VOLUME XXI

JOHN F RIDER

PERPETUAL

 TROUBLE SHOOTER'S MANUAL

 TROUBLE SHOOTER'S MANUAL}

VOLUME XXI

JOHN F. RIDER PUBLISHER, INC.

BOOKS BY RIDER

The Radio Amateur’s Beam Pointer Guide Installation and Servicing of Low Power Public Address Systems Inside the Vacuum Tube Servicing Superheterodynes Servicing Receivers by Means of Resistance Measurement

Perpetual. Trouble Shooter's Manuals
Volumes I to V Abridged (one volume)
Volume VI Volume X Volume XIV Volume XVIII
Volume ViI Volume XI Volume XV Volume XIX
Volume VIII Volume XII Volume XVI Volume XX

Volume IX Volume XIII Volume XVII Volume XXI

Aligning Philco Receivers, Volumes I and II
Automatic Frequency Control Systems Servicing by Signal Tracing The Oscillator at Work The Meter at Work Vacuum Tube Voltmeters

*

An Hour a Day with Rider on:
Resonance and Alignment Automatic Volume Conirol. Alternating Currents in Radio Receivers D-C Voltage Distribution in Radio Receivers

Encyclopedia on Cathode-Ray Oscilloscopes and Their Uses-by Rider-Uslan FM Transmission and Reception - by Rider-Uslan Understanding Vectors and Phase - by Rider-Uslan A.C Calculation Charts - by R. Lorenzen

Radar - What It Is - by Rider-Rowe Understanding Microwaves - by Victor J. Young Broadcast Operator's Handbook - by H. E. Ennes High Frequencr Measuring Techniques Using Transmission Lines By E. N. Phillips, W. G. Sterns, N. J. Gamara
TV Picture Projection and Enlargement - by Allan Lytel
The Business Helper-by L. C. Rucker
Radio Operator's License Q \& A Manual-by M. Kaufman
TV Installation Techniques-by S. L. Marshall
TV and Other Receiving Antennas (Theory and Practice)-by A. B. Bailey
The servicing data appearing on Philco, RCA and other pages carrying individual copyright notices, are copyrighted by the respective companies and are reproduced herein with their permission.

Entire Contents Copyrighted, 1950, by John F. Rider

REMOVING AND INSTALLING CHASSIS

To remove the chassis from the cabinet, remove the tuning knolss, cabinet bottom (base) and metal speaker grille. The speaker grille is removed by pulling it down away from the cabinet.

Release the chassis by removing the two mounting screws locat ed in the top inside of the cabinet just below the handle brackets. Install the chassis in cabinet in the same manner, being sure that the $15 / 16^{\prime \prime}$ diameter fibre washer (sleeve retainer) is placed over the volume tuning sleeve just before sliding the chassis into the cabinet.

Also, before tightening the two chassis mounting screws adjust the chassis for even spacing between all sides of the dial and the cut out in the cabinet, otherwise binding may result. In some early sets. the bottom of the dial can be leveled with the top surface of the cabinet (when dial is fully concealed) by adjusting the bracket adjustment serew called out in the front view illustration of the "Hide-A.Way" dial.

WEAK RECEPTION DUE TO SLIPQING VOLUME DRIVE CORD.

Weak reception can be caused by the slipping of the volume drive cord. If the set is still weak after the batt ies and tubes have been checked, it is a good idea to check th volume drive for slipping. To make this check, first remove it "A" battery from the cabinet and connect outside of the set. Turn the set on and fully rotate the volume knob to the right clockwise). Then reach into the cabinet and rotate the volump pulley on the volume control as far to the right (clockwise) $8 \cdot 8$ it will go. If the volume increases, it will be necessary to reme the chassis from the cabinet and check the stringing of thes volume drive cord. See paragraph "Stringing Volume Contr" Drive".

"HIDE-A-WAY" D1/a

Illustrations below show front. rear an exploded views of dial mechanism. Follow the sequence sho in in exploded view for disassembly or reassembly of the krobs, pointer or dial.

The "Hide-A-Way" dial mecharu"th is operated by the push button which works the trigge release bracket. The trigger bracket releases the dial assembly.

Thrust of the lever arm roller against the cam on back of the dial causes the dial to pop-up while a protruding edge on the lever arm simultaneously trips (turns on) the on-off switch.
Lever arm thrust is adjustable by attaching the far end of the lever arm spring to any of the holes spaced at different distances from the lever arm.

Kotating the dial fully to the left locks the dial into the cabinet and also trips (shuts-off) the on-off switch.

"Hide-A-Way" Dial, Rear View

SET
SCRE

Dial and Tuning Knob Assembly, Exploded View

STRINGING VOLUME CONTROL DRIVE

Illustrations below show volume cord stringing used in early and in late production sets.

Before restringing the volume cord, rotate volume control fully clockwise and. using a 46 Allen wrench, tighten the set screw on the volume control pulley, first being sure the cut-out slots on the pulley are in the position shown in the illustration. Loop the cord in the cut-out slots, winding $11 / 2$ turns around the volume control pulley, and then winding 2 turns around the volume tuning sleeve. In late sets loop the cord around the fibre pulley to the left of the set. To prevent slipping, be sure that the volume control turns freely and that the dial cord tension spring has sufficient tension

"Hide-A-Way" Dial, Front View (early set)

"Hide-A-Way" Dial, Front View (late set)

DIAL POINTER

The illustration shows an exploded view of the dial assembly and the sequence in which the pointer hub and torsion spring are to be assembled. When assembling the pointer torsion spring to the pointer, insert the rectangular end into the base of the pointer: compress the spring from about one-half to one turn in a clock.wise direction. Insert the rounded or looped end of the spring over the top end of the pointer set screw. Allow about $1 / 64^{\prime \prime}$ clearance between the inner turn of the pointer spring and pointer hub, or the pointer may bind or stick.
To adjust pointer, fully close the gang condenser. Set the end of the pointer over the two dots below 55 on the dial and tighten the pointer screw with a $\# 4$ Allen wrench. Important: Allow approximately $1 / 32^{\prime \prime}$ clearance between the hub on the pointer and the dial scale.

ALIGNMENT

- Use battery power for alignment if fresh batteries are available.
- When using AC power, an isolation transformer should be used if available. If not using an isolating transformer, connect a .1 mid. condenser in series with the signal generator low side to B minus ($P_{i n} 7$ of $1 U 5$ tube).
- Batteries should be held in chassis during alignment.
- Set volume control full on.

Stop	Dummy Antonna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Recaivar Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	.001 mfd . when using A. C. .1 mfd . when using Battery	Tuning condenser, antenna stator	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { 1st IF } \end{aligned}$	$\begin{aligned} & { }^{*} \mathrm{~A}, \mathrm{~B} \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum output
2	"	"	1620 KC	"	Oscillator (on gang)	E	"
Install metal chassis cover.							
3	Loop of several turns of wire, or place generator lead close to receiver loop for adequate signal.	No physical connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	F	"

Trimmer Location, Underside of Chassis

REPLACEMENT OF BATTERIES

Use replacement " A " and " B " batteries of the following types:
A Battery ($71 / 2$ Volts): General 31, Eveready 717, Burgess C5, Ray-o-Vac 751C or equivalent.
B Battery ($671 / 2$ Volts) : General 108, Eveready 467, Burgess XX45, Ray-o-Vac 4367 or equivalent.
Electrical characteristics of recommended batteries for these models provide for equal life for both the "A" and "B" batteries. "A" batteries may give satisfactory performance as low as 5.5 volts; " B " batteries as low as 49.5 volts. Replace batteries when reception is weak and voltage has dropped below values given above.
To install replacement batteries, slide the cover latch and open the hinged bottom cover. Then remove the wing nut which holds the hattery support bracket in place.

Disconnect battery connectors from old batteries. Batteries can easily be removed from the set by grasping them with long nose pliers or if necessary removing the cabinet bottom. Install new batteries so battery connectors are farthest away from the ends of the battery bracket. Batteries may become shorted if bracket touches connectors.

REPLACING TUBES

Tubes can most conveniently be removed or replaced by first removing the batteries and cabinet bottom. A miniature tube puller or extractor will be of help in facilitating tube replacement.

CONDENSERS

$\begin{array}{lll}\text { ClA } & 272.3 \text { mmfd. max., Ant. } \\ \text { C1B } & 107.2 \text { mang. max., Osc. } 68 B 34\end{array}$ C2 . 25 mfd, 200 volts, paper64B 1-28 $\begin{array}{llll}\text { C2 } & .25 \mathrm{mfd}, 200 \text { volts, paper } & 64 \mathrm{~B} & 1-28 \\ \text { C3 } & 100 \mathrm{mmfd} . & \text { ceramic } & 65 \mathrm{~B} \\ 6-3\end{array}$ $\begin{array}{llll}\text { C3 } & 100 \mathrm{mmfd} \text {. ceramic } & 65 B & 6-3 \\ \text { C4 } & .01 \mathrm{mfd}, 400 \text { volts, paper } & 64 \mathrm{~B} & 1-25\end{array}$ $.01 \mathrm{mfd}, 400$ volis, paper
.001 mfd , min. ceramic 65B 6.41
$100 \mathrm{mfd}, 25$ volts. Electrolytic 67A $4-6$ 100 mmid, ceramic 65B 6.3 001 mid, min. ceramic 65B 6-41 005 mfd min ceramic
$005 \mathrm{mfd}, \mathrm{min}$, ceramic
*Clo 100 mmfa ceramic
*Cll . 005 mfd ceramic
*Part of couplate (part \#63A4-3). Replace with exact duplicate or individual components. Not that numbers $1,2,3,4,5,6$, on schematic cor respond to lead numbers printed on face couplate.
Cl2 .001 mfd , min. ceramic \quad 65B $6-41$ C13 $.05 \mathrm{mfd}, 400$ volts, paper $\ldots \ldots \ldots$..... $64 \mathrm{~B} \quad 8$ C14A $30 \mathrm{mfd}, 150$ volts
C14B $20 \mathrm{mfd}, 150$ volts Electrolytic $67 \mathrm{C} 7-41$ C14C 20 mfd, 150 volts Cl5 . $1 \mathrm{mfd}, 200$ volts, paper $-\ldots64 \mathrm{~B} \quad 1.30$

COILS, TRANSFORMERS, ETC.

11	Antenna, Rod (Ferro-Scope)..._69C 120
L2	Coil, Oscillator .-. 69
Tl	Transformer, lst IF \quad - $\quad 72 \mathrm{~B}$ 28-1
T2	Transformer, 2nd IF
T3	Transformer, Output. - 98 A 21
M1	Speaker ($31 / 2^{\prime \prime}$ PM) and Output Trans. \qquad
M2	Rectifier, Selenium _-........ 93A 1-6
SW1	Switch, On-OH, DPST, (less bracket) \qquad 77A 23
SW2	Switch, Power Change \qquad 77A 19-1 - Couplate (includes R9, R10, R11, C9, C10, C11). \qquad 63A 4.3

PARTS FOR "HIDE-A-WAY" DIAL Description Part No.
Dial Cord (for volume control).........50A 1-3
Dial Scale
Ebony for 4R11 22C $25-4$
Maroon for 4R12 \qquad
Housing Assembly, Metal (for dial
scale, includes hub and cam)
Ebony for 4R11
Maroon for 4R12 A3264
Maroon for 4R12 Hub, Brass (for dial pointer) $\quad 27 A 151$ Pointer, Dial …_-........................... 40
Pulley, Brass (volume tuning sleeve) 27A 149
Screw (\#6x5/6 S.T.B.H.-for mtg.
dial trim) $(+4-40 \times 5 / 16$-for dial
pointer hub) \qquad
1A 71-9-71 1A $43-4$
Spring, Hairpin (for mig. dial ass'bly) 19A 2-6

Trim. Plastic (front bottom of dial housing) Ebony for 4R11 \quad 33B 60-1 Maroon for 4R12

CABINET PARTS

Bottom, Cabinet (Base)
Ebony for 4R11
complete with metal door_................ 3270
plastic frame only Maroon for 4R12
complete with metal door_-_.-............. 3260 plastic frame only............................. 35 -1 Bracket. Handle Support (metal ends) 20B 14 Button, Push

Ebony for 4R11
33A 61-1
Maroon for 4R12
33A 61-2

Description Part No.

MISCELLANEOUS PARTS

ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator, and connect to B minus (terminal of On-Off switch).
Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below.
- Repeat adjustments to insure good results.
- Use a non-metallic alignment tool for IF transformers.

Step	Dummy Anntenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd . condenser	Pin 8 of 12SA7 tube	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { lst IF } \end{aligned}$	$\begin{aligned} & \mathrm{A}, * \mathrm{~B} \\ & \mathrm{C}, * \mathrm{D} \end{aligned}$	Maximum Output
2	250 mmfd . condenser	Tuning condenser Antenna stator	1620 KC	"	Oscillator (on gang)	E	"
3	Loop of several turns of wire (or place generator lead close to receiver loop for adequate signal)	No physical connection (signal by radiation)	1400 KC	Tune in Generator signal	$\begin{gathered} \text { RF } \\ \text { (on gang) } \end{gathered}$	F	"
4	"	"	"	"	Antenna (on gang)	G	"

*Adjustments B and D are made from underside of chassis.

VOLTAGEDATA

- All voltages taken between tube socket terminals and B minus (terminal of On_{n} Off switch).
- Dial turned to low frequency end; volume control at minimum.
- Voltages measured with Vacuum Tube Voltmeter from 117 Volts AC line.

"If taken with a 1000 ohm-per-volt meter, readings will be either lower or practically zero.
4 On "Phono" these voltages will be zero. All other DC reading may be slightly higher
4.On "Phono" these voltages vill be zero. All other DC reading may be slightly higher.

RESISTORS

CONDENSERS

C	
$\begin{aligned} & \mathrm{C} 2 a \\ & \mathrm{C} 2 \mathrm{~b} \end{aligned}$	$\left.\begin{array}{l}\text { Gang } 0 \text { to } 420 \mathrm{mmfd} \text {. } \\ \text { Gang- } 0 \text { to } 108 \mathrm{mmfd} \text {. }\end{array}\right\}$ - 30
	Note-Dial drum spot welded to Gang.
C3	. 005 mfd. , min., Ceramic.-....65A 10-1
C4	50 mmfd., Ceramic -----35B 6-4
C5	. 05 mfd., 400 Volts, Paper._64B 1-22
C6	. $1 \mathrm{mfd} ., 200$ volts, Paper.....64B 1-30
C7	$75 \mathrm{mmfd}$. , 3\%, Ceramic_-......Part of TI
C8	$75 \mathrm{mmfd} ., 3 \%$, Ceramic_-_-....-Part of T1
C9	75 mmid., 3\%, Ceramic........-Part of T2
Cl0	75 mmid., 3\%, Ceramic........Part of T2
+Cll	100 mmid., Ceramic
$\dagger \mathrm{Cl} 2$	100 mmid., Ceramic
C13	.002 mfd , 600 Volts, Paper 64B 1.14
C14	$.01 \mathrm{mid} ., 400$ Volts, Paper
Cl5	. 1 mid., 200 Volts, Paper.-......64B 1-30
C16	. 01 mid., 400 Volts, Paper
C17	. $03 \mathrm{mid}$. . 400 Volts, Paper.__64B 1-23
C18	. 01 mid., 400 Volts, Paper_64B 1-25
Cl 9	. $1 \mathrm{mfd} ., 200$ Volts, Paper.........64B 1-30
C20	500 mmfd., Ceramic
C21	. $75 \mathrm{mid} ., 400$ Volts, Paper_...64B 1-22
C22	. 18 mfd., 200 Volts, Paper...64A 2-2
C23a	$30 \mathrm{mfd} ., 150$ Volts
C23b	$30 \mathrm{mfd} ., 150$ Volts Elect 67A 14.1
C 23 c	20 mfd., 150 Volts ${ }^{2}$ (Elect......67A 14.1
C23d	$20 \mathrm{mfd} ., 25$ Volts

COILS, TRANSFORMERS, ETC.

MISCELLANEOUS

 Clip, Electrolytie Mounting.....................18A 10-6
 Drum, Pointer... 27 Gasket, Sponge Rubber (mounts on Speaker) Grommet, Rubber (Gang mig.) - \quad 12A Manual
Customer Instruction
Service, for 6S1 Chassis_-............................ 299
Service, for RC500 Changer...........

Pilot Light Socket and Leads............82A2-2

Shaft, Pointer
Shield, Pilot Light.. 15 A

 Spacer, "T" (Gang condenser mtg.) 29A 2-1-7
 Washer, C (for pointer drum)--- 4A
Washer, Spring

CABINET PARTS

Cabinet, Plasti
Bottom, less lid (Ebony 6S1l)__.......34D 28-3 Bottom, less lid (Mahogany 6S12) 34D 28-5 Lid only (Mahogany 6S12) - 34D 28-6 Clamp, Cable, Escutcheon, Ring (Gold trim) \quad 23C 51-1

PHONOGRAPH PARTS

M2

Cartridge, Pickup

M3 Cable, Shielded Pickup
M4 (includes plug)
$\begin{array}{llll}\text { M4 } & \text { Plug, Pickup Cable. } & \text { 88A } & 2-3 \\ \text { M6 } & \text { Motor, Phono (3 speed) } & \text { 407B } & 19 \\ \text { M7 } & \text { Plug, Motor (Male) } & 88 A & 8-1\end{array}$
M7 Plug, Motor (Male)
Adapter, 45 RPM (envelope of 12) 48A 8-1
Button, Snap-in Plug

Idler Wheel (in
Needle, Pickup
for 409A13 cartridge
98A 15-19
for 409A13-1 cartridge_- 98 -
Needle Retaining Nut (for 409A13
Service Manual, RC500 $\quad-\quad$ - \quad S8A \quad 54-2
Screw and Washer ChangerS298
Mounting ($10-32 \times 1 / 4$ RHMS)
Spring. Changer Float...............................AA 10-3

ALIGNMENT PROCEDURE

- Turn receiver volume and tone controls full on.
- Antenna must be connected and placed in the same relative position to the chassis as when in cabinet.
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and attach to B minus of classis (terminal of On-Off Switch). Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results.
- Use a non-metallic alignment tool for IF transformers.

Step	Dummy Antenna in Series with Signal Generafor	Connection of Signal Generator (High Side)	Signal Generafor Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd. condenser	Tuning condenser, antenna stator	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { 1st IF } \end{aligned}$	$\begin{aligned} & { }^{*} \mathrm{~A}, \mathrm{~B} \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum output
2	250 mmfd. condenser	Tuning condenser, antenna stator	1620 KC	Gang fully open	Oscillator	E	Maximum output

Mount dial pointer. Set pointer to horizontal position with tuning condenser tuned to 1400 KC generator signal (see illustration below). Rotate the tuning condenser until the pointer is in a vertical position (900 KC), then slip chassis in cabinet, carefully guiding the pointer so that it locates between the dial escutcheon and the cabinet. Install antenna and chassis mounting bolts. The pointer and escutcheon may be mounted after installing the chassis in cabinet as follows: Set pointer to horizontal position with gang tuned to 1400 KC signal. Place escutcheon on cabinet. With long nose pliers slip the hairpin ends of the escutcheon mounting springs in holes of escutcheon tabs.

3	Loop of several turns of wire, or place generator lead close to receiver antenna for adequate signal.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna	\dagger F	Maximum output

*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of chassis, if you use alignment tool $\# 98 A 30-7$ obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug. \dagger Antenna Trimmer " F " should be aligned after chassis and antenna are mounted in cabinet.

Adjustments A and C made from underside of chassis.
DIAL STRINGING AND POINTER SETTING

Dial stringing and pointer with solid lines shown with gang closed. Dashed line pointer positions (1400 KC and 900 KC) shown when tuning condenser is tuned to generator signal.

RECORD CHANGER: Model RC500, see page

RECORD CHANGER SERVICE DATA

The changer model number will be found stamped at the top rear of the changer base. Complete service information and parts list for the RC500 record changer is contained in Record Changer Service Manual (form number S298).

Cartridge and Needle

As shown in the illustrations, alternate cartridges may be used. Cartridges are interchangeable when complete with needle.

RCD.CH.21-1.

ModelsAR250MU, AR252MU, AR254MU
(Mabogany)

Models AR251BU, AR253BU, AR255BU
(Blond)

TYPE: Eight -tube, two-band, superheterodyne.
FREQUENCY RANGE: Standard Broadcast Band; 540 to 1620 kc . (Selector Switch at middle position).

Frequency Modulation Band; 88 to 108 megacycles (Selector Switch to right).

INTERMEDIATE FREQUENCY: Standard Broadcast Band; 455 kc .

Frequency Modulation Band: 10.7 mc .
FM ANTENNA INPUT IMPEDANCE: 75 ohms balanced.

POWER SUPPLY: a. c. only.
VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 60 watts at 117 volt power supply; 20 watts additional for record changer.

POWER OUTPUT: 3.2 watts maximum.
DIAL BULB: Type 47, 6.3 volts, .15 amp.

ALIGNMENT PROCEDURE

This receiver has been aligned at the factory for best performance and no attempt should be made to realign it unless the proper test equipment is available.

1. Turn the tuning condenser to full mesh, against stop, and set the dial pointer to line up with the right hand vertical portion of the " M " in "AM" and ' $F M$ ", located to the left of 55 on the dial.
2. Set the tone control knob to the full treble position (extreme right).
3. For Amplitude Modulated signal readings, connect output meter across voice coil (3.2 ohms).
4. All Amplitude Modulated input signals are modulated 30% at 400 cycles with the High side of the signal generator connected to receiver as indicated in the alignment chart. Connect the low side of signal generator to the receiver chassis.
5. All Frequence Modulated signals are modulated 30% at 400 cycles. 30% modulation is equal to a deviation of 22.5 kilocycles. Connect the Frequence Modulated signal generator as indicated in the alignment chart.

MODELS AR-250MU, AR-251BU,
AR-252MU, AR-253BU,
AR-25 $4 \mathrm{MU}, ~ A R-255 \mathrm{BU}$
6. Turn the volume control to maximum clockwise position and adjust signal generator output to produce a noticeable output meter reading. Keep signal generator output as low as possible to prevent AVC action in the receiver.
7. For F. M. alignment, the loop antenna must remann connected, or a suitable dummy antenna must be connected in its place (See F.M. Dummy Antenna diagram).

CHASSIS TOP VIEW SHOWING ALIGNMENT ADJUSTMENTS

AFFILIATED RETAILERS PAGE 21-3
MODELS AR-250MU, AR-251BU, AR-252MU, AR-253BU, AR-254MU, AR-255BU

ALIGNMENT CHART

Alignment Sequence	Signal Generator Output			Position of		Adjust	Type of Selectivity Curve	Remarks
	Frequency	In Series With	To	Range Sw.	Tuning Dial or Tun. Cap.			
1	455 kc .	. 01 mfd .	Stator plates of C1B	AM	Open	A \& B	Single Peak	
2	455 kc .	. 01 mfd .	Stator plates of C1B	AMi	Open	$C \& D$	Single Peak	
3	10.7 mc .	.01 mfd .	2nci I-F Grid pin 1 V4	FM	Open	E		See note 1
4	10.7 mc .	. 01 mfd .	2nd I-F Grid pin 1 V4	FM	Open	F		See note 2
5	Repeat st	eps 3 and 4						Remove the two 100 K ohm re sistors after alighment.
6	10.7 mc.	. 01 mfd .	1st I-F Grid pin 1 V3	FM	Open	G \& H retouch E		See note 3
7	10.7 mc .	. 01 mfd .	Stator plates of C1E	FM	Open	J \& K		See note 4
8	Readjust G \& H and J \& K for maximum gain							See note 4
9	98 mc .	F.M. Dummy Ant.	Dipole Ant. Terminals	FM	98 mc .	L		See note 5
10	104 mc .	F.M. Dummy Ant.	Dipole Ant. Terminals	FM	104 mc .	M		See note 6
11	92 mc .	F.M. Dummy Ant.	Dipole Ant. Terminals	FM	92 mc .	N		See note 7
12	Repeat steps 10 and 11 until no further improvement in sensitivity is noted.							
13	1400 kc .	30 mmf .	Ext. Ant. Term. or A.M. Dummy Ant.	AM	1400 kc .	P		See note 8
14	1400 kc .	30 mmf .	Ext. Ant. Term. or A.M. Dummy Ant.	AM	1400 kc .	Q \& R		See note 8

A. M. DUMMY ANTENNA
F. M. DUMMY ANTENNA

ALIGNMENT NOTES

1. Connect two $100,000 \mathrm{ohm}, 5 \%$, carbon resistors (part no. $39375-97$) in series, from pin 2 of V 5 to ground. Then, connect an electronic voltmeter (negative polarity) across these resistors. Adjust " E " of $T 5$ for maximum meter reading.
2. With the two 100,000 ohm resistors still connected as explained in note 1 , connect the electronic voltmeter from the center junction of the resistors to the junction of R26 and R29. Adjust " F " of T5 for zero volts, first using a high scale on the voltmeter and then the lowest scale to obtain close balance.
3. Connect the electronic voltmeter from pin 2 of $V 5$ to ground. Then adjust " G " and " H " of T3 for maximum meter reading. Retouch " E " of T 5 for maximum meter reading.
4. With the voltmeter connected as for note 3 , adjust " J " and " K " of $T 1$ for maximum meter reading.
5. Adjust turns on F.M. oscillator coil by spreading apart or squeezing together, as required to make the 98 megacycle signal fall on 98 megacycles on the dial. See F.M. Dummy Antenna diagram.
6. Rotate variable capacitor rotor plates slightly back and forth while adjusting " M " to obtain maximum meter reading. See F.M. Dummy Antenna diagram.
7. Adjust turns on R.F. coil until maximum meter reading is obtained. See F.M. Dummy Antenna diagram.
8. Adjust for maximum output. See A.M. Dummy Antenna diagram.

MEGACYCLES TO CHANNEL NUMBERS "FM" BAND

Frequency in Megacycles	Channel No.	Frequency in Megacycles	Channel No.
87.9	200	98.9	255
88.9	205	99.9	260
89.9	210	100.9	265
90.9	215	101.9	270
91.9	220	102.9	275
92.9	225	103.9	280
93.9	230	104.9	285
94.9	235	105.9	290
95.9	240	106.9	295
96.9	245	107.9	300

To find the frequency in megacycles for CHANNEL NUMBERS between those given above, add .2 megacycles for every whole number added to the CHANNEL NUMBER; for example Channel 204 would be 88.7 megacycles and 251 would be 98.1 megacycles.

Symbol No.	Part No.	Description	Symbol No.	Part No.	Description
C1A	C-144962-3	Capacitor, Variable	CO2	W-136998	Connector (Female), Phono
C18		Capacitor, Variable	CO^{2}	AW-143496	Shielded Wire Assy., Phono
${ }_{C 11}{ }^{\text {c }}$		Capacitor, Variable $\}$ Five Section	CO4	B-139727-3	Connector \& Wire Assy., Phono Motor
C1D		Capacitor, Variable	SP1	138762-5	Speaker, 10" P.M.
C1E		Capacitor, Variable	T1	C-145025-3	Transformer, 1st $1 . \mathrm{F} .(10.7 \mathrm{mc}$)
C2	C-137727-1	Capacitor, 100 mmf ., 300 v. , ceramic	T2	AC-139919-3	Transformer, 1st 1.F. (455 kc)
${ }^{\text {c }}$	39001-81	Capacitor, $025 \mathrm{mfd}, 600 \mathrm{v.}$, , paper	T3	D-145025-1	Transformer, 2nd 1.F. (10.7 mc)
C4	C-144675-2	Capacitor, 005 mfd ., 500 v ., disc ceramic	T4	AC-139919-3	Transformer, 2nd 1.F. (455 kc)
C5	C-137727-87	Capacitor, 33 mmf ., $500 \mathrm{v} .$, ceramic	T5	C-145193	Transformer, Ratio Detector
C6	C-137727-43	Capacitor, 15 mmf ., 500 v ., ceramic	T6	B-144970	Transformer, Power
C7	C-137727-1	Capacitor, 100 mmf ., 300 v., ceramic	T7	B-145088	Transformer, Output
CB	C-144675-2	Capacitor, 5000 mmf , 500 v ., disc ceramic	L1	Not Stocked	Loop Antenna (270 " - No. 22 Wire)
C9	39001-81	Capacitor, $025 \mathrm{mid} ., 600 \mathrm{v}$, paper	L2	AW-143837	Coil, Choke
C10	39001-13	Capacitor, .01 mfd , 600 v ., paper	L3	AW-145112	Coil, F.M.-R.F.
${ }_{C}^{C 11}$	C-137727-8 C-144675-6	Capacitor, 1000 mmf., 300 v., ceramic	L4	B-143322 AW-145104	Coil, Antenna Primary (F.M.)
C12A C 12 B	C-144675-6	Capacitor, 004 mfd ., 500 v . Capacitor, $004 \mathrm{mfd} ., 500 \mathrm{v}$. ${ }^{\text {Two Section. }}$ Disc Ceramic	L5	AW-145104 AW-146004	Coil, Antenna Secondary (F.M.) Coil, Oscillator (F.M.)
C14	W-137398-5	Capacitor, 3.3 mmf ., 500 v .	L7	AW-145372	Coil, Oscillator (A.M.)
C15	39001-13	Capacitor, 01 mfd ., 600 v., paper	L8	AW-144967	Coil, Choke
C16	B-143686-3	Capacitor, $100 \mathrm{mmi} ., 500 \nabla^{\text {r }}$, molded dise ceramic	L9	AW-148565	Coil, Antenna Loading
C17	C-137727-8	Capacitor, 1000 mmf , 300 v ., ceramic	L10	AW-145993	Transformer, R.F.
C18	B-142958	Capacitor, 4 mfd., 50 v ., Electrolytic	SW1 SW2	W-148480	Switch, Band Selector
C19	W-145913-1 $\mathbf{W}-137398-3$	Capacitor, 120 mmf ., $5 \%, 500 \mathrm{v}$. ceramic	SW2 PH1	39369-1	Switch, Power
C 20 C 21	W-137398-3 $\mathrm{C}-137727-109$		PH1	D-148279-1	Record Changer (V950) Background Assy., Dial
C22	C-137727-90	Capacitor, 100 mmi ., $5 \%, 500 \mathrm{v}$., ceramic		148583	Background Assy., Dial
${ }^{\text {c23 }}$	B-143686-8	Capactior, 12 mmf , 500 v ., molded disc ceramic		143485	Bumper (Rubber), Doors
C24	C-142951-2	Capacitor - Resistor		R-148577	Cabinet ($11-250 \mathrm{MU}, 11-252 \mathrm{MU}, 11-254 \mathrm{MU}$)
C25	C-137727-8	Capacitor, 1000 mmf ., 300 v ., ceramic		R-148603	Cabinet (11-251BU, 11-253BU, 11-255BU)
C26	39001-11	Capacitor, , 005 mfd ,, 600 v., paper		W-136201	Clip, Dial Glass
C27	39001-13	Capacitor, . 01 mfd ., 600 v ., paper		W-145510	Clip, Sub Chassis Mtg.
${ }^{2} 28$	C-137727-99	Capacitor, 20 mmf ., $2 \%, 500 \mathrm{v}$., ceramic		W-136999-1	Connector (Male), Shielded Fhono Wire
C29	C-144675-2	Capacitor, 005 mfd .500 v ., dise ceramic		W-136853	Cushion (Rubber), Dial Glass
C30	C-137727-8	Capacitor, 1000 mmf ., 300 v ., ceramic		148561	Decal, Off-On-Vol-Tone
C31	39001-11	Capacitor, .005 mfd ., 600 v ., paper		148560	Decal, Tuning-Ph-AM-FM
${ }_{C} 32$	39001-81	Capacitor, . 025 mfd , 600 v. , paper		C-148587	Dial Glass ($11-250 \mathrm{MU}, 11-251 \mathrm{BU}$)
${ }^{\text {C33 }}$	C-144675-2	Capacitor, 005 mfd ., $500 \mathrm{v}_{\sim}$, disc ceramic		C-148701	Dial Glass (11-252MU, 11-253BU, 11-254MU, 11-255BU)
C34A C 34 B	B-144990	$\left.\begin{array}{l}\text { Capacttor, } \\ \text { Capacitor, } \\ 60 \mathrm{mfd} ., 300 \mathrm{v} . \\ \text { mfd., } 300 \mathrm{v} .,\end{array}\right\}$ Four Section		148605	$\left.\begin{array}{l}\text { Door, Radio } \\ \text { Front, Drawer }\end{array}\right\} 1$ Pair(11-251BU, 11-253BU, 11-255BU
C34C		Capacitor, 10 mfd ., 300 v . Electrolytic		148579	Door, Radio \}
C34D		Capacitor, 100 mfd , 25 v.			Front, Drawer 1 Pair
C35 C36 c	$\begin{aligned} & \mathrm{C}-137727-8 \\ & \mathrm{C}-137727-8 \end{aligned}$	Capacitor, $1000 \mathrm{mmf}, 300 \mathrm{v}$., ceramic Capacitor, $1000 \mathrm{mmi} ., 300 \mathrm{v}$, ceramic		148608	Doors (1 pair), Record Compartment (11-251BU, 11-253BU, 11-255BU)
C37	39001-11	Capacitor, 005 mfd ., 600 v ., paper		148582	Doors, (1 pair), Record Compartment (11-250MU,
C38	C-144675-12	Capacitor, 001 mfd ., 500 v . ${ }^{\text {a }}$ Two Section.			11-252MU, 11-254MU)
C38		Capacitor, .0001 mfd , 500 v . \int dise ceramic		C-145773-1	Escutcheon
C39	W-137398-5	Capacitor, 3.3 mmf ., 500 v .		148609	Grille Cloth (11-2518U, 11-2538U, 11-255BU)
C40	C-137727-109	Capacitor, 39 mmf ., $10 \%, 200 \mathrm{v}$., ceramic		148584	Grille Cloth ($11-250 \mathrm{MU}, 11-252 \mathrm{MU}, 11-254 \mathrm{MU}$)
$\mathrm{Cl}_{\mathrm{R} 1}$	C-144675-2	Capacitor, $005 \mathrm{mfd}, 500 \mathrm{v}$., dise ceramic		148611-1	Hinge (Upper Left - Lower Right), Door (11-251BU, 11-253BU, 11-255BU)
R2	39373-33	Resistor, $1000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		146786	Hinge (Upper Left - Lower Right), Door ($11-250 \mathrm{MU}$,
R3	39373-92	Resistor, 1 megohm, $1 / 2 \mathrm{w}$.			11-252MU, 11-254MU)
R4	39373-33	Resistor, $1000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		148611-2	Hinge (Lower Left - Upper Right), Door (11-251BU,
R5	39373-80	Resistor, $220,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.			11-253BU, 11-255BU)
R6	$39373-33$ $39373-74$	Resistor, $1000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		146787	Hinge (Lower Left - Upper Right), Door (11-250MU,
R8	- $\begin{array}{r}39373-74 \\ 39374-14\end{array}$	Resistor, $120 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		B-148643-1	Knob, Band Selector
R9	39374-33	Resistor, $4700 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		B-138540-7	Knob, off -On-Vol., Tone, Tuning
R10	39373-47	Resistor, $4700 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-45580	Mounting (Rubber), Band Selector Switch; Speaker
R11	39373-107	Reststor, 10 megohm, $1 / 2 \mathrm{w}$.		148610	Panel, Radio Dial (11-251BU, 11-253BU, 11-255BU)
R12	39374-42	Resistor, $27,000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		148586	Panel, Radio Dial (11-250MU, 11-252MU, 11-254MU)
R13	39374-41	Resistor, 22,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.		W-130076CL	Pin, Speaker Cable
R14	39373-33	Resistor, $1000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-143769	Pointer, Dial
R15	39373-92	Resistor, 1 megohm, $1 / 2 \mathrm{w}$.		148606	Pull, Handle (11-2518U, 11-253BU, 11-255 BU)
R16	39373-67	Resistor, $47,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		148505	Pull, Handle ($11-250 \mathrm{MU}, 11-252 \mathrm{MU}, 11-254 \mathrm{MU}$)
R 17	39373-97	Resistor, 2.2 megohm, $1 / 2 \mathrm{w}$.		148607	Pull, Knob (11-2518U, 11-253BU, 11-255BU)
R18	39373-64	Resistor, $33,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		148581	Pull, Knob (11-250MU, 11-252MU, 11-254MU)
R19	39368-11	Control, Tone (2 megohm)		W-137939-2	Pulley (dder), Dial Drive Cord
R20	$\begin{aligned} & 39368-18 \\ & 39369-1 \end{aligned}$	Control, Volume (1 megohm, Tap 275,000 ohm) Switch, Power		$\begin{aligned} & W-137170 \\ & W-137940-1 \end{aligned}$	Retainer, Record Changer Mts. Screw Rivet, Dial Drive Idler Fulley
	39370-2	Shaft, Volume Control		W-144498-1	Rivet, Dial ${ }^{\text {Screw, Escutive }}$ Idier Fulley
R21	8-144857-3	Resistor, $1700 \mathrm{ohm}, 10 \%, 7$ w., W.W.		W-148501	Shaft, Dial Drive
R22	39373-67	Resistor, 47,000 ohm, $1 / 2 \mathrm{w}$.		148604	Shelf Assy., Drawer (11-251BU, 11-253BU, 11-255BU)
R23	39373-87	Resistor, 470,000 ohm, $1 / 2 \mathrm{w}$.		148578	Shelf Assy., Drawer (11-250MU, 11-252mU, 11-254MU)
R24	39374-17	Resistor, $220 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.		W-139040	Shock Mount, Sub Chassis Mtg.
R25	39373-80	Resistor, $220,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		143478	Slide, Drawer
R26	39373-67	Resistor, 47,000 ohm, $1 / 2 \mathrm{w}$.		D-136565-16	Socket, Dial Light
R27	39373-33	Resistor, 1000 ohm, $1 / 2 \mathrm{w}$.		W-142761	Socket, Tube (V1, V3, V4, V6)
R28	39373-64	Resistor, 33,000 ohm, $1 / 2 \mathrm{w}$.		W-144732	Socket, Tube (V2)
R29	39373-47	Resistor, $4700 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-145607	Socket, Tube (V5)
R30	39374-43	Resistor, 33,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.		39232-1	Socket, Tube (V8)
R31	39373-80	Resistor, $220,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		39441	Socket, Tube (V7)
R32	39373-87	Resistor, 470,000 ohm, $1 / 2 \mathrm{w}$.		W-145757	Spring, Dial Drive Cord
CA1	C-132300-2	Cable \& Plug Assy., Power		W-49829	Spring (Lock), Dial Drive Shaft
	$\begin{aligned} & 138437-1 \\ & \text { aw } \end{aligned}$	Bulb (Dial), Type 47, 6.3 v., . 15 amp . Terminal Board, Antenna		W-143552	Strip, Dial Pointer

MODEL 4G-420
ALIGNMENT AND SERVICE DATA
 $\mathrm{KC}, 1400 \mathrm{KC}, 1720 \mathrm{KC}$. An output meter should be connected acroms the The recelver volume control should be turned to maxdmum during the L.F. false readings. Keep the generator output all low as posalble to prevent
 FIRST STEP: Connect the hot lead from the generator to the ANN. the generator must be connected to the floating ground buss under the chassis. Turn the gang condenser to complete minimum capacity. Adjuat.
the generator to 455 KC and adjust the trimmers of the 1 st and 2nd L.F. transformers untll a maximum reading is noted on the output meter. in the SECOND STEP: With the leads from the generator still connected located on the front of the chassis. Adjust this trimmer untll the 1720 KC aignal is tuned in. THIRD STEP: Remove the hot lead of the generator from the ANT actuan through a 200 MMFD condenser. Adjust the Signal Generator to 1400 KKC located on the top of the ANT. section of the gang condenser. Adjust this trimmer until a maximum reading is noted on the output meter. No further adjustment should be necessary, unless the set has been damaged, an the colls
and condenser in this recelver have been spectally handled at the factory

Operating Instructions
POWER SOURCES: This combination will operate on an alternating (AC) curPOWER SOURCES: This combination will
rent only, of 110 to 125 volts at 60 cycles.

CAUTION: Always predetermine voltage of power source. Never try to plug Never try to operate this combination on 50 cycle current, as this will cause
 This receiver is equipped with a sensitive hank antenna and under ordinary conditions no external antenna would be required. However, in steel constructed an outside antenna. This should be a single wire not more than 50 feet long and
ahould be connected to the antenna lead that projects from the back of the receiver. No ground wire is required at any time. into a convenient power outlet. INSTALLAATION: Unwind power cord and plug into a convenient power outlet.
Follow instructions under "Controls" to operate receiver.
 combination. The right hand control is the station selector which is used only in either "Radio" or "Phonograph". The center control is used to adjust volume on either "Radio" or "Phonograph" and is also used as a power switch to turn the
combination "On" or "Off." RADIO RECEPTION: After the power cord plug has been connected to your
 in the dial should begin to glow. After about 30 seconds, the set will be ready for operation
Make sure that the left hand control is turned to the left, in "Radio" position. volume. Rotate the right hand control to the right or left to select the desired station. By mentally adding a zero to the figures on the upper half of the dial,
the result will be read directly in kilocycles (i.e., 60 plus 0 equals 600 KC or 140 plus o equals 1400 KC). After a station has been tuned in, adjust the center con-
trol to your desired volume.

PHONOGRAPH REPRODUCTION: To operate the phonograph, be sure that the left hand control is turned to the right. This puts the circuit in "Phonograph"
position and also turns on the power for the motor. The center control must also be turned on (as in Radio instructions) as it is the master control for power to the
radio receiver and phonograph motor. so-72

This receiver is designed to operate over the standard broadcast band which extends from 535 to 1620 Kilocycles (KC) (185 to 560 Meters.)

ALIGNMENT PROCEDURE

GENERAL DATA. The alignment of this receiver requires the use of a test oscillator that will cover the frequencies of 455, 600, 1400 and 1620 KC and an output meter to be connected across the primary or secondary of the output transformer. If possible, al alignments should be made with the volume control on maximum and the test oscillator output as low as possible to prevent the AVC from operating and giving false readings.
CORRECT ALIGNMENT PROCPDURE. The intermediate frequency (I.F.) stages should be aligned properly as the first step. After the I.F. transformers have been properly adjusted and peaked, the broadcast band should be adjusted.
I.F. ALIGNMENT. Remove the chassis and loop antenna from the cabinet and set them up on the bench so that they occupy exactly the same respective pasitions on the bench as they did in the cobinet. Care should be taken to have no Iron or other metal near
the loop. Do not make this set-up ron a metal bench. With the gang condenser set at minimum, adjust the test oscillator to 455 KC and connect the output to the grid of the converter tube (12SA7) through a .05 or .1 mid . condenser. The ground on the test oscillator should be connected to the ground buss, indicated on the circuit diagram. Align all three I.F. trimmers to peak or maximum reading on the output meter.

BROADCAST EAND ALIGNMENT. Connect the test oscillator to a dummy loop which can be made by coiling 2 turns of hookup wire about $6^{\prime \prime}$ in diameter Place this dummy loop about a foot from the loop on the receiver and in the same plane as the recelver loop. With the gang condenser set at minimum capacity, eet the test osclllator at 1620 KC , and adjust the oscillator for 1620 KC trimmer) on the gang condenser. Next-set the test oscillator at 1400 KC , and tune in the signal on the gang condenser. Adjust the antenna trimmer for 1400 KC trimmer) for maximum signal. Next set the test oscillator at 600 KC , and tune in algnal on condenser to check allignment of colls.

CONNECTING THE SET

POWER SUPPLY. This receiver is designed to operate on an alternating current supply (AC) ranging from 110 to $\mathbf{1 2 0}$ volts, 60 Cycles only. Do Not Operate on Direct Current.

Before connecting the set be sure that your house is wired for the voltage and current for which the set is designed. If in doubt, call your local power company for the necessary information. Connecting the set to a supply outlet furnishing the wrong type of current will result in im proper operation or damage.

ANTENNA. This receiver has a built-in "loop" aerial. Its excellent design is such as to increase pick-up from stations having wide variations in signal strength. The efficiency and selectivity of the loop provide outstanding reception without the use of an external aerial.

TUBES. Five tubes (including rectifier) are used. Type numbers and locations are shown in the tube location diagram on the bottom of the cabinet.

GROUND. No ground connection should be used when operating this receiver. The receiver gets its ground connection through the power line and any external connection to the chassis may cause a short circuit and consequent damage.

CAUTION. Do not place receiver on hot objects such as stoves, radiators, etc. Heat will damage the cabinet and the internal components of the receiver.

RADIO OPERATION

AUTO-OFF-ON SWTTCH KNOB (Bottom of Clock Face). Turn this knob to the right (clockwise), so that the indicator points to "ON", to turn on the radio. To turn off the radio, turn this knob so that the indicator points straight up to 'OFF'"

VOLUME CONTROL KNOB (Bottom Knob on Front of Cabinet) This knob controls the volume of the signal received. To reduce the volume, rotate this knob to the left (counter-clockwise). When this knob is rotated to the right it will increase the volume.

STATION SELECTOR KNOB. (Large Knob on Front of Cabinet) Rotate this knob over a narrow range of the dial where the desired station is located; until the station is received with maximum volume and clarity. Then readjust the volume control to the proper level. NEVER use the station selector knob to adjust the volume as this will result in the signal being received with distorted tone quality.

The station selector knob is calibrated in Kilocycles with the last zero of the actual frequency omitted. For instance, the numeral 55 on the knob indicates 550 Kilocycles and 160 indicates 1600 Kilocycles.

OPERATION OF C LOCK

This clock-radio is equipped with a self-starting clock. As soon as the power plug is inserted into the wall outlet, the sweep second hand will begin to operate.

To set the time hands, rotate the knob located at the rear of the receiver so that the hands will rotate in a clockwise rotation. Once the clock is set, it needs no further attention unless you remove the plug or there is a power interruption.

The clock of this clock-radio is equipped to automatically turn on the radio at any time during the course of approximately 10 , hours after the controls are properly set. The controls may be properly set by following the instructions itemized below:

1. SET TURN-ON TIME. Pull out and turn the knob at the top of clock face to the left (counter-clockwise) untll the selected TURN-ON time is indicated on the small center dial by the small pointer on the opposite end of the hour hand.
Leave this knob out if you wish the conventional alarm to turn on in addition to the radio. The conventional alarm will sound approximately seven minutes after the radio is turned on.
If you prefer to have the radio turned on without the conventional alarm, push the knob in after the TURN-ON time is set.
2. SELECT PROGRAM TO BE TURNED ON. Tune in the station that will carry the desired program at the selected time, and adjust the volume to the proper level.
3. SET AUTO-OFF-ON SWITCH KNOB. Turn this knob to the left untll the indicator points to "AUTO". This will turn off the radio and set the switch so that it automatically comes on again at the selected time.
To turn the radio on before the "TONE-ALARM" time, turn the AUTO-OFF-ON knob to the "ON" position. It will then be necessary to repeat the steps listed above to again use the alarm feature.

USE OF "CONVENTIONAL ALARM"

The clock may be set to turn on the conventional buzzer alarm without turning on the radio. To accomplish this set the TURN-ON time as explained under "USE of TONE-ALARM' and leave the knob out from the cabinet. Set "AUTO-OFF-ON" switch knob to the "OFF" position. At the selected time, the buzzer will sound and will continue to sound until you turn it oll by pushing knob all the way in.

USE OF TURN-ON FEATURE WITH EXTERNAL APPLIANCES
An electrical outlet is provided at the rear of the receiver to use the TURN-ON feature on any electrical appliance which operates on a $110-120$ volt, 60 cycle power supply.

To use this outlet, simply plug in the appliance and set the controls on the clock the same as explained in the paragraph "USE OF TONE-ALARM" This will automatically start the appliance $A N D$ the radio at the selected time.

CAUTON: THE RATENG OF THE EXTERNAL ELECTRICAL APPLIANCE MUST NOT EXCEED 660 W.ATTS.
Current is avallable at this outlet whenever the radio is turned on.

ALIGNMENT

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Position of Gang	Signal Generator Frequency	Generator Connection	Dummy Antenna	Adjustment	Type of Adjustment
1.	Open	455 KC .	Rear Gang Terminal	. 1 Mfd.	I.F. Slugs	Adjust for Maximum Output
2.	Open	1620 KC ,	Dummy Anterna	2 Turns of Hookup Wire 6" in Dia. (Place Approx. a Foot from \& parallel to loop.)	Front Gang Trimmer	Adjust for Maximum Output
3.	1400 KC	1400 KC.			Rear Gang Trimmer	Adjust Ior Maximum Output
4.	600 KC	600 KC.				Check Gang Alignment

PARTS LIST

DESCRIPTRON

> Capacitor-Paper 05 MFD. 200 V Capacitor-Ceramic 100 MMFD 500 V. 104 Capactor-Ceramic 100 MMFD 500 V. 20 , Capacitor-Paper .005 MFD. 600 V
> Capacitor-Ceramic 250 MMFD. 500 V. 20°
> Capacitor-Paper . 01 MFD. 400 V .
> Capactior-Paper . 05 MFD. 400 V .
> Capactor-Electrolytic $\quad 50 \mathrm{MFD} .150 \mathrm{~V}$.
SCHEMATRC PART

C1,C2,C3	$\mathrm{N}-1345$
C4	$\mathrm{N}-7549$
C5	$\mathrm{N}-6015$
C6	$\mathrm{N}-4894$
C7	$\mathrm{N}-6488$
C8.C9	$\mathrm{N}-1344$
C10	$\mathrm{N}-1346$
C11)	N .7889
C12	

12)

SCHEMATK PART

OJohn F. Rider

© John F. Rider

(1) The FM Tuner employs six miniature tubes. The antenna is.coupled to the RF stage through a broad band transformer having a high degree of balance. The RF atage consists of a GAB4 tube and one half of a 12AT7 tube connected in "cascode". A GAU6 tube is employed as a separate oscillator, the voltage being injected into the grid circuit of the second half of the $12 A T 7$ tube, which operates as a mixer. Two stages of IF amplification, having a frequency of 10.7 megacycles, use 6BA6 tubes. The output of the second IF stage feeds the ratio detector which incorporates a GLL5 tube. Delayed AVC gives good small signal sensitivity and is applied to the RF and first IF stages. The modified cascode circult, wartime "radar" development which is used as the RF amplifier, produces high signal gain with very low noise. The balanced antena transformer, used as the coupling medium into this atage, gives a high degree of rejection to unwanted interference signals picked up by the antenna lead-in. The triode mixer is used since it has higb gain and low noise compared to a pentagrid converter. Accurate tuning is aided by the use of a 6U5/605 electron tuning indicator. A half wave dipole antenas, having an impedance of 300 ohms is supplied with a sixty foot transmission cable. Maximum sensitivity of this unit is 5.5 microvolts with a quieting sensitivity of 12 microvolts.
(2) The AM Tuner covers the band of $514-1740 \mathrm{kilocycles}$. It is of the tuned radio frequency type, employing two 6 AU6 type tubes in two stages. Complex coupling networks are used between the various networks to provide nearly constant gain and band width. The detector is of the infinite inpedance type and the audio output is obtained across a portion of the cathode resistance. A.V.C. is obtained by means of a $2 N 34$ Crystal and is applied to both RF stages. A separate 6U5/G5 Electron Tuning Indicator is used as an aM tuning indicator. A dual wave trap is provided at the input of the AM section, and is inserted by means of a link on the antenna terminal strip. One section of the trap covers the range from 500-1000 kilocycles. The second section covers the range from 900-1800 kilocycles. This trap provides optional attenuation at any portion of the band so that the signal from a strong interfering local station may be reduced to a point where other weaker stations may be received without interference.
(3) A single stage audio amplifier is provided with the necessary equalisation for using a variable reluctance or similar type phonograph pickup. A four position selector switch is supplied to switch between $\mathrm{MM}-\mathrm{FM}$, phonograph, and an external connection which is labeled television. This high impedance, low gain input is intendod for the audio portion of television, nagnetic reproducer, or similar use. After the selector switch there is a bass tone control which gives a range of 15 db variation at 100 cycles. Immediately following the bass boost efrcuit is a treble tone control having four positions:

```
Position 1 provides flat response.
Position 2 inserts an 8 KC low pass filter.
Position 3 changes the low pass filter to
    6000 cycle cut-off.
    Position 4 provides 4000 cycle cut-off.
```

A sharp 10 KC dip filter is provided on the AM audio output so as to ranove the heterodyne whistle of interfering stations. Immediately following the tone controls is a single-stage 6.55 audio output stage.

Yodel 1018 Tuner dimensions: 15 Inches wide
$9 \frac{1}{2}$ inches high
$11 \frac{1}{2}$ inches deep (Chessis 10 inches deep; plus protrude $1 \frac{1}{2}$ inches out of rear)
(4) The A-323C amplifier is a separate unit and consists of a pentode connected input stage, a phase inverter, and push-pull 6L6 stages with an output transformer having taps covering the range from $2.5-24$ ohas. The output of the $1-323 \mathrm{C}$ amplifier provides 15 watts with less than 8% intermodulation, and approximately 2% total hamonics at 60 cycles. This amplifier supplies the plate, filament, and pilot lamp power for the tuner chassis. Two interconnecting cables are provided for the power and speech circuits between the aplifier and tuner.

Model A-323C Amplifier dimensions:

13 inches wide
8莅 inches high
9 inches deep
(5) Where average to strong signals are available, the FM dipole antenna can be used for both FM and AM by proper strapping on the terninal board. Where weak M signals are available, it is recommended that a separate 10-30 foot antenna be used on AM.

ARVIN PAGE 21-1

- John F. Rider

Changes covered in this supplement -

1. $350-\mathrm{PB}$ and $351-\mathrm{PB}$, Chassis RE-267-1, a modified version of the $350-\mathrm{P}$ and $351-\mathrm{P}$ made especially for areas where strong local signals caused overloading.
2. $350-\mathrm{PL}, 351-\mathrm{PL}, 352-\mathrm{PL}$ and $353-\mathrm{PL}$, Chassis RE-267-2, a revised version of the $350-\mathrm{P}$ and $351-\mathrm{P}$ to improve it for all locations and relieve crowding of parts. These four models are identical except for color of cabinet and cabinet back assembly.

The only parts in the Parts List which are different from those on $350-\mathrm{P}$ and $351-\mathrm{P}$ are electrical chassis components and colored cabinet parts. The portions of the list which are changed are printed below.

PARTS	LIST F	FOR 350-PL, 351-PL, 352-PL and 353-PL, CHASSIS RE-267-2	PARTS	LIST FOR	OR 350-PB and 351-PB CHASSIS RE-267-1
SCHEMATIC LOCATION	PART NO .	DESCRIPTION	schematic LOCATION	PART NO.	DESCRIPTION
R1, R2	C20060-682	Resistor, 6.8K, 1/4 W. 20%	R1	C20271-153	Resistor, 15,000 ohm, 1/3 W. 20\%
R3	C20060-332	Resistor, 3300 ohms, $1 / 4$ W. 20\%	R2	C20271-104	Resistor, 100K, $1 / 3 \mathrm{~W} .20 \%$
R4	A21816	Resistor, 1850 ohms, 10 W. 10\%	R3	C20271-223	Resistor, 22K ohms, 1/3 W. 20\%
R5, R6	C20060-102	Resistor, 1000 ohms, 1/4 W. 20\%	R4	C20271-106	Resistor, 10 meg., 1/3 W. 20\%
R7	A19177	Resistor, 47 wire, 1 W. 10\%	R5, R6, R10		
R8	A22777	Resistor, 250 wire, 2 W .	R11, R13	C20271-475	Resistor, 4.7 meg., 1/3 W. 20\%
R9	C20070-681	Resistor, 680 ohms, 1 W. 10\%	R7	C20271-473	Resistor, 47K, 1/3 W. 20\%
R10	C20060-106	Resistor, 10 meg., 1/4 W. 20\%	R8	C20060-332	Resistor, 3300 ohms, 1/4 W. 20\%
R11, R13			R9	A21816	Resistor, 1850 ohms, 10 W. 10%
R14	C20245-335	Resistor, 3.3 meg., $1 / 4 \mathrm{~W} .5 \%$	R14, R15, R16, Cl4		
R12	C20245-106	Resistor, 10 meg., 1/4 W. 5\%	R16, C14		
R15	C20060-104	Resistor, 100K, 1/4 W. 20\%	C15, C16	A22257	Audio Coupling Unit
Cl	AC22277	Variable Condenser Assembly	R17	C20271-102	Resistor, 1000 ohms, 1/3 W. 20\%
C2	A20275	Trimmer, 8-75 mmf.	R18	A19177	Resistor, 47 Wire, 1 W. 10\%
C3	C20273-104	4 Condenser, P. T., . 1 mg .400 V .	R19	A22777	Resistor, 250 Wire, 2 W.
C4, C5, C7	C20272-503	Condenser, P. T., $05 \mathrm{mf} ., 200 \mathrm{~V}$.	R20	C20070-681	Resistor, 680 ohms, 1 W. 10\%
C6	C20272-103	Condenser, P. T., . 01 mf ., 200 V .	R21	C20271-106	Resistor, 10 meg., 1/3 W. 20\%
C8	C20067-503	Condenser, P. T., . 05 mf ., 200 V.	VC	C22253	Volume Control \& Switch, 2 meg.
C9A, B, C, D	A22879	Condenser, Electrolytic, 40-20-30 mfd., $150 \mathrm{~V} ., 100 \mathrm{mfd}$., 10 V.	$\begin{aligned} & \mathrm{Cl} \\ & \mathrm{C} 2 \end{aligned}$	$\begin{aligned} & \text { AC22277-1 } \\ & \text { A20275 } \end{aligned}$	Variable Condenser Assembly Trimmer, 8-75 uuf.
C10	C20273-602	Condenser, P. T. 006 mfd ., 400 V .	C3	C20273-104	Condenser, P. T., . 1 uf., 400 V.
C12, Cl 3	A21674	Disc Ceramic Capacitor, . 005 mfd .	C4, C12	C20065-500	Condenser, Mica, 50 uuf., 500 V .
Cl4	A22295	Disc Ceramic Capacitor, 01 mfd .	C5, C7, Cl3,		
C15, C11	C20065-500	Condenser, Mica, 50 mmf ., 500 V .	C17	C20272-503	Condenser, P. T., . 05 uf., 200 V.
L2, L3	AC22912-1	RF Trans. Assy.	C6, C9	A21674	Condenser, P. T., . 005 uf.,
T1	C21797-5	First IF Transformer	C8	A22295	Disc Ceramic Capacitor, . 01 uf.
T2	C21797-2	Second IF Transformer	C10	C20065-330	Condenser, Mica 33 uuf., 500 V .
CP1	A22257	Couplate	Cl1	C20272-103	Condenser, P. T., . 01 uf., 200 V.
CP2	A22902	Couplate	C18A, B, C	A21815	Condenser, Electrolytic, $40-20 \mathrm{mfd}$. 150 V., 100 mfd ., 10 V.
L1	AD22258-3	Antenna Loop \& Cabinet Back Assy. Sandelwood	C19	C20273-602	Condenser, P. T., . 006 uf., 400 V.
L1	AD22258-4	Antenna Loop \& Cabinet Back Assy. Burgundy Cabinet Assy. Sandelwood	$\begin{aligned} & \mathrm{C} 20 \\ & \mathrm{~L} 1 \end{aligned}$	$\begin{aligned} & \text { A21675 } \\ & \text { AD22258-1 } \end{aligned}$	Condenser, Electrolytic 30 mfd ., 150 V. Antenna Loop \& Cabinet Back Assy. Blue-Green
	AA22380-4	Cabinet Assy. Burgundy	L1	AD22258-2	Antenna Loop \& Cabinet Back Assy. Jade-Green
			L2, L3	AC22256-1	R. F. Transformer Assembly
			L4, L5	AC22255-1	Oscillator Coil Assembly

MODELS 440T

CHASSIS RE-278 - 4 TUBE AC - DC

ELECTRICAL AND MECHANICAL SPECIFICATIONS

FREQUENCY RANGE
Broadcast
IF
TUBES AND FUNCTIONS
12SA7
12SQ7
50L6GT
35Z5GT
POWER SUPPLY
105-125 Volts, AC-DC, 30 Watts
POWER OUTPUT
Type: Beam tube
Undistorted
Maximum
Plate Load

Size: 4 inch
Voice coil impedance
Automatic Volume Control
Underwriter's Listed
OPERATING CONTROLS
Tuning ratio -------------------1.1
2. Lower knob

ON-OFF \& Volume

GENERAL INFORMATION \& SERVICE HINTS

POSITION OF POWER CORD PLUG.

On AC the power cord plug should be tried in both its possible positions in the receptacle, and left in the position that gives
least hum. On DC the receiver will work in only one position of the plug in its receptacle.

THE ANTENNA

A 20 ft . antenna hank is attached to the receiver. In metropolitan areas it may be necessary to uncoil only a portion of the antenna to obtain satisfactory reception. For maximum pickup uncoil the antenna hank the full length. Do not attach it to a water pipe, radiator or other grounded object. So doing may result in hum and possibly a burned out antenna coil. If you are located some distance from a broadcasting station, or if local noise from electrical equipment is high, reception will
be greatly improved by the addition of an outside antenna which may be connected to the end of the hank.
This receiver is designed to operate without a ground connection and no attempt should be made to use one.
CAUTION:
If any part of the antenna hank is located near the 12SA7 tube, the set is likely to oscillate, especially when the hank is not uncoiled.

ALIGNMENT PROCEDURE
PRELIMINARY.

Output	-					Acro	eaker voice coil
Output	reading to	te 500 mil	standard output				--- 1.26 volts
Dumm	nna to be in	with sign	ator output				See chart below
Comnect	of generator	d lead					Floating ground
Generat	odulation						30\% 400 cycles
Position	Volume Con						Fully clockwise
Position			Generator Output			Trimmer	Approximate
Variable	Frequency	Antenna	Connnection	Adj	ted	Function	Sensitivity
Open	455 Kc	. 05 uf.	12SA7 Grid (Stator of C-1)	A1	A2	IF	4000 uv.
1400 Kc	1400 Kc	.0000.5 uf.	Antenna Lug with Hank Removed	-	A3	Oscillator	450 uv.

- Since the antenna section of the variable has no trimmer, the rotor of the variable should be rocked back and forth on both sides of 1400 Kc while adjusting the oscillator trimmer for maximum output. This is to obtain the combination of rotor and trimmer setting to give perfect tracking of the two sections of the variable condenser and consequently give maximum output.
Check sensitivity at 600 Kc . If weak, adjust antenna section plates for maximum output at 600 Kc . Tracking of the condenser at points other than 1400 Kc is accomplished by bending the outside plates on the variable condenser rotor, which are cut for this purpose. When bending plates to track the condenser at any given frequency, keep in mind the fact that this will effect the tracking at all frequencies below that point. A tuning wand is very helpful in checking the tracking of this condenser, to indicate whether more or less capacity is needed.
The alignment procedure should be repeated stage by stage in the origital order for greatest accuracy.
Always keep the output from the test oscillator at its lowest possible value to make the AVC action of the receiver ineffective.

PAGE 21-4 ARVIN
MODEL 4 $40 T$,
Ch. RE-278

Tube sockets are viewed from under side of chassis, Voltage Readings
shown at socket prongs are to foating ground, and are taken with no Signal.
AC line voltage at ilt Volts AC.

- Measured with Vacuum tube voltmeter.
NOTE: Capacity Coupling is built in the antenna and oscillator coils. On
some early Production sets, A 14 uuf. mica. Condenser will be used
in place of the built in Capacity on the Antenna Coil.
- John F. Rider

$\begin{gathered} \text { REF. } \\ \text { NO. } \end{gathered}$	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
R1	C20060-334	Resistir, 1/4 W., 330 K .
R2	C20)60-223	Resister, 1/4 W., 22 K .
R3	C21630	Resistor, Volume Control, 2meg.
R4	A19177	Resistor, 1 W., 47 ohms
R5	C20120-121	Resistor, 1/4 W., 120 ohms
R6	C20070-222	Resistor, 1 W., 2200 ohms
R7	$\mathrm{C} 2(\mathrm{O}) 60-150$	Resistor, 1/4 W., 15 ohms
R8	C20060-475	Resistor, 1/4 W., 4.7 meg.
R9	C2()60-156	Resistor, 1/4 W., 15 meg .
R10	C20060-474	Resistor, $1 / 4 \mathrm{~W} .470 \mathrm{~K}$.
R11	C20060-105	Resistor, 1/4 W., 1 meg.
Cla, ClB	C22919	Condenser, Tuning
C2A, C2B	A21042	Condenser, I. F. Trans. Trimmers
C3	C20068-503	Condenser, . 05 uf., 400 V .
C4	C20067-503	Condenser, $.05 \mathrm{uf}, 200 \mathrm{~V}$.
C5	C20068-103	Condenser, $.01 \mathrm{uf}, 400 \mathrm{~V}$.
C6	C20068-503	Condenser, 050 uf., 400 V .
C7	A22876	Condenser, $40-20$, uf, 150 V ., 20 uf, 25 V .
C8	C20065-101	Condenser, 100 uf, 500 V .

$\begin{aligned} & \text { REF. } \\ & \mathbf{N O} . \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
C9	C20069-202	Condenser, . 002 uf, 600 V .
C10	C200665-101	Condenser, 100 uf, 500 V .
C11	C20069-202	Condenser, .002 uf, 600 V .
SPK	C22875	4" P. M. Speaker
T2	C22878	Output Transformer
T1	C22863	I. F. Transformer
L1	C22884	Antenna Cuil
L2	C22865	Oscillator Coil
P	B20257-1	Line Cord \& Plug Assy.
	AA23438-1	Cabinet with Grille Cloth, Ivory
	AA23438-2	Cabinet with Grille Cloth, Red
	AA23438-3	Cabinet with Grille Cloth, Yellow
	AA23438-4	Cabinet with Grille Cloth, Bronze
	AA23438-5	Cabinet with Grille Cloth, Willow Green
	AA23438-6	Cabinet with Grille Cloth, Burgundy
	C22923-1	Tuning Knob
	A22924-1	Volume Knob
	A21992	Compression Spring

PAGE 21-6 ARVIN

MODEL 446 P,
Ch. RE-280

SPECIFICATIONS

FREQUENCY RANGE
Broadcast
IF
F
\qquad $540-1600 \mathrm{kc}$.455 kc
TUBES AND FUNCTIONS
1R5 Mixer-oscillator
1T4
\qquad

1U5. \qquad IF Amp.

3S4 DET-AVC AF Amp.

POWER SUPPLY
$1671 / 2$ V. B. Battery, Everyeady Minimax, No. 467 or Equal.
$211 / 2$ V. D. Size Flashlight Cells, Connected in Parallel. POWER OUTPUT

Undistorted	. 06 Watts
Maximum	. 15 Watts
Plate Load	,000 Ohms

LOUD SPEAKER
Type: Permanent magnet .. 68 Oz.
Size: 4 Inch
Voice: Coil Impedance ..3.2 Ohms
CHASSIS FEATURES
Automatic Volume Control
Built-in Loop
OPERATING CONTROLS

1 Left Knob	On-Off Switch and Volume
2 Right Knob	Tuning

PHYSICAL DIMENSIONS

PARTS LIST

REF. No.	PART NO.	DESCRIPTION
R1	C20060-104	Resistor, 100,000 obm, 1/4 watt, 20%
R2	C20060-225	Resistor, 2.2 megohm, 1/4 watt, 20%
R3	C20060-106	Resistor, 10 megohm, 1/4 watt, 20%
R4	C20060-475	Resistor, 4.7 megohm $1 / 4$ watt, 20%
R5	C20060-105	Resistor, 1 megohm, $1 / 4$ watt, 20%
R6	C20060-225	Resistor, 2.2 megohm, $1 / 4$ watt, 20%
R7	C20120-391	Resistor, 390 ohm, $1 / 4$ watt, 10%
R8	C23138	Volume Control and Swirch, 2 megohm
C1	A21811	Condenser, Electrolytic, 10 uf, 150 volts
C2, C11	C20067-503	Condenser, 05 uf, P.T., 200 volts
C3, C10	C20065-500	Condenser, 50 uuf, Mica, 500 volts
C4	C20069-202	Condenser, .002 uf, P.T., 600 volts
C5	C20065-101	Condenser, 100 uuf, Mica, 500 volts
C6	C20067-103	Condenser, 01 uf, P.T., 200 volts
C_{7}	C20069-602	Condenser, .006 uf, P.T., 600 volts
C8	C20069-102	Condenser, 001 uf, P.T., 600 volts
C9 (A-B)	C22966	Condenser Variable
${ }_{\mathrm{L}}^{1}$	C23141	Antenna, Loop
T1, T2	- ${ }_{\text {C21797-1 }}$	I.F. Transformer

* Cabinet assembly includes grill cloth, handle, and chassis mounting brackets.

battery installation

ALIENMENT DATA

Prolliminary

Output meter reading to indicate .05 watt across voice coil \qquad 0.4 V. Generator ground lead connected
eno to meral chassis. Generator modulation \qquad
\qquad 30%, 400 cycles.
Position of Volume control \qquad Position of Volume

Cosition of Variable

Open

Open
1400 KC
600 KC
Generator
Frequency
455 KC
1650 KC
140 KC
600 KC

Dummy Antenna	Generator Connections
.05 MFD	Mixer Grid
	Test Loop
	Test Loop
	Tast Loop

A1, A2, A3, A A5 A6 Chock Point

fully oa.
Triminer

Function

I.F.

Ose.
Ant.

SCHEMATIC DIAGRAM

MODELS 450T, 451T, Ch. RE-281

SPECIFICATIONS

FREQUENCY RANGE

Broadcast	540-1600 kc
IF 455 kc

TUBES AND FUNCTIONS

12BE6	Mixer-oscillator
12BA6	IF Amp.
12AT6	DET-AVC AF Amp.
50C5	Output
35W4	Rectifier

LOUD SPEAKER

Type:	Permanent magnet
Size:	5 Inch
Voice	coil impedan

CHASSIS FEATURES

Automatic Volume Control
Built-in Loop
Underwriters' Listed
OPERATING CONTROLS

The same chassis is used in models 450 T and 451 T . 451 T has additional cabinet trim and deluxe knobs, which are not used on Model 450T. 450 T is made in Ivory and \mathbf{W} alnut. 451 T is made in the following colors: Ivory, Willow Green, Sandalwood, and Ebony.

THE ANTENNA

This receiver has a built-in loop which gives satisfactory reception in most locations. If the receiver is located some distance from a broadcasting station, or where the electrical interference is high, an outside anteana connected to the pickup lead on the loop, will improve reception.

This receiver is designed to operate without a ground connection and no attempt should be made to use one.
PRELIMINARY:

ALIGNMENT PROCEDURE

Output meter connection		ross loadspeaker voi			
Output meter reading to indicate 500 milliwatts (standard output)					
Dummy antenna value to be used in series with generator output					e chart
Connection of generator output lead					e chart
Connection of generator ground lead					oating
Generator modulation					\% 400
Position of volume control					ully clo
Position of	inter with	fully clos		..- Last mark	ft end
Position of Variable	Frequency of Generator	Dummy Antenna	Generator Output Connection	Trimmers Adjusted in Order Shown for Maximum Output	Function Trimme
Open	455	. 05 mfd .	12BEG Grid (Stator of CIA)	A1, A2, A3, A4,	IF
1400	1400		*Test Loop	A5, A6 on Variable Condenser	Osc. Ant.
600	600		*Test Loop	Check Point	

*Standard Hazeltine Test Loop Model 1150 or 3 turns of wire about $6^{\prime \prime}$ in diameter, placed about one foot from the set loop.

PAGE 21-10 ARVIN

LOCATION OF PARTS UNDER CHASSIS

TUBE LAYOUT

VOLUME CONTROL
TUNING
\& SWITCH
LOCATION OF TUBES AND TRIMMERS
PARTS LIST - 450T-451T

REF.
NO.
Li $\quad \begin{aligned} & \text { D23465 } \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \text { AE23 } 23449999-1 \\ & \text { AE23499-3 }\end{aligned}$
AE23499-4
AE23499-5
AE23499-6
A23474
L2 AC22865-1
C1 A, B C23469
C2, C10 C20067.503
C3, C4 C20068-503
C5 C20065-251
C $1, \mathrm{C} 7, \quad \mathrm{C} 20068-103$
C), Cl_{2}

C20069-501
C11 C23470
A19351
A19628-3
A23453-1
A 23453 . 2

DESCRIPTION
Antenna Loop and Rear Cover Antenna Loop Mounting Bracket Cabinet Assy., 450T Ivory Cabinet Assy., 450T Walnut Cabinet
Ivory Ivory
Cabinet Assy., 451T Deluxe
Willow Green Willow Green
Cabinet Assy., 451T Deluxe Sandalwood
Cabinet Assy., 451 T Deluxe Ebony
Carton with fillers
Coil, Oscillator
Variable Condenser
Condenser, Paper Tubular .05 mf .200 V
Condenser, Paper Tubular .05 mf .400 V
Condenser, Mica 250 mmf . 500 V
Condenser, Paper Tubular .01 mf .400 V
Condenser, Paper Tubular .0005 mf .600 V
Condenser, Electrolytic 20-40-20 150 V
Dial Light Bulb Mazda No. 47
Dial Light Socket
Knob, Clear
Knob, Ivory

REF.
NO. PART NO. DESCRIPTION

B20138-16	Line Cord
C23461	Pointer
C20060-223	Resistor, 22k 1/4 watt 20%
C20060-225	Resistor, 2.2 Meg . $1 / 4$ watt 20%
C20060-471	Resistor, $4701 / 4$ watt 20%
C20060-334	Resistor, $330 \mathrm{~K} 1 / 4$ watt 20%
C20060-151	Resistor, $1501 / 4$ watt 20%
C23468	Volume Control, 1 Meg. $1 / 4$ watt 20%
C20060-475	Resistor, 4.7 Meg. $1 / 4$ watt 20%
C20060-222	Resistor, $22001 / 4$ watt 20%
C20060-474	Resistor, $470 \mathrm{~K} 1 / 4$ watt 20%
C20120-121	Resistor, $1201 / 4$ watt 10%
C20060-150	Resistor, $151 / 4$ watt 20%
C20070-121	Resistor, 1201 watt 10%
C20070-122	Resistor, 12001 watt 10%
$\begin{aligned} & \text { C20060-470 } \\ & \text { A20243.1 } \end{aligned}$	Resistor, $471 / 4$ watt 20% Socket, Wafer, Plain
A20243-3	Socket, Wafer, Center Pin Shielded
C23467	Speaker, 5" PM
C23462-1	Speaker, Grill
A23982	Speaker Brkt \& Pointer Shaft
C21797-16	Transformer, I. F.
A21792	Transformer, I. F. Spring Clips 5 for
AC23464-1	Transformer, Output
A 23475	Tuning Shaft
A19361	Tuning Shaft hair pin Clip

461T, Ch. RE-284

Colors are as follows:

> 460T - Ivory, Willow Green, and Sandalwood.
> 461T - Mahogany.

POWER OUTPUT

Undistorted	. 8 Watts
Maximum	1.5 Watts
Plate load	2000 Ohms

Models 460 T and 461 T have the same Chassis, they differ only in cabinet trim and knobs. SPECIFICATIONS

PRELIMINARY:

Output meter connection	Across loudspeaker
Output meter reading to indicate .5 W (standard output)	
Connection of generator ground lead	Floating ground
Generator modulation	.. $30 \% 400$ cycles
Position of volume control	Fully clockwise
Position of dial pointer with variable fully closed	.. Horizontally to left

MODELS 460T,
$461 \mathrm{~T}, \mathrm{Ch}$. RE-284

1. Connect signal generator lead through a .05 uf. condenser to converter grid. Open tuning condenser. Set signal generator to 455 Kc . Tune I. F. Trimmers A1, A2, A3, and A4 for maximum output.
2. Close tuning condenser and set pointer horizontally to left. Open tuning condenser. Connect signal generator to test loop or to blue lead on set loop. Set signal generator to 1650 Kc . Tune A5 trimmer on oscillator section of tuning condenser for maximum output.
3. Set signal generator to 1400 Kc . Adjust tuning shaft until maximum output is obtained. Tune R. F. trimmer A6 and antenna trimmer A7 on tuning condenser for greatest output. Reset tuning shaft until output is again maximum. Retune R. F. and antenna trimmers. Repeat this cycle of operations at 1400 Kc . until no further increase of output can be obtained. Keep generator output at a low value to prevent detuning by A. V. C. action.
4. Set signal generator to 600 Kc . Adjust tuning shaft for maximum output. Adjust tuning condenser plates for maximum output if necessary.
Approximate sensitivities with 117 V . AC line voltage and .5 W output across voice coil, should be: Mixer grid, 455
$\mathrm{Kc}-200 \mathrm{uv} ;$ Antenna lead $600 \mathrm{Kc}-250 \mathrm{uv}, \quad 1000 \mathrm{Kc}-200 \mathrm{uv} ., 1400 \mathrm{Kc} .-200 \mathrm{uv}$.
 VOLTAGE READINGS TAKEN WITH IITV. A C LINE VOLTAGE

PARTS LIST - 460T-461T					
Schematic Location	Part No.	Description	Schematic Location	Part No.	Description
L1	D23159	Antenna Loop		AC23302-3	Dial Plate Assy. (Wil. Green)
	B22953	Antenna Loop Mtg. Brkt.		AC23302-4	Dial Plate Assy. (San'wood)
	A23830-1	Cabinet (461) Mahogany with carton		$\begin{aligned} & \mathrm{C} 23229-1 \\ & \mathrm{C} 23229-3 \end{aligned}$	Knob - on-off Volume (460)
	A23829-2	Cabinet (460) Ivory with decorative rail \& Carton		C23229-4	Knob - Tone (460)
	A23829-3	Cabinet (460) Willow Green with decorative Rail \& Carton		$\begin{aligned} & \text { C23229-5 } \\ & \text { C23229-7 } \end{aligned}$	$\begin{aligned} & \text { Knob - on-off volume (461) } \\ & \text { Knob - Tuning (461) } \end{aligned}$
	A23829-4	Cabinet (460) Sandalwood with decorative Rail \& Carton		$\begin{aligned} & \text { C23229-8 } \\ & \text { B20138-15 } \end{aligned}$	Knob - Tone (461) Line Cord and Plug
	C23299	Cabinet - Rear Cover		D23242	Pointer
	C23300	Cabinet decorative Rail with Palnuts \& washers.	R1, R9	$\begin{aligned} & \text { A20040-17 } \\ & \text { C20060-334 } \end{aligned}$	Pointer felt washer 10 for Resistor, 330,000 ohm $1 / 4 \mathrm{~W}$
	A23237	Carton	R2	C20060-102	Resistor, 1000 ohm $1 / 4 \mathrm{~W}$
L2	AC23163	Coil, R. F.	R3	C20060-223	Resistor, 22,000 ohm 1/4 W
L3	C23751	Coil, Oscillator	R4	C20060-685	Resistor, 6.8 Megohm $1 / 4 \mathrm{~W}$
Cla, B, C	C23743	Condenser, Variable	R5	C20060-105	Resistor, 1 megohm 1/4 W
C2, C5	C20068-503	Condenser, P. T. 05 uf., 400 V	R6	C20060-150	Resistor, $1 / 4 \mathrm{~W}$
C3	C20067-503	Condenser, P. T. . 05 uf., 200 V	R7	C22963	
C4	C20065-500	Condenser, Mica 50 uuf., 500 V			switch 500,000 ohm
C6, C8	C20203-221	Condénser, Ceramic, 220 uuf., 350 V	$\begin{aligned} & \text { R8 } \\ & \text { R10 } \end{aligned}$	$\begin{aligned} & \mathrm{C} 20060 \cdot 335 \\ & \mathrm{C} 23156 \end{aligned}$	Resistor, 3.3 megohm $1 / 4 \mathrm{~W}$ Resistor, Tone control
C7, C9	C20068-103	Condenser, P. T. 01 uf., 400 V			500,000 ohm
C10	C20069-302	Condenser, P. T. 003 uf., 600 V	R11, R13	C20060-151	Resistor, 150 1/4 W
C11	C20068-203	Condenser, P. T. 02 uf., 400 V	R12	C20223-122	Resistor, $12002 \mathrm{~W} \pm 10 \%$
C12 A, B	A22111	Condenser, Electrolytic $50-50$ uf., at 150 V	SPK	$\begin{aligned} & \mathrm{C} 22760-1 \\ & \mathrm{~A} 19138-8 \end{aligned}$	Speaker, 5" P. M.
	A19133	Dial Cord Spring 10 for	T1	AC23161	Transformer, 1st I. F.
	D23235	Dial Crystal	T2	AC23162	Transformer, 2nd I. F.
	A19124	Dial Crystal Snap Fasteners 10 for	T3	AC23164	Transformer, Output
	A19351	Dial, Lamp Bulb Mazda No. 47		A 19233-1	Tube socket, center pin shielded
	A22849-1	Dial, Lamp Socket		A18254-1	Tube Socket Plain
	AC23302-1	Dial Plate Assy. (Brown)		A22957-1	Tuning shaft
	AC23302-2	Dial Plate Assy. (Ivory)		A19361	Tuning shaft hair pin clip

MODELS 462-CB, 462-
CM, Ch. RE-287-1

ALIGNMENT PROCEDURE

PRELIMINARY:

Output meter connection	Across loudspeaker voice coil\qquad 1.26 volts
Output meter reading to indicate 5 W (standard output)	
Connection of generator ground lead	Floating ground
Generator modulation	.. 30\% 400 cycles
Position of volume control	Fully clockwise
Position of dial pointer with variable fully closed	

1. Connect signal generator lead through a .05 uf. condenser to converter grid. Open tuning condenser. Set signal generator to 455 Kc . Tune I. F. Trimmers A1, A2, A3, and A4 for maximum output.
2. Close tuning condenser and set pointer horizontally to left. Open tuning condenser. Connect signal generator to test loop or to blue lead on set loop. Set signal generator to 1650 Kc . Tune A5 trimmer on oscillator section of tuning condenser for maximum output.
3. Set signal generator to 1400 Kc . Adjust tuning shaft until maximum output is obtained. Tune R. F. trimmer A6 and antenna trimmer A7 on tuning condenser for greatest output. Reset tuning shaft until output is again maximum. Retune R. F. and antenna trimmers. Repeat this cycle of operations at 1400 Kc . until no further increase of output can be obrained. Keep generator output at a low value to prevent detuning by A. V. C. action.
4. Set signal generator to 600 Kc . Adjust tuning shaft for maximum output. Adjust tuning condenser plates for maximum output if necessary.
Approximate sensitivities with 117 V . AC line voltage and .5 W output across voice coil, should be: Mixer grid, 455 $\mathrm{Kc}-200 \mathrm{uv}$; Antenna lead 100 Kc . -250 uv ., $1000 \mathrm{Kc}-200 \mathrm{uv}$., $1400 \mathrm{Kc} .-200$ uv.

TUBE LAYOUT

PARTS LIST FOR NO. 462-CM AND NO. 462-CB, RE-287-1

Schematic Location L.	Part No.	Description	Schematic Location	Part No.	Description
	D23159	Antenna Loop. Assy.		D23706-3	Knob, Tuning (Mahogany)
	B22953	Bracket, Antenna Loop Mitg.		D23706-11	Knob, Tuning (Blonde)
	C23427	Bracket, Dial (2 Used)		D23706-1	Knob, Volume, On-Off
	R23689	Cabinet, Mahogany (With Carton)		D23706-9	Knob, Volume, On-Off (Blonde)
	R23689-1	Cabinet, Blonde (With		A19351	(Blonde) Lamp, Dial, Mazda No. 47
C1A, B, C	C23743	Capacitor, Variable, 3-Gang		B20138-15	Line Cord \& Plug
C4	C20065-500	Capacitor, 50 uuf, 500 V , Mica	R6	C20060-150	Resistor, 15 Ohms, 20\%, 1/2W
C6, C8	C20203-221	Capacitor, 220 unf, 350 V , Ceramic	R14	A23933	Resistor, 120 Ohms $10 \%, 1 \mathrm{~W}$
			R11, R13	C20060-151	Resistor, 150 Ohms 20%, 1/2W
C10	C20069-501	Capacitor, . $0005 \mathrm{MFD}, 600 \mathrm{~V}$, Paper	R2	C20060-102	Resistor, 1000 Ohms $20 \%, 1 / 2 \mathrm{~W}$
			R12	C20223-122	Resistor, 1200 Ohms 10%, 2 W
C7, C9	C20068-103	Capacitor, $01 \mathrm{MFD}, 400 \mathrm{~V}$, Paper	R16	C20060-222	Resistor, 2200 Ohms 20%, 1/2W
			R 3	C20060-223	Resistor, 22 K Ohms 20%, 1/2W
C3	C20067-503	Capacitor, . 0 S MFD, 200 V , Paper	R1, R9	C20060-334	Resistor, 330 K Ohms 20%, 1/2W
			R10	C20060-474	Resistor, 470 K Ohms 20%, $1 / 2 \mathrm{~W}$
$\begin{aligned} & \mathrm{C} 2, \mathrm{Cs} \\ & \mathrm{C} 11, \mathrm{C} 13 \\ & \mathrm{C} 12 \mathrm{~A}, \mathrm{~B}, \\ & \mathrm{C}, \mathrm{D} \end{aligned}$	C20068-503	Capacitor, . $05 \mathrm{MFD}, 400 \mathrm{~V}$, Paper	R!	C20060-105	Resistor, 1 Megohm 20\%, 1/2W
			R16	C20060-15S	Resistor, 1.5 Megohms 20\%, 1/2W
	C23930	```Capacitor, 80-50-50/1.50, 25/25, Electrolytic Record Changer Assy. (See V-M Model 950)```	R8	C20060-335	Resistor, 3.3 Mcyohms 20%, 1/2 W
			R4	C20060-685	Resistor, 6.8 Megohms 20\%, 1/2W
	E23593			A19551	Socket, A.C., Phono. Motor
				A23s37-2	Socket, Dial Lamp
L3	AC23751-1	Coil, Oscillator		A19552	Socket, Phono. Pick-up
L2	AC23163-1	Coil, R.F.		A19579	Socket, Speaker
R7	C22963	Controi, Vol. \& Switch, 500 K Ohms		AD23693-1	Speaker Assy. 8" With Leads \& Plug
	C23707	Cover, Cabinet Rear		A19133	Spring, Dial Cord
	C23578	Cover, Record Changer Bottom		C23486	Switch, Band
	A23 594	Dial Pointer (Mahogany)	T1	AC23161-1	Ist I.F. Transformer
	A23594-1	Dial Pointer (Blonde)	T2	AC23162-1	2nd I.F. Transformer
	D23695	Dial Scale (Mahogany)	T3	AC23931-1	Transformer, Output
	D23695-1	Dial Scale (Blonde)		A 229 57-1	Tuning Shaft
	C23402	Escutcheon \& Grystal		A19361	Tuning Shaft, Hair Pin Clip
	D23706-2	Knob, Radio-Phono (Mahogany)		A22763	Weight, Cabinet
	D23706-10	Knob, Radio-Phono (Blonde)			

FREQUENCY RANGE
Broadcast (AM)
IF
FM
IF

TUBES AND FUNCTIONS

6BA6	FM R. F. Amp.
12AT7	FM Converter
6BE6	AM Converter
6BA6	AM-FM-IF Amp.
6BA6	FM, IF Amp.
GT8	FM-AM DET, IST Audio AVC
6V6GT	Output

POWER OUTPUT

Undistorted
Maximum
Plate load

Models 480TFM and 481TFM have the same Chassis, they differ only in Cabinet trim and knobs.
Colors are as follows:
480TFM - Ivory, Willow Green, Sandalwood and Rosewood.
481 TFM - Mahogany.
Chassis RE-277-1 has a Bass boost and Hum Reduction Cir cuit which is not incorporated in Chassis RE-277. See note on Schematic Diagram.

THE ANTENNA
AM-This receiver has a built-in loop which gives satisfactory reception in most locations. If the receiver is located some distance from a broadcasting station, or where the electrical interference is high, an outside antenna connected to the terminal marked AM on the antenna terminal strip will improve reception.
FM - An 8^{\prime} length of wire is connected to the FM antenna terminal for an indoor FM antenna. Terminals are provided on the antenna terminal strip to connect an outside FM antenna, they are labeled FM $\%$ G.

TECHNICAL INFORMATION

AM
Tuning range - 540 Kc . to 1600 Kc . Immediate Frequency - 455 Kc . I. F. and R. F. measurements made at 500 milliwatts output - approximately 1.27 volts on a receiver type voltmeter connected across speaker voice coil. Approximate input for 500 MW output: I. F. 300 uv ; R.F. with standard loop: at $600 \mathrm{Kc} 1200 \mathrm{uv} / \mathrm{m}$; at $1000 \mathrm{Kc} .900 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc} .800 \mathrm{uv} / \mathrm{m}$.
FM Tuning range - 88 megacycles to 108 megacycles. Inter mediate frequency 10.7 megacycles .I.F. and R.F. measurements made at 500 milliwatts output - approximately 1.27 volts on a rectifier type voltmeter connected across speaker voice coil. Approximate input for 500 MW output: I. F. 300 uv ; R.F. "Absolute Measurements": 91 megacycles 100 uv ; 105 megacycles, 100 uv.

ALIGNMENT PROCEDURE

Output meter connection	Across speaker voice coil
Output meter reading to indicate	
500 MW	
Generator Modulation	1.27 volts
Position of volume control	

Set dial pointer
Horizontal, variable condenser closed
Set band switch
To left for AM alignment, right for FM alignment

AM ALIGNMENT

Position of	Generator	Dummy				
Variable	Frequency	Ant.	Generator Connection (high)	Generator Connection Ground Lead	Adjust Trimmers In Order	Trimmer For Max. Output
Function						

* Connect generator lead to Standard Hazeltine Test Loop, Model 1150, placed two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the set loop. Or the generator can be connected with the high side lead to the AM antenna screw terminal and the ground lead to the chassis. $* *$ With a generator signal of 600 Kc , tune the set to the point where maximum output is obtained, which shoul be approximately 600 Kc on the dial. Adjust antenna section plates of variable for maximum output. The alignment procedure should be repeated in the original order for greatest accuracy.
Always keep the output from the signal generator at its lowest possible value to make the A.V.C. action of the receiver ineffective.

FM ALIGNMENT

1. Turn band switch to FM, (right).
2. Connect (FM) I. F. generator to the second GBAG I, F. amp. grid, (lug No. 1) through a 01 uf mica dummy. Connect oscilloscope across volume control. With the I. F. generator tuned to 10.7 mc with 150 Kc deviation, and the same audio voltage used as horizontal sweep on the scope that is used to modulate the generator, adjust the ratio detector transformer slugs A7-A8 for the characteristic " S " curve (See Fig. 1), with maximum vertical height on the scope. After this adjustment the top slug of the ratio detector should not be moved during the rest of the alignment.
3. Connect I. F. generator to mixer grid through .01 mica dummy. Using 23 Kc deviation at 10.7 Mc , adjust for maximum output. Maximum output may be indicated by maximum vertical height on the scope or maixmum voltage on a standard output meter across the voice coil of the receiver. After the two I.F. transformers have been aligned the bottom slug A8 of the ratio detector should also be peaked.
The characteristic "S" curve of the complete I. F. channel should be checked by applying a 10.7 Mc signal with 150 Kc deviation to the mixer grid and observing the " S " curve on the scope. It should not be very much different from that observed in step 2 .
4. Connect R.F. (FM) generator (88 to 108 Mc) to the antenna terminals through the standard 300 ohm dummy (150 ohm in each side of generator leads).

Use R.F. generator with 23 Kc deviation. With the variable condenser completely open and Signal Generator tuned to 108.5 Mc adjust oscillator trimmer A12 (small ceramic trimmer) for maximum reading on output meter.
Then tune receiver to low end of band (variable completely closed) and Signal Generator to 87.5 Mc . If the receiver does not tune to this frequency the FM oscillator coil L4 will either have to be squeezed together or lengthened to cover the band, (squeezing lowers and lengthening raises the frequency). Any change in the coil will have to be completed by the trimmer at the high end of the band.
5. With the same Signal Generator connections as per paragraph 4 tune Signal Generator and set to 105 Mc . Tune R.F. trimmer Al3 for maximum output at the same time rock variable back and forth through the frequency: (Rocking is necessary because slight oscillator pulling causes erroneous maximum readings).
Tune Signal Generator and set to 90 Mc . Adjust R.F. coil L3 length for maximum output by squeezing or lengthening, Any change in the coil will have to be compensated at 105 Mc by the R.F. trimmer A13.
6. After Steps 4 and 5 are finished check calibration and band coverage. Steps 4 and 5 may have to be repeated if set is off calibration. Band coverage should be 87.5 Mc to 108.5 Mc . Sensitivity should be approximately 100 uv at $105 \mathrm{Mc}, 98 \mathrm{Mc}$ and 90 Mc .

FIG, 1.

PARTS LIST FOR 480-481 TFM

Schemutic Location	Pari No.	Description	Schematic Location	Part No.	Description
13	D22586	Antenna Loop Assembly		AC23302-3	Dial Plate Assembly (Willow Green)
	B22953	Antenna Loop Mounting Bracket		AC23302-4	Dial Plate Assembly (Sandalwood)
	A22960	Antenna Terminal Strip		C23229-1	Knob, On-Off Volume (480)
	A A23830-1	Cabinet (481) Mahogany with carton		C23229-2	Knob, Band Switch (480)
	AA23829-2	Cabinet (480) Ivory with decorative		C23229.2	Knob, Tuning (480)
		rail \& Carton		C23229-5	Knob, On-Off Volume
	AA23829-3	Cabinet (480) Willow Green with decorative rail and carton		C23229-6	Knob, Band Switch
	AA23829-4	Cabinet (480) Sandalwood with decorative rail and carton		C23229-7 B20138.14	Knob, Tuning Line Cord and Plug
	AA23829-1	Cabinet (480) Rosewood with decorative rail and carton		$\begin{aligned} & \text { D23242 } \\ & \text { A20040-17 } \end{aligned}$	Pointer Pointer felt washer 10 for
	C23299	Cabinet rear cover	PS. 1	AA22345-1	Parasitic Suppressor
	C23300	Cabinet Decorative Rail with Palnut and Washer	PS-2	A A22334-1	Parasitic Suppressor
			$\begin{aligned} & \text { R1, R11 } \\ & \text { R1'S } \end{aligned}$	C20060-680	Resistor, 68 ohm 1/4 W 20%
L1	AA22648-1	Choke High Frequency 1.5 uh	R2	C20070-273	Resistor, 27 K ohm $1 \mathrm{~W} 10 \%$
12	AA21445-1	Choke High Frequency 7.5 uh.	R3	C20060-470	Resistor, 47 ohm 1/4 W 20%
L7	AA22597-1	Choke High Frequency 3 uh.	R4, R6	C20060-223	Resistor, 22 K ohm $1 / 4 \mathrm{~W} 20 \%$
L8	A21673	Choke, RF, Iron Core, 14 uh.	R5	C20060-222	Resistor, 2.2 K ohm 1/4 W 20%
14	^22593	Coil, R. F. FM	R7, R8	C20060-102	Resistor, 1 K ohm $1 / 4 \mathrm{~W} 20 \%$
L5	A22594	Coil, Oscillator, FM	R13, R17		
L6	AC22587-1	Coil, Oscillator, AM	R9		
$\begin{aligned} & \mathrm{Cl}, \mathrm{C} 2 . \\ & \mathrm{C} 3, \mathrm{C} 4 \end{aligned}$	R22962	Condenser, Variable, 4 Gang AM-FM	R10, R20	$\begin{aligned} & \mathrm{C} 20070-822 \\ & \mathrm{C} 20060-105 \end{aligned}$	Resistor, 8.2 K ohm l W 10\% Resistor, 1 megohm $1 / 4 \mathrm{~W} 20 \%$
C4A	A22724	Condenser, Oscillator Temperature Cor. 5-25 uui.	R12 R14, R22	$\begin{aligned} & \mathrm{C} 20070-103 \\ & \mathrm{C} 20060-104 \end{aligned}$	Resistor, 10 K ohm l W 10\% Resistor, 100 K ohm $1 / 4 \mathrm{~W} 20 \%$
C5, C14	C20203-470	Condenser, Ceramic 47 uuf., 350 V	R16	C20070-332	Resistor, 3.3 K ohm $1 \mathrm{~W} 10 \%$
$\begin{aligned} & \mathrm{C} 6, \mathrm{C} 18, \\ & \mathrm{C} 19, \mathrm{C} 21, \\ & \mathrm{C} 23, \mathrm{C} 25 \end{aligned}$	A21674	Condenser, Disc. 51300 uuf., 350 V	R18	C20060-181	Resistor, 180 ohm $1 / 4 \mathrm{~W} 20 \%$
			R19	C20120.393	Resistor. 39 K ohm $1 / 4 \mathrm{~W} 20 \%$
C7. C 20.	A22295	Condenser, Disc Ceramic, 01 uf., 350 V	R21	C20060-224	Resistor, 220 K ohm 1/4 W 20%
		Condenser, Disc Ceramic, . 01 ui., 350 V	R23	C22381-153	Resistor, 15 K ohm 1/4 W 10%
$\begin{aligned} & \mathrm{C} 8 . \mathrm{C} 26 . \\ & \mathrm{C} 30 . \mathrm{C} 31, \\ & \mathrm{C} 20 \end{aligned}$	C20203-101	Condenser, Ceramic 100 uff., 350 V	R24, SW-2	B22963	Resistor, Volume Control \& Switch 500 K ohm
			R25	C20060-106.	Resistor, 10 megohm $1 / 4 \mathrm{~W} 20 \%$
$\begin{aligned} & \mathrm{C}, \mathrm{Cl} 2, \\ & \mathrm{C} 13, \mathrm{C} 16, \\ & \mathrm{C} 17 \end{aligned}$	C20203-102	Condenser, Ceramic . 001 uf., 350 V	R26	C20060-474	Resistor, 330 K ohm 1/4 W 20%
			R27 A. B	A22624	Resistor, 2×500 ohm 5 Watts
C10	A20238-3	Condenser, Ceramic 1.5 uul. 350 V Gimmick	R28	C20060-474	Resistor, 470K ohm 1/4 W 20%
			R29	C20070-271	Resistor, 270 ohm l W 10\%
C11	C20205-3	Condenser, Ceramic 50 uuf., 500 V	R30	C20060-102	Resistor, 1K ohm 1/4 W 20\%
C15, C34	C20068-103	Condenser, P. T. . 01 uf., 400 V	-R31	C20060-154	Resistor, 150K ohm 1/4 W 20\%
C22	C20203.150	Condenser, Ceramic 15 uut., 350 V	${ }^{\text {R }} 32$	A23933	Resistor, 120 ohm 1 W 10\%
C27	C20069-302	Condensed, P. T. 003 uf., 600 V	SPK	C22760	Speaker 5" PM
C29	A22659	Condenser, Electrolytic, 4 uf., 25 V	Sw-l	C22961	Switch. Band
C32	C20203.221	Condenser, Ceramic, 220 uuf., 350 V	Tl	C22590	Transtormer, I. F. lst F.M. 10.7 Mc
C35 A.B.C	A22806	Condenser, Electrolytic, 20-20-40 at 250 V	$\begin{aligned} & \text { T2, T4 } \\ & \text { T3 } \end{aligned}$	$\begin{aligned} & \mathrm{C} 22352 \\ & \mathrm{AC} 22967.1 \end{aligned}$	Transformer, I. F. AM 455 Kc Transformer, I. F. 2nd F. M. 10.7 Mc
C36, C38	C20068-203	Condenser, P. T. . 02 uf., 400 V	T5	AD22592-1	Transformer, Ratio Detector
${ }^{-} \mathrm{C} 38$	C20069-501	Condenser, P. T. 0005 uf., 600 V	T6	AC22995-1	Transformer output
C37	A22602	Condenser. Electrolytic 10 uf., 25 V	T7	D22959	Transtormer Power
C39	C20249.103	Condenser, Phenolic, 01 uf., 400 V Condenser, P. T. 05, 200 V		A20243-1	Tube socket Min Wafer 1"
C40	C20067.503				7 prong plain
	A19133	Dial, Cord Spring 10 for		A20243-2	Tube socket Min Wafer l"
	E23241-1				7 prong center shield
	A19124	Dial, Crystal Snap Fasteners 10 for		A20274	Tube socket min . wafer $11 / \mathrm{g}^{\prime \prime}$ 9 prong. center shield
	A 19351	Dial, Lamp bulb Mazda No. 47		A21677	Tube socket min. moulded low loss
	A23298	Dial. Lamp bracket 10 forDial, Lamp Sockei			9 prong center shield
	A22849-1			A 18254-1	Tube socket wafer plain
	AC23302-1	Dial Plate Assembly (Brown)		A22957	Tuning Shaft
	AC23302-2	Dial Plate Assembly (Ivory)		A19361	Tuning shaft hair pin clip

Used on RE-277-1 only. See Note on Schematic Diagram.

MODELS 482CFB, 482CFM, Ch. RE-288-1

TECHNICAL INFORMATION

Tuning range - 540 Kc . to 1600 Kc . Immediate Frequency - 455 Kc . I. F. and R. F. measurements made at 500 milliwatts output - approximately 1.27 volts on a receiver type voltmeter connected across speaker voice coil. Approximate input for 500 MW output: I. F. 300 uv ; R. F. with standard loop: at $600 \cdot \mathrm{Kc} .1200 \mathrm{uv} / \mathrm{m}$; at $1000 \mathrm{Kc} .900 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc} .800 \mathrm{uv} / \mathrm{m}$.
FM Tuning range - 88 megacycles to 108 megacycles. Inter mediate frequency 10.7 megacycles .I.F. and R.F. measurements made at 500 milliwatts output - approximately 1.27 volts on a rectifier type voltmeter connected across speaker voice coil. Approximate input for 500 MW out put: I.F. 300 uv ; R.F. "Absolute Measurements": 91 megacycles 100 uv; 105 megacycles, 100 uv.

ALIGNMENT PROCEDURE

Output meter connection Across speaker voice coil Set dial pointer.... Horizontal, variable condenser closed Output meter reading to indicate 500 MW 1.27 volts band switch Generator Modulation 30%, 400 cycles M alignment, right for FM alignment

Position of volume control Fully clockwise

AM ALIGNMENT

Position of	Generator Frequable	Dummy Ant.	Generator Connection (high)	Generator Connection Ground Lead	Adjust Trimmers In Order	Trimmer For Max. Output
Function						

* Connect generator lead to Standard Hazeltine Test Loop, Model 1150, placed two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the set loop. Or the generator can be connected with the high side lead to the AM antenna screw terminal and the ground lead to the chassis. **With a generator signal of 600 Kc , tune the set to the point where maximum output is obtained, which shoul be approximately 600 Kc on the dial. Adjust antenna section plates of variable for maximum output. The alignment procedure should be repeated in the original order for greatest accuracy.
Always keep the output from the signal generator at its lowest possible value to make the A.V.C. action of the receiver ineffective.

FM ALIGNMENT

1. Turn band switch to FM, (right).
2. Connect (FM) I.F. generator to the second GBA6 I.F. amp. grid, (lug No. 1) through a 01 uf mica dummy. Connect oscilloscope across volume control. With the I. F. generator tuned to 10.7 mc with 150 Kc deviation, and the same audio voltage used as horizontal sweep on the scope that is used to modulate the generator, adjust the ratio detector transformer slugs A7-A8 for the characteristic " S " curve (See Fig. 1), with maximum vertical height on the scope. After this adjustment the top slug of the ratio detector should not be moved during the rest of the alignment.
3. Connect I. F. generator to mixer grid through .01 mica dummy. Using 23 Kc deviation at 10.7 Mc , adjust for maximum output. Maximum output may be indicated by maximum vertical height on the scope or maixmum voltage on a standard output meter across the voice coil of the receiver. After the two I.F. transformers have been. ligned the bottom slug A8 of the ratio detector should also be peaked.
The characteristic " S " curve of the complete I. F. channel should be checked by applying a 10.7 Mc signal with 150 Kc deviation to the mixer grid and observing the " S " curve on the scope. It should not be very much different from that observed in step 2 .
4. Connect R.F. (FM) generator (88 to 108 Mc) to the antenna terminals through the standard 300 ohm dummy (150 ohm in each side of generator leads).
Use R.F. generator with 23 Kc deviation. With the variable condenser completely open and Signal Generator tuned to 108.5 Mc adjust oscillator trimmer A12 (small ceramic trimmer) for maximum reading on output meter

Then tune receiver to low end of band (variable completely closed) and Signal Generator to 87.5 Mc . If the receiver does not tune to this frequency the FM oscillator coil L4 will either have to be squeezed together or lengthened to cover the band, (squeezing lowers and lengthening raises the frequency). Any change in the coil will have to be completed by the trimmer at the high end of the band.
5. With the same Signal Generator connections as per paragraph 4 tune Signa: Generator and set to 105 Mc . Tune R.F. trimmer A13 for maximum output at the same time rock variable back and forth through the frequency. (Rocking is necessary because slight oscillator pulling causes erroneous maximum readings)

Tune Signal Generator and set to 90 Mc . Adjust R. F. coil L3 length for maximum output by squeezing or lengthening. Any change in the coil will have to be compensated at 105 Mc by the R. F. trimmer Al3.
6. After Steps 4 and 5 are finished check calibration and band coverage. Steps 4 and 5 may have to be repeated if set is off calibration. Band coverage should be 87.5 Mc to 108.5 Mc. Sensitivity should be approximately 100 uv at $105 \mathrm{Mc}, 98 \mathrm{Mc}$ and 90 Mc .

FIG 1

PARTS LIST FOR 482 CFM, CFB

Schematic Location	Part No.	Description	Schematic Location	Part No.	Description
	D22586	Antenna Loop Assembly		D23706-12	Knob, Ph-AM-FM [Blonde]
	B22953	Bracket, Antenna Loop Mounting		D23706-3	Knob, Tuning [Mahogany]
	C23427	Bracket, Dial [2 used]		D23706-11	Knob, Tuning [Blonde]
	R23689	Cabinet, Mahogany [with Carton]		D23706-1	Knob, Volume, On-Off [Mahogany]
	R23689-1	Cabinet, Blonde [with Carton]		D23706-9	Knob, Volume, On-Off [Blonde]
$\mathrm{C}, \mathrm{C} 2, \mathrm{C} 3,$	R22962	Capacitor, Variable, 4-gang		A19351 B20138-14	Lamp, Dial, Mazda No. 47 Line Cord \& Plug
C4A	A22724	Capacitor, FM Oscillator Trimmer, 5-25 uuf	PS-1 PS-2	-A A22345-1	Parasitic Suppressor Parasitic Suppressor
ClO	A.20238-3	Capacitor, 1.5 uuf, 350 V, Gimmick	R-3	C20060-470	Resistor, 47 ohms 20%, 1/2W
C22	C20203-150	Capacitor, 15 uuf, 350V, Ceramic	R1, R11, R15	C20060-680	Resistor, 68 ohms 20%, 1/2W
C5, C14	C20203-470	Capacitor, 47 uuf, 350V, Ceramic	R32	A23933	Resistor, 120 ohms, 10%, 1 W
Cl 1	C20205-5	Capacilor, 50 uuf, 500V, Ceramic	R18	C22381-181	Resistor, 180 ohms 10%, 1/2W
C20, C8, C26 C20203-101C30, C31		Capacitor, $100 \mathrm{uuf}, 350 \mathrm{~V}$. Ceramic	R29	C20070-271	Resistor, 270 ohms 10%, 1 W
			R27	A22624	Resistor, 2×500 ohms, 5 Watts
C32	C20203-221		R7, R8, R13,	C20060-102	Resistor, 1K ohms 20\%, 1/2W
C38	C20069-501	Capacitor, 0005 mfd ., 600V, Paper	R17, R30		
$\mathrm{C} 9, \mathrm{Cl2,C13}$ C16, C17	C20203-102	Capacitor, 1000 uuf, 350V, Ceramic	R5	C20060-222	Resistor, 2.2 K ohms 20%, 1/2W
C27	C20069	Capacitor, . 003 mfd ., 600V, Paper	R16	C20070-332	Resistor, 3.3K ohms 10\%, 1W
$\begin{aligned} & \mathrm{C} 6, \mathrm{C} 18, \\ & \mathrm{C} 19, \mathrm{C} 21, \\ & \mathrm{C} 23, \mathrm{C} 25 \end{aligned}$	A21674	Capacitor, 5000 uuf, 350V, Disc Ceramic	R9	C20070-822	Resistor, 8.2X ohms 10\%, 1W
			R12 R23	C20070-103	Resistor, 10K ohms 10\%, IW Resistor, 15 K ohms 10%, $1 / 2 \mathrm{~W}$
C7, C20, C24	A22295	Capacitor, 10,000 uuf, 350V, Dise Ceramic	R4, R6 R2	C20060-223	Resistor, 22 K ohms 20%, $1 / 2 \mathrm{~W}$ Resistor, 27 K ohms 10%, 1 W
C15, C34	C20068-103	Capacitor, $01 . \mathrm{mfd}$., 400V, Paper	R19	C20120-393	Resistor, 39K ohms 20\%, $1 / 2 \mathrm{~W}$
C39	C20249-103	Capacitor, 01 mid , 400V, Phenolic	R14, R22	C20060-104	Resistor, 100 K ohms $20 \%, 1 / 2 \mathrm{~W}$
C36	C20068-203	Capacitor, $02 \mathrm{mfd} ., 400 \mathrm{~V}$, Paper	R31	C20060-154	Resistor, 150K ohms 20%, 1/2W
C40	C20067-503	Capacitor, 05 mfd , 200V, Paper	R21	C20060-224	Resistor, 220 K ohms 20%, $1 / 2 \mathrm{~W}$
C29	A22659	Capacitor, $4 \mathrm{mfd} ., 25 \mathrm{~V}$. Electrolytic	R26	C20060-334	Resistor, 330 K ohms 20%, $1 / 2 \mathrm{~W}$
C37	A 22602	Capacior, 10 mfd ., 25 V , Electrolytic	28	C20060-	Resistor, 470 K ohms 20%, 1/2W
C35	A22806	Capacitor, $20-20-40 \mathrm{mfd}$. 250 V , Electrolytic	R10, R20	C20060-105	Resistor, 1 megohm 20%, $1 / 2 \mathrm{~W}$
		Changer, 3 -speed Record [See V-M Model 950]	R25	$\begin{aligned} & \text { C20060-106 } \\ & \text { A19551 } \end{aligned}$	Resistor, 10 megohms 20\%, 1/2 W Socket, AC, Phono Motor
L1	A A 22648 -1	Choke, 1.5 uh		A23537-1	Socket, Dial Lamp
L7	A ${ }^{\text {a } 22597-1}$	Choke, 3 uh		A19552	Socket, Phono Pickup
L2	AA21445-1	Choke, 7.5 uh		A19579	Socket, Speaker
18	A21673	Choke, 14 uh, Iron Core		AD23693-1	Speaker Assy. 8" PM with Cable
L6	AC22587.1	Coil, Oscillator, AM			And Plug
L5	A 22594	Coil, Oscillator, FM		A19133	Spring, Dial Cord
14	A22593	Coil, R F, FM		C23485	Switch, Band
R24-SW2	C22963	Control, Volume, \& Switch, 500 K ohms		A22960	Terminal Strip, Antenna
	C23707	Cover, Cabinet Rear	TI	C22590	Transformer, I.F., 1st F.M. [10.7 Mc]
	C23578	Cover, Record Changer Bottom	T2, T4	C22352	Transformer, I.F. AM [455 Kc]
	A23594	Dial Pointer [Mahogany]	T3	AC22967-1	Transformer, I.F., 2nd F.M. [10.7 Mc]
	A23594-1	Dial Pointer [Blonde]	T6	AC23669-1	Transformer, Output
	D23700	Dial Scale [Mahogany]	T7	D22959	Transformer, Power
	D23700-1	Dial Scale [Blonde]	T5	AD22592-1	Transformer, Ratio Detector
	C23402	Escutcheon \& Crystal		A22957	Tuning Shaft
	D23706-4	Knobs, Pr_{1}-AM-FM [Mahogany]		A19361	Tuning Shaft Hair Pin Clip
		Knobs, Ph-AMFM [Mahogany		A 22763	Weight, Cabinet, Steel

DESCRIPTION

Your new Automobile Receiver is a 6 -tube (including rectifier) superhetrodyne, designed to operate from the 6 -volt storage battery in your car. It is custom-built to mount behind the instrument panel in the place provided for a radio by the automobile manufacturer. It has a self-contained PM speaker and covers the frequency range 538 to 1600 KC . Two simple controls are provided for operating the receiver. (See Fig. 1.)

This receiver has been designed with a tuned RF stage and a 3 -gang tuning condenser thereby insuring the finest in sensitivity and selectivity. Any standard two or three section whip or "fish pole" antenna will provide good reception of distant or weak stations. The unit is simple to inst all and requires no electrical adjustment after installation.

Figr. 1

OPERATION

VOLUME CONTROL KNOB

This knob is located on the left side of the radio. Turning this knob slightly to the right until a slight click is heard will put the radio into operation. Turning this knob further to the right will increase the volume and turning it to the left will decrease the volume. After a station has been selected, the volume control should be adjusted to the desired level. The volume should never be reduced by detuning the station selector knob.

STATION SELECTOR KNOB

This knob is located on the right side of the radio. This knob should be turned until a desired station has been selected. Adjust this knob very carefully until the statio 1 comes in with the most natural tone.

INSTALJATION

1. Remove screws securing radio speaker grille and cardboard speaker opening cover plate.
2. Discard cardboard cover plate and speaker mounting screws.
3. Replace radio speaker grille in original position on the instrumeat panel and secure with $11 / 4^{\prime \prime}$ long No. $8-32$ oval head Phillips screws. (4 supplied in kit of hardware.)
Note: Some automobile models are not equipped with a Radio speaker grille. A Radio speaker grille must be obtained from an authorized Hudson dealer before an installation can be made.
4. Insert power supply unit under instrument panel and position so that slots on cover of power supply unit line up with speaker grille mounting screws and power cable is located on left hand side.
5. Secure in place with cupwashers and $8-32$ wing nuts.
6. Remove speed nuts attaching radio opening dummy cover plate.
7. Remove dummy cover plate and discard.

INSTALLATION (Continued)

8. Remove knobs, mounting bushings and escutcheon from RF Tuning Unit.
9. Position RF Tuning Unit behiad instrument panel so that control shafts protrude through the instrument panel.
10. Place escutcheon over control shafts on instrument panel front.
11. Attach RF Tuning Unit and escutcheon to instrument panel with two mounting bushings previously removed.
12. Replace knobs on control shafts.
13. Secure a supportiag bracket (2 supplied in kit of hard ware) to each side of power pack with two No. 8 self-tapping screws. Use end of supporting bracket with round hole.
14. Swing supporting brackets so that slotted holes are in line with holes on cach side of tuning unit.
15. Secure to RF tuning unit with two No. 8 self-tapping screws.
16. Connect cable from Power Supply Unit to RF Tuning Unit.
17. Secure Power Supply cable under clamp on RF Tuning Unit.
18. Connect "A" lead to battery terminal on circut breaker mounted over the steering column behind the instrument panel. (See fig. 3.1
19. Plug antenna cable into tuning unit.

ACCESSORIES FURNISHED FOR INSTALLATION

Mounting Parts Kit
The following mounting hardware parts are shipped at tached to the receiver.
(See detail assembly drawing FIG. 2)
2 7/16-28 mounting bushings
2 Knobs
1 Cable clamp
An envelope containing additional mounting hardware is supplied with this receiver. It contains the following
parts:
2 Supporting brackets
4 No. 8 self-tapping screws
48.32 wing nuts

4 cup washers
$48-32 \times 11 / 4$ oval head Phillips screws.

MOTOR NOISE ELIMINATION

SUPPRESSION KIT

A suppresian hit is shipp:d wish this receiser. I: co:atans he following parte:
1 Generator Comalenser.
1 Distributor :uppresor.

DISTRIBUTOR SUPPRESSOR

Disconnect the high tension wire that runs from the ignition coil to the center hole of the distributor cap. Cut lead one inch back from the metal tip end. Screw suppressor into cut end of long lead. Screw cut end of short lecd into suppressor. Flug lead ivith attached suppressor back into distributor cap.

GENERATOR CONDENSER

Loosen voltage regulator mounting screw. Insert slotted end of generator condenser mounting bracket under this screw and tighten screw. Connect condenser lead to armature terminal marked "ARM."

The qenerator condenser and distributor suppresor will normally "liminate all objectionable motor noise in most. cases. If the motor moise persists the following steps should be taken. Check operation of radio as each step is mate.

WHEEL STATIC

Wheel statie is a form of interfereme canced he the rotation of the front whecls of the care and it is, of conrse. only noticed when the car \mathbf{i}; in motion. If this form of interfere we is present. it cathe eliminated hy installing wherlatio eallector prings between the inner hub cap and the piadle hu:ft.

AMMETER CONDENSER

 good ground nearhs.

ELCCDRICAL ACCESSORIES

 ground to the supected accesory until the sonree of iaterf : rese is found. The condenser then should be permanently mounted in this location.

SERVICE DATA ELECTRICAL SPECIFICATIONS

This receiver contains the following:
1-6BA6-RF Amplifier
1-6BE6-Converter
1-6BA6-I. F. Amplifier
1-6AT6-Detector-AVC-Jat Audio
1-6AQ5-Power Output
J-6X4-Rectifier

SERVICE NOTES

Voltage taken from the differemp points of the circuit to the chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a volt meter having a resistance of $\mathbf{2 0 , 0 0 0}$ Ohms per volt. These voltages are clearly shown on the voltage chart. (Fig. 7 and $\bar{i} A$,
All voltages should be measured with an input voltage of 6.3 volts DC.
To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to he good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it beconses necessary to replace a coil or transformer. or the aljustments have heen tampered with in the field. Always make certain that other circuit componente, such as tubes, condensers, resistors, etc., are normal before proceeding with realignment.
If realignment is necessary follow the instructions fiven under the heading "Alignment Procedure." After realignment has been completed repeat the procedure as final check.

DIAL CORD DRIVE

Volume control-Maximum, all adjustments.

No signal applied to antenna.
Power input- 6.3 volts.
Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check.

The following equipment is necessary for proper alignment: Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%. Non-metallic screwdriver.
Output meter. (1.8 volt for 1 watt output.) Dumminy antennas-. 1 MFD., 100 MMFD.
For alignment points refer to Schematic Diagram.

Dial Setting	Generator Frequency		Generator Conncction	Trimmer Reference	Trimmer Adjustment	Trimmer Function
1) Fully open	455 KC	. 1 MFD	6BE6 Grid	$\underset{\text { bottom }}{\text { T2 Top }}$	Maximum	Output I.F.
2) Fully open	455 KC	. 1 MFD	6BE6 Grid	T1 Top \& bottom	Maximum	Input I.F.
3) Fully open	1600 KC	100 MMFD	Ant. lead	CV2	Maximum	Oscillator
4) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CV3	Maximum	RF' Stage
5) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CV 1	Maximum	Antenna
6) Tune in signal from generator	600 KC	100 MMFD	Ant. lead	L3	Maximum	RF Stage
7) Tune in signal from generator	600 KC	100 MMFD	Ant. lead	L2	Maximum	Antenna
8) Repeat steps 4 and						

AUTOMATIC PAGE 21-5

DESCRIPTION

Your new Automobile Receiver is a 6-tube (including rectifier) superhetrodyne, designed to operate from the 6-volt storage battery in your car. It is custom-built to mount behind the instrument panel in the place provided for a radio by the automobile manufacturer. It has a self-contained PM speaker and covers the frequency range 538 to 1600 KC . Two simple controls are provided for operating the receiver. (See Fig. 1.)

This receiver has been designed with a tuned RF stage and a 3-gang tuning condenser thereby insuring the finest in sensitivity and selectivity. Any standard two or three section whip or "fish pole" antenna will provide good reception of distant or weak stations. The unit is simple to install and requires no electrical adjustment after installation.

Fig. 1

VOLUME CONTROL KNOB

This knob is located on the left side of the radio. Turning this knob slightly to the right until a slight click is heard will put the radio into operation. Turning this knob further to the right will increase the volume and turning it to the left will decrease the volume. After a station has been selected, the volume control should be adjusted to desired level. The volume should never be reduced by detuning the station selector knob.

STATION SELECTOR KNOB

This knob is located on the right side of the radio. This knob should be turned until a desired station has been selected. Adjust this knob very carefully until the station comes in with the most natural tone.

INSTALLATION (See Fig. 2)

1. Attach rubber gasket baffle assembly to speaker grille on radio with 4 snap fasteners supplied in kit of mounting hardware.
2. Remove two screws securing radio opening cover plate to instrument panel.
3. Discard cover plate.
4. Important: Some car models have a cover over the speaker opening at the back of the instrument panel. Remove and discard this cover.
5. Lift hood of car and locate the two $5 / 16^{\prime \prime}$ holes which are in the Fire Wall just below the windshield wiper motor. Insert hook bolt through the right hand hole on the engine side.
6. Place a $1 / 4-20$ hex nut approximately one inch up on threaded end of hook bolt.
7. Position radio with attached rubber gasket baffle behind instrument panel and insert threaded end of hook bolt through hole on bracket attached to back of radio.
8. Screw $1 / 4-20$ hex nut on hook bolt. Adjust position of the two $1 / 4-20$ hex nuts so that the radio is mounted parallel to instrument panel. Tighten bottom hex nut.
9. Insert two $1 / 4-20$ Flat head bolts supplied in mounting kit through bottom edge of radio and screw into edge of instrument panel.
10. Connect "A" lead to terminal on ignition switch.
11. Plug antenna cable into receiver.

Fig. 2
DETAIL MOUNTING ASSEMBLY
Mounting Paits Kit

ACCESSORIES FURNISHED FOR INSTALLATION

1 Rubber Gasket baffle assembly
4 1/4" snap fasteners
1 Hook bolt
2 1/4-20 hex nuts
$21 / 4-20 \times 23 / 4^{\prime \prime}$ flat head mounting bolts

MOTOR NOISE ELIMINATION

DISTRIBUTOR
Fig. 3

SUPPRESSION KIT

A suppression kit is shipped with this receiver. It contains the following parts:
1 Generator Condenser.
1 Distributor suppressor.

DISTRIBUTOR SUPPRESSOR

Discomect the high tension wire that runs from the ignition coil to the center hole of the distributor cap. Cut learl one inch back from the metal tip end. Screw suppressor into cut end of long lead. Serew cut end of short lead into suppressor. Plug lead with attached suppressor back into distributor cap.

GENERATOR CONDENSER

Loosen screw on top surface of generator near terminals. Insert slotted generator condenser bracket under screw head and tighten screw. Connect generator condenser lead to armature terminal. Do not connect to field terminal.

Fig. 4
The generator condenser and distributor suppressor will normally eliminate all objectionable motor noise in most eases. If the motor noise persists the following steps should be taken. Check operation of radio as each step is made.

WHEEL STATIC
Wheel static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present, it can be eliminated by installing wheel static collector springs between the inner hub cap and the epindle shaft.

AMMETER CONDENSER

A . 5 MFD by-pass condenser should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby.

COIL CONDENSER

In some extreme cases it may be necessary to connect a . 5 MFD by-pass condenser from the rear terminal of the spark coil to ground.

IGNITION COIL CONDENSER
Fig. 5

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a .5 MFD by-pass condenser from ground to the suspected accessory until the source of interference is found. The condenser then should be permanently mounted in this location.

ELECTRICAL SPECIFICATIONS

> This receiver contains the following:
> 1-6BA6-RF Amplifier
> 1-6BE6-Converter
> 1-6BA6-I. F. Amplifier
> 1-6AT6-Detector-AVC-l st Audio
> 1-6AQ5-Power Output
> 1-6X4-Rectifier

SERVICE NOTES

Voltage taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a voltmeter having a resistance of $\mathbf{2 0 , 0 0 0}$ Ohms per volt. These voltages are clearly shown on the voltage chart, (Fig. 7 and 7A).
All voltages should be measured with an input voltage of 6.3 volts $D C$.
To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, condensers, resistors, etc., are normal before proceeding with realignment. If realignment is necessary follow the instructions given under the heading "Alignment Procedure." After realigament has been completed repeat the procedure as final check.

ALIGNMENT PROCEDURE
Volume control-Maximum, all adjustments. The following equipment is necessary for proper alignment: Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%. Non-metallic screwdriver.

Output meter. (1.8 volt for 1 watt output.)
Dummy antennas-. 1 MFD., 100 MMFD.
For alignment points refer to Schematic Diagram.
$\underset{\substack{\text { Frimener } \\ \text { Function }}}{\text {. }}$
Maximum Output I.F.

$\substack{\text { T1 Top \& } \\ \text { bottom }}$	Maximum	Input I.F.

Fully open	1600 KC	100 MMFD	Ant. lead	CV2	Maximum	Oseillator
Tune in signal from generator	1400 KC	100 MmFD	Ant. lead	CV3	Maximum	RF Stage
Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CV1	Maximum	Antenna
Tune in signal from generator	600 KC	100 MMFD	Ant. lead	L3	Maximum	RF Stage
Tune in signal from generator	600 KC	100 MmFD	Ant. lead	L2	Maximum	Antenna

Bottom view of chassis
Dial Setting $\begin{gathered}\text { Generator } \\ \text { frequency }\end{gathered}$ 1) Fully open $\quad 455 \mathrm{KC} \quad .1 \mathrm{MFD} \quad$ 6BE6 Grid $\quad \begin{gathered}\text { T2 Top \& } \\ \text { bottom }\end{gathered}$ 2) Fully open

$3)$	Fully open	1600 KC	100 MMFD

4) $\begin{gathered}\text { Tune in signal } \\ \text { from senerator }\end{gathered} \quad 1400 \mathrm{KC} \quad 100 \mathrm{MMFD} \quad$ Ant. lead
5) $\begin{aligned} & \text { Tune in signal } \\ & \text { from generator }\end{aligned} \quad 1400 \mathrm{KC} \quad 100$ MMFD
6) Tune in signal | 6) | |
| :---: | :---: |
| $\begin{array}{c}\text { Tune in signal } \\ \text { from generator }\end{array}$ | 600 KC |
7) $\begin{gathered}\text { Tune in signal } \\ \text { from senerator }\end{gathered} \quad 600 \mathrm{KC} \quad 100 \mathrm{MMFD}$

Repeat alignment procedure as a final check.
Connect ground lead of signal generator to chassis.
Power input- 6.3 volts.
Connect dummy antenna in series with output lead of signal generator. —intorn Trimmer
Reference Fully open $455 \mathrm{KC} \quad .1 \mathrm{MFD}$ 6BE6 Grid
from generator

front of chassis
bot tom view of power pack

socket voltages
Fig. 7A

Schematic Diagram
Reference

MISCELLANEOUS

A300
H521
Case, less covers for Power Supply Unit
H520 Case, complete with covers for R.F. tuning unit
H207 Clip, Anti-rattle
H203 Clip. coil mounting
H102 Cover, power supply unit mounting
(with speaker louvres)
H522 Cover, RF tuning unit, front (complete with plas tic escutcheon)
A201 Fuse 15 Armp.
H524 Hook bolt
504PC-300 Power Cable Assembly (complete with plug)
H212 Receptable. Antenna cable
504-FC Socket, power cable
PM-705 Speake:, 51/4" PM (includes output transformer)
V-83 Vibrator
H310 Knob
H3ll Cup washer
C100 . 5 MFD generator condenser
R100 Dist:ibutor suppressor

DIAL PARTS
H523 Dial Scale Escutcheon, Plastic
PS100 Dial Pointer
T47 Pilot Light
H114 Pilot Light Socket
H203 Pulley, idler
H204 Spring. Dial drive String Tension
H115 String, dial drive

DESCRIPTION

Your new Automobile Receiver is a 6 -tube (including rectifier) superhetrodyne, designed to operate from the 6 -volt storage battery in your car. It is custom-built to mount hehind the instrument panel in the place provided for a radio by the automobile manufacturer. It has a self-contained PM oval speaker and covers the frequency range 538 to 1600 KC. Two simple controls are provided for operating the receiver. (See Fig. 1.)

This receiver has been designed with a tuned RF stage and a 3 -gang tuning condenser thereby insuring the finest in sensitivity and selectivity. Any standard two or three section whip or "fish pole" antenna will provide good reception of distant or weak stations. The unit is simple to install and requires no electrical adjustment after installation.

Fig. 1

VOLUME CONTROL KNOB

OPERATION

This knob is located on the left side of the radio. Turning this knol slightly to the right until a slight click is heard will put the radio into operation. Turning this knob further to the right will increase the volume and turning it to the left will decrease the volume. After a station has been selected, the volume control should be adjusted to the required loudness. The volume should never be reduced by detuning the station selector knoh.

STATION SELECTOR KNOB

This knob is located on the right side of the radio. This knob, should be turned until a desired station has heen selected. Adjust this knob very carefully until the station comes in with the most natural tone.

INSTALLATION PLYMOUTH P18 SPECIAL DELUXE

1. Remove four screws securing Radio Grille in place and remove Radio Grille.
2. Remove dummy plates covering radio dial and control openings.
3. Enlarge holes in radio control cover plate to fit over mounting bushings.
4. Remove knobs, cup washers, hex nuts and washers from control shafte and mounting bushings.
5. Secure two mounting brackets to Radio Grille with $3 / 8$ inch long $10-32$ self-tapping screws and cup washers as shown in detail assembly drawing, Fig. 2.
6. Place radio control cover plate over mounting bushings.
7. Position receiver behind Radio Grille so that mounting bushings and shafts protrude through the grille.
8. Attach receiver by replacing wasbers and hex nuts on mounting hushings.
9. Replace cup washers and knohs over shafts.
10. Secure receiver to mounting brackets with two No. 8 self-tapping wing nut serews.
11. Insert radio with attached grille through front opening on instrument panel.
12. Replace grille mounting screws.
13. Connect battery lead to terminal marked "ACC" on ignition switch.
14. Plug antenna cable into receiver.

Fig. 2

DODGE "CORONET"

Install in the same manner as outlined for the P18 DeLuxe Plymouth except do not remove radio grille.

PLYMOUTH P17, Pl8 4-DOOR DELUXE AND
 P18 CLUB COUPE DELUXE
 DODGE "WAYFARER" AND "MEADOWBROOK"

These models are not equipped by the car manufacturers with a radio grille or a radio control cover plate.
The following parts must be obtained from any authorized Plymouth or Dodge dealer before an installation can be made in any of these cars.

Plymouth P17. P18 4-Door DeLuxe, P18 Club Coupe DeLuxe Radio Grille No. 1299913
Radio control cover No. 1248700
Dodge "Meadowbrook" or "Wayfarer"
Radio Grille No. 1301360
Radio control cover No. 1255080

ACCESSORIES FURNISHED FOR INSTALLATION

Mounting Parts Kit
The following mounting hardware parts are shipped attached to the receiver.
(See detail assembly drawing FIG. 2)
2 Washers
2 7/16-28 hex nuts
2 Cup washers
2 Knobs
2 Mounting Brackets
2 No. 8 self-tapping wing nut screws
An envelope containing additional mounting hardware is supplied with this receiver. It contaias the following parts:
$23 / 8$ 10-32 self-tapping screws
2 Cup washers
Suppression Kit
1 Distributor Suppressor
1.5 MFD Generator Condenser

- John F. Rider

MOTOR NOISE ELIMINATION

GENERATOR CONDENSER

Fig. 3

DISTRIBUTOR SUPPRESSOR

NOTE: 19.30 Dodge and Plymouth automohiles do not require distributor suppresor-.

1949 DODGE AND PI.IMOITH

Remove metal tip from the distributor center tower lead and serew lead into the supprewor. Plug suppresor with attached lead bach into distributor head.

The generator condenser and distributor -uppresor should climinate all oljeretionable motor noise in most aras. If the motor noise persists the following steps should le taken. Check operation of radio as rarli step is made.

WHEEL STATIC

Wheel static is a form of interference callised by the rotation of the front wheels of the car. and it in, of course. only noticed when the car is in motion. If this form of interference is present. it can be eliminated ly installing whecl static: collector springs leetween the inner hul, cap and the spindle shaft.

AMMETER CONDENSER

A. 5 MFD hy-pass condenser should be connected to cither side of the ammeter with the ground luy fastened to a good ground nearhy.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters. lighters. attomatic relays or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a .5 MFD hy-pass condenser from ground to the suspected accessory until tlre source of interference is found. The condenser then should be permanenty mounted in this location.

SERVICE DATA

ELECTRICAL SPECIFICATIONS

Power SupplyCurrent	6.3 Volts DC
	5.5 Amp. average
Frequency Range	. $338-1600 \mathrm{KC}$
Speaker	. $51 / 4{ }^{\prime \prime}$ PM
Power Output	$\underline{-}$ watts. undistorted
	3 walts, maxinum
Schsitivity	for l watt output
Selectivity 40	ees signal. at 1000 KC

This receiver contains the following:
1-6BA6-RF Amplifier
1-6BE6-Converter
1-6BA6-I. F. Amplifier
1-6AT6-Detector-AVC-lat Audio
1-6AQ5-Power Output
1-6X4-Rectifier

SERVICE NOTES

Voltare taken from the different points of the circuit to the chassis are measured with volume control in maximum position. all tulnes in their sockets. no signal applied, and with a volt meter having a resistance of 20.000 Ohms per volt. These voltages are clearly shown on the voltage chart, (Fig. 4).
All voltages should be measured with an input voltage of 6.3 volts DC.
To check for open loy-pass condensers, shunt each condenser with another one having the same capacity and volkage rating which is known to lee good until the defective unit is located.

ALICNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, condensers, resistors, etc.. are normal before proceeding with realignment.
If realignment is necessary follow the instructions given under the heading "Alignment Procedure". After realignment has been completed repeat the procedure as final check.

INSTRUCTIOVS FOR SERVICING RECEIVER COMPONENTS

The nosel design of this receiver pernits servicing all components without removing the chassis from the caee. The top cover the one with the speaker lonvres) can be removed by removing the four (t) screws securing it to the case. This exposes all tube sockets. connectors. resist ors and condensers for observation and service.
Removing the bottom cover makes it possible to service tubes, vibrator, and volume control.

ALIGNMENT PROCEDURE

Volume control-Maximum, all adjustments.
No signal applied to antenna.
Power input- 6.3 volts.
Connect durnmy antenna in series with output lead of signal generator.
Connect ground lead of signal generator to chassis. Repeat alignment procedure as a final check.

PARTS LIST

[^0]
CONDENSERS

 RESISTORS
1 megohm $1 / 2$ watt 20% resistor 20K ohin $1 / 2$ watt 20% resis!or 2 K ohm $1 / 2$ watt 20% resistor 2 megohm $1 / 2$ watt 20% resistor 10 megohm $1 / 2$ watt 20% resistor 250R ohm $1 / 2$ watt 20% resistor 500 K ohm $1 / 2$ watt 20% resistor
330 ohm $1 / 2$ watt 20% resistor
20 X ohm 2 va:t 20% resistor
100 ohm $1 / 2$ watt 20% resistor
rołsisal \% OZ lıDM I Шч० XI
1K ohm I watt 20% resistor
Volume control $3 / 4$ megohm w

N.D TRANSFORMERS
Motor noise elimination unit
Motor noise elimination unit
Antenna Coil
Antenna Coil
RF coil
RF Oscillator coil
Choke, vibrator hash
Choke, A line

Output transformer (Part of speaker not furnished separa:ely)
Vibrator transformer I'arl Io
C207
CC200
CC201
C203
C206
C209
C205

002-10
 R310
R311 R308 R303
R313 R301
R312
RV-200 COILS L200
$57 \mathrm{FB}-3$
$57 \mathrm{FB}-4$
L 201 L202
L203 $1655-16$
$1655-16$ TV-86A Schematic Dingram
Reforence

\circ
3
3
3
R1
R2
R3
R4
R5
R6
R7
R3
R9
R10. R11
R12
RV- 200
\bar{u}

DESCRIPTION

Your new Automobile Receiver is a 6-tube (including rectifier) superhetrodyne, designed to operate from the 6-volt storage battery in your car. It is custom-built to mount behind the instrument panel in the place provided for a radio by the automobile manufacturer. It features a novel two-piece construction and covers the frequency range 538 to 1600 KC . Two simple controls are provided for operating the receiver.

This receiver has been designed with a tuned RF stage and a 3 -gang tuning condenser thereby insuring the finest in sensitivity and selectivity. Any standard two or three section whip or "fish pole" antenna will provide good reception of distant or weak stations. The unit is simple to install and requires no electrical adjustment after installation.

INSTALLATION

Fig. 1

R. F. TUNING UNIT

1. Loosen nuts on the two moulding studs located behind the instrument panel cover plate.
2. Remove sheet metal screw from the lower edge of the instrument panel cover plate and the two screws and washers attaching the hand brake to the instrument panel. Keep these parts.
3. Remove instrument panel cover plate and discard.
4. Tighten nuts on the two moulding studs located behind the instrument panel cover plate.
5. Drop vent controls by removing screws, lockwashers, and flat washers securing these controls to the instrument panel. This will facilitate installation of both receiver units. Save parts removed.
6. Install R.F. Tuning Unit behind instrument panel so that mounting bushings and tuningshafts protrude through the instrument panel.
7. Slide plastic escutcheon over mounting bushings and secure with flat washers, nuts, cup washers, and knobs as shown in Fig.
8. Secure top part of plastic escutcheon to R.F. Tuning Unit with two No. $6.32 \times 1 / 2^{\prime \prime}$ long Philips Head screws.

Chevrolet, 1949-1950

PCWER SUPPLY UNIT

1. Insert a thin blade screwdriver or a flat strip of metal through the Radio Grille and slit fiberboard Radio Grille screen. Reach in back of Radio Grille and remove screen by grasping slit edge. Discard fiberboard screen.
2. Remo\%e $10-32$ nuts and washers from the moulding studs behind the Radio Grille.
3. Remove $\mathbf{1 0 - 3 2}$ nuts screws, and washers securing the lower tabs of the Radio Grille to the instrument panel.
4. Install Power Supply Ui:it behind Radio Grille and position into place so that holes in top of unit slide over moulding studs as shows in Fig. 2.
NOTE: It may be more convenient, in car models with air conditioner heaters, to remove the vibrator liefore installing this unit. The vibrator can be replaced after the power unit is momed.
5. Replace $10-32$ nuts and washers on moulding studs.
6. Replace lower grille tab $10-32$ mounting screws, nuts, and washers so that screws secure the lower grille tatha aid Power Supply Unit to the instrument panel.
7. Connect cable from Power Supply Unit to R.F. Tuning Unit.
8. Replace vent controls.
9. Replace screws and washers securing hand brake.

Connect battery lead to terminal on Ignition Switch.
Plug Antenna cable into receiver.

Fig. 2

VOLUME CONTROL KNOB

This knob is located on the right side of the radio. Turning this knob slightly to the right until a slight click is heard will put the radio into operation. Turning this knob further to the right will increase the volume and turning it to the left will decrease the volume. After a station has been selected, the volume control should be adjusted to the required loudness. The volume should never be reduced by detuning the station selector knob.

STATION SELECTOR KNOB

This knob is located on the left side of the radio. This knob should be turned until a desired station has been selected. Adjust this knob very carefully until the station comes in with the most natural tone.

MOTOR NOISE ELIMINATION

SUPPRESSION KIT

A suppression kit is shipped with this receiver. It contains the following parts:
1 Generator Condenser.
1 Distributor Suppressor.

GENERATOR CONDENSER

Fig. 3
DISTRIBUTOR SUPPRIESSOR

Disconnect the center lead in the distributor head of the motor. Cut lead approximately 2 inches back from metal tip end. Screw suppreseor into cut end of long lead. Serew eut end of abort lead into suppreseor. Plug lead, with attached suppreseor. hack into distributor head.

WHEEL STATIC

Wheel static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present. it can be eliminated by inetalling wheed static collector springs between the inner hub cap and the epindle shaft.

AMMETER CONDENSER

A. 5 MFD by-pass condenser should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessorics such as electric heaters, lighters, automatic relays or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a .5 MFD by-pass condenser from ground to the suspected accessory until the source of interference is found. The condenser then should be permanently mounted in this location.

SERVICE DATA ELECTRICAL SPECIFICATIONS

Power Supply	6.3 Volts DC.
Current	5.5 Amp. average
Frequancy Range	538-1600 KC
Speaker	.51/4 PM
Power Output	2 watts, undistorted
	3 watts, maxim

Sensitivity $\quad 2-3$ microvolts average for 1 watt output
Selectivity $\quad 40 \mathrm{KC}$ broad at 1000 times signal, at 1000 KC

This receiver contains the following:
1-6BA6-RF Amplifier
1-6BE6-Converter
1-6BA6-I. F. Amplifier
1-6AT6-Detector-A VC-lst Audio
1-6AQ5-Power Output
1-6X+ Rectifier

SERVICE NOTES

Voltage taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a volt meter having a resistance of $\mathbf{2 0 , 0 0 0}$ Ohms per volt. These voltages are clearly shown on the voltage chart, (Fig. 4).
All voltages should be measured with an input voltage of 6.3 volts DC.
To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components such as tubes, condensers, resistors. etc. are normal before proccerling with re. alignment.

If realignment is necessary follow the instructions given under the heading "Alignment Procedure". After realignment has been completed repeat the procedure as final eheck.

Fig. 4 DIAL CORD DRIVE (REAR VIEW)

ALIGNMENT PROCEDURE

Volume control-Maximum, all adjustments.
No signal applied to antenna.
Power input- 6.3 volts.
Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal gencrator to chassis.
Repeat alignment procedure as a final check.
The following equipment is necessary for proper alignment : Signal gencrator that will provide the test frequencies as listed, modulated 400 cycles, 30%.
Non-metallic screwdriver.
Out put meter. (1.3 volt for 1 watt output.)
Dumimy antennas-. 1 MFD., 190 MMFD.

- John F. Rider

PARTS LIST

SISSVHJ JO INOY」
BOTTOM VIEW OF CHASSIS

n
0
a
-
0
\leftarrow
\vdots
\vdots
0
0
0

 \square

 C O N D E N S E R S
Ilexcription
.05 MFD 200 volt condenser
．S MFD 100 volt condenser
100 MMFD ceramic condenser
． 1 MFD 400 volt condenser
200 MMFD ceramic condenser
． 01 MFD 600 volt condenser
.008 MFD 1600 volt condenser
.002 MFD 400 volt condenser
20 MFD 350 volt electrolytic condenser
20 MFD 350 volt electrolytic condenser
20 MFD 25 volt electrolytic condenser
3 section variable tuning

RESISTORS
RESISTORS
1 megohm $1 / 2$ watt 20% resistor
20 ohm $1 / 2$ watt 20% resistor
20I ohm $1 / 2$ watt 20% resistor
1．5I ohm $1 / 2$ watt 20% resistor
Volume control $3 / 4$ megohm with switch 2 megohm $1 / 2$ watt 20% resistor 10 megohm $1 / 2$ watt 20% resistor 250E ohm $1 / 2$ watt 20% resiator
20I ohm 2 watt 20% resiator
 IX ohm 1 watt 20% resistor 500X ohm $1 / 2$ watt 20% resistor SH3N\＆OISNHYI GNY Motor noise elimination unit Antenna coil
R．F．coil R．F．oscillator coil

Choke，＂A＂line
Choke，vibrator hash
2nd IF transiormer
1st IF trannformer
Vibrator transiormer
R309
R306
R314
RY－300
R310
R311
R307
R313
R301
R312
R308
R303
STIOS

L201
L203
L202
$1655-16$ TV－100 or $318 \mathrm{~V}-2$

음

Schיmitie Diasrim
Rejerence

${ }^{C 12}$
Cl 10.
Cl 3.
C 14
C 11
CE． 86
CVI－CV
CV1－CV2－CV3

U
ココココゴュ゙ャ゙

Che vrolet, 1949-1950

John F. Rider

Your new Automobile Receiver is a σ-tube (including rectifier) superheterodyne, designed to operate from the 6 -volt storage battery in your car. It is custom-built to mount behind the instrument panel in the place provided for a radio by the automobile manufacturer: It has a self-contained PM speaker and covers the frequency range 538 to 1600 KC .
This receiver has been designed with a tuned RF stage and a 3-gang tuning condenser thereby insuring the finest in sensitivity and selectivity. Any standard two or three section whip or "fish pole" anfenna will provide good reception. The unit is simple to install and requires no electrical adjustment after installation.

	DIALPARTS
D100	Dial Scale Escutcheon, Plastic.
PS 100	Dial Pointer
T47	Pilot Light.
H114	Pilot Light Socket
H2O3	Pulley, idler.
H204	Spring, Dial drive String Tension.
H115	String, dial drive.
	MISCELLANEOUS
A300	" A " lead assembly.
H301	Case, less covers for Power Supply Unit . .
H100	Case, complete with covers for R.F. tuning unit. \qquad
H207	Clip, Anti-rattle
H208	Clip, coil mounting
H102	Cover, power supply unit mounting (with speaker louvres).
A201	Fuse 15 Amp.
504PC-300	Power Cable Assembly (complete with plugh.
H212	Receptacle, Antenna cable
504-FC	Socket, power cable.
PM. 705	Speaker, $51 / 4^{\prime \prime}$ PM (includes output transformer).
V. 83	Vibrator.
H310	Knob.
H311	Cup washer
H113	7/16-28 Hex nut.
Cl00	. 5 MFD generator condenser.
R100	Distributor suppressor.

OPERATION

VOLUME CONTROL KNOB - This knob is located on the left side of the radio. Turning this $k n o b$ slightly to the right until a slight click is heard will put the radio into operation. Turning this knob further to the right will increase the volume and turning it to the left will decrease the volume. After a station has been selected, the volume control should be adjusted to the desired level. The volume should never be reduced by detuning the station selector knob.
STATION SELECTOR KNOB - This knob is located on the right side of the radio. This knob should be furned until a desired station has been selected. Adjust this knob very carefully until the station comes in with the most natural tone. Add a zero to the dial readings to obtain the frequency in kilocycles.

INSTALLATION

1. Remove two speed nuts securing radio opening cover plate to instrument panel.
2. Remove cover plate.
3. Place speaker and power pack unit over four threaded stud bolts located on the underside of the instrument panel. (Position power pack unit so that power cable is located on the left hand side.) See Fig. 1.
4. Secure power pack into position with four $8-32$ nuts and washers supplied in kit of mounting hardware.
5. Remove knobs, cup washers and hex mounting nuts from tuning units. Do not remove escutcheon.
6. Place tuning unit behind instrument panel so that mounting bushings and shafts protrude through the front panel.
7. Attach tuning unit with a hex nut on each mounting bushing.
8. Replace cup washers, grommets and knobs over shafts.
9. Secure a supporting bracket (2 supplied in kit of hardware) to each side of the power pack unit by means of two No. 8 self-tapping screws. Use end of supporting bracket with round hole. If more convenient, these brackets may be atlached before power pack unit is positioned in place.
10. Swing supporting brackets so that slotted holes are in line with the holes on each side of the tuning unit.
11. Secure to tuning unit with two No. 8 self-tapping screws.
12. Insert power cable plug into socket on rear of funing unit.
13. Plug antenna cable into tuning unit.
14. Secure power cable under cable clamp and tighten clamp screw.
15. Connect " A " lead to accessory terminal marked RAD. GA, on the ignition switch.

ACCESSORIES FURNISHED FOR INSTALLATION

MOUNTING PARTS KIT

The following mounting hardware parts are shipped at tached to the receiver. (See detail assembly drawing Fig. 1).

2 'is-28 hex nuts
2 Cup washers
2 Grommets
2 Knobs
1 Cable clamp
An envelope containing additional mounting hardware is supplied with this receiver. It contains the following parts:

2 Supporting brackets
4 No. 8 self-tapping screws
4 8:32 nuts
4 No. 8 washers

FIG. 2 DISTRIBUTOR SUPPRESSOR

SUPPRESSION KIT

A suppression kit is shipped with this receiver. It contains the following parts:

1 Generator Condenser
1 Distributor suppressor

DISTRIBUTOR SUPPRESSOR

Disconnect high tension wire that runs from the ignition coil to the center hole of the distributor head. Cut lead one and one-half inches back from metal tip end for 8 cylinder Ford or two and one-half inches back for 6 cylinder Ford. Sciew suppressor into cut end of long lead. Screw cut end of short lead into suppressor. Plug lead with attached suppressor, back into distributor head.

GENERATOR CONDENSER

Loosen the top assembly bolt from the rear end plate of the generator. DO NOT REMOVE. Mount . 5MFD generator condenser under this bolt. Tighten bolt and connect condenser lead to the armature terminal of the generator.
The generator condenser and distributor suppressor should eliminate all objectionable motor noise in most cases. If the motor noise persists the following steps should be taken. Check operation of radio as each step is made

WHEEL STATIC

Wheel static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present, it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

fig. 3 generator condenser

AMMETER CONDENSER

A . 5 MFD by-pass condenser should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a .5 MFD by-pass condenser from ground to the suspected accessory until the source of interference is found. The condenser then should be permanently mounted in this location.

ELECTRICAL SPECIFICATIONS

Power Supply	6.3 Volts DC
Current	5.5 Amp. average
Frequency Range	. 538-1600 KC
Speaker	.51/4 PM 3.2 Ohm V.C.
Power Outpur	2 watts, undistorted 3 watts, maximum

Sensitivity
2-3 microvolts average for 1 watt output
Selectivity . . 40 KC broad at 1000 times signal, at 1000 KC
This receiver contains the fallowing:
1 - 6BA6 - RF Amplifier
1 - 6BE6 - Converter
1-6BA6-I. F. Amplifier
1 - 6AT6 - Detector - AVC - 1 st Audio
1-6AQ5 - Power Output
1-6X4 - Rectifier

SERVICE NOFES

Voltage taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a volt meter having a resistance of 20,000 Ohms per volt. These voltages are clearly shown on the voltage chart.
All voltages should be measured with an input voltage of 6.3 volts DC.

To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that ather circuit components, such as tubes, condensers, resistors, etc., are normal before proceeding with realignment.
If realignment is necessary follow the instructions given under the heading "Alignment Procedure." After realignment has been completed repeat the procedure as final check.

ALIGNMENT PROCEDURE

Volume control - Maximum all adjustments.
No signal applied to antenna.
Power input - 6.3 volts.
Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check.

The following equipment is necessary for proper alignment:
Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%.
Non-metallic screwdriver.
Output meter. (1.8 volt for 1 watt output.)
Dummy antennas - 11 MFD., 100 MMFD.
For alignment points refer to Schematic Diagram.

diat siting	generator frequincy	DUMmY ANT.	generatior COMAICTION	Trimmer REFERENCE	trimmer adjusiment	trimmet FUNCTION
1) Fully open	455 KC	. 1 MFD	6BE6 Grid	T2 Top \& boltom	Maximum	Output I.F.
2) Fully open	455 KC	1 MFD	6BEO Grid	11 Top \& bottom	Maximum	Input I.F.
3) Fully open	1800 KC	100 MMFD	Ant. lead	CV 2	Maximum	Oscillator
4) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CV3	Maximum	RF Stage
5) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CVI	Maximum	Antenna
6) Tune in signal from generator	600 KC	100 MMFD	Ant. lead	13	Moximum	RF Stage
7) Tune in signal from generator 8) Repeat steps 4 and 5	600 KC	100 MMFD	Ant. lead	12	Maximum	Antenna

MODEL M-90

schematic diagram reference	Part mo.	descripion
CONDENSERS		
C2, C3,		
C5	C207	. 05 MFD 200 volt condenser.
C4, Cl 2	C209	. 5 MFD 100 volt condenser
C6	CC200	100 MMFD ceramic condenser
C7. C9	CC201	200 MMFD ceramic condenser .
C8	C203	. 002 MFD 400 volt condenser
C10,C13	C206	. 01 MFD 600 volt condenser.
CII	C205	.008 MFD 1600 volt condenser. . . 20 MFD 350 volt electrolytic
		condenser
CE-86	CE. 86	$\{20$ MFD 350 volt electrolytic
		condenser 20 MFD 25 volt electrolytic condenser.
CV1,CV2,		
CV3	CV- 148	3 section variable condenser.
		RESISTORS
R1	R-309	1 megohm $1 / 2$ watt 20% resistor..
R2, R14	R-303	330 ohm 1/2 watt 20% resistor...
R3	R-306	20K ohm $1 / 2$ watt 20% resistor...
R4	R-314	1.5 K ohm $1 / 2$ watt 20% resistor...
R5	RV-57	Volume control $3 / 4$ megohm with switch. \qquad
R6	R-310	2 megohm $1 / 2$ watt 20% resistor. .
R7	R-311	10 megohm 1/2 watt 20% resistor.
R8	R-313	20K ohm 2 watt 20\% resistor. . .
R9	R-307	250K ohm $1 / 2$ watt 20% resistor. .
R10, R11	R-301	100 ohm $1 / 2$ watt 20% resistor.
R12	R-312	1 l ohm 1 watt 20% resistor.

COILS AND TRANSFORMERS

11-Cl	L-200	Motor Noise elimination unit. . . .
12	57FB-3	Antenna Coil.
13	57FB-4	R.F. Coil.
14	L-201	R.F. Oscillator Coil.

\begin{tabular}{|c|c|c|}
\hline schematic DIAgram REFERENCE \& part mo. \& OESCRIPIION

\hline L5
L6
T1
T2
T3

$T 4$ \& \[
$$
\begin{aligned}
& \text { L-203 } \\
& \text { L-202 } \\
& 1655-16 \\
& 1655-16 \\
& \text { TV86 or } \\
& \text { TV86A }
\end{aligned}
$$

\] \& | Choke "A" Line. |
| :--- |
| Choke, vibrator hash. |
| Ist I.F. Transformer. |
| 2nd I.F. Transformer. |
| Vibrator Transformer. |
| Output transformer (Part of speaker not furnished separately). |

\hline part mo. \& \& descripion

\hline \multicolumn{3}{|r|}{DIAL PARTS}

\hline H2OI \& \multicolumn{2}{|l|}{Grommet, rubber divive.}

\hline T51 \& \multicolumn{2}{|l|}{Pilot light .}

\hline H202 \& \multicolumn{2}{|l|}{Pilot light socket.}

\hline H203 \& \multicolumn{2}{|l|}{Pulley, idler .}

\hline H204 \& \multicolumn{2}{|l|}{Spring, Dial drive string tension.}

\hline H503 \& \multicolumn{2}{|l|}{String, Dial drive}

\hline DP505 \& \multicolumn{2}{|l|}{Dial Pan. .}

\hline PS 1024 \& \multicolumn{2}{|l|}{Dial Pointer. .}

\hline DS -500 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| Drive shaft assembly. |
| :--- |
| Plastic Dial Scale front. |}}

\hline \& \&

\hline H508 \& \multicolumn{2}{|l|}{Knob}

\hline
\end{tabular}

MISCELIANEOUS

A300	lead assembly.
A201	Fuse 15 Amp..
V-83	Vibrator.
H-207	Clip, case anti-rattle
H-208	Clip, coil mounting
H-501	Case bottom.
H-502	Case cover
PM-702-A	Speaker $5^{\prime \prime}$ (includes output transformer). .
H-212	Receptacle, Antenna Cable.
GC-507	Speaker Grill Cloth and cardboard baffle. .

INSTALLATION

Due to the compact size of this receiver, many mounting positions are possible. However, the most convenient is directly below the instrument panel as illustrated in figure 1 . The following step by step procedure will facilitate the installation of the receiver.

1. With the receiver itself as a model, select the desired position.
2. Using the front mounting bracket as a template locate the two front mounting holes and a $1 / 4^{\prime \prime}$ hole at each point.
3. Attach front mounting bracket to the receiver by two No. 6 self-tapping screws.
4. Locate the position for the rear mounting stud in the bulkhead and drill a $1 / 2^{\prime \prime}$ hole.
5. With the stud mounted on the receiver and the inside nut and washer in place, insert the stud through the bulkhead hole and attach the front end of the receiver to the instrument panel with two 8-32 machine screws contained in kit of mounting hardware.
6. Open the engine compartment and remove the paint on the bulkhead around the stud. Assemble the washer and nut on this side and adjust both this nut and the inside nut for
perfect alignment of the receiver and for good contact with the brightened surface of the bulkhead.
Caution: Do not screw stud in case beyond point necessary to insure support, otherwise, it may penetrate rear wall of case and cause damage to the instrument.
7. Attach the terminal of the " A " battery cable to one of the posts on the ammeter, preferably on the battery side. This may be ascertained by switching the receiver on. If no deflection of the ammeter occurs, the receiver is properly connected.
8. Insert plug on the end of the antenna lead into socket connector located on the left side of the radio.

ACCESSORIES FURNISHED FOR INSTALLATION

MOUNTING PARTS KIT

1 mounting stud	$28-32$ hex nuts
$23 / 8-16$ hex nuts	2 No. 8 washers
$23 / \mathbf{n}^{\prime \prime}$ I.D. washers	2 No. 8 lock washers
$28-32$ machine screws	

MOTOR NOISE ELIMINATION
 SUPPRESSION KIT
 1.5 MFD Generator Condenser 1 Distributor Suppressor

FIG. 2 GENERATOR CONDENSER

FIG 3 DISTRIBUTOR SUPPRESSOR

GENERATOR CONDENSER

The generator condenser Installed as shown in Figure 2 and distributor suppressor will normally eliminate all ob jectionable motor noise. If the motor noise persists, a 5 MFD by-pass condenser may be connected to either side of the ammeter with the ground lug fastened to a good ground nearby.

DISTRIBUTOR SUPPRESSOR

Disconnect the center lead in the distributor head of the motor (see Fig. 3). Cut lead approximately 2 inches back from metal tip end. Screw suppressor into cut end of long lead. Screw cut end of short lead into suppressor. Plug lead, with attached suppressor, back into distributor head.

WHEEL STATIC

Wheel static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present, it can be eliminated by installing wheel static col lector springs between the inner hub cap and the spindle shaft.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a . 5 MFD by pass condenser from ground to the suspected accessory until the source of interference is found. The condenser then should be permanently mounted in this location.

ELECTRICAL SPECIFICATIONS

Power Supply
6.3 Volts DC

Current 5.5 Amp. average

Frequency Range 538-1600 KC
Speaker 5" PM 3.2. Ohm. V.C.
Power Output 2 watts, undistorted 3 watts, maximum
Sensifivity 2-3 microvolts average for 1 watt output Selectivity . . 40 KC broad at 1000 times signal, at 1000 KC This receiver contains the following:
1-6BA6 - RF Amplifier
1-6BE - Converter
1-6BA6-1. F. Amplifier
1 - GATO - Detector - AVC - 1st Audio
1-6AQ5 - Power Output
1-6X4-Rectifier

SERVICE NOTES

Voltage taken from the different points of the circuit to the chassis are measured with volume control in maximum posi-
tion, all tubes in their sockets, no signal applied, and with a volt meter having a resistance of 20,000 Ohms per volt. These voltages are clearly shown on the voltage chart.

All voltages should be measured with an input voltage of 6.3 volts DC.

To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, condensers, resistors, etc., are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "Alignment Procedure." After realignment has been completed repeat the procedure as finul check.

ALIGNMENT PROCEDURE

Volume control - Maximum, all adjustments.
No signal applied to antenna.
Power input - 6.3 volts.
Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check.

The following equipment is necessary for proper alignment:
Signal generator that will provide the test frequencies as listed, modulated 400 cycles, 30%.
Non-metallic screwdriver.
Output meter. (1.8 volt for 1 watt output.)
Dummy antennas - 1 MFD., 100 MMFD.
For alignment points refer to Schematic Diagram.

dial setting	gemerator prequency	dummy ant.	generator connection	trimmer refirence	trimmer ADJUSTMENT	trimmer FUNCTION
1) Fully open	455 KC	. 1 MFD	6BE6 Grid	T2 Top \& bottom	Maximum	Output I.F.
2) Fully open	455 KC	. 1 MFD	6BE6 Grid	TI Top \& bottom	Maximum	Input I.F.
3) Fully open	1600 KC	100 MMFD	Ant. lead	CV2	Maximum	Oscillator
4) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CV3	Maximum	RF Stage
5) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CVI	Maximum	Antenna
6) Tune in signal from generator	600 KC	100 MMFD	Ant. lead	13	Maximum	RF Stage
7) Tune in signal from generator 8) Repeat steps 4 and 5	600 KC	100 MMFD	Ant. lead	12	Maximum	Antenna

REPLACEMENT PARTS LIST

$\begin{aligned} & \text { SCHEMATIC } \\ & \text { DIAGRAM } \\ & \text { REF. MO. } \end{aligned}$	Part mo.	descripion
		CONDENSERS
C3, C5	C207	. 05 MFD 200 volit condenser. . . .
C4, C12	C209	.5 MFD 100 volt condenser. . . .
C6	CC200	100 MMFD ceramic condenser...
C7, C9	CC201	200 MMFD ceramic condenser. .
C8	C203	. 002 MFD 400 volt condenser . . .
C10, Cl3	C206	. 01 MFD 600 volt condenser
Cll	C220	.0125 MFD 1200 volt condenser. (20 MFD 150 volt electralytic condenser.
C15	CE. $\times 50$	condenser \qquad 20 MFD 25 volt electrolytic condenser. \qquad
		RESISTORS
R3	R306	20K ohm $1 / 2$ watt 20% resistor...
$\begin{array}{r} R 4, R 10 \\ R 11 \end{array}$		
	R301	100 ohm $1 / 2$ watt 20% resistor...
R5	RV. $\times 50$	Volume control $3 / 4$ megohm with switch. .
R6	R310	2 megohm 1/2 watt 20\% resistor. .
R8	R326	2 K ohm 1 watt 20% resistor.... . .
R9	R307	250K ohm $1 / 2$ watt 20% resistor. .
R12	R308	500K ohm $1 / 2$ watt 20% resistor..
R13	R327	$150 \mathrm{ohm} 1 / 2$ watt 20% resistor....
R14	R312	1 K ohm 1 watt 20% resistor.
	COILS	ANDTRANSFORMERS
LI-Cl	1200	Mator noise elimination Unit.
12	$57 \mathrm{FB}-3$	Antenna Coil
14	1201	R.F. Oscillator coil.
L5	1203	Choke "A" line.
16	1202	Choke, vibrator hash.

$\begin{aligned} & \text { SCHEMATIC } \\ & \text { DIAGRAM } \\ & \text { REF. MO. } \end{aligned}$	Part mo.	deschiption
T 1	1655-16	Ist If transformer..
T2	1655-16	2nd IF transformer.
T3	TV. $\times 50$	Vibrator transformer.
T4		Output transformer (Part of speaker, not furnished separately).

Part mo.	Oischiption
	DIAL PARTS
H2O1	Grommet, rubber drive
T 51	Pilot light. .
H2O2	Pilot light socket.
H203	Pulley, idler .
H204	Spring, Dial drive string tension.
H531	String, Dial drive.
DP 530	Dial Pan.
PS 800	Dial Pointer..
DS 540	Drive shaft assembly
5556	Dial scale window.
H508	Knob. .
F555	Felt washers (for knobs).
	MISCELLANEOUS
A300	"A" lead assembly.
A201	Fuse 15 Amp..
V83	Vibrator.
H207	Clip, case anti-rattle
H208	Clip, coil mounting.
PM611	Speaker 5" (includes output transformer). . .
H212	Receptacle, Antenna cable.
GC607	Speaker Grill cloth.
H601	Case bottom.
H602	Case cover.

Due to the compact size of this receiver, many mounting positions are possible. However, the most convenient is directly below the instrument panel as illustrated in figure 1 . The following step by step procedure will facilitate the in stallation of the receiver.

1. With the receiver itself as a model, select the desired position
2. Using the mounting bracket as a template locate the two front mounting holes and drill a ' 4 " hole at each point.
3. Locate the pasition for the rear mounting stud in the bulkhead and drill a ' 2 ' hole.
4. With the stud mounted on the receiver and the inside nut and washer in place, insert the stud through the bulk. head hole and attach the front end of the receiver to the instrument panel with the two 8-32 machine screws contained in kit of mounting hardware.
5. Open the engine compartment and remove the paint on the bulkhead around the stud. Assemble the washer and nut on this side and adjust both this nut and, the inside nut for perfect alignment of the receiver and for good contact with the brightened surface of the bulkhead.

Caution: Do not screw stud in case beyond point necessary to insure support, otherwise, it may penetrate rear wall of case and cause damage to the instrument.
6. Attach the terminal of the " A " battery cable to one of the posts on the ammeter, preferably on the battery side. This may be ascertained by switching the receiver on. If mo deflection of the ammeter occurs, the receiver is properly connected.
7. Insert plug on the end of the antenna lead into socket connector located on the left side of the radio.

ACCESSORIES FURNISHED FOR INSTALLATION

MOUNTING PARTS KIT

1 mounting stud
$2^{3}{ }^{3}-16$ hex nuts
28.32 machine screws
$28-32$ hex nuts
2 No. 8 washers

2 No. 8 lock washers

A suppression kit is shipped with this receiver. I: contains the following parts: 1 Generator Condenser. 1 Distributor Suppressor.

\section*{motor noise elimination

 SUPPRESSION KIT

 SUPPRESSION KIT}

FIG. 2 GENERATOR CONDENSER

FIG. 3 DISTRIBUTOR SUPPRESSOR

GENERATOR CONDENSER

The generator condenser (Installed as shown in Figure 2) and distributor suppressor will normally eliminate all objectionable motor noise. If the motor noise persists, a . 5 MFD by-pass condenser may be connected to either side of the ammeter with the ground lug fastened to a good ground nearby.

DISTRIBUTOR SUPPRESSOR

Disconnect the center lead in the distributor head of the motor (see Fig. 3). Cut lead approximately 2 inches back from metal tip end. Screw suppressor into cut end of long lead. Screw cut end of short lead into suppressor. Plug lead, with attached suppressor, back into distributor head.

WHEEL STATIC

Wheel static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present, it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

ELECTRICAL ACCESSORIES

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays or gauges, may cause interference while in operation. Proper procedure in such cases is to connect a . 5 MFD by-pass condenser from ground to the suspected accessory until the source of interference is found. The condenser then should be permanently mounted in this location.

ELECTRICAL SPECIFICATIONS

SERVICE NOTES

Voltage taken from the different points of the circuit to the chassis are measured with volume control in maximum posi-
tion, all tubes in their sockets, no signal applied, and with a volt meter having a resistance of 20,000 Ohms per volt. These voltages are clearly shown on the voltage chart.

All voltages should be measured with an input voltage of 6.3 volts DC.

To check for open by-pass condensers, shunt each condenser with another one having the same sapacity and voltage rating which is known to be good until the defective unit is located.

ALIGNING INSTRUCTION

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, condensers, resistors, etc., are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "Alignment Procedure." After realignment has been completed repeat the procedure as final check.

ALIGNMENT PROCEDURE

Volume control - Maximum, all adjustments.
No signal applied to antenna.
Power input - 6.3 volts.
Connect dummy antenna in series with output lead of signal generator.
Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check.

The following equipment is necessary for proper aligriment:
Signal generator that will provide the test frequencies
as listed, modulated 400 cycles, 30%.
Non-metallic screwdriver.
Output meter. (1.8 volt for 1 watt output.)
Dummy antennas - . 1 MFD., 100 MMFD.
For alignment points refer to Schematic Diagram.

dial setimg	ginirator frequency	DUMMY ANT.	generaior CONNECTIOM	TRIMmer REFERENCE	TRIMMER ADJUSTMENT	trimmit function
1) Fully open	455 KC	. 1 MFD	OBEO Grid	T2 Top \& bottom	Maximum	Output 1.F.
2) Fully open	455 KC	. 1 MFD	6BE6 Grid	11 Top \& bottom	Maximum	Input I.F.
3) Fully open	1600 KC	100 MMFD	Ant. lead	CV2	Maximum	Oscillator
4) Tune in signal from generator	1400 KC	100 MMFD	Ant. lead	CVI	Maximum	Antenna
5) Tune in signal from generator	600 KC	100 MMMFD	Ant. lead	12	Maximum	Antenna
6) Repeat steps 4 and 5						

www.americanradiohistorv.com

BENDIX CAR RADIOS M-1 \& M-1A
1949 and Early 1950

General

Bendix Car Radios M-I and M-lA are six tube superheterodyne receivers with vibrator power supplies and full wave rectifiers. The antenne, radio frequency, and oscillator circuits are inductively tuned, by means of push buttons or the manual tuning control, over a frequency range of 540 to 1610 kilocycles, by means of iron cores.

The On-Off, Volume and Tone Controls are on concentric shafts at the left of the receiver. The Manual Tuning Control is at the right. The Speaker is a separate unit.

TUBE COMPLIMENT

6SK7/GT	R.F. Amplifier	6SQ7/GT	Det., AVC \& AF Ampl.
6SA7/GT	Converter		
6SK7/GT	I.F. Amplifier	6V6/GT	AF Amplifier

POWER SUPPLY
The power supply uses a $6 \times 5 / G T$ full wave rectifier tube in conjunction with a four prong full wave primary type vibrator.

ALIGNMENT

Recommended Test Equipment:
Signal Generator - 260 to 1700 KC range. Output from 1 to 100,000 microvolts. Modulation 30% to 400 cycles.

Output meter - 2 watt capability or, P.M. Speaker, for alignment by
ear as an alternate.
Dummy Antenna - Constructional circuit included in the rear section of this manual.

General:

Make all alignment adjustments to the receiver with "A" lead connected to a 7.2 volt negative source, and ground the chassis to the positive side of this source. Rotate the volume, tone and sensitivity controls to their maximum clockwise position. Connect the output meter across the speaker voice coil. Use on insulated screw driver for making all adjustments. Use shielded cables for connections between signal generator, dummy antenna, and receiver. For each adjustment, the signal level should be kept as low as possible while still obtaining a reasonable output indication. The signal level should be controlled at the signal generator, and not with the receiver controls. With the sensitivity control turned fully clockwise as instructed above, some of the older type M-l receivers will have I.F. oscillation during alignment. In these receivers, capacitor $C-5$ is .1 mfd . Changing the value of this capacitor to .5 mfd will correct this trouble.

1. I.F. Alignment nal lead thru a . 1 mfd condenser to the receiver antenna connection.
(b) Turn the receiver manual tuning control for the high frequency end of the dial.
(c) Ad just the I.F. trimmers "C18B", "C18A", "C15B", and "C15A" for maximum output. Repeat this operation to assure accurate alignment.
(d) Adjust the I.F. wave trap trimmer, C32, for minimum output.
(a) Check to see that the dial pointer stops just off of the left edge of the calibration marker, under the 55, when the manual tuning control has been rotated clockwise to where this pointer stops. If incorrect, the pointer should be bent slightly to correspond to the above instructions.
(b) Set the signal generator to 1610 KC , and connect the signal lead thru the dummy antenna to the receiver ante nna socket.
(c) Turn the receiver tuning control until the dial pointer is at the right hand edge of the 16 calibration mark.
(d) Adjust the oscillator trimmer C9 for maximum output.
(e) Set the signal generator to 1400 KC ; tune in the signal on the receiver.
(f) Adjust the R.F. trimmer Cl2 for maximum output.
(g) Adjust the ante nna trimmer Cl for maximum output.
(h) Set signal generator to 600 KC and tune in the signal carefully.
(j) Observe the output meter reading.
(k) Turn L6 adjusting screw one turn clockwise. Retune the signal with the tuning control and observe the new output meter reading carefully.
(1) If operation (k) shows an increase in output over (j) continue to turn L6 in single turn clockwise steps, retuning the signal after each turn, and observing the output reading each time. See (n) below.
(m) If operation (k) shows a decrease in output over (j) the direction for turning $L 6$ adjustment must be reversed to counter-clockwise.
(n) Continue the process of adjusting L6 for one turn at a time, retuning the receiver for the greatest output each turn of L6. A peak setting will be reached, at which point the signal can be tuned.in for a greater output than at any other setting of $L 6$ adjustment.
(o)Repeat operations (b), (c), (d), (e), (f), and (g).

3. Sensitivity Control Adjustment

(a) Using the dummy antenna, the signal generator should be connected to the receiver as in the R.F. alignment procedure. Make sure the receiver volume control is fully clockwise.
(b) Apply a signal, 30 per cent modulated at 400 cycles, of sufficient strength to produce one watt output, when tuned in on the receiver.
(c) Remove modulation and a just the sensitivity control R2 for 100 milliwatts of noise, maximum, at the worst point in the band. This will usually be found at the low frequency end of the dial.
4. Alignment With Car Antenna

Withe the antenna fully extended, tune in a weak station near 1400 kilocycles and adjust the antenna trimmer cl for maximum volume.

MODEL M-1 SCHEMATIC CIRCUIT

Use the Schematic Circuit for the Model M-lA, which is included in this manual, except that the following differences should be noted:

1) The tube socket showing voltage and resistance measurements for the 6SQ7 TT tube should reed zero voltage and 300 K ohms on Pin $\# 4$, for the $\mathrm{M}-1$ model.
2) Sensitivity control, $R-2$ is 900 ohms in the $M-1$ model.
3) In the 6 SQ $7 G T$ tube circuit, pin 4 of this socket connects to pin 5 in the M-1 model.

With the exception of the above differences, the Schematic Circuits for Models M-1 and M-1A are identical to each other.

MODELS M-1, M-1A, Ford

Figure 1-Operating Controls

Material Required

[^1]The purpose of the dummy antenna is to properly match the output of the signal generator to the receiver input. It shovid be remembered, however, that the dummy antenns described below antennuates, or reduces, the signal by two. Thus. if the signal generator is feeding iomicrovolts of signal to the dummy antenna, the receiver will be receiving only 5 microvolts of
SHIELDED WIRE $\begin{gathered}\text { by two. Thus, if the signal generator is } \\ \text { to the dummy antenna, the receiver will be } \\ \text { signal from the dummy antenna. }\end{gathered}$
\qquad
TO SIGNAL GENERATOR

ALIGNMENT AND SERVICE DATA

Remove chassis from cabinet for alignment.

A Signal Generator is required having the following frequencies: 455 KC, $1400 \mathrm{KC}, 1720 \mathrm{KC}$. An output meter should be connected acroms the speaker.

The receiver volume control should be turned to maximum during the I.F. and all subsequent alignments to keep the AVC from working and giving false readings. Keep the generator output as low as possible to prevent overloading.

FIPST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser, through a $1 \mathbf{M F D}$ condenser. The ground lead from the generator must be connected to the floating ground buss under the chassis. Turn the gang condenser to complete minimum capacity. Adjust the generator to 455 KC and adjust the trimmers of the 1st and 2nd I.F. transformers untll a maximum reading is noted on the output meter.
SECOND STEP: With the leads from the generator stlll connected in the same manner, adjust the Signal Generator to 1720 KC . The OSC. trimmer is located on the front of the chassis. Adjust this trimmer until the 1720 KC signal is tuned in.

THIRD STEP: Remove the hot lead of the generator from the ANT section of the gang condenser. Connect this lead to the primary of the loop antenna through a 200 MMFD condenser. Adjust the Signal Generator to 1400 KC . Rotate the tuning control until this signal is tuned in. The ANT trimmer is located on the top of the ANT. section of the gang condenser. Adjust this trimmer until a maximum reading is noted on the output meter. No further adjustment should be necessary, unless the set has been damaged, as the coils and condenser in this receiver have been specially handled at the factory to insure proper alignment at the lower frequencies.

5055 ALIGNMĖNT AND SERVICE DATA

Remove chassis from cabinet for alignment.
A Signal Generator is required having the following frequencies: $455 \mathrm{KC}, 1400 \mathrm{KC}, 1720 \mathrm{KC}$. An output meter should be connected across the speaker.
The receiver volume control should be turned to maximum during the I.F. and all subsequent alignments to keep the AVC from working and giving false readings. Keep the generator output as low as possible to prevent overloading.
FIKST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser, through a .1 MFD condenser. The ground lead from the generator must be connected to the floating ground buss under the chassis. Turn the gang condenser to complete minimum capacity. Adjust the generator to 455 KC and adjust the trimmers of the 1st and 2nd I.F. transformers until a maximum reading is noted on the output meter
SECOND STEP: With the leads from the generator still connected in the same manner, adjust the Signal Generator to 1720 KC . The OSC. trimmer is located on the front of the chassis. Adjust this trimmer until the 1720 KC signal is tuned in.
THIRD STEP: Remove the hot lead of the genalator from the ANT section of the gang condenser. Connect this lead to the primary of the loop antenna through a 200 MMFD condenser. Adjust the Signal Generator to 1400 KC . Rotate the tuning control until this signal is tuned in. The ANT trimmer is located on the back of the loop antenna. Adjust this trimmer until a maximum reading is noted on the output meter. No further adjustment should be necessary, unless the set has been damaged, as the coils and condenser in this receiver have been specially handled at the factory to insure proper alignment at the lower frequencies.

PART NO.		DESCRIPTION
PC. 7	c-1	ammo condenser 400 V
PC-3	c-2	OSMAO COnoenser 400 V
PC-8	c. 3	imfa conoenser 400 V
Mc. 2	C-4	0001 mica condensera
MC. 4	c. 5	Oocos mica condensea
Mc-s	c-6	Ocos mica condenser
PC. 6	C-7	Oosmfo. Conoensea goov.
EC-2	c-8	10MFD. 2 Swvelectaolutc
	C.9	40w60.
14	c. ${ }_{\text {c }}$ c-11	20wro-E.ectrourtic 150 wV
18.20	R-1	220M^PESSTOR 1/2W 20%
18. 22	Q-2	$3000 \sim$ RESSSTOR $1 / 2 \mathrm{~W}$ 10\%
12.00	a^{2}	
18.9	R. 4	22M \sim Ressisfor 1/2w 20%
18.23	R. 3	33MEG \sim ReSISTOR $1 / 2 \mathrm{~W}$ 20\%
1817	f- 8	33^ RESISTOR L2w 20\%
vC-3	R-7	ineg volume contaol
18. 3	R-8	2ZMEG^RESISTOR 1/2w 20\%
IR. 5	R.9	220~ RESISTOB 1/2w $10 x$
18.:11	A-10	4TOM-RESISTOR 1/2w 20%
(f-2)	A11	330~ ResISTOA L2W 10x
cc- $5-1$	$4 \begin{gathered}6.1 \\ 6.2\end{gathered}$	Ganc conoenser
	$\begin{aligned} & 6.3 \\ & 6-4 \end{aligned}$	ANT TRMMER OSC. TRAMMER
Lt. 16	L-1	loop ant
LO. 0	L-2	osc coll.
L-6	T-1	input if transfopmen
L-7	$\begin{aligned} & T-2 \\ & s w \end{aligned}$	OUTPUT IF TRANSFOCMER SWTTCH ON VOLME CONTROL
Sex. 12	$\mathrm{T} \cdot \mathrm{~S}$	OUTPUT TRANSSORMER
$\begin{aligned} & \mathrm{PB}-1 \\ & \mathrm{co-1} \end{aligned}$	$\underset{p}{\text { PL }}$	* 47 Pllot bueb LINE CORo

Model 10-102E (Ebony)
Model 10-103 (Brown)
Model 10-104W (Ivory)

DESCRIPTION

TYPE: Five-tube, single band, Superheterodyne.
FREQUENCY RANGE: 540 to 1600 kc .
INTERMEDIATE FREQUENCY: $\mathbf{4 5 5} \mathrm{kc}$.
POWER SUPPLY: a.c.-d.c.
VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 30 watts.
POWER OUTPUT: 1.5 watts maximum.

TUBE COMPLEMENT

Type	Function
12BE6	Converter
12BA6	I. F. Amplifier
12AV6	Detector, AVC, 1st A.F. Amplifier
50C5	A.F. Power Output
35W4	Rectifier

CHASSIS, TOP VIEW

When using direct current it may be necessary to reverse the position of the power plug in the electric outlet for correct polarity.

Reversing the position of the power plug when alternating current is used may reduce hum.
Under no circumstances should a ground be connected to this receiver.

ALIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil.
2. The r.f. signal input from the signal generator should be connected to the high side of loop antenna. Connect the signal generator ground through a 0.1 mfd . condenser to B - (pin 2 on 12BA6 tube socket).
3. Turn the volume control on full and adjust the signal generator output to produce approximately midscale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action in the receiver.

ALIGNMENT CHART
Alignment adjustment locations are shown on page 1, "CHASSIS, TOP VIEW."

Alignment Sequence	Frequency in kc.	In Series with	To	Position of Dial Pointer	Adjust for Maximum Output
	455	200 mmf	High Side of Loop	1620	A \& B
8	1620	*Radiated to Loop	1620	C	
8	1400	*Radiated to Loop	1400	D	

* Place signal generator output lead near the loop antenna.

NOTES:
I. BOTTOM VIEW OF TUBE SOCKETS.
2. MEASURE VOLTAGE WITH AN ELECTRONIC VOLTMETER FROM SOCKET UG TO BPIN 2 ON THE I2BAG
3. LINE VOLTAGE IITV. $60 \sim$
4. NC = NO CONNECTION
5. W.J. = WIRING JUNCTION
6. 䉼 $^{\text {a }}$ A.C. VOLTAGE
7. SOCKET VOLTAGE TOLERANCE $\pm 10 \%$

SOCKET VOLTAGE CHART

On later sets capacitor C7 is connected from pin 7 to pin 1 of the 50 C 5 tube instead of across the primary of the output transformer.
This will improve stability.
REPLACEMENT PARTS LIST

$\underset{\substack{\text { Sym. } \\ \text { bol } \\ \text { No. }}}{ }$	Part No.	Description	$\begin{gathered} \text { Sym- } \\ \text { bol } \\ \text { No. } \end{gathered}$	Part No.	Description
C1A	B-138292-3	Capacitor, Variable	R12	39373-84	Resistor, $330,000 \mathrm{ohm}$, $1 / 2 \mathrm{w}$.
C1B		Capacitor, Variable \}	CA1	C-142769	Cable \& Plug Assy., Power
C3A	B-144675-1	${ }_{\text {Capacitor, }} .002 \mathrm{mfd}$ Capacitor, 00022 mfd$)_{\text {F }}$	L1	AB-145437	Antenna Loop \& Back Assy.
${ }_{\text {C3C }}$		Capacitor, 000022 mfd . ${ }^{\text {Capection }}$	${ }_{\text {LW }}$ 1	${ }_{39369-1}^{\text {AW-14425 }}$	Switch, Power
C3D		Capacitor, 005 mid .	SP1	139631	Speaker
${ }^{\text {C4 }}$	C-137727-21	Capacitor, 50 mmf ., $500 \mathrm{v} .$, ceramic	T1	AC-139919-4	Transformer, 1st I.F.
${ }^{\text {C5 }}$	${ }_{39477-43}^{394745}$	Capacitor, 047 mfd .600 v ., molded paper	$\mathrm{T}^{\text {2 }}$	AC-139919-5	Transformer, 2nd I.F.
C8	39477-45	Capacitor, 047 mfd ., $600 \mathrm{vv}$. ., molded paper		- ${ }_{\text {R-145356-3 }}$	$\xrightarrow{\text { Transsormer, Output }}$ Cabinet ($10-102 \mathrm{E}$)
C9	39477-46	Capacitor, 0688 mfd., 600 v ., molded paper		R-145356-1	Cabinet (10-103)
C10A	B-136770	Capacitor, $50 \mathrm{mfd} ., 150 \mathrm{v}$. Two Section		R-145514	Cabinet (10-104W)
${ }_{\text {C10 }}$		Capacitor, 30 mfd ., 150 v . SElectrolytic		W-145837	Clip, Spring
${ }_{\text {C12 }}$	Part of ${ }_{\text {P1 }}$ Part of T1			W-131154-1	Cotter (External), Drive Shaft
${ }^{\text {C13 }}$	Part of T2	Capacitor, 107 mmf .		B-145121-5	Knob (10-103)
${ }_{\text {C1 }}$	${ }_{393773-80}$	Capacitor, 86 mmf .		B-145121-6	Knob (10-104W)
${ }_{\text {R1 }}$	${ }_{39373-67}$	Resistor, $22,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		AB-145431-1	Pointer, Dial (10-102E)
R4	39333-107	Resistor, 47,000 ohm, $1 / 2 \mathrm{w}$.		${ }^{\text {AB-145431-2 }}$	Pointer, Dial (10-103)
R5	39373-80	Resistor, $220,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		${ }_{\text {W-14591 }}$	Ring (Compression), Dial Pointer
${ }^{\text {R6 }}$	39373-87	Resistor, $470,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		B-135075-11	Shaft, Dial Drive
R7 R8		Resistor, $100 \mathrm{ohm} 1 / 1 /$,		$\stackrel{3}{\mathrm{~W}} \mathrm{~W} 5172$-1	Socket, Tube
R9	- ${ }_{39368-14}^{39373-100}$	Resistor, 3.3 megohm, $1 / 2 \mathrm{w}$.		${ }_{\text {W-134916 }}$	Spring, Dial Drive Cord
R11	${ }_{39374-114}$	Cosistor, 1200 ohm, 1 w .		W-134916	Washer (Spring) Drive Shaft

MODELS 10-135, 10-136E, 10-137, $10-138,10-139,10-140$

Model

Color

$10-135$	Dulux White and Chrome
$10-136 \mathrm{E}$	Ebony and Gold
$10-137$	Chartreuse and Gold
$10-138$	Maroon and Gold
$10-139$	Aqua and Chrome
$10-140$	Metallic Green and Chrome
	DESCRIPTION

TYPE: Five-tube, single band, Superheterodyne.

FREQUENCY RANGE: 540 to 1600 kc .
INTERMEDIATE FREQUENCY: 455 kc .
POWER SUPPLY: a.c.-d.c.
VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 30 watts.
POWER OUTPUT: 1 watt maximum.

TUBE COMPLEMENT

Type	Function
12BE6	Converter
12BA6 or 6BJ6	I. F. Amplifier
12AV6 or	
12AT6	Detector, AVC 1st A. F. Amplifier
50C5	A. F. Power Output
35W4	Rectifier

CHASSIS, TOP VIEW

When using direct current it may be necessary to reverse the position of the power plug in the electric outlet for correct polarity.

Reversing the position of the power plug when alternating current is used may reduce hum.
Under no circumstances should a ground be connected to this receiver.
Phonograph connection- To use a record player with this receiver insert the pickup plug of the record player into the Phono jack on back of receiver (this automatically switches the receiver from radio to phonograph operation). Connect the power cord of the record player to a convenient electric outlet of the correct voltage and frequency. Operate the record player in the normal manner. The controls of the receiver operate the same as for radio programs.

To again use the receiver for radio operation it is necessary to remove the pickup plug of the record player from the Phono jack.

ALIGNMENT PROCEDURE

Connect an output meter across the speaker voice coil.
The r.f. signal input from the signal generator should be connected, through a 200 mmf . capacitor, to the external antenna screw. Connect the signal generator ground to the top lug on loop antenna (see Chassis Top View, page 1).

Position loop antenna to simulate its position when chassis and antenna are in cabinet.
Turn the volume control on full and adjust the signal generator output to produce approximately midscale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action in the receiver.

ALIGNMENT CHART

Alignment adjustment locations are shown on page 1, "CHASSIS, TOP VIEW."

Alignment Sequence	Signal Generator Output			Position of Dial Pointer	Adjust for Maximum Output
	Frequency in kc.	In Series with	To		
1	455	200 mmf .	External Ant. Screw	1620	* A, B, C \& D
2	1620	200 mmf .	External Ant. Screw	1620	E
3	1400	200 mmf .	External Ant. Screw	1400	F

* Repeat adjustments until maximum output is obtained.

On some sets of models $10-135$ to $10-140$, R2 is a 3.3 megohm, $10 \%, 1 / 2$ watt resistor instead of a 2.2 megohm resistor: and because of this C5 is an .05 mfd ., 600 volt paper capacitor (Part No. 39001-17).

REPLACEMENT PARTS LIST

$\begin{gathered} \text { Sym- } \\ \text { bol } \\ \text { No. } \end{gathered}$	Part No.	Description	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \\ & \text { No. } \end{aligned}$	Part No.	Description
C1A	B-147180	Capacitor, Variable	T1	AC-139919-3	Tr
C1B		Capacitor, Variable Two	T2	AC-139919-3	Transformer, 2nd I.F.
C2	C-137727-109	Capacitor, 39mmf., 10%, 200v., ceramic	T3	B-147171	Transformer, Output
C3	Part of T1	Capacitor, 106 mmf .		AW-147289	Cabinet ($10-135$)
${ }_{\text {C4 }}$	${ }_{\text {Part of }}{ }^{\text {P9001-1 }} 1$			AW-147779 AW-147806	Cabinet ($10-136 \mathrm{E}$)
C5	39001-19	Capacitor, .1 mfd., $600 \mathrm{v}$. , paper Capacitor, 131 mmf .		AW-147806 AW-147807	Cabinet ($10-137)$
C7	Part of T2	Capacitor, 106 mmf .		AW-147805	Cabinet (10-139)
C8A	C-144675-1	Capacitor, $.0002 \mathrm{mfd} ., 500 \mathrm{v}$.)		AW-147848	Cabinet (10-140)
C8B		Capacitor, $.002 \mathrm{mfd} ., 500 \mathrm{v}$. Four Section		W-139921	Clip (Mtg.)., I.F. Transformer
${ }^{\text {C8 } 8 \mathrm{C}}$		Capacitor, .005 mfd ., 500 v . Four Section		W-131154-1	Cotter (External), Pointer Pulley
C8D		Capacitor, $.0002 \mathrm{mfd} ., 500 \mathrm{v}$.)		W-147216	Cup (Suction) Cabinet Feet
C9	B-143686-3	Capacitor, 100 mmf , 500 v ., dise ceramic		C-147164-1	Escutcheon, Dial (10-135)
C10	39001-19	Capacitor, .1 mfd ., 600 v ., paper		D-147164-2	Escutcheon, Dial (10-136E, 10-137)
C11	39001-74	Capacitor, $.002 \mathrm{mfd} ., 600 \mathrm{v}$., paper		D-147164-4	Escutcheon, Dial (10-138)
C12	39001-5	Capacitor, .0005 mfd ., 600 v ., paper		D-147164-5	Escutcheon, Dial (10-139)
C13	39001-11	Capacitor, $.005 \mathrm{mfd} ., 600$. , paper		D-147164-6	Escutcheon, Dial (10-140)
C14	39001-19	Capacitor, $.1 \mathrm{mfd} ., 600 \mathrm{v}$, paper		B-147192	Gasket (Rubber), Escutcheon
C15	39001-17	Capacitor, .05 mid ., 600 v ., paper		B-147160	Gasket (Rubber), Speaker
C16A	B-147174	Capacitor, $100 \mathrm{mfd} ., 150 \mathrm{v}$. Three		B-147161-1	Grille, Dial (10-135)
C16B		Capacitor, $30 \mathrm{mfd} ., 150 \mathrm{v}$. Section		AB-147878-1	Grille, Dial ($10-136 \mathrm{E}$)
C16C		Capacitor, $10 \mathrm{mfd} ., 150 \mathrm{v}$. Electrolytic		C-147161-3	Grille, Dial (10-137)
C17	39001-13	Capacitor, .01 mfd ., 600 y ., paper		C-147161-4	Grille, Dial (10-138)
R1	39373-60	Resistor, $22,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		C-147161-5	Grille, Dial (10-139)
R2	39373-97	Resistor, 2.2 megohm, $1 / 2 \mathrm{w}$.		C-147161-6	Grille, Dial (10-140)
R3	39373-74	Resistor, $100,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-147245	Hanger, Wall Mtg.
R4	39374-34	Resistor, $5600 \mathrm{ohm}, 10 \%$, 1/2w.		AB-147159-1	Knob (10-135)
R5	39373-107	Resistor, 10 megohm, $1 / 2 \mathrm{w}$.		AB-147159-2	Knob (10-136E)
R6	B-147179	Control, Volume (3 megohm, Tap $300,000 \mathrm{ohm}$)		AC-147159-3	Knob (10-137) Knob (10-138)
		300,000 ohm) Resistor, 47,000 ohm, $1 / 2 \mathrm{w}$.		AC-147159-4	Knob (10-138) Knob (10-139)
R7 R8	$39373-67$ $39373-87$	Resistor, $47,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$. Resistor, $470,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		AC-147159-5	Knob (10-140)
R9	39373-87	Resistor, $470,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-147275	Mounting (Rubber), Speaker
R10	39373-16	Resistor, $150 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-45580-2	Mounting (Rubber), Var. Capacitor
R11	39373-90	Resistor, $680,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		B-94704-22	Nut (Speed), Escutcheon
R12	39374-189	Resistor, $100 \mathrm{ohm}, 10 \%$, 2w.		C-147149-1	Pointer, Dial ($10-135,10-139,10-140)$
R13	39374-114	Resistor, $1200 \mathrm{ohm}, 10 \%$, 1w.		D-147149-2	Pointer, Dial (10-136E, 10-137)
R14	39373-33	Resistor, 1000 ohm, $1 / 2 \mathrm{w}$.		D-147149-3	Pointer, Dial (10-138)
CA1	C-132300-9	Cable \& Plug Assy., Power		W-147181	Pulley, Dial Pointer
J1	W-147213	Connector, Phono		W-142732	Shield, Tube
L1	AC-147239	Loop Antenna \& Back Assy.		$\stackrel{39462-2}{W}$	Socket, Tube
L2	AW-146323	Coil, Oscillator		W-51752	Spring, Drive Cord
SP1	AD-145956-2	Speaker (51/4" P.M.)		$\stackrel{\mathrm{B}}{\mathrm{W}-147170}$	Support, Pointer Pulley
SW1	Part of R6	Switch, Power		W-134916	Washer (Spring), Pointer Pulley

DESCRIPTION

POWER OUTPUT: $200 \mathrm{M} . \mathrm{W}$. maximum. POWER CONSUMPTION: 15 watts at 125 volts, 60 cycle.
"A" BATTERY: one Crosley CR-72.
"B" BATTERY: one Crosley CR-96.

POWER SUPPLY: a.c.-d.c. or Battery.
VOLTAGE RATING: a.c.-d.c., 110 to 120 volts.
"A" Battery, 41/2 volts; "B" Battery, 90 volts.
TYPE: Four-tube, combination, battery Portable and a.c.-d.c. Superheterodyne with Selenium Rectifier.
FREQUENCY RANGE: 540 to 1600 kilocycles. INTERMEDIATE FREQUENCY: 455 kc .

CHASSIS TOP VIEW

MODELS 10-310,
10-311, 10-313.
TUBE COMPLEMENT:

ALIGNMENT SHOULD ALWAYS BE MADE ON BATTERY OPERATION.

1. Unsolder the two loop antenna leads from the rear of the tuning capacitor and remove the chassis from the cabinet.
2. Remove the chassis bottom cover and connect a 33,000 ohm resistor from the grid of the 1R5 converter tube to B - (pin 6 to pin 1 of V1 tube socket):
3. Connect the battery cable plug to the receptacle on the battery. Wrap the power cord around the metal cord supports and insert the prongs of the plug into the receptacle on the chassis.
4. Connect the output meter across the speaker voice coil.
5. Connect the high side of the signal generator through a 200 mmf . capacitor to the converter grid terminal (pin 6 of V1 tube socket). Connect the signal generator ground through a . 05 mfd . capacitor to B- (pin 1 of V1 tube socket).
6. Turn the volume control on full and adjust the signal generator output to produce approximately mid-scale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action in the receiver.

ALIGNMENT CHART
Alignment adjustment locations are shown on page 1, Chassis Top View

	Signal Generator Output			Position of Dial pointer or Var. Cond.	Adjust for Maximum Output	Remarks
Alignment Sequence	Frequency in KC	In Series with	To			
1	455	200 mmf .	V1 Grid	Open	A \& B	See steps $2 \& 5$ of Alignment procedure
2	1620	200 mmf .	V1 Grid	Open	D	See notes $1 \& 2$ of Alignment notes
3	1400	Radiated	to Loop	1400 kc	E	See notes $3 \& 4$ of Alignment notes

ALIGNMENT NOTES

1. After adjusting A and B, replace the chassis bottom.
2. Preset C to $1 / 4$ turn from its closed position before adjusting D.
3. Before adjusting E remove the 33,000 ohm resistor from pins 6 and 1 of the V1 tube socket. Replace the chassis in the cabinet and connect the antenna loop (see Chassis Top View). Make certain that the battery cable and the power cord are connected for battery operation (see step 3, Alignment Procedure), and that the batteries are in place in the cabinet.
4. To obtain a radiated signal for this alignment, place the signal generator output lead near the loop antenna.

REPLACEMENT PARTS LIST

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
C1A	AG-137073-38	Capacitor, Variable)	L1	AC-146069	Loop Assembly, Antenna
C1B		Capacitor, Variable ${ }^{\text {T }}$	L2	AW-145006	Coil Assembly, Oscillator
C2	C-137727-21	Capacitor, 50 mmf ., 500 v., ceramic	S1	Part of SW1	Socket, Power Cable Plug
C3	Part of T1	Capacitor, 66 mmf .	SR1	W-145429	Rectifier, Selenium
C4	Part of T1	Capacitor, 83 mmf .	SW1	W-145922	Switch (T. P. D. T.)
C5	$39001-11$	Capacitor, . 005 mfd , 600 v., paper	SW2	39369-2	Switch, Power
C6	Part of T2	Capacitor, 83 mmf .	SP1	139631	Speaker
C7	Part of T2	Capacitor, 66 mmf .	T1	AC-139919-2	Transformer, 1st I. F.
C8A	C-144675-10	Capacitor, 200 mmf ., 500 v .	T2	AC-139919-2	Transformer, 2nd I. F.
C8B		Capacitor, 100 mmf ., 500 v . Five	T3	138131-3	Transformer, Output
C8C		Capacitor, $005 \mathrm{mfd} ., 500 \mathrm{v}$. Section	P1	W-136863	Plug, Battery
C8D		Capacitor, $002 \mathrm{mfd} ., 500 \mathrm{v}$.		D-145984-1	Back, Cabinet (10-310)
C8E		Capacitor, 004 mfd ., 500 v .)		D-145984-2	Back, Cabinet ($10-311$)
C9	39001-76	Capacitor, $.003 \mathrm{mfd} ., 600$ v., paper		D-145984-3	Back, Cabinet (10-313)
C10	39001-19	Capacitor, .1 mfd . 600 v ., paper		AB-145981-2	Background Assembly, Dial
C11	39001-19	Capacitor, . 1 mid., 600 v ., paper		CR72	Battery, "A"' Pack
C12	C-136327-45	Capacitor, $2-15 \mathrm{mmf}$., Trimmer		CR96	Battery "B" Pack
C13	39001-17	Capacitor, 05 mfd ., 600 v., paper		AW-145444	Bracket \& Terminal Assy., Antenna
C14A	B-145261	Capacitor, 50 mfd ., 150 v .		AC-146034-1	Cabinet Assy., Complete (10-310)
C14B		Capacitor, 30 mfd ., 100 v . Four Section		AC-146034-2	Cabinet Assy., Complete (10-311)
C14C		Capacitor, 30 mfd ., 25 v . (Electrolytic		AC-146034-3	Cabinet Assy., Complete (10-313)
C14D		Capacitor, $200 \mathrm{mfd} ., 10 \mathrm{v}$.)		W-139921	Clip, I. F. Transformer
C15	39001-19	Capacitor, $.1 \mathrm{mfd} ., 600 \mathrm{v}$., paper		W-146608	Clip (Tinnerman), Cabinet Back
C16	39001-17	Capacitor, .05 mfd ., 600 v., paper		W-145420	Clip (Fuse Type), Cabinet Back
C17	39001-17	Capacitor, $.05 \mathrm{mfd} ., 600 \mathrm{v}$. paper		W-131154-1	Cotter, External
R1	39373-74	Resistor, $100,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		AW-146075	Grille Cloth \& Baffle
R2	39373-60	Resistor, $22,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-145996-2	Handle (10-313)
R3	39373-54	Resistor, 10,000 ohm, $1 / 2 \mathrm{w}$.		W-145996-3	Handle (10-310, 10-311)
R4	39373-97	Resistor, 2.2 megohm, $1 / 2 \mathrm{w}$.		W-145232	Hinge, Cabinet Back
R5	39373-100	Resistor, 3.3 megohm, $1 / 2 \mathrm{w}$.		W-145933	Holder, Cabinet Handle
R6	39373-77	Resistor, $150,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		B-145121-2	Knob (10-310, 10-311)
R7	39368-14	Control, Volume (1 megohm)		B-145121-3	Knob (10-313)
K8	39373-107	Resistor, 10 megohm, $1 / 2 \mathrm{w}$.		B-145960	Pointer, Dial
R9	39373-102	Resistor, 4.7 megohm, $1 / 2 \mathrm{w}$.		B-135075-2	Shaft, Dial Drive
R10	39374-58	Resistor, $560,000 \mathrm{ohm}, 1 / 2 \mathrm{w} ., 10 \%$		W-142732	Shield, Tube
R11	39373-92	Resistor, 1 megohm, $1 / 2 \mathrm{w}$.		W-46065	Shock Mount, Var. Cond. Mtg.
R12	39373-77	Resistor, $150,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-145379-2	Shock Mount, Chassis Mtg.
R13	39374-188	Resistor, 82 ohm, 2 w., 10%		W-145379-3	Shock Mount, Chassis Mtg.
R14	39373-40	Resistor, 2200 ohm , $1 / \mathrm{w}$.		39462-2	Socket, Tube
R15	B-144857-4	Resistor, $22200 \mathrm{ohm}, 7 \mathrm{w}$.		W-145757	Spring, Dial Drive Cord
R16	39373-40	Resistor, $2200 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-145918	Spring, Cabinet Handle
R17	39374-24	Resistor, 820 ohm , $1 / 2 \mathrm{w} ., 10 \%$		W-138136	Strip, Dial Pointer
R18	39374-26	Resistor, $1200 \mathrm{ohm}, 1 / 2 \mathrm{w} ., 10 \%$		C-135038-78	Strip, Terminal ($21 / 4$ " long; 6 Lugs)
R19	39373-33	Resistor, 1000 ohm , $1 / 2 \mathrm{w}$.		C-135038-18	Strip, Terminal ($3 / 4$ long; 2 Lugs)
$\stackrel{\mathrm{R} 20}{\mathrm{CA} 1}$	$\begin{aligned} & 39373-30 \\ & \mathrm{C}-132300-8 \end{aligned}$	Resistor, $680 \mathrm{ohm}, 1 / 2 \mathrm{w}$. Cable \& Plug Assy. A.C-D.C. Power		$\mathrm{W}-136630$ $\mathrm{~W}-134916$	Stud Trimount (Chassis Bottom)
CO1	$\begin{aligned} & \text { C-132300-8 } \\ & \mathrm{W}-146009 \end{aligned}$	Cable \& Plug Assy., A.C-D.C. Power Connector Battery		W-134916	Washer, Spring (Dial Drive Shaft)

CHASSIS, TOP VIEW

When using direct current it may be necessary to reverse the position of the power plug in the electric outlet for correct polarity.

Reversing the position of the power plug when alternating current is used may reduce hum.
Under no circumstances should a ground be connected to this receiver.

ALIGNMENT PROCEDURE

1. Connect an output meter across the speaker voice coil.
2. The r.f. signal input from the signal generator should be connected as indicated in the alignment chart. Connect the signal generator ground through a 0.1 mfd . condenser to B - (pin 2 on 123A6 tube socket).
3. Turn the volume control on full and adjust the signal generator output to produce approximately midscale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action in the receiver.

ALIGNMENT CHART

Alignment adjustment locations are shown on page 1, "CHASSIS. TOP VIEW."

Alignment Sequence	Signal Generator Output			Position of Jial pointer	Adjust for Maximum Out put
	$\begin{aligned} & \text { Frequency } \\ & \text { in } \mathrm{KC} \end{aligned}$	In Series with	To		
1	455	200 minf .	High Side of Loop	1620	A, B, C \& D (See Note 1.)
2	1620	Radiated	Loop	1620	E (Sce Note 2.)
3	1400	Radiated	Loop	Tune to Sisnal	F (See Note 2.)

ALIGNMENT NOTES

1. Repeat adjustments (A, B, C \& D) in sequence, until maximum output is obtained.
2. Place signal generator output lead near the loop antenna. The loop antenna must be positioned with respect to the chassis to simulate its position when chassis and loop are fastened in cabinet.

PAGE 21-12 CROSLEY

MODELS 11-100U, 11-101U, 11-102U,
11-103U, 11-104U, 11-105U, Ch. 301

SCHEMATIC DIAGRAM

REPLACEMENT PARTS LIST

$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Part No.	Description	$\underset{\text { No. }}{\text { Symbol }}$	Part No.	Description
C1A	B-148350	Capacitor, Variable Two Section	L2	AW-148259	Coil, Oscillator
C1B	B-14830	Capacitor, Variable Two Section	SP1	AD-148400	Speaker
C2	C-137727-109	Capacitor, $39 \mathrm{mmf} ., 10 \%$, 200 v., ceramic	SW1	Part of R6	Switch, Power
C3	Part of T1	Capacitor, 86 mmf .	TS1	W-147784	Shield, Tube (V1)
C4	Part of T1	Capacitor, 107 mmf .	T1	C-139919-5	Transformer, 1st I.F.
C5	39001-19	Capacitor, 1 mfd ., 300 v , paper	T2	C-139919-5	Transformer, 2nd I.F.
C6	Part of T2	Capacitor, 107 mmf .	T3	138131-1	Transformer, Output
${ }^{\text {C }} 7$	Part of T2	Capacitor, 86 mmf .		AB-148406-1	Baffle \& Grille Cloth Assy.
C8A	C-144675-1	Capacitor, . $0002 \mathrm{mfd} ., 500 \mathrm{v}$. Four Sec-		AB-148465-1	Cabinet (11-100U)
C8B		Capacitor, $.002 \mathrm{mfd}, 500 \mathrm{v}$. ${ }_{\text {ction dise }}$		AB-148465-2	Cabinet (11-101U)
C8C		Capacitor, . 005 mfd ., 500 v . tion disc		AB-148465-3	Cabinet (11-102U)
C8D		Capacitor, $.0002 \mathrm{mfd} ., 500 \mathrm{v}$. ceramic		AB-148465-4	Cabinet (11-103U)
C12	39001-5	Capacitor, .0005 mfd ., 600 v., paper		R-148273-3	Cabinet (11-104U)
C13	39001-11	Capacitor, . 005 mfd , 600 v., paper		AB-148465-6	Cabinet (11-105U)
C14	39001-85	Capacitor, . 08 mfd ., 600 v ., paper		W-148434	Clip, I.F. Transformer Mtg.
C15	39001-17	Capacitor, 05 mfd ., 600 v., paper		W-131154-1	Cotter (External), Tuning Shaft
C16A	B-148357	Capacitor, 100 mfd ., 150 v. Two Section		B-148364	Gasket, Speaker
C16B		Capacítor, $30 \mathrm{mfd} ., 150 \mathrm{v}$. (Electrolytic		W-148390	Grommet (3 used), chassis
C17	39001-13	Capacitor, .01 mfd ., 600 v., paper		B-148318-1	Knob (11-100U)
R1	39373-60	Resistor, 22,000 ohm, 1/2 w.		B-148318-2	Knob (11-101U)
R 2	39373-97	Resistor, 2.2 megohm, $1 / 2 \mathrm{w}$.		B-148318-3	Knob (11-102U)
R3	39373-74	Resistor, $100,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		B-148318-4	Knob (11-103U)
R4	39373-1	Resistor, 10 ohm, $1 / 2 \mathrm{w}$.		B-147318-5	Knob (11-104U)
R5	39373-107	Resistor, 10 megohm, 1/2 w.		B-148318-6	Knob (11-105U)
R6	B-148327	Control, Volume (3 megohm, Tap $300,000 \mathrm{ohm}$)		$\begin{aligned} & \mathrm{B}-94704-7 \\ & \mathrm{~B}-148320 \end{aligned}$	Nut (Push On), Grille Cloth Mtg. Pointer, Dial
R7	39373-67	Resistor, 47,000 ohm, 1/2 w.		39176-59	Screw, Chassis Mtg.
R8	39373-87	Resistor, 470,000 ohm, $1 / 2 \mathrm{w}$.		W-148379	Shaft, Tuning
R9	39373-87	Resistor, $470,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		AW-148806	Shaft \& Pulley Assy., Pointer
R10	39373-16	Resistor, 150 ohm, 1/2 w.		39462-2	Socket, Tube
R11	39373-90	Resistor, $680,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-148469	Spring (Retainer), Pointer Pulley
R12	39374-97	Resistor, $47 \mathrm{ohm}, 10 \%$, 1 w .		W-51752	Spring, Drive Cord
R13	39374-114	Resistor, 1200 ohn, 10%, 1 w.		$\underset{W}{\text { A }}$ W-148362	Support \& Bushing Assy., Pointer Pulley
CA1	C142769-1	Cable \& Plug Assy., Power		W-134916	Washer (Spring), Tuning Shaft
L1	C-148399	Loop \& Back Assy.			

Slipping of dial drive cords on these models can be corrected by replacing the drive cord with a cord long enough to permit it to be wrapped around the drive shaft four turns instead of three turns.

If necessary, place a $1 / 16^{\prime \prime}$ thick \#6 flat washer on each screw that mounts the tuning capacitor. The washer should be placed between the rubber grommet eyelet and the capacitor frame. When the mounting screws are drawn tight, the eyelet will then flatten enough to reduce the flexibility of the grommet. This will hold the capacitor rigid and prevent the cord from becoming loose when the drive shaft is rotated.

In addition to the recommendations in the original service instruc-
tion it is sometimes necessary to replace the drive shaft with new shaft (part Number 148379). This new shaft does not have a groove for the drive cord.

On some sets of models
11-100U to $11-109 \mathrm{U}, \mathrm{R} 2$ is a 3.3 megohm, $10 \%, 1 / 2$ watt resistor instead of a 2.2 megohm resistor; and because of this C5 is an . 05 mfd ., 600 volt paper capacitor (Part No. 39001-17).

PAGE 21-14 CROSLEY

MODELS 11-301U, 11-302U, 1l-303U, 11-304U, 11-305U, Ch. 303
Model

Cabinet Lid

11-301U	New Brunswick Blue	Salvador Blue
$11-302 \mathrm{U}$	Meadow Green	Sea
$11-303 \mathrm{U}$	Fez Red	Sport Beige
$11-304 \mathrm{U}$	Brown	Tan
$11-305 \mathrm{U}$	Ebony	Ebony

DESCRIPTION

TYPE: Four-tube, combination, battery Portable and a.c.-d.c.Superheterodyne with Selenium Rectifier.
FREQUENCY RANGE: 540 to 1600 kilocycles. INTERMEDIATE FREQUENCY: 455 kc .

POWER SUPPLY: a.c.-d.c. or Battery.
VOLTAGE RATING: a.c.-d.c., 110 to 120 volts. "A" Battery, $1 \frac{1}{2}$ volts; "B" Battery, $67 \frac{1}{2}$ volts.

POWER OUTPUT: 200 M.W. maximum.
POWER CONSUMPTION: 15 watts at 125 volts, 60 cycle.
"A" BATTERY: One leak resistant " D "' cell.
"B" BATTERY: One Crosley CR-88.

CHASSIS TOP VIEW

SOCKET VOLTAGE CHART

(For sets built as shown by solid lines in Schematic Wiring Diagram)

When using direct current it may be necessary to reverse the position of the power plug in the electric outlet for correct polarity.

Reversing the position of the power plug when alternating current is used may reduce hum.
Under no circumstances should a ground be connected to this receiver.

ALIGNMENT PROCEDURE

1. Alignment should be made with the receiver connected to the power line (not in battery operation position).
2. Connect output meter across speaker voice coil (3.2 ohms).
3. With the cabinet front lid open all the way, radiate an R-F signal modulated 30% at 400 cycles to the receiver by placing the output lead from the high side of the signal generator close to the loop antenna in the lid.
4. Turn the volume control to maximum and adjust the signal generator to produce mid-scale deflection of the output meter, but maintain generator output as low as possible to prevent AVC action.

ALIGNMENT CHART

Alignment Sequence	Signal Generator		Position of Tuning Gang or Dial pointer	Adjust for Max. Output	Remarks
	Freq in KC	Output			
1	455	Radiated to Loop	Open	A, B, C \& D	See Note
2	1620	Radiated to Loop	Open	E	
3	1400	Radiated to Loop	Tune in Signal	F	

ALIGNMENT NOTE

Repeat adjustment of A, B, C, \& D until maximum output is obtained.

THE SME AS V2. MEVISING NN EARLY PROOUCTIO
SET, TO A LATER PACOUCTION SET, AS SHOWN BY
the soud unes an scriematic whinc diagram,
improves its semstivity mo stability.

NOTES

I. BOTTOM VIEW OF TUBE SOCKETS
2. VOLTAGES MEASURED WITH AN ELECTRONIC

VOLTMETER FROM SOCKET LUG TO (B-)
3. W. J. = WIRING JUNCTION.
4. N.C. = NO CONNECTION.
5. 4 = VOLTAGES MEASURED WITH RADIO PLUGED INTO 117 V 60 CYCLE LINE
6 ALL OTHER VOLTAGES MEASUREDIN BATTERY OPERATION POSITION WITH "A" $=1.45$ VOLTS. ${ }^{\prime} B$ " $=671 / 2$ VOLTS.
7. SOCKET VOLTAGE TOLERANCE $\pm 10 \%$.

SOCKET VOLTAGE CHART
(For sets built as shown by dotted lines in Schematic Wiring Diagram)

REPLACEMENT PARTS LIST

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description		Part No.	Description
C1A	B-148204	Capacitor, Variable Two Section	TS2	W-144784	Shield, Tube (V2)
C1B	B-148204	Capacitor, Variable ${ }^{\text {T }}$ Two Section		148875	Antenna \& Lid Assy. (11-301U)
C2	C-137727-109	Capacitor, 39 mmf ., 10%, 200 v ., ceramic		148876	Antenna \& Lid Assy. (11-302U)
C3	39001-82	Capacitor, 03 mfd ., 600 v., paper		148877	Antenna \& Lid Assy. (11-303U)
C4	39001-17	Capacitor, $.05 \mathrm{mfd} ., 600 \mathrm{v} .$, paper		148878 148879	Antenna \& Lid Assy. (11-304U) Antenna \& Lid Assy. (11-305U)
C5A	C-144675-10	Capacitor, 0.0002 mfd ., 500 v . Five		148879 ${ }^{\text {AW-149752-1 }}$	Antenna \& Lid Assy. (11-305U) Bracket (R.H.) Handle
C5B		Capacitor, $0001 \mathrm{mfd} ., 500 \mathrm{v}$. Sapacitor, 0005 mfd ., 500 v .		AW-149752-1	Bracket (R.H.) Handle Bracket (L.H.) Handle
C5C		Capacitor, $0005 \mathrm{mfd} ., 500 \mathrm{v}$. ${ }_{\text {Capacitor, }} .002 \mathrm{mfd}$. 500 v disc		B-148034	Bottom, Chassis
C5E		Capacitor, .004 mfd ., 500 v . ceramic		AD-148370	Bottom Assy., Cabinet
C6	C-144675-16	Capacitor, . 002 mfd ., $+100 \%-0 \%$, 500 v ., dise ceramic		D-148192-1	Cabinet \& Lid Assy. (11-301U) Cabinet \& Lid Assy. (11-302U)
C7A	B-148246	Capacitor, 50 mfd ., 150 v .)		D-148192-3	Cabinet \& Lid Assy. (11-303U)
C7B	B-14824	Capacitor, 30 mfd ., 100 v . (Four Section		D-148192-4	Cabinet \& Lid Assy. (11-304U)
C7C		Capacitor, $30 \mathrm{mfd} ., 25 \mathrm{v}$. (Electrolytic		D-148192-5	Cabinet \& Lid Assy. (11-305U)
C7D		Capacitor, $200 \mathrm{mfd} ., 10 \mathrm{~V}$.)		W-148103	Catch, Cabinet Lid
C8	39477-45	Capacitor, .047 mfd ., $600 \mathrm{v} .$, paper		AC-148443	Grille \& Baffle Assy.
C9	39001-85	Capacitor, 08 mfd ., 600 v ., paper		W-148390	Grommet (3 used), Chassis
C10	39001-85	Capacitor, $.08 \mathrm{mid} ., 600 \mathrm{v}$., paper		W-148107	Guide, Cabinet Lid Catch
C11	C-144675-16	Capacitor, $.002 \mathrm{mfd} ., 500 \mathrm{v}$., disc ceramic		B-147997	Handle
R1	39373-74	Resistor, $100,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		B-148232-1	Knob, Volume (11-301U)
R2	39373-97	Resistor, 2.2 megohm, $1 / 2 \mathrm{w}$.		B-148233-1	Knob, Tuning (11-301U)
R3	39374-38	Resistor, 12,000 ohm, 10%, 1/2 w.		B-148232-2	Knob, Volume (11-302U)
R4	39373-100	Resistor, 3.3 megohm, $1 / 2 \mathrm{w}$.		B-148233-2	Knob Tuning (11-302U)
R5	39373-74	Resistor, $100,000 \mathrm{ohm} .1 / 2 \mathrm{w}$.		B-148232-3	Knob, Volume (11-303U)
R6	B-148240	Control, Volume (1 megohm)		B-148233-3	Knob, Tuning (11-303U)
R7	39373-107	Resistor, 10 megohms $1 / 2 \mathrm{w}$.		B-148232-4	Knob, Volume (11-304U, 11-305U)
R8	39374-77	Resistor, 4.7 megohm, 10%, $1 / 2 \mathrm{w}$.		B-148233-4	Knob, Tuning (11-304U, 11-305U)
R9	39374-61	Resistor, 1 megohm, $10 \% 0,1 / 2 \mathrm{w}$.		W-148218	Nut (Elastic Stop), Lid Catch Slide
R10	39373-100	Resistor, 3.3 megohm, $1 / 2 \mathrm{w}$.		W-94701-4	Nut (Push-On), Cabinet Trim
R12	39374-188	Resistor, $82 \mathrm{ohm}, 10 \%, 2 \mathrm{w}$.		AW-148424	Pointer, Dial
R13	39373-40	Resistor, 2200 ohm, $1 / 2 \mathrm{w}$.		W-148366-1	Push Button, Off-On (11-301U)
R14	B-144857-4	Resistor, 2220 ohm, 5\%, 7 w.		W-148366-2	Push Button, Off-On (11-302U)
R15	39373-40	Resistor, 2200 ohm , $1 / \% \mathrm{w}$.		W-148366-3	Push Button, Off-On (11-303U)
R16	39374-24	Resistor, 820 ohm, 10%, $1 / 2 \mathrm{w}$.		W-148366-4	Push Button, Off-On (11-304U,11-305U)
R17	39374-26	Resistor, $1200 \mathrm{ohm}, 10 \%$, $1 / 2 \mathrm{w}$.		39178-55	Screw, Chassis Mtg.
R18	39374-19	Resistor, 330 ohm, $10 \%, 1 / 2 \mathrm{w}$.		39178-28	Screw, Handle
R19	39373-51	Resistor, 6800 ohm, $1 / 2 \mathrm{w}$.		39178-28	Screw, Cabinet Bottom
L1		Loop (Part of Lid Assy.)		39178-28	Screw, Grille \& Baffle Assy.
L2	AW-148420	Coil, Oscillator		W-147784	Shield, Tube
T1	C-148449	Transformer, 1st I.F.		W-148108	Slide, Cabinet Lid Catch
T2	C-148449	Transformer, 2nd I.F.		W-148346	Socket, Tube
T3	B-148328	Transformer, Output		W-148054	Spacer, Speaker
SW1	B-148392	Switch, Off-On (Power)		W-148523	Spring, Puslf Button
SW2	B-148330	Switch, Battery A.C.		W-148111	Spring, Cabinet Lid Catch
SP1	C-148852	Speaker		W-148042	Support, Speaker
SR1	W-145429	Rectifier, Selenium		B-148082	Trim, Cabinet Lid
CA1	C-132300-8	Cable \& Plug Assy., Power		C-148110	Trim, Cabinet
C01	W-148414	Connector, 'B' Battery		W-148248 ${ }_{\text {W-148206-2 }}$	Trimount Stud, Handle ${ }_{\text {Washer (Spring), Lid Catch Slide }}$
CO2	AB-148062	Support Assembly, Battery		W-148206-2	Washer (Spring), Lid Catch Slide

Handles pulling off may be prevented by replacing the original equipment handle brackets with the new type that has a rivet brazed to the bracket. The R. H. Bracket part number is AW-149752-1 and the L. H. Bracket number is AW-149752-2.

On some sets of models $11-301 \mathrm{U}$ to $11 \mathrm{-305U}$, R2 is a 3.3 megohm resistor instead of 2.2 megohm resistor. In these sets the .05 mfd . capacitor is identified by symbol No. C4. Since this was already a . 05 mfd . capacitor, no change was necessary when $R 2$ was substituted.

Model No.	Color
11-106U	Nubian Black
$11-107 \mathrm{U}$	Bahama Beige
$11-108 \mathrm{U}$	Royal Burgundy
$11-109 \mathrm{U}$	Hunter Green

DESCRIPTION

TYPE: Five-tube, single band, Superheterodyne.
FREQUENCY RANGE: 540 to 1600 kc .
INTERMEDIATE FREQUENCY: 455 kc .
POWER SUPPLY: a.c.-d.c.
VOLTAGE RATING: $105-125$ volts.
POWER CONSUMPTION: 30 watts maximum.
TUBE COMPLEMENT:

Type	Function
12BE6	Converter
12BA6	I.F. Amplifier
12 AV 6	Detector, AVC, 1st A.F. Amplifier
50 C 5	A.F. Power Output
$35 W 4$	Rectifier

[^2]

CHASSIS, TOP VIEW (Sets equipped with 12AV6 Tube)

CHASSIS, TOP VIEW (Sets equipped with 12SQ7GT Tube) REPLACEMENT PARTS LIST

Symbol No.	Part No.	Description	$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Part No.	Description
C1A	B-148745	Capacitor, Variablel Two Section	L1	AC -148752	Loop \& Back Assy.
C18		Capacitor, Variable?	L2	AW-148259	Coil, Oscillator
C2	C-137727-1.09	Capacitor, 39 mmf ., 10\%, 200 v, , ceramic	SP1	AD-145956-2	Speaker (5-1/4* P.M.)
C3	Part of T1	Capacitor, 106 mmf .	SW1	Part of R6	Switch, Power
C4	Part of T1	Capacitor, 131 mmf .	SW2	W-148260	Switch, Phono
C5	39001-19	Capacitor, . 1 mfd., 600 v., paper	T 1	AC-139919-3	Transformer, lst I. F.
C6	Part of T2	Capacitor, 131 mmf .	T2	AC-139919-3	Transformer, 2nd I.F.
C7	Part of T2	Capacitor, 106 mmf .	T3	B-147171	Transformer, Output
C8A	C-144675-1	Capacitor, $.0002 \mathrm{mfd} ., 500 \mathrm{v}$. Four Sec -		C-147934	Bottom, Chassis
C88		Capacitor, $.001 \mathrm{mfd} ., 500 \mathrm{v}$. Four Sec -		R-148672	Cabinet (11-106U)
C8C		Capacitor, . $005 \mathrm{mfd} ., 500 \mathrm{v} .\left\{\begin{array}{l}\text { tion disc } \\ \text { ceramic }\end{array}\right.$		AB-148962-1	Cabinet (11-107U)
C8D		Capacitor, $0002 \mathrm{mfd} ., 500 \mathrm{v}$. ceramic		AB-148962-2	Cabinet (11-108U)
C9	B-143686-3	Capacitor, 100 mmf ., 500 v ., Molded disc ceramic		AB-148962-3 B-94962-5	Cabinet (11-109U) Clip, Dial Pointer
C10	39001-85	Capacitor, . $08 \mathrm{mfd} ., 600$ v., paper		W-148434	Clip, I.F. Transformer Mtg.
C 11	39001-74	Capacitor, . $002 \mathrm{mfd}$. , $600 \mathrm{v}$. , paper		W-131154-1	Cotter (External), Dial Pointer Shaft
C12	39001-5	Capacitor, . $0005 \mathrm{mfd} ., 600 \mathrm{v.}$,		C-148674	Escutcheon, Dial
C13	39001-11	Capacitor, . 005 mfd . $600 \mathrm{v.}$,		AB-148743	Grille Cloth \& Baffle Assy.
C 14	39001-85	Capacitor, . $08 \mathrm{mfd} ., 600 \mathrm{v}$, , paper		AW-148774	Grille \& Medallion Assy. (11-106U)
C15	39001-17	Capacitor, . $05 \mathrm{mfd} ., 600 \mathrm{v.}$, paper		AW-148956	Grille \& Medallion Assy. (11-107U)
C16A	B-147174	Capacitor, $100 \mathrm{mfd} ., 150 \mathrm{v}$. Three Sec -		AW-148957	Grille \& Medallion Assy. (11-108U)
C168		Capacitor, $30 \mathrm{mfd}, 150 \mathrm{v}$.$\} tion Elec -$		$A W-148955$	Grille \& Medallion Assy. (11-109U)
C16C		Capacitor, $10 \mathrm{mfd} ., 150 \mathrm{v} . \int$ trolytic		$C-148708$	Knob
C17	39001-13	Capacitor, . $01 \mathrm{mfd} ., 600 \mathrm{v}$., paper		W-147275	Mounting, Rubber (2 used)
R1	39373-60	Resistor, 22,000 ohm, 1/2 w.		W-45580-2	Mounting, Rubber (4 used)
R2	39373-97	Resistor, 2.2 megohm, 1/2 w.		W-148788	Name (CROSLEY)
R3	39373-74	Resistor, 100,000 ohm, 1/2 w.		AW-148773	Pointer \& Clip Assy., Dial
R4	39374-34	Resistor, 5600 ohm, $10 \%, 1 / 2 \mathrm{w}$.		AW-148779	Pulley \& Shaft Assy., Dial Pointer
R5	39373-107	Resistor, 10 megohm, 1/2 w.		39178-57CL	Screw, Grille Mtg.
R6	8-148327	Control, Volume (3 megohm)		39176-61CL	Screw, Chassis Mty.
R7	39373-67	Resistor, 47,000 ohm, 1/2 w.		W-147784	Shield, Tube (V2, V3)
R8	39373-87	Resistor, 470,000 ohm, 1/2 w.		W -46447-1	Shield, Tube (V3), sets equipped
R9	39373-87	Resistor, 470,000 ohm, 1/2 w.			with 12SQ7G T Tube
R10	39373-16	Resistor, 150 ohm, 1/2 w.		39462-2	Socket, Tube
R11	39373-90	Resistor. $680.000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-149987	Socket, Tube (V3), sets equipped
R12	39374-189	Resistor, $100 \mathrm{ohm}, 10 \%, 1 \mathrm{w}$.			with 12SQ7G T Tube
R13	39374-114	Resistor, $1200 \mathrm{ohm}, 10 \%, 1 \mathrm{w}$.		W-51752	Spring, Drive Cord
R14	39373-33	Resistor, 1000 ohm, $1 / 2 \mathrm{w}$.		W-136630	Stud, Trimount
CA1	C-132300-2	Cable \& Plug Assy., Power		A B-148775	Support Assy. Pointer Pulley
CO1	W-136998	Connector, Phono		W-147168	Support, Speaker

When using direct current it may be necessary to reverse the position of the power plug in the electric outlet for correct polarity.

Reversing the position of the power plug when alternating current is used may reduce hum.
Under no circumstances should a ground be connected to this receiver.
Photograph connection -To use a record player with this receiver insert the pickup plug of the record player into the Phono jack on back of receiver. Then slide the Radio-Phono Switch on the back of the receiver to the "Phono" position. Connect the power cord of the record player to a convenient electric outlet of the correct voltage and frequency. Operate the record player in the normal manner. The controls of the receiver operate the same as for radio programs.

ALIGNMENT PROCEDURE

Note: Before removing the chassis from the cabinet, turn the tuning control completely counterclockwise and push the dial pointer down so as to clear opening in grille.

1. Connect an output meter across the speaker voice coil.
2. The r.f. signal input from the signal generator should be connected as indicated in the alignment chart. Connect the signal generator ground to the top lug on loop antenna back.
3. Turn the volume control on full and adjust the signal generator output to produce approximately midscale deflection of the output meter, but maintain signal generator output as low as possible to prevent AVC action in the receiver.

ALIGNMENT CHART

Alignment adjustment locations are shown on page 1, "CHASSIS, TOP VIEW."

Alignment Sequence	Signal Generator Output			Position of Dial pointer	Adjust for Maximum Output
	Frequency in KC	In Series with	To		
1	455	200 mmf .	External Ant. Screw	1620	A, B, C \& D (See Note 1.)
2	1620	200 mmf .	External Ant. Screw	1620	E (See Note 2.)
3	1400	200 mmf.	External Ant. Screw	Tune to Signal	F (See Note 2.)

ALIGNMENT NOTES

1. Repeat adjustments ($A, B, C \& D$) in sequence, until maximum output is obtained.
2. The loop antenna must be positioned with respect to the chassis to simulate its position when chassis and loop are fastened in cabinet.

notes
I BOTTOM VIEW OF TUBE SOCKETS.
3. VOLTAGES MEASURED WITH AN ELECTRONIC VOLTMETER FROM SOCKET LUG TO B-(PIN 7 OF 12BA6)
4. MEASURED WITH THE VOLUME CONTROL AT MINIMUM \& NO SIGNAL INTO THE LOOP, TUNING GANG CLOSED.
5. W. J = WIRING JUNCTION.

* = AC. VOLTAGES. NC: NO CONNECTION.

5. LINE VOLTAGE $=117 \mathrm{~V}, 1,60 \sim A C$.
6. SOCKET VOLTAGE TOLERANCE $\pm 10 \%$

SOCKET VOLTAGE CHART (Sets equipped with 12AV6 Tube)

NOTES
I BOTTOM VIEW OF TUBE SOCKETS.
2 VOLTAGES MEASURED WITH AN ELECTRONIC VOLTMETER FROM SOCKET LUG TO B-(PIN 7 OF I2BA6)
3. MEASURED WITH THE VOLUME CONTROL AT MINIMUM E NO SIGNAL INTO THE LOOR TUNING GANG CLOSED.
4. W.J = WIRING JUNCTION.

童: AC. VOLTAGES. NC: NO CONNECTION.
5. LINE VOLTAGE $=117 \mathrm{~V} ., 60 \sim A C$.

DET-AVC. \& IST AUDIO AMPL.

6. SOCKET VOLTAGE TOLERANCE $\pm 10 \%$

SOCKET VOLTAGE CHART (Sets equipped with 12SQ7GT Tube)

Model No.	Cabinet	Front
$11-126 \mathrm{U}$	Simulated Saddle Leather	Brown
$11-127 \mathrm{U}$	Simulated Green Morroco Leather	Green
$11-128 \mathrm{U}$	Simulated Light Rawhide	Ebony
$11-129 \mathrm{U}$	Simulated Red Morroco Leather	Maroon

DESCRIPTION

TYPE: Seven-tube, two-band, superheterodyne.
FREQUENCY RANGE: Standard Broadcast Band; 540 to 1620 kc .
Frequency Modulation Band; 88 to 108 megacycles.
INTERMEDIATE FREQUENCY: S t a n d ard Broadcast Band; 455 kc .
Frequency Modulation Band; 10.7 mc .
FM ANTENNA INPUT IMPEDANCE: 75 ohms balanced.

POWER SUPPLY: a.c.-d.c.
VOLTAGE RATING: 105-125 volts.
POWER CONSUMPTION: 40 watts at normal power supply voltage (117 volts).
POWER OUTPUT: 1 watt maximum.

TUBE COMPLEMENT:

Type	Function
12BA6	R. F. Amplifier (FM)
12AT7	Oscillator \& Mixer (FM)
12BA6	I.F. Amplifier (AM \& FM)
12BA6	2nd I. F. Amplifier \& AVC (FM)
$19 T 8$	Detector \& 1st A.F. Ampl. (AM \& FM; AVC (AM)
$12 B E 6$	Converter (AM)
$35 C 5$	Audio Output
	Selenium Rectifier

DIAL BULB: 7 w., 120 v., Candelabra Base

© John F. Rider

When using direct current it may be necessary to reverse the position of the power plug in the electric outlet for correct polarity.

Reversing the position of the power plug when alternating current is used may reduce power hum.
Under no circumstances should a ground be connected to this receiver.
Never place the receiver chassis on a metal bench or grounded object when the power plug is connected to the electric outlet. To avoid shock when making repairs or adjustments, do not permit any part of the body to contact grounded metal objects.

ALIGNMENT PROCEDURE

This receiver has been aligned at the factory for best performance and no attempt should be made to realign it unless the proper test equipment is available.

1. Turn the tuning condenser to full mesh, against stop, and set the dial pointer to the reference point at the " 88 " end of the dial.
2. Set the tone control knob to the full treble position (extreme right).
3. For Amplitude Modulated signal readings, connect output meter across voice coil (3.2 ohms).
4. All Amplitude Modulated input signals are modulated 30% at 400 cycles with the High side of the signal generator connected to receiver as indicated in the alignment chart. Connect the low side of signal generator through a 0.1 mfd . condenser to the receiver chassis. If hum is encountered, use a 1 to 1 isolating transformer between the power line outlet and the receiver power line cord. Then connect the low side of the signal generator directly to the receiver chassis.
5. All Frequency Modulated signals are modulated 30% at 400 cycles. 30% modulation is equal to a deviation of 22.5 kilocycles.
6. Turn the volume control to maximum clockwise position and adjust signal generator output to produce a noticeable output meter reading. Keep signal generator output as low as possible to prevent AVC action in the receiver.
7. Disconnect short wire, with spade lug, from F.M. Antenna Terminal.

ALIGNMENT NOTES

1. Use an unmodulated signal generator with approximately $100,000 \mathrm{mv}$. output.
2. Connect the electronic voltmeter across the 27,000 ohm diode load resistor (R6).
3. Connect two $100,000 \mathrm{ohm} 5 \%$ carbon resistors in series, connect these resistors across the 4 mfd . stabilizing capacitor (C17) in the diode circuit, connect the electronic voltmeter between the output of the RF filter network (C22) and the midpoint of the two 100,000 ohm resistors. Align secondary core (F) of T5 for zero volts, first using a high scale on the electronic voltmeter and then switching to the lowest scale for close balance.
4. Use an unmodulated signal. Electronic voltmeter connected across 27,000 ohm load resistor (R6). Limit output of signal generator so that the reading on the electronic voltmeter will not exceed 5 volts.
5. Remove the two 100,000 ohm resistors and electronic voltmeter after alignment.
6. Adjust turns on FM oscillator coil by spreading or squeezing together, so that 98 megacycle signal falls on 98 megacycles on the dial.
7. Rock gang while adjusting FM. RF trimmer until maximum output meter reading is obtained, or align for maximum noise level at zero signal.
8. Adjust turns on FM. RF coil until maximum output meter reading is obtained.

MEGACYCLES TO CHANNEL NUMBERS "FM" BAND

Frequency in Megacycles	Channel No.	Frequency in Megacycles	Channel No.
87.9	200	98.9	255
88.9	205	99.9	260
89.9	210	100.9	265
90.9	215	101.9	270
91.9	220	102.9	275
92.9	225	103.9	280
93.9	230	104.9	285
94.9	235	105.9	290
95.9	240	106.9	295
96.9	245	107.9	300
97.9	250		

To find the frequency in megacycles for CHANNEL NUMBERS between those given above, add .2 megacycles for every whole number added to the CHANNEL NUMBER; for example Channel 204 would be 88.7 megacycles and 251 would be 98.1 megacycles.

CHASSIS TOP VIEW SHOWING ALIGNMENT ADJUSTMENTS

$\begin{aligned} & \text { MODELS } 11-126 \mathrm{U}, \mathrm{ll-128U}, \\ & 11-129 \mathrm{G}, \mathrm{Ch} \cdot 312 \end{aligned}$								
ALIGNMENT CHART								
Alignment quence quenc	Signal Generator Output			Position of		Adjust	Type of Selectivity Curve	Remarks
	Frequency	$\begin{aligned} & \text { In Series } \\ & \text { With } \end{aligned}$	To	Range Switch	$\begin{array}{\|c\|c} \text { Tuning } \\ \text { Dial or } \\ \text { Tun. Cap. } \end{array}$			
1	455 kc .	. 05 mfd .	V3 grid pin 1	AM	Open	A \& B	Single peak	
2	455 kc .	. 05 mfd .	V6 grid pin 7	AM	Open	C \& D	Single peak	Retouch A \& B
3	10.7 mc .	.05 mfd .	V4 grid pin 1	FM	Closed	E	Single peak	See note 1 \& 2
4	10.7 mc .	. 05 mfd .	V4 grid pin 1	FM	Closed	F	-	Balance to zero volts. Note 3
5	10.7 mc .	. 05 mfd .	V3 plate pin 5	FM	Closed	E \& G	Single peak	See note 4 repeat adj. of E \& G for max. alignment
6	10.7 mc .	. 05 mfd .	V3 grid pin 1	FM	Closed	H	Single peak	Note 4
7	10.7 mc .	. 05 mfd .	Stator center gang section	FM	Closed	$\stackrel{\mathrm{J}, \mathrm{~K}}{\&} \mathrm{H}$	Single peak	Note 4 \& 5
8	98 mc .	FM Dummy *Antenna	FM Ant. Term.	FM	98 mc .	L	-	Note 6
19	104 mc .	FM Dummy *Antenna	FM Ant. Term.	FM	104 mc .	M	-	Note 7
10	92 mc .	FM Dummy *Antenna	FM Ant. Term.	FM	92 mc .	P	-	Note 8
11	Repeat ste	eps 9 and 10	until no further im	provem	ent is noted			
12	1400 kc .	200 mmf .	Ext. Ant. Term.	AM	1400 kc .	R \& S	-	Adjust S for max output

* DUMMY ANTENNA

REPLACEMENT PARTS LIST

$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Part No.	Description	Symbol No.	Part No.	Description
C1	W-145913-2	Capacitor, $110 \mathrm{mmf} ., 5 \%, 500$ v., ceramic	R14	39373-33	Resistor, $1000 \mathrm{ohm}, 1 / 2$
C2	B-143686-3	Capacitor, 100 mmf ., 500 v., molded disc	R15	39373-92	Resistor, 1 megohm, $1 / 2 \mathrm{w}$.
C3		ceramic Capacitor, $100 \mathrm{mmf} ., 500 \mathrm{v}^{\text {, , mica }}$	R16	39373-60	Resistor, 22,000 ohm, $1 / 2 \mathrm{w}$.
C4	B-143223-7 C-144675-2	Capacitor, 100 mmf ., 500 v., mica Capacitor, .005 mfd ., 500 v., disc ceramic	R17 R18	$39373-33$ $B-149184$	Resistor, $1000 \mathrm{ohm} ,1 / 2 \mathrm{w}$.
C5A	C-149125	Capacitor, Variable $]$,		B-149184	ohm)
C5B		Capacitor, Variable $\}$ Four Section	R19	39373-67	Resistor, 47,000 ohm, 1/2 w.
${ }^{\text {C5C }}$		Capacitor, Variable $\}$ Four Section	R20	39373-87	Resistor, 470,000 ohm, $1 / 2 \mathrm{w}$.
C5D		Capacitor, Variable	R21	39374-15	Resistor, $150 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
C6A	C-144675-7	Capacitor, . $001 \mathrm{mfd} ., 500 \mathrm{v}$.$\} Two section$	R22	39373-87	Resistor, 470,000 ohm, $1 / 2 \mathrm{w}$.
C6B		Capacitor, . 001 mfd ., 500 v . $\}$ disc ceramic	R23	39373-107	Resistor, 10 megohm, $1 / 2 \mathrm{w}$.
C8	B-143686-5	Capacitor, 2.2 mmf ., 500 v ., molded disc ceramic	$\begin{aligned} & \text { R24 } \\ & \text { R25 } \end{aligned}$	$\begin{aligned} & 39374-185 \\ & 39374-202 \end{aligned}$	Resistor, 47 ohm, 10\%, 2 w. Resistor, 1200 ohm, $10 \%, 2$ w.
C9	C-137727-48	Capacitor, 5000 mmf ., 500 v., ceramic	R26	39374-25	Resistor, $1000 \mathrm{ohm}, 10 \%, 1 / 2 \mathrm{w}$.
C10	B-143223-12	Capacitor, 100 mmf ., $5 \%, 500$ v., mica	R27	39374-33	Resistor, 4700 ohm, $10 \%, 1 / 2 \mathrm{w}$.
C11	39001-17	Capacitor, .05 mfd ., 600 v.; paper	R28	39373-90	Resistor, $680,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.
C12	39001-17	Capacitor, . $05 \mathrm{mfd} ., 600 \mathrm{v}$. , paper	CA 1	C-132300-6	Cable \& Plug Assy., Power
C13A C13B	C-144675-7	Capacitor, . 001 mfd , 500 v . $\}$ Two section	I1	W-145851	Bulb (Dial), 7 w., 120 v., Candelabra
C14	C-137727-48		Sp1		Base
C15	39008-91	Capacitor, 3.3 mmf ., Spiral Shield Wire	SR1	C-145370	Rectifier, Selenium
C16A	C-144675-7	Capacitor, . 001 mfd ., 500 v . $]$ Two section	SW1	W-145300-2	Switch, Band Change
C16B		Capacitor, . 001 mfd ,, 500 v. $\}$ disc ceramic	SW2	Part of R18	Swith, Power
C17	B-142958	Capacitor, 4 mfd ., 50 v ., Electrolytic	T1	D-145025-3	Transformer, 1st I.F. (10.7 mc .)
C18	C-137727-48	Capacitor, 5000 mmf ., 500 v. , ceramic	T2	AC-139919-3	Transformer, 1st I.F. (455 kc .)
C19	C-137727-98	Capacitor, 22 mmf ., $2 \%, 500 \mathrm{v} .$, ceramic	T3	D-145025-1	Transformer, 2nd I.F. (10.7 mc .)
C20	$\mathrm{C}-137727-97$ $\mathrm{C}-144675-12$	Capacitor, 39 mmf ., $10 \%, 500 \mathrm{v}$., ceramic	T4	AC-139919-3	Transformer, 2nd I.F. (455 kc .)
С22A	C-144675-12	Capacitor, $.001 \mathrm{mfd} ., 500 \mathrm{v}$. $]$ Two section	T5	C-145193-1	Transformer, Ratio Detector
C24	C-137727-109	Capacitor, .0001 mfd , 500 v.$\}$ disc ceramic	T6	138131-1	Transformer, Output
C25A	C-144675-18	Capacitor, . 0001 mfd ., 500 v . ${ }^{\text {cher }}$ Three sec	L2	AW-145695	Coil Assy., F.M. Antenna Primary
C25B		Capacitor, . 004 mfd ., 500 v. $\}$ tion disc	L3	AW-143837	Choke Assy., R.F. (F.M.)
C25C		Capacitor, 004 mfd ., 500 v . ${ }^{\text {ceramic }}$	L4	AW-145678	Coil Assy., R.F. (F.M.)
C26	39001-13	Capacitor, $.01 \mathrm{mfd} ., 600 \mathrm{v}$., paper	L5	AW-145677	Coil Assy., Oscillator (F.M.)
C27A	C-144675-1	Capacitor, $.0002 \mathrm{mfd} ., 500 \mathrm{v}$. Four sec-	L6	AW-145372	Coil Assy., Oscillator (A.M.)
$\mathrm{C27B}$		Capacitor, .002 mfd ., 500 v . Four sec-	L7	AW-143934	Choke Assy., R.F.
C27C		$\left.\begin{array}{l}\text { Capacitor, }, 005 \mathrm{mfd} ., 500 \mathrm{v} . \\ \text { Capacitor, } .0002 \mathrm{mfd} .500 \mathrm{v} .\end{array}\right\} \begin{aligned} & \text { tion disc } \\ & \text { ceramic }\end{aligned}$	L8	AW-143934	Choke Assy., R.F.
C28	39001-13	Capacitor, . 01 mfd ., 600 v., paper	L10	$\begin{aligned} & A C-145876 \\ & A W-149187 \end{aligned}$	Loop Antenna, Back \& Power Cable Assy. Choke Assy.
C29	39001-17	Capacitor, 05 mfd ., 600 v ., paper	L11	AW-149187	Choke Assy.
C30A	B-149183	Capacitor, 100 mfd ., 150 v. ${ }^{\text {d }}$ Three sec-	P1	W-139900	Plug, Interlock
C30B		Capacitor, 30 mfd ., 150 v . $\}$ tion elec-		A B-149176	Backg round \& Cloth Assy., Dial
C30C		Capacitor, $10 \mathrm{mfd} ., 150 \mathrm{v}$. ${ }^{\text {drolytic }}$		AB-149145	Baffle Assembly, Speaker
C31	B-143686-1	Capacitor, 50 mmf ., 500 v., molded dise ceramic		$\begin{aligned} & \text { AW-149073 } \\ & \text { AW-145697 } \end{aligned}$	Bracket Assembl, Dial Pointer Bushing \& Insulator, Drive Shaft
C32	39001-18	Capacitor, . 075 mfd ., 600 v., paper		AC-149317-1	Cabinet (11-126U)
C33	B-143686-3	Capacitor, 100 mmf ., 500 v ., molded disc ceramic		$\left\lvert\, \begin{aligned} & A C-149317-2 \\ & A C-139317-3 \end{aligned}\right.$	Cabinet (11-127U) Cabinet (11-128U)
C34	39001-20	Capacitor, . $15 \mathrm{mfd} ., 600 \mathrm{v}$., paper		AC -149317-4	Cabinet (11-129U)
C35	W-137398-5	Capacitor, 3.3 mmf ., 500 v .		AW-145103	Connector, F.M. Line Antenna
C36	39001-74	Capacitor, . 002 mfd ., 600 v., paper		W-131154-1	Cotter (External), Drive Shaft
C37	39001-5	Capacitor, . $0005 \mathrm{mfd} ., 600$ v., paper		C-149154	Dial
C38	Part of T1	Capacitor, 17 mmf ., 3%		W-138853	Insulator, Volume Control
C39	Part of T2	Capacitor, $106 \mathrm{mmf} ., 5 \%$		B-149065-1	Knob (11-126U)
C40 C 41	Part of T2	Capacitor, $131 \mathrm{mfd} ., 5 \%$		B-149065-2	Knob (11-127U)
C42	Part of T3	Capacitor, $17 \mathrm{mmf}, 3 \%$ Capacitor, 17 mmf , 3%		B-149065-3	Knob (11-128U)
C43	Part of T4	Capacitor, 17 mmf ., ${ }^{\text {Capacitor, }} 131 \mathrm{mmi}$, 5%		B-149065-4	Knob (11-129U) Medallion
C44	Part of T4	Capacitor, 106 mmf ., 5\%		W-149104	Pointer, Dial
C45	Part of T5	Capacitor, 43 mmf ., 5%		W-143206-3	Shaft, Dial Drive
R1	39373-92	Resistor, 1 megohm, 1/2 w.		AB-149113	Shaft \& Gear Assy., Dial Pointer
R2	$39373-92$ $39373-44$	Resistor, 1 megohm, $1 / 2 \mathrm{w}$.		W-139040	Shock Mount, Sub-Chassis
R3	39373-44	Resistor, 3300 ohm, 1/2 w.		AB-145818	Socket \& Bracket Assy., Dial Light
R4	39373-92	Resistor, 1 megohm, 1/2 w.		W-144732	Socket, Tube (V2)
R5	39373-14	Resistor, 100 ohm, 1/2 w.		W-145607	Socket, Tube (V5)
R6 R 7	39374-42	Resistor, 27,000 ohm, 10% 1/2 w.		W-142761	Socket, Tube (V6, V1)
R7	39374-41	Resistor, 22,000 ohm, $10 \%, 1 / 2 \mathrm{w}$.		39462-1	Socket, Tube (V7)
R88	39373-26	Resistor, 470 ohm, $1 / 2 \mathrm{w}$.		39462-2	Socket, Tube (V3, V4)
R9 R10	39373-97	Resistor, 2.2 megohm, $1 / 2 \mathrm{w}$.		W-149096	Spring, Gear
R10	39373-100	Resistor, 3.3 megohm, $1 / 2 \mathrm{w}$.		W-145757	Spring, Drive Cord
R11 R12	39373-33	Resistor, 1000 ohm, $1 / 2 \mathrm{w}$.		W-139121	
R12 R13	$39373-67$ $39373-74$	Resistor, 47,000 ohm, $1 / 2 \mathrm{w}$. Resistor, $100,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.		W-138976	Washer (Shouldered), Volume Control

- John F. Rider

$$
\begin{aligned}
& \begin{array}{l}
\text { ANT. COIL } \\
\text { OSC. COIL } \\
\text { GANG COND. } \\
\text { FIRST I.F. } \\
\text { SECOND I.F. } \\
\text { OUTPUT TRANS. } \\
\text { SPEAKER }
\end{array}
\end{aligned}
$$

ALIGNMENT PROCEDURE (CONT'D)

4.	ANTENNA WIRE IN SERIES WITH . 00025 MICA COND.	$\begin{gathered} 1600 \\ \mathrm{KC} \end{gathered}$	$\begin{aligned} & 1600 \mathrm{KC} \\ & (160 \mathrm{ON} \\ & \text { DIAL }) \end{aligned}$	OSC. TRIMMER LOCAT ED ON VARIABLE COND. ACCESSIBLE THRU HOLE IN DIAL BRACKET
5.	"	$\begin{gathered} 1400 \\ \text { KC } \end{gathered}$	MAX. SIG. APPROX. 140 ON DIAL	ANT. TRIMMER LOCAT ED ON VARIABLE CONDENSER

NOTE: BE SURE THAT THE BLACK GROUND LEAD OF RECEIVER IS
ATTACHED TO GROUND OF SIGNAL GENERATOR DURING ALL
THE ABOVE OPERATIONS.

To calibrate receiver connect the output of signal generator in series the Telescopic Antenna). Connect the low side of signal eenerator through a 0.1 MFL condenser to receiver chassis. The wave band switch should be in the broadcast position. Adjust signal generator to 455 Kilocycles . 1.F. transformers for maximum signal. Turn the bandswitch to Short Have signal. Peak Short Wave $\# 1$ oscillator trimmer (Cl) for maximum signal. Next set signal generator at 15.7 Megacycles. Tune in this signal. Ad-
ust Short Wave $\# 1$ R low frequency end of the dial is automatically adjusted. Next turn band switch to Short Have $\# 2$ position. Rotate drive shaft until variable con-
denser is in minimum capacity position. Adjust signal generator to 5.5 Megacycles. Adjust the Short Wave $\# 2$. Scillator trimmer (C3) until max-
imum signal from enerator is heard. Next set simal imum signal from generator is heard. Next set signal generator at 5.0 for maximum signal strength. The low frequency end of the dial is automatically adjusted. Next turn handswitch to broadcast position. Rotate
drive shaft until variable condenser is in minimum capacity position. Adjust simal generat or to 1700 Kilocycles. Adjust broadcast oscillator trimmer (C5) until maximum signal from generator is heard. Set the signal
generator and receiver to 600 Kilocycles. Peak the broadcast padder (C5) for maximum output. The variable condenser should be rocked during this operation. Keep the signal generator output as ow as possibe when
making all of these adjustments. Care should be taken in making the Short
 "A" battery (tworequired) "B' battery (two required) No $\begin{array}{cl}\text { Burgess } \\ \text { Winchester Olin : } & \text { \# }\end{array}$ The life of the hatteries is from 225-275 hours when The receiver is used about two to four hours per day.
RAMGE:
B.C. Band 540-1700 Kilocycles 555-175 meters
 E.
ㄷ
0
0
0
0
0

Gohn F. Rider

The receiver usis an "A" supply of $4 \frac{2}{2}$ volts and a "B" supply of 67\% volts.
For good reception the life of the batteries is from $\% 0^{1}$ to 80 hours when the receiver is used about two hours per day.

The following or similar batteries may be used
with this receiver:

To install the batteries in the receiver, proceed as follows:

1. Open back by inserting fincers in slots provided on top of cabinet and pull back open.
2. Connect battery clips to batteries.
3. Put batteries in set as shown in sketch. BE CAREFUL NOT TO BREAK WIRES CONNECTED TO LOOPTENNA.

OPERATIOM

Battery and Electric Power

When the back of the cabinet is opened a lever switch will be seen. To operate the receiver on batteries move switch to the side marked BATT. Fold up line cord, place in set and close back. For operation of the receiver on electric power, move the lever switch to LINE, bring the line cord out of the cabinet so that when the back is closed, the cord is in the cut out provided, in the corner of the cabinet. The back of the cabinet should alwaya be kept closed when operating the receiver.

HOTE:
If the receiver is operated on direct current and no signals are heard, reverse the line plug in the electric outlet.

If slight hum is heard when operating the receiver on alternating current, reverse the line plug in the electric outlet.

OPERATIOM

The knob on the left is a combination on off switch and volume control. When the knob is turned fully counter clockwise, the receiver is of f and the white dot on the knob will give the relative position. To turn the receiver on, rotate this knob in a clockwise direction; further rotation in this direction increases the volume of the receiver. The control on the right is the station selector or tuning knob.

IMPORTAMT
BE SURE THE RECEIVER IS TURNED OFF WHEN NOT IN USE. SINCE THE LOOPTENNA USED IN THIS RECEIVER HAS A DIRECTIONAL EFFECT IT MAY BE FOUND NECESSARY AT TIMES TO TURN THE RECEIVER TO OBTAIN BEST RECEPTION AND A MINIMUM OF INTERFERENCE.

LIST OF REPLACEMERT PARTS

1at I.F.	$1027 \mathrm{C}-4$
2nd I.F.	$1027-1$
Osc. Coil	1034
Ant. Loop	1037
Batt. Cable	5005
Knobs	$4055 A$

Variable Cond.	2017 B
clectrolytic Cond.	2020 B
Volume Control	3012
Cabinet	4064
Speakr	7003 Ba
Sel. Rect.	$8018 A$

- John F. Rider

- John F. Rider

[^0]: - 13

 > DIAL PARTS

 2
 2
 5
 0
 0
 0
 0
 0
 0
 0
 Dial Scale
 Dial Poincer
 喜
 Pilot light socket
 Pulley, idler
 Spring. Dial Drive String Tension
 String. Dial Drive

 "A" lead assembly
 Case (less covers)
 Clip, anti-rattle
 Cover, bottom case
 (sananol raydads 4 tim) asdu dol 'zasioj
 Grommet, rubber, gang mounting

 Speaker $4^{\prime \prime} \times 6^{\prime \prime} \mathrm{PM}$ (includes output transtormer)
 Vibrator

[^1]: I - 16 mmf Ceramic Capacitor plus or minus 1 mmf .
 1 - 31 mmf Ceramic Capacitor plus or minus 1 mmf .
 1 - Antenna Connector, Male, C223183.
 3 rt. Shielded Wire.
 A shield can, or other material for a shielded housing. DETAILS FOR CONSTRUCTING DUMMY ANTENNA

[^2]: * Some sets are equipped with a 12 SQ 7 GT tube.

