VOLUME XXI

JOHN F RIDER

GENERAL DESCRIPTION

This radio is a 7 tube (including rectifier tube) AC receiver designed for reception of stations in the standard broadcast band between 540 and 1600 kilocycles and FM (Frequency Modulation) stations in the newly allocated FM Band of 88-108 megacycles. Controls are provided on the front panel for tuning, tone, volume and band or phono selection. Special features include a built-in loop antenna for broadcast reception, a hank antenna for the reception of FM stations, automatic volume control, compensator circuits to prevent oscillator drift, beam power output stage, permanent magnet dynamic speaker and an electrostatic shield in the power transformer to reduce power line noise. A socket labeled PHONO is provided on the back of the chassis to which an external record player may be connected.

MODEL 94RAI-43-8510B, 94RA1-43-8511B

ELECTRICAL SPECIFICATIONS

Power Consumption 117 volts AC-35 Watts

Power Output -
1.5 watts maximum
.9 watts 10% distortion
Speaker-5" PM dynamic
Frequency Ranges -
Broadcast 540-1600 KC
Frequency modulation 88-108 MC
Intermediate Frequency -
AM 455 KC - FM 10.7 MC
Selectivity - AM - 60 KC broad at 1000 times signal, measured at 1000 KC
I.F. FM-200 KC broad at 2 times down
I.F. FM - 700 KC broad at 200 times down

AM Sensitivity-(For . 5 watt output with external antenna) 10 microvolts average

FM Sensitivity-(For .5 watt output) 100 microvolts average

TUBE SOCKET VOLTAGES

Socket voltages are shown on the Bottom Socket diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter..Conditions of measurement are:

$$
\begin{aligned}
& \text { Line voltage } 117 \text { Volts AC } \\
& \text { Signal Input .. } \\
& \text { A Variation of } \pm 10 \% \text { is usually permissible. }
\end{aligned}
$$

SERVICE DATA

ALIGNMENT PROCEDURES

AM STAGES

FM STAGES

Allow chassis and signal generator to warm up for several minutes.
The following equipment is required for aligning:
An occurately calibrated signal generator providing unmodu.
lated signals at the test frequencies listed below.
Non-metallic screwdriver.
Dummy Antennas and I.F Loading Resistor- $\mathbf{2 5 0 0} \mathrm{mmf}, 300$ ohms and a 3300 ohm .5 watt resistor with short leads.

Zero center scale DC vacuum tube voltmeter having a range of approximately 3 volts.
(If a zero center scale meter is not available, a standard scale vocuum tube voltmeter may be used by reversing the moter connections for negative readings.)

RECHECK ANTENNA \& OSC. ADJUSTMENTS IN ORDER GIVEN

FM ALIGNMENT NOTES

NOTE A-The zero center scale DC vacuum tube voltmeter is to be connected between chassis ground and the AVC line. A signal of .1 volt must be fed into the receiver for this adjustment.
Note output voltage on the zero center DC vacuum tube voltmeter.
NOTE B-Disconnect zero center DC vacuum tube voltmeter from AVC and connect it to the audio takeoff point at the 27 K ohm resistor ($\mathrm{R}-11$) and its junction with the terminal strip. Adjust for zero voltage indication.

NOIE C-Connect zero center DC vacuum tube voltmeter as in Note A. Adjust input to give same output on the zero center DC vacuum tube voltmeter as in Note A.
NOTE D-Unsolder 3300 ohm resistor from terminals 3 and 4 of 1st I-F transformer and resolder across terminals 1 and 2.
NOTE E-2nd I.F Trimmers (AM) must be aligned before attempting to adjust 2nd I-F (FM) tuning slug.
NOTE F-Remove the 3300 ohm load resistor before attempting to check the antenna and oscillator adjustments.

REPLACEMENT PARTS LIST

Rel. No.	DESCRIPTION	Part No.
CAPACITORS		
C. 1	Gang Condenser \& Pulley 14A204	
C-2	Copacitor, Trimmer; 2-24 mmf17A256	
C-3?	Part of C .1 (Gang Condenser)	
C.7 ${ }^{\text {S }}$		
C-4	Capacitor, Ceramic; 6 mmf	47×521
C. 5		
C-11		
C. 14		
C. 19	Capacitor, Ceramic; 5000 mmf	47×507
C. 20		
C. 24		
C-39)		
C. 6	Capacitor, Ceramic; 15 mmf	47×552
C. 8	Capacitor, Ceramic; 12 mmf	47×522
C. 9	Copacitor, Ceramic; $47 \mathrm{mmf} \pm 10 \%$	47×517
C-10	Capacitor, Ceramic; 10 mmf	47×512
C-12	Capacitor, Irimmer; 1-8 mmt .	17A255
C-15\}	Part of T-5 (1st I-F Trans. AM)	
C. 17	Port of T-4 (1st I.F Trons. FM)	
C-18)	Copacitor, Tubular; $05 \mathrm{mf} 200 \mathrm{~V} \ldots . .$. ... B66503	
C.29 ${ }^{\text {c }}$		
C. 211 C. 22 \}	Part of T.6 (2nd I-F Trans. AM-FM)	
C.22		
C. 23	Capacitor, Ceramic; 100 mmf 47×476 Part of T. 7 (FM Dise. Trans.)	
C-25		
C. 26	Copacitor, Molded Mica; 2700 mmf47X492	
C-27!	Capacitor, Ceramic; 220 mmf47X468	
C.35		
C. 28	Capasitor, Dry Electralytic; 5 mf 100 V45×361	
C.30A	40 mf 200 V	
C. 30 B		
C.30C	20 mf 25 V	
C-31A C.31B	Capacitor, Dual Misa; 50.50 mmf47X112	
C-31B		
C. 32 C. 33	Capacitor, Molded Mica; 68 mmf47X471	
C-34	Capacitor, Tubular; . 005 mf 400 V D66502	
C. 36		
C. 37	Capacitor, Tubular; . $004 \mathrm{mf} 200 \mathrm{~V} . . .$. B66402Capacitor, Tubular; . 001 mf 800 V H66102	
C. 38		
C-40	Capacitor, Ceramic; $47 \mathrm{mmf} \pm 20 \% \ldots . . .47 \times 509$	
	RESISTORS	
R.1	Resistor, Carbon; 22 K ohms $0.5 \mathrm{~W}{ }^{2} .$. . B84223	
R.2		
R-3	Resistor, Corbon; 2700 ohms 0.5 W'B84272 Resistor, Carbon; 470 ohms 0.5 WB84471	
R-4	Resistor, Corbon; 100K ohms 0.5 W 885104	
R-5	Resistor, Carbon; 68 ohms 0.5 W 883680	
R-6	Resistor, Carbon; 1200 ohms 0.5 W 885122	
R-8	Resistor, Carbon; 47 K ohms $0.5 \mathrm{~W}$. . 885473	
R-9	Resistor, Carbon; 68 K ohms 0.5 W 884683	
R. 10	Resistor, Carbon; 1000 ohms $0.5 \mathrm{~W}$. . 885102	
R. 11	Resistor, Corbon; 27 K ohms 0.5 W 885273	
R. 12	Resistor, Wirewound; 3.6 ohms $0.5 \mathrm{~W}43 \times 233$	
R-13 !	Resistor, Carbon; 6800 ohms 0.5 WB84682	
R-14 (
R.15 R-16	Resistor, Carbon; 1000 ohms 2.0 WD84102 Resistor, Carbon; 15 K ohms 0.5 W B85153	
R-16		
R-17	Volume Control \& Switch; . 5 megohm 36×372	
R. 18	Resistar, Carbon; 2.2 megohms 0.5 WB85225 Tone Control; 3 megohms 40×285	
R. 19		
R. 20	Resistor, Carbon; 10 megohms 0.5 W 885106	
$R-211$ $R .22$	Resistor, Corhon; 470K ohms $0.5 \mathrm{~W}885474$	
R-23	Resistor, Carbon; 270 ohms 0.5 WResistor, Carbon; 100 ohms 0.5 W	
R. 24		

SERVICEDATA

POWER SUPPLY.
FREQUENCY RANGE.
INTERMEDIATE FREQ...
SELECTIVITY.
SENSITIVITY..
POWER OUTPUT
LOUD SPEAKER
TUBE COMPLEMENT. 12BE6, Converter.
12BD6, IF Amplifier.
12AT6, Detector, AVC, Audio.

50C5, Output Amplifier. 35W4, Rectifier.
105 to 125 volts, DC or $50-60$ cycle AC, 24 watts.
535 to 1620 Kc . 455 Kc .
At 1000 Kc ., 60 Kc . at 1000 x signal. 150 u . v. per meter. 0.8 watt undistorted, 1.0 watt max. 4 " round PM., v.c. impedance 3.2 ohms.

Chassis View

Dial Stringing Diagram

ALIGNMENT PROCEDURE

SIGNAL GENERATOR				TUNER SETTING	$\begin{gathered} \text { ADJUST FOR } \\ \text { MAXIMUM OUTPUT } \end{gathered}$	INPUT FOR$50 \quad$ MILLIW ATTOUTPUT
Frequency	Coupling Capacitor	Connection 10 Radio	Ground Connection			
455 kc .	. 1 mf .	12BE6, Pin 7		Capacitor full open (plates out of mesh)	Top and bottom Cores in output and input I.F. cans	65 microvolts
1620 kc .	. 1 mf .	12BE6, Pin 7		Capacitor full open (plates out of mesh)	Oscillator trimmer C1-D on gang	70 microvolts
535 kc .	.1 mf .	12BE6, Pin 7	y_{3}^{4}	Capacitor fully closed	Check for adequate range	70 microvolts
1400 kc.	-	, Lay Generator lead near back of cabinet		Tune in 1400 kc . signal	Antenna trimmer C1-C on gang	200 to 400 microvolts
400 cycles	. 1 mf .	12AT6, Pin 1	$\underset{I}{\underline{U}}$	-	\ldots	. 06 volts

SCHEMATIC DIAGRAM WITH VOLTAGES

NOTE: In some sets capacitor $\mathrm{C}-2$ is .18 mfd

REPLACEMENT PARTS LIST

GENERAL DESCRIPTION

This radio is an 8 tube (including rectifier tube) AC receiver with automatic record changer, designed for reception of stations in the standard broadcast band between 540 and 1600 kilocycles and FM (Frequency Modulation) stations in the FM Band of 88-108 megacycles. Controls are provided on the front panel for tuning, tone, volume and band or phono selection. Special features include two built-in antennas, a grounded grid R-F amplifier stage on the FM Band, automatic volume control, compensator circuits to prevent oscillator drift, beam power output stage, permanent magnet dynamic speaker and an electrostatic shield in the power transformer to reduce power line noise.

ELECTRICAL SPECIFICATIONS

Power Consumption
117 volts AC-60 cycles 40 Watts
60 watts phono operating
Power Output -
1.5 watts maximum
.8 watts 10% distortion
Speaker-8" PM dynamic
Frequency Ranges -
Broadcast 540-1600 KC
Frequency modulation $88-108$ MC
Intermediate Frequency -
AM $455 \mathrm{KC}-\mathrm{FM} 10.7 \mathrm{MC}$
Selectivity - AM - 45 KC broad at 1000 times signal, measured at 1000 KC
I.F. FM- 200 KC broad at 2 times down
I.F. FM - 950 KC broad at 200 times down
AM Sensitivity-(For .5 watt output with external antenna)
25 microvolts average
FM Sensitivity-(For 5 watt output) 25 microvolts average

Tube and Dial Lamp Complement

1 6BE6 AM Converter \& FM Osc.
1 6BA6 1st I-F Amplifier
1 6BA6 2nd I-F Amplifier
1 6AL5 FM Discriminator
1 6AV6 Audio Amplifier,
AM 2nd Detector and AVC
1 6V6GT Audio Output
1 6X5GT Rectifier
1 12AT7 R-F Amplifier \& Mixer
2 No. 47 Dial Lamps

DRIVE CORD REPLACEMENT

Replacement of the drive cord may be accomplished as shown in the illustration. For this purpose use the new drive cord assembly listed in the Replacement Parts List. Turn the gang condenser until the plates are fully meshed. Then install the string as shown, winding three turns clockwise around the tuning shaft with the turns progressing away from the chassis. After the cord is installed, rotate the tuning shaft several times in order to take up any slack in the cord.

MODELS 05RA1-43-7755A,
 05RAI-43-7755B

ALIGNMENT PROCEDURES am Stages

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas -.1 mf , ond 50 mmf .

Volume Control Maximum all Adjustments
Connect Radia Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up'" for Several Minutes.

SIGNAL GENERATOR				\qquad	ADJUST	$\begin{gathered} \text { ADJUST } \\ \text { FOR } \\ \hline \end{gathered}$
$\begin{aligned} & \text { FREQUENCY } \\ & \text { SETTING } \\ & \hline \end{aligned}$	CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	$\begin{aligned} & \text { CONNECT } \\ & \text { GROUND } \\ & \text { TO } \end{aligned}$			
455 KC	Control Grid 1st 6BA6 Pin No. 1	. 1 mf	Chassis Base	Rotor Fully Open	$\begin{gathered} \text { 2nd I.F. Pri. (1) } \\ \text { and Sec. (2) } \end{gathered}$	Moximum Output
455 KC	Control Grid 6BE6 Pin No. 7 lst Det.	. 1 mf	Chassis Bose	Rotor Fully Open	1st I.F. Pri. (3) and Sec. (4)	Moximum Outpu:
455 KC	Control Grid 6BE6 Pin No. 7	. 1 mf	Chassis Bose	Rotor Fully Open	$\begin{aligned} & \text { 2nd I.F Pri. (1) } \\ & \text { and Sec. (2) } \\ & \hline \end{aligned}$	Moximum Output
1620 KC	Control Grid 6BE6 Pin No. 7	. 1 mf	Chassis Base	Rotor fully Open	Oscillator C-41	Maximum Output
1400 KC	External Antenna lead	50 mmf	Chassis Base	Turn Rotor to Max. Output. Set Pointer to 1400 KC See Note A	Antenna C-2	Maximum Output

NOTE A-If the pointer is not at 1400 KC on the dial, reset pointer to the 1400 KC mark on the dial scale.

FM STAGES

The following is required for aligning:
An accurately calibrated signal generator providing unmodulated signals at the test frequencies listed below.

Non-metallic screwdriver.
Dummy Antennas and I.F loading Resistor- $\mathbf{2 5 0 0} \mathbf{~ m m f , ~} \mathbf{3 0 0}$ ohms

Zero center scale DC vacuum tube voltmeter having o range of approximately 3 volts.
(If a zero center scale meter is not ovailable, a standard scale vacuum tube voltmeter may be used by reversing the meter connections for negative readings).
Allow chassis and signal generator to "Heat Up" for several minutes.

SIGNAL GENERATOR			THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	GANG CONDENSER SETTING	ADJUST	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR } \end{aligned}$
	FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO					
$\overline{\text { Discriminator }}$	10.7 MC	6BA6 2nd 1-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Pri. (5) Note A	Maximum Deflection
	10.7 MC	6BA6 2nd I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Dise. Sec. (6) Note B	
I.F	10.7 MC Note C	6BA6 lst l-F Pin 1 and Chassis	2500 mmf	FM	Rotor fully Open	2nd I.F Pri. (7) Sec. (8) Note D	Maximum Deflection
Discriminator	10.7 MC	6BA6 lst I-F Pin 1 and Chassis	2500 mmf	FM	Rotor Fully Open	Disc. Pri. (5) Note D	Maximum Deflection
I-F	10.7 MC	Junction C-32A \& B (Dual 100 mmf cond.) And chassis	2500 mmf	FM	Rotor Fully Open	$\begin{aligned} & \text { I st I.F Pri. (9) } \\ & \text { \& Sec. (10) } \\ & \text { 2nd I-F Pri. (7) } \\ & \text { \& Sec. (8) } \\ & \text { Disc. Pri. (5) } \\ & \text { In Order Shown } \\ & \text { Note D } \\ & \hline \end{aligned}$	Maximum Deflection
	10.7 MC	Same as above	2500 mmf	FM	Rotor Fully Open	Disc. Sec. (6) Note B	Maximum Deflection
RECHECK 1.F ADJUSTMENTS IN ORDER GIVEN							
Oscillator	108.5	Disconnect buils-in dipole antenna and connect generator to dipole terminals with resistor in series.	300 ohms	FM	$\begin{aligned} & \text { Rotor Fully } \\ & \text { Open } \end{aligned}$	Osc. C-25	Maximum Deflection
Antenno	104.5	Same as above	300 rhms	FM	Tune rotor for max. AVC voltage	Ant. C-39	Maximum Deflection

RECHECK ANTENNA \& OSC. ADJUSTMENTS IN ORDER GIVEN

FM ALIGNMENT NOTES

NOTE A-The zero center scole DC vacuum tube voltmeter is to be connected between chassis ground and the AVC line. A signal of .1 valt must be fed into the receiver for this adjustment.
Note output voltage on the zero center DC vacuum tube voltmeter
NOTE B--Disconnect zero center DC vacuum tube voltmeter from AVC and connect it at the audio takeaff point at the

27 K ohm resistor ($\mathrm{R}-10$) and its junction with the terminal strip. Adjust for zero voltage indication.

NOTE C-AM I-F coils must be aligned before attempting to align the FM I.F coils.

NOTE D-Connect zero center DC vacuum tube voltmeter as in Note A. Adjust input to give same output on the zero center DC vacuum tuhe voltmeter as in Note A.

GAMBLE-SKOGMO PAGE 21-9

Ref. No.	OESCRIPTION	Part No.
CAPACITORS		
C. 1	Gong Condenser Assembly	14A209
C. 2	Capacitor, Trimmer; 2.24 mmf	174256
C. 3	Capacitor, Ceramic; 130 mmf	47×559
C. 4		
C. 5		
C. 9		
C. 10		
C-11	Capacitor, Ceramic; 5000 mmf 47×507	
C. 17 ।		
C.27		
C. 43		
C. 61	Part of T. 2 (1st I.F Trans. F.M.)	
C. 71		
C.8	Part of T-3 (1st I-F Trans. AM)	
C. 121	Part of T.5 (2nd I-F Trans. AM)	
C.13		
C-14!	Part of T-4 (2nd I-F Trons. FM)	
C.15		
$C .16 A 1$ $C .16 B 1$	Capacitor, Dual Mica; 50.50 mmf 47X112	
C.16B 1		
C. 18	Part of T-6 (Discriminator Trans.)	
C. 19	Capacitor, Molded Mica; 2700 mmf 47×492	
C.201	Capacitor, Ceramic; 220 mmf 47×468	
C.351		
C. 21 C .22	Copacitor, Dry Elec:rolytic; 5 mf 100 V45×361	
C.42	Copacitor, Ceramic; 2.2 mmf 4785557	
C. 23	Capacitor, Ceramic; 30 mmf 47×558 Capacitor, Ceramic; 20 mmf 47×516	
C. 24		
C. 25		
C-26		
C.28A	20 mf 20 V	
C-28B	Capacitor; Dry Electrolytic; $\begin{aligned} 40 \mathrm{mf} 150 \mathrm{~V} \ldots . .45 \times 360 \\ 40 \mathrm{mf} 200 \mathrm{~V}\end{aligned}$	
C-28C		
C-29	Capacitor, Tubular; $001 \mathrm{mf} 800 \mathrm{~V} \ldots . . . \mathrm{H}^{2} 66102$Capacitor, Molded Mica; 330 mmfCapacitor, Ceramic; 500 mmf	
C-30		
C-31		
C.32A C.32B	Capacitor, Dual Ceramic; 100 mmi76X4	
C-33	Kapocitor, Tubular; 04 mf 200 V B66403	
C. 34	Capacitor, Tubular; . 005 mf 400 V D66502 Capacitor, Tubular; . $004 \mathrm{mf} 200 \mathrm{~V}$. . B66402	
C. 36		
C. 37	Capacitor, Tubular; . 1 mf 400 V D66104	
C-38	Capacitor, Tubular; 02 mf 400 V 066203	
C.391	Part of C-1 (Gang Condenser)	
C. 411		
C. 40	Capacitor, Ceramic; 68 mmf 47X471	
	RESISTORS	
R. 1	Resistor, Carbon; 47 ohms 0.5 W B85470	
R-2		
R-3	Resistor, Carbon; 1000 ohms 0.5 W B85102	
R-6)		
R. 41	Resistor, Carbon; 68 ohms 0.5 W B84680	
R-8 ${ }^{\text {d }}$		
R-5 ।		
R-12	Resistor, Carbon; 6800 ohms $0.5 \mathrm{~W}884682$	
R.13		
R-7	Resistor, Carbon; 47 K ohms 0.5 W B85473	
R.25		
R-9	Resistor, Carbon; 2200 ohms 0.5 W B85222 Resistor, Carbon; 27 K ohms 0.5 W B855273 Resistor, Wirewound; 3.6 ohms 0.5 W 43×233	
R-10		
R-11		
$R-141$ $R-161$	Resistor, Carbon; 100 K ohms $0.5 \mathrm{~W} \mathrm{CB85104}$	
R-16 R-15	Resistor, Carbon; 22 K ohms 0.5 W B85223 Resistor, Carbon; 220 ohms 0.5 W B84221	
R 17		

Ref. No.	DESCRIPTION	Port No.
R.18		
R. 19	Resistor, Carbon; 470 K ohms 0.5 W	B85474
R.24		
R-26		
R-20	Resistor, Carbon; 15 K ohms 0.5 W	885153
R-21	Volume Control \& Switch; .5 megohm	36×372
R-23	Tone Control; 3 megohms	40×285
R-27	Resistor, Corbon; 10 megohms 0.5 W	B85106
R. 28	Resistor, Carbon; 820 ohms 2.0 W	D84821
R-29	Resistor, Corbon; 1 megohm 0.5 W	B85105
R.30	Resistor, Carbon; 270 ohms 0.5 W	B84271
R-31	Resistor, Carbon; 2.2 megohms 0.5 W	B85225
	TRANSFORMERS AND COILS	
L.1	Choke, Insulated	3545
L-2	Choke, Parositic	9A2103
1.3	Choke, Insulated	35A9
L. 4	Choke, Insulated	35A8
T-1	"B" Range Loop Antenna	9 92099
T. 2	1st I-F Trans. (FM)	9A2060
T. 3	1st I-F Trans. (AM)	9A2062
T-4	2nd I-F Trans. (FM)	9A2061
T. 5	2nd 1-F Trans. (AM)	9A2063
T. 5	Discriminator Transformer	9A2064
T. 7	Oscillator Coil (AM)	9A2065
T-8	Oscillator Coil (:M)	9A20s7
T. 9	Output Transformer	51×134
T-10	Dipole Antenna	9A2003
T-11	Power Transformer	. 53×291
T-12	Antenna Coil (FM)	9.42066
	DIAL AND TUNING PARTS	
No. 47 Pilot Light		74103
Pilot Light S	ocket Assembly	74199
Escutcheon		4X1060
Rubber Grom	mets (mig. Gang Cond.)	6×66
Drive Cord	Assembly 10×72
Pointer		.15×251
"C" Washer	(Drive Shaft)	19×192
Condenser C	Cushion Stud	20×260
Drive Shaft		26×486
Drive Cord T	Tension Spring	28×113
Spring (Dial	Glass)	28×564
Dial Glass		. 58×732
Miscellaneous		
Band Change Switch		24393
Phono Motor	Socket	3A304
Phono Socket	(Single Pin)	3A305
Tube Socket	(1st 6BA6)	34426
Tube Socket	(6BE6)	34427
Tube Socket,	Molded (Octal)	3A435
Tube Socket	(Miniature)	34439
Tube Socket	(12AT7)	34443
Knob (Tuning)		104699
Knob (Off.Volu	olume)	10A700
Knob (Tone)		104701
Knob (FM-BC	(-PH)	10A702
Speaker, 8'	P.M.	12A477
Record chang	ger-3 speed	28A166
Line Cord \&	Plug Assembly	. 13×546
Line Cord C	lamp	. 30×560

DRIVE CORD REPLACEMENT

Use a new 10×38 drive cord assembly or a new length of cord 46 inches long for the installation, winding three turns clockwise around the drive shaft with the turns progressing away from the chassis. After completing the installation, rotate the drive shaft a few turns to take up the slack in the cord.

ELECTRICAL SPECIFICATIONS

Tube and Dial Lamp 1 6BA6 AM-FM R-F Amplifier Complement

1 12AT7 FM \& AM Osc. \& Mixer
1 6BA6 FM-AM lst I-F Amplifier
1 6BA6 FM 2nd I-F Amplifier
1 6AL5 FM Detector
1 6AV6 Audio Amplifier, AM 2nd Detector and AVC

2 6K6-GT Audio Output
1 5Y3-GT Rectifier
1 6AV6 Phase Inverter
2 No. 47 Dial Lamps

ALIGNMENT PROCEDURE AM STAGES

The fallowing is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Meter, Non-Metallic Screwdriver, Dummy Antennas $-.1 \mathrm{mf}, 200 \mathrm{mmf}$.

Volume Control-Maximum all Adjustments
Connect Radio Chassis to Ground Post of Signal Generator with a Short heavy lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.

SIGNAL GENERATOR		CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	GANG CONDENSER SETTING	ADJUST	ADJUST FOR
	FREQUENCY SETTING						
I-F	455 kc	12AT7 Pin 7 and Chassis	. 1 mf	Broadcast	Rotor Fully Open	2nd I-F Pri. \& Sec. (1) \& (2) 1st I-F Pri. \& Sec. (3) \& (4)	
Broadcast	1620 kc	External ant. term.	200 mmf	Broadcast	Rotor Fully Open	Broadcast Oscillator C.33	Maximum
	1400 kc	External ant. term.	200 mmf	Broadcast	Turn Rotor to Max. Output Set pointer to	Broadcast Interstage C-29	Output
	1400 kc	External ant. term.	200 mmf	Broadcast		Loop Antenna C. 48	

Note A-If the pointer is not at 1400 KC on dial, reset pointer at the 1400 KC mark on the dial scale.

FM STAGES

The following equipment is required for aligning:
An accurately calibrated signal generatar providing unmodulated signals at the test frequencies listed below.

Non-metallic screwdriver.
Dummy Antennas and I-F Loading Resistor- $01 \mathrm{mf}, 300$ ohms and 1000 ohms.

Zero center scale DC vacuum tube voltmeter having a range of approximately 3 volts.
(If a zero senter scale meter is not available, a standard scale vacuum tube voltmeter may be used by reversing the meter connections for negative readings.)
Allow chassis and signal generator to warm up for several minutes.

	SIGNAL	GENERATOR					
	frequency SETTING	CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	BAND SWITCH SETTING	GANG CONDENSER SETTING	ADJUST	ADJUST
Discrim- inator	10.7 MC Note B	6BA6 2nd I-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	Disc. Pri. (5) Note A	Maximum Deflection
	10.7 MC Note B	6BA6 2nd I-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	Disc. Sec. (6) Note C	Zero Center
I-F	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note F } \end{aligned}$	6BA6 lst J-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	2nd I-F Pri. Note A and D (7) 2nd I-F Sec. Note A and E (8)	Maximum Deflection
Discriminator	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note } \mathrm{F} \end{aligned}$	6BA6 lst I-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	Disc. Pri. (5) Note A	Maximum Deflection
	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note F } \end{aligned}$	6BA6 lst I-F Pin 1 and Chassis	. 01 mf	FM	Rotor Fully Open	Disc. Sec. (6) Note C	Zero Center
	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \text { Note F } \end{aligned}$	FM-RF Gang Condenser terminal	. 01 mf	FM	Rotor Fully Open	$\begin{aligned} & \text { I st I-F Pri. (9) } \\ & \text { I st I.F Sec. } 10 \\ & \text { Notes A, D \& E } \end{aligned}$	Maximum Deflection
Recheck I-F Adjustments in order given							
R-F \& Osc.	$\begin{aligned} & 108.4 \\ & \text { Note H } \end{aligned}$	Disconnect dipole and connect generator to dipole terminals with resistor in series	300 ohms	FM	Rotor Fully Open	Oscillator C-35 Note G	Maximum Deflection
	104.5	Disconnect dipole and connect generator to dipole terminals with resistor in series	300 ohms	FM	Tune Rotor for Max. AVC voltage	FM Interstage C. 32	Maximum Deflection
	104.5	Disconnect dipole and connect generator to dipole terminals with resistor in series	300 ohms	FM	Tune Rotor for Max. AVC voltage	Ant. C. 47	Maximum Deflection

Recheck R-F and Osc. Adjustments in order given

NOTE A-Test Equipment connections are as given in the table. The zero center scale $D C$ vacuum tube voltmeter is to be connected between chassis ground and the AVC line at the junction of resistor R-22 and condenser C. 18 for oll adiustments except the discriminator secondary adjustment, for which See Note C.
NOTE B-A signal of 11 volt must be fed into the receiver for this adjustment.
NOTE C-Disconnect zero center DC vacuum fube voltmeter from AVC and connect to junction of R-18 and C.62. Adjust for zero voltage indication.

NOTE D-Before adjusting Pri. core connect 1000 ohm load resistor across the 2nd I.F. secondary terminals. Input may have to be increased to .1 volt if receiver is badly mis-oligned.
NOTE E-Disconnect 1000 ohm load resistor from secondary terminals and cannect across the 2nd I.F. primary terminals. Input may have to be increased to .1 volt if receiver is badly mis-aligned.
NOTE F-Input can be reduced to 10,000 microvalts.
NOTE G-Oscil!ator frequency above signal frequency.
NOTE H-Remove the 1000 ohm load resistor before attempting to check the R-F and oseillator adjustments.

NOTE-T-5 discriminator transformers with Part No. 9A1970 stamped on the can must be aligned as outlined in this service manual.
Discriminator transformers with Part No. 9A2064 stamped on the can have the primary adjustment at the top and the secondary adjustment at the bottom.

TUBE SOCKET VOLTAGES

Socket voltages are shown on the Schematic diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken, with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter. Conditions of measurement are:

[^0]

REPLACEMENT PARTS LIST

When ordering parts, specify part number, model number and any other pertinent information

Ref. No.	DESCRIPTION Part No.	Ref. No.	DESCRIPTION Part No.
	CAPACITORS	C. 52	Capacitor, Tubular, . 01 mf 600 V. F66103
C-1	Gang Condenser and Pulley 14A207	C. 53	Capacitor, Ceramic, $220 \mathrm{mmf} \pm \mathbf{2 0 \%}$. 47X468
C-2		$\begin{aligned} & C .54 \\ & C .59 \end{aligned}$	Capaciter, Tubu!ar, 02 mf 600 VF66203
C. -3 C. 7		C.55)	
C. C		$\begin{aligned} & C .55\} \\ & C .60\} \end{aligned}$	Capacitor, Tubular, . 001 mf 600 V.........F66102
$\left.\begin{array}{l}\text { C. } 13 \\ \text { C. } 16\end{array}\right\}$	Capacitor, Silvered Mica, 5000 mmf 47×507	C. 56	Capacitor, Tubular, 02 mf 200 V........... B66203
C-17 C. 18		C-57	Capacitor, Tubular, . 006 mf 600 V......... F66602
C. 19		C. 58	Capacitor, Tubular, .0¢5 mf 200 V......... . 866502
C-27			
C-42		C-61	Capacitor, Ceramic, $68 \mathrm{mmf} \pm 20 \%47 \times 471$
C. 4	Capacitor, Ceramic, $100 \mathrm{mmf} \pm \mathbf{2 0 \%}47 \times 497$	C. 62	Capacitor, Molded Mica, $2700 \mathrm{mmf} \pm 10 \%$. 47×492
C. 5	Capacitor, Ceramic, $47 \mathrm{mmf} \pm 5 \%$. 47X499	C. 63	Capacitor, Tubslar, 01 mf 120 V 46×328
$\left.\begin{array}{ll}\text { C-8 } \\ \text { C-10 } \\ \text { C-65 }\end{array}\right\} \quad \begin{aligned} & \text { Capacitor, Ceramic } 47 \mathrm{mmf} \pm 10 \% \ldots . . .4 .4 \times 498\end{aligned}$			
			RESISTORS
C-11) C. 28 \}	Capacitor, Ceramic, $100 \mathrm{mmf} \pm 10 \% \ldots . . .47 \times 550$	$\left.\begin{array}{l}\text { R-1 } \\ \text { R-10 }\end{array}\right\}$	
C.28		$\left.\begin{array}{l}\text { R-10 } \\ \text { R-22 }\end{array}\right\}$	Resistor, Carb=n 1 Megohm . 5 W.B85105
C. 15	Part of T-3	R.2	
C-21	Part of T. 5	R-12	Resistor, Carbon 68 Ohms . 5 W. 883680
C.22		R-15	
C.24	Capacitor, Ceramic, $68 \mathrm{mmf} \pm 10 \% \ldots47 \times 501$	R-3 ?	Resistor, Carbon 56K Ohms . 5 W. B84563
$\left.\begin{array}{l} \mathrm{C}-31 \\ \mathrm{C}-51 \end{array}\right\}$		R.11 5	Resistor, Carbon 56K Ohms . 5 W. 884563
		R-4	
C. 23	Capacitor, Dry Electrolytic, 5 mf 100 V.....45×361		Resistor, Carbon 1000 Ohms . 5 W.B84102
C. 25 \}	Capacitor, Ceramic, $500 \mathrm{mmf} \pm 20 \% \ldots 47 \times 496$	R.8 R-13	
C. 45 \}		R.13	
C-26	Capacitor, Ceramic, 5 mmf 47×549	R-5	Resistor, Carbon 100K Ohms .5W. B85104
C.29 ${ }^{\text {c }}$		R-7	Resistor, Carbon 10K Ohms . 5 W. 884103
C.32	Part of C-1	R-9	Resistor, Carbon 2.2 Megohm . 5 W. B85225
C.47 ${ }^{\text {c }}$		R-14	Resistor, Carbon 47K Ohms . 5 W. 885473
C-30	Capacitor, Ceramic, $15 \mathrm{mmf} \pm 10 \%$. 47X552	R-16	Resistor, Carbon 39K Ohms 1.0 W..........C84393
C.34)	Capacitor, Ceramic $20 \mathrm{mmf} \pm 10 \% \ldots44 \times 516$	R-17	Resistor, Carbon 2200 Ohms . 5 W. 885222
C.46)		R-18	Resistor, Carbon 27K Ohms . 5 W. B84273
C. 35	Capacitor, Trimmer, 1.8 mmf 2644889	R-19	Resistor, Wire Wound 3.6 Ohms . 5 W. 43×233
$\left.\begin{array}{l}\text { c-36 } \\ \text { c-64 }\end{array}\right\}$	Capacitor, Ceramic, $5 \mathrm{mmf} \pm 10 \% \ldots47 \times 549$	R-20 ?	
C-64		R-21 ${ }^{\text {S }}$	Resistor, Carbon 6800 Ohms . 5 W.B83682
$\left.\begin{array}{l} C-37 \\ C .65 \end{array}\right\}$	Capacitor, Tubular, 04 mf 600 VF68403	R-23	Resistor, Wire Wound 1400 Ohms 5.0 W. 43×242
C.38)	Part of T-2	R-25	Volume Control \& Switch . 5 meg. 36×379
C.39 $\}$		R-26	Resistor, Carbon 15K Ohms . 5 W.B85153
C-40	Capacitor, Tubular, . 05 mf 200 V........... . 866503	R-27	Tone Control 3 meg. 40X288
$\left.\begin{array}{l}\text { C-41 } \\ \text { C.43 }\end{array}\right\}$	Part of T-4	$\left.\begin{array}{l} \mathrm{R}-28 \\ \mathrm{R}-33 \end{array}\right\}$	Resistor, Carbon 10 Megohm . 5 W. B85106
C-43		$\text { R-33 }\}$	Resistor, Carbon 10 Megohm .5 W.885106
$\begin{aligned} & C-44 A \\ & C-44 B \end{aligned}$	Capacitor, Dual Mica, 50-50 mmf.47X112	$\left.\begin{array}{l} \mathrm{R}-29 \\ \mathrm{R}-34 \end{array}\right\}$	Resistor, Carbon 270K Ohms . 5 W. B85274
C. 48	Part of T-7	R.30	Resistor, Carbon 560 Ohms 2.0 W. D83561
C-50A	Capacitor, 3 section $\quad\left\{\begin{array}{l}40 \mathrm{mf} 450 \mathrm{~V} . \\ 40 \mathrm{mf}\end{array}\right\}$	R-31]	
$\left.\begin{array}{l}\text { C-50B } \\ C-50 C\end{array}\right\}$		$\left.\begin{array}{l}\text { R-35 } \\ \text { R-38 }\end{array}\right\}$	Resistor, Corbon, 470 K Ohms . 5 W 885474

REPLACEMENT PARTS LIST (continued)

When ordering parts, specify part number, model number and any other pertinent information

Ref. No.	DESCRIPTION	Part No.
R-32	Resistor, Carbon 8200 Ohms . 5 W .	. B84822
R. 36	Resistor, Carbon 6800 Ohms . 5 W .	B84682
R-37	Resistor, Carbon 5600 Ohms . 5 W .	B84562
	COILS AND TRANSFORME	
1-2	Coil, Interstage (AM)	9A2025
1.3	Coil, Interstage (FM)	9A2024
1.4	Coil, Oscillator (AM)	9 92022
L-5	Choke, Insulated	. 35A5
L-6	Choke, Filoment	9A1881
1.7	Coil, Oscillator (FM)	.9A2023
L-8	Choke (FM Mixer Plate)	35A7
1.9	Coil, Antenna (FM)	9A2027
T. 1	Ist I.F. Coil Assembly (FM)	.9A2043
T-2	1st I.F. Coil Assembly (AM)	.9A2029
T. 3	2nd I.F. Coil Assembly (FM)	.9A2030
T. 4	2nd I.F. Coil Assemb!y (AM)	9A2042
T. 5	Discriminator Coil Assembly	9A2064
T-6	Dipole Antenna Assembly	9A2004
T. 7	"B" Range Loop Antenna Assembly	. 9 9A1972
T-8	Power Transformer	. 53×286
T. 9	Output Transformer	. 51×142
	DIAL AND TUNING PARTS	
Escutcheon		. 4×1073
Rubber Gro	\square	6×67
Condenser	Mrg. Bracket \|	25×1630
Drive Cord	Assembly	. . 10×38
Pointer		. 15×251
"C" Wash	(Drive Shaft)	. 19×192
Drive Shaft		. 26×509
Drive Cord	Tension Spring	. 28×113

Ref. No. DESCRIPTION	Part No.
Dial Bracket Assembly . S-25x31	
Consisting of:	
Tubular Rivet.	
Shoulder Rivet	
Shoulder Rivet	
Eyelet	
Dial Bracket	
Support bracket, L. H.	
Support Bracket, R. H.	
Dial Assembly . S.58X41	
Consisting of:	
Dial Bracket Assembly S-25X31	
Rubber Strip . 8×195	
Trimount Stud . 28×56	
Spring . 28×564	
Light Shield	
Dial Glass . .	
MISCELLANEOUS	
Band Change Switch 2 A404	
Phono Motor Socket . 3 A304	
Phono Socket (Single Pin) . 3 3 305	
Molded Octal Tube Socket . 34435	
Tube Socket (miniature, for AM.FM Converter) 3 A436Tube Socket (Miniature) . 34439	
No. 47 Pilot Light. 7 A103	
Pilot Light Socket Assembly . 7 A215	
Knobs . 104767	
12" P.M. Speaker . 12 124502	
Record Changer 284171	
Line Cord \& Plug Assembly . 13×546	
Tube Shield (AM-FM Converter) . 3 32x388	
Tube Shield (Miniature) . 32x390	

ALIGNMENT PROCEDURE

Broadcast Band Section I. F. and R. F.

The alignment procedure below includes the sensitivities at the inputs of various stages. All signal input values are based on an output of 500 milliwatts. This may be measured by disconnecting the speaker voice coil and substituting a 3.2 -ohm resistor across the secondary winding of the output transformer. A reading of 1.27 volts $A C$ across this resistor will be approximately equivalent to 500 milliwatt output with the speaker connected. The volume control must be set at maximum. The tone control must be set for maximum treble.

The signal source must be an accurately calibrated signal generator capable of supplying the frequencies designated, modulated 30% with a 400 -cycle audio signal. A 400 cycle audio signal is required for the audio measurement. Variations in sensitivities of plus or minus 25% are usually permissable.

Chassis View

AM - I. F. ALIGNMENT
Band Switch in AM Position, Gang Open, Dummy Antenna . 1 Mfd .

SIGNAL GENERATOR FREQUENCY	CONNECTION TO RADIO	ADJUSTMENTS TO BE MADE	ADJUST FOR
400 cycles. Use 65 millivolts	High Side of Volume Control and chassis	None	Maximum output Should be 500 Milliwatts
455 Kc . Use 3300 microvolts	Pin 1 of 6BA6 I.F. Amp. and chassis	Primary and Secondary of T8. See chassis view.	Maximum output Should be 500 Milliwatts
455 Kc . Use 55 microvolts	Pin 7 of 6BA7 Converter and chassis	Primary and Secondary of T6. See chassis view.	Maximum output Should be 500 Milliwatts

BROADCAST BAND-R. F. ALIGNMENT
Check pointer so that the right hand edge of the pointer skirt coincides with the right hand edge of dial marker at the extreme left when gang is closed.

For adjustment, see dial mechanism illustration.

SIGNAL GENERATOR FREQUENCY	SET POINTER AT	CONNECT TO RADIO	ADJUST
$1620 \mathrm{Kc}$.	Extreme Right Calibration Marker	RADIATION COUPLING Use six turn loop across generato output.	Oscillator trimmer C2-B for maximum
$1400 \mathrm{Kc}$.	Third Calibration from Right	Place close to cabinet back.	Antenna Trimmer C2-A for maximum

Check tracking at $1000 \mathrm{Kc}, 600 \mathrm{Kc}$, and 535 Kc to be sure oscillator is set correctly.

ALIGNMENT PROCEDURE
 FM Band Section I. F. and R. F.

A non-metallic alignment tool must be used.

IMPORTANT

No alignment of the FM section of this radio should be attempted unless you are positive that the circuits are in need of adjustment and you have the necessary equipment.
All components used in this radio are extremely stable and the tuned circuits should require no adjustment over a long period of time.

NOTE

The following alignment is based on the use of the new Simpson vacuum tube voltmeter which has a "floating ground". In other words, the meter, when used as a vacuum tube voltmeter, can have both the positive and negative sides connected to points above ground and still give true readings. (See note " C '" below.)
A standard $A M$ signal generator is required.

FM - I. F. ALIGNMENT

Band Switch in FM Position. Dummy Antenna . 1 Mfd

SIGNAL GENERATOR FREQUENCY	CONNECTION TO RADIO	VACUUM TUBE VOLI METER CONNECTION TO RADIO	ADJUSTMENTS tO BE MADE	ADJUST FOR
10.7 Mc . Use about .05 volt	Pin No. 1 of 6AU6	Pin No. 7 of 6AL5 and chassis	Bottom Core Primary of T9 Ratio Detector	Resonance should be about 3 volts
10.7 Mc . Use about .05 volt	Pin No. 1 of 6AU6	See note " A "	Top Core Secondary of T9 Ratio Detector	Zero. Use zero center scale See note "B"
10.7 Mc . Use about 1800 microvolts	Pin No. 1 of 6BA6	Pin No. 7 of 6AL5 and chassis	Primary and Secondary of T7. FM Driver IF See chassis view	Resonance should be about 3 volts
10.7 Mc . Use about 400 microvolts	Top end of C2-C	Pin No. 7 of 6AL5 and chassis	Primary and Secondary of T5. FM Input IF See chassis view	Resonance should be about 3 volts

NOTES ON FM - I. F. ALIGNMENT

NOTE "A"—Connect two resistors in series, IOOK OHMS each, from Pin No. 7 of 6AL5 to chassis (Pin No. 5). These resistors must be matched within 5%. Connect vacuum tube voltmoter between the midpoint of the resistors and point zz.
NOTE "B"-If T9 has been tampered with, it is possible that no crossover point will be found at first. Careful adjustment of both primary and secondary is necessary.

NOTE "C"—To use a VTVM which does not have the "floating ground" feature, in step 2 above, connect "ground" side of VTVM to midpoint of resistors (Note "A') and "high" side to point zz. GENERAL-Input signals should be adjusted to give approximately 3 volts. The ratio detector is operating at a reasonable level at this point and will give the truest indication of correct alignment with the procedure specified.

FM-R.F. ALIGNMENT

Check pointer so that the right hand edge of the pointer skirt coincides with the right hand edge of dial marker at the extreme left when gang is closed.

For adjustment, see dial mechanism illustration.

SIGNAL GENERATOR FREQUENCY	POINTER	CONNECTION to RADIO	ADJUST	VTVM CONNECTIONS
108 mc .	108 mc . Marker	FM antenna terminals	FM Osc. C3 for maximum	Pin No. 7 of
98 mc .	Tune in Gen. Signal	See Note "B" below	FM Mixer C2-C for maximum	6AL5 to chassis.

NOTE "A"-If a signal generator with the above fundamental frequency is not available, it is sometimes possible to use harmonics. An alternate procedure is to use a local station carrier of known frequency to align the FM Band and to use the vacuum tube voltmeter as above for resonance indication. A weak carrier, however, will not produce 3 volts.

NOTE "B"—Connect 300 ohms in series with "hot" side of generator and connect to left hand screw of external FM Antenna Terminals. Connect cold side of generator to right hand screw.

REPLACEMENT OF DIAL CORDS

Pointer Stringing and Alignment

© John F. Rider

REPLACEMENT PARTS INFORMATION

Please specify PART number and chassis model number when ordering replacements.

ELECTRICAL SPECIFICATIONS

Power Supply
90 volts " B "; 9 volts "A" 117 volts AC/DC

Frequency Range . 540-1605 KC
I.F. Frequency . 455 KC

Antenna . Self-contained loop
Tuning 3 gang capacitor
Speaker. 5" P.M. Dynamic
3.2 ohm voice coil

Power Consumption 11 watts

Power Output \qquad 120 milliwatts @ 10\%

Sensitivity, loop 100 microvolts/meter average for 50 milliwatts

Selectivity. . 45 KC broad at 1000 times signal at 1000 KC

Fig. 1-Dial Stringing

Fig. 2. Top Chassis View.

SELENIUM RECTIFIER
Fig. 3. Bottom Chassis View.

TO REMOVE CHASSIS FROM CABINET

Remove control knobs. Loosen retaining brackets on rear apron of chassis. Remove shelf above batteries. Pull chassis straight back.

ALIGNMENT PROCEDURE

Output meter reading to indicate 0.05 watt across voice coil
Generator ground lead connected \qquad To B- through 0.1 mfd capacitor
Generator modulation $30 \%, 400$ cycles
Position of volume control. Fully on
Position of pointer with tuner fully closed
Center of pointer lined up with extreme right dot on dial backing plate.
(Chassis right side up.)

$\begin{gathered} \text { Position } \\ \text { of } \\ \text { Tuncer } \end{gathered}$	Generator Freq.	Dummy Antenna	Generator Connection	Adjustments (in order shown)	Function	Max. Microvolts Input to produce .05 w . output
Min. Cap.	455 kc	0.1 mfd .	Pin \#6 of 1U4 I-F Amp.	T2 (top and bottom)	I.F.	5000
Min. Cap.	455 kc	0.1 mfd .	Pin \#6 of IR5 Conv.	T1 (top and bottom)	I.F.	250
Min. Cap.	1610 kc	0.1 mfd .	Stator ant. tuner	C6	Osc.	
1400 kc	1400 kc	0.1 mfd .	Stator ant. tuner	C5	R.F.	30
1400 kc	1400 kc		Loosely coupled to loop	C4	Loop	

ALIGNMENT NOTES:

1. It is recommended that this set be connected to an isolation transformer when aligning on AC .
2. The alignment must be done in the order given above.
3. While making the above adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.

REPLACEMENT PARTS LIST

ef. No. Part No. Description				
CAPACITORS			MISCELLANEOUS	
C1, C2, C3	18-296	Copacitor, electrolytic	44-11	Baffle
C4, C5, C6	19-208	Capacitor, variable (3 gang)	42-465	Cobinet
C8, C 11	16-153	Capacitor, 005 mfd .600 v .	84.419	Cable assembly, battery
C9, C10, C20			83.421	Clip, I.F., transformer mounting
C21, C22	17-103	Ceramic unit	84-77	Cord, power AC/DC
C12, C17	16-152	Copacitor, 05 mfd 200 v.	51-105	Cord, pointer trovel, 28'
C13	15-186	Capacitor, 10 mmfd. mica	67-552	Dial scale
C14	16-150	Capacitor, 02 mfd .400 v.	40-156	Escutcheon
C15, Cl 6	16-157	Capacitor, 11 mfd .200 v.	98-13	Grille cloth
C18, C19	16-179	Copacitor, 05 mfd .400 r .	47-108	Grommet, variable condenser
		RESISTORS	76-13	Insulator, electrolytic
		RESISTORS	52-196	Knob, AC/DC/bottery
R1	60-744	Resistor, 22,000 ohm, $1 / 2$ watt, 10%	52-305	Knob, ON-OFF-VOLUME and TUNING
R2, R17	60-669	Resistor, 4.7 megohm, $1 / 2$ watt	45-121	Plug, AC/DC
R3, R5	60-728	Resistor, 10 megohm, $1 / 2$ watt	58-63	Pointer
R4	60-730	Resistor, 47,000 ohm, $1 / 2$ wott	84-418	Pointer rail assembly
R6	60-704	Resistor, 330 ohm , $1 / 2 \mathrm{watt}, 10 \%$	83-642	Rectifier, selenium
R7	60-727	Resistor, 100,000 ohm, $1 / 2$ wott	71-42	Shield, tube
R8	60-676	Resistor, 30,000 ohm, $1 / 2$ watt	68-39	Socket, miniature wafer
R9	60-770	Resistor, 470 ohm, $1 / 2$ watt, 10%	79-380	Speaker, 5" P.M.
R10, R19	60-726	Resistor, 2.2 megohm, $1 / 2$ watt	70-122	Spring, dial cord
R11, S1	24-186	Volume control and switch	69-173	Switch, AC/DC/battery
R12, R15	60-729	Resistor, 1500 ohm, $1 / 2$ watt, 10%		
R13	60-708	Resistor, 680 ohm, $1 / 2$ watt, 10%		
R14	60-796	Resistor, 110 ohm, 3 watt, 10%		
R16	60-757	Resistor, 2000 ohm, 10 wott, 5%		
R18	60-668	Resistor, 1 megohm, $1 / 2$ wott		
COILS AND TRANSFORMERS				
L1	82-66	Loop, ontenno		
L2	10.535	R.F. coil		
43	10-553	Oscillator coil		
T1, T2	10-508	Transformer, 1 st and 2nd I.F.		
T3	80-228	Transformer, output		

GAMBLE-SKOGMO PAGE 21-25

John F. Rider

PAGE 21-26 GAMBLE-SKOGMO

MODEL O5RA33-43-3120A,
Bantam

The following procedure is for use only by competent servicemen having the proper equipment.
The alignment should be made with volume control fully on, and the output from the signal generator as low as possible, to prevent AvC action from interfering with proper alignment.
With the output meter connected across the voice coil of the speaker, the output meter reading for 50 milliwatts is 0.4 volts, using a signal which is modulated 400 c.p.s.
Adjust all trimmers for maximum output. Repeat the alignment procedure given below as a final check.
CAUTION: This is an $A C / D C$ receiver and when aligning the set it is necessary to isolate the signal generator or the receiver from the line by use of a transformer, or to place a . 2 MFD condenser in each test lead of the signal generator.

PARTS VALUES FOR T-64 GAMBLE'S AC-DC BANTAM
$\left.\begin{array}{lllll} & \text { CIRCUIT } & \text { COMPONENTS } & & \text { VALUE }\end{array}\right]$ RATING

GENERAL DESCRIPTION

This radio is a 6 lube (including rectifier tube) AC-DC receiver housed in a beautiful plastic cabinet. Controls are provided on the front of the set for tuning, volume and tone operation. Special features include a built-in loop antenna, 3 section tuning condenser, autamatic volume control, continuously variable tone control, beam power output tube and a permanent magnet dynamic speaker. Provision has been made for connection of en external antenna. The receiver is designed for reception of radio stations in the standard broadcast band between 540 and 1600 kilocycles.

ELECTRICAL SPECIFICATIONS

Power Supply:
117 volts A.C. 50 or 60 cycles or 117 volts D.C.

Frequency Range:
Broadcast $540-1600 \mathrm{Kc}$.
Intermediate Frequency:
455 Kc.
Antenna:
High impedance loop
Tuning:
3 section, shock mounted gang condenser
Speaker:
5 inch PM Dynamic
Voice coil impedance -3.2 ohms
Power Consumption:
30 watts
Power Output:
Undistorted - 6 watts
Maximum - 1 wat
Sensitivity-(Measured with signal injection at external antenna terminal and for 50 milliwatt output):
12 microvolts average
Selectivity:
40 Kc . broad at 1000 times signal, measured at 1000 Kc .

Tube and Dial Lamp Complement:
1 12BA6 R.F. Amplifier
1 12BE6 Converter
1 12BA6 I.F. Amplifier
1 12AT6 Detector-A.V.C.-
Audio Amplifier
1 35C5 Audio Output
1 35W4 Rectifier
1 \#47 Dial Lamp

DIAL CORD ARRANGEMENT

To string dial cord, furn the main drive drum to maximum counterclockwise position and use following parts:

114955 Clip on end of cord
117057 Cord (2 feet)
505161 Tension Spring

ALIGNMENT PROCEDURE

1. Remove chassis from cabinet. Allow loop antenna to remain attached to chassis.
2. With gang condenser fully closed, dial pointer should be in the position indicoted by the last division below 55 on the dial. If it is set incorrectly, hold gang in this position and reset pointer.
3. Connect an output meter across the speaker voice coil or from plate of 35 C 5 to B - through a 0.1 Mfd . condenser. (See voltage chart for convenient B. connection.)
4. Connect ground lead of signal generator to B- lug.

CAUTION: If your signal generator is designed with an AC-DC power supply, connect ground lead to B. lug through o .25 Mfd . condenser. (See voltage chart for convenient B. connection.)
5. Set tone control to its maximum clockwise position.
6. Set volume contral to maximum volume position and use a weak signal from the signal generator.

RANGE	SIGNAL GENERATOR		DUMMY ANTENNA	GANG CONDENSER sEtting	ADJUST SLUGS OR TRIMMERS
	FREQUENCY SETTING	CONNECTION AT RADIO			
$\begin{gathered} 1 . \mathrm{F} \\ 455 \mathrm{KC} \end{gathered}$	455 KC	Grid pin \#7 of 128E6 Converter tube.	0.1 Mfd . Condenser	Any point where it does not affect the signal.	$\begin{aligned} & \text { (2nd I.F.) } \\ & \# 1 \$. \# 2 \text { for } \end{aligned}$ maximum output
	455 KC	Grid pin \#7 of 12BES Converter tube.	0.1 Mid . Condenser	Any point where it does not affect the signal.	$\begin{aligned} & \text { (1st I.F.) } \\ & \text { \#3 \& \#4 for } \\ & \text { maximum output } \end{aligned}$
BROADCAST$540-1600 \mathrm{KC}$	1600 KC	External Antenno Terminal on Loop Frame.	200 Mmfd . Condenser	1800 KC	(Oscillator) Trimmer \#5 for moximum output
	1500 KC	External Antenna Terminal on Loop Frame.	200 Mmfd . Condenser	$\begin{aligned} & \text { Tune to } \\ & 1500 \mathrm{KC} \\ & \text { generator } \\ & \text { signal } \end{aligned}$	(R.F.) Trimmer \#ठ for moximum output
	1500 KC	External Antenna Terminal on Loop Frame.	200 Mmfd . Condenser	Tune to 1500 KC generator signal	(Antenna) Trimmer \#7 for maximum output

GAMBLE-SKOGMO PAGE 21-29

OJohn F. Rider
REPLACEMENT PARTS LIST

ELECTRICALSPECIFICATIONS

Power Supply:-105-125 Volts AC, 60 Cycles
Freq. Range:-540-1650 Kilocycles
Intermediate Frequency:-455 Kilocycles
Antenna:-Duron high impedance loop with external antenna terminal
Tuning:-Shock mounted, 2 section gang condenser, direct knob drive
Speaker:-4 inch PM Voice Coil Impedance 3.2 OHM
Power Consumption:-30 Watts
Power Output:-1.6 Watts Max., 10% distortion. 95 Watts
Sensitivity:-Measured with signal radiated by signal generator into receiver loop antenna for 05 W output $400 \mu \mathrm{~V} 600 \mathrm{KC}$; $250 \mu \mathrm{~V} 1000 \mathrm{KC} ; 200 \mu \mathrm{~V} 1500 \mathrm{KC}$
Selectivity:-Bandwidths 2 times down 10 KC ; 10 times down 22 KC ; 100 times down 22 KC ; 1000 times down 76 KC

GENERAL DESCRIPTION

This 5-Tube AC Receiver (including rectifier tube) houses a Telechron Electric Clock Movement which actuates contacts that connect the receiver to the power line at a pre-set time.

The Clock "Radio" Control Knob located at nine o'clock position is a single pole double thrown switch. (A) -Thrown counter clockwise it connects the line to the clock contacter for automatic closing by the clock movement. (B) -In mid-position the receiver is disconnected (Lullaby Time Switch being at O). (C) -Thrown clockwise closes the line to the receiver.

The "Lullaby" Switch Knob located at six o'clock position is a time switch which closes the line to the receiver for the number of minutes its adjustment calls for.

The "Alarm" Control located at three o'clock position when pulled out engages the alarm setting position. When in out position turns on buzzer alarm approximately 10 minutes after radio circuit.

Tuning and volume controls are provided.
An external antenna connection is provided.

TUBECOMPLEMENT

12BE6 Converter

12BA6 I.F. Amplifier
12AT6 Det. AVC-AUDIO

50C5 Power Output

35W4 Rectifier


```
MODELS I5RA38-43-8235A,
15RA38-43-8236A
```


ALIGNMENT PROCEDURE

- Output meter across voice coil (3.2 ohm)
- Align for maximum output. Reduce input as needed
- Volume control at maximum for all adjustments. to keep output near 1.28 volts (0.5 watt).

SIGNAL GENERAI'OR				$\begin{aligned} & \text { TUNER } \\ & \text { SETTING } \end{aligned}$	ADJUST TRIMMERS TO MAXIMUM OUTPUT (in order shown)
Frequercy	Coupling Capacitor	Connections to Receiver	Ground Connection		
455 kc	0.1 mfd .	12BE6 grid	B-	Rotor full open (Plates out of mesh)	Input and output slugs of IF cans
1650 kc	0.1 mfd .	12BE6 grid	B-	Rotor full open (Plates out of mesh)	Oscillator trimmer A2
1500 kc		Radiating Loop		1500 kc	Antenna trimmer A1

REPLACEMENT PARTS LIST

SERVICING OF TELECHRON MOVEMENT

The Telechron movement is warranted under normal use and service against defects in workmanship and material for a period of one year from the date that the timer is sold by Telechron. Telechron agrees to repair or replace without charge any part or parts proved to be defective within the warranty period.

Telechron has established service stations which are prepared to service the movement unit when delivered by itselfthat is when physically removed from the plastic cabinet. These service stations, under no circumstances, will service clocks not removed from cabinets. For information regarding service on Telechron clock movements, see your Service Reference File.
'CAUTION"-See instructions for clock removal below.

FIGURE A

FIGURE B

To take clock movement out of cabinet proceed as follows:

 Remove the following:A-Line cord from power line.

B-Tuning knob, volume control knob, and chassis from cabinet.

C-3 nuts holding clock clamping shield shown in Figure A above.

D-As this shield is sufficiently pulled back unsolder red and blue wires and power cord shown in Figure B above.

E-Before movement can be withdrawn from cabinet, it is necessary to have the lullaby time switch in the full 60 -minute position. With this switch in this position, the clock can be withdrawn by turning the rim clockwise approximately 5 to 10 degrees so that movement parts can pass openings in cabinet.

F-In shipping a movement to a service station, be certain that it is suitably packed to withstand transportation. Care should be taken with the glass crystal so that it is not subject to strain during shipment.

Model 129

SPECIFICATIONS

CABINET:		
Model	129	131
Material	Wood	Wood
Height	$10 \frac{18}{18} \mathrm{in}$.	$311 / 8 \mathrm{in}$.
Width	21 in .	28 in .
Depth	141/4 in.	143/4 in.

ELECTRICAL (INPUT):
Voltage (A-C only) .

OPERATING FREQUENCIES:

Broadcast Band . $540-1600 \mathrm{kc}$
I-F Amplifier . 455 kc

POWER OUTPUT (II7 Volss Line):
Undistorted . 2.2 watts wats
Maximum

LOUDSPEAKER:

Model	129	131
Type	Alnico PM	Alnico PM
Outside Cone Diameter	5.25 inches	12 inches
Voice Coil Impedance at 400 cps	3.2 ohms	3.2 ohms

PHONOGRAPH PICKUP:
Type . 440 ohms
D-C Resistance

TUBE COMPLEMENT:

Converter-Oscillator
I-F Amplifier . Type 12SK7
Detector and Audio Amplifier Type 12SQ7
Output
Type 50L6
Phono Preamplifier . Type 6SC7
Rectifier.
Type 3525
Pilot Lamps.
Mazda No. 47

GENERAL INFORMATION

The Models 129 and 131 are combination radio-phonograph receivers which differ in cabinet. Each employs a 6-tube superheterodyne receiver and a record changer, Model P15. The servicing information given herein is complete except that it does not cover servicing of the record changer. Service data on record changer Model P15 is covered in service notes ER-S-P15.

CAUTION

One side of the power line is connected to $\mathbf{B}-$. Use an isolating transformer when making service adjustments with the chassis removed from the cabinet.

Fig. 1 Dial cord stringing

STAGE GAIN AND VOLTAGE CHECKS

Stage gain measurements may be made with a vacuum tube voltmeter to check circuit performance and to locate stages which are not operating properly. The gain values listed may have a tolerance of 20 per cent. Readings should be taken with the AVC shorted to \mathbf{B} minus.

1. r-f stage gains.

Antenna to 12BE6 Grid. 3.5 at 1000 kc
12BE6 Grid to 12SK7 Grid.............. . 50. at 455 kc

2. AUDIO GAIN.

The power output across the speaker voice coil should be a pproximately $1 / 2$ watt with .95 volts at 400 cps applied between the high side of the volume control (R11) and ground.

3. OSCILLATOR GRID BIAS.

The d-c voltage developed across the oscillator grid leak resistor (R1) averages 4.5 volts at 1000 kc .
4. SOCKET PIN VOLTAGES.

Figure 4 shows typical tube pin voltages. All readings should be made from the pins to \mathbf{B} minus unless otherwise indicated.

ELECTRICAL CIRCUIT ALIGNMENT

EQUIPMENT REQUIRED:

1. Test oscillator with audio tone modulation.
2. A-C out put meter, $11 / 2$ volts full scale.
3. Insulated screwdriver.

ALIGNMENT PROCEDURE:

The Alignment Procedure is given in table form. All i-f alignments may be made with the chassis removed from the cabinet. However, the r-f alignments should be made with the chassis and 100 p mounted in the cabinet, as the relative position of the loop antenna with respect to the chassis materially affects the alignment.

The oscillator trimmer is accessible by tilting the chassis slightly in the cabinet. The antenna trimmer is on the loop and is accessible from the rear of the cabinet. The locations of these trimmers are shown in Figure 3.

The output meter should be connected across the loudspeaker voice coil terminals. The low side of the test oscillator should be connected to \mathbf{B} minus; the high side should be connected as indicated in the Alignment Chart. During the entire alignment procedure, the radio volume control should be in its maximum position. The test oscillator output signal should be attenuated so that the output meter reading never exceeds $11 / 4$ volts.

PAGE 21-2 GENERAL ELECTRIC
MODELS 129, 131

BOTTOM VIEW OF CHASSIS

117 VOLT LINE - VOLUME CONTROL CLOCKWISE-NO SIGNAL INPUT.

Fig. 4. Socket Voltage Diagram
REPLACEMENT PARTS LIST-MODELS 129, 131

[^1]
MODEL 218

MODEL 218

CAUTION

ALWAYS USE AN ISOLATION TRANSFORMER IN THE RECEIVIR POWER LINE, WHEN SERVICING OR ALIGNING THIS RECEIVER, TO PROTECT TEST EQUIPMENT.

SPECIFICATIONS

CABINET

Material
Color
Height
Width
Depth
ELECTRICAL
Voltage
Frequency on AC
Wattage
105-125 V. AC or DC
50 to 60 cps
33 watts
TUNING RANGE
AM
$540-1620 \mathrm{kc}$
FM
88-108 mc
INTERMEDIATE FREQUENCIES
AM. 455 kc
POWER OUTPUT (120 VOLTS LINE)
Undistorted
1.1 watt

Maximum
LOUDSPEAKER
Type
Cone Diameter
Voice Coil Impedance at 400 cps
10.7 mc

TUBE COMPLEMENT

(V1) FM R-F and 1st I-F Amplifier
12 BA 6
(V2) Oscillator and Converter 12 BE 6
(V3) I-F Amplifier
12BA6 12AU6
(V5) FM Discriminator, AM Detector and Audio Amplifier
(V6) Power Output
19 T 8

50B5

ANTENNA

AM
loop antenna
power line antenna or 300 -ohm $\mathbf{F M}$ antenna

GENERAL

Model 218 is a table model receiver providing reception on the AM and FM bands. The receiver is housed in a mahogany colored plastic cabinet.

The receiver has a built-in FM power line antenna; to operate from this antenna it is necessary to connect the brown wire coming out of the cabinet back to the right-hand screw of the antenna terminal strip.

On AM operation, the AM r-f signal is fed directly into the grid of the converter V2 through the 1 st $A M$ i-f transformer T2 into the grid of V3. From V3 the signal is fed to the second : AM i-f transformer T5 and is detected by a diode section of V5 which is pin 6 . The secondary of T1 which is in series with the primary of T2 offers a low impedance to the AM i-f frequency.

V1 (12BA6) in the FM reflex circuit acts both as an r-f and an i-f amplifier. The r-f signal is put into the grid (pin 1) of V1 through the secondary of T1. It is amplified by V1 and put into the grid of V2 the converter through capacitor C7. Choke L3 prevents the r-f signal from getting into the second FM i-f trans-
plastic mahogany $83 / 8$ inches $135 / 8$ inches $67 / 8$ inches
former T3. The 10.7 mc FM i-f is fed from the plate of V2 to the primary of T1 the 1st FM i-f transformer which now puts the FM i-f signal onto the grid of V1. From the plate of V1 the FM i-f signal is fed through choke L3 to the primary of T3 through to the grid of V3. The plate of V3 feeds the FM i-f signal through C50 in the primary of T5 to the 3rd FM i-f tuning coil T4 and through C21 to the grid of the limiter grid pin 1 of V4. The FM i-f signal is detected in T6 discriminator transformer and two diode sections of V5, pins 1 and 2

STAGE GAIN AND VOLTAGE CHECKs

1. R-F AND I-F STAGE GAINS

Signal applied through an IRE dummy antenna:

V2 Grid to V3 Grid	38 at
Dipole Terminals to V1 Grid	1.3 at 98 mc
V1 to V2 Grid	8.0 at 98 mc
V2 to V1 Grid	1.6 at 10.7 mc
V1 to V3 Grid	22 at 10.7 mc
V3 to V4 Grid	26 at 10.7 mc

2. AUDIO GAIN

09 volts at 400 cps across the volume control with the volume control set at maximum should give approximately $1 / 2$ watt out put across the speaker voice coil.

3. OSCILLATOR GRID BIAS

D-c voltage developed across R 6 :
4.8 volts at 1000 kc
2.2 volts at 98 mc

4. SOCKET PIN VOLTAGES

Figure 4 shows typical tube pin voltages.

5. HUM MEASUREMENT

Hum measured across the voice coil of the speaker with the volume control at minimum and the band switch on $A M$ should not exceed 7 millivolts

On FM ground the limiter grid (pin 1 of V4) through a .01 mfd . capacitor and measure the hum across the voice coil terminals with the volume control at maximum. Hum should not exceed 15 millivolts

ALIGNMENT

EQUIPMENT NECESSARY FOR METER ALIGNMENT

1. Signal generator G-E YGS-3, or equivalent.
2. 20,000 ohm-per-volt meter.
3. Output meter.
4. .01 mfd . capacitor
5. Four-turn, six-inch diameter loop of bell wire for AM, r-f and oscillator alignment.
6. Isolation transformer.

NOTES FOR METER ALIGNMENT

1. Connect a 20,000 ohm-per-volt meter from junction of C29 and R18 to chassis. Use a ten-volt scale for steps 3, 4 and 5.
2. Connect a 20,000 ohm-per-volt meter from the grid of the limiter (pin 1 of V4) to cathode of limiter (pins 2 or 7 of V4) in series with a $200,000-\mathrm{ohm}$ resistor. The resistor must be connected directly to the grid pin to minimize capacity loading and to isolate the i - f signal voltage from the meter. Keep signal generator down so that the meter does not indicate more than one volt at the grid (5 microamps through 200,000 ohms).

Fig. 1. Tube and Trimmer Localion
3. Connect a standard output meter across the speaker voice coil. Turn volume control full on. Keep signal generator output low so that output meter indicates not more than $1 / 2$ watt during alignment.
4. Align the AM oscillator trimmer (C13) and the AM r-f trimmer (C9) by coupling the signal to the loop antenna inductively. Connect a four-turn, six-inch diameter loop of bell wire across the signal generator output terminals, and locate the loop about one foot from the radio loop antenna. The position of the loop in respect to the radio loop antenna should not be changed during any one set of adjustments to prevent possible errors in the peak readings.
5. Disconnect the copper strap from the band switch to pin 7 of the 12BE6 to align the 1st FM i-f transformer. Unsolder the strap from the tube pin connection. Resolder the strap after T1 is aligned to 10.7 mc as in step 8 .
6. The AM r-f alignment should be made before the FM r-f alignment. With the gang condenser fully closed, the pointer should point to the dot on the dial scale after the letters "FM" on the left end of the dial scale.
7. The termination impedance of the signal generator should be 300 ohms for $\mathbf{F M}$ r-f alignment.

METER ALIGNMENT CHART

Step	Signal Generator Frequency	Signal Input Point	Band Switch Setting	Dial Setting	Adjust

AM I.F ALIGNMENT

1	455 kc modulated with 400 cps	12 BE 6 grid (pin 7 of V2) thru .01 mfd.	AM	550 kc

FM DISCRIMINATOR AND I.F ALIGNMENT

3	10.7 unmodulated	12BA6 grid (pin 1 of V3) thru 0.1 mfd .	FM	-	Adjust T6 secondary for zero. Apply 1 volt signal input.	1
4	See adjust col.				Detune signal generator to point of maximum meter reading.	
5	Same freq. as in step 4				Adjust T6 primary for maximum meter reading.	
6	10.7 mc unmodulated				Adjust slug of T4 for maximum.	
7		12BA6 grid (pin 1 of V_{1}) thru .01 mfd .			Adjust secondary and primary slugs of T3 for maximum.	2
8		12BE6 grid (pin 7 of V 2) thru .01 mfd . and 4700 ohms. See note 5 .			Adjust secondary and primary slugs of T1 for maximum.	2, 5

METER ALIGNMENT CHART (Cont'd)

| Step | Signal
 Generator
 Frequency | Signal Input
 Point | Band
 Switch
 Setting | Dial
 Setting | Adjust |
| :--- | :---: | :---: | :---: | :---: | :---: |$|$| See |
| :---: |
| Note |

AM R-F ALIGNMENT

9	1500 kc	Inductively			Adjust C13 for maximum.	
10	AM modulated with 400 cps	coupled. See note 4.	AM	1500 kc	Adjust C9 for maximum while rocking dial.	3, 4, 6.

FM R-F ALIGNMENT

11	108 mc un- modulated			
12	Fipole terminals	FM	98mc un- modulated	For max. output
Adjust C11 for maximum while rocking dial.				

EQUIPMENT REQUIRED FOR VISUAL ALIGNMENT

1. General Electric YGS-3 sweep generator or equivalent.
2. General Electric ST-2A oscilloscope or equivalent.
3. $200,000 \mathrm{ohms}, 1 / 2$ watt, resistor.
4. . 01 mfd . paper capacitor.
5. Isolation transformer.

NOTES FOR VISUAL AUGNMENT

1. Connect the vertical plates of the scope across R11 in the grid circuit of V4 (steps 3, 4, 5, 11 and 12).
2. Connect the vertical plates of the scope between the junction of R18 and C29 and chassis (FM audio) (steps 6, 7, 8).
3. Connect the vertical plates of the scope between the junction of R14 and C27 and chassis (steps 1, 2, 9, 10).
4. In some cases tuning of the converter grid will cause "pulling in' of the oscillator and will change the oscillator frequency.

If peaking C9 or C11 as in steps 10 or 12 causes the curve to move off the screen, it is necessary to recalibrate the oscillator as in steps 9 or 11 .
5. The termination impedance of the signal generator should be 300 ohms to properly match the $\mathbf{F M}$ input impedance of this receiver (steps 11 and 12)
6. To align the 1 st i-f transformer T1 (step 5), it is necessary to disconnect the copper strap from pin 7 of V2, the 12BE6. After alignment of T1, resolder the copper strap to pin 7 of the 12BE6.
7. To position the dial pointer, close the gang condenser. The pointer should be set to the dot on the dial scale after the letters $F M$ on the left end of the dial scale.
8. For alignment of the $\mathbf{A M}$ oscillator and r-f trimmers (steps 9 and 10), the signal should be inductively coupled to the loop antenna by connecting a four-turn, six-inch diameter loop of bell to the signal generator terminals. Locate this loop about one foot from the radio loop antenna. To prevent possible errors in peak readings, the position of the loop with respect to the radio loop antenna should not be changed during any one set of adjustments.

VISUAL ALIGNMENT CHART

Step	Sweep Generator Frequency	Signal Input Point	Band Switch Setting	Dial Setting	Adjust	See Note
AM I-F VISUAL ALIGNMENT						
1	$\begin{aligned} & 455 \mathrm{KC} \\ & \pm 20 \mathrm{KC} \end{aligned}$ at 60 cps sweep rate	12BE6 grid (pin 7 of V2) thru .01 mfd .	AM	-	Two slugs of T5 for maximum amplitude and minimum distortion of curve.	3
2					Two slugs of T2 for maximum amplitude and minimum distortion of curve.	
FM I-F AND DISCRIMINATOR VISUAL ALIGNMENT						
3	$\begin{aligned} & 10.7 \mathrm{MC} \\ & \pm 300 \mathrm{KC} \\ & \text { at } 60 \mathrm{cps} \\ & \text { sweep rate } \end{aligned}$	12BA6 grid (pin 1 of V1) thru .01 mfd .	FM	-	Tuning slugs of T4 for maximum amplitude of curve, Fig. 2A.	1
4					Tuning slugs of T3 for maximum amplitude of curve. Fig. 2A.	
5		12BE6 grid (pin 1 of V2). See note 7 .			Tuning slugs of T1 for maximum amplitude of curve. Fig. 2A.	1,6
6		12BA6 grid (pin 1 of V3)			Primary of T6 for maximum amplitude of positive and negative peaks of output curve. Fig. 2B.	2
7					Secondary of T6 for vertical symmetry with respect to the mid-point horizontal trace. See Fig. 2B	
8					Primary of T6 for straightest line between positive and negative peaks of output curve. See Fig. 2B.	

VISUAL ALIGNMENT CHART (Cont.)

Step	Sweep Generator Frequency	Signal Input Point	Band Switch Setting	Dial Setting	Adjust	See Note

AM R-F VISUAL ALIGNMENT

9	1500 KC AM modu- lated with 60 cps	Inductively coupled. See note 8.	AM	1500 KC. See note.	C13 for steepest slope of straight-line trace on scope.
1500 KC $\pm 20 \mathrm{KC}$ at 60 cps sweep rate	3,	For maximum amplitude of curve.	C9 for maximum amplitude and minimum distortion.	3, 4, $7,8$.	

fM R-F Visual Alignment

11	108 MC AM modulated with 60 cps	Dipole terminals.	FM	108 MC	C18 for steepest slope of straight-line trace on scope.	$\begin{aligned} & 1,4, \\ & 5,7 \end{aligned}$
12	$\begin{aligned} & 98 \mathrm{MC} \\ & \pm 300 \mathrm{KC} \\ & \text { at } 60 \mathrm{cps} \\ & \text { rate } \end{aligned}$	See note 5 .		For maximum output.	C11 for maximum amplitude and minimum distortion of curve.	$1,4,$

Fig. 2. I-F and Diserlminator Curves

Fig. 3. Dial Stringing Diagram

ALL VOLTAGES ARE + DC
UNLESS OTHERWISE SPECIFIED ALL VOLTAGES TO CHASSIS
BAND SWITCH IN A.M POSITION
VOLUME MINIMUM

BACK BOTTOM VIEW OF CHASSIS

VOLTAGES MEASURED WITH
D.C. VOLTAGES WITH 20,000 OHMS PER VOLT METER A.C. VOLTAGES WITH H;OOO OHMS PER VOLT METER

Fig. 4. Sockel Voltage Diagram

MODEL 218

REPLACEMENT PARTS LIST

| Cat. No. | Symbol | Deacription | Cat. No. | Symbol | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

universal replacement parts

specialized replacement parts

*USED ON PREVIOUS RECEIVERS

MODEL 218,

"H" Version

MODEL 218 "'H"' VERSION

CAUTION

ALWAYS USE AN ISOLATION TRANSFORMER IN THE RECEIVER POWER LINE, WHEN SERVICING OR ALIGNING THIS RECEIVER, TO PROTECT TEST EQUIPMENT.

SPECIFICATIONS

CAbinet	
Material	plastic
Color	mahogany
Height	$83 / 8$ inches
Width	135/8 inches
Depth	$67 / 8$ inches
ELECTRICAL	
Voltage	105.125 v. AC or DC
Frequency on AC	50 to 60 cps
Wattage .	33 watts
TUNING RANGE	
AM	540.1620 kc
FM	$88-108 \mathrm{mc}$
INTER MEDIATE FREQUENCIES	
AM	455 kc
FM	10.7 mc
POWER OUTPUT (120 VOLTS LINE)	
Undistorted	1.1 watts
Maximum	1.8 watts
LOUDSPEAKER	
Type	permanent magnet
Cone Diameter	51/4 inches
Voice Coil Impedance at 400 cps	3.2 ohms
TUBE COMPLEMENT	
(V1) FM R-F and 1st I-F Amplifier	12 BA 6
(V2) Oscillator and Converter...	12 BE 6
(V3) I-F Amplifier	12 BA 6
(V4) Limiter	12AU6
(V5) FM Discriminator, AM Detect	and Audio Amplifier
	19 T 8
(V6) Power Output	. 50 B 5

ANTENNA

AM
loop antenna
FM
power line antenna or $\mathbf{3 0 0}$ ohm FM antenna

GENERAL

Model 218 " H " version is a table model receiver providing reception on the AM and FM bands. It is housed in a mahogany colored plastic cabinet.

It is the same as the Model 218 except that the local oscillator is designed to operate on the high side of the incoming signal on FM reception. This change reduces the possibility of local cillator radiation interfering with television reception.
The receiver has a built-in FM power line antenna; to operate from this antenna it is necessary to connect the brown wire coming out of the cabinet back to the right-hand screw of the antenna terminal strip.
On AM operation, the AM r-f signal is fed directly into the grid of the converter $V 2$ through the 1 st $A M$ i-f transformer T2 into the grid of V3. From V3 the signal is fed to the second AM i-f transformer T5 and is detected by a diode section of V5 which is pin 6 . The secondary of T1 which is in series with the primary of T2 offers a low impedance to the AM i-f frequency. V1 (12BA6) in the FM reflex circuit acts both as an r-f and an i-f amplifier. The $r-f$ signal is put into the grid (pin 1) of $V 1$ through the secondary of T1. It is amplified by V1 and put into the grid of V2 the converter through capacitor C7. Choke L3 prevents the r-f signal from getting into the second FM i-f transformer T3. The 10.7 mc FM i-f is fed from the plate of V2 to the primary of Tl the lst FM i-f transformer which now puts the FM i-f signal onto the grid of V1. From the plate of V1 the FM i-f signal is fed through choke L3 to the primary of T3 through to the grid of V3. The plate of V3 feeds the FM if signal through C 50 in the primary of T5 to the 3 rd FM i-f tuning coil T4 and through C21 to the grid of the limiter grid pin 1 of $V+$. The $F M$ i-f signal is detected in T6 discriminator transformer and two diode sections of V5, pins 1 and 2.

ALIGNMENT

For the Model 218 receivers " H " version, the alignment remains the same as that outlined for Model 218 in service notes ER-S-218. However, the calibration will change in the " H " version receiver which necessitates the use of a new back plate, Stock No. RDS-093.

REPLACEMENT PARTS

All parts for the Model 218 "H" version are identical to those listed in Service Notes ER.S-218 except for those parts listed listed
below.

MODELS 400, 411

SPECIFICATIONS						
CABINET	Model	400	411	401		
	Material	Brown	Maroon	Ivory		
	Height		$6{ }^{1 / 8}$ in.			
	Width		$21 / 2 \mathrm{in}$.			
	Depth		$71 / 4 \text { in. }$			
ELECTRICAL						
RATING						
OPERATING FREQUENCIES	Standard Broadcast I-F Amplifier		540-1600 kc			
				455 kc		
POWER OUTPUT	Undistorted Maximum		$\begin{aligned} & 1 \text { watt } \\ & 1.75 \text { watts } \end{aligned}$			
LOUDSPEAKER	Type Alnico V PM Outside Cone Diameter 4 inches Voice Coil Impedance at 400 Cycles. . 3.2 ohms					
TUBE COMPLEMENT						

GENERAL INFORMATION

The Models 400, 401 and 411 are five-tube a-c or d-c superheterodyne AM standard broadcast receivers equipped with an efficient built-in antenna loop and incorporating automatic volume control, a permanent magnet speaker, and beam power output.

ELECTRICAL CIRCUIT ALIGNMENT

EQUIPMENT REQUIRED

1. Test oscillator, tone amplitude-modulated.
2. A-C output meter, $11 / 2$ volts full scale.
3. .05 mfd ., paper capacitor.
4. Insulated screwdriver,
5. Coupling loop for test oscillator (see text).
6. Isolation power transformer.

ALIGNMENT PROCEDURE

The alignment steps are given in the table form of the Alignment Chart. Adjustment trimmers are shown in the illustration of Fig. 2.

1. The chassis is removed from the cabinet with the antenna loop and back attached and the speaker leads reconnected.
2. An isolation transformer should be used for the receiver power source when aligning or servicing, AC-DC receivers, to prevent short circuiting of equipment and shock hazard.
3. The output meter is connected across the terminals of the loudspeaker voice coil.
4. The receiver volume control should be turned to maximum and test oscillator signal output attenuated during alignment to develop not more than $1 \frac{1}{4}$ volts output meter reading at the loudspeaker.
5. For i-f alignment, the high side of the signal generator output cable should be connected through a .05 mfd . paper ca-
pacitor to the points indicated in the Alignment Chart. The low side of the output cable is connected to the receiver chassis.
6. To align the oscillator and r-f trimmers, the signal generator output is inductively coupled to the radio loop, L1, by connecting a four-turn, six-inch diameter loop of bell wire across its output terminals and then locating the loop about one foot from the radio loop antenna. To prevent possbile errors in comparative peak readings, the position of signal generator loop with respect to the radio loop antenna should not be changed during measurement.

ALIGNMENT CHART

Step	Connect Test Oscillator to:	Test Osc. Setting	Radio Dial Setling	Adjust Trimmers For Maximum
I-F ALIGNMENT				
1	V2, 12BA6 grid (Pin 1), in series with 05 mfd.	455 KC		C 9 and $\mathrm{C8}$ of second i-f transformer, T3
2	V1, 12SA7 grid (Pin 8), in series with .05 mfd .	455 KC		C6 and C5 of first i-ftransformer, T2
3	V1, 12SA7 grid (Pin 8), in series with .05 mfd .	455 KC		Recheck adjust. ment of C9, C8, C6, C5, for maximum
R-F ALIGNMENT				
4	Inductively coupled to radio loop	1620 KC	Minimum capacity C2A, C2B	C3, oscillator trimmer
5	Inductively coupled to radio loop	1500 KC	1500 KC	C1, r-f trimmer

STAGE GAINS AND VOLTAGE CHECKS

Stage gain measurements by vacuum tube voltmeter or similar measuring device may be used to check circuit performance and isolate trouble. The gain values listed may have tolerances of 20 per cent. Readings are taken with low signal input so that AVC is not effective.

1. I-F GAIN

12SA7 Grid to 12BA6 Grid
50 @ 455 KC
12BA6 Grid to 12SQ7 Diode Plate
$50 @ 455 \mathrm{KC}$

2. AUDIO GAIN

Input of 0.15 volts at 400 cycles across volume control (R4) with control set at maximum will develop approximately $1 / 2$ watt output across the speaker voice coil terminals.

3. OSCILLATOR GRID BIAS

D-C voltage developed across the oscillator grid leak (R1) averages 8.5 volts at 1000 kc .

4. TUBE SOCKET PIN VOLTAGES

Fig. 3 shows voltages from tube pins to $\mathbf{B}-$. Voltage readings differing greatly from those specified may help localize defective components.

GENERAL ELECTRIC PAGE 21-13

© John F. Rider

PAGE 21-14 GENERAL ELECTRIC

Fig. 2. Tube and Trimmer Location

VIEWED FROM BOTTOM OF CHASSIS
Fig. 3. Socket Voltages

Fig. 4. Dial Stringing Diagram

SPECIFICATIONS

CABINET	
ELECTRICAL RATING	
OPERATING FREQUENCIES	Standard Broadcast $540-1600 \mathrm{kc}$ I-F Amplifier 455 kc
POWER OUTPUT	Undistorted 1 watt Maximum
LOUDSPEAKER	Type $\quad . \quad$ Alnico V PM Outside Cone Diameter $\quad 51 / 2$ inches Voice Coil Impedance at 400 Cycles 3.2 ohms
TUBE COMPLEMENT	

GENERAL INFORMATION

The Model 402 is a four-tube (plus rectifier tube) a-c or d-c superheterodyne AM standard broadcast receiver equipped with an efficient built-in antenna loop and incorporating automatic volume control, an oversize permanent magnet speaker, and beam power output.

ELECTRICAL CIRCUIT ALIGNMENT

EQUIPMENT REQUIRED

1. Test oscillator, tone amplitude-modulated.
2. A-C output meter, $11 / 2$ volts full scale.
3. .05 mfd ., paper capacitor.
4. Insulated screwdriver.
5. Coupling loop for test oscillator (see text).
6. Isolation power transformer.

allgnment procedure

The alignment steps are given in the table form of the Alignment Chart. Adjustment trimmers are shown in the illustration of Fig. 3.

1. The chassis is removed from the cabinet with the antenna loop and back attached and the speaker leads reconnected.
2. An isolation transformer should be used for the receiver power source when aligning or servicing AC-DC receivers, to prevent short circuiting of equipment and shock hazard.
3. The output meter is connected across the terminals of the loudspeaker voice coil.
4. The receiver volume control should be turned to maximum and test oscillator signal output attenuated during alignment to develop not more than $1 \frac{1}{4}$ volts output meter reading at the loudspeaker.
5. For i-f alignment, the high side of the signal generator output cable should be connected through a .05 mfd . paper capacitor to the points indicated in the Alignment Chart. The low side of the output cable is connected to the receiver chassis.
6. To align the oscillator and r-f trimmers, the signal generator output is inductively coupled to the radio loop, L1, by connecting a four-turn, six-inch diameter loop of bell wire across its output terminals and then locating the loop about one foot from the radio loop antenna. To prevent possible errors in comparative peak readings, the position of signal generator loop with respect to the radio loop antenna should not be changed during measurement.

ALIGNMENT CHART

Step	Connect Test Oscillator to:	Test Osc. Setting	Radio Dial Setting	Adjust Trimmers For Maximum

I-F ALIGNMENT				
1	V2, 12BA6 grid (Pin 1), in series with .05 mfd .	455 KC		C 9 and C 8 of second i-f transformer, T3
2	V1, 12SA7 grid (Pin 8) in series with .05 mfd .	455 KC	C6 and C5 of first i-f transformer, T2
3	V1, 12SA7 grid (Pin 8), in series with .05 mfd .	455 KC		Recheck adjustment of C9, C8, C6, C5, for maximum

4	Inductively coupled to radio loop	1620 KC	Minimum capacity C2A, C2B	C3, oscillator trimmer
5	Inductively coupled to radio loop	1500 KC	1500 KC	C 1, r-f trimmer

STAGE GAINS AND VOLTAGE CHECKS

Stage gain measurements by vacuum tube voltmeter or similar measuring device may be used to check circuit performance and isolate trouble. The gain values listed may have tolerances of 20 per cent. Readings are taken with low signal input so that AVC is not effective.

1. I-F GAIN

12SA7 Grid to 12BA6 Grid 50 @ 455 KC
12BA6 Grid to 12 SQ 7 Diode Plate
50 @ 455 KC

2. AUDIO GAIN

Input of 0.15 volts at 400 cycles across volume control (R4) with control set at maximum will develop approximately $1 / 2$ watt output across the speaker voice coil terminals.

3. OSCILLATOR GRID BIAS

DC voltage developed across the oscillator grid leak (R1) averages 8.5 volts at 1000 kc .

4. TUBE SOCKET PIN VOLTAGES

Fig. 5 shows voltages from tube pins to $\mathbf{B}-$. Voltage readings differing greatly from those specified may help localize defective components.

CAPACITORS C10, 11, 12, AND C13

UNIT K67J836
Some production receivers use a four-section ceramic unit incorporating capacitors C10, 11, 12 and C13. The ceramic unit, RCW-3013, is illustrated in Fig. 2 for lead identification to capacitor sections and chassis circuit wiring. Other receivers may be found to have individual component capacitors in place of the four-section ceramic unit.

REPLACEMENT

If in a circuit analysis the ceramic unit is found to be defective; the entire unit may be replaced by the identical part RCW-3013 or, the defective section may be located and disconnected from the receiver circuit and the equivalent single components used in its place. The alternate capacitors are listed in the parts section as follows: UCC-036, C11, UCC-039, C13; and UCU-1036, C10 or Cl2.

Fig. 2. Capacitor RCW-3013 (K67J836)

Fig. 4. Dial Stringing Diagram

MODEL 402 PRELIMINARY REPLACEMENT PARTS LIST

*Used on previous Models.

BOTTOM VIEW OF CHASSIS

Fig. 5. Socket Voltages

MODEL 404
MODEL 405 SPECIFICATIONS

CABINET:	Model	404	405	410
	Composition	Brown, plastic	Ivory, plastic	Wood, mah.
	Height Width Length			
POWER SUPPLY:	Frequency 50-60 cycles or DC Voltage . 30 watts			
OPERATING FREQUENCIES:	Broadcast Band IF Amplifier		54	$\begin{gathered} 540-1600 \mathrm{KC} \\ \ldots .455 \mathrm{KC} \end{gathered}$
POWER OUTPUT:	Undistorted. 1.75 wattsMaximum			
LOUDSPEAKER:				
TUBE COMPLEMENT:	Symbol	Purpose		Type
	V1	RF Amplifier Oscillator Converter IF Amplifier		12SK7
	V2			12 SA 7
	V3 V4			12BA6
	V4	Amplifier		12SQ7
	V5	Rectifier		3525
	V6	Audio Power Amplifier		35L6GT
	11	Pilot Lam		GE Mazda
				No. 47

STAGE GAINS AND VOLTAGE CHECKS

Stage gain measurements by vacuum tube voltmeter or similar measuring device may be used to check circuit performance and isolate trouble. The gain values listed may have tolerances of ± 20 per cent. Readings are taken with low signal input so that AYC is not effective.

1. I-F Gain
$\begin{array}{ll}\text { 12SA7 Grid to 12BA6 Grid } & 50 \text { (1) } 455 \mathrm{KC} \\ \text { 12BA6 Grid to } 12 \mathrm{SQ} 7 \text { Diode Plate } & 50 \text { @ } 455 \mathrm{KC}\end{array}$

2. Audio Gain

Input of 0.15 volts at 400 cycles across volume control (R6) with control set at maximum will develop approximately $1 / 2$ watt output across the speaker voice coil terminals.

3. Oscillator Grid Bias

D-C voltage developed across the oscillator grid leak (R4) averages 8.5 volts at 1000 kc .

4. Tube Socket Pin Voltages

Fig. 3 shows voltages from tube pins to B-, Voltage readings differing greatly from those specified may help localize defective components.

RCW-3036, Bull Plate K71J736

The lead connections for the three-section ceramic capacitor unit containing C11, C12 and C13 are identified from the illustration of Fig. 4.

Replacement

The three-section unit is cataloged RCW-3036 in the parts list for direct replacement. However, any single section may be replaced by one of the single unit capacitors cataloged for the respective capacitor symbol. These items are: UCC-037, C11; UCC-039, C13; and UCU-1036, C12.

MODEL 410 ELECTRICAL CIRCUIT ALIGNMENT

Equipment required:

1. Test oscillator with tone modulation
2. AC voltmeter, $11 / 2$ volts full scale.
3. Paper capacitor, 0.05 mf .
4. Insulated screwdriver.
5. Coupling loop for test oscillator (see text).
6. Isolation transformer.

Alignment Procedure

The alignment steps are given in table form of the Alignment Chart. Adjustment trimmers are shown in the illustration of Fig. 5.

1. The chassis is removed from the cabinet with the antenna loop and back attached and the speaker leads reconnected.
2. An isolation transformer should be used for the receiver power source when aligning or servicing $A C-D C$ receivers to prevent short circuiting of equipment and shock hazard.
3. The output meter is connected across the terminals of the loudspeaker voice coil.
4. The receiver volume control should be turned to maximum and test oscillator signal output attenuated during alignment to develop not more than $1 / 4$ volts output meter reading at the loudspeaker.
5. For i-f alignment, the high side of the signal generator output cable should be connected through a .05 mfd . paper capacitor to the points indicated in the Alignment Chart. The low side of the output cable is connected to the receiver chassis.
6. To align the oscillator and r-f trimmers, the signal generator output is inductively coupled to the radio loop, L1, by connecting a four-turn, six-inch diameter loop of bell wire across its output terminals and then locating the loop about one foot from the radio loop antenna. To prevent possible errors in comparative peak readings, the position of signal generator loop with respect to the radio loop antenna should not be changed during measurement.

ALIGNMENT CHART

Step	Connect Test Oscillator to:	Test Osc. Setting	Radio Dial Setting	Adjust Trimmers for Maximum

I-F ALIGNMENT

1	V3, 12BA6 grid (Pin 1), in series with 0.5 mfd.		
2		$\ldots .$.	C9 and C8 of sec ond i-f transformer T3.
V2, 12SA7 grid (Pin 8), in series with .05 mfd.	455 KC		C7 and C6 of first i-f transformer, T2

R-F ALIGNMENT

| 4 | 1620 KC | Minimum
 capacity
 Inductively
 coupled to radio
 loop. | C3, oscillator
 (rimmer |
| :--- | :--- | :--- | :--- | :--- |
| 5 | 1500 KC | Tune
 for
 Maximum | C1, r-f trimmer
 C 2, ant. trimmer |

[^2]

Fig. 5. Tube and Trimmer Localion

MODELS 404, 405 AND 410 REPLACEMENT PARTS LIST

UNIVERSAL REPLACEMENT PARTS

UCC-037	C11	CAPACITOR-. 003 mf. . 600 v .. paper (alternate replacement for RCW-3036)
UCC-039	C13	CAPACITOR-. 005 mf ., 600 v ., paper
UCC-041	C14, C21	
UCC-045	C16, C17, C18. \qquad	CAPACITOR-. $05 \mathrm{mf}$. , 600 v ., paper
UCU-020	C5	CAPACITOR-47 mmf., mica
UCU-028	C4	CAPACITOR- $100 \mathrm{mmf}$. , mica
UCU-1036	C10, C12	CAPACITOR - $220 \mathrm{mmf}$. mica (alter nate replacement for RCW-3036)
URD-009	R12	RESISTOR- 22 ohms, $1 / 2 \mathrm{w}$., carbon
URD-021	R14	RESISTOR- 68 ohms, 1/2 w., carbon
URD-025	R1	RESISTOR-100 ohms, 1/2 w., carbon
URD-029	R10	RESISTOR-150 ohms, 1/2 w., carbon
URD-057	R2	RESISTOR--2.2 K ohms, $1 / 2 \mathrm{w}$., carbon
URD-081	R4	RESISTOR-22.000 ohms, 1/2 w., carbon
URD-113	R8, R13	RESISTOR-470,000 ohms, $1 / 2 \mathrm{w}$., car bon
URD-121	R9	RESISTOR-1 meg., $1 / 2 \mathrm{w}$., carbon
URD-129	R5	RESISTOR - 2.2 meg., $1 / 2 \mathrm{w}$., carbon
URD-137	R7	RESISTOR- 4.7 meg., $1 / 2 / 2$ w., carbon
URF-049	R11	RESISTOR-1000 ohms. 2 w., carbon

SPECIALIZED REPLACEMENT PARTS
RAB-142 L1 \mid CABINET BACK-With antenna loop, RAB-143 L1 $\quad \begin{aligned} & \text { Models 404, \& } \\ & \text { CABINET BACK- }\end{aligned}$
RAV- 128
RAU-345
RAU-346
RCE-050
RCN-039
RCN-039
RCW-3036

	0 3 3 0

M
CAB
CAB
wit
40
CAB
di
CAP
1
CA
CA
CA
t
CA ABINET-Wood cabinet, Model 410 with dial -Brown cabinet (plastic) with dial scaie \& knob bezels, for Model 404
$C A B I N$
dial scale \& I vory cabinet (plastic) with
dial scale \& knob bezels, 405
CAPACITOR - 50 mf, . $150 \mathrm{v} ., 50 \mathrm{mf}$.,
150 v . dry electrolytic
150 v. dry electrolytic
CAPACITOR-2 mmf., mica
trimmers
APACITOR-. 0035 mf ., 220 mmf ., .005 mf ., three section, ceramic (see
UCC-037, UCC-039, UCU. 1036)

R
R
R

CORD-Bulk dial cord
RDK-181
KNOB-Model 404
KNOB-Knob and Bezel assembly.
Model 410

	SPECIALIZED	D REPLACEMENT PARTS (CONT'D)
RDK-229		KNOB—Model 405 MASK-Cardboard mask POINTER-Dial scale pointer Models 404, 405
RDM-024		
RDP-055		
RDP-057		POINTER-Dial scale pointer Model 410
DS- 100		DIAL SCALE, Models 404 \& 405 DIAL SCALE, Model 410
RDS-101		
RHC-017		CLIP-Mounting clip for oscillator coil
RHC-037		CLIP-for dial drum CLIP-for RF coil
RHC-038		
RHG-006		GROMMET On tuning shaft GROMMET-Cushion mounting for tuning capacitor
RHG-018		
RHG-032 RHH-004		GROMMET-Speaker lead ins. SNAP FASTENER-Holds loop back to cabinet
RHJ-007		SPACER-Spacer bushing for mounting tuning capacitor
RHS-061		SCREW-for loop back mounting SCREW-for chassis mounting SCREW-for tuning capacitor mounting
RHS-062		
RHS-063		
RJC-004		CONNECTOR-Antenna loop lead connecting clip
RJS-003		SOCKET-Tube socketSOCKET-Tube socket for $12 \mathrm{BA6}$
RJS-141		
RJS 151		$\underset{\text { socket }}{\text { SOCKET ASSEMBLY-Pilot light }}$
RLC-105	L2	COIL-Oscillator coil
RLI-125		COIL-R-F coil
RMS. 18		SPRING Dial cord tension spring
RMW-070		
RMX-174		SHAFT AND BUSHING-Tuning shaft and mounting bushing. Models 404 405
RMX-175		DRIVE SHAFT AND BUSHING AS SEMBLY, for Model 410
ROP-020		SPEAKER-PM speaker, Models 404 and 405
RRC-149	R6, S1	POTENTIOMETER-500,000 ohms: volume control and switch S1, Models 404 and 405
RRC-150		POTENTIOMETER- 0.5 megohm volume control and switch, Model 410
RTL-115	T ${ }^{2}$	TRANSFORMER-First i-f transformer
RTL-116	T3	TRANSFORMER-Second i-f trans-
RTO-083	T1	TRANSFORMER-Audio output transformer
RWL-009		POWER CORD-A-c power cord and plug

CAUTION

ALWAYS USE AN ISOLATION TRANSFORMER IN THE RECEIVER POWER LINE WHEN SERVICING OR ALIGNING THIS RECEIVER TO PROTECT TEST EQUIPMENT.

SPECIFICATIONS

SPECIFICATIONS	
Material	plastic
Color	mahogany
Height	$8 \frac{1}{16}$ inches
Width	$131 / 2$ inches
Depth	. $7 \frac{9}{32}$ inches
ELECTRICAL	
Voltage	105-125 AC or DC
Frequency on AC	50 to 60 cps
Wattage...	. 40 watts
TUNING RANGE	
AM	$540-1620 \mathrm{kc}$
FM	88-108 mc
INTERMEDIATE FREQUENCIES	
AM	455 kc
FM	10.7 mc
POWER OUTPUT	
Undistorted	1.0 watts
LOUDSPEAKER	
Type	
Size	$51 / 4$ inches
Voice Coil Impedance at 410 cps	3.2 ohms
ANTENNA	
AM	built-in loop
FM . power line ant	ana or 300 FM ant.

GENERAL

Model 408 is a table model receiver providing reception on
 The receiver is housed in a mahogany colored plastic cabinet.

The receiver has a built-in FM power-line antenna. To operate the receiver from the built-in FM power cord antenna it is necessary to connect the power-line antenna wire to FM antenna terminal which is connected to pin 1 of V2 through C3.

Note: To remove the dial scale it is necessary to remove the escutcheon to gain access to the dial scale mounting screws. Remove the escutcheon by pushing forward on the escutcheon mounting studs from inside of the cabinet.

VOLTAGE CHECKS

1. AM STAGE GAIN MEASUREMENTS AT 455 KC .

Grid (Pin 1) of V3 to Grid (Pin 1 of V4)
Grid (Pin 1) of V4 to Pin 6 of V6
2. FM SENSITIVITY MEASUREMENTS.

The following voltages are required at the point of input designated to produce one volt d-c from the limiter grid (pin 1 of V5) to chassis. Measure with a VTVM or a 20,000 ohm per volt meter in series with a 200,000 ohm resistor. Connect the $200,000 \mathrm{ohm}$ resistor directly to the grid of V5. Use the microamp scale of meter to measure 5 microamps d-c through $200,000 \mathrm{ohms}$ (1 volt d-c). Use a $10,000 \mathrm{ohm}$ resistor connected directly to the grid (pin 1) of VS to isolate the VTVM.

FM-IF.
Couple the input signal to the point of input through a 3300 ohm resistor and a 1000 mmfd . capacitor in series. Make chassis connections short and as close to the point of input as possible V4 Grid (Pin 1) for One Volt at

45,000 microvolts at 10.7 mc
V3 Grid (Pin 1) for One Volt at
Pin 1 of V5
V1 Cathode (Pin 8) for One Volt at
Pin 1 of V5
*V1 Grid (Pin 7) for One Volt at
Pin 1 of V5
1000 microvolts at 10.7 mc
30,000 microvolts at 10.7 mc
*Note: It is necessary to discon 100 microvolts at 10.7 mc pin 7 of $V 1$ the copper strap from pin Cl at the gang end when coupling into the converter grid.
FM-RF.
Couple the input signal into the antenna terminals.
The signal generator should be properly terminated in 300 ohms to match the input impedance of this receiver. This may be done by adding a resistor in the high side of the generator output so that the sum of the generator output impedance and the resistor totals 300 ohms. Connect high side of generator to antenna terminal which is connected to Pin 1 of V2 by C3.

Disconnect power cord antenna from the antenna terminal 25 microvolts at 88 mc for 1 volt d-c at pin 1 of V5.
3. AUDIO GAIN
.1 Volt at 400 cps applied across the volume control with volume control set at maximum should give approximately $1 / 2$ watt output.
4. OSCILLATOR GRID BIAS

D-c voltage developed across R 28 should be approximately 8 volts at 1000 kc , and approximately 3 volts at 98 mc measured with a vacuum tube voltmeter.

5. HUM MEASUREMENT

Hum measured across the voice coil of the speaker, with the volume control set at minimum and the band switch set on AM should not exceed 7 millivolts.
Turn the band switch to FM and connect the limiter grid (Pin 1 of V5) to chassis through .01 mfd . Set the volume control at maximum. The hum should not exceed 15 millivolts.

ALIGNMENT

EQUIPMENT REQUIRED FOR METER ALIGNMENT

1. General Electric YGS-3 or equivalent signal generator
2. 20,000 ohm per voltmeter or vacuum tube voltmeter.
3. One $200,000 \mathrm{ohm} \frac{1}{2}$ watt resistor.
4. Output meter
5. Loop for coupling AM r-f signal to radio loop.
6. One $3,300 \mathrm{ohm} 1 / 2$ watt resistor.
7. One 1000 mmfd mica capacitor.

meter alignment notes

1. Connect a 20,000 ohm-per-volt meter across the volume control. Use the ten volt d-c scale.
2. Connect a $20,000 \mathrm{ohm}$ per volt meter from the grid (pin 1 of V5) to the chassis in series with a $200,000 \mathrm{ohm}$ resistor. The resistor must be connected directly to the grid pin to minimize capacity loading and to isolate the i-f signal from the meter. Keep the signal generator output low so that the meter does not indicate more than one volt d-c at the grid (pin 1) of V5 (5 microamps through $200,000 \mathrm{ohms}$). (Use microamp scale of meter.)

A vacuum tube voltmeter may be used to measure the one volt d-c at the grid of V5

Fig. 1. Tube and Trimmer Location
3. Connect an output meter across the speaker voice coil. Turn the volume control full on. Keep the signal generator output low so that the output meter does not indicate more than $1 / 2$ watt output.
${ }_{4}^{2}$ Align the AM oscillator (C16) and the r-f trimmer (C9) by coupling the signal to the loop antenna inductively. Connect a four-turn, six-inch diameter loop of wire across the signal generator output terminals and locate the loop about one foot from the radio loop antenna. The position of the loop should not be changed during alignment to prevent possible errors in peak readings.
5. Calibration polnts are stamped on the back side of the
tuning drum of Cl . Set the wire indicator to the zero mark with Cl at maximum capacity (gang fully closed).
6. The pointer must be indexed to the vertical mark on the cabinet when the 98 mark on the back side of the tuning drum is opposite the wire indicator.
7. The termination impedance of the signal generator should be 300 ohms for FM r-f alignment. The generator impedance should be low for step 10 alignment. For steps 5, 6, 7, 8 and 9 couple the high side of the signal generator to the signal input point through a 1000 mmf capacitor in series with a $3300 \mathrm{ohm} 1 / 2$ watt carbon resistor. Make chassis connections for FM i-f alignment as short as possible and near to the input point.

METER ALIGNMENT CHART

Step No.	Signal Generator Frequency	Signal Input Point	Band Switch Setting	Dial Setting	Adjust	See Note

AM I.F ALIGNMENT

| $\frac{1}{2}$ | 455 kc AM modu-
 lated | Pin 1 of V4 chassis.
 Pin 1 of V3 and
 chassis | AM | T5 for max.
 T2 for max. |
| :--- | :--- | :--- | :--- | :--- | :--- |

RF I.F ALIGNMENT

3	1620 kc AM mod.	Inductively coupled. See note 4.	AM	Gang C1 fully open Tune for max. out- put	C16 for max. C9 for max. while rocking gang C1

FM DISCRIMINATOR AND I-F ALIGNMENT

5	10.7 mc unmodulated Detune signal generator for max. reading	Pin 1 of, V4 and chassis	FM	-	Core of T4 for max.	2,7
6					Secondary of T6 for zero.	1,7
7					Primary of T6 for max.	
8	10.7 mc unmodu- lated				Core of T4 for max.	2,7
9		Pin 1 of V3 and chassis.			Cores of T3 for max.	
10		Pin 8 of V1 and chassis.			Cores of T1 for max.	

FM R-F ALIGNMENT

11	88 mc unmodulated	FM antenna terminals.	FM	At 88 on drum	Core of L6 for max.	2,5,6,7
12	108 mc unmodulated			At 108 on drum	C39 for max.	
13				Rock in C1 for max.	C18 for max.	

EQUIPMENT REQUIRED FOR VISUAL AUGNMENT

1. General Electric YGS-3 or equivalent sweep generator.
2. General Electric ST2A scope or equivalent and chassis.
3. One megohm $1 / 2$ watt resistor.
4. One 3300 ohm $1 / 2$ watt resistor.
5. One 1000 mmfd mica capacitor.

NOTES FOR VISUAL ALUGNMENT

1. Connect vertical plates of scope to the grid of limiter (pin 1 of V5) through 1 meg. resistor and to chassis.
2. Connect vertical slates of scope to pin 3 of V6 through 1 meg. and to chassis.
3. Connect vertical plates of scope across volume control R19 through 1 meg.
4. In some cases tuning of the converter grid will cause "pulling in" of the oscillator and will change the oscillator frequency. If peaking C9 or C18 as in steps 4 or 14 causes the curve to move off the screen, it is necessary to recalibrate the oscillator as in steps 3, 12 and 13.
5. The termination impedance of the signal generator should be 300 ohms to properly match the FM input impedance on this receiver.
6. The pointer must be indexed to the vertical mark on the cabinet when the 98 mark on the back of the tuning drum is opposite the wire indicator (see note 7).
7. Calibration points are stamped on the rear side of the tuning drum of C 1 . Set the wire indicator to the zero mark with $\mathbf{C l}$ at maximum capacity (gang condenser fully closed).
8. For alignment of the AM oscillator and r-f trimmers the signal should be inductively coupled to the loop antenna, by connecting a four-turn six-inch diameter loop of wire to the signal generator terminals. Locate this loop about one foot from the radio loop antenna. The position of this loop to the radio antenna loop should not be changed during alignment to prevent errors in the peak readings.
9. When coupling generator to grid in steps $5,6,7,8,9$, and 10 use couple through a 3300 ohm resistor and a 1000 mmfd mica capacitor in series. Use short chassis connections to prevent regeneration. When coupling to the grid of V1 pin 8 in step 11 the output impedance of the signal generator should be low (below 100 ohms) to give maximum signal for alignment.

VISUAL ALIGNMENT CHART

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Signal Generator Frequency	Signal Input Point	Band Switch Setting	Dial Setting	Adjust	See Note
AM I-F Visual alignment						
1	455 kc FM mod. ± 20 kc at 60 cps rate	Pin 1 of V4 through .01 mfd . and chassis	AM	-	T5 for max. amplitude of curve. See Fig. 2A.	3
2		Pin 1 of V3 through .01 mfd . and chassis			T2 for max. amplitude of curve. See Fig. 2A.	
AM R-F ALIGNMENT						
3	1620 kc AM mod. with 60 cps	Inductively coupled	AM	Gang Cl completely open	C16 for steepest slope of straight line on scope.	$\begin{gathered} 3,4,6 \\ 7,8 \end{gathered}$
4	1500 kc FM mod. $\pm 20 \mathrm{kc}$ at 60 cps rate			Gang C1 for max amplitude of curve	C9 for max. amplitude of curve. See Fig. 2A.	

FM I-F AND DISCRIMINATOR ALIGNMENT

5	10.7 mc FM mod. $\pm 300 \mathrm{kc}$ at 60 cps rate	Pin 1 of V4	-	Core of T4 for max. amplitude of curve. See Fig. 2A.	1,9
6				Secondary of T6 for symmetry of curve of Fig. 2B.	
7				Primary of T6 for max. amplitude of positive and negative peak.	2,9

8 Repeat step 6

9	10.7 mc FM mod. $\pm 300 \mathrm{kc}$ at 60 cps rate	Pin 1 of V4	FM	-	Core of T 4 for max. amplitude of curve. See Fig. 2A.	1,9
10		Pin 1 of V3 and chassis			Cores of T3 for max. amplitude of curve. See Fig. 2A.	
11		Pin 8 of V1 and chassis			Cores of T1 for max. amplitude of curve. See Fig. 2A.	

FM R-F VISUAL ALIGNMENT

12	88 mc AM mod. at 60 cps .	FM antenna terminals	FM	At 88 on Cl drum	Core of L6 steepest slope of straight line trace on scope.	$\begin{gathered} 1,4,5 \\ 6,7 \end{gathered}$
13	108 mc AM mod. at 60 cps.			At 108 on C1 drum	C39 for steepest slope of straight line trace on scope.	
14	108 mc FM mod. $\pm 300 \mathrm{kc}$ at 60 cps rate			Rock in Cl for max.	Adjust C18 for max. amplitude of response. See Fig. 2A.	

Fig, 2. I-F and Discriminator Curves

Fig. 3. Dial Stringing Dlagram

$\frac{\text { CHASSIS }}{\text { TOP }}$

CHASSIS

Fig. 4. Band Switch Connections

Fig. 5. Sockel Voltage Diagram

MODEL
REPLACEMENT PARTS LIST

Cat. No.	Symbol	Description	Cat. No.	Symbol	Description
universal replacement parts					
*UCC-035	C29	CAPACITOR-. 001 mfd., 600 v .,	*URD-041		RESISTOR - 470 ohms, $1 / 2$ w., carbon
UCC-037	C38	CAPACITOR-. 003 mfd , 600 v .,	*URD-057		RESISTOR- 2200 ohms, $1 / 2 \mathrm{w}$., carbon
*UCC-039	C34, 36	CAPACITOR-005 mfd., 600 v .,	*URD-073	R26, R28	RESISTOR- 10,000 ohms, $1 / 2 \mathrm{w}$., car-
*UCC-040		CAPACITOR- 01 mfd , 600 v ., paper	*URD-077	R15	RESISTOR- $15,000 \mathrm{ohms}$, $1 / 2 \mathrm{w}$., car-
*UCC. 045	C31, C40, C23	CAPACITOR-. 05 mfd ., 600 v ., p	D-089	R14	RESISTOR $-47,000$ ohms, $1 / 2 \mathrm{w}$., car-
${ }^{\text {UCG. }}$ UCG 004	C3 C 6	CAPACITOR $-6 \mathrm{mmf.}$, mica ${ }^{\text {chen }}$	*URD-097	R11, R18,	RESISTOR-100,000 oh
UCG-016	${ }^{\mathrm{C} 21}$	CAPACITOR- 33 mmf ., mica	-	R23'	carbon - ${ }^{\text {conem }}$
*UCG-020	${ }_{\text {C12, }}$	CAPACITOR $-47 \mathrm{mmf}$. mica CAPACITOR -470 mmf , mica	-099	R16, R17	$\underset{\text { carbon }}{\text { RESISTOR- } 120,000}$ ohms, 1/2 w.,
*URRD-007	R3i	RESISTOR - 18 ohms, 3 's' w., carbon	*URD-105	R13	RESISTOR-220,000 ohms,
*URD-021		RESISTOR-68 ohms, ${ }^{\text {d }}$ / \mathbf{w}... carbon	- 113		carbon
*URD-025	R2,R6, R8		*URD-113	${ }_{\text {R }}^{\text {R }}$ 21, R 24,	$\underset{\text { carbon }}{\text { RESISTOR-470,000 ohms, }}$ - $1 / 2$
*URD-031					RESISTOR- 2.2 meg. , $1 / 2 \mathrm{w}$., carbon
*URD.033	R37, R9,	RESISTOR-220 ohms, 32 w ., carbon	*URD-141	R20	RESISTOR - 6.8 meg., $3 / 2$ w., carbon

specialized replacement parts

*USED ON PREVIOUS MODELS

Medel 500

Model 501

SPECIFICATIONS

CABINET

Model
Color
Height
Width
Depth
electrical rating (input)
Voltage.
Frequency
Wattage.
105-120 volts, a-c
60 cycles
OPERATING FREQUENCIES
Intermediate Frequency . 455 kc
Broadcast Band . 540-1600 kc
POWER OUTPUT
Undistorted . 1.15
LOUDSPEAKER

TUBE COMPLEMENT
Oscillator-Converter \qquad Type 12SA7
I-F Amplifier
Type 12BA6
Detector and 1st Audio.
Power Output
Type 12SQ7
Rectifier
Type 35W4
CAUTION: One side of the power line is connected to B-. Avoid any ground connections direct to $B-$. Use an isolating transformer when making service adjustments, with the chassis removed from the cabinet.

RADIO CIRCUIT ALIGNMENT

ALIGNMENT FREQUENCIES

R-F	1500 kc
R-F	1620 kc
I-F	455 kc

EQUIPMENT REQUIRED

1. Test oscillator with tone modulation.
2. A-c output meter, $11 / 2$ volts full scale.
3. 0.05 mf . paper capacitor.
4. Loop.
5. Insulated screwdriver.

PROCEDURE-GENERAL

1. With the tuning scale control wheel turned so that the gang condenser plates are fully meshed, the index should read approximately ${ }^{\frac{3}{16}}$ inch to the right of the 550 kc scale calibration mark. If it does not, remove the control wheel from the gang condenser shaft and replace it for correct position. CAUTION: Do not attempt to correct the position by rotating the wheel on the shaft as this will cause the knob to slip.
2. For i-f alignment, it is necessary to remove the chassis from the cabinet.
3. Connect the output meter across the loudspeaker voice coil terminais.
4. Keep radio volume control at maximum and attenuate the test oscillator signal output so that the output meter reading never exceeds 1.0 volt.
5. Connect the capacitor as listed in column 2 between the output "High Side" of the test oscillator and the point of input specified.
6. For alignment of the oscillator and antenna trimmers, the input signal should be inductively coupled to the radio loop antenna, L_{1}, by connecting a four-turn, six-inch diameter loop of bell wire across the signal generator output terminals, and then locating the loop to face the radio antenna loop about one foot away. To prevent possible errors in reference to previous signal measurement readings, the loop with respect to the radio loop should not be changed during any one set of adjustments.

ALIGNMENT CHART

Step	Connect Test Oscillator to	$\begin{gathered} \text { Test } \\ \text { Osc. } \\ \text { Setting } \end{gathered}$	$\begin{gathered} \text { Dial } \\ \text { Drum } \\ \text { Setting } \end{gathered}$	Adjust Trimmera for Maximum Output
1	12BA6 grid (1) in series with 0.05 mf . cap.	455 kc	Minimum Capacity	2nd i-f trans trimmers, C14 and C15
2	12SA7 grid (8) in series with 0.05 mf . cap.	455 kc	Minimum Capacity	1st i-f trans. trimmers, C8 and C9
3	Inductively coupled to radio loop	1620 kc	Minimum Capacity	C4 (oscillator)
4	Inductively coupled to radio loop	1500 kc	Tune for Maximum	C3 (antenna)

STAGE GAIN AND VOLTAGE CHECKS

Stage gain measurements by vacuum tube voltmeter or similar measuring devices may be used to check circuit performance and isolate trouble. The gain values listed may have tolerances of 20%. Readings taken with low signal input so that AVC is not effective.

Fig. 1. Tube and Trimmer Location

(1) R-F and I-F Stage Gains. 12SA7 Grid to 12BA6 Grid.

50 (a) 455 kc 12BA6 Grid to 12SQ7 Diode Plate
$.50 @ 455 \mathrm{kc}$
(2) Audio Gain.
0.15 volts at 400 cycles across the volume control (R11) with control set at maximum will give approximately $1 / 2$ watt output across the loudspeaker, LS1, voice coil.
(3) Oscillator Grid Bias.

D-c voltage developed across the oscillator grid leak (R1) averages 8.5 volts at 1000 kc .
(4) Socket Pin Voltages.

Figure 3 shows d-c voltages from all tube pins to \mathbf{B} - unless otherwise specified. Voltage readings much higher or lower than those specified may help localize defective components or tubes.

CLOCK SERVICE

Figure 4 shows clock parts referred to in the following paragraphs and the parts list.

CLOCK MOVEMENT DISASSEMBLY

1. Remove clock movement from case. When removing knobs, note that the Alarm-Set knob is a left-hand thread, while Alarm-Radio is a pull-off knob.
2. Remove Bezel, Hands and Dial Face.
3. Remove the motor assembly by removing two screws (A) and break two soldered joints on Field. The Field and Rotor Assembly (R) can now be removed. The Rotor is held by friction only to the Field.
4. Remove Switch Assembly (B) by removing two screws from base plate.
5. Remove Switch Shaft Assembly (C) and spacer.
6. Remove Alarm-Set Shaft Assembly (D) and spacer
7. Remove the three front plate assembly screws that are located under the Dial Face and then remove Front Plate.
8. Remove Alarm Gear Sleeve Assembly (E), Hour Gear Sleeve Assembly (F), Minute Gear Sleeve Assembly (G), and Sweep Second Gear Shaft Assembly (H).
9. Remove Alarm Cam Gear Assembly (I) and Spring Washer (J).
10. Remove Alarm-Set Gear (K).
11. Remove Time-Set Gear and Shaft Assembly (L).
12. Remove Switch Cam Lever (M)

CLOCK MOVEMENT REASSEMBLY

Reassemble in the reverse order of disassembly, observing the following precautions:

1. The spring washer (J) should curve away from the gear when placed on the Alarm Cam Gear Assembly (I).
2. The Switch Cam Lever (M) fork must straddle the base plate post as shown in the illustration.
3. After reassembly of front plate, check the Sweep Second Gear (H) through the hole in the base plate to make sure it is free to turn.
4. Proceed with Alarm and Switch Adjustments as described below before installing hands.

ALARM AND SWITCH ADJUSTMENTS

1. Turn Alarm-Radio shaft to ALARM position.
2. Slowly rotate Time-Set shaft clockwise until the contacts of the Switch Assembly (B) close.
3. Replace Dial Face, Alarm Dial, the Minute, Hour and Second Hands. Set all Hands and Dial so that they indicate 12 o'clock. Make sure all Hands and Alarm Dial are tight on their respective shafts.
4. With Alarm-Set knob pulled out, continue to rotate Time-Set shaft clockwise and note that the vibrator arm (N) drops against field core approximately $7-10$ minutes later.
5. Set alarm at some other selected position and make sure mechanism actuates within limits (± 1 minute).
6. Check alarm tone of vibrator. This can be adjusted by either bending vibrator arm nearer or farther away from field core. Bend arm near anchor point.

ClEANing and lubrication

To clean, completely diassemble and clean all moving parts in carbon tetrachloride or some similar cleaner.
The inside of the sleeves and shaft surfaces may be cleaned of oxidized oil by rubbing with a fine grade of steel wool dampened in carbon tetrachloride.
Do not use too much oil and apply by means of a small wire (drop oiler). To much oil collects dust and later oxidizes. Use only recommended clock oil, such as Nye's Celebrated Oil which may be purchased from Wm. F. Nye Co., Inc., New Bedford, or equivalent.

CLOCK TROUBLES

1. Clock will not operate-Defective field coil, defective rotor, binding of parts.
2. Clock loses time-Binding parts, too little friction on minute hand sleeve assembly, defective rotor. Clock time-set shaft bent and rubs against hole in clock bracket.
3. Noisy Clock-Rotor defective, alarm armature improperly adjusted, loose parts, or binding of moving parts.

Fig. 5. Clock Part Identification

MODEL 500 AND 501 REPLACEMENT PARTS

CLOCK REPLACEMENT PARTS LIST

Cat. No.	Symbol	Description	Cat. No.	Symbol	Description
MISCELL ANEOUS			CLOCK MOVEMENT (Conl'd)		
* XC 3 X 49 *XC4X5 *XC10X131	Q L	TIME SET SHAFT KNOB-Bronze ALARM SET KNOB Ivory TIME SET GEAR AND SHAFT AS SEMBLY	*XC14X15 *XC15X3 *XC16X14	$\begin{aligned} & \mathbf{G} \\ & \mathbf{E} \\ & \mathbf{H} \end{aligned}$	MINUTE GEAR SLEEVE ASSEMBLY ALARM GEAR SLEEVE ASSEMBLY SWEEP SECOND GEAR SHAFT AS. SEMBLY
* XC11X11 *XC31X26 *XC32X199	D	ALARM SET SHAFT ASSEMBLY SWEEP SECOND HATND HOUR AND MINUTE HANDS	*XC17X8 *XC35X39 *XC40X13		ALARM GEAR SHAFT ASSEMBLY BASEPLATE ASSEMBLY RIVET-Vibrator
${ }_{*}^{*} \times \mathrm{X} 34 \times 139$	0	FRONTPLATE ASSENBLY	${ }_{*} \mathbf{X C 4 0 \times 7 6}$		RIVET-Vibrator SWITCH ASSEMBLY-Consists of Contact Block (top),
$\begin{aligned} & * \mathrm{XCSBX16} \\ & \times C 59 \times 247 \end{aligned}$		ALARM DIAL CRYSTAL-2 916 in ., round			
		NUMERAL COLOR RING Red		$\underset{\mathbf{M}}{\mathbf{K}}$	Contact Block (top), Contact Block (bottom). Contact Spring Insulator
* XC59X699	C	SWITCH SHAFT ASSEMBLY	* XC40X77 *XC40X78 *XC40X79		ALARM SET GEAR ASSEMBLY SWITCH CAM LEVER ASSEMBLY UPPER CONTACT SPRING ASSEM
$\begin{aligned} & \mathrm{XC} 61 \times 941 \\ & \times \mathrm{C} 53 \times 128 \end{aligned}$		SWITCH KNOB - ivory ${ }_{\text {den }}$			
		NUMERAL RING-Bionze	*XC40X80	J	LOWER CONTACT SPRING AND TIP ASSEMBLY
CLOCK MOVEMENT			*XC40X202		
			*XC40×252		CAM GEAR SPRING WASHER
* $\mathrm{XC1}^{1}{ }_{1}$	A	SCREW-Holds Field, No. 4-40X1 1/8 in. R:H.	*XC40X262 *XC40X263	R	TIME SET SHAFT SPACER TIME SET SHAFT SPACER ALARM SHUT-OFF SPACER ROTOR UNIT - 60 cycles FIELD COIL ASSEMBLY- -60 cycles FRONTPLATE SCREW
* ${ }^{\text {xcix2 }}$			*XC44X38		
$\begin{aligned} & * x C 1 \times 6 \\ & * \times C 1 \times 43 \end{aligned}$		No. 1204 LOCKW ASHER SCREW No. $4-40 \times 5 / 8$ in. R. H. HEX NUT hour gear sleeve assembly	$* \mathbf{X C 4 5 X 6 9}$ $* \times \mathrm{X} 64 \times 1$		
	F				

MODEL 505, 507

MODEL 506

SPECIFICATIONS

CABINET:

Model	508	505	507	506
Color	Blond Mah.	Brown	Maroon	Ivory
Height	$63 / 8 \mathrm{in}$.			
Width	$111 / 2 \mathrm{in}$.			
Depth	$61 / 4 \mathrm{in}$.			

ELECTRICAL RATING (INPUT):

Voltage	105-120 volts, a-c
Frequency	60 cycles
Wattage	30 watts

OPERATING FREQUENCIES:

Intermediate Frequency
. 455 kc

Broadcast Band
$540-1600 \mathrm{kc}$
POWER OUTPUT:
Undistorted
.1
Maximum
1.75

LOUDSPEAKER:

Type.
Outside Cone Diameter
Voice Coil Impedance (400 cycles).
Alnico 5 PM
4-inch

TUBE COMPLEMENT:
Oscillator-Converter
I-F Amplifier
Detector and 1st Audio
o.
. . .
.....
Power Output
Rectifier
Type 12SA7
Type 12BA6
Type 12SQ7
Type 50C5
Type 35W4
CAUTION: One side of the power line is connected to B-Avoid any ground connections direct to B-. Use an isolating transformer when making service adjustments with the chassis removed from the cabinet.

GENERAL INFORMATION

The Models 505, 506, 507 and 508 are four-tube, plus rectifier tube, a-c/d-c superheterodyne receivers, employing a Beam-ascope antenna. Special features include an electric time clock with wake-up alarm and sleep control switch. In addition, the timer receptacle at the rear of the receiver provides an outlet connection for external appliances which is controlled by the normal function of the alarm and sleep control mechanism of the clock. The radio OFF-ON switch adjacent to the timer outlet provides control of radio operation so that the radio receiver may be turned off if so desired while using the external appliance. When radio operation is to be resumed, this switch must be turned to the on position.

RADIO CIRCUIT ALIGNMENT

ALUGNMENT FREQUENCIES:

R-F	1500 kc
R-F	1620 kc
I-F	55 kc

MODEL 508

EQUIPMENT REQUIRED;

1. Test oscillator with tone modulation.
2. A-c output meter, $11 / 2$ volts full scale.
3. 0.05 mf . paper capacitor.
4. Loop
5. Insulated screwdriver.

PROCEDURE-GENERAL:

1. With the tuning scale control wheel turned so that the gang condenser plates are fully meshed, the index should read approximately $\frac{3}{16}$ inch to the right of the 550 kc scale calibration mark. If it does not, remove the control wheel from the gang condenser shaft and replace it for correct position. CAU. TION: Do not attempt to correct the position by rotating the wheel on the shaft as this will cause the knob to slip.
2. For i-f alignment, it is necessary to remove the chassis from the cabinet.
3. Connect the output meter across the loudspeaker voice coil terminals.
4. Keep radio volume control at maximum and attenuate the test oscillator signal output so that the output meter reading never exceeds 1.0 volt.
5. Connect the capacitor as listed in column 2 between the output "High Side" of the test oscillator and the point of input specified. The oscillator output cable ground lead is connected to receiver chassis.
6. For alignment of the oscillator and antenna trimmers, the input signal should be inductively coupled to the radio loop antenna, L1, by connecting a four-turn, six-inch diameter loop of bell wire across the signal generator output terminals, and then locating the loop to face the radio antenna loop about one foot away. To prevent possible errors in reference to previous signal measurement readings, the loop with respect to the radio loop should not be changed during any one set of adjustments.

ALIGNMENT CHART				
Step	Connect Test Oscillator to	Test Osc. Setting	Dial Drum Setting	Adjust Trimmers for Maximum Output
1	12SK7 grid (4) in series with 0.05 mf . cap.	455 kc	Minimum Capacity	2nd I-F trans. trimmers, C14 and C15
2	12BA6 grid (1) in series with 0.05 mf . cap	455 kc	Minimum Capacity	1st I-F trans. trimmers, C8 and C9
3	Inductively coupled to radio loop	1620 kc	Minimum Capacity	C4 (oscillator)
4	Inductively coupled to radio loop	1500 kc	Tune for Maximum	C3 (antenna)

STAGE GAIN AND VOLTAGE CHECKS

Stage gain measurements by vacuum tube voltmeter or similar measuring devices may be used to check circuit per-

$$
\begin{aligned}
& \begin{array}{l}
\text { watt output across the loudspeaker, LS1, voice coil. } \\
\text { (3) Oscillator Grid Bias. } \\
\text { D-c voltage developed across the oscillator grid leak (R1) }
\end{array} \\
& \begin{array}{l}
\text { D-c voltage developed across the oscillator grid leak (R1) } \\
\text { averages } 8.5 \text { volts at } 1000 \mathrm{kc} \text {. }
\end{array} \\
& \text { (4) Socket Pin Voltages. } \\
& \text { Figure } 3 \text { shows voltages from all tube pins to } \mathbf{B} \text { - unless }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { formance and isolate trouble. The gain values listed may have } \\
\text { tolerances of } 20 \% \text {. Readings taken with low signal input so }
\end{array} \\
& \text { that AVC is not effective. } \\
& \begin{array}{l}
50 \text { @ } 455 \mathrm{kc} \\
50 \text { (a) } 455 \mathrm{kc}
\end{array} \\
& \begin{array}{l}
\text { (2) Adio Gain. } \\
0.15 \text { volts at } 400 \text { cycles across the volume control (R11) } \\
\text { with control set at maximum will give approximately } 1 / 2 \text { - }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (1) I-F Stage Gains. } \\
\text { 12SA } 7 \text { Grid to } 12 \text { SK } 7 \text { Grid } \\
\text { 12SK } 7 \text { Grid to } 12 \text { SQ } 7 \text { Diode Plate. } \\
\text { (2) Audio Gain. }
\end{array}
\end{aligned}
$$

en

Fig. 2. Socket Voltages

CLOCK SERVICE

Figures 4 and 5 show clock parts referred to in the following paragraphs and the parts list.

CLOCK MOVEMENT DISASSEMBLY

1. Remove clock movement from case. When removing knobs, note that the Alarm-Set knob is a left-hand thread, while Wake-Up Manual and Sleep are pull-off knobs.
2. Remove Bezel, Hands and Dial Faces.
3. Remove the motor assembly by removing two screws (3 and 4) and break two soldered joints on Field. The Field and Rotor Assembly (11 and 2) can now be removed. The Rotor is held by friction only, to the Field.
4. Remove Switch Assembly by removing two screws (12) from base plate.
5. Remove Switch Shaft Assembly (13) and spacer.
6. Remove Alarm-Set Shaft Assembly (6) and spacer
7. Remove the three front plate assembly screws that are located under the Dial Face and then remove Front Plate.
8. Remove the following gear assemblies and control levers in the order listed below:
(a) Sweep Control Shaft and Segment Gear (30)
(b) Alarm Dial Gear (16)
(c) Hour Hand Gear (17)
(d) Alarm Signal Cam and Gear, and Friction Washer $(27,26)$
(e) Sweep Control Switch Lever (29)
(f) Pinion Drive Gear Assembly (15) (drives Sleep Control Segment Gear)
(g) Alarm Control Switch Cam Lever (8)
(h) Time Set Shaft and Gear, and Spacer (14, 20)
(i) Drive Gear and Pinion Assembly (28)
(j) Minute Hand Gear (18)
(k) Sweep Second Hand Gear (19)

CLOCK MOVEMENT REASSEMBLY

Reassemble in the reverse order of diassembly, observing the following precautions:

1. The spring washer (26) should curve away from the gear when placed on the Alarm Cam Gear Assembly (27).
2. The Switch Cam Lever fork (8) must straddle the base plate post as shown in the illustration.
3. After reassembly of front plate, check the Sweep Second

Gear (19) through the hole in the base plate to make sure it is free to turn.
4. Proceed with Alarm and Switch Adjustments as described below before installing hands.

ALARM AND SWITCH ADJUSTMENTS

1. Turn Wake-Up Manual shaft to WAKE UP position.
2. Slowly rotate Time Set shaft clockwise until the contacts 21 and 22 of the Switch Assembly close.
3. Replace Dial Face, Alarm Dial, the Minute, Hour and Second Hands. Set all Hands so that they indicate 12 o'clock. Set figure 12 of the alarm dial to index with the smaller pointer of the hour hand. Make sure all Hands and Alarm Dial are tight on their respective shafts.
4. With Alarm Set knob pulled out, continue to rotate Time Set shaft clockwise and note that the Alarm vibrator arm drops against field core approximately $7-10$ minutes later.
5. Set alarm at some other selected position and make sure mechanism actuates within limits (± 1 minute).
6. Check alarm tone of vibrator. This can be adjusted by either bending vibrator arm nearer or farther away from field core. Bend arm near anchor point.

CLEANING AND LUBRICATION

To clean, completely disassemble and clean all moving parts in carbon tetrachloride or some similar cleaner.

The inside of the sleeves and shaft surfaces may be cleaned of oxidized oil by rubbing with a fine grade of steel wool dampened in carbon tetrachloride.

Do not use too much oil and apply by means of a small wire (drop oiler). Too much oil collects dust and later oxidizes. Use only recommended clock oil, such as Nye's Celebrated Oil which may be purchased from Wm. F. Nye Co., Inc., New Bedford, or equivalent.

ClOCK TROUBLES

1. Clock will not operate-Defective field coil, defective rotor, binding of parts.
.2. Clock loses time-Binding parts, too little friction on minute hand sleeve assembly, defective rotor. Clock time set shaft bends and rubs against hole in clock bracket.
2. Noisy Clock-Rotor defective, alarm armature improperly adjusted, loose parts, or binding of moving parts.

GENERAL ELECTRIC PAGE 21-35

SLEEP CONTROL BOOSTER SPRING

The illustration of Figure 5 shows the position of the booster spring, Cat. No. RMS-205, as viewed from the rear of the clock mechanism. This spring provides tension for proper segment gear and cam operation. One end of the spring is fastened to the cam stud, the other end to the brass Front Plate Stud.

C16, C17, C19, AND C2O
The lead identification for the four-section ceramic capacitor RCW-3013 (K67J836) can be observed from the illustration of Figure 6.

Should it become necessary to service this unit, either the defective section can be cut out of the circuit and replaced by an individual capacitor (see Parts Replacement List, items UCC-036, UCU-039 and UCU-1036), or a complete new four-section unit, RCW-3013, can be installed.

Fig. 6. Capaciłor RCW-3013 (K67J836)

Fig. 7. Tube and Trimmer Lecation

RADIO REPLACEMENT PARTS LIST

CLOCK REPLACEMENT PARTS LIST

Cat. No.	Symbol	Description	Cat. No.	Symbol	Description
MISCELLANEOUS			CLOCK MOVEMENT (Cont.)		
$\begin{aligned} & \text { *XC3X36 } \\ & \text { *XC4X5 } \\ & \text { *XC31X26 } \end{aligned}$	1	$\begin{aligned} & \text { KNOB-Time set shaft knob (bronze) } \\ & \text { KNOB-Alarm set knob (ivory) } \\ & \text { HAND-Sweep second hand } \end{aligned}$	*XC40X76	24	SWITCH INSULATOR ASSEMBLYConsists of: two plastic and one fibre switch contact spring spacers
*XC32X199		HANDS-Hour and minute hands (luminous)	*XC40X77	28	GEAR AND SPRING ASSEMBLY Drives alarm dial gear and hour hand gear
*XC53X31		BEZEL-Outer mounting rim			(complete with pinion and shaft, piniort and gear, spring, washers and retaining
*XC53X117		BEZEL Numeral ring (gold finish)			clip)
*XC55X15		DIAL Alarm dial scale	*XC40X80	21	CONTACT ASSEMBLY-Lower switch
$\begin{aligned} & * \mathbf{X C 5 8 X 1 6} \\ & * \mathbf{X C 5 9 \times 2 4 7} \end{aligned}$		CRYSTAL-Glass crystal			contact and spring SPRING-Switch control shaft index spring
$\begin{aligned} & \text { *XC59X247 } \\ & \text { *XC59X716 } \end{aligned}$		RING-Color ring for numeral bezel KNOB-Wake-up Manual and Sleep con-	*XC40X185		SPRING-Switch control shaft index spring (for cam indexed control shafts)
*XC61 X937		trol knob (ivory)	C40X196	$\begin{array}{r} 29 \\ 15 \end{array}$	GEAR AND SPRING ASSEMBLY-Pinion drive for sleep control segment gear (consists of pinion gear, pinion gear and shaft, spring, washers, and retaining clip
CLOCK MOVEMENT					
*XC1X1	3	SCREW-Hotds field core to baseplate,			
* $\mathrm{XC1} \mathbf{X 2}$	4	LOCKWASHER ${ }^{4-40} 1{ }^{\text {/ }}$	$\left.\right\|_{* X C 40 \times 198} ^{* X C 40 \times 197}$	$\begin{aligned} & 8 \\ & 22 \end{aligned}$	LEVER-Alarm control switch cam lever CONTACT ASSEMBLY-Upper switch
-xC1x2	4	switch assembly mounting screw and field core mounting			contact and spring with attached fibre arm
*XC1 ${ }^{\text {6 }}$	10	SCREW-Used to assemble switch assembly to switch bracket	*XC40X202	5	SPACER BUSHING-Field core spacer at
*XC1 ${ }^{\text {4 }}$	23	HEX NUT-For screw mounting switch	*XC40X252	26	WASHER-Alarm signal cam and gear
*XC10X141	14	assembly to switch bracket set shaft and	*XC40X275		friction washer SPACER BUSHING-Wake-up Manual
*XC11X11					switch control shaft bushing
*XC11811	${ }^{6}$	SHAFT ASSEMBLY-Alarm set shaft and gear assembly	$\begin{aligned} & * \mathrm{XC}^{*} \mathrm{XX2}^{276} \\ & \mathrm{XC} 40 \times 277 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	SPACER BUSHING-For time set shaft SHAFT-Sleep control shaft and gear seg-
*XC13X11	17	GEAR ASSEMBLY-Hour hand gear and sleeve assembly	*XC44 38	2	ment assembly MOTOR ROTOR ASSEMBLY-Cased
*XC14X32	18	GEAR ASSEMBLY-Minute hand friction		11	rotor and pinion (60 cycles)
*XC15X3	16	gear, pinion gear and sleeve assembly GEAR ASSEMBLY-Alarm dial gear and	*XC45X69	11	MOTOR FIELD ASSEMBLY-Consists of: core, shading poles, and field coil (60
*XC16X14	19	GEAReve assembly	*XC59X699	13	SHAFT ${ }_{\text {cys }}$ ASSEMBLY-Wake-up Manual
*XC17X8	27	Gear and shaft assembly			control shaft assembly (detent spring in dex type)
		gear asaembly	*XC59X 723	13	SHAFT ASSEMBLY-Wake-up Manual
*XC34X173	9	FRONT PLATE ASSEMBLY-Complete with case studs and alarm set shaft spring (7)	*XC64 ${ }^{\text {1 }}$		control shaft assembly (cam index type) SCREW-Switch bracket and front plate mounting screws
*XC35X93	25	BASE PLATE AND BACK GEAR-Base plate assembled complete with atuds, back gear and pinion, and vibrator			

MODEL 509

SPECIFICATIONS

CABINET:

	530	509
Model	Bleached Mah.	White
Color	$63 / 8 \mathrm{in}$.	$63 / 8 \mathrm{in}$.
Height	$111 / 2 \mathrm{in}$.	$111 / 2 \mathrm{in}$.
Width	$61 / 4 \mathrm{in}$.	$61 / 4 \mathrm{in}$.
Depth		

ELECTRICAL RATING (INPUT):

Voltage	105-120 volts, a-c
Frequency	60 cycles
Wattage .	30 watts

OPERATING FREQUENCIES:
Intermediate Frequency
455 kc
Broadcast Band
$540-1600 \mathrm{kc}$

POWER OUTPUT:

Undistorted
Maximum
1.75

LOUDSPEAKER:

Type.
Alnico 5 PM
Outside Cone Diameter
4-inch
Voice Coil Impedance (400 cycles) 3.5 ohms

TUBE COMPLEMENT:

Oscillator-Converter
Type 12SA7
I-F Amplifier
Type 12BA6
Detector and 1st Audio
Type 12SQ7
Power Output
Type 50C5

Rectifier

Type 35W4
CAUTION: One side of the power line is connected to $B-$. Avoid any ground connections direct to $B-$. Use an isolating transformer when making service adjustments with the chassis removed from the cabinet.

GENERAL INFORMATION

The Models 509 and 530 are four-tube, plus rectifier tube, a-c/d-c superheterodyne receivers, employing a Beam-a-scope antenna. Special features include an electric time clock with wake-up alarm and sleep control switch. In addition, the timer receptacle at the rear of the receiver provides an outlet connection for external appliances which is controlled by the normal function of the alarm and sleep control mechanism of the clock. The radio OFF-ON switch adjacent to the timer outlet provides control of radio operation so that the radio redeiver may be turned off if so desired while using the external appliance. When radio operation is to be resumed, this switch must be turned to the on position.

RADIO CIRCUIT ALIGNMENT

ALIGNMENT FREQUENCIES:

MODEL 530

EQUIPMENT REQUIRED:

1. Test oscillator with tone modulation.
2. A-c output meter, $11 / 2$ volts full scale.
3. $\quad 0.05 \mathrm{mf}$. paper capacitor.
4. Loop.
5. Insulated screwdriver

PROCEDURE-GENERAL:

1. With the tuning scale control wheel turned so that the gang condenser plates are fully meshed, the index should read approximately $\frac{3}{16}$ inch to the right of the 550 kce scale calibration mark. If it does not, remove the control wheel from the gang condenser shaft and replace it for correct position. CAUTION: Do not attempt to correct the position by rotating the wheel on the shaft as this will cause the knob to slip.
2. For i-f alignment, it is necessary to remove the chassis from the cabinet.
3. Connect the output meter across the loudspeaker voice coil terminals.
4. Keep radio volume control at maximum and attenuate the test oscillator signal output so that the output meter reading never exceeds 1.0 volt.
5. Connect the capacitor as listed in column 2 between the output "High Side" of the test oscillator and the point of input specified. The oscillator output cable ground lead is connected to receiver chassis.
6. For alignment of the oscillator and antenna trimmers, the input signal should be inductively coupled to the radio loop antenna, L1, by connecting a four-turn, six-inch diameter loop of bell wire across the signal generator output terminals, and then locating the loop to face the radio antenna loop about one foot away. To prevent possible errors in reference to previous signal measurement readings, the loop with respect to the radio loop should not be changed during any one set of adjustments.

ALIGNMENT CHART

Step	Connect Test Oscillator to	Test Osc. Setting	Dial Drum Setting	Adjust Trimmers for Maximum Output
1	12 SK 7 grid (4) in series with 0.05 mf . cap.	455 kc	Minimum Capacity	2nd I-F trans. trimmers, C14 and Cl 5
2	12 BA 6 grid (1) in series with 0.05 mf . cap	455 kc	Minimum Capacity	1st I-F trans. trimmers, C8 and C9
3	Inductively coupled to radio loop	1620 kc	Minimum Capacity	C4 (oscillator)
4	Inductively coupled to radio loop	1500 kc	Tune for Maximum	C3 (antenna)

STAGE GAIN AND VOLTAGE CHECKS

Stage gain measurements by vacuum tube voltmeter or similar measuring devices may be used to check circuit per-

NOTE: Loop connections are: green lead to inside turn of antenna loop, yellow lead

Fig. 2. Socket Volfages

CLOCK SERVICE

Figures 3 and 4 show clock parts referred to in the following paragraphs and the parts list.

CLOCK MOVEMENT DISASSEMBLY

1. Remove clock movement from case. When removing knobs, note that the Alarm-Set knob is a left-hand thread, while Wake-Up Manual and Sleep are pull-off knobs.
2. Remove Bezel, Hands and Dial Faces.
3. Remove the motor assembly by removing two screws (3 and 4) and break two soldered joints on Field. The Field and Rotor Assembly (11 and 2) can now be removed. The Rotor is held by friction only, to the Field.
4. Remove Switch Assembly by removing two screws (12) from base plate.
5. Remove Switch Shaft Assembly (13) and spacer.
6. Remove Alarm-Set Shaft Assembly (6) and spacer
7. Remove the three front plate assembly screws that are located under the Dial Face and then remove Front Plate.
8. Remove the following gear assemblies and control levers in the order listed below:
(a) Sweep Control Shaft and Segment Gear (30)
(b) Alarm Dial Gear (16)
(c) Hour Hand Gear (17)
(d) Alarm Signal Cam and Gear, and Friction Washer (26, 27)
(e) Sweep Control Switch Lever (29)
(f) Pinion Drive Gear Assembly (15) (drives Sleep Control Segment Gear)
(g) Alarm Control Switch Cam Lever (8)
(h) Time Set Shaft and Gear, and Spacer (14, 20)
(i) Drive Gear and Pinion Assembly (28)
(j) Minute Hand Gear (18)
(k) Sweep Second Hand Gear (19)

CLOCK MOVEMENT REASSEMBLY

Reassemble in the reverse order of disassembly, observing the following precautions:

1. The spring washer (26) should curve away from the gear when placed on the Alarm Cam Gear Assembly (27).
2. The Switch Cam Lever fork (8) must straddle the base plate post as shown in the illustration.
3. After reassembly of front plate, check the Sweep Second

Gear (19) through the hole in the base plate to make sure it is free to turn.
4. Proceed with Alarm and Switch Adjustments as described below before installing hands.

ALARM AND SWITCH ADJUSTMENTS

1. Turni Wake-Up Manual shaft to WAKE UP position.
2. Slowly rotate Time Set shaft clockwise until the contacts 21 and 22 of the Switch Assembly close.
3. Replace Dial Face, Alarm Dial, the Minute, Hour and Second Hands. Set all Hands so that they indicate 12 o'clock. Set figure 12 of the alarm dial to index with the smaller pointer of the hour hand. Make sure all Hands and Alarm Dial are tight on their respective shafts.
4. With Alarm Set knob pulled out, continue to rotate Time Set shaft clockwise and note that the Alarm vibrator arm drops against field core approximately $7-10$ minutes later.
5. Set alarm at some other selected position and make sure mechanism actuates within limits (± 1 minute).
6. Check alarm tone of vibrator. This can be adjusted by either bending vibrator arm nearer or farther away from field core. Bend arm near anchor point

CLEANING AND LUBRICATION

To clean, completely disassemble and clean all moving parts in carbon tetrachloride or some similar cleaner

The inside of the sleeves and shaft surfaces may be cleaned of oxidized oil by rubbing with a fine grade of steel wool dampened in carbon tetrachloride

Do not use too much oil and apply by means of a small wire (drop oiler). Too much oil collects dust and later oxidizes. Use only recommended clock oil, such as Nye's Celebrated Oil which may be purchased from Wm. F. Nye Co., Inc., New Bedford, or equivalent.

CLOCK TROUBLES

1. Clock will not operate-Defective field coil, defective rotor, binding of parts.
2. Clock loses time-Binding parts, too little friction on minute hand sleeve assembly, defective rotor. Clock time set shaft bends and rubs against hole in clock bracket.
3. Noisy Clock-Rotor defective, alarm armature improperly adjusted, loose parts, or binding of moving parts.

Fig. 6. Capacitor RCW-3013 (K67J836)

> EETAI OF SPRING HCOKING TO CAMSTUD

RADIO REPLACEMENT PARTS LIST-MODELS 509 AND 530
Cat. No. \mid Symbol \mid Description

UNIVERSAL REPLACEMENT PARTS		
*UCC-028	C5,10,11	CAPACITOR-. $05 \mathrm{mf}$.400 v ., paper
*UCC-036	C17	CAPACITOR-. $002 \mathrm{mf}, 600 \mathrm{v}$., paper (will replace respective sections of RCW -3013).
*UCC-039	C20	CAPACITOR-. $005 \mathrm{mf},. 600 \mathrm{v}$., paper (will replace respective sections of RCW-3013).
*UCC-045	C21	CAPACITOR -.05 mf ., 600 v ., paper
*UCU-1036	C16, 19	CAPACITOR- 220 mmf ., mica (will replace respective sections of RCW-3013).
*URD-009	R17	RESISTOR-22 ohms, $1 / 2 \mathrm{w}$., carbon
*URD-017	R18	RESISTOR-47 ohms, $1 / 1 /$ w., carbon
*URD-029	R15	RESISTOR-150 ohms, $1 / 2 \mathrm{w}$., carbon
*URD-081	R1	RESISTOR-22,000 ohms, $1 / 2 \mathrm{w}$., carbon
*URD. 113	$\underset{14}{ } \mathrm{R2}^{\text {2 }}$ 13,	RESISTOR-470,000 ohms , $1 / 2 \mathrm{w}$., carbon
*URD-129	R10	RESISTOR- 2.2 meg., 瑗 w ., carbon
*URD-141	R12	RESISTOR -6.8 meg., $1 / 2 \mathrm{w}$., carbon
*URF-049	R16	RESISTOR-1000 ohms, 2 w ., carbon
*DL1RS-400. CG16	LS1	SPEAKER-PM loudspeaker (less T3)

SPECIALIZED REPLACEMENT PARTS

*RAB-116	L1	BACK-Cabinet back cover (includes loop L1) for Model 509
*RAB-120	L1	BACK Cabinet back cover (includes loop L1) for Model 530
*RAC-060		SHIELD PLATE-Metal plate covers bot tom of chassis
*RAC-073		MOUNTING BRACKET-Metal back cover holds clock to cabinet
RAU-325		CABINET- White plastic (Model 509)
RAU-330		CABINET-Bleached mahogany finish plastic (Model 530)
*RCC-074	C 22	CAPACITOR-.003 mf., 600 v ., paper 150
*RCE-050	C23A, B	CAPACITOR- 50 mf ., 150 v.; 50 mf ., 150 $v_{\text {., dry electrolytic }}$
*RCT-021	C2A, 2B	CAPACITOR-Tuning capacitor (oscillator and r-f section)

Cat. No.	Symbol	Description
SPECIALIZED REPLACEMENT PARTS (Cont.)		
*RCW-1043	$\begin{aligned} & \mathrm{C} 25 \\ & \mathrm{C} 16,17, \\ & 19,20 \end{aligned}$	CAPACITOR-47 mmf., ceramic
*RCW-3013		CAPACITOR- 220 mmf ., 002 mf ., 220 mmf., 005 mf . (4 section ceramic)
*RDK-028		KNOB-Volume control knob Model 530
*RDK. 094		KNOB-Tuning dial wheel. Does not include dial scale, see item RDS-090
RDK-203		KNOB-Volume control knob (red) for Model 509
*RDS-090		DIAL SCALE-Paper scale
*RHG-015 *RHH-004		GROMMET-For tuning cond.
		FASTENER-Snap fastener for hoiding back
*RHI-010		STRAIN RELIEFINSULATOR
RHS-043		SPACER FOR TUNING CONDENSER BRACKET-For receptacle, J2 and awitch,
*RJC-004	J2	CLIP-Loop connector clip
*RJJ-008		APPLIANCE RECEPTACLE SOCKET--Tube socket for 12SA7
*RJS.117		SOCKET-Tube socket for 12SQ7
*RJS.092		SOCKET - Tube socket for $50 \mathrm{C} 5,35 \mathrm{~W} 4$
*RJS-141		SOCKET-For 12BA6 tube, 7 pin
*RLC-090		COIL-Oscillator coil
RMS-205		SLEEP CONTROL BOOSTER SPRING
*RRC-054	R11	POTENTIOMETER-0.5 meg., volume control
RSW-067	S1	SWITCH-Radio ON-OFF switch at rear of receiver
*RTL-094	T1	TRANSFORMER-1st I-F transformer
*RTL-095	T^{2}	TRANSFORMER-2nd I-F tranaformer
RTO.036	T3	TRANSFORMER Out put tranaformer
*RWL-009		CORD-Power cord (brown) for Model 530
*RWL- 106 RYN-007		CORD-Power cord (white) for Model 509
*RZC*009	M1	CLOCK-60 cycle ${ }^{\text {gram }}$ 105-125
		sembly! for Model 530
RZC-011	M1	CLOCK-60 cycle, 105-125 v., clock as-

†CLOCK REPLACEMENT PARTS LIST-MODELS 509 AND 530

Cat. No.	Symbol	Description	Cat. No.	Symbol	Description
miscellaneous			CLOCK MOVEMENT (Cont.)		
$\begin{aligned} & \text { +XC3X36 } \\ & * \times C 4 \times 5 \\ & \text { XC31 } 26 \end{aligned}$	1	KNOB-Time set shaft knob (bronze) KNOB-Alarm set knob (ivory) HAND-Sweep second hand (Model 530)	*XC34X173	9	FRONT PLATE ASSEMBLY-Complete with case studs and alarm set shaft spring (7)
*XC32X199		HANDS-Hour and minute hands (lumi nous) (Model 530)	* XC35 X 93	25	BASE PLATE AND BACK GEAR-Bare plate assembled complete with stude, back gear and pinion, and vibrator
$\begin{aligned} & * \times \operatorname{XC53\times 31} \\ & * \mathbf{X C} 53 \times 117 \end{aligned}$		BEZEL-Outer mounting rim (Model 530) BEZEL-Numeral ring (gold finish) (Model	*XC40X76	24	
		$530 \text {) }$			SWITCH INSULATOR ASSEMBLYConsists of: two plastic and one fibre
$\begin{aligned} & * X C 55 X 15 \\ & * X C 58 X 16 \end{aligned}$		DIAL-Alarm dial scale CRYSTAL-Glass crystal	*XC40X77	28	switch contact spring spacers GEAR AND SPRING ASSEMBLYDrives alarm dial gear and hour hand gear (complete with pinion and shaft, pinion and gear, spring, washers and retaining clip)
* XC59X247		RING-Color ring for numeral bezel (Mod- $\text { el } 530 \text {) }$			
*XC59X716		KNOB-Wake-up Manual and Sleep control knob (ivory)			
*XC61 X937		DIAL-Clock dial scale (luminous) (Model 530)	* \times C40X80	21	CONTACT ASSEMBLY-Lower switch contact and spring
TRZA-001 9RZA. 002		BEZEL-Outer mounting rim BEZEL-Numeral ring (gold finish)	*XC40X185		SPRING-Switch control shaft index spring (for cam indexed control shafts)
TRZA-003		RING-Color ring for numeral bezel	$\begin{aligned} & * \times C 40 \times 194 \\ & * \times C 40 \times 196 \end{aligned}$	29	LEVER-Sleep control switch lever GEAR AND SPRING ASSEMBLY-Pinion drive for sleep control segment gear (consists of pinion gear, pinion gear and shaft, spring, washers, and retaining clip)
TRZD-001		DIAL-Clock dial scale (luminous)		15	
TRZH-001		HAND-Sweep aecond hand HANDS-Hour and minute hands			
CLOCK MOVEMENT			$\begin{aligned} & * X C 40 \times 197 \\ & * X C 40 \times 198 \end{aligned}$	22	LEVER-Alarm control switch cam lever CONTACT ASSEMBLY--Upper switch contact and spring with attached fibre
* ${ }^{\text {Clix1 }}$	3	SCREW-Holds field core to baseplate. 14.40×1114 long, round head			
* $\mathbf{X C 1 ~}^{\text {X }} \mathbf{2}$	4	LOCKWASHER-Under screw head of switch assembly mounting screw and field	*XC40× 202	5	SPACER BUSHING-Field core spacer at screw mounting to base plate
		switch assembly mounting screw and field core mounting	*XC40X252	26	WASHER-Alarm signal cam and gear friction washer
* $\mathrm{XC1}^{\text {X }} 6$	10	SCREW-Used to assemble switch assembly to switch bracket	*XC40X275		
* $\mathrm{XC1} \mathrm{X}^{43}$	23	HEX NUT -For screw mounting switch assembly to switch bracket	$\left\lvert\, \begin{array}{r} * \mathbf{X C} 40 \times 276 \\ \mathbf{X C} 40 \times 277 \end{array}\right.$	20	SPACER BUSHING-Wake-up Manual switch control shaft bushing
*XC 10X 141	14	SHAFT ASSEMBLY-Time set shaft and gear assembly			SPACER BUSHING-For time set shaft SHAFT-Sleep control shaft and gear segment assembly
*XC11X11	6	SHAFT ASSEMBLY-Alarm set shaft and	*XC44X38	2	MOTOR ROTOR ASSEMBLY-Cased rotor and pinion (60 cycles)
*XC13X11	17	gear assembly sleeve assembly	*XC45X69	11	Motor and pinion (60 cycles) of: core, shading poles, and field coil (60
*XC14X32	18	GEAR ASSEMBLY-Minute hand friction gear, pinion gear and slee ve assembly	*XC59X699	13	cycles) SHAFT ASSEMBLY-Wake-up Manual
* $\mathrm{XC15X} 3$	16	GEAR ASSEMBLY-Alarm dial gear and sleeve assembly			Wake-up Manual control shaft assembly (detent spring index type)
*XC16X14	19	GEAR ASSEMBLY-Sweep second hand gear and shaft assembly	*XC59X723	13	SHAFT ASSEMBLY-Wake-up Manual control shaft assembly (cam index type) SCREW-Switch bracket and front plate mounting screws
* $\mathrm{XC17} \mathrm{\times 8}$	27	GEAR AND CAM-Alarm signal cam and gear assembly	* $\mathrm{XC64} \mathrm{\times 1}$		

* Parts used on previous receivers.

Model 510

SPECIFICATIONS

CABINET	Model Composition	$\frac{510}{\text { Brown plastic }}$	$\frac{511}{\text { Ivory plastic }}$
POWER SUPPLY	Voltage Frequency Wattage		105-120 volts 60 cycles 30 watts
OPERATING FREQUENCIES	Broadcast Band I-F Amplifier		$\begin{array}{r} 540-1600 \mathrm{kc} \\ 455 \mathrm{kc} \end{array}$
POWER OUTPUT	Undistorted Maximum		1 watt 1.75 watts
LOUDSPEAKER	Type Outside Cone D Voice Coil Impe	iameter dance (400 cy	Alnico 5 PM 4 inches s) $\quad 3.5 \mathrm{ohms}$
TUBE COMPLEMENT	Oscillator-Conve I-F Amplifier Detector and 1 s Power Output Rectifier	rter Audio	$\begin{array}{r} 12 \mathrm{SA} 7 \\ 12 \mathrm{BA} 6 \\ 12 \mathrm{SQ} 7 \\ 50 \mathrm{C} 5 \\ 35 \mathrm{~W} 7 \end{array}$

GENERAL INFORMATION

The Models 510 and 511 are table model receivers providing reception on the Broadcast Band and incorporate as a special feature an electric time clock with wake-up alarm. A Beam-ascope antenna is built in the radio providing good reception with. out an outside antenna.

RADIO CIRCUIT ALIGNMENT

EQUIPMENT REQUIRED

1. Test oscillator with tone modulation.
2. A.c output meter, $1 \frac{1}{2}$ volts full scale.
3. Paper capacitor, 0.05 mf .
4. Loop (see explanation below)
5. Insulated screwdriver,
6. Isolation transformer.

PROCEDURE-GENERAL

1. With the tuning scale control wheel turned so that the tuning condenser plates are fully meshed, the index should read approximately is inch to the right of the 500 kc scale calibration mark. If the reading is incorrect, remove the control wheel from the tuning condenser and replace for correct position. Do not attempt to correct the position by rotating the wheel on the shaft as this will cause the knob to slip.
2. For i-f alignment, it is necessary to remove the chassis from the cabinet.
3. Connect the output meter across the loudspeaker voice terminals.
4. Keep volume control at maximum and attenuate the test oscillator signal output so that the output meter reading never exceeds 1.0 volt.
5. Connect the capacitor as listed in column 2 between the output "High Side" of the test oscillator and the point of input specified. The oscillator output cable ground lead is connected to the receiver B

Model 511

ALIGNMENT CHART				
Step	Connect Test Oscillator to	Test Osc. Setting	Dial Drum Setting	Adjust Trimmer for Max. Output
1	12BA6 grid (1) in series with 0.05 mf cap.			2nd i-f trans trimmers, C14 and C15.
2	12SA7 grid (8) in series with 0.05 mf . cap.		Minimum capacity	1st i-f trans. trimmer, C8 and C9.
3		1620 kc		C4 (oscillator)
4		1500 kc	Tune for maximurn	C3 (antenna) (Rock-in)

6. For alignment of the oscillator and antenna trimmers, the input signal should be inductively coupled to the radio loop antenna, L1, by connecting a four-turn, six-inch diameter loop of bell wire across the signal generator output terminals, and then locating the loop to face the radio antenna loop about one foot away. To prevent possible errors in reference to previous signal measurement readings, the loop should not be changed with respect to the radio loop during any one set of adjustments.

STAGE GAIN AND VOLTAGE CHECKS

Trouble shooting is greatly enhanced by stage gain measurements which must be made by vacuum tube voltmeter or similar measuring instrument. The gain listed may have tolerances of $\pm 20 \%$. Use only low signal input so that the AVC is inoperative.

1. I-f stage gains

12SA7 Grid to 12BA6 Grid
50 (a) 455 kc
12BA6 Grid to 12 SQ 7 Diode Plate
50 (a. 455 kc

2. AUDIO GAINS

With the volume control (R11) at maximum, an input signal of 0.15 volts at 400 cycles across the control R11 will give approximately 0.5 watt output across the loudspeaker voice coil.

3. OSCILLATOR GRID BIAS

The d-c voltage developed across the oscillator grid leak (R1) averages 8.5 volts at 1000 kc , measured with V.T.V.M.

4. SOCKET VOLTAGES

The tube voltages are shown on Figure 3. They are taken from tube pins to $\mathbf{B}-$ unless specified otherwise. Great deviations of voltage values may help to localize defective components or tubes.

5. HUM

The hum voltage measured at the primary of the output transformer should not exceed 3 mV volts. This measurement should be made with an a-c voltmeter of a sensitivity of $20,000 \mathrm{ohm}$ volt in series with 0.5 mf . capacitor

Fig. 2. Tube and Trimmer Location

CLOCK SERVICE

Figure 5 shows clock parts referred to in the following para graphs and the parts list.

CLOCK MOVEMENT DISASSEMBLY

1. Remove clock movement from case. When removing knobs note that the Alarm-Set knob is a left-hand thread, while Alarm Radio is a pull-off knob.
2. Remove Bezel, Hands and Dial Face.
3. Remove the motor assembly by removing two screws (A) and break two soldered joints on Field. The Field and Rotor Assembly (R) can now be removed. The Rotor is held by friction only to the Field.
4. Remove Switch Assembly (B) by removing two screws from base plate.
5. Remove Switch Shaft Assembly (C) and spacer.
6. Remove Alarm-Set Shaft Assembly (D) and spacer.
7. Remove the three front plate assembly screws that are located under the Dial Face and then remove Front Plate.
8. Remove Alarm Gear Sleeve Assembly (E), Hour Gear

Sleeve Assembly (F), Minute Gear Sleeve Assembly (G), and Sweep Second Gear Shaft Assembly (H)
9. Remove Alarm Cam Gear Assembly (I) and Spring Washer (J).
10. Remove Alarm-Set Gear (K).
11. Remove Time-Set Gear and Shaft Assembly (L)
12. Remove Switch Cam Lever (M).

CLOCK MOVEMENT REASSEMBLY

Reassemble in the reverse order of disassembly, observing the following precautions:

1. The spring washer (J) should curve away from the gear when placed on the Alarm Cam Gear Assembly (I).
2. The Switch Cam Lever (M) fork must straddle the base plate post as shown in the illustration.
3. After reassembly of front plate, check the Sweep Second Gear (H) through the hole in the base plate to make sure it is free to turn.
4. Proceed with Alarm and Switch Adjustments as described below before installing hands.

ALARM AND SWITCH ADJUSTMENTS

1. Turn Alarm-Radio shaft to ALARM position
2. Slowly rotate Time-Set shaft clockwise until the contacts of the Switch Assembly (B) close.
3. Replace Dial Face, Alarm Dial, the Minute, Hour and Second Hands. Set all Hands and Dial so that they indicate 12 o'clock. Make sure all Hands and Alarm Dial are tight on their respective shafts.
4. With Alarm-Set knob pulled out, continue to rotate Time Set shaft clockwise and note that the vibrator arm (N) drops against field core approximately $7-10$ minutes later
5. Set alarm at some other selected position and make sure mechanism actuates within limits (± 1 minute).
6. Check alarm tone of vibrator. This can be adjusted by either bending vibrator arm nearer or farther away from field core. Bend arm near anchor point

CLEANING AND LUBRICATION

To clean, completely disassemble and clean all moving parts in carbon tetrachloride or some similar cleaner

The inside of the sleeves and shaft surfaces may be cleaned of oxidized oil by rubbing with a fine grade of steel wool dampened in carbon tetrachloride

Do not use too much oil and apply by means of a small wire (drop oiler). Too much oil collects dust and later oxidizes. Use only recommended clock oil, such as Nye's Celebrated Oil, which may be purchased from Wm. F. Nye Co., Inc., New Bedford, or equivalent.

CLOCK TROUBLES

1. Clock will not operate-Defective field coil, defective rotor, binding of parts.
2. Clock loses time-Binding parts, too little friction on minute hand sleeve assembly, defective rotor. Clock time-set shaft bent and rubs against hole in clock bracket.
3. Noisy Clock-Rotor defective, alarm armature improperly adjusted, loose parts, or binding of moving parts.

Fig. 5. Clock Part Identification

MODEL 510 AND 511 REPLACEMENT PARTS

CLOCK REPLACEMENT PARTS LIST

*Used on other models.

MODEL 515 (Brown Mottle) MODEL 517 (Moroon)

SPECIFICATIONS

CABINET:	
Height	$6 \frac{3}{10}$ inches
Width.	$11 \frac{18}{16}$ inches
Depth	... $41 / 4$ inches
ELECTRICAL RATING (INPUT):	
Voltage	105-120 volts, a-c
Frequency 60 cycles
Wattage. 30 watts
OPERATING FREQUENCIES:	
Intermediate Frequency.	455 kc
Broadcast Band	540-1600 kc
POWER OUTPUT:	
Undistorted. 1 watt	
Maximum . 1.75 watts	
LOUDSPEAKER:	
Type.	Alnico 5 PM
Outside Cone Diameter	4-inch
Voice Coil Impedance (400 cycles)	3.5 ohms
TUBE COMPLEMENT:	
Oscillator-Converter	Type 12SA7
I-F Amplifier	Type 12BA6
Detector and 1st Audio	Type 12SQ7
Power Output	Type 50C5
Rectifier...	. . Type 35W4

CAUTION: One side of the power line is connected to $B-$. Avoid any ground connections direct to $B-$. Use an isolating transformer when making service adjustments with the chassis removed from the cabinet.

GENERAL INFORMATION

The Models 515, 516, 517 and 518 are four-tube, plus rectifier tube, a-c/d-c superheterodyne receivers, employing a Beam-ascope antenna. Special features include an electric time clock with wake-up alarm and sleep control switch. In addition, the timer receptacle at the rear of the receiver provides an outlet connection for external appliances which is controlled by the normal function of the alarm and sleep control mechanism of the clock. The radio OFF-ON switch adjacent to the timer outlet provides control of radio operation so that the radio receiver may be turned off if so desired while using the external appliance. When radio operation is to be resumed, this switch must be turned to the on position.

C16, CI7, C19, AND C2O

The lead identification for the four-section ceramic capacitor RCW-3013 (K67J836) can be observed from the illustration of Figure 1.

Should it become necessary to service this unit, either the defective section can be cut out of the circuit and replaced by an individual capacitor (see Parts Replacement List, items UCC-036, UCC-039 and UCU-1036), or a complete new four-section unit, RCW-3013, can be installed.

MODEL 516 (Ivory) MODEL 518 (White)

Fig. 1. Capaeitor RCW-3013

STAGE GAIN AND VOLTAGE CHECKS

Stage gain measurements by vacuum tube voltmeter or similar measuring devices may be used to check circuit per. formance and isolate trouble. The gain values listed may have tolerances of 20%. Readings taken with low signal input so that AVC is not effective.
(1) I-F Stage Gains.

1 2SA7 Grid to 12BA6 Grid
12BA6 Grid to 12 SQ 7 Diode Plate
50 @ 455 kc
50 @ 455 kc
(2) Audio Gain.
0.15 volts at 400 cycles across the volume control (R11) with control set at maximum will give approximately $1 / 2$ watt output across the loudspeaker, LS1, voice coil.
(3) Oscillator Grid Bias.

D-c voltage developed across the oscillator grid leak (R1) averages 8.5 volts at 1000 kc .
(4) Socket Pin Voltages.

Figure 3 shows voltages from all tube pins to \mathbf{B} - unless otherwise specified. Voltage readings much higher or lower than those specified may help localize defective components or tubes.

Fig. 3. Socket Voltages

RADIO CIRCUIT ALIGNMENT

alignment frequencies:

R-F . 1500 kc
R-F 1620 kc
I-F . 455 kc

EQUIPMENT REQUIRED:

1. Test oscillator with tone modulation.
2. A-c out put meter, $1 \frac{1}{2}$ volts full scale.
3. 0.05 mf . paper capacitor.
4. Loop. (See note 6.)
5. Insulated screwdriver.

PROCEDURE-GENERAL:

1. With the tuning scale control wheel turned so that the gang condenser plates are fully meshed, the index should read approximately ${ }^{\frac{3}{16}}$ inch to the right of the 550 kc scale calibration mark. If it does not, remove the control wheel from the gang condenser shaft and replace it for correct position. CAUTION: Do not attempt to correct the position by rotating the wheel on the shaft as this will cause the knob to slip.
2. For i-f alignment, it is necessary to remove the chassis from the cabinet.
3. Connect the output meter across the loudspeaker voice coil terminals.
4. Keep radio volume control at maximum and attenuate the test oscillator signal output so that the output meter reading never exceeds 1.0 volt.
5. Connect the capacitor as listed in column 2 between the output "High Side" of the test oscillator and the point of input specified. The oscillator output cable ground lead is connected to receiver chassis.
6. For alignment of the oscillator and antenna trimmers the input signal should be inductively coupled to the radio loop antenna, L1, by connecting a four-turn, six-inch diameter loop of bell wire across the signal generator output terminals, and then locating the loop to face the radio antenna loop about one foot away. To prevent possible errors in reference to previous signal measurement readings, the loop with respect to the radio loop should not be changed during any one set of adjustments.

ALIGNMENT CHART

Step	Connect Test Oscillator to		Dial Drum Setting	Adjust Trimmers for Maximum Output
1	12BA6 grid (1) in series with 0.05 mf . cap.	455 kc	Minimum Capacity	2nd I-F trans. trimmers, C14 and C15
2	12SA7 grid (8) in series with 0.05 mf . cap.	455 kc	Minimum Capacity	1st I-F trans. trimmers, C 8 and C 9
3	Inductively coupled to radio loop	1620 kc	Minimum Capacity	C4 (oscillator)
4	Inductively coupled to radio loop	1500 kc	Tune for Maximum	C3 (antenna)

CLOCK SERVICE

Figures 5 and 6 show clock parts referred to in the following paragraphs and the parts list.

CLOCK MOVEMENT DISASSEMBLY

1. Remove clock movement from case. When removing knobs, note that the Alarm-Set knob is a left-hand thread, while Wake-Up Manual and Sleep are pull-off knobs.
2. Remove Bezel, Hands and Dial Faces.
3. Remove the motor assembly by removing two screws (3) and break two soldered joints on Field. The Field and Rotor Assembly (11 and 2) can now be removed. The Rotor is held by friction only, to the Field.
4. Remove Switch Assembly by removing two screws (12) from base plate.
5. Remove Switch Shaft Assembly (13) and ispacer.
6. Remove Alarm-Set Shaft Assembly (6) and spacer.
7. Remove the three front plate assembly screws that are located under the Dial Face and then remove Front Plate.
8. Remove the following gear assemblies and control levers in the order listed below:
(a) Sweep Control Shaft and Segment Gear (30)
(b) Alarm Dial Gear (16)
(c) Hour Hand Gear (17)
(d) Alarm Signal Cam and Gear, and Friction Washer $(27,26)$
(c) Sweep Control Switch Lever (29)
(f) Pinion Drive Gear Assembly (15) (drives Sleep Control Segment Gear)
(g) Alarm Control Switch Cam Lever (8)
(h) Time Set Shaft and Gear, and Spacer (14, 20)
(i) Drive Gear and Pinion Assembly (28)
(j) Minute Hand Gear (18)
(k) Sweep Second Hand Gear (19)

CLOCK MOVEMENT REASSEMBLY

Reassemble in the reverse order of disassembly, observing the following precautions:

1. The spring washer (26) should curve away from the gear when placed on the Alarm Cam Gear Assembly (27).
2. The Switch Cam Lever fork (8) must straddle the base plate post as shown in the illustration.
3. After reassembly of front plate, check the Sweep Second

Gear (19) through the hole in the base plate to make sure it is free to turn.
4. Proceed with Alarm and Switch Adjustments as described below before installing hands.

ALARM AND SWITCH ADJUSTMENTS

1. Turn Wake-Up Manual shaft to WAKE UP position.
2. Slowly rotate Time Set shaft clockwise until the contacts 21 and 22 of the Switch Assembly close.
3. Replace Dial Face, Alarm Dial, the Minute, Hour and Second Hands. Set all Hands so that they indicate 12 o'clock. Set figure 12 of the alarm dial to index with the smaller pointer of the hour hand. Make sure all Hands and Alarm Dial are tight on their respective shafts.
4. With Alarm Set knob pulled out, continue to rotate Time Set shaft clockwise and note that the Alarm vibrator arm drops against field core approximately $7-10$ minutes later.
5. Set alarm at some other selected position and make sure mechanism actuates within limits (± 1 minute).

6, Check alarm tone of vibrator. This can be adjusted by either bending vibrator arm nearer or farther away from field core. Bend arm near anchor point.

CLEANING AND LUBRICATION

To clean, completely disassemble and clean all moving parts in carbon tetrachloride or some similar cleaner.

The inside of the sleeves and shaft surfaces may be cleaned of oxidized oil by rubbing with a fine grade of steel wool dampened in carbon tetrachloride.

Do not use too much oil and apply by means of a small wire (drop oiler). Too much oil collects dust and later oxidizes. Use only recommended clock oil, such as Nye's Celebrated Oil which may be purchased from Wm. F. Nye Co., Inc., New Bedford, or equivalent.

CLOCK TROUBLES

1. Clock will not operate-Defective field coil, defective rotor, binding of parts.
2. Clock loses time-Binding parts, too little friction on minute hand sleeve assembly, defective rotor. Clock time set shaft bends and rubs against hole in clock bracket.
3. Noisy Clock-Rotor defective, alarm armature improperly adjusted, loose parts, or binding of moving parts.

MODELS 515,
$516,517,518$

Fig. 5. Back View of Clock

Fig. 6. Frant View of Clock, Front Plate Removed

REPLACEMENT PARTS LIST-MODELS 515, 516, 517 AND 518

[^3]These are temporary Cat. No. assignments to be superseded by regular
Cat. No. at a later date.

SPECIFICATIONS

CABINET

Model
Color
Height
Width
Depth
ELECTRICAL RATING (INPUT):
Voltage
Frequency
Wattage

OPERATING FREQUENCIES:
Intermediate Frequency
521
Dark Mahogany
$6{ }_{16}^{3} \mathrm{in}$.
10^{1} in.
$10^{1} \stackrel{3}{2} \mathrm{in}$.
Blond Mahogany
61^{3} in.
$10 \frac{1}{2} \mathrm{in}$.
6 in.

105-120 volts, a-c .60 cycles 30 watts

Broadcast Band
POWER OUTPUT:
Undistorted
Maximum
1 watt 1.75 watts

LOUDSPEAKER:
Type
Outside Cone Diameter
Voice Coil Impedance (400 cycles)
TUBE COMPLEMENT:
Oscillator-Converter
I-F Amplifier
Detector and 1st Audio
Power Output
Rectifier
CAUTION: One side of the power line is connected to B Avoid any ground connections direct to $B-$. Use an isolating transformer when making service adjustments with the chassis removed from the cabinet.

GENERAL INFORMATION

*The Models 521 and 522 are four-tube, plus rectifier tube, a-c/d-c superheterodyne receivers, employing a Beam-a-scope antenna. Special features include an electric time clock with wake-up alarm and sleep control switch. In addition, the timer receptacle at the rear of the receiver provides an outlet connection for external appliances which is controlled by the normal function of the alarm and sleep control mechanism of the clock. The radio OFF ON switch adjacent to the timer outlet provides control of radio operation so that the radio receiver may be turned off if so desired while using the external appliance. When radio operation is to be resumed, this switch must be turned to the on position.

RADIO CIRCUIT ALIGNMENT

ALUGNMENT FREQUENCIES:

R-F
 R-F
 I-F

1500 kc
1620 kc

EQUIPMENT REQUIRED:

1. Test oscillator with tone modulation.
2. A-c output meter, $11 / 2$ volts full scale.
3. 0.05 mf . paper capacitor.
4. Loop. (See note 6.)
5. Insulated screwdriver.

PROCEDURE-GENERAL:

1. With the tuning scale control wheel turned so that the gang condenser plates are fully meshed, the index should read approximately ${ }_{16}^{36}$ inch to the right of the 550 kc scale calibration mark. If it does not, remove the control wheel from the gang condenser shaft and replace it for correct position. CAUTION: Do not attempt to correct the position by rotating the wheel on the shaft as this will cause the knob to slip.
2. For i-f alignment, it is necessary to remove the chassis from the cabinet.
3. Connect the output meter across the loudspeaker voice coil terminals.
4. Keep radio volume control at maximum and attenuate the test oscillator signal output so that the output meter reading never exceeds 1.0 volt.
5. Connect the capacitor as listed in column 2 between the output "High Side" of the test oscillator and the point of input specified. The oscillator output cable ground lead is connected to receiver chassis.
6. For alignment of the oscillator and antenna trimmers, the input signal should be inductively coupled to the radio loop antenna, L1, by connecting a four-turn, six-inch diameter loop of bell wire across the signal generator output terminals, and then locating the loop to face the radio antenna loop about one foot away. To prevent possible errors in reference to previous signal measurement readings, the loop with respect to the radio loop should not be changed during any one set of adjustments.

ALIGNMENT CHART

Step	Connect Test Oscillator to	Test Osc. Setting	Dial Drum Setting	Adjust Trimmers for Maximum Output
1	12BA6 grid (1) in series with 0.05 mf . cap.	455 kc	Minimurn Capacity	2nd I-F trans. trimmers, C14 and C15
2	12 SA 7 grid (8) in series with 0.05 mf . cap.	455 kc	Minimum Capacity	```1st I-F trans. trimmers, C8 and C9```
3	Inductively coupled to radio loop	1620 kc	Minimum Capacity	C4 (oscillator)
4	Inductively coupled to radio loop	1500 kc	Tune for Maximum	C3 (antenna)

STAGE GAIN AND VOLTAGE CHECKS
Stage gain measurements by vacuum tube voltmeter or similar measuring devices may be used to check circuit per-
formance and isolate trouble. The gain values listed may have tolerances of 20%. Readings taken with low signal input so that AVC is not effective.
(1) I-F Stage Gains.

12SA7 Grid to 12BA6 Grid
50 @ 455 kc
$50 @ 455$ kc
watt out put across the loudspeaker, LS1, voice coil.
(3) Oscillator Grid Bias.
D.c voltage developed across the oscillator grid leak (R1) averages 8.5 volts at 1000 kc .
(4) Socket Pin Voltages.

Figure 2 shows voltages from all tube pins to $\mathbf{B}-$ unless otherwise specified. Voltage readings much higher or lower than those specified may help localize defective components or tubes.
(2) Audio Gain.
0.15 volts at 400 cycles across the volume control (R11)
with control set at maximum will give approximately $1 / 2$.

VIEWED FROM BOTTOM OF CHASSIS

Fig. 2. Socket Vollages

CLOCK SERVICE

Figures 3 and 4 show clock parts referred to in the following paragraphs and the parts list.

CLOCK MOVEMENT DISASSEMBLY

1. Remove clock movement from case. When removing knobs, note that the Alarm-Set knob is a left-hand thread, while Wake-Up Manual and Sleep are pull-off knobs.
2. Remove Bezel, Hands and Dial Faces.
3. Remove the motor assembly by removing two screws (3) and break two soldered joints on Field. The Field and Rotor Assembly (11 and 2) can now be removed. The Rotor is held by friction only, to the Field.
4. Remove Switch Assembly (12) by removing two screws from base plate.
5. Remove Switch Shaft Assembly (13) and spacer.
6. Remove Alarm-Set Shaft Assembly (6) and spacer.
7. Remove' the three front plate assembly screws that are located under the Dial Face and then remove Front Plate.
8. Remove the following gear assemblies and control levers in the order listed below:
(a) Sweep Control Shaft and Segment Gear (30)
(b) Alarm Dial Gear (16)
(c) Hour Hand Gear (17)
(d) Alarm Signal Cam and Gear, and Friction Washer $(27,26)$
(e) Sweep Control Switch Lever (29)
(f) Pinion Drive Gear Assembly (15) (drives Sleep Control Segment Gear)
(g) Alarm Control Switch Cam Lever (8)
(h) Time Set Shaft and Gear, and Spacer (14, 20)
(i) Drive Gear and Pinion Assembly (28)
(j) Minute Hand Gear (18)
(k) Sweep Second Hand Gear (19)

CIOCK MOVEMENT REASSEMBLY

Reassemble in the reverse order of disassembly, observing the following precautions:

1. The spring washer (26) should curve away from the gear when placed on the Alarm Cam Gear Assembly (27).
2. The Switch Cam Lever fork (8) must straddle the base plate post as shown in the illustration.
3. After reassembly of front plate, check the Sweep Second

Gear (19) through the hole in the base plate to make sure it is free to turn.
4. Proceed with Alarm and Switch Adjustments as described below before installing hands.

ALARM AND SWITCH ADJUSTMENTS

1. Turn Wake-Up Manual shaft to WAKE UP position,
2. Slowly rotate Time Set shaft clockwise until the contacts 21 and 22 of the Switch Assembly close.
3. Replace Dial Face, Alarm Dial, the Minute, Hour and Second Hands. Set all Hands so that they indicate 12 o'clock. Set figure 12 of the alarm dial to index with the smaller pointer of the hour hand. Make sure all Hands and Alarm Dial are tight on their respective shafts.
4. With Alarm Set knob pulled out, continue to rotate Time Set shaft clockwise and note that the Alarm vibrator arm drops against field core approximately $7-10$ minutes later.
5. Set alarm at some other selected position and make sure mechanism actuates within limits (± 1 minute).
6. Check alarm tone of vibrator. This can be adjusted by either bending vibrator arm nearer or farther away from field core. Bend arm near anchor point.

CIEANING AND LUBRICATION

To clean, completely disassemble and clean all moving parts in carbon tetrachloride or some similar cleaner

The inside of the sleeves and shaft surfaces may be cleaned of oxidized oil by rubbing with a fine grade of steel wool dampened in carbon tetrachloride

Do not use too much oil and apply by means of a small wire (drop oiler). Too much oil collects dust and later oxidizes. Use only recommended clock oil, such as Nye's Celebrated Oil which may be purchased from Wm. F. Nye Co., Inc., New Bedford, or equivalent.

CLOCK TROUBLES

1. Clock will not operate-Defective field coil, defective rotor, binding of parts.
2. Clock loses time-Binding parts, too little friction on minute hand sleeve assembly, defective rotor. Clock time set shaft bends and rubs against hole in clock bracket.
3. Noisy Clock--Rotor defective, alarm armature improperly adjusted, loose parts, or binding of moving parts.

- John F. Rider

RADIO REPLACEMENT PARTS LIST

Cat. No.	Symbol	Description	Cat. No.	Symbol	Description
UNIVERSAL REPLACEMENT PARTS			SPECIALIZED REPLACEMENT PARTS (Cont.)		
*UCC. 036	$\begin{aligned} & \mathrm{C} 17 \\ & \mathrm{C} 20 \\ & \mathrm{C} 5,10,21 \end{aligned}$	CAPACITOR-. 002 mf ., 600 v ., paper CAPACITOR-. 005 mf ., 600 v ., paper CAPACITOR-.	$\begin{aligned} & \text { RDK-218 } \\ & \text { *RDS-090 } \end{aligned}$	KNOB-Volume control knob	
*UCC-039					
*UCC-045			*RHC-024 *RHG-015		CLIP-For mounting osc. coil, T4
*UCU. 1036	C16. 19	replace respective sections of RCW-3013). CAPACITOR -220 mmf ., mica RESISTOR-- 22 ohms, $1 / 2$ w., carbon			CLIP-For mounting C23
*URD-009	R17		*RHH-004		GROMMET-For tuning cond. FASTENER-Snap fastener for holding back
*URD-017	R18	RESISTOR-150 ohms, $1 / 2 \mathrm{w}$ w., carbon			
*URD-029	R15		*RHI-010		STRAIN RELIEF GROMMET-For power
*URD-081		RESISTOR $-470,000 \mathrm{ohms}$, $1 / 2 \mathrm{w}$ w., carbon	*RHJ-005 *RHS-043		
*URD-113	R2, 13, 14				SPACER FOR TUNING CONDENSER PLUG AND SWITCH MOUNTING BRACKET-For J2 and S1
*URD-129	R10	RESISTOR- 2.2 meg., $1 / 2{ }^{\text {w }}$., carbon			
*URD-141 *URF-049	R12 R16	RESISTOR -6.8 meg., $1 / 2 w^{w}$, carbon RESISTOR- 1000 ohms, $2 w$, carbon			
SPECIALIZED REPLACEMENT PARTS				J2	CLIP-Loop connector clip SOCKET-Tube socket for 50C5, 35W4 SOCKET-Tube socket for 12SA7
RAB-135	L1	BACK-Cabinet back cover (includes loop L1)			SOCKET-Tube socket for 12SA7 SOCKET-For 12BA6 tube, 7 pin COIL-Oscillator coil
*RAC-085		MOUNTING BRACKET-Metal back	*RJS-117 *RJS-141 *RLC-090	T4	
		cover holds clock to cabinet CABINET-Dark mahogany, Model 521	$\begin{aligned} & \text { *RLC-090 } \\ & \text { *RMS-205 } \end{aligned}$	T4	COIL-Oscillator coil
RAU-343		CABINET-Blond mahogany, Model 522	RSW-067		OTENTIOMETER-0.5 meg., volume control
*RCC-074	$\mathrm{Cl}_{\mathrm{C} 22} \mathrm{C} 23 \mathrm{~A}, \mathrm{~B}$	CAPACITOR-. 003 mf ., 600 v ., paper			
*RCE-116		CAPACITOR-50 mf., 150 v .; 50 mf ., 150 v., dry electrolytic	$\begin{aligned} & \text { RSW. } 067 \\ & \text { *RTL. } 094 \end{aligned}$	$\begin{aligned} & \mathrm{S} 1 \\ & \mathrm{~T} 1 \end{aligned}$	SWITCH ON-OFF Switch TRANSFORMER-1st I-F transformer
*RCT-045	$\mathrm{C}_{\mathrm{C} 2 \mathrm{~A}, 4} \mathrm{C}_{\text {c }}$	CAPACITOR-Tuning capacitor (oscillator and r.f-section)	$\begin{aligned} & \text { RTL-095 } \\ & \text { RTO-036 } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathbf{T} 3 \end{aligned}$	TRANSFORMER-2nd I-F transformer TRANSFORMER-Output transformer
*RCW-1043	$\begin{aligned} & \text { C2S } \\ & \text { C16, } 17 . \\ & 19,20 \end{aligned}$				
*RCW-3013		CAPACITOR -47 mmf ., ceramic CAPACITOR -220 mmf., 002 mf., 220 mmf., 005 mf . (4 section ceramic) KNOB-Tuning dial wheel Does not in clude dial scale, see item RDS-090	*RWL-009 *RYN-005 *RZC-009	M1 LS1	CORD-Power cord (brown) NAMEPLATE G.E. MONOGRAM CLOCK-60 cycle, 105-125 v., clock assembly SPEAKER-PM loudspeaker
RDK-217			$\begin{aligned} & * R 2 C-009 \\ & * S 400 \mathrm{C} \end{aligned}$		

\dagger CLOCK REPLACEMENT PARTS LIST

Cat. No.	Symbol	Description	Cat. No.	Symbol	Description
miscellaneous			CLOCK MOVEMENT (Cont.)		
* XC3 36 *XC4X5 *XC31X26	1	KNOB-Time set shaft knob (bronze) KNOB-Alarm set knob (ivory) HAND-Sweep second hand	*XC40X76	24	SWITCH INSULATOR ASSEMBLY Consists of: two plastic and one fibre switch contact spring spacers
* XC 32 X 199		HANDS--Hour and minute hands (lumi-	*XC40X77	28	GEAR AND SPRING ASSEMBLY-
* XC53X31		BEZEL-Outer mounting rim			Drives alarm dial gear and hour hand gear (complete with pinion and shaft, pinion and gear, spring, washers and retaining
* $\mathrm{XC} 53 \mathrm{X117}$		BEZEL Numeral ring (gold finish)			clip) sear, spring, washers and retaining
* $\mathrm{XC} 55 \times 15$		DIAL-Alarm dial scale	*XC40X80	21	CONTACT ASSEMBLY-Lower switch
*XC58X16 *XC59X247		CRYSTAL Glass crystal	*XC40X185		contact and spring SPRING-Switch control shaft index spring
* \times C59X716		KNOB-Wake-up Manual and Sleep con	*XC40X185		SPRING-Switch control shaft index spring (for cam indexed control shafts)
*XC61X937		trol knob (ivory) DIAL-Clock dial scale (luminous)	$\begin{aligned} & * \times C 40 \times 194 \\ & * \mathbf{X C} 40 \times 196 \end{aligned}$	$\begin{aligned} & 29 \\ & 15 \end{aligned}$	EVER-Sleep control switch lever
CLOCK MOVEMENT					ion drive for sleep control segment gear
* ${ }^{\text {Clix1 }}$	3	SCREW-Holds field core to baseplate,			shaft, spring. washers, and retaining
		No. 4-40 $\mathrm{x}^{11}{ }^{1}$ in. long, round head	*XC40X197		LEVER-Alarm control switch cam le
* $\mathrm{XC1X} 2$	4	LOCKWASHER-Under screw head of switch assembly mounting screw and field	*XC40X198	22	CONTACT ASSEMBLY-Upper switch contact and spring with attached fibre
* $\mathrm{XC1X} 6$	10		*XC40X 202	5	arm
		bly to switch bracket	-	5	SPACER BUSHING Field core spacer at screw mounting to base plate
* $\mathrm{XC1X43}$	23	HEX NUT-For screw mounting switch assembly to switch bracket	*XC40X252	26	WASHER-Alarm signal cam and gear
*XC10X141	14	SHAFT ASSEMBLY-Time set shaft and gear assembly	*XC40×275		SPACER BUSHING-Wake up Manual
* $\mathrm{XC11X11}$	6	SHAFT ASSEMBLY-Alarm set shaft and	*XC40X276	20	SPACER BUSHING-For time set shaft
*XC13X11	17	GEAR Assembly	$\mathbf{X C 4 0 \times 2 7 7}$	30	SHAFT-Sleep control shaft and gear seg. ment assembly
*XC14X32	18	sleeve assembly ${ }^{\text {cent }}$ - Minute hand friction	*XC44X38	2	MOTOR ROYTOR ASSEMBLY-Cased
		Gear, pinion gear and sleeve assembly	*XC45X69	11	MOTOR Find pinion (60 cycles) ${ }^{\text {roter }}$ ASSEMBLY-Consists
* $\mathrm{XC15X3}$	16	GEAR ASSEMBLY-Alarm dial gear and sleeve assembly	*XC45X69	11	of: core, shading poles, and field coil (60 cycles)
*XC16X14	19	GEAR ASSEMBLY-Sweep second hand gear and shaft assembly	*XC59X699	13	SHAFT ASSEMBLY-Wake-up Manual
* $\mathrm{XC17} \mathrm{\times 8}$	27	GEAR AND CAM-Alarm signal cam and gear assembly			control shaft assembly (detent spring in dex type)
	9	FRONT PLATE ASSEMBLY-Complete with case studs and alarm set shaft spring (7)	*XC64X1	13	control shaft assembly (cam index type) SCREW-Switch bracket and front plate mounting screws
* $\mathbf{X C 3 5 X 9 3}$	25	BASE PLATE AND BACK GEAR-Base plate assembled complete with studs, back gear and pinion, and vibrator			

SPECIFICATIONS

CABINET:	
POWER SUPPLY:	Model 600 Battery Operation only. Battery Eveready No. 756, or equivalent Model 601, 3, 4 (AC or DC Operation) Voltage 105-1 20 volts Frequency (on AC) 50-60 cycles Power Consumption 15 watts Battcry Operation Battery Eveready No. 756 or equivalent
OPERATING FREQUENCIES:	Broadcast Band I-F Amplifier $\begin{aligned} & 540-1600 \mathrm{KC} \\ & . .455 \mathrm{KC} \end{aligned}$
POWER OUTPUT:	Undistorted 130 milliwatts Maximum 200 milliwatts
LOUDSPEAKER:	Type ... 4 inches Outside Cone Diameter Voice Coil Impedance (400 cycles) . . 3.2 ohms
TUBE COMPLEMENT:	

GENERAL INFORMATION

The Model 600 or $601,3,4$, portable radio is a four-tube superheterodyne broadcast receiver with a range of 540 to 1600 kc. The Model 600 operates on battery only, while for the Model $601,3,4$ the power source may be either 105 to 120 volts, 50 to 60 cycles, or direct current, when a power outlet is available. The receiver will also operate from its battery source, thus making it independent of external electric power, providing excellent operation in any location where external power is not available.

BATTERY-AC OR DC OPERATION (MODEL 601, 603, 604 ONLY)

The left knob turns on the battery provided that the power plug is well inserted into the socket on the chassis

For AC or DC supply ($105-120$ volts, 50 to 60 cycle operation), the same knob switches on the power when the power plug is pulled out of its socket on the chassis and inserted into the house outlet.

ELECTRICAL CIRCUIT ALIGNMENT
ALIGNMENT FREQUENCIES
1620 and 1500 KC
I-F.
EQUIPMENT REQUIRED

1. Test Oscillator with Tone Modulation.
2. AC Output Meter.
3. . 05 Mf . Paper Capacitor.
4. Insulated Screwdriver
5. Antenna Loop.

PROCEDURE-GENERAL

The Alignment Chart gives the alignment procedure with correct sequence of trimmer adjustments.

The chassis must be removed from the cabinet during i-f alignment.

ALIGNMENT CHART

Step	Test-Osc. Connected to:	Test-Osc. Frequency	Radio Pointer Sctting	Adjust for Maximum Meter Reading
1	1T4 grid (Pin 6) in series with .05 m ! capacitor	455 KC	550 KC	2nd I-F transformer (T2) primary and secondary coils.
2	1 R5 grid (Pin 6) in series with .05 mf capacitor	455 KC	550 KC	1st I-F transformer (T1) primary and secondary coils.
3	Inductively coupled	1620 KC	Gang condenser completely open	C2B
4	Inductively coupled	1500 KC	Tune for max.signal. Then set dial pointer at 1500 KC on dial mark	C1B

The test oscillator output signal should be attenuated so that the output meter reading never exceeds $1 / 2$ volt. Connect the capacitor listed in column 2 of Alignment Chart between the "high side" of the test oscillator and the point of input specified.
The output meter should be connected to the chassis ground; the "high side" of the oscillator output should be connected as indicated in the Alignment Chart. During the entire alignment procedure, the volume control should be at its maximum position. For alignment of the oscillator and r-f trimmers, the input signal should be inductively coupled to the radio loop antenna by connecting a 4 -turn, 6 -inch diameter loop of bell wire across the signal generator output terminals, and locate the loop about one foot from the radio loop antenna. To prevent possible errors in peak readings, the position of the loop with respect to the radio loop antenna should not be changed during any one set of adjustments.

STAGE GAIN AND VOLTAGE CHECKS

Stage gain by vacuum voltmeter or similar measuring device may be used to check circuit performance and isolate trouble. The gain values listed may have tolerances of 20 per cent. Reading should be taken with low signal input so that the AVC is not effective.

1. R-F STAGE GAINS

RR5 Grid (Pin 6) to 1T4 (Pin 6)
1T4 Grid (Pin 6) to 1S5 Diode Plate (Pin 3)

4. SOCKET PIN VOLTAGES

Fig. 5 and 6 show voltages from all tube pins to $B-$. Voltage readings much lower than those specified may help localize defective components or tubes.

©John F. Rider

PAGE 21-60 GENERAL ELECTRIC
MODELS 600,
601, 603, 604

BOTTOM VIEW OF CHASSIS
DC VOLTAGE TO B MINUS MEASURED WITH 20,000 OHMS PER VOL T METER. RECEIVER OPERATING ON IZOVOLTSAC

BOT TOM VIEW OF CHASSIS
OC VOLTAGE TO 日 MINUS MEASURED WITH 20,000 OHMS PER VOLT METER. RECEIVER OPERATING ON FRESH GATTERY

Fig. 5. Sockel Voltages, Model 600
Fig. 6. Socket Voltages, Model 601, 603 and 604

MODELS 600, 601, 603, AND 604 REPLACEMENT PARTS LIST

*Used on other Models
tFor Model 600 only
\dagger tfor Model 601, 3, 4 only

	SPECIFICATIONS
CABINET:	
POWER SUPPLY:	
OPERATING FREQUENCIES:	
POWER OUTPUT:	
LOUDSPEAKER:	Type................................... 4 inches Outside Cone Diameter Voice Coil Impedance (400 cycles) . 3.2 ohms
TUBE COMPLEMENT:	R-F Amplifier Oscillator-Converter I-F Amplifier Detector Audio Amplifier. Power Amplifier

GENERAL INFORMATION

The Model 650 portable radio is a five-tube superheterodyne broadcast receiver with a range of 540 to 1600 kc . The power source may be either 105115 volts, 5060 cycles a-c, or d-c, when a power outlet is available. The receiver will also operate from its battery source, thus making it independent of external electrical power, providing excellent operation in any location where external power is not available.

BATTERY-AC OR DC OPERATION.

The left knob turns on the battery, provided that the power plug is well inserted into the socket in the chassis.

For a-c or d-c supply (105115 volts, 50 to 60 cycle operation), the same knob switches on the power when the power plug is pulled out of its socket in the chassis and inserted into the house outlet.

ELECTRICAL CIRCUIT ALIGNMENT

EQUIPMENT REQUIRED:

1. Test Oscillator with Tone Modulation.
2. A-C Output Meter.
3. Paper Capacitor .05 Mf .
4. Insulated Screwdriver.
5. Coupling Loop for Test Oscillator (see text).
6. Isolation Transformer.

PROCEDURE-GENERAL.

1. The Alignment Chart gives the alignment procedure with correct sequence of trimmer ad justments. The chassis must be removed from the cabinet during i-f alignment. The locations of the i-f and r-f adjustments are shown in Figure 2.
2. The "low" side of the test oscillator output should be connected to the chassis ground; the "high" side should be connected as indicated in the alignment chart. The test oscillator output

ALIGNMENT CHART

Step	Test-Osc. Connected to:	Test-Osc. Frequency	Radio Pointer Setting	Adjust for Maximum Meter Reading
1	$\begin{aligned} & \text { 1T4 I-F } \\ & \text { grid in } \\ & \text { series with } \\ & .05 \mathrm{mf} . \\ & \text { capacitor } \\ & \hline \end{aligned}$	455 KC	550 KC	Iron cores of I-F transformer T2
2	1R5 converter grid in series with. 05 mf . capacitor	455 KC	550 KC	Iron cores of I-F transformer T1
3	Repeat Step 1 and 2			
4	Inductively coupled	1500 KC	1500 KC	Trimmers C 15 and C16*
5	$\left\lvert\, \begin{aligned} & \text { Inductively } \\ & \text { coupled } \end{aligned}\right.$	600 KC	600 KC	Iron core of T4 on back apron of chassis.

signal should be attenuated so that the output meter reading never exceeds 1,2 volt. Connect the capacitor listed in column 2 of the alignment chart between the "high" side of the test oscillator and the point of input specified.
PRECAUTION: If the signal generator is a-c operated, use an isolating transformer between the power supply and the radio receiver input. The use of an isolating capacitor is not recommended, as a-c through the capacitor will introduce hum modulation and/or create the possibility of a burned out signal generator attenuator.
3. The output meter should be connected across the voice coil terminals of the speaker.
4. During the entire alignment procedure the volume control should be rotated clockwise to its maximum position.
5. For alignment of the oscillator and r-f trimmers, the input signal should be inductively coupled to the radio loop antenna by connecting a 4 -turn, 6 -inch diameter loop of bell wire across the signal generator output terminals, and locate the loop about one foot from the radio loop for alignment. The position of the loop with respect to the radio loop should not be changed during any one set of adjustments to prevent possible errors in peak readings.
6. The antenna loop acquires a different inductance in the position when the back is closed. Therefore, the adjustment of the antenna and r-f trimmers has to be made with the back closed, through the two openings on the right side of the cabinet which normally are closed by plug buttons. After adjustments have been completed, the two plug buttons have to be put in place again.

stage gains and voltage checks

In order to check circuit performance and facilitate trouble shooting, the measurement of stage gain by means of a vacuum voltmeter or similar measuring device is recommended. The gain values listed may have tolerances of 20%. Readings should be taken with low signal input so that the AVC is not effective.

(i) R-F STAGE GAINS.

1T4 R-F Grid (Pin 6) to 1R5 Grid (Pin 6) ... 12 (a 1000 KC 1 R5 Grid (Pin 6) to 1T4 Grid (Pin 6) 18 ($1,1000 \mathrm{KC}$
1 T 4 Grid (Pin 6) to 1 S 5 Diode Plate (Pin 3) . 45 (1. 455 KC

(2) AUDIO GAIN.

.020 volt at 400 cycles across volume control (R13) with control set at maximum will give approximately .05 watts output across speaker voice coil.

MODEL 650

(3)
D.C voltage developed across oscillator grid resistor (R9) averages -8 volts at 1000 kc with respect to $\mathrm{B}-$.

(4) HUM

The hum voltage measured at the primary of the output transformer should not exceed 0.4 volts. This measurement should be made with an a-c voltmeter of a sensitivity of $20,000 \mathrm{ohm} / \mathrm{volt}$ in series with .5 mf . capacitor
(5) SOCKET PIN VOLTAGES.

Figure 4 shows voltages from all tube pins to $\mathbf{B}-$. Voltage
readings much lower than those specified may help localize defective components or tubes.

(6) MULTIPLE CERAMIC CAPACITOR (K68JI28).

This multiple capacitor unit is of the ceramic capacitor type and contains five capacitors C11A, B, C, D and C12. This unit, RCW-3015, is illustrated in Figure 5 for lead identification. If during service the ceramic capacitor unit is found to be defective, the entire unit may be replaced by the identical part, RCW. 3015, or the defective section may be located and disconnected from the receiver circuit and a single universal capacitor of equivalent electrical value used in its place.

REPLACEMENT PARTS LIST

*Used on previous production receivers.

600 volt poper capacitors are slocked to replace 200 or 400 volt rated production units, providing their larger size does not prohibit their use.

Fig. 2. Tube and Yrimmer Location (Model 650)

Fig. 3. Dial Stringing Diagram (Model 650)

O C VOLTAGES TO GROUND UNLESS OTHE RWISE SPECIFIED
all ratings are ac operation measured with reference to bRATINGS FOR BATTERY ARE SIMILAR TO AC RATINGS
VOLTAGE IS MEASURED WITH 20,000 OHMS PER VOLT METER
Fig. 4. Sockel Voltages (Model 650)

SHIELD
Fig. 5. Cannections for Capacitor RCW-3015 (K68.128)

SPECIFICATIONS

CABNET:

Material	Wood
Height	337/8 inches
Width.	25 inches
Depth.	$15 \frac{3}{16}$ inches
ELECTRICAL (INPUT):	
Voltage (AC only)	105-120
Frequency	60 cps
Wattage (on Radio)	
Wattage (on Phono)	55

OPERATING FREQUENCIES:
Broadcast Band . $455 \mathbf{4 5 0 - 1 6 0 0 ~ k c ~}$

POWER OUTPUT (177 Volts Line):

Undistorted	1 watt
Maximum	1.75 watts
LOUDSPEAKER:	
Type	Alnico PM
Outside Cone Diameter	10 inches
Voice Coil Impedance at 400 cps	3.2 ohms

PHONOGRAPH PICKUP:

Type Dual Stylus Variable Reluctance DC Resistance 280 ohms

RECORD CHANGER:

P15.
$331 / 3,45$ and 78 RPM

TUBE COMPLEMENT:

V1	RF Amplifier	12 SK 7
V2	Oscillator Converter	12SA7
V3	IF Amplifier	12BA6
V4	Detector-Audio Amplifier	12SQ7
V5	Rectifier	35Z5GT/G
V6	Audio Power Amplifier	35L6GT
V7	Phono Preamplifier	6AU6
I 1	Pilot Lamp	GE Mazda No. 47

GENERAL INFORMATION

The Model 740 is a combination radio-phonograph receiver. It employs a 6 -tube superheterodyne receiver and a record changer, Model P15. The servicing information given herein is complete except that it does not cover servicing of the record changer. Service data on record changer Model P15 is covered in service notes ER-S-P15.

CAUTION

One side of the power line is connected to $\mathbf{B}-$. Use an isolation transformer when making service adjustments with the chassis removed from the cabinet.

STAGE GAINS AND VOLTAGE CHECKS

Stage gain measurements by vacuum tube voltmeter or similar measuring device may be used to check circuit performance and isolate trouble. The gain values listed may have tolerances of ± 20 per cent. Readings are taken with low signal input so that AVC is not effective.

1. I-F Goin

12SA7 Grid to 12BA6 Grid 50 @ 455 KC
12BA6 Grid to 12SQ7 Diode Plate 50 @ 455 KC

2. Audio Gain

Input of 0.15 volts at 400 cycles across volume control (R6) with control set at maximum will develop approximately $1 / 2$ watt output across the speaker voice coil terminals.

3. Oscillator Grid Bias

DC voltage developed across the oscillator grid leak (R4) averages 8.5 volts at 1000 kc .
4. Tube Sockel Pin Voltoges

Fig. 3 shows voltages from tube pins to $\mathbf{B}-$. Voltage readings differing greatly from those specified may help localize defective components.

5. Hum Measurement

Hum measured across the voice coil of the speaker with the volume control set at minimum and band switch in the radio position should not exceed 7 millivolts.

Fig. 1. Dial Stringing Diagram

ELECTRICAL CIRCUIT ALIGNMENT

EQUIPMENT REQUIRED:

1. Test oscillator with tone modulation.
2. AC voltmeter, $11 / 2$ volts full scale.
3. Paper capacitor, 0.05 mf .
4. Insulated screwdriver.
5. Coupling loop for test oscillator (see text).
6. Isolation transformer.

ALIGNMENT PROCEDURE:

The alignment steps are given in table form of the Alignment Chart. Adjustment trimmers are shown in the illustration of Fig. 4.

1. The chassis should be removed from the cabinet with the antenna loop and back attached and the speaker leads reconnected.
2. An isolation transformer should be used for the receiver power source when aligning or servicing AC-DC receivers to prevent short circuiting of equipment and shock hazard.
3. The output meter should be connected across the terminals of the loudspeaker voice coil.
4. The receiver volume control should be turned to maximum and test oscillator signal output attenuated during alignment to develop not more than $11 / 4$ volts output meter reading at the loudspeaker.
5. For i-f alignment, the high side of the signal generator output cable should be connected through a .05 mfd . paper capacitor to the points indicated in the Alignment Chart. The low side of the output cable is connected to the receiver chassis.
6. To align the oscillator and r-f trimmers, the signal generator output is inductively coupled to the radio loop, L1, by connecting a four-turn, six-inch diameter loop of bell wire across its output terminals and then locating the loop about one foot from the radio loop antenna. To prevent possible errors in comparative peak readings, the positior of signal generator loop with respect to the radio loop antenna should not be changed during measurement.

ALIGNMENT CHART

Step	Connect Test Oscillator to:	Test Osc. Setting	Radio Detting	Adjust Trimmers for Maximum

I-F ALIGNMENT

1	V3, 12BA6 grid (Pin 1), in series with .05 mfd .			C9 and C8 of second i-f transformer T3
2		455 KC		C7 and C6 of first i-f transformer, T2
3			\ldots	Recheck adjustment of C9, C8, C7, C6, for maximum

R-F ALIGNMENT

4	Inductively coupled to radio	1620 KC	Minimum capacity C1A, C1B	C3, oscillator trimmer
5		1500 KC	Tune for Maximum	C1, r-f trimmer C2, ant. trimmer on Loop

Fig. 4. Tube and Trimmer Lecation

Fig. 5. Coil and Switch Connections

REPLACEMENT PARTS LIST-MODEL 740

Cat. No.	Symbol	Description
UNIVERSAL REPLACEMENT PARTS		
UCC-035	C27	CAPACITOR-. 001 mf ., 600 V ., paper
UCC-036	C22, 29	CAPACITOR-. 002 mf ., 600 v ., paper
UCC-039	C11	CAPACITOR-. 005 mf ., $600 \mathrm{v} .$, paper
UCC-040	C13, 26	CAPACITOR-. 01 mf ., 600 v . paper
UCC-041	C21, 28, 10	CAPACITOR-. 02 mf ., 600 v., paper
UCC-045	$\begin{aligned} & \text { C17, 18, } 19, \\ & 20,30 \end{aligned}$	CAPACITOR-. 05 mf ., 600 v., paper
UCC-048	C31	CAPACITOR-. 1 mf .600 v ., paper
UCU-020	C5	CAPACITOR - 47 mmf ., mica
UCU-036	C12	CAPACITOR- 220 mmf ., mica
URD-005	R12	RESISTOR-15 ohms, 1/2 w., carbon
URD-021	R14	RESISTOR-68 ohms, $1 / 2 \mathrm{w}$., carbon
URD-025	R1	RESISTOR-100 ohms, $1 / 2 \mathrm{w}$. , carbon
URD. 029	R10	RESISTOR-150 ohms, $1 / 2 \mathrm{w}$., carbon
URD-057	R2	RESISTOR-2200 ohms, 1/2 w., carbon
URD-073	R18	RESISTOR - 10,000 ohms, $1 / 2 \mathrm{w}$., carbon
URD-081	R4	RESISTOR - 22,000 ohms, $1 / 2 \mathrm{w}$., carbon
URD-097	R20, 23	RESISTOR - 100,000 ohms, $1 / 2 \mathrm{w} .$, car bon
URD-101	R16	RESISTOR-150,000 ohms. $1 / 2 \mathrm{w}$., car bon
URD. 109	R17	RESISTOR- 330,000 ohms, $1 / 2 \mathrm{w}$., car bon
URD-113	R8, 13	RESISTOR-470,000 ohms, $1 / 2 \mathrm{w}$., car bon
URD-121	R9, 22	RESISTOR-1 meg., 1/2 w., carbon
URD-129	R5, 21	RESISTOR-2.2 meg., $1 / 2 \mathrm{w}$., carbon
URD-137	R7. 19	RESISTOR-4.7 meg., $1 / 2 \mathrm{w}$. , carbon
URF-049	R11	RESISTOR-1000 ohms, 2 w., carbon
SPECIALIZED REPLACEMENT PARTS		
RAB-144		CABINET BACK
RAC-084		CHANGER PAN (COVER)
RAV-140		CABINET (MAHOGANY)
RCE-117	C15A,B,C,D	CAPACITOR-Electrolytic
RCN-039		CAPACITOR- 2 mmf , mica
RCT-048	C1A,B,C,C3	TUNING CAPACITOR
RCY-016	C2	CAPACITOR-Trimmer

Cat. No.	Symbol	Description
	SPECIALIZED REPLACEMENT PARTS (Cont'd)	
RDC-032		DIAL CORD
RDE-097		ESCUTCHEON
RDK-212		DRAWER PULL
RDK-231		KNOB
RDK-232		KNOB (ARROW)
RDP-051		POINTER-Dial pointer
RDS-102		BACK PLATE AND DIAL SCALE
RMC-002		CLIP-Oscillator coil
RHC-024		CLIP for capacitor
RHC-038		MOUNTING CLIP (RF CLIP)
RHG-018		GROMMET (TUNING CAPACITOR MTG.)
RHG-029		GROMMET
RHJ-007		SPACER (TUNING CAP. MTG.)
RHS-064		SCREW-Wood, No. $4 x^{7} / 1 \mathrm{in}^{\text {in., lg, rd. hd. }}$
RJC-001		SPEAKER LEAD PINS
RJS-003		TUBE SOCKET for V1, V2, V'4, V5, V6
RJS-049	J 2	PHONO POWER SOCKET
RJS-092		TUBE SOCKET for V7
RJS.097	J1	PHONO SOCKET
RJS. 141		TUBE SOCKET for V3
RJX-031		PILOT LAMP SOCKET
RLC-015	L2	OSCILLATOR COIL
RLI-125	L3	RF COIL
RLL-041	L_{1}	LOOP-Antenna loop
RMM-151		CHANNEL RUBBER
RMM-153		DRAWER SLIDE
RMS. 130		DIAL CORD SPRING
RMS-221		STABILIZER SPRING
RMX-174		DRIVE SHAFT AND BUSHING AS. SEMBLY
ROP-018		SPEAKER-10 inch
RJP-003	P2	AC POWER PLUG
RJX-007	P1	PHONO PLUG
RRC.151	R6, S3	VOLUME CONTROL AND SWITCH
RSW-084	S2	PHONO-RADIO-TONE SWITCH
RTF-001	T4	FILAMENT TRANSFORMER
RTL-115	T2	1st I-F TRANSFORMER
RTL-116	T3	2nd I-F TRANSFORMER
RTO.038	T1	OUTPUT TRANSFORMER
RWL-004		POWER CORD

PHONOGRAPH PICK-UP

Type.
DC Resistance

Dual Stylus, variable reluctance
DC Resistance
340 ohms

ANTENNA

FM antenna

GENERAL

Models 752 and 753 are similar except for cabinet. For service information for the record changer, refer to General Electric service notes ER-S-P15.

These models are designed to operate from built-in antennas or from an external FM 300 ohm antenna. The receiver may be operated on the built-in FM antenna by connecting the brown wire which extends from the rear of the chassis to the left hand terminal of the dipole antenna terminals. If it is necessary to install an external FM antenna, the brown wire extending from the rear of the chassis should be disconnected from the antenna terminal strip.

These receivers use a reflex circuit to amplify the FM r-f signal in V2. The FM r-f signal is coupled to the grid of V2 through C46 and is amplified by V2. It is then coupled from the plate of $V 2$ to the grid of $V 1$, the converter, by $C 7$. L9 keeps the FM r-f signal out of the FM i-f transformer T3, while C7 is a small value to keep the FM i-f from grid of the converter tube.

STAGE GAIN AND VOLTAGE CHECKS

Stage gain measurements, by a vacuum tube voltmeter or similar measuring device, may be used to check circuit performance and isolate trouble. The gain values listed may have tolerances of ± 20 per cent. Readings should be taken with low signal input so that AVC is not effective.

1. R-F AND I-F STAGE GAINS

Signal applied through an IRE dummy antenna:

AM) V1 to V3 Grid	at 455 KC
(FM) Dipole Terminals to V1 Grid	1.0 at 98 MC
(FM) V1 Grid to V2 Grid	1.5 at 10.7 MC
(FM) V2 Grid to V3 Grid	50 at 10.7 MC
(FM) V3 Grid to V4 Grid	22 at 10.7 M

AUDIO POWER OUTPUT

DIAL LAMP
Mazda No. 42

RECORD CHANGER
P15 ($331 / 3,45$ and 78 RPM)

S

07 volts at 400 cps across the volume control will give approximately $1 / 2$ watt output across the speaker voice coil. Set volume control at maximum.

3. OSCILLATOR GRID BIAS

D-c voltage developed across R3:
7 volts at 1000 KC (use 220 K resistor to isolate VTVM)
3 volts at 98 MC (use 220 K resistor to isolate VTVM)

4. SOCKET VOLTAGES

Figure 6 shows typical tube pin voltages. All readings should be made from the tube pin to chassis, unless otherwise indicated.

5. HUM MEASUREMENT

Hum measured across the voice coil of the speaker with the volume control set at minimum and band switch in the AM position should not exceed 7 millivolts.
On FM position ground the limiter grid through a .01 mfd . capacitor and measure the hum across the voice coil with volume control at maximum. Hum should not exceed 15 millivolts.

Fin. 1. Tube and Trimmer Location

METER ALIGNMENT

Two methods of alignment are given below (1) meter, and (2) visual alignment, which allows more precision in aligning the i - f transformers and particularly the discriminator transformer, T6.

EQUIPMENT REQURED FOR METER ALIGNMENT

1. Test oscillator with tone modulation to cover $455 \mathrm{kc} ; 520$ to $1620 \mathrm{kc}, 10.7 \mathrm{mc}$, and 88 to 108 mc .
2. 20,000 ohm-per-voltmeter, or vacuum tube voltmeter.
3. Output meter.
4. .01 mfd paper capacitor.
5. 200,000 ohm, $1 / 2$ watt resistor.
6. Loop of wire. See note 6 .

meter allgnment notes

1. Use unmodulated signal.
2. Connect 20,000 ohm-per-volt meter from junction of R25 and C27 to chassis. Use 10 -volt scale, steps 4 and 5.
3. Connect 20,000 ohm-per-volt meter from pin 1 of V4 to ground in series with a 200,000 ohm resistor. The resistor must be connected directly to the grid pin to minimize capacity loading and to isolate the i-f signal from the meter. Keep signal generatar down so that meter indicates not more than 1 volt (5 microamps through 200,000 ohms). (Use microamp scale.) A vacuum tube voltmeter may be used to measure 1 volt at the grid of V4.
4. Use 400 cycle modulation.
5. Connect a standard output meter across speaker voice coil.

Turn volume control full on. Keep signal generator output down so that output meter indicates not more than $1 / 2$ watt output during alignment.
6. For alignment of the AM oscillator and R-F trimmer, the signal should be inductively coupled to the loop antenna by connecting a four turn, six inch diameter loop of wire across the signal generator terminals, and then locate the loop about one foot from the radio loop antenna. To prevent possible errors in peak readings, the position of the loop in respect to the radio loop should not be changed during any one set of adjustments.
7. To align the first FM i-f transformer T1, it is necessary to disconnect the copper strap from the band switch to pin 7 of V1 (6BE6) by unsoldering the strap from the tube pin connection. Resolder the strap after T1 is aligned.
8. When tuning the secondary of T6 three minimum points will be obtained. The center one is the correct setting. As the transformer is tuned either side of 10.7 MC , the meter reading should increase.
9. Termination impedance of signal generator should be $\mathbf{3 0 0}$ ohms.
10. When detuning the signal generator in step (4), two maximum meter readings will be obtained, one on each side of 10.7 MC. The primary of T6 should be aligned to maximum when the signal generator is tuned to the smaller of these two peaks.
11. Make all chassis connections for FM-IF alignment as short as possible. In step 9 connect the ground side of the signal generator at the chassis ground in the center of the 6BE6 socket using a short ground connection.
meter alggnment chart

Step No.	Signal Generator Frequency	Signal Input Point	Band Switch	Dial Setting	Adjust	See Note
AM-IF AlIGNMENT						
1	455 KC	6BE6 grid (Pin 7 of V1) thru 01 mfd .	AM	550 KC	Primary and secondary cores of T5 for maximum.	4, 5
2					Primary and secondary cores of T2 for maximum.	

FM DISCRIMINATOR ALIGNMENT

AM-RF ALIGNMENT

10	1620 KC	Inductively coupled	AM	C1 completely open.	Adjust C9 for maximum.	4, 5,
11	1500 KC			For maximum output.	Adjust C5 for maximum while rocking generator. Set pointer to 1500 KC .	

FM-RF ALIGNMENT

12	108 MC unmodulated	Dipole terminals	FM	C1 completely open.	Adjust C12 for maximum.	$\begin{aligned} & 1,3 \\ & 6,9 \end{aligned}$
13	108 MC unmodulated			For maximum output. ALIGNMENT	Adjust C6 for maximum while rocking generator.	

EQUIPMENT REQURED FOR VISUAL ALIGNMENT

1. General Electric YGS-3 AM and FM signal generator, or equivalent.
2. General Electric ST-2A oscilloscope or equivalent.
3. One meg. resistor, one $22,000-\mathrm{ohm}$ resistor, one .01 mfd capacitor.

NOTES FOR VISUAL ALIGNMENT

1. Connect vertical plates of scope to the limiter grid, pin 1 of V4, through 1 meg. and chassis.
2. Connect vertical plates of scope to junction of C24, R14, and R13 through 1 meg. Connect low side of scope to chassis
3. Connect vertical plates of scope across $\mathbf{C} 27$ to align the dis criminator transformer (T6). Connect high side of scope to junction of C27 and R26 through 1 meg.
4. Use a 60 cycle amplitude modulated signal for AM and FM oscillator alignment. Apply a 60 cps voltage to the horizontal plates of the scope.
5. In some cases tuning of the converter grid will cause "pulling" of the oscillator and will change the oscillator frequency. After centering the response curve on the screen if peaking of C5 on AM alignment or C6 on FM alignment causes the curve to move off the screen, it will be necessary to recalibrate the oscillator as in steps 3 and 12.

6. The termination impedance of the signal generator should be 300 ohms to properly match the input impedance of this receiver for FM r-f alignment.
7. To align the lst i-f FM transformer T 1 , it is necessary to disconnect the copper strap from pin 7 of V1 (6BE6 converter) to the band switch by unsoldering it from the tube pin. Resolder after aligning T1.
8. For alignment of the AM oscillator and r-f trimmers, the signal should be inductively coupled to the loop antenna by connecting a four turn, six inch diameter loop of bell wire across the signal generator terminals, and then locate this loop about one foot from the radio loop antenna. To prevent possible errors in peak readings, the position of the loop with respect to the radio loop should not be changed during any one set of adjustments.
9. When using a sweep signal, it is necessary to apply the same sweep voltage to the horizontal plates of the oscilloscope which is used to sweep the r-f frequency.

It may be necessary to use an RF phase shift network to properly phase the input to the scope. This may be done by shunting a .005 mfd . capacitor across the horizontal plate terminals of the scope and by using a $1 / 2$ megohm potentiometer in series with the high side of the horizontal sweep voltage line. Adjust the potentiometer to superimpose the retrace on the trace.
10. Make all chassis connections for FM-IF alignment as short as possible. In step 7 connect the ground side of the signal generator at the chassis ground at the center pin of the 6BE6 socket using a short ground connection.
11. If slight distortion is encountered on weak FM stations, it may be necessary to increase the FM-IF bandwidth to a minimum of 120 kc or a maximum of 140 kc wide at 50% of peak amplitude. This should be done by stagger tuning T3 only. The amplitude of the video IF response should not be reduced more than 20%. Use a signal generator accurately calibrated to supply markers for the bandwidth measurement.
To stagger tune T3, use a sweep voltage as in step 7, page 4. Connect a scope as in note 1. Turn the primary of T3 (bottom core) slightly clockwise. Turn the secondary of T3 (top core) counterclockwise to center the 10.7 mc marker at the peak of the curve. Check the bandwidth.

VISUAL ALIGNMENT CHART

FM DISCRIMINATOR ALIGNMENT

8	$\begin{aligned} & 10.7 \mathrm{MC} \pm \\ & 300 \mathrm{KC} \text { at } 60 \\ & \text { cps sweep } \\ & \text { rate. } \end{aligned}$	6BA6 grid (pin 1 of V3) thru .01 mfd .	FM		Primary of T6 for maximum amplitude. See Fig. 4 (B).	3, 10
9					Secondary of T6 for equal amplitude and symmetry of positive and negative peaks of curve. See Fig. 4 (B).	
10	Recheck step 8					
11	Recheck step 9					
FM-RF ALIGNMENT						
12	108 MC AM modulated with 60 cps .	Dipole terminals	FM	C1 completely open. (Min. capacity)	C12 for steepest slope of straight line trace.	$\begin{aligned} & 1,4, \\ & 6 \end{aligned}$
13	$98 \mathrm{MC} \pm 300$ KC at 60 cps sweep rate			For max. amplitude of curve.	C6 for max. amplitude and symmetry of curve. See Fig. 4 (A).	$\begin{aligned} & 1,5, \\ & 6 \end{aligned}$

REAR VIEW OF SWITCHES WITH CHASSIS INVERTED

Fig. 4. IF and Discriminator Curves

RECORD CHANGER: Model Pl5, Pages RCD.CH.2l-13, through RCD.CH.21-18.

ALL VOLTAGES MEASURED TO CHASSIS USING A 20,000 OHM PER VOLT METER
ALL VOLTAGES ON BC BAND UNLESS OTHERWISF NOTED
REPLACEMENT PARTS LIST

Cat. No. | Symbol |
| :---: |
| UNIVERSAL REPLACEMENT PARTS |

*UCC-035	C34	CAPACITOR-
*UCC-036	C19, C61	CAPACITOR - $.002 \mathrm{mfd} ., 600 \mathrm{v.}$, paper.
*UCC-037	C31	CAPACITOR - .003 m
*UCC-039	${ }_{\text {C33, }} \mathbf{C} 23$,	CAPACITOR- 005 mfd ., 600 v ., pa
*UCC-040	C28	
	C33, C42	
*UCC-041	C21, C37	CAPACITOR-. 02
*UCC-045	$\mathrm{C}_{4} 40, \mathrm{C} 41$,	CAPACITOR-. 05 mfd. ,
*UCC-048	C59, C60	CAPACITOR-. 1
*UCC-059	C38	CAPACITOR-. 005 - 1000
*UCU-001	C 4	CAPACITOR-4 mmfd., 500 v ., mica
*UCU-016	${ }^{\text {C } 26}$	CAPACITOR - 33 mmfd ., 500 v ., mica
*UCU-020	C36	CAPACITOR-47 mmfd., 500 v ., mica
*UCU-044	C35	CAPACITOR -470 mmfd , 500 v ., mica
*UCU-1036		CAPACITOR- 220 mmid ., 500 v ., mica
*UCU-204	${ }^{\text {C } 2}$	CAPACITOR 620 mmfd ., 500 v ., mica
*URD-013	R38	RESISTOR- 33 ohms, $3 / 2 \mathrm{w}$., carbon
*URD.025	R4, R10	RESISTOR-100 ohms, 1/2 w., carbon
*URD-031	R21	RESISTOR-180 ohms, $1 / 2 \mathrm{w}$., carbon
*URD-041	R32	RESISTOR- 470 ohms, $1 / 2 \mathrm{w}$., carbon
*URD-049	R35	RESISTOR - 1000 ohms, $1 / 2$ w., carbon
*URD-057	R7, R12	RESISTOR - 2200 ohms, 1/2 w., carbon
URD-061	R6, R	RESISTOR-3300 ohms, $3 / 2$ w., carbon
*URD-069	R49	RESISTOR-6800 ohms, $3 / 2$ w., carbon
*URD-081	R3, R23	RESISTOR- 22,000 ohms, 伨 \mathbf{w}., carbon
*URD-089	R13. R14	RESISTOR-47,000 ohms, $1 / 2$
*URD-097	$\begin{aligned} & \text { R17, R26. } \\ & \text { R37, } \\ & \text { R50 } \end{aligned}$	RESISTOR- 100,000 ohms, 1/2
*URD-099	R24, R25	RESISTOR- 120,000 ohms,
*URD-105	R15, R30	RESISTOR-220,000 ohms,
*URD-113	R28, R29	RESISTOR - 470,000 ohms,
*URD-121	R20, R36	RESISTOR- 1 meg., $3 / 5$
*URD-129	R16	RESISTOR- 2.2 meg., $1 / 2 / 2$
*URD-133	R44, R51	RESISTOR-3.3 meg., $1 / \mathrm{w}$
*URD-141	R27	RESISTOR 6.8 meg ., $3 / 2 \mathrm{w}$
*URE-037	R31	RESISTOR-330 ohms, 1 w.

Cat. No.	Symbol	Description
RHI-011		STRAIN RELIEF - On power cord
*RHJ-006		SPACER TUNING (gang)
RII.047		INSULATING WASHER-Under JI
*RJC-001		SPEAKER LEAD PINS
*RJC-002		SPEAKER LEAD CLIPS for S1212D7
RJP-003	P2	AC POWER PLUG
*RJP-004	P1	PHONO PLUG.
*RJP-010	Jı	PHONO JACK \& PLUG (Female)
RJS-003		SOCKET-Tube socket for V6, V7
RJS-012		MOUNTING PLATE-For electrolytic..
*RJS-049	J2	PHONO POWER SOCKET (Female).
RJS-092		SOCKET - Tube socket for V8
RJS-118		SOCKET-Tube socket for V5
RJS-145		SOCKET-Tube socket for V1, V2, V3, V4.
RJX-031		PILOT LIGHT SOCKET
*RLB.029	L4	COIL-FM R-F
*RLC-066	L5	COIL-B-C osc.
*RLC-102	L8	COIL-FM Osc.
*RLI-088	L2	CHOKE COIL-FM antenna
*RLI-122	L6, L7	CHOKE COIL
RLI-124		CHOKE COIL-FM R-F pl. osc. cathode.
RLL-039	L3	LOOP ASSEMBLY
RMM-151		CHANNEL RUBBER
RMM-153		DRAWER SLIDE, GRANT PULLEY HARDWARE
*RMS-111		SPRING (DIAL CORD)
RMS-221		ST ABILIZER SPRING-On changer pan
RMX-171		DRIVE SHAFT \& BUSHING ASSEMBLY.
RMX-172		DRUM AND SHAFT ASSEMBLY
RRC-141	R18	VOLUME CONTROL
*RRT-003	R33. R34	RESISTOR-1220-6500 ohms, 9 w ., w.w.
RSW-079	$\begin{gathered} \text { SIA, S1B. } \\ \text { SiC. } \\ \text { S1D } \end{gathered}$	BAND CHANGE SWITCH
RSW-080	S2A. S2B,	TONE CONTROL SWITCH
*RTD.010	$\begin{array}{r} \mathrm{S} 2 \mathrm{D} \\ \mathrm{~T}, \mathrm{C}, \end{array}$	DISCRIMINATOR TRANSFORMER
	$\begin{aligned} & \text { C56 } \\ & \text { C57 } \end{aligned}$	
*RTL-097	T2,C47	1st I-F TRANSFORMER-AM
*RTL-098	T5, ${ }^{\text {c }}$ 25,	2nd I-F TRANSFORMER-AM
	$\begin{aligned} & \mathrm{C} 24, \\ & \mathrm{C} 53, \\ & \mathrm{C} 54 \end{aligned}$	
*RTL-099	T 1, T3, C 45, C46, C49, C50	1st, 2nd I-F TRANSFORMER-FM
*RTL-114	T9 17	
RTO-089	T8	OUTPUT TRANSFORMER POWER TRANSFORMER
RWL-023		POWER CORD-3 wire, 8 f
S1212D7		SPEAKER-12 inch...

PAGE 21-2 GOODRICH
MODEL 92-529,
Ch. BJ

ALIGNMENT PROCEDURE

PRELIMINARY:
Output meter connection
Output meter reading to indicate 500 MW (Standard Output) .. 1.27 volt
Generator modulation
$30 \% 400$ cycles
Position of volume control
Set Dial Pointer
-3/32" from center of left shaft, variable condenser closed
Set band switch

AM ALIGNMENT

			AM ALIGNME			
POSITION OF VARIABLE	GENERATOR FREQUENCY	DUMMY ANTENNA	GENERATOR CONNECTION HIGH SIDE	GENERATOR CONNECTION GROUND LEAD	ADJUST TRIMMERS IN ORDER SHOWN FOR MAX. OUTPUT	TRIMMER FUNCTION
Open	455 Kc	. 05 Mfd	Mixer grid	Chassis	1, 2, 3, 4	Ose
1620 Kc	1620 Kc		*Test loop	Test loop	11	Oscillator
1400 Kc	1400 Kc		*Test loop	Test loop	12	Antenna
** 600 Kc	600 Kc		*Test loop	Test loop	Check-point	Antenna

*Connect generator lead to a Standard Hazeltine Test Loop. Model 1150 , placed two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the set loop.
**With a generator signal of 600 Kc , tune the set to the point where maximum output is obtained, which should be approximately 600 Kc on the dial. Adjust antenna section plates of variable for maximum output.
The alignment procedure should be repeated in the original order for greatest accuracy.
Always keep the output from the signal generator at its lowest possible value to make the A. V. C. action of the receiver ineffective.

FM ALIGNMENT

DETECTOR AND IF ALIGNMENT USING SIGNAL GENERATOR AND OSCILLOSCOPE

1. Connect vertical input of scope across volume control of receiver (Grounded terminal to chassis, ungrounded terminal to high side of the control).
2. Connect FM Generator, High Side, to grid of $2 n$ IF tube through .01 mfd . dummy, Low Side, to chassis.
3. Connect sweep voltage of generator to horizontal terminals of scope.
4. Set generator frequency to 10.7 Mc modulated either 60 cycles or 400 cycles, 250 Kc sweep (125 Kc deviation).
5. Set volume control to maximum, variable condenser fully open, band switch to right (FM).

Adjust detector primary slug \#5 for maximum vertical sweep of the scope pattern.
Adjust detector secondary slug \#6 for symmetry of the pattern. Pattern should look like Fig. 4, with the some amount of curve on both ends.
Connect generator, high side, to mixer coil as in Fig. 2, low side to chassis.
Short A. V. C. to chassis at junction of R15 and R19.
10. Disconnect the negative lead of C22 from pin \#2 of 6 T8.
11. Connect vertical input of scope across RI4. (Grounded terminal to chassis, ungrounded terminaloto high side of resistor.)
12. Adjust IF slugs 7, 8, 9, 10 for greatest vertical sweep of the pattern. Stagger tune (detune) slightly so that pattern looks like Fig. 7. 13. Resolder the negative lead of condenser disconnected after alignment is completed.

NOTE: A double trace pattern, as in Fig. 5 or Fig. 6 for detector alignment, or Fig. 8 for lf alignment, may be caused by a slight out of phase condition between the sweep voltage to the horizontal terminals of the scope and the modulation on the generator signal. To correct this condition, connect a condenser of about .0005 mf . across the horizontal input terminals of the scope and a 1 megohm variable resistance in series with the lead to the ungrounded terminal. Adiust the resistance until the two traces coincide.

POSITION OF VARIABLE	DETECTOR ALIGNMENT USING SIGNAL GENERATOR AND VTVM					
	GENERATOR FREQUENCY 10.7 Mc	DUMMY ANTENNA	GENERATOR CONNECTION HIGH SIDE 2d IF grid	GENERATOR CONNECTION GROUND LEAD Chassis	ADJUST TRIMMERS IN ORDER SHOWN \#*5, \#*6	TRIMMER FUNCTION Datector
	10.7 Mc				\#*5, \#*6	Datector

\#*5 is adjusted for maximum A. V. C. voltage. A vacuum tube voltmeter or a 20,000 ohm per volt voltmeter with a low V. range can be used to measure the A. V. C. voltage. Connect negative lead to junction of RI5 and R1.9 on band switch and positive lead to the chassis.
\#*6 is adjusted for zero reading of a vacuum tube voltmeter or a 20,000 ohm per volt voltmater, connected as shown in Fig. 3. Rock this adjustment through the xero point to see that the voltage is positive on one side of the xero point and negative on the other.
NOTE: If a 10.7 Mc FM generator is not available for alignment of detector, an unmodulated signal of 10.7 Mc from an accurately calibrated conventional AM type generator can be used. (Voltmeter alignment only).
I.F. alignment using sianal generator and V.T.V.M. not recommended.

Repeat "RF and Ant." adjustments until proper tracking is obtained at both 90 and 106 Me , since tracing the set at one frequency effects the tracking at the other frequency.
All RF trimmers are adjusted for maximum output, measured with output meter across speaker voice coil.
For RF alignment, use FM generator signal modulated with 400 cycles 45 Kc sweep (22.5 Kc deviation).

Ch. BJ

©John F. Rider

CAUTION

Always remove the power cord from its receptacle before starting to replace tubes or batteries.
Do not allow cells which have become too weak to " A " supply
$41 / 2$ volts operate the set properly to remain in the set for any Eveready No. 746 " A " Battery or equivalent.
length of time.

ELECTRICAL SPECIFICATIONS

Power Supply
105-125 volts DC or $50-60$ cycles AC
15 watts
Batteries
A-4 $1 / 2$ volts. 100 ma .
B- $671 / 2$ volts. 8 ma. average.
Frequency Range....... 532.5 to 1620 kc .
Intermediate Freq...... 455 kc.
Tuning.
Two-gang capacitor
Antenna.....................Built-in loop
Speaker..................... 4 inch PM; voice coil Impedance 3.5 ohms.
Power Output............ 80 milliwatts undistorted
Sensitivity............... 750 milliwatts maximum
microvalts per meter for
50 milliwatt output
Selectivity................ 55 kc broad at 1000 times

PAGE 21-6 GOODRICH

© John F. Rider

ALIGNMENT PROCEDURE

- Output meter actoss 3.2 ohm output load.
- Volume control at maximum for all adjustments.
- Align for maximum output. Reduce input as needed to keep output near 0.4 volts.

SLGNAL GENERATOR				SETTING TUNER	ADJUST TRIMMERS
Frequency	Coupling Factor	Connection to Receiver	Ground Connection		TO MAXIMUM OUTPUT (in order sbown)
455 kc	. 1 mfd	1RS Grid	B-	Rotor full open (Plates out of mesh)	Input and routput trimmers on IF cans
1620 kc	. 1 mfd	1RS Grid	B-	Rotor full open (Plates out of mesh)	Oscillator trimmer T2
1400 kc		Radiating Loop		$1400 \mathrm{kc} *$	Antenna trimmer 11

- Five markings on the dial bracket represent respectively $5321 / 2,600 \mathrm{kc}, 1000 \mathrm{kc}, 1400 \mathrm{kc}$. and 1620 kc ., reading from left to right. These points are to be used for the alignment of the receiver.

REPLACEMENT PARTS LIST

When ordering parts, specify part number, model number and series.

Ref. No.	Part No. Descr		tion
CAPACITORS			
Cl	CP-102-3	$.001 \mathrm{mfd}, 200$ volr, paper	
$\left.\begin{array}{l} \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3 \\ \mathrm{C} 4-\mathrm{C} 5 \end{array}\right\}$	CC-5-2	ceramic condenser block	
C6	CM-470-1	. 000047 mfd, Mica Cond.	
C7	CP-503-2	. $05 \mathrm{mfd}, 150$ volt, paper	
C8	CP-103-2	. $01 \mathrm{mfd}, 150$ volt, paper	
C9	CP-104-1	. $1 \mathrm{mfd}, 200$ volt, paper	
C10, C17	CP-503-1	. $05 \mathrm{mfd}, 400$ volt, paper	
$\left.\begin{array}{l}\mathrm{C} 11 \\ \mathrm{C} 12 \\ \mathrm{C} 13\end{array}\right\}$	CE-17	$\left.\begin{array}{l}\text { Elect. con. } 40 \mathrm{mfd}, 150 \text { volt } \\ \text { Elect. con. } 40 \mathrm{mfd}, 150 \text { volt } \\ \text { Elect. con. } 200 \mathrm{mfd}, 10 \text { volt }\end{array}\right\}$	
C14	CP-502-2	. $005 \mathrm{mfd}, 400$ volt, paper	
$\begin{aligned} & \mathrm{C} 15, \mathrm{C} 16 \\ & \mathrm{~T} 1, \mathrm{~T} 2 \end{aligned}$	\}CV.15	Variable condenser Trimmers on variable	
C18	CP-103-7	$.01 \mathrm{mfd}, 400$ volt, paper	
RESISTORS			
R1	RC-180-1	18 ohms,	$1 / 2$ watt 20%
R2	RC-153:1	15,000 ohms,	$1 / 2$ watt 20%
R3	RC-104-1	100,000 ohms,	$1 / 2$ watt 20%
R4	RC-106-1	10 megohms,	$1 / 2$ watt 20%
RS	RC-222-2	2,200 ohms,	$1 / 2$ watt 10%
R6	RC-682-5	6800 ohms,	1 watt 10%
R7	RC-105-1	1 megohm ,	$1 / 2$ watt 20%
R8	RC-335-1	3.3 megohms,	1/2 watt 20%
R9	RC-390-2	39 ohms ,	$1 / 2$ watt 10%
R10	RC-225-1	2.2 megohms,	1/2 watt 20%
R11	RC-681-2	680 ohms,	1/2 watt 10%
R12	RC-152-2	1500 ohms,	$1 / 2$ watt 10%
R13.	RC-270-3	27 ohms,	$1 / 2$ watt 5%
R14	RC.391-2	390 ohms,	$1 / 2$ watt 10%
R15	RP-5	Candohm Res.,	50 ohms. $\pm 5 \%$

Ref. No.	Par	No.
$\left.\begin{array}{r} S 2,3,4 \\ 5,6,7 \end{array}\right\}$	COILS AND TRANSFORMERS	
	LC-8	Osc
	LF-22	IF
	LP-15	Loo
	MISCELLANEOUS	
	VC-16	Vol
	SW-11	Ba
	$\begin{aligned} & \text { SP-41-18 } \\ & \text { PN-16 } \end{aligned}$	4 in Poi
	CR-2	Driv
	SG-1	Spr
	KN-24	Kno
	CB-112A	Ass
	HA-2	

MODELS S-38A,
 GENERAL

Intermediate Frequency. 455 kc .
Power Supply. 105-125 V. DC or 60 cycles AC.
Power Consumption 30 Watts

ALIGNMENT PROCEDURE

Holes in the bottom cover permit minor adjustment of the oscillator and mixer stage trimmers, however for complete alignment, the chassis will have to be removed from the cabinet. To separate the chassis from the cabinet, remove the back cover and bottom plate. The chassis is fastened to the cabinet by four front panel screws located near the slide switches and two cabinet screws located at the bottom rear of the cabinet.

C AUTION - The four rubber grommets insulate the chassis from the cabinet. Check the condition of these grommets and replace if necessary.

The standard RMA dummy antenna specified in the alignment chart consists of a 200 mmf condenser in series with a 20 uh r-f choke which is shunted by a 400 mmf condenser in series with a 400 ohm carbon resistor.

Set the following controls before alignment.

AM/CW	Set at AM
SPEAKER/PHONES	Set at SPEAKER
VOLUME	Set at maximum
RECEIVE/STANDB	RECEIVE
BAND SPREAD	Set at zero

For the settings of the remaining controls, see alignment chart.

ALIGNMENT CHART

Step	Dummy Antenna	Signal Generator Coupling	Signal Generator Frequency	Band Selector Setting	$\begin{aligned} & \text { Receiver } \\ & \text { Dial } \\ & \text { Setting } \end{aligned}$	Adjust	Remarks
1	$\begin{aligned} & .01 \mathrm{mfd} \\ & \text { cap. } \end{aligned}$	Stator plates, front section of tuning gang.	455 kc	1	1000 kc	A,B,C,D	Adjust for max. audio output at speaker voice coil. Use just enough signal generator output to obtain a 50 mw signal level.
2**	See step 1	See step 1	$\begin{aligned} & 455 \mathrm{kc} \\ & \text { (No } \\ & \text { modulation) } \end{aligned}$	1	1000 kc	E	Set the $A M / C W$ switch at CW. (Reset the switch at AM when step 2 is completed.) Correct BFO operation is obtained by varying the coupling between the wire " E " and the 12SK7 tube grid and plate terminals (Pins 4 and 8.) Pushing the wire toward the grid terminal increases the capacity and the strength of the beat.
3	Std. RMA dummy	High side to term. Al on antenna strip. Jumper wire between A2 and G	30 mc	4	30 mc	*F,G	Max. output as in step 1.
4	Std. RMA dummy	See step 3.	14 mc	3	14 mc	* H, J	Max. output as in step 1.
5	Std. RMA dummy	See step 3	5 mc	2	5 mc	*K, L	Max. output as in step 1.
6	Std. RMA dummy	See step 3	$\begin{array}{r} 1500 \mathrm{kc} \\ 600 \mathrm{kc} \end{array}$	1	$\begin{array}{r} 1500 \mathrm{kc} \\ 600 \mathrm{kc} \end{array}$	$\begin{aligned} & { }^{*} \mathrm{M}, \mathrm{~N} \\ & * \mathrm{P} \end{aligned}$	Max. output as in step 1.

* Note - Calibration adjustments.
** Note - This step is generally unnecessary. Adjustment should be made if a weak beat note is obtained on strong c-w signals indicating lack of coupling between wire " E " and tube socket wiring.

(

© John F. Rider

GENERAL

Speaker	5-inch PM
Speaker V.C. Impedance..	3.2 ohms
Headset Output High Impedance
Antenna	. Provision for external antenna
Tuning Manual
Tuning Range .	Band Selector Frequency Position Range
	1. $540 \mathrm{kc}-1680 \mathrm{kc}$
	2. $1680 \mathrm{kc}-5.4 \mathrm{mc}$
	3. $5.3 \mathrm{mc}-15.5 \mathrm{mc}$
	4. $\quad 15.5 \mathrm{mc}-\quad 44 \mathrm{mc}$

Intermediate Frequency . . 455 kc .
Power Supply 105-125 V. DC or 60 cycles AC
Power Consumption 40 Watts

RESTRINGING DIAL CORD

To restring the general coverage tuning dial cord, cut an 18 -inch length of 30 lb . test dial cord and tie one end to the tension spring of the main tuning capacitor drive pulley at position "1" on the diagram. Follow the numbers "1" through " 4 ", and at position " 4 " stretch the tension spring and tie the cord securely.

To restring the band spread tuning dial cord, cut a 36 -inch length of dial cord and follow the procedure as above, starting at position " A " on the diagram. Note that the tuning drive shafts are wrapped with two and a fraction turns of dial cord for proper traction.

972431

REPLACING LAMPS

Refer to Fig. 7 for the location of the two dial lamps used in the receiver. To gain access to defective lamps, reach in through cabinet cover and unclip the dial lamp sockets. The sockets may then be brought out into the open to change the defective lamp. Replace lamps with 6-8 V. Mazda $\# 47$ (Brown bead) lamps or equivalent.

ALIGNMENT PROCEDURE

It will be necessary to remove the receiver chassis from the cabinet to make alignment adjustments. The chassis is held in the cabinet by three screws along both the bottom edge of the front panel and the rear of the cabinet, and two screws on either side of the front panel.

Before starting the alignment procedure, check the position of the general coverage dial index marker on the low frequency end of the range and the bandspread dial on zero position. The general coverage condenser should index at max. capacity, and the bandspread condenser at min. capacity.

The standard RMA dummy antenna mentioned in the alignment chart consists of a 200 mmf . condenser in series with a 20 uh r-f choke which is shunted by a 400 mmf condenser in series with a 400 ohm carbon resistor.

Set the following controls before alignment.
SENSITIVITY Set at maximum
VOLUME Set at maximum
AVC Switch. Set at OFF
BAND SPREAD Set at zero
CW/AM Set at AM (See step 2)
NOISE LIMITER Set at OFF
STANDBY RECEIVE. Set at RECEIVE
TONE SWITCH Set at HIGH

For the settings of the remaining controls, see alignment chart.

MODEL S-52

ALIGNMENT CHART							
Step	Dummy Antenna	Signal Generator Coupling	Signal Generator Frequency	Band Switch Setting	Receiver Dial Setting	Adjust	Remarks
1	None	Stator plates in center section of tuning gang.	455 kc	"1"	1000 kc	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \mathrm{C} \\ & \mathrm{D}, \mathrm{E}, \mathrm{~F} \end{aligned}$	Maximum audio output at speaker voice coil. Use just enough signal generator output to obtain a 50 mw signal level.
2	None	See step 1	455 kc (No modulation)	"1"	1000 kc	51	With the CW/AM switch set at CW, remove the pitch control knob and adjust S1 for zero beat. Replace the knob with the dot in the center position.
3	Std RMA dummy	"A1" on antenna strip. Jumper connected between " A 2 " and " G "	$36 \mathrm{mc}$	"4"	$36 \mathrm{mc}$	${ }^{*} \mathrm{G}, \mathrm{H}, \mathrm{I}$	Maximum output as in step 1.
			18 mc		18 mc	*S2,S3,S4	
4	Std RMA dummy	See step 3	14 mc	"3"	$14 \mathrm{mc}$	*J, K, L	Maximum output as in step 1.
			10 mc		10 mc	*S5, S6, S7	
5	Std RMA dummy	See step 3	$\begin{array}{r} 5 \mathrm{mc} \\ 1.8 \mathrm{mc} \end{array}$	"2"	$\begin{array}{r} 5 \mathrm{mc} \\ 1.8 \mathrm{mc} \end{array}$	$\begin{aligned} & \text { *M, N, O } \\ & * \mathrm{~S} 8 \end{aligned}$	Maximum output as in step 1
6	Std RMA dummy	See step 3	$1500 \mathrm{kc}$	"1"	$1500 \mathrm{kc}$	${ }^{*} \mathbf{P}, \mathbf{Q}, \mathbf{R}$	Maximum output as in step 1.
			600 kc		600 kc	* T	

*Note - Calibration adjustments.

GENERAL

RESTRINGING DIAL CORD

To restring the general coverage dial cord, cut a 48 -inch length of 30 lb . test dial cord and tie one end to the tension spring of the general coverage tuning capacitor drive pulley at position " 1 " on the diagram. Follow the sequence " 1 " through " 12 " and at position " 12 " stretch the tension spring and tie the cord securely.

Set the general coverage tuning condenser at maximum capacity and attach and set the pointer in line with the left hand index marker.

Pic. 1. Dial cable stringing procedure, general coverase atal.

To restring the band spread dial cord, cut a 36 -inch length of 30 lb . test dial cord and follow the procedure as above, starting at position " A " ending at "L".

Set the bandspread condenser at minimum capacity and attach and set the pointer at " 100^{*} on the logging scale.

Fis. 2. Dtal cable strtnetng procedure, band spread dial.

REPLACING LAMPS

Refer to Fig. 8. for the location of the two dial lamps used in the receiver. To gain access to defective lamps, reach in through cabinet cover and unclip the dial lamp sockets. The sockets may then be brought out into the open to change the defective lamp. Replace lamps with 6-8 V. Mazda \#44, (Blue bead) lamps or equivalent.

ALIGNMENT PROCEDURE

Set the following controls before alignment.
STANBY/RECEIVE Set at RECEIVE
CW/AM Set at AM (see step 2)
SENSITIVITY Set at maximum
NOISE LIMITER Set at OFF
VOLUME Set at maximum
TONE switch. Set at HIGH
BANDSPREAD Set at 100
SPEAKER/PHONES switch Set at SPEAKER

Remove the receiver chassis from the cabinet to make alignment adjustments. The chassis is held in the cabinet by three screws along both the bottom edge of the front panel and the rear of the cabinet, and two screws on eitherside of the front panel.

Before starting the alignment procedure, index the general coverage dial pointer on the low frequency end of the range and index the bandspread dial pointer at 100 . The general coverage condenser should index at maximum capacity and the bandspread condenser should index at minimum capacity.

ALIGNMENT CHART

Step	Dummy Antenna	Signal Generator Coupling	Signal Generator Frequency	Band Selector Setting	Receiver Dial Setting	Adjust	Remarks
1	0.1 mfd . capacitor	High side to front stator section of tuning cap. Low side to chassis.	455 kc	A	Tuning cap. fully open	$\begin{aligned} & \text { S1,S2 ,S3,S4,S5, } \\ & \text { S6, } \end{aligned}$	Adjust for maximum audio output at speaker voice coil. Use just enough signal generator output to obtain a 50 mm audio level.
2	See step 1.	See step 1.	455 kc	A	See step 1.	S9	With the CW/AM switch set at CW, adjust S-9 for zero beat.
3	300 ohm carbon resistor	High side to "A1" on antenna strip. Jumper connected between "A2" and "G"	1500 kc 600 kc	A	$\begin{array}{r} 1500 \mathrm{kc} \\ 600 \mathrm{kc} \end{array}$	$\begin{aligned} & * \mathbf{A}, \mathbf{B} \\ & * \mathbf{C} \end{aligned}$	Adjust for maximum output as in step 1.
4	See step 3.	See step 3.	6 mc	B	6 mc	*D,E	Adjust for maximum output as in step 1.
5	See step 3.	See step 3.	15 mc	c	15 mc	* F,G	Adjust for maximum output as in step 1.
6	See step 3.	See step 3.	30 mc	D	30 mc	* I, H	Adjust for maximum output as in step 1.
7	See step 3.	See step 3.	52 mc	E	52 mc	* J,K	Adjust for maximum output as in step 1.

*Note - Calibration adjustments.

PAGE 21-16 HALLICRAFTERS
MODELS S-53-A,
S-53-AU

Fig. 4. Alignment points, bottom view.

Fig. 5. Component location, top view.

GENERAL

Tubes eleven plus voltage regulator
Speaker Output
Headset Output
Antenna Input
Phono Input
External Power Connector
Tuning Range
and rectifier
$3.2 / 500$ ohms
500 ohms
For 50 to 600 ohm line or single wire lead-in.
High impedance
Std. octal socket

| Band | *Frequency Range |
| :---: | ---: | | Type of |
| :---: |
| Reception |

Intermediate Frequency $455 \mathrm{kc} / 2.075 \mathrm{MC}$
Power Supply Standard Model 105-125 V. 60
Cycles AC
Universal Model 105-250 V. 25/130 Cycles AC
Power Consumption
90 Watts.

RESTRINGING DIAL CORD

The dial drive system of the SX-71 consists of four separate spring drives. The two drive shaft string systems are identical; the two pointer drive systems are similar but right and left handed
(1) DRIVE SHAFT. - To restring either one, use a 26 inch length of 30 lb . test dial cord. Tie one end of the cord to position " 1 " on the drum and follow the stringing sequence " 1 " to " 9 " as shown. At position " 9 " stretch the tension spring and tie the cord securely to the spring. Note that the dial cord is wrapped around the drive shaft three and one half times for proper traction.
(2) POINTER DRIVE - To restring either one, use a 66 inch length of 30 lb . test dial cord. Tie one end of the dial cord to position " A " and follow the stringing sequence " A " to " U " as shown. At position ' U '", stretch the tension spring and tie the cord securely to the spring. Two small pieces of spaghetti tubing approximately one half inch long should be threaded on

the cord, as shown, to provide a suitable purchase for the dial pointer. With the pointer drive, pulleys positioned as shown on the diagram (Fig. 1.), the tuning capacitor should be entirely closed. The pointer may now be fastened to the cord and aligned with the 0 position on the logging scale and the index marks on the dial scales. The ends of the pointer should be carefully crimped around the spaghetti tubing and cemented fast.

Figure 1. Dial cable strinêing proceture

ALIGNMENT PROCEDURE

It will be necessary to remove the receiver chassis from the cabinet to make all alignment adjustments. The chassis is held in the cabinet by two screws on the bottom rear and by the flanges on the side and bottom.
The following control settings are to be set before alignment: TONE control at maximum. SENSITIVITY control at maximum VOLUME control at maximum. NOISE LIMITER switch at OFF. RECEIVE/STANDBY switch at RECEIVE.

I-F ALIGNMENT

Step	Signal Gen. Coupling	Signal Gen. Frequency	Receiver Control Settings	Receiver Dial Set	Adjust	Remarks
1	Connect gen. to stator of gang, mixer sect.	$\begin{gathered} 455 \mathrm{KC} \\ \text { Unmodulated } \end{gathered}$	BAND SELECTOR at 2. RECEPTION switch at BROAD CRYSTAL. BFO switch at BFO.	Both dials set at 50 on the logging scale		Remove CW PITCH control knob and set shaft for zero beat. Replace knob with the zero at the index line.
2	Same as step 1.	Same as step 1.	Adjust CW-PITCH for a 1000 cycle note. Other controls same as step 1 .	Same as step 1.	U	While turning the slug very slowly in one direction, "rock" the signal generator. As the adjustment passes thru the response of the crystal filter, the output goes thru a maximum, dips down, and starts going up again. The correct setting of this slug is in the center of the observed dip. A swishing note, in contrast to the sharp crystal tone will be apparent when the correct adjustment has been reached.
3	Same as step 1	Same as step 1.	RECEPTION switch at SHARP CRYSTAL. Other controls same as step 1.	Same as step 1.		Set the generator frequency for maximum output on the crystal frequency.
4	Same as step 1.	Same as step 3. Modulated	RECEPTION switch at NORMAL I.F. BFO switch at OFF. Other controls same as step 1.	Same as step 1	$\begin{gathered} \mathrm{V} \\ \mathrm{~W} \\ \mathrm{X} \\ \mathrm{Y} \\ \mathrm{Z} \\ (1) \\ \hline(2) \end{gathered}$	Maximum output Repeat above until maximum gain is obtained.
F-M ALIGNMENT						
5	Same as step 1.	Same as step 3. Increase out- put to approx. 1000 micro- volts.	RECEPTION switch at NBFM. Other controls same as step 1.	Same as step 1.	(3)	Set up circuit shown in Fig. 2. Until vacuum tube voltmeter shows zero voltage.
I-F ALIGNMENT						
6	Same as siep 1.	2.075 MC Modulated	RECEPTION switch at NORMAL I.F. BAND SELECTOR at 4.	$\begin{aligned} & \text { Same as } \\ & \text { step } 1 \text {. } \end{aligned}$	$\begin{aligned} & (4) \\ & (5) \\ & (6) \end{aligned}$	Until a signal is heard. For maximum output. For maximum output. Repeat until the maximum output is obtained.

R-F ALIGNMENT

Leave BANDSPREAD dial at 100 for all steps. The following adjustments can be made without removing the chassis from the cabinet.

1	Connect the high side of the gen. thru a 300 ohm resistor to term. A1 of the ant. term. strip. Connect a jumper between A2 \& G. Use just enough gain to obtain a 500 milliwatt audio out put level.	$\begin{array}{r} 1500 \mathrm{KC} \\ 600 \mathrm{KC} \\ 1500 \mathrm{KC} \end{array}$	BAND SELECTOR at 1. RECEPTION switch at NORMAL I.F. BFO switch at BFO	$\begin{array}{r} 1500 \mathrm{KC} \\ 600 \mathrm{KC} \\ 1500 \mathrm{KC} \end{array}$	A(osc.trim) B C D(osc.pad) A B Repeat	Until a signal is heard. For maximum output. For maximum output. Until a signal is heard. For maximum output. For maximum output Until maximum output is obtained.
2	Same as step 1	4 MC	BAND SELECTOR at 2. Other controls as in step 1.	4 MC	$\begin{aligned} & \mathrm{E}(\text { osc } \operatorname{trim}) \\ & \mathbf{F} \\ & \mathbf{G} \\ & \mathbf{E} \\ & \mathbf{F} \\ & \mathbf{G} \end{aligned}$	Until a signal is heard. For maximum output Repeat until maximum output is obtained
3	Same as step I.	$\begin{array}{r} 12 \mathrm{MC} \\ 5.2 \mathrm{MC} \\ 12 \mathrm{MC} \end{array}$	BAND SELECTOR at 3. Other controls as in step 1.	$\begin{array}{r} 12 \mathrm{MC} \\ 5.2 \mathrm{MC} \\ 12 \mathrm{MC} \end{array}$	$\begin{aligned} & \mathrm{H}(\text { osc.trim }) \\ & \mathrm{I} \\ & \mathrm{H} \\ & \mathrm{~J} \\ & \mathrm{~K} \end{aligned}$	Until a signal is heard Until a signal is heard For maximum output. ("Rock' the gang) For maximum output. ('Rock' the gang) For maximum output. ("Rock" the gang) Repeat until maximum results are obtained.
4	Same as step 1	30 MC 14 MC	BAND SELECTOR at 4. Other controls as in step 1.	30 MC 14 MC	L(osc.trim) M (slug) N O L P Q	Until a signal is heard. Until a signal is heard. For maximum output. ("Rock" the gang) For maximum output. ('Rock" the gang) For maximum output. ("Rock" the gang) For maximum output. ("Rock" the gang) For maximum output. ("Rock" the gang) Repeat until maximum results are obtained.
5	Same as step 1.	54 MC	BAND SELECTOR at 5. Other controls as in step 1.	100 on logging scale.	$\begin{array}{\|l\|} \hline R(o s c t \operatorname{trim}) \\ \mathrm{S} \\ \mathrm{~T} \end{array}$	Until a signal is heard. For maximum output. ("Rock" the gang) For maximum output. ("Rock" the gang) Repeat until maximum results are obtained.

- John F. Rider

MODEL SX-71

©John F. Rider

MODEL SX-71

©John F. Rider

[^4]
MODEL SX-71

Immediately below the dial face of the " S " meter is a round metal disc. This disc is pivoted so that it may be moved to one side. Doing this discloses the pivot adjustment screw of the 'S" meter. Use a screw driver and carefully rotate the screw in either direction until the needle indicates zero.

ELECTRICAL ADJUSTMENT:

Turn the receiver on.
Set the RECEIVE/STANDBY switch at RECEIVE.
Set BFO at OFF
Set the SENSITIVITY control at maximum.
Set the NOISE-LIMITER at OFF.
Short the antenna terminals to ground.
The " S " meter adjustment control is located on the left rear apron of the chassis. Turn this control slowly until the needle in the " S " meter indicates zero.

Fig. 8. Top ulew, location of tubes

Fie. 9. Schematic diaeran

GENERAL

Tubes Eight plus selenium rectifier		
Speaker		
Speaker V.C. Impedance . . 3.2 ohms (100 ohm headset tap)		
Headset Output For 500 to 5000 -ohm phones		
A		
	Whip for bands	3 and 4.
	Provisions for external anten	connection to an
Tuning Manual		
Tuning Range.	Band Selector Position	*Frequency Range
	1.	180 kc - 400 kc
	2.	$550 \mathrm{kc}-1600 \mathrm{kc}$
	3.	$1.6 \mathrm{mc}-4.4 \mathrm{mc}$
	4.	$4.5 \mathrm{mc}-11.5 \mathrm{mc}$

*First and last dial calibration.
Intermediate Frequency. . . 455 kc .
Power Supply. \qquad 105-125 V. DC/60 cycles AC or Battery Pack

Power Consumption 25 Watts

RESTRINGING DIAL CORD

GENERAL COVERAGE DIAL

The general coverage dial drive is a two string system, one between the drive shaft and the rear gang drum and the other between the front gang drum and the general coverage dial pointer. The drive shaft system requires a 30 -inch length of 30 lb test dial cord, and the pointer system requires a 24 inch length of the same type cord.

To restring the drive shaft system, tie the string at position " 1 " (Fig. 1) and follow the sequence ${ }^{\text {" }} 1$ " through " 11 ". Stretch the tension spring at " 11 " and tie the cord securely.

To restring the general coverage pointer drive system, tie the string at position "A" (Fig. 1) and follow the Sequence "A" through "I", Stretch the tension spring at "I" and tie the cord securely. Set the general coverage gang at maximum capacity and attach and index the pointer with the left hand reference mark on the dial scale.

Fie. 1. Dtal cable stringing procedure, general coveraee

To restring the bandspread tuning dial drive, cut an 18 -inch length of 30 lb test dial cord and tie one end to the pulley anchor at position "1" shown in Fig. 2. String up the drive following the sequence " 1 " through " 12 " and at position " 12 " stretch the tension spring and tie the cord securely. Set the bandspread gang at minimum capacity and attach and index the pointer at " 0 " on the bandspread scale.

BATTERY REPLACEMENT

A strip of canvas webbing and a hola down screw are used to keep the battery in the cabinet. To replace the battery, disconnect the battery plug and loosen the hold down screw. Refer to Fig. 3.

Fi§ure 3. Rnttery compartment

MODEL S-72L

suitable replacement packs can be found from the list shown below.

REPLACEMENT BATTERY LIST

Manufacturer	Type No.	Manufacturer	Type No.
BRIGLT STAR .	.66-50	OLIN	$\begin{aligned} & 0615 \\ & 0614 \end{aligned}$
BURGESS	$\begin{aligned} & \text { G6M60 } \\ & \text { F6A60 } \end{aligned}$	RAY-O-VAC	$\begin{aligned} & \text { AB878 } \\ & \text { AB994 } \end{aligned}$
DELCO 8760	RCA	VSC18
EVTRREADY. .	$\begin{array}{r} .754 \\ 753 \end{array}$		VS019
GENERAL	60BF65 60A6F65	SEARS ROEBUCK.	$67 \mathrm{E} 605$
MONTGOMEhY WARD	$\begin{aligned} & \text { 62A35M } \\ & 62 \mathrm{~A} 33 \end{aligned}$	USALITE WESTERN WIZARD.	680 $6086 F 6 / 5$
NATIONAL UNION	N808		60A6F6/5

NOTE - Only one battery pack of the type listed above is required.

CAUTION - When the receiver is to operate on batteries it is necessary to insert the line cord plug in the chasis receptacle as shown in Fig. 3.

ALIGNMENT PROCEDURE

It will be necessary to remove the battery and receiver chassis from the cabinet to make the I.F. alignment adjustments. To do this remove the knobs and jack nut from the control panel; remove the panel escutcheon and unfasten the phone jack; unsolder the antenna connections, two for the loop antenna and one for the whip antenna; and remove the two wood screws anchoring the angle brackets of the chassis to the cabinet and lift out of the case.

The primaries of the I.F. transformers are adjusted from the bottom of the chassis and the secondaries are adjusted from the top of the chassis.

Before making any alignment adjustments, check the general coverage dial pointer and bandspread dial pointer for proper index. The general coverage dial pointer should index with its gang condenser set at maximum capacity and the bandspread dial pointer should index at zero withits gang condenser set at minimum capacity.

Set the following controls before alignment.
VOLUME Set at maximum

VOICE/CODE Set max. clockwise (VOICE)
BAND SPREAD Set at 0

ALIGNMENT CHART

Step	Dummy Antenna	Signal Generator Coupling	Signal Generator Frequency	Band Switch Setting	Receiver Dial Setting	Adjust	Remarks
1.	None	Stator plates in center section of tuning gang	455 kc	"1"	1000 kc	A,B,C,D	Maximum audio output at speaker voice coil. Use just enough signal generator output to obtain a 50 mw signal level.
2.	None	See step 1.	455 kc (No mod.)	'1"	1000 kc	E	With the VOICE/CODE control set for code reception, adjust E for a 1000 cycle note.
3.	10 mmf from ext. antenna lead to chassis.	Couple the generator to the ext. ant. lead thru a 15 mmf capacitor	11.5 mc 5 mc	"4"	$11.5 \mathrm{mc}$ 5 mc	$\begin{aligned} & * F, G, H \\ & * S 1, S 2, \\ & S 3 \end{aligned}$	Maximum output as in step 1.
4.	See step 3	See step 3	$\begin{gathered} 4.4 \mathrm{mc} \\ 1800 \mathrm{kc} \end{gathered}$	'3"	4.4 mc 1800 kc	$\begin{aligned} & \text { *1,J,K } \\ & \text { *S4 } \end{aligned}$	Maximum output as in step 1.
**5.	See step 3	See step 3.	1500 kc 600 kc	'2"	1500 kc 600 kc	$\begin{aligned} & \text { *L,M,N } \\ & * \mathbf{P} \end{aligned}$	Maximum output as in step 1.
* 6.	See step 3.	See step 3.	$\begin{aligned} & 400 \mathrm{kc} \\ & 180 \mathrm{kc} \end{aligned}$	'1'	$\begin{aligned} & 400 \mathrm{kc} \\ & 180 \mathrm{kc} \end{aligned}$	*Q,R,S *T,U	Maximum output as in step 1.

NOTES -

[^5]

Bottom utew alignment points.

[^6]

notes - 1 socket views are botton views

- nh - not readable [reading generally meaningless)
- SR - Not ree provided for service meter readings.

2 upper voltage readings in inaicator space show battery operation
i" all readings taken with line plug polarizeo so that ground buss a chassis are at same potential as the chassis grouno.
Figure 7. Tube sorket voltaee chart
© John F. Rider

SERVICE PARTS LIST

Ref. No.	Description	Manufacturer's Part Number	Ref. No.	Description Man	Manufacturer's Part Number
CAPACITORS			TRANSFORMERS AND COMS		
C-1,33,42	. $003 \mathrm{mfd} ., 600 \mathrm{~V}$. , tubular	46AZ302J	T-1	Transformer, antenna stage, band 4	5181250
C-2,13,23,34	100 mmf ., 500 V ., ceramic	47B20101K5			
C-4,15	$15 \mathrm{mmf} ., 500 \mathrm{~V} .$, ceramic	47B20150K5	T-2	Transformer, antenna stage, band 3	5181137
C-5	Trimmer, ant. ass'y., 4 sections (Bands $1,2,3,4$)	44B385	T-3	Transformer, antenna stage, band 1	51B1191
C-6	Tuning capacitor, 3 sections	48 C 221			
C-7,18	68 mmif., 500 V ., ceramic	47B20680K5	T-4	Transformer, mixer stage, band 4	$51 \mathrm{B1} 253$
C-8	. 05 mfd , , 200 V. , tubular	46AU503J	T-5	Transformer, mixer stage, band 3	51B1248
C - $9,10,14,20$	5000 mmf ., 500 V ., ceramic	47A168	T-6	Transformer, mixer stage, band 2	51B1247
21,22,26			T-7	Transformer, mixer stage, band 1	51B1192
35			T-8	Transformer, 1st I.F.	50 C 233
C-16	Trimmer, mixer ass'y., 4 sections, (Bands $1,2,3,4$)	44B386	$\begin{aligned} & \mathbf{T}-9 \\ & \mathbf{T}-10 \end{aligned}$	Transformer, 2nd 1.F. Transformer, audio output	50C234
C-17	Capacitor, resonant (455KC)	46A174		(part of speaker ass'y. LS-1)	
C-19,49,50	. $01 \mathrm{mid} ., 600 \mathrm{~V} .$, tubular	46AY103J	T-11	Transformer, osc. stage, band 4	51B1254
C-24	. $1 \mathrm{mfd} ., 200 \mathrm{~V} .$, tubular	46AU104J	T-12	Transformer, osc. stage, band 3	51B1255
C-25	Capacitor, composite; .002,	47A203	T-13	Transformer, osc.stage, band 2	51B1144
	. 005 , . $0001, .005 \mathrm{mld} ., 500 \mathrm{~V}$.,		T-14	Transformer, osc. stage, band 1	51B1193
	ceramic		T-15	Transformer, B.F.O. (With	$50 \mathrm{B4} 02$
C-28	50 mmf ., 500 V. , ceramic	47B20500K5		mtg. clip)	
C-29	3900 mmf ., 500 V ., mica	47X35A392J	L-1	Loop antenna	57C125
C-30	1400 mmf , $500 \mathrm{~V} .$, mica	$47 \times 30 \mathrm{Al42J}$	L-2	Coil, antenna loading band 2	51B1136
C-31	Padder, adjustable (Band 2)	44A376	L-3	Choke, R.F.	53 A 008
C-32	Trimmer, osc. ass'y., 4 section (Bands $1,2,3,4$)	44 B 387	L-4	Choke, filament	$53 \mathrm{Al21}$
C-36	7 mmf ., 500 V ., ceramic	47X20UK070K		SWITCHES	
C-37	Capacitor, band spread	48C 227			
C-38	$\begin{aligned} & 60-20-20 \mathrm{mfd} ., 150 \mathrm{~V} ., 2000 \\ & \text { mid., } 15 \mathrm{~V} ., \text { electrolytic } \end{aligned}$	45B162	SW-1	Switch, band (6 section ass'y. complete)	60C380
C-39	$.02 \mathrm{mfd} ., 600 \mathrm{~V}$. , moulded paper	46BR203L6	SW-2	Switch, VOICE/CODE, (Part of r-f gain control, R-8	
C-40	. $02 \mathrm{mfd} ., 200 \mathrm{~V} .$, tubular	46AU203J	SW-5	S:vitch, AC /DC - battery	60 A363
C-43	$100 \mathrm{mmi} ., 500 \mathrm{~V}$., mica	47X20A101M		change over	
C-44	470 mmf ., 500 V., mica	47X20A471K	SW-6	Switch, ON-OFF (D.P.S.T. power	
C. 46	$100 \mathrm{mfd} ., 25 \mathrm{~V}$. , electrolytic	45A116		switch, part of volume control R-20)	
C-47	5.6 mmi., 500 V ., composition	47A160-7			
C-48	Padder, adjustable (Band 1)	44A384		PLUGS AND SOCKETS	
C-51	$220 \mathrm{mmi} ., 500 \mathrm{~V}$., ceramic	47B20221K5		PLUGS AND SOCKETS	
C-52	$120 \mathrm{mmf},$.500 V., mica $47 \times 20 \mathrm{B121K}$		PL-1	Line cord	$87 \mathrm{B1683}$
			PL-2	Battery plug, 6 prong	10A344
			SO-1	Jack, phone	36A036
$\begin{array}{r} \mathbf{R}-2,6,10 \\ 13,14,15 \end{array}$	10,000 ohms, $1 / 2$ watt, carbon	$23 \times 20 \times 103 \mathrm{~K}$	TUBES AND RECTIFIERS		
	4.7 megohms, $1 / 2$ watt, carbon	23X20X475M	V-1	Type 1T4, r-f amplifier	90X 1 T4
R-3	150 ohms, $1 / 2$ watt, carbon	23X20X151K	V-2,3,4	Type 1U4, mitwer, 1st and 2nd	90x1v4
R-4,37	22,000 ohms, $1 / 2$ watt, carbon	23X20×223K		i-f amplifier	
R-5,19	470 ohms, $1 / 2$ watt, carbon	23X20X471K	V-5,8	Type 1U5, detector and B.F.O.	90x 1U5
R-7,24	100 ohms, $1 / 2$ watt, carbon	23X20X101K	V-6	Type 3V4, audio power amplifier	$90 \times 3 \mathrm{~V} 4$
R-8	Resistor, variable, 500,000 ohms, VOICE/CODE control	25B847	$\begin{aligned} & \mathrm{V}-7 \\ & \mathrm{CR}-1 \end{aligned}$	Type 1R5, oscillator Rectifier, selenium	$\begin{aligned} & 90 \times 1 R 5 \\ & 27 A 151 \end{aligned}$
R-9,41	2200 ohms, $1 / 2$ watt, carbon	23X20X222K			
R-11	100,000 ohms, $1 / 2$ watt, carbon	23X20X104K		MISCELLANEOUS Socket, 7 prong miniature (tube)	6B300
R-12	6800 ohm, $1 / 2$ watt, carbon	23X20X682K		Lock, line cord (Female)	76A397-2
R-16,23	2.2 megohms, $1 / 2$ watt, carbon	23X20X225M		Lock, line cord (Male)	76A397-1
R-17,27,38	47,000 ohms, 1/2 watt, carbon	23X20X473K		Escutcheon	7D109
R-18,22	470,000 ohms, 1/2 watt, carbon	23X20X474K		Escutcheon, dial	22B250
R-20	Resistor, variable, 2 megohms,	25B839		Plate, dial (calibrated)	83 C 359
	VOLUME control			Knob	15B172
R-21	3.3 megohms, $1 / 2$ watt, carbon	23X20X335M		Knob (with dot)	15B177
R-25	330 ohms, $1 / 2$ watt, carbon	23X20X331 K		Pointer, main tuning	82A161
R-26	680 ohms, $1 / 2$ watt, carbon	23X20X681K		Pointer, band spread	82A161-1
R-28,40	47 ohms, $1 / 2$ watt, carbon	23X20X470K		Cord, dial drive	38A001
R-29	270 ohms, 2.3 watts; 350 ohms, 5.5 watts; WW	24A912		Cord, pointer drive Spring, dial drive	$\begin{aligned} & 38 \mathrm{~A} 017 \\ & 75 \mathrm{~A} 012 \end{aligned}$
.R-30,34	560 ohms, 1 watt, carbon	23X30×561K		Pulley, idler	28A052-7
R-31	680 ohms, 1 watt, carbon	23X30X681K		Shaft, tuning	74A274
R-32	600 ohms, 9.3 watts, WW	24A913		Antenna, whip	57B142
R-33	22 ohms, 2 watts, WW	24BV 220 E		Antenna, insulator	65A534
R-35	1200 ohms, $1 / 2$ watt, carbon	23X20X122K	LS-1	Speaker	85 C 093
R-36	33 ohms, 1/2 watt, carbon	23X20X330K		Strap, battery	$76 \mathrm{B467}$
R-42	4700 ohms, 1/2 watt, carbon	23X20×472K		Cabinet	78 F 491

The RF section uses separate oscillator and mixer tubes to allow maximum conversion gain over the short wave bands. The mixer and I.F. stages use 12SH7 high frequency type tubes and the sensitivity thus obtained is higher than normally obtained with an additional stage. Full AVC action is provided with both I.F. and mixer tubes controlled. Diode detection is used for maximum fidelity. The 12 A 6 beam power output is driven by the pentode section of the 12 C 8 , giving adequate output. Inverse feedback is used from the voice coil winding to the 12 A 6 cathode, improving the frequency response.

The power supply uses a 5 Y 3 full wave rectifier and a husky, high quality varnish impregnated powertransformer, with a metal cased filter condenser for adequate filtering and long life, thus providing full operating voltages for ali tubes.

NOTE: If replacement of the 1626 oscillator tube is required, either another 1626 , or a 12 J 5 tube may be used.

The band switching coil unit is assembled on a separate small chassis to simplify its construction resulting in one of the simplest coil turrets ever designed. The IF transformers are of the dual iron core tuned type which give the greatest gain per stage and are far more stable than the cheaper trimmer type usually supplied. The six inch calibrated slide rule dial has a 9 to 1 vernier drive to allow tuning of weak short wave signals.

Upon completion of the wiring, the tuned circuits must be aligned to produce maximum sensitivity and selectivity, and to calibrate the dial scale. If a signal generator is available (your own, or borrowed from a friend), follow the procedure as outlined. If a signal generator cannot be obtained, we suggest that you have your local radio service man align the receiver in accordance with the instructions in this manual.

For local reception, a short indoor antenna is generally sufficient. For best reception, a high outdoor antenna is recommended. The antenna should be connected to the antenna terminal (screw terminal nearest edge of chassis).

A ground connection may improve reception also, and should be tried if maximum performance is desired. For a good ground, use a COLD water pipe or a ground rod. Use as short and direct a wire as possible between the pipe or rod and the groundterminal (screw terminal farthest from edge of chassis).

A loudspeaker of the PM dynamic type with $3-4 \mathrm{ohm}$ voice coil impedance should be connected to the set by attaching the two prong speaker plug to the speaker leads and plugging into the speaker socket. If a 6-8 ohm speaker is available, it may be used without materially affecting the performance. For best results in small cabinets, we recommend the Heathkit $5^{\prime \prime}$ speaker (Stock \#320). If a larger cabinet is available, the Heathkit $8 "$ speaker (Stock \#325) will provide better reproduction of the lower register.
A record player or changer using a crystal type pickup cartridge may be connected to this receiver to provide superior reproduction of recordings. Connect the pickup by plugging the lead into the phono socket. If your player does not have the standard plug, remove existing plug and attach the phono plug supplied with the kit. Plug the line cord for the turn table motor into the 110 V . outlet on the chassis.

The phono-radio switch is combined with the tone control. Turning the control fully counterclockwise connects the record player, while turning the control fully clockwise connects the radio circuits. Full use of the tone control is possible on either switch setting.

Four controls are provided on the front of the receiver. From left to right, they are the on-off switch and volume control, the phono-radio switch and tone control, the tuning control and the bandswitch.

NOTE: The pilot light is connected in the rectifier circuit to permit the use of a standard pilot light bulb. The socket is, therefor, about 300 Volts above chassis. DO NOT TOUCH SOCKET WITH SET TURNED ON.

TOP VIEW OF CHASSIS SHOWING LOCATION OF TUBES -I.F ADJUSTMENT SCREWS - B.C. PADOER (SEE COIL BRACKET PICTORIAL FOR S.W. POLICE - B.C. ADJUSTMENT SCREWS)

ALIGNMENT

Connect a signal generator ground lead to the chassis. Connect the signal generator output ("hot") lead through a . 01 MFD condenser to pin \#4 on the 12 SH7 IF socket (IF grid). Turn signal generator on and set to 456 kc . The signal, if modulated, may be observed by noting the loudness at the speaker, or on the scale of an output meter connected across the speaker terminals. If the signal is unmodulated it may be observed on the scale of a vacuum tube voltmeter connected across the volume control. With the volume and tone controls turned fully clockwise, turn the brass screws in the top and bottom of the output IF transformer for maximum indication. Use as low an indication as possible by reducing the output from the signal generator as the receiver sensitivity increases.

Without disturbing the signal generator dial, remove the . 01 MFD condenser from pin \# f_{4} on the 12 SH7 IF socket and connect to pin \#4 on the 12 SH 7 mixer socket (mixer grid). Set band switch to center (BC) position. Remove 1626 (oscillator) tube from its socket. Adjust the brass screws in top and bottom of input IF transformer for maximum indication as described in step 23. Note: Do not adjust the output IF screws with the signal generator connected to the converter grid. This completes the IF alignment.

Replace the oscillator tube. Remove the generator from the converter grid. Connect the generator to the ANT. post through a 400 ohm resistor (used as dummy antenna). Set bandswitch cluckwise to SW position. Turntuning condenser till fully unmeshed or open. Set signal generator to 20.5 MC . Adjust the SW oscillator trimmer for reception of signal. Then check if setting is correct by tuning signal generator to 21.412 MC . (approximately), where the imare should be observed. If the second signal is found at a signal generator setting of 19.588 MC . (approximately), the SW oscillator trimmer should be unscrewed slightly until proper response is obtained. Now set signal generator to 18 MC . Tune receiver to receive this signal at 18 MC ., and adjust SW antenna trimmer for maximum indication. This completes the SW alignment.

Set the bandswitch counter clockwise to the police band. Turn tuning condenser till fully unmeshed or open. Set signal generator to 5.6 MC . Adjust the police oscillator trimmer for reception of signal. Then check if setting is correct by tuning signal generator to 6.512 MC . (approximately), where the image should be observed. If the second signal is observed at at signal generator setting of 4.688 MC . (approximately), the police oscillator trimmer should be unscrewed until proper response is obtained. Now set signal generator to 5.0 MC . Tune receiver to receive this signal at 5.0 MC ., and adjust police antenna trimmer for maximum indication. This completes the police band alignment.

Remove the 400 ohm resistor and use a 250 MMF condenser instead in series with the signal generator to the ANT. post. Set the bandswitch to center position (BC). Turn tuning condenser till fuily unmeshed or open. Set signal generator to 1620 kc . Adjust the BC oscillator trimmer for reception of signal. Reset signal generator to 540 kc . Turn tuning condenser till fully meshed or closed. Adjust the BC Padder for maximum indication. Recheck the BC oscillator trimmer adjustment, as above. Set signal generator to 1500 kc . Tune receiver to receive this signal at 1.5 MC ., and adjust BC antenna trimmer for maximum indication. This completes the alignment of the receiver.

Check the voltages at the tube sockets. A table of approximate voltages is given below. These readings were obtained with a Heathkit VTVM with 11 megohms input resistance. Variations of plus or minus 15% may be expected.

Pin No.	1626	12 SH 7 Mixer	12 SH 7 I.F.	12 C 8	12 A 6	5 Y 3
1	0	0	0	0	0	
2	$10-14 \mathrm{VAC}$	$290-330$				
3	$70-120$	$1-2$	$\frac{1}{2}-1$	$50-90$	$280-320$	
4	0	Slightly Neg.	Slightly Neg.	Slightly Neg.	$220-260$	$300-340 \mathrm{VAC}$
5	$5-50 \mathrm{~V} \mathrm{Neg}$.	$1-2$	$\frac{1}{2}-1$	Slightly Neg.	0	
6		$120-150$	$120-150$	$25-50$		$300-340 \mathrm{VAC}$
7	0	0	0	0	0	Tie Point
8	0	$220-260$	$220-260$	0	$9-15$	$290-330$

HEATHKIT REPLACEABLE PARTS AVAILABLE
AR29 15-10 MFD--El. Cond. .
AR10 Dual Tuning Cond.
AR18 1 Meg. Control w. Sw.
AR41 500 K . Control w. Sw.
AR37 4 Pole 3 pos. Bandsw.
BR16 Input IF Transformer
BR17 Output IF Transformer
BR24 Power Transformer.
AR44 Output Transformer
BR13 Ant. Pri. (BC) Coil
BR14 Ant. Sec. (BC) Coil
BR15 Oscillator (BC) Coil
An. (Police) Coil.
PR11 Oscillator (Police) Coil.
SR10 Ant. (SW) Coil
SR11 Oscillator (SW) Coil
AR48 Panel

MODEL AR-1

AR - 1
Part Parts
No. PerKit Description
Resistors

SW11	2	100 Ohm
AR25	1	330 Ohm
T11	1	470 Ohm 1 Watt
BR26	1	2,700 Ohm 2 Watt
FM36	1	27 K Ohm
BR43	1	$25 \mathrm{~K}-30 \mathrm{~K}$ Ohm 2 Watt
A10	2	47 K Ohm
O12	1	100 K Ohm
O18	2	470 K Ohm
O17	2	1 Megohm
C10	1	10 Megohm

Condensers

TS33	1	4.7 MMF Ceramic
G24	2	$47-50 \mathrm{MMF}$ Mica
AR26	2	150 MMF Ceramic
AR38	1	$1,600 \mathrm{MMF}$ Mica
AR27	7	.005 MFD Paper
AR28	4	.05 MFD Paper
T40	1	10 MFD-25V. Electrolytic
AR29	1	$15-10$ MFD-450V Electro-

AR30 $6 \quad 3-30 \mathrm{MMF}$ Trimmer
AR43 $1 \quad 300-450$ MMF Padder
AR10 1 Dual tuning Condenser

Coils

BR13 1 Ant. Pri (BC)
BR14 1 Ant. Sec. (BC)
BR15 1 Oscillator (BC)
PR10 1 Antenna (Police)
PR11 1 Oscillator (Police)
SR10 1 Antenna (SW)
SR11 1 Oscillator (SW)
BR16 1 Input IF Transformer
BR17 1 Output IF Transformer
Controls-Switches

AR18	1	1 Megohm with SPST Sw.
AR41	1	500 K Ohm with SPDT Sw.
AR37	1	4 Pole 3 Pos. Bandswitch

Tubes-Lamps

K42	1	1626 or 12J5 tube
AR31	2	12SH7 or 12SH7GT Tubes
K24	1	12C8 Tube.
K23	1	12A6 or 12A6GT Tube
O66	1	5Y3GT Tube
O39	1	\#47 Pilot Lamp

Grommets-Wafer-Clip-Lugs

O35	1	$3 / 8$ Grommet
C24	1	$7 / 16$ Grommet
SW43	1	Condenser Mounting Wafer
K18	1	Grid Clip
O37	2	Solder Lugs

©John F. Rider

A ground connection may inmprove reception also, and should be tried if maximum performance is desired. For a good ground, use a COLD water pipe or a ground rod. Use as short and direct a wire as possible between the pipe or rodand the ground terminal (screwterminal farthest from edge of chassis).

A loudspeaker of the PM dynamic type with $3-4 \mathrm{ohm}$ voice coil impedance should be connected to the set by attaching the two prong speaker plug to the speaker leads and plugging into the speaker socket. If a 6-8 ohm speaker is available, it may be used without materially affecting the performance.

A record player or changer using a crystal type pickup cartridge may be connected to this receiver to provide superior reproduction of recordings. Connect the pickup by plugging the lead into the phono socket. If your player does not have the standard plug, remove existing plus and attach the phono plug supplied with the kit. Plug the line cord for the turn table motor into the 110 V . outlet on the chassis. Turn the phono switch clockwise to switch from radio to record player.

NOTE: The pilot light is connected in the rectifier circuit to permit the use of a standard pilot light bulb. The socket is, therefor, about 300 Volts above chassis. DO NOT TOUCH SOCKET WITH SET TURNED ON.

ALIGNMENT
Connect a signal generator ground lead to the chassis. Connect the signal generator out put ("hot") lead through a . 01 MFD condenser to pin \#4 on the 12 SH 7 socket (IF grid). Turn signal generator on and set dial to 456 Kc . The signal, if modulated, may be observed by noting the loudness at the speaker, or on the scale of an output meter connected across the speaker terminals, or with the aid of a vacuum tube voltneter across the volume control. With the volume and tone controls turned fully clockwise, turn the brass screws in the output IF transformer for maximum indication. Use
 as low an indication as possible by reducing the out put from the signal generator as the receiver sensitivity increases.

Without disturbing the signal generator dial, remove the . 01 MFD condenser from pin \#4 on the 12 SH 7 socket and connect to the grid cap of the 12 K 8 tube. Adjust the brass screws in the input IF transformer as above. NOTE: Do not adjust the output IF screws with the signal fed into the 12 K 8 tube. This completes the IF alignment.

Connect the signal generator output lead through a 200-300 MMF condenser to the ANT. terminal. Turn the tuning control until the condenser plates are fully unmeshed. Set the signal generator to 1720 Kc . Adjust the oscillator trimmer till the signal is noted. Reset the signal generator to 1400 Kc . Find the signal by turning the receiver tuning control. Now adjust the antenna trimmer for maximum indication. This completes the alignment. A short antenna should now bring in many stations.

© John F. Rider

PAGE 21-10 HEATH
MODEL BR-1

Check the voltages at the tube sockets. A table of approximate voltages is given below. These readings were obtained with a Heathkit VTVM with 11 megohms input resistance. The occasional lower readings in brackets were obtained with a Heathkit Handitester at 1,000 ohms per volt. Variations of plus or minus 15% may be expected.

MODEL 524

Traditional style cabinet
Mahogany finish

The Hoffman Models 522 and 524 are 15 SPECIFICATIONS phonograph combination receivers for reception on the standard broadcast AM and FM radio frequencies. The sound is reproduced by a $12^{\prime \prime}$ PM speaker, and has an audio power output of 15 watts.

The record changer will automatically change and play up to twelve $10^{\prime \prime}$ records or ten $12^{\prime \prime}$ records. An optional record changer is available which will play either the standard 78 rpm records or the Long Playing $331 / 3 \mathrm{rpm}$ records.

Connections are available at the rear of the radio tuner chassis for installation of a separate wire recorder, disc recorder, or 45 rpm record changer.

BLOCK DIAGRAM

MASOR COMPONENTS

Radio chassis	138
Cabinet	Model 522, Part No. 7523-1
	Model 524, Part No. 7524-1
Speaker	12' PM, Part No. 9015
	Voice coil impedance, 3.2 ohms
Record changer	One of the following:
	Webster Model 148, 78 rpm
	Webster Mpdel 149, 78 rpm
	Webster Model 246, 78 and $331 / 3 \mathrm{rpm}$
	V-M Corp. Model 400D, 78 and $331 / 3 \mathrm{rpm}$
Dial Escutcheon Part No. 8080 ELECTRICAL AND MECHANICAL DATA	
Frequency Range (AM) 535 KC to 1650 KC (FM) 88 MC to 108 MC	
Intermediate Frequency(AM) 455 KC , (FM) 10.7 MC	
Power Source...................... 117 volts AC, 60 cycles, 15 watts	
Output Impedance, Audio..................... 3.2 ohms at 400 cycles	
Power Output, Audio.. 15 watts	

TUBE COMPLEMENT

6BA6
6BE6
7 F8
6BA6
6BA6
6AL5
6AT6
$6 J 5$
$6 J 5$
6K6GT
5U4G
6Es

AM RF Amplifier
AM Oscillator-Converter
FM Oscillator-Converter
AM-FM ist IF Amplifier
FM 2nd IF Amplifier
FM Ratio Detector
AM 2nd Det., AVC, 1st Audio (AM \& FM)
2nd Audio Amplifier
Audio Phase Inverter
Audio Power Output
Power Rectifier
Tuning Indicator

ALIGNMENT PROCEDURE

NOTES

1-Before beginning alignment, the pointer must be set
possible for AM and FM. at the highest mark on the dial with the tuning condenser fully open.
2-The AM section should be completely aligned before beginning the FM alignment.
3-The set should be allowed to warm up 15 minutes before aligning.
4-An output meter should be connected across the speaker voice coil for AM alignment. Keep the volume control at maximum on $A M$ and use as low a signal input as

5-For AM and FM tracking, bend plates of the variable ($R F$ Section) as required.
6-In FM alignment, care must be taken to set the receiver oscillator frequency 10.7 MC above the incoming signal frequency.
7-The dummy antenna for FM alignment is two 150 ohm composition resistors; one in series with each generator lead.

ALIGNMENT CHART

$\begin{array}{\|l\|l\|} \hline \text { STEP } \\ \text { NO. } \end{array}$	BAND SWITCH TION	SIGNAL generator FREQ.	CONNECTION to RECEIVER	DUMMY ANTENNA	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	AdJust	remarks
1	AM	$\begin{aligned} & 455 \mathrm{KC} \\ & \text { Mod. } \end{aligned}$	$\begin{gathered} \text { 6BE6 } \\ \text { Conv. Grid } \\ \text { Pin } 7 \end{gathered}$	0.1 mfd	1600 KC	$\begin{aligned} & \text { T2 Pri., Sec., } \\ & \text { T4 Pri., Sec. } \end{aligned}$	Tuning gang wide open. Adjust trans. for max. output
2	AM	$\begin{aligned} & 1600 \mathrm{KC} \\ & \text { Mod. } \end{aligned}$	Ext. Ant. Clip	0.1 mfd	1600 KC	C10 BC Osc. Trimmer	Adjust for max. output
3	AM	$\begin{aligned} & 1400 \mathrm{KC} \\ & \text { Mod. } \end{aligned}$	Ext. Ant. Clip	0.1 mfd	1400 KC	C9, C8 RF Trimmer	Adjust for max. output
4	AM	600 KC Mod.	Ext. Ant. Clip	0.1 mfd	600 KC	T6 Sec.	Adjust for max. out put
5	AM	600 KC Mod.	Ext. Ant. Clip	0.1 mfd	600 KC	See Note 5	See Note 5
6	AM	1000 KC Mod.	Ext. Ant. Clip	0.1 mfd	1000 KC	See Note 5	See Note 5
7	FM	$\begin{gathered} 10.7 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	FM Ant. Terminals	0.1 mfd	107 MC	$\begin{aligned} & \text { T1 Pri., Sec., } \\ & \text { T3 Pri., Sec. } \\ & \text { T5 Pri. only } \end{aligned}$	Disconnect C23 at point \bar{A}. Tune for maximum reading. VTVM from point A to chassis. See Ratio Det. Alignment.
8	FM	$\begin{gathered} 10.7 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	FMAnt. Terminals	0.1 mfd	107 MC	Ts Sec.	Reconnect C 23 to point A . Tune for zero reading, VTVM from resistor junction to point C. See Ratio Det. Alignment.
9	FM	$\begin{gathered} 107 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	FM Ant. Terminals	300 ohms See Note 7	107 MC	C7 FM Osc. Trimmer	Adjust for max. with VTVM from point A to chassis. See Note 6.
10	FM	$\begin{gathered} 107 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	FM Ant. Terminals	300 ohms See Note 7	107 MC	C6 FMRF Trimmer	Adjust for max. with VTVM from point A to chassis.
11	FM	$\begin{gathered} 98 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	FM Ant. Terminals	300 ohms	98 MC	See Note 5	Adjust for max. with VTVM from point \mathbf{A} to chassis.
12	FM	$\begin{gathered} 88 \mathrm{MC} \\ \mathrm{CW} \end{gathered}$	FM Ant. Terminals	300 ohms	: 8 MC	See Note 5	Adjust for max. with VTVM from point A to chassis.

RATIO DETECTOR ALIGNMENT

TUNING Ts PRIMARY

(T1 and T3 should be tuned before tuning T5.)
Locate the ratio detector test points A, B, and C on the schematic diagram. Solder two 100,000 ohm composition resistors in series from point " A " to chassis. Connect a VTVM from point " A " to chassis and feed 10.7 MC CW' into the FM antenna terminals. Aajust Ts primary (bottom slug) for maximum reading, setting the generator output to give about one volt meter reading. (An insulated aligning tool should be used for this adjustment.) Condenser C23 should be disconnected at point " A " during IF and ratio detector primary adjustments. This prevents any stored charge on C23 from causing a time lag in the VTVM reading, and giving misleading peak indications.

TUNING TS SECONDARY

Reconnect C23 to point "A." Connect the VTVM probe
to point "C" and the VTVM common or ground lead to the junction of the two $100,000 \mathrm{ohm}$ resistors. Tune Ts secondary until the meter reading reverses polarity. Set the slug at this zero point.

CHECKING BAND WIDTH

Connect the signal generator to the grid of the 2nd FM IF tube. Set the generator to 100,000 microvolts at 10.7 MC. CW. Shift the generator frequency above and below 10.7 MC and record the frequencies at which the maximum positive and negative meter readings are obtained. The difference between these two readings is the bandwidth of the ratio detector and should be 250 to 300 KC .

Remove the two $100,000 \mathrm{ohm}$ resistors before beginning the FM RF alignment.

TUBE AND TRIMMER CONDENSER LOCATIONS

TOP VIEW OF CHASSIS

Tube Locations-Top View of Tuner Section
©john F. Rider

PAGE 21-4 HOFFMAN

Trimmer Condenser Location-Bottom View of runer Section

Dial Stringing
DIAL SHAFT

- John F. Rider

Tube Locations_Top View of Chassis

Parts Layout-Boftom View of Chassis

SCHEMATIC DIAGRAM
POWER SUPPLY AND AUDIO SECTION-CHASSIS 138

PARTS LIST-POWER SUPPLY AND AUDIO SECTION

MODELS 522,
524, Cn. 138
RADIO TUNER SECTION PARTS LIST

[^0]: Line voltage
 117 Volts AC
 Signal Input .None
 A variation of $\pm 10 \%$ is usually permissible.

[^1]: * Used on previous production receivers

[^2]: 1T VOLTS AC LINE. NO SIGNAL ImPUT. BOTTOM VIEW OF CHASSIS
 socket terminals and b-with
 SOCKET TERMINALS AND B-WITH
 2O,OOO OHMS PER VOLT METER
 VOLUME CONTROL MNUM

 * indicates ac volts.

[^3]: * Parts used on previous receivers.

[^4]: * Used on universal model SX-71U only.
 ** Use exact replacement part only.

[^5]: *Calibration adjustment.

 - Lorp must be connected for this step.

[^6]: Figure 5. Top view, component location

