RCE-127 | C23A, B | CAPACITOR- $50 \quad 50 \mathrm{mf}$., 150 v.. electrolytic |
| RCT-045 | C2A, B | CAPACITOR- $-420-126 \mathrm{mmf}$, dial tuning |
| RCW-3048 | | CAPACACITOR- 002 mf , 220 mmf , 2005 |
| | 20, 26 | mf., 400 mmf ., four section ceramic, unit |
| RCW-3049 | C27 | CAPACITOR- 6 mmf . $=5 \%$, 1400 to 2200 |
| *RDK-215 | | neg. temp. coefficient, ceramic
 KNOB-Volume control knob (white) for |
| | | Model $518 F$ |
| | | KNOB-Dial tuning control knob (maroon) for Models 510F, 511F |
| *RDK-217 | | KNOB-Dial tuning control knob (gold bronze color) for Modela $515 \mathrm{~F}, 516 \mathrm{~F}$, |
| *RDK-218 | | KNOB S ${ }^{\text {S }}$ |
| | | Model 517 F (control knob (maroon) for |
| *RDK-219 | , | KNOB Dial tuning control knob |
| | | (aluminum color) for Model 518 F |
| 30 | | KNOB-Volume control knob (ivory)
 for Models 510 F 511F, 513F S15F 516f |
| RDK-243 | | KNOB-Volumer, chitrol knob (fawn) for |
| | | Model 512F |
| RDK-245 | | KNOB-Dial tuning control knob (ivory scale, maroon numeralst for Model 513 F |
| RDK-246 | | KNOB-Dial tuning control knob (brown |
| | | acale, gold numerals) for Model 512 F |
| *RHC-024 | | CLIP. Mounting clip for electrolytic capacitor. C23A, B |
| *RHC-034 | | CL!P Metal clip fā̃teñé used to mumi 1st and 2nd i.f transformer can assemblies to chassis |
| RHG6-015 | | GROMMET-Rubber grommet used to insulate and shock mount tuning capacitor (C2A B) to chastis |

Cat. No.	Symbol	Description
RHH-004 $*$ RHI-010		FASTENER-Snap-on fastener for holding cabinet back to cabinet (used only on Models $521 \mathrm{~F}, 522 \mathrm{~F}$) GROMMET-Strain relief and insulating grommet in chassis back apron for power cord for Models $515 \mathrm{~F}, 516 \mathrm{~F}, 517 \mathrm{~F}, 518 \mathrm{~F}$. $521 \mathrm{~F}, 522 \mathrm{~F}$
*RHJ-005		SPACER-Metal spacer bushing in grommet mounting tuning capacitor (C2A. B) to chasais
*RHS-048		SHIELD-Metal tube shield for V3, 12 - AV6
RHS-073		SHIELD-Doughnut shaped metal cover over soldered pin connections of tube sockets
RHS-074		SHIELD-Metal protective shield cover on top of chassis over wiring terminal board
RHS-075		SCREW-Screw No. $6 \times 3 / 6$-in. long used to fasten chassis in cabinet
*RJJ-008	J2	RECEPTACLE-AC power receptacle on chassia back apron used for automatic controt of electrical appliancea for Models $515 \mathrm{~F}, 516 \mathrm{~F}, 517 \mathrm{~F}, 518 \mathrm{~F}, 521 \mathrm{~F}$, 522 F
		SOCKET-Tube socket for V2, 12BA6
RJS-163		
RLC-109	T4	V4, 50C5; V5, 35W4 COIL-Oscillator coil SPRING--Spring retaining ring for hub of dial tuning knob
*RRC-054	R11	POTENTIOMETER-500.000 ohms,
*RSW-067	S1	SWITCH-Radio ON OFF switch (alide type) on chassis back apron for Modela $515 \mathrm{~F}, 516 \mathrm{~F}, 517 \mathrm{~F}, 518 \mathrm{~F}, 521 \mathrm{~F}, 522 \mathrm{~F}$
*RTL. 117	T1.	TRANSFORMER-1 1st or 2nd i-f coupling
*RWL-009		CORD-AC power cord and plug (brown) for Models 510 F or 512 F
*RWL.016	P1	CORD AC power cord and plug (ivory) for Models 511 F or 513 F
*RWL-024	P1	CORD-AC power cord and plug (white)
*RWL-025	P1	for Model 518 F CORD AC power cord and plug (brown)
		for Models $515 \mathrm{~F}, 517 \mathrm{~F}, \$ 21 \mathrm{~F}, 52 \mathrm{~F}$
*RWL.026	P1	CORD-AC power cord and plug (ivory) for Model 516 F
*RYN-005		NAMEPLATH-General Electric monogram (metal, on cabinet) for Models $512 \mathrm{~F}, 513 \mathrm{~F}, 521 \mathrm{~F}$ or 522 F
*RZC-009	M1	CLOCK-60 cycle, $105-125$ v., clock assembly for Models 515F, 516F, 517F 521 F . 522 F
*RZC-011	M1	CLOCK-60 cycle, ${ }^{105-125}$ v. clock
*RZC-012	M1	CLOCK-60 cycle, $105-125 \mathrm{v}$. clock
RZC-014	M1	assembly for Models 510F, 511 F CLOCK-60 cycle. 105-125 v., clock
RZC-015	M1	assembly for Model S12F CLOCK -60 cycle, 105-125 v., clock assembly for Model 513F
* $\mathrm{HCP}-0.026$	C17	LOUDSPEAKER-4 inch PM
*UCC-039	C 20	CAPACITOR $\quad .005 \mathrm{mf.} ,600 \mathrm{v.}$, , paper
*UCC-045	C5, 10	CAPACITOR - 05 mf ., 600 v ., paper
*UCG-020	C25	CAPACITOR- 47 mmf., 500 v ., silver mica
*UCU-1036	C19	CAPACITOR- 220 mmf ., mica
*URD-009	R17	RESISTOR- 22 ohms, 1/9 w, carbon
*URD-029	R15	RESISTOR- 150 ohms , $1 / 2 \mathrm{w}$ w., carbon
*URD-081	R1,	RESISTOR- $22,000 \mathrm{ohme}$, 1/9, w., carbon
*URD-113 *URD-129	R13, 14	RESISTOR 470.000 ohms, $1 / 2 \mathrm{w}$, carbon
*URD-141	R12	RESISTOR- 6.8 meg., $1 / 1 / 2 \mathrm{w}$ w., carbon
URF-049	R16	RESISTOR 1000 ohms, 2 w., carbon

GENERAL INFORMATION

The Model 535 is an a-c/d-c superheterodyne receiver which uses five amplifier tubes, and one rectifier tube. The sensitivity of the r-f amplifier stage plus provisions for using an external antenna make this radio especially suitable for use in low signal strength areas.
Special features include an electric alarm clock, with a "wakeup" and "sleep" control switch. In addition, the timer receptacle at the rear of the receiver provides an outlet connection for external appliances consuming up to 1100 watts, which is controlled by alarm and "sleep" control mechanism of the clock. The radio ON-OFF switch adjacent to the timer outlet permits the radio to be turned off if so desired while using the external appliance.

STAGE GAIN AND VOLTAGE CHECKS

CAUTION: One side of the power line is connected to $B-$ Avoid any direct connections to ground. Use an isolating trans. former when making service adjustments with the chassis re. moved from the cabinet.

Stage gain measurements, using a vacuum tube voltmeter or similar measuring device, may be used to check circuit performance and isolate trouble. The gain values listed may have toler ances of ± 20 per cent. Readings should be taken with low signal input so that AVC is not effective.

R-F and I-F GAIN

12BA6 R-F Grid to 12BE6 Grid. @ 1000 kc
12BE6 Grid to 12BA6 I-F Grid..................... . 50 @ 455 ke
12BA6 I-F Grid to 12AV6 Diode. 100 (a) 455 kc

AUDIO GAIN

0.15 volts at 400 cycles across the volume control with the control set at maximum will produce approximately 1.2 volts ($1 / 2$ watt) at the speaker voice coil.

AUDIO POWER

With a 400 cycle signal driving the 35 C 5 sufficiently to begin to overload the output circuit as shown by distortion of the waveshape on an oscilloscope, an output meter at the speaker terminals should read about 1.5 volts (.75 watt). Maximum output should be about 2.2 volts or 1.5 watts.

oscillator grid bias

The d-c voltage developed across the oscillator grid leak resistor (R4) averages 6 volts at 1000 kc using a 20 K ohms/volt meter.

HUM MEASUREMENT

With the volume control at minimum, an oscilloscope connected through a 0.25 mfd . capacitor across C18A shows a 14 -volt sawtooth wave; across C18B, a 0.7 -volt rounded-hump wave (both peak-to-peak).

Hum measured across C18A with a 1000 ohms/volt output meter in series with a 1.0 mf . capacitor should not exceed 4.0 volts RMS. Hum at the speaker voice coil should not exceed .007 RMS volts.

ALIGNMENT FREQUENCESS

R-F
I-F
455 kc

EQUAPMENT REQUIRED

1. Signal generator with 400 cycle modulation.
2. A-C output meter.
3. 0.05 mf . paper capacitor.
4. Loop. (See note 3.)
5. Insulated screwdriver.
6. Isolation transformer.

PROCEDURE-GENERAL

1. With the tuning condenser plates fully meshed, set the tuning dial pointer at the index line just below the 550 mark on the dial.
2. Connect an output meter across the loudspeaker voice coil terminals. Keep the volume control at maximum and attenuate the signal generator output so that the output meter never exceeds 1 volt.
3. For alignment of the oscillator and antenna trimmers, the input signal should be inductively coupled to the radio loop antenna by connecting a four-turn, six-inch diameter loop of bell wire across the signal generator output terminals. Locate the loop parallel to the radio antenna about one foot away.

CAUTION: One side of the power line is connected to B-. Avoid any ground connections direct to $B-$. Use an isolating transformer when making service adjustments with the chassis removed from the cabinet.

GENERAL ELECTRIC PAGE 22.13

TEST CONDITIONS

All readings to $\mathrm{B}-$ ground
D-C readings taken with 20 K ohms/volt meter Line voltage 120 volts, 60 cycles

No signal applied or received during test

Fig. 3 Tube and Trimmer Lecotion

SERVICE SUGGESTIONS

COMPONENT REPLACEMENT

Except for tube socket replacement, it should not be necessary to remove the doughnut-shaped shields over the tube sockets. The following method of wirng replacement parts is recommended:

Cut the defective unit out, leaving enough wire attached to the socket or terminal strip to form a small loop. Pass the legad of the new component through the loop, trim excess wire, crimp, and solder.

CLOCK SERVICE

To remove the clock from the cabinet, remove the metal shield which covers the clock mechanism. Four screws holding the clock to the cabinet then become accessible.

Pin 48 on each socket is a dummy pin used for a spare terminal. A small hole in the tube socket between pins $\$ 18 \% 8$ is used to key these pins.

Fig: 4 Dial Stringing

Clock-parts and service instructions may be obtained from your General Electric Distributor or any Telechron Service Store.

PRODUCTION CHANGES

Early production sets omitted R1, a 68 -ohm resistor in the cathode circuit of the R-F amplifier. R4 osc. grid leak went directly to \mathbf{B} -
Due to procurement difficulties, it may be necessary to use I-F transformers from two manufacture The electrical ratings are identical, the primary leads of one, are reversed internally, requiring special hook-up considerations. The transformer having its No. 1 lug coded green should have its primary lugs wired in reverse order from that shown on the schematie.

REPLACEMENT PARTS LIST

Cat. No.	Symbol	Description
RAB-153 RAC-090	J^{2}	BACK-Cabinet back and loop antenna COVER-Metal cover for clock mech- SHIELD-Metal plate shields bottom of chassis CLOTH-Maroon grille cloth mounted on cardboard CABINET-Mahogany plastic cabinet for Model 535 CORD-Dial cord (25 yarda bulk) BEZEL-Dial window escutcheon bexel KNOB Alarm set knob (fawn) KNOB-Volume control and tuning knob (ffown) Sleep and manual switch knob (Gawn with white dot) POINTER Dial pointer SCALE-Dial scale and mounting plate WINDOW-Dial window CLIP-Electrolytic rupacitor mounting clip CLIP 1-F transformer mounting clip CLIP-Dial scale mounting clip GROMMET-Tuning gang mounting grommet NSULATOR... Power cord strain relief insulator SPACER --Tuning gang mounting spacer SHIELD-Short tube shield for converter V2 SHIELD - Tube suckel pin cover shield SHIELD -. Terminal brard cover shield SCREW-Chassis mounting screw SHIELD-1 134^{*} long tube shield for 2nd detector 4 CONNECTOR- Loop lead connector OUTLET- 110 V . appliance outlet SOCKET-V3 (I.F) tube socket with center sheld OCKET--V2 (conv.) impregnated tube socket SOCKET-V1.V4, V5 and V6 tube socket TRANSFOKMER-Ogcillator transformer CLIP--Oscillator coil mounting clip SPRING -Dial cond tension spring SPRAFT-Tuning shaft and bushing as- sembly
RAC-091		
RAG-040		
RAU-347		
*RDC-032		
RDE-109		
RDK-242		
RDK-254		
RDP-059		
RDS. 104		
-RHC-024		
*RHC-034		
*RHC-048		
*RHI-010		
*RHS-074		
*RHS-075		
*RJC-004 * RJJ-008 *R		
*RJS-162		
*RJS-163		

| Cat. No. | Symbol | |
| :--- | :--- | :--- | :--- |

PAGE 22-16 GENERAL ELECTRIC

REPLACEMENT PARTS LIST-MODELS 605 AND 606

Cat. No.	Symbol	Description	Cat. No.	Symbol	Description	
CAPACITORS			MISCELLANEOUS MECHANICAL PARTS (Cont'd)			
*RCE-051RCE-132RCT-053*RCW-3015*RCW-3018*RCW -3054*UCC-041*RCN-0.3*UCC-045*UCG- 0.2	$C 8, A, B$$C 9,10$$C 1 A, C 1 B$,$C 2 A, C 2 B$$C 6 A, B, C$$C$ C$C 7$$C 5$$C 4$$C 11$$C 12$$C 3$	$\left\|\begin{array}{l}40.40 \text { mfd., } 150 \text { w.v., eiectrolytic filter } \\ \text { capacitor } \\ 200 \text { mfd., } 10 \text { w.v., electrolytic filter ca- } \\ \text { pacitor }\end{array}\right\|$	$\begin{aligned} & \text { RDS-107 } \\ & \text { RHB-016 } \\ & * \text { RHC }-008 \end{aligned}$	DIAL SCALE STUD-Chassis cover mounting stud	DIAL SCALESTUD-Chassis cover mounting studCLIP-1 inch electrolytic filter capacitormounting elip	
			RHI-017		INSULATOR Power cord strain relief insulater WASHER "C" washer for tuning shaft	
		. $002 \mathrm{mfd} . .004 \mathrm{mfd} ., 005 \mathrm{mfd} ., 220 \mathrm{mmf}$.,	*RHM-001 *RHM-052 RHS-083			
		. 300 mmf , , ceramic			WASHER "C" washer for tuning shaft CLIP-Tinnerman speaker mounting clip SCREW-Round-head Phillips screw for	
		. 01 mfd., ceramis,			SCREW-Round-head Phillips screw for mounting latch clip	
			RII-060		INSULATOR-Tuning gang mounting insulator (top)	
		. 05 mfd., 600 v.., maper	RII-061		INSULATOR-Tuning gang mounting insulator (bottom)	
RESISTORS			RII.065			
RRW-042	R10	2300 ohms, 10	RMC-002		INSULATOR-Fiber bushing for mounting handle ends to chassis CLIP-Oscillator coil mounting clip	
*URD-013	R9	$33 \mathrm{ohms} \pm 10 \%$ \% $1 / 2 \mathrm{w}$ w, carbon	*RMC-053 *RMS-130 RMX-183		CLIP-Oscillator coil mounting clip CLIP-Back cover latch clip SPRING-Dial cord tension spring SHAFT-Tuning shaft and bushing	
*URD-045	R13	680 ohms $\pm 10 \%$ \% $1 / 2 \mathrm{w}$., carbon				
*URD-053	$\mathrm{R}^{\mathrm{R} 12}$	1500 ohms $\pm 10 \%$, $/ 2 \mathrm{w}$. , carbon 4700 ohms $\pm 10 \%$ carbon				
*URD-097	R1	$100,000 \mathrm{ohms} \pm 10 \%$, w/ w., carbon			CABINET PARTS	
*URD.113	R7	470,000 ohms $\pm 10 \%$. $1 / 2 \mathrm{w}$., carbon				
*URD-145			$\begin{aligned} & \text { RAB-163 } \\ & \text { RAB-164 } \\ & \text { RAC-095 } \end{aligned}$		BACK-Marcon plastic cabinet back for Model 605 BACK-Green plastic cabinet back for Mode! 606	
*URE-061	R11	13300 ohms $\pm 10 \%$, 1 w., carbon				
MISCELLANEOUS ELECTRICAL PARTS						
REX 005	SR	RECTIFIER Selenium rectifier			CABINET Maroon plastic cabinet less bark rover, hinges, etc., for Model 605	
$\begin{aligned} & \text { RJC-022 } \\ & \text { RJP-033 } \end{aligned}$		CONNECTOR--" $B^{\prime \prime}$ battery connector PLUG-"A" battery plug	RAC-096		CABINET-Green plastic cabinet leas back cover. hinges. etc., for Model 606 COVER - Front dial cover, plastic	
*RJS-100		SOCKET-7 pin miniature tube socket,	RAC-097 RAG-044			
*RJS-124					GRILLE CLOTH-Maroon grille cloth mounted on cardboard	
		dark brown, unimpregnated	RAG-045		GRILLE CLOTH-Green grille cloth mounted on cardboard	
*RJS-125		SOCKET- 7 pin miniature tube socket, unimpregnated, dark brown with center shield pin	RAI 008 RDK-252 RDK-253		COVER STOP-Black rubber block KNOB--Green plastic knob with clip	
*RLC-101	T1	TRANSFORMER. Oscillator transforme				
RLL-046		ANTENNA -Ferrite antenna	RDK-253*RHC-036 *RHE-01a		KNOB-Fawn plastic knob with clip CLIP-Tinnerman cover mounting clip EYELET-For mounting front cover	
RRC-166	R4, SlA, B	CONTROL 0.5 meg., volume control				
		with ON OFF switch	*RHE.010		EYELET-For mounting front cover HINGE-Back hinge	
*RSW-088		SWITCH-Battery-line changeover switch. TRANSFORMER-1 ${ }^{\text {at }}$ or 2 nd i -f trans-	$\begin{aligned} & \text { *RHN-020 } \\ & \text { *RHR-013 } \end{aligned}$		POST-Mounts handle bar to handle end RIVET - For cabinet back hinge	
	14, 15, 16	former with capacitors molded in base				
*RTO.108		TRANSFORMER Audio output trans-	*RHS-081RHS-084*RHY-034*RHY-035		SCREW Mounts handle bar to handle	
$$	L5	former POWER CORD- A-C line cord and plug SPEAKER-4-inch PM loudspeaker			SCREW-For mounting cabinet catch HANDLE END-Chromium plated end HANDLE BAR-Fawn plastic rod for	
MISCELIANEOUS MECHANICAL PARTS			*R		ande HANDLE BAR-Green plastic rod for handle	
RAD-078		BRACKET Ferrite antenna mounting				
		bracket ${ }_{\text {BRACKET }}$ - Latch bracket and spring	$\begin{aligned} & \text { RML-051 } \\ & \text { RMP-031 } \end{aligned}$		LATCH-Front cover release PIVOT ROD-Brass rod, $062 \mathrm{in} . \times 11 / 4 \mathrm{in}$. long for latch SPRING-Left spring for front cover SPRRING-Right spring for front cover	
RDC-032		DIAL CORD-Fine nylon dial cord. 25				
			RMS. 244			
RDP-061		OINTER-Dial pointer				

RADIO CIRCUIT ALIGNMENT

EQUIPMENT REQUIRED:

Signal generator
Output meter
.05 mf paper capacitor

Insulated screwdriver
Isolation transformer
A battery*

PROCEDURE:

R-F and Oscillator adjustments can be easily made with the chassis in the cabinet; to make I-F adjuetmente, remove the chassis from the cabinet, unsolder the AVC wires from the antenna and the tuning capacitor frame, remove the metal shield from the bottom of the chassis, resolder the AVC wires to the antenna and tuning capacifor again before aligning.

With the tuning gang condenser fully closed, slip the dial pointer along the dial string until it points to the small index mark on the dial just below the 550 ke position.

Connect the output meter across the voice coil terminals of the speaker. If the lowest range on your output meter is greater than 3 volts, better peak indications can be had by connecting
the output meter to the plate of the output tube (pin 2 of 3 S4 tube) through a series .05 capacitor and using the 50 -volt scale. Since the bottom shield must be in place for the RF section alignment, connect the .05 capacitor to the tube pin as follows: Slip a piece of spaghetti over one lead of the capacitor, leaving about $\frac{3}{10}^{16}$ of bare wire at the end; carefully bend the bare end around pin 2 of the 3 S 4 in a tight-fitting loop; re-insert the tube in its socket

During I-F alignment, the ground lead from the signal generator should be connected to $B-$, and the signal lead to the proper grid through a .05 capacitor. For R-F adjustments the input signal should be inductively coupled to the receiver antenna by connecting a 4 -turn, 6 -inch diameter loop of bell wire to the signal generator terminals. The loop and the antenna should be spaced about a foot apart, and arranged coaxially: that is, the antenna points through the center of the loop.
The volume control should be at maximum during all adjustments, and the signal generator output should be adjusted so that the output meter never reads more than .4 volt at the speaker, or about 20 volts at the plate of the output tube. Tune all adjustments for maximum output.

* Make the final ANT. trimmer adjustment with the chassis inatalled in the cabinet and an " A " battery in position and connected, since the battery pf-
fects the tuning of the antenna.

VOLTAGES MEASURED WITH 20,000 $/$ VOLT METER TO B; NO RF OR IF SIGNAL, SET OPERATING FROM $60 \sim$ I2O VOLT LINE.

* DIRECT VOLTAGE READING UNRELIABLE.
(22) INDICATES VTVM READING.
SWITCH S2, SHOWN IN AC POSITION VIEWED FROM FRONT OF CHASSIS

Fig. 3. Battery-line Switch Wiring
Fig. 2. Socket Voltuges

Step	Sig. Gen. Connected to	Sig. Gen. Frequency	Dial Setting	Adjust For Max. Output
1	174 Grid Pin 6	455 kc	550 kc	Cores of I.F Trans. T3
2	IR5 Grid Pin 6	455 kc	550 kc	Cores of I-F Trans. T2
3	IR5 Grid Pin 6	455 kc	550 kc	Re-adjuat T2 and T3
4	Inductively Coupled	1620 kc	1620 kc	Ose. trimmer C2
5	Inductively Coupled	1500 kc	Tune for maximum	$\begin{aligned} & \text { R-F trimmer } \\ & \text { C1B } \end{aligned}$

Fig. 4. Dial Stringing and Tube and Trimmer Location

GENERAL INFORMATION

These portable radios are five-tube superheterodyne broadcast receivers with a range of 540 to 1600 kc . The power source may be either $105-115$ volts, $50-60$ cycles a-c, or $\mathrm{d}-\mathrm{c}$, when a power outlet is available. The receiver will also operate from its battery source, thus making it independent of external electrical power, providing excellent operation in any location where external power is not available.
If the dial light is burnt out or missing, reduced performance will be noted on AC and DC operation. However, battery operation will be, normal.

When this receiver is stored for long periods of time, the power plug should be removed from the chassis outlet.

BATTERY-AC OR DC OPERATION.

The center knob turns on the battery, provided that the power plug is well inserted into the socket in the chassis.

For a-c or d-c supply ($105-115$ volts, 50 - to 60 -cycle operation), the same knob switches on the power when the power plug is pulled out of its socket in the chassis and inserted into the house outlet.

ELECTRICAL CIRCUIT ALIGNMENT

EQUPPMENT REQUIRED:

1. Test Oscillator with Tone Modulation..
2. A-C Output Meter.
3. Paper Capacitor .05 Mf .
4. Insulated Screwdriver.
5. Coupling Loop for Test Oscillator (see text).
6. Isolation Transformer.

PROCEDURE-GENERAL.

1. The Alignment Chart gives the alignment procedure with
correct sequence of trimmer adjustments. The chassis must \& removed from the cabinet during i-f alignment. The location of the i-f and r-f adjustments are shown in Figure 2.
2. The "low" side of the test oscillator output should be co: nected to B minus; the "high" side should be connect" as indicated in the alignment chart. The test oscillator outpi signal should be atténuated so that the output meter readis never exceeds $1 / 2$ volt. Connect the capacitor listed in column of the alignment chart between the "high" side of the test osc lator and the point of input specified.
PRECAUTION: Use an isolating transformer between the pow supply and the radio receiver input. The use of an isolatii capacitor is not recommended, as a-c through the capacitor w introduce hum modulation and/or create the possibility of burned out signal generator attenuator.
3. The output meter should be connected across the voi coil terminals of the speaker.
4. During the entire alignment procedure the volume conts should be rotated clockwise to its maximum position.
5. For alignment of the antenna trimmer, the input sigr should be inductively coupled to the radio loop antenna connecting a 4 -turn, 6 -inch diameter loop of bell wire acrs the signal generator output terminals, and locate the loop abo one foot from the radio loop for alignment. The position of t loop with respect to the radio loop should not be changed duri any one set of adjustments to prevent possible errors in pe readings.
6. The antenna loop acquires a different inductance wh the back is closed. Therefore, the adjustment of the anten trimmer has to be made with the back closed, through the ope ing on the right side of the cabinet which normally is closed a plug button. After adjustments have been completed, the pl button has to be put in place again.

ALIGNMENT CHART				
Step	Test-Osc. Connected to:	TestOsc. Setting	Pointer Setting	Adjust for Maximum Outf
1	1 T4 (V3) I-F grid (pin 6) in series with .05 mfd . and B-bus.	455 KC	550 KC	Iron cotes of I-F Transformer $\mathbf{T} 2$.
2	1R5 (V2) converter grid (pin 6) in series with 05 mfd. and B-bus.	455 KC	550 KC	Iron cores of I-F Transformer T1.
3	1_{1}	1670 KC	Gang condenser fully open	C1B oscillator tri mer for maximun
4	bus.	1500 KC	For maximum	C1C R-F trimm for maximum.
5		580 KC	output	Core of T4 for maximum.
6 Repeat steps 4 and 5 to give maximum performance.				
7	Inductively coupled. See note 5 .	1500 KC	For maximum output	Cla trimmer fo maximum with cabinet back clos See Note 6.

GENERAL ELECTRIC PAGE 22-2

STAGE GAINS AND VOLTAGE CHECKS

In order to check circuit performance and facilitate trouble shooting, the measurement of stage gain by means of a vacuum voltmeter or similar measuring device is recommended. The gain values listed may have tolerances of 20%. Readings should be taken with low signal input so that the AVC is not effective.

(i) R-F STAGE GANNS.

1 T4 R-F Grid (Pin 6) to 1RS Grid (Pin 6).... 12 @) 1000 KC
1R5 Grid (Pin 6) to 1T4 Grid (Pin 6) 18 @ 1000 KC
1T4 Grid (Pin 6) to 1U5 Diode Plate (Pin 4). 45 (a) 455 KC
(2) AUDIO GANN.
.020 volt at 400 cycles across volume control (R13) with control set at maximum will give approximately .05 watts output across speaker voice coil.
(3)

D-C voltage developed across oscillator grid resistor (R9) averages -8 volts at 1000 kc with respect to B -.

(4) SOCKET PIN VOLTAGES.

Figure 4 shows voltages from all tube pins to $\mathbf{B}-$. Voltage readings much lower than those specified may help localize defective components or tubes.
(5) MULTMPLE CERAMIC CAPACITOR.

This multiple capacitor unit is of the ceramic capacitor typ and contains five capacitors C11A, B, C, D and C12. This unit RCW-3015, is illustrated in Figure 2 for lead identification. I during service the ceramic capacitor unit is found to be defective the entire unit may be replaced by the identical part, RCW 3015, or the defective section may be located and disconnecte from the receiver circuit and a single universal capacitor of equiv alent electrical value used in its place.

Fig. 2. Connections for Capacitor RCW-3015

Fig. 3. Tube and Trimmer Lecation

BOTTOM VIEW OF CHASSIS

DC VOLTAGES TO B- UNLESS OTHERWISE SPECIFIED.ALL
all ratings are a.g. operation measured with reference to b:
RATINGS FOR BATTERY ARE SIMILAR TO AC RATINGS.
VOLTAGE IS MEASURED WITH 20,000 OHMS PER VOLT METER.

Fig. 4. Sacket Voltages

Fig. 5. Dial Stringing
REPLACEMENT PARTS LIST

Cat. No.	Symbol	Description	Cat. No.	Symbol	Description

CAPACITORS

-RCE-095	C2A, B, C	40, 40, 200 mid., 150,$150 ; 25$ volts, electrolytic.
RCE-131	C10	$100 \mathrm{mfd} ., 6 \mathrm{v}$. electrolytic.
RCT-051	C1A, B, C	Tuning capacitor
*RCW-1073	C6 ${ }^{\text {c }}$	47 mmf, ceramic.
RCW-3015	C11A, B, C,	Ceramic
*RCW. 8056	C9	4.7 mmf., ceramic
*UCC. 037	C13	. $003 \mathrm{mf.}$,600 v ., paper
*UCC-041	C7	. $02 \mathrm{mf.}$,600 v ., paper
* ${ }^{*}$ UCCC-042	C14	. $03 \mathrm{mf}$.600 v ., paper

RESISTORS

(RRC-155	$\begin{aligned} & \text { R13, S1A, } \\ & \text { S1B } \end{aligned}$	VOLUME CONTROL AND SWITCH
${ }^{\text {* RRW }}$ *URD-041	R3	2300 ohms, 10 w., w
*URD-041	R5	470 ohms, $1 / 1 \mathrm{w}$., carbon
*URD.045	R5	680 ohms, $3 / 5 \mathrm{w}$., carbon
*URD-053	R4	1500 ohms , $1 / 2 \mathrm{w}$., carbon.
*URD-067	R11	5600 ohms, $1 / 2 \mathrm{w}$., carbon.
*URD-097	R9	100,000 ohms, $1 / 2 / 2$ w., carbon
*URD-113	R7, 15	470,000 ohms, $1 / 2 \mathrm{w}$, carbon
*URD-129	R12, 16	2.2 meg., $1 / 1 \mathrm{w}$., carbon
*URD-133	R14, 19	
*URD-137	R17	4.7 meg., $1 / 2$ w., carbon
*URE-013	Rr	33 ohms, 1 w., carbon.
*URE-059	R2	2700 ohms, 1 w., carbon
*URF-035	R10	270 ohms, 2 w., carbon.

MISCELLANEOUS ELECTRICAL PARTS

RER-001	SR	RECTIFIER-Selenium
*RHS-010		SHIELD-Tube shield for V4
RII-065		INSULATOR-For handle
*RJP-025	PLI	PLUG-Battery plug (male)
*RJS-100		SOCKET-Tube socket for V2
*RJS-124		SOCKET-Tube socket for V4 and Vs
*RJS-125		SOCKET--Tube socket for V1, V3.
RJX-031		SOCKET - Dial light socket.
*RLE-030	T4	TRANSFORMER-RF coupling
*RLC-068	L2	COIL Oscillator coil.
RLL-045	L_{1}	LOOP
RSW-088	S2A. B. C	SWITCH.AC, DC to battery switch
${ }^{\text {R TL-052 }}$		TRANSFORMER-1st IF trans-
*RTL-079	T2	TRANSFORMER-2nd IF trans-
*RTO-050	T3	TRANSFORMER-Output
		former.
*S-400C-19		D

miscellaneous mechanicai parts

MISCELLANEOUS MECHANICAL PARTS (Cont'd)

CABINETS AND CABINET PARTS

RAB-161		BACK-Cabinet back (maroon) for
RAB-162 RAC-092		BACK Cabinet bacr for Model 611.
		$\begin{aligned} & \text { RON } \\ & 610 \end{aligned}$
RAC-093		FRONT-Cabinet front (green) for
RAC-094		COVER-Chassia cover
RAD-077		BRACKET-For mounting cabinet handle.
RAG-042		GRILLE CLOTH-Maroon, for
RAG-043		
		611
*RDC-032		DIAL CORD
RDE-116		ESCUTCHEON Cabinet excutcheon
RDE-117		for Model 610
RDK-248		KNOB-ON-OFF-VOLUME for
		Monlel 610 , fawn color
RDK.249		KNOB-ON-OFF-VOLUME knob
RDK-250		KNOB-Tuning kreet for Model 610,
		fawn color.................
KDK-251		KNOB-Tuning knob for Model 611, green color
RHF-011		FOOT-Cabinet foot button (maroon)
RHF-012		FOOT Modicl 610.0 Cabinet foot button (eray)
		for Model 611.
$\begin{aligned} & \text { RHY-034 } \\ & \text { RHY-035 } \end{aligned}$		HANDLE END.
		610
RHY-036		HANDLE-Green, for Model 611

*PARTS USED ON PREVIOUS MODELS.

Even if the "A" battery is not connected to the circuit it should be in place in the cabinet for optimum RF pick-up. The loop nas been tuned with the battery in place and becomes detuned if the battery is removed.

SPECIFICATIONS

CABINET:

Model.	755
Material	Wood
Color	Mahogany
Height	347/8 in.
Width	33 年 in .
Depth	16 in .

ELFCTRICAL RATING:

Voltage	105-125
Frequency	60 cycles
Wattage (Radio only)	85 watts
(With phono)	100 watt

OPERATING FREQUENCIES:

AM Band	.540-1600 kc
FM Band	88-108 mc

INTERMEDIATE FREQUENCEES:
AM. $45 \mathbf{4 5} \mathbf{~ k c}$
AUDN POWER OUTPUT (I2O VOLTS LNE);

RECORD CHANGER
Model P15 (331/3, 45 and 78 RPM)

PHONOGRAPH PICKUP:

Type Dual stylus, variable reluctance
DC Resistance 340 ohma

ANTENNA:

AM.
Built-in loop
FM
FM.
necessary to install an externsl $F M$ antenna, the brown wire extending from the rear of the cabinet should be disconnected from the antenna terminal strip.

TURE COMPLEAENT:
 can be found in ER-S-P15.

STAGE GAINS

Stage gain measurements using a vacuum tube voltmeter or oscilloscope with a calibrated signal generator may be used to check circuit performance and isolate trouble. Use small signals to eliminate AVC action. Tolerance $\pm 20 \%$. Signal applied through 3.3 K resistor and 1000 mmfd . capacitor in series.

STAGE	GAIN AM	GAIN FM
Ant. to V1 Grid	1 (98 MC)
V1-V2 Grid		6 (98 MC)
V1-V3 Grid	14 (1000 KC)
V2-V3 Grid	10 (10.7 MC)
V3-V4 Grid	70 (455 KC)	45 (10.7 MC)
V4-V5 Grid ${ }^{\text {a }}$	20 (10.7 MC)
V4-V6 Grid	80 (455 KC)	

ANDO GAN:

0.1 volt at 400 cps across the volume control will give approximately $1 / 2$ watt ($1.25 \mathrm{v} . a-\mathrm{c}$) across the speaker voice coil.

OSCHLATOR GRID DAS:

D-C voltage developed acros: R28. Use 100 K resistor to isolate meter. Tolerance $\pm 20 \%$.

	VTVM	20 K ohms $/$ volt meter
1000 KC	7 volts	4 volts
98 MC	3 volts	2 volts

HUM MEASUREMENT:

Hum measured across the voice coil of the speaker with the volume control set at minimum and band switch in the AM position should not exceed 7 millivolts.

On FM position, ground the limiter grid through a .01 mfd . capacitor. Hum should not exceed 15 millivolts.

METER ALIGNMENT CHART

Step No.	Signal Generator Frequency	Signal Input Point	Band Switch Setting	Dial Setting	Adjust	See Note
AM ALIGNMENY						
1	455 KC	Lug on CIE. Conv. tuning condenser		C1 completely	Primary and secondary cores of TS and T2 for maximum.	3,4
2	1620 KC	Loop Ant. See Note 5.	AM	open.	Adjust OSC. C16 for maximum.	3,4 $5,7$.
3	1500 KC	Loop Ant. See Note 5.		Rock C1 for max. signal	Adjust RF C25, and ANT, C9 trimmers for maximum.	

FM ALIGNMENT

4	10.7 MC AM or $\mathbf{F M}$ See Note 9.	6BA6 grid (Pin 1 of V4) thru .01 mfd .	FM		T6 secondary (top core) for minimum.	$\begin{gathered} 3,4,6 \\ 9 \end{gathered}$
5					T6 primary (bottom core) for maximum.	
6	Retune signal generator for null point obtained in step 4 ($\mathbf{1 0 . 7} \mathbf{M C}$).					
7	10.7 MC un. modulated.	6BA6 grid (Pin 1 of V4) thru .01 mfd .	FM	.	Core of L10 for maximum.	$\begin{gathered} 1,2 \\ 10 \end{gathered}$
8		6BA6 grid (Pin 1 of V3) thru .01 mfd .			Primary and secondary cores of T3 for maximum.	
9		12AT7 cathode ($P_{\text {in }} 8$ of V2) thru .01 mfd .			Primary and secondary cores of T1 for maximum.	
10	88 MC unmodulated	Dipole terminals.		88 MC	FM oscillator slug (T9) for maximum.	$\begin{aligned} & 1,2 \\ & 7,11 \end{aligned}$
11	108 MC unmodulated	Dipole terminals.		108 MC	Adjust FM oscillator trimmer $\mathbf{C l 3}$ to 1st peak.	
12	108 MC unmodulated	Dipole terminals.		108 MC	Adjust FM R-F trimmer (C18) for max. while rocking dial across 108 signal.	
13	Repeat Steps 10, 11.					

EQUIPMENT REQUIRED

1. Signal Generator, General Electric YGS-3 or equivalent.
2. 20,000 ohm-per-volt meter or vacuum tube voltmeter.
3. Output meter.
4. .01 mfd , paper capacitor.
5. $200,000 \mathrm{ohm}$ resistor.
6. Loop of wire. See Note 5.

ALJGNMENT NOTES

1. Use unmodulated signal.
2. Connect 20,000 ohm-per-volt meter or VTVM from the limiter grid Test Point (J5) near V5 to the chassis. Test voltage will be negative. Use 2.5 volt scale. Keep signal generator output low so that meter indicates not more than 1 volt.
3. Use 400 cycle modulation.
4. Connect a standard output meter across speaker voice coil. Turn volume control full on. Keep signal generator output down so that output meter indicates not more than $1 / 2$ watt output during alignment (approximately 1.25 volts a-c).
5. For alignment of the AM oscillator and R-F trimmer, the signal should be inductively coupled to the loop antenna by connecting a four turn, six inch diameter loop of wire across the signal generator terminals, located about one foot from the radio loop antenna.
6. When tuning the secondary of T6, two peaks will be obtained. The center null between the two peaks is the correct setting. As the transformer is tuned either side of 10.7 MC , the meter reading should increase.
7. Before adjusting oscillator for proper dial calibration, set pointer at index line near 88 MC mark by slipping along dial string as required. Have tuning gang completely closed.
8. C9 ANT. trimmer to be readjusted after chassis and loop are installed in cabinet. Peak on weak station at approximately 1400 KC .
9. When detuning the signal generator in step 5, two maximum meter readings will be obtained, one on each side of 10.7 MC. The primary of T6 should be aligned to maximum when the signal generator is tuned to the smaller of these two peaks.
10. Make all chassis connections for FM-IF alignment as short as possible.
11. FM oscillator trimmer (C13) and FM r-f trimmer (C9) should be at minimum capacity.

Fig. 1. Tube and frimmer lecation

Fig. 2. Visual alignment equipment

phase shift network

Connect 60 cps audio signal from the signal generator to the double traces on the scope to be joined together. The alternat HORIZONTAL AMPLIFIER terminals on the scope through a phase shift network, as shown in Fig. 2, which permits the Ghase shift network may be required on scopes other tha General Electric Model ST-2A.

Visual alignment chart

| Signal | Signal | Band | Dial | See | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Step | Generator | Input | Switch | Setting | Adjust |
| No. | Frequency | Seint | | | |

AM ALIGNMENT

1	$\begin{aligned} & 455 \mathrm{kc} F \mathrm{M} \\ & \text { mod. } \pm 20 \mathrm{kc} \\ & \text { at } 60 \mathrm{cps} \text { rate } \end{aligned}$	Lug on CiE conv. tuning cond.	AM		T2 and $T 5$ for max. gmplitude of curve. See Fig. 3A.	3
2	1620 kc AM mod. with 60 cps.	Inductively coupled to antenna loop.		Gang Cl completely open.	C16 (BC-Osc.) for steepest slope of straight line on scope. See Fig. 3-C.	3,6
3	1500 kc FM mod. $\pm 20 \mathrm{kc}$ at 60 cps rate.			Gang C1 for max. amplitude of curve.	C25 (BC-Mix.) for max. amplitude of curve. See Fig. 3-A.	$\begin{aligned} & 3,4 \\ & 5,6 \end{aligned}$

FM ALIGNMENT

4	10.7 mc FM $\mathrm{mod} . \pm .3 \mathrm{mc}$ at 60 cps rate.	Lug on C1B thru $\mathbf{. 0 1 ~ m f d . ~}$	FM		Cores of T1, T3, and L10 for max. amplitude of curve. See Fig. 3-A.	1
5				\ldots	Secondary of T6 for symmetry of curve of Fig. 3.B.	3
6				\ldots	Primary of T6 for max. amplitude of positive and negative peak.	3
7	Repeat Step 5.					
8	88 mc AM mod. at 60 cps.	FM antenna terminals.		At 88 mc	Core of T9 for steepest slope. See Fig. 3-C.	1,2
9	$\begin{aligned} & 108 \mathrm{mc} \text { AM } \\ & \text { mod. at } 60 \\ & \text { cps. } \end{aligned}$			At 108 mc	C39 (FM-OSC.) for steepest slope of straight line trace on scope. Fig. 3-C.	1, 2, 4
10	108 mc FM $\bmod . \pm .3 \mathrm{mc}$ at 60 cps rate.			Rock in Cl for max.	Adjust C18 (FM-MIX) for max. amplitude of response. See Fig. 3-A.	1, 2, 4
11	Repeat Steps 8,9.					

Fig. 3. Alignment eurve:
EQUIPMENT REQUIRED FOR VISUAL ALKCNMENT

1. General Electric YGS-3 or equivalent sweep generator.
2. General Electric ST-2A scope or equivalent.
3. $200 \mathrm{~K}, 1$ ² watt resistor.
tube (pin 1 of V5) through the Test Point and to chassis. Reduce input from signal generator until "grass" begins to appear on scope.
4. Set pointer at index line near 88 me mark by slipping pointer along dial string as required. Have tuning gang completely closed
5. Connect vertical plates of scope at junction of C57 and TONE SW. S2B through 200 K res. Reduce input from signal generator until "grass" begins to appear on scope.
6. In some cases tuning of the converter grid will cause "pulling in" of the oscillator and will change the oscillator frequency. If peaking C9 or C18 as in steps 3 or 10 causes the curve to move of the screen, it is necessary to recalibrate the oscillator as in steps 2 and 9.
7. C9 (BC-RF) trimmer to be adjusted after chassis and loop are installed in cabinct. Peak on weak station at approximately 1400 kc
8. For alignment of the AM oscillator and r-f trimmers, the signal should be inductively coupled to the loop antenna, by connecting a four-turn, six-inch diameter loop of wire to the signal generator terminals. Locate this loop about one foot from

NOTES FOR

1. Connect vertical plates of scope to the grid of the limiter
the radio loop antenna.

Fig. 7. Sockel voltages

SOCKET VOLTAGES-TEST CONDITIONS: Band switch on FM-Tone switch on Radio-117 volts AC line-No signal inputMeasured to chassis with 20,000 ohm-per-volt meter, volume
control minimum
NOTE: 6 volt heater circuit actually grounded at Tuner chassis only.

Fig. 10. Transformer connections
Fig. 9. Tone switch

Fig. 8. Band switch

REPLACEMENT PARTS LIST

MODEL 757	
SPECIFICATIONS	
CABINET:	
Material.	Wood
Color	Mahogany
Height.	. 34 in .
Width.	32 in .
Depth.	16 in .
Electrical rating:	
Voltage. .	.105-125
Frequency	. 60 cycles
Wattage (Radio only)	. 8100 watts

AUDIO POWER OUTPUT (120 VOLTS LNE):
Undistorted . 8 watts wats

OPERATING FREQUENCIES:

AM-RF	540-1600
FM-RF	88-108 m
AM-IF	455 k
FM-IF .	10.7 m

LOUDSPEAKER:

Type . 12 inches PM
Size.
Voice Coil Impedance at 400 cycles. 3.2 ohms

RECORD CHANGER:

Model P16.
$331 / 3,45$ and 78 RPM
Complete service information for the Model P16 record changer can be found in ER-S-P16.

PHONOGRAPH PICKUP:

Type. 340 ohmal stylus,
DC Resistance

ANTENNA:

AM.
FM.
Cabinet antenna or 300 -ohm $\mathbf{F M}$ ant in cabin necessary to install an external $F M$ antenna, the built in cabinet antenna should be disconnected from the antenna terminas.

TUBE COMPLEMENT:

STAGE GAINS

Stage gain measurements using a vacuum tube voltmeter or oscilloscope with a calibrated signal generator may be used to check circuit performance and isolate trouble. Use small signals to eliminate AVC action. Tolerance 20%. Signal applied through 3.3K resistor and 1000 mmfd . capacitor in series.

STAGE	GAIN AM	GAIN FM
Ant. to V1 Grid	$\ldots \ldots$.	$1(98 \mathrm{MC})$
V1-V2 Grid	$\ldots \ldots$.	$6(98 \mathrm{MC})$
V1-V3 Grid	$14(1000 \mathrm{KC})$	$\ldots \ldots$
$\mathrm{V} 2-\mathrm{V} 3$ Grid	$\ldots \ldots$.	$10(10.7 \mathrm{MC})$
$\mathrm{V} 3-\mathrm{V} 4$ Grid	$70(455 \mathrm{KC})$	$45(10.7 \mathrm{MC})$
$\mathrm{V} 4-\mathrm{V} 5$ Grid	$\ldots \ldots$.	$20(10.7 \mathrm{MC})$
$\mathrm{V} 4-\mathrm{V} 6$ Grid	$80(455 \mathrm{KC})$	$\ldots .$.

OSCILLATOR GRID BIAS:

D-C voltage developed across K 28 . Use 100 K resistor to isolate meter. Tolerancc 20%.

	VTM	20 K ohms $/$ volt meter
1000 KC	7 volts	4 volts
98 MC	3 volts	2 volts

AUDIO GAIN:

0.1 volt at 400 cps across the volume control will give approximately $1 / 2$ watt ($1.25 \mathrm{v} . a-c$) across the speaker voice coil.

AUDD POWER:

With a 400 -cycle signal driving the 6V6GT output tubes sufficiently to begin to overload the output circuit as shown by distortion of the waveshape on an oscilloscope, an output meter at the speaker terminals should read about 4.5 volts. Maximum possible output is about 5 volts.

HUM MEASUREMENT

With the volume control at minimum, an oscilloscope connected through a 0.25 mfd . capacitor across C 78 A shows a 12 -volt sawtooth wave; across C78B, 1 volt rounded hump wave. (Both peak-to-peak.)

Hum measured across C78A with a 1000 ohms/volt output meter in series with a 1.0 mf capacitor should not exceed 5 volts RMS; across C78B . 2 of a volt.

Hum at the speaker voice coil should not exceed .007 volt RMS.

METER ALIGNMENT CHART

Step No.	Signal Generator Frequency	Signal Input Point	Band Switch Setting	Dial Setting	Adjust	See Note
AM ALIGNMENT						
1	455 KC	Lug on C1E. Conv. tuning condenser	AM	C1 completely open.	Primary and secondary cores of T5 and T2 for maximum.	3, 4
2	1620 KC	Loop Ant. See Note 5.			Adjust OSC. C16 for maximum.	$\begin{gathered} 3,4 \\ 5,7, \\ 8 \end{gathered}$
3	1500 KC	Loop Ant. See Note 5.		Rock C1 for max. signal	Adjust RF C25, and ANT. C9 trimmers for maximum.	

FM ALIGNMENT

4	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { AM or FM } \\ & \text { See Note } 9 . \end{aligned}$	6BA6 grid (Pin 1 of V4) thru .01 mfd .	FM	. . .	T6 secondary (top core) for minimum.	$3,4,6$
5					T6 primary (bottom core) for maximum.	
6	Retune signal generator for null point obtained in step 4 (10.7 MC).					
7	10.7 MC unmodulated.	6BA6 grid (Pin 1 of V4) thru .01 mfd .	FM	. . .	Core of L10 for maximum.	1,2,10
8		6BA6 grid (Pin 1 of V3) thru .01 mfd .			Primary and secondary cores of T3 for maximum.	
9		12AT7 cathode (Pin 8 of V2) thru .01 mfd .			Primary and secondary cores of T1 for maximum.	
10	88 MC unmodulated	Dipole terminals.		88 MC	FM oscillator slug (T9) for maximum.	$\begin{aligned} & 1,2, \\ & 7,11 \end{aligned}$
11	108 MC unmodulated	Dipole terminals.		108 MC	Adjust FM oscillator trimmer Cl3 to 1 st peak.	
12	108 MC unmodulated	Dipole terminals.		108 MC	Adjust FM R-F trimmer (C18) for max. while rocking dial across 108 signal.	
13	Repeat Steps 10, 11.					

METER ALIGNMENT

EQUPMENT REQURED

1. Signal Genezator, General Electric YGS-3 or equivalent.
2. 20,000 ohm-per-volt meter or vacuum tube voltmeter.
3. Output meter.
4. 01 mfd ., paper capacitor.
5. 200,000 ohm resistor.
6. Loop of wire. See Note 5.

ALIGNMENT NOTES

1. Use unmodulated signal.

2. Connect 20,000 ohm-per-volt meter or VTVM from the limiter grid Test Point (J5) near V5 to the chassis. Test voltage will be negative. Use 2.5 volt scale. Keep signal generator output low so that meter indicates not more than 1 volt.
3. Use 400 cycle modulation.
4. Connect a standard output meter across speaker voice coil. Turn volume control full on. Keep signal generator output down so that output meter indicates not more than l_{2}^{2} watt output during alignment (approximately 1.25 volts a-c).
5. For alignment of the AM oscillator and R-F trimmer, the signal should be inductively coupled to the loop antenna by connecting a four turn, six inch diameter loop of wire across the signal generator terminals, located about one foot from the radio loop antenna.
6. When tuning the secondary of T6, two peaks will be obtained. The center null between the two peaks is the correct setting. As the transformer is tuncd either side of 10.7 MC , the meter reading should increase.
7. Before adjusting oscillator for proper dial calibration, set pointer at index line near 88 MC mark by slipping along dial string as required. Have tuning gang completely closed.
8. C9 Aivt. trimmer to be readjusted after chassis and loop are installed in cabinet. Peak on weak station at approximatcly 1400 KC .
9. When detuning the signal generator in step 5 , two maximum meter readings will be obtained, one on each side of 10.7 MC. The primary of T6 should be aligned to maximum when the signal generator is tuned to the smaller of these two peaks.
10. Make all chassis connections for FM-IF alignment as short as possible.
11. FM oscillator trimmer (C13) and FM r-f trimmer (C9) should be at minimum capacity.

MODEL 757

Fig. 1. Tube and Trimmer Lecation

Fig. 2. Visual Alignment Equipment

PHASE SHIFT NETWORK

Connect 60 cps audio signal from the signal generator to the HORIZONTAL AMPLIFIER terminals on the scope through a phase shift network, as shown in Fig. 2, which permits the
double traces on the scope to be joined together. The alternate phase shift network may be required on scopes other than General Electric Model ST-2A.

VISUAL ALIGNMENT CHART

Fig. 3. Alignment Curves

EQUMPMENT REOURED FOR VISUAL ALIGNMENT

1. General Electric YGS-3 or equivalent sweep generator.
2. General Electric ST-2A scope or equivalent.
3. $200 \mathrm{~K}, \mathrm{l}_{2}$ watt resistor.
4. I2 meg., potentiometer.
5. One . 1 paper capacitor.

NOTES FOR VISUAL ALIGNMENT,

1. Connect vertical plates of scope to the grid of the limiter
tube (pin 1 of V5) through the Test Point and to chassis. Reduce input from signal generator until "grass" begins to appear on scope.
2. Set pointer at index line near 88 mc mark by slipping pointer along dial string as required. Have tuning gang completely closed.
3. Connect vertical plates of scope at junction of C57 and TONE SW. S2B through 200 K res. Reduce input from signal generator until "grass" begins to appear on scope.
4. In some cases tuning of the converter grid will cause "pulling in" of the oscillator and will change the oscillator frequency. If peaking C9 or C18 as in steps 3 or 10 causcs the curve to move off the screen, it is necessary to recalibrate the oscillator as in steps 2 and 9.
5. C9 (BC-RF) trimmer to be adjusted after chassis and loop are installed in cabinet. Peak on weak station at approximately 1400 kc .
6. For alignment of the AM oscillator and r-f trimmers, the signal should be inductively coupled to the loop antenna, by connecting a four-turn, six-inch diameter loop of wire to the signal generator terminals. Locate this loop about one foot from the radio loop antenna.

PAGE 22-34 GENERAL ELECTRIC

GENERAL ELECTRIC PAGE 22-35

Fig. 7. Sockef Volfages

MODEL 757 replacement parts list

Cat. No.	Symbol	Description
CAPACITORS Values are $\pm 10 \%$ unless noted		
-RCE.039	C78	Filter, $30-30 \mathrm{mfd}$ (a) 300 v., 20 mfd . @ 25 v . electrolytic.
*RCN-040	C3	6 mmf., ailver mica.
*RCN-048	C7	$1.5 \mathrm{mmf} ., \mathrm{ceramic}$.
RCT-052	C1	Tuning gang capacitor (insulated shaft)
*RCW-026	C8	. 0015 mfd ., ceramic
RCW-1058	C37	10 mmf , ceramic.
*RCW-3014	$\begin{gathered} \mathrm{C} 5,10 \\ 11,12 \\ 19,41 \\ 55,56 \end{gathered}$. 005 mfd ., ceramic
*RCW-3029	C4	100 mmf , ceramic.
+*RCW-3039	C58	2.7 mmf , ceramic.
*UCC-036	C32, 34	. $002 \mathrm{mfd} ., 600 \mathrm{v}$., paper
*UCC-039	C20, 31	. 005 mfd ., 600 v ., paper
*UCC-040	ClO^{17}	. $01 \mathrm{mfd} . .600 \mathrm{v}$., paper.
*UCC-041	C72, 73,	. 02 mfd., 600 v. , paper
*UCC• 045	C22, 36.	. 05 mfd.. 600 v., paper
*UCC-048	C33, 35	, $1 \mathrm{mfd} ., 600$ v., paper
*UCC-056	C75, 77	. 002 mfd ., $1000 \mathrm{v.}, \mathrm{paper}$.
*UCC-059	C76	. 005 mfd., 1000 v., peper
*UCC-070	C28	. 008 mfd ., 600 v., paper
*UCG-044	C6	10 mmf ., silver mica.
*UCG-016	C_{21}	33 mmf., silver mica
*UCG-020	$\begin{array}{r} \text { C14, } 15 \\ 38,59 \end{array}$	47 mmf , silver mica.
i*UCG-1026	C26	82 mmf., silver mics
*UCU-044	C30	470 mmf., 500 v., mica.
*UCU-536	C29	220 mmf . 500 v., mica.
*UCU-1034	C60	180 mmf., mica.

RESISTORS

-RRW-056	(R85, 86	$\left\|\begin{array}{c}\text { Filter resistor, } 650 \text { ohms, } 10 w ., 1000 \text { ohma, } \\ 8 \text { w., w. w. }\end{array}\right\|$
1/2 watt, carbon $\pm 10 \%$		
-UURD-013	R23	133 ohms
*URD-017	R1	47 ohms.
*URD-021	R29	68 ohms
(*URD-025	$\begin{array}{r} \mathbf{R 2 , 6}, 22 \\ 8,2 \end{array}$	100 ohms
*URD-031	R12	180 K ohms.
\|*URD-033	R41	220 ohms.
*URD-041	R74	470 ohms
*URD-049	R72,81	1000 ohms.
;*URD-0.33	R5, 30	1500 ohma
*URD-057	R4, 7,9	2200 ohms
*URD-061	R77	3.3K ohms
;*URD-069	R39	6.8 K ohms
-*URD-073	R44	10 K ohms
*URD-081	R28	22K ohms
*URD-089	R14, 15	47 K ohms
**URD-09S	R76, 78	82 K ohma.
*URD-097	$\begin{array}{r} R 11,18, \\ 31,38 \end{array}$	100K ohms
*URD-099	R16, 17	120 K ohms.
*URD-105	R13. 21.	220K ohms
*URD-113	R34, 43,	470 K ohms.
URD 113	(${ }^{\text {R }}$ 75, 79.	,
*URD-121	R36	1 meg .
*URD-129	R10	2.2 meg
*URD-133	R37, 40	3.3 mes.
*URD 141	R20	6.8 meg.
*URE-081	R26	22 K ohms-1 watt, carbon, $\pm 10 \%$
*URE-085	R84	33 K ohms-1 watt, carbon, $\pm 10 \%$
**URF-035	R83	270 ohms-2 watt, carbon, $\pm 10 \%$.
:*URF-057	:R3	12200 ohms -1 watt. carbon, $\pm 10 \%$
MISCELLANEOUS ELECTRICAL		
*RJC-001		CONNECTOR-Loop wire
*RJC-019	I3	CONNECTOR Speaker wire connecto
		tacie
'*RJP-003	P4	PLUG-AC plug for phono motor.
*RJP-004	P1	PLUG-Phono mudio input pluz.
*RJP 031	P2	PLUG-Inter-chassia cable plug.
*RJS-003		SOCKET.. Octal wafer socket, for V8, V9, V10. V11
*RJS.049	J4	RECEPTACLE-Phono motor power receptacle
*RJS.092		SOCKET - 7 pin impregnated wafer socket.
- RJS-101		JACK-..Phono jack
*RJS-118		SOCKET - 9 pin socket for V6
*RJS 143		SOCKET 9 -pin socket for V^{2}
*RJS-145		SOCKET-- 7 pin socket for V1. V3. V4. V5
-*RJS-147	J2	SOCKET Pilot tight socket
1*RJS-154		ISHELL-Cable plug shell.

PAGE 22-38 GENERAL ELECTRIC

SPECIFICATIONS

CABINET:

Material	Wood
Height	347/ inches
Width	$25{ }_{16}^{16}$ inches
Depth	1616 inches

ELECTRICAL (INPUT):
Voltage (AC only) . 105-120
Frequency 60 cps
Wattage (on Radio) 35
Wattage (on Phono)

LOUDSPEAKER:

Type.
Alnico PM
10 inches 3.2 ohms

PHONOGRAPH PICKUP:
Type
High Output Variable Reluctance
Cat. No. RPX-048
Stylus Cat. No. RPJ-014

RECORD CHANGER:
P16
$331 / 3,45$ and 78 RPM

OPERATING FREQUENCIES:
Broadcast Band . $540-1600 \mathrm{kc}$
I-F Amplifier 455 kc

I-F Amplifier . 455 kc

POWER OUTPUT (117 Volts Lime)
Undistorted
1 watt
2 watts

TUBE COMPIEMENT:

II
RF Amplifict

Rectifier
Pilot Lamp

12SK7
Oscillator Converter
12SA7
IF Amplifier and Phono Preamp
6AU6
Detector-Audio Amplifier
12SQ7
35Z5GT/G
Audio Power Amplifier

50L6G'T
GE
Mazda
No. 47

GENERAL

This receiver is a superheterodyne radio, phonograph combination. The receiver employs five tubes and a rectifier. The I-F amplificr V3 (6 AU6) is also used as a phono preamplifier.

This receiver uses a new high output variable reluctance pickup RPX-048. When replacing the pickup it must be replaced with an RPX-048 pickup to insure proper operation of the phonograph. When replacing the dual stylus assembly replace only with an RPJ-014 dual stylus assembly.

CAUTION

One side of the power line is connected to $B-$. Use an isolation transformer when making service adjustments with the chassis removed from the cabinet.

STAGE GAINS AND VOLTAGE CHECKS

Stage gain measurements by vacuum tube voltmeter or similar measuring device may be used to check circuit performance and isolate trouble. The gain values listed may have tolerances of ± 20 per cent. Readings are taken with low signal input so that AVC is not effective.

1. I-F Goin

12SA7 Grid to 6AU6 Grid. 50 @ 455 KC
6AU6 Grid to 12SQ7 Diode Plate. . 50 @ 455 KC

2. Audlo Gain

Input of 0.15 voits at 400 cycles across volume control (R22) with control set at maximum will develop approximately $1 / 2$ watt output across the speaker voice coil terminals.

3. Oscillator Grid Bias

DC voltage developed across the oscillator grid leak (R3) averages 8.5 volts at 1000 kc .

4. Hum Meosurement

Hum measured across the voice coil of the apeaker with the volume control aet at minimum and band switch in the radio position should not exceed 12 millivolts.

PRODUCTION CHANGE

On early production R11 was a 1 meg 20% resistor and R12 was a $470,000 \mathrm{ohm} 20 \%$ resistor. To improve phono sensitivity R11 was changed to 1.2 megohm 10% (URD-123) and R12 was changed from a 20% to a 10% tolerance resistor. The voltage on phono at the plate pin 5 of V3 should not drop below 13 volts as measured by a vacuum tube voltmeter.

TOUBLE SHOOTING NOTE

A gassy 12SA7 or 12SK7 may cause poor A.V.C. action thereby overloading the R.F. circuits and causing audio diatortion at any setting of the volume control.

ALIGNMENT PROCEDURE

1. The chassis must be removed from the cabinet for I-F oscillator and r-f adjustments, steps 1 through 5 . For alignment of the antenna trimmer on the loop, step 6, the chassis and loop should be mounted in position in the cabinet.

Connect an output meter across the speaker leads and make the necessary adjustments for maximum reading on the meter.
2. An isolation transformer should be used for the receiver power source when aligning or servicing these receivers to prevent short circuiting of equipment and shock hazard.
3. The output meter should be connected across the terminals of the loudspeaker voice coil.
4. The receiver volume control should be turned to maximum and test oscillator signal output attenuated during alignment to
develop not more than $1 / 2$ watt output at the loudspeaker.
5. For i-f alignment, the high side of the signal generator output cable should be connected through a .05 mfd paper capacitor to the points indicated in the Alignment Chart. The low side of the output cable is connected to \mathbf{B} minus.
6. To align the antenna trimmer, the signal generator output is inductively coupled to the radio loop, L1, by connecting a fourturn, six-inch diameter loop of bell wire across its output terminals and then locating the loop about one foot from the radio loop antenna. To prevent possible errors in comparative peak read ings, the position of signal generator loop with respect to the radio loop antenna should not be changed during measurement.
7. Switch $\mathbf{S} 2$ should be in radio position during alignment.

ALIGNMENT CHART

Step	Connect Test Oscillator Between	Test Osc. Setting	Radio Dial Setting	Adjust Trimmers for Maximum
I-F ALIGNMENT				
1	V3, 6AU6 grid (Pin 1), in series with .05 mfd and B minus			C7 and C8 of second i-f transformer, T3
2	V2, 12SA7 grid (Pin 8) in series with .05 mfd and B minus	455 KC		C5 and C6 of first i-f transformer,
3				Recheck C8, C7, C6, C5 for max.
R-F ALIGNMENT				
4	V1, 12 SK 7 grid (Pin 4) in series with .05 mfd and B minus	1620 KC	Minimum capacity	C2B, oscillator trimmer
5	V1, 12SK7 grid (Pin 4) in series with .05 mfd and B minus	1500 KC	Tune for Maximum	C3B, r-f trimmer
6	Inductively coupled to the loop. See Note 6	1500 KC	Tune for Maximum	C1A antenna trimmer on loop

PAGE 22-40 GENERAL ELECTRIC

FIG. 3. TUBE AND TRIMMER LOCATION

MODEL 741 REPLACEMENT PARTS LIST

RCC-110	C16
RCE-135	C31A, B
*RCN-039	C11
*RCT-048	C1A,
RRCY-016	${ }_{\text {C4 }}{ }^{2 B}, 3 \mathrm{~A}, 3 \mathrm{~B}$
*UCG-020	C15
*UCG-1036	C28
*UCC-036	C25, 26
*UCC-039	C19, 24, 27,
	30, 32, 33
- UCC-040	C18, 23, 29
*UCC 041	C14
*UCC.045	C12, 13, 17.
*UCC-048	21,22

CAPACITORS

$1 \mathrm{mf}, 600 \mathrm{v}$. paper

*Parts used on previous models.

GENERAL

sockets may then be brought out into the open to change th defective lamp. Replace lamps with 6-8 V. Mazda \#44 (Blu bead) lamps or equivalent.

ALIGNMENT PROCEDURE

For I-F amplifier alignment it will be necessary to removi the receiver chassis from the cabinet. The chassis is held is the cabinet by three screws along both the bottom edge of thi front panel and the rear of the cabinet, and two screws ol either side of the front panel.
To restring the general coverage tuning dial cord, cut an 18 -inch length of 30 lb . test dial cord and tie one end to the tension spring of the main tuning capacitor drive pulley at position " 1 " on the diagram. Follow the numbers " 1 " through "4", and at position " 4 " stretch the tension spring and tie the cord securely.

To restring the band spread tuning dial cord cut a 36 -Inch length of dial cord and follow the procedure as above, starting shafts are wrapped with two and a fraction turns of dial cord end of the range and the bandspread dial on zero position. Th for proper traction.

REPLACING LAMPS

 the bandspread condenser at min. capacity.The standard RMA dummy antenna mentioned in the align
Refer to Fig. 7 for the location of the two dial lamps used in ment chart consists of a 200 mmf . condenser in series with the receiver. To gain access to defective lamps, reach in $20 u h r-f$ choke which is shunted by a 400 mmf condenser it through cabinet cover and unclip the dial lamp sockets. The series with a 400 ohm carbon resistor.

Set the following controls before alignment.
SENSITIVITY Set at maximum
VOLUME Set at maximum
AVC switch. Set at OFF
BAND SPREAD Set at zero
CW/AM Set at AM (See Step 2)
NOISE LIMITER Set at OFF
STANDBY RECEIVE Set at RECEIVE
TONE SWITCH Set at HIGH

For the settings of the remaining controls, see alignment chart.

PAGE 22-2 HALLICRAFTERS

ALIGNMENT CHART

	Dummy Antenna	Signal Generator Coupling	Signal Generator Frequency	Band Switch Setting	Receiver Dial Setting	Adjust

*Note - Calibration adjustments.

HALLICRAFTERS PACE 22.

PAGE 22-6 HALLICRAFTERS

SERVICE PARTS LIST

Ref. No.	Description	Hallicrafters Part Number	Ref. No.	Description	Hallicrafters Part Number
CONDENSERS			TRANSFORMERS AND COILS		
$\begin{gathered} \mathrm{C}-1,2,12 \\ 13,19 \end{gathered}$	Trimmer, adjustable. part of transformers T-1,2.4,5 and 7	44A149	$\begin{aligned} & \mathrm{T}-1 \\ & \mathrm{~T}-2 \end{aligned}$	Transformer, antenna stage, band 4 Transformer, antenna stage, band 3	$\begin{aligned} & \text { 51B783 } \\ & \text { 51B782 } \end{aligned}$
C-3	Trimmer, adjustable, part of transformer T-3	44A389	T-3 T-4	Transformer, antenna stage, band 1 and 2 Transformer, mixer stage, band 4	$\begin{aligned} & 2 \begin{array}{l} 51 \mathrm{~B} 1241 \\ 51 \mathrm{~B} 787 \end{array} \end{aligned}$
C-4,15,22	Trimmer, adjustable	44A191	T-5	Transformer, mixer stage, band 3	$51 \mathrm{B786}$
C-7	Tuning capacitor, 3 sections ganged	48C240-B	T-6	Transformer, mixer stage, band 1 and 2	$51 \mathrm{B1240}$
$\begin{array}{r} \mathrm{C}-8.32,35 \\ 58,59,60 \end{array}$. 05 mfd .200 V. , tubular	46AU503J	T-7 T-8	Transformer, oscillator stage, band 4 Transformer, oscillator stage, band 3	$\begin{aligned} & 51 \mathrm{~B} 791 \\ & 51 \mathrm{~B} 913 \end{aligned}$
C-9,28	. 05 mid. 600 V., tubular	46AY503J	T-9	Transformer. oscillator stage, band 2	51B789
C-10	22 mmf . 500 V., ceramic	47X21UK220M	T-10	Transformer, oscillator stage, band 1	$51 \mathrm{B912}$
C-11	15 mmf . 500 V., ceramic	47X21UK150M	T-11,12	Transformer, 1st and 2nd 1F stages	50 C 243
C-14,21	Trimmer, adjustable, part of transformers T-6 and 9	44A147	$\begin{aligned} & \mathrm{T}-13 \\ & \mathrm{~T}-14 \end{aligned}$	Transformer, detector stage Transformer, audio output	$\begin{aligned} & 50 C 242 \\ & 55 B 093 \end{aligned}$
C-16	390 mmf .500 V ., mica	47X20B391K	T-15	Transformer, BFO	54B044
C-17,53	.01 mfd .600 V. , tubular	46AY103J	T-16	Transformer, power	52A209
C-18	68 mmf . 500 V., ceramic	47X25UK680K	*T-16	Transformer, power (Universal)	52 C 210
C-20	Trimmer, adjustable, part of transformer T-8	44A 148	SWITCHES		
C-25	Padder, adjustable, part of transformer T-10	44 Al 188	S-1	Bandswitch, wafer, antenna stage	60B389
C-23	3000 mmf .500 V ., mica	$47 \times 30 \mathrm{C302K}$		Bandswitch, wafer, mixer stage	62B039
C-24	1500 mmf .500 V. , mica	$47 \times 30 \mathrm{C} 152 \mathrm{~J}$		Bandswitch, wafer, oscillator stage	$62 \mathrm{B044}$
C-27,50,51	$\begin{aligned} & 30-10-10 \mathrm{mfd} .450 \mathrm{~V} . \text {, } \\ & \text { electrolytic } \end{aligned}$	45A062	S-2,3,	Bandswitch, shaft Switch, toggle, S.P.S.T., A.V.C., A.N.L.,	60B392 60A138
C-29,33	220 mmf. 500 V., mica	47X20B221K	5,6	CW-AM, and STANDBY-RECEIVE	
C-31,43	. 02 mfd .200 V ., tubular	46A U203J	S-4	Switch, PWR-TONE control	60A225
C-38	$2 \mathrm{mmf} .$, twisted wire gimmick				
C-39	. $1 \mathrm{mfd} .600 \mathrm{~V} .$, tubular	46A Y104J	PLUGS AND SOCKETS		
C-41,42	47 mmf .500 V., mica	47X20B470M			
C-44,55	270 mmf. 500 V., mica	47X20B271K	J-1	Jack, headset	36A002
$\begin{aligned} & \mathrm{C}-45,48,52, \\ & -63 \end{aligned}$. $02 \mathrm{mfd} .600 \mathrm{~V} .$, tubular	46AY203J	$\begin{aligned} & \text { PL-1 } \\ & \text { SO-6 } \end{aligned}$	Line cord Socket, standby	$\begin{aligned} & 87 \mathrm{~B} 1573 \\ & 10 \mathrm{~A} 015 \end{aligned}$
C-47	. 002 mfd .1000 V., tubular	46A104		Socket, octal (tube)	6 A035
C-54	470 mmf . 500 V., mica	47X20B471J		Socket, dial light, general coverage dial	86A070
C-56	.01 mfd .600 V, , molded paper	46AC103J		Socket, dial light, bandspread dial	88 B 049
C-57	1000 mmf .500 V., mica	47X25B102M			
C-61	. $25 \mathrm{mfd} .200 \mathrm{~V} .$, tubular	46AT254J	TUBES, RECTIFIERS AND LAMPS		
C-62	2.2 mmf .500 V ., bakelite	47A160-4			
C-64	10 mfd .25 V ., electrolytic	45A121	V-1	Type 6SG7, r-f amplifier	90X6SG7
			V-2	Type 6SA7, mixer	90X6SA7
	RESISTORS		V-3,4	Type 6SK7, 1st and 2nd i-f amplifiers	90X65K7
			V-5	Type 6SC7, B.F.O. and audio amplifier	$90 \times 6 \mathrm{SC} 7$
R-1,62	1 megohm 1/2 watt, carbon	23X20X105M	V-6	Type 6K6GT, audio power amplifier	90x6K6GT
R-2	120 ohms 1/2 watt, carbon	23X20X121K	V-7	Type 6H6, A.N.L. and detector	90x6H6
R-3	10,000 ohms, SENSITIVITY control	258590	$\begin{aligned} & \mathrm{V}-8 \\ & \mathrm{LM}-1,2 \end{aligned}$	Type 5Y3GT, rectifier Lamp, dial light, Mazda \#44	$\begin{aligned} & \text { 90X5Y3GT } \\ & 39 \mathrm{~A} 003 \end{aligned}$
R-4,31	22 ohms 1/2 watt, carbon	23X20X220M	MISCELLANEOUS		
R-5	39,000 ohms 1 watt, carbon	23X30X393K			
R-6,26	6800 ohms 1 watt, carbon	23X30X682K			
R-7	18,000 ohms $1 / 2$ watt, carbon	23X20×183K	TS-1		
R-8	10,000 ohms 2 watts, carbon	23X40X103K		Terminal strip, antenna	88A032
R-9	470 ohms 1/2 watt, carbon	23X20X471K		Lock, line cord	76A397
R-10	12,000 ohms 4 watts, carbon	23X65CE123K		Spring, retainer (Bandspread, and 75A062 main tuning drive shaft)	
R-11,18,65	1000 ohms 1/2 watt, carbon	23X20X102K			
R-12,59	2.2 megohms 1/2 watt, carbon	23X20X225M		Dial cord	384001
R-14	47,000 ohms 1/2 watt, carbon	23X20X473M		Spring, dial cord	75A012
R-15,29,58	100,000 ohms $1 / 2$ watt, carbon	23X20X104M		Dial, bandspread	83 B 372
R-20	1/2 megohm, VOLUME control	25A534		Dial, general coverage	83 C 240
R-21	150 ohms 1/2 watt, carbon	23X20X151M		Giass, general coverage dial	22B199
R-22	270,000 ohms 1/2 watt, carbon	23X20X274K		Window, bandspread	22A307
R-23,61	470,000 ohms 1/2 watt, carbsn	23X20X474M	1.5-1	Speaker, D.M. (5-inch)	B5B050
R-24	680 ohms 1 watt, carbon	23X30X681K		Knob, PITCH CONTROL	12A058
R-25	15,000 ohms 1 watt, carbon	23X30X153M		Knob, SENSITTVITY, VOLUME and	15A04S
R-27,66	47,000 ohms 1 watt, carbon	23X30X473K		TONE	
R-28	22,000 ohms 1/2 watt, carbon	23X20X223M		Knob, TUNING and BANDSPREAD	15 A047
R-30	10 ohms 1/4 watt, carbon	23X10X100M		Knob, BAND SELECTOR	15A266
R-32	1500 ohms 10 watts, WW	24BG152E		Foot, rubber	16 A007
R-33	15 megohms 1/4 watt, carbon	23X10X156M			
R-34	10,000 ohms 1/2 watt, carbon	23X20×103M			
R-35	27 ohms 1/4 watt, carbon	23X 10x270K			
R-60,67	330,000 ohms 1/2 watt, carbon	23X20X334K			
R-63	6.8 ohms 1 watt, carbon	23X30X068K			
R-64	330 ohms 1/2 watt, carbon	23X20X331K	* Used on Universal Model S-40BU only.		

MODEL S-77

ALIGNMENT PROCEDURE

For I-F amplifier alignment it will be necessary to remove the receiver chassis from the cabinet. The chassis is held in the cabinet by threc screws along both the bottom edge of the front panel and the rear of the cabinet, and two screws on either side of the front panel.

NOTE-R-F alignment should be accomplished through the holes provided in the cabinet bottom as the oscillator calibration will be effected slightly by changes in the capacity between the cabinet buttom and the r-f coils and wiring.

Refore starting the alignment procedure, check the position of the main tuning index marker on the low frequency end of the range and set the bandspread dial on zero position. The main tuning condenser should index at max. capacity, and the bandspread condenser at min. capacity.

The standard RMA dummy antenna mentioned in the alignment chart consists of a 200 mmf . condenser in series with a 20 uh r-f choke which is shunted by a 400 mmf . condenser in series with a 400 ohm carbon resistor.

AVC switch. Set at OFF BAND SPREAD Set at zero

CW/AM Set at AM (See Step 2)

NOISE LIMITER Set at OFF

STANDBY/RECEIVE Set at RECEIVE
:*:130\% TONE SWITCH
Set at HIGH
For the settings of the remaining controls, see alignment chart.
ALIGNMENT CHART

Step	Dummy Antenna	Signal Generator Coupling	Signal Generator Frequency	Band Switch Setting	Receiver Dial Setting	Adjust	Remarks
1	None	Stator plates in center section of tuning gang.	455 kc	"1"	1000 kc	$\begin{aligned} & \text { A,B,C, } \\ & \text { D,E,F } \end{aligned}$	Maximum audio output at speaker voice coil. Use just enough signal generator out* put to obtain a 50 MW signal level.
2	None	See step 1	455 kc (No modulation)	'1"	1000 kc	G	With the CW/AM switch set at CW, remove the pitch control knob and adjust ${ }^{\prime} G$ ' for zero beat. Replace the knob with the dot on the center position.
3	Std RMA dummy	"A1" on antenna strip. Jumper connected between "A2" and 'G'.	36 mc 18 mc	'4"		$\begin{aligned} & \text { *H,I,J } \\ & * \mathbf{K}, \mathbf{L}, \mathbf{M} \end{aligned}$	Maximum.output as in step 1.
4	Std RMA dummy	See step 3	\qquad	'3"	14 mc 10 mk	$\begin{aligned} & * N, O, P \\ & * Q, R, S \end{aligned}$	Maximum output as in step 1.
5	Std RMA dummy	See step 3		"2"	$\begin{array}{r} 5 \mathrm{mc} \\ 1.8 \mathrm{mc} \\ \hline \end{array}$	$\begin{aligned} & * \mathrm{~T}, \mathrm{U}, \mathrm{~V} \\ & * \mathrm{~W} \end{aligned}$	Maximum output as in step 1.
6	Std RMA dummy	See step 3	1500 kc 600 kc	'1"	$\begin{aligned} & 1500 \mathrm{kc} \\ & 600 \mathrm{kc} \end{aligned}$	$\begin{aligned} & * \mathbf{X}, \mathbf{Y}, \mathbf{Z} \\ & * Z^{\prime} \end{aligned}$	Maximum output as in step 1.

*Note - Calibration adjustments.

- - - - \quad •

PAGE 22-10 HALLICRAFTERS

fig. 7. top view, location of tubes and dial lamps

SERVICE PARTS LIST

Ref. No.	Description	Hallicrafters Part Number	Ref. No.	Description	Hallicrafters Part Number		
CAPACITORS TRANSFORMERS AND COILS							
C-1,9,10,21	. . 01 mfd .600 V ., tubular paper	46AZ103J	L-1	Choke, RF	53A138		
23,38,43			T-1	Coil, antenna; band 4	518783		
C-2.42.60	100 mmf . 500V., mica	47X20B101K	T-2	Coll, antenna; band 3	$51 \mathrm{B782}$		
C-3,16,53	Trimmer, 2-20 mmf.	$44 \mathrm{~A} 191$	T-3	Coil, antenna; bands 1 and 2	51B1241		
C-4	Trimmer (part of coil T-3)		T-5	Coil, RF; band 4	518787		
C-5	Trimmer (part of coil T-2)		T-6	Coil, RF; band 3	51B786		
C-6	Trimmer (part of coil T-1)		T-7	Coil, RF: bands 1 and 2	$51 \mathrm{B1240}$		
C-7	Tuning capacitor, 3 section; ganged	48C240-B	T-9,10	Transformer, 1st and 2nd IF	50 C 243		
C-8,17,36,	220 mmf. 500V., mica	47X208221K	T-11	Transformer, IF (detector stage)	50 C 242		
61			T-12	Transformer, audio output.	55B110		
C-11	24 mmf , ceramic	47X25UK240M	T-13	Coil, PITCH CONTROL	54B044		
C-12	15 mmf ., ceramic	47X21UK150M	T-14	Coil, oscillator; band 4	$51 \mathrm{B791}$		
C-13	Trimmer (part of coil T-5)		T-15	Coil, oscillator; band 3	$51 \mathrm{B913}$		
C-14	Trimmer (part of coil T-6)		T-16	Coil, oscillator; band 2	51B789		
C-15	Trimmer (part of coil T-7)		T-17	Coil, oscillator; band 1	$51 \mathrm{B912}$		
C-18,44	270 mmf. 500V., mica	47X20B271K		Con, oschlator, band 1	J18912		
C-19,40	. 005 mfd . $600 \mathrm{~V} .$, tubular paper	46AZ502J	SWITCHES				
C-20,35	. 003 mfd . 600V., tubular paper	46 A 302 J					
C-22.25,27,	. 02 mfd .200 V ., tubular paper	46AU203J	S-1	Wafer, bandswitch; antenna stage	60B389		
33,34			S-2	Wafer, bandswitch; RF stage	62B039		
C-24,28,41	. $05 \mathrm{mfd} .600 \mathrm{~V} .$, tubular paper	46A Y503J	S-3	Wafer, bandswitch; oscillator stage	62B044		
C-26.57	2 mimf, wire gimmick		S-4,5,6,8,	Switch, toggle (SPST); STANDBY-	60A138		
$\mathrm{C}-29,30$	47 mmf . 500 V ., mica	47X20B470K		RECEIVE, A.V.C., A.N.L., and			
C-31,32,48	.05 mfd .200 V ., tubular paper	46AU503J		CW-AM			
C-37	$.1 \mathrm{mfd} .600 \mathrm{~V} .$, tubular paper	46A Y104J	S-7	Switch, PWR-TONE	60A225		
C-39	10 mid . 25 V ., electrolytic	45A121					
C-45	470 mmf .500 V ., mica	47X20B471J	PLUGS AND SOCKETS				
C-46	. $002 \mathrm{mfd} .600 \mathrm{~V} .$, tubular paper	46AZ202J					
C-47	$10 \mathrm{mfd} .150 \mathrm{~V} .$, electrolytic	$45 A 097$	PL-1	Line cord and plug	87B1573		
C-49	68 mmf . ceramic	47X25UK680K	SO-1	Jack, PHONES	36B004		
C-50	Trimmer (part of coil T-14)		SO-2	Socket, octal; ballast tube	6 A 250		
C-51	Trimmer (part of coil T-15)			Socket, octal; tube	6 A 250		
C-52	Trimmer (part of coil T-16)			Socket, dial lamp (main tuning dial)	86B101		
C-54	Padder (part of coil T-17)			Socket, dial lamp (bandspread dial)	68B068		
C-55	1500 mmi .500 V ., mica	$47 \times 35 C 152 \mathrm{~J}$					
C-56	3000 mmf . 500V., mica	47X35B302K		TUBES, RECTIFIERS AND DIAL LAMPS			
C-58	.02 mfd .600 V ., molded tubular paper	46ER203L6					
C-59	Resonant capacitor (.05 mfd. 600 V .)	46A150	V-1	Type 6SG7, RF amplifier	90X6SG7		
C-62	60-20-20 mfd. 150V., electrolytic	45B128-C	V-2	Type 6SA7, converter	90X6SA 7		
C-63	. 25 mfd .200 V. , tubular paper	46A T254J	V-3,4	Type 6SK7, 1st and 2nd IF amplifiers	$90 \times 6 \mathrm{SK} 7$		
			V-5	Type 6H6, detector and A.N.L.	90x6H6		
	RESISTORS		V-6	Type 6SC7, audio amp. and B.F.O.	$90 \times 6 \mathrm{SC} 7$		
			V-7	Type 25L6GT, audio output	90X25L6GT		
R-1	22 ohms 1/2 watt, carbon	23x20x220K	V-8	Type $2526 \mathrm{GT} / \mathrm{G}$, rectifier	$90 \times 25 \mathrm{Z} 6 \mathrm{GT} / \mathrm{G}$		
R-2,7,20	1 megohm $1 / 2$ watt, carbon	23X20X105M	LM-1,2	Lamp, dial; GE \#47	39A004		
R-3	120 ohms 1/2 watt, carbon.	23X20X121K					
R-4	10,000 ohms: SENSITIVITY control	25B590	miscellaneous				
R-5,10,11.	1000 ohms $1 / 2$ watt, carbon	23X20x102K					
14,18,35,				Bandswitch and shaft	$60 \mathrm{B392}$		
44				Cabinet (lower section)	66 E359		
K-6,45	6800 ohms 1 watt, carbon	23X30X682K		Cabinet front panel	68D160		
R-8	18,000 ohms $1 / 2$ watt . carbon	23x20×183K		Cabinet top	66D616		
$\mathrm{R}-9$ $\mathrm{R}-12.2128$	6.8 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 068 \mathrm{~K}$		Dial, bandspread	83 B 372		
$\mathrm{R}-12.21,28$ $\mathrm{R}-13,17$	100,000 ohms $1 / 2$ watt, carbon	23X20X104M		Dial, main tuning	83 C 240		
R-15,23	2.2 megohms $1 / 2$ watt, carbon	23X20x331K		Dial cord	38A001		
R-16,30	150 uhms $1 / 2$ watt, carbon	23X20X151K		Glass, bandspread tuning dial	22A307		
R-19.34	47.000 ohms $1 / 2$ watt, carbon	23X20X473K		Glass, main tuning dial	22B199		
R-22.27	330,000 ohms $1 / 2$ watt, carbon	23X20X334M		Knob, BAND SFLECTOR	15A266		
R-24,29	470,000 ohnis $1 / 2$ watt, carbon	23X20X474M		Knob, PITCH CONTROL	15 A 058		
R-25	500,000 ohms; VOLUME eontrol	25E586		Kñol, TUning and bandspread	15A0́4 7		
R-26	10 megohms $1 / 2$ watt, carbon	23X20X106M		Knoh, SENSITIVITY, VOLUME and	15A049		
R-31	4700 ohms 1/2 watt, carbon	23X20X472K		TONE			
R-32	15 ohms 1 watt, carbon	23X30X150M		Lock, ine cord	76A397		
R-33	$15,000 \mathrm{ohms} 1 / 2$ watt, carbon	23X20×153K		Screw, Allen head (6-32 $\times 3 / 16$)	3A1122		
$R-36$ $R-37$	10 ohms $1 / 2$ watt, carbon	23X20×100K		Slug, adjustable tuning	77A068		
R-37	270.000 ohms $1 / 2$ watt, carbon	23X20×274M	LS-1	Speaker, PM; 5 inch	85B050		
$R-38$ $\mathrm{R}-39$	Ballast tube (117V)	24B875		Spring, dial cord	75A012		
R-39	Ballast tube (220V.)	24B874		Spring, retainer	75A062		
R-40	15 ohms $1 / 2$ watt, carbon	$23 \times 20 \times 150 \mathrm{~K}$	TS-1	Terminal strip, antenna	88A032		
R-41	100 ohms $1 / 2$ watt, carbon	23X20×101K					
R-42	1000 ohms 2 watts, carbon	23X40X102K					
R-43	110 ohms 10 watts, Ww	24BG111E					

USE OF OPERATING CONTROLS

GENERAL SPECIFICATIONS

When locating the receiver, avoid excessively warm locations such as are found near radiators or hot air registers. When piacing the receiver with its back to the wall, leave about an inch or two of clearance between the back of the cabinet and the wall for proper ventilation.

There are three basic connections to be made, antenna, speaker, and power, to completely set up the receiver. All connections are located on the rear apron of the chassis.
ANTENNA - Terminals are provided for separate AM broadcast (BC) and FM broadcast (FM) antennas. The BC band antenna

BC Antenna - The standard broadcast band antenna may consist of any single length of wire from approximately ten feet to fifty feet depending upon the local receiving conditions. Attach the wire to the "A" terminal of the antenna terminal strip. Erect outdoor antenna installations as high and as free from surrounding objects as possible. Erecting this type of antenna at right angles to local "man made" sources of static, (street car lines, power lines, etc.) is recommended for best results. An excessively long antenna will not necessarily be the most desirable antenna. Use the length that will provide adequate signal pick up.

For some installations it will be found desirable to connect a ground wire to the " G " terminal of the terminal strip. A radiator or water pipe will generally serve as a good ground connection.

FM Antenna - The antenna for FM reception may consist of any type of antenna that operates with a 300 -ohm transmission line. If a commercial antenna is installed, be sure it uses a $\mathbf{3 0 0 - o h m}$ transmission line. The transmission line from the antenna is connected to terminals " D - D " on the receiver.

The simplest antenna which will provide satisfactory results, mounted either on the back of a console cabinet or outside the building, is the folded doublet. This antenna may be constructed from 300 -ohm transmission line as shown in Fig. 3. Keep in mind that the doublet antenna response favors signals broadside to its length and should be erected with its length at right angles to the direction of reception. This is especially important where receiving conditions are poor and maximum antenna pickup is required.

POWER SOURCE - The receiver operates from a $105-125 \mathrm{~V} .60$ cycle AC source only. The receiver will not operate from a 115 V . direct current source or 25 cycle $A C$ source directly. If in doubt as to the voltage and frequency rating of your power source, contact the local power company representative and avoid costly repairs. The nominal power consumption for this receiver is 90 watts.

DIAL LAMP REPLACEMENT

Refer to Fig. 6 for the location of the two dial lamps used in the receiver. To gain access to defective lamps, unclip the dial lamp socket by compressing the side springs. The socket may then be brought out into the open to change the defective lamp.

SPEAKER CONNECTIONS

The speaker connector is located on the rear apron of the receiver. Connection is to be made through a standard 5 pin tube socket. The receiver is designed to operate into either a 3.2 ohm or a 500 ohm speaker load. For detailed information on making connections for either load refer to the schematic diagram. If a matching transformer is used in connection with the speaker load it should be capable of handling approximately 10 watts of audio power.

RECORD PLAYER CONNECTION

A shielded type receptacle is provided at the rear chassis apron to accommodate a record player pickup cable connector. Any record player employing a crystal cartridge or high level magnetic pickup in its tone arm may be used with the receiver. A utility receptacle is provided at the rear apron of the receiver to accommodate the power plug of the record player. The use of this receptacle will permit the record player to be turned off with the receiver

TUBE REPLACEMENT

The types of tubes required and their relative position in the receiver are shown in the illustration, Fig. 6. When installing a replacement tube, insert the center guide pin into the center hole of the tube socket: rotate the tube until the key on the guide pin drops into the notch in the socket hole; and push down until the base of the tube rests firmly on the socket. A slightly different technique must be used on the miniature tubes. They have seven small pins which have to be lined up with the socket holes before pushing into place. Handle with care as all tubes are considered fragile and do not tolerate much mechanical abuse.

The receiver is equipped with AUTOMATIC FREQUENCY CONTROL on the FM band to compensate for oscillator drift and improve the tuning function on the FM band. The correction factor is approximately 5 times: AFC takes hold 250 kc before the station frequency is reached and releases before tuning 500 kc beyond the station frequency when receiving a 1000 microvolt signal.

The standard RMA dummy spectfied in the alignment chart consists of a 200 mmf condenser in series with a 20 uh r-f choke which is shunted by a 400 mmf condenser in series with a 400 ohm carbon resistor.

When making the alignment adjustments set the tone control at NORMAL and the volume control at maximum volume. Use just enough signal generator output to obtain the results indicated on the chart.

ALIGNMENT CHART

Step	Dummy Antenna	Signal Generator Coupling	Signal Generator Frequency	Band Switch Pos.	Radio Dial Setting	Adjust	Remarks
1	0.01 mfd . cap	To high cap. stator of center section.	455 kc	'BC'	1000 kc	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \\ & \mathrm{E} \end{aligned}$	Adjust for max. audio output. Keep audio output below 500 MW to avoid AVC action.
2	0.01 mfd . cap. in series with a 4700 ohm carbon resistor.	To low cap. stator of center section.	10.7 mc	"FM"	90 mc	$\begin{aligned} & \text { F,G,H,I, } \\ & \mathbf{J}, \mathbf{K} \end{aligned}$	Adjust for max. voltage as measured between pin \#3 of 6 H 6 and ground with an electronic volt meter. Adjust signal generator output for approx. 2 volts DC at this point.
3	$\begin{aligned} & 0.01 \mathrm{mfd} \\ & \text { cap. } \end{aligned}$	See step 2.	10.7 mc	"FM"	90 mc	L	Adjust for zero voltage as measured between the junction of R27 and R28 and ground with an electronic volt meter.
4.	Std RMA dummy	To terminals "A" and "G" on terminal strip TS-2.	$1500 \mathrm{kc}$	"BC"	1500 kc	*M,N,O	Adjust for max. output as in step 1.
5.	Two 150 ohm carbon resistors	To terminals "D-D" on terminal strip TS-1.	105 mc	"FM"	105 MC	* P, Q	Adjust for max. voltage as measured across K 54 with an electronic volt meter. Adjust signal generator output for approx. 1 volt DC at this point.

RESTRINGING DIAL CORD

Restring the dial drive with 30 lb . test dial cord. Tie one end to the tension spring and follow the sequence outlined in Fig. 5. Stretch the tension spring and tie the end of the cord securely to the spring as shown.

Set the tuning condenser at maximum capacity (closed), attach the pointer to the string and line it up with the left hand index mark on the dial scale.

Fig. 6. Top view alignment points \& component locations

PAGE 22-20 HALLICRAFTERS
MODEL S-78

HALLICRAFTERS PAGE 22.2

Fig: 9. Mounting dimenstons.

SERVICE PARTS LIST

Ref. No.	Description	Hallicrafter's Part Number
CONDENSERS		
C-1,7,15,19	100 mmf . 500 V. , ceramic	47820101M5
C-2	100 mmf .500 V., mica	CM20A101M
C-3	Tuning condenser, 5 sections	48 C 196
$\begin{aligned} & C-4,5,14,17 \\ & 18,20,23,24 \end{aligned}$, . $005 \mathrm{mfd} .450 \mathrm{~V} .$, ceramic	47A168
C-6	33 mmf .500 V., ceramic	CC20UK330K
C-8	3.3 mmf . 500 V., bakelite	47A160
C-9,34,35	.05 mfd .200 V., tubular paper	46AU503J
C-10,12	47 mmf . 500 V., ceramic	CC20UK470M
$\mathrm{C}-11$	$7 \mathrm{mmf} .500 \mathrm{~V} ., \mathrm{ceramic}$	CC 20UK070K
$\begin{aligned} & C-13,21,26, \\ & 36,43,45 \end{aligned}$.01 mfd .600 V. . tubular paper	46A Z103F
C-16	. 02 mid .200 V. , tubular paper	46AU203J
C-22	4.7 mmf . $500 \mathrm{~V} .$, bakelite	47A160-6
C-25	$12 \mathrm{mmf} .500 \mathrm{~V} .$, mica	CM20A120K
C-27	47 mmf . 500 V. , mica	CM20A470M
C-29,32,	150 mmf , 500 V., mica	CM20A151M
33		
C-30,37,49	1000 mmf. 500 V., ceramic	47B20102M5
C-31,41	.05 mfd .600 V ., tubular paper	46AY503J
C-38	. 03 mfd .200 V ., tubular paper	46AU303J
C-39	$68 \mathrm{mmf} 500 \mathrm{~V} .,$. mica	CM20A680M
C-40	. 003 mfd .600 V. , tubular paper	46A Z302J
C-42	. 005 mfd .600 V. , tubular paper	$46 \mathrm{AZ502J}$
C-44	220 mmf .500 V., mica	CM20A221M
C-46	10 mfd .25 V. , electrolytic	45A121
C-47	.002 mid .600 V, , tubular paper	46AZ202J
C-48	$\begin{aligned} & 60-20-20 \mathrm{mfd} .450 \mathrm{~V} . \text {. } \\ & \text { electrolytic } \end{aligned}$	45B113
C-50	. 01 mid $600 \mathrm{~V} .$, molded paper	46AG103J
C-51,52	1 mmf . 500 V., bakelite	47A 160-2
RESISTORS		
R-1,13	1 megohm $\frac{1}{2}$ watt, carbon	RC20AE105M
$\begin{aligned} & \mathrm{R}-2,14,17 \text {, } \\ & 27,28 \end{aligned}$	47,000 ohms $\frac{1}{2}$ watt, carbon	RC20AE473M
R-3,5,26,31	220.000 ohms $\frac{1}{2}$ watt, carbon	RC20AE224M
R-4,15	470 ohms $\frac{1}{2}$ watt, carbon	RC20AE471M
R-6	4700 ohms 2 watts, carbon	RC40AE472M
R-7	10 ohms $!$ watt, carbon	RC20AE 100M
R-8,25	22,000 ohms ${ }_{2}$ watt, carbon	RC20AE233M
R-9	150 ohms $\frac{1}{2}$ watt, carbon	RC20AE 151 M
R-10	220 ohms $\frac{1}{2}$ watt, carbon	RC20AE221M
R-11,33,54	100,000 ohms ${ }_{2}^{1}$ watt, carbon	RC20AE104M
$\begin{aligned} & \mathrm{R}-12,32,40, \\ & 41,42 \end{aligned}$	470,000 ohms $\frac{1}{2}$ watt, carbon	RC20AE474M
R-16	270 ohms watt, carbon	RC20AE271K
R-18,53	1000 ohms ${ }_{2}^{1}$ watt, carbon	RC20AE 102M
R-19,39	2.2 megohms $\frac{1}{2}$ watt, carbon	RC20AF225M
R-20	68,000 ohms $\frac{1}{2}$ watt, carbon	RC20AE683M
K-22	330,090 ohms $\frac{1}{2}$ watt, carbon	RC20AE334M
R-29,30	100,000 ohms ${ }_{<}^{1}$ watt, carbon	RC20AE104K
R-34	Volume control, 2 megohms (tapped)	25B623
$\begin{aligned} & \text { R-35,36, } \\ & 44,50 \end{aligned}$	680 u ohms $\frac{1}{2}$ watt, carbon	RC20AE682M
R-37	330 ohms $\frac{1}{2}$ watt, carbon	RC20AE331K
R-38	100,000 ohms 1 watt, carbon	RC30AE104K
R-43	300 ohms 2 watt, carbon	RC40AE301J
R-45	12,000 ohms ${ }_{2}^{1}$ watt, carbon	RC20AE 123K
R-46,47	1200 ohms 2 watt, carbon	RC40AE 122K
R-48,49	1500 ohms 2 watt, carton	RC40AE152K
R-52	15,000 ohms $1 / 2$ watt carbon	RC 20AE 153K
	TRANSFORMERS AND COILS	
T-1	Transformer, FM, antenna stage	51B1021
T-2	Transformer, BC, mixer stage	2181059
T-3	Transformer, FM, mixer stage	e 51B1022
T-4	Transformer, FM, osc. stage	5181073
T-5	Transformer, BC, osc. stage	$51 \mathrm{B1020}$
T-6	Transformer, 1st I.F.	50B409
T-7,9	Transformer, 2nd 1.F. and AM Detector \& FM limiter	50B407

SERVICE PARTS LIST (Cont.)

Ref. No.	Description	Hallicrafter Part Numbe
T-8,10	TRANSFORMERS AND COILS (Cont.)	

SWITCHES

SW-1	Band switch assembly	:,UB318
SW-2	Switch, tone control	60B319
PLUES AND SOCKETS		
PL-1	Line cord and plug	87A078
SO-2	Receptacle, television, phono	36A029
SO-3	Receptacle, speaker	6 A 277
SO-4	Receptacle, phono motor	10A015
	Socket, octal (tube)	6A296
	Socket, miniature (tube)	6 A 297
	Sacket \& bracket, dial light	86A062

TUBES. RECTIFIERS AND LAMPS

V-1	6AU6 antenna	90X6AU6
V-2,3	6BA6 mixer, 1st I. F.	90X6BA6
V-4,5	6SH7 2nd I. F., limiter	90X6SH7
V-6	6 H 6 discriminator	90X6H6
V-7	$6 J 6$ osc. \& AFC	90x6.56
V-8	6 SJ 7 audio amp.	90X6SJ7
V-9,10	6K6GT power amp.	90X6K6GT
V-11	5Y3GT rectifier	90X5Y3GT
LM-1,2	Lamp, 6-8 V., 250 Ma . , Mazda	39A003

Miscellaneous

Shaft, tuning	74A 247
Pulley, idler	28A052-6
Switch, cam	77 A 261
Drive pin	74A 246
Collar	77A267
Bushing	77 A 266
Bracket, dial plate mtg.	67A793
Dial plate	638332
Dial background (paper)	32 A446
Dial glass (calibrated)	22C201
Clip (for dial glass 22C201)	76A 390
Rubber spacer, for dial clip	16A126
Pointer	82A147
Dial cord	38A019
Spring, dial cord	75 A012
Dial glass (clear)	22B205
Clip (for dial glass 22B205)	76A331
Escutcheon (Model S-55)	7C067-1
Escutcheon (Model S-56)	$7 \mathrm{C067}$
Knob, tone and range controls (Model S-55)	15B077-4
Kinob, tone and range conirois (Model 3-56)	153068-3
Knob, tuning and volume controls (Model S-55)	15B068-4
Knob. tuning and volume controls (Model S-56)	15B077-3
Terminal strip, antenna (Marked D-D)	87A379
Terminal strip, antenna (Marked A-G)	88A327
Line cord lock	76A299
Mounting foot, rubber	16A007

HALLICRAFTERS PAGE 22

OPERATION

This is a combination VOLUME-Turn power switch and tone control. In the OFF position the receiver is completely turned off. To turn on the receiver, turn the control to the right. The power switch will click and the dial light will illuminate the dial face indicating that the receiver is receiving power from the wall outlet. After tuning in the station this control is again adjusted for the desired tonal response. Turning the control clockwise decreases the bass response.
this control
clockwise to in-
crease volume
and counter-
clockwise to de-
crease volume.

TUNING - The tuning control "tunes in" either AM (Standard Broadcast) or FM (Frequency Modulation) stations depending upon the setting of the range switch. The standard broadcast band dial is calibrated so that a zero must be added to the number appearing on the dial to obtain the station frequency in kilocycles. The frequencies of the FM stations are shown directly in megacycles. The frequencies of local stations are generally listed in local newspapers, AM stations in kilocycles and FM stations in megacycles. Tune for the clearest reception to obtain top performance from your receiver.

This is the combination range and operation switch. In the FM (Frequency Modulation) position, the receiver tunes the 88 to 108 megacycle FM band; in the AM (Standard Broadcast) position, the receiver operates as a regular broadcast receiver tuning the frequency range 540 to 1600 klocycles. To use the receiver as a record player, set this switch at PHONO and operate the volume and tone controls as for normal radio reception.

DESCRIPTION

The model ST-74 receiver is a superheterodyne receiver covering the standard broadcast (540 kc 1600 kc) and FM broadcast ($88 \mathrm{mc}-108 \mathrm{mc}$) services. The receiver is supplied in chassis form for custom installations.

A shielded connector and power receptacle located on the rear apron of the chassis permit the attachment of a record player for recorded entertainment.

To place the recelver in operation it is merely necessary to connect the antenna and speaker and plug the power plug into the wall outlet. Refer to the installation details that follow, especially to the paragraph on "Power Source", before connecting the receiver to the wall outlet to avoid unnecessary and perhaps costly repairs.

INSTALLATION

UNPACKING - Check all shipping instruction tags carefully before removing them.
LOCATING - When locating and mounting the receiver give careful consideration to ventilation. Avoid warm locations such as are found near radiators, or hot air registers. Carefully avoid dead air spaces in the installation.

ANTENNA - The receiver is equipped with a built in loop antenna for local reception on both the FM (frequency modulation) and AM (standard broadcast) bands. Due to the directional effect of a loop antenna, it may be necessary to rotate the receiver slightly to obtain optimum performance from all of the broadcasting stations. In general, however, the receiver may be placed in operation without further antenna considerations.

Where recelving conditions are poor and maximum antenna pickup is required, antenna terminals have been provided for an outdoor antenna system.

Standard Broadcast Antenna - When required, a single wire approximately 25 to 50 feet long may be connected to the terminal marked EXTERNAL BROADCAST ANTENNA, located at the rear of the receiver, to improve reception in the standard broadcast band ($540-1600 \mathrm{kc}$). This wire may be concealed in the room or erected outside the building as desired.

Fis. 2. Polded doublet antenna details.

FM Broadcast Antenna - Where receiving conditions demand more signal pickup on the FM band than provided by the built in loop, an FM band antenna may be erected and its transmission line connected to the two terminals marked "D$D^{\prime \prime}$ located on the rear apron of the receiver chassis. The receiver is designed to operate with any FM band antenna using a 300 -ohm transmission line.

The simplest antenna which will provide satisfactory FM reception is the folded doublet. This antenna may be constructed of 300 -ohm transmission line available at most radio supply houses. Cut and solder the transmission line conductors together as shown in Fig. 2.

Satisfactory reception may be obtained by concealing the antenna under the rug, along the molding, or along the back of a cabinet. If receiving conditions are poor in the particular location, it may be desirable to erect the antenna outdoors as high as practical. In either case the reception will be best when the antenna runs at right angles to the direction of reception.
POWER SOURCE - The recelver operates from a $105-125 \mathrm{~V}$. 60 cycle AC (Alternating current) power source only. The receiver will not operate from a DC (Direct Current) or 25 cycle AC source directly. If in doubt as to the voltage and frequency rating of your power source, contact the local power company representative to avoid costly repairs. The normal power consumption for this receiver is 60 watts.

RECORD PLAYER CONNECTION - A shielded type receptacle, accessible at the rear chassis apron, is provided to accommo-

Fig. 3. Antenna \& record player connections date a record player pickup cable connector. Any record player employing a crystal cartridge or high level magretic pickup in its tone arm may be used with the receiver. An a-c receptacle is also provided to accommodate the power plug on the record player. The record player is automatically shut off with the receiver when using this power outlet.

SERVICE

GENERAL SPECIFICATIONS

Tubes Six plus rectifie

High Impedance Output

Antenna Built-in loop type Antenna. Provisions for external antenna.
Tuning Manual
Frequency Range . . .

Broadcast $540 \mathrm{kc}-1600 \mathrm{kc}$
Frequency
Modulation $88 \mathrm{mc}-108 \mathrm{mc}$
Power Supply
Power Consumption . . 60 watts

TUBE REPLACEMENT - The tube types and their relative position in the recelver are shown in the illustration, Fig. 5. When installing a replacement tube, insert the center guide pin into the center hole of the tube socket; rotate the tube until the key on the guide pin drops into the notch in the socket hole; and push down until the base of the tube rests firmly on the socket. A slightly different techntque must be used on the miniature tubes. They have seven small pins which have to be lined up with the socket holes before pushing the tube into the socket. Handle all tubes with care as they are considered fragile and do not tolerate much mechanical abuse.

DIAL LAMP REPLACEMENT - Refer to Fig. 5. for the location of the two dial lamps. To replace a defective dial lamp, unclip the dial lamp socket by compressing the side springs. The socket and defective lamp may then be brought out into the open for service. Replace defective lamps with 6-8 V. Mazda *44 (Blue bead) or equivalent.

RESTRINGING DIAL CORD

ALIGNMENT

Generator connection See chart
Generator ground To chassis
Output meter connection . . . Across voice coil

Restring the dial drive with a 48 -inch length of 20 lb . test dial cord. Tie one end to the tension spring and follow the stringing sequence outlined in Fig. 1. Stretch the tension spring and tie the end of the cord securely to the spring as shown.

Set the tuning condenser at maximum capacity (closed), attach the dial pointer to the drive string and line it up with the left hand index mark on the dial scale.

The standard RMA dummy specified in the alignment chart consists of a 200 mmf condenser in series with a 20 uh $r-f$ choke which is shunted by a 400 mmf condenser in series with a 400 ohm carbon resistor.

ALIGNMENT CHART

Dummy Antenna Step	Signal Generator Coupling	Signal Generator Frequency	Radio Range Switch Position	Radio Dial Setting	Adjust	Remarks
$\begin{aligned} & \text { 1. . } 01 \mathrm{mfd} \text {. } \\ & \text { cap. } \end{aligned}$	To stator plates of high cap. mixer section	455 kc	2	1000 kc	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	Adjust for max. audio output at voice coil. Keep audio output below 50 mw to avoid AVC action.
$\begin{aligned} & 2.01 \mathrm{mfd} . \\ & \text { cap. } \end{aligned}$	To stator plates of low cap. mixer section	10.7 mc (No modulation)	1	100 mc	E,F,G,H	Adjust for max. DC voltage between pin \#7 of the 6AL5 and chassis. Connect a 500,000 ohm resistor in series with voltmeter probe. Use just enough signal generator output to obtain approx. 2 volts at the electronic voltmeter.

3. After completing the adjustments required by step 2. detune the signal generator on each side of 10.7 mc and note the generator dial or frequency reading for one half of the DC voltage measured by the electronic voltmeter. Use just enough signal generator output to obtain a maximum of 2 volts at the center frequency of the IF channel. Set the signal generator frequency at the midpoint of the two readings obtained above and align the FM detector transformer as follows:
4. Without changing the setup, adjust the primary of the FM detector transformer (I) for maximum DC voltage. Disconnect the electronic voltmeter probe and reconnect it to the junction of R24 and R25 using the 500,000 -ohm resistor as before for isolation. Adjust the secondary of the FM detector (J) for the null or zero DC voltage. This completes the IF amplifier adjustment.

5.Std. RMA dummy	To BC antenna terminal on back of loop.	1500 kc	2	1500 kc	*K,L	Adjust for max. audio output as in step 1.
		600 kc	2	600 kc	*M	
$\begin{aligned} & \text { carbon } \\ & \text { casistor } \\ & \text { reson-ohm } \end{aligned}$	To terminals "D-D" on rear chassis apron. Connect resistor to high side or ungrounded terminal	108 mc	1	108 mc	*N,O	Adjust for max. DC voltage as in step 2.

*Calibration adjustment.

FIG. I. RADIO RECEIVER MODEL 5RIO

INSTALLATION

LOCATION - The receiver is equipped with rubber feet for table top or shelf mounting. When locating and mounting the receiver, avoid excessively warm locations such as those found near radiators and hot air registers or recessed installations which prevent proper circulation of air. If the receiver is placed with its back to the wall, leave about an inch or two of clearance between the back of the cabinet and the wall for proper ventilation.

POWER SOURCE - The receiver operates from a $105-125$ volt DC (direct current) or 60 cycles AC (alternating current) source. The normal power consumption of the receiver is 30 watts. The receiver will not operate from a $25-c y c l e$ AC source directly. If in doubt as to the voltage and frequency rating of your power source, contact the local power company representative to avoid costly repairs. If the receiver does not respond after a minute warm-up period when operating on a DC source, it may be necessary to reverse the power plug at the wall outlet.

Operation from a 210-250 volt AC/DC source is possible by using a special line cord adapter available as an accessory. Consult your Hallicrafters dealer regarding this adapter unit (Hallicrafters part number 87D1566) if $\mathbf{2 1 0 - 2 5 0}$ volt operation is desired.

ANTENNA - A three terminal strip is provided on the rear chassis apron for antenna connections. The terminals are marked "A1", "A2" and " G ". A jumper bar is normally connected between terminals "A2" and " G " for single wire antenna systems and unbalanced antenna transmission lines. For doublet antenna installations using a balanced transmission line, the jumper between "A2" and " G " is disconnected. A good ground connection, when used, is connected to terminal " G ".

92C 1332-1
fig. 2. Single wire antenna installation

92C 1332-2

FIG. 3. DOUBLET ANTENNA INSTALLATION
SINGLE WIRE ANTENNA - For a single wire antenna installation, connect a jumper between antenna terminals "A2" and "G". A single wire antenna of about 50 to 100 feet long (including lead-in) is then connected to terminal "A1". Erect the antenna as high and free of surrounding objects as possible. For improved reception, it may be desirable to connect a ground wire between terminal " G " and a suitable ground such as a water pipe or outside ground stake.

DOUBLET ANTENNA - The doublet antenna is recommended for the high frequency bands, especially where a maximum signal to noise ratio is required over a relatively narrow range of frequencies. The antenna transmission line is connected to terminals "A1" and "A2". If a concentric line with a grounded outer conductor is used, connect the inner conductor to terminal "A1", the outer conductor to terminal "A2", and connect a jumper between terminals "A2" and "G".

The overall length (feet) of a doublet antenna may be determined by dividing the constant 468 by the desired frequency in megacycles. Keep in mind that this type of antenna is directional broadside to its length and should be so oriented if maximum pickup from a given direction is desired.

OPERATION

STANDARD BROADCAST RECEPTION

- For standard broadcast reception set the BAND SELECTOR point to position " 1 ", the SPEAKER/PHONES switch to "SPEAKER" and the BAND SPREAD dial pointer to " 0 ". Note that the main tuning dial calibration will be true only when the bandspread dial pointer is set at zero. Turn on the receiver with the VOLUME control by turning it clockwise beyond the point of switch action. Adjust the TUNING and VOLUME controls in the usual manner, tuning carefully for the clearest reception. When operating the receiver from a DC source allow about a minute for warm-up. If the receiver doesn't respond after this warm-up period, reverse the power plug at the wall outlet to obtain proper polarity. In certain cases hum picked up from an AC outlet may be reduced by properly polarizing the power plug.

To turn off the receiver, turn the VOLUME control fully counter-clockwise beyond the point of switch action.

SHORT-WAVE RECEPTION

- Reception in the short-wave bands is accomplished as described above for standard broadcast reception except that the BAND SELECTOR is set for bands 2, 3, or 4. The frequency of reception is read from the dial scale which corresponds to the setting of the BAND' SELECTOR. Any narrow range of frequencies covered by the receiver may be spread out by tuning the stations with the RAND SPRFAD contrnl as exdiained below.

BAND SPREAD TUNING - To use the band spread dial, set the bandspread dial pointer to zero, set the main tuning dial pointer at the high frequency limit of the range of frequencies to be covered and then tune in the stations with the BAND SPREAD control. For example: Assume that the 40 meter amateur band is to be covered. Set the BAND SELECTOR to position " 3 ", the main tuning dial pointer to 7.3 MC and tune in the stations with the BAND SPREAD control.

MPORTANT - The calibrations on the main tuning dial scale are correct only when the BAND SPREAD dial pointer is set at " 0 ".

SPEAKER PHONES - Normally this switch is set at 'SPEAKER" for loud speaker operation. Setting the switch to the "PHONES"position switches the output circuit from the speaker to the headset output jacks located on the rear apron of the chassis.

SERVICE

GENERAL SPECIFICATION

Tubes Four plus rectifier Speaker 5-inch PM Voice coil impedance 3.2 ohms Headset output High impedance (1500 to 5000 ohms)
Antenna Provisions for external antenna with transmission line or single wire feed.
Intermediate frequency. 455 KC
Power Supply 105-125 volts DC or 60 cycles AC
Power Consumption 30 watts
Tuning. Manual

TUNING RANGE	
Band Selector Position	Frequency Range
1	$540 \mathrm{KC}-1650 \mathrm{KC}$
2	$1.65 \mathrm{MC}-5.1 \mathrm{MC}$
3	$5 \mathrm{MC}-14.5 \mathrm{MC}$
4	$13 \mathrm{MC}-31 \mathrm{MC}$

RESTRINGING DIAL CORD

MAIN TUNING DIAL POINTER DRIVE

Restring the main tuning dial pointer drive with a 39 -inch length of 30 lb . test dial cord. Set the main tuning capacitor in a fully closed position. Tie one end of the cord to the tension spring at position " A " and follow the stringing procedure " A " through ' I " as lllustrated in Fig. 4. At position " I ", stretch the tension spring and tie the cord securely. Note that three and a quarter turns of dial cord are wrapped around the main tuning drive shaft for proper traction.

Index the main tuning dial pointer by setting the main tuning gang at maximum capacity (fully closed) and aligning the dial pointer with the left hand dial index marker.

MAIN TUNING GANG DRIVE

Restring the main tuning capacitor drive with a 30 -inch length of 30 lb . test dial cord. Set the main tuning capacitor in a fully open position. Tie one end of the cord to the tie point at position " 1 " and follow the stringing sequence " 1 " through" 14 " as shown in Fig. 5. At position " 14 ", stretch the tension spring and tie the cord securely to the spring.

BAND SPREAD GANG AND POINTER DRIVE

Restring the band spread gang and pointer drive with a 44 -inch length of $\mathbf{3 0} \mathbf{l b}$. test dial cord. Set the band spread capacitor in a fully closed position. Tie one end of the cord to the tension spring at position "A" and follow the sequence outlined in Fig. 6. At position ' M ", stretch the tension spring and tie the cord securely.

Index the band spread dial pointer by setting the band spread gang at maximum capactity and aligning the pointer with the position marked " 100 " on the band spread dial.

TUBE REPLACEMENT

The tube types and their relative position in the receiver are shown in the illustration, Fig. 7. When installing a replacement tube, insert the center guide pin into the center hole of the tube socket; rotate the tube until the key on the guide pin drops into the notch in the socket hole and then push down until the tube rests firmly on the socket.

Handle tubes with care as they are considered fragile and do not tolerate much mechanical abuse. DIAL LAMP REPLACEMENT

Refer to Fig. 7. for the location of the dial lamp used in the receiver. To replace a defective lamp, remove the cabinet back, reach in through the rear of the cabinet and unclip the dial lamp socket from the mounting clip. The socket may then be brought out into the open for dial lamp replacement. Make replacement with 6-8 volt Mazda *47 (brown bead) lamps or equivalent.

ALIGNMENT PROCEDURE

Holes in the bottom cover permit minor adjustment of the oscillator and converter stage trimmers; however for complete alignment, the chassis will have to be removed from the cabinet. To separate the chassis from the cabinet, first remove the cabinet back, the bottom cover which is held in place by the four mounting feet, and the front control knobs. Next, remove the speaker from the cabinet. The chassis is fastened to the cabinet by four Phillips head screws located at the bottom of the cabinet.

CAUTION - The rubber grommets, fiber washers and nylon insulators are used to insulate the chassis from the cabinet. Check the condition of these insulators and replace them if necessary.

The standard RMA dummy antenna specified in the alignment chart consists of a 200 mmf . capacitor in series with a 20 micro-henry r-f choke which is shunted by a 400 mmf . capacitor in series with a 400 ohm carbon resistor.

Before starting alignment, set the SPEAKER/PHONES switch at SPEAKER, the VOLUME control fully clockwise and the BAND SPREAD control to zero. For the settings of the remaining controls, see the alignment chart.

Step	Dummy Antenna	Signal Generator Coupling	Signal Generator Frequency	Band Selector Setting	Receiver Dial Setting	Adjust	t Remarks
1	.01 mfd cap.	Stator plates, front section of tuning gang.	455 kc	1	1000 kc	$\begin{aligned} & \text { A,B, } \\ & \text { C,D } \end{aligned}$	Adjust for max. audio outoutput at speaker voice coil. Use just enough signal generator output to obtain a suitable output indication.
2	Std. RMA dummy	High side to term. Al on antenna strip. Jumper wire between A2 and G.	30 mc	4	30 mc	F,G	Max. output as in step 1.
3	Std. RMA dummy	See step 2.	14 mc	3	14 mc	H,J	Max. output as in step 1.

5 mc
2
5 me K,L Max. output as in step 1. dummy

5 Std. RMA See step 2 1500 k ann inn $1500 \mathrm{kc} \mathrm{M}, \mathrm{N}$ Max. output as in step 1.

PAGE 22-38 HALLCRAFTERS

FIG. 8. TOP VIEW, ALIQNMENT POINTS AND COMPONENT LOCATIONS

FIO. 9. BOTTOM VIEW, ALIGNMENT POIMTS AND COMPONENT LOCATIONS

1. SOcket views are bottom views.

Fig. 10. TUBE SOCKET VOLTAGE CHART

SERVICE PARTS LIST

SPECIFICATIONS

Power Supply
Frequency Range
Intermediate Frequency
Antenna
Tuning
Speaker
Power Output
Sensitivity
Selectivity

117 volts 60 .cycle $A C, 117$ volts $D C, 29$ watts 535 KC to 1630 KC 455 KC Built-in Loop Variable Capacity
$4^{\prime \prime}$, P.M. voice coil impedance 3.2 ohms 0.8 watt undistorted, 1.8 watts maximum $400 \mathrm{uv} / \mathrm{m}$ average for 50 milliwatts output
55 KC broad at 1000 times, signal at 1000 KC

Tubes used are as follows:

12BE6 Oscillator-Converter	$50 c 5$ Power Output
12AV6 or 12AT6 AVC, Detector, and Audio	35 W4 Power Rectifier
12BA6 I.F. Amplifier	

MECHANICAL PARTS

HALLICRAFTERS PAGE 22.

CHASSIS LAYOUT TOP VIEW

all dc voltages in meference to conmon ground * AC EXCEPT WHEN USED ON DC

ALIGNMENT PROCEDURE
(Refer to chassis view)
The following procedure is for use only by competent servicemen having the proper equipment.
The alignment should be made with volume control fully on, and the output from the signal generator as low as possible, to prevent AVC action from interfering with proper alignment.
With the output meter connected across the voice coil of the speaker, the output meter reading for 50 milliwatts is 0.4 volts. using a signal which is modulated 400 c.p.s.
Adjust all trimmers for maximum output. Repeat the alignment procedure given below as a final check.
CAUTION: This is an AC/DC receiver, and when aligning the set it is necessary to isolate the signal generator or the receiver from the line by use of a transformer, or to place a . 2 MFD condenser in each test lead of the signal generator.

Frequency	SIGNAL G Dummy Antenna	ATOR Connection to Radio	POSITION OF VARIABLE	ADJUST FOR MAXIMUM OUTPUT
455 KC	. 1 MFD	128E6 Grid Stator VCA	Fully Open	T1 \% T2
1625 KC		12BE6 Grid Stator VCA	Fully Open	VCB Oscîllator
1400 KC	. 1 MFD	Loosely Coupled to Loop	Tune in Signal Generator	VCA Antenna

Connect low side of signal ganerator to common negative.

PARTS VALUES FOR HALLICRAFTER MODELS 5RII, 5RI2, 5R13, 5R14
CIRCUIT COMPONENTS

SYMBOL	PART NO.	DESCRIPTION	Value	RATING	TOL.
VCA-VCE	48-248	Variable Capacitor			
Cl	46AU503J	Capacitor, Tub. Paper	. 05 MFD	200 volts	
C2	- 46AU104J	Capacitor, Tub. Paper	. 1 MFD	400 volts	
C3	46AY203J	Capacitor, Tub. Paper	. 02 MFD	600 volts	
C4, C6, C7	46AY502J	Capacitor, Tub. Paper	. 005 MFD	600 volts	
C5	47X20B25IK	Capacitor, Mica	250 MMF	500 volts	
C9, Ca	45 BI 183	Capacitor, Elect.	40-20 MFD	150 volts	
C10	46AW503J	Capacitor, Tub. Papar	. 05 MFD	400 volts	
R1	$23 \times 20 \times 223 \mathrm{~K}$	Resistor, Carbon	22K Ohm	$1 / 2 \mathrm{wath}$	20\%
R2	$23 \times 20 \times 391 \mathrm{~K}$	Resistor, Carbon	390 Ohm	$1 / 2 \mathrm{wath}$	10\%
R3	$23 \times 20 \times 105 \mathrm{M}$	Resistor, Carbon	1 Megohm	$1 / 2$ watt	20\%
R4	$23 \times 20 \times 106 \mathrm{M}$	Resisior, Carbon	10 Megohm	$1 / 2 \mathrm{watt}$	20\%
R5, R9	$23 \times 20 \times 474 \mathrm{M}$	Resistor, Carbon	470K Ohm	$1 / 2$ watt	20\%
R6	$23 \times 20 \times 121 \mathrm{~K}$	Resistor, Carbon	120 Ohm	1/2 watt	10\%
R7	$23 \times 30 \times 103 \mathrm{~K}$	Resistor, Carbon	IOK Ohm	1 watt	20\%
R8	$23 \times 30 \times 102 \mathrm{~K}$	Resistor, Carbon	1000 Ohm	1 wath	20\%
VR-SW	258918	Volume Control \% Switeh	1 Megohm	S.P.S.T.	
El	49A016	Diode Filter Unit	2x100 MMFD	\%K Ohm	
LA	57C149-8	Loop Antenna \& Back			
LO	5181300	Oscillator Coil			
T1, T2	50B487	I. F. Coil			
SPK-T3	85 Cl 109	Speaker \& Output Transfo			
12AV6	$90 \times 12 \mathrm{AV} 6$	Tube, Type 12AV6			
12EA6	$90 \times 128 \mathrm{~A} 6$	Tube, Type 128A6			
12BE6	90×12856	Tube, Type 128E6			
35W4	$90 \times 35 \mathrm{~W} 4$	Tube, Type 35W4			
5005	$90 \times 50 \mathrm{c} 5$	Tube, Type 50C5			

FIG. 1
FRONT VIEW OFRECEIVER
SP-GOO-JX IN CABINET

TECHNICAL SUMMARY

Electrical Characteristics
Frequency Range-total 6 bands. 54 to 54.0 mc

Band 2.. 1.35 to 3.45 me
Band 3... 3.45 to 7.40 mc

Band 5... 14.80 to 29.7 mc
Band 6. 29.70 to 54.0 mc
Maximum Undistorted Output-approximate-2.5 watts.
Output Impedance-600 ohms-balanced split windings.
Phone jack-winding; delivers 15 milliwatts to an 8000 ohm resistive load, when the audio output to the 600 ohm power load is adjusted to 500 milliwatts.

Power Supply Requirements

Line Rating. 95, 105, 117, 130, 190, 210, 234 and 260 volt taps, 50.60 cycles.
Power Consumption. 130 watts, 1.25 amps. at 117 volts -maximum.

Mechanical Specifications

Rack Model-Dimensions; 19 inches wide, $101 / 2$ inches high and $161 / 2$ inches deep from rack mounting surface. Weight 66 lbs.
Table Model - Dimensions; $213 / 8$ inches wide, $123 / 4$ inches high and $171 / 8$ inches deep. Weight $871 / 2 \mathrm{lbs}$.

Performance Data - (approximate values-taken on a sample receiver)

Sensitivity is 2.3 microvolts, or better, throughout the entire frequency range, for a signal to noise power ratio of 10 to 1 .
Image rejection ratios are better than 80 db throughout the frequency range.
The IF rejection ratio at 600 kc is 2700 to 1
The AVC action will maintain the output constant within 12 db when the input is increased from 2 to 200,000 microvolts.

GENERAL DESCRIPTION

The SP-600-JX is a 20 tube Radio Communications Receiver with self contained power supply. The JX suffix in this model number denotes that this receiver is made in accordance with JAN specifications, with the exception of the use of a few capacitors and resis. tors where special design considerations require special values and tolerances not included in the JAN preferred value lists or where space limitations do not permit their use. The special components so used are equal or superior to the JAN components in quality.

The receiver is supplied in cither a well ventilated steel, table model cabinet finished in dark grey to complement the lighter grey front panel or for mounting in a standard 19 inch relay rack.

The self contained power supply is designed for operation from a single phase, 50 to 60 cycle alternating current power source. The power transformer primary is provided with taps covering a line voltage range from 90 to 270 volts. The power consumption is 130 watts.

The receiver is suitable for either headphone or loud speaker reception of AM radio telephone, CW telegraph or AM MCW telegraph signals.

The standard model provides continuous coverage over a frequency range from 0.54 to 54.0 megacycles in six bands. The large easily operated band change control knob, on the front panel, selects the desired frequency band and a band indicator visible through a small front panel window indicates the frequency band in use. This control also aligns the dial frequency indicator with the proper dial scale.

In addition to the frequency scales, the main dial has an arbitrary scale which in conjunction with the band spread dial provides continuous band spread scales over each frequency band for extremely accurate logging and resetability.

The single tuning control is large and of special design to permit maximum traverse speed as well as exceptional operating ease. It controls both the main and band spread dials. An anti-backlash gear train provides extremely close calibration accuracy and completely accurate resetability. A tuning lock provides positive locking action without affecting the frequency setting.

The tuning ratio from the tuning control to the main dial is 50 to 1 and the ratio from the band spread dial to the main dial is 6 to 1 .
An ingeniously designed rotary turret is employed to change bands and to place the coil assemblies of the $\mathbf{R F}$ amplifier, Mixer and First Heterodyne Oscil-
lator stages directly adjacent to their respective sections of the four gang tuning capacitor and their respective tubes. This assures maximum sensitivity at high signal to noise ratio.

Two stages of tuned radio frequency amplification are provided on all bands. The circuit for single conversion, used on frequencies up to 7.4 megacycles, includes a mixer, heterodyne oscillator, four stages of IF amplification, detector and AVC rectifier, noise limiter and meter rectifier, beat frequency oscillator, beat frequency buffer amplifier, IF vutput, AF amplifier and output power stage. The circuit for double conversion, employed for frequencies above 7.4 megacycles, includes a second mixer and a second heterodyne crystal controlled oscillator. The power supply system includes a B power rectifier, C bias rectifier and a voltage regulator.

The frequency control unit provides for fixed channel crystal controlled operation on any six frequencies chosen within the range of the receiver. Front panel controls permit the selection of the normal high stability continuously variable tuning or either of the six selected fixed frequency signals. For crystal controlled fixed channel operation it is only necessary to set the dial to the signal frequency, switch to the crystal frequency desired and tune with the delta frequency control. No retuning of the main tuning is necessary or desirable, when switching from VFO to crystal operation for the same signal frequency. These crystals are. not supplied with the receiver, but should be purchased on special order from HAMMARLUND MFG. CO. specifying the signal frequency for which it is to function.

The two scale tuning meter normally indicates the relative strength of the received signal in db from 1 microvolt, when operated on AVC and with the RF gain control at maximum. A rear control is provided for adjustment at the plus 20 db scale reading with an RF signal input of 10 microvolts. On depression of the panel meter switch the lower scale of the meter indicates the audio output power level in db from 6 milliwatts. A rear control is provided for adjustment of the* 0 db reading.

The AVC circuit is provided with separate time constants for CW and MCW operation. The beat frequency oscillator employs a high capacity Colpitts circuit which gives a high order of frequency stability and minimizes oscillator harmonics. The beat frequency oscillator voltage is introduced into the detector through a buffer amplifier which eliminates oscillator lock-in. This feature makes it possible to tune signals sharply to zero beat and permits the in-
clusion of the rear control for adjusting the beat oscillator injection to' suit operating conditions. A front panel control varies the audio beat frequency from 0 to plus or minus 3 KC .

The noise limiter circuit effectively limits the interference from ignition systems or other sources of pulse type noise. The limiter switch permits optional use of the limiter.

The antenna input circuit is designed for use with a balanced line. The input impedance is nominally 100 ohms. The receiver may also be operated with a conventional single wire antenna.

The audio output circuit is designed for a 600 ohm load or line and is provided with a four terminal split winding for balanced load operation. Undistorted power output is approximately 2.5 watts. The head phone circuit when referred to an 8000 ohm load provides signals attenuated approximately 15 db below the 600 ohm power output.

An RF gain control is provided for the manual control of sensitivity in the presence of strong signals and
operates on either MANUAL or AVC.
The send receive switch desensitizes the receiver but leaves the power on to provide for instant reception between transmission periods. A rear receptacle provides for the connection of an external relay.
Radiation is negligible and complies with requirements for shipboard operation and for multi-receiver installations.

Frequency drift after a 15 minute warm up period, ranges between .001 percent and .01 percent of frequency depending on the frequency used. This is a very unusual degree of frequency stability for variable tuned HF oscillators and closely approaches crystal stability.

The selectivity control provides three degrees of crystal and three degrees of non-crystal selectivity ranging from sharp (.2 kc) to broad (13.KC). The crystal filter embodies the same circuit features that have proved so effective and desirable in Hammarlund Super Pro Receivers, incorporated in an improved mechanical design.

CIRCUIT DESCRIPTION

General - The circuit is shown schematically in Figure 11. A block diagram, Figure 2, is provided to more clearly show the arrangement and functions of the various circuit sections. The location of the various tubes is shown in Figure 3. The circuit, for single conversion, used for signal frequencies up to 7.4 mc consists of two stages of RF amplification V-1 and V-2, First Mixer V.5, First Heterodyne Oscillator V.4, four stages of IF amplification V-7, V/9, V-10 and V-11, Detector and AVC rectifier V-14, Noise Limiter V-15. Beat Frequency Oscillator V-13, IF output and AF amplifier V-16.A and V-16-B, Output Power stage V-17 and the Power Supply system which includes B Power Rectifier V-19, C Bias Rectifier V-20 and Volt. age Regulator V-18.

In the circuit for double conversion, used for signal frequencies above 7.4 mc , the Second Mixer V. 6 and Second Heterodyne Oscillator V-8 are substituted for the Gate tube V.7.

Input Coupling - The antenna coupling is designed to provide optimum coupling from a 100 ohm transmission line. A balanced doublet or straight wire antenna may be used.

RF Amplifier - An ingeniously designed rotary turret is employed to change bands and to place the coil assemblies of the RF amplifier $\mathrm{V} \cdot 1$ and $\mathrm{V} \cdot 2$, Mixer V. 5 and First Heterodyne Oscillator V. 4 stages directly adjacent to their respective sections of the four gang tuning capacitor and their respective tubes. This assures maximum sensitivity at high signal to noise ratio.

First Heterodyne Oscillator - (Variable V-4) The rotary turret band change switch, advanced de-
sign of the four gang, twin section, variable tuning capacitor and rugged construction throughout, provide frequency stability and dial calibration accuracy to a previously unattained degree.

First Heterodyne Oscillator - (Crystal Controlled V-3) - For services requiring extremely stable, fixed frequency operation, a crystal controlled high frequency oscillator is provided. Instant changeover from variable to crystal controlled oscillator, with a choice of six crystal positions, is effected by a front panel control. A second front panel control permits adjustment of the crystal oscillator frequency over a plus or minus .005 percent range.

Intermediate Frequency Amplifier - Single conver sion to 455 kc is employed for signal frequencies below 7.4 mc . There are four stages of IF amplification incorporating the Hammarlund patented crystal filter circuit. Six positions of selectivity provide 6 db bandwidths of $.2, .5,1.3,8$ and 13 kc . On the three nar, rower bandwidth positions, the crystal filter is in op eration. The crystal phasing control provides extreme selectivity for the high attenuation of closely adjacent interfering signals.

Double conversion is employed for signal frequencies above 7.4 mc . The signal is heterodyned to 3.955 mc by the First Mixer V-5 and Heterodyne Oscillator V. 4 or V. 3 for high image rejection. The 3.955 mc signal is then heterodyned to 455 kc by the Second Mixer V. 6 and the 3.5 mc Fixed Crystal Controlled Oscillator V-8, for selectivity.

Detector and AVC - The V. 14 tube is used as a high level Detector and AVC Rectifier. The AVC circuit is provided with separate time constants for CW and MCW operation.

Beat Frequency Oscillator - The beat frequency oscillator employs a high capacity Colpitts circuit which gives a high order of frequency stability and minimizes oscillator harmonics. The beat frequency Oscillator V-13, is coupled into the detector circuit through Buffer Amplifier V-12, which eliminates oscillator lock-in and permits variation of the beat oscillator injection by means of a control located on the rear of the chassis A front Panel control varies the audio beat frequency, from zero beat to plus or minus 3 kc .

Noise Limiter - The noise limiter circuit V.15, limits the noise interference from ignition systems or other sources of pulse type noise. A separate control

Power Supply - The power supply is an integral part of the receiver. It includes the B rectifier $\mathrm{V}-19$ and the C rectifier $\mathrm{V}-20$, together with their respective low pass filters and the Voltage Regulator V-18. The power transformer is provided with screw terminal primary taps, covering a power line source range of 90 to 270 volts, 50 to 60 cycles. The power transformer is protected by a fuse in the primary circuit.

Tuning Meter - The tuning meter is used on AVC operation to indicate the accuracy of tuning and the relative strength of received signals. Depression of the Meter Switch converts the meter circuit for indication of output level in db from 6 milliwatts.

switch S-6, permits optional use of the limiter on any mode of operation when pulse type interference is present.

Audio Frequency Amplifier - A resistance coupled amplifier triode, $\mathrm{V} \cdot 16 \cdot \mathrm{~B}$, amplifies the audio frequency signal from the detector.

Audio Output - The audio output tube V.17, is transformer coupled through a split, balanced winding to deliver 2.5 watts undistorted output to a 600 ohm load. The split balanced winding permits balancing of the direct curreht in the output circuit, as used for teletype or similar service. A separate secondary winding provides attenuated audio signal output for headphone operation. This winding will deliver an output of 15 milliwatts into an 8000 ohm resistive load when the 600 ohm power secondary is delivering 500 milliwatts to a 600 ohm resistive load.

IF Output - A cathode follower V-16-A provides a low impedance source of intermediate frequency (455 Kc) signal to the connector on the rear skirt of the chassis.

RF Gain Control and Power Switch -- The RF gain control is provided for manual control of sensitivity to prevent overloading on strong signals when operating with the AVC-MANUAL switch in the "MANUAL" position. This control also operates when the switch is in the "AVC" position. The Power "ON-OFF" switch is operated at the counter-clockwise extremity of the RF gain control.

Send-Receive Switch - The send-receive switch desensitizes the receiver but leaves the power "on" to provide for instant reception between transmission periods. A receptacle is provided on the rear of the receiver for the external connection of a relay.

Convenience Outlet - A convenience power outlet is provided on the rear of the chassis for the connection of an accessory such as a lamp or electric clock.

Radiation - Advanced design and shielding of the high frequency, second conversion crystal and beat frequency oscillators has reduced radiation to a negligible point so that interference of this nature, common in multi-receiver installations, is reduced to a minimum.

INSTALLATION

Tubes and Packing -- Inspect the chassis to see that all tubes are firmly in their respective sockets and that any packing is removed from the receiver.

Power Supply - Make sure that the primary tap lead on the power transformer is connected to the transformer tap which most nearly agrees with the 50 to 60 cycle power source voltage.

Antenna - The input impedance at the antenna terminals is designed to match a 100 ohm transmission line. The angle plug adapter and connector, supplied with the receiver, is designed for use with a small diameter, "TWINAX" transmission line, which should be used with a balanced antenna installation. If it is desired to operate with a single wire antenna, the antenna lead-in wire should be connected to one terminal of the connector plug and a ground lead should be connected from the other terminal of the connector
plug to the ground terminal, which is adjacent to the antenna input receptacle at the rear of the tuning unit.

Speaker - The loud speaker should be of the permanent magnet dynamic type and should include a speaker voice coil to 600 ohm line matching trans, former for connection to the 600 ohm audio output terminals of the receiver.

Headphones - Either low or high impedance Keadphones may be used in the phone jack. The high impedance type is recommended. The phone jack is located at the lower left side of the front panel.

Mounting - The receiver may be placed on a table or mounted in a standard 19 inch rack. If a table model is purchased, it is supplied with a steel cabinet. The cabinet should be placed in a position which permits the free access of air for the ventilation louvers.

IV OPERATION DESCRIPTION OF CONTROLS

The front panel dials and controls are shown in Figure 1 and the rear chassis skirt controls and terminals are shown in Figure 6.

Tuning Dials - The main dial is to the left and the band spread dial is to the right. The main dial has six frequency band scales, calibrated in megacycles and an arbitrary, outer scale. The band spread dial has an arbitrary, 0 to 100 , scale. The numeral under the fixed pointer of the main dial indicates the number of revolutions that have been made by the band spread dial at any setting. Thus, if the pointer, for the outer scale, of the main dial indicates over the figure 4 and the band spread dial indicates 87.6 , the reading to \log for this setting is read, 487.6. This precise mechanical band spread system divides the rotation of the main dial over each frequency band into approximately 600 band spread divisions, with one half division calibration points. Since it is easy to estimate one tenth divisions, on the band spread scale, this divides each frequency band into approximately 6000 readable settings. This permits extreme accuracy in the logging of stations.

Crystal Controlled HF Oscillator - For operation on fixed frequency channels the "FREQUENCY CONTROL" is provided. The crystals are not sup. plied with the receiver, but will be supplied on special order. In order to insure correct crystal controlled frequency operation crystal units should be ordered from HAMMARLUND MFG. CO. INC. and the order should specify the signal frequency, for which each unit is to be used. The frequency control unit has provision for six crystals. Variable frequency op-
eration or crystal controlled frequency operation on any of the six crystal positions is selected by the "CRYSTAL SWITCH". The crystal oscillator is designed for use with suitable crystals at any frequency in the range of the receiver above one megacycle. The "DELTA FREQ" control is used to compensate for avery small plus or minus frequency tolerance of the crystals.
The procedure for crystal frequency control operation should be as follows: Loosen the knurled thumb screw on top of the crystal unit and push the retainer spring assembly to the rear. Insert the crystal or crystals in the crystal sockets, numbered 1 to 6 . Bring the retainer spring assembly forward so that the springs press on top of the crystal holders and tighten the thumb screw. Mark the signal frequency for which each crystal was selected, in megacycles on the plastic chart provided for this purpose alongside the crystal switch. Pencil or ink may be used and can be erased if it is desired to change these figures at any time. The numerals on the chart should be used so that they agree with the numerals on the crystal socket positions, which are also indicated hy the crystal switch. The main tuning dial should be set at the signal frequency for which operation is desired. The crystal switch should be set at the position corresponding to the number for that signal frequency on the chart. The Delta Frequency control should be adjusted for maximum signal or for zero beat as required. It should be noted that this tuning adjustment of the Delta Frequency control must be made each time that the sig. nal frequency is changed and that the main tuning dial should be set to agree with the new signal frequency.

Tuning Lock - The tuning lock, located to the right of the tuning knob, provides a positive locking for the tuning mechanism without affecting the frequency setting, when it is desired to prevent accidental shifting of the tuning or when the receiver is operated under a severe condition of vibration.

Tuning Meter-The tuning meter at the upper left on the front panel is useful in accurately tuning a signal and provides an indication of the relative strength of the received signal in db from 1 microvolt. The "METER ADJ RF" control at the rear of the chassis provides adjustment of the plus 20 db reading on the RF scale, with a 10 microvolt input signal. Depression of the "METER SWITCH" converts the meter circuit for indication of the AF output power level in db from 6 milliwatts. This switch is spring returned to the RF scale circuit position when released and should not be depressed for the AF scale unless the audio output has been adjusted for low power output, by means of headphones or speaker. Failure to observe this precaution may result in damage to the meter. The "METER ADJ AF" control at the rear of the chassis provides adjustment of the 0 db reading on the AF scale, which should be made when the AF output power from the 600 ohm audio output terminals is 6 milliwatts or 1.9 volts across a 600 ohm load.

Band Change - The large knob, to the left, is the band change control. Each revolution of this control turns the turret, containing the RF and HF oscillator coil, trimmer and switch contact assemblies, from one frequency band to the next. The turret has no stops and may be turned in either direction desired. A positive detent machanism assures correct location of the various bands. The band change control simultaneously operates the small frequency band dial, located at the center of the panel and aligns the dial frequency indicator with the proper scale.

Selectivity Switch - The selectivity switch provides three crystal and three non-crystal degrees of selectivity, ranging from extremely sharp, for CW reception, to broad for good fidelity MCW operation. The control knob dial indicates the 6 db band width at each setting.

Phasing Control - The phasing control permits high attenuation of closely adjacent channel interference on either side of the signal frequency, when the crystal selectivity positions are used.

Beat Frequency Oscillator - The beat frequency oscillator is turned "on" for CW signal operation by the "MOD-CW" switch. The beat frequency dial
should be set at zero for tuning to zero beat ardsta adjusted to give the desired audio pitch. The berk k quency oscillator injection voltage is adjustable $\}$ "BFO INJ" control on the rear skirt of the ch
Noise Limiter- The noise limiter switch i/wdo pendent of other controls and is useful in greaty J tenuating noise interference from ignition or witid pulse type sources, regardless of the mode of opera tion.

Send-Receive - The send-receive switch permit desensitizing the receiver during transmission periods to prevent damage to the receiver, when operated in proximity to the transmitter and provides instant re turn to reception between transmission periods.

Relay Receptacle -- The relay receptacle, on th rear of the receiver, is connected in parallel with th send-receive switch and provides for the connectiorr o an externally connected relay, to perform the send receive operation. When the relay is used the send receive switch is left in the "open" or "send" position

AVC-Manual Switch - The AVC-Manual Switcl permits the choice of either AVC or Manual sensitiv ity operation as desired. The AVC has a delay bias which insures maximum sensitivity for weak signals.

RF Gain Control -.. The RF gain control provide adjustment of the sensitivity for signals of variou strength, when under the "manual" operating cond tion, in order that the receiver sensitivity may be ad justed to suit the signal strength and prevent overload ing. This control is also in the circuit when operatin: on AVC, in order that the sensitivity may be adjuste to reduce undesirable noise during "off" periods in th transmission of the received signal. When it is de sired to use the tuning meter for indication of relativ signal strength, the RF gain control should be at max mum.

Audio Gain Control - The audio gain control ac justs the audio input to the audio amplifier tube. I should be adjusted for the required audio output whe operating on AVC and is best left at or near maximur when operating on MANUAL control.

Phono Input - Terminals are provided on the rea of the receiver for phonograph or other audio fre quency source input to the audio frequency amplifiei

Convenience Outlet - A power outlet receptacle : provided on the rear of the receiver chassis for opera ing an accessory, such as an electric clock or lamp.

MAINTENANCE

This receiver is designed for continuous duty and should normally require little attention beyond the replacement of tubes. However, should trouble de velop that cannot be eliminated with new tubes, the socket voltages and resistances should be measured to chassis. Any appreciable departure from the values shown in tables 1 and 2 will generally indicate the
component or circuit at fault.
Operating and maintenance of the receiver will \mathbf{b} greatly facilitated if the contents of this instructio manual are thoroughly digested. Approximate inpt signal values for stage by stage gain checks are show in table 4.

TUBE SOCKET VOLTAGES-TABLE 1

Voltage to chassis. Measurements made with Weston Model 663 Volt-Ohmmeter, except those indicated by asterisk were made with Measurements Corp. Model 62 VTVM. The 500 volt scale was used for all voltages above 10 volts and the 10 volt scale for voltages below 10 volts. Line voltage 117 , no signal input. Audio Gain control at minimum and CW/MOD switch on "CW"

SOCKET PIN NUMBERS										
TUBE	1	2	3	4	5	6	7	8	9	MODE OF OPERATION
V. 1	*-1	-	* 6.3 ac	\sim	200	90	-	-	-	RF Gain max.
V.1	*-54	-	* 6.3 ac	-	260	235	-	-	-	RF Gain min.
$V \cdot 2$	*-1	-	*6.3ac.	-	210	100	-	-	-	RF Gain max.
V-2	*-54	-	* 6.3 ac	-	260	240	-	-	-	RF Gain min.
V. 3	-	*6.3ac	-	-	-	0	-	265	-	RF Gain max.-VFO operation
$V \cdot 3$	-	*6.3ac	-	-	-	150	-	265	-	RF Gain max.--Crystal Freq. Control
V-3	-	* 6.3 ac	-	-		0	0	290	-	RF Gain min.-VFO operation
V-3	-	*6.3ac	-	-	-	150	0	280	-	RF Gain min.-Crystal Freq. Control
V. 4	130	-	*6.3ac	-	130	-	-	-	-	RF Gain max. or min.
V.s	-	1.2	*6.3ac	-	140	110	-	-	-	RF Gain max. or min.
V. 6	-	-	*6.3ac	-	225	-	*-1	-	-	RF Gain max.-Freqs. below 7.4 mc
V. 6	-	-	*6.3ac	-	260	-	*-1	-	-	RF Gain min.-Freqs. below 7.4 mc
V. 6	-	-	* 6.3 ac	-	225	90	*-1	-	-	RF Gain max,-Freqs. above 7.4 mc
V. 6	-	-	*6.3ac	-	260	105	*-1	-	-	RF Gain min.-Freqs. above 7.4 mc
V.7	*-11	-	* 6.3 ac	-	225	170	-	-	---	RF Gain max.--Freqs. below 7.4 mc
V.7	*-11	-	* 6.3 ac	-	260	190	-	-	-	RF Gain min.-Freqs. below 7.4 mc
V-7	*-11	-	*6.3ac	-	225	0	\longrightarrow	-	--	RF Gain max.-Freqs. above 7.4 mc
V.7	*-11	-	*6.3ac	-	260	0	一	-	-	RF Gain min.-Freqs. above 7.4 mc
V. 8	0	-	*6.3ac	-	0	-	-	-	----	Frequencies below 7.4 mc
V. 8	30	-	*6.3ac	-	30	-	-	-	--	Frequencies above 7.4 mc
V.9	*-1	-	*6.3ac	-	205	90.	-	-	---	RF Gain max.
V.9	*-54	-	*6.3ac	-	260	235	-	-	-	RF Gain min.
$\mathrm{V} \cdot 10$	*-1	-	*6.3ac	-	205	90	-	-	-	RF Gain max.
$V \cdot 10$	*-54	-	*6.3ac	-	260	235	-	-	-	RF Gain min.
V-11	*-11	-	*6.3ac	-	210	145	-	-	-	RF Gain max.
$V \cdot 11$	*-11	-	*6.3ac	-	240	145	-	-	-	RF Gain min.
V. 12	-	-	* 6.3 ac	-	210	40	-	-	--	RF Gain max.-BFO Injection max.
V.12	-	-	*6.3ac	-	240	45	--	--	--	RF Gain min.-BFO Injection max.
V-13	25	-	*6.3ac	-	25	-	-	-	--	RF Gain max. or min.
V. 14	-	-	*6.3ac	- -	*22	--	-	-	- -	RF Gain max. or min.
V.15	-	-	*6.3ac	-.	-	-	-	-	---	RF Gain max. or min.
V. 16	50	-	1.5	---	--	210	-	6.4	*6.3ac	RF Gain max.
$V \cdot 16$	52	-	1.6	-	-	240	-	7.4	*6.3ac	RF Gain min.
V.17	-	\cdots	260	228	--	--	*6.3ac	12	-	RF Gain max.
V.17	-	-	280	265	--	-	*6.3ac	13	-	RF Gain min.
V. 18	150	-	-	--	150	-	-	-	-	RF Gain max. or min.
V. 19	-	300	-	-	-	-	-	300	--	RF Gain max.-\% $5 \mathrm{~V}_{2}$ c Pin 2 to $\operatorname{Pin} 8$
V. 19	-	320	-	-	-	-	-	320	\sim	RF Gain min.- 5 V ac Pin 2 to Pin 8
V. 20	-	*-96	*6.3ac	-	-	-	*-96	-	--	RF Gain max.
V. 20	-	*-97	*6.3ac	-	-	-	*-97	-	-	RF Gain min.

TUBE SOCKET TERMINAL RESISTANCE-TABLE 2

Resistance to chassis. Measurements made with Weston Model 663 Volt-Ohmmeter.
Tube removed from socket under measurement. Audio Gain Control at maximum, RF Gain Control at mini mum. Limiter Switch "OFF". CW-MOD Switch on "CW". AVC-MAN Switch on "AVC".

Socket Pin No.	1	2	3	4	5	6	7	8	9	MODE OF OPERATION
Tube Socket										
V.1	1.8M	0	--	0	48K	80 K	0	-	-	
V-2	1.8M	0	-	0	48K	80K	0	-	-	
V. 3	0	-	0	47K	0	46K	-	46K	-	Crystal Freq. control pos. 1-6
Va4	Inf.	Inf.	-	0	Inf.	47K	0	-	---	Crystal Freq. control pos. 1-6
V. 4	48K	Inf.	-	0	Inf.	47K	0	-	-	VFO Operation
V.s	47K	150	-	0	48K	53K	500K	-	-	
V. 6	22 K	0	-	0	46K	Inf.	100K	-	-	Freq. Bands below 7.4mc
V. 6	22 K	0	-	0	46K	70K	100K	-	--	Freq. Bands above 7.4 mc
V-7	115K	0	-	0	46 K	Inf.	0	-	-	Freq. Bands above 7.4 mc
V.7	115K	0	-	0	46K	80 K	0	-	-	Freq. Bands below 7.4 mc
V. 8	-	一	-	0	Inf.	22K	0	-	-	Freq. Bands below 7.4mc
V.8	--	-	-	0	150K	22K	0	-	-	Freq. Bands above 7.4mc
V.9	1.3M	0	-	0	52K	80K	0	-	-	
V-10	1.3M	0	-	0	52K	80 K	0	-	-	
V-11	125K	0	-	0	48K	50K	0	-	-	
V-12	0	0	-	0	48K	145K	*	-	-	*0 to 1K (BFO Injection control)
V.13	-	-	-	0	195K	100K	0	-	-	
V. 14	0	770K	---	0	16K	0	220K	-	-	
V-15	94K	Inf.	-	0	Inf.	0	220K	-	-	
V-16	130K	500K	1 K	0	0	46K	470K	680	-	
V-17	0	0	46K	46K	470K	Inf.	-	360	-	
V. 18	118 K	-	-	-	78 K	-	0	-	-	
V. 19	-	46K	0	55	-	55	-	46X	-	
V-20	50K	65K	--	0	50K	0	65 K	-	-	

The alignment of a modern communications receiver requires precision instruments and a thorough knowledge of the circuits involved. This receiver, being a double super heterodyne, the alignment procedure is even more involved than is usual.

Under normal service the receiver will stay in alignment for extremely long periods of time, consequently
realignment should not be attempted unless all other possible causes of a particular trouble have been eliminated. When it has been determined that any realignment should be attempted, a great deal of caution should be exercised in making the adjustments, as any required readjustment should not entail more than a slight angular motion of the adjusting screw.

ALIGNMENT OF THE IF STAGES

The low frequency IF should be aligned first. The recommended method for aligning the low frequency IF involves the use of a sweep frequency signal generator and an oscilloscope. Since these instruments are not available at the average service station the alter nate method using an amplitude modulated signal generator and an output meter will be described first. The additional information required for the visual alignment method will be covered in a later paragraph.

The signal generator should be coupled to the grid of the mixer tube V5 through a capacitance of approximately .01 mfd . A miniature tube adapter will be required to make the mixer grid connection available. Such an adapter is manufactured by the Alden Manufacturing Co. An output meter should be connected across the output terminals of the receiver or the speaker voice coil. The receiver controls should now be set as follows:

\quadControl	Position	
Selectivity	-	See text
Send-Receive	-	Receive
CW - Mod	-	Mod
Phasing	-	Arrow
AVC-Man	-	Man
Audio Gain	-	Set for approx. 20 volts
RF Gain	-	See text
Band Switch	-	$1.35-3.45 \mathrm{mc}$
Dial	-	2.5 mc

The signal generator should be modulated 30 percent at 400 cycles. Turn the selectivity switch to the 3 kc position and advance the RF Gain control to maximum. Set the signal generator frequency to 455 kc and adjust its output until some deflection is noted on the output meter. Refer to figure 3 for the location of the various alignment adjustments. Adjust L42, L41, L39, L38, L36 and L3 3 for maximum output. reducing the signal generator output and the RF Gain control as required to prevent overload or excessive output. Now turn the selectivity switch to the narrowest position, .2 kc , and adjust the signal generator frequency for the maximum output. This establishes the correct signal frequency by the 455 kc crystal for the IF amplifier and the frequency of the signal generator should not be disturbed for the remainder of the low frequency IF alignment, unless it should be to recheck this establishment of crystal frequency to make sure that the signal generator frequency has not drifted during the alignment. The selectivity switch is now
turned to the 3 kc position and L42, L41, L39, L38. L36 and L32 are again adjusted for maximum output. Now turn the selectivity switch to the 1.3 kc position and adjust L37 for maximum output. Before chang. ing this set-up the BFO should be turned on by throwing the CW-Mod switch to CW and checked for zero beat with the BFO knob dial at its zero reading. If necessary L44 should be adjusted for zero output. This check and adjustment of the BFO shouid be done with the signal generator carrier unmodulated.

The procedure for the visual method of aligning the low frequency IF should be the same as the above ex. cept that the adjustments are made for both maximum amplitude and coincidence of the oscilloscope images. The oscilloscope vertical input should be connected across the diode detector load resistance, from the junction of R64 and R65 to chassis.

The high frequency IF should be aligned next. Set the band switch to the $7.4-14.8 \mathrm{mc}$ band. The selectivity switch should be in the 3 kc position. Adjust the signal generator frequency to 3.955 mc and adjust L31, L33 and L34 for maximum output.

The 3.5 mc crystal used in the second oscillator is held to a very close frequency tolerance. However, if it is desired that this oscillator frequency be exactly 3.5 mc to permit its use as a frequency standard, as hereinafter described, this may be accomplished by adjusting capacitor C101, underneath the chassis. The exact procedure is as follows; Set the receiver to 7.0 mc on the $3.45-7.4 \mathrm{mc}$ band. Temporarily connect, by means of a jumper, the center and the open terminals on switch S4 at the rear of the tuning unit. Attach a two foot length of insulated wire to the antenna terminal and dress the free end around the tube shield on the 3.5 mc oscillator tube V8 with the CW-Mod switch on CW rock the tuning control slightly until a beat note is heard in the headphones or speaker. Now throw the CW - Mod switch to Mod and couple a 1.0 mc frequency standard to the antenna input terminal. Adjust capacitor C101 for zero beat. Remove the jumper from S4 and remove the two foot test lead. If appreciable adjustment of ClOl was required it is advisable to repeat the high frequency IF alignment.

The 3.5 mc oscillator may now be used as a frequency standard at multiples of 3.5 mc from 10.5 mc upwards, by temporarily connecting the two foot length of wire as described above.

ALIGNMENT OF THE RF AMPLIFIER \& HF OSCILLATOR

To adequately align the RF Amplifier and HF Os cillator an accurately calibrated signal generator and an output meter are required. The frequencies re, quired are shown in table 3. The location of the adjustments is shown in Figure 3. The use of Table 3 and Figure 3 should be made in following this part of the alignment which will now be described for one frequency band. The same procedure should then be followed for the other frequency bands.

To align the $.54-1.35 \mathrm{mc}$ band the signal generator is coupled to the antenna input terminal through a 100 ohm carbon resistor. The generator should be modulated 30 percent at 400 cycles and the output meter connected across the receiver output terminals. The receiver controls should be set as follows:

Set the receiver and signal generator dials to .56 mc . The RF Gain control should be set at maximum and the AVC - Man switch set on AVC. The HF Osc. L adjustment shown in Figure 3, should now be set for maximum output. Then the Ant., 1st RF and 2 nd RF L adjustments should be set for maximum output. The receiver and signal generator dials are now set to 1.3 mc and the C adjustments, shown in Figure 3, should be adjusted for maximum output in the same order, beginning with the Osc C adjustment and then making the C adjustments for the Ant, 1st RF and 2nd RF. This procedure should be carefully repeated until no increase in output can be realized. The AVC -Man switch should then be set to Man and the signal generator should be set for approximately 3 micro volts. The L and C adjustments should now be checked for maximum output, adjusting the RF Gain control as found necessary to maintain the output at approximately 20 volts.

Following the frequencies, shown in Table 3, align the remaining bands using the same procedure as above.

RF AND HF OSCILLATOR ALIGNMENT FREQUENCIES AND ADJUSTMENT DESIGNATIONS

FREQ. BAND IN MC	$.54 — 1.35$	$1.35-3.45$	$3.45-7.4$	$7.4-14.8$	$14.8-29.7$	$29.7-54.0$
RF \& HF OSC ADJUST L AT.	.56	1.4	3.75	7.5	15.0	30.0
RF \& HF OSC ADJUST C AT.	1.3	3.4	7.15	14.5	29.0	52.0

TABLE No. 4

APPROXIMATE SIGNAL INPUT AT IF \& AF STAGES FOR 20 VOLTS OUTPUT

Output measured across a 600 ohm resistive load at output terminals of receiver. $R F$ signals modulated 30 percent at 400 cycles. Signals applied to tube grids through a .01 mfd capacitor. Selectivity switch at 3 kc AVC-- MAN switch on MAN. CW - MOD switch on MOD, RF Gain and Audio Gain at maximum.

BAND SWITCH	FREQUENCY	INPUT TO	APPROX. INPUT
Any	Audio 400 cycles	Pin 5, V17	3.5 volts
Any	Audio 400 cycles	Pin 2, Vi6B	. 3 volts
$1.35-3.45 \mathrm{mc}$	Mod RF 455 kc	Pin 1, V11	. 35 volts
$1.35-3.45 \mathrm{mc}$	Mod RF 455 kc	Pin 1, V10	6000 microvolts
$1.35-3.45 \mathrm{mc}$	Mod RF 455 kc	Pin 1, V9	110 microvolts
$1.35-3.45 \mathrm{mc}$	Mod RF 455 kc	Pin 1, V7	40 microvolts
1.35-3.45 mc	Mod RF 455 kc	Pin 7, V5	65 microvolts
$7.40-14.8 \mathrm{mc}$	Mod RF 3.955 mc	Pin 7, V5	40 microvolts
$7.40-14.8 \mathrm{mc}$	Mod RF 3.955 mc	Pin 7, V6	250 microvolts

FIG. 3
-AUDIO AND OVERALL FIDELITY CURVES•

MODEL SP-600-JX	TABLE No. 5
	PARTS LIST

Symbol Designations	DESCRIPTION	Hammarlund Part No.	Symbol Designations	DESCRIPTION	Hammarlund Part No.
C1A. B, C. D.	Capacitor, variable,		E2	4 Screw Terminal, Audio	
C, F, G, H		34001-G1	E3, 4, S, 6	Dial Lamp, No. 47	31141-1
21, 22, 23, 24,				Mazda	16004-1
27, 29, 40, 41, 42, 43, 44, 47,				Dial Lamp Socket Assembly	31453-1
49, 61. 64, 66,			E7	2 Solder Term. strip	16650-12
68, 70, 71, 72,			E8	1 Solder term. strip	
$73,74,100$ $105,115,116$,			E9, 10, 11, 12	1 (left)	16650-9
121, 122, 127,			E9, 10, 11, 12	1 (right)	16650-11
135, 153, 154,			E13, 14	6 Solder term. strip.	16650-10
	Capacitor, 01 mfd .	23012-1	E15, 16	8 Solder term. strip.	31163-G1
C6, 30, 50 C8,	Capacitor, 20 mmf .	23003-41C $23011-40 \mathrm{C}$	E17 E18	15 Solder term. strip	31162-G1
C8, $33,53,132$	Capacitor, 2400 mmf	$23011-40 \mathrm{C}$ $23003-45 \mathrm{C}$	E18	$3 \begin{aligned} & \text { Solder term. strip } \\ & \text { (meter) }\end{aligned}$	31454-G1
C11, 17, 35, 55	Capacitor, 1500 mmf	23011-62C	F1	Fuse, 3 Amp.	15928-8
C12, 138, 145	Capacitor, 7 mmf .	23061-168F		Fuse Holder	15923-1
${ }_{\text {C14 }}$	Capacitor, 1000 mmf	23011-58C		Fuse Holder, Spare....	15923-4
${ }_{\text {C15, }} 139$	Capacitor, 15 mmf .	23061-155J	J1	Antenna Input Socket.	15959-1
$\text { C18, 25, 45, } 75 \text {, }$	Capacitor, 100 mmf	23003-94C	${ }_{3}{ }^{2}$	IF Output Socket......	16111-1
C37, 57,67	Capacitor, 85 mmf .	23071-59	J4, 5	Power or Relay	5066-1
C39, 59, 99, 134	Capacitor, 51 mmf	23003-87C		receptacle .	35013-1
C60, 88	Capacitor, 12 mmf .	23023-65UJ	L1	RF Inpuit assembly, in-	
$\mathrm{C}^{\mathbf{C} 62}$	Capacitor, 2200 mmf	23011-17C		cludes C2, 3, L1 and	
C63	Capacitor, 39 mmf .	23003-47C		Switch contacts for	
C69, 107, 117,	Capacitor, variable	11726-G109	L2	RF Input assembly, in-	31387-G1
	Capacitor, 220 mmf .	23003-102C		cludes C4, 5, L2 and	
C77	Capacitor, 3300 mmf	23011-69C		Switch contacts for	
C78	Capacitor, 404 mmf	23071-67		S1A	31390-G1
C79,80	Capacitor, 5 mmf	23023-8UJ	L3	RF Input assembly, in-	
C82	Capacitor, 810 mmf	23072-53 $23033-2 \mathrm{~B}$		cludes C6, 7, 8, L3 and	
C85	Capacitor, 1200 mmf	23011-60C		S1A	31393-G1
C87	Capacitor, 120 mmf	23071-50	L4	RF Input assembly, in-	
C89	Capacitor, 190 mmf	23071-64		cludes C9, 10, 11, L4	
C91	Capacitor, 92 mmf	23071-71		and Switch contacts	
C92	Capacitor, 51 mmf .	23023-45UJ		for S1A	31396-G1
${ }^{\text {C93 }}$	Capacitor, 379 mmf	23071-63	L5	RF Input assembly, in-	
C96	Capacitor, 610 mmf .	23072-52		and Switch contacts	
C97	Capacitor, 65 mmf .	23071-58		for S1A $\ldots \ldots \ldots \ldots$	31399-G1
$\begin{aligned} & \text { C98, 102, } 103 \text {, } \\ & \text { 104. 106, 108, } \end{aligned}$			L6	RF Input assembly, includes C15, 16, 17, L6	
109, 118, 123, 136, 146,				and Switch contacts	31405-G1
148, 156, 157	Capacitor, 022 mfd .	23013-1	L7, 14, 24, 35	RF Choke, 192 micro-	31405-G1
Cl^{101}	Capacitor, variable	11725-G151		henries	15612-G1
C111	Capacitor, variable	${ }^{11776-G 1}$	L8	RF Transformer assem-	
C114, $\mathrm{C} 119,125$	Capacitor, 270 mmf Capacitor, 300 mmf	$\begin{aligned} & \text { 23003-104C } \\ & 23003-105 \mathrm{C} \end{aligned}$		sembly, includes C26,	
$\begin{aligned} & \mathrm{C} 120.126 \\ & \mathrm{C} 128,151,158, \end{aligned}$		23011-61C		27, L8, R7 and Switch contacts for S1B.	31386-G1
C128, 151, 158 , 159, 160	Capacitor, $10 \mathrm{mfd}, 100 \mathrm{~V}$ HS Can, Electrolytic	15462-1	L9	RF Transformer assembly, includes C28, 29 ,	
$\begin{aligned} & \text { C129A, 129B, } \\ & 152 \mathrm{~A}, 152 \mathrm{~B} \end{aligned}$	Capacitor, $2 \times .05 \mathrm{mfd}$ HS Can, Paper	15461-1		L9, R8 and Switch con-	31389-G1
C130	Capacitor, 27 mmf .	23023-71UJ	L10	RF Transformer assem.	31389-G1
C131. 133	Capacitor, 430 mmf .	23003-109C		bly, includes C30, 31,	
C137	Capacitor, 25 mfd 200 V	23911-79E		32, L10 and Switch	
$\begin{aligned} & \mathbf{C l}_{1} \mathbf{C 1 4 1 , ~}^{240} \end{aligned}$	Capacitor, 1003 mmf Capacitor, 100 mm .	$\begin{aligned} & \text { 23015-27A } \\ & 23024-24 \mathrm{SL} \end{aligned}$		contacts for S1B.....	31392-G1
C143, 149	Capacitor, 5100 mmf	23015-16A	L11	RF Transformer assem-	
${ }^{C} 144$	Capacitor, 05 mfd.	23911-77E		35, 1.11, R10 and	
C150	Capacitor, 2500 mmf 800 V .	23070-40		Switch contacts for S1B	31395-G1
C161A, B, C	Capacitor, $3 \times 20 \mathrm{mfd}$ 450 V . HS Can. Electrolytic	15463-1	L12	RF Transformer assmbly, includes C36, 37,	
E1	2 Screw Terminal, Phone Input	15463-1 4904-5		L12 and Switch contacts for S1B.	31398-G1

PARTS LIST (Continued)

Symbol Designations	DESCRIPTION	Hammarlund Part No.	Symbol Designations	DESCRIPTION	Hammarlund Part No.
L. 13	RF Transformer assembly, includes C38, 39, L13 and Switch contacts for S1B	31404-G1	$\begin{aligned} & \mathrm{R} 1,13,26 \\ & \mathrm{R} 2,12,44,52, \\ & 57,82,90,91, \end{aligned}$	```Resistor 510K ohms 1/3 watt Resistor 10K ohms 1/2 watt```	$19317-76 \mathrm{BF}$ $19309-278 B F$
L15	Same as L8, includes C46, 47, L15, R17 and Switch contacts for		$\begin{aligned} & 92,70 \\ & \mathrm{R} 3,14,39,48 \text {. } \\ & 53 \end{aligned}$	Resistor 33 K ohms $1 / 2$ watt	19309-282BF
L16	S1C Same as L9, includes C48, 49, L16, R18 and Switch contacts for SIC	$31386-\mathrm{Gl}$ $31389-\mathrm{Gl}$	$\begin{aligned} & \mathrm{R} 4,6,16,29, \\ & 30,47,83,102, \\ & 103,104,105, \\ & 106,107,108, \\ & 109,110 \end{aligned}$	$\begin{aligned} & \text { Resistor } 1000 \text { ohms } 1 / 2 \\ & \text { watt } \end{aligned}$	19309-49BF
L17	Same as Lio, includes C50, 51, 52, L17, R19 and Switch contacts for SlC	31392-G1	R5, 15, 32 R7, 8, 17, 18		19309-170BF 19309-193BF
L18	Same as Li1, includes C53, 54, 55, L18, R20 and Switci contacis for S1C	31395-G1	$\begin{aligned} & \text { R9, } 19 \\ & \text { R10, 11, 20, 21, } \end{aligned}$	$\begin{array}{llll} \text { Resistor } & 24 \text { ohms } \\ \begin{array}{l} \text { watt } \end{array} \ldots \ldots .1 / 2 \\ \text { Resistor } & 22 \text { ohms } \\ \text { watt } & \ldots & \ldots . . \end{array}$	19309-189BF 19309-9BF
L19	Same as L12, includes C56, 57, L19 and Switch contacts for S1C	31398-G1	$\begin{aligned} & \mathrm{R} 22,23,64,65, \\ & 77 \\ & \text { R24, } 25 \end{aligned}$	```Resistor 47K ohms 1/2 watt Resistor 180 ohms 1/2 watt```	$19309-89 B F$ $19309-31 B F$
L20	Same as L13, includes C58, 59, L20 and Switch contacts for S1C	31404-Gl	R27 R28 R31	Resistor 150 ohms $1 / 2$ watt $\ldots . \ldots \ldots \ldots .$. Resistor 6800 ohms $1 / 2$ watt $\ldots \ldots \ldots$.	$19309-259 \mathrm{BF}$ $19309-69 \mathrm{BF}$
L21	RF Choke, 1 millihenry	15617-G1	$\begin{aligned} & \mathrm{R} 31,37,41,49, \\ & 54,58,80 \end{aligned}$	Resistor 2200 ohms $1 / 2$ watt $\ldots \ldots$.	19309-57BF
L22	ries RF Choke, 25 millihen-	15618-1	R33		19309-53BF
L23 $\mathbf{L 2 5}$	ries HF Osc. assembly, includes C76, 77, 78, L25 and Switch con-	$15619-1$ $31385-G$	R34, 35, 38. 43, 51, 56, 62, 67, $68.75,76,81$, 100	Resistor 100 K ohms $1 / 2$ watt \qquad	19309-97BF
L26	tacts for S1D HF Osc. assembly, includes C81, 82, L26 and Switch contacts	31385-G1	R36, 96 R40		$19309-178 B F$ $19310-179 B F$
L27	for S1D HF Osc. assembly, includes C83, 84, 85, L27 and Switch con-	31388-G1	R42, 50, 55 R46		$\begin{aligned} & 19309-1 \mathrm{BF} \\ & \text { 19309-25BF } \end{aligned}$
L28	tacts for SID HF Osc. assembly. in-	31391-G1	R59	Resistor 2200 ohms i watt	19310-57BF
L28	cludes C86, 87, 88, 89, L28 and Switch contacts for SiD		R60, 61 R63	Resistor 1 megohm $1 / 2$ watt Resistor 27 K ohms $1 / 2$	19309-121BF
$\mathbf{L 2 9}$	HF Osc. assembly includes C90, 91, 92, 93, L29 and Switch contacts for S1D	31397-G:	R63 R69, 74		$\begin{aligned} & 19309-83 \mathrm{BF} \\ & 19309-79 \mathrm{BF} \\ & 15363-1 \end{aligned}$
L30	HF Osc. assembly, includes C94, 95, 95, L30, and Switch contacts for S1D	31403-G1	$\begin{aligned} & \text { R72 } \\ & \text { R73 } \end{aligned}$	```Resisior 20K ohms 1/2 watt Resistor 56K ahms I watt.```	19309-218BF $19310-186 B F$
L 47 L 48	RF Choke. 3.8 millihenries RF Choke, 2 ohms dc.	${ }_{\text {15616-G1 }}^{\text {15611-1 }}$	R78, 98	Resistor 470 K ohms $1 / 2$ watt	19309-113BF
L49, 50	RF Choke, 2.7 ohms de.	15613-1	R79	Resistor 680 ohms 1/2 watt \ldots.	19309-45BF
L51 $\mathbf{L 5 2}$	1st Filter Choke 8.5 Hy, 170 ohms dc 2nd Filter Choke 20 Hy , 440 alims de	$31030-2$ $31031-2$	R84 R85	Resistor variable 500 K ohms Resistor 2500 ohm 10	$15342-11$
M1	Tuning Meter Power plug and cord....	4903-2	R86, 89, 95	watts Resistor $\mathbf{8 2 K}$	19396-1
P1 P2	Power plug and cord... Antenna Input Plug. .	$16016-1$	$\text { R87, } 88$	watt Resistor 120 K ohms $1 / 2$	19309-287BF
P3 P4	Antenna Adapter Connector Cable Connector Plug (for J2)	$\begin{aligned} & 15987-1 \\ & 16071-1 \end{aligned}$	R93	watt Resistor variable 50 K ohms includes switch S10	19309-181BF $15342-21$

PARTS LIST (Continued)

The SP. 600 Receiver is designed for either table cabinet or rack mounting. When table models are ordered, the receiver is not supplied with a bottom cover plate since the cabinet serves this purpose. When rack models are ordered the receiver is supplied with a bottom cover plate, but is not supplied with a top cover plate since in most cases the rack is of the cabinet type.

A cover plate kit is provided, on separate order, for conversion to rack mounting where table models have been ordered and where the covers are desired.

The following instructions should be followed when installing the cover kit; To install the bottom cover plate, remove the two rear corner nut plate brackets by removing the three screws at the lower rear ends of the large side mounting brackets and replace these
ones from the kit, using the same screws. Remove the nut and lockwasher from the screw, nearest the bottom edge of the chassis, holding capacitor C151 (sce bottom of chassis photograph). Install the short angle bracket, from the kit, using the same screw from which the nut and-washer were removed, with thetapped (smaller end) of the bracket replacing the nut. The bottom cover plate is now installed using the five 10.32 screws from the kit and the two 10.32 screws that previously held the bottom of the receiver to the cabinet. To install the top cover plate assembly, place the cover with the angles facing downward toward the chassis and with pressure applied at the rear of the plate, to slightly compress the rubber channel against the rear of the front panel, secure the assembly in place with the four 6.32 screws from the kit, engaging them in the tapped holes in the brackets through the

HAMMARLUND PAGE 22-17

FIG. 8
TOP VIEW OF RECEIVER CAPACITOR SHIELD REMOVED

PAGE 22-20 HAMMARLUND

FIG. 9
BOTTOM VIEW OF RECEIVER SP-600-JX

FIG. 10
BOTTOM VIEW OF RECEIVER
TUNING UNIT SHIELD REMOVED

FIGURE NUMBER 12

* THESE NUMBERS ARE FOR REFERENCE ONLY. THEY DO NOT APPEAR ON
TERMINAL STRIP.

MAJOR COMPONENTS

Cabinet	
\quad Model 204	7582
Model 205	$\mathbf{7 5 8 3}$
Radio Chassis	165
Loop Antenna	5238
Dial, Calibrated	744 A
Dial Insert	$\mathbf{7 4 6 A}$
Bracket, Dial Mechanism	$\mathbf{2 4 3 4}$
Backboard	3710
Knobs	$\mathbf{3 7 0 3}$

Model 204
Ivory

SPECIFICATIONS

Line Voltage
Power Consumption
Tuning Range
Number of Tubes
Audio Power Output
Speaker Type
Cabinet
Height
Width
Depth

115 V DC or 115 V AC 60 cps 26 Watts 540 KC to 1650 KC 5 1.0 Watt

5" PM
6-3/4" $11^{\prime \prime}$
$6^{\prime \prime}$

Figure 1. Chassis 165

ELECTRICAL AND MECHANICAL DATA

Power Requirements: Operating Voltage

Consumption
Tuning Range
Audio Power Output
Output Impedance
Intermediate Frequency

115 V DC
or
115 V AC 60 cps
26 watts
540 KC to 1650 KC
1.0 watt
3.2 ohms

455 KC

TUBE COMPLEMENT
Converter
IF Amplifier
2nd Det., AVC, 1st Audio
Audio Output
Rectifier

Chassis 165 is a 5-tube AM AC-DC superheterodyne incorporating a built-in loop antenna and a $5^{\prime \prime}$ PM speaker. A binding post is available on the loop antenna for connection to an external long wire antenna which will be required in very weak signal areas only. Dial stringing information is given in Figure 2.

Figure 2. Dial Stringing

ALIGNMENT

Equipment:

1. Signal generator capable of generating frequencies of $1650 \mathrm{KC}, 1400 \mathrm{KC}$, and 455 KC .
2. AC meter with 2.5 V scale.
3. $0.1 \mathrm{mfd}, 200 \mathrm{~V}$ blocking capacitor.

Procedure:

CAUTION: The chassis is the AC-DC type, and care should be exercised to avoid coming in contact with grounded objects when touching the chassis.

If the alignment is performed on a metal topped bench that is grounded, an isolation transformer must be used between the AC supply and the chassis. Allow the receiver to warm up for severai minutes. Connect the AC voltmeter across the speaker voice coil. (An output meter may be used.) Set meter to 2.5 volt scale.

TABLE I - ALIGNMENT PROCEDURE

Step No.	Signal Generator Frequenċy, KC	Adjust	Instructions
IF			
1	$\begin{gathered} 455 \\ \text { modulated } \end{gathered}$	T4 Pri, Sec T3 Pri, Sec	Connect "hot" side of generator to antenna loop binding post, and connect ground side to receiver chassis through 0.1 condenser. Keep signal level low enough to keep maximum reading on lower half of meter scale. Set volume control at maximum and tuning condenser plates all the way unmeshed.
RF			
2	$\begin{gathered} 1650 \\ \text { modulated } \end{gathered}$	C4	Tuning condenser plates unmeshed. Connect generator to wire loop about $6^{\prime \prime}$ in diameter. Place loop one footsfrom and parallel to antenna loop. Generator level should be adjusted to produce reading on lower half of meter scale. Adjust C4 for maximum output.
3	$\begin{gathered} 1400 \\ \text { modulated } \end{gathered}$	C3	Generator input remains unchanged. Turn tuning condenser so that dial pointer is over extreme clockwise calibration mark. Adjust C3 for maximum output.

NOTES:
The pin voltage readings are obtained with no signal input to receiver.
D.C. voltages measured with 20,000 ohm/volt meter.
A.C. voltages measured with 1,000 ohm/volt meter.
All voltages measured with reference to $\mathrm{B}-$.
Tive voltage 115 V A.C.

Figure 3. Pin Voltage Diagram

HOFFMAN PAGE 22

MODEL 533
Modern Style Oak Cabinet

MODEL 534
Traditional Style Mahogany Cabinet

SPECIFICATIONS

Line Voltage	115 V AC 60 cps	Cabinet*	
Power Consumption	95 Watts	Height	36-1/2"
Tuning Ranges		Width	26-1/4"
AM	535 KC to 1650 KC	Depth	17-1/16"
FM	88 MC to 108 MC	Record Changer	Automatically plays 1^{11} stack of
Number of Tubes	8		$7^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}$ records at 33-1/3
Audio Power Output	3.5 Watts		rpm, 45 rpm , or 78 rpm .
Speaker Type	$12^{\prime \prime} \mathrm{PM}$		

* Where there are slight variations in certain of the dimensions for the two models, the largest value is listed.

MAJOR COMPONENTS

Cabinet	
\quad Model 533	7591
Model 534	7590
Radio Chassis	167
Speaker	9070
Antenna	55214
AM Assembly	55218
FM Assembly	9078

Dial Glass	747
Backboard	3714
Record Changer Drawer	6656
Knobs	
Tuning	33517 A
Off-On-Tone	33517 A
Volume	33517 A
Band Switch	33517 C

BLOCK DIAGRAM

Figure 1. Chassis 167

PAGE 22-6 HOFFMAN
MODELS 533,
534, Ch. 167

ELECTRICAL AND MECHANICAL DATA

Power Requirements:
Operating Voltage

Watts:	95
Tuning Range:	
AM	
FM	$\mathbf{5 3 5} \mathbf{~ K C}$ to 1650 KC
	88 MC to 108 MC

Audio Power Output
Output Impedance
Intermediate Frequencies: AM FM

FM Antenna Input Impedance 300 ohms, balanced Chassis 167 is an 8 tube combination AM-FM radio receiver. It employs an indoor loop antenna for AM reception and is designed to be used with an indoor FM antenna in normal signal areas and an outside FM antenna and a 300 ohm , balanced transmission line in weak signal areas. The indoor antenna is located in the receiver cabinet, and it should be disconnected from the FM antenna terminal posts when an outside antenna is used. The chassis is mounted in place horizontally on rubber shock mounts which rest on wooden blocks that are bolted in the chassis from below. Dial stringing details are indicated in figure 2. Dial calibration appears on the dial glass mounted on the front of the cabinet.

TUBE COMPLEMENT

1	12AT7	FM Oscillator-Converter	V1
1	6BE6	AM Oscillator-Converter	V7
1	6BA6	AM-FM 1st IF Amplifier	V2
1	6BA6	FM 2nd IF Ampliifier	v3
1	6AL5	FM Detector	V4
1	6AT6	AM Detector-AVC . - 1st Audio (AM-FM)	V5
1	6V6GT	Power Output	V6
1	5Y3GT	Rectifier	V8

Figure 3. Location of Controls
Note: The alignment calibration marks which appear on the dial background plate are shown lettered for identification purposes. Pointer should be at " A " when condenser is in full mesh.

CONTROLS

Operation of the volume and tuning controls is straightforward. The BAND SWITCH has three positions for selecting one of the following: PHONO, AM radio, or FM radio. The PHONO position is obtained with the switch in the extreme counterclockwise position, and the other two positions are selected in the order listed by clockwise rotation of the band switch control shaft. The fourth control is the OFF-ON-TONE control. Extreme counterclockwise rotation of the control shaft turns the receiver off. Clockwise control turns the receiver on and continuously changes the tone from bas to treble.

Figure 2. Dlal 'Stringing

Figure 4. Trimmer Location- Bottom View

HOFFMAN PACE 22

ALIGNMENT

This section describes the minimum equipment and procedure that is required to align the receiver satisfactorily. Before beginning alignment, the tuning condenser must be fully open, and the set should be allowed to warm up about 15 minutes. It is suggested that the alignment be performed on a metal-topped bench with generator, receiver, and voltmeter well bonded together. The bench area should be free of strong extraneous radiation.

Equipment:

CW Signal Generator capable of providing the frequencies listed in the table below. Must include audio modulating signal for AM alignment.

A voltmeter with at least a sensitivity of 20,000 ohms per volt (V.T.V.M. preferable). Should have AC scale.

Two 100K ohm composition resistors.
Two 150 ohm composition resistors.

Figure 5. Bottom View, Tube Layout
All voltages measured to chassis unless otherwise noted.
DC voltages measured with 20,000 ohm/volt meter.
All voltages DC unless otherwise noted.
All measurements made with no signal input to receiver and receiver operated at rated line voltage.
A- Measured to pin 8
B - Measured with VTVM having insolating resistor in probe
C - Band switch in AM position
D - Band switch in FM position

PAGE 22-8 HOFFMAN
MODELS 533,
534, Ch. 167

Procedure:

The AM section should be completely allgned before beginning the FM alignment. For AM alignment the generator is coupled to the receiver by placing the "hot" lead next to the antenna loop so that lead and loop wire form a condenser. The voltmeter is connected across the voice coll and switched to a low AC scale. The coupling for FM alignment is two 150 ohm composition resistors, one in series with each generator lead. Before tuning the ratio detector transformer, solder two 100 K ohm composition resistors in series from point " A ", shown in figure 6, to ground. Remove them before aligning the FM RF section.

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Band Switch Position	Signal Generator Frequency	$\begin{aligned} & \text { Connect } \\ & \text { Signal } \\ & \text { To } \end{aligned}$	Condenser Setting (See Fig. 3)	Voltmeter	Adjust	Instructions
1	AM	$\begin{aligned} & 455 \text { KC } \\ & \text { Mod. } \end{aligned}$	$\begin{gathered} \text { 6BE6 } \\ \text { V7 } \\ \text { Pin } 7 \end{gathered}$	Full Open	Across Voice Coll	T2 Pri., Sec. T4 Pri., Sec.	Adjust for max. output. Use as low a signal input as possible.
2	"	$\begin{aligned} & 1650 \mathrm{KC} \\ & \text { Mod. } \end{aligned}$	Antenna Loop as described above.	"	"	C19 AM Osc. Trimmer	"
3	"	1410 KC	"	F	"	C4 AM RF Trimmer	"
4	*	600 KC	"	B	"	Plates of C3	Bend plates as required. Adjust for max. reading.
5	FM	$\begin{gathered} 10.7 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	FM Ant. Terminals	Full Open	Between point A and ground.	T1 Pri., Sec. T3 Pri., Sec. T5 Pri. only	Adjust for max. voltmeter reading.
6	"	"	"	-"	Between junction of two 100K resistors added and point C.	T5 Sec.	Adjust for zero reading, using a low signal input to avold overloading.
7	"	$\begin{gathered} 107 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	"	G	Point A to ground.	C6 FM Osc. Trimmer	Remove the two 100K resistors. Adjust for max. reading. Make certain receiver oscillator freq. is 10.7 MC aboye incoming signal freq.
8	"	"	"	"	"	C9 FM RF Trimmer	"
9	"	$\begin{gathered} 98 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	"	D	"	Plates of C1	Bend plates as required. Adjust for max. reading.
10	"	$\begin{gathered} 90 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	"	c	"	"	${ }^{\prime \prime}$

- WVYOVIG गILVW3HJS
\ldots

CHASSIS 167

NOTES: PARTS LIST All resistors are $1 / 2$ watt composition type with values given in ohms unless otherwise specifted.

Symbol	Part No.	Value	Tol.	Watts or Volts	Type
C1)					
C2	4410	4 Section Variable			
C3					
C4	4313	Trimmer (AM Section)			
C5	4028	5 mmf	10\%		Ceramic M750
C6	4318	Trimmer (FM Section)			
C7	4024	1.5 mmi	10\%		Mica
C8	4021	22 mm	10\%		Ceramic N150
C9	4318	Trimmer (FM Section)			
C10	4025	1000 mmf	20\%		Ceramic Hi-K
C11	4112	. 01	20\%	400 V	Paper
C12	4025	1000 mmf	20\%		Ceramic Hi-K
C13	4025	1000 mmf	20\%		Ceramic Hi-K
C14	4000	100 mrnf	20\%		Mica
C15	4410	Part of 4 Section Variable			
C16	4027	10 mmf	10\%		Ceramic
C17	4029	5000 mmf			Ceramic Hi-K
C18	4112	. 01	20\%	400 V	Paper
C19	4313	Trimmer (AM Section)			
C20	4029	5000 mmf			Ceramic Hi-K
C21	4112	. 01	20\%	400 V	Paper
C22	4112	. 01	20\%	400 V	Paper
C23	4105	. 01		600 V	Molded Phenolic
C24	4118	. 002	20\%	600 V	Paper
C25	4003	470 mmf	20\%		Mica
C26	4000	100 mrnf	20\%		Mica
C27	4118	. 002	20\%	600 V	Paper
C28	4001	270 mraf	20\%		Mica
C29	4102	. 005	20\%	600 V	Paper
C30	4101	. 05	20\%	400 V	Paper
C31	4001	270 munf	20\%		Mica
C32	4001	270 mrnf	20\%		Mica
C33)		20		25 V	Electrolytic
C34	4200	20		450 V	Electrolytic
C35		20		450 V	Electrolytic
C36	4209	5		50 V	Electrolytic
C37	4106	. 02	20\%	400 V	Paper
C38	4100	. 05	20\%	200 V	Paper
C39	4029	5000 mmf			Ceramic Hi-K
C40	4029	5000 mmf			Ceramic Hi-K
C41	4029	5000 mmf			Ceramic Hi-K
C42	4101	. 05	20\%	400 V	Paper
C43	4105	. 01		600 V	Molded Phenolic
R1	4501	22K	20\%		
R2	4553	1.2K	10\%		
R3	4501	22K	20\%		
R4	4539	15K	20%	1 W	

MODEL 537
Modern Style Oak Cabinet

MODEL 538
Traditional Style Mahogany Cabinet

SPECIFICATIONS

Line Voltage
Power Consumption
Tuning Ranges
AM
FM
Number of Tubes
Audio Power Output
Speaker Type
115 V AC 60 cps
150 Watts
535 KC to 1650 KC
88 MC to 108 MC
14
15 Watts
$12^{\prime \prime} \mathrm{PM}$

Record Changer

Cabinet*
Height
Width
Depth

Automatically plays $1^{\prime \prime}$ stack of 7 ", $10^{\prime \prime}$, or $12^{\prime \prime}$ records at $33-1 / 3 \mathrm{rpm}, 45 \mathrm{rpm}$, or 78 rpm.
$35^{\prime \prime}$
$33-1 / 4^{\prime \prime}$
$17-1 / 2^{\prime \prime}$

* Where there are slight variations in certain of the dimensions for the two models, the largest value is listed.

MAJOR COMPONENTS

Cabinet	
Model 537	
Model 538	7593
Radio Chassis	7592
Speaker	168
Antenna	9070
AM	55213
FM Assembly	55218
Record Changer	9078
	748
Dial Glass	3715
Backboard	6659
Record Changer Drawer	
Knobs	33517 A
Tuning	
Off-On Treble Assembly	33516 A
Volume	33517 A
Band Switch	33517 C
Bass	3656 A

Figure 1. Chassis 168

ELECTRICAL AND MECHANICAL DATA

Power Requirements:
Operating Voltage Watts

Tuning Range:

AM
FM
Audio Power Output
Output Impedance
Intermediate Frequencies:
AM
FM Antenna Input Impedance

TUBE COMPLEMENT
115 V AC 60 cps
150

535 KC to 1650 KC 88 MC to 108 MC

15 Watts
3.2 ohms at 400 cps

1	6BA6
1	6BE6
1	$12 A T 7$
1	6BA6
1	6BA6
1	6AL5
1	6AT6

1	$6 J 5$
1	$6 J 5$
4	6 K 6 GT
1	5 U 4 G
i	$6 \mathrm{E5}$

AM RF Amplifier	V1
AM Oscillator-Converter	V2
FM Oscillator-Converter	V3A, V3B
AM-FM 1st IF Amplifier	V4
FM 2nd IF Amplifier	V5
FM Ratio Detector	V6
AM 2nd Detector, AVC, 1st	V7
Audio (AM and FM)	
2nd Audio Amplifier	V8
Audio Phase Inverter	V9
Audio Power Amplifiers	V10, V11,
Rectifier	V12, V13
Tuning Indicator	V14

Chassis 168 is a fifteen-tube combination AMFM radio receiver, including tuning indicator and rectifier. The receiver uses an indoor loop antenna for normal AM reception; an external antenna may be used in very weak AM areas. It is designed to be used with an indoor FM antenna in normal signal areas and an outside FM antenna and a 300 ohm, balanced trans mission line in weak signal areas. The indoor FM antenna is located in the receiver cabinet, and it should be disconnected from the FM antenna terminal posts when an outside antenna is used.

The physical make-up of chassis 168 consists of two units, as shown in figure 1. The unit on the right contains the power supply and power amplifier stages. The main unit, shown on the left side of the figure, contains the AM RF stage, AM and FM oscillator-converter stages, AM and FM IF stages, voltage amplifier stages, and tuning indicator. The main unit contains the dial mechanism. Dial stringing details are indicated in figure 3. Dial calibration appears on the dial glass mounted on the front of the cabinet. Calibration points needed during alignment are included on the dial background plate. These calibration points are indicated in figure 4.

The main unit is mounted in place horizontally on rubber shock mounts which rest on wooden blocks that are bolted in the cabinet from below the unit. The power unit is mounted horizontally below the main unit. It is shock mounted and held in place by a bolt at each corner.

CONTROLS

Operation of the VOLUME and TUNING controls is conventional. The BAND SWITCH has three positions for selecting one of the following: PHONO, AM radio, or FM radio. The PHONO position is selected with the switch in the extreme counterclockwise position, and the other two positions are selected in the order listed by clockwise rotation of the band switch control shaft.

The BASS and TREBLE controls are the dual type with the OFF-ON switch coupled to the TREBLE control. When the TREBLE control is in its extreme counterclockwise position, the receiver is turned off. Clockwist rotation of the TREBLE control shaft turns the receiver on and increases the treble tone. Extreme counterclockwise rotation of the BASS control shaft gives minimum bass, clockwise rotation giving increase in bass tone. Location of the controls is shown in figure 4.

Figure 2. Trimmer Condenser Location - Bottom View

ALIGNMENT

This section describes the minimum equipment and procedure that is required to align the receiver satisfactorily. Before beginning alignment, the tuning condenser must be fully open, and the set should be allowed to warm up about 15 minutes. It is suggested that the alignment be performed on a metal-topped bench with generator, receiver, and voltmeter well bonded together. The bench area should be free of strong extraneous radiation.

Equipment:
CW Signal Generator capable of providing the frequencies listed in the table below. Must includs audio modulating signal for AM alignment.

A voltmeter with at least a sensitivity of 20,000 ohms per volt (V.T.V.M. preferable). Should have AC scale.

PAGE 22-14 HOFFMAN

MODELS 537,
538, Ch. 168

Two 100 K ohm composition resistors.
Two 150 ohm composition resistors.

Procedure:

The AM section should be completely aligned before beginning the FM alignment. For AM alignment the generator is coupled to the receiver by placing the
"hot" lead next to the antenna loop so that lead and loop wire form a condenser. The voltmeter is connected across the voice coil and switched to a low AC scale. The coupling for FM alignment is two 150 ohm composition resistors, one in series with each generator lead. Before tuning the ratio detector transformer, solder two 100 K ohm composition resistors in series from point " A ", shown in figure 7, to ground. Remove them before aligning the FM RF section.

ALIGNMENT TABLE

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Band Switch Position	Signal Generator Frequency	$\begin{gathered} \text { Connect } \\ \text { Signal } \\ \text { To } \end{gathered}$	$\begin{gathered} \hline \text { Condenser } \\ \text { Setting } \\ \text { (See Fig. 4) } \end{gathered}$	Voltmeter	Adjust	Instructions
1	AM	455 KC 400 cps Mod.	$\begin{gathered} \text { 6BE6 } \\ \text { V2 } \\ \text { Pin } 7 \end{gathered}$	Full Open	Across Voice Coil	T2 Pri., Sec. T4 Pri., Sec.	Adjust for max. output. Use as low a signal input as possible.
2	"	$\begin{gathered} 1650 \mathrm{KC} \\ 400 \mathrm{cps} \text { Mod. } \end{gathered}$	Antenna Loop as described above.	"	"	C10 AM Osc. Trimmer	"
3	"	1410 KC 400 cps Mod.	"	F	"	C8, C9 AM RF Trimmer	'
4	"	600 KC 400 cps Mod.	"	B	"	T6	Adjust for max. output.
5	"	"	*	"	"	Plates of C3	Bend plates as required. Adjust for max. reading.
6	FM	$\begin{gathered} 10.7 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	FM Ant. Terminals	Full Open	Between point A and ground.	T1 Pri., Sec. T3 Pri., Sec. T5 Pri. only	Adjust for max. voltmeter reading.
7	"	"	"	"	Between junction of two 100K resistors added and point C.	T5 Sec.	Adjust for zero reading, using a low signal input to avoid overloading.
8	"	$\begin{gathered} 107 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	"	G	Point A to ground.	C7 FM Osc. Trimmer	Remove 100K resistors. Adjust for max. reading. Make certain receiver osc. freq. is 10.7 MC above incoming signal freq.
9	"	"		\cdots	"	C6 FM RF Trimmer	"
10	"	$\begin{gathered} 98 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	"	D	"	Plates of C1	Bend plates as required. Adjust for max. reading.
11	"	$\begin{gathered} 90 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	"	C	"	"	"

Figure 3. Dial Stringing

Figure 4. Location of Controls

Figure 5. Pin Voltages of Main Unit

NOTES:
All voltages measured to chassis unless otherwise noted.
DC voltages measured with $20,000 \mathrm{ohm} /$ volt meter.
AC voltages measured with 1000 ohm/ volt meter.
All measurements made with no signal input to receiver.

All pin voltages not indicated on diagram are at ground potential for all practical purposes.

A Measured from pin 2 to pin 8
B VTVM
C 250 V . scale

Figure 6. Pin Voltages of Power Unit

Figure 8. Schematic Diagram of Power Supply and Audio Section
PARTS LIST FOR POWER UNIT

SYMBOL	PART NO.	VALUE	TOL.	WATTS OR VOLTS	TYPE
C1	4105	. 01		600 V	Paper
C2	4103	. 01		600 V	Paper
C3	4203	10		450 V	Tubular Electrolytic
C4	4101	. 05		400 V	Paper
	$\begin{gathered} 4101 \\ \text { (Not Used) } \end{gathered}$. 05		400 V	Paper
$C 7$ $C 8$	4231	20-20		450 V	Electrolytic
c9	4118	. 002		600 V	Paper
C10	4118	. 002		600 V	Paper
R1	4500	220K	20\%		
R2	4512	2.2 K	20\%		
R3	4559	47K	10\%		
R4	4504	47 K	20\%		
R5	4559	47 K	10\%		
R^{6}	4500	220 K	20\%		
R7	4500	220K	20\%		
R8	4706	220	20\%	$3 \mathrm{~W}$	
R9	4700	500	10\%	$5 \mathrm{~W}$	
T1 T2	$\begin{aligned} & 5001-4 \\ & 5108 \end{aligned}$	Power Transformer Output Transformer			
P1	6212	Plug, Power Supply			

PARTS LIST FOR MAIN UNIT

NOTES:

All values of capacity are microfarads unless otherwise noted.
All resistors are $1 / 2$ watt composition type with values given in ohms
unless otherwise specified.

HOFFMAN PAGE 22-19

