VOLUME XX

JOHN F.RIDER

SPECIFICATIONS

Overall Dimensions:

	581	5D8	100
Height	73/7'	6 "	53/4"
Width	.1178"	$91 / 4{ }^{\prime \prime}$	91/4"
Depth	61/4"	5 "	45/8"
Weight	7 lbs .	$53 / 4 \mathrm{lbs}$.	$51 / 4 \mathrm{lbs}$.

Electrical Rating:
Line Voltage............ 110-120 volts AC-DC
Power Consumption.... 28 watts
Tuning Frequency Range:
540 to 1625 KC
Intermediate Frequency: 455 KC

Electrical Power Output:
Maximum 1.7 watts
Loudspeaker:

Type	nt Magn
Outside Cone Diameter	
Voice Coil Impedance	3.2 ohms at 400 cycles
Magnet Rating. .	1.0 Oz . Alnico V

Tubes:

Tube
12SA7
12 SK 7
12SQ7
50L6/GT
35Z5/GT

Function
Frequency Converter
I-F Amplifier
Detector Amplifier
Power Amplifier
Rectifier

GENERAL INFORMATION

Models 5D8, 581 \& 100 are superheterodyne receivers employing four tubes plus one rectifier. These models are for operation on AC or DC current. All three models employ a four inch permanent magnet speaker and are virtually identical from an electrical standpoint. The model 100 does not utilize the Stationized Dial. Models 5D8 and 100 are enclosed in a plastic cabinet of ivory or walnut, while the 581 is housed in a wood cabinet of walnut or natural design.

SPECIAL SERVICE INFORMATION

Stage Gain Measurements:
Measurements taken with volume control maximum AVC shorted out.

Standard Output. 50 milliwatts
Dummy Antenna. 200 Mmf .
Converter Grid to 1st I-F Grid...... . 71 X at 1000 KC Converter Grid to 1st I-F Grid. 78 X at 455 KC 1st I-F Grid to 2nd Detector........ 77X at 455 KC Overall Audio Gain. . 0.8 volts at Volume Control for 0.5 watts output at 400 cycles.

Oscillator Grid Voltages:

At 117 volts AC line. Measurements made with an AC vacuum tube voltmeter, input loading above 10 megohms. $600 \mathrm{KC}15$ volts AC $1500 \mathrm{KC}20$ volts AC
D.C. Resistance Measurements:

1st I-F Coil Primary.... 17.5 ohms Secondary...... 17.5 ohms
2nd I-F Coil Primary.... 14.5 ohms Secondary...... 14.5 ohms
Oscillator Coil
Primary.... 1.2 ohms Secondary...... 4.5 ohms
NOTE: Due to the variation in winding methods, the D.C. resistance on all coils is subject to a 20% tolerance.

ALIGNMENT PROCEDURE

Alignment Procedure consists of the four steps outlined in the Alignment Precedure Chart.

For step No. 1, I-F Alignment, connect the leads of a test oscillator to the mixer grid and ground buss through an . 01 Mfd. capacitor (dummy load). Upon completion of this step, "rock" the variable condenser to assure that the I-F"s have been aligned to the correct frequency. Output should remain constant at any setting of the variable condenser.

Steps 2 \& 3 employ a Hazeltine Standard Test Loop No 1150 or a reasonable substitute. Connect the test oscillator leads across this loop and place it in a vertical position about two feet from the receiver loop.
IMPORTANT NOTICE: Make certain that each step is done with a minimum input signal.
ALIGNMENT CHART

STEP	$\begin{gathered} \text { CONNECT } \\ \text { TEST } \\ \text { OSC. TO } \end{gathered}$	$\begin{gathered} \text { TEST } \\ \text { OSC. } \\ \text { SETTING } \end{gathered}$	POINTER SETTING	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR MAX. } \\ & \text { OUTPUT } \end{aligned}$
1	Mixer Grid \& Grd. (. 01 Mfd. Cap)	455 KC	540 KC	Trimmers A,B,C \& D
2	Standard Test Loop*	1600 KC	1600 KC	Trimmer \mathbf{E} to 1600 KC
3	Standard Test Loop*	1500 KC	1500 KC	Trimmer F
4	Check Stationizing. Adjust pointer if stations are uniformly off in one direction.			

*NOTE: Hazeltine Standard Test Loop No. 1150 or a reasonable Substitute.

Socket Voltages:

All D.C. voltages measured with a vacuum tube voltmeter from socket contacts to ground buss. A.C. voltages measured with a 1000 ohms per volt A.C. meter from socket contacts to ground buss.* Volume Control maximum. No signal. 117 volts A.C. line. All voltages shown are positive D.C. unless otherwise noted.
*NOTE: Filament voltages should be measured across the filament of the tube.

TABLE OF REPLACEABLE PARTS

Electrical Rating:
Line Voltage
110-120 volts, AC-DC
Power Consumption 25 watts
Tuning Frequency Range:
540 to 1620 KC
Intermediate Frequency:
455 KC
Loudspeaker:
Type
Permanent Magnet
Outside Cone Diameter $4^{\prime \prime}$
Voice Coil Impedance Magnet Rating
3.0 ohms at 400 cycles
Tubes:

Tube	No.	Function
6SS7	V-1	R-F Amplifier
12SA7	V-2	Frequency Converter
6SS7	V-3	I-F Amplifier
12SQ7	V-4	Detector Amplifier
50L6	V-5	Power Amplifier
35Z5	V-6	Rectifier

GENERAL INFORMATION
Model 682 is a superheterodyne receiver employing five tubes, plus one rectifier, and a permanent magnet speaker. The receiver is designed for operation on either AC or DC and is housed in a table model wooden cabinet.

SPECIAL SERVICE INFORMATION
Stage Gain Measurements:
Measurements taken with volume and tone controls maximum. AVC shorted out.

Standard Output 50 milliwatts
Dummy Antenna 200 Mmf .
R-F Grid to Converter Grid :. . 4 X at 1000 KC
Converter Grid to 1st I-F Grid . . 71 X at 1000 KC Converter Grid to 1st I-F Grid . . 78 X at 455 KC 1st I-F Grid to 2nd Detector . . . 77 X at 455 KC Overall Audio Gain . 0.8 volts at volume control for 0.5 watts output at 400 cycles.

Oscillator Grid Voltages:
Measured at 117 volts AC line voltage, with an AC type V.T.V.M. input loading above 10 megohms.
$1500 \mathrm{KC} \cdot . \quad . \quad . \quad .20$ volts AC
600 KC
D.C. Resistance Measurements:

1st I-F Coil
Primary . . 17.5 ohms Secondary . 17.5 ohms
2nd I-F Coil

Primary
Oscillator Coil Primary
14.5 ohms
1.2 ohms

Secondary . 14.5 ohms
Secondary .
4.5 ohms

Socket Voltages:

All D.C. voltages measured with a V.T.V.M. from socket contacts to ground buss. A.C. voltages measured with a 1000 ohms per volt A.C. meter from socket contacts to ground buss. Volume and tone controls maximum. No signal. 117 volts A.C. line voltage. All voltages shown are positive D.C. unless otherwise noted.
NOTE: Filament voltages should be measured across the filament of the tube.

ALIGNMENT PROCEDURE:

Alignment procedure consists of the five steps outlined in the Alignment Chart. For step No. 1, I-F Alignment, connect the leads of a test oscillator to the mixer grid and the ground buss through an .01 Mfd . capacitor (dummy load). Upon completion of this step, "Rock" the variable condenser to assure that the I-F's have not been aligned to the signal frequency. Output should remain constant at any setting of the variable condenser.

Steps 3 to 5 employ a Hazeltine Standard Test Loop No. 1150 or a reasonable substitute. Connect the test oscillator leads across this loop and place it in a vertical position about two feet from the receiver loop.
IMPORTANT: Make certain that each step is done with a minimum input signal.

ALIGNMENT CHART

STEP	CONNECT TEST	TEST OSC. OSC. TO SETTING	POINTER SETTING	ADJUST FOR MAX. OUTPUT
1	R-F Grid \& Grnd. .01 Mfd. Capac.	455 KC	540 KC	A, B, C, D

TABLE OF REPLACEABLE PARTS

FIGURE 1-CABINET

SPECIFICATIONS

Overall Dimensions:
Height 347/8"

Width $21 \% / 8^{\prime \prime}$$\quad$| Depth $203 / 4 " ~$ |
| :--- |
| Weight 95 lbs. |

Electrical Rating:
Line Voltage 110-120 Volts, A.C. 50,60 C.P.S. Power Consumption . . 77 watts including phonograph

Tuning Frequency Range:
540 to 1620 KC
Intermediate Frequency : 455 KC

Electrical Power Output :
Undistorted 2 watts
Maximum

Loudspeaker:
Type Permanent Magnet
Outside Cone Diameter $10^{\prime \prime}$
Voice Coil Impedance 3.2 ohms at 400 C.P.S
Magnet Rating 3.16 Oz. Alnico V
Tubes:

Tube
6SA7
6SK7
6SF7
6K6-GT/G
5Y3-GT/G
6H6
6SQ7

Function
Frequency Converter
I-F Amplifier
1st Audio Amplifier
Power Amplifier
Rectifier
2nd Detector - Compressor
Rectifier
Microphone Amplifier

GENERAL INFORMATION

Model 791 is a PhonOcord console employing six tubes plus a rectifier and a ten inch permanent magnet speaker.

Listed below are some of the features incorporated in this model.

1. Standard Broadcast Superheterodyne receiver.
2. Automatic Home Recording with Public Address System.
3. Phonograph with automatic record changer.

To service tubes, remove back. For tube location refer to tube layout diagram.

For service information concerning the automatic record changer and recorder, refer to service instructions, Automatic Record Changer - Recorder Combination (PackardBell Part No. 58004-B).

SPECIAL SERVICE INFORMATION

Stage Gain Measurements:
Measurements taken with volume and tone controls maximum. Selector Switch in Radio Receive position. AVC shorted out.
Standard Output 50 milliwatts
Dummy Antenna 200 Mmf .
Antenna to Converter Grid 4.25 X at 1000 KC
Converter Grid to 1st I-F Grid. . . . 62 X at 1000 KC
Converter Grid to 1 st I-F Grid. . . . 71X at 455 KC
1st I-F Grid to 2nd Detector 69X at 455 KC
Overall Audio Gain . 260X at .5 watts 400 cycles
Oscillator Cathode Voltages:
Measured at 117 volts AC line with AC vacuum tube volt-
meter, input loading above 10 megohms.
$1600 \mathrm{KC} \cdot . . \cdot{ }^{2} \cdot .2 .15$ volts AC
$1000 \mathrm{KC}2 .2 .2$ volts AC
$600 \mathrm{KC}{ }^{2} 2.2$ volts AC
D.C. RESISTANCE MEASUREMENTS

1st and 2nd I-F Coils:
Primary 17 ohms
Secondary 17 ohms*
*NOTE: To obtain the true reading of the secondary of the 2nd I-F Coil it must be removed from the can. This, is because of the 47 K resistor inside the can.
Oscillator Coil:
Start to Finish 8 ohms
Start to Tap 7 ohms
NOTE: Due to variation in winding methods, the D. C. resistance on all coils is subject to a 20% tolerance.

HOW TO CHECK COMPRESSION VOLTAGE

Turn the Selector Switch to Radio Record position. Feed a 1 volt (RMS) 1000 cycle signal into the diode return of the 2nd I. F. (brown lead). Connect the leads of a vacuum tube voltmeter to point "A" (see Schematic Diagram) and ground. The voltage at this point should be approximately a minus 2.25 volts.

BRIEF DESCRIPTION OF COMPRESSION CIRCUIT

One diode section of the 6 H 6 serves as the compressor rectifier. The compressor system is automatic and is in the circuit on both record positions. A portion of the output voltage is rectified by the 6 H 6 and varies the grid bias of the first audio, 6SF7.

RECORDING HEAD PRESSURE

The proper recording head pressure is $11 / 4 \mathrm{Oz}$. Adjustment of this pressure is made by turning the small screw on the top of the recording arm. This adjustment is very critical and should be made in quarter turns. TURN THE SCREW CLOCKWISE TO INCREASE THE CUTTING DEPTH and COUNTERCLOCKWISE TO DECREASE THE CUTTING DEPTH.

This adjustment is made at the factory with an ordinary pocket postal scale, consequently, field adjustments should be made in a like manner.

ALIGNMENT PROCEDURE

Alignment Procedure consists of the four steps outlined in the Alignment Procedure Chart.

Connect the test oscillator leads to the mixer grid and ground in series with an .01 Mfd. capacitor (dummy load) for step No. 1, I-F Alignment. Upon completion of this step, "Rock" the variable condenser to assure that the I-F"s have been aligned to the proper frequency. Output should remain constant for any setting of the variable condenser.

Use the Hazeltine Test Loop No. 1150 or a reasonable substitute for the balance of the alignment. Place the test loop about two feet from the receiver loop in a vertical position.

IMPORTANT NOTICE: Make certain that each alignment step is done with a minimum input signal.

ALIGNMENT CHART

STEP	CONNECT TEST OSC. TO	TEST SETTING	POINTER SETTING	ADJUST FOR MAX. OUTPUT
1	Mixer Grid \&Grd. (.01 Mfd. Cap.	455 KC	540 KC	Trimmers A, B, C, \& D
2	Standard Test Loop*	1620 KC	1620 KC	Trimmer F to 1620 KC
3	Standard Test Loop*	1500 KC	1500 KC	Trimmer E
4	Check stationizing. Slide pointer on string if stations are uniformly off in one direction.			

*NOTE: Hazeltine Test Loep No. 1150 (or a reasonable substitute).

FIGURE 2 - TRIMMER LOCATION

FIGURE 3 - SOCKET VOLTAGES
SOCKET VOLTAGES
All D.C. Voltages measured with a vacuum tube voltmeter from socket contacts to chassis. A.C. Voltages measured with a 1000 ohms per volt A.C. meter from socket contacts to chassis. Volume and tone controls maximum. Switch in Radio position. No signal. 117 volts A.C. line. All voltages shown are positive D.C. unless otherwise noted.

TABLE OF REPLACEABLE PARTS

Part No.	Ref. Symbo	Description	Part No.	Ref. Symbol	Description
21077		Cabinet	69001		Pulley
23514	C1A,B	Capacitor, variable	69003 C		Pulley
23915	C2	Capacitor, ceramic, $220 \mathrm{Mmf} .20 \%$	${ }_{79165}{ }^{\text {a }}$		Pulley 22 er 40%
23017	C3	Capacitor, tubular, 05 Mf .200 V .	73165	R1-1 to 2	Resistor, 2.2 megohm $1 / 2 \mathrm{~W} .20 \%$
23912	$\mathrm{C}_{\text {C5-1 }}$ to 2	Capacitor, ceramic, $47 \mathrm{Mmf} .20 \%$	73041	$\begin{aligned} & \mathrm{R} 2 \\ & \mathrm{R} 3 \end{aligned}$	Resistor, 22 K ohm, $1 / 2 \mathrm{~W} .10 \%$ Resistor, 10,000 ohm, 2W. 10%
23004 23019	${ }_{\text {C5 }}^{\text {C }}$-1 ${ }^{\text {to }} 2$	Capacitor, tubular, $005 \mathrm{Mf}$.600 V .	73437	${ }_{\text {R4 }}^{\text {R }}$-1 to 2	Resistor, 10,000 ohm, 2W. 10\% Resistor, $\mathbf{4 7 , 0 0 0}$ ohm, $1 / 2 \mathrm{~W} .10 \%$
23020	C7-1 to 2	Capacitor, tubular, $2 \mathrm{Mf}$.400 V .	73169	R5-1 to 5	Resistor, 4.7 megohm, $1 / 2 \mathrm{~W} .20 \%$
23009	C8	Capacitor, tubular, 05 Mf .400 V .	73157	R6-1 to 2	Resistor, 470,000 ohms, $1 / 2 \mathrm{~W} .20 \%$
23007	C9-1 to 2	Capacitor, tubular, $.02 \mathrm{Mf}$.600 V .	73008	R7	Resistor, 39 ohm , 1/2W. 10%
23001	C10	Capacitor, tubular, $.001 \mathrm{Mf}$.600 V .	73163	R8	Resistor, 1.5 megohm, $1 / 2 \mathrm{~W} .20 \%$
23023	C11	Capacitor, tubular, 01 Mf .500 V .	73153	R9-1 to 4	Resistor, $220,000 \mathrm{hm}, 1 / 2 \mathrm{~W} .20 \%$
24006	C12	Capacitor, electrolytic, 25 Mf .25 V .	73022	R10	Resistor, 560 ohm , 1/2W. 10%
24003	C13-1 to 2	Capacitor, electrolytic, 20 Mf . 350 V .	73016	R11	Resistor, $180 \mathrm{ohm}, 1 / 2 \mathrm{~W} .10 \%$
29325	L-1	Coil, loop	73161	R12-1 to 2	Resistor, 1 megohm, $1 / 2 \mathrm{~W} .20 \%$
29004	L-2	Coil, 1st. I-F Transformer	73043	R13	Resistor, $33,000 \mathrm{ohm}, 1 / 2 \mathrm{~W} .10 \%$
29007	L-3	Coil, 2nd I-F Transformer	25506 C	R14	Control, tone
29202	L-4	Coil, oscillator	25010 B	R15	Control, volume (tap@ 20 K ohms
32007-1		Cord, A.C. ${ }^{6}{ }^{\prime}$	73221	R16	Resistor, $470 \mathrm{ohm}, 1 \mathrm{~W} .10 \%$
${ }_{36024}$		Cord, A.C. ${ }^{\text {Cartridge, cutter (magnetic) }} 3.2$ ohms	73430	R18	Resistor, $2,700 \mathrm{ohm}, 2 \mathrm{~W} .10 \%$
38107		Dial, scale stationized	77016B		Shaft, dial
38108		Dial, Export and East	78008		Shield, mike plug
52037 BG		Knob	79002		Socket, tube
54001		Lamp, dial, T-44, 0.250 Amp.	79004		Socket, mike
57010		Microphone, with cable (crystal)	79005		Socket, pickup
57010-1		Microphone, base CB	79007		Socket, A.C.
58004E		Changer (RC-130L)	79010 B		Socket, lamp
66004		Plug, pin	83705		Speaker
66013		Plug, mike	86009B		Switch, phono, etc.
67031		Pointer, assembly	89016B	T-1	Transformer, power
68029		Cartridge, phono pick-up (Shure P-30S) crystal	89402	T-2	Transformer, output 8000/3.2 ohms ohms

SPECIFICATIONS

Overall Dimensions:

Electrical Rating:
Line Voltage 110-120 volts, A.C. 50,60 C.P.S.
Power Consumption . . 110 watts including phonograph
Tuning Frequency Range:
Standard Broadcast 540 to 1620 KC
Frequency Modulation
87.5 to 108.5 MC

Intermediate Frequency:

FM	

Electrical Output:
Undistorted 4.0 watts
Maximum 6.0 watts
Loudspeaker:
Type Permanent Magnet
Outside Cone Diameter 10"
Voice Coil Impedance 3.2 ohms at 400 C.P.S.
Magnet Rating 4.6 Oz. Alnico V
Tubes:

Tube	No.	Function
6BA6	V-1	R-F Amplifier
6BA6	V-2	Mixer
6BA6	V-3	I-F Amplifier
6BA6	V-4	Driver
6AL5	V-5	FM Detector
6H6	V-6	AM Detector-AVC-Compressor
6SQ7	V-7	1stAudio Amplifier
6SK7	V-8	2nd Audio Amplifier
6AU6	V-9	Oscillator
6V6-GT	V-10	Output
5Y3-GT	V-11	Rectifier
6U5-6G5	V-12	Tuning Eye

GENERAL INFORMATION

These Models utilize a 2 band PhonOcord chassis. The Model 1181 is housed in a console cabinet, and the Model 1181A in an Armchair type cabinet. Both Models employ ten tubes plus rectifier and tuning eye and a 10 inch permanent magnet speaker. Listed below are some of the features included in these Models.

1. Standard Broadcast from 540 to 1620 KC .
2. Frequency Modulation from 87.5 to 108.5 MC .
3. Tuning Eye for accurate tuning of stations.
4. Automatic Home Recording combined with Automatic Record Changer.
For information concerning the Home Recording, Automatic Record Changer unit, refer to Service Instructions, Automatic Record Changer-Recorder Combination (Pack-ard-Bell Part No. 58004-B).

RECORDING HEAD PRESSURE

The proper recording head pressure is $11 / 4 \cdot \mathrm{Oz}$. Adjustment of this pressure is made by turning the small screw on the top of the Recording Arm. This adjustment is very critical and should be made in quarter turns. TURN THE SCREW CLOCKWISE TO INCREASE CUTTING DEPTH, and COUNTER - CLOCKWISE TO DECREASE CUTTING DEPTH.

This adjustment is made at the factory with an ordinary pocket type postal scale, consequently, field adjustments should be made in a like manner.

BRIEF DESCRIPTION OF COMPRESSION CIRCUIT

One diode section of the 6 H 6 serves as the compressor rectifier. The compression system is automatic, and is in the circuit on both record positions. A portion of the output voltage is rectified by the 6 H 6 and varies the grid bias of the 2nd Audio, 6SK7.

HOW TO CHECK COMPRESSION VOLTAGE

Turn the Selector Switch to Radio Record position. Feed a 2 volt (RMS) 1000 cycle signal into the diode return of the 2nd I-F (point K, schematic). Connect the leads of a vacuum tube type voltmeter to point L (schematic) and ground. The voltage at this point should be approximately minus 2.5 volts.

SPECIAL SERVICE INFORMATION

Stage Gain Measurements, AM

Measurements taken with volume and tone controls maximum. Band Switch in Standard Broadcast position. AVC shorted out.

Standard Output 50 milliwatts
Dummy Antenna 200 Mmf .
Antenna Post to R-F Grid 12 X at 1000 KC
R-F Grid to Converter Grid. 9X at 1000 KC
Converter Grid to 1st I-F Grid. . . . 20X at 455 KC 1st I-F Grid to 2nd Detector. 40 X at 455 KC Overall Audio Gain . 30 millivolts to produce 50 milliwatts at 1000 cycles.
Stage Gain Measurements, FM
Measurements taken with volume and tone controls max-
imum. Band Switch in Frequency Modulation position. AVC
shorted out.
Dummy Antenna 270 ohms
Dipole Terminal to R-F Grid. 0.9 X at 98 MC
Converter Grid to 1st I-F Grid 12X at 10.7 MC
1st I-F Grid to Driver Grid 45 X at 10.7 MC
Oscillator Cathode Voltages
Measured at 117 volts AC line with an AC vacuum tube
voltmeter, input loading above 10 megohms.
$1620 \mathrm{KC}8^{2} .5$ volts AC
1200 KC 8.2 volts AC
800 KC 5.5 volts AC
540 KC 2.5 volts AC
Oscillator Grid Current, FM
Measured at 117 volts AC line, with a DC microammeter connected in series with ground end of the $22,000 \mathrm{ohm}$ grid resistor
$108 \mathrm{MC} \ldots \ldots \ldots .2190$ microamps
$98 \mathrm{MC} \ldots \ldots 200 \mathrm{microamps}$
$88 \mathrm{MC} \ldots . .220$ microamps
D.C. RESISTANCE MEASUREMENTS

I-F Coils:

Type	Primary	Secondary
1st AM	7.5	7.5
2nd AM	8.0	8.0
1st FM	0.75	0.75
2nd FM	1.5	0.5
Ratio Detector	1.5	0.1^{*}

*Either side to tertiary, 0.25 ohms
Oscillator Coil:
Primary 1 ohm
Secondary 6 ohms
Antenna Coil:
Start to Finish 12.2 ohms
Start to Tap 10.5 ohms
R-F Coil:
Primary 5.8 ohms
Secondary 4.2 ohms
NOTE: Due to the variation in winding methods, the D.C. resistance on all coils is subject to a 20% tolerance.

FIG, 1 -TRIMMER LOCATION
A-Antenna Trimmer BC (C20A)
B-BC Padder 600 KC (C22)
C-FM R-F Trimmer (C23-2)
D-FM Osc. Trimmer (C21)
E-FM Antenna Trimmer (C23-1)
F-BC Osc. Trimmer (C24)
G-BC R-F Trimmer (C20B)
H-Ratio Detector, Zero Center
I-Ratio Detector, AVC
J-AVC
K-Diode
S1-FM Antenna (Bottom)
S2--FM R-F (Top)
S3-1st FM I-F Secondary (Top)
S4-1st FM I-F Primary (Bottom)
S5-2nd FM I-F Secondary (Top)
S6-2nd FM I-F Primary (Bottom)
S7-1st AM I-F Secondary (Top)
S8-1st AM I-F Primary (Bottom)
S9-2nd AM I-F Secondary (Top)
S10-2nd AM I-F Primary (Bottom)
S11-Ratio Detector Primary (Top)
S12-Ratio Detector Secondary (Bottom)

ALIGNMENT PROCEDURE-AM

Alignment procedure consists of the steps outlined in the Alignment Chart. Make certain that each step is done with a minimum input signal. Connect voltmefer to AVC (point J on schematic).

ALIGNMENT CHART-AM

STEP	$\begin{gathered} \text { CONNECT } \\ \text { TEST } \\ \text { OSC. TO } \end{gathered}$	TEST OSC. SETTING	$\left\lvert\, \begin{aligned} & \text { POINTER } \\ & \text { SETTING } \end{aligned}\right.$	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR MAX. } \\ & \text { OUTPUUT } \end{aligned}$
1	Mixer Grid \& Ground	455 KC	540 KC	S7, 8, 9, 10
2	R-F Grid \& Ground	1500 KC	1500 KC	$\underset{F \& G}{\text { Trimmers }}$
3	R-F Grid \& Ground	600 KC	600 KC	$\underset{B}{\text { Trimmer }}$
4	Repeat Step No. 2			
5	Standard Test Loop	1500 KC	1500 KC	$\underset{A}{\text { Trimmer }}$
6	Check stationizing. Slide pointer on string if stations are uniformly off in one direction.			

Equipment Required for FM Alignment

1-Signal Generator to cover FM band (88 to 108 MC).
2-Vacuum Tube Type Voltmeter similar to "Voltohmyst" or "Polymeter."

ALIGNMENT CHART - FM

STEP	$\left\lvert\, \begin{gathered} \text { CONNECT } \\ \text { TEST } \\ \text { OSC. TO } \end{gathered}\right.$	$\begin{gathered} \text { TEST } \\ \text { OSC. } \\ \text { SETTING } \end{gathered}$	POINTER SETTING	$\begin{aligned} & \text { CONNECT } \\ & \text { VOLTMETER } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR MAX } \\ & \text { OUTPUT } \end{aligned}$
1	R-F Grid \& Ground	10.7 MC	88 MC	Point I	$\begin{aligned} & \text { S12, } 6, \\ & 5,4,8 \end{aligned}$
2	Adjust S11 for zero center			Point H	
3	Repeat Steps 1 and 2.				
4	Doublet Terminals thru 270 ohms	108 MC	108 MC	Point I	$\begin{gathered} \text { Trimmers } \\ \text { D, C, E } \end{gathered}$
5	Doublet Terminals thru 270 ohms	88 MC	88 MC	Point I	S1. 2
6	Repeat Step No. 4.				

Note: Rock variable condenser for Step No. 4.

SOCKET VOLTAGES

All D.C. voltages measured with a vacuum tube voltmeter from socket contacts to chassis. A.C. voltage measured with a 1000 ohms per volt A.C. meter from socket contacts to chassis. Volume and tone controls maximum. Switch in Radio position. No signal. 117 volts A.C. line. All voltages shown are positive D.C. unless otherwise noted.

FIG. 2-SOCKET VOLTAGES

REPLACEABLE PARTS LIST

Part No. Ref. Symbol		1 Description	Part No. Ref. Symbol		Description
21064		Cabinet, 1181A	73053	R1-1 to 6	Resistor, carbon, 1 megohm, $1 / 2$ w. 20%
21065		Cabinet, 1181	73008	R2-1 to 2	Resistor, carbon, $39 \mathrm{ohm}, 1 / 2 \mathrm{w} .1$
23525	C1A,B,C,	Capacitor, variable	73018	R3	Resistor, carbon, 270 ohm, $1 / 2$ w. 10%
	C2A, B, C,		73011	R4	Resistor, carbon, 68 ohm, $1 / 2 \mathrm{w} .10 \%$
23915	C3-1 to 4	Capacitor, ceramic, $220 \mathrm{Mmf} .20 \%$	73025	R5-1 to 6	Resistor, carbon, 1000 ohm, $1 / 2 \mathrm{w} .10 \%$
23916	C4-1 to 3	Capacitor, ceramic, $\mathbf{4 7 0} \mathrm{Mmf} .20 \%$	73001	R6-1 to 2	Resistor, carbon, 10 ohm, $1 / 2 \mathrm{w} .10 \%$
23912	C5-1 to 5	Capacitor, ceramic, $\mathbf{4 7 \mathrm { Mmf } . 2 0 \%}$	73017	R7	Resistor, carbon, 220 ohm, $1 / 2$ w. 10%
23931	C6-1 to 2	Capacitor, tubular, . 005 Mf .	7304	R8-1	Resistor carbon, 100,000 ohm,
23023-1	C7-1 to 17	Capacitor, tubular, $.01 \mathrm{Mf} 500 V.$. Capacitor, ceramic, 5 Mmf .	73047	R9-1 to 7	Resistor, carbon, $100,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$. 10%
23908	C8	Capacitor, ceramic, 5 Mmf . Capacitor, ceramic, $10 \mathrm{Mmf} .10 \%$	73016	R10-1 to 2	Resistor, carbon, 180 ohm, $1 / 2 \mathrm{w} .10 \%$
23923	C9	Capacitor, ceramic, $10 \mathrm{Mmf} .10 \%$ Capacitor, tubular, $003 \mathrm{Mf}$.600 V .	73073	R11	Resistor, carbon, 10,000 ohm, 1w. 10%
23016	C10-1 to 2	Capacitor, tubular,, $003 \mathrm{Mf}$.600 V . Capacitor, electrolytic, $5 \mathrm{Mf} 50 V.$.	73042	R12-1 to 2	Resistor, carbon, $27,000 \mathrm{ohm}, 1 / 2 \mathrm{w} .10 \%$
24038	C11	Capacitor, electrolytic, 5 Mf. 50V.	$25017 \mathrm{~A}$	R13	Control, volume
23020	C12-1 to 2	Capacitor, tubular, $.2 \mathrm{Mf} 400 V.$. Capacitor, tubular, $1 \mathrm{Mf} 200 V.$.	73014		Resistor, carbon, 120 ohm, $1 / 2$ w. 10%
23019	C13-1 to 2	Capacitor, tubular, $.1 \mathrm{Mf}$.200 V . Capacitor, tubular, .02 Mf .600 V .	$\begin{aligned} & 73014 \\ & 25509 \end{aligned}$	R15	Control, tone
23007	C14	Capacitor, tubular, $02 \mathrm{Mf}$.600 V . Capacitor, electrolytic, 25 MF .25 V.	73035	R16-1 to 2	Resistor, carbon, 6800 ohm, 1/2w. 10%
24006	C15	Capacitor, electrolytic, 25 MF .25 V . Capacitor, electrolytic, 20 Mf .350 V.	73060		Resistor, carbon, $56,000 \mathrm{ohm}, 1 / 2 \mathrm{w} .10 \%$
24012	C16	Capacitor, electrolytic, $20 \mathrm{Mf}$.350 V . Capacitor, electrolytic, $40 \mathrm{Mf}$.350 V .	73060	R17-1 to 2 R18	
24004B-1	C17	Capacitor, electrolytic, $40 \mathrm{Mf}$.350 V . Capacitor, electrolytic, $40 \mathrm{Mf}$.450 V .	73903 73051	R19-1 to 2	Resistor, carbon, $470,000 \mathrm{ohm}$, 1/2w.
24030 23932	C18 C19-1 to 2	Capacitor, electrolytic, 40 Mf .450 V . Capacitor, tubular, .01 Mf. 125 V .			20\%
23932 23400	C19-1 to 2 C20A, B	Capacitor, tubular, .01 Mf. 125 V . Capacitor, trimmer, 3-30 dual	73049	R20-1 to 2	Resistor, carbon, $220,000 \mathrm{ohm}$, 1/2w.
23406	C21	Capacitor, trimmer, 3-30 single			20% cers, carbon, 4.7 megohm, $1 / 2 \mathrm{w}$.
23402	C22	Capacitor, padder, 800	73057	R21	Resistor, carbon, 4.7 megohm, $1 / 2 \mathrm{w}$. 20%
23408	C23-1 to 2	Capacitor, trimmer, 3-12 single		R22-1 to 2	Resistor, carbon, $68,000 \mathrm{ohm}, 1 / 2 \mathrm{w} .10 \%$
23412	C24	Capacitor, trimmer, 3-12 single	$\begin{aligned} & 73046 \\ & 73074 \end{aligned}$	R23	Resistor, carbon, 270 ohm, 1w. 10%
29400 C	L-1	Coil, BC Antenna	73074		Resistor, carbon, 330,000 ohm, $1 / 2 \mathrm{w}$.
29409	L-2	Coil, FM Antenna	73050	R24	20%
29104	L-3	Coil, choke, R-F	73005	R25	Resistor, carbon, 22 ohm, $1 / 2$ w. 10%
29102F	L-4	Coil, BC R-F	$\begin{aligned} & 73005 \\ & 73027 \end{aligned}$	R26	Resistor, carbon, 1500 ohm, $1 / 2 \mathrm{w} .10 \%$
29020	L-5	Coil, 1st FM I-F	$\begin{aligned} & 73027 \\ & 73915 \end{aligned}$	R27	Resistor, wire wound, $1000 \mathrm{ohm}, 5 \mathrm{w}$.
29021	L-6	Coil, 1st AM I-F	73915		Resistor, wire wound, 1000 ohm, 5 w. 10%
29022A	L-7	Coil, 2nd FM I-F	73918	R28	Resistor, wire wound, $1500 \mathrm{ohm}, 10 \mathrm{w}$.
29023	L-8	Coil, 2nd AM I-F	73918		Resistor, wire wound, 1500 ohm , 10 w .
29018	L-9	Coil, Ratio Detector Coil, FM R-F Oscillator		R29-1 to 2	Resistor, carbon, 2.2 megohm, $1 / 2 \mathrm{w}$.
29109	L-10A, B	Coil, FM R-F Oscillator	73055		20%
29205C	L-11	Coil, BC Oscillator	79002		Socket, tube
32003-1		Cord, A.C.	79051		Socket, miniature
32012		Cord, A.C.	79004		Socket, microphone
38073		Dial, stationized	79005		Socket, pickup
$52020-\mathrm{BN}$		Knob, mahogany			Socket, speaker and cutter
52020-BC		Knob, bleached	$\begin{aligned} & 79018 \\ & 79041 \end{aligned}$		Socket, tuning eye
54002-1		Lamp, dial	$\begin{aligned} & 79041 \\ & 79007 \end{aligned}$		Socket, AC
57009		Microphone with cable (Astatic)	79010B		Socket, lamp
57009-1		Microphone base	79056		
58004-E 66001		Record changer, Recorder	79045		Socket, lamp Socket, antenna terminal strip
66001 66004		Plug, pin	79045 83703		Socket, antenna terminal strip
66004		Plug, speaker	83703		Speaker, 10" P.M.
66013		Plug, mike	86009B	S1A to E	Switch, PhonOcord
67015		Pointer, assembly	86017C	S2A to E	Switch, band
69001		Pulley	89409	T-1	Transformer, output, 5000 to 3.2 ohms
69013A		Pulley Pulley	89409 89024	T-1	Transformer, output, 5000 to 3.2 ohms Transformer, power

SPECIFICATIONS

Circuit Description

Philco Auto Kadio Model CR-10 is a six-tube superheterodyne, providing reception on the standard broadcast band and five short-wave ranges between 2.7 mc . and 18.0 mc . The radio is of the universal-mounting type; the speaker and control head are mounted separately.
The circuit employs a 6BA6 r-f amplifier, a 6BE6 converter, a 6BA6 i-f amplifier, a 6AV6 detector-a.v.c.1st audio, and a 7C5 output amplifier. The power supply includes a non-synchronous vibrator and a 6X4 rectifier tube.

A ganged variable condenscr tunes the aerial, $r-f$, and oscillator circuits. The i-f transformers are permeability tuned.

SECTION I

POWER SUPPLY		
Reference		Service
Symbol	Description	Part No.
C100	Condenser, r-f by pass, 330 mmf .	62-133001001
C101	Condenser, by-pass, 5 mf .	61-0137*
C102	Condenser, i- -1 by pass. 330 mmf .	62.133001001
C103	Condenser, r-t by-pass, 220 mmf .	60-10205307*
C104	Comenser, by-pass, 5 mf	61-0137*
C105	Cordenser butfer, 005 mf .	30-4650-123
C106	Coruenser, electrolytic, 3 -section	61.0089
C106A	Condenser, tilter, 15 mf ., 350v	Part of Cl06
C106	Condenser, filter, 10 mf .. 350v	Part of Cl06
C107	Condenser, filter, 25 mf .	61-0125
C108	Condenser, by-pass, . 5 mi .	61.0137°
F100	Fuse, 14 amperes	45-2559
1100	Lamp, pilot. PB1 (in Z101)	34.2040
1101	Lamp, pilot, PB2 (in Z101)	34-2040
1102	Lamp, pilot, PB3 (in Z101)	34.2040
1103	Lamp, pilot, PB4 (in Z101)	34.2040
1104	Lamp, pilot, PB5 (in Z101)	34.2040
1105	Lamp, pilot. PB6 (in Z101)	34.2064
J100	Socket, control head	27-6234
L100	Choke, "A"	65.0037
L101	Choke. '"A"	32-1374.3
L 102	Solenoid. band-switch actuating	Part of Z100

Band switching is accomplished by the solenoidactuated wafer switch, which is operated by the push buttons on the control head. The pilot-lamp arrangement is such that the push button of the band in use is illuminated.

TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that, section, without going through the entire chart.
Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.
After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible danage to the radio, the following preliminary checks should be made before connecting the radio to a source of power.

1. Inspect both the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance between $\mathrm{B}+$ (pin 7 of the 6X4 rectifier tube) and the radio chassis. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 2800 ohms, check condensers C106A and C106B for leakage or shorts.

The resistance value above, which is much lower than normal, does not represent a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed.

Reference Symbol	Description $\begin{array}{r}\text { Service } \\ \text { Pari No. }\end{array}$
L 103	
R100	Resistor, spark suppressor, 100 ohms66-1104340*
R101	Resistor, spark suppressor, 100 ohms66.1104340*
R102	Resistor, filter, 1000 ohms66-2104340
R103	Resistor, filter, 4700 ohms66-2473340*
S100	Switch, off-on (in control head)Part of R202
Sl01	Switch, muting (in control head)Part of Zl0l
S102	Switch, push-button, PBl (in control head) \qquad Part of Zlol
S 103	Switch, push-bution, PB2 (in control head) Part of Z101
S104	Switch, push-button, PB3 (in control head) \qquad Part of Z101
S105	Switch, push-button, PB4 (in control head) \qquad Part of Z101
S106	Switch, push-button, PB5 (in control head) \qquad Part of Z101
S107	Swtich, push-button, PB6 (in control head) Part of Z101
S108	Switch, solenoid ... ${ }^{\text {Pari }}$ of 100
T100	Transformer, power ...32-8313
VB100	Vibrator ...0026
WS-1 (F)	Switch-wafer section (homing)Part of Z100

-

MISCELLANEOUS

 4

CONTROL UNITS

 the following exceptions: $\begin{array}{r}\text { 56.4762FCP } \\ \hline \text { 2786 }\end{array}$ 27.5987
$6.4362 F C P$ 54.5004 54.5004
$56.4362 F C P$

Universal $\quad \mathbf{2 7 . 5 9 8 5}$ Sa4OS TVIG

The details of drive-cord installations are illustrated in CON
TROL UNITS FOR PHILCO UNIVERSAL (CR-MODEL) AUTO
RADIOS. PR-1508. Use drive cord Part No. $45-8750$ ($25-\mathrm{ft}$. spool);
lengths and loop sizes are given below.

OM	
品甹	

MODEL CR-10

TROUBLE SHOOTING

Section 1

POWER SUPPLY

Make the tests for this section with a d-c voltmeter; connect the leads between the chassis, test point C, and the test points indicated in the chart.

The voltage readings given were taken with a 20,000 -ohms-per-volt meter at an input voltage of 6.6 volts, d.c.

Set the volume control to minimum, and the tone control fully clockwise. Depress the BC push button.

Follow the steps in the order given. If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	168v		Trouble in this section. Isolate by the following tests.
2	B	6.6 v	No voltage Low voltage	```Open: L100, Ll03, S100, F100. Shorted: Cl00. C101, Cl02. Cl03, C104. Leaky: C100, C101, C102, C103, C104. Defective battery.```
3	D	245v	No voltage Low voltage High voltage	Defective: 6X4, VB100. Open: Tl00. Shorted: C105, C106A. Leaky: Cl06B, Cl07. Defective: 6X4, VB100. Leaky: C106A. Shorted: C106B, C107. Open: T200*, R206*.
4	E	230v	No voltage Low voltage High voltage	Open: Rl02. Shorted: Cl06B. Increased resistance: R102. Leaky: C106B. Shorted: C206*.
5	A	168v	No voltage Low voltage	Open: R103. Shorted: C107, C419*. Increased resistance: R103. Leaky: C107.

This part, located in another section, may cause an abnormal indication in this section.

TROUBLE SHOOTING
 Section 2

AUDIO CIRCUITS

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control counterclockwise.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and $\mathrm{a}-\mathrm{v}-\mathrm{c}$ circuits); if not, isolate and correct the trouble in this section.

Bottom View, Showing Section 2 Test Points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with moderate genierator input.	Trouble in this section. Isolate by the following tests.
2	B	Clear output writh strong input.	Delective: 7C5, LS200. Open: R20́6, R205, T200. C205. Shorted: C204, C205, C206.
3	D	Loud, clear output with moderate input.	Defective: 6AV6. Open: C204, R203, R204. Shorted: C203, C202 (rotate through range), Sl01*.
4	A	Loud, clear output with moderate input.	Open: R200 (rotate through range), C201. Open or shorted: J100. PL100.

*This part, located in another section, may cause an abnormal indication in this section.

TROUBLE SHOOTING

Section 3

I-F, DETECTOR, AND A-V-C CIRCUITS

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the chassis, test point C ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully counterclockwise. Depress the BC push button, and set the radio tuning to the low-frequency end of the dial.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the

Bottom View, Showing Section 3 Test Points (location of test point A shown in figure 4) trouble in this section.

To provide a complete i-f amplifier check, test point A for this section is placed at the grid of the mixer, in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	B	Loud, clear output with moderate input.	Defective: 6BA6. Misaligned: Z301. Open: R300, R301, R302, C301A, C301B, L301A, L301B. Shorted: C300B, C301A, C301B, C302, C303, C305, L300B, L301A, L301B.
3	A	Loud, clear output with weak input.	Defective: 6BE6*. Misaligned: Z300. Open: C300A, C300B, L300A, L300B. Shorted: C300A, L300A, L300B, C411*.
*This part, located in another section, may cause an abnormal indication in this section.			

TROUBLE SHOOTING
 Section 4
 R-F AND CONVERTER CIRCUITS

For the tests in this section, with the exception of the oscillator tests, use an r-f signal generator, with modulated output. Connect the generator ground lead to the chassis, test point C ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully counterclockwise.

Set the band push-button, tuning control, and signalgenerator frequency as indicated in the chart.
OSCILLATOR TESTS: Connect the positive lead of a high-resistance d-c voltmeter to the chassis, test point C; connect the prod end of the negative lead through a $100,000-\mathrm{ohm}$ isolating resistor to the 6BE6 oscillator grid (pin 1), test point B. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltages of approximately the values given in the chart (measured with 20,000 -ohms-per-volt meter), throughout the tuning range.

If the "NORMAL INDICATION" is obtained in steps $1,5,9,13,17$, and 21 , further tests should be unnecessary; if not, isolate and correct the trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

Section 4 (Cont.)

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQ.	BAND PUSH	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	BC	Tune to signal.	Loud, clear output with very low generator input.	Trouble in BC circuits. Isolate by steps 2. 3. and 4.
2	B		BC	Tune through range.	-2.2 v to -3.6 v	Defective: 6BE6, WS-3 (F), WS-3(R), WS-2 (F). WS. 2 (R). Open: R403. C417. C420. Shorted: C417, L404A, C418A. C420, C400C.
3	D	1000 kc.	BC	Tune to signal.	Same as step 1.	Defective: 6BA6, 6BE6, WS-4 (F). WS-5 (F), WS 5 (R). Open: R404, R401, L402A, R402, C411, C409. Shorted: C409, C400B. C411.
4	A	1000 kc.	BC	Tune to signal.	Same as step 1.	Defective: WS.7(F). WS-7(R). WS. 6 (F). Open: C401A, L400A, C407, R400, J400. Shorted: C400A, C401A, C407, L400A.

SWI CIRCUITS

5	A.	4.0 mc .	SW 1	Tune to signal.	Same as step 1.	Trouble in SW1 circuits. Isolate by steps, 6, 7, and 8.
6	B		SW1	Tuge through range.	-2.5 v to -3.5 v	Defective: WS-3 (F), WS. 3 (R), WS-2 (F), WS-2 (R). Open: C418B, L404B, C421. Shorted: C418B, L404B, C421, C418C.
7	D	4.0 me .	SW1	Tune to signal.	Same as step 1.	Defective: WS 5 (F), WS-5 (R), WS-4 (F), WS. 4 (R). Open: L402B, C410B, C416. Shorted: L402B C410B, C416, C426.
8	A.	4.0 mc .	SWI	Tune to signal.	Same as step 1.	Defective: WS-7(F), WS.7(R), WS-6 (F). Open: L400B, C401B, C406. Shorted: L400B, C401B, C406.

SW2 CIRCUITS

9	A.	6.0 mc .	SW2	Tune to signal.	Same as step 1.	Trouble in SW2 circuits. Isolate by steps 10, 11, and 12.
10	B		SW2	Tune through range.	-3.7 v to -4.2 v	Delective: WS. 3 (F), WS. 3 (R), WS. 2 (F), WS-2 (R). Open: C418C, C422. L404B. Shorted: C418C, C422. L404B.
11	D	6.0 mc.	SW2	Tune to signal.	Same as step 1.	Defective: WS-5 (F), WS-5 (R), WS-4 (F), WS-4 (R). Open: C415, L402B. Shorted: C415, L402B.
12	A.	6.0 mc.	SW2	Tune to signal.	Same as step 1.	Defective: WS-7 (F), WS-7 (R), WS-6 (F). WS-6 (R). Open: C405, L400B. Shorted: C405, L400B.

SW3 CIRCUITS

13	A	9.0 mc .	SW3	Tune to signal.	Same as step 1.	Trouble in SW3 circuits. Isolate by steps 14. 15, and 16.
14	B		SW3	Tune through range.	-2.7 v to -3.1v	Defective: WS-3 (F), WS-3 (R), WS-2 (F), WS-2 (R). Open: C418D. L405. C423, C418F. Shorted: C418F, C418D. L405. C423.
15	D	9.0 mc .	SW3	Tune to signal.	Same as step 1.	Defective: WS-5 (F), WS-5 (R), WS-4 (F), WS-4 (R). Open: 1.403. C410C. C414. Shorted: L403, C410C, C414.
16	A.	9.0 mc.	SW3	Tune to signal.	Same as step 1.	Defective: WS-7 (F), WS-7 (R), WS-6 (F), WS-6 (R). Open: L401, C404, C401C. Shorted: L401, C401C. C404.

SW4 CIRCUITS

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQ.	BAND PUSH BUTTON	RADO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
17	A	12.0 mc .	SW4	Tune to signal.	Same as step 1.	Trouble in SW4 circuits. Isolate by steps 18, 19, and 20.
18	B		SW4	Tune through range.	-3.3 v to -3.6 v	Delective: WS-3 (F), WS-3(R), WS-2 (F), WS-2 (R). Open: C418E, C424, L405. Shorted: C418E, C424. L405.
19	D	12.0 mc .	SW4	Tune to signal.	Same as step 1.	Defective: WS. 5 (F), WS-5 (R). WS. 4 (F), WS-4 (R). Open: C413, L403. Shorted: C413, L403.
20	A.	12.0 mc .	SW4	Tune to signal.	Same as step 1.	Defective: WS-7 (F), WS-7 (R), WS-6 (F), WS-6 (R). Open: C403, L401. Shorted: C403, L401.

SW5 CIRCUITS

21	A	15.0 mc .	SW5	Tune to signal.	Same as step 1.	Trouble in SW5 circuits. lsolate by steps 22, 23 , and 24.
22	B		SW5	Tune through range.	-3.9 v 10-4.0v	Defective: WS-3 (F), WS-3 (R), WS-2 (F), WS-2 (R). Open: C425, L405. Shorted: C425, L405.
23	D	15.0 mc .	SW5	Tune to signal.	Same as step 1.	Defective: WS-5 (F), WS-5 (R), WS-4 (F), WS-4 (R). Open: C412, L403. Shorted: C412, L403.
24	A	15.0 mc .	SW5	Tune to signal.	Same as step 1.	Defective: WS-7 (F), WS-7 (R), WS-6 (F), WS-6 (R). Open: C402, L401. Shorted: C402, L401.

ALDCNMENT
NOTE: THE CONTROL UNIT SHO
NOTE: THE CONTROL UNIT SHOULD BE PLUGGED INTO THE RADIO
 OUTPUT METER: Connect across voice-coil terminals.
SIGNAL GENERATOR: Connect ground lead to chassis; connect output OUTPUT LEVEL: During alignment, signal generator must be attenuated
to hold output-meter indication below 1 volt.

STEP	SIGNAL GENERATOR		RADIO			ADJUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{gathered} \hline \text { BAND } \\ \text { PUSH } \\ \text { BUTTON } \\ \hline \end{gathered}$	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Through $\quad 05 \mathrm{mf}$. condenser to aerial receptacle.	455 kc.	BC	1600 kc .	Adjust. in order giv. en, for maximum output.	
2	Dummy aerial (see note below).	1600 kc .	BC	1600 kc.	Adjust for maximum.	C418A- BC osc. (shunt)
3	Same as step 2.	1520 kc.	BC	1520 kc.	Adjust for maximum.	
4	Same as step 2.	580 kc.	BC	580 kc.	Adjust for maximum while rocking tuning control.	TC400- BC osc. (padding)
5	Same as step 2.	18.0 mc .	SW5	18.0 mc .	Adjust for maximum.	C418F- SW5 osc.
6	Same as step 2.	17.0 mc .	SW5	17.0 mc.	Adjust for maximum while rocking tuning control.	\qquad C401C- SW5 r.f. SW5 aerial
7	Same as step 2.	13.0 mc.	SW4	13.0 mc .	Adjust for maximum while rocking tuning control.	
8	Same as step 2.	9.5 mc .	SW3	9.5 mc .	Adjusi for maximum while rocking tuning control.	C418D- SW3 osc.
9	Same as step 2.	7.0 mc .	SW2	7.0 mc .	Adjusi for maximum.	$\mathrm{C} 418 \mathrm{C}-$ SW2 osc.
10	Same as step 2.	6.0 mc .	SW2	6.0 mc .	Adjust for maximum.	
11	Same as step 2.	4.0 mc .	SW1	4.0 mc .	Adjust for maximum while rocking tuning control.	C418B- SW1 ose

Top View. Showing Trimmer Locations TP.5872
DUMMY AERIAL: Connect generator output lead through $30-\mathrm{mml}$. condenser to aerial receptacle: connect
another $30-\mathrm{mmf}$. condenser from aerial receptacle to chassis.

MODEL CR-12

TROUBLE SHOOTING Section 1

Make the tests for this section with a d-c voltmeter, connecting the leads between the chassis (test point C) and the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter.

Turn on the power and depress the manual-tuning button. Turn the volume control to minimum, and the tone control fully counterclockwise.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2; if not, isolate and correct the trouble in this section.

Bottom View, Showing Section 1 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A \mathbf{B}	$\begin{array}{r} 192 v \\ 6.6 v \end{array}$		Trouble in this section. Isolate by the following tests.
2	B	6.6 v	No voltage Low voltage	Open: F100, S100, L100, L101. Weak battery. Leaky: C10n, C101, C102, Clo3.
3	D	250v	No voltage Low voltage High voltage	```Open: T100. Shorted: T100, C104, C105A. Defective: VB100, 6X4. Leaky: C105A. Defective: 6X4, VB100. Shorted: C105B, T100, Open: Cl05A, T100. Ppen: R102, R210*,T200*.```
4	E	237 v	No voltage Low voltage High voltage	Open: R102. Shorted: C105B. Leaky: C105B. Changed resistance: R102. Shorted: C207*. Open: R103, R7.10\%.
5	A	192v	No voltage Low voltage	Open: Rlo3. Shorted: Cl05C. Leaky: C105C. Changed resistance: R103.
Listening Test: Abnormal hum or hash may be caused by open Cl05B or Cl05C.				

*This part, located in another section, may cause abnormal indication in this section.

TROUBLE SHOOTING

Section 2

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C ; connect the output lead through a 1 -mf. condenser to the test points indicated in the chart.

Depress the manual-tuning button. Turn the volume control to maximum, and the tone control fully counterclockwise. Adjust the signal-generator output as required for each step.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3; if not, isolate and correct the trouble in this section.

Botfom View, Showing Section 2 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	$\begin{gathered} \mathrm{B} \\ \text { (Remove } \\ 6 \mathrm{C} 4) \end{gathered}$	Loud, elear signal with strong signal input.	Defective: 7C5, LS200. Open: L200, R209, R210, T200. Leaky: C206. Shorted: C206, C207.
3	$\begin{gathered} \hline \text { D } \\ \text { (6C4 } \\ \text { removed) } \\ \hline \end{gathered}$	Same as tep 2.	Defective: 7C5. Shorted: C205. Open: C205, R208. Leaky: C205.
4	$\begin{gathered} \mathrm{E} \\ \text { (Replace } \\ \text { 6C4) } \\ \hline \end{gathered}$	Loud, clear signal with moderate signal input.	Defective: 6C4. Open: R205, R206, R207. Leaky: C204. Shorted: C204, C203, C202 (rotate through range).
5	F	Same as etep 1.	Open: R203, R204, C204. Defective: 6AV8.
6	A	Same as mep 1.	Open: R200 (rotate through range), C201, B201. Defective: PL100*, J100*, or cable.

[^0]- This part, located in another section, may cause abnormal indication in this section.

TROUBLE SHOOTING

Section 3

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the chassis, test point C ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Depress the manual-tuning button. Turn the volume control to maximum, and the tone control fully counterclockwise.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4; if not, isolate and correct the trouble in this section.

Since the circuit location of test point A for this section is the same as that of test point B for Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

Bottom View, Showing Section 3 Test Points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
I	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the tollowing tests.
2	B	Loud, clear signal with moderate signal input.	Open, shorted, or misaligned: Z301. Defective: 6BA6, 6AV6 (diode section). Open: R300, R301, R302. Shorted: C302, C303, C304.
3	A	Loud, clear signal with wagk signal input.	Defective: 6BE6*. Open, shorted, or misaliqned: 2300. Open: R403*, L403*.

*This part, located in another section, may cause abmormal indication in this section.

TROUBLE SHOOTING Section 4

For the tests in this section, with the exception of the oscillator tests, use an r-f signal generator, with modulated output. Connect the generator ground lead to the chassis, test point C ; connect the output lead through a . 1 -mf. condenser to the test points indicated in the chart.

Turn the volume control to maximum, and the tone control fully counterclockwise.

If the "NORMAL INDICATION" is not obtained in step 1(a), isolate and correct the trouble before making the test in step 1 (b).

Bottom View, Showing Section 4 Test Points

STEP	TEST POINT	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1(a)	A	1000 kc .	Manual. Tune to signal.	Loud, clear signal with weak signal input.	Trouble in manual-tuning circuits; isolate by steps 2, 3, and 4, and correct trouble hefore proceeding.
1(b)	A	Tune to frequency of each push button.	Push button. Depress each button.	Loud, clear signal with weak signal input.	Trouble in push-button-tuning circuita; isolate by steps 5, 6, and 7.
MANUAL-TUNING TESTS					
2	B	1000 kc .	Manual. Tune to signal.	Loud, clear signal with moderate signal input.	Defective: 6BE6. Trouble in oscillator circuit (step 3).
3	E to D (Osc. test: see note, page 5.)		Manual. Tune through range.	Nequtive 2 to 4 volts	Defective: 6BE6, WS2(F). Open: L403, L402C. C406, C407, C408, R404. Shorted or leaky: C406, C407, C408. Shorted: L403, L402C.
4	A	1000 kc .	Manual. Tune to signal.	Loud, clear signal with weak ignal input.	Defective: GBA6, WS3(R), WS3(F), WS1(F), WS1(R), WS2(R). Open: L404, L402B, L402A, R400, R401, R402, R403, R405, C404, C409. Shorted or leaky: C409, C405, C404, C401.
PUSH-BUTTON-TUNING TESTS					
5	8	Tune to frequency of ecch button.	Push button. Depreate ach button.	Loud, clear signal with moderate signal lnput.	Deiective: WSI(F), WS1(R). Trouble in oscillator circuit (step 6).

PUSH-BUTTON-TUNING TESTS

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	possible cause of abnormal INDICATION
6	$\begin{gathered} \text { E to } D \\ \text { (OSce. test: see } \\ \text { note below.) } \end{gathered}$		Push button. Depress each bution	Negative 2 to 4 volts.	Open: WS2(F). Open or ahorted: L401F, L401G, L401H, L401I, L401].
7	A	$\begin{gathered} \text { Tune to } \\ \text { frequency of } \\ \text { each bution. } \end{gathered}$	$\begin{aligned} & \text { Push bution } \\ & \text { Depross each } \\ & \text { button. } \end{aligned}$	Loud, weak clear signal	Defective: WS3(R), WS 3(F), WSIIF), WSI(R), WS2(R). Opon: L401A L40iB, L401C, L401D L401E. Open or shorted: Z400.

OSCILLATOR TESTS (steps 3 and 6): Connect positive lead of high resistance voltmeter to test point D (pin 2, cathode of 6BE6); connect prod end of negative lead through $100,000-\mathrm{ohm}$ isolating resistor to test point E (pin 1 , oscillator grid, of 6BE6). Use suitable meter range, such as $0-10$ volts. Proper operation of oscillator is indicated by negative voltage, 2 to 4 volts (measured with 20,000 -ohms-per-volt meter), throughout range of manual tuning, step 3, and of push-button tuning, step 6.

SECTION 1	
Reference Symbol	Deacription Service Part No.
C100	Condenser, r-f by-pass, 330 mmf62-133001001
C101	Condenser, by-pass, 5 mf61-0137*
C102	Condenser, by-pass, 330 mmf62-133001001
C103	
C104	Condenser, buffer, . $0033 \mathrm{mf}$.61-0115
Cl 105	Condenser, electrolytic, 4 -section61-0150
C105A	Condenser, filter, 20 mf ., 350 vPart of C105
Cl05B	Condenser, filter, $10 \mathrm{mf} ., 350 \mathrm{v}$.Part of C105
C105C	Condenser, filter, 5 mf., 300 v.Part of Cl05
C106	Condenser, by-pass, . 5 mf61-0137*
1100	Pilot lamp-.........................34-2040
1101	Pilot lamp ...34-2040
1102	Ptlot lamp ...34-2040
1103	Pilot lamp ..34-2040
1104	Pilot lamp ..34-2040
1105	Pilot lamp ...34-2040
1100	Socket, control plug27-6234
1101	Socket, foot control27-6186*
1100	Choke, "A" ...32-4170
L101	Choke, "A" ..32-1374-2
L102	Solenoid ..Part of Z100
PB1	Push-button switch ... ${ }^{\text {Pat }} \mathbf{2 1 0 1}$
PB2	Push-button switchPart of Z101
PB3	Push-button switchPart of Z101
PB4	Push-button switchPart of Z101
PB5	Push-button switchPart of Z101
PB6	Push-button switchPart of Z101
PL100	Plug, control head ..76-3124
R100	Resistor, damping, 100 ohms66-1104340*
R101	Resistor, damping, 100 ohms66-1104340*
R102	Resistor, filter, 1000 ohms66-2104340*
R103	Resistor, filter, 4700 ohms66-2473340*
S100	Switch, off-on ...Part of R200
S101	Switch, muting ...Part of Z101
S102	Switch, solenoid interrupterPart of 2100
T100	Transformer, power32-8314
VB100	Vibrator ..45-6307*
WS4(F)	Water section (homing)Part of 2100
WS4(R)	Water section (homing)Part of 2100
Z100	Solenoid-and-wafer-switch assembly76-2945
Z101	Switch-and-lamp-housing assembly76.2957

Symbol	Dencription Serrice Part No.
C300b	Condenser, fixed trimmer, 86 mmfPart of $\mathbf{Z 3 0 0}$
C301A	Condenser, fixed trimmer, 131 mmfPart of Z301
C301B	Condenser, fixed trimmer, 106 mmfPart of 2301
C302	Condenser, cathode by-pass, 05 mf61-0122
C303	Condenser, cathode by-pass, 05 mf61-0122
C304	Condenser, r.f by-pass, 100 mmi30-1224-18
R300	Resistor, cathode by-pass, 2200 ohms66-2223340 ${ }^{\circ}$
R301	Resistor, screen dropping, 27,000 ohms.....66.3273340*
H302	Resistor, r-f filter, 27,000 ohms66-3273340*
2300	Transformer, lst i-f, including C300A and C300B .. 32.4160
2301	Transformer, 2nd i-f, including C301A and C301B $\text { . } 32-4161$

SECTION 4

C400A	Condenser, d-e blockingPart of $\mathbf{Z 4 0 0}$
C400B	Condenser, fixed padderPart of $\mathbf{2 4 0 0}$
C401	Condenser, aerial padder63-0055*
C402	Condenser, cathode by-pass, 05 mf61-0122
C403	Condenser, $\alpha \cdot v-c$ filter, 05 mf61-0122
C404	Condenser, coupling, 180 mmf60-10205307*
	Condenser, r-f trimmer63-0055*
C405	Condenser, d-c blocking, 100 mmf30-1224-18
C407	Condenser, shunt, silver mica, 380 mmf 30-1220-37
C408	Condenser, shunt, 54.5 mmf61-0149
C409	Condenser, d-c blocking, 180 mmf60-10205307*
L400A	Coil, i-f trap (series)Part of $\mathbf{Z 4 0 0}$
L400B	Coil, i.f trap (shunt)Part of $\mathbf{Z 4 0 0}$
L401A	Coil, aerial, push buttonPart of 2401
L401B	Coil, aerial, push buttonPart of 2401
L401C	Coil, aerial, push buttonPart of 2401
L401D	Coil, aerial, push buttonPart of 2401
L401E	Coil, aerial, push buttonPart of 2401
L401F	Coil, osc. tuning, push buttonPart oi 2401
L401G	Coil, osc. tuning, push buttonPart of $\mathbf{Z 4 0 1}$
L401H	Coil, osc. tuning, push buttonPart of 2401
L401]	Coil, osc. tuning, push buttonPart of Z401
L401J	Coil, osc. tuning, push buttonPart of $\mathbf{Z 4 0 1}$
L402A	Coil, aerial, manual (Part of Z402)65-0443-4
L402B	Coil, r-f, manual (Part of Z402)65-0443-5
L402C	Coil, osc., manual (Part of Z402)65-0443-6
1403	Coil, oscillator shunt32-4110
L404	Choke, spark supptessor65-0437
R400	Resistor, cathode bias, 220 ohms66.1223340*
R401	Resistor, plate load, 10,000 ohms66-3103340*
R402	Resistor, grid return, 1 megohm66-5103340*
R403	Resistor, a-v-c filter, 1 megohm66-5103340*
R404	Resistor, grid return, 22,000 ohms66-3223340*
R405	Resistor, cathode bias, 220 ohms66-1223340*
Z400	Trap assembly, i-f, including C400A, C400B, L400A, and L400B $\text { . } 32-4162$
2401	Coil assembly, push button, including L401A through L401J \qquad 76.2715
2402	Coil assembly, manual tuner, including L402A, L402B, and L402C 76-2919
WS1(F)	Wafer section, r-fPart of Z100
WS1(R)	Wafer section, r-fPart of 2100
WS2(F)	Wafer section, osc.Part of Z 100
WS2(R)	Wafer section, osc.Part of Z100
WS3(F)	Wafer section, aerialPart of 2100
WS3(R)	Wafer section, aerialPart of Z100
	MISCELLANEOUS

A-lead assembly
-.41-3187-1
Braid bonding
57-1340FA3
Braid, bonding
Clip, anti-hottle 95-0073
R204
R205

R206

R208
R20
R209
R210
R210
SECTION 2

C200	Condenser, tone compensation, .01 mf . (in control head) \qquad 61.0120*
C201	Condenser, d-c blocking, . 004 mf61-0179*
C202	Condenser, tone compensation, 01 mf61.0120*
C203	Condenser, r-f by-pass, 100 mmf30-1224-18
C204	Condenser, d-c blocking, 004 mf61-0179*
C205	Condenser, d-c blocking, 01 mf61-0120*
C206	Condenser, d-c blocking, . 01 mf61-0120*
C207	Condenser, by-pass, 10 mf ., 25 vPart of Cl 105
C208	Condenser, tone compensation, 006 mf61-0105*
L200	Speaker field ...Part of LS200
LS200	Loud-speaker ..36-1609.2
R200	Volume control, 350,000 ohms (in control head) \qquad 33-5557
R200	Volume control (Buick special)33-5557-1
R201	Resistor, tone compensation, 15,000 ohms (in control head) \qquad 66-3153340*
R202	Tone control, 5 megohms (In control head) \qquad Part of R200
R203	Resistor, grid return, 10 megohms66-6103340*
R204	Resistor, plate load, 220,000 ohms66-4223340*
R205	Resistor, grid return, 10 megohms66-6103340*
R206	Resistor, cathode load 220,000 ohms66-4223340*
R207	Resistor, plate load, 220,000 ohms66-4223340*
R208	Resistor, grid return 470,000 ohms66-4473340*
R209	Resistor, grid return 470,000 ohms66-4473340*
R210	Resistor, bias, 330 ohms66-1333340*
T200	Transformer, output32-8316

SECTION 3
C300A
Condenser, fixed trimmer, 107 mmf .
Pazt of $\mathbf{2 3 0 0}$

* Loz and mafer switch assembly are part of z 2100.

SPECIFICATIONS

CIRCUIT FREQUENCY RANGE Eight-tube superheterodyne

- designates socket or plug connections
front contacts shown as vieweo from front
rear contacts, looking through from front

ALIGNMENT

OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR - Connect ground lead to chassis; connect output lead as indicated in chart. Use
modulated output.
DIAL POINTER-With tuning cable disengaged, se tuning-core gang to full-mesh position; turn dial of tun-
ing control to low-frequency end until pointer stops, then ing control to low-rre
engage tuning cable.

- RADIO

STEP	Signal generator		radio		ADJUST
	CONNECTIONS TO RADIO	$\begin{aligned} & \text { FRE- } \\ & \text { QUENCY } \end{aligned}$	tuning	SPECIAL INSTRUCTIONS	
1	Throuqh $.05-\mathrm{mf}$. condenser to aericl receptacle.	455 kc .	Manual. 1600 kc .	Adjust. in order qiven. for maximum output. (TC301B and TC300B are reached through holes in bottom of if transformers.)	TC301B TC301A TC300B TC300
2	Same as step I .	455 kc .	Any push button manual tuning.	Adjust tor minimum output.	TC400 A
3	Dummy aerial (see note be low).	580 kc .	Manual. 580 kc .	Adjust for maximum output while rock ing tuning control.	TC403A
4	Same as stop 3.	1500 kc .	Manual. Tune to signal.	Adjust, in order given, for maximum out put.	$\begin{aligned} & \mathrm{C} 405 \\ & \mathrm{C} 4 \mathrm{~d} 1 \end{aligned}$
s	Same as stop 3.	1400 kc .	Manual. Tune to signal.	Re-engage tuning cable tor correct cali bration.	
6	Repeat steps 3, 4, and 5 until no further improvement is obtained.				
7	After reinstalling radio in car, adjust C401 (manual tuning only) for maximum output while tuned to weak station 1400 kc . Re-engaqe tuning control for correct dial calibration.				

RADIO CONTROLS-Turn volume control tomaximum, and tone control fully counterclockwise; use push buttons as directed in chart.

OUTPUT LEVEL-During alignment, adjust signalgenerator output to maintain output-meter indication below 1 volt.

DUMMY AERIAL: Connect generator output lead through $30-\mathrm{mm}$. condenser to aerial

SETTING PUSH BUTTONS

Each adjusting rod controls ganged tuning cores for both
aerial and oscillator circuits, so aerial and oscillator circuits, so
required for a given frequency. The ganged tuning cores are required for a given frequency. The ganged tuning cores are
addusted by turning the bakelite knobs, numbered $1,2,3,4$, and
5 , located on the front of the radio.

1. Use an r-f signal generator to furnish test signals at the
approximate frequencies of the desired stations. Connect the approximate frequencies of the desired stations. Connect the
generator ground lead to the chassis. Connect the output lead
through a 30 -mmf. condenser to the aerial receptacle; connect another $30-\mathrm{mmf}$. condenser between the aerial receptacle and
the chassis. the chassis.
2. Turn on the power, set the volume control to maximum,
and turn the tone control fully counterclockwise.
3. Starting with the lowest frequency desired, set the signal
generator, depress push button No. 1 on the control head, and generator, depress push button No. 1 on the control head, and
adjust kno No. 1 on the radio for maximum output. Repeat
the procedure for buttons 2, 3, 4, and 5.
4. After the radio is installed in the car, and the aerial
connected, allow a fifteen-minute warm-up period then red connetted, allow a i itren-minute warm-up period, then read-
just the tuning for each button while listening to the station

TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section. termining whether trouble exists in that section, without going through the entire test procedure.
Failure to obtain the "NORMAL INDICATION" in Failure to obtain the "NORMAL INDICATION" in
any given step indicates trouble within the circuit under any given step indicates trouble within the circuit under
test. test.
After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resist
ances; fourth, substituting condensers. The trouble re. vealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, 2. Measure the resistance between $\mathrm{B}+$ (pin 7 of the 6 X 4 rectifier) and the radio chassis (test point C), with the ohmmeter polarity such that the highest resistance reading is obtained. If the reading is lower than 5000 ohms, check condensers C105A and C105B for leakage or shorts.
The resistance value above, which is much lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 are performed.
2. If a fuse is blown, check the vibrator before installing a new fuse.
vibrator is defective, check C104 before installing a new vibrator.
©John F. Rider

Figure 6. Philco Radio Model 49-906, Sectionalized Schematic Diagram, Showing Test Points
©John F. Rider

PAGE 20-17, 18 PHILCO

MODEL 49-906 ALIGNMENT CHART

RADIATING LOOP: Make up a six-to-eight-turn, 6 -inch-diameter loop, using insulated wire; connect to the signal-generator leads
Figure 8. Top View, Showing AM Trimmer Locations
FM ALIGNMENT CHART

Circuit Description

Philco Radio Model 49-906 is an eight-tube superheterodyne which provides reception on the standardbroadcast band and on the FM band. A built-in highimpedance loop is used as the aerial on the broadcast band and the line cord is used as the aerial on the FM band. These aerials normally provide adequate signal pickup; if additional pickup is required, Philco Dipole Aerial, Part No. 45-1462, may be used. When connecting the dipole aerial, disconnect the black lead from terminal 2 of TB400, and attach it to pin 1 of the dipole-aerial plug which fits into J400. No additional coupler is required.
To eliminate complicated switching and to provide greater stability and gain on both bands, separate converter tubes are used for broadcast and FM reception. A 12AU6 high-gain pentode is used as a tuned r-f amplifier on the FM band. The output of this stage is fed to a 14 F 8 dual triode which functions as the converter for the FM signal. A 12AU7 dual triode is used as the converter for the broadcast signal. Band switching is accomplished by means of a single-wafer switch, which connects the $\mathrm{B}+$ voltage to the proper mixer plate.

6BJ6 type tubes are used in the two i-f-amplifier stages. Two sets of i-f transformers are used; one set is tuned to 455 kc . for standard broadcast, and the other set is tuned to 9.1 mc . for FM . The use of two sets of transformers makes better shielding possible, so that undesirable beat signals and interaction between transformers are eliminated.

Two diode sections of the 19T8 triple-diode-tricde are used in a ratio detector circuit for detection of FM signals. The other diode section is used in a half-wave rectifier circuit for detection of standard-broadcast signals and to provide a-v-c voltage.
The triode section of the 19 T 8 is employed as the first audio amplifier, and is resistance-coupled to the 50A5 output tube, which supplies an audio output of approximately one watt to the permanent-magnet dynamic speaker.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

Section 1-the power supply
Section 2-the audio circuits
Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits

Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The trouble-
shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire chart.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

SPECIFICATIONS

CABINET	Plastic
CIRCUIT Eight-tube superheterodyne	
FREQUENCY RANGES	
Broadcast FM	$\begin{aligned} & .540-1620 \mathrm{kc} . \\ & .88-108 \mathrm{mc} . \end{aligned}$
AUDIO OUTPUT 1 watt	
OPERATING VOLTAGES . $105-120$ volts, a.c. or d.c. POWER CONSUMPTION 40 watts	
AERIALS	. . Built-in loop and FM line cord; provisions for connection of external aerial
INTERMEDIATEFREQUENCIES	
AM	4.55 kc
FM	9.1 mc.
PHILCO TUBES (8)	$12 \AA \mathrm{U} 6,12 \mathrm{AU} 7,14 \mathrm{~F} 8,6 \mathrm{BJ} 6$. (2), 19T8, 50A5, 117Z3

REPLACEMENT PARTS LIST

Abstract

NOTE: An asterisk (*) indicates a general replacement item. The part numbers of these items may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values given in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements. use only the "Service Part No."

PAGE 20-20
PHILCO

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance between $B+$ (pin 6 of the 117 Z 3) and $\mathrm{B}-$, test point B . When the ohmmeter leads
are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1250 ohms, check condensers C102, C103A, C103B, and C103C for leakage or shorts. This resistance value, which is much lower than normal, does not represent a quality check of these condensers; it is the lowest value which will permit the rectifier to operate safely while the voltage checks of Section 1 (power supply) are performed.
3. If the 50A5 tube or the 6BJ6 (2nd i-f amplifier) tube is burned out, check condenser C314 for a short before installing a new tube.

Important!

To avoid altering FM operation, special care should be used in replacing any part. Replacement parts should be placed in the same physical positions as the original parts; connections should be of the same length, and should be soldered to the same points. The placement or length of leads should not be changed.

Section 1

POWER SUPPLY

Make the tests for this section with a d-c voltmeter. Connect the negative lead to $B-$, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a-c.

Set the volume control to minimum, turn the tone control fully clockwise, and set the band switch to the broadcast position.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2 (audio circuits) ; if not, isolate and correct the trouble in this section.

TROUBLE SHOOTING

Figure 1. Bottom View, Showing Section I Test Points

STEP	TEST POINT	NORMAL INDICATION	AENORMAL INDICATION	POSSIble Cause of abnormal indication
1	A	95 volts		Trouble in this section. Isolate by the following tests.
2	C	100 volts	No voltage Low voltage High voltage	```Defective: 117Z3. Open: W100, Sl00. Shorted: C103A, C103B, Cl02. Defective: 117Z3. Leaky: C103A, C103B, C103C. Shorted: Cl03C. Open: R100, R101, T200*, R204*.```
3	D	118 volts	No voltage Low voltage High voltage	Open: R100. Shorted: C103B. Increased value: R100. Leaky: C103B. Shorted: C103C. Open: R101, T200*, R204*.
4	A	95 volts	No voltage Low voltage	Open: R101. Shorted: C103C. Leaky: C103C. Increased value: R101. Shorted: C312*, C311*, C317*, C419*, C406*, C315*, C318*, C411*.

Listening Test: Abnormal hum may be caused by open C103A, C103B, or C103C.

* This part, located in another section, may cause abnormal indication in this section.

MODEL 49-906
Section 2

TROUBLE SHOOTING
 AUDIO CIRCUITS

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B -, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control fully counterclockwise.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits) ; if not, isolate and correct the trouble in this section.

STEP	test point	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with moderate generator input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 50A5. Shorted: LS200, T200. Open: R203, R204, C205, LS200, T200. Shorted or leaky: C202, C204, C205, C206, C207.
3	D	Loud, clear output with moderate input.	Defective: 19T8. Open: R205, R202, C202. Shorted or leaky: C202, C203 (rotate R201 through range).
4	A	Loud, clear output with moderate input.	Open: R200 (rotate through range), C200, C201. Shorted or leaky: C200, C201.
Listening Test: Distortion may be caused by leaky C200, C201, or C202.			

Section 3

TROUBLE SHOOTING
I-F, DETECTOR, AND A-V-C CIRCUITS

AM Circuits

For the tests of the AM circuits, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.
Set the volume control to maximum, and turn the tone control fully counterclockwise. Set the band switch to the broadcast position, and rotate the tuning control until the tuning gang is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for the FM circuits; if not, isolate and correct the trouble in the AM circuits.

Since test point A for the AM circuits is placed at the grid of the 12AU7 mixer in Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

Section 3-Cont.

TROUBLE SHOOTING

AM Chart

STEP	test point	NORMAL Indication	POSSIBLE CAUSE Of ABMORMAL Indication
1	A	Loud, clear speaker output with weak generator input.	Trouble in AM circuits. Isolate by the following tests.
2	D	Loud, clear output with moderately strong input.	Defective: 19T8, 6BJ6 (2nd i.f amplifier). Open: R307, R308, R309, R311, R312, L305B, C317, L305A, L304A, WS. Shorted or leaky: C316, C317, C315. Shorted: L305A, L305B, WS.
3	E	Loud, clear output with moderate input.	Defective: 6BJ6 (1st i.f amplifier). Open: R301, R302, R304, R305, R306, C311, C313, L302A, L302B, L303A, L303B. Shorted or leaky: C311, C313, C308. Shorted: L303A, L303B.
4	A	Loud, clear output with weak input.	Defective: 12AU7*. Open: R411*, R413* R409*, L300A, L300B, L301A, L301B, WS. Shorted or leaky: C424*, C410** Shorted: L301A, L301B, L301C, WS.

Listening Test: Hum and distortion may be caused by shorted or leaky C309, C310, C314, C321, C320, C323, C307, C420*, C421*, C422*, C423*, C100*, C101*.

* This part, located in another section, may cause abnormal indication in this section.

FM Circuits

For the tests of the FM circuits, use an AM r-f signal generator, set at 9.1 mc . Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a . 1 -mf. condenser to the test points indicated in the chart. Detune the generator frequency to one side or the other until a satisfactory test signal is obtained.

Set the band switch to the FM position; set the other radio controls as directed under AM CIRCUITS.

The parts which were found to be satisfactory for AM operation, with the exception of those indicated in the chart, will usually be satisfactory for FM operation.

Figure 3. Bottom View, Showing Section 3 Test Points

The best indication of satisfactory FM-detector operation is the ability of this circuit to take the alignment properly (see page 10).

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits) ; if not, isolate and correct the trouble in the FM circuits of this section.

Since test point C for the FM circuits is placed at the grid of the 14 F 8 mixer in Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4. These parts are listed below under "POS SIBLE CAUSE OF ABNORMAL INDICATION."

FM Charf

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	C	Loud, clear speaker output with weak generator input.	Trouble in FM circuits. Isolate by the following tests.
2	D	Loud, clear output with strong input.	Defective: 6BJ6 (2nd i.f amplifier), Z304, 19T8, WS. Misaligned: Z304. Open: R312, R313, R314, C320, C319, C318, C304, C306, C323, L306. Shorted or leaky: C319, C320, C304, C306, C323.
3	E	Loud, clear output with moderate input.	Defective: 6BJ6 (lst i-f amplifier). Misaligned: Z302. Shorted: L302A, L302B.
4	C	Loud, clear output with weak input.	Defective: 14F8*. Open: R300, R406*, R407*, R405*, LA04*, L300A, WS. Shorted or leaky: C418*, C419*. Shorted: L300A, $1300 \mathrm{~B}, \mathrm{WS}$.

[^1]
Section 4

TROUBLE SHOOTING

R-F AND CONVERTER CIRCUITS

AM Circuits

For the tests of the AM circuits, use an r-f signal generator, with modulated output. Connect the generator ground lead to B-, test point B ; connect the output lead through a . $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, turn the tone control fully counterclockwise, and set the band switch to the broadcast position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for the FM circuits; if not, isolate and correct the trouble in the AM circuits.

FM Circuits

Before proceeding with the tests for the FM circuits, set the band switch to the FM position. If the "NORMAL INDICATION" is obtained in step 1 , further tests should be unnecessary; if not, isolate and correct the trouble in the FM circuits. If the trouble is not revealed by the tests for the FM circuits, check the alignment

Figure 4. Bottom View, Showing Section 4 Test Points
AM Chart

STEP	TEST POINT	SIG. GEN. FREQUENCY	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	1000 kc .	Loud, clear speaker output with weak generator input.	Trouble in AM circuits. Isolate by the follow. ing tests.
2	D	1000 kc .	1000 kc .	Loud, clear output with moderate in-	Defective: 12AU7, oscillator circuits. Shorted: C424, C410, WS. Open: R409, R411, R413, WS.
3	E to \bar{B} (Osc.test; see note below.)		Rotate through range.	Negative volts. 2 to 4	Defective: 12AU7. Open: R408, L404, C408, R410, C407. Shorted or leaky: C408, C409, C400, C401B.
4	A	1000 kc .	1000 kc .	Same as step 1.	$\begin{aligned} & \text { Open: L400, C.417, L405. Shorted: C.400, C401A, } \\ & \text { C425. } \end{aligned}$

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to $\mathrm{B}-$, test point B ; connect the prod end of the negative lead through a 100,000 ohm isolating resistor to the oscillator grid (pin 2 of $12 \mathrm{~A} U 7$), test point E. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage within the range given in the chart (measured with a 20,000 -ohms-per-volt meter) throughout the tuning range.
fM Chart

STEP	TEST POINT	SIG. GEN. FREQUENCY	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	C	95 nie.	Tune to signal.	Loud, clear speaker output with weak generator input.	Trouble in FM circuits. Isolate by the follow. ing tests.
2	F	95 mc .	Tune to signal.	Loud, clear output with moderate input.	Defective: oscillator circuits, 14F8. Open: C418, R406, R407, R405, L408, L402. Shorted: C418, C400, C400B, C419, C416, L402.
3	$\begin{gathered} G \text { to } \mathrm{B} \\ \text { (Ose. test; see } \\ \text { note below.) } \\ \hline \end{gathered}$		Tune through range.	Negative 1 to 2.5 volts.	Defective: 14F8. Open: R404, L408, L407, R403, C413, C415, L403. Shorted: C400, C400C, C.413, C415, C414, C412, L403, L407.
4	H	95 mc .	Tune to signal.	Loud, clear output with weak input.	Defective: $12 A U 6$ Open: L406, R402, R401, R400, C411, C406, C418, R412, L402. Shortedi: C405, C406, C411, C400, C400B, C404, L402.
5	C	95 me.	Tune to signal.	Loud, clear output with weak input.	Open: C402, C404, R412, L402. Shorted: C404, C400, C400A, L402.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to $B \rightarrow$, test point B; connect the prod end of the negative lead through a 100,000 ohm isolating resistor to the oscillator grid (pin 1 of $14 F 8$), test point G. Use a suitable meter range, such as $0-10$ volts. Proper opcration of the oscillator is indicated by negative voltage within the range given in the chart (measured with a 20,000 ohms-per-volt meter) throughout the tuning range.

ALIGNMENT OF AM CIRCUITS

Make alignment with loop aerial connected to radio. The AM alignment should be completed before the FM alignment is made. DIAL POINTER-With tuning condenser fully meshed, adjust dial pointer to coincide with index mark at low.frequency end of dial. See "CALIBRATING DIAL BACKPLATE" for method of measuring backplate for index and calibration marks. OUTPUT METER-Connect between terminal 3 (voice-coil connection) of acrial terninal panel TB400 and chassis. AM SIGNAL GENERATOR-Connect as indicated in chart. Use modulated output. OUTPUT LEVEL-During alignment, signal-generator output must be attemated to maintain radio output below 1.25 volts, as. read on output meter.
CONTROLS Set volume control to maximum, turn tone control fully counterclockwise, and set band switch to broadcast position.

ALIGNMENT OF FM CIRCUITS

Align the AM Circuits first

OUTPUT METER-Connect between terminal 3 (voice-coil connection) of aerial terminal panel TB400 and chassis.
ALIGNMENT INDICATOR-Connect negative lead of a 20,000 -ohms-per-volt, d-c voltmeter to pin 2 of 19T8 tube; connect positive lead to $B-$, test point β in Section 2. Use 10 -volt range.
AM SIGNAL GENERATOR-Generator must have sufficient output to give a reading of at least 8.5 volts on alignment indicator. Connect generator ground lead to B-, test point B; conncet output lead as indicated in chart. Use modulated output. CONTROLS-Same as for alignment of AM circuits, except set band switch to FM position. Allow radio and signal generator to warm up for at least 15 minutes before making alignment.
NOTE: Check resonance of coils L401, L402, and L403 by inserting each end of a powdered-iron tuning core, such as Philco Part No. 56-6100, in the coils. If the signal strength increases when the iron end is inserted, compress the turns slightly. If the signal strength increases when the threaded brass end is inserted, spread the turns slightly. If the signal strength decreases when either the iron or the brass end is inserted, no further adjustment is necessary. Do not spread or compress turns of coil excessively; only a small change is required at these high frequencies.

CALIBRATING DIAL BACKPLATE

When the radio chassis has been removed from the cabinet, dial calibration and alignment points may be marked on the dial backplate below the pointer.

The method of measuring for these points is illustrated in figure 7. Hold a ruler against the dial backplate, with the start

DIAL BACK PLAIE INDEX MARK

of the ruler at the reference line shown, and mark pencil dots at the proper points for the required frequency settings.

After installation of the chassis in the cabinet, the dial pointer should be moved to coincide with the index mark on the dial. Coincidence of the pointer and index mark should occur with the tuning condenser fully meshed.

Figure 7. Dial-Backplate Calibration Measurements
TP-6291
SPECIFICATIONS
The aerial and aerial lead-in form part of the r-f tuning circuit. When testing or aligning this receiver on the bench it is important that an aerial dummy load of equal capacity be used.

TROUBLE-SHOOTING PROCEDURE

This service manual provides a trouble-shooting procedure for the P4635, which will facilitate the isolation of most of the faults that may be encountered. The circuif is divided into four sections, with a schematic and chassis layout, showing test points for each section. The trouble-shooting procedure for each section is outlined in a chart. Tests indicated by a large asterisk (*) provide sectional master checks, making it possible to eliminate each section as a source of trouble without going through its entire test chart.
Wherever trouble is found (indicated by failure to get a "Normal Indication" on any test) it should be isolated by voltage and resistance checks of the parts associated with the point under test, and rem-
edied before testing further.

PRELIMINARY CHECKS

The following preliminary checks are recommended:

1. Carefully inspect both sides of the chassis. bad connections, burned resistors, or other mechanical faults.
2. Check the fuse, and connect the receiver to
source of power (6.3 volts, d.c.). Look for unlighted tube filaments, overheated resistors (smoke, sweating, etc.), and listen for the hum of the vibrator.
3. Check the tubes and the vibrator. WARNING: If the 7 Y 4 is defective, check Cl 07 for shorts before
inserting a new tube. If the vibrator is defective, check Cl06 for a short before inserting a new vibrator.

CIRCUIT DESCRIPTION

The circuit of the P4635 consists of a 7A7 r-f amplifier, a 7B8 converter, a 7A7 i-f amplifier, a 7B6 second detector-first audio, and an audio power amplifier using two 7C5's in push-pull, driven by a 7A4 phase inverter. The power supply is of the six-volt non-
synchronous vibrator type, using a 7 Y 4 rectifier. The aerial input circuit is designed for maximum interference elimination, without sacrifice of signal strength. Permeability tuning, controlled by a pantograph tuning unit, is used for both the r-f and oscillator stages. This method of tuning assures maximum sensitivity, selectivity, and stability for this type of receiver. A sensitivity control is provided (identified in figure 9, page 6), which consists of a variable resistor in the common cathode circuit of the converter and i-f stages. This should be adjusted for lower sensitivity in areas where most reception is from local stations, in order to minimize noise pickup.

The P4635 uses an intermediate frequency of 265 kc .

Two features of the audio system are the tone control, which is an inverse feed-back circuit built around the first audio amplifier, and the push-pull output stage, which delivers a full five watts of audio power to the dynamic speaker.
MODEL P4635

- John F. Rider

Bottom view, showing Section 2 test points.

- John F. Rider
TESTS TO ISOLATE TROUBLE WITHIN SECTION 3
For the second and third tests in the chart for this the ground lead to the receiver chassis (B-). Set tndino roiluos Kl!nṭt? maximum, and adjust the signal-generator output for a loud, clear signal.
(.01 to .25 mf .) to the test points indicated; connect

Saction 3 schernatie.

- John F. Rider

MODEL P4635

Section 4 schematic.

- John F. Rider

©John F. Rider

PROCEDURE

Set the volume and sensitivity controls at maximum. Set the tone control for maximum signal output (approximately the center of its range) ADJUST THE SIGNAL-GENERATOR OUTPUT as alignment progresses to keep the meter needle near center scale, using the lowest range on the output meter.
AFTER REINSTALLING THE RECEIVER in the car and connecting the aerial, make the following adjustments: Set the aerial trimmer for maximum signal strength on a weak station near 1400 kc . Sel the ser tivity control for low sensitivity, if the receiver is to be used mainly for local-station reception, or higher sensitivity depending on the degree set the less will be the noise and interference pickup.

CONNECT THE SIGNAL-GENERATOR output lead cs follows:
For the i-f alignment (the first step in the chari), connect through α
a he in inject through a dummy aerial consisting of a 20 mmf . condenser in series with an aerial lead (Part No. 95-0181) plugged in to the antenna receptacle. If an aerial lead is not available, connect a $33-\mathrm{mmf}$. condenser from the antenna receptacle to ground, and inject the signal through the $20-\mathrm{mmf}$. condenser alone. The foregoing instruction must be carefully followed if the receiver is to give its best performance after beincr reinstalled in the car.
CONNECT THE OUTPUT METER between the voice-coil lug on the speaker and the receiver chassis.

ADJUST THE RECEIVER CONTROLS as follows:

Set the tone

REPLACEMENT PARTS LIST

NOTE: Parts marked with an asterisk (*) are general replacement items, and the part numbers will not be identical with those used on factory assemblies. Use

SECTION 1

SECTION 3

C302	Condenser, . 05 mm .	61-0122*
C303	Condenser, . 05 mf .	61-0122**
C304	Condenser, . 05 mf .	.61-0122*
C305	Condenser, . 01 mf .	61-0124*
C306	Condenser, . 25 mf .	61-012
C307	Condenser, 07 mf .	61-0152*
C308	Condenser, 100 mmf .	60-10105407*
C309	Condenser, . 008 mf .	61-0174*
R300	Resistor, 150 ohms	66-1153340*
R302	Resistor, 1 meg.	66.5103340*
R303	Control, volume, 350,000 ohm	67-0052*
R304	Resistor, 10 megs.	6103340*
R305	Resistor, 470 ohms	66-1473340*
R306	Resistor, 220,000 ohms	66-4223340*
R307	Control, tone, 4 megs.	67-0051*
R308	Resistor, 1,500 ohms	66-2153340*
R309	Resistor, 2,200 ohms	66-2223340*
S300	Switch, muting (solenoid)	Part of Z400
Z300	Transformer, 1st i-f	65-0352
Z301	C300A: condenser, trimmer	Part of Z300
	C300B: condenser, trimmer	Part of Z300
	Transformer, 2nd i-f	65-0410
	C301A: condenser, trimmer	Part of Z301
	C301B: condenser, trimmer	Part of Z301
	C301C: condenser	Part of Z301
	C301D: condenser	Part of Z301
	R301: resistor, 25,000 oh	Part of Z301

only the "Service Part No." shown in the parts list when ordering replacements.

Reference No.	No. Description	Service Part No.
C400	Condenser, trimmer	31-6472*
C401	Condenser, . 05 mf .	61-0122*
C402	Condenser, 05 mf .	61-0122*
C403	Condenser, 250 mmf .	60-10245307*
C404	Condenser, 100 mmf .	60-10105407*
C405	Condenser, trimmer	Part of Z400*
C406	Condenser, 05 mf .	61-0122*
C407	Condenser, . 1 mf .	61-0113*
C408	Condenser, 100 mmf .	60.10105407*
C409	Condenser, 215 mmf . (silver mica)	Part of Z400
C410	Condenser, trimmer	Part of Z400
C411	Condenser, 54.5 mmf . (silver mica)	Part of Z400
C412	Condenser, 250 mmf .	60-10245307*
L401	Choke, antenna	65-0378
R400	Resistor, 680 ohms	66-1683340*
R401	Resistor, 68,000 ohms	66-3683340**
R402	Resistor, 10,000 ohms	.66-3103340*
R403	Resistor, 68,000 chims	66-3683340**
R404	Control, sensitivity	..67-0036*
R405	Resistor, 22,000 ohms	66-3223340*
R406	Resistor, 100,000 ohms	66-4103340*
Z400	Pantograph tuning assembly	--.....77-0891
	L400A: coil, r-f grid tuning (Part of Z400) L400B: coil, converter grid tuning L400C: coil, oscillator grid tuning L400D: coil, oscillator tracking	 Part of $65-0378$ Part of Z400 Part of

MISCELLANEOUS
Bezel assembly
Bezel
$57.2188 F A 8$
$57-2174 \mathrm{FCP}$

Housing parts

Housing and bracket assembly $\begin{array}{l}\text { Button, plug } \\ \text { Cover, tube side } \\ \text { Cover, wiring side }\end{array}$

Knob Kit
Knob, volume and tone
$77-0909$

Sleeve, manual knobSpacer, manual knobSpring, manual knob

Pilot lamp assembly
27-2193FA3
Bracket color (tone control side)
Screen, co.
Screen, color (volume control side)
Screen, color (volume control side)
Socket assembly
Shield
Set mounting kit

57-2176FA3

Speaker cable assembly
Speaker Mounting Parts
Sasket \quad 55-13
Nut
Screw

Suppression parts
Clip, ground
57-0617FA1
Condenser, generator
57-0617FA1
Condenser, ignition switch
$30-400{ }^{*}$
$33-1196^{*}$

- John F. Rider

CIRCUIT DESCRIPTION

The circuit of the Model S4624 custom-built auto radio consists of a 7A7 r-f stage, a 7B8 converter, a 7A7 i-f stage, a 7B6 second detector and first audio, and a 7A5 beam-power audio amplifier. The power supply is of the 6 -volt non-synchronous vibrator type, using a 7 Y 4 full-wave rectifier.

A high degree of selectivity, sensitivity, and stability is achieved by the use of permeability tuning in both the r-f and oscillator circuits.
An intermediate frequency of 455 kc . is generated in the converter stage, and is applied via a tuned transformer to the i-f amplifier. A second tuned transformer passes the amplified $455-\mathrm{kc}$. signal on to the second detector, (the diode section of the 7B6) where it is rectified and the audio-frequency modulation separated from it. Automatic volume control is provided by smoothing and filtering the rectified $455-\mathrm{kc}$. voltage, and applying it to the grids of the r-f amplifier and converter tubes.
The audio signal from the second detector is applied through the volume control to the first audio amplifier (the triode section of the 7B6). From the plate of the first audio, the signal is applied to the grid of the output power amplifier. The output transformer, which constitutes the plate load of the power amplifier, transmits the signal to the voice coil of the electro-dynamic speaker.

IMPORTANT

The aerial and aerial lead-in form part of the r-f tuning circuit. When testing or aligning this receiver on the bench it is important that an aerial dummy load of equal capacity be used.

TROUBLE-SHOOTING PROCEDURE

This service manual provides a logical troubleshooting procedure for the S4624, which will facilitate the isolation of most of the faults that may be
encountered. The circuit is divided into four sections, with a schematic and chassis layout, showing test points, for each section. The trouble-shooting procedure for each section is outlined in a chart. The first test in each chart is a sectional master check, making it possible to eliminate the section under test as a source of trouble without going through its entire chart procedure. The sections should be tested in their numerical order, as they are arranged in the
manual.

The dial scale on the S-4625 is a fluorescent type to raatch the panel indicators of the 1947 cars. The dial pointer and cam assembly is different thus giving a new part number to the tuning assembly which otherwise is the same. The " A " lead is dressed to the left side of the radio case instead of the right side for convenience to the new position of the ignition switch. A clip is provided on the side of the case to hold the fuse holder and prevent it from rattling against the set. The receiver is mounted in the same position as in the 1946 car, but hook bolts of a new design are provided to fit the installation.

The suppression material is different and complete information on the suppression of ignition interference is given in the installation instructions with the radio.

PRELIMINARY CHECKS

Before starting the trouble-shooting procedure, the following steps are recommended:

1. Carefully inspect both sides of the chassis. Make sure that all tubes are secure, and look for bad connections, burned resistors, or other mechanical faults.
2. Check the fuse, and connect the receiver to a source of power (6.3 volts, d.c.). Look for unlighted tube filaments, over-heated resistors (smoke, sweating, etc.), and listen for the hum of the vibrator.
3. Check the tubes and the vibrator. WARNING: If the 7Y4 is defective, check Cl05 for shorts before inserting a new tube. If the vibrator is defective, check Cl04 for a short before inserting a new vibrator.

SPECIFICATIONS

CIRCUIT Six-tube, superheterodyne PHILCO TUBES..............7A7(2), 7B8, 7B6, 7A5, 7Y4 POWER INPUT volts, 6 amps, d.c. AERIAL. Retractable-tip. Philco Part No. 91-0230

Drive-cord
installation dełails.

NOTE: Parts marked with an asterisk (*) are general replacement items, and the part numbers will not be identical with those used on factory assemblies. Use only the "Service Part No." shown in the parts list when ordering replacements.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 1
WARNING: If the 7 Y 4 rectifier is found to be
efective, check the main filter condenser, Cl05, for shorts before inserting a new tube. If the vibrator is found to be defective, check ClO for α short before inserting a new vibrator.

	TEST PORNTS	NORMAL INDICATION	possible cause of abnormal indication
1.	D to B-	45 volts	Trouble within Section 1. Isolate by following tests.
2.	A to B-	165 volts	Defective 7Y4, VB100. T100, C104, or C105A.
3.	C to B	85 volts	Defective R102. C105B. C105C, or C406 (shown in Section 4).
4.	D to $\mathrm{B}-$	45 volts	Defective R103 or C303 (shown in Section 3).
5.	E to B-	73 volts	Defective R104, C105C, or C406 (shown in Section 4).

MAKE TEST NO. 1
FIRST!
If the "NORMAL INDICATION" for this test is No. 1 in the next section. If not, continue through the chart to isolate and remedy the trouble in this section.

MODELS S4624, S4625

MAKE TEST NO. 1 FIRST !
If the 'NORMAL INDICATION" for this test is obtained, proceed to Test No. 1 in the next section. If not, continue through the chart to isolate and remedy the trouble in this section.

を naximum, and adjust the signal-generator output for a loud, clear signal.
TESTS TO ISOLATE TROUBLE WITHIN SECTION 3

	test points	normal indication	possible cause of abnormal indication
1.	1 to B-	Loud, clear signal.	Trouble within Section 3. Lsolate by following tests.
2.	K to B	Loud, clear signal.	Defective 7A7, Z301, R300, C302, or C303.
3.	I 10 B	Loud, clear mignal.	Defective $\mathbf{z 3 0 0}$.

Section 3 schematic.
© John F. Rider

$$
\begin{aligned}
& \text { MAKE TEST NO. } 1 \\
& \text { FIRST! } \\
& \text { If the "NORMAL INDI- } \\
& \text { CATION" for this test is } \\
& \text { not obtained, continue } \\
& \text { through the chart to iso- } \\
& \text { late and remedy the } \\
& \text { trouble in this section. }
\end{aligned}
$$

	TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1.	Q to B-	Loud, clear signal.	Trouble within Section 4. Isolate by following tests.
2.	M to B-	Clear signal, with moderate generator output.	Defective 7B8, C404, C405, C406, C408, C409, R402, R403, R404, R405, L401C. or L402.
3.	N to B -	Same as above.	Open C405.
4.	P to B-	Clear signal, louder than step 3.	Defective 7A7, R400. R401, C401, C402, or C403.
5.	Q to B-	Same as step 4.	Defective L400, C400, L401A, or L401B.

Bottom view, showing Section 4 test points.

Connect the signal-generator output lead through a condenser (. 01 to .25 mf .) to the test points indicatasis. Sennect the receiver volume control at maxichassis. Set the receiver volume control at maxi-
mum, tune the signal generator and receiver to 1000 kc., and start with the generator adjusted for low output.
Attach the positive lead of a 20,000 ohms-per-volt
meter (10 -volt range) to the receiver chassis, and the prod end of the negative lead through 50,000 ohms to point R. Rotate the tuning control through its entire range; absence of voltage indicates that check the components listed in the second test below. TEST POINTS \quad NORMAL INDICATION M to $\mathrm{B}-\quad$ Clear signal, with mod erate generator output.

3. N to B- Same as above.

C401, C402, or C403. , or L401B. (3) (4) (5) (6) C4) C406

MODELS S4624, S4625

SECTION 1

SECTION 2

SECTION 3

SECTION 4

New part numbers have been given to the following items and apply only to the Model S-4625.

Description

Service Parł No.

Dial hardware	
Bezel and stud assembly . 76-2155	
Dial	27-5922
Pointer . 76-2475	
Knob, tone control and nut cover	76-2171
Knob, tuning and volume	77-1043
Pilot-lamp assembly	
Shield	76-2339-1
Set mounting hardware	
Bolt, hook	56-3740
Lock washer IW35046FAl	
The following additional parts are supplied with the Model	
S-4625:	
Dial hardware	
Rubber pad	54-4314

miscellaneous

Deseription	Service Part No.
Dial hardware	
Background	55-1159
Bezel and stud assembly	76-2156
Bracket, atud, and acreen assembly	76-2189
Cord, drive (25-foot apool)	45-1459
Dial	27-5900
Felt	54-4267
Pointer	56-3234
Spring, pointer	.57-1425FA1
Spring, retaining	28-9007FA1
Housing party	
Connector, antenna	57-0591FA3
Cover, tube side	.57-1547FC59
Cover, wiring side	57-1548FC59
Gasket, speaker	55-1045
Housing assembly	77-1177FC59
Inductive tuning assembly	76-2197
Bracket (inductive tuning unit mounting)	57-1787FA3
Coil asembly, r-f	-..65-0407
Coil araembly, image trap	65-0406
Coil asoembly, oxillator	.-65-0405
Condenser, image-suppressor trimmer	63-0071
Core, iron (r-f)	57-1702
Core, iron (oacillator)	57-1703
Core mambly, iron (image trap)	77.0677
Drive spirsl aseembly	-76-2165
Nut, becklanh	57-1706
Pin, hair	57-1868FA11
Shaft, core guide	57-1672FA3
Spring, retaining (phophor bronze)	57-1398
Pilot latap assembly	
Bracket	57-1404FA3
Shield	- 76.2339
Socket masembly	76-1679
Set mounting hardware	
Bolt, hook	97-0135FA3
Nut	97-0229FA 3
Nut, wing	1W23750FA3
Socket, tube	27-6138 ${ }^{4}$
Socket, vibrator	27-6153
Speaker-mounting hardware	
Bolt	W1582FA3
Lockwasher	1W24257FA1
Nut	1W19988FA3
Suppreasion perts	
Condenser, generator ...-	
Ground strap ...77-0336	
Suppressor, distributor (high-voltage) \qquad 2W54094	

Speed nut	1W56913FE7
Moulding	56-3739

Speaker mounting hardware
Gasket 55-1045

Suppression parts

Bolt, heater-cable-clamp
1W10636FA3
Condenser, ignition-coil 30-4007-1

Ground strap, heater-cable
Ground strap, battery-cable
76-2557
Ground strap, windshield-wifar-motor
$.76-2556$
Nut, heater-cable-clamp
1W19988FA3
Suppression parts in the Model S-4624 list that are not used in Model S-4625 are:
Distributor filter assembly . 77-0947
Ground strap, muffler . 77-0336
Ground strap, fender . 77-0966

sectionalized schematic diagram. showing test points
MODEL S4824,
Studebaker
PROCEDURE
OUTPUT LEVEL - During alignment, adjust signal-generator output to maintain output-meter indication below
DUMMY AERIAL - For steps 2 and 3 , connect generator output lead through 22 -mmf. condenser to aerial recep. tacle; connect $30-\mathrm{mmf}$. condenser between receptacle and chassis. IMPORTANT! The above instructions for the dumms acrial must be carefully followed if the radio is to perform top view, SH
ALIGNMENT

STEP	SIGNAL GENERATOR		RADIO		
	CONNECTIONS TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
1	Through . $05-\mathrm{mf}$. condenser to aerial receptacle.	455 kc .	1600 kc .	Adjust, in order given, for maximum output.	
2	Through dummy aerial.	580 kc .	580 kc .	Adjust for maximum while rocking $\boldsymbol{t a n i n} \rho$ control. (See NOTE below.)	TC
3	Same as step ${ }^{2}$.	1400 ke .	1400 ke .	Adjust for maximum.	
4	Repeat steps 2 and 3 until no further improvement is obtained.				
5	After reinstalling radio in car, with aerial connected, adjust C100 for maximum output from weah station near 1400 kc .				

$5 \begin{aligned} & \text { After reinstalling radio in car, with aerial connected, adjust C400 for maximum output from weak } \\ & \text { station near l } 1400 \mathrm{kc.}\end{aligned}$
Section 1-the power supply
Section 2-the audio circuits
To avoid possible damage to the radio, the following preliminary checks should be made before connecting
the radio to a source of power.
Inspect both the top and the bottom of the
chassis. Make sure that all tubes and the vibrator are
 or orher obvious indications of trouble. 2. Measure the resistance between $\mathrm{B}+$ (pin 7 of
7Y4 rectifier tube) and the chassis. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the
reading is lower than 2500 ohms, check condenser
NOTE: The resistance value ahove, which is much lower than normal, does not represent a quality check of this condenser; the value given is the
lowest at which the rectifier will operate safely
while the voltage tests of Section 1 (power supply)

 the buffer condenser, C104, before installing \approx new
vibrator.

TROUBLE SHOOTING

 Section 3 - I-F, DETECTOR, AND

 Section 3 - I-F, DETECTOR, AND A-V-C CIRCUITS

 A-V-C CIRCUITS}

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully clockwise. Set the radio tuning control to the extreme low-frequency end of the dial.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

Since the circuit location of test point A for this section is in Section 4, the effectiveness of step one as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal ...with weak signal input.	Trouble in this section. Isolate by the following tests.
2	B	Loud, clear signal with strong signal input.	Defective: 7A7. Open: L301A, L301B, C301A, R300, R301. Shorted: C300B, L301A, L301B, C301A.
3	A	Same as sted 1.	Defective: 7B8 ${ }^{\circ}$. Open: C300A. C300B, L300A, L300B, R402*. Shorted: C300A, L300A. L300B. C404*. C406*.

*This part, located in another section, mary cause abnormal indication in this section.

TROUBLE SHOOTING Section 4 - R-F AND CONVERTER CIRCUITS

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator, with modulated output. Connect the generator ground lead to the chassis, test point C; connect the output lead through a . 1-mf. condenser to the test points indicated in the chart.

Set the radio volume control to maximum, and the tone control fully clockwise. Set the radio tuning control and signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate the trouble by following the remaining steps.

STEP	TEST POINT	SIGNAL GEN. FREQUENCY	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc.	Tune to signal.	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	B (Osc. test: see note below.)			Negative 1.6 to 6 volis.	Defective: 7B8. Open: R403, C407, L402C. L403. C410. R404. Shorted: C407, C408, C409, C410, L402C. L403.
3	A	1000 kc .	Tune to signal.	Same as step 1.	- Defective: 7A7. Open: L400, C400, L401. L402A, R400. C404, L402B, C405. Shorted: C401.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to the chassis; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 4) of the 7B8, test point B. Proper operation of the oscillator is indicated by negative voltages of approximately the values given in the chart (measured with 20,000 -ohms-per-volt meter) throughout the tuning range

TROUBLE SHOOTING

Section 1 — POWER SUPPLY

Make the tests for this section with a d-c voltmeter; connect the leads between the chassis, test point C , and the test points indicated in the chart.

The voltage readings given were taken with a 20,000 -ohms-per-volt meter, with an input voltage of 6.6 volts, d.c.

Set the volume control to minimum, and the tone control fully clockwise.

Follow the steps in the order given. If the "NORMAL INDICATION" is obtained in step 1, (a) and (b), proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
$\begin{aligned} & 1(a) \\ & 1(b) \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 6.6 \mathrm{v} \\ & 82 \mathrm{v} \end{aligned}$		Trouble in this section. Isolate by the following tests.
2	A	6.6 v	No voltage Low voltage	Open: FS100, L100. S100, L101. Shorted: C100. C101. C102. C103. Leaky: C100, C101. C102, C103.
3	D	165v	No voltare Love voltage High voltage	Defective: 7Y4, VB100. Open: T100. Defective: 7Y4. Oden: C105A. T100. Leaky: Cl05A. Shorted or leaky: C105B, C105C. Open: R101, R205*.
4	E	85 v	No voltage Low voltage High voltage	Open: R101. Shorted: C105B. Leaky: C105B, C105C. Changed resistance: R101. Open: R102, R205*. T200*.
5	B	82v	No voltare Low voltage	Open: R102. Shorted: Cl05C. Leaky: Clo5C. Changed resistance: R102.
Listening Test: Abnormal hum may be caused by open Cl05B or Cl05C.				

This part, located in another section, may cause abnormal indication in this section.

TROUBLE SHOOTING

Section 2 - AUDIO CIRCUITS

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C ; connect the output lead through a 1 - mf . condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully clockwise.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

*This part, located in another section, may cause abnormal indication in this section.

Circuit Description

Studebaker-Philco Model S4824, a custom-built auto radio, is a six-tube superheterodyne with self-contained speaker. Permeability tuning is used for all main circuits. Four push buttons provide mechanical automatic tuning by actuating the pantograph tuning mechanism.

The circuit includes a 7A7 r-f amplifier, a 7B8 converter, a 7A7 i-f amplifier, a 7B6 detector-a.v.c.-1st audio amplifier, and a 7A5 output amplifier. The power sup-

SECTION 1 POWER SUPPLY

Reference	Symbol Description	Service Part No.
C100	Condenser, r.f by-pass, 220 mmf .	62-122001001*
C101	Condenser, audio by-pass, . 5 mf .	$\cdots \quad$ - 61.0137°
C102	Condenser, audio by-pass, .5 mf .	61-0137*
Cl^{103}	Condenser, audio by-pass, 5 mf .	61-0137*
C104	Condenser, buffer, . 0047 mf .	45-3500.7*
Cl 05	Condenser, electrolytic, 4 -section	61-0150
C105A	Condenser, filter, 20 mf ., 350v	Part of Cl05
Cl105B	Condenser, filter, $10 \mathrm{mf}$. , 350v	Part of Cl05
C105C	Condenser, filter, 5 mf ., 300v	\cdots Part of C105
F100	Fuse, line, 14 amperes .	
L1go	Choke, "A" .-	32-1644
Lld	Choke, hash filter	. 32.4170
R100	Resistor, damping, 100 ohms	66-1104340*
R101	Resistor, filter, 6800 ohms	66-2684340*
R102	Resistor, filter, 2200 ohms	.66-2223340*
S100	Switch, on-off	Part of R200
T100	Transformer, power	- 65-0404
1100	Lamp, pilot34-2064
1101	Lamp, pilot	.34-2064
VB100	Vibrator	-.....83-0026

SECTION 2 AUDIO CIRCUITS

C200	Condenser, d-c blocking, . 0047 mf ${ }^{(1)}$
C201	Condenser, tone control, .01 mf . .-.a)
C202	Condenser, d-c blocking. . 01 mf . .-. ${ }^{\text {a }}$ 61-0120*
C203	Condenser, cathode by pass, 10 mf ., 25v...Part of Clo5
C204	
R200	Volume control (with power switch) 350,000
R201	Resistor, qrid return, 15 megohms66-5153340**
R202	Tone control, 500,000 ohms- 33-5556-5
R203	Resistor, plate load, 220.000 ohms ...- \quad - 66.4223340°
R204	Resistor, grid return, 470,000 ohms $-\cdots \quad 66.4473340^{*}$
R205	Resistor, cathode bias, 220 ohms) 66-1223340*
LS200	
1200	Speaker field coil Part of LS200
T200	

SECTION 3

I-F, DETECTOR, AND A-V-C CIRCUITS

C300A
C300B
C301A
C302
C303

L300A
L300B
L301A
L301B
R300
R301
R302
Z300
Z301

(erser,

SECTION 4
 R-F AND CONVERTER CIRCUITS

[^2]ply has a non-synchronous vibrator and a 7 Y4 rectifier.
The lower section of L402B, together with C405 and incidental circuit constants, comprises a series-resonant circuit at image frequencies; since this circuit is directly across the output circuit of the r-f amplifier, the inage frequency component of the output is by-passed to ground. L402B as a whole, with its associated components, functions as an r-f autotransformer, of which the output side is resonant at signal frequencies.

SECTION 4 (Continued) R-F AND CONVERTER CIRCUITS

Reference	Symbol Description Service Part No.
C404	
C405	Condenser, image tracking, $180 \mathrm{mmf}60 .10205307^{*}$
C406	Condenser, r-f trimmer (part of Z400) .-.an -
C407	Condenser, d-c blocking, 220 mmf62-122001001*
C408	Condenser, osc. shunt, 380 mmf30-1220-37
C409	Condenser, osc. shunt, 54.5 mmf .
C410	Condenser, d-c blocking, 220 mmf . .-.....62-122001001*
C411	Condenser, α-v-c filter, . 047 mf ${ }_{\text {a }}$
1400	
1401	Choke, aerialow
L402A	Coil, aerial tuning (part of 2400) ...- 65-0443-10
L402B	Coil, r-f tuning (part of 2400)
${ }_{\text {L402C }}$	Coil, osc. tuning (part of $\mathrm{Z400}$) \quad - 65-0443.12
1403	Coil, osc. shunt (part of 2400) ..._ 65-0229-1
R400	Resistor, plate load, 10,000 ohms
R401	Resistor, grid return, 100.000 ohms .-. 6 - 6 -4103340**
R402	Resistor, cathode bias, 680 ohms \quad - 66.1683340^{*}
R403	Resistor, osc. grid bias, 100,000 ohms66-4103340*
R404	Resistor, osc. anode feed, 10.000 ohms66-3103340*
TC402A	Tuning core, aerial (part of Z400))
TC402B	Tuning core, r-f (part of $\mathrm{Z400}$)
TC402C	Tuning core, osc. (part of Z400)
TC403	
2400	Pantograph tuning assembly

MISCELLANEOUS

Description	Service Part No.
" $A^{\prime \prime}$ Lead	
"A'-lead assembly (fuse to set) ...	-76-2070-35
" A " ${ }^{\text {c lead }}$.77.0638
Grommet, "A" lead	. 27.4676
Bezel Assembly	
Bezel-and-stud assembly	.76-2156-1
Dial scale	27-5997
Spring, dial mounting	28-9007
Housing Parts	
Cover, tube side	57-1547FC59
Cover, wiring side	...57-1548FC59
Gasket. speaker	55-1045
Housing assembly	77-1039FC59
Knobs	
Control-knob assembly (tone and volume)	77-1043
Nut-cover assembly	76.2171
Manual-tuning knob	57-2379
Manual-tuning-knob extension	56.3867
Push-button-knob assembly	76-1984
Spring, manual-tuning knob57-1628
Spacer, manual-tuning knob	-
Pilot-lamp assembly	
Pilot-lamp socket and light filter, l.h. .-.	
Pilot-lamp socket and light filter, r.h. ...	
Set Mounting Parts	
Bolt, hook	56-374
Nut, wing	...1W23750FA3
Socket, tube (loktal)	.27-6138
Socket, vibrator	27-6153
Suppression Parts	
Braid, copper	97-0073
Distributor suppressor	...33-4170
Nipple, distributor cable	- \quad - 54.7159
Strap, grounding (battery)	.76-2557
Strap, grounding (windshield-wiper motor)	..76-2556
Tuning.Unit Parts (Pantograph Tuning Assembly)	
Pointer assembly	76-2482
Push-button spring	57-1651
Latch-bat spring	57-1650
Tuning unit77.0588-3

MODEL 46-131

SPECIFICATIONS

CABINET Model 46-131 (Plastic, walnut finish) CIRCUIT Four-tube superheterodyne FREQUENCY RANGE........ 540 to 1720 k.c. POWER INPUT......... 90 volts at 6.5 to 7.5 milliam peres (plate supply)
1.5 volts at .2 ampere (filament supply)
From battery pack-Type P-60B-6L
POWER CONSUMPTION......... 1 watt (total for both plate and filament supplies) AERIAL External, Philco Type 40-6383 INTERMEDIATE FREQUENCY. 455 kc PHILCO TUBES USED..................... ILA6, ILN5, ILH4, 1ASGT/G

Figure 1. Block diagram (Heavy lines indicate signal path).

TROUBLE-SHOOTING PROCEDURE

In this manual, the receiver circuit is divided into four sections, as shown in figure 1 . One test point is designated for each section, as shown in figure 2. Abnormal indications, secured when checking at these test points, localize trouble to the section under test. After localization, isolation of the faulty part is accomplished by testing in the order shown in the sectional test charts. A high-quality signal generator and voltohmmeter are required. Voltage readings shown were taken with $\alpha 20,000$-ohms-per-volt meter. To localize trouble, proceed in the order given in the following chart. When applying α signal, connect the signal-generator output lead through α condenser (.01 to .25 mf .). Remedy any defect encountered before proceeding to the next check.

Figure 2. Bottom view, showing test points.

TESTS TO LOCALIZE TROUBLE TO ONE SECTION

SECTION	TEST	NORMAL RESULTS
Preliminary resistance check	Measure resistance between points $1 B$ and C before connecting battery to receiver. If resistance is low, check condensers Cl 100 and C203 for leakage or shorts.	100,000 ohms or higher
1	Measure voltage between points $1 A$ and C (chassis). Measure voltage between points $1 B$ and C.	1.2 to 1.4 volts 63 to 79 volts
2	Apply audio signal between points 2 and C.	Loud, clear signal
3	Apply weak, modulated signal (455 kc.) between points 3 and C.	Loud, clear signal
4	Apply weak, modulated signal (frequency to which set is tuned) between points 4 and C.	Loud, clear signal

TESTS TO ISOLATE TROUBLE WITHIN SECTION 1
Make all tests for this section with a volt-ohmmeter, using the $0-250 \mathrm{v}$. d-c range. Voltages given were taken with the set operating and drawing normal current from battery. See figures 3 and 4 for location of test points.

Test Pointa	Normal Reading	Possible Cause of Abnormal Reading
B to C (chassis)	79 volts	No voltage indicates open battery cable, defective switch S100, open resistor R100. shorted condenser CloO. Low voltage indicates nearly dead battery, defective resistor R100, leaky condenser Cl00, or excessive plate or screen current by one or more tubes.
A to C	1.4 volts	No voltage indicates open battery cable or defective switch S100.
D to C	6 volts	Deviation in this voltage indicales change in value of resisfor R100, or abnormal current low because of defective parts in sections 2. 3, or 4.

Figure 3. Section 1 schematic.

Flgure 4. Bottom view. showing section 1 test polnts.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 2

For all tests in this section use the audio range of the signal generator. Connect the generator output lead through a condenser (.01 to .25 mf .) to points indicated; connect the ground lead to receiver chassis. Adjust signal generator output for clear, audible signal.

| Test Points | Normal Indication | Possible Cause of Abnormal Indication |
| :---: | :--- | :--- | :--- |
| E to C
 (chassis) | Clear, audible signal from speaker
 (receiver volume control at approx-
 imately three-fourths maximum). | No signal indicates defective 1A5GT/G, defective output transformer T200 or
 speaker LS200. Low and greatly distorted signal indicates leakage in condensers
 C202 or C203. |
| F to C | Clear, audible signal, same as pre-
 ceding test. | No signal indicates open condenser C202, or shorted ror.denser C201; distortion
 indicates leakage in condenser C202, or oben resistor R203. |
| G to C | Clear, audible signal with noticeable
 increase over that obtained in pre-
 vious tests. | No signal indicates defective 1LH4, or open resistor R202. Distortion indicates
 defective llH4. |
| H to C | Clear, audible signal, same as pre-
 ceding test. | No signal indicates open condenser C200; noisy or otherwise distorted signal
 indicates defective volume control R200. Rotate control through entire range for
 complete check. |

Figure 5. Section 2 schematic.

Figure 6. Bottom view, showing section 2 test points.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 3

For all tests in this section, set the signal generator to 455 kc ., modulation on. Connect the generator output lead through a condenser (.01 to .25 mf .) to the points indicated; connect the ground lead to receiver chassis. Adjust signal generator output for clear, audible signal.

Teat Points	Normal Indication	Ponsible Cause of Abnormal Indication
$\underset{\text { (ch to Cosis) }}{\text { J }}$	Audible slgnal from apeaker.	No signal. or very weak aignal. indicates defective ILN5 tube, defective or misaligned iff transformer ansembly Z301, or defective diode section of 1LH4 tube.
E to C	Audible signal trom speaker.	No signal indicates defective or misaligned if transformer assembly 2300.

Figure 7. Section 3 schematic.

Figure 8. Bottom view, showing section 3 test points.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 4

IMPORTANT: Before applying a test signal to this section, make a preliminary check by rotating the tuning control through its entire range. Any scraping noise heard in the speaker indicates bent tuning condenser plates, dirty wiper contacts or dirt between the condenser plates. These conditions should be remedied before proceeding with the tests. Then connect the signal-generator output lead through a condenser (.01 to .25 mt .) to indicated test points and the generator ground lead to " C " (receiver chassis). For best results, check operation first at 540 kc . and then at 1700 kc .

Test Pointa	Normal Indication	Possible Cause of Abnormal Indication
L to C (chassis)	Audible signal lrom speaker.	No signal indicates defective ILA6 lube, defective oscillator translormer T401. shorted plates in oscillator section of condenser C401. shorted condenser C405, or defective resistor R401 or R402.
M to C	Audible signal from speaker.	No signal indicates delective antenna transformer T400, or shorted plates in antenna section of condenser C401.

OSCILLATOR GRID BIAS VOLTAGE. Ground test point "L", connect a voltmeter (20,000 -ohms-per-volt, 10 -volt scale) between " N " (-) and " C " (+), and rotate the tuning control throughout its entire range. The voltage reading should not fall below 1.5 volts throughout. Insufficient voltage indicates malfunctioning, and the components listed in the first test in the above chart should be checked in the order given.

Fiqure 9. Section 4 schematic.

Flgure 10. Boltom view, showing section 4 test points.

MODEL 46-131

CONNECTING ALIGNING EQUIPMENT

OUTPUT METER. Connect to voice coil lugs on rear of speaker, as shown in figure 11.
SIGNAL GENERATOR. Use a $100-\mathrm{mmf}$. condenser to couple the signal-generator output lead to the receiver. Adjust the output of the signal generator to give a signal strength sufficient to cause a readable deflection of the output meter, using the range on the meter which best indicates small variations in output. Reduce the output of the signal generator if the pointer of the output meter goes off scale as alignment progresses.

PROCEDURE. Turn receiver volume control to three-fourths maximum and adjust all trimmers, in the order listed, for maximum output.

ALIGNMENT CHART

SIGNAL GENERATOR		RECEIVER		
Connections to Receiver	Dial Setting (kc.)	Dial Setting (ke.)	Special Instructions	Adjust Trimmers in Given Order
Stator plate terminal, antenna section of tuning condenser, and chassis.	455	540	Turn C300B fully clockwise. Turn tuning condenser plates to fully meshed position. Make sure that dial pointer is set to the left index mark (the first small hole stamped $33 / 4$ inches from left end of scale plate reflector). This setting corresponds to a dial setting of 540 kc .	$\begin{aligned} & \text { C301A } \\ & \text { C300A } \\ & \text { C300B } \end{aligned}$
Antenna lead and chassis.	1700	1700	Turn tuning condenser until dial pointer is on the first index mark (the first small hole $41 / 8$ inches from right end of the scale plate reflector).	C401B
Antenna lead and chassis.	1500	$\begin{gathered} 1500 \\ \text { (approx.) } \end{gathered}$	Turn tuning condenser to position providing maximum reading on output meter.	C401A

Figure 11. Top view, showing trimmer-condenser locations.

NOTE: All voltage, capacity and resistance values shown are average. The voltages shown were measured with a 20,000-ohms-per-volt meter between the indicated test points and C (chassis).
© John F. Rider

MODEL 46-131

Symbol designations used in the schematic and parts list are as follows:

C-condenser
I-pilot lamp
LA-loop antenna
LS-loud speaker
R-resistor

> S-switch
> T-transformer
> W-power cord and plug
> Z-i-f transformer

NOTE: Parts marked with an asterisk (*) are general replacement items and will not be identical with those used on factory assemblies. Use only the "SERVICE PART NUMBER" shown in the parts list when ordering replacements.

REPLACEABLE PARTS LIST

SECTION 1

Figure 13. Drive cord installation details.

SPECIFICATIONS

PHILCO TROUBLE-SHOOTING PROCEDURE

Fiqure 1. Block diagram (Heavy lines indicate signal path).

In this manual, the receiver circuit is divided into four sections, as shown in figure 1. One test point is designated for each section, as shown in figure 2. Abnormal indications, secured when checking at these test points, localize trouble to the section under test. After localization, isolation of the faulty part is accomplished by testing in the order shown in the sectional test charts. A high qualliy signal generator and a volt-ohmmeter are
required. Voltage readings shown were ta en with a 20.000 . ohms-per-volt meter. To localize trouble, turn receiver volume control full on; proceed in the order given in the following chart. When applying a signal, connect the signal-generator output lead through a condenser (. 01 to .25 mf .). Remedy any defect encoun. tered before proceeding to the next check.

TESTS TO LOCALIZE TROUBLE TO ONE SECTION

SECTION	TEST	NORMAL RESULTS
Preliminary resistance check	Measure resistance between points $1 B$ and C with battery disconnected from receiver. It resistance is low, check condensers C302 and C202 for leakage or shorts.	103,000 ohms or higher
1	Measure voltage betwee point 1 A and C (chassis) Measure voltage between point 1B and C (chassis)	1.2 to 1.4 volts 69 to 79 volts
2	Apply audio signal between point 2 and C (chassis)	Loud, clear signal
3	Apply weak, modulated signal (455 kc.) between point 3 and C (chassis)	Loud, clear signal
4	Apply weak, modulated signal (frequency to which set is tuned) between point 4 and C (chassis)	Loud, clear signal

TESTS TO ISOLATE TROUBLE WITHIN SECTION 1

NOTE: Make all tests for this section with a volt-ohmmeter, using the 0.250 V d-c range. Voltages given were taken with the set operating and drawing normal current from battery. See figures 3 and 4 for location of test points.

TEST POINTS	NORMAL READING	POSSIBLE CAUSE OF ABNORMAL READING
B to C (chassis)	79 volts	No voltage indicates open battery cable, defective switch S100, open resisior R100, shorted condenser C302 (see section 3). Low voltage indicates nearly dead battery. defective resistor R100, leaky condenser C302, or excessive plate or screen current by one or more tubes.
A to C	1.35 volts	No voltage indicates open battery cable or defective switch S100.
D to C	6 volts	Deviation in this voltage indicates change of value by resistor R100, or abrormal current flow because of defective parts in the sections 2, 3, or 4.

Figure 3. Section 1 echematic.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 2

For all tests in this section, use the audio range of the signal generator. Connect the generator output lead through a condenser (. 01 to .25 mf .) to points indicated, and connect the ground lead to receiver chassis. Adjust signal-generator output for clear audible signal.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
E to C (chassis)	Clear, audible signal from speaker (receiver volume control at approximately threefourths maximum).	No signal indicates defective 1A5GT/G tube (into which the signal is fed), defective output transformer T200 or speaker LS200. Low and greatly distorted signal indicates leakage in condensers C203 or C204.
F to C	Clear, audible signal, as in preceding test.	No signal indicates open condenser C203 or shorted condenser C202; distortion indicates leakage in condenser C203.
G to C	Clear, audible signal with noticeable increase over that obtained in previous tests.	No signal indicates defective 1LH4 tube or open resistor R203. Distortion indicates defective lLH4 tube.
H to C	Clear, audible signal, same as preceding test.	No signal indicates open condenser C201; noisy or otherwise distorted signal indicates defective volume control R200. Rotate control through entire range for complete check.

Figure 5. Section 2 schematic.

- John F. Rider

TESTS TO ISOLATE TROUBLE WITHIN SECTION 3

NOTE: For all tests in this section, set the signal generator to 455 kc ., modulation ON. Connect generator output lead through a con denser (.01 to .25 mf .) to the points indicated, and connect the ground lead to receiver chassis. Adjust signal-generator output for clear, audible signal

TESI POINIS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
J to C (chassis)	Audible signal from speaker.	No signal, or very weak signal, indicates defective ILN5 tube, defective or misaligned i.f transformer assembly Z301, or defective diode section of ILH4 tube.
K to C	Audible signal from speaker.	No signal indicates defective or misaligned i-f transformer assembly $\mathbf{Z 3 0 0}$.

Figure 7. Section 3 schematic.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 4

IMPORTANT: Before applying a test signal to this section, make a preliminary check by rotating the tuning control throughout its entire range. Any scraping noise heard in the speaker indicates bent tuning condenser plates, dirty wiper contacts or dirt between the condenser plates. which conditions should be remedied before
proceeding with the tests. Then connect the signal-generator output lead through a condenser (.01 to .25 ml) to indicated test point and the generator ground lead to "C" (receiver chassis). For best results, check operation first at 540 kc . and then at 1700 kc .

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE FOR ABNORMAL INDICATION
L to C (chassis)	Audible signal from speaker.	No signal indicates defective ILA6 tube: defective oscillator transformer T401, shorted plates in oscillator section of condenser C401, shorted condenser C404 or defective resistor R401 or R402.
M 10 C	Audible signal from speaker.	No signal indicates defective antenna transformer T 400 , or shorted plates in antenna section of condenser C401.

OSCILLATOR GRID BIAS VOLTAGE. Ground test point "L": connect a voltmeter (20,000 ohms-per-volt. 10 -volt scale) through 50.000 ohm isolating resistor, between "N" (-) and "C" (+). Rotate the tuning control throughout its entire range. The voltage
reading should not fall below 1.5 volts throughout. Insufficient voltage indicates malfunctioning, and the components listed in the first test in the above chart should be checked in the order given.

Figure 9. Section 4 schematic.

CONNECTING ALIGNING EQUIPMENT

OUTPUT METER. Connect to voice coil of speaker, as shown in figure 11.

SIGNAL GENERATOR. Use a $100-\mathrm{mmf}$. condenser to couple the output lead to the receiver. Adjust the output of the signal generator to give a signal strength sufficient to cause a readable deflection of the output meter, using the range on the meter which
best indicates small variations in output. Reduce the output of the signal generator if the pointer of the output meter goes off scale as alignment progresses.

PROCEDURE. Tum receiver volume control to maximum and adjust all trimmers in the order listed for maximum output.

ALIGNMENT CHART

SIGNAL GENERATOR		R ECEIVER		
$\begin{gathered} \text { CONNECTIONS } \\ \text { TO } \\ \text { RECEIVER } \end{gathered}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \\ & (\mathrm{kc} .) \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \\ & \text { (kc.) } \end{aligned}$	SPECIAL INSTRUCTIONS	ADJUST TRIMMERS IN GIVEN ORDER
Stator plate terminal, antenna section of tuning condenser and chassis.	455	540	Turn C300B fully clockwise. Turn tuning condenser plates to full meshed position. Make sure that dial pointer is set to the left index mark (the first small hole stamped $33 / 4$ inches from left end of scale plate reflector). This setting corresponds to a dial setting of 540 kc .	C301A C300A C300B
Aerial lead and chassis.	1700	1700	Turn tuning condenser until dial pointer is on the first index mark (the first small hole $41 / 8$ inches from right end of the scale plate reflector).	C401B
Aerial lead and chassis.	1500	$\begin{gathered} 1500 \\ \text { (approx.) } \end{gathered}$	Turn tuning condenser to position providing maximum reading on oufput meter.	C401A

Symbol designations used in the schematics and parts list are as follows:

$$
\begin{aligned}
& \text { C-condenser } \\
& \text { I-pilot lamp } \\
& \text { LA-loop antenna } \\
& \text { LS-loudspeaker } \\
& \text { R-resistor } \\
& \text { S-swith } \\
& \text { T--transformer } \\
& \text { W-power cord and plug } \\
& \text { Z-i-f transformer assembly }
\end{aligned}
$$

NOTE: Parts marked with an asterisk (*) are general replacement items and the numbers will not be identical with those used on factory assemblies. Use only the "SERVICE PART NO." shown below when ordering replacements.

Figure 13. Drive cord installation details.
REPLACEMENT PARTS LIST
SECTION 1

SECION 1		MISCELLANEOUS
Referenc	ce Sescription Service	
	Description Part No.	Service
S-100 BA. 100		Description Part No.
		Coil clip, antenna oscillator mounting ..- \quad 28-5002FE7
	Plug, battery cable	Sleeve, tuning condenser mounting
R. 100		
	ECTION 2	Tuning shaft assy. . $-\square \times$ - ${ }^{\text {a }}$
C-200		
C-201		
C-202		
C-203		Flag, operating arm assy.
. 204		
C-205		Flag
R-200	Volume control, 1 meg. \square^{+}-	er ..x
R-201		Grommet, rubber, tuning condenser mounting, back \quad - \quad 27-4610
R-202		Grommet, rubber, tuning condenser mounting, front ${ }_{\text {ancow }}$ 27-4596
R-203	Resistor, 1 meg.	Socket, octal
R-204	Resistor, 2.2 megs. ...)	Socket, octal ․ㅡㅔ
R-205		Socket. Loktal
R.206		
LS-200	Speaker	Knob assy. - 54.4101
T-200	Transiormel, output	Cabinet, wood (includes scale and bezel)
	SECTION 3	Drive drum assy. .-...mern
2.300		
C. 300. A	Condenser, trtmmerwown	
C-300.B	Condonner, trimmor	
2.301		Washor, chassls mounting ...now.
C-301.A		
C-302		
R-300	Resistor, 10 meg. ${ }^{\text {a }}$	Scale plate and upright assy. .- $\square^{\text {a }}$
	SECTION 4	Screws, speaker mounting .-.
C. 400		Washer, brass, speaker mounting ...
C-401		
C-401.A	Condenser, trimmer $-\square \square \square \square \geq$ Part of C-401	Scale strip .and
C-401-B	Condenser, trimmer .-.].an]	
C.402		
C. 403		Dial scale ... \square_{\square}
C. 404		Felt feet
R-400	Resistor, 4.7 meg. \quad - ${ }^{\text {mes-5473340* }}$	
R-401	Resistor, 220,000 ohms ...	Pulley stud ...anderan
R-400	 . 32 -3920	Transter lever arm
T-401	Transformor, oncillator	Transfer lever arm, mounting bracket .-. 56-2185FA3

John F. Rider

Circuit Description

The Philco Models 47-204 and 47-205 are 5-tube, tablemodel superheterodyne radios, providing reception in the standard broadcast band. The two models are identical, except for cabinet and dial parts, as indicated in the parts list.

The high-impedance loop aerial normally provides adequate signal pick-up. An external aerial may be connected, if desired, by detaching the aerial lead (shown in figure 6) from the chassis, and connecting the lead to an external aerial lead-in. Do not use a ground.

The loop is coupled to the 7A8 converter tube. Variable-condenser tuning is employed, the oscillator rotor-section plates being shaped to obtain tracking, thus eliminating the necessity for a series padding condenser.

The 7 A 8 is transformer coupled to the 14A7 i-f amplifier, which is also transformer coupled to the diodes of the 14 B 6 second detector-first audio-frequency amplifier. A-v-c voltage is applied to the control grids of both the i-f and converter tubes.

The triode section of the 14 B 6 is the first audio stage, and is resistance coupled to the 50 L 6 GT output tube. The output tube is transformer coupled to a permanent-magnet dynamic speaker.

D-c operating voltages are obtained from a 35 Y 4 half-wave rectifier, the output of which is filtered by a two-section resistor-condenser filter.

The choke, part of C304, and the condenser C304 in Section 3, figure 3, form a series-tuned circuit, resonant at the intermediate frequency. This combination offers less impedance than a condenser alone, at this frequency, thus reducing any tendency toward oscillation. This choke-condenser combination acts as a condenser for audio frequencies. By-passing at broadcast frequencies is made adequate by connecting the tuning-condenser gang to the chassis.

The 150,000 -ohm resistor, R100, in Section 1, prevents hum which might otherwise occur under conditions of high humidity.

Philco TROUBLE-SHOOTING Procedure

In this manual, the schematic diagram is divided into four sections, with a chassis layout for each section, showing components and test points for each section. The test points are also indicated on the schematic diagram in the corresponding section. A simplified trouble-shooting procedure is given in a chart for each section. The first step in each chart is a master

MODEL 47-204

MODEL 47-205

SPECIFICATIONS

CABINET. . . . Wood composition, simulated leather CIRCUIT Five-tube superheterodyne FREQUENCY RANGE 540 to $1,620 \mathrm{kc}$ OPERATING VOLTAGE. . 105 to 120 volis, a.c. or d.c. POWER CONSUMPTION 30 watts AERIAL . . . Loop fastened to cabinet; terminal also provided for outside aerial
INTERMEDIATE FREQUENCY 455 kc PHILCO TUBES (5),

PANEL LAMP 7A8, 14A7, 14B6, 50L6GT, 35Y4
${ }_{6}$-8-volt, bayonet base, Part No. 34-2068

check, indicating whether trouble exists in that section. Failure to secure the "NORMAL INDICATION" in a given step indicates trouble, which should be located by voltage, resistance, or capacitance checks of parts indicated in the step, and remedied before testing further.

Preliminary Checks

The following preliminary checks are recommended before turning on the radio:

1. Carefully inspect both top and bottom of the chassis. Make sure that all tubes are secure in their proper sockets (see figure 6), and look for bad connections, burnt resistors, or other obvious sources of trouble.
2. Measure the resistance between B plus and B minus (test points C and B - in figure 1), using the ohmmeter polarity giving the highest resistance reading; if the reading is lower than 50,000 ohms, check $\mathrm{C} 101 \mathrm{~A}, \mathrm{C} 101 \mathrm{~B}$, and C 101 C , for leakage or shorts.

Figure 1. Bottom View, Showing Section 1 Test Points

Section 1

Make the tests for this section with a d-c voltmeter, connecting the leads to the test points indicated in the chart. The voltages shown were taken with a $20,000-$ ohms-per-volt meter at a line voltage of 117 volts, 60 cycles.

Turn the volume control to minimum, and set the dial pointer at 540 kc .

Follow steps in sequence. If "NORMAL INDICATION" is obtained in step 1, proceed with tests for Section 2; if not, isolate and correct the trouble within this section.

STIP	TEST POINTS	NORMAL INDICATION	ABNORMAL INDICATION	possibli causi of abnormal indication
1	A to B-	90 v		Trouble within this section; isolate by the following tests.
2	C to B-	115v	No voltage Low voltage High voltage	Defective 35Y4 tube. Shorted C:101A. Defective 35Y4 tube. Open C101A or 1100. Leaky C101A. Open R101.
3	D to B-	105v	No voltage Low voltage High voltage	Shorted Cl01B. Open C101B. Leaky C101B or C203. Open R102, T200, or R204.
4	A to B-	90v	No voltage Low voltage High voltage	Shorted C101C. Leaky C101C. Open R204.

Listening Tent : Abnormal hum may be caused by open C101A, C101B, or C101C.

Make tests for this section by using an audio signal. Connect ground lead of signal generator to B-; connect output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated in the chart. Set the volume control at maximum. If "NORMAL INDICATION" is obtained in step 1, proceed with tests for Section 3; if not, isolate and correct the trouble within this section.

Figure 2. Sottom View, Showing Section 2 Test Points

stip	test point	normal indication	possible causi of abnormal indication
1	A	Loud, clear signal with low signal-generator output	Trouble within this section; isolate by the following tests.
2	C	Clear signal with high signalgenerator output	No signal: Open or shorted LS200 or T200. Shorted C203. Open R204. Defective 50L6GT tube. Weak or distorted signal: Defective 50L6GT tube, or LS200. Leaky C202 or C201. Open R203. Shorted R204.
3	D	Same as step 2	No signal: Open C201. Weak or distorted signal: Leaky C201.
4	E	Same as step I	No signal: Open R202. Defective 14R6 tube. Weak or distorted signal: Shorted C200. Open R201. Defective 14B6 tube.
5	A	Same as step 1 Note: Rotate R200 through range	No signal: Open C200. Shorted C300D. Weak or distorted signal: Defective R200.

Make tests for this section by using an r-f signal generator with modulated output. Set generator frequency to 455 kc . Connect ground lead of signal generator to $B-$; connect output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated in the chart. Set the volume control at maximum. If "NORMAL INDICATION" is obtained in step 1, proceed with tests for Section 4; if not, isolate and correct the trouble within this section.

STEP	TEST POINT	NORMAL INDICATION	PoSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Clear signal with low signalgenerator output	Trouble within this section; isolate by the following tests.
2	C	Same as step I	No signal: Open or shorted Z300. Defective 14B6 or 14A7 tube. Open R301. Shorted C303. Weak or distorted signal: Leaky C303. Open C303 or C304. Defective 14B6 or 14A7 tube. Misaligned Z300. Leaky or open C302.
3	A	Same as step 1	No signal : Open or shorted Z301. Weak or distorted signal: Misaligned Z301.

Section 4
Make tests for this section by using an r-f signal generator with modulated output. Set frequency as noted in chart. Connect generator ground lead to $\mathrm{B}-$; connect output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated in the chart.

Inspect tuning condensers for bent plates, dirt, or poor wiper contacts; any or all of these will cause noise. If "NORMAL INDICATION" is not obtained in step 1 , isolate trouble by following the remaining steps.

STEP	TEST POINT	dial settings		NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
		SIG. GEN.	RADIO		
1	A	540 kc	540 kc	Clear signal with low signal-generator output	Trouble within this section; isolate by the following tests.
2	Osc. Test (see Note below)		$\begin{aligned} & 540 \mathrm{to} \\ & 1620 \mathrm{ke} \end{aligned}$	Negative voltage	Open or shorted T400, C402, or R400. Shorted C400 or C400B. Defective 7 A8 tube.
3	C	540 kc	540 kc	Same as step 1	No signal: Open or shorted Z301. Shorted C400 or C400A. Defective $7 A 8$ tube. Weak or distorted signal: Shorted or open LA400. Defective 7A8 tube.
4	A	540 kc	540 kc	Same as step 1	Weak signal : Open C401.

NOTE: Oscillator test.-Connect positive lead of a 20,000 -ohms-per-volt meter to $B-$; prod end of negative lead through a 100,000 ohm isolating resistor to test point D. Proper operation of oscilfator is indicated by a negative voltage of 9 to 12 volts throughout range of tuning condenser.

MODELS 47-204, 47-205

ALIGNMENT PROCEDURE
turn on the radio power, and set the volume control full on OUTPUT LEVEL-During alignment, adjust the sig-nal-generator output to maintain an output-meter

STEP	Signal generator		nado		
	COnNECIIONS to radio	dial setting	dial setting	Special instructions	adjust
1				Turn C301B (copper serew) down tight.	
2	Through .1-mf condenser totest-point C of Section 4	45.5 kc	510 ke	Adjust trimmers, in the order given, for maximum outpul.	$\begin{aligned} & \mathrm{C} 300 \mathrm{~A} \\ & \mathrm{C} 300 \mathrm{~B} \\ & \mathrm{C} 301 \mathrm{~A} \\ & \mathrm{C} 301 \mathrm{~B} \end{aligned}$
3	Through 100-mmf condenser to external aerial connector.	1600 ke	1600 kc	Disconnect external aerial lug from chassis. Adjust trimmer for maximum output.	CHMB
4	Sume	1500 kc	1500 kc	Adjust for maximum output.	CH00A

SYMBOLIZATION AND TERMINOLOGY
All components in the radio circuits are symbolized and located
as follows:
C-condenser LA-loop aerial S-switch L-choke or coil \quad R-resistor \quad Z-electrical 100 -series components are in Section 1, the power 200 -series components are in Section 2 , the second detector, a.v.c. and audio.
300 -series components are in Section 3, the i-f am‘f!nar aч 't uo!pas u! ase syuaioduoa sa!nas-00t 100-series componeat
r.f. and oscillator
OUTPUT METER-Connect to left (output) lug and center (chassis) lug of terminal pane,
shown in figure 6 .

Figure 7. Drive-Cord Instatlation Details

REPLACEMENT PARTS LIST

NOTE: Parts marked with an asterisk (*) are general replacement items, and the numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items furnished may differ from the values indicated in the schematic and parts list. The values substituted in any case are so chosen that the operation of the instrument will be either unchanged or improved. When ordering replacements, use only the "Service Part No." in this parts list.

SECTION 1

Reference No.	Description	Service Part No.
C100	Condenser, line filter, 04 mf .	45-3500-2*
C101	Condenser, electrolytic, 3-sectio	lter 30-2573
C101A:	Condenser, electrolytic, 30 mf	Part of C101
C101B:	Condenser, electrolytic, 25 mf	Part of C101
C101C:	Condenser, electrolytic, 20 mf	Part of C101
R100	Resistor, leakage, 150,000 ohm	6-4 153340*
R101	Resistor, filter. 220 ohms.	66-1224340*
R102	Resistor, filter, 1200 ohms	66-2123340*
S100	Switch, power	Part of R200
W100	Power cord and plug	L3363
1100	Panel lamp	. .34-2068

SECTION 2

C200	Condenser, coupling, 01 mf 61-0120*
C201	Condenser, coupling, . 01 mf61-0120*
C202	Condenser, by-pass, 220 mmf 60-10205307*
C203	Condenser, by-pass, . 02 mf 61-0108*
R200	Volume control (with power switch), 500,000 ohms. \qquad
R201	Resistor, grid load, 3.3 megohms . . 66-5333340*
R202	Resistor, plate load, 470,000 ohms . . 66-4473940*
R203	Resistor, grid load, 470,000 ohms . . 66-4473940*
R204	Resistor, bias, 130 ohms 66-1123940*
LS200	Speaker . 36-1614
- T200	Output transformer Part of LS200

SECTION 3

C302	Condenser, a-v-c by-pass, . 1 mf 61-0113*
C303	Condenser, screen by-pass, 05 mf61-0122*
C304	```Condenser and choke assembly, i-f by-pass, . 2 mf 76-1161```
R300	Resistor, diode load, 47,000 ohms. Part of $\mathbf{Z 3 0 0}$
R301	Resistor, screen, 27,000 ohms66-3273340*
R302	Resistor, a-v-c, 2.2 megohms.66-5223340*
2300	Transformer, 2nd i-f 32-8952
C300A:	Condenser, trimmer Part of $\mathbf{Z 3 0 0}$
C300B:	Condenser, trimmer Part of $\mathbf{Z 3 0 0}$
C300C:	Condenser, by-pass, 100 mmf Part of $\mathbf{Z 3 0 0}$
C300D:	Condenser, by-pass, 100 mmf Part of $\mathbf{Z 3 0 0}$
2301	Transformer, 1st i-f. 32-3967
C301A:	Condenser, trimmer Part of $\mathbf{2 8 0 1}$
C301B:	Condenser, trimmer Part of $\mathbf{Z 3 0 1}$

SECTION 4

Reference ${ }^{\text {No. }}$	Description	Service Part No.
C400	Condenser, tuning, 2-section	31-2527-2
C400A:	Condenser, trimmer	Part of $\mathbf{C 4 0 0}$
C400B :	Condenser, trimmer	Part of C400
C401	Condenser, coupling, 5 mmf	60-90505007*
C402	Condenser, isolating, 47 mmf .	60-00515307*
R400	Resistor, Osc., grid, 100,000 ohms.	66-4103340*
$\mathbf{R 4 0 1}$	Resistor, aerial discharge, 150,000 ohms	.66-4153340*
T400	Transformer, oscillator	. 32-3880
LA400	Loop aerial:	
	Model 47-204	. 32-4052-3
	Model 47-205	. 32-4052-1

MISCELLANEOUS

Description	Service Part Na.
Cabinet	
Model 47-204	10674
Model 47-205	10673
Cabinet Hardware	
Back	54-7371
Baffle and cloth assembly	
Model 47-204	40-6906
Model 47-205	. . .40-6905
Bezel	54-4152
Foot, felt	W2190
Grill (plastic), speaker.	. 54-4458
Knob	
Model 47-204	5-4-4375
Model 47-205	. . 54-4228
Window, acetate	27-5616
Clip, coil mounting	28-5002FA1
Dial-Scale Hardware	
Cord, drive (25-ft. spool)	. 45-8750
Pointer	. .54-4148-1
Scale, dial	
Model 47-204	. 27-5953
Model 47-205	27-5952
Screw, scale mounting	1W19674FA3
Spring, drive cord	56-2617
Washer, scale mounting.	. 2W64094
Panel, terminal, loop aerial.	. 76-2148
Panel, lamp assembly	. 76-1472
Shaft, drive assembly	. .31-2718
Socket, Loktal	. 97-6138* $^{\text {\% }}$
Socket, octal	. . 27-6174*

Circuit Description

Philco Model 48-1284 is a console-model radiophonograph combination consisting of a seven-tube superheterodyne and a Philco Model M-8 Automatic Record Changer, operating on a.c. only. The tuning ranges are 540 to 1650 kc . and 9.3 to 15.7 mc . The built-in low-impedance loop normally provides adequate signal pickup; where greater pickup is required, an external aerial may be connected, using Philco Aerial Coupler Part No. 76-2353.

A 7AF7 dual triode is employed in a converter circuit designed for high signal-to-noise ratio and high conversion efficiency. A 7A7 pentode is used in the first i-f stage and the pentode section of a 7 R 7 dual-diodepentode is used in the second i-f stage. The midgettype i-f transformers have permeability tuning for greater stability and efficiency. One diode section of the 7 R 7 is used as the detector, and the other is used to supply a-v-c voltage to the converter and the first i-f stage. A 7F7 dual triode functions as the first audio amplifier and phase inverter to drive two 6K6GT output tubes in push-pull.

More uniform frequency response and decreased harmonic distortion is obtained by the use of inverse feedback. Voltage from the secondary of the output transformer is fed back through a voltage divider, R209 and R210, over three stages to the first audio amplifier. Full control of bass and treble is made pessible by a variable tone control, R201. Excellent frequency response at any volume level is provided by a 12 -inch electrodynamic speaker.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

Section 1-the power supply
Section 2-the audio circuits
Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits
Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. Any trouble revealed should be corrected before testing further.

MODEL 48-1 284

SPECIFICATIONS

CABINET	Wood console, walnut finish
RADIO CIRCUIT	Seven-tube superheterodyne
FREQUENCY RANGES	
Broadcast	540-1650 kc.
Short Wave	$9.3-15.7 \mathrm{mc}$
AUDIO OUTPUT	6 watts
OPERATING	
VOLTAGE	105-120 volts, 60 cy cles, a.c.
POWER	
CONSUMPTION	
Radio	75 watts
Record Changer .	20 watts
AERIAL	Built-in low-impedance loop; terminal provided for external aerial
INTERMEDIATE FREQUENCY	455 kc .
PHILCO TUBES (7)	$\begin{aligned} & \text { 7AF7, 7A7, 7R7, 7F7, } \\ & \text { 6K6GT (2), 7Z4 } \end{aligned}$
PHONOGRAPH	Philco Automatic Record Changer Model M-8 (for service information see manual PR-1478)

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance between $\mathbf{B}+$ (pin 7 of 7Z4 rectifier) and $B-$, test point B. When the ohmmeter leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 3000 ohms, check condensers C102, C103B, C311, and C306 for leakage or shorts. This resistance value, which is much lower than normal, does not represent a quality check of these condensers; it is the lowest value which will permit the rectifier to operate safely while the voltage tests of Section 1 (power supply) are performed.

FIGURE 2. BOTTOM VIEW, SHOWING SECTION I TEST POINTS

Section 1 TROUBLE SHOOTING

POWER SUPPLY

CAUTION: Do not turn on the power with the speaker disconnected, or the radio may be damaged.
Make the tests for this section with a d-c voltmeter; connect the leads between the test points indicated in the chart. The voltage readings given were taken with a 20,000-ohms-per-volt meter at a line voltage of 117 volts.

Set the band switch to the broadcast position. Set the volume control to minimum and turn the tone control fully clockwise.

Follow the steps in the order given. If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A to C	255v		Trouble in this section. Isolate by the following tests.
2	D to B	300v	No voltage Low voltage High voltage	Defective: 7Z4. Open: T100, S100, W100. Shorted: C102, T200. Leaky: C102. Shorted or leaky: C103A, C103B, C306*, C311*. C210*, C211". Open: L100, R100, R101, T200*.
3	B to C	$-17 \mathrm{v}$	High voltage	Open: R101.
4	E to C	205v	No voltage Low voltage	Open: R100. Shorted: C103A. Leaky: C103A. Increased resistance: R100.
5	A to C	255v	No voltage Low voltage High voltage	Open: L100, R101. Shorted: C103B. Leaky: C103B. Shorted: C210*, C211*. Open: T200*.

Listening Test: Abnormal hum may be caused by open C102. C103A. C103B, C100, or C101.
*This part, located in another section, may cause abnormal indication in this section.

Section 2

TROUBLE SHOOTING
 AUDIO CIRCUITS

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, turn the tone
control fully clockwise, and set the band switch to the broadcast position for all of the steps except step 7.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weale signal input.	Trouble in this section. Isolate by the following tests.
2	$\text { (Remove }{ }^{\text {B }}$	Clear signal with strong signal input.	Defective: 6K6GT, T200. Shorted: C210, C209. Open: R214, R212, C209.
3	(7F7 removed.)	Same as step 2.	Defective: 6K6GT, T200. Shorted: C208, C211. Open: R213. C208.
4	$\begin{gathered} \text { (Replace 7F7.) } \end{gathered}$	Loud, clear signal with moderate signal input.	Defective: 7F7. Shorted: C203. Open: R205, R206, R207, R211.
5	F	Same as step 1:	Defective: 7F7. Shorted: C201, C202. Open: C203, R203, R204.
6	A	Same as step 1.	Defective: R200 (rotate through range). Open: C200, C206, WS-3 (R), R209. Shorted: C302D*, C312*.
7	G (Set band switch to phono.)	Same as step 1.	Open: WS-3 (R).
Listening Test: Distortion may be caused by shorted or leaky C200, C206, C203, C208, or C209. Poor low-frequency response may be caused by open or shorted C205 or open R208.			

- This part, located in another section, may cause abnormal indication in this section.

FIGURE 4. BOTTOM VIEW, SHOWING SECTION 3 TEST POINTS
TP.5356.C

Section 3

TROUBLE SHOOTING

I-F, DETECTOR, AND A-V-C CIRCUITS

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio-phono switch to the radio position and the band switch to the broadcast position. Set the volume control to maximum and turn the tone control fully clockwise. Rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

To provide a complete i-f-amplifier check, test point A for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION".

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	B	Loud, clear signal with strong signal input.	Defective: 7R7. Open: L302A, L302B, R306, WS-2 (R), R309, R310, R308, R307, C302A, C302B. Shorted: L302A, L302B, C302A, C302B. Shorted or leaky: C310, C311, C302C. Misaligned: Z362.
3	D	Loud, clear signal with moder. ate signal input.	Defective: 7A7. Misaligned: Z301. Open: R302, R303, L301A, L301B, C301A, C301B. Shorted: C305, C301A, C301B, L301A, L301B.
4	A	Loud, clear signal with weak signal input.	Defective: 7AF7*. Misaligned: Z300. Open: R401*, R300, R301. L300A. L300B, L300C, C300A, C300B. Shorted: C303, C409*, C300A, C300B, L300A, L300B, L300C.

*This part, located in another section, may cause abnormal indication in this section,

FIGURE 5. BOTTOM VIEW, SHOWING SECTION 4 TEST POINTS
TP-5356-D

Section 4

TROUBLE SHOOTING R-F AND CONVERTER CIRCUITS

For the tests in this section, with the exception of the oscillator tests, use an r-f signal generator with modulated output. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$, condenser to the test points indicated in the chart.

Set the volume control to maximum and turn the
tone control fully clockwise. Set the radio band switch, the tuning control, and the signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQ.	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \end{aligned}$	RADIO TUNING	NORMAL Indication	POSSIble CAUSE OF abNormal INDICATION
$1(a)$ 1 (b)	A	1000 kc. 15 mc .	BC SW	1000 kc . 15 mc .	Loud, clear signal with weak signal input. Same as step 1 (a).	Trouble in broadcast band. Isolate by the tests in steps 2 and 3. Trouble in short-wave band. Isolate by the tests in steps 4 and 5.
2	B (Osc. test; see note below.)		BC	Rotate through range.	Negative 1.5 to 2.0 volts.	Defective: 7AF7. Open: L402, WS-1 (F), WS-2 (F), WS-3 (F), R400, C408, R403. R404. C405. Shorted or leaky: C405, C408, C400A, C402B, C401C. Shorted: L402.
3	A	1000 kc .	BC	1000 kc .	Loud, clear signal with weak signal input.	Open: L400, WS-3(F), WS-3 (R), C403. C406, R401. Shorted: C400B, C402A.
4	B (Osc. test; see note below.)		sw	Rotate through range.	Negative 1.5 to 2.0 volts.	Defective: 7AF7. Open: L403, WS.1 (F), WS-2 (F), WS-3 (F), C407. Shorted: C401B, C407.
5	A	15 mc .	sw	15 mc .	Loud, clear signal with weak signal input.	Open: WS-3 (F), WS-3 (R), L401. Shorted: C401A.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to the chassis, test point C; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 5 of the 7AF7), test point B. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltages of approximately the values given in the chart (measured with a 20.000 -ohms-per-volt meter) throughout the tuning range.

MODEL 48-1284

CALIBRATING DIAL BACKPLATE

When the radio chassis has been removed from the cabinet, dial calibration and alignment points should be marked on the dial backplate below the pointer.

The method of measuring for these points is illustrated in figure 1. Hold a ruler against the scale backplate, with the start of the ruler at the reference line shown, and mark pencil dots at the proper points for the required frequency settings. When the ruler is correctly placed, the index mark is approximately 2
inches from the reference point indicated in figure 1. With the tuning gang fully meshed, the pointer should be adjusted on the dial-drive cord to coincide with the index mark.

After installation of the chassis in the cabinet, the dial pointer should be moved to coincide with the index mark on the dial. Coincidence of the pointer and index mark should occur with the tuning condenser fully meshed.

FIGURE 1. CALIBRATION MEASUREMENTS FOR DIAL BACKPLATE

PROCEDURE
 ALIGNMENT

[^3]
REPLACEMENT PARTS LIST (Continued)

SECTION 2—AUDIO CIRCUITS

Reference	Symbol Description Service Part No.
C200	
C201	Condenser, r-f by-pass, 100 mmf60-10105407**
C202	Condenser, tone control, . 01 mf . .-.).
C203	Condenser, d-c blocking, 006 mf45-3500.7*
C204	Condenser, tone compensation,
C205	Condenser, tone compensation, . 006 mf . -.-45-3500.7*
C206	
C207	Condenser, bias filter, . 1 mf61-0113**
C208	Condenser, d-e blocking, . 006 mf).
C209	Condenser, d-c blocking, 006 mf45-3500-7*
C210	Condenser, parasitic suppressor, . 006 mf61-0153*
C211	Condenser, parasitic suppressor, . 006 mf . .-...61-0153*
J200	
J201	Cable and plug, phono input41-3735-16
LS200	
R200	Volume control, 2 megohms33-5535-16
R201	Tone control, 4 megohms .-. 33-5538-29
R202	Resistor, crystal load, 1 megohm66.5103340**
R203	Resistor, plate load, 220,000 ohms $-\quad$ - 66-4223340**
R204	Resistor, grid return, 10 megohms66-6103340**
R205	Resistor, cathode bias, 4700 ohms). ${ }^{\text {a }}$ 66-2473340*
R206	Resistor, cathode load, 47,000 ohms66-3473340**
R207	Resistor, grid return, 1 megohm66-5103340*
R208	Resistor, tone compensation, 33.000 ohms. \qquad 66-3333340*
R209	Resistor, voltage divider (negative feedback). 4.7 ohms \qquad 66-9474360
R210	Resistor, voltage divider (negative feedback), 68 ohms \qquad 66-0683340*
R211	Resistor, plate load, 56,000 ohms .-.............66-3563340**
R212	Resistor, bias filter, 100,000 ohms) 6 66-4103340**
R213	Resistor, grid return, 330,000 ohms66-4333340**
R214	Resistor, grid return, 330,000 ohms). 66-4333340*
T200	Transformer, output ...32.8274
WS-3 (R)	Switch-water sectionPart of 42-1846

SECTION 3-I-F, DETECTOR, AND A-V-C CIRCUITS

Condenser, shunt Part of 7300
Condenser, shunt ……)... 7301
C302A
C302A
C302B
C302C
C302D
C303
C304
Condenser, $a-v-c$ by-pass, 01 mf61-0120*
C305 Condenser, screen by-pass, 01 mf61-0120*

C308 Condenser, d.c blocking. 100 mmf62-110009001*
C309 Condenser, cathode by-pass, . $05 \mathrm{mf}61-0122 *$

$\begin{array}{ll}\text { C311 } & \text { Condenser, plate by-pass, } .05 \mathrm{mf} . \\ \text { C312 } & \text { Conden................61.0122* } \\ & \text { Condenser, }\end{array}$
$\begin{array}{lll}\text { L300A } & \text { Transformer primary, 1st i-f } & \ldots . P a r t ~ o f ~ Z 300 ~ \\ \text { L300B } & \text { Transformer tertiary, lst i-f } \\ & \text { T. }\end{array}$
L300C
L301A
L301A
L301B
L302A
$\begin{array}{ll}\text { L302B Transformer secondary, 3rd i-fPart of Z302 } \\ \text { R300 } & \text { Trand }\end{array}$
$\begin{array}{ll}\text { R300 } & \text { Resistor, plate decoupling, } 47,000 \text { ohms ...66-3473340* } \\ \text { R301 } & \text { Resistor, a-v-c decoupling, } 1 \text { megohm66.5103340* }\end{array}$
$\begin{array}{ll}\text { R302 } & \text { Resistor, cathode bias, } 150 \text { ohms }66 .1153340 * ~ \\ \text { R303 } & \text { Resistor, screen dropping, } 47,000 \text { ohms66-3473340* }\end{array}$

R305 Resistor, a-v-c diode load, 1 meqohm66-5103340*

| R306 | Resistor, cathode bias, 180 ohms66-1183340* |
| :--- | :--- | :--- |

$\begin{array}{ll}\text { R307 } & \text { Resistor, screen dropping, } 68,000 \text { ohms }666-3683340^{*} \\ \text { R308 } & \text { Resistor, plate decoupling, } 1000 \text { ohms } \\ \text { R3...66-2103340* }\end{array}$
R309
Resistor, plate decoupling, 1000 ohms66-2103340*
Resistor, diode load, 330,000 ohms66-4333340*

SECTION 3-I-F, DETECTOR, AND A-V-C CIRCUITS (Cont.) Reference Symbol Description Service Part No. R310 Resistor, r-f filter, 47,000 ohms66-3473340* WS-2 (R) Z300 Z301 -Z302 Part of $42-1846$
Transformer, lst i.f

SECTION 4-R-F AND CONVERTER CIRCUITS

C400	
C400A	Condenser, tuning (osc. section)Part of C400
C400B	Condenser, tuning (aerial section)Part of C400
C401	Condenser, trimmer, 3-section31-6477.10
C401A	Condenser, trimmer, SW aerialPart of C401
C4018	Condenser, trimmer, SW osc.Part of C401
C401C	Condenser, trimmer, BC osc. (series) Part of C401
C402	Condenser, trimmer, 2 -section31-6476.16
C402A	Condenser, trimmer, BC cerial Part of C402
C402B	Condenser, trimmer, BC osc. (shunt)Part of C402
C403	Condenser, d.c blocking, 240 mmf . .-.). ${ }^{\text {a }}$ 60-10245307*
C404	Condenser, stabilizing, 12 mmf30-1224-33
C405	Condenser, grid return, 240 mmi60-10245307*
C406	Condenser, cathode by-pass, . 01 mf61-0120*
C407	Condenser, fixed padder (SW osc.),
C408	Condenser, d-c blocking, 240 mmf60-10245307*
C409	Condenser, r-f by-pass, 100 mmf-.....62-110009001*
J400	Socket, extemal aerial ..27-6214-1
1400	Coil, BC aerial ...32-4033-7
L401	Coil, SW aerial ...32-4050-10
1402	Coil, BC osc. .-...32-4221-2
1403	Coil, SW osc. ...32-4280
LA400	
R400	Resistor, grid retum, 15.000 ohms66-3153340*
R401	Resistor, cathode bias, 2200 ohms66.2223340*
R402	Resistor, grid return, 1 megohm66-5103340*
R403	Resistor, plate load, 15,000 ohms6663153340*
R404	Resistor, plate load, 33,000 ohms66-3333340*
TB400	Terminal panel, aerial38-9942
WS-1 (F)	Switch-wafer sectionPart of 42-1846
WS. 2 (F)	Switch-wafer sectionPart of 42-1846
WS-3 (F)	Switch-water sectionPart of 42.1846

MISCELLANEOUS

Description	Service Part No
Cabinet (less scale)	10705
Baffle and cloth	40-6998
Baffle, wood	219110
Bezel, metal	56-4878
Bin mechanism (L.H.)	76-3223-5
Bin mechanism (R.H.)	76-3223-6
Bullet catch	45-6002
Cabinet back, binder's board	54-7552
Cabinet back, Masonite	.54-7555
Dial scale	76-3187-5
Dome	45-6190
Door pull	.56-5272
Frame assembly	76-3222-1
Knife hinge (with stop arm)56-4882
Knife hinge .	56-5522
Scale strap	.56-4916
Spring, changer mounting	56-3043FA15
Cable and plug, speaker	41.3734.8
Dial-backplate assembly	76-3716
Dial cord ($25-\mathrm{kt}$, spool)	45-8750*
Dial pointer	56-3179
Spring (pointer drive cord)	28.8953
Spring (tuning-condenser drive cord)	56-2617
Tuning shaft	76-3820
Knob	54-4486
Shield, pilot lamp	56-2194FA3
Socket, Loktal	27-6138*
Socket, octal	27-6174
Socket assembly, pilot lamp	27-6233-16
Wafor, condenser mounting	27-9508

Circuit Description

Philco Radio Model 49-1100 is a six-tube superheterodyne, which provides reception in the standardbroadcast band. The circuit includes a 14AF7 converter, a 7B7 1st i-f amplifier, a 7B7 2nd i-f amplifier, a 7C6 detector, a.v.c., and 1st audio amplifier, and a 35L6GT output amplifier. The power supply employs a 50X6 rectifier in a voltage-doubling circuit.
A low-impedance loop aerial, located within the cabinet, normally provides adequate signal pickup. If greater signal pickup is required, the jumper should be disconnected from the terminal at the rear of the chassis and an external aerial connected to the terminal.

Two series-resonant circuits, consisting of condensers C302 and C303 together with the coils wound on these condensers, function as traps to prevent feedback of the intermediate frequency and the second harmonic of the intermediate frequency through the B- lead. One circuit is resonant at 455 kc ., and the other at 910 kc . Each circuit offers a very low impedance to the resonant frequency, and, therefore, shunts it to the chassis.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

Section 1-the power supply
Section 2-the audio circuits Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits
Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.
Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

SPECIFICATIONS

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before connecting the radio to a source of power.

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance between B+ (pin 7 of 50 X 6 rectifier) and B-. When the ohmmeter leads are connected in the proper polarity, the highest reading will be obtained. If the reading is lower than 3000 ohms, check condensers C101, C102, C103A, and C207 for leakage or shorts.
NOTE: The resistance value above, which is much lower than normal, does not represent a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 (power supply) are performed.

Section 1—Power Supply

TROUBLE SHOOTING

Make the tests for this section with a $\mathrm{d}-\mathrm{c}$ voltmeter; connect the leads between B-, test point B, and the test points indicated in the chart.

The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts.

Set the volume control to minimum, and the tone control fully clockwise.
Follow the steps in the order given. If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

Figure 1. Bottom View, Showing Section 1 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	107v		Trouble in this section. Isolate by the following tests.
2	D	225	No voltage Low voltage High vollage	Defective: 50X6, S100, W100, PL100. Shorted: C101 and C102. Defective: 50X6. Open: C101, C102. Leaky: C101. C102, C103A. C103B. Open: R100, R101.
3	C	190v	No voltage Low voltage High voltage	Shorled: C103A. Open: R100. Changed resistance: R100. Shorted: C207*, C103B. Lgaky: C103A. Open: R101, T200*, R207*.
4	A	107 v	No voltage Low voltage High voltage	Shorted: Cl03B. Open: R101. Leaky: Cl03B. Open: R207*, T200*.

Listening Test: Abnormal hum may be caused by open C100, C103A, C103B, or R102.
*This part, located in another section, may cause abnormal indication in this section.

Section 2—Audio Circuits

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to $\mathbf{B -}$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.
Set the volume control to maximum, and the tone control fully clockwise.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i.f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

TROUBLE SHOOTING

Figure 2. Bottom View, Showing Section 2 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak sig. nal input.	Trouble in this section. lsolate by the following tests.
2	C	Clear signal with strong ignal inpul.	Open: T200, R207. Shorted: C203, C206, C207, C205. Leaky: C203. Defective: 35L6GT, LS200.
3	D	Same as stop 1.	Open: R202, R203, C203. Shorted: C202, C204. Defective: 7C6 (triode section).
4	A	Same as stop 1.	Open: C200, C201, R200 (rotate through range). Shorted: C307* C301D*.
Listening Test: Distortion may be caused by open R201 or R206, or by shorted or leaky C200 or C201.			

*This part, located in another section, may cause abnormal indication in this section.

MODEL 49-1100

Section 3-I-F, Detector, and A-V-C Circuits
 TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B -, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully clockwise. Rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

Figure 3. Bottom View, Showing Section 3 Test Points

Since the circuit loc.aion of test point A for this section is in Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POS. SIBLE CAUSE OF ABNORMAL INDICATION.'

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear signal with moderate signal input.	Defective: 7B7 (2nd i-f amplifier). 7C6 (diode section). Open: L301A, L301B, R306, R304, R303, R300. Shorted: C305, C301A, C301B, C306. C304, C301C, L301A, L301B. Leaky: C305.
3	D	Same as step 1.	Defective: 7B7 (lat i-f amplifier). Open: C305, R301, R302. Shorted: C3008, L3008.
4	A	Same as step 1.	Defective: 14AF7. Open: R402*, L401*, L300A, C300A, L300B. Shorted: C?00A, L300A.
NOTE:	ge on	assis may be caused by shorted	or C303. Oscillation may be caused by open C302 or C303.

- This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F and Converter Circuits

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to B-, test point B; connect the output lead through a $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully clockwise. Set the radio tuning control and signalgenerator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1, isolate and correct the trouble in this section.

Figure 4. Bottom View, Showing Section 4 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIC. CEN. FREQ.	RADIO TUNINC	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	Tune to signal.	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C (Osc. test; see note below.)		Rotate through range.	Negative 3.5 to 5 volts.	Defective: 14AF7. Open C403, C407, C408, L401, R401. Shorted: C405, C400A, C400C. C408, C407, Leaky: C407, C408.
3	A	1000 kc .	Tune to signal.	Same as step 1.	Open: C401, C404, T400. Shorted: C400B, C400D, C406,

[^4]OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to B-, test point B; connect the prod end of the negative lead through a 100.000 -ohm isolating resistor to the oscillator grid (pin 4 of the 14AF7), test point C. Proper operation of the oscillator is indicated by negative voltages of approximately the values given in the chart (measured with 20,000 -ohms-per-volt meter) throughout the tuning range.

ALIGNMENT PROCEDURE

Figure 7. Top View, Showing Trimmer Locations

Figure 8. Drive-Cord Installation Details
RADIATING-LOOP NOTE: Make up a $6-8$ turn, 6 -inch-diameter loop, using insulated wire; connect to radio.

REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk (") are general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical val ues of some replacement items may differ from the values indicated in the schematic dia gram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Circuit Description

Philco Model $49-1401$ is a table-nodel radio-phonograph combination consisting of a 5 -tube superheterodyne, which provides reception on the standard broadcast band, and a Philco Model M-7 Automatic Record Player. The built-in loop aerial normally provides adequate signal pickup. However, a terminal has been provided for connecting an external aerial, if required.

The loop works directly into a 12BE6 converter, where the incoming signal is converted to the $455-\mathrm{kc}$. intermediate frequency. The oscillator section of the tuning-condenser gang has a specially shaped rotor, to provide proper tracking without the use of a series padding condenser. The converter is transformer-coupled to a 12BA6 i-f amplifier, which, in turn, is transformercoupled to the diode section of a 6AQ6. Both i-f transformers have permeability-tuned primary and secondary windings. The diode section of the 6AQ6 acts as a detector, and also provides a-v-c voltage, which is applied to the grids of the converter and the i-f amplifier. The triode section of the 6AQ6, the first audio amplifier, is resistance-coupled to a $35 \mathrm{L6GT}$ beam-poweroutput amplifier, which supplies approximately 2 watts of audio power to a $\mathrm{p}-\mathrm{m}$ dynamic speaker.

The d-c operating voltages are furnished by a voltagedoubler circuit employing a 50 Y 6 GT rectifier and a resistor-condenser filter. Resistor R103 is connected between B - and the chassis to prevent hum due to condenser leakage under high-humidity conditions.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

Saction 1 -the power supply
Section 2 - the audio circuits
Section 3 - the i-f, detector, and a-v-c circuits Section 4-- the r-f and converter circuits
Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire chart.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring citcuit resist-

ances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$, pin 4 of the 50 Y 6 GT , and $\mathrm{B}-$, test point B . When the ohmmeter leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 2000 ohms, check condenser C102A for leakage or a short. This resistance value, which is much lower than normal, does not represent a quality check of this condenser; it is the lowest value which will permit the rectifier to operate safely while the voltage checks of Section 1 (power supply) are performed.

Section 1 - Power Supply

Make the tests for this section with a d-c voltmeter. Connect the negative lead to B -, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.

TROUBLE SHOOTING

Set the volume control to minimum, and the radiophono switch to the radio position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

Figure 1. Bottom View, Showing Section 1 Test Points

TP-5379A

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	possible cause of abnormal indication
1	A	110 v		Trouble in this section. Isolate by the following tests.
2	C	200v	No voltage Low voltage High voltage	Delective: 50Y6GT. Open: W100, S100; R100, C101. Shorted: Cl00. Defective: 50Y6GT. Open: C102A. Leaky: C102A, C101. Shorted: Clol. Open: R101. R102, C102B, R204*, T200*.
3	A	110v	No voltage Low voltage	Shorted: C102B. Open: R101 and R102. Leaky: C102B. Shorted: C304. Open: R101, R102.
Listoning Test: Abnormal hum may be caused by open or leaky C102A or C102B.				

${ }^{-}$This part, located in another section, may cause abnormal indication in this section.

Section 2 - Audio Circuits

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

TROUBLE SHOOTING

Set the radio volume control to maximum, and the radio-phono switch as indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

Figure 2. Bottom View, Showing Section 2 Test Points
TP. 53798

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \\ & \hline \end{aligned}$	RADIO-PHONO SWITCH	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
$1(\alpha)$ 1 (b)	A \mathbf{E}	Radio Phono	Loud, clear speaker output with moderate gen. erator input.	Trouble in this section. Isolate by the following tests.
2	C	Radio	Clear output with strong input.	Defective: LS200, 35L6GT. Shorted: T200, C203, C201. C202. Open: T200, R204, R203. Leaky: C203.
3	D	Radio	Loud, clear output with moderate input.	Defective: 6AQ6. Shorted: C200. Open: C201, R202, R201. Leaky: C201.
4	A	Radio	Loud, clear output with moderate Input.	Open: R200 (rotate), C200, WS. Shorted: WS.
5	E	Phono	Same as step 4.	Open or shorted: WS.
d or				

Section 3 - I-F, Detector, and A-V-C Circuits
 TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a $.1 \cdot \mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum, and the radio-phono switch to the radio position. Rotate the tuning control until the tuning condenser is fully meshed.

rp.5379C
Figure 3. Bołtom View, Showing Section 3 Test Points step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

To provide a complete i-f amplifier check, test point A for this section is placed at the grid of the converter in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the converter circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 12BA6, 6AQ6. Shorted: C300B, C301A, C301B, C301C. C301D, C303, C304, WS, L300B, L301A, L301B. Open: R302, R303, R304, L300B, L301A, L301B, R301, C301A, C301B. Leaky: C303, C304. Misaligned: Z301.
3	A	Loud, clear output with weak input.	Delective: 12BE6*. Shorted: C400A*. C400B*. C300A, L300A, L300B, C302. Open: L300A, R300, C300A, C300B. Misaligned: Z300.

*This part, located in another section, may cause abnormal indication in this section.

Section 4 - R-F and Converter Circuits

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to B -, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum, and the radio-phono switch to the radio position. Set the tuning control and signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1 , further tests should be unnecessary; if not, isolate and correct the trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

TROUBLE SHOOTING

1P-53790

Figure 4. Bottom View, Showing Section 4 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICA TION
1	A	1000 kc .	Tune to signal.	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	$C-D$ (Osc. test; see note below.)		Rotate through range.	Negative 4 to 5 volts.	Defective: 12BE6. Shorted: C400C, C400D, C402, C401, L400A, L400B. Open: C402, L400A, L400B, R401, R402.
3	A.	1000 kc.	Tune to mignal.	Same as stop 1.	Shorted: LA400, C400A, C400B. Open: LA400. C404.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to the oscllator cathode (pin 2 of 12BE6), test point D; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 1 of 12BE6), test point C. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage within the range given in the chart (measured with a 20,000 -ohms-per-volt meter) thrcughout the tuning range.

ALICNMENT PROCEDURE

Figure 6. Top View. Showing Trimmer Locations

CALIBRATING DIAL BACKPLATE

 To EXTREME LEFT EDGE OF dial backplate the tuning condenser fully meshed.
 mately
 -

Figure 7. Dial-Backplate Calibration Measurements

Fiqure 8. Drive-Cord Installation Details

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part, as follows:

C —condenser	LA-loop aerial	S—-switch	WS-wafer switch
I —pilot lamp	LS-loud-speaker	T -transformer	Z -electrical assembly
L —choke or coil	R -resistor	W -wire or cable	

The number of the symbol designates the section in which the part is located, as follows: 100-series components are in Section 1 - the power supply
200 -series components are in Section 2 - the audio circuits
300 -series components are in Section 3-the i-f, detector, and a-v-c circuits
400 -series components are in Section 4-- the r-f and comerter circuits
NOTE: Parts marked with an asterisk (*) are general replacement items. These numbers

REPLACEMENT PARTS LIST

may not be identical with those on factory assemblies: also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and replacement parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

- John F. Rider

SPECIFICATIONS

```
CABINET
circuit
FREQUENCY RANGE
AUDIO OUTPUT
opERATING vOLTAGE
POWER CONSUMPTION
    Radio
    Phonograph
AERIAL
INTERMEDIATE FREQUENCY
PHILCO TUBES (5)
RECORD PLAYER
```

Modern classical, wood console. walnut finish.
Five-tube superhetrodyne
$540-1620 \mathrm{kc}$
3 watts
117 volts, 60 cycles, a.c.

35 watts
50 watts
High-impedance loop: also provision for external aerial. 455 kc .
14Q7, 128A6. 7C6, 35L6GT, 50X6
Philco Automatic Record Changer Model M-9 (For service informa. fion refer to PR-1571.)

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis, showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section without going hrough the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should he corrected before testing further.

Circuit Description

Philco Model 49.1600 is a console radio-phonograph combination consisting of a five-tube superhetrodyne, which provides reception on the standard-broadcast band, and a Philco M9 Automatic Record Changer. The built-in loop aerial normally provides adequate signal pickup. However, provision has been made for connecting an external aerial, if required.

The loop works directly into a $14 Q 7$ converter, where the incoming signal is converted to the 455 kc . intermediate frequency. The oscillator section of the tuning-condenser gang has a specially shaped rotor to provide proper tracking without the use of a series padding condenser. The converter is transformer-coupled to a 12BA6 i-f amplitier, which, in turn, is transformer-coupled to the diode section of a 7C6. Both i-f transformers have permeability-tuned primary and secondary windings. The diode section of the 7 C6 acts as a detector, and also provides a-v-c voltage, which is applied to the grids of the converter and the i-f amplifier. The triode section of the 7 C 6 , the first audio amplifier, is resistance-coupled to a 35 L6GT beam-power-output amplifier, which supplies approximately three watts of audio, power to a permanent-magnet dynamic speaker.

The $d-c$ operating voltages are furnished by a voltagedoubler circuit employing a 50×6 rectifier and a resistorcondenser filter. Resistor R102 is connected between B - and the chassis to prevent hum duc to condenser leakage under high-humidity conditions.

Preliminary Checks

Before connccting the ratio to a source of power, the following steps are recommended:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, hurned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$ (pin 2 of the 50 X 6 rectifier tube) and $B-$, test point B. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 2700 ohms, check condensers C102A and C102B for leakage or shorts. The resistance value is much lower than normal, and is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed.

Section 1 - Power Supply

For the tests in this section, use a d-c voltmeter. Connect the negative lead to $\mathrm{B}-$, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, set the volume control to minimum, and set the radio-phono switch to the radio position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP.	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF AbNORMAL INDICATION
1	A	110 v		Trouble in this section. Isolate by the following tests.
2	C	215v	No voltage Low voltage	Defective: 50X6. Shorted: C100, C102A. Open: W100, S100, R100, ClOI. Defective: 50X6. Shorted: C101. Leaky: C101. C102A. Open: C102A.
3	D	205v	High voltage No voltage Low voltage	Open: R101A. Shorted: Cl02B. Open: R101A. Leäky: C102B. Open: Cl02B.
4	A	110 v	High voltage No voltage Low voltage	Open: R101B, T200*, R205*. Open: R101B. Shorted: Cl02C. Leaky: Cl02C. Shorted: C303*.

Listening Test: Abnormal hum may be caused by open or leaky C102A, C102B, or C102C.
*This part, located in another section, may cause abnormal indication in this section.

Section 2 - Audio Circuits

TROUBLE SHOOTING
For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B -, test point B; connect the output lead through a . $1 . \mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum.

Set the radio-phono switch to the radio position for test points A, C, and D, and to the phono position for test point E.

TROUBLE SHOOTING

Figure 1. Bottom View, Showing Section 1 Test Points

Figure 2. Bottom View, Showing Section 2 Test Points

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f detector, and arv-c circuits) ; if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE Of abNormal indication
1	$\begin{gathered} \bar{A} \\ E \end{gathered}$	Loud, clear speaker output with moderate signal-generator input.	Trouble in this section. Isolate by the following testa.
2	C	Clear output with strong input.	Defective: 35L6GT, LS200. Shorted: T200. C202, C203. C204. Open: R204, R205, T200. Leaky: C204.
3	D	Laud, clear output with moderate input.	Detective: 7C6. Shorted: C200, C201. Open: C202. R201, R202, R203. Leaky: C202.
$\begin{aligned} & \hline 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{A} \\ & \mathrm{E} \end{aligned}$	Same as stepl. Same as step 1.	Open: R200 (rotate), C200, WS. Shorted: WS, C301*. Open: WS. Shorted: WS.

Listening Test: Distortion may be caused by leaky C202. Distortion of strong signals may be caused by shorted or leaky C200.

- This part, located in another section, may cause abnormal indication in this section.

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Con. nect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test point indicated in the chart.

Set the volume control to maximum, and set the radio-phono switch to the radio position. Rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

TROUBLE SHOOTING

Figure 3. Bottom View, Showing Section 3 Test Points

To provide a complete i-f amplifier check, test point A for this section is placed at the grid of the mixer in Section 4 ; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under the "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF RBNORMAL INDICATION
1	A	Loud, clear speaker output with weak signal-generator input.	Trouble in this section. Isolate by the tollowing tests.
2	C	Loud, clear output with moderate input.	Defective: 12BA6, 7C6. Shorted: C300B, C301A, C301B, C301C. C301D. C303. C305. L300B. L301 A. L301B, WS-B. Open: C301A, C301B, L300B, L301A, L301B. R301. R302. R303. R304, WS-B. Leaky: C303, C305. Misaligned: Z301.
3	A	Loud, clear output with weak input.	Defective: 14Q7*. Shorted: C300A, L300A. Open: C300A, C300B, L300A, R300. Misaligned: 2300.

*This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F and Converter Circuits

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to $B-$, test point B; connect the output lead through a . $1 \cdot \mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and set the radio-phono switch to the radio position. Set the tuning control and the signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in this sec. tion. If the trouble is not revealed by the tests for this section, check the alignment.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQ.	$\begin{aligned} & \text { RADIO } \\ & \text { TUNING } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	ת	1000 kc .	Tune to aignal.	Loud, clear speaker output with weak signal-generator input.	Trouble in this eection. Isolate by the following tosta.
2	$\begin{gathered} \text { D-E } \\ \text { (Osc. } \\ \text { test: see } \\ \text { note } \\ \text { below.) } \end{gathered}$		Rotate through range.	Negative 2 to 3 volts.	```Defective: 14Q7. Shorted: C400 (osc, section), C400B, C402, C403. T400. Open: C402, R401. R402. T400.```
3	C	1000 kc.	Tune to signal.	Same as step 1.	Defective: 14Q7. Shorted: C400 (aerial nection), C400A, LA400. Open: L_A400.
4	A	1000 kc.	Tune to signal.	Same as step 1.	Shorted: J400. Open: C401.

[^5]

RECORD CHANGER: See Philco Model M-9,
Pages RCD.CH. $19-18$ to RCD.CH. 19-34.
DIAL—Calibration and pointer-index measure OUTPUT METER—Connect across voice coil. \quad ALIGNMENT PROCEDURE
 imum, and radio-phono switch to radio position. nal-generator output to maintain output-meter

Figure 6. Top View. Showing Trimmer Locations

Figure 8. Drive-Cord Installation Details

[^6]

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part, as follows

C—condenser	LS—Loud-speaker	TC-tuning core
I-pilot lamp	R-resistor	W-line-cord-and-plug assembly
L_choke or coil	S—switch	WS—Wafer switch
LA—loop aerial	T—transformer	Z-electrical assembly

The number of the symbol designates the section in which the part is located, as follows
100 -series components are in Section l-the powersupply
200 -series components are in Section 2-the audio circuits
300 -series components are in Section 3-the i-f, detector, and a-v-c circuits
400 -series components are in Section 4 -the $r-f$ and converter circuits.

REPLACEMENT PARTS LIST

NOTE: Part numbers identified by an asterisk (*) indicate general replacement items. These numbers may not be identical with those on factory assemblies: also. the electrical values of some replacement items may differ from the values indicated in the schematic diagram and replacement parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION I		SECTION 3 (Continued)		
POWER SUPPLY		I.F, DETECTOR, AND A.V.C. CIRCUITS		
Reforence Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$		Description	Service Part No.
Cl00	Condenser, line filter, 05 mi 61-0122*	R301	Resistor, α-v-c filter, 2.2 megohms	66-5223340*
Cl01	Condenser, electrolytic, doubler, 20 mf . 30-2568-22	R302	Resistor, screen dropping,	
C102	Condenser, electrolytic, filter, 3-section. 30-2575-23		100,000 ohms	66-5103340*
Cl02A	Condenser, electrolytic, filter, 75 mf .,	R303	Resistor, plate dropping, 1,000 ohms	66-3103340*
	250 v Part of $\mathrm{Cl02}$	R304	Resistor, diode load, 47,000 ohms.	66-3473340*
C102B	Condenser, electrolytic, filter, 40 mt .	TC300A	Tuning core	Papt of 2300
	250 v Part of C102	TC300B	Tuning core	Part of Z300
Cl02C	Condenser, electrolytic, filter, 10 mt .,	TC301A	Tuning core	Part of Z301
		TC301B	Tuning core	Part of Z301
I100	Lamp, pilot, 110 v . ${ }^{\text {Res }}$, . . . 34-2605*	WS-B	Switch, radio-phono	Part of WS
R100	Resistor, current limiting, 25 ohms 33-1334-5	2300	Transformer, 1st i-f	$32-4160$
R101	Resistor, filter, 2-section 33-3435-18	2301	Transtormer, 2nd i-1	32-4240
R101A	Resistor, filter, 180 ohms Part of R101	SECTION 4		
R101B	Resistor, filter, 4700 ohms Part of R101			
R102	Resistor, leakage, 120,000 ohms66-4123340*	R-F AND CONVERTER CIRCUITS		
$\mathbf{S 1 0 0}$	Switch, off-on power 42-1837-3	C400	Condenser, variable, 2-section	31-2727-3
W100	Line-cord-and-plug assembly L-2183*	C400A	Condenser, trimmer, aerial	Part of C400
WS-C	Water switch, radio-phono Part of WS	C400B	Condenser, trimmer, osc.	Part of C400
	SECTION 2	C401	Condenser, aerial coupling,	
	AUDIO CIRCUITS	C402	mica 5 mm	3**
C200	Condenser, blocking, . $01 \mathrm{mf}$.61-0120*	C 403	Condenser fixed trimmer,	
C201	Condenser, decoupling, .l mf..........61-0113*		ceramic, 10 mmt .	30-1224-26
C202	Condenser, d-c blocking, $01 \mathrm{mf.....61-0120*}$	C404	Condenser, α-v-c by-pass, 03 mf	45-3500-1*
C203	Condenser, grid by-pass, ceramic,	J400	Jack, aerial input	27-6214-1
C204	220 mmi62-122001001*	LA400	Loop-aerial assembly .	. 76-2127-8
C204	Condenser, parasitic suppressor, 02 mf	PL400	Plug, loop aerial	art of LA400
J200	Jack, phono input 27 -6126	R400	Resistor, isolating, 150,000 ohms.	66-4153340*
LS200	Speaker, permanent magnet . 36-1626-1	R401	Resistor, grid return, 22,000 ohms	66-3223340*
R200	Solume control. 500,000 ohms45-5019**	R402	Resistor, parasitic suppressor;	
R201	Resistor, grid return, 10 megohms . 66-6103340*	T400	Transformer, oscillator	$32-4190-2$
R202	Resistor, plate load, 270,000 ohms ... 66-4273340*		Translormer, oscillator	
R203	Resistor, plate filter, ${ }^{2} 20,000$ ohms . . .66-4223340*		MISCELLANEOUS	Service
R204	Resistor, grid return, 470,000 ohms ..66-4473340**		Description	Part No.
R205	Resistor, cathode bias, 180 ohms66-1183340*		Description	PariNo.
T200	Transtormer, output 32-8242-3	Bracket	-clip assembly, pilot lamp	76-4004
WS	Water switch, radio-phono 42-1824-2	Cable-an	plug assembly, phono input	41-3864-1
WS-A	Water switch, radio-phono Part of WS	Cabinet	ss scale)	10713
	SECTION 3	Beze		56-5367
	I-F, DETECTOR, AND A.V-C CIRCUITS	Cabl	t back	54-7603 54-5007
C300A	Condenser, fixed trimmer Part of $\mathbf{Z 3 0 0}$	Dial-Sca	Hardware	
C300B	Condenser, fixed trimmerPart of 2300	Dial	ckplate assembly	76-4005
C301A	Condenser, fixed trimmer Part of 2301	Diffu	g panel	54-7606
C301B	Condenser, fixed trimmer Part of 2301		ing (2 required)	56-3841
C301C	Condenser, i-f by-passart of 2301		ap fastener ...	28-4342FA3
C301D	Condenser, i-f by-pass Part of 2301	Drive	ord (25-ft spool)	.45-8750*
C302	Condenser, i-f by-pass, .1 mi61-0113*	Poin		56-5630-3FCP
C303	Condenser, decoupling, .003 mt. 61-0109*		ing	56-2617
C304	Condenser, α-v-c by-pass, 05 mt . . . 45-3500-2*	Shal	nd-pulley assembly	78-3958
C305	Condenser, screen by-pass, . 01 ml61-0120*	Spri	tuning-gang drive	28.8953
L300A	Primary, lst i-f transformerPart of 2300	Knob 14	quired)	54.4488
L300B	Secondary, lst i-f transformer Part of 2300	Socket	mbly, pilot lamp	27.6233
L301A	Primary, 2nd i-i transformer Part of $\mathbf{Z 3 0 1}$	Socket,	tal	27-8138*
L301B	Secondary, 2nd i-i transiormer Part of 2301	Socket,	ature	27-6228
R300	Resistor, a-v-c filter, 22,000 ohms . . 66-3223340*	Socket.		27-6138*

Circuit Description

Philco Radio-Phonograph Models 49.1602 and 49.1604 are identical electrically. Each model includes a Philco Automatic Record Changer Model M-9 and a six-tube superheterodyne which provides reception in the standard broadcast band.

A semi-high-impedance loop aerial normally gives ade. quate signal pickup; if greater signal pickup is required, an extêrñal àçial may be connected.

The loop aerial feeds into a 14 AF7 converter. The aerial and oscillator circuits are tuned by ganged, variable tuning condensers. The two i-f stages employ 7B7 pentode ampli. fier tubes. The new Philco high-gain transformers are used for coupling in the r-f and i-f circuits, to provide additional amplification and to give better reproduction of the received r-f signal. The diode scction of the 7C6 dual-diode. triode provides detection and a-v-c action. The triode section of this tube functions as the first audio amplifier, and is resistance-coupled to the 35 L 6 GT output tube. The loudspeaker is a permanent-magnet, dynamic type. The power supply employs a 50 X 6 full-wave, voltage-doubler rectifier and a resistor-condenser filter network.

A 150,000 -ohm resistor, R103, is connected between B and the chassis to prevent hum under conditions of high humidity. The combination of C305 and its associated r-f choke is a series-resonant circuit at 455 kc ., and functions as a low-impedance by-pass for the intermediate frequency.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section

In each chart, the first step is a master check for determin. ing whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

MODEL 49.1602 SPECIFICATIONS ${ }^{\text {MODEL 49-160 }}$
cabinet
Model 49.1602
Model 49-1604
CIRCUIT
FREQUENCY RANGE
AUDIO OUTPUT
OPERATING VOLTAGE
POWER CONSUMPTION

Radio

Phonograph
AERIAL

INTERMEDIATE FREQUENCY PHILCO TUBES (6) PHONOGRAPH

MODEL 49-1604
MONS MODEL 49-1605

Wood console walnut finish Wood console, mahogany finish Six-tube superheterodyne $540-1620 \mathrm{kc}$
3 watts
105-120 volts, d.c
65 watts
30 watts
Built-in semi-high-impedance loop diso provision for connecting ex ternal derial
455 ke
787(2). 7C6. 14AF7, 35L6GT, 50X6 Philco Automatic Record Changer Model M-9

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before it is turned on:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$ (pin 7 of 50X6 rectifier) and $B-$, test point B, When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 3000 ohms, check condensers C102A and C 102 B for leakage or shorts. The resistance value given is much lower than normal, and is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed.

Model 49-1603 GENERAL Model 49-160s

INFORMATION

The radio chassis of these two models are electrically and mechanically identical to that of Model 49-1602. The record changer used is a Model M-9C (see diagram below)

PHONO PICKUP PARTS
Description
Crystal pickup cartridge, P-30
Needle for P-30 crystal
Crystal pickup cartridge, Philco Special
Service
Part No.

Needle for Philco Special crystal
Pickup-and-needle assembly

Section 1 - Power Supply

For the tests in this section, use a d-c voltmeter. Connect the negative lead to B -, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum. Turn the tone control fully clockwise, and set the radio-phono switch to the radio position.

MODELS 49-1602, 49-1603, 42-1604, 49-1605
 TROUBLE SHOOTING,

Figure 1. Bottom View, Showing Section 1 Teet Points

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL indication
1	A	80 v		Trouble within this section. Isolate by the lollowing tests.
2	C	225v	No voltage Low voltage High voltage	Defective: 50X6. Open: C101, R100. S100. W100. Shorted: C102A. Defective: 50X6. Open: C102A, Leaky: C102A, 102B. Shorted: C102C. Open: R101, R207* T200*.
3	D	195\%	No voltage Low voltage High voltage	Shorted: C102B. Open: C102B. Leaky: C102B. Open: H102.
4	A	80 v	No voltage Low voltage	Shorted: C102C. Open: R102. Leaky: Cl02C.
Listening Test: Abnormal hum may be caused by open Cl02A. Cl02B. or C102C.				

* This part located in another section, may cause abnormal indication in this section.

Section 2 - Audio Circuits

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to $B-$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control fully counterclockwise. Set the radiophono switch to the radio position for test points A, C, and D, and to the phono position for test point E.

TROUBLE SHOOTING

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v.c circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { PONNT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	$\begin{aligned} & \mathrm{A} \\ & \mathrm{E} \end{aligned}$	Loud, clear speaker output with moderate signal-generator input.	Trouble within this section. Isolate by the following teats.
2	C	Moderate, clear output with strong input.	Defective: 35L6GT, LS200. Open: R206, R207, T200. Shorted or leaky: C206, C207.
3	D	Loud, clear output with moderate input.	Delective: 7C6. Open: C203, R201, R202, R203. Shorted or leaky: C202, C203, C204.
4	A	Same as step 3.	Open: C200, C201, H200. WS. Shorted: C205 (rotate R200).
5	E	Same as step 3.	Open: WS.
Listening test: Distortion may be caused by shorted or leaky C200. C201. or C203.			

For the tests in this section, use an r-f signal generator, with modu. lated output, set at 455 kc . Con. nect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control fully counterclockwise. Set the radiophono switch to the radio position, and rotate the tuning control until the tuning condenser is fully meshed.

Figure 3. Bottom View, Showing Section 3 Test Points

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

To provide a complete i-f amplifier check, test point A for this section is placed at the grid of the mixer in Section 4 ; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under the "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak signal-generator input.	Trouble within this section. Isolate by the following tests.
2	C	Loud, clear output with moderate input.	Defective: 7B7 (2nd i-f amplifier). 7C6 (diode section). Misaligned: Z302. Open: L302A, L302B. L301B, C307, C308, C309, R304. R305, R306, R307, R308, WS. Shorted: L302A, L302B, C301B, C302A. C302B. C302C. C302D. C307. C308. C309.
3	D	Loud, clear output with weak input.	Defective: 7B7 (lst i-f amplifier). Misaligned: Z301. Open: L301A, L301B. L300C. C305, C306, R301, R302. Shorted: C300B. C301A, C301B. C306.
4	A	Same as step 3.	Defective: 14AF7*. Misaligned: Z300. Open: L300A, L300B, L300C, R300, R403*, R404*. Shorted: C300A, C300B, C304.

* This part, located in another section, may cause abnormal indication in thim mection.

Section 4-R-F and Converter Circuits

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control fully counterclockwise. Set the radiophono switch to the radio position, and set the tuning control and the signal-generator frequency as indicated in the chart.
If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

Figure 4. Bottom View, Showing Section 4 Test Points

STEP	TEST POINT	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	$1000 \mathrm{kc}$.	1000 kc.	Loud, clear speaker output with weaksig. nal-generator input.	Trouble within this section. Isolate by the fol- lowing tests.
2	C	$1000 \mathrm{kc}$.	$1000 \mathrm{kc}$.	Sameas atepl.	Defective: 14AF7, osc. circuit. Open: C406, R403, R404. Shorted: C406.

NOTE: Part numbers identified by an asterisk (*) indicate general replacement items. These numbers may not be identical with those on lactory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and replacement parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION I
POWER SUPPLY

[^7]MODELS 49-1602, 49-1603,
49-1604, 49-1605
ALIGNMENT PROCEDURE DIAL—Calibration and pointer-index measure OUTPUT METER-Connect across voice coil.
ments are shown in figure 7 . With tuning con- SIGNAL GENERATOR-Connect as indicated in ments are shown in figure 7. With tuning con- SIGNAL GENERATOR-Connect as indicated in chart. Use modulated outpu

路

 1 Figure 6. Top View. Showing Trimmer Locations

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQ.	RADIO TUNDE	NORMAL nNDICATION	possmbe cause of abnormal indication
${ }^{3}$			Rolate through range.	$\text { Negative } 1.5 \text { to }$ $25 \text { volis. }$	Open: C402. C403. C405. R401. R402. 1400. Shorted: C400. C4008, C402, C403, C405.
4	A	1000 kc.	1000 kc .	Same as stop 1.	Open: LA400. C401. C404. T400. Shorted: C400. C400A. C404.

OSCILLATOR TESTS

Connect the positive lead of a high.resistance voltmeter to B -, test point B ; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 4 of 14AF7), test poin D. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (measured with $\mathbf{2 0 , 0 0 0}$-ohms-per-vol meter) throughout the tuning range.
©John F. Rider

Circuit Description

Philco Model 49-1606 is a console-model radio-phonograph, which provides reception on the standard-broadcast and FM bands. The radio is a seven-tube superheterodyne, with two selenium rectifiers incorporated in the power supply.

A built-in, high-impedance loop aerial for the broadcast band and a line-cord aerial for the FM band normally provide adequate signal pickup; if additional pickup is required, Philco Dipole Aerial, Part No. 451462, may be used. When connecting the dipole aerial, disconnect the black lead from terminal 2 of TB400, and attach this lead to pin 1 of the dipole-aerial plug, which fits into J400. No additional coupler is required.

To eliminate complicated switching and to provide better stability and greater gain on both bands, separate converter tubes are used for broadcast and FM reception. A 12AU6 high-gain pentode is used in a tuned r-f amplifier on the FM band. The output of this tube is fed to the 14 F 8 dual triode, which functions as the converter for the FM signal. A 12AU7 dual triode is used as the convęrter for the broadcast signal. Band switching is accomplished by means of a single-wafer switch, which connects the $B+$ voltage to the proper mixer plate.

A 6BJ6 tube is used in each of the two i-f amplifier stages. Two sets of i-f transformers are used-one set is tuned to 455 kc . for broadcast, and the other set is tuned to 9.1 mc . for FM. The use of two sets of i-f transformers makes better shielding possible, so that undesirable beat signals and interaction between transformers are eliminated.

Two diode sections of a 19 T 8 triple-diode-triode are used in a ratio-detector circuit, for detection of FM signals. The other diode section is used in a half-wave rectifier circuit, for detection of AM (broadcast) signals and to provide a-v-c action.

The triode section of the 19 T 8 functions as the first audio amplifier. The output of this stage is resistancecoupled to a 50 C 6 G output tube, which is transformercoupled to the permanent-magnet speaker.

Two selenium rectifiers are used in a half-wave volt-age-doubler circuit, to supply the $B+$ voltage.

MODEL 49-1606

SPECIFICATIONS

CABINET	Wood console, mahogany and blonde walnut
CIRCUIT	Seven-tube superheterodyne plus rectifiers
FREQUENCY RANGES	
Broadcast 540-1620 kc.	
FM	
AUDIO OUTPUT 5 watts	
OPERATING VOLTAGE105-125 volts, 60 cycles, a.c.	
POWER CONSUMFTION	
Radio 65 watts	
Phonograph 85 watts	
AERIALS	Built-in, low-impedance loop for broadcast: line-cord aerial for FM

INTERMEDIATE FREQUENCY

GENERALINFORMATION

The radio chassis of these two models are electrically and mechanically identical to that of Model 19-1606. The record changer used is a Model M.9C (see diagram below); for record changer service information, refer to Service Manual PR-1599.

Each model is housed in a different type of cabinet. Therefore, the loop aerials are of different dimensions. (The aerial circuits are electrically the same.)

```
MODELS 49-1606,
49-1609, 49-1611
```


SPECIFICATIONS

Preliminary Checks

Measure the resistance between $B+$, test point C, and B-, test point B. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 2500 ohms, check condensers C103A, C103B, and C316 for leakage or shorts. The resistance value given is much lower than normal, and is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed.

Section 1
 TROUBLE SHOOTING

POWER SUPPLY

For the tests in this section, use a d-c voltmeter. Connect the negative lead to B-, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum. Turn the tone control fully clockwise, and set the band switch to the broadcast position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

Figure 1. Bottom View, Showing Section 1 Test Points

STEP	TEST POINT	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	145		Trouble in this section. Isolate by the following tests.
2	C	230v	No voltage. Low voltage. High voltage.	Defective: CR100, CR101. Open: C102. W100, R103, S100. Shorted: C103A, C101, C104, C100. Defective: CR100, CR101. Open: C103A, R100. Shorted or leaky: Cl03B. Open: R101A. R101B, R102.
3	D	2057	No voltage. Low voltage. High voltage.	```Open: Rl01A. Shorted: Cl03B. Leaky: Cl03B. Shorted: Cl03C, C316*. Open: R101B, R102, R206*. T200*.```
4	E	160	No voltage. Low voltage. High voltage.	```Open: Rl0lB. Shorted: Cl03C. Leaky: Cl03C. Shorted: C103D, C310*, C315*. Open: R102, R315*.```
5	A	145v	No voltage. Low voltage.	```Open: RllO2. Shorted: Cl03D. Leaky: Cl03C.```

Listening Test: Abnormal hum may be caused by open Cl03A. Cl03B, Cl03C, or C103D.
*This part. located in another section, may cause abnormal indiçation in this section.

- John F. Rider

Section 2

TROUBLE SHOOTING
 AUDIO CIRCUITS

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B-, test point B; connect the output lead through a . $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control to the midpoint of its range. Set the band
switch to the broadcast position for test points A, C, and D, and to the phono position for test point E.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	$\underset{\mathbf{E}}{\mathbf{A}}$	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C	Clear signal with strong input.	Delective: 50C6G. LS200. Open: T200, R205, R206. Shorted: C206, C207, T200.
3	D	Same as step 1.	Defective: 19T8. Open: C204, R202, R203. Shorted: C203, C205 (rotate R204), C204.
4	A	Same as step 1.	Open: R200 (rotate through range), C200. C201, WS-1 (R). Shorted: C200, C201, C305D*.
5	E	Same as step 1.	Open: WS-1 (R).
Listening Test: Distortion may be caused by shorted or leaky C201 or C204. Distortion on strong signals may be caused by leaky or shorted C200.			

*This part, located in another section, may cause abnormal indication in this section.

Figure 2. Bottom View, Showing Section 2 Test Points

Section 3 TROUBLE SHOOTING I-F, DETECTOR, AND A-V-C CIRCUITS

AM Circuits

For the following tests, use an r-f signal generator, with modulated output, set at 455 kc . Connect the genorator ground lead to $B-$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control to the midpoint of its range. Set the radiophono switch to the radio position, and rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

To provide a complete i-f-amplifier check, test point A for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under the "POSSIBLE CAUSE OF ABNORMAL INDICATION."

AM Chart

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak generator input.	Trouble in AM circuits. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 6BJ6 (2nd i-f amplifier), 19T8 (diode section). Open: Z302, Z303, Z304, Z305, R307, R308, R309, R310, R311, WS-1 (F). Shorted: Z302, Z303, Z304, Z305, C314, C315, C316, C319. Mis. aligned: Z305.
3	D	Loud, clear output with moderate input.	Defective: 6BJ6 (1st i-f amplitier). Open: R303, R304, R305, R306. Z300. Z301, Z302, Z303. Shoried or leaky: C308, C310, Z300. Z301. Z302, Z303. Misaligned: Z303.
4	A	Same as step 1.	Defective: 12AU7. Open: Z301, R301, R302, R408*, R411*, R412*, WS-1 (F). Shorted or leaky: C307, Z301. Misaligned: Z301.

*This part, located in another section, may cause abnormal indication in this section.

FM Circuits

The following tests are also made with an AM r-f signal generator, using modulated output.

Observe the instructions preliminary to the tests for the AM circuits, with these exceptions: Set the band switch to the FM position. Set the signal-generator frequency to 9.1 mc ., and detune to one side or the other until a satisfactory test signal is obtained.
The best indication of satisfactory FM-detector opera-
tion is the ability of this circuit to take the alignment properly (see page 11).
The parts which were found to be satisfactory for AM operation, with the exception of those indicated in the chart, will usually be satisfactory for FM operation.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in the FM circuits.

FM Chart

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	E	Loud, clear speaker output with weak generator input.	Trouble in FM circuits. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 6BJ6 (2nd i-f amplifier), 19T8 (diode sections). Open: Z304, C317, C318, C320, C321, C322, C323, R312, R313, R314, WS-1 (R)*. Shorted: Z304, C317, C318, C320, C321, C322, C323, WS-1 (R)*. Misaligned: Z304.
3	D	Loud, clear output with moderate input.	Defective: 6BJ6 (lst i-f amplifier). Misaligned: Z302. Shorted: Z302.
4	E	Same as step 1.	Defective: 1458°. Open: Z300, R300, R405*, R410*, L402*, WS-1 (F). Shorted: C306, C420*, C328, Z300, WS-1 (F). Misaligned: $\mathbf{z 3 0 0}$.

- This part, located in another section, may cause abnormal indication in this section.

AM Circuits

For the tests in this section, with the exception of the oscillator test, use an AM r-f signal generator with modulated output. Connect the generator ground lead to B -, test point B ; connect the output lead through a . $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control to the midpoint of its range. Set the band switch to the broadcast position, and set the tuning control and the signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in the AM circuits. If the trouble is not revealed by the tests for this section, check the alignment.

FM Circuits

The following tests are also made with an AM r-f signal generator, using modulated output. Observe the instructions preliminary to the tests for the AM circuits with the following exceptions:

Set the band switch to the FM position.
If the "NORMAL INDICATION" is not obtained in step 1, isolate and correct the trouble in the FM circuits.

Figure 4. Bottom View, Showing Section 4 Test Points
Figure 4. Botton View, Showing Section 4 Test Points AM Chart

STEP	TEST POINT	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc.	Tune to signal.	Loud, clear speaker output with weak generator input.	Trouble in AM circuits. Isolate by the following tests.
2	```C (Osc. test; see note below.)```		Tune through range.	Negative 2 to 2.5 volis.	Defective: 12AU7 (osc. section). Shorted: C414, C415. C400. C405B, C417. L407. Open: C414, C416, L408, L407, R412, R407, R406.
3	A	1000 kc.	Tune to signal.	Same as step 1.	Defective: 12AU7 (mixer section). Open: L400. C418, R411, R408. Shorted: C400, C405A, C406. C417.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to B-, test point B; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 2 of 12AU7), test point C. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (measured with 20,000 -ohms-per-volt meter) throughout the tuning range.
fM Chart

STEP	TEST POINT	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIELE CAUSE OF ABNORMAL INDICATION
1	G	100 mc .	Tune to signal.	Loud, clear speaker output with weak generator input.	Trouble in FM circuits. Isolate by the following tests.
2	E to F (Osc. test: see note below.)		Tune through range.	Negative 1 to 1.5 volts.	Defective: 14 F 8 (osc. section). Open: R412, L402. L406. L405, C412, R404, C410. R403. Shorted: C400. C400C. L406, C411, C412, C423, C424, C410, C409.
3	D	100 mc .	Tune to signal.	Same as step 1.	Defective: 12AU6. Open: L403, R402, R409, R401, R400, C408, L404, C420, R410. R405, C413. Shorted: C403, C404, C407. C408, L404. C400B. C400. C420.
4	G	100 mc.	Tune to signal.	Same as step 1.	Open: C402. L401, C403. Shorted: L401, C400A. C400. C403.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to test point F: connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 2 of 14 F 8), test point E. Use a suitable meter range, such as 0 - 10 volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (measured with 20.000 -ohms-per-volt meier) throughout the tuning range.

$\begin{aligned} & \text { MODET S 49-1606, } \\ & 49-1609,49-1611 \end{aligned}$		
REPLACEMENT PARTS LIST Matel $19.1(\mathrm{CN})$ Matel 99.1611 Replaement parts are the same as those in Model 19.1 1/N6. with the exeppion of LA+00 and the MIS		
Dout	Sarico Peot No.	
	Walaed-himis colbint	cath
Cubiret (less sule)	10705	10705C
	40.759	40.758
Bezel	50-6878	50-687
Dial walt	54.5040	54.5040
Darse (foor. 4)	45.6190	45.6190
Doors, matched set of 2	45-6434	45.486
Door full (2)	545272	56-527-1
$\begin{aligned} & \text { Hinge. knife. with } \\ & \text { sop (1) } \end{aligned}$	56.5713.1	56.5713.5
Hinge, knife (3)	56.5713.3	56-5713.7
Knob (4)	54.446	54.446

Figure 5. Drive-Cord Installation Dełails

REPLACEMENT PARTS LIST		
	SECTION 1 POWER SUPPLY	
Reference Symbol	Description Service Part No.	Reference Symbel
C100	Condenser, line by-pass, 100 mmf62-110003001*	R202
C101	Condenser, line by-pass, 04 mf . 30.4119	03
C102	Condenser, electrolytic, filter, 40 mf ., 200v \qquad 30-2568-28	
Cl03	Condenser, electrolytic, 4 -section30-2568-24	R205
C103A	Condenser, filter, 40 mf ., 250v Part of C106	R206
Cl03B	Condenser, filter, 40 mf ., 250vPart of Cl00	T200
Cl03C	Condenser, filter, 20 mf ., 250vPart of C106	WS.1 (R)
C103D	Condenser, filter, 10 mf ., 250v Part of Cl06	
C104	Condenser, r-f by-pass, 100 mmf62.110009001*	
CR100	Rectifier, selenium, dry disc34-8003-1	C300A
CR101	Rectifier, selenium, dry disc34-8003-1	C300B
1100	Lamp, pilot ..34-2605*	C301A
L100	Choke, filament, 100 microhenries32-4143-4	C301B
R100	Resistor, current limiting, 25 ohms33-1334-5	C302A
R101	Resistor, 2-section filter33-3435-17	C302B
R101A	Resistor, filter, 180 ohmsPart of R101	C303A
R101B	Resistor, filter, 2500 ohmsPart of R101	C303B
R102	Resistor, filter, 2200 ohms66-2224340	C305A
R103	Resistor, current limiting, 25 ohms33-1334.5	C305B
S100	Switch, on-off ...Part of R204	C305C
W100	Line cord and plug ..L2183*	C305D
WS-1 (R)	Switch-wafer section Part of 42-1874 \dagger	C306
	SECTION 2	C307
	AUDIO CIRCUITS	C308
C200	Condenser, d-c blocking, 02 mf61-0108*	C309
C201	Condenser, d.c blocking, . 006 mf45-3500-7*	C310
C202	Condenser, bass compensation, . 006 mf45-3500-7*	C311
C203	Condenser, by-pass, 100 mmi . .-.............6.62-110009001*	C312
C204	Condenser, d-c blocking, . 006 mf45-3500-7*	C313
C205	Condenser, tone compensation, . 006 mf45-3500-7*	C314
C206	Condenser, by-pass, 100 mmf . .-. ${ }^{\text {co. }}$ 62-110009001*	C315
C207	Condenser, tone compensation, . 006 mf45-3500-7*	C316
J200	Socket, FM test ..6180	C317
J201	Socket, phono input ..27-6126	C318
LS200		C319
H200	Volume control, 2 megohms (tap at 1 megohm) \qquad 35-5535-17	C320
R201	Resistor, bass compensation, 47,000 .66-3473340*	$\begin{aligned} & \text { C321 } \\ & \text { C322 } \end{aligned}$

SECTION 2 (Continued) AUDIO CIRCUITS

$\left.$| Description |
| :--- | | Service |
| ---: |
| Part No. | \right\rvert\,

SECTION 3

I-F, DETECTOR, AND A-V-C CIRCUITS

Condenser, shunt	Part of $\mathrm{Z300}$
Condenser, shunt	Part of Z300

Condenser, shunt …... 2301
Condenser, shunt …) Part of 2301

Condenser, shunt ...art of Z302

Condenser, shunt …

Condenser, shunt …….. Pa 105
Condenser, i-f filter …..................................... Part of Z305

Condenser, plate decoupling (FM), . 01 mf61-0120*
Condenser, plate decoupling (AM), $01 \mathrm{mf}61 .0120^{\circ}$
Condenser, a-v-c by-pass, . 01 mf61-0120*
Condenser, r-f by-pass, 100 mmf . .-. 62-110009001*
Condenser, plate decoupling, . 004 mf61-0179
Condenser, r-f by-pass, $05 \mathrm{mf} . . .$.
Condenser, a-v-c filter, 01 mf61.0120*
Condenser, r-f by-pass, . 01 mf61-0120
Condenser, cathode by-pass, . 01 mf 61-0120*
Condenser, screen by-pass, .01 mf .
61.0120*

Condenser, plate decoupling, . 01 mf61-0120*
Condenser, i-f trimmer, fixed, 5 mmfPart of 2304
Condenser, i-f trimmer, fixed, 68 mmf ... Part of 2304
Condenser, plate decoupling.
62-110009001*
Condenser, r-f by-pass; 100 mmf
62-110009001*
Condenser, compensating, 01 mf .
61-0120*

	SECTION 3 (Continued) F, DETECTOR, AND A-V.C CIRCUITS
Reference Symbol	
C323	Condenser, electrolytic. FM-detector filter, 2 mf . 50v \qquad
C324	Condenser, r-f by-pass, 01 mf61-0120*
C325	Condenser, tuned i-1 by-pass, 03 mf ${ }^{\text {a }}$ 45-3500-1*
C326	Condenser, tuned i-f by-pass, 05 mf61-0170*
C327	Condenser, r-f by-pass, 100 mmf62-110009001*
C328	Condenser, r-f by-pass, 1500 mmf62-215001011
C329	
L306	Coil, tuned i-f by-pass ...-
R300	Resistor, plate decoupling, 33,000 ohms66-3333340*
R301	Resistor, plate decoupling, 68,000 ohms.....66-3683340*
R302	Resistor, grid return, 1 megohm66-5103340*
R303	
R304	Resistor, plate decoupling. 1000 ohms66.2103340*
R305	Resistor, a-v-c filter, 3.3 megohms66-5333340*
R306	
R307	Resistor, cathode bias, 68 ohms66-0683340*
R308	Resistor, screen dropping, 1000 ohms66-2103340*
R309	Resistor, plate decoupling, 1000 ohms66-2103340*
R310	Resistor, a-v-c return, 330,000 ohms66-4333340*
R311	Resistor, diode load, 47,000 ohms66-3473340*
R312	Resistor, isolating. 47,000 ohms66-3473340*
R313	Resistor, isolating, 100,000 ohms66-4103340*
R314	Resistor, FM-detector load, 47,000 ohms......66-3473340*
R315	Resistor, dropping, 2200 ohms66-2223340*
IC300A	
TC3008	
TC301A	Tuning core ..art of z301
TC3018	Tuning core ..Part of Z301
TC302A	Tuning core ... Part of Z302
TC302B	Tuning core ...art of $\mathbf{Z 3 0 2}$
TC303A	Tuning core ...Part of Z303
TCS03B	Tuning core ...art of Z303
TC304A	
TC304B	Tuning core ...art of Z304
TC305A	Tuning core ..art of 2305
TC305B	
WS-1 (F)	Switch-wafer section Part of 42-1874 \dagger
2300	Transformer, FM 1st i-f32-4257
2301	
Z302	
7303	
Z384	Transformer, FM 3rd i-f ...- ${ }^{\text {a }}$ 32-4261-1
2305	

SECTION 4
R-F AND CONVERTER CIRCUITS

C400	Condenser, tuning gang (3 -section $F M$, 2-section AM) \qquad
C400A	Condenser, trimmer, FM aerial Part of C400
C400B	Condenser, trimmer, FM r-f Part of C400
C400C	Condenser, trimmer, FM osc. Part of C400
C401	Condenser, aerial coupling (FM), 100 mmf . \qquad 62-110009001*
C402	Condenser, aerial coupling (FM). 100 mmf . \qquad 62-110009001*
03	Condenser, grid blocking, $51 \mathrm{mmf} . .$.
C404	Condenser, cathode by-pass, $100 \mathrm{mmi} . . .62-1$ r0009001*
C405	Condenser, trimmer assembly, 2-section......31-6476-18
C40	Condenser, trimmer, AM aerialPart of C405
C40	Condenser, trimmer, AM osc.Part of C405
C406	Condenser, isolating. 10 mmi62-010009001
C407	Condenser, screen by-pass, $100 \mathrm{mmf} . . .62-110009001$ *
C408	Condenser, blocking, 51 mmf
C409	Condenser, by-pass, 1500 mmf62-215001011
C4	
C411	Condenser, by-pass, 51 mmf30-1224-2*
C412	Condenser, blocking, 220 mmf)
C413	Condenser, cathode by-pass, $100 \mathrm{mmf} . . .62-110009001$ *
C414	Condenser, blocking, 100 mmf62-110009001*
C415	
C4	Condenser, isolating, . 01 mf61-0120*
C417	Condenser, eathode by-pass, 1500 mmf
C418	Condenser, d-c blocking, 100 mmf62-110009001*
C419	Condenser, FM r-f by-pass, $100 \mathrm{mmf} . . . \mathrm{Cl}^{62-110009001 *}$
C420	Condenser, dec blocking, 100 mmf62-110009001*

Reference Symbol	R-F AND CONYERTER CIRCUITS Description	Service Part No.
C421	Condenser, r-f by-pass, 100 mmf .	62.110009001*
C422	Condenser, r-f by-pass, 03 mf	45-3500-1*
C423	Condenser, FM r-f by-pass, 100 mmf .	62-110009001*
C424	Condenser, FM rif by-pass, 100 mmi .	62-110009001*
J400	Socket, FM aerial	27-6214-1
L400	Coil. AM aerial	32-4033-11
L-401	Coil, FM aerial	32-4158-1
1402	Coil, r-f isolating (FM)	32-4061-2
1403	Coil, FM r-f plate load	32-4061-2
L404	Coil, FM r-f	32-4159-1
L405	Coil, FM osc. plate load	32-4061-2
1406	Coil, FM osc.	32-4018-5
L407	Coil, AM osc.	32-4221-1
L408	Coil, r-f isolating	32-4061-2
LA400	Loop aerial	76-3583-9
R400	Resistor, grid return, 1 megohm	66-5103340*
R401	Resistor, cathode bias, 100 ohms	66-1103340*
R402	Resistor, screen dropping, 15,000 ohm66-3153340*
R403	Resistor, plate decoupling, 4700 ohms	..-66-2473340*
R404	Resistor, grid return, 15,000 ohms	\cdots
R405	Resistor, cathode bias, 1500 ohms	$66.2153340 *$
R406	Resistor, plate load, 15,000 ohms	66-3153340*
R407	Resistor, grid return, $15,000 \mathrm{ohms}$	66-3153340*
R408	Resistor, cathode bias, 2200 ohms66-2223340*
R409	Resistor, isolating, 68 ohms	66.0683340°
R410	Resistor, grid return, 10,000 ohms ...	66-3103340*
R411	Resistor, grid return, 1 megohm66.5103340*
R412	Resistor, isolating, 68 ohms	$66.0683340 *$
TB400	Terminal board, aerial .-...........	$\stackrel{-1.0689942}{ }$
MISCELLANEOUS		
DescriptionBracket-and-clip assembly, pilot lamp $\ldots \ldots . ~$Part No.Cabinet (less scale)		
M		
0725D		
Baffle,	peaker .	219136
Baftle-and-cloth assembly		
Bezel ...66-5855		
Bin mechanism (L.H.) ..76-3223-5		
Bin mechomism (R.H.) ..76-3223-6		
Door, drop		
L		45-6488
Door pull		
		56-4420
L		56-4420-2
Frome,	hanger mounting	76-4104
Gromm	changer mounting	54-4313
Hinge		56-4066
Instrument ponel		
Scale ..44-5021		
Spring, bin mechanism (2 required)-		
Spring, changer mounting (6 required)56-3043FA15		
Dial-backpla	assembly .-.....................-	$\cdots \times76-3918$
Drive cord ($25-\mathrm{ft}$. spool) ..45-8750*		
Fastener, snap (diffusing panel)28-4342FA3		
Spring, diffusing panel (2 required)56-3841		
Spring, gang ...66-2617		
Spring, pointer ...88-8953		
Socket. octal (50C6G) ...nou.		
\dagger +42-1874 is	single-section wafer switch (band sw	

AM ALIGNMENT PROCEDURE

Make alignment with loop aerial connected to radio. The AM alignment should be completed before the FM alignment is made.
DIAL POINTER-Calibration and pointer-index measurements are shown in figure 7. With tuning gang fully meshed, set pointer to index marker.
OUTPUT METER-Connect between terminal 3 of aerial terminal board TB400 and chassis.
AM R-F SIGNAL GENERATOR-Connect as indicated in chart. Use modulated output.
RADIO CONTROLS-Set volume control to maximum, turn tone control fully counterclockwise, and set band switch to broadcast position.
OUTPUT LEVEL-During alignment, adjust signal-generator output to maintain output-meter indication below 1.25 volts.

FM ALIGNMENT PROCEDURE

Make AM Alignment First

OUTPUT METER-Connect between terminal 3 of aerial terminal board TB400 and chassis.
ALIGNMENT INDICATOR-Connect negative lead of 20,000 -ohms-per-volt meter to pin 2 of 19 Ts tube; connect positive lead to B-. Use 10 -volt range.
AM R-F SIGNAL GENERATOR-Generator must have sufficient output to give a reading of 8.5 volts on alignment indicator. Connect ground lead to $\mathrm{B}-$; connect output lead as indicated in chart. Use modulated output.
RADIO CONTROLS-Set volume control to maximum, turn tone control fully counterclockwise, and set band switch to FM position. Allow radio and signal generator to operate for at least 15 minutes before making alignment.
R-F.COIL-NOTE: Check resonance of coils L401, L404, and L406 by inserting each end of a powdered-iron tuning core, such as Philco Part No. 56-6100, into the coils. If the signal strength increases when the iron end is inserted, compress the turns slightly. If the signal strength increases when the brass end is inserted, spread the turns slightly. If the signal strength decreases when either the iron or the brass end is inserted, no further adjustment is necessary. Do not spread or compress turns of coil excessively; only a small change is required at these high frequencies.

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part as follows:
C-condenser
LS-loud-speaker
W-line cord
I-pilot lamp
L-choke or coil
LA-loop aerial

R—resistor	WS-wafer switch
S—switch	Z-electrical assembly
T—transformer	

The number of the symbol designates the section in which the part is located, as follows:
100 -series components are in Section 1-the power supply.
200 -series components are in Section 2-the audio circuits.
300 -series components are in Section 3-the i-f, detector, and a-v-c circuits.
400 -series components are in Section 4-the r-f and converter circuits.

Figure 7. Dial-Backplate Calibration Measurements

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before it is turned on:

1. Inspect both the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.

Section 1-Power Supply

For the tests in this section, use a d-c voltmeter. Connect the negative lead to $\mathrm{B}-$, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum.
If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.
2. Measure the resistance between $\mathrm{B}+$ (pin 8 of 35 Z 5 GT), test point C , and $\mathrm{B}-$, test point B . When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1500 ohms, check condensers C101A, $\mathrm{C} 101 \mathrm{~B}, \mathrm{C} 101 \mathrm{C}$, and C203 for leakage or shorts. The resistance value given is much lower than normal, and is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed. TROUBLE SHOOTING

Figure 1. Eottom View, Showing Section I Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	possible cause of abnormal indication
1	A	105 volts		Trouble in this section. Isolate by the following tests.
2	C	130 volts	No voltage	Defective: 35Z5GT. Open: W100, S100. Shorted: C100, C101A.
			Low voltage	Defective: 35Z5GT. Open: C101A. Leaky: C101A.
			High voltage	Open: R101.
3	D	118 volts	No voltage	Open: R101. Shorted: C101B.
			Low voltage	Open: C101B. Leaky: C101B. Shorted: C203*.
			High voltage	Open: R102, T200*, R204*.
4	A	105 volts	No voltage	Open: R102. Shorted: C101C.
			Low voltage	Open: Cl101C. Leaky: C101C.
			High voltage	Open: R204*.
Listening Test: Abnormal hum may be caused by open C101A, C101B, or C101C.				

* This part, located in another section, may cause abnormal indication in this section.

Section 2-Audio Circuits

TROUBLE SHOOTING
For the tests in this section, use an audio-frequency generator. Connect the generator ground lead to B -, test point B; connect the output lead through a $.1-\mu \mathrm{f}$. condenser to the test points in the chart.

Set the volume control to maximum, and adjust the signal-generator output as required for each step.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits) ; if not, isolate and correct the trouble in this section.

Figure 2. Bottom View, Showiag Section 2 Test Points

STEP	test point	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	Clear output with moderate input.	Defective: 50L6GT, LS200. Open: R204, T200. Shorted: C202, C203.
3	D	Same as step 1.	Defective: 14B6 (triode section). Open: C201, R202, R203. Shorted: C201.
4	A	Sane as step 1.	Open: R200-(rotate through range), C200, R201. Shorted: C301D*.

* This part, located in another section, may cause abnormal indication in this section.

Section 3-I-F, Detector, and A.V-C Circuits

TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated outpur, set at 455 kc . Connect the generator ground lead to B -, test point B; connect the output lead through a $1-\mu \mathrm{f}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r-f and converter circuits) ; if not, isolate and correct the

Figure 3. Bottom View, Showing Section 3 Test Points trouble in this section.

To provide a complete i-f-amplifier check, test point A for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is
dependant upon the condition of certain parts in the minor circuit. These parts are listed below under the "POSSIBLE CAUSE OF ABNORMAL INDICATION.'

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear output with moderate input.	Defective: 12BA6, 14B6 (triode section). Misaligned: Z301. Open: C301A, C301B, L301A, L301B, R300, R302, R303. Shorted: C302, C300B, C301A, C301B, C301C.
3	A	Same as step 1.	Defective: 7A8*. Misaligned: Z300. Open: C300A, C300B, L300A, L300B, R301. Shorted: C300A, C400*, C400A*

* This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F and Converter Circuits
 TROUBLE SHOOTING

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to B -, test point B ; connect the output lead through a $.1-\mu$ f. condenser to the test points indicated in the chart.

Set the volume control to maximum, and set the tuning control and the signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1, isolate and correct the trouble in this section. If the trouble is not revealed by the tests

TP-78650

Figure 4. Bottom View, Showing Section 4 Test Points for this section, check the alignment.

STEP	TEST POINT	SIG. GEN. FREQ.	RADIO tUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	1000 kc .	Loud, clear speaker output with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C (Osc. test; see note below.)		Tune through range.	Negative 4.5 to 7.5 volts.	Defective: 7A8. Open: C401, T400, R400. Shorted: T400, C401, C400, C400B, C402.
3	A	1000 kc .	1000 kc .	Same as step 1.	Defective: 7A8. Open: LA400. Shorted: LA400, C400, C400A.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to B - test point B; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 4 of 7 AB), test point D. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (measured with 20,000 -ohms-per.volt meter) throughout the tuning range.

PAGE 20-116 PHILCO
MODEL 50-520

MODEL 50-520
ALIGNMENT PROCEDURE
CONTROLS: Tum on radio and set volume control to maximum
OUTPUT LEVEL: During alignment, attenuate sig nal-generator output to maintain output-meter indica-nal-generator output to
tion below 1.25 volts.

STEP	signal generator			rado	Aldust	
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETtING	special instructions		NOTE:-TC 3OOA AND TC3O1A ARE LOCATED ON UNDERSIDE OF CHASSIS
1	Ground lead to B-; output lead through . $1-\mu \mathrm{f}$. condenser to pin 6 of 7A8 converter.	455 kc .	$\begin{aligned} & 540 \mathrm{kc} \text {. } \\ & \text { (gany filly } \\ & \text { meshed) } \end{aligned}$	Adjust tuning cores, in order given, for maxithum output.	TC301B-2nd i-f sec. TC301A-2nd i.f pri. TC300B-lst i-f sec. TC300A-1st i-f pri.	
2	Radiating loop; see note below.	1600 kc .	1600 kc .	Adjust trimmer for maximum out put.	C400B-sse.	
3	Same as step 2.	1500 kc .	1500 kc .	Adjust trimmer for maximum output.	CA00A-aerial	EXTERNAL AERIAL CONNECTION

[^8]
Figure 7. Drive-Cord Installation Details

REPLACEMENT PARTS LIST

Abstract

NOTE: Part numbers identified by an asterisk (*) indicate general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and replacement parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved.

SECTION 1

POWER SUPPLY

Reference S	Symbol Description	Service Part No.
C100	Condenser, line filter, . $04 \mu \mathrm{f}$.	45-3500-2*
Cl 101	Condenser, electrolytic, 3-seation	30-2573
C101A	Condenser, filter, 30μ f., 150 v	Part of Cl 01
C101B	Condenser, filter, $25 \mu \mathrm{f}, 150 \mathrm{v}$	Part of Cl01
Cloic	Condenser, filter, 20μ f., 150 v .	Part of Cl01
R100	Resistor, leakage, 150,000 ohms	66-4158340*
R101	Ressistor, filter, 220 ohms, 1 watt	66-1224340*
R102	Resistor, filter, 1200 ohms	66-2128340*
S100	Switch, off-on	Part of R200
W100	Line cord	L-2183*
	SECTION 2	
	AUDIO CIRCUITS	
C200	Condenser, d-c blocking, . 01μ f.	61-0120*
C201	Condenser, d -c blocking, $01 \mu \mathrm{f}$.	61-0120*
C202	Condenser, by-pass, $220 \mu \mu \mathrm{f}$.	62-122001001*
C203	Condenser, tone compensation, $02 \mu \mathrm{~L}$	61-0108*
LS200	Speaker, p.m.	36-1627-5
R200	Volume control (with off-on switch), 500,000 ohms	33-5566-4
R201	Resistor, grid return, 3.3 megohms	66-5338340*
R202	Resistor, plate load, 470,000 ohms.	66-4478340*
R203	Resistor, grid return, 470,000 ohms	66-4478340*
R204	Resistor, cathode bias, 130 ohms, 1 wa	tt. . 66-1124340*
T200	Transformer, output	32-8384

SECTION 3

I-F, DETECTOR, AND A-V-C CIRCUITS

C300A	Condenser, fixed trimmer	Part of Z300
C300B	Condenser, fixed trimmer	Part of Z300
C301A	Condenser, fixed trimmer	Part of $\mathrm{Z301}$
C301B	Condenser, fixed trimmer	Part of Z301
C301C	Condenser, i-f filter	Part of Z301
C301D	Condenser, i-f filter	Part of Z301
C302	Condenser, screen by-pass, . 003	61-0109*
C303	Condenser, by-pass, .l $\mu \mathrm{f}$.	1-0113*
C304	Condenser, a-v-c by-pass, . $05 \mu \mathrm{f}$.	61-0122*
L300A	Coil, primary, lst i-f.	Part of 7300
L300b	Coil, secondary, lst i-f	Part of Z300

SECTION 3 (Cont.)

Reference	Symbol Description	Service Part No.
L301A	Coil, primary, 2nd i-f.	Part of Z301
L301B	Coil, secondary, 2nd i-f	Part of 2301
R300	Resistor, screen dropping, 39,000 ohms	340*
R301	Resistor, grid return, 330,000 ohms	66-4338340*
R302	Resistor, i-f filter, 47,000 ohms	66-3478340*
R303	Resistor, diode load, 2.2 megohms	66-5228340*
TC300A	Tuning core	Part of Z 300
TC300B	Tuning core	Part of Z300
TC301A	Tuning core	Part of Z301
TC301B	Tuning core	Part of 7301
Z300	Transformer, lst i-f	32-4160-6A
Z301	Transformer, 2nd i-f	32-4240-A

SECTION 4
 R-F AND CONVERTER CIRCUITS

C400	Condenser, tuning gang, 2-section.	31-2727-9
C400A	Condenser, trimmer, aerial	Part of C400
C400B	Condenser, trimmer, oscillator	Part of C400
C401	Condenser, d-c blocking, $47 \mu \mu \mathrm{f}$.	60-00515307*
C402	Condenser, fixed trimmer, $10 \mu \mu$ f.	30-1224-26*
LA400	Loop aerial	32-4052-33
R400	Resistor, grid return, 100,000 ohms	66-4108340*
T400	Transformer, oscillator	32-4263

MISCELLANEOUS

Description	Service Part No.
Cabinet, Model 50-520	10750
Cabinet, Model 50-520I	10750-1
Back	54-7777
Fastener (4)	W2235-2FA9
Knob	54-4527-11
Dial-backplate assembly	76-4658
Drive cord (25-ft. spool)	45-8750*
Drive-shaft-and-pulley assembly	76-3671-3
Pointer	56-4362-6
Spring	56-2617
Rubber mount, gang mounting (3)	27-4771-1
Socket, miniature (1)	27-6203
Socket, Loktal (2)	27-6138*
Socket, octal (2)	27-6174*

Circuit Description

Philco Radio-Phonograph Model 49-1613 contains an 11-tube superheterodyne and a Model M-12C Philco Automatic Record Changer.

A low-impedance loop aerial within the cabinet normally provides adequate signal pickup on the standard broadcast band. In most locations, the built-in FM dipole aerial provides satisfactory FM reception. In areas where FM signals are weak, an outdoor dipole aerial, such as Philco Part No. 45-1462, will provide additional pickup. To increase the pickup on both bands, use the Philco Aerial Coupler, Part No. 76-2353-1, with the outdoor dipole aerial. For increased pickup on the standard broadcast band only, the coupler may be used with an external aerial of the singlewire type, such as Philco Part No. 45-1494.
The r-f stage (FM only) and converter stage are mounted on a separate chassis, for improved performance at high frequencies. A GAUG high-frequency pen tode is used in the r-f stage, and a 7F8 high-frequency double triode is employed as a converter.
Two transformer-coupler i-f stages are used. The transformers have two sets of windings; one set is tuned to 455 kc ., for AM operation, and the other set is tuned to 9.1 mc ., for FM operation. A 6BA6 high-frequency pentode is used in the first i-f stage. The pentode section of a 7 R7 duo-diode, pentode functions as the second i-f amplifier; one diode of this tube is used for AM detection, while the other diode provides a.v.c.

The dual-diode section of a $7 \mathbf{X} 7$ is employed in the FM ratio-detector circuit; this circuit has good noisereducing properties and an excellent tuning characteristic.

The triode section of the $7 \mathbf{X} 7$ functions as the first audio stage. A 6J5GT triode operates as a plate-and-cathode-loaded phase inverter, driving two 6K6GT output amplifiers, in push-pull operation. Tone fidelity is obtained by the use of inverse feedback in the audio system; feed-back voltage is taken from the secondary of the output transformer.

The Philco Electronic Scratch Eliminator, for phono operation, may be switched on or off, as required. The pentode section of a 7 E 7 functions as a variable shunt capacitance at the phono-input circuit; at low signal levels, a controlled portion of the higher audio frequencies is by-passed to ground. The grid bias of the reactance tube controls the effective capacitance, which

MODEL 49-1613

SPECIFICATIONS

CABINET $\ldots \ldots \ldots \ldots \ldots$. Wood, mahoqany or light
finish

AUDIO OUTPUT 7 watts
OPERATING VOLTAGE . 105 - 120 volts, 60 cycles, ace. POWER CONSUMPTION
Radio $\ldots \ldots \ldots \ldots \ldots . .110$ watts
Phonograph $\ldots \ldots \ldots \ldots .125$ watts
AERIALS $\ldots \ldots \ldots \ldots \ldots$ Built-in loop and FM cabinet
dipole; external aerial also
may be used

INTERMEDIATE
FREQUENCIES
AM 455 kc .

FM 9.1 mc .
PHILCO TUBES (11)6AU6, 7F8, 6BA6, 7R7, 7×7, $6 \mathrm{~J} 5 \mathrm{GT}, ~ 6 \mathrm{~K} 6 \mathrm{GT}$ (2), 7 F 7 , 7F7, 5AZ4.

PHONOGRAPHPhileo Amtomatic: Record Changer, Model M-12C (for service information, refer to service mannal PR-1600)
becomes maximum with low bias, and minimum with high bias. This control bias is developed by the audio signal itself; a proportionate amount of the signal is taken from the pickup output, amplified by each triode section of the 7F7, and rectified by the diode section of the 7E7.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

Section 1-the power supply
Section 2-the audio circuits
Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits
Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire chart.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resist-
ances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before connecting the radio to a source of power:

1. Inspect the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance across condenser C102 (see figure 2). When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 3500 ohms, check condensers C102 and C103B for leakage or shorts.

The resistance value above, which is much lower than normal, does not represent a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 (power supply) are performed.

Importont!

To avoid altering FM operation, special care should be used in replacing any part. Replacement parts should be placed in the same physical locations as the original parts; connections should be of the same length, and should be soldered to the 'same points. The placement or length of leads should not be changed.

CALIBRATING DIAL BACKPLATE

When the radio chassis has been removed from the cabinet, dial calibration and alignment points may be marked on the dial (chassis) backplate at the end of the pointer with a pencil. The method of measuring
for these points is illustrated in figure 1.
With the tuning gang fully meshed, the pointer should be adjusted on the dial-drive cord to coincid. with the index mark.

Section 1 TROUBLE SHOOTING POWER SUPPLY

CAUTION: Do not turn on the power with the speaker disconnected, or the set may be damaged.

Make the tests for this section with a d-c voltmeter, connecting the leads between the chassis, test point \mathbf{C}, and the test points indicated in the chart. The voltage readings given were taken with a $\mathbf{2 0 , 0 0 0}$-ohms-per-volt meter, at a line voltage of 117 volts, a.c.

Set the volume control to minimum, and the tone control fully counterclockwise. Set the band selectorphono switch to the broadcast position.

Follow the steps in the order given. If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	195v		Trouble in thir section. Inolate by the following tests.
2	B	300v	No voltage. Low voltage. High voltage.	Defective: SAZ4. Open: S100, T100. Shorted: C102. Defective: 5AZ4. Shorted: C103B, C310*, C411*. Leaky: C102. Open: C102, L100. Shorted: L100. Open T200*.
3	A	195v	No voltage. Low voltage. High voltage.	Open: R100. Shorted: C103A, C311*. Leaky: C103A, C311*. Changed resistance: R100. Open: T200*
4	D	Negative 27v	No voltage. High voltage.	Open: R101. Open: R102.
Listrning Text: Abnormal hum and instability may ler caused by open C103A or C103B.				

* This part, located in another section, nay rause abnormal indication in this sertion.

Section 2
 TROUBLE SHOOTING
 AUDIO-AMPLIFIER TESTS AUDIO CIRCUITS

Use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C , and connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully counterclockwise. Set the band (wafer)
switch to the broadcast position. Make certain that the scratch-eliminator switch is turned off (two-position switch turned counterclockwise). If the "NORMAL INDICATION" is obtained in steps 1 and 6, proceed with the scratch-eliminator tests; if not, isolate and correct the trouble in the audio-amplifier circuits.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in audio-amplifier circuits. Isolate by the following tests.
2	$\begin{gathered} B \\ \text { (Remove } 6 J 5 \mathrm{GT} \text {) } \end{gathered}$	Clear signal with strong signal input.	Defective: 6K6GT(\#1), LS200. Open: C206, R211, T200. Shorted or leaky: C206, C209.
3	$\text { (} 6 \mathbf{J} 5 \mathrm{GT} \text { removed) }$	Same as step 2.	Defective: 6K6GT(\#2). Open: C207, R212. Shorted or leaky: C207.
4	$\begin{gathered} E \\ \text { (Replace } 6 \mathrm{~J} 5 \mathrm{GT} \text {) } \end{gathered}$	Loud, clear signal with moderate signal input.	Defective: 6J5GT. Open: R208, R209, R207, R210. Shorted or leaky: C205, C204.
5	A	Same as step 1.	Defective: 7X7. Open: R200 (rotate through range), C202, R205, R206. Shorted: C203.
6*	F	Loud, clear signal with weak signal input.	Open: R230, W\$-2(R).

*For this step, set band (wafer) switch to phono.

- John F. Rider

Section 2 (Cont.) TROUBLE SHOOTING SCRATCH-ELIMINATOR TESTS

Set the tone control fully counterclockwise. Turn the band (wafer) switch to the phono position. For all steps except 1 (b), set the volume control to maximum; for this step, adjust the volume control as directed in the chart.
Turn the scratch eliminator on or off as indicated in the chart. (The scratch eliminator is on when the twoposition switch is turned clockwise.)
Connect an output meter across the primary of the output transformer, T200.
IMPORTANT! For all steps except step 4, use the $0-10$-volt output-meter range; for step 4 only, use the $0-50$-volt range. If the proper ranges are not used, erroneous readings will result.

Connect the ground lead of an audio signal generator to the chassis, test point \mathbf{C}, and connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the generator for 5000 cycles. Adjust the generator output as directed in the chart.
If normal operation is indicated by the tests in step 1 , (a) and (b), proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in the scratch-eliminator circuits.

NOTE: For steps 2, 3, and 4, connect the positive lead of a 20,000 -ohms-per-volt, d-c voltmeter to the, chassis, test point C; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the "VOLTMETER" test points indicated in the chart.

Section 3

TROUBLE SHOOTING I-F, DETECTOR, AND A-V-C CIRCUITS

 AM CIRCUITS

 AM CIRCUITS}

Use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the chassis, test point C, and connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully counterclockwise. Set the band (wafer) switch to the broadcast position. Turn the tuning condensers to full-mesh position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for the FM circuits, or the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in the AM circuits.

Since the circuit location of test point A for this section is in Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in AM circuits. Isolate by the following tests.
2	B	Loud, clear signal with strong signal input.	Defective: 7R7. Open: R309, R310, R312, L302A, L302C, L302D, R313, R314, R316, C325, C317, WS.3(R). Shorted: C317, C318, C321, C322, C323, C324, C320, C302B. Misaligned: Z302.
3	D	Loud, clear signal with mod. erate signal input.	Defective: 6BA6. Open: R302, R305, R308, R306, L301A, L301B, L301C, L301D, C301A, C301C, C301D. Shorted: C308, C301C, C301D, C309, C313, L301C, L301D, C300D. Misaligned: Z301.
4	A	Loud, clear signal with weak signal input.	Defective: 7F8*. Open: R406*, R405*, L406*, C300C, L300C, L300D, C300D, R300, WS-4(R), WS-4(F). Shorted: C300C, L300C, C303, C304, L300D. Misaligned: Z300.

* This part, located in another section, may cause abnormal indication in this section.

FM CIRCUITS

These tests are also made with an AM r-f signal generator, using modulated output.

Set the band (wafer) switch to the FM position, and follow the instructions preliminary to the tests for the AM circuits, with these exceptions: set the signal-generator frequency to 9.1 mc ., and detune to one side or the other until a satisfactory test signal is obtained.

The best indication of satisfactory FM-detector operation is the ability of this circuit to take the alignment properly (see page 14).

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in the FM circuits.

Section 3 (Cont.) TROUBLE SHOOTING

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in FM rircuits. Isolate by the following tests.
2	B	Loud, clear signal with strong signal input.	Open: L302B, C302A, C328. C329, R315, R318, C325, R317, WS3(R). Shorted: L302A, C319, C302A, C328, L302E, C329, C330, C331, C332, C326.
3	D	Loud, clear signal with moderate signal input.	Defective: 6BA6. Open: R302, R305, C308, R306, L301A, L301B, L301C, L301D, C301A, C301C, C301D. Shorted: C308, C301C, C301D, C309. C313. L301C, L301D, C300D. Misaligned: Z301.
4	A	Loud, clear signal with weak signal input.	Open: WS-4(R), WS-4(F).

C300 IS LOCATED
IN 2300
C319
C320
C328
C329 Z 3302

Figure 4. Bottom View, Showing Section 3 Test Points

MODEL 49-1613

Section

TROUBLE SHOOTING

For the following tests, with the exception. of the oscillator tests, use an AM r-f signal generator, with modulated output. Connect the generator ground lead to the chassis, test peint C , and connect the output lead chrough a $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum, and the tone control fully counterclockwise.

Set the band (wafer) switch, tuning control, and signal-generator frequency as indicated in the chart.
OSCILLATOR TESTS (AM AND FM CIRCUITS) :

Connect the positive lead of a high-resistance d-c voltmeter to the chassis, and connect the negative lead through a 100,000 -ohm isolating resistor to the 7F8 oscillator grid (pin 1), test point B. Use a suitable range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltages of approximately the values given in the chart (measured with 20,000 -ohms-per-volt meter), throughout the tuning range.
If the "NORMAL INDICATION" is not obtained in step 1 of both the AM and the FM test charts, isolate the trouble by following the remaining steps.

AM CIRCUITS

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQ.	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \end{aligned}$	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kr .	Broadrast	Tune to sig. nal.	Loud, clear signal with wenk signal input.	Trouble in AM circuits. Isolate by the folldwing tests.
$\begin{aligned} & \text { (Osc. test }^{2} \\ & \text { see note } \\ & \text { above.) } \end{aligned}$	B		Broadcant	Tune through range.	Negative 1.5v to 3.5v.	Defective: 7F8. Open: R304*, C405, C404B, C408, L404, R402, WS-2 (F), WS-2(R), WS-1(F), WS3(F), WS3. (R). Shorted: C405, C404A, C400E, C404B, C408.
3	A	1000 kc.	Broadcast	Tune to signal.	Loud, clear sig. nal with weak signal inpuz.	Open: LA400, R401, L402, C402, C413, WS.1(R). Shorted: L402, C400D, C403.

Listening Test: Distortion may be caused by open R401 or R307*.
Hum and inatability masy be caused by open C312* or R301*.

* This part, locsted in another section, may cause abnormal indication in this section.

FM CIRCUITS

Observe the instructions preliminary to the tests for the AM circuits, with the following exception: After runing the signal generator and the radio to 95 mc .,
detune one or the other until a satisfactory test signal is obtrined.

STEP	TEST POINT	SIG. GEN. FREQ.	SWIND	RADIO tuning	NORMAL Indication	POSSIBLE CAUSE OF ABNORMAL
1	D	95 mc .	FM	Tune to aifnal.	Loud, clear siknal with week signal imput.	Trouble in FM circuita Isolate by the following testa.

Section 4 (Cont.) TROUBLE SHOOTING

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG, GEN. FREQ.	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \end{aligned}$	$\begin{aligned} & \text { RADIO } \\ & \text { TUNING } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
$\begin{gathered} { }^{2} \\ \text { (Ose. text: } \\ \text { see note } \\ \text { above. } \end{gathered}$	B		FM	Tune through range.	Negative Iv.	Defertive: 7F8. Open: L403, WS.2(F), WS.2(R), WS.1(F), WS.3(F), WS.3. (R). Shorted: L403, C400C, C400H.
3	D	95 mc .	FM	Tune to signal.	Loud, clear signal with weak signal input.	Defective: 6AU6. Open: L400, L405, R400, R403, R404, C409, L401, WS.1(R). Shorted: L400, C400A, C400F, C407, C409, C410, C411, L401, C400B, C400G.

Figure 5. Bottom View, Showing Section 4 Test Points

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part, as follows
 follows:

100-series components are in Section 1 - the power supply
200-series components are in Section 2 - the audio circuits
30J-series components are in Section 3- the i-f amplifier, delector, and ave circuits
400 -series components are in Section 4 - the r - 1 and converter circuits

REPLACEMENT PARTS LIST

NOTE: Parts marked with an asterisk (') are general replacement items. These numbers may not be identical with those on factory assemblies: also. the electrical values of some list. The values substituted in the values indicated in the schematic diagram and parts sither unchanaed or improved. When ordere chosen that the operation of the radio will be

SECTION 2
C200
C201
C203
C204
205
206
C208
C209
211

REPLACEMENT PARTS LIST (Continued)

	SECTION 3 (Continued) I.F: DETECTOR AND A-V-C CIRCUITS
Reference	Symbol Description Service Part No.
C327	Condenser, electrolytic, noise suppressor (FM). $2 \mathrm{mf} . \mathrm{I}^{50 \mathrm{v}}$ $30.2417 .7$
C328	Condenser, shunt. 25 mmi . ${ }^{\text {a }}$, Part of 2302
C329	Condenser, shunt, 15 mm . \quad Part of 2302
C330	Condenser, balancing. 7.5 mmi . $\quad 30.1224-8$
C331	Condenser, tone compensation, 000 mi . . $\quad 30.4112$
C332	Condenser, r-i by pass. 100 mmi.
C333	
C334	Condenser, r. 1 by-pass, 100 mmi . $\quad 60.10105407^{*}$.
C335	Condenser, filament by-pass, 100 mmi . 62.110009001^{*}.
C336	Condenser, filament by pass. 100 mmi . 62.110009001°
J300	Test socket
L300A	Transiormer, primary (FM), lst i-f \quad Part of 2300
L3008	Transformer, secondary (FM), 1 st i.f Part of 2300
L300C	Transiormer, primary (AM). lst i-1 Part of 2300
L300D	Transformer, secondary (AM). 1st i.f ... Part of 2300
L301A	Transformer, primary (FM), 2nd i-4 .-. Part of 2301
L3018	Transiormer, secondary (FM). 2nd i-4 Part of 2301
L301C	Transformer, primary (AM). 2nd i-1 Part of 2301
L301D	Transformer, secondary (AM). 2nd i.f Part of 2301
L302A	Transformer, primary (FM). 3rd i-4 Part of 2302
L3028	Transiormer, secondary (FM), 3rd i-1 Part of 2302
L302C	Transformer, primary (AM), 3rd i-f _ Part ai 2302
L302D	Transformer, secondary (AM), 3rd i.fPart of 2302
L302E	Transformer, winding, isolating. 3rd i. 4 Part of 2302
R300	Resistor, plate dropping, 47.000 ohms66-3473340*
R301	Resistor, a-v.c filter, 2.2 megohms - 66.5223340^{*}
R302	Resistor, cathode bias, 68 ohms66.0683340 ${ }^{\circ}$
R303	Resistor, plate dropping, 4700 ohms66-2473340**
R304	Resistor, plate dropping. 33.000 ohms .-. 66-3333340*
R305	Resistor, screen dropping, 27,000 ohms 66.3273340°
R306	Resistor, plate decoupling, 1000 ohms66-2103340**
R307	Resistor, a-v-c filter, 3.3 megohms ...were 66-5333340**
R308	
R309	
\%310	Resistor, screen dropping, 68,000 ohms 6.-.36833340**
R311	Resistor, a-v-c load, 1 megohm
R312	Resistor, plate decoupling, 1000 ohms66-2103340**
R313	Resistor, i.f filter, $47,000 \mathrm{ohms} \times \ldots$
R314	Resistor, diode load, 330.030 ohms
R315	Resistor, FM detector load, 6.8 megohms 66-5683340*
R316	Resistor, isolating. 100,000 ohms $-\quad 66.4103340^{*}$
R317	Resistor, noise suppressor (FM),
R318	Resistor, isolating, 100.000 ohms $\quad 66.4103340^{\circ}$
R319	Resistor, isolating, 100.000 ohms ...- ${ }^{\text {a }}$ - 66.4103340°
TC300A	Tuning core
TC302A	Tuning core ...). Part of 2302
WS-2 (F)	Switch-water section Part of 42-1803.1 \dagger
WS-2 (A)	Switch-wafer section ... Paran Part of 42.1803.1 \dagger
WS-3 (B)	Switch-wafer section Part of 42-1803-1 \dagger
WS-4 (F)	Switch-wafer section Part of 42-1803-1 \dagger
WS-4 (8)	Switch-wafer section Part of 42.1803-1 \dagger
2300	
$z 301$	Transformer, 2nd i-f \quad -

	SECTION 4 (Continned) R-F AND CONVERTER CIRCUITS
Reference	Symbol Description Service Port No.
C409	Condenser, d-c blocking, 33 mml . $\quad 30-1224^{\circ}$
C410	Condenser, r.f by-pass. 1500 mmi . $\quad \mathbf{6 2 - 2 1 5 0 0 1 0 1 1}$
C411	Condenser, rif by-pass. 1500 mmf . $\quad 62.215001011$.
C412	Condenser, filament by-pass, 100 mmi 62.110009001*
C413	Condenser, d-c blocking, 750 mrad .
1400	Socket, FM aerial \quad 27-6214-1
L400	Coil. FM aenal
1401	Coil. FM r.i.
1402	Coil. be aerial \quad -
L403	Coil, FM osc. \quad 32-4018-2
L404	Coil, be. osc.
L405	Coil, r-i choke (plate of 6AU6)
L406	Coil (including K465), parasitic suppressor, (plate of 7F8) 32-4157
LA400	Loop aerial assembly . \quad 76-3583-6
R400	Resistor, cathode bias, 82 ohms $\quad 66-0823340^{\circ}$
R401	Resistor, grid return. 2.2 megohms ...- 66.5223340°
R402	Resistor, grid return, 15.000 ohms $-\cdots . \quad 66.3153340^{\circ}$
h403	Resistor, screen dropping. 33.000 ohms $66-3333340^{*}$
R404	Resistor, plate decoupling. 1000 ohms66-2103340
K405	Resistor (with coil L4U6), parasitic suppressor, 150 J ohms Part of 1406
R406	Resistor, cathode bias, 1500 ohms66-2153340*
R407	Resistor, a-v.c voltage divider (FM). 470,000 ohms 65-4473340*
TB400	Terminal panel, bc. aerial 38.9942
WS. 1 (F)	Switch-wafer section - Part of 42-1803-1 \dagger
WS-1 (R)	Switch-water section \quad Part of 42-1803-1 ${ }^{+}$
WS-2 (F)	
WS-2 (R)	Switch-water section Part of 42-1803-1 ${ }^{\text {+ }}$
WS-3 (F)	Switch-water section - Paran of 42.1803-1+
WS-3 (B)	Switch-water section
T 42-1803.1	5 -section wafer switch (band selector-phono)

misCELLANEOUS

ALIGNMENT PROCEDURE

When the complete.AM and FM alignment is to be made, the AM alignment should be made FIRST; if AM alignment is not required, the FM alignment alone may be made.

ALIGNMENT OF AM CIRCUITS

DIAL POINTER: With tuning condensers fully meshed, dial pointer must coincide with index mark at low-frequency end of dial. (See "CALIBRATING DIÁL BACKPLATE," page 2.)
OUTPUT METER: Connect between No. 3 terminal (voice-coil connection) of aerial terminal panel and chassis.
AM R-F SIGNAL GENERATOR: Connect ground lead to chassis, and output lead as indicated in chart. Use modulated output.
OUTPUT LEVEL: During alignment, signal-generator output must be attenuated to maintain radio output below 1.5 volts, as read on output meter.

CONTROLS: Set band switch to broadcast position. Set volume control to maximum, and tone control fully counterclockwise. Set signal-generator frequency and radio tuning dial as indicated in chart.

ALIGNMENT OF FM CIRCUITS

Make AM alignment (if required) first.

OUTPUT METER: Connect as for AM alignment (this meter is used only in step 3).
D.C METER: Connect 20,000 -ohms-per-volt meter across 2 -mf. condenser, C327, in FM-detector circuit-negative lead to pin 6 of $7 \mathrm{X}_{7}$ tube, and positive lead to chassis. Use 10 -volt range.
AM R-F SIGNAL GENERATOR: Use modulated output for entire alignment. Generator must have sufficient output to give reading of approximately 9 volts on d-c meter, and signal should be attenuated during alignment to keep meter at this value. Connect generator ground lead to chassis, and output lead as indicated in chart.
VOLUME AND TONE CONTROLS: Same as for AM alignment.
RADIO BAND SWITCH, RADIO DIAL, AND SIGNAL-GENERATOR DIAL: Set as indicated in chart. Allow radio and generator to warm up for 15 minutes before starting alignment.
R-F COIL NOTE: When making the tracking adjustments, the resonance of the circuits using coils L400, L401, and L403 may be checked with a powdered-iron tuning core such as Part No. 56-6100. If the signal strength (meter reading) increases when the iron end is placed in, or near, the coil, compress the turns slightly. If the threaded brass end causes an increase in signal strength, spread the turns. Do not compress or spread the turns excessively; only a small change is required at these frequencies.

Figure 7. Drive-Cord Installation Details
TP-4058E

AM ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIo		adjust	
	CONNECTIONS to radio	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	Special instructions		
1	Through . 1-mi. condenser to termincil 1 of aerial terminal panel, TB400.	455 kc .	540 kc .	Adjust, in order given, for maximum output.	C302B-3rd i. sec . C301D-2nd if sec. C300D-1st i. sec . TC300A-l $\mathrm{st} 1 \mathrm{i.f}$ pri.	
2	Radiating loop (see note below).	580 kc .	580 kc .	Adjust for maximum while rocking tuning control.	C404B-Osc. (series)	
3	Same as step 2.	1700 kc .	1700 kc .	Adjust for maximum.	C404A--Osc. (shunt)	
4	Same as steg 2.	1500 kc .	1500 kc .	Adjust for maximum.	C403-Aerial	2
5	Same as steg 2.	580 kc .	580 kc .	Adjust for maximum while rocking tuning control.	C404B--Osc. (series)	
6	Repeat steps 2, 3, and 4 unili no further improvement is obtained.					

radio loop.

FM ALIGNMENT CHART

John F. Rider

AM ALIGNMENT CHART

RADDATING LOOP: Make up a six-to-eight turn. 6 -inch-diameter loop, using insulated wire; connect to
FM ALIGNMENT CHART

CIRCUIT DESCRIPTION

Philco Radio-Phonograph Model 49-1615 consists of an 11-tube superheterodyne and a Model M-12C Philco Automatic Record Changer and Record Player (album length) Combination.

A low-impedance loop aerial within the cabinet normally provides adequate signal pickup on the standard broadcast band. In most localities, the built-in FM line-cord aerial provides satisfactory FM reception. In areas where FM signals are weak, an outdoor dipole aerial, such as Philco Part No. 45-1462, will provide additional pickup. To increase the pickup on both bands, use the Philco Aerial Coupler, Part No. 76-2353-1, with the outdoor dipole aerial. For increased signal pickup on the standard broadcast band only, use the coupler with an external aerial of the single-wire type, such as Philco Part No. 45-1494.

The r-f stage (FM only), the converter, and the 1st i-f amplifier are mounted on a separate chassis for improved operation at high frequencies. A 6AU6 highfrequency pentode is used as the FM r-f amplifier. A 7F8 high-frequency dual triode is employed as the converter. There are two transformer-coupled i-f stages using 6BA6 high-frequency pentodes. Each i-f stage has a double set of transformers; one is tuned to 9.1 mc ., the FM intermediate frequency, and the other is tuned to 455 kc ., the AM intermediate frequency. The use of individual transformers for FM and AM gives better stability and allows more complete shielding. In FM operation, the primary and secondary of the first AM i-f transformer are shorted out, to attenuate undesirable beat frequencies; switching of other windings is unnecessary.

The multi-purpose 6 T8 provides AM and FM detection and functions as the first audio amplifier. Two diodes of this tube operate in a ratio detector circuit.

The other diode acts as the AM detector and also supplies the a-v-c voltage. The triode section is the first audio amplifier for both radio and phono operation.

A 7A4 triode operates as a plate-and-cathode-loaded phase inverter, driving a pair of 6V6GT's in the pushpull output stage. Tone fidelity is obtained by the use of inverse feedback in the audio system. This feedback voltage is taken from the secondary of the output transformer and returned to the low side of the volume control.

Selective tone compensation is provided by a continuously variable bass booster and a five-step treble switch that ranges from Scratch Eliminator "on" through maximum high-cut to Hi Fidelity.

The Philco Electronic Scratch Eliminator, for phono operation, may be switched on or off, as required. In this circuit, the reactance tube (pentode section of a 7E7) functions as a variable shunt capacitance at the phono-input circuit; at low signal levels, this tube bypasses a controlled portion of the higher audio frequencies to ground. The grid bias of the reactance tube controls its effective capacitance, which becomes maximum with low bias and minimum with high bias. This control bias is developed by the audio signal itself; a proportionate amount of the signal is taken from the pickup output, amplified by each triode section of the 7 F 7 , and rectified by the diode section of the 7 E 7 .

TROUBLE SHOOTING
 POWER SUPPLY

Section 1.

CAUTION: Do not turn on the power with the speaker disconnected, as this may cause damage to the set.

For the tests in this section, use a d-c voltmeter, connecting the leads between the chassis, test point C, and the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to
minimum. Turn the bass control fully counterclockwise, and set the treble selector switch to the left-hand TREBLE position. Set the band switch to the broadcast position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF abNormal indication
1	A	230v		Trouble in this section. Isolate by the following tests.
2	B	300v	No voltage Low voltage High voltage	Defective: 5U4G. Open: T100, PB100, W100. Shorted: C100. C101. Defective: 5U4G. Open: C102, L100. Shorted: C103B, C311* C307*. Leaky: C102. Open: T200*, R103. Shorted: L100.
3	A	230v	No voltage Low voltage High voltage	Open: R100. Shorted: C103A, C303*. Leaky: C103A, C303 ${ }^{\circ}$. Increased resistance: R100. Open: T200 ${ }^{\circ}$.
4	D	$-16 \mathrm{v}$	No voltage Low voltage High voltage	$\begin{aligned} & \text { Open: R101. Shorted: C210*. } \\ & \text { Leaky: C210*. } \\ & \text { Open: R102. } \end{aligned}$

Listening Test: Abnormal hum and instability may be caused by open C102. C103A, or C103B.

* This part, located in another section, may cause abnormal indication in this section.

FIGURE I. BOTTOM VIEW, SHOWING SECTION I TEST POINTS

TROUBLE SHOOTING

Section 2.

AUDIO CIRCUITS

AUDIO-AMPLIFIER TESTS

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the bass control fully counterclockwise. Set the treble
selector switch to the second TREBLE position. Set the band switch to the broadcast position unless otherwise noted in the chart.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for the scratch-eliminator circuits; if not, isolate and correct the trouble in the audio-amplifier circuits.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud. clear speaker output with weak signal input.	Trouble in audio-amplifier circuits. Isolate by the following tests.
2	$\begin{gathered} B \\ \text { (Remove 7A4) } \end{gathered}$	Clear output with strong input.	Defective: 6V6GT (\#1), LS200. Open: C208, R213, T200. Shorted or leaky: C208, C210, C211,
3	(7A4 removed)	Clear output with strong input.	Defective: 6V6GT(\#2). Open: C209. R214. Shorted or leaky: C209.
4	E (Replace 7A4)	Loud, clear outpul with miderate input.	Delective: 7A4. Open: R209, R210, R211, R212. Shorted or leaky: C207.
$\begin{aligned} & 5(a) \\ & 5(b) \end{aligned}$	F F	Loud, clear output with weak input. Loud, clear output with weak input. for all 5 positions of treble selector switch.	Defective: 6T8. Open: R208, C207, R207. Shorted or leaky: C206, C215. C320*. Open: C212, C213, C214, C215, R215, R216, R217, WS2. Shorted or leaky: C212, C213, C214.
6 (a) 6 (b)	A	Loud, clear output with weak input. Loud, clear output with weak input, for any position of bass control.	Open: C203, C205, R204, R200 (rotate through range). Open: R203. R202. C202. Shorted: C202.
7	G (Band switch in Phono position)	Loud. clear output with weak input.	Open: WSl-3 (F). R220. Shorted: shielded cable.
Listening Test: Abnormal hum and distortion may be caused by leaky C207, C208, C209, or by open C206 or C210.			

*This part, located in another section, may caruse abnormal indication in this section.

SCRATCH-ELIMINATOR TESTS

Set the bass control fully counterclockwise. Turn the treble selector switch to the high-fidelity position, maximum clockwise. Set the band switch to the phono position. For all steps except 1(b), set the volume control to maximum; for this step, adjust the volume control as directed in the chart.

Turn the scratch eliminator on or off as indicated in the chart. (The scratch eliminator is. on when the treble selector switch is in the counterclockwise position.)
Connect an output meter across the primary of the output transformer, T200.

IMPORTANT! For all steps except step 4, use the o- 10 -volt output-meter range; for step 4 only, use
the $0-50$-volt range. If the proper ranges are not used, erroneous readings will result.

Connect the ground lead of an audio signal generator to the chassis, test point C , and connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the generator for 5000 cycles. Adjust the generator output as directed in the chart.

If normal operation is indicated by the tests in step 1 , (a) and (b), proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in the scratch-eliminator circuits.

NOTE: For steps 2, 3, and 4, connect the positive lead of a 20,000 -ohms-per-volt, d-c voltmeter to the chassis, test point \mathbf{C}; connect the prod end of the negative lead through a $100,000-\mathrm{ohm}$ isolating resistor to the "VOLTMETER" test points indicated in the chart.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIGNAL GEN. OUTPUT	$\begin{aligned} & \text { VOLT. } \\ & \text { METER } \end{aligned}$	SPECIAL INSTRUCTIONS	POSSIBLE CAUSE OF abNORMAL INDICATION
1 (a)	G	Adjust for 10 v output. meter reading, with scratch eliminator off.		Turn scratch eliminator on; output voltage should drop to 6.5 v (approx.).	
1 (b)	G	Same as for 1 (a).		Reduce volume control to oblain output-meter reading of 1 v . Increase generator output for output-meter reading of 10 v . Turn scratch eliminator on; output voltage should not drop below 8.8v (approx.).	Trouble in scratch-eliminator cir. cuits. Isolate by the following tests.
2	H	See SPECIAL INSTRUC. TIONS.	J	With scratch eliminator on, increase generator output for voltmeter reading of 8.8 v , negative; failure to obtain this value indicates trouble.	Defective: 7F7. 7E7 (diode section), WS1-4 (R). Open: R229, R227, R231. R234, C223, WS2 (F).
3	H	Same setting which pro. duced 8.8 v reading in step 2, with scratch eliminator on.	K	With scratch eliminator on, voltage at point K should be $2 v$, negative.	Open: R226, R225, R224. Shorted: C219, C220, C217.
4	G	Same as step 2.	J	With scratch eliminator on, voltage at point J should be approx. 28v negative.	Defective: 7F7. Open: C216, C222, R218, R219, R228. Shorted or leaky: C222.
5	G	Adjust for 10 v outputmeter reading. with scratch eliminator off.		Turn scratch eliminator on; output voltage should drop to 6.5 v (approx.).	Defective: 7E7 (pentode section). Open: R221, R222. R223. C218. C217. Shorted: C218, C217.

Section 3.

TROUBLE SHOOTING

I-F, DETECTOR, AND A-V-C CIRCUITS

AM TESTS

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the bass control fully counterclockwise. Set the treble selector switch to the second TREBLE position. Set the band switch to the broadcast position, and rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the FM tests; if not, isolate and correct the trouble in the AM circuits.

To provide a complete i-f-amplifier check, test point A for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak signal input.	Trouble in AM i-f circuits. Isolate by the following tests.
2	B	Loud, clear output with strong input.	Defective: 6BA6 (2nd i-f ampl.), 6T8. Misaligned: Z305. Open: R310, R311, R312, R313, R314, L304A, L305B. L302B, L303B, WS1-5. Shorted: L303B, L305A, L305B. Shorted or leaky: C316, C315, C317. C318. C305A. C305B, C305C. C305D.
3	D	Loud, clear output with moderate input.	Defective: 6BA6 (1st i.f ampl.). Misaligned: Z303. Open: L300B. L301C. L302A. L302B, R303, R309, R305, R307, R308. Shorted: L303A. Shorted or leaky: C313, C312, C310, C314, C301B, C303A.
4	A	Loud, clear output with weak input.	Defective: 7F8*. Misaligned: Z301. Open: R405*, R300, R301. L300A, L301A, L301B. Shorted: L301A, L301B, L301C, WSI-5. Shorted or leaky: C410*, C411*, C409*, C301A, C301B, C306.
Listening Test: Abnormal hum may be caused by open: C306, C310, C312, C313, C314, C316, C317, C318.			

*This part, located in another section, may cause abnormal indication in this section.

FM CIRCUITS

Set the band switch to FM position, and follow the instructions preliminary to the AM tests with these exceptions; set the signal-generator frequency to 9.1 mc ., and detune to one side or the other until a satisfactory test signal is obtained.

The most satisfactory check on the operation of the discriminator circuit is the ability of the circuit to take
proper alignment. See ALIGNMENT OF FM CIRCUITS.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in the FM circuits.

Usually, if a part is found to operate satisfactorily for AM it will also operate satisfactorily for FM.

TROUBLE SHOOTING Section 3. I-F, DETECTOR, AND A-V-C CIRCUITS (Cont.)
 FM TESTS

STEP	test Point	NORMAL Indication	POSSIBLE CAUSE OF ABNORMAL Indication
1	A	Loud, clear speaker output with weak signal input.	Trouble in FM i.f circuits. Isolate by the following tests.
2	B	Loud, clear output with strong input.	Open: WSl-5, L304B, L304C, R315, C319. R316, R317, WSI-3. Shorted or leaky: C322, C323, C304A, C304B, C319. C321. Shorted: L304A, L304B. Misaligned: Z304.
3	D	Loud, clear output with moderate input.	Misaligned: Z302. Shorted: L302A, L302B, C302A, C302B. Open: R304, WSI-5.
4	A	Loud, clear output with weak input.	Misaligned: 2300. Shorted: L300A. L300B, C300A. C300B, C307, WSI-2. Open: WSI-2, WSI-5.

- John F. Rider

TROUBLE SHOOTING

Section 4.

R-F AND CONVERTER CIRCUITS

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the bass control fully counterclockwise. Set the treble selector switch to the second TREBLE position. Set the band switch, tuning control, and signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 of each chart, isolate and correct the trouble in this section. If the trouble is not revealed by the
tests for this section, check the alignment.
OSCILLATOR TESTS: For the oscillator tests (steps 2 and 4 of the AM test chart, and step 2 of the FM test chart), connect the positive lead of a high-resistance voltme:er to the oscillator cathode, pin 4 of the 7F8 tube (test point D). Connect the prod end of the negative lead through a $100,000-\mathrm{nhm}$ isolating resistor to the oscillator grid, pin 1 of the 7 F 8 tube (test point B). Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltages of approximately the values given in the chart (measured with 20,000 -ohms-per-volt meter) throughout the tuning ranges of the broadcast and FM bands.

AM TESTS

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIGNAL GEN. FREQ.	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \end{aligned}$	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
$\begin{aligned} & 1(a) \\ & 1(b) \end{aligned}$	$\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	1000 kc . Tune to frequency of each push-button.	BC Push-bution	Tune to signal. Depress each button, in order.	Loud, clear speaker output with weak signal input.	Trouble in AM r-i circuits. Isol. ate by the following tesis.
$\begin{gathered} 2 \\ (\text { Osc. } \\ \text { Test.) } \end{gathered}$	B to D		BC	Tune through range.	Negative 2-5 volts.	Defective: 7F8. Open: R404, T401, L405, C412, L404, R306*, WSl-3, WSl-4. Shorted: C412, C400. C417B, C407.
3	A	1000 kc.	BC	Tune to signal.	Loud, clear output with weak input.	Open: T400, WSI-2, C413. Shorted: C400, C417A.
$\begin{aligned} & 4 \\ & \left(\mathrm{Osc}_{\mathrm{sc}}\right. \\ & \text { Test.) } \end{aligned}$	B to D		Push-bution	Depress each button, in order.	Negative 2-5 volts.	Open: L406, PB400, R406, WS1-3, WS1-4. Shorted: C414, C415.
5	A	Tune to frequency of each push-button.	Push-bution	Depress each button, in order.	Loud, clear output with weak input.	Open: WS1-2, PB400. Shorted: C416.
Listening Test: Distortion may be caused by open R301*, R302*, or R309*. Hum and distortion may be caused by open C308* or C310*.						

* This part, located in another section, may cause abnormal indication in this section.

FM TESTS

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIGNAL GEN. FREQ.	BAND SWITCH	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	E	95 mc.	FM	Tune to signal.	Loud, clear speaker output with weak signal input.	Trouble in FM r-f circuits. Isolate by the following tests.
2 O_{sc}. Test.)	$\begin{gathered} \text { B } \\ \text { to } \\ \text { D } \end{gathered}$		FM	Tune through range.	Negative 1-1.5 volts.	Delective: 7F8. Open: 1402. WSl-3, WSl-4. Shorted: C400, C400C. C309'. Shorted or leaky: C407. C409.
3	E	95 mc.	FM	Tune to signal.	Loud, clear output with weak input.	Delective: 6AU6. Onen: L400, C401. R400. R401, R402, R403, L403, C405, L401. Shorted: C400, C400A, L400, L401, WSI-2. C400B. Shorted or leaky: C402. C404. C403. C405, C406.

- Thls part, located in enother section, may cause abnormal indication in thle section.

SETTING THE PUSH BUTTONS

1. Connect the output meter between the No. 3 pin of the aerial input jack, J400, and the chassis. See figure 8.
2. Turn the volume control to maximum, and the bass control fully counterclockwise. Turn the treble selector switch fully clockwise. Set the band switch to the push-button position.
3. Couple the signal generator loosely to the loop aerial (see RADIATING LOOP note under AM ALIGNMENT CHART).
4. Turn on the power, and allow the radio to warm up for 15 minutes before starting the adjustments.
5. Starting with the lowest frequency desired, set the signal generator to the frequency (modulation on), push the station-selector push button, and adjust the associated oscillator tuning core and aerial trimmer condenser (marked on rear of chassis) for maximum indication on the output meter.

TROUBLE SHOOTING

R-F AND CONVERTER CIRCUITS (Cont.)

6. Reset the signal-generator frequency, and repeat the procedure for each remaining stationselector push button.
7. Turn off the signal generator, and make a final adjustment of all tuning cores and trimmer condensers while listening to the stations for which the adjustments are being made.

FIGURE 4. BOTTOM VIEW, SHOWING SECTION 4 TEST POINTS

CALIBRATING DIAL BACKPLATE

When the radio chassis has been removed from the cabinet, dial calibration and alignment points may be marked on the dial backplate below the pointer.
The method of measuring for these points is illustrated in figure 6. Hold a ruler against the scale backplate, with the start of the ruler at the left-hand edge of the backplate, and mark pencil dots at the proper points for the required frequency settings. When the ruler is correctly placed, the index mark is approxi-
mately $4-7 / 8^{\prime \prime}$ from the reference point indicated in figure 6.

With the tuning gang fully meshed, the pointer should be adjusted on the dial drive cord to coincide with the index mark.

After the chassis is installed in the cabinet, the tuning condenser should be fully meshed, and the dial pointer should be moved to coincide with the index mark on the dial.

REPLACEMENT PARTS LIST

NOTE: Part numbers identified by an asterisk (") are general replacement items. These numbers may not be identical with those on factory assemblies: also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION 1 POWER SUPPLY

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
100	
C10	Condenser, line filter, 01 mf . .-ד) $\square_{\square} \square_{\square}^{*}$
C102	Condenser, electrolytic, filter, 40 mf . 450 v \qquad 30-2568-20
C103	Condenser, electrolytic, 2 -section
Cl03	Condenser, filter, 10 mf ., 450v \quad Part of $\mathrm{Cl03}$
103B	
C104	Condenser, filter, 01 mf . .-.
1100	
1100	
1101	
1102	Lamp, pilot light, 6.3-volt
1103	Lamp, pilot light, 6.3-volt
I100	
PB100	Switch, power off-on
R1	Resistor, filter, 18,000 ohms, 10w \quad 33-1335-85
R101	Resistor, bias divider, 1.2 megohms ...- ${ }^{\text {a }}$ 66-5123340*
R102	Resistor, bias divider, 330,000 ohms .-. $\quad 6$.
R103	Resistor, bleeder, 18,000 ohms, 10 watts ..33-1335-85
T1	Transformer, power .-.
W100	Line cord and plug .-.
WS1-1(R)	

SECTION 2
 AUDIO CIRCUITS

C200
C201
C202
C203
C204
C205
C206
C207
C208
C209
C210
C211
C212
C213
C214
C215
C216
C217
C218
$\dagger 42$-1881 Push-button switch assembly

SECTION 2 (Continued) AUDIO CIRCUITS

Reference Symbol	Description $\begin{array}{r}\text { Service } \\ \text { Part No. }\end{array}$
C220	Condenser, bias filter, 03 mf45-3500-1*
C221	Condenser, bias filter, 01 mf61-0120*
C222	Condenser, d-c blocking, 330 mmf60-10335407*
C223	Condenser, d-c blocking, . 002 mf61-0062*
C224	Condenser, bias filter, 02 mf61-0108*
C225	Condenser, bias filter, . 03 mf45-3500.1 ${ }^{\text {* }}$
J200	Socket, phono input ...67-6126
J201	Socket, FM test ...7-6180
LS200	Speaker, electrodynamic, 12" (including L100) \qquad $36-1630$
R200	Volume control, 2 megohms, tap at 1 megohm \qquad 33-5535.19
R201	Resistor, bass boost, 220,000 ohms66-4223340*
R202	Resistor, tone compensation. 68,000 ohms \qquad 66-3683340*
R203	Tone control, bass, 1 megohm33-5539-52
R204	Resistor, voltage divider, inverse feedback, 4.7 ohms \qquad 66-9473340*
R205	Resistor, voltage divider, inverse feedback, 100 ohms \qquad
R206	Resistor, isolating, 100,000 ohms .-............66-4103340*
R207	Resistor, grid return, 10 megohms66-6103340*
R208	Resistor, plate load, 220,000 ohms66-4223340*
R209	Resistor, grid return, 1 megohm66-5103340*
R210	Resistor, cathode bias, 47,000 ohms66-3473340**
H211	Resistor, cathode load, 4700 ohms66-2473340
R212	Resistor, plate load, 56,000 ohms66-3563340*
R213	Resistor, grid return, 330,000 ohms66-4333340*
R214	Resistor, grid return, 330,000 ohms66-4333340*
R215	Resistor, tone compensation, 4.7 megohms \qquad 66-5473340*
R216	Resistor, tone compensation, 4.7 megohms \qquad $66-5473340 *$
R217	Resistor, tone compensation, 4.7 megohms \qquad 66-5473340*
R218	Resistor, grid return, l megohm ._. 66-5103340*
R219	Resistor, cathode bias, 2200 ohms66-2223340**
R220	Resistor, low-pass filter, 100,000 ohms66-4103340*
R221	
R222	Resistor, screen voltage divider. 33,000 ohms \qquad 66-3333340*
R223	Resistor, screen voltage divider, 33,000 ohms \qquad 66-3333340*
R224	Resistor, grid return, 1 megohm66-5103340*
R225	Resistor, bias filter, 680,000 ohms66-4683340*
R226	
R227	Resistor, grid return, 560,000 ohms66-4563340*
R228	Resistor, plate load, 220,000 ohms66-4223340*
R229	Resistor, plate load, 100,000 ohms66-4103340*
R230	Resistor, bias filter, 220,000 ohms66-4223340*
R231	Resistor, diode load, 560,000 ohms66-4563340*
$\ddagger 42$-1877 B	d switch, 5 -section

REPLACEMENT PARTS LIST

SECTION 2 (Continued) AUDIO CIRCUITS

Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
R232	Resistor, bias filter, 1.5 megohms66-5153340*
R233	Resistor, bias filter, 3.3 megohms ...-..........66-5333340*
R234	Resistor, diode load, 120,000 ohms,66-4123340*
T200	Transformer, output ...- $\square_{\square}^{\text {32-8379 }}$
WS1-1(R)	
WS1-3(F)	Switch-wafer sectionPart of 42-1877 \ddagger
WS1-4(R)	Switch-wafer sectionPart of 42-1877 \ddagger
WS2	Switch, wafer, scratch eliminator off-on and fidelity (treble selector) switch \qquad 42-1876

SECTION 3

I-F, DETECTOR, AND A-V-C CIRCUITS

C300A
Condenser, fixed trimmer, pri., lst FM i-f
...Part of $\mathbf{Z 3 0 0}$
C300B
C301A
C301B
C302A

C302B

C303A
C303B

C304A
C304B
C305A
C305B
C305C
C305D
C306
C307
C308
C309
C310
C311
C312
C313
C314
C315
C316
C317
C318
C319
C320
C321
C322
C323
I.300A denser, fixed trimmer, sec., lst FM i-f
i-f
Condenser, fixed trimmer, pri.,
lst AM i-f
.....Part of Z300
. Part of $\mathrm{z3O1}$
Condenser, fixed trimmer, sec., lst AM i-f 2nd FM i-f
Condenser, fixed trimmer, sec.,
2nd $F M$ i- 1 2nd FM i-f 2nd AM i-f ..art of $\mathrm{Z3O3}$
Condenser, fixed trimmer, sec., 2nd AM i-f 3rd FM i-f 3rd FM i-f
…............................. 3rdenser, fixe
A-f
-
$\cdots \cdots \cdots \cdots \cdots$......... Part of Z305
Condenser, fixed trimmer, sec., 3rd AM i-f

Part of Z305
Condenser, r-f by-pass
Part of Z305
Condenser, rif by-passPart of Z305
Condenser, plate decoupling, 01 mf61-0120*
Condenser, r-f by-pass, 100 mmf62-110009001
Condenser (special), α-v-c filter, .01 mf30-4641
Condenser, r-f by-pass, 1500 mmf62-215001011
Condenser, (special), r-f by-pass, 01 mf30-4641
Condenser, r-f by-pass, 01 mf61-0120*
Condenser, screen by-pass, . 01 mf61-0120*
Condenser, filament by-pass, 100 mmf ...62-110009001
Condenser, plate by-pass, .01 mf61-0120*
Condenser, cathode by-pass, .01 mf61-0120*
Condenser, filament by-pass, $100 \mathrm{mmf} . . .62-110009001$
Condenser, screen by-pass, .01 mf . .-.
Condenser, plate by-pass, . 01 mf61-0120*
Condenser, electrolytic, diode-load filter, 2 mf ., 50 v
.....30-2417-7
Condenser, filament by-pass, $100 \mathrm{mmf} . . .62-110009001$
Condenser, de-emphasis, . 04 mf \quad 45-3500-2
Condenser, de-emphasis, 008 mf61-0174*
Condenser, r-f by-pass, 100 mm62-110009001
Coil, primary winding, lst FM i-f Part of Z300
(SECTION 3 (Continued)
I-F, DETECTOR, AND A-V-C CIRCUITS

Reference Symbol	Description Part No.
L300B	Coil, secondary winding, lst FM i.fPart of Z300
L301A	Coil, primary winding, lst AM i-f \quad Part of Z 301
L3018	Coil, tertiary winding, lst AM i-f Part of Z301
L301C	Coil, secondary winding, lst AM i-fPart of Z 301
L302A	Coil, primary winding, 2nd FM i-f Part of Z302
L302B	Coil, secondary winding, 2nd FM i-f Part of Z302
L303A	Coil, primary winding, 2nd AM i.fPart of Z303
L303B	Coil, secondary winding, 2nd AM i.fPart of Z303
L304A	Coil, primary winding, 3rd FM i.fPart of Z304
L304B	Coil, secondary winding, 3rd FM i-fPart of Z304
L304C	Coil, tertiary winding, 3rd FM i-fPart of Z304
L305A	Coil, primary winding. 3rd AM i-fPart of Z305
L305B	Coil, secondary winding. 3rd AM i-fPart of Z305
R300	Resistor, plate dropping, 47,000 ohms66-3473340*
R301	Resistor, grid return, 2.2 megohms66-5223340*
R302	Resistor, a-v-c voltage divider, 470,000 ohms \qquad 66-4473340*
R303	Resistor, grid return, 2.2 megohms66-5223340*
R304	Resistor, cathode bias (FM), 82 ohms66-0823340*
R305	Resistor, cathode bias, 390 ohms66-1393340*
R306	Resistor, plate dropping, 27,000 ohms66-3273340*
R307	Resistor, screen dropping, 33,000 ohms66-3333340*
R308	Resistor, plate decoupling, 1000 ohms66-2103340*
R309	Resistor, a-v-c filter, 3.3 megohms66-5333340*
R310	Resistor, cathode bias, 330 ohms66-1333340*
R311	Resistor, screen dropping, 20,000 ohms ...66-3203340*
R312	Resistor, plate decoupling, 1000 ohms66-2103340*
R313	.Resistor, diode load, 330,000 ohms66.4333340*
R314	Resistor, i-f filter, 47,000 ohms66-3473340*
R315	Resistor, FM diode load, 47,000 ohms66-3473340*
R316	Resistor, isolating, 100,000 ohms66-4103340*
R317	Resistor, FM detector load, 6.8 megohms ...66-5683340*
TC300A	Tuning core, pri., lst FM i-fPart of Z300
TC300B	Tuning core, sec., lst FM i-fPart of Z300
TC301A	Tuning core, pri., lst AM i-fPart of Z301
TC301B	Tuning core, sec., lst AM i-fPart of Z301
TC302A	Tuning core, pri., 2nd FM i-f Part of Z302
TC302B	Tuning core, sec., 2nd FM i-fart of Z302
TC303A	Tuning core, pri., 2nd AM i.fPart of Z303
TC303B	Tuning core, sec., 2nd AM i-fPart of Z303
TC304A	Tuning core, pri., Frd FM i-fPart of Z304
TC304B	Tuning core, sec., 3rd FM i-f Part of Z304
TC305A	Tuning core, pri., 3rd AM i-f Part of Z305
'TC305B	Tuning core, sec., 3rd AM i-fPart of Z305
WSI-2(F)	Switch-wafer sectionPart of 42-1877 \ddagger
WS1-3(F)	Switch-water sectionPart of 42-1877 \ddagger
WSl-3(R)	
WS1-5(F)	
WS1-5(R)	Switch-wafer sectionPart of 42-1877 \ddagger
Z300	Transformer, 1st FM i-f ..32-4257
Z301	Transformer, 1st AM i.f ..32-4258
Z302	
Z303	
Z304	Transformer, 3rd FM i-f32-4261-1
Z305	Transformer, 3rd AM i-i32-4240-2
$\ddagger 42$-1877 B	nd switch, 5 -section

REPLACEMENT PARTS LIST
 SECTION 4 R-F AND CONVERTER CIRCUITS

 SECTION 4 (Continued)

 SECTION 4 (Continued) R-F AND CONVERTER CIRCUITS

 R-F AND CONVERTER CIRCUITS}

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C400	Condenser, tuning gang (AM, 2-section: FM, 3-section) 31-2724.6
C400A	Condenser, trimmer, FM aerial
C400B	Condenser, trimmer, FM r.f. \quad Part of C400
C400C	Condenser, trimmer, FM osc. Part of C400
C401	Condenser, d.c blocking, 33 mmf .
C4	Condenser, filament by-pass, $100 \mathrm{mmf} \ldots 62.110009001$
C403	Condenser, screen by-pass, 100 mmf . ..62.110009001
C4	Condenser, cathode by-pass, $100 \mathrm{mmf} . .62 .110009001$
C405	Condenser, d-c blocking, 33 mmi .
C406	Condenser, r.f by-pass, 1500 mmf . $\quad \mathbf{6 2 - 2 1 5 0 0 1 0 1 1}$
C	Condenser, oscillator grid, 100 mmf62.110009001
C408	Condenser, filament by-pass, 100 mmf ..62.110009001
C4	Condenser, d-c blocking. 750 mmf . \quad - 60.10755301
C410	Condenser, plate by-pass, 3 mmf .
C411	Condenser, r-i by-pass, 01 mf .
C4	Condenser, d-c blocking, 220 mmf . .-....62-122001001
C413	Condenser, d-c blocking, 220 mmf . .-....62.122001001
C414	Condenser, ceramic, r-f voltage divider. 285 mmf . \qquad 30-1224-14
C415	Condenser, ceramic, r.f voltage divider, 485 mmf . 30-1224-15
C416	Condenser, aerial trimmer assembly, push-button (including C416A to C416E) \qquad
C417	Condenser, trimmer assembly, 2-section31-6476.8
C417	Condenser, trimmer, Bc. aerial \quad Part of C 417
C417B	Condenser, trimmer, Bc. oscillator - Part of C 117
1400	Socket, loop aerial ... ${ }^{\text {27.6214.6 }}$
3401	Socket, FM dipole . \times - 27-6214-1
la400	
L400	Coil, FM aerial
L401	Coil, FM r-t .
L40	Coil, FM oscillator . ${ }_{\text {a }}$ 32.4018.5
L4	Coil, rf choke, FM plate load ...-
L40	Coil, r.f choke $\longrightarrow \square \square \square \times$ 32.4061-2
L40	Coil, rf choke
L406	Coil, oscillator assembly, push-button
68	
L406B	
L406C	Coil, oscillator, 650-1300 kc. ...)
L4	
6E	Coil, oscillator, $540-1000 \mathrm{kc}$. ${ }^{\text {a }}$ - ${ }^{\text {a }}$-4059.2
P400	Plug, wire, and lug assembly, FM aerial ...41-3791.1
Pb400A to PB400E	Push-button switch assembly ...x 42-1881
R40	Resistor, grid return, 1 megohm
R401	
R40	Resistor, screen dropping, 56,000 ohms66-3563340*
R4	Resistor, plate decoupling, 1000 ohms66-2103340*
R404	Resistor, grid return, 15,000 ohms
R4	Resistor, cathode bias, 1500 ohms $\quad 66.2153340^{\circ}$
R4	Resistor, cathode bias, 6800 ohms .-. \quad - 66.2683340°
T400	Transformer, Bc. aerial \times 32.4049-3
T401	Transformer, Bc. oscillator \times 32.4221.3
TC400A to TC400E	Tuning cores, push button oscillatorPart of 2400

$\ddagger 42$-1877 Band switch, 5 -section
Reference
Symbol
WS $1.2(\mathrm{~F})$
WS $1.2(\mathrm{R})$
WS $1.3(\mathrm{R})$
WS $1.4(\mathrm{~F})$
WS $1.4(\mathrm{R})$

Description	Service Part No.
Switch-wafer section	Part of 42-1877 \ddagger
Switch-wafer section	Part of 42-1877 \ddagger
Switch-wafer section	Part of 42-1877 \ddagger
Switch-wafer section	Part of 42-1877 \ddagger
Switch-wafe	Part of 42-1877 \ddagger

MISCELLANEOUS

Description	Service Part No.
Cabinet and Cabinet Hardware	
Back assembly, wood	76.4344
Back, cabinet, masonite	54.7702
Baffle (cardboard) and cloth assembl	40.7575.1
Baffle, speaker	219138
Bezel	56.6375FCP
Bin mechanism, R.H.	76-3223.6
Bin mechanism, L.H. \qquad 76-3223-5	
Spring (2) bin mechanism, phono mtg.	
Bullet catch (2) ...45-6002	
Strike plate (2), bullet catch45-6003	
Door, record album ...45-6473	
Doors, matched set .._ 45.6472	
Door pull (2))	
Frame assembly, changer mounting	
Grommet (3) changer mtg.	
Spring (6) changer mtg. \quad 6-3043FAl5	
Hinge, knife (stop), top, radio door56-5713	
Hinge, knife (stop), bottom, radio door56-5713.2	
Hinge, knife, R.H., top, record door45.6449	
Hinge, knife, L.H., bottom, record door 45.6449.1	
Instrument panel ._-	
Cable-and-plug assembly, speaker	
Dial Scale Parts and Hardware	
Dial backplate-and-pulley assembly76-4303	
Knobe (5) ...44-4486	
Cap, plastic (6), push-button knob54-4294	
Scale strap (2), end, scale mounting66-2234-2 Scale strap, middle, scale mtg. ..46-4756FEll	
Jewel-and-bin-lamp assembly ...-61-3896Pilot-lamp-socket assembly, L.H.	
Socket, Loktal, 7F8 (r-f section, mica-filled bakelite)27-6213	
Jewel, telltale	- 54-4304

- John F. Rider

ALIGNMENT PROCEDURE

CAUTION: Do not turn on the power with the speaker disconnected, or the radio may be damaged.

ALIGNMENT OF AM CIRCUITS

When the complete AM and FM alignment is to be made, the AM alignment should be made first; however, if AM alignment is not required, the FM alignment alone may be made.
DIAL POINTER: With the tuning condensers fully meshed, the dial pointer must coincide with the index mark at the low-frequency end of the dial. See "CALIBRATING DIAL BACKPLATE" for the method of measuring the backplate for index and calibration points.
CONTROLS: Set the volume control to maximum, and the bass control fully counterclockwise. Set the treble selector switch fully clockwise. Set the band switch to the broadcast position. Set the signal-generator dial and radio dial as indicated in the chart.
OUTPUT METER: Connect between the No. 3 terminal (voice-coil connection) of the loop aerial socket, J400, and the chassis. See figure 8.
AM SIGNAL GENERATOR: Connect the ground lead to the chassis, and the output lead as indicated in the chart. Use modulated output.
OUTPUT LEVEL: During alignment, the signal-generator output must be attenuated to hold the radio output below 1.5 volts, as read on the output meter.

ALIGNMENT OF FM CIRCUITS

BEFORE STARTING ALIGNMENT, ALLOW THE RADIO AND SIGNAL GENERATOR TO WARM UP FOR 15 MINUTES.

CONTROLS: Set the volume control to maximum, and the bass control fully counterclockwise. Set the treble selector switch fully clockwise. Set the band switch to the FM position. Set the signal-generator dial and radio dial as indicated in the chart.
OUTPUT METER: Connect between the No. 3 terminal (voice-coil connection) of the loop aerial socket, J400, and the chassis. See figure 8.
AM SIGNAL GENERATOR: Connect the ground lead to the chassis; connect the output lead through a $.1-\mathrm{mf}$. condenser to the points specified in the chart. Use modulated output.
OUTPUT LEVEL: During alignment, the signal-generator output must be attenuated to hold the radio output below 1.5 volts, as read on the output meter.
LOCATIONS OF COILS: For the locations of coils L400, L401, and L402 (steps 8, 9, and 10), refer to figure 4.
Note 1. Check the tracking of oscillator and r-f circuits with a tuning wand. If placing the brass end in or near the coil increases the output-meter reading, spread the turns; if the powdered-iron end increases the output reading, compress the turns. If both ends cause a decrease in the output, the coil is correctly tuned. Do not change the coils excessively, since only a small adjustment is required at these frequencies.

Note 2. Make two simple dipole aerials to feed the signals from the signal generator to the radio. Each dipole aerial may consist of two 30 -inch lengths of rubber-covered wire. Connect one dipole aerial to terminals 3 and 4 on the FM aerial socket, J401, of the radio. See figure 8. Connect the other dipole aerial to the output leads of the signal generator. Place the two dipoles several feet apart.

Note 3. The use of a signal generator for steps 5 through 11 is recommended only if the available generator is sufficiently accurate to insure correct frequency settings. Otherwise, an alternative procedure employing FM broadcast-station signals is recommended. For the adjustments at the high-frequency end of the band, use the station nearest 105 mc .; for the adjustments at the low-frequency end of the band, use the station nearest 88 mc . or 92 mc ., as indicated. If the radio is greatly misaligned, it may be necessary to adjust the trimmers and coils for maximum noise at each end of the band before station signals can be heard.

Production Change Supplement

PRE-PRODUCTION CHANGES

The following parts were deleted:

Reference Symbol	Description	Service Port No.
C104	Condenser, filter, 01 mf.	$61-0120^{\circ}$
C410	Condenser, plate by-pass, 3 mmf	\ldots
C411	Condenser, r-f by-pass, 01 mf.	

The following parts were changed:

Reference Symbol	New Description New Service Part No.
C202	Condenser, bass compensation, . 006 mf45-3500-7*
C312	Condenser, screen by-pass, . 003 mf61-0109*
C315	Condenser, cathode by-pass, . 05 mf61-0122*
C317	Condenser, screen by-pass, .003 mf. .-........61-0109*
R100	Resistor, filter, 10,000 ohms, 2 watts66-3105340*
R304	Resistor, cathode bias (FM), 100 ohms66-1108340*
R310	Resistor, cathode bias, 82 ohms66-0828340*
R311	Resistor, screen dropping, 33,000 ohms66-3338340*
R405	Resistor, cathode bias, 2200 ohms \qquad 66 -2228340* (R405 was disconnected from ground and connected to the oscillator cathode, pin 4 of the 7F8.)
8406	Resistor, cathode bias, 1000 ohms \qquad $66-2108340^{*}$ The $1 s 1$ and 2nd i-f amplifier tubes were changed to type 6BJ6.

The following parts were added:
Reference

Symbol

C324

Figure 1.

The following circuit changes were made:
C314 was disconnected from ground, and connected to the 1 st i-f amplifier screen, pin 6 of the first 6BJ6. In its new connection, C314 provides screen neutralization. C318 was disconnected from ground, and connected to the 2 nd i-f amplifier screen, pin 6 of the second 6 BJ 6 . In its new connection, C318 provides screen neutralization. The switching of the primaries of Z300 and Z301 was revised as shown in figure 1.

RUN 2 CHANGES (MAIN CHASSIS)

To eliminate inverse-feedback oscillation, the following part was changed:

Reference

Symbol New Description New Service Part No.
R205
Resistor, vo:+~- divider, inverse feedback,

RUN 2 CHANGES (SCRATCH-ELIMINATOR CHASSIS)

To improve phono-noise suppression, the following parts were changed:

Reference Symbol	New Description New Service Part No.
C218	Condenser, d-c blocking, reactance feedback, 220 mmf . \qquad 62-122001001*
R229	Resistor, plate load, 33.000 ohms .-.) 66.3338340°

RUN 3 CHANGES

To prevent AM noise-pulse interference on FM, the following circuit changes were made:

The switching was removed from the secondary of Z301. C311 is now connected directly to lug 1 of Z301. The removed switch section is now used to ground the AM audio lead when in the FM position. Lug 2 of $\mathrm{WS} 1-5(\mathrm{R})$ is tied to lug 5 of WS1-3(R), and lug 1 of WS1-5(R) is grounded. See figure 2.

Figure 2.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before it is turned on:

1. Inspect both the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.

Section 1—Power Supply

For the tests in this section, use a d-c voltmeter. Connect the negative lead to B-, test point \mathbf{B}; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2 (audio circuits) ; if not, isolate and correce the trouble in this section.
2. Measure the resistance between $\mathrm{B}+$ (test point C) and B - (test point B). See figure 1 . When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1500 ohms, check condensers C101A, C101B, C 101 C , and C203 for leakage or shorts. The resistance value given is much lower than normal, and is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed.

TROUBLE SHOOTING

Figure 1. Bottom View, Showina Section I Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL indication	ABNORMAL INDICATION	possible cause of abnormal indication
1	A	105 voles		Trouble in this section. Isolate by the following tests.
2	C	130 volts	No voltage	Defective: 35Z5GT. Open: W100, S100. Shorted: C100, C101A.
			Low voltage	Defective: 35Z5GT. Open: C101A. Leaky: C101A.
			High voltage	Open: R101.
3	D	118 volts	No voltage	Open: R101. Shorted: C101B.
			Low voltage	Open: C101B. Shorted: C203* Leaky: C101B.
			High voltage	Open: R102, T200*, R204*.
4	A	105 volts	No voltage	Shorted: C101C. Open: R102.
			Low voltage	Leaky: C101C. Open: C101C.
			High voltage	Open: R204*.
Listening Test: Alonormal hum n			caused by ope	101A, C101B, or C101C.

* This part, located in another section, may cause abnormal indication in this section.

Section 2—Audio Circuits

TROUBLE SHOOTING
For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B -, test point B ; connect the output lead through a $.1-\mu$ f. condenser to the test points indicated in the chart.

Set the volume control to maximum. If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Sections 3 (i-f, detector, and a-v-c circuits) ; if not, isolate and cor-

STEP	TEST POINT
1	A
2	C
3	\bar{D}
4	A

$\left|\begin{array}{l}\text { NORMAL IMDICATION } \\ \begin{array}{l}\text { Loud, clear speaker output with } \\ \text { weak signal imput. }\end{array} \\ \begin{array}{l}\text { Clear output with moderate sig. } \\ \text { nal input. }\end{array} \\ \hline \text { Same as step 1. } \\ \hline \text { Same as step 1. }\end{array}\right|$

POSSIBLE CAUSE OF ABNORMAL INDICATION
Trouble in this section. Isolate by the following tests.
Defective: 50L6GT, LS200.
Open: R204, T200,
Shorted: C202, C203.
Defective: 14 B6 (triode section).
Open: CCO1, R202, R203.
Shorted: C201.
Open: R200 (rotate through range), C200, R201.
Shorted: C301D.

*This part, located in another section, nay cause abnormal indication in this section.

```
MODELS 50-522,
50-522-I, 50-524
```


Section 3-I-F, Detector, and A-V-C Circuits

TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B -, test point B; connect the output lead through a $.1-\mu \mathrm{f}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tuning control until the tuning condenser is fully meshed.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits) ; if not, isolate and correct

Figure 3. Bottom View, Showing Section 3 Test Points the trouble in this section.

To provide a complete i-f-amplifier check, test point A for this section is placed at the grid of the mixer in Section 4 therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	test point	NORMAL INDICATION	Possible cause of abnormal indication
1	A	Loud, clear speaker output with weak signal input.	Trouble in this section. Isolate by the followiny test.
2	C	Loud, clear output with moderate input.	Defective: 12BA6, 1436, (diode section). Misaligned: Z301. Open: R300, C301A, C301B, L301A, L301B, R302, R303. Shorted: C302, C300B, C301A, C301B, C301C.
3	A	Same as step 1.	Defective: : $\mathrm{A} 8^{*}$. Misaligned: Z300. Open: L300A, L300[B, R301, C300A, C30013. Shorted: C300A, C400, C400A.

* This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F and Converter Circuits

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to $B-$, test point B; connect the output lead through a $.1-\mu$ f. condenser to the test points indicated in the chart.

Set the volume control to maximum. Set the tuning control and the signalgenerator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in this section. If

Figure 4. Bottom View, Showing Section 4 Test Points the trouble is not revealed by the tests for this section, check the alignment.

STEP	TEST POINT	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	1000 kc .	Loud, clear speaker output with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C Osc.test; see note below.		Tune through range.	$\begin{aligned} & \text { Negative } 4.5 \text { to } 7.5 \\ & \text { volits. } \end{aligned}$	Defective: 7A8. Open: C401, T400, R400. Shorted: T400, C401, C400, C40013, C402.
3	A	1000 kc .	1000 kc .	Same as step 1.	$\begin{aligned} & \text { Defective: 7A8. } \\ & \text { Open: LA400. } \\ & \text { Shorted: C400, C400A, LA400. } \end{aligned}$

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to B-, test point B; comect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the 7 A 8 oscillator grid (pin 4), test point D. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (measured with 20,000 -ohms-per-volt meter), throughout the tuning range.

PHILCO PAGE 20- 155

PAGE 20-156 PHILCO

REPLACEMENT PARTS LIST

NOTE: Part numbers identined by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the volues indicated in the schematic diagram and parts list. The values substituted in any case ore so chosen that the operation of the radio will be either unchanged or improved.

SECTION 1

POWER SUPPLY		
Reference	Symbol Description	Service Part No.
C100	Condenser, line filter, $04 \mu \mathrm{f}$.	45-3500-2*
C101	Condenser, electrolytic, 3 -section filter	30-2573
C101A	Condenser, filter, $30 \mu \mathrm{f}$, 150 v	Part of Cl01
C101B	Condenser, filter, $25 \mu \mathrm{f}$., 150 v	Part of Cl01
C101C	Condenser, filter, $20 \mu \mathrm{f}$., 150 v .	Part of Cl01
R100	Resistor, leakage, 150,000 ohms	66-4158340*
R101	Resistor, filter, 220 ohms, I watt	66-1224340*
R102	Resistor, filter, 1200 ohms.	66-2128340*
S100	Switch, off-on	Part of R200
W100	Line cord and plug	L-2183*

SECTION 2

AUDIO CIRCUITS

C200	Condenser	61-0120*
201	Condenser, d -c blocking, . Ol $\mu \mathrm{f}$.	61-0120*
C202	Condenser, by-pass, $220 \mu \mu \mathrm{f}$	122001001*
C203	Condenser, tone compensation,	61-0108*
LS200	Speaker, p-m, 4"	36-1627-5
R200	Volume control (with off-on switch), 500,000 ohms	33-5566-4
R201	Resistor, grid return, 3.3 megohms	66-5338340*
R202	Resistor, plate load, 470,000 ohms.	66-4478340*
R203	Resistor, grid return, 470,000 ohms	66-4478340*
R204	Resistor, cathode bias, 130 ohms, 1	66-1124340*
T200		

SECTION 3

I-F, DET, AND A-V-C CIRCUITS

C300A	Condenser, fixed trimmer	Part of Z300
C300B	Condenser, fixed trimmer	Part of Z300
C301A	Condenser, fixed trimmer	Part of Z301
C301B	Condenser, fixed trimmer	Part of Z301
C301C	Condenser, i-f filter	Part of Z301
C301D	Condenser, i-f filter	Part of $\mathrm{Z301}$
C302	Condenser, screen by-pass, . $003 \mu \mathrm{f}$	61-0109*
C303	Condenser, by-pass, .l $\mu \mathrm{f}$.	61-0113*
C304	Condenser, a-v-c by-pass, $05 \mu \mathrm{f}$.	61-0122*
L300A	Coil, lst i-f primary	Part of Z300
L300B	Coil, lst i-f secondary	Part of Z300
L301A	Coil, 2nd i-f primary	Part of Z301
L301B	Coil, 2nd i-f secondary	Part of Z301
R300	Resistor, screen dropping, 39,000 ohms.	66-3398340*
R301	Resistor, grid return, 330,000 ohms	66-4338340*
R302	Resistor, i-f filter, 47,000 ohms	66-3478340*
R303	Resistor, diode load, 2.2 megohms	66-5228340*
TC300A	Tuning core, lst i-f primary	Part of Z300

SECTION 3 (Cont.)

Reference	Symbol Description	Service Part
TC300B	Tuning core, lst i-f secondary	Part of Z300
TC301A	Tuning core, 2nd i-f primary	Part of Z301
TC301B	Tuning core, 2nd i-f secondary	Part of Z301
Z300	Transformer, 1sti-1	32-4160-6A
Z301	Transtormer, 2nd i-f	32-4240-A

SECTION 4

R.F AND CONVERTER

C400	Condenser, tuning gang, 2 -section	31-2727-2
C400A	Condenser, trimmer, aerial	Part of C400
C400B	Condenser, trimmer, oscillator	Part of C400
C401	Condenser, d-c blocking، $47 \mu \mu \mathrm{f}$.	60-00515307*
C402	Condenser, fixed trimmer, $10 \mu \mu \mathrm{f}$.	30-1224-26*
L. 4400	Loop aerial	
	Model 50-522, 50-522-I	32-4052-31
	Model 50-524	. 32-4052-34
R400	Resistor, grid return, 100,000 ohms	66-4108340*
T400	Transformer, oscillator	. 32-4263

MISCELLANEOUS	
Description	Service Part No.
Cabinet	
Model 50-522	10747
Model 50-522-I	10747-1
Model 50-524	10754
Back	
Model 50-522, 50-522-I	54.7767
Model 50-524	54-7810
Fastener, cabinet back (4),	
50-522, 50-522-I	W2235-2FA9
Dial scale, Model 50-524	54-5060-1
Scale strap (2)	56-7021-FA3
Knob	
Model 50-522	54-4674
Model 50-522-I	54-4674-1
Model 50-524	54-4527-3
Dial-backplate assembly	76-4570
Drive cord (25-ft. spool)	45-8750*
Spring, drive cord	56-2617
Drive-shaft-and-pulley assembly	76-3671-2
Pointer	56-5630-11
Spring, pointer	56-3167
Rubber mounts, gang mounting (3)	27-4771-1
Socket, Loktal (2)	27-6138*
Socket, miniature (1)	27-6203
Socket, octal (2)	27-6174*

Section 1
 TROUBLE SHOOTING

POWER SUPPLY

For the tests in this section, use a d-c voltmeter. Connect the negative lead to B -, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

FIGURE 1. BOTTOM VIEW, SHOWING SECTION I TEST POINTS

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	95v		Trouble within this section. Isolate by the following tests.
2	C	108v	No voltage Low voltage High voltage	Defective: 35Y4. Shorted: C101A. Open: S100. W100. Jl00. Defective: 35Y4. Open: C101A. Leaky: C101A. Open: R100.
3	D	120v	No voltage Low voltage High voltage	Shorted: Cl01B. Open: R100. Open: C101B. Leaky: C101B. C203*. Open: R101, T200 . R203*.
4	A	95v	No voltage Low voltage	Shorted: Cl01C. Open: R101. Leaky: Cl01C.
Listening Test: Abnormal hum may be caused by open C101A, C101B, or C101C.				

- This part, located in another section, may cause abnormal indication in this section.

Section 2
 TROUBLE SHOOTING

 AUDIO CIRCUITSFor the tests in this section, use an audiofrequency signal generator. Connect the generator ground lead to B -, test point B ; connect the output lead through a . $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak signal-generator input.	Trouble within this section. Isolate by the following tests.
2	C	Clear output with strong input.	Defective: 50L6GT. LS200. Shorted: C202. C203. Open: R203, T200.
3	D	Clear output with moderate input.	Defective: 14B6. Shorted: C201. Open: C201. R202, R204.
4	A	Same as step 1.	Shorted: C301D*. Open: R200, R201, C200.
Listening Test: Distortion may be caused by shorted or leaky C201.			

- This part, located in another section, may cause abnormal indication in this section.

Section 3

TROUBLE SHOOTING

I-F, DETECTOR, AND A-V-C CIRCUITS

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

figure 3. BOTTOM VIEW, ShOWING SECTION 3 test points

To provide a complete i-f-amplifier check, test point \mathbf{A} for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak signal-generator input.	Trouble within this section. Isolate by the following tests.
2	C	Same as step 1.	Defective: 14A7, 14B6 (diode section). Shorted: L300B, C300B, L301A, C301A, L301B, C301B, C301C, C301D. Open: L301A, L301B, C301A, C301B, R300, R301, C304. Misaligned: Z301.
3	A	Same as step 1.	Defective: 7A8*. Shorted: C400*, C400A*, L300A, C300A. Open: L300A, L300B, C300A. C300B. Misaligned: $Z 300$.
Listening Test: Hum and instability may be caused by open C302, C303.			

* This part, located in another section, may cause abnormal indication in this section.

Section 4 TROUBLE SHOOTING

R-F AND CONVERTER CIRCUITS

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator, with modulated output. Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and set the tuning control and the signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1, isolate and correct the trouble in this section. If the trouble is not
 revealed by the tests for this section, check the alignment.

STEP	TEST POINT	SIG. GEN. FREQUENCY	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	1000 kc .	Clear speaker output with weak signal-generator input.	Trouble within this section. Isolate by the following tests.
2	C (Osc. test; see note below.)		Rotate through range.	Negative 4 v to 6 v .	Defective: 7A8. Open: C402, R401, T402. Shorted: T400, C400, C400B, C403.
3	D	1000 kc.	1000 kc.	Same as step 1.	Defective: 7A8. Open: LA400. Shorted: C400, C40DA, LA400.
4	A	1000 kc .	1000 kc .	Same as step 1.	Open: C401.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to the B-, test point B; conneci the prod end of the negative lead through a 100,000 -ohm isolating resistor to the 7 A8 oscillator grid (pin 4), test point C. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (measured with 20,000 -ohms-per-volt meter) throughout the tuning range.
MODELS 50-527,
50-527-1

REPLACEMENT PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be elther unchanged or improved.

Circuit Description

Philco Model $50-620$ is a portable four-tube superheterodyne providing reception on the standard-broadcast band. A high-impedance loop within the cabinet normally provides adequate signal pickup. However, provisions have been made for connecting an external aerial, if required.
The aerial circuit works directly into a 1R5 converter, where the incoming signal is converted to the $455-\mathrm{kc}$. intermediate frequency. A 1T4 is used in a single high-gain stage of i-f amplification, which employs neutralization to suppress oscillation. A $1.5-\mathrm{mmf}$. condenser, C304, feeds part of the i-f voltage, of the proper phase, back to the 1 T4 grid through the tube-socket capacitance.
A 1 US diode-pentode is used in the detector, $\mathrm{a}-\mathrm{v}-\mathrm{c}$, and firsi audio circuils. The pentode section is resist-ance-coupled to a $3 V 4$ pentode output amplifier, which works into a p -m speaker.
The d-c operating voltages are obtained from either a battery pack, Philco type P-361, or from a 105-120 volt, a-c or d-c power line. For power-line operation, the plate, screen, and filanient voltages are provided by a power supply using a selenium rectifier, CR100.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schemaiic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire chart.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect both the top and the bottom of the chassis. Make sure that all tabes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Check the total filament resistance, with the power switch turned on, the battery plug disconnected from the battery, and the change-over switch in the battery position (power-cord plug inserted in receptacle on rear of chassis). If the resistance between the A+ and A-pins on the battery plug is higher than 100 ohms, one of the tube filaments is probably open.

NOTE: If the 3V4 filament is open, check condenser C202 before replacing the tube.
3. Measure the resistance between $\mathrm{B}+$ (output of selenium rectifier), test point D, and $B-$, test point B. See figure 1. When the ohmmeter leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 2000 ohms, check condensers C101A and C101B for leakage or shorts.

The resistance value above, which is much lower than normal, does not represent a quality check of these condensers; it is the lowest value which will permit the rectifier to operate safely while the voltage checks of Section 1 (power supply) are performed.

section I-Power Supply

Make the tests for this section wi.h a d-c voltmeter. Connect the negative lead to B -, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Set the volume control to minimum.
'The battery pack should be replaced when the " A " voltage drops below 5 volts, or the " B " voltage drops below 60 volts.

If the "NORMAL INDICATION" is obtained in step 1 , procced with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
$\begin{aligned} & 1(\alpha) \\ & 1(b) \end{aligned}$	$\begin{aligned} & \mathbf{A} \\ & \mathbf{C} \end{aligned}$	$\begin{gathered} 7.5 \mathrm{v} \\ 90 \mathrm{v} \end{gathered}$		Trouble in this section. Isolate by the following tests.
2	D	125v	Low voltage No voltage	Defective: CR100. Open C101A. Defective: CR100. Open: S100, S101.
3	E	120v	Low voltage No voltage	Changed resistance: R1C0. Leaky: ClOIA. Opgn: R100. Shorted: C101A.
4	F	65v	Low voltage No voltage	Changed resistance: R101A. Leaky: C101B. Open: R101A. Shorted: C101B.
5	A	7.5v	Low voltage High voltage No voltage	Changed resistance: R101B. Open: One or more lilaments, R205*. Open: Ri01B, S101.
6	C	90v	Low voltage Kigh voltage No voltage	Changed resistance: R102. Leaky: C101C. Open: R205*, T200*, S100. Open: R102, Sl01. Shorted: C101C.
Listenlng Test: Abnormal hum may be caused by open C101B, C101C, or C202*.				

'This part, located in another section, may cause abnormal indication in this section.

Section 2-Audio Circuits

TROUBLE SHOOTING

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B -, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

TROUBLE SHOOTING

Figure 1. Bottom View, Showing Section 1 Test Points TP-5355A-I or Section 2 (audio circmits), if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker oulput with moderate generator input.	Trouble in this section. Isolate by the following tests.
2	C	Clear speaker output with atrong qenerator input.	Defective: 3V4, LS200. Open: R204, T200. Shorted: C203, C204 C205, T200.
3	A	Same as step 1.	Defective: lU5, R200 (rotate). Open: C200, R201, R202, R203, C203. Shorted: C201, C301C*.
Listening Test: Distortion may be caused by leaky or shofted C203, or by changed resistance of R202. Distortion or strong signals may be caused by leaky or shorted C200.			

This part, located in another section, may cause abnormal indication in this section.

Section 3-I-F, Detector, And A-V-C Circuits
 TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B--, test point B; connect the output lead through a $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximun.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

Tu provide a complete i-f amplifier check, test point A for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ARNORMAL Indication
1	A	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear output with moderate input.	Deiective: 1T4, IU5 (diode section). Misaligned: Z301. Open: R300, C303. L301A, R301, L301B. C301A. Shorted: C300B, C303. L301A. L301B. C301A. C301B.
3	A	Same as step 1.	Defective: 1RS*. Misaligned: Z300. Cpen: C300A, L300A. L300B C300B, T400'. Shorted: C400A', C400B', C300A, L300A, L300B, сзо0в.

-This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F And Converter Circuits TROUBLE SHOOTING

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.
Set the radio volume control to maximum. Set the tuning control and signalgenerator frequency as indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1, further tests should be unnecessary; if not, isolate and correct the
 trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIGNAL GEN. FREQUENCY	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc.	Tune to signal.	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C to D Osc. test: see note below.)		Rotate through range.	Negative 5 to 10 volts.	Defective: IR5. Open: R402, T400, C405. Shorted: C402. C400C. C400D.
3	A	1000 kc.	Tune to signal.	Same as step 1.	Open: C401, C403, R401. R403. LA400.

MODEL 50.620

ALICNMENT PROCEDURE

 RADIO CONTROLS Set volume control to maximum.
OUTPUT METER-Connett across voice-coil terminals.
SIGNAL GENERATOR-Use modulated output.

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part, as follows:
C-condenser
I-pilot lamp
L-choke or coil
LA-loop aerial
LS-loud-speaker
R -resistor
S-switch

T-transformer
W-line cord
Z-electrical assembly
The number of the symbol designates the section in which the part is located, as follows:
100 -series components are in Section 1-the power supply
200 -series components are in Section 2-the audio circuits
300 -series components are in Section 3-the i-f, detector, and a-v-c circuits
400 -series components are in Section 4-the r-f and converter circuits
A suffix letter identifies the part as a component of the assembly which bears an identical number without a suffix letter, and with perhaps a difterent prefix letter.

Figure 1. Drive-Cord Installation Details

Figure 2. Bottom View, Showing Location of Parts

REPLACEMENT PARTS LIST

NOTE: Part numbers identified by an asterisk (*) are qeneral replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

ALIGNMENT PROCEDURE

POINTER-Set pointer to coincide with first index mark from left side of dial backplate (looking at backplate).
RADIO CONTROLS-Set volume control to maximum.
OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Use modulated output.
OUTPUT LEVEL-During alignment, adjust signal-generator output to maintain output-meter indication below .5 volt.
SPECIAL NOTE-The orientation of the loop with respect to the chassis and battery is critical for correct tracking. During
alignment, with the cabinet back (containing the loop) lying flat on the bench, the chassis should be laid on its back in approximately its normal relation to the loop, with a $1 / 4^{\prime \prime}$. thick wooden board separating the loop and chassis. The battery should also be placed as close as possible to its normal position with respect to the chassis and loop.
CRITICAL LEAD DRESS-To secure proper padding capacity, the green lead from pin 6 of the IR5 tube to Z1 must be dressed over wiring panel, away from chassis, and the green lead from Zl to the tuning condenser must be dressed away from chassis.

Figure 4. Top View, Showing Trimmer Locations

STEP	SIGNAL GENEKATOR		RADIO		ADJUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Through a . $1-\mu f$. condenser to pin 6 of the 1R5 converter.	265 kc.	540 kc . (gang fully meshed)	Adjust, in order given, for maximum output.	TC5-2nd i-f sec. TC4-2nd i-f pri. TC2-lst i-f pri. TC3-lst i-f sec.
2	Radiating loop. See note below.	1620 kc .	$\begin{aligned} & 1620 \mathrm{kc} . \\ & \text { (gang fully } \\ & \text { open) } \end{aligned}$	Adjust for maximum output. If low-frequency dial tracking is far off, make adjustments in steps 3 and 4 before making this adjustment.	ClC-osc. shunt
3	Same as step 2.	580 kc .	580 kc.	Adjust for maximum output while rocking tuning control.	Cl3-osc. series
4	Same as step 2.	580 kc .	580 kc .	Adjust for maximum output. This adjustment should not be made unless dial tracking is off, or sensitivity is low at low-frequency end (580 kc.).	TCl-r-f sec.
5	Same as step 2.	1500 kc .	1500 kc. (index mark at right)	Adjust, in order given, for maximum output.	ClB-rif trimmer ClA-aerial trimme
6	Repeat steps 3 and 5 until no further improvement is obtained.				

RADIATING LOOP: Make up a six-to-eight-turn, 6 -inch-diameter loop using insulated wire; connect to signal-generator leads and place near radio loop.

MODEL 50-925

Circuif Description

Philco Radio Model 50-925 is a superheterodyne employing six tubes plus a selenium rectifier. Reception is provided in the standard-broadcast and FM bands. A built-in high-impedance loop is used as the aerial for the broadcast band, and the line cord is used as the aerial for the FM band. These aerials normally provide adequate signal pickup; if additional pickup is required on the FM band, Philco Dipole Aerial Part No. 45-1462 may be used. If it is desired to use the FM dipole aerial to provide additional AM as well as FM pickup, Aerial Coupler Part No. $45-1598$ and Aerial Coupler Cable Part No. 45-1652 should be used in conjunction with the dipole aerial. The purpose of the cable is to permit the isolation of the coupler from the chassis, since the coupler must not be connected directly to the "hot" chassis.

A 12BA6 pentode is used as an r-f amplifier, for FM only. This stage is capacity-coupled to a 12BA7, which is employed as a mixer and oscillator for both bands, by switching the mixer grid and common cathode to the proper circuits.
For broadcast reception, the i-f signal is transformercoupled to a 12BA6 i-f amplifier. The output of this stage is transformer-coupled to a diode section of the 19T8, which provides detection and a-v-c action.

For $F M$ reception, an additional i-f amplifier stage, which employs another 12BA6, is used to provide adequate gain and stability. The 12BA6 is transformercoupled to two diode sections of the 19 T 8 , in a ratiodetector circuit. The proper detector for AM or FM is selected by the band switch at the detector output circuits.

In the i-f circuits, two sets of i-f transformers are used. One set is tuned to 455 kc ., for standard broadcast, and the other set is tuned to 9.1 mc ., for FM. The use of two sets of transformers makes better shielding possible, so that undesirable beat signals and interaction between transformers are eliminated. In switching bands, the band switch shorts the primary of the 1st i-f transformer for the undesired band.

The triode section of the 19 T 8 is employed as the first audio amplifier; this section is resistance-coupled to the 50C5 output tube, which supplies an audio output of approximately one watt to the permanent-magnet speaker.

The power supply utilizes a selenium rectifier in a half-wave-rectifier circuit, and operates from a line volt age of $105-120$ volts, a.c. or d.c.

Philco TROUBLE SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before it is turned on:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance between $B+$ (test point B)
and the chassis (test point C). When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1500 ohms, check condensers C102A, C102B, C102C, and C309 for leakage or shorts. The resistance value given is much lower than normal, and is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed.

Section 1
 TROUBLE SHOOTING
 POWER SUPPLY

CAUTION-One side of the power line is connected directly to the chassis. Do not connect chassis to ground. Use all precautions to avoid shock.

For the tests in this section, use a d-c voltmeter. Connect the negative lead to the chassis, test point C; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a

20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum. Set the band switch for broadcast reception.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL	possible cause of abnormal indication
1	A	100\%		Trouble in this section. Isolate br the following testa.
2	B	135 V	No voltage Lov voltage Higis voltage	Defective: CR100. Open: R100. Shorted: C102A. Delective: CR100. Shorted: C102A, C102B, C102C, C309*, C310*. Open: R101.
3	D	1208	No voltage Low voltage High voltage	Shorted: C102B. Open: R101. Leaky: C102B. Shortod: C102A, C102C. Open: R102, T200* (primary) R204*.
4	A	100\%	No voltage Low voltage	Open: R102. Shorted: C102C. Shorted: C102B. Leaky: C102C.

Listening Test: Abnormal hum may be caused by open C102A, C102B, or C102C.

- This part, located in another section, may cause abnormal indication in this eection.
- John F. Rider

TROUBLE SHOOTING
 AUDIO CIRCUITS

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

With the band switch set for broadcast reception
(except for test point E), set the volume control to maximum.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with"the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	$\begin{gathered} A \\ E \\ \text { (Band switch in } \\ \text { FM position) } \end{gathered}$	Loud, clear speaker output with weak generator input.	Trouble in this section., Isolate by the following tests.
2	B	Loud, clear cutput with strong input.	Delective: 50C5. Open: R204, R203, C207, T200. Shorted: C205. C206, C207, C208. Leaky: C205, C206, C208.
3	D	Same as step 1.	Defective: 1978 (triode section). Open: R201, R202, C205. Shorted or leaky: C204, C205.
4	A	Same as step 1.	Open: WS-1(F), R200, C203. Shorted: C202, C307*.
5	(Band switch in FM position)	Same as step I.	Open: C200, WS-1(F). Shorted: C201, C202.

- This part, located in another section, may cause abnormal indication in this section.

Section 3

TROUBLE SHOOTING I-F, DETECTOR, AND A-V-C CIRCUITS
 AM Circuits

For the AM tests in this section, use an AM r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the chassis, test point C ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

With the volume control set to maximum, and the band switch set for broadcast reception, rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the FM tests: if not, isolate and correct the trouble in the AM circuits.

To provide a complete i-f-amolifier check, test point A for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed on next page under "POSSIBLE CAUSE UF ABNORMAL INDICATION."

Section 3 (Cont.) TROUBLE SHOOTING

AM Chart

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak generator input.	Trouble in AM circuits. Isolate by the following tests.
2	B	Loud, clear output with moderate input.	Defective: 12BA6, 19T8. Open: R301, R303, R305, R102*, R302. Shorted: C305, C303C, C303D. Misaligned or open: Z303.
3	A	Same as step 1.	Defective: 12BA7. Open: Z301, R404*, R300, WS-1(F), R402*, R307. L404. Shorted: C304, C408*, C409*. Misaligned: Z301.

- This part, located in another section, may cause abnormal indication in this section.

FM Circuits

For the FM tests in this section, follow the preliminary instructions for the AM tests, with the following exceptions:

Set the band switch for $F M$ reception, set the signal generator to 9.1 mc ., and detune to one side or the other until a satisfactory test signal is obtained.

The most satisfactory check on the operation of the
discriminator circuit is the ability to make proper alignment as described under "ALIGNMENT PROCEDURE."

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

FM Chart

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker outpul with weak generator input.	Trouble in FM circuits. Isolate by the following tests.
2	D	Loud, clear output with strong input.	Defective: 12BA6, $19 T 8$ (diode sections). Open: R304, R308, R102'. R309, R310, Z304, C314, Z303. Shorted: C311, C312, C313, C314. C200*, C201*, Z304. Misaligned: Z304.
3	B	Loud, clear output with moderate input.	Open: Z302, R302, R306, R307, R301, R303. Shorted: C305, C309, C310. Misaligned: $Z 302$.
4	A	Same as step 1.	Open: WS-1(F), R404*, Z300, Z301, R300, R102*, WS-2(R). Shorted: C408*, C409*, C304. Misaligned: Z300.

- This part, located in another section, may cause abnormal indication in this section.

Section 4 TROUBLE SHOOTING
 R-F AND CONVERTER CIRCUITS

AM Circuits

For the AM tests in this section, with the exception of the oscillator test, use an AM r-f signal generator with modulated output. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

With the volume control set to maximum, set the band switch for broadcast reception, and set the tuning control and signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for the FM circuits; if not, isolate and correct the trouble in the AM circuits.

FM Circuits

For the FM tests in this section, follow the preliminary instructions for the AM tests, except set the band switch for FM reception.

If the "NORMAL INDICATION" is obtained in step 1 , further tests should be unnecessary; if not, isolate and correct the trouble in this section. If the trouble is not corrected by the tests for this section, check the alignment.

Figure 4. Bottom View, Showing Section 4 Test Points

AM Chart

STEP	TEST POINT	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	Tune to signal	Loud, clear spoaker output with weak generator input.	Trouble in AM circuits. Isolate by the following tests.
2	B (Osc. test: see note below.)		Tune through range.	Negative 8 to 2.4 volts.	Open: WS-1(F), L401, C407, R403, R404, C408, C409. Shorted: C400C, C407, C304*, C408, C409. Defective: 12BA7 (osc. section). Misaligned: L401.
3	A	1000 kc.	Tune to signal	Same as step 1.	Open: T401, WS-2(F). R404, R300*, WS-1(F), R402. Shorted: C406, C408. C409.

- This part, located in another section, may cause abnormal indication in this section.

OSCMLATOR TEST: Connect the positive lead of a high-resistance voltmeter to the chassis, test point C; connect the prod end of the negative lead through a 100,000 ohm isolating resistor to the oscillator grid (pin 2) of the 12BA7. test point B. Use a suitable meter range, such as 0-10 volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (measured with 20,000-ohme-per-volt meter) throughout the tuning range.

FM Chart

STEP	TEST POINT	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	D	100 mc .	Tune to signal	Loud, clear speaker output with weak generator input.	Trouble in FM circuits. Isolate by the following tests.
2	B (Osc. teat: soe note above.)		Tune through range.	Negative . 1 to 1.5 volts.	Defective: 12BA7 (osc. section). Open: WS-1(F), C407. R403, C410, R404, R300*. Shorted: C410, C407, C408, C409, C304*. Misaligned: L402.
3	E	100 mc .	Tune to signal	Loud, clear output with moderate input.	Defective: 12BA7. Open: C404, L400, WS-2(F). Shorted: C404, C400. Misaligned: L400.
4	D	100 mc.	Tune to signal	Loud, clear output with very weak input.	Delective: 12BA6. Open: T400, C401, C402, R400, R401, L403. Shorted: C402, C403, C309*, C310*.

[^9]

Figure 5. Drive-Cord Installation Detalls
TP-5686E-1

REPLACEMENT PARTS LIST

NOTE: Part numbers identified by an asterisk (") are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."
Reference
Symbol
C100
C101
C102
C102A
C102B
C102C
C103
C104
C105
C106
C107
C108
C109
C110
CR100
I100
L100
L101
L102
PL100
R100
R101

SECTION 1	
Description Pervice	Reference Symbol
	R102
	S100
Condenser, electrolytic, 4 sections30-2570-43	W100
Condenser, filter, 40 mf ., 150vPart of Cl02	
Condenser, filter, 70 mf ., 150vPart of C102	
Condenser, filter, 40 mf ., 150 v Part of C102	
Condenser, line by-pass, $04 \mu f$.-................... 45-3500-2*	C200
Condenser, line by-pass, $01 \mu f \ldots \ldots \ldots$	C201
Condenser, line by-pass, $100 \mu \mu f$ ….....62.110009001*	C202
	C203
	C204
	C204
	C205
Condenser, r-f by-pass, $100 \mu \mu f \ldots . . . \quad$ 62-110009001*	C206
Selenium rectifier ..34-8003-1	C207
Jack, male, a-c .. 27-4785-7	
Choke, line filter ...32-4089-3	C208
Choke, filcment ..32-4061-2	J200
Choke, fildment ..32-4061-2	LS200
Plug, a-c	R200
Resistor, current limiting, 20 ohms33-1345	
Resistor, filter, 150 ohms66-1154340*	R201

\section*{SECTION 1 (Continued) POWER SUPPLY
 | Description | Service Part No. |
| :---: | :---: |
| Resistor, filter, 470 ohms | 66-1474340* |
| Switch, a-c, on-off | Part of R200 |
| Line cord | L-2183 |

SECTION 2 AUDIO CIRCUITS

Condenser, FM coupling, . $01 \mu f$...........................61-0120*
Condenser, de-emphasis, $2200 \mu \mu f \ldots60-20225014$
Condenser, r-f by-pass, $100 \mu \mu f$..............62-110009001*
Condenser, d-c blocking, . $02 \mu f$............................61-0108 ${ }^{\circ}$
Condenser, parasitic suppressor, $680 \mu \mu f$
…....62-168001001
Condenser, audio coupling, . $006 \mu f$...............45-3500-7*
Condenser, r-f by-pass, $100 \mu \mu f$.-............62-110009001*
Condenser, electrolytic, cathode
by-pass, $25 \mu f, 25 v$................................Part of Cl 102
Condenser, tone compensating, $006 \mu f$..........45-3500-7*
Jack, FM test
27-6180
Speaker, permanent-magnet \qquad ...36-1614
Volume control (with off-on switch)
500,000 ohms \qquad 33-5566-8
Resistor, grid return, 10 megohms66-6108340*

REPLACEMENT PARTS LIST (Continued)

SECTION 2 (Continued)

AUDIO CIRCUITS

Reference
Symbol
R202
R203
R204
T200
WS-1(F)

AUDIO CIRCUITS	
Description	Service Part No.
Resistor, plate load, 470.000 ohms	$\cdots{ }^{6} \mathbf{6 6 . 4 4 7 8 3 4 0} 0^{\circ}$
Resistor, grid return, 470,000 ohms	66-4478340*
Resistor, cathode bias, 150 ohms66-1158340*
Transiormer, output	Part of LS200
Switch-wafer section	Part of 42-1896

SECTION 3

I-F, DET., AND A-V-C CIRCUITS

C300A
C300B
C301A
C301B
C302A
C302B
C303A
C303B
C303C
C303D
C305
C306
C307
C308
C309
C310
C310
C311
C312
C313
C314
C314
C315
L300A
L300
L301A
L301B
L302A
L302B
L303A
L303B
L304A
L304B
L304C

R300

R301
R302
R303
R304
R305
R306
R307
R308
R309
R310
TC300A
TC3008
TC301A
TC301B
TC302A
TC302B
TC303A
TC303B
TC304A
TC304B
WS-2(R) \dagger
2300
Z301
Reference
Symbol
Z302
Z303
Z304

| Description | Service
 Part No. |
| :--- | :--- | ---: |
| Transformer, 2nd FM i-f | $\mathbf{3 2 - 4 3 7 2 - 1 A}$ |

SECTION 4

R-F AND CONVERTER CIRCUITS

C400

C400A
C4008
C400C
C401
C402
C403
C404
C405
C406
C408

C 409

C410
C411
C412
C413
J 400
J 400
L 400
L401
L402
L403
L404
LA400
PL400
R400
R401
R402
R403
R404
T400
WS-2(F) \dagger
WS-1(F) \dagger

SECTION 3 (Continued)
 I-F, DET., AND A-V-C CIRCUITS

Condenser, tuning gang31-2733.1	
	Condenser, trimmer, aerialPart of C400
	Condenser, trimmer, FM r.fPart of C400
	Condenser, trimmer, AM osc. Part of C400
	Condenser, aerial isolating, $01 \mu f$......... 61-0120*
Condenser, cathode by-pass,	
	$100 \mu \mu f$................................... 62-110009001*
	Condenser, screen by-pass, $1500 \mu \mu f$-...62-215001011*
	Condenser, d-c blocking, $220 \mu \mu f \ldots \ldots \quad$ 62-122001001
	Condenser, r-f by-pass, $05 \mu f$ -
	Condenser, d-c blocking, $22 \mu \mu f \quad 62-022009001^{*}$
	Condenser, AM i-f by-pass, $01 \mu f$
	Condenser, FM i-f by-pass, $100 \mu \mu f \ldots \ldots{ }^{\text {c }}$ 62-110009001*
	Condenser, FM osc. trimmer31-6495-3
	Condenser, r-f by-pass, $100 \mu \mu f . . . \quad . \quad . \quad . \quad 62-110009001 *$
	Condenser, r-f by-pass, 6.5 $\mu \mu \mathrm{f}$....................30-1224-6*
	Condenser, fixed trimmer, $13 \mu \mu f \cdots \quad 62-01520000{ }^{*}$
	Jack, FM aerial ..27-6214-8
	Coil، FM r-f
	Coil. AM ose. ...32.4153-3
	Coil, FM osc. ..32-4391
	Coil, r-f choke ...32-4061-2
	Coil, r-f choke ..32-4111
	Loop aerial ..30-4052-35
Plug, wire-and-lug assembly, FM line-cord aerial (part of W100) \qquad 41.3791 .1	
	Resistor, cathode bias, 47 ohms66-0478340*
	Resistor, screen droppin'g, 1000 ohms66-2108340*
	Resistor, a-v-c voltage dropping, 33,000 ohms \qquad 66-3338340*
	Resistor, grid return, 22.000 ohms66-3228340*
	Resistor, screen dropping, 1000 ohms66-2108340*
	Transformer, FM aerial32.4390
	Switch-water sectionPart of 42-1896

\dagger Wafer switch, 2 sections (band switch)42.1896
MISCELLANEOUS

PAGE 20-180

- P C E D E
 alignment is made. frequency end of scale.
RADIO CONTROLS -
trol a^{2} indicated in chart.
MODIFICAPToNS
FM ALIGNMENT PROCEDURE
Make AM alignment first.
RADIO CONTROLS - Set volume control to maximum, set band switch for FM reception, and set tuning control as indicated in chart.
OUTPUT METER - Connect across voice-coil terminals. (This meter is used only for step 3.) of 19 T 8 tube, and positive lead to chassis. Use $0-10$-volt range.
SIGNAL GENERATOR - Use AM r-f signal generator, with modulated output. Connect ground lead to chassis. Connect output lead and set frequency as indicated in chart. Generator must have sufficient output to give reading
 reading at this value.
NOTE: Before starting FM alignment, allow radio and signal generator to warm up for 15 minutes.
MODEL 50.925

AM ALIGNMENT CH				
stre	sicmal genemat			
		${ }_{\text {situm }}^{\text {Dinc }}$	sima	${ }_{\text {sercaus mstructons }}$
		$4{ }^{\text {ss }}$ k.		
$=$		1800 kc	1500 kc.	Aduan tor maxaum outapt
3	Same ar atep 2.	1300 kc	1500 kc	Adiant tor matmum outpot

FM ALIGNMENT CHART

stEP	Sicnal generator		RAD10		adust thmaer
	CONNECTION TO RADIO	${ }_{\substack{\text { dial } \\ \text { simil } \\ \hline}}$	Sill	Special msfructions	
1	oi 128AE lat $1 / \mathrm{cmp}$.	9.1 mc .	${ }^{83} \mathrm{mc}$.		TC304B-discriminator see-TC304A-discriminator pri. TC302B-FM 2nd $1-1$ sec. IC302A-FM 2nd $1 . \mathrm{I}_{\mathrm{prl}}$.
2		9.1 mc.	${ }^{\text {b8 me. }}$	Adjust tuning cores fof maximum recding on d-c volt meter. Fepeat adjustmenis until no furtiter improve- ment is moled. Do not disturb these tuning cores affer this step.	TC3008-FM lsi bf sec. TC300太-FM lat if pri-
3	Samo as atep 1.	${ }^{9.1} \mathrm{~mm}$.	${ }^{38} \mathrm{mc}$.	Adjust turing core for mintmum readiog on output tain it is correct.	TC304B-disariminato:
4	To toralioal 1 of 1 too.	105 mc .	105 mc .	Aduast rimmor tor maximum rodina on de veltmotior.	C410-FM oce
5	Sameas astep 4 .	105	105 mc .	Same ma tiop 4	C4008-5M T
5	Same as siep 4.	${ }^{32}$	${ }^{3} \mathrm{mmc}$.	Adust coill lor maxtiumm reading on de voltmeer.	L002-FM ooc. (tractugy)
7	Same as stop 4 .	92 me .	${ }^{92} \mathrm{mc}$ c.	Same as tep f .	1400-FM re tracklng?
8	Same ar tep 4.	105 mc .	105 mc .	Same as fopp 4 .	C410-FM os:
9	Repeets tiope 4 trough 8 unill in turber improvemeat is noted.				

AM ALIGNMENT CHART

5

Circuit Description

Philco Radio-Phonograph Model 50-1420 is a tablemodel 5-rube superheterodyne radio with a Model M-9C Automatic Record Changer. For service information on the record changer, refer to the Service Manual (PR-1599) for Model M-9C Automatic Record Changer.

Reception is provided on the standard broadcast band.
The built-in loop aerial normally provides adequate signal pickup; however, a terminal is provided for an external aerial, if additional pickup is required.

The loop works directly into a 12BE6 converter; no series padder is required for the oscillator, as the tuningcondenser plates are shaped for tracking.

The i-f stage employs a 12 BA 6 , operating at 455 kc . Both transformers are permeability-tuned in both primary and secondary windings.

The diode section of a 6AQ6 provides detection and a-v-c voltage; the triode section is the 1 st audio amplifier, and is resistance-coupled to a 35L6GT beam-power output amplifier, which works into a PM speaker.

The d-c operating voltages are supplied by a voltagedoubling circuit using a 50 Y 7 GT rectifier and a resistancecapacitance filter.

The 120,000 -ohm resistor, R103, is connected between B - and the chassis, to prevent hum due to condenser leakage under high-humidity conditions.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

Section 1-the power supply
Section 2-the audio circuits
Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits
Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The troubleshooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire chart.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances;

MODEL 50-1420
SPECIFICATIONS
CABINET......................... Brown molded bakelite RADIO CIRCUITFive-tube superheterodyne FREQUENCY RANGE $540-1600 \mathrm{kc}$. AUDIO OUTPUT 2 watts OPERATING VOLTAGES. . $105-120$ volts, 60 cycles, a.c. POWER CONSUMPTION

Radio only 35 watts
Radio-phonograph 50 watts AERIAL Built-in loop; terminal also provided for external aerial INTERMEDIATE FREQUENCY 455 kc . PHILCO TUBES (5)12BE6, 12BA6, 6AQ6, 35L6GT, 50Y7GT
PHONOGRAPH...... Philco Automatic Record Changer Model M-9C (for service information see manual PR-1599)

TP-6527
fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance between $B+$ (pin 4 of the 50 Y 7 GT) and $\mathrm{B}-$, test point B . When the ohmmeter leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 2000 ohms, check condenser C102A for leakage or a short. This resistance value, which is much lower than normal, does not represent a quality check of this condenser; it is the lowest value which will permit the rectifier to operate safely while the voltage checks of Section 1 (power supply) are performed.

Section 1-Power Supply

TROUBLE SHOOTING

For the tests in this section, use a d-c voltmeter. Con- Turn on the power, and set the volume control to nect the negative lead to B -, test point B ; connect the minimum.
positive lead to the test points indicated in the chart. The If the "NORMAL INDICATION" is obtained in step voltage readings given were taken with a 20,000 -ohms-per- 1 , proceed with the tests for Section 2 (audio circuits) ; if volt meter at a line voltage of 117 volts, a.c. not, isolate and correct the trouble in this section.

Figure 1. Bottom View,
Showing Section 1 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	possible cause of abnormal indication
1	A	120 volts		Trouble in this section. 1solate by the following tests.
2	C	212 volts	No voltage	Defective: 50Y7GT, I100. Shorted: C100, C101, C102A.
			Low voltage	Leaky: C100, C101, C102A.
			High voltage	Open: R100.
3	D	205 volts	No voltage	Defective: 50Y7GT. Shorted: C102B. Open: R100.
			Low voltage	Leaky: Cl02B.
			High voltage	Open: R101, R102, T200*.
4	A	120 volts	No voltage	Shorted: C102C. Open: R101 and R102 (in parallel).
			Low voltage	Leaky: C102C.

* This part, located in another section, may cause abnormal indication in this section.

Section 2—Audio Circuits

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B -, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum, and the radio-

TROUBLE SHOOTING

phono switch as indicated in the chart.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits) ; if not, isolate and correct the trouble in this section.

Figure 2. Bottom View, Showing Section 2 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	RADIO-PHONO SWITCH	normal indication	POSSIBLE CAUSE OF ABNORMAL Indication
$\begin{aligned} & 1(\mathrm{a}) \\ & 1(\mathrm{~b}) \end{aligned}$	A E	Radio Phono	Loud, clear speaker output with moderate generator input.	Trouble in this section. Isolate by the following tests.
2	C	Radio	Clear output with strong input.	Defective: LS200, 35L6GT. Shorted: T200, C203, C201, C204, C202. Open: T200, R204, R205, R203. Leaky: C203.
3	D	Radio	Loud, clear output with moderate input.	Defective: 6AQ6. Shorted: C200, C205. Open: C201, R202, R201, R206. Leaky: C201.
4	A	Radio	Loud, clear output with moderate input.	Open: R200 (rotate), C200, WS. Shorted: WS.
5	E	Phono	Same as step 4.	Open or shorted: WS.
Listening Test: Distortion may be caused by leaky C201. Distortion on strong signals may be caused by shorted or leaky C200.				

Section 3-I-F, Detector, and A-V-C Circuits

TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B -, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.
Set the radio volume control to maximum, and the radio-phono switch to the radio position. Rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits) ; if not, isolate and correct the trouble in this section.
To provide a complete i-f amplifier check, test point A for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION.'

STEP	TEST POINT	NORMAL INDICATION 1
2	C	Loud, clear speaker output with weak generator input.
3	Loud, clear output with strong input.	
A	Loud, clear output with weak input.	

Posouble in this section. Isolate by the following tests.
Defective: 12BA6, 6AQ6. Shorted: C300B, C301A, C301B, C301C,
C301D, C303, C304, WS, L300B, L301A, L301B, Open: R302, R303,
R304, R305, L300B, L301A, L301B, R301, C301A, C301B. Leaky:
C303, C304. Misaligned: Z301.
Defective: 12BE6*. Shorted: C400A* C400B*, C300A, L300A, L300B,
C302. Open: L300A, R300, C300A, C300B. Misaligned: Z300.

* This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F and Converter Circuits

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to B -, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum, and the radiophono switch to the radio position. Set the tuning control and signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1, further tests should be unnecessary; if not, isolate and correct the trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	Tune to signal.	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	$C-D$ Osc. Test (see note below).		Rotate through range.	Negative 1.8 to 3.2 volts.	Defective: 12BE6. Shorted: C400, C400B, C402, C401, L400A, L400B. Open: C402, L400A, L400B, R401, R402.
3	A	1000 kc .	Tune to signal.	Same as step 1.	Shorted: LA400, C400, C400A. Open: LA400, C.404.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to the oscillator cathode (pin 2 of 12BE6), test point D ; connect the prod end of the ncgative lead through a $100,000-\mathrm{ohm}$ isolating resistor to the oscillator grid (pin 1 of 12BE6), test point C. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oseillator is indicated by negative voltage within the range given in the chart (measured with a 20,000 -ohms-per-volt meter) throughout the tuning range.

REPLACEMENT PARTS LIST

NOTE: A part number identified by an asterisk (*) indicates a general replacement item. The part numbers of these items may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values given in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the 'Service Part No."

SECTION 1		
Reference	Symbol	Service Part No.
Cl00	Condenser, line filter, . 05 mf	61-0107*
C101	Condenser, electrolytic, filter, 20 mf .	30-2568-22
Cl02	Condenser, electrolytic, 3 -section	30-2575-26
C102A:	Condenser, filter, 40 mf	Part of Cl02
Cl02B:	Condenser, filter, 40 mf .	Part of Cl02
C102C:	Condenser, filter, 20 m	Part of Cl02
1100	Pilot lamp	34-2605
R100	Resistor, filter, 180 ohms	66-1184340*
R101	Resistor, filter, 10,000 ohms	66-3103340*
R102	Resistor, filter, 10,000 ohms	66-3103340*
R103	Resistor, isolating, 120,000 ohms	66-4123340*
S100	Switch, power on-off	Part of R200
W100	Line cord and plug.	L2183*
WS-A	Switch-wafer section	rt of 42-1847-1+

Reference	Symbol Description	Service Part No.
R303	Resistor, plate dropping, 1000 ohms	66-2103340*
R304	Resistor, a-v-c filter, 47,000 ohms	66-3473340*
R305	Resistor, diode load, 470,000 ohms	66-4473340*
R306	Resistor, bias, 100 ohms	66-1103340*
TC300A	Tuning core, lst i-f primary	Part of Z300
TC300B	Tuning core, lst i-f secondary	Part of Z300
TC301A	Tuning core, 2nd i-f primary	Part of Z301
TC301B	Tuning core, 2nd i-f secondary	Part of Z301
WS-C	Switch-wafer section	Part of 42-1847-1\%
Z300	Transformer, lst i-f	32-4160
Z301	Transformer, 2nd i-f	32-4240

SECTION 2

AUDIO CIRCUITS

0	Condenser, d-c blocking, $006 \mathrm{mf}$. 45-3500-7*
01	Condenser, d-c blocking, 006 mf 45-3500-7*
C202	Condenser, r-f by-pass, 220 mmf 66-122001001*
203	Condenser tone compensation $004 \mathrm{mt} \mathrm{30-4623*}$
04	Condenser, tone compensation, 01
C205	Condenser, by-pass, . $1 \mathrm{mf}$. 61-0113*
R200	Volume control (with power on-off switch), 2 megohms, tapped at 1 megohm....33-5535-15
01	Resistor, grid return, 10 megohms66-6103340*
02	Resistor, plate load, 220,000 ohms.66-4223340*
R203	Resistor, grid return, 470,000 ohms66-4473340*
R204	Resistor, cathode bias, 180 ohms 66-1183340*
R205	Resistor, tone compensation, 47,000 ohms 66-3473340*
R206	Resistor, dropping, 330,000 ohms66-4333340*
LS200	Loud-speaker, PM . 36-1625-3
T200	Transformer, output 32-8382
WS-B	Switch-wafer section 42-1847-2
+ 42-1847-1 Wafer switch, single wafer, radio-phono (includes WS-A, WS-B, WS-C).	

C400	Condenser, tuning gang 31-2727-6
C400	Condenser, trimmer, aerial Part of C400
C400	Condenser, trimmer, oscillatorPart of C400
C401	
C402	
C403	Condenser, r-f by-pass, . 03 mf 45-3500-1*
C404	Condenser, aerial coupling, 5 mmf60-90505007*
L.A400	Loop aerial .32-4375
R400	Resistor, leakage, 150,000 ohms66-4153340*
R401	Resistor, grid return, 22,000 ohms 66-3223340*
R402	Resistor, parasitic suppressor, 33 ohms . . .66-0333340*
T400	Transformer, oscillator 32-4190-3

+42-1847-2 Wafer switch, single wafer, radio-phono (in cludes WS-A, WS-B, WS-C).

MISCELLANEOUS

Description	Service Part. No.
Bracket, scale	56-6500FA3
Cabinet and Cabinet Parts	
Baffle-and-cloth assy.	40-7640
Cabinet	10734
Foot, mtg. (4)	54-4645-1
Knob (3)	54-4557
Window, acetate	54-4665
Dial Scale and Hardware	
Dial cord (25-ft. spool)	45-8750
Pointer-and-spring assy.	76-4225
Scale	54-5047
Shaft assy., drive	76-4477
Spring, gang drive	56-2617
Pilot-lamp-socket assy.	76-1179-1
Reflector, pilot light	56-6037-1FA3
Shield, tube	56-3979PA5
Socket. octal (2)	27-6174
Socket, miniature (3)	27-6226
Socket, test	27-6114-1
Speed nut, changer mtg. (3)	1W60083FE7
Spring, changer mtg. (6)	56-3043PA15

C300A	Condenser, fixed,	-
C300B	Condenser, fixed, lst i-f secondary	Part of Z300
C301A	Condenser, fixed, 2nd i-f primary	Part of Z301
C301B	Condenser, fixed, 2nd i-f secondar	Part of Z301
C301C	Condenser, fixed, i-f filter	Part of Z301
C301D	Condenser, fixed, i-	Part of Z301
C302	Condenser, a-v-c filter, 05 m	61-0122*
C303	Condenser, screen by-pass, 01 mt	61-0120*
C304	Condenser, plate by-pass, . 003 ml .	61-0109*
C305	Condenser, r-f by-pass, . 1 mf .	61-0113*
R300	Resistor, a-v-c filter, 22,000 ohms	66-3223340*
R301	Resistor, a-v-c filter, 2.2 megohms	66-5223340*
R302	Resistor, screen dropping, 100,000	.66-4103340*

MODEL 50.1420
ALIGNMENT PROCEDURE
OUTPUT LEVEL-During alignment, adjust signal-gener"

Figure 6. Top View, Showing Trimmer Locations

Cas point B in figure 4, and connect o
cated in chart. Use modulated output.

RADIO CONTROLS-Set volume control to maximum,
and radio-phono switch to radio position.
OUTPUT METER-Connect to voice-coil terminals.

step	signal generator		20010		st
	conmection to radio	dial seting	dial	special instructions	
1	Through .l-mf. condenser to externalaerial lead. Make sure that radio loop aerial is connected to radio.	455 kc .	Tuning condenser fully meshed.	Adjust, in order given, for maximam output.	TC301B-2nd i.f sec. TC301A-2nd i-f pri. TC300B-1st i.f sec. TC300A-lat i.f pri.
2	Radiating loop (see note below).	1600 kc .	1600 kc .	Adjust for maximum output	$\mathrm{C} 400 \mathrm{~B}-\mathrm{orc}$.
3	Same as step 2.	1500 kc .	1500 kc .	Adjunt for maximum output.	C400A-aerial

SYMBOLIZATION
The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part, as follows.
W-wire or cable
S-wafer switch
The number of the symbol designates the section in which the part is lo-
100-series componente are in Section 1-the power supply
200-series components are in Section 2-the audio circuits
200 -series componente are in Section 2-the audio circuits
300 -series components are in Section 3-the i-f, detector, and a-v-c circuits
400 -series componente are in Section 4 -the r-f and converter circuits
$\begin{array}{ll}\text { C-condenser } & \text { LS-loud-speaker } \\ \text { I-pilot lamp } & \text { R-resistor } \\ \text { L-choke or coil } & \text { S-switch }\end{array}$
cated, as followe:

SYMBOLIZATION		
The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix		
letter of the symbol designates the type of part, as follows:		
C-condenser	LS-loud-speaker	W-wire or cable
1 -pilot lamp	R-resietor	WS-wafer switch
L-choke or coil	S switch	Z-electrical assembly
LA-loop aerial	T-transformer	
The number of the symbol deaignates the section in which the part is located, as follows:		
100 -series components are in Section 1-the		
200 -series components are in Section 2-the audio circuits		
300 -series components are in Section 3-the i-f, detector, and a-v-c circuits		
400 -series components are in Section 4-the r-f and converter circuits		

Circuit Description

Philco Model 50-1725 is a console-model radio-phono graph, which provides reception on the standard-broad cast and FM bands. The radio is a seven-tube super heterodyne, with two selenium rectifiers incorporaied in the power supply.

A built-in, high-impedance loop aerial for the broad cast band and a line-cord aerial for the FM band normally provide adequate signal pickup; if additional pickup is required, Philco Dipole Aerial, Part No. 45 1462 , may be used. When connecting the dipole aerial disconnect the black lead from terminal 2 of TB400 and attach this lead to pin 1 of the dipole-aerial plug which fits into J400. No additional coupler is required

To eliminate complicated switching and to provide better stability and greater gain on both bands, separate converter tubes are used for broadcast and FM reception. A 12AU6 high-gain pentode is used in a tuned r-f amplifier on the FM band. The output of this tube is fed to the 14 F 8 dual triode, which functions as the converter for the FM signal. A 12AU7 dual triode is used as the converter for the broadcast signal. Band switching is accomplished by means of a single-wafer switch, which connects the B + voltage to the proper mixer plate.

A 6BJG tube is used in each of the two i-f amplifier stages. Two sets of i-f transformers are used--one set is tuned to 455 kc . for broadcast, and the other set is tuned to 9.1 mc . for FM. The use of two sets of i-f transformers makes better shielding possible, so that undesirable beat signals and interaction between transformers are eliminated.

Two diode sections of a 19 T 8 triple-diode are used in a ratio-detector circuit, for detection of FM signals. The other diode section is used in a half-wave rectifier circuit, for detection of AM (broadcast) signals and to provide a-v-c action.

The triode section of the 19 T 8 functions as the first audio amplifier. The output of this stage is resistancecoupled to a 50 C 6 G output tube, which is transformercoupled to the permanent-magnet speaker.

Two selenium rectifiers are used in a half-wave voltagedoubler circuit, to supply the $\mathrm{B}+$ voltage.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the madio circuit is divided into four sections with test points specified for each section these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before it is turned on:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$, test point C, and $B-$, test point B. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 2500 ohms, check condensers C103A, C103B, and C316 for leakage or shorts. The resistance value given is much lower than normal, and is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed.

Important!

To avoid altering FM operation, special care should be used in replacing any part. Replacement parts should be placed in the same physical positions as the original parts; connections should be of the same length, and should be soldered to the same points. The placement or length of leads should not be altered.

Section 1
 TROUBLE SHOOTING

POWER SUPPLY

For the tests in this section, use a d-c voltmeter. Connect the negative lead to $\mathrm{B}-$, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum. Turn the tone control fully clockwise, and set the band switch to the broadcast position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

Fig. 1. Bottom View, Showing Section 1 Test Points

STEP	test point	NORMAL INDICATION	ABNORMAL INDICATION	possible cause of abmormal indication
1	A	145v		Trouble in this section. Isolate by the following tests.
2	C	230v	No voltage. Low voltage. High voltage.	Defective: CR100, CR101. Open: C102, W100, R100, S100. Shorted: C103A, C101, C104, C100, C313*, C330*. Defective: CR100, CR101. Open: C103A. Shorted or leaky: Cl03B. Open: R101A, R101B, R102.
3	D	205v	No voltage. Low voltage. High voltage.	Open: R101A. Shorted: C1031B. Leaky: Cl03B. Shorted: C103C, C316*. Open: R101B, R102, R206*, T200*.
4	E	160v	No voltage. Low voltage. High voltage.	```Open: R101B. Shorted: C103C. Leaky: C103C. Shorted: C103D, C310*, C315*. Open: R102, R315*.```
5	A	145 v	No voltage. Low voltage.	```Open: R102. Shorted: C103D. Leaky: C103C.```

Listening Test: Abnormal hum may be caused by open C103A, C103B, C103C, or C103D.
*This part, located in another section, may cause abnormal indication in this section.

Section

TROUBLE SHOOTING AUDIO CIRCUITS

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B-, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control to the midpoint of its range. Set the band switch
to the broadcast position for test points A, C, and D, and to the phono position for test point E .
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C	Clear signal with strong input.	Defective: 50C6G, LS200. Open: T200, R205, R206. Shorted: C206, C207, T200, C209.
3	D	Same as step 1.	Defertive: 19T8. Open: C204, R202, R203. Shorted: C203, C205 (rotate R204), C204, C208.
4	A	Same as step 1.	Open: R200 (rotate through range), C200, C201, WS-1 (R). Shorted: C200, C201, (305D*.
5	E	Same as step 1.	Open: WS.l (R).
Listening Test: Distortion may be caused by shorted or leaky C201 or C204. Distortion on strong signals may be caused by leaky or shorted C200.			

*This part, located in another section, may cause abnormal indication in this section.

Fig. 2. Bottom View, Showing Section 2 Test Points

Section 3
TROUBLE SHOOTING
I-F. DETECTOR, AND A-V.C CIRCUITS

AM Circuits

For the following tests, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to $B-$, test point B : connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.
Set the volume control to maximum, and turn the tone control to the midpoint of its range. Set the radio-phono switch to the radio position, and rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converrer circuits) ; if not, isolate and correct the trouble in this section.

To provide a complete i-f-amplifier check, test point A for this section is placed at the grid of the mixer in Section 4 : therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under the "POSSIBLE CALISE OF ABNORMAL INDICATION."

Section 3 ICont.l

TROUBLE SHOOTING
 I-F, DETECTOR, AND A-V-C CIRCUITS AM Chart

STEP	TEST POINT	NORMAL Indication	POSSIBLE CAUSE Of ABNORMAL Indication
1	A	Loud, clear speaker output with weak generator input.	Trouble in AM circuits. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 6BJ6, (2nd i.f amplifier), 19 T 8 (diode section). Open: Z302, Z303, Z304, Z305, R307, R308, R309, R310, R311, WS-1 (F). Shorted Z302, Z303, Z304, Z305, C314, C315, C316, C319. Misaligned: Z305.
3	D	Loud, clear output with moderate input.	Defective: 6BJ6 (1st i-f amplifier). Open: R303, R304, R305, R306, Z300, Z301, Z302, Z303. Shorted or leaky: C308, C310, Z300, Z301, Z302, Z303. Misaligned: Z303.
4	A	Same as step 1.	Defective: 12AU7. Open Z301, R301, R302, R408*, R411*, R412*, WS-1 (F). Shorted or leaky: C307, Z301. Misaligned: Z301.

* This part, located in another section, may cause abnormal indication in this section.

FM Circuits

The following tests are also made with an AM r-f signal generator, using modulated output.

Observe the instructions preliminary to the tests for the AM circuits, with these exceptions: Set the band switch to the FM position. Set the signal-generator frequency to 9.1 mc., and detune to one side or the other until a satisfactory test signal is obtained.

The best indication of satisfactory FM-detector operation
is the ability of this circuit to take the alignment properly (see page 11).

The parts which were found to be satisfactory for AM operation, with the exception of those indicated in the chart, will usually be satisfactory for FM operation.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r-f and converter circuits) ; if not, isolate and correct the trouble in the FM circuits.

FM Chart

STEP	TEST POINT	NORMAL INDICATION	possible cause of abnormal indication
1	E	Loud, clear speaker output with weak generator input.	Trouble in FM circuits. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 6BJ6 (2nd if amplifier), 19T8 (diode sections). Open Z304, C317, C318, C320, C321, C322, C323, R312, R313, R314, WS.1 (R)* Shorted: Z304, C317, C318, C320, C321, C322, C323, C332, WS-1 (R)*. Misaligned: Z304.
3	D	Loud, clear output with moderate input.	Defective: 6BJ6 (list i-f amplifier). Misaligned: Z302. Shorted: Z302.
4	E	Same as step 1.	Defective: 14F8*. Open: Z300, R300, R405*, R410*, L407*, WS-1 (F). Shorted: C306, C420*, C328, Z300, WS.1 (F). Misaligned: Z300.

*This part, located in another section, may cause abnormal indication in this section.

Fig. 3. Bottom View, Showing Section 3 Test Points

TROUBLE SHOOTING R-F AND CONVERTER CIRCUITS

AM Circuits

For the tests in this section, with the exception of the oscillator test, use an AM r-f signal generator with modulated output. Connect the generator ground lead to B-, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control to the midpoint of its range. Set the band switch to the broadcast position, and set the tuning control and the signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in the AM circuits. If the trouble is not revealed by the tests for this section, check the alignment.

FM Circuits

The following tests are also made with an AM r-f signal generator, using modulated output. Observe the instructions preliminary to the tests for the AM circuits with the following exceptions:

Set the band switch to the FM position.
If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in the FM circuits.

Fig. 4. Bottom View, Showing Section 4 Test Points AM Chart

STEP	TEST POINT	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	Tune to signal.	Loud, clear speaker output with weak generator input.	Trouble in AM circuits. Isolate by the follow. ing tests.
2	```C (Osc. test; see note below.)```		Tune through range.	Negative 2 to 2.5 volts.	Defective: 12AU7 (osc. section). Shorted: C414, C415, C400, C405B, C417, L407. Open C414, C416, L408, L407, R412, R407, R406.
3	A	1000 kc .	Tune to signal.	Same as step 1.	Defective: 12AU7 (mixer section). Open: L400, L409, C418, R411, R408. Shorted: C400, C405A, C406, C417.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to B-, test point B; connect the prod end of the negative lead through a 100,000 ohm isolating resistor to the oscillator grid (pin 2 of 12 AU 7), test point C . Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (measured with $20,000 \cdot \mathrm{ohms}$-per-volt meter) throughout the tuning range.

FM Chart

STEP	test point	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIbLE CAUSE Of ABNORMAL INDICATION
1	G	100 mc .	Tune to signal.	Loud, clear speaker output with weak generator input.	Trouble in FM circuits. Isolate by the following tests.
2	Eto F (Osc. test ; see note below.)		Tune through range.	Negative 1 to 1.5 volts.	Defective: 14F8 (osc. section). Open: R409, L402, L406, L405, C412, R404, C410, R403. Shorted: C400, C400C, L406, C411, C412, C423, C424, C410, C409.
3	D	100 mc .	Tune to signal.	Same as step 1.	$\begin{aligned} & \hline \text { Defective: 12AU6. Open: L403, R402, R401, } \\ & \text { R400, C408, L404, C420, R410, R405, C413. } \\ & \text { Shorted: C403, C404, C407, C408, L404, C400B, } \\ & \text { C400, C420. } \end{aligned}$
4	G	100 mc .	Tune to signal.	Same as step 1.	$\begin{aligned} & \text { Open: C402, L401, C403. Shorted: L401, C400A, } \\ & \text { C400, C403. } \end{aligned}$

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to test point F; connect the prod end of the negative lead through a $100,000-\mathrm{ohm}$ isolating resistor to the oscillator grid (pin 2 of 14F8), test point E. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (measured with 20,000 -ohms-per-volt meter) throughout the tuning range.

Figure 5. Drive-Cord Installation Dełails

REPLACEMENT PARTS LIST

NOTE: Part numbers identified by an asterisk (*) indicate general replacement thems. These numbers may not be identical with those on factory assemblies: also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and replacement parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use onty the "Service Part No."

SECTION 1 POWER SUPPLY

AM ALIGNMENT PROCEDURE

Make alignment with loop aerial connected to radio. The AM alignment should be completed before the FM alignment is made.
DIAL POINTER-Calibration and pointer-index measurements are shown in figure 7. With tuning gang fully meshed, set pointer to index marker.
OUTPUT METER-Connect between terminal 3 of aerial terminal board TB400 and chassis.
AM R-F SIGNAL GENERATOR--Connect as indicated in chart. Use modulated output.
RADIO CONTROLS-Set volume control to maximum, turn tone control fully counterclockwise, and set band switch to broadcast position.
OUTPUT LEVEL——During alignment, adjust signal-generator output to maintain output-meter indication below 1.25 volts.

FM ALIGNMENT PROCEDURE
 Make AM Alignment First

OUTPUT METER-Connect between terminal 3 of aerial terminal board TB400 and chassis.
ALIGNMENT INDICATOR-Connect negative lead of 20,000 -ohms-per-volt meter to pin 2 of 19 T 8 tube; connect positive lead to B -. Use 10 -volt range.
AM R-F SIGNAL GENERATOR-Generator must have sufficient output to give a reading of 8.5 volts on alignment indicator. Connect ground lead to B-; connect output lead as indicated in chart. Use modulated output.
RADIO CONTROLS-Set volume control to maximum, turn tone control fully counterclockwise, and set band switch to FM position. Allow radio and signal generator to operate for at least 15 minutes before making alignment.
R.F.COIL-NOTE:Check resonance of coils L401, L404, and L406 by inserting each end of a powdered-iron tuning core such as Philco Part No. 56-6100, into the coils. If the signal strength increases when the iron end is inserted, compress the turns slightly. If the signal strength increases when the brass end is inserted, spread the turns slightly. If the signal strength decreases when either the iron or the brass end is inserted, no further adjustment is necessary. Do not spread or compress turns of coil excessively; only a small change is required at these high frequencies.

					0 L
		－د\％ 76	＇31 76	${ }^{\text {t dats se }}$ surs	6
		＇دแ1 26	${ }^{211} 76$	t dats se rues	8
		－دи 76	－כui 76	It dots se autes	2
$\stackrel{\text {［8！}}{ }$		－دı	วum ¢01	t dans se ames	9
	 	＇3u ¢0I	วıu ¢01	＇t dops se aues	¢
＇3so $\mathrm{HJ}=20005$		эu ¢01		nal ol peja indino	\dagger
	 	－u4 88	＇כu1［＇6	$\mathrm{z}^{\text {d d }}$ ds se aurs	ε
 	sәлоз Buiumı әsәy 	－3世 88	－301［＇6	8．dit jo 8 uld 01 даsuәриоа＇ju＇I 	\％
－！ad $\mathrm{j!}$ ！Puz W．t－VZ0EO．L －วas J！puz N．A－9zogol 	 	•3 88	－3u［＇6		I
isarav	SNOILJMYisNi TVIOzds	$\underset{\substack{\text { SNILIISS } \\ \text { TVIO }}}{ }$	$\begin{gathered} \text { SNILIBS } \\ 7 \forall 10 \end{gathered}$	$\begin{aligned} & \text { OIGVY OL } \\ & \text { NOILOENNNOS } \end{aligned}$	d315
	O1078		yolvyanag ifnois		

ショ
L甘ヲHJ INJWNOITV W」

RECORD CHAiTGER: See Philco Model M-9C, Pages
Figure 6.
Sectionalized Schematic Diagram, Showing Test Points
RCD.CA. 19-35 through RCD.CH. 19-54
© John F. Rider

AM ALIGNMENT CHART

RADIATING LOOP: Make up a six-10.eitht turn, 6 .inch-diameter loop, using insulated wire; connect to signal-generator leads and place near
Figure B. Top View, Showing AM Trimmer Locations
FM ALIGNMENT CHART

ALIGNMENT PROCEDURE

When the complete AM and FM alignment is to be made, the AM alignment should be macie FIRST; if AM alignment is not required, the FM alignment alone may be made.

ALIGNMENT OF AM CIRCUITS

DIAL POINTER: With tuning condensers fully meshed, dial pointer must coincide with index mark at low-frequency end of dial. (See "CALIBRATING DIAL BACKPLATE," page 2.) OUTPUT METER: Connect between No. 3 terminal (voice-coil connection) of aerial terminal panel and chassis. AM R-F SIGNAL GENERATOR: Connect ground lead to chassis, and output lead as indicated in chart. Use modulated output.
OUTPUT LEVEL: During alignment, signal-generator output must be attenuated to maintain radio output below 1.5 volts, as read on output meter.

CONTROLS: Set band switch to broadcast position. Set volume control to maximum, and tone control fully counterclockwise. Set signal-generator frequency and radio tuning dial as indicated in chart.

ALIGNMENT OF FM CIRCUITS

Make AM alignment (if required) first.

OUTPUT METER: Connect as for AM alignment (this meter is used only in step 3).
D-C METER: Connect 20,000 -ohms-per-volt meter across 2 -mf. condenser, C327, in FM-detector circuit-negative lead to pin 6 of 7×7 tube, and positive lead to chassis. Use 10 -volt range.
AM R-F SIGNAL GENERATOR: Use modulated output for entire alignment. Generator must have sufficient output to give reading of approximately 9 volts on d-c meter, and signal should be attenuated during alignment to keep meter at this value. Connect generator ground lead to chassis, and output lead as indicated in chart.
VOLUME AND TONE CONTROLS: Same as for AM alignment.
RADIO BAND SWITCH, RADIO DIAL, AND SIGNAL-GENERATOR DIAL: Set as indicated in chart. Allow radio and generator to warm up for 15 minutes before starting alignment.
R-F COIL NOTE: When making the tracking adjustments, the resonance of the circuits using coils L400, L401, and L403 may be checked with a powdered-iron tuning core such as Part No. 56-6100. If the signal strength (meter reading) increases when the iron end is placed in, or near, the coil, compress the turns slightly. If the threaded brass end causes an increase in signal strength, spread the turns. Do not compress or spread the turns excessively; only a small change is required at these frequencies.

Figure 7. Drive-Cord Installation Details
TP-4058E

Circuit Description

Philco Radio-Phonograph Model 50-1726 contains an 11-tube superheterodyne and a Model M-20 Philco Automatic Record Changer.

A low-impedance loop aerial within the cabinet normally provides adequate signal pickup on the standard broadcast band. In most locations, the built-in FM dipole aerial provides satisfactory $\mathbf{F M}$ reception. In areas where FM signals are weak, an outdoor dipole aerial, such as Philco Part No. 45-1462, will provide additional pickup. To increase the pickup on both bands, use the Philco Aerial Coupler, Part No. 76-2353-1, with the outdoor dipole aerial. For increased pickup on the standard broadcast band only, the coupler may be used with an external aerial of the singlewire type, such as Philco Part No. 45-1494.

The r-f stage (FM only) and converter stage are mounted on a separate chassis, for improved performance at high frequencies. A GAU6 high-frequency pentode is used in the r-f stage, and a 7 F 8 high-frequency double triode is employed as a converter.

Two transformer-coupler i-f stages are used. The transformers have two sets of windings; one set is tuned to 455 kc ., for AM operation, and the other set is tuned to 9.1 mc ., for FM operation. A GBAG high-frequency pentode is used in the first i-f stage. The pentode section of a 7 R 7 duo-diode, pentode functions as the second i-f amplifier; one diode of this tube is used for AM detection, while the other diode provides a.v.c.

The dual-diode section of a 7 X 7 is employed in the FM ratio-detector circuit; this circuit has good noisereducing properties and an excellent tuning characteristic.

The triode section of the 7 X 7 functions as the first audio stage. A 6J5GT triode operates as a plate-and-cathode-loaded phase inverter, driving two 6V6GT output amplifiers, in push-pull operation. Tone fidelity is obtained by the use of inverse feedback in the audio system; feed-back voltage is taken from the secondary of the output transformer.

The Philco Electronic Scratch Eliminator, for phono operation, may be switched on or off, as required. The pentode section of a 7 E 7 functions as a variable shunt capacitance at the phono-input circuit; at low signal levels, a controlled portion of the higher audio frequencies is by-passed to ground. The grid bias of the reactance tube controls the effective capacitance, which

MODEL 50-1726

SPECIFICATIONS

CABINET	. Wood, mahogany or light finish
CIRCUITll-tube superheterodyne	
FREQUENCY RANGES	
Broadcast $540-1720 \mathrm{kc}$.	
FM 88 -108 mc.	
AUDIO OUTPUT 7 watts	
OPERATING VOLTAGE . $105-120$ volts, 60 cycles, a.c.	
POWER CONSUMPTION	
Radio 110 watts	
Phonograph 125 watts	
AERIALS	Built-in loop and FM cabinet dipole; external aerial also may be used
INTERMEDIATE FREQUENCIES	
AM	.455 kc .
FM	. 9.1 mc.

PHILCO TUBES (Il) \ldots	6AU6, 7F8, 6BA6, 7R7, 7X7,
	6J5GT, 6V6GT (2), 7E7,
	7F7, 5AZ4

becomes maximum with low bias, and minimum with ances; fourth, substituting condensers. The trouble rehigh bias. This control bias is developed by the audio signal itself; a proportionate amount of the signal is
taken from the pickup output, amplified by each triode section of the 7 F 7 , and rectified by the diode section of the 7 E 7 .

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

Section 1-the power supply
Section 2-the audio circuits
Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits
Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.
In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire chart.
Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.
After isolating the trouble to a single stage, the defect p
 is located by: first, testing the tube; second, measuring should be solder leads should not be changed.
tube electrode voltages; third, measuring circuit resist- or length of leas

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before connecting the radio to a source of power:

1. Inspect the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance across condenser C102 (see figure 2). When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 3500 ohms, check condensers C102 and C103B for leakage or shorts.
The resistance value above, which is much lower than normal, does not represent a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 (power supply) are performed.

Important!

To avoid altering FM operation, special care should be used in replacing any part. Replacement parts should be placed in the same physical locations as the original
parts; connections should be of the same length, and

CALIBRATING DIAL BACKPLATE

When the radio chassis has been removed from the cabinet, dial calibration and alignment points may be marked on the dial (chassis) backplate at the end of the pointer with a pencil. The method of measuring
for these points is illustrated in figure 1.
With the tuning gang fully meshed, the pointer should be adjusted on the dial-drive cord to coincide with the index mark.

Section 1 TROUBLE SHOOTING
 POWER SUPPLY

CAUTION: Do not turn on the power with the speaker disconnected, or the set may be damaged.

Make the tests for this section with a d-c voltmeter, connecting the leads between the chassis, test point C , and the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.

Set the volume control to minimum, and the tone control fully counterclockwise. Set the band selectorphono switch to the broadcast position.

Follow the steps in the order given. If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	195v		Trouble in this section. Isolate by the following cests.
2	B	300v	No voltage. Low voltage. High voltage.	Defective: 5AZ4. Open: S100, T100. Shorted: Cl02. Defective: 5AZ4. Shorted: C103B, C310*, C411*. Leaky: C102. Open: C102, L100. Shorted: L100. Open T200*.
3	A	195v	No voltage. Low voltage. High voltage.	Open: R100. Shorted: C103A, C311*. Leaky: C103A, C311*. Changed resistance: R100. Open: T200*.
4	D	Negative 27v	No voltage. High voltage.	Open: R101. Open: R102.
Listening Test: Abnormal hum and instability may be caused by open Cl03A or Cl03B.				

* This part, located in another section, may cause abnormal indication in this section.

Section 2

TROUBLE SHOOTING

AUDIO-AMPLIFIER TESTS AUDIO CIRCUITS

Use an audio-frequency signal generator. Connect switch to the broadcast position. Make certain that the generator ground lead to the chassis, test point C, the scratch-eliminator switch is turned off (two-position and connect the output lead through a $.1-\mathrm{mf}$. condenser switch turned counterclockwise). If the "NORMAL to the test points indicated in the chart.

INDICATION" is obtained in steps 1 and 6, proceed Set the volume control to maximum, and the tone with the scratch-eliminator tests; if not, isolate and control fully counterclockwise. Set the band (wafer) correct the trouble in the audio-amplifier circuits.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in audio-amplifier circuits. Isolate by the following tests.
2	$\begin{gathered} \mathrm{B} \\ \text { (Remove 6J5GT) } \end{gathered}$	Clear signal with strong signal input.	Defective: 6V6GT(\#1), LS200. Open: C206, R211, T200. Shorted or leaky: C206, C209.
3	${ }_{\text {(0J5GT }}^{\text {Denoved })}$	Same as step 2.	Defective: 6V6GT(\#2). Open: C207, R212. Shorted or leaky: C207.
4	$\underset{\text { (Replace } 6 \mathrm{~J} 5 \mathrm{GT} \text {) }}{\mathrm{E}}$	Loud, clear signal with moderate signal input.	Defective: 6J5GT. Open: R208, R209, R207, R210. Shorted or leaky: C205, C204.
5	A	Same as step 1.	Defective: 7X7. Open: R200 (rotate through range), C202, R205, R206. Shorted: C203.
6*	F	Loud, clear signal with weak signal input.	Open: R230, WS-2(R).
Listening Test: Distortion may be caused by leaky C202, C205, C206, or C207; or by open R205, C207, C211, or C212.			

For this step, set hand (wafer) switeh to phots.

Figure 3. Bottom View, Showing Section 2 Test Polnts

Section 2 (Cont.) TROUBLE SHOOTING

SCRATCH-ELIMINATOR TESTS

Set the tone control fully counterclockwise. Turn the band (wafer) switch to the phono position. For all steps except $1(b)$, set the volume control to maximum; for this step, adjust the volume control as directed in the chart.

Turn the scratch eliminator on or off as indicated in the chart. (The scratch eliminator is on when the twoposition switch is turned clockwise.)

Connect an output meter across the primary of the output transformer, T200.
IMPORTANT! For all steps except step 4, use the 0 - 10 -volt output-meter range; for step 4 only, use the $0-50$-volt range. If the proper ranges are not used, erroneous readings will result.

Connect the ground lead of an audio signal generator to the chassis, test point C, and connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the generator for 5000 cycles. Adjust the generator output as directed in the chart.

If normal operation is indicated by the tests in step 1 , (a) and (b), proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in the scratch-eliminator circuits.
NOTE: For steps 2, 3, and 4, connect the positive lead of a 20,000 -ohms-per-volt, d-c voltmeter to the chassis, test point C; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the "VOLTMETER" test points indicated in the chart.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. OUTPUT	VOLT. METER	SPECIAL INSTRUCTIONS	POSSIBLE CAUSE OF ABNORMAL INDICATION
$\begin{aligned} & 1(\mathrm{a}) \\ & \mathrm{l}(\mathrm{~b}) \end{aligned}$	$\begin{aligned} & F \\ & F \end{aligned}$	Adjust for 10v outputmeter reading, with scratch eliminator off. Same as for l(a).		Turn scratch eliminator on; output voltage should drop to 6.5 v (approx.). Reduce volume control to obtain output-meter reading of lv . Increase generator output for out-put-meter reading of 10 v . Turn scratch eliminator on; output voltage should not drop below 8.8v (approx.).	Trouble in scratch-eliminator circuits. Isolate by the following tests.
2	G	See SPECIAL IN. STRUCTIONS.	H	With scratch eliminator on, increase generator output for voltmeter reading of 8.8 v , negative; failure to obtain this value indicates trouble.	Defective: 7F7, 7E7 (diode section), WS.3(R). Open R224, R222, R226, R228, C217, S200.
3	G	Same setting which produced 8.8 v reading in step 2, with scratch eliminator on.	J	With scratch eliminator on, voltage at point J should be $2 v$, negative.	Open: R220, R219, R217. Shorted: C213, C214, C212.
4	F	Same as step 2.	H	With scratch eliminator on, voltage at point H should be approx. 28 v , negative.	Defective: 7F7. Open: C210, C216, R214, R215, R223. Shorted or leaky: C216.
5	F	Adjust for 10v outputmeter reading, with srratch eliminator off.		Turn seratch eliminator on; output voltage should drop to 6.5 v (approx.).	Defective: 7E7 (pentode section). Open: R221, R216, R218, C211, C212. Shorted: C211, C212.

Section 3
 TROUBLE SHOOTING
 I-F, DETECTOR, AND A-V-C CIRCUITS
 AM CIRCUITS

Use an r-f signal generator, with modulated cutput, set at 455 kc . Connect the generator ground lead to the chassis, test point C, and connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully counterclockwise. Set the band (wafer) switch to the broadcast position. Turn the tuning condensers to full-mesh position.
if the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for the FM circuits, or the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in the AM circuits.

Since the circuit location of test point A for this section is in Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in AM circuits. Isolate by the following tests.
2	B	Loud, clear signal with strong signal input.	Defective: 7R7. Open: R309, R310, R312, L302A, L302C, L302D R313, R314, R316, C325, C317, WS-3(R). Shorted: C317, C318, C321, C322, C323, C324, C320, C302B. Misaligned: Z302.
3	D	Loud, clear signal with mod. erate signal input.	Defective: 6BA6. Open: R302, R305, R308, R306, L301A, L301B, L301C, L301D, C301A, C301C, C301D. Shorted: C308, C301C, C301D, C309, C313, L301C, L301D, C300D. Misaligned: Z301.
4	A	Loud, clear signal with weak signal input.	Defective: 7F8*. Open: R406*, R405*, L406*, C300C, L300C, L300D, C300D, R300, WS-4(R), WS-4(F). Shorted: C300C, L300C, C303, C304, L300D. Misaligned: Z300.

"This part, located in another section, may cause abnormal indication in this section.

FM CIRCUITS

These tests are also made with an AM r-f signal generator, using modulated output.

Set the band (wafer) switch to the FM position, and follow the instructions preliminary to the tests for the AM circuits, with these exceptions: set the signal-generator frequency to 9.1 mc ., and detune to one side or the other until a satisfactory test signal is obtained.

The best indication of satisfactory FM-detector operation is the ability of this circuit to take the alignment properly (see page 14).

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in the FM circuits.

Section 3 (Cont.) TROUBLE SHOOTING

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in FM circuits. Isolate by the following tests.
2	B	Loud, clear signal with strong signal input.	Open: L302B, C302A, C328, C329, R315, R318, C325, R317, WS-3(R) Shorted: L302A, C319, C302A, C328, L302E, C329, C330, C331, C332
3	D	Loud, clear signal with moderate signal input.	Defective: 6BA6. Open: R302, R305, C308, R306, L301A, L301B L301C, L301D, C301A, C301C, C301D. Shorted: C308, C301C, C301D C309, C313, L301C, L301D, C300D. Misaligned: Z301.
4	A	Loud, clear signal with weak signal input.	Open: WS-4(R), WS-4(F).

Figure 4. Bottom View, Showing Section 3 Test Points TP-6457-1

Section 4
 TROUBLE SHOOTING

For the following tests, with the exception of the oscillator tests, use an AM r-f signal generator, with modulated output. Connect the generator ground lead to the chassis, test point C, and connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum, and the tone control fully counterclockwise.

Set the band (wafer) switch, tuning control, and signal-generator frequency as indicated in the chart.

Connect the positive lead of a high-resistance d-c voltmeter to the chassis, and connect the negative lead through a 100,000 -ohm isolating resistor to the 7 F 8 oscillator grid (pin 1), test point B. Use a suitable range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltages of approximately the values given in the chart (measured with 20,000-ohms-per-volt meter), throughout the tuning range.

If the "NORMAL INDICATION" is not obtained in step 1 of both the AM and the FM test charts, isolate the trouble by following the remaining steps.

OSCILLATOR TESTS (AM AND FM CIRCUITS) :

AM CIRCUITS

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQ.	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \end{aligned}$	$\begin{aligned} & \text { RADIO } \\ & \text { TUNING } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kr .	Broadcast	Tune to signal.	Loud, clear signal with weak signal input.	Trouble in AM circuits. Isolate by the following tests.
```2 (Osc. test; see note above.)```	B		Broadcast	Tune through range.	Negative 1.5 v to 3.5 v .	Defective: 7F8. Open: R304*, C405, C404B, C408, L404, R402, WS-2 (F), WS-2(R), WS-1 (F), WS-3(F), WS-3(R). Shorted: C405, C404A, C400E, C404B, C408.
3	A	1000 kc .	Broadcast	Tune to sig. nal.	Loud, clear signal with weak signal input.	Open: LA400, R401, L402, C402, C413, WS-1 (R). Shorted: L402, C400D, C403.

Listening Test: Distortion may be caused by open R401 or R307*.
Hum and instability may be caused by open C312* or R301*.

This part, located in another section, may cause abnormal indication in this section.

## FM CIRCUITS

Observe the instructions preliminary to the tests for the AM circuits, with the following exception: After tuning the signal generator and the radio to 95 mc .,
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { STEP }{ }^{-} & \begin{array}{c}\text { TEST } \\ \text { POINT }\end{array} & \begin{array}{c}\text { SIG. GEN. } \\ \text { FREQ. }\end{array} & \begin{array}{c}\text { BAND } \\ \text { SWITCH }\end{array} & \begin{array}{c}\text { RADIO } \\ \text { TUNING }\end{array} & \begin{array}{c}\text { NORMAL } \\ \text { INDICATION }\end{array} & \text { POSSIBLE CAUSE OF ABNORMAL } \\ \text { INDICATION }\end{array}\right]$
detune one or the other until a satisfactory test signal is obtained.

## Section 4 (Cont.) TROUBLE SHOOTING

S'TEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	Sll: (EEN.   FREQ.	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \end{aligned}$	$\begin{aligned} & \text { RADIO } \\ & \text { TUNING } \end{aligned}$	NORMAL InDICATION	POSSIBLE: CAUSE OF ABNORMAL INDICATION
2   (Osc. test: see note above.)	B		FM	Tune through range.	Negative 1v.	Defective: 7F8. Open: L403, WS-2(F), WS-2(R), WS-1(F), WS-3(F), WS-3. (R). Shorted: L403, C400C, C400H.
3	I)	95 me.	FM	Tune to signal.	Loud, clear sig. nal with weak signal input.	Defective: 6AU6. Open: L400, L405, R400, R403, R404, C409, L401, WS.1(R). Shorted: L400, C400A, C400F, C407, C409, C410, C411, L401, C400B, C400G.



Figure 5. Botfom View, Showing Section 4 Test Points
TP-5328D

## SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The pretix letter of the symbol desiqnates the type of part, as follows:

| located. The pretix letter of the symbol desiqnates the type of part, as follows: |  |  |
| :--- | :--- | :--- | :--- | :--- |
| C-condenser | L-choke or coil LS-loud-speaker | S-switch | L-pilot lamp LA-loop aerial R-resistor T-transformer Z-electrical assembly

The number of the symbol, except when the number is less thas 100 , designates the section in which the part is located, as follows:

100-series components are in Section 1 - the power supply
200 -series components are in Section 2 - the audio circuits
30 J -series components are in Section 3- the i-f amplifier, detector, and a-v.c circuits
400 -series components are in Section 4 - the r-f and converter circuits

## REPLACEMENT PARTS LIST

NOTE: Parts marked with an asterisk (*) are general replacement items. These numbers may not be identical with those on factory assemblies: also, the electrical values of some replacement items may difter from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

## SECTION I POWER SUPPLY



C200 Condenser, tone compensation. 100 mmf .

## SECTION 2

 AUDIO CIRCUITSC20
C. 20

C 202
C 203
C 204
C204
C 20
C 20
C 20
C206
C207
C208
C 20
$\stackrel{C}{C} 21$
C2
C212
C 213
C 214
C 215
C21
C 21
C 217
C 218
C 218
C 219
C 220

C22

R200
Volume control, 2 megohms (tap at 1 megohm) $\qquad$
R201 Tone control (with on-off switch).
6 megohms ...........................................33-5538.1
R202 Resistor, tone compensation, 33,000 ohms..66-3333340
R20
Resistor, voltage divider, inverse $\quad$ 66-9473340* feedback, 4.7 ohms
inver
esistor, voltage divider, inverse feedback, 68 ohms .............................66-0683340* Resistor, grid return, 10 megohms ............66.6103340* Resistor, plate load, 220.000 ohms ............66-4223340*
Resistor, grid return, 1 megohm .................66-5103340.
Resistor, cathode bias, 4700 ohms ............66.2473340
Resistor, cathode load, 47,000 ohms ........66-3473340
Resistor, plate load, 56,000 ohms …........66-3563340*
Resistor, grid return, 330,000 ohms …....6664333340*

SECTION 2 (Continued) AUDIO CIRCUITS



SECTION 3 (Continued)   I-F, DETECTOR, AND A-V-C CIRCUITS	
eferen	ymbal Description Service Part No.
C332	Condenser, r-f by-pass, 100 mmf . ...........60-10105407*
C333	Condenser, d-c blocking, . 006 mf . ............45-3500-7*
C334	Condenser, r-f by-pass, 100 mmf . ...........60-10105407*
C335	Condenser, filament by-pass, $100 \mathrm{mmf} . .62 .110009001$ *
C336	Condenser, filament by-pass, $100 \mathrm{mmf} . . .62-110009001$ *
1300	Test socket ....................................................27-6180
L300A	Transformer, primary (FM), lst i-f ........Part of Z300
L300B	Transformer, secondary (FM), lst i-f ....Part of Z300
L300C	Transformer, primary (AM). 1st i-f .......Part of z300
L300D	Transformer, secondary (AM), lst i-f ....Part of Z300
L301A	Transformer, primary (FM), 2nd i-1 ........Part of Z301
L301B	Transformer, secondary (FM), 2nd i-f ....Part of 2301
L301C	Transformer, primary (AM), 2nd i-f ........Part of Z301
L301D	Transformer, secondary (AM), 2nd i-i ...Part of $\mathrm{Z301}$
L302A	Transformer, primary (FM), 3rd i-f ........Part of 2302
L302B	Transtormer, secondary (FM), 3rd i-1 ....Part of 2302
L302C	Transformer, primary (AM), 3rd i-f ........Part of 2302
L302D	Transformer, secondary (AM). 3rd i-f ....Part of 2302
L302E	Transtormer, winding, isolating, 3rd i-f.Part of 2302
R300	Resistor, plate dropping, 47,000 ohms ......66-3473340*
R301	Resistor, a-v-c filter, 2.2 megohms .............66-5223340*
R302	Resistor, cathode bias, 68 ohms ..............66-0683340*
R303	Reslstor, plate dropping, 4700 ohms .......66-2473340*
R304	Resistor, plate dropping, 33,000 ohms ...66-3333340*
R305	Resistor, screen dropping, 27,000 ohms ....66-3273340*
R306	Resistor, plate decoupling, 1000 ohms ....66-2103340*
R307	Resistor, a-v-c filter, 3.3 megohms ...........66-5333340*
R308	Resistor, grid return, 2.2 megohms ...........66-5223340*
R309	Resistor, cathode bias, 150 ohms ..............66-1153340*
R310	Resistor, screen dropping, 68,000 ohms ....66-3683340*
R311	Resistor, $\alpha$-v-c load, 1 megohm ..............66-5103340*
R312	Resistor, plate decoupling, 1000 ohms ....66-2103340*
R313	Resistor, i-f filter, 47,000 ohms ................66-3473340*
R314	Resistor, diode load, 330,000 ohms .........66-4333340*
R315	Resistor, FM detector load, 6.8 megohms.66-5683340*
R316	Resistor, isolating, 100.000 ohms ...............66-4103340*
R317	Resistor, noise suppressor (FM). 47,000 ohms ...........................................66-3473340*
R318	Resistor, isolating, 100,000 ohms .............66-4103340*
R319	Resistor, isolating, 100.000 ohms ............66-4103340*
TC300A	Tuning core ..........................................Part of 2300
TC302A	Tuning core ..........................................Part of $\mathbf{Z 3 0 2}$
WS-2 (F)	Switch-water section .....................Part of 42-1803-2+
WS-2 (R)	Switch-waler section .....................Part of 42-1803-2 $\dagger$
WS-3 (R)	Switch-water section .....................Part of 42-1803-2 $\dagger$
WS-4 (F)	Switch-wafer section .....................Part of 42-1803-2+
WS-4 (R)	Switch-water section .....................Part of 42-1803-2 $\dagger$
Z300	Transformer, 1st i-f .......................................32-4146
2301	Transtormer, 2nd i-t ......................................32-4156
2302	Transformer, 3rd i-f .......................................32-4147

SECTION 4 (Continued)
R-F AND CONVERTER CIRCUITS

+42-1803-2 5 -section wafer switch (band selector-phono)

## MISCELLANEOUS

Description
Cabinet and Cabinet Hardware

	-768
Backplate	76-2005

Baffle-and-Cloth Assembly
For light cabinet, L.H. (speaker)
For light cabinet, R.H. (dummy)
40.7592.1

For mahogany cabinet, L.H. (speaker) ...................40-7538
For mahogany cabinet, R.H. (dummy) ..................40-7592
Baffle, wood ....................................................................... 219125
Bezel ................................................................................................4878

Bin mechanism, L.H. ............................................................................3223-6
Bullet catch (light) ............................................................45-6002-1
Bullet catch (mahogany) ......................................................45-6002
Cabinet, mahogany .......................................................................10721B
Dome (4) .............................................................................................................45-6190
Door pull (light) ..................................................................56-4420-2
Door pull (mahogany) ......................................................56-4420
Frame assembly .................................................................76-4104
Hinge
Hinge
For light cabinet, L.H. (1) .........................................56-5713.6
For light cabinet, R.H. (2) ........................................56-5713-7
For light cabinet, R.H. (1) ........................................56-5713-9
For mahogany cabinet, L.H. (1) ............................56-5713.8
For mahogany cabinet, R.H. (2) .............................56-5713-3
For mahogany cabinet, R.H. (1) ............................56-5713-2
Scale strap (2)
..56-2234-1
Spring, bin mechanism (2) ................................................56-4978
Strike plate (light) ...........................................................45-6003-1
Dial Scale and Scale Hardware

Cord, drive (25	45-8750
Pointer	56-3179
Scale	76-3187-6
Spring, pointer	28-8953

Escutcheon .............................................................................................................56-5491FCP
Knob (4) ................................................................................................44-4486
Knob (1) ..................................................................................54-4338-1

Shield, pilot lamp 56 -21945

Socket, Loktal ................................................................................................27-6138
Socket, Loktal (7F8) ...................................................................27-6213
Socket, octal ............................................................................................27-6174
Spring, changer mounting ..................................................56-7059FA9

Spring, changer mounting .............................................56-7059-1F147
Strike plate, mahogany ..........................................................45-6003
Wafer-Switch Hardware

Link assembly	76-2186-6
Shaft	6-3298FA11

- John F. Rider
MODEL FM-210 Series
© John F. Rider

ALIGNMENT CHART

STEP	CIRCUIT	receiver		SIGNAL GENERATOR		MEIER		TRIMMER or stug ADJUST	procedure
		$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { POINTER } \end{aligned}$	FREQUENCY	CONNECTIONS	$\begin{gathered} \text { TYPE } \\ \text { (See Notes) } \end{gathered}$	CONNECTIONS		
1	AM IF	$\begin{gathered} B C \\ \text { ANT. } \end{gathered}$	55	455 kc	Through . 1 mfd to center gang large stator	A	Across speaker roice coil	15. 12, 16, 19	Adjust for maximum output
2	FM IF	FM	88	10.7 mc	Through . 1 mfd . to center gang small stator	B	FM Test Socket, \#4 cold 1+1, \#5 high (-)	$\begin{aligned} & 4,13,14,17, \\ & 18,20,21 \end{aligned}$	Adjust for maximum negative DC voltage
3	$\begin{aligned} & \text { Ratio } \\ & \text { Detector } \end{aligned}$	FM	88	10.7 mc	Through . 1 mfd , to center gang small stator	B	FM Test Socket, \#2 cold \#I high	5	Check VTVM zero set. Turn trimmer slowly through point where DC polarity reverses. Carefully set for zero DC at reversal point
4	$\begin{aligned} & \text { AM IF } \\ & \text { Trap } \end{aligned}$	$\begin{aligned} & \text { ANC } \\ & \hline A N T \end{aligned}$	55	455 kc	Through 200 mmf to " $A$ " and " $G$ ' posts of $A M$ antenna strip	A	Across speaker voice coil	3	Adjust for minimum output
5	${ }_{R F}^{B C}$	$\begin{aligned} & \mathrm{BC} \\ & \mathrm{ANT} \end{aligned}$	150	1500 kc	Through 200 mmf to " $A$ " and " $G$ ' posts of $A M$ antenna strip	A	Across speaker voice coil	11.6.1	Adjust for maximum output
6			60	600 kc	Through 200 mmf to " $A$ " offt " "G" posts of AM antenna strip	A	Across speaker voice coil	8	Adjust for maximum output while rocking gang
7			Repeat Steps 5 and 6						
8	SWRF	sw	18	18 mc	Through 400 ohms to " $A$ " and " $G$ " posts of AM antenna strip	A	Across speaker voice coil	10	Adjust osc. trimmer for maximum output. (ose. on high side of signal)
9			15	15 mc	Through 400 ohms to "A" and " $G$ " posts of AM antenna strip	A	Across speaker voice coil	7.2	Adjust for maximum output
10			6	6.0 me	Through 400 ohms to " $A$ " and "G" posts of AM antenna strip	A	Across speaker voice coil	9	Adjust for maximum output while rocking gang
11			Repeat Steps 8,9 and 10						
12	$\underset{\text { RF }}{\text { F }}$	FM	90	90 mc	To dipole terminals FM antenna strip	B	FM Test Socket, \#4 low (1), \#5 high (一)	24, 23, 22	Adjust for maximum negative DC voltage
13			106	106 mc	To dipole terminals FM antenna strip	B	FM Tost Socket, \#4 low (+1, \#5 high (-)	27, 26, 25	Adjust for maximum negative DC voltage
14				eat Steps 12	and 13 as required				

ALIGNMENT NOTES
setting the pushbuttons
The Model FM-210 Series is equipped with 8 pushbuttons which mechanically operate
the dual three-gang tuning condenser. It is permissible for some of these buttons to be used for tuning into FM stations (preferably those towerd the left of the dial), but for located the approximate setting of the FM station. For the broadcast band, however, pushbutton tuning will be sufficient, and no further adjustment will be necessary
The initial adjustment of the pushbuttons is as follows: Remove the bakelite cap
Loosen the locking screw behind the cap
Tune into the desired station carefully by
Tune into the desired station carefully by turning the manual tuning
knob until the opening in the tuning indicotor eye is of a minimum
 the locking screw
Ploce the station identification tab in the bakelite button and cover
with celluloid tab.
6. Reploce the button on the shaft
See Alignment chart (next Page) and layout diagram showing trimmers.
Alignment should be ottempted only if the proper meters and a signal generator The following notes are intended for the use of an expert radio technicior:
 A) a low range $A C$ Voltmeter
B) a $0-20$ volt $D C$ vacuum tube Voltmeter
The signal generotor must cover the frequencies of $455 \mathrm{kc}, 600 \mathrm{kc}, 1500 \mathrm{kc}, 6 \mathrm{mc}$,
$10.7 \mathrm{mc}, 15 \mathrm{mc}, 18 \mathrm{mc}, 90 \mathrm{mc}$ and 106 mc .
During alignment the line voltage feeding the receiver power supply should be kept
at approximately 117 volts.
The receiver should be allowed to worm up for at least 30 minutes before making
any odjustments.
The location of adjustment screws are indicated clearly on the schematic diagrom.
Alignment adjustments should be made only in the sequence given in the chort.

- John F. Ridor


## TUNING RANGE

Broadcast Band- 535 to 1720 kc or 174 to 561 meters.
Short Wave Band- 5.67 to 24.0 mc or 12.5 to 53.6 meters.

## ALIGNMENT NOTES

Alignment should be attempted only if a low range A.C. meter, a signal generator, and insulated alignment tools are at your disposal. The A.C. meter is used as an outputmeter. The signal generator must cover a frequency range from 450 kc to 24 mc .

It is essential that the signal generator be connected to the points indicated in the alignment chart through the proper dummy antenna.

A good ground connection, secured between the groundpost of the signal generator and the chassis, is necessary.

The cutput of the signal generator must always be kept at its lowest possible value. This is to prevent the automatic volume control of the receiver from interfering with accurate alignment.

During alignment, the line voltage feeding the receiver power supply should be kept at approximately 230 volts.

The locations of adjustment screws are indicated clearly on the schematic diagram. Alignment adjustments should be made only in the sequence given in the chart.

For all alignments, connect the outputmeter across the voice coil. With the volume control turned fully clockwise, tune for a maximum reading.

ALIGNMENT CHART

STEP	CIRCUIT ALIGNED	RECEIVER		SIGNAL GENERATOR		DUMMYANTENNA	ADJUSTMENTS   (All maximum output)
		BAND SWITCH	$\begin{aligned} & \text { DIAL } \\ & \text { POINTER } \end{aligned}$	FREQUENCY	CONHECTION		
1	IF	BC	Low ond of dial	455 KC	$\text { Grid } \underset{R F}{o f} 125 \mathrm{K7} 7$	0.1 mfd .	\#1, 2, 3, 4
2	SW	sw	E	21 MC	Antenio Post	400 ohm carbon resistor	$\begin{aligned} & \text { First } \# 5 \\ & \hline \end{aligned}$ Then \#s
3	BC	BC	D	1400 KC	Antenna Post	200 mmfd . mica capacitor	\#7
4	BC	вс	c	600 KC	Antenne Post	200 mmid . mica capacitor	\#8
5	Repeat steps 3 and 4						
6	BC	BC	Set for broadcast station near 1400 KC			-	\$9 and \#10



This Pilot superheterodyne receiver has FIVE tubes and one selenium rectifier. The sct operates on either alternating or direct current power supply ( 105 to 125 volts) or on self-contained batteries. Since it features a selenium rectifier, it will play immediately after being turned on, on either battery or house current power supply.

TUNING RANGE<br>Broadcast Band- 535 to 1605 kc or 187 to 561 meters.<br>Short Wave Band - 5.63 to 16.56 mc or 18.2 to 53.2 meters.

## ALIGNMENT NOTES

. Alignment should be ottempted only if a low range A.C. meter, a signal generator, and insulated alignment tools are at your disposal. The A.C. meter is used as an outputmeter. The signal generator must cover a frequency range from 262 kc to 16 mc .

It is essential that the signal generator be connected to the points indicated in the alignment chart through the proper dummy antenna.

A good connection between the groundpost of the signal generator and the chassis, is necessary. DO NOT connect chassis or generator to an external ground.

The output of the signal generator must always be kept at its lowest possible value. This is to prevent the automatic volume control of the receiver from interfering with accurate alignment.

During alignment, the line voltage feeding the receiver power supply should be kept at opproximately 117 volts.

The locations of adjustment screws are indicated clearly on the schematic diagram. Alignment adjustments should be made only in the sequence given in the chart.

For all alignments, connect the outputmeter across the voice coil. With the voluma control turned fully clockwise tune for a maximum reading.

## BATTERIES

The battery portion of this receiver contains two Eveready No. 746 " A " batteries of $41 / 2$ volts, and two Eveready No. 482 " $B$ " batteries of 45 volts each. The set is so designed that these batteries will all last the same length of time.

It is a good idea to take the receiver to your dealer when purchasing replacement batteries. He will connect the batteries correctly. If you do it yourself, first MAKE SURE THAT THE POWER SWITCH IS COMPLETELY TURNED OFF.

When removing the batteries, first unscrew clamps, and then remove battery plugs. Be sure not to pull on the cables, but on the plugs themselves.

Place the new " $A$ " and " $B$ " batteries in position shown on diagram below and replace clamps.

The blue and white coble, coming from the chassis, has 2-prong plugs which are then plugged into the " $A$ " batteries. The red and, black cable has two 3 -prong plugs, both of which are plugged into the " $B$ " batteries.

ALIGNMENT CHART

STEP	CIRCUIT   ALIGNED	RECEIVER		SIGNAL GENERATOR		DUMMY ANTENNA	ADJUSTMENTS (All maximum output)
		BAND SWITCH	DIAL POINTER	FREQUENCY	CONNECTION		
1	IF	BC	Low end of dial	262 KC	Grid of   AA7GT conv.	0.1 mfd .	\#1, 2, 3, 4
2	BC	BC	1400 KC	1400 KC	Antenna Post	$\begin{aligned} & 200 \text { mmfd. } \\ & \text { mica cap. } \end{aligned}$	First \#5   Then \#6
3	BC	BC	600 KC	600 KC	Antenna Post	$\begin{aligned} & 200 \mathrm{mmfd} . \\ & \text { mica cap. } \end{aligned}$	\#7
4	Repeat steps 2 and 3						
5	sw	sw	6 MC	6 MC	Antenna Post	400 ohm carbon resistor	\#8
6	sw	SW	15 MC	15 MC	Antenna Post	400 ohm carbon resistor	\#9
7	SW	SW	Tune in generator	12 MC	Antenna Post	400 ohm carbon resistor	First \# 10, while rocking Then \# II
8	Repeat step 5 while rocking for maximum output.						
9	Repeat steps 6 and 7.						
10	Repeat step 2, trimmer \#5 only.						
11	BC	BC	Tune in broadcast station near 1400 KC				\#12

NOTE: Align step 1 to 10 with chossis out of cabinet, but loop plugged in. Step 11 must be taken with set properly placed in cabinet, and batteries and loop in the


© John F. Rider


ALIGNMENT CHART							
STEP	cincuit ALIGNED	RECEIVER		SIGNAL generator		TRIMMER OR IRON CORE TO BE ADJUSTED	Procedure
		$\begin{aligned} & \text { IAND } \\ & \text { SWITCH } \end{aligned}$	$\begin{gathered} \text { DIAL } \\ \text { POINTER } \end{gathered}$	FREQUENCY	CONNECTION		
1	I.F.	B'de'st.	At low frequency -nd of dial	455 ke	Thru 0.1 mfd. condenser to front section of gang	$\begin{array}{ll} 51, & 52 \\ 53 & 54 \end{array}$	Adjust for max:mum output
2	I.F. Trap.	8'de'st.	At low frequency and of dial	455 ke	Thru 200 mmf. condonser to Ant. Terminal " A "	T5	Adjust for minimum output
3	B'de'st. R.F.	B'de'st.	150 on dial	1500 kc	Thiru 200 mmf. condenser to Ant. Terminal "A"	1. T7 (ose)	Adjust for maximum output
4	B'de'si. R.F.	8'de'st.	60 on dial	600 kc	Thru 200 mmf . condenser to Ant. Terminal "A"	56 (padder)	Adjust for maximum output while rocking var. cond.
5	B'de'st. R.F.	B'de'st.		Repeat step	3, 4 and 3		
6	S.W. 1	s.w. I	8 mc on dial	8.0 mc	Thru 400 ohm resistor to " $A$ " terminal	1. T9 (ose)   2. 110 (ant)	Adjust for maximum output
7.	S.W. 2	S.W. 2	12 me on dial	12 mc	Thru 400 ohm resistor to " A ". terminal	1. TII (ose)   2. TI2 (ant)	Adjust for max:mum output
8	S.W. 3	S.W. 3	17 me on dial	17 mc	Thru 400 ohm resistor to " $A$ " terminal	1. T13 (ose)   2. T14 (ant)	Adjust for maximum output
9	S.W. 4	S.W. 4	24 mc on dial	24 me	Thru 400 ohm resistor to "A" terminal	I. 715 (ose)   2. 116 (ant)	Adjust for maximum outpuk

## ALIGNMENT NOTES

Alignment should be attempted only if a law range A.C. meter, a signal generator,
and insulated alignment tools are at your disposal. The A.C. meter is used as an output meter. The signal generator must cover a frequency range from 450 kc to 24 mc .

It is essential that the signal generator be connected to the points indicated in the alignment chart through the proper dummy antenna.

A good ground connection, secured between the groundpost of the signal generotor and the chassis, is necessary.

The output of the signal generator must always be kept at its lowest possible value.
This is to prevent the automatic volume control of the receiver from interfering with accurate alignment.

The locations of adjustment screws are indicated clearly on the schematic diagram
Alignment adjustments should be made only in the sequence given in the chart.
For all alignments, connect the output meter across the voice coil. With the volume
control turned fully clockwise, tune for a maximum reading.

ALIGNMENT CHART

	CIRCUIT   ALIGNED	RECEIVER		SIGNAL GENERATOR		OUTPUT METER		TRIMMER OR SLUG ADJUST	PROCEDURE
STEP		BAND SWITCH	DIAL POINTER	FREQUENCY	CONNECTIONS	TYPE	CONNECTIONS		
1	AM-I.F.	$A M$	55	455KC	Through . I mf to mixer gang-large stator	A	Across Speaker Voice Coil	$\begin{aligned} & S 1, S 2, \\ & \text { S3, S4 } \end{aligned}$	Adjust for maximum output
2	FM-I.F.	FM	88	10.7 MC	Through . I mf to mixer gang-small stator	B	Pin\#2—FM ratio detector \& ground	$\begin{gathered} \text { S5, S6, } \\ \text { S7, S8, } \\ \text { S9 } \end{gathered}$	Adjust for maximum negative DC voltage
3	Rat.o Detector	FM	88	10.7 MC	SAME	B	From audio output of ratio detector to ground (See Circuit Diagram)	S10	Check VTVM zero set. Turn slug slowly through point where DC polarity reverses. Carefully set for zero DC at reversal point.
4	B.C.   Wave   Trap	AM	$\ldots 5$	455 KC	Through 200 mmf to "A" \& "G' terminals of antenna strip	A	Across Speaker Voice Coil	Sil	Adjust for minimum output
5	8.C.	AM	150	1500 KC	Through 200 mmf to " $A$ " \& " $G$ " terminals of antenna strip	A	Across Speaker Voice Coil	$\begin{gathered} \mathrm{TI}, \mathrm{~T} 2, \\ \mathrm{~T} 3 \end{gathered}$	Adjust for maxımum output
6	R.F.	AM	60	600 KC	SAME	A	Across Speaker Voice Coil	S12	Adjust for maximum output while rocking gang
7					Repeat Steps 5	6 as	quired		
8	FM		90	90 MC	To "A" \& "D" terminals Antenna strip	B	Pin \#2-F.M. Ratio Detector \& Ground	P1, P2,	Adjust for maximum negative $D C$ voltage.
9	R.F.	FM	- 106	106MC	SAME	B	SAME	$\begin{gathered} \mathrm{T} 4, \mathrm{~T} 5, \\ \mathrm{~T} 6 \end{gathered}$	Adjust for maximum negative DC voltage
10					Repeat Steps 8	9 as	quired		

[^10]

- John F. Rider
ALIGNMENT NOTES
Alignment should be attempted only if the proper meters and a signal generator are at
your disposal. Insulated alignment tools are necessary. Output meters should include: (A) a low range $A C$ Voltmeter
The signal generator must cover the frequencies of 455 kc .600 kc .1500 kc .107 mc , During alignment the line voltage feeding the receiver power supply should be kept at
approximately 117 volts. The receiver should be allowed to warm up for at least 30 minutes before making any
adjustments.
The location of adjustment screws are indicated clearly on the schematic diagram.
Alignment adjustments should be made only in the sequence given in the chart.
ALIGNMENT CHART
(Ecllow Sequence as !rdiceted)

	$\begin{aligned} & \text { CIRCUIT } \\ & \text { ALIGNED } \end{aligned}$	RECEIVER		SIGNAL GENERATOR		OUTPUT METER		TRIMMER OR SLUG ADJUST	PROCEDURE
STEP		$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { POINTER } \end{aligned}$	FREQUENCY	CONNECTIONS	TYPE	CONNECTIONS		
1	AM-I.F.	AM	55	455 KC	Through . 1 mf to mixer gang-large stator	A	Across Speaker Voice Coil	$\begin{aligned} & S 1,52, \\ & \text { S3, S4 } \end{aligned}$	Adjust for maximum output
2	FM-I.F.	FM	88	10.7MC	Through . 1 mf to mixer gang-small stator	B	Pin\# 2-FM ratio detector \& ground	$\begin{gathered} \text { \$5, } \mathbf{5 6}, \\ \text { 57, } 58, \\ \text { S9 } \end{gathered}$	Adjust for moximum negative $D C$ voltage
3	Rat.o Detector	FM	88	10.7MC	SAME	B	From audio output of ratio detector to ground (See Circuit Diagram)	S10	Check VTVM zero set. Turn slug slowly through point where DC polarity reverses. Garefully set for zero $D C$ at reversal point.
4	B.C. Wave Trap	AM	55	455 KC	Through 200 mmf to " $A$ " \& " $G$ " terminals of antenna strip	A	Across Speaker Voice Coil	SHI	Adjust for minimum output
5	B.C.	AM	150	1500 KC	Through 200 mmf to " $A$ " \& " $G$ " terminals of antenna strip	A	Across Speaker Voice Coil	$\mathrm{T}_{\mathrm{T},} \mathrm{~T}_{3}$	Adjust for maximum output
6			60	600KC	SAME	A	Across Speaker Voice Coil	SI2	Adjust for maximum output while rocking gang
7					Repeat Steps 5 a	6 as	equired		
8	FM		90	90 MC	To "A" \& "O" terminals Antenna strip	B	Pin \#2-F.M. Ratio Detector \& Ground	P1, P2,	Adjust for maximum neg. otive $D C$ voltage.
9	R.F.	FM	106	106 MC	SAME	B	SAME	$\begin{gathered} \mathrm{T} 4, \mathrm{T5}, \\ \mathrm{~T} 6 \end{gathered}$	Adjust for maximum negative DC voltage
10					Repeat Steps 8 a	9 as	equired		



Model $8 F 43 \uparrow$


## Specifications



Tube Complement


## Power Output Rating

I'ndistorted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . líu MII:
Maximum.
$\because$ М M W

Loudspeaker

V.C. impedance at toin cycles..................... 3.4 ohms

## Power Supply

(1) RCA Battery Pack-VM: S.
"A". Bakery, id volts, Drain-M:Z+ allinere.
"B" Battery: 9(1 volts. Drain-10.i ma.
( $\because$ ) Plectrifier-(CV-45)
1115 to 125 volts. fill cycles. IC.
Cabinet Dimensions


## Replacement Parts


-This io the first time this Stock No. has appeared in Service Dala.
-Stock No. 72953 is a reel containing 250 ff . of cord.

MODELS 8F43, Ch. RC 1037B;
CV-45, Ch. RS-1001

## Alignment Procedure

Output Meter Alignment.-Connect the meter across the voice coil and turn the receiver volume control to maxinum.

Test Oscillator.-Connect the low side of the test oscillator to the receiver chassis, and keep the output low to avoid AVC action.

Pre-Setting Dial.-With gang condenser in full mesh, the pointer should be set at the left-hand end dial calibration mark.

Steps	```Connect hith side of test escillator to-```	Tune test escillater to-	Turn radio dial to-	Adjust for maximum output
1	INSGT Erid in series with 1 mfd .	455 kc .	Quipt point mear 600 kc .	$\begin{gathered} \mathrm{T}-2 \\ \text { 2nd } \mathrm{I} . \mathrm{F} . \\ \text { trana. } \end{gathered}$
2	1A7GT trid in series with 1 mf d.			T- 1   1stI.F. trans.
3	Antenna lead is escies with 220 mmold.	1600 kc .	1000 kc . mark	C12A
4		840 kc.	840 hc. mark	13
5		Repeat	Steps 3 and	
6		1400 kc .	$1400 \mathrm{lsc} \text {. }$ cignal	CIIA
7		600 kc.	300 kc . signal	L2
-		Repeat Steps 6 and 7.		

- Do not readjuat T. 2


## Critical Lead Dress

1. Keep output plate capacitor dressed close to the chassis
$\because$ Kecp lead from lug A of second IF iransformer down and dressed close around the 1H5GT tube socket
2. Dress $1 \mathbb{N}$ (;T plate lead close to chassis.
3. Dress Cl down and away front the antenna coil.
4. Dress C3 and C.: away from cach other.
5. Dress the lead from ?ud. IF transformer to the volume control clear of other components.


Dial Indicator and Drive Mechanismi Shouing Alignment Check Points
NOTE:-
When using the electrifier, remove the shorting plug on the chassis (atljacent to the lAiGT tube) and replace it with a similar plug, attached to the electrifier. Also connect the remaining plug attached to the electrifier, in place of the normal battery plug. The receiver will operate in the normal nonner. using the satme control for turning the set on and off.

Do not plug electrifier into a 1 C outlet.


Tube and Trimmer Locations



Specifications
Tuning Range Intermediate Frequency . $540-1600 \mathrm{kc}$. Tube Complement
(1) RCA IRS
.
-
$\qquad$ Det.-A. V. C.-A. F. Amp.
(3) RCA IU5 $\qquad$
(4) RCA 3V4
(5) RCA 117Z3 .....................................................................................................................................................
$\qquad$ .Output

## Power Supply Rating

Power Line Operation
115 volts, d. c. or 50 to 60 cycles a. c. .............................. 18 watts or
Battery Operated $\qquad$
(Average life-100 hrs. intermittent service)
Loudspeaker (92577-1)
Size and type
..............
Voice coil impedance $\qquad$ 4 in. PM dynamic

## Power Output

Undistorted-150 milliwatts Maximum-250 milliwatts (Output is slightly lower on battery operation)

Cabinet Dimensions
Height $91 / 2$ in.
Width 11 in.
Depth 5 in.

Weight
5 lb . less battery
8 lb .2 oz. with battery

## AC.DC Operation

This receiver will operate on 115 volts, d. c. or 50 to 60 cycles $\alpha$. c.

A, power cord is stored inside the cabinet. To open the cabinet, push upward on the two metal ball catches at the top rear of the cabinet. Remove the plug of the power cord from its socket on the chassis and insert the plug into a convenient electrical outlet. A slot in the bottom of the back cover allows the back to be closed with the cord passing through.

Note: If reception is not obtained on d. c., reverse plug in outlet receptacle. This may also reduce hum on a. c. operation.

When returning to battery operation replace the plug in the socket provided on the chassis. roll up the cord and place under the raised portion of the battery holder bracket.

Note: Make certain that the plug is fully inserted (base of plug touching chassis) to assure proper operation of the BattLine switch.


## Cabinet Hingea

The cabinet hinges may be readily removed, they are secured to the cabinet and back by force fit. To remove back from cabinet-pull straight outward on both hinges at the same time.

## To Remove Chassis

1. Pull off the volume control knob
2. Close tuning condenser (dial at 54) to prevent possible damage to tuning condenser.
3. Unsolder the loop leads.
4. Remove the plug from the battery.
5. Remove the two screws holding the bottom edge of the speaker and the screw holding dial back-plate to cabinet.
6. Remove the two slip shields beneath the handle. They may be removed by pushing straight toward the top center of the case. The chassis mounting screws are then accessible.
7. Remove the two screws at the top of the cabinet while supporting the chassis with one hand,
Note: When re-installing, replace speaker holding screws first but do not securely tighten until the two screws at the top of the cabinet have been tightened.

Ch. RC-1059B, RC-1059C

## Alignment Procedure

Cathode Ray Alignment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.

Outpul Meter Alignment.-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

Test Oscillator.-For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.

Battery operation of the receiver is preferable during alignment; on $\alpha$. c. operation an isolation transformer (117v./l17v.) may be necessary for the receiver if the test oscillator is also a. c. operated.

Note: Battery or substitute must be in place for ant. align. ment (step 5).

Alignment Tabulation

Step	Connect high side of test oscillator to-	Test oscillator output-	Turn receiver dial to-	Adjust for maximum peak output
1	Disconnect loop-remove chassis-remove bottom plate, connect a 10,000 ohm resistor from Cl stator terminal to tuning condenser frame.			
2	Stator terminal of Cl thru Ol mf. capacitor	455 kc	55	*Top and bottom T2 (2nd. 1-F. transi)   *Top and boltom T1 (lst. I-F trans.)
3	Remove the 10.000 ohm resistor. Replace bottom cover and install chassis in cabinet. Re-connect loop.			
4	Short wire placed nearreceiver (for radiatedsignal)	1600 kc	160	-C5 (ose.)
5		1400 kc	140	-C2 (ant.)
6		600 kc	60	- L2 (ose.) while rocking gang
7		Repeat steps 4, 5 and 6		

NOTES:
'The magnetite cores of L 2 and T 2 and T 1 do not have visible adjusting screws. The cores have screw driver slots to permit adjustment (use non-metallic screwdriver).
$\dagger$ Adjustable thru hole in side of case
CAUTION.-
Do not remove any tubes from the chassis with the set operating and the plug connected to the power line. Damage to tubes may result.

## Critical Lead Dress

1. Dress output plate bypass C20 capacitor against chassis.
2. Dress output plate lead to output transformer against chassis.
3. Dress audio coupling capacitor $\mathrm{Cl4}$ (volume control to grid of lU5) away from chassis, away from audio limiting resistor R8 and to permit adjustment of second I.F. Transformer.
4. Dress all exposed leads away from each other, and away from chassis to prevent short circuits.
5. Dress all filament and ground leads against chassis.
6. Dress filament bypass capacitor C 23 and accompanying compensating resistor R15 (volume control to 1U4) against volume control.
7. Dress power line cord away from linebattery switch mechanism.
8. Dress all capacitors and wiring away from oscillator coil.
9. Dress 4 mmf. neutralizing capacitor C7 against A.V.C. bypass capacitor C8 (lU4 filament to first I.F. trans.).

Note: These instruments are designed to be operated with a battery in position inside the cabinet. Reception will be below normal unless the battery is in its normal location.

The position of the battery pack affects the loop inductance. Therefore, when the battery is removed, the loop inductance will change (increase) and the sensitivity will be slightiy worse because of improper electrical tracking of the loop circuit with the heterodyne oscillator.

Where $\alpha$ battery is temporarily unavailable, a sheet of aluminum $8 \frac{1}{2 \prime \prime}$ long $x 35 / 3^{\prime \prime}$ wide and from .020 to $.050^{\prime \prime}$ thick may be placed in the cabinet in the position occupied by the battery so that it is lying flat down on the bottom. This sheet of aluminum has an effect on the loop inductance similar to the effect caused by the battery and will, therefore. return the performance of the loop to approximately the same as obtained when a battery is installed. If aluminum is not available, brass may be substituted with approximately the same performance. DO NOT USE STEEL OR IRON since the performance will be adversely affected. If desired, the sheet of aluminum may be waxed to the inside bottom of the case. DO NOT PLACE ANY WAX, CEMENT OR OTHER MATERIAL ON the loop windings. 455 KC TOP \& BOTTOM


RADIO CORPORATION OF AMERICA PAGE 20-5

© John F. Rider

## Replacement Parts



- This is the first time that this Stock No. has appeared in Service Data.



## Specifications


(A selenium rectifier is used)
Power Supply Rating
Power Line Operation
115 volts d.c. or 50 to 60 cycles a.c. .............................. 17 watts
or
Battery Operation
1 RCA VS 065 "A" Battery $\qquad$ 7.5 v., 60 ma .

RCA VS 016 "B." Battery
$\qquad$ 67.5 v., 10 mc.
(Battery life-approx. 40 hrs . intermittent service)
Power Output
A.C. operation $\qquad$ 150 mw . undistorted, 250 mw . max. Batt. operation 70 mw . undistorted, 180 mw , max.

Loudspeaker (92584-1)
Size and type $\qquad$ 4 in. PM dynamic
Voice coil impedance $\qquad$ 3.2 ohms @ 400 cycles

Dial Drive Ratio $\qquad$ 6:1 (3 turns of knob)

Cabinet Dimensions
Height $8^{3 / 8}$ in.
Width $10^{1 / 2} \mathrm{in}$.
Depth 5 in.
Weight $\quad 5^{1 / 2} \mathrm{lbs}$. (less batteries) $61 / 4 \mathrm{lbs}$. (with batteries)
To Open Cabinet:
The back is secured to the cabinet with two clip catches at the top and two hinges at the bottom. To open-while facing the front of the receiver, with the handle in the upright position grip the sides of the cabinet with both hands and push the top of the back to the rear with both thumbs.

## To Remove Back:

Oper the cabinet as explained above. With the back fully open, grip the cabinet as illustrated. Insert a screwdriver under one hinge retainer and pry the center of the retainer out of the opening in the cabinet while maintaining pressure on the back with the fingers and on the cabinet with the thumb. Repeat this procedure with the other hinge retainer. Pull straight to the rear.

## To Remove Cabinet Foot:

Open the cabinet. Grip the end of the spring clip with long nose pliers as illustrated and pull toward the center of the cabinet. Repeat this procedure with the other clip.

To Remove Chassis:

1. Remove knobs (pull off).
2. Open cabinet.
3. Unsolder loop leads.
4. Disconnect batteries and speaker.
5. Remove the two screws which hold the dial back plate to the cabinet.
6. Remove the TWO SCREWS AT THE BOTTOM EDGE OF THE REAR CHASSIS APRON.
7. Pull chassis to rear.


Removal of Cabinet Back


Removal of Cabinet Foot

## Alignment Procedure

Cathode Ray Alignment is the preferable method. Connec tions for the oscilloscope are shown on the schematic diagram.
Output Meter Alignment. If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum

Test Oscillator.-For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.

Battery operation of the receiver is preferable during align ment; on a.c. operation an isolation transformer ( $117 \mathrm{v} . / 117 \mathrm{v}$.) may be necessary for the receiver if the test oscillator is also a.c. operated.

Dial Pointer Position. There are two score marks on the dial back plate with the tuning condenser fully meshed (closed) the pointer should be set to the LEFT HAND MARK.

The RIGHT HAND MARK is for 1600 kc .
The dial is not easily removed. A reproduction of the dial is illustrated on another page. It is suggested that a tracing be made of it for use in alignment.

Step	Connect high side of test oscillator to-	Test oscillator output-	Turn receiver dial to-	Adjust for maximum peak output
1	Disconnect loop-remove chassis-connect a 1000 ohm resistor from Cl stator terminal to tuning condenser frame.			
2	Stator terminal of Cl through a 39 mmi. capacitor	455 kc.	Quiet point near 160	- Top and bottom T2 (2nd I-F trans.)   -Top and bottom Tl (lst I-F trans.)
3	Remove the 1000 ohm resistor. Replace but do not tasten chassis in cabinet. Re.connect loop.			
4	Short wire placed near receiver (for radiated signal)	1630 kc.	Max. clockwise	+C5 (osc.)
5		1400 kc .	140	+C2 (ant.)
6		600 kc.	60	- L2 (osc.) while rocking gang
7		Repeat steps 4, 5 and 6		
8	Fasten chassis to cabinet.			

notes:

* The magnetite cores of L2, T2 and T1 do not have visible adjust ing screws. The cores have screw driver slots to permit ad justment (use non-metallic screwdriver)
+ C5 and C2 are more readily accessible if the chassis is not fully inserted into the cabinet. However the chassis should be near its proper position because its position affects the inductance of the loop.



## Power Line Operation:

A power cord is stored inside the cabinet. Open the cab inet and remove the plug of the power cord from its socket on the chassis and insert the plug into a convenient electrical out let. A slot in the right-hand end of the cabinet allows the back to be closed with the cord passing through

NOTE: If reception is not obtained on DC, reverse plug in outlet receptacle. On AC operation this may reduce hum.

When returning to battery operation replace the plug in the socket provided on the chassis, with the cord extending to ward the back.

NOTE: Make certain that the plug is fully inserted (base of plug touching chassis) to assure proper operation of the Batt Line switch
CAUTION.-
Do not remove any tubes from the chassis with the set operating and the plug connected to the power line. Dam age to tubes may result.

## Critical Lead Dress

1. Dress 1 RS plate lead and 1 U 4 grid lead down against chassis.
2. Dress all filament and ground leads against chassis.
3. Dress the 4 mm . neutralizing capacitor C 7 against the 1 U 4 tube socket with short lead at the plate end.
4. Dress .002 mt . capacitor Cl 4 down against chassis and away from other wiring
5. Dress .05 mf . capacitor C 9 down over top of Cl 4 .
6. Dress capacitors C 10 and C22 away from oscillator coil so that pressure is not exerted on the side of the coil.
7. Dress all wiring away from the selenium rectitier.
8. Dress .003 mf . capacitor C 8 as near chassis as possible.


Dial Drize Cord


Carrying Hardle Assembly



The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedure.

## Replacement Parts




## FOR RECORD CHANGER INFORMATION REFER TO RP 168 SERIES SERVICE DATA

## Specifications

Tuning Ran			
Standard Broadcast			
Frequency Modulation (FM) ...................................88-108 mc.			
Tube Complement			
and			
(2) RCA 6BA6 $\ldots$................................................F.F......................iver			
(4) RCA 6AL5			
(5) RCA 6AV6			
(6) RCA 6V6GT .......................................................Output			
(7) RCA 6AV6 ................................AM Det-AVC-Ph. Inv.			
(8) RCA 6V6GT .......................................................Output			
(9) RCA 6X5GT .....................................................Rectifier			
Dial Lamps (2) ............................Type No. 51, 6-8 volts, 0.2 amp.   Jewel Lamp $\qquad$ Type No. 51, 6.8 volts, 0.2 amp.			

## Description

Model 9W102 is identical electrically with Models 9W101 and 9W103. It uses a vertical type of dial. The chassis differs mechanically from that used in 9W101 and 9W103 in that the volume control and range switch shafts are combined as a dual knob control (a drive cord couples the volume control to the volume control knob shaft). The second I-F transformer is stamped 970435-6 and is identical to that used in 9W101 and 9W103 except for having a copper plated shield can to reduce feedback to the loop. Refer to Service Data on Models 9W101. 9W103. 9W105 for additional information.
(Supplementary Information on 9W101, 9W103 and 9W105 contained in this publication.)


Volume Control Flexible Cable

Tuning Drive Ratio
18:1 (9 turns of knob)
Power Supply Rating .115 volts, 60 cycles, 90 watts

Loudspeaker (92569-5W)
Size and type ..................................................................... 12 in. PM
Voice coil impedance .3.2 ohms at 400 cycles

Power Output
Undistorted 6 watts
Maximum 7 watts
Cabinet Dimensions
Height 197/8'
Width $383 / 4$
Depth $20^{\prime \prime}$
Weight .71 lbs.

Record Changer (RP-168A-1)
Turntable speed $\qquad$ 45 r.p.m. Record capacity Up to 10 RCA 7 in. fine groove Pickup $\qquad$ Crystal (medium output)


TUNING


Controls

PAGE 20-12 RADIO CORPORATION OF AMERICA
MODEL 9WlO2,
Ch. RC-618D


- John F. Rider

RADIO CORPORATION OF AMERICA PAGE 20-13
MODELS 9W102, Ch. RC-618D; 9W101, 9W103, Ch. RC-618B, Rev; 9Wl05, Ch. RC-618c, Rev.

## Alignment Procedure

Identical to that given in 9W101, 9W103, 9W105 Service Data Except
After the chassis is installed in the cabinet, recheck the adjustment of C4 (AM Ant.) at 1400 kc . and L4 (AM Osc.) at 600 kc . Two holes in the right hand side of the radio compartment drawer permit access to these adjustments.

The dial indicator should be set to the SPECIFIED POSITION on the dial back plate with the tuning condenser at max. capacity.

Dial Indicator and Drive Mechanism


## 9W101, 9W103, 9W105 (RC-618B, RC-618C) SUPPLEMENTARY INFORMATION

## Added Capacitor:

A capacitor ( 150 mmi - C44) has been added between the screen grid terminal of V 8 ( 6 V 6 GT ) socket and chassis as shown in the illustration below. This was done to eliminate spurious audio oscillation.

## Correction to Simplified Schematics:

The simplified schematic diagrams (phono position) on page 7 of 9W101, 9W103. 9W105 Service Data show C34 and C56 connected to ground. They should be shown connected to the cathodes of the 6V6GT tubes as shown in the illustration below.

## Change in Wiring:

To improve FM stability one dial lamp is now connected to pin \#2 of V9 (6X5GT). Previously both were connected to pin \# 2 of V8 ( 6 V 6 GT ).

## Substitute Speaker:

Speakers stamped 92569.1WX have been used as a substitute for $92569-5 W$ speakers in Model 9W101; 92569-1 WX speakers have a 2.2 ohm voice coil; $92569-5 \mathrm{~W}$ speakers have a 3.2 ohm voire coil.

## Changes in Parts List:

CHASSIS ASSEMBLIES
Add:
48125. Capacitor-Ceramic. 150 mmi . (C44) |same as C7, C19, C38. C50. C531

SPEAKER ASSEMBLY
92569-1 WX
(Used on Model 9W101)
13867 Cap-Dust cap
36145 Cone-Cone and voice coil assembly
5039 Plug-4 prong male plug for speaker
71145 Suspension-Metal cone suspension
37899 Transformer-Output transformer (T3)
NOTE: When replacing complete speaker order Stock No. 73635 (92569-5W).

## MISCELLANEOUS

Add:
37396 Grommet-Rubber grommet for mounting speaker (3 re-quired)-for Model 9W103
Correction:
73896 Loop-Loop antenna complete for Models 9W101 and 9W103 (previously listed for 9W101 and 9W105)

## Pickup Arm Cable:

The RP-168A-1 record changer pickup arm cable now being used is a three wire cable (RED-WHITE-BLACK). In some instruments the black wire is omitted or a shielded wire may be used as shown in 9W101. 9W103. 9W105 Service Data. The latest connection diagram is given below.

## I.F. Transformer Substitution:

In some chassis I.F. transformers stamped 970435-2 have been used as a substitute for 2nd. I.F. transformers stamped 970435-5.
The 455 Kc . windings of 970435-2 transformers use resonating capacitors of 235 mmf . each, the d.c. resistance of each winding is. 8.2 ohm, the transformer indicated in the schematic diagram is stamped 970435-5.


Output Tubes Circuit Pickup Arm Cable
Models 9W101, 9W103, 9W105

## Incorrect Color Code on Capacitor:

Some ceramic capacitors Cll ( 5 mmi ) have been used which have a colo: code of BLACK-GREEN-BLACK. The capacitor is correct, but the color code is incorrect. The normal color code of this capaciior is GREEN.BLACK-WHITE.

## Record Changer Mounting Screws:

The original mounting screws used a cover which screwed into the top of the mounting screw. The screws now being used have a plug.in type of cover.

## Change in Parts List:

## MISCELLANEOUS

Change:
74209 Cover-Mounting screw cover (threaded type) for RP 168-A-1 record changer ( $3^{-}$required) (used with RCA 74424 screw).
74424 Screw $\# 8.32 \times 13 / 4^{\prime \prime}$ special screw (tapped hole) for RP 168.A.l record changer (3 required) (used with RCA 74209 cover).
Add:
74579 Bumper-Rubber bumper (black) for front panel of record changer drawer-walnut or mahogany instruments-Models 9W101 and 9W103 (2 required)
74580 Bumper - Rubber bumper (white) for front panel of record changer drawer-blond or limed oak instruments-Models 9W 101 and 9W 103 (2 required)
74581 Cover-Mounting screw cover (plug-in type) for RP 168-A.1 record changer (3 required) (used with RCA 74582 screw).
74582 Screw-\#8-32 $\times 1^{3 / 4 "}$ special screw (non-tapped hole) for RP $168 \cdot \mathrm{~A} \cdot 1$ record changer ( 3 required) (used with RCA 74581 cover).

Replacement Parts

$\begin{gathered} \hline \text { STOCX } \\ \text { No. } \\ \hline \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES	73894	Shaft-Tun
	RC 618D	73632	Shield-Tube shield-for V2, V5
73893	Board-'F. M.' terminal board	74646	Sleeve-Sleeve and pulley assembly (for volume control
74641	Cable-Flexible cable to operate volume control		
73889	Capacitor-Variable tuning capacitor ............. $\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3$,	73606	Socket-Tube socket. miniature-for V4, V5, V7 Socket-Tube socket, miniature-for V1, V2, V3
73866	Capacitor-Ceramic, 2 mmi ........................................C9	31251 73117 31364	Socket-Tube socket, octal, water-tor V6. V8, V9
93056	Capacitor-Ceramic, 5 mmf . ............................................................	31364	Socket-Tube socket, miniature-for V10
39044		74038	
39042	Capacitor-Ceramic, 47 mmt . ...............................................................	74202	Spring-T-ension spring for drive cord
73867			Suppori-Polystyrene support for F.M. osciliator coil com- ple
33379	Capacitor-Ceramic, 68 mmf ......................................... C40 $^{\text {a }}$	73891	Switch-Tone control switch (S4)
48125	Capacitor-Ceramic, 150 mmf ....C7, C19, C38, C44, C50, C53	-74644	Switch-Selector switch (S1, S2)
39640	Capacitor-Mica, 330 mmf . ................................... C30, C31	73743	Transformer-Ratio detector transformer (T4)
73748		73745	Transformer-First I.F. transformer-dual (T2)
73473	Capacitor-Ceramic, 5000 mmt . ..................................6. C10	$\stackrel{74642}{ }$	Transformer-Second I.F. transformer-dual (T3)
73659	Capacitor-Tubular, $003 \mathrm{mid} ., 200$ volts .......................C24	-74643	Transformer-Power transformer, 115 volt, 60 cycle (T1)
72573	Capacitor-Tubular, $003 \mathrm{mfd} ., 400$ volts .........................C28	33726	Washer-" $\mathrm{C}^{\prime \prime}$ washer for tuning knob shaft
70646	Capacitor-Tubular, $0035 \mathrm{mid} ., 1000$ volts ...........C34, C56		
71926	Capacitor-Tubular, 005 mid , 200 volts ....... C20, C27, C32		SPEAKER ASSEMBLIES
71553	Capacitor-Tubular, $005 \mathrm{mfd} ., 400$ volts .....C14, C16, C17,		Stamped 92569-5W
71923	Capacitor-Tubular, $01 \mathrm{mid} ., 200$ volts ${ }^{\text {c }}$ C21, C22		RL 103B5
71925	Capacitor-Tubular, 01 mid., 400 volts .........C29, C41, C54	13867	Cap-Dust cap
73561	Capacitor-Tubular, $.01 \mathrm{mfd} ., 400$ volts .................C58, C59	73934	Cone--Cone and voice coil assembly
72120	Capacitor-Tubular, . $015 \mathrm{mid} ., 200$ volts ......................... 20.2	5039	Plug-4-prong male plug for speaker
71928	Capacitor-Tubular, 02 mtd., 200 volts ................................ ${ }^{\text {C5 }}$ 51	73635	Speaker-12"PM speaker complete with cone and voice
73638	Capacitor-Tubular, 02 mid., 400 volts ......................... C $55^{\text {Capacitor-Tubular }}$		coil-less output transformer and plug
73747		71145 73636	Suspension-Metal cone suspension
74200	Capacitor-Electrolytic, comprising 1 section of 10 mfd . 300 volts and 1 section of 100 mid., 10 volts....C57A, C57B Capacitor-Electrolytic, comprising 1 section of 30 mfd ., 350 volts, 1 section of 30 mfd ., 300 volts and 1 section of 20 mfd ., 25 volts C18A, C18B, C18C		Note: If stamping on speaker does not agree with above number, order replacement parts by referring to model number of instrument, number stamped on speaker and full description of part required
73744	Coil-Oscillator coil-A.M. ................................................. 14		ANEOUS
7391	Coil-Antenna coil-F.M. ..........................................................11	74649	Antenna-F.M. antenna
739	Coil-Oscillator coil-F.M. ............................................... 12	74205	Bezel-Dial scale bezel less di
71942	Coil-Filament choke coil ................................................L3	74054	Bracket-Pilot lamp bracket
33514	Connector-Phono input connection socket (dual)	71105	Cable-Shielded pickup cable for record
5040	Connector-4-contact female connecting socket for speaker cable	13103	plete with pin plug Cap-Pilot lamp cap
30868	Connector -2 contact female connecting socket for record changer motor cable	$71892$ $74298$	Catch-Door strike and catch
-74639	Control-Volume control and power switch (R14. S3)	- 3038	Cloth-Grille cloth ( 2 required) for mahogany or walnut
+72953	Cord-Drive cord (approximately $48^{\prime \prime}$ overall length re- quired)	X 3039	instruments
73690	Cord-Power cord and plug	30868	Connector-2-contact female connecting socket for motor
16058	Grommet-Rubber grommet to mount R-F shelf (4 required)	30870	cable   Connector--2-contact male connecting plug for motor cable
72069	Grommet-Rubber grommet for rear mounting feet (2 required)	74581	Cover-Mounting screw cover (plug-in type) for mounting record changer ( 3 required)
73895	Indicator-Staticr selector indicator	-74737	Decal-Control panel function decal for mahogany or wal-
-74645	Nut-\#8-32 hex retainer nut between R-F shelf and volume control knob shaft	-74738	nut instruments   Decal-Control panel function decal for oak instruments
74297	Plate--Dial back plate assembly complete with two (2) drive cord pulleys	$\begin{array}{r} 74273 \\ -74647 \end{array}$	Decal-Trade mark decal ('Victrola')   Dial-Glass dial scale
-74640	Pulley-Pulley and hub for volume control shaft	73549	Emblem-"RCA Victor" emblem (metal)
	Hesistors-Fixed composition resistors:   68 ohms. $\pm 10 \%$. $1 / 2 \mathrm{watt}$	11889	Grommet-Rubber grommet for front apion of chassis (2 required)
		73735	Hinge-Drop door hinge ( 2 required)
		71821	Knob-Tuning knob-maroon-for mahogany or walnut instruments
	560 ohms, $\pm 10 \%$, 1/2 watt ........................................... 335	72824	Knob-Tuning knob-brown-for oak
	  1200 ohms, $\pm 5 \%$, $1 / 2$ watt ................................................R23	73998	Knob-Volume control knob-maroon-for mahogany or walnut cabinets
73637	Resistor-Wire wound, 2200 ohms, 5 watts ......................R22 Resistors-Fixed composition resistors:	73995	Knob-Volume control knob-brown-for oak instruments
	Resistorn-Fixed composition resistors:   3300 ohms, $\pm 5 \%$, $1 / 2$ watt ..............................................R24	73230	Knob-Function switch knob-maroon--for mahogany or walnut instruments
	5600 ohms, $\pm 10 \%$, $1 / 2$ watt	73231	Knob-Function switch knob--brown-for oak instruments
	8200 ohms, $\pm 10 \%, 1 / 2$ watt ................................................................................ R50 10,000 ohms, $\pm 10 \%, 1 / 2$ watt	-74845	Knob-Tone control switch knob-maroon-lor mahogany or walnut instruments
	15,000 ohms, $\pm 10 \%$, $1 / 2$ watt .........................R13, R18, R30 18,000 ohms, $\pm 10 \%$, $1 / 2$ watt $\qquad$	*74846	Knob-Tone control switch knob-brown-for oak instruments
	22,000 ohms, $\pm 10 \%$, 1/2 watt ............................................R48	11765	Lamp-Dial lamp-Mazda 51
	27.000 ohms, $\pm 10 \%$, $1 / 2$ watt ...................................R8, R40	-74648	Loop-Antenna loop
	27,000 ohms, $\pm 10 \%, 1$ watt ...............................................R5	74208	Nut-Tee nut for mounting record changer (3 required)
		74582	Screw-\#8.32 x $13 / 4$ " special screw for mounting record changer ( 3 required)
	56,000 ohms, $\pm 10 \%$. 1 whtt .............................................. 10	-74736	Slide-Record changer tray slide
	82.000 ohms, $\pm 10 \%, 1 / 2$ watt .............................................. R42   100,000 ohms, $\pm 10 \%, 1 / 2$ watt .........................................RR45	74421	Spring-Conical spring for mounting record changer upper-RH side (1 required)
	120.000 ohms, $\pm 10 \%$, $1 / 2$ watt ......................................... ${ }^{\text {R46 }}$	74422	Spring-Conical spring for mounting record
			upper-LH side ( 2 required)
	330,000 ohms, $\pm 10 \%$, $1 / 2$ watt	74423	ring-Conical spring for mounting record
	470,000 ohms, $\pm 10 \%$, $1 / 2$ watt ...................... R20, R26, R44		lower (3 required)
	2.2 megohms, $\pm 20 \%$, $1 / 2$ watt ....................................... 3	30900	Spring-Retaining spring for knobs 71821 and 72824
	3.9 megohms, $\pm 10 \%$, $1 / 2$ watt ........................................R2	72845	Spring-Retaining spring tor knobs 73995 and 73998
	10 megohms, $\pm 20 \%$, $1 / 2$ watt .............................R15, R41	427	Spring-Retaining spring for knobs 73230 and 73231
		73412	Support-Drop door tall support



## Specifications

Tuning Range
Intermediate Frequency
-540-1600 kc

Tube Complement
(1) RCA 12SA7 $\qquad$
(2) RCA 12SK7
(3) RCA 12 SQ 7 $\qquad$
(4) RCA 50L6GT ................................. Output
$\qquad$ Det-AV I-F Amplifier
(5) RCA 35Z5GT ................................... Rectifier

## Power Supply Rating

115 volts a.c., 50 to 60 cycles or d.c
30 watts
Power Output

Undistorted	.85 watts
Maximum	1.1 watts

Dial Lamps (2) ..... Mazda type 1490, 3.2 volts, .16 amp
Loudspeaker (92586-4)
Size and Type............................... 8 in. PM
Voice Coil Impedance....... 3.2 ohms at 400 cycles
Cabinet Dimensions
Height... 93/4" Width... 191/2" Depth... 83/8"
Weight $\qquad$
$\qquad$ 9 bs
Tuning Drive Ratio........... 9 to 1 ( $41 / 2$ turns of knob)
POWER SUPPLY POLARITY. - For operation on d.c., the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a.c., reversal of the plug may reduce hum.

Replacement Parts

$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	DESCRIPTION	Stock No.	DESCRIPTION
	$\begin{aligned} & \text { CHASSIS ASSEMBLIES } \\ & \text { RC } 1079 \mathrm{~B}-9 \times 561 \\ & \text { RC } 1079 \mathrm{C}-9 \times 562 \end{aligned}$		330,000 ohms, $\pm 10 \%$, $1 / 2$ watt.............. R6 470,000 ohms, $\pm 10 \%$, $1 / 2$ watt . . . . . . . . . . . . . R13   3.3 megohm, $\pm 10 \%, 1 / 2$ watt.   10 megohm, $\pm 10 \%, 1 / 2$ watt.
74655	Back-Cabinet back (maroon) and loop assembly for Model 9X561	$\begin{aligned} & 74 € 59 \\ & 31251 \end{aligned}$	Shaft-Tuning knob shaft and milley Socket-Tube socket, octal
* 74656	Back-Cabinet back (ivory) and loop assembly	74663 74038	Socket-Dial lamp socket   Spring-Tension spring for drive cord
74653	Capacitor-Variable tuning capacitor. Ci, C2, C3, C4	33634	Switch_Phono switch................. . . . . . . . S2
71924	Capacitor-Ceramic, 56 mmf. . . . . . . . . . . . . . . C5	* 74654	Transformer-Output transformer.
- 74661	Capacitor-Ceramic, 470 mmf............... . C14	73036	Transformer-First I.F. transformer . . . . . . . . . . . T1
74662	Capacitor-Electrolytic, comprising 1 section of 80 mfd , 150 volts and 1 section of 50 mfd . 150 volts.............................. C16A, C16B	$\begin{aligned} & 73037 \\ & 33726 \end{aligned}$	Transformer-Second IFF. transformer........... T2 Washer-"C" washer for tuning knob shaft
73186 71927	Capacitor-Tubular, . 001 mfd., 400 volts . . . . . . . . C15		SPEAKER ASSEMBLIES
71923	Capacitor-Tubular, . 01 mfd., 200 volts. . . . . . . C12		STAMPED 92586-4
72827	Capacitor-Tubular, . 01 mfd., 400 volts. . . . . . . C17	* 74759	Cone-Cone and voice coil assembly
71928	Capacitor-Tubular, 02 mfd., 200 volts. . . . . C8 C13	-74664	Speaker-8" P.M. speaker complete with cone
73553	Capacitor-Tubular, $05 \mathrm{mfd}$. , 400 volts . . . . C8, C18		and voice coil
70617	Capacitor-Tubular, $0.1 \mathrm{mfd.}$,400 Volts. . . . C19, C6		NOTE: If stamping on speaker does not
73935	Clip-Mounting clip for I.F. transformers   Coil-Oscillator coil.. . . . . . . . . . . . . . . . . . . . . . . L2, L3		agree with above number, order replacement agree by referring to model number of instru-
35787	Connector-Phono input connector (socket)		parts by referring to model number of instrument, number stamped on speaker and full
74133 +72953	Control-Volume control and power switch. . R10, S1 Cord-Drive cord (approx. 43" overall length		description of part required.
+72953 73693	```required) Grommet-Power cord strain relief (1 set)```		MiSCELLANEOUS
72283	Grommet-Rubber grommet for mounting tuning capacitor ( 3 required)	*74665	Bezel-Round bezel for cabinet-polystyrene
74658	Indicator-Station selector indicator (ivory) for Model 9X561	Y2131	Cabinet-Plastic cabinet-maroon-for Model 9X561
74657	Indicator-Station selector indicator (red) for Model 9X562	Y2132	Cabinet-Plastic cabinet - ivory - for Mode $9 \times 562$
71116	Lamp-Dial lamp-Mazda 1490	74904	Clamp-Dial clamp
74651	Plate-Dial back plate (maroon) complete with three (3) pulleys for Model 9X561	$\begin{array}{r} 74671 \\ * 74675 \end{array}$	Cloth-Grille cloth for Model 9X561
74652	Plate-Dial back plate (ivory) complete with three (3) pulleys for Model $9 \times 562$	74756 74668	Cloth-Grille cloth for Model 9X562 Dial-Dial scale
74660	Resistor-Wire wound, 15 ohms, $1 / 2$ watt . . . . . . R16	$\begin{aligned} & 74674 \\ & 74666 \end{aligned}$	Emblem-"RCA Victor" emblem   Knob-Control knob-maroon-_for Model 9X561
	Resistors-Fixed composition resistors:   82 ohms, $\pm 10 \%$, $1 / 2$ watt. . . . . . . . . . . . . . . . . . R17	$\begin{array}{r} 74666 \\ * 74667 \end{array}$	Knob-Control knob-ivory-for Model $9 \times 562$
	150 ohms, $\pm 10 \%$, $1 / 2$ watt...................... R14	* 74673	Nut-Speed nut to fasten bezel
	1,000 ohms, $\pm 10 \%$, 1 watt. . . . . . . . . . . . . . R15	* 74669	Screw-No. $8 \times 5 /{ }^{\prime \prime}$ pan head cross-recessed
	22,000 ohms, $\pm 10 \%$, 1/2 watt. . . . . . . . . . . . . R2		Screw Now
	33,000 ohms, $\pm 10 \%$, $1 / 2$ watt . . . . . . . . . . . . . R9	* 74670	Screw-No. $8 \times 7 / 16^{\prime \prime}$ pan head cross-recessed
	56,000 ohms, $\pm 10 \%$, $1 / 2$ watt. . . . . . . . . . Rij R4		pring-Spring clip for knob

## Lead Dress Alignment Procedure

1. Dress all heater learls down to chassis and away from all audio grid and plate wioing
2 Dress power cord down to chassis base and corner.
2. Dress capacitor C18 against back apron.
3. Dress capacitor C13 down to base alongside of shielded lead
4. Dress output transformer leads down to chassis.
5. Dress capacitors C 9 and C 15 as direct as possible.
6. Dress dial lamp leads on top of chassis between $12 S Q 7$ and 50 L 6 GT tubes; below chassis, as short as possible to rectifier socket.
7. Dress excess loop leads away from tubes and clear of tuning condenser.

Test-Oscillator. - For all aligmment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
On AC operation an isolation transformer (115 v./115 v.) may be necessary for the receiver if the test oscillator is also AC operated.

Steps	Connect the high side of test-oscillator to-	Tune test-osc. to-	Turn radio dial to-	Adjust the following for max. output
1	12SK7 I-F grid through 0.1 mfd. capacitor	455 kc	Quiet-point 1600 kc end of dial	T2 (top and boitom) 2nd I.F trans.
2	Stator of Cl through 0.1 mfd .			*T1 (top and bottom) 1stI-F trans.
3	Short wire placed near loop to radiate signal	1620 kc	Min. cap.	C4 (osc.)
4		1400 kc	1400 kc	tC2 (ant.)
5		600 kc	600 kc	13 (osc.) Rock gang
6		Repeat steps 3,4 and 5.		

*Do not readjust $T 2$ when test oscillator is connected to CI. 4When adjusting C2 (ant. trimmer) it is necessary to have the loop in the same position and spacing as it will have when
assembled in the cabinet.

## Dial Calibration

With the tuning condenser fully meshed, the dial pointer should be set to the first score mark at the lefthand end of the dial back plate. The four score marks represent: Max. cap. $600 \mathrm{kc} \quad \mathrm{J} 400 \mathrm{kc}$ min. cap.


Tube and Trimmer Locations

## Dial Indicator and Drive Cord



${ }^{9} \mathbf{X 5 7 1}$
Maroon
9X572

## Ivory

## Specifications

Tuning Range
Intermediate Frequency
$540-1600 \mathrm{kc}$
455 kc
Tube Complement
(1) RCA 12SA7

Converter
(3) RCA 12SK7
(3) RCA 12SQ7............. Det.-A.V.C.-A-F Amp.
(4) RCA 50 L 6 GT
(5) RCA 35Z5GT

Rectifier
Power Supply Rating
115 volts a.c., 50 to 60 cycles or d.c......... . 30 watts
Power Output
Undistorted . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 watts
Maximum
1.75 watts

Dial Lamps (2) . . . . Mazcta type $1490,3.2$ volts, 16 anip. Loudspeaker (99586-2W)

Size and Type
8 in. PM
Voice Coil Impedance.
3.2 ohnıs at 400 cycles Cabinet Dimensions

Height... $911 / 16^{\prime \prime}$ Width... 121/2" Depth...8516" Weight

9 to 1 ( $41 / 2$ turns of knob)
POWER SUPPLY POLARITY. - For operation on d.c., the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a.c., reversal of the plug may reduce hum.

## Replacement Parts



## Critical Lead Dress

1. Dress all heater leads down to chassis and away from all audio grid and plate wiring
$\because$ Dress power cord to back apron and away from phome jack.
2. Dress capacitor Cle against back apron
3. Comnect shielded capacitor C13 direct and with a minimum of exposed leads.
4. Dress dial lamp leads on top of chassis around electrolytic capacitor and between $1: 2 \mathrm{SQ} 7$ and 30 L 6 GT tubes.
5. Dress output transformer leads down to chassis.
6. Dress excess loop leads away from tubes and clear of tuning condenser

Test-Oscillator. - For all alignment operations, con nect the low side of the test-oscillator to the receiver chassis. and keep the oscillator output as low as possible to a void a-v-c action.
On AC operation an isolation transformer (115 v./115) v.) may be necessary for the receiver if the test oscillator is also AC operated.

## Dial Calibration

With the tuning condenser fully meshed, the dial pointer should be set to the first score mark at the lefthand end of the dial back plate. The four score marks represent: Max. cap. $600 \mathrm{kc} 1400 \mathrm{kc} \quad \mathrm{min}$ cap.


Dial Indicator and Drive Cord
*Do nct readjust $T 2$ when test oscillator is connected to $C 1$. *When adjusting C2 (ant. trimmer) it is necessary to have the assembled in same position and spacing as it will have when assembled in the cabinet.

Steps	Connect the high side of test-oscillator to-	Tune test-osc. to-	Turn radio dial to-	Adjust the following for max. output
1	12SK7 I-F grid through 0.1 mfd. capacitor	455 kc	Quiet-point 1600 kc end of dial	T2 (top and bottom) 2nd I-F trans.
2	Stator of Cl through 0.1 mfd .			${ }^{*}$ T1 (top and bottom) lst I-F trans.
3	Short wire placed near loop to radiate signal	1620 kc	Min. cap.	C4 (osc.)
4		1400 kc	1400 kc	$\dagger \mathrm{C} 2$ (ant.)
5		600 kc	600 kc	L3 (osc.) Rock gang
6		Repeat steps 3, 4 and 5.		




## ALIGNMENT PROCEDURE

Cathode Ray Alignment is the preferable method. Connec tions for the oscilloscope are shown on the schematic diagram.

Output Meter Alignment.-If this method is used connect the meter across the voice coil and turn the receiver volume con trol to maximum

Test Oscillator.-Connect low side of test oscillator to common wiring in series with a .1 mf . capacitor. If the test oscillator is a.c. operated it may be necessary to use an isolation transtormer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent a.v.c action

Stop	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to	Adjust for peak output
1	Pin No. 8 of 12SA7 tube	455 kc	Quiot point near 600 ke	Top and bottom cores of T1
2				Top and bottom cores of T2
3	'External Antonna' terminal through 100 mmf . capacitor	1,400 kc	$1,400 \mathrm{kc}$	C6 Ose. C5 R.F. C4 Ant.
4		Shunt C5 with 22.000 ohm resistor		
		600 kc	600 kc	L4 Osc.   (Rock gang)
5		Remove 22.000 ohm resistor from C5		
		600 kc	600 kc	L2 R.F.
6		Repeat stops 3, 4 and 5		

The position of the loop antenna in relation to the chassis affects adjustment of C4. The correct position is indicated on the illustration "Tube and Trimmer Locations."

NOTE.-If reception is not obtained on d.c. operation, reverse plug in outlet receptacle. On a.c. operation this may reduce hum.

The position of the speaker is adjustable; the correct position is indicated on the illustration "Tube and Trimmer Locations."


Dial Indicator and Drive Mechanism


## Schematic Diagram

In some chassis an alternate filter capacitor is used which has three sections. The low voltage section (20 mf. 25 volts) is not used. The alternate capacitor is mounted on top of the chassis and is available as Stock No. 73975.


## Alignment Procedure

Output Meter.-Connect meter across speaker voice cuil. Tum volume control to maximum.
Test Oscillator--Connect low side of test oscillator to common wiring in series with a . 1 mf . capacitor. If the test oscillator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent $\alpha \cdot v-c$ action.
Dial Pointer Adjustment.-Rotate tuning condenser fully counterclockwise (plates fully meshed). Adjust indicator pointer so that it is $33 / 8^{\prime \prime}$ from the left hand edge of the dial back plate.

Steps	Connect the high side of test-oscillator to-	Tune test-ose. to-	$\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to- } \end{aligned}$	Adjust the fol lowing for max. output
1	1.F. grid, in series with .l mid.	455 ke	Quiet point $1,600 \mathrm{kc}$ end of dial	Pri. \& Sec. 2nd I.F. transformer
2	Converter grid in series with .l mid.			$\begin{gathered} \text { Pri. \& Sec. } \\ \text { lst L.F. } \\ \text { transformer } \end{gathered}$


NOTE.-ANTENNA LOOP AND RECORD CHANGER MUST BE IN CABINET FOR THE FOLLOWING				
3	Short wire placed near loop for radiated signal	1.620 kc	Extreme R. H. end (gang open)	C7 (osc.)
4		1,400 kc	1.400 ke	C4 (ant.)
5		600 kc	600 kc	Osc. Coil L3 Rock gang
6	Repeat steps 3, 4, \& 5 if necessary			

Dial Indicator and Drive Mechanism


Tube and Trimmer Locations


Specifications


Power Supply Rating 115 volts, 60 cycles a.c., 60 watts. Dial Lamps (2) ......................Mazda type 51, 6.8 volts, 0.2 amp .

Loudspeaker (92573-1K)		
Size and type ............................................... 5" $\times$ 7" P.M.		
Voice coil impedance	3.4 ohms at 400 cycles	
Power Output		
Undistorted ............................................................ 2.2 watts		
Maximum ............................................................ 3.0 watts		
Cabinel Dimensions		
Height 913/10"	Width $16^{1 / 4}{ }^{\prime \prime}$	Depth 143/0"
Tuning Drive Ratio ........................ 101/2:1 (51/4 turns of knob)		
Record Changer (RP-168A.1)		
Record capacity ................................................ 8 records		
Pickup		medium output)

## Service Hints

The two 6AQ6 tubes and the dial lamps are accessible by removing the sloping panel in the front of the record changer compartment.

When re-installing the chassis in the cabinet the dial lamps should be positioned to give maximum illumination of the dial without direct light of the lamps being visible from the front of the cabinet.
The chassis mounting board should be flush against the front of the cabinet.
The position of the speaker is adjustable. When correctly positioned, it should set firmly against the front of the cabinet but with no undue strain on the speaker.

CAUTION.-CLOSE TUNING CONDENSER PLATES COM PLETELY (C.C.W) BEFORE REMOVING OR REINSTALLING CHASSIS.


Replacement Parts

$\ddagger$ Stock No. 72953 is a reel containing 250 feet of cord.

* this is the first time this stock number has appeared in service data.


- John F. Rider

PAGE 20-26 RADIO CORPORATION OF AMERICA



Specifications
Tuning Range $540-1600 \mathrm{kc}$
Intermediate Frequency ..................................................... 455 kc
Tube Complement

1. RCA-12BE6

Converter
2. RCA-12BA6

I-F Amplifier
3. RCA-12AV6 ................................. Det., AVC., A.F Amplifier
4. RCA-50L6GT


Cutput Rectifier
5. RCA-35W4

115 volts, 60 cycles a.c., 60 watts
Dial Lamps (2) ............... Mazda type 1490, 3.2 volts. 0.16 amp.
Loudspeaker (92585-1)
Size and type ........................................................... 5" x 7" P.M
Voice coil impedance ........................... 3.2 ohms at 400 cycles
Power Output
Undistorted .......................................................................... 1 watt
Maximum ...................................................................... 1.5 watts
Cabinet Dimensions
Height 73/4"
Width $12^{3 / 8 "}$
Depth $14^{1 / 4^{\prime \prime}}$
Tuning Drive Ratio ............................... $71 / 2: 1$ ( $33 / 4$ turns of knob)
Record Changer (KP-168-1 modified or RP-168B-1)

Turntable speed	r.p.m.
Records used	Long playing - 7 in.
Record capacity	Up to 10 records
Pickup	Crystal (medium output)
	RMP129-2

## Service Hints

The tubes and the dial lamps are accessible by removing the panel in the front of the record changer compartment.
The chassis me:al mounting plate should be flush against the front of the cabinet.
The position of the speaker is adjustable. When correctly positioned, it should set firmly against the front of the cabinet but with no undue strain on the speaker.

## Care of Sapphire

The record changer sapphire is protected by a permanent metal guard. LINT MAY COLLECT TO CLOG THE OPENING IN THE GUARD AT THE SAPPHIRE POINT AND CAUSE POOR RECORD REPRODUCTION. This may require occasional cleaning of the guard opening -clean by carefully brushing with a small soft brush.

## Record Separators

In the out of cycle position the record separator knives or discs are normally concealed inside the center post. During service, the position of the star wheel on the underside of the record changer may be accidently shifted; this may cause the separator knives to be extended when they should be concealed.

If the separator knives are thus extended-turn the power on so that the turntable is revolving, gently press fingers against the extended knives until they disappear inside the center post-DO THIS ONLY WHILE MECHANISM IS OUT OF CYCLE.


Controls


This instrument incorporates either a RP168-1 (modified) or a RP-168B-1 record changer and a RMP129-2 pickup arm assembly. Refer to Service Data RP. 168 Series, 3rd edition, for information on record player.

## Alignment Procedure

Output Meter.-Connect meter across speaker voice coil. Turn volume control to maximum.

Test Oscillator.-Connect low side of test oscillator to cammon wiring in series with a . 1 mf . capacitor. If the test oscillator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent $a-v-c$ action.

Dial Pointer Adjustment.-Rotate tuning condenser until the plates are fully open. Adjust indicator pointer to 1630 kc (extreme high frequency end of the scale).

Ch. RC-1077

## LEAD DRESS

1. Dress all heater leads and pilot light leads down to chassis and as far as possible from all audio grid and plate wiring
2. Dress all exposed leads away from each other and away from chassis to prevent short circuits.
3. Dress lead from K.F. section of gang to Vl pin 7 direct but away from chassis base to reduce capacity, also away from fuse resistor.
4. Dress lead from oscillator section of gang to oscillator coil direct but away from chassis base to reduce capacity.
5. Connect capacitor C20 with short leads between gang frame and mounting bracket.
6. Dress output transformer leads down to base.
7. Dress loop antenna leads away from gang plates and tubes.
8. Dress 33 -ohm limiting resisior away from chassis.

## Pickup Landing Adjustment "A"

The pickup point should land hali-way between the outer edge of the record and the first music groove.
II the pickup lands inside the starting grooves-turn screw " $A$ " slightly clockwise. If pickup lands outside the starting grooves-turn screw "A."

## Pickup Height Adjustment "B"

During cycle the pickup arm must rise high enough to clear a stack of eight records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.

If pickup does not clear a stack of eight records-turn screw
" B " slightly clockwise. If pickup arm touches records on MOUNTING record supports-turn screw "B."


Dial drive mechanism


Tube and trimmer location

RADIO CORPORATION OF AMERICA PAGE 20-29


## Replacement Parts

$\begin{gathered} \text { sTock } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { stock } \\ \text { No. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLIES	74677	Transtormer-Output transformer .................................... T3
	RC 1077	73488	Transformer--First I.F. transtormer ................................ T1
-74700	Bracket-Drive cord pulley bracket (L. H.) complete with	73037	Transformer-Second I.F. transformer ............................T2
	one (1) pulley and one (1) terminal board.	33726	Washer- " $C$ " washer for tuning knob shaft
$\cdot 74705$	Bracket-Drive cord pulley bracket (R. H.) complete with two (2) pulleys less long bracket.		SPEAKER ASSEMBLIES
-74704	Capacitor-Variable tuning capacitor-less bracket..C1, C2.   C3, C4		Stamped 92585-1
71924	Capacitor-Ceramic, 56 mmf . ......................................... ${ }^{\text {C5 }}$	-74706	Speaker $5^{\prime \prime} \times 7^{\prime \prime}$ elliptical P. M. speaker
74884			Note: If stamping on speaker does not agree with
39630			above number, order replacement parts by referring to
39632	Capacitor-Mica, 150 mmt . ..........................................C20		model number of instrument, number stamped on speaker
74678	Capacitor-Electrolytic, comprising 2 sections of 120 mfd ., 150 volts and 1 section of 40 mid ., 25 volts …...C16A. C16B, C16C		and full description of part required.
72792	Capacitor- Tubular, .001 mid., 200 volts ........................C7		MISCELLANEOUS
73186	Capacitor-Tubular, $001 \mathrm{mfd} ., 400$ volts .......................... C9	Y2137	Cabinet-Plastic cabinet-maroon
71926	Capacitor-Tubular, $005 \mathrm{mid} ., 200$ volts ....................C12	-74713	Clamp-Dial clamp (2 required)
72791	Capacitor-Tubular, $005 \mathrm{mfd} ., 400$ volts ......................C17	73508	Clip-Spring clip for knob
70602	Capacitor-Tubular, 0025 mfd .400 volts .....................C10	-74719	Clip-Spring clip tor radio compartment back panel
72827	Capacitor-Tubular, 01 mid.، 400 volts ........................Cl5		(2 required)   Connestor-3 contact male connector for shielded pickup
71928	Capacitor-Tubular, .02 mfd ., 200 volts .........................C13	74192	Connector-3 contact male connector for shielded pickup cable
73553	Capacitor-Tubular, $05 \mathrm{mfd} ., 400$ volts ............C6. C8. C18.	74682	Decal-Function switch decal
73935	Clip-Mounting clip for 1. F. transtormer	74273	Decal--Trade mark decal
74448	Coil-Oscillator coil ....................................................L2, L3	74722	Dial-Dial scale
36422	Connector-3 contact female connector (phono input socket)	$\begin{aligned} & 74674 \\ & 72894 \end{aligned}$	Emblem-"RCA Victor" emblem Foot--Rubber foot (4 required)
30868	Connector-2 contact female connector for motor cable....P3	-74707	Grille-Metal grille
-74702	Control --Volume control ..................................................R10	74210	Knob-Reject knob
+72953	Cord-Drive cord (approx. $49^{\prime \prime}$ overall length required)	-74710	Knob-Volume control or tuning knob
74454	Gasket-Rubber gasket for between speaker and cabinet	-74711	Knob-Function switch knob
73693	Grommet-Power cord strain relief (l set)	72692	Hinge--Cabinet lid hinge ( 2 required)
72283	Grommet-Rubber grommet to mount variable capacitor (3 required)	74709	Indicator-Station selector indicator
-74703	Loop-Antenna loop .......................................................L1	-711960	Lamp-Dial lamp   Lever-.'"Start-Reject" actuating le
18469	Plate-Bakelite mounting plate for electrolytic capacitor	-74720	Lid-Cabinet lid
72313	Resistor-Fuse type, 33 ohms .......................................... 16	-74717	Mask-End mask for dial (2 required)
	Resiator-Fixed composition resistors:	-74708	Motit-Decorative motif for front of cabinet
		-74623	Mounting-One set of hardware consisting of 3 rubber grommets, 3 flat washers, and 3 eyelets to mount record changer
	22,000 ohms, $\pm 10 \%$, 1/2 watt .........................................R2	-74715	Panel-Radio compartment back panel
	56,000 ohms, $\pm 10 \%$, 1/2 watt .......................................R9	-74721	Plate-Dial back plate, less dial
	82,000 ohms, $\pm 10 \%$, 1/2 watt .......................................R4	74212	Nut-Speed nut for reject knob
	220,000 ohms, $\pm 10 \%$. $1 / 2$ watt ......................................12	-74712	Nut-Speed nut for 'Start-Reject" actuating lever
	270,000 ohms, $\pm 10 \%$. $1 / 2$ watt ...................................R6, R7 470,000 ohms, $\pm 10 \%, 1 / 2$ watt	72765	Nut-Speed nut to fasten motif (1 required) or to fasten dial (2 required)
	2.2 megohm, $\pm 10 \%$, 1/2 watt ......................................... R8	73728	Screen-Ventilation screen ( $27 / 16^{\prime \prime} \times 11_{4}{ }^{\prime \prime}$ ) (2 required)
		-74716	Screw--\#6-32 x $1 / 4^{\prime \prime}$ cross-recessed oval head machine screw for lid support (4 required) or radio compartment back panel ( 3 required)
$\cdot 74701$	Shaft-Tuning knob shaft and pulley	14270	Spring-Retaining spring for function switch knob
73584	Shield-Tube shield for 12AV6	-74718	Spring-Return spring for 'Start-Reject" actuating lever
70827	Socket-Tube socket, octal, water	71824	Stud-Stud and screw to mount lid hinge (1 set) (2 re-
73117	Socket-Tube socket		quired)
72998	Socket--Dial lamp socket and lead	-74714	Support-Lid support
74038	Spring-Drive cord spring		
-74676	Switch-Function switch ................................................. SI		

₹ Stock No. 72953 is a reel containing 250 feet of cord.

- This is the first time this stock number has appeared in Service Data.

REL MODELS 646B, 647B AND 648B FM BROADCAST RECEIVERS 88 TO 108 MC.

These receivers are single superheterodyne units of orthodox circuit and design. As with all VHF receiving equipment, performance is dependent on correct installation, particularly the associated antenna and lead-in system.

The nominal impedance at the antenna terminals (marked A - A) is 150 ohms. Both 70 and 300 ohm lines may be used here without serious mismatch consequences. Whether or not the ground terminal (marked G) is used depends on local conditions. Because of uncertainties in this connection and because the input circuit coupling is fairly tight, the latter is not precisely tracked at the factory. For very weak signals or for technical use at any one frequency, this circuit may be trimmed by adjusting Cl. This is accessible at the top of the chassis and is located as shown in the tube layout sketch.

For convenience in tuning and rough measuring the circuits are adjusted so that one small division of the TUNE meter corresponds to a frequency shift of about 20 kilocycles, and so that the steps of the RF GAIN control are roughly ten to one each. Indications on the SIGNAL meter are approximately linear. Both these meters may be supplemented externally by use of the connections on the rear terminal board. The TUNE meter is 25-0-25 microamperes, and the SIGNAL is $0-1$ milliampere.

To use external meters, remove the strap between terminals 4 and 5 and the ground bus from terminal 5, then connect the TUNE meter between terminals 5 and 1 (ground) and the SIGNAL meter between terminal 4 and 1 . If only one of these meters are connected externally, the terminal for the second meter must be connected to terminal 1.

Terminals are provided for connecting an external signal to the audio amplifier input and selecting this signal by means of the switch on the front panel. Terminal 2 is high and terminal 1 is ground. These terminals represent an AC impedance of about one megohm and 30 micro-microfarads. For the 646 B about 2 V . RMS input is required for full audio amplifier output.

The 646 B and 647 B receivers are designed for operation at 115 volts. They should not be operated permanently on lines higher than 125 volts. The 648 receiver requires at least 5.8 volts DC at the indicated terminals. They are connected for negative ground. If the vehicle has a positive ground system the vibrators must be reoriented according to the legend on the top of the Vibrapacks.

The maximum audio output of the 646 B receiver is ten watts into either 500 or 8 ohms (mismatch up to 2 to 1 here is not generally aurally serious). The maximum output of the 647 B receiver is +18 DBM into 600 or 150 ohms. This receiver is connected for 600 ohm load; to use with 150 ohm load the output transformer should be restrapped by replacing strap from 5 to 6 by a strap from 4 to 6 and another from 5 to 7. The maximum audio output of the 648 B receiver is 4 watts into 6 ohms.

## PAGE 20-2 RADIO ENGINEERING LABS.

MODELS 646B,
$647 \mathrm{~B}, 648 \mathrm{~B}$
CHASSIS TUBE and TEImmig layout





© John F. Rider

PAGE 20-6 RADIO ENGINEERING LABS.
MODEL 648B


RADIO ENGINEERING LABS. PAGE 20-7
MODELS 646B,
$647 \mathrm{~B}, 648 \mathrm{~B}$
MODEL $646 \mathrm{~B}, 647 \mathrm{~B}$ and 648 B FM RECEIVER PARTS LIST FOR RF AND IF CHASSIS SYMBOL
REF.
Cl Capacitor, glass, variable
Il Pilot light, miniature bayonet base, 6-8 volts, .15 amps.
I2)
I3) Same as Il
C2 Not used
C2A Not used
C3 Capacitor, 500 mmfd .,
$\pm 20 \%$, 500 VDCW
c4 Capacitor, 1200 mmf ., $\pm 20 \%$, 300 VDCW
$C 5$ Same as C4
c6 Capacitor, 47 mmfd .,
$+10 \%$, 500 VDCW
C7 Not used
C7A Not used
C8 Same as Cl
$\begin{array}{lll}\text { C9 } & \text { Same as } C 4 \\ \text { C10 } & \text { Same as C } 4\end{array}$
Cll Capacitor, 22 mmf .,
$\pm 10 \%, 500$ VDCW
Cl2 Same as Cl
C13 Capacitor, 20 mmfd ,
$\pm 10 \%, 500$ VDCW, N375
Cl4 Same as C3
Cl5 Same as Cll
Cl6 Capacitor, 22 mmfd.,
$+5 \%, 500$ VDCW
Cl7 Not used
C18 Capacitor, 4700 mmfd.,
600 VDCW
C19)
C20)
c21)
C21A
c22)
c23) Same as c4
C24)
c25)
c26)
c27)
c28)
c29)
C30)
C31)
C32 Same as c6
C33 Capacitor, 470 mmf . $+10 \%$, 500 VDCW
C34 Same as Cl8
C35 Capacitor, $1.0 \mathrm{mmfd} . \pm 20 \%$

Ll) Antenna and first grid
L2) Coil assembly
L3 Not used
L4 Not used
L5 Mixer grid coil
L6 Oscillator coil
L7 Not used
L8 Choke, 3 Microhenries, $\pm 25 \%$
L9)
L10) Same as L8
L11)
M1 Signal strength meter, 0-1 ma.
M2 Tuning meter, 25-0-25 microamps.
Rl Resistor, 4700 ohms, $\pm 10 \%$,
1 watt
R2 Resistor, 270 ohms, $\pm 10 \%$, 1/2 watt
R3 Resistor, 100 ohms, $\pm 10 \%$, 1/2 watt
R4 Rosistor, 1500 ohms, $\pm 10 \%$, 1/2 watt
R5 Rosistor, 15,000 ohms, $\pm 10 \%$, 1/2 watt
R6 Rosistor, 39,000 ohms, $\pm 10 \%$, 1 watt
R7 Resistor, 220,000 ohms, $\pm 10 \%$, 1/2 watt
R8 Resistor, 150 ohms $\pm 10 \%$, 1/2 watt
K9 Resistor, 47 onms, $\pm 10 \%$, 1/2 watt
Rl0 Resistor, 1000 onms, $\pm 20 \%$, 1/2 watt
Rll Pesistor, 330 onms, $\pm 10 \%$, $1 / 2$ watt
R12 Resistor, 560 ohms, $\pm 10 \%$, 1/2 watt
$R 13$ Resistor, 820 ohms, $\pm 10 \%$, 1/2 watt
RI4 Same as R8

MQDEL 646B, 547 B and 648 B FM RCVR PARTS LIST FOR RF AND IF CHASSIS (CONT'D)

$\begin{aligned} & \hline \text { SYMBOL } \\ & \text { REF. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { SYMBOL } \\ & \text { REF. } \end{aligned}$	DESCETPTION
R15	Same as RlO	V4)	
R16	Resistor, 100,000 ohms,	V5)	Same as V3
	+10\%, $1 / 2$ watt	v6)	
R17	Same as Rlo	v7)	
R18	Same as Rl0		
R19	Resistor, 100,000 ohms, $+10 \%$, 1 watt	v8	Type 7a6 tube
R20	Resistor, 47,000 ohms $+10 \%$, 1 watt	X1	Socket, octal, mica filled Bakelite
R21	Same as R20	X2)	
R22	Resistor, 47,000 ohms,	X3) $\times 44)$	
R23	$\overline{\mathrm{R}}$-sistor, 68,000 ohms,	X5)	Same as XI
	+10\%, 1 watt	x6)	
R24	$\overline{\mathrm{R}}$ esistor, 10,000 ohms,	X7)	
	+10\%, $1 / 2$ watt	x8)	
R26	Resistor, 33,000 ohms,	X9	Miniature, bayonet type
	+10\%, $1 / 2$ watt		sock
R27	Same as R26	X10)	
R28	Resistor, 470,000 ohms,	X11)	Same as X9
	$+10 \%, 1 / 2 \text { watt }$	X12)	
R29	$\bar{R}$ esistor, 150,000 ohms, $+10 \%$, 1/2 watt	Z1	Interstage coupling unit,
R30	Same as R9		10.7 mc .
		Z2	Interstage coupling unit,
Sl	Not usod		10.7 mc . ${ }^{\text {d }}$
S2	Switch, tap, 3 pole, 4 position	$\begin{aligned} & \mathrm{z} 3 \\ & \mathrm{z} 4 \end{aligned}$	Same as Zl Interstage couplin
S3	Switch, single pole,		10.7 mc .
	single throw, rotary	25	Interstage coupling unit,
V1	Type 7F8 tube		10.7 mc .
v2	Same as Vl	z6	Discriminator assembly
V3	Type 7AG7 tube		unit, 10.7 mc .

MODEL 646B COMBINED AUDIO \& POWER SUPPLY CHASSIS

SYMBOL REF.	DESCRIPTION	$\begin{aligned} & \text { SYMBOL } \\ & \text { REF. } \end{aligned}$	DESCRIPTION
ClO1	Capacitor, fixed, paper, tubular, . 05 mfd., 600 VDCW, $+20 \%$.	Cl07	Capacitor, fixed, electrolytic, 20 mfd ., 475 VDCW
Cl02	Capacitor, fixed, dry electrolytic, 25 mf ., 25 VDCW	C108	Capacitor, fixed, electrolytic, 40 mfd., 475 VDCW
ClO	Same as ClO2	C109	Capacitor, fixed, olec-
C105	Same as Clol		trolytic, 10 mfd., 475
Cl06	Capacitor, fixed, dry - lectrolytic, 25 mf . , 50 VDCW	Cllo	Capacitor, fixed, mica 300 mmfd., $\pm 20 \%, 500$ VDCW

model 6lab combined audio \& powle supply chassis (conivid)

$\overline{\text { SYMBOL }}$   RLP.	DESURIPTION	$\begin{aligned} & \mathrm{SYBBOL} \\ & \text { REF. } \end{aligned}$	DESCRIPTION
F101	Fuse, 2 ampere, 250 volts	SlOI	Switch, rotary, SPDT
L101	Choke, 10 henries, 0.160 amps	T101	Transformer, output, Pri. 10,000 ohms CT, 12 Ma . DC unbalance, push-pull wind-
R101	Resistor, variable, composition, $l$ megohm, $z$ tapor standard shaft		ings, balanced at high audio frequencies, Sec. 8/500 ohms, Max operation level 10 watts
R102	Resistor, 220 ohms, 1/2 watt, $\pm 10 \%$	Tl02	Transformer, powor, Prl, 115 volts, 50/60 cycles, single
R103	Resistōr, 2700 ohms, $1 / 2$ watt, $+10 \%$		phase, Soc. \#l. 320-0-320 volts RMS at 0.160 amp .
R104	Same a ${ }^{\text {s }} \mathrm{Rl03}$		Sec. \#2, 5 volts at 3 amps.,
R105	Resistor, 18,000 ohms, $1 / 2$ watt, $\pm 10 \%$		sec. \#3. 6.3 volts, Sec. \#4, 6.3 volts CT at 1.5 amp .
Rl06	Same as Rlō5		
R107	Resistor, 330,000 ohms, 1/2 watt, $+10 \%$	V101	Tube, type 7F7
R108	Same as Rlō7	V102	Tube type 705
R109	Resistor, 100,000 ohms,	V103	Same as Vl02
Rll0	Resistor, 4700 ohms, 1 watt, $\pm 10 \%$	X101	Socket, loctal, mica-filled
R111	Resistor, 220 ohms, 10 watts, $\pm 5 \%$		bakelite   Same as XlOl
Rll2	Same as Rllo	X103	Same as XlOl
R113	Resistor, 10,000 ohms 1 watt, $\pm 10 \%$	X104	Socket, octal, mica-filled bakelite
R114	Resistör, 150,000 ohms, 2 watts, $\pm 10 \%$	X105	Fuse holder, molded black bakelite, finger operated
	MODEL 6478 COMB INED	10 \&	WER SUPPLY CHASSIS
$\begin{aligned} & \text { SYMBOL } \\ & \mathrm{REF} . \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { SYMBOL } \\ & \text { REF. } \\ & \hline \end{aligned}$	DESCRIPTION
Cl00	Capacitor, $.05 \mathrm{mfd} ., 600$ VDCW	R100	Resistor, variable, 1 megohm, $\pm 10 \%, 1 / 2$ watt, "Z"
ClO1	Capacitor, electrolytic, 50 mfd., 25 VDCW	R101	taper, clarostat 37 Resistor, 100,000 ohms,
Cl02	Same as Cl00		+10\% $1 / 2$ watt
C103	Same as Cl00 ${ }_{\text {Capacitor, }} 125 \mathrm{mfd}$. 600	R102 R103	Same as Rlol
Cl04	Capacitor, 125 mid., 600 VDCW	R103	$+10 \%, 1 / 2$ watt
C105	Capacitor, electrolytic, dual $20 \mathrm{mfd} ., 450$ VDCW	$\begin{aligned} & \mathrm{RlO} \\ & \mathrm{RlO} \end{aligned}$	Same as Rl03   Resistor, 330,000 ohms,
C106	Part of Cl05' 450 NDW		+10\%, $1 / 2$ watt
C107	$\begin{aligned} & \text { Capacitor, electrolytic, } \\ & 40 \mathrm{mfd} ., 475 \text { VDCW } \end{aligned}$	R106	Resistor, 4,700 ohms, $+10 \%, 1 / 2$ watt
Cl08	$\begin{aligned} & \text { Capacitor electrolytic, } \\ & 20 \mathrm{mfd}, 475 \text { VDCW } \end{aligned}$	$\begin{aligned} & \text { Rl07 } \\ & \text { R108 } \end{aligned}$	Same as Rlol   Resistor, 680 ohms,
F100	Fuse, glass, l amp., 250 volts	$\begin{aligned} & \text { R109 } \\ & \text { R110 } \end{aligned}$	Same as Rl05   Resistor, 27,000 ohms, $+10 \%, 1 / 2$ watt
L100	Choke, 10 henries at 0.100 amp .	Rlll	Resistor, 1500 ohms, $+10 \%$, 1 watt

HODEL 647B COMBINED AUDJO \& PO!VER SUPPLY CHASSIS (CONTID)

$\begin{aligned} & \overline{\operatorname{SMMBOL}} \\ & \mathrm{REF} . \end{aligned}$	DLSCRIPTION	$\begin{aligned} & \text { SYMBOL } \\ & \text { REF. } \end{aligned}$	DESCRIPTION
R112	Resistor, 100,000 onms, $\pm 10 \%, 2$ watts   $\bar{R}$ esistor, 68,000 ohms, $\pm 10 \%, 1 / 2$ watt		ings balanced for high audio
			frequencies, Sec. 600/150
R113			ohms Max. operation level +26 d b m
S100	Switch, rotary, SPDT	V100	Tube type 7F7
		V101	Tube type 7N7
T100	Transiormer, power, Prí, 115	V102	Tube type 5Y3GT
	volts, $50 / 60$ cycles, single		
	phase, Sec. \#1, 310-0-310 volts RMS at 0.1 amp., Sec.	X100	Socket, loctal, mica-filled bakelite
	\#t2, 5 volts at $2.0 \mathrm{amp} ., \mathrm{Sec}$.	X101	Same as X100
	\#3, 6.3 volts at 2.5 amps .	X102	Socket, loctal, mica-filled
T101	Transformer, output, Pri.		bakelite
	16,000 ohms, CT: 6 Ma. DC	X105	Fuse holder, molded black
	unbalance, push-pull wind-		bakelite, finger operated

MODEL 648B COMBINED AUDIO AND POWER SUPPLY CHASSIS

SNTBOL
REF.
DESCRIPTION
C200 Capacitor, $.05 \mathrm{mfd} .$,
600 VDCW, $\pm 20 \%$
C201 Capacitor, $0.1 \mathrm{mrd} .$,
600 VDCW, $\pm 20 \%$
Capacitor - Same as 2020
c203 Capacitor, 50 mfd., 50
VDCW
c204 Capacitor, 3 section,
10-10-10 mfd., 450 VDCW
c205 Capacitor, dual, 40-40
mfd., 450 VDCW
c206 Capacitor - Part of c204
(10 mfd. section)
c207 Capacitor - Part of c205
( 40 mf . section)
c208 Capacitor - Fart of C204
( 10 mf . . section)
F200 Fuse, 20 amp. *Little-
fuse type 4 AG
K200 Relay, filament-single pole, normally open, DC operation

L200 Choke, filter, smooth, 10 henries
L201 Same as Ll
F200 Resistor, variable, . 5 megohms, 20\% accuracy, 1/2 watt

SYMBOL   REF.	DESCRIPTION
R201	Resistor, 560 ohms $1 / 2$   watt, $\pm 10 \%$
R202	Resistor, 100,000 ohms,   l watt, $\pm 10 \%$

R203 Resistor, 680,000 ohms, 1/2 watt, $+10 \%$
R204 Resistor, I000 ohms, 1/2 watt, $\pm 10 \%$
R205 Resistör, 390,000 ohms, $1 / 2$ watt, $+10 \%$
R206 Resistor, $\overline{3} 30$ ohms, 1 watt, $\pm 10 \%$
R207 Resistor, 15,000 ohms, 1 watt, $\pm 10 \%$
T200 Transformer, output, single $7 C 5$ to loudspeaker

Tube type 7C5
Vibrapack, audio supply
Vibrapack - (receiver supply) - Same as VP200

X200 Socket, loctal, mica-filled bakelite
Socket - Same as X200 Fuse holder
ALIGNMENT PROCEDURE
The following alignment procedure is for use only by competent service men having the proper equipment. Re-alignment is been replaced because of damage to the receiver.
The equipment required for re-aligning this receiver is an output meter and a modulated source of radio frequency (a signal generator or microvolter). This source of radio frequency must be accu
All alignments must be made with the volume control turned full on and with the signal input from the generator reduced to as low a value as possible
while still giving a sufficient output to be easily read on the output meter.
Connect the output meter, through a . 5 M.F. condenser and a resistinnce of such a value as to make the total meter resistance approximately 10,000 ohms, to the two small pins of the speaker plug.
during the entire alignment procedure.
Connect the signal generator to the grid cap of the 6A7 tube through a . 1 M.F. condenser. Connect the ground of the generator to the ground lead of the receiver. With the wave switch on broadcast position and the dial set to about 1000 K .C., feed in a 456 K .C. signal. Adjust the trimmers on ind This aligns the I.F.
Leaving the signal generator connected to the grid cap of the 6A7, turn the wave switch to the right hand (short wave) position. Set the dial and the signal generator to $15.0 \mathrm{M} . \mathrm{C}$. Tune in the signal by adjusting the $15.0 \mathrm{M} . \mathrm{C}$. oscillator trimmer. The signal will he heard at two different settings of the trimmer
The proper setting is the one where the signal is heard when the trimmer is The proper setting is the one lial of the receiver is turned the signal will be
the loosest. Also when the dial heard again at about 14.0 M.C. If the signal is heard at about 16.0 M.C. on the corrected.
Set the wave switch on broadcast position and turn the dial to the extreme high frequency end. Feed a $1680 \mathrm{~K} . \mathrm{C}$. signal to the receiver antenna post through a .00025 M.F. mica condenser. Adjust the 1680 K.C. broadcas tune in this signal on the receiver. Then adjust the $1500 \mathrm{~K} . \mathrm{C}$. broadcast antenna trimmer and the 1500 K . C. broadcast preselector trimmer for maximum output. Set the generator to $600 \mathrm{~K} . \mathrm{C}$. and adjust the 600 K .C. broadcast oscillator pad to maximum output while tuning the receiver baek and forth across the si
The police band is aligned by feeding a $4.0 \mathrm{M} . \mathrm{C}$. signal to the receiver antenna lead through the .00025 condenser. Turn the wave switch to the center trimmer for best output.
The short wave band is aligned in the same way using a $15 \mathrm{M} . \mathrm{C}$. signal the wave switch to the right hand position.
© John F. Rider

MODELS D50,
D51, D53, D54



RADIO WIRE PAGE 20-3



When
DIAL LAMP: This model uses a $6-8$ Volt, 250 M.A. dial lamp.
replacing this lamp use similar type or damage will result.
CAUTON: When Dial Lamp burns out, REPLACE AT ONCE.

This model is a 9 tube (including tuning eye) three wave band Super-
heterodyne Receiver designed to operate on $105-125$ Volts, $50-60$ cycles Alternating Current (AC) only. (AC) only.
TUNING RANGE: 550 to 1600 kilocycles (KC) (Domestic Broadcast),
2.3 to 7.0 MC (Megacycles) (Police Call Band), 7.5 to $24 . \mathrm{MC}$ (Megacycles) (International Short Wave).

RADIO WIRE PAGE 20-5

This Six-tube Receiver is designed to operate on self-contained Battery This Unit or 115 volts, 40 to 60 cycles, Alternating Current (AC) or IIE volts Direct Current (DC)
The tuning range, 540 to 1600 Kilocycles ( 555 to 187 meters) covers
the regular broadcast and experimental high-fidelity broadcast stations.

BAND SWITCH SHOWN IN"SC: POSITION

SHORT WAVE RECEPTION: An external derial is absclutely necessary for good reception on all Short Wave Bands. In installing an Antenna to be used with this receiver, every precaution should be observed to keep interfering noises at the minimum.

For connection to the Antenna, a YELLOW wire is brought out from the rear of the receiver.

This is a 6 tube P!us Ballast AC-DC, 3 Wave Band Receiver.
TUNING RANGE: 538 to 1625 KC ; 5.3 to 10.25 MC ; and 11.5 to 15.9 MG covers regular American Broadcast stations, the high fidelity broadcast experimental stations, Amateurs, Aircraft and all regular International Short Wave Stations.


## POWER SOURCE:

This receiver may be operated from either an AC or DC line, between 105 125 volts. On AC lines the frequency must be 50 to 60 cycles.

TUBE COMPLEMENT:
1 12AT6 - AM demodulator and AVC; AM.FM 1 st audio amplifier. 14F8 - FM oscillator-mixer-Super Regenerative I.F. amp. $\begin{array}{ll}1 & \text { 35B5 - Audio output amplifier. } \\ 1 & \text { 35W } 4 \text { - Power rectifier. }\end{array}$

## INSTALLATION:

## 1. Antenna Connection.

AM-A self contained loop antenna is provided, which will give satis-


 from the loop.

FM-A self contained line antenna system is provided for reception of stations appearing in the FM band. To use this line antenna a short wire jumper should be connected between the two outside screw terminals of the poor reception conditions make it necessary, an FM dipole antenna may be connected to the left hand and center screw terminals of the FM antenna panel. In such a case, the line antenna link should be disconnected.

## 2. Ground

This set has been designed to operate without an external ground, and
the use of any ground connection is not recommended.
3. Power Connection.

After making certain that the power circuit is rated between 105 and 125 volts extend the line cord to its full length and insert the plug into the nearest convenient outlet. If the supply is DC, and the set fails to operate, it may be necessary to reverse the plug connection to secure operation of the set.

SERVICE ADJUSTMENTS:
Alignment or adjustment of the various circuits of this receiver can only be made by a skilled radio technician with the proper equipment.

NOTE: Points $A, B, C, D, E$, and $F$ are noted on the circuit diagram. frequency. Adjust spacing of the FM antenna coil for maximum signal response with minimum background noise. Slowly rock tuning control
while performing this adjustment.
10. Repeat operations 8 and 9 . response with minimum background noise. Slowly tock tuning control
while performing this adjustment.
10. Repeat operations 8 and 9 .
AM Equipment :

4. Connect the "high" side of the Generator to the antenna terminal with a 200 mmf condenser inserted in series. Connect the "ground" side of
5. Tune receiver to 150 on the dial. Adjust Signal Generator to 1500 kc . Adjust BC oscillator and BC antenna trimmers for maximum output. Use a weak signal for final adjustment

## FM Equipment:

Equipment Required:
a) 21.75 kc oscillator.
b) FM Signal Generator for 88 to 108 megacycle range.
c) Output meter.

Connect output meter across points " $E$ " and " $F$ "
With set switched on and volume control at maximum, feed modulated
21.75 mc signal into terminals " C " and " D ".
Adjust tank coil for maximum response on output meter.
4. Disconnect 21.75 kc oscillator and connect FM signal generator to points
5. Set receiver dial to 88 megacycles and adjust Signal Generator for same frequency. Adjust spacing of FM oscillator coil for maximum signal response.
. Tune receiver to 108 megacycles and adjust Signal Generator to same frequency. Adjust FM oscillator trimmer for maximum signal response. 7. Repeat operation 5 and 6 .
8. Tune receiver to 90 megacycles and adjust Signal Generator for same




## ALIGNMENT PROCEDURE

Correct alignment is of extreme importance in all wave receivers. The receivers are properly aligned at the factory with precision equipment and realignment should not be attempted by the service technician until all other causes of faulty operation are corrected.

In order to properly realign the receiver the following equipment is necessary:

1. A signal generator which will provide an accurately calibrated signal at any frequency from 456 kilocycles to 18 megacycles. The generator should have adjustable signal output.
2. An output audio voltmeter of the low voltage type to be connected across the moving coil of the speaker. This should be capable of providing a readable deflection for relatively low output levels to avoid the effects of overload.
3. An insulated or non-metallic screw driver for the adjustment of trimmers.

## I F ALIGNMENT 456 KC

1. Connect the output meter (low scale) across the loud speaker voice coil. Turn the wave band switch to broadcast position. Turn the volume control to its maximum position.
2. Connect the test oscillator ground to chassis and the "hot" lead from the test oscillator to the grid of the 6 L 7 converter tube through a series .1 Mfd . condenser. Set test oscillator to 456 KC .
3. Adjust I F alignment screws of second I F transformer adjacent to 6 F 6 power tube to maximum output. reducing output of test oscillator to keep the meter reading on scale as alignment proceeds.
4. Adjust alignment of first I F transformer. (directly behind tuning condenser) to maximum output as described above.
5. Readjust these trimmers for accurate alignment. Always use the lowest possible output from the test oscillator to preclude the possibility of automatic volume control action confusing proper adjustment.

NOTE: Since coils are used in series it is absolutely necessary to align the high frequency bands first. in the order indicated.

FOREIGN BAND 5.7 TO 18.5 MEGACYCLES

1. With test oscillator connected to the antenna and ground terminals through a 400 ohm resistor set oscillator at 16 megacycles.
2. Set the dial scale to 16 megacycles and adjust the oscillator trimmer condenser (C 4) to a reson. ance using the counterclockwise or low capacity point.
3. Adjust input circuit trimmer (C5) to maximum response, rocking the gang condenser back and forth a degree or two to obtain proper maximum.

## POLICE OR MIDDLE BAND 1.75 TO 5.8 MEGACYCLES

1. With the test oscillator connected as above set the oscillator and dial to 5.5 megacycles.
2. Adjust oscillator trimmer condenser (C 6) for maximum response using the counterclockwise or low capacity point.
3. Adjust input circuit trimmer (C 7) to maximum response recking the gang condenser as describ. ed above.

## BROADCAST BAND 535 TO 1800 KC

1. With test oscillator connected to antenna and ground through a 200 Mfd condenser set oscillator and receiver dial to 1600 kilocycles.
2. Adjust broadcast oscillator trimmer (C 8) to obtain maximum response.
3. Adjust antenna circuit trimmer ( C 9 ) for maximum output.
4. Adjust preselector trimmer ( C 10 ) for maxi mum output.
5. Set test oscillator and dial to 600 kilocycles and tune in the signal. then adjust broadcast band padding condenser (C 11) for maximum output This padder is mounted on the aluminum coil deck near the pancl and is adjusted through a hole provided in the back of the chassis pan. Rock the condenser back and forth a degree or two in order to. obtain proper maximum.
6. Repeat the 1600 KC adjustments described above for greater accuracy.


Fig. 2 Location of Trimmers


SCHEMATIC LOCATION	PART No.	DESCRIPTION
	$\begin{array}{r} 15089 \\ \text { B-15045 } \end{array}$	Bulb pilot light (edgelight) Bezel
$\mathrm{Cl}^{\mathrm{C} 11} \mathrm{C} 2 \mathrm{C} 3$	C-16ะ30	Condenser, variable gang model MB3-MB3A
$\mathrm{Cl1}_{\mathrm{C} 4} \mathrm{C} 6 \mathrm{C} 8$	A-16472	Condenser, padder 340 uuf 960 uuf
$\mathrm{C}_{\mathrm{C} 7} \mathrm{C6}$ C8	A-16473	Condenser, trimmer 3-30 uuf (triple strip)
${ }_{C 5} \mathrm{C} 9 \mathrm{C} 10$	A-16474	Condenser, trimmer 3-30 uuf (bakelite base)
C27	A-15236-3	Condenser, wet electrolytic 25 Mfd. 400 volts
C28	A-15237-2	Condenser, wet electrolytic 10 Mfd .300 volts
C29	15918	Condenser, mica 100 Mtd - $-20 \%$, type 0
C20 C22	15928	Condenser, mica $250 \mathrm{Mfd} .+-20 \%$ type O
C17	15930	Condenser, mica $50 \mathrm{Mmfd} .+-20 \%$ type O
C18	15931	Condenser, mica 4300 Mmfd . $+-5 \%$ type W
${ }_{\text {C19 }}{ }^{\text {C16 }}$	15932	Condenser, mica 1750 Mmfd . + - $5 \%$ type $W$
C16 C31 C33	15752	Condenser, tubular 05 Mfd .200 volts
C23 C30 C32	15753	Condenser, tubular 0.002 Mtd .600 volts
C35	15757	Condenser, tubular . 1 Mfd .400 volts
C24	15763	Condenser, tubular .01 Mfd .200 volts
C34	15764	Condenser, tubular . 03 Mfd . 400 volts
C25	15770	Condenser, tubular . 2 Mfd. 200 volts
C26	15773	Condenser, tubular . 2 Mfd . 400 volts
R2	B-16832	Control, tone
R1	B-16831	Control, volume
	16938	Coil and mounting assembly
	B-1 A- 150349	
	B-15041	Retaining spring for Bezel
	B-15043	Retaining ring for Glass
R13	15501	Resistor, carbon $25,000+\cdots 20 \%$, watt
R12	15511	Resistor, carbon $50,000+-20 \%$ 1/4 watt
R17	15512	Resistor, carbon $250,000+-20 \%$ \% watt
	15515	Resistor, carbon $100,000+-20 \%$ \% watt
R14 R7	15517	Resistor, carbon 1 meg. $+-20 \%$ 1/4 watt
R22	15554	Resistor, carbon $1,000+-20 \%$ watt Resistor, carbon $500,000+-10 \%$
R4	15558	Resistor, carbon $10,000+-20 \%$ 1/2 watt
R11	15559	Resistor, carbon $3 \mathrm{meg} .+-20 \%$ 1/4 watt
R318	3320	No. 38 D. C. C. Manganin wire 2 ohms
R19	15604	Resistor, carbon $435,000+-10 \%$ \% $1 / 4$ watt
R20	15606	Resistor, carbon $5,000+-10 \%$,
R23	15607	Resistor, carbon $250+-10 \%^{2} 2$ watt
R12	15608	Resistor, carbon $50,000+-10 \%$ 1/4 watt
R6	15552	Resistor, carbon $30,000+-20 \%$ 1/4 watt
R9 R10	A-16564	Resistor, candohm 27.5 and 15 ohms 245 watts
	A-16829	Socket speaker
	15066	Socket 6 K7
	15083	Socket 6 C5
	15084 16470	Socket 6 F6
	$1646!$	Socket 6 Q7
	16537	Socket 6 A8
	B-16635	Socket 6 G5 with leas
	A-15054	Socket pilot light (edgelight) R. H.
	A-15053	Socket pilot light (edgelight) L. H.
	C-16852	Speaker
	A-16818	Transformer 1st, I. F.
	A-16819	Transformer 2nd I. F.
	C-16544-5	Transformer, Power 110 volt 50-60 cycles
	C-16806	Transformer, Power Universal Tap
	A-1950	Washer Felt
	16941	Dial and Paper Strip Assembly
	A-15023	Pointer (Minute)
	$\begin{aligned} & \text { A-15024 } \\ & \text { B- } 16813 \end{aligned}$	Pointer (Tuning)


VOLTAGE CHART							
POSITION	TUBE	Ef	Ek	Eg SCREEN	Ep SUPFRESSOR	Ep TRIODE	Ep PENTODE
T. Fonverter	$\begin{array}{ll}6 \\ 6 & \text { A8 } \\ 6 & \text { K7 }\end{array}$	6.3 6.3	3.0 3.0	110.0 110.0			225.0 230.0
Detector-AVC	6 Q7	6.3	2.0				230.0
Phase Inverter	${ }_{6}^{6} \mathrm{C} 5$	6.3	7.0			150.0	
Power Output Power Output	6 6 6 F6	6.3 6.3	140 14.0	2300 230.0			225
Power Output Rectifier		6.3 50	14.0	230.0			225




Part Mo.	circuit symbom	Description	Part Mo.	Circuit symbol	Descriation
CV-10008	Cl	Variable condenser for Hodel 507	RCP-30220	R6	Resistor carbon 22 ohm $\frac{1}{\text { watt }}$
${ }^{\text {CPP-1 }} 14203$	$\mathrm{C}_{2}$	Condenser paper tub .02 mfd-400V	RCP-41001	R7	Resistor carbon 1000 ohe I watt
${ }^{\text {CPP-14503 }}$	${ }^{\text {c3 }}$	Condenser paper tub . 05 mfd m400v	YCP-10105	R8	olume control 1 megohe and swit
CLP-10007	${ }^{\text {c }}$	Condenser electrolyt ic 50-30 mfd-150V	VCP-12105	R8	Volume control for Model 5a7-1 megohm
CMP-1525	$\mathrm{CSF}^{\text {c } 6}$	Condenser mica 250 mmf -500r	RCP-31005	R9	Resistor carbon 10 megoh it matt
$\text { CPP- } 12103$	c7.c8	Condenser paper tub . 01 afd-200\%	RCP-32203	810	Resistor carbon 220,000 ohe $\frac{1}{2}$ watt
CMP-15500	c10	Condenser paper tub eosmo-1sor Condenser mica 50 mf-500r	RCP-34703	R11	Resistor carbon 470,000 ohe $\frac{1}{2}$ watt
CPP-12203	cı1	Condenser paper . 02 mfd -200V	ALP-10013 TRCP-10000-D	12	Loop antenna
RCP-31500	R1, R12	Resistor carbon 150 ohm $\frac{1}{2}$ watt	TSP-10002	11	1.f. Trans former
RCP-31002	${ }^{\mathrm{R} 2}$	Resistor carbon 10,000 ohm $\frac{1}{2}$ watt	Top-10000	T2	Outout transformer
RCP-32204 RCP-36801		Resistor carbon 2.2 megohm $\frac{1}{2}$ watt Resistor carbon 5800 ohm tat	SRP-10005	SPKR	Speaker P.M. 3" round for Model 5
$\begin{aligned} & \text { RCP-36801 } \\ & \text { RCP- } 31003 \end{aligned}$	$\begin{aligned} & \mathrm{R} 4 \\ & \mathrm{R} 5 \end{aligned}$	Resistor carbon 6800 ohm $\frac{1}{2}$ watt   Resistor carbon 100,000 ohm $\frac{1}{2}$ watt			


(9) John F. Rider




## Model 1-819

The Lafayerte Model $1-819$ is an AM-FM receiver. This rectiver may be operated on either $A C$ or DC, 105-125 volts. $50-60$ eydes.

$$
\begin{array}{llll}
\text { FM } & \cdot & \cdot & 88 \text { to } 108 \text { MC. } \\
\text { AM } & \cdot & \cdot & 540 \text { to } 1700 \text { KC. }
\end{array}
$$

## Antenne Conmections:

Your Lafayette $1-819$ is a senslitive receiver. It is equipped with built-in AM and FM antennae so that in primary listening areas an outside antenne is not necessary. WHEN LISTENING TO FM BY USING THE BUILT-IN ANTENNA, KEEP THE ELECTRIC LINE CORD EXTENDED TO ITS FULL LENGTH.
For weak or distant stations there are provisions made in the rear for antenna connections. A terminal strip with two screw connections for the lead-in wires from the FM antenna. ako a wire coming out the back of the receiver for an external AM antenna.
When using the built-in antenna on FM, the lug coming out between the two screw connections on the terminal strip in the rear, must be connected to the scrow connection marked "ANT." When using an external FM antenna disconnect this wire and connect external antenna lead-in wires to the two screw connections.

## Stetion Selector:

The knob on the extreme right hand side of the cabinet operates the tuning condenser on both AM and FM and simultaneousty moves the indieating pointer. Ease and accuracy in tuning is made possible due to a reduction drive.

## Band Switch:

The second inob from the right is the AM-FM band switch. This is a two position switch. When the switch is in the counterclockwise position, AM (Standard Broadcast) stations may be tuned in. When the switch is in the clockwise position, FM (Frequency Modulation) stations may be tuned in.

## Volume Control and Power Switch:

The third knob from the right is the volume control and power switch. When the control is in the extreme counterclock. wise position the power is "OFF." from this position, a slight clockwise rotation will turn the power "ON." By further rotation in this direction volume may be increased to any degree until the full output of the receiver is obtained.

## Tome Switch:

The fourth knob from the right is the tone switch. For normal operation the switch should be clockwise. For increased bess response turn switch fully countercloctwise.

## Notes:

Since this receiver has a boop-tenna on AM which has a directional effect, it may be necessary at times to turn the receiver for best reception. This set will operate properly only after the tubes are sufficiently heated. This may take two minutes after the power switch is turned "ON." If the receiver is being operated on DC (Direct Current) and no signals are heard after two minutes, reverse the line cord plug in the power
outlet. Should noticeable hum be detected when operating on AC (Alternating Current), reverse the line cord plug in the power outhet.
Servicing of the Lafoyette Model 1-819
(For Use of Redie Tochnicien):
Should your Lafayette Model 1.819 become inoperotive for any reason, we suggest you contact yaur lacal Lafayette Radio and Television Dealer for servicing. The following information is for the use by the radio serviceman.

Alignment of the receiver will, in most cases, be unnecessary unless an RF or IF transformer is replaced or the adjustment has been tampered with. The If slugs are slotted for a small size fiber screwdriver. Do not put excessive pressure on the aligning tool or the threads in the coil-form will be stripped and adjustments will be impossible.

## IF Alignment:

Set bandswitch to AM position. Connect the signal generator, modulated at 400 cycles, through $a 0.01 \mathrm{Mfd}$ condenser to the grid of the 12AT7 converter tube. Connect the low side of the generator through a 0.1 Mfd condenser to the receiver chassis. Adjust the signal generator to 455 KC . Tune primary and secondary slugs of T3 \& T5, AM.IF Transformers, for maximum output.

For FM alignment set bondswitch to FM position and leave generator connected to the grid of the 12AT7 converter tube. Adjust generator to 10.7 MC . Connect 20,000 ohm per volt or VTVM meter as in note " 1 " of schematic diagram. Tune primary of TI , bottom slug, and both primary and secondary of $\mathrm{T} 2 \& \mathrm{~T} 4$ for maximum indication on meter. To align secondary of Ratio Detector Transformer connect meter as in note " 2 " of schematic diagram. Tune top slug through positive and negative indication and then slowly return until meter reads zero. This is in the center of the " $S$ " curve.

## RF Alignment:

Set bandswitch to AM position. Connect signel generator, modulated at 400 cycles, to external antenna lead and to ground through a 0.1 Mfd condenser and adjust to 1700 KC. Set dial pointer to 1700 KC and tune signal for maximum output with oscillator trimmer. Next set generator to 1500 KC and tune in this signal on the receiver. Then adjust RF trimmer for maximum output.

Set bandswitch to FM position. Connect in series with each generator lead a carbon 150 ohm resistor and connect to rear antenna terminal board. Adjust generator and dial pointer to 108 MC. Peak oscillator trimmer for maximum signal output. Next set generator to 105 MC and tune in this signel on receiver. Then peak RF trimmer for maximum output. No adjustment is necessary at the low end because a special compensated fixed padder is used. Sot the generator to 04 MC and tune the FM antenne coil for maximum.

In ail the IF and RF adjustments it is important to keap the signal generator output as low as possible. It is extremely necessary in making the RF adjustments, that the fundamental oscillator signal be tuned in and not the image frequency. This can be checked by the use of a celibrated wevemeter.


This Receiver features the latest in A. M. - F. M., Receiver Design. Eleven (11) tubes plus a Rectificr are used in the A. M. - F. M. supcrheterodyne circuit. separate antennas are supplicd for A. M. and F. M. An automatic frequency control tube is used to stabilize the F. M. and simplify tuning.

## TUBE COMPLEMENT:

1 Type 6BA6 - F. M. R F. Amplifier
1 Type 7F8-F. M. Converter
1 Type 7Q7-A. M. Converter
1 Type 6C4-Automatic Frequency Control
1 Type 7AH7 - I. F. Amplifier
1 Type 6SH7 - Detector Driver (F.M.)
1 Type 6SQ7 -- 1st Audio Amplifier, A. M. Detector
1 Type 7A6 - Ratio Detector
1 Type 7F7-2nd Audio Amplifier and phase inverter
2 Type 7C5 - Beam power output.
1 Type 5Y3/GT - Rectifier.

## 1. OPERATING CONTROLS:

1) The "ON.OFF" power switch and Tone Control is the knob at the extreme left of the set. Turn this control in a clockwise direction until the switch clicks and the dial becomes illuminated. Turning this control further in the same direction will change the tone.
2) The Volume Control is the second knob from the left. Turning this control in a clockwise direction will increase the volume.
3) The Band Switch is the third knob from the left. The extreme counterclockwise position of this knob is for phonograph operation. The center position is for F.M. reception. The extreme clockwise position is for A. M. reception.
4) The Tuning Control is the extreme right hand knob. Turning this knob in either direction will move the dial pointer and select the stations on the A. M. or F. M. Bands.

## 2. ANTENNAS:

In most cases it will not be necessiry to use external antennas, since the receiver is equipped with a loop antenna for AM reception and an indoor type folded dipole antenna for FM reception.
When inadequate reception is obtained from a desired station, it may be necessary to reposition the antennas to
favor that station. On AM, the loop should be turned so that the edge faces toward the station desired. On FM, the entire cabinet should be positioned so that the back is broadside to the direction from which the signals are transmitted.

For the reception of weak or distant stations, or for the operation of the receiver in unfavorable lociations, provisions are made for the use of external antennas. The folded dipole should be disconnected when an ex. ternal FM antenna is employed.

Do nut disconnect the AM loop when an external antenna is used on standard broadcast.

## 3. SERVICE NOTES:

Failure of the Receiver to operate may be due to:

1) All tubes not firmly in seckets.
2) No current at power socket.
3) Band Switch in wrong pusition.
4) Speaker not plugged in.
5) Antennas not attached.
6) Defective fuse in Receiver.

## 4. ALIGNMENT PROCEDURE FOR A. M.:

## Equipment Required:

a) Broadcast Band Signal Generator.
b) Output Meter.

1. Set band switch to AM, advance volume control to full volume setting.
2. Connect output meter across voice cuil.
3. Connect the Signal Generator across the broadcast band antenna (Rear) section of the variable condenser. The "high" side of the Generator should connect to the stator section and the "ground" side to the chassis. Adjust the Signal Generator to 4.55 kc and with the receiver switched on, adjust the first and second I. F. transformers for peak output as shown on the output meter. The signal injected into the receiver should he as small in magnitude as possible, consistent with a useful deflection on the output meter.
4. Connect the "high" side of the Generator to the antenna terminal with a 200 mmf condenser inserted in series. Connect the "ground" side of the Gencrator to the chassis. Tune receiver to 60 on the dial, adjust Signal Generator to 600 kc . Adjust the BC antenna cuil for maximum deflection on the output meter. Use a weak signal.
5. Tune receiver to 160 on the dial. Adjust Signal Generator to 1600 kc . Adjust BC oscillator and BC an tenna trimmers for maximum output.
6. Repcat operations 4 and 5.

## 5. ALIGNMENT PROCEDURE FOR F. M.:

Note: Points A. B. C. D. E. F. G. and $H$ are noted on circuit diagram. Points $C$, and $D$ have been brought out to the unused contacts of the speaker socket at the rear of the chassis.
Equipment Required:
a) High frequency Signal Generator with 88.108 Mc tuning range.
b) Signal Gencrator capable of delivering .1 Volt at 10.7 mc .
c) Audio output meter.
d) D. C. vacuum tube voltmeter with zero center scale.
e) Tuning wand.

Disable A.F.C. during alignment of F.M. circuits by short circuiting point " $B$ " to chassis.

## A. Ratio Detector Alignment:

1. Connect V.T.V.M. across point " C " and ground, (Detector Voltage).
2. Feed 10.7 mc unmodulated R.F. Signal into 6 SH 7 grid (point A) through .01 ufd. condenser. This signal should he 1 volt.
3. Adjust primary of Ratio Detector (T-5) for maximum voltage indication on V. T. V. M.
4. Connect zero centered V. T. V. M. acruss point "D" and ground.
5. Adjust secondary of Ratio Detector (T-5) for zero indication.
6. Tune 10.7 mc Signal Generator higher in frequency (about 200 kc ) until maximum voltage reading is obtained on V. T. V. M.; note this voltage, then tune signal gencrator lower in frequency until maximum voltage of the opposite polarity is obtained. Note this voltage, then if necessary re-adjust primary of the Det. (T-5) until the voltages are about equal on either the high or low side of 10.7 mc .

## B. 10.7 I. F. ALIGNMENT:

1. Shunt a 1,000 ohm carbon resistor acroses the primary of the detector (T-5) (Points G and H).
2. Connect output meter across speaker voice coil.
3. Volume and tone controls at maximum clockwise position.
4. Connect 10.7 mc (modulated $30 \%$ ) signal generator through .01ufd. condenser across point "F" and ground.
5. Adjust secondary, then primary of ( $\mathrm{T}-3$ ) for maximum audio output. (Reduce input signal to maintain output at .5 -watt level.)
6. Connect $10.7 \mathrm{mc} 30 \%$ modulated signal generator across point " $E$ " and ground.
7. Adjust secondary, then primary of (T-1) for maximum audio output. (Reduce input signal to maintain output at .5 -watt level.)
8. Remove 1000 ohm shunting resistor from across primary of (T-5).

## C. OSCILLATOR AND R. F. ALIGNMENT:

1. Connect V. T. V. M. across point "C" and ground, (detector voltage).
2. Connect 108 mc signal generator to $\mathbf{F M}$ antenna terminals. If generator impedance is low, put one 150 ohm carbon resistor in series with each of the generator leads. Tune receiver dial to 108 mc .
3. Adjust FM oscillator trimmer (C-51) for maximum V. T. V. M. reading.
4. Adjust FM R.F. trimmer (C-52) for maximum V. T. V. M. reading. During alignment reduce input signal to maintain Detector voltage at 2.V.
5. Repeat steps 3 and 4.
6. Feed a 90 mc signal into antenna terminals (as in $\mathrm{C}-2$ ), tune receiver dial to signal.
7. Test R. F. coil with tuning wand and if necessary adjust spacing of FM R.F. coil (L-4) for maximum V.T. V.M. reading at 90 mc . During alignment reduce input signal to maintain Detector voltage at 2.V.
8. Repeat steps 2 and 4 if necessary.
9. Remove A.F.C. shorting jumper.

RADIO WIRE PAGE 20-25




Dw6. 130-178
ALIGNMENT INSTRUCTIONS




DUMMY ANTENNA	SIGMAL GENERATOR COUPLENG	$\begin{aligned} & \text { BAND SWTTCH } \\ & \text { POSITION } \\ & \hline \end{aligned}$	SIGNAL GEN 'R FREOUENCY	RADF DLAL SETTHG	OUTPUT METER	ADJUST	REMARKS
. 0 ¢ $\times$ F 0	m.f section of vaniaile conotmata	-c   ExTMEME Lert	4sis xc	1850 kc .	$\begin{aligned} & \text { Acnoss } \\ & \text { voice coll } \end{aligned}$	$\begin{array}{ll} \text { LI, LE, } \\ \text { L8, } & \text { Le } \end{array}$	AOJUST FOR MAXMMM
100 mupo.	Amtanma lich	- C	1850 kc	1850 kc .	- -	c 1	- -
100 mura	- -	- ${ }^{\text {c }}$	1500 kc	1500 kc .	- -	c 2	- -
100 mato.	-	- C	600 kc	400 cc .	- *	c ${ }^{\text {a }}$	Rock gang a dojust - OH maxinum OUTMT necheck ci ${ }^{\text {ce }}$ AOJUETMEMTI As SNE:
$400 \wedge$	- -	crincime mout	13.3 mc.	10.3 mc.	- *	- c4	adjust por maximum.
$400 \pi$	- -	* ${ }^{\text {w }}$	16 m	18 mc	- -	$\times 0$.	nock gana a aosusi FOn maxmum output.







ALIGNMENT PROCEDURE
Output meter connection Across voice coil
Output meter reading to indicate $1 / 2$ watt. $\qquad$ 1.25V for 3.2 Ohm voice coil

Connection of generator ground. $\qquad$ Receiver chassis Generator modulation $\qquad$ Approximately 30\%@400 cycles
Position of volume control. Fully clockwise
Position of tone control. High position

WAVE	POSITION OfoiAl POINTER pointer	FREQ.	GEN.	OUMMY	TRIMMERSADJ. in order show	TRIMMER FUNCB
B. C.	540 kc	455 kc	7 H 7 Grid	. 1 mfd	T9-T7-T8-T6.T5	I. F.
	1500 kc	1500 kc	* note		T4-TI	Osc. - Ant.
	600 kc	600 kc	* note		T3-Rock Var. Cond.	Osc. . Padder
	1500 kc	1500 kc	* note		Readjust T4	Osc.
S. W.	18 mc	18 mc	Ant. Post	RMA Standard	T2 **	Osc.



## POWER SUPPLY:

his receiver is designed for operation un A. C. (Alternating Current) only. 105.125 voits, $50-60$ cycles. If in
duubt as to the voltage and frequency supplied to your home, telephone your local Power Company.

PAGE 20－32 RADIO WIRE
MODELS 651， 653


Note：Caelsolating condenser in reeaing algrale from the aignal generator

Stop	$\begin{aligned} & \text { Set ian } \\ & \quad \text { at } \\ & \hline \end{aligned}$		Set Bunawitch	$\begin{aligned} & \text { set dial } \\ & \hline \end{aligned}$	Vary	For	Cheort For
\＃1	455KC	$\begin{gathered} \text { R. } 500 \\ \text { of Variable } \end{gathered}$	X	uin cop	I．E．Trimmor	Ninx． response	Piex senstivs．ty
42	28）	Antoma terminal	$\underset{(6-1 E n+c)}{3 N}$	189	Variablo oso trimper	gon sig．	$\begin{aligned} & \text { to maice sure not } \\ & \text { image frequerioy } \\ & \text { ( image should } \\ & \text { apposer in frequancy). } \end{aligned}$
\＃3	$16 \%^{\circ} \mathrm{C}$	$\cdots$	＊	1610 c	Variable RP trimior	1．enx．   response	Check ontire bend for gocd aentivits
4	$6 . \mathrm{C}$	＊	$\begin{gathered} 9 \cdot 3 \\ (2-6: c) \end{gathered}$	6\％	P. N. oso   trirmior	Gen． sfrmal	To make eure not on ima ço frequen oy
45	$5: 0$	＂	＊	5116	P. B. Ant   trimier	max rosp．	Check entire band for good sontivity
76	1600\％	＊	3． 6.	isinge	$\begin{gathered} \text { X ant } \\ \therefore \text { ritane: } \end{gathered}$	Gm．Iignal	
7	1600 Cc	＂	＂	＂	C Ant trimnor	itax response	
Hi	600：	＂	＊	600Y	3 C Padcen	Gont ${ }^{\text {a gional }}$	
\％＇9		ackuek all s	がった				

[^11]

ALIGNMENT PROCEDURE-
Note: Uae isoleting oondenser in feeding aignala from the signal genorator

Stop	$\text { Sot } a \in n$ at	Connect पu2	$\begin{aligned} & \text { Sot } \\ & \text { Encuritch } \end{aligned}$	$\begin{aligned} & \text { Sot dial } \\ & \hline \end{aligned}$	Vary	For	hock Sor
H1	$458 \times 2$	R. ${ }^{2}$. 500 of Variable	5	Uin cap	I.E. Trimmor	Max. response	liax aenstivs 5
\#2	183C	Antenna terminal	$\stackrel{S w}{\left(6-1 E_{M C}\right)}$	18:1C	Variablo oac trimmer	gen aig.	to nwik? sure not   lumgo froquaricy ( image should appoar in frequmey)
W	161:c	*	*	16mc	Variable RP trimer	1.ax. reaponse	Chock ontire band for gocd sontivit;
\#4	HAK	$\cdots$	$A$	46	$\operatorname{tr} \ln / 1000$	Gen.   atral	To make eurs not on image froquen cy
帾	$350 \mathrm{~K}$	.	*		thinfart	biax resp.	Chock entire band for good aontivity
. 46	1600\%	.	3. C.		$x$ int trinexo:	Om. signal	
f?	1600KC	n	"	*	$\underset{t r i \operatorname{mon} r}{x \operatorname{lint}}$	imx respona	
ifu	6001,6	"	*	600rs	$x$ Pades ${ }^{\text {a }}$	gen ${ }^{\text {agnal }}$	
\#9		Hochesk all a	ans				

[^12]


ALIGNMENT INSTRUCTIONS							
EET VOLUME COMTROL AT MAXIMUM VQLUME ANO OUTPUT FROM BIGNAL BEAERATOR MO MEMEA THAB IS MEGESSABY IO OEIAIM OUTPUI REAOIMQ.							
TUNING RANGE							
		broadcast:-	30-1550 kc.	Shont wave :-	5. 5 - 18.3 mc		
DUMMY ANTENNA	SIGNAL GENERATOR COUPLWG TO	BAND SWITCH POSITION	SIGNAL GEN 'R FREOUENCY	RADIO DIAL SETTING	$\begin{aligned} & \text { OUTPUT } \\ & \text { METER } \end{aligned}$	ADJUST	REMARKS
」 mfo	PIM 7 On cece socket	- C	456 Mc	FULL OPEM	ACROSS VOICE COIL	$\begin{array}{lll} \text { LI. } & \text { LE: } \\ \text { L3. } & \text { Ll } \end{array}$	aOJUST FOR maxmum output
. 1 MFO	mmplom 08As (nF)	- C	436 KC.		*	61	- . - minimum
200 04ms	amtenma socmet	\$ ${ }^{\text {w }}$	18.3 mc.	-	- "	* 62	- - maximum
200 onms	-	\$ w	15 Mc .	ammox. 19 Mettins	$\cdots \quad$ -	C 3	ROCR Gang a ADJUST FOR MAXMUM OUTPUT. fon Maximum output   c. adjustmen
30 MMFD.	-	-c	1400 mc .	APPROX. 1400 KC.	-	c 4	ADJUST FOR maximum. output
30 MmFD .	- -	- 6	600 kc.	600 kc .	- "	c 5	ROCK GANG - ADJUST for maximum output.
* If rwo peaks can ee obtained. USE one with taimmer scaem funther in.							

## Model CR762




## ALIGNMENT INSTRUCTIONS

SET VOLUME CONTROL AT MAXIMUM VOLUME AMP OUTPUT FAOM SIGNAL GEAERATOR MO HLEMER THAN IS MECESSARY TO ORTAIK OUTPUT BEADIMR
TUNING RANGE

DUMMY ANTENNA	SIGNAL GENERATOR COUPLING ON	BAND SWITCH POSITION	SIGNAL GEN 'R FREQUENCY	RADIO DIAL SETTING	$\begin{aligned} & \text { OUTPUT } \\ & \text { METER } \end{aligned}$	ADJUST	REMARKS
. m*	PIN ${ }^{*}$ T ON GEEG SOCKEt	$B \mathrm{C}$	436 kc	FULL OPEM	$\begin{gathered} \text { across } \\ \text { voice coil } \end{gathered}$	$\begin{array}{ll} \text { L1. } & \text { L2. } \\ \text { L3. } \end{array}$	adjust for maximum output
, mFo.	Pin * on ceas (nr.)*	B C	$456 \times 1$	-*	- "	c 1	- . - minimum
200 Onms	ANTEMMA SOCKET	s*	7.5 Mc.	* "	" -	* c 2	- . - maximum
2 CO OHma	- "	5 *	* Mc.	APPAOX. 49 meters	" -	c 3	ROCK gang a adoust for maximum output.   cs adjutment
30 MmFo .	- -	- C	1400 kc.	NPRAOX 1400 KC	- *	c ${ }^{\text {c }}$	adjust fon maximum. output
30 MmFD .	* *	- C	600 kc	600 KC	- -	c 5	rock gang a adjust for maximum output.

* if TwO PEAKS CAN OE OUTAMED. USE ONE WITN TMIMER SCREW IUATMER OUT.



PAGE 20-6 REGAL
MODEL 1878


REGAL PAGE 20-7

© John F. Rider



ALIGNMENT INSTRUCTIONS   $\frac{\text { sit }}{50 \text { vout cout }}$ TUNING RANGE TROPIC $2.3-7.4 \mathrm{Mc}$								
	ANUMYY	SIGNAL GENERATOR COUPLING ON	BAND SWITCH POSITION		RADIO DIAL SETTING	${ }_{\text {c }}^{\substack{\text { OUTPUT } \\ \text { METER }}}$	adust	remarks
，	IMfo		${ }^{\text {日 }}$	456 kc	futu open		涼，	${ }^{\text {aouss fop max maxmum }}$
2	Imfo		өc	as6 kc	full Ofen		$\bigcirc$	${ }^{\text {aoust }}$ forpur muw
3	200 Onms	Wennd	fna	${ }^{2400}$	futu open		－ 02	
4	200 orms	Enna leao	rional	20 Mc	APprox 20 Mc	${ }_{\text {a }}^{\text {achass }}$	${ }^{63}$	ROCK GANG B ADJUST FOR MAXIMUM OUTPUT C 3 ADJUSTMENT
5	200 orms	antenal leao	Poic	74 mc	fut open		＋ 0 c	
6	200 orms	ntenva leao	тropic	6 mc	Aefrox． 6 mc	voice ${ }_{\text {achass }}$	cs	${ }^{\text {aoust for maximum }}$
7	s0 мм¢0	mna leao	${ }^{80}$	1650 kc	futio ofen	vacaoss	${ }^{66}$	aousf for futur mamm
－	30 mmfo	enna lea	日 0	1400 kc	Aperoox 1000 kc	vackesson	${ }^{\circ}$	Aovst for maxtmum
9	mato	mana leao	${ }^{80}$	600 kc	600 kc	vecross	cs	

 745



## ALIGNMENT INSTRUCTIONS

ST VOLUME CONTROL AT MAXIMUN VOLUME ANO QUTPUT FBOM BIGMAL GEMEDATOR MQ_BIABER


TUNING RANGE

DUMMY ANTENNA	SIGNAL GENERATOR COUPLWG	$\begin{aligned} & \text { BAND SWITCH } \\ & \text { POSITION } \end{aligned}$	$\begin{gathered} \text { SIGNAL GEN 'R } \\ \text { FREQUENCY } \end{gathered}$	RADIO DIAL SETTING	$\begin{aligned} & \text { OUTPUT } \\ & \text { METER } \end{aligned}$	ADJUST	REMARKS
. 08 MFO	A.F SECTION OF VABIABLE COMDENSEM	$0 c$   EXTREME ILETT	435 KC	1650 kc	ACOOSS VOICE COIL	$\begin{array}{lll} L I, & L Z, \\ L B, & L E \end{array}$	AOJUST FOR MAXMOM
100 MMPD.	Antemma lead	- $c$	1650 mc	1650 NC	* *	C 1	- .
100 mmFo .	* *	- $C$	1500 kc .	1800 kc	-	c 2	- - -
100 mmPD .	* *	- 6	000 kc	600 Kc	-	C 3	BOCK GANG a ADJUST FOn maximum output. RECHECK CI CE ADJUSTMENTS AS SEVEA
$400 \Omega$	* *	EXTREME RIGHT	18.3 Mc .	18.3 mc.	-	$\text { 畨 } \quad \text { 4 }$	ADJUST DOn maximum
$400 \Omega$	* "	8 \%	18 Mc .	15 MC	* -	$\times 63$	ROCK GANG ADJUST FOR MAXHMJM OUTPUT

* IF TWO PGAKS GAN DI OETAINED, USE ONE WITH TRIMMER SCREW FURTHER IN.
$\times$ IMAGE FREGUINCY SHOULD APPEAR AT 15.9 MC . AND GF CONSIDERARLY WEAKER



[^0]:    Listening Test: Distortion may be caused by leaky or shorted C201, or by open 8203.

[^1]:    * This part, located in another section, may cause abmormal indiration in this section.

[^2]:    C400
    C401
    C402
    C403

    Condenser, aerial trimmer Condenser, aerial shunt, $10 \mathrm{mmf} . \quad . \quad . \quad$. $62-110009001^{*}$ Condenser, cathode by-pass, $.047 \mathrm{mf} . . . . . . . . . . . . . . .61-0122^{\circ}$
    

[^3]:    RADIATING LOOP: Make up a 6-8-turn, 6-inch-diameter loop from insulated wire; connect to signal-gen
    erator leads and place near radio loop aerial. Make certain that radio loop aerial is connected to radio
    REPLACEMENT PARTS LIST (Continued)
    SECTION 1-POWER SUPPLY (Continued
    
    
    $n$
    0
    0
    0
    0
    0
    
    

    REPLACEMENT PARTS LIST
    

[^4]:    Listening Test: Distortion and hum may be caused by open C409 or R404.

[^5]:    OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to the cathode of the 14 Q 7 , test point $E_{\text {; }}$ connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 4 of $14 Q 7$ ), test point $D$. Use a suitable meter range, such as 0-10 volts. Proper operation of the oscillator is indicated by o negative voltage of approximately the volue given in the chart (measured with a $20,000 \mathrm{ohm}$-per-volt meter) throughout the tuning range

[^6]:    RADIATING LOOP: Make up a $6-8$ turn, 6 -inch-diameter loop from insulated wire: connect to signal-gen-
    erator leads and place near radio loop aerial. The loop aerial must be connected.

[^7]:    © John F. Rider

[^8]:    RADIATING LOOP: Make up a $6-8$ turn, 6 -inch-diameter loop from insulated wire; connect to signal-generator leats and place
    near radio loop aerial.
    Circuit Description
    

    SPECIFICATIONS
    
    
     OPERATING VOLTAGE......................... 125 valts, a.e/d.e.
    POWER CONSUMPTION $\ldots \ldots \ldots \ldots \ldots \ldots . .30$ watts

    AERIAL .............................inimedance Ioop; pro-
    vision for external aerial
     $\qquad$

    Philco Radio Model $50-520$ is a five-tube table-model
    superheterodyne, providing reception on the standard broadsuperheterodyne, providing reception on the standard broad.
    cast band. The ligh-impedance loop aerial normally pro
    vides adequare signal pickup An external aerial may be cast band. The high-impecance loop aerial notmally pro.
    vides adequate signal picke. An exernal arerial may be
    conecred if desired by artaching the lead to lug \& on the rear the chassis. Do not use a ground.
    The loop is coupled to the 7A8 converter. Variable-con-
    denser tuning is employed; the oscillator-roor-section plates are shaped to obtain proper tracking, thus eliminating the

    The 7 A 8 is transformer-coupled to the 12BA6 i-f amplifier, which is also transformer-coupled to the diodes of the
    $14 B 6$, second detector and first audio amplifier. A-v-c voltage is applied to the control grids of both the i-f and

    The triode section of the 14 B 6 is the first audio stage, and is resistance-coupled to the 50 L 6 GT output tube. The
    output tube is transformer-coupled to a permanent-magnet

    D-c operating voltages are obrained from a 35 Z 5 GT half-
    wave rectifier, the output of which is filtered by a twosection, resistor-condenser filter. The $150,000-\mathrm{hm}$ resistor,
    R100, prevents hum which might otherwise occur under R100, prevents hum which might otherwise occur under
    conditions of high humidity.

[^9]:    - This part, located in another section may cause abnormal indication in this section.

[^10]:    ALIGNMENT NOTES
    Alignment should be attempted only if the proper meters and a signal generator are at
    your disposal. Insulated alignment tools are necessary. Output meters should include: (A) a low range $A C$ Voltmeter
    (B) a $0-20$ volt $D C$ vacuum tube Voltmeter

    The signal generator must cover the frequencies of $455 \mathrm{kc}, 600 \mathrm{kc}, 1500 \mathrm{kc}, 10.7 \mathrm{mc}$. 90 mc and 106 mc .

    During alignment the line voltage feeding the receiver power supply should be kept at
    approximately 117 volts.
    The receiver should be allowed to warm up for at least 30 minutes before making any adjustments.

    The location of adjustment screws are indicated clearly on the schematic diagram. Alignment adjustments should be made only in the sequence given in the chart.

[^11]:    TO REPLACE BA
    Onsorov the two bolta holding the loop to the ohassis and lonsen the metal
    bar holding tim＂B＂battories in place．Pull the battary plucs out and roplace nex battorion in this same relativo position．uso 2 Eveready 746 （or oquivalont） （ Evorosuy ： 4 （or equivalont）．
    Gattorios aro considorod to on poor or doroctivo wion they measuro $1 / 3$ loss cead bettor than 60 volt normi value thus the 90 volt＂$B^{\prime \prime}$ batterles should 6 volta．Theso voltace noasurarionts $?$ playing in the batt riy position for approximataly ond quarter hour．Yiso a voltater with lom drain to road voltaces（a 1000 ohm pur volt noter or bettor）
    TO OPETAEE TISIS SER OR： 120 VOIT POVE？ 1 ，TEE．
    plscomnect the set fron the porer line．alko voltage soleotor plug behind romp undor loop mounting uraceat）and insart into the 120 voit jaciofphich

    ## 

    Disconinect the set from tine powor ilne．Take voltage seleotor pluy（behind loop under loon mounting bracket）and insert it into the 220 volt jaci：（red）．
    Miva pl
    
    
    
    

[^12]:    TO REPLACE BAETEPIES
    Unsoret the two bolta holding the loop te the ahassis and lonsen the metal
    bar holding tive " $B^{\prime \prime}$ battorioa in plece. Pull the battory pluga out and roplado now
     and $2 \mathrm{Evoreadj}: \nmid 42$ (or equivalont).

    3attories are considered to be poor or tefeotive men thoy neasure $1 / 3$ lons
    torminal voltage than the normil value timi the 90 voit B battorieb anould
    read bettor than 60 volts and tho 9 volts a batteriag anould remd bettor
    
    
    TO OPSVATS THIS SET OS : 230 VCLT PONER LINE.
    Disconnect the set fron the porior ilne. Talre voltage seleotor plug (behind
    

    TO OPSEATE TITS SER CI A 220 VOLT POHER LIIE
    Disoonnect the set from the powor linc. Take voltace soleotor plug (behind loop
    undor loop mounting bracitot) and insort it into tho 220 voit jeoz (red).
    GAUTIOM:
    
    
    
    ocura.
    

