VOLUME XIX

JOHN F:RIDER

MODEL 884, 892

SPECIFICATIONS

Overall Dimensions:

Electrical Rating:	
Line Voltage . . . Power Consumption .	110-120 volts, $50-60$ cycle, A.C. 75 watts
Tuning Frequency Range:	
$\begin{aligned} & \mathrm{AM} \\ & \mathrm{FM} \end{aligned}$	540 to 1620 KC 87.5 to 108.5 MC
Intermediate Frequency:	
	$\begin{aligned} & 455 \mathrm{KC} \\ & 107 \mathrm{MC} \end{aligned}$
Electrical Output:	
Loudspeaker:	
	$\stackrel{884}{\text { Permanent Magnet }}{ }^{892}$
Outside Cone Dia.	$6{ }^{1 / 2} 2^{\prime \prime}$ 10"
Voice Coil Impedance ${ }^{\text {a }}$	3.2 ohms at 400 cycles
Magnet Rating - 2.150	z. Alnico V 3.16 Oz . Alnico V

Tubes:

Tube	No.	Function
6BE6	V-1	Oscillator \& AM Converter
6BA6	V-2	I-F Amplifier
6BA6	V-3	FM Driver
6AL5	V-4	FM Detector
7F8	V-5A, B FM R-F Amplifier \& Converter	
6SF7	V-6	AM Detector \& Audio
6K6/GT	V-7	Power Amplifier
5Y3/GT	V-8	Rectifier

GENERAL INFORMATION

Models 884 and 892 are combination AM-FM radio phonograph receivers. Model 884 is housed in a wooden table model cabinet, and model 892 in a wooden consolette cabinet. The chassis wiring in each model is the same except as noted in the schematic diagram. Both models employ a specially designed "Hi-Q" loop antenna and a permanent nagnet dynamic speaker.

For information concerning the record changer, refer to Webster Model 148 Automatic Record Changer Service Manual.

SPECIAL SERVICE INFORMATION

Stage Gain Measurements - AM
Measurements taken with volume and tone controls maximum. Switch in Radio position.

Standard Output 50 milliwatts		
Dummy Antenna		
Antenna to Converter Grid		
Converter Grid to 1st I-F Grid . . 40 X at 455 KC		
1st I-F Grid to 2nd Detector . . . 125X at 455 KC		
Overall Audio Gain • - 18 MV into phono socket for		
Stage Gain Measurements - FM		
Dummy Antenna . . . 270 ohms		
Dipole to Converter Grid 5 X at 98 MC Converter Grid to 1st I-F Grid . . 70 X at 10.7 MC		
I-F Grid to Driver Grid 33 X at 10.7 MC		
Oscillator Cathode Voltages:		
AM FM		
1500 KC . 3.5 volts AC	108 MC	1.4 volts AC
1000 KC . 3.0 volts AC	98 MC	1.4 volts AC
600 KC . 2.9 volts AC	88 MC	

D.C. Resistance Measurements:

AM 1st \& 2nd I-F Coils
Primary
Secondary 20 ohms
FM I-F windings about 1.0 ohm.
Oscillator Coil
Ground to Tap . . . 1.0 ohm
Ground to Finish . . 9.0 ohms

NOTE: Due to the variation in winding methods, the D.C. resistance on all coils is subject to a 20% tolerance.

ALIGNMENT PROCEDURE - AM

Alignment procedure consists of the 3 steps outlined in the Alignment Chart. Connect the test oscillator leads to the mixer grid and ground in series with an .01 Mfd . Capacitor for step No. 1, I-F Alignment.

Use the Hazeltine Standard Test Loop No. 1150 or a reasonable substitute for the balance of the alignment. Place the test loop about two feet from the receiver loop in a vertical position.
NOTE: Make certain that each alignment step is done with a minimum input signal.

ALIGNMENT CHART - AM

STEP	$\begin{aligned} & \text { CONNECT } \\ & \text { TEST } \\ & \text { OSC. TO } \end{aligned}$	$\begin{gathered} \text { TEST } \\ \text { OSCC } \\ \text { SETTING } \end{gathered}$	POINTER SETTING	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR MAX. } \\ & \text { OUTPUT } \end{aligned}$
1	6BE6 Grid \& Gnd. . 01 Mfd. Capac.	455 KC	540 KC	$\underset{\mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{~J}}{\text { Trimmers }}$
2	Standard Test Loop	1620 KC	1620 KC	$\underset{\substack{\text { Trimmer } \\ \text { to } \\ 1620}}{ }$
3	Standard Test Loop	1500 KC	1500 KC	Trimmer K

ALIGNMENT PROCEDURE - FM

Connect a Vacuum Tube Voltmeter between points X and Y on schematic diagram, and a Center-Zero meter between points X and Z on schematic diagram.

ALIGNMENT CHART — FM

STEP	$\begin{gathered} \text { CONNECT } \\ \text { TEST TO } \end{gathered}$	$\begin{gathered} \text { TEST } \\ \text { OSCC. } \\ \text { SETTING } \end{gathered}$	POINTER SETTING	ADJUST
1	$\begin{gathered} \text { Terminals } \\ 1 \& 8 \text { of } \\ 7 \mathrm{~F} 8 \end{gathered}$	10.7 MC	88 MC	A, B, C, D, E for max. on V.T.V.M. \& F for zero on Center-Zero meter
2 Repeat Step No. 1	Repeat Step No. 1			
3	Dipole Terminals thru 300 ohms	108 MC	108 MC	$\mathrm{N} \& \mathrm{M}$ for max. on V.T.V.M.

NOTE: 1 . Rock the variable condenser when adjusting M , step 3.
2. Reset F for zero if necessary, to coincide with max. on V.T.V.M. after step 3.

TRIMMER LOCATIONS
A-Primary, 1st FM I-F
B-(bottom) Secondary, 1st FM I-F C-Primary, 2nd FM I-F
D-(bottom) Secondary, 2nd FM I-F
E-Primary, FM Ratio Detector
F-(bottom) Secondary, FM Ratio Detector
G-Primary, 1st AM I-F
H-(bottom) Secondary, 1st AM I-F
I-Primary, 2nd AM I-F
J-(bottom) Secondary, 2nd AM I-F
K-AM R-F Trimmer M-FM R-F Trimmer
L-AM Oscillator Trimmer N-FM Oscillator Trimmer

SOCKET VOLTAGES

All D.C. voltages measured with a vacuum tube voltmeter from socket contacts to chassis. A.C. voltages measured with a 1000 ohms per volt A.C. meter from socket contacts to chassis. Volume and tone controls maximum. Switch in Radio position. No signal. 117 volts A.C. line voltage. All voltages shown are positive D.C. unless otherwise noted.

TABLE OF REPLACEMENT PARTS

Part No.	Ref. Sym.	Description	Part No.	Ref. Sym.	Description
21073		Cabinet (884)	67033		Pointer, dial (884)
21077		Cabinet (892)	67015		Pointer, dial (892)
23526A	C1A,B,C,D	Condenser, variable, with pulley	69003 C		Pulley
23916	C4-1 to 6	Capacitor, ceramic, $470 \mathrm{Mmf} .20 \%$	73005	R1-1 to 2	Resistor, 22 ohm, 1/2 w. 10\%
23914	C5-1 to 4	Capacitor, ceramic, $\mathbf{1 0 0} \mathrm{Mmf} .20 \%$	73041	R2-1 to 2	Resistor, 22,000 ohm, $1 / 2 \mathrm{w} .10 \%$
23940	C6	Capacitor, ceramic, 33 Mmf . N750 10\%	73075	R3	Resistor, 4700 ohm, 1w. 10%
23023-1	C7-1 to 13	Capacitor, tubular, . 01 Mf .500 V .	73025	R4-1 to 4	Resistor, 1000 ohm, 1/2w. 10%
23942	C8-1 to 2	Capacitor, ceramic, $150 \mathrm{Mmf} .10 \%$	73047	R5-1 to 2	Resistor, 100,000 ohm, 1/2 w. 20%
24038	C9	Capacitor, electrolytic, 5 Mf . 50 V .	73011	R6	Resistor, 68 ohm, 1/2w. 10%
23941	C10	Capacitor, ceramic, 100 Mmif . NPO 5\%	73051	R7-1 to 3	Resistor, 470,000 ohm, 1/2w. 20%
23002	C11-1 to 2	Capacitor, tubular, . 002 Mf .600 V .	73080	R8	Resistor, 120 ohm, 1w. 10%
23004	C12-1 to 2	Capacitor, tubular, . 0005 Mf .600 V .	73046	R9	Resistor, 68,000 ohm, $1 / 2 \mathrm{w} .10 \%$
23009	C13	Capacitor, tubular, . 05 Mf .400 V .	73017	R10-1 to 2	Resistor, 220 ohm, 1/2w. 10%
23011	C14	Capacitor, tubular, 11 Mf .400 V .	73035	R11-1 to 2	Resistor, 6800 ohm, 1/2w. 10%
24006	C15	Capacitor, electrolytic, 25 Mf . 25 V .	73042	R12	Resistor, 27,000 ohm, $1 / 2 \mathrm{w}$. 10%
23932	C16	Capacitor, tubular, 01 Mf .125 V.A.C.	73073	R13	Resistor, 1 megohm, 1w. 10\%
24030	C17	Capacitor, electrolytic, 40 Mf .450 V.	73126	R14	Resistor, 1500 ohm, 2w. 10\%
24004-1	C18	Capacitor, electrolytic, 40 Mf .350 V .	73049-3	R15-1 to 2	Resistor, 270,000 ohm, $1 / 2 \mathrm{w} .20 \%$
29032	L-1	Coil, 1st FM I-F	73045	R16	Resistor, 47,000 ohm, 1/2w. 10%
29022A	L-2	Coil, 2nd FM I-F	25010	R17	Control, volume, with switch, 1 megohm
29037	L-3	Coil, FM Ratio Detector	73057	R18	Resistor, 4.7 megohm, 1w. 10\%
29033	L-4	Coil, 1st AM I-F	73054	R19	Resistor, 1.5 megohm, 1w. 10%
29034	L-5	Coil, 2nd AM I-F	25509	R20	Control, tone, 3 megohm
29202	L-6	Coil, AM Oscillator	73078	R21	Resistor, 470 ohm, 1w. 10%
29214	L-7	Coil, FM Oscillator	73917	R22	Resistor, 2500 ohm, $10 \mathrm{w} .10 \%$ w.w. (884)
29111	L-8	Coil, FM R-F			1500 ohm, 5w. 10% w.w.(892)
29325		Loop, broadcast	73128	R23	Resistor, 2700 ohm, 2w.10\% (884 only)
29326		Dipole, FM	78048		Shield, tube
29104		Choke, R-F	79002-2		Socket, tube, 8 prong
32007-1		Cord, A.C. 8^{\prime}	79005		Socket, phono
38104		Dial, stationized (884)	79012		Socket, tube, miniature
38105		Dial, stationized (892)	79007		Socket, phono motor
52008-AS		Knob, Dark Brown (884)	79056		Socket, tube, lock-in (7F8)
52008-BY		Knob, Oak (884)	79058A		Socket, lamp
52008 -AL		Knob, Ivory (892)	79061		Socket, tube, miniature shock
52008 -BM		Knob, Light Mahogany (892)	83302		Speaker, $61 /{ }^{\prime \prime}$ " P.M. (884)
54001		Lamp, dial \# 440.250 Amp .	83705		Speaker, $10^{\prime \prime}$ P.M. (892)
58029		Record changer, Webster Model 148	86022A	S1A,B,C,D	Switch, band
63026		Cartridge, pickup, Shure P-30	89006	T-1	Transformer, power
66004		Plug, pin	89402	T-2	Transformer, output, 8,000 to 3.2 ohms

CLARI-SKEMATIX

CLARI-SKEMATIX

GENERAL INFORMATION

Model 1272 is a 2 band console radio phonograph combination with Standard Broadcast and Frequency Modulation. It has 12 tubes including the rectifier and tuning eye, and employs a 12 inch permanent magnet speaker.

Listed below are some of the features included in this model:

1. Standard Broadcast and Frequency modulation bands
2. Phonograph with automatic record changer.
3. Tuning eye for accurate tuning of stations.

NOTE: R-23 which is called out 330 ohms, 2 watts in the schematic may be two 680 ohm , 1 watt resistors in parallel. Either is satisfactory.

SPECIAL SERVICE INFORMATION

Stage Gain Measurements: A M

Measurements taken with volume and tone controls maximum. Band Switch in Standard Broadcast position.
AVC shorted out.

St	50 milliwatts
Dummy Antenna	200 Mm
Antenna Post to R.F. Grid	12 X at 1000
R.F. Grid to Converter Grid	6 X at 1000 K
Converter Grid to lst I.F. Gri	30 X at 455
lst I.F. Grid to 2nd Detector.	100X at 455
verall Audio Gain. . . . 5000	watt 400 c

Stage Gain Measurements: F M

Measurements taken with volume and tone contruls maximum. Band Switch in Frequency Modulation position.

AVC shorted out.
Dummy Antenna
270 ohms
Dipole Terminal to R.F. Grid 9X at 98 Mc 7X at 98 Mc Converter Grid to lst I.F. Grid 49 X at 10.7 Mc lst I.F. Grid to Driver Grid......... 35X at 10.7 Mc

OSCILLATOR CATHODE VOLTAGES:

Measured at 117 Volts AC line voltage with AC vacuum tube voltmeter input loading above 10 Megohms.

1620 KC	3.5 volts AC
1300 KC	3.3 volts AC
750 KC	2.5 volts AC
550 KC	2.2 volts AC

OSCILLATOR GRID CURRENT: FM
Measured at 117 volt line voltage with DC micro-
ammeter connected in series with ground end of the $22,000 \mathrm{ohm}$ grid resistor.

108 MC	. 180 microamps
98 MC	300 microamps
88 MC	. 440 microamps

D.C. RESISTANCE MEASUREMENTS:

I.F. COILS
lst I.F.
Primary.......17 ohms Primary. 10 I.F. 10 ohms
Secondary. ohms Secondary.....17 ohms*
*Note: To obtain the true reading of the secondary of
the 2nd I.F. coil it must be removed from the
can. This is so because of the 56,000 ohm
resistor in series with the AVC lead inside the can.

OSCILLATOR COIL
Primary .1 ohm
Secondary
\qquad 6 ohms
ANTENNA COIL
Start to Finish
. 12.2 ohms
R.F. COIL

Primary 10.5 ohms
5.8 ohms

Secondary
.4 .2 ohms
NOTE: Due to the variation of winding methods, the D.C. resistance on all coils is subject to a 20% tolerance.

Loudspeaker:

Type	magnet
Outside Cone Diameter 12"
Voice Coil Impedance.	at 40
Magnet Rating. .	6.8 oz . Alnico 5

Tubes:

Tube	No.	Function
6BA6	V.1	R.F. Amplifier
6BA6	V.2	Modulator
6C4	V.3	Oscillator
6BA6	V.4.	lst I.F. Amplifier
6BA6	V.5	2nd IIF. Amplifier
6AL5	V-6	Detector
6SQ7	V.7	Audio Amplifier
6SN7.GT	V.8	Inverter
6V6-GT	V-.	Power Amplifier
6V6-GT	V-10	Power Amplifier
5Y3.GT	V.11	Rectifier
6U5.6G5	V-12	Tuning Eye

Electrical Rating:
Line Voltage.
Power Consumption $110 \cdot 120$ volts $50-60$ cycle $A C$

Dial Cord Arrangement

ALIGNMENT PROCEDURE

Alignment procedure consists of the steps outlined in the Alignment Chart. Make certain that each allignment step is done with a minimum input signal.

ALIGNMENT CHART AM

Step	$\begin{aligned} & \text { Connect Test } \\ & \text { Osc. to } \end{aligned}$	Test Osc. Setting	Pointer Setting	Adjust for Max. Output
Step	Connect Test Osc. to	Test Osc. Setting	Pointer Setting	Adjust for Max. Output
1	Mixer grid \& ground	455 Kc	540 Kc	$\begin{aligned} & \text { Trimmers } \\ & A, B, C, D \end{aligned}$
2	R.F. grid \& ground	1500 Kc	1500 Kc	$\begin{aligned} & \text { Trimmers } \\ & \text { F \& G } \end{aligned}$
3	R.F. grid \& ground	600 Kc	600 Kc	Trimmer E
Repeat Step No. 2				
5	Standard Test loop	1500 Kc	1500 Kc	Trimmer H
Check stationizing. Slide pointer on string if stations are uniformily off in one direction.				

NOTE: 1. Rock variable condenser for step 3.
2. Standard Test Loop is Hazeltine \#1150 or a reasonable substitue.

EQUIPMENT REQUIRED FOR FM ALIGNMENT

1. Signal generator capable of generating signals at 10.7 Mc, and from 88 to 108 Mc.
2. Vacuum tube voltmeter connected to point "A" (on schematic).
3. Center-zero D.C. voltmeter connected to point " B " (on schematic).

ALIGNMENT CHART FM
 ALIGNMENT PROCEDURE

Step	$\begin{aligned} & \text { Connect Test } \\ & \text { Osc. to } \end{aligned}$	Test Osc. Setting	Pointer Setting	Adjust for Max. Output
l	R.F. grid \& ground	$10.7 \mathrm{Mc}$	88 Mc	$\begin{aligned} & \text { S-1,S-3,S-4 } \\ & \text { S-5,S-6 } \end{aligned}$
2	Adjust S-2 for zero on zero-center meter.			
3	Repeat Steps 1 and 2.			
4	Doublet Terminals thru 270 ohms	88 Mc	88 Mc	Trimmers I, K, M
5	Doublet Terminals thru 270 ohms	108 Mc	108 Mc	Trimmers J, L, M
0	Repeat Step No. 4.			

Trimmer Locations

A	I.F. Trimmer	E	B.C. Oscillator Padder
B	I.F. Trimmer	F	B.C. Oscillator Trimmer
C	I.F. Trimmer	G	B.C. R.F. Trimmer
D	I.F. Trimmer	H	B.C. Antenna Trimmer
I	F.M. Oscillator Low Frequency Trimmer		
J	F.M. Oscillator High Frequency Trimmer		
K	F.M. R.F. Low Frequency Trimmer		
L	F.M. R.F. High Frequency Trimmer		
M	F.M. Antenna Low Frequency Trimmer		
N	F.M. Antenna High Frequency Trimmer		

Voltage Chart
No signal
117 volts A.C. line voltage.
Switch in Standard Broadcast position.
All voltages shown are positive D.C. except heater voltages which are all 5.8 V.A.C.
A.C. voltages measured with a 1000 ohm per volt A.C. meter. Volume and tone controls maximum.

NOTE: 1. Rock variable condenser for step 4.

$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	REF. SYMBOL	DESCRIPTION	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	DESCRIPTION
18088		Bracket, tuning eye		C22.1	
21045BN		Cabinet, dark Mahogany	24006	C22-1	Capacitor, electrolytic, 25 Mf. 25 V .
21045BG		Cabinet, Walnut	23007	C23-1 to 3	
21045 CU		Cabinet, Natural Mahogany			600 V .
21045BC		Cabinet, Bleached	23011	C24-1	Capacitor, tubular, . 1 Mf .
21045-1		Cabinet back, right			400 V .
21045.2		Cabinet back, left	23002	C25-1 to 3	Capacitor, tubular, .002 MF .
21057A		Cabinet motorboard			
23515	Cla to C2C	Capacitor, Variable	27001		Choke, filter
23408	C3-l to 5	Capacitor, trimmer, Single	28005A		Clip, antenna
		3-12 Mmf.	28020		Clip, tuning eye.
23909	C4-1 to 2	Capacitor, ceramic, 10 Mmf 500 V .	29406	Ll	Coil, FM antenna
23227	C5-1 to 5	Capacitor, ceramic, 100	29400	L2	Coil, BC antenna
		Mmf. 500 V .	29104	L3	Coil, Choke R.F.
23229	C6-1 to 7	Capacitor, mica, 470 Mmf .	29102F	L4	Coil, B.C. R.F.
		V.	29106	L5	Coil, F.M. R.F. Oscillator
23912	C7-1 to 5	Capacitor, ceramic, 47 Mmf. 500 V .	29205C	L6	Coil, B.C. Oscillator
23022	C8-1 to 15	Capacitor, tubular, . 01 Mf .	29011	L7, L8	Coil, 1st I.F. AM, FM.
		400 V .	20912	L9, L10	Coil, 2nd I.F. AM, FM
23400A	C9-1	Capacitor, trimmer, Dual 3-30 Mmf.	29018	Lli	Coil, Ratio detector, FM
			29315		Antenna, B.C. Loop
23409	Cl0-1	Capacitor, trimmer, Single 1.8 Mmf .	29321		Antenna, F.M. Dipole
23406	Cll-1	Capacitor, trimmer, Single	32003C		Cord, AC
		30 Mmf .	38069		Dial, stationized
23402	Cl2-1	Capacitor, trimmer, Single 600.800 Mmf.	38070		Dial, Eastern
24038	Cl3-1	Capacitor, electrol	40003		Dial cord
		5 Mmf 50 V .	40101C		Drive, planetary
23206	C14-1 to 3	Capacitor, mica, 220 Mmf . 500 V .	52019BG		Knob, control, Walnut
23908	C15-1	Capacitor, ceramic, 5 Mmf	52019BN		Knob, control, dark mahogany
			52019CU		Knob, control, natural
23901	Cl6.l	Capacitor, trimmer, Dual			mahogany
		.006-. 006 Mmf . (metal case)	52019BC ${ }^{\text {- }}$		Knob, control, bleached
24030	C17-1	Capacitor, electrolytic,	52020BC		Knob, Control, Bleach
		40 Mf . 450 V .	52020BN		Knob, Control, Dark
24001	C18.1	Capacitor, electrolytic,			Mahogany
		20 Mf .450 V .	520201CU		Knob, Control, Natural
24003	Cl9-1	Capacitor, electrolytic, 20 Mf . 350 V .	52020BG		Mahogany Knob, Control, Walnut
23208	C20.1	Capacitor, mica, 4000 Mfm . 500 V .	54002		Lamp, dial, \#47
23016	C21-1 to 2	Capacitor, tubular, .003 Mf. 600 V .	58022A		Changer, Record, Webster \#56

$\begin{gathered} \text { PART } \\ \text { NO. } \end{gathered}$	REF. SYMBOL	DESCRIPTION	$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	DESCRIPTION
			25008	R20.1	Control, volume, 3 section
63026		Pickup Cartridge, Sure Bros. P-30	73044	R9-1	Resistor, 39,000 ohm $1 / 2 \mathrm{w}$, 10\%
69003C		Pulley, idler		R10-1 to 9	Resistor, 100,000 ohm, $1 / 2 \mathrm{w}, 20 \%$
69006A		Pulley, variable capacitor	73047		
73053	Rl-1 to 5	Resistor, 1 megohm, $1 / 2 \mathrm{w}$, 10%	73011	R11-1	Resistor, 68 ohm, $1 / 2 \mathrm{w}, 10 \%$
73008	R2-1 to 2	Resistor, 39 ohm, 1/2 w, 10\%			
73018	R3-1	Resistor, 270 ohm, $1 / 2 \mathrm{w}$, 10%	73039	R12.1 to 2 R21.1	Resistor, 27,000 ohm, $1 / 2 \mathrm{w}$, 10\%
73041	R4-1 to 4	Resistor, 22,000 ohms, 1/2 w, 10%	73045		10% Resistor, $47,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$,
73021	R5-1	Resistor, 470 ohm, $1 / 2 \mathrm{w}$, 10\%	73131	R22-1 to 3	Resistor, $47,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$, 10%
73032	R6-1 to 2	Resistor, 3900 ohm, $1 / 2 \mathrm{w}$, 10%	73037	R24-1	Resistor, 10,000 ohm, $1 / 2 \mathrm{w}$, 10%
73025	R7-1 to 5	Resistor, $1,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$, 10%	$\begin{aligned} & 50202 \mathrm{~A} \\ & 79002 \end{aligned}$	R25-1	Control, tone, with switch Socket, tube, 8 prong Socket, phono motor, A.C.
73014	R8-1 to 2	Resistor, 120 ohm, $1 / 2 \mathrm{w}$, 10\%	79007		
73073	R13-1	Resistor, 10,000 ohm $1 / 2 \mathrm{w}$, 10%	79010B		Socket, lampSocket, speaker
			79018		
73060	R14-1	Resistor, 56,000 ohm, $1 / 2$ w, 10\%	79033		Socket, speaker Socket, compartment lamp
73055	R15-1	Resistor, 2.2 megohm, 1/2w,	79035		Socket, tube, miniature Socket, antenna
		20\%	79045		
73049	R16-1 to 3	Resistor, 220,000 ohm, $1 / 2$ w, 20%	79041		Socket, antenna Socket, tunning eye
73020	R17.1	Resistor, 390 ohm, $1 / 2 \mathrm{w}$,	83802		Speaker, 12" PM Spring, dial
		10\%	84028		
73035	R18-1 to 2	Resistor, $6800 \mathrm{ohm}, 1 / 2 \mathrm{w}$, 10%	86016B	SlA to SlE	Switch, band
73919	R19.1	Resistor, 1000 ohm 10 w, 10%	89013 89404	$\begin{array}{r} \mathrm{T} 1 \\ \mathrm{~T} 2 \end{array}$	Transformer, power Transformer, output

Tubes:

Tube:	No.:	Function: 6.F. Amplifier 6BA6
6BA6	V-1	Mixer
6BA6	V-3	I.F.Amplifier
6BA6	V-4	Driver
6AL5	V-5	F.M. Detector
6H6	V-6	A.M. Detector-AVC
6SF7	V-7	Audio Amplifier
6SN7-GT	V-8	Phase Inverter
6C4	V-9	Oscillator
6V6-GT	V-10	Output
6V6-GT	V-11	Output
5Y3-GT	V-12	Rectifier
6U5-6G5	V-13	Tuning Eye

GENERAL INFORMATION

Model 1273 is a 2 band console PhonOcord. It has 13 tubes including the rectifier and tuning eye, and employes a 12 -inch speaker.
Listed below are some of the features included in this model:

1. Standard Broadcast from 540 to 1620 Kc .
2. Frequency Modulation from 87.5 to 108.5 Mc .
3. Tuning Eye for accurate tuning of stations.
4. Home recording combined with an automatic record changer.

In an early run of this model, R-4 connected to the Plate of the 6 C 4 instead of to R-5. Also you may find two 680 ohm resistors in place of the 330 ohm 2 watt resistor. Either is satisfactory.

RECORDING HEAD PRESSURE

The proper recording head pressure is $11 / 4 \mathrm{oz}$. Adjustment of this pressure is made by turning the small screw on the top of the recording arm. This adjustment is very critical and should be made in quarter turns. TURN THE SCREW CLOCKWISE TO INCREASE THE CUTTING DEPTH and COUNTERCLOCKWISE TO DECREASE THE CUTTING DEPTH.

This adjustment is made at the factory with an ordinary postal scale, consequently, field adjustments should be made in a like manner.

BRIEF DESCRIPTION OF COMPRESSION CIRCUTT

One diode section of the 6 H 6 serves as the compressor rectifier. The compression system is automatic, and is in the circuit on both record positions. A portion of the output voltage is rectified by the 6 H 6 and varies grid bias of the first audio, 6 SF7.

HOW TO CHECK COMPRESSION VOLTAGE

Turn the Selector Switch to Radio Record position. Feed a 2 volt (RMS) 1000 cycle signal into the diode return of the 2nd I.F. (brown lead). Connect the leads of a vacuum tube voltmeter to the point indicated on Figure 4, Schematic Diagram, and ground. The voltage at this point should be approximately a minus 2.5 volts.

SPECLAL SERVICE INFORMATION

STAGE GAIN MEASUREMENTS, AM:
Measurements taken with volume and tone controls maximum. Band Switch in Standard Broadcast position. AVC shorted out.
Standard Output . . . 50 milliwatts
Dummy Antenna . . . 200 Mmf .
Antenna Post to R.F. grid 12 X at 1000 KC
R.F. grid to Converter grid 9X at 1000 Kc

Converter grid to 1st I.F. grid 20 X at 455 Kc
1st R.F. grid to 2nd Detector 40 X at 455 Kc
Overall Audio Gain 4600 X at 1 watt 400 cycles
STAGE GAIN MEASUREMENTS, FM:
Measurements taken with volume and tone controls maximum. Band switch in Frequency Modulation position.

AVC shorted out.
Dummy Antenna . . 270 ohms
Dipole Terminal to R.F. grid 0.9 X at 98 Mc Converter grid to 1st I.F. grid 12 X at 10.7 Mc 1st I.F. grid to Driver grid 45X at 10.7 Mc

OSCILLATOR CATHODE VOLTAGES:

Measured at 117 volts AC line voltage with $A C$ vacuum tube voltmeter input loading above 10 Megohms.
1620 KC
1200 KC
800 KC.

540 KC 2.5 volts AC
OSCILLATOR GRID CURRENT, FM:
Measured at 117 volts line voltage with DC microammeter connected in series with ground end of the 22,000 ohm grid resistor.
$\begin{array}{r}108 \mathrm{MC} \\ 98 \mathrm{MC}\end{array} \quad . \quad 290 \mathrm{Microamps}$
88 MC 220 Microamps

ALIGNMENT PROCEDURE

Alignment procedure consists of the steps outlined in the Alignment Chart. Make certain that each alignment step is done with a minimum input signal.

ALIGNMENT CHART A M

STEP	CONNECT TEST OSC. TO	TEST OSC. SETTING	POINTER SETTING	ADJUST FOR MAX. OUTPUT
1	Mixer grid $\&$ ground	455 Kc	540 Kc	Trimmers A, B, C, D
2	R.F. grid $\&$ ground	1500 Kc	1500 Kc	Trimmers G \& H
3	R.F. grid $\&$ ground	600 Kc	600 Kc	Trimmer E
4	Repeat Step			
5	Standard Test Loop	1500 Kc	1500 Kc	Trimmer F
6	Check stationizing Slide pointer on string if sta- tions are uniformly off in one direction.			

NOTE: 1. Rock variable condenser for Step No. 3.
2. Standard Test Loop is Hazeltine No. 1150 or a reasonable substitute.

EQUIPMENT REQUIRED FOR FM ALIGNMENT

1. Vacuum tube type voltmeter connected to point " A " (on schematic) for Step No. 1.
2. Center-zero D.C. voltmeter connected to point "B" (on schematic) for step No. 2.

ALIGNMENT CHART F M

STEP	$\begin{gathered} \text { CONNECT } \\ \text { TEST } \\ \text { OSC. TO } \end{gathered}$	$\begin{gathered} \text { TEST } \\ \text { OSC. } \\ \text { SETTING } \end{gathered}$	POINTER SETTING	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR MAX. } \\ & \text { OUTPUT } \end{aligned}$
1	R.F. grid \& ground	10.7 Mc	88 Mc	$\underset{S-1, S-3, S-4}{S}$
2	Adjust S-2 for zero on zero-center meter.			
3	Repeat steps 1 and 2.			
4	Doublet terminals thru 270 ohms	108 Mc	108 Mc	Trimmers J, I, K
5	Doublet terminals thru 270 ohms	88 Mc	88 Mc	S-7, S-8
6	Repeat step No. 4.			

NOTE: Rock variable condenser for step No. 4.
D.C. RESISTANCE MEASUREMENTS:

I.F. COILS:

*NOTE: To obtain the true reading of the secondary of the 2nd I.F. coil, it must be removed from the can. This is true because of the $\mathbf{5 6 , 0 0 0}$ ohm resistor in series with the AVC lead inside the can.
Oscillator Coil:
Primary 1 ohm
Secondary 6 ohms
Antenna Coil:
Start to Finish . . . 12.2 ohms
Start to Tap ... 10.5 ohms
R.F. Coil:

Primary 5.8 ohms
Secondary 4.2 ohms
NOTE: Due to the variation of winding methods, the D.C. resistance on all coils is subject to a 20% tolerance.

A-I.F. trimmer	G-B.C. osc. trimmer
B-I.F. trimmer	H-B.C. R.F. trimmer
C-I.F. trimmer	I-F.M. R.F. trimmer
D-I.F. trimmer	J-F.M. osc. trimmer
E-B.C. padder	K-F.M. antenna trimmer
F-Antenna trimmer	

SOCKET VOLTAGES

All D.C. voltages measured with a vacuum tube voltmeter from socket contacts to chassis.-A.C. voltage measured with a 1000 ohms per volt A.C. meter from socket contacts to chassis. - Volume and tone controls maximum. Switch in Radio Receive position. No signal. 117 volts A.C. line. All voltages shown are positive D.C. unless otherwise noted.

SOCKET VOLTAGE

Dial Cord Diagram

TABLE OF REPLACEABLE PARTS

PAGE 19-14 PACKARD-BELL.
MODEI 1273 PACKARD-BELL CO.

© John F. Rider

$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	REF. SYMBOL	DESCRIPTION
73073	R13-1	Resistor carbon, 10,000 ohm 1W 10\%
73011	R14-1	Resistor carbon, 68 ohm $1 / 2 \mathrm{~W} 10 \%$
73035	R15-1 to 2	Resistor carbon, $6800 \mathrm{ohm} 1 / 2 \mathrm{~W} \quad 10 \%$
73051	R16-1 to 7	Resistor carbon, 470,000 ohm 1/2W 20%
73055	R17-1 to 2	Resistor carbon, 2.2 megohm 1/2W 20%
73060	R18-1 to 2	Resistor carbon, 56,000 ohm 1/2W 20%
73049	R19-1 to 10	Resistor carbon, 220,000 ohm 1/2W 20%
73036	R20-1	Resistor carbon, 8200 ohm 1/2W 10%
73043	R21-1 to 2	Resistor carbon, 33,000 ohm 1/2W 10%
Part of		
25508B	R22-1	Control, bass, 3 megohm
25008	R23-A,B,C	"Volume", 1 megohm-2 megohm1 megohm
73039	R24-1 to 2	Resistor carbon, 15,000 ohm 1/2W 10%
73057	R25-1 to 3	Resistor carbon, 4.7 megohm 1/2W 20%
73054	R25-1 to 3	Resistor carbon, 1.5 megohm 1/2W 20%
73076	R27-1	Resistor carbon, 56,000 ohm 1/2W 20%
25800	R28-1 to 3	Controls, Mixer 500,000 ohms
73030	R29-1 to 2	Resistor carbon, $2700 \mathrm{ohm} \mathrm{1/2W} 10 \%$
73920	R30-1	Resistor, 2000 ohm 2W Wire Wound
73130	R31-1	Resistor carbon, 220 ohm 2W 10\%
73903	R32-1	Resistor, 15 ohm 1 W Wire Wound
73052	R33-1 to 2	Resistor carbon, 680,000 ohm 1/2W 20%
73017	R34-1	Resistor carbon, 220 ohm 1/2W 10%
25802	R35-1	Control-P.A. 10,000 ohm
73022	R36-1	Resistor carbon, 560 ohm $1 / 2 \mathrm{~W} 10 \%$
73910	R37-1	Resistor, 1/20hm 1W Wire Wound
Part of		
25508B	R38-1	Control Treble, 1 megohm
79002		Socket, tube 8 prong
79004		Socket, Wire record 3 prong
79005		Socket, Compartment light
79007		Socket, Phono AC
79010B		Socket, Lamp
79017		Socket, Microphone
79018		Socket, Phono
79051		Socket, Tube miniature
79048		Socket, Speaker with cable
79041		Socket, Tuning eye
79045		Socket, Loop
79046		Socket, Cutter
79049		Socket, Electrolytic Mounting
83803A		Speaker, 12' Electro-Dynamic
86016B	S2A,B,C,D	Switch, Band
86301A	S1	Switch, Push Button
86701A		Switch, Slide
88106		Terminal Test
89023	T-1	Transformer, power
89416A	T-2	Transformer, output, 8,000 to 3.2 ohms

$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	REF. SYMBOL	DESCRIPTION
40101C		Drive, Planetary
52019Y		Knob, Control-Gold (2)
52019 CU		Knob, Control-Mahogany (2)
52019BG		Knob, Control-Walnut (2)
52020BG		Knob, Control-Walnut (2)
52020 Y		Knob, Control-Gold (2)
52020 CU		Knob, Control-Mahogany (2)
52023 CU		Knob, Push Button-Mahogany (6)
52023BG		Knob, Push Button-Walnut (6)
52023Y		Knob, Push Button-Gold (6)
52035A-S		Knob, Dual Control-Statuary Bronze (1)
52035A-K		Knob, Dual Control-Brass (1)
52035A-Y		Knob, Dual Control-Gold (1)
54001		Lamp, Dial-T-44 (0.25 amp.)
58022A		Changer-Webster 56
57008		Miorophone, Dynamic Universal
57008-2		Microphone, base and handle
57008-1		Microphone Cable with Connector
58001-5		Recording Motor
58006		Turatable Recorder
59002		Needle, cutter
59001		Needle, pickup playback
63005B		Pickup, assembly
63027-2		Pickup, clip
63005-1		Pickup Arm Rest
63003		Pickup Cartridge Astatic L-71A (Playback)
63026		Pickup Cartridge, Shure P-30 (Phono)
66004		Plug, Phono Playback
66021		Plug, Phono AC
66019		Plug, Mike
66020		Plug, Speaker
69003C		Pulley, Idler-Recorder
69006A		Pulley, dial
73053	R1-1 to 5	Resistor carbon, 1 megohm $1 / 2 \mathrm{~W} 20 \%$
73008	R2-1	Resistor carbon, $39 \mathrm{ohm} 1 / 2 \mathrm{~W} 10 \%$
73018-1	R3-1	Resistor carbon, 270 ohm 1/2W 10%
73041	R4-1 to 3	Resistor carbon, 22,000 ohm 1/2W 10%
73021	R5-1	Resistor carbon, 470 ohm $1 / 2 \mathrm{~W} 10 \%$
73032	R6-1	Resistor carbon, 3900 ohm 1/2W 10\%
73025	R7-1 to 5	Resistor carbon, $1000 \mathrm{ohm} \mathrm{1/2W} 10 \%$
73014	R8-1 to 2	Resistor carbon, 120 ohm 1/2W 10%
73044-1	R9-1	Resistor carbon, 39,000 ohm 1/2W 10%
73047	R10-1 to 11	Resistor carbon, 100,000 ohm 1/2W 20%
73010-1	R11-1	Resistor carbon, 62 ohm 1/2W 10%
73042	R12-1 to 2	Resistor carbon, $27,000 \mathrm{ohm} 1 / 2 \mathrm{~W} 10 \%$

PHILCO PAGE 19-1

PHILCO CORP.

CIRCUIT DESCRIPTION

The circuit of the Model C4608 custom-built auto radio consists of a 7A7 r-f stage, a 7B8 converter, a 7A7 i-f stage, a 7B6 second detector and first audio, a 7A4 phase inverter, and two 7C5 tubes in pushpull in the output. The power supply is of the sixvolt non-synchronous vibrator type, using a 7Y4 fullwave rectifier.
An unusually high signal-to-noise ratio is achieved in this set by the use of a permeability-tuned r-f stage, coupled to the converter by a band-pass r-f transformer. This transformer is designed to give maximum transfer of signals in the broadcast band, while greatly attenuating all other frequencies. Permeability tuning of both r-f and oscillator stages provides the best possible sensitivity, selectivity, and stability. Both push-button and manual tuning utilize this markedly superior method.
Automatic volume control is provided by filtering the rectified voltage from the diode section of the second detector-first audio tube, and applying it to the grids of the r-f and converter stages.
A feature of the audio system is the continuously variable tone control, which consists of an inverse feed-back circuit built around the first audio stage.
The phase-inverter stage provides push-pull drive for the output tubes, by means of equal load resistances in the plate and cathode circuits of the inverter tube. One signal is taken from the plate, and the other, equal in amplitude but opposite in phase, is taken from the cathode. The push-pull output stage delivers a full five watts of audio power through the output transformer to the electro-dynamic speaker.

PHILCO TROUBLE-SHOOTING PROCEDURE

In this manual, the circuit is divided into four sections, with a schematic and chassis layout, showing test points, for each section. The trouble-shooting procedure for each section is outlined in a chart. Tests indicated by a large asterisk (*) provide sectional master checks, making it possible to eliminate each section as a source of trouble without going through its entire test chart. Wherever trouble is found (indicated by failure to get a "Normal Indication" on any test) it should be isolated by voltage and resistance checks of the parts associated with the point under test, and remedied before testing further.

CIRCUIT Eight-tube, superheterodyne FREQUENCY RANGE 540 to 1600 kc . INTERMEDIATE FREQUENCY

All components in the receiver circuit are symbolized and located as follows:

C-condenser	LS-loud speaker	T-transformer
I-pilot lamp	R-resistor	VB-vibrator
L-choke or coil	S-switch	Z-electrical assembly

100 -series components are in section 1 -the power supply. 200 -series components are in section 2 -the audio system. 300 -series components are in section 3-the i-f and second detector. 400 -series components are in section 4-the r-f and first detector.

Before starting the trouble-shooting procedure, the following steps are recommended:

1. Before connecting the receiver to a source of power, inspect both sides of the chassis. Make sure that all tubes are securely in their sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Connect the receiver to the power source (6.3 volts, d. c.), and ascertain that all the tube filaments are lighted. If the 7 Y 4 rectifier is observed to be defective, check the filter condensers (C100 A, B, and C) for short circuits before inserting a new tube.
3. Turn the volume control fully on and set the sensitivity control (shown in Figure 9, page 6) at maximum. Connect an antenna or a signal generator to the antenna receptacle, and ascertain that the receiver definitely does not operate properly.

MODEL C4608, Code 121;
PHILCO CORP. Mopar MODEL 802, Chrysler

TESTS TO ISOLATE TROUBLE WITHIN SECTION 1

With the exception of the first, make all measurements for this section with a high-quality volt-ohmmeter, using the applicable d-c range. All voltages given in this manual are average, and were measured with the volume control set at minimum.

NOTE: If the vibrator (VB100) is found to be defective, check ClOl and ClOO for shorts before inserting a new vibrator.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
Ammeter (0-30 amps, d-c) in series with power souurce.	9.2 amps	Defective power-supply components (isolate by following tests)
A to B-	215 volts	Defective 7Y4, VB100, C100, Ci01, T100.
C to B-	195 volts	Open R101, leaky Ci00B, C100C.
D $!0$ B-	180 volts	Open R102, leaky C100C.

Figure 1. Section 1 schematic.

Figure 2. Bottom view, showing Section 1 test points.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 2

For all tests in this section, use an audio signal. Connect the generator output lead through α condenser (.01 to .25 mf .) to the test points indicated; connect the generator ground lead to the receiver chassis ($B-$). Set the receiver volume control at maximum, and adjust the signal-generator output for a loud, clear signal on the first

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
E to B- (Remove 7A4)	Loud, clear signal from speaker.	Defective 7C5, T200, LS200: open R205; leaky C201.
F to B- (7A4 removed)	Loud, clear signal, same as previous test.	Defective 7C5. T200; leaky C202.
G to B- (7A4 removed)	Loud, clear signal.	Open C201.
H to B_{-}(7A4 removed)	Loud, clear signal.	Open C202.
J to B- (Replace 7A4)	Clear signal, louder than previous tests.	Delective 7A4, C200: open R202, R201.

Figure 3. Section 2 schematic.
TP-1623B

Figure 4. Bottom view, showing Section 3 test points.

SECTION 3

For the first two tests in this section, use an audio signal. For the last two, use a modulated $455-\mathrm{kc}$ signal. Connect the signal-generator output lead through a condenser (.01 to .25 mf .) to the test points indicated; connect the generator ground lead to the receiver chassis ($\mathrm{B}-$). Set the receiver volume control at maximum, and adjust the signal-generator output for a loud, clear signal on the first test.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
K to B- (audio sig.)	Loud, clear signal.	Defective 7B6; open R306, C304; shorted C305.
L to B- (audio sig.)	Loud, clear signal.	Open R307. C303: defective volume control (rotate through entire range for complete check.)
M to B- (455-kc. sig.)	Loud, clear signal.	Defective 7A7, Z301; open R302, R304; shorted C403 (see Section 4 for location.)
N to B- (455-kc. sig.)	Loud, clear signal.	Defective 2300.

Figure 5. Section 3 schematic.

Figure 6. Bottom view, showing Section 3 test points.

PHILCO PAGE 19-5
PHILCO CORP.

SECTION 4

1. Attach the positive lead of a 20,000 -ohms-per-volt meter to the receiver chassis, and the prod end of the negative lead through a 50,000 -ohm resistor to point S. Set the meter on a 10 -volt or similar range. Depress the "Dial" pushbutton, and rotate the tuning control through its entire range. Absence of voltage at any point indicates that the oscillator is not functioning. If so. check the components listed in the first test in the chart below
2. Set the volume and sensitivity controls at maximum. Proceed through the chart tests below, connecting the signal-generator output lead through a condenser (. 01 to .25 mf .) to the test points indicated. The "NORMAL INDICATION" in each test will be a loud, clear signal when the signal generator is tuned to the same fre quency as the receiver.

TEST POINTS	PUSH-BUTTON SETTING	POSSIBLE CAUSE OF ABNORMAL INDICATION
P to B -	"DIAL"	Defective 7B8, L403, L404A, or push-button switch; open R404, C405, C407, C408, C409.
P to $\mathrm{B}-$	pre-tuned, 1 to 5	Defective oscillator coils L401E to K, or push-button switches.
Q to B-	"DIAL"	Defective 7A7. Z400, L404A, L404C, or push-bution switch; open R402, R401 (rotate R401 through its entire range for complete check.)
Q 10 B -	pre-tuned, 1 to 5	Delective r-f coils L401 A to E, or push-button switches.
R to B --	"DIAL"	Defective L402, C404, L404A, L404C, or push-button switch.
R to B -	pre-tuned, 1 to 5	Defective r-f coils L401A to E, or push-button switches.

Figure 7. Section 4 schematic.
TP. 1623D

Figure 8. Bottom view, showing Section 4 test points.

MODEL C4608，Code 121；PHILCO CORP．Mopar MODEL 802，								
						$\begin{gathered} \mathrm{Chr} \\ \\ \dot{y} \\ \dot{8} \end{gathered}$		－
		\％	¢	¢	！	¢	¢	¢
			既					
						$\begin{aligned} & \text { 跑\| } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 咅 } \\ & \text { 置 } \end{aligned}$	
						T		

NOTE: All voltage, capacity, and resistance values shown are average. The voltages between B - (chassis) and other points indicated were measured with a 20,000 ohms-per-volt meter, with the volume control at minimum and the tuning control at 550 kc .

REPLACEMENT PARTS LIST

NOTE: Parts marked with an asterisk (*) are general replacement items, and the numbers will not be identical with those used on factory assemblies. Use
only the "Service Part No." shown in the parts list when ordering replacements.

PHILCO PAGE 19-9

Func-
tionally, both sets are identical, but there have been several parts changes in Code 122 which, because of their effect upon the characteristics and adjustment of the set, definitely require the correct substitution. These changes involve the parts listed below.

In Code 122, the sensitivity control is replaced by a fixed resistor; also, the i-f transformers and wave trap are replaced by units which use permeability tuning instead of trimmer-condenser tuning.

Physically, the alignment procedure remains the same, except that the transformers are of the K type; therefore, the primary must be adjusted from the bottom of the can, while the secondary is adjusted from the top.

We suggest that you examine the list below and order the new parts. We feel that these parts may be required in the course of warranty service.

SECTION 1

Reference Symbol	Description	Service Part No. (Code 122)	Service Part No. (Code 121)
L101	Chake, vibrator	32-4170	65-0389
	SECTION 2	.	
C200	Condenser, grid blocking, 005 mf .	45-3502	61-0179
C201	Condenser, grid blocking, 01 mf .	61-0120	61-0105
C202	Condenser, grid blocking, 01 mf .	61-0120	61-0105
C204	Condenser, plate by-pass, . 007 mf .	61.0127	61-0105
T200	Transformer, output	32-8316-1	65-0363
	SECTION 3		
Reference Symbol	Description	Service Part No. (Code 122)	Service Part No. (Code 121)
C304	Condenser, grid blocking, 005 mf .	45-3502	61-0179
C307	Condenser, tone compensation, 01 mf	61-0120	61-0105
R302	Resistor, cathode bias, 470 ohms	66-1473340	61-1683340
Z300	Transformer, lst i-f ...	32-4160	65-0365
Z301	Transformer, 2nd i-f ...	32-4161	65-0366

SECTION 4

L404	Manual-tuning-unit assembly	77-0666-2	77-0962
R401	Resistor, cathode bias, 220 ohms (replaces sensitivity control in Code 121)	66-1223340	67-0025
Z400	Transformer, r-f and i-f wave trap ..	32-4162	65-0421
Z401	Tuning-unit assembly, push-button (complete)	77-0657-1	77-0943

NOTE: On a small percentage of the first sets made, some difficulty may be encountered in keeping the i-f transformers aligned. If the radio is weak or the i-f transformers are far out of alignment, adjust the cores. If they seem to turn very easily, it will be necessary to replace the entire i-f transformer. This condition may occur only on some sets made prior to run \#4, for Model C-4608, Code 122 only.

TROUBLE SHOOTING

Section 2

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Turn the volume control to maximum, and the tone control fully counterclackwises: Adjust the oignal-gen Sor burput as requin wherebratio
If the NORAHETXDCAXION is obtained in
 thetere and correct the tooble in this serion.

STEP	$\frac{\text { nispone }}{y}$	NORMAL SMEITCATION
I		Lood, clear stenal with weak signal inpue.
	Br	Tqud, clear sigmal with strong signal inpur.
3	D	Foud, clear signal with weak signat input.
4	A	Loud, clear signal with weak signal input.

Listening Test: Distortion may be caused by shorted or leaky C201, C204, or C205, or by open R203 or R205.

* This part, located in another section, may cause abnormal indication in this section.

TROUBLE SHOOTING

Saction 3

Far the cests in this section yse an rfsignal generatmr, with modulaned output, set at 455 kc . Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Depress manual-tuning push button.
Turn the volume control to maximum, and the tone control fully counterclockwise.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4; if not, isolate and correct the trouble in this section.

Since the circuit location of test point A for this section is the same as that of test point B for Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	B	Loud, clear signal with moderate signal input.	Defective: 6BA6, Z301. Misaligned: Z301. Open: R300, R301, R302. Shorted: C302, C303, C304.
3	A	Loud, clear signal with weak signal input.	Defective: 6BE6*, Z300. Misaligned: Z300. Open: L403*.

[^0]
TROUBLE SHOOTING Section 4

For the tests in this section, with the exception of the oscillator tests, use an r-f signal generator, with modulated output. Connect the generator ground lead to the chassis, test point C; connect the output lead through a . 1 -mf. condenser to the test points indicated in the chart.

Turn the radio volume control to maximum, and the tone control fully counterclockwise.

If the "NORMAL INDICATION" is not obtained in step 1 (a), isolate and correct the trouble before making the test in step 1 (b).

Figure 4. Bottom View, Showing Sećtion 4 Test Points (locations of C404, WS1, 2, 3, 4, Z401. and Z402 are shown in figure 6)

STEP	TEST-POINT	SIC. GEN. FREQ.	RADIO TUNINC.	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDFCATION
1 (a)	A	1000 kc .	Manual. to signal.	Loud, clear signal with weak signal input.	Trouble in manual-tuning circuits; isolate by steps 2,3 , and 4 , and correct trouble before proceeding.
1 (b)	A	Tune to freq. of each button.	Push button. Depress each button.	Loud, clear signal with weak signal input.	Trouble in push-button-tuning circuits; isolate by steps 5,6 , and 7 .

MANUAL-TUNING TESTS

2	B	1000 kc .	Manual. Tune to signal.	Loud, clear signal with moderate signal input.	Defective: 6BEG. Open: R402. Trouble in oscillator circuit (step 3).
3	E to D Osc. Test (see note below).		Manual. Tune through range.	Negative 2 to 4 volts.	Defective: 6BE6, WS2(F). Open: L403, L402C, C406, C407, C408, R434. Shorted or leaky: C406, C407, C408.
4	A	1000 kc .	Manual. to signal.	Loud, clear signal with weak signal input.	Defective: GBAG, WS3(R), WS3(F), WSI(F), WS1(R), WS2(R). Open: L405, L402B, L402A, R400, R401, R402, R403, R405, C409, C404. Shorted or leaky: C409, C405, C404, C401.

PUSH-BUTTON-TUNING TESTS

5	B	Tune to freq. of each button.	Push button. Depress each button.	Loud, clear signal with moderate signal input.	Defective: WS1(F), WS1(R). Trouble in oscillator circuit (step 6).
6	E to D Osc. Test (see note below).		Push button. Depress each button.	Negative 2 to 4 volts.	Defective: WS2(F). Open or shorted: L401F, L401G, L401H, L401I, L401J.
7	A	Tune to freq. of each button.	Push button. Depress each button.	Loud, clear signal with weak signal input.	Defective: WS3(R), WS 3(F), WS1(F), WSI (R), WS2(R), Z400. Open: L401A, L401B, L401C, L401D, L401E. Mis- aligned: Z400.

OSCILLATOR TESTS (steps 3 and 6)

Connect positive lead of high-resistance voltmeter to test point D (pin 2, cathode of 6BE6); connect prod end of negative lead through 100,000 -ohm isolating resistor to test point E (pin 1 , osc. grid of $6 B E 6$). Use suitable meter range, such as $0-10$ volts. Proper operation of oscillator is indicated by negative voltage, 2 to 4 volts (measured with 20,000 -ohms-per-volt meter), throughout range of manual tuning, step 3 , and of push-button tuning, step 6 .

SETTING PUSH BUTTONS

Each adjusting rod controls ganged tuning cores for both aerial and oscillator circuits, so that only a single adjustment is required for a given frequency. The ganged tuning cores are adjusted by turning the small plastic knobs, numbered $1,2,3,4$, and 5 , on the front of the radio.

1. Use an r-f signal generator to furnish test signals at the approximate frequencies of the desired stations. Connect the generator ground lead to the chassis. Connect the output lead through a $30-\mathrm{mmf}$. condenser to the aerial receptacle; connect another $30-\mathrm{mmf}$. condenser between the aerial receptacle and the chassis
2. Turn on the power, set the volume control to maximum, and turn the tone control fully counterclockwise.
3. Starting with the lowest frequency desired, set the signal generator, depress button No. 1 and adjust knob No. 1 for maximum output. Repeat the pro-
cedure for buttons 2, 3, 4, and 5 .
4. After the radio is installed in the car, and the aerial connected, allow a fifteen-minute warm-up period, then readjust the tuning for each button while listening to the station for which the adjustment is being. made.

©John F. Rider

		ヘでて	V	ς
	$\begin{array}{r} 28 \mathrm{EryOA} \mathrm{MOT} \\ \quad 28 \mathrm{e}, \mathrm{jOA} \text { ON } \\ \hline \end{array}$	A $\angle S$ ¢	I	\ddagger
 ＇00LL＇E015＇zolo＇1010＇0015 ：pantoys 001L ：uado		${ }^{\wedge} 0<2$	d	\mathcal{E}
＇IOIT＇00IT＇00IS＇00Id ：Uado		s9＇9	${ }^{\text {g }}$	乙
		$\begin{array}{r} \text { A9'9 } \\ \text { AटIZ } \\ \hline \end{array}$	$\stackrel{\mathrm{V}}{\mathrm{V}}$	1
NOILVIICNI TVWYONGV 30 3Sn＊S 3lalssod	NOILVOIANI 7VWYON日	NOIIVJIONI TVWYON	$\begin{aligned} & \text { INIOd } \\ & \text { LS } 1 \mathrm{~d} \end{aligned}$	d3 ${ }^{\text {d }}$

SOャD	＇7ndino unumixdum dof tsn！py	Tpub！s 07 əunl fonuph
－ษع0ß．）	indino unuexpur rof isn！py	כX 089 ［PDUuD
－YOOßDL	Pndıno unumulu rof fsn！py	
－yooc．l		
— giog.J.	nndino unuurxdu 	
	SNOILDMELSNI 7VIכads	ONINO1
	oiovy	

©John F. Rider

OJohn F. Rider

©John F. Rider

ALIGNMENT PROCEDURE

DIAL POINTER - Set tuning-core gang to full-mesh position. Adjust dial pointer to coincide with index
mark, to left of " 55 ."
OUTPUT METER - Connect across voice-coil circuit.
SIGNAL GENERATOR - Connect ground lead to chassis; connect output lead as indicated in chart. Use modulated output.
RADIO CONTROLS - Set volume control to maximum, and tone control fully clockwise. Set tuning

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTIONS TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETIING } \end{aligned}$	$\begin{aligned} & \text { PUSH BUTTON } \\ & \text { AND DIAL } \end{aligned}$	SPECIAL INSTRUCTIONS	
1	Through .05 mf . condenser to mixer grid (pin 7) of 6BE6.	455 kc .	Manual. 1600 kc .	Adjust, in order given. for maximum output. (TC301A and TC300A are reached through holes in bottom of $\mathrm{i} . \mathrm{f}$ transformers.)	TC301B - 2nd i.f sec. TC301A - 2nd i.f pri. TC300B - 1 st iff sec. TC300A-1st i.f pri.
2	Through .05 mi. condenser to aerial receptacle.	455 kc.	Any push but ton except man ual.	Adjust for minimum output.	TC400-i.f trap
3	Through dummy aerial to aerial receptacle.	580 kc .	Manual. 580 kc .	Adjust for maximum. while rocking tuning control.	TC404 - osc. padding
4	Same as step 3.	1400 kc .	Manual. Tune to signal.	Adjust. in order given, for maximum output.	$\begin{aligned} & \text { C407A }- \text { aerial (series) } \\ & \text { C407B }-\mathrm{r} \cdot \mathrm{i} \text { (shunt) } \end{aligned}$
5	Repeat steps 3 and 4 until no further improvement is obtained.				
6	After reinstalling radio in car, with aerial connected, depress manual push button, and tune in weak station near 1400 kc .; then adjust aerial series trimmer, C407A. for maximum output.				

TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows
Section 1-the power supply
Section 2-the audio circuits
Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits
Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The trouble-shooting procedure given for each section inchassis, showing the locations of the test points and the components of that section.
In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire chart.
Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.
After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring
circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

1. Inspect both the top and the bottom of the hassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, blown fuse, or other obvious indications of trouble.
2. Measure the resistance between B+ (pin 7 of 6 X4 rectifier) and the chassis, test point C . When the ohmmeter test leads are connected in the proper polar-
ity, the highest resistance reading will be obtained. If the reading is lower than 2775 ohms, check condensers C105A and C105B for leakage or shorts.

NOTE: The resistance value above, which is much lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 are performed. 3. If the fuse is blown, check the vibrator before the buffer condenser, C104, before installing a new vibrator.

SETTING PUSH BUTTONS

The adjustments are made by removing the push-button caps
and turning each of the adjusting rods and turning each of the adjusting rods. Each rod control ganged tuning cores for both aerial and oscillator circiuts, so
that only a single adjustment is requited for a given frequency. Use an r-f signal generator to furnish test signals at approximate frequencies of the desired stations. Connect the
and approximate frequencies of the desired stations.

1. Turn on the power, and allow the radio to warm up
for 15 minutes. Set the volume control for a moderate level for 15 minues Set the volume control for a moderate leve
2. Starting with the lowest frequency desired, set the signal
generator, depress PB-5 (fifth from left) and generator, depress PB-5 (fifth from left), and adjust the rod for maximum output. Repeat the procedure for each remainin The frequg fom nigh to lef.

PUSH BUTTON (Left to right, from front)	FREQUENCY RANGE
PB-1	$850-1600 \mathrm{kc}$
PB-2	$750-1400 \mathrm{kc}$.
PB.3	$700-130 \mathrm{kc}$.
PB.4	$650-115 \mathrm{kc}$.
PB.5	$540-1000 \mathrm{kc}$.

TP.4734E
Drive.Cord Installation Details

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before connecting the radio to a source of power.

John F. Rider

Section 1 - Power Supply

Make the tests for this section with a d-c voltmeter, connecting the leads between the chassis and the test points indicated in the chart. The voltage readings given were taken with a $20,000-$ ohms-per-volt meter, with an input voltage of 6.6 v , d.c. to the radio.

Depress the manual push button; set the volume control to minimum, and tone control fully clockwise.

Follow the steps in the order given. If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

TP-4734A
Bottom View, Showing Section 1 Test Points (location of CIO3 shown in figure 6)

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	205v		Trouble in this section. Isolate by the following tests.
2	B	6.4 V	No voltage Low voltage	Open: F100, L100, S100, L101. Leaky: C100, C101, C102. C103. Weak battery.
3	D	260v	No voltage Low voltage High voltage	Defective: VB100†, 6X4. Open: T100. Shorted: T100, C104, C105A. Defective: 6X4, VB100†. Leaky: C105A, C104. Shorted: C105B, T100. Open: C105A, T100. Open: R102. T200*, R207*.
4	E	245v	No voltage Low voltage High voltage	Open: R102. Shorted: ClosB. Leaky: Cl05B. Changed resistance: R102. Open: R103, R207*.
5	A	205v	No voltage Low voltage	Shorted: C106. Open: R103. Leaky: C106. Changed resistance: R103.
Listening Test: Abnormal hum may be caused by open C105A, C105B, or C104.				

-This part, located in another section, may cause abnormal indication in this section.
\dagger Hil the vibrator is defective, check the buffer condenser, C104, before installing a new vibrator.

Section 2 - Audio Circuits

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Depress the manual push button; set the volume control to maximum, and the tone control fully clockwise.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

```
TROUBLE SHOOTING
```


Bottom View, Showing Section 2 Test Points (locations of C207 and C208 shown in figure 6)

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	B	Clear signal with strong signal input.	Defective: 6AQ5. Open: T200, LS200, L200, R206. Shorted: T200, C206, C207, C204, C202.
3	D	Loud, clear signal with weak signal input.	Defective: 6AV6 (triode section). Open: C204, R204. Shorted or leaky: C203 (rotate R203 through range).
4	A	Loud, clear signel with weak signal input.	Open: R200 (rotate through range), C200.
Listening Test: Distortion may be caused by shorted or leaky C200, C204, C205, or open R202, R205.			

Section 3 - I-F, Detector, and A-V-C Circuits TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the chassis, test point C ; connect the output lead through a . 1 -mf. condenser to the test points indicated in the chart.

Depress the manual push button; set the volume control to maximum, and the tone control fully clockwise.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

Since the circuit location of test point A for this section is in Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts

Bottom View, Showing Section 3 Test Points are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	B	Clear signal with weak signal input.	Defective: 6AV6 (diode section), 6BA6. Misaligned: Z301. Open: L301A, L301B, R301, R300. C301A, C301B, R303. Shorted: C301C, C303, C301A, C301B, C301D, C300B.
3	A	Same as step 1.	Defective: 6BE6*. Misaligned: Z300. Open: L300A, L300B, L404*. C407B'. Shoried: C300A. C300B.

*This part. located in another section, may cause abnormal indication in this gection.

Section 4 - R-F and Converter Circuits TROUBLE SHOOTING

For the tests in this section, with the exception of the oscillator tests, use an r-f signal generator, with modulated output. Connect the generator ground lead to the chassis, test point C ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully clockwise.

Set the push buttons, tuning control, and signalgenerator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step $1(a)$ and (b), isolate the trouble by following the remaining steps.

Bottom View, Showing Section 4 Test Points (location of $\mathbf{L 4 0 3}$ shown in figure 6)

STEP	$\begin{aligned} & \text { TEST } \\ & \text { PONT } \end{aligned}$	SIGNAL GEN. FREQUENCY	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL JNDICATION
1 (a)	A	1000 kc .	Manual. Tune to signal.	Loud. clear signal with weak slgnal input.	Trouble in manual-tuning circuits. Isolate by steps 2 and 3, and correct trouble before proceeding.
1 (b)	A	Tune to freq. of each push button	Depress each station push button.	Same as step 1 (α).	Trouble in push-button-tuning circuits. Isolate by steps 4 and 5.
2	(Osc. test: see note below.)		Manual. Tune through range.	$\begin{aligned} & \hline \begin{array}{l} \text { Negative } \\ \text { volts. } \end{array} \end{aligned}$	Defective: 6BE6 (osc. section). Open: R403. C403. L404. L401C. C404. C405, PB-6. Shorted: L404, L401C. C404. C405.
3	A	1000 kc.	Manual. Tune to signal.	Same as step 1 (a).	Defective: 6BA6. Open: L403. L401A. L401B, R400, R401, C401. PB.6, C408. Shorted: C408, C401, L401A, L401B.
4	B (Osc. teat; note below.)		Depress each sta. tion push bulton.	Negative 1.1 to 1.4 volts.	Open: Osc. coil or switch associated with any push button. Shorted: Osc. coil associated with any push button.
5	A	Tune to freq. of each push button	Depress each station push button.	Loud. clear signal with weak signal in. put.	Open: L400B, C400B, C407B, ant. coil associated with any push button. Shorted: L400B, C407A, ant. coil associated with any push button.

OSCILLATOR TEST

Connect the positive lead of a high-resistance voltmeter to the chassis, test point C; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 1) of the GBE6, test point B. Proper operation of the oscillator is indicated by negative voltages of approximately the values given in the chart (measured with 20,000 -ohms-per-volt meter), throughout the tuning range.

TROUBLE SHOOTING
 Section 1

Make the tests for this section with a d-c voltmeter, connecting the leads between test point \mathbf{B} ($\mathbf{B}-$) and the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, with an " A "-supply voltage of 6.6 volts, d.c.

Turn on the power, and set the sensitivity control to maximum (clockwise).

Turn the volume control to minimum, and the tone control fully counterclockwise.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2; if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	$\begin{aligned} & \hline \mathbf{A} \\ & \mathbf{B} \end{aligned}$	$\begin{aligned} & 165 \mathrm{v} \\ & 6.6 \mathrm{v} \end{aligned}$		Trouble in this section. Isolate by the following tests.
2	B	6.6 v	No voltage Low voltage	Open: F100, L100, L101, S100. Shorted: C100, C101, C102, C103, C104. Weak battery.
3	D	220v	No voltage Low voltage High voltage	```Defective: VB100, 7Y4. Shorted: C105, C106A, T100. Open: T100. Defective: 7Y4. Open: C106A. Leaky: C105, C106A. Open: T200*, R102, R211*.```
4	E	200v	No voltage Low voltage	Shorted: C106B, R102. Changed value: R102. Leaky: C106B.
5	A	165v	No voltage Low voltage	Open: R103. Shorted: C106C. Leaky: C106C. Changed value: R103.

* This part, located in another section, may cause abnormal indication in this section.

TROUBLE SHOOTING

Section 2

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Turn the volume control to maximum, and the tone control fully counterclockwise. Adjust the signalgenerator output as required for each step.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3. If not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION
1	A	Loud, clear signal with weak signal input.
2	B $\substack{\text { Remove } \\ 7 A 4 \text {) }}$	Clear signal with strong signal input.
3	D	Same as step 2.
4	E (Replace 7 A 4)	Loud, clear signal with moderate signal input.
5	A	Same as step 1.

POSSIBLE CAUSE OF ABNORMAL INDICATION
Trouble in this section. Isolate by the following tests.
Defective: 7C5, LS200. Shorted or leaky: C209, T200. Open: R211, R209, T200, C207.
Defective: 7C5. Open: T200. Shorted: T200, C206.
Open: R207, R206, R208. Shorted or leaky: C204, C205, C203 (rotate R204). Defective: 7A4. Defective: 7B6, R200 (rotate through range). Open: R200, R201, C201, R205. \mathbf{l}

R201, C201, R205.

[^1]
TROUBLE SHOOTING Section 3

For the tests in this section, use an r-f signal generator, with modulated output, set at 265 kc . Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Turn the volume control to maximum, and the tone control fully counterclockwise. Set the sensitivity control to maximum.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4; if not, isolate and correct the trouble in this section.

Since the circuit location of test point A for this
 section is the same as that of test point B for Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	B	Loud, clear signal with moderate signal input.	Defective: 7A7, 7B6 (diode section). Misaligned: Z301. Open: Z301 pri. or sec., C301A, C301B, R301, R300, R406* (rotate through range), R303. Shorted: Z301 pri. or sec., C301A, C301B, C300B, C303, C304, C305.
3	C	Loud, clear signal with weak signal input.	Defective: 7B8.* Misaligned: Z300. Open: Z300 pri. or sec., C300A, C300B. Shorted: C405, ${ }^{\text {Z }} 3300$ pri., C300A, C300B.

* This part, located in another section, may cause abnormal indication in this section.

TROUBLE SHOOTING Section 4

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator, with modulated output. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Turn the volume control to maximum, and the tone control fully counterclockwise. Set the sensitivity control to maximum.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate the trouble by following the remaining steps.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIC. CEN. FREQ.	RADIO TUNINC	NORMAL INDICATION	possible cause of abnormal INDICATION
1	A	1000 kc .	Tune to signal.	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	B	1000 kc .	Tune to signal.	Loud, clear signal with moderate signal input.	Defective: 7B8. Shorted: L400B, C404, C405. Trouble in oscillator circuit (step 3)
3	D to E Osc. Test (see note below)		Tune through range.	Negative 2 to 4 volts.	Shorted or leaky: C411, C410, C407, C408, C409. Open: C411, L400D, C407, R404, R405, R406. L400C. C408, C410. Shorted: L400C. L400D.
4	A	1000 kc .	Tune to signal.	Loud, clear signal with weat signal input.	Defective: 7A7. Open: L401, R400, R401, R402, C403, R403, L400B, L400A. Shorted or leaky: C403, C412, C404.

OSCILLATOR TEST

Connect positive lead of high-resistance voltmeter to test point E (pin 7, cathode of $7 \mathrm{B8}$); connect prod end of negative lead through 100,000 -ohm isolating resistor to test point D (pin 4, osc. grid of 7 B 8). Use suitable meter range, such as $0-10$ volts. Proper operation of oscillator is indicated by negative voltage, 2 to 4 volts (measured with 20,000 -ohms-per-volt meter), throughout tuning range.

REPLACEMENT PARTS LIST

NOTE

Part numbers marked with an asterisk (*) are general replacement items. These numbers may not be tdentical with those on factory assemblies; also, the electrical values of some replacement items may differ from the valuen indjcated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

©John F. Rider

DIAL POINTER-Turn manual tuning knob until pointer stops at high-frequency end of dial; if pointer does not coincide with index mark at 1600 kc ., carefully bend it to the correct position.
OUTPUT METER-Connect across voice-coil terminals
SIGNAL GENERATOR-Connect ground lead to chassis; connect output lead as indicated in chart. Use modulated output

RADIO CONTROLS-Set volume and sensitivity controls to maximum. Set tone control for maximum signal (approximate center of range).

TROUBLE-SHOOTING Procedure

SETTING PUSH BUTTONS

Any one of the five station push buttons may be set for any frequency within the broadcast band.

1. Turn on the power, and allow the radio to warm up for fifteen minutes.
2. Pull off the five uppermost push-button knobs (the lower knob selects manual tuning), thus exposing the shafts which operate the tuning mechanism.
3. Depress one of the shafts until it locks in, then rotate the shaft to tune in the desired station; turning the shaft causes the dial pointer to move, indicating the frequency to which the circuits are tuned.
4. Repeat the procedure for each button. Replace the knobs.

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in dure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.
In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain "NORMAL INDICATION" in any given step indicates under test.
defect is isolating the trouble to a single stage, the defeasuring tube by: first, testing the tube; second, measuring tube electrode voltages; third, measuring
circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before test ing further

OUTPUT LEVEL-During alignment, adjust signal-generator output to maintain output-meter indication below 1 volt.
DUMMY AERIAL-For steps 2, 3, and 4, either of two dummy-aerial connections should be used: (1) connect generator output lead through $22-\mathrm{mmf}$. condenser to shielded aerial lead (Philco Part No 45-1468-1) plugged into aerial receptacle; (2) connect output lead through $22-\mathrm{mmf}$. condenser to aerial receptacle, then connect $30-\mathrm{mmf}$. condenser from receptacle to chassis.
IMPORTANT: The above instructions for the dummy aerial must be carefully followed if the radio is to perform at its best after being reinstalled in the car.

Top View, Trimmer and Tuning-Core Locations
(dotted lines indicate tuning screws located at bottom of chassis)

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $\mathrm{B}+$ (pin 7 of Y4 rectifier tube) and the radio chassis, test point C. with the ohmmeter polarity such that the highest resistance reading is obtained. If the reading is lower than 2700 ohms, check condensers C106A and C106B for leakage or shorts. The resistance value above, which is much lower than normal, is not intended as a quality check of these condensers; the value given is
the lowest at which the rectifier will operate safely the lowest at which the rectifier will operate safel
If the fuse is open, check the vibrator before in stalling a new fuse; if the vibrator is defective, check the buffer condenser, C105, for leak or short.
© John F. Rider

s-4626, s-4627, studebaker PHILCO CORP.

ALIGNMENT CONNECT THE SIGNAL-GENERATOR output lead as follows: For the i-f alignment (the first step in the chart), connect through a $05-\mathrm{mf}$. condenser to the aerial connector. For the r-f alignment (all steps after the first), inject the signal through a dummy aerial consisting of a $20-\mathrm{mmf}$. condenser in series with an aerial lead (Part No. 95-0181) plugged in to the aerial receptacle. If an aerial lead is not available, connect a $30-\mathrm{mmf}$. condenser from the aerial receptacle to ground, and inject the signal through the $20-\mathrm{mmf}$. condenser alone. The foregoing instruction must be carefully followed if the receiver is to give its best performance after being reinstalled in the car. CONNECT THE OUTPUT METER between the voice-coil lug on the speaker and the receiver chassis.	CEDURE THE RECEIVER CONTROLS as foll the volume and sensitivity contro r maximum signal output (approxi THE SIGNAL-GENERATOR OUTPU meter needle near center scale, eter. REINSTALLING THE RECEIVER in arke the following adjustments: signal strength on α weak station trol for low sensitivity, if the rece ion reception, or higher sensitivity ation reception desired. The low will be the noise and interference	at maxim ely the as alignm ng the l ear and et the ear 1400 is to b epending the sens kup.	Set the of its ra progress trange o onnecting trimme Set the s ed mainl the degre y can be
	SPECIAL INSTRUCTIONS Ground pin 4 of the 7B8. Adjust for maximum in order as numbered, and then repeat procedure.	DIAL SIG. GEN. 265 kc	TINGS RECEIVER 540 kc.
	Remove the ground from pin 4 of the 7B8. Adjust for maximum.	1600 kc.	1600 kc.
	Adjust for maximum.	1400 kc .	1400 kc .
	Adjust for maximum. Final adjustment to be made after installation in car. with aerial connected.	1400 kc.	1400 kc.
	Adjust for maximum while rocking tuning control back and forth across signal.	580 kc.	580 kc.
	Repeat all steps after the first.		
Chassis view, showing trimmer locations.			

MAKE TEST NO. 1
-IGNI 7甘W\&ON., 24ł \$1 CATION' for this test is obtained, proceed to Test No. 1 in the next section. 4бnodyt әnu!tuos 'tou \$1 the chart to isolate and remedy the trouble in this section.

Bottom view, showing Section 2 test points.

MODELS S-4626, S-4627, Studebaker

TESTS TO ISOLATE TROUBLE WITHIN SECTION 4

 through a condenser (. 01 to .25 mf .) to the test points indicated; connect the ground lead to the receiver chassis. Set the receiver volume control at maximum, tune the signal generator and receiver to 1000kc ., and adjust the generator output for a loud, clear signal.

Section 4 schematic.

MAKE TEST NO. 1
If the 'NORMAL INDICATION" for this test is not obtained, continue through the chart to isolate and remedy the trouble in this section.

PHILCO CORP.

CIRCUIT DESCRIPTION

The circuit of the S4626 consists of a 7A7 r-f ampli fier, a 7B8 converter, a 7A7 i-f amplifier, a 7B6 second detector-first audio, and an audio power amplifier using two 7C5's in push-pull, driven by a 7A4 phase inverter. The power supply is of the six-volt nonsynchronous vibrator type, using a 7 Y 4 zectifier.

The aerial innut circuit is designed fir maximum interference elimination, without sacrifice of signal strength. Permeability tuning, controlled by a pantograph tuning unit, is used for both the r-f and oscillator stages. This method of tuning assures maximum sensitivity, selectivity, and stability for this type of receiver. A sensitivity control is pro-

SECTION 1

Reference No. Description Service Part No.
C100 Condenser, 5 mf . 61-0137*
C101 Condenser, 250 mmi. 60.10245307*

C104 Condenser, . 5 mf . 61-0137*
C105 Condenser, 250 mmf 60.10245307*
C106 Condenser, . $005 \mathrm{mf} . \quad 61.0153^{*}$
 C107A: condenser, 20 mf - Part of C107 $\begin{array}{lr}\text { C107B: condenser, } 10 \mathrm{mf} & \text { Part of } \mathrm{C} 107 \\ \text { C107C: condenser, } 5 \mathrm{mf} & \text { Part of } \mathrm{C} 107\end{array}$ Flo0 Fuse . Lamp, pilot \quad 45.2.
$\begin{array}{ll}1100 & \text { Lamp, pilot } \\ \text { L100 } & \text { Choke, "A" }\end{array}$ \qquad $\square \quad 3$ 34.2064* L101 Choke, vibrator 65.0151 $\begin{array}{llll}\text { R100 } & \text { Resistor, } 100 \text { ohms } \\ \text { R101 } & \text { Resistor, } 100 \text { ohms }\end{array}$ $\begin{array}{lll}\text { R101 } & \text { Resistor, } 100 \text { ohnis } \\ \text { R102 } & \text { Resistor, } 1,000 \text { ohms } & 66-1104340^{*}\end{array}$ $\begin{array}{lll}\text { R103 } & \text { Resistor }, \text {, 4,700 ohms } & 66-2474340^{*} \\ \text { R104 } & \text { Resistor, } 27,000 \text { olims } & 66.3274340^{*}\end{array}$
$\begin{array}{lll}\text { T100 Transformer, power } & \text { Vibrator } & 65-0358^{*} \\ \text { VB100 }\end{array}$VB100Vibrator

SECTION 2
C200 Condenser, $004 \mathrm{mi} . \quad$. $\quad 61.0129^{*}$
C201 Condenser, 05 mf . $61-0170^{*}$
C202 Condenser, $05 \mathrm{mf} \quad 61-.0170^{*}$C203 Condenser, 20 mf . Part of C107C204 Condenser, . 01 mf . 61.0124*$\begin{array}{ll}\text { L200 } & \text { Field, speaker } \\ \text { LS200 } & \text { Spenker }\end{array} \quad$ Part of LS200
R200 Resistor, 10 megs … 66-6103340*

R202 Resistor, 220,000 ohms … 66-4223340*
$\begin{array}{lll}\text { R203 } & \text { Resistor, } 470,000 \text { ohms } & 66.4473340^{*} \\ \text { R204 } & \text { Resistor, } 470,000 \text { ohms } & 66.4473340^{*}\end{array}$
R205 Resistor, 330 ohnas $\quad 66.1334340^{*}$
SECTION 3

C302	Condenser, .05 mf. - . . . 61 -0122*
C303	Condenser, . $05 \mathrm{mf}$. . 61.0122^{*}
C304	Condenser, .05 mf. 61.0122^{*}
C305	Condenser, 01 mf . $\quad . \quad 61.0120^{*}$
C306	Condenser, 25 mf .
C307	Condenser, . $07 \mathrm{mf}$. . $61-0152^{*}$
C308	Condenser, $100 \mathrm{mmf}$. 60-10105407**
C309	Condenser, . $003 \mathrm{mf}$. - $61-0174 *$
R 300	Resistor, 150 olims - . . . \quad 66.1153340*
R 302	Resistor, 1 meg. 66.5103340^{*}
R 303	Control, volume, 350,000 ohms $\quad \begin{aligned} & 33.5522 * *\end{aligned}$
R304	Resistor, 10 megs. $\quad 66.6103340^{*}$
R305	Resistor, 470 ohms \quad 66-1473340**
R306	Resistor, 220,000 ohms .- 66-4223340**
R 307	Control, tone, 4 megs. - . . - -
R308	
Z300	Transformer, 1st i-f \quad 65-0352
	C300A: condenser, trimmer - Part of Z3300
	C300B: condenser, trimmer Part of Z300
Z301	Transiormer, 2nd i-f .-. 65.0410
	C301A: condenser, trimmer Part of Z301
	C301B: condenser, trimmer Part of Z301
	C301C: condenser
	C301D: condenser

SECTION

C400	Condenser, trimmer aerial	63-0053
C401	Condenser, . 05 mi .	61-0122*
C402	Condenser, . 05 mf .	61-0122*
C403	Condenser, 250 mmf .	60-10245307*
C404	Condenser, 100 mmf .	60-10105407*
C405	Condenser, trimmer	Part of Z400*
C406	Condenser, 05 mf .	61.0122*

vided (identified in figure 9, page 6), which consists of a variable resistor in the common cathode circuit of the converter and i-f stages. This should be adjusted for lower sensitivity in areas where most reception is from local stations, in order to minimize noise pickup.

The S4626 uses an intermediate frequency of 265 kc.

Two features of the audio system are the tone control, which is an inverse feed-back circuii built around the first audio amplifier, and the push-pull output stage, which delivers a full five watts of audio power to the dynamic speaker.

SECTION 4 (Conłinued)

MODELS S-4626, S-4627, Studebaker
CIRCUIT
FREQUENCY RANGE
. Eight-tube, superheterodyne
INTERMEDIATE FREQUENCY
. 540 to 1600 kc .
POWER INPUT 265 volis. 8.8 amperes, d.c.
PHILCO TUBES......7A7(2), 7B8, 7B6, 7A4, 7C5(2), 7Y4
AERIAL. Retractable-\$ip, Philco Part No. 91-0230

The dial scale on the S-4627 is a fluorescent type to match the panel indicators of the 1947 cars. The dial pointer and cam assembly is different thus giving a new part number to the tuning assembly which otherwise is the same. The " A " lead is dressed to the left side of the radio case instead of the right side for convenience to the new position of the ignition switch. A clip is provided on the side of the case to hold the fuse holder and prevent it from rattling against the set. The receiver is mounted in the same position as in the 1946 car, but hook bolts of a new design are provided to fit the installation.

The suppression material is different and complete information on the suppression of ignition interference is given in the installation instructions with the radio.

SPECIFICATIONS

IMPORTANT

The aerial and aerial lead-in form part of the r-f tuning circuit. When testing or aligning this receiver on the bench it is important that an aerial dummy load of equal capacity be used.

TROUBLE-SHOOTING PROCEDURE

This service manual provides a logical troubleshooting procedure for the S4626, which will facilitate the isolation of most of the faults that may be encountered. The circuit is divided into four sections, with a schematic and chassis layout, showing test points, for each section. The trouble-shooting procedure is outlined in a chart for each section. The first test in each chart is a sectional master check, making it possible to eliminate the section under test as a source of trouble without going through its entire chart procedure.

Wherever trouble is indicated (by failure to get a "Normal Indication" on any one test) it should be isolated by voltage and resistance checks of the parts associated with the point under test, and remedied before testing further.

PRELIMINARY CHECKS

The following preliminary checks are recommended:

1. Carefully inspect both sides of the chassis. Make sure that all the tubes are secure, and look for bad connections, burned resistors, or other mechanical faults.
2. Check the fuse, and connect the receiver to a source of power (6.3 volts, d.c.). Look for unlighted tube filaments, overheated resistors (smoke, sweating, etc.), and listen for the hum of the vibrator.
3. Check the tubes and the vibrator. WARNING: If the 7 Y 4 is defective, check Cl 07 for shorts before inserting a new tube. If the vibrator is defective, check Cl06 for a short before inserting a new vibrator.

New part numbers have been given to the following items and apply only to the $\mathrm{S}-4627$ receivers,

SECTION 4

Reference	Model S-4627
Number Description	Service Part No.
C400 Condenser, trimmer	31-6472
Z400 Pantograph tuning assembly	77-0970-1
MISCELLANEOUS	
Bezel assembly	
Dial	27-5923
Set mounting parts	
Bolt, hook	56-3740
Tuning-unit parts	
Pointer and cam assembly	76-2482

The following additional parts are supplied with the Model S-4627:
Set mounting parts
Nut, hex mounting . 97-0229FA3
Suppression parts

Condenser, ignition-coil	30-4007-1
Ground strap, heater-cable	76-2505
Bolt, heater-cable-clamp	1W10636FA3
\#8 lock washer	IW35046FAI
Nut, heater-cable clamp-bolt	1W19988FA3
Ground strap, battery-cable	76-2557
Ground strap, windshield-wiper-motor	76-2556

Suppresgion parts in the Model S-4626 list that are not used in Model S-4627 are:

Distributor filter assembly	77-0947
Strap, fender-ground	77-0966
Strap, ground	77-0336

PHILCO TROUBLE-SHOOTING PROCEDURE

In this manual, the receiver circuit is divided into four sections, as shown in figure 1. One test point is designated for each section, as shown in fizure 2. Normal indications, secured when checking these points, eliminate the section under test as α source of trouble. Isolation of the faulty part is accomplished by testing in the order shown in the sectional test charts. A high-quality signal generator and volt-ohmmeter, an ammeter ($0-30$ amperes, d.c.), and a 6.3 -volt d.c power source are required. The voltage
readings shown were taken with a 20.000 -ohms-per-volt meter.
To localize trouble, connect the receiver to the 6.3-volt d.c power source, and turn the receiver volume control to maximum; see that all tube filaments are lighted; then proceed in the order given in the following chart. When abnormal indications appear, make voltage and resistance checks of the circuit under test. Remedy any defect encountered before proceeding with the next step.

TESTS TO LOCAlize trouble to one section

SECTION	TEST	NORMAL RESULTS
1	Place ammeter in series with power source and check current drain. Measure voltage between point 1 and chassis (C).	Approximately 8.3 amps. 235 volts.
2	Apply audio signal between point 2 and chassis, through a condenser (0101 to 25 mf .).	Loud. clear signal from speaker.
3	Apply a weak, modulated r-f signal (455 kc .) between point 3 and chassis, through a condenser (01 to .25 mf .).	Loud, clear signal.
4	Turn tuning condenser to half-meshed position. Apply weak, modulated r.f signal between point 4 and chassis, through a condenser (.01 to .25 m .). Tune signal generator until the siqnal is heard in the speaker.	Loud, clear signal.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 1

With the exception of the first, make all measurements for this section with a volt-ohmmeter, using the applicable d.c range. The voltages given were taken with the set operating and the volume control set at minimum.

TEST POINTS	NORMAL READING	POSSIBLE CAUSE OF ABNORMAL READING
Connect ammeter (0.30) in series with power source.	8.3 amps.	Excessively high or low current indicates defective VB100. T100. C103. or 7Y4.
A to C	250 volts	Defective 7Y4 or Cl04.
B is C	235 volts	Defective C104. onen R102, or shorted C202 (see Section 2 for location).

Figure 3. Section 1 schematic.

Figure 4. Bottom view, showing Section 1 test poinis.
TP-435F

TESTS TO ISOLATE TROUBLE WITHIN SECTION 2

For all tests in this section, use an audio signal. Connect the generator output lead through a condenser (. 01 to .25 mf .) to the points indicated; connect the ground lead to the receiver chassis (C). Set the receiver volume control at maximum and adjust the signalgenerator output for a loud, clear signal.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
D to C	Loud, clear signal from speaker.	Defective 7C5. T200, LS200, C205, or C206.
E to C	Loud, clear signal.	Open C205.
F to C	Clear signal, noticeably louder than preceding test.	Defective 7B6, or open R203. R202, or R406.
G to C	Loud, clear signal, same as preceding test.	Open C200, or defective R200 (rotate R200 through its entire range for complete check).

Figure 5. Section 2 schematic.

Figure 6. Bottom view, showing Section 2 test points.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 3

For all tests in this section, set the signal generator at 455 kc ., with modulation on. Connect the generator output lead through a condenser (. 01 to .25 mf .) to the points indicated; connect the ground lead to the receiver chassis (C). Set the receiver volume control at maximum and adjust the signal-generator output for a loud, clear signal.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
H to C	Loud, clear signal from speaker.	Defective 7A7 or Z30I, open R300, R302, or R404, or shorted C406.
J to C	Loud, clear signal.	Defective or misaligned 2300.

Figure 7. Section 3 schematic.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 4

1. Set the volume control at maximum. Rolate the tuning condenser through its entire range. Any scraping noise from the speaker indicates bent plates, or dirt between plates or on wiper contacts. Remedy such conditions before proceeding further.
2. Attach the positive lead of a 20.000 -ohms oer-volt meter to chassis and the prod end of the negative lead through a 50.000 ohm resistor to point P. Set the meter on a $10-\mathrm{valt}$ or similar
range, and rotate the tuning condenser through its entire range. Absence of voltage at any point indicates that the oscillation is not functioning. If eo, check the components listed in the first tent below.
3. Connect the signal generator as for previous tests, tune the generator and receiver to 1000 kc ., and proceed as below.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE QF ABNORMAL INDICATION
K to C (chansis)	Loud, clear signal from speaker.	Defective 7B8, L402, C407, or open R407, R403 or C4ll.
1 to C	Loud, clear signal.	Open C407.
M to C	Loud, clear signal.	Delective 7A7. or open R400 or R401.
N to C	Loud, clear signal.	Delective L400. C400. or L401.

Flgure 9. 8ection 4 echematic.
TP-43:D

Figure 10. Bottom view, showing Section 4 test pointa.

PRELIMINARY INSTRUCTIONS

Remove the too chassis cover to reach adjustments. OUTPUT METER:

Connect to the voice-coil lugs on the speaker. SIGNAL GENERATOR:

Set the receiver volume control at maximum. Adjust the signalgenerator output to give a readable deflection on the output meter, using a meter range that best indicates small changes in
output. Reduce the signal-generator output as alignment progresses, to prevent the meter needle from going oft scale. Adjust all trimmers listed for maximum output.

DIAL CALIBRATION:
When the radio is reinstalled in the car, the dial pointer must be set to coincide with the index dot at the low-frequency end of the dial, with the tuning condenser fully meshed.

ALIGNMENT CHART

	SIGNAL GENERATOR		RECEIVER		
	Connections to Receiver	Dial Setting	Tuning-Condenser Setting	Special Instructions	Adjust Trimmers
1	Through a .05 mi . condenser to stator of antenna section of tuning gang.	455 kc.	Fully meshed.	Ground stator of oscillator section of gang. Adjust in given order, and then repeat adjustment.	$\begin{aligned} & \text { C301B } \\ & \text { C301A } \\ & \text { C300B } \\ & \text { C300A } \end{aligned}$
2	Through a $10-\mathrm{mm}$. condenser in series with antenna lead, Philco Part No. 95-0185, to antenna connector.	1580 kc.	Fully open.	Remove ground from oscillator section of gang. Adiust for maximum.	C402A
3	Same as 2.	1400 kc.	Tune in 1400 kc . signal.	Adjust for maximum. (Final adjusiment should be made with receiver in car, connected to car antenna.)	C401
4	Same as 2.	580 kc .	Tune to maximum.	Adjust while rocking tuning condenser.	C410
5	Same as 2.			Repeat steps 2, 3, and 4.	

Figure 11. Top view, showing trimmer-condenser locations.

NOTE: All voltage, capacity, and resistance values shown are average. The voltages were measured with $\alpha 20,000$ -ohms-per-volt meter between the indicated test points and chassis (C).

REPLACEMENT PARTS LIST - Model UN6-400

MODEL 46-421

CABINET
Model 46-421, walnut finish Model 46-421-I, ivory finish Six tube superheterodyne FREQUENCY RANGE............... 540 to 1620 kc .

SPECIFICATIONS

 POWER INPUTA.C. or D.C., 105 to 120 volts POWER CONSUMPTION

30 watts at 117 volts AERIALLoop tastened to chasis; termincl also provided for outside aerial

MODEL 46-421-I

INTERMEDIATE FREQUENCY $\quad 455 \mathrm{kc}$.
PHILCO TUBES USED $7 \mathrm{C} 7,7 \mathrm{AB}, 7 \mathrm{~B} 7.7 \mathrm{C} 6$. 50L6GT, 35ZGT/G
PILCT LAMP \qquad $6-8$-volt bayonet base. Part No. 34-2068

PHILCO TROUBLE-SHOOTING PROCEDURE

Figure 1. Block diagram (Heavy lines indicate signal path).

In this bulletin, the receiver circuit is divided into four sections. as shown in figure 1. One test point is designated for each section, see figure 2, and tests made at these points localize the troublo to one section. After the trouble has been localized to one section by the tests given below, proceed with the tests outlined for that section. The equipment required for all tests out lined in this bulletin is a quality signal generator and a volt-ohm-
meter. Voltage readings shown in this bulletin were measured with a 20,000 ohm-per-volt meter. Connect the receiver to the power line, turn the volume control full on, and see that all tube filaments are lighted. Proceed with the section tests given in the following chart. If a normal result is not obtained at any test point, the trouble is in the section under test.

TESTS TO LOCALIZE TROUBLE TO ONE SECTION

SECTION	TEST	NORMAL RESULTS
1	Measure voltage between points $1(+)$ and A (B-).	90 volts*.
2**	Apply audio signal between points 2 and A.	Loud, clear signal.
3**	Apply a weak, modulated rif signal (455 kc .) between points 3 and A.	Loud, clear signal.
4**	Apply a weak, modulated r-f signal (frequency to which set is tunad) between points 4 and A.	Loud, clear signal.

[^2]PAGE 19-48 PHILCO
MODELS 46-421, PHILCO CORP. $46-421-1$

TESTS TO ISOLATE TROUBLE WITHIN SECTION 1

Test Points	Normal Reading	Possible Cause of Abnormal Reading
B to A	90 volts	No voltage indicates defective 35Z5GT/G tube, shorted condenser Cl01, or open speaker field. Low voltage indicates defective 35Z5GT/G tube, or leaky condenser C101, or shorted condenser C203.
C to A	118 volts	No voltage indicates defective $35 Z 5 G T / G$ tube, or shorted condenser ClOl. Low voltage indicates defective 35Z5GT/G tube, or open condenser Cl01, or shorted condenser C203.

Make all tests for this section with a volt-ohmmeter, using the 0.250 v d.c range. Ses figures 3 and 4 for location of test points.

Figure 4. Bottom view showing section I test points.

TESTS TO	ISOLATE TROUBLE	UBLE WITHIN SECTION 2
Test Points	Normal Indication	Possible Cause of Abnormal Indication
D to A	Audible signal from speaker.	No signal indicates defective 50L6GT tube, deféctive output transformer T200, defective speaker LS200, shorted condenser C202 or C203, or open resistor R205.
E to A	Audible signal, same as previous test.	No signal indicates open condenser C201.
F to A	Noticeable increase of audible signal.	No signal indicates defective 7C6 tube, or open resistor R203.
G to A	With volume control full on, qudible signal, same as previous test.	No signal indicates open condenser C200, or open volume control R202.

For all tests in this section, use the audio range of a signal generator. Connect the output lead through a condenser (. 01 to .25 mf .): ground lead to point A.

Figure 5. Section 2 schematic.

Figure 6. Bottom view showing section 2 test points.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 3

Test Points	Normal Indication	Possible Cause of Abnormal Indication H to A J to AAudible signal from speaker.	No signal indicates defective 7B7 tube, defective i-f tansformer Z300, defective 7C6 tube, defective re- sistor R301, or shorted condenser C303.
Audible signal from speaker.	No signal indicates defective i-f transformer Z301.		

For all tests in this section, set the signal generator to 455 kc ., modulation on. Connect the output lead through a condenser (. 01 to .25 mf .) ground lead to point A.

Figure 7. Section 3 schematic.

For all tasts in this section, set the signal generator and the receiver to 540 kc . Connect the output lead of the signal generator through c condenser (.01 to .25 mf .): ground lead to point A.

Figure 9. Section 4 schematic.

CONNECTING ALIGNING EQUIPMENT

OUTPUT METER. Connect to output (left hand) and ground (center) lugs of terminal panel on rear of chassis as shown in figure 11.

SIGNAL GENERATOR. Use a $100-\mathrm{mm}$. condenser to couple the signal-generator output lead to the receiver. Adjust the output of the signal generator to give a signal strength sufficient to cause a readable deflection of the output meter, using the range on the meter which best indicates small variations in output. Reduce the output of the signal generator if the pointer of the output meter goes off scale as alignment progresses.
Make all adjustments in the order listed.

ALIGNMENT CHART

SIGNAL GENERATOR		RECEIVER				
Connections to Receiver	Dial Setting (kc.)	Dial Setting (kc.)	Volume Control Setting	Special Instructions	Adjust Trimmers in Given Order	$\begin{aligned} & \text { Adjust } \\ & \text { Trimmers } \\ & \text { For } \end{aligned}$
Stator plate lerminal. anten- na section of luning condens- er, and B-.	455	540	Max	Turn C.301B down tight. Turn tuning condenser plates to full-meshed position. Make sure that dial pointer is set to the left index line (small mark slamped on lower lentesponds to a dial retting of 540 KC . set	C300A C300B С301B	Maximum output
Aerial lead and B-.	1600	1600	Max	Turn tuning condenser until dial pointer is on the first small index line (from right side) stamped on the scale plate reflector. This setting cor- responds to a dial setting of 1600 KC . responds to a dial selling or 160 Mc .	C404B	Maximum output
Aerial lead and B.	1500	1500	Max	Tum tuning condenser until dial pointer is on the second small index line (from right side) stamped on the scale plate reflector. This setting cor- responds to a dial setting of 1500 KC .	C404A	Maximum output

Figure 11. Top view showing trimmer condenser locations.

MODELS 46-421,
 PHILCO CORP.

46-421-I

Figura 13. Drive cord installation details.
NOTE: Parts marked with an asterisk $\left(^{*}\right.$) are general replacement items and the numbers will not be identical with those used on factory assemblies. ALWAYS USE THE PART NUMBERS SHOWN IN THIS PARTS LİST WHEN ORDERING.

Symbol designations used in the schematics and par's list are as follows:

SECTION 2

C200	Condenser, .01 mL . 400V. ..61-0120*
C201	
C202	
C203	Condenser, . 02 mi., 400V. ..30-4599*
LS200	
R200	Resistor, 2.2 meg. ..66-5223340*
R201	
R202	Volume Control, . 5 meg.o.
R203	Resistor, 470.000 ohms ..66-4473340*
R204	Resistor, 470,000 ohms - .
R205	Resistor, 130 ohms ...66-1133340
T200	Transformer, Output Part of LS-200

SECTION 3

C300A	Condenser, Trimmer	Part of Z-300
C300B	Condenser, Trimmer	Part of Z-300
C300C	Condenser, 100 mmf .	Part of Z-300
C300D	Condenser, 100 mm .	Part of Z-300
C301A	Condenser, Trimmer	Part of 2-301
C301B	Condenser, Trimmer	Part of Z-301
C302	Condenser, . 05 mf ., 200V.	30-4518
C303	Condenser, $05 \mathrm{mf}$. 2 20 V .	30-4518*
R300	Resistor, 47.000 ohms	Part of 2-300
R301	Resistor, 15,000 ohmes	66-3153340
2300	Transformer, 2nd I.F	32-4014
2301	Transformer, 1st I-F	32-396

SECTION 4

MODEL 47-1227 SPECIFICATIONS

CIRCUIT DESCRIPTION

The Philco Model $47-1227$ is a nine-tube superheterodyne radio-phonograph combination providing reception on the standard broadcast band, $540-1720 \mathrm{kc}$ and the FM band, 88-108 mc.

A low-impedance loop within the cabinet provides adequate signal pickup on the broadcast band. Satisfactory FM reception usually requires the use of an outdoor dipole aerial (Philco Part No. 45-1462). In areas of high signal strength, however, the dipole built into the cabinet is sufficient for FM operation.

A tuned r-f stage, using a type 6AG5 high-frequency pentode tube, functions on the FM band. The converter stage employs a 7F8 high-frequency double triode. The converter and r-f stages are built on a separate chassis, to insure reliable performance at high frequencies. These stages provide high signal-to-noise ratio, high conversion efficiency, and good image rejection.

Two transformer-coupled i-f stages are used. The i-f transformers have two sets of windings; one set is tuned to 455 kc for AM operation, the other to 9.1 mc for FM operation. Switching of the windings to attenuate undesired beat frequencies is necessary only in the first i-f transformer. The large difference between intermediate frequencies makes further switching unnecessary.

The first i-f stage employs a 6BA6 (miniature type) high-frequency pentode amplifier; the pen-
tode section of a 7R7 double-diode-pentode tube checks of the parts associated with the point under functions as the second i-f amplifier. One diode test, and remedied before testing further. of the $7 \mathbf{R} 7$ tube is used for AM detection, while the other diode develops a-v-c voltage.

For service information on the record changer, refer to the service manual PR-1156 for the Philco
The ratio-detector circuit used for FM detec-Automatic Record Changer, Models D-10 and non operates through the two diodes of the $7 \mathrm{X} 7 \mathrm{D}-10 \mathrm{~A}$.
cube; this circuit has good noise-reducing properthes and a superior tuning characteristic. The triode section of the 7 X 7 tube is used as a first SYMBOLIZATION AND TERMINOLOGY audio and phono amplifier stage. The output of the AM detector, FM detector, or phono pickup ized and located as follows:
is switched into this circuit by the operation of the function switch.

A type 6J5GT triode tube operates as a phase inverter, driving the two 6K6GT output tubes in push-pull operation.

A more uniform frequency response is obtained by the use of.inverse feedback. The inverse-feedback voltage is taken from the secondary of the output transformer, and applied through resistor R211 to the junction of R204 and the volume control.

The TONE control is continuously variable; with clockwise rotation, the bass is increased, and as rotation is continued, the high frequencies are attenuated.

The 12 -inch electrodynamic speaker provides excellent bass reproduction.

PHILCO TROUBLE-SHOOTING PROCEDURE

In this manual, the circuit is divided into four sections, with individual chassis base layouts and a complete schematic showing test points for each section. The first step in each trouble-shooting chart is a master check, which makes it possible

C-condenser LA-loop aerial S -switch
I-pilot lamp LS-loudspeaker T-transformer
L—choke or coil R -resistor $\quad \mathbf{Z}$-electrical ass'y
100 -series components are in Section 1 - power supply 200-series components are in Section 2 -audio amplifier
300 -series components are in Section 3 - i-f amplifier, second detector and/or discriminator, and a.v.c.
400 -series components are in Section 4 - the aerial, r-f and oscillator.

The main switch assembly, commonly referred to in the past as the "Band Switch", is used, in many instances, for various purposes in addition to band switching. Therefore, in this manual, the main wafer-switch assembly is designated as the "Function Switch".

PRELIMINARY CHECKS

The following preliminary checks are recommended, before turning on the radio.

1. Carefully inspect both top and bottom of the chassis. Make sure that all tubes are secure in the proper positions. Look for bad connections, burnt resistors, or other obvious faults.
2. Measure the resistance between $B+$ (pin no. to determine whether trouble exists in that section 8 of the $5 \mathrm{AZ4}$ rectifier tube) and the radio chassis, without going through the entire test procedure. with the ohmmeter polarity such that it gives the Failure to secure the "Normal Indication" in a highest resistance reading; if the reading is lower given step indicates trouble, which should then than 50,000 ohms, check condensers C102, and be located by voltage, resistance, or capacitance C103 (A and B) for leakage or shorts.

CALIBRATING DIAL BACKPLATE

When the radio chassis is removed from the cabinet, dial calibration and alignment points may be marked by small pencil dots made on the dial-backplate assembly below the pointer.

The method of measuring for these points is illustrated in figure 1, which shows the relationship between dial marking and scale backplate.

Hold a ruler against the scale backplate in the position shown. Make dots at the proper points for the desired frequency settings. When the ruler is correctly placed, the index point is $1-9 / 16$ inches from the reference point, as shown in figure 1.

With the tuning gang fully meshed, the pointer should be adjusted on the dial drive cord to coincide with the index mark.

FIGURE 1. DIAL-BACKPLATE CALIBRATION MEASUREMENTS.
TP-2827

FIGURE 2. POINTER-DRIVE-CORD INSTALLATION DETAILS.

SECTION 1 - TROUBLE SHOOTING

CAUTION: Do not turn on power with speaker disconnected, as this may cause damage to the radio.
Make all tests for this section with a volt-ohmmeter, using the applicable d-c ranges. Voltages were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c. The VOLUME control was set at minimum and the TONE control fully counterclockwise; the function switch was set in BC (broadcast) position. See figure 3 for location of test points. Follow steps in proper sequence; if the "Normal Indication" is obtained in step 1, proceed with tests for Section 2; if not, isolate and remedy the trouble in this section. It will be noted that certain parts in other sections of the radio are listed under "Possible Cause of Abnormal Indication" because they may produce abnormal indication in Section 1.

STEP	TEST POINTS	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	$\begin{aligned} & D \text { to } C \\ & E \text { to } C \end{aligned}$	208 volts 290 volts	No voltage or incorrect voltage	Trouble in this section. Isolate by the following tests.
2	\boldsymbol{A} to \mathbf{C}	350 volts	No voltage Low voltage High voltage	Defective 5AZ4 tube, T100, S100 or W100. Shorted Cl02. Open Rloo. Defective 5AZ4 tube. Shorted or leaky C102, C308, C311, C322, C309, C408 or C409. Shorted or leaky Cl03A or Cl03B. Open L100, R101 or T200.
3	B to C	Negative 20 volts	High voltage Low or no voltage	Open R100. Shorted R100. Weak 6K6GT tubes.
4	D to C	208 volte	No voltage Low voltage High voltage	Shorted Cl03B. Open R101. Leaky C103B, C319, C307 or C310. Open R300 or R303.
5	E to C	290 volts	No voltage Low voltage High voltage	Shorted C103A. Open L100. Leaky C211, C212, or C103A. Grounded T200. Shorted L100. Weak 6K6GT tubes.
Listening Test			Abnormal hum may be caused by open Cl00, Cl01, Cl02 or Cl03A.	

FGURE 3. BOTTOM VIEW, SHOWING SECTION I TEST POINTS.

SECTION 2 - TROUBLE SHOOTING

Connect the audio-signal generator ground lead to test point " C " (chassis); connect the output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated in the chart. Set the radio VOLUME control to maximum and adjust the signal-generator output as indicated in the chart. If the "Normal Indication" is obtained in step 1, proceed to Section 3; if not, isolate and remedy the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with low signal-generator output.	Trouble within this section. Isolate by the following tests.
2	$\begin{gathered} \text { B } \\ \text { (Remove } \\ \text { JJ5GT tube) } \end{gathered}$	Loud, clear signal with high signal-generator output.	Defective 6K6GT tube, T200 or LS200. Open R214. Shorted or leaky C212 or C214.
3	D (Remove 6J5GT tube)	Same as step 2.	Defective 6K6GT tube. Shorted or leaky C211. Open R215.
4		Loud. clear signal with moderate signal-generator out put.	Defective 6J5GT tube. Open R212, R209 or R210. Leaky or shorted C210.
5	F	Loud, clear signal with low signal-generator output.	Defective 7X7 tube. Open R207 or C210. Shorted C206.
6	A	Same as step 5.	Shorted C202, C2O1 or C326. Open R201, C203, R203 or C208.
7	PL200 (Function switch on PHONO)	Same as step 5.	Defective PL200 or FS2 (R).
List	g Test	Distortion may be caused by leaky C210, C212, C211, C213 or C214. Hum will result if C213 is open.	

FIGURE 4. BOTTOM VIEW, SHOWING SECTION 2 TEST POINTS.

SECTION 3 - TROUBLE SHOOTING

AM TESTS

For the following tests, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the radio chassis, test point " C "; connect the output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated.

Turn the radio VOLUME control to maximum, function switch to BC (broadcast) position, and TONE control fully counterclockwise.

If the "Normal Indication" is obtained in the first step, proceed to the FM tests, or to the tests in Section 4; if not, isolate and remedy the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with low signal-generator output.	Trouble within this section. Isolate by the following tests.
2	B	Loud, clear signal with high signal-generator output.	Defeciive 7R7 tube or Z302. Improperly aligned Z302. Open R313 or R314. Leaky or shorted C322, C32l or C326. Defective switch FS3 (R) or FS2 (R).
3	D	Loud, clear signal with moderate signal-generator output.	Defective or misaligned Z301. Defective 6BA6 tube. Open R306, R304, R305 or C307. Shorted or leaky C308, C309, C307, C311, or C310.
4	\boldsymbol{A}	Loud, clear signal with low signal-generator output.	Defective or misaligned Z300. Shorted or leaky C303, C304, C305. Defective FS4 (R) or FS4 (F). Open R301.
Listening Test		Distorted signal with hum, may be caused by open C307, or C319.	

FM TESTS

Follow the instructions preliminary to the AM test chart, except set the signal-generator frequency to 9.1 mc , and detune to one side or the other until a satisfactory test signal is obtained; set function switch to FM position.

SECTION 3 - continued

The most satisfactory check on the operation of the discriminator circuit is the ability to make proper alignment, as described on pages 14,15 and 16.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	B	Loud, clear signal with high signal-generator output.	Defective 7X7 tube or C325. Open R318. Leaky or shorted C324, C328 or C323. Defective or mis- aligned Z302.
2	D	Same as step 1.	Same parts as listed in AM tests, step 3.
3	A	Loud, clear signal with low signal-generator output.	Same parts as listed in AM tests, step 4.

FIGURE 5. BOTTOM VIEW, SHOWING SECTION 3 TEST POINTS.

SECTION 4 - TROUBLE SHOOTING

For tests indicated in this section with the exception of oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to the radio chassis, test point " C "; connect the output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated.

Turn the VOLUME control to maximum and the TONE control to nearly OFF position.
Set the function switch, TUNING control, and signal-generator frequency as indicated in chart.
Oscillator test: (AM tests, step 3, FM tests, step 3). Attach the positive lead of a high-resistance voltmeter to the 7 F 8 oscillator cathode (pin 4). Connect the negative lead through a 100,000 -ohm isolating resistor to the 7F8 oscillator grid (pin 1) test point " D ". Use a suitable meter range ($0-10$ to $0-50$ volts).

Absence of negative grid voltage in either AM or FM position of function switch indicates that the oscillator is not functioning; check the parts listed in the chart for the oscillator tests.

AM TESTS

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQUENCY	FUNCTION SWITCH AND TUNING CONTROL	NORMAL INDICATION	possible cause of abnormal indication
1	A	1000 kc	BC. Tune to signal from generator.	Loud, clear signal with low generator input.	Trouble in this section. Isolate by the following tests.
2	B	1000 kc	Same as step 1.	Same as step 1.	Defective 7F8 tube, Z300. C400, L406 or R408. Open C303, C402B, R405, R406, R303 or R300. Misaligned Z300. Trouble in oscillator section (step 3).
3	D (Osc. test)	Not used	BC. Rotate 5401720 kc	Negative 2 to 3 volts.	Defective 7F8 tube, FS3 (F), FS2 (F), C411. C412. C413. C402B, L404 or C400.
4	A	1000 kc	BC. Tune to signal from generator.	Loud. clear signal with low generator input.	Defective L400, C400, C401 or FSl (R). Open R404 or C410.

FM TESTS

1	E	95 mc	FM. Tune to signal from generator.	Loud, clear signal with low generator input.	Trouble in this section. Isolate by the following tests.

SECTION 4 - Continued

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQUENCY	FUNCTION SWITCH AND TUNING CONTROL	NORMAL indication	pOSSIBLE CAUSE OF ABNORMAL INDICATION
2	B	95 mc	Same as step 1.	Same as step 1.	Same troubles as in AM tests. step 2.
3		Not used	FM. Rotate 88 to 108 mc .	Negative Voltage. Approx. 1 volt.	Defective 7F8 tube, FS3 (R), FS2 (R), C411, C412, C413, C400 or L405.
4	F	95 mc	FM. Tune to signal from generator.	Loud, clear signal with low generator input.	Defective C407, L403, C400, C400B, or FSl (R).
5	E	95 mc	FM. Tune to signal from generator.	Loud, clear signal with low generator input.	Defective 6AG5 tube, C400, L401 or C400A. Open R400, R401. R402. R403. L402 or C403. Shorted or leaky C408 or C409.

FIGURE 6. BOTTOM VIEW, SHOWING SECTION 4 TEST POINTS.

REPLACEMENT PARTS LIST

NOTE: Parts marked with an aslerisk (${ }^{\circ}$) are general replacement items, and the numbers may not be identical with those on factory assemblies: also, the electrical values of some replace ment items furnished may differ from the values indicated in the schematic and parts list. The values substituted in any case are so chosen that the operation of the instrument will be oither un changed or improved. When ordering replacements, use only the "Service Part No." in this parts list.

	SECTION 2		R302
C200	Condenser, 100 mmf , filament by-pass	60-10105407 ${ }^{\circ}$	304
C201	Condenser, 100 mmf , rit by-pass	60.10105407 ${ }^{\circ}$	
C202	Condenser, 100 mmf , r-f by-pass	60-10105407	
C203	Condenser, . 006 mf , audio coupling	45.3500.7*	R306
C204	Condenser, 100 mmf , filament by-pass	60.10105407*	R307
C205	Condenser, 100 mmf . audio by-pass	60-10105407*	
C206	Condenser, 100 mml , plate by-pass	60-10105407*	
C207	Condenser, . 01 mf , bass compensation	61.0120^{*}	
C208	Condenser, . 006 mf . audio coupling	45-3500.7*	R310
C209	Condenser, . 01 mi , audio by-pass	61.0120°	R311
C210	Condenser, . 006 mf , audio coupling	45-3500.7*	R312
C211	Condenser, 006 mt , audio coupling	45.3500.7*	
C212	Condenser, . 006 mt , audio coupling	45-3500.7*	
C213	Condenser, . 1 mf , grid phasing	61.0113°	R314
C214	Condenser, . 003 ml , audio by-pass	61.0117*	R315
1200	Socket-FM TEST	27.6180	R316
LS200	Speaker	36-1595	
PL200	Cable and plug assembly, phono-input	41-3735-2	
R200	Resistor, 150.000 ohms, phono grid load	66-4153340*	318
R201	Resistor, 100.000 ohms, rit decoupling	66.4103340°	R319
R202	Resistor, 33.000 ohms, bass compensating	¢6.3333340	2300
R203	Control, VOLUME, 2 meg. (tap at 1 meg.)	33.5535-1	
R204	Resistor, 4.7 ohms, audio inverse feedback	66-9473340	
R205	Control. TONE. 6 meg.	33.5538 .1	
R206	Resistor, 10 meg., grid leak, first audio	66.6103340^{*}	
R207	Resistor, 220,000 ohms, plate load 7X7	66-4223340*	
R208	Resistor, 1 meg., grid load	66.5103340*	
R209	Resistor, 4700 ohms, cathode bias	66-2473340*	
R210	Resimtor, 47.000 ohms, cathode bias	66-3473340*	
R211	Resistor, 68 ohms, audio teedback	66.0683340°	Z301
R212	Resistor, 56.000 ohms, plate load 6J5	66.356340°	
R213	Resistor, 150,000 ohms, grid phasing	66.4153340°	
R214	Resistor, 330.000 ohms, grid load	66.4333340°	
R215	Resistor, 330.000 ohms, grid load	66.4333340°	
T200	Transformer, output	32-8274	

Reference No.

REPLACEMENT PARTS LIST - Continued

MISCELLANEOUS	
Description Ser	Service Part No.
Bin-Light Parts:	
Bin-light cable, socket and switch assembly	$Y \quad 76-2728$
Cord. pull (25-ft. spool)	45-1420 ${ }^{\circ}$
Lamp. bin-light	$34.2039 *$
Spring, pull-cord	28-8991
Cable assembly	41.3754-5
Cable, shielded	41-3754-11
Cabinet and Cabinet Hardware:	
Loop assembly. BC	76-1989
Spring washer (loop mig.)	28.4186
Loop assembly. FM	76-2029-9
Washer (2 reqd.)	IW52540FA3
Bin mechanism, left hand	76.2176
Bin mechanism, right-hand	76-2174
Cabinet	10643C
Baffle, wood	219041
Baffle and cloth assembly	40-6770
Bezel, wood	16602
Bolt, speaker-mounting	W1587
Dial-scale plate assembly	76-2005
Frame, mounting assembly	76-2199
Hinge, bafle	45-6200
Lamp bracket	56-2332
Grommet (superstructure mounting)	27.4596
Capacitor mounting wafer	45-6409 ${ }^{\circ}$
Chassis Mounting Hardware:	
Foot assembly, (4) mounting grommet	54-4122
Nut. "T"	W2502FA3
Washer	W2271FA3
Clip, aerial	28.5002FAl
Clip. BC oscillator	56.4303FA1
Dial-Scale Hardware:	
Cord, pointer-drive (25-1t. spool)	45.1459 ${ }^{\circ}$
Pointer	56-3179
Scale and backplate assembly	76-2226-3
Mounting screws (4)	IW24894FEll
Spacer (2). scale backplate	56-3279FA3
Rubber band	54-4234
Spring, pointer-drive-cord	28.8953
Grommet (2), superstructure mig. sub. and plate assy.	27-4596
Spacer (2), superstructure mtg. sub. and plate assy.	IW29184FA3
Washer (2)	IW52116FA3
Screw (2)	IW25349FA3
Function switch	42-1803
Function-Switch Hardware:	
Link assembly	76-2186
Phono OFF.ON switch	Part of 42-1803
Shaft	56.3298FA11
Washer, "C'	1W42535FA3
Grommet (3), rit chassis mounting	54.4295
Knob (4)	54.4105
Lamp, panel (2)	34-2040*
Lamp-socket assembly. panel (2)	76-2109
Washer	1W52237FA3
Record Changer Mounting Parts:	
Bolt (4), changer-mounting	56-3295
Grommet (4), changer-mounting	54.4313
Nut, "T" (4), changer-mounting	1W56643FA3
Palnut (4), changer-mounting	1W29061FA3
Spring (8), changer-mounting56-3043
Socket (3). Loktal	27-6138*
Socket (1). Loktal (7F8)	27.6213°
Socket (1). Miniature (6BA6)	27.6203 .4
Socket (3), octal	27-6199*
Socket (1). Miniature (6AG5)	27-6203-3
Speaker Hardware:	
Bolt, mounting	W1587FA3
Cable and plug assembly	41.3701
Nut (4), speaker-mounting	1W19988FA3
Plug, speaker-cable	27.44192

AM ALIGNMENT PROCEDURE

When the complete AM and FM alignments are to be made, the AM alignment should be made first; if FM alignment is not required, the AM alignment alone may be made.

RADIO DIAL POINTER: With tuning-condenser plates fully meshed, adjust pointer to coincide with index mark at low-frequency end of scale.
VOLUME CONTROL: Maximum clockwise. TONE CONTROL: Maximum counterclockwise. AM SIGNAL GENERATOR: Connect ground lead to radio chassis and output lead as indicated in chart.

OUTPUT METER: Connect between terminal 3 (voice-coil connection) of aerial terminal strip (TB400) and chassis.
OUTPUT LEVEL: During alignment, the input signal must be attenuated to hold the outputmeter reading below 1.5 volts.
RADIO FUNCTION SWITCH, RADIO DIAL and SIGNAL GENERATOR: Set as indicated in chart.

NOTE: Make up a coil of insulated wire consisting of 6 to 8 turns, about $6^{\prime \prime}$ in diameter. Connect coil ends to the signal generator leads and suspend coil near radio broadcast loop.

FM ALIGNMENT PROCEDURE

NOTE: Make AM alignment first.
D-C METER: Connect the negative lead of a 20,000 -ohms-per-volt meter to pin 6 of the $7 \mathrm{X}_{7}$ tube and the positive lead to chassis (across the $5-\mathrm{mf}$ condenser, C325, in the discriminator circuit). Use 10 -volt meter range.

AM SIGNAL GENERATOR: Use modulated output for the entire alignment. The generator must have sufficient output to give a reading of approximately 9 volts on the d-c meter and the signal should be attenuated during the alignment to keep the meter at this value. Connect the generator ground lead to chassis and the output lead as indicated in the chart.

RADIO FUNCTION SWITCH, RADIO DIAL and SIGNAL GENERATOR: Set as indicated in chart. Allow the radio and generator to warm up for 15 minutes before starting the alignment.

NOTE 1: The resonance of the circuits using coils L401, L403, and L405 may be checked with a powdered-iron tuning core, such as Part No. 56-6100. If the signal strength (meter reading) increases when the iron end is inserted in the coil, compress the turns slightly. If the signal increases when the threaded brass end is inserted, spread the turns. Do not compress or spread the turns excessively; only a small change is required at these frequencies.

NOTE 2: Oscillator coil L405 - Adjust coil for maximum meter reading.

NOTE 3: R-F coil L403 - Adjust coil for maximum meter reading while rocking tuning control.

NOTE 4: Aerial coil L401 - Adjust coil for maximum meter reading.

figure 7. philco radio.phonograph model 47-1227 - COmplete sectionalized schematic, showing test points.

FM ALIGNMENT CHART

SIGNAL GENERATOR			R A D I O			
STEP	CONNECTIONS TO RADIO	DIAL	FUNCTION SWITCH	dial	SPECIAL INSTRUCTIONS	ADJUST
1	Through $.1-\mathrm{mf}$ condenser to (pin 1) 6BA6 (test point E)	9.1 mc	FM	88 mc	Attenuate signal to give approximately 9volt meter reading. Adjust for maximum. Repeat until no further improvement is noticed. After this step, do not touch any of these trimmers except C302D in step 3.	$\begin{aligned} & \text { C302D } \\ & \text { TC302 } \\ & \text { C301C } \\ & \text { C } 301 \text { A } \end{aligned}$
2	Through a . $1-\mathrm{mf}$ condenser to (pin 8) 7F8 (test point B)	9.1 mc	FM	88 mc	Attenuate signal to give approximately 9 volt meter reading. Adjust for maximum, Repeat until no further improvement is noticed. After this step, do not touch any, of these trimmers.	$\begin{aligned} & \text { C300D } \\ & \text { C300A } \end{aligned}$
3	Same as step 2	9.1 mc	FM	88 mc	Double check the adjustment of C302D to make sure that minimum audio output is obtained from the speaker. This is a critical adjustment. Turn trimmer very slowly.	
4	Connect signal generator to terminal 4, J400	105 mc	FM	$\overline{105 \mathrm{mc}}$	Maximum meter reading. This is the osciln lator high-frequency padder adjustment.	C400C
5	Same as step 4	105 mc	FM	105 mc	Max. - rock tuning control.	C400B
6	Same as step 4	105 mc	FM	105 mc	Maximum meter reading.	C400A
7	Same as step 4	92 mc	FM	92 mc	Adjust L405. See notes 1 and 2.	
8	Same as step 4	92 mc	FM	92 mc	Adjust L403. See notes 1 and 3.	
9	Same as step 4	92 mc	FM	92 mc	Adjust L401. See notes 1 and 4.	
10	Repeat steps 4 through 10 until no further increase is obtained. Figure 9. chassis view, showing fm trimmer locations.					

CIRCUIT
FREQUENCY RANGES: Nine-tube superheterodyne
FREQUENCY RANGES:
BROADCAST
SHORT WAVE SHORT WAVE $\quad 9.3$ to 15.5 mc . 9.3 to 15.5 mc .
88 to 108 mc . 10 watts

Nine-tube superheterodyne

CIRCUIT DESCRIPTION

The radio is designed with three tuning ranges, covering the standard broadcast, short-wave and FM bands by manual tuning. In addition, six push buttons are provided, one for phono-radio switching and five for automatic instant tuning of stations in the, broadcast band. The function switch selects manual tuning on the broadcast, short-wave or FM bands, or push-button tuning. The ON-OFF switch is combined with the tone control.

A low-impedance loop within the cabinet provides adequate signal pickup for the broadcast and short-wave bands. In most locations, the built-in FM aerial provides satisfactory reception on the FM band. In areas where FM signals are weak, an outdoor dipole aerial (Philco Part No. 45-1462) will provide additional pickup.
A high-frequency r-f pentode, type 6AG5, is used in the r-f stage (FM only) and a type 7F8 high-frequency dual-triode is employed as a converter. These stages provide high signal-to-noise ratio, high conversion efficiency and good image rejection.

Two transformer-coupled i-f stages are used. The transformers have two sets of windings; one set is tuned to 455 kc for AM reception, the other to 9.1 mc for FM operation. Both primary and secondary FM windings are tuned to provide
additional gain at 9.1 mc . A 6BA6 high-frequency pentode is used in the first i-f amplifier stage and the pentode section of a 7 R 7 high-gain r-f amplifier is used in the second i-f stage. The diode section of the 7R7 is used for AM detection. The high gain achieved in the i-f amplifier at 9.1 mc gives improved FM reception by providing ample signal for proper operation of the FM detector.

A discriminator circuit having improved noisereducing properties and a superior tuning characteristic is used for FM reception. Greater noise reduction on FM is achieved by preventing shorttime amplitude variations across the secondary of the discriminator transformer. The two diodes of a 7 X 7 tube are connected in series with the secondary, with a large condenser (5 mf) connected across the output circuit of the diodes. As a result of the high current which flows to this condenser whenever the diodes conduct in series, amplitude variations across the secondary are dissipated.
The high-mu triode section of the 7×7 tube is used in the first audio stage. The output of this stage is applied to one section of a dual-triode 7AF7 tube which operates as a phase inverter to drive the two 6VGGT push-pull output tubes. When the PHONO push butcon is depressed, the cathode circuit of the second i-f amplifier is opened and the other section (phono preamplifier) of the 7AF7 tube is connected to the volumecontrol circuit in the input of the 7×7 tube.

The push-pull audio-output stage furnishes approximately 10 watts output to the 12 -inch electrodynamic loudspeaker.

POINTER-DRIVE-CORD INSTALLATION DETAILS.

SECTION 1 - TROUBLE SHOOTING

CAUTION: Do not turn on power with speaker disconnected, as this may cause damage to the set.
Make the tests for this section with a d-c voltmeter, connecting the leads to the test points indicated in the chart and in figure 3. The voltages given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts a.c.

With function switch set to push-button position, turn volume control to minimum and tone control to nearly off position.

Follow steps in proper sequence; if "NORMAL INDICATION" is obtained in step 1, proceed with tests for Section 2 ; if not, isolate and remedy the trouble in this section.

It will be noted that certain parts in other sections of the radio are listed under "POSSIBLE CAUSE OF ABNORMAL INDICATION", since they may produce abnormal voltage readings in Section 1.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINTS } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	E to C D to C	240 volts 190 volts	No voltage or incorrect voltage	Trouble in this section. Isolate by the following tests.
2	A to C	310 voits	No voltage Low voltage High voltage	Defective 5Y3GT, T100, S100. W100, L100. Shorted C103. Open R100. Defective 5Y3GT, C103, C102A. C419, C314. Open R100, L100, or T200.
3	B to C	Negative 16 volts	Low or no voltage High voltage	Shorted R101. Open R101.
4	D to C	190 volts	No voltage Low voltage High voltage	Open R100. Shorted C102A. Leaky C102A, C103. Delective C419. Open L100. T200.
5	E to C	240 volts	No voltage Low voltage High voltage	Open L100. Shorted C103. Shorted or leaky C102B, C216. Shorted L100. Open R100, T200.
Lintening test			Abnormal hum may be caused by open C102A or C103.	

BOTTOM VIEW, SHOWING SECTION I TEST POINTS.

SECTION 2 - TROUBLE SHOOTING

For all tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the radio chassis, test point " C "; connect the output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated.

Set the radio volume control at maximum, tone control at nearly off position and depress the PHONO push button. Adjust the signal-generator output as required for each step.

If the "NORMAL INDICATION" is obtained in step 1, proceed to the tests in Section 3. If not, isolate and remedy the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	$\begin{aligned} & \mathrm{I} \\ & \mathrm{I} \end{aligned}$	Loud, clear signal with weak signal input	Trouble within this section. Isolate by the following tests.
2	$\frac{A}{\text { (7AF7 tube }}$ removed)	Loud, clear signal with strong signal input	Defective 6V6GT tube, T200 or LS200. Shorted or leaky C216 or C213.
3	B	Loud, clear signal with strong signal input	Defective 6V6GT tube. Shorted or leaky C208.
4	D	Loud, clear signal with strong signal input	Open C213, R215, R216.
5	E	Loud, clear signal with strong signal input	Open C208 or R217.
6	$\frac{F}{(7 A F 7} \text { tube }$ replaced)	Clear signal, louder than preceding test	Defective 7AF7 tube, C204, R203, R206, R207.
7	G	Clear signal, same volume as step 6	Defective C200, R202. Open C204.
8	H	Loud, clear signal with moderate signal input	Defective 7X7 tube, C205, C308. Open R2Q8.
9	J	Loud, clear signal with moderate signal input	Open R200, C202. Shorted C201, C203. Defective R201 (rotate through entire range).
10	K	Loud, clear signal with moderate signal input	Defective C211, C212.
11	L	Loud, clear signal with weak signal input	Defective 7AF7 tube, push button PB1. Shorted C215.

BOTTOM VIEW, SHOWING SECTION 2 TEST POINTS.

SECTION 3 - TROUBLE SHOOTING

AM TESTS

For the following tests us an r-f signal generator with modulated output set at 455 kc . Connect the generator ground lead to the radio chassis, test point " C ", and connect the output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated.

Turn the radio volume control to maximum, tone control to nearly off position and set function switch to push-button position.

If the "NORMAL INDICATION" is obtained in the first step, proceed to the FM tests, or to the tests in Section 4; if not, isolate and remedy the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	E	Loud, clear signal with low signal-generator input	Trouble within this section. Isolate by the following tests.
2	A	Normal signal with moderate input	Defective 7R7 tube, 7X7 tube, Z302. Improperly aligned Z302. Defective C314, C419, C317, C310, C311, C315, C312, C314, C328, FS4 (F).
3	B	Same as step 2.	Defective C308. C309. Defective or improperly aligned Z301.
4	D	Much stronger signal than in step 3; decrease input to obtain normal signal	Defective 6BA6 tube, C307. Open R303, R302. FS4 (R), C303, C305.
5	E	Approximately the same strength signal as in step 4	Defective C304, FS4 (R). Defective or improperly aligned $\mathbf{Z 3 0 0}$.
	Listening test with station tuned in	Normal, clear reception	Distorted signal with hum: defective R316 or FS4 (F). Intense hum or motorboating: open C419 or C328.

NOTE: Test points marked with an asterisk $\left({ }^{*}\right)$ on the base view are physically located in a different position from the same test points on the corresponding section of the main schematic. However, both test points are electrically identical, but the one shown on the base view has been chosen for greatest accessability during servicing procedure.

FM TESTS

Set the function switch to FM position and follow the instructions preliminary to the AM tests with these exceptions; set the signal-generator frequency to 9.1 mc and detune to one side or the other until a satisfactory test signal is obtained.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Normal signal with moder. ate input	Defective or improperly aligned Z302. Defective FS4 (F).
2	B	Same strength signal as in step 1	Defective Z301. 3
D	Much stronger signal than in step 2; decrease input to obtain normal signal	Same parts listed in AM section, step 4.	
4	Approximately the same strength signal as in step 3	Defective Z300 or any other part listed in AM section, step 5.	

BOTTOM VIEW, SHOWING SECTION 3 TEST POINTS.

SECTION 4 - TROUBLE SHOOTING

For tests indicated in this section, with the exception of oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to the radio chassis, test point " C ", and connect the output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated.

Turn the radio volume control to maximum and tone control to nearly off position.
Set the function switch, tuning control and signal-generator frequency as indicated in chart.
For oscillator tests (AM test chart, step 3; FM test chart, step 3) attach the positive lead of a high-resistance voltmeter to the 7 F8 oscillator cathode, test point "E" (pin 4). Connect the negative lead through a 100,000 -ohm isolating resistor to the 7 F 8 oscillator grid (pin 1), test point "F". Use a suitable meter range ($0-10$ volts).

Absence of negative grid voltage in either AM or FM position of function switch indicates that the oscillator is not working; check the parts listed in the chart for the oscillator tests.

FM TESTS

STEP	TEST POINT	SIG. GEN. SETTING	FUNCTION SWITCH AND TUNING CONTROL	NORMAL INDICATION	possible cause of abnormal indication
1	D	95 mc	FM. Tune to signal from generator	Loud, clear signal with low signal input.	Trouble in this section. Isolate by the following tests.
2	A	95 mc	Same as step 1	Same as step 1	Defective 7F8 tube, C412, C414, C413, FS4 (R), R406. Defective or misaligned Z300. Trouble in FM oscillator circuit (step 3).
3	E to F (osc. test)	Not used	FM. Tune through range	Negative approx. 3 volts	Defective 7F8 tube, FS2 (F), FS2 (R), FS3 (R), L406
4	G	95 mc	FM. Tune to signal from generator	Loud, clear signal with moderate signal input	Defective FS1 (R), C410, C411, C421, L404, L405.
5	D	95 mc	FM. Tune to signal from generator	Loud, clear signal with low signal input	Defective 6AG5 tube, C406, C408. C409, 1403.

AM TESTS

875	$\begin{aligned} & \text { TRET } \\ & \text { PODIT } \end{aligned}$	shg. gex. setting	FUNCTION SWITCR AND TUNDG CONTROL	NORMAL ndoceation	possible cause of abnormal nidication
1	B	1000 kc	BC (dial). Tune to signal from generator	Loud clear signal with low generator input	Trouble in this section. Isolate by the following tests.
2	A	1000 kc	Same as stop 1	Same as above	Defective 7F8 tube, C412. C414, C413. FSA (R). R406. Open R300, R405. Shorted or leaky C304. Defective or misaligned 2300. Trouble in oscillator circuit (stop 3).
3	E to F (conc. tent)	Not used	BC. Tune through range	Negative approx. 3 volts	Defective 7F8 tube, C413, C414, C417, FS2 (F), FS2 (R), FS3 (R), R409. Shorted or leaky C419. Defective L408, C420.
4	B	1000 kc	BC (dial). Tune to signal from generator	Loud clear signal with low generator input	Delective L401. FS3 (R). FS1 (R), C412.
5	B	Through range of each puash button	PB. Operate each push button	Same as above	Defective FS3 (R). FS1 (R), PB 2.3. 4. 5. 6. Trouble in push-button oscillator circuit (step 6).
6	E to F (osc. tent)	Not used	PB. Operate each button		Defective 758 tube, FS2 (F), FS2 (R). L400 A. B, C. D. E or PB 2, 3, 4, 5, 6. C401, C402 or R400.
7	B	12 mc	SW. Tune to signal trom generator		Defective FS1 (R). FS3 (R). L402. C404 or trouble in short-wave oacillator circuit (stop 8).
8	E to F (osc. tent)	Not used	SW. Tune through range	Negative approx. 3 volts	Defective 7F8 tube. FS2 (F). FS2 (R), FS3 (R), L408.

BOTTOM VIEW, SHOWING SECTION 4 TEST POINTS.

AM ALIGNMENT PROCEDURE

When the complete AM and FM alignment is to be made, the AM alignment should be made FIRST; however, if FM alignment is not required, the AM alignment alone may be made.

CONNECT OUTPUT METER between terminal 3 (voice-coil connection) of aerial terminal board and chassis.

ADJUST RADIO DIAL POINTER, with tuning-condenser plates fully meshed, to make pointer coincide with index mark at low-frequency end of scale.

CONNECT AM SIGNAL GENERATOR ground lead to radio chassis; connect output lead as indicated in chart.

SET VOLUME CONTROL at maximum and TONE CONTROL at nearly off position.
SET SIGNAL GENERATOR, RADIO FUNCTION SWITCH and RADIO DIAL as indicated in chart.

OUTPUT LEVEL: During alignment, the input signal must be attenuated to hold the outputmeter reading below 1.5 volts.
NOTE: Make up a coil of wire, using 6 or 8 turns, about 6 inches in diameter; connect the signalgenerator leads and suspend near the radio broadcast loop.

FM ALIGNMENT PROCEDURE

NOTE: Make AM alignment first.
Connect the negative lead of a 20,000 -ohms-per-volt, d-c meter, to pin 6 of the 7 X 7 tube and the positive lead to ground (across the 5 -mf condenser, C321, in the discriminator circuit). Use 10 -volt range.

Use an r-f signal generator with MODULATED output for the entire alignment. The generator must have sufficient output to give a meter reading greater than 8.5 volts; the reading on the meter should be kept at approximately 9 volts throughout the alignment. Connect the generator ground lead to chassis and the output lead as indicated in the chart.

Set the function switch to FM position. Allow the radio and generator to warm up 15 minutes before starting the alignment.

NOTE: The resonance of the circuits using coils L403, L405 and L406 may be checked by the use of a powdered-iron tuning core, such as Philco Part No. 56-6100. If the signal strength (meter reading) increases when the iron end is inserted in the coil, compress the turns slightly. If the signal increases when the threaded brass end is inserted, spread the turns.

Do not spread or compress turns excessively, since only a small change is required at these frequencies.
Oscillator coil L406: Adjust coil for maximum meter reading.
R-F coil L405: Adjust coil for maximum meter reading while rocking tuning control.
Aerial coil L403: Adjust coil for maximum meter reading.

SETTING THE PUSH BUTTONS

1. Connect the output meter between terminal no. 3 on aerial terminal board and radio chassis.
2. Turn the radio volume control to maximum and the tone control counterclockwise to nearly OFF position.
3. Turn the radio function switch to PB position.
4. Couple the signal generator loosely through a coil of wire to the radio loop aerial, as described in AM alignment Procedure above.
5. Turn on the power and allow the radio to warm up for 15 minutes before starting the adjustments.
6. Starting with the lowest frequency desired, set the signal-generator frequency, push the button, and adjust the associated oscillator tuning core and aerial trimmer for maximum indication on the output meter. During alignment, the input signal must be attenuated to hold the output-meter reading below 1.5 volts.
7. Reset the signal-generator frequency and repeat the procedure for each remaining push button.
8. Turn off the signal generator and make a final adjustment of all tuṇing cores and trimmer condensers while listening to the stations for which the adjustments are being made.

PUSH.BUTTON (Left to right from front)	FREQUENCY RANGE	OSCILLATOR tuning CORE	AERIAL TRIMMER
Phono	\cdots-
PB1	$540-1000 \mathrm{kc}$	L400A	C400A
PB2	600-1200 kc	L400B	C400B
PB3	650-1300 kc	L400C	C400C
PB4	$850-1500 \mathrm{kc}$	L400D	C400D
PB5	900-1600 kc	L400E	C400E

NOTE: Parts marked with an asterisk (') are general replacement items, and the numbers may not be identical with those on factory assemblies: also. the electrical values of some replace ment items furnished may differ from the values indicated in the schematic and parts list. The values substituted in any case are so chosen that the operation of the radio will be either un changed or improved. When ordering replacements, use only the "Service Part No." in this parts list.

Reference No.		Service Part No.
Cl00	Condenser, .01 mf . line filter	61.0120°
Cl01	Condenser, 01 mf . line filter	61.0120°
C102	Condenser, two section, electrolytic	30-2570.11
	C102A: condenser, 25 mf , electrolytic. power-supply filter	Part of Cl02
	C102B: condenser, 25 mf , electrolytic. power-supply filter	
C103	Condenser. 20 mi . electrolytic, screen-s tilter	pply $\quad 30-2555$
Cl 04	Condenser. 100 mml , f by-pass	60.10105237°
1100	Lamp, panel	34.2040
1101	Lamp, panel	34.2040
1102	Lamp, bin.light	30.2039
L100	Field, speaker	Part of LS200
R100	Resistor, 15.000 ohms, isolating	66.3155340
R101	Resistor, 135 ohms, bias	33.3435 .2
T100	Transformer, power	32.8248
S100	Switch, power on-oft	Part of R209
S101	Switch, bin light	42-1702
W 100	Cord, line	L3351

SECTION 2
C200 Condenser. 100 mmf , plate r-f by-pas
C201 Condenser, 100 mmf . r.f by pass
C202 Condenser, 006 mf , audio coupling
C203 Condenser, 100 mmf . f-f by-pass
C204 Condenser, 006 mi , audio coupling
C205 Condenser, 006 mi , audio coupling
C206 Condenser, 100 mmf , rif by-pass
C207 Condenser, 01 mf . audio by pass
C208 Condenser, . 006 mf . cathode by-pass
C209 Condenser, 100 mmf . rf by-pass
C2 10 Condenser, . 01 mf , audio by-pass
C211 Condenser, 01 mf , audio by-pass
C212 Condenser, 2 ml . audio by pass
C213 Condenser, 006 mf , audio coupling
C214 Condenser, 2 ml , audio by-pass
C215 Condenser. . 001 mf. rif by-pass
60.10105237° 60.10105237° $45.3500 .7^{\circ}$
60-10105237 ${ }^{\circ}$
$45.3500 .7^{\circ}$
45.3500.7.
60.10105237 ${ }^{\circ}$ 61.0120°
45.3500-7 ${ }^{\circ}$

60-10105237 ${ }^{\circ}$ 61.0120°
61.0120°
$45.3500 .3^{\circ}$
45.3500.7 ${ }^{\circ}$
45.3500.3.
$45.3500 .5^{\circ}$
C216 Condenser, .003, high-frequency cut
J200 Socket, FM test
R200 Resistor, 100.000 ohms. decoupling
R201 Control, volume, 2 megohms
R202 Resistor, 220.000 ohms, plate dropping
R203 Resistor, 1 megohm, grid
R204 Resistor, 4.7 ohms. degeneration
R205 Resistor, 33.000 ohms, bass compensation
R206 Resistor, 4700 ohms. cathode
R207 Resistor, 47,000 ohms, decoupling
R208 Resistor, 2 megohms, grid 61.0117° 27.6180° 66.4103340° 33.5535.1 66.4223340° 66.5103340° 66-9473340 66.3333340° 66.2473340° 66.3473340° 66.6103340° 33.5538-1 66 .2683340. 66.4153340° 66.4223340° 66.4153340° 66.3473340° 66.3563340° 66.4333340°

66.4333340°

66.4153340°

66.0683340°
66.4223340°
66.5473340°

SECTION 2 (Continued)

Reference No.

 DescriptionService Part No.
T200 Transformer, output 32.8274

LS200 Loudspeaker
32.8274
36.1595

SECTION 3

C303 Condenser. 01 ml . If by-pass
61.0120°

2302

C304 Condenser, 01 mf , plate r-f by-pass
C305 Condenser. . 01 mf , a.v.c filler
C306 Condenser. 100 mmf , filament r f by-pass
C307 Condenser. . 01 ml . screen r. f by-pass
C308 Condenser, 100 mmf , plate r.f by-pass
C309 Condenser. . 01 mf , plate rif by-pass
C310 Condenser. 250 mmf . rif by pass
C311 Condenser, 01 mf , a.v.c filter
C312 Condenser, . 05 mf . cathode by.pass
C313 Condenser, 100 mmi , tilament r.f by-pass
C314 Condenser, 01 mf , screen rif by-pass
C315 Condenser, 100 mmi , a.v.c r. 1 by pass
C316 Condenser, 100 mmf , plate r.f by.pass
C317 Condenser. . 05 ml . plate rit by-pass
C318 Condenser. 100 mmf r. 18 by pass
C319 Condenser. 100 mmf . rif by pass
C 320 Condenser, 100 mmf . $\cdot \mathrm{f}$ by pass
C321 Condenser, 5 ml , electrolytic. discriminator
C322 Condenser, 100 mml , tilament rif by.pass
C323 Condenser, 100 mmf , filament rif by pass
C324 Condenser, 6 mmf . discriminator
C325 Condenser. . 008 ml . rif by-pass
C326 Condenser. 100 mmf , rif by pass
C327 Condenser, 100 mmf . rif by.pass
C328 Condenser. $01 \mathrm{mf}, \mathrm{B}$ bus by.pass
C329 Condenser, 100 mmi . rif by.pass
R300 Resistor, 47,000 ohms, plate dropping
R301 Resistor, 2.2 megohms. decoupling
R302 Resistor. 68 ohms, cathode
R303 Resistor, 27.003 ohms, screen dropping
R304 Resistor, 1000 ohms. decoupling
R305 Resistor, 3.3 megohms, a-v.c filter
R306 Resistor, 150 ohms, cathode
R307 Resistor, 68.000 ohms. screen dropping
R308 Resistor, 820,000 ohms, a.v.c.
R309 Resistor, 220.000 ohms. a.v.c.
R310 Resistor, 47.000 ohms, diode load
R311 Resistor, 330.000 ohms, diode load
R312 Resistor, 47.000 ohms. discriminator
R313 Resistor, 6.8 megohms. discriminator
R314 Resistor, 100.000 ohms. discriminator
R315 Resistor, 1000 ohms, decoupling
R316 Resistor, 100.000 ohms. decoupling
2300 Transformer, lst i.i
C300A: condenser, trimmer
C300B: condenser. trimmer
C300C: condenser, 3000 mml
C300D: condenser, trimmer
C300E: condenser, 6 mmf . coupling
2301 Transformer, 2nd i.f
C301A: condenser. trimmer
C301B: condenser, trimmer
C301C: condenser, 300 mmf
C301D: condenser, trimmer
61.0120°
61.0120°
60.10105237°
61.0120°
60-10105237 ${ }^{\circ}$
61.0120°
60.10255237.
61.0120°
61.0170°
60-10105237.
61.0120°
60.10105237°
60.10105237°
610170°
60-10105237*
60.10105237.
60.10105237°
30.2417
60.10105237^{*}
60.10105237°
30.12249

61-0174.
60.10105237°
60.10105237°
61.0120°
60.10105237°
66.3473340° 66.5223340° 66.0683340°
66.3273340° 66.2103340°
66.5333340°
66.1153340°
66.3683340°
66.4823340° 66.4223340° 66.3473340° 66.4333340° 66.3473340^{*} 66.5683340° 66.4103340° 66.2103340° 66.4103340°
32.4146

Part of 2300
32.4156

Part of 2301
Part of z301
Part of 2301
Part of 2301
Transformer, AM detector/FM discriminator $\quad 32.4147$
C302A: condenser. $27 \mathrm{mmf} \quad$ Part of 2302

C302B: condenser, trimmer Part of 2302
C302C: condenser, 25 mmf Part of 2302
C302D: condenser. 470 mml
Part of 2302
Part of 2302

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MODET, 47-1230} \\
\hline Reference No. \& SECTION 4
Description Service Part No. \& Reference No. SECTION 4 (Continued) Service Part No. \\
\hline C400 \& Push-button padder-strip assembly31.6479.1 C400A. B. C. D. and E: condensers Part of C400 \& \begin{tabular}{ll}
S400 \& Switch, function \\
TB400 \& Terminal board, aerial
\end{tabular} \\
\hline C401 \& Condenser, 220 mml r. f voltage divider \(\quad 30.1224 .4\) \& \\
\hline C402 \& Condenser, 1000 mml . rt vollage divider \(\quad 30.1224 .15\) \& MISCELLANEOUS \\
\hline \multirow[t]{2}{*}{C403

$C 404$} \& Condenser, 2-section. trimmer 31.6476 \& Description Service Part No.

\hline \& | C403A: condenser, shunt trimmer. |
| :--- |
| BC cerial |
| Part of C403 |
| C403B: condenser, shunt trimmer, |
| SW aerial |
| Part of C403 | \& Bin-Light Parts:

\hline C404 \& | Condenser, 250 mm , spread tuning. |
| :--- |
| SW aerial coil \qquad 60-10255237* | \& | Cord. pull (25-tt. spool) |
| :--- |
| Socket assembly. bin-light lamp .. |
| Spring, pull-cord |
| 28-8991 |

\hline \multirow[t]{4}{*}{C405} \& Condenser, main tuning gang 31.2703.2 \& $\begin{array}{ll}\text { Cabinet and Cabinet Hardware: } & \text { 40-6825 }\end{array}$

\hline \& C405A: condenser. FM aerial coil trimmer Part of C40S \&

\hline \& C405B: condenser. FM r-i coil trimmerPart of C405 \& Baffle, wood ...in assembly

\hline \& C405C: condenser, FM osc. coil trimmerPart of C405 \& Batiel. wood and 16601

\hline C407 \& Condenser, 100 mmf , filament r.t by-pass 60-10105237* \& Bin mechanism. lett-hand $\quad 76.2176$

\hline C408 \& Condenser, 100 mmt . rit by-pass 60-10105237* \&

\hline C409 \& Condenser, 1500 mml screen r.t by-pass 60-20155404* \& Cabinet ...

\hline \multirow[t]{2}{*}{C410} \& Condenser, $33 \mathrm{mmi} . \mathrm{r}$ - $\mathrm{l}^{\text {coupling }}$ \&

\hline \& SW osc. coil .-60.10255237${ }^{\circ}$ \& Frame, mounting assembly \quad 76-2199

\hline C411 \& Condenser, 1500 mml r-1 by-pass $\quad 60.20155404^{\circ}$ \&

\hline C412 \& Condenser, 250 mml . mixer grid, blocking60-10255237${ }^{\circ}$ \& Hinge back cardboard \quad W2235FA9

\hline C413 \& Condenser, 100 mmi tilament r-t by-pass60-10105237* \& Stud, back cardboard

\hline C414 \& Condenser, 750 mmt . cathode coupling60-10755301* \&

\hline \multirow[t]{4}{*}{C415} \& | Condenser, trimmer and padder assembly. |
| :--- |
| 3-section \qquad 31-6464 | \& | Dial-Scale Hardware: |
| :--- |
| Cord, pointer drive (25.ft. spool)45-149 |

\hline \& C415A: BC osc. series padder Part of C415 \& Pointer Scale backplate and pulley assembly .-. \quad 76-2005

\hline \& C415B: BC osc. shunt trimmer Part of C4l5 \& Spacer, scale backplate

$$
56.3279
$$

\hline \& C415C: SW osc. shunt trimmer Part of C4lS \& Spring. pointer-drive-cord \quad 28-8953

\hline C418 \& Condenser, 250 mml \& Function-Switch Hardware:

$$
76-2187 \mathrm{FA} 3
$$

\hline C417 \& Condenser. 6 mmf , neutralizing (SW) - ${ }^{\text {a }}$ (1224-9 \& | Link assembly |
| :--- |
| 76.2186 |

\hline C418 \& Condenser, 100 mmt , osc. grid leedback60.10105237* \& Shati. link assembly ...an - 56-3271FAll

\hline C419 \& Condenser, . 01 ml , B - by-pass 61.0120° \& Washer, "C" IW42535FA3

\hline C420 \& Condenser, 250 mmt , osc. plate teedback60-10255237* \& Grommet, r-t chassis mounting \quad S4-4295

\hline C421 \& Condenser, 1500 mmf , B bus r-t by-pass60.20155404* \& Knob, luning

\hline 1400 \& Socket, external aerial 27.6214.1 \& Lamp, panel -assembly, panel

\hline \multirow[t]{3}{*}{1400} \& Push-button coils \& Loop assembly. BC .

\hline \& L400A, B, C: coil, push-bution 32.4 \& | Push-Button-Assembly Hardware: |
| :--- |
| Bracket and lug assembly, rear mounting |

\hline \& L400D. \& Core, push-button tuning

\hline L401 \& Coil. broadcast aerial \& Cover, push-bution switch assembly . 76.1343

\hline L402 \& Coil. FM derial - 32-4158 \& Grommet, push-bution switch mounting - \quad 27-4596

\hline 03 \& Coil. short-wave aerial $\quad 32.4050 .6$ \& Knob, push-button . 54.4217

\hline L404 \& \& | Screw, mounting bracket | |
| :---: | :---: |
| Sleeve, push bution switch mounting | IW |
| 19670FA3 | |

\hline L405 \& Coil. FM r-t $\quad 32.4159$ \& Spring strip, tuning-core stabilizer

$$
56.2249
$$

\hline L406 \& Coil. FM oscillator .- 32.4018.2 \& Switch. a.c., phono motor

\hline L407 \& Coil, choke, parasitic suppressor32.4157 \& Tab kit $\quad .$| 40-6766 |
| :--- |
| 10.5737 |

\hline L408 \& Coil, broadcast oscillator \& | Tab cover | |
| :--- | :--- |
| Terminal strip. push-button coil mounting | $\mathbf{2 7 . 5 7 3 7}$ |
| 6.2250 | |

\hline L409 \& Coil, short-wave oscillator32-411 \& Record Changer Mounting Parts, etc.:

\hline LA400 \& Broadcast-loop assembly \quad 76.1989 \& Bolt, changer-mounting ... 56.3295

\hline R400 \& Resistor, 10 ohms. FM grid ... 66.0103340* \& Grommet. changer-mounting \quad S4.4313

\hline \multirow[t]{2}{*}{R401} \& Resistor, 6800 ohms, pushbution \& Nut. T, changer-mounting
Palnut. changer-mounting

\hline \& oscillator cathode .- 66.2683340° \&

\hline R402 \& Resistor, 150 ohms, FM rit cathode .-. 66.1153340° \& Cable and plug assembly. phono input 41-3735-2

\hline R403 \& Resistor, 47.000 ohms, FM r-i screen dropping 66.3473340 \& Transtormer, phono input $\quad 32.8256$

\hline R404 \& Resistor. 1000 ohms, FM rif plate decoupling 66. 2103340° \& | Shield, panel lamp |
| :--- |
| Scale backplate and pulley assembly |
| 76-2005 |

\hline \multirow[t]{2}{*}{R405} \& Resistor. 1500 ohms, mixer pla \&

\hline \& parasitic suppressor Part of C407 \& Socket, Loktal

\hline R408 \& Resistor. 1500 ohms, mixer cathode 66.2153340° \& Socket. Loktal . \quad 27-6213

\hline R407 \& Resistor, 2.2 megohms, mixer grid $\quad 66.5223340^{\circ}$ \& Socket, miniature 7-pin (mica-filled)
Socket, octal

\hline R408 \& Resistor. 470.000 ohms, isolating 66.4473340° \& Socket, phono power ...-a

\hline R409 \& Resistor. 15.000 ohms, oscillator grid ... 66.3153340° \& Speaker Hardware: W1587

\hline R410 \& Resistor, 33.000 ohms, plate dropping … \&

\hline R411 \& Resistor. 47.000 ohms. dropping \& | Cable and plug assembly |
| :--- |
| Nut, speaker-mounting \qquad 1W19988FA3 |

\hline \multirow[t]{2}{*}{R412} \& Resistor, 6800 ohms. push-bution \&

\hline \& oscillator grid \qquad 66.2683340° \& Wator, capacitor-mounting \qquad S4.7101

\hline
\end{tabular}

AM ALIGNMENT CHART

SIGNAL GENERATOR			RADIO			
STEP	CONNECTIONS TO RADIO	$\underset{\text { QUENCY }}{\text { FRE }}$	FUNCTION SWITCH	$\begin{aligned} & \text { FRE- } \\ & \text { QUENCY } \end{aligned}$	Special instructions	adjust
1	Through . $1-\mathrm{mf}$ condenser to terminal 3 of TB400	455 kc	BDCST	540 kc	Adjust trimmers for maximum out-put-meter reading. Align ONCE ONLY in the order given.	C302E C 301 D C300D TC300
2	Loosely coupled to radio loop. (See Note *)	15 mc	SW	15 mc	Start with loose trimmer screw and adjust for maximum on FIRST signal heard. Image should be heard at 14.1 mc .	C415C
3	Same	15 mc	SW	15 mc	Adjust for maximum while rocking tuning control.	C403B
4	Same		BDCST		Preset C415A by tightening then backing off $1 / 4$ turn.	C415A
5	Same	1700 kc	BDCST	1700 kc	Adjust for maximum.	C415B
6	Same	1500 kc	BDCST	1500 kc	Adjust for maximum.	C403A
7	Same	580 kc	BDCST	580 kc	Adjust for maximum while rocking tuning control.	C415A

8 Repeat steps 5, 6 and 7 until no further increase is noted.
chassis view, showing am trimmer locations.

FM ALIGNMENT CHART

SIGNAL GENERATOR			R A D I O			
STEP	CONNECTIONS TO RADIO	$\begin{gathered} \text { FRE. } \\ \text { QUENCY } \end{gathered}$	FUNCTION SWITCH	$\begin{gathered} \text { FRE. } \\ \text { QUENCY } \end{gathered}$	Special instructions	ADJUST
1	Through .l-mf condenser to pin 1 of 6BA6 (test point D)	9.1 mc	FM	88 mc	Attenuate signal to give approximately a 10 -volt meter reading. Adjust for maximum. Repeat until no further improvement is noted. After this step do not touch any of these trimmers except C302B (in step 3).	C302B TC302 C301B C 301 A
2	Through . 1-mf condenser to pin 8 of 7F8 (test point A)	9.1 mc	FM	88 mc	Attenuate signal to give approximately a 10 -volt reading. Adjust for maximum. Repeat until no further improvement is noted. After this step do not touch these trimmers.	$\begin{aligned} & \hline \text { C300B } \\ & \text { C } 300 \mathrm{~A} \end{aligned}$
3	Same	9.1 mc	FM	88 mc	Double check adjustment of C302B to make certain that minimum audio output is obtained from speaker. This is a critical adjustment: turn trimmer very slowly.	C302B
4	Connect to pin 4, J400	105 mc	FM	105 mc	Maximum meter reading. This is the oscillator high-frequency padder adjustment.	C405C
5	Same	105 mc	FM	105 mc	Adjust for maximum while rocking tuning control.	C405B
6	Same	105 mc	FM	105 mc	Adjust for maximum.	C405A
7	Same	92 mc	FM:	92 mc	Adjust L406. (See note **).	
8	Same	92 mc	FM	92 mc	Adjust L405. (See note ${ }^{* *}$).	
9	Same	92 mc	FMi	92 mc	Adjust L403. (See note **).	
10	Repeat steps 4 through 10 until no further increase is obtained.					

©John F. Rider

Philco TROUBLE SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Circuit Description

Philco Model 48-1253 is a table-model radio-phonograph combination consisting of a five-tube superheterodyne radio and a Philco Model M-8 Automatic Record Changer, operating on a.c. only. The tuning range is $540-1600 \mathrm{kc}$. The built-in high-impedance loop aerial is adequate in most areas; where greater pickup is required, an external aerial may be connected. When the external aerial is not in use, the aerial lead on the radio should be connected to the chassis.

The converter stage employs a 7A8 pentagrid converter. The i-f amplifier is a 7B7 high-transconductance tube, followed by a 7 C6 duo-diode, triode, operating as detector, a.v.c., and first-audio amplifier. The 50A5 output tube works into a permanent-magnet dynamic speaker.

In the power supply, a 50X6 operates in a voltage- connections, burned resistors, or other obvious sources doubler circuit. A resistance-capacitance type of filter of trouble. is used.

For service information on the record changer, refer to service manual PR-1478, Philco Automatic Record Changer Model M-8.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted

MODEL 48-1253 SPECIFICATIONS

2. Measure the resistance between $\mathbf{B}+$ (pin 2 of 50 X 6 rectifier tube) and the B- bus, test point B. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 3700 ohms, check condensers C101, C102, and C103A for leakage or shorts.
The resistance value above, which is much lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 are performed.

Section 1

TROUBLE SHOOTING

Make the tests for this section with a d-c voltmeter. Connect the negative lead to $B-$, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Set the radio-phono switch to RADIO, and the volume control to minimum.
If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2; if not, isolate and correct the trouble in this section.

Figure 1. Bottom View, Showing Section 1 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	96 v	Trouble in this section. Isolate by the following tests.
2	C	220v	Defective: 50X6. Shorted or leaky: C101, C102. Open: R100, C101, C102, S100, WS-1(R).
3	D	207v	Shorted or leaky: C103A. Open: Cl03A, R101, T200*, R204*.
4	A	96v	Shorted or leaky: Cl03B. Open: R204*.

Listening test: Abnormal hum may be caused by open C101, C102, C103A, or C103B.

- This part, located in another section, may cause abnormal indication in this section.

Section 2 TROUBLE SHOOTING
For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.
Set the volume control to maximum. For all the tests except step 5 , set the radio-phono switch to RADIO.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3. If not, isolate and correct the trouble in this section.

Figure 2. Bottom View, Showing Section 2 Test Points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	Clear signal with strong signal input.	Defective: 50A5. Open: LS200. T200, R204. R203. Shorted: LS200, T200, C200, C204, C203. Leaky: C200, C203, C204.
3	D	Same as step 1.	Defective: 7C6. Open: R202, R203, C200. Shorted: C200.
4	A	Same as step 1.	Open: WS-l(R), C201, R200 (rotale through range).
5*	E	Same as step 1.	Open: WS-1(R).

[^3]- Radio-phono switch in PHONO position.

Section 3 TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to $B-$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio-phono switch to RADIO, and the volume control to maximum.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4; if not, isolate and correct the trouble in this section.

Since the circuit location of test point A for this section is the same

Figure 3. Bottom View, Showing Section 3 Test Points as that of test point C for Section 4 , the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A.	Loud, clear slgnal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	Clear signal with strong signal input.	Defective: 7B7. 7C6 (diode section). Open or shorted: Z301 pri. or sec., C301A. C301B. Misaligned: Z301. Open: R404', R300. WS-1(R). Shorted: C302, C303. Shorted or leaky: C405*.
3	A	Same as step 1.	Delective: 7A8*. Open or shorted: $\mathbf{z 3 0 0}$ pri. or sec., C300A, C300B. Misaligned: Z300.

- This part, located in another section, may cause abnormal indication in this section.

Section 4
For the tests in this section, with the exception of the oscillator test, use an r-f signal generator, with modulated output. Connect the generator ground lead to $\mathrm{B}-$, test point \mathbf{B}; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.
Set the radio-phono switch to RADIO, and the volume control to maximum.
If the "NORMAL INDICA. TION" is not obtained in step 1 , isolate the trouble by following the remaining steps.

TROUBLE SHOOTING

Figure 4. Bottom View, Showing Section 4 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIC. CEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	Tune to signal.	Loud. clear signal with weak signal input.	Trouble in this section. Isolate by the follow. ing lests.
2	C	1000 kc .	Tune to signal.	Same as step 1.	Shorted: C400. C400A. Trouble in oscillator eircuit (step 3).
3	D to B Osc. Test (see note below).		Tune through range.	Negative 2.4 to 3 volts.	Defective: 7A8. Open or shorted: T400 pri. or sec., C400B. Shorted: C400.
4	A	1000 ke .	Tune to signal.	Same as step 1.	Open: C401. C404. LA400. C400A. Shorted: C400A.
Listening Test: Hum may be caused by open R401 or C402.					

OSCILLATOR TEST

Connect the positive lead of α high-resistance volimeter to B-, test point B; connect the prod end of the negative lead through a 100,000 .ohm isolating resistor to the 7A8 oscillator grid (pin 4). test point D. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by a negative voltage, 2.4 to 3 volts (measured with a 20,000 ohms-per-volt meter), throughout the tuning range.

REPLACEMENT PARTS LIST

NOTE

Part numbers marked with an asterisk (*) are general replacement ltems. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the 'Service Part No."

Figure 5. Philco Radio Model 48-1253, Sectionalized Schematic Diagram, Showing Test Points

ALIGNMENT PROCEDURE

The radio may be aligned with the chassis in the cabinet. To connect the
signal generator, it is necessary to remove the bottom plate from the chassis

DIAL POINTER-Turn tuning condensers to full mesh position. Adjust dial pointer to index dot, lo cated to the left of " 55 ."

STEP	Signal generator		RADIO		ADJUST
	CONNECTIONS TO RADIO	$\begin{aligned} & \text { SETAL } \\ & \text { SETTNG } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
1				$\underset{\text { screw) down tight. }}{\text { Turn }}$ C301B	
2	Ground lead to B-; output lead through . $05-\mathrm{mf}$. condenser to pin 6 of 7A8 (test point C of Section 4).	455 kc .	540 kc .	Adjust trimmers, in order given, for maximum output.	$\begin{aligned} & \text { C301B } \\ & \text { C301A } \\ & \text { C300B } \\ & \text { C300A } \end{aligned}$
3	Radiating loop (see note helow).	1600 kc .	1600 kc .	Adjust for maximum.	C400B
4	Same as step 3.	1500 kc .	1500 kc .	Adjust for maximum.	C400A

radiating LOOP: Make up a coil of insulated wire consisting of 6 to 8 turns, about 6 inches in diameter. Connect coil ends to
signal.generator leads, and suspend coil near radio loop.

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix parter of the symbol designates the type of part, as follows:

$$
\begin{aligned}
& \text { C—condenser } \\
& \text { I—pilot lamp } \\
& \text { L—choke or coil } \\
& \text { LA—loop aerial } \\
& \text { LS—loud-speaker }
\end{aligned}
$$

$$
\begin{aligned}
& \text { R—resistor } \\
& \text { S—switch } \\
& \text { T——ransformer } \\
& \text { WS—wafer switch } \\
& \text { Z—electrical assembly }
\end{aligned}
$$

The number of the symbol designates the section in which the part is located as follows:

100-series components are in Section 1—the power supply 200 -series components are in Section 2-the audio circuit
300-series components are in Section 3-the i-f amplifier, detector, and
a-v-c circuits.
00 -series components are in Section 4-the aerial and oscillator cir-00-series
cuits.
A suffix letter identifies the part as a component of the assembly which A suffix letter identifies the part as a component of the assembly which fix letter.

OUTPUT LEVEL-During alignment, input signal must be attenuated to hold output-meter reading below .5 volt.

OUTPUT METER-Connect between right-hand SIGNAL GENERATOR-Connect as indicated in (output) lug and center (chassis) lug of terminal chart (output) lug and center
panel shown in figure 6 .

Figure 7. Phileo Radio-Phonograph Madel 48-1264, Sectionalized Schematic [iagram, Showing Test Points

AM ALIGNMENT CHART

RADIATING LOOP: Make up a coil of insulated wire consisting of 6 to 8 turns, about $6^{\prime \prime}$ in diameter. Connect coil ends to
signal-generator leads, and suspend coil near radio broadcast loop.
M ALIGNMENT CHART

STEP	SIGNAL GENERATOR		RADIO		
	CONNECTIONS TO RADIO	DIAL	WAFER SWITCH	DIAL	Special instructions
1	Through . 1 -mf. condenser to pin 1 of 6BA6 (test point D, figure 5).	9.1 mc.	FM	88 mc .	Adjust for maximum. Repeat until no further improvement is noticed. After this step, do not touch any of these trimmers except C302D (step 3).
2	Through . 1-mf. condenser to pin 8 of 7 F8 (test point A, figure 5).	9.1 mc .	FM	88 mc .	Adjust for maximum. Repeat until no further improvement is noticed. After this step, do not touch either of these trimmers.
3	Same as step 2.	9.1 mc.	FM	88 mc .	Double-check the adjustment of C302D to make sure that minimum audio output is obtained from the speaker. Usc output meter. This is a critical adjustment; turn trimmer very slowly.
4	Connect signal generator to terminal 4 of J403.	105 mc .	FM	105 mc .	Maximum meter reading. This is the oscillator high-frequency padder adjustment.
5	Same as step 4.	105 mc .	FM	105 mc .	$\begin{aligned} & \text { Maximum - Rock tuning } \\ & \text { control. } \end{aligned}$
6	Same as step 4.	105 mc .	FM	105 mc .	Maximum.
7	Same as step 4.	92 mc .	FM	92 mc .	Adjust L405. See notes 1 and 2.
8	Same as step 4.	92 mc .	FM	92 mc .	Adjust L403. See notes 1 and 3.
9	Same as step 4.	92 mc .	FM	92 mc .	Adjust L401. See notes 1 and 4.
10	Repeat steps 4 through 9 until no further increase is obtained.				

©John F. Rider

AM ALIGNMENT PROCEDURE

When the complete $A M$ and $F M$ alignments are to be made, the $A M$ alignment should be made first; if FM alignment is not required, the AM alignment alone may be made.

DIAL POINTER: With tuning-condenser plates fully meshed, adjust pointer to coincide with index mark at low-frequency end of scale. See "CALIBRATING DIAL BACKPLATE," page 2.
VOLUME CONTROL: Set to maximum.
TONE CONTROL: Set to maximum counterclockwise, near the "off" position.
AM R-F SIGNAL GENERATOR: Connect ground lead to radio chassis, and output lead as indicated in chart. Use modulated output.
OUTPUT METER: Connect between terminal 3 (voice-coil connection) of aerial terminal panel (TB400) and chassis.

OUTPUT LEVEL: During alignment input signal must be attenuated to hold output-meter reading below 1.5 volts.

RADIO WAFER SWITCH, RADIO DIAL, and SIGNAL-GENERATOR DIAL: Set as indicated in chart.

FM ALIGNMENT PROCEDURE

MAKE AM ALIGNMENT FIRST

OUTPUT METER: Connect as for AM alignment (this meter is used only in step 3).
D-C METER: Connect a 20,000 -ohms-per-volt meter across the 5 - mf . condenser, C325, in the FM detector circuit -the negative lead to pin 6 of the 7 X 7 tube and the positive lead to the chassis. Use the 10 -volt meter range.
AM R-F SIGNAL GENERATOR: Use modulated output for the entire alignment. The generator must have sufficient output to give a reading of approximately 9 volts on the d-c meter, and the signal should be attenuated during the alignment to keep the meter at this value. Connect the generator ground lead to the chassis, and the output lead as indicated in the chart.

RADIO WAFER SWITCH, RADIO DIAL, and SIGNAL-GENERATOR DIAL: Set as indicated in chart. Allow the radio and generator to warm up for 15 minutes before starting the alignment.

NOTE 1: The resonance of the circuits using coils L401, L403, and L405 may be checked with a pow-dered-iron tuning core, such as Part No. 56-6100. If the signal strength (meter reading) increases when the iron end is inserted in the coil, compress the turns slightly. If the signal increases when the threaded brass end is inserted, spread the turns. Do not compress or spread the turns excessively; only a small change is required at these frequencies,

NOTE 2: Oscillator coil L405-Adjust coil for maximum meter reading.
NOTE 3: R-F coil L403-Adjust coil for maximum meter reading while rocking tuning control.
NOTE 4: Aerial coil L401—Adjust coil for maximum meter reading.

Model 48-1264, Code 122, is identical to Model 48-1264, Code 121, with the following exceptions:

1. The FM r-f amplifier tube, type 6AG5, was changed to a type 6AU6 tube. In making this change, the suppressor grid (pin 2) of the GAUG was connected to ground (pin 3).
2. Resistor R $402,47,000$ ohms, was changed to 33,000 ohms, Part No. 66-3333340.
3. Condenser C325, 5 mf ., 50v (noise suppressor), was changed to 2 mf ., 50 v , Part No. 30-2417.7.
4. Condenser C202, 100 mmf ., was removed.

Circuit Description

Philco Model 48-1264 is a nine-tube superheterodyne radio-phonograph combination providing reception on the standard broadcast band, $540-1720 \mathrm{kc}$., and the FM band, 88-108 mc.

A low-impedance loop within the cabinet provides adequate signal pickup on the broadcast band. Satisfactory FM reception usually requires the use of an outdoor dipole aerial (Philco Part No. 45-1462). In areas of high signal strength, however, the dipole built into the cabinet is sufficient for FM operation.

A tuned r-f stage, using a type 6AG5 high-frequency pentode, functions on the FM band. The converter stage employs a 7 F 8 high-frequency double triode. The converter and r-f stages are built on a separate chassis, to insure reliable performance at high frequencies. These stages provide high signal-to-noise ratio, high conversion efficiency, and good image rejection.

Two transformer-coupled i-f stages are used. The i-f transformers have two sets of windings; one set is tuned to 455 kc . for AM operation, and the other to 9.1 mc . for FM operation.

The first i-f stage employs a 6BA6 (miniature type) high-frequency pentode amplifier; the pentode section of a 7R7 double-diode pentode functions as the second i-f amplifier. One diode of this tube is used for AM detection, while the other diode develops a-v-c voltage.

The ratio-detector circuit used for FM detection operates through the two diodes of the 7 X 7 tube; this circuit has good noise-reducing properties and a superior tuning characteristic. The triode section of the 7 X 7 is used as a first-audio and phono-amplifier stage. The output of the AM detector, FM detector, or phono pickup is switched into this circuit by the wafer switch.

A type 6 J 5 GT triode operates as a phase inverter, driving the two 6 K 6 GT output tubes in push-pull operation.

A more uniform frequency response is obtained by the use of inverse feedback. This feed-back voltage is taken from the secondary of the output transformer, and applied through resistor R 211 to the junction of R204 and the volume control.
The 12 -inch electrodynamic speaker provides excellent bass reproduction.

Philco TROUBLE - SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The troubleshooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring the tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed siould be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Carefully inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets. Look for any broken or shorted connections, burned resistors, or other obvious faults.
2. Measure the resistance between $B+$ (pin 8 of the $5 A Z 4$ rectifier) and the radio chassis, with the ohmmeter polarity such that it gives the highest resistance reading; if the reading is lower than 3500 ohms, check condensers C102, C103A, and C103B for leakage or shorts.

The above resistance value, which is much lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 are performed.

CALIBRATING DIAL BACKPLATE

When the radio chassis has been removed from the cabinet, dial calibration and alignment points may be marked on the dial backplate below the pointer.

The measurements for these points are shown in figure 1. Hold a ruler against the scale backplate, with the start of the ruler at the reference line shown, and mark pencil dots at the proper points for the required
frequency settings. When the ruler is correctly placed, the index mark is approximately $1-9 / 16^{\prime \prime}$ from the edge of the backplate.

With the tuning gang fully meshed, the pointer should be adjusted on the drive cord to coincide with the index mark.

Figure 1. Dial-Backplate Calibration Measurements

PHILCO CORP.

SYMBOLIZATION

The components in the radio circuit are symbalized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part, as follows:
C-condenser
I-pilot lamp
L-choke or coil
LA-loop aerial
LS-loud speaker
R-resistor
S-switch
T-transformer
WS-wafer switch
Z--electrical assembly
'The number of the symbol designates the section in which the part is located, as follows:
100 -series components are in Section 1-the power supply.
200 -series components are in Section 2-the audio circuits.
300 -series components are in Section 3-the i-f amplifier, detector, and a-v-c circuits.
400 -series components are in Section 4-the aerial, r-f, and oscillator circuits.
A suffix letter identifies the part as a component of the assembly which bears an identical number without a suffix letter, and with perhaps a different prefix letter.

Figure 2. Pointer-Drive-Cord Installation Details

Section 1

TROUBLE SHOOTING

CAUTION: Do not turn on the power with the speaker disconnected, as this may cause damage to the radio.

For the tests in this section, use a d-c voltmeter. Connect the voltmeter leads between the chassis, test point C, and the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-
per-volt meter, at a line voltage of 117 volts, a.c.
Set the volume control to minimum, and the tone control near the "off" position. Set the wafer switch to the broadcast (BC) position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2; if not, isolate and correct the trouble in this section.

Step	Test Point	Normal Indication	Abnormal Indication	Possible Cause of Abnormal Indication
1	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2100 \mathrm{v} \\ & 24.5 \mathrm{v} \end{aligned}$		Trouble within this arction. Lsolate by the following tret.
2	B	350 v	No vollage Low voltage High voltage	Defective: 5AZA, T100, Slow, W100. Shorted: (:102. Open: R100. Defective: 5AZt. Shorted or leaky: ($102,1308^{*},\left(311^{*}, 1322^{*}, ~ C 309^{*}\right.$ C408*, C409*, C103 A, C103B. Open: Lime, R101, T200.
3	D	Negative $18 v$	Low or no voltage High voltage	Shorted: R100. Wrak okncict tubes. Open: R100.
4	E	200 r	No voltage Low voltage	Shorted: C103B. Open: R101. Leaky: C103B, C319*, C307* © 310
5	A	24.5	No voltage Low voltage High voltage	Shorted: C103A. Open: LIOO. Leaky: C103A. Grounded T200*. Shorted: L100. Weak 6K6GT tulne

Listening Test: Abnormal hum may be caused by open Clon, C101, CI02, or C103 I.
*This part, located in another section, may cause abnormal indication in this section.

Figure 3. Bottom View, Showing Section 1 Test Points

Section 2 TROUBLE SHOOTING

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C; connect the output lead through a . $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control near the "off" position. Adjust the signalgenerator output as required for each step.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3; if not, isolate and correct the trouble in this section.

Step	Test Point	Normal Indication	Possible Cause of Abnormal Indication
1	A	Loud, clear signal with weak siznal input.	Trouble within this section. Isolate by the following test.
2	$\begin{gathered} \text { B } \\ \text { (Remove } \\ \text { (J5GT tube) } \end{gathered}$	Clear signal with strung rignal input.	Defective: $6 \mathrm{~K} 6 \mathrm{CT}, \mathrm{T} 200$, LS200. Open: C212, R214. Shorted or laaky: C212, C214.
3	$\begin{gathered} \text { D } \\ \text { (6J5GT } \\ \text { removed) } \end{gathered}$	Same as step 2.	Defective: 6 K 6 O T . Shorted or leaky: C2il. Open: K215, C211, T200.
4	E (Replace 6 J 5 GT tube)	Loud, clear signal with moder. ate signal input.	Defective: 6J5CT. Open: R212, R209, R210. Shorted or leaky: C210, C206.
5	F	Loud, clear signal with weak signal input.	Defective: ${ }^{\text {X }}$ 7. Open: R207, C210.
6	A	Same as step 5.	Shorted: C202, C201, C326". Open: C208, C216, R201, R200 (rotate though range).
7	$\begin{gathered} \text { PL200 } \\ \text { (Wafer } \\ \text { switch on } \\ \text { PHONO) } \end{gathered}$	Same as step 5.	Defective: PL200, WS2(R).

Listening Test: Distortion may be caused ly leaky C210, C211, C212, C213, or C214. Hum will resuht if C213 is opern.
"This part, located in another sertion, may cause abnormal indication in this section.

Figure 4. Bottom View, Showing Section 2 Test Points

Section 3

TROUBLE SHOOTINC

AM CIRCUITS

For the following tests, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, the wafer switch to the broadcast (BC) position, and the tone control near the "off" position.

If the "NORMAL INDICATION" is obtained in
step 1, proceed with the tests for the FM circuits, or to the tests in Section 4; if not, isolate and correct the trouble in the AM circuits.

Since the circuit location of test point A for this section is the same as that of test point B for Section 4 , the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4 ; these parts are listed under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

Step	Test Point	Normal Indicotion	Possible Cause of Abnarmal Indication
1	A	Loud, clear signal with weak signal input.	Trouble in AM circuits. Isolate by the following tests.
2	B	Loud, clear signal with strong signal input.	Defective: 7R7, Z302, WS3(R), WS2(R). Shorted or leaky: C320, C321, C322. Open: R309, R312, R313, R314, R315, R317. Misaligned: Z302.
3	D	Loud, clear signal with moderate signal input.	Defective: 6BA6, Z301. Shorted or leaky: C307, C3188, C309, C31!. Open: R306, R304, R305, C307. Misaligned: Z301.
4	A	Loud, clear signal with weak signal input.	Defertive: $\mathbf{7 F}^{*}, \mathbf{Z 3 0 0}$, WS4(R), WS4(F). Shorted or leaky: C303, C304, C305. Open: R300, R301, R405*. Misaligned: Z300.

Listening Test: Distortion, with hum, may be caused by open C307 or C319.
*This part, located in another section, may cause abnormal indication in this section.

FM CIRCUITS

These tests are also made with an AM r-f signal generator, using modulated output. Observe the instructions preliminary to the tests for the AM circuits, with the following exceptions: set the wafer switch to the FM position; set the signalgenerator frequency to 9.1 mc ., and detune to one side or the other until a satisfactory test signal is obtained.

The best indication of satisfactory FM-detector operation is the ability of this circuit to take the alignment properly (see page 14).

Figure 5. Bottom View, Showing Section 3 Test Points

Step	Test Point	Normal Indicotion	Possible Cause of Abnormal Indication
1	B	Loud, clear signal with strong signal input.	Delective: TR_{T}, iX7 (diode section), (325, Z302. Shorted or leaky: (323, C324, C:205. Open: R318, R319. Minaligned: Z302.
2	D	Loud, clear signal with moderate signal input.	Same parts listed in AM test chart, step 3.
3	A	Loud, clear signal with weak signal input.	Same parts listed in AM test chart, itep 4 and WS4(R), WS4(F).

Section 4

For the tests in this section, with the exception of the oscillator tests, use an AM r-f signal generator, with modulated output. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the charts.

Set the volume control to maximum, and the tone control near the "off" position.

For the AM-circuit tests, set the wafer switch to the BC position, and set the signal-generator and radio dials to 1000 kc .
For the FM-circuit tests, set the wafer switch to the FM position, and set the signal-generator and radio

SHOOTING

dials to 95 mc . (detune the generator to one side or the other until a satisfactory test signal is obtained).

OSCILLATOR TESTS: For the oscillator tests (step 3 in each chart), connect the positive lead of a high-resistance voltmeter to the 7F8 oscillator cathode (pin 4); connect the prod end of the negative lead through a $100,000-0 \mathrm{hm}$ isolating resistor to the 7F8 oscillator grid (pin 1), test point D. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator for either AM or FM is indicated by a negative voltage throughout the range of the tuning condensers (the normal oscillator voltages given in the charts were measured with a $20,000-0 \mathrm{hms}$-per-volt meter).

AM CIRCUITS

Step	Test Point	Normal Indication	Possible Cause of Abnormal Indication
1	A	Loud, clear signal with weak signal input.	Trouble in AM circuits. Isolate by the following tests.
2	B	Same as step 1.	Defertive: 7F8. Shorted: C401. Open: L406, R408, C411. Trouble in oscillator circuit (step 3).
3	D Osc. Test	Negative 2 to 3 volts (turn tuning control through range.)	Defective: 7F8, WS3 (F), WS2(F). Shorted: C411, C412, C413, C402B, C402A, C400, L404. Open: R406, R303:, L404, C412, C413.
4	A	Same as step 1.	

*This part, located in another section, may cause abnormal indication in this section.
FM CIRCUITS

Step	Test Point	Normal Indication	Possible Cause of Abnormal indication
1	E	Loud, clear signal with weak signal input.	Trouble in FM circuits. Isolate by the following tests.
2	B	Loud, clear signal with moderately weak signal input.	Same parts listed in AM test chart, step 2.
3	$\underset{\text { Osc. } T \cdots t}{\mathrm{D}}$	Negative. 1 volt (approx.).	Defertive: 7F8, WS3(i), WS2(R), C400, C400\%. Open: L405.
4	F	Loud, clear signal with moder. ately weak signal input.	Defective: WSI (R). Open: C407.
5	E	Loud, clear signal with weak signal input.	Defective: 6AG5. Shorted: C400, C400A. Shorted or leaky: C408, C406, C407. Open: R400, R401, R402, R403, L402.

- John F. Rider

REPLACEMENT PARTS LIST

 NOTE

 NOTE}

Part numbers marked with on asterisk (*) are general replacement items. These numbers may not be identical with those on factory ossemblies; also, the electrical values of some replocement items may differ from the value indicoted in the schematic diagram and parts list. The volues substituted in any cose are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION 1

- John F. Rider

SECTION 3 (Cont.)		SECTION 3 (Cont.)	
Reference Symbol		Refere	
	1 Description Service Part No.	Sym	Description Service Part No.
C300D	Condenser, FM trimmer Part of Z300	R304	Resistor, cathode bias, 68 ohms 66-0683340*
C300E	Condenser, AM trimmer Part of $\mathbf{Z 3 0 0}$	R305	Resistor, screen dropping, 27,000 ohms . 66-3273340*,
C301A	Condenser, FM trimmer Part of $\mathbf{Z 3 0 1}$	R306	Resistor, plate decoupling, 1000 ohms . 66-2103340*
C301B	Condenser, AM tuning, 300 mmf Part of $\mathbf{Z 3 0 1}$	R307	Resistor, grid return, 2.2 megohms . . . 66-5223340*
C301C	Condenser, FM trimmer Port of 2301	R308	Resistor, a-v-c filter, 3.3 megohms. . . . 66-5333340*
C301D	Condenser, AM trimmer Part of Z301	R309	Resistor cathode bias, 150 ohms 66-1153340*
C302A	Condenser, AM tuning, 470 mmf. . . . Part of $\mathbf{Z 3 0 2}$	R310	Resistor, a-v-c load, 1 megohm 66-5103340*.
C302B	Condenser, AM trimmer Part of $\mathbf{Z 3 0 2}$	R311	Not used
C302C	Condenser, FM coupling, 27 mmf Part of Z302	R312	Resistor, screen dropping, 68,000 ohms 66-3683340*
C302D	Condenser, FM trimmer Part ofZ302	R313	Resistor, diode load, 330,000 ohms . . . 66-4333340*.
C302E	Condenser, FM tuning, 25 mmf Port of $\mathbf{Z 3 0 2}$	R314	Resistor, plate decoupling, 1000 ohms . 66-2103340*
C302F	Condenser, FM tuning, 15 mmf Part of Z302	R315	Resistor, diode decoupling, 47,000 ohms 66-3473340*
C303	Condenser, plate by-pass, .01 mf. 61-0120*	R316	Resistor, noise suppressor, 47,000 ohms 66-3473340*
C304	Condenser, a-v-c-by-pass, .01 mf. 61-0120*	R317	Resistor, diode decoupling, 100,000 ohms 66-4103340*
C305	Condenser, a-v-c by-pass, 100 mmf . . 60-10105407*	R318	Resistor, FM decoupling, 100,000 ohms . $66-4103340^{*}$
C306	Condenser, filament by-pass, 100 mmf 60-10105407*	R319	Resistor, FM-detector load, 6.8 megohms 66-5683340*
C307	Condenser, screen by-pass, . 01 mf 61-0120*	TC300	A Tuning core, AM tuning Part of $\mathbf{Z 3 0 0}$
C308	Condenser, plate by-pass, 100 mmf . . 60-10105407*	TC30	Tuning core, FM tuning Part of $\mathbf{Z 3 0 2}$
C309	Condenser, plate decoupling, . 01 mf61-0120*	Z300	ansformer, ist i-f, including C300A, C300B,
C310	Condenser, plate by-pass, 01 mf 30-4641		C300C, C300D, C300E, and TC300A ..32-4146*
C311	Condenser, plate by-pass, . 01 mf61-0120*	2301	Transformer, 2nd i-f, including C301A, C301B,
C312	Condenser, a-v-c by-pass, 250 mmf . . 60-10255237*		C301C, and C301D 32-4156*
C313 N	Not used	$\mathbf{Z 3 0 2}$	Transformer, 3rd i-f, including C302A, C302B,
C314	Condenser, a-v-c- filter, . 01 mf 61-0120*		C302C, C302D, C302E, C302F
C315	Not used		TC302A 32-4147*
C316	Condenser, cathode by-pass, . 05 mf 61-0122*		
C317	Condenser, filament by-pass, $100 \mathrm{mmf}$. 60-10105407*		SECTION 4
C318	Condenser, d-c blocking, 100 mmf . . . 60-10105407*	Refere	
C319	Condenser, screen by-pass, . 01 mf 61-0120*	Symb	Description Service Part No.
C320	Condenser, r-f by-pass, 100 mmf 60-10105407*	C400	Condenser, tuning gang 31-2703-2
C321 C	Condenser, r-f by-pass, 100 mmf 60-10105407*	C40	A Condenser, FM aerial trimmer Part of C400
C322 C	Condenser, plate decoupling, . 05 mf 61-0122*	C400	OB Condenser, FM r-f trimmer Part of C400
C323	Condenser, r-f by-pass, 100 mmf . . . 60-10105407	C400	C Condenser, FM oscillator trimmer. . . Part of C400
C324	Condenser, r-f by-pass, .008 mf. 61-0174*	C401	Condenser, 1500-kc. trimmer31-6473
C325	Condenser, noise suppressor, 5 mf 30-2417*	C402	Condenser, trimmer assembly, 2 -section 31-6476-5
C326 C	Condenser, r-f by-pass, 100 mmf . . . 60-10105407*	C402	2A Condenser, shunt trimmer, BC oscillator Part of C402
C327	Condenser, coupling, 6 mmf 30-1224-9	C402	2B Condenser, series trimmer, BC oscillator Part of C402
C328 N	Not used	C403	Not used
R300 R	Resistor, plate dropping, 47,000 ohms . 66-3473340*	C404	Condenser, filament by-pass,
R301 R	Resistor, a-v-c decoupling, 2.2 megohms 66-5223340*		100 mmf 60-10105407*
R302 R	Resistor, plate dropping, 4700 ohms . . 66-2473340*	C405	Condenser, cathode by-poss,
R303 R	Resistor, plate dropping, 33,000 ohms . 66-3333340*		100 mmf 60-10105407**

	SECTION 4 (Cont.)	MISCELLANEOUS
Reference		
Symbol	Description Service Part No.	Description Service Part No.
C406	Condenser, screen by-pass, 100 mmf . 60-10105407*	Bin Hardware
C407	Condenser, d-c blocking, 33 mmf . . 60-00305307	Cable-socket-and-switch assembly, bin light. . 76-2728-5
C408	Condenser, plate by-pass, 1500 mmf . 60-20155404	Door, bin, changer 48-1264W45-6396
C409	Condenser, screen by-pass,	Door, bin, changer 48-1264L 45-6397
	1500 mmf 60-20155404*	Cabinet and Cabinet Hardware
C410	Condenser, d-c blocking, 220 mmf . 60-10245307*	Baffle and cloth
C411	Condenser, d-c blocking, 750 mmf . 60-10755301*	
C4 12	Condenser, grid return, 100 mmf . . 60-10105407*	Bezel, metal . 56-4878
C413	Condenser, d-c blocking, 220 mmf . 60-10245307*	Cabinet, walnut, less scale 10683
C414	Condenser, filament by-pass,	Cabinet, light mahogany, less scale 10683 A
	100 mmf 60-10105407*	Frame assembly . 76-3222
$J 400$	Socket, 4-prong, external aerial 27-6214-1	Grille, wire . 56-4985
L400	Coil, BC aerial 32-4033-2	Loop assembly, FM cabinet dipole 76-2029-10
L401	Coil, FM aerial 32.4158	Scale, dial .76-3187-1
L402	Choke, plate 32-4061	Strap, dial-scale mounting 56-4916
L403	Coil, FM r-f 32-4159	Cable, shielded . 41-3754-11
L404	Coil, BC oscillator 32-4019-4	Cable, speaker . 41-3734.7
L405	Coil, FM oscillator 32-4018-2	Dial Backplate and Associated Hardware
		Backplate and pulley assembly 76-2005-3
L406	Choke, parasitic suppressor,	Cord, pointer drive (25-ft. spool) 45-8750*
	including R408 $32-4157$	Pointer . 56-3179
LA400	Loop assembly, broadcast 76-2262-1	Spring, pointer-drive-cord 28-8953
R400	Resistor, parasitic suppressor, 10 ohms 66-0103340*	Knob . 54-4486
R401	Resistor, cathode bias, 150 ohms. . . 66-1151540*	Lamp-socket ossembly, pilot 76-2109
R402	Resistor, screen dropping,	Plug, speaker . 27-4419-2
	47,000 ohms 66-3473340*	Record-Changer Mounting Hardware
R403	Resistor, plate decoupling, 1000 ohms 66-2103340*	Bolt . 56-3295-1FA15
R404	Resistor, grid return, 2.2 megohms...66-5223340*	Grommet . 54-4313
R405	Resistor, cathode bias, 1500 ohms ...66-2	Nut . IW56643FA3
R406		Palnut . IW29061FA3
		Spring . 56-3043-FA15
R407	Resistor, grid return, 470,000 ohms . 66-4473340*	Socket, loktal (7F8 only) 27-6213
R408	Resistor, parasitic suppressor,	Socket, lokral . 27-6138*
	1500 ohms Part of L406	Socket, miniature (6AG5) 27-6203-1
TB400	Aerial terminal panel 38-9942	Socket, miniature (6BA6) 27.6226
WS	Wafer switch 42-1803	Socket, octal . 27-6174
WS 1	1st section, water switch Part of WS	Wafer-Switch Hardware
WS2	2nd section, wafer switch Part of WS	Link assembly 76-2186-3
WS3	3rd section, water switch Part of WS	Shati 56-3298FAll
WS 4	4 th section, wafer switchPart of WS	Washer, " $C^{\prime \prime}$ " IW42535FA3

SPECIFICATIONS

CABINET	
Model 48-1274	Wood, mahogany or walnut finish
Model 48-1276	Wood, mahogany finish
FREQUENCY RANGES	
AUDIO OUTPUT 15 watts	
PUSH BUTTONS	Ten: One for power OFF; one for phono operation; three for manual-tuning band selection (BC, SW, or FM); five for automatic (motor-driven) station and band selection (BC or FM)
OPERATING VOLTAGE105-125 volts, 60 cycles, a.c.	
POWER CONSUMPTION	
Radio 175 watts	
Phonograph	20 watts
AERIALS	Built-in loop for broadcast and short wave; cabinet dipole for FM; provision for external aerial
INTERMEDIATE FREQUENCIES	
AM ... 455 kc .	
PHILCO TUBES (16)	6L6GA(2), 7F7, 2 ET, 5U4C
PHONOGRAPH	Philco Automatic Record Changer, Model M-4 (for service information, see manual PR-1157)
MOTOR-DRIVEN TUNING MECHANISM	Philco Electromechanical Push-Buton Tuner (for servire information, ser manual (PR-1.181)

AM ALIGNMENT CHART

SETTING

PUSH BUTTONS

NOTE: Before setting the push butlons. 15 minutes.

Depress the BC push button, and rotatc the tuning control until the Allen setscrew in the main camshaft is accessible from the rear of the

Loosen the setscreve four turns.
CAUTION: Remove the wrench before proceeding with the next step.
Determine the dial positions of the desired tions (both FM and broadcast) in order, from sations, in the same order, in the station-selecto buttons.
4. Position the push-rod extension spring of te station-selector button so that it will engage and lower bar for FM).
5. Depress the button for the band of the 5.ion to be set up on sation, and, while holding the manual-tuning ontrol, depress the station-selector button
6. After the tuning motor stops, operate the 6 -up switch (see figure 9); hold the set-up switch losed until the motor stalls, then release it.

Set the remaining four station-selector but
7. from left to right, in the same manner.
8. Depress the BC button, and again rotate the tuning control until the Allen setscrew is ac
cessiblec; tighten the setscrew and remove the $\substack{\text { essible; } \\ \text { wrench. }}$

FM ALIGNMENT CHART
Hure io. TOP VIEW. Showing fm trimmer locations

step	Signal generator		RADIO		figure io. top view. Showing fm trimmer locations	
					adust	
		Dial setring	dial sefting			
1	To conto grid (pin 5) of tes	9.1 mc. (Mod. on)	(Tuning geng tuly	Connect jumper between pin 2 (oscillator grid) of FM1000 and chassis (see note 1). Connect loading network (see note 2) between top of trimmer C303B and chassis (see note 3). Adjust for maximum		
2	Same as step 1.	9.1 me. (Mod. on)	Same as step 1.	Connect loading network between pin 2 (blue lead) of 7 H 7 third i.f. and chassis. Adjust for maximum.		
3	Same as step 1.	9.1 mc (Mod. on)	Sang as step 1.	Connect loading network between pin 6 (green lead) of 7 H 7 third i.f. and chassis. Adjust for maximum.		
4	Same as step 1.	9.1 .1 me. (Mod. on)	Sanns as step 1:	Connect loading network between pin 2 (blue lea 0°) of 7B7 second i.f. and chassis. Adjust for maximum.		
5	Same as step 1.	9.1. mc. (Mod. on)	Sans as step 1.	Connect loading network between pin 6 (green lead) of 7B7 second i.f. and chassis. Adjust for maximum.		
\%	Same as step 1.	9.1. me. (Mod. on)	Sane as step i.	Connect loadina network between pin 2 (blue lead) of 7 H 7 first i.f. and chassis. Adjust for maximum.		
7	Same as step 1.	9.1 me. (Mod. on)	Same as ste	Leave loodina network comnected as in steo 6. Adiust tor maximum.		
8	To control grid (pin 6) of $7 \mathrm{H7}$ third	mc. (Mod. oft)	Sane as	Remove loading network, and remove jumper from pin 2 of FM1000 and chassis. Connect jumper b zero beat.		
9	Same as step 8.	9.1 mc. (Mod. oft)	Sams as step 1.	Remove iumper used in steg 8. Adjust tor 2oro beet lsee note		
10	To terminal 2 of 1480 (ssee note 5)	105 mc . Mod. on)	105 mc .	Connect iumper between pin 2 of Fmi000 and chassis. Adiust tor moximum.	- H f	
11	Same as step 10.	105 mc . (Mod. on)	105 mc .	Same as stop 10.	crys 0	
12	Same as stip 10.	92 mc. (Mod. on)	92 mc .	Adiust coil 1099 tor maximum (see note 6).		
13	Repeat steos 10 and 11 unili no turrher increase is obluined.					
14	Same as step 10. See note 7.		$\frac{105 \mathrm{mc} .}{105 \mathrm{mc}}$.	Adiust tor maximum while rocking tuning control.		
16	$\frac{\text { Same as siep } 13 .}{}$	${ }_{92} \mathrm{mc}$ c. (Mod. on)	- ${ }^{22 \mathrm{mc} \text { c. }}$	Adiust cils L405 and Li401 tor maximum (see noie 6).	R.t ond oeridl racking	
17	Repeat steos 14. 15 . and 16 unilil no turther increase is oblained.					

AM ALIGNMENT PROCEDURE

CAUTION: Do not turn on the power with the speaker disconnected, or the radio may be damagec'.
When the complete AM and FM alignments are to be made, the AM alignment should be made first; if AM alignment is not required, the FM alignment alone may be made. Before starting the alignment, allow the radio to warm up for about 15 minutes.
DIAL POINTER: With the tuning-condenser plates fully meshed, adjust the pointer to coincide with the index mark at the low-frequency end of the scale. See CALIBRATING DIAL BACKPLATE, page 12.
RADIO CONTROLS: Set the volume control to maximum. Turn the bass control fully counterclockwise, and the treble control fully clockwise.
AM R-F SIGNAL GENERATOR: Connect the ground lead to the radio chassis, and the output lead as indicated in the chart. Use modulated output.
OUTPUT METER: Connect between terminal 4 (voice-coil connection) of the aerial terminal panel and the chassis.
OLTPUT LEVEL: During the alignment, the input signal must be attenuated to hold the output-meter reading below 1.5 volts.
BAND PUSH BUTTONS, RADIO DIAL, AND SIGNAL-GENERATOR DIAL: Set as indicated in the chart.

FM ALICNMENT PROCEDURE MAKE AM ALIGNMENT FIRST

Follow the instructions preliminary to the AM alignment chart, except for the band selection; depress the FM push button. Use an AM r-f signal generator, with or without modulation, as indicated in the chart.

FM ALIGNMENT NOTES

1. When pin 2 of the FM1000 tube is shorted to the chassis, the detector oscillator is made inoperative, and the circuit is converted to an AM detector.
2. Make the loading network by connecting a 4700 -ohm resistor and a $.1-\mathrm{mf}$. condenser in series. Attach an alligator clip to each free end of the network. This network, when connected across the primary or secondary of an overcoupled i-f transformer, loads the circuit so that the transformer coupling is effectively below the critical value; the unloaded winding may then be correctly tuned to the center intermediate frequency.
3. The top of trimmer, C 303 B , can be reached only from the top of the shield can. Slide a length of flattened solder or wire down between the ceramic form and the edge of the trimmer plate. Attach the loading network between this connection and the chassis.
4. It is essential that the output of the generator be kept below the level at which the detector oscillator locks in, or an erroneous zero beat will be obtained. When a single very sharp zero-beat point in obtained, the adjustment is correct.
5. The use of a signal generator for steps 10 to 16 , inclusive, is recommended only if the available generator is sufficiently accurate to insure correct frequency settings; otherwise, an alternate procedure employing FM broad-cast-station signals instead of a signal generator is recommended. For adjustments at the high-frequency end of the band, use the station nearest 105 mc ; for the low-frequency adjustments, use the station nearest 92 mc . If the circuits are greatly misaligned, it may be necessary to adjust the trimmers and coils for maximum noise at each end of the band before station signals can be heard.
6. Check circuit resonance, with a tuning wand. If the brass end, when placed in or near the coil, increases the output-meter reading, spread the coil turns; if the powdered-iron end increases the reading, compress the turns. If both ends cause a decrease in output, the coil is correctly tuned. Do not change the coils excessively, since only a small adjustment is required at these frequencies.
7. To feed sígnals from the signal generator into the aerial circuit of the radio, make two simple dipole aerials. Each aerial may consist of two 30 -inch lengths of rubber-covered wire. Connect one dipole aerial to terminals 1 and 2 on the FM aerial socket. Connect the other to the signal-generator leads. Arrange the two aerials several feet apart.

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in owhich the parts are located. The prefix letter of the symbol designates the type of part, as follows:

C-condenser	LA -loop aerial	PB-push-button switch	T —transformer
I-pilot lamp	LS—loud-speaker	R -resistor	WS-wafer switch
L—choke or coil	MO-motor	S -switch	Z electrical assembly

The number of the symbol designates the section in which the part is located, as follows:
100 -series components are in Section 1 - the power supply
200 -series components are in Section 2 - the audio circuits
300 -series components are in Section 3 - the $i-f$, detector, and a-v-c circuits
400 -series components are in Section 4 - the r-f and converter circuits
A suffix letter identifies the part as a component of the assembly which bears an identical number without a suffix letter, and with perhaps a different prefix letter.

CIRCUIT DESCRIPTION

Philco Models 48-1274 and 48-1276 are 16-tube radiophonograph combinations incorporating a sensitive superheterodyne radio and a Philco Automatic Record Changer, Model M-4. The two models are essentially identical except for the cabinets and cabinet hardware, as indicated in the Replacement Parts List.

Aerial System

A built-in, low-impedance loop provides signal pickup on the broadcast and short-wave bands. The cabinet dipole aerial gives satisfactory FM reception in areas of moderately high signal strength. For greater pickup on the FM band, the Philco Dipole Outdoor Aerial, Part No. 45-1462, should be used. To increase the pickup on all three bands, use the Philco Aerial Coupler, Part No. 76-2353, with the outdoor dipole. Information on aerial and coupler connections is given in ex-ternal-aerial bulletin PR-1200.

Push Buttons

Nine of the ten push buttons are used for the selection of band, phono operation, or automatic station tuning; any one of these turns on the power. The OFF button turns off the power.

Push-Button Band Selectors

Any one of three push buttons (BC, SW, FM) selects the band for manual tuning by operating a motor-driven band switch. A muting switch, shorting out the speaker voice-coil circuit, operates simultaneously.

Push-Button Phono Switch

The PHONO push button operates the motor-driven band switch to select phono operation, and applies the power to the phonograph control on the record changer. The muting switch operates simultaneously.

Push-Button Station Selectors

Five push buttons are used for selecting any one of five standard-broadcast or FM stations. These buttons operate the motor-driven tuning mechanism, and, in addition, automatically actuate the motor-driven band switch whenever a band change is required. The muting switch operates simultaneously.

Radio Circuit

A 6AU6 r-f pentode is used as a tuned-r-f amplifier on all bands. See figure 8. Frequency conversion is accomplished by separate mixer and oscillator tubes. A 7E5, arranged for cathode injection, functions as the mixer on all bands. The oscillator system employs a 7F8 double triode. One section of this tube is em-
ployed as the oscillator for broadcast and short-wave reception. For FM reception, the second section of the tube, functioning as the oscillator, operates on frequencies of one-half those usually employed, while the first section of the tube functions as a frequency doubler, the tuning circuit being tracked with that of the oscillator. Another unique feature of the FM oscillator is the separate tuned circuit, which is inductively coupled to the untuned feed-back circuit. These oscillator design features achieve unusual stability.

The three stages of i-f amplification employ two 7H7's and one 7B7. In the i-f transformers the FM windings (9.1 mc .) are in series with the AM windings (455 kc .). The windings of the first i-f transformer are switched, to provide additional image rejection and conversion efficiency. No switching is required for the other i-f transformers.

The diode sections of the 7E6 provide AM detection and a.v.c.; the triode section of this tube functions as the first audio amplifier. For FM reception, the Philco Advanced FM Detector, using an FM1000, provides good sensitivity and noise rejection.

A positive voltage taken from a voltage divider (R104 and R105) is applied, through the center tap of the filament winding, to the first-audio and phono-preamplifier tubes; by making the filaments positive with respect to the cathodes and grids, emission from the filaments to these elements is prevented, and a-c hum is reduced in both radio and phono operation.

The first audio amplifier is resistance-coupled to a 6J5GT driver, which is resistance-coupled to one of the 6L6GA output tubes and, through a voltage divider (R223 and R224), to a 6J5GT phase inverter; the phase inverter drives the other 6L6GA output tube. Inverse feed-back voltage, taken from the secondary of the output transformer, is applied through a voltage divider (R221 and R227) to the 6J5GT driver, thus improving the fidelity of the audio system.

Both the tweeter and the large reproducer of the coaxial speaker system are used for FM reception. The tweeter is disconnected for broadcast and short-wave reception, and also for phono operation.

Phono Preamplifier

A 6J5GT is used in the phono-preamplifier stage. In phono operation, this stage is resistance-coupled to the first audio amplifier (triode section of the 7 E 6).

Scratch Eliminator

The Philco Electronic Scratch Eliminator, which is used in phono operation, reduces the high-frequency surface noise during the low-volume passages of a
record, and permits maximum treble response during the high-volume passages. The circuit employs a 7F7 double triode as a two-stage audio amplifier, and a 7 E 7 double diode, pentode as a half-wave rectifier and a reactance tube. The latter functions as a variable capacitance (at the output circuit of the phono preamplifier) which shunts a controlled portion of the higher audio frequencies to ground. The bias on the grid of the reactance tube controls the effective shunt capacitance, which becomes maximum with low bias, and minimum with high bias. The control bias is obtained from the audio signal, of which a definite amount is taken off, amplified by the 7F7, and rectified by the diode section of the 7E7.

High-Fidelity Switch

The high-fidelity switch, operating in conjunction with a band-switch section, WS-2(R), performs the following functions:

For broadcast and short-wave operation, the fidelity switch in the OFF position switches the treble control into the circuit, and in the ON position disconnects the treble control.

For FM operation, the fidelity switch in the ON position connects the tweeter speaker into the circuit, and also connects that section of the treble control
which controls the output of the tweeter; in the OFF position the fidelity switch disconnects the tweeter, and connects the treble control into the circuit.

For phono operation, the fidelity switch in the OFF position turns on the scratch eliminator, and switches the treble control into the circuit; in the ON position the switch disconnects the treble control, and turns off the scratch eliminator.

Treble Control

The treble control has two variable-resistance sections; the .5 -megohm potentiometer operates in conjunction with a $.05-\mathrm{mf}$. condenser for treble-attenuation control, and is in the circuit whenever the high-fidelity switch is in the OFF position; the $50-\mathrm{ohm}$ potentiometer controls the output of the tweeter speaker for FM highfidelity operation, and is in the circuit when the highfidelity switch is in the ON position (with the FM push button depressed).

Bass Control

The bass control is in the circuit for both radio and phono operation. This control, a 1 -megohm potentiometer, is combined with C206 and R209 to furnish any desired degree of bass accentuation.

PHILCO AUTOMATIC BAND SELECTOR

The Philco Automatic Band Selector consists of a motor-driven band switch (figure 5), operated by the various push buttons. The position of the switch is selected manually, by the BC, SW, FM, or PHONO push-button, or automatically, by any of the five station-selector push buttons.

The motor is a reversible, shaded-pole, induction motor, operating on 24 volts a.c. The operation of the motor is controlled through the contacts on the "homing" wafer, WS-3(F) and WS-3(R), which is a section of the band switch; the contacts on both sides of this wafer are shown schematically in figure 8 . The direction of motor rotation depends upon which section of the center-tapped field is energized; therefore, the direction in which the band switch is driven is determined by the position of the homing-wafer rotor when a given band-selector switch is closed. In manual band selection, motor power is applied to the homing wafer by the contacts of the BC, SW, FM, or PHONO push button. In automatic band selection, the power is applied by either S 104 for the standard broadcast band, or by S105 for the FM band. Switches S104 and S105 are combined with the upper and lower rocker bars, respectively, located on the front of the Philco Electromechanical Push-Button Tuner. Either bar is mechanically actuated, when a given station-selector button is depressed, by the individual push-rod extension spring, which is positioned so as to strike the rocker bar for the band in which the station is located.

When any one of the push-button switches is closed, power is supplied to the motor until the moving rotor
of the homing wafer breaks that circuit. Over-shooting is prevented by the use of a clutch, mounted on the motor shaft. When the motor is idle, a spring holds its rotor off-center with respect to the electromagnetic field, and keeps the motor disengaged from the gear train. When power is applied to the motor, the rotor attempts to center itself in the field, thus engaging the clutch in the gear train. When the power is removed, the clutch is immediately disengaged by the action of the spring.

As the clutch is disengaged, the muting switch (leaf type) is pushed open by the motor shaft. When the motor operates, the muting switch is allowed to close.

For an example of the band-changing operation, assume that the idle condition is as indicated in the schematic diagram, showing the BC push button, PB-3, depressed. Now, if PB-5 is depressed, the motor circuit is completed through contact 11 and the rotor of WS-3(R), thence through the upper section of the motor field winding. Power is supplied to the motor until the band switch is rotated sufficiently to break the circuit between contact 11 and the rotor of WS-3(R). At this instant, the rotor of the motor is thrown outward, disengaging the clutch from the gear train.

From the idle position shown, if PB-2, instead of PB-5, is depressed, the motor circuit is completed through contact 8 and the rotor of WS-3(F), thence through the lower section of the motor field winding, thus causing inotor rotation in the direction opposite to that of the instance cited above.

PHILCO ELECTROMECHANICAL PUSH-BUTTON TUNER

As previously mentioned, the Philco Electromechanical Push-Button Tuner provides both automatic tuning and band selection, for five stations in the standard broadcast and FM bands, by the operation of push buttons. The five station-selector buttons operate the motor-driven tuning mechanism.

Band selection is determined by the position of the push-rod extension spring, one of these being attached to each of the five push rods; the push-rod extensions facing upward lock in the upper rocker bar (standard broadcast) when the buttons are depressed; the extensions facing downward lock in the lower rocker bar (FM).

The tuning-condenser gang is rotated to the correct position by the motor-driven tuning mechanism, which is operated by a 24 -volt, a-c, series-wound motor. A 4 -contact leaf switch (S102), located at the rear of the push rods, applies the motor power and closes the
muting circuit when any of the five station-selector buttons is depressed; this switch is locked in the closed position by a small latch on the push rod, which hooks onto the actuator bar. When the tuning gang locks in the preset position, the intermediate gear of the gear train rides upward and trips the actuator bar, to release the small latch, thus removing the motor power and opening the muting switch.

The set-up switch (S 101), which is used for setting the station-selector buttons, is connected in parallel with the motor power switch, and is operated by a small button located on the rear of the chassis.

Since the functioning of the tuning mechanism itself is somewhat complex, a detailed description of the tuner, with illustrations and complete service information, is presented in a separate manual, PHILCO ELEC. TROMECHANICAL PUSH-BUTTON TUNER, PR1481.

PHILCO TROUBLE-SHOOTING PROCEDURE

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

Section 1-the power supply
Section 2-the audio circuits
Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits
Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Important

To avoid the possibility of altering FM operation, special care should be used in replacing any part. Replacement parts should be placed in the same physical positions as the original parts; connections should be of the same length, and should be soldered to the same points. The placement or length of leads should not be changed.

PRELIMINARY CHECKS

To avoid possible damage to the radio, the following preliminary checks should be made before connecting the radio to a source of power:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance across condenser C 100
(see figure 1). When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1500 ohms, check condensers C100, C101A, C104A, C436, C437, C410, and C411 for leakage or shorts.

The resistance value above, which is much lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 are performed.

PHILCO CORP.

Section 1 - Power Supply

CAUTION: D o not turn on the power with the speaker disconnected, or the radio may be damaged.

Make the tests for this section with a d-c voltmeter; connect the leads between the chassis, test point C, and the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.

TROUBLE SHOOTINC

Depress the BC push button, PB-3; set the volume control to minimum, and the bass and treble controls fully ciockwise.

Follow the steps in the order given. If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	255v		Trouble in this section. Isolate by the following tests.
2	B	290v	Low voltage No voltage High voltage	Defective: 5U4G. Leaky: C100, C101A. C436*, C437*. C104A, C319*. Open: L100, T100, C100. Shorted: T100. Defective: 5U4G. Open: PB-1, Tl00. Shorted: C101A, C104A, C319*. Open: T200.
3	D	270v	Low voltage No voltage	```Increased resistance: R412*. Leaky: C436*, C437*, C411*. C410*, C413*. Open: R412*, WS.3(R). Shorted: C436*, C437*, C416*, C419*. C411*, C410*, C413*.```
4	A	255v	Low voltage No voltage	```Increased resistance: R106. Leaky: C104B, C315*, C344*, C329* (in FM operation only). Open: R106. Shorted: C104B, C315*, C344*.```
5	E	Negative 22v	Low voltage No voltage High voltage	lncreased resistance: R101. Decreased resistance: R102. Open: R101. Shorted: Cl02. Open: R102, L100.
6	F	Negative 22v	No voltage	Open: R103. Shorted: C103.
Listening Test: Abnormal hum may be caused by open Cl01A, Clo4A, or Clo4b.				A, C104A, or Cl04B.

*This part, located in another section, may cause abnormal indication in this section.

- John F. Rider

Section 2 - Audio Circuits AUDIO-AMPLIFIER AND PHONO-PREAMPLIFIER TESTS

Use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the bass and treble controls fully clockwise. Depress the phono
push button, PB-2.
If the "NORMAL INDICATION" is obtained in step 1 , proceed with the scratch-eliminator tests; if not, isolate and correct the trouble in the audio-amplifier or phono-preamplifier circuits.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	B (Remove 6J5GT phase inverter.)	Loud. clear signal with strong signal input.	Defective: 6L6GA. Open: LS200, T200, R230, C217, R228. Shorted or leaky: C217, C219.
3	D (Phase inverter removed.)	Loud, clear signal with strong signal input.	Defective: 6L6GA. Open: T200, R231, C218, R229. Shorted or leaky: C218. C220.
4	F (Phase inverter removed.)	Loud, clear signal with strong signal input.	Defective: 6J5GT driver. Open: R225, R221. Shorted or leaky: C215, C212.
5	E (Replace 6J5GT phase inverter.)	Loud, clear signal with strong signal input.	Defective: 6J5GT phase inverter. Open: R226, R222, R224. Shorted: C216.
6	G	Loud, clear signal with moder. ate signal input.	Defective: 7E6. Open: R200 (rotate through range). R214, R211. R212, C210, C215, R215. Shorted: C213. Leaky: C215. C213.
7	A	Loud, clear signal with weak signal input.	Defective: 6J5GT phono preamplifier. Open: R204, R205, C202. WS-2(F). R203. R202. Shorted or leaky: C204, C202.
Listening Test: Distortion may be caused by open R211 or R202, or by leaky C210 or C209.			

SCRATCH-ELIMINATOR TESTS

Except for the volume control, set the radio controls as directed for the audio-amplifier and phono-preamplifier tests; set the volume control to maximum for all steps except 1 (b); for this step, adjust the volume control as indicated in the chart.

Turn the scratch eliminator on or off as indicated in the chart. (The scratch eliminator is on when the high-fidelity switch is in the OFF position.)

Connect an output meter between terminal 4 (voicecoil connection) of the aerial terminal panel and the chassis.

Connect the ground lead of an audio signal generator to the chassis, test point C; connect the output lead
through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the generator for 5000 cycles. Adjust the generator output as indicated in the chart.

If normal operation is indicated by the tests in step 1 , (a) and (b), proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits) ; if not, isolate and correct the trouble in the scratch-eliminator circuits.

NOTE: For steps 2, 3, and 4, connect the positive lead of a 20,000 -ohms-per-volt, d-c voltmeter to the chassis, test point C; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the "VOLTMETER" test points indicated in the chart.

STEP	TEST POINT	SIGNAL GENERATOR OUTPUT	VOLT METER	SPECIAL INSTRUCTIONS	POSSIBLE CAUUSE OF ABNORMAL INDICATION
$\mathbf{A}(\alpha)$	Adiust for 6v output-meter reading. with scratch elimi- nator off.	Turn scratch eliminator on; output voltage should drop to 2.5 v (approx.).			

Section 2 - Audio Circuits (Cont.) TROUBLE SHOOTING

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIGNAL GENERATOR OUTPUT	VOLT. METER	SPECIAL INSTRUCTIONS	POSSIBLE CAUSE OF ABNORMAL INDICATION
1 (b)	A	Same as for step l 1 (a).		Reduce volume control to obtain out-put-meter reading of lv. Increase generator output to obtain outputmeter reading of 6 v . Turn scratch eliminator on; output voltage should not drop more than 1.5 v (approx.).	Trouble in scratch-eliminator circuits. Isolate by the following tests.
${ }^{2}$	H	See SPECIAL INSTRUC. TIONS column.	J	With scratch eliminator on, increase generator output to obtain llv. negative: failure to obtain this value indicates trouble.	Defective: 7F7. 7E7 (diode section). Open: R236, C224, R239, R240. Shoried or leaky: C224. C225.
3	H	Same setting which produced llv reading in step 2. with scratch eliminator on.	K	With scratch eliminator on, voltage at point K should be 5 v , negative.	Open: R243, R244, R246. Shorted or leaky: C228, C230, C227.
4	A	Same setting which produced llv reading in step 2. with scratch eliminator on.	J	With scratch eliminator on, voltage at point J should be approx. 28v, negative.	Defective: 7F7. Open: R235. C222. R237. R234, R233. R232. C203. Shorted or leaky: C203. C222. C223.
5	A.	Adjust for $6 \mathbf{v}$ output-meter reading, with scratch eliminator off.		Turn scratch eliminator on: output voltage should drop to 2.5 v (approx.).	Defective: 7E7 (pentode section). Open: R245, R247, R248. C227. C229. Shorted or leaky: C229.

FIGURE 2, BOTTOM VIEW, SHOWING SECTION 2 TEST POINTS

Section 3 — I-F, Detector, and A-V-C Circuits TROUBLE SHOOTING
 AM CIRCUITS

Use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Depress the BC push button, PB-3. Set the volume control to maximum and turn the bass and treble controls fully clockwise.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for the FM circuits, or the tests for Section 4; if not, isolate and correct the trouble in the AM circuits.

Since the circuit location of test point A for this section is in Section 4, the effectiveness of step 1 as a master check is dependent-upon the condition of certain parts in Section 4; these parts are listed below under
"POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in AM circuits. Isolate by the following tests.
2	B	Loud, clear signal with strong signal input.	Defective: 7H7. Misaligned: Z303. Open: R315, Z303 pri. or sec., R323. C325, WS-2(F), R321, R319, R324, C339. Shorted: C330. C331, C340, C336, C323, Z302 sec.
3	D	Loud, clear signal with moderate signal input.	Delective: 7B7. Misaligned: Z302. Open: R307, R310, R312, R313, Z302 pri. or sec., C322, C302C. C324, C321, C320. Shorted: $Z 302$ pri. or sec., C322, C302C, C313, C324, C320.
4	E	Loud, clear signal with weak signal input.	Defective: 7H7. Misaligned: Z301. Open: R301, R302, R303, R304, R311, R305, Z301 pri. or sec., C312, C313, C314, C309, C311. Shorted: C309, C312, C301C, C314, Z301 pri. or sec.
5	A	Loud, clear signal with less signal input than in step 4.	Delective: 7E5. Misaligned: Z300. Open: Z300 pri. or sec. (AM), WS-5(F), WS-4(R), R411*, R410*, C307, C305. Shorted: Z300 pri. or sec. (AM), C305, C300C, C430*.

- This part, located in another section, may cause abnormal indication in this section.

FM CIRCUITS

The tests for the FM circuits are made with an AM r-f signal generator and a 20,000 -ohms-per-volt, d-r voltmeter.

In steps $1(a), 4,5,6,7$, and 8 , the oscillator section of the FM detector is made inoperative, thereby converting the circuit to an AM detector, and making it possible to use an AM signal for testing the i-f amplifiers and a section of the detector; the remaining section of the detector is tested by steps $1(b), 2$, and 3 .

In step 1 (b), an unmodulated r-f signal is used to check the FM response of the detector; the test is made by observing the d-c voltage drops across the audio load resistor (R318) for different input frequencies within the i-f range of the detector. In steps 2 and 3 , $d-c$ voltage and r-f signal tests, respectively, are used to check the oscillator action in the FM detector.

Set the volume control to maximum, and turn the bass and treble controls fully clockwise. Depress the

FM push button, PB-5, and turn the high-fidelity switch on. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

NOTE: The "TEST POINT", column refers to sig-nal-generator connections in all cases except step 2 , in which the test is made with the voltmeter only.

If the "NORMAL INDICATION" is obtained in step 1, (a) and (b), proceed with the tests for Section 4; if not, isolate and correct the trouble in the FM circuits.

Since the circuit location of test point A for this section is in Section 4, the effectiveness of step 1(a), as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

Section 3 - I-F, Detector, and A-V-C Circuits TROUBLE SHOOTING (Continued)

STEP	TEST POINT	SPECIAL INSTRUCTIONS	NORMAL INDICATION	pOSsible cause of ABNORMAL INDICATION
$1(\mathrm{a})$ 1 (b)	A (I-f Ampl. Check.) B (FM Det. Check.)	Set generator to 9.1 mc (mod. on). Short test point G (pin 2 of FM1000) to chassis. Set generator to $9.1 \mathrm{mc}(\mathrm{mod}$. off) with high output. Remove short from test point G. Connect positive lead of voltmeter to test point H, and negative lead to test point J. Use 50 -volt range.	Loud, clear signal with very weak signal input. 15 to 30 volts for 9.1 -me. signal or NO signal. 12 to 20 volts when generator is set at 80 kc . above or 80 kc . below 9.1 mc .	Trouble in FM circuits. Isolate by steps 4, 5, 6, 7, and 8. Trouble in FM detector circuit. Isolate by steps 2 and 3.
2	$\begin{gathered} \text { G } \\ \text { (FM Det. Osc. } \\ \text { Check.) } \end{gathered}$	Connect positive lead of d-c voltmeter to chassis; connect prod end of negative lead through 100,000 -ohm isolating resistor to test point G. Use 10-volt range.	Negative 2.5 volts (approx.).	Defective: FM1000. Open: C335, R322, Z304 sec., C333, C334. Shorted: C335, C333, C334, C301A, 2304 sec.
3	B	Using low to moderate output (mod. off), tune generator across 9.1 mc .	Beat signal, with zero beat at 9.1 mc .	Misaligned: 2304. Shorted: Z304 pri. or sec. Changed value: C333. C334. Open: C301A, C338.
4	F	Set generator to 9.1 mc . (mod. on). Short test point G to chassis. Short test point B (for this step only) to chassis.	Clear signal with strong signal input.	Defective: FM1000. Open: L300. Z304 pri.. R318. R320, WS-2(F). Shorted or leaky: C337, C332. C329, C303B.
5	B	Set generator to 9.1 mc . (mod. on). Leave test point G shorted. Remove short from test point B.	Loud, clear signal with strong signal input.	Defective: 7H7 (3rd i.f.). Shorted or leaky: C303A. Open: Z303 sec. (FM), R325, R326. Misaligned: 2303.
6	D	Set generator to 9.1 mc . (mod. on). Leave test point G shorted.	Loud, clear signal with moderate signal input.	Defective: 7B7. Misaligned: Z302. Shorted: C302A, C302E.
7	E	Sel generator to 9.1 mc . (mod. on). Leave test point G shorted.	Loud, clear signal with weak signal input.	Delective: 7H7 (lat i.f.). Misaligned: Z301. Shorted: C301A, C301B.
8	A.	Set generator to 9.1 mc . (mod. on). Leave test point G shorted.	Loud, clear signal with very weak signal input.	Defective: 7E5*. Misaligned: 2300. Open: WS-4(R), 2300 prl. or sec., L401*. Shorted: C306, C300A, C300B.

- This part, located in another section, may cause abnormal indication in this section.

Section 4 - R-F and Converter Circuits

TROUBLE SHOOTING

For the tests in this section, with the exception of the oscillator and frequency-doubler tests, use an AM r-f signal generator, with modulated output. Connect the generator ground lead to the chassis, test point C; connect the output lead as indicated in the chart. Set the volume control co maximum, and turn the bass and treble controls fully clockwise. Depress the push buttons indicated in the chart.

OSCILLATOR AND FREQUENCY-DOUBLER TESTS: For the broadcast and short-wave oscillator
tests (steps 2 and 5), and the FM frequency-doubler test (step 9), connect the positive lead of a 20,000 -ohms-per-volt meter to test point D; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to test point B. For the FM oscillator test (step 8), transfer the negative lead and isolating resistor to test point G. The negative grid-voltage readings given in the chart are those obtained when operation is normal. Absence of negative grid voltage at any dial position indicates that the oscillator (or the frequency doubler) is not operating properly.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIGNAL GENERATOR	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1(c)	A	1000 kc . Through . 1 -mf. condenser.	BC (PB-3). Tune to signal.	Loud, elear signal with weak signal input.	Trouble in broadcast circuits. Isolate by steps 2, 3, and 4.
1(b)	A	11 mc. Through . 1 -mf. condenser.	SW (PB-4). Tune to signal.	Loud, clear signal with weak signal input.	Trouble in short-wave circuits. Isolate by steps 5, 6, and 7.
1(c)	F	98 mc . Through 100 mm . condenser.	FM (PB-5). Short test point G. Section 3, to chassis. Tune to signal.	Loud, clear signal with weak signal input.	Trouble in FM circuits. Isolate by steps 8, 9, 10, and 11.
2	$\begin{aligned} & \text { B to D } \\ & \text { Osc. Test. } \end{aligned}$		BC (PB-3). Tune through range.	Negative 1.5 to 4 volts.	Defective: 7F8. Open: WS-5(F), WS5(R), L411, C432, L408, R408, C423. C426, R407. Shorted or leaky: C423, C426, C434, C432, C433, L411. Shorted: C400F.
3	E	1000 kc . Through . 1 -mf. condenser.	BC (PB-3). Tune to signal.	Loud, clear signal with moderate signal input.	Defective: 6AU6. Open: R402, R403, L404, L403, C413, WS-6(F), WS-6(R). L407. C427, R409. Shorted or leaky: C410, C41l. Shorted: L407, C400C.
4	A	1000 kc . Through . 1 -mf. condenser.	BC (PB-3). Tune to signal.	Loud, clear signal with weak signal input.	Open: WS.7(R), WS-7(F), L400, C405, R400, LA400. Shorted or leaky: C401A, C400B, C405.
5	B to D Osc. Test.		SW (PB.4). Tune through range.	Negative 1.5 to 2 volts.	Defective: 7F8. Open: WS-5(R), WS5(F), L410, C431. Shorted or leaky: C420C, C431. Shorted: L410.
6	E	11 mc. Through . 1 -mf. condenser.	SW (PB-4). Tune to signal.	Loud, clear signal with moderate signal input.	Open: WS.6(F), WS.6(R), L406, C422, C417. Shorted or leaky: C422, C420A, C417. Shorted: L406.
7	A	11 mc. Through . 1 -mf. condenser.	SW (PB-4). Tune to signal.	Loud, clear signal with weak signal input.	Open: WS-7(R), WS-7(F), L402. C404. Shorted or leaky: C401B, C404.
8	$\begin{gathered} \mathrm{G} \\ \text { Osc. Test. } \end{gathered}$		FM (PB-5). Tune through range.	Neqative 3.5 to 4 volts.	Defective: 7F8. Open: WS-6(F), R404, C421, C424, R406, R405, T400. Shorted or leaky: C421, C424, C414, C415. Shorted: C400E.
9	B to D Frequency Doubler Test.		FM (PB-5). Tune through range.	Negative 2.5 to 3.5 volts.	Defective: 7F8. Open: WS-5(F), WS5(R), L409. Shorted: C400G, C429.
10	E	98 mc . Through $100-\mathrm{mmf}$. condenser.	FM (PB-5). Short test point G. Section 3, to chassis. Tune to signal.	Loud, clear signal with moderate signal input.	Open: WS-6(F), WS-6(R), L405. C412, C418. Shorted or leaky: C412. Shorted: C400D.
11	F	98 mc . Through $100-\mathrm{mmf}$. condenser.	FM (PB-5). Test point G shorted. Tune to signal.	Loud, clear signal with slightly less input than in step 9.	Open: WS-7(F), L401. C403, C402. Shorted or leaky: C402, C403. Shorted: C400M.

Section 4 - R-F and Converter Circuits (continued)

FIGURE 4. BOTTOM VIEW, SHOWING SECTION 4 TEST POINTS

SERVICING PHILCO AUTOMATIC BAND SELECTOR

To make the motor-driven band switch accessible for repairs, remove the four self-tapping screws holding the r-f chassis, and unsolder a suffcient number of connecting wires to allow the r-f chassis to drop away from the main chassis about six inches.

To obtain access to the bandswitch components, unsolder the wires and parts connected to the rear plate on the r-f chassis, and remove the plate.

To replace individual switch wafers, loosen the two Allen setscrews locking the drive gear to the switch shaft, and remove the two auts from the tie rods, at the motor end. See figure 5 . Then slide the tie rods and switch shaft through the holes in the side of the r-f chassis.

FIGURE 5. PHILCO AUTOMATIC-BAND-SELECTOR MECHANISM
TP. 4406

MODELS 48-1274, 48-1276

PHILCO CORP.

CALIBRATING DIAL BACKPLATE

With the radio out of the cabinet, dial calibration points should be located by making pencil marks on the backplate, below the pointer. Figure 6 shows the measurements for these points with respect to the lefthand edge of the backplate.

NOTE: The dial scale shown in figure 6 is for Model 48-1274. Although this scale is shorter then that for Model 48-1276, the calibration of the two scales is identical, and the relationship between the backplate and the calibration points is the same for both models.

FIGURE 7. DRIVE-CORD INSTALLATION DETAILS
REPLACEMENT PARTS LIST
NOTE: Part numbers marked with an asterisk (*) are general replacement items. These numbers may not differ from the values indicated in the schematic diagram and parts list. The values substituted in any
1 megohm $\quad 33.5539 .9$. compensation. 10.000 ohms . 66.3103340°
compensation, 10,000 ohms...66-3103340.
 ge divider, 680,000 ohms $\quad .66-4683340^{\circ}$
ge divider, 2.2 megohms. $.66 .5223340^{\circ}$
 decoupling, 6800 ohms66-2683340 age dropping, 10 ohms
 66.5103340°

66.2103340° | $\dot{\circ}$ |
| :--- |

 se-inverter voltage divider. ${ }^{66-3683340^{\circ}}$
 verse-leedback voltage divider, $66-2563340^{\circ}$
 dasitic suppressor, 820 ohms ...6.-62833440. Resistor, grid return, 30,000 ohms Resistor, voltage divider, 680.000 ohms ...66-4683340. Resistor, grid return, 330,000 ohms $-\quad . \quad .66-4333340^{\circ}$

Resistor, cathode bias, 2200 ohms $-\quad 66-2223340^{\circ}$ Resistor, plate load, 220,000 ohms $\quad 66.4223340^{\circ}$	Resistor, plate load.	
Resistor. grid return, 560,000 ohms	$\quad 66.4103340^{\circ}$	Resistor, bias filter, 220.000 ohms $\quad 66.4223340^{\circ}$

Resistor, bias filter, 560,000 ohms $-\quad . \quad . \quad 66-4533340^{\circ}$

令 N Cabinet top, 48-1274-M
Two section lid, 48-1274-M T201
WS.2(R)
WS2.1

 స్జ్ ్ㅜㅇㅜㅜ | R 228 |
| :--- |
| R 29 | R245

R246
R247
R248

SECTION 2 - AUDIO CIRCUITS

 Condenser, tone compensation, 001 mf .Condenser, cathode by-pass, . 1 mf . Condenser, d.c blocking, 01 mf . Condenser, $\mathrm{d}-\mathrm{c}$ blocking, 150 mmt . Condenser, tone compensation. 33 mmf . Condenser, tone compensation. .02 mf .
Condenser
tone compensation, 47 mmi . Condenser, tone compensation. .02 mf . Condenser, , d-c blocking, 03 mf .
Condenser, d-c blocking, 01 mf . Condenser, audio by-pass, 5 mf . Condenser, r.f by-pass, 240 mmf .
Condenser, audio by-pass, 10 mf ., Condenser, tone compensation, 03 Condenser, d-c blocking, .003 mf .
Condenser, dec blocking, .006 mf . Condenser, d-c blocking, 006 mf
Condenser, d-c blocking, 006 mf . Condenser, d-c blocking, 006 mf . Condenser, tone compensation, $01 \mathrm{mf}$.
Condenser, tone compensation, 01 mf
Condenser, frequency crossover filter
 Condenser, d-c blocking, 330 mmf .
Condenser, audio by-pass, .01 mf .

 て-Sऽ\&z-0\& 76-2029-13 or $76-2381-3$

[^4]
48-1276 Instrument panel, 4 $48-127$ Escutcheon, High Fidelity, (F. R)
C1ist changes: Condenser, electrolytic, 45 mf ., $30 \mathrm{v}, 60$ cycles

©John F. Rider

REPLACEMENT PARTS LIST
 SECTION 3
 \section*{I-F, DETECTOR, AND A-V-C CIRCUITS}

Reference	Symbol Description Service Part No.	Reference	Symbal Description Service Part No.
C300A	Condenser, trimmerPart of Z300	R310	Resistor, screen dropping. 100,000 ohms ...66-4103340*
C300B		R311	Resistor, a.v.c filter, 330,000 ohms66.4333340*
C300C	Condenser, trimmer ...- Part of Z300	R312	Resistor, plate decoupling, 5600 ohms 66-2563340*
C301A	Condenser, trimmer ... ${ }^{\text {a }}$ O301	R313	Resistor, grid return. 1 megohm66-5103340*
C301B	Condenser, trimmer Part of Z301	R314	Resistor, loading (part of 2302),
C301C	Condenser, trimmer Part of Z301		
C302A		R315	Resistor, cathode bias, 180 ohms66-1183340*
C302B	Condenser, trimmer	R316	Resistor, a-v-c diode load, 1 megohm66-5103340*
C302C		R317	Resistor, loading (part of 2304),
C303A			5600 ohms66-2563340*
C303B	Condenser, trimmerart of Z303	R318	Resistor, audio load, FM detector,
C303C	Condenser, trimmerart of Z303		47,000 ohms 66.3473340°
C304A	Condenser, trimmerPart of Z304	R319	Resistor, screen dropping, 82.000 ohms 66-3823340*
C305	Condenser, shunt (part of 2300). 2700 mmf .	$\begin{aligned} & \text { R320 } \\ & \text { R321 } \end{aligned}$	Resistor, screen dropping. 56,000 ohms ...66-3563340* Resistor, plate decoupling, 5600 ohms $66-2563340^{\circ}$
C306	Condenser, shunt (part of 2300),	R322	Resistor, grid leak, 15.000 ohms66-3153340*
	51 mmf-. ${ }^{\text {a }}$ 60-00515237*	R323	Resistor, filter. 47,000 ohms 66.3473340 ${ }^{\circ}$
C307	Condenser, d.c blocking, $240 \mathrm{mmi} . . .$.	R324	Resistor, diode load, 100,000 ohms66-4103340*
C308	Condenser, α-v-c by-pass, . 01 mf . $\quad 61.0120^{*}$	R325	Resistor, voltage divider, 560 ohms66-1563340*
C309	Condenser, plate by-pass, . 004 mf61-0179*	R326	Resistor, voltage divider, 47.000 ohms66-3473340*
C310	Condenser, filament by-pass, . 01 mf61.0120*	WS. 4 (R)	Switch.wafer section (part of 76-2333.1) 54.7525
C311	Condenser, screen by-pass, .01 mf . .-.	WS-2 (F)	Switch-wafer section (part of 76-2333-1)54-7523
C312	Condenser, shunt (part of 2301),	Z300	Transformer, lst i-f ..32-4072
	$330 \mathrm{mmi} . .$.	2301	Transformer, 2nd i-f \quad -
C313	Condenser, d.c block. (part of 2301), 4.7 mmf...30-1224.5*	Z302	Transformer, 3rd i-f32-4060
C314	Condenser, shunt (part of Z301),	Z303	Transformer, 4th i.f 32-4003.1
	3900 mmf . ..60.20395404**	Z304	Transformer, FM detector …n.....................32-4004
C315	Condenser, r-f by-pass, 01 mf . 61.0120°		
C316	Condenser, α-v-c filter, , 01 mf61.0120*		SECTION 4
C317	Condenser, tone compensation, . $003 \mathrm{mf} .6 .61 .0109^{*}$		R-F AND CONVERTER CIRCUITS
C318	Condenser, filament by-pass، . 01 mf61.0120*		R-F AND CONVERTER CIRCUITS
C319	Condenser, r-f by-pass, 01 mf .	C400	Condenser, tuning gang
C320	Condenser, plate by-pass, . 004 mf61.0179**		(See Note, Page 15) Parn of 76.2150
C321	Condenser, screen by-pass, . 01 mf . .-...........61-0120*	C400A	Condenser, tuning-gang sectionPart of C400
C322	Condenser, shunt (part of 2302). 330 mmf . \qquad	$\begin{aligned} & \mathrm{C} 400 \mathrm{~B} \\ & \mathrm{C} 400 \mathrm{C} \end{aligned}$	Condenser, tuning-gang section Condenser, tuning-...............art of C400 section Cort 400
C323	Condenser, d.c blocking (part of 2302),	C400D	Condenser, tuning-gang sectionPart of C400
	4.7 mmf .	C400E	Condenser, tuning.gang sectionPart of C400
C324	Condenser, shunt (part of 2302), 3900 mmf . \qquad 60-20395404*	C400F C400G	Condenser, tuning gang section$P a r t ~ o f ~ C 400 ~$ Condenser, tuning.gang section Part of C400
C325	Condenser, d-c blocking. . 006 mf61.0105*	C401	Condenser, trimmer, 2 -section31-6476-3
C326	Condenser, r-f by-pass, . 05 mf . ${ }^{\text {a }}$ 61-0122*	C401A	Condenser, trimmer, bc aerial Part of C401
C327	Condenser, cathode by-pass, . 01 mf61-0120*	C401B	Condenser, trimmer, s.w derial Part of C401
C328	Condenser, shunt (part of Z304), 15 mmf . 3 30.1223.3*	C402	Condenser, trimmer, FM aerial
C329	Condenser, r-f by-pass, . 01 mf61-0120*	C403	Condenser, blocking. FM, 22 mmf62-022009001
C330	Condenser, screen by-pass, .01 mf . -	C404	Condenser, series tracking, s.w aerial,
C331	Condenser, plate by-pass, . 004 mf61-0179**		255 mmi.
C332	Condenser, r-f by-pass, 1500 mmf60-20155404*	C405	Condenser, d.c blocking. 100 mmf . .-....60-10105407*
C333	Condenser, r-f voltage divider (part of Z304), 33 mmi.	$\begin{aligned} & \mathrm{C} 406 \\ & \mathrm{C} 407 \end{aligned}$	Condenser, $a \cdot v-c$ by-pass, .01 mf $61-0120^{\circ}$ Condenser, filament by-pass, $240 \mathrm{mmf} . . .60 .10245307^{*}$
C334	Condenser, r-f voltage divider (part of Z304), 68 mmf	$\begin{aligned} & \text { C408 } \\ & \text { C409 } \end{aligned}$	Condenser, screen by-pass, 1500 mmf30-1225-1. Condenser, filament by-pass, 01 mf . 61.0120^{*}
C335	Condenser, d-c blocking, $33 \mathrm{mmf} . .$.	C410	Condenser, plate by-pass, 100 mmf60.10105407*
C336	Condenser, r.f by pass, $100 \mathrm{mmi}{ }^{\text {a }}$.	C411	Condenser, plate by-pass, . 01 mf61-0120*
C337	Condenser, screen by-pass, . $01 \mathrm{mf}$.61-0120*	C412	
C338	Condenser, filament by-pass, 01 mf61.0120**	C413	Condenser, d.c blocking, 1000 mmf30-1225*
C339	Condenser, shunt (part of Z303), 270 mmf ...30-1220.5*	C414	Condenser, shunt, FM osc., 5 mmf60-90505007*
C340	Condenser, r-f by-pass, 240 mmf60.10245307**	C415	Condenser, trimmer, FM osc.31-6480
C341	Condenser, d-c blocking, 100 mmf60-10105407*	C416	Not used
C342	Condenser, filament by pass, 01 mf . .-. 61.0129^{*}	C417	Condenser, s.w r-f shunt, 36 mmf30-1224
C343	Condenser, rff by-pass, 01 mf61-0120*	C418	Condenser, r-f by-pass, 100 mmf 6 . $60.1010540{ }^{*}$
C344	Condenser, i-f by-pass, 100 mmf60-10105407*	C419	Not used
L300		C420	
R300	Resistor, parasitic suppressor, 10 ohms ...66.0103340**	C420A	Condenser, trimmer, s-w r-fart of C420
R301	Resistor, grid return, 2.2 megohms66-5223340*	C420B	Condenser, trimmer, bc. r-i ... Part of C420
R302	Resistor, cathode bias, 180 ohms). 66.1183340^{*}	C420C	Condenser, trimmer, s-w osc. Part of C420
R303	Resistor, screen dropping, 100,000 ohms 66.4103340^{*}	C421	Condenser, d-c blocking, 51 mmi30-1224-2
R304	Resistor, α-v-c decoupling, 470,000 ohms . 66.4473340^{*}	C422	Condenser, series tracking, s-w r-i,
R305	Resistor, plate decoupling, 6800 ohms66-2683340*		255 mmf . .-n ${ }^{\text {a }}$
R306	Resistor, loading (part of 2301), 6800 ohms 66.2683340^{*}	$\begin{aligned} & \mathrm{C} 423 \\ & \mathrm{C} 424 \end{aligned}$	Condenser, d.c blocking, $24 \mathrm{mmf} . \quad$ 30-1224-4 Condenser, d-c blocking, $51 \mathrm{mmf} . \quad$ 30-1224-2
R307	Resistor, cathode bias, 180 ohms66-1183340*	C425	Condenser, neutralizing, s.w, 5 mmf60-90505007*
R308	Resistor, tone compensation,	C426	Condenser, d-c blocking, 24 mmf30-1224-4
	220,000 ohms66.4223340*	C427	Condenser, d-c blocking, 100 mmf . $60.1010540{ }^{\text {* }}$
R309	Resistor, decoupling, 100,000 ohms66-4103340*	C428	Condenser, cathode by-pass, 01 mf61-0120*

REPLACEMENT PARTS LIST

SECTION 4 (Continued)			Cellaneous (Continued)		
	R-F AND CONVERTER CIRCUITS		Description	Model	
	Symbol Doscription Service		Hinge, pivot (2 req.)		
	Condenser, (timmer, treq. doub		prot 2 req)		
${ }_{4} 431$	Condenser, series tracking, s.w osc.		Preate high ite		s6.392
C432		30.1220.4	Puil. door, bras	${ }_{48.1276}^{48}$	56.3928
	437		Pull, door, brass (44		
${ }_{\text {c }}^{\text {cia33 }}$	Condenser, series padder, bc. osc		Ssis Mig. Has		
			$\xrightarrow[\text { crounding sp }]{\text { Foot rubber }}$	- ${ }_{\text {48.1274, }}$	(4.4040
	dienser	60.105	Dial Backplate and Hardware		
	Condenser, bypas		Backplate and pull		
	Coill bc. aerial -		Coid	12121	
	Coill Fm eerial	${ }^{32.42}$	${ }^{\text {Dinive cordi pointer (} 25 \text { fit spool) }}$	48	
迷	Coul, shunt, sw aric		Dive cord, tuning condenser		
Lea	Coil . AUG plate choke, AM	- 3 32.4189	${ }^{\text {(25.f.t. }}$ spoa		
L405	Coill, FM rit		tit conduct	8.121	
	Coil, s.w Hf	Part of 240	Spring pointer dive	41274	
L408	Coill plate choke, osc.doubler	32.4061	Spring, turing	8.1274, 76	
5409	Coill frequency doubler .-		Dial salo and harrmwa		
	Coil, s.w osc.				
	coin		Dial scale.a		
	FM aerial	75.20			
	FM	${ }^{27.6214 .}$	Dial.scale.at		
	Resistor, grid return, 2.2 megohm	66.5	Scale bracket	${ }^{8.1274 .76}$	
	volt div. 2.2 megohms .-.	..66.5223	Scale bracker		
	Heaisisor, cathode bias, 82 ohms	66.0223	high ifdelit		
	Resistor, screen dropping,	-66.33933	push butto	-48.1274, 76	
${ }^{20405}$		123			
	Resistor, grid bias, 22,000 ohms	-66.3223	cmp.socket assembly. pliot --		
	Resistor, plate load (AM), 27,000 ohms.	66.3	Lamp.socket assembly, teltrale		${ }^{4} 1.3737 .15$
		2223			
	thode bias. 10000 ohms		bution cap	${ }^{88.1274 .76}$	
	stor, plate decoupling, 56,000 ohms		tet. loktal (1)	${ }^{274}{ }^{76}$	
${ }^{\text {R4 }}$	Resistor, filter, 470 ohms	-66-3564	Socket, loktal (8)		
			Sockot, miniatur	-48.1274.76	27.6203.1
	swith, phono ${ }^{\text {and }}$		Shield Shield Siut tube	48.127.46	
wS.2 [F. R)	(part of 76.2333		Tab. OFF		5-5.317.1
	,ith-water				
	h-water (part of 78.233	${ }_{54}^{54,7}$	Tal	274	
	vate	. 54.752		, 2124.76	
	Swith water (part of $78-2333-1)$.-.	-	Tab, kit (station call lotiters)		
			jow		24
	miscellaneous		Prebl-ution Tuner)	18.1274, 76	
tion					
			Note: ,Tuning.co	not soparataly	
Bin l amp		2039	Tunate), 76.2150 .4		
Baftle,	ker - \quad - ${ }^{\text {48.1274 }}$		AUTOMATIC BAND	SELECT	
flo and	cla	${ }^{219048}$			
Bafte		${ }_{40.6}^{40.6}$	(itch (ws.1), phono power		
Bin mec	chanism, 1.h. - ${ }_{\text {a }}^{\text {8.1274, } 76}$	${ }^{76,32}$	cmd.switch assembly		
mect,					
cket,	俍		${ }_{\text {swith }}$ waier W		
Bracket	cradie		Switch wafer ws		
		106	$\underbrace{\substack{\text { Sutich } \\ \text { Sufier }}}_{\text {Switch waier }}$		
sinet	back	40.6	water ws.6		
		${ }^{40.65}$	er WS.7		
	continuous - \quad - ${ }_{\text {a }}^{\text {48.127.174 }}$		Muting: witch assombly (S030		
Hinge.	nuous - \quad -	56.3627.2	ch.dog assembly		${ }_{76,2349}$
Hinge,	${ }_{\text {lid }}^{\text {lid }}$ separator $\times{ }^{-48-127}$	$\underset{\substack{4.53337 \\ 56}}{4.361}$	Wasker, fitir		

SPECIFICATIONS

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The troubleshooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.
Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Circuit Description

Philco Model 49-100 is a four-tube, batteryoperated superheterodyne, providing reception on the standard broadcast band, $540 \rightarrow 1720 \mathrm{kc}$. Manual tuning is employed. A 100 -foot (overall), outdoor aerial, such as Philco Part No. 45-1469, is recommended.
The converter stage employs a type 1LA6 pentagrid converter tube; in this tube, the oscillator signal is fed to the mixer section through the electron stream within the tube.

A type 1LNs pentode tube is used in the i-f amplifier stage. The diode section of the 1LH4 tube provides detection and a-v-c voltage, and the triode section functions as the first audio amplifier.

The first audio stage is resistance-coupled to the type 3LF4 output tube, which drives the permanentmagnet dynamic loud-speaker.

Preliminary Checks

The following preliminary checks should be made before turning on the radio:

1. Carefully inspect the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Disconnect the battery, and measure the resistance between B+ (red lead of battery plug) and chassis, with the ohmmeter polarity such that the highest resistance reading is obtained. If this; reading is lower than 10,000 ohms, check condensers C100, C203, and C404 for leakage or shorts.

TROUBLE SHOOTING

Section 1

For the tests in this section, use a $d-c$ voltmeter, connecting the leads between the chassis, test point C, and the test points indicated in the chart. The voltages indicated were obrained from a fresh battery pack, and were measured with a 20,000 -ohms-per-volt meter, with the radio turned on.

If the "NORMAL INDICATION" is obtained in the first step, proceed with the tests for Section 2 ; if not, isolate and correct the trouble in this section.
Figure 1. Bottom View, Showing Section 1 Test Points

STEP	test point	NORMAL INDICATION	ABNORMAL INDICATION	positile cause of abnormal indication
1	$\begin{aligned} & \overline{\mathrm{A}} \\ & \mathrm{~B} \\ & \mathrm{D} \end{aligned}$	$\overline{85}$ volts 1.5 volts Negative 5 volts		Trouble within this section. Isolate by the following tests.
2	A	85 volts	No voltage Low voltage	Open battery cable. Defective S100. Open R100. Shorted C100. Weak battery. Change in value of R100. Leaky C100. Excessive current drain in Sections 2, 3, or 4.
3	B	1.5 volts	No voltage Low voltage	Open battery cable. Defective Sl00. Weak battery.
4	D	Negative 5 volts		Change in value of R100. Open R100. Excessive current drain in Sections 2, 3, or 4.

TROUBLE SHOOTING

Section 2

Figure 2. Bottom View, Showing Section 2 Test Points
For the tests in this section, use an audio signal. Connect the signalgenerator ground lead to the radio chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the radio volume control to maximum.

If the "NORMAL INDICA. TION" is obtained in the first step, proceed with the tests for Section 3; if nor, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION
1	A	Loud, clear signal with moderate signal input.
2	B	Normal, clear signal with strong signal input.
3	Loud, clear signal with moderate signal input.	
4	Loud, clear signal with moderate signal input.	

POSSIBLE CAUSE OF ABNORMAL. INDICATION
Trouble within this section. Isolate by the following tests. Defective 3LF4 tube, T200, or LS200. Shorted or leaky C203 or C201. Defective 1LH4 tube. Open R202 or C202. Defective R200. Shorted C301D. Open C200.

Figure 3. Bołtom View, Showing Section 3 Test Points

For the tests in this section, use an r-f signal generator with frequency set at 455 kc . (modulated output). Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the radio volume control to maximum.

If the "NORMAL INDICA. TION" is obtained in the first step, proceed with the tests for Section 4; if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with moderate signal input.	Trouble within this section. Isolate by the following tests.
2	B	Loud, clear signal with moderate signal input.	Defective llN5 or lLH4 (diode section) tube. Defective or misaligned Z301. Open C302.
3	A	Loud, clear signal with moderate signal input.	Defective or misaligned $\mathbf{Z 3 0 0}$.

TROUBLE SHOOTING

Section 4

TP-3320D
Figure 4. Bottom View, Showing Section 4 Test Points

For the tests in this section, use an r-f signal generator with modulated output. Connect the generator ground lead to the chassis, test point C ; connect the output lead through a. $1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the generator and radio dials as noted in the chart.

Inspect the tuning condensers for bent plates, dirt, or poor wiper contacts; any of these conditions will cause noise.

If the "NORMAL INDICATION" is not obtained in the first step, isolate the trouble by following the remaining steps.

STEP	TEST POINT	diAl SEttings		NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
		SIG. GEN.	RADIO		
1	A	540 kc .	540 ke .	Loud, rlear signal with low signal input.	Trouble within this section. Isolate by the following tests.
2	B	540 kc .	540 kr .	Loud, rlear signal with moderate signal input.	Defective lLA6 tube, C401, C401A, or oscillator circuit. Shorted C404. Misaligned Z300.
3	$\begin{gathered} \text { D } \\ \text { Osc. test } \\ \text { (See Note below.) } \end{gathered}$		$\begin{gathered} 540 \mathrm{to} \\ \text { 1:20 ke. } \end{gathered}$	Negative voltage (at least 1.5 volts) over complete range.	Defective 1LA6 tule, T401, C401, or C401B. Open R401, R402, C402, or C403. Shorted or leaky C. 402 or C403.
4	A	540 kc .	540 ke .	Loud, elear signal with low signal input.	Defective T400 or C401.

NOTE: Connect positive lead of 20,000 -ohms-per-volt meter-to the chassis, test point C; connect prod end of negative lead through 100,000 -ohm isolating resistor to test point) (oscillator grid, pin 4 of lLA6 tule).

FIGURE 5. PHILCO RADIO MODEL 49-100, COMPLETE SECTIONALIZED SCHEMATIC, SHOWING ALL TEST POINTS
© John F. Rider

ALIGNMENT PROCEDURE
 TURN ON RADIO POWER, AND SET VOLUME CONTROL TO MAXIMUM

DIAL-..Alignment points should be marked on the dial
back plate. Measurements for these points are shown in backplate. Measurements for these points are shown in
the composite dial-and-back plate photo, figure 8. With tuning condensers fully meshed sct dial pointer to index mark.

Figure 6. Top View, Showing Trimmer Locations

SYMBOLIZATION AND TERMINOLOGY

All components in the radio cireuit are symbolized and located as follows:

C-condenser
-pilot lamp
LA--loop aerial
che
LS-loud-speaker
R -resistor

- switch

T-transformer
Ron
100-series components are in Section 1-the power supply
200 -series components are in Section 2-the audio circuits.
300 -series components are in Section 3-the i-f, detector, and a-v-c circuits.
400-serics components are in Section 4-the r-f and converter circuits.

Figure 7. Drive-Cord Installation Details

Figure 8. Composite Dial and Backplate, Calibration Details

REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk (${ }^{*}$) in the following parts list are general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION 1

SECTION 2

C200	Condenser, . 0015 mf . d d c blocking..... 30-4621**
C201	Condenser. $100 \mathrm{mmf.}, \mathrm{r.f} \mathrm{by-pass} \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{60-10105407*}$
C202	Condenser, $0015 \mathrm{mf}$. , d c blocking 30-4621*
C203	Condenser. $004 \mathrm{mf}$. tone compensation. 30-4623*
LS200	Speaker . 36-1507-3
R200	Volume control, 1 megohm............33-5554
R201	Resistor, 4.7 megohms, dec grid return 66-5473340*
R202	Resistor, 1 megohm, plate load. 66-5103340**
R203	Resistor, 2.2 megohms, d-c grid return . 66-5223340:
200	Output transformer32-832

SECTION 3

C300A	Condenere trimmer Part of Z300
C300B	Condenser, trimmer Part of Z300
C301A	Condenser, trimmer Part of Z301
C301B	Not used
C301C	Condenser, 150 mmf , i-f filecr..... Part of Z301
C301D	Condenser, 150 mmf , i-f filter..... Part of Z301
C302	Condenser, $05 \mathrm{mf}$. , a-v.c filter. 30-4518\%
C303	Condenser. 100 mmf , coupling, part of Z301 30-1225-2
R300	Resistor, 10 megohms, a-v'c filter. . . . 66-6103340**
R301	Resistor, 47,000 ohms, i-f filter, part of Z301 66-3473340
Z300	Transformer, 1st i.f includes C300A and C300B32-3949-1
Z301	Transformer, 2nd i-f, includes C.301.A C301C, C301D, C303. and R301....32-3897\%

SECTION 4

Reference Sy	Symbol Description	Service Part No.
C400	Condenser, 5 mmf., coupling	60-90505007
C401	Condenser, main tuning	1-2721-1
C401A:	: Condenser, trimmer, aerial coil.	Part of C401
C401B:	: Condenser, trimmer, osc. coil.	Part of C401
C402	Condenser, 100 mmf ., ose. grid	30-1225-2*
C 403	Condenser, $004 \mathrm{mf}$. , osc. tracking.	. 30.4623^{*}
C404	Condenser, 05 mf , , r-f by-pass.	30-4518*
R400	Resistor, 4.7 megohms, $\mathrm{a}-\mathrm{v}^{\prime} \mathrm{C}$ voltage divider	.66-5473340*
R401	Resistor, 220,000 ohms, osc. grid leak	66-4223340*
R402	Resistor, 68,000 ohmis, screen dropping	. $66-3683340^{*}$
T400	Transformer, aerial	32-3919-2
T401	Transformer, oscillator	32-3385-4

MISCELLANEOUS

Description
Cabinet, Less Dial Scale
Cabinet Hardware
Baffle and cloth assembly 40-6910

Dial Scale
Dial-Scale Hardware
Screw, strap intg.
Strap, scale mtg., rh
Strar, scale mtg. I.h
Knob (2)
Stud, bafle mitg
Scale Plate, Flag and Upright Assembly
Cord, drive ($25 \cdot \mathrm{ft}$. spool) for flag
Cord, drive ($25 \cdot \mathrm{ft}$. spool), for pointer
Pointer
Spring, flag drive
Spring,
Spring, cam plate, flag drive
Spring, retaining
Transfer-lever assembly
1 W23129FA3
. 56-2672FA3
.56-2671FA3
54-4323

Socket, Loktal
W2235-2FA9

Tuning-Condenser Hardware
Cord, drive ($25 \cdot \mathrm{ft}$. spool), for tuning condenser. . 45-8760
Spring, tuning condenser drive28-8913FA3
Tuning shaft assembly
31-2640

Circuit Description

Philco Model 49-101 is a four-tube superheterodyne operating on a.c., d.c., or battery, and providing reception on the standard-broadcast band. A 100 -foot (overall length), outdoor aerial, such as Philco Part No. 45-1469, is recommended.
The aerial is transformer-coupled to the 1R5 converter, where the incoming signal is converted to the 455 -kc. intermediate frequency. A 1 T4 is used in a single high-gain stage of i-f amplification, which employs neutralization to suppress oscillation. A $1.5-\mathrm{mmf}$. condenser, C304, feeds part of the i-f voltage, of the proper phase, back to the 1T4 grid through the tubesocket capacitance.

A 1US diode-pentode is used in the detector, a-v-c, and first audio circuits. The pentode section is resist-ance-coupled to a 3V4 pentode output amplifier, which works into a p -m speaker.

The d-c operating voltages are obtained from either a battery pack, Philco type P-326, or from a 105-120 volt, a-c or d-c power line. For power-line operation, the plate, screen, and filament voltages are provided by a power supply using a selenium rectifier (CR100).

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire chart.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Check the total filament resistance, with the power switch turned on, the battery plug disconnected from the battery, and the change-over switch in the battery position (power-cord plug inserted in receptacle on rear of chassis). If the resistance between the A+ and A- pins on the battery plug is higher than 100 ohms, one of the tube filaments is probably open.

NOTE: If the 3V4 filament is open, check condenser C202 before replacing the tube.
3. Measure the resistance between $B+$ (output of ' selenium rectifier), test point D, and B-, test point B. See figure 1. When the ohmmeter leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 2000 ohms, check condensers C101A and C101B for leakage or shorts.

The resistance value above, which is much lower than normal, does not represent a quality check of these condensers; it is the lowest value which will permit the rectifier to operate safely while the voltage checks of Section 1 (power supply) are performed.

Section 1-Power Supply

Make the tests for this section with a d-c voltmeter. Connect the negative lead to $\mathrm{B}-$, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.
Set the volume control to minimum.
The battery pack should be replaced when the " A " voltage drops below 5 volts, or the " B " voltage drops below 60 volts.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
$\begin{aligned} & 1(\mathrm{c}) \\ & 1(\mathrm{~b}) \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{array}{r} 7.5 \mathrm{v} \\ 90 \mathrm{v} \end{array}$		Trouble in this section. Isolate by the following tests.
2	D	125 v	Low vollage No voltcge	Defective: CR100. Open: C101A. Defective: CR100. Open: S100, S101.
3	E	120v	Low voltage No voltage	Changed resistance: R100. Leaky: C101A. Open: R100. Shorted: C101A.
4	F	65 v	Low voltage No voltage	Changed resistance: R101A. Leaky: C101B. Open: R101A. Shorted: C101B.
5	A	7.5v	Low voltage High voltage No voltange	Changed resistance: R101B. Open: One or more filaments, R205*. Open: R101B, S101.
6	C	90 v	Low voltage High vollage No voltage	Changed resistance: R102. Leaky: C101C. Open: R205*, T200*, S100. Open: R102, S101. Shorted: C101C.

"This part, located in another section, may cause abnormal indication in this section.

Section 2-Audio Circuits

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B -, test point B; connect the output lead through a .1 -mf. condenser to the test points indicated in the chart.
Set the radio volume control to maximum.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

TROUBLE SHOOTINC

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with moderate generator input.	Trouble in this section. Isolate by the following tests.
2	c	Clear speaker output with strong generator input.	Defective: 3V4, LS200. Open: R204, T200. Shorted: C203, C204, C205, T200.
3	A	Same as step 1.	Defective: 1U5, R200 (rotate). Open: C200, R201, R202, R203, C203. Shorted: C201, C301C*.

Listening Test: Distortion may be caused by leaky or shorted C203, or by changed resistance of R202. Distortion or strong signals may be caused by leaky or shorted C200.
*This part, located in another section, may cause abnormal indication in this section.

Section 3-I-F, Detector, And A-V-C Circuits

TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to $B-$, test point B; connect the output lead through a . $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

To provide a complete i-f amplifier check, test point A for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker outyut with weak generator input.	Trouble in this section. Isolate by the following tesis.
2	C	Loud, clear output with moderate input.	Defective: 1T4, 1 U5 (diode section). Misaligned: Z301. Open: R300. C303. L301A, R301, L301B, C301A. Shorted: C300B, C303. L301A, L301B, C301A, C301B.
3	A	Same as step 1.	Defective: 1R5*. Misaligned: Z300. Open: C300A, L300A. L300B, C300B, T400*. Shorted: C400A*, C400B*, C300A, L300A, L300B. C300B.

*This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F And Converter Circuits' TROUBLE SHOOTING

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to B -, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum. Set the tuning control and signalgenerator frequency as indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1 , further steps should be
 unnecessary; if not, isolate and correct the trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIGNAL GEN. FREQUENCY	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc.	Tune to signal.	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C to D Osc. test: see note below.)		Rotate through range.	Negative 5 to 10 volts.	Defective: 1R5. Open: R402, T400, C404. Shorted: C402, C400, C400A.
3	A	1000 kc.	Tune to signal.	Same as step 1.	Open: C401. C403, R401, R400, T400. Shorted: C400, C400B.

©John P. Rider

ALICNMENT PROCEDURE

DIAL-Calibration and pointer-index measurements are shown in figure 7 With tuning condenser fully meshed, set pointer to index mark.
RADIO CONTROLS-Set volume control to maximum OUTPUT METER-Connect across voice-coil terminals. SIGNAL GENERATOR-Use modulated output.

OUTPUT LEVEL-During alignment, adjust signal-generator output to maintain output-meter indication below .5 volt.

SPECIAL NOTE-The orientation of the loop with respect to the chassis is critical for correct tracking. During alignment, with the cabinet back (containing the loop) laid down on the bench, the chassis should be laid on its back, in approximately its normal relation to the loop.

©John F. Rider

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the ratio in which the parts are located. The prefix letter of the symbol designates the type of part, as follows:
C -condenser
I -pilot lamp
L -choke or coil
LA-loop aerial
LS-loud-speaker
R -resistor
T-Iransformer
W-line cord
Z-electrical assembly

The number of the symbol designates the section in which the part is located, as follows:
100 -series components are in Section 1-the power supply
200 -series components are in Section 2 -the audio circuits
300 -series components are in Section 3-the i.f, detector, and a-v-c circuits
400 -series components are in Section 4-the r-f and converter circuits
A suffix letter identifies the part as a component of the assembly which bears an identical number without a suffix letter, and with perhaps a different prefix letter.

REPLACEMENT PARTS LIST

NOTE: Part numbers identified by an asterisk (") are general-replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

	SECTION 1 POWER SUPPLY	I-F, DETECTOR, AND A-V-C CIRCUITS	
Reference Symbol	Description $\quad \begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Reference Symbol	Description Service Part No.
C100		C304	Condenser, neutralizing, 1.5 mmf).
C101	Condenser, electrolytic, filter, 4 -section30-2568-26	C305	Condenser, i-f by-pass, . 1 mf
C101A	Condenser. filter, 60 mf ., 150vPart of Cl01	L300A	Transformer primary, lst i-f Part of 2300
C101B	Condenser, filter, 10 mf ., 150vPart of Cl01	L300B	Transformer secondary, lst i-fPart of $\mathrm{Z300}$
C101C	Condenser, filter, 30 mf ., 150vPart of C101	L301A	Transformer primary, 2nd i-f
CR100	Rectifier, selenium ...34-8003	L301B	Transformer secondary, 2nd if Part of 2301
PL100	Battery-cable-and-plug assembly41-3712-4	R300	Resistor, screen dropping, 10,000 ohms......66-3103340*
R100	Resistor, current-limiting, 60 ohms, 1w33-1334	R301	Resistor, filter, 47,000 ohms
R101	Resistor, 2-section …) 33-3431-5		
R101A	Resistor, filament dropping. 1125 ohms Part of R101	R302 TC300A	Resistor, a-v-c filter, 2.2 megohms66-5223340* Tuning core, lst i-f pri Part of 2300
R101B	Resistor, filament dropping,	TC3008	Tuning core, lst i-f sec. Part of 2300
	1125 ohms ${ }^{1}$, Part of R101	2300	Transformer, 1 st i-f ${ }^{\text {a }}$ 32-4160-4
R102	Resistor, filter, 2200 ohms …….....................66-2223340**	2301	Transformer, 2nd i-f32-3987-3
R103	Resistor, leakage, 150,000 ohms66-4153340*		
S100	Switch, on-off ...Part of R200		SECTION 4
S101	Switch, change-over ...42-1821.		R-F AND CONVERTER CIRCUITS
W100	Line-cord-and-plug assemblyL-2183*		
	SECTION 2		Condenser, tuning gang Condenser, trimmer, oscillator21-2727-2 C400
	AUDIO CIRCUITS	C400B	Condenser, trimmer, aerial - -a-mex. Part of C400
C200		C401	Condenser, isolating, 10 mmf30-1224-26*
C201	Condenser, screen by-pass, . 05 mf61-0122*	C402	
C202	Condenser, filter, 60 mf ., 25vPart of Clol	C403	Condenser, d-c blocking, 100 mmf62-110009001
C203	Condenser, d-c blocking, 004 mf61-0179*	C404	Condenser, fixed padder, . 004 mf61-0179**
C204	Condenser, r-f by-pass, 220 mmf30-1224-20*	R400	Resistor, α-v-c divider, 1 megohm66-5103340**
C205	Condenser, tone compensation, . 004 mf61-0179*	R401	Resistor, grid return, 3.3 megohms66-5333340*
C206		R402	Resistor, oscillator grid bias.
LS200			100,000 ohms ...w.....................................66.4103340*
R200	Volume control (with on-off switch). 1 megohm \qquad 33-5538-28	$\begin{aligned} & \text { T400 } \\ & \text { T401 } \end{aligned}$	Transformer, aerial ..32-3919-4
R201	Resistor, grid return, 4.7 megohms .-.- 66-5473340**		MISCELLANEOUS
R202	Resistor, screen dropping, 10 megohms..... 66-6103340*		MISCELLANEOUS Service
R203	Resistor, plate load. 1.2 megohms ..-. \quad 66-5123340**	Description	
R204	Resistor, grid return, 470.000 ohms 66.4473340^{*}	Description	
R205	Resistor, bias, 680 ohms66-1683340**	Cabinet and	Cabinet Parts
R206	Resistor, diode return, 470 ohms66-1473340**	Baffle-an	
R207	Resistor, diode return, 270 ohms66-1273340*	Back	
T200		Cabinet	\times
	SECTION 3	Dial Hard	5
	I-F, DETECTOR, AND A-V-C CIRCUITS	Drive co	rd (25-ft. spool)
C300A	Condenser, shunt, fixed trimmerPart of 2300	Pointer	56-6513FCP
C300B	Condenser, shunt, fixed trimmerPart of 2300	Scale	54-5041
C301A	Condenser, trimmer ..art of 2301	Knob (2 req	uired) .-.- - - .
C3018		Shaft-and-pu	ley assembly ..76-3671-1
C301C		Socket, mini	ature (4 required) ...27-6203
C302		Spring. driv	cord
C303	Condenser, screen by-pass, .1 mf.61-0113*	Switch-lever	assembly

[^5]
GENERAL INFORMATION

Philco Model 49-506 is a 5 -tube superheterodyne. This set employs the same chassis as that used in Models $49-500$ and $49-500-\mathrm{I}$, but is housed in a new-style cabinet which is supplied in either of two finishes, walnut or mahogany.

Circuit Description

The Philco Models $49-500$ and $49-500-1$ are 5 -tube, table-model superheterodyne radios, providing reception in the standard broadcast band.

The high-impedance loop aerial normally provides adequate signal pickup. An external aerial may be connected, if desired, by detaching the aerial lead (shown in figure 6) from the chassis, and connecting the lead to an external aerial lead-in. Do not use a ground.

The loop is coupled to the 7A8 converter tube. Variable-condenser tuning is employed, the oscillator rotor-section plates being shaped to obtain tracking, thus eliminating the necessity for a series padding condenser.

The 7A8 is transformer coupled to the 14A7 i-f amplifier, which is also transformer coupled to the diodes of the 14B6 second detector - first audio-frequency amplifier. A-v-c voltage is applied to the control grids of both the i-f and converter tubes.

The triode section of the 14 B 6 is the first audio stage, and is resistance coupled to the 50A5 output tube. The output tube is transformer coupled to a permanent-magnet dynamic speaker.
D-c operating voltages are obtained from a 35Z5GT half-wave rectifier, the output of which is filtered by a two-section resistor-condenser filter.
Condenser C304 in Section 3 is a special condenser, inductively wound to form a series-tuned circuit, resonant at the intermediate frequency. This special condenser offers less impedance at this frequency than a conventional condenser, thus permitting higher i-f gain, with no tendency toward instability. Since the tuning gang is connected to the chassis, by-passing at broadcast and short-wave frequencies is adequate. The inductive effect is negligible at audio frequencies.

The $150,000-\mathrm{ohm}$ resistor, R100, in Section 1, prevents hum which might otherwise occur under conditions of high humidity.

Philco TROUBLE-SHOOTING Procedure

In this manual, the schematic diagram is divided into four sections, with a chassis layout for each section, showing components and test points for each section. The test points are also indicated on the schematic diagram in the corresponding section. A simplified trouble-shooting procedure is given in a chart for each section. The first step in each chart is a master check, indicating whether trouble exists in that section. Failure to obtain the "NORMAL INDICATION" in a

MODEL 49-506

SPECIFICATIONS

CABINET \ldots Wood, with plastic grille;
walnut or mahogany finish

MODEL 49-500 (Walnut)
MODEL 49-500-I (lvory)
SPECIFICATIONS
 TP-2667
given step indicates trouble, which should be located by voltage, resistance, or-capacitance cherks of parts indicated in the step, and remedied before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Carefully inspect both top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets (see figure 6), and look for bad connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$ and B - (test points C and B in figure 1), using the ohmmeter polarity giving the highest resistance reading; if the reading is lower than 50,000 ohms, check C101A, C101B, and C101C, for leakage or shorts. This resistance value, which is much lower than normal, does not represent a quality check of these condensers; it is the lowest value which will permit the rectifier to operate safely while the voltage tests of Section 1 (power supply) are performed.

Section 1 - Power Supply

TROUBLE SHOOTING

For the tests in this section, use a d-c voltmeter; connect the leads to the test points indicated in the chart. The voltages shown were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, 60 cycles.

Turn the volume control to minimum, and set the dial pointer at 540 kc .
If the "NORMAL INDICA. TION" is obtained in step 1 , proceed with tests for Section 2 (audio circuits) ; if not, isolate and correct the trouble within this section.

FIGURE I. BOTTOM VIEW, SHOWING SECTION I TEST POINTS

STEP	TEST POINT	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A to B	90v		Trouble within this section; isolate by the following tests.
2	C to B	115v	No voltage Low voltage High voltage	Defective 35Z5GT. Shorted: C101A. Defective: 35Z5GT. Open: C101A or Il00. Leaky: Cl01A. Open: R101.
3	D to B	105v	No voltage Low voltage High voltage	Shorted: C101B. Open: Cl01B. Leaky: C101B or C203. Open: R102, T200, or R204.
4	A to B	90v	No voltage Low voltage High voltage	Shorted: ClolC. Leaky: C101C. Open: R204.

Listening Test: Abnormal hum may be caused by open Clo1A, ClolB, or ClolC.

Section 2 - Audio Circuits TROUBLE SHOOTING

For the tests in this section, use an audio-signal generator. Connect the ground lead of the generator to B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the volume control at maximum. If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble within this section.

FIGURE 2. BOTTOM VIEW, SHOWING SECTION 2 TEST POINTS

STEP	test point	NORMAL Indication	POSSIBLE CAUSE OF ABNORMAL indication
1	A	Loud, clear signal with weak sig-nal-generator input.	Trouble within this section; isolate by the following tests.
2	C	Clear signal with weak signalgenerator input.	No signal- Open or shorted: LS200 or T200. Shorted: C203. Open: R204. Defective: 50A5. Weak or distorted signal - Defective: 50A5 or LS200. Leaky: C202 or C201. Open: R203. Shorted: R204.
3	D	Same as step 2.	No signal-Open: C201. Weak or distorted signal - Leaky: C201.
4	E	Same as step 1.	No signal - Open: R202. Defective: 14B6. Weak or distorted signal - Shorted: C200. Open: R201. Defective: 14B6.
5	A	Same as step 1.	No sign.a. - Open: C200. Shorted: C300D. Weak or distorted signal - Open: R200 (rotate through range).

MODELS 49-500,

Section 3 - I-F, Detector, and A-V-C Circuits TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set to 455 kc . Connect the ground lead of the signal generator to B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the volume control at maximum. If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble within this section.

FIGURE 3. BOTTOM VIEW, SHOWING SECTION 3 tEST POINTS

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Clear signal with weak signal-gen. erator input.	Trouble within this section; isolate by the following tests.
2	C	Same as stop 1.	No signal - Open or shorted: 2300. Defective: 14B6 or 14A7. Open: R301. Shorted: C303. Weak or distorted signalLeaky: C303. Open: C303 or C304. Defective: $14 \mathrm{B6}$ or 14 A 7. Misaligned: 2300. Leaky or open: C302.
3	A	Same as stop 1.	No siqnal - Open or shortod: 2301. Weak or distorted sig. nal - Misaligned: Z301.

Section 4 - R-F and Converter Circuits

For the tests in this section, use an r-f signal generator, with modulated output. Connect the generator ground lead to B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.
Inspect the tuning condensers for bent plates, dirt, or poor wiper contacts; any or all of these will cause noise. If the "NORMAL INDICATION" is not obtained in step 1 , isolate the trouble by following the remaining steps.

STEP	TEST POINT	DIAL SETTINGS		NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
		SIG. GEN.	RADIO		
1	A	540 kc .	540 kc .	Clear signal with weak slgnal.generator input.	Trouble within this section; isolate by the follow ing tests.
2	D (Osc. test; see note below.)		$\begin{array}{rr} 540 & \text { to } \\ 1620 & \mathrm{kc} . \end{array}$	Negative 9 to 12 volts.	Open or shorted: T400. C402, or R400. Shorted: C400 or C400B. Defective: 7A8.
3	C	540 kc .	540 kc .	Same as step 1.	No signal - Open or shorted: Z301. Shorted: C400 or C400A. Defective 7A8. Weak or distorted signal - Shorted or open: LA400. Defec. tive: 7A8.
4	A	540 kc .	540 kc .	Same as step 1.	Weak signal - Open: C401.

[^6]

SECTION 5. PHILCO RADIO MODELS 49-500 AND 49-500-I, SECTIONALIZED SCHEMATIC DIAGRAM, SHOWING TEST POINTS

ALICNMENT PROCEDURE

TURN ON THE RADIO, AND SET THE VOLUME CONTROL TO MAXIMUM.

DIAL POINTER - Turn tuning condensers to
full-mesh position. Set dial pointer to index dot, located to the left of "55."

OUTPUT METER - Connect to left (output) ug and center (chassis) lug of terminal panel hown in figure 6.

SIGNAL GENERATOR - Comnect ground lead to B; connect output lead as indicated in the chart.

OUTPUT LEVE: - During alignment, adjust signal-generator output to maincain output-meter
indication below 1.25 vols.s.

STEP	Signal generator			RADIO	
	CONNECTIONS TO RADIO	dial setting	dial setting	SPECIAL instructions	,
1				Turn C301B (copper screw) down tight.	
2	Through .l-mi. condenser to pin 6 of 7A8 converter.	455 kc .	540 kc .	Adjust trimmers, in order given, for maximum output.	
3	Through $100-\mathrm{mm}$. condenser to external aerial connector.	1600 kc .	1600 kc .	Disconnect external aerial lug from chassis. Adjust trimmer for maximum output.	
4	Same as step 3.	1500 kc .	1500 kc .	Adjust for maximum output.	C40ClA

MISCELLANEOUS

©John F. Rider

REPLACEMENT PARTS LIST

NOTE: Parts marked with an asterisk (*) are general replacement items, and the numbers listed may not be identical with those on factory assemblies; also, the electrical values of some replacement items furnished may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference
Symbol
Symbol
C100
C101
C101A
C101B
C101C
1100
R100
R101
R102
S100
$W 100$
C200
C201
C202
C203
LS200
R200

R201
R202
R203
R204
T200

Description	Service Part No.
Condenser, line filter, 04 mf .	45-3500.2*
Condenser, electrolytic, 3 -sectio	filter30-2573
Condenser, electrolytic, 30 miPart of Cl01
Condenser, electrolytic, 25 mf .	Part of C101
Condenser, electrolytic, 20 mf	Part of C101
Panel lamp34-2068
Resistor, leakage, 150,000 ohm	. $6 . . .66 .4153340^{\circ}$
Resistor, filter, 220 ohms66.1224340*
Resistor, filter, 1200 ohms	66-2123340*
Switch, power	Part of R200
Power cord and plug	

SECTION 2

AUDIO CIRCUITS

SECTION 3

I-F, DETECTOR, AND A-V-C CIRCUITS

C302	Condenser, α-v-c by-pass, . 05 mf 61.0122
C303	Condenser, screen by-pass, . 05 mf . .-...........61-0122*
C304	Condenser, special i-f by-pass, . 1 mf30-4644-1
R300	Resistor, diode load, 47,000 ohmsPart of $\mathrm{Z300}$
R301	Resistor, screen, 27,000 ohms663273340**
R302	
Z300	Transformer, 2nd i-f ..45-6365*
C300A	
C300B	
C300C	Condenser, by-pass, 100 mmf-Part of $\mathbf{Z 3 0 0}$
C300D	Condenser, by-pass, 100 mmf . Part of $\mathbf{Z 3 0 0}$
Z301	Transformer, 1st i-f ..45-6365
C301A	Condenser, trimmer ...-............................ Part of 2301
C3018	Condenser, trimmer Part of Z301

SECTION 1
POWER SUPPLY

MISCELLANEOUS	
Description	Service Part No.
Cabinet	
Model 49-500	10542D
Model 49-500-110542E
Cabinet Hardware	
Back	
Model 49-500	27-9879
Model 49-500-I	27-9922
Fastener, acetate window (6) \qquad Foot, felt \qquad W2190	
Knob	
Model 49-500-I \qquad .54-4118	
Dial-Scale Hardware	
Scale, dial	
Model 49-500 ...27-5985	
Model 49-500-1 ..-37-5965	
Screw, scale mountinga)	
Spring, drive cord ...56-2617	
Panel. lamp assembly ..76-1472	
Shaft, drive assembly ...31-2718	
Socket, octal	27-6174*

LIST

NOTE: Part numbers identified by an asterisk (*) indicate general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and replacement parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

PHILCO CORP.

MODELS 49-501, 49-501-I

POWER SUPPLY

For the tests in this section, use a d-c voltmeter. Connect the negative lead to B -, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power and set the volume control to minimum.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL indication	ABNORMAL INDICATION	possible cause of abnormal mdication
1	A	92v		Trouble within this section. Leolete by the following tests.
2	C	105v	No voltage Low voltage High vollage	Defective: 35Y4. Open: S100, W100. Shorted: C101A. Open: C101A. Defective: 35Y4. Leaky: C101A. Open: R100.
3	D	116\%	No voltage Low voltage High voltage	Shorted: Cl018. Open: R100. Open: C101B. Leaky: C101B, C202. Open: R101, T200 ${ }^{\circ}$. R203 ${ }^{\circ}$.
4	A	92V	No voltage Low vollage	Shorted: ClOIC. Open: R101. Leaky: Clolc.
Listoning Tent: Abnormal hum may be caused by open C101A, C1018, or C101C.				

- This part, bocated in another section, may cause abnormal indication in this section.

Section 2 AUDIO CIRCUITS

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

IP-5656B
Figure 2. Boftom View, Showing Section 2 Test Poiats

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak signal-generator input.	Trouble within this section. lsolate by the following testin.
2	C	Clear output with strong leput.	Defective: 50AS, LS200. Shorted: C201, C202. Open: R203, 7200.
3	D	Same as stop 2.	Defecive: 14B6. Shorted: C200. Open: H204. R202, C200.
4	A	Same as stop 1.	Shorted: C301D* ${ }^{\text {. Open: }}$ R200, R201, C203.
Listoning Teat: Distortion may be caused by ahorted or leaky C200.			

- This part. located in another section. may cauce abnormal lndication in this section.

I-F, DETECTOR, AND A-V-C CIRCUITS

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum.
If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

To provide a complete i-f amplifier check, test point A for this section is placed at the grid of the converter in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the converter circuit. These parts are listed below under the "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak signal-generator input.	Trouble within this section. Isolate by the following tests.
2	C	Same as step 1.	Defective: 14A7, 14B6. Shorted: L300B, C300B, L301A, L301B, C301A. C301B, C301C, C301D. Open: L301A, L301B, C301A, C301B, C302, R300, R301. Misaligned: Z301.
3	A	Same as step 1.	Defective: 7A8*. Shorted: C400*. C400A*, L300A, C300A. Open: L300A, L300B, C300A, C300B. Misaliqned: Z300.

*This part, located in another section, may ccuse abnormal indication in this section.

Section 4
 R-F AND CONVERTER CIRCUITS

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to $B-$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum. Set the tuning control and the signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1, isolate and correct the trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

TROUBLE SHOOTING

Figure 4. Bottom View, Showing Section 4 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \\ & \hline \end{aligned}$	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL. INDICATION
1	A	1000 kc.	1000 kc .	Clear speaker output with weak signal-generator input.	Trouble within this section. Isolate by the following tests.
2	D (Osc. test: see note below.)		Rotate through range.	Negative 8 to 10 volts.	Shorted: T400, C400, C400B. Open: C402, R401, T400. Defective: 7A8.
3	C	1000 kc.	1000 kc .	Same as step 1.	Defective: 7A8. Shorted: C400, C400A, LA400. Open: LA400.
4	A	1000 kc .	1000 kc .	Same as step 1.	Open: C401.

[^7]

Philco Radiu Models $49-501$ and 49-501-I. Sectionalized Schematic Diagram, Showing Test Points
© John F. Rider

ALIGNMENT PROCEDURE

OUTPUT METER - Connect across voice-coil terminals.

SIGNAL GENERATOR-Connect as indicated in chart. Use modulated output.

RADIO CONTROLS-Set volume control to maximum, and rotat
meshed.

RADIATING LOOP: Make up a 6 to 8 turn, 6 .inch-diameter loop from insulated wire; connect to signal-generator leads and
place near radio loop aerial. The loop aerial must be connected.
Figure 6. Top View, Showing Trimmer Locations

OUTPUT LEVEL-During alignment, adjust signal-
generator output to maintain output-meter indication

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part as follows:

> C---condenser
> I-pilot lamp
> L-choke or coil
> LA-loop aerial
> LS-loud-speaker

R—resistor
S-switch
T-transformer
W—line-cord-and-plug assembly
Z—electrical assembly

The number of the symbol designates the section in which the part is located as follows: 100 -series components are in Section 1-the power supply.
200 -series components are in Section 2-the audio circuits.
300-series components are in Section 3-the i-f, detector, and a-v-c circuits.
400 -series comnonents are in Section 4-the r-f and converter circuits.

Circuit Description

Philco Radio Models 49-501 and 49-501-I are 5-tube, table-model superheterodynes, providing reception in the standard broadcast band.
A high-impedance loop aerial normally provides adequate signal pickup. An external aerial may be connected, if desired, by detaching the aerial lead from the Do not use a ground.
The loop aerial is coupled to the 7A8 converter. The aerial and oscillator circuits are tuned by ganged, variable condensers, and the osclllator rotor-section plates are properly shaped to obtain tracking, thus eliminating the necessity for a series padding condenser.
The 7A8 converter is transformer-coupled to the 14A7 i-f amplifier, which is also tiansformer-coupled to the diodes of the 14 BG second detector--first audio amplifier. A-v-c voltage is applied to the control grids
of both the i-f amplifier and converter tubes. The triode section of the 14B6 is the first audio stage, and is resist-ance-coupled to the 50A5 output tube. The output tube ance-coupled to the 50A5 output tube. The output tube
is transformer-coupled to a permanent-magnet speaker.

D-c operating voltages are supplied from a 35 Y 4 half-wave rectifier, and filtered by a three-section resistor-condenser network.
Condenser C303 is a special condenser inductively intermediate frequency. This condenser offers less impedance at this frequency than a conventional condenser, and thus permits higher i-f gain, with no tendency toward instability.
The 150,000 -ohm resistor, R102, prevents hum which might otherwise occur under conditions of high humidity. 0

SPECIFICATIONS

CABINET IJastic, ehony or green CIRCUIT Five-tube superheterodyne FREQUENCY RANGE 540 to 1620 kc . AUDIO OUTPUT . 1 watt OPERATING VOLTAGE. 105 to 125 volts, a.c./d.c. POWER CONSUMPTION . 30 watts

AERIAL................. | Built-in high-impedance loop; |
| :--- |
| provision for connecting an |
| external aerial |

INTERMEDIATE FREQUENCY 455 kc . PHILCO TUBES (5) . . . 7A8, 14B6, 14A7, 50A5, 35Z5GT

Circuit Description

Philco Radio Model $49-503$ is a five-tube superheterodyne, providing reception in the standard broadcast band. A built-in high-impedance loop aerial normally provides adequate signal pickup; an external aerial may be connected, if desired, by detaching the aerial lead (shown in figure 6) from the chassis and connecting this lead to an external aerial lead-in. Do not use a ground.

The loop is coupled to a 7A8 converter. Variablecondenser tuning is employed; the oscillator rotor-section plates are shaped to obtain tracking, thus eliminating the need for a series-padding condenser.
The 7A8 is transformer-coupled to a 14A7 i-f amplifict, which is also transformer-coupled to a 14 B 6 second detector -first audio amplifier. A-v-c voltage is applied to the control grids of the i-f-amplifier and converter tubes.
The triode section of the 14B6 is the first audio stage, and is resistance-coupled to a S0A5 output tube. The output tube is transformer-coupled to a permanent-magnet speaker.

D-c operating voltages are obtained from a 35 Z5GT half-wave rectifier, the output of which is filtered by a two-section, resistor-condenser filter.

Condenser C304 is a special condenser, inductively wound to form a series tuned circuit, resonant at the intermediate frequency. This special condenser offers less impedance at this frequency than a conventional condenser, thus permitting high i-f gain with no tendency toward instability.

The 150,000 -ohm resistor, R100, prevents hum which might otherwise occur under conditions of high humidity.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.
Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before it is turned on:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorter connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$ (pin 7 of $35 \mathrm{Z5GT}$) and B-, test point B. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1500 ohms, check condensers C101A, C101B, and C203 for leakage or shorts. The resistance value given is much lower than normal, and is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed.

Section 1-Power Supply

For the tests in this section, use a $\mathrm{d}-\mathrm{c}$ voltmeter. Connect the negative lead to $\mathrm{B}-$, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum.

If the "NORMAL INDICATION' is obtained in step 1 , proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

TROUBLE SHOOTING

Figure 1. Bottom View, Showing Section 1 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	possible cause of abnormal indication
1	A	90 v .		Trouble within this section. Isolate hy the following tests.
2	C	115 v.	No voltage. Low voltage. High voltage.	Defective: 35Z5GT. Open: S100, W 100. Shorted: Ci01A. Leaky: C101A. Open: R101.
3	D	105 v.	No voltage. Low voltage. High voltage.	Shorted: Cl101B. Open: R101. Leaky: C101B. Shorted: C203.* Open: R102.
4	A	90 v.	No voltage. Low voltage. High voltage.	```Shorted: (101C. Open: R102. Leaky: C101B, C101C. Open: R204.*```
Listening Test: Abnormal hum may he caused by open C101A, Ci01B, or C101C.				

Section 2-Audio Circuits

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B -, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum. If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits) ; if not, isolate and correct the trouble in this section.

Figure 2. Bottom View, Showing Section 2 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIble cause of abnormal indication
1	A	Loud, clear speaker output with weak generator input.	Trouble within this section. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 50A5, LS200. Shorted: C202, C203. Open: R204, T200.
3	D	Same as step 1.	Defective: 14B6. Shorted: C201. Open: R201, R202, C201.
4	A	Same as step 1.	Shorted: C200, C301D. ${ }^{*}$ Open: R200 (rotate through range).

* This part, located in another section, may cause abnormal indication in this section.

Section 3-I-F, Detector, and A-V-C Circuits

TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a $.1-\mathrm{mf}$: condenser to the test points indicated in the chart.

Set the volume control to maximum, and rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r-f and converter circuits) ; if not, isolate and correct the trouble in this section.

Figure 3. Bottom View, Showing Section 3 Test Points
To provide a complete i-f-amplifier check, test point A for this section is placed at the grid of the mixer in Section 4 ; therefore, the effectiveness of step 1 as a master check
is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under the "POSSIBLE CAUSE OF ABNORMAL INDICATION.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIbLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak generator input.	Trouble within this section. Isolate by the following te:is.
2	C	Same as step 1.	Defective: 14A7, 14B6. Shorted: C303, Z300, Z301. Open: R301, Z300, Z301. Misaligned: Z301.
3	A	Same as step 1.	Defective: 7A8.* Open or shorted: 7300 . Misaligned: Z300.

* This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F and Converter Circuits

TROUBLE SHOOTING

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and set the tuning control and the signalgenerator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in this section. If

Figure 4. Bottom View, Showing Section 4 Test Points the trouble is not revealed by the tests for this section, check the alignment.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	$\begin{aligned} & \text { SIG. } \\ & \text { GEN. } \\ & \text { RREQ. } \end{aligned}$	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	1000 kc .	Loud, clear speaker output with weak gencrator input.	Trouble within this section. Isolate by the following tests.
2	$\stackrel{D}{\text { (Osc. test ; sce }}$ note below.)		Rotate through range.	Negative 7 to 10 volts.	Defective: 7A8. Shorted: C400, C402, C400B. Open: T400, C402, R400.
3	C	1000 kc .	1000 kc .	Same as step 1.	Defective: 7A8. Shorted: C400, C400A, C403.
4	A	1000 kc .	1000 kc .	Same as step 1.	Open: C401, C403. Shorted: LA400.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to B-, test point B; connect the prod end of the negative lead through a $100,000 \cdot \mathrm{ohm}$ isolating resistor to the oscillator grid (pin 4 of 7A8), test point D. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (measured with 20,000 -ohms-per-volt meter) throughout the tuning range.

Figure 5. Philco Radio Model 49-503, Sectionalized Schematic Diagram, Showing Test Points
©John F. Rider

ALIGNMENT PROCEDURE

DIAL-With tuning condenser fully meshed, set pointer to index dot located to left of 55 .

OUTPUT METER-Connect one lead to SIGNAL GENERATOR-Connect generator RADIO CONTROLS-Set volume control pin on left-hand side of plug at rear of ground lead to B-; connect output lead as to maximum indicated in chart. Use modulated output.

Figure 6. Top View, Showing Trimmer Locations

YMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located The prefix letter of the symbol designates the type of part as follows:

$$
\begin{array}{lcl}
\text { C-condenser } & \text { LA-loop aerial } & \text { S-switch } \\
\text { I-pilot lamp } & \text { LS-loud-speaker } & \text { T-transformer } \\
\text { I-choke or coil } & \text { R-resistor } & \text { W-line cord } \\
& \text { Z-electrical assembly } &
\end{array}
$$

The number of the symbol designates the section in which the part is located, as follows:

100-series components are in Section 1-the power supply.
200 -series components are in Section 2-the audio circuits.
300 -series components are in Section 3-the i-f, detector, and a-v-d circuits.
400 -series components are in Section 4 -the r-f and converter circuits.

Figure 7. Drive-Cord Installation Details
©John F. Rider

REPLACEMENT PARTS LIST

NOTE: Part numbers identified by an asterisk (*) indicate general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and replacement parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved When ordering replacements, use only the "Service Part No."

MODEL 49-504 (Walnut)
MODEL 49-504-1 (Ivory)

Circuit Description

The Philco Radio Model 49-504 is a five-tube, tablemodel superheterodyne, providing reception in the standard-broadcast band.

The high-impedance loop aerial normally provides adequate signal pickup. Provisions are made for the connection of an external aerial.

The loop is coupled to the 7A8 converter. Variable condenser tuning is employed; the oscillator rotorsectión plates are properly shaped to obtain tracking, thus eliminating the need for a series padding condenser.

The 7A8 is transformer-coupled to the 14A7 i-f amplifier, which is also transformer-coupled to the diodes of the 14B6 second detector - first audio-frequency amplifier. A-v-c voltage is applied to the control grids of both the i-f and converter tubes.

The triode section of the 14B6 is the first audio stage, and is resistance-coupled to the 50A5 output stage. The output tube is transformer-coupled to the permanent-magnet dynamic speaker.

D-c operating voltages are obtained from the 35Z5GT half-wave rectifier, the output of which is filtered by a two-section resistor-condenser filter.

Condenser C302 in Section 3 is a special condenser, inductively wound to form a series-tuned circuit, resonant at the intermediate frequency. This special condenser offers less impedance at this frequency than a conventional condenser, thus permitting higher i-f gain, with no tendency towards instability. The inductive effect at audio frequencies is negligible. Since the tuning gang is connected to the chassis, by-passing at broadcast frequencies is adequate.

Resistor R100, the $150,000 \cdot \mathrm{ohm}$ resistor in Section 1, prevents hum which might otherwise occur under conditions of high humidity.

SPECIFICATIONS

Plastic (ivory or walnut)	
Five-tube superheterodyne	
FREQUENCY RANGE	
OPERATING VOLTAGE $\quad 105-120$ volts, a.c. or d.c. POWER CONSUMPTION ...ancoan 30 watts	
	Loop fastened to cabinet; terminal also provided for outside aerial
E	455
TUBES (5).	5, 35Z5

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube-electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power.

1. Inspect the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$ (pin 8 of the $35 Z 5 G T$ rectifier) and B - (test point B). When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1500 ohms, check condensers C101A, C101B, and C101C for leakage or shorts. The resistance value, which is much lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 (power supply) are performed.

Section 1 - Power Supply

For the tests in this section, use a d-c voltmeter. Connect the negative lead to B-, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohfis-per-volt meter, at a line voltage of 117 volts, a-c.

Turn on the power, and set the volume control to minimum.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

figure 1. bottom view. showing section i test points

STEP	TEST POINT	NORMAL INDICATION	ABNORMAL INDICATION	possible cause of abnormal indication
1	A	107\%		Trouble within this section. Isolate by the following tests.
2	C	130v	No voltage Low voltage High voltage	Defective: 3525 GT . S100, W100. Shorted: C101A. Defective: 3525 GT . Open: C101A, I100. Leaky: C101A. Open: R101, R102, R203*, T200*.
3	D	120v	No voltage Low voltage High voltage	Shorted: Cl01B. Open: R101. Shorted: C203*. Leaky: C101B, C203*. Open: R102, R203*, T200*.
4	A	107v	No voltage Low voltage High voltage	Shorted: C101C. Leaky: C101C. Open: R203*.

Listening Test: Abnormal hum may be caused by open C101B, C101C, or R100.

- This part, located in another section, may cause abnormal indication in this section.

Section 2 - Audio Circuits

TROUBLE SHOOTING

For the tests in this section, use an audio signal generator. Connect the ground lead of the generator to B; test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

- This part, located in another section, may cause trouble in this section.

Section 3 - I-F, Detector, and A-V-C Circuits TROUBLE SHOOTING

For the tests in this section use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B-, test point B; connect the output lead through a $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

FIGURE 3. BOTTOM VIEW, SHOWING SECTION 3 TEST POINTS

STEP	TEST POINT	NORMAL. INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	\boldsymbol{A}	Clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	Clear signal with moderate signal input.	Delective or misaligned: Z301. Defective: 14B6 (diode section), 14A7. Open: R300. C302. Shorted, leaky, or open: C303.
3	A	Same as step 1.	Delective or misaligned: Z300. Defective: 7A8 . Open: C302, LA 400°.

* This part, located in another section, may cause trouble in this section.

Section 4 - R-F and Converter Circuits TROUBLE SHOOTINC

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.

Set the radio and signal-generator dials as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in this section.

STEP	TEST POINT	DIAL SETTINGS		NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
		SIG. GEN.	RADIO		
1	A	540 kc .	540 kc.	Clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	540 kc.	540 kc .	Same as step 1.	Shorted: C400, C400A. Defective: 7A8. Trouble in oscillator section.
3	D (Osc. test: see note below.)		$\begin{gathered} 540 \\ 10 \\ 1620^{\circ} \mathrm{kc} . \end{gathered}$	Negative 7 to 11 volts.	Defective: T400, 7A8. Open or shorted: C402. Shorted: C400, C400B.
4	A	540 kc .	540 kc .	Same as step 1.	Defective: LA400. Open C401.

OSCILLATOR-TEST NOTE: Connect positive lead of high-resistance voltmeter to B-, test point B; connect prod end of negative lead through a 100,000 -ohm isolating resistor to the $7 A 8$ oscillator grid. test point D. Use suitable meter range, such as 0 - 50 volts. Proper operation of oscillator is indicated by negative voltage of 7 to 11 volts (measured with a 20,000 -ohms-per-voll meter) throughout range of tuning control.

ALIGNMENT PROCEDURE

TURN ON THE RADIO, AND SET THE VOLUME CONTROL TO MAXIMUM

DIAL - Turn tuning condensers to full-mesh position Set dial pointer to coincide with index mark, located to the left of "550."

OUTPUT METER - Connect to left (output) plug of

 terminal jack and chassis, as shown in figure 6.SIGNAL GENERATOR -
chart. Use modulated output.

OUTPU'T LEVEL - During alignment, adjust signalgenerator output to maintain output-meter indication below 1.25 volts.

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTIONS TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL INSTRUCTIONS	
1	Ground lead to B-; output lead through a $.1-\mathrm{mt}$. condenser to pin 6 of 7A8 converter.	455 kc .	540 kc .	Turn C300B (copper screw) fully tight, then adjust trimmers. in order given, for maximum output.	$\begin{aligned} & \text { C301E } \\ & \text { C301A } \\ & \text { C } 300 \mathrm{E} \end{aligned}$
2	Radiating loop (see note below).	1600 kc .	1600 kc .	Adjust for maximum.	C400
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum.	C400

leads and place near radio loop.

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part, as follows

C-condenser	L.A-loop aerial	S-switch
I-pilot lamp	LS-loud-speaker	T-transformer
L—choke or coil	R-resistor	Z-electrical assembly

The number of the symbol designates the section in which the part is located, as follows:

100-series components are in Section 1-the power supply.
200 -series components are in Section 2-the audio circuits.
300 -series components are in Section 3-the i-f, detector, and α - v-c circuits. 400 -series components are in Section 4--the r-f and converter circuits.
figure 6. top view, showing trimmer locations

FIGURE 7. DRIVE-CORD INSTALLATION DETAILS

REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk. (*) are general replacement items. These numbers may not be iden. tical with those on factory assemblies; also. the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the overation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Circuit Description

The Philco Radio, Model 49-505, is a five-tube, tablemodel superheterodyne, providing reception in the standardbroadcast band.
The high-impedance loop aerial normally provides adequate signal pickup. Provisions are made for the connection of an external aerial.
The loop is coupled to the 7A8 converter. Variablecondenser tuning is employed; the oscillator rotor-section plates are properly shaped to obtain tracking, thus eliminating the necessity for a series padding condenser.
The 7A8 is transformer-coupled to the 14 A 7 i-f amplifier, which is also transformer-coupled to the diodes of the 14B6 second detector--first audio-frequency amplifier. A-v-c voltage is applied to the control grids of both the i-f and converter tubes.
The triode section of the 14B6 is the first audio stage, and is resistance-coupled to the 50A5 output stage. The output tube works into a permanent-magnet dynamic speaker.
D-c operating voltages are obtained from the 35 Y 4 halfwave rectifier, the output of which is filtered by a twosection resistor-condenser filter.

Condenser C302 in Section 3 is a special condenser, inductively wound to form a series-tuned circuit, resonant at the intermediate frequency. This special condenser offers less impedance at this frequency than a conventional condenser, thus permitting higher i-f gain, with no tendency toward instability. The inductive effect at audio frequencies is negligible. Since the tuning gang is connected to the chassis, by-passing at broadcast frequencies is adequate.

Resistor R100, the 150,000 -ohm resistor in Section 1, prevents hum which might otherwise occur under conditions of high humidity.

SPECIFICATIONS

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.
After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tubeelectrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power.

1. Inspect the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $\mathrm{B}+$ (pin 7 of the 35 Y 4 rectifier) and B- (test point B). When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1500 ohms, check condensers C101A, C101B, and C101C for leakage or shorts.
The resistance value, which is much lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 (power supply) are performed.

TROUBLE SHOOTING

For the tests in this section, use a d-c voltmeter. Connect the negative lead to $\mathrm{B}-$, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits) ; if not, isolate and correct the trouble in this section.

Figure 1. Bottom View, Showing Section 1 Test Points

STEP	test point	NORMAL indication	ABNORMAL INDICAYION	possible cause of abnormal indication
1	A	107 volts		Trouble within this sertion. Isolate by the following tests.
2	C	130 volts	No voltage Low voltage High voltage	Defective: 35Y4, S100, W100. Shorted: C101A. Defective: 35 Y 4 . Open: C101A, I100. Leaky: C101A. Open: R101, R102, R203*, T200*.
3	D	120 volts	No voltage Low voltage High voltage	Shorted: C101B. Open: R101. Shorted: C203*. Leaky: C101B, C203*. Open: R102, R203*, T200*.
4	A	107 volts:	No voltage Low voltage High voltage	Shorted: C101C. Leaky: Cl01C Open: R203*.

Listening Test: Abnormal hum may be caused by open C101B, C101C, or R100.

* This part, located in another section, may cause abnornal indication in this sertion.

Section 2-Audio Circuits

TROUBLE SHOOTING

For the tests in this section, use an audio signal generator. Connect the ground lead of the generator to B-, test point B ; connect the output lead through a 1 lmf . condenser to the test points indicated in the chart.

Set the radio volume control to maximum.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits). If not, isolate and correct the trouble in this section.

Figure 2. Bottom View, Showing Section 2 Test Points

STEP	test point	NORMAL INDICATION	feSSible cause of abnormal indication
1	A	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	Clear signal with strong signal input.	Open or shorted: LS200, T200. Shorted: C201, C203. Open: R203. Defective: 50A5.
3	D	Same as step 1.	Open: R201, R202, R204. Open, shorted, or leaky: C200. De fertive: 14136.
4	A	Same as step 1.	Defective: R 200 (rotate through entire range). Open, shorted, or leaky: C202. Shorted: C301D*.

[^8]
Section 3-I-F, Detector, and A-v-c Circuits

TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B -, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r-f and converter circuits) ; if not, isolate and correct the trouble in this section.

Figure 3. Bottom View, Showing Section 3 Test Points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABHORMAL INDICATION
1	A	Clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	Clear signal with moderate signal input.	Misaligned: Z301. Defective: 14B6 (diode section), 14A7. Open: R300, C302. Shorted, leaky, or open: C303, Z301.
3	A	Same as step 1.	Defective or misaligned: Z300. Defective: 7A8*. Open: C302, LA400*, Z300. Shorted: Z300.

* This part, located in another section, may rause abnormal indication in this section.

Section 4-R-F and Converter Circuits

TROUBLE SHOOTING

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.

Set the radio and signal-generator dials as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in this section.

Figure 4. Bottom View, Showing Section 4 Test Points

STEP	TEST POINT	DIAL SETTINGS		NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
		SIG. GEN.	RADIO		
1	A	540 ke .	540 kc .	Clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	540 ke .	540 kc .	Same as step 1.	Shorted: C400, C400A. Defective: 7A8. Trouble in oscillator section.
3	Oscillator Tėst (see Note below)		$\begin{gathered} 540 \\ t 0 \\ 1620 \mathrm{ke} . \end{gathered}$	$\begin{aligned} & \text { Negative } 7 \text { to } 11 \\ & \text { volts. } \end{aligned}$	Defective: 7A8. Open or shorted: C402, T400. Shorted: C400, C400B.
4	A	540 kr .	540 kc .	Same as step 1.	Defertive: LA400. Open: C401.

OSCILLATOR-TEST NOTE: Connect positive lead of high.resistance voltmeter to B-, test point B; connect prod end of negative lead through a 100,000 ohm isolating resistor to the 7 A 8 owrillator grid, test point 1 . Use suitable meter range, such as 0 - $\overline{0} 0$ volts. Proper operation of oscillator is indicated by negative voltage of 7 to 11 volts (measured with a 20,000 -ohms-per-volt meter) throughout range of tuning control.

Figure 5. Philco Radio Model 49-505, Sectionalized Schematic Diagram, Showing Test Points
©John F. Rider

ALIGNMENT PROCEDURE

TURN ON THE RADIO, AND SET THE VOLUME CONTROL TO MAXIMUM

DIAL-Turn tuning condensers to full-mesh position. Se dial pointer to coincide with index mark; see figure 7

J400 and chassis

SIGNAL GENERATOR-Connect as indicated in chart Use modulated output

OUTPUT LEVEL-During alignment, adjust signal-generator output to hold output-meter indication below 1.25

STEP	Signal generator		RADIO \mid note: TC 300A AND TC301A ARE ACCESSIBLE FROM underside of chassis.		
	CONNECTIONS TO RADIO	dial setting	dial setting	SPECIAL instructions	
1	Ground lead to B-; output lead through .l-mf. condenser to test point C of Section 4.	455 kc .	540 kc .	Adjust tuning cores, in order given, for maximum output.	TC301B-2nd i-f sec. TC301A-2nd i-f pri. SEE NOTE TC300B-1st i-f sec TC300A-lst i-f pri.
2	Radiating loop (see note below).	1600 kc .	1600 kc .	Adjust for maximum.	$\mathrm{C} 400 \mathrm{~B}-\mathrm{osc} .$
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum.	C400A-aerial ._ OUTPUT METER CONNECTIONS AERIAL CONNECTION TPE290

RADIATING LOOP: Make up a six-to-eight-tugh, 6 -inch-diameter loop, using insulated wire; connect to nal-generator leads and place near radio loop.

SYMBOLIZATION

he components in the radio circuit are symbolized according to the types of parts and The sections of the radio in which the parts arc located. The prefix letter of the symbol desig thes the type of part, as follows:

C-condenser	LA-loop aerial	S-swutch
I-pilot lamp	LS-loud-speaker	T-transformer
L-choke or coil	R-resistor	Z-clectrical assembly

號 The number of the symbol designats the oner supply.
100-series components are in Section 1-the power supply.
300 -series components are in Section 3 - the i-f, detector, and a-v-c circuits.
400 -series components are in Section 4 -the r-f and converter circuits.

Figure 6. Top View, Showing Trimmer Locations

Figure 8. Drive-Cord Installation Details

REPLACEMENT PARTS LIST

NOTE: An asterisk (*) indicates a general replacement item. The part numbers of these items may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values given in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION I-POWER SUPPLY

Reference Symb	ymbol Description	Service Part No
C100 C	Condenser, line filter, 04 mf .	45-3500-2*
C101 C	Condenser, electrolytic, 3 -section	30-2574*
C101A:	: Condenser, filter, 30 mf	.Part of C101
C101B: C	: Condenser, filter, 25 mf	Part of C101
C101C: C	: Condenser, filter, 20 mf .	Part of C101
1100 L	Lamp, pilot	34-2068
R100 R	Resistor, lealage, 150,000 ohms	. $66-4153340 \%$
R101 R	Resistor, filter, 220 ohnis	.66-1224340
R102 R	Resistor, filter, 1200 ohms	. .66-2124340
S100 S	Switch, power	. Part of R200

C200 Condenser, blocking, $01 \mathrm{mf} . .$. 61-0120**
C201 Condenser, by'pass, 330 mmf 62.133001001*

C203 Condenser, tone compensating, $02 \mathrm{mf} \ldots .61-0108^{*}$
LS200 Speaker . 36-1625-6
R200 Volume control, 5 megohm. 45-5007\%
R201 Resistor, plate load, 470,000 ohms. . . 66-4473340**
R202 Resistor, grid load, 3.3 megohms. . . . 66-5333340*
R203 Resistor, bias, 130 ohms 66-1123340*:
R204 Resistor, grid load, 470,000 ohms. . . . 66-4473340*
T200 Transformer, output Part of LS200
SECTION 3-I-F, DET., AND A-V-C

C300A	Condenser, fixed trimmer Part of Z300
C300B	Condenser, fixed trimmer Part of Z300
C301A	Condenser, fixed trimmer Part of Z301
C301B	Condenser, fixed trimmer Part of Z301
C301C	Condenser, by-pass Part of Z301
C301D	Condenser, by pass Part of Z301
C302	Condenser and choke assembly, i•f by-pass, 2 mf 30-4644
C303	Condenser, screen by pass, 05 mf61-0122*
C304	Condenser, a-v.c filter, . 05 mf 61-0122*
R300	Resistor, screen dropping, 27,000 ohms 66-3273340
R301	Resistor, i-f filter, 47,000 ohms. 66-3473340*
R302	Resistor, a vic filter, 2.2 megohms....66-5223340*
TC300A	Tuning core Part of $\mathbf{Z 3 0 0}$

Reference	Symbol	Description	Service Part No.
TC300B	Tuning core		Part of Z300
TC301A	Tuning core		Part of Z301
TC301B	Tuning core		Part of Z301
Z300	Transformer, TC300B	1st i•f, incl C300A, and	00A, 32-4 160-6
Z301	Transformer, TC301B and C30	2nd i.f, inc C301A, D	01A, 01C, 32.4240

SECTION 4-R-F AND CONVERTER

C400 Condenser, tuning, 2 -section 31-2727-1
C400A: Condenser, trimmer Part of C400

C400B: Condenser, trimmer Part of C400

C401	Condenser, coupling, 5 mmf 30-1224.5*
C402	Condenser, isolating, 47 mmf 30-1224-2*
LA400	Loop aerial 32-4052-24
R400	Resistor, aerial discharge, 150,000 ohms 66-4153340*
R401	Resistor, oscillator grid, 100,000 ohms .66-4103340*
T400	Transformer, oscillator 32-4263

MISCELLANEOUS

Description	Service Part No.
Baffle-and-cloth assembly	40.7525
Bracket, rear condenser mounting	. 56-5701FA3
Bracket, scale	. 56-5698FA3
Cabinet	. . 10717
Cord, drive (25-foot spool)	. 45-8750*
Cover, bottom	. 56-5706FA3
Cover, handle	. . 54-4596
Cover, volume control.	.56-5699FA3
Knob	. . 54-4609
Pilot-lamp-socket assembly	. 27-6233-12
Plate, guard	. . 54-7709
Pointer	56-4362-4FCP
Rail, pointer	. 56-5697FCP
Rubber mount	. . 27-4771-1
Scale-and-backplate assembly	. . 76-4167
Shaft assembly, drive	. . . 78-4075
Socket, tube 27-6177
Spring	. . . 56-2617
Stud, baffle	W2235-1FA9

Circuit Description

Philco Model 49-602 is a portable four-tube superheterodyne providing reception on the standard-broadcast band. A high-impedance loop within the cabinet normally provides adequate signal pickup. However, provisions have been made for connecting an external aerial, if required.

The aerial circuit works directly into a 1R5 converter, where the incoming signal is converted to the $455-\mathrm{kc}$. intermediate frequency. A 1 T 4 is used in a single high-gain stage of i-f amplification, which employs neutralization to suppress oscillation. A $1.5-\mathrm{mmf}$. condenser, C304, feeds part of the i-f voltage, of the proper phase, back to the 1T4 grid through the tube-socket capacitance.

A 1U5 diode-pentode is used in the detector, a-v-c, and first audio circuits. The pentode section is resist-ance-coupled to a 3V4 pentode output amplifier, which works into a p -m speaker.

The d-c operating voltages are obtained from either a battery pack, Philco type P-361, or from a 105-120 volt, a-c or d-c power line. For power-line operation, the plate, screen, and filament voltages are provided b_{j} a power supply using a selenium rectifier, CR100.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire chart.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect both the top and the bottom of the chassis Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Check the total filament resistance, with the power switch turned on, the battery plug disconnected from the battery, and the change-over switch in the battery position (power-cord plug inserted in receptacle on rear of chassis). If the resistance between the $A+$ and A-pins on the battery plug is higher than 100 ohms, one of the tube filaments is probably open.

NOTE: If the 3V4 filament is open, check condenser C202 before replacing the tube.
3. Measure the resistance between $B+$ (output of selenium rectifier), test point D, and $E-$, test point B. See figure 1. When the ohmmeter leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 2000 ohms, check condensers C101A and C101B for leakage or shorts.

The resistance value above, which is much lower than normal, does not represent a quality check of these condensers; it is the lowest value which will permit the rectifier to operate safely while the voltage checks of Section 1 (power supply) are performed.

Section 1-Power Supply

Make the tests for this section wi h a d-c voltmeter. Connect the negative lead to B -, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Set the volume control to minimum.
The battery pack should be replaced when the " A " voltage drops below 5 volts, or the " B " voltage drops below 60 volts.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
$\begin{aligned} & 1(\alpha) \\ & 1(b) \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathbf{C} \end{aligned}$	$\begin{aligned} & 7.5 \mathrm{v} \\ & 90 \mathrm{v} \end{aligned}$		Trouble in this section. Isolate by the following tests.
2	D	125v	Low voltage No voltage	Defective: CR100. Open C101A. Defective: CR100. Open: S100, S101.
3	E	120v	Low voltage No voltage	Changed resistance: RlCO. Leaky: Cl01A. Open: R100. Shorted: C101A.
4	F	$65 v$	Low voltage No voltage	Changed resistance: RIO1A. Leaky: Clo1B. Open: R101A. Shorted: C101B.
5	A	7.5v	Low voltage High voltage No voltage	Changed resistance: R101B. Open: One or more filaments, R205*. Open: R101B. S101.
6	C	90v	Low voltage High voltage No voltage	Changed resisiance: R102. Leaky: Clo1C. Open: R205*, T200*, S100. Open: R102. Slo1. Shorted: ClolC.
Listening Test: Abnormal hum may be caused by open C1018, Cl01C, or C202*.				

*This part, located in another section, may cause abnormal indication in this section.

Section 2--Audio Circuits

For the tests in this section, use an zudio-frequency signal generator. Conaect the generator ground lead to B -, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

TROUBLE SHOOTING

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker ou!put with moderate generator input.	Trouble in this section. Isolate b_{7} the following tests.
2	C	Clear speaker outpul with strong generator inpu!.	Defective: 3V4. LS200. Open: R204, T200. Shorted: C203. C204, C205, T200.
3	A	Same as step 1.	Defective: IU5, R200 (rotate). Open: C200, R201, R202, R203, C203. Shorted: C201, C301C*.
Listening Test: Distortion may be caused by leaky or shorted C203, or by changed resistance of R202. Distortion or strong signals may be caused by leaky or shoried C200.			

${ }^{-}$This part, located in another section, may cause abnormal indien in this section.

Section 3-I-F, Detector, And A-V-C Circuits

TROUBLE SHOOTING
For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.
Set the radio volume control to maximun.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

To provide a complete i-f amplifier check, test point A for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear output with moderate input.	Deiective: 1T4, IU5 (diode section). Misaligned: Z301. Open: R300, C303. L301A, R301, L301B, C301A. Shorted: C300B, C303, L301A, L301B, C301A. C301B.
3	A	Same as step 1.	Defective: 1R5*. Misaligned: Z300. Open: C300A, L300A, L300B, C300B, T400*. Shorted: C400A', C400B* C300A. L300A, L300B, C300B.

*This part, localed in another section, may cause abnormal indication in this section.

Section 4-R-F And Converter Circuits

TROUBLE SHOOTING

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum. Set the tuning control and signalgenerator frequency as indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1, further tests should be unnecessary; if not, isolate and correct the
 trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIGNAL GEN. FREQUENCY	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc.	Tune to signal.	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C to D Osc. test; see note below.)		Rotate through range.	Negative 5 to 10 volts.	Defective: 1R5. Open: R402, T400. Shorted: C402, C400C, C400D.
3	A	1000 kc.	Tune to signal.	Same as step 1.	Open: C401. C403, R401, R403. LA400.

ALIGNMENT PROCEDURE

DIAL-Calibration and pointer-index measurements are shown in figure 7 . With tuning condenser fully meshed, set pointer to index mark.
RADIO CONTROLS-Set volume control to maximum.
OUTPUT METER-Connect across voice-coil terminals. SIGNAL GENERATOR-Use modulated output.

OUTPU'T LEVEL-During alignment, adjust signal-generator output to maintain output-meter indication below .5 volt.
SPECIAI NOTE-The orientation of the loop with respect to the chassis is critical for correct tracking. During alignment, with the cabinet back (containing the loop) laid down on the bench, the chassis should be laid on its back, in approximately its normal relation to the loop.

STEP	SIGNAL GENERATOR		RADIO	
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	SPECIAL INSTRUCTIONS
1	Ground lead to B- (test point B in figure 4). Positive lead through $.05-\mathrm{mf}$. condenser to external-aerial lead. Make sure that radio loop aerial is connected to radio.	455 kc .	Tuning condenser fully meshed.	Adjust, in order given, for maximum output.
2	Radiating loop isee note below).	1600 kc .	1600 kc .	Adjust for maximum output.
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum output while rocking tuning condenser.

ADIATING LOOP: Make up α 6-8-turn 6-inch-diameter loop, using insulated wire; connect to signal-generator leads and place near radio loop aerial. Make sure that radio loop aerial is connected to radio.

CALIBRATING

DIAL BACKPLATE

When the radio chassis has been removed from the cabinet, dial calibration and alignment points may be marked on the dial (chassis) backplate at the end of the pointer with a pencil.
The method of measuring for these points is illustrated in figure 7 . The method of measuring for these points is illustrated in figure 7 .
With the tuning gang fulty meshed, the pointer should be adjusted on the dial-drive cord
to wincide with the index mark.

rigure 6. Top View. Showing Trimmer Locotion

REPLACEMENT PARTS LIST

SECTION 1			SECTION 3 (Continued)
Reference Symbol	$\begin{array}{ll}\text { Description } & \text { Seřvice } \\ \text { Part }\end{array}$	Reference Symbol	Description $\begin{aligned} & \text { Service } \\ & \text { Yart No. }\end{aligned}$
C100	Condenser, line filter, . 047 mf . .-. $61-0122^{*}$	C305	Condenser, i-f by-pass, . 1 m30-4527
Cl01	Condenser, electrolytic, 4-section30-2568-21	L300A	Transformer primcry, lst i-f Part of Z300
C101A		L300B	Transformer secondary, lst i-fPart of Z300
C101B	Condenser, filter, 20 mf ., 150v Part of Cl01	L301A	Transformer primary, 2nd i-f Part of Z301
Cl01C	Condenser, filter, $30 \mathrm{ml} ., 150 \mathrm{v}$.................Part of Cl01	L301B	Transformer secondary, 2nd i-tPart of Z301
CR100	Rectifier, selenium ...34-8003-1	R300	Resistor, screen dropping, 10,000 ohms66-3103340*
PLI00	Battery-cable-and-plug assembly41-3712-3	R301	Resistor, filter, 47,000 ohms (Part of Z3J1) 66-3473340*
R100	Resistor, current limiting, 00 ohms, 1 watt....33-1334	R302	Resistor, a-v-c filtir, 2.2 megohms66-5223340*
R101	Resistor, 2-section ...33-3431-5	Z300	Transiormer, 1st i-f ..32-4160-4
R101A	Resistor, filament-dropping, 1125 ohms, 3 watts \qquad Part of R101	Z301	'Transformer, 2nd i-f32-3987-2*
R101B	Resistor, filament-dropping, 1125 ohms, 3 watts \qquad		SECTION 4 R-F AND CONVERTER CIRCUITS
R102	Resistor, filter, 2200 ohms66-2223340*	C400	Condenser, tuning gang31-2727-2
R103	Resistor, leakage 150,000 ohms66-4153340*	C400A	Condenser, tuning, aerial sectionPart of C400
S100	Switch, on-off ..art of 33-5538-28	C400B	Condenser, trimmer, aerialPart of C400
S101	Switch, change-over ..42-1821	C400C	Condenser, tuning, oscillator sectionPart of C400
W100	Line-cord-and-plug assembly ...-	C400D	Condenser, trimmer, oscillatorPart of C400
		C401	Condenser, isolating, 5 mmf30-1224-5*
	SECTIO	C402	Condenser, neutralizing, 1.5 mmf30-1221-3
	AUDIO CIRCUITS	C403	Condenser, d-c blocking, 100 mmf60-10105407*
C200	Condenser, d-c blocking, 01 mf61-0120*	LA400	Loop derial0.0.................................32-4274
C201	Condenser, screen by-pass, 05 mf61-0122*	R400	Resistor, leakage, 150,000 ohms 66.4153340^{*}
C202	Condenser, filter, 30 mf .25 v Part of\|30-2568-21	R401	Resistor, grid return, 3.3 megohms66-5333340 Resistor oscillator bias, 100000 ohms 66.4103340°
C203	Condenser, d.c blocking, , 004 mf61-0179*		Resistor, oscillator bias, 100,000 ohms66-4103340
C204	Condenser, r-f by-pass, 220 mmi . .-. 62-122001001*	R403	Resistor, u-v-c divider, 1 megohm66-5103340
C205	Condenser, tone compensation, 004 mf61-0179*	0	Transformer, oscillator ..32-4262
C206	Condenser, by-paiss, . 25 mf61-0125*		MISCELLANEOUS
LS200	Loud-speaker, p-m ...-36-1627-1		e
R200	Volume control. 1 megohm33-5538-28	Description	No.
R201	Resistor, grid return, 4.7 megohms- $66-5473340^{\circ}$	Cabinet and	Cabinet Pcrts
R202	Resistor, screen dropping, 10 megohms66-6103340*	Cabinet	(M), maroon .. 10703
R203	Resistor, plate load, 1.2 megohms66-5123340*	Cabinet	
R204	Resistor, grid return, 470,000 ohms66-4473340**	Cabinet	(I) , ivory ...10703B
R205	Resistor, bias, 680 ohms66-1683340*	Cabinet	
R206	Resistor, diode return, 470 ohms66-1473340*	Handle	76-3742
R207	Resistor, diode return, 270 ohms66-1273340*	Lever assemb	bly, switch ..76-3666
T200	Transformer, outputPart of LS200	Terminal, ae Dial-Scale Ha	rial strip \qquad 76-3674 ardware
	SECTION 3	Dial-bac	
	I-F, DETECTOR, AND A-V-C CIRCUITS	Drive co	ord, 25 -foot spool ...45-8750*
C300A	Condenser, shunt ...Part of $\mathbf{Z 3 0 0}$	Pointer	4362-2FCP
C300B		Spring.	drive-cord ...-
C301A		Knob (M)	54-4557
C301B	Condenser, filter .. ${ }^{\text {Part }}$ of 301	Knob (T)	54-4557-1
C301C	Condenser, filter Part of 2301	Knob (I)	54-4557.2
C302	Condenser, a-v-c filter, . 047 mf61-0122	Knob (G)	
C303	Condenser, screen by-pass, . 1 mf61-0113*	Socket, tube,	
C304	Condenser, neutralizing, 1.5 mmf30-1221-3	Spring, volta	ree change-over switch......28-9010FAl-Part of 76-3668

Circuit Description

Philco Model 49-605 is a six-tube, portable, superheterodyne radio, operating on a self-contained battery or a standard power source of a.c. or d.c. High sensitivity, selectivity; and power output are outstanding features. The frequency range is $540-1600 \mathrm{kc}$. The built-in loop aerial is adequate in most.localities. Where signal strength is low, an external aerial may be used.

The tuned r-f stage, using a 1 T 4 , provides a high signal-to-noise ratio. The converter employs a type 1R5 pentagrid converter.

The i-f stage, using another 1 T 4 , has double-tuned transformers operating at 265 kc .; the voltage gain of this stage is increased considerably by positive screen feedback taken from the tertiary winding of the second i-f transformer.

The diode section of the 1 U 5 provides detection and a-v-c voltage. The pentode section functions as the first audio stage; this stage is resistance-coupled to the 3LF4 output amplifier. The speaker is a permanentmagnet dynamic type.

For a-c or d-c power-line operation, plate, screen, and filament power is supplied through the 117 Z 3 rectifier.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trbuble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Check the total filament resistance by measuring between the $A+$ and A - pins on the battery-cable plug (disconnected from battery) while holding down the change-over switch, S100. If the resistance is higher than 100 ohms, one of the tube filaments is probably open.
3. With the change-over switch in the a.c./d.c. position, measure the resistance between $B+$ (pin 6 of the 117 Z 3 rectifier) and $B-$, test point B. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1100 ohms, check condensers $\mathrm{C} 100 \mathrm{~A}, \mathrm{C} 100 \mathrm{~B}$, and C 100 C for leakage or shorts.

The resistance value above, which is much lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 (power supply) are performed.

Section 1

POWER SUPPLY

TROUBLE SHOOTING

For the tests in this section, use a d-c volt meter. Connect the negative lead to B -, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-pervolt meter, at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

FIGURE 1. BOTTOM VIEW, SHOWING SECTION I TEST POINTS

STEP	TEST POINT	NORMAL nNDICATION	ABNORMAL INDICATION	possible cause of abnormal indication
1	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \hline \end{aligned}$	80 volts 8.5 volts		Trouble in this section. Isolate by the following tests.
2	D	105 volts	High voltage. Low voltage. No voltage.	Open: R100A. R100B, R100C. R101. T200'. Dofective: S100. S101. Deloctive: 11723. Leaky: C100A. Leaky or shorted: C100B, C100C, C100D. Defective: 117Z3, S100, S101, W100.
3	E	99 volts	Low voltage. No voltage.	Defective: RIOOR. Leaky: C100R. Shorted: Cl00B, C100C, Cl00D. Open: R100R. Shorted: C100R.
4	F	55 volts	Low voltage. No voltage.	Defective: R100B. Shorted: C100C, C100D. Leaky: C100B. Open: R100B. Shorted: Cl00B.
5	A	80 volts	Low voltage. No voltage.	Defective: R101. Leaky: C100C. Open: R101. Shorted: C100C.
6	c	8.5 volts	High voltage. Low voltage. No voltage.	Defoctive: Any tube. R207., S100, S101. Leaky: C100D. Detective: R100C. Open: R100C. Shorted: C100D.

Listening Test: Distortion or abnormal hum may be caused by open C100B, C100C, or C100D.

- This part. located in another section, may cause abnormal tndication in this section.

BATIERY VOLTAGE: Replace battery when (with radio turned on) " B " voltage falls below 60 volts, or " R " vollage falla below
7.2 volts.

Section 2 TROUBLE SHOOTING

audio

For the tests in this section, use an audiofrequency signal generator. Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum. Adjust the signal-generator output as required for each step.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

FIGURE 2. BOTTOM VIEW, SHOWING SECTION 2 TEST POINTS

STEP	TEST POWNT	NORMRL INDICATION	POSSIBLE CAUSE OF RBNORMAL INDICATION
1	A	Loud, clecr aignal with weak signal input.	Trouble to this section. leolate by the following tests.
2	C	Clear, signal with strong signal input.	Defective: 3LF4, LS200. Open: T200, R207, R206. Shorted: C203. C204.
3	D	Loud, clocr aignal with weak signal input.	Defective: IU5. Open: C202, C201, R205, R204. R203. Shorted or leaky: C202. C201.
4	A	Loud. clecr signal with weak signal input.	Defective: R200. Open: C200. R201, R202.
Listening Iest: Distortion on strong stgnals may be corued by aborted or leakr C200,			

Section 3 TROUBLE SHOOTING

I-F, DETECTOR, AND A-V-C

For the tests in this section, use an r-f signal generator, with modulated output, set at 265 kc . Connect the generator ground lead to B_{-}, test point B; connect the output lead through a . $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.
-If the "NORMAL INDICATION" is obtained in the first step, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

Since the circuit location of test point A for this section is the same as that of test point C for Section 4, the effectiveness of step 1 as a

TP-6431
FIGURE 3. BOTTOM VIEW, SHOWING SECTION 3 TEST POINTS master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	Clear signal with strong signal input.	Defective: 1T4. Misaligned: Z301. Open: R300, C302, Z301. Shorted or leaky: C302. Shorted: Z301.
3	A	Loud, clear signal with weak signal input.	Defective: 1R5*. Misaligned: Z300. Shorted: C406*, Z300. Open: Z300.
- This part, located in another section, may cause abnormal indication in this section.			

Section 4

TROUBLE SHOOTING

R-F AND CONVERTER

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.
Set the radio and signal-generator dials as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1, isolate the trouble by following the remaining steps.

FIGURE 4. BOTTOM VIEW, SHOWING SECTION 4 TEST POINTS (Location of T400 shown in figure 6.)

STEP	TEST POINT	DIAL SETTINGS		NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
		SIG. GEN.	RADIO		
1	A	1000 kc .	1000 kc .	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	1000 kc .	1000 kc .	Clear signal with strong signal input.	Defective: 1R5. Open: C405, C406. Trouble in oscillator circuit.
3	$\begin{gathered} \mathrm{B} \text { to } \mathrm{D} \\ \text { (Osc. test: } \\ \text { see note below.) } \end{gathered}$		Rotate tuning control.	Negative 4 to 8 volts.	Defective: 1R5 (osc. section). Open: R402, T400. Shorted: C408, C409, C404, C400, C400C. T400.
4	A	1000 kc .	1000 kc.	Loud, clear signal with weak signal input.	Defective: 1T4. Shorted: C400, C400A, C400B. T400, Z400, C401, C402, C403. Open: R400, R401, T400, Z400.

figure 5. philco radio model 49.605, sectionalized schematic diagram, showing test points

OJohn F. Rider

PHILCO CORP.

ALIGNMENT PROCEDURE

THE ALIGNMENT ShoULd be MAde With the radio installed in the Cabinet and the loop connected

DIAL-Turn tuning condensers to full-mesh position. DIAL-Turn tuning condensers to full-mesh position.
Set dial pointer to coincide with index mark at low-freSet dial pointer to coincide with index end of dial (see figure 7).
quency

RADIATING LOOP: Make up a six-to-eight-turn, 6 -inch diameter loop, using insulated wire; connect to signal-generator leads and place near radio loop.

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts
are located. The prefix letter of the symbol designates the type of part, as follows:

C-condenser	LA-loop aerial	S-switch I-pilot lamp L-choke or coil
LS-loud.speaker	T-transformer	
R-resistor	Z-electrical assembly	

The number of the symbol designates the section in which the part is located, as follows: 100 -series component are in Section 1-The power supply
200 series components are in Section 2 -the adio sires
200-series components are in Section 2-the audio circuits
300-series components are in Section 3-he i.f amplifier, detector, and a-v-c circuits
400 series components are in Section 4-the $\mathrm{r}-\mathrm{f}$ and converter circuits

$\longrightarrow 13 / 4^{\circ} \longrightarrow$
figure 7. dial-backplate calibration measurements
FIGURE 6. TOP VIEW, SHOWING TRIMMER LOCATIONS

© John F. Rider

REPLACEMENT PARTS LIST

NOTE: An asterisk ($\left(^{\circ}\right.$) indicates a general replacement item. The part numbers of these items may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values given in the schematic diagram and parts list. The valuels substituted in any case are so chosen that the operation of the radio will be elther unchanged or improved. When ordering replacements, use only the "Service Part No."

Section 1—Power Supply

For the tests in this section, use a d-c voltmeter. Connect the negative lead to $B-$, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

TROUBLE SHOOTING

Figure 1. Bottom View, Showing Section 1 Test Points

STEP	test point	NORMAL indication	ABnormal INDICATION	POSSIBLE CAUSE OF ABNORMAL Indication
1	A	90 volts		Trouble in this section. Isolate by the following tests.
2	C	105 volts	No voltage Low voltage High voltage	Defective: 35Y4. Shorted: C100, C101A. Open: S100, W100. Defective: 35Y4. Leaky: C101A. Shorted: Cl01B. Open: Cl01A. Open: R100.
3	D	115 volts	No voltage Low voltage High voltage	Shorted: C101B. Open: C101A. Leaky: C101B. Shorted: C101C. C203*. Open: R101.
4	A	90 volts	No voltage Low voltage	Shorted: C101C. Open: R101. Leaky: C101C. Shorted: C203*, C306*, C408*.

Listening Test: Abnormal hum may be caused by open C101A. C101B, or C101C.
*This part, located in another section, may cause abnormal indication in this section.

Section 2—Audio Circuits

TROUBLE SHOOTING
For the tests in this section, use an audiofrequency signal generator. Connect the generator ground lead to $B-$, test point B ; connect the output lead through a . 1 -mf. condenser to the test points indicated in the chart.

Set the volume control to maximum.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

Figure 2. Bottom View, Showing Section 2 Test Points ${ }^{\text {TP- }}$

POSSIBLE CAUSE OF ABNORMAL indicATION
Trouble in this section. Isolate by the following tests.
Defective: 35A5, LS200. Shorted: C202, C203. Open: T200, R204, R203.
Defective: 14B6. Shorted: C201. Open: C201, R201, R202.
Shorted: C200. C301D*. Open: C200. R200.

Listening Test: Distortion may be caused by shorted or leaky C200, C201.
${ }^{*}$ This part, located in another section. may cause abnormal indication in this section.

Section 3-I-F; Detector, and A-V-C Circuits

TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 45 kc . Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

To provide a complete i-f-amplifier check, test point A for this section is

Figure 3. Bottom View, Showing Section 3 Test Points placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL Indication
1	A	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 12AU6. Shorted: C306, Z301, C305. Open: R303, R304, R305, R306, Z301. Misaligned: 2301.
3	D	Loud, clear output with moderate input.	Defective: 12BA6. Shorted: C304. Open: C305, R301, R302.
4	A	Loud, clear output with weak input.	Defective: 14AF7. Shorted: C408*, Z300. Open: R401*, R404*, Z300. Miscligned: Z300.

*This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F and Converter Circuits
 TROUBLE SHOOTING

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator, with modulated vutput. Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.
Set the volume control to maximum. Set the tuning control and the signalgenerator frequency as indicated in the chart.
If the "NORMAL INDICATION" is not obtained in step 1, isolate and correct the trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

Figure 4. Bottom View, Showing Section 4 Test Points

STEP	TEST POINT	SIG. GEN. FREQ.	RADIO TUNING
1	A	$1000 \mathrm{kc}$.	1000 kc.
2	C	1000 kc.	1000 kc.
3	(Osc. Test see note on p. 4.)		
4	A	1000 kc.	$1000 \mathrm{kc}$.

NORMAL INDICATION
Loud, clear speaker output with weak generator input.
Loud, clear output with weak input.
-1.57 to -2 v
Loud, Clear output with weak input.

possible cause of abnormal indication
Trouble in this section. Isolate by the following tests.
Defective: 14AF7. Shorted: C406, C407, C408. Open: R401, R403, R404.
Defective: 14AF7. Shorted: C400, C400B, C402, C404, C405, L400. Open: C402, C404, R400, R402, 1400.
Shorted: C400, C400A. Open: LA400.

REPLACEMENT PARTS LIST

Part numbers identified by an asterisk (") are general replacement items. These numbers may not be identical with those on factory parts: also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION 1

POWER SUPPLY		
Reference	Symbol Deseription	Service Part No.
Cl00	Condenser, line by-pass, . 04 mf .	45-3500-2*
Cl01	Condenser, electrolytic, 3-section	30-2575-27
C101A	Condenser, filter, 40 mf ., 150 v	Part of $\mathbf{C l} 01$
C101B	Condenser, filter, 30 mf ., 150v	Part of Cl01
Cloic	C Condenser, filter, $30 \mathrm{mf}, 150 \mathrm{v}$	Part of Cl01
1100	Pilot lamp	34-2068*
R100	Resistor, filter, 220 ohms	66-1225340*
R101	Resistor, filter, 1200 ohms	66-2124340*
R102	Resistor, isolating, 150,000 ohms	. $66.4153340 *$
S100	Switch, power on-off	Part of 45-5019 \dagger
W100	Line cord and plug assembly	L2183*

SECTION 2
AUDIO CIRUITS

Reforence	Symbol Deseription	Service Part No.
C200	Condenser, d-c blocking, 01 mf .	61-0120*
C201	Condenser, d-c blocking, 01 mf .	61-0120*
C202	Condenser, parasitic suppressor, 220 mmf .	$62-122001001^{*}$
C203	Condenser, tone compensation, 02	2 mf . . 61-0108*
LS200	Loud-speaker, p-m	36-1625
R200	Volume control (with on-off switch) 500,000 ohms	45-5019*
R201	Resistor, grid return, 3.3 megohms	s : . 66-5333340*
R202	Resistor, plate load, 470,000 ohms	66-4473340*
R203	Resistor, grid return, 470,000 ohms	66-4473340*
R204	Resistor, cathode bias, 130 ohms	66-1133340*
T200	Transformer, output	32-8310-3

SECTION 3

I-F, DETECTOR, AND A-V-C CIRCUITS

Reference Symbol Description Service Part No.
C300A Condenser, fixed, lst i-f primary Part of Z300

C300B Condenser, fixed, lst i-f secondary . Part of Z300
C301A Condenser, fixed, 2nd i-f primary . Part of 2301
C301B Condenser, fixed, 2nd i-f secondary Part of Z301
C301C Condenser, i-f filter Part of Z301
C301D Condenser, i-f filter Part of Z901
C302 Condenser, i-f by-pass (inductively wound).
. 1 ml . 30-4644-1
C303 Condenser, cathode by-pass, 001 ml . . 45-3500-5*
C304 Condenser, screen by-pass, 05 mf61-0122*
C305 Condenser, d-c plocking, 220 mmf 62-122001001*
C306 Condenser, screen by-pass, 05 mf61-0122*
R300 Resistor, cathode bias, 220 ohms66-1223340*
R301 Resistor, screen dropping,
47,000 ohms
66-3473340*
R302 Resistor, plate load, 15,000 ohms66-3153340**

R303 Resistor, grid return, 150,000 ohms 66-4153340*
R304 Resistor, cathode bias, 120 ohms66-1123340*
R305 Resistor, decoupling, 1000 ohms 66-2103340*
R306 Resistor, i-f filter, 47,000 ohms 66-3473340*
R307 Resistor, a-v-c filter, 1 megohm 66-5103340*
TC300A Tuning core, lst i-f primary Part of Z300
TC300B Tuning core, lei i-i secondary Part of Z300 t45-5019 Volume control with a-c switch.

SECTION 3 (Cont.)

Reference	R-F AND CONYERTER CIRCUITS
C400	Condenser, tuning gang, 2-section31-2727-1
C400A	Condenser, trimmer, aerial section Part of C400
C400B	Condenser, trimmer, osc. section . . .Part of C400
C401	Condenser, isolating, $0015 \mathrm{mf}$. 45-3500-6*
C402	Condenser, isolating, . 05 mf61-0122*
C403	Condenser, blocking, 220 mmf 62-122001001*
C404	Condenser, d-c blocking, 220 mmf . . 62-122001001*
C405	Condenser, osc. grid, 220 mmf 62-122001001*
C406	Condenser, cathode by-pass, . 05 mf61-0122*
C407	Condenser, $a \cdot v-c$ filter, 1 mf61-0113*
C408	Condenser, plate decoupling, 01 mf . . . 61-0120*
LA400	Loop aerial 32-4052-25
L400	Coil, osc. 45-7502*
R400	Resistor, grid return, 47,000 ohms66-3473340*
R401	Resistor, cathode bias, 2200 ohms66-2223340*
R402	Resistor, plate load, 10,000 ohms 66-3103340*
R403	Resistor, grid return, 2.2 megohms . . 66-5223340*
R404 Description	Resistor, decoupling, 2200 ohms66-2223340*

Cabinet and Cabinet Parts

Baffle-and-cloth assembly	40-7546
Baffle-assembly fastener (4)	IW56920FE7
Cabinet	10693A
Cabinet back	54-7492-1
Grille	54-4600
Grille fastener (7)	1W56913FE7
Stud, back mtg. (4)	W2235FA9
Window	54-4608
Window fastener (5)	56-6161FE7

Dial-Scale Hardware
Cord, drive (25-ft. spool) .31-2695-33

Drive-cord spring . 56-2617
Pointer . 54-4617
Scale . 54-5018
Tuning shaft 56-5688FA11
Tuning-shaft bushing 27-9437
Knob (2) . 54-4527-8
Pilot-lamp assembly . 76-1280
Speaker bracket 56-5690FA3
Socket, miniature (2) 27-6203
Socket, octal (4) 27-6138
Preliminary Checks
To avoid possible damage to the radio, the following preliminary checks should be made before it is turned on:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance between B+ (pin 7 of 35Y4 rectifier tube) and the $B-$ bus, test point B. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1500 ohms, check condensers C101A, C101B, C101C, and C203 for leakage or shorts. The resistance value given is much lower than normal, and is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (nower sudoly) are performed.

POWER CONSUMPTION 30 watts
AERIAL . . . Built-in loop; also connector for external aerial
INTERMEDIATE FREQUENCY 455 kc.
PHILCO TUBES (6) 14AF7, 12BA6, 12AU6, 14B6, 35A5, 35 Y4

Figure 5. Philco Radio Model 49-902, Sectionalized Schematic Diagram, Showing Test Points

OSCILLATOR TEST

Connect the positive lead of a high-resistance voltmeter to B test point B; connect the prod end of the negative lead through
a $100,000-$ ohm isolating resistor to the oscillator grid (pin a 14 AF 7), test-point D. Use a suitable meter range, such as $(1-10)$
volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (measure with 20,000 -ohms-per-volt meter) throughout the tuning range

ALIGNMENT PROCEDURE

NOTE: The loop should be connected to the radio during alignment.

RADIO CONTROLS-Set volume control to maximum Set tuning control as indicated in chart.

SIGNAL GENERATOR-Use modulated output. Con nect leads and set frequency as indicated in chart.

OUTPUT METER-Connect across speaker voice-coil terminals (figure 6).

OUTPUT LEVEL-During alignment, adjust signalgenerator output to hold output-meter reading below
NO

$$
\begin{aligned}
& \text { ND TC } \\
& \text { ONO }
\end{aligned}
$$

STEP	CONNECTION TO RADIO	DIAL SETTING
1	Ground lead to B-: output lead through I-m. condenser to external aerial ter- minal.	455 kc.
2	Radiating loop. (See note below.)	1600 kc.
3	Radiating loop. (See note below.)	1500 kc.

RADIATING LOOP: Make up a 6-to-8 turn, 6 -inch-diameter loop, using insulated wire; connect to signa generator leads and place near radio loop.

Circuit Description

Philco Model 49-902 is a 6 -tube table-model super heterodyne radio, providing reception in the standard broadcast band.

The loop aerial normally provides adequate signal pickup. If greater pickup is required, an external aerial may be connected.
The loop works into a $14 \mathrm{AF7}$ converter. Condenser tuning is used. The two i-f stages employ two pentode tubes, a 12BA6 and a 12AUG. To obtain stability, resistance coupling is employed between the first and second i-f tubes. One diode (pin 5) of the 14 B 6 provides
detection and a-v-c-voltage. The triode section of this tube functions as the first audio amplifier, and is resis-tance-coupled to the 35A5 output tube. The speaker is ${ }^{\text {a }}$ permanent-magnet dynamic. The power supply employs a 35 Y 4 rectfier, working into a resistance-capacitance filter system.
The 150,000 -ohm resistor, R102, connected between B- and chassis, prevents hum which might otherwise occur under conditions of high humidity
The i-f by-pass condenser, C302, is a specially designed, inductively wound condenser, which is seriesresonant at the intermediate frequency, 455 kc ., thereby functioning as a by-pass of exceptionally low impedance
at this frequency. at this frequency.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simping the locations
and a bottom view of the chassis showing of the test points and the components of that section. In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION in any given step indicates trouble within the circuit under test.
After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Figure 6. Top View of Chassis, Showing Trimmer Locations

©John F. Rider

Circuit Description

Philco Model 49-904 is a six-tube, manually tuned superheterodyne radio, providing reception on the standard broadcast band, $540-1620 \mathrm{kc}$., and on the short-wave range between 5.8 mc . and 15.5 mc . A low-impedance loop within the cabinet normally provides adequate signal pickup. Where additional pickup is required, an external aerial may be used. Do not use a ground.

The converter, employing a type 14 AF 7 twin triode, provides high signal-to-noise ratio and high conversion efficiency. The oscillator section of the tuning-condenser gang is shaped for correct tracking on the short-wave band. An adjustable series tracking padder is used for tracking on the broadcast band.

The i-f circuit employs two tubes; a 12BA6 1 st i-f amplifice is resistance-coupled to a 12 AUG 2nd i-f amplifier. Both i-f transformers have permeability-tuned primary and secondary windings.
The diode section of the 14B6 provides detection and a-v-c voltage, the triode section functions as the first audio amplifier, which is resistance-coupled to the type 35A5 audio output tube. A tone control is connected across the plate circuit of the 14B6 triode section.

The d-c operating voltages are furnished by a 35 Y 4 halfwave rectifier, working into a resistance-capacitance filter system. A $150,000-$ ohm resistor is connected between the B- bus and the chassis, to prevent hum which might otherwise occur under conditions of high humidity.

C306 is a special condenser, inductively wound to act as a series-resonant circuit at the intermediate frequency (455 kc .). This condenser provides an exceptionally lowimpedance i-f by-pass between B- and the chassis.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for deter-
mining whether trouble exists in that section, without going through the entire test procedure.
Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.
After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before it is turned on:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance berween B+ (pin 7 of 35 Y 4 rectifier) and B-, test point B. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1500 ohms, check condensers C102, C101A, C101B, and C204 for leakage or shorts. The resistance value given is much lower than normal, and is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed.

SPECIFICATIONS

MODEL 49-904

Section 1—Power Supply

For the tests in this section, use a d-c voltmeter. Connect the negative lead to $\mathrm{B}-$, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a $20-000$ -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum. Set the tone control for minimum treble response (fully clockwise), and set the band switch to the broadcast position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits) ; if not, isolate and correct the trouble in this section.

PHILCO CORP.

TROUBLE SHOOTING

Figure 1. Bottom View, Showing Section 1 Test Points

STEP	test point	NORMAL NDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL indication
1	A	85 volts		Trouble in this section. Isolate by the following tests.
2	C	115 volts	No voltage	Defective: 35Y4. Open: W100, S100. Shorted: C102, C101A.
			Low voltage	Defective: 35Y4. Leaky: C102, C101A. Shorted: C101B, C101C, C204*. Open: C101A.
			High voltage	Open: R100, R101.
3	D	105 volts	No voltage	Open: R100. Shorted: C101B.
			Low voltage	Leaky: C101B, C101C. Shorted: C204*, C101C.
			High voltage	Open: R101, T200*, R205*.
4	A	85 volts	No voltage	Open: R101. Shorted: C101C.
			Low voltage	Leaky: C101C. Shorted: $\overline{\mathrm{C}} 310^{*}$.
Listening Test: Abnormal hum may be caused by open or leaky C100, C101A, C101B, C101C.				

* This part, lorated in another section, may cause abnormal indication in this section.

Section 2—Audio Circuits

For the tests in this section, use an audiofrequency signal generator. Connect the generator ground lead to B -, test point B ; connect the output lead through $2.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and set the tone control for maximum treble response (fully counterclockwise).

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits) ; if not, isolate and correct the trouble in this section.

STEP	test powt	NORMAL IndICATION	possible cause of abnormal indication
1	A	Loud, clear speaker output with moderate generator input.	Trouble in this section. Isolate by the following tests.
2	C	Clear output with strong input.	Defective: LS200, 35A5. Shorted: T200, C204, C201, C202, C205. Open: T200, R205, R204, C205. Leaky: C204, C201.
3	D	Same as step 1.	Defective: 14B6. Open: C201, R202, R203. Shorted: C203 (rotate tone control).
4	A	Same as step 1.	$\begin{aligned} & \text { Defective : R200 (rotate). Open: C200. } \\ & \text { Shorted: C } 301 D^{*} \text {. } \end{aligned}$

Listening Test: Distortion may be caused by shorted or leaky C200 or C201.

* This part, located in another section, may cause abnormal indication in this section.

Section 3-I-F, Detector, and A-v-c Circuits

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B -, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and set the tone control for maximum treble response (fully counterclockwise). Set the band switch to the broadcast position, and rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits) ; if not, isolate and correct the trouble in this section.

To provide a complete i-f-amplifier check,

Figure 3. Bottom View, Showing Section 3 Test Points test point A for this section is placed at the grid of the mixer in Section 4 ; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION.'

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 14B6, 12AU6. Open: R304, R305, R306, R307, Z301. Shorted: C309, C310, C301C, Z301. Misaligned: Z301.
3	D	Loud, clear output with moderate input.	Defective: 12BA6. Open: R301, R302, R303, C309, Z300. Shorted: C308, C309, Z300.
4	A	Loud, clear output with weak input.	```Defective: 14AF7. Open: R401*, R403*, R300, Z300. Shorted: C409*, C302, Z300. Misaligned: Z300.```

*This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F and Converter Circuits

For the tests in this section, with the exception of the oscillator test, use an r-f. signal generator with modulated output. Connect the generator ground lead to B-, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and set the tone control for maximum treble response (fully counterclockwise). Set the band switch, the tuning control, and the signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

TROUBLE SHOOTING

Figure 4. Bottom View, Showing Section 4 Test Points
BC CIRCUITS

STEP	TEST POINT	$\begin{aligned} & \text { SIG. } \\ & \text { GEN. } \\ & \text { FREQ. } \end{aligned}$	BAND SWITCH	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL Indication
1	A	1000 kc .	BC	1000 kc .	Loud, clear speaker output with weak generator input.	Trouble in BC circuits. Isolate by steps 2 and 3.
2	$\quad \mathrm{C}$ Osc. test; (see note on p. 5)		BC	Rotate through range.	-.8v to -1v	Defective: 14AF7. Open: C401A, C406, C407, R400, R402, T400, WS. Shorted: C406, C407, C401B, C400, T400, WS.
3	A	1000 kc .	BC	1000 kc .	Same as step 1.	Defective: 14AF7. Open: L400, LA400, WS, C405, R403, R401, C408. Shorted: C400A, C402, C400, L400, WS.

PHILCO CORP.

REPLACEMENT
 PARTS LIST

NOTE: Part numbers identified by an asterisk [*] are general replacement items. These numbers may not be identical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in ony case are so chosen that the operation of the radio will be either unchanged or improved. When order ing replacements, use only the "Service Part No.

© John F. Rider

ALIGNMENT PROCEDURE

DIAL-Calibration and pointer-index measurements are shown in figure 8 . With tuning condenser fully meshed, set pointer to index mark.

RADIO CONTROLS-Set volume control to maximum, and tone control fully counterclockwise (treble). Set band switch and tuning control as indicated in chart.

OUTPUT LEVEL-During alignment, adjust signal-generator output to hold output-meter indication below 1.25 volts.

OUTPUT METER-Connect to terminals indicated in figure 7.
SIGNAL GENERATOR-Connect as indicated in chart. Use modulated output.

radio		
BAND SWITCH SWITCH	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	special instructions
BC	540 kc .	Adjust, in order given, for maximum output.
BC	580 kc .	Adjust for maximum.
BC	1600 kc .	Adjust for maximum.
SW	15 mc .	Adjust for maximum on first peak from loose position. Inage should be heard with signal generator set at 14.1 mc
SW	15 mc .	Adjust for maximunı from tight position.
BC	1500 kc .	Adjust for maximum.
BC	580 kc .	Adjust for maximum while rocking tuning control.
		Repeat steps 3 and 7 until no further improvement is noted, then repeat step 3 .

then repeat step 3 .

RADIATING LOOP: Make up a 6 - 8 turn, 6 -inch-diameter loop from insulated wire; connect to signal-generator leads and
place near radio loop aerial. Make sure that loop aerial is connected to radio.

Figure 7. Calibration Measurements for Dial Backplate

Figure 8. Drive-Cord Installation Details
©John F. Rider

SPECIFICATIONS

CABINET RADIO Five-tube superheterodyne AUDIO OUTPUT 2 watts OPERATING VOLTAGES. . 105-120 volts, 60 cycles, a.c. POWER CONSUMPTION

Radio only 35 watts
Radio-phonograph 50 watts
Built-in loop; terminal also provided for external aerial
INTERMEDIATE FREQUENCY 455 kc .
PHILCO TUBES (5) 12BE6, 12BA6, 6AQ6, 35L6GT, 50Y7GT
PHONOGRAPH.
Philco Automatic Record Player Model M-9C (for service information see manual PR-1599)

Circuit Description

Philco Radio-Phonograph Model 49-1405 is a tablemodel 5-tube superheterodyne radio with a Model M-9C Automatic Record Changer. For service information on the record changer, refer to the Service Manual (PR-1599) for Model M-9C Automatic Record Changer.

Reception is provided on the standard broadcast band.
The built-in loop aerial normally provides adequate sig. nal pickup; however, a terminal is provided for an external aerial, if additional pickup is required.

The loop works directly into a 12BE6 converter; no series padder is required for the oscillator, as the tuningcondenser plates are shaped for tracking.

The i-f stage employs a 12 BA 6 , operating at 455 kc . Both transformers are permeability-tuned in both primary and secondary windings.

The diode section of a 6AQ6 provides detection and a-v-c voltage; the triode section is the 1st audio amplifier, and is resistance-coupled to a 35 L6GT beam-power output amplifier, which works into a PM speaker.

The d -c operating voltages are supplied by a voltage doubling circuit using a 50 Y 7 GT rectifier and a resistancecapacitance filter.

The 120,000 -ohm resistor, R103, is connected between B - and the chassis, to prevent hum due to condenser leakage under high-humidity conditions.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows

Section 1-the power supply
Section 2-the audio circuits
Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits
Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The troubleshooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire chart.

Failure to obtain the "NORMAL INDICATION" in ary given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance between $\mathrm{B}+$ (pin 4 of the 50Y6GT) and $\mathrm{B}-$, test point B . When the ohmmeter leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 2000 ohms, check condenser C102A for leakage or a short. This resistance value, which is much lower than normal, does not represent a quality check of this condenser; it is the lowest value which will permit the rectifier to operate safely while the voltage checks of Section 1 (power supply) are performed.

Section 1-Power Supply

For the tests in this section, use a d-c voltmeter. Connect the negative lead to B -, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-pervolt meter at a line voltage of 117 volts, a.c.

TROUBLE SHOOTING

Turn on the power, and set the volume control to minimum.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits) ; if not, isolate and correct the trouble in this section.

Figure 1. Bottom View, Showing Section 1 Test Points

TP-6465

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	120 volts		Trouble in this section. Isolate by the following tests.
2	C	212 volts	No voltage	Defective: 50Y7GT, I100. Shorted: C100, C101, C102A.
			Low voltage	Leaky: C100, C101, C102A.
			High voltage	Open: R100.
3	D	205 volts	No voltage	Defective: 50Y7CT. Shorted: C102B. Open: R100.
			Low voltage	Leaky: C102B.
			High voltage	Open: R101, R102, T200*.
4	A	120 volts	No voltage	Shorted: C102C. Open: R101 and R102 (in parallel).
			Low voltage	Leaky: C102C.

* This part, located in another section, may cause abnormal indication in this section.

Section 2—Audio Circuits

For the tests in this section, use an audio-frequency sig. nal generator. Connect the generator ground lead to \mathbf{B}-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

TROUBLE SHOOTING

Set the radio volume control to maximum, and the radiophono switch as indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits) ; if not, isolate and correct the trouble in

Figure 2. Bottom View, Showing Section 2 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	RADIO-PHONO SWITCH	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1 (a) 1 (b)	A	Radio Phono	Loud, clear speaker output with moderate generator input.	Trouble in this section. Isolate by the following tests.
2	C	Radio	Clear output with strong input.	Defective: LS200, 35L6GT. Shorted: T200, C203, C201, C204, C202. Open: T200, R204, R205, R203. Leaky: C203.
3	D	Radio	Loud, clear output with moderate input.	Defective: 6AQ6. Shorted: C200. Open: C201, R202, R201. Leaky: C201.
4	A	Radio	Loud, clear output with moderate input.	Open: R200 (rotate), C200, WS. Shorted: WS.
5	E	Phono	Same as step 4.	Open or shorted: WS.

Listening Test: Distortion may be caused by leaky C201. Distortion on strong signals may be caused by shorted or leaky C200.

- John F. Rider

Section 3-I-F, Detector, and A.V-C Circuits

TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum, and the radio-phono switch to the radio position. Rotate the tuning control until the tuning condenser is fully
 meshed.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits) ; if not, isolate and correct the trouble in this section.
To provide a complete i-f amplifier check, test point A for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE Of ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 12BA6, 6AQ6. Shorted: C300B, C301A, C301B, C301C, C301D, C303, C304, WS, L300B, L301A, L301B. Open: R302, R303, R304, R305, L300B, L301A, L301B, R301, C301A, C301B. Leaky: C303, C304. Misaligned: Z301.
3	A	Loud, clear output with weak input.	Defective: 12BE6*. Shorted: C400A*, C400B* C300A, L300A, L300B, C302. Open: L300A, R300, C300A, C300B. Misaligned: Z300.

* This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F and Converter Circuits

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to $\mathrm{B}-$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum, and the radiophono switch to the radio position. Set the tuning control and signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1, further tests should be unnecessary; if not, isolate and correct the trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

TP-6468
Figure 4. Bottom View, Showing Section 4 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIbLE CAUSE Of ABNORMAL INDICATION
1	A	1000 kc .	Tune to signal.	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the follow. ing tests.
2	$C-D$ Osc. Test (see note below).		Rotate through range.	Negative	Defective: 12BE6. Shorted: C400, C400B, C402, C401, L400A, L400B. Open: C402, L400A, L400B, R401, R402.
3	A	1000 kc .	Tune to signal.	Same as step 1.	Shorted: LA400, C400, C400A. Open: LA400, C404.

[^9]
MODEL 49-1405
 PHILCO CORP.
 REPLACEMENT PARTS LIST

NOTE: Part numbers Identified by an asterisk (*) Indicates a general replacement ltem. The part numbers of these ltems may not be Identical with those on factory parts; also, the electrical values of some replacement items may differ from the values given in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be elther unchanged or improved. When ordering replacements, use only the 'Service Part No.'

Figure 5. Philco Model 49-1405, Sectionalized S.hematic Diagram, Showing Test Points
OJohn F. Rider

ALIGNMENT PROCEDURE

DIAL-With tuning condenser fully meshed, set pointer RADIO CONTROLS-Set volume control to maximum, to index mark at low-frequency end of dial, beyond " 55 ". asd radio-phono switch to radio position. OUTPUT METER-Connect to terminals indicated in figure 6 .

RADIATING LOOP: Make up a $6-8$-turn, 6 -in-diameter loop, using insulated wire; connect to signal-generator leads and place

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part, as follows:

C-condenser	LS-loud-speaker	W—wire or cable
I-pilot lamp	R-resistor	WS-wafer switch
L-choke or coil	S--switch	Z-electrical assembly
LA-loop aerial	T-transformer	

The number of the symbol designates the section in which the part is located, as follows

100 -series components are in Section 1--the power supply
200 -series components are in Section 2-the audio circuits
300 -series components are in Section 3-the i-f, detector, and a-v-c circuits 400 -series components are in Section 4-the r-f and converter circuits

SIGNAL GENERATOR-Connect ground lead to Btest point B in figure 4 , and connect ourput lead as B cated in chart. Use modulated output.

OUTPUT LEVEL—During alignment, adjust signal-gener-
OUTPUT LEVEL—During alignment, adjust signal-gener ator output to hold output-meter indication below 1.25 volts. on underside of chassis.

Figure 6. Top View, Showing Trimmer Locations

PHILHARMONIC PAGE 19-1 PHILHARMONIC RADIO CORP.

TYPE: Twelve-tube FM-AM superheterodyne.
FREQUENCY RANGES: FM, 88-108 Mc.
AM, 540-1600 Kc.
INTERMEDIATE FREQUENCIES: FM, $10.7 \mathrm{Mc} . \mathrm{AM}, 456 \mathrm{Kc}$.

INSTALLATION.

ANTENNAS. - For AM operation, the loop antenna attached to the rear of the chassis is generally the most satisfactory. However, terminals marked A and G are provided on the loop for the connection of an external antenna and ground, which may be used if desired.

For the reception of local FM stations, a folded-dipole antenna is provided in the cabinet. If reception of other than strictly local FM stations is desired, a good external FM antenna should be installed and connected with a 300 -ohm balanced line to the input terminals on the rear of the chassis next to the phonograph input jack 124. The internal dipole must be disconnected when using the external antenna, and vice-versa.

POWER CONNECTIONS. - Connect the power cord to an alternating-current supply of 105125 volts, 60 cycles. Be sure that the phono-graph-motor cord is plugged into receptacle 121, the speaker plug 123 into receptaclel22, and the phonograph-pickup cord into phonograph jack 124.

CONTROLS. - The control knobs on the front panel perform the following functions. The numbers are from left to right.

1. Power switch and volume control.
2. Tone control. Clockwise rotation gives more high-frequency response.
3. Selector switch. Left position, AM radio; center, FM radio; right, phonograph.
4. Tuning control.

POWER SOURCE: $105-125$ volts, 60 cycles.

POWER CONSUMPTION:

Radio, 80 watts.
Radio and Phonograph, 102 watts.
OPERATION.
RADIO. - Start the set by turning the volume control clockwise about one-third of the way.

Set the selector switch on AM or FM as desired.

Turn the tuning control until the pointer indicates the frequency of the desired station. When the station comes in, slowly rotate the knob back and forth and determine the exact center position, where the background noise disappears or is sharply reduced, and the signal comes in clearly with the greatest volume. This is the correct tuning position, and careful adjustment is required, especially on FM, if the full rich-tone capability of the receiver is to be realized. A strong FM station may also be received, with considerable distortion, at positions slightly above and below the correct center position. This condition is quite normal.

Adjust the tone control for the most pleasing operation.

PHONOGRAPH. - Set the selector switch on the right-hand position. Operate the record changer in accordance with the accompanying instructions.

PHILHARMONIC PAGE 19-3

PAGE 19-4 PHILHARMONIC
MODEL 448 C

PHILHARMONIC RADIO CORP.

ALIGNMENT PROCEDURE

Read Carefully before Attempting Alignment

A-M ALIGNMENT

1. TUNING CAPACITOR fully meshed. Adjust dial pointer to reference dot at the low-frequency end of the scale.
2. VOLUME CONTROL maximum clockwise.
3. TONE CONTROL maximum clockwise.
4. SELECTOR SWITCH on AM (left-hand position).
5. SIGNAL GENERATOR. - Use standard A-M Signal Generator with approximately 30 per cent modulation at 400 cycles.
6. SIGNAL-GENERATOR COUPLING.-Low side grounded to chassis. High side connected through 0.01 mfd capacitor to coupling point.
7. LOOP COUPLING. - For loop coupling, use a Standard Signal Injection Loop according to specifications. If a standard loop is not available, make a loop with 5 or 6 turns of insulated wire, close-wound on a $3^{\prime \prime}$ to $4^{\prime \prime}$ diam form. Place the loop coaxially with and at least 10 inches back of the receiver loop. Connect to the signal generator through a resistor of from 100 to 400 ohms.
8. RECEIVER OUTPUT.
(A) Use a d-c electronic voltmeter similar to the Voltohmyst, low side to chassis, high side to AVC terminal of loop.
(B) Use a rectifier-type a-c voltmeter or a standard output meter across the speaker voice coil.

	SIGNAL GENERATOR			RECEIVER	RECEIVER	OUTPUT		
	FREQ, KC	APPROX. SIGNAL LEVEL	$\begin{aligned} & \text { COUPLE } \\ & \text { T0 } \end{aligned}$	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	(A) AVC VOLTS INCREASE	$\begin{gathered} \text { (B) VOICE } \\ \text { COIL, } \\ \text { WATTS } \end{gathered}$	ADJUST	REMARKS
1.	455	800 uv	$\begin{aligned} & \text { Pin } 8, \\ & \text { 6SA7 } \end{aligned}$	Near 600	-0.6	2.0	$\begin{aligned} & A-12, A-13, \\ & A-8, A-9 \end{aligned}$	Adjust for maximum watts or AVC. Check for smooth round-top selectivity curve.
2.	1600	$400 \mathrm{uv} / \mathrm{m}$	Loop	1600 (Capacitor wide open)	-0.6	2.0	A-17, A-16	Adjust for maximum output.
3.	1400	$400 \mathrm{uv} / \mathrm{m}$	Loop	Near 1400	-0.6	2.0	A-16	Tune to signal and adjust A-16 for maximum output.
4.	600	400uv/m	Loop	Near 600	-0.6	2.0	A-18	Rock tuning control and simultaneously adjust A-18 for maximum output.

5. Repeat steps 2, 3, and 4 in order until no further improvement can be made.

CHASSIS

DIAGRAM II. F-M R-F ALIGNMENT.

F-M ALIGNGENT
Using Frequency-Modulated Signal Generator and Oscilloscope

ALIGNMENT OF I-F STAGES

GENERAL. - When the designated F-M signal from the signal generator is applied to the I-F amplifler or ratio detector, the output at point (A) viewed on an oscilloscope with a 60-cycle linear horizontal sweep is represented by pattern A. Pattern B shows the output at point (B) with the 8 mfd capacitor 33 disconnected. Patterns more useful for alignment purposes are obtained by operating the horizontal linear sweep of the scope at twice the modulation frequency or 120 cycles per second. This gives a double trace on each pattern, one trace representing the increasingfrequency half of the modulation cycle and the other representing decreasing frequencies, patterns I and V. When properly aligned, the two traces of pattern V coincide.

CENTER-FREQUENCY MARKER. - An additional requirement for proper alignment is that the signal generator must operate at the correct center frequency. The 10.7 Mc signal of the marker oscillator is used to check the center frequency. As the $F-M$ signal sweeps its band, it produces a beat frequency with the marker
signal, which decreases as the center point is approached and increases on the other side of center. These markers are shown properly centered in patterns II and VI. Because of the amplitude rejection of the ratio detector, it is difficult to determine the center point of the markers in pattern II, but they can readily be located by temporarily shorting terminals 1 and 2 or 2 and 3 of ratio-detector transformer 113. The resulting effect is shown in patterns III and IV. It is advisable to remove the marker signal when adjusting for coincidence of patterns or straightness of crossover lines, but checks should be made with the marker to make sure that the signal generator has not drifted from the correct center frequency. Pattern VII shows the effect when the signal generator is off center. The markers may be entirely separated or partially overlap. To correct this condition, readjust the center frequency of the signal generator until the markers come together and the combined marker length is a minimum, as in pattern VIII. Then realign to give pattern V or VI.

PROCEDURE

F-M SIGNAL GENERATOR, center frequency 10.7 Mc/sec, 225 Kc deviation, 450 Kc total sweep, at 60 cycles/sec. Use only enough output for satisfactory wave forms.

MARKER OSCILLATOR, $10.7 \mathrm{Mc} / \mathrm{sec}$ fixed, crystalcontrolled or accurately calibrated. Use no more output than necessary. Excessive amplitude will distort the patterns.

COUPLING OF SIGNAL GENERATOR AND MARKER OSCILLATOR. - See Diagram I. Low side to chassis. Combined output through 0.002 mfd to coupling point.

OSCILLOSCOPE. - Vertical amplifier at maximum gain. Linear horizontal sweep synchronized at 120 cycles per second by ripple voltage from pin 2 of rectifier 5Y3GT of the receiver. Do not use internal Y-signal synchronization This will result in off-center alignment.

SELECTOR SWITCH on FM (center position).
VOLUNE AND TONE CONTROLS, maximum clockwise. HOOKUP, as in Diagram I.
NOTE. Unless receiver is seriously misaligned, omit steps 1 and 2.

	SIGNAL	GENERATOR	Radio DIAL	OSCILLOSCOPE		ADJUST	REMARKS
	$\begin{aligned} & \text { CENTER } \\ & \text { FREQ. } \end{aligned}$	$\begin{aligned} & \text { COUPLING } \\ & \text { POI NT } \end{aligned}$		VERTICAL INPUT	$\begin{gathered} \text { PATTERN } \\ \text { NO. } \end{gathered}$		
1	$\begin{gathered} 10.7 \\ \mathrm{Mc} \end{gathered}$	Pin 4 6SH7	Near 90 Mc. Tune off stations.	High side to point (A). Low side to chassis.	$\begin{gathered} I, I I \\ I I I, I V \end{gathered}$	$\begin{array}{r} \text { A-14 } \\ \text { A-15 } \\ \text { alter- } \\ \text { nately } \end{array}$	Adjust for maximum amplitude, symmetry, and straightness of crossover, as in patterns I and II. Verify position of centerfrequency marker as in patterns III and IV.
2	$\underset{\mathrm{Mc}}{10.7}$	$\begin{aligned} & \text { Pin } 7 \\ & \text { 6BE6 } \end{aligned}$	Near 90 Mc . Tune off stations.	High side to point (B). Low side to chassis.	V, VI	$\begin{aligned} & A-11 \\ & A-10 \\ & A-7 \\ & A-6 \\ & A-14 \end{aligned}$	Disconnect 8 mfd capacitor 33 from point (B). Adjust for maximum amplitude, symmetry, and coincidence, as in pattern V, maintaining markers in center as in pattern VI.
3	$\underset{\mathrm{Mc}}{10.7}$	$\begin{aligned} & \text { Pin } 7 \\ & 6 \text { BE6 } \end{aligned}$	Near 90 Mc . Tune off stations.	High side to point (A). Low side to chassis.	I, II	$\begin{aligned} & A-6 \\ & A-7 \\ & A-10 \\ & A-11 \\ & A-14 \\ & A-15 \end{aligned}$	Reconnect capacitor 33 to point (B). Recheck adjustments for maximum amplitude, symmetry and straightness of crossover, as in patterns I and II. Check marker positions as in patterns III, IV.

PHILHARMONIC RADIO CORP.

HOOKUP, as in Diagram II.
SELECTOR SWITCH O FM.
VOLUME AND TONE CONTROLS, maximum clockwise.
F-M SIGNAL GENERATOR, 50 Kc deviation, 100 Kc total sweep at any rate from 60 to 400 cycles per second.

OSCILLOSCOPE. - Adjust horizontal sweep to the modulation frequency of the signal generator and lock it into step with the internal (Y-signal) synchronizing control.

TUNING. - Patterns IX through XIII are wave
forms that will show on the oscilloscope as the tuning control is tuned through the F-M signal. Pattern XI represents the correct tuning position; the pattern is a pure sine wave of greater amplitude than the side patterns.

Patterns IX and XIII represent the two side positions where the signal is also received, but distorted and with less amplitude.
CAUTION

When aligning, do not confuse the correct position, Pattern XI, with either side position, Patterns IX and XIII. When tuned correctiy, a slight movement of the tuning control to either side will give the highly distorted double-frequency patterns X and XII.

PHILHARMONIC RADIO CORP.

MODEL 448 C

F-M ALIGNMENT. MILLER-RESISTOR METHOD
Using An Unmodulated Signal Generator and D-C Electronic Voltmeter.

GENERAL. - For this receiver, the Miller-resistor method, which takes its name from $\cdot \mathrm{Dr}$. John M. Miller, is the most satisfactory of the alignment procedures which do not require the use of an F-M signal generator. With this method, resistance loading is applied to all the secondary circuits in the amplifier while the primary circuits are tuned to the desired center frequency. Then the primary circuits are loaded with the proper resistors while the secondary circuits are tuned.

The resistor across the primary reduces the Q of the transformer sufficiently to produce a single-peak response curve so that the secondary can be tuned to frequency. Its removal does not detune the secondary circuit appreciably. A similar effect is produced when the resistor is across the secondary, permitting accurate tuning of the primary. Small half-watt carbon resistors must be used with the shortest possible leads, to avoid over-all regeneration. Solder-tack the resistor across the transformer terminals.

SELECTOR SWITCH, on F-M (center position).
VOLUME AND TONE CONTROLS, maximum clockwise.
SIGNAL GENERATOR, unmodulated, accurately calibrated. Ranges 10 to 11 Mc and 87.5 to 108 Mc. Output adjustable from 100 to 100,000 microvolts. Connect low side to chassis, for steps 1-5.

OUTPUT INDICATOR.- D-C electronic voltmeter, preferably zero center, with input resistance of at least one megohm on low range, which should not exceed five volts full scale.

OUTPUT METER CONNECTIONS. - Probe to point (A), ratio-detector output, zero volts to chassis when correctly adjusted. Probe to point (B), F-M AVC source, reading the increase in negative voltage above the value obtained when no signal is applied. The reading with no signal is caused by the diode and amplifier-tube contact potentials, and will usually be about -0.5 to -0.7 volts.

	SIGNALGENERATOR		$\begin{aligned} & \text { RADIO } \\ & \text { DIAL. } \end{aligned}$ TUNE OFF STATIONS	$\left\|\begin{array}{c} \text { VTVM } \\ \text { TO } \\ \text { POI NT } \end{array}\right\|$	$\begin{gathered} \text { MILLER } \\ \text { RESISTORS } \end{gathered}$		ADJUST	REMARKS
	$\begin{gathered} \text { FREQ } \\ \text { Mc } \end{gathered}$	COUPL ING			OHMS	ACROSS		
1	10.7	$\begin{aligned} & 0.002 \mathrm{mfd} \\ & \text { to pin } 4 \\ & \text { 6SH7 } \end{aligned}$	Near 90 Mc	(B)	6800	1 and 3 of 113	A-14	Adjust for maximum deflection.
2	10.7	"	"	(A)	"	"	A-15	Adjust for zero deflection, between points of sharp polarity reversal. If approach to zero is slow with no reversal, turn A-15 in opposite direction.
3	10.7	$\begin{aligned} & 0.002 \mathrm{mfd} \\ & \text { to pin } \\ & 6 \mathrm{BE} 6 \end{aligned}$	"	(B)	$\begin{aligned} & 6800 \\ & 6800 \end{aligned}$	3 and 4 of 111 3 and 4 of 109	$\begin{aligned} & A-10 \\ & A-6 \end{aligned}$	Adjust for maximum deflection.
4	10.7	"	"	(B)	$\begin{aligned} & 22000 \\ & 22000 \end{aligned}$	1 and 2 of 111 1 and 2 of 109	$\begin{aligned} & A-11 \\ & A-7 \end{aligned}$	Adjust for maximum deflection.
5	10.7	"	"	(B)	None	--	--	Move input signal from 10 Mc through 11.5 Mc . Response curve should be flat-topped, symmetrical, and centered at 10.7 Mc . If not, repeat steps 1 , 2, 3, 4 carefully.
6	108	See Remarks	$\begin{aligned} & 108 \mathrm{Mc} \\ & \text { (Capacitor } \\ & \text { open) } \end{aligned}$	(B)	None	--	$\begin{aligned} & \mathrm{A}-4 \\ & (\mathrm{~A}-3 \\ & \text { tight) } \end{aligned}$	Signal generator across F-M dipole input terminals with 100 -ohm $1 / 2$-watt carbon resistor in each side. Tighten A-3, then adjust A-4 for maximum deflection. See note 1.
7	87.8	"	Near 88 Mc (Capacitor closed)	(B)	--	--	A-5	Adjust for maximum deflection. Repeat steps 6 and 7 until no change in adjustment is required.
8	105	"	Near 105 Mc	(B)	--	--	A-3	Rock tuning control and adjust $\mathbf{4}-3$ for maximum deflection.
9	90	"	Near 90 Mc	(B)	--	--	A-2	Rock tuning control and adjust A-2 for maximum deflection. Repeat 8 and 9.
10	100	"	Near loc Mc	(B)	--	--	A-1	Rock tuning control and adjust A-l for maximum deflection.

NOTE 1. If two peaks are found, use position with A-4 backed out (higher frequency).

FODEL 448 C PHILHARMONIC RADIO CORP.

PARTS LIST						RESISTOR, FIXED. - Continued				
TUBES						No.	Part	Ohms	Watts	
No.	Type	Function				64	$\begin{aligned} & \mathrm{RE}-1139-105 \\ & \mathrm{RE}-1062-823 \\ & \mathrm{RE}-1130-688 \end{aligned}$	IK	1/2	
2	6BA6 ${ }^{\text {R-F }}$	R-F Amplifier (FM)						680	1/2	
2	6BE6 Pent	Pentagrid Converter (FM)				67		1 K	1/2.	
3	6SK7 R-F	R-F Amplifier (AM)				68	RE-1139-105 RE-1015-685	6.8 K	1/2	
4	6SA7 Pent	Pentagrid Converter (AM)				69	RE-1015-685	6.8 K	1/2	
5	6SK7 Firs	First I-F Amplifier (AN-FM)				7073		22K	1/2.	
6	6 SH 7 Seco	Second I-F Amplifier (FM)					$\mathrm{RE}-1139-226$ $\mathrm{RE}-1139-108$	1 meg .	1/2	
7	6aL5 Ratio	Ratio Detector (FM) ${ }^{\text {c }}$				7273	RE-1139-154	150	1/2	
8	6SQ7 Dete	Detector-Phase Inverter					$\begin{aligned} & R E-1139-514 \\ & R E-1166-477 \end{aligned}$	510	1/2	
9	6S27 Firs	t Aud	10 Ampl	fier		73 74 754		470 K	1/2	
10	$6 \mathrm{K6}$ Powe	Power Amplifier				$\begin{aligned} & 754 \\ & 764 \end{aligned}$	See Note.	680,2 w.or $470,1 w$.	$1 / 2$Note	
11	6K6 Powe	Power Amplifier					See Note.$R E-1139-227$			
12	5Y3GT Full					77		220k	1/2	
CAPACITORS						78	RE-1139-227	220 K	$1 / 2$	
No.	Part	uf	uuf	Volts		81	$\mathrm{RE}-1139-227$ $\mathrm{RE}-1139-227$	220 K	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	
13	CD-1071-22		100	500	Mica	82	RE-1139-109	10 me	1/2.	
14	CD-1085-20		1006	300	Mica		RE-1166-107	100 K	$1 / 2$	
15	CD-1254-2		50	500	Ceramic	84	RE-1139-2 27	220 K	1/2	
16	CD-1107-100		90	500	Ceramic	86	RE-1139-108	1 meg .	$1 / 2$	
17	CD-1106-110		50	$50 ¢$	Ceramic	87	RE-1166-477	470 K	1/2	
18	CD-1254-2		50	500	Ceramic	88	RE-1166-476	47 K	1/2	
19	CD-1254-2		50 330	500	Ceramic			100K	1/2	
20	CD-1259-40		330 1500	350	Ceramic	89	RE-1166-107	100 K	1/2.	
21	$C D-1259-49$ $C D-1227-8$. 01	1500	350	Ceramic		$\begin{aligned} & \mathrm{RE}-1166-107 \\ & \mathrm{RE}-1139-226 \end{aligned}$	22K	1/2	
22	CD-1227-8	. 01	330	350	Paper	91	$R E-1046-276$	27K	2	
24	CD-1227-8	. 01		400	Paper		$\begin{aligned} & \mathrm{RE}-1046-276 \\ & \mathrm{RE}-1153-476 \end{aligned}$	47K	1	
25	CD-1071-22		100	500	Mica	93	$\mathrm{RE}-1046-395$	3.9 K 100		
26	CD-1227-8	. 01		400	Paper	95	RE-1139-104		1/2	
27	CD-1227-2	.0015.01		400	Paper	MISCELIANEOUS				
29	CD $-1259-40$$C D-1259-40$		330330	350	Ceramic	No.	Part	Name		
30				350	Ceramic			Volume Control and Switch, 500KTone Control, 250 K		
31	CD-1259-40		330	350	Ceramic	96	$\begin{aligned} & \text { RE-1181 } \\ & \text { RE-1182 } \\ & S W-1069 \\ & S K-1020 \end{aligned}$			
32	CD-1227-8 CD-1252	${ }^{.01} 8$		400	Flectr.	98		Switch, AM-FM-Phono		
34	CD-1227-3	. 002		400	Paper	99		aker		
35	CD-1227-8	. 01		400	Paper		$\begin{aligned} & S K-1020 \\ & T R-1075 \end{aligned}$	Transformer, P.P. Output		
36	CD-1227-2	. 0015		400	Paper	101	$\begin{aligned} & \text { TR-1075 } \\ & \text { CK-1040 } \end{aligned}$	Choke, Filter		
37	CD-1227-8	.0150		400	Faper	$\begin{aligned} & 102 * \\ & 103 \end{aligned}$	See Note. $T R-1064$	Transformer, Antenna (FM)		
38 39	CD-1283		1000	50 1000	Electr.	104	$\begin{aligned} & \text { CK-1043 } \\ & C I-1057 \end{aligned}$			
40	CD-1071-22		100	500	Mica	$\begin{aligned} & 105 \\ & 106 \end{aligned}$		$R-F \operatorname{Coil}(F M)$		
41	CD-1254-2		50	500	Mica		$\begin{aligned} & C I-1057 \\ & C I-1058 \end{aligned}$	Oscillstor Coil (FM)$\mathrm{R}-\mathrm{F}$ Choke		
42	CD-1248			450	Electr.	107	$\begin{aligned} & \text { CK-1043 } \\ & \text { CK-104 } \end{aligned}$			
43	CD-1227-13	40-40		400	Paper			R-F Choke		
4	CD-1071-22$C D-1227-2$.05		500	Mica	$\begin{aligned} & 109 \\ & 110 \end{aligned}$	$\begin{aligned} & \text { TR-1065 } \\ & \text { TR-1052 } \end{aligned}$	Transformer, First I-F (FM)		
45		. 0015	100	400	Paper			Transformer, Second I-F (FM)		
46	CD-122-2 $C D-126-15$ $C D-1227-8$	$\begin{array}{r} .01 \\ .01 \end{array}$		600	Paper	$\begin{aligned} & 110 \\ & 111 \end{aligned}$	TR-1065			
47 48	$C D-1227-8$ $C D-1227-8$	$.01$		400	Paper Faper	112	TR-105 TR-1066	nsformer, Ratio Det	tor (FN.	
49	CD-1071-22		100100	500	Mica	114	AT-1019	enna, Loop (AM)		
50	$C D-1071-22$$C D-1227-8$			500	Mica	115	AS -3599	enna (FM), Folded D	pole	
51			100	400	Faper	116	CI-1059	illator Coil (AM)		
52	$C D-1227-8$$C D-1227-10$. 01		400	Paper	117	IA-1014-32	ot Light, Mazda 47		
120		. 02		400	Paper	118	LA-1014-32	ot Light, Mazda 47		
RESISTORS, FIXED. $\mathrm{K}=1000$.						121	S0-1059	no-motor AC Recepta		
No.	Part		Or.ms		Watts	123	PL-1068	aker Flug		
53	RE-1139-104		106		1/2	124	CC-1113	no Input Jack		
54	RE-1046-276		27K		2					
55	RE-1139-105		1 K		1/2					
56	RE-1139-226		22K		1/2.					
57	$\mathrm{RE}-1046-276$		27K		2					
58	RE-1139-105		1 K		1/2					
59	$\mathrm{RE}-1147-224$		220		$1 / 2$					
60	RE-1139-226		22K							
62	RE-1139-104		100		1/2.					
63	RE-1168-336		33 K							

John F. Rider

Alignment: No attempt should be made to realign this receiver until it has been determined that a poor tube, or some local condition is not responsib!e for faulty reception. The Signal Generator may be connected through a 0.01 mf capacitor (used as a dummy antenna) to the lug on R. F. section (A) of tuning capacitor. Connect ground clip of generator directly to chassis. Align the I. F. trimmers to 455 K.C., using least possible input from the Signal Generator to avoid developing A.V.C. voltage which would make the tuning adjustments very broad. An output meter may be clipped across the voice coil lugs.

To align broadcast R. F. trimmers, remove the 0.01 mf capacitor and connect the Signal Generator leads to two or three turns of heavy wire, forming a self-supporting loop of about 7 or 8 inches diameter placed about a foot away from the receiver's loop antenna. Again, use the least possible input from the Signal Generator. With the tuning plates completely out of mesh and the pointer at the extreme right end of travel, adjust the broadcast oscillator trimmer, on the under side of the chassis, to 1650 K.C. With tuning capacitor fully meshed adjust the padder on the chassis deck to 535 K.C. Readjust both Signal Generator and tuning capacitor to 1550 K.C. and adjust the R. F. trimmer on the loop for maximum response.

To align the short wave band connect the Signal Generator through a 0.01 mf capacitor and a 400 ohm resistor in series (used as a dummy antenna) to the antenna connection on the loop antenna. With the tuning capacitor plates completely out of mesh, and pointer at the extreme right end of travel, adjust the short wave oscillator trimmer (on the under side of the chassis) to 18.25 magacycles. Readjust both Signal Generator and tuning capacitor to 16 megacycles and adjust short wave antenna coil trimmer for maximum response. With tuning capacitor fully meshed, the receiver should tune to 5.75 megacycles, however no adjustment is required at this point.

For ehecking purposes five marks are engraved on the front of the dial plate. These represent, in order, the pointer position with the capacitor plates fully meshed and the pointer settings for $600 \mathrm{kc}, 8 \mathrm{mc}$, 16 mc , and 1550 kc .
Pushbuttons: To set pushbuttons remove pushbutton knobs. This will expose a set screw on the shaft of each pushbutton. Starting at one end push a pushbutton down and loosen its set screw. Set the bandswitch to the broadcast position. Hold the pushbutton down and tune the manual tuning control to the station to which the pushbutton is to be set. Still holding the pushbutton down tighten its set screw. The pushbutton may now be released and its knob replaced. It will now select the station to which it was set. The other pushbuttons may be set in a similar manner.

REPLACEMENT PARTS LIST

©John F. Rider

CLARI-SKEMATIX
PILOT RADIO CORP.

OJohn F. Rider
 of cabinet, but loop plugged in. Step 8 must be alen
Alignment should be oftempted only i o low ronge A.C. meter, a signal generator,
and insulated olignment tools are oo your disposal. The A.C. meter is used os on output-
meter. The signal generotor must cover a frequency range from 450 kc to 16 mc .
It is essential that the signal generator be connected to the points indicated in the A good connection between the groundpost of the signol generator and the chassis, is necessary. DO NOT connect chassis or generator to on external ground.
The output of the signal generator must olways be kept at its lowest possible value. During alignment, the line voltoge feeding the receiver power supply should be kept The lecations of of distments screws ore indicited cleary on the schemotic diogrom
Alignent odiustments should be mode only in the sequence siven in the chort. For all alignments, connect the outputmeter across the voice coil. With the volume
antrol turned fully clockwise tune for a moximum reading.

- Steps 4 and 5 require a coupling loop from the signal generator to feed a signal into the receiver loop located in the lid. This loop should be loosely coupled to the receiver loop antenna so as not to disturb the receiver loop inductance.
\dagger ALIGNMENT SHIELD MUST BE USED. (See text.)

Alignment Shield

Terminal Board Wiring

RCA PAGE 19-3

Replacement Parts

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC 1069-8B41. RC 1069月-8B42, RC 1069B-8B43	* 73938	Panel-Chrome and mahogany face panel Resistor-Fixed, composition, 820 ohms $\pm 10 \%$, $1 / 2$ watt (R11) Resistor-Fixed, composition, 15,000 ohms $\pm 10 \%$, $1 / 2$
$\begin{array}{r} 73937 \\ 70444 \end{array}$	Baftle-Speaker baftle and grille eloth		$\underset{\text { watt (R2) }}{\text { Resistor-Fixed }}$ composition 68.000 ohms $+20 \%$,
- 70445	Board-Terminal board (1 contact)		watt (RS)
$\begin{array}{r}\bullet \\ \hline 73947 \\ \hline 7\end{array}$	Capacitor-Variable tuning capacitor ($\mathrm{C} 1, \mathrm{C3}, \mathrm{C4}$)		Hesistor-Fixed, composition, 100,000 ohms $\pm 10 \%, 1 / 2$
$\begin{array}{r} 73153 \\ -73962 \\ \hline \end{array}$	Capacitor-Coramic, 4 mmi. (C8)		watt (R1) Resistor-Fixed, composition, 1 megohm $\pm 20 \%, 1 / 2$ watt
+73901	Capacitor-Ceramic, 51 mmf . (C2)		(R9)
-73963	Capacitor-Coramic, $75 \mathrm{mmf}$. (${ }^{\text {c }}$ (14)		Resistor-Fixed, watt (R4 R 10)
-74093	Capacitor-Ceramic, 1500 mml . (${ }^{\text {c }}$) ${ }^{\text {a }}$		Resistor-Fixed, composition, 4.7 megohms $\pm 20 \%$, 1/2
$\begin{array}{r}73960 \\ 72315 \\ \hline\end{array}$	Capacitor-Ceramic, 01 mf . (C5)		
-73961	Capacitor-Tubular, $0002 \mathrm{mf}$. (200 volts (C15)		$\begin{gathered}\text { Resistor-Fixed, composition. } \\ \text { watt (R8) }\end{gathered}$
70606	Capacitor-Tubular, . 005 mi ., 400 volts (C18)	-73944	Screw-\#2-56 $\times 3 / 16^{\prime \prime}$ machine screw to hold lid hinges
71928	Capacitor-Tubular, $02 \mathrm{mf}$. , 200 volts (C17)	-73939	to face panel (2 required)
-73964	Capacitor-Electrolytic, 10 mf ., 70 volts ${ }^{\text {volts }}$ (C19)	73959	clamp speaker to face panel
70425	Clip-Spring clip for tuning knob	-73943	Screw- $\# 4.40 \times 3 / 16^{\prime \prime}$ binder head screw to fasten face
70452	Connector-Loop connectors (1 set) complete with	70446	panel to chassis (3 required)
-73948	Control-Volume control (R6)		battery holder
-73957	Fastener-Push fastener to hold loop (2 required) for Model 8B41-black	$\begin{array}{r} 70436 \\ 70423 \end{array}$	Socket-Tube socket Spacer-Rubber shock spacer (cemented to case center
-73958	Fastoner-Push fastener to hold loop (2 required) for Model 8B42-brown	-73942	strip) Stud-Lid support stud (iace panel end)
-73959	Fastener-Push fastener to hold loop (2 required) tor	-73952	Stud-L.H. lid hinge mounting stud
	Model 8B43-red	-73953	Stud-R.H. lid hinge
70429	Grommet-Rubber grommet to mount tube support shelf (2 required)	70451	Support-Lid support complete with lid end mounting stud
-73950 .7395	Hinge-Lid hinge-L.H.-less mounting studs	72230	Support-Tube suppart shelf less tube sockets and trans-
$\begin{array}{r}73951 \\ \hline 7229\end{array}$	Hinge-Lid hinge-R.H.-less mounting studs Holder- A ' battery holder	-73945	former Switch-Power awitch (S1)
-73941	Insulator-Loop connector insulator	70442	Transformer-First I.F. Transformer (T1 [C6, C7]
-73936	Knob-Calibrated tuning knob	70437	Transformer-Second I.F. transformer (T2 [C12, C131)
-73946	Xnob-Volume control knob	70440	Transformer-Output transtormer (T3)
70708	Lead-"B" Battery lead complete		
-73924	Lid-Case top lid complete with lid support and hinges -less loop-Model 8B41-black		92523-4W
-73925	Lid-Case top lid complete with lid support and hinges -less loop-Model 8B42-brown	70428	$\underset{\substack{\text { voice coil }}}{\text { Speaker-2" }} \times$ 3" P.M. speaker complete with cone and
-73926	Lid-Case top lid complete with lid support and hinges -less loop-Model 8B43-red	-73965	MISCELLANEOUS Bottom-Case bottom-Model 8B41-black
-73954	Loop-Antenna loop complete with connectors-less lid -Model 8B41-black	$\begin{array}{r} 73966 \\ \quad 73967 \\ \hline 7396 \end{array}$	Bottom-Case bottom-Model 8B42-brown Bottom-Case bottom-Model 8B43-rod
-73955	Loop-Antenna loop complete with connectors-less lid	$\begin{array}{r} 70457 \\ -74016 \end{array}$	Catch-Spring catch assembly Center-Case center complete with spring catch
-73956	Loop-Antenna loop complete with connectors-less lid	-73968	Handle-Carrying handlo-Model 8B41-black
	-Model 8B43-red	-74022	Mandle-Carrying handle-Model 8B42-brown
$\begin{array}{r}7 \\ \hline 73949\end{array}$	Nameplate-"RCA" nameplate for top lid	7 -73969	Handle-Carrying handle-Model 8B43-red Link-Handle link (2 required)
-73940	Nut-Speed nut to lock serew clamping epeaker to tace panel	73943	

- This is the first time that this Stock No. has appeared in Service Data. RC-1069; 8B42 CHASSIS Replacement of Component Parts RC-1069B; 8B46 CHASSIS
I. To remove bottom cover:
a. Depress locking spring clip through hole in top of case.
b. With spring clip depressed, pull cover carefully out and up off the retaining lugs in the bottom of the case center strip.
II. To replace batteries:
a. Remove bottom cover.
b. Remove, either or both, the " A " and " B " battery as may be necessary. The " B " battery snap fasteners can best be removed by inserting a screwdriver under the snap fastener strip and prying upward.
III. To remove the case center strip:
a. Remove bottom cover.
b. Remove one screw (A) on the inside at the handle end.
c. Tilt case center strip and lift.

1V. To replace tubes:
a. Remove bottom cover.
b. Remove " B " battery.
c. Remove case center styip.
d. Remove and replace tubes as required.
V. To remove face panel from chassis plate:
a. Remove dial knob (pull oft).
b. Remove bottom cover (I), batterits (II) and case center strip (III).
c. Unsolder leads to loop connectors.
d. Remove the four Phillips head screws (B) located at three corners and end close to 2nd I.F. transformer, which hold the chassis to face panel.
e. The face panel may now be folded back into the case top lid.
VI. To remove speaker:
a. Remove face panel (see item V).
b. Unsolder voice coil leads.
c. Remove two Phillips head screws (C) on chassis plate holding speaker.
VII. To remove output transformer:
a. Remove speaker (see item VI).
b. Unsolder transformer leads.
c. Remove rivet (use bolt for replacement).
d. Unsolder mounting lug.
VIII. To remove chassis subassemblies from chassis plate:
a. Remove tubes (see item IV).
b. Unsolder grounding strap (E) which connects tube shelf to chassis plate.
c. Unsolder two wires which connect to speaker.
d. Unsolder two wires attached to switch.
e. Unsolder leads to loop connectors.
f. Remove dial knob (pull off).
g. Remove two screws (F) holding tube shelf to chassis plate.
h. Remove nut (G) between I.F. transformers.
i. Remove screw (G) beneath the negative terminal of " A " battery holder and also screw (G) adjacent to volume control below "A" battery holder.

Chassis Disassembly
IX. To remove volume control:
a. Remove chassis subassembly from chassis plate (see item VIII).
b. Unsolder the two leads to the " A " battery holder.
c. Lift up the " A " battery holder by removing the one screw (C) in its base. This holder has a hinge action and must be lifted up and back to remove.
d. Unsolder volume control leads.
e. Remove volume control knob (attached to shaft with set screw)
f. Remove volume control assembly by bending back four lugs.
X. To remove oscillator coil:
a. Same procedure and steps as covered in item VIII for re. moval of chassis subassembly plus the following.
b. Unsolder oscillator coil leads.
c. Remove coil by unsnapping spring mounting clips from angle bracket,
XI. To remove tuning condenser:
a. Remove case center strip (III).
b. Unsolder two leads and two ceramic capacitors (C2, C20) from tuning condenser.
c. Remove tuning knob (pull off).
d. Remove the two screws (H) (accessible through dial knob opening) which hold the tuning condenser to the chassis subassembly.
XII. To remove lst I-F transformer:
a. Remove chassis subassemblies (see item VIII).
b. Unsolder four leads from lst I-F transtormer. 1. Blue to screen of lRS tube.
2. Green to grid of lU4 tube.
3. Red to B+ terminal of S lug terminal board TB5. 4. Black to terminal board TB2.
c. Unsolder and bend mounting lugs straight on the I-F transformer can.
XIII. To remove 2nd I-F transformer:
a. Remove chassis subassemblies (see item VIII).
b. Unsolder four leads from 2nd I-F transformer.
c. Unsolder and bend mounting lugs straight on the I.F transformer can.
XIV. To remove loop assembly:
a. Remove case center strip (see item III).
b. Unsolder leads to loop connectors.
c. Remove snap fasteners holding loop in cover.
d. Carefully pry out on edge next to catch (opposite hinges).
e. When reassembling press loop assembly into top lid on the side next to the connectors to cause the plastic projections on the loop assembly to engage in the detents in the top lid.
XV. To remove awitch:
a. Remove case center strip (III).
b. Remove screw (I) which holds switch to chassis plate.
c. Unsolder the two wires which connect to the switch.
d. Unsolder switch from chassis plate.
XVI. To adjust latching of top lid:
a. The hinges are attached to the face panel with Phillips head screws (one to each hinge). The mounting holes of the hinges are sutficiently large to permit adjustment of the hinges when the mounting
Tighten screws after adiustment.

RADIO CORP. OF AMERICA

MODELS 8BX5, 8BX54, 8BX55, CHASSIS RC-1059A

Model 8BXS4

Model 8BX5

Model 8BX55

Specifications

Frequency Range
540-1,600 kc

Intermediate Frequency . 455 kc
Power Supply Rating
110 to 125 volts, AC 50 or 60 cycles, or DC. . . 18 watts
Batteries required. One RCA Battery Pack VS050
Tube Complement
(1) RCA-1R5

Converter
(2) RCA-1T4 F.Amplifier (1U4 in RC-1059A)
(3) RCA-1U52nd Det. AVC. \& A.F.-Amplifier
(4) RCA—3V4Power Output
(5) RCA - 117 Z 3 Rectifier

Current Consumption
Battery Operation."A" 60 ma., "B" 10 ma .
(Average life of RCA VS050 Battery
100 hrs . intermittent service.)
Total Rect. Current (117 volt, 60 cycle) $\ldots60 \mathrm{ma}$.
Power Output (AC Operation)
Undistorted 15 watt
Maximum 25 watt (Output is slightly lower on battery operation)

Loudspeaker 4 in. P.M. 3.4 ohms at 400 cycles
Cabinet Dimensions
Height. . . $91 / 2$ in. Width..... 11 in. Depth..... 5 in.

Critical Lead Dress

1. Dress output plate bypass $C 20$ capacitor against chassis
2. Dress output plate lead to output transformer against chassis.
3. Dress audio coupling capacitor C14 (volume control to grid of 1U5) away from chassis, away from audio limiting resistor $\mathrm{R8}$ and to permit adjustment of second I.F. Transformer.
4. Dress all exposed leads away from each other, and away from chassis to prevent short circuits.
5. Dress all filament and ground leads against chassis.
6. Dress filament bypass capacitor C23 and accompanying compensating resistor R15 (volume control to IT4 [or 1U4] socket) against volume control.
7. Dress power line cord away from line-battery switch mechanism.
8. Dress all capacitors and wiring away from oscillator coil.
9. Dress 4 mmf . neutralizing capacitor $C 7$ against A.V.C. bypass capacitor C8 (IT4 [or 1U4] filament to first I.F. trans.).

Alignment Procedure

Cothode Ray Alignment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.

Output Meter Alignment.--If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

Test Oscillator.-For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.
Battery operation of the receiver is preferable durirg alignment on AC operation an inolation transformer ($1117 \mathrm{v} / 117 \mathrm{v}$.$) may be$ necessary for the receiver if the test oscillator is alao AC operated

NOTE: Battery or substitute must be in place for ant. alignment (step 5).

Alignment Tabulation

Step	Connect high side of tert osciliator to-	Test oncillator output-	Turn receiver dial to-	Adjust for maximum Deak output
1	Discunrect loop-remove chassis-remove bottom plate, connect a $10,000 \mathrm{ohm}$ resistor from Cl atator terminal to tuning condenser frame.			
2	Stator terminal of Cl thrue 01 mf. capacitor	455 ke	65	- Top and bottom T2 (2nd I-F trane.) - Tod and bottom T1 (lst. I-F trans.)
8	Remove the $10,000 \mathrm{ohm}$ resistor. Replace bottom cover and install chassis in cabinet. Re-connect loop.			
4	Short wire placed near receiver (fon radiated signal)	1600 ke	160	+C5 (ose.)
5		1400 ke	140	$\ddagger \mathrm{C} 2$ (ant.)
6		600 ke	60	- L2 (osc.) while rocking gan
7		Repeat step: 4, 5 and 6		

NOTES:
-The magnetite cores of L2 and some T2 and T1 do not have visible adjusting crews. The cores have screw driver alots to permit edjusting acrews. The cores have screw
adjustment (use non-metallic serewdriver)
Adjustable thru hole in aide of case which in acceasible after unfalening one end of the carrying mandle.

MODELS 8BX5, 8BX54, RADIO CORP. OF AMERICA 8BX55, CHASSIS
RC-1059A

RCA PAGE 19-7
RADIO CORP. OF AMERICA
MODELS 8BX5, 8BX54, 8BX55, CHASSIS RC-1059A

MODELS 8BX5, 8BX54, RADIO CORP. OF AMERICA 8BX55
 CHASSIS RC-1059,

To Remove Carrying Handle

1. Pull off the volume control knob.
2. Insert a small knife blade between one side of a spring clip and the cabinet as shown below, push upward on the slip shield to disengage the locking of the slip shield to the spring clip. Repeat this procedure on the other side of the spring clip. The slip shield may then be removed by pushing it upward thus disengaging it from the spring clip.
3. Repeat step 2 for each slip shield.
4. Remove the four screws (2 on each side) which hold the carrying handle to the case.
Caution: When re-assembling-make certain that the slip shield and the spring clip is assembled with their locks in the correct relation to each other.
To Remove Chassis
5. Pull off the volume control knob.
6. Close tuning condenser (dial at 55) to prevent possible damage to tuning condenser.
7. Remove dial knob by grasping both sides with the tips of the fingers of both hands and pull to the front -or-close the tuning condenser, open the back, reach in and push outward on the hub of the dial knob. NOTE: When re-assembling-press inward on the back of the tuning condenser and on the front of the knob to properly seat the hub on the shaft.
8. Remove the two slip shields on the R.H. side of the cabinet (opposite the volume control) and unfasten the end of the carrying handle using the procedure described under, "To Remove Carrying Handle."
9. Unsolder the loop leads.
10. Remove the two screws holding the bottom edge of the speaker to the cabinet.
11. Remove the plug from the battery.
12. Remove the two screws at the top of the cabinet while supporting the chassis with one hand.
NOTE: When re-installing-replace speaker holding screws first but do not securely tighten until the two screws at the top of the cabinct have been tightened.

Cabinet Hinges
The cabinet hinges may be readily removed, they are secured to the cabinet and back by force fit. To remove back from cabinet-pull straight outward on both hinges at the same time.

Replacement Parts-1st. Production

RADIO CORP. OF AMERICA MODELS $8 \mathrm{BX5}, 8 \mathrm{BX} 54$, EBX55, CHASSIS RC-1059, F.C-1059A

Replacement Parts-2nd. Production

stock No.	DESCRIPTION	$\begin{aligned} & \text { stock } \\ & \text { No. } \end{aligned}$	DESCRIPIION
	CHASSIS ASSEMBLIES RC 1059A		Resistor-Fixed composition, 10 megohms, $\pm 10 \%, 1 / 2$ watt (R21)
73153 71924	Copacitor-Ceramic, 4 mmf . (C7)		Resistor-Fixed composition, 15 megahms, $\pm 20 \%, 1 / 2$ watt
73152		73103	(R10) ${ }^{\text {(R1) }}$ Shield-5hield for lus tube
72315	Copacitor-Tubular, 002 mfd ., 200 volts (C14, C18)	73117	Socket-Tube socket
71921	Copacisor-Tubular, 003 mfd ., 200 volts (C8)	71039	Switch-"Line-Battery" change switch (\$1)
72791	Capacitor-Tubular, 005 mfd ., 400 volts (C20)	73129	Transformer-First I.F. transformer (TI)
71923	Capacitor-Tubular, 01 mfd .200 volts (C17)	73130	Transformer-Second 1.F. transformer (T2)
71928 72596	Capacitor-Tubular, 02 mfd ., 200 volts (Cl 16)	71047	Transformer-Output transformer (13)
72596 70615	Copacitor-Tubular, 05 mfd , 200 volts (C9, C23)		
*73784	Capasitor-Tubular, 05 mfd ., 400 volts (C3, C1I, C22 Capacitor-Tubular, 0.1 mfd , 200 volis (C10)		SPEAKER ASSEMBLY
70617	Capacitor-Tubulor, 0.1 mfd., 400 volts (C21)		92577 -1
73127	Capacitor-Electrolytic, comprising 1 section of 50 mfd , 150 volts; 1 section of 30 mfd ., 150 volts ond 1 section of $160 \mathrm{mfd} ., 25$ volts (C19A, C19B, C19C)	$\begin{aligned} & 71059 \\ & 73123 \end{aligned}$	Gasket-Speaker gasket (black fubing) Speaker-4" PM speaker complete with cone and voise coil
*73935	Clip-Mounting slip for 1.F. transformers		MISCEILANEOUS
73126 73125	Condenser-Variable funing condenser (C1, C2, CS, C6) Cantrol-Volume control and power switch (R7, S2)	73134	Back-Cabinet back-less hinges-Model 9BX5
70022	Cord-Power cord and plug power swith (R), S2	73721 73723	Back-Cabinet back-less hinges-Model 38×54
72283	Grommet-Rubber grommet for mounting tuning condenser (3 required)	73147 73137	Ball-Metal ball with groove for back cover latch mechanism
$\begin{array}{r} 73275 \\ 73237 \end{array}$	Plug-5 prong male plug for battery cable	73137	Block-Chassis mounting block (with groove for link)-less fiber insert (2 required)-fits on top of cabinet
	Resistor-Wire wound, 33 ohms, 150 MA (R20)	73136	Button-Center button for dial knob of cobinet
	Resistor-Fixed composition, 1000 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R3, R5, R15)	73142	Button-Station selestor indicator button
	Resistor-Fixed composition, 1200 ohms, $\pm 10 \%, 1 / 2$ woft (R14) Resistar-Fixed composition, 2200 ohms, $\pm 10 \%, 1 / 2$ watt (R18)	$Y 1464$ $Y 2016$ $Y 2017$	Case-Carrying case complete with loop-less hinges, latch mechanism, back cover and carrying handle-Model BBX5 Case-Carrying case complete with loop-less hinges, back cover latch mechanism and carrying handle
73132	Resistor-Voltoge divider, 2200 ohms, 7 watts (R17) Resistor-Fixed composition, 15,000 ohms, $\pm 10 \%, 1 / 2$ wa	72017 70425	Case-Carrying case complete with loop-less hinges, back cover, latch mechanism and carrying handle
	(R16)	73195	Clip-Spring clip for volume control and power switch knob Clip-Spring clip for slip shield (4 rea'd)
	Resisfor-Fixed composition, 39,000 ohms, $\pm 10 \%, 1 / 2$ watt	73143	Handle-Carrying handle-Model 8 BXS
	(R9)	73724	Handle-Carrying handle-Model 8BX 54
	Resistor-Fixed composition, 100,000 ohms, $\pm 20 \%, 1 / 2$ watt (R1)	-73725	Handle-Carrying handle-Model 88×55
	Resistor-Fixed composition, 100,000 ohms, $\pm 10 \%, 1 / 2$ watt	73149	Kinge-Cabinet hinge (2 required) Insert-Fibre insert for chassis mounting block (2 required)
	(R8)	73135	Ticheriol
	Resistor-Fixed composition, 220,000 ohms $_{4} \pm \mathbf{2 0 \%}, 1 / 2$ watt (R11)	73138	Knob-Volume control and power switch knob and calibrations
	Resistor-Fixed composition, 1 megohm, $\pm 20 \%, 1 / 2$ wat	73141 73141	Link-Carrying handle retaining link (2 required) Loop-Antenno loop (LI)
	(R13)	73145	Nut-Hex nut with groove for bask cover latch mechanism
	Resistor-Fixed composition, 2.7 megohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R4)	73139	Shield-Slip shield for carrying strap (bottom R.H. and L.H. and upper L.H.)
	Resistor-Fixed composition, 4.7 megohms, $\pm 20 \%, 1 / 2$ watt (R12)	73140	Shield-5lip shield for carrying strop-with hole for volume control shaft (upper R.H.)
	Resistor-Fixed composition, 4.7 megohms, $\pm 10 \%, 1 / 2$ watt (R6)	$\begin{aligned} & 30900 \\ & 73146 \end{aligned}$	Spring-Retaining spring for dial knob Spring-Extension spring for back cover latch mechanism-R.H.
	Resistor-Fixed composition, 6.8 megohms, $\pm 10 \%, 1 / 2$ watt (R2)	$\begin{aligned} & 73148 \\ & 73483 \end{aligned}$	Spring-Extesion spring for back cover latch mechanism-R.H. Spring-Extension spring for back sover latch mechanism-L.H.

*This is the first time that this Stock No. has appeared in Service Data

Twbe and Trimser Locations

John F. Rider

CLARI-SKEMATIX

PAGE 19-12 RCA

John F. Rider

Alignment Procedure
 CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

Alignment Indicatora:

An RCA VortOhmyst or equivalent meter is necessary for measuring developed $d-c$ voltage during $F M$ alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indi cate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.

The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure a-v-c voltage.

When audio output is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations connect the low side of the signa generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a.v-c action.

The FM i-f alignment may be checked by means of an FM sweep generator and cathode ray oscilloscope. Connect the output from the sweep generator, which is set to 10.7 mc ., to the mixer grid (6 J 6 Pin
No. 5), low side to chassis. Disconnect the No. 5), low side to chassis. Disconnect the 2 mfd. capacitor C33 from the Ratio Detector circuit.

Connect the high side of the oscilloscope to the junction of R25 and R26. low side to chassis. Adjust the sweep generator and oscillo. scope to obtain the response curve.

The Ratio Detector characteristic may be viewed by connecting the oscilloscope across the volume control R14. Capacitor C33 should be re-connected before checking the Ratio Detector characteristic.

CRITICAL LEAD DRESS

Keep leads of C7 short.
Dress R27 away from range switch and pin No. 5 of V_{1}.
The ground lead of pin No. 2 of $\mathcal{V} 2$ and $V 3$ should be down against chassis. Its length is critical.
The AVC lead from R26 to range switch should be dressed against chassis and on front apron side of the output transformer. C 43 should have short leads and the color code of the capacitor should go to the coil L4. The capacitor should be cemented down with polystyrene cement at the same time L2 is cemented.
;. The lead from the high side of the loop should be dressed away from tubes.
. Lead from pin No. 2 of V1 to terminal "A" of 1st I. F. transformer should be dressed against the chassis.
Connect C 40 directly between the gang condenser and pin No. 1 of V1.
9. Make all FM teads as short as possible

Dress lead from pin No. 5 of $V 2$ to terminal " A " of 2nd 1.F Dranstormer resistor R15 near chassis base.
11. Dress il A. C ieds
12. Dress all A. C. leads away from volume control

The lead from "FM" terminal of antenna terminal board to L1 tap should be run around the outside of the lst I. F. transformer
14. The taps on L1 and L2 are critical. Li tap should be turn from the ground end. L2 tap should be $2 \frac{1}{2}$ turns from the gang con-
15. The lead from R32 to terminal No. 9 of S1 should be dressed away from the output transformer.
16. Dress C25 and C26 against the chassis with the shortest lead
17. The position of
17. The position of $L 1$ and $L 2$ is critical. L1 should be midway between V1 and the $15 t$ I. F. transformer. The end of L2 should be approximately $3 / 16^{\prime \prime}$ from V1.

+ Use alternate loading
Alternate loading involves the use of a 47,000 ohm resistor to load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loarlerl with the resistor while the plate winding is peaked. Only one windiug is loaded at any one time. Remove the 47 , 0 ond olim resistor after T : amd T2 have been aligned

Oscillator frequency is above signal frequency on both $A M$ and $F M$.

FM Alignment
RANGE SWITCH IN FM POSITION - VOLUME CONTROL MAXIMUM

Steps	Connect high side of sig. gen. to-	Sig.gen. output	Turn radio dial to-	Adjust for peak output
1	Connect the d-c probe of a Voltohmyst to the negative lead of the 2 mfd . capacitor C33 and the common lead to chassis. Turn gang condenser to max. capacity (fully meshed).			
2	Pin 1 of 6AU6 in series with .01 mfd .	10.7 mc . modulated $30 \% 400$ cycles AM (Approx. .05 volt).	$\begin{aligned} & \text { Max. ca- } \\ & \text { pacity } \\ & \text { (fully } \\ & \text { meshed). } \end{aligned}$	T4 top core for max. d-c voltage across C33. T4 bottom core for min. audio output.*
3	FMant. term. in serips with a 300 ohm resis tor. (Remove ant. lead from "FM" term.)	10.7 mc . Adjust to provide 2 to 3 volts indication on VoltOhmyst during alignment.		FM windings. $\dagger \dagger$ T3 top core (sec.). T3 bottom core (pri.).
4				FM windings. $\dagger \dagger$ T2 top core (sec.). T2 bottom core (pri.).
5		106 mc.	106 mc .	L2 osc."* C2 ant. Set C2 at max. capacity while adjusting L2.
6		90 mc.	90 mc .	$\begin{gathered} \text { Limat.* } \\ \text { (Rock seng.) } \end{gathered}$
7	Repeat Steps 5 and 6 until further adjustment does not improve calibration.			

[^10]
CHASSIS RC-1060, RC-1060A

Circuit Description

The chassis used in these receivers have a 6 J 6 tube (V1) (twin triode), one section of which is used as mixer and the other section as oscillator. The FM antenna coil and the FM oscillator coil are placed in such position as to provide coupling between them. A section of the AM oscillator coil is connected in series with the mixer grid input when the range switch is in AM position.

Dual I-F transiormers are used, each transformer containing both $A M$ and $F M$ windings. The $I-F$ amplifier is V2 (6BA6).

The range switch has four functions:
(1) Selection of AM or FM ranges.
(2) Selection of AVC supply voltages to be applied to the controlled tubes. Simple AVC is applied to the grids of V1 and V2 on AM. Delayed AVC is used on FM and is applied only to the grid of V2.
(3) Controls application of $\mathrm{B}+$ voltage to the plate circuits of V1 (disconnected for PHONO operation).
(4) Controls audio input to volume control.

The driver V3 (6AU6) and ratio detector V4 (6AL5) circuits are similar to those used in other RCA Victor AM-FM receivers

The audio voltage controlled by the volume control is amplified by V5 (6AV6) and V6 (6V6GT).

The rectifier V7 is type $6 \mathrm{X} 5 \mathrm{G} T$.

Replacement Parts

[^11]†Stock No. 72953 is a reel containing 250 feet of cord.

MODE 8VOO, CHASSIS RC-618, RC-618A

RADIO CORP. OF AMERICA
MODH 8V91, CHASSIS
RC-616A, RC-616H

Specifications

Tuning Ranges
Standard Broadcast (AM).
jut0-1,600 kc.
Frequency Modulation (1:
) 88.108 mc

Tube Complement

(1) 6 J 6	Mixer and Uscillator
(2) 6 BA 6	1. F. Amplifier
(3) $6 . . \mathrm{L}^{\mathrm{l}} 6$	Driver
(4) 6.4 L 5	Ratio Detector
(j) 6.116	A. F. Amp.
(6) $6 \backslash 6 \mathrm{GT}$	Output
(i) 6 AV 6	AM Det-AVC-Ph. Inv.
(8) $6 \mathrm{~V}^{\prime} 6 \mathrm{GT}$	Output
(9) 6X5GT	Rectifier

Tuning Drive Ratio
18:1 (9 turns of knob)
Record Changer (KI'-178)
Record Capacity.......... Twelve 10 -in. or ten $12-\mathrm{in}$.
Turntable Speed.............................. 78 r.p.

Power Supply Rating...... 115 volts, 60 cycles, 90 watts
Circuit Description
The chassis used in these receivers have a 636 tube (V1) (twin triode), one section of which is used as mixer and the other section as oscillator. The FM antenna coil and the FM oscillator coil are placed in such position as to provide coupling between them. A sertion of the AM oscillator coil is connected in series witu the mixer grid imput when the range switch is in AM position.

Dual I-F transformers are used, each transformer containing both AM and FM windings. The I-F amplifier is $\mathrm{V} \geq$ (6 BAG).
The range switch has four functions:
(1) Selection of tuning range.
(2) Selection of AVC supply voltages to be applied to the controlled tubes. Simple AVC is applied to the grids of V1 and V2 on AM. Delayed AVC is used on FM and is applied only to the grid of V2.
(3) Controls application of B+ voltage to V1, V2, V3.
(4) Controls audio input to volume control.

The driver V3 (6AU6) and ratio detector V4 (6AL5) circuits are similar to those used in other RCA Victor AM-FM receivers.

The audio system is conventional. It consists of V5 (6AV6 a.f. amp.), V7 (6AV6 ph. inv.), V6 and V8 (6 V 6 GT p. p. output)
The rectifier is V9 (6 X 5 GT).

Loudspeaker

Type 92579-2W (8V90 1st Prod.) 8-in. P.M	
Type 92569-5W (8V90 2nd Prod.	.)..... 12 in. P.M
Type 92569-1K X or $92569-5 \mathrm{~W}$ (8V91) ... 12 in P.M	
Voice coil impedance-	
92579-2W	2 ohms at 400 cycles
$92569-1 \mathrm{KX}$	s
92569-5W	ohms

Cabinet Dimensions

	Height	Width	Depth
Model 8 V90	. $331 / 4 \mathrm{in}$.	$311 / 16$ in.	$163 / 8$ in
Model 8 V91	343/8	367	

Dial Lamps (2) Type No. 51, 6-8 volts, 0.2 amp
Jewel Lamp............ Type No. $51,6-8$ volts, 0.2 amp .

Power Output

Maximum	7 watts
Undistorted	6 watts

Antennas:

These receivers have built-in antennas for standard broadcast (AM) and frequency modulation (FM) reception.
Under average conditions these antennas will provide satisfactory reception. However, provision is made for the use of external antennas if desired - connect as indicated below:
AM Antenna: Connect a single wire antenna to terminal "A" (used on Model 8V91 only).
FM Antenna: Remove the built-in FM antenna lead from the "FA" terminals of the terminal board. Connect the transmission line of an external FM dipole antenna to these two "FM" terminals.
Ground: Connect external ground to " G " terminal (used on Model 8 V 91 only). Under certain conditions the use of an external ground is detrimental to FM reception.

tuning

CONTROLS

RC-61 6 H ' Alignment Procedure

CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

Alignment Indicators:

An RCA Voltohmyst or equivalent meter is necessary for measuring developed de voltage during $F M$ alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to ind cate minimum audio output during FM Ratio Detector alignment Connect the output meter across the speaker vorce coil

The RCA VoltOhmyst can also be used as an AM alignment ind cator, either to measure audio output or to measure $a \cdot v \cdot c$ voltage.

When audio output is being measured the volume control should he turned to maximum.

Signal Generator

For all alignment operations connect the low side of the signal generator to the receiver chassis. The ourput should be adjusted to provide accurate resonance indication at all times. If output measure. ment is used for AM alignment the output of the signal generator should be kept as low as possible to avord a vec action

The FM if ahgnment may be checked by means of an FM sweep generator and cathode ray oscilloscope Conngct the output from the sweep generator, which is set to 10.7 mc , to the mixer grid (656 Pin No. J) low side to chassis. Disconnert the 2 mid capacitor C33 from the Ratio Detector circuit

Connect the high side of the oscilloscope to the function of R25 and R26, low side to chassis, Adjust the sweep generator and oscilo. scope to obtain the response curve

The Ratio Detector characteristic may be viewed by connecting the oscilloscope across the volume control R14. Capacitor C.33 should be re connected before checking the Katio Detector charactersistic

CRITICAL LEAD DRESS

1. Keep leads of $C T$ short
2. Dress K 27 away from range switch and pin No. 5 of V 1
3. The ground lead of pin Vio. 2 of $\vee 2$ and $V 3$ should be down against chassis. Its length is critical
The AVC lead from R26 to range switch should be dressed against chassis and away from 6 A 5 driver tube socket.
C43 should have short leads and the color code of the capacitor should go to the coil L4. The capacitor should be cemented down with polystyrene cement at the same time La is cemented.
. The lead from the high side of the loop should be dressed away from tubes.
from tubes. former should be dressed against the chassis.
Comnect C40 directly between the gang condenser and pin No. 1 of $\begin{aligned} & 1 \\ & 1 .\end{aligned}$
4. Make all FM leats as short as possible
5. Dress lead from pin No. 5 of " 2 to terminal " A " of 2 nd 1 F transformer down aganint chassis. Dress resistor R 15 near chassis base.
6. Iress all A C leads away from volume con:rol
7. The lead from "FM" terminal of antenna terminal hoard to LI tan should be dressed away from $V 2$.
The taps on LI and L2 are critical. 1.1 tan should be \mathcal{F} turn from the ground end L2 tap should be $2 \frac{1}{2}$ turns from the gang con Dress (25) ant C26 against the chassis with the shortest lead length possible
The position of 1,1 and L2 is critical. L1 should be midiway be theen '1 and the 1st I. F transformer. The end of L2 should he aproximately $3 / 16^{\prime \prime}$ from ":

Dial Indicator
With the thang combenset inilly me-heal (elunad) the itwhentins Whata he set to the rewrevice mark on the dial hack phate
Refer to the dial scale reproductions on page 7

Dial Indicator and Drite Vechanism - Model 8190

AM Alignment
RANGE SWITCH IN BC POSITION

Steps	Connect high side of sig. gen. to-	Sig.gen. output	Turn radio dial to-	Adjust for peak output
1	C3 in series with .01 mid .	455 kc .	$\begin{aligned} & \text { Quiet point } \\ & \text { at low } \\ & \text { freq. end. } \end{aligned}$	AM windings. \dagger T3 bottom core (sec.). T3 top core (pri.).
2				AM windings. \dagger T2 top core (sec.). T2 bottom core (pri.).
3	"A" terminal of terminal board at rear of chassis in series with 220 mmf	1400 kc	1400 kc .	C13osc. C4 ant.
4		600 kc	600 kc .	14 ose. (Rock gang.)
5	Repeat Steps 3 and 4			

+ L'se alternute loarling
Alternate inachng involven the use of a 47.000 ohm resistor to loall the A M plate, winding while the AM grid winding of the SAME: TRAXSFORMER is being peaked. Then the grid winding is loaldet with the resistor while the plate woding is peaked. Only one windugg is loaderi at any one time Remove the 47,1001 ohm resistor after T and te have been aligned.
Oscillator frequency is above signal frequency on both AM and FM
*"A" terminal used on Model 8V91 only. Use radiated sigual for Model 8 V90.

FM Alignment

RANGE SWITCH IN FM POSITION - VOLUME
CONTROL MAXIMUM

Steps	Connect high sideofsig. gen. to	Sig.gen. output	Turn radio dial to-	Adjust for peakoutput
1	Connect the d-c probe of a Voltohsnyst to the negative			
lead of the 2mfd capacitor C33 and the common lead				
tochassis. Turn gang condenser to max.capacity (fully				
meshed).				

2	Pinlof fAU6 in series with .01 mfd	10.7 mc . modulated $30 \% 400$ cycles AM (Approx. . 05 volt).	Max.capacity (fully meshed).	T4 top core formax.d-c voltage across C33. T4 bottom core for min audio output.
3	FMant term. in series with a 300 ohm resistor. (Remove ant lead from FM' term.)	10.7 mc . Adjust to provide 2 to 3 volts indication on VoltOhmyst during alignment.		FM windings T3 top core (sec.). T3 boltom core (pri.).
4				FM windings. ${ }^{+}$ T2 top core (sec.). T2 boltom core (pri.).
5		106 mc .	106 mc .	L2onc." C2ant. Set C2 atmax. capacity while adjusting L2.
6		90 mc .	90 mc .	Llant." (Rock gang.)
7	Repeat Steps 5 and 6 until further adjustment does not improve calibration.			

- Two or more pomits may be inatud which luwer the andio whtput At the correct pomit the minmum atwado output is apponacheri rispidly and is much lower than at athy neorect point
it Align $7: 3$ and $T \cdot 2$ by mears of alternate loading as explained under AM alignment. ['se a fixu ohm ressitor instead of a 47,000 whm reatoto and toirl the FIl windiugs
* 1.1 ind 1.2 are adjustible by increasing or decreasing the spacing

MODEL 8VGO, CHASSIS $R C-618$, RC-618A

RADIO CORP. OF AMERICA

Note: F.W mixer and oscillator coils are adjustable by increasing or decreasing the spacing between turns. The position of the coils and location of the taps are critical (refer to "Critical Lead Dress").

SOCKET VOLTAGES

Voltages measured with Chanalyst or VoltOhmyst and should hold with in $\pm 0 \%$ with rated line voltage. Tuning condenser closed-no signal input.

Tube	Terminal		Voltage		
			Phono	A.M.	F.M.
(1) 6 J 6	Plate Grid Plate Grid	1 6 2 5	$-\overline{-4}$ -0.8	$\begin{array}{r} 102 \\ -6.8 \\ 96 \\ -2.7 \end{array}$	$\begin{array}{\|r} 98 \\ -6.0 \\ 110 \\ -2.5 \end{array}$
(2) 6BA6	Plate Screen Cathode Grid	5 6 7 1	$\bar{\square} \overline{-0.9}$	$\begin{array}{r} 196 \\ 100 \\ 0.7 \\ -1.3 \end{array}$	$\begin{array}{r} 192 \\ 83 \\ 0.84 \\ -0.2 \end{array}$
(3) 6 AU 6	Plate Screen Cathode	5 6 7	-	$\begin{array}{r} 190 \\ 145 \\ 1.25 \end{array}$	185 141 1.21
(4) 6AL5	-	-	-	-	-
(6) 6AV6	Plate Grid	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 125 \\ -0.6 \end{array}$	$\left\lvert\, \begin{array}{r} 85 \\ -0.6 \end{array}\right.$	$\begin{array}{r} 84 \\ -0.6 \end{array}$
(6) 6 VGGT	Plate Screen Cathode	$\begin{aligned} & 3 \\ & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & 299 \\ & 295 \\ & 21.4 \end{aligned}$	$\begin{array}{\|r\|} 282 \\ 220 \\ 15.5 \end{array}$	$\begin{array}{r} 280 \\ 217 \\ 15.4 \end{array}$
(7) 6AV6	Plate Grid	7 1	$\begin{array}{r} 168 \\ -0.5 \end{array}$	$\begin{array}{r} 125 \\ -0.5 \end{array}$	$\begin{array}{r} 125 \\ -0.5 \end{array}$
(8) 6V6GT	Plate Screen Cathode	3 4 8	$\begin{array}{r} 299 \\ 295 \\ 21.4 \end{array}$	$\begin{aligned} & 282 \\ & 220 \\ & 15.5 \end{aligned}$	$\begin{array}{r} 280 \\ 217 \\ 15.4 \end{array}$
(9) $6 \times 55 \mathrm{GT}$	Cathode	8	313	300	299

RCA PAGE 19-19

RCA PAGE 19-21

-

The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedure. Dial Scale - Model 8V9]

Model 8V90 2nd Production Chassis No. RC-618A

Model 8V91 2nd Production Chassis No. RC-616H

The schematic diagrans above show the selector switch (S 1) used in $\mathrm{RC}-616 \mathrm{H}$ and $\mathrm{RC}-618 \mathrm{~A}$. The connections to S 2 are identical in all chassis - note that position No. 2 (PHONO) of RC-616H and RC-618A corresponds to position No. 1 (PHONO) of $\mathrm{RC}-616 \mathrm{~A}$ and $\mathrm{RC}-618$. No connections are made through S 2 when in AUX . position.

NOTE:
In early RC 616A chassis C42 is 22 mmf ., R4 is 22,000 ohms.

Replacement Parts-Model 8V90-First Prod.

[^12]
RADIO CORP. OF AMERICA

MODELS 8V90, CHASSIS RC-618, RC-618A; 8V91, CHASSIS RC-616A, RC-616H

Replacement Parts-Model 8V91-First Prod.

[^13]
MODELS $8 \times 681,8 \times 682$, RADIO CORP. OF AMERICA
 CHASSIS RC-1061

Specifications

Tuning Ranges

Standard Broadcast ("A" Band)............ 540-1600 kc
Short Wave ("C"Band) 9.4-12 mc

Intermediate Frequency

455 kc
Tube Complement

(1)	RCA 12BA6.	R. F. Amplifier
(2)	RCA 12BE6.	Converter
(3)	RCA 12BA6	I. F. Amplifier
(4)	RCA 12AT6	Det. - A.F. - A.V.C.
(5)	RCA 35 C 5	Output
(6)	RCA 35 W 4	fier

Power Supply Rating
115 volts, D.C. or 50 to 60 cycles, A.C. 30 watts

Loudspeaker

Type 92572-5 \qquad 5 in. P.M.
V. C. Impedance 3.2 ohms at 400 cycles

Power Output
Undistorted 0.7 watts
Maximum

Cabinet Dimensions

Tuning Drive Ratio 72:1 (33 turns of knob)
NOTE: If reception is not obtained on DC, reverse plug in outlet receptacle. This may also reduce hum on AC operation.

To Remove Chassis from Cabinet

Remove the four screws at the corners of the bottom cover (accessible through holes in the cabinet base). Do not remove the hex head screws which hold the base to the bottom cover. The cabinet may now be lifted off the cabinet base.

Dial Positioning

If the speaker should be replaced, it will be necessary to readjust the speaker mounting bracket position so that the dial pan will fit against the cabinet when the chassis is re-installed in the cabinet

Insulating Washers

The cabinet base is insulated from the chassis bottom cover. When servicing make certain that the insulating washers are in place and properly positioned.

DETAIL OF COMPRESSION SPRING

SIDE VIEW

NOTE: See page 4 regarding changes in late production pan and track assembly.

Alignment Procedure

Test Oscillator.-Connect high side of test oscillator as shown in chart. Connect low side to chassis. Keep the output low to avoid A.V.C. action.

Note.-If the test oscillator is AC operated it may be necessary to use an isolation transformer ($115 \mathrm{v} . / 115 \mathrm{v}$.) for the receiver during alignment, and the low side of the test oscillator connected to common wiring at pin No. 2 of 12 AT , socket-reverse line plug if hum is excessive.

Output Meter.-Connect meter across speaker voice coil. Turn volume control to maximum.

Dial Pointer Adjustment.-Rotate tuning condenser to maxinum capacity position (plates fully meshed). Adjust dial to position indicated in drawing.

With the dial adjusted as described above mark the dial pan assembly with a pencil to provide a tuning indicator during alignment.

Dial.Indicator and Drive Mechanism

Steps	Connect the high side of the test-osc. tom	Tune test-osc. to-	Range switch	Turn radio dial to-	Adjuat for max. output
1	Pin No. 1 of 12BA6 I.F. amp. tube in series with 0.1 mfd .	488 kc	" ${ }^{\prime \prime}$	Quiat point 1600 kc and of dial	Top and bottom 72 2nd I. F. trans.
2	Pin No. 7 of 12 BE 6 converter tube in series with 0.1 mfd .				Top and bottom TI* 1st I. F. trans.
3	Antenna lead in series with 100 mmf .	1600 kc	"A"	1600 kc	Cl" osc.
4		1400 kc		1400 kc	$\begin{gathered} C 2 \\ " A^{\prime \prime} \operatorname{tant} . \\ C 10 \\ \text { CA"R.F. } \end{gathered}$
5		800 lac		600 kc	$\begin{gathered} \text { tLs } \\ \text { "A"osc. } \\ \text { tL3 } \\ " A " R . F . \end{gathered}$
6	Repeat Stops 3, 4 and 5.				
7	Pin No. 7 of 12BE6 converter in ateride with 0.1 mfd . capacitor	11.8 mc	"C"	11.8 mc	$\begin{gathered} \text { *"C16 } \\ \text { "C"osc. } \end{gathered}$
8		9.8 mc		9.5 mc	
9	Repeat Steps 7 and 8.				
10	Antenna lead in series with 50 mm fd.	11.8 mc	${ }^{4} \mathrm{C}$ "	11.8 mc	$\begin{gathered} * \text { "C3 } \\ \text { "C" nt. } \end{gathered}$
11		9.5 mc		9.5 mc	$\stackrel{+\mathrm{L} 4}{{ }^{\text {c }}{ }^{\prime} \text { ant. }}$
12	Repeat Steps 10 and 11.				

*Do not readjust $T 2$.
\dagger Rock gang.
**If two peaks are found use minimum capacity peak on C 16 (oac.) and maximum capacity peak on C3 (ant.).

Lead Dress

1. Dress all heater leads down to chassis and as far as possible from all audio grid and plate wiring.
2. Dress power cord to side apron away from coupling capacitors.
3. Dress pilot lamp leads toward chassis bottom and away from audio coupling capacitor.
4. Dress all leads and components away from all coils.
5. Dress lead from range switch to phono socket against switch shield and chassis apron.
6. The antenna lead should be taped up when not in use.

Cathode Currents

	$" A "$ Band	"C" Band
(1) 12 BA 6	4.1 ma	6.9 ma
(2) 12 BE 6	7.3 ma	7.2 ma
(3) 12 BA 6	6.7 ma	7.4 ma
(4) 12 AT 6	0.2 ma	0.2 ma
(5) 35 C 5	34.7 ma	33.5 ma
(6) 35 W 4	52 ma	53 ma

Tube and Trimmer Locations

PAGE 19-28 RCA
MODELS 8X681, 8×682, RADIO CORP. OF AMERICA
CHASSIS RC-1061

RADIO CORP. OF AMERICA

Replacement Parts

\dagger Stock No. 72953 is a spool containing 250 ft . of cord.
*This is the first time this Stock No. has appeared in service data.
APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

DIAL PAN AND TRACK ASSEMBLY (Late Production)

In late production the dial pan and track assembly is changed as follows:
(1) The studs (fixed and idler) are shorter - $19 / 32^{\prime \prime}$ vs. 5/8" overall length.
(2) The two half pulleys are replaced by 1 full pulley (Stock No. 73530).
(3) Spring washers are not used.

The parts are interchangeable as follows:
(1) Original stud or original pan using $5 / 8^{\prime \prime}$ studs USE. SPRING WASHER - original idler stud (Stock No. 73528) is carried in stock.
(2) Short stud or new pan using 1% " studs - OMIT SPRING WASHER-new pan (Stock No. 73484) is carried in stock.
(3) The two half pulleys may be replaced by one full pulley-both are carried in stock.

A stop is used to limit the movement of the idler stud, thus preventing the pulleys from jumping off the dial track due to rough handling during shipment. This stop may be either a speed nut and screw (A \& B) or a plate taped to the idler arm (C \& D).

PAGE 19-30 RCA

Dial Scale
The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedure

Tube and Trimmer Locations (Top View)

©John F. Rider

RCA PAGE 19-33

Alignment Procedure

correct alignment of the fm band requires that
Output Indicators:
An RCA Voltohn
An RCA Voliohmyst or equivalent meter is necessary tor measur.
ng developed d-c ovoltage during FM alignment. Connections are ing developed d-c viltage during fMM alignment Connections are
specified in the alignent tabulation. An output meter is also ecessary to indicate minimum audio output during FM Ratio
Detector alignment. Connect the output meter across the speaker oice coil.
The RCA Voltohmyst can also be used as an AM alignment
indicator, either to measure audio output or to measure a.v-c volt. age.
Wher. audio output is being measured the volume control should Signal Generator:
For all alignment operations except as stated in the tabulation The output should be ad adiusted to provide accurcte resengance chasis. ation at all times. If output measurement is used for AM alignment he output of the signal generator should be kept as low as possible caution:
The chassis is connected to one side of the power supply. On a.c.
peration it is recommended that an isolation transtormer (115 peration it is recommended that an isolation
.$/ 115$ v.) be used for the receiver when servicing
Oscilloscope Alignment:
The FM 1. F. alignment may be checked using a sweep generator
and an oscilloscope. Shunt termincls B and C of $T 3$ with $a 1,200$ and an oscilloscope. Shunt termincls B and C of T 3 with $\alpha 1,200$
ohm resistor. Connect the hiqh side of the oscilloscope to terminal
C of $T 3$ in series with a diode sobe A C of $T 3$ in series with a diode probe. Apply the output of the sweep generator (10.7 mc with $\pm 250 \mathrm{kC}$. sweep) to pin No. 1 of V2 (6B16) erator to chassis. This will show the response of T .
To check the combined response of T_{1} and T_{2} : connect the sweep generator to the antenna terminal board-hiqh side to No. 2 ter-
mincl in series with 300 ohms and low side to No. 1 terminal. Sscilloscope connections as previously connected.
To check the ratio detector response: connect To check the ratio detector response: connect. the high side of
he oscilloscope direct to terminal No. 8 of Sl rear, low side to hassis, apply the output of the sweep generator to pin No. 1 ot V3 (12AU6) in series with. 01 mi. Driver plate circuit connected for
normal operation (1220 ohm resistor removed). Note: It is difficult to observe incrker signais in this step ecenter trequency and sweep width should be previously observed.
Iignment Indicator:
uring alignment a substtute frequency indichetion to must be chassis. We suggest attaching a paper clip to the dial drive cord so that tis ovement may be meaper rep the "Dial Scale" illustration page chitical lead dress
All connections in the mixer-oscillator circuit are extremely
critical both in regard to tead length and lead dress. Do not disturb unless necessary-make careful notation betore servic
ing if it becomes necessary to disturb this wiring.
The ground lead from pin No. 2 of V3 (12AU6 Drive
in length and must be dressed down against chassis. Dress audio coupling capacitor C23 away from output transDress diode filler unit away from alignmert hole in T -2 Dress grid lead of V3 (pin No. 1 of 12AU6) against chassis
6. Dress plate lend of V1 (pin No. 2 of 1996) against chassis.

Dress loop antenna leads so as to prevent contact with external
All ground connections to chassis should
 Dress capacitor C13 down close to range switch so as to clear
the projection on the bottom of the cabinet. The FM ant. and osc. coils must be cemented to the coil support
is prevent microphonic howl on FM Amphenol No. 912 cement is prevent microphonic how on FM. Amphenol No. 912 cement
is recommended tor this purpose. Amphenol No. Sils solvent is
it recommended as solvent it it becomes necessary to loosen the windings.

MODELS 8X71,8X72 CHASSIS RC-1070
AM Alignment angas switch in am postion

Stops	Connect high side of sig. gen. to-	Sig. gen. output	$\underset{\substack{\text { Turn radio } \\ \text { dial to }}}{ }$	Adjust for peak output
1		455 kc .	Quiot point ${ }_{\text {treq. ond. }}^{\text {ath }}$	AM windings. \dagger core (sec.). T2 top core (pri.)
2				AM windings. \dagger Tl top Tl boltom core (pri.).
3	Short wireplaced near loop antenna for radiatedsignal.	1620 kc .	Extreme high irequency end.	C12 osc.
4		1400 kc .	1400 kc .	$C_{4} \mathrm{ant}$.
5		600 kc .	600 kc .	L4oge. (Rock gang.)
-	Ropoat Stop	4 and 5		

+ Use alternate locding,
Alternate loding involves the use of a 10,000 ohm resistor to
load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is lioaded at any one time. R
resistor after T 2 and T 1 have been aligned.
Oscillator froquency is above signal troquency on both AM and

FM Alignment
range switch in fm position - volume

Stops	Connect high side of sig. gen. to-	Sig. gon.	Turn radio dial to-	Rdjust for peak output
1	Connect the dec probe of a Voltonmyst to the nogative indication during glignment.			
2				T3 top core tor max. d-c voltage acrong T3 C32. for min. audio output.*
3				
-				
s		106 mc .	106 mc .	$\xrightarrow{\text { L1 ose. }} \mathrm{Cl}$ ant.
-		90 mc .	90 mc .	
7	Repeat Steps 5 and 6 until further adjustment does not improve calibration			
* Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.				
HAlign T 2 and T 1 by means of alternate loading as explained under AM alignment. Use a 680 ohm resistor instead of a 10.000 ohm resistor and load the FM windings.				
* L1 and LS ara adjustable by increasing or decreasing the spacing between turns.				

- John F. Rider

PAGE 19-34 RCA

RADIO CORP. OF AMERICA

Alignment Procedure CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

Alignment Indicators:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.
The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure a-v-c voltage.
When audio output is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v.c action.
Oscilloscope Alignment:
The FM I-F alignment may be checked using a sweep generator and an oscilloscope. Shunt terminals B and C of T3 with a 1200 ohm resistor. Connect the high side of an oscilloscope to terminal C of T3 in series with a diode probe. Apply the output of the sweep generator (10.7 mc . with $\pm 250 \mathrm{kc}$. sweep) to pin No. 1 of V2 (6BA6) in series with .01 mf . Low side of the oscilloscope and sweep generator to chassis. This will show the response of T2.

To check the combined response of T1 and T2; connect the sweep generator to the FM antenna terminals (remove FM antenna lead) in series with 300 ohms. Note: One FM terminal is grounded-it may be necessary to reverse the sweep generator connections. Oscilloscope connections remain as connected.
To check the ratio detector response: connect the high side of the oscilloscope direct to terminal No. 9 of SI, low side to chassis. Apply the output of the sweep generator to pin No. 1 of V3 (6AU6) in series with .01 mf . Driver plate circuit connected for normal operation (1200 ohm resistor removed). Note: It is difficult to observe marker signals in this stepcenter frequency and sweep width should be previously observed.
Response curves illustrated on page 5.

CRITICAL LEAD DRESS

1. Keep leads of C7 short.
2. Dress R27 away from range switch and pin No. 5 of V1.
3. The round lead of pin No. 2 of V2 and V3 should be down against chassis. Its length is critical.
4. The AVC lead from R26 to range switch should be dressed against chassis and away from 6AU6 driver tube socket.
5. C43 should have short leads and the color code of the capacitor should go to the coil L4. The capacitor should be cemented down with polystyrene cement at the same time $L 2$ is cemented.
6. The lead from the high side of the loop should be dressed away from tubes.
7. Lead from pin No. 2 of V1 to terminal " A " of 1st I. F. transformer should be dressed against the chassis.
8. Connect C40 directly between the gang condenser and pin No. 1 of VI.
9. Make all FM leads as short as possible.
10. Dress lead from pin No. 5 of V2 to terminal " A " of 2 nd I. F. transformer down against chassis.
11. Dress resistor R15 near chassis base.
12. Dress all A. C. leads away from volume control.
13. The lead from " FM " terminal of antenna terminal board to L1 tap should be dressed away from V2.
14. The taps on L1 and L2 are critical. L1 tap should be $3 / 4$ turn from the ground end. L2 tap should be $21 / 2$ furns from the gang condenser C8.
15. Dress C25 and C26 against the chassis with the shortes: lead length possible.
16. The position of L1 and L2 is critical. L1 should be midway between V1 and the lst I. F. transformer. The end of L2 should be approximately " 160^{\prime} " from V1.
17. Capacitor C4l should be secured to the chassis apron with melted wax or cement.
18. FM oscillator coil L2 must be cemented to its support. Amphenol No. 912 cement is recommended for this purpose.
Dial Indicator
With the tuning condenser fully meshed (closed) the indicator should be set to the reference mark on the dial back plate.
Refer to the dial scale reproductions on page 8.
AM Alignment
range switch in bc position

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Rdjust for peak output
1				AM windings. + T3 bottom. core (soc.). T3 to.
core (pri.).				

+ Use alternate loading.
Alternate loading involves the use of a 47,000 ohm resistor to load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 47,000 ohm resistor after T3 and T2 have been aligned.
Oscillator frequency is above signal frequency on both AM and FM.

FM Alignment
range switch in fm position-volume
CONTROL MAXIMUM

Stop:	Connect high gide of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	Connect the d-c probe of a Voltohmyst to the negative lead of the 2 mid. capacitor C33 and the common lead to chassis. Turn gang condenser to max. capacity (fully meshed).			
2	Pin 1 of 6AU6 in series with .01 mfd .	10.7 mc . modulated $30 \% 400$ cycles AM (Approx. .05 volt).	Max. capacity (fully meshed).	T4 top core for max. d-c voltage across C33. T4 bottom core for min. audio output.
3	FM ant. term. in series with a 300 ohm resistor. (Remove ant. lead from " FM^{\prime} " term.)	10.7 mc . Adjust to provide 2 to .3 volts indication on VoltOhmyst during alignment.		FM windings. $\dagger+$ T3 top core (sec.). T3 bottom core (pri.).
4				FM windings.t+ T2 top core (sec.). T2 bottom core (pri.).
5		106 mc.	106 mc .	$L 2$ osc. C2 ant. Set C2 at max. capacity while adjusting $L 2$.
6		80 mc .	90 mc .	Ll ant. * (Rock gang.)
7	Repeat Steps 5 and 6 until further adjustment does not improve calibration.			

- Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.
$\dagger \dagger$ Align T3 and T2 by means of alternate loading as explainea under AM alignment. Use a 680 ohm resistor instead of a 47,000 ohm resistor and load the FM windings.
** L1 and L2 are adjustable by increasing of decreasing the spacing between turns.

Tube and Trimmer Locations
Note: FM mixer and oscillator coils are adjustable by increasing or decreasing the spacing between turns. The position of the coils and location of the taps are critical (refer to "Critical Lead Dress").

Socket Voltages

Voltages measured with Chanalyst or VoltOhmyst and should hold within $\pm 20 \%$ with rated line valtage. Tuning condenser closed-no signal input.

Tube	Terminal		Voitage		
			Phono	A.M.	F.M.
(1) 676	Plate Grid Plate Grid	$\begin{aligned} & 1 \\ & 6 \\ & 2 \\ & 5 \end{aligned}$	$\begin{gathered} -\overline{0.4} \\ -0.8 \end{gathered}$	$\begin{array}{r} 102 \\ -6.8 \\ 96 \\ -2.7 \end{array}$	$\begin{array}{r} 98 \\ -6.0 \\ 110 \\ -2.5 \end{array}$
(2) 6BA6	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{gathered} \text { Z } \\ -0.9 \end{gathered}$	$\begin{array}{r} 196 \\ 100 \\ 0.7 \\ -1.3 \end{array}$	$\begin{array}{r} 192 \\ 83 \\ 0.84 \\ -0.2 \end{array}$
(3) 6AU6	Plate Screen Cathode	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	-	$\begin{array}{r} 190 \\ 1.45 \\ 1.25 \end{array}$	$\begin{array}{r} 185 \\ 141 \\ 1.21 \end{array}$
(4) 6AL5	-	-	-	-	-
(5) 6AV6	Plate Grid	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 125 \\ -0.6 \end{array}$	$\begin{array}{r} 85 \\ -0.6 \end{array}$	$\begin{array}{r} 84 \\ -0.6 \end{array}$
(6) 6V6GT	Plate Screen Cathode	$\begin{aligned} & 3 \\ & 4 \\ & 8 \end{aligned}$	$\begin{array}{r} 299 \\ 295 \\ 21.4 \end{array}$	$\begin{gathered} 282 \\ 220 \\ 15.5 \end{gathered}$	$\begin{array}{r} 280 \\ 217 \\ 15.4 \end{array}$
(7) 6AV6	Plate Grid	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 168 \\ -0.5 \end{array}$	$\begin{array}{r} 125 \\ -0.5 \end{array}$	$\begin{array}{r} 125 \\ -0.5 \end{array}$
(8) 6V6GT	Plate Screen Cathode	$\begin{aligned} & 3 \\ & 4 \\ & 8 \end{aligned}$	$\begin{array}{r} 299 \\ 286 \\ 21.4 \end{array}$	$\begin{array}{r} 282 \\ 214 \\ 15.5 \end{array}$	$\begin{aligned} & 280 \\ & 211 \\ & 15.4 \end{aligned}$
(9) $6 \times 5 \mathrm{GT}$	Cathode	8	313	300	299
(10) 6BF6	Plate Cathode	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	$\begin{array}{r} 129 \\ 7.2 \end{array}$	$\begin{array}{r} 89 \\ 5.4 \end{array}$	$\begin{aligned} & 88 \\ & 5.4 \end{aligned}$

Dial Indicator and Drive Mechanism

Cathode Currents (MA)

Tube	Terminal	Phono	A.M.	F.M.
(1) 6J6	7	-	8.2	8.7
(2) 6BA6	7	-	11.6	13.4
$(3) 6 A U 6$	7	-	10	9.7
$(4) 6 A L 5$	185	-	-	-
(5) 6AV6	2	0.75	0.5	0.5
(6) 6V6GT	8	25.1	19.1	18.5
(7) 6AV6	2	1.7	1.1	1.1
(8) 6V6GI	8	24.1	18.5	18
(9) 6X5GT	8	54	70.5	71
(10) 6BF6	2	0.77	0.55	0.55

MODELS 9W101, 9W103,
RADIO CORP. OF AMERICA
9W105, CHASSIS
RC-618B, RC-618C

PAGE 19-42 RCA
MODELS 9W101, 9W103, RADIO CORP. OF AMERICA
9W105, CHASSIS
RC-618B, RC-618C

Controls-Models 9W101 and 9W103

SHIPPING SCREWS

The radio chassis of these instruments is secured to the cabinet with shipping screws (painted red) which, together with wood spacing strips, should be REMOVED at the time of in stallation.
The record changers are each mounted with three screws which should be LOOSENED at the time of installation
On the RP-168A-1 record changer decorative caps cover the mounting screws, unscrew the caps for access to the screws. REFER TO ILLUSTRATIONS ON PAGES 8 AND 9.

Top View-RP-168A-1 Record Changer

RP-168A-1 RECORD CHANGER

Pickup Landing Adjustment "A"
The pickup point should land half-way between the outer edge of the record and the first music groove.
If the pickup lands inside the starting grooves-turn screw "A" slightly clockwise. If pickup lands outside the starting grooves-turn screw " A " slightly counterclockwise.

Pickup Height Adjustment "B"
During cycle the pickup arm must rise high enough to clear a stack of eight, records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.
If pickup does not clear a stack of eight records-turn screw 'B" slightly clockwise. If pickup arm touches records on record supports-turn screw "B" slightly counterclockwise.

Record Separators

During service work the position of the siar wheel on the underside of the record changer may be accidently shifted this may cause the record separator knives to be extended when in the out of cycle position.
If the separator knives are thus extended-turn the power on so that the turntable is revolving, gently press fingers against the extended knives until they disappear inside the center post-DO THIS ONLY WHILE MECHANISM IS OUT OF CYCLE.

CARE OF SAPPHIRE

The sapphire point on the pickup is protected with a per manent metal quard. Lint may collect to clog the opening in the guard at the sapphire point and cause poor record reproduction. Occasional cleaning may be necessary; brush care fully with a small soft brush.

Speaker Connections,

Top View-RP-178 Record Changer

Replacement Parts

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC 618B-9W101, 9W103 HC 618C-9W105
73893	Board-"F.M." antenna board
73889	Capacitor-Variable tuning capacitor (C1, C2, C3, C4, C8. C12, C13)
73866	Capacitor-Coramic, 2 mmf . (C9)
93056	Capacitor-Ceramic, 5 mmi. (Cll)
31353	Capacitor-Ceramic, 15 mml . (C42)
39042	Capacitor-Ceramic, 47 mmi . (C26)
73867	Capacitor-Ceramic, 56 mmi . (C43)
33103	Capacitor-Ceramic, 68 mmi. (C40)
48125 39640	Capacitor-Ceramic, 150 mmi. (C7, C19, C38, C50, C53)
73748	Capacitor-Ceramic, 1500 mmi. (C39)
73473	Capacitor-Ceramic, . 005 mid ((C6, C10)
73750	Capacitor-Tubular, $002 \mathrm{mid} ., 200$ volts (C36 for 9W105)
7365	Capacitor-Tubular, $003 \mathrm{mid} ., 200$ volts (C24)
72573	Capacitor-Tubular, 003 mid ., 400 volts (C28)
70646	Capacitor-Tubular, $0035 \mathrm{mid} ., 1000$ V. (C34, C56)
71926	Capacitor-Tubular, . 005 mid., 200 volts (C20, C27, C32)
71553	Capacitor-Tubular, .005 mid., 400 volts (C14, C16, C17. C21, C22)
72120	Capacitor-Tubular, . 015 mid., 200 volts (C52)
71928	Capacitor-Tubular, 02 mid., 200 volts (C51)
73638	Capacitor-Tubular, . 02 mid., 400 volts (C55)
71923	Capacitor-Tubular, 01 mid., 200 volts (C23, C25)
73561	Capacitor-Tubular, $01 \mathrm{mid}$. , 400 volts (C58, C59)
71925	Capacitor-Tubular, 01 mid., 400 volis (C29, C41, C54)
71551	Capacitor-Tubular, $05 \mathrm{mid} ., 200$ volts (C15)
73747 $\cdot 74200$	Capacitor-Electrolytic, 2 mid., 50 volts (C33) 10 mid .
$\cdot 74200$	Capacitor-Electrolytic, comprising 1 section of 10 mid ., 300 volts and 1 section of 100 mid., 10 volts (C57A, C57B)
73372	Capacitor-Electrolytic, comprising 1 section of 30 mfd ., 350 volts, 1 section of 30 mid., 300 volts and 1 section of 20 mid., 250 volt (C18A, C18B, C18C)
73918	Coil-Antenna coil-F.M. (\#16 tinned bus wire, 8 turns per lnch, $13 / 4$ turns L.H.-. 469 I. D.) (L1)
73916	Coil-Oscillator coil-F.M. (\#16 tinned bus wire, 7 turns per inch, $43 / 4$ turns R.H.- 469 I. D.) (L2)

(Continued on following page)

Replacement Parts (Continued)

$\begin{gathered} \text { STOCE } \\ \text { No. } \end{gathered}$	DESCRIPTION
	MISCELLANEOUS
72535	Ante
74205	Bexel-Dial reale besel
74299	Brackel-Iowel lamp bracket for
71599	Bracket-Jewel lamp bracket for Modele $8 W 101$ and 9W103
-74288	Button-Rosette bution (nail) for grille for Model 9W101
7243	Cable-Shielded pickup cable complete with pin pligg (2 required) for Model 9W105
72583	Cable-shielded pickup cable complete with pin plug for Models 9W101 and 9W103
13103	Cap-Jowel lamp cap
71892	Catch-Bullet catch and strike for doors
74298	Clamp-Dial clamp (2 required)
X1968	Cloth-Grille cloth for Model 9W101
$\times 1973$	Cloth-Grille eloth for Model 9W103
$X 1953$	Cloth-Grille cloth for blonde instruments for Model 9W105
X1897	Cloth-Grille cloth for mahogany or walnut instruments for Madel 9W105
74209	Cover-Mounting serew cover for APl BeA record changer (3 required)
-74275	Decal-Control panol decal for limed oak instrumente for Model 9W103
-74274	Decal-Control panel decal for mahogany or Walnut ingtruments for Models 9W101 \& 9Wlos
-74281	Decal-Control panel decal for blonde instruments for Model 9W105
-74280	Decal-Control panel decal for mahogany or walnut lnstruments for Model 8W105
$\begin{aligned} & 71768 \\ & 74273 \end{aligned}$	Decal-Trade mark decal (RCA Victor) for Model sW101 Decal-Trade mark decal (Vietrola) Ior Models 9W101
71910	Decal-Trade mark dectal (RCA Victor) for Model 9W105
7196	Decal-Trade mark decal (Victrola) for Model 9W105
$\cdot 74203$ -74204	Dial-Glass dial scale for Models 9W101 and 9W103
73180	Dial-Glass dial scale" or Model 9W105
11889	Grommet-Rubber grommet for front apron chassis (2 required)
72858	Grommet-Rubber grommet for mounting RP179 record changer (3 required)
73903	Hinge-Cabinet door hinge (1 set)
72824	Knob-Tone control or selector switch knob-brown-for blonde or limed oak instruments
71822	Knob-Tone control or selector switch knob-maroonfor mahogany or walnut instruments
72800	Knob-Tuning or volume control knob-brown-for blonde or limed oak instruments
71821	Xnob-Tuning or volume control knob-maroon-for mahogany or walnut instruments
11765	Lamp-Dial or jowol lamp-Maxda 51
-74300	Loop-Antenna loop complete for Model 9W105
73896	Loop-Antenna loop complete for Models 9W101 and 9W105
73109	Nut-Tee nut for mounting RP178 record changer (3 required)
74208	Nut-Tee nut for mounting RP-168A-1 record changer (3 required)
73771	Pull-Door pull for record storage compartment door or radio compartmont door for Model 9W105
-74276	Pull-Door pull for Model 9W103
-74239	Pull-Door pull for Model 9W10l
-74277	Pull-Record changers' drawer pull for Model 9W105
30868	Plug-2 contact temale plug for motor cable
30870	Plug-2 prong male plug for motor cable
73184	Runner-Record changer motorboard runner-R.H.-Ior HP178 changer-Model 9W105
73183	Runner-Record changer motorboard runner-L.H.-for HP178 changer-Model 9W105
* 74271	Runner-Record changer motorboard runner-A.H.一tor RP168A. 1 changer
-74272	Runner-Record changer motorboard runner-L.K.-ior RP168A-1 changer
73110	Screw- $\# 1 / 4-20 \times 13 / 4$ " fillistor head screw for mounting RP178 record changer-Model 9W105
-74278	Screw- \#8-30 $\times 3 / 4$ " trimit hoad acrow for record changers' drawer pull for Model 9W 105
-74424	Screw- $\# 8$-32 x $13 / 4$ special screw for mounting RP-168A-1 record changer (3 required)
-74269	Screw-\#8-32 x $3 / 4$ " trimit head serew for door pull (2 required) for Model gWlol
74113	Screw-\#8-32 x $1^{\prime \prime}$ trimit head screw for door pull for Model 9W103
-74279	Screw-\#8-32 $\times 7 / \mathrm{s}^{\prime \prime}$ trimit head screw for door pull for record storage compartment door and radio compartment door for Model 9Wl05
-74421	Spring-Conical apring for mounting RP-168A-1 record changer-upper-R.H. side (1 required)
-74422	Spring-Conical spring for mounting RP-168A-1 record changer-upper-L.H. side (2 required)
-74423	Spring-Conical spring for mounting RP-168A-1 record changer-lower (3 required)
30900	Spring-Rotaining spring for knobs
72936	Stop-Door stop
73185	Stop-Metal stop for motorboard runners (2 required) Track-Record changer compartment track (for RP-168A-1 record changer) (2 required)

* THIS IS the first time this stock number has appeared in service data.

RADIO CORP. OF AMERICA

Alignment Procedure

CAUTION-CLOSE TUNING CONDENSER PLATES COMPLETELY (C-C.W) BEFORE REMOVING CHASSIS FROM CABINET.
Take oft both wooden strips on bottom of cabinet by removing wood screws before loosening chassis bolts.
CRITICAL leAD DRESS.-

1. All heater wires should be dressed close to chassis.
2. Dress lead from switch to phono jack close to chassis and away from power cord.
3. Dress capacitor between $125 Q 7$ grid and terminal board away from chassis and away from other parts.
4. Dress lead from arm of volume control to terminal board against front apron and away from other leads.
5. In instrument assembly the lead from the rear section of gang to loop shall be dressed away from chassis and other wires to loop.

Test Oscillator.-Connect high side of test oscillator as shown in chart. Connect low side through a .01 mf . capacitor to common "-B." Keep the output signal as low as possible to avoid a.v.c. action.

Speaker and Dial Adiustment.-If the speaker should require replacement or if the position of the speaker mounting bracket is disturbed, reposition as follows:

Mount speaker on bracket, adjust bracket so that front edge of speaker extends $3 / 4$ inch in front of chassis base and tighten bracket screws.

Mount chassis on wood base with mounting screws loose, install in cabinet and push chassis forward until speaker contacts grille and then tighten chassis mounting screw. Adjust dial back plate mounting bracket so that the plate is parallel with cabinet.

The two wood buttons at the top of the dial back plate should be adjusted to provide the best illumination of the dial and pointer

Output Meter.-Connect meter creross speaker voice coil. Turn volume control clockwise to radio maximum high position (3) for alignment.

Dial Pointer Adjustment.-Rotate tuning condenser fully counterclockwise (plates fully meshed). Adjust indicator pointer to position illustrated on front page.

Steps	Connect the high side of test-oscillator tom	Tune test-osc. to-	Turn radio dial tom	Adjust the following for max, peak output
1	1.F. grid, in series with .01 mid.	455 kc	Quiet point 600 kc end of dial	L8 and 1.9 2nd I.F. transformer
2	lat Det. grid in series with .01 mfd .			L6 and L7 *1st I.F. transformer
NOTE-ANTENNA LOOP AND RECORD CHANGER MUST BE IN CABINET FOR STEPS 3, 4 AND 5				
3	Antenna terminal in series with 220 mmf .	1600 ke	160	C19 (osc.)
4	Radiated signal	1400 kc	Signal frequency	Cl7 (ant.)
5	Repeat steps 3 and 4.			

* Do not readjust L8 or L.9 when test oscillator is connected to 1st Det.

1st 1.F. Trans. Substitution.-.The first I.F. transformer may differ from that snown in the schematic diagram. Transformers stamped 970441-1 are as shown in the schematic. Transformers stamped 970441-5 are connected as follows: term. \#4 to plate of 12SA7. term. \#3 to B+, term. \#1 to grid of 12SK7, term. \#2 to A.V.C. The d-c resistance of each winding is 16 ohms. The primary capacitor C 20 is 131 mmf ., the secondary capacitor is 106 mmf .

Electrical and Mechanical Specifications

Intermediate Frequency .. 455 kc Tube Complement
(1) RCA Radiotron 12SA7 ... Converter
(2) RCA Radiotron 12SK7
(3) RCA Radiotron 12SQ7
(4) RCA Radiotron 50L6GT
(5) RCA Radiotron $35 Z 5 G T$

Pilot Lamp
2nd Det., A.V.C., and A-F Amplifier 2nd Det., A.V.C., and A-F Amplifies ... Rectifier Mazda No. $51,6.8$ volts, 0.2 amp . Power Output
Undistorted .. 1.5 watts
Maximum
Loudspeaker
Type 922258-2 \qquad .. $\mathrm{PM}^{\prime \prime} 4 \times 6$ inch elliptica] V.C. Impedance e 3.4 ohms at 400 cycles Power Supply Rating Power Supply Rating
$105-125$ volts, $A-C, 60$ cycles \qquad 60 watts IMPORTANT: Do not plug instrument into a d-c supply.

Access to dial lamp may be obtained by removing sloping panel in record changer compariment.

Phonograpt.
Type
RP-178 or Type 960276-1

Alignment Procedure

Output Meter Alignment.- If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.
Test Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action

Steps	Connect high side of test oscilfator to-	Tune tex oscillator to-	Pum radio dial to-	Adiust the following for maximum peak output
1	6SK7 grid in series with .01 mfd .	455 kc.	Broadcast Quiet Point at 550 ke . and of dial	Pri. and Sec. (2nd I-F Trons.)
2	$65 A 7$ grid in series with .01 mfd .			Pri. and Sec. (list I-F Trans.)
3	Primary lead on loop in series with 200 mmfd .	1,400 ke.	1,400 kc.	$\begin{aligned} & \mathrm{C} 4 \text { (ose.) } \\ & \text { C2 (ant.) } \end{aligned}$
4		600 kc .	600 kc .	42 (ose.) Rock gang
5		Repeat steps 3 and 4		

Automatic Record Changer

Model 77VI
Controls

Circuit Description

The receiver is a seven tube superheterodyne employing push-pull power unit. AVC is applied to the converter and i-f tubes. The broadcast band utilizes a standard loop antenna.

Critical Lead Dress:

1. Dress speaker cable leads down next to chassis.
2. Dress output plate capacitors next to chassis.
3. Dress plate lead of output tube away from grid of a udio amplifier.
4. Dress plate lead of output tube away from grid of audio amplifier.
5. Dress all a-c leads away from volume control down next to chassis. along front apron of chassis.
6. Dress R12 and R15 down near chassis base.

Dial Indicator and Drive Mechanism

Frequency Ronges
Standard Broadcast "A" $540-1,600 \mathrm{ke}$
Intermediate Frequency
455 kc
Tube Complement

Pilot Lamps(2) Mazda No. 51, 6-8 volts, 0.2 amp .
Compartment Lamp(1) Mazda No, $51,6-8$ volts, 0.2 amp .

Loudspeaker

Electrodynamic	92569-1 W
Size	12-inch
V. C. impedance at 400 cycles	2.2 ohms

Power Output Roting
Undistorted
5 watts

Phonograph
Type
Automatic 960260.1
Record Capacity ... Ten 12-in.
Turntable
Type lickup
.78 r.p.m. type

Tuning Drive Ratio
$16: 1$

CLARI-SKEMATIX

[^14]RADIO CORP. OF AMERICA

Alignment Procedure

Oulput Meter Alignment.- If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.
Test Oscillator.- For all alignment operctions, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action
Calibration Scale.-The dial scale printed in this service note may be temporarily attached to the chassis for quick reterence during alignment.

Using Printed Dial Scale.

1. Cut out the printed dial scale, or malse a tracing of the scale.
2. With gang at full mesh the pointer should be set to the second reference mark from the left hand end of the dial backing plate.
3. Place the printed dial scale or the tracing under the pointer so that the extreme left scale graduations coincide with the pointer. Use scotch tape to hold the dial scale in place.

Note.- It is not recommended that the glass dial scale in the cab net be removed as an alignment reference. This glass dial scale is fastened to the bezel with sheet metal lugs bent over the scale to hold it in place. Removing the glass dial scale will necessitate bending the lugs, resulting in their weakening and subsequent breakage.
"C" Band Reception.- For best reception on " C " band with an outside antenna, adjust the trimmer screw of C20 on the antenna coil. Turn screw carefully with an insulated screwdriver (RCA Stock No. 31031) while the receiver is funed to a station in the $31-m e t e r$ band. If returning to internal antenna at any time. close the link on the center terminal and readjust " C " band antenna trimmer C 20 for best reception on 31 -meter band.
For additional information, refer to booklet. "HCA Victor Receiver Alignment.'

Stop:	Connect high side of test oscillator to-	Tune test oscillator to-	Turn radio dial to-	Adjust the following for maximum peak output
1	6SK7 grid in series, with .01 mid.	455 kc.	Broadeast Quiet Point at 550 kc . end of dial	Top and boltom T-I (2nd I-F Trans.)
2	6SA7 grid in series with 01 mid .			$\begin{gathered} \text { Top and } \\ \text { bottom } \\ \text { T-2 } \\ \text { (1st I-F } \\ \text { Trans.) } \end{gathered}$
3	Yellow lead on loop in series with 200 mmid . (link closed)	1,400 kc.	Broadcant 1400 kc.	C24 (osc.)
4		600 kc.	Broadcast 600 ke .	14 (ose.) Rock gang
5		Repeat steps 3 and 4.		
6	Antenna terminal in series with 47 mmid.	15.2 mc.	Short Wave 15.2 mc .	$\begin{gathered} \mathrm{C} 23 \text { (ose.) } \\ \text { C20 (ant.) } \end{gathered}$
7		9.5 mc .	Short Wave 9.5 mc .	$\begin{aligned} & \text { L5 (osc.) } \\ & \text { L. } 3 \text { (ant.) } \end{aligned}$
8		Repeat steps 6 and 7		
9	Install and connect chassis in cabinet with link closed. Tune in a radiated signal of 1400 kc . on broadcast band and peak C32 on loop.			

* Use minimum capacity peak if two can be obtained. Check for selection of correct peak by tuning the receiver to approximately 14.3 mc., where a weaker signal should be received.
Oscillator tracks 455 kc . above signal on both bands.

Critical Lead Dress:

1. Dress all A. C. leads away from volume control
2. Dress lead from top tap of volume control to tone switch along front apron of chassis.
3. Dress R 9 and R15 down near chassis base.

Note.-In order to remove the chassis from the cabinet, remove the knobs and the connecting caioles, then unscrew the four slotted hex head screws from the two "L" brackets bolted to the rear of the chassis. The chassis may then be slid out toward the bottom rear of the cabinet. Do not remove the hinge screws or the two large nuts in the rear of the chassis. When replacing the chassis, make sure that the tapered pins on the front of the chassis fit into the holes on the metal runners attached to the cabinet door.

SPEAKER CONNECTIONS

BACK VIEW

The dial scale drawing shown is a full size reproduction. It can be used as a reference in aligmment procedure.

Replacement Paris

For Record Changer Parts refer to Service Data for Model 960260.1

$\begin{gathered} \text { stocx } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { 8TOCI } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES (RC-606C)	$\left\lvert\, \begin{aligned} & * 70128 \\ & * 70129 \\ & \bullet 70127 \end{aligned}\right.$	Tranaformer-First I-F transformer (T1) Tranaformer-Second I-F transformer (T2) Trantformor-Powor transformor, 117 volts, 60 cycles (T4)
71601 71806	Board-"Ant. ground" board ${ }^{\text {Bracket-Dial bracket with drive cord pulley (L. H.) }}$	33969	Washor-"C" washer for tuning shaft
71800 71805	Bracket-Dial brackel with drive cord pulloy (L. H.)		
71615			PEAKER ASSEM
71924	Capacitor-Ceramic, 56 mmi . (C4)		
71810	Capacitor-Mica trimmer, 3 sections 8.80 mm . (C20, C23, C24)	13887	Cap-Dust cap
71814	Capacitor-Coramic, $120 \mathrm{mms} .(\mathrm{C5}, \mathrm{Cl} 3)$	71560	Plug-5 prong male plug for appaker
31813 71613	Capacitor-Silvored mica, ${ }^{150} \mathrm{mmin}$. (C1. C2)	71961	Speaker-12" PM spoakor complete with cone and voice
70601	Capacitor-Tubular, $.002 \mathrm{mid.}$.400 volts (C33)		coil lens output transiormer and plu
70302	Capacitor-Tubular, 0025 mid., 400 volls (C8, C11)	37899	Tranaformer-Outpui transformer ($\mathrm{T}^{\text {a }}$)
70846 70608	Capacitor-Tubular, ${ }^{\text {Capacitor-Tubular, }} \mathbf{. 0 0 3 5}$ midd., 1000 volis (C16, C17)		NOTE: 4 staping on speaker in
70810	Capacitor-Tubular. 01 mid., 400 volts (C6, C10, C14, C31)		EE: If stamping on speaker in instrument does not agree with above speaker number, order replace-
70572 70611	Capacito:-Tubular, $.015 \mathrm{mfd} ., 400$ volts (C1B, C19) Capacitor-Tubular, 02 mid., 400 volts (C15)		ment parts by roforring to modol number of in-
70815	Capacitor-Tubular, $05 \mathrm{mid.}$,400 volts (C7)		strument, number stamped on spoaker and full description of part required.
71976	rolt: (C30A, C30B, C30C)		MISCELLANEOUS
71833	Coil-"A" band oscillator coil (L4)	71019	Bracket-Door check mounting bracket
71632	Coll-".C', band antonna coil (L2, L3)	36461	Button-Pluq button
71634	Coil-"C" band oscillator coil (L3) ${ }^{\text {Condenter-Variable tuning condenser (C21, C22) }}$	38684	Capacitor-Mica trimmor, $\mathbf{2 - 2 0} \mathrm{mmi}$. (C32)
71600 70342		71820	Check-Radio compartment door check assombly leas epring
72953	Cord-Drive cord (approx. 45" overall length)	$\times 1638$	Cloth-Grill- cloth for walnut inatrumen
71609	Drum-Drive drum	$\times 1639$	Cloth-Grille cloth for mahogany instruments
72069 70930	Grommol-Rubber grommot for rear mounting foel	70547	Cover-Compartment lead cover
71608	Indicator-Station grommoctor indicator	71769	Decal-Control function decal for walnut or mahogany
71607 38932	Plato-Dial back plate	71910	Decal-Trade mark decal (RCA Victor)
38832 12493	Plug-Pin plug for loop lead	71966	Decal-Trade mark decal (Vietrola)
72602	Pulley-Drive cord pulloy mounted on dial brackel	71817	Dial-Glase dial seale
	Resisfor- 330 ohms, 1 watt (R12)	71816	Escutcheon-Dial scale escutcheon loss dial
	Resistor- 2,200 ohms, 2 watt (R23) Resistor- 8.200 ohms, $1 / 2$ watt (R14)	11889	Grommet-Rubber grommet to cushion chastis front aproa (2 required)
	Resistor-15,000 ohms, 2 walt (R2)	72068	Grommot-Rubber grommot for mounting loop
	Resistor-18,000 ohms, $1 / 2 \mathrm{watt}$ (R17)	71764	Hinge-Cabinot door hinge (2 required)
		13103 71822	Jowel-Pilot lamp cap
	Resinior- $27,000 \mathrm{ohms}$, $1 / 2$ watt (R4i) R16, R1s)	71822	Enob-Range switeh or tone switch kn
	Resistor- 100.000 ohms, $1 / 2$ watt (R22)	5117	Lamp-Compartment lamp
	Resistor-270,000 ohms, $1 / 2$ watt (R6, R7, R8, R11)	11763	Lamp-Dial lamp
	Resistor- 470,000 ohms, $1 / 2$ watt (R10, R13, R18) Resistor- 2.2 megohme, $1 / 2$ watt (R1, R5)	71813 71013	Loop-Antenna loov complote (L1, C32)
	Reaistor-10 megohms, $1 / 2$ watt (R9. R15)		Mounting-One set of hardware to mount record changet -contisting of four springs, two spring washers and
$\begin{aligned} & 71604 \\ & 35787 \end{aligned}$	Shaft-Tuning shaft Socket-Inpui sockot		two rubber washers
330868	Socket-Motor cable socket, 2 contact (female)	73387 72324	Shade-Compertment lamp
31364	Socknt-Pilot lamp socket	36422	Socket-3 contact sockot (tomale) for loop leads
31251	Socket-Tube sockel	71818	Spring-Door cheek apriag
31418	Spring-Indicator cord tension spring	30900	Spring-Rotaining epring for knobs
71602	Switch-Range switch (S1, S2)	71765	Support-Cabinot lid support and hlinge
71803	Switch-Tone control switch (S3)	71814	Wacher-Rubber waher for door chock

Replacement Parts
Insist on senuine factory-tested parts, which we reedily identified and may be purchaced from authorized dealers.

| STOCK
 No. | DESCRIPTION | | STOCK |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NO. | | | |

[^15]

RCA PAGE 19-5
RADIO CORP. OF AMERICA MODELS 610V1, CHASSIS RC-610C; 610V2, CHASSIS RC-610

IST
ISTPOSITION (PHONO) NOT SHOWN.

AT BAND-SWITCH SHOWN BROADCAST BAND (AUTOMATIC TUNING PUSH BUTTON \# 6 DEPRESSED 880-1600 KC BROADCAST BAND (MANUAL) 540-1600 KC

PACE 19-60 RCA

CLARI-SKEMATIX
MODELS 610VI, CHASSIS RADIO CORP. OF AMERICA RC-610C; 610V2, CHASSIS
RC-610

- John F. Rider

RADIO CORP. OF AMERICA MIODELS 6IOV1, CHASSIS RC-610C; 610V2, CHASSIS R.C-610

Model 610V1

Model 610V2

Circuit Description

Models 610V1 and 610V2 have individual built-in antennas for FM and AM coupled to individual 1st Det-Osc. tubes (6BE6 V1 and V2). The outputs of these two tubes are connected to separate IF transformers (T1 and T2) whose secondaries are in series rate if transtormers (T1 and Th) whose secondaries are in series of V 3 is connected to separate IF ransformers (T 3 and T 4) whose primaries are in series. The secandary of T 3 (FM IF) is connected primaries are in series. The secandary of T3 (FM IF) is connected to the driver tube (6AU6 V4). The secondary of TA (AM IF) in connected to the AM second detector (6SQ7 V6). The output o the driver tube (V4) is coupled thru the driver fransiormer (TS) and ratio detector transiormer (T6) to the FM ratio detector tube in one unit (T5).]
The cudio outputs of the AM second detector and the FM ratio detector are connected thru a section of the range switch to the volume control input.

The B+ supply (+245 V) to the plates and screen grids of V1 and $V 2$ is controlled thru a section of the range switch.

Simple AVC is used on AM and is applied to both the IF amplifier (V3) and the AM lst detector (V2). Delayed AVC is used on FM and is applied only to the IF amplifier (V3). The AVC distribution is controlled thru a section of the range switch.

Electrical and Mechanical Specifications

Antennas

Under conditions of normal field strength and interference, the RCA Victor antennas installed inside the cabinet will be effective for Frequency Modulation and Standard Broadcasts.

If reception is not satisfactory on one or both of the bands using the built-in cabinet antennas, one or two external antennas may be used. Connections are made to the antonna terminal board in the back of the cabinet. External antennas may be

erected indoors or outdoors and should be oriented in direction for requirements of best reception. RCA Television Antenna Stock No. 225 or 226 or the equivalent with 300 ohm transmission line is recommended for an FM external anten ohm transmission line is recommended for an FM external antenna. In this case, disconnector the Anchar And Braadcast antenna, ard Broadcast antenna, open the link across the ferminals A-G andenna antenna should consist of a wire 30 to 60 feet or so in length, monnedion a convenient lacation as high as possible. A ground a waterpipe or other good ground may be used.

DIAL INDICATOR AND DRIVE MECHANISM

RC-610C Alignment Procedure

Alignment Indicators:
An RCA. VoltOhmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation below. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector aligntment. Connect the output meter across the mpeaker voice coil.

The RCA VoltOhmyst can also be used as an AM alignment indicator, either to meabure audio output or to measure a-v-c valtage.
When audio output is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations, except FM IF.RF, connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide aecurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v-c action.
Calibration Scale.-The dial scale printed in this service note may be temporarily aftached to the chasis for quick reference during alignment.

Uning Printed Dial Scale.-

1. Cut out the printed dial scale, or, better still, make a tracing of the scale.
2. With gang at full mesh the pointer should be set to the first reference mark from the left hand end of the dial backing plate.
3. Place the printed dial scale or the tracing under the pointer so that the extreme left scale graduations coincide with the pointer. Use scotch tape to hold the dial scale in place.
Note.-It is not recommended that the glass dial scale in the cabinet be removed as a nalignment reference. This glass dial scale is fasteped to the bezel with sheet metal lugs bent over the scale to hold it in place. Removing the glass dial scale will necessitate bending the lugs, resulting in theix weakening and subsequent breakage.

610V1 (RC-610C) FM Ratio Detector Alignment

 bange switch in fm position-vol. cont. maximum| Stope | Connect high side of sig. gen. to- | Signal generator output | Ndjustmonts and indications |
| :---: | :---: | :---: | :---: |
| 1 | Connect the $\mathrm{d}-\mathrm{c}$ probe of α VoltOhmyst to the negative lead of the 5 mid. capacitor, C20, the common lead of the VoltOhmyst to chassis. | | |
| 2 | Pin 1 of driver tube 6AU6 In serien with .01 mfd. | 10.7 mc . modulated 30\% 400 cycles AM (Approx. volt) | Top core T5 for \max d-c acrom C20 (Approx. 4
 Bottom core T5 for minimum oudio output |
| 3 | Repeat Step 2 until further adjustment does not improve alignment. | | |

Back View

610 V 2 (RC-610) FM Ratio Detecfor Ampament RANGE SWITCH in FM POSITION-VOL. CONT. MAXDUN

Step:	Connect high side of nig. gen. to-	Signal genorctor output	Kdjustments and indicationg
1	Connect a 680 ohm resistor between pins 5 and 7 of the ratio detector tube GAL5. Connect the d-c probe of a VoltOhmyst to the negative lead of the 5 mfd . capacttcr, C20, t.e common lead of the Voltohmyst to chasais.		
2	Pin 1 of driver tube 6AU6 is series with .01 mfd .	10.7 mc. modulated $30 \% 400$ cycles AM (Approx. . 25 volt)	Driver trans. T5, for max. dec across C20 (Approx. 14.5 volte)
3	Disconnect the Voltohmyst and the 680 ohm resistor from the 6AL5. Connect two 68,000 ohm resistors (within 1% of eacn other) in series crcross the 22,000 ohm resistor R17. Connect the common lead of the VoltOhmyet to the center point of the 68,000 ohm resistors and the d-c probe to ferminal "A" of the ratio detector trans. T6. Use 30 volt quale of Voltohmyst first, reducing to lower scale as required.		
4	Same as Step 2	Same as Step 2	TT6 bottom core for zero d-c balance. †T6 top core for min. audio output.
5	Reconnect VoltOhmyst as in Step 1, omitting 680 ohm resistor.		
6	Repeat Step 2.		
7	Remove AlL connections.		

\dagger Near the correct core position the zero point is coproached rapidly and continued adjustment causes the indicated polarity to reverse. A slow approach to the zero point is an indication of severe detuning, and the bottom core should be turned in the opposite direction.
The zero d-c balance and the minimum a-f output should occur at the same point. If such is not the case, the two cores should be adjusted until both occur with no further adjustment of should be adjusted until both occur with no further adjustment of taneously. watching the Voltohmyst, and an output meter, hooked crerons the voice coil for the point at which both zero d-c and minimum $\alpha-1$ output occur.

FM IF-RF Alignment
(FM Ratio Detector must be cligned Arst.)
RANGE SWITCH MA FM POSITION

Steps	Connect sig. gon.	Sig. gen. output	Turn radio dial to-	Xdjustment for peak output
1	Connect the d-c probe of a Voltohmyet to the negative lead of the 5 mfd . capacitor C2O and the common lead to chassis. Turn gang condenger to max. coppacity (fully meshed).			
2	High side to one FM ant. term. in series with .01 mid . Low side to the other FM ant. term.	10.7 mc 30% modulation, 400 cycles 凡M. Adjust to provide 2 to 3 volts indication on VoltOhmyst during alignment.	Max. capacity (fully meshed)	- Using alter. nate loading: T3 bottom core (sec.) T3 top core (pri.) Tl bottom core (sec.) T1 top core (pri.)
3	High side to one FM ant. term. In series with a 120 ohm resistor. Low side to the other FM ant. term in neries with a 120 ohm resistor.	106 mc	106 mc	C54 onc. C52 ant.
4	$\begin{gathered} \text { Same as } \\ \text { Step } 3 . \end{gathered}$	90 mc	90 mc	L3 onc.
5	Repeat Steps 3 and 4 until further adjustment does not improve calibration.			
*Alternate loading involves the use of $\alpha 680$ ohm resistor to ad the plate winding while the grid winding of the SAME RANSFORMER is being peaked. Then the grid winding is loaded ith the resistor while the plate winding is peaked. Only one inding is loaded at any one time. Remove the 680 ohm resistor fter T3 and Tl have been aligned.				

Make all FM leads as short as possible.
With as short a lead length as is practical.
Make all FM leads as short as possible. as close to base and as near to the back apron as possible.
This lead provides degeneration for the If stage and neither
its length nor the point at which it is grounded to the chasels Drese all leads away from the 3300 ohm resistors R28 and
R29.
 RC-610

 low to high trequencies. tune in the irrat station on the inst. Wa prese in the 4. Retijuand couro rod No. 1 to receive the first station. To socure
 6. Procced in the same manner to adjust for the remaining sta-

SPEAKER CONNECTIONS

Oscillator trequency is above signal trequency on both AM
and FM .

$\begin{aligned} & \text { sTocs } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { stoct } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHRSSIB Assemblies		Tranaformer-1at 1.F. tranaformer-F.M. (T1)
70258	Board-"FM-Antenna-Ground" bourd	-72888	
72046	Capacitor-Mica trimmer, $2.5-13 \mathrm{mmf}$. (C54)		Stock Now. $71614-(120 \mathrm{mmf}$. C36), 72490 Cap
71808	Capacitor-Mica trimmer, ${ }^{\text {3-35 mmint }}$ (C52)		midd. (C19). 30189-(120 ohms, R13), 30492-(22.000 ohms.
72334 72570			R14, R17). 30649-(2.2 meg.. R18), 72593 Trans. (T1),
39042	Capacitor-Ceramic, 47 mmin . (C10, C33)		72723 Trans. (T3), 71935 Trans. (TS), 71934 Tranc. (Tb) Not used in RC- -10 C .
71924	Capacior-Ceramic, 56 mmf . (Ce)		
71614	Capacitor-Ceramic, $120 \mathrm{mmf}$. (C7, C26, C36)		
72571	Capacitor-Mica, 330 mmf ((C2)		peeiter hssemblies
72572	Capacitor-Mica, 360 mmf . (C9)		92589-1W-RL103-1
39656 70646		13867	Cap-Dust cap
72546 7253	Capacitor-Tubular, .0035 mid .1000 volts (C23, C24)	36145	Cone-Cone and volce coil ansombly
71087	Capacitor-Molded paper, . 003 m mfd., 1000 volts (C35)	71560	Plug-5 prong male plug for speake
72490	Capacitor-Tubular, 005 mid., 200 volts (C17, C18, C19. C22, C29)	7196	Speaker-12" PM speaker complete with cone and roice coil losa output transformor and plug
71553	Capacitor-Tubular, $005 \mathrm{mid} ., 400$ volis (Cll, C12, Cl3. C14, C15)	$\begin{aligned} & 71145 \\ & 37899 \end{aligned}$	Suspenaicn-Metal cone suspension Transformer-Output transformer (T7)
$\begin{aligned} & 72120 \\ & 71925 \end{aligned}$	Capacitor-Tubular, $.015 \mathrm{mld} ., 200$ volts (С $^{2} 3, \mathrm{C} 31$) Capacitor-Tubular, 01 mid.. 400 volts (C3. C5, C16. C25, C27)		MISCELLKNEOU8
70611	Capacitor-Tubular, $02 \mathrm{mid} . .400$ volis (C21)	$*$ -72355 $* 72750$	Antenna-Di-pole antennc
71551	Capacitor-Tubular, 05 mid .6 200 volts (C6)	$\begin{array}{r}\text {-72750 } \\ \hline 72751 \\ \hline\end{array}$	Back-Cabinet back for walnut ingtrumonta
72121	Capaeitor-Electrolytic, 5 mid., 50 Tolts (C20)		Back Cabin back for blonde instrumente
-72052	Capacitor-Electrolytic, consisting of 1 section of 30 mid., 450 volts, 1 bection of 30 mid . 350 volts and 1 section of 40 mid .; 25 volts (C50A. C50B, C50C)	$\begin{array}{r}729146 \\ \hline 729\end{array}$	Bexel-Push button bezel-wainut or mahogany instruments
335	Coil-F.M. antenna coil (L1, L2)	$\cdot 72906$	Bezei-Puah bution bezel-blonde instrumenta
72336 72574	Coil-F.M. oscillator coil (L3)	70556	Bumper-Rubber bumper for tray-walnut or mahog-
72333	Coid-Oscillator coil-" ${ }^{\text {A }}$ " band (L5)		any inatruments ${ }^{\text {a }}$,
72059	Condenser-Variable tuning condenser less mounting bracket and trimmera (C51, C53, C55, C56)	$\begin{aligned} & 72908 \\ & \bullet 72144 \end{aligned}$	Bumper-Rubber bumper for Button-Push button
70342 34652		$\begin{array}{r} 72583 \\ 13103 \end{array}$	Cable Shielded pickup cable complote Cap-Pilot lamp cap
	Cord-Drive cord (approx. ${ }^{\text {a }}$ (${ }^{\text {a }}$ overall length)		Capacitor-Misa trimi
71799	Grommet-Rubber grommet for mounting R.F. thelf (3 required)	4	160 mmf ., 2 eections of $25-250 \mathrm{mmf}$. . 2 nections of
72069	Grommet-Rubber grommet for rear mounting foet (2		$\mathrm{C}_{42}, \mathrm{Cl}_{43}, \mathrm{C}_{44}, \mathrm{C}_{4}$)
71608	Indicator-Station selector indicator	$\begin{aligned} & 71892 \\ & 70150 \end{aligned}$	Catch-Door catch
71607	Plat-Dial back plate leas dial	72050	Coil-P.B. oscillator coil-H.F. (L10, L11, L12)
30868 12493	Plug-2 Plug-5 contact comale demale	72051	Coil-P.B. oscillator coil-L.F. (L13, L14, L15)
12493		$\cdot 72558$	Decal-Control marker decal-walnut or mahogany instruments
32641	Plug-3 prong male plug for selector cable or loop cable	-72910	Decal-Control marker decal-blonde instruments
36230	Pulley-Drive cord pulley	71966	Decal-Trade mark decal (Victrola)
30732	Resistor-47 ohme. 1/2 watt (R8)	71984	Decal-Trade mark decal (RCA Victor)
30189	Resistor-120 ohms, 1/2 watt (R13)	-72682	Dial-Glass dial wale
44632	Resistor- 560 ohms, 2 watts (R22)	-72513	Escutcheon-Dial escutcheon lean dial
34766	Resistor-1000 ohms, $1 / 2 \mathrm{watt}$ (R3, R15)	X1632	Grille-Grille cloth for walnut cabinet for Model
71991 19525	Resistor-2200 ohmi, Resistor- 3300 ohms, 2 watt (R12) watts (R28,	X1633	Grille-Grille cloth for mahogany cobinet for Model 610 V 2
38897	Resistor-6800 ohms. 1 watt (R4)	X1649	Grille-Grille cloth for blonde cabinat for 610 V 2
1425	Resistor-8200 ohms, 1/2 watt (R23)	$\times 1643$	Grillo-Grille cloth for Model 610V1
38888	Resistor-8200 ohms, 1 watt (R5)	$\cdot 72808$	Grill-Metal grille for Model 610V1
36714	Resistor- 15.000 ohms, $1 / 2$ watt (R16)	$\cdot 72557$	Grill-Metal grille for Model 610 V 2
39158 30492		72441	Guide-Carriage guide, R.H.-walnut or mahogany
71989	Resistor-22,000 ohms, 1 watt (R9)	72904	Guide-Carriage gulde, R.H.-blonde instruments
30409	Resistor-27,000 ohms, 1/2 watt (R30, R31)	72442	Guide-Carriage guide, L.H.-walnut or mahogany
14583	Resistor-220,000 ohmer $1 / 2$ watt (R36)		隹
30651	Resistor- 270.000 ohms, $1 / 2$ watt (R11, R19, R26, R33)	-72905	Guide-Carriage guide, L.H.-blonde instrumenta in-
30548 30652	Resistor- $-470,000$ ohms, $1 / 2$ watt (R21, R24, R32)	39352	Hinge Cabinet door hinge-walnut or mahogany suments
30649		-72911	Hinge-Cabinet door hinge-blonde lnstrumente
30992	Resistor-10 megohms, $1 / 2$ watt (R20, R25)	71821	Knob-Control knob-walnut or mahogany intrume
71917	Resistor-22 megohms, $1 / 2$ watt (R27)	22007	Knob-Control knob-blonde instruments
72055	Shatt-Tuning knob shaft	-7280	Knob-Record storage compartment door knob for Model
35787 31364	Socket-Phono input socket	71890	Knob-Reeord storage compartment door knob for Moder
72516	Socket-Tube socket, miniature		510 v 2
31251	Socket-Tube socket.	11765	Lamp-Dia
31418	Spring-Tension spring for drive cord	70544	Loop-Antenna loop (L4, C58)
$\cdot 72056$	Support-Dial support and pulley bracket campleto with four pulleys-R.H.	$\begin{aligned} & 72563 \\ & 70546 \end{aligned}$	Marker-Call letter marker ${ }^{\text {Mounting-One set of hardware to mount record }}$
72057	Support-Dial support and pulley bracket complete with one pulley-L.H	30868	changer Plug-2 contact female plug for extonaion eable
72054	Switch-Hange switch (S1, S2, S3)	30870	Plug-2 prong male plug for extensio
71603	Swith-Tone switch (S4)	31048	Plug-Pin plug for pickup cablanger compartme
72593	Transformer-First I.F. transtormer-F.M. (T1, C59, C60)	-72556	Pula-boor pul fort rocord for Model
${ }_{72723}^{71625}$		-72806	Pull-Door pull for record changer compartment
71631	Transiormer-Second 1.F. transformer-A.M. (T4, C68, C69. C70)	70551	radio compartment door for Madel 610 V Retainer-Tray roller rotaining strip-L.H.
	Transformer-Driver transformer (T5,	70552	Retainer-Tray roller retaining ztrip-R.H.
71934	Transformer-Ratio detector transformer (T6, C66, C67)	70554	Reller-Record changer tray rollor (6) required) on for
71975	Transformer-Power transformer, 117 volts, 50/60 cycle (TB)	36422	Socket-3 coniact female socket for loop leade or for selector awitch cable
35969	Washer-"C" wanher for tuning, shaft	72156 34053	Spring-Push button bezel apring
	CHASSIS ASSEMBLIES	30900	Spring-Petaining spring for kno
	c	- 72582	Stop-Mechonism tray glop
	Some as RC-610 except:	39360	Support-Drop nupport for record changer compartmont door-walnut or mahogany instruments
7251 72490		-72912	Suppor-Drop support for record changer compartment
34763	Resistor- 68 ohms. $1 / 3$ watt (R13)		Suppor-blonde instruments
34765 30158		$\cdot 72512$	Switch-Push button awitch only (S10, S11, S12, S13.
30158 12531			S14, S15, S40, S41, \$12, S43, S44, S45)
3078	Resistor-10,000 ohms, 1/2 wott (R17)	70555	Tire-Rubber tire for record changer troy
30685	Renistor- 33.000 ohms, $1 / 2$ watt (R14)		
31449	Resistor-1.5 megohma, 1/2 watt (R18)	$\begin{array}{r} 72909 \\ 2917 \end{array}$	Tray-Record changer tray-blonde instruments Washer-"C" washer to faston rollors

Electrical Specifications

General Description

The Nash-RCA Model AC-3689 is a six-tube, deluxe, custom-built, superheterodyne automobile radio receiver consisting of three units. (1) The control unit containing the tuning mechanism and radio-frequency circuits: (2) the power unit containing the i.f, audio, and power-supply circuits: and (3) the loudspeaker. The i-f signal output of the first-detector - oscillator tube in the control unit is fed through a shielded cable to the power unit. The capacity of the shielded cable is such as to provide the correct shunt fixed
capacity for the first i-f trandformer primary, and alignment is made by magnetite cores in the i.f transformers
Among the many features of this receiver are: Mechanical push button tuning for six stations; r-f amplifier stage; automatic volume control; magnetite core antenna, oscillator, and i.f transformers; ignition suppression filters in the antenna and power-supply circuits; push-pull beam power output stage; continuously variable high-frequency tone control; and an eight-inch, dust-proof electrodynamic loudapeaker.

Manual Tuning Mechanism

The manual tuning shaft is connected by a drive cord to the condenser drive-cord drum and the dial-scale pulley (located under dial scale). The "Drive-cord Hookup" shows the cord arrangement and number of turns around shafts. A three-position spring-tension adjustment is provided on the drive cord drum to permit adjuatment of the drive cord ten. sion. Sufficient tension should be used to ensure freedom from backlash or cord slippage without causing excessive push
button friction (spring stretched approximately $1 / 16$ inch). The dial scale may be adjusted by loosening the dial nut and turning the scale until the extreme low-frequency end mark on the scale is aligned to the pointer in the eacutcheon, or exactly in the center of the dial opening, while the gang condenser is in full-mesh position. See "Adjustmente of push-button mechanism" for mechanical adjuatments affecting both manual and push-button tüning.

Push-Button Tuning Mechanism

The push-button tuning mechanism is of the mechanical type wherein the movement of a push button actually turns the tuning condenser to any predetermined setting. The movement is actuated through a push arm, cam, rocker plate, and sector gear, which meshes with a scissor gear directly fastened to the tuning-condenser shaft. The scissor gear prevents backlash between the sector gear and tuning condenser. Since the sector gear is mounted directly on the rocker-plate
shaft, the position of the rocker plate will accurately deter mine the position of the tuning condenser.
The cams, which determine the condenser stop position for each button, are mounted on the push arms and are locked in place by the push buttons and lock shoes, which press firmly against the cams when the push buttons are tightened. The push buttons should be tightened by hand and never forced with pliers or other tools

PAGE 19-66 RCA

Power Umit Parts, Socket Vollages, and Trimmers

Control Unis Parts, Socket Vollages, and Trimmars

ALIGNMENT PROCEDURE

Test Oscillator.-For all alignment operations, connect the low side of the test oscillator to the receiver chassis, and keep the output signal as low as possible to avoid a.v.c action.

Output Meter.-Connect the output meter across the speaker voice-coil and turn the receiver volume control and tone control to maximum (fully clockwise).

Dial Calibration.-Rotate the gang condenser to its fullmesh (maximum-capacity) position and then adjust dial scale so that the last calibration mark at the low frequency end of dial is aligned to the pointer in the escutcheon.

Note 1.-The control unit and power unit (forming a complete receiver) must be aligned together, as proper align-
ment of the first i-f transformer is dependent upon the capacity of the interconneating cable.

- Note 2.-The total series capacity for steps 3 to 6 must be $60 \mathrm{mmfd} . \pm 10 \%$. This capacitor must be inserted at the antenna connector of the receiver. The lead from the test oscillator to the 60 mmfd . capacitor may be shielded if desired, but no shielding should be used between capacitor and-antenna connector.
\dagger Note 3.-Install top cover of control unit, leaving tube cover off for steps 3 to 6 .

Note 4.-The negative terminal of battery connects to the " A " lead and the positive terminal to receiver case.

Steps	Connect the high side of test-osc. to-	Tune teatosc. to-	Turn radio dial to-	Adjust the following for max. peak outpot
1	6K7 I-P grid cap in series with .01 mf .	280 lcc	No Signal 550-750 le	$\begin{gathered} \text { L10 and L11 } \\ \text { (2nd I-P Trana. } \end{gathered}$
2	6A8 Det. grid cap in series with .01 mfd .	980 kc		L8 and Lo (1st I-F Trana)
$3 \dagger$	- Ant. connector in series with $\mathbf{6 0} \mathrm{mmfd}$.	600 kc	600 lc	17 (oec.)
$4 \dagger$	- Int. connector in series with 60 mmf .	1,400 kc	1,400 kc	$\begin{aligned} & \text { C14 (ouc.) } \\ & \text { C8 (det.) } \\ & \text { C3 (ant.) } \\ & \hline \end{aligned}$
$5 \dagger$	*Ant. connector in series with $\mathbf{6 0}$ mmfd.	600 lc	600 le (rock)	L7 (oac.)
$6 \dagger$	- Ant. connector in eeries with 60 mmfd .	1,400 kc	1,400 kc	$\begin{aligned} & \text { C14 (onc.) } \\ & \text { C8 (det.) } \\ & \text { Cs (ant.) } \end{aligned}$

- See Note 2.
\dagger See Note 3.

Precautionary Lead Dress

1. All ground leads and leads from C35 and C41 should be as short as possible.
2. Black lead from contact 4 on six-contact socket to terminal "D" on second I-F transformer should be dressed close to chassis and near case.
3. One lug of electrolytic capacitor can must be soldered to chassis.
4. Heater lead from 6K7 I-F to 6R7G should be dressed .away from diode terminals.
5. Dress shielded lead from 3 -contact socket to terminal board along edge of case, over C35, and away from vibrator socket.
6. Green lead from gang to 6K7 R.F grid must pass through shield clamps to rear of gang and dressed to rear of 6K7 R.F tube.
7. Dress green lead from center section of gang to Cl 4 awhy from 6K7 R-F grid lead and in front of C9
8. Dress heavy rubber covered lead from connector cable

Antenna Filter
to 6A8 plate through hole between triangular chassis and case and away from oscillator coil.
9. Dress parts and leads under triangular chassis close to this chassis to prevent possibility of cutting through insulation paper.
10. Yellow lead from antenna to detector coil must be dressed over top of gang.
11. Leads to volume control must be dressed to front of control and away from " A " leads to power switch.
12. Dress all leads clear of gang rotor and push arms.

Loudspeaker

The loudspeaker cone may be centered in the usual manner with three celluloid or paper feelers after gently cutting awny the front dust cover. A new cover should be cemented in place upon completion of the adjustment.

Adjustments of Push-Button Mechanism

The mechanism should be so adjusted that when using eather manual tuning or push-button tuning, it operates positively and without bind or backlash. The complete sequence of adjustments are outlined below, however, inspec. tion will generally enable the particular trouble to be located and then only that adjustment and the ones which follow will be necemary without disturbing other adjustments found to be correct. Proceed as follows in the sequence given:

1. Remove dial scale. Loosen coupling set-screws, sector gear set-screws, gang condenser mounting screws, and bearing. plate exrew.
2. Place eacutcheon in place and check for proper sentering of push butrons in eacuicheon. If push buttons are not properly centered, loosen the push-button-unit nuts (underneath) and adjust position of each unit until prop. erly centered. Tighten mounting nuts. The coupling and sector gear must be on rocker-plate shafts but not ightened.
3. Align rocker plates with each other and tighten coupling screws. The position of the set-screws should be such that they definitely clear dial when gang is out of mesh and definitely clear pulley when gang is in full mesh
4. Rotate rocker-plate shaft to obtain normal position of bearing plate and then oighten screws holding bearing plate.
5. Rotate gang condencer to full mesh, move free (inner) scissor gear one tooth from its free position and then mesh the sector gear with the sciseor gear with two end teeth of the sector gear fully meshed. See photograph. Tighten condenser mounting screws. Slide sector gear along shaft until it is correctly aligned with the scissor gear, and with top of rocker plates $1 / 16$ inch from frame oghten screws of sector gear.
6. Adjust mesh of scissor gear with sector gear by shifting gang condenser position. Adjust for minımum backlash without binding.
7. Adjust drivecord drum on condenser shaft for correct alignment with drive cord, and so that the cord hole is at the top when gang is in full mesh.
8. Lubricate the push arms, rocker-plate shafts, and pulley shafts with light grease or heavy oil (sparingly) to provide free operation, being careful to keep lubricant off of drive cord.
9. With gang condenser fully meshed and drive cord properly installed, adjust dial scale so that the extreme low. frequency end calibration mark is aligned to the pointer in the escutcheon, or exactly in the center of the dial opening.

Adjusting Push Buttons for Stations

The six push buttons should be adjusted for six favorite stations after the receiver is installed and operating.

Any six standard broadcast stations may be chosen. The preferable arrangement is to adjust for stations in the order of frequency, from low to high. Proceed as follows:

1. Loosen the push buttons one-half turn.
2. Using the tuning control, accurately tune in the first station.
3. With station accurately tuned in, press the first push button fully in and then gently release so as not to jar mechanism.
4. Tighten the push button securely with fingers. Do not force with pliers.
5. Proceed in same manner to adjust the other five push buttons.

Photograph of Control Unit

RCA PAGE 19-69

REPLACEMENT PARTS

\begin{tabular}{|c|c|c|c|}
\hline $$
\underset{\text { Na }}{\text { stock }}
$$ \& dESCRIPTION \& $$
\begin{gathered}
\text { stock } \\
\mathrm{Na}
\end{gathered}
$$ \& description

\hline \& CONTROL UNIT ASSEMBLIES \& $$
4858
$$ \&

\hline 32307
32876 \& Buabing- St \& \& (C31, C32)

\hline \& Cablers -cith mucter shiuded spetier cable com- \& $$
\begin{array}{r}
4886 \\
.4839
\end{array}
$$ \& Capacitor-.05 mid., 400 volte (C21, C25)

\hline 32374 \& Coblo--conductor abiedded volume controt cable \& 12484 \& Capacitor- 0.25 mid., 300 volus (C26)

\hline 32300 \& \& 12741
$\mathbf{8 2 4 0}$ \&

\hline 120081

1507 \& Capactior 92 mmid. (C41) \& \& volta, and 1 -tection 20 mid., 25 volts ${ }^{\text {a }}$ (27 ,

\hline 13057 \& \& \&

\hline 30435 \& Capectior- 70 mmid (${ }^{\text {cas }}$) \& ${ }^{2888}$ \&

\hline 32368 \& Capecitor 500 mmid. (C11) \& 4286 \& Ferrule- A. lead connector ferrule and buohing

\hline ${ }_{5107} 8148$ \& Capacitor-.007 mid. 600 rates (C38) \& 5066 \& Reacton- "B' filter reactor (L_{12}).

\hline $\begin{array}{r}14395 \\ \hline 1895\end{array}$ \& \& | 30540 |
| :--- |
| 3054 | \& Reaitor-100 orms, \% watt (R13, R

\hline 4886 \& Capacioor-. 08 mfd., 400 volta (C8. C9) \& 30546 \&

\hline 38308 \& Cen-Coatrod unit cose cornplote with all niveted \& 12287 \& Resistor-1,200 ohms, t watt (R10

\hline \& Coil \& 13804 \& Resistor-8, 200 ohma, 2 watta

\hline 31977
32301 \& Coi-Anteans coit-im ohield (L2 L3) \& ${ }_{11288}^{1847}$ \& Renistor-27.000 ohms, 1 watt (R18)

\hline 32297 \& Coit-Oncillator and sheld (Lo. \& 11282
15560 \& Reaistor= $56.0000^{\text {omms. }} 1 / 10$ watt (Ri)

\hline 31800 \& Coil-R-1 coithers shield (LA \& 15730 \& Recistor-1 mef., wntt (R9, R22)

\hline 38292 \& cos \& 12201 \& Reaitor-1.5 met., t watt (R7).

\hline \& comploe: with aciemon enar, and drive cord \& 5129 \& Rins-Tube ahic

\hline 32904 \& Controh-Volume coatroh tione \& 12252 \&

\hline \& -romich (R16, R16, Si) \& 32286 \& Shield-Tube shield comprising 2-halves and 1 .

\hline 39891 \& Coupling-R.h and i.h. \& 32245 \& tet

\hline \& oupling with ecremb \& \& apeaker cable.

\hline 39804
32996 \& Drum-Dial drive drum \& 32 \& Sochet-6-rontact socket and mounting plate for

\hline 38290 \& Gear-Tuning mechaniom gear \& 31251 \& Sorker-Octal base tube rocke

\hline 11768
32818 \& Lamp-Dial Lamp-Masda No 51 \& ${ }_{\substack{12241}}^{12288}$ \& Socker-6-contact vibrator rocket

\hline \& Mechanism-L.h. pumb bution tuning m \& \& Tranaformer-Firat i-f transformer (Ls, LO,
C17)

\hline 32887 \& chaniur-R.h. puah button tuning mechaniem \& 2237 \& Transformer-Second i.f tranaformer (L10, Li1,

\hline 32378 \& Piom-Contact pin for apeater conble \& 32843 \& ${ }_{\text {C1O, C20, C23. C23, Ra). }}$

\hline 32377 \& Plue- - -contsct male plue and shell for \& 32241
32935 \& Traniformer-Output trantormer (T2)

\hline 32376 \& Plug matocontact mate plug and abell for \& \& Transformer-Vibrator tranalormer (T1, L13.

\hline \& coatrod cebbe. \& 12236 \& Vibrator-(Lig)

\hline 10 \& Pulles-Drive cord intermediate pulley and guide \& \& SPEAKER A

\hline 32654 \& Puiley-Drive cord pulleg \& \&

\hline \& nuism (11/16-in \& 32314 \& Cij-8penker fedd

\hline | 13856 |
| :--- |
| 12268 |
| 1 | \& Remer-s70 obam, witt (RS \& 32313 \& Cone-8-in. epeaker cone and voice coil (LiS)

\hline 12886 \& \& \& 8peaker-sin. dunamic, complete...

\hline 14083
12264 \& Recitor- 88.000 ohma, watt (R21) \& \& Llantous assemblies

\hline 12268 \& Remintor-280,000 ohma, \% Wht (R1) \& \&

\hline \& No. 32644, and dial Stock No. 322 \& ${ }_{32321} 121$ \& Body-Puge holder body (female portion only)

\hline 32308 \& Retainer-Refainer for station selector knob \& 9389 \& Cable-Antenna cable approx. 36-in. Long, with

\hline 13471 \& Ring-Retaining ring for anteiona coil \& \& Capecitor-I ${ }_{\text {conition }}$ coil

\hline 3886
14350 \& Ring-Retaining ring for rit. coil. \& 32439 \& Cadacitor-Generator capacitor.

\hline \& \& $$
\begin{aligned}
& 4291 \\
& 32321
\end{aligned}
$$ \& Clip-Ammetere clip

\hline 31689 \& Screm-No. E-S2 i $6 / 16$-in. Equare bead int \& \& dial eacutcheon

\hline 31611 \& \& 32322
4286 \& Escutcheon-Dial ancutcheon (amall).
Ferrule-Center contact ferrule and buahiag for

\hline 12252 \& \& \& Puise hodder

\hline \& \& 4290 \& Tnsulator-Fuse holder inoulating

\hline ${ }_{32303}^{3205}$ \& Shaft-station relect \& 32318 \& Knob-nummy knob (1 required)

\hline 3623 \& \& 3231号 \& Knob-Station selector or volume control knob

\hline 32653 \& Sockee-Dial lamp ecket and \& 32323 \& Lead-Ammeter " A " lead and clin

\hline (32299 \& Socket-Octal base fube sock \& \& female section of ture holder

\hline 31615
30585 \& Soring-DDrive cord tenaion apring.
8pring-Puah buttoa arm tesalion \& 13103 \& N

\hline \& H POWER UNIT A \& \& for Inob, 8tock No. 32316

\hline \& \& \& wruher

\hline 12723
32239 \& \& ${ }_{12448}^{4284}$ \& Soring-Tention apring for

\hline 382 \& \& \&

\hline 138 \& Capacitor-265 mmid. \& 32 \& Suppreazor - Distributor suppreseor (10,000

\hline 18107 \& \& \&

\hline 14393 \& tor- 01 mfal, 3000 volta (C26). \& $$
\begin{aligned}
& 6885 \\
& 13192
\end{aligned}
$$ \& Washer-Felt waher for under control knobe

\hline
\end{tabular}

Sparkling Champaign Music, Metz Beer, Melody Beer, Red Top Beer, Imperial
Beer, Hyde Park Beer, Gold Star Beer, Country Club Beer, Barbarossa Beer, Mitchell's Beer, Webster Coffee, Pepsi-Cola

TUBE COMPLEMENT

1-12BE6 ${ }^{\circ}$ Oscillator and Mixer tube.	1-12BA6 IF Amplifier tube.
1-50B5 Power Output tube.	1-35W4 Rectifier tube.

1-12AT6 Second Detector and First Audio tube.

ALIGNMENT PROCEDURE

The following equipment is necessary to properly align this chassis:

1. A signal generator which will provide an accurately calibrated signal at the frequencies listed.
2. An output meter.
3. A non-metallic screwdriver.
4. Dummy antenna: -.1 mfd ., -10 mmf .

GENERATOR	CONNECTION AT RADIO	DUMMY ANTENNA	DIAL	TO TUNE TRIMMERS	REMARKS
IF 455 kc.	12BE6 Grid	.1 mfd.	HF end	IF trimmers C D E F	Tune to max.
535 kc.	12BE6 Grid	10 mmf.	LF end	Osc. trimmer B	Set limit of band
$1400 \mathrm{kc}$.	12BE6 Grid	10 mmf.	1400 kc.	Ant. trimmer A	Tune to max.

SOCKET VOLTAGES

TUBE	POSITION	1	2	3	4	5	6	7	8
12BE6	Osc. and Mixer	0	37.5 AC	99	99	-4.2	0	24.5 AC	0
12BA6	IF Amplifier	0	24.5 AC	0	0	0	99	12.5 AC	99
12AT6	2nd Det.-1st Audio	0	0	0	0	0	16	12.5 AC	0
50 B 5	Power Output	0	85 AC	91.5	99	0	0	37.5 AC	5.9
35W4	Rectifier	0	117 AC	112 AC	0	112 AC	0	85 AC	112

NOTE: All DC voltages measured with a 1000 ohm per volt meter from ON-OFF switch (-B) to socket contact indicated. All AC voltages are measured switch ON-OFF switch (-B) to socket contact indicated.
All voltages are positive DC unless otherwise marked.
Volume control full on.
Line voltage 117 volts AC.

Part	De	LIST Part No.	Description
C2	Loop antenna assembly.	15 Y 11	Two section electrolytic condenser.
18B6	Tuning gang condenser.	26Y3	Vol. control and switch 1 megohm
12 Y 4	1st I.F. transformer 456 kc	20Y5	Oscillator coil.
12 Y 8	2nd I.F. transformer 456 kc .	45B6	$4^{\prime \prime} \mathrm{PM}$ dynamic speake

- John F. Rider

ALIGNMENT PPOCEDIRE FOR MODEL FN-7

Alignment Frocedure without the Use of Instruments
The I.F. and discriminator transformers are pretracked at the factory and will require only to be peaked to compensate for the additional capacities that are introduced when the set is wired. A signal should be tuned in and each I.F. transfor rier starting from the imiter and working to the first I.F. should be aligned for maximum signal.
R.F. Alignment

Set tre dial pointer to correspond with the station transmitting on the highfrequency end of the dial (make cortain that the station desired to be recelved is transmitting at the time alignment is attempted). Adjust osicilator trimmer until the station to be received is tuned in at the proper dial setting. Adjust the spacing on the antenna coll for maximum response at the high-frequenoy end of the dial. A station is then tuned in at the low-frequency end of the band and the spacing, of the R.F. coil is then adjusted for maximum response. Spacing of the coil is accomplished with the aid of an insulated fibre tool or a small wooden wedge.

Discriminator Alignment
The bottom slug of the discriminator coil should be adjusted for maximum output.

The top slug of discriminator should be adjusted for clear, undisturbed reception. This adjustment is critical and should be adjusted very slowly, until the proper point is reached. It will be noted as a clear spot between two distorted points one above and the other below resonance.

ALIONMENT WITH THE USE OF INSTRTMENTS

If instriments are available they should be used for proper alignment. Insert a high sonsitivity micro-ammeter in seriss with the limitar grid resistor at the rrounded end ($\mathrm{R}-13$). Set the signal generator at 10.7 mc . Apply this signal to the grid of the limiter and adjust I. F. to the maximum meter readinr. The signal generator should be applisd on the grid of sach precesding stage and the meter left in the limiter grid circuit and each I.F. adjusted for maximum response. Always raduce the input as the sensitivity increasas. When the alignment is complated it should be rechecked by placing the signal generator on the grid of the 12BE6 and each transformer should be repeaked for maximum meter feflection. The I.Fs. are now aligned.

The R.F. Section
Apply a 106 me signal to the antenna terminal. Adjust oacillator trimmer for maximum response on meter. Then adjust antenna coil spacing for maximum response.

The Discriminator Alignment
Remove the meter from the limiter grid circuit and place a high-sensitivity volt metgr in the order of 20,000 ohms per volt or a DC vacumm tuba volt meter from R-18 to ground. Apply a 10.7 mo signal to grid of limitor tube. Adjust bottom slug on discriminator I.F. for maximum deflection. Then adjust top siug on the discriminator I.F. for zero (minimum deflection). This completes alignment of the reooiver.

MODEL 3WIOA RADIO KITS, INC.

© John F. Rider

SERVICING NOTES

All specifications and measurementa based on 117 volts, 60 cycles, and all readings besed on a 20,000 ohms per volt meter. 111 readings are taken with volume control (switch No. 2) in maximum clockrise pcoition. Apply the lowest signallevel from the signal generater. Output: 50 mm into a 3.2 ohm veics coil impedance.
Approximate reading 0.4 volt.
I.F. ALIGNMENT: Fith signal zenorator, set a 455 KC , apply signal through a .1 MFD condenser dumgy to R.F. grid of convertor ($2 R 5$) or the stater of $R \mathbb{F}$ section of the variable condenser (condenser must be fully meshed). Peak I.F. trimmers 1,2, 2,4, (top view diagram) to give maximum reaing on outpat meter connected across voice coll. (Note: If for any possible reason the signal does nct come thrcugh indicating the receiver is wey out of alignment, apply the signal to the grid of the I.F. Amplifier (iTA) and tune aignal in by trimmers $\%, 4$ of second IF. transformer. Peak for maximum and cnce this stage is tuned, repeat above procedure).
R.F. ALIGNMENT: With signal generator, set at 1400 KC , apply signal through a dumng antenna (200 mmf condenser) to the antenna loop wire. Set dial of receiver to 1400 KC and peak trimmers $5 \& 6$ to give maximum reading of output meter. Then set aignal generator at 600 KC and tune receiver tc 600 KC mark on dial. This setting should fall on calibrated point.

Generator Connection	Duanny Ant.	Frec.	Adj. Trimmers	putput	Sensitivity uv.
Stator large section gang open	.1 NFD cond.	455 KC	1,2,5,4,	Nax.	120
$\begin{aligned} & \text { Antenna } \\ & \text { loop Wire } \end{aligned}$	$\begin{aligned} & 200 \mathrm{mmf} \\ & \text { cond. } \end{aligned}$	1400 KC	$5 \& 6$	Max.	50
Antenna loop wire	200 mmf	600 KC	$\begin{aligned} & \text { Variable } \\ & \text { plates } \end{aligned}$	Max.	150
Battery Complement: 2-4 $\frac{1}{2}$ Volt "A" Batteries Everecdy No. 746 or equivalent 2-45 Folt "B" Batteries Evereacty No. 482 or oquivalant					CONOE PULL

All reading in AC-DC position of power selector awitch with $20,000 \mathrm{chms}$ per meter. Readings taken are referred to ground.

MODEI VIFF-152 RADIO MFG. ENGINEERS INC.

YOODEL VHF-152 RADIO MFG. ENGINEERS INC

The VHF-152 Frequency Converter has been designod for use with a conventional communication type receiver to extend its range to cover the 10,6 and 2 meter amateur bands. The unit consists of an RF amplifier, a mirer, and a high frequency oscillator. The function of the unit is to convert the very high frequencies received by it to a new fired frequency of 7 megacycles which is fed to the receiver and amplified and detected in the normal manner. This syatem of receiving may be described as a double heterodyne system. Its advantages are: high image rejection, since the image is 14 megacycles from the signal; and high selectivity which is provided by the selective low frequency intermediate frequency amplifier of the recelver. The auxiliary controls on the receiver, such as the beat frequency oscillator, the noise limiter, and RF and audio gain controls, function in the normal manner, as does the signal strength meter if the receiver is equipped with one. The RNE-45 and RME-84 Receivers are admirably suited for use with the VHF-152 Converter. Specifications

Pover Supply: 115 volts, 50-60 cycles, single phase*
Power Consumption: 40 watts © 115 volts
Output Frequency: $7 \mathrm{mc}(7000 \mathrm{kc})$
Frequency Range: $27.5-29.8 \mathrm{mc}$
49.5-54.2 mc
$143.8-148.2 \mathrm{mc}$
*NOTE: On special order the VEF-152 may be obtained with a special power transformer suitable for operation on 115-230 volts 25-60 cycles.

Tube Complement
Type Use Schematic Symbol

1.	6AK5	RF Amplifier	V1
2.	6AK5	Mixer	V2
3.	6J6	Oscillator	V3
4.	5Y3G	Rectifier	V4
5.	VR150	Voltage Regulator	V5

External Connections

To place the VHF-152 in operation the line cord ahould be plugged into a suitable power source. The standard model is designed for operation on 100-120 volt 50-60 cycle AC line only. Use of the VHF-152 on any other voltage or frequency may result in damage.

The output cable should be connected to the antenna terminal of the receiver. The cable has two shielded leads and a ground lead each ending in a terminal lug. On receivers which have provision for doublet operation, such as the RME-45 and the RME-84, the blue coded lead must be connected to the antenna terminal farthest from the ground terminal. This is the hot side of the converter output. The red lead, or low side, must be connected to the antenna terminal nearest to the ground terminal. The ground braid should be connected to the receiver ground. On receivers not equipped for doublet operation, the blue lead should be connected to the antenna terminal and the red and ground (shield) leads should be connected to the receiver ground. This lead is coded white. Unless the above instructions are followed, the changeover switch will not operate properly.

If an RME DB-20 Preselector is used ahead of the receiver, the connections will be made as above except that the converter output cable connecta in the same manner to the DB-20 antenna terminals instead of to the receiver.

Precautions

IMPORTANT - Attempted operation of the VHF-152 on any voltage or frequency than that for which it is designed will result in damage to the unit. The operator must be sure that the supply is correct before plugging in the converter. Antennas

On frequencies of 30 megacycles and above, the use of a resonent antenna is mandatory. For this reason the VHF-152 is provided with separate antenna connection for each frequency band. On the terminal strip on the rear apron are four sets of two terminals each. These terminals are marked " 2 " for the $144-148 \mathrm{mc}$ band: " 6 " for the $50-54 \mathrm{mc}$ band, and " 10 " for the $28-29.7 \mathrm{mc}$ band. The input impedance for each band has been designed to be 300 ohms so that the owner may make use of the 300 ohm twin lead line now available. The remaining set of two terminals marked "LF" are for connecting the low frequency antenna used with the receiver. This pair of terminals is connected through to the receiver when the antenna changeover awitch is turned to "OUT".

Operation and Circuit Details

Introduction

The VEF 152 operates in conjunction with a communication type receiver tuned to approximately 7 mc . The accuracy of setting the recelver will effect the accuracy of calibration of the VHF-152 by the same amount. That is to say if the low frequency receiver is off 100 kilocycles, the calibration of the VHF-152 will also be off by 100 kilocycles. It should be noted that the operator is not bound to use the output frequency of exactly 7.0 mc . If interference is encountered he may move the receiver tuning slightly to a clear channel, realizing that the VHF-152 calibration will change by the same amount the low frequency receiver was moved. If it is necessary to move the receiver frequency so far that the calibration is affected, he may recalibrate by following instructions in Section IV. It is not recommended that the output frequency be moved more than 150 kc higher or lower than 7.0 mc because of tracking troubles that may be encountered. In the factory the I.F. is left aligned at 6950 kc .

In double heterodyne receiving systems spurious signals may be received which are harmonics of the receiver local oscillator. On the VHF-152 two such signals may be received. One signal will be heard at 29.8 mc , which is outside the $28-29.7 \mathrm{mc}$ band. Another may be heard at 52.2 mc . If it is found that this spurious signal falls on a real signal which is desired, the spurious signal may be moved by changing the receiver tining slightly.

Ine Switch

The equipment is turned on by means of the line switch on the right hand side of the control panel.

Changeorer Switch

On the left side of the control panel is the changeover switch. When this switch is turned to "IN", the output of the VHF-l52 is fed to the receiver input terminals. At the same time the low frequency antenna terminals are
grounded to prevent 7 mc signals from feeding through the VHF-152 to the receiver. When the changeover switch is turned to "OUY" the output of the VHF-152 is grounded and the low frequency "LF" antenna terminals are connected through the receiver. Thus by turning the chengeover switch to "OUP" the receiver functions normally.

Band Switch

In the center of the control panel is the band change switch. This switch has three positions marked: 144-148, 50-54, and 28-29.7, and is used to switch the VHF-152 to the desired range.

RF Stage Poaking

When the VHF-152 leaves the factory, the stages are peaked to maximum sensitivity. It may be found that some antennas may reflect a reactance into the RF stage that will detune it slightly. With the antenna for a certain band connected the RF padder for that band may be poaked up by listening to a signal. Figure IV ahows the location of the RF padders for each band. To get at the padders it is necessary to remove the bottom cover plate.

IF Stage Peaking

The If transformer on the VIF-152 is peaked at the factory at 6.95 mc . Different receivers connected to the output may change this tuning slightly. The owner should check the peaking of this transformer with the receiver connected. Peaking is accomplished by turning the screw on the top of the can. The screw should be adjusted for mardmum gain as indicated by a received signal or maximum background noise if a signal is not available.
The owner may, if he has an accurate signal source available, recalibrate his converter as discussed in succeoding paragraphs. It should be born in mind that the calibration of the converter is affected by the setting of the companion recelver. Therefore, before attempting to recalibrate the converter, the callbration of the receiver should be checked.

The VHF-152 will drift somewhat during the first three minutes after being turned on and to a much less extent during the next ten or twenty minutes. It is reconmended that no attempt be made to recalibrate or align the equipment untij it has reached a stable temperature.

All calibrating and alignment ahould be done with the receiver connected and the changeover awitch in the "IN" position.

If the receiver has a carrier level moter such as is on the RME-45, this moter is used as a tuning indicator wen peaking the circuits. If the receiver is not equipped with a meter, it will be necesaary to connect an audio output meter to the receiver for a tuning indicator. When using an audio output meter, it is necessary to remove the AVC from the receiver.

IF Coil Alignment

As pointed out. the VBF-152 is calibrated and aligned for an output frequency of 6.95 mc . The output tuning is controlled by the screv
on the top of the aluminum can on the top of the chassis. Tho tr may be peaked with a 6.95 mc signal fod into the mixor grid or with a signal tuned in on the converter. Connection to the mixer grid is most easily made on the stator of the center section of the tuning condenser. In either case, the transformer is adjusted to maximum sensitivity as indicated by the meter on the receiver.

Calibration
Calibration of the VEF-152 should not be attempted unless it is definitely established that the calibration is off.

Calibration is controlled by the oscillator padders. These padders are made accesible by removal of the cabinet bottom plate. Beneath this plate is a second aluminum plate in which are padder access holes. All calibrating and aligning should be done with this cover on.

High beat is used on all bands. That is to say, the oscillator is always 7 mc (approximately) above the received signal. As in the case of all super heterodjne receivers, if sufficient input is used each signal may be received at two points differing by twice the IF frequency. With a signal being received, the padder setting that gives the highest oscillator frequency is the proper setting.

The two low frequency ranges have iron core oscillator coils. The screws for adjusting the inductance of these coils is accessible on the top of the chassis. Onless the screws have been disturbed, adjustment should never be necessary.

RF Alignment

When the calibration is correct, the RF circuits should be alignod. Each of the R-F padders should be adjusted for maximum sensitivity as indicated by the meter on the receiver.

When using a signal generator in aligning the VHF-152 a 300 ohm resistor should be inserted between the signal generator and the antenna terminals in order that the low impedance of the signal generator will not swamp the RF circuit and cause a misalignment of this circuit. Best results will be obtained when the RF circuit is alignod with the antenna connected.

Voltage Charts

As an aid in trouble shooting on the VHF-152, the following chart of voltages at various points in the circuit is tabulated below. Voltage readings should be made with a voltmeter of at least 2000 ohms per volt resistance. Variation of $\pm 15 \%$ may be expected. All voltages are measured from the point indicated to ground.

Parts List

TUBE COMPLEMENT

Type	Function	Type	Function
6AG5	FM RF Amplifier	6H6	Ratio Detector
6SB7Y	FM Converter	6SK7	AM RF amplifier
6SK7	FM 1st I.F. Amplifier	6SA7	AM Converter
6SK7	$\left\{\begin{array}{l}\text { FM 2nd I.F. Amplifier } \\ \text { AM 1st I.F. Amplifier }\end{array}\right.$	$\begin{aligned} & \text { 6SQ7 } \\ & \text { 6SN7 } \end{aligned}$	AM Detector and 1st Audio Audio Driver and phase Inverter
6SK7	FM 3rd I.F. Amplifier	6K6GT	Push Pull Output
6U5	Tuning Indicator	5Y3GT	Rectifier

ELECTRICAI SPECIFICATIONS

117 volt 60 cycle AC. operation. Power consumption 85 watts. Built in AM Loop and folded Dipole FM antenna. FM tuning range 88 mc to 108 mc . FM dial calibration in channel numbers and Frequency in megacycles. AM tuning range 540 KC to 1620 KC .

Speaker: $12^{\prime \prime}$ PM or two $6^{\prime \prime} \times 9^{\prime \prime}$ oval PM Voice Coil Impedance 6 ohms. Power output 9 watts undistorted 12 watts maximum.

ON-OFF SWITCH AND VOLUME CONTROL

Rotate the knob on the extreme right clockwise to turn receiver on. Continued rotation to the right increases volume.

BAND SWITCH

The second knob from the left has 4 positions. Each function is marked on the instrument panel. AM extreme left, FM 2nd position from left, PH for Phono 3rd position from left and TV. for Television sound on extreme right.

TONE CONTROL

The knob on the extreme left consists of two independently variable controls. The larger sec-
tion varies the high frequency response and the smaller controls bass.

TUNING AND TUNING INDICATOR

The second knob from the right tunes the receiver. In selecting stations tune for maximum closing of the tuning indicator on both AM and FM. The tuning indicator does not operate on Phono or TV.

ALJGNMENT

Before proceeding with alignment of set calibration point must be checked. This is the first line beyond 88 MC . Set Dial pointer to this line with tuning condenser fully meshed.

MODELS D-1000, RADIO \& TELEVISION INC. D-1100, T-9000, T-2200, T-2200X

John F. Rider

RADIO \& TELEVISION INC.

RESISTANCE READINGS (Ohms)

Symbol	Tube	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8
1	6AG5	0	70	0	2	400 K	400 K	70	-
2	6SB7	0	0	400K	400K	20K	0	0	0
3	6SK7	0	0	180	150K	180	400 K	0	400K
4	6SK7	0	0	0	650K	0	400 K	0	400K
5	6SK7	0	0	180	150K	180	400K	0	400k.FM INF. AM
6	6SK7	0	0	0	2.5M	0	400 K	0	400K - AM INF-FM
7	6SA7	0	0	$\begin{aligned} & 400 \mathrm{~K} \cdot \mathrm{AM} \\ & \mathrm{INF} \cdot \mathrm{FM} \end{aligned}$	$\begin{gathered} \text { 400K-AM } \\ \text { INF-FM } \end{gathered}$	20 K	1.0	0	85K
8	6SQ7	0	10M	0	75 K	75K	1M	0	0
9	6H6	0	0	130K	0	24K	-	0	130K
10	6U5	0	1.5M	700K	400K	0	0	-	-
11	6SN7	$\begin{aligned} & 120 \mathrm{~K} \text { Tone Mx. } \\ & 200 \mathrm{~K} \text { " Min. } \end{aligned}$	500K	3.3K	42K	500K	3.3K	0	0
12	6K6GT	-	0	500K	400K	500K	-	0	410
13	6K6GT	-	0	500K	400K	540K	42K	0	410
14	5Y3GT	-	400 K	-	120	-	120	400K	400K

VOLTAGE READINGS

Symbol	Tube	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8
1	6AG5	OV.	0.7V DC	OV.	6.3 V AC	85 V DC	85 V DC	0.7 V DC	-
2	6SB7Y	OV.	6.3V AC	$85 \mathrm{~V} \text { DC }$	85 V DC	-6.0	OV.	OV.	OV.
3		OV.	6.3 V AC	OV.	OV.	OV.	85 V DC	OV.	85 V DC
4	6SK7	OV.	OV.	OV.	OV.	OV.	110 V DC	6.3 V AC	107V DC
	6SK7 7	OV.	OV.	OV.	OV.	OV.	85V DC	6.3 V AC	85 V DC
5	6SK7	OV.	OV.	OV.	OV.	OV.	90 V DC	6.3 V AC	95V DC
6	6SK7	OV.	OV.	OV.	OV.	OV.	110 V DC	6.3 V AC	60 V DC
7	6SA7	OV.	OV.	120 V DC	85 V	-12.0(VTVM)	OV.	6.3 V AC	OV.
8	6SQ7	OV.	OV.	OV.	OV.	OV.	70V DC	OV.	6.3 V AC
9	6H6	OV.	OV.	OV.	OV.	1.9 V DC	-	6.3 V AC	15V DC
10	6U5	6.3VAC	105V DC	OV.	130V DC	OV.	OV.	-	-
11	6SN7	OV.	94 V DC	2.0 V DC	OV.	94 V DC	2.0 V DC	OV.	6.3 V AC
		OV.	82V DC	1.8 V DC	OV.	82 V DC	1.8 V DC	OV.	6.3 V AC
		OV.	135V DC	2.6 V DC	OV.	133 V DC	2.6 V DC	OV.	6.3 V AC
12-13	AM	NC		318 V DC	245V DC	OV.	NC	${ }_{\text {Bet. }}^{6.3 V} \mathrm{VAC}_{7}$	18.5V DC
	$\begin{array}{r} \text { 6K6GT FM } \\ \mathrm{PH} \end{array}$	NC		305V DC	207V DC	OV.	NC		16.0V DC
		NC	"	340 V DC	310 V DC	OV.	NC	"	24.5 V DC
14	AM5Y3GT FMPH.	NC		NC	320 V AC	NC	320 V AC	${ }_{\text {Bet. }} \mathrm{V}^{2} \mathrm{Ac}_{4} 7$	320 V DC
		NC		NC	320 V AC	NC	320 V AC		310 V DC
		NC	"	NC	320 V AC	NC	320 V AC	"	340 V DC

[^16] Ohms per volt. Allow $\pm 10 \%$.

AM ALIGNMENT INSTRUCTION SHEET

Stope	Connect Generator	Set Generator at	Sot Gang at	Adjuat	To Obtain
1	Pin No. 4655 R.F Tube with . 05 Mid. Sertes Cond.	455 Kc	Quiet point	1st and 2nd I.F. Pri. \& Sec.	Max. output
2	"	"	"	Wave trap	Min. output
3	"	1500 Kc	1500 Kc	BC OSC trimmer	Max. output
4	"	600 Kc	600 Kc	osc. padder	"
5	"	1500 Kc	1500 Kc	BC. OSC. trimmer	"
6	Use Coupline Coll between Cenerctor and loop	600 Kc	600 Kc	Ant. Loading Coil	"
7	"	1500 Kc	1500 Kc	Ant. Trimmer	"

Set Band switch to AM.

Set Tone control to maximum left.
Set Volume control to maximum right.
Place AM loop in same relative position as in cabinet.

Keep output of signal generator low to prevent AVC Action.
Use output meter across voice coil.

FM ALIGNMENT INSTRUCTION SHEET

Stops	Connect Generctor	Set Generator at	Sot Gang at	Adruet	To Obtaln
1	Pin No. 8 6SB7Y	10.7 MC	Hi. Freq. Stop	Ratio Det. Primary (Red Dot)	Max. output from point P to Gn .
2	"	"	"	$\begin{gathered} \text { 3rd IF } \\ \text { Pri. \& Sec. } \end{gathered}$	"
3	"	"	"	$\begin{gathered} \text { 2nd IF } \\ \text { Pri. \& Sec. } \end{gathered}$	"
4	"	"	"	1st IF	"
5	"	"	"	Ratio Det. Sec.	Zero Balance on VTVM from C to A
6	Clip on to FM Dipole	108 MC	108 MC	Osc. Trimmer	Max output from point B to Gnd.
7	"	88 MC	88 MC	Osc Coil ${ }^{*}$	"
8	"	103 MC	103 MC	RF Trimmer	"
9	"	103 MC	103 MC	Ant. Trimmer	"

Set Band Switch to FM
See Circuit Diagram for VTVM Connections.
For Steps 1 through 5 use .01 Mfd . condenser in Series with High side of generator.

PAGE 19-6 RADIO \& TELEV
MODELS D-1000, RADIO \& TELEVISION INC.
$\mathrm{D}-1100, \mathrm{~T}-9000$,
$\mathrm{T}-2200, \mathrm{~T}-2200 \mathrm{X}$
T-2200, T-2200X

John F. Rider

PARTS LIST

Symbol	Paxt No.	DESCRIPTION	Symbol	Port No.	DESCRIPTION
$\begin{aligned} & \text { C1A-B-C- } \\ & \text { D-E } \end{aligned}$	CV106	AM-FM Tuning Condenser	$\begin{array}{\|c} \text { R11-40-21- } \\ 37 \end{array}$	RS473B	$47 \mathrm{~K} 1 / 2 \mathrm{~W} . \pm 10 \%$
C2A-B-C	CT107	3 Section Trimmer Assembly	R12-13-29	RS123B	$12 \mathrm{~K} 1 / 2 \mathrm{~W} . \pm 10 \%$
			R14-22-23-	RS105B	$1 \mathrm{Meg} .1 / 2 \mathrm{~W} . \pm 10 \%$
C3	CT174	FM RF Trimmer 1-8 Mmfd.	30-31		
			R15	RS682B	$6.8 \mathrm{~K} 1 / 2 \mathrm{~W} . \pm 10 \%$
C4	CT174	FM Mixer Trimmer 1-8 Mmfd.	R16	RS225B	$2.2 \mathrm{Meg} .1 / 2 \mathrm{~W} . \pm 10 \%$
			R24	VC150	1 Meg. Volume Control and
C5	CT175	FM Oscillator Trimmer 1-12 Mmfd.			Switch
			R25	RS106B	$10 \mathrm{Meg}$. 1/2 W. $\pm 10 \%$
C6-7-8-11-	CC144	1500 Mmfd . Ceramic $\pm 20 \%$	R26-27	RS274B	270 K 1/2 W. $\pm 10 \%$
12-15-17-			R28A-B	VC151	Dual Tone Control
19-24			R33-42	RS322B	$30001 / 2 \mathrm{~W} . \pm 10 \%$
C9-10-13-	CC141	51 Mmfd. Ceramic $\pm 20 \%$	R34-35	RS1G4B	$100 \mathrm{~K} 1 / 2 \mathrm{~W} . \pm 10 \%$
32			R36-38	RS474B	$470 \mathrm{~K} 1 / 2 \mathrm{~W} . \pm 10 \%$
C16-27	CP102	.01 Mfd .400 V . 100 Mmfd . Ceramic $\pm 20 \%$	R39A-B-C	RD123	Voltage Divider and
$\begin{gathered} \mathrm{C} 20-21-28 \\ 34-35 \end{gathered}$	CC142				Bias Res.
			R41	RS562	5.6K 1 W. $\pm 10 \%$
C22	CC145	200 Mmfd . Ceramic $\pm 20 \%$	L1	FM221	FM Antenna Coil
			L2	FM221	FM RF Coil
C23	CE101	2 Mfd . Electrolytic 25 V .05 Mfd .200 V.	L3	FM222	FM Osc. Coil
C26-31-43			L4	AN 183	AM Ant. Coil
C29	CC178	150 Mmfd . Ceramic	L5	TR184	AM IF Trap
C30-38	CP104	. 05 Mfd .400 V .	L6	OS182	AM Osc. Coil
41-42			CH1-2-3-4-5	LC181	Choke
C36-40	CP103	. 01 Mfd. 200 V .	AL1	AL236	AM Loop
C37-39		200 Mmfd . Ceramic	L7	IF180	FM 1st I.F.T
		$\pm 20 \%$	T1	KT161	FM 2nd I.F.T.
$\begin{aligned} & \text { C44A-B-C- } \\ & \text { D } \end{aligned}$	CE100	Electrolytic Cond.	T2	KT162	FM 3rd I.F.T
		$4020-20 \mathrm{Mfd} .450 \mathrm{~V}$.	T3	RD168	FM Ratio Detector
		20 Mfd .25 V .	T4	KT163	AM 1st I.F.T
R1.	RS68B	68 1/2 W. $\pm 10 \%$	T5	KT164	AM 2nd I.F.T.
$\begin{aligned} & \text { R2-4-7-10- } \\ & 20 \end{aligned}$	RS102B	$10001 / 2 \mathrm{~W} . \pm 10 \%$	SW1-2	SW124	Band Switch
			PT1	PT119	Power Transformer
R3-17-19-32	2. RS203B	20K 1/2 W. $\pm 10 \%$	OT1	OT120	Output Transformer
R5-8-18		$150 \mathrm{~K} 1 / 2 \mathrm{~W} . \pm 10 \%$	PL1-2	PL147	No. 47 Pilot Light

.

©John F. Rider
© John F. Rider

C John F. Rider

ALIGNVBNT PEOCBCURB:

Realignment of this receiver should never be necessary anless one of the ofellator, antenna, or RF. colle hes been repfaced, and then only the frequency band in which that coil is used will requite realignment. Leck of sensitivity, selectivity, and poor tone quality may be due to eny one or eorbi. nation of causes such as weak or derective tubes or epeaker, inadequate or excesively long antenna, open or grounded bias resistor, bypass condenser, etc. Under no circumetances should realigneent be attempted until all other poseible sources have been firat throughly invertigated and have been definitely proven not to be the cause. If an IF tube io replaced it is advisable to realign the If amplifier, particularly if the replecement tube is one of e different manufacture than the one in the receiver. IT IS IMPBRATIVE THAT AN ACCURATELY CALIBRATED OSCILLATOR BE USBD WITH SOMB TYPB OP OUTPUT MEASURING DEVICE.

INTERMFDI\&TE ALIGNEENT:

1. Connect the high side of the oscillator output to the control grid af the 6 modulator tube . the grid cap isconnected and connect a 1 meg ohm resistor from the modulator grid to the chasile base. Connect the ground side of the obcilletor to the recelver ground post.
2. Set the test oscillator frequency to 465 kilocycles (this must be accurate).
3. Align the first intermediate transformer by turning one of the trimmer scrans aceesible through the holes in tine top of the coil sineld up and down (increasing and decreasing capacity) until maximum reading is obtalned on the output meter, after which adjust the other trimier screw of the sabs transformer for maximum sensitivity.
4. Adjust the other intermediste transformer in the same manner.

TO ALIGN THE VARIABLB CONDENSBR: It is important when eliening the geng condensers, padder condensev, end trinmer condensers to follow the procedure carefully, otherwise the receiver will be insensitive and the for dial calibration will be incorrect. The trimer and padder condensere will be referred to by numer andicated on the diagram which shows their relative locations.

1. Connect the high output side of the test oscilletor through a . 00025 wfor condenser to the set anna post, and the ground to tine set ground.
2. Place the band selector switch for operation on the lo to 22 megacycle band, tune the receiver dial to EXACTLY 20 MEGACYCLES and set the test oscillator frequency to EXACTLY 20 MBGACYCLES. THEN TUAB IN THE EO MEGACYCLE SIGNAL mO MAXIMUM OUTPUT BY ADJJSTING TRIMRER NC. l3. Next, rock the geng eondeneer elightly to the right and left and adjust trimmers No. 15 and 17 for maximum 20 megecycle signel sensitivity. cars M'ST BE TAKEN SC THAT THE FUNDAYENTAL PEAK AND NOT THE IMAGE PEAK IS USBD POR ALIGNINO THB RBCBIVBR AT RO FEGACYCLES. Then making trimmer No. 13 adjustment alwayb back off the trimmer to minimum capacity and then screv down the trimer (add capacity) until the rirst peak, which is the fundamental and the one you are to use, is tuned in. If the trimer is screwed down beyond the point where this first peak is received, the incorrect image peak will be tuned in. after completing adjustment of trlmmers No. 13 , 15 , and if always check to see if the proper peak has been used. To do this leave the test oscillator freouency at 20 megacycles, increase the output of the test oseiliator, and tune the receiver dial to approximately 19 megacyelae Vary the receiver dial sifghtly to the right and left of 19 megacycles and if the rundamental peak mas used Vary the recaiver megacycles, the test oncillator signal will be heard at approximately lat megacycles on the in eligning at 20 megacycles, the tif if not posible to recelve the signal at approximately le megecyclea, then the fundamental set difl. If it is not possible to recelve the signar at approximes not used and the 20 megacyele adjatment of trimers No. 13 , 15 , end 17 mist be gone over and properly adjusted.
3. Leave the band gelector switch for operation on the 10 to 22 megacycle band, tune the receiver to li megacycles on tie diel, and set the test oscillotor frecuency to approximetely ll megacyclea. Then fhile rocking the geng condenser slightlv to the right and left adjugt inductance trimmers No. lif and lo for maximum ensitivity.
4. Recheck 20 megacycle adjustment of trimers No. 13,15, and 17.
5. Plece the band selector sifith for operation on the 4 to lo megacycle band and aet the receiver dial and the test oscillator frequency to exactiy 9 megacycles. When adjueting trimior No. lo tio peaks, the fundemental and the lage peak, will be noticed. CARB MUST BE TAKEN SO THAT THE PUNDAMENTAL PBAK AND NOT TKE INAGE PEAK IS USED POR ALIGNING THE RBCEIVER AT 9 KEGACYCLEG. Pirit back off trimmer No. 10 to minimun capacity, next screw down the trimare (add capacity) until the firat peak, which is the fundamental and the one you ara to use, is tuned in. When the first peak has been located adjust trimmer No. IO TO BRING IN THB

 used. To do thls leave the test oscillator frequency at g megacycles and increase the terit oscillator outused. Vo do trimer No. lo was usedin aligning at g megacycles the test osciliator algnsl aill be heard at approxitrimer No. \quad mately megecycles on the receiver dial. If it is not possible to receive the signal, then the fundamental pesk wat not used and the 9 megecycle adjustment of trimmeris No. 10 , 11 , and l2 must be gone over and proper ly adjusted.
6. Leave the band selector ewitch for operation on the 4 to lo megacycle band and. tung the reeeiver and set the test oscillator frequency to approximately 4.2 megacycles. Then while rocking the gang condenser slightly to the right and left, adjust padder No. for maximum sensitivity.
T. Place the band selector switch for operation on the 1.5 to 4 megacycle band and tune the receiver diaj and set the test oscillator frequency to EXACTLY 3.8 GEGACYCLES. THBN BRING IN THE 3.8 MRGACYCLE SIGNAL TO MAXIXUN OUTPUT BY ADJUSTING TFIMMER NO. L, Rfter which adjust trimmere No. 2 and 3 for maximum seneitivity.
7. With the band selector switch in the seme position (l.5 to d megacycle band) tune the receiver dial and set the test oscilletor freouency to epproximately 1.6 megacycles. Then while rocking the gang condenser slightly to the right and left adjust padder condeneer No. 8 for maximum l. 6 megecycle signal sensitivity.
8. Adjust the band selector switch for operation on the 1500 to 550 rilocycle bend and tune the recelver dial and set the tast oscillator freauency to GXACTLY 1400 KILOCYCLES. THBN BRING IN THE $14 O O K I I S C Y C L B ~ S I O-~$
 SITIVITY.
9. Leave the band selector sivith for operation on the 1500 to 5b0 kilacycle biad and tune the reiver dial and set the test oscillator frequency to approximately 600 kilocyclos. Next, while rocking tha geng condenser elightly to the right end left adjust padder condenser No. 9 for maximum sensitivity.

Alignment of all bands will rarely be necessary. If a coll on any one of the bands should become defective and replacenent is necessary, then only the band in which the coil was replaced will require realignment Therever complete realignoent has been made it is recommended that all of the adustments be gone over agaln. Generally it 111 be found that improved results can be obtaineo if this is done. Assuming thet all tubes and component parts of the set are okeh, then extreme inaccuracies in the dial calibration, low sensitivity, and poor selectivity are ladications that the alignment procedure hes not been followed. Should these conditions be apparent procead to realign and carefully follow each step in the order given.

Lite Voltege : 125 volume $\frac{\text { VOLTAGE TABLB }}{\text { Control : Full on }}$
Teve Band : Broadcast

©John F. Rider

- John F. Rider
3xscos=11

 BATTERY BLOCK BATTERY LAYOUT PIOO

ALIGNMENT PROCEDURE

No attempt should be made to realign the various circuits until all other causes have been checked, unless the condition is so obvious as to indicate that realignment is necessary. Then proceed as follows:

Volume Control full on
Low range A.C. meter connected across voice coil to indicate output.
Keep signal generator attenuated so as to maintain $1 / 2$ scale reading on output meter.
Make certain that dial pointer is exactly on index line (top left side of dial plate) when variable condenser is fully meshed.

REMOVE CHASSIS BOTTOM PLATE

RECEIVER DIAL AT:	SIGNAL GENERATOR	DUMMY ANTENNA	CONNECT SIGNAL GENERATOR TO:	REFER TO CHASSIS LAYOUT FOR LOCATION OF TRIMMERS
Fully closed	Exactly 456 KC	. 1 MF	Common Ground and Control Grid 1R5 top front section var. cond	Adjust for maximum output $\mathrm{T}, \mathrm{T} 2, \mathrm{~T} 3$, and T 4
Fully closed	Approx. 538 KC	. 1 MF	Control Grid 1 T4 top rear section var. condenser	Adjust for maximum cutput 78
3 Fully open	$\begin{aligned} & \text { Exactly } \\ & 1650 \mathrm{KC} \end{aligned}$. 1 MF	Control Grid 1T4 top rear section var. cond.	Adjust for maximum output T5
REPEAT OPERATIONS 2 and 3.				
$\begin{array}{ll} 4 & \\ \text { Approx. } \\ & 1500 \mathrm{KC} \end{array}$	$\begin{aligned} & \text { Approx } \\ & 1500 \mathrm{KC} \end{aligned}$	1 MF	Control Grid 1T4 same as No. 3	Adjust for maximum output T6
The next two operations are performed with the bottom plate on and the chassis in the cabinet - with lid closed				
Approx. 1500 KC	Approx. $1500 \mathrm{KC}$. 1 MF	Radiating Loop 20" from Receiver	Adiust T7 for maximum output
$\begin{array}{ll} 6 \\ & \text { Approx. } \\ 600 \mathrm{KC} \end{array}$	Approx. 600 KC		Radiating Loop 20" from Receiver	Adjust T 8 for maximum while rocking variable condenser

The receiver is designed to operate on $105-125$ volts, 40 to 60 cycles, alternating current (AC) or $105-125$ volts direct current (DC). The power consumption is 60 watts.

The tuning range on FM is from 87 MC to 109 MC , covering all FM stations from channels 200 to 300 . The tuning range for standard broadcast is from 530 to 1680 kilocycles covering the full broadcast range and high fidelity stations with sufficient overlap at both ends of the dial.

Turn receiver on and wait for tubes to reach operating heat. Adjust Wave Band Switch to desired Wave Band. LEFT for Short Wave; CENTER for Standard Broadcast; and RIGHT connects terminals for phonograph record player in the circuit. The UPPER HALF of the Dial Scale covers the Broadcast Band. The LOWER HALF covers the Short Wave Band. Turn the Vernier Tuning Knob until the desired station (see dial pointer), is heard. Adjust Volume to a satisfactory level after making certain that the station is tuned correctly. Tuning on Short Wave is more critical. Use more care lest worthwhile stations be passed over unnoticed.

A Phonograph Record Player can be attached to the terminals marked "PHONO" in rear of chassis.

One 6 Volt 250 M . A. lamp is used for dial illumination. Use similar type for replacement. WARNING: Check power line for voltage nad frequency (cycles) to make certain they are the same as specified on label located at rear of the receiver chassis before inserting the receiver power line in electric outlet.

WARNING: Check power line for voltage and frequency (cycles) to make certain they are the same as specified on label located at rear of the receiver chassis before inserting the receiver power line in electric outlet.

These Receivers must be operated on 60 Cycles, 120 Volt current. Any other type Voltage, if used will result in damage to the receiver.

SHORT WAVE RECEPTION: An external Antenna is absolutely necessary for good reception on either of the Short Wave Bands. This antenna may consist of a short wire strung indoors or preferably a good OUTSIDE ANTENNA.

In installing an antenna to $\dot{b} e$ used with a sensitive short wave receiver every precaution should be observed to keep interfering noises at a minimum. The lead-in and antenna proper should be located as far as possible from any potential source of interference, such as electric signs, elevators, trolley wires, motors, power lines, etc. The antenna should also be as remote as possible from pick up from the ignition systems of passing automobiles. For connection to the antenna, a yellow wire is brought out through the rear of the receiver. Insert the power line plug in the electric outlet and turn the "ON-OFF" switch and Volume Control knob to the right. A few seconds will be required for the tubes to reach operating temperature.

DIAL LAMP: Thse models use one 6.8 Volt $_{1} 150 \mathrm{M}$. A. Lamp. Use similar lamps when replacing or damage will result.

CAUTION: When pilot lamp burns out, replace at once.

VARIABLE CONDENSER-25. 354

This receiver is equipped for FM (Frequency Modulation); Television and Phonograph Units.

Located on the rear of the chassis is a two pin JACK provided for this purpose. The Band Switch must be in the left position when operating.

If receiver hums slightly reverse the Power Cord Plug.
TUBE COMPLEMENT: A tube layout chart at the rear of the receiver indicates the type of tubes employed, as well as their location on the receiver chassis. When replacing these tubes replace only with tubes having identical type numbers.

When operating the receiver in a steel re-enforced building or other shielded locations, an outside antenna is recommended. This may be connected to the terminal on the loop marked "AERIAL". A ground may also be connected to the terminal marked "GROUND".

WARNING: Check power line for voltage and frequency (cycles) to make certain they are the same as specified on label located at rear of the receiver chassis, before inṣerting the power line in electric outlet.

This Receiver is equipped with a ROTATING LOOP ANTENNA. By rotating the Loop Control from left to right or vice versa, reception may be greatly improved. A correct position of the LOOP ANTENNA will result in noise-free reception.

PAGE 19-20 RADIO WIRE
MODELS JS-186, RADIO WIRE TELEVISION

©John F. Rider

FIGLRE 2. FRONT VIEW OF RADIO INSTALLATION

INSTALLATION

This radio is designed to operate at maximum efficiency when used with any good make auto-radio aerial. Install the aerial before proceeding with the installation of the radio. The aerial lead and complete installation instructions are packed with each aerial. The location of the aerial will determine the length of the aerial lead required to reach the radio. The shortest possible aerial lead should be used.
RADIO INSTALLATION: Determine the best possible location for the radio along the lower edge of the instrument panel. Using the front mounting strap as a template, mark and drill two $1^{1 / 4 *}$ holes in the instrument-panel flange.

Fasten the strap to the top of the radio housing with two screws; then attach the fire-wall mounting strap to the stud on the back of the radio. Hold the radio in place, and bend the fire-wall strap to fit the fire wall. Mark and center-punch the location for the mounting-bolt hole on the fire-wall, and drill a $3 / 8^{\prime \prime}$ hole. Before drilling the hole, make certain that there are no obstructions such as ignition coil, battery, etc. on the motor side of the fire wall. Fasten the front mounting strap to the flange of the instrument panel (see figure 2), and bolt the fire-wall mounting strap securely to the fire wall (see figure 3).

CONNECTIONS: Plug the aerial lead into the connector on the radio. Place the fuse in the fuse housing on the " A " lead, and connect the fuse end of the " A " lead to the short lead on the back of the radio. Connect the other end of the "A" lead to the ignition switch or ammeter stud.

ANTENNA COMPENSATOR: An adjustment (see figure 1), reached through a hole on the upperleft side of the radio, near the front, is used to balance the radio to the aerial. With the radio turned on and the aerial fully extended, tune in a weak signal between 1200 kc and 1400 kc on the dial. With the volume control set just high enough to make the program audible, set the trimmer adjustment to obtain maximum signal strength. A small screwdriver is required for this adjustment.
Radio is now ready for operation.

FIGIRE. 3. REAH VIEW OF HADIO INSTALLATION

ELIMINATION OF INTERFERENCE FROM CAR ELECTRICAL SYSTEM

Remose the coil-to-distributor high-tension lead from the distributor. Cut the lead two inches from the end. and serew the distributor resistor into the coil lead (see figure 4). Then screw the short Irnyth into the resistor and plug the cable into the distributor cap. Two noisefilter condensers are furnished. Gur condenser muxi be connected to the output terminal of the generator (never to the ficld terminal) and the wilier to the battery side of the ignition coil. The generator-condenser bracket :hould low fastened to the generator housing. under the srew that holds the field (see figure 5), while the roil-comdenser loracket should be fastened under the coil monnting bolts.
In some particularly stubliorn cases of motor interference, one or more of the following procedures may lie necessary:
A comdenerer can often be used to advantage on the electrically operated oil gauge or gas gauge. Connect the condenser lead to the terminal of the gauge, and bolt the condenser case securely to the frame or some other grounded part of the car.

Bonding the sterring column to the fire wall with a short braid may also be effective. Clean the paint from the sterring oolnmin at the fire wall where the column enters the motor compartment, anll solder ont a short piece of liraid. Ground the end of the braid to the fire wall.

FIG: RE: I. IISTRIBITOR RESISTOR

DO NOT CONNECT TO THE
FIELD TERMINAL

FIGURE 5. GENERATOR CONDENSER
In some cases it may be necessary to ground the tubes and rods coming through the fire wall in order to reduce the interference. Clean them with emery cloth and spot-solder the braid, fastening the end under a convenient screw (see figure 6).
In some cases it may be necessary. to connect an additional condenser to the ammeter or to the ignition switch.
It may be necessary to use a condenser on the voltage regulator. The condenser case should be mounted under one of the voltage-regulator mounting screws, or at some other convenient location, and connected to the battery terminal of the voltage regulator.
Interference from electric clocks can be eliminated by connecting a condenser to the ammeter terminal. The case of the condenser must be securely grounded.
If tire-static interference is noted in a particular installation, static collector springs should be obtained and installed in the front wheels of the car.

REGAL PAGE 19-5

$\stackrel{\rightharpoonup}{\square}$

980

THE MODEL 1500 is a 4-tube battery-operated superheterodyne farm radio receiver with two tuning ranges for reception of standard broadcast and shortwave stations. The tuning range of the broadcast frequency is 540 to 1650 kilocycles, or 560 to 182 meters. The short wave frequency is 5.8 to 18.3 in megacycles, or 16 to 49 meters, which include the following 16, 19, 25, 31, 39 and 49 meter bands.

This radio is designed to operate from an Eveready \#758 battery pack. This unit has a 90 volt " B " supply and a $11 / 2$ volt "A" supply, and is connected to the receiver by means of a 6 -foot flexible battery cable and plug.

ELECTRICAL SPECIFICATIONS

THE CIRCUIT OF 1500 is a superheterodyne employing eight tuned circuits for maximum sensitivity and selectivity, with Automatic Volume Control (AVC) and a beam power output system. The tube complement consists of (1) 3Q4 power amplifier, (1) 1S5 Detector, AVC and first audio amplifier, (1) 1T4 IF amplifier, and (1) 1R5 converter.

If your set does not work check your tubes. Make sure each tube is in its socket.

This Model is a 5 tube, 1 Band superheterodyne with a built in Regaloop Antenna. The tuning range of the Broadcast Band is 540 to 1650 kilocycles or 560 to 182 meters. This receiver operates on 105.125 volts, 50.60 cycles alternating current or on $105 \cdot 125$ volts direct current.

Antenna

The loop Antenna in this receiver will give good reception under normal conditions. It is directional and the best position may be obtained by slowly rotating the receiver in different directions until the signal volume is at its strongest. For better results on weak signals connect a good outside Antenna. A connection is provided at the rear of the receiver for connecting an outdoor Antenna.

ELECTRICAL SPECIFICATIONS
Super-heterodyne with Beam Power out-put system. TUBES: 1-12SA7, 1-12SG7, 1-12SQ7, 1-50L6, 1-35Z5.

- John F. Rider

OJohn F. Rider

TO INSTALL WIRE:

1. Remove rubber band from spool and press spool onto spindle so that the wire will reel off from the front side of the spool.
2. Hold top of spool with fingertips to prevent unwinding and draw out the celluloid leader past recording head and into channel of turntable.
3. While holding the leader against inner edge of the channel, rotate the turntable by hand until two complete turns of wire are in the channel. ee that the ine ations will result.
4. The Model 7120 comes equipped with a quarter hour spool of recording wire. Standard spools of wire are available in quarter hour, half hour and one hour lengths, any of which will fit the wire recorder.

TO SPLICE BROKEN WIRE:

1. Use several inches of the two ends of the wire and tie a common square knot. Draw knot tight and trim ends close.

TO RECORD RADIO PROGRAMS OR PHONOGRAPH RECORDS ON WIRE:

1. Turn radio selector switch to desired position.
2. Turn wire recorder selector switch at left of tuning eye to RECORD.
3. The Magic Eye indicates the volume of the sound being recorded. It will normally flicker as the sound varies in intensity. Turn the recorder VOLUME control until the eye just barely closes but never overlaps. Too much overlapping of the indicator eye may cause distortion or recording at a high the recorded level may be so low as to allow wire noise to be heard on the playback.
. Turn motor switch at right hand back corner to RECORD. The small button next to the switch must be depressed when switching to RECORD position.
4. Whatever sound is heard from the loudspeaker is now being recorded. The radio volume and tone controls may be set in any position while recording as they do not affect the program being recorded.
TO RECORD FROM MICROPHONE:
5. Turn recorder selector to MIC.
6. Adjust VOLUME control as in para. 3 above, while speaking into microphone.
7. Turn motor switch to RECORD.
8. Speak in a normal tone of voice, holding the microphone about four inches from the lips.
9. None of the radio controls have any effect while recording from the microphone, except that the power switch must be turned ON.
© John F. Rider

PAGE 19-6 REMLER

Before the recording can be played back, the wire must first be rewound to the start of the program. This rewinding is accomplished at a speed of about five times the recording and playback speed.

1. Turn the recorder selector switch to PLAYBACK.
2. Turn the radio volume control to the extreme counter clock-wise position.
3. Turn the motor switch to REWIND.
4. The radio volume control can now be adjusted until the chattering sound is at the desired volume. This sound is the program that has just been recorde used to judge when the recorded program has been rewound. this sound
5. When the wire has been rewound to the desired point, turn the motor switch to PLAY.
6. The program that has been recorded will now be heard on the radio speaker. The volume and tone may be adjusted with the radio tone and volume controls. The recorder volume control has no effect during the playback.
7. To stop playback at any time, turn motor switch to OFF.
8. If wire is completely wound off of either the spool or turntable, the motor will automatically shut off. In this case, turn the motor switch to OFF, rethread the wire and press reset button to reconnect motor.
9. If a spool of wire is to be stored, REWIND entire length of wire as above and remove spool. Place a rubber band around spool to retain wire.
10. When not using the wire recorder, turn motor switch and recorder selector switch to OFF. Never turn radio power switch or recorder selector switch to OFF until motor switch is turned to OFF and turntable has stopped revolving. If this procedure of first turning the motor switch to OFF position is not followed, the wire is likely to unwind from one spool and not wind onto the other spool, thus causing it to become tangled.

ERASING RECORDED MATERIAL:
The recording may be played and replayed as often as desired without affecting the performance of the record. If it is desired to use the same spool of wire will automatically be cleared of previously recorded material at the same wire the new recording is being made. If it is desired to erase the the same time wire without recording a new one, the following procedure should be used.

1. Rewind wire to the point at which erasing is to start
2. Turn recorder selector switch to RECORD.
3. Turn recorder volume control to extreme counter clock-wise position.
4. Turn motor switch to RECORD
5. Turn motor switch to OFF after desired amount of wire has been erased.

The Models 7110 and 7120 are designed for operation on 115 volt, 60 cycle house current only.

[^0]: *This part, located in another section, may cause abnormal indication in this section.

[^1]: Listening Test: Rotate tone control, R204, through range; lack of treble attenuation may be caused by open C203 or R204;
 lack of bass accentuation may be caused by open R212, R204, R203, or C202, or by shorted or leaky C202.
 Distortion may be caused by leaky C201, C205, C206, or C207.

[^2]: *For 117-volt a-c input. When operating from a d-c power line and no voltage is measured, reverse the power plug.
 **Connect siqnal qenerator output lead through a condenser (. 01 to .25 mf).

[^3]: Listening Test: Distortion may be caused by open R201 or R203, or by shorted or leaky C201. Hum in phono operation may be caused by open C202.

[^4]: Tilt front, 48-1274-M
 Instrument panel, 48-1274-M
 Cabinet, 48-1276 Cabinet, 48-1276
 Two section lid,

[^5]: - John F. Rider

[^6]: OSCHLATOR-TEST NOTE: Connect posilive lead of a 20,000 -ohme.per-volt meter to B; connect prod end of negative lead through a 100,000 -ohm lsolating resistor to test point D. Proper operation of oscillator is indicated by a negative voltage of 9 to 12 volts through. out range of tuning condenser.

[^7]: OSCILLATOR TEST: Connect the nositive lead of a high-resistonce voltmeter to B-, test point B; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 4 of 7 A8), test point D. Proper operation of the oscillator is indicated by a negative voltage of the value given in the chart (measured with a 20,000 -ohms-per-valt meter) throughoul the tuning range.

[^8]: * This part, located in another section, may cause abnormal indication in this section.

[^9]: OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to the oscillator cathode (pin 2 of 12BE6), test point D; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 1 of 12BE6), test point C. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage within the range given in a chart (measured with a 20,000 ohnns-per-volt meter) throughout the tuning range.

[^10]: * Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.
 $\dagger \dagger$ Align $T 3$ and $T 2$ by means of alternate loading as explained under AM alignment. 'se a 680 ohm resistor instead of a 47,000 ohm resistor and load the FM windings.
 ** Li and L.2 are adjustable by increasing or decreasing the spacing lotween turns.

[^11]: -This is the first time that this Stock No. has appeared in Service Data.

[^12]: *This is the first time that this Stock No. has appeared in Service Data.
 †Stock No. 72953 is a reel containing 250 feet of cord.

[^13]: -This is the first time that this Stock No. has appeared in Service Data. tStock No. 72953 is a reel containing 250 feet of cord.

[^14]: © John F. Rider

[^15]: FM

[^16]: Line of 117 Volts AC. All DC Reodings token with 20,000 Ohms per Volt Meter uniess otherwise indicated. AC Readings taken of 1000

