VOLUME XVIII

JOHN F RIDER

GENERAL DESCRIPTION

1. GENERAL

These instructions cover the installation, operation and servicing of the Scott Export Radio Receiver.

THEY SHOULD BE READ AND STUDIED WITH GREAT CARE BEFORE THE INSTALLATION OR OPERATION OF THE RECEIVER IS ATTEMPTED IN ORDER THAT OPTIMUM PERFORMANCE MAY BE OBTAINED.

The receiver employs twelve tubes and covers the frequency range of 0.54 to 1.6 megacycles and 3.2 to 23.5 megacycles in four frequency bands.

The Scott Export Radio Receiver is designed for operation from a 115 volt DC source of 115 volt 60 cycle single phase AC source. Power consumption is 78 watts.

All operating controls are mounted on the front panel of the receiver. Power, antenna, ground, audio output, record player input and fuses are located at the rear of the receiver.
2. DESCRIPTION

2.1 General

The Scott Export Radio Receiver is a superheterodyne type receiver. The electrical circuits employed for signal reception on all frequency ranges comprise one stage of R.F. amplification, first detector or mixer, a separate high frequency oscillator, two stages of intermediate frequency amplification operating at 455 kilocycles, a diode type second detector, two stages of resistance coupled audio amplification, and a push puil audio frequency power output stage. The second detector utilizes one set of elements of a dual diode, the other set of elements is utilized to supply AVC voltage to the RF and IF amplifiers. One half of a twin triode tube is utilized as the lst audio amplifier, the other half of the twin triode is utilized in an efficient peak noise limiter circuit. A self contained power supply provides the necessary DC voltages for operation of the receiver from either an AC or DC power source. Inverse feedback is incorporated in the output audio amplifier to reduce hum and provide better audio response.

2.2 Frequency Range

The receiver covers the frequency range of 0.54 to 23.5 megacycles in four bands as follows:

Band

Frequency Range

1	0.54	-	1.6	megacycles
2	3.2	-	8.4	megacycles
3	8.2	-14.4	megacycles	
4	14.2	-23.5	megacycles	

2.3 Audio Output Connections

The audio output transformer is mounted on the receiver chassis. The secondary of this transformer is connected to a two terminal strip marked "SPEAKER" mounted on the rear of the chassis. The loudspeaker is connected to this terminal strip by means of the two conductor cable fastened on the speaker. The voice coil impedance of the loudspeaker is 8 ohms. The maximum undistorted audio output is 2.16 watts measured across an 8 ohm load.

2.4 Antenna Connections

The antenna terminal strip is mounted at the rear of the receiver for antenna and ground connections.

The input circuit of the receiver is primarily designed for operation with a separate antenna not used for other equipment. A conventional single wire antenna will suffice. It should be well insulated and erected as high as possible. The recommended minimum overall length of antenna and lead-in is fifty feet. The antenna proper should be erected out in the open as much as possible.

In an installation having a simple antenna-ground combination, connect the antenna lead-in to the outer antenna terminal and the ground lead to the terminal marked "GND". Then connect a jumper wire between the center antenna terminal and the ground terminal.

When a doublet type antenna, such as the Scott Super Double Doublet, is used the two lead-in conductors should be connected to the two terminals marked "ANT" and the ground wire to the terminal marked "GND".

CAUTION: When connecting the ground wire between the receiver and the water pipe or other ground point remove the power plug from the wall receptacle as a slight shock may be felt if the plug is left in with the polarity reversed.

2.5 Pover Requirements

The radio receiving equipment is designed to operate from either 115 volts $D C$ or 115 volts 60 cycle single phase AC. Line current at 115 volts is .62 amperes. The nominal power consumption at 115 volts $A C$ or $D C$ is 78 watts.

Connection to the power source should be made through the plug and cord attached to the receiver. When the receiver is used on a DC power source the correct polarity must be observed or the receiver will not operate. After the receiver has been connected and turned on if it fails to operate after warming up, reverse the power plug to obtain the correct polarity.

When the receiver is used on an AC power source the polarity is not important. It may be desirable, however, to reverse the power plug in some installations to reduce hum.

The fuse in the power supply line is mounted adjacent to the power input at the rear of the receiver. The fuse mounting is of such design that the fuse, which is of the cartridge type, is replaceable without the use of tools, and without the necessity for the removal of the receiver chassis from its cabinet.

2.6 Record Player Connections

Provision is made at the rear of the chassis for connection of a record player pickup of the high-impedance type. A low impedance pickup may be used with the proper matching transformer.

2.7 Tube Complement

The vacuum tubes employed in the Scott Export Radio Receiver are as follows:

Symbol
Tube Type
Function

$\mathrm{V}-101$	$6 \mathrm{K7}$
$\mathrm{~V}-102$	12 J 5 GT
$\mathrm{V}-103$	$12 \mathrm{SA7}$
$\mathrm{~V}-104$	$12 \mathrm{SK7}$
$\mathrm{~V}-105$	$12 \mathrm{KK7}$
$\mathrm{~V}-106$	12 H 6
$\mathrm{~V}-107$	$12 S N 7 G T$
$\mathrm{~V}-108$	$12 S N 7 G T$
$\mathrm{~V}-109$	$25 L 6 G T$
$\mathrm{~V}-110$	$25 L 6 G T$
$\mathrm{~V}-111$	1629
$\mathrm{~V}-112$	$25 Z 6 \mathrm{GT}$

R. F. Amplifier
H. F. Oscillator

First detector mixer
First IF Amplifier
Second IF Amplifier
Second Detector, AVC
First Audio, Noise Limiter
Second Audio, Phase Inverter
Output Audio Amplifier
Output Audio Amplifier
Tuning Indicator
Rectifier

3. CONSTRUCTION

The Scott Export Radio Receiver is furnished with a complete set of escutcheons and hardware for mounting the receiver in the cabinet. If it is desired to house the receiver in a custom installation or any cabinet built to the customers specifications Figure 3 shows the cutout dimensions for the front panel and loudspeaker baffle board. The following table gives the dimensional outlines of the receiver chassis and loudspeaker and lists the weight of each unit.

Width	Depth	Height	Weight
Receiver Chassis			
$165 / 8^{\prime \prime}$	$167 / 8^{\prime \prime}$	$101 / 2^{\prime \prime}$	35 lbs.
Loudspeaker			
$121 / 4^{\prime \prime}$ dia.	$51 / 4^{\prime \prime}$	-	6 lbs.

Figure 1 Top View Export Radio Receiver Chassis

EXPORT RECEIV:R SCOTT RADIO LABS., INC

$\frac{1}{2}$ "OR $\frac{3 "}{4}$ PLYWOOD
SIZE OF bAFFLE TO SUIT CABINET

Figure 3 Panel and Speaker Baffle Cutouts

CIRCUIT DESCRIPTION

4. GENERAL

The actual schematic diagram of the Scott Export Radio Receiver is shown in Figure 7. For purposes of illustration, it will be assumed that the circuits are set up as for signal reception on Band 1 (.54-1.6 MC) as shown in the diagram. The following description will refer therefore, to the symbol numbers of the circuit elements of this band. It shall be assumed that unless otherwise noted, the description will be equally applicable to Bands 2-3-4.

5. SIGNAL FREQUENCY CIRCUITS

Signal input to the receiver through antenna terminal E-120 is connected to the primary winding of antenna input transformer $T-101$ by switch S-lOlA. Wave trap inductor $L-101$ is provided to attenuate signals at IF frequency (455 KC). This circuit is tuned by series connected capacity C-101 and tuned to 455 KC by adjustable iron core E-114. An electrostatic shield, at ground potential, separates the secondary winding from the primary winding. The secondary winding together with variable air dielectric capacitor C-104 (A and B) constitutes the first tuned circuit. Transfer of r-f signal, at the resonant frequency of this tuned circuit, from the antenna to the control grid of R.F. amplifier tube $\mathrm{V}-101$, is accomplished by inductive coupling through antenna input transformer T-lOl. Variable capacitor C-104 is a two section capacitor, both sections being connected in paraliel on Bands 1 and 2 by means of switch S-101B. On Bands 3 and 4 capacitor section C-l04A is switched out of the circuit and C-104B alone used. Variable capacitor C-104 is ganged with variable capacitor C-117 to provide uni-controlled tuning of the receiver. The secondary winding of transformer $\mathrm{T}-101$ is provided with an adjustable iron core for inductance trimming and a shunt connected variable trimmer capacitor C-106. These trimmer elements permit the accurate alignment of the tuned circuit at both ends of the frequency band and are accessible for adjustment as shown in Figure 2. The high potential end of the tuned circuit is connected to the control grid of R.F. Emplifier tube V-lol by switch $S-101 B$ and through coupling capacitor C-103. The low potential end of the tuned circuit is returned to ground bus. The d-c bias return from the control grid of R.F. amplifier tube V-101 to the A.V.C. line is closed through resistor R-lol.

Plate potential from the high voltage d-c line is applied to the plate of R.F. amplifier tube V-101 through decoupling resistor R-109, bypassed to ground by capacitor C-134C and through R.F. transformer T-105 primary. Screen potential is applied through resistor R-103 bypassed by capacitor $\mathrm{C}-111 \mathrm{~B}$. The suppressor is connected to the cathode. Initial grid bias is obtained by means of cathode resistor R-l02 bypassed by capacitor C-llla. One side of the heater of V-l01 connects to the heater of $\mathrm{V}-108$, the other side connects to the heater of $\mathrm{V}-107$.

The amplified signal from the plate of R.F. amplifier tube V-lol is transferred to the signal grid of mixer tube V-lo3, through R. F. transformer T-105. The primary of $T-105$ is untuned, the secondary winding together with variable capacitor $C-117$ (A and B) constitute the second and final tuned circuit operating at signal frequency. The high potential end of the tuned circuit is connected to the signal grid of mixer tube $V-103$ by switch $S-101 C$ through coupling capacitor $\mathrm{C}-116$. The low potential end of the tuned circuit connects to ground bus. Adjustable iron core E-lO6 and parallel connected trimmer capacitor C-ll2 are provided for purposes of circuit alignment. The DC bias return from the control grid of mixer tube V-103 to the AVC line is closed through resistor R-104 bypassed to ground bus by capacitor C-159.

Screen potential from the high voltage DC line is applied to the screen of mixer tube V-103 through resistor R-108 bypassed to ground by capacitor C-134A. The suppressor is internally connected to the shell of the tube. Initial bias is obtained by means of cathode resistor R-106 bypassed to ground by capacitor C-120B.

6. HIGH FREQUENCY OSCILLATOR CIRCUITS

The high frequency oscillator circuit is of the "electron-coupled" type. The tuned circuit consists of tapped inductor T-109, shunted with variable trimmer capacitor C-125 and is tuned by variable capacitor C-ll7 (C and D). Inductor $T-109$ is provided with an adjustable iron core for inductance adjustment. Fixed capacitor C-124 shunted by variable trimmer capacitor C-l23 is provided to modify the tuning of 1 the H.F. oscillatol so that it will maintain a fixed frequency difference of 455 kilocycles with respect to the signal frequency when tuning capacitors C-104, $C-117 A B$ and $C-117 C D$ are varied from minimum to maximum capacity. The oscillator circuits are aligned on the high side of the signal circuits on Bands 1 and 2 and on the low side of the signal circuits on Bands 3 and 4 as outlined in Paragraph 21.

The high potential end of the tuned circuit is connected to the control grid of H.F. oscillator tube V-102, through switch S-101D and fixed capacitor C-122. This grid is returned to the ground bus through resistor R-lio. The low potential end of the tuned circuit is also returned to the ground bus. The cathode of the H.F. oscillator tube V-102 is connected to the tap of inductor T-l09 through switch S-101D and through coupling capacitor C-l2l to the oscillator injector grid of mixer tube V-103. This grid is returned to ground bus through resistor R-107. The plate of the H.F. oscillator tube V-102 is connected to the high voltage DC line through resistor R-lll and bypassed to ground by capacitor C-132A. One side of the heater circuit of the H.F. oscillator tube V-lo2 connects to the heater of V-105 bypassed to ground bus by capacitor C-132C. The other side of the heater connects to the heater of V-104.

7. I.F. AMPLIFIER CIRCUITS

The signal frequency arriving at the control grid of mixer tube V-103 and the H. F. oscillator frequency arriving at the injector grid of this tube are mixed (or heterodyned) and the resultant difference frequency $(455 \mathrm{kilocycles})$ is fed to the input of the I.F. amplifier.

Transfer of IF signal from the plate of the mixer tube V-l03 to second detector tube V-106 is accomplished by inductive coupling through IF transformers T-113, T-114, T-115 and amplified by tubes V-104 and V-105. First IF transformer T-113 consists of two tuned circuits, primary and secondary with the secondary tuned circuit operating in conjunction with switch S-102A and a tapped tertiary winding, to provide five degrees of selectivity by changing the coefficiont of coupling with the primary circuit. The primary and secondary windings are each tuned to $455 \mathrm{kilo-j}$ cycles by fixed capacitors C-136 and C-137 and adjustable iron cores E-1l5 and E-116. These cores are accessible for adjustment through the top of the shield can for E-Il6 and at the bottom of the receiver for E-il5. The high potential end of the primary tuned circuit connects to the plate of mixer tube V-103 through a shielded conductor while the low potential end connects to the high voltage DC line through resistor R-112, bypassed to ground by capacitor C-135C. The high potential end of the secondary tuned circuit is connected to the grid of first IF amplifier tube V-104 while the low potential end is connected to the AVC line through resistor R-ll3, bypassed to ground bus by capacitor C-l44A. DC potential from the high voltage DC line is applied to the screen of first IF amplifier tube V-l04 through resistor R-ll5, bypassed to ground by capacitor C-l44B. Plate potential is applied through resistor R-116 bypassed by capacitor C-139C. Initial cathode bias is obtained through resistor R-114, bypassed to ground by capecitor C-135A. The suppressor is connected to the cathode. One side of the heater of the first IF amplifier tube V-104 is connected to the heater of V-102. The other side of the heater connects to the heater of mixer tube V-103.

Second IF transformer T-1l4 is identical to first IF transformer with respect to design, construction, and operating characteristics, accordingly, except for differences in symbol designations. The circuit description of first IF transformer T-ll3 is applicable to this transformer.

The circuit arrangement of second IF amplifier tube V-l05 is the same, except for symbol designations as for first IF amplifier tube V-lo4 except that the grid is returned to ground bus instead of AVC. One side of the heater of second IF amplifier tube V-106 connects to the heater of V-102. The other side of the heater connects to the heater of V-111.

Third IF transformer T-ll5 consists of a tuned primary circuit and an untuned secondary. The primary circuit consists of the primary winding shunted by a fixed capacitor C-l42 and permeability tuned by iron core E-ll9 which is accessible for adjustment at the bottom of the chassis. Plate potential is applied to the plate and screen of second IF amplifier tube V-105 through resistor R-lis, bypassed to ground by capacitor C-139B. The high potential end of the secondary winding feeds the second detector diode while its low potential end connects to ground bus through diode load resistor R-119 and filter resistors R-120 and R-121.
© John F. Rider

8. SECOND DEYECTOR CIRCUITS

Tube V-106 is a dual diode tube, one section V-106A, is used as a second detector, the plate of which is connected to the high potential end of the secondary winding of the third IF transformer T-115. The cathode is connected to ground bus, thus the tube acts as a half wave rectifier.

The second section, $V-106 B$ of twin diode $V-106$, is utilized as an AVC diode. Signal is fed from the primary of IF transformer T-115 to the plate of V-106B through capacitor C-150. This plate is returned to ground bus through load resistor R-129. Bias is applied to the cathode of V-106B to delay AVC action so that on weak signals the AVC is inoperative and the full sensitivity of the receiver may be utilized. The voltage developed across load resistor R-l29 as a result of the demodulating action of AVC diode V-106B, is filtered by resistor R-127 and capacitor C-1l9A and the resultant DC voltage is used to control the gain of amplifier tubes V-101, V-103, V-104. The degree of control being dependent on the strength of the incoming signal.

DC potential from the AVC diode is further filtered by resistor and capacitor C-ll9B and applied to the control grid of electron-ray indicator V-lll. This DC voltage regulates the shadow angle of the electron-ray tube to indicate when the receiver is tuned to resonance with the received signal.

9. NOISE LIMITER CIRCUIT

One section of twin triode V-107 is utilized as a peak noise limiter. When the noise limiter switch SW3 is set at "ON" position voltage from the second detector diode is applied to the grid of V-107A through a filter consisting of R-122 and C-119C, the time constant of this fil. ter is long enough so that nomal variations in modulation will not affect the input voltage yet short enough so that variations on voltage due to signal fading will be followed, thus providing automatic adjustment of the noise limiter circuit for different carrier levels.

Under normal conditions the cathode of V-lo7A is negative with respect to the ground bus by the voltage drop across R-119, R-120 and the grid is held more negative by the voltage drop across R-120 while the plate is positive by the voltage drop across R-123 in the cathode of the AVC diode V-106B.

Under these conditions the plate to cathode resistance is very high and very little conduction takes place until the modulation reaches approximately 85%. When the current through the diode load is suddenly greatly increased by a pulse of "Noise voltage" the cathode of V-107A will go more negative and the plate more positive but the grid will remain at the original potential due to the time constant of the filter R-122, G-119C. The cathode now becomes more negative than the grid, and the plate to cathode resistance becomes very low and bleeds off the peak voltage developed by the noise pulse.

The A.F. Voltage developed across the diode load resistor R-ll9 as a result of the demodulating action of second detector diode V-106A, is applied to the control grid of first A. F . amplifier tube V-lOTB, through capacitor C-145 and A.F. gain potentiometer R-125.
Switch S-103 operates to transfer the audio input to volume control R-125 and hence the input circuit of the first A.F. amplifier tube $\mathrm{V}-107 \mathrm{~B}$, from the second detector circuit to "PHONO" terminals E-121 to permit the operation of the audio amplifier system of the receiver with a high impedance record player pick-up. Low impedance pick-ups may also be employed provided that their connection to terminals E-12l are made through suitable matching transformers.

Amplification of the A.F. signals from the second detector is accomplished by resistance-capacity coupling between first A.F. amplifier tube V-107B and output power amplifier tubes V-109 and V-110. Transfer of audio frequency energy from the plate of output amplifier tubes V-109 and V-110, to loud speaker terminal E-122 is accomplished through output transformer $T-117$ which matches the plate impedance of the tube with the 8 ohm output load with which the receiver is designed to work.

DC potential is applied to the plate of first A.F. amplifier tube $\mathrm{V}-107 \mathrm{~B}$ through plate load resistor $\mathrm{R}-130$ and filter resistor $\mathrm{R}-131$, bypassed to ground bus by electrolytic capacitor C-148. Bias is applied to the cathode through resistor R-126 which returns to ground bus. One side of the heater of V-107 connects to the heater of V-101, the other side connects to one side of the power line.
A.F. signal from the plate of first audio tube V-107B, is transferred to the grid of second audio tube V-108 through capacitor C-147 and series resistor R-132. The grid of V-l08B is returned to ground bus through resistor R-133.

The grid of V-108A is returned to ground bus through resistor R-135. DC potential is applied to the plate of V-108A through resistor $R-137$ and to the plate of V-l08B through resistor R-136. Bias is provided for V-108B through resistor R-134 and for V-l08A through resistor R-135 bypassed by C-149.
A.F. signal is transferred from the plate of V-108B to the grid of V-109 through capacitor C-152 and from the plate of V-108A to the grid of V-110 through capacitor C-153. The grid of V-109 is returned to ground bus through load resistors R-139, R-140 and filter resistor R-142. The grid of V-llo is returned to ground bus through load resistor R-140 and filter R-142. Resistors R-139 and R-140 in series are utilized as a voltage divider to supply the proper amount of audio signal to the grid of V-108A so that the signal output from the plates of V-108A and V-108B will be equal and 180 degrees out of phase thus providing push-pull signal input to the grids of the output tubes V-109, V-110.

DC potential is applied to the plates of output amplifier tubes V-lo9 and V-110 through output transformer T-117 primary which is centertapped. The cathodes of V-109 and V-110 are returned to ground bus, through resistor R-143 bypassed by capacitor C-154. One side of the heater of V-109 connects to the heater of V-108, the other side connects to the heater of $V-110$, the other side of the heater of V-110 connects to the heater of V-112.

AF signal from the plate of V-109 is fed back to the cathode of V-108B through resistor R-138 and capacitor C-155 in series. This feedback arrangement is provided to supply more constant voltage output at the loudspeaker terminals thus providing more uniform frequency response from the loudspeaker.

Variable potentiometer R-152 and series connected capacitor C-151 constitute the control for regulating the fidelity of the audio amplifier system of the receiver. The series combination is connected from the plate of lst audio tube V-l08B to ground bus.

Output transformer T-117 is provided to transfer the A.F. signal from the audio amplifier of the receiver to the loudspeaker connections.

11. RECTIFIER POWER CIRCUITS

The Scott Export Radio Receiver is designed for AC-DC operation, therefore, no power transformer is used. The heaters of all tubes are connected in series in two circuits. In one circuit V-101, V-107, V-108, V-110, V-109 and V-112 are connected in series with resistor R-l05. The other heater circuit consists of V-102, V-106, V-105, V-103, V-104 and V-ill in series with resistor R-151.

Rectifier tube V-112 is utilized to supply DC potential for operation of the receiver when used with an AC power source. The pulsating DC potential from the cathodes of V-ll2 is filtered by iron core inductor L-102 and electrolytic capacitors C-156, C-157 and C-158.

The two lamps used for lighting the dial scale are connected in series across resistor R-150. If one of these lamps burns out, both lamps will go out until the defective lamp is replaced.

NOTE: WHEN REPLACING THESE LAMPS MAKE CERTAIN THE REPLACEMENT LAMP IS RATED AT 6-8 VOLTS . 25 AMP OR BLUE BEAD TYPE.

INSTALLATION AND INITIAL ADJUSTMENTS

12. UNPACKING THE EQUIPMENT

After unpacking the equipment, it should be inspected for any possible damage that might have resulted from careless handing in transit. Make certain that all vacuum tubes are firmly seated in their sockets.

13. INSTALLATION

The necessary hardware for installing the receiver and loudspeaker in the cabinet is included in the chassis carton.

The loudspeaker should be installed first, and is accomplished by placing the speaker on the four bolts which are already fastened into the speaker baffle. The speaker is then fastened down using the four nuts and washers furnished. NOTE: DO NOT draw the speaker down too tight against the baffle as the frame may be distorted and misalign the voice coil.

The escutcheons for the dial and tuning indicator should be mounted next, centering the escutcheons in the panel cutout provided and fastening them down with the smail wood screws provided.

The receiver can now be mounted in the cabinet, pushing it forward until the knob escutcheon plate hits the back of the panel. Then center the dial calibration scale in the escutcheon opening and fasten the receiver in place using the right and left hand brackets and wood screws furnished. These brackets are mounted at the rear corners of the chassis. Connect the two speaker leads to the terminals marked speaker, the power connection and antenna connections are made as outlined below.
14. CONNECTIONS TO RECEIVER

14.1 Power Connections

The receiver may be operated from a ll5 volt DC supply or 115 volts 60 cycle single phase power source. Connection to the power source should be made by means of the plug and cord furnished with the receiver. CAUTION: When a DC power source is used, if the power plug is inserted in the wall receptacle with the wrong polarity the set will not operate. Therefore when operating the receiver on $D C$ pover if the receiver fails to work after being turned on, reverse the power plug. On an AC power source the receiver will operate with the plug inserted either way, although in some instances the hum level may be lower if the plug is inserted one way.
14.2

Antenna and ground connections are made to the receiver through the terminal strip furnished on the receiver. Connections should be made as outlined in Paragraph 2.4.

14.3 Loudspeaker Connections

Terminals are provided at the rear of the receiver for connection of the loudspeaker which has an input impedance of 8 ohms. It is not necessary to observe polarity when connecting the loudspeaker.

14.4 Record Player Connections

A record player pickup may be connected to the terminals marked "PHONO" located at the rear of the chassis. If the pickup is high impedance such as a crystal, direct connection may be made. If the pickup is low impedance, a matching transformer must be used.

14.5 Installation Inspection

Before turning the receiver on, inspect all connections to ascertain that they have been properly made. Then set the panel controls as follows:

$$
\begin{aligned}
& \text { 1. Sensitivity control set at zero. } \\
& \text { 2. Tone control set at maximum. } \\
& \text { 3. Volume control set at zero. } \\
& \text { 4. Band selector control set to frequency band in which } \\
& \text { signalsare desired. } \\
& \text { 5. N. N. control to center "orf" position. } \\
& \text { 6. Selectivity control to No. } 1 \text { position. }
\end{aligned}
$$

The equipment is now ready for operation and is turned on by means of switch S-104 when set at "Power" position.

Section IV OPERATION

15. OPERATION OF CONTROLS

All switches and controls (with the exception of the main tuning control) of the radio receiver are identified by panel engraving.
For reception of broadcast signals the following procedure should be followed:

1. Set Power switch to "Power" position.
2. Set Band Selector control to frequency band in which the desired signal is located.
3. Set Selectivity control at No. 1 position.
4. Set N.L. control to "OFF" position.
5. Set Sensitivity control to maximum position.
6. Advance Volume control to suitable noise level.
7. Tune the receiver to the approximate station frequency by means of the main tuning control. Slowly rotate the tuning knob back and forth until the signal is properly tuned in as indicated by tuning indicator tube.
8. Adjust the Volume control to the proper output level.
9. Adjust the Tone control to the desired position to eliminate background noise.

When the Sensitivity control is turned counterclockwise the sensitivity of the receiver is decreased. By turning this control back the interstation noise level can be cut down or eliminated when it is desired to receive the more powerful local stations.

If conditions of reception are such that peak noise levels interfere with received signals, the N.L. control should be set to the N.L. "ON" position. Under these conditions the peak noises will be chopped off and signals may be received through heavy interference.

In order to widen the IF selectivity and pass a wider band of frequencies for better fidelity, the Selectivity control should be set at No. 2, 3, 4 or 5 position to suit conditions.

CORRECTIVE MAINTENANCE

16. When servicing the Export Radio Receiver the first step should be a complete check of all tubes. This can be accomplished easily by replacing one at a time with tubes of known good quality. All tubes which are not defective should be reinserted in the socket from which they were taken. Failure of a vacuum tube in the receiver may reduce the sensitivity, cause intermittent operation or cause the receiver to be completely inoperative. Since the heaters of the vacuum tubes in the receiver are connected in series, in two strings, if one tube in a string burms out all the tubes in that string will be inoperative until the defective tube is replaced.

17. FAILURE OF THE RADIO RECEIVER

In case of failure or breakdown of the receiver the fault must first be localized in one portion of the circuit. This can be accomplished by observation of some peculiar action of one of the controls or by checking the receiver against test data tabulated in Tables 1 and 2. It must be remembered that resistance or voltage checks will not positively locate certain faults. For instance, an open circuited bypass capacitor will not appear in point to point resistance tests and may introduce regeneration or oscillation in certain circuits which effect the stage gain of other circuits. Similarily, a short circuit occuring in a low resistance inductor will not appear in a point to point resistance test and if the short appears in an R.F. coil, a false indication of the necessity for realignment may result.

Table 1				Tube Socket Voltages					
Symbol	Type	1	2	3	4	5	6	7	8
$\mathrm{V}-101$	$6 \mathrm{K7}$	0.0	17 AC	98	98	2.5	0.0	IlAC	2.5
V-102	12 J 5	0.0	34 AC	100	0.0	-10.5	0.0	45 AC	0.0
V-103	12SA7	0.0	22 AC	100	86	-2.4	2.4	10.5 AC	. 05
V-104	12SK7	0.0	34 AC	2	-2	2	88	22 AC	96
V-105	12SK7	0.0	56 AC	4.2	0.0	4.2	98	45 AC	98
V-106	12H6	0.0	0.0	-. 3	0.0	0.0	0.0	10.5 AC	1.05
V-107	12SN7GT	-. 6	1.05	0.6	0.0	42	1.65	11 AC	0.0
V-108	12SN7GT	0.0	48	1.7	0.0	40	1.4	17 AC	29.5 AC
V-109	25L6GT	0.0	29.5 AC	100	100	0.0	0.0	56 AC	8
V-110	25L6GT	0.0	80.5 AC	100	100	0.0	0.0	56 AC	8
V-111	1629	0.0	68 AC	100	100	0.6	100	56 AC	0.0
V-112	25Z6GT	0.0	80.5 AC	0.0	106	0.0	0.0	109 AC	106 AC
All readings are measured from socket contacts to common ground bus with voltohmyst meter.									

Symbol	Type	1	2	3	4	5	6	7	8
V-101	6 K 7	0.0	-	10260	12100	330	0.0	-	330
V-102	12 J 5	0.0	-	9920	-	47000	-	-	50
V-103	12SA7	0.0	-	10380	12100	20000	270	-	3.67 Meg
V-104	12SK7	0.0	-	220	$\begin{aligned} & 3.67 \\ & \text { Meg } \end{aligned}$	220	15300	-	10380
V-105	12SK7	0.0	-	680	4.7	680	10380	-	10380
V-106	12H6	0.0	-	$\begin{aligned} & .118 \\ & \text { Meg } \end{aligned}$	0.0	$\begin{aligned} & 2.2 \\ & \mathrm{Meg} \end{aligned}$	0.0	-	10000
V-107	I2SN7GT	$\begin{aligned} & 1.12 \\ & \mathrm{Meg} \end{aligned}$	10000	-	0.0	76700	1800	-	-
V-108	12SN7GT	$\begin{aligned} & .125 \\ & \text { Meg } \end{aligned}$	56700	1000	75000	56700	1500	-	-
V-109	25L6GT	0.0	-	9800	9700	$\begin{aligned} & .145 \\ & \text { Meg } \end{aligned}$	-	-	125
V-110	25L6GT	0.0	-	9800	9700	$\begin{array}{r} .24 \\ \mathrm{Meg} \end{array}$	-	-	125
V-111	1629	-	-	$\begin{aligned} & 2.2 \\ & \mathrm{Meg} \end{aligned}$	9700	$\begin{aligned} & 4.2 \\ & \mathrm{Meg} \end{aligned}$	9700	-	0.0
V-112	25Z6GT	-	-	55	9770	55	-	-	9770

All readings are measured from socket
terminal to the cominon ground bus.

SCOTT RADIO LABS., INC.

Symptom	Cause	Remedy
Weak or dead on all bands	Blown fuse	Replace from spares
	Defective tube	Replace from spares or stock
	Dial lamp burned out	Replace from spares
	Socket voltages wrong	Check associated bypass capacitors
		Check continuity of wiring and components
		Check resistors and switch contacts
	No signal	Check recelver stage by stage
		Check for disconnected or broken antenna connections
Weak or dead one band only	No signal	Check all coils on specific band
		Check switch contacts
Noisy Reception	Defective tube	Tap all tubes lightly and replace any that are noisy
	Defective antenna	Check antenna installation and connection
	Defective component	Tap all components lightly with insulated rod, check carefully suspected parts
Oscillation	Defective tube	Replace tubes one at a time
	Open bypass capacitor	Connect good capacitor across suspected unit, temporarily. Replace defective unit
Hum	Defective tube	Replace tubes one at a time
	Defective filter capacitor	Replace defective unit
	Defective bypass capacitor	
	Improper power source connection \qquad	Reverse power input connection

Bypass or filter capacitors, which develop poor internal connections or which become open-circuited, will cause decreased sensitivity and/or poor stability. An open unit can be located by temporarily connecting a good capacitor in parallel with the unit under suspicion. Failures of any bypass or filter capacitor may seriously overload resistors of associated circuits. Overloads of sufficient magnitude to permanently damage a resistor will cause the painted surface of the resistor to be scorched, making the defective unit easy to locate by visual inspection.
Loose connections, causing intermittent or noisy operation, and which cannot be found by point to point resistance tests, can usually be located by individually testing each circuit element, or by tapping or shaking the component under suspicion, when the receiver is adjusted for normal operation.

18. VOLTAGE AND RESISTANCE TESTS

Table 1 lists the tube socket voltages for various settings of the controls. All voltages are measured between the GROUND BUS and socket terminals. Voltage measurements listed are made with an electronic voltmeter such as the voltohmyst using the scale that can be most easily read. The receiver should be connected for normal operation and the controls adjusted as listed in Table l. Line voltage should be 115 volts $A C$ or $D C$. Resistance measurements are listed in Table 2. All resistance measurements are made between ground bus and terminal. The most suitable scale for the measurement being taken, should be used. The receiver should be disconnected from the power source with controls adjusted as listed in Table 1.
19. ALIGNMENT DATA

Should realignment of the Scott Export Radio Receiver become necessary, the following alignment data should be carefully studied before making any circuit adjustments. It is important that the operator understand the functions of each circuit element. so that correct alignment may be made quickly and accurately.

All alignment and measurements may be made with a signal generator capable of producing both a $30 \% 400$ cycle modulated signal or an unmodulated signal between 400 kilocycles and 25 megacycies and a General Radio Type 583A or equivalent output meter. For RF alignment and measurements at the antenna input a Standard RMA dummy antenna as shown in Figure 4 should be used.

Before proceeding with the alignment of any circuit of the receiver, the chassis must be removed from the cabinet, and the bottom cover plate of the chassis removed. For IF alignment the bottom cover shield of the oscillator-converter compartment must be removed.

SCOTT RADIO LABS., INC.

Figure 4 Schematic Diagram RMA Standard Dummy Antenna
The receiver must be connected to a 115 volt $A C$ or $D C$ power source and the controls set as follows unless otherwise noted.

Control
Power Switch
Sensitivity
Volume

Position
Power
Maximum
As Noted

Control
Tone
Band Selector
N.L. Control

Selectivity

Position
Maximum
As Noted Off Sharp (1)

The complete alignment of the radio receiver may be divided into three steps.

$$
\begin{aligned}
& \text { 1. I.F. Amplifier Alignment } \\
& \text { 2. High Frequency Oscillator Alignment } \\
& \text { 3. Radio Frequency Amplifier Alignment }
\end{aligned}
$$

NOTE: THE CIRCUITS MUST BE CHECKED IN THE ABOVE ORDER WHEN COMPLETE ALIGNMENT IS NECESSARY.
20. I.F. AMPLIFIER ALIGNMENT

The intermediate frequency of the radio receiver is 455 kilocycles.
Tuning adjustments are provided in each I.F. transformer. These adjustments consist of adjustable iron cores and are designated by symbol numbers E-1l5 to E-119 inclusive as indicated on Schematic Diagram, Figure 7.

The high potential lead of the signal generator should be connected to the control grid (terminal No. 8) of the mixer tube V-lo3 through a . Ol mfd. capacitor and the ground lead to any metal part of the chassis.

The frequency of the signal generator should be carefully adjusted to 455 kilocycles modulated 30% at 400 cycles and the signal input to mixer tube $V-103$, adjusted to provide a reading on the output meter. Starting with the Third I.F. transformer the trimmers should be adjusted in the following order: E-119, E-1l8, E-117, E-116 and E-1l5.
NOTE: IT IS ESSENTIAL THAT THE INPUT SIGNAL FROM THE SIGNAL GENERATOR, BE KEPT BELON THE THRESHOLD OF OPERATION OF THE AUTOMATIC VOLUME CONTROL. EXCESSIVE SIGNAL INPUTS WHICH WIL工 CAUSE OVERLOAD OF EITHER THE SECOND DETECTOR OR AUDIO CIRCUITS SHOULD ALSO BE AVOIDED.

The performance of the I.F. amplifier can be checked against the following data. For an audio output of .5 watt across an 8 ohm load (2 volts) the following input values should not be exceeded, if the I.F. amplifier is in proper operating condition.

V-103 grid	50	Microvolts
V-104 grid	1000	Microvolts
V-105 grid	50000	Microvolts

21. R. F. AND H. F. OSCILLATOR ALIGNMENT

CAUTION: READJUSTMENT OF THE H.F. OSCILLATOR CIRCUIT TRIMMERS SHOULD NOT BE ATTEMPTED UNTIL AFTER THE NEED FOR SUCH READJUSTMENT HAS BEEN POSITIVELY ESTABLISHED.

Table 3 gives the alignment frequency, trimmer adjustment and nominal sensitivity for each of the four frequency bands.

The signal generator should be connected through a Standard RMA dummy antenna to the antenna-ground input terminals. A 400 cycle, 30% modulated signal should be used. The receiver controls should be adjusted as listed in Paragraph 19 with the band selector control set to the desired frequency band.

It is important that the H.F. oscillator circuits operate at a higher frequency than that of the RF amplifier circuit on Bands 1 and 2 and at a lower frequency than the RF amplifier circuits on Bands 3 and 4. The correct operating point can be checked by leaving the signal generator set at the alignment frequency and on Bands 1 and 2 the image signal should appear 910 KC lower in frequency on the dial if the oscillator is correctly aligned. On Bands 3 and 4 the image should appear 910 KC higher in frequency on the dial. It may be necessary to increase the signal output of the generator in order to pickup the image signal.

The following general procedure should be employed in the alignment of the H.F. oscillator and R.F. amplifier circuits. Set signal generator to high frequency alignment point of desired band. Set radio dial to high frequency alignment point and adjust corresponding trimmer adjustments for maximum output. Repeat this procedure for the low frequency alignment point.

The alignment of the R.F. and oscillator circuits may be considered satisfactory if the signal input necessary to produce a 500 milliwatt output, measured across an 8 ohm load at the speaker terminals, does not exceed the values given in Table 3.

PAGE 18-22 SCOTT
EXPOR'T RECEIVER SCOTT RADIO LABS., INC.

Figure 5 Trimmer Positions and Tube Location

Sensitivity measurements are made at a 10 to l signal to noise ratio as follows:

With the signal Eenerator and receiver set to the same frequency, turn of f the sienal generator modulation; adjust the signal generator output to 10 microvolts ; adjust the A.F. gain control on the receiver to give an output reading of 50 milliwatts , .63 volts across an 8 ohm load. Turn the signal generator modulation on and adjust the signal generator out put control to give an output reading from the receiver of .5 watt (2 volts). Repeat this procedure as a check. Then the output reading of the signal generator will be the sensitivity of the receiver at a 10 to l signal to noise ratio.

NOTE: The sensitivity control should be set at maximum position when making the above measurements.

TABLE 4
Alignment Data

Band	Freq.	Adjustment			Nominal Sensitivity
		Osc.	Mixer	Ant.	
1	$\begin{array}{r} 1400 \mathrm{KC} \\ 1000 \mathrm{KC} \\ 600 \mathrm{KC} \end{array}$	$\begin{aligned} & \mathrm{C}-125 \\ & \mathrm{E}-110 \\ & \mathrm{C}-123 \end{aligned}$	$\begin{aligned} & \mathrm{C}-112 \\ & \mathrm{E}-106 \end{aligned}$	$\begin{aligned} & C-106 \\ & E-102 \end{aligned}$	10 uv
2	$\begin{aligned} & 7.5 \mathrm{MC} \\ & 3.5 \mathrm{MC} \end{aligned}$	$\begin{aligned} & \mathrm{C}-127 \\ & \mathrm{E}-111 \end{aligned}$	$\begin{aligned} & C-113 \\ & E-107 \end{aligned}$	$\begin{aligned} & \mathrm{C}-107 \\ & \mathrm{E}-103 \end{aligned}$	10 uv
3	$\begin{array}{r} 13.5 \mathrm{MC} \\ 9.0 \mathrm{MC} \end{array}$	$\begin{aligned} & \mathrm{C}-129 \\ & \mathrm{E}-112 \end{aligned}$	$\begin{aligned} & \mathrm{C}-114 \\ & \mathrm{E}-108 \end{aligned}$	$\begin{aligned} & C-108 \\ & E-104 \end{aligned}$	10 uv
4	$\begin{array}{r} 22.6 \mathrm{MC} \\ 15 \mathrm{MC} \end{array}$	$\begin{aligned} & \mathrm{C}-131 \\ & \mathrm{E}-113 \end{aligned}$	$\begin{aligned} & \mathrm{C}-115 \\ & \mathrm{E}-109 \end{aligned}$	$\begin{aligned} & \mathrm{C}-109 \\ & \mathrm{E}-105 \end{aligned}$	10 uv

Parts List By Symbol Designation

PAGE 18-26 SCOTT
EXPORT RECEIVER
SCOTT RADIO LABS., INC.

Parts List By Symbol Designation

Symbol Desig.	Function	Description	Part Number
CAPACITORS (Continued)			
C-118	Ground bus to chassis ground at V-103 socket	Same as C-110	
C-119	Section "A" V-107 \#1 grid	Capacitor, paper, $2 \times .05$	15A11
C-119A	Section "B" V-lll grid	MFD 10\%, 600 V DC wkg	
C-1193	filter "C"	bathtub container, $113 / 16^{\prime \prime}$	
C-119C	Section "C" N.L. grid	long $x l^{\prime \prime}$ wide $\times 7 / 8^{\prime \prime}$ high, hermetically sealed	
C-120	Section "A" V-103 heater	Same as C-lll	
C-120A	bypass		
C-120B	Section"B" V-103 cathode bypass		
C-121	V-102 cathode to V-103 osc. grid coupling	Capacitor, silver mica, 51 MMF 5\%, 500 V DC wkg., bakelite case,pigtail leads	15 A28
C-122	V-102 grid coupling	Same as C-121	
C-123	T-109 variable pad	Capacitor, variable air trimmer, min.cap. 6.5 MMF, max.cap. $100 \mathrm{MMF}, 28$ plates $\frac{i}{4}$ " hex adj. shaft with screwdriver slot	$15 B 862$
C-124	T-109 fixed pad	Capacitor, silver mica, 560 MMF 5\%, 500 V DC wkg•, bakelite case, pigtail leads	15E1283
C-125	T-109 trimmer	Capacitor, variable air trimmer, min.cap. 3 MIF, Max.cap. 25 MMF, 7 plates, $\frac{1}{4}$ " hex adj. shaft with screwdriver slot	15A18
C-126	T-110 fixed pad	Capacitor,silver mica, 3000 MMF 5\%, 500 V DC wkg., bakelite case, pigtail leads	15A38
C-127	T-110 trimmer	Same as C-125	
C-128	Bypass from case of C-w 139 to ground bus.	. 005 MF mica 300 V DC wkg.	15E1263
C-129	T-lll trimmer	Same as C-125	
C-130	Ground bus to chassis bypass at V-102	Same as C-110	
C-131	T-112 trimmer	Same as C-125	
C-132	Section "A", V-102 plate	Same as C-119	
C-132A	bypass		
C-132B	Section "B", V-102 plate		
C-132C	filter Section "C", heater bypass at $V-102$ socket		
C-133	T-104 secondary shunt	Capacitor, silver ceramic, 20 MN 10\%, 500 V DC wkg., N.P.O.	$15 \mathrm{B864}$

Parts List By Symbol Designation

Symbol Desig.	Function	Description	Part Number
CAPACITORS (Continued)			
C-134	Section "A", V-103 screen	Same as C-119	
C-134A	bypass ${ }^{\text {b }}$		
C-134B	Section "B", +B bus		
C-134C	bypass Section "C", V-101 plate		
	return bypass		
C-135	Section " ${ }^{\text {n }}$, V-104	Same as C-119	
C-135A	cathode bypass		
C-135B	Section "B", sensitivity		
C-135C	control bypass Section "C", V-103 plate		
	bypass		
C-136	T-113 primary tuning	Same as C-101	
$C-137$$C-138$	T-113 secondary tuning	Capacitor, silver mica, 240 MMF 5\%,500 V DC wkg., bake-	15B602
	Section "A", ground bus	Capacitor, paper, 0.1/0.1	15E2573
C-138A	to chassis bypass at	MFD 600 V DC wkg., bathtub	
C-138B ${ }^{\text {c }}$	$\mathrm{V}-106$		
	Section "B", ground bus to chassis bypass at Pin	l' $^{\prime \prime}$ wide $x 7 / 8^{\prime \prime}$ high,mounting centers $21 / 8^{\text {in }}$	
	8 of $\mathrm{V}-107$		
	Section !A", V-105	Same as C-119	
C-139A	cathode bypass		
C-139B	Section "B", V-105		
C-139C	screen and plate filter Section "C", V-104 plate		
	Section "C", V-104 plate filter		
C-140	T-ll4 primary tuning	Same as C-137	
C-141	T-114 secondary tuning	Same as C-137	
C-142	T-115 primary tuning	Capacitor, silver mica, 100 MMF 5\%, 500 V DC wkg.,bake-	15A428
C-143	V-106A diode filter	lite case, pigtail leads Capacitor, mica $100 \mathrm{liNF} 10 \%$ 500 V DC whg., bakelite case, pigtail leads	15A29
$\begin{aligned} & \mathrm{C}-144 \\ & \mathrm{C}-144 \mathrm{~A} \end{aligned}$	Section "A", V-104 grid return bypass	Capacitor, paper, .05/.05 MF $10 \%, 600 \mathrm{~V}$ DC wkg, bathtub	15 Al 1
$\mathrm{C}-144 \mathrm{~B}$	Section "B", V-104	container, hermetically	
C-145	S-103 to volume control R-125 coupling	Same as C-102	
$\begin{aligned} & C-146 \\ & C-147 \end{aligned}$	AVC diode cathode bypass $\mathrm{V}-107 \mathrm{~B}$ plate to V -lo8B grid coupling	Same as C-143 Capacitor, paper,. 05 MF 10\% 600 V DC wkg.,tubular paper case, pigtail leads	15E1041

Parts List By Symbol Designation

Symbol Desig.	Function	Description	Part Number
CAPACITORS (Continued)			
C-148	V-107B plate filter bypass	Capacitor, electrolytic, 20 1F, 200 V DC wkg., 2 terminal type in $1^{\prime \prime}$ dia. $\times 21 / 4^{\text {th }}$ long round can,hermetically sealed	15E1278
C-149	V-108A cathode bypass	Capacitor, electrolytic, 25 MF, 25 V DC wkg., bathtub container $113716^{\prime \prime}$ long $x 1^{\prime \prime}$ wide x $7 / 8^{\text {" }}$ high, hermetically sealed	$15 A 15$
C-150	V-105 plate to V-106B plate coupling	10 MMF silver ceramic NPO.	15A22
C-151	Tone control series	Capacitor, paper, . 02 MFD 10\%, 600 V DC wkg., bathtub case, hermetically sealed	15A12
C-152	V-108B plate to V-109 grid coupling	Same as C-147	
C-153	$\begin{aligned} & \text { V-108A plate to V-110 } \\ & \text { grid coupling } \end{aligned}$	Same as C-147	
C-154	V-109, V-110 cathode bypass	Same as C-149	
C-155	V-109 plate feedback	Same as C-147	
C-156	Power supply filter, input side	Capacitor, electrolytic, 60 MF, 250 V DC wkg., 2 terminal type in $13 / 8^{\circ}$ dia. x 27"long round can, hermetically sealed	$15 E 1277$
$\begin{aligned} & C-157 \\ & C-157 A \end{aligned}$	Power supply output filter 2 sections in	Capacitor, electrolytic, $60 / 60 \mathrm{MF}, 200 \mathrm{~V}$ DC wkg.; 3	15 El 276
C-157B	parallel	terminal type in $13 / 8^{\prime \prime}$ dia. x $31 / 4^{\prime \prime}$ long round can, hermetically sealed	
$\begin{aligned} & C-158 \\ & C-158 A \end{aligned}$	Power supply input fil-	Same as C-157	
C-158B	ler tarallel		
C-159	V-103 grid return filter	Same as C-110	
C-160	T-110 secondary compensating	Capacitor, silver ceramic, 18 MMF $5 \%, 500$ V DC wkg., N-750 temp. coeff.	15E1259
C-161	T-lll secondary compensating	Capacitor, silver ceramic, 10 MMF 5\%, 500 V DC wkg., N-750 temp. coeff.	15 A23
C-162	T-112 secondary compensating	Capacitor, silver ceramic, 25 MMF 5\%, 500 V DC wkg.,	15E1254
C-163	Phono input ground series,	$\mathrm{N}-750$ temp. coeff. . 25 MF paper tubular 400 V DC wkg	15E1136
C-164	Power line bypass	. 05 MF paper tubular 600 V DC wkg	15E1041

[^0]Parts List By Symbol Designation

Symbol Desig.	Function	Description	Part Number
MISCELLANEOUS ELECTRICAL PARTS			
$\left\lvert\, \begin{aligned} & \mathrm{E}-101 \\ & \mathrm{E}-102 \end{aligned}\right.$	V-lol grid cap T-101 inductance trimer	1/4"grid cap for octal tube Compressed powdered iron core, coil inductance trimmer	$\begin{aligned} & 14 \mathrm{El} 1089 \\ & 24 \mathrm{~A} 99 \end{aligned}$
E-103	T-102 inductance trimmer	Same as E-102	
E-104	T-103 inductance trimmer	Same as E-102	
E-105	T-104 inductance trimmer	Same as E-102	
E-106	T-105 inductance trimmer	Same as E-102	
E-107	T-106 inductance trimmer	Same as E-102	
Em-108	T-107 inductance trimmer	Same as E-102	
E-109	T-108 inductance trimmer	Same as E-102	
E-110	T-109 inductance trimmer	Same as E-102	
E-111	T-110 inductance trimmer	Same as E-102	
E-112	T-lll inductance trimmer	Same as E-102	
E-113	T-112 inductance trimmer	Same as E-102	
E-114	L-l01 inductance trimmer	Compressed powdered iron core, coil inductance trimmer	24A98
E-115	T-113 primary inductance trinmer	Same as E-114	
E-116	T-113 secondary inductance trimmer	Sane as E-ll4	
E-117	T-114 primary inductance trimmer	Same as Emll4	
E-118	T-ll4 secondary inductance trimmer	Same as E-1l4	
E-119	T-115 primary inductance trimmer	Same as E-114	
E-120	Antenna terminal strip	Three terminal connector strip marked Ant-Gnd	87E411
E-121	Phono input terminal board	Two terminal connector strip marked "Phono-Gnd" 6-32 captive screws	87A220
E-122	Speaker terminal board	Two terminal connector strip marked Speaker	87E2423
FUSES			
F-101	Power input fuse	Fuse, 1 amp, 250 volt, cartridge type 1 1/4" long, ferrules $1 / 4^{\text {tI }}$ dia.	37B655
HARDWARE			
H-101	Band change switch shaft coupling	Coupling, solid, for $1 / 4^{\prime \prime}$ dia.shaft, $3 / 4^{\prime \prime}$ long x 1/2" dia.	25A367

Parts List By Symbol Designation.

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Symbol \\
Desig.
\end{tabular} \& Function \& Description \& Part Number \\
\hline \multicolumn{4}{|c|}{HARDWARE (Continued)} \\
\hline H-102 \& Band change switch shaft coupling \& Same as H-101 \& \\
\hline H-103 \& Selectivity switch shaft \& Same as H-101 \& \\
\hline H-104 \& \begin{tabular}{l}
coupling \\
Dial to main tuning capacitor coupling
\end{tabular} \& Coupling, insulated,for \(3 / 8^{\prime \prime}\) dia. and \(1 / 4^{n}\) dia. shaft, 1 1/8"long, \(125 / 32^{\prime \prime}\) dia!, phenolic insulator ring \& 25E2580 \\
\hline H-105 \& Single and double unit main tuning capacitor coupling \& Coupling, insulated, for 3/8"dia.shaft, 1 " long \(x\) -1 25/32" dia., phenolic insulating ring \& 254301 \\
\hline H-106

$H-107$ \& \#8 set screw wrench \& Wrench, $5 / 64$ "x $17 / 8$ "long for \#8 hollow head set screws \& 94B810

\hline H-107 \& Main tuning capacitor coupling \& Coupling, flexible for $3 / 8^{\prime \prime}$ dia., shaft, ${ }^{\prime \prime}$ long x $125 / 32^{\prime \prime}$ diá. \& 25E2430

\hline \multicolumn{4}{|c|}{Indicating devices}

\hline I-101 \& | Dial lamp |
| :--- |
| Dial lamp | \& Lamp, 6-8 volt, 0.15 amp miniature bayonet base Same as I-101 \& 49E899

\hline \multicolumn{4}{|c|}{Jacks and receptacles}

\hline J-101 \& Fuse holder for power Input fuse \& Receptacle, extractor type, fuse holder, mounts in $1 / 2^{\prime \prime}$ hole \& 67Al92

\hline \multicolumn{4}{|c|}{INDUCTORS RF AND AF}

\hline $\underbrace{-101}$ \& 455 KC wavetrap \& RF inductor, 195 T 7/41 litz wire, universal wound, 0.51 MH at 1000 CPS DC resistance 5.87 ohms 10% includes C-101 \& 20 E2379

\hline -102 \& Power supply filter choke \& Filter reactor, 4.5 H at 3 V 60 CPS.with 150 MA DC., DC resistance 70 ohms, 2060 turns \#28 Ewire, hermetically sealed \& 17 El 339

\hline \multicolumn{4}{|c|}{LOUDSPEAKERS}

\hline LS-101 \& Loudspeaker \& Loudspeaker, 12 inch PM, 8 ohm voice coil, 3 ft wire leads with terminal lugs \& 85E2418A

\hline
\end{tabular}

Parts List By Symbol Designation

$\begin{aligned} & \text { Symbol } \\ & \text { Desig. } \end{aligned}$	Function	Description	Part Number
MECHANICAL PARTS, SHAFTS			
0-101	Selectivity switch extension shaft	Shaft, $1 / 4^{\prime \prime}$ dia. $x 101 / 4^{\prime \prime}$ long, flat on 2 sides, .187 thick, steel	$79 \mathrm{E1356}$
0-102	Band change switch shaft	Shaft, $1 / 4^{\prime \prime}$ dia. $\pi 9$ 1/2" long, flat on 2 sides, . 187 thick, steel	79 El 357
0-103	Band change switch shaft for antenna section	Shaft, $1 / 4^{\text {" }}$ dia. $x 31 / 8^{\prime \prime}$ long, flat on 2 sides, .187 thick, PBG bakelite, wax impregnated	79 E 2425
PLUGS			
P-101	Power input plug	Plug, 2 contact, male	65B679
RESISTORS			
R-101	V-101 grid return	Resistor, composition, 0.47 meg 10\%, $\frac{7}{2}$ watt, pigtail terminals	70461
R-102	V-101 cathode bias	Resistor, composition, 330 ohms 10%, $\frac{1}{2}$ watt, pigtail terminals	$70 \mathrm{El199}$
R-103	V-101 screen filter	Resistor, composition, 2400 ohms 5\%, $\frac{1}{2}$ watt, pigtail terminals	70 A.49
R-104	V-103 grid return	Same as R-101	
$\mathrm{R}-105$ $\mathrm{R}-106$	Not used $\mathrm{V}-103$ cathode bias	Resistor, composition, 270 ohms 10\%, $\frac{1}{2}$ watt, pigtail terminals	$70 \mathrm{El197}$
R-107	V-103 oscillator grid return	Resistor, composition, 20000 ohms 5%, $\frac{1}{2}$ watt, pigtail terminals	70452
R-108	V -103 screen filter	Same as R-103	
R-109	V-101 plate filter	Resistor, composition, 560 ohms 10%, $\frac{1}{2}$ watt, pigtail terminals	70 A46
R-110	V-102 grid return	Resistor, composition, 47000 ohms $10 \% \frac{1}{2}$ watt, pigtail terminals	70454
R-111	V-103 plate load	Resistor, composition, 220 ohms 10%, $\frac{1}{2}$ watt, pigtail terminals	70E1289
R-112	V-103 plate filter	Resistor, composition, 680 ohms 10%, 党 watt, pigtail terminals	70 El 1077

Parts List By Symbol Designation

Symbol Desig.	Function	Description	Part Number
RESISTORS (Continued)			
R-113	V-104 grid return	Same as R-101	
R-114	V-104 cathode bias	Same as R-lll	
R-115	V-104 screen filter	Resistor, composition, 5600 ohms 10\%, $\frac{1}{8}$ watt, pigtail terminals	70450
R-116	V-104 plate filter	Same as R-112	
R-117	V-105 cathode bias	Same as R-112	
R-118	V-105 plate filter	Same as R-112	
R-119	V-106 diode load	Same as R-110	
R-120	V-106 diode filter	Resistor, composition, 15,000 ohms 10%, $\frac{1}{2}$ watt, pigtail terminals	70A51
R-121	V-106 diode filter	Resistor, composition, 56,000 ohms $10 \% \frac{1}{2}$ watt, pigtail terminals	70A55
R-122	Noise limiter filter	Resistor, composition, 1 meg 20\%, $\frac{1}{2}$ watt, pigtail terminals	70A63
R-123	Diode bias V-106 AVC	Resistor, composition, 10,000 meg 10%, $\frac{1}{2}$ watt, pigtail terminals	704419
R-124	Phono input shunt	Resistor, composition, 0.1 meg 10\%, $\frac{1}{2}$ watt, pigtail terminals	70458
R-125	Volume control	Potentiometer, composition, 0.25 meg $20 \%, 0.4$ watt, clockwise logarithmic taper, cover insulated from mtg bushing and connected to left hand terminal, shaft 2^{n} long	70 El 285
R-126	V-107B cathode bias	Resistor, composition, 1800 ohms 10\%, $\frac{1}{2}$ watt, pigtail terminals	70E1205
R-127	AVC filter	Same as R-128	
R-128	V-lll grid filter	Resistor, composition, 2.2 meg 20%, $\frac{1}{2}$ watt, pigtail terminals	70A64
R-129	AVC diode filter	Same as R-122	
R-130	V-107B plate load	Same as R-110	
R-131	V-107B plate filter	Same as R-107	
R-132	V-108B grid series	Resistor, composition, 12 meg 10\%, $\frac{1}{2}$ watt, pigtail terminals	70E1213
R-133	V-108B grid return	Resistor, composition, 75,000 ohms 10\%, $\frac{1}{2}$ watt, pigtail terminals	70A56

© John F. Rider

Parts List By Symbol Designation

Symbol Desig.	Function	Description	Part Number
RESISTORS (Continued)			
R-134	V-108B cathode bias	Resistor, composition, 1500 ohms 10\%', $\frac{1}{2}$ watt, pigtail terminals	70A48
R-135	V-108A cathode bias	Resistor, composition, 1000 ohms 10\%, 咅 watt, pigtail terminals	70447
R-136	V-108B plate load	Same as R-110	
R-137	V-108A plate load	Same as R-110	
R-138	V-109 plate feedback	Same as R-101	
R-139	V-109 grid return	Same as R-132	
R-140	V-109 grid return	Resistor, composition, 5000 ohms 10\%, $\frac{1}{2}$ watt, pigtail terminals	70E1071
R-141	V-110 grid return	Same as R-132.	
R-142	V-109 and V-110 grid return	Same as R-132	
R-143	V-109 and V-110 cathode bias	Resistor, wirewound, 125 ohms 5\%,5 watt, pigtail termináls	70E2447
R-144	Dial lamp series	Resistor, composition, 10 ohms 10\%, $\frac{1}{2}$ watt, pigtail terminals	70442
R-145	AVC diode bleeder	Same as R-122	
R-146	V-lll triode plate series	Same as R-129	
R-147	```Sensitivity control bleeder```	Resistor, composition, 8200 ohms 10%, 1 watt, pigtail terminals	70 El 290
R-148	Sensitivity control	Potentiometer, wirewound, 1500 ohms 10%, 4 watts, linear taper, shaft $1 / 4^{\prime \prime}$ dia. $x 2^{\text {" }}$ long	70 El 287
$\left\lvert\, \begin{aligned} & R-149 \\ & R-150 \end{aligned}\right.$	Not used Vacuum tube heater series	Resistor, wirewound, 50 ohms $5 \%, 15$ watts, pigtail terminals	70E2449
R-151	Vacuum tube heater series	Resistor, wirevound, 310 ohms 5\%, 20 watts, pigtail terminals	70 E 2448
R-152	Tone control	Potentiometer, composition, 0.25 meg $20 \%, 0.4$ watt, clockwise logarithmic taper, shaft $1 / 4^{\prime \prime}$ dia. x $2^{\prime \prime}$ long	70 El 286

PAGE 18-34 SCOTT

Parts List By Symbol Designation

Parts List By Symbol Designation

$\left\lvert\, \begin{aligned} & \text { Symbol } \\ & \text { Desig. } \end{aligned}\right.$	Function	Description	Part Number
TRANSFORMERS RF，AF AND POWER（Continued）			
T－103	Band 3 antenna transformer	RF Transformer Pri．23秐 T \＃32 wire univer－ sal wound on $3 / 4^{\prime \prime}$ form，DC resistance 8 ohms Sec． 9 3／4 T \＃24 Ewire closewound on $3 / 4^{\text {＂form，}}$ DC resistance .07 ohms，wax impregnated	Pri． 20E2364 Sec． 20E2365
T－104	Band 4 antenna transformer	RF transformer Pri． $23 \frac{1}{2}$ T \＃32 E wire close－ wound on $3 / 4^{\prime \prime}$ form，DC re－ sistance 0.8 ohms Sec． 4 3／4 T \＃24 E wire spacewound on $3 / 4^{n}$ form，DC resistance ． 04 ohms，wax impregnated	Pri． 20E2366 Sec． 20E2367
T－105	Band 1 mixer transformer	RF Transformer Pri． 60 T \＃34 SCE wire， universal wound，DC resis－ tance 5.0 ohms Sec． $96 \frac{1}{4}$ T \＃34 SCE wire， progressive universal wound，DC resistance 7.0 ohms，$l^{\prime \prime}$ dia．form，wax impregnated	20E2368
T－106	Band 2 mixer transformer	RF Transformer Pri．9혈 T \＃28 DSC wire， universal wound，$D C$ resis－ tance .16 ohms Sec．15妾 T \＃24 Ewire， closewound，DC resistance ．17．ohms， $3 / 4^{\prime \prime}$ dia．form， wax impregnated	20E2369
T－107	Band 3 mixer transformer	RF Transformer Pri． 9 3／4 T \＃28 DCC wire closewound，DC resistance 0.143 ohms Sec．8竞 T \＃24 E wire，close－ wound，DC resistance ． 07 ohms， $3 / 4^{\text {n }}$ dia．form，wax impregnated	20E2370
T－108	Band 4 mixer transformer	RF Transformer Pri．4 $\frac{1}{4}$ T \＃28 DCC wire interwound，DC resistance ． 11 ohms Sec． 4 3／8 T \＃24 Ewire， spacewound，DC resistance .04 ohms，3／4＂form，wax impregnated	20E2371

a）John F．Rider

Parts List By Symbol Designation

Symbol			
Desig.	Function	Description	Part

T-110

T-111

T-112

T-113

Band 4 oscillator transformer
\#1 IF transformer V-103 to V-104 coupling

RF Transformer	20E2372
Pri. 12 T \#32 Ewire, closewound, DC resistance 0.55 ohms	
Sec. 49 I/4 T \#32 E wire, closewound, DC resistance	20E2373
2.2 ohms, ${ }^{\text {h }}$ dia. form, wax impregnated	
RF Transformer	
Pri. 5 l/2 T \#24 E wire, closewound, DC resistance .03 ohms	
Sec. $13 \mathrm{~T} \# 24 \mathrm{E}$ wire,closewound, DC resistance	20 E 2374
0.1 ohms, $3 / 4^{\text {n }}$ dia. form, wax impregnated	
RF Transformer	
Pri. $21 / 2$ T \#24 E wire, spacewound, DC resistance .01 ohms	
	20E2375
Sec. 8 T \#24 E wire, spacewound, DC resistance .04 ohms, $3 / 4^{\prime \prime}$ dia. form, wax impregnated	
RF Transformer	
Pri. 1 1/8 T \#24 E wire, spacewound, DC resistance .005 ohms	
	.005 ohms
Sec. $31 / 2$ T \#24 E wire,	
. 03 ohms, 3/4" dia. form,	
wax impregnated	
IF Transformer, 455 KC	20E2376

Pri. $162 \mathrm{~T}, 7 / 41$ litz
wire, universal wound, DC
resistance 4.72 ohms
Sec. $162 \mathrm{~T}, 7 / 41$ litz
wire, universal wound, DC
resistance 4.93 ohms
Tertiary: $6 \mathrm{~T}, 7 / 41$ litz
wire, tapped at 3 T and
wound under primary.
7/16" dia. form, iron
core tuned, wax impreg-
nated

Parts List By Symbol Designation

$\left\lvert\, \begin{aligned} & \text { Symbol } \\ & \text { Desig. } \end{aligned}\right.$	Function	Description	Part Number
TRANSFORMERS RF, AF AIJD POirER (Continued)			
T-114	\#2 IF transformer V-104 to V-105 coupling	IF transformer, 455 KC Pri. $162 \mathrm{~T}, 7 / 41$ litz wire, universal wound, DC resistance 4.93 ohms Sec. $162 \mathrm{~T}, 7 / 41$ litx wire, universal wound, DC resistance 4.73 ohms Tertiary: $6 \mathrm{~T}, 7 / 41$ litz wire tapped at 3 T and wound under primary. 7/16" dia. form, ir on core tuned, wax impregnated	20E2377
T-115	\#3 IF transformer V-105 to V-106 coupling	IF Transformer, 455 KC Pri. 210 T, \#34 SCE wire universal wound, DC resistance 12.3 ohms Sec. 2 pi winding 160 each pi, \#34 SCE wire, DC resistance total 16.7 ohms, wax impregnated	20E2378
$\begin{aligned} & \mathrm{T}-116 \\ & \mathrm{~T}-117 \end{aligned}$	Not used V-109 and V-110 to speaker terminals coupling	```Output transformer Pri. 4000 ohms at 1000 CPS 8O MA DC Sec. }8\mathrm{ ohms```	91E2355
VACUUM TUBES			
V-101	RF amplifier, 6K7	Vacuum tube (receivingmetal) triple grid super control amplifier. Base: small wafer octal 7 pin, miniature cap. Heater: current 0.3 amp at 6.3 volts AC or DC Type $6 \mathrm{K7}$	92 El 1057
V-102	HF oscillator, 12 J 5	Vacuum tube (receivincglass) detector amplifier triode, Base:intermediate shell octal 6 pin. Heater: current 0.15 amp at 12.6 volts AC or DC Type 12J5	$92 \mathrm{El298}$
V-103	First detector and mixer, l2SA7	Vacuum tube (receivingmetal) pentagrid converter Base: small wafer octal 8 pin. Heater: current 0.15 amp at 12.6 volts $A C$ or DC Type 12SA7	$92 E 1417$

© Jonn F. Rider

Parts List By Symbol Designation

Symbol Desig.	Function	Description	Part Number
VACUUM TUBES (Continued)			
V-104	First IF amplifier,12SK7	Vacuum tube (receivingmetal) triple grid super control amplifier. Base: small wafer octal 8 pin. Heater: current 0.15 amp at 12.6 volts AC or DC Type 12 SK 7	92E1294
V-105	Second IF amplifier, 12SK7	Same as V-104	
V-106	$\begin{aligned} & \text { Second detector AVC, } \\ & \text { l2H6 } \end{aligned}$	Vacuum tube (receivingmetal) twin diode. Base: small wafer octal 7 pin. Heater: current 0.15 amp at 12.6 volts AC or DC Type 12 H 6	92 El 295
V-10 ${ }^{\text {r }}$	First AF amplifier, noise limiter, l2SN7GT	vacuum tube (receivingglass) twin triode. Base: intermediate shell octal 8 pin. Hater:current 0.3 amp at 12.6 volts $A C$ or DC Type 12SN7GT	92 EL 297
V-108	Second AF amplifier, Phase inverter, I2SN7GT	Same as V-I07	
v-109	Output audio amplifier 25L6GT	Vacuum tube (receivingglass) beam power amplifier. Base: intermediate shell octal 7 pin. Heater: current 0.3 gmp at 25 volts AC or DC Type 25L6GT	92 E 1418
V-110	Output audio amplifier, 25L6GT	Same as V-109	
V-111	Tuning indicator, 1629	Vacuum tube (receivingglass) electron ray indicator. Base: small shell octal 7 pin. Heater:current 0.15 amp at 12.6 volts AC or DC Type 1629	92 E1296
v-112	Rectifier, 25Z6GT	Vacuum tube (receivingglass) high vacuum rectifier. Base: intermediate shell octal 7 pin.Heater: current 0.3 amp at 25 volts AC or DC Type 25Z6GT	9251419

SCOTT PAGE 18-41

Parts List By Symbol Designation

Symbol Desig.	Function	Description	Part Number
SOCKET			
x-101	Socket for V-101	Vacuum tube socket, 8 prong octal,mica filled bakelite with mounting plate and retainer ring	82F1322
$x-102$	Socket for V-102	Same as X-101	
$x-103$	Socket for V-103	Same as X-101	
X-104	Socket for V-104	Same as X-101	
X-105	Socket for V-105	Same as $\mathrm{X}-101$	
$\mathrm{X}-106$	Socket for V-106	Same as $\mathrm{X}-101$	
X-107	Socket for V-107	Same as $\mathrm{X}-101$	
X-108	Socket for V-108	Same as $\mathrm{X}-101$	
$\mathrm{X}-109$	Socket for V-109	Same as $\mathrm{X}-101$	
X-110	Socket for V-110	Same as $\mathrm{X}-101$	
X-111	Socket for V-111 tuning indicator	Vacuum tube socket, 8 prong octal, bakelite with metal shield cap, 5 wire leads, contains R-146	82E1371a
$\begin{aligned} & x-112 \\ & x-113 \end{aligned}$	Socket for V-ll2 Dial lamp socket for I-101, I-102	Same as X-101 Socket Assembly,miniature bayonet lamp, 2 sockets with wire leads	82E2417

1. INTRODUCTION

1.1 These instructions cover the installa- STALLATION OR OPERATION OF THE tion, operation, and servicing of the Model SLR-12-A Radio Receiving Equipment. HEY SHOULD BE READ AND STUDIED

QUPMENT IS ATTEMPTED IN ORDER THAT OPTIMUM PERFORMANCE MAY BE OBTAINED.

2. GENERAL DESCRIPTION

2.1 The Model SLR-12-A Radio Receiving Equipment is suitable and is primarily ntended for use aboard marine vessels of all ypes. It is equally suitable for use at Radio hore stations.
2.2 The receiving equipment covers the frequency ranges of 0.53 to 1.60 and 5.55 to 15.60 megacycles in three frequency bands. It is specifically designed to provide optimum performance and high quality reception of voice or tone modulated radio frequency signals, on all frequency bands, by head teleson, no beat frequency oscillator for the reception of radio telegraph signals is provided.
2.3 Special circuits and features are incorporated in the Model SLR-12-A Radi Receiving Equipment to preclude its oscillator radiating interferences which could be detected by sensitive radio receiving or radio direction finding equipments in the same, or close vicinity.
2.4 The receiving equipment is designed for a-c operation, being equipped with

3. DESCRIPTION OF MAJOR UNIT

3.1 The Model SLR-12-A Radio Receiver is a 12 tube superheterodyne covering the requency ranges of 0.53 to 1.60 and 5.55 to 15.60 megacycles in three frequency bands
0.53 to 1.60 MEGACYCLES

解
5.55 to 9.55 MEGACYCLES

HORT WAVE BAND-2
9.20 to 15.60 MEGACYCLES
3.2 This major unit employs the cabinet type of construction, with the cabinet suitably shock mounted and designed for top of table or bench mounting. The chassis desis may be mounted in a standard, cabinet type, relay rack. However, this type of type, relay rack. However, this type of
for supplying all operating voltages required rom an a-c source of $110 / 125$ volts, $58 / 62$ cycles, single phase, such as the Model 262 Inverte
2.5 The audio frequency output circuits of the receiving equipment are designed to permit the use of one pair of standard with a suitable local loud speaker, of the permanent magnet type, coupled to the equipment by means of either a 600 ohm or 5000 ohm matching transformer.
2.6 The Model SLR-12-A Radio Receiving equipment consists of three major units, inet, a 115 volt D.C. to 115 volt A.C., 250 Watt inverter, and a loudspeaker of the permanent magnet type
2.7 The equipment is supplied with one set of vacuum tubes contained within the Radio Receiver. Two instruction books and each equipment.
2.8 The net weights and overall dimensions of the major unit of the complete equipment are listed in Par. 8.16.
tions where the equipment will be subjected to severe shock or vibration, owing to the the sacrifice of the shock mounting feature
3.3 The major unit contains, on a single chassis, all apparatus, (including power supply) necessary for taking energy from an ergy into intermediate frequency energy, amplifying the intermediate frequency energy and then demodulating such energy into audio frequency energy for delivery, through an audio frequency amplifier to a phone jack on the front operating panel and/or one of rear of the chassis.
3.4 The electrical circuits of the Model ignal reception all frequency ranges, com
prises one stage of radio frequency amplification, first detector (or mixer), high frequency oscillator, two stages of intermediate frequency amplification operating at 455 kilocycles, a diode type second detector two stages of resistance coupled audio frequency amplification and an audio frequency power output stage. The second detector utilizes one set of elements of a dual diode; the other set of elements is utilized for an efficient noise limiter circuit. Inverse feedback is incorporated, within the audio output circuits, to maintain a relatively constant voltage across the primary of the output transformer, when the output load is varied upon connection of one or more amplifier type loud speakers across the secondary winding of the output transformer which also feeds the front panel mounted phone jack.
3.5 The power supply section of the Model SLR-12-A Radio Receiver, which is empluyed for supplying the necessary operating voltages for the receiver circuits, is designed for operation from a 110/125 volt, $58 / 62$ cycle, single phase source of a-c power. The power supply includes a power transformer with r-f input filter and primary fuse, two vacuum tube rectifiers, and a two-section a-f filter.
3.6 Four audio output circuits are provided:
(1) A phone jack is mounted on the front panel and is supplied from one of three output windings on the audio output transformer. This winding is directly connected to one pair of speaker terminals at the rear of the chassis and to the phone jack through an attenuation network which limits the maximum available power at the phone jack to approximately 30 milliwatts. The phone jack is provided for monitoring purposes, by head telephone methods, since the equipment is primarily intended for loud speaker signal reproduction.
(2) The pair of speaker terminals, referred to in (1), above, is provided for the connection of the audio output of the Radio Receiver to a system of remotely installed, parallel connected Speaker Amplifiers. The output winding on the audio output transformer supplying these terminals, as well as the phone jack, is capable of supplying, by virtue of the inverse feedback associated with the audio output stage of the receiver, substantially constant voltage at the speaker terminals for any variation in load impedance from 60 to 600 ohms.

A second pair of speaker terminals at the rear of the receiver chassis is supplied from a separate output winding on the audio output transformer. These terminals are provided for the connection of a high quality, permanent magnet type, locally installed loud speaker having a self-contained input transformer designed to match the 600 ohm impedance of the audio output transformer winding supplying the speaker ter ainals. The maximum undistorted audio power available at these terminals is nominally 2 watts.
(4) A third pair of speaker terminals, also supplied from a separate output winding on the audio output transformer, provides for the connection, at the rear of the receiver chassis, of a high quality, permanent magnet type, locally installed loud speaker having a self-contained input transformer designed to match the 5000 ohm impedance of the winding supplying the terminals. The maximum undistorted audio power available at these terminals is nominally 2 watts.

> FOR ANY INSTALLATION, ONLY ONE OF THE THREE SETS OF SPEAKERTERMINALS MAY BE EMPLOYED AT ANY ONE TIME FOR SUPPLYING AUDIO POWERTO LOU SPEAKER CIRCUITS. This does not preclude the use of a head telephone set for monitoring while the required loud speaker system is in operation.
3.7 A concentric jack, Type 49120, is mounted at the rear of the chassis of the Radio Receiver for antenna and ground connection. A hole in the rear of the cabinet provides access to the jack. A concentric plug, Type 49121 A , which mates with the concentric jack is furnished as part of the complete Model SLR-12-A Equipment, but with no antenna or ground leads attached.

3.8 A power receptacle and mating plug are

 also provided at the rear of the chassis for a-c power input connection. No power input cable is furnished.3.9 The fuse, in the primary circuit of the power supply, is mounted adjacent to the power input receptacle at the rear of the receiver chassis. The fuse mounting is of such design that the fuse, which is of the miniature cartridge type, is replaceable without the use of tools, and without the neces-
sity for the removal of the receiver chassis from its cabinet.
3.10 Facilities are also provided, in the form of separate auxiliary terminals at the rear of the receiver chassis and a suitable switching arrangement, for connecting
a phonograph pickup to the input circuits of the audio frequency amplifier. With the necessary switching completed, the radio frequency circuits are rendered ineffective during operation of the audio frequency circuits in conjunction with a phonograph pickup.

4. TUBE COMPLEMENT

4.1 The vacuum tubes employed in the Model SLR-12-A Radio Receiver are as follows:

Symbol	Commercial Type	Function
V-101	6 K 7	R.F. Amplifier
V-102	655	H.F. Oscillator
V-103	6 SA7	First Detector and MIXER
V-104	6 SK 7	First I.F. Amplifier

$\mathrm{V}-105$	6 SK 7
$\mathrm{~V}-106$	6 H 6
$\mathrm{~V}-107$	6 J 5
$\mathrm{~V}-108$	6 SJ 7
$\mathrm{~V}-109$	6 K 6 GT
$\mathrm{V}-110$	6 E 5
$\mathrm{~V}-111$	6 X 5 GT
$\mathrm{V}-112$	6 X 5 GT

Second I.F. Amplifier
Second Ietector, A.V.C.
V-107 6J5
First A.F. Amplifier
V-108 6SJ7
-109 6K6GT
Second A.F. Amplifier
A.F. Power Output

Tuning Indicator

V-112 6X5GT

5. POWER REQUIREMENTS

5.1 The Model SLR-12-A Radio Receiving Equipment is designed for operation from a $110 / 125$ volt, $58 / 62$ cycle, single phase
power source. The line current at 115 volts is .74 amperes. The nominal power consumption at 115 volts is 85 watts.

6. ANTENNA REQUIREMENTS

6.1 The input circuit of the Model SLR-12-A

Radio Receiver is primarily designed for operation with a separate antenna not used for other equipment. A conventional single wire antenna will suffice since the antenna requirements are not critical. Such a single wire antenna should be spaced at least six feet away from any parallel stay, mast, or stack. It should be well insulated and should be erected as high as possible. The recommended minimum overall length of antenna and lead-in is fifty feet. The antenna proper (not including lead-in) should be at
least fifty feet in the clear. A one-half megohm static-drain resistor should be permanently installed between the antenna and ground.
6.2 In an installation having a simple an-tenna-ground combination, solder the antenna lead-in to the retaining nut for the jack socket of the Type 49121A concentric plug. Connect the ground lead to the terminal provided for this purpose and mounted adjacent to the Type 49120 concentric jack af the rear of the receiver chassis.

7. INSTALLATION

7.1 The Model SLR-12-A Equipment. with

 its Radio Receiver equipped with one full complement of vacuum tubes, one Type 49121A concentric antenna-ground connecting plug, and one female power input plug, is shipped in a single wooden packing box. Two instruction books, one Model 262 Inverter, one loudspeaker, and one set of spare vacuum tubes, are also contained in the same packing box.7.2 After unpacking the equipment it should be inspected for any possible damage that might have resulted from careless handling in transit. Make certain the . Il vacuum
tubes in the Radio Receiver are firmly seated in their respective sockets. Inspection of the chassis and vacuum tubes may be readily effected upon the removal of the chassis from its cabinet. This is accomplished by removing two screws in the rear of cabinet, then loosening the four thumb screws and removing their respective retaining plates at either side of the front operating panel. The chassis may then be drawn out of the cabinet by pulling on the two handles on the front panel.
7.3 The mounting base, to which the shock mounts for the Radio Receiver are attached, should be drilled with four mounting
holes. The location and size of the mounting holes should be such as permit the use of sufficiently large screws or bolts to provide a secure mounting for the Radio Receiver when the mounting base is fastened on the top of an operating table or bench. Such security should predicate freedom from loosening or "tearing away" of the mounting screws or bolts when the equipment is subjected to strains resulting from vessel rolling in heavy seas.
7.4 In planning an installation, care should be exercised to provide adequate clearance from the back of the Radio Receiver to the bulkhead or nearest obstruction in order to provide access to the power input plug, the antenna-ground concentric plug, speaker output or phonograph input terminals, fuse, or the movement of feeder cables when withdrawing the chassis from the cabinet for servicing, vacuum tube replacement, or inspection.
7.5 Make connection to the proper $110 / 125$ volt, $58 / 62$ cycle, single phase, a-c power source by means of a suitable, two conductor, cable for connecting the power source with plug P-102 which is then inserted in receptacle E-106 at the rear of the receiver chassis.

7.6 Make antenna connections in accordance

with Section 6, Antenna Requirements.
The antenna lead, or shielded patch cable, should be soldered to plug P-101 in accordance with previously described methods.

7.7 A loudspeaker of the permanent magnet

type is supplied with the equipment,
this speaker should be connected to the 600 ohm terminals E-104 by means of the two conductor cable supplied with the speaker. Where two or more loud speakers are to be connected to the receiver, terminals E-105 should be used, the load applied to these terminals may be varied from 60 ohms to 600 ohms with only a 2 D.B. change in output. Where speakers are installed more than twenty five feet from the receiver the connecting cable should be shielded.
7.8 The loudspeaker should be mounted to the bulkhead or some flat surface by means of the attached brackets, the speaker can then be rotated to the desired position
and fastened by tightening the screws holding the brackets to the side of the speaker case.
7.9 The model 262 inverter supplied with the equipment is used to supply 115 volts A.C. from a 115 volt D.C. source. It will supply 250 watts which is sufficient for both the SLR-12-A Radio Receiver and a record player when used. The Power cable from the SLR-12-A receiver should be plugged into receptacle E-201 on the Inverter, Plug P-201 at tached to the Inverter should then be plugged into a 115 volt D.C. source, the Inverter is then ready to operate and may be turned on and off with the power switch on the front panel of the Inverter. The Inverter is protected against Overload by fuse $\mathrm{F}-201$ rated at 10 amperes, 25 volts, the Vibrator Unit of the Inverter is of the Plug-in type and is easily replaced after removing the case from the unit.
7.10 A phonograph pick-up may be connected, through a suitable matching transformer, to terminals E-102 at the rear of the chassis. These terminals are marked PHONO and GND for convenience in making the desired connections.
7.11 The equipment is now ready for operation and is turned on by means of toggle switch S-201 on the front panel of the Inverter, switch S-103 on the front panel of the Receiver should be left on.
7.12 The Radio Receiver may be mounted with other units of the same type in a common cabinet type relay rack in such installations as, for example, at Radio shore stations where the problem of vibration is relatively unimportant. This is accomplished by removing the receiver chassis from its cabinet and securing the chassis on the relay rack by its front panel, using the same holes in the edges of the panel for the securing screws as for the original securing thumb screws. It is essential that a cabinet type relay rack be employed in order to preclude the accumulation of dust on the chassis mounted components, and in the tuning drive mechanism. This method of installing the Model SLR-12-A Equipment does not abrogate the contents of Paragraphs 7.5 to 7.12 , inclusive, except as they might be qualified with respect to certain minor details.

8. CONSTRUCTION

8.1 The Model SLR-12-A Radio Receiver is

 primarily designed for top of table or bench mounting. It is furnished with its chassis housed in a metal cabinet supported from its mounting base with rubber shockmounts at the four bottom corners of thecabinet. The front panel, to which the chassis is secured, forms the enclosure for one side of the cabinet. The general appearance and type of construction employed are shown in Figures 1 and 2.
8.2 The cabinet is of fabricated construction with ventilating louvers in its two sides and clearance apertures in the rear for access to the antenna and power input receptacles, fuse, and speaker and phonograph feeder connection terminals.
8.3 The chassis assembly is rigidly secured to the front panel. All component items, exclusive of those mounted on the front panel, entering into the construction of the Radio Receiver, are mounted either on top or underneath the chassis structure. The chassis and front panel form a basic assembly capable of being inserted or withdrawn from the cabinet, as a unit.
8. 4 When the chassis assembly is housed in the cabinet, it is secured to the cabinet by the front panel through the use of eight knurled, captivated type, thumb screws which pass through four slots in opposite edges of the panel and engage with suitable inserts in the flanged sides of the front opening of the cabinet. The captivated type thumb screws are retained, when loosened, in groups of four in removable angles which also serve as "trim," for the front side corners of the cabinet. by concealing the mounting screw slots in the front panel. Two handles are conveniently arranged on the front panel to permit the insertion or removal of the chassis assembly without subjecting any of the operating controls to strain.
8.5 The construction of the chassis assembly and the arrangement and mounting of the component parts are clearly depicted in Figures 3 to 6, inclusive. All vacuum tubes are accessible from the top side of the chassis upon removal of the chassis from the cabinet. The design and construction of the chassis assembly, and the arrangement of the component items mounted thereon, provides a high degree of accessibility to all items for inspection, servicing, or replacement. A bottom cover plate, not shown in Figures 5 \& 6 , completely encloses the bottom of the chassis proper. It is provided as an added shielding feature, and for the protection of the under side chassis mounted components against damage due to careless handling. It is secured to the chassis with machine screws so that it is readily removable, as and when necessary to make repairs or to effect replacement of chassis mounted components.
8. 6 The receiver panel layout is shown in Figure 1, and the location and functions of the various controls are described in Section 10, Operating Instructions.
8.7 The Model SLR-12-A Radio Receiver is especially designed to minimize radiation from the high frequency oscillator. This
is accomplished by isolating the antenna input circuits from the first detector (or mixer) and the high frequency oscillator circuits, through the use of extensive shielding and filtering, and by the employment of a type of construction which reduces, to practical limits, undesirable circuit coupling by virtue of circulating currents in common shields.
8.8 A separate shielded compartment, designed as a complete sub-assembly and easily detachable, as such, from the chassis for inspection and servicing of the component parts which it houses, contains all the circuit elements between the antenna input and the signal grid of the R.F. amplifier tube. This sub-assembly, as pictured in Figures 3 to 6, inclusive, is mounted at the rear center of the chassis, and is centrally disposed, above and below the chassis, through an aperture in the chassis. The compartment is grounded at only one point on the chassis and since the mounting flanges are insulated from the chassis this ground constitutes the only grounding for the compartment. Details of the construction of the shielded compartment and the arrangement and mounting of the component parts, which it contains, are shown in Figure 8. The figure depicts an oblique rear view of the shielded compartment with the sides removed or opened to display the internal components. The compartment, as pictured, is inverted with respect to its normal position in the receiver.
8.9 A second shielded compartment, constructed and mounted in the same manner as for that containing the antenna circuit elements, but larger in overall dimensions, contains all of the circuit elements from the R. F. amplifier tube to the 1st I. F. amplifier input transformer, and includes also, all circuit elements associated with the high frequency oscillator. This compartment, as pictured in Figures 3 to 6, inclusive, is mounted on the chassis between the front panel and the compartment containing the antenna input circuit elements. The arrangement and mounting of the circuit components are depicted in Figure 7 which portrays an oblique view of the sub-assembly with the bottom cover plate removed to show the disposition of the internal circuit components. This view depicts the sub-assembly in an inverted position with respect to its normal position in the receiver. Circuit components, associated with the compartment sub-assembly, and not visible in Figure 7, are shown in Figure 4 which shows the two compartment sub-assemblies, described above, mounted in their normal positions, but with their top shield cover plates removed.
8.10 Insulated mechanical couplings are emplcyed for joining together the shafts of the tuning capacitors and band selector
switches in the two shielded compartments. These couplings are shown in Figures 3 to 6 inclusive. The R.F. amplifier tube is mounted in a horizontal position in a socket which is provided with a clamp for securing the tube in place. The socket is mounted on one side wall of the large compartment and all wiring thereto is contained within the shielded compartment. The vacuum tube then projects into the side of the compartment containing the antenna circuit components, and connection to the signal grid cap is made within the confines, of this compartment. The internal shields in the vacuum tube isolates the signal grid circuit from the plate circuit, and, in effect, completes the shielding of the antenna circuit compartment so that these circuits are electrically isolated from the plate circuit of the R.F. amplifier tube, insofar as stray coupling from the high frequency oscillator is concerned.
8.11 Removable cover plates, secured with thumb screws, are provided on the two shielded compartments for access to the vacuum tubes contained within. Similar cover plates on the bottoms of the shielded compartments are secured with conventional machine screws. Either the top or bottom cover plate, as described above, must be removed for access to the circuit trimmers of the R.F. amplifier, 1 st detector and high frequency oscillator, since it was not possible to provide access holes in the plates, themselves, without compromising the shielding integrity of the receiver.
8.12 The secondary windings of the antenna coupling transformers feeding the grid of the R.F. amplifier tube are provided with individual adjustable iron cores for inductance trimming, and adjustable mica dielectric trimmer capacitors for capacity trimming during circuit alignment. Adjustment of the trimmer capacitors is afforded through access holes in the rear of the shielded compartment housing these transformers. Corresponding holes in the rear of the chassis and cabinet permits the adjustment of the trimmer capacitors, as a final adjustment, in the installation of the equipment for optimum performance with the specific antenna employed, without the necessity for the removal of the receiver chassis from its cabinet. Access to the adjustable iron cores is provided upon the removal of the top cover
plate of the shielded compartment containing the antenna coupling transformers.
8.13 The r-f transformers, coupling the plate of the R.F. amplifier tube with the signal grid of the first detector, are each provided with both inductance trimmers, in the form of adjustable iron cores, and capacity trimmers in the form of adjustable mica dielectric trimmer capacitors, for purposes of alignment, of these circuits with the high frequency oscillator circuits. Access to all trimmers, either capacitive or inductive, is afforded upon the removal of the bottom cover plate from the shielded compartment containing these transformers.
8.14 The inductors employed in the high frequency oscillator circuits are similarly provided with adjustable powdered iron cores, and adjustable, air-dielectric trimmer capacitors for inductance and capacity trimming. These adjustable trimmers, together with "padder" capacitors, permit the "tracking" of the high frequency oscillator circuits with the R.F. amplifier circuits. The "padder" capacitors are, except for the BROADCAST BAND, of the fixed, molded phenolic, mica dielectric type. In the excepted case, an adjustable, air-dielectric capacitor is employed in parallel with the fixed capacitor. All adjustable trimmer and "padder" capacitors are accessible for adjustment upon the removal of the bottom cover plate of the compartment containing these circuit elements.
8.15 The cabinet, front panel and mounting base of the Radio Receiver have a standard black wrinkle finish. All metallic parts which enter into the construction of the chassis are finished with a suitable plating or paint to provide; first, a high degree of protection to these parts against the deleterious effects of corrosion; and second, a chassis assembly presenting a pleasing appearance.
8.16 The dimensions and weights of the Radio Receiver are as follows:
(1)

| Dimensions: | |
| :--- | :--- | ---: |
| Lenassis in Cabinet | Chassis Only |
| Length $\ldots \ldots \ldots .20 .50$ inches | 19.00 inches |
| Depth $\ldots \ldots \ldots .18 .50$ inches | 18.50 inches |
| Height $\ldots \ldots \ldots .13 .75$ inches | 10.50 inches |

(2) Weights:

Chassis in Cabinet - 103 pounds
Chassis Only - 79 pounds

9. CIRCUIT DESCRIPTION

9.1 General

9.11 The actual schematic diagram of the Model SLR-12-A Radio Receiver is shown in Figure 9. For purposes of illustra-
tion, it will be assumed that the circuits are set up as for signal reception on SHORTWAVE BAND-2, as depicted in the diagram. The following description will refer, there-
fore, to the symbol numbers of the circuit elements of the band as, or when, pertinent to the description. It shall be assumed that, unless otherwise specifically noted, the description will be equally applicable to SHORTWAVE BAND- 1 and the BROADCAST BAND.

9.2 Signal Frequency Circuits

9.21 Signal input to the receiver through concentric jack J-103 is connected to the primary winding of antenna input transformer T-103 by switch S-102E. An electrostatic shield, at ground potential, separates the secondary winding from the primary winding. The secondary winding together with variable, air dielectric capacitor C-156 and series capacitor C-134, constitutes the first tuned circuit. Transfer of r-f signal, at the resonant frequency of this tuned circuit, from the antenna to the control grid of R.F. amplifier tube V -101, is accomplished by inductive coupling through antenna input transformer T-103. Variable capacitor C-156 is ganged with variable capacitors C-144A and $\mathrm{C}-14 \mathrm{~B}$ to provide uni-controlled tuning of the receiver. Capacitor C-134 is shorted out for the BROADCAST BAND and its selection and proper connection is controlled by switch S-102D. The secondary winding of transformer T-103 is provided with adjustable iron core E-123, for inductance trimming, and a shunt connected, variable, mica dielectric capacitor C-151 for capacity trimming. These trimmer elements permit the accurate alignment of the tuned circuit with the succeeding tuned circuit, at both ends of the frequency band, and are accessible for adjustment, as described under Section 8. The high potential end of the tuned circuit is connected to the control grid of R.F. amplifier tube V-101 by switch S-102D and through coupling capacitor C-123. The low potential end of the tuned circuit is returned to ground. The d-c bias return from the control grid of R.F. amplifier tube V-101 to the A.V.C. bus is closed through grid resistor R-135.
9.22 Plate potential from the high voltage d-c bus is applied to the plate of R.F. amplifier tube V-101 through decoupling filter resistor R-112, by-passed to ground by capacitor C-109B, and r-f inductor L-101. Screen potential, also obtained from the high voltage d-c bus, is applied to the screen through a decoupling filter consisting of filter resistor R-126 and by-pass capacitor C-109C. The suppressor is connected to the side of the heater circuit which is operated at ground potential. Initial grid bias is obtained by means of cathode resistor R-109, by-passed by capacitor C-109A.
9.23 The amplified signal voltage from the plate of R.F. amplifier tube V-101 is applied to the primary winding of R.F. transformer T-106, through coupling capacitor C-124, by switch S-102C. The low potential end of the primary winding is returned to ground. The secondary winding of transformer T-106, together with variable, air dielectric tuning capacitor C-144A and series connected capacitor C - 135 (the latter employed for the same purpose and in the same manner as capacitor C-134), constitute the second and final tuned circuit operating at the signal frequency. Transfer of signal energy from the plate circuit of R.F. amplifier tube V-101 to the control grid of first detector tube V-103 is accomplished by inductive coupling through R.F. transformer T-106 and by the connection of the high potential end of the tuned circuit to the control grid of first detector tube V-103 by switch S-102C, through coupling capacitor $\mathrm{C}-125$. The low potential end of the tuned circuit connects to ground. Adjustable iron core E-126 and parallel connected (variable) mica dielectric trimmer capacitor are associated with the tuned circuit for purposes of circuit alignment and are accessible for adjustment as described in Section 8. The d-c bias return from the control grid of first detector tube V-103 to the A.V.C. bus is closed through grid resistor R-136.
9.24 Screen potential from the high voltage d-c bus is applied to the screen of first detector tube V-103 through r-f inductor L-102, by-passed to ground by capacitor C-129, and thence through decoupling filter resistor R-144, by-passed to ground by capacitor C-107B. The suppressor is internally connected to the shell of the tube. Initial bias is obtained by means of cathode resistor R-105, by-passed to ground by capacitor C-107A.

9.3 High Frequency Oscillator Circuits

9.31 The H. F. oscillator circuit is of the so called "electron coupled" type. The tuned circuit consists of tapped inductor element T-109, shunted with variable, air dielectric trimmer capacitor C-147 and tuned with variable, air dielectric tuning capacitor C-144B, series connected capacitor C-136 and padder capacitor C-143. Capacitor C-136 is shorted out by the switch S-102B for the BROADCAST BAND. The inductor element is also provided with adjustable iron core E-129 for inductance trimming. Padder capacitor C-143 is used to modify the tuning of the H. F. oscillator so that it will maintain a fixed frequency difference of 455 kilocycles with respect to the signal frequency when tuning capacitors C-156, C-144A and C-144B are simultaneously varied from minimum to maximum capacity. The high potential end
of the oscillator tuned circuit is connected, by witch S-102B, through coupling capacitor $\mathrm{C}-132$ to the control grid of the H. F. oscillator tube V-102. This grid is returned to ground through grid resistor R-122 for d-c bias return. The low potential end of the tuned circuit is also returned to ground. The cathode of H. F. oscillator tube V-102 is connected, by switch S-102B, to the tap on inductor element $\mathrm{T}-109$, and through coupling capacitor $\mathrm{C}-131$ to the oscillator injector grid of first detector tube V-103. This grid has a d-c return to ground through grid resistor R-118.
9.32 The plate of H. F. oscillator tube V-102 is connected to the high voltage d-c bus through decoupling filter resistor R-143, by-passed to ground by capacitor $\mathrm{C}-106 \mathrm{~B}$, and r -f filter inductor L-103, bypassed to ground by capacitor C-130. One side of the heater circuit operates at ground potential while the other side is filtered by capacitors C-106A and C-128 and r-f filter inductor L-104.

9. 1 I. F. Amplifier Circuits

9.41 The signal frequency arriving at the control grid of first detector tube V-103 and the H. F. oscillator frequency arriving at the injector grid of this tube are mixed (or hetrodyned) and the resultant difference frequency (455 kilocycles) is fed to the input of the intermediate frequency amplifier.
9.42 Transfer of intermediate frequency energy, from the first detector tube V-103 to second detector tube V-106 is accomplished by inductive coupling through I. F. transforner T-110, T-111, and T-112 and amplified through I. F. amplifier tubes V-104 and V-105. First I. F. transformer T-110 comsists of two tuned circuits, primary and secondary, with the secondary tuned circuit operating in conjunction with switch S-101B, resistors $\mathrm{R}-103$ and $\mathrm{R}-104$ and a tertiary winding to provide three degrees of selectivity by chamginer the electrical constants of the secondary tumed circuit and its coefficient of coupling with the primary tuned circuit. The primary and secondary vindings are each tuned to the intermediate frequency by fixed, mica dielecific capacitors C-137 and C-138, augmented by adjustable iron cores E-130 and E-131, provided for inductance trimming, and accessible throurg the top and bottom of the transformer shield can. The high potential end of the primary tuned circuit comnects to the plate of first detector V-103 through a shielded conductor, while the low potential end connects to the high voltage d-c bus through decoupling filter resistor R-113, by-passed to ground by capacitor C-112A. The high potential end of :e
secondary tuned circuit is connected to the grid of first I. F. amplifier tube V-104 while the low potential end is connected to the A.V.C. bus through A.V.C. filter R-134 and C-112B.
9.13 Screen potential from the high voltage
d-c bus is applied to the screen of first
I. F. amplifier tube V-104 through decoupling filter resistor $\mathrm{R}-127$, by-passed to ground by capacitor $\mathrm{C}-113 \mathrm{~B}$. Initial cathode bias is applied through bias resistor R-110, by-passed by capacitor C-113A.
9.44 Second I. F. transformer T-111 is identical to first I. F. transformer T-110, with respect to its design, construction, and operating characteristics. Accordingly, except for differences in circuit symbol designations, which becomes obvious upon examination of Fig. 9, the circuit description of paragraph 9.42 is applicable to this transformer, in all details, except that the low potential end of the secondary tuned circuit is returned to ground instead of to the A.V.C. bus.
9.15 The circuit arrangement of second amplifier tube V-105 is the same, except for symbol designations, as described for the first I. F. amplifier tube V-104, in paragraph 9.43 above. No automatic control of control grid bias is provided for this tube, however.
9.46 Third I. F. transformer T-112 contains a tuned primary circuit and an untuned secondary circuit. The primary tuned circuit consists of the primary winding shunted by fixed, mica dielectric capacitor C-133, and permeability tuned by adjustable iron core E-134 which is accessible, for adjustment, through the top of the transformer shield can. Plate potential to the plate of third I. F. amplifier tube V-105 is applied from the high voltage d-c bus through the primary winding and decoupling filter resistor $\mathrm{R}-115$, by-passed to ground by capacitor $\mathrm{C}-116 \mathrm{~B}$. The high potential end of the secondary winding feeds the second detector diode while its low potential end connects to the A.V.C. bus.

9.5 Second Detector Circuits

9.51 Tube V-106 is a dual diode tube, one
section is used as a second detector the plate of which is connected to the high potential end of the secondary winding of third I. F. transformer T-112. The cathode is grounded thus the tube acts as a half-wave rectifier. The voltage appearing across diode load resistor $\mathrm{R}-130, \mathrm{R}-131$ is filtered by resistor R-139 and condenser C-114A and the resulting direct current A.V.C. voltage is used to control the gain of amplifier tubes V-101, V-103, V-104, the degree of control bring de-
pendent on the strength of the incoming signal. The other half of dual diode V-106 is used in a very efficient noise limiter circuit which reduces peak noise levels so that weak signals may be received in locations where the noise level is high.

9.6 A. F. Amplifier Circuits

9.61 The a-f voltage developed across the diode load resistor R-130, R-131 as the result of the demodulating action of the second detector tube V-106, is applied to the control grid of first A. F. amplifier tube V-107, through coupling capacitor C-117, by switch S-101A and VOLUME control potentiometer R-146.
9.62 Switch S-101A is ganged with switch S-101B and S-101C. It operates to transfer the input to VOLUME control potentiomete:: R-146, and hence, the input circuits of first A. F. amplifier tube V-107 from the second detector circuit to PHONO terminals E-102 to permit the operation of the audio amplifier system of the Receiver with a high impedance phonograph pick-up. Low impedance pick-ups may also be employed provided that their connection to E-102 are made through suitable matching transformers.
9.63 Amplification of the a-f signals from the second detector is accomplished by resistance-capacity coupling between first and second A.F. amplifice tubes V-107 and V-108, respectively, and the output amplifier tube V-109. Transfer of audio frequency energy, from the plate of output amplifier tube V-109 to head telephone PHONE(S) jack J-101 and loud speaker terminals E-103, E-104, and E-105, is accomplished through output transformer T-113, E-104 and E-105, which matches the plate impedance of the tube with the separate loads with which the Receiver is designed to operate. A resistance net work, consisting of resistors R-106, $\mathrm{R}-107$, and $\mathrm{R}-108$ is connected between head telephone jack J-101 and the secondary winding of output transformer T-113 to reduce the maximum audio power below that available at speaker terminal E-105.
9.64 Inverse feed back is provided for the second A. F. and output amplifier stages to maintain approximately constant voltage across the primary winding of out-
put transformer T-113 for relatively wide changes in output load, as specified elsewhere in these instructions.
9.65 A separate high voltage d-c bus supplies d-c voltage to the plates and screens of A. F. amplifier tubes V-107, V-108 and V-109. Direct current potential is applied to the plate of first A. F. amplifier tube V-107 through load resistor R-123 and decoupling filter R-124 and C-155; to the screen of second amplifier tube V-108 through decoupling filter R-138 and C-108B, to the plate of this tube through load resistor R-132, and decoupling filter R-125 and C-108A; and finally, to the screen and plate of output amplifier tube V-109, directly, with respect to the screen, and through the primary of output transformer T-113.
9.66 Variable potentiometer R-147 and series cornected capacitor C-118 constitutes the control for regulating the fidelity of the audio amplifier system of the Receiver. The series combination is connected between the plate of first A. F. amplifier tube V-107 and ground.

9.7 Rectifier Power Circuits

9.71 The proper a-c heater potential for all vacuum tubes except the rectifiers is obtained from a common secondary winding of power transformer T-114. One side of the secondary is operated at ground potential. High voltage a-c plate potential from a second secondary winding of the transformer is applied to the parallel connected plates of rectifier tubes V-111 and V-112. The rectified pulsating potentials are derived from each cathode and fed through separate filters to two separate high voltage d-c feeder circuits to the Receiver vacuum tubes. The cathode of rectifier tube V-111 supplies d-c power to one feeder line through filter L-105, C-103, C-104 and C-110, while the cathode of rectifier tube V-112 supplies d-c power to the second feeder line through filter L-106, C-101, C-102 and C-120.
9.72 The a-c power input line to the primary winding of power transformer T-114 is filtered by capacitors C-111A and C-111B to prevent stray r-f potentials from being applied across the primary winding. Power is applied throagh switch S-103 in one side of the line circuit, which also is fused by F-101.

10. OPERATING INSTRUCTIONS

10.1 All switches and controls (with the exception of the main tuning control) of the Model SLR-12-A Radio Receiver are identified by panel engraving.
10.2 The main tuning control knob E-118 is centrally located near the bottom of the front panel and is secured to a shaft which drives the ganged, main tuning capaci-
tors through a friction operated mechanical drive. The mechanical drive, also controls the movement of dial pointer N-106, through a system of pulleys and a flexible bronze cable, across the face of main tuning dial, $\mathrm{N}-107$. Dial dise $\mathrm{N}-104$, which carries a linear dial scale and operates in conjunction with fixed index plate N-105, is rotated by the tuning drive mechanism in such a manner that one rotation is completed with a complete traverse of dial pointer N-106 across the face of main tuning dial N-107. Main tuning dial N-107 is of Lucite with white scale markings and characters on a black background. This dial carries a frequency scale for each band. The Lucite dial is framed with escutcheon plate H-110, fitted with a transparent shatter-proof lens. Indirect dial illumination is afforded by edge lighting of the Lucite dial plate, from suitably placed dial lamps mounted behind the panel and at the two sides of the dial plate.
10.3 The VOLUME control is located at the left of the main tuning control and is operated by control knob E-117. The control is a potentiometer which operates to adjust the signal input level that is applied to the grid of the first A.F. amplifier tube, and hence, the signal level at the output terminals of the receiver, since the A.F. amplifier is operated at constant gain. Clockwise rotation of control knob E-117 increases the audio output signal level.
10.4 The FIDELITY control, located at the left of the VOLUME control, is operated by control knob E-116. It is a rheostat which operates, in conjunction with a series connected fixed capacitor, in the plate circuit of the first A.F. amplifier tube to limit the high frequency response of the receiver. Full clockwise to full counter-clockwise rotation of this control affords a continuous reduction of the high frequency audio response. The control should be adjusted to an extreme clockwise setting for high fidelity reception. For such reception, the SELECTIVITY control, described in Paragraph 10.8 should be set at BROAD.
10.5 Immediately above the FIDELITY control is mounted PHONE (S) jack $J-101$ which is provided to permit monitoring of the received signals by head telephone methods, as described in previous portions of these instructions.
10.6 The power on-off toggle switch, located at the upper left-hand corner of the operating panel of the receiver, is connected in the power line input circuit and is provided to apply or remove line power to or from the complete equipment.
10.7 A BAND SELECTOR switch, operating by control knob E-119, is located
at the right of the main tuning control knob E-118. This control operates to select the R.F. and high frequency oscillator circuits for the three frequency ranges covered by the Model SLR-12-A Radio Receiver. The settings of this switch for the three frequency bands covered by the Receiver are marked SW2, SW1 and BC, in left to right sequence.
10.8 The SELECTIVITY control is located adjacent to the BAND SELECTOR control. It operates the ganged, rotary type, four-position switches, operating in conjunction with the second I. F. transformers, to vary the selective characteristics of the I. F. amplifier. Selectivity control is afforded by three positions of the ganged selector switches to provide for three degrees of selectivity, namely SHARP, MEDIUM and BROAD; while the fourth position of the ganged switches connects the "PHONO" input terminals, at the rear of the Receiver chassis, to the input of the audio amplifier through the VOLUME contiol. The panel markings for the four-positions of the SELECTIVITY control are marked in left to right sequence, SHARP, MED, BRD and PHONO.
10.9 There is located at the upper right hand corner of the Receiver panel an electron ray indicator which indicates when the Receiver is tuned to resonance with the frequency of the received signals. Resonance is indicated by the shadow angle of the electron ray indicator, which should be adjusted, by manipulation of the main tuning control, until the two halves of the shadow approximately meet. The shadow of the electron ray indicator can be adjusted on a strong signal, so that the two halves of the shadow just meet, by turning the eye-adjusting control R-148 with a screwdriver. CAUTION: WHEN TUNING THE RECEIVER ALWAYS TURN THE SELECTIVITY CONTROL TO THE SHARP POSITION AND TUNE FOR MAXIMUM SIGNAL AS INDICATED BY THE ELECTRON RAY INDICATOR. Should the receiver be tuned while the SELECTIVITY control is at MEDIUM or BROAD, the electror ray indicator may indicate maximum signal on either side of resonance owing to the fact that the selectivity characteristic of the I. F. amplifier has somewhat of a flat-top characteristic in each of these two positions of the selectivity control. After the Receiver has been properly tuned to resonance, as described above, the SELECTIVITY control may then be adjusted to the BROAD and MEDIUM positions as desired. Hand grips Y-111 and $\mathrm{H}-112$, are mounted on either side of the panel for convenience in the removal of the chassis from its cabinet without subjecting any of the operating controls to undue strain.

11. PERFORMANCE DATA

11.1 The SENSITIVITY vs. FREQUENCY

 curves are plotted in Plate 1 and are representative of the overall sensitivity of the Model SLR-12-A Radio Receiving Equipment over the three frequency bands covered by the Radio Receiver. These curves, together with the OVERALL SELECTIVITY curves shown in Plate 2, provide data for definitely checking the Radio Receiver to determine if repairs or re-alignment are necessary since the majority of circuit element failures or any misalignment will reduce the sensitivity of the equipment. The data referred to above will, therefore, also serve to show the efficacy of repairs or realignment.
11.2 The selectivity of a radio receiving equipment is that characteristic which

 determines the extent to which it is capable of differentiating between the desired signal and disturbances of other frequencies. The OVERALL SELECTIVITY curves of Plate 2, are representative of the overall selectivity characteristics of the equipment for the three degrees of selectivity, that is made possible by suitable adjustment of the SELECTIVITY control of the Radio Receiver. Over the frequency ranges covered by the Model SLR-12-A Radio Receiving Equipment, the OVERALL SELECTIVITY, for any adjustment of the SELECTIVITY control, will be essentially the SELECTIVITY characteristics of the intermediate frequency amplifier. For signal frequencies below 1000 kilocycles, the OVERALL SELECTIVITY characteristics for the BROAD and MEDIUM adjustments of the SELECTIVITY control will be somewhat sharper than shown by the corresponding curves in Plate 2, due to "side band cutting" by the tuned circuits of the r-f amplifier preceding the first detector.11.3 The image attenuation is the degree to which a superheterodyne type of radio receiving equipment is capable of rejecting signals off resonance which, in combination with the fundamental or any harmonic of the conversion oscillator, produce intermediate frequencies which are amplified by the intermediate frequency amplifier and result in spurious responses The IMAGE ATTENUATION is. DESIRED SIGNAL FREQUENCY curves of Plate 3, show the extent to which the Model SLR-12-A Radio Receiving Equipment is capable of rejecting image responses. The curves of Plate 3, are
representative of the extent to which primary image frequencies are attenuated by the preselector tuned circuits of the Radio Receiver. The primary image frequency is equal to the desired signal frequency plus two times the intermediate frequency. The attenuation of the primary image, corresponding to any desired signal frequency, as derived from the curves of Plate 3, is predicated on the ratio between the r-f inputs, at the desired signal and primary image frequencies, to produce a constant output as measured with the receiver tuned for resonance with the desired signal frequency.
11.4 The intermediate frequency rejection offered by the Model SLR-12-A Radio Receiver is better than 75.0 decibels. This expression is the ability of the Model SLR-12-A Radio Receiving Equipment to reject signals at the frequency to which the intermediate frequency amplifier is resonated.

11.5 The A.V.C., OVERALL FIDELITY,

 and A.F. AMPLIFIER FIDELITY characteristics shown on Plates 4, 5, and 6 are necessary when particular performance checks are desired, but are of secondary importance in most cases in the determination of the necessity for repairs or realignment.11.6 The maximum undistorted power output, as measured at 400 cycles across a load impedance of 60 ohms connected to terminals E-105, is approximately 2 watts. Due to the inverse feed-back feature associated with the audio amplifier system of the Radio Receiver, the voltage appearing across terminals E-105 remains constant, within a total tolerance of 2 decibels, as the load impedance is varied from 60 to 600 ohms. A maximum undistorted power output of approximately 2 watts may also be obtained across terminals E-104 and E-103 when connected to load impedances of 600 and 5000 ohms, respectively, providing that at no time more than one set of output terminals E-103, E-104, or E-105 are used.
11.7 The high frequency oscillator radiation, as measured at the r-f input terminals of the Radio Receiver, is less than 400 micro-microwatts at any frequency covered by the Model SLR-12-A Radio Receiving Equipment. This characteristic will permit "safe" operation of the equipment on Marine vessels.

PLATE 1

© John F. Rider

PLATE 5

12. MAINTENANCE-FAILURES AND REMEDIES

12.1 GENERAL

12.11 Adequate test equipment for maintenance of Model SLR-12-A Radio Receiving Equipment should include the following items:
(1) A Radio Frequency Standard Signal Generator.
(2) An audio output meter, General Radio Company Type 583A, or equivalent.
(3) A Model OE Analyzer, or equivalent, for resistance measurements, testing vacuum tubes and measuring a-c and d-c potentials and currents in the circuits with which the tube under test is associated. The Performance and Test Data of Sections 11 and 13 may be determined with equipment as listed above.
12.12 In making any tests or adjustments, it is essential that the operator consider the influence that any one circuit element may have upon other associated circuits. The Test Data of Section 13 will be particularly helpful in deternining extent of such influences and the necessity for making further replacement after a fault in one particular circuit element has been located and repaired.
12.13 Any repairs in the Model SLR-12-A Radio Receiving Equipment which necessitate resoldering of joints should be made with care. The new joint should be such that the pieces to be soldered are firmly connected mechanically before solder is applied.

12.2 Tube Replacement

12.21 ALL TUBES SUPPLIED WITH ON THE EQUIPMENT CONTRACT SHALL BE USED IN THE EQUIPMENT PRIOR TO EMPLOYMENT OF TUBES FROM GENERAL STOCK.
12.22 Failure of a vacuum tube in the Receiver may reduce the sensitivity of the equipment to radio signals, produce intermittent operation or cause the equipment to be completely inoperative. In such cases all tubes should be checked either in an analyzer, or similar tube testing equipment, or by replacement with tubes of proven quality. When any tube is tested it should be tapped or jarred to make sure it has no internal loose connections or intermittent short-circuits.
12.23 When tube replacements become necessary, substitution of new tubes may alter alignment of r-f or i-f amplifier circuits
inasmuch as the replacement tubes may not be identical with those originally employed. The necessity for realignment as well as alignment procedure are discussed in Section 14.

12.3 Failure of the Radio Receiver

12.31 In case of breakdown or failure of the Model SLR-12-A Radio Receiver, the fault must first be localized in one portion of the circuit. This can be accomplished by observation of some peculiar action of one of the controls or by checking the Receiver against Test Data tabulated in Section 13. Reference to Figures 1 to 9 , inclusive, will show the location of any component part of the Receiver. Functions and ratings of component parts are given in Parts List, Section 15.
12.32 It must be remembered that the Test Data of Section 13 will not positively locate certain faults. For instance, an opencircuited by-pass capacitor will not appear in point to point resistance tests and may introduce regeneration or oscillation in certain circuits which effect the stage gain of other circuits. Similarly, a short circuit occurring in a low resistance inductor will not appear in point to point resistance tests and if the short appears in an R.F. coil, a false indication of the necessity for realignment may result.
12.33 By-pass or filter capacitors, which develop poor internal connections or which become open-circuited, will cause decreased sensitivity and/or poor stability. The defective unit can generally be located by temporarily connecting a good capacitor in parallel with each capacitor that is under suspicion.
12.34 Failures of any by-pass or filter capacitor may seriously overload resistors of associated circuits. Overloads of sufficient magnitude to permanently damage a resistor will cause the painted surface of the resistor to be scorched, making the defective unit easy to locate by visual inspection.
12,35 Open, - or short-circuited resistors can be definitely located by testing the resistance of each individual resistor. The Schematic diagram, Figure 9 , should be consulted to make sure that any particular resistor under test is not connected in parallel with some other circuit element which might produce misleading measurements.
12.36 Loose connections, causing intermittent Ci noisy operation, and which cannot be found by point to point resistance

FIG. 1. Left Front Oblique View, Radio Receiver.

		NT TO Termina	T RESIS assis)	
Terminal		Variable		Resistance (Ohms) Plus or Minus 10%
		Symbol	Setting	
V-101	Grid	NONE		1.91 Meg .
	Cathode	NONE		680 Meg.
	Screen	NONE		Infinite
	Suppressor	NONE		0
	Plate	NONE		Infinite
V-102	Grid	NONE		. 047 Meg .
	Cathode	S-102	BC	. 72 Meg.
	Cathode	S-102	SW-1	. 17
	Cathode	S-102	SW-2	. 167
	Plate	NONE		Infinite
V-103	Grid \#1	NONE		20,000
	Cathode	NONE		270
	Grid \#3	NONE		1.91 Meg.
	Grid \#5	NONE		0
	Grids \#2 \& 4	NONE		Infinite
	Plate	NONE		Infinite
V-104	Grid	S-101	SHARP	
	Grid	S-101	MED	1.1 Meg.
	Grid	S-101	BRD	1.1 Meg .
	Grid	S-101	PHONO	1.1 Meg .
	Cathode	NONE		680
	Screen	NONE		Infinite
	Suppressor	NONE		0
	Plate	NONE		Infinite
V-105	Grid	S-101	SHARP	5
	Grid	S-101	MED	15
	Grid	S-101	BRD	52
	Grid	S-101	PHONO	52
	Cathode	NONE		680
	Screen	NONE		Infinite
	Suppressor	NONE		0
	Plate	NONE		Infinite
V-106	Cathode \#1	NONE		0
	Cathode $\# 2$	NONE		1.3 Meg.
	Plate \#1	NONE		. 3 Meg.
	Plate \#2	NONE		. 3 Meg .
V-107	Grid	R-146	MIN	0
	Grid	R-146	MAX	. 5 Meg .
		S-101	SHARP	
	Grid	R-146	MAX	. 5 Meg .
		S-101	MED	
	Grid	R-146	MAX	. 5 Meg .
		S-101	BRD	
	Grid	R-146	MAX	. 5 Meg .
	Grid	S-101	PHONO	. 5 Meg .
V-107	Cathode	NONE		2,400
	Plate	NONE		Infinite
V-108	Grid	NONE		. 47 Meg .
	Cathode	NONE		$1,500$
	Screen Suppressor	NONE		Infinite
	Suppressor Plate	$\begin{aligned} & \text { NONE } \\ & \text { NONE } \end{aligned}$		$\begin{gathered} 0 \\ \text { Infinite } \end{gathered}$
		NONE		Inflite

13.5 Stage Gain Measurements

13.51 The sensitivity measurements, listed below, are made under the following conditions:
(1) The Model SLR-12-A Radio Receiving Equipment is set up in accordance with Par. 14.13. The Standard Signal Generator is connected in accordance with Par. 14.23, except that the high potential output lead is connected to the control grid of the tubes specified in Table 3.
(2) Adjust the standard Signal Generator for a test signal frequency of 455 kilocycles, modulated 30% at 400 cycles.
(3) The VOLUME control of the Re-
ceiver is fully advanced, the FIDELITY control set approximately mid position and the SELECTIVITY control on SHARP position.
(4) Table 3 as a tabulation of the minimum allowable I.F. sensitivity (maximum signal input) for 10 milliwatts as measured at the PHONE (S) jack with the General Radio Type 583A output meter.

Table 3

Terminal		I.F.Sensitivity
Microvolts		

14. ALIGNMENT DATA

14.1 General

14.11 Should realignment of the Model SLR-12-A Radio Receiver become necessary, the following alignment data should be carefully studied before making any circuit adjustments. It is important that the operator understand the functions of each circuit element so that correct alignment may be obtained quickly and accurately. The alignment data of this section is, therefore, supplemented by Section 8, Construction, and Section 9, Circuit Description.
14.12 Performance Data and Test Data, presented in Sections 11 and 13, will be particularly helpful in determining the necessity for making any specific adjustments. The operator is cautioned against making any adjustments indiscriminately and he should not realign any circuit unless tests definitely indicate realignment is necessary.
14.13 All alignment and calibration tests, measurements, etc., may be made with the Standard Signal Generator, or similar equipment, and an output meter, General

Radio Type 583A, or equivalent. All tests are made with the Standard Signal Generator adjusted to provide a test signal having 400 cycle 30% modulation, unless otherwise specified.
14.14 Before proceeding with the alignment of any circuit of the Model SLR-12-A Radio Receiver, other than adjustment of trimmer capacitors associated with the secondary windings of the antenna coupling transformers, then the Receiver chassis must be taken out of its cabinet; the bottom cover plate of the chassis; top cover plate of the shielded compartment (Fig. 8), containing the antenna coupling transformers; and the bottom cover plate of the shielded compartment containing the H.F. oscillator and R.F. transformers, (Fig. 7) must be removed. Removal of the latter cover plates provide access to the capacitive and inductive trimming components.
14.15 The Model SLR-12-A Radio Receiver must be connected to 115 volt, 60 cycle, single phase, A.C. power source; the power switch S-103 to ON ; SELECTIVITY control knob, E-120. to SHARP; FIDELITY control knob E-116 to approximate mid position, and, VOLUME control knob E-117 to full clockwise rotation. An output meter, General Radio Type 583A, or equivalent. should be connected either to the PHONE (S) output jack J-101, or to speaker terminals E-105, and adjusted for 600 ohm impedance.
14.16 The complete alignment of the Radio Receiver may be divided into four
steps:
(1) Intermediate frequency amplifier alignment.
(2) High frequency oscillator alignment.
(3) Radio frequency amplifier alignment.
(4) Trimming of antenna input circuit.

NOTE: THE CIRCUITS MUST BE CHECKED IN THE ABOVE ORDER WHEN COMPLETE ALIGNMENT IS NECESSARY.
11.2 I. F. Amplifier Alignment
11.21 The intermediate frequency of the Radio Receiver is 455 kilocycles, plus of minus one kilocycle.
11.22 Tuning adjustments are provided in each I.F. transformer. These adjustments consist of adjustable iron cores and are designated by symbol numbers E-130 to E-184. inclusive, as indicated on schematic diagram, Figure 9.
14.23 The high potential lead of the Standard Signal Generator should be connected to the control grid (terminal No. 5) of
the first detector tube V-103 and the ground potential lead to any metal part making direct connection to the chassis.

14.24 The frequency of the Standard Signal

 Generator should be carefully adjusted to 455 kilocycles and the signal input to first detector tube V-103 adjusted to provide a reading on the output meter. The I.F. tuning adjustments, listed in Paragraph 14.22, should be carefully adjusted to give a maximum reading on the output meter. The order in which the adjustments are made is unimportant.NOTE: IT IS ESSENTIAL THAT THE INPUT SIGNAL, FROM THE STANDARD SIGNAL GENERATOR, BE KEPT BELOW THE THRESHOLD OF OPERATION of THE AUTOMATIC VOLUME CONTROL. EXCESSIVE SIGNAL INPUTS WHICH WILL CAUSE OVERLOAD OF EITHER THE SECOND DETECTOR OR AUDIO CIRCUITS SHOULD ALSO BE AVOIDED.
14.25 The performance of the Model SLR-12-A Radio Receiver, from the control grid of the first detector to the output load, can be checked against the stage gain data in Table 3, Section 13, after alignment has been completed. Similarly, the selectivity may be checked against the curves of Plate 2, Section 11.

14.3 High Frequency Oscillator Alignment

14.31 Realignment of the H.F. oscillator circuits for any frequency band is usually necessary if the resonant frequency of the Receiver, as indicated by the tuning dial reading, is in error with respect to the actual resonant frequency by more than 1.0 percent.

WARNING: READJUSTMENT OF THE H.F. OSCILILATOR CIRCUIT TRIMMERS SHOULD NOT BE ATTEMPTED UNTIL AFTER THE NEED FOR SUCH READJUSTMENTS HAS BEEN POSITIVELY ESTABLISHED BY TESTS COVERED IN SECTION 13 .
14.32 To check the operation of the R.F. amplifier and H.F. oscillator circuits, the Standard Signal Generator, or equivalent, should be connected to the antemna input jack $J-103$. using a 400 ohm non-inductive resistor as a dummy antenna. The VOLCME control may be retarded somewhat if desired, as background noise may be excessive when the control is fully advanced.
14.33 If error in calibration is found, check the dial pointer to make certain that it has not been pushed out of position. This may be checked by turning the main tuning control knob E-118 until pointer N-106 is at the extreme left position of its travel. At this point the pointer should line up with the vertical lines on the end of the dial scales.
14.34 The following general procedure should be employed in the alignment of H.F. oscillator circuits of any frequency band.
(1) General.

If, when the Receiver is resonated, at the high frequency end of the band, with a test signal frequency, the dial pointer appears above the dial scale marking for this test freqency, then adjustment is made by tuning the oscillator trimmer capacitor, associated with that band, in a clockwise direction to increase its capacity; conversely, if the Receiver resonants at a lower frequency, as indicated by the markings on the dial, correction is made by turning trimmer counterclockwise.
(2) Broadcast-B.C. position of BAND SELECTOR switch.
(A) Set Signal Generator to 1500 kilocycles.
(B) Set Receiver dial pointer to 1500.
(C) Adjust trimmer C-145 until maximum output is obtained.
(D) Set Signal Generator to 600 kilocycles.
(E) Set Receiver dial pointer to 600.
(F) Adjust padder C-148 for maximum output.
(G) Set Signal Generator to 900 kilocycles.
(H) Set Receiver dial pointer to 900.
(I) Adjust iron core E-127 for maximum output.
(J) Repeat operations A to I, inclusive, until the pointer lines up with the dial markings at all three points on this band.
(3) Shortwave Band I-SW 1 position of BAND SELECTOR switch.
(A) Set Signal Generator to 9.0 megacycles.
(B) Set Receiver dial pointer to 9.0.
(C) Adjust trimmer capacitor C-146 for maximum output.
(D) Set Signal Generator to 5.8 megacycles.
(E) Set Receiver Dial pointer to 5.8.
(F) Adjust iron core E-128 for maximum output.
(G) Repeat A to F, inclusive, until the dial markings correspond to these two frequencies without further adjustment.
(4) Shortwave Band II-SW 2 position on BAND SELECTOR switch.
(A) Set Signal Generator to 15 megacycles.
(B) Set Receiver Dial pointer to 15.
(C) Adjust C-147 until maximum output is obtained.
(D) Set Signal Generator to 9.3 megacycles.
(E) Set Receiver dial pointer to 9.3
(F) Adjust E-129 for maximum output.
(G) Repeat A to F, inclusive, until these two frequencies are resonated at the dial markings for these frequencies.

14.4 R. F. Amplifier Alignment

14.41 The following general procedure should be employed in the Alignment
of R,F. and antenna stages.
(1) General.

Standard Signal Generator is adjusted to provide a 30%, 400 cycle modulated carrier, specified in (2), (3) and (4) ; connection made to the Receiver through. J-103 using a 400 ohm , non-inductive resistance as a dummy antenna.
(2) Broadcast Band (BC).
(A) Set Signal Generator to 1500 kilocycles.
(B) Set Receiver dial pointer to 1500.
(C) Adjust C-149 and C-152 for maximum output.
(D) Set Signal Generator to 600 kilocycles.
(E) Set Receiver dial pointer to 600.
(F) Adjust E-121 and E-124 for maximum output.
(G) Repeat A to C, inclusive, for final adjustment.
(3) Shortwave Band 1 (SW1).
(A) Set Signal Generator to 9.0 megacycles.
(B) Set Receiver dial pointer to 9.0 .
(C) Adjust C-150 and C-153 for maximum output.
(D) Set Signal Generator to 5.8 megacycles.
(E) Set Receiver dial pointer to 5.8.
(F) Adjust E-122 and E-125 for maximum output.
(G) Repeat A to C, inclusive, for final adjustment.
(4) Shortwave Band II (SW2).
(A) Set Signal Generator to 15 megacycles.
(B) Set Receiver dial pointer to 15.
(C) Adjust C-151 and C-154 for maximum output.
(D) Set Signal Generator to 9.3 megacycles.
(E) Set Receiver dial pointer to 9.3.
(F) Adjust E-123 and E-126 for maximum output.
(G) Repeat A to C, inclusive, for final adjustment.

14.5 Antenna Alignment

Final antenna alignment should be made after installation, by adjusting trimmers C-149, C-150 and C-151, for the B.C., SW-1 and SW-2 bands respectively, for optimum performance with the specific antenna employed.

Fig. 2. Left Rear Oblique View, Radio Receiver.

© John F. Rider
MODEL SLR-12-A SCOTT RADIO LABS., INC.

Fig. 5. Left Bottom Oblique View, Radio Receiver Chassis. Bottom Cover Plate Removed.

15.2 TABLE II PARTS LIST BY SYMBOL DESIGNATIONS FOR MODEL SLR-12-A RADIO RECEIVING EQUIPMENT SECTION 1 - MODEL SLR-12-A RECEIVER			
Symbol Desig.	Function	Description	Drawing and Part Number
CAPACITORS			
C-101	Input Filter	Capacitor, paper, $4 \mathrm{mfd}, 600$ volts DC working.	5070
C-102	Output Filter	Same as C-101	
C-103	Input Filter	Same as 'C-101	
C-104	Output Filter	Same as C-101	
$\begin{aligned} & C-105 \\ & C-106 \end{aligned}$	V-107 Cathode Bypass	Capacitor, electrolytic, $25 \mathrm{Mfd} .+50 \%,-10 \%$, 25 Volts DC working.	5088
C-106A	V-102 Heater Bypass	Capacitor, paper, $0.1 / 0.1 \mathrm{Mfd}$. each section 600	5069
C-106B	V-102 Plate Bypass	Volts DC working. Hermetically sealed.	
C-107		Same as C-106	
C-1.07A	V-103 Cathode Bypass		
C-107B	V-103 Screen Bypass		
C-108		Capacitor, paper, 0.1/0.1 Mfd. each section 600	5089
C-108A	V-108 Plate Bypass	Volts DC working. Hermetically sealed.	
C-108B	V-108 Screen Bypass		
C-109 C-109A	V-101 Cathode Bypass	Capacitor, paper, 0.1/0.1/0.1 Mfd. each section 600 Volts DC working. Hermetically sealed.	5065
C-109B	V-101 Plate Bypass		
C-109C	V-101 Screen Bypass		
C-110	Filter Tuning	Capacitor, paper, 0.05 Mfd. 600 Volts DC working. Hermetically sealed.	7002
C-111 C-111		Capacitor, paper, $0.05 / 0.05 \mathrm{Mfd}$. each section 600 Volts DC working. Hermetically sealed.	5067
C-111A	Line Bypass	600 Volts DC working. Hermetically sealed.	
C-111B C-112	Line Bypass	Same as C-111	
C-112A	V-103 Plate Filter		
C-112B	V-104 Grid Filter		
C-113		Same as C-111	
C-113A	V-104 Cathode Bypass		
C-113B	V-104 Screen Bypass		
C-114		Same as C-111	
C-114A	A.V.C. Line Bypass		
C-114B	V-104 Plate Filter		
C-115		Same as C-109	
C-115A	V-105 Plate Bypass		
C-115B	V-105 Cathode Bypass		
C-115C	V-105 Screen Bypass		
C-116		Same as C-111	
C-116A	V-110 Grid bypass		
C-116B	Limiter bypass		
C-117	V-106 to V-107 Coupling	Capacitor, paper, 0.02 Mfd. 600 Volts DC working. Hermetically sealed.	5066
C-118	Fidelity Control Condenser	Same as C-117	
C-119	V-107 to V-108 Coupling	Capacitor, mica, $5000 \mathrm{MMF}, \pm 10 \% 300$ Volts DC working.	5079
C-120	+ B bypass	Same as C-119	
C-121	Diode filter bypass	Capacitor, mica, $50 \mathrm{MMF}, \pm 10 \%, 500$ Volts DC	5076
C-122	Not used	working. Low loss case.	
C-123	Ant to V-101 Coupling	Capacitor, mica, $250 \mathrm{MMF}, \pm 10 \% 500$ Volts DC working. Low loss case.	5077
C-124	V-101 Plate coupling	Same as C-123	
C-125	V-103 Grid coupling	Same as C-123	
C-126	Not used		
C-127	V-108 to V-109 Coupling	Same as C-119	
C-128	V-102 Heater bypass	Same as C-119	

15.2 TABLE II (Continued)

PARTS LIST BY SYMBOL DESIGNATIONS FOR MODEL SLR-12-A RADIO RECEIVING EQUIPMENT SECTION 1-MODEL SLR-12-A RECEIVER

Symbol Desig.	Function	Description	Drawing and Part Number
CAPACITORS (Continued)			
C-129	V-103 B + bypass	Same as C-119	
C-130	V-102 B + bypass	Same as C-119	
C-131	Oscillator coupling	Capacitor, Silver mica, 50 MMF $\pm 2.5 \%, 500$ Volts DC working.	5080
C-132	Oscillator grid Coupling	Same as C-131	
C-133	T-112 Primary tuning	Capacitor, Silver mica, $100 \mathrm{MMF} \pm 2.5 \%, 500$ Volts DC working.	5081
C-134	Antenna tuning padder	Capacitor, Silver mica, $175 \mathrm{MMF} \pm 2.5 \%, 500$ Volts DC working.	5082
C-135	R.F. tuning padder	Same as C-134	
C-136	Oscillator tuning padder	Same as C-134	
C-137	T-110 Primary turing	Capacitor, Silver mica, 225 MMF $\pm 2.5 \%, 500$ Volts DC working.	5083
C-138	T-110 Secondary tuning	Capacitor, Silver mica, $250 \mathrm{MMF} \pm 2.5 \%, 500$ Volts DC working.	5084
C-139	T-111 Primary tuning	Same as C-138	
C-140	T-111 Secondary tuning	Same as C-138	
C-141	T-107 Padder fixed	Capacitor, Silver mica, $350 \mathrm{MMF} \pm 2.5 \%, 500$ Volts DC working.	5085
C-142	T-108 Padder	Capacitor, Silver mica, 3000 MMF $\pm 2.5 \%, 500$ Volts DC working.	5086
C-143	T-109 Padder	Capacitor, Silver mica, 4000 MMF $\pm 2.5 \%, 300$ Volts DC working.	5087
$\begin{aligned} & \mathrm{C}-144 \\ & \mathrm{C}-144 \mathrm{~A} \end{aligned}$	R.F. tuning	Capacitor, variable air, 2 gang. Minimum capacity 14 MMF, Max. capacity 390 MMF. 25	5101
C-144B	Oscillator tuning	plates each section curve "C", 0.015 inches min. spacing.	
C-145	T-107 trimmer	Capacitor, variable air. Mininum capacity 3 MMF, Max. capacity 25 MMF.	5072
C-146	T-108 trimmer	Capacitor, variable air. Minimum capacity 4 MMF, Max. capacity 50 MMF.	5073
C-147	T-109 trimmer	Same as C-146	
C-148	T-107 variable padder	Capacitor, variable air. Minimum capacity 6 MMF, Max. capacity 75 MMF.	5074
C-149	T-101 trimmer	Capacitor, Var. mica, Min. capacity 1 MMF, Max. capacity 12 MMF. Compression type.	6093
C-150	T-102 trimmer	Capacitor, variable mica, Minimum capacity 4 MMF, Max. capacity 60 MMF . Compression type.	5071
C-151	T-103 trimmer	Same as C-150	
C-152	T-104 trimmer	Same as C-149	
C-153	T-105 trimmer	Same as C-150	
C-154	T-106 trimmer	Same as C-150	
C-155	V-107 Plate filter	Same as C-109	
C-156	Antenna tuning	Capacitor, variable air. Min. capacity 14 MMF , Max. capacity 390 MMF 25 plates, curve "C", 0.015 min . spacing.	5100
MISCELLANEOUS ELECTRICAL PARTS			
E-101	V-101 Grid cap	1/4" Grid cap for octal tubes	5045
E-102	Phono input terminals	Phono input two terminal strip marked PHONO and GND, Terminals have captive screws.	6001
E-103	Speaker output term. 5000 ohm	Speaker output two terminal strip marked 5000 ohm SPKR. Terminals have captive screws.	6003

15.2 TABLE II (Continued) PARTS LIST BY SYMBOL DESIGNÁTIONS FOR MODEL SLR-12-A RADIO RECEIVING EQUIPMENT SECTION 1 -- MODEL SLR-12-A RECEIVER

Symbol Desig.	Function	Description	Drawing and Part Number
MISCELLANEOUS ELECTRICAL PARTS (Continued)			
E-104	Speaker output term. 600 ohm	Speaker output two terminal strip marked 600 ohm SPKR. Terminals have captive screws.	6004
E-105	Line term. 60 ohm	Output two terminal strip marked 60 ohm LINE. Terminals have captive screws.	6005
E-106	AC power receptacle	Two pole plug set in drawn steel shell for below surface mounting.	7006
E-107	SW II lamp socket	Bayonet type socket	5174
E-108	SW I lamp socket	Bayonet type socket	5173
E-109	BC lamp socket	Bayonet type socket	5172
E-110	Phono lamp socket	Bayonet type socket	5171
E-111	Dial lamp socket	Bayonet type socket	5041
E-112	Dial lamp socket	Same as E-111	
E-113	V-101 grid lead insul.	Porcelain lead through bushing	5036
E-114	L-101 support insul.	Same as E-113	
E-115	L-101 support insul.	Same as E-113	
E-116	Treble control knob	$11 / 2^{\prime \prime}$ Black bakelite knob.	5119
E-117	Volume control knob	Same as E-116	
E-118	Main tuning knob	21/8" Black bakelite knob.	5120
E-119	Wave Change knob	Same as E-116	
E-120	Selectivity knob	Same as E-116	
E-121	T-101 Sec. Inductance Trimmer	Compressed powdered-iron core coil inductance trimmer.	5103
E-122	T-102 Sec. Inductance Trimmer	Compressed powdered-iron core coil inductance trimmer.	5102
E-123	T-103 Sec. Inductance Trimmer	Same as E-122	
E-124	T-104 Sec. Inductance Trimmer	Same as E-121	
E-125	T-105 Sec. Inductance Trimmer	Same as E-122	
E-126	T-106 Sec. Inductance Trimmer	Same as E-122	
E-127	T-107 Sec. Inductance Trimmer	Same as E-121	
E-128	T-108 Sec. Inductance Trimmer	Same as E-122	
E-129	T-109 Sec. Inductance Trimmer	Same as E-122	
E-130	T-110 Pri. Inductance Trimmer	Same as E-121	
E-131	T-110 Sec. Inductance Trimmer	Same as E-121	
E-132	T-111 Pri. Inductance Trimmer	Same as E-121	
$\mathrm{E}-133$	T-111 Sec. Inductance Trimmer	Same as E-121	
E-134	T-112 Pri. Inductance Trimmer	Same as E-121	
FUSES			
F-101	AC line fuse	Fuse, 2 Amps, up to 250 V., cartridge type, 1 1/4" long, ferrules $1 / 4^{\prime \prime}$ diameter.	5111
HARDWARE			
H-101	Plug button for T-101 Trimmer	1/2" Plug button	5038
H-102	Plug button for T-102 Trimmer	Same as H-101	
H-103	Plug button for T-103 Trimmer	Same as H-101	
H-104	Not used		
H-105	Plug button for T-110 Shield	1/2" Plug button	5037
H-106	Plug button for T-111 Shield	Same as H-105	
H-107	N-106 to C-144 coupling	Insulated coupling for $3 / 8$ " shaft	7157
H-108	C-144 to C-156 coupling	Insulated coupling for $3 / 8$ " shaft	6081A
H-109	O-101 to $\mathrm{O}-102$ coupling	Insulated coupling for $1 / 4$ " shaft	5106
H-110	Dial escutcheon	Transparent Escutcheon	5109
H-111	Pull Handle	Right Pull Handle	5115
H-112	Pull Handle	Left Pull Handle	5115

15.2 TABLE II (Continued)
 PARTS LIST BY SYMBOL DESIGNATIONS FOR MODEL SLR-12-A RADIO RECEIVING EQUIPMENT SECTION 1-MODEL SLR-12-A RECEIVER

Symbol Desig.	Function	Description	Drawing and Part Number
HARDWARE (Continued)			
H-113	Captive thumb screws	8/32 Captive thumb screws	5166
H-114	Panel thumb screws	10/32 thumb screws	5167
H-115	Shock Mounting	Rubber Shock Mounting	5170
INDICATING DEVICES			
I-101	SW II Indicator lamp	Type 44-6.3V, .25A lamp	5110
I-102	SW I Indicator lamp	Same as I-101	
I-103	B.C. Indicator lamp	Same as I-101	
1-104	Phono Indicator lamp	Same as I-101	
I-105	Dial lighting lamp	Same as I-101	
I-106	Dial lighting lamp	Same as I-101	
JACK AND RECEPTACLES			
J-101	Phone Jack	Jack, single, open circuit, short, for 2 conductor plugs, with tip and sleeve only.	5118
J-102	Fuse Holder	Extractor type fuse holder	5112
J-103	Concentric Antenna	Concentric line jack for RF connections	7010
INDUCTORS R.F. \& A.F.			
L-101	V-101 Plate choke	Radio Frequency choke, 2.5 M H., 125 MA.DC, distributed capacity 1 MMF 50 ohms DC resistance. Pigtail terminals.	5047
L-102	$\mathrm{V}-103+\mathrm{B}$ choke	Same as L-101	
L-103	V-102 + B choke	Same as L-101	
L-104	$\mathrm{V}-102$ heater filter	RF choke, 32 turns of \#20 wire	5046
L-105	Audio + B filter choke	$32 \mathrm{H}, 40 \mathrm{MA}$ choke $\pm 10 \%$ Test voltage 1500 RMS $3900 \mathrm{~T} \# 34 \mathrm{E}, 450$ OHMS.	5048
L-106	RF + B filter choke	Same as L-105	
NAMEPLATES, DIALS, CHARTS			
N-101	Model nameplate	Etched model plate	8001
N-104	Linear dial	Etched linear scale	5107A
N-105	Dial Index plate	Etched indicator index plate	5107B
N-106	Dial main tuning	Friction Drive dial pointer	7100
N-107	Frequency dial	Dial plate with lucite calibration	5108
PLUGS			
P-101	Antenna and ground plug	Concentric plug single circuit for RF connection	7009
P-102	Power input receptacle \& plug	Receptacle, 2 pole	7006
MECHANICAL PARTS, SHAFTS			
0-101	Band switch shaft	Switch shaft \& detent plate	5195-A
0-102	Band switch shaft extension	Shaft extension	7018
0-103	Selectivity switch shaft	Switch shaft \& detent plate	5196-A
RESISTORS			
R-101	T-111 secondary series	Resistor, wire wound, $10 \mathrm{ohms}, \pm 10 \%$, $1 / 2$ watt, phenolic insulated. Pigtail type terminals.	5131
R-102	T-111 secondary series	Resistor, wire wound, 47 ohms, $\pm 10 \%$, $1 / 2$ watt, phenolic insulated. Pigtail type terminals.	5132

15.2 TABLE II (Continued) PARTS LIST BY SYMBOL DESIGNATIONS FOR MODEL SLR-12-A RADIO RECEIVING EQUIPMENT SECTION 1 - MODEL SLR-12-A RECEIVER			
Symbol Desig.	Function	Description	Drawing and Part Number
RESISTORS (Continued)			
R-103	T-110 secondary series	Same as R-102	
R-104	T-110 secondary series	Same as R-102	
R-105	V-103 Cathode bias	Resistor, composition, 270 ohms, $\pm 10 \%$, $1 / 3$ watt, pigtail terminals	7145
R-106	Phone pad resistor	Same as R-105	
R-107	Phone pad resistor	Same as R-105	
R-108	Phone pad resistor	Resistor, composition, 560 ohms, $\pm 10 \%, 1 / 2$ watt, pigtail terminals	7220
R-109	V-101 Cathode bias	Resistor, composition, 680 ohms, $\pm 10 \%, 1 / 2$ watt, pigtail terminals	7146
R-110	V-104 Cathode bias	Same as R-109	
R-111	V-105 Cathode bias	Same as R-109	
R-112	V-101 Plate filter	Resistor, composition, 1000 ohms, $\pm 10 \%, 1 / 2$ watt, pigtail terminals	5136
R-113	V-103 Plate filter	Same as R-112	
R-114	V-104 Plate Filter	Same as R-112	
R-115	V-105 Plate Filter	Same as R-112	
R-116	V-108 Cathode bias	Resistor, composition, 1500 ohms, $\pm 10 \%$, $1 / 2$ watt, pigtail terminals	5137
R-117	V-107 Cathode bias	Resistor, composition, 2400 ohms, $\pm 10 \%, 1 / 2$ watt, pigtail terminals	7148
R-118	V-103 Grid \#1 resistor	Resistor, composition, 20,000 ohms, $\pm 10 \%, 1 / 2$ watt, pigtail terminals	7150
R-119	T-113 to V-108 Feedback	Resistor, composition, 10,000 ohms, $\pm 10 \%, 1 / 2$ watt, pigtail terminals	7008
R-120	V-106 noise limiter	Resistor, composition, 1.0 meg . ohms, $\pm 10 \%$, $1 / 2$ watt, pigtail terminals	5146
R-121	Not used		
R-122	V-102 Grid leak	Resistor, composition, 47,000 ohms, $\pm 10 \%, 1 / 2$ watt, pigtail terminals	5141
R-123	V-107 plate load	Same as R-122	
R-124	V-107 plate filter	Same as R-122	
R-125	V-108 plate filter	Same as R-122	
R-126	V-101 screen filter	Resistor, composition, 100,000 ohms, $\pm 10 \%, 1 / 2$ watt, pigtail terminals	5142
R-127	V-104 screen filter	Same as R-126	
R-128	V-105 screen filter	Same as R-126	
R-129	V-106 Limiter Cathode resistor	Resistor, composition, .82 meg., $\pm 10 \%, 1 / 2$ watt, pigtail terminals.	7090
R-130	Diode filter	Resistor, composition, $.22 \mathrm{Meg} . \pm 10 \%$, $1 / 2$ watt, pigtail terminals.	5144
R-131	Diode load	Same as R-130	
R-132	V-108 plate load	Resistor, composition, $.47 \mathrm{Meg} . \pm 10 \%$, $1 / 2$ watt, pigtail terminals.	5145
R-133	V-109 to V-108 feedback.	Same as R-130	
R-134	V-104 grid filter	Same as R-130	
R-135	V-101 grid filter	Same as R-132	
R-136	V-103 grid filter	Same as R-132	
R-137	V-108 grid leak	Resistor, composition, $.47 \mathrm{Meg} . \pm 10 \%$, $1 / 2$ watt, pigtail terminals.	5145
R-138	V-108 screen filter	Same as R-132	
R-139	A.V.C. filter	Resistor, composition, $1.0 \mathrm{Meg} . \pm 10 \%$, $1 / 2$ watt, pigtail terminals.	5146
R-140	Eye control limiting	Same as R-130	

15.2 TABLE II (Continued) PARTS LIST BY SYMBOL DESIGNATIONS FOR MODEL SLR-12-A RADIO RECEIVING EQUIPMENT SECTION 1 - MODEL SLR-12-A RECEIVER			
Symbol Desig.	Function	Description	Drawing and Part Number
RESISTORS (Continued)			
R-141	V-109 grid leak	Same as R-139	
R-142	V-110 indicator filter	Resistor, composition, $2.2 \mathrm{Meg} . \pm 10 \%$, $1 / 2$ watt, pigtail terminals.	5147
R-143	V-102 plate filter	Resistor, composition, 15,000 ohms, $\pm 10 \%$, 2 watt, pigtail terminals.	7230
R-144	V-103 screen filter	Resistor, composition, 18,000 ohms, $\pm 10 \%$, 2 watt, pigtail terminals.	7231
R-145	V-109 cathode bias	Resistor, wire wound, 680 ohms, $\pm 10 \%, 2$ watts, phenolic insulated, pigtail type terminals.	7239
R-146	Volume control	Potentiometer, $.5 \mathrm{meg} \pm 20 \%$ Composition, semi-logarithmic Clockwise taper, shaft . 250×2.187	5129
R-147	Treble control	Potentiometer, $.25 \mathrm{meg} \pm 20 \%$ Composition, semi-logarithmic Clockwise taper, shaft . 250×2.187	5130
R-148	Tuning indicator control	Potentiometer $1 \mathrm{meg} \pm 20 \%$ Composition, linear taper Shaft .250 x .500 , screwdriver slot	5128
SWITCHES			
S-101A $\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	Phono Radio section \#1 IF selectivity section \#2 IF selectivity section	Selectivity gang switch, rotary type, 3 wafer sections	5196-B
S-102		Band switch, rotary type, 5 wafer sections	5195-B
$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	Indicator lamp section Oscillator section		
C	R.F. section		
D	Antenna secondary section		
${ }_{S-103}{ }^{\text {E }}$	Antenna primary section A.C. - off - on switch		
S-103	A.C. - off - on switch	Toggle switch S.P.S.T., silver plated contacts rated 3A, 250 volts DC	5197
S-104	Noise limiter - off - on switch	Toggle switch S.P.D.T., silver plated contacts rated $3 \mathrm{~A}, 250$ volts D.C.	7091
TRANSFORMERS R.F., A.F. AND POWER			
T-101	J-103 to V-101 coupling B.C. band	R.F.Transformer assembly antenna section Pri.D.C. resistance 0.58 ohms $\pm 10 \%$ Sec.D.C. resistance $4.73 \mathrm{ohms} \pm 10 \%$	Pri-5050 Sec-5051
T-102	J-103 to V-101 coupling S.W.I. band	R.F.Transformer assembly antenna section Pri.D.C. resistance 0.2 ohms $\pm 10 \%$ Sec.D.C. resistance $0.11 \mathrm{ohms} \pm 10 \%$	Pri-5054 Sec-5055
T-103	J-103 to V-101 coupling S.W. II band	R.F.Transformer assembly antenna section Pri.D.C. resistance 0.16 ohms $\pm 10 \%$ Sec.D.C. resistance 0.06 ohms $\pm 10 \%$	Pri-5058 Sec-5059
T-104	V-101 to V-103 coupling B.C. band	R.F.Transformer assembly R.F. section Pri.D.C. resistance 0.3 ohms $\pm 10 \%$ Sec.DC. resistance $4.82 \mathrm{ohms} \pm 10 \%$	5052
T-105	V-101 to V-103 coupling S.W.I. band	R.F.Transformer assembly R.F. section Pri.D.C. resistance $0.14 \mathrm{ohms} \pm 10 \%$ Sec.D.C. resistance 0.11 ohms $\pm 10 \%$	5056
T-106	V-101 to V-103 coupling S.W. II band	R.F.Transformer assembly R.F. section Pri. D.C. resistance $0.094 \mathrm{ohms} \pm 10 \%$ Sec.D.C. resistance 0.062 ohms $\pm 10 \%$	5060

15.2 TABLE II (Continued) PARTS LIST BY SYMBOL DESIGNATIONS FOR MODEL SLR-12-A RADIO RECEIVING EQUIPMENT SECTION 1 - MODEL SLR-12-A RECEIVER			
Symbol Desig.	Function	Description	Drawing and Part Number
TRANSFORMERS R.F., A.F. AND POWER (Continued)			
T-107	B.C. Band oscillator	R.F.Transformer assembly oscillator section Tap D.C. resistance $0.564 \mathrm{ohms} \pm 10 \%$	5053
T-108	S.W.I. Band oscillator	R.F.Transformer assembly oscillator section Tap, D.C. resistance $0.03 \mathrm{ohms} \pm 10 \%$ Total coil, D.C. resistance 0.1 ohms $\pm 10 \%$	5057
T-109	S.W.II Band oscillator	R.F.Transformer assembly oscillator section Tap, D.C. resistance 0.023 ohms $\pm 10 \%$ Total coil, D.C. resistance $0.06 \mathrm{ohms} \pm 10 \%$	5061
T-110	V-103 to V-104 coupling	1st I.F. Transformer 455 K.C. Pri.D.C. resistance $4.65 \mathrm{ohms} \pm 10 \%$ Sec.D.C. resistance $4.78 \mathrm{ohms} \pm 10 \%$	5062
T-111	V-104 to V-105 coupling	2nd I.F. Transformer 455 K.C. Pri.D.C. resistance 4.89 ohms $\pm 10 \%$ Sec.D.C. resistance 4.78 ohms $\pm 10 \%$	5063
T-112	V-105 to V-106 coupling	3rd I.F. Transformer 455 K.C. Pri.D.C. resistance 13 ohms $\pm 10 \%$ Sec.D.C. resistance 17.4 ohms $\pm 10 \%$	5064
T-113	V-109 to Speaker terminals	Output Transformer Pri. 2500 turns $\# 37$ E, D.C. resistance 649 ohms $\pm 10 \%$, impedance 8000 ohms Sec. \#1, 236 turns \#26E, D.C. resistance, 5.088 ohms $\pm 10 \%$, impedance 60 ohms Sec. \#2, 753 turns \#31E, D.C. resistance, 55.8 ohms $\pm 10 \%$, impedance 600 ohms Sec. $\# 3,2250$ turns $\# 36 \mathrm{E}$, D.C. resistance 489 ohms $\pm 10 \%$, impedance 5000 ohms	6008
T-114	Power Transformer	Pri. 308 turns \#22E, D.C. resistance 3.1 ohms $\pm 10 \%, 70 \mathrm{Va} .115 \mathrm{~V} ., 0.61 \mathrm{~A}, \pm 10 \%$. Sec. $\ddagger 1,1416$ turns centertapped $\# 32$ E, D.C. resistance 166.2 ohms $\pm 10 \%, 255$ V. A.C. 40 Ma .255 V . A.C., $40 \mathrm{Ma} ., \pm 10 \%$ Sec. \#2, 18 turns $\# 17 \mathrm{E}$, D.C. resistance 0.072 ohms $\pm 10 \%, 6.3$ V. A.C., $3.8 \mathrm{~A} \pm 10 \%$ Sec. $\# 3,18$ turns $\# 20 \mathrm{E}$, D.C. resistance 0.15 ohms, 6.3 V. A.C., $1.2 \mathrm{~A} \pm 10 \%$	6007
VACUUM TUBES			
V-101	R.F. amplifier 6K7	Vacuum tube (Receiving-Metal). Triple grid super-control amplifier. Base: Small wafer octal 7 pin. Miniature cap. Heater: Current 0.30 amp at 6.3 volts AC or DC	6017
V-102	H.F. oscillator 655	Vacuum tube (Receiving-Metal). Detector amplifier triode. Base: Small wafer octal 6 pin, phenolic. Heater: Current 0.30 amp at 6.3 volts AC or DC	6015
V-103	1st detector and mixer 6SA7 or 6SA7-GT	Vacuum tube (Receiving-Metal). Pentagrid converter. Base: Small wafer octal 8 pin, phenolic. Heater: current 0.3 amp at 6.3 volts AC or DC	6014

VACUUM TUBES (Continued)

V-104	$\begin{aligned} & \text { 1st 1.F. amplifier } 6 \text { SK7 } \\ & \text { or } 6 \text { SK7-GT } \end{aligned}$	Vacuum tube (Receiving-Metal). Triple grid super-control amplifier. Base: 'Small wafer octal 8 pin, phenolic. Heater: Current 0.30 amp at 6.3 volts AC or DC	6016
V-105	$\begin{aligned} & \text { 2nd I.F. amplifier 6SK7 } \\ & \text { or } 6 \text { SK } 7 \text {-GT } \end{aligned}$	Same as V-104	
V-106	Second detector and A.V.C. 6H6 or 6H6-GT	Vacuum tube (Receiving tube-Metal). Twin diode. Base: Small wafer octal 7 pin. Heater: Current 0.30 amp at 6.3 volts AC or DC	6010
V-107	1st Audio amplifier 6J5 or 6J5-GT	Same as V-102	
V-108	2nd Audio amplifier 6SJ7 or 6SJ7-GT	Vacuum tube (Receiving - Pentode metal). Triple Grid Detector Amplifier. Base: Small wafer octal 8 pin, phenolic. Heater: current 0.3 amp at 6.3 volts AC or DC	6009
V-109	Output amplifier 6K6-GT	Vacuum Tube (Receiving - Pentode glass) Power amplifier Pentode. Base: Medium Shell Octal 7 pin, phenolic. Heater: current 0.4 amp at 6.3 volts AC or DC	6011
V-110	Tuning indicator 6E5	Vacuum Tube (Receiving-Glass). ElectronRay tube (Indicator). Base: Small 6 pin, phenolic. Heater: Current 0.30 amp at 6.3 volts AC or DC	6012
V-111 V-112	Rectifier 6X5-GT Rectifier 6X5-GT	Vacuum Tube (Receiving-Glass). Full wave high vacuum rectifier. Base: intermediate shell octal 6 pin, phenolic. Heater: Current 0.6 amp at 6.3 volts AC or DC Same as V-111	5096
SOCKETS			
X-101	Socket for V-101	Vacuum tube socket eight contact (octal) plugin type, with retaining ring and spacer washer. Molded bakelite base. Circular.	7035
X-102	Socket for V-102	Same as X-101	
X-103	Socket for V-103	Same as X-101	
X-104	Socket for V-104	Same as X-101	
X-105	Socket for V-105	Same as X-101	
X-106	Socket for V-106	Same as X-101	
X-107	Socket for V-107	Same as X-101	
X-108	Socket for V-108	Same as X-101	
X-109	Socket for V-109	Same as X-101	
X-110	Socket for V-110	Vacuum tube socket, 6 prong, phenolic.	5040
$\mathrm{X}-111$	Socket for V-111	Same as X-101	
X-112	Socket for V-112	Same as X-101	

Symbol Desig.	Function	Description	Drawing and Part Number
MISCELLANEOUS ELECTRICAL PARTS			
$\begin{aligned} & \text { E-201 } \\ & \text { E-202 } \end{aligned}$	AC Power receptacle Vibrator unit	2 Pole receptacle flush mounting. Plug-in type vibrator unit	7571
FUSES			
F-201	D-C Line fuse	Fuse-10 amps. 25 volts	7248
PLUGS			
P-201	D-C Line plug	2 Pole plug and 5 foot 2 conductor cord	7227
SWITCHES			
S-201	D-C Power switch	S.P.S.T. Toggle switch	5197

FIG. 9. Actual Schematic Diagram. Model SLR-12-A Radio Receiver
fig. 6. Right Bottom Oblique View, Radio Receiver Chassis. Bottom Cover Plate Removed.]
©John F. Rider
SCOTT PAGE 18-79 MODEL SLR-12-A

PARTS LIST BY SY FOR MODEL SLR-12-A RADIO RECEIVING EQUIPMENT SECTION 3-MODEL SPM-8 SPEAKER

Symbol Desig.	Function	Description	Drawing and Part Number
TRANSFORMERS			
T-301	Output transformer	Output coupling transformer Pri. impedance- 600 ohms Sec. impedance-4.4 ohms	8010
LOUD SPEAKERS			
LS-301	Loud speaker	8 inch permanent magnet loud speaker. Voice coil impedance 4.4 ohms	8002
INTERCONNECTING CABLES			
W-301	Speaker cable	2 wire rubber covered connector cable	8004 A
		$R-138$ R-124 R-132 C-155 S-10	2 A C-105

© John F. Rider

©John F. Rider

ALIGNMENT PROCEDURE

PRELIMINARY


``` \(10^{*}\) spkr. 1.4 volts
Output meter reading to indicate l watt output.......... 12" spkr. 2.0 volts
Average sensitivity in microvolts for l watt output........See chart below
```



```
Dummy anterma to be in series with generator output.........See chart below
Connection of generator output lead...........................................cer chart below
Generator modulation................................................................ 400 cycles
```

Position of selectivity control.....................Sharp position (clockwise)

BAND	POSITION OF *	GENERATOR	DUMMY	GENERATOR	TRIMMERS	MICRO-
SWITCH	DIAL POINTER	FREQUENCY	ANTENNA	CONNECTION	ADJUSTED	VOLTS
					(In order shown)	(Sharp

Band A I.F.	$1000 \mathrm{KC}$.	456 KC.	. 1 Mfd.	6A8-G Grid	$\begin{aligned} & \text { C41, C42, } \\ & \text { C43, C44 } \end{aligned}$	150
$\begin{aligned} & \text { I.F. } \\ & \text { Trap } \end{aligned}$	600 KC .	456 KC.	. 00025 MPd .	Ant. Lead	$\begin{aligned} & \text { L1 for } \\ & \text { Min. Output } \end{aligned}$	
	1500 KC .	1500 KC .	. 00025 MPd.	Ant. Lead	C6, C4, C 2	15
	$\begin{aligned} & 600 \mathrm{KC} . \\ & \text { (Rock Dial) } \end{aligned}$	$600 \mathrm{KC}$.	. 00025 Mfd .	Ant. Lead	C19	15
Band P	5000 K.C.	$5000 \mathrm{KC}$.	400 Ohm.	Ant. Lead		30
Band F	16000 KC.	$16000 \mathrm{KC}$.	400 Ohm.	Ant. Lead	$\mathrm{C} 7, \mathrm{C} 5, \mathrm{C} 3^{* *}$	30

. IMPORTANT ALIGNMENT NOTES
: Before attempting to align the receiver check to see that the dial pointer coincides with the last scale division at the low frequency end of the dial scale when the gang condenser is in full mesh.

After adjusting the I.F. trimmers C41, C42, C43 and C44, go back and repeat the adjustment, since the setting of each trimmer will have some effect on others. When adjusting Ll, antenna trap trimmer, increase generator output to obtain clearly defined trimmer setting for a minimum.
\%* When aligning the broadcast band padder C19 at 600. KC. and the short wave detector trimmers, it is necessary to adjust the trimmers while slowly rocking the gang condenser through a small distance. Rocking the gang is essential if maximum sensitivity is to be obtained.
f** When aligning the short wave bands, care should be taken in adjusting trimmers C7 and ClO, since two possible adjustments of these trimmers will result in signal peaks. The proper peak is that which occurs with the trimmer screw farthest out.

PAGE 18-4 SEARS
MODELS $4486,4586,4586-A$, SEARS, ROEBUCK \& CO. 4586-B CHASSIS 100,156

- John F. Rider

The $\mathrm{R}-100156$ three band radio recelver has a frequency range extending from 526 KC . to $18,000 \mathrm{KC}$. The intermediate frequency is 456 KC . A three deck band selector switch is used for selecting the proper combination of coils to be used for each wave band. Special contacts on one deck of the swiuch are used for shorting out unused oscillator coils to prevent dead spots due to absorption.

The colls for the antenna, R.F., and oscillator circuits covering the broadcast and short wave bands, are shlelded and located on top of the chassis. They are designated by L2, LA and L6 respectively in the circuit diagram. The antenna, R.F. and oscillator coils covering the police band are located on the underside of the chassis and are designated by L3, L5 and L7 respectively in the circuit diagram.

The receiver is designed for use with a conventional or doublet antenna. A 456 KC . wave trap is connected across the antenna input to prevent code interference from stations operating on frequencies in the vicinity of 456 KC .

The control grid circuit of the $6 K 7-G$, radio frequency amplifier, is tuned by the secondary of the antenna coll and one section of the variable condenser. Similarly, the control grid circuit of the 6A8-G iirst detector and oscillator, is tuned by the secondary of the R.F. coll and one section of the variable condenser. After amplification in the 6K7-G R.F. amplifier, the signal is impressed on the control grid of the 6A8-G, 1st detector and osciliator, where frequency conversion to 456 KC . takes place. The 456 KC . output voltage of the 6A8-G tube is amplified by the $5 K 7-G$ intermediate frequency amplifier and impressed on the diode plates of the 6H6-G second detector and A.V.C. tube.

By means of the selectivity control, two degrees of selectivity are obtainable in the intermediate frequency amplifier. This is accomplished by altering the resonance characteristics of the lst I.F. transformer. When the selectivity control is in the sharp position (clockwise) the lst I.F. transformer functions as a typical transformer with tuned primary and secondary circuits. When it is in the broad position (counter-clockwise) the resonant frequency of the primary circuit is decreased and that of the secondary circuit increased. At the same time the selectivity curve of the secondary is broadened.

One section of the 6H6-G twin diode tube is used as a linear detector. The 260,000 ohm resistor R15 serves as a load resistor for the detector section of the twin diode. The potentiometer type of volume control Rl, is capacity coupled to the diode load resistor R15, and acts as a continuous voltage divider of the audio frequency voltage developed. Hence any portion of the audio erequency voltage developed may be applied to the control grid of the 6F5-G resistance coupled audio frequency amplifier. The second section of the twin diode, fed through the condenser C29 is used for delayed A.V.C. With sufficient signal intensity, A.V.C. voltage is developed across resistance R17 and applied to the control grids of the 6K7-G and 6A8-G tubes through a resistance capacity filter.

The output of the 6F5-G audio amplifier is fed into a resistance coupled pushpull output stage. In this circuit, the 6C5-G tube operating as a phase inverter, takes the place of a push-pull input transformer.

The control grid bias of the 6F5-G is obtained from the negative end of resistance Rl8-C. Similarly, the control grid bias of the 6K7-G tubes, the 6A8-G tube, and the delay voltage for the A.V.C. section of the 6H6-G is obtained from the negative end of resistances R18-B and R18-C. Also the bias for the 6F6-G output tubes is obtained from the negative end of resistors R18-A, R18-B and R18-C. Resistances R18-A, R18-B and R18-C are located in the negative lead of the high voltage D.C. supply.

$\frac{\text { WEAK OR INOPERATIVE SETS DUE TO SHORT-CIRCUITED POLICE BAND }}{\frac{R . F \cdot C O I L S}{}}$

Occasionally you may ind a set which is weak or completely inoperative on all three bands due to a short between the coupling turn and the secondary of the police band R.F. coil (L5). The short circuit may first cause crackling and sputtering and then later the set will stop playing. To test for this short, disconnect the red and yellow wires from the coil (L5) and test for continuity from either end of the trimmer condenser on the coil to the lug to which the coll coupling turn is connected. This should show an open circuit. Even the slightest leakage between these two points with the red and yellow wires disconnected, calls for the replacement of the coll which is part number 1002888604. Such shorted coils do not occur very often, therefore, we recommend that tubes and voltages be checked first to make sure that no other trouble exists

- John F. Rider

PAGE 18-6 SEARS
MODELS 4486,4586,4586-A, SEARS, ROEBUCK \& CO. 4586-B CHASSIS 100,156

SEARS PAGE 18-7

DEFECT	GENERALLY CAUSED BY	REMEDY
Dead Receiver On All Bands	No power at A.C. outlet \qquad Shorted by-pass condenser. Burned out power transformer. Defective tubes. Open coupling condenser. Shorted filter condenser. Open plate resistor. High resistance short between coupling turn (primary circuit) and secondary of Police band R.F. Coil (L5)	Check or repair A.C. power source. Determine defective parts by means of continuity and voltage tests, and replace. Replace co11.
Low Volume, Insensitive. Tuning Eye Does Not Close Sufficiently	Inadequate antenna..................... Defective tubes. Leaky filter condenser. Leaky by-pass condenser. High resistance short between coupling turn (primary circuit) and secondary of Police band R.F. Co11 (L5)	Replace antenna system. Replace defective parts. Replace coil.
Poor Tone	Defective tubes. Leaky by-pass condenser. Open filter condenser. Speaker cone off center. \qquad Receiver out of alignment............	Replace defective parts. Recenter speaker cone. Realign receiver.
Oscillating Receiver	Defective tubes. Open by-pass condenser. Poor contact of tube shield. Receiver out of alignment. Poor chassis grounds.	Repair or replace defective parts. Realign receiver. Check ground connections in chassis
Fading Receiver	Defective tubes.......................... Defective audio coupling condenser.. Loose connections \qquad Defective antenna system	Replace defective tubes. Replace defective condenser. Resolder loose connections. Check and repair antenna.
Hum	Open filter condenser. Defective by-pass condenser. Shorted heater type tube.	Replace defective parts.
ore Calibration	Dial pointer shifted.................. Receiver out of alignment............	Set dial pointer. Realign receiver.
Audio Howl	Shipping blocks not removed......... Knob shafts in contact with cabinet. Microphonic tubes.	Remove wood shipping blocks. Readjust chassis in cabinet. Replace microphon1c tubes.

Speaker－ $10^{\prime \prime}$
Speaker－ $12^{\prime \prime}$
Speed nut used on $1004489819 \quad$（each）
Spring ring－tube shield
Spring－dial cord
Spring－dial glass retainer
Spring－escutcheon mounting used on 1004488916
Switch－range
Switch－selectivity

Coil－antenna trap －antenna（B．C．\＆S．W．with shd．\＆trimmer） （aวITOd）Eưəque－IIOD Coil－R．F．（B．C．\＆S．W．with shd．\＆trimmer）
 Co11－osc．（Police） Condenser－dual trimaer

Bracket－selectivity switch

Spring－dial glass retainer

 1001985562
1002089614
1001988887
1001983976

SEARS PAGE 18-9

© John F. Rider

SEARS, ROEBUCK \& CO.
CHASSIS 101.471

SEARS PAGE 18-11

THE AVC CIRCUIT:

The diode current of the 6 B 6 G tube, flowing through the 500 M ohm resistor, Rlo, createsa voltage drop across it. This voltage is applied to the control grids of the 3 ABG and $6 K 7 G$ tube to provide AVJ.

WAVE-TRAP TO ELIMINATE INTERFERENCE FROM SHIP OR AIRPORT TRANSMITTERS:

In locations near ship transmitters or alrports or air beacon stations, code interference may be experienced. Part \#l013114256 wave-trap is designed to eliminate such interference. It may be ordered directly from the Colonial Radio Corporation, 254 Rano Street, Buffalo, N. Y., using Purchase Order blank, form F5384.

Mount the trap, by means of two wood screws, at any convenient place on the chassis shelf or cabinet where $1 t$ will be near the antenna terminal of the receiver. Connect the yellow lead of the wave-trap to the antenna downlead. Connect the green lead of the wavetrap to the antenna terminal of the recelver. Cut off any excess length of green wire from
 green lead. Connect one of the black leads from the wave-trap to the ground terminal of the recelver. Connect the other wave-trap black lead to the ground used for the installation.

The trap is pre-tuned to the IF Prequency so that normally no further adjustment is necessary. However, should interference still be experienced, tune the recelver between approximately 550 and 300 kc . Then adjust the wave-trap, by means of the trimmer screw at the bottom of the container, until the interference is eliminated. Aldition of the trap will reduce the sensitivity of the receiver around 600 kc by approximately 50%. The customer should be forpwarned of this to avnid complaints of reduced sensitivity.

INSTALLATION OF A PHONOGRAPH PICK-UP JACK OR AN EARPHONE JACK:
A kit, part \#1016117189, can be ordered from Colonial Radio Corporation, 254 Rano Street, Bupfalo, N. Y. This kit contains the necessary parts for installing either a phonograph pick-up jack or an earphone jack. If the customer desires both a phonograph pick-up jeck and an earphone jack, it will be necessary to use two kite and to drill an additional hole in the back of the chasels for the additional jack.

PHONOGPAFH PICK-UP JACK: A hole, covered with a brass insert, is provided in the back of the chassis. Remove the brass insert and mount the jack in this hole. Insulate the jack from the chassis by means of the two insulating washers supplied in the kit. The schematic Section shows the connections to the jack. In addition, changes must be made in the wiring to the speaker socket and the electrolytic condenser. As the Schematic Section shows, these wiring changes and the connections to the jack are as follows:

Disconnect the Jumper between prongs 1 and 5 of the speaker socket.
Disconnect the Jumper between prong \#z of the speaker socket and the anode (center terminal) of the wet electrolytic.

There is a lead running from the 40 ohm resistor, mounted on the terminal board near the power transformer, to the cathode (can terminal) of the wet electrolytic. Disconnect this lead from the electrolytic and connect it to terminal $\#$ of the speaker socket.

Run a lead from terminal \#l of the speaker socket to the cathode (can terminal) of the electrolytic.

Run a lead from terminal \#l of the jack to the cathode prong of 6B6G tube.
Connect the .05 condenser from terminal \#B of the jack to the junction of flo and C19. This junction is at the end lug of the terminal board mounted under the IF output tranaformer.

Connect the 500 M ohm resistor from terminal 3 of the jack to the end of Rl4 that is connected to the blank prong of the GBGG socket.

Connect prong \#4 of the jack to prong \#l of the speaker socket.
The radio Volume Control and Tone Control will operate for the phonograph pick-up.
EARPHONE JACK: Mount the jack in the hole in the back of the chassie. The jack prame must be grounded to the chassis. Therefore, do not use the insulating washers.

Connect the .05 condenser from terminal N 2 of the jack to the grid prong of the 6V6G output tube.
Connect terminal \#3 of the jack to terminal \#3 of the speaker socket.
Connect terminal \#4 of the jack to terminal \#5 of the speaker socket.
This is the only wiring necessary. The wiring changes mentioned above for connection of the phonograph pick-up jack are not to be done if only an earphone jack is used.

With the connections as described, the loud speaker will not operate when the earphones are plugged in. If it is desired to have the loud speaker operate at the same time the earphones are plugged 1 n , the connections to terminals 3 and 4 of the jack should be omitted.

[^1]

LOCATIONS OF PARTS ON TOP OF CHASSIS.

LOCATIONS OF PARTS UNDER CHASSIS

CIRCUIT CHANGE IN 109.371 RADIO RECEIVER

The 109.371-l receiver is identical with 109.371 with the following shenges:
The value of $\mathrm{C}-13$ is changed to .02 Mfd .400 V .
The value of $\mathrm{c}-9$ is changed to .001 Mfd .600 V .
The connection from condenser $\mathrm{C}-13$ is chenged from the volume control side of condenser c-9 to the l2SQ7GT grid side of $\mathrm{C}-9$.

BLECTRICAL SPECIFICATIONS CHASSIS 109.371

TUBES AND FUNCTIOMS

605 Tuning/volume Indicator
12SQ7GT Phase Inverter
105-125 Volts AC
50 and 60 eycle models available.
POWER OUTPUT
SPEAKER

THE RASTER CONIROL SNITCH
This switch has six positions. The recarding positions are described in detail on the next page.

Position No. 2 ... Phono
 Position No. 4 Record Radio Program \& with Microphone at the same time
 Position No. 6 ... Public Address

THE TUNING EYE
When the Master Control Switch is in the "Radio" position the eye acts in the normal manner as a tunine indicstor.

Then the Haster Control Switch is in any position except No. 1 the eye is connected to the output of the receiver so that it indicates volume. For recording, the volume control should be adjusted so that the eje just closes. In recording a radio program it is very hard to predict just how loud the loudest part of the program will be, therefore, it is best to set the volume control so that the eye is slightly open.

TIE LOOP AMTEINA
The loop antenna is somewhat directional in its reception characteristics, therefore turnine the receiver to a particular position will often improve reception or reduce interference.

ANTENNA AND GROUND CONNECTIONS

If the receiver is used in a building which has metal lath or a large amount of steel in its construction, or in a location where reception conditions are poor, an outdoor antenna and a ground connection may be necessary.

Two terminals are provided on the back of the cabinet for connection of antenna and ground.

DIAL LAMPS

The two dial lamps are connected in series, therefore if one burns out the other will not light. Mazda \#47 dial lamps are used.

PHONO OPERATION

Turning the Master Control Switch to the No. 2 or Phono position connects the phono pickup to the audio amplifier of the receiver and disconnects the radio. The Volume control acts for phono the same as for radio.

RECORDING

The recording mechanism will cut records up to 10 inches in diameter. Recordings of excellent quality can be made if the instructions in the following paragraphs are very carefully followed.

INSERTING THE RECORDING NEEDLE IN THE HEAD OF THE RECORDER ARM
Notice that tic shank of the recoraing siogie is ground flat on one side. Loosen the screm in the end of the Recorder Arm. Insert the needle into the hole in the under side so that the flat side is towarus to front of the cabinet. Ti, hten the retaining screw so that the needle is held firmly. Check to make sure that the recordis needle is tight each time a recording is made.
to recorj a radio progra:
Place a blank record on the turntable making sure that the small pin on the turntable projects through the hole provided for it in the record. This is necessary to prevent the record from slipping and mining the recording.

SEARS PAGE 18-17

SEARS, ROEBUCK \& CO.

MODELS 5372,5372-B
CHASSIS 109.371,109.371-1
Tumn the Master Control switch to the No. 1 (Radio) position. Tune in the program you desire to record. observe the tuning eye carefuliy and be sure that the station is tuned in perfectiy.

Turn the Master Control Switch to the "Record Radio" (No. 3) position. Notice that the shadow on the tuning eye screen now varies in width with the volume of sound.

Adjust the Volume Control so that the eye just closes.
Turn the khono motor ON.
Raise the Recorder Arm and move it so that the needie is just inside the edge of the record. Lower the crm carefully on the record.

When the recording arm is lowered on the record an arm on the under side of the recorder unit engages the lead screw which moves the arm across the record. The arm must be raised about three inches to disengage the lead screw so that the arm can be moved.

As the recording is being made, a small shaving is cut out of the record by the recording needle. This piles up in the center of the record.

After the record has been cut, raise the recorder arm, swing it outwardly and place it on the rest. Stop the turntable and remove the shaving which has been cut out of the record.

The record may now be played in the normal manner.
TO RECORD WITH THE MICROPHONE
Plug the Microphone into the socket provided on the rear of the cabinet.
Turn the Master Control Switch to the No. 5 position.
Speak into the microphone and adjust the volume control until the eje fust closes. Whatever sound is picked up by the microphone will be recorded on the record. Keep the microphone some distance away from the receiver, preferably to one side so that it does not pick up the sound from the speaker. Keep the microphone at least six inches from your mouth and try to keep the same voice level as used initially in setting the volume.

Place the renording arm on the record as described above.

TO RECORD WITH MICROPHONE AND RADIO AT THE SANE TINE

Tune in the program you desire to record exactly as described under "Recording Radio Programs".
Turn the Master Control Switch to the No. 4 position.
Speak into the microphone and adjust the volume control so that the combined volume of the radio and the microphone just closes the eye as described peviously. To make the voice predominate, retard the volume setting slightiy to reduce the radio volume, and speak a little closer to the microphone.

Place the recorder arm on the record and proceed with the recording.

PUBLIC ADDRESS

The No. 6 position of the Master Control Switch connects the circuits so that the microphone, and the audio amplifier and speaker of the deceiver may be used as a small public address aystem. Feep the microphone as far as possinle from the speaker so that the sound from the speaker will not reach the microphone, causing a "Howl" or whistle.

GENERAL INFORMATION

In the recording positions (Positions 3,4 and 5 of the Master Control Switch) the volume from the speaker is reduced. This is done automatically by the switch for three feasons, some of the power from the output tune is needed for operating the recording head, the volume level necessary for recording is too high for the average size room, and to prevent the sound from the opeaker from reaching the microphone.

If the recording needle is not very sharp, the quality of the recording will be poor. A needle which has become dull through use or which has been otherwise damaged shouid be replaced.

The Master Control switch should always be turned to the No. l (Radio) position when listening to radio programs.

RECOIDDING ARM ADJTISTMENTS

The bottom of the recording arm should be exactly $1 / 4$ inch from the surface of the record. This should be measured beside the needle retaining screw on the end of the arm. The screw for making this adjustment can be found when the arm is raised, on a small platform near the hinge. Turning the adjusting, screv to the left raises the arm, turning to the right lowers it. In making an adjustment turn the screw only a small fraction of a turn at a time.

Make a cut of at least ton or fifteen turns to see whether or not the needle is exerting the correct pressure on the record. This is correct when the groove cut by the needle is of approximately the same width as the space between grooves. on top of the cutting ams is a flat head screw. Tumine this screw to the right increases the depth of cut, to the left decreases it. This adjustment is quite critical and the screw should be turned not more than $1 / 4$ turn at a time.

PAGE 18-18 SEARS
SEARS, ROEBUCK \& CO.

ALIGROENT PROCEDURE

Output Meter connection ... Across speaker voice coil				
Connection of generator lead .. See chart below				
Connection ef generator ground lead ... Tomchassis				
Dumy antenna value .. See chart below Position of Master Control switch .. "Radio" (Position No.				
POSITION OF	GENERATOR	DUMM	GENERATOR CONIECTION	TRTMMERS ADJUSTED (In order shown)
VARIABLE	FREQUENCY	ANTENTA		
Open (Minimm capacity	455 Ko 。	. 1 mfd.	Antenna section of variable	T2, T1.
Minimum capacity	1720 ko .	50 mmf .	Antenna terminal	Oscillator trimmer
Tune in Sig. from generator	1400 Kc .	50 mmf	Antenna terminal	Antenna trinmer.

The aligment procedure should be repeated atage by stace in the original order for greatest accuracy. Always keep the output from the generator at the lowest possible level so that the AVC action of the receiver is ineffective.

PAGE 18-20 SEARS
líNDELS 6015,5016 SEARS, ROEBUCK \& CO.
CHASS IS 132.820

ALIGNMENT PROCEDURE

PRELIM INARY:

Output meter connection ... Across Speaker Voice Coil
vutput meter reading to indicate 200 mm (Standard output)..................... . 8 Volts Dummy antenna value used in series with generator output......... Seo Chart Bolow Connection of generator output lead See Chart Bolow Connection of generator ground lead .. Flonting Ground Generator modulation ... 30\% 400 Cycles Position of volume control .. Fully Clockwise Position of tons control .. Troble Position of disi pointer with variable fully closed Horizontal

IMPORTANT ALIGNMENT NOTES:

1. Place set loop in the same position and at the same distance with respect to the back of the chassis as it would bo when the set is mounted in the cabinet, during alignment of the RF stage.
2. If a standard test loop is used with the signal Generator for alignment of the receiver, the black wire will be left in the antenna clip.
3. The alignment procedure should be ropeated in the original order for greatest accuracy. Always keop the output from the signal generator at its lowest possible velue to make the $A . V$. C. action of the receiver ineffective.

LOCATION OF PARTS UNDER CHASSIS

SERVICE NOTE:
The AC hum can often be greatly reduced on this chassis by replacing C12 with an .03 mfd .400 V candenser. Sometimes the hum can be further reduced by replacing R12 with a 15,000 ohm 1 watt resis tor.

PARTS LIST

Schematic Location	Fert No.	Deterisption	Schemetic Location	Part N_{0},	Descripticn
B1		Resietor, $10,000 \mathrm{ohm}, \mathrm{1/4} \mathrm{watt}$	T1	N21009	Trans former, Ptrst I. F.
R2		Resistor, 350,000 ohm, $1 / 4$ watt	T2	N18578	Transformer, 2nd I. P.
R3		Resistor, 6800 ohm, $1 / 4$ watt	T3	N18582	Tram former, output
Ra_{4}		Rest tor, 22,000 ohw, $1 / 4$ watt	Spkr.	N 18550	Speaker, 5-1/4" P.K.
R5-R8		Resistor, 6.8 megohm, $1 / 4$ watt	p Pr.	N20064	Live Cord with Plug
R6		Resistor, 2.? megohm, $1 / 4$ watt	L	N20064	Dial Light, Masda $7 \mathrm{~W}, ~ С 7-117$ volt
R7		Resiator, 47,000 ohm, $2 / 4$ watt		N21137	Cabinet Assembly, Wainut (Cat. H6O15,
R9	N19448	Resistor, 500,000 ohm, Volume Control * Sm		N21138	Cabinet Aasembly, Ivory (Cat. \#6016)
R10		Reslator, 470,000 ohm, $1 / 4$ watt		119518	Handle Asseably, Walnut (Cat. H6015)
R?1	N19966	Resistor, 500,000 ohm Tone Control		N19519	Handle Assembly, Ivory (Cat. \#6016)
R12		Resistor, 12,000 $0 \mathrm{hm}, 1$ watt		N19463	Knob, Volume, Walnut (Cat, \%6015)
R14		Resistor, 150 ohm, $1 / 4$ watt		N19466	Knob, Tone, Walrut (Cat. H6015)
R15		Resistor, 15 ohm, $1 / 4$ watt		N19469	Knob, Tuning, Walmut (Cat. W6015)
C1, 2, 3	N18564	Condenser, Variable		N38462	Knob, Voluale, Ivory (Cat. \#6016)
C4, 610		Cpndenser, . 01 mrd. 400 volt		N15465	Knob, Tone, Ivory (Cat. "6016)
C5, 612		Condenser, $.1 \mathrm{mrd}$.400 volt		N19468	Knob, Tuning, Ivory (Cat. \#6016)
C6		Conderiser, . 0001 mid. 500 velt Wica		N19225	Scale, Dial
C7, C8		Condenser, 0 , 0 mfd. 400 volt		N19226	Pointer, Dial
68, CII		Condenser, .00025mrd. 500 volt vica		118272	Crystel, Dial
C13		Condenser, . 002 mfd .600 volt		N19435	Shaft, Tuning
C14		Condenser, .02 mfd. 400 volt		N19132	Cord, Dial Drive
C15		Condenser, .000014 mfd .500 volt Mica		N192.34	Socket, Antenna
C16		Condenser, 005 mrd . 600 volt		N19134	Socket issembly, Dial Light with Leado
C18A-12B	N17239	Condenser, Electrolytic, 20-40 mid. 150 v		N19295	Spring, Dial Cord
L1	N19666	Antenna Loop Assenbly		N19410	Retoiner, Anterm Loop
L2	N19260	Coll, R. F .		N2T311	Bafflo Board, Speaker
13	N18580	Coll, Oacililator		N19768	Bafflo, Rear Cabinet
14	N18583	Choke, Iron Core "B"		N19454	Instruction Sheet

GENERAL INFORMATION \& SERVICB HINTS

The RADIONET Antenna System equipped with the receiver is in use for Broadcast band operation only. An external antenne must be used for short-wave operation.

PRRLIMINARY:

ALIGNMENT PROCEDURE

Output meter connection Across loudsperker voice coil							
Output meter reading to indicate 500 milliwatts $1 . l$ volts							
Generator ground lead connection To chassis							
Dummy antenna value to be in series wi th generator output. See chart belowConnection of generator output lead							
Generator modulation. 30\%, 400 cycles							
Position of Volume Control . Fully clockwise							
Position of Tone Control .TT							
Position of Dial Pointer vith variable fully closed. $550 \begin{gathered}\text { At mark to left of }\end{gathered}$							
					TRTMMERS		
WAVE BAND POSITION GENERATOR DUMMY GENERATOR					ADJUSTED		ANT. COUPLED
					(IN ORDER	TRTMOER	APPROXIMATE
POSITTION	OF VARIABLE	FREQUENCY	ANTENNA	CONNECTION	SHOWN/	FUNCTION	MTCROVOLTS
"BC"	closed	455 kc	. 1 mfd .	$7 \mathrm{H7} 7 \mathrm{Grid}$	T2, T]	IF	100
"BC"	Open	1610 kc	.00005 mfd .	Ant. Term.	C8	Oscillator	
"BC"	1400 kc	1400 kc	.00005 mfd .	Ant. Term.	C2	Translator	80
"BC"	600 kc (rock)	600 kc	. 00005 mfd .	Ant. Term.	C9	Padder	70*
"S:Y"	Open	18.2 mc	400 ohms	Ant. Term.	C7*	Oscillator	
"S\%"	$15 \mathrm{mc}(\mathrm{rock})$	15 mc	400 ohms	Ant. Term.	Cl_{4}	Translator	70
"S"	6 mc (rock	6 mc	400 ohms	Ant. Term.	Cll	Padder	100

IMPORTANT ALIGNMENT NOTES

* If two peaks can be had, the correct one is with the trimmer screw further out. The other peak is the image.
** 160 microvolts per meter using standard Hazeltine alignment loop 24 inches from receiver loop.
*** 140 microvolts per meter using standard Hazeltine alignment loop 24 inches from receiver loop.

Where indicated by the work, "Rock", the variable should be rocked back and forth a degree or two while making the adjustment.

The alignment procedure should be repeated stage by stage, in the original order, for greatest accuracy. Always keep the output from the test oscillator at its lowest possible value to make the AVC action of the receiver ineffective.

SEARS. ROEBUCK \% CO.
(Q)

MICROPHONE
PLUG SOCKET

- Part of t2
(4) - MOTOR (Q. - ON-OFF SWITCH-MOTOR ©. SOCKET MOTOR
. ONOFF SWITCH-RADIO
(6). OIAL LITE.TYPE 47

CHASSIS 101.814-4C
is Similar to chassis 101.814 except 14 A 7 . F. Tube is used in place of 7 B 7 . Elifptical Spoaker is used in place of $51 / 4^{\prime \prime}$ Snarker. The styling of this model with respact to Escutcheon, Knobs, Dial Background and Pointer are similar to the 101.814-2B.

GPECIFICATIONS

CHASSIS 101.814 ANO 101.814-1A

Model Differences:
Both models are similar, however, 101.814-1A is a console with a larger apeaker. The 101.814 is a table model.
Power Supply:
All models avallable..................................... 117 Volts AC 80 Cycles 80 Tatts
PRBC IMINARY:
ALIGMRENT PROCRDURI
Output Meter Connection..Acrons loud speaker voice coil Output Yoter Reading to Indicate 50 Milliwatts (standard Output).............. 0.4 Volt
 Duma Antenna Value to be in Beries with Generator Ontput................ See chart below Connection of Generator Output Lead.. See chart below Generator Modulation...30\%, 400 cjcles

 Position of Pointer with Tuner Fuily Closed...... iaist ilne below 540 calibration mark TRIMMRR

$\begin{gathered} \text { POSITION OF } \\ \text { TUNER } \end{gathered}$	GEAERRATOR EREOUENYCY	$\begin{aligned} & \text { DULIXY } \\ & \text { ARYTWNA } \end{aligned}$	$\begin{aligned} & \text { GHBNRRATOR } \\ & \text { CONNBCTION } \end{aligned}$	ADTUSTIDATTS (II ORDER) BHOWI	$\begin{aligned} & \text { TRIMINR } \\ & \text { EUSCTION } \end{aligned}$
Closed	455 KC	. 1 mrd.	Trans. Grid	T2,T1	IF
1500 KC	1500 KC	. 0002 mfa	Antenna	C9	Oscillator
1500 RC	1500 KC	$0002 \text { wid. }$	Antenna mir motres	C5	Transl.

The entire Alignment Procedure should be repeated step by etep in the original order for greatest accuracy.

Always keep the outpat power from the generator at its lowest possible value to pree vent the AVC of the receiver from interfering with accurate alignment.

The Erase Oacillator Coil has been set at 39.5 Kc . at the factory. If necesaary, it can be adjusted with the ase of a Beat Frequency Oscillator.

The Erase voltage on the Recording Head should be approximately 3.3 rolts as measured With a Vacuum Tabe Voltmeter.

PAGE 18-28 SEARS

LOCATION OF PARTS UNDFR CHASSIS - 101.814

PARTS LIST

䠉范
氣药 \qquad

\footnotetext{
For Chassis 101．814－4C

DESCRIPTION

F
R64931
R64310
R64668
R62659
R49743

333.4

 O11－Brano

PAGE 18-30 SEARS
MODELS 8102,8102B SEARS, ROEBUCK \& CO. CHASSIS 101.814-2B

SEARS PAGE 18-31

SEARS, ROEBUCK \& CO.

©john F. Rider

SEARS PAGE 18-33

FAGE 18-34 SEARS
MODELS 8102,8102B
SEARS, ROEBUCK \& CO. CHASSIS 101.814-2B MODELS 8086A, 8086B CHASSIS 101.814-6C

LOCATION OF PARTS UNDER CHASSIS IOI.814-6C

SEARS PAGE 18-35
SEARS, ROEBUCK \& CO.MODEL 8102A CHASSIS 101.814-3B MODEL 8086 CHASSIS 101.814-5C
MODEIS 8086A, 8086B
CHASSIS 101.814-6C

ALIGNMENT PROCEDURE FOR 101.814-3B,5C,6C ONLY

PRELIMI NARY:

Output meter reading to indicate 0.05 watt across voice coil..................... 0.4 volt Generator ground lead connection..eceiver chassis
 Position of volume control..
Position of tone control..
Position of pointer with tuner fully closed....... Last line below 540 Kc . calibration mark on the Dial or at the "Start" of calibration point on the dial background plate.

$\begin{gathered} \text { POSITION } \\ \text { OF } \\ \text { TUNER } \end{gathered}$	GENERATOR FREQUENCY	$\begin{gathered} \text { DUnNY } \\ \text { AHTTENNA } \end{gathered}$	GHNERATOR COMNECTION	TRILACOR ADJUSTIMFNTS (IN ORDER SHOTN)	$\begin{aligned} & \text { TRIMAERR } \\ & \text { FUNCTION } \end{aligned}$
Closed	455 Kc .	0.1 mfd.	Transl.-Grid	T2 8: Tl	I.F.
See note below	1400 Ec.	200 mmf .	Ant.	C8	Osc
See note below	1400 Kc .	200 mufd.	Ant.	C4	Transl.

IMPORTANT ALIGMMENT NOTES:

NOTE: With the dial background removed, the tuner should be positioned at the 1400 Ec. mark on the dial background plate.

The alignment must be done in the order given.
The alignment procedure should be repeated step by step in the original order for greatest accuracy.
Always keep the output voltage from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurage alignment.

The erase oscillator coil has been set at 33.7 Kc . at the factory. If necessary it can be adjusted with the use of a beat frequency oscillator.

PAGE 18-36 SEARS
LIODELS 7086,7103
CHASSIS 110.166,
110.466-1

SCHEMATIC DIAGRAM 110.465 and $110.466-1$

SEARS, ROEBUCK \& CO.

SPECIFICATIOMS

PAGE 18-38 SEARS

MODEL 7090 SEARS, ROEBUCK \& CO.
CEASSIS 101.810,
101.810-3

LOCATION OF PARTS UNDER CHASSIS

Model Differences:
Two Type 291 Dial Lamps Used On 101.810 One Type 47 Dial Lamp Used On 101.810-3

© John F. Rider

SEARS PAGE $18-41$

SEARS, ROEBUCK \& CO.HODEL 7090 C:LASSIS 101.310, 101.810-2, 101.810-3
 TODEL 8092 CHASSIS 1U1.810-1A

Preliminary:

GLIGNMENT PROCEDURE

Output Meter Connection... Loud Speaker Voice Coil
 Dummy Antenna Value to be in Series with Generator Output...................See Chart Below Connection of Generator output Lead..ee Chart Below Generator Modulation.. 400 Cycles
Position of Volume Control.
Position of Tone Control

BAND SWITCH	POSITION OF TUNER	GENERATOR FREOUENCY	$\begin{gathered} \text { DUMMY } \\ \text { ANTENNA } \end{gathered}$	GENERATOR CONNECTION	TRTMMER ADJUSTMENTS	TRIMMER FUNCTIO
POSITION	OF TUNER	FREQUENCY	ANTENNA	CONNECTION	ADJUSTMENTS	
BC	Closed	455 KC	0.1	Trans. Grid	T2-T1	.
BC	1500 KC	1500 KC	200 Mmfd .	Ant.	C9	Oscillator
BC	1500 KC	1500 KC	200 Mmfd .	Ant.	C6	Translator
BC	1500 KC	1500 KC	200 mmfd .	Ant.	C4	Antenna
BC	600 KC (Rock)) 600 KC	200 Mmfd .	Ant.	C15	- Padder
SW	Open	16.5 MC	400 Ohms	Ant,	C14	Oscillator
SW	15 MC (Rock)) 15 MC	400 Ohms	Ant.	C8	anslator
SW	15 MC (Rock)) 15 MC	400 ohms	Ant.	C2	Antenna

The Alignment must be done in the order given.
The Alignment Procedure should be repeated step by step in the original order for greatest accuracy.
Always keep the output power from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.
During alignment of the BC Band Padder and the SW Band Translator and Antenna Trimmers, the Tuner should be rocked through resonance to assure alignment.

Power Output
Undistorted 1.1 Watts
Maximum 2 Watts
THE FOLLOWING PARTS LIST COVERS CHASSIS 101.810, 101.810-1A, 101.810-3 AND 101.810-2

schewatic Location	PART NU. BSR	DRSCRIPTION SCHEATIC LOCAIION	$\begin{aligned} & \text { PART: } \\ & \text { MUNER } \end{aligned}$	DPSCSIPTIO:I
		Antenna Assembly - 8. T. (101.810-1A)	R64060	Learlet - Instruction (101.810-1A)
	R81412	Antenna Assembly - S. W. ($101.810,-3$)	R54657	Leaflet - Instruction (101.810)
	R62643	Background - Dial (101.810-1A, -2)	R64125	Leaflet - Instruction (101.810-3)
	R62652	Button - Push (101.810-1A)	R64080	Log - Station
	R60486	Button - Pugh (101.810,-3)	R62307	Plumeer \& Yoke Assembly (101.810-1A)
	R13361	Button - Snap	R60464	Pluncer \& Yoke Assembly (101.810-2)
C4, $\mathrm{CF}_{6} \mathrm{Cl}^{2}$	R61200	Capacitor - Variable 600 Volt	R62548	Pointer Assembly (101.810-1A)
C24, 626		Capacitor - . 1 Med. 600 Volt	R61220	Pointer - Dial ($101.810,-2,-3$)
c31, 21		Capacitor - . 02 Mrd. 600 Volt	$\mathrm{R} 61220$	Pointer Drive Drum Assemoly
C12,C17, 330,032		Capacitor - . 05 Mrd. $600 \mathrm{~V}^{\text {Malt }}$	R61 807	Pulley - Letad (101.810-1A)
Cle		Capacitor - .01 Krd. 8000 Volt (101.810,-1A, -3)	R43423	Pulley - Vood (101.810, -2, -3)
				Resistor - 130 Oner - 1/2 intt
C: 8,02 é, 027		Capacitor - . 005 Mf ¢, 500 Volt		Regietor - 22,000 Ohm - 1/2 3att
C3,C11, 233		Capacitor - . 0001 Mfd. Mica Rlo, 211		Resibtor - 470,000 Oim - $1 / 2$ \%att
$C_{1} 3$		Cndacitor - . $004 \mathrm{MPd}$.		Resistor - 1 Kegohm - 1/2 Watt
C8, C14, C15	R61231	Capacitor - Trimmer Assembly		Resistor - 2.2 Mebohr - $1 / 2$ Whtt
C28,c29.c33	R60416	Capacitor - Blectrolytic - 40×40 Mfd. 150 Vodt R8		Restator - 4.7 \#egohr - $1 / 2 W^{\text {Pt }}$
		20 Lrd. 25 Volt Rl4		Resietor - 1200 Ohm-1 Wett
± 3	R83158	Coll - Oscillator - 8\% (101.810-1A,-2) R6		Resistor - 68,000 Ohrs - $1 / 2$ Watt
12	R81238	Coil - BC * EW R. Y. R14		Resiator - 560 Ohr - $1 / 2$ Tatt
14	R61237	Coil - BC Oscillator R15	R40232	Reeistor - $01 \mathrm{lasohm}-25 \mathrm{Ohm}$ - 1 Watt
L1	R61238	Coil - 9\% Antenna	R62640	Screm - wisutcheon Kounting (101.810-2)
123	R61239	Coil - 8\% Osillistor (101.810,-3)	Réz 641	Screv - Pseutcheon Re Dial lounting (101.810-1A)
R7	R60430	Control - Volime (101.810,-3)	R44897	Socket - 1 Prong - Phono Connector (101.810-1A)
R13	R61232	Control - On-0rf \& Tone (101.810,-3)	R60515	Socket - Pilot Lamo (102.810-1A)
R9	R62052	Control - Volume (101.810-1A)	R60693	Socket - Speaker Grble
211	R62529	Control - On-Orf \& Tone (101.810-1A)	R62173	Socket - Pilot Lamp (101.810-2,-3)
R13	R52340	Control - On-0rf \& Tone (101.810-2)	$\begin{aligned} & \text { RE } 70.49 \\ & \text { R61234 } \end{aligned}$	
	R41472	Cord - Dial Drive (42")	$\begin{aligned} & \text { R61234 } \\ & \text { R57193 } \end{aligned}$	Shieli - Tube
	R16706	Cord - Inne		HHBM ORUSRING SPEARPR PARTS AITAYS
	R60540	Cover - Tab (101.810,-2,-3)		GIVE TIE PART ILIEER OI TIE SPTAESR
	R62053	Cover - iab (101.810-1a)	R61032	Spesker Pan P (${ }^{\text {a }}$
	R61215	Dial Prum Pinion Asbembly (Used on R61200)	R61037	Cone \& Volce Coll
	R82373	gecutcheon \& Dial Agrambly (101.810-1A)	R61038	Transformer - Output
	R61214	Bacutcheon - Dial (1C1.810,-2,-3)	R43458	Spring - Tension - Dial Drive (101.810, -2,
	R61218	Bacutchoon - Push Bution	R6067\%	Sprime - Tension - tial Drive (101.810-1a)
	R60724	Gear * Fut Assembly (Tuner Asgembly) (101.810-1A, -2)	R60427	Spring - Extension (Tuner Asaeribly)
	R60459	Gear * Hub Aesembly (Tuner Assemmly) (101.810, -x)	R60437	Spring - Compresation (Tuner desperbly)
	R62315	Eey - Plunger - Tunar Assembly (101.810-1A, -2)	R62050	Switch - Fave (101.810-1A)
	R62531		R61228	Switch - Wave (101.810,-2,-3)
	R62534	Knod - On-cri \& Tone (101,810-1A)	R62838	Tabs - Station (2 (1.810-1A)
	R62537	Knot - RC, ST * Phono (101.810-1A)	R60474	Tabe - Station (101.810,-2,-3).
	R62715	Knob - Tunine (101.810-1A)	R625:?	Tuning Shart Assenty ${ }^{\text {a }}$ (101.810-1A)
	R61221	Enob - Tuning (101.810.-2, -7) Tl	R60417	Traneforder - 1 st I. F.
	R61223	Enob - Volure ($101.810,-2,-3$) 3 ,	R60418	Treneformer - 2ad $1 . \mathrm{F}$.
	861223	Knob - Tone \& On-0:f (101. $810,-2,-3$)	R60:62	Tuning Shaft Assenbly (101.810, -2,-3)
	R61224		R604EC	Tafer - Electrolytic Crpacitor Meg.
			R60472	Wnsher - Felt
			$R 40042$	Washer - Plono Socknt Inaulating (101.blo-1A)
	R64064	Leatlet - Instruction (101.820-2)	R60439	Tasher - Spring - Tuner Aspemhly
			R61815	7nsha- Wetal Pulley Retairicg (101.810-1A)

©John F. Rider

PAGE 18-42 SEARS
SEARS, ROEBUCK \& CO. CHASSIS 101.810-2, 101.810-1A

Chassis Differences:

© John F. Rider

2-018:101 SISSVHO y30N SLAVd JO NOIIVJOר

John F. Rider
LOUEL 8092
CHASSIS $101.810-1 A \quad$ SEARS, ROEBUCK \& CO.

CHASSIS 101.810-1A

() John F. Rider

SEARS PAGE 18-45

LIODEIS 7105,?106 SEARS, ROEBUCK \& CO
CHASSIS 101.828,101.828-1A

BAND-SWITCH SHOWN
AT 2ND POSITION CLOCKWISE. BROADCAST BAND 540-1600 KC

SEARS, ROEBUCK \& CO. MODELS 7105,7106
 CHASSIS 101.828,101.828-1h

LIMPORTANT ALIGNMENT NOTES

The Alignment must be done in the order given.
The Alignment Procedure should be repeated step by step in the original order for greatest accuracy.

Always keep the output power from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.

During alignment of the BC Band Padder and the SW Band Translator Trimmers, the Tuner should be rocked through resonance to assure alignment.

Power Output

Undistorted 3.6 Watts
Maximum 6.5 Watts ALIGNMENT PROCEDURE

Preliminary:

Output Meter Reading to Indicate. 5 Watts Across Voice Coil...................... l. 2 Volts
 Generator Modulation.. . . 30\%, 400 Cycles Position of Volume Control... Fully on

$\begin{aligned} & \text { WAVE BAND } \\ & \text { SWITCH } \\ & \text { PQSITION } \end{aligned}$	POSITION OF TUNER		$\begin{aligned} & \text { GENER! } \\ & \text { FREQUI } \end{aligned}$		$\begin{gathered} \text { DUMMY } \\ \text { ANTENNA } \end{gathered}$		$\begin{aligned} & \text { GENE } \\ & \text { COND } \end{aligned}$	$\begin{aligned} & \text { ERATOR } \\ & \text { IECTION } \end{aligned}$	ADJUSTMENTS (IN ORDER SHOWN)	$\begin{aligned} & \text { TRIMMER } \\ & \text { FUNCTION } \end{aligned}$
BC	Closed		455		0.1	Mfd.	7H7	Transl. Grid	T2, T1	I. F.
BC	1410 KC		1410		. 0002	Mfd.	Ant.	Terminal	C1	Oscillator
BC	1410 KC		1410		. 0002	Mfd.	Ant.	Terminal	C2	Transl.
BC	1410 KC		1410	KC	. 0002	Mfd.	Ant.	Terminal	C3	Antenna
BC	600 KC	(rock)) 600	KC	. 0002	Mfd.	Ant.	Terminal	C4	Padder
SW	15 MC		15	MC	400	Ohm	Ant.	Terminal	C5	Oscillator
SW	15 MC	(rock)) 15	MC	400	Ohm	Ant.	Terminal	C6	Transl.

PAGE 18-48 SEARS
2:ODELS 7105,7106 SEARS, ROEBUCK \& CO.
CHASSTS 101.828,101.828-1\&

©iohn F. Rider

PRBLIMIRART:

Ontpat meter connections... lond speaker voice coil Output meter reading to indicate 50 milliwatte (Standard outpat)..................... 4 Volt
 Dummy antenna value to be in series with generator output.................see chart below Connection of generator outpat lead...see chart below Generator modulation...30\%, 400 cyoles

 Position of pointer with tuner fully closed.....To the left of 540 Ko calibration mark

POSITION OF TUSER	GENBRATOR FREOUENCY	DUNATY GENERATOR ANTBNAA COMNRCTION	ADJUSTMENTS (IN ORDER EHONE)	FUXCSION
Closed	455 Ec .	. 1 mfd. Llc6 Transl. Grid	T2,T1	I.F.
2725	1725 Ec .	. 000075 mfd . Ant. Terminal	C15	Oscillator
1725	1725 Ec	. 000075 mfd . Ant. Terminal	C4, 010	Ant., Tranel.
1500	1500 ze	. 000075 mfd . Ant. Terminal	L5	Oscillator Core
1500	1500 Ke	. 000075 mfa . Ant. Terminal	L2,13	Ant., Transl. Cores
1725	1725 Ec	. 000075 mfd. Ant. Terminal	C4,C10,C15	Oscillator, Anto, \& Transl. Recheck

The alignment mast be done in the order given.
The Alignment procedure shoald be repeated step by step in the original order for greatest accuracy.

Always keep the outpat power from the generator at its lowest possible value to pre-
Vent the AVC of the receiver from interfering with accurate alignment.

LOCATION OP PARTB ON TOP AND BACK OF CHASSI8

© John F. Rider

SPECIFICATIONS

Power Supply -- $105-125$ Volts AC-DC, 30 Watts Power Output Undistorted . 8 Watts, Maximum - 2.5 Watts

Tuning Range
Speaker \quad Broadcast Band $540-1600 \mathrm{Kc}$
Voice Coil Impedance 3.2 Ohms

$\begin{aligned} & \text { SCH. } \\ & \text { LOC. } \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { NC. } \end{aligned}$	DESCRIPTIO*	$\begin{aligned} & \text { M.U. } \\ & \text { CODE } \end{aligned}$	$\begin{aligned} & \mathrm{SCH} . \\ & \mathrm{LOC} . \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { WO. } \end{aligned}$	OESCRIPTION
	H19936-2	Cabinet, gray-green		R1		
1 $T 2$	$\mathrm{H} / 8255$	Coil, antenna		R2		Resistor, 22,000 Ohms, $1 / 4 \mathrm{w}$ Resistor, 330,000 ohms $1 / 4 \mathrm{w}$
12 $C 1$	M18256	Coil, oscillator		县3		Resistor, 330,000 ohms $1 / 4 \mathrm{w}$ Resistor, 4.7 megohms, $1 / 4 \mathrm{w}$
C2, c3	W17115	Condenser, 05 mfd., 200 v		84	N18587	Resistor, 2 meg., vol control 4 sw
C4	W1715	Condenser, variable, 2-gang Condenser, . 00005 mfd 500 v mica	4.0	25		Resistor, is meg., $1 / 4 \mathrm{~m}$
C5, CB		vondenser, . 05 mfd., 400 v		R6		Resistor, 470,000 ohms, $1 / 4 \mathrm{~m}$
C6, C9		Condenser, . 0001 mfd., 500 v		R 8		Resistor, 1 meg., 1/4*
C7.Clo		Condenser, . 002 mfd., 500 v		R8	N19177	Resistor, 470 ohms, 1 w
C11)	N19176	Condenser, 40 mfd., is0 v		R10		Resistor, 15 ohms, $1 / 4 \mathrm{~m}$ Resistor, 150 ohms, $1 / 4$
C12)		Condenser, 20 mfd., 150 v		RII		Resistor, 150 ohms, $1 / 4 \mathrm{~m}$ Resistor, 2200 ohws, 1 watt
C13)		Condenser, 20 mfd., 25 v		Spk.	N19937-1	Speaker ${ }^{\text {c output } t r a n s f o r m e r ~}$
Cl_{4}		Condenser, . 01 mfd., $400 \sim$			N21626-1	Speaker, $4^{\prime \prime}$ P. M.
	N20237	Cord, Power		T4	N18258	Transformer, output
	N21923	Emblem, Dial Scale		13	N19649	Transformer, I.F.
	N19120-1	Knob, tuning			W20040	Washer, white feit
	N18673	Knob, volume				Washer, white felt
	W21925	Lesflet. instruction			$\times 18136$	Wire, antenna

MODEL 8003 CHASSIS 132.818-1 al IGMMENT PROCEDURE

PRELIMIMARY:

Output meter connection					
Output meter reading to indicate 200 milliwatts ... 8 volt					
Generator modulation ... 30\%, 400 cycles					
Position of volume control .. Fully clockwise Position of dial pointer with variable fully closed .. 54 on dial					
$\begin{aligned} & \text { POSITION } \\ & \text { OF } \\ & \text { VARIABLE } \end{aligned}$	GENERATOR	DUAMMYANTENHA	gENERATOR	TR I MMERS	TRIMNER FUNCTION
	FREQUENCY		CONNECTION	ADJUSTED	
	VARIABLE		(high)	(in order shown)	
Open	455 kc	. 05 md .	12SA76T grid	Top of T3	1. F.
1400 kc	1400 kc	.00005 mfd .	**Antenna	* C 2	Oscillator
600 kc	600 kc	.00005 mfd .	* Antenna	Check point	- - - -

IMPORTANT ALIGMMENT NOTES

*Since the antenna stator section of the variable has no trimmer, the rotor is rocked back and forth while adjusting oscillator trimmer, to obtain maximum outout.
Check the sensitivity at 600 kc ; if weak, adjust antenna section plates for maximum output at 600 kc ; tracking is accomplished by adjusting plates of rotor.
**Unsolder 20' antenna lead from lug on antenna coll, and connect signal generator lead to lug through .00005 mfd . Dummy Antenna.
Approximate stage by stage sensitivities are: Mixer - $455 \mathrm{kc}-2600 \mathrm{uv}$; Mixer 1000 kc - 2600 uv; . Antenna - 1000 kc - 180 uv .

ALIGNMENT PROCEDURE

PR마IIMINARY:
MODEL 8090 CHASSIS 101.821

Output meter reading to indicate 0.05 Watt across voice coil................. 0.4 Volt
 alignment-Receiver chassis

Generator modulation
30\%, 400 cJcles
Position of volume control
Pully on
Position of pointer with tuner fully closed. .Last line to left of 540 calibration mark on escutcheon or the second light brown mark from the left-hand end on the upper edge of the dial background.

IMPORTANT ALIGNMENT NOTES:
NOTE: The 1410 Kc . calibration point is the first light brown mark froi the right-hand edge of the dial background.

The alignment mast be done in the order given.
The entire Alignment Procedure should be repeated step by step in the original order for greatest accuracy.

Always keep the output from the generator at its lowest possible value to prevent the $A V C$ of the receiver from interfering with accurate alignment.

PAGE 18-54 SEARS
MODEL 8090
CKASSIS 101.821

© John F. Rider

SCHEMATIU LOCATION	PART NUMBER	DESCRIPTION
	R62643	Background - Dial
	R61846	Button - Snap
016, 220		Capacitor - . 005 Mrd. 600 Volt
C1, C17		Capacitor - . 001 Mfd .600 Volt
C4, C5, C10,		Canacitor - . 05 Mfd .600 Volt
C11, C12, ${ }^{\text {c26 }}$		
C15,C24		Capacitor - . $02 \mathrm{Mfd}$.
C 8		Capacitor - . 01 Mfd. 600 Volt
C19,C21		Capacitor - 0.1 Mf d. 400 Volt
C9		Capacitor - Mica - 50 Mmfa .
C18		Capacitor - Mica - 100 Lmfd.
C22,C23, 225	R60416	$\begin{aligned} \text { Capacitor - Slectrolytic - } 20 \text { ufd. } 25 \text { Volt } \\ 40 \text { Med. } 150 \text { Volt, } 40 \text { kfd. } 150 \text { Volt } \end{aligned}$
C2, C6	R61100	Capacitor - Variable - With Drum
L1	R61107	Coil - Oscillator
R8	R62371	Control - On-Off \& Volume
R10	R62393	Control - Tone
	R41472	Cord - Dial Drive - 42"
	R16706	Cord - Line
	R62397	Escutcheon \& Dial Assembly
	R62713	Knob - On-Off \& Volume
	R62535	Eriob - Phono - Rrdio
	R62532	Enct - Tone
	R62712	Knob - Tuning Lamp - Dial \#47
	R64007	Leaflet - Instruction
	R63189	Loop Antenna Assembly
	R62549	Pointer \& Slide Assembly
	R61807	Pulley - Metal
R12,R13		Resistor - 470,000 Ohm - 1/3 Watt
R1, R2, R7		Resistor - 22,000 0hm - 1/3 Watt
R14		Resistor - 150 Ohm - 1/3 Fatt
R3		Resistor - 100 Ohm - $1 / 3$ Watt
R9		Resistor - 4.7 Meyohm - 1/3 Watt
R4, R11		Resistor - 2.2 Megohm - $1 / 3$ Watt
R15		Resistor - 1200 Ohm - 1 Watt
R16	R40232	Resistor - Glasohm - 25 Ohm - 1 Natt
	R62527	Tuning Shaft Assembly
	R62322	Shield - On-Off Switch Cover
	R44897	Socket - Phono Input
	R60515	Socket - Pilot Lamo
	R57049	Socket - Tube - 8 Prong Lock-In WHHN ORDERING GPBAIER PARTS ALITAYS
		GIVE THE PART NURBER ON THE STFAKPR
	R62600	Speaker - $6^{\prime \prime}$ P. M.
	R62601	Cone \& Voice Coil
T3	R62602	Outrut Transformer
	R49743	Plug (Sneaker)
	R60693	Socket (Speaicer Cable)
	R43458	Spring - Tension
	R62394	Switch - Phono - Radio
T1	R62513	Transformer - I. F. \#l
T2	R60418	Transformer - I. F. \#2
	R60450	Wafer - Electrolytic Mounting

LOCATION OF PARTS UNDER CHASSIS

PAGE 18-56 SEARS

© John F. Rider

Before start of Production on this model, certain circuit improvements were made, which do not appear on the printed stickers and instruction sheets which accompany each receiver. These differences are

1. A pickup coil was added to the AM loop antenna.
2. C 44 added to FM antenna circuit and C 12 relocated in FM antenna circuit.
3. R27 added from plate of 50 L 6 to plate of 6 AQ6.
4. C34 -- . 005 Mfd. was .05 Mfd.
5. C38-- . 005 Mfd . was .002 Mfd .
6. C 4 P -- . 002 Mfd . was .005 Mfd .
7. L4 -- is relocated on the Schematic Diagram.
8. R5 -- deleted from FM antenn circuit.

The following changes were made after some sets had been produced, to improve the sensitivity and tone.

1. C45 Condenser added from 50L6 screen grid to chassis . 001 up.
2. $\mathrm{C} \mid 2$ Condenser changed from . 001 uf. to .00001 uf .
3. C44 Condenser changed from .001 uf. to . 00001 uf.
4. C34 Condenser changed from 400 volt to 600 Volt.

ALIGNMENT PROCEDURE

PREL IMIMARY:

 Output meter reading to indicate 50 Mw (Standard Outout) .. . 4 volt Generator modulation ... $30 \% 400$ cycles Position of volume control ... Fully clockwise Set dial pointer To last mark on left end of dial with variable condenser closed Set band switch To left for AM alignment and to right for $F M$ alignment

am Aligmment						
$\begin{aligned} & \text { POSITIOH } \\ & \text { OF } \\ & \text { VARIABLE } \end{aligned}$	generator frequency	dumay antenna	generator CONNECTION HIGH SIDE	generator CONMECTION ground Lead	ADJUST TRIMMERS IN ORDER SHOWN FOR MAX. OUTPUT	TRIMMER fUNCTION
Open	455 Kc	. 05 Mfd .	Mixer grid	Chassis	1-2-3-4	IF
1400 Kc	1400 Kc		* Tesit loop	Test loop	11	Oscillator
1400 Kc	1400 Kc		*Test lood	Test loop	12	Antenna
**6no Kc	600 Kc		Test	Test 100	he	Antenna

* Connect generator lead to a Standard Hazeltine Test Loop, Model Il50, placed two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the set loop. Or the generator can be connected with the high side lead to the green lead on the set loop and the ground lead to the chassis.
**With a generator signal of 600 Kc , tune the set to the point where maximum output is obtained, which should be approximately 600 Kc on the dial. Adjust antenna section plates of variable for maximum output.

The alignment procedure should be repeated in the original order for greatest accuracy.
Always keep the output from the signal generator at its lowest possible value to make the A.V.C. action of the receiver ineffective.

FM ALIGNMENT
Discriminator

POSITION	GENERATOR	OUMMY	GENERATOR	GENERATOR	ADJUST TRIMMERS	TRIMMER
OF	FREQUENCY	ANTENNA	CONNECTION	CONNECTION	IN ORDER SHOWN	FUNCTION
VARIABLE			HIGHSIDE	GROUND LEAD		
ODen	10.7 Mc	$.05 M f d$.	$2 d$ IF grid	Chassis	5,6	

*5 is adjusted for maximum A.V.C. voltage.
*6 is adjusted for zero reading of a vacuum tube voltmeter connected across the volume control. Rock tnis adjustment through the zero point to see that the voltage is positive on one side of the zero point and negative on the other.

IF
Open 10.7 Mc $\quad .05 \mathrm{Mfd}$ Mixer grid Chassis 7, 8, 9, 10 IF
Adjust trimmers for maximum A. V. C. voltage.
Repeat "Discriminator" and "If Alignment" with generator connected to mixer grid, being careful not to shift the generator frequency during this oderation.
NOTC: If a 10.7 Mc FM generator is not available for alignment of discriminator ar.d If, an unmodulated signal of 10.7 Mc from an accurately calibrated conventional AM type generator can be used.

RF							
108 Mc	108	Mc	200 Ohm Resistor	Ant. Terminal on Rear Cover	Ant. Terminal on Rear Cover	14	Oscillator
88 Mc	88	ML	200 0hm Resistor	Ant. Terminal on Rear Cover	Ant. Terminal on Rear Cover	13	Oscillator

Repeat the above oscillator adjustments until proper coverage is obtained.

105 Mc	105 Mc	200 hmm Qesistor	Ant. Terminal on Rear Cover	Ant. Terminal on Rear Cover	17, 18	Mixer \& Antenna
91 Mc	91 Mc	200 Ohm Resistor	Ant. Terminal on Rear Cover	Ant. Terminal on Rear Cover	15,16	Mixer \& Antenna

All RF trimmers are adjusted for maximum output.
Repeat "Mixer \& Antenna" adjustments until proper tracking is obtained.

PAGE 18-60 SEARS
MODEL 8020
SEARS, ROEBUCK \& CO.
CFASSIS 132.841

			PARTS LIST	
SCMEMAIIC Lecatlon.	PART numaER	QESCRIPI易	$\begin{aligned} & \text { mi. } \\ & \operatorname{coge} \end{aligned}$	SChEmatic LOCATIOM
615	$\begin{aligned} & \text { N2 } 1535 \\ & * 21394-2 \end{aligned}$	Cabinet (Loas metal grille a dial covor) Choke, 8+ filter	05	Sw-1. 225
L6,L13,L+4 N2,45-1 Choke, R, F.				
L1. 112	M21441-1	Choke, R. F.		
15	H21399-1	Coll, F. M., first R. F.		*
17	M21400-1	Coil, F. M., Second R. F,		14
19.110	N21390-1	coll, A. M. oncillator		l
L8	W2 2397-1	Coil, f. M. Ogcillator		
C1, $\mathrm{CL}^{\text {, }}$ (3	M21401-2	Condenser, Veriablo	85	
C4. ${ }^{\text {c } 5}$				2
c_{6}		Condenaer, . $00005 \mathrm{mfd}, 500 \mathrm{Yolta}$		Q ${ }^{1}$
${ }_{\text {c }} \mathbf{C}$				R4
c9		Condenser, . 0 C1 Mid., 350 vilts		85
c10		Condenser, . 00005 4fd., 350 valts		86
C11		Condenser, . 00005 yfa , , 500 yolts		\$8
C12, ${ }^{4} 4$		Condenser, . 00001 Mfd ., 350 volts		88
Cl_{3}		Condenser, . 00 Mfd., 350 volts		19
C14		Condenser, . 001 wrd., 350 volte		10
C15		Condenser, . $005 \mathrm{mfd.}$.		R11
L16		Condenser, , 00001 4fd., 500 volts		R12
c17		Candenger, . $0002 \mathrm{Mfa} . .500 \mathrm{voltg}$		813
C18		Condenser, . 00005 mfd , 500 valts		\$14
c19		Condenser, , $0001 \mathrm{Mfa},. 500 \mathrm{Volts}$		R15
c20		Condenser, . 0001 Mfa ., 500 volts		Q16
C21		Condenser, . $000027 \mathrm{wfa}, 500 \mathrm{valts}$		17
:22		Condenser, . $001 \mathrm{Mfd.}$,350 volte		018
c23		condenser, . 005 Hfd., 350 volts		120
C24		Condenser, . 00005 wid., 500 voits		121
C25		Condenser, . 05 mfd. , 400 volts		R22
C26		Condenser, . $00002 \mathrm{wid.}$,500 Yolt,		R23
C27		condenser, . $005 \mathrm{mfd}$.		R24
$\begin{aligned} & \text { C28A, C288, } \\ & \text { C28C, C280 } \end{aligned}$	-21402	Condenser, flectrolytic $40-40-30 \mathrm{Mrd} .$, 150 Ynit. 20 Mfd., 25 Volts		$\begin{aligned} & \mathbf{R 2 6} \\ & \text { R27 } \end{aligned}$
C29		condenser, . 005 md d., 360 votts		
c30		Cnndenser, . 0000 Mfd., 500 voits		
C31		Contenser, . 0000 4idu, 500 volts		
C32		Condenser, . $005 \mathrm{Mid.}$,360 wolts		
C33		Condenser, . 005 'ffr., 350 d volts		Sw-2
C34		Condenser, . 005 Mfd ., 600 Volts		
${ }^{6} 35$		Condenser, , 01 wid., 100 va!ts		
${ }_{6} 36$		condenser, .00005 :ffic, 5000 valts		T2
1,37		Condenger, . 03005 ufit. 500 volis		13
c38		Condenser, . 005 sidd., 350 volts		1
C39	121403	Condenser, Electroiytic, 8 ufd., 50 volts		${ }_{T}{ }^{4}$
C40		Condenser, . 05 m+n.. 200 volts		TS
C41		Condenser, . 002 itid., 200 valts		
542		Condenser, .00025 mfd , 500 volts		
$C 43$$C 45$		Condenser, . 005 Mtx .6000 Volts		
		Condenser, . $001 \mathrm{lfd.}$,350 volts		
R19	M21091	Control. Yolume, 1 teanhm		

$\begin{aligned} & \text { Paist } \\ & \text { SLMARR } \end{aligned}$	OESCPIPTION
-21653	Control, at Switen tome. Magenm
-19132	Cord, diat drive
*21585	Cover, oial
-21584	Grifte, metal
	Lamp, Dinl, Mazde, "o. C7
-1. 5452	Leaflet, Instruction
21605-1	Logo antenna agatuly. A. M.
$\because 20054-5$	Power cort and Plug
+21504	Pointer, Jis
	Resistor, 1000 Ohms, $1 / 4$ watt
	Resistor, 1 Mepohn, $1 / 4$ watt
	Reaistor, $680 \mathrm{hm}, 1 / 4 \mathrm{wa}^{\text {att }}$
	Ressitor, $330 \mathrm{Omm}, 1 / 4$ watt
	Resistor. $2200 \mathrm{hm}, 1 / 4$ watt Resistor, 22,000 0hm, $1 / 4$ vatt
	Reaistor, $330 \mathrm{Onm}, 1 / 4 \mathrm{Watt}$
	Resistor, 22 one, $1 / 4$ watt Resistor, $100,0000 \mathrm{~mm}, 1 / 4 \mathrm{Watt}$
	Reaietor, 100 Onm, $1 / 4$ watt
	Pesister, $680 \mathrm{hms}, 1 / 4 \mathrm{watt}$
	Renistor, 1000 Omm, 1/4 watt
	Resistor, $22,000 \mathrm{~mm}, 1 / 4{ }^{\text {att }}$
	Resistior, 330,000 Ohm. $1 / 4 w^{\text {watt }}$
	Realistor, $680 \mathrm{On}, \mathrm{I} / 4 \mathrm{watt}$
	Resistrr, $1,000 \mathrm{omm}, 1 / 4 w_{\text {att }}$
	Resistor, $1000 \mathrm{~mm}, 1 / 4 y_{\text {att }}$
	Resistor, $22.000 \mathrm{ohm}, 1 / 4$ watt
	Repiater, 6800 Ohms, $1 / 4 \mathrm{watt}$
	Resiotor, 6800 Ohes, 1/4 watt
	Gesistor, 2.2 Megonm, $1 / 4 \mathrm{mett}^{\text {a }}$
	Resistor, I Negrhm. $1 / 4$ Watt
	Resistor, $220 \mathrm{hm}, \mathrm{1/4} \mathrm{watt}$
	Resistor, 2.2 Hegohm, $1 / 4$ Fatt
W21601	3cale, dial
121603	Shaft, funing
W/9134-4	Socketr, Disit light with Leadg
+21709-1	Sudiresior, Paresitic
M21652	Switeh. Wave
H21658	Soeaker, 5-1/4* P.M.
419295	Soring. Dial Cord
M2/390-2	Pranaformer, First I. F.
+21331-2	Irsnsformer, Secand I. F.
P21398-1	Traminomer, Antenna Covoling
421392-2	Transformer, F. M. Detector
$421393-2$	Transformer, Outbut
420207-3	Rectifier, Selenium
N21587	knot. Tuning
W21588	*not, volume
421589	K nob, Tone (0 (f-On)
N21590	Knob, AH-fM

Subject: General Service Suggestions and Circuit Changes.
This supplement is issued for the purpose of distributing information which should be helpful in servicing this radio. The following points are covered.

1. REDUCTION OF HUM LEVEL:

On some earlier production sets, excessive hum may be reduced to an acceptable level by reversing the intermediate and output sections of the electrolytic condenser, part no. N21402. The intermediate section, indicated as C28C on the Schematic Diagram printed herewith, should be 80 Mfd., and the output section 40 Mfd . Should these be connected oppositely, reversing them as indicated in the diagram below, will result in a lower hum level.

2. MICROPHONISM:

Examination of the metal chassis will disclose that the R. F. unit (variable condenser, three miniature tubes and related parts underneath) is rubber mounted on a separate panel. Any direct contact between this oanel and the main chassis base may result in a tendency towardmicrophonics, particularly at high volume level. Slightly loosening the three mounting screws which protrude through the rubber grommets, so as to free the "floating" action of the panel, will, in some cases, eliminate the microphonic tendency. It may be necessary also to ory up the front edge of the panel in order to clear contact with the head of the rivet in the front of the panel. On later production sets, the location of this rivet was changed, so as to avoid any contact with the main chassis base.

3. DISTORTION AT LOW VOLUME LEVEL:

A complaint of low volume distortion or "hum modulation" may be satisfied by the addition of a .001 mfd . condenser from the 50L6GT screen grid to chassis ground. This addition was incorporated in early production; however, some sets were shipped without it
4. NEW CIRCUITS:
(4) additional circuit changes have been
made in current production. These are indicated on the revised schematic diagram printed here, and are as follows:

1. Condenser C6 - . 00005 mfd ., deleted.
2. Condenser C46-. 005 mfd ., added across antenna loop sections and connection to antenna screw terminals removed.
3. Condenser C4I - changed from . 002 mfd to . 005 nifd.
4. Condenser C 38 - changed from . 005 mfd . to . 002 mfd .

Any set not wired in accordance with the above $\$ 2$ change should be changed over, only if it is to be used in conjunction with an external antenna. Otherwise, these changes are not necessary.

Changes \#3 and \#4 make the tone control more effective.

ALIGNMENT PROCEDURE
For alignment procedure read tabulations from left to right. If more than one adjustment is required on any one band, make the adjustment (1) first, (2) next, (3) third. IMPORTANT: BEFORE ALIGNING, PLACE LOOP ANTENNA IN THE SAME POSITION IT WILL BE IN WHEN THE SET IS IN THE CABINET, AND HAVE CHANGE OVER SWITCH KNOB IN "PLAY RADIO" POSITION.
When adjusting 1600 kilocycle oscillator trimmer and 1400 kilocycle antenna trimmer, do not connect oscillator to loop. Couple test oscillator to receiver loop by: (a) Make a loop consisting of five to ten turns of No. 20 to 30 size wire wound on a three inch form and attach across output of test oscillator. (b) Place test oscillator loop near set loop-BE SURE THAT NFITHER MOVES WHILE ALIGNING.

Plare bashd switehttor eperation on:	Set Reetiver	TEST OSCILLATOR			Refir to parts layout diagram for location of trimmers mentioned below:
		Adjust test oscillater freguency to	Use dummy antenna in series with output of test series with output of tes oscillatar ecnsisting of	$\begin{aligned} & \text { Attach outpur of test } \\ & \text { oxelilator to: } \end{aligned}$	
T. F. Blifnilient use		${ }^{\text {Eja }}$	$\begin{aligned} & \text { 02 Mfide } \\ & =0 \text { notenser } \end{aligned}$	High side to to krid of 6SA7	
$1600 \operatorname{tos}_{\text {Rand }} 540$ к.c.		${ }_{1600}^{\text {Eracell }}$ K.	None		Adjust 1660 K . C. osedllator trinmer for maxilinum output
	2 \quadApprox. $1400 \mathrm{~K} . \mathrm{C}$	${ }^{\text {And }}$	Nune	Use Simall Loov to eouplo	ile rocking gang condenser adjust 1400 K. C. 1000 p trmmer tor maximum
	3 A Anprox	${ }^{\text {Approx }}$	None		
	Lexactly		$\begin{gathered} 400 \text { Ohm } \\ \text { arloan resistar } \end{gathered}$		ithel serew down trimner tadd capactity until the second peak-which is the
			Onn		While rocking sang condenser adjust is in in. C. antenima trimmer for maximum

TINING FOR SHORT WAVE STATIONS．Also，if the radio
is used in shielded areas or when located a great distance from broad－ cast stations，the volunie of the stations operating in the $560-1600$ kilo． cricle band may not be ample，in which case it would be necessary to attach a 35 to 50 foot outdoor aerial to the receiver to obtain satis－ factory results．
A DOUBLET TYPE ANTENNA can be used and will be of aid in eliminating man made static noises in locations where this inter－ ference is excessive，if the flat top oi the aerial can be located outside ing necessary material and complete installation instructions are avail－ able in kit form from most radio dealers．
THERE ARE THREE POSTS marked＂A，＂＂D，＂and＂G＂on the rear of the chassis．When the receiver is shipped from the factory a fexible wire is connected to post＂D＂and＂G．＂When a straight acrial is used this wire should be left in this position and the aerial lead－in connected to the post marked＂A．＂
When a doublet type antenna is used，remove the small piece of wire connecting＂ G ＂and＂ D ＂posts together and attach one of the doublet antenna lead－ins to＂A＂post and the other to＂D＂post．

GROUND

ло＇دole！pes meajs＇ad！d лวұen plo e se yons añoys dOOS \forall
 the type of antenna used．

曷

 IF THE IICENSE NOTICE IS MARKED 115 VULTS 60
CYCLE，THE PHONOGRAPH MOTOR IS DESIGNED FOR
OPERATION ON $110-120$ VOLTS 60 CYCLE CURRENT ONLY IF LICENSE NOTICE IS MARKED 115 YOI．TS 50 CYCLE THE PHONOGRAPH MOTOR IS DESIGNFD IOOR OPERA－
TION ON $110-120$ VUI．T 50 CYCLE CURIRENT ONI．Y

AERIAL

ap！nond pinoys o！ped a！yin dinitdd ample $540-1600$ kilocycle band reccption in average locations．

OUTSIDE AERIAL．

Check receiver and recorder motor voltage and frequency rating before attempting to operate this unit．Be sure that the voltage and
frequency rating given on the license tag is the same as the house

 IAG，which will be found attached to the cabinet．

ALIGNMENT PROCEDURE

MODEL 8121, (Gotham) HAROLD SHEVERS, INC.

Alignment Indicators: A high resistance volt meter is necessary for measuring D.C. voltage
ALIGINMEITT PROCEDURE uring F.M. alignment. An output meter is also necessary to indicate minoutput meter an the high resistance volt meter can be used as an indicator by measuring developed A.V.C. voltage.

F.M. RATIO DETECTOR ALIGNMENT

1. Connect a 680 ohm resistor between pins 5 and 7 of the ratio de-
nected to ground.
2. Set the generator at $10.7 \mathrm{~m} . c .$, modulated 30% at 400 cJcles (AM). 4. Remove the meter leads and disconnect the 680 ohm resistor. Con-
nect two 100,000 ohms $(\pm 1 \%)$ resistors inseries, across the 22,000 ohms ratio detector load resistor. Connect the common lead of the indicating to terminal "A" of the ratio detector transformer, TO, 5. Repeat connections as in step 2 above and adjust T6, bottom core
for zero D.C. balance. This point is approached rapidly and continued ad-
tector tube 6AL5. connect the D.c. probe the 5 mf . electrolytic condenser. Turn the volume control to maximum volume and connect the generator to the driver grid, pin 1 , of electrolytic condenser. meter to the center point of the 100,000 ohm resistors and the D.C. probe justment causes the indicated polarity to reverse. A slow approach to zero is an indication of severe detuning.

$$
\begin{aligned}
& \text { 6. Disconnect the two } 100,000 \text { ohm } \\
& \text { three, eliminating the } 680 \text { ohm resistor. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { audio output. Alternate the ad- } \\
& \text { Th until minimum audio output and }
\end{aligned}
$$

7. Repeat steps 5 and 6 until further adjustment does not improve
the calibretion.

F.M. I.F.-R.F. ALIGNMENT

MODEL 8121 TUNER MEASUREMENTS, VOLTAGE AND RESISTANCE

$\begin{aligned} & \frac{\text { Tube }}{\text { FM osc. }} \\ & \text { 6BE6 } \end{aligned}$	$\begin{aligned} & \text { Pin } \\ & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Voltage -.3 0 Gnd. AC 175 80 0	Resistance 18 K 0 0 0 over 500 K over 500 K 0
IF amp. $6 \mathrm{AB6}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	-. 5 Gnd. Gnd. $\begin{array}{r} \text { AC } \\ 170 \\ 120 \\ .5 \end{array}$	2.5 meg Gnd. Gnd. 0 over 500 K over 500 K 47 ohm
Ratio Detector 6AL5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { Gnd. } \\ & -.5 \\ & \text { AC } \\ & \text { Gnd } \\ & -.25 \\ & \text { Gnd. } \\ & -.25 \end{aligned}$	Gnd. 18 K 0 Gnd. Gnd.
$\begin{aligned} & \text { Magic Eye } \\ & \text { 6U5/6G5 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{array}{r} \text { AC } \\ 50 \\ 0 \\ 200 \\ \text { Gnd. } \\ \text { Gnd. } \end{array}$	over 500 K 2 meg. over 500 K Gnd. Gnd.
AM osc. 6BE6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{array}{r} -6.8 \\ 0 \\ \text { Gnd. } \\ \text { AC } \\ 190 \\ 80 \\ 0 \end{array}$	$\begin{gathered} 20 \mathrm{~K} \\ 0 \\ \text { Gnd. } \\ 0 \\ \text { over } 500 \mathrm{~K} \\ \text { over } 500 \mathrm{~K} \\ 4.5 \mathrm{meg} . \end{gathered}$
FM driver GAUK	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Gnd. Gnd. AC 185 155	0 Gnd. Gnd. 0 over 500 K over 500 K 100 ohm
$\begin{aligned} & \text { Detector } \\ & \text { SSQ7 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	Gnd. 0 Gnd. $-.5$ $-.3$ 100 Gnd.	Gnd. 10 meg . Gnd. 2 meg . 220 K over 500 K and.

MODEL 8121 AMPLIFIER MEASUREMENTS, VOLTAGE AND RESISTANCE

Tube	Pin	Voltage	Resistance
Input 6J5	1	Gnd.	Gnd.
	2	AC	0
	3	105	over 500 K
	4	N. C.	N. C.
	5	0	240 K
	6	N.C.	N. C.
	7	AC	0
	8	4.6	470 ohm
1st 6V6	11	Gnd.	Gnd.
	2	AC	0
	3	185	over 500 K
	4	200	over 500 K
	5	0	∞
	5	N.C.	N.C.
	7	AC	0
	8	15 V	220 0hm

Rectifier 5 U4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { N.C. } \\ & 360 \\ & \text { N.C. } \\ & 380 \quad A C \\ & 0 \\ & 380 \\ & 0 \\ & 0 \end{aligned}$	N. C. over 1 meg N. C. 70 ohm ∞ 70 ohm ∞
Inverter 6.55	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	Gnd. AC 105 N. C. 0 N. C. AC 4.6	Gnd. 0 over 500 K N.C. 50 K N.C. 0 470 ohm
2nd 6v6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 3 \end{aligned}$	Gnd. AC 185 200 0 N.C. AC 15 V	Gnd. 0 over 500 K over 500 K 300 K $\mathrm{~N} . \mathrm{C}$. AC 200 ohm

All voltage taken with a 20,000 ohm per volt meter and taken. with respect to chassis ground.

NOTE: 5 volts AC measured from pins 2 and 8 of 5 U4 tube.
LOUDSPEAKER
Ty pe................................... G12, Auditorium Hodel Size.. ohms at 400 cycles POTER OUTPUT
POTER OUTPUT
 CIRCUIT DESCRIPIION
This receiver is a twelve tube combination
FM-AM superheterodyne radio with provision for FM-AM superheterodyne radio with provision for
phono operation. Three separate sections are employed for the entire receiver; a tuner, ampli-fier-power supply and a metal encased auditorium speaker.
The tuner incorporates two separate con-
vertors, one for FM and the other for the broad-
cast band. A range switch is provided with a
third position allowing. phonograph operation
through the sound channel. A 6U5/6G5 tuning eye
tube facilitates visual indication of proper
tuning for both AM and FM operation.
The set utilizes a ratio detector eliminating the necessity of a limiting stage preceeding the detector and having an inherent insensitivity
to amplitude modulated signals.
A loop antenna is included for the broad-
cast band.
The amplifier section employs two 6J5 tubes as phase inverter and amplifier driving a pair
of 6 V 6 in push-pull operation which deliver ten watts of undistorted output from a Rola Gl2 audi-

A 504 rectifier is used in the power supply with separately filtered sections for both the
tuner and amplifier.

SNOITYOIGIDGdS TVOINVHOTM ONV TVOT\&IDATT Broadcast (Ail Band)........................ 540-1600 kc. Frequency ilodulation (FM Band)..........88-103. mc.

INTERUEDIATE FRUQUEACCY

Broadcast.. 455 kc . Freauency inodulation............................... 10.7 mc.

IUBE COMPLEMEiN (Tuner)

6BE6.............................lst Det. \& Osc. Fid.

 6BE6...............................lst Det. \& Osc. Ain. 6AL5... Detector 6SQ7..........2nd Det., A.V.C. \& A.F. Amplifier 6U5/Si5.............AA-Fin. Iuning Eye Indicator TUBE COMPLEAENT (Amplifier-Power Supply)
8. GJ5..................................nd A. F.Amplifier

 FRONT PANEL CONTROLS

\qquad 1. Raning 2. Range Switch........... 3 position; Phono, Aid, Fid
 YOWER SUPPLY RATING

105-125 volts-60 cycles................ 105 watts
PILOT LAMPS........(2) No. 44, 6-8 volts, 0.25 amp .

MODEL WBRU-239 SONORA RADIO \& TELEV. CORP.

SERVICE DATA

Lack of sensitivity and poor tone quality may be due to any one or a combination of causes such as weak or defective tubes or speaker, first thoroughly investigated and definitely proved not to be the cause. note: IT IS ABSOLUTELY NECESSARY THAT AN ACCURATELY
NETE: IT IS ABSOLUTELY NECESSARY THAT AN ACCURATELY CALIBRATED TEST OSCILLATOR WITH SOME TYPE OF OUTPUT WISE THE RECEIVER WILL BE INSENSITIVE AND THE DIAL CALIBRATION WILL BE INCORRECT. THE TRIMMERS WILL BE REFERRED
TO BY THEIR FUNCTION AS INDICATED ON THE PARTS DIAGRAM:

PROCEDURE

Do not make this set-up on a metal bench. With the gang condenser set at minimum, adjust the test oscillator to 455 KC and connect the
output to the grid of the first detector tube $(12 \mathrm{SA} 7)$ through a 05 or .1 mfd. condenser. The ground on the test oscillator should be connected I.F. trimmers to peak or maximum reading on the output meter.
 the antenna of the set through a 100 mmfd. (.0001) condenser. With
the gang condenser set at minimum capacity, set the test oscillator at 1620 KC , and adjust the oscillator (or 1620 KC trimmer) on gang condenser. Next-set the test oscillator at 1400 KC , and tune in
the signal on the gang condenser. Adjust the antenna trimmer (or 1400 KC trimmer) for maximum signal. Next set the test oscillator at 600 KC . and tune in signal on condenser to check align:-
ment of coils. The receiver has a built-in "loop" aerial. Its excellent design is
such as to increase pick-up from stations having wide variations such as to increase pick-up from stations having wide variations vide outstanding reception without the use of an external aerial. The "loop" aerial used on this receiver is somewhat directional so reception from weak stations can be improved by turning the set in
the proper direction. In or near metal buildings, fron ore deposits the proper direction. In or near metal buildings, fron ore deposits
or steel structures or in localities remote from broadcasting stations, reception can be improved by using an outside aerial 50 feet to

 distortion.

> GENERAL DATA. The alignment of this receiver requires the use of a test oscillator that will cover the frequencies of 455, 600,1400
and 1620 KC and an output meter to be connected across the primary or secondary of the output transformer. If possible, all alignments should be made with the volume control on maximum AVC from operating and giving false readings.

> CORRECT ALIGNMENT PROCEDURE. The intermediate frequency (I.F.) stages should be aligned properly as the first step. After the I.F. transformers have been properly adjusted and peaked, the broadcast band should be adjusted.
> . F. ALIGNMENT. Remove chassis from the cabinet. Care should be taken to have no iron or other metal near the loop.

SONORA PAGE 18-3

SERVICE DATA

Lack of sensitivity and poor tone quality may be aue to any one or a combination of causes, such as weak or defective tubes or speaker, open or grounded resistors, or bypass condensers. Never attempt to realign the set until all other possible sources of trouble have been first thoroughly investigated and definitely proved not to be the cause. It will be necessary to follow the procedure out iined below and to use recommended equipment for satisfactory results. BROADCAST ALIGNMENT PROCEDURE

EQUIPMENT REQUIRED: Modulated Test Oscillator that will cover the frequencies of $455,600,1400$ and 1620 KC , also an Output Meter to connect across the primary or secondary of the output transformer.
I. F. ALIGNMENT: Put switch in the broadcast position and connect the test oscillator to the converter grid through $\alpha .05$ condenser. The ground lead of the test oscillator should be connected to the buss of the receiver. Adjust the four I. F. trimmers (F,G,L and K) for maximum reading on the output meter. Always use the peak on
the slug which is obtained when screw is out ot the can the greatest distance.
R. F. ALIGNMENT: Connect the test oscillator to the antenna lead on the loop through a 100 mmf . condenser. Set the gang condenser to the maximum high frequency position and the test oscillator to 1620 KC . Adjust Trimmer " C " to the maximum output. Set test oscillator to 1400 KC and tune in signal with the gang condenser and adjust Trimmer "A" to maximum response. Set test oscillator to 600 KC and tune in signal with gang condenser. Check for damage to gang condenser or coils.

F. M. ALIGNMENT PROCEDURE

EQUIPMENT REQUIRED: F. M. Generator with frequencies of 90, 98, 106, and 109 megacycles, and generator without any modulation which covers 10.7 megacycles, also a zero center microammeter, and a DC Vacuum Tube Voltmeter (An oscilloscope and variable frequency audio oscillator can be used for better results. This method of alignment is described in the last paragraph).
DISCRIMINATOR ALIGNMENT: Connect DC Vacuum Tube Voltmeter between the buss and point "XX" on circuit diagram. Point "XX" is negative potential on the vacuum tube voltmeter. Isolate point "XX" and buss connections to vacuum tube voltmeter with chokes made by wrapping approximately 20 turns of hookup wire around a pencil. This is illustrated in Figure 1. Connect two 100,000 ohm resistors in series. (These resistors must match to 5%.) Connect them from point " XX " to buss. Between junction of 100,000 ohm resistors and the point "YY" connect Zero Center Meter, which is also isolated by the choke described above. These connections are illustrated in Figure 1. Connect test oscillator which is adjusted to 10.7 magacycles to grid of IF Driver through a 250 mmf condenser. Adjust slug " M " to maximum on the vacuum tube voltmeter. Reduce test oscillator to keep vacuum tube voltmeter to around 5 volts. Adjust slug " N " to bring zero center meter to zero point. Slug " N " should never be touched after this alignment.
PRELIMINARY IF ALIGNMENT: Connect test oscillator to the converter grid through a 250 mmf . mica condenser. Adjust slugs D, E, H and J to maximum output on the vacuum tube voltmeter. In making these adjustments reduce the generator input to keep the vacuum tube voltmeter at approximately 5 volts when making this adjust-
ment. Always use the peak on the slug which is obtained when the screw is out of the can the greatest distance.
FINAL I. F. ALIGNMENT: Set the test oscillator to 109 MC without frequency moldulation and connect it to converter grid. Adjust trimmer " B " for approximate maximum output on the vacuum tube voltmeter and zero center for exact centering. Adjust test oscillator to approximately 25 KC deviation, carefully adjust trimmers D, E, H, J and M for maximum on vacuum tube voltmeter. It may be necessary to shift the frequency of the oscillator slightly to hold the zero center meter on center. In making this adjustment turn up volume control slightly to obtain an audio signal out of the speaker. If this signal is free of distortion, increase the deviation to approximately 75 KC and repeat the above alignment. If this is done carefully there will be no distortion in the speaker with this deviation. If distortion is obtained in the speaker with this deviation, it will be necessary to carefully repeat the I.F. alignment.
R. F. ALIGNMENT: Move the signal generator to the FM antenna terminals, using 150 ohm resistors between the generator terminals and each of the FM antenna terminals. Set the test oscillator to 106 megacycles and tune in signal with gang condenser to obtain approximate maximum on the vacuum tube voltmeter and zero center on the meter. Slightly bend the RF section in the gang condenser for maximum output with vacuum tube voltmeter. Set the signal generator to 98 megacycles, tune in signal with the gang condenser. Repeat the above procedure at this frequency and also at 90 megacycles. Recheck alignment at 106 megacycles.

FINAL ALIGNMENT OF FM IF WITH OSCILLOSCOPE AND

 VARIABLE AUDIO OSCILLATOR: The oscilloscope and variable audio oscillaior should be connected as shown in Figure 2. Adjust the deviation to approximately 25 KC and align trimmers $\mathrm{D}, \mathrm{E}, \mathrm{H}$, J and M to maximum on the vacuum tube voltmeter while watching the oscilloscope for a straight line. It may be necessary to vary the frequency of the variable audio oscillator in order to make the line straight on the scope. Next increase deviation to approximately75 KC and repeat procedure, adjusting for maximum or as close to maximum as it is possible to obtain without losing the straight line on the oscilloscope. After all the trimmers have been properly adjusted to a maximum and a straight line on the scope, increase the deviation from approximately 125 to 150 KC . The curves illus trated in Figure 3 should be obtained. In making the above adjustments it may be necessary to make slight variations in the RF frequency in order to hold the zero center meter at the zero point.

CLARI-SKEMATIX

PAGE 18-6 SONORA
RADIO \& TELEV. CORP.

ALIGNMENT PROCEDURE

GENERAL DATA. The alignment of this receiver requires the use of a test oscillator that will cover the frequencies of $455,600,1400$, $1720,6000,15000$, and 18300 KC , and an output meter to be connected across the primary or secondary of the output transformer. If possible, all alignments should be made with the volume control on maximum and the test oscillator output as low as possible to prevent the AVC from operating and giving false readings.
CORRECT ALIGNMENT PROCEDURE. The intermediate frequency (I.F.) stages should be aligned properly as the first step. After the I.F. transformers have been properly adjusted and peaked, the - Broadcast and Short Wave bands should be adjusted.
I.F. ALIGNMENT. Remove the chassis and loop antenna from the cabinet and set them up on the bench so that they occupy exactly the same respective positions on the bench as they did in the cabinet. Care should be taken to have no iron or other metal near the loop. Do not make this set-up on a metal bench. With the Band Switch set to the Broadcast Band and with the gang condenser set at minimum, adjust the test oscillator to 455 KC and connect the output to the grid of the first detector tube 6SG7 through a .05 or . 1 mfd. condenser. The ground on the test oscillator should be connected to the receiver ground. Align all four I.F. trimmers to peak or maximum reading on the output meter.

SHORT WAVE BAND ALIGNMENT. With the band switch turned to the S.W. position, connect the test oscillator to the antenna with a 400 ohm dummy and the ground on the test oscillator to the ground connection on the receiver. Adjust the S.W. oscillator to give a maximum output with the dial at 18300 KC (extreme end.) Set the test oscillator at 15000 KC and tune in the signal with the dial. Adjust the antenna trimmer for maximum output. With a strong signal input turn the dial to approximately 1 M.C. lower in frequency and pick up the image frequency. If the image is not received, it will be necessary to return the dial to 18300 KC to reduce the capacity in the oscillator trimmer until a second signal is received. Proceed as before with the alignment of the antenna and recheck for image frequency. Check the sensitivity at 6000 KC to determine if the coils and mica pad are not defective.
BROADCAST BAND ALIGNMENT. With the Band Switch turned to the Broadcast Position, connect the test oscillator to the antenna of the set through a 100 mmfd . (. 0001) condenser, and the ground on the tesi oscillator to the receiver ground. With the gang condenser set at minimum capacity, set the test oscillator at 1720 KC , and adjust the oscillator (or 1720 KC trimmer). For the antenna adjustment set the test oscillator at 1400 KC , and tune in the signal on the gang condenser. Adjust the antenna trimmer (or 1400 KC trimmer) for maximum signal. Next set the test oscillator at 600 KC , and tune in the signal on the condenser. Adjust the 600 KC Pad while rocking the gang to obtain maximum output.

Luck of sensitivity and poor tone quality may be due to any one or a combination of causes such as weak or defective tubes or speaker, open or grounded bias resistor, bypass condenser, etc. Never attempt to realign set until all other possible sources of trouble have been first thoroughly investigated and definitely proved not to be the cause.

NOTE: IT IS ABSOLUTELY NECESSARY THAT AN ACCURATELY CALIBRATED TEST OSCILLATOR WITH SOME TYPE OF OUTPUT MEASURING DEVICE BE USED WHEN ALIGNING THE RECEIVER AND THAT THE PROCEDURE BE CAREFULLY FOLLOWED. OTHERWISE THE RECEIVER WILL BE INSENSITIVE AND THE DIAL CALIBRATION WILL BE INCORRECT. THE TRIMMERS WILL BE REFERRED TO BY THEIR FUNCTION AS INDICATED ON THE PARTS DIAGRAM.

AERIAL SYSTEM

The receiver has a built-in "loop" aerial. Its excellent design is such as to increase pick-up from stations having wide variations in signal strength. The efficiency and selectivity of the loop provide outstanding reception without the use of an external aerial. The "loop" aerial used on this receiver is somewhat directional so reception from weak stations can be improved by turning the set in the proper direction. In or near metal buildings, iron ore deposits or steel structures or in localities remote from broadcasting stations,
reception can be improved by using an outside aerial 50 feet to 100 feet in length including lead-in. Connect the outside aerial to the aerial lead. When using an outside aerial, use a good ground connection. Water pipes and steam or hot water radiators make a desirable ground connection. The ground wire should be connected to the black wire on the receiver. Although broadcast reception is satisfactory, the short wave band may require an additional aerial.

354
output
Lack of sensitivity and poor tone quality mary be due to any one or a combination of causes such as weak or defective tubes or speaker, open or grounded blas resistor, bypass condenser, etc. Never attempt to realign set until all other possible sources of trouble hove been first thoroughiy investigated and definitely
proved not to be the cause. proved not to be the cause.
NOTE: IT IS ABSOLUTELY
NOTE: IT IS ABSOLUTELY NECESSARY THAT AN ACCUFATELY CALIBRATED TEST OSCILLATOR WITH SOME TYPE OF OUTPUT MEASURING DEVICE BE
USED WHEN ALIGNiNG THE RECEIVER RND THAT THE FFOCEDUHE BE CAREFULLY FOLLOWED. OTHERWISE THE RECEIVEF WILL EE INSENSITTVE AND THE DIAL CAlIBRATION WILL BE INCORRECT. THE TRIMMEPS WILI
BE REFERBED TO BY THEIR FUNCTION AS INDICATED ON THE PARTS be Referied to by their function as indicated on the parts
diagram.

ALIGNMENT PROCEDURE

 lator that will cover the frequencies of $455,600,1400$ and 1620 KC and an cutput meter to be connected across the primary or secondery of the output trors
former If possible, all alignments should be made with the volume control on former If pessible, all alignments should be made with the volume control on
maximum and the test oscillator output as low as possible to prevent the AVC from operating and giving false readings.
CORRECT ALIGNMENT PROCEDURE. The intermediate frequency (I.F.) stage should be alligned properly as the first step. After the I.F. transformer has beel properly adjusted and peaked, the broadcast band should be adjusted.
I.F. AlIGNMENT: Remove the chassis and batteries from the cabinet and remove the bottom enclosure plate from the chassis. With the gang condenser set at minimum, adjust the test oscillator to 455 KC and connect the output to the grid of the test oscillator should be connected to the chassis. Align all four I.F. slugs of the test oscillator should be connected to the chassis. Align all four I.F. slugs
to peak or maximum reading on the output meter. Each I.F. has on adjustment at the top and bottom of the can. The peaks on the slugs must be the ones farthest
out of the coils.
R.F. Alignment: Place the cabinet on its face and open cabinet back to a 90° angle. Lay a board across the body of cabinet chead of the loop. Replace the bottom chassis enclosure and set the chassis and batteries on the board so that
they occupy the same relative position to the loop as they do in the cabinet. Care they occupy the same relative position to the loop as they do in the cabinet. Care
should be taken to have no iron or other metal near the loop. should be taken to have no iron or other metal near the loop.
Connect the test oscillator to a dummy loop which can be made
Connect the test oscillator to a dummy loop which can be made by colling 2 turns
of hookup wire about $6^{\prime \prime}$ in diameter. Place this dummy loop about a foot from the loop on the receiver and in the same plane as the recelver loop. With the gang condenser set at minimum capactiy, set the test oscillator at 1620 KC , and
adjust the oscillator (or 1620 KC trimmer) on the gang condenser adjust the oscillator (or 1620 KC trimmer) on the gang condenser. Next set the
test oscillator at 1400 KC , and tune in the signal on the gang condenser. Adjust lest oscillator at 1400 KC, and tune in the signal on the gang condenser. Adjust
the amtenna trimmer (or 1400 KC trimmer) for maximum signal. Next set the test oscillator at 600 KC , and tune in stgnal on condenser to check alignment of colls.

©John F. Rider

©John F. Rider

VISUAL I. F.-F. M. ALIGNMENT DATA

1. Description of circuit used:

The I. F. channel in this model consists of 1 stage of amplification at 456 Kc. plus a diode detector used for AM reception on the $B C$ band and a 10.7 Mc . amplifier consisting of two stages of amplification, one ratio detector and 1 ratio detector driver.

The tube complement is as Pollows, two 7A7 IF amplifiers only one of mich is used for AM reception, one 7C7 ratio detector driver used on FM only and one 6S8GT detector and lst audio amplifier. The 6S8GT tube contains three diodes and a triode and is there used as the diode detector and list audio amplifier on AM and as a ratio detector and list audio amplifier on FM. The various circuits are connected to the wave band switch where necessary to switch from AM to FM.

The IF transformers used are of the composite type wherein the 456 KC . circuits and the 10.7 circuits are constructed in the same shield can and is generally wired in series to obviate the need for switching. Only the converter plate connection on the model is switched when changing from FH to $A M$ or vice versa. The ratio detector driver is tuned by an iron core, peaking coil tuned to $10.7 \mathrm{Mc}$. in the grid circuit of the 7 C 7 tube.

The ratio detector transformer is a special design made for this purpose and generally peculiar to the receiver in which it is used. Most of the noise rejecting characteristics and to a large extent the audio fidelity of the receiver hinges on the proper design and adjustment of this circuit. This adjustment together with the proper alignment of the other IF transformers determines the gain of the IF system and thus the overall sensitivity of the complete receiver. Thus the importance of properly making these adjustments is of the utmost importance.
2. Theory of Visual Alignment:

One of the characteristics of a tuned circuit is the fact that when it is excited or driven by a generator such as a vacurum tube or another tuned circuit, the voltage developed across it will vary with slight changes in frequency. This voltage will be greatest when the frequency is equal to the resonant frequency of the circuit and will be less if the frequency is higher or lower than the resonant frequency. Thus if we were to shift the frequency from high to low or low to high across the resonant frequency and make a record of the voltage across the tuned circuit, we could plot the voltage against frequency and obtain a curve which might look like Fig. 1.
.1 volts

This is the selectivity curve or response curve for the circuit under discussion.
This type of circuit may be aligned or adjusted to resonance by simply changing either I or C until maximum voltage is obtained at the resonant frequency. Now if another circuit tuned to the same resonant frequency is coupled to the simple case above, a number of things can happen. First, current flowing in one circuit will induce current in the second circuit, the magnitude of tinis current depending on the degree or amount of coupling betmeen the two circuits. This coupling may be in the form of mutual inductance, mutual capacitance or any impedance common to the two circuits and its magni tude may be either controlable or uncontrolable or as is often the case only partily controlable in a production item. Most IF transformers in present day use are circuits of this type where the coupling is in the form of mutual inductance which may be controled in fabrication. However with the advent of 10.7 Kc . IF channels the effect of the stray capacity coupling always present becomes important and is usually difficult to control. Now if we repeat the procedure outilined for obtaining the response curve of a single tuned circuit using the voltage developed across the secondery of the coupled circuit while driving the primary, we may get either of two types of curves depending on the magnitude of tine coupling, (a) in Fig. 2 is a typical curve for two circuits coupled below critical coupling and (b) is a representation of the curve for an overcoupled circuit.

Fig. 2
(A)

VISUAL I. F.-F. M. ALIGNMENT DATA

Overcoupled circuits producing a response curve like (b) Fig. 2 are often employed where it is important that the response curve remain approximately flat over a narrow band of frequencies near the resonant frequency. They are also frequently combined with single peaked circuits to produce a response curve like Fig. 3.

Fig. 3

The dotted lines indicate the curves of the individual circuits and the solid curve shows the overall response of two or more pairs of couplod circuits. Circuits like the above or approaching them in form are desirable in a FM receiver where the pass band should be of the order of 200 Kc . Now from the above it is evident that simply peaking both sides of a circuit coupled below critical for maximum voltage will provide optimu alignaent but if this procedure is followed with an overcoupled circuit it is almost a certainty that the two circuits will not be tuned to the resonant frequency but will instead be aligned so that either one or the other peak is accentuated. The response curve will then look like Fig. 4 (a) or (b).
(A)
Fig. 4

(B)

Now if this overcoupled circuit is combined with a single peaked circuit (where the coupling is below critical) the misalignment becomes worse, something like Fig. 5.

Fig. 5

From the above it appears that to properly align a receiver using overcoupled IF transformers it will be necessary to take a response curve of each stage and align the circuit so that the two peaks are symmetrical, that is, approximately equal in amplitude and displaced equally from the center frequency. To do this with a CW or AM signal would be laborious and time consuming whereas the use of visual equipment makes it nearly as simple as adjusting a simple single peaked amplifier.

Visual alignment test equipment performs the operation of plotting the response curve aimost exactly as described above except that instead of manually changing the generator frequency, recording the voltage and then plotting the results, these operations are performed automatically and simultaneously by a combination of electronic circuits. The operation is briefly as follows.

In the signal generator a low AC voltage is applied to a reactance tube modulator which shifts the osoillator frequency from low to high or from high to lon at a rate determined by the frequency of the $A C$ voltage and by an amount determined by the $A C$ voltage. The frequency at any instant is then dependant on the AC voltage present at that instant of time. An oscilloscope is provided which may be considered a voltmeter used to read the voltage across the tuned circuit, provided a detector is used to convert the RF to a low audio freauency. This voltage is then applied to the vertical plates and results in a vertical displacement of the spot on the screen. Some of the voltage used to shift the oscillator frequency is also applied to the horizontal plates of the oscilloscope providing a means of displacinp the spot horizontally. It is nov evident that since that for any given

VISUAL I. F.-F. M. ALIGNMENT DATA

$A C$ voltage only one frequency may be obtained and since that $A C$ voltage will result in an exact amount of spot deflection on the scope we can read the voltage across the circuit under examination by noticing the position of the spot at this exact instant.

Now if we consider the frequency as shifting from low to high 60 times per second and remember that the spot is moving across the screen of the scope 60 times per second at exact symchronization With the change in frequency it is only necessary to apply the voltage from our circuit to the vertical plates to obtain a replica of the response curve on the face of the cathode ray tube. This curve will be repeated 60 times per second if our sweef frequency is 60 cycles. Adjustments to the circuit may nor be made and the effect on the response curve noted instantaneously.

EQUIPMENT REQUIRED

To align the IF stages in this receiver the following equipment will be neaessary.
(a) A sweep signal generator with a center frequency of 10.7 Mc . and a total sweep width of at least 400 Kc . This generator should be equipped with filters to remove all spurious oscillator frequencies and limiters should be profided to remove all amplitude modulation. There should also be a crystal oscillator to provide a marker frequency at 10.7 Mc . for accurate determination of the center frequency.
(b) An amplitude modulated signal generator tumed to 456 Kc . This generator should be either crystal controlled or means should be provided for accurate frequency calibration.
(c) An oscilloscope with either a $3^{\prime \prime}$ or $5^{\prime \prime}$ tube equipped with both vertical and horizontal amplifiers.
(d) A pover output meter with an internal impedance to match 3.2 ohms for use in 456 Kc . alignment.
(e) A diode detector for use in connection with the oscilloscope while aligning the FM IF channel. This diode detector may be either a IN34 crystal or a two element vacuum tabe such as the 6H6. A diode load resistor, coupling condenser, etc. will also be necessary. A connection for this detector is supplied on the speaker socket.
(f) Connecting cables, from the generator to receiver, receiver to scope, etc.

Alignment of the 456 Kc . IF.
This alignment adjustment should be made before attempting to align the 10.7 IF circuit because of possible effects on the operation of the FM IF.

Connect the output meter, scope and speaker to the receiver by pluging the detector into the speaker socket. All output conncctions rill be made automatically when this is done. Connect the signal generator output lead to the converter (6BE6) grid. Turn the wave band switch to BC and the generator to 456 Kc . Using the output meter as an indicator peak the AM IF trimers for maximum output.

Alignment of the 10.7 IF .
Turn the wave band sritch to F: and the generator switch to 10.7 Mc . Move the signal generator lead to the plate of the second 7 A7 tube and turn the function switch on the scope to Det. Now proceed to align the ratio detector transformer for mavimum linearity end minimum noise. This operation can be facilitated by applying a small amount of amplitude modulation along rith the FM and then adjusting the secondary trimer for minimum noise. Please note that the adjustment of the secondary circuit, controls to a large extent, the linearity of the pattern and adjustment of the primary is responsible for the gain in the circuit. Fig. 6 will represent a linear detector curve and Fig. 7, a detector curve with noise or AM present.

With the generator output lead still connected to the grid of the second 7A7 tube, turn the sunction switch to IF. Align the core adjustment in the tuned choke for maximum output. Note that aince this is a single tumed circuit, the response curve is single peaked. See Fig. 8.

VISUAL I. F.-F. M. ALIGNMENT DATA

Fig. 8

Move the generator lead to the grid of the first 7A7 tube and align the second IF transformer. Adjuat both trimmer acrews for maximam gain, meanwhile maintaining symmetry in the curve. Observe that by alternatiy adjusting the primary and secondary trimmer, the vertical amplitude can be increased without allowing the response curve to become greatly distorted. This transformer is not supposed to be overcoupled and so should not present a double peaked curve, however, production variations in coupling may be large enough for the transformer to become overcoupled in which case final alignment should be so made that the two peaks are equally spaced about the center frequency and approximately equal in amplitude.

Move the generator lead to the grid of the GBE6 tube and align No. 1 IF transformer folloming the same procedure as for \#2 above.

Fig. 9, (a) (b) (c) (d) below represent response curves typical of those for \#l and \#2 IF stages.

Fig. 9

(A)

Not Overcoupled Properly Aligned
(Right)

(B)

Overcoupled Properly Aligned (Right)

(C)

Overcoupled
Improperly Aligned
(Frong)

(D)

Overcoupied
Improperly Aligned
(Wrong)

With the generator lead still connected to the 6BE6 grid, turn the function switch on the scope to Det. and check the detector curve for linearity and noise. Should this appear unsatisfactory, a very slight readjustment of the detector secondary alipnment may be made at this time. If horever the adjustment required is very great the entire alignment procedure should be repeated in that the need for adjustment is indication of incorrect alignment in one of the other stages.
Use of Marker Frecuencies.
A crystal controlled marker frequency is provided at 10.7 hic. This frequency may be turned on or off by means of the mariker control ond should be used only rhen necessary to check the calibration of the sweep oscillator. This is accomplished by simply tuming on the marker and observing the position of the pip. When the frecuency of the sweep oscillator is correct the pip will appear in the exact center of the sweep and so in the center of the resonance curve. See Fig. 10.

Note that either the sweep oscillator or the circuit alignment may be off frequency.

Model G-521 has 5 tubes plus an instant operating dry disc rectifier. It is a three way portable superheterodyne receiver using the latest types of low drain electronic tubes.

Operation: The set operates on 105 to 120 volts 50 or 60 cycles A.C., 105 to 120 volts D.C., or from self contained batteries. Power drain is approximately 13 watts on electric operation. Because Model G-521 uses an instant operating dry disc rectifier, no warm up period is necessary on either A.C., D.C., or battery operation. The set will play immediately after the power switch is turned on. When operated on direct current (D.C.) if no reception is obtained, reverse the line plug in the power outlet.

Ranges: Model G-521 has both a broadcast and a short wave range. It overs the broadcast band from 535 to 1620 kilocycles. Since the broadcast dial scale is calibrated flum 55 to 160 the actual frequency of the station may be obtained by adding a zero to the dial calibration. The range of the short wave band covered in Model G-521 is from 5.6 to 18.5 megacycles. The short wave dial scale is calibrated directly in megacycles.

Antenna: For normal reception on the broadcast band, no outside aerial is required, as more than adequate pickup is obtained by the self contained loop antenna. At installations remote from stations desired to be heard, improved results may be obtained by rotating the receiver for maximum response, as the loop antenna has a marked directional effect on weak signals.

For short wave or weak broadcast reception the whip antenna should be extended to its full length. This will provide sufficient signal for satisfactory reception in most locations.

Reception can be improved especially in poor receiving locations by attaching an external antenna and ground to the antenna and ground connections provided in the rear of the cabinet. The blue wire is the external antenna connection, the black wire is the external ground connection.

Batteries: The batteries comprise: Two $41 / 2$ volt "A" units, Eveready type 746 or equivalent, and two 45 volt " B " units, Eveready type 482 or equivalent.

They should be mounted in the compartment provided in the bottom of the cabinet as shown in the sketch. Batteries should be removed when they are dead or if the set is not to be used on battery operation for several months.

Alignment: No attempt should be made to realign this receiver until it has determined that a poor tube, or some local condition is not responsible for faulty reception. The Signal Generator may be connected through a 0.01 mf capacitor (used as a dummy antenna) to the lug on the R. F. section (B) of the tuning capacitor. Connect ground clip of generator to the common negative of the electrolytic capacitor. An output meter may be clipped across the voice coil lugs. Align the I. F. trimmers to $455 \mathrm{~K} . \mathrm{C}$. using the least possible input from the Signal Generator to avoid developing A.V.C. voltage which would make the tuning adjustments very broad.

The short wave band trimmers must be aligned before attempting to align the broadcast band. To align the short wave band turn the bandswitch to the short wave position and connect the Signal Generator through a 0.01 mf capacitor and a 400 ohm resistor in series (used as a dummy antenna) to the antenna connection at the back of the cabinet. With the tuning capacitor plates completely out of mesh and the pointer at the extreme right end of travel, adjust the short wave oscillator trimmer (A) to 18.5 megacycles. With both tuning capacitor and Signal Generator adjusted to 6 megacycles, adjust the short wave antenna coil slug (C) for maximum response. Readjust both the Signal Generator and the tuning capacitor to 18 megacycles and tune the short wave K . F . timmer (B) for maximum response.

With the short wave band aligned, the broadcast band trimmers may now be aligned. To align the broadcast band turn the bandswitch to the broadcast position. Remove the 0.01 mf capacitor and the 400 ohm resistor and connect the Signal Generator to two or three turns of heavy wire, forming a self supporting loop of about 7 or 8 inches diameter placed about a foot away from the receiver's loop antenna. Again use the least possible input from the Signal Generator. With the tuning capacitor completely out of mesh and the pointer at the extreme right end of travel, adjust the broadcast oscillator trimmer (E) to 1620 kilocycles. With the dial pointer set to 600 KC adjust the padder (F) while rocking the signal generator dial for maximum audio output. Readjust both Signal Generator and dial pointer to 1550 kilceycles and adjust the R. F. trimmer (D) for maximum response.

Alignment: No attempt should be made to realign this receiver until it has been determined that a poor tube, or some local condition is not responsible for faulty reception. The Signal Generator may le connected through a 0.01 mf capacitor (used as a dummy antenna) to the lug on R. F. section (A) of tuning capacitor. Connect ground clip of generator directly to chassis. Align the I. F. trinamers to 455 K.C., using least possible input from the Signal Generator to avoid developing A.V.C. voltage which would make the tuning adjustments very broad. An output meter may be clipped across the voice coil lugs.

To align broadcast R. F. trimmers, remove the 0.01 mf capacitor and connect the Signal Generator leads to two or three turns of heavy wire, forming a self-supporting loop of about 7 or 8 inches diameter placed about a foot away from the receiver's loop antenna. Again, use the least possible input from the Signal Generator. With the tuning plates completely out of mesh and the pointer at the extreme right end of travel, adjust the broadcast oscillator trimmer, on the under side of the chassis, to 1650 K.C. With tuning capacitor fully meshed adjust the padder on the chassis deck to $535 \mathrm{~K} . \mathrm{C}$. Readjust both Signal Generator and tuning capacitor to 1550 K.C. and adjust the R. F. trimmer on the loop for maximum response.

To align the short wave band connect the Signal Generator through a 0.01 mf capacitor and a 400 ,hm resistor in series (used as a dummy antenna) to the antenna connection on the loop antenna. With the tuning capacitor plates completely out of mesh, and pointer at the extreme right end of travel, adjust the short wave oscillator trimmer (on the under side of the chassis) to 18.25 magacycles. Readjust both Signal Generator and tuning capacitor to 16 megacycles and adjust short wave antenna coil trimmer for maximum response. With tuning capacitor fully meshed, the receiver should tune to 5.75 megacycles, however, no adjustment is required at this point.

For checking purposes five marks are engraved on the front of the dial plate. These represent, in order, the pointer position with the capacitor plates fully meshed and the pointer settings for $600 \mathrm{kc}, 8 \mathrm{mc}$, 16 mc , and 1550 kc .

REPLACEMENT PARTS LIST

Circuit Symbol	Part Number	ltem	Description
C-1 A \& B	CV-9	Capacitor	Variable 2-gang, Push-button
C-2	CT1-1	Capacitor	Trimmer 1.5-15 MMF
C-3	CT1-2	Capacitor	Trimmer $2.2-40 \mathrm{MMF}$
C-22	CT1-2	Capacitor	Trimmer $2.2-40 \mathrm{MMF}$
C-23	CT1-2	Capacitor	Trimmer 2.2-40 \MF
C-25	CX2-1	Capacitor	Padder
E-1	EH-9	Speaker	10" Electrodynamic
E-2	EH-14	Speaker	10" P.M.
L-1	LL-9	Loop Antenna	
L-2	LO-4	Oscillator Coil Assembly	Broadcast \& S.W. Osc. Coils
L-3	LR-4	S.W. Antenna Coil	
R-23	RP8-105	Potentiometer	1 Meg. with 2 taps, Volume Control
R-26	RP5-2	Potentiometer	0.5 Meg. with switch, Tone Control
[-27 A \& B	RW3-1	Resistor	Wirewound 1350 Ohms 17 watt tapped at 500 Ohms
S-2 A, B \& C	SR-9	Bandswitch	
T-1	TM2-4	Transformer	I. F. Input
T-2	TM2-5	Transformer	I. F. Output
T-3	TA-8	Transformer	Push-pull speaker output
T-4	TP-9	Transformer	Power

Operation: The set operates on 105 to 125 volts, 60 cycles A. C. only. Power drain is approximately 70 watts for the radio and about 20 watts additional for the record changer.

SPIEGEL

GSB7Y
CONVERTER

12SG7
15. FM-AM I.F. AMP.

ALIGNMENT PROCEDURE:

Model G-724 Radio is a 7-tube including rectifier superheterodyne Frequency Modulation and Amplitude Modulation receiver using the latest type of low drain tubes.

Operation: The set is designed for operation on 105 to 125 volts, 60 cycles A. C. It will also operate on 120 D. C. Power drain is approximately 36 watts for the radio.

Ranges: Model G-724 has both a broadcast and FM range. It covers the broadcast band from 535 to 1625 kilocycles. Since the broadcast dial scale is calibrated from 53.5 to 160 , the actual frequency of the station may be obtained by multiplying the dial calibration by ten. The range of the FM band covered in Model G-724 is from 87.6 to 108.4 megacycles. The FM dial scale is calibrated directly in megacycles.
Antenna: This radio will operate without an external antenna. For normal reception more than adequate pickup is obtained by the self contained antenna. At installations remote from station desired to be heard on the broadcast band, improved results may be obtained by attaching twenty or thirty feet of insulated wire to the antenna connection provided in the rear of the cabinet. The wire may be concealed under the rug or laid on the floor along one side of the room.

For normal reception on FM, no outside aerial is required as sufficient signal pickup is secured from the built-in FM antenna. However, in poor receiving locations provision is made for improved results, which may be obtained by the addition of an outside antenna of correct design, properly installed. (Your dealer can supply and install a suitable FM antenna for your FM Radio).
Alignment: No attempt should be made to realign this receiver until it has been determined that a poor tube or some local condition is not responsible for faulty reception. The following is a list of the minimum equipment necessary to realign this receiver.

1-AM signal generator covering $455 \mathrm{KC}, 600 \mathrm{KC}, 1550 \mathrm{KC}$ and 10.7 MC
2-FM signal generator covering $10.7 \mathrm{MC}, 92 \mathrm{MC}$ and 106 MC
3-Output meter, rectifier type, approximately 0 to 2 volts RMS
4-Dummy antennas
0.01 MFD Capacitor \quad 100MMFD Mica Capacitor $\quad 300$ Ohm Risistor

In the following alignment procedure the high side of the signal generator is connected to the terminal indicated in the "Signal Generator Coupling" column below. The ground side of the signal generator is connected directly to the chassis. The output meter should be connected across the voice coil of the speaker for all measurements.

In adjusting the radio frequency trimmers and padders it is advisable to "rock" the variable capacitor gang slightly across the signal being delivered by the signal generator until that particular signal has been accurately peaked.

TUBE AND TRIMMER LOCATION

2. Ground.
This set has been designed to operate without an external ground, and the use of any ground connection is not recommended.
After making certain that the power circuit is rated between 105 and 125 volts extend the line cord to its full length and insert the plug into the near est convenient outlet. If the supply. is DC, and the set fails to operate, it may be necessary to reverse the plug connection to secure operation of the set.

OPERATION:

 To turn receiver on, rotate this knob in a clockwise direction. Within a few
degrees of rotation an audible click will be heard, and the dial will become luminous. After a half minute of warm up the receiver will be in an operating condition. Further advance of this control in a clockwise direction will provide
an increase in volume level.
The center knob controls the selection of AM or FM stations. When rotated to the counterclockwise position, operation in the AM (standard broad, The right hand or tuning knob enables the selection of any desired station as indicated on the calibrated dial. The upper row of numbers is calibrated distations in the standard broadcast band. Add one zero to the numbers on this scale to obtain the station frequency in kilocycles.

SERVICE ADJUSTMENTS:

 Alignment or adjustment of the various circuits of this receiver can onlybe made by a skilled radio technician with the proper equipment. NOTE: Points A, B, C, D, E, and F are noted on the circuit diagram
AM Equipment:
Equipment Required: a) Broadcast Band

1. Set band switch at AM. Advance volume control to full volume setting. Connect the "high" side of the Signal Generator to point " A " through a .01 mfd condenser. Connect the "ground" side to point " B ". Adjust the first and second I.F. transformers for peak output as shown on the output meter. The signal injected into the receiver should be as small in magnitude as possible, consistent with a useful deflection on the output meter.

2. CONTROLS. Two knobs appear on the control head. The one that moves the dial pointer is for tuning; the other controls volume and turns the receiver "On" and "Off".
3. TURNING THE RECEIVER "ON". Turn the volume control knob to the right. A click will be heard, and the pilot lamp will light. Wait thirty seconds for the tubes to heat up.
4. TUNING IN STATIONS. Put the volume on full by turning the volume control knob to the right as far as it will go. Next turn the station selector knob slowly until a station is heard. Reduce the volume by means of the volume control knob to below the desired intensity. Now turn the station selector knob very slowly back and forth until the signal is clearest and strongest. If the signal is not carefully tuned in, reception will be noisy and distorted. Then adjust the volume control until the desired intensity is obtained. Always reduce the volume by means of the volume control knob and never by turning the station selector knob. To get the kilocycle reading, multiply the scale reading by ten.
5. TONE CONTROL. The tone control is located on the control plate and is operated by means of a wing type knob directly behind volume control knob as shown in Figure 8. When the knob is turned to the right, a brilliant tone is obtained, and when it is turned to the left, a deep bass tone is produced.
6. LOCAL AND DISTANCE SWITCH. The local and distance switch is located directly behind the station selector and is operated by means of a wing knob. When tuning local stations, turn the wing knob to the extreme left to enjoy brilliant performance without the usual in-between station noises, and noise and static caused by high voltage lines. When tuning distant stations, turn wing knob to extreme right, and a click will be heard, and the set becomes very sensitive, bringing in far-away stations with surprising sharpness and clarity.
7. TURNING THE RECEIVER "OFF". Turn the volume control knob to the left as far as it will go. A click will be heard, and the pilot light will go out, indicating that the set is turned off.

CARE AND MAINTENANCE

1. ADVANCING GENERATOR CHARGING RATE. The installation of any automobile radio imposes an additional drain on the car storage battery. This can be compensated for by advancing the charging rate of the car generator. Check the state of charge of the storage battery about a week after the installation of the automobile radio is made and have the charging mate adjusted accordingly.
2. TUBES. The type of tubes used and location of these tubes in the chassis are shown in Fig. 8. These tubes are of a sturdy, rugged construction designed especially for an auto receiver. Most of them, under normal use, will last for many months and in some cases, years. Some of them, however, may become faulty after a few months of operation. For that reason it is advisable to secure a new set of tested tubes at intervals of three to six months and to have them inserted in the receiver one at a
time, noting any difference in performance.
3. VIBRATOR. The vibrator unit is plugged in exactly the same as a tube. This unit may, in case of failure, be readily replaced in the same manner as replacing a tube.
4. PILOT LAMP. To replace the pilot lamp first turn the receiver off. Then pull out the pilot lamp assembly and replace the lamp. A 6-8 volt automobile type lamp is used (Bulb No. 51).
5. FUSE. A 20 ampere automobile fuse is used in the battery cable. This fuse is placed in an insulating shield and is in the receptacle provided for it at the chassis end of the battery cable.
CAUTION-Be sure the fuse insulator is on the fuse before the latter is inserted in the receptacle. If a fuse blows, do not replace it without first investigating the cause.

ALIGNMENT DATA AND SERVICING

GENERAL DATA. The alignment of this receiver requires the use of a test oscillator that will cover the frequencies of 175,600 and 1400 K.C., and an output meter to be connected across the primary or secondary of the output transformer. If possible, all alignment should be made with the volume control on maximum and the test oscillator output as low as possible, to prevent the AVC from operating and giving false readings.
CORRECT ALIGNMENT PROCEDURE. The intermediate frequency (I.F.) transformers should be alligned properly as the first step.
I.F. ALIGNMENT. Adjust the test oscillator to 175 K.C. and connect the output directly to the grid of the first detector tube (6A7), without the use of any series condenser or resistor; the omission of series condenser and resistor
to block out the AVC action. The ground on the test oscillator can be connected to the chassis ground. Align the trimmers of the first and second I.F. transformers to peak or maximum reading on the output meter.
OSCILLATOR ALIGNMENT. Adjust the test oscillator to 1400 K.C. and connect the output to the antenna through a .0001 mfd . mica condenser to give the equivalent of a low capacity type average auto antenna. Set the dial pointer to 1400 K.C. and adjust the oscillator trimmer to peak. (Front section of gang condenser.)
R.F. ALIGNMENT. The next step is to adjust the center and rear trimmers of the gang condenser to peak. The center section of the gang condenser tunes the antenna amplifier stage (6D6 tube), and the rear condenser section tunes the detector grid coil of the 6A7 tube.

Buick and Oldsmobile have what is known as insulated running board type antenna which is about 500 mmfd . These types of high capacity antennas can efficiently be coupled to the receiver by means of a special provision which provides proper matching.

COMPLETING THE WIRING CONNECTIONS

Now, with the receiver and control units mounted, and with flexible shafts attached, the next step is to complete the wiring connections. Supplied with the receiver: (1) a shielded antenna lead-in with two prong plug attached; (2) a shield pilot light lead with slip-on pilot light head at one end and tip jack connector at the other end; (3) a battery lead with built-in replaceable fuse (4) detachable control cord with a two prong plug at one end for chassis connection, (See Fig. 8).

1. ANTENNA CONNECTION. The shielded antenna lead should be soldered to the antenna leadin as shown in Figure 16. The position in which the plug is inserted into the receiver depends upon the type of antenna used in the installation. The antenna lead plug has two tips, one soldered and one blank. If a low capacity antenna is used, the soldered tip of the plug is inserted in the hole specified in Figure 17. If a high capacity antenna is used, the soldered tip of the plug should be inserted in the hole indicated for high capacity antenna.

Keep the antenna cable as far away from car wiring as possible, and ground the pig tail of the antenna cable shield as close to the antenna end as possible. If a roof antenna is used the cable supplied will prove sufficiently long in practically all uses to reach the corner post or column at which the antenna lead comes down. The shielded cable should be pushed up into the column as far as possible to prevent ignition interference that may be picked up by any unshielded portion of the antenna cable.

Three connections are necessary. First, the antenna must be hooked up to the receiver unit; second the pilot light must be in the control head; third, the battery cable must be connected to the ammeter. (See Fig. 8).

If an under car or running board antenna is used. the shielding must be extended to the antenna in all cases. The pigtail on the end of the antenna cable shield must be well grounded at the extreme antenna end. If it is necessary to extend the antenna cable shielding as described below, be sure that a pigtail is put on the end of the shielded extension and that it is well grounded at the extreme antenna end. (See Fig. 16).
To extend the antenna cable shielding, the antenna lead wire should be covered with heavy insulation such as loom, to properly separate the shielding from the wire. Then connect the two wires together and connect the two shields together, care being taken that no strand of the shield touches the antenna wire.

ris. 11
2. PILOT LAMP CONNECTION. Connect the pilot lamp cable at the chassis by inserting the pin' tip connector into the receptacle on the side of the chassis case indicated in Figure 8. Push the fitting all the way down. Then insert the pilot lamp assembly into the receptacle at the back of the control unit as indicated in Figure 8. In some cases the cable supplied will not be long enough and an extra length cable may be fitted.
3. BATTERY CABLE CONNECTION. The battery connection is made at the ammeter. The end of the battery cable should be soldered to a lug and secured to one of the posts at the back of the ammeter in the instrument panel. The other end of the battery cable has a fuse receptacle with bayonet fitting. Insert the fuse shield and fuse into the receptacle and connect it to the bayonet pin connector in the end of the battery lead coming from the chassis case as shown in Figure 8.
4. THE CONTROL CORD. Connect the control cord at the chassis by inserting the 3 prong plug into the receptacle on the side of the chassis case as indicated in figure 8. Push the fitting all the way down.

ADJUSTING THE DIAL POINTER FOR CORRECT CALIBRATION

After the control unit has been installed the dial pointer must be adjusted to provide a correct calibration of the receiver in operation. Tune in a station of known frequency around 700 K.C. Now reach back behind the control unit and loosen the knurled nut. This now makes it possible to rotate the flexible shaft by hand until the dial is set at the exact frequency of the station tuned in. Now tight-
en the knurled nut with fingers. (Do not use pliers or other tools). If this procedure is carefully followed the dial pointer will indicate $700 \mathrm{~K} . \mathrm{C}$. when a $700 \mathrm{K.C}$. station is being received. Once you adjust the dial pointer for correct calibration at any one frequency, all other points or calibrations on the dial scale will be found to be in agreement with frequencies tuned.

HOW TO SUPPRESS IGNITION AND GENERATOR NOISE

This radio incorporates all of the latest circuit developments for the elimination of motor noises.
Due to the use of special filter circuit, the set is inherently quiet, and only a few precautionary procedures are required. Cars of recent manufacture will not require the use of spark plug suppressors. Even in older cars, suppressors should not be required providing the ignition system wiring has not developed high tension "leaks"' due to aged, cracked or otherwise defective insulation.
There are a few units in every car that will require a little attention to provide absolute "noiseless motor" operation. The following automobile components are often not grounded or poorly grounded
from a radio standpoint and should be investigated as suggested. It is advisable to pay particular attention to the first four causes listed below. In a majority of cases, if these are treated, no further noise suppression will be required. If the noise persists, the remaining seven points should be checked in the order recommended.

1. Distributor
2. Stecring Columns, etc.
3. Generator
4. Dome Light
5. Ammeter
6. Grounding Engine and Other Parts
7. Bonding of Cables
8. Loose Parts in Car
9. Coil Position
10. High and Low Tension Wires

HOW TO INSTALL THE RECEIVER AND CONNECT THE CONTROL UNIT

THE RECEIVER. After the receiver and control head positions have been selected, the installation of these two units should be completed. A single hole made by using a $1 / 2$ inch or $9 / 16$ inch drill is all that is necessary for mounting the receiver unit proper. The short threaded end of the stud bolt should be screwed into the rear mounting plate of the receiver, with the long threaded section of the bolt fitted through the hole in the car bulkhead. (See Fig. 7).

IMPORTANT: Never screw the long threaded end of the stud bolt into the receiver as it is long enough
to penetrate the interior of the chassis and cause serious damage to the wiring and components within. THE SHORT THREADED END ONLY should be screwed into the receiver mounting plate.

THE CONTROL UNIT. The control unit supplied with this receiver is custom built for your car, employing either aeroplane or porthole type dial assembly, as engineered by the car manufacturer. The mounting of the control head is easily accomplished. Remove the ash receiver or the ornamental plate designed to accommodate the radio control unit. In few 1937 cars it will be necessary to remove the ash receiver and the plate. There is no sawing, drilling or filing necessary in preparing for installation. Now assemble the control unit as per instruction sheet enclosed in each control unit package and proceed to clamp to the dash. Once the receiver unit and control unit have been mounted into position, the flexible shafts should be connected in the manner clearly indicated in figure 8. Figure No. 8 also shows the proper battery, control cord, pilot light and antenna connections.

REPLACEMENT PARTS LIST Model 77-770

Part No. Description

P536.	6D6 Socket.
P506.	6A7 Socket.
P824.	Vib. Socket.
P489.	6K7 Socket.
P490.	6H6 Socket.
P522.	6C5 Socket.
P1374.	6V6G Socket.
P815.	No. 84 Socket.
P852.	Pilot Light Socket.
P805.	Antenna Socket.
P1368.	Speaker Socket.
P1278.	Gang Condenser.
P1279.	INotor Noise Choke.
P1370.	B Filter Choke.
P1880.	1st I.F. Transformer.
P1281.	Filament Choke.
P854.	RF. B Choke.
P1319.	Hash Choke Coil.
P1292.	Antenna Coil.
P131.	Volume Control.
P1286.	Out Put Audio Transformer.

Part No. Description
P1375. Transformer
P1289. 4 Prong Speaker Socket.
P1414. Vibrator Unit.
P1293. Electrolytic Condenser.
P1376. 2nd I.F. Transformer.
P1291. R.F. Interstage Coil.
P836. Oscillator Coil.
P1377. Candohm Resistor.
G5207. 6 in. Dynamic Speaker.
P831. Fuse.
P870. Antenna Cable.
P806. Generator Condenser.
P1300. Ammeter Condenser.
P1388. Control Head.
P851. Drive Cable.
P1445. External Speaker.
P1402. External Speaker Cable.
P1378. 60,000 ohm $1 / 4$ watt Insulated.
P418A. $150,000 \mathrm{ohm} 1 / 4$ watt Insulated.
P1308. $350 \mathrm{ohm} \mathrm{1} / 4$ watt Insulated.
P162A. 1 Meg. olm $1 / 4$ watt Insulated.

Part No. Description
P137A. 500,000 ohm 1/4 watt Insulated.
P1380. 8,000 ohm 1/4 watt Insulated.
P417A. $\quad 50,000$ ohm I/4 watt Insulated.
P1381. 1,000 ohm $1 / 4$ watt Insulated.
P417. $50,000 \mathrm{ohm} \mathrm{1} / 4$ watt Insulated.
P1379. $20,000 \mathrm{ohm} 1$ watt Insulated.
P1309. 15,000 ohm $1 / 2$ watt Insulated.
P1310. $15,000 \mathrm{ohm} 11 / 2$ watt Insulated
P1324. $50 \mathrm{ohm} 1 / 2$ watt Insulated.
P817. . 00025 mica.
P480. . 0001 mica.
P1382. . 00005 mica
P335. .01- 600 V Condenser.
P1383. . $10-200-.05-400$ Condenser.
P1315. .25-200-. 10-400 Condenser.
P1384. .05-400-.05-200 Condenser.
P1314. .10-400-.05-200 Condenser.
P1317. . 10-400-. .05-200 Condenser.
P1385. . $10-200-10-400$ Condenser.
G867. .0075-1600V Condenser.
P813. . $50-50 \mathrm{~V}$ Condenser.
P818. . 002 mica Condenser.

1. DISTRIBUTOR ROTOR. © Distributor rotors develop an unshielded spark and in practically all installations it will be necessary to install a distributor suppressor to squelch this interference. The intensity of this spark interference can be greatly reduced by "peening" the rotor blade. This operation reduces the gap between the rotor blade and the distributor head contact. Normally there is a gap of about twenty thousandths of an inch and the spark jumping this gap produces the most objectionable interference. Hammering the rotor blade which is made of copper will lengthen it and reduce the clearance to a few thousandths of an inch and consequently reduce proportionately the spark and interference. A more desirable and easier way of "peening" the rotor is to increase its length by building it up with solder. Sufficient solder, which is soft, can be added to completely close this space and a trial turn over the engine will scrape off any surplus so that the gap will be almost spaceless.
2. GENERATOR. Generators on new cars usually do not cause much interference, but as the car becomes older the brushes wear and spark, producing objectionable noise. The $1 / 2$ microfarad condenser furnished with the receiver should be installed on the generator cut-out relay to prevent this source from causing interference. In some of the new cars, the generator relay is mounted on the front of the bulkhead or in some other location. It will be most convenient and advisable for best results to mount the generator condenser at the relay.
3. DOMELIGHT. To determine the amount of noise caused by the dome light, try a $1 / 4$ or $1 / 2 \mathrm{mfd}$. condenser from the end of the dome wire to ground.
The end of the dome light wire will usually be found at the ammeter or at a special connection terminal block. In cases where the condenser does not cure the noise it may be necessary to shield the dome light wire to the point where it enters the corner post running to the roof, and to ground the shield. If the noise still persists, disconnect this lead and remove it from the front cornerpost, at which point it is generally run down, and use one of the side posts in back of the door, connecting it directly to the storage battery. If done in this manner, this lead should be fused.
4. AMMETER. By-passing the ammeter with a $1 / 2 \mathrm{mfd}$. condenser should be tried in looking for the source of interference and permanently applied if a reduction in noise results.
5. BONDING OF CABLES. Try grounding to the dash all cables and tubing which pass through it, such as oil lines, gas lines, hand throttle, choke wire, etc. By means of a file, contact can be established between any of the lines and the dash, in order to determine whether such a ground will reduce the noise. To bond the cables to the dash, clean the point of contact. wrap a length of braided shielding around the cable and solder the connection.

Then solder the ends of the shielding to the dash or ground it under a screw head if one is convenient.

Sufficient play should be left in the bonding shielding so that movement of the cables or tubing will not loosen this shielding from the dash.
6. COIL POSITION. If the receiver chassis and ignition coil are both in back of the dash (under the cowl) take off the coil and mount it on the front of the dash (in the engine compartment). Should the coil be moved, mount it as close to the distributor as possible. If the coil cannot be moved place a copper can over it and ground the can at the coil mounting. Shield the high tension lead from the coil to the dash, grounding this shield both to the metal can of the coil and to the dash. Considerable care must be exercised in shielding this lead to prevent short circuiting the high tension system. It should first be covered with loom or heavy insulation before the braided shielding is put on.
7. HIGH AND LOW TENSION LEADS. In some cases, the high and low tension leads between the coil and distributor are run close together. In some cars they are in the same conduit. If this is the case, remove the low tension lead from this conduit. In any event, keep the high and low tension leads as far apart from each other as possible. Shield and ground the shield of the low tension lead, if separating the two leads is not sufficient.
8. STEERING COLUMN, ETC. It is possible for the steering column, foot pedals and brake lever to carry interference to the back of the dash at which point it may affect the radio receiver. See if each of these are well grounded to the frame of the car. By means of a file or a braided shielding jumper, contact can be established between these points and the frame in order to determine whether such a ground will reduce the noise. A piece of one inch braided shielding should be used if a ground is necessary and this shielding may be grounded under a screw head, or nut, or may be soldered in position.

9. GROUNDING ENGINE AND OTHER

 PARTS. The engine must, in every case, be well grounded to the frame of the car. If it is not, use a very heavy braided lead for this purpose, similar to a storage battery ground lead. In like manner it may be necessary to check the grounding of the metal dash, instrument panel, radiator and hood to the frame of the automobile.10. WEAK PICKUP. Noise, on occasion, may be caused by the automobile being in a shielded location or by a faulty antenna system. Automatic volume control, when counteracting weak pickup, causes the set to operate at its maximum sensitivity, thereby increasing the noise level. If the antenna instructions, previously outlined are carefully followed, weak pickup should not be experienced.
11. LOOSE PARTS IN CAR. Noisy operation is also caused in some instances by loose parts in the car body or frame. These loose parts rubbing together affect the grounding and cause noises. Tightening up the frame and body at all points and in some cases, using a copper jumper will eliminate noise of this nature.

© John F. Rider

ALIGNMENT PROCEDURE

- Output meter across 3.5 ohm output load.
- Volume control at maximum for all adjustments.
- Align for maximum output. Reduce input as needed to keep output near 0.4 volts

SIGNAL GENERATOR				SETTING TUNER	ADJUST TRIMMERS TO MAXIMUM OUTPUT (in order shown)
Frequency	$\begin{gathered} \text { Coupling } \\ \text { Factor } \end{gathered}$	Connection to Receiver	Grourd Connection		
45s kc	1 mfd	1RS Grid	B-	Rotor full open (Plates out of mesh)	Input and output trimmers on IF cans
1700 kc	1 mfd	1RS Grid	B-	Rotor full open (Plates out of mesh)	Oscillator trimmer T2
1500 kc		Radiating Loop		$1500 \mathrm{kc} *$	Antenna trimmer T_{1}

- Five markings on the dial bracket represent respectively $330 \mathrm{kc} ., 600 \mathrm{kt}, 1000 \mathrm{kc} ., 1500 \mathrm{kc}$., and 1700 kc ., reading from left to right. These points are to be used for the alignment of the receiver.

ELECTRICAL SPECIFICATIONS

CAPACITORS

(1)Jorn F. Rider

ALIGNMENT PROCEDURE

- Output meter ac oss 35 ohm output load
- Volume control at maximum for all adjustments.
- Align for maximum output. Reduce input as needed to keep output near 0.4 volts.

| SIGNAL GENERATOR | | | $\begin{array}{c}\text { SETTTING } \\ \text { TUNER }\end{array}$ | $\begin{array}{c}\text { ADJUST TRIMMERS } \\ \text { Frequency }\end{array}$ | $\begin{array}{c}\text { Coupling } \\ \text { Factor }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}MAXIMUM OUTPUT

(in order shown\end{array}\right)\)

- Eive markings on the dial bracket represent respectively $530 \mathrm{kc}, 600 \mathrm{kc}, 1000 \mathrm{kc}, 1500 \mathrm{kc}$., and 1700 kc ., reading from left to right. These points are to be used for the alignment of the receiver.

REPLACEMENT PARTS LIST
 When ordering parts, specify part number, model number and series.

Ref. No. Part No. Description

CAPACITORS

$\left.\begin{array}{c} \mathrm{Cl}_{1} \\ \mathrm{C}_{2} \cdot \mathrm{C}_{3}, \end{array}\right\}$	CE-12
C 4	CP-503.5
C3	CP-103-2
C6	CP-104.2
C7	CP-503-2
C8	CP-202.3
C9	CP-502-2
C10	CP-102.3
C11	CM-101-1
C12, C13	CV-10
C14	CP-103-4

$\int 125 \mathrm{mfd}, 10$ volt Electrolytic
$(25 \mathrm{mfd}, 150$ volt)condenser $.05 \mathrm{mfd}, 400$ volt, paper $.01 \mathrm{mfd}, 150$ volt, paper $.1 \mathrm{mfd}, 200$ volt, paper $.05 \mathrm{mfd}, 150$ volt, paper $.002 \mathrm{mfd}, 200$ volt, paper $.005 \mathrm{mfd}, 400$ volt, paper $.001 \mathrm{mfd}, 200$ volt, paper $.0001 \mathrm{mfd}, 300 \mathrm{volt}$, mica Váriable condenser, 2 gang $.01 \mathrm{mfd}, 100$ volt, paper

RESISTORS

POWER SUPPLY

This receiver is designed to operate on either an A.C. or D.C power supply. The following operation ratings should be observed:

Voltages
105-125 Volts, A.C. or D.C.

Ref. No. Part No. Description

COILS AND TRANSFORMERS

LC-4	Oscillator col!
LF-22	IF transformer
LP- 6	Loop antenna
TR. 7	Output transformer

	MISCELLANEOUS	
S1, S2, S3	SW-10	Three Pole Single Throw Switch
	SP-41	4 inch P.M. speaker
	PN-6	Pointer
	CR-2	Drive cord
	SG-1	Spring for drive cord
	KN-20.4	Knob
BK-20	Cabinet back (with hardware)	
	CB-104A	Assembled cabinet (without back and handle)
	HA-2	Handie for cabinet (with springs and pans)
	AS-1	Assembled battery box

The battery supply to be used with this receiver is as follows:
"A" supply
$71 / 2$ volts Use five type " D " flashlight cells; Aircastle No. 1514, or RCA-VS-001, or Burgess No. 2 or Eveready No. 950 or equivalent.

"B" supply

$671 / 2$ volts.
Use Arrcastle No. 1523 or Burgess No. XX45 or Eveready No. 467 or RCA-VS. 016 or equivalent.

TO REPLACE TUBES, UMSCREW wing muts, AMD REMOVE TUBE SPREG PLATE

ELECTRICAL SPECIFICATIONS

Q John F. Rider

ALIGNMENT AND SERVICE DATA

Remove chassis from cabinet for alignment. A signal generator is re quired having the following frequencies: 455 KC and 1400 KC . An output meter should be connected across the speaker.

FIRST STEP. Connect the hot lead from the generator to the ANT. section of the gang condenser, through a . 1 MFD . condenser. The ground lead from the generator may be connected to any spot on the metal chassis. Turs: the gang condenser to complete minimum capacity. Set the generator to 45 KC. Adjust the movatile iron cores in the IF cans. These IF adjustments arw made in the top and in the bottom of the can under the chassis. Adjust the cores until a maximum reading is noted on the output meter.

The volume control of the receiver should be turned to maximum during the IF and all subsequent alignment and the generator output as low as pos sible to prevent the AVC from working and giving false readings. SECOND STEP: With the leads from the generator still connected as in ${ }^{W}$ alignment, adjust the generator to 1400 KC . Set the dial pointer to 1400 KC . on the dial scale. Adjust the oscillator trimmer until the signal is tuned in.
THIRD STEP: Remove the generator leads from the gang condenser
Replace the chassis in the cabinet. Loosely couple the generator to tha receiver loop by making a complete turn over the outside of the cabinet. Wint the receiver and the generator still set at 1400 KC increase the generator ows put. Adjust the Antenna trimmer through the back of the chassis untll e maximum signal is noted on the output meter.

No further adjustment should be necessary as the colls and gang conden ser in this receiver have been specially handled at the factory to insure propos alignment at the lower frequencies.
NOTE: When the antenna trimmer is adjusted at 1400 KC ., the chassis as weil as the " A " and " B " batteries must be in normal position in the cabinet tw reflect the proper loop impedance.
" ${ }^{\text {B }}$ " battery.
 FLRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser through the . 1 mFD "condenser. f " minus under the chassis. from the generator must be cong condenser to complete minimum capacity. Set the generator to 455 KC . Adjust the trimmers of the first and second I. F. transformers until a maximum reading is noted on the output meter.

SECOND STEP: With the leads from the generator still connected in the same manner, adjust the Signal Generator to 1650 KC . Adjust the OSC. trimmer until complete minimum capacity for this adjustment.

THIRD STEP: Remove the generator leads from the gang condenser. Loosely couple the generator the of wire. With the receiver and generator set at 1400 KC , increase the generator output. Adjust the ANT. trimmer until a maximum signal is noted on the output meter. No further adjustment should be made as the
coils and gang condenser in this receiver have been specially handled coils and gang condenser in this receiver have been specially

alignment and service data

ing frequencies: Remove chassis from cabinet for alignment. A Signal Generator is required having the following frequenciess
$455 \mathrm{KC}, 1400 \mathrm{KC}, 1650 \mathrm{KC}$. An output meter should be connected across the speaker.

The volume control of the receiver should be turned to maximum during the I. F. and all subsequent alignment and the generator output as
low as possible to prevent the A. V. C. from working and giving false readings.

John F. Rider
$1 \forall \forall H) ~ 39 \forall 170 \wedge$ SISS $\forall H)$

$\begin{aligned} & \text { Line } \\ & \text { Posit } \end{aligned}$	1tage: 117 rolts, 60 agcles n of Band Mriten: Broadeast	$\begin{aligned} & A C \\ & B a n d \end{aligned}$		Position Position	of Yolse	ontrol: teh: Re	$110-\mathrm{m}$		
TUBE	PJNCTION	Voltas	of each	ocket pr	8 to Gr	1 (chess			
		No. 1	No. 2	No. 3	No. 4	No. ,	No. 6	ก.. 7	Ho. 8
6sk7	R-P Amplifior	0	0	0	0	0.	76.8	6.2 *	220.1
6547	Oacillator-convertar	0	0	220.1	-6. ${ }^{\text {c }}$	0	0	6.2*	0
6597	1-P Amp, -Dotoctor-Arc	Q	e	0	76.8	0	20.1	6.1*	0
68.7	1st Audio Amplifior	0	0	. 50	0	. 50	15.4	6,2*	25.1
6 VGCT	Bean Pomer haplinior	0	0	235.1	220.1	0	-	6.1*	9.4
$6 \times 56 \mathrm{~T}$	Rectifier	0	0	250. *	--	250.*	-	6.1*	230.1
*aC voles a-250 volt seale		b-100 vole Seale			C-25 volt seale			D-5 volt scale	
Voltage readings are for schenatic diagran in this bulletin. Allow 2001 on all measurezents									
Voltazes are $D C$ undess otherwise apeclifled.									

- John F. Rider

- John F. Rider

117 volt 60 cycle A.C. power supply.
The tubes used are:-12SA7-Mixer, Oscillator 12SK7-I. F. Amplifier

> 12SQ7-Det., AVC, Audio 50L6-Power Output

No rectifier tube is required as a Selenium rectifier is used in its place.
This receiver covers the frequency range from 535 kilocycles to 1725 kilocycles (K.C.).

ALIGNMENT PROCEDURE

The following alignment procedure is for use only by competent servicemen hoving the proper equipment.

The alignment should be made with volume control fully on, and the output from the signal generator as low as possible, to prevent A.V.C. action from interfering with correct alignment.

With the output meter connected across the voice coil of the speaker, the output meter reading for 50 milliwatts is .4 volts using a signal which is modulated 400 c.p.s.

Adjust all trimmers for maximum output. Repeat alignment procedure given below as a final check.
CAUTION: This is an A.C.-D.C. receiver and when aligning the set it is necessary to isolate the Signal Generator or the Receiver from the line by use of a transformer, or place a . 2 MFD. condenser in both test leads of the Signal Generator.

Position of Variable	Generator Frequency	$\begin{gathered} \text { Dummy } \\ \text { Ant. } \\ \text { Mfd. } \end{gathered}$	Generator Connections	Trimmer Adjustment	Trimmer Function
Fully open	455 KC	. 1	* 12SA7 Grid (Stator of ClA)	T2	Input I.F.
Fully open	455 KC	. 1	* 12SA7 Grid (Stator of ClA)	T3	Output I.F.
Fully open	1725 KC	. 00025	* 12SA7 Grid (Stator of ClA)	CIB	Oscillator
Tune in signal from generator	1500 KC	. 00025	**Loosely Coupled to Loop	ClA	Antenna

*Connect ground lead of signal generator to Common "B."
**Do not connect ground lead of signal generator.

117 volts 60 cycle AC or 117 volts DC power supply.
The tubes used are:-
1-12SA7 Oscillator Converter 1-12SQ7 AVC Detector and lst
1-12SK7 I.F. Amplifier
1-35Z5GT Power Rectifier Audio

This receiver covers the frequency range from 540 kilocycles to 1630 kilocycles (KC).

ALIGNMENT PROCEDURE

The following alignment procedure is for use only by competent servicemen having the proper equipment.

The alignment should be made with volume control fully on, and the output from the signal generator as low as possible, to prevent A.V.C. action from interfering with correct alignment.

With the output meter connected across the voice coil of the speaker, the output meter reading for 50 milli-watts is .4 volts using a signal which is modulated 400 c.p.s.

Adjust all trimmers for maximum output. Repeat alignment procedure given below as a final check.

ALIGNMENT PROCEDURE

(Continued)

CAUTION: This is an A.C.-D.C. receiver and when aligning the set it is necessary to isolate the Signal Generator or the Receiver from the line by use of a transformer, or place a .2 MFD. condenser in both test leads of the Signal Generator.

| Position
 of
 Variable | Generator
 Frequency | Dummy
 Ant.
 Mfd. | Generator
 Connections | Trimmer
 Adjustment | Trimmer
 Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fully open | 455 KC | .1 | *l2SA7 Grid
 (Stator of ClA) | T1 | Input I.F. |
| Fully open | 455 KC | .1 | \#12SA7 Grid
 (Stator of ClA) | T2 | Output I.F. |
| Fully open | 1630 KC | .00025 | \#12SA7 Grid
 (Stator of ClA) | ClB | Osclllator |
| Tune in signal
 from generator | 1.400 KC | .00025 | *Ant. lead from | ClA | Antenna |

*Connect ground lead of signal generator to chassis.

TUBE COMPLEMENT

The tube complement of this receiver consists of the following:
1-6SK7-R.F. Amplifier
1—6SA7-Mixer-OSC.
I-6SK7-I.F. Amplifier
1-6SQ7-Det. AVC—Audio
1—6K6—Power Output
I—5Y3—Rectifier

Fig. I Chassis, Top View

ALIGNMENT PROCEDURE

Volume control-Maximum: all adjustments.
Tone Contro!-Treble: Full Clockwise Rotation.
Connect ground lead of signal generator to radio chassis.
Connect dummy antenna in series with output lead of signal generator.

Connect output meter across voice coil of speaker.

The following equipment is necessary for proper alignment: Signal generator that will provide the test frequencies as listed.

Output meter.
Non-metallic screwdriver.
Dummy antennas-. 1 mfd ., 00025 mfd .

| Position
 of
 Variable | Generator
 Frequency | Dummy
 Ant.
 mfd. | Generator
 Connections | Trimmer
 Adjustment | Trimmer
 Function |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Minimum Capacity
 (Fully Opened) | 455 K.C. | .1 | 6SA7 Grid
 (Stator of CIB | TI | T2 |

*Be sure coupling link is in correct position for external antenna operation. See illustration below (Fig. 4).

Repeat the above alignment procedure as a final check.

With an output meter connected across the voice coil of the speaker, the output meter reading for $1 / 2$ watt is 1.25 volts using a signal which is modulated 400 c.p.s.

ANTENNA and GROUND CONNECTIONS

POWER SUPPLY
This receiver is designed to operate from a power source of 117 volts A.C. 60 cycle current. If in doubt about the power rating in your location consulf your local power company for this information. Never attempt to operate this radio on any current other than that specified.

FIG. 2 PICTORIAL DIAGRAM
ALIGNMENT PROCEDURE
ume control-Maximum: all adjustments. $\begin{aligned} & \text { The following equipment is necessary for proper } \\ & \text { alignment: }\end{aligned}$
CAUTION: This is an A.C.-D.C. receiver and if
AATIN. This is an A.C.-D.C. receiver and if alignment is made with the receiver connected to 117 volts A.C. or or place a. 2 M.F.D. condenser in both test leads of the Signal Gen from the line by use of a transformer, or place a . 2 M.F.D. condenser in both test leads of the Signal Generator.

$\begin{aligned} & \text { Position } \\ & \text { of } \\ & \text { Variable } \end{aligned}$	Generctor Frequency	Dummy Ant. Mfd.	Generctor Connections	Trimmer Adjust ment	Trimmer Function
Fully open	455 KC	. 1	-IR5 Grid (Stator of ClA)	T2	Output I.F.
Fully open	455 KC	. 1	*1R5 Grid (Stator of CIA)	Tl	Input I.F.
Fully open	1600 KC	. 00025	*1R5 Grid (Stator of ClA)	ClB	Oscillator
Tune in signal from generator	1400 KC	-	Loosely coupled to loop	ClA	Antenna
**Tune in signal from generator	600 KC	-	Loosely coupled to loop	LI	600 KC Padder

[^2]
POWER SUPPLY

This receiver is designed to operate from self contained batteries, or from 105-125 volt AC or DC power supply. One $671 / 2$ volt " B " battery Aircastle No. 1223, and four (4) $11 / 2$ volt "A" batteries, Aircastle No. 1514, are used for battery operation.

John F. Rider

DESCRIPTION
Your New Aircastle Radio is a 4-Tube Superhetrodyne receiver designed to cover a frequency range of from 540 kilo-

ALIGNMENT PROCEDURE

PARTS LIST Antenna coil. Oscillator coil
Ist and 2nd $1 . F$ T1,T2 A $0-506$ Ist and 2nd I.F. transformer
T3 B80-232 Output transformer Speaker, 5" P.M. . .
Tuning Shaft A45-118 Battery plug B67-515 Dial scale. 58-31 Dial pointer
48-21 Dial crystal A52-245 Knob, walnut

-on med B19-188
A83-355
02 MFD 400 volt condenser
250 MMFD mica condenser
.01 MFD 400 volt condenser 002 MFD 600 volt condenser
.05 MFD mica condenser
50 MMFD mica condenser. . 005 MFD 600 volt condenser 220 K ohm $1 / 2$ watt resistor. 47K ohm $1 / 2$ watt resistor... 2.2 megohm $1 / 2$ watt resistor Volume control, I megohm. 470K ohm $1 / 2$ watt resistor .. 1045!sad Hen $2 / 1$ шчобаш I
 L2 Al0-505 Oscillator coil Battery plug
Dial scale B79-352
A75-60 A75-6 ${ }^{1}$

$\begin{gathered} \text { Position } \\ \text { of } \\ \text { Variable } \end{gathered}$	Generator Frnaumar	Dummy Ant. Mfd.	Generator Connections	Trimmer Adjustmont	Trimmer Function
Fully open	455 KC	. 1	IA7 Grid (Stator of CIA)	T2	Output I.F.
Fully open	455 KC	. 1	IA7 Grid (Stator of C\|A)	TI	Input I.F.
Fully open	1725 KC	. 00025	Antenna Lead	CIB	Oscillator
Tune in signa! from generator	1400 KC	. 00025	Antenna Lead	ClA	Antenna

 cabinet in the space provided. Anyone of the following batteries may also be used with this receiver: Eveready No. 748, General No. 60DL-1I L ,
Burgess No. $17 \mathrm{G}-\mathrm{D} 60$, Ray- $\mathrm{O}-\mathrm{Vac}$ No. AB 82 . For bust results an outside antenna about $75-100$ feet long, including the lead-in, should be used. It should be erected as high as possible and as far away from surrounding objects as practical. When the receiver is used close to powerful broadcasting stations it may be desirable to use a shorter antenna. (For most ordinary instalations use Aircastle House Mast
To obtain the best possible performance a good ground should be used. This can be a water pipe, or a galvanized pipe driven into the ground. It should be connected to the ground lead (black) of the receiver. Connect the antenna wire to the other lead coming from the receiver.
© John F. Rider

©John F. Rider

FREQUENCY MODULATION - "FM" - ALIGNMENT PROCEDURE

INSTRUMENTS: Alignment of the FM circuits in this receiver may be accomplished with either a conventional AM type signal generator or an FM signal generator. The output indicator should be an oscilloscope or a vacuum tube voltmeter.
Although it is proterable to une an FM generator and an oscilloscope, reasonably accurate alignment is obtainable when using a conventional AM generator and a vacuum tube voltmeter providing proper care is exercised in adjusting the discriminator circuit trimmer condenser.
IMPORTANT: It an AM signal generator is used. it should be capable of producing fundamental frequencies of 10.7 and 88 to 108 MC. Avoid
using an AM generator which produces signals in the 88 to 108 MC range by using harmonica higher than the second. Generats which dependent upon third. fouth or fitth harmonics tor frequencies of 88 to 108 MC will generally produce undesireable spurious beat signals with the lecal oscillator in the receiver and alignment will be exceedingly difficult.
The following procedure is adaptable for use with either an AM or FM generator and oscilloscope or vacuum tube voltmeter merely follow the instructions that are applicable to the instruments that are used.

1. If alignment of both AM and FM channels is required it is necossary to align the AM channel first, then align the FM channel as instructed
in the following chart (AM alignment procedure is given on page 7).
2. During alignment of this receiver. it will be necessary to set the dial pointer to 98 MC. In order to avoid replacing the chassis in the cabinet. 3. Do not attempt to reposition pointer by releasing it from clip on dial cord as this is done only during AM alignment.
3. Do not attempt to reposition pointer by releasing it trom clip on dial cord as this is done only during AM alignment. 5. Hemove chassis and AM loop antenna from cabinet. Reconnect speaker.
4. Set "PHONORADIO" and Tone switch to "Radio-Bass" pcaition (extreme counter-clockwise)
5. Sel the receiver volume control to the maximum volume position.
6. Dress FM circuit leads as short and straight as possible, particularly those in the oscillator circuit. 1.F. plate and grid leads should also be
7. Alignment of receiver circuits may now be accomplished by using the procedure in the chart below

OJohn F. Rider

FREQUENCY RANGES

Broadcast FM

540.1600 KC 88-108 MC

POWER OUTPUT

Undistorted . 1 watt
Maximum 2.5 watts

SPEAKER

INTERMEDIATE FREQUENCY

CIRCUIT DESCRIPTION

8" PM Dynamic
\{ FM-10.7 MC
AM-455 XC

This receiver operates on 60 cycle Alternating Current (A.C.) at 105 to 125 volts. Rectified $\mathrm{B}+$ voltage is obtained by using a miniature selenium type rectifier which is noted for reliability and long life The built-in antenna used for AM reception is a high impedance loop that is mounted at the rear of the chassis. Two $18^{\prime \prime}$ lengths of wire, arranged to form a dipole, serve as the built-in FM antenna.

Tuning of the radio frequency circuits of the receiver is accomplished by a 5 section gana condenser. Two sections are used to tune the AM antenna and oscillator circuits, and three sections are used to tune the FM antenna, R.F., and oscillator circuits.
An R.F. amplifier stage is utilized to give maximum sensitivity and selectivity as well as high image rejection on FM reception. Although this stage is switched out of the circuit on AM reception, overall receiver sensitivity is adequale for highly satisfactory reception where station signals are of moderate strenath.
Both transformer coupled I.F. stages are used for FM and one stage is used for AM. The first and second I.F. transformers have two sets of windings; one set is tuned to 455 KC for AM operation and the other is tuned to 10.7 MC for FM operation. Switching of the windings, to alleviate undesired beat frequencies, is necessary only in the first I.F. transformer.

STAGE GAIN MEASUREMENT PROCEDURE
 ${ }^{1611384}$ Tonsion Soring

REQUIRED INSTRUMENTS: The amount of amplification or "qain" of each of the stages of this receiver should be measured with an A. C. Vacuum Tube Voltmeter of the high frequency type (uniform response up to 100 MC). A conventional "AM" type signal generator may be used but it must be capable of producing fundamental fre- 5 quensies of 600 KC . and 98 MC -avoid using a generator that produces the 98 MC . signal by means of harmonics.
PROCEDURE: It is exceedingly important to adhere to the procedure outlined below since the accuracy of these measurements will be affected to a considerable extent by the failure to establish proper operating conditions.

1. Be sure that R.F., I.F. and Discriminator stages are carefully and accurately aligned by utilizing the alignment procedure given ${ }^{6}$ in this manual.
2. Connect Sianal Generator as shown below. Note that generator connections differ for " AM " and " FM " measurements.
3. For "AM" measurements, set signal generator to 600 KC . and then carefully tune radio receiver to this signal by using an output meter to indicate peak output. If a local station interferes, set generato: to a nearby frequency and re-tune the receiver.
4. For "FM" measurements, set signal generator to 98 MC . and then carefully tune radio receiver to this signal by using a D. C.

Detection of amplitude modulated 455 KC signals is accomplished by the 12AV6 diode rectification circuit.
Frequency modulation detection is accomplished by an entirely new circuit that is known as the "RATIO DISCRIMINATOR." This FM detector circuit has the unusual ability to reject noise or other briel variations in amplitude of the sianal. The relative insensitivity of the Ratio Discriminator to signal amplitude variation makes it possible to eliminate the use of a "limiter" stage that usually precedes the discriminator in other types of FM detector systems. It will therefore be noled that this receiver utilizes a normal IF. amplifier stage instead of a low gain limiter stage preceding the FM discriminator Audio frequency output from both AM and FM detectors is amplified through the triode section of the 12AV6. The audio power amplifier stage incorporates a 50B5 tube which is coupled to a permanent magnet dynamic speaker. A special inverse feedback arrangement is used which reduces distortion and contributes to exceptionally good tone quality.

DIAL AND POINTER DRIVE CORD ARRANGEMENT

To string dial cord, turn the main drive drum to maximum counter-clockwise position and use following parts:

114955-Clip on end of cord
117057 - Cord (6 feet)
119087-Ring for dial cord

Vacuum Tube Voltmeter as an output indicator-meter must be connected between pin \#3 of 12 H 6 tube and B-. If a local station interferes, set generator to a nearby frequency and re-tune the receiver.
The values of stage gain which are given here were measured with a fixed bias of 1.5 volts on the control grids of all R.F. and I.F. tubes which are connected to the A.V.C. circuit. Therefore, these values are not intended to indicate the full capability of a stage but they will serve as a convenient basis for determining proper operation. In order to duplicate the fixed bias voltage, connect the negative terminal of a 1.5 volt battery to A.V.C. at terminal 7 of the lst I.F. transformer and connect the positive battery lead to B-. R.F. and I.F. circuits are slightly defuned when contact is made with an instrument probe and this action, which is indicated by a change in the output meter reading, may seriously affect the gain measurement. Therefore, it is important to adjust the associated circuit trimmer for a maximum output meter reading and to set the input signal level to a convenient reference point on the gain measuring instrument while the probe is making contact. After removing the probe it is again necessary to adjust the trimmer so as to obtain the same output meter reading and thereby assure that the signal voltage at the specified point has not changed as a result of circuit de-tuning.

[^3]
BROADCAST BAND - "AM" - ALIGNMENT PROCEDURE

1. With the gang fully meshed, the dial pointer should be in the pcsition indicated by the last mark below 55 on the dial. If it is set incorrectly, release the pointer clip on the dial cord and reposition pointer.
2. During the alignment of this receiver, it will be necessary to set the dial pointer to the following frequencies: 1500 Kc ., and 600 Kc . In order to avoid replacing the chassis in the cabinet each t.me a dial setting is required, it will be found more convenient to mark the required frequency points on the dial background before starting the alignment.
3. Disconnect leads from built-in FM antenna (do not disturb connections to built-in AM loop antenna); also disconnect phono plugs and speaker.
4. Remove chassis and AM loop antenna from cabinet. Place loop antenna in same position with respect to the chassis as is maintained when both units are mounted in the cabinet. Reconnect speaker.
5. Connect an output meter across speaker voice coil or from plate of the 50B5 tube to B through a 0.1 Mfd. condenser (see voltage chart for convenient B - connection)
6. Connect ground lead of signal generator to B - lug.

CAUTION: If your signal generator is designed with an AC-DC type power supply, connect ground lead of signal generator to B-lug through a . 25 Mfd. condenser.
7. Set "PHONO-RADIO" and Tone switch to "Radio-Bass" position (extreme counter-clockwise).
8. Set volume control to the maximum volume position and use a weak signal from the signal generator
9. If alignment of both $A M$ and FM channels is required, it is necessary to align the AM channel first; then align the FM channel as instructed in the preceding section.

200 MMFD.
Mica
Condenser

External Anten.
na Terminal (AM) on Loop Antenna

Repeat adjustment of trimmers 5 and 6 at 1500 Kc . Then re-check adjustment of trimmer 7 at 600 Kc .

OSC

600 KC.

IRIMMER LOCATION CH *RT

STEW-WAR PAGE 18-7

ALIGNMENT PROCEDURE

1. Remove the top cover and connect output meter. If the meter has a 2 volt scale or less, connect from chassis to the lug with the white wire on the back of the speaker socket. if a less sensitive meter is used, it should be connected in series with a .1 mid. condenser across the plates of the 6V6GT output tubes.
2. The volume control should be turned to maximum and the bottom of the receiver must be in place during alignment.
3. DIAL CALIBRATION: Before connecting the tuning cable, close the gang condenser (fully meshed). Turn the tuning knob on the control head clockwise until you reach appreciable resistance, then turn the knob counter-clockwise one whole turn. Now connect the tuning control cable as well as all other cables to the chassis and place the control head in a position where it will not be necessary to move it until the alignment procedure is completed. Turn the tuning knob clockwise as far as possible. At this time the last dial division below 55 should be in line with the center of the tuning shaft. If it is not, the dial may easily be moved to the correct position. IMPORTANT. Do not move the control head or radio again until the alignment is complete as this has a tendency to shift the dial position with respect to the tuning condenser position and the setting of the dial will no longer be correct.
4. The station selector push bution should be pushed until a position is reached where the set an be tuned manually with the tuning knob.
5. Remove the small chrome button on side of receiver case and turn the antenna switch so that the slot points toward the WHITE dot on the receiver case. This is the position for the cowl type antenna.

Dummy Ant. in Series With Sig. Gen.	Connection of Sig. Generator Output to Receiver	Signal Generator Frequency	Receiver Dial Setting	Trimmer Number	Trimmer Description	Type of Adjustment
1 MFDCONDENSER	Control Grid of 6A8 Tube (do not remove grid cap)	455 KC	Any Point Where It Does Not Affect Signal	1	2nd 1.F.	Adjust for maximum output. then repeat.
				2-3	1st I.F.	
-60 MMFD. MICA CONDENSER	Clip to Lug on Back of Antenna Socket	1400 KC	Exactly1400 KC	4	Oscillator	Adjust for maximum output.
				5	(Antennca	

After the set has been installed, the antenna switch under the small chrome button should be turned so that the slot points toward the red dot if an under car antenna is used, or to the white dot for a cowl antenna. Then tune in a weak signal at about 1360 to 1450 KC . and adjust the antenna shunt condenser. No. 5 (under the large chrome bution) until maximum volume is obtained.
*If you do not have a 60 mmid. mica condenser available, use a 250 mmfd . and turn antenna switch described in No. 5 to the red dot.

- John F. Rider

ALIGNMENT PROCEDURE

1. Remove the top cover and connect output meter. If the meter has a 2 volt scale or less, connect trom chasals to the lug with the white wire on the back of the specker socket. If a less sensitive meter is used, it should be connected in series with α. 1 mid. condenser from the 6V6GT plate to chassis.
2. The volume control should be turned to maximum and the botom of the receiver must be in place during allignment.
3. DIAL CALIBRATION: Before connecting the tuning cable, close the gang condenser (fully meshed). Turn the tuning knob on the control head clockwise until you reach appreciable resistance, then turn the knob counter-clockwise one whole turn. Now connect the tuning control cable as well as all other cables to the chassis and place the control head in a position where it will not be necessary to move it until the alignment procedure is completed. Turn the tuning knob clockwise as far as posaible. At this time the last dial division below 55 should be in ling with the center of the tuning shaft. If it is not, the dial may easlly be moved to the correct position. IMPORTANT. Do not move the control head or radio again until the alignment is complete as this hgs a tendency to shift the dial position with respect to the tuning condenser position and the setting of the dial will no longer be correct.
4. The station selector push bution should be pushed until a position is reached where the set can be tuned manually with the tuning knob.
5. Remove the small chrome button on side of receiver case and turn the antenna switch so that the slot points toward the WHITE dot on the receiver cane. This is the position for the cowl type antenna.

Dummy Ant. in Series With Sig. Gen.	Connection of Sig. Generator Output to Receiver	Signal Generator Frequency	Receiver Dial Setting	Trimmer Number	Trimmer Description	TYpe of Adjustment
$\begin{aligned} & .1 \text { MFD. } \\ & \text { CONDENSER } \end{aligned}$	Control grid of 6A8 tube (do not remove grid cap)	455 KC	Any point where it does not affect signal	1	2nd I.F.	Adjust for maximum output. then repeat.
				$2-3$	1st I.F.	
-60 MMFD. MICA CONDENSER	Clip to lug on back of antenna socket	1400 KC	$\begin{aligned} & \text { Exacetly } \\ & 1400 \mathrm{KC} \end{aligned}$	4	Oscillator Shunt	Adjuat for maximum output.
				5	Antenna Shunt	
After the set has been installed, the antenna switch under the small chrome button should be turned so that the slot points toward the red dot it an under car antenna is used or to the white dot for a cowl antenna. Then tune in a weak signal at about 1360 to 1450 KC . and adjust the antenna shunt condenser, No. 5 (under the large chrome bution) until maximum volume is obtained.						

*If you do not have a 60 mmid. mica condenser avallable, use a $250 \mathrm{~mm} / \mathrm{d}$. and turn antenna switch described in No. 5 to the red dot.

PARTS LIST
Warner
Part
Number
Description
IGNITION NOISE SUPPRESSION PARTS
117251-Distributor Suppressor (BCrew type) 5000 ohms
117301 -Condenser- 1 mfd. 200 volt (generator)
117302 -Condenser- 5 mid 200 volt (ignition)
CONTROL HEAD PARTS

117462 -"A" cable \& socket (from control head to set; 16 inch)
117494-Ammeter cable with bayonet tip
$117496-$ Ammeter cable with fuse ho
111658 -Clip-tor dial drum retainer.
116851 -Clip-hairpin type; on control shatt
117451 -Clutch spring-for tuning dial drum
116948 -Cord dial drive (supplied in 6 ft . lengths)
117466 -Dial drive drum (less scale).
$117499-$ Dial lamp 6 to 8 volt (Mazda 55)
117503 Dial scale $\&$ disc assembly (less drive drum)
117468 -Flexible drive shaft \& housing (tuning)
117473-Flexible drive shaft \& housing (volume)
83319-Fuse insulator tube
117256-Gland nut
17257-Gland nut cover
$r 17255$-Knob-metal tor tuning or volume
$117465-$-Pawl shield-telt pad on push button shatt
117492 -Pilot assembly tor station indicator dial drum
117480 Push button cont assembly
117482 -Push button control cable housing
117482 -Push button control cable with tip
117397 -Push button (station selector)......

END VIEW

STEW-WAR PAGE 18-11

STEW-WAR PAGE 18-13
PACKARD MODEIS PA-333915 Early,STEWART-WARNER CORP. MODELS 3341,3341-R(Iate), FA-333915 Late, PA-353832 3371

ALIGNMENT PROCEDURE

1. Remove the top cover and connect output meter. If the meter has a 2 volt scale or less, connect from chassis to the lug with the white wire on the back of the speaker socket. If a less sensitive meter is used, it should be connected in series with a. 1 mfd. condenser across the plates of the 6V6GT output tubes.
2. The volume control should be turned to maximum and the bottom of the receiver must be in place during alignment.
3. DIAL CALIBRATION: In Custom Models with 6-button control head, hold down "DlAL" butten until tuning motor stops running. Now tune in a station whose frequency in kilocycles is known. Hold the tuning control knob and with the eraser on the end of a lead pencil, move the dial until the correct frequency is indicated. In Arm Rest Models push the Automatic Station Selector Batton until ihe word "DIAL" appears in the window of the control head escutcheon. Now tune in a station whose frequency is known. Pull off the tuning knob and loosen the set-screw underneath this knob. Now turn the tuning control until the dial indicates the frequency of the station you have tuned in, then retighten set-screw, and replace knob. IMPORTANT: Do not move the conirol head again until the alignment is complete as this has a tendency to shift the dial position with respect to the tuning condenser position and the setting of the dial will no longer be correct.
4. Remove the small chrome button on side of receiver case and turn the antenna switch so that the slot points toward the WHITE dot on the receiver case. This is the position for the cowl type antenna.

Dummy Ant. in Series With Sig. Gen.	Connection of Sig. Generator Output to Receiver	Signal Generator Frequency	Receiver Dial Setting	Trimmer Number	Trimmer Description	Type of Adjustment
,				1-6	2nd I.F.	Adjust for maximum output. then repeat.
1 MFD. CONDENSER	Control Grid of 6A8 Tube (do not remove grid cap)	455 KC	It Does Not Affect Signal	$2-3$	1st I.F.	NOTE: Trimmer NO. 6 is used on late radios only. It is adjacent to No. 1 on 2nd I.F. Transformer.
*60 MMFD. MICA CONDENSER	Clip to Lug on Back of Antenna Socket	1400 KC	Exactly 1400 KC	4	Oscillator Shunt	Adjust for maximùm output.
				5	Antenna Shunt	

After the set has been installed, the antenna switch under the small chrome button should be turned so that the slot points toward the red dot if an under car antenna is used, or to the white dot for a cowl antenna. Then tune in a weak signal at about 1360 to 1450 KC and adjust the antenna shunt condenser, No. 5 (under the large chrome button) until maximum volume is obtained.
${ }^{*}$ If you do not have a 60 mmfd . mica condenser available, use a 250 mmid . and turn antenna switch described in No. $\mathbf{4}$ to the red dot.

TOP VIEW

MOTOR SHAFT BINDING

If the shafts of the tuning motor and the station selector switch are not in perfect alignment, binding of the shafts will result. Such binding may cause the motor to stall or else to run continuously, without changing stations.

If such binding occurs, it will be necessary to realign the motor and station selector switch shafts Loosen the four screws holding the motor to the case. Then set the radio receiver on end so that the motor housing is on top. Remove the top cover and observe the shaft alignment between the end of the case and the R.F. housing while the motor is running. Now shift the position of the motor until the shafts line up and turn freely, then retighten the motor mounting screws.

If the shafts cannot be brought into alignment by shifting only the motor, it will be necessary to shift the position of the receiver chassis with respect to the case. Locsen the four screws mounting the chassis to the case and shift the chassis until the shafts can be brought into alignment.

CHIPS IN TUNING MOTOR

If metal chips or filings are present in the motor housing, they will eventually work their way into the drive gears, into the relay or into the air gap between the armature and field poles thus causing the motor to stall or operate erratically. These chips can best be removed by blowing them out with a blast of compressed air, although they can be removed using a small brush or similar device

TONE CONTROL CIRCUIT CHANGES

The tone control circuit of the early and late Custom receiver differs. The latter circuit reduces high note response somewhat, thus reducing hiss and background noises. If a reduction in high note response is desired in the early sets, merely change condenser No. 35 to .05 mfd . This condenser is the one on the top of the output transformer.

CONTROL HEAD PARTS FOR CUSTOM MODELS (6 button type)

118576 " A " lead with fuse housing.
118572 Automatic tuning cable-with plug
118580 Bezel-chrome
118562 Bracket for mounting dial drum.
118559 Bushing-dial drum shaft (brass eyelet)
118582 Casting for tuning mechanism.
118575 Clamp-cable retaining
118433 Clamp-control mounting
118432 Clip-cable mounting
111658 Clip-for small gear.
111160 Collar-drive cable retaining
118553 Control head assembly, complete with gland nuts and knobs
118581 Cover for tuning mechanism
118557 Dial drum
118558 Dial drum shaft-with gear
118571 Dial lamp socket-with lead
118404 Flexible drive shaft and housing (tuning).
118403 Flexible drive shaft and housing (volume).
118449 Gasket-push button
118563 Gear-on dial support brackets.
118566 Gear-on tuning shaft
118451 Gland nut
il7257 Gland nut cover
117430 Knob-metal-for tuning or volume
118588 Light shield-metal bracket
118589 Metal grounding clips..
118554 Push button body
118555 Push button cap-(chrome)
118577 Push button retainer bar
118578 Push button switch (3 section)
118579 Push button switch housing
118561 Retaining clip-for dial drum
118583 Retaining clip (small) in front of gear on tuning shaft
118567 Retaining clip-on tuning and volume shafts
(1 2" O.D.)
79138 Screw-for mounting control head (No. 8-32 x 5/16 R.H.M.S.)

Per C
85827 Set Screw--for trip; also control cable retaining
117258 Spacer washers
118560 Spring - on dial drum shaft.
118584 Spring-(rectangular) in front of gear on tuning shaft
118568 Spring washer-on tuning shaft ($1 / 2^{\prime \prime}$ O.D.).
118551 Switch--'Local Distance"
118550 Switch--.' 'ON-OFF"
118552 Switch-tone confrol
118585 Toggle button for tone or local distance switch
118573 Tone control cable-with plug
118569 Trip-for on-off switch-with set screw
118565 Washer--on dial drum shaft (l inch O.D.).
79146 Washer---under gland nut

CONTROL HEAD PARTS FOR ARM REST MODELS

118895 Cable-Station Selector

- 18796 Clamp Cable

118856 Cover--Push Button Switch
118852 Dial Scale
118885 Escutcheon-for control head
118868 Flexible Shaft-Iuning
118867 Flexible Shaft-volume
118786 Gear-(1" Diam.)-on station selector switch.
118789 Idler gear and bracket assembly.
118799 Knob-Push Button

- John F. Rider

PAGE 18-16 STEW-WAR

MODELS 51T126, 51T136, $51 \mathrm{Tl} 46,51 \mathrm{Tl} 76,9018-\mathrm{B}$, 9018-C, 9018-F, 9018-H

STEWART-WARNER CORP.

ALIGNMENT PROCEDURE

I. With the gang condenser fully meshed, the dial pointer should be in the position indicated by the last mark below 55 on the dial. If it is set incorrectly, release the pointer clip on the dial cord and reposition pointer.
2. Remove chassis from cabinet by taking out two screws which hold chassis to bottom of cabinet. Solder approximately $8^{\prime \prime}$ of insulated wire to any E - connection (see voltage chart on opposits side for convenient B-location).
3. Connect ground lead to signal generator to B- through a 0.25 Mid. condenser.
4. Connect output meter across speaker voice coil (terminals at back of speaker) or from plate of $50 B 5$ tube to B- throuqh a 0.1 Mfd. condenser.
5. Set volume control at maximum volume position and use a weak signal from the signal generator.

DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR	CONNECT HIGH SIDE OF GENERATOR TO	SIGNAL GENERATOR FREQUENCY	$\begin{aligned} & \text { RECEIVER } \\ & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	TRIMMER NUMBER	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT
200 MMFD. Mica Condenser	Trimmer on rear section of gang.	455 KC	Any point where it does not affect the signal.	$\frac{1-2}{3-4}$	2nd I.F.	Adjust for meximum output. Then repeat adjustment.
200 MMFD. Mica Condenser	External antenna lead on loop.	1500 KC	1500 KC	5	Broadcast Osciliator	Adjust for maximum output.
200 MMFD. Mica Condenser	External antenna lead on loop.	1500 KC	Tune to 1500 XC generator signal.	6	Broadcast Antenna	Adjust for maximum output.

TRIMMER LOCATIONS

APPROXIMATE STAGE GAIN DATA
Be sure R.F. and I.F. stages are accurately aligned before measuring gain. R.F. gains can be measured with a "channel" type instrument containing a tuned and calibrated R.F. amplifier. A vacuum tube voltmater may be used for audio gain measurements. Observe following precautions

1. For all gain measurements connect signal generator as shown. Use 600 KC . signal with 400 cycle modulation (use nearby frequency if local station interferes.)
2. For R.F. and I.F. measurements connect negative terminal of a 3 volt battery
(two $11 / 2$ volt cells in series) to A.V.C. connection at loop antenna (white wire) and connect positive battery terminal to B This provides a definite operating
3. Be sure radio is carefully tuned to generator signal (use weak signal for sharp tuning.)
4. When using a "channel" type instrument carefully tune it for maximum output at desired frequency before making measurements.

The R.F. and I.F. stage gains shown below are less than under normal operating conditions due to the use of 3 volts fixed bias in order to establish a definite operating point. Therefore, these values are not intended to indicate the full capability af a stage.

Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line valtage will influence stage gain. Accuracy of measurements is dependent upon careful tuning of receiver to generator signal and experience in using your test equipment. These factors may create considerable variation in gain measurements.

- John F. Rider

SCHEMATIC DIACRAM, RADIO RECEIVER, MODEL 1200

SCHEMATIC DIAGRAM, RADIO RECEIVER, MODEL 1202

 117 Volt Power Line Cord.

Pointer Setting		Generator Setting	Input and Dummy	VTVM and Scope Connection and Scale	Adj. and Notes
I. F. ADJUSTMENT					
(1)	Low frequency end of diol	$\begin{aligned} & 455 \mathrm{kc} . \\ & 400 \mathrm{cy} . \mathrm{mod} . \end{aligned}$	$\begin{aligned} & \text { Pin \#7, 12BE6 } \\ & \text { tube } \\ & 0.01 \text { mfd. dummy } \end{aligned}$	-3V DC Scale Green. White (AVC) lead and Black-White (B-) lead.	Adj. Pop and boltom cores of each I. F. Pransformer with nonmetallic screwdriver for maximum voltage.
(2)	'	455 kc . Swept 15 kc.		Scope to Junction C-6 and Volume Control	Adi. same cores as above for best over-lapping curve on scope.
R. F. ADJUSTMENT					
(1)	1650 kc. Condenser plates all way out	$\begin{aligned} & 1650 \mathrm{kc} . \\ & 400 \mathrm{cy} . \mathrm{mod} . \end{aligned}$	Ant. terminal 0.01 mfd dummy	"	Adj. Osc. (front) trimmer on variable condenser for maximum voltage.
(2)	$1400 \text { kc. }$	$\begin{aligned} & 1400 \mathrm{kc} \text {. } \\ & 400 \mathrm{cy} . \mathrm{mad} . \end{aligned}$	'	'	Adj. R. F. and Loop trimmers on variable condenser for maximum voltage.

DIAL STRINGING
DIAGRAM

Voltage and Tube Location Chart

*Where two tube types or voltage values are shown, the first is for the $\mathbf{1 2 0 0}$ chassis, the second is for the $\mathbf{1} 202$ chassis.

Measurements are made at 117 V line, using electronic Voltmeter. Except where otherwise indicated, voltages are D.C. ond are positive with respect to the reference paint which is the common Black-White lead.

SPECIFICATIONS

Voltage Rating - Radio 117 Volts AC-DC	
Voltage Rating - Phono Motor	Volts AC Only
Type of Circuit	Superheterodyne
Tuning Range	540-1640 Kc
Input Power Rating	30 W.atts
Intermediate Frequency	455 Kc
Speaker Voice Coil Impedence	3 Ohm
Power Output	10\% Distortion

TUBE COMPLEMENT

2 12BA6 Miniature RF and IF Amplifer
1 12BE6 Miniature Converter
1 12AT6 Miniature (1200 only) Detector, AVC and Audio Driver
1 6AQ6 Miniature (1202 only) Detector, AVC and Audio Driver
1 50l6GT Power Output

REPLACEMENT PARTS

Resistors

Capacifors

	1200 Model	1202	
25376		C. 14	250 mmf. mica
27760	C. 9	C. 9	.005 mf .600 v
40632	C-2, 4, 5, 10, 12	C-2,4,5,10,12	2.05 mf .400 V
110026	C. 1	C-1	Variable
110209		C. 15	470 mmf. mica
110419	C. 7	C-7,16	. 005 mf .500 V
110420		C. 13	. 01 mf .500 V
110425		C. 8	. 001 mf . Ceramic
110458	C. 3	C. 3	47 mmf . Ceramic
110464	C. 8		470 mmf. Ceramic
110478	C. 6	C-6	Diode Filter
111032	C-11 A, B	C-11 A, B	2, 40 mf. 200 \checkmark Electrolytic
Coils-Transformers-Speakers			
	1200 Model	1202	
114046	x	x	RF Coil Assem.
114047	X	x	Osc. Coil Assem.
114336	X	x	1st. I. F. Transf.
114337	X	x	2nd. I. F. Tronsf.
139020	X		Loop Assembly
139022		X	Loop Assembly
155013	X		Speaker Assem.
155029		x	Speaker Only
155052		x	Speaker Assem.
161413	x	$x \quad 0$	Output Transformer

Miscellaneous

Cabinets and Parts

	120	120	Brown Cabinet		
108065	x				
108066	X		lyory Cabinet		
108078	X		Cabinet		
125013		X	Escutcheon and Grille		
134004	x		Brown Knob		
134005	X		Ivory Knob		
134029		x	Volume and Stotion Knob		
134056		x	Radio-Phono Knob		
138008	x		Dial Lens		
163062	X		Chassi	hold dow	n screw
200624		X	Chassi	hold dow	n screw

NOTE-When ordering replacement parts always specify series number as well as model and part number. Series number is stamped on back of chassis.

[^4]MODELS 120LHB, 120LHI, $1204 \mathrm{HME}, 1204 \mathrm{HMG}$, CHASSIS 112021

REPLACEMENT PARTS

Resistors

PAGE 18-2 SYMPHONY MODEL "BILTMORE" SYMPHONY RADIO \& TELEV. CORP.

TOP CHASSIS VIEW

ALIGNMENTINSTRUCTIONS
Keep the gain of the aignal generator as low
as possible on all alignment vork.
I YPORTANT. The volume control must be set at
-ax. gain on allalignment work.

1. Turn variable condenser fully closed.
2. Connect signal generator through A.l-MFD. Cond.
and connect to the grid of the lRS tube.
3. Align IF's to $455 \mathrm{~K} . \mathrm{C}$. eax. reading. (A)

RF CALIBRATION

1. Turn variable condenser fully open.
2. Place signal generator leads near loop antenna.
3. Set signal generator to 1600 K.C.
4. Aligil osc. section (B) of variable condenser
for max, reading.
5. Set signal generator to 1400 K.C.
6. Turn variable condenser to 140 on dial and align ff (C) section of var. cond. for max. reading

$$
1
$$

CA A I B A A T I O
Turn variable condenser fully open.
Place signal generator leads near loop antenna. 3. Set signal generator to 1600 K .C. 4. Align osc. section B of variable
5. Set signal generator to 1400 K.C.

$$
\text { Turn var. cond. to } 60 \text { on dial and adjust the iron }
$$

core loop loading coil screw for max. reading

ALIGNMENT PROCEDURE-GENERAL:

1. With the tuning scale control wheel turned so that the gang condenser plates are fully meshed, the index should read approximately ${ }^{3}{ }^{3}$-inch to the right of the 550 kc scale calibration mark. If it does not, remove the control wheel from the gang condenser shaft and replace it for correct position. CAUTION-DO not attempt to correct the position by rotating the wheel on the shaft as this will cause the knob to slip.
2. For i-f alignment, it is necessary to remove the chassis from the cabinet.
3. Connect the output voltmeter across the loudspeaker voice coil terminals.
4. Keep radio volume control at maximum and attenuate the signal generator output so that the output voltmeter reading never exceeds 1.0 volt
5. Connect the capacitor as listed in column 2 between the output "High Side" of the test oscillator and the point of input specified.
6. Figure 3 shows the locations of all trimmers listed in the alignment chart.

ALIGNMENT CHART

Step	Connect Test Oscillator to-	Test Osc. Setting	Dial Drum Setting	Adjust Trimmers for Maximum Output
1l2SK7 grid (4) in series with 0.05 mid. cap.	455 kc	1600 kc	2nd i-f trans. trim- mers, C14 and C15	
2	12SA7 grid (8) in series with 0.05 mfd. cap.	455 kc	1600 kc	lst i-f trans. trim- mers, C8 and C9
3Antenna Post in series with 200 mmid. cap.	1620 kc	(Full Open)	C4 (oscillator)	
4Antenna Post in series with 200 mmfd. cap.	1500 kc	1500 kc	C3 (antenna)	

STAGE GAIN AND VOLTAGE CHECKS

Stage gain measurements by vacuum tube voltmeter or similar measuring devices may be used to check circuit performance and isolate trouble. The gain values listed may have tolerances of 20%. Readings should be taken with low signal input so that AVC is not effective
(1) R-F and I-F Stage Gains
Antenna Post to 12SA7 Grid . . 2 at 1000 kc
12SA7 Grid to 12SK7 Grid . . 50 at 455 kc 12SK7 Grid to 12SQ7 Diode Plate . 70 at 455 kc
(2) Audio Gain

15 volts at 400 cycles across the volume control (R11) with control set at maximum will give approximately $1 / 2$-watt output across the loudspeaker, LS1, voice coil.
(3) Oscillator Grid Bias
D.C voltage developed across the oscillator grid leak (R1) averages 7.0 volts at 1000 kc .
(4) Socket Pin Voltages

Figure 2 shows voltages from all tube pins to $\mathrm{B}-$-Voltage readings much higher or lower than those specified may help localize defective components or tubes.

- John F. Rider

- John F. Rider

UNIVERSAL RADIO REPLACEMENT PARTS
UCC-62.3
UCC-6.30
UCC-635
UCU- -3.36
UCU-040
UCW-020
UOP-418
URD-029
URD-081
URD-113
URD-129
URD-141
URF-051

CAT. NO. SYMBOL

SPECIALIZED RADIO REPLACEMENT PARTS

RAB-056	L1	BACK-Cabinet back cover (includes loop antenina)
RAU-022		CABINET-Plastic cabinet (Model 61)
RCE-050	C23A, B	CAPACITOR- 50 nifd., 150 v.; 50 mfd , 150 v .; dry electrolytic
RC'T-021	C2A, B	150 v.; dry electrolytic CONDENSER-Tuning condenser oscillator, and r-f section
RDK-193		KNOB-Volume control knob
RDK-094		KNOB-Tuning dial wheel
RDS-046		SCALE-Dial scale
RJS-003		SOCKET-Octal rube socket (Type 12SA7)
RJS-006		SOCKET-Octal tube socket
RLC-0.51	T4	COIL-Oscillator coil
RRC-053	R11	POTENTIOMETER- 0.5 megohm, volume control
RRW-008	R17	RESISTOR-18 ohms, 1 watt, wire wound
RTL-050	T1	TRANSFORMER-1st I-F transformer
RTL-051	T2	TRANSFORMER-2nd I-F transformer
RTO-036	T3	TRANSFORMER-Output transformer
RWL-009		CORD-Power cord, brown

CLOCK REPLACEMENT PARTS LIST - MODEL No. 8H67

CAT. NO.	SYMBOL	DESCRIPTION	CAT. NO.	SYMBOL	DESCRIPTION
		CASE PARTS Bezel-Venus Bronze			MOVEMENT PARTS (Cont'd) Rotor Unit-M1630
${ }^{\mathbf{C} 5.3 \times 97}$		Bezel-Venus Bronze Bezel Color Ring-White	$\begin{aligned} & \text { C44X38 } \\ & \text { C } 64 \times 1 \end{aligned}$	24 4	Rotor Unit-M1630 Screw-Front Plate (3)
		Bezel Color Ring-White Crystal	C64X1	$\begin{array}{r} 4 \\ 21 \end{array}$	Screw-Front Plate (3) Spreader Post (2)
C61 $\times 825$		Dial	C16×14	12	Sweep Second Hand Shaft
C4X16	3	Knob-Alarm Set	C40×76	16	Switch Assembly
C59 $\times 714$	2	Knob-Switch	C40X88	15	Switch Lever Assembly
C3X49	23	Knob-Time Set	C59 $\times 699$	14	Switch Shaft Assembly
C59 5707		Wire Lead 2," long	C40X 265	13	Switch Shaft Spacer
			C10X 129	22	Time Set Shaft Assembly
		HANDS Alarm Disc	C40× 220	19	Time Set Shaft Spacer (Long)
C55X 10 C32 159		Alarm Disc Hour and Minute	C40X 219	20	Time Set Shaft Spacer (Short)
$\begin{aligned} & \mathbf{C} 32 \times 159 \\ & \mathbf{C} 31 \times 48 \end{aligned}$		Hour and Minute Sweep Second			
		MOVEMENT PARTS		PARTS	SWITCH ASSEMBLY
C11×11	8 18	Alarm Set Shaft			
C35X39	18 6	Base Plate Assembly	C40X83		Switch Bracket
C40X 252	5	Cam Shaft Washer	C40X 26		Lower Contact Block
C46×12		Coil Only	C40X99		Lower Contact Spring
C45×73	27	Field and Coil	C40×85		Contact Spring Insulator
C34X 134	1	Front Plate Assembly	C40×138		Upper Contact Spring
C13X11	10	Hour Hand Sleeve	C40X84		Upper Contact Block
C40×87	7	Intermediate Gear issembly	CiX43		No. 4-40 Hex Nut
C14X17	11	Minute Hand Sleev:-	C1×68		No. 4-40 x ${ }_{\text {it }}{ }^{\prime \prime}$ Rd. Hd. M/S

CLOCK INSTRUCTIONS

1. CONTACT ADJUSTMENT

A. Set switch to "Alarm" position so that cam follower rests on timing cam. Contacts shall be adjusted to $.017^{\prime \prime} \mathrm{min}$. gap.
B. With switch in "Off" position, contacts shall remain open as in " A " and there shall be clearance between cam follower and cam.
C. With switch in "On" position, contacts shall be closed.
D. Set switch to "Alarm" position, turn alarm set knob until cam follower drops into slot of timing cam. The contacts shall be closed.
E. Check for proper contact pressure by depressing lower contact strip, using a small pointed tool. If upper contact strip follows the lower a noticeable amount before the contacts separate, the pressure is sufficient.
F. To insure that contacts close, connect a small lamp in series with the switch assembly when testing.

2. TIMING

A. Set minute and hour hands to 12 o'clock.
B. Set timer dial so that the 12 o'clock mark lines up with small line on the dial. In this position the indicator on the hour hand should also line up with the line on the dial.
C. Adjust timer for contact closure at 6:55 o'clock when dial is set for alarm to operate at 7:00 o'clock. On repeat tests the contacts shall close at 6:55, plus or minus 3 minutes. At all other settings, the contacts shall close within 12 minutes ahead or 2 minutes after the time for which the dial is set.

3. VIBRATOR ADJUSTMENT

A. Vibrator shall start buzzing 10 minutes plus or minus 5 minutes after contact closure occurs.
B. When vibrator is in "Shut-off" position the shut-off spring shall
lift the vibrator sufficientiy above the cam, so that the cam will not contact vibrator in any position.
C. Adjust vibrator for maximum sound.
D. Vibrator shall be shut off before completion of buzzing period.
4. NOISE PREVENTION

Vistac has been applied to such parts as are specified in notes under exploded view of movement. When the parts specified are replaced, a very small amount of Vistac should be applied.

5. GENERAL

A. Alarm set knob to be sufficiently tight on shaft to permit setting of "Alarm" disc in clockwise or counter-clockwise direction, but shall loosen when cam is turned against vibrator.
B. Switch knob shall turn freely.
C. Alarm disc shall not rub against the dial in any position. Prongs must be fully seated in alarm set groove.

6. CAUTION

A. This radio alarm clock will operate satisfacterily only on a circuit supplied with regulated alternating current of the voltage and frequency stamped on name plate.
B. If clock loses time, or hour and minute hands fail to rotate, check clearance of time setting shaft from case back or any obstruction behind the Musalarm. This shaft must be allowed to rotate while clock is in operation
C. It is common practice for people to disconnect their radios during a thunder storm, or to use the outlet for a vacuum cleaner, or when moving furniture in housecleaning. The clock will, of course, stop when disconnected and start immediately when plugged in again. However, it will be necessary to reset the clock to the proper time if disconnected for any reason.

TELE-TONE PAGE 18-1

ELECTRICAL SPECIFICATIONS

	Power Supply	105-125 Volts D.C. or $50-60$ Cycles A.C. 30 Watts
	Frequency Range	532.5 to 1620 kc .
лimimigurimin	Intermediate Freq.	455 kc.
$\square>10^{\circ}$	Tuning	Two gang capacitor
P1	Speaker	4 inch PM 3.5 ohm voice coil impedance
	Power Output	I watt undistorted 1.5 wat† maximum
Remove back to replace tubes	Sensitiviły	800 Microvolts at 50 milli. watts Output
	Selectivity	120 kc broad at 1000 times signal at 1000 kc .
ALICNMENT	PROCEDU	
- Output meter across 3.5 ohm output load. - Volume control at maximum for all adjustments.	- Align for maxi needed to keep	m output. Reduce input as put near 0.4 volts.

SIGNAL GENERATOR				SETTING TUNER	ADJUST TRIMMERS TO MAXIMUM OUTPUT (in order sbown)
Frequency	Coupling Factor	Connection to Receiver	Ground Connection		
455 kc	1 mfd	12BE6 Grid	B-	Rotor full open (Plates out of mesh)	Input and output trimmers on 1F cans
1620 kc	. 1 mfd	12BE6 Grid	B-	Rotor full open (Plates out of mesh)	Oscillator trimmer T2
1400 kc	75 mmf	Hank	B-	1400 kc	Antenna trimmer T 1

TELE-TONE PAGE 18-3
TELE-TONE RADIO CORP. KODEIS 159 Early, 159 Iate CHASSIS AA, $A B$
MODEL 159 EARLY

U1EM	OESERIPTIQN	PART MQ:
$C_{1} \quad c_{2} C_{3}$	3×20 MFO-150 VOLT ELECTROLYTIC	CE- 11
C_{4}	05 MFD-400 VOLT PAPER COND	CP- SO3-1
C5	00015 MFD- 300 VOLT MICA COND.	Cm-131-1
C_{6}	002 MFO- 200 VOLT PAPER COMO.	CP. 202-4
c_{7}	01 MFD. 400 VOLT PAPER COND.	CP. 103.i
C_{8}	02 MFD. 400 VOLT PAPE GONO.	CP - 203.1
C9.610	VARIABLE CONDENSER	CV-10
LF-14	I.F. TRANSFORME ${ }^{\text {m }}$	LF-14
Le.in	LOOP	LP.1A
R_{1}	22,000 OHMS ${ }^{1 / 2}$ W RESISTOM	AC-223-1
R_{2}	130 OHMS $1 / 2 \mathrm{~W}$. RESISTOR	由C-151-1
R_{3}	2.2 MEG. $1 / 2 \mathrm{~W}$. RESISTOR	AC-223-1
R_{4}	10 MEO . $1 / 2 \mathrm{~W}$ W. RESISTON	RC. 106.1
R_{5}	220,000 OHMS ${ }^{\frac{1}{2} \text { \% }}$. AESISTOR	RC- 224-1
R_{6}	470,000 OHMS ${ }^{1 / 2}$ W. RESISTON	RC. 474-1
R 7	150 OHMS 1 W. AESISTOR	RC-131-4
R_{6}	18 JHMS $/ 2 W$ WesISTOA	RC-180-2
R_{9}	1500 OHms ${ }^{\text {L }}$ W. RESISTOR	RC-154.1
A_{1}	1 MEG VOL COWTHOL with 100^-5TOP	ve-9
SP-50	SPEAKER	SP. 50
TR-1	OUTPUT Thansfonmen	TR. 1
LC-1	OSCILLATOA COIL	L6-1
T1, 72	TRImMEAS ON VARIABLE	
BU-47	* 47 PlLOT LIGHT	CU. 41
	$\begin{aligned} & \text { FREA AANOE-330-1700 KE. } \\ & \text { ALIEN TE }-1700 \text { K.C. } \end{aligned}$	
	$P_{i}-1800 \mathrm{ko}$.	
	Thack AF-000 K.C.	

CHASSIS SERIES "AA"

1754	DESEAIPTION	PABT MO.
$C_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	$3 \times 30 \mathrm{MFD}$ - 50 VOLT ELECTROLYTIC	CE - ${ }^{\text {I }}$
c_{4}	. 05 MFO- 400 VOLT PAPER COVO	CP-503-1
C_{5}	. 00015 MFD .500 VOLT MICA COND	CN-151-1
c_{6}	OO2 WFO 200 VOLT PAPER CONO.	CP-202-4
c_{7}	01 MFO. 400 VOLT PAPER COND	CP. 103.4
C_{8}	02 MFC 400 VOLT PAEEM COND	CP-203-1
c9, 610	VAmiable condenser	CV-10
LF-14	1.F TRANSFORMEA	LF.14
LP. 10	L00P	LP P-10
\cdots	22,000 OHMS ${ }^{1 / 2}$ W RESISTON	AC-223-1
P_{2}	150 OHWS ${ }^{1 / 2}$ W RESISTOR	AC.151-1
A ${ }^{\text {a }}$	22 MEG 1/E MESISTOR	AC-225-1
R_{4}	10 Weg V_{2} W. RESISTOR	EC-106-1
59	220.000 OMMS ${ }^{\text {W }}$ W. RESISTOR	RC. 224.1
Q_{0}	4.0 .000 Onms ${ }^{1 / 2}$ W Resistor	RC-474-1
R 1	150 OHMS I W RESISIOR	RC-151-4
F_{6}	18 DHMS l/2W. RESISTOR	RC-180 2
R_{9}	1900 OHmS ${ }^{\text {W/2 }}$ W RESISTOR	RC-152-1
R_{15}	MEG VOL GJNTAOL WITh 100 K STOP	$v C-8$
Sp-43	SPEAKER	SP-43
TP-1	OUTPUT TRANSFORMER	TR-1
LC.1	OSCILLATOA COIL	LC-1
$\begin{array}{cc}11 & \text { T } 2 \\ \text { Bu-47 }\end{array}$	TRIMMERS ON VARIABLE	
BU-47	* 47 PILOT LIGHT	6U-47

CHASSIS SERIES * $Y^{\prime \prime}$

ITEM	DESCRIPTION	PAAT MO.
C, $c_{2} \quad c_{3}$	3×20 MFD 150 VOLT ELECTROLTIC	CE-11
C_{4}	OS MFD 200 VOLT PAPER CONO.	cp-503-4
C_{5}	OOOLS MFO 500 VOLT MICA COND.	CM-151-1
c_{6}	COZ MFO 400 VOLT PAPER COND	CP-202-2
c_{7}	O1 MFO. 150 VOLT MOLDEO COND	CP-103-5
c^{*}	02 MFO OOV VOLT PAPER CONO	CP-203-1
$c_{9} C_{10}$	variable conoensea	cv-10
LC-6	OSCILLATOR COIL	LC-6
LF-24	1.f. thansformer	LF-24
LP-9	LOOP	LP-9
R_{1}	22,000 OHMS $1 / 2 \mathrm{~W}$. RESISTOR 10\%	RC.223-2
${ }^{1} 2$	6800 OHMS 1/2 WESISTOR	RC-602-1
${ }^{+3}$	100,000 OHMS $1 / 2 \mathrm{~W}$. RESISTOR	RC-104-1
${ }^{\text {R }}$	4.7 MEO OHMS K/ W AESISTOR	RC-475-1
R_{5}	2 MES VOL CONTROL Wh 100 K HTOP	vc- 12
${ }^{2} 6$	IOMEG OHMS $1 / 2 \times$ RESISTOR	AC-106-1
${ }^{\text {\% }}$	220,000 OMMS $1 / 2 \mathrm{~W}$ (AESISTOA	AC-224-1
${ }^{8}$	470,000 OHMS $1 / 2 \mathrm{~W}$. AESISTOR	RC- 474-1
${ }_{8}$	150 OHMS D/ W . RESISTOR	nc-151-1
${ }^{10}$	150 OMMS : WESISTOR	RC-151-4
${ }^{1 / 1}$	1500 OHMS IW RESISTOR	RC-152-4
SP-40	SPEAKEA	3P-40
TR-10	OUTPUT taAnsformer	TM-10
$\mathrm{T}_{1} \mathrm{~T}_{\mathbf{2}}$	trimmers on variable	

ITEM	DESCRIPTION	PART NO.
c_{1}, c_{2}	2×40 WFD. 150 VOLT ELECT.	CE-15
c_{3}	. 02 MFD. 400 V. PAPER COND.	CP-203-1
c_{4}	. 05 MFD. 200 V . PAPER COND.	CP-503-4
C_{3}	. 00015 MFD. 500 V . MICA COND.	CN-161-1
${ }^{6}$. 002 MFQ 400 V . PAPER COND.	CP-202-2
c_{7}	. 005 MFD. 200 V. PAPER COND.	CP-502-3
$\mathrm{Ca}_{8}, \mathrm{C}_{9}$	VARIABLE CONDEMSER	c- 14
LC. 6	OSCILLATOR COIL	LC-8
LA-5	Antenna coil	LA-6
LF-24	I. F. TRANSFORMER	Lf-24
n_{1}	10,000 OHMS $\frac{1}{2} \mathbf{W}$ W. 10%	nc-103-2
R_{2}	$4.7 \mathrm{mecorms} 1 / 2 \mathrm{w}$. nesiston	nc-470-1
R_{3}	2 MEG . VOL CONTROL, IOOK STOP	vc-11
R_{4}	10 MEGOHMS $1 / 2 \mathrm{~W}$. RESISTOR	RC-106-1
R_{5}	330,000 OHMS $1 / 2$ WATT	RC-334-1
R_{6}	220,000 OHMS $1 / 2$ WATT	RC-224-1
R_{7}	39 Ohms I Watt resiston	AC-390-4
R_{8}	18 OHMS 1/2 W. RESISTOR	RC-180-1
R9	2200 OHMS I W. Resistor	RC.222-4
$T_{1} T_{2}$	TMIMMERS	
SP-45	SPEAKER	SP-45
Th. 10	OUTPUT TRANSFORMER	TR-10

©John F. Rider

ITEM	DESCRIPTION	part no
$c_{1} c_{2}$	40-40-15O V.ELECTROLYTIC CONDENS.	CE-15
c_{3}	ISO MMF MICA CONDENSER	CM.151.1
c_{4}	.C5 MFD 400 V . PAPER CONDENSER	CP-503.1
c_{5}	.CO2 MFO 200 V.PAPER CONDENSER	CP-202.4
c_{6}	. 005 MFO 200 V.PAPER CONDENSER	CP-502-3
c_{7}	02 MFD 400 V.PAPER CONDENSER	CP-203-1
$\mathrm{C}_{8} \mathrm{C}_{9}$	VARIABLE CONDENSER	$\mathrm{CV}-15$
R_{1}	22,000 OHMS $1 / 2 \mathrm{~W}$ RESISTOR	RC-223-1
R_{2}	180 OHMS 1/2W RESISTOR	RC-181-2
R_{3}	$2.2 \mathrm{MEG} 1 / 2 \mathrm{~W}$ RESISTOR	RC-225-1
R_{4}	10 MEQ $1 / 2 \mathrm{~W}$ RESISTOR	RC-106.1
R_{5}	220,000 OHMS $1 / 2 \mathrm{~W}$ RESISTOR	RC-224-1
${ }^{R_{6}}$	470,000 OHMS $1 / 2 \mathrm{~W}$ RESISTOR	RC-474-1
R_{7}	2200 OHMS IW RESISTOR	RC-222-4
$\begin{aligned} & \mathbf{R}_{8} \\ & \mathbf{R}_{9} \end{aligned}$	18 OAMS $1 / 2 w=10 \%$ RESISTOR 1SO OHMS L/2W RESISTOR	$\text { RC-180. } 2$ RC-15t-1
R_{10}	VOLUME CONTROL	vc. 8
LC-9	OSCILLATOR COIL	LC-9
LF. 29	I.F. TRANSFORMER	LF-29
LP-12	LOOP	LP-12
SP.47.16	SPEAKER WITH OUTPUT TRANSF. MTO.	SP-47.16
$\mathrm{T}_{1} \mathrm{~T}_{2}$	trimmers on variagle	$\mathrm{T}_{1} \mathrm{~T}_{2}$

MODEL 190 TELE-TONE RADIO CORP.
CHASSIS AZ

©john F. Rider

Battery: The battery is an Eveready type 753 battery pack or equivalent. It should be mounted in the compartment provided in the bottom of the cabinet, with plug facing front of cabinet. Battery should be removed when it is dead or if the set is not to be used on battery operation for several months.

Alignment: No attempt should be made to realign this receiver until it has been determined that a poor tube, or some local condition is not responsible for faulty reception.

The Signal Generator may be connected through a 0.01 mf capacitor (used as dummy antenna) to the lug on RF' section (A) of tuning capacitor. Connect ground clip of generator to the chassis. An output meter may be clipped directly across the voice coil lugs. Align the I.F. trimmers to 455 kc , using least possible input from Signal Generator to avoid developing A.V.C. voltage which would make the tuning adjustments very broad.

To align RF trimmers, remove the 0.01 mf capacitor and connect the Signal Generator leads to two or three turns of heavy wire, forming a self-supporting loop of about 7 or 8 inches diameter, placed about a foot away from the receiver's loop antenna. Again, use the least possible input from the Signal Generator. With the tuning capacitor plates completely out of mesh, and pointer at extreme right end of travel, adjust the oscillator trimmer (B) (on front section of tuning capacitor) to 1700 ke. Readjust both Signal Generator and tuning capacitor to 1550 kc and adjust the RF trimmer (A) (on rear section) for maximum response.

HODEIS G-415, H-415 TEMPLETONE RADIO MFG. CORP.

This Radio has 4 tubes plus an instant operating dry disc rectifier. It is a 3-way portable superheterodyne receiver using the latest octal type of low-drain electronic miniature tubes.

Operation: The set operates from 105 to 120 volts, A.C. or D.C. power supply or from selfcontained batteries. Power drain is approximately 18 watts on electric operation. Because it uses an instant operating dry disc rectifier, no warm up time is necessary on either A.C.; D.C., or battery operation. The set will play immediately after the power switch is turned on. When operated on direct current (D.C.), if no reception is obtained, reverse the line plug in the power outlet.

Range: This Radio covers the broadcast band from 540 to 1625 kilocycles. Since the scale is calibrated 55 to 160, the actual frequency of the station received is obtained by adding a zero to the dial calibration.

Controls: Three controls are provided. The left-hand control puts the set into operation and increases the volume with clockwise rotation. The right-hand control tunes the dial to the desired station. The slide switch selects electric operation in the upper position, and battery operation in the lower position.

Antenna: No outside aerial is required as adequate pickup is obtained by the self-contained loop antenna. In areas of poor reception or for weak or distant stations the loop antenna has a directional effect. The set or loop antenna may be turned to the direction of maximum reception.

Battery: The batteries comprise: one $71 / 2$ volt "A" unit Temple \#GB1 or equivalent and one $671 / 2$ volt " B " unit Eveready type 467, Burgess \#XX45, Ray-O-Vac \#4367, Winchester $\# 1710$ or equivalent. They should be mounted in the spaces provided in the cabinet. Batteries should be removed when they are dead or if the set is not to be used on battery operation for several months.

This receiver uses a new "A" battery with the latest type construction, the Temple GB1, that eliminates the need for using five (5) flashlight cells and the attendant difficulties with the ten (10) contacts required for the flashlight batteries. Since it may not at once be readily available all over, it is suggested that a spare GB1 be kept on hand.

Alignment: No attempt should be made to realign this receiver until it has been determined that a poor tube, or some local condition is not responsible for faulty reception.

The Signal Generator may be connected throught a 0.01 mf capacitor (used as dummy antenna) to the lug on RF section of the tuning capacitor. Connect ground clip of generator to the B-terminal. An output meter may be clipped directly across the voice coil lugs. Align the I.F, trimmers and iron core to 455 kc , using least possible input from Signal Generator to avoid developing A.V.C. voltage which would make the tuning adjustments broad.

Provisions are made to align the R.F. trimmers with the receiver in the metal cabinet. Remove the two plug buttons on the right side of the cabinet and connect the Signal Generator leads to two or three turns of heavy wire, forming a self-supporting loop of about 7 or 8 inches diameter, placed about a foot away from the receiver's loop antenna. Again, use the least possible input from the Signal Generator. With the tuning capacitor plates completely out of mesh, and the pointer at the extreme right end of its travel, adjust the oscillator trimmer (on front section of tuning capacitor) to 1625 kc . Readjust both Signal Generator and tuning capacitor to 1550 kc and adjust the RF trimmer (on rear section) for maximum response.

MODELS G-513, G-515, TEMPLETONE RADIO MFG. CORP.

PUUY PLATES $6001000 \quad 1550$
$-$ DIAL PLATE MARKINGS

DS54
 LOCATION OF TUBES
no circumstances should a ground be attached to the chassis-such ground is automatically pro-
vided through the power lines.
Alignment: No attempt should be made to realign this receiver until it has been determined that a poor tube, or some local condition is not responsible for faulty reception. An output meter may be clipped directly across the voice coil lugs.

The Signal Generator may be connected through a 0.01 mf capacitor (used as dummy antenna) to the lug on RF section (B) of tuning capacitor. Connect ground clip of generator directly to chassis. Align the I. F. trimmers to 455 kc, using least possible input from Signal Generator to avoid developing A.V.C. voltage which would make the tuning adjustments very broad. To align RF trimmers remove the 0.01 mf
 or two or three turns of heavy wire, forming a self-supporting loop of about 7 or 8 inches diameter, placed about a foot away from the receiver's loop antenna. Again, use the least possible input from the Signal Generator. With the
 and pointer at extreme right end of travel, adjust the oscillator trimmer (A) (on front section

 -セว siuṭunt पi!M "'əsuodsax unuịxeu . rof (uo!̣

 quired at this point. For checking purposes, four fine marks are engraved on the dial plate. These

 'OY OGGI pue 000t '009 JoJ s.ôu!̣łวs
radio is a 5-tube super-hetero-
 electronic tubes.

Operation: The set operates on 110 to 120 volts, 50 or 60 cycles A. C. and 110 to 120 volts D. C. Power drain is approximately 25 watts.

When operated on direct current (D.C.), if no reception is obtained after approximately one minute of warm-up time, reverse the line plug in the power outlet.

Range:

 is calibrated 54 to 160 , the actual frequency of the station received is obtained by adding a zero to the dial calibration.
 operation. The left-hand control puts set into operation, increases the volume with clockwise rotation, and includes the power switch. The right-hand control tunes the dial to the desired station.

Antenna: For normal reception, no outside aerial is required, as more than adequate pickup is obtained by the self-contained loop antenna.

At installations remote from the stations desired to be heard, improved results may be obtained by rotating the receiver for maximum response, as the loop antenna has a marked directional effect on weak signals. Reception can also be improved, and the directional effect reduced, by attaching a length of insulated wire approximately 15 to 25 feet long, to the antenna connection provided at the back of the cabinet. This wire may be laid on the floor along one side of the room, or concealed under the rug. Under

Alignment: No attempt should be made to realign this receiver until it has determined that a poor tube, or some local condition is not responsible for faulty reception. The Signal Generator may be connected through a 0.01 mf capacitor (used as a dummy antenna) to the lug on the R.F. section (B) of the tuning capacitor. Connect ground clip of generator to the common negative of the electrolytic capacitor. An output meter may be clipped across the voice coil lugs. Align the I. F. trimmers to 455 K.C. using the least possible input from the Signal Generator to avoid developing A.V.C. voltage which would make the tuning adjustments very broad.

The short wave band trimmers must be aligned before attempting to align the broadeast band. To align the short wave band turn the bandswitch to the short wave position and connect the Signal (ienerator through a 0.01 mf capaciter and a 400 hm resistor in series (used as a dummy antenna) to the antenna connection at the back of the cabinet. With the tuning capacitor plates completely out of mesh and the pointer at the extreme right end of travel, adjust the short wave oscillator trimmer (A) to 18.5 megaeycles. With both tuning capacitor and Signal Generator adjusted to 6 megacycles, adjust the short wave antenna coil slug (C) for maximum response. Readjust both the Signal Generator and the tuning capacitor to 18 megacyeles and tune the short wave R. F. trimmer (B) for maximum response.

With the short wave band aligned, the broadcast band trimmers may now be aligned. To align the broadcast band turn the bandswitch to the broadeast position. Remove the 0.01 mf capacitor and the 400 ohm resistor and connect the Signal Generator to two or three turns of heavy wire, forming a self supporting loop of about 7 or 8 inches diameter placed about a foot away from the receiver's loop antenna. Again use the least possible input from the Signal Generator. With the tuning capacitor completely out of mesh and the pointer at the extreme right end of travel, adjust the broadcast oscillator trimmer (E) to 1620 kilocycles. With the dial pointer set to 600 KC adjust the padder (F) while rocking the signal generator dial for maximum audio output. Readjust both Signal Generator and dial pointer to 1550 kilocycles and adjust the R. F. trimmer (D) for maximum response.

TUBE A TRIMMER LOCATION
'PESISTORS ARE IN ONHS, CAPACITORS WH LWLISS OTHERWISE DECLIFD

5. C-IAABCD DISO A 4 S SECTION ELECTROL
6. NTERMEDIATE FREQUENCY $455 \times C$
6. NTERMEDIATE FREQUENCY $455 \times C$.
7 BANDSWITCATSAA,
8 GFA IS WOUND ON C-25.
parrion

John F. Rider

OPERATING INSTRUCTIONS and SERVICE NOTES.

Model G-522 is a 5-tube, two band superheterodyne receiver using the latest types of low drain electronic tubes.

Operation: The set operates on 105 to 120 volts 50 or 60 eycles $\mathrm{A} . \mathrm{C}$. and 10 m to 120 volts D. C. Power drain is approximately 30 watts.

When operated on direct current (D. C.) if no reception is obtained after approximately one minnte of warm up time, reverse the linc plug in the power outlet.

Ranges: Model (i-5 22 has both a broadeast and a short wave range. It covers the broadcast hand from 532 to 1700 kilocycles. Since the broadeast (lial seale is calibrated from 55 to 160 the actual frequency of the station may be obtained by adding zero to the dial calibration. The range of the short wave band covered in Model G-522 is from 5.6 to 12.5 megacycles. The short wave dial scale is calihrated directly in megacyeles.

Controls: Four controls are nrovided for the operation of the radio set. The control at the extreme left includes the power switcb and the tone control; this turns the set on with clockwise rotation and provides a contimuous variation in tone from full base at the counter-clockwise end to full treble in the extreme clockwise position. The second control is the volume control; this increases the volume with clockwise rotation. The third control is the bandswitch. In its counter-clockwise position it selects broadeast band operation. In its cleckwise position it switches to operation on the short-wave band. The last control is the tuming control which permits accurate tuning of the slide rule dial through a smooth vernier action.

Antenna: For normal reception, no outside aerial is required, as more than adequate pickup is obtained by the self contained loop antenna. On the br adeast band, at installations remote from stations desired to be heard, improved results may be obtained by rotating the receiver for maximum response, as the loop antema has a marked directional effect on weak sigmals. Reception can also he improved, especially on the short wave band, by attaching a length of insulated wire approximately 15 to 25 feet long, to the antema comnection provicled at the back of the eabinet. This wire may be laid on the floor along one side of the room, or concealed under the rug. Under no circumstances should a ground he attached to the chassis - such
ground is automatically provided Hrongh the power lines.

Alignment: No attempt should be made to realign this receiver until it has been determined that a poor tube, or some local condition is not responsible for faulty reception. The Signal Generator may be connected through a 0.01 mf capacitor (used as a dummy antenna) to the lug on the R. F. section (B) of the tuning capacitor. Comect ground clip of generator directly to chassis. An output meter may be elipped across the voice coil lugs. Align the I. F. trimmers to 45.5 ke using the least possible input from the Signal Generator to avoid developing A. V. C. voltage which would make the tuning adjustments very broad.

To align broadcast R. F. trimmers, remove the 0.01 mf capacitor and connect the Signal Generator to two or three turns of heavy wire, forming a selfsupporting loop of about 7 or 8 inches diameter placed about a foot away from the receiver's loop antoma. Again use the least possible input from the Signal Generator. Turn the bandswitch to the broadeast position. With the tuning capacitor plates completely ont of mesh and the pointer at the extreme right end of travel, adjust the broadcast oscillator trimmer (Λ) to 1700 ke. Readjust both Signal Generator and tuming capacitor to 1550 ke and adjust R. F. trimmer (B) for maximum response. With tuming capacitor plates fully meshed, the receiver should tune to 532 ki , however, no adjustment is required at this point.

To align the short wave band, turn the bandswitch to the short wave position and connect the Signal Generator through a 0.01 capacitor and a 400 ohm resistor in series (used as a dummy antema) to the antemma comnection at the back of the cabinet With the tuning capacitor plates completely out of mesh and the pointer at the extreme right end of travel, adjust the short wave oseillator trimmer (E) to 12.5 megacycles. With both tuning capacitor and Signal Generator adjusted to 6 megacyeles adjust the short wave antema coil slug (C) for maximmom response. Re-adjost both the Signal (Generator and the tuning capacitor to 10.5 megacycles and tome the short wave antema trimmer (D) for maximum response. With tuning capacitor fully meshed, the receiver should tume to 5.6 megacyoles, however, no adjustment is required at this point.

For checking purposes five marks are engraved on the front of the dial plate. These represent in order, the pointer position with the capacitor plates fully meshed and the pointer settings for 600 ke or $6 \mathrm{mic}, 1000 \mathrm{ke} 10.5 \mathrm{me}$, and 1550 kr .

MODEL G-724 TEMPLETONE RADIO MFG. CORP.

Antenna: This radio will operate without an external antenna. For normal reception more than adequate pickup is obtained by the self contained antenna. .At installations remote from station desired to be heard on the broadcast band, improved results may be obtained by attaching twenty or thirty feet of insulated wire to the antenna connection provided in the rear of the cabinet. The wire may be concealed under the rug or laid on the floor along one side of the room.

For normal reception on FM, no outside aerial is required as sufficient signal pickup is secured from the built-in FM antenna. However, in poor receiving locations provision is made for improved results, which may be obtained by the addition of an outside antenna of correct design, properly installed. (Your dealer can supply and install a suitable FM antenna for your F'M Radio).

Alignment: No attempt should be made to realign this receiver until it has been determined that a poor tube or some local condition is not responsible for faulty reception. The following is a list of the minimum equipment necessary to realign this receiver.

1—AM signal generator covering $455 \mathrm{KC}, 600 \mathrm{KC}, 1550 \mathrm{KC}$ and 10.7 MC
2-FM signal generator covering $10.7 \mathrm{MC}, 92 \mathrm{MC}$ and 106 MC
3-Output meter, rectifier type, approximately 0 to 2 volts RMS
4-Dummy antennas
0.01 MFD Capacitor

300 Ohm Risistor
100MMFD Mica Capacitor
In the following alignment procedure the high side of the signal generator is connected to the terminal indicated in the "Signal Generator Coupling" column below. The ground side of the signal generator is connected directly to the chassis. The output meter should be connected across the voice coil of the speaker for all measurements.

In adjusting the radio frequency trimmers and padders it is advisable to "rock" the variable capacitor gang slightly across the signal being delivered by the signal generator until that particular signal has been accurately peaked.

The location of the trimmers, padders and slugs referred to in the alignment procedure chart on page three are shown in the tube and trimmer location diagram below.

tUBE AND TRIMMER LOCATION

ALIGNMENT AND SERVICE DATA

Remove chassis from cabinet for alignment. A signal generator is required having the following frequencies: 455 KC and 1400 KC . An output meter should be connected across the speaker.
FIRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser, through a .l MFD. condenser. The ground lead from the generator may be connected to any spot on the metal chassis. Turn the gang condenser to complete minimum capacity. Set the generator to 455 KC . Adjust the movable trimmers in the IF cans, until a maximum reading is noted on the output meter.

The volume control of the receiver should be turned to maximum during the IF and all subsequent alignment and the generator output as low as possible to prevent the AVC from working and giving false readings.
SECOND STEP: With the leads from the generator still connected as in IF clignment, adjust the generator to 400 KC . Set the dial pointer to 1400 KC on the dial scale. Adjust the oscillator trimmer until the signal is tuned in.
THIRD STEP: Remove the generator leads from the condenser. Connect the hot lead from the generator through a 200 MMFD. condenser to one of the leads which project from the back of the loop antenna. Connect the ground lead of the generator to the remaining lead. With the generator and the receiver still tuned to 1400 KC , adjust the antenna trimmer until a maximum reading is noted on the output meter.

TUBE AND TRIMMER LOCATION

The following is a table of manufacturers and their battery type number.

BATTERY SERVICING

(See Figure No. 1)

To replace batteries, loosen and remove the two screws at the left and right hand corners of the cabinet back. Remove the back and pull out the plug from each battery. Never pull on the wires connected to the plugs as they may break. Always grasp the plug form between the fingers, or use a flat blade to pry out the plug. Observe with care the position of the batteries and plugs when replacing. Be sure that batteries and plugs are replaced as shown in the "Battery Location" diagram. (Figure No. 1)

After the batteries have been installed, replace the back. Make sure that the two wires from the loop antenna are held in place between the brackets of the cabinet and the back by the two fastening screws.
TUNING RANGE

Read aud follow instructions carefully before
attempting operation of this receiver.
POWER SOURCES: This receiver is designed for operation on either an external power source or on the enclosed batteries.

AC OR DC OPERATION: This receiver may be operated on 50 to 60 cycle,
110 to 125 volt AC current or 110 to 125 DC current.
CAUTION: Never plug this receiver into a 220 volt line as this will seriously
damage the component parts which hae been designed for 110 to 125 volt operation only.

To operate on AC or DC open the small door at the lower right hand corner in the back of the cabinet. Pull out the power cord and plug into a
convenient outlet of the proper voltage and current. Follow instructions under "Controls."

To operate on the enclosed batteries, follow instructions under "Control." CONTROLS: This receiver has three control knobs which are located or the front panel of the cabinet.

STATION SELECTOR KNOB: The right hand knob is the station selector.
Rotate this knob to the right or left to select your desired station. The dlai Roale this knob to the right or left to select your a
scale is the scale, the result will be read directly in (KC) kilocycles. (i.e., 60 plus 0
equals 600 KC or 140 plus 0 equals 1400 KC). equals 600 KC or 140 plus 0 equals 1400 KC).

POWER SELECTOR SWTTCHI: The center knob is the power selector. It has three positions which are indicated on the front panel. The extreme left hand
position is the "OFF" position. The small dot on this knob must point to "OFF" when the receiver is not in use. The center position is "AC-DC" and is used when it is desired to operate the receiver from a power line source.
The extreme right hand position is "BATT" and is used when it is desired to operate on the enclosed batteries.

AC OPERATION: When an AC power source is used, set the power selector outlet. The receiver is now ready for operation.

DC OPERATION: If the receiver does not operate after a few seconds, re-
verse the power cord plug in the outlet and it will operate properly.

Remove chassis from cabinet for alignment. $\mathrm{KC}, 1400 \mathrm{KC}, 1720 \mathrm{KC}$. An output meter should be connected across the speaker.

The receiver volume control should be turned to maximum during the I.F. and all subsequent alignments to keep the AVC from working and giving faverloading ${ }^{\text {fald }}$. Keep the generator output as low as possible to preve overloading.
FIRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser, through a 1 MFD condenser. The ground lead from chassis. Turn the gang condenser to complete minimum capacity. Adjust chas generator to 455 KC and adjust the trimmers of the 1st and 2 nd I.F.
trenstormers until a maximum reading is noted on the output meter. SECOND STEP: With the leads from the generator still connected in the same manner, adjust the Signal Generator to 1720 KC . The OSC. trimmer 18 signal is tuned in. THIRD STEP: Remove the hot lead of the generator from the ANT section of the gang condenser. Connect this lead to the primary of the loop antenna Rotate the tuning control until this signal is tuned in. The ANT trimmer is located on the top of the ANT. section of the gang condenser. Adjust this trimmer until a maximum reading is noted on the output meter. No further adjustment should be necessary, unless the set has been damaged, as he corr and condenser in this receiver have been specially
to insure proper alignment at the lower frequencies.

ALIGNMENT AND SERVICE DATA

Remove chassis from cabinet for alignment.
A Signal Generator is required having the following frequencies: $455 \mathrm{KC}, 1400 \mathrm{KC}, 1650 \mathrm{KC}$. An output meter should be connected across the speaker.

The volume control of the receiver should be turned to maximum during the I. F. and all subsequent alignment and the generator output as low as possible to prevent the A.V. C. from working and giving false readings.
FIRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser through the . 1 MFD. condenser. The ground lead from the generator must be connected to " B " minus under the chassis. Turn the gang condenser to complete minimum capacity. Set the generator to 455 KC . Adjust the trimmers of the first and second I. F. transformers until a maximum reading is noted on the output meter.
SECOND STEP: With the leads from the generator still connected in the same manner, adjust the Signal Generator to 1650 KC . Adjust the OSC. trimmer until the 1650 KC signal is tuned in. The gang condenser must be at complete minimum capacity for this adjustment.
THIRD STEP: Remove the generator leads from the gang condenser. Loosely couple the generator to the receiver loop by using a zomplete turn of wire. With the receiver and generator set at 1400 KC , increase the generator output. Adjust the ANT. trimmer until a maximum signal is noted on the output meter. No further adjustment should be made as the coils and gang condenser in this receiver have been specially handled at the factory to insure proper alignment at the lower frequencies.

PART NO.		DESCRIPTION
IRP9	R-1	22M-RESISTOR $1 / 2 \mathrm{~W}$. 20%
IR 20	A2	220M^RESISTOR 1/2W. 20\%
IR 23	R. 3	З3MEG^RESISTOR 1/2 W 20%
1811	- P -4	$470 \mathrm{M} \Omega$ RESISTOR 1/2 W 20%
$19+17$	R-5	33-RESISTOR U2 W 20\%
17.25	A6	$2200 \sim$ RESISTOR IW. $10 \times$
174	A 7	150-RESISTOR 1/2W 20%
lat 13	P. 8	2,2 MEG - RESISTOR W2W. 20\%
tel 19	H0	以OM-RESISTOR 1/2W 20x
vC-\%	R-10	IMEG VOLIME CONTROL
MC-4	C-1	000050 MFO MICA.
PC-8	C-2	-1 MFD CONDENSER 400 V
$\begin{aligned} & P C-5 \\ & M C-2 \end{aligned}$	$\begin{aligned} & \mathrm{C}-3 \\ & \mathrm{C}-4 \end{aligned}$. OSMFD CONDENSER 400 V IOOMMFD. MICA.
PC-6	C-5	OOSMFD. CONDENSER 600 V .
PC-7	C-6	OIMFD CONDENSER 400 V
MC. 3	C-7	. 00022 MFD MICA
, MC-5	C. 8	500 MMFD . MICA.
EC-12	$\begin{gathered} C-9 \\ C+0 \end{gathered}$	4OMFD ISOV ELECTROLYTIC 20 MFO
LL-11	L-1	LOO' ${ }^{\text {ANT }}$
L0.13	L-2	OSC. COIL
6C. $7 \times-$	$\begin{aligned} & G: 1 \\ & 6: 2 \end{aligned}$	GANG CONDENSER
	$\begin{gathered} 6-3 \\ 6-4 \end{gathered}$	ANT TRIMMER OSC. TRIMMER
PU. 5	$\begin{aligned} & \text { PU } \\ & \text { SW } \end{aligned}$	LTSAS CRYSTAL CARTRIDGE SPPST. SWITCH ON VOLUME CONTROL OUTPUT TRANSFORMER
SPK-11co-2	VC	VOICE COIL PM SPE゙AKER
	P	LINE CORD.
M-1	$\begin{aligned} & \mathrm{M} \\ & \mathrm{SW}-1 \end{aligned}$	$110 \cdot 12 \$ V$ GO~ AC. PHONO MOTOR
SW-7		PHOND RADIO SWITCH
TU-18		I2BE6: I2BA6 I2AT5 SOBS 35W4

ALIGNMENT AND SERVICE DATA

Remove chassis from cabinet for allgnment.
A Signal Generator is required having the following frequencles: 455 $\mathrm{KC}, 1400 \mathrm{KC}, 1720 \mathrm{KC}$. An output meter should be connected acrose the speaker.
The receiver volume control should be turned to maximum during the I.F. and all subsequent alignments to keep the AVC from working and giving false readings. Keep the generator output as low as possible to prevent. overloading.
FIRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser, through a . 1 MFD condenser. The ground lead from the generator must be connected to the floating ground buss under the chassis. Turn the gang condenser to complete minimum capacity. Adjust the generator to 455 KC and adjust the trimmers of the 1st and 2nd I.F. transformers until a maximum reading is noted on the output meter. SECOND STEP: With the leads from the generator still connected in the same manner, adjust the Signal Generator to 1720 KC . The OSC. trimmer is located on the front of the chassis. Adjust this trimmer until the 1720 KC signal is tuned in.
THIRD STEP: Remove the hot lead of the generator from the ANT section of the gang condenser. Connect this lead to the primary of the loop antenna through a 200 MMFD condenser. Adjust the Signal Generator to 1400 KC . Rotate the tuning control until this signal is tuned in. The ANT trimmer is
 located on the top of the ANT. section of the gang condenser. Adjust thls trimmer until a maximum reading is noted on the output meter. No further adjustment should be necessary, unless the set has been damaged, as the colls and condenser in this recelver have been specially handled at the factory to insure proper allgnment at the lower frequencles.

TRAV-LER RADIO CORP.

ALIGNMENT AND SERVICE DATA

quired having the following frequencles: 455 KC and 1400 KC . An output meter should be connected across the speaker.

FIRST STEP: Connect the hot lead from the.generator to the ANT. sec tion of the gang condenser, through a .1 MFD . condenser. The ground lesd from the generator may be connected to any spot on the metal chassis. Turn the gang condenser to complete minimum capacity. Set the generator to 45π KC. Adjust the movable iron cores in the IF cans. These IF adjustments are made in the top and in the bottom of the can under the chassis. Adjust the cores until a maximum reading is noted on the output meter.

The volume control of the receiver should be turned to maximum during the IF and all subsequent alignment and the generator output as low as poat sible to prevent the AVC from working and giving false readings.
SECOND STEP: With the leads from the generator still connected as in $\mathbf{I F}$ alignment, adjust the generator to 1400 KC . Set the dial pointer to 1400 KC on the dial scale. Adjust the oscillator trimmer until the signal is tuned in.
THIRD STEP: Remove the generator leads from the gang condenser.
Replace the chassis in the cabinet. Loosely couple the generator to the receiver loop by making a complete turn over the outside of the cabinet. With the receiver and the generator still set at 1400 KC increase the generator output. Adjust the Antenna trimmer through the back of the chassis untll a maximum signal is noted on the output meter.

No further adjustment should be necessary as the colls and gang condenser in this receiver have been specially handled at the factory to insure proper alignment at the lower frequencles.
NOTE: When the antenna trimmer is adjusted at 1400 KC ., the chassis as well as the " A " and " B " batteries must be in normal position in the cabinet m reflect the proper loop impedance.

THEORY OF OPERATION

(The switch numbers in this discussion refer to Fig. 1)

The Delco model $\mathrm{R}-705$ is an auto radio receiver using a conventional superheterodyne circuit, but which introduces an entirely new method of automatic station selection. Depressing a single push button will automatically select and tune in any broadcast station of satisfactory signal strength without requiring a previous push button set-up. This automatic tuning is accomplished by electronically controlling a motor driven permeability tuned tuner. Rectified voltage from the received broadcast signal actuates a 6SN7 tube which in turn instantaneously operates a relay and a solenoid switch disconnecting the motor and stopping the tuner on the frequency of the station.

The Electro-Tuner of this radio sweeps the broadcast band first in one direction and then in the other. In order to do this the tuner driving motor is reversed at each end of the broadcast band. The tuner sliding mechanism trips the reversing switch (5) each time the cuner reaches the end of its movement. This switch (5) alternately grounds opposite ends of the motor's center tapped field coil.

The nature of the Electro-Tuner's circuit is such that unless prevented the tuner would hunt for a broadcast signal after the radio is turned on until the receiver is warmed up and stations can be received. This would cause additional wear on the motor and would cause a change in stations when a change might not be desired. A mechanical interlock switch (6) prevents this hunting when the radio is turned on. It accomplishes this by keeping the motor circuit open when the radio is turned on until the tuning control is operated. When the tuning control is operated for the first time after the radio is turned on the interlock switch (6) is closed. It remains closed until the radio is turned off which causes the switch to open. The interlock switch will then remain open until the radio is turned on and the tuning control button is de. pressed.

Fig. 1

DIV. OF GENERAL MOTORS CORP.

Circuit Operation
The heart of the electrotuner is the 6SN7 twin triode tube and to more readily understand this explanation of the operation, assume the radio is warmed up, the tuner has been operated, and a station is being received. The wiring diagram, Fig. 1, is arranged to show these conditions.
A. With a signal being received, plate current flows in the relay section of the 6SN7 tube and through the coil of the relay switch, holding the relay switch contact (1) in the position shown.

1. The muting voltage is grounded and audio reaches the speaker.
2. The solenoid coil circuit is open and -
a. The motor is not engaged.
o. The motor circuit contacts (2) of the solenoid switch are open.
c. The 6 SN 7 D . C. amplifier plate circuit contacts (3) of the solenoid switch are open.
B. The electrotuner is actuated by momentarily depressing the tuning knob, thereby setting off a chain of events which happen almost simultaneously.
3. The tuning control switch (4), ganged to the tuning knob, is closed when the tuning knob is depressed, thereby grounding the grid G_{1} of the relay section of the 6SN7 tube which stops the plate current flow in the relay section.
a. With no current flowing through the coil of the relay switch (1) the spring loaded contact arm of this switch opens which permits approximately -10 volts to be applied to the grid of the first audio tube, silencing the radio.
b. With the solenoid coil circuit grounded at the relay switch contact (1) the solenoid coil is energized and pulls the plunger into the coil which:
(1) Mechanically engages the motor clutch.
(2) Closes the motor circuit contacts (2) of the solenoid switch which starts the motor driving the tuner.
(3) Closes the D. C. amplifier plate circuit contacts (3) of the solenoid, connecting the plate $\left(P_{2}\right)$ of the D. C. amplifier section to the grid $\left(G_{1}\right)$ in the relay section of the 6SN7 tube.
c. As the motor drives the tuner away from the received signal, the rectified voltage supplied from the detector stage to the grid $\left(G_{2}\right)$ of the D. C. amplifier section of the 6 SN 7 tube disappears. This rectified voltage is negative in polarity with respect to the cathode voltage and is picked up from the detected signal at the input of the volume control in the detector stage through a potentiometer (sensitivity adjuster). The removal of this negative voltage from the grid (G_{2}) of the D. C. amplifier section of the 6 SN 7 tube drives it well above the cutoff voltage.
4. The tuning control switch (4) is opened when the tuning knob is released. This removes the ground from the grid $\left(G_{1}\right)$ of the relay section of the 6 SN 7 tube and allows voltage to reach the plate $\left(\mathrm{P}_{2}\right)$ of the D . C. amplifier section.
a. Plate current flows in the D. C. amplifier section since the grid (G_{2}) of the D. C. amplifier is well above the cutoff voltage.
b. The plate current flows through the 220 M ohm resistor and the resultant voltage drop keeps the grid $\left(G_{1}\right)$ of the relay section of the 6SN7 tube biased below cutoff and current does not flow in the relay section.
c. The motor continues driving the tuning mechanism across the broadcast frequencies and control of the motor and clutch is transferred from the tuning control switch to the D. C. amplifier section of the 6SN7 tube so that the tuner will stop on the first station with sufficient signal strength.
C. The Electro-Tuner is stopped by and on the first station of sufficient signal strength with another chain of events that are almost simultaneous.
5. As the tuning mechanism sweeps into a receivable signal the rectified signal appears across the sensitivity adjuster.

UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP.

a. A portion of this rectified voltage is applied to the grid G_{2} of the D. C. amplifier. Since this voltage is negative with respect to the cathode the D. C. amplifier is biased near cutoff, which reduces the plate current flow in this section. This low current reduces the voltage drop across the 220 M ohm resistor allowing the grid G_{1} of the relay section to rise above cutoff. The relay section of the 6SN7 tube starts conducting.
2. As the relay section of the 6SN7 tube starts conducting, it actuates the relay switch coil and pulls the contact arm (1) back to the position shown in the diagram.
a. The muting voltage is removed from the audio circuit by grounding it through the contact arm of the relay switch.
b. The solenoid circuit opens thus de-energizing the solenoid.
(1.) The motor is mechanically declutched stopping the tuning mechanism on the received signal.
(2.) The motor circuit contacts (2) of the solenoid switch are opened stopping the motor.
(3.) The 6 SN 7 D. C. amplifier plate contacts (3) are opened removing the D. C. amplifier from the control circuit.
The Electro-Tuner has now tuned the radio to a station and when another station is desired, it is only necessary to depress tuning control momentarily.

Sensitivity Control

The sensitivity control is a continuously variable potentiometer located on the steering column control unit.

Electrically the sensitivity control is located in the cathode circuit of the 6SQ7 detector tube. When the potentiometer arm is in the position nearest ground the cathode of the D. C. amplifier section of the 6 SN 7 tube has the lowest possible applied cathode voltage. This means that the relative potential between the cathode and the grid of the D. C. amplifier is a minimum resulting in maximum plate current flow in this section.

Assume that the plate current in the D.C. amplifier section becomes low enough to stop the tuner when the grid $\left(G_{2}\right)$ is two volts below the cathode. When the tuner is sweeping between stations and no signal is being received the grid $\left(G_{2}\right)$ of the D. C. amplifier is approximately +12 volts and the cathode is approximately +7 volts when the sensitivity control is adjusted to the maximum voltage position. Our voltage differential from cathode to grid is now +5 volts. To stop the tuner we need a rectified signal voltage of -7 volts which drives the grid two volts below the cathode.

If the sensitivity control is at the minimum voltage position with no signal the grid (G_{2}) is again +12 volts and the cathode is approximately +4 volts, making the differential from cathode to grid +8 volts. Now, to stop the tuner we need a rectified signal voltage of -10 volts.

The local signal strength of the received station is proportional to the value of the rectified signal; the stronger the station the more negative the rectified signal voltage. Therefore, when the sensitivity control feeds maximum voltage to the cathode $\left(\mathrm{K}_{2}\right)$ it is in the position of maximum tuner sensitivity and the tuner will stop on relatively weak signals. When the sensitivity control is feeding the minimum voltage to the cathode (K_{2}) the tuner will stop only on relatively strong stations.

Sensitivity Adjuster

Local reception conditions vary so greatly over the U.S. A. that an additional adjustment is necessary so the tuner can be made to select only the locally strong stations at minimum position of the steering column sensitivity control. This adjustment has negligible effect on tuner operation when the sensitivity control is set so the tuner will stop on a naximum number of stations.

Electrically the sensitivity adjuster is a potentiometer which governs the amount of rectified signal voltage impressed on the grid $\left(G_{2}\right)$ of the D. C. amplifier. Therefore it establishes the maximum signal strength necessary to stop the tuner when the sensitivity control is positioned to stop the tuner only on very strong stations.

UNITED MOTORS SERVICE

 Electro-Tuner
DIV. OF GENERAL MOTORS CORP.

Charging Condenser

No matter where the sensitivity controls are set, there will always be a few weak stations which will produce enough signal to stop the tuner but will not be strong enough to insure those stations being tuned in accurately. In order to prevent the tuner from stopping on such borderline signal strength stations, a charging condenser has been placed across the switch (3) coupling the plate (P_{2}) of the D . C. amplifier and the Grid $\left(G_{1}\right)$ of the relay section of 6 SN7 tube. Whenever the tuner stops on a station the rectified signal voltage must be maintained during the charging time of this condenser or the condenser will pass sufficient current to bias the grid $\left(G_{1}\right)$ of the relay section beyond cut off causing the relay to open and the tuner to move on to the next station. This action will make the relay appear to chatter on some stations. This condition is normal and merely indicates that the received signal is not quite strong enough to stop the tuner accurately.

TROUBLE SHOOTING THE ELECTRO.TUNER

NOTE: This radio will appear to have many operating troubles if the correct " A " voltage is not used. This radio should be operated with "A" voltage between 5.5 and 7.5 volts measured at the fuse on the power supply. It is recommended that bench power supply leads be no smaller than \#14 wire.
I. THE TUNER WILL NOT STOP ON ANY STATIONS.
A. When the sensitivity control (illustration \#94) is at minimum sensitivity. NOTE: Proper operation should receive at least one strong local station.

1. The tuner sensitivity needs adjusting (see page \#1).
B. When the sensitivity control is at maximum sensitivity.
2. Insufficient rectified signal voltage reaches the tuner from the detector stage of the receiver. Sufficient rectified signal voltage will give a VTVM reading of 5 or more

Fig. 2
 DC volts negative from grid to cathode of the DC amplifier section of 6SN7 tube.
a. Stations cannot be tuned in manually.
(1) Receiver is not operating. Service the radio and antenna in the conventional manner. b. Stations can be received manually.
(1) The tuner sensitivity needs adjusting (See Page 1).
(2) The radio sensitivity needs adjusting.
(3) The antenna trimmer needs peaking. If trimmer will not peak use antenna adapter \#4278.
(4) Open circuit between receiver and tuner.
(5) Antenna is faulty.
2. Sufficient rectified voltage reaches the tuner.
a. The 6SN7 tube is faulty.
b. The relay is not operating. The relay should operate with 7MA current.

II. THE TUNER WILL NOT START.

A. The tuner is completely inoperative.

1. The tuning control switch does not close when the tuning control is operated. (See Fig. 2)
2. The interlock switch does not close when the tuning control is operated. (See Fig. 2)
3. The reversing switch is open. (See Fig. 3)
4. The relay tension spring is disconnected. (See Fig. 4)
5. The 6SN7 tube is faulty.
6. The motor switch (Illus. No. 113B) does not close properly. This switch should close before the clutch fingers engage the slotted disc on the motor drive gear. (See Fig. 5). It should open before the clutch fingers engage the manual drive slotted disc. This may appear as intermittent trouble.

UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP.

B. The motor runs without driving the tuning mechanism.

1. The motor clutch does not engage.
a. The motor drive gear slotted disc or the clutch fingers are worn.
b. The clutch engaging yoke does not have enough travel. Adjust the solenoid core "hat" so that the clutch fingers extend into the slotted disc but not through it when the solenoid plunger is all the way in. Check the screw under the solenoid that holds the two pieces that make up the clutch yoke. If this screw is loose tighten it with the linkage in its extended position and solder these securely in place. (See Fig. 5)

Fig. 4
2. One of the gears has failed.
a. The motor drive gear friction safety clutch has failed. (See Fig. 5)
b. The gear teeth are worn. (See Fig. 5)
c. The gears are out of alignment or'mesh. The three mounting screws that mount the gear housing to the motor.control the position of these gears. (See Fig. 5)
3. The reversing switch has failed. The switch will not reverse or continually reverses.
a. The switch is fouled on the trip rod. (See Fig. 3)
b. The trip collars are improperly positioned. They should reverse the motor just before the cam follower reaches the point of the cam. (See Figs. 3 and 6)
4. There is backlash in the tuner slide mechanism.
a. The tuner slide anti-backlash spring is disconnected. (See Fig. 6)
b. The tuner sliding mechanism is binding. (See Fig. 6)

III. MISCELLANEOUS TUNER FAILURES.

A. The tuner operates when the radio is turned on and before the tuning control is operated.

1. The interlock is continuously closed. (See Fig. 2)
B. The tuner reverses before reaching the end of the broadcast band.
2. The reversing switch is fouled on the trip rod. (See Fig. 3)
3. The trip collars are improperly positioned. (See paragraph II, Part B, 3, b.)
C. The tuner will not tune stations accurately.
4. There is mechanical loosening or binding if no stations are tuned in accurately.
5. The 0.5 mfd . charging condenser is open if only weak stations are tuned in inaccurately.
D. The motor runs after stations have been tuned in and tuner has stopped.
6. The motor switch (Illustration \#113B) is continuously closed or shorted.
7. The motor switch (Illus. \#113B) does not open before the clutch fingers engage the manual drive slotted disc.
E. The tuner changes stations when the signal is decreased (viaducts, power lines, large buildings, etc.)
8. The 0.5 mfd . charging condenser is shorted.

Fig. 6

DIV. OF GENERAL MOTORS CORP.

Tubes

5341	12SA7	First Detector--Oscillator
5348	$12 S K 7$	I.F.
5350	$12 S Q 7$	Second Detector--A.E.\&A.V.C.
5451	$50 L 6 G T$	Output
5408	$35 Z 5 G T$	Rectilier

Chassis Miscellaneous Parts

- John F. Rider

		C岂				
	号		$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \end{aligned}$			\％
宅安			$\begin{aligned} & E \\ & E \\ & 0 \end{aligned}$	¢ 8 8 0 －	¢ 0 8 0 0	－
$\underset{\substack{\ddot{0} \\ i n}}{ }$	\rightarrow	\cdots	∞	＊	∞	∞

＊It is recommended that this step be repeated using a received
station of known frequency， Use minimum capacity if two peaks can be obtained．

［82］$c^{c^{2}}$

The dial scalc drawing shoun is a full size
reproduction．It can be used as a direct
reproduction．It can be used as a dire
substitute for regular dial scale in

an！d Built in Loop or External junurin … 0z．．．．．．．．．．
 ALIGNMENT PROCEDURE

Volume Control maximum，＇Signal Generator output mini－ mum for satisfactory output indication． POWER－SUPPLY POLARITY

Fur operation on $\mathrm{d} \cdot \mathrm{c}$ ，the power plug must be inserted in the outlet for correct polarity．If the set does not func tion，reverse the plug
reduce hum．

CALIBRATION SCALE
The glass tuning dial may be easily removed from the
cabinet and temporarily attached to the dial backing plate fahinet and temporarily attached to the

Parts Layout－Top Vicro

UNITED MOTORS SERVICE
DIV. OF GENERAL MOTORS CORP.

© John F. Rider

ALIGNMENT PROCEDURE:

Output Meter Connections					ass Voice Coil
Generator Return				To Chassis Th	ough 0.1 Mfd.
Duminy Antenna					
Generator Output				Minimum for Readable Indication	
Steps	Scrics Condenser or Dummy Antenna	Connest Signal Generator To	Signal Generator Frequency	Tune Receiver $\mathrm{To}^{\text {a }}$	Adjust In Sequence For Max. Output
1	0.000220 Mfd .	12SA7 Grid (Pin \#8)	456 KC	High Frequency Stop	A, B, C, D
2	0.000220 Mfd.	*12SA7 Grid (Pin \#8)	1720 KC	Signal Generator Signal	E
3	0.000220 Mfd .	* Clip to Loop Mtg Board	1400 KC	Signal Generator Signal	F

"The signal generator may be coupled to the receiver by placing a loop electrically across the output of the signal generator and physically near the receiver loop. This loop may be a loop from another radio, a home made loop of 10 or 15 turns, etc.

PARTS LAYOUT - TUBE VIEW

PARTS LAYOUT - CHASSIS VIEW

TUBE SOCKET VOLTAGE CHART

UNITED MOTORS SERVICE

DIV. OF GENERAL MOTORS CORP.

GENERAL

TUBES
SPEAKER
TUNING

TUNING RANGE
Eleven plus rectifie
12 inch P.M.
Manual and mechanical pushfive P.B. for "FM"
(BC) $550 \mathrm{KC}-1700 \mathrm{KC}$ (SW) $5.8 \mathrm{MC} \quad 18 \mathrm{MC}$ (FM) $88 \mathrm{MC} \cdot 108 \mathrm{MC}$ Built-in loop, (BC); built-in dipole, (FM) and (SW); Provisions for external antennas
ANTENNA 105-125 V. AC, 60 Cycles
POWER SUPPLY POWER CONSUMPTION 120 W'atts (140 watts with changer)

BUTTON SETTING

Insulate the muting switch contacts with the instruction card or a similar 4×6 inch paper card as shown before setting the right hand group of "FM" push buttons do not require this treatment.

1. Select any one push button.
2. Pull translucent insert straight out.
3. Insert screw driver blade through large hole of push button into slot of locking screw.
4. Loosen locking screw about one-half turn. (Not more than one full turn.)
5. With push button depressed, carefully tune in desired station with the manual control and tighten the locking screw.
6. Replace the translucent insert with the proper station call letters inserted as follows.

Insulating the Muting Switch Contacts

Setting the Push Buttons

INSERTING CALL LETTERS

1. Slide out metal insert from translucent insert assembly.
2. Insert desired call letter tab.
3. Replace metal insert behind call letter tab.
4. Replace translucent insert assembly into push button mechanism.

AGE $18-14$ UNITED MOTORS

DIAL AND PILOT LAMP REPLACEMENT
The two dial lamps are made accessible by removing the dial escutcheon at the front of the cabinet. The
pilot lamp at the base of the cabinet is removed from pilot lamp at the base of the cabinet is removed from
the front of the cabinet by reaching under the cabinet directly behind the cabinet by reaching under the cabinet straight back a short distance, releasing it from its mounting tongue. The socket and defective lamp may now be brought out in the open for replacement. Replace all lamps with $6-8$ volt Mazda No. 44 or equivalent.

ALIGNMENT PROCEDURE

Removal of the receiver chassis from the cabinet requires the use of other calibration means than the dial glass. Calibration strips mounted on the pointer rails are provided for alignment purposes.
To use these calibration strips, it is necessary to remove the dial plate (brown metal cover) in the fol lowing manner

1. Remove dial pointers. Pull them straight out of their spring clips.
2. Remove the two dial lamp sockets
3. Remove dial plate fastened to the chassis with seven sheet metal schews.
hand side of the pointer carriage will be indexed to zero on the calibration strips.

The receiver is equipped with AUTOMATIC FRETUENCY CONTROI on the "FM" band to Compensate for mechanical variations in the push button mechanism. The correction factor is approximately 5 times: AFC takes hold 100 kc before the station frequency is reached and releases before tuning 450 kc beyond ther
signal. The
The standard RMA dummy specified in the alignment chart consists of a 200 mmf condenser in series condenser in series with a 000 ohm carbon resistor.

note -

Output Meter Connections Across Voice Coil Generator Ground \quad To Chassis Dummy Antenna In Series with Generator Tone Control Position "VOICE"

ALIGNMENT CHART
Calibration Strip Detai

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Step \& Dummy Antenna \& Signal Generator Connection \& Signal Generator Frequency \& \begin{tabular}{l}
Band \\
Switch Pos.
\end{tabular} \& Radio Dial Setting \& \[
\begin{aligned}
\& \text { Cal. } \\
\& \text { No. }
\end{aligned}
\] \& Adiust \& Remarks \\
\hline 1 \& 0.01 mfd. cap. \& To stator plates of center section of "AM" tuning cond. \& 455 kc \& "BC" \& 1000 kc \& 55 \& \[
\begin{gathered}
\mathrm{S} 1, \mathrm{~S} 2, \\
\mathrm{~S} 3, \mathrm{S4}, \\
\mathrm{~S} 5
\end{gathered}
\] \& Adiust for max. output. \\
\hline 2 \& 0.01 mfd. cap. \& To stator plates of center section of "FM" tuning cond. \& \begin{tabular}{l}
10.7 mc \\
(No modulation)
\end{tabular} \& "FM" \& Midscale \& 55 \& \[
\begin{gathered}
\text { S6, S7, } \\
\text { S8, S9 } \\
\text { S10, } \mathrm{S} 11
\end{gathered}
\] \& Adiust for max. AVC voltage as measured between pin No. 7 of 6AL5 and ground with a 20,000 -ohm per volt meter. \\
\hline 3 \& 0.01 mfd cap. \& To stator plates of center section of "FM" tuning cond. \& 10.7 mc (No modulation) \& "FM" \& Midscale \& 55 \& S12 \& Adiust for zero voltage as measured between the iunction of C55 and C58 and ground with a 20,000 -ohm per volt meter. \\
\hline 4 \& Std. RMA dummy \& To terminals " A " and "G" on ant. term. strip. \& \[
\begin{aligned}
\& 1500 \mathrm{kc} \\
\& 600 \mathrm{kc}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { "BC" } \\
\& \text { "BC" }
\end{aligned}
\] \& \[
\begin{aligned}
\& 1500 \mathrm{kc} \\
\& 600 \mathrm{kc}
\end{aligned}
\] \& 82 15.5 \& \[
\begin{gathered}
\mathrm{A}^{*}, \mathrm{~B} \\
\text { and } \mathrm{C} \\
\mathrm{D}^{*} \text { and } \\
\text { S13 }
\end{gathered}
\] \& Adjust for max. output. \\
\hline 5 \& Std. RMA dummy \& To terminals " A " and " \(G\) " on ant. term. strip. \& 16 mc \& "sw" \& 16 mc \& 84 \& \(\mathrm{E}^{*}\) and F \& Adiust for max. output. \\
\hline 6

- No \& Two 150 ohm carbon resistors \& | To terminals " D " and D" on ant. term. strip; one 150 ohm resistor in each lead. |
| :--- |
| Adiustments. | \& 108 mc \& "FM" \& 108 mc \& 83.5 \& \[

\mathrm{G}^{*}, \mathrm{H}
\]

and I \& Adjust for max. limiter grid voliage as measured between the junction of R33 and R34 and ground with a 20,000 ohm per volt meter.

\hline
\end{tabular}

* Note-Calibration Adiustments. ground with R34 and ground with a 20,000

Alignment Adjustments-Boffom View

UNITED MOTORS PAGE 18-19
UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP. R-1254

SERVICE PARTS LIST

Illustration No.

Production Service
Part No. Part No.

Description

ELECTRICAL PARTS
COILS AND TRANSFORMERS

1-1.	518907
L-2.	51 A994
L-4.	538009
T-1.	518916
T-2.	518993
T-3.	518915
T-4.	518910
T-5	$51 \mathrm{B908}$
T-6	518911
T-7.	518914
T-8.	50C298
T-9, 11.	50 C 237
T-10.	50 C 236
T-12	50C235
T-13	50 C 263
T-14	55B105
T. 15	52 Cl 53

1217643	Coil, loop loading
1218351	Coil, antenna ioading
1218362	Coil, R.F. choke
1217649	Transformer, FM, antenna stage
1218355	Transformer, SW, antenna stage
1217718	Transformer, FM, mixer stage
1217646	Transformer, BC, mixer stage
1217644	Transformer, SW, osc. stage
1217647	Transformer, BC, osc. stage
1217648	Transformer, FM, osc. stage
1218413	Transformer, 1st I.F.
1218414	Transformer, FM, interstage I.F.
1216416	Transformer, AM, interstage I.F.
1218415	Transformer, AM, detector stage I.F.
1218265	Transformer, FM, detector stage I.F.
1218418	Transformer, audio output
1218417	Transformer, power
CONDENSERS	

Ilfustration No.	Production Part No.	$\begin{aligned} & \text { Sery } \\ & \text { Part } \end{aligned}$		Description
	CONDENSERS (Continued)			
R-52.	RC20AE331M	C331	330 ohms	2 watts, carbon
R-53, 54	24BV122E	C122	1200 hm	2 watts, WW
R-55, 56	24BV102E	C102	1000 ohm	2 watts, WW

TUBE COMPLEMENT

V-1.	90×6BA6	5252	Type 6BA6, antenna
V-2	90X6AU6	5260	Type 6AU6, mixer
V-3	$90 \times 6 J 6$	5254	Type 6J6, osc.
V-4, 5	$90 \times 6 \mathrm{SG7}$	5226	Type 6SG7, 1st \& 2nd I.F.
V-6	$90 \times 6 \mathrm{SH} 7$	5255	Type 6SH7, FM limiter. AM
V-7	90×6 AL5	5251	Type 6AL5, FM detector
V-8, 9	90X6SQ7	5231	Type 6SQ7, audio amp.
V-10, 11.	90X6V6GT/G	5241	Type 6V6GT/G. power amp
V-12.	90×5 Y3GT	5123	Type 5Y3GT, rectifier

MISCELLANEOUS ELECTRICAL PARTS

L-3.	$57 \mathrm{Cl14}$	1217986	Loop antenna
SW-1	18 A092	1217977	Switch, muting
SW-2	60 C 308	1218369	Band switch assembly
SW-3.	60B309	1218358	Switch, power
SW-4.	60B310	1218359	Switch, tone control
PL-1.	87B1625	1218366	Line cord and plug
LM-1, $2,3$.	39 A003	187189	Lamp. dial light-Mazda No. 44
	87A1615-1	1217680	Transmission line, loop
	57C108-1	1217983	FM folded doublet antenna
LS-1.	$85 C 069$	1218367	Speaker assembly

MECHANICAL PARTS CHASSIS PARTS			
S0-1	36A034	1217634	Receptacle, phono pickup
SO-2	10 A 015	1217633	Receptacle, phono motor
SO-3	6 6277	1217682	Socket, speaker (5 pin)
	6A190	1217684	Socket, octal (tube)
	6B296	1218360	Socket, octal (6V6GT tubes)
	6 A276	1217683	Socket, miniature (tube)
	$86 B 046$	1217629	Socket \& bracket, dial light, L.H.
	868047	1217628	Socket \& bracket, dial light, R.H.
	69A169	1217688	Shield, tube base (miniature tube)
	69A104	1217685	Shield, tube (miniature tube)
	75A076	1217623	Spring, tube retainer
	864037	1218353	Shield, dial light
	69 Cl 172	1218368	Shield, FM coil section
	67B645	1217653	Carriage, pointer
	828145	1218357	Pointer, FM
	82B146	1218363	Pointer, AM
	75 Al32	1218354	Spring, pointer
	75A006	1217624	Spring, dial drive
	38 A017		Cord, dial drive
	830300	1217719	Plate, dial arive cover
TS-1	88 A277	1217652	Terminal strip, antenna
TS-2.	88 A278	1217651	Terminal strip, loop
	76A356	1217616	Clamp, speaker

CABINET PARTS

86B050-2	1218364	Socket, cabinet pilot light
69A197	1217938	Shield, pilot light
69B209	1218356	Shield assembly, cabinet
17B028	1217666	Push-button (brown)
17A027	1217631	Insert, push-button, lucite
17A029	1217936	Insert, push-button, metal
17A025	1217632	Call letters
7D039	1217830	Escutcheon
22D195	1217985	Dial glass, upper
22B194	1217982	Dial glass, lower
69A212	1218349	Shield, escutcheon
76A331	1217980	Clips, dial glass
15B096	1217627	Knob, power switch \& tone control
15B093	1217626	Knob, tuning \& volume controls
15A129	1217935	Knob \& pin assembly bandswitch
86A057	1217981	Jewel, pilot lamp
67A765	1217937	Bracket, pilot lamp
		Record changer (see Bulletin 15D505)
14A161	1217933	Pad, push-button (felt)
660409	1217987	Cabinet, console (walnut)
660409-1	1217988	Cabinet, console (mahogany)

PAGE 18-20 UNITED MOTORS

UNITED MOTORS PAGE 18-21

GENERAL:
Mounting-Model 980797 on all 1948 series $40-60-90$ Buick cars. Model 980798 on all 1948 series $50-70$
The model 980797 is similar to model 980744 and model 980798 is similar to model 980745 . With the exception of parts and illustrations shown in this bulletin, all other information in Bulletin 6D-923 is applicable to models 980797 and 980798.

Illus.	
No.	Production Part No.
20	1213220
39	7255895
40	7256939
47	1217841
47 A	7257817
	7257797
69	7238860
70	7257811
71	7257765
72	7257766
74	7257803
75	7257779
76	7257780
77	7257781
78	7257782
69 A	7257783
70 A	7257818
71 A	7257755
72 A	7257796
74 A	7257786
75 A	7257787
76 A	7257788
77 A	7257789
78 A	7257790
	1334393
	1320577
79	1320576
	1336763
	120375
	1217735

SERVICE PARTS LIST

Service Part No.

A151
7255895
7256939
1217841
7257817
7257797
6040
7238860
7257811
7257765
7257766
7257803
7257779
7257780
7257781
7257782
7257783
7257818
7257755
7257756
7257796
7257786
7257787
7257788
7257789
7257790
1334393
1320577
1320576
6015
120375
G330

Description

150 Ohms $1 / 2 \mathrm{~W}$. Insulated Resistor Speaker-8" Permanent Magnet
Power Transformer
Dial Light Socket (Less Lamp)
Tuner Assembly Complete- 980797
Tuner Assembly Complete-980798
Pointer Cord Pkg. (100^{\prime} length)
Spring-Pointer Cord Tension
Escutcheon
Dial
Dial Shield
Backplate Assembly
"B" Pushbutton
"U" Pushbutton
"I'" Pushbutton
"C" Pushbutton
"K" Pushbutton
Escutcheon
Dial
Dial Shield
Backplate Assembly
"B" Pushbutton
"U" Pushbutton
"1" Pushbutton
"C" Pushbutton
"K" Pushbutton
Tuning Knob
Dummy Knob
Tone Control Knob
Generator Condenser
Hex Nut
0.000033 Mfd. Molded Condenser

PARTS LAYOUT - CHASSIS VIEW

PARTS LAYOUT - TUBE VIEW

UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP.

GENERAL

MOUNTING - All 1949 Oldsmobile Cars.
TUBES-Five, plus rectificr.
SPEAKER- $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical, Permanent Magnet.
TUNING-Manual and 5 P. B. Mechanica!.
ANTENNA TRIMMER COMPENSA. TION-For Antennas Betwcen $0.000050-0.000070 \mathrm{Mfd}$.
TUNING RANGE-550-1600 KC.
PUSH BUTTON SETUP PROCEDURE
$P_{\text {uill }}$ Push Button to the left and out. Tune in desired station manually. Push button all the way in.

MODEL 982400

ALIGNMENT PROCEDURE

Output Meter Connections
Generator Return
Dummy Antenna
Volume Control Position
Tone Control Position
Generator Output

Steps	Scries Condenser or Dummy Antenna	Connect Signal Generator to	Signal Generator Frequency	Tune Receiver to	Adjust in Sequence For Max. Output
1	0.1 Mfd.	7Q7 Grid (Pin \#6)	260 KC	High Frequency Stop	A, B, C, D
2	0.009068 Mfd.	Antenna Connector	1615 KC	High Frequency Stop	${ }^{*} \mathrm{E}, \mathrm{F}, \mathrm{G}$
3	0.000068 Mfd .	Artenna Connector	1400 KC	Signal Generator Signal	J, K
4	0.000068 Mfd .	Antenna Connector	1615 KC	High Frequency Stop	F, G
5	0.000068 Mfd .	Antenna Connector	1000 KC	Signal Generator Signal	L**

Before making this adjustment check mechanical setting of oscillator core " H ." The rear of the core should be $125 / 32^{\prime \prime}$ from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form.) Core adjustments should be made with an insulated screw driver, and core studs should be cemented in place with glyptal or houschold cement after alignment.
** L is the pointer adjustment screw which is on the connecting link, Illus. \#88, between the pointer assembly and the parallel guide bar. It should be adjusted so that the dial pointer corresponds with the 1000 KC mark on the dial. (On the 1 st " 0 ")
With the radio instalied and the car antenna plugged in adjust the antenna trimmer " G " for maximum volume with the radio tuned to a weak station near 1400 KC (sec sticker on casc).

ESCUTCHEON MOUNTING

ESCUTCHEON CROSS SECTION

LSCUTCHEON MOUNTING

SPECIAL INSTRUCTIONS

Unless special precautions are taken in removing the dial escutcheon, there is a possibility that the dial pointer tip will be broken. Therefore in removal of the escutcheon the following procedure is recommended.

1. Loosen but do not remove the two screws holding the pointer back plate (" X " in Escutcheon Mounting Draw. ing Above) and loosen the shellac so that the back plate is free to move.
2. Remove the escutcheon mounting screws " Y " (see Escutcheon Mounting).
3. Carefully lift off the escutcheon (DO NOT FORCE). If the dial backplate is free to move slightly downward the escutcheon will come off easily.
The same caution should be exercised when replacing the escutcheon.

UNITED MOTORS SERVICE

OLDSMOBILE
DIV. OF GENERAL MOTORS CORP:

SERVICE PARTS LIST

Illus.
No
Production Part No.

Service
Part No.
Description

ELECTRICAL PARTS

Coils

7255738
7240251
7257979
7257979
7257977
7257832
7258139
1217846
7258434

Condensers
7258161
G 470
E 503
G 680
7242454

G 390
7258162
E 503
G 222
E 502
E 502
1217848
7241198

E 503
H 402
1212278
1217848
H 602

Resistors

A 22
B 153
A 334
A 334
A 223
A 685
C 15
A 680
A 105
A 473
A 156
A 393
A 224
A 105
B 391
A 224
B 221
C 272
$\left\{\begin{array}{c}\text { B } \\ \hline\end{array}\right.$
B 562

Antenna serics choke
Antenna spark choke
Antenna
R. F.

Oscillator
1st I. F. Assy.
2nd I. F. Assy.
Hash choke
" $A^{\prime \prime}$ spark choke, fuse connector female, and " A " spark condenser

Antenna triminer
0.000047 mfd . ceramic
0.05 mfd .200 V tubular
0.000068 mfd molded

Dual trimmer
R. F. section

Oscillator section
0.000039 mfd . ceramic
0.000300 mfd . compensating
0.05 mfd .400 V tubular
0.002200 mfd . molded
0.005 mfd .400 V tubular
0.005 mfd .400 V tubular

Chassis plate condenser
Electrolytic
20 mfd .25 V
20 mfd .400 V
20 mfd .400 V
0.05 mfd .400 V tubular 0.004 mfd .800 V tubular
"A" spark condenser
Chassis plate condenser.
0.006 mfd . 1600 V . buffer

220 ohms $1 / 2 \mathrm{~W}$ insulated
2.2 megohms $1 / 2 \mathrm{~W}$ insulated

15,000 ohms 1 W insulated
330,000 ohms $1 / 2$ W insulated
$22,000 \mathrm{ohms} 1 / 2 \mathrm{~W}$ insulated
6.8 megohms $1 / 2 W$ insulated

15,000 ohms 2 W insulated
68 ohms $1 / 2 W$ insulated
1 megohm $1 / 2 W$ insulated
47,000 ohms $1 / 2 \mathrm{~W}$ insulated
15 megohms $1 / 2 \mathrm{~W}$ insulated
39,000 ohms $1 / 2 \mathrm{~W}$ insulated
$220,000 \mathrm{ohms} 1 / 2 \mathrm{~W}$ insulated
1 megohm $1 / 2 \mathrm{~W}$ insulated
390 ohms 1 W insulated
220,000 ohms $1 / 7 \mathrm{~W}$ insulated
220 ohms 1 W insulated
1800 ohms $\left\{\begin{array}{l}\text { Replace with } 2700 \text { ohm } 2 \mathrm{~W} \text { and }\end{array}\right.$ (5600 ohm 1 W in parallel

Tubes

1211924
1213565
1213568
1213562
1213981

5003
5292
5295
5290
5301

OZ4—Rectifier
7B6
7 C 5
7 C 5
7 A 7
7Q7

UNITED MOTORS SERVICE
 MODEL 982400
 DIV. OF GENERAL MOTORS CORP.

SERVICE PARTS LIST (Cont.)

Illus. No	Production Part No.
51	
51A	7256697
51B	
51 C	
52	7257645
53	7256664
54	7255881
55	7239124

Service
Part No.
Description
Miscellaneous Electrical

7256697	Control-Volume, tone, and switch Volume control Tone control
	Switch
7257645	Lamp, Mazda \#44
7256664	Speaker, 6×9 elliptical, PM
7255881	Transformer, output
8542	Transformer, power

MECHANICAL PARTS
Chassis

7256742	Connector-Antenna 7258434
7241356	Connector-Fuse female, "A" spark choke, and spark condenser
7236279	Socket-Loctal tube
7239125	Socket-Octal tube
Socket-Vibrator	

Tuncr

7256688	Backplate, Pointer
7258492	Bushing and manual drive shaft
7258072	Clutch disc-Driven
7258203	Connecting link-Core bar
7258211	Core guide bar-Parallel
7256271	Pointer connecting link
7255992	Spring-Pointer connecting link
7258468	Core Powdered iron
7256722	Escutcheon assy.
7258423	Dial backplate
7258152	Dial
7256705	Gear and Bracket--Worm
7256495	Gear and Bushing Clutch
7256707	Pointer assy.
1219174	Pointer tip package
1219175	Sushbutton and slide assy.
7256488	Spring-Clutch
7257415	Spring-Core bar connccting link
7255984	Spring-Slide return
1217820	Socket-Dial light

INSTALLATION PARTS

554691	554691
7258476	6016
1911095	6015
1912757	6015
120151	120151
555348	555348
7256702	7256702
554515	554515
7240138	6013
7257239	7257239
414237	414237
554339	554339
1912900	1912900

" A " Lead, condenser, and fuse connector male Condenser, "A" Lead
Condenser, generator
Condenser, generator
Condenser, ignition coil
Fuse, 15 amperes
Hood ground clip
Knob-Control
Knob-Tone and dummy
Static collector
Suppressor-Distributor
Suppressor insulator
Trim plate-Instrument panel
Condenser-Regulator

UNITED MOTORS SERVICE

 PONTIAC
DIV. OF GENERAL MOTORS CORP. PUSH BUTTON SET-UP

Turn counter clockwise - tune in manually - depress loosened button turn button clockwise to tighten.

PUSHBUTTON SET.UP PROCEDURE

Move spring on bottom of button to the left and puli button off. Turn reset screw one turn counterclockwise and push all the way in. Hold the reset screw in and tune in the desired station manually. Carefully release and tighten the reset screw. Replace button. Repeat procedure to set up other buttons.

MODEL 984248

ALIGNMENT PROCEDURE

Output Meter Connections	Across Voice Coil
Generator Return	Receiver Chassis
Dummy Antenna	In Series With Generator
Volume Control Position	Maximum Volume
Tone Control Position	Treble
Generator Output	m for Readable Indication

Steps	Series Condenser or Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust In Sequence For Max. Output
1	0.1 Mfd.	Grid Side R. F. Trimmer 'F '" (See Parts Layout)	260 KC.	High Frequency Stop	A, B, C, D
2	0.000068 Mfd	Antenna Connector	1615 KC .	High Frequency Stop	E
3	0.000068 Mfd .	Antenna Connector	1430 KC .	Signal Generator Signal	F, G
4	0.000068 Mfd .	Antenna Connector	600 KC .	Signal Generator Signal	*H
5	0.000068 Mfd.	Antenna Connector	1615 KC .	High Frequency Stop	E
6	0.000068 Mfd .	Antenna Connector	1430 KC .	Signal Generator Signal	F, G

*Rock Gang Condenser Back and Forth Through Signal During This Adjustment.
With the Radio Installed and the Car Antenna Plugged In Adjust the Antenna Trimmer "G" for Maximum Volume With the Radio Tuned To a Weak Station Near 1400 KC . (See Sticker On Case).

[^5]
*Cars having a distributor with the center tower of the distributor cap $13 / 8$ " high instead of $7 / 8$ " high have a built-in distributor suppressor and should not have an external suppressor installed. These distributors are marked "Radio" on the lower flange.

TUBE SOCKET VOLTAGE CHART

Illus. No.	Production Part No.	Service Part No.	Description
CONDENSERS			
3	7236178	7242450	.000012 Mfd. Compensating
1	7242450	G150	. 000015 Mfd. Molded
2	7238891	7236178	. 000024 Mfd. Compensating
4	7238879	G471	. 000470 Mfd. Molded
5	7236156	7236156	. 000600 Mfd . Silver Mica
6	7240738	7240738	.00075 Mfd. 400 V Tubular
7	7240905	H102	. 001 Mfd. 1600 V Tubular
8	7232956	E502	. 005 Mfd . 600 V Tubular
9	7232956	E502	. 005 Mfd . 600 V Tubular
10	7240906	H602	. 006 Mfd. 1600 V Tubular
11	1209309	E103	. 01 Mfd. 400 V Tubular
12	1209309	E103	. 01 Mfd. 400 V Tubular
13	7236845	E203	. 02 Mfd. 200 V Tubular
14	7231542	E203	. 02 Mfd. 400 V Tubular
16	7236842	E503	. 05 Mfd. 200 V Tubular
17	7236841	E503	. 05 Mfd. 400 V Tubular
18	7236842	E503	. 05 Mfd. 200 V Tubular
20	7238830	7242317 M908	Air Trimmer
20 A		N908	3 Section Electrolytic $20 \mathrm{Mfd} .25 \mathrm{~V}$
20B			10 Mfd .400 V
20 C			15 Mfd .400 V
21	1217848	1217848	Chassis Plate. Condenser
RESISTORS			
25	7237835	A 221	220 Ohms 1/2 W Insulated
26	7237994	B221	220 Ohms 1 W Insulated
27	7233773 1214544	B331	330 Ohms 1 W Insulated
28 29	1214544 7242844	A821	820 Ohms 1/2 W Insulated
30	1214546	C272 A 392	2700 Ohms 2 W Insulated
31	1214546	A392	3900 Ohms 1/2 W Insulated
32	7240918	B562	5600 Ohms 1 W Insulated
33	7233653	C153	15,000 Ohms 2 W Insulated
34	1214553	A473	47,000 Ohms 1/2 W Insulated
35	1213480	A393	39,000 Ohms 1/2 W Insulated
36	1213270	A 104	100,000 Ohms $1 / 2$ W Insulated
37	1213267	A563	56,000 Ohms 1/2 W Insulated
38	1214554	A823	82,000 Ohins 1/2 W Insulated
39	1213270	A 104	100,000 Ohms 1/2 W Insulated
40	1214555	A224	220,000 Ohms 1/2 W Insulated
41	1214555	A224	220,000 Ohms 1/2 W Insulated
42 43	1214555	A224	220,000 Ohms 1/2 W Insulated
43 44	1214555 1214557	A224	220,000 Ohms 1/2 W Insulated
45	1213282	A334 A105	330,000 Ohms 1/2 W Insulated
46	1213282	A105	1 Megohm $1 / 2$ W Insulated
47	1213282	Al05	1 Megohm 1/2 W Insulated
MISCELLANEOUS ELECTRICAL PARTS			
50	7241120	7241120	Speaker - $8^{\prime \prime}$ Round Permanent Magnet Transformer -- Power Transformer - Output Coil-Ist I. F. Coil-2nd I. F. Coil - Antenna Coil-R. F. Coil-Oscillator (Includes Illus.' \#3 and 5) Coil - Hash Choke Coil-Antenna Choke Vibrator Control - Volume, Tone and Switch Volume Control Tone Control Switch Spark Plate, "A" Choke and "A" Connector - "A" Choke Spark Plate "A" Connector Socket - Octal Tube Socket - Loctal Tube Socket -. Vibrator Socket - Antenna
51	7255881	7255881	
52 53	7240453	7240453	
53 54	7242079 7242533	7242079	
54 55	7242533 7242504	7242533 7242504	
56	7242506	7242506	
57	7242527	7242527	
58	7241708	7241708	
59	7255738	7255738	
60	7239124	8542	
$\begin{aligned} & 61 \\ & 61 \mathrm{~A} \\ & 61 \mathrm{~B} \\ & 61 \mathrm{C} \end{aligned}$	7242017	7242017	
62	7240797	7240797	
62A	7241701	7241701	
62 C			
	7236279	7236279	
	7241356	7241356	
	7239125	7239125	
	7239475	7239475	

GENERAL
MOUNTING-All 1947 GMC F. C. Trucks. TUBES—Five, Plus Rectifier.

SPEAKER- $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptical Electrodynamic.
TUNING—Manual and 5 P. B. Mechanical.
ANTENNA TRIMMER COMPENSATION-$.000058-.000090 \mathrm{Mfd}$.

TUNING RANGE-550-1600 KC.

PUSHBUTTON SET-UP

Press pushbutton to the left and pull out Antenno Tune in desired station manually. Push button Adjustment all the way in.

MODEL 2233029

ALIGNMENT PROCEDURE

Volume Control Maximum.

Series Condenser Or Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust Screws In Order
$\begin{aligned} & \text { 0.1 Mfd. } \\ & .000070 \mathrm{Mfd} . \end{aligned}$	6SA7 Pin \#8 Antenna Connector	$\begin{array}{r} 262 \mathrm{KC} \\ 1615 \mathrm{KC} \end{array}$	No broadcast Signal Extreme H. F. end of dial	ABCD *EFG
. 000070 Mfd .	Antenna Connector	1400 KC	Signal generator	J H
. 000070 Mfd .	Antenna Connector	1615 KC	Extreme H. F. end of dial	F G
. 000070 Mfd .	Antenna Connector	1400 KC	Signal generator	J H

[^6]
\[

$$
\begin{aligned}
& \text { mps with } 6.0 \text { volts at sp } \\
& \text { voltage tolerance } \pm 10 \% \text {. }
\end{aligned}
$$
\]

PARTS LAYOUT - TUBE VIEW

© John F. Rider

© John F. Rider

UNITED MOTORS SERVICE
DIV. OF GENERAL MOTORS CORP.

ESCUTCHEON CROSS SECTION

SERVICE PARTS LIST

Illus. No.	Production Part No.	Service Part No.	Description
		ELECTRICAL PARTS	
		COILS	
1	7256233	7256233	Antenna
	7240251	7240251	Antenna Choke
3	7256233	7256233	R. F.
4	7256235	7256235	Oscillator
5	7256011	7256011	1 st I. F.
6	7256012	7256012	2nd I. F.
7	7241708	7241708	"Hash Choke
8	1217846	1217846	" A " Choke
CONDENSERS			
16	7255907	7255907	Antenna Trimmer, fixed capacity .000200 Mfd.
17	7236841	E503	. 05 Mfd. 400 V Tubular
18	7242942	E102	. 001 Mfd . 600 V Tubular
19	7242454	7242454	Dual Trimmer
$\begin{aligned} & 19 \mathrm{~A} \\ & 19 \mathrm{~B} \end{aligned}$			R. F. Section, fixed capacity .000300 Mfd. Oscillator Section, fixed capacity .000100 Mfd .
20	7256348	G270	. 0000270 Mfd. Molded ${ }^{\text {d }}$ (
21	7256276	7256276	. 000160 Mfd . Compensating
22	7236842	E503	. 05 Mfd. 400 V Tubular
23 24	7230767	E502	.005 Mfd. 600 V Tubular
24A		M908	3 Section Electrolytic 20 Mfd .25 V
24 B			20 Mfd .400 V
24 C			20 Mfd .400 V
25	7230892	E503	. $05 \mathrm{Mfd}$.400 V Tubular
26	7239188	E102	. $001 \mathrm{Mfd}$..600 V Tubular
27	7240738	7240738	. 0075 Mfd . 400 V Tubular
28 29	7232956 7233243	E502 H 402	$.005 \mathrm{Mfd}$. . 600 V Tubular .004 Mfd. 800 V Tubular
30	7241259	7241259	Spark Plate
31	7240906	H602	. 006 Mfd . 1600 V Tubular
32	1217848	1217848	Chassis Plate Condenser
RESISTORS			
36	7237835	A221	220 Ohms 1/2W Insulated
37	1214563	A225	2.2 Megohms $1 / 2 \mathrm{~W}$ Insulated
38	7233653	C153	15,000 Ohms 2W Insulated
39	1211085	B103	10,000 Ohms 1 W Insulated
40	1214557	A334	330,000 Ohms 1/2W Insulated
41	1214550	A223	22,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
42	1213282	A105	1 Megohm 1/2W Insulated
43	1214555	A224	220,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
44	1213289	A156	$15 \mathrm{Megohms}{ }^{1 / 2} \mathrm{~W}$ Insulated
45	1216149	3391	390 Ohms 1W Insulated
46	1214555	A224	220,000 Ohms $1 / 2 \mathrm{~W}$ Insulated
47	7237994	B221	220 Chms 1W Insulated
48	7242844	C272	2700 Ohms 2 W Insulated
49	7240918	B562	5600 Ohms 1W Insulated

UNITED MOTORS PAGE 18-41

UNITED MOTORS SERVICE
 DIV. OF GENERAL MOTORS CORP. SERVICE PARTS LIST

MODEL GMC-2233029

ALIGNMENT PROCEDURE:

Output Meter Connection					
Dummy Antenna					
Tone Control Position					
Steps	Series Condenser or Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust In Sequence For Max. Output
1	0.02 Mfd .	7Q7 Grid (Pin \#6)	257.5 KC .	High Frequency Stop	A, B, C, D
2	0.000065 Mfd .	Antenna Connector	1610 KC	High Frequency Stop	E. F. G
3	0.000065 Mfd .	Antenna Connector	1400 KC	Signal Generator Signal	H, J. K
4	0.000065 Mfd .	Antenna Connector	1610 KC	High Frequency Stop	F, G
5	0.000065 Mfd .	Antenna Connector	1400 KC	Signal Generator Signal	*Pointer Adjust. Screw

[^7]This should be adjusted so the pointer reads 1400 KC .
With the radio installed and the car antenna plugged in adjust the antenna trimmer " C " for maximum volume with the radio
tuned to a weak station near 1400 KC .

PARTS LAYOUT-POWER UNIT

PARTS LAYOUT-TUBE VIEW

PARTS LAYOUT-CHASSIS VIEW

SERVICE PARTS LIST

ELECTRICAL PARTS

COILS

5

13
14
15
16
17
18
19
20
21
21A
${ }_{21 \mathrm{C}}^{21 \mathrm{C}}$
22
23
23
24
4

Service Part No.

Production Part No.

1218664

1218639
1218660
1218661

1218643
CONDENSERS
121863
7234242
1215553
7236141
7233608
7230592
7230767
1216881
1218633
G100
G271
G470

G471
E103
G100
G271
G470

G471
E103
G471

El03
7233608
7230592
7230592
1218636
1218632
1218635
1218631
7230767
1218629
1218630
7240248

B223
A156
A223
A332
A156
A105
A227
B271

$C 182$
A105
A133
A105
A823
Bl5I

RESISTORS

1216156
1214550

1213282
1213846
1214573
7242447
1214554
1211005

TUBES

1213562
1213981
1213562
1213565
1213568
1213570

Description
Coils-Permeability Tuning
Antenna Coil
R. F. Coil

Oscillator Coil
Antenna Spark Choke
ist I. F. Assembly
2nd I. F. Assembly
$47,000 \mathrm{Ohm} \mathrm{1/2}$ Watt
.00018 Mfd . Molded Condenser .00018 Mfd . Molded Condenser
Hash Choke

Antenna Trimmer
.00001 Mfd. Molded
.0003 Mfd. Molded
.00005 Mfd . Molded
.01 Mfd .100 V . Tubular
.05 Mfd .200 V . Tubular
.005 Mfd. 100 V . Tubular
.0005 Mfd . Molded
Electrolytic Condenser 20 Mfd .350 V .
20 Mfd .350 V.
20 Mfd .25 V.
01 Mfd. 600 V . Tubular
.05 Mfd .200 V . Tubular
.05 Mfd . 200 V . Tubular
R.F. Trimmer
.0005 Mfd.-Temperature Compensating
Oscillator Trimmer
.00142 Mfd . Silver Mica
.005 Mfd .100 V . Tubular
Spark Plate
.004 Mfd .1600 V . Tubular
.5 Mfd .100 V . Tubular
.5 Mfd .100 V . Tubular
22.000 Ohm 1 W. Insulated

15 Megohm 1/3W. Insulated $22,000 \mathrm{Ohm} 1 / 2 \mathrm{~W}$. Insulated
$3.300 \mathrm{Ohm} 1 / 2 \mathrm{~W}$. Insulated
15 Megohm 1/3 W. Insulated
1 Megohm $1 / 2 \mathrm{~W}$. Insulated
$220,000 \mathrm{Ohm}^{1 / 3} \mathrm{~W}$. Insulated
270 Ohm I W. Insulated
$1,800 \mathrm{Ohm} 2 \mathrm{~W}$. Insulated
1 Megohm $1 / 3 \mathrm{~W}$. Insulated
$33,000 \mathrm{Ohm} 1 \mathrm{~W}$. Insulated
1 Megohm $1 / 3$ W. Insulated
$82.000 \mathrm{Ohm}^{1 / 2} \mathrm{~W}$. Insulated
150 Ohm 1 W . Insulated
5290
5301
5290
5292
5295
5302

7A7-R. F. Amplifier
7Q7-Oscillator-Translator
7A7-I. F. Amplifier
7B6-Detector AVC—Ist Audio
7C5—Audio Output
7 Y4-Rectifier

©John F. Rider

UNITED MOTORS SERVICE

ALIGNMENT PROCEDURE:

Output Meter Connection \qquad Across Voice Coil
Signal Gencrator Return
DIV. OF GENERAL MOTORS CORP.

To Chassis
Dummy Antenna \qquad
Volume Control \qquad Volune
Tone Control \qquad
Generator Outfut \qquad Minimum for Readable Indication

ESCUTCHEON CROSS SECTION

Steps	Series Condenser or Dummy Antenna	Connect To	Signal Generator Frequency	Tune Receiver To	Adjust In Sequence for Max. Output
1	0.1 Mfd.	6SA7 Grid (Pin \#8)	260 KC	High Freq. Stop	A, B, C, D
2	0.000068 Mfd .	Antenna Connector	1615 KC	High Freq. Stop	${ }^{*} \mathrm{E}, \mathrm{F}, \mathrm{G}$
3	0.000068 Mfd .	Antenna Connector	600 KC	Signal Gen Signal	J, K
4	0.000068 Mfd .	Antenna Connector	1615 KC	High Freq. Stop	F, G
5	0.000068 Mfd .	Antenna Connector	1430 KC	Signal Gen. Signal	L**

*Before making this adjustment check the mechanical setting of the oscillator core "H." The slotted end of the core should be $13 / /^{\prime \prime}$ from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form). Core adjustments are made from the mounting end of the coil form with an insulated screwdriver, and core studs should be sealed with glyprai or household cement after alignment.
***" "L" is the pointer adjustment screw on the pointer connecting link (See tuner picture). Adjust so pointer reads 1430 KC .
With the radio installed and the car antenna plugged in adjust antenna trimmer "G" (See sticker on case) for maximum volume with the radio tuned to a weak station near 1400 KC .

TUNER

MODEL 7256609,
CADILLAC

UNITED MOTORS SERVICE

DIV. OF GENERAL MOTORS CORP.

SERVICE PARTS LIST

Illus. No.	Production Part No.	Service Part No.	Description
	ELECTRICAL PARTS COILS		
1	7257391	7257391	Antenna Coil
2	7240251	7240251	Antenna Choke
j	7257391	7257391	R. F. Coil
4	7256750	7256750	Oscillator Coil
5	7257832	7257832	1st I. F. Assy.
6	7256932	7256932	2nd I. F. Assy.
7	7241708	7241708	Hash Choke
8	1217846	1217846	Spark Noise Choke
CONDENSERS			
13	7256949	7256949	Antenna Trimmer and Bracket
14	7236105	7236105	0.000220 Mfd . Molded
15	7230892	7230592	0.05 Mfd .400 V . Tubular
16	1217744	1217744	0.002200 Mfd . Ceramic
17	1212359	1212359	0.000068 Mfd. Molded
18	7242454	7242454	Dual Trimmer
18A			R. F. Trimmer, Fixed Capacity 0.000300 Mfd .
18 B			Osc. Trimmer, Fixed Capacity 0.000100 Mfd .
19	1217735	1217735	0.000033 Mfd . Molded (Included in R. F. Coil Shield Can)
20	7257424	7257424	0.000180 Mfd - Temperature Compensating
21	7236842	7230592	0.05 Mfd. 200 V. Tubular
22	1215189	1215189	0.000010 Mfd. Molded
23	1217740	1217740	0.000390 Mfd. Molded (On Volume Control)
24	1210275	1210275	0.000100 Mfd . Molded
25	7237870	1208600	0.01 Mfd. 400 V. Tubular
26	7238788	7231536	0.1 Mfd. 400 V . Tubular
27	7237719	7237719	0.015 Mfd . 600 V . Tubular
28	7236134	7236134	0.0015 Mfd. 800 V. Tubular
29	7233769	7233769	$0.005 \mathrm{MId}$.1000 V . Tubular
30	7241259	7241259	Spark Plate (On case at entrance of "A" Lead)
31	1217848	1217848	Chassis Plate Condenser
32	7240906	7240906	0.006 Mfd. 1600 V. Buffer
33	7240724	7240724	Electrolytic Condenser
33A			20 Mfd .400 V .
33B			$20 \mathrm{Mfd}$.400 V .
33 C			20 Mfd . 25 V .
RESISTORS			
39	1213217	1213217	100 Ohms 1/2 W. Insulated
40	1214563	1214563	2.2 Megohms 1/2 W. Insulated
41	7233653	7233653	15,000 Ohms 2 W . Insulated
42	7237595	7237595	15,000 Ohms 1 W . Insulated
43	1214557	1214557	330,000 Ohms $1 / 2 \mathrm{~W}$. Insulated
44	1215563	1215563	6.8 Megohms 1/2 W. Insulated
45	1214550	1214550	22,000 Ohms 1/2 W. Insulated
46	1213282	1213282	1 Megohm 1/2 W. Insulated
47	1213282	1213282	1 Megohm 1/2 W. Insulated
48	1214553	1214553	47,000 Ohms 1/2 W. Insulated (In Illus. 6)
49	1213282	1213282	
50	1213285	1213285	1.5 Megohms 1/2 W. Insulated
51	1213235	1213235	1000 Ohms 1/2 W. Insulated
52	1213235	1213235	1000 Ohms $1 / 2 \mathrm{~W}$. Insulated
53	1213342	1213342	27,000 Ohms 1 W . Insulated
54	7233773	7233773	330 Ohms 1 W . Insulated
55	7237994	7237994	220 Ohms 1 W . Insulated
56	1214573	$\left\{\begin{array}{l}7240918 \\ 7242844\end{array}\right\}$	$\left\{\begin{array}{l}5600 \text { Ohms 1 W. } \\ 2700 \text { Ohms } 2 \mathrm{~W} .\end{array}\right\}$ Replace in Parallel

MISCELLANEOUS ELECTRICAL PARTS

7257791	7257791
115273	115273
187189	187189
7257248	7257248
7256915	7256915
1218056	1218056
7256432	7256432
7256907	7256907
7255881	7255881
7239124	7239124

Control, Volume
Lamp, Dial Light
Lamp, Dial Light
Speaker 6" x $9^{\prime \prime}$ Eliiptical, Pcrmanent Magnct
Switch and Bracket, On-off
Switch, Tone Control
Transformer, Input
Transformer, Output
Transformer Assy., Power
Vibrator, Non-synchronous

UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP.

Illus. No.	Production Part No.	Service Part No.	Description
		MECHANICAL PARTS CHASSIS	
76	7256944	7256944	Connector, Antenna
	1860926	1860926	Ferrule, Dial Light Connector
	1836869	1836869	Shell, Dial Light Connector
77	1218055	1218055	Socket, Dial Light with Lead
	7236279	7236279	Socket, Octal Tube
	7239125	7239125	Socket, Vibrator
78	7257280	7257280	Spring, Vacuum Valve Yoke
79	7256773	7256773	Valve, Vacuum d
80	7257279	7257279	Yoke, Drive, Vacuum Valve
TUNER			
81	1218054	1218054	Backplate, Dial and Socket Assy.
82	7256271	7256271	Connecting Link, Pointer
83	7257353	7257353	Core, Powered Iron Tuning
84	7256105	7256105	Disc, Clutch Driven
85	1218343	1218343	Driveshaft and Bushing, Manual Tuning
86	7256806	7256806	Escutcheon Assy.
87	7256783	7256783	Glass, Dial
88	7256760	7256760	Gear and Bushing
89	7256758	7256758	Gear, Worm and Bracket
90	7237172	7237172	Grommet, Tuner Mounting
91	7256504	7256504	Guide Bar, Parallel
92	7257434	7257434	Pin and Spring Assy.
93	7256787	7256787	Pointer, Dial and Bracket
94	1218053	1218053	Push Button and Plunger (On-off)
95	1218052	1218052	Push Button and Plunger (Tone Control)
96	1218051	1218051	Push Button and Slide Assy. (Tuning)
97	7256761	7256761	Spring, Clutch
98	7257415	7257415	Spring, Guide Bar Connccting Link
99	7255992	7255992	Spring, Pointer Connecting Link
100	7255984	7255984	Spring, Slide Return
	7257361	7257361	Spring, On-off Switch -- Return
	7257361	7257361	Spring, On-off Switch - Anti-Rattle
	7244115	7244115	Spring, Tone Control Switch -- Return
	7241042	7241042	Spring, Tone Control Switch - Anti-Ratile
		INSTALLATION PARTS	
	7256637	7256637	Bracket, Support
	7242478	7242478	Cap, "A" Lead
	1911095	1911095	Condenser, Generator
	1910147	1910147	Condenser, Ignition Coil
	1872486	1872486	Connector
	7240808	7240808	Ferrule, Suppressor Insulating
	147685	147685	Fuse
	7242024	7242024	Fuseholder, Complete
	7257502	7257502	Gasket, Anti-Squeak
	7256784	7256784	Knob, Control
	7257501	7257501	Nut, Mounting
	443370	443370	Screw, Mounting, Condenser to Coil
	415204	415204	Screw, Engine to Dash Ground Strap
	7257406	7257406	Spring, Ground, Hood to Cowl
	7240138	7240138	Static Collector
	5274049	5274049	Strap, Ground, Engine to Dash
	1435482	1435482	Suppressor, Distributor
	7255849	7255849	Suppressor, Spark Plug
	7256636	7256636	Trim Plate
	120388	120388	Washer, Plain, Ground Strap to Outer Cushion Screw
	120395	120395	Washer, Plain, Ground Strap to Outer Cushion Screw
	TUBES		
	7237751	7237751	6SK7
	7237752	7237752	6SA7
	1218149	1218149	6SR7
	1213793	1213793	6V6
	1211924	1211924	024

[^0]: - John F. Rider

[^1]: © John F. Rider

[^2]: *Connect ground lead of signal generator to chassis.
 **When making this adjustment the variable should be rocked back and forth.

[^3]: ** When nieasuring the gain of this stage with a vacuum tube voltmeter the input signal level for minimum meter indication may cause overloading. Under those conditions the measured gain will be found to be approximately 14 X .
 DIFFERENCES in tube characteristics, tolerance of parts, adjustment of tuned circuits and variations in line voltage will influence stage gain. These factors should be given due attention in event the gain of a stage varies extensively from the values shown above.

[^4]: -John F. Rider

[^5]: © John F. Rider

[^6]: * Before making this adjustment check setting of oscillator core " K " with pointer against high frequency stop. The rear of the iron core should be $13 / 4^{\prime \prime}$ from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form.) Core adjustments are made by a bakelite screwdriver in slot in rear end of core. Reseal core studs to guide bar with glyptal.

 Pointer calibration is made by tuning signal generator to 800 KC and the receiver to the signal. Adjust pointer to 800 KC with screw on pointer connecting link assembly.

 When radio is installed, adjust trimmer " G " to match car antenna at approximately 1400 KC .

[^7]: *Refer to the Pointer String Hookup drawing

