VOLUME XVIII

JOHN F RIDER

- John F. Rider

CABINET

Electrical Rating:
Line Voltage 110-120 volts, $50-60$ cycles, A.C.
Power Consumption . . . 67 watts
Tuning Frequency Range:
540 to 1620 KC
Intermediate Frequency:
455 KC
Electrical Power Output:
Undistorted 3.0 watts
Maximum 5.0 watts
Loudspeaker:
Type
Outside Cone Diameter .
Voice Coil Impedance
Magnet Rating
M

Tubes:

Tube	No.	Function
6SK7	V-1	R.F.Amplifier
6SA7	V-2	Frequency Converter
6SK7	V-3	I.F.Amplifier
6J5	V-4	Oscillator
6SK7	V-5	A.F. Amplifier
6V6/GT	V-6	Power Amplifier
6J5	V-7	Detector
5Y3/GT	V-8	Rectifier

GENERAL INFORMATION

This model is a console radio-phonograph combination with a Webster model 56 changer and a Shure P-30 "Silentronic" crystal pickup. The set is housed in a bleached modern, walnut or mahogany period cabinet.

SPECIAL SERVICE INFORMATION

Stage Gain Measurements:

Measurements taken with volume and tone controls maxmum. Switch in Radio position. AVC shorted out.

Standard Output. 50.0 milliwatts
Dummy Antenna 200.0 Mmf.

Antenna to R.F. Grid
R.F. Grid to Converter Grid

6 X at 1000 KC
Converter Grid to 1st I.F. Grid
7 X at 1000 KC
1st I.F Grid to 2nd Detector
46 X at 455 KC
62 X at 455 KC
Overall Audio Gain . . 320 X at 0.5 watts, 400 cycles

Oscillator Cathode Voltages:

Measured at 117 volts A.C. line voltage with an A.C. type vacuum tube voltmeter, input impedance above 10 megohms.

1500 KC
1000 KC
1.0 volts A.C.

800 KC
1.0 volts A.C,

600 KC
1.1 volts A.C.
D.C. Resistance Measurements:

1st and 2nd I.F. Coils
Primary
Secondary 17.0 ohms
ohms*

*NOTE:

To obtain the true reading of the secondary of the second I.F. coil, it is necessary to remove it from the can. This is due to the 47 K resistor inside the can.

Oscillator Coil
Primary
Primary
Secondary

Antenna Coils
Start to Finish . 12.2 ohms
Start to Tap . 10.5 ohms
R.F. Coil

Primary
Secondary
58.0 ohms

Secondary
4.2 ohms

NOTE: Due to the variation in winding methods, the D.C. resistance on all coils is subject to a 20% tolerance.

Socket Voltages:

All D.C. voltages measured with a vacuum tube voltmeter from socket contacts to chassis.-A.C. voltages measured with a 1000 ohms per volt A.C. meter from socket contacts to chassis. Volume and tone controls maximum.-Switch in Radio position. - No signal. - 117 volts A.C. line.

All voltages shown are positive D.C. unless otherwise noted.

SOCKET VOLTAGES

ALIGNMENT PROCEDURE

Alignment procedure consists of the steps outlined in the Alignment Chart.

Connect the test oscillator leads to the mixer grid and ground in series with an .01 Mfd. capacitor (dummy load) for step No. 1, I.F. Alignment. Upon completion of this step, "Rock" the variable condenser to assure that the I.F.'s have been aligned to the correct frequency, not the image frequency.

Use the Hazeltine Standard Test Loop No. 1150, or a reasonable substitute for the balance of the alignment. Place the test loop about two feet from the receiver loop in a vertical position.

It will be noted that all trimmers are accessable without removing the chassis from the cabinet.

IMPORTANT NOTICE: Make certain that each alignment step is done with a minimum input signal.

TRIMMER LOCATIONS

*NOTE: Hazeltine Test Loop No. 1150 (or a reasonable substitute).

TABLE OF REPLACEABLE PARTS

PART	REF.	
NO.	SYMBOL	DESCRIPTION

21053D
21053-1
21053-2
23401
23520
23915
23912
23009
23406
23004
23001
23007
23020
24003
23011
29400B
29102F
29205C
29004 E
29007
32003G
34002D
38088
38089
40003
52015C
54001
58022A
59001.
63026
69006A
73055
73008
73019
73041
73020
73053
73045
73125
73057
25010B
25506C
73049
73051
73022
73214
73081
79002
79005
79007
79010B
83705
86008
89016
89405E

C1 A,B
C2 A,B,C
Capacitor, ceramic, 220 Mmf . 20%
C5-1 to 3 Capacitor, tubular, 05 Mf .400 V .
C6 Capacitor, trimmer, single $3-30 \mathrm{Mmf}$
C7-1 to 2 Capacitor, tubular, .005 Mf .600 V .
C8
Capacitor, tubular, .001 M .600 V
C10 Capacitor, tubular, 2 Mf .400 V .
C11-1 to 2 Capacitor, electrolytic, 20 Mf. 350 V .
C12 Capacitor, tubular, 1 Mf. 400 V .
L2 Coil, R.F.
L3 Coil, Oscillator
Coil, 1st I.F.
Coil, 2nd I.F.
Cord, A.C.
Cover, volume control
Dial, stationized
Dial, eastern
Cord, drive
Knob
Lamp, dial (. 25 amp .) T44
Changer assembly
Needle, pickup
Pickup cartridge, Shure P-30
Pulley, variable
R1-1 to 2 Resistor, 2.2 megohms, $1 / 2 \mathrm{w}, 20 \%$
R2-1 to 2 Resistor, 39 ohms, $1 / 2 \mathrm{w}, 10 \%$
R3
R4 Resistor, 22,000 ohms $1 / 2 \mathrm{w}, 20$
R5 Resistor, 390 ohms, $1 / 2 \mathrm{w}, 10 \%$
R6-1 to 2 Resistor, 1 megohm, $1 / 2 \mathrm{w}, 20 \%$
R7 Resistor, 47,000 ohms, $1 / 2 \mathrm{w}, 10 \%$
Resistor, 10,000 ohms, 2w, 10%
Resistor, 4.7 megohm, $1 / 2 \mathrm{w}, 20 \%$
Control, volume, 1 megohm
Control tone, 5 megohm
Resistor, 220,000 ohms, $1 / 2 \mathrm{w}, 20 \%$
Resistor, 470,000 ohms, $1 / 2 \mathrm{w}, 20 \%$
Resistor, 560 ohms, $1 / 2 \mathrm{w}, 10 \%$
Resistor, 2,000 ohms, $2 \mathrm{w}, 10 \%$
Resistor, 150 ohms, $1 \mathrm{w}, 10 \%$
Socket, tube
Socket, pickup
Socket, A.C.
Socket, lamp
Speaker, $10^{\prime \prime}$ P.M.
Switch, radio-phono
Transformer, power
Transformer, output (5,000 ohm to 3.2)

ALIGNMEN'T PROCEDURE

Alignment consists of the steps outlined in the Alignment Procedure Chart.

Connect the test oscillator leads to the mixer grid and ground, in series with an . 01 Mfd. capacitor (dummy load) for step, No. 1, I.F. Alignment. Upon completion of this step, "Rock" the variable condenser to assure that the I.F.'s have been aligned to the correct frequency, not the image frequency.

Use a Hazeltine Standard Test Loop No. 1150, or a reasonable substitute for the balance of the alignment. Place the test Joop about two feet from the receiver loop in a vertical position.

IMPORTANT NOTICE: Make cartain that each alignment step is done with a minimum input signal.

STEP	$\begin{gathered} \text { CONNECT } \\ \text { TEST OSC. } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { TEST } \\ \text { OSC. } \\ \text { SETTING } \end{gathered}$	POINTER SETTING	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR MAX. } \\ & \text { OUTPUT } \end{aligned}$
1	Mixer Grid \& Grd. (. 01 Mfd Cap.)	455 KC	540 KC	Trimmers $\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$
2	Standard Test Loop	1620 KC	1620 KC	Trimmer \mathbf{E} to 1620 KC
3	Standard Test Loop	600 KC	600 KC	Trimmer F to 600 KC
4	Standard Test Loop	1500 KC	1500 KC	Trimmers G \& H
5	Repeat Steps 2, 3, 4.			
6	Standard Test Loop	18 MC	18 MC	Trimmer I to 18 MC
7	Standard Test Loop	15 MC	15 MC	$\begin{aligned} & \text { Trimmers } \\ & \mathbf{J} \& \mathbf{K} \end{aligned}$

ALIGNMENT CHART

TRIMMER LOCATIONS
A, B, C, D-I.F. Trimmers E-Broadcast Osc. Trimmer F-Broadcast Osc. Padder F-Broadcast Osc. Padder
G-Broadcast R.F. Trimmer H -Broadcast Antenna Trimmer I-Short Wave Osc. Trimmer J-Short Wave R.F. Trimmer K-Short Wave Antenna Trimmer

SPECIAL SERVICE INFORMATION

Stage Gain Measurements-Broadcast Band:
Measurements taken with volume and tone controls maximum. Switch in Broadcast position. AVC shorted out. Standard Output
50.0 milliwatts

Dummy Antenna
Antenna to R.F. Grid
R.F. Grid to Converter ${ }^{\text {Grid }}$

Converter Grid to 1st I.F. Grid
1st I.F. Grid to 2nd Detector Overall Audio Gain
200.0 Mmf .

10 X at 1000 KC
5 X at 1000 KC
50X at 455 KC
60 X at 455 KC
0.1 volt audio input for 1.0 watt, 400 cycles

Stage Gain Measurements-Short Wave Band:
Measurements taken with volume and tone controls maximum. Switch in Short Wave position. AVC shorted out. Standard Output 50.0 milliwatts Dummy Antenna 400 ohms
Antenna to R.F. Grid
2.0X at 10.0 MC
R.F. Grid at Converter Grid
4.0X at 10.0 MC

Converter Grid to I.F. Grid . . 45.0 X at 10.0 MC
Oscillator Cathode Voltages-Broadcast Band:
Measured at 117 volts A.C. line voltage with an A.C. type Vacuum Tube Voltmeter, input impedance above 10 megohms. 1500 KC
5.8 volts A.C.

1000 KC
4.9 volts A.C.

600 KC
4.2 volts A.C.

Oscillator Cathode Voltages-Short Wave Band:
Measured at 117 volts A.C. line voltage with an A.C. type Vacuum Tube. Voltmeter, input impedance above 10 megohms.
16.0 MC
10.0 MC
6.8 volts A.C
10.0 MC
6.0 MC
4.5 volts A.C
1.9 volts A.C
D.C. Resistance Measurements:

1st and 2nd I.F. Coils
Primary . . . 17 ohms
Secondary • . 17 ohms
*NOTE: To obtain the true reading of the secondary of the 2nd I.F. coil, it must be removed from the can. This is due to the 47 K resistor inside the can.
Oscillator Coils
Broadcast
Primary . . . 1.0 ohms Secondary . . 6.0 ohms
Antenna Coils
Broadcast
Start to Finish . 12.2 ohms
Start to Tap . 10.5 ohms
R.F. Coils

Broadcast
Primary . . . 75.0 ohms

Primary
Secondary..
75.0
0.5 hms

Secondary . 0.2 ohms
NOTE: Due to a variation in winding methods, the D.C. resistance on all coils is subject to a 20% tolerance.

Socket Voltages:

All D.C. voltages measured with a vacuum tube voltmeter from socket contacts to chassis.-A.C. voltages measured with a 1000 ohms per volt A.C. meter from socket contacts to chassis
Volume and tone controls maximum.--Switch in Broadcast position.-No signal. 117 volts A.C. line. All voltages shown are positive D.C. unless otherwise noted.

John F. Rider

ALIGNMENT PROCEDURE

Alignment Procedure consists of the 5 steps outlined in the Alignment Chart.

Connect the test oscillator leads to the mixer grid and ground in series with an .01 Mfd . capacitor (dummy load) for step No. 1, I.F. Alignment. Upon completion of this step "Rock" the variable condenser to assure that the I.F.'s have been aligned to the correct frequency. Output should remain constant for any setting of the variable condenser.

Use the Hazeltine Test Loop No. 1150 or a reasonable substitute for the balance of the alignment. Place the test loop about two feet from the receiver loop in a vertical position.

It will be noted that all alignment trimmers are accessible without removing the chassis from the cabinet.

IMPORTANT NOTICE: Make certain that each alignment step is done with a minimum input signal.

ALIGNMENT CHART

CONNECT STEP TEST OSC. TO	$\begin{gathered} \text { TEST } \\ \text { OSC. } \\ \text { SETTING } \end{gathered}$	POINTER SETTING	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR MAX. } \\ & \text { OUTPUT } \end{aligned}$
1 Mixer Grid \& Grd. (. 01 Mfd Cap.)	455 KC	540 KC	Trimmers $\mathrm{A}, \mathrm{~B}, \mathrm{C}, \& \mathrm{D}$
$2 \begin{aligned} & \text { Standard } \\ & \text { Test Loop* }\end{aligned}$	1620 KC	1620 KC	Trimmer E to 1620 KC
3 Standard Test Loop*	600 KC	Rock Variable	$\begin{aligned} & \text { Trimmer } \mathrm{H} \\ & \text { to } 600 \mathrm{KC} \end{aligned}$
$4 \begin{aligned} & \text { Standard } \\ & \text { Test Loop }\end{aligned}$	1500 KC	1500 KC	$\begin{aligned} & \text { Trimmers } \\ & \text { F\&H } \end{aligned}$

5 Repeat Steps 2, $3 \& 4$
*NOTE: Hazeltine Test Loop No. 1150 (or reasonable substitute).

TRIMMER LOCATION

RECORDING HEAD PRESSURE

The proper recording head pressure is $11 / 4 \mathrm{oz}$. Adjustment of this pressure is made by turning the small screw on the top of the recording arm. This adjustment is very critical and should be made in quarter turns. TURN THE SCREW CLOCKWISE TO INCREASE THE CUTTING DEPTH and COUNTERCLOCKWISE TO DECREASE THE CUTTING DEPTH.

This adjustment is made at the factory with an ordinary postal scale, consequently, field adjustments should be made in a like manner.

HOW TO CHECK COMPRESSION VOLTAGE

Turn the Selector Switch to Radio Record position. Feed a 1 volt (RMS) 1000 cycle signal into the diode return of the 2nd I.F. (brown lead). Connect the leads of a vacuum tube voltmeter to the point indicated on Figure 4, Schematic Diagram,
and ground. The voltage at this point should be approximately a minus 2.25 volts.

BRIEF DESCRIPTION OF COMPRESSION CIRCUIT

One diode section of the 6 H 6 serves as the compressor rectifier. The compression system is automatic, and is in the circuit on both record positions. A portion of the output voltage is rectified by the 6 H 6 and varies grid bias of the first audio, 6SF7.

SPECIAL SERVICE INFORMATION

Stage Gain Measurements:
Measurements taken with volume and tone controls maxi-mum.-AVC shorted out.

Standard Output
50 milliwatts
Dummy Antenna . . 200 Mmf .

OSCILLATOR CATHODE VOLTAGES:

Measured at 117 volts AC line voltage with AC vacuum tube voltmeter, input loading above 10 megohms.
1600 KC
1000 KC 2.15 volts AC 2.0 volts AC
D.C. RESISTANCE MEASUREMENTS: 1st and 2nd I.F. Coils:
Primary
Secondary
*NOTE: To obtain the true reading of the secondary of the 2nd I.F. Coil, it must be removed from the can. This is because of the 47 K resistor inside the can.

Oscillator Coil:
Primary 1 ohm
Secondary 6 ohms

Antenna Coil:
Start to finish 12.2 ohms
Start to tap 10.5 ohms
R.F. Coil:

Primary 58 ohms
Secondary 4.2 ohms
NOTICE: The D.C. Resistance measurements on all coils are subject to a 20% tolerance due to the variation of winding methods.

SOCKET VOLTAGES

All D.C. voltages measured with a vacuum tube voltmeter from socket contacts to chassis.-A.C. voltages measured with a 1000 ohms per volt A.C. meter from socket contacts to chassis. -Volume and tone controls maximum.-Switch in Radio Receive position. No signal. 117 volts A.C. line. All voltages shown are positive D.C. unless otherwise noted.

SOCKET VOLTAGES
PART
NO. $\quad \begin{gathered}\text { REF. } \\ \text { SYMBOL }\end{gathered}$

54001	Dial Lamp .250 Amp.
57004	Microphone with cable
57005	Microphone handle
57006	Microphone base

Resistor, carbon: 150 ohms, $10 \%, 1$ watt Control, volume: 1 megohm, tapped at
200,000 ohms, with A.C. switch Resistor, carbon: 680,000 ohms, 20%, $1 / 2$ watt
Shaft, dial
Shield, microphone plug
Socket, tube: 8 prong octal, wafer type Socket, microphone Socket, phonograph Socket, phono motor Socket, dial lamp: bayonet base Speaker, permanent magnet: $10^{\prime \prime}$ Spring, knob
Spring, dial cord
Switch, rotary, 3 deck Transformer, power
DESCRIPTION

73910	R17	Resistor, wire wound: $1 / 2 \mathrm{ohm}, 10 \%$, watt
73902	R18	Resistor, wire wound: 2,000 ohms, 10%, 5 watt
73081	R19	Resistor, carbon: 150 ohms, 10%, 1 watt
25010B	R20	Control, volume: 1 megohm, tapped at 200,000 ohms, with A.C. switch
73052	R21	Resistor, carbon: 680,000 ohms, 20%, $1 / 2$ watt
77016A		Shaft, dial
78008		Shield, microphone plug
79002		Socket, tube: 8 prong octal, wafer type
79004		Socket, microphone
79005		Socket, phonograph
79007		Socket, phono motor
79010B		Socket, dial lamp: bayonet base
83703		Speaker, permanent magnet: 10^{*}
84003 A		Spring, knob
84028		Spring, dial cord
86009A	S1	Switch, rotary, 3 deck
89409D	T1	Transformer, output (5000 ohm to 3.2)
89016B	T2	Transformer, power

 Automatic Record Changer Needle, cutter Phono Crystal, Shure Bros. \#P-30 Plug, pin type: Speaker, phono \& anPlug, microphone Pointer sllde Ass'y. Instruction book Pulley, dial Pulley, dial
Resistor, carbon:
$1 / 2$ watt 1 watt -5 fuLL TURNS

ISOMEtric New
2NI7日ロO 7VIO

$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	RYMBOL	DESCRIPTION
21060		Cabinet
23400	$\begin{aligned} & \mathrm{C} 1-1 \\ & \mathrm{C} 1-2 \end{aligned}$	Capacitor, Trimmer: 3-30 mmf.
23406	C1-3	Capacitor Trimmer
23915	$\begin{aligned} & \mathrm{C} 2-1 \\ & \mathrm{C} 2-2 \end{aligned}$	Capacitor, ceramic: $220 \mathrm{mmf} .20 \%$
23521	C3A, B, \&	Capacitor, variable ass'y.
23912	$\begin{aligned} & \text { C4-1 } \\ & \text { C4-2 } \end{aligned}$	Capacitor, ceramic or mica: 47 mmf , 20%
23009	$\begin{aligned} & \mathrm{C} 5-1 \\ & \mathrm{C} 5-2 \\ & \mathrm{C} 5-3 \\ & \mathrm{C} 5-4 \end{aligned}$	Capacitor, paper: . 05 mfd ., 400 volt
23007	$\begin{aligned} & \text { C6-1 } \\ & \text { C6-2 } \end{aligned}$	Capacitor, paper: . 02 mfd ., 600 volt
23001	C7	Capacitor, paper: . 001 mfd ., 600 volt
23004	$\begin{aligned} & \mathrm{C} 8-1 \\ & \mathrm{C} 8-2 \end{aligned}$	Capacitor, paper: . 005 mfd ., 600 volt
23006	C9	Capacitor, paper: $.01 \mathrm{mfd} ., 500$ volt
23020	$\begin{aligned} & \mathrm{C} 10-1 \\ & \mathrm{C} 10-2 \end{aligned}$	Capacitor, paper: 0.2 mfd ., 400 volt
23019	C11	Capacitor, paper: 0.1 mfd . 200 volt
24004B	C13	Capacitor, electrolytic: 40 mfd ., 450 volt
24003	C14	Capacitor, electrolytic: 20 mfd ., 350 volt
23402	C15	Capacitor, padder: $300-800 \mathrm{mmf}$.
92194	L1	Loop, Antenna: (19.5 feet of 300 ohm twin lead)
29400B	L2	Coil, antenna
29102F	L3	Coil, R.F.
29205C	L4	Coil, oscillator
29004 E	L5	Coil, 1st I.F.: 455 KC
29007	L6	Coil, 2nd I.F.: 455 KC
$32003-1$		Cord, AC: 8^{\prime}
34002D		Cover, volume control
36024		Cutter, cartridge
38082		Dial, glass: stationized
38083		Dial, glass: export
40003		Dial drive cord
52016BG		Knob, plastic: bar type, Brown
52015BG		Knob, plastic: round type, Brown

ALIGNMENT PROCEDURE

Alignment Procedure consists of the 5 steps outlined in the Alignment Chart.

Connect the test oscillator leads to the mixer grid and ground in series with an . 01 Mfd . capacitor (dummy load) for step, No. 1, I.F. Alignment. Upon completion of this step "Rock" the variable condenser to assure that the I.F.'s have been aligned to the correct frequency. Output should remain constant for any setting of the variable condenser.

Use the Hazeltine Test Loop No. 1150 or a reasonable substitute for the balance of the alignment. Place the test loop about two feet from the receiver loop in a vertical position.

It will be noted that all alignment trimmers are accessible without removing the chassis from the cabinet.

IMPORTANT NOTICE: Make certain that each alignment step is done with a minimum input signal.

ALIGNMENT CHART

$\text { STEP } \begin{gathered} \text { CONNECT } \\ \text { TEST OSC. } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { TEST } \\ \text { OSC } \\ \text { SETTING } \end{gathered}$	POINTER SETTING	$\begin{aligned} & \text { ADJUST } \\ & \text { FOR MAX. } \\ & \text { OUTPUT } \end{aligned}$
1 Mixer Grid \& Grd. (. 01 Mfd Cap.)	455 KC	540 KC	Trimmers $\mathrm{A}, \mathrm{~B}, \mathrm{C}, \& \mathrm{D}$
$\begin{array}{ll}2 & \text { Standard } \\ & \text { Test Loop* }\end{array}$	1620 KC	1620 KC	Trimmer E to 1620 KC
3 Standard Test Loop*	600 KC	Rock Variable	$\begin{aligned} & \text { Trimmer } \mathbf{H} \\ & \text { to } 600 \mathrm{KC} \end{aligned}$
$4 \begin{aligned} & \text { Standard } \\ & \text { Test Loop* }\end{aligned}$	1500 KC	1500 KC	$\underset{F \& H}{\text { Trimmers }}$

5 Repeat Steps 2, 3 \& 4
*NOTE: Hazeltine Test Loop No. 1150 (or reasonable substitute).

RECORDING HEAD PRESSURE

The proper recording head pressure is $11 / 4 \mathrm{oz}$. Adjustment of this pressure is made by turning the small screw on the top of the recording arm. This adjustment is very critical and should be made in quarter turns. TURN THE SCREW CLOCKWISE TO INCREASE THE CUTTING DEPTH and COUNTERCLOCKWISE TO DECREASE THE CUTand COUNTERC
TING DEPTH.

This adjustment is made at the factory with an ordinary postal scale, consequently, field adjustments should be made in a like manner.

BRIEF DESCRIPTION OF COMPRESSION CIRCUIT
One diode section of the 6 H 6 serves as the compressor rectifier. The compression system is automatic, and is in the circuit on both record positions. A portion of the output voltage is rectified by the 6 H 6 and varies grid bias of the first audio,

HOW TO CHECK COMPRESSION VOLTAGE
Turn the Selector Switch to Radio Record position. Feed a 1 volt (RMS) 1000 cycle signal into the diode return of the 2nd I.F. (brown lead). Connect the leads of a vacuum tube voltmeter to the point indicated on Figure 4, Schematic Diagram, and ground. The voltage at this point should be approximately a minus 2.25 volts.

SPECIAL SERVICE INFORMATION

Stage Gain Measurements:
Measurements taken with volume and tone controls maxi-mum.-AVC shorted out.

Standard Output. . . . 50 milliwatts
Dummy Antenna . . 200 Mmf .

Antenna post to R.F. grid	7 X at 1000 KC
R.F. grid to Converter grid	7.5X at 1000 KC
Converter grid to 1st I.F. grid	56 X at 455 KC
t I.F. grid to 2nd Detector	57X at 455 KC

OSCILLATOR CATHODE VOLTAGES:

Measured at 117 volts AC line voltage with $A C$ vacuum tube voltmeter, input loading above 10 megohms.
$1600 \mathrm{KC} . .$.
1000 KC
600 KC
D.C. RESISTANCE MEASUREMENTS:

1st and 2nd I.F. Coils:
Primary
Secondary 17
17 ohms
ohms
*NOTE: To obtain the true reading of the secondary of the 2nd I.F. Coil, it must be removed from the can. This is because of the 47 K resistor inside the can.

Oscillator Coil:	
Primary	. 1 ohm
Secondary	. 6 ohms
Antenna Coil:	
Start to finish	. 12.2 ohms
Start to tap 10.5 ohms	
R.F. Coil:	
Primary	. 58 ohms
Secondary	. . . 4.2 ohms

NOTICE: The D.C. Resistance measurements on all coils are subject to a 20% tolerance due to the variation of winding methods.

SOCKET VOLTAGES

All D.C. voltages measured with a vacuum tube voltmeter from socket contacts to chassis.-A.C. voltages measured with a 1000 ohms per volt A.C. meter from socket contacts to chassis. -Volume and tone controls maximum.-Switch in Radio Receive position. No signal. 117 volts A.C. line. All voltages shown are positive D.C. unless otherwise noted.

-SOCKET VOLTAGES
pur sumb

GENERAL INFORMATION
Model 1063 is a PhoOcord console with a two band superheterodyne receiver. This model employs ten tubes and a permanent magnet speaker.
Listed below are some of the features contained in this Model PhonOcord.

1. Two band superheterodyne receiver.
2. Automatic Home Recording with Public Address System.
3. Phonograph with automatic record changer.
4. Volume Expansion.
5. Volume Compression for Home Recording.
6. Low Level Dynamic Bass Boost.

The output of the microphone and radio on Mixed Program Record may be regulated by varying the controls on the top of the chassis. (See Figure 2, Trimmer Location).
An early run of this model utilized a 20 Mfd . filter (C18) in the input voltage instead of a 40 Mfd .

Electrical Rating:

Line Voltage . . $110-120$ volts 50-60 cycle AC
Power Consumption . . . 106 watts
Tuning Frequency Range:
Standard Broadcast . . 540 to 1620 KC
Short Wave . . . 6 to 18 MC
Intermediate Frequency: 455 KC

Electrical Power Output:
Undistorted . . . 3.5 watts
Maximum . . . 6 watts

Loudspeaker:

Type . . . Permanent Magnet
Outside Cone Diameter . . . 10"
Voice Coil Impedance . . . 3.2 ohms at 400 cycles Magnet Rating . . 6.8 Oz. Alnico 5

Tubes:
Tube
6SK7
6SA7
6SK7
6SF7
6H6
6SQ7
6SF7
6H6
6V6-GT/G
5Y3-GT/G

Function
R.F. Amplifier

Frequency Converter
I.F. Amplifier

2nd Detector \& Expansion Amplifier
Expansion Rectifier \& Delayed Audio AVC
Microphone Amplifier
1st Audio Amplifier
Compression Rectifier
Power Amplifier
Rectifier

SPECIAL SERVICE INFORMATION

STAGE GAIN MEASUREMENTS:

Measurements taken with volume and tone controls maximum. - Band Switch in Standard Broadcast position. - Push Button Switch in Radio Receive position. - AVC shorted out.
Standard Output . . . 50 milliwatts
Dummy Antenna . . . 200 Mmf .
Antenna Grid to R.F. Grid . . 6X at 1000 KC
R.F. Grid to Converter Grid ... 12.5 X at 1000 KC Converter Grid to 1st I.F. Grid ...61X at 455 KC 1st .F. Grid to 2nd Detector ... 120X at 455 KC
Overall Audio Gain . . . 620X at 1 watt 400 cycles

OSCILLATOR CATHODE VOLTAGES:

Measured at 117 Volts AC line voltage with AC vacuum tube voltmeter input loading above 10 megohms.
1620 KC . . . 3.4 volts AC
1300 KC . . . 3.2 volts AC
$750 \mathrm{KC} . . .3 .2$ volts AC
550 KC . . . 3.7 volts AC
D.C. RESISTANCE MEASUREMENTS:

I.F. COILS

1st I.F.
$\begin{aligned} & \text { Primary } \\ & \text { Secondary }\end{aligned} . .1717$ ohms
Primand I.F
Primary ... 17 ohms
*NOTE: To obtain the true reading of the secondary of the 2nd I.F. coil it must be removed from the can. This is so because of the $56,000 \mathrm{ohm}$ resistor in series with the AVC lead inside the can.

OSCILLATOR COILS

Broadcast
Primary
... 1 ohm
Short Wave
Secondary $\because .6$ ohms Start to Finish ...4 ohms

ANTENNA COILS

Broadcast
Short Wave
Start to Finish . . 12.2 ohms Start to Finish . . . 25 ohms Start to Tap . . . 10.5 ohms Start to Tap 20 ohms

R.F. COILS

Primary ... 58 ohms
Secondary . . . 4.2 ohms
Short Wave
Primary $\ldots 5.5$ ohms
Secondary. .5 .2 ohms
NOTE: Due to the variation of winding methods, the D.C. resistance on all coils is subject to a 20% tolerance.

PAGE 18-14 PACKARD-BELL

ALIGNMENT PROCEDURE

Alignment procedure consists of the 7 steps outlined in the Alignment Procedure Chart.

Connect the test oscillator leads to the mixer grid and ground in series with an . 01 Mfd. capacitor (dummy load) for step No. 1, I.F. Alignment. Upon completing this step "Rock" the variable condenser to assure that the I.F.s have been aligned to the correct frequency. Output should remain constant at any setting of the variable condenser.

Use the Hazeltine Test Loop or a reasonable substitute for the balance of the alignment. Place the test loop about two feet from the receiver loop in a vertical position.

It will be noted that all trimmers are accessable without removing the chassis from the cabinet.

IMPORTANT NOTICE: Make certain that each alignment step is done with a minimum input signal.

ALIGNMENT CHART

$\begin{gathered} \text { CONNECT } \\ \text { TEST OSC. } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { TEST } \\ \text { OSC. } \\ \text { SETTING } \end{gathered}$	POINTER SETTING	ADJUST FOR MAX. OUTPUT
STEP			
$1 \quad \text { Mixer Grid }$	455 KC	540 KC	Trimmers $A, B, C \& D$
$2 \quad \begin{gathered}\text { Standard* } \\ \text { Test Loop }\end{gathered}$	1620 KC	1620 KC	$\begin{aligned} & \text { Trimmer } \mathrm{F} \\ & \text { to } 1620 \mathrm{KC} \end{aligned}$
$3 \quad \begin{gathered}\text { Standard* } \\ \text { Test Loop }\end{gathered}$	600 KC	600 KC	$\begin{aligned} & \text { Trimmer } G \\ & \text { to } 600 \mathrm{KC} \end{aligned}$
$4 \begin{aligned} & \text { Standard* } \\ & \text { Test Loop }\end{aligned}$	1500 KC	1500 KC	$\underset{\text { I \& J }}{\text { Trimmers }}$
REPEAT STEPS 2, 3, \& 4			
$6 \begin{gathered}\text { Standard* } \\ \text { Test Loop }\end{gathered}$	18 MC	18 MC	$\underset{\text { To } 18 \mathrm{MC}}{\text { Trimmer }}$
$7 \underset{\substack{\text { Standard* } \\ \text { Test Loop }}}{\substack{\text { Ten } \\ \hline}}$	15 MC	15 MC	Trimmers K \& H

*NOTE: Hazeltine Standard Test Loop No. 1150 or a reasonable substitute.

No signal.
117 volts A.C. line voltage.
Band switch in standard broadcast position.
All voltages shown are positive D.C. unless otherwise noted.

All voltages measured from socket contacts to chassis. D.C. voltages measured with a vacuum tube voltmeter. A.C. voltages measured with a 1000 ohm per volt A.C. meter.

Volume and tone controls maximum.

BRIEF DESCRIPTON OF EXPANDER
 AND COMPRESSOR CIRCUITS:

V7, 6 SF 7 and V6, 6 H 6 embrace the expansion circuit. Referring to Figure 3, Schematic Diagram, it will be noted that expansion is in the circuit only when the "Phono" or
"Radio Receive" buttons are depressed. V7, 6SF7, serves as the 2nd detector and expansion amplifier. V6, 6 H 6 functions as the expansion rectifier in one diode section and furnishes delayed audio AVC in the other diode section. V8, 6H6, functions as the compressor rectifier.

HOW TO CHECK EXPANSION VOLTAGE:

Feed a 1 volt (RMS) 400 cycle signal into the phono input plug. Make certain the Phono Button is depressed. Connect the leads of a vacuum tube voltmeter* to the location indicated on Figure 3, Schematic Diagram, and ground. The voltage at this point should be between 3 and 4 volts positive D.C. As a cross check measure the cathode voltage of V4, 6SF, which should read about 5 volts D.C. The expansion voltage should be about 1 volt less.

HOW TO CHECK COMPRESSION VOLTAGE:

Depress the "Radio Record" button. Feed a 1 volt (RMS) 400 cycle signal into the diode return of the 2nd I.F. (brown lead). In the same manner outlined in the preceeding paragraph, measure the compression voltage, which should be a minus 2 to 3 volts.
*VTVM: Input loading above 10 megohms.

$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REF. } \\ \text { SYMBOL } \end{gathered}$	DESCRIPTON	$\begin{gathered} \text { PART } \\ \text { NO. } \end{gathered}$	$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	DESCRIPTON
10505A		Assembly, switch arm	54001		Lamp, dial: bayonet base
10506B		Assembly, pointer	57004		Microphone with cable
10512		Assembly Kit, chassis	57005		Microphone handle
10513		Assembly Kit, record chanzer	57006 58004 E		Microphone base
$11014{ }^{\text {1 }}$		Arm, switeh	${ }_{59001} 58$		Automatic record changer Needle, phono: permanent sedphire
18032A		Bracket, compartment light	59002		Needle, cutter
18081		Bracket, reject stop	63026		Pick-up cartridge
18039A		Bracket, planetary	${ }^{64006}$		Escutcheon pin
${ }_{1}^{180438}$		Bracket, dial ${ }^{\text {Bracket, }}$ changer shipping	65004 E $\mathbf{6 5 0 2 8 B}$		Plate, dial
18068 ${ }_{21045-1}$		Bracket, changer shipping Cabinet Back, right	65028 B 66001		Plate, mounting Plug, pin
$21045-2$		Cabinet Back, left	66004		Plug, pin
CU-21 045		Cabinet, radio : natural mahogany	66013		Plug, microphone
BN-21045		Cabinet, radio: dark mahogany	${ }_{6}^{67013} \mathrm{~A}$		Pointer, cutter stop
BG-21045		Cabinet, radio: walnut	68073 68142		Phonocord playhouse
$\xrightarrow[235000]{235}$	C1A, B \& C		68142 68144		Decal, push buttons Instruction sheet, F-M
	C2-2		68109		Instruction Book
	C2-4		${ }_{73055}^{69007}$	R1-1	Pulley, drive: 50 cycle Resistor, carbon: 2.2 megohms, 20%, $1 / 2$
	C2-6			R1-2	
23228	C3-1	Capacitor, mica: 220 Mmf . 20%	73017	R2-1	Resistor, carbon : 220 ohms, $10 \%, 1 / 2$ watt
	C3-2			R2-2	
$\begin{array}{\|l\|l} 23402 \\ 23225 \end{array}$	$\mathrm{C}_{\mathrm{C} 5-1}$	Capacitor, padder: $\mathbf{3 0 0}$ to $\mathbf{8 0 0} \mathbf{~ M m f .}$ Capacitor, mica: 47 Mmf . 20%	$\begin{array}{r} 73026 \\ 73053 \end{array}$	R3 ${ }_{\text {R4-1 }}$	Resistor, carbon: 1200 ohms, 10%. $1 / 2$ watt Resistor, carbon: 1 megohm, $20 \%, 1 / 2$ watt
	C5-2			R4-2	
23006	${ }_{\mathbf{C 6 - 1}}$	Capacitor, paper : . 01 Mfd. 200 volt	73041	R4-3 R5-1	Resistor, carbon: 22,000 ohms, 10%, $1 / 2$ watt
	C6-2			R5-2	
	$\mathrm{C}^{\mathbf{C 6}} \mathbf{3}$		73127	R6	Resistor, carbon: 5600 ohms, $\mathbf{1 0 \%}$, 2 watt
23207A	${ }^{\text {C7-4 }}$	Capaictor, mica: 4900 Mmf 5\%	73049	R7-1	Resistor, carbon : 220,000 ohms, 20%, 1/2 watt
23010	C8-1	Capacitor, paper: . 05 Mfd .600 volt		R7-3	
	C8-2	Capactor, paper . 05 MId. 600 volt		R7-4	
	C8-3			R7-5	
23017	${ }_{\text {C9-2 }}$	Capacitor, paper : . 05 Mfd. 200 volt		R7-6	
	C9-3		73042	R8	Resistor, carbon: 27.000 ohms, 10%, $1 / 2$ watt
23004	$\mathrm{Cl}_{\text {C9-4 }}^{\text {C10-1 }}$	Capacitor, paper: . $005 \mathrm{Mfd} \mathbf{6 0 0}$ volt	73060	R9-1 R9-2	Resistor, carbon: $56,000,10 \%, 1 / 2$ watt
23004	C10-2	Capactor, paper . .00s Mrd. 600 volt	73057	R10-1	Resistor, carbon : 4.7 megohms, 20%, $1 / 2 \mathrm{watt}$
	C10-3			R10-2	
23019	$\begin{gathered} \text { C11 } \\ \text { C1 } \end{gathered}$	Capacitor, paper: . 1 Mfd. 200 volt Capacitor, mica: 160 Mmf. (Part of 2nd I.F.		$\begin{aligned} & \text { R1 0-3 } \\ & \text { R1 } 0-4 \end{aligned}$	
		assembly)	73051	R10-5	Resistor, carbon: 47,000 ohms, $20 \%, 1 / 2$ watt
23001	${ }_{\text {C13-1 }}$	Capacitor, paper: . 001 Mfd . 600 volt		R11-2	att
	C13-2			R11-3	
23007	C14-1	Capacitor, paper : . 02 Mfd. 600 volt		R11-5	
	$\mathrm{Cl4}^{\text {C14-3 }}$		73054	R12-1	Resistor, carbon: 1.5 megohms, 20%, $1 / 2$ watt
	C14-4		73076	R13-1	Resistor, carbon: 56,000 ohms, 10%, 1 watt
23020	C15-1	Capacitor, paper: . 2 Mfd. 400 volt		R13-2	
	C15-2		73126	R14	Resistor, carbon: 1500 ohms, 10%, 2 watt
24006	C16	Capacitor, electrolytic: $\mathbf{2 5}$ Mfd. 25 WV	73022	815	Reaistor, carbon: 560 ohms: 10%, $1 / 2$ watt
23002	C17	Capacitor, paper: .002 Mfd .600 volt	73077	R16	Resistor, carbon: 180 ohms, $10 \%, 2$ watt
24030 24002	${ }_{\text {C18 }}^{\text {C19-1 }}$	Capacitor, electrolytic: Capacitor, electrolytic: d	73907 73120	R17	Resistor, wire wound: 2500 ohms, 10%, 5 watt
	C19-2	Capactor, eleetroytic: 10 Mrd. 450 WV	73047	R19-1	Resistor, carbon : 100,000 ohms, 20%, $1 / 2$ watt
24001	C20	Capacitor, electrolytic : 20 Mfd . 450 WV		R19-2	
23208	C21	Capacitor, mica : $\mathbf{4 0 0} \mathrm{Mmf} .10 \%$	73037 73030	R21	
23016	$\begin{aligned} & \mathbf{C} 22-1 \\ & \mathbf{C} 22-2 \\ & \mathbf{C} 22-3 \end{aligned}$	Capacitor, paper: . 003 Mfd .600 volt	25800	$\begin{aligned} & \text { R22-1 } \\ & \text { R22-2 } \end{aligned}$	Control, mixer: 500,000 ohms
23901	C24A \& B	Capacitor, paper: $2 \times$. 006 Mfd. 600 volt (in metal case)	25500A	R23A, B \&	Control, volume: 3 section; section A-1 megohm, Section B-2 megohms, Section C-500,000 ohms
92194	L1	Loop Antenna, 18' of 300 ohm twin lead	25507	R24	Control, tone: 3 megohms, with AC switch
29400 A	L2	Coil, antenna: standard broadcast	73025	R25	Resistor, carbon: 1000 ohms, 10%, $1 / 2$ watt
29401A	L3	Coil, antenna: short wave	73033	R26	Resistor, carbon: 4700 ohms, 10%, $1 / 2$ watt
29101A	L4	Coil, R.F.: short wave	73020	R27	Resistor, carbon: 390 ohms, $10 \%, 1 / 2$ watt
29102A	L5	Coil, R.F.: standard broadcast	73903	R28	Resistor, wire wound: $15 \mathrm{ohms}, 10 \%$, 1 watt
29201A	L6	Coil, oscillator: short wave	73910	R29	Resistor, wire wound: $.5 \mathrm{ohm}, 10 \%$, 1 watt
29205A	L7	Coil, oscillator: standard broadeast	73039	R30	Resistor, carbon: 15,000 ohms, 10%, $1 / 2$ watt
29004D	L8	Coil, 1st I.F.: 455 KC	73045	R31	Resistor, carbon : 47,000 ohms, $10 \%, 1 / 2$ watt
29007	L9	Coil, 2nd I.F.: 455 KC	77013 B		Shaft, switch arm
32003C		Cord, A.C. : 8^{*}	78008A		Shield, microphone plug
32015		Cord, A.C.: $21 / 2^{\prime}$	78031 A		Shield, compartment lamp
36024		Cutter cartridge	79002		Socket, tube: 8 prong octal, wafer type
38042		Dial Scale, stationized	79004		Socket, microphone
38043		Dial Scale, export	79005		Socket, speaker \& cutter
40101 C		Drive, planetary	79007		Socket, phono motor
41012-CU		Escutcheon, dial: mahogany	79010 B		Socket, dial lamp: bayonet base
41012-BG		Escutcheon, dial: walnut	79023		Socket, loop leads
41012-BN		Escutcheon, dial: dark mahogany	79033		Socket, compartment lamp
CU-52019A		Knob, control : natural mahogany	83701A		Speaker, 10" permanent magnet
CU-52020A		Knob, control : natural mahogany	84001		Spring, push button knob
BG-52019A		Knob, control: walnut	84028		Spring, dial cord
BG-52020A		Knob, control : walnut	86001 A	S1	Switch, rotary: 3 section, band switch
BN-52019A		Knob, control : dark mahogany	86301	S2	Switch, push button
BN-52020A		Knob, control : dark mahogany	86802A		Switch, micro: (part of automatic eatter stop)
AB-52023		Knob, push button: brown, (no spring)	89409D	T1	Transformer, outpat
AP-52024A		Knob, push button: tan, (no spring)	89006 E	T2	Tranaformer, power
52026		Knob, automatic stop	89015		Transformer, step down

NOTE: All voltage, capacity, and resistance values shown are average. The voltages were measured between the points indicated and the receiver chassis (B-), using $\alpha 20,000$-ohms-per-volt meter, with 6.3 volts d-c input to the receiver power supply; the volume con:rol was set at minimum, and the tuning condenser at 550 kc .

ADIUST IN ORDER	SPECIAL INSTRUCTIONS	dial settings SIG. GEN. RECEIVER	
C301A C300B С300A	1. Ground the oscillator grid (pin 4) of the 7 BB converter. Adjust the i.f trimmers for maximum in the order listed.	455 kc .	550 kc .
	2. Repeat step 1. Then remove the ground from pin 4 of the 7B8.		
403A	3. Adjust for maximum.	1600 kc .	1600 kc .
C401	4. Adjust for maximum. Final adjustment to be made after the receiver has been reinstalled in the car, with the aerial connected.	1400 kc .	1400 kc .

ALIGNMENT PROCEDURE
CONNECT THE SIGNAL-GENERATOR output lead as follows: CONNECT THE OUTPUT METER across the speaker voice-coil terminals. SET THE DIAL POINTER to coincide with the index dot at the low-trequency end of the scale, when the tuning-condenser plates are fully meshed.

SET THE RECEIVER VOLUME CONTROL at maximum. Using the lowest range on the output meter, adjust the signal-generator output, as alignment progresses, to keep the meter needle near center scale. ale, inject the signal through the $30-\mathrm{mm}$. condenser alone, and connect able, inject the signal through the $30-\mathrm{mmf}$. condenser alone, and connect
a second $30-\mathrm{mm}$. condenser from the aerial receptacle to the receiver chassis.

Block diagram (Heavy lines indicate signal path.)
Top view, showing trimmer-condenser locations.

Bottom view, showing test polnts.
© John F. Rider

TROUBLE-SHOOTING PROCEDURE

In this manual, the receiver circuit is divided into four sections, as shown in fiqure 1. One test point is designated for each section, as shown in fiqure 2. Normal indications, secured when checking these points, eliminate the section under test as a source of trouble. Isolation of the faulty part is accomplished by testing in the order shown in the sectional test charts. A high-quality signal generator and volt-ohmmeter and a 6.3.volt d.c power source are required. The voltaqe readings shown were taken with a 20,000-ohms-per-volt meter.

To localize trouble, connect the receiver to the $6.3 \cdot \mathrm{volt}$ d-c
power source, and turn the receiver yolume control to maximum; see that all tube filaments are liqhted; then proceed in the order given in the following chart. When abnormal indications appear, make voltage and resistance checks of the circuit under test. Remedy any defect encountered before proceeding with the next step.

IMPORTANT

The aerial and aerial lead-in form part of the rft tuning circuit When testing or aligning this receiver on the bench it is important that an aerial dummy load of equal capacity be used.

TESTS TO LOCALIZE TROUBLE TO ONE SECTION

SECTION	TEST	NORMAL RESULTS
1	Measure voltage between point 1 and chassis (3-).	46 volts.
2	Apply audio signal between point 2 and chassis, through a condenser (.01 to . 25 mf .).	Loud, clear signal from speaker.
3	Apply a modulated r-i signal (455 kc .) between point 3 and chassis, through a condenser (. 01 to .25 mf .).	Loud, clear signal.
4	Turn tuning condenser to halfmeshed position. Apply a modulated r-f signal between point 4 and chassis, through a condenser (.01 to .25 mf .). Tune signal generator unill the signal is heard in the speaker.	Loud, clear slgnal.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 1

Make all measurements for this section with a volt-ohmmeter using the applicable d-c range. All voltages given in this manual are average, and were taken with 6.3 volts d-c input to the power supply; the volume control was set at minimum, and the tuning. condenser plates were fully meshed.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
A to B-	125 volts	Defective 7Y4, VB100, T100, C104, or C105A.
C to B-	90 volts	Defective Cl05B or R102.
D to B-	70 volts	Defective R104 or C303 (shown in Section 3).
E to B	46 volts	Defective R103 or C406 (shown in Section 4).

TESTS TO ISOLATE TROUBLE WITHIN SECTION 2

For all tests in this section, use an audio signal. Connect the generator output lead through a condeaser (. 01 to .25 mf .) to the test point indicated; connect the ground lead to the receiver chassis ($\mathrm{B}-$). Set the receiver volume control at maximum, and adjust the signal-generator output for a loud, clear signal.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
F to B-	Loud. clear signal.	Defective 7A5. T200, LS200, C201, C202, C203, R204, or R205.
G to B-	Loud, clear signal.	Open C201.
䊉 to B-	Clear signal, much louder than preceding test.	Defective 7B6, R201. or R203.
J to B-	Louc, clear signal.	Defective C200. R200 (rotate R200 through its entire range for complete check) or 2301 (shown in section 3).

Section 2 schematic.

Hottom view, showing Section 2 tect points.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 3

For all tests in this section, use a modulated 455-kc. signal. Connect the generator output lead through a condenser 1.01 to .25 mf.) to the points indicated; connect the ground lead to the receiver chassis ($B-$). Set the receiver volume control at maximum, and adjust the signal-generator output for a loud, clear signal.

TEST PONNTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
K to B-	Loud, clear signal.	Defective 7A7. Z301. C302. R300. or C406 (Ehown in Section 4).
L to B-	Loud, clear signal.	Delective or misaligned Z300.

Section 3 schematic.

- John F. Rider

TESTS TO ISOLATE TROUBLE WITHIN SECTION 4

1. Set the volume control at maximum. Rotate the tuning condenser through its entire range. Any scraping noise from the speaker indicates bent plates, or dirt between plates or on wiper contacts. Remedy such conditions before proceeding further.
2. Attach the positive lead of a 20,000 -ohms-per-volt meter to point S, and the prod end of the negative lead through a 50.000 ohm resistor to point R. Set the meter on a 10 -volt or similar range, and rotate the tuning condenser through its entire range.

Absence of voltage at any point indicates that the oscillator is not functioning. If this is the case, check the components listed in the first test below.
3. Connect the signal-generator output lead through a condenser (.01 to .25 mf .) to the points indicated: connect the ground lead to the receiver chassis. Usin: a modulated sinnal, tune the generator and receiver to 1000 kc ., and proceed as below.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
M to B -	Loud, clear signal.	Defective 7B8, T400. C403, C403A. C405. C407, C408, C409, R401. R402, or R403.
N to $\mathrm{B}-$	Loud, clear signal.	Open C407.
P to B-	Clear signal. louder than preceding test.	Defective 7A7, L.401, C403, or R400.
Q to B	Loud, clear signal.	Defective L400, L401, C400, C401, or C402.

Section 4 schematic.

Bottom view, showing Section 4 test points.

SPECIFICATIONS

CIRCUIT
FREQUENCY RANGE
INTERMEDIATE FREQUENCY
POWER INPUT
PHILCO TUBES USED AERIRL \qquad
 Six-tube, superheterodyne 550 to 1600 kc
\qquad 6.3 volts, 5.8 amperes, d.c. 7A7(2), 7B8, 7B6, 7A5, 7Y4 universal auto radio type

Symbol designations used in the schematics and parts list are as follows:

C-condenser
F-fuse
1-pilot lamp
L-choke or coil
LS loud speaker
R-resistor
S-switch
T-transformer
VB-vibrator
Z-olectrical assembly
NOTE: Parts marked with an asierisk ($\left.{ }^{(}\right)$are general replacement items, and the part numbers will not be identical with those used on factory assemblies. Use only the "Service Part No." shown in the parts list when ordering replacements.

REPLACEMENT PARTS LIST

- John F. Rider

PHILCO PAGE 18-9

PHILCO CORP.
MODEU UN6-550

SPECIFICATIONS

CIRCUIT
 INTERMEDIATE FREQUENCY 455 גc. POWER INPUT $\quad 6.3$ volts. 8.3 amperes, d.c. (with speaker connected) PHILCO TUBES USED 7A7(2), 7B8, 7B6, 7C5, 7Y4

AERIAL Philco universal auto-radio type

Boltom view, showing lest points.

TROUBLE-SHOOTING PROCEDURE

In this manual, the receiver circuit is divided into four sections as shown in figure 1. One lest point is designated for each section, as shown in figure 2. Normal indications, secured when checking at these points, eliminate the section under test as a source of trouble. Isolation of the faulty part is accomplished by testing in the order shown in the sectional test charts. A high. quality signal generator, volt-ohmmeter, ammeter 10 to 30 amps. d.c.), and a source of 6.3 volts d.c. are required. The voltage readings shown were taken with a 20,000 -ohms-per-volt meter.
To localize trouble, connect the receiver to the power supply: turn the receiver volume control to maximum; see that all tube
filamenis are lighted; then proceed in the order given in the following chart. Remedy any defect encountered before proceeding to next check.

When using the signal generator, always connect a condenser (. 01 to .25 mf .) in series with the output lead.

IMPORTANT

The aerial and aerial lead-in form part of the r-f tuning circuit. When testing or aligning this receiver on the bench it is important that an aerial dummy load of equal capacity be used.

TESTS TO LOCALIZE TROUBLE TO ONE SECTION

SECTION	TEST	NORMAL RESULTS
1	Place ammeter in series with power source, and measure current drain of set. Measure voltage between test point 1 and chassis (C).	Approx. 8.3 amps. 220 volts
2	Apply gudio signal between point 2 and chassis (C).	L,oud, clear signal from speaker.
3	Apply weak. modulated $455-\mathrm{kc}$. signal between point 3 and C .	Loud, clear signal.
4	Apply weak, modulated, r-f signal (approx. 1000 kc .) between point 4 and C. Set selector switch to "DIAL":* and tuning cond. to half-meshed; tune sig. gen. until a signal is heard. Test also in "AUTOMATIC" positions 1-5 inclusive.	Loud, clear signal.

* To set the selector switch in "DIAL" position, unscrew the locking screw (see figure 11, page 6) until it protrudes $1 / 2^{\prime \prime}$ from the outside of the case. Then rotate the selector switch until it locks. This will be the "DIAL" position, and the "AUTOMATIC"
positions 1 to 5 may be found by releasing the lock and rotating the switch clockwise, while watching the rotor arm contact on the rear of the switch wafer nearest the side of the chassis,

PHILCO CORP.

A L I G N M E N T

OUTPUT METER: Connect to the voice-coil lugs on the speaker SIGNAL GENERATOR: Connect the output lead as indicated in the chart below; connect the ground lead to the receiver chassis. Set the receiver volume control at maximum. Then adjust the signal-generator output to give a readable deflection on the output meter, using the meter range that best indicates small changes in output. Reduce the signal-generator output as alignment pro gresses, to prevent the meter needle from going off scale.

PROCEDURE

DIAL CALIBRATION: When the radio is re-installed in the car, the dial pointer must be set to coincide with the index dot at the low-frequency end of the dial, with the funing condenser fully meshed.

NOTE: Instructions for setting up the automatic push-button tuning control may be found in the UN6-550 Operating and Installation Instructions, Philco Part No. 39-7882.

ALIGNMENT CHART

SIGNAL GENERATOR			RECEIVER		
	Connections to Receiver	Dial Setting	Tuning-Condenser Setting	Special Instructions	Adjust Trimmers
1	Through .05 m . to the antenna receptacle.	455 kc .	Fully meshed.	Preset C403A fully tight.	C403A (fully tight)
				Lock station-selector switch in "DIAL" position (see instructions at bottom of page 1): ground stafor of oscillator section of gang. Adjust for maximum in given order: then repeat procedure.	C301B C301A C300B C300A
2	Same as 1.	455 kc .	Fully meshed.	Adjust for minimum; then remove ground from oscillator section of gang.	C403A
3	Through 30 mm . in series with antenna lead, Philco Part No. 95-0185 to the antenna receptacle.	1580 kc .	Fully open.	Adjust for maximum.	C406A
4	Sarne as 3.	1400 kc .	Tune to maximum signal.	Adjust for maximum. Final adjustment must be made after radio has been re-installed in car with antenna connected.	C400-6
5	Same as 3.	580 kc .	Tune to maximum signal.	Adjust while rocking tuning gang.	C407
6	Same as 3.			Repeat steps 3, 4, and 5.	

Top view, showing trimmer-condenser locations.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 1

With the exception of the first test, all measurements in this section should be made with a volt-ohmmeter, using the applicable d.c range. The voltages given were measured with the volume control at minimum, and with 6.3 volts d-c input to the receiver power supply.

NOTE: If the 7Y4 is found to be defective, check C104A and C104B for shorts before inserting a new tube. If the vibrator is found to be defective. check Cl03 for a short before inserting a new vibrator.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
Ammeter in series with power source.	8.3 amps .	Excessively high or low current indicates defective VB100. T100, C103, or 7Y4.
A to C	240 volts	Defective 7Y4, C104A, or C104B.
B to C	220 volts	Defective R102. Cl04E, C302, or C304 (see Section 3 for location).

Section 1 schematic

Bottom view, showing Section 1 test points.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 2

For all tests in this section, use an audio signal. Connect the signal-generator output lead through a condenser (0.01 to .25 mi .) to the test points indicated; connect the ground lead to the receiver chassis (C). Set the receiver volume control at maximum, and adjust the signal-generator output for a loud, clear signal.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
D to C	Loud, clear signal from speaker.	Defective 7C5. T200, LS200, C204, C205, C206, C207, or R206.
E to C	Loud, clear signal.	Open C204.
$\begin{gathered} F \text { to } C \\ \text { (Short out } C 303 \text {) } \end{gathered}$	Clear signal, noticeably louder than preceding test.	Delective 7B6, open R202. R203, R303, or shorted C202.
G to C (Remove short from C203)	Loud, clear signal.	Defective C201 or R200 (Rotate R200 through its entire range for complete check).

Section 2 schematic.

Bottom view, showing Section 2 test points.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 3

For all tests in this section, set the signal generator at 455 kc ., with modulation on. Connect the generator output lead through a condenser (.01 to .25 mf .) to the points indicated; connect the generator ground lead to the receiver chassis (C). Set the receiver volume control at maximum, and adjust the signal-generator output for a loud, clear signal.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
H to C	Loud, clear signal from speaker.	Defective 7A7. Z301. C302. C303. C304. R301. R302. R303, or R405 (see Section 4 for location).
J to C	Loud, clear signal.	Defective z300.

Section 3 schematic.

- John F. Rider

TESTS TO ISOLATE TROUBLE WITHIN SECTION 4

1. Attach the positive lead of a 20.000 -ohms-per-volt meter to the receiver chassis, and the prod end of the negative lead through a 50,000 -ohm-resistor to point P. Set the meter on a 10 volt or similar range, and rotate the tuning condenser through its entire range on each position of the band switch. Absence of voltage indicates that the oscillator is not functioning. If this is the case, check the components indicated in column 3 of the first test below. in the order listed.
2. Connect the signal-generator output lead through a condenser (.01 to .25 mf .) to the test points indicated. Connect the ground lead to the receiver chassis. set the receiver volume control at maximum, and proceed as below. The normal indication in each case will be a loud, clear signal, when the signal qenerator is tuned to the same frequency as the receiver, with mod ulation on.

1. TEST POINTS	2. SELECTOR SWITCH	3. POSSIBLE CAUSE OF ABNORMAL INDICATION
K to C (chassis)	Dial (see note, bottom of page 1).	Defective 7B8. R402, R405, C402, C406. C406A, C407, C410, C411, L404, or S400B.
K to C	Automatic Positions 1-5.	Defective L.406-1, L407-2. L408-3. L409-4, L410-5. or S400B.
I. to C	Dial	Defective 2403 (shown in Figure 11. paqe 6).
M to C	Dial	Defective 7A7. R400, R401, C404, C406, or S400A.
N to C	Dial	Defective L401. L402, or C401.
N to C	Automatic Positions 1-5.	Defective C400-1. C400-2, C400-3, C400-4, C400-5, or S400A.

Section 4 schematic.

Bottom view, showing Section 4 test points.

REPLACEMENT PARTS LIST

Symbol designations used in the schematics and parts list are as follows:

C-condenser	R-resistor
F-fuse	S-switch
I--pilot lamp	T-transiormer
L-choke or coil	VB-vibrator
LS-loud speaker	Z-electrical assembly

NOTE: All parts marked with an asterisk ${ }^{(*)}$ are general replacement items, and the part numbers will not be identical with those used on factory assemblies. Use only the "Service Part No." shown in this parts list when ordering replacements
SECTION 1

Reference	Description	Service Part No.
C100	Condenser, 250 mmif.	60-10245307*
C101	Condenser, 5 mf	61-0137*:
C 102	Condenser, 5 mf .	61.0137\%
C103	Conderiser, . (x) 3 mif.	61-0115:
C104	Condenser, electrolytic, 10-15-20 mf C104A: condenser, 10 mf .	Part of C104
	C104B: condenser, 15 mf .	Part of C104
F100	Fuse	45-2559\%
I 100	Lamp, pilot	34-2039\%
L100	Choke, vibrator	65-0433
L. 101	Choke, "A'"	65-0037
R100	Resistor, 150 olmms	66-1153340*
R101	Resistor, 220 ohnts	66.1223340°
R102	Resistor, 1,000 olmis	$\begin{array}{r} 66-2104340^{\circ} \\ 35-012^{*} \end{array}$
\$100	Switch, power	65.0234^{*}
T100	Transformer, power	83-0026*

SECTION 4 (Continued)

Reference	
L401	Ch
L402	C
L404	Co
L405	C
L406-1	Co
L407-2	C
L408-3	Co
L.409-4	C
L410-5	Co
R400	Re
R401	Re
R402	Re
R404	Re
R405	Re
S400	Sw
	Z403
	T

Description
Service Part No 65-0168 $65-0323$ 65.0420
$65-0452$ $65-0452$
$65-046^{-}$
65-0462
65.0463
65.0410
$65-0470$
$65-0470$
$65-0471$ 66-1823340 66-31033 40 66.3683340 $66.11833+0$

76-2432
$76-2432$
$77-0936$
65-0321
Part of Z403
Part of 2,403
Part of Z403
Part of 2403
$66.51033+9$

42-5865
56.3180
45.1459
56.3181
$\begin{array}{r}55-1194 \\ \hline-7555\end{array}$
$7-0755$
38.8221
$38-8221$
41.3387
$41-3387$
$.77-0235$
$77-0235$
$95-0135$
77.0541

57-1885
57.1889
57.1384
$57-1384$
57.1324543
$57-1324 F A 3$
$57-1386$
$57-1386$
$57-1385$
77-0694FJ21
76-1696
$57-1345 \mathrm{FJ} 21$
1W21813FA26
57-1340FA:
1 W'57223FA!
IW21291FA
Speaker uni
Baffle, speaker
Bolt, bracket-to-bracket
Bolt, bracket-to-instrument-panel
Bracket, speaker
Bracket, "U""
Bricket,
Lockwasher, bracket-to-instrument-panel
Lockwasher, bracket-to-bracket and bracket-to-instrumentpanel
Lockwasher, speaker-mounting and speaker-to-bracket
Nut, speaker-to-bracket
Nut, bracket-to-bracket and bracket-to-instrument-panel
Surew, speaker-to bracket
Spacer, cardboard
Washer, speaker-to-bracket

Suppressor kit

Resistor, distributor
Clamp, vibrator
Clip, coil-mounting
Connector, antenna
Cup, core
Grommet, "A" lead
Grommet, tuning--condenser-mounting
Screw and core assembly
Shield, power
Socket, speake
Socket, vibrato

55-0957
$0061 F A 3$
W17331FA4
57-1461FA3
$2162 F A 3$
$55-1320$ 1W35032FE7

1W24260FE7 1W24257FE7 1W19988FA3 1W10638FA4 55-0449
30-1007
$33-1196$
$95-0227$
$57-1637 F A 3$
$28-5002 F A 1$
$57-0591 F A 3$
W2032
$27-4676$
$27-4596$
$57-1744 F A 3$
$57-1744 F A 3$
$55-1318^{*}$
$27-6128^{*}$
$27-6153$

Model 46-427

SPECIFICATIONS

CABINET	Model 46.427 (Wood, walnut finish)
CIRCUIT	Six-tube superheterodyne
FREQUENCY RANGE	Broadcast-540 to 1700 kc .
	Short.wave-9.5 to 15.0 mc .
POWER INPUT	105 to 120 volts-A.C. or D.C.
POWER CONSUMPTION	32 watts
ANTENNA	Builtin loop or external
INTERMEDIATE FREQUENCY	455 kc.
PHILCO TUBES USED	XD, 7B7 (2), 7C6, 50L6GT, 3575GT/G
PILOT LAMP	base, brown bead. Part No. 34-2068

PHILCO TROUBLE-SHOOTING PROCEDURE

Figure 1. Block diagram (Heavy lines indicate signal path).
In this manual, the receiver circuit is divided into four sections, as shown in figure 1. One test point is designated for each section, as shown in figure 2. Abnormal indications, secured when checking at these test points, localize trouble to the section under test. After localization, isolation of the faulty part is accomplished by testing in the order shown in the sectional test charts. A high-quality signal generator and a volt.ohmmeter are

Figure 2. Bottom view, showing test points.
required. Voltage readings shown were taken with a 20,000 ohms-per-volt meter. To localize trouble, connect the receiver to the power line; turn receiver volume control full on; see that all tube filaments are lighted; then proceed in the order given in the following chart. When applying a signal, connect the signalgenerator output lead through a condenser (.01 to .25 mf .). Remedy any defect encountered before proceeding to the next check.

TESTS TO ISOLATE TROUBLE TO ONE SECTION

SECTION	TEST	NORMAL RESULTS
1	Measure voltage between point 1 (+) and B-.	*85 volts
2	Apply an audio signal through a condenser (. 01 to .25 mf .) between point 2 and B -.	Loud, cleas signal
3	Apply a weak modulated r-f signal (455 kc .) through a condenser (.01 to .25 mf .) between point 3 and $B-$.	Loud, clear signal
4	Apply a weak modulated rif signal ($1,000 \mathrm{kc}$.) through a condenser (.01 to .25 mf .) between point 4 and B-. (Band switch in "Broadcast" position.) Repeat this test at 12.0 mc . with band switch in "Shortwave" position.	Loud, clear signal

* For 117 -volt a-c input. When operating on $\mathrm{d}-\mathrm{c}$ line and no voltage can be measured, reverse power plug.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 1

Make all tests for this section with a volt-ohmmeter, using the $0-250 \mathrm{v}$. d-c range. See firures 3 and 4 for location of test points.

TESTS POINTS	NORMAL READING	POSSIBLE CAUSE OF ABNORMAL READING
A to B-	112 v .	No voltage indicates defective 3525 , or shorted C-101. Low voltage indicates defective $\mathbf{3 5 Z 5}$, leaky or open C-101, or shorted C-200. (Refer to Section 2 for location.)
C to B-	$85 v$.	No voltage indicates open speaker field. Low voltage indicates leaky C-101 or C-200. (Refer to Section 2 for location.)

SECTION 1

Figure 3. Section 1 schematic.

Figure 4. Bottom view, showing section 1 test points.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 2

For all tests in this section, use the audio range of the signal generator. Connect the output lead through α condenser (. 01 to .25 mi.) to the point indicated, and the ground lead to $B-$. Adjust signal generator output for a clear, audible signal.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
D to B-	Clear, audible signal from speaker.	No signal, weak, or distorted signal indicates defective 50L6, output transformer T-200, or speaker LS-200, shorted condenser C-201, leaky condenser C-202, or open resistor R-204.
E to B-	Clear, audible signal, same as preceding test.	No signal indicates open condenser C-202.
F to B-	Clear, audible signal, noticeably louder than preceding test.	No signal, or weak signal, indicates defective 7C6, or open resistor R-202.
G to B-	Clear, audible signal, same as preceding test.	No signal indicates open condenser C-203. Hum, noise, or distortion indicałes defective volume control.*

* In making this test, the volume control should be rotated throughout its range. Noise, or distortion indicates a defective control.

Figure 5. Section 2 schematic.

Figure 6. Bottom view, showing section 2 test points.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 3

For all tests in this section, set signal generator at 455 kc ., modulation ON. Connect output lead through a condenser (. 01 to .25 mid.) to point indicated, and ground lead to point B-. Adjust signal generator output for clear, audible signal.

TEST POINTS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
H to $\mathrm{B}-$	Audible signal from speaker.	No signal indicates defective 7B7, i-f transformer Z-302. shorted condenser C.303. open resistor R-301, or defective diode section of 7 C 6 (Section 2).
J to B-	Audible signal from speaker, louder than preceding test.	No signal indicates defective 7B7, or i-1 transformer 2-301.
K to B -	Audible signal from speaker. same as preceding test.	No signal indicates defective i-f transformer Z-300, or open resistor R-300.

Figure 7. Section 3 schematic.

Figure 8. Bottom view, showing section 3 test points.

TESTS TO ISOLATE TROUBLE WITHIN SECTION 4

NOTE: As a preliminary test, the tuning control should be rotated throughout its range. Any scraping noise heard in the speaker indicates bent plates, dirty wiper contacts, or dirt between the plates.

To fully check this section, all tests should first be made with the receiver and signal generator set at 540 kc ., and then repeated at 1700 kc .

This procedure should also be followed in testing the short-wave band, with the receiver and sigaal generator set at 9.5 mc .; and then at 15 mc .

Connect the signal-generator output through a condenser (. 01 to .25 mfd .) to the point indicated, and the ground lead to B-. Adjust the signal-generator output control for a clear, audible signal.

TEST POINTS	NORMAL INDICATION	POSSIBLE. CAUSE OF ABNORMAL INDICATION
L to B-	Clear, audible signal from speaker.	No signal indicates defective 14AF7 or transformer T-401, open resistor R-402, or shorted condenser C.409. †(For supplementary oscillator test see footnote below.)
M to B-	Clear, audible signal from speaker.	No signal indicates defective coil L-400 (Brondcast) or T-400 (Short-wave).

OSCILLATOR GRID BIAS VOLTAGE

+ Attach the positive lead of a 20,000 ohms-per-volt meter to point P, and the prod end of the negative lead, through a $50,000-0 h m$ resistor, to point N. Set the meter on 10 -volt or similar range and rotate the tuning condenser through its entire range on each position of the band switch. Absence of voltage at any point indicates that the oscillator is not functioning. If so, check the components listed in the first test in the chart above.

Figure 9. Section 4 schematic.

Figure 10. Bottom view, showing section 4 test points.

CONNECTING ALIGNING EQUIPMENT

Output Meter: Connect between output (left hand) and ground (center) lugs of terminal strip TS-400 on rear of chassis, shown in figuxe 11.

Signal Generator: Connect output lead through a .05 mfd . condenser to indicated test point and ground lead to B-.

Adjust generator output to give a readable deflection on the output meter, using meter range that best indicates small changes in output. Reduce generator output as alignment progresses to prevent meter needle from going off scale.
Turn receiver volume control to maximum and adjust all trimmers, in the order listed, for maximum output.

ALIGNMENT CHART

SIGNAL GENERATOR			RECEIVER			
	Connections to Receiver	Dial Setting Kc.	$\begin{aligned} & \text { Band } \\ & \text { Swritch } \\ & \text { Pcsition } \end{aligned}$	Dial Selting Kc.	Special Instructions	Adjust Trimmers in Order Given
1	Stator terminal of antenna section of tuning condenser.	455	Broadcast	Plates fully meshed	Set pointer to index mark on back plate. Preset C-300-B by turning down tight; then adjust all 4 i-f trimmers for maximum, in the order listed.	$\begin{gathered} \text { C. } 302 \\ \text { C. } 301 \\ \text { TC }-300 \\ \text { C. } 300 B \end{gathered}$
2	Antenna connection of TS-400.	1700	Broadcast	1700	Preset C-403 by turning down tight, then backing oft $1 / 3$ turn.	C-400B
3	Same as 2	1500	Broadcast		Tune receiver to signal generator.	C-400A
4	Same as 2	1700	Broadcast	1700		C-4008
5	Same as 2	1500	Broadcast		Repeat adjustment in step 3.	C-400A
6	Same as 2	15.0 mc .	Short Wave	15.0 mc .		$\begin{aligned} & C-410 \\ & C-412 \end{aligned}$
7	Same as 2	9.5 mc .	Short Wave	9.5 mc .		C. 403

Figure 11. Top viow, showing trimmer condenser locations.

Figure 12. Complete Schematic.
NOTE: All voltage, capacity, and resistance values shown are average. The voltages shown were measured with a 20,000 -ohms-per-volt meter between the indicated test points and B-(negative return of power supply):

Symbol designalions used in the schematics and parts list are as follows:

C—condenser	S-switch
I-pilot lamp	T-transformer
LA-loop antenna	W-power cord and plug
LS—loudspeaker	Z-i- transiormer assembly
R—resistor	Z-i

NOTE: Parts marked with an asterisk (*) are general replacement items, and the part numbers will not be identical with those used on factory assemblies. Use only the "Service Part No." shown below when ordering replacements.

REPLACEMENT PARTS LIST SECTION 1		Reference SECTION 4 (Cont.) Number Description		Service Part No.
Referenc Number	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	C405	Condenser, 50 mm .	$\begin{gathered} 60.00515307 * \\ 60-10245407 * \end{gathered}$
Cl00		C407	Condenser, . 05 mf .	30-4518*
Cl01	Condenser, electrolytic, 20-20 mf.30-2541	C408	Condenser, 250 mmf .	60-10245407*
C101A		C409	Condenser, . 01 mf .	61.0120*
C101B		C410	Condenser, s-w oscillator-trimmer	31-6453
C102	Condenser, 04 mf ${ }_{\text {a }}$	C411	Condenser, . 006 mf .	30-4504*
1100	Lamp, pilotan .	C412	Condenser, s-w antenna-trimmer	31-6426
1100		J400	Socket, antenna	27-6145
S100	Switch. a-c .- Part oí R200	LA400	Loop assembly	76-1279
W100		L400	Coil, antenna, s-w shunt	32-3716
		R400	Resistor, 2.2 megs.	66-5223340*
C200	Condenser, . $02 \mathrm{mf}$. SECTION $2 \times \ldots$	R401	Resistor, 47,000 ohms	$66.3473340 *$
C201	Condenser, 250 mmf .	R402	Resistor, 2200 ohms	${ }_{66-3103340}{ }^{\text {6 }}$
C202	Condenser, . $01 \mathrm{mf}$. ..0120*	R403 S400	Resistor, 10,000 ohms Switch, band	. 42-1772
C203		T400	Coil, antenna	32.4008
LS200	Speaker	T401	Coil, oscillator	32-3991
R200	Volume control, .5 meg. $33-5458$	TS400	Wiring-panel assembly	12W45654
R201	Resistor, 4.7 megs. ...66.5473340*		Wiring-panel assembly	
R202	Resistor, 470,000 ohms ..66.4473340*			
R203			MISCELLANEOUS	
R204	Resistor, 130 ohms ..66-1133340*			
T200	Transformer, output (mounted on speaker)Part of LS200	Bands. Cabine	rubber, scale-mountin	$\begin{array}{r}54-4176 \\ \hline-.10650\end{array}$
	SECTION 3	Clamp.	electrolytic-condenser-mounting	56-1466FA5
C300A		Clip.	ntenna-coil	28-5002FA3
C300B	Condenser, trimmere- Part of z300	Dial, b	ack-plate assembly	76-1588
C301		Drive-s	haft assembly	3
C302A		Drive	ord (25 ft . spools)	45-1460
C302B		Feet, f		W2190
C302C		Grill-cl	th assembly	40-6774
C303		Gromm	t, rubber, tuning-condenser front mounting	27-4596
C304		Gromm	et, tuning-condenser rear mounting	54-4020
C305	Condenser-and-choke assembly	Knob	ssembly	54-4311
L300		Pointer		56-2896
R300	Resistor, 10,000 ohmsan	Reflect	r, light	27.5730
R301	Resistor, 15,000 ohms ...66-3153340	Rivets		W36671FA5
R302		Scale,		27-5895
R303	Resistor, 2.2 megs. ...66-5223340*	Screw	and lockwasher, scale-mounting	W32228FA3
Z300	Transformer, 1st i-f ...32-3956	Screw	and lockwasher, speaker-mounting	W32228FA3
Z301	Transformer, 2nd i-f ... ${ }_{\text {a }}$	Screw,	gang-mounting	W758-FA3
Z302	Transformer, 3rd i-f ...32-3958	Sleeve,	tuning-condenser	28-5665FA3
		Socket	Loktal	27-6138*
	SECTION 4	Socket	octal	27-6199*
C400	Condenser, tuning ..31-2555	Socket	assembly, pilot-light	76-1392*
C400A	Condenser, trimmer .. ${ }^{\text {Part }}$ of400	Spring.	drive-cord	28-9000
C400B	Condenser, trimmer Part of C400	Strap.	cale-mounting	56.2068
C401	Condenser, 300 mmf . ..60-10305307	Washe	, chassis-mounting	W37654FA3
C402	Condenser, 275 mml .	Washe	, gang-mounting	W52353FA3
C403	Condenser bc. oscillator trimmer,.........................art of C.410	Wiring	panel. 3 lugs	76-2148
C404		Wiring	panel, 5 lugs	12W45672

Circuit Description

Philco Models 48-141 and 48-145 are four-tube, battery-operated superheterodynes, providing reception on the standard broadcast band, $540-1720 \mathrm{kc}$. Manual tuning is employed. Both models are identical except for the cabinets, knobs, and dial scales, as indicated in the parts list. A 100 -foot (over-all), outdoor aerial, such as Philco Part No. 45-1469, is recommended.

The converter stage employs a type 1LA6 pentagrid converter tube; in this tube, the oscillator signal is fed to the mixer section through the electron stream within the tube.

A type 1LN5 pentode tube is used in the i-f amplifier stage. The diode section of the 1LH4 tube provides detection and a-v-c voltage, and the triode section functions as the first audio amplifier.

The first audio stage is resistance-coupled to the type 3LF4 output tube, which drives the permanent-magnet dynamic loud-speaker.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, tained. If this reading is lower than 10,000 the defect is located by: first, testing the tube; ohms, check condensers C100, C203, and C404. second, measuring tube electrode voltages; for leakage or shorts.

For the tests in this section, use a d-c voltmeter, connecting the leads between the chassis, test point C, and the test points indicated in the chart. The voltages indicated were obtained from a fresh battery pack, and were measured with a $20,000-$ ohms-per-volt meter, with the radio turned on.

If the "NORMAL INDICATION" is obtained in the first step, proceed with the tests for Section 2; if not, isolate and correct the trouble in this section.

STEF	tist Point	normal indication	abnormal INDICATION	POSSIBLE CAUSE OF ABNORMAL indication
1	$\begin{aligned} & \mathrm{A} \\ & \mathbf{B} \\ & \mathbf{D} \end{aligned}$	85 volts 1.5 volts Negative 5 volts		Trouble within this section. Isolate by the following tests.
2	A	85 volts	No voltage Low voltage	Open battery cable. Defective Si00. Open R100. Shorted Cl00. Weak battery. Change in value of R100. Leaky C100. Excessive current drain in Sections 2,3 , or 4.
3	B	1.5 volts	No voltage Low voltage	Open battery cable. Defective S100. Weak battery.
4	D	$\begin{gathered} \text { Negative } \\ 5 \text { volts } \end{gathered}$		Change in value of R100. Open R100. Excessive current drain in Sections 2, 3, or 4.

TROUBLE SHOOTING

Figure 2. Bottom View, Showing Section 2 Test Points

For the tests in this section, use an audio signal. Connect the sig-nal-generator ground lead to the radio chassis, test point C; connect the output lead through a . $1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the radio volume control to maximum.

If the "NORMAL INDICATION" is obtained in the first step, proceed with the tests for Section 3; if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with moderate signal input.	Trouble within this section. Isolate by the following tests.
2	H	Normal, clear signal with strong signal input.	Defective 3LF4 tube, T200, or LS200. Shorted or leaky C203 or C201.
3	D	Loud, clear signal with moderate signal input.	Defective 1LH4 tube. Open R202 or C202.
4	A	Loud, clear signal with moderate signal input.	Defective R200. Shorted C301D. Open C200.

Listening Test : Distortion may be caused by leaky C2 01, C202, C203, or C200, or by open R203 or R201.

TROUBLE SHOOTING

TP-3320C

Figure 3: Bottom View, Showing Section 3 Test Points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with moder- ate signal input.	Trouble within this section. Isolate by the following tests.
2	B	Loud, clear signal with moder- ate signal input.	Defective lliN5 or 1LH4 (diode section) tube. Defective or misaligned Z301. Open C302.
3	A Loud, clear signal with moder-	Defective or misaligned Z300.	
ate signal input.			

TROUBLE SHOOTING

TP-3320

Figure 4. Bottom View, Showing Section 4 Test Points

STEP	TEST POINT	dial settings		NORMAL INDICATION
		SIG. GEN.	RADIO	
1	A	540 kc .	540 kc .	Loud, clear signal with low signal input.
2	B	540 kc .	540 kc .	Loud, clear signal with moderate signal input.
3	$\begin{gathered} \text { D } \\ \text { Osc. test } \\ \text { (See Note below.) } \end{gathered}$		540 to 1720 kc .	Negative voltage (at least 1.5 volts) over complete range.
4	A	540 kc .	540 kc .	Loud, clear signal with low signal input.

POSSIBLE CAUSE OF ABNORMAL INDICATION
Trouble within this section. Isolate by the following tests.
Defective 1LA6 tube, C401, C40IA, or oscillator circuit. Shorted C404. Misaligned $\mathbf{Z 3 0 0}$.
Defective lLA6 tube, T401, C.401. or C.401B. Open R401, R402, C402, or C403. Shorted or leaky C402 or C403.
Defective T400 or C.401.

NOTE: Connect positive lead of 20,000 -ohms-per-volt meter to the chassis, test point C; connect prod end of negative lead through $100,000-\mathrm{ohm}$ isolating resistor to test point D (oscillator grid, pin 4 of 1LA6 tube).

©John F. Rider

ALIGNMENT PROCEDURE

TURN ON RADIO POWER, AND SET VOLUME CONTROL TO MAXIMUM

dial-Alignment points should be marked on the shown in the composite dial-and-backplate photo figure 8 . With tuning condensers fully meshed, set dial pointer to index mark.

StEP	signal generator		radio		Adjust	
	CONNECTIONS to radio	dial setting	dial setiong	special instructions		- 2 - -200
1	Through . $1-m f$. condenser to stator of aerial tuning condenser.	455 kc .	Tuning condenser fully meshed.	Adjust trimmers, in order given, for maximum output.	C301A C300A C300B	
2	Through 200-mmf. condenser to external aerial connector.	1700 kc.	1700 kc.	Adjust for maximum output.	C401B	
3	Same as Step 2.	1500 kc .	1500 kc . (approx.)	Tune radio to generator signal, and adjust trimmer for maximum output.	C401A	

Figure 6. Top View, Showing Trimmer Locations

SYMBOLIZATION AND TERMINOLOGY

All components in the radio circuit are symbolized and located as follows:
C-condenser
I-pilot lamp
L-choke or coil

$$
\begin{aligned}
& \text { LA—loop aerial } \\
& \text { LS—loud-speaker } \\
& \text { R—resistor }
\end{aligned}
$$

S—switch T-transformer Z-electrical assembly
100 -series components are in Section 1—the power supply.
200 -series components are in Section 2-the audio amplifier.
300-series components are in Section 3-the i-f am plifier, detector, and a-v-c circuits.
400 -series components are in Section 4-the aerial and oscillator circuits.

Figure 7. Drive-Cord Installation Details
TP. 3320 E
©John F. Rider

Figure 8. Composite Dial and Backplate, Calibration Details

REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk (*) in the following parts list are general replacement items. These numbers may not be identical with those on factory assemblies; also; the elecirical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION 1

Reference Symbol Description		Service Part No.
C403	Condenser, . 006 mf ., osc. tracking	45-3500-7*
C404	Condenser, .05 mf ., r-f by-pass.	61-0122*
R400	Resistor, 4.7 megohms, a-v-c voltage divider	66-5473340*
R401	Resistor, 220,000 ohms, osc. grid leak.	66-4223340*
R402	Resistor, 68,000 ohms,	
	screen dropping	66-3683340*
T400	Transformer, aerial	32-3919-2
T401	Transformer, oscillator	32-3385-2
MISCELLANEOUS		
Descrip		Service Part No.
Cabinet, Less Dial Scale		
	48-141	10618A
	48-145	0618D
Cabinet Hardware		
	and cloth assembly	40-691
Dial Scale		
	odel 48-141	27-5951
Dial-Scale Hardware		
	and, rubber, dial scale	54-4025
	crew, strap mtg.	1W23129FA3
	trap, scale mtg., r.h.	56-2672FA3
	trap, scale mtg., l.h.	56-2671FA3
Knob		
	odel 48-141	54-4323
	odel 48-145	54-4375
	baffle mtg.	W2235-2FA9
Scale	e, Flag and Upright Assembly	76-3131
	drive ($25-\mathrm{ft}$. spool), for flag	45-8755
	drive ($25-\mathrm{ft}$. spool), for pointer	45-8755
		56-2896
	g, flag drive	28-9011FA3
	, cam plate, flag drive	57-0701FA1
	, retaining	57-1468FA1
	fer-lever assembly	76-1655-1
Sock	ktal	27-6138
Tuning-Condenser Hardware		
Cord, drive (25-ft. spool), for tuning condenser.45-8760		
	, drive assembly	76-2485
Mounts, rubber, tuning condenser27-4596		
Tuning-shaft assembly................................31-2640		

Circuit Description

Philco Model $48-150$ is a five-tube, battery-operated, superheterodyne radio providing reception on the standard broadcast band, 540 to 1720 kc . For best performance, the radio should be operated with an external aerial, such as Philco Part No. 45-1469.

A type 1LG5 pentode is used as the r-f amplifier and a type 1LA6 pentagrid converter as the mixer and oscillator, to provide high sensitivity and high signal-to-noise ratio. The r-f stage is coupled to the mixer by a transformer, and the oscillator is coupled to the mixer by the electron stream within the converter tube.

The 455 -kc., i-f amplifier stage employs a type lLN5 pentode. This stage is coupled to the output of the mixer by a double-tuned i-f transformer, and is coupled to the detector-diode section of the 1LH4 diode-triode by a single-tuned i-f transformer. The diode circuit of the 1LH4 rectifies the i-f signal and produces the audio signal and a-v-c voltage.

Two a-v-c filter circuits are used; one circuit couples the $\mathrm{a}-\mathrm{v}-\mathrm{c}$ voltage to the $\mathrm{r}-\mathrm{f}$ amplifier; the other couples the a-v-c voltage to the mixer.

The audio output of the detector is resistancecoupled to the triode section of the 1LH4, which, in turn, is resistance-coupled to the type 3LF4 beamtetrode output stage. Fixed bias is supplied to the output stage from a resistor in series with the negative return to the battery plug. The permanent-magnet, dynamic loud-speaker is transformer-coupled to the output stage.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble-shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis, showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for ance between $B+$ (red lead of battery plug) and determining whether trouble exists in that section, chassis. Use the ohmmeter polarity that gives the without going through the entire test procedure. Fail- highest reading. If the resistance is lower than 10,000 ure to obtain "NORMAL INDICATION" in any given ohms, check condensers C100, C203, C201, and C403 step indicates trouble within the circuit under test. for leakage or shorts.

TROUBLE SHOOTING

Section 1

Figure 1. Bottom View, Showing Section 1 Test Points

Make the tests for this section with a d-c voltmeter. The voltages indicated in the chart weremeasured with a 20,000 -ohms-per-volt meter, with a fresh battery pack installed, and with the radio turned on. Set the volume control to minimum and the dial pointer to 540 kc . Connect the meter between the radio chassis, test point C, and the test points indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2; if not, isolate and correct the trouble within this section.

STEP	TEST POINT	NORMAL INDICATION	ABNORMAL INDICATION	possiele cause of abnormal indication
1	$\begin{aligned} & \mathbf{A} \\ & \mathbf{B} \\ & \mathbf{D} \end{aligned}$	85 volts 1.5 volts Negative 5.5 volts		Trouble within this section; isolate by the following tests.
2	A	85 volts	No voltage Low voltage	Open battery cable or R100. Defective S100. Shorted C100. Weak battery. Change in value of R100. Leaky C100. Excessive current drain in Sections 2, 3, or 4.
3	B	1.5 volts	No voltage Low voltage	Open battery cable. Defective $\mathbf{S 1 0 0}$. Weak battery.
4	0	Negative 5.5 volts		Change in value of R100. Open R100. Excessive current drain in Sections 2, 3, or 4.

TROUBLE SHOOTING

Make the tests for this section with an audio-frequency signal generator. Connect the ground lead to the radio chassis, test point C , and the output lead through a . $1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the volume control to maximum. If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3; if not, isolate and correct the trouble within this section.

STEP	test POint	NORMAL Indication	possible cause of abnormal indication
1	A	Ioud, clear signal with moderate signal input.	Trouble in this section; isolate by the following tests.
2	B	Moderate, clear signal with strong signal input.	Defective 3LF4, T200, or LS200. Shorted C203 or C201. Leaky C203 or C201.
3	I	Same as step 1.	Defective 1LH4. Open R202 or C202.
4	A	Same as step 1.	Open C200. Defective R200.

TROUBLE SHOOTING

Section 3

Figure 3. Botfom View, Showing Section 3 Test Points

Make the tests for this section with an r-f signal generator (modulated output); set the generator to 455 kc . Comnect the ground lead to the radio chassis, test point C, and the output lead through a . 1 -mf. condenser to the test points indicated in the chart. Set the volume control to maximum. If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 ; if not, isolate and correct the trouble within this section.

STEP	TEST POINT	NORMAL INDICATION	possible cause of abnormal indication
1	A	Loud, clear signal with moderate signal input.	Troulle in this section; isolate by the following tests.
2	B	Same as step 1.	Defective 1LN5 or 1LH4 (diode section). Defective or misaligned Z301.
3	A	Same as step 1.	Defective or misaligned Z300.

TROUBLE SHOOTING

Figure 4. Bottom View, Showing Section 4 Test Points
Make the tests for this section with an r-f signal generator (modulated output); set the frequency as noted in the chart. Connect the generator ground lead to the radio chassis, test point C; comnect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Inspect the tuning condensers for bent plates, dirt, or poor wiper contacts; any of these conditions will cause noise. If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble within this section.

STEP	TEST POINT	dial settings		NORMAL INDICATION	porsible cause of abnormal INDICATION
		SIG. GEN.	RADIO		
1	A	540 kc.	540 kc.	Loud, clear signal with low signal input.	Trouble in this section; isolate by the following tests.
2	\qquad		$\begin{aligned} & 540 \text { to } \\ & 1720 \mathrm{kc} . \end{aligned}$	Negative voltage (at least 1.5 volts) over complete range.	Defective ILA6, T402, R401, R402 or C405. Shorted C403 or osc. section of C401.
3	B	540 kc .	540 kc .	Same as step 1.	Same as step 2.
4	D	540 kc .	540 kc .	Same as step 1.	Defective ILG5 or T401. Shorted ant. or r-f section of C401.
5	A	540 kc .	540 kc .	Same as step 1.	Defective T400. Open C402.

[^0]
© John F. Rider

ALIGNMENT PROCEDURE

tURN ON RADIO AND SET VOLUME CONTROL FULLY ON

6 Repeat steps 3 and 5 until no further increase in output is noted.

SYMBOLIZATION AND TERMINOLOGY

All components in the radio circuit are symbolized and located as follows:

100 -series components are in Section 1 -the power
supply.
200-series components are in Section 2-the audio amplifier.
300 -series components are in Section 3-the i-f amplifier, detector, and a-v-c circuits.
400-series components are in Section 4-the aerial, $r-f$, and oscillator circuits.

Figure 8. Composite Dial and Backplate, Calibration Details

REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk (*) in the following parts list are general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION 1

SECTION 3

C300A	Condenser, trimmer Part of $\mathbf{Z 3 0 0}$
C300B	Condenser, trimmer Part of Z300
C301A	Condenser, trimmer Part of $\mathbf{Z 3 0 1}$
C3018	Condenser, i-f filter, 150 mmf Part of Z301
C301C	Condenser, i-f filter, 150 mmf Part of Z301
C302	Condenser, r-f by-pass, . $05 \mathrm{mf} . . .$.
C303	Condenser, a-v-c filter, 05 mf61-0122*
C304	Condenser, coupling, 100 mmf ., part of Z301. 60-10105407*
R300	Resistor, grid return, 1 megohm...66-5103340*
R301	Resistor, a-v-c filter, 10 megohms. .66-6103340*
R302	Resistor, a-v-c filter, 10 megohms. .66-6103340*
R303	Resistor, i-f filter, 47,000 ohms, part of 230166-3473340*
Z300	Transformer, 1st i.f., includes C300A and C300B...............32-3949-1
Z301	Transformer, 2nd i.f., includes C301A, C301B, C301C, C304, and R303..32-3897-2

SECTION 4

Reference Symbol		Service Part No.
C400	Condenser, coupling, 4.7 mm	30-1221-5*
C401	Condenser, three-section tuning	26
C401A	Condenser, trimmer	Part of C401
C401B	Condenser, trimmer	Part of C401
C401C	Condenser, trimmer	Part of C401
C402	Condenser, a-v-c filter, .05 mf	2*
C403	Condenser, r-f by-pass, .05 mf .	61-0122*
C404	Condenser, coupling, 10 mmf .	Part of T401
C405	Condenser, oscillator trimmer	31-6473-7
C406	Condenser, oscillator coupling, 100 mmf .	60-10105407*
R400	Resistor, $\mathrm{a}-\mathrm{v}-\mathrm{c}$ filter, 4.7 megoh	S.66-5473340*
R401	Resistor, grid return, 220,000 oh	ms. 66-4223340*
R402	Resistor, screen dropping, 47,000 ohms	66-3473340*
T400	Transformer, aerial	32-3919-3
T401	Transformer, r-f	32-3974-2
T402	Transformer, oscillator	32-3385-3

MISCELLANEOUS

Codes 121 of these models use oscillator transformer part number 32-3880. Codes 122 use oscillator transformer part number 32-4263.

Code 121 of each of these three models is identical to Code 125 of each model, with the following exceptions:

1. The type 35 Y 4 rectifier tube was replaced by a type 35Z5GT tube.
2. The type 50L6GT output tube was replaced by a type 50AS tube.

Circuit Description

The Philco Models 48-200, 48-200-I and 48-214 are 5-tube, table-model superhetcrodyne radios, providing reception in the standard broadeast band. The three models, which started in factory production as Code 125, are identical, except for cabinet and dial parts, as indicated in the parts list.

The high-impedance loop aerial normally provides adequate signal pickup. An external aerial may be connected, if desired, by detaching the aerial lead (shown in figure 6) from the chassis, and connecting the lead to an external aerial lead-in. Do not use a ground.

The loop is coupled to the 7A8 converter tube. Variable-condenser tuning is employed, the oscillator rotor-section plates being shaped to obtain tracking, thus eliminating the necessity for a series padding condenser.

The 7A8 is transformer coupled to the 14A7 i-f amplifier, which is also transformer coupled to the diodes of the 14B6 second detector-first audio-frequency amplifier. A-v-c voltage is applied to the control grids of both the i-f and converter tubes.

The triode section of the 14B6 is the first audio stage, and is resistance coupled to the 50 L 6 GT output tube. The output tube is transformer coupled to a permanent-magnet dynamic speaker.

D-c operating voltages are obtained from a 35 Y 4 half-wave rectifier, the output of which is filtered by a two-section resistor-condenser filter.

Condenser C304 in Section 3, figures 3 and 5, is a special condenser, inductively wound to form a se-ries-tuned circuit, resonant at the intermediate frequency. This special condenser offers less impedance at this frequency than a conventional condenser, thus permitting higher i-f gain, with no tendency toward instability. Since the tuning gang is connected to the chassis, by-passing at broadcast and short-wave frequencies is adequate. The inductive effect is negligible at audio frequencies.

The 150,000 -ohm resistor ${ }_{2}$ R100, in Section 1, prevents hum which might otherwise occur under conditions of high humidity.

MODEL 48-200 (Walnut) MODEL 48-200-I (Ivory)

MODEL 48-214

SPECIFICATIONS

CABINET:
Models 48-200 and 48-200-I Bakelite
Model 48-214
Circuit
Five-tube superheterodyne FREQUENCY RANGE 540 to 1620 kr . OPERATING VOLTAGE. . 105 to 120 volts, a.c. or d.c. POWER CONSUMPTION 30 watts AERIAL. . . . Loop fastened to cabinet; terminal also provided for outside aerial
INTERMEDIATE FREQUENCY .455 kc PHILCO TUBES (5),

7A8, 14A7, 14B6, 50L6GT, 35Y4
PANEL LAMP,
6-8-volt, bayonet base, Part No. 34-2068

Philco TROUBLE-SHOOTING Procedure

In this manual, the schematic diagram is divided into four sections, with a chassis layout for each section, showing components and test points for each section. The test points are also indicated on the schematic diagram in the corresponding section. A simplified trouble-shooting procedure is given in a chart for each section. The first step in each chart is a master check, indicating whether trouble exists in that section. Failure to obtain the "NORMAL INDICATION" in a given step indicates trouble, which should be located by voltage, resistance, or capacitance checks of parts indicated in the step, and remedied before testing further.

Preliminary Checks

The following preliminary checks are recommended before turning on the radio:

1. Carefully inspect both top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets (see figure 6), and look for bad connections, burnt resistors, or other obvious sources of trouble.
2. Measure the resistance between B plus and B minus (test points C and B-in figure 1), using the ohmmeter polarity giving the highest resistance reading; if the reading is lower than 50,000 ohms, check $\mathrm{C} 101 \mathrm{~A}, \mathrm{C} 101 \mathrm{~B}$, and C 101 C , for leakage or shorts.

Figure 1. Bottom View, Showing Section 1 Test Points

Make the tests for this section with a d-c voltmeter, connecting the leads to the test points indicated in the chart. The voltages shown were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, 60 cycles.
Turn the volume control to minimum, and set the dial pointer at 540 kc .
Follow steps in sequence. If "NORMAL INDICATION" is obtained in step 1, proceed with tests for Section 2; if not, isolate and correct t.ee trouble within this section.

STEP	TEST POINTS	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE Of ABNORMAL INDICATION
1	Ato B	90 y		Trouble within this section; isolate ly the following lests.
2	C. to B-	115v	No voltage Low voltage High voltage	Defective 35 Y 4 tube. Shorted C101A. Defective 35Y4 tube. Open C101A or I100. Iraky C101A. Open RIOI.
3	$1)$ to 13-	105v	No voltage Low voltage High voltage	Shorted Ci01B. Open C101B. Leaky C'01B or C203. Open R102, T200, or R204.
4	A 10 II-	90 v	No voltage Low voltage High voltage	Shorted ClolC. Leaky C101C. Open R204.

Listening lest : Abrormal hum may be caused by open Clolit, cinolb, or (:I01C.

Make tests for this section by using an audio signal. Connect ground lead of signal generator to $\mathrm{B}-$; connect output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated in the chart. Set the volume control at maximum. If "NORMAL INDICATION" is obtained in step l, proceed with tests for Section 3; if not, isolate and correct the trouble within this section.

Figure 2. Bottom View, Showing Section 2 Test Points

STEP	TEST POINT	NORMAL INDICATION	possible cause of abnormal indication
1	A	Loud, clear signal with low signal-generator output	Trouble within this scction; isolate by the following tests.
2	C	Clear signal with high signalgenerator onfput	No signal: Open or shorted LS200 or T200. Shorted C203. Open R204. Defective 50L6GT tube. Weak or distorted signal: Defective 50L6GT tube. or LS200. Leaky C202 or C201. Open R203. Shorted R204.
3	D	Same as step 2	No signal: Open C201. Weak or distorted signal: Leaky C.201.
4	E	Same as step 1	No signal: Open R202. Defective 1436 tube. Weak or distorted signal: Shorted C200. Open R201. Defective 14B6 tube.
5	A	Same as step 1 Note: Rotate 200 through range	No signal: Open C200. Shorted C300D. Weak or distorted signal: Defective R200.

Make tests for this section by using an r-f signal generator with modulated output. Set generator frequency to 455 kc . Connect ground lead of signal generator to B-; connect output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated in the chart. Set the volume control at maximum. If "NORMAL INDICATION" is obtained in step 1, proceed with tests for Section 4; if not, isolate and correct the trouble within this section.
Figure 3. Bottom View, Showing Section 3 Test Points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Clear signal with low signalgenerator output	Trouble within this section; isolate by the following tests.
2	C	Same as step 1	No signal: Open or shorted Z300. Defective 14136 or 14A7 tube. Open R301. Shorted C303. Weak or distorted signal: Leaky C303. Open C303 or C304. Defective 14B6 or $14 A 7$ tube. Misaligned Z300. Leaky or open C302.
3	A	Same as step 1	No signal : Open or shorted Z301. Weak or distorted signal : Misaligned Z301.

Section 4
Make tests for this section by using an r-f signal generator with modulated output. Set frequency as noted in chart. Connect generator ground lead to $B-$; connect output lead through a . $1-\mathrm{mf}$ condenser to the test points indicated in the chart.

Inspect tuning condensers for bent plates, dirt, or poor wiper contacts; any or all of these will cause noise. If "NORMAL INDICATION" is not obtained in step 1 , isolate trouble by following the remaining steps.

STEP	TEST POINT	DIAL SETTINGS		NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMALINDICATION
		SJG. GEN.	RADIO		
1	A	540 kc	540 kc	Clear signal with low signal-generator output	Trouble within this section; isolate by the following tests.
2	$\begin{gathered} \text { Osc. Test } \\ \text { (see Note below) } \end{gathered}$		$\begin{gathered} 540 \mathrm{to} \\ 1620 \mathrm{kc} \end{gathered}$	Negative voltage	Open or shorted T400, C402, or R400. Shorted C400 or C400B. Defective 7A8 tube.
3	C	540 kc	540 kc	Same as step 1	No signal: Open or shorted Z301. Shorted C400 or C400A. Defective 7A8 tube. Weak or distorted signal: Shorted or open LA4400. Defective 7 A 8 tube.
4	A	540 kc	540 kc	Same as step 1	Weak signal: Open C401.

NOTE: Oscillator test.-Connect positive lead of a 20,000 -ohms-per-volt meter to $\mathrm{B}-$; prod end of negative lead through a 100,000 ohm isolating resistor to test point D . Proper operation of oscillator is indicated by a negative voltage of 9 to 12 volts throughout range of tuning condenser.

©John F. Rider

ALIGNMENT PROCEDURE

turn on the radio power, and set the volume control full on

DIAL POINTER-Turn tuning condensers to fullmesh position. Set dial pointer to index dot, lo-

OUTPUT METER-Connect to left (output) lug and center (chassis) lug of terminal panel, shown in figure 6

SIGNAL GENERATOR-Connect ground lead to $\mathrm{B}-$; connect output lead as indicated in the chart.

OUTPUT LEVEL-During alignınent, adjust the sig-nal-generator output to maintain an output-meter indication below 1.25 volts.

Figure 6. Chassis View, Showing Trimmer Locations

SYMBOLIZATION AND TERMINOLOGY

All components in the radio circuits are symbolized and located as follows:

C—condenser	LA—loop aerial	S—switch
I—pilot lamp	LS—loudspeaker	T—transformer
L_choke or coil	R—resistor	Z—electrical
		assembly

100 -series components are in Section 1-the power supply.
200 -series components are in Section 2 -the second detector, $a-v-c$, and audio circuits.
300-series components are in Section 3-the i-f amplifier.
400-series components are in Section 1-the aerial, r-f, and oscillator circuits.

REPLACEMENT PARTS LIST

NOTE: Parts marked with an asterisk (*) are general replacement items, and the numbers listed may not be identical with those on factory assemblies; also, the electrical values of some replacement items furnished may differ from the values indicated in the schematic and parts list. The values substituted in any case are so chosen that the operation of the instrument will be either unchanged or improved. When ordering replacements, use only the "Service Part No." in this parts list.

SECTION 1

Symbol	Description
C100	Condenser, line fiter, . 04 mf 45-3500-2*
C101	Condenser, electrolytic, 3-section filter 30-2573
C101A:	Condenser, electrolytic, 30 mf ... Part of C101
C101B	Condenser, electrolytic, 25 mf . . . Part of C101
c101C:	Condenser, electrolytic, 20 mf Part of C101
R100	Resistor, leakage, 150,000 ohms. ...66-4153340*
R101	Resistor, filter, 220 ohms 66-1224340*
R102	Resistor, filter, '1200 ohms66-2123340*
S100	Switch, power Part of R200
W100	Power cord and plug................. L3363
100	nel lamp 34-2068

SECTION 2

C200	Condenser, coupling, 01 mf 61-0120*
C201	Condenser, coupling, . 01 mf 61-0120*
C202	Condenser, by-pass, 220 mmf 60-10205307*
C203	Condenser, by-pass, 02 mf61-0108*
R200	Volume control (with power switch), 500,000 ohms. 33-5429
R201	Resistor, grid load, 3.3 megohms. . 66-5333340*
R202	Resistor, plate load, 470,000 ohms . . 66-4473340*
R203	Resistor, grid load, 470,000 ohms . . 66-4473340*
$\mathbf{R 2 0 4}$	Resistor, bias, 130 ohms 66-1123340*
LS200	Speaker . 36-1614
T200	Output transformer Part of LS200

SECTION 3

C302	Condenser, a-v-c by-pass, . 1 mf61-0113*
C303	Condenser, screen by-pass, . 05 mf61-0122*
C304	Condenser, special i-f by-pass, . 2 mf . . 30-4644
R300	Resistor, diode load, 47,000 ohms. . Part of $\mathbf{Z 3 0 0}$
R301	Resistor, screen, 27,000 ohms 66-3273340*
R302	Resistor, a-v-c, 2.2 megohms. 66-5223340*
Z300	Transformer, 2nd
C300A:	Condenser, trimmer Part of Z300
C300B:	Coridenser, trimmer Part of $\mathbf{Z 3 0 0}$
C300C:	Condenser, by-pass, 100 mmf Part of Z300
C300	Condenser, by-pass, 100 mmf Part of Z300
Z301	Transformer, 1st i-f. 32-3967
C301A:	Condenser, trimmer Part of $\mathbf{Z 3 0 1}$
C301B	Condenser, trimmer Part of Z30

SECTION 4

MISCELLANEOUS

Description	Service Part No.
Cabinet	
Model 48-200	105421)
Model 48-200-I	10542E
Model 48-214	10621

Cabinet Hardware Back

Model 48-200 . 27-9879
Model 48-200-I . 27-9922
Model 48-214 . 54-7080
Foot, felt .. W2190
Knob
Model 48-200 . 27-4820
Model 48-200-I . 54-4118
Model 48-214 . 54-4154
Window, acetate
Models 48-200, 200-I 54-4088
Model 48-214 . 54-4212
Clip, coil mounting . 28-5002FA1

Dial-Scale Hardware	
Cord, drive (25-ft. spool)	45-8750
Pointer	
Models 48-200, 200-I	27-4891-1
Model 48-214	54-4148-2
Scale, dial	
Model 48-200	27-5965
Model 48-200-I	27-5965-1
Model 48-214	27-5839
Screw, scale mounting	19674 FA 3
Spring, drive cord	56-2617
Washer, scale mounting	2W54094
Panel, terminal, loop aerial 76-2148	
Panel, lamp assembly	
Shaft, drive assembly . 31-271	
Socket, Loktal . 27-6138*	
Socket, octal	27-6174*

CODE 121

Model 48-250, Code 121, is identical to Model 48-250, Code 126, with the following exceptions:

1. The type 50 B 5 output tube was replaced by a type 50A5 tube. The 50B5 miniature socket, Part No. 27-6226, was replaced by an octal socket, Part No. 27-6199.
2. The type 35 Y 4 rectifier tube was replaced by a type 35Z5GT tube.

CODE 122

Model 48-250, Code 122, is identical to Model 48-250, Code 121, with the following exceptions:

1. The permanent-magnet speaker (LS200), Part No. 36-1615, was replaced by an electrodynamic speaker, Part No. 36-1591.
2. Resistor R101 was removed.
3. Resistor R102 was removed.
4. Condenser Cl 101 was replaced by a 2 -section electrolytic condenser, 20-20 mf., Part No. 30-2547.*
5. Resistors. R101 and R102 were replaced by the 500 ohm field coil of the speaker.

Circuit Description

The Philco Radio, Model 48-250, is a five-tube, tablemodel superheterodyne, providing reception in the standard-broadcast band.

The high-impedance loop aerial normally provides adequate signal pickup. Provisions are made for the connection of an external aerial.

The loop is coupled to the 7A8 converter. Variable condenser tuning is employed; the oscillator rotorsection plates are properly shaped to obtain tracking, thus eliminating the necessary for a series padding condenser.

The 7 A 8 is transformer-coupled to the 14 A 7 i-f amplifier, which is also transformer-coupled to the diodes of the 14B6 second detector-first audio-frequency amplifier. A-v-c voltage is applied to the control grids of both the i-f and converter tubes.

The triode section of the 14 B 6 is the first audio stage, and is resistance-coupled to the 50B5 output stage. The output tube is transformer-coupled to the permanent-magnet dynamic speaker.

D-c operating voltages are obtained from the 35Y4 half-wave rectifier, the output of which is filtered by a two-section resistor-condenser filter.

Condenser C302 in Section 3 is a special condenser, inductively wound with wire to form a series-tuned circuit, resonant at the intermediate frequency. This special condenser offers less impedance at this frequency than a conventional condenser, thus permitting higher i-f gain, with no tendency towards instability. The inductive effect at audio frequencies is negligible. Since the tuning gang is connected to the chassis, by-passing at broadcast frequencies is adequate.

Resistor R100, the 150,000 -ohm resistor in Section 1, prevents hum which might otherwise occur under conditions of high humidity.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with tést points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section without going through the entire test procedure.

Failure to obtain "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube-electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power.

1. Inspect the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$ (pin 7 of the 35 Y 4 rectifier) and B -. (test point B). When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1500 ohms, check condenser C101A, C101B, and C101C for leakage or shorts.
The resistance value, which is must lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 are performed.

Section 1

TROUBLE SHOOTING

For the tests in this section, use a $\mathrm{d}-\mathrm{c}$ voltmeter. Connect the negative lead to $B-$, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a $20,000-$ ohm-per-volt meter, at a line voltage of 117 volts, a-c.

Turn on the power, and set the volume control to minimum.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2; if not, isolate and correct the trouble in this section.

figure 1. bottom view, showing section 1 test points

STEP	.TEST POINT	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	107v		Trouble within this section. Isolate by the following tests.
2	C	130v	No voltage Low voltage High voltage	Defective: 35Y4, S100. W100. Shorted: C101A. Defective: 35Y4. Open : Cl01A, 1100. Leaky: ClolA. Open: R101, R102. R203*, T200*.
3	D	120v	No voltage Low voltage High voltage	Shorted: C101B. Open: R101. Shorted: C203*. Leaky: C101B, C203*. Open: R102, R203*, T200*.
4	A	107v	No voltage Low voltage High voltage	Shorted: C101C. Leaky: C101C. Open: R203*.

Listening Test: Abnormal hum may be caused by open C101B. C101 C. or R100.

* This part. located in another section, may cause abnormal indication in this section.

Section 2
 TROUBLE SHOOTING

For the tests in this section, use an audio signal generator. Connect the ground lead of the generator to B-, test point B; connect the output lead through a $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.

If the "NORMAL INDICATION"

 is obtained in step I, proceed with the tests for Section 3. If not, isolate and correct the trouble in this section.

FIGURE 2. BOTTOM VIEW, SHOWING SECTION 2 test points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	Clear signal with strong signal input.	No signal-Open or shorted: LS200, T200. Shorted: C201, C203. Open: R203. Defective: 50B5.
3	D	Same as step 1.	Open: R201, R202, R204. Open, shorted, or leaky: C200. Defective: 1486.
4	A	Same as step 1.	```Defective: R200((rotate through entire range). Open, shorted or leaky: C202. Shorted: C301D*```

[^1]
Section 3

For the tests in this section use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B -, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests in Section 4; if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	Clear signal with moderate signal input.	Defective or misaligned: 7301. Defective: 14B6 (diode section), 14A7. Open: R300, C302. Shorted, leaky, or open: C303.
3	A	Same as step 1.	Defective or misaligned: 2300. Defective: 7A8*. Open: C302, LA400*.

- This part, located in another section, may cause trouble in this section.

Section 4
 TROUBLE SHOOTING

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to B-, test point B; connect the output lead through a . 1 -mf. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.

Set the radio and signal-generator dials as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in this section.

figure 4. bottom view, showing section 4 test points

STEP	TEST POINT	DIAL SETTINGS		NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
		SIG. GEN.	RADIO		
1	A	540 kc .	540 kc .	Clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	540 kc .	540 kc .	Same as step 1.	Shorted: C400, C400A. Defective: 7A8. Trouble in oscillator section.
3	Oscillator Test (see Note below)		$\begin{gathered} 540 \\ \text { to } \\ 1620 \mathrm{kc} . \end{gathered}$	Negative 7 to 11 volts.	Defective: T400, 7A8. Open or shorted: C402. Shorted: C400, C400B.
4	A	540 kc .	540 kc .	Same as step 1.	Defective: LA400. Open: C401.

OSCILLATOR-TEST NOTE: Connect positive lead of high-resistance voltmeter to \mathbf{B}-, test point B; connect prod end of negative lead through a 100,000 -ohm isolating resistor to the $7 A 8$ oscillator grid, test point D. Use suitable meter range, such as $0-50$ volts. Proper operation of oscillator is indicated by negative voltage of 7 to 11 volts (measured with a 20,000 -ohms-per-volt meter) throughout range of tuning control.

ALIGNMENT PROCEDURE

TURN ON THE RADIO, AND SET THE YOLUME CONTROL TO MAXIMUM.

 generator leads and place near radio loop.
SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part as follows:
C condenser
LA-loop aerial
S. switch
I - pilot lamp
LS-loud-speaker
T--transformer
Z--electrical assembly

The number of the symbol designates the section in which the part is located, as follows:

100-series components are in Section 1- the power supply
200 -series components are in Section 2-the audio circuits
300 -series components are in Section 3-the i-f amplifier, detector, and a-v-c circuits
400-series components are in Section 4-the aerial, r-f, and oscillator circuits.
A suffix letter identifies the part as a non-replaceable component of the assembly which bears an identical rumber without a suffix letter, and with perhaps a different prefix letter

OUTPUT METER-Connect to left (output) lug and center (chassis) lug of terminal panel, shown in fig. ure 6

SIGNAL GENERATOR-Connect as indicated chart. Use modulated outpur.

STEP	SIGNAL GENERATOR		RADIO	
	CONNECTIONS TO RADIO	$\underset{\text { SETTING }}{\text { DIAL }}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { SPECIAL } \\ & \text { INSTRUCTIONS } \end{aligned}$
1	Ground lead to B-; out put lead through a . 1 -mf. condenser to test point C of Section 4.	455 kc .	540 kc .	Turn C300B (copper screw) fully tight, then adjust trimmers, in order given, for maximum output.
2	Radiating loop (see note below).	1600 kc .	1600 kc .	Adjust for maximum.
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum.

NOTE: Make up a six-to-eight-turn, 6 -inch-diameter loop, using insulated wire; connect to signal
OUTPUT LEVEL-During alignment, adjust signa generator output to maintain output-meter indication below 1.25 volts.

FIGURE 6. TOP VIEW, SHOWING TRIMMER LOCATION
figure 7. drive.cord installation details

TP-1985

TP
©John F. Rider

REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk (*) are general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	SECTION 1	SECTION 4 (Continued)		
	Description Service Part No.	Reference Symbol	Description	Service Parf No.
Cl00	Condenser, line filter, . 04 mf 45-3500-2*	C401	Condenser, coupling, 5 mmf .	. 60-90505007*
C101	Condenser, electrolytic, 3-section. 30-2573*	C402	Condenser, isolating, 47 mmf	. . 60-00515307*
C101A:	Condenser, filter, 30 mf Part of C101	LA400	Loop aerial	. 32-4052-4
Cl01B:	Condenser, filter, 25 mf Part of Cl01	R400	Resistor, aerial discharge, 15	ohms. .66-4153340*
ClolC:	Condenser, filter, 20 mf Part of Cl01	R401	Resistor, oscillator grid, 100	ms. . . 66-4103340*
1100	Lamp, pilot . 34-2068	T400	Transformer, oscillator	. .32-3880
R100	Resistor, leakage, 150,000 ohms 66-4153340*			
R101	Resistor, filter, 220 ohms66-1224340		MISCELLANE	
R102	Resistor, filter, 1200 ohms 66-2123340	Description		Service Part No.
S100	Switch, power . Part of R200			
W100	Power cord and plug I-3199	abin		
		Model 4	8-250 (less scale)	.10524P
	SECTION 2	Model 48-250-1 (less scale)		. 10524R
C200	Condenser, blocking, . 01 mf61-0120*	Cabinet Hardware		
C201	Condenser, by-pass, 220 mmf 62-122001001*	Back		
C202	Condenser, blocking, . $01 \mathrm{mf}$. 61-0120*	Mod	del 48-250	. 27-9817
C203	Condenser, tone compensating, . 02 mf 61-0108*	Mod	el 48-250-I	. 27-9870
LS200	Speaker . 36-1615	Knob as	sembly	
R200	Volume control, . 5 megohm 45-5007*	Mod	del 48-250	54-4052
R201	Resistor, plate load, 470,000 ohms 66-4473340*	Mod	el $48-250-\mathrm{I}$. 27-4805
R202	Resistor, grid load, 3.3 megohms.66-5333340*	Scale, di		
R203	Resistor, bias, 130 ohms 66-1123340*	Mod	del 48-250	. .27-5907
R204	Resistor, grid load, 470,000 ohms. 66-4473340*	Mod	del 48-250-I	. . 27-5908
T200	Transformer, output Part of LS200	Scale st		56-2059FA3
	SECTION 3	Screw		. IW23129FA3
		Stud, back	k mounting	W2235FA9
C300B	Condenser, trimmer Part of $\mathbf{Z 3 0 0}$	Dial Backplat	e and Associated Hardware	
C301A	Condenser, trimmer Part of $\mathbf{Z 3 0 1}$	Cord, dr	ive (pointer)	. 45-8755
C301B	Condenser, trimmer Part of $\mathbf{Z 3 0 1}$	Cord, dri	ve (gang)	. .45-8750
C301C	Condenser, by-pass Part of 2301	Diffusing	panel, Model 48-250-I	. 54-4343
C301D	Condenser, by-pass Part of Z301	Light ref	lector, Model 48-250	. 27-9816-1*
C302	Condenser and choke assembly, 1-f by-pass, . 2 mf.	Pointer		. 56-2076-1FCP
		Pulley		.11W29740
C303	Condenser, screen by-pass, $05 \mathrm{mf} . . .$.61-0122*	Rubber	band	$.54-4064$
C304	Condenser, a-v-c filter, 05 mf 61-0122*	Screw and	d lock washer	. .1W32228FA3
R300	Resistor, screen dropping, 27,000 ohms...66-3273340	Sp		
R301	Resistor, i-f filter, 47,000 ohms Part of 2301		drive cord	56-2617
R302	Resistor, a-v-c filter, 2.2 meqohms.66-5223340*	Poin	ter drive cord	.56-3167.
2300	Transformer, lst i-f, including C300A and B300B 32-3968	Spring	p, diffusing screen, Model 48	. 56-3587
2301	Transformer, 2nd i-f, including C301A, C301B, C301C, C301D, and R30132-3674*	Panel, wiring		. . .76-2148
		Panel, wiring		. . 12W45654
	SECTION 4	Pilot lamp	socket assembly 76-1981
		Shaft, assemb	y 31-2663
C400	Condenser, tuning, 2-section 31-2727-1	Socket, tube		
C400A:	Condenser, trimmer Part of C400	Loktal		. 27-6138*
C400B:	Condenser, trimmer Part of C400	Miniature 27-8228

Circuif Descripfion

Philco Model 48-300 is a 5-tube, portable superheterodyne radio, designed to operate on a self-contained battery or a standard source of a.c. or d.c. The frequency range is $540-1620 \mathrm{kc}$. The built-in loop (high impedance) is adequate in most localities; however, where signal strength is low, an external aerial may be used.

The converter stage employs a type 1R5. The i-f stage, using a 1 T 4 , operates at 455 kc . A 3 -mmf. condenser (C305) and the socket capacity of the 1T4 socket are used to neutralize the inter-electrode capacitance of the 1 T 4 , thus preventing oscillation.

The diode section of the 1 US provides detection and a.v.c. The pentode section functions as the first audio stage; this stage is resistance-coupled to the 3V4 output amplifier.

For a-c or d-c power-line operation, plate, screen, and filament power is supplied through the $117 \mathrm{Z3}$ rectifier.

By leaving the cathode bias resistor (R207) unbypassed, degeneration is developed in the output stage to improve the frequency response.

The 150,000 -ohm leakage resistor (R102) prevents hum under conditions of high humidity.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

Section 1-the power supply
Section 2-the audio circuits
Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits
Test points are specified for each section, and are indicated on the sectionalized schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the location of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.
Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.
After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Prelliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before connecting the radio to a source of power:

TP-3980

1. Inspect both the top and the bottom of the chasis. Make sure that all tubes are secure in the proper ockets, and look for any broken or shorted connections, surned resistors, or other obvious sources of trouble.
2. Check the total filament resistance, with the power switch turned on, the plug disconnected from the battery, and the change-over switch in the battery position (power cord plug inserted in receptacle on rear of chassis). If the resistance between the $A+$ and A- pins on the battery-cable plug is higher than 100 ohms, one of the tube filaments is probably open.
NOTE: If the 3V4 filament is open, check C101D before replacing with a new tube.
3. Measure the resistance between $B+$ (pin 6 of the 117 Z 3 rectifier tube) and B -, test point B (see figure 1). When the ohmmeter test leads are connected in the correct polarity, the highest resistance reading will be obtained. If the reading is lower than 1040 ohms, check condensers C101A and C101B for leakage or shorts.

The resistance value above, which is much lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 are performed.

Section 1 POWER SUPPLY

Make the tests in this section with a d-c voltumeter connecting the leads between B , test point B, and the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.

With the power-cord plug connected to a source of power (a.c. or d.c.), turn on the power, and set the volume control to minimum (clockwise).
Follow the steps in the order given. If the "NORMAL INDICATION," is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

TROUBLE SHOOTING

FIGURE I. BOTTOM VIEW, SHOWING SECTION 1 TEST POINTS

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	$\begin{aligned} & \mathrm{A} \\ & \mathbf{C} \end{aligned}$	$\begin{aligned} & 7.5 \mathrm{v} \\ & 80 \mathrm{v} \end{aligned}$		Trouble in this section. Isolate by the following tests.
2	D	107v	Low voltage No voltage	Defective: $117 \mathrm{Z3}$. Open C101A. Defective: $117 \mathrm{Z3}$. Open: Si00, Si01.
3	E	103v	Low voltage No voltage	Changed Resistance: R101. Leaky: G101A. Open: R101. Shorted: C101A.
4	F	55v	Low voltage No voltage	Changed Resistance: R100A. Leaiky: C101B. Open: R100A. Shorted: Cl01B.
5	A	7.5v	Low voltage High voltage No voltage	Changed Resistance: RIOOA. Open: filament of one or more tubes. Open: R100A.
6	C	80v	Low voltage High voltage No voltage	Changed Resistance: R102. Leaky: C101C. Open: R207* T200 Open: R102. Shorted: C101C.
Listening Test: Hum may be caused by open ClolB. ClolC, Cloo, or R103.				

- This part, located in another section, may cause abnormal indication in this section.

BATTERY VOLTAGE: Replace battery when (with radio turned on) " B " voltage falls below 66 volts, or " A " voltage falls below 6 volts.

Section 2

AUDIO CIRCUITS

For the tests in this section, use an audiofrequency signal generator. Connect the generator ground lead on B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenset to the test points indicated in the chart.
With the power-cord plug connected to a source of power (a.c. or d.c.), set the volume control to maximum (counterclocknise). Adjust the signal-generator output as required for each step.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

figure 2. bottom view. showing section 2 test points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	Clear signal with strong signal input.	Defective: 3V4, LS200. Open: R206, R207. T200. Shorted or leaky: C202, C203. C204, T200.
3	D	Same as step 1.	Defective: 1U5. Open: R204, R205. Shorted or leaky: C201, C203.
4	A	Same as step 1.	Open: R200 (rotate through range), R201, R202, C200, R203, C304*.

Listening Test: lif syeech or music is distorted (with section 1 operating normally), check R203, R201, and R202 for opens, and C200 for leakage.

- This part located in another section, may cause abnormal indication in this section.

Section 3
 I-F, DETECTOR, AND A-V-C CIRCUITS

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

With the power-cord plug connected to a source of power (a.c. or d.c.), set the volume control to maximum (counterclockwise).

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits) ; if not, isolate and correct the trouble in this section.

Since the circuit location of test point A

FIGURE 3. BOTTOM VIEW, SHOWING SECTION 3 TEST POINTS for this section is the same as that of test point C for section 4 , the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	Loud. clear signal with moderate sig. nal input.	Defective: 1T4. Open: R300, Z301 pri. or sec., R302. Shorted: C300B, C301A, C303, C302.
3	A	Same as step 1.	Defective: IR5 ${ }^{\circ}$. Shorted: C400*, C400A*, C300A, C300B. Open: Z300* pri. or sec.. T400*.

Listening Test: Oscillation or instability may be caused by open C305.

* This part located in another section, may cause abnormal indication in this section.

Section 4
 R-F AND CONVERTER CIRCUITS

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator, with modulated output. Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum (counterclockwise).

Set the tuning control and signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1, isolate the trouble by following the remaining steps.

TROURLE SHOOTING

FIGURE 4. BOTTOM YIEW, SHOWING SECTION 4 TEST POINTS

TF. 40990

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQ.	$\begin{aligned} & \text { RADIO } \\ & \text { TUNING } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc.	Tune to signal.	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	1000 kc .	Tune to signal.	Same as step 1.	Shorted: C400. C400A, C405, C402. Trouble in oscillator circuit (step 3).
3	$\begin{aligned} & \text { E to D } \\ & \text { (Osc. } \\ & \text { test; see } \\ & \text { note } \\ & \text { below.) } \end{aligned}$		Rotate through range.	Negative 7 to 9 volts.	Defective: 1R5. Open: R402, T400. Shorted: C400, C400B.
6	A	1000 kc .	Tune to signal.	Same as step 1.	Open: C401, L.400, L.A400, R401.

OSCILILATOR TEST: Connect the positive lead of a high-resistance voltmeter to the IRS positive filament terminal. pin 7 (test point D); connect the prod end of the negative lead through a $100,000 \% \mathrm{hm}$ isolating resistor to the 1 R5 oscillator arid, pin 4 (test point El. Use a suitable meter range, such as 0-10 volts. Absen ce of neaative arid voltage throuahout the tunina ranae indicates that the oscillator is not operating. The normal arid voltaqe qiven in the chart was measured with a 20,000 -ohms-per-volt meter.

©John F. Rider

ALIGNMENT PROCEDURE

OUTPUT METER-Connect between chassis and voice-coil terminal of output transformer T200.
VOLUME CONTROL-Set to maximum (counterclockwise).
OUTPUT LEVEL-Input signal should be attenuated, as alignment progresses, to hold output-meter reading be low 1 volt.
SIGNAL GENERATOR-Connect as indicated in chart

I-F ALIGNMENT-I-f alignment should be made with chassis out of cabinet.
R-F ALIGNMENT-R-f alignment should be made with chassis in cabinet, built-in loop connected, and external aerial lead connected to chassis.
DIAL POINTER-With tuning condensers fully meshed, adjust dial pointer to coincide with index mark at low-frequency end of dial scale.

RADIATING LOOP: Make up a coil of insulated wire, consisting of 6 to 8 turns, about $6^{\prime \prime}$ in diameter. Connect coil ends
to signal-generator leads, and suspend coil near radio loop. follows:
figure 6. top view, showing trimmer location TP-4185

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the section of the radio in which the parts are located. The prefix letter of the symbol designates the type of part, as follows:

The number of the symbol designates the section in which the part is located, as
100 -series components are in Section 1-the power supply.
200 -series components are in Section 2-the audio circuits
300 -series components are in Section 3-the i-f amplifier, detector, and a-v-c circuits. 400 -seriez components are in Section 4 -the r-f and converter circuits.

A suffix letter identifies the part as a component of the assembly which bears an identical number without a suffix letter, and with perhaps a different prefix letter.

$$
\begin{array}{lll}
\text { C-condenser } & \text { LA-loop aerial } & \text { S—switch } \\
\text { I-pilot lamp } & \text { LS-loud-speaker } & \text { T-transformer } \\
\text { L-choke or coil } & \text { R -resistor } & \text { Z-electrical assembly }
\end{array}
$$

FIGURE 7. DRIVE-CORD INSTALLATION DETAILS
©John F. Rider

REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk (") are general replacement items. These numbers may not be identical with those on factory assemblies: also, the electrical values of some replacement items may differ from the values indicated in the schematic diaaram and parts list. The values substituted in any case are so chosen that the oderation of the radio will be either unchanged or improved. When orderina replacements, use only the "Service Part No."

Circuit Description

Philco Model 48-360 is a six-tube, portable, superheterodyne radio, operating on a self-contained battery or a standard power source of a.c. or d.c. High sensitivity, selectivity, and power output are outstanding features. The frequency range is $540-1600$ kc. The built-in loop aerial is adequate in most localities. Where signal strength is low, an external aerial may be used.

The tuned r-f stage, using a 1 T4, provides a high signal-to-noise ratio. The converter employs a type 1R5 pentagrid converter.

The i-f stage, using another 1T4, has double-tuned transformers operating at 265 kc .; the voltage gain of this stage is increased considerably by positive screen feedback taken from the tertiary winding of the second i-f transformer.

The diode section of the 105 provides detection and a-v-c voltage. The pentode section functions as the first audio stage; this stage is resistance-coupled to the 3LF4 output amplifier. The speaker is a per-manent-magnet dynamic type.

For a-c or d-c power-line operation, plate, screen, and filament power is supplied through the 117 Z 3 rectifier.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

MODEL 48-360

SPECIFICATIONS

CABINET
Fabrikoid finish, wood trim CIRCUIT . Six-tube superheterodyne FREQUENCY RANGE 540-1600 ke. AUDIO OUTPUT 160 milliwatts OPERATING VOLTAGES . .Battery: "B," 90 volts; "A," 9 volts. A.c./d.c.: 105-120 volts
POWER CONSUMPTION . . Battery: "B," 12 ma. at 90 volts; "A", 50 ma at 9 volts. A.c./d.c.: 25 watts
AERIAL . . Built-in loop; terminal also provided for external aerial
INTERMEDIATE FREQUENCY
265 kc . PHILCO TUBES (6) .. 1T4 (2), 1R5, 1U5, 3LF4, 11723
BATTERY TYPE Philco P-841A

1. Inspect the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Check the total filament resistance by measuring between the A+ and A- pins on the battery-cable plug (disconnected from battery) while holding down the change-over switch, S 100 . If the resistance is higher than 100 ohms, one of the tube filaments is probably open.
3. With the change-over switch in the a.c./d.c. position, measure the resistance between $\mathrm{B}+$ (pin 6 of the 117 Z 3 rectifier) and $\mathrm{B}-$, test point B . When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1100 ohms, check condensers C100A, C100B, and C100C for leakage or shorts.

The resistance value above, which is much lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 are performed.

Section 1

TROUBLE SHOOTING

For the tests in this section, use a d-c voltmeter. Connect the negative lead to B -, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c. -

Turn on the power, and set the volume control to minimum.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2; if not, isolate and correct the trouble in this section.

Figure 1. Bottom View, Showing Section 1 Test Points

STEP	test point	NORMAL INDICATION	ABNORMAL INDICATION	possible cause of abnormal indication
1	$\begin{aligned} & \mathbf{A} \\ & \mathbf{C} \end{aligned}$	$\begin{aligned} & 80 \text { volts } \\ & 8.5 \text { volts } \end{aligned}$		Trouble in this section. Isolate by the following tests.
2	D	105 volts	High voltage Low voltage No voltage	Open: R100A, R100B, R100C, R101, T200*. Defective: S100, S101. Defective: 117Z3. Leaky: C100A. Leaky or shorted: C100B, C100C, C100D. Defective: 117Z3. S100, S101, W100.
3	E	99 volts	Low voltage No voltage	Defective: R100A. Leaky: C100A. Shorted: C100B, C100C, C100D. Open: R100A. Shorted: C100A.
4	F	55 volts	Low voltage No voltage	Defective: R100B. Shorted: C100C, C100D. Leaky: C100B. Open: R100B. Shorted: C100B.
5	A	80 volts	Low voltage No voltage	Defective: R101. Leaky: C100C. Open: R101. Shorted: C100C.
6	C	8.5 volts	High voltage Low voltage No voltage	Defective: Any tube, R207*, S100, S101. Leaky: C100D. Defective: R100C. Open: R100C. Shorted: C100D.

Listening Test: Distortion or abnormal hum may be caused by open C1001, C100C, or C100D.
*This part, located in another section, may cause abnormal indication in this section.
BATTERY VOLTAGE: Replace battery when (with radio turned on) " B " voltage falls below 60 volts, or "A" voltage falls below 7.2 volts.

Section 2

TROUBLE SHOOTING
For the tests in this section, use an audiofrequency signal generator. Connect the generator ground lead to $B-$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum. Adjust the signal-generator output as required for each step.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3; if not, isolate and correct the trouble in this section.

Figure 2. Bottom View, Showing Section 2 Test Points

Section 3 TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 265 kc . Connect the generator ground lead to $B-$, test point B; connect the output lead through a . $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.
If the "NORMAL INDICATION" is obtained in the first step, proceed with the tests for Section 4; if not, isolate and correct the trouble in this section.

Since the circuit location of test point A for this section is the same as that of test point C for Section 4, the effectiveness of step 1 as a master check is dependent upon the

Figure 3. Bottom View, Showing Section 3 Test Points condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	Clear signal with strong signal input.	Defective: 1T4, Z301. Misaligned: Z301. Open: R300, C302. Shorted or leaky: C302.
3	A	Loud, clear signal with weak signal input.	Defective: 1R5*, Z300. Misaligned: Z300. Shorted: C406*.

Section 4

TROUBLE SHOOTING

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to $B-$, test point B ; connect the output lead through a .l-mf. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.
Set the radio and signal-generator dials as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate the trouble by following the remaining steps.

Figure 4. Bottom View, Showing Section 4 Test Points (Locations of C402 and T400 shown in figure 6.)

STEP	TEST POINT	dial settings		NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
		SIG. GEN.	RADIO		
1	A	1000 kc .	1000 kc.	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	1000 kc.	1000 kc.	Clear signal with strong signal input.	Defective: 1R5. Open: C407, C408. Trouble in oscillator circuit.
3	Eto D (Osc. test; see note below.)		Rotate tuning control	Negative 2 to 4 volts.	Defective: $1 \mathrm{R5}$ (usc. section), T401. Open: R402. Shorted: C410, C410A, C400, C400C.
4	A	1000 kc.	1000 kc .	Loud, clear signal with weak input.	Defective: 1T4, T400, Z400. Shorted: C400, C400A, C400B. Open: R400. R401.

OSCILLATOR-TEST NOTE: Connect positive lead of high-resistance voltmeter to lR5 filament, test point E; connect prod end of negative lead through $100,000-$ ohm isolating resistor to $1 R 5$ oscillator grid, test point D. Use suitable meter range, such as $0-10$ volts. Proper operation of oscillator is indicated by negative voltage of 2 to 4 volts (measured with 20,000 -ohms-per-volt meter) throughout range of tuning control.
© John F. Rider

FIGURE 5. PHILCO RADIO, MODEL 48-360, SECTIONALIZED SCHEMATIC DIAGRAM, SHOWING TEST POINTS
©John F. Rider

ALIGNMENT PROCEDURE

the alignment should be made with the radio installed in the cabinet and the loop connected

 Set dial pointer to coincide with index mark at low- coil terminal on output transformer, T200.
frequency end of dial.
erator output to maintain output-meter indication beerator output.
low 4 volt.

Figure 6. Top View, Showing Trimmer Locations
TP. 3627

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part, as follows:
C-condenser LA-loop aerial S-switch
L-pilot lamp LS-loud-speaker T-transformer
The number the sybly
The number of
100-series components are in Section 1-the power supply. 200 -series components are in Section 2-the audio circuits.
300 -series components are in Section 3-the i-f amplifier, de-400-sectior and a-v-c circuits.

0 -series components are in Section 4-the aerial, r-f, and oscillator circuits.
A suffix letter identifies the part as a non-replaceable component of the assembly which bears an identical number without a suffix letter, and with perhaps a different prefix letter.

REPLACEMENT PARTS LIST

NOTE

Part numbers marked with an asterisk (*) are general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION 1

Reference Symbol		Service Part No.
C100	Condenser, electrolytic, 4-section	560
C100A	Condenser, filter, 30 mf .	Part of C100
C100B	Condenser, filter, 10 mf .	Part of C100
C100C	Condenser, filter, 30 mf .	Part of C100
C100D	Condenser, bias-resistor by-pass, 30 mf .	Part of C100
C101	Condenser, line filter, . 04 mf .	30-4119
C102	Condenser, by-pass, . 01 mf .	61-0120*
PL100	Plug, battery cable	54-4272
R100	Resistor, 3-section	4
R100A	Resistor, filament dropping, 60 ohms	Part of R100
R100B	Resistor, filament dropping, 875 ohms	Part of R100
R100C	Resistor, filament dropping, 875 ohms	Part of R100
R101	Resistor, plate dropping, 2200 ohm	S 66-2223340*
$\mathbb{R 1 0 2}$	Resistor, leakage, 150,000 ohms	66-4153340*
S100	Switch, change-over (code 121)	42-1553-1
S100	Switch, change-over (code 122)	42-1821
S101	Switch, on-off	Part of R200
W100	Power cord and plug (code 121)	L-3339
W100	Power cord and plug (code 122)	41-3755-17

SECTION 2

C200	Condenser, coupling, . 01 mf61-0120*
C201	Condenser, screen by-pass, 05 mf61-0122*
C202	Condenser, d-c blocking, . 004 mf.61-0179*
C203	Condenser, r-f by-pass, 100 mmf . 62-110009001*
C204	Condenser, tone compensating, . 004 mf . 61-0179
LS200	Speaker . 36-1598
R200	Volume control, 1 megohm 33-5526
$\mathbb{R 2 0 1}$	Resistor, grid return, 470 ohms66-1473340*
R202	Resistor, grid return, 270 ohms66-1273340*
R203	Resistor, grid return, 4.7 megohms . 66-5473340*
R204	Resistor, screen dropping, 2.7 megohms66-5273340*
R205	Resistor, plate load, 1.2 megohms . 66-5123340*
$\underline{R 206}$	Resistor, grid return, 2.2 megohms .66-5223340*
R207	Resistor, bias, 680 onms. 66-1683340*
T200	Outpüt transformer 32-8259

SECTION 3

C300A	Condenser, trimmer, primary
C300B	Condenser, trimmer, secondary .. Part of Z300
C301A	Condenser, trimmer, primary ... Part of Z301
C301B	Condenser, trimmer, secondary . Part of $\mathbf{Z 3 0 1}$
C301C	Condenser, i-f filter, 100 mmf . . Part of Z301
C3011)	Condenser, i-f filter, 100 mmf . . . Part of $\mathbf{Z 3 0 1}$
C302	Condenser, screen by-pass, . 05 mf 61-0122*
C303	Condenser, i-f by-pass, 11 mf 61-0113*
R300	Resistor, screen dropping, 15,000 ohms66-3153340*
$\mathbb{R} 301$	Resistor, a-v-c filter, 2.2 megohms . .66-5223340*
R30\%	Resistor; filter, 25,000 ohms Part of Z301
R303	Resistor, a-v-c filter, 100,000 ohms. 66-4103340
Z300	Transformer, 1st $i-f$, including C300A and C300B32-3970
Z301	Transformer, 2nd i-f, including C301A,

Transformer, 2nd i-f, including C301A C301B, C301C, and C301D32-3971-2

SECTION 4

Reference 5	ol Description Service Part No.
C400	Condenser, tuning, 3-section 31-2689
C400A	Condenser, aerial trimmer Part of C400
C400B	Condenser, r-f trimmer Part of C400
C400C	Condenser, oscillator trimmer ...Part of C400
C401	Condenser, compensating, 30 mmf 60-00305307*
C402	Condenser, aerial blocking, .0015 mf. 45-3500-6*
C403	Condenser-and choke-assembly, i-f by-pass, . 01 mf 76-2271
$\mathrm{C404}$	Condenser, by-pass, . 1 mf . ${ }^{\text {c.61-0113* }}$
C405	Condenser, by-pass, . 05 mf661-0122*
C406	Condenser, neutralizing, 1.5 mmf . . . 30-1221-3
$\mathrm{C4} 07$	Condenser, by-pass, . 05 mf61-0122*
$\mathrm{C408}$	Condenser, by-pass, 1 mf 61-0113*
C409	Condenser, by-pass, . 25 mf61-0125
C410	Condenser, oscillator series padder ...31-6410
C411	Condenser, tracking, 150 mmf . . . 60-10155407*
C412	Condenser, coupling, 10 mmf . (part of Z400)62-010009001
LA400	Loop aerial . 32-4080
L. 400	Choke . 32-4007
R400	Resistor, grid return, 4.7 megohms 66-5473340*
R401	Resistor, a-v-c filter, 4.7 megohms . $66-5473340 *$
T 400	Aerial transformer 32-3972
T401	Oscillator transformer 32-4095-1
Z100	R-f transformer (code 121), including C41232-3974
Z400	R-f transformer (code 122), including C41232-4210

MISCELLANEOUS

Description	Service Part No.
Bolt, speaker mounting	W2022FA3
Cabinet (less scale)	10647F
Back, cabinet (code 122)	45-6391
Back-catch assembly	76-6182
Foot	45-6041
Grille, metal front	56-3351-1
Handle loop	56-3954
Handle shield	54-4390
Hinge (code 121)	45-6182
Scale, dial	27-5891
Scale strap	56-3846
Clip, coil mounting	28-5002FA1
Dial-backing-and-pulley assembly	76-2023
Cord, drive ($25-\mathrm{ft}$. spool)	45-8760*
Pointer	76-2470
Pulley-and-bracket assembly	76-2027
Spring, drive cord.	28-8954
Cover switch (volume control)	56-3209
Grommet, tuning-condenser mounting	27-4596
Knob .	54-4214
Shaft and pulley	76-2028
Socket, Loktal	27-6138
Socket, miniature	27-6203
Switch-plunger assembly	
Code 121	76-2025
Code 122	76-3061

MODEL 48-464

SPECIFICATIONS

ABINET	Bakelite, brown
CIRCUIT	Six-tube superheterodyne
FREQUENCY RANGES	
	$540-1720 \mathrm{kc}$
Short wave	9-15.5 mc
AUDIO OUTPUT	
POWER CONSUMPTION	30 watts
AERIAL	Built-in loop: terminal also provided for external aerial
INTERMEDIATE FREQUENCY	455 kc
SPEAKER \qquad Dynamic, permanent magnet, $4^{\prime \prime} \times 6^{\prime \prime}$; voice-coil impedance, 3.4 ohms	
PHILCO TUBES (6)	F7. 7B7 (2), 7C6, 50A5, 35Y4

Circuit Description

Philco Model 48-464 is a six-tube, manually tuned superheterodyne radio, providing reception in the stan-dard-broadcast band, $540-1720 \mathrm{kc}$, and the short-wave range between 9 mc and 15.5 mc . A low-impedance loop within the cabinet provides adequate signal pickup in most areas. Where additional pickup is required, an external aerial may be used. Do not use a ground. The tube complement is as follows: 14AF7, converter; two 7B7's, i-f amplifiers; 7C6, det. - a.v.c. - 1st audio; 50 A 5 , output; 35 Y 4 , rectifier.
The choke-and-condenser combinations C305/L300 and C306/L301 form series-tuned circuits, resonant at frequencies relative to the i.f. The former is resonant at 455 kc ; the latter is resonant at 910 kc (i-f second harmonic); the combination formed by all the above components is resonant at 1365 kc (i-f third harmonic). The impedance of any of these combinations at resonance is much lower than that of a conventional by-pass condenser at the same frequency. By providing highefficiency by-passing between the chassis and B-, these combinations function to prevent instability of the highgain i-f amplifiers and to minimize signal interference and beat notes.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure. Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.
After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

The following preliminary checks should be made before turning on the radio:

1. Carefully inspect both the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $\mathbf{B}+$ (pin 7 of 35 Y 4 rectifier) and B -. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1500 ohms, check condensers C101, C102A, C102B, C102C, and C203 for leakage or shorts.

Section 1
 TROUBLE SHOOTING

Make tests for this section with d-c voltmeter; connect negative lead to test point B-, and positive lead to test points indicated in chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Set wafer switch to broadcast position; turn volume control to minimum, and tone control to nearly "off" position.

Follow steps in sequence; if the "NOr MAL INDICATION" is obtained in step 1, proceed with tests for Section 2; if not, isolate and correct the trouble in this section.

figure i. Bottom view, showing section i test points.
It will be noted that certain parts in other sections of the radio are listed under "POSSIBLE CAUSE OF ABNORMAL INDICATION", since they may-cause abnormal voltage readings in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	92v		Trouble in this section. Isolate by the following tests.
2	C	128v	No Voltage Low Voltage High Voltage	Defective $35 \mathrm{Y} 4, \mathrm{Sl} 00$, or W100. Shorted Clol, C102A, or Cloo. Defective 35Y4. Leaky Cl01, C102A, Cl02B, or Cl02C. Open Il00 or Cl02A. Open R100.
3	D	110 v	No Voltage Low Voltage High Voltage	Open R100. Shorted Cl02B. Defective R100. Leaky Cl02B or C102C. Shorted or leaky C203. Open R101. T200, or R204.
4	A	92v	No Voltage Low Voltage	```Defective RIOl. Shorted ClO2C. Defective R101. Leaky Cl02C.```

Section 2

TROUBLE SHOOTING

For the tests in this section, use an audio-frequency signal generator. Connect generator ground lead to test point $\overline{\mathrm{B}}$; connect output lead through $.1-\mathrm{mf}$ condenser to test points indicated in chart.

Set radio volume control to maximum, and tone control to nearly "off" position. Adjust signal-generator output as required for each step.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 3; if not, isolate and correct the trouble in this section.

FIGURE 2. BOTTOM VIEW, SHOWING SECTION 2 TEST POINTS.

Section 3 TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator with modulated output, set at 455 kc . Connect generator ground lead to test point B-; connect output lead through $.1-\mathrm{mf}$ condenser to test points indicated in chart.

Set wafer switch to broadcast position.
Set radio volume control to maximum, and tone control to nearly "off" position.

If the "NORMAL INDICATION" is obtained in the first step, proceed with

FIGURE 3. BOTTOM VIEW, SHOWING SECTION 3 TEST POINTS. the tests for Section 4; if not, isolate and correct the trouble in this section.

It will be noted that for this section the circuit location of the test point for step 1 (the master check), and also for step 4, is the same as for test point C in Section 4; therefore, certain components in Section 4 may cause an abnormal indication. These components are listed under "POSSIBLE CAUSE OF ABNORMAL INDICATION".

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear signal with strong signal input.	Defective 7C6 or 7B7 (2nd i.f.). Open R301 or R302. Shorted C307. Defective or misaligned 7302.
3	D	Loud, clear signal with moderate signal input.	Defective 7B7 (lst i.f.). Defective or misaligned 2301.
4	A	Loud, clegr signal with weak signal input.	Defective 14AF7. Open R401, R403, or R300. Shorted C303. Defective or misaligned 2300.

Section 4 TROUBLE SHOOTNN

For the tests in this section, with the exception of the oscillator tests (steps 3 and 6), use an r-f signal generator with modulated output. Connect generator ground lead to test point B -; connect output lead through $.1-\mathrm{mf}$ condenser to test points indicated in chart.
Set radio volume control to maximum, and tone control to nearly "off" position.

Set wafer switch, tuning control, and signal-generator frequency as indicated in chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate the trouble by proceeding with the remaining steps.

FIGURE 4. bottom view. showing section 4 test points.

STEP	TEST POINT	$\begin{aligned} & \text { SIG. GEN. } \\ & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	WAFER SWITCH	RADIO DIAL SETTING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc	BC	1000 kc	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	1000 kc	BC	1000 kc	Loud, clear signal with weak signal input.	Open C407. Trouble in oscillator circuit.
3	E to D (Osc. test; see Note below.)		BC	Turn tuning control through range.	Negative 1 to 2 volts.	Delective 14AF7, T401. or WSI (R). Open or shorted C404 or C405. Open R400. R402, or C400. Shorted plates of tuning condenser (osc. section).
4	A	1000 kc	BC	1000 kc	Loud, clear signal with weak signal input.	Open C408. Defective WS1 or T400.
5	A	15 mc	SW	15 mc	Loud, clear signal with weak signal input.	Defective 14AF7 or WSI. Open C403. L400, or C401. Shorted C400A.
6	E to D Osc. test (see Note below.)		SW	Turn tuning control through range.	Negative 1 to 2 volts.	Defective 14AF7, T401, or WS1 (R). Open C406.

NOTE: For oscillator tests (BC in step 3 and $S W$ in step 6), connect positive lead of high-resistance, d-c voltmeter to test point D (14AF7 osc. cathode); connect prod end of negative lead through $100,000-0 h m$ isolating resistor to test point E (14AF7 osc. grid). Use suitable meter range, such as $0-10$ volts. Proper operation of oscillator is indicated by negative voltage througls out range of tuning condenser.

FIGURE 5. Philco radio model 48.464, sectionalized sChematic, showing test points.
©John F. Rider

ALIGNMENT PROCEDURE

NOTE: Make alignment with loop connected to radio.

DIAL - Alignment points should be marked on the dial backplate. Measurements for these points are shown in the composite dial-and-backplate photo, fig ure 6 . With tuning condensers fully meshed, set dial pointer to index mark.

CONTROLS - Set volume control to maximum, tone control nearly "off", and wafer switch as indicated in chart.

SIGNAL GENERATOR-Connect as indicated in chart.

OUTPUT LEVEL - During alignment, adjust signalgenerator output to maintain output-meter indication below 1.25 volts.

NOTE: Make up a six-to-eight-turn, 6 -inch diameter loop, using insulated wire: connect to signal-generator leads and place near radio loop.

REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk (*) are general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No.".

SECTION 1

Reference	Symbol Description	rvice Part
C	Condenser, by-pass, 04 mf	
C101	Condenser, by-pass, 04 mf	45-3500.2***
C102	Condenser, electrolytic, 3 -sectio	- 30-2573*
C102A:	Condenser, filter, 30 mf	Part of C102
C102B:	Condenser, filter, 25 mf	Part of C102
C102C:	Condenser, filter, 20 mf	Part of Cl02
1100	Panel lamp	34-20
R100	Resistor, 1st B+ filter, 220 ohms	66.12243
R101	Resistor, 2nd B+ filter, 1200 ohms	66-2123340
R102	Resistor, leakage, 150,000 ohms	66-4153340*
S100	Switch, a-c power	Part of R205
W100	Line cord	

SECTION 3

C300A	r, fixed, primary .ananan Part of Z300
C300B	Condenser, trimmer, secondary Part of Z300
C301A	Condenser, trimmer, secondaryPart of Z301
C302A	Condenser, trimmer, secondaryPart of Z302
C302B	
C302C	Condenser, i-f filter, 100 mmf Part of $\mathbf{Z 3 0 2}$
C303	Condenser, r.f by-pass, 01 mf
C304	
C305	Condenser-and-choke assembly, by-pass, .15 mf \qquad 38-9851-2
C306	Condenser-and-chole assembly, by-pass,
C307	Condenser, screen r-f by-pass, 05 mf61-0122***
C308	Condenser, a-v-c filter, . 05 mf 61.0122^{*}
L300	Choke ...wn Part of C305
L301	Choke
R300	Resistor, plate load, 10,000 ohms66-3103340*
R301	Resistor, screen dropping, 15,000 ohms66-3153340*
R302	Resistor, $\alpha-v-c$ filter, 2.2 megohms66-5223340*
R303	Resistor, i.f filter, 47,000 ohmsPart of $\mathbf{Z 3 0 2}$
Z300	Transformer, 1st i-f, 455 kc , including C300A and C300B
Z301	Transformer, 2nd i-f, 455 kc , including C301A
z302	Transformer, 3rd i-f, 455 kc , including C $\mathfrak{O} 02 \mathrm{~A}$, C302B, C302C, and R303 \qquad

SECTION 4

R	Symbol Description Service Pa
C400	Condenser strip, trimmer, 3-section31-6477-2
C400A:	Condenser, shunt trimmer, s-w aerialPart of C400
C400B:	Condenser, shunt trimmer, s-w oscillator...Part of C400
C400C:	Condenser, series padder, bc. oscillator..... Part of C400
C401	Condenser, feedback, 6 mmf .-........60-90505007**
C402	Condenser, main tuning gang31-2715
C402A:	Condenser, shunt trimmer, bc. aerialPart of C402
C402B:	Condenser, shunt trimmer, bc. oscillator.....Part of C402
C403	Condenser, spread tuning, s-w aerial.
C404	Condenser, plate feedback, 220 mmf60-122001001*
C405	Condenser, oscillator grid. 47 mmf 6 . $60.00515307 *$
C406	Condenser, spread tuning, s-w oscillator, 275 mmf \qquad 30-1220-7
C407	Condenser, cathode coupling, . 05 mf61.0122*
C408	Condenser, grid coupling, 220 mmf60-122001001*
1400	
L400	
LA400	
R400	Resistor, oscillator grid, 47,000 ohms .-. ${ }^{\text {a }}$. 66.3473340^{*}
R401	Resistor, cathode bias, 2200 ohms66-2223340
R402	Resistor, plate load, 10.000 ohms66-3103340
R403	Resistor, grid return, 2.2 megohms66-5223340*
T400	Coil, bc. aerial ..32-3846-1
T401	Coils, bc. and s-w oscillator32-3715-1
WS]	Wafer (band) switch42-1791
W	
	Rear contacts, wafer switchert of WSl

MISCELLANEOUS

Description	Service Part No.
Cabinet	\ldots.................10618B
Back	. 54.7236
Baffle-and-cloth assembly	40-6822
Dial scale	27-5928
Band, rubber, scale mtg	54-4025
Strap, scale mtg., l.h.56-2671FA3
Strap, scale mtg., r.h.	
Knob56-4376
Stud, loop mtg.	W-2436FA9
Dial-backplate assembly	76-2390
Bracket. dial backplate	56-2681FA3
Cord, drive ($25-\mathrm{ft}$. spool)	- .i.u.....45-8755
Light reflector	27-9816-1
Pilot-lamp-socket assembly76-2142
Pointer .-.-56-2896
Spring, drive cord	28-8953
Socket, Loktal27-6138

Circuit Description

Philco Radio Model 48-472, Code 122, is an eighttube superheterodyne, which provides reception on the standard-broadcast band and on the FM band. A builtin high-impedance loop is used as the aerial on the broadcast band and the line cord is used as the aerial on the FM band. These aerials normally provide adequate signal pickup; if additional pickup is required, Philco Dipole Aerial, Part No. 45-1462 may be used. When connecting the dipole aerial, disconnect the black lead from terminal 2 of TB400, and attach it to pin 1 of the dipole-aerial plug which fits into J400. No additional coupler is required.

To eliminate complicated switching and to provide greater stability and gain on both bands, separate converter tubes are used for broadcast and FM reception. A 12AU6 high-gain pentode is used as a tuned r-f amplifier on the FM band. The output of this stage is fed to a 14F8 dual triode which functions as the converter for the FM signal. A 12AU7 dual triode is used as the converter for the broadcast signal. Band switching is accomplished by means of a single-wafer switch, which connects the $\mathrm{B}+$ voltage to the proper mixer plate.

6BJ6 type tubes are used in the two i-f-amplifier stages. Two sets of i-f transformers are used; one set is tuned to 455 kc . for standard broadcast, and the other set is turned to 9.1 mc . for FM. The use of two sets of transformers makes better shielding possible, so that undesirable beat signals and interaction between transformers are eliminated.

Two diode sections of the 19 T 8 triple-diode-triode are used in a ratio detector circuit for detection of FM signals. The other diode section is used in a half-wave rectifier circuit for detection of standard-broadcast signals and to provide a-v-c voltage.

The triode section of the 19 T 8 is employed as the first audio amplifier, and is resistance-coupled to the 50A5 output tube, which supplies an audio output of approximately one watt to the permanent-magnet dynnamic speaker.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

Section 1-the power supply
Section 2-the audio circuits
Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits
Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The

trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire chart.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Prelininary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between the $B+$, pin 6 of the $117 \mathrm{Z3}$, and $\mathrm{B}-$, test point B . When the ohmmeter
leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1250 ohms, check condensers C102, C103A, C 103 B , and C 103 C for leakage or shorts. This resistance value, which is much lower than normal, does not represent a quality check of these condensers; it is the lowest value which will permit the rectifier to operate safely while the voltage checks of Section 1 (power supply) are performed.
3. If the 50A5 tube or the 6BJ6 (2nd i-f amplifier) tube is burned out, check condenser C314 for a short before installing a new tube.

Important!

To avoid altering FM operation, special care should be used in replacing any part. Replacement parts should be placed in the same physical positions as the original parts; connections should be of the same length, and should be soldered to the same points. The placement or length of leads should not be changed.

Section 1

TROUBLE SHOOTINC

POWER SUPPLY

Make the tests for this section with a d-c voltmeter. Connect the negative lead to B-, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.
Set the volume control to minimum, turn the tone control fully clockwise, and set the band switch to the broadcast position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	95v		Trouble in this section. Isolate by the following tests.
2	C	100v	No voltage Low voltage High Voltage	Defective: 117Z3. Open: W100. S100. Shorted: C103A, C103B, Cl02. Defective: 117Z3. Leaky: C103A. C103B, C103C. Shorted: C103C. Open: R100, R101, T200*, R204*.
3	D	118v	No voltage Low voltage High Voltage	Open: R100. Shorted: C103B. Increased value: R100. Leaky: Cl03B. Shorted: C103C. Open: R101, T200*, R204*.
4	A	95v	No voltage Low voltage	Open: R101. Shorted: C103C. Leaky: C103C. Increased value: R101. Shorted: C312*, C311*. C317*. C419*. C406*. C315*. C318. C411*.

This part, located in another section, may cause abnormal indication in this section.

[^2]
Section 2
 TROUBLE SHOOTING
 AUDIO CIRCUITS

For the tests in this section. use an audio-frequency signal generator. Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control fully counterclockwise.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with moderate generator input.	Trouble in this section. Isolate by the following tests.
2	c	Loud, clear output with strong input.	Defective: 50A5. Shorted: LS200, T200. Open: R203, R204, C205, LS200, T200. Shorted or leaky: C202, C204, C205, C206, C207.
3	D	Loud, clear output with moderate input.	Defective: 19T8. Open: R205, R202, C202. Shorted or leaky: C202, C203 (rotate R201 through range).
4	A	Loud, clear output with moderate input.	Open: R200 (rotate through range), C200, C201. Shorted or leaky: C200, C201.
Listening Test: Distortion may be caused by leaky C200, C201, or C202.			

Figure 2. Bottom View, Showing Section 2 Test Points

Section 3
 TROUBLE SHOOTING I-F, DETECTOR, AND A-V-C CIRCUITS

AM Circuits

For the tests of the AM circuits, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control fully counterclockwise. Set the band switch to the broadcast position, and rotate the tuning control until the tuning gang is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for the FM circuits; if not, isolate and correct the trouble in the AM circuits.

Since test point A for the AM circuits is placed at the grid of the 12AU7 mixer in Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

Section 3-Cont. TROUBLE SHOOTING

AM Chart

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker autput with weak generator inpul.	Trouble in AM circuits. Isolate by the following tests.
2	D	Loud, clear output with moderate. ly strong input.	Defective: 19T8, 6BJ6 (2nd i-f amplifier). Open: R307, R308, R309, R311, R312. L305B, C317, L305A. L304A, WS. Shorted or leaky: C316, C317, C315. Shorted: L305A, L305B, WS.
3	E	Loud, clear output with moderate input.	Defective: 6BJ6 (1st i-f amplifier). Open: R301, R302, R303, R304, R305, R306, C311. C313. L302A, L302B. L303A. L303B. Shorted or leaky: C311, C312, C313, C308. Shorted: L303A, L303B.
4	A	Loud, clear output with weak in. put.	Defective: 12AU7*. Open: R411*, R413*, R409*, L300A, L300B, L301A, L301B, WS. Shorted or leaky: C424*, C410*. Shorted: L301A, L301B, L301C. WS.
Listening Test: Hum and distortion may be caused by shorted or leaky C309, C310, C314, C321, C320, C307, C420*, C421*. C422*. C423*, C100*, C101*.			

- This part, located in another section, may cause abnormal indication in this section.

FM Circuits

For the tests of the FM circuits, use an r-f signal generator, set at 9.1 mc . Connect the generator ground lead to $B-$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart. Detune the generator frequency to one side or the other until a satisfactory test signal is obtained.

Set the band switch to the FM position; set the other radio controls as directed under AM CIRCUITS.

The parts which were found to be satisfactory for AM operation, with the exception of those indicated in the chart, will usually be satisfactory for FM operation.

Figure 3. Bottom View, Showing Section 3 Test Points TP-5398C

The best indication of satisfactory FM-detector operation is the ability of this circuit to take the alignment properly (see page 10).

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r -f and converter circuits); if not, isolate and correct the trouble in the FM circuits of this section.

Since test point C for the FM circuits is placed at the grid of the 14 F 8 mixer in Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

FM Chart

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	C	Loud. clear speaker output with weak generator input.	Trouble in FM circuits. Isolate by the following tests.
2	D	Loud, clear output with strong input.	Defective: 6BJ6 (2nd i-f amplifier), Z304, 19T8, WS. Misaligned: Z304. Open: R312. R313. R314, C320, C319, C318, C304, C306. Shorted or leaky: C319, C320, C304, С306.
3	E	Loud, clear output with moderate input.	Defective; 6BJ6 (lst i-f amplifier). Misaligned: Z302. Shorted: L302A, L302B.
4	C	Loud, clear output with weak in. put.	Defective: $14 \mathrm{~F} 8^{*}$. Open: R300. R406, R407*, R405*, L404*, L300A, WS. Shorted or leaky: C418*, C419*. Shorted: L300A, L300B. WS.

[^3]
TROUBLE SHOOTING

R-F AND CONVERTER CIRCUITS

AM Circuits

For the tests of the AM circuits, use an r-f signal generator, with modulated output. Connect the generator ground lead to $B-$, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, turn the tone control fully counterclockwise, and set the band switch to the broadcast position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for the FM circuits; if not, isolate and correct the trouble in the AM circuits.

FM Circuits

Before proceeding with the tests for the FM circuits, set the band switch to the FM position.

If the "NORMAL INDICATION" is obtained in step 1 , further tests should be unnecessary; if not, isolate and correct the trouble in the FM circuits. If the trouble is not revealed by the tests for the FM circuits, check the alignment.

Figure 4. Bottom View, Showing Section 4 Test Points

AM Chart

NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
Loud. clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
Loud. clear output with moderate input.	Defective: 12AU7, oscillator circuits. Shorted: C424, C410, WS. Open: R409, R411, R413, WS.
Negative 2 to 4 volts.	Defective: 12AU7. Open: R408, L404, C408, R410, C407. Shorted or leaky: C408, C409. C400. C401B.
Same as step 1.	Open: L400, C417, L405. Shorted: C400. C401A. C425.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to $\mathrm{B}-$, test point B ; connect the prod end of the negative lead through a $100,000 \cdot \mathrm{ohm}$ isolating resistor to the oscillator grid (pin 2 of $12 A U 7$), test point E. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage within the range given in the chart (measured with a $\mathbf{2 0 , 0 0 0}$-ohms-per-volt meter) throughout the tuning range.

FM Chart

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQUENCY	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	C	95 mc .	Tune to signal.	Loud, clear speaker output with weak generator input.	Trouble in FM circuits. Isolate by the following tests.
2	F	95 me.	Tune to signal.	Loud, clear output with moderate input.	Defective: oscillator circuits, 14F8. Open: C418, R406, R407, R405. L408. L402. Shorted: C418. C400, C400B, C419, C416, L402.
3	$\begin{aligned} & \text { G to B } \\ & \text { (Osc. test: see } \\ & \text { note below.) } \end{aligned}$		Tune through range.	Negative 1 to 2.5 volts.	Defective: 14F8. Open: R404, L408, L407, R403, C413, C415, L403. Shorted: C400, C400C, C413, C415, C414, C412, L403, L407.
4	H	95 mc .	Tune to signal.	Loud, clear output with weak input.	Defective: 12AU6. Open: L406. R402. R401, R400. C411, C406, C418. R412. L402. Shorted: C405. C406. C411, C400, C400B, C404, L402.
5	C	95 mc .	Tune to signcl.	Loud, clear output with weak input.	Open: C402, C404, R412, L402. Shorted: C404, C400, C400A, L402.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to $B-$, test point B; connect the prod end of the negative lead through a 100,000 ohm isolating resistor to the oscillator grid (pin 1 of 14 F 8), test point G. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage within the range given in the chart (measured with a 20.000 -ohms-per-volt meter) throughout the tuning range.

TP-5398E
Figure 5. Drive-Cord Installation Details

REPLACEMENT PARTS LIST

NOTE: Parts marked with an asterisk (') are general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION 1 POWER SUPPLY

Refer	Symbol Description	ervice Part No.
C100	Condenser, rif by-pass, 100 mmf .	62.110009001
C101	Condenser, r-f by-pass, 160 mmf .	.62-110009001
C102	Condenser, r-f by-pass, 01 mf .	61-0120*
C103	Condenser, electrolytic, 3 -section	30-2568-10
C103A	Condenser, filter, 40 mf .	Part of Cl 103
C103B	Condenser, filer, 70 mf .	Part nf Cl03
Cl03C	Condenser, filter, 40 mf .	Part of Cl 103
C104	Condenser, line filter, 04 mf .	\cdots
1100	Panel lamp, 110v, screw base	34.2477
L100	Choke, filament, 100 millihenries	32-4143-4
R100	Resistor, filter, 220 ohms	66.1224340
R101	Resistor, filter, 470 ohms	66-1474340
S100	Switch, power	Part of R201
W100	Line cord and plug (incl. FM lin	aerial)L-2183*

SECTION 2 AUDIO CIRCUITS
C200
C201
C202
C203
C204
C205
C206
C207
C208
J200
LS200
R200
R201
R202
R203

SECTION 2 (Continued) AUDIO CIRCUITS

Reference	Symbol	Description	Service Part No.
R204	Resist	de bias, 120 ohms	66.1124
R205	Resisto	return, 10 megohms	66-6103340
T200	Outp	mer	

SECTION 3

I-F, DETECTOR, AND A-V-C CIRCUITS

C300A	
C300B	Condenser, s.ıunt ...
CJula	
C301B	Condenser, saunt- Part of $\mathrm{L}^{\prime} 01$
C30 4 A	
C302B	Condenser, s.urit Yart of Z302
C303A	
C303B	
C304	Condenser, shunt. 68 mmt Part of 2304
C3054	
C305B	Condenser, shuntan Part of Z305
C305C	Condenser, a-v-c filter- Part of $\mathrm{Z} 0 \mathrm{O}_{3}$
C305D	Condenser, a-v-c filterart of Z305
C306	Condenser, shunt. (part of 23,4), 5 mmf . 3 30-1224.5
C307	Condenser, r-f by-pass, 100 mmf62-110009031
C308	Condenser, a.v.c by-pass, 01 mf . 61.0120°
C309	Condenser, r-f by-pass, 100 mmf 6.62 .110009031
C310	Condenser, rf by-pass, 05 mf .
C311	Condenser, scrcen by-pass, 01 mi61-0120*
C312	Condenser, plate by-pass, 01 mf) 61-0120*
C313	Condenser, a-v-c by pass, 01 mf $61-0120^{\circ}$
C314	Condenser, r.f by-pass, 01 mf 61.0120°
C315	Condenser, plate by-pass, 01 mf61-0120*
C316	Condenser, cathede by-pass, 01 mf . $\quad 61.0120^{\circ}$
C317	Condenser, screen by-pass, 01 mf61-0120*
C318	Condenser, decoupling, 1500 mmf62-215001001

REPLACEMENT PARTS LIST (Continued)

SECTION 3 (Continued) I-F. DETECTOR, AND A.V.C CIRCUITS

Referen	Symbol Description
19	Condenser, electrolytic, filter. FM detector, 2 mf . . 3 3-2417-7
C320	Condenser-and-cnoke assy., by-pass, .05 mi .
C32	
C322	Condenser, compensating. . 01
00	Primary coil, 1st FM i-f transformerPart of 2300
13	Secondary coil, 1st FM i-f transtormer Part of 2300
L301A	Primary coil, 1st AM i-f transtormer Part of 2301
1B	Secondary coil, lst AM i-f transformer . Part of
L301C	Tertiary coil. 1st AM i-f transformer Part of 2301
L302	Primary coil, 2nd FM i.f transformer Part of 2302
02B	Secondary coil, 2nd FM i.t transformer Part
L303A	Primary coil, 2nd AM i.f transformer Part of 2303
L303	Secondary coil, 2nd AM i-f transiormer Part of
L304A	Primary coil, 3rd FM i.f transformer Part of
L304B	Secondary coil. 3rd FM i-f transformer Part of 230
L304C	Tertiary coil, 3rd FM i.f transformer Part of 2304
L305A	Primary coil, 3rd AM i-f transformer . Part of 2305
L305B	Secondary coil. 3rd AM i-f transformer Part of
H3	Resistor, decoupling. 68 ohms - 66-06
R301	Resistor, grid return. 1 megohm
H302	Resistor, cathode bias, 47 ohms
R303	Resistor, screen dropping. 1000 ohms .-.66-2103340**
4	Resistor, plate decoupling. 1000 ohms
5	Resistor, a-v.c filter, 3.3 meqohms \quad - 66.5333340°.
R3	Resistor, r-f decoupling, 68 ohms
R307	Resistor, cathode bias, 47 ohms $\quad 66.0473340^{\circ}$
R308	Resistor, screen dropping. 1000 ohms66.2103340 ${ }^{\circ}$
R3	Resistor, plate decoupling. 1000 ohms
R310	Resistor, diode load. 330.000 ohms \quad - 66.43333340°.
R311	Resistor, diode load, 47.000 ohms $\quad . \quad 66.3473340^{\circ}$
R312	Resistor, decoupling. 47.000 ohms
R313	Resistor, decoupling. 100,000 ohms .- 66.4103340°
R314	Resistor, FM-detector load, 47.000 ohms 66-3473340*
TC300A	Primary tuning core, 1st FM i-f trans. Part of 3300
TC300B	Secondary tuning core, 1st FM i.f trans. Part of Z300
TC301A	Primary tuning core, lst AM i-1 trans. Part of Z301
тC301B	Secondary tuning core, 1st AM i.f trans... Pa
TC	Primary tuning core, 2nd FM i.f trans. ...Part of 2302
TC30	Secondary tuning core. 2nd FM i.f trans... Part of 2302
TC3	Primary tuning core, 2nd AM i-f trans.
TC3	Secondary tuning core, 2nd AM i-f trans. Part of 2303
TC304A	Primary tuning core, 3rd FM i.f trans. . Part of 2304
TC3	Secondary tuning core, 3rd FM i.f trans Part of 2304
TC30	Primary tuning core, 3rd AM i-f trans. ... Part of 2305
TC308	Secondary tuning core, 3rd AM ift trans. Part
WS-B	Switch-wafer section
z30	Transformer, 1st FM i-f ...
2301	Transiormer, 1st AM i-f
z302	Thanstormer, 2nd FM i-f
3	Transformer, 2nd AM i-1
2304	Transtormer. 3rd FM i-f $\longrightarrow \square \longrightarrow$ - ${ }^{\text {32-4261 }}$
z305	3rd AM i-f \square

SECTION 4

 R-F AND CONYERTER CIRCUITSC400

2409

	tuning gang	31
Condenser,	trimmer, FM aerial	Part of C400
Condenser,	trimmer, FM r-f	Part of C400
Condenser,	trimmer, FM oscillator	Part of C400
Condenser,	immer, 2 -section	31.6476 .13
Condenser.	trimmer, BC aerial	at of C401
Condenser.	trimmer, BC oscillator	Part of C401
Condenser.	aerial coupling, 100 mmf .	62-110009001
Condenser,	r-f by-pass, 100	62-110009001
Condenser,	blocking. 51 mmi .	
Condenser,	cathode by-pass, 33 mmi .	30-1224*
Condenser,	screen by-pass, 100 mml .	2-110009001
Condenser,	isolating. . 01 mt .	61-0120*
Condenser,	blocking. 100 mmf .	0009001
n	by-pass, 220 mmi .	62-122001001

SECTION 4 (Continued) r-F AND CONVERTER CIRCUITS

Reference Symbal Sescription Service Part No.
Condenser, cathode by-pass, 1500 mml .

62-215001001
C411
C411
C412
C413
C414
C415
C416
C417
C418
C419
C 420
C421
C422
C423
Condenser, r-I by-pass,
C425 Condenser, aerial coupling. 10 mmf .
Condenser, aerial coupling, $100 \mathrm{mmf} . . .62 \cdot 110009001$
Condenser, r-f by-pass, 1500 mmf62-215001001
C427 Condenser, r-f by-pass, 1500 mmf . .-.
Aerial socket
27-6214
1400

1401

L402
L403
L404
1405

$L 406$

L408
L409
LA400
PL400
R40
R401
R402
R403
R404
R405
R406
R407
R408
R409
R410
R411
R412
R413
TB400
WS-A
Condenser, d-c blocking, $100 \mathrm{mmf} . \cdots62-110009001$
Condenser, r-f by-pass, 1500 mmf.
Condenser, d-c blocking. $220 \mathrm{mmf}62-122001001$

Coil, FM oscillator …..32.4018-5
Coil, r-f choke ..
Coil. FM r-1 plate load $\quad 32 . \quad$ 3061-2
Coil, FM oscillator plate load32.4061.2

il, rit choke	32-4061-2
Loop aerial	32.4052

Plug, FM aerial ,.................................... 100

Resistor, grid return, 1 megohm66.5108340
Resistor, cathode bias, 68 ohms. 66.5108340°
$66-0683340^{\circ}$
Resistor, screen dropping. 1000 ohms
Resistor, plate decoupling. 4700 ohms
Resistor, grid return, 15,000 ohms $66-2103340^{\circ}$
$66-2473340^{\circ}$

Resistor, cathode bias, 1500 ohms
Resistor, grid return, 10,000 ohms … 66.3103340
Resistor, plate decoupling, 33,000 ohms ...66-3333340*
Resistor, grid return, 15,000 ohms
Resistor, cathode bias, 2200 ohms
Resistor, plate load, 15,000 ohms
…… $66-3153340^{\circ}$
$66-2223340^{\circ}$

Resistor, grid return, 1 meqohm 66-3153340 66-5103340
Resistor, r-f decoupling. 68 ohms Resistor, plate decouplinq, 33,000 ohms ..66-3333340*
Aerial terminal panel
38.9942

Switch-wafer section
Part of 42.1834

MISCELLANEOUS

Description	Service Part No.
Cabinet (less scale)	10666
Baftle-and-cloth assembly	40-6965
Cabinet back	54.7465.1
Clip, baffle mounting	28-4279FA1
Dial scale	27-5954-2
Strap, scale mounting (L.H.)	56.4032
Strap, scale mounting (R.H.)	56.4031
Dial-Backplate Assembly	
Dial cord (25-ft. spool)	45-8750*
Diffusing panel	54.7506
Pointer	56.5252
Spring, pointer	28-8953
Spring, gang	56.2617
Upright assembly	76-3461
Dial drive shaft	76.3479
Knob	54-4376
Rubber mount, r-f chassis	54.4295
Socket, 9-pin miniature	27-6203-5
Socket, 8-pin Loktal	27-6138*
Socket, 7-pin miniature	27-6226
$\dagger 42-1834$ is WS, water switch, sinqle wafer (includes WS-A and WS-B).	

- John F. Rider

Figure 6. Philico Radio Model 48-472, Code 122, Sor.tionailzod Schomatic Diegram, Showing Tost Points
©John F. Rider

AM ALIGNMENT CHART

OTE:Make up a six-to-eight-turn, 6 -inch-diameter loop, using insulated wire: connect to the signal-generator leads and place near the
Figure 8. Top View, Showing AM Trimmer Locations
FM ALIGNMENT CHART

©John F. Rider

ALIGNMENT OF AM CIRCUITS

Make alignment with loop aerial connected to radio. The AM alignment should be completed before the FM alignment is made.
DIAL POINTER-With tuning condenser fully meshed, adjust dial pointer to coincide with index mark at low-frequency end of dial. See "CALIBRATING DIAL BACKPLATE" for method of measuring backplate for index and calibration marks.
OUTPUT METER-Connect between terminal 3 (voice-coil connection) of aerial terminal panel and TB400 and chassis.
AM SIGNAL GENERATOR-Connect as indicated in chart. Use modulated output.
OUTPUT LEVEL-During alignment, signal-generator output must be attenuated to maintain radio output below 1.25 volts, as read on output meter.
CONTROLS - Set volume control to maximum, turn tone control fully counterclockwise, and set band switch to broadcast position.

ALIGNMENT OF FM CIRCUITS

Align the AM Circuits first

OUTPUT METER-Connect between terminal 3 (voice-coil connection) of aerial terminal panel TB4 00 and chassis.
ALIGNMENT INDICATOR-Connect negative lead of a 20,000 -ohms-per-volt, d-c voltmeter to pin 2 of 19T8 tube; connect positive lead to \mathbf{B}-, test point B in Section 2. Use 10 -volt range.
AM SIGNAL GENERATOR-Generator must have sufficient output to give a reading of at least 8.5 volts on alignment indicator. Connect generator ground lead to $\mathrm{B}-$, test point B ; connect output lead as indicated in chart. Use modulated output.
CONTROIS-Same as for alignment of AM circuits, except set band switch to FM position. Allow radio and signal generator to warm up for at least 15 minutes before making alignment.
NOTE: Check resonance of coils L401, L402, and L403 by inserting each end of a powdered-iron tuning core, such as Philco Part No. 56-6100, in the coils. If the signal strength increases when the iron end is inserted, compress the turns slightly. If the signal strength increases when the threaded brass end is inserted, spread the turns slightly. If the signal strength decreases when either the iron or the brass end is inserted, no further adjustment is necessary. Do not spread or compress turns of coil excessively; only a small change is required at these high frequencies.

SYMBOLIZATION

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part as follows:

$$
\begin{array}{lll}
\text { C —condenser } & \text { LS -loud-speaker } & \text { W -line cord } \\
\text { I —pilot lamp } & \text { R —resistor } & \text { WS -wafer switch } \\
\text { J —socket } & \text { S —switch } & \text { Z - electrical assembly } \\
\text { L —choke or coil } & \text { T —-transformer } &
\end{array}
$$

The number of the symbol, except when the number is less than 100 , designates the section in which the part is located, as follows:

100 -series components are in Section 1, the power supply
200 -series components are in Section 2, the audio circuits
300 -series components are in Section 3, the i-f, detector, and a-v-c circiits
400 -series components are in Section 4, the r-f and converter circuits

CALIBRATING DIAL BACKPLATE

When the radio chassis has been removed from the cabinet, dial calibration and alignment points may be marked on the dial backplate below the pointer.

The method of measuring for these points is illustrated in figure 7. Hold a ruler against the dial backplate, with the
start of the ruler at the reference line shown, and mark pencil dots at the proper points for the required frequency settings.

After installation of the chassis in the cabinet, the dial pointer should be moved to coincide with the index mark on the dial. Coincidence of the pointer and index mark should occur with the tuning condenser fully meshed.

Figura 7. Dial-Backplate Calibration Measurements

SECTION 1 - TROUBLE SHOOTING

CAUTION

Do not turn on radio power with speaker disconnected, as this will cause damage to the set.
With the BC push button depressed, check the voltage between the chassis (test point C) and each of the re-
maining test points indicated in the chart. The voltages given were measured with a 20,000 -ohms-per-volt meter, using a power source of 117 volts, 60 cycles, a.c. Any voltage may be considered normal if it is within $\pm 10 \%$ of the indicated value.

STEP	$\begin{gathered} \text { TEST } \\ \text { POINTS } \end{gathered}$	NORMAL indication	ABNORMAL indication	possible cause of abnormal indication
1	B to C D to C E to C F to C	200 volts 187 volts Negative 13 volts Negative 1.1 volts	Error greater than 10\%	Trouble within this section. Isolate by following tests.
2	A to C	250 volts	No voltage Low voltage High voltage	Defective 5Y3GT tube or T100. Shorted Cl04, Cl02C, Cl03, C105, or C416. Defective 5Y3GT tube or T100. Leaky Cl04, Cl02C. Cl03, Cl05, or C416. Shorted C102A. Cl02B, or Cl06. Open Llo0. Shorted L100. Open R103, R104, or T200.
3	B to C	200 volts	No voltage Low voltage High voltage	Shorted Cl02A. Open R100. Leaky Cl02A. Off-value R100. Off-value R100.
4	D to C	187 volts	No voltage Low voltage High voltage	Shorted Cl02B. Open Rl01. Leaky Cl02B. Off-value R101. Off-value R101.
5	E to C	Negative 13 volts	Error greater than 10\%	Shorted or leaky C106. Open or off-value R102, R103, or Rl04. Open, shorted, or partially shorted L100.
6	F to C	Negative 1.1 volts	Error greater then 10%	Open or off-value R104.

SECTION 2 - TROUBLE SHOOTING

For all tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the radio chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated.

Set the volume control at maximum, treble tone control clockwise, and bass tone control counter-
clockwise; depress the BC push button. Adjust the signal-generator output as required for each step.

If the "NORMAL INDICATION" is obtained in the first step, proceed to the tests in Section 3; if not, isolate and remedy the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	normal indication	possible cause of abnormal indication
1	D	Loud. clear signal with weak signal input	Trouble within this section. Isolate by following tests.
2	A	Loud, clear signal with strong signal input	Defective 6V6GT tube or LS200. Shorted or leaky C205. Open or shorted T200. Open R205 or C204. Shorted or leaky C200 or C201.
3	B	Loud, clear signal with weak signal input	Defective 6SQ7GT (triode section). Open R204 or R202. Leaky or shorted C200.
4	D	Same as step 3	Open or off-value R200. Open C202.

SECTION 3 - TROUBLE SHOOTING (FM DETECTOR)

The tests in this section are made with an audiofrequency generator, an AM r-f signal generator, and a 20,000 -ohms-per-volt voltmeter. Use a $.1-\mathrm{mf}$ condenser in series with the output lead of each generator.

In Step 1, unmodulated r-f signals, together with d-c voltage readings, are used to check the response of the detector circuit to FM by observing the voltage drops across the audio-load resistor R302 for different input frequencies within the i-f range of the detector. In Step 3, the oscillator section of the FM detector is made inoperative, thereby converting the circuit to an AM detector, and making it possible to check certain components with an AM signal.

The tests in this section will not indicate the condition of alignment of the detector unless the circuit is extremely misaligned.

NOTE: In Steps 1 and 3, the AM signal-generator output must be at least .5 volt. If the output is below this value, instead of connecting to test point D, the generator lead may be connected in Section 4, to test point A or B, depending upon the maximum output of the generator used. The tests made from these points will be effective if the last i-f stages are trouble free. If abnormal indications are obtained in BOTH Steps 1 and 3, the i-f stages may be at fault.

Set the radio controls as follows: Volume control at maximum; bass control fully counterclockwise; treble control fully clockwise; FM push button depressed.

If the "NORMAL INDICATION" is obtained in the first test, proceed to the tests for Section 4; if not, isolate and remedy the trouble in this section.

PHILCO CORP.SECTION $3-$ (Continued)			
STEP	procedure	normal indication	possible cause of abnormal indication
1	Connect positive d-c voltmeter lead to test point A, negative lead to test point B, with meter on 50 -volt range. Connect AM generator to test point D; turn off modulation and adjust generator output to approximately .5 volt (see NOTE above). Swing generator frequency from approximately 80 kc above to 80 kc below 9.1 mc .	Approximately 15 volts for $9.1-\mathrm{mc}$ sig. nal (or no signal); 8 volts for 80 kc above 9.1 mc ; 23 volts for 80 kc below 9.1 mc .	Trouble within this section. Isolate by the following tests.
2	Connect audio-signal generator to test point E; adjust for high generator output.	Loud, clear signal output from radio.	Defective Z300, FM1000, or PB 10. Shorted C305. Open C304 or R303.
3	Short test point F (pin No. 2. FM1000) to chassis. Connect r-f generator output to test point D (see NOTE above). Use modulated signal. Set generator for 9.1 mc and maximum output.	Loud, clear signal output from radio.	Defective FM1000 tube. Shorted or leaky C306 or C307. Open R304, L300, or R302
4	Remove short from test point F. Connect negative lead of $\mathrm{d}-\mathrm{c}$ voltmeter to test point F through a $50,000-\mathrm{ohm}$ isolating resistor; connect positive lead to test point C (chassis). Set meter to 10 -volt range.	Approximately 2.5 volts negative (osc. grid voltage).	Defective FM1000 tube. or Z300. Open L300 or C301. Shorted or leaky C303. Open R306. Open or off-value R305 or R301.
		SECTION 3 TEST POINTS.	

SECTION 4 - TROUBLE SHOOTING
 AM CIRCUITS

For the AM circuit tests in this section, use an AM r-f signal generator with frequency set to 455 kc . Connect the signal-generator ground lead to the radio chassis, test point C ; connect the output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated. Depress the BC push button (PB 8), set the radio volume control at maximum,
the bass tone control fully counterclockwise, and the treble control fully clockwise. Adjust the signal-generator output as required for each step. If the "NORMAL INDICATION" is .obtained in the first step, proceed to the tests for FM CIRCUITS in this section, or to Section 5; if not, isolate and remedy the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	E	Clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	A	Clear signal with strong signal input.	Defective or misaligned Z403. Open R416, R418, R419, R411, R414, R415, or C424. Defective 6SQ7GT or 7H7 tube. Shorted, open, or leaky C418, C419 or C420. Shorted C425.
3	B	Clear signal, louder than step 2.	Defective or misaligned Z402. Defective 7B7 tube. Open R405, R406, R409, or R410. Shorted C411 or C414. Shorted, leaky or open C413 or C415.
4	D	Clear signal, louder than step 3.	Defective or misaligned Z401. Defective 7H7 tube. Open R402, R403, R404, or R407. Shorted C407. Shorted, open or leaky C408 or C409.
5	E	Clear signal, approx. same as step 4.	Defective or misuligned Z400. Open R401.

FM CIRCUITS

For the FM circuit tests in this section, short test point F, in Section 3, to the radio chassis, to permit use of an AM signal. Connect the AM signal-generator ground lead to the radio chassis, test point C ; connect the output lead through a $.1-\mathrm{mf}$ condenser to the test points indicated in the chart. With the exception of the i-f switch, tubes, and transformers (all of which may function properly at 455 kc but not at 9.1 mc) and
the parts specified in the chart, the parts in this section which are normal on AM will be normal on FM.

Set the r-f signal generator to 9.1 mc , with modulation ON. Depress the FM push button (PB 10). Set the radio volume control at maximum, the bass tone control fully counterclockwise, and the treble control fully clockwise. Adjust the signal-generator output as required for each step.

SECTION 4 - (Continued)

STEP	TEST POINT	NORMAL InDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	E	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	A	Clear signal with strong signal input.	Defective or misaligned Z403. Defective 7H7 or 6SQ7GT (diode section) tube. Shorted or open C423.
3	B	Loud, clear signal with moderate signal input.	Defective or misaligned Z402. Defective 7B7 tube, or PB 10. Open C414.
4	D	Loud, clear signal with weak signal input.	Defective or misaligned Z401. Defective 7H7 tube. Open C407.
5	E	Loud, clear signal with weak signal input.	Defective or misaligned Z400.

FIGURE 6. BOTTOM VIEW, SHOWING SECTION 4 TEST POINTS.

SECTION 5 - TROUBLE SHOOTING

AM CIRCUITS

For the signal tests, use an r-f signal generator with amplitude-modulated output. Connect the signal-generator ground lead to the radio chassis, test point C ; connect the output lead through a . 1 -mf condenser to the test points indicated. Turn the radio volume control to maximum, treble tone control fully clockwise, and bass tone control fully counterclockwise. Set the signal generator for weak generator output.

OSCILLATOR TESTS

For steps 5, 8, and 10, connect the positive lead of a 20,000 -ohms-per-volt meter to test point E , and the prod end of the negative lead through a $100,000-\mathrm{ohm}$ isolating resistor to test point D. Read the voltage on the 10 -volt range. Absence of negative voltage at any dial or band position indicates that the oscillator is not functioning properly; check the parts listed in the chart for the oscillator tests.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIGNAL-GEN. SETTING	PUSH BUTTON OR TUNING CONTROL	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	B	Vary through range of each button	Depress, in order. PB 2 to PB 7	Loud, clear signal when each button is depressed	Trouble within push-button band. Isolate by steps 4, 5, and 6.
2	B	1000 kc	Depress BC push button (PB 8). Tune radio to signal	Loud, clear signal	Trouble within BC band. Isolate by steps 7 and 8.
3	F	12 mc	Depress SW push button (PB 9). Tune radio to signal	Loud, clear signal	Trouble in short-wave section. Isolate by steps 9 and 10.
4	A	Adjust to frequency of push button	Depress PB 7	Loud, clear signal	Defective 7F8 tube or FS 1 (F). Open R505, R400, or C513. Shorted C405.
5	$\begin{aligned} & \text { D to E } \\ & \text { (see } \\ & \text { OSC. } \\ & \text { TESTS) } \end{aligned}$		Depress, in order, PB 2 to PB 7	Negative voltage	No voltage for any one push button: Defective coil (L500A to L500F) or push button. No voltage for all push buttons: Defective 7F8 tube, FS 2, PB 9, or PB 8. Open C517, C520, C521, or C514. Open R508, R510, R513, L506, or R511. Shorted C515, C516, C518, or C522.
6	B	Vary through range of each button	Depress, in order, PB 2 to PB 7	Loud, clear signal	Defective L502. Shorted C502A. C500A to C500F. Open C511, R504. or R507.
7	B	1000 kc	Depress BC push button PB 8. Tune to signal from generator	Loud, clear signal	Defective C501, or PB 8.
8	D to E (see OSC. TESTS)		Depress BC push button PB 8. Rotate radio tuning control through entire range	Negative voltage over entire tuning range	Defective L505. Open R512.
9	F	12 mc	Depress SW push button PB 9. Tune to signal from generator	Loud, clear signal	Defective L503 or L507. Shorted C503. Open C510.
10	$\begin{aligned} & \text { D to E } \\ & \text { (see } \\ & \text { OSC. } \\ & \text { TESTS) } \end{aligned}$		Depress SW push button PB 9. Ro tate tuning control through entire range	Negative voltage over entire tuning range	Defective 7F8 tube, or L504. Shorted C502C. Open C519.

FM CIRCUITS

Before proceeding with the FM circuit tests, connect test point F, in Section 3, to the radio
chassis. Follow the same general procedure given for AM tests.

STEP	TEST POINT	SIGNAL.GEN. SETTING	PUSH BUTTON OR TUNING CONTROL	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	H	100 mc	Depress FM push button PB 10. Tune to signal	Loud, clear signal	Trouble in FM band. Isolate by following tests.
2	D to E (See OSC. TESTS under AM CIRCUITS)		Depress FM push button PB 10. Ro tate tuning control through entire range	Negative voltage over entire range	Defective 7F8 tube, FS 2 (F), L501C, C501, or PB 10. Open R509. Shorted C515 or C501C.
3	G	100 mc	Depress FM push button PB 10. Tune to signal	Loud, clear signal	Defective L501B, C501, or FS 1 (F). Open or shorted C509. Shorted C501B.
4	H	Same	Same	Loud, clear signal	Defective 7W7 tube, L501A, C501. Open R500, R502, or R503. Shorted C506, C501A, or C507.

BOTTOM. VIEW, SHOWING SECTION 5 TEST POINTS.

CALIBRATING DIAL BACKPLATE

When the radio chassis has been removed from the cabinet, dial calibration and alignment points may be marked on the dial backplate below the pointer. The proper locations for the points may be determined as follows:

1. Hold a rule against the dial backplate as shown in figure 1.
2. Mark pencil dots at the proper points for the index mark and the desired frequency settings.

With the tuning gang fully meshed, the dial pointer on the drive cord should be adjusted to coincide with the index mark.

FIGURE 2. DRIVE-CORD INSTALLATION DETAILS.

ALIGNMENT PROCEDURE ALIGNMENT OF AM CIRCUITS

When the complete AM and FM alignment is to be made, the AM alignment should be made FIRST; howcver, if FM alignment is not required, the AM alignment alone may be made.

OUTPUT METER: Connect between terminal No. 3 (voice-coil connection) of aerial terminal panel and chassis.
AM SIGNAL GENERATOR: Connect ground lead to radio chassis, and output lead as indicated in chart.
DIAL POINTER: With tuning condenser fully closed, the dial pointer must coincide with the index mark at
the low-frequency end of the scale. See CALIBRATING DIAL BACKPLATE, page 3.

CONTROLS: Set volume control at maximum, bass tone control fully counterclockwise, and treble tone control fully clockwise; set the radio band push button, radio dial, and signal-generator dial as indicated in the chart.

OUTPUT LEVEL: During alignment, the signal-generator output must be attenuated to maintain the radio output below 1.5 volts, as indicated by the output meter

© John F. Rider

ALIGNMENT OF FM CIRCUITS

Align the AM circuits first.
AM SIGNAL GENERATOR: Connect the generator ground lead to the radio chassis; connect the output lead through a $.1-\mathrm{mf}$ condenser to the points specified in the chart.

OUTPUT METER: Connect the output meter between terminal No. 3 of the aerial terminal panel and the
radio chassis.
CONTROLS: Set volume control at maximum, bass tone control fully counterclockwise, and treble tone control fully clockwise. Depress FM push button.

LOCATION OF FM COILS: For the location of coils L501A, L501B, and L501C (steps 11 and 15), refer to the base layout of Section 5, figure 7.

FM ALIGNMENT NOTES

1. When pin No. 2 of the FM 1000 tube is connected to the chassis, the oscillator section of the tube is made inoperative, thereby converting the circuit from an FM to an AM detector.
2. Make the loading network by connecting a 4700ohm resistor and a $.1-\mathrm{mf}$ condenser in series. Attach an alligator clip to each free end of the network. When this network is connected across the primary or secondary circuit of an i-f transformer, the network loads the circuit so that the transformer is effectively below critical coupling; the unloaded winding may then be correctly peaked at the intȩrmediate frequency.
3. The top of padder C403B can be reached only from the top of the shield can. Slide a length of flattened solder or wire down between the ceramic form and the edge of the trimmer plate. Attach the loading network between this connection and the chassis.
4. It is essential that the output from the generator be kept below the point where the detector-oscillator locks in, otherwise an erroneous zero-beat will be obtained. When a single very sharp zero-beat point is obtained, the adjustment is correct.
5. The use of a signal generator for steps 10 to 16 is recommended only if the available generator is sufficiently accurate to insure correct frequency settings.

Otherwise, an alternate procedure employing FM broadcast station signals in place of a signal generator is recommended. For adjustment at the high-frequency end of the band, use the station nearest 105 mc ; for the low-frequency adjustments, use the stations nearest 88 and 92 mc . If the radio is greatly misaligned, it may be necessary to adjust the padders and coils for maximum noise at each end of the band before station signals can be heard. The oscillator section of the FM detector must be made inoperative, as given in step 10 of FM circuit alignment.
6. Check all coil adjustments with a tuning wand. If inserting the brass end in or near the coil increases the output-meter reading, spread the turns; if the pow-dered-iron end increases the output reading, compress the turns. If both ends cause a decrease in output, the coil is correctly tuned. Do not change the coils excessively, since only a small adjustment is required at these frequencies.
7. Make two simple dipole aerials to feed signals from the signal generator to the radio. Each dipole aerial may consist of two 30 -inch lengths of rubber-covered wire. Connect one dipole aerial to terminal Nos. 1 and 2 on the radio FM aerial socket J500. Connect the other dipole to the output of the signal generator. Space the two dipoles several feet apart.

REPLACEMENT PARTS LIST

NOTE: Parts marked with an asterisk $\left(^{*}\right)$ are general replacement items, and the part numbers may not be identical with those on the original parts; also, the electrical values of some replacement items furnished may differ from the values indicated in the schemutic and parts list. The values substituted in any case are so chosen that the operation of the instrument will be either unchanged or improved. When ordering replacements, use only the "Service Part No." in this parts list.

SECTION 2

C200	Condenser, 220 mmi , r-f by-pass60-10245307*		Description Servicé Part No.
C201	Condenser, .01 mf , treble control61-0120*	C420	er, 01 mf , r-f by-pass61-0120*
C202	Condenser, 02 mt , audio coupling61-0108*	C421	Condenser, 220 mmf , r-f by-pass60-10245307*
C203	Condenser, . 006 mi , bass compensation45-3500-7*	C422	Condenser, 100 mml , $\alpha-\mathrm{v}$-c diode
C204	Condenser, . 006 mf , audio coupling45-3500-7*		60-10105407*
C205	Condenser, . 006 mf , high a-f by-pass61-0153	C423	Condenser, 01 mf , r-f by-pass61-0120*
J200.	Socket, single prong. FM test point67-6180	C424	Condenser, . 006 mf , audio coupling45-3500-7*
LS200		C425	Condenser, 100 mmi , r-f by-pass60-10105407*
R200	Potentiometer, 2 meg (tap at 1 meg). vol. cont. \qquad ..33-5535-3	$\begin{aligned} & \text { FS3 (R) } \\ & \text { R400 } \end{aligned}$	Switch, shorting, ls! i-f \qquad Part of FS Resistor, 47,000 ohms, voltage dropping66-3473340*
R201	Resistor, 4.7 ohms, divider, inverse feedback ${ }^{\text {a }}$ 66-9474360*	R401	Resistor, 1 meg, decoupling66-5103340*
R202	Resistor, 1 meg, 1st-cudio grid66-5103340*	R402	Resistor. 180 ohms, degeneration66-1183340*
R203	Potentiometer, 500,000 ohms, treble control33-5539-3	R403	Resistor, 100,000 ohms, voltage dropping66.4103340*
R204	Resistor, 220,000 ohms, plate loading66-4223340*	R404	Resistor, 3300 ohms, decoupling66-2333340*
R205	Resistor, 330,000 ohms, output-tube grid …........66-4333340*	R405	Resistor, 180 ohms, degeneration66-1183340*
R206	Resistor, 33,000 ohms, divider, bass	R406	Resistor, 3300 ohms, bias (bc, sw) \qquad $66-2333340^{*}$
	compensation ..	R407	Resistor, 1 meg, decoupling66-5103340*
R207	Potentiometer, 1 meg, bass control33-5539-4*	R408	Resistor, 100,000 ohms, bleeder (bc, sw),
er	e No. Description Service Part No.		7B7 screen ...66-4103340*
R208	Resistor, 100 ohms, diviḑer, inverse feedback66-1103340*	R409 R410	Resistor, 100,000 ohms, voltage dropping66-4103340*
T200	Transformer, output		ohms, decoupling66-2333340*
1200	ne		sistor, 180 ohms, degeneration66-1183340*
		R412	Resistor, 330,000 ohms, α-v-c filter66-4333340*
	1	R413	Resistor, 100 ohms, decoupling (FM)66-1103340*
C301	Condenser, 33 mmf , osc. grid (FM det.)66-00365307*	R414	Resistor, 82,000 ohms, voltage dropping66-3823340*
C302	Condenser, . 01 mi , fil. by-pass61-0120*	15	Resistor, 3300 ohms, decoupling66-2333340*
C303	Condenser, . 01 mf , r-f by-pass	R416	Resistor, 47,000 ohms, decoupling66-3473340*
C304	Condenser, . 03 mf , audio coupling	R417	
C305		R418	Resistor, 270,000 ohms, diode lead66-4273340*
C306	Condenser, elec., 15 mi , filter . Part of Cl03		
C307	Condenser, . 01 mf , r-f by-pass ...-	R4	-f choke66-4105340*
L300	Choke, r-f osc. cathode (FM det.)	Z400	Transformer, lst i-f ...32-4020-1
R301	Resistor, 15.000 ohms, osc. grid leak (FM det.) \qquad 66.3153340^{*}		C400A: Condenser, trimmer (455 kc) \qquad Part of 2400 C400B: Condenser, fixed, 3000 mmf \qquad Part of 2400
R302	Resistor, 47,000 ohms, audio load (FM det.)66-3473340*		C400C: Condenser, trimmer (9.1 mc)Part of $\mathbf{Z 4 0 0}$
R303	Resistor, 100,000 ohms, r.f choke66-4103340*		C400D: Condenser, trimmer (9.1 mc)Part of $\mathbf{2 4 0 0}$
R304	Resistor, 15,000 ohms, voltage dropping66-3153340*		C400E: Condenser, fixed, 9 mmI .-....................Part of $\mathbf{Z 4 0 0}$
f305	Resistor, 56.000 ohms, voltage dropping66-3563340*		
R306	Resistor, 22 ohms, parasitic suppressor60.0223340*	01	
Z300			C401A: Condenser, trimmer (455 kc)Part of $\mathbf{Z 4 0 1}$
	C300A: Condenser, fixed, 15 mf Part of Z300		C401B: Condenser, trimmer (9.1 mc)Part of $\mathbf{Z 4 0 1}$
	C300B: Condenser, trimmer (9.1 mc),		C401C: Condenser, trimmer (9.1 mc)Part of $\mathbf{Z 4 0 1}$
	FM det. ..art of Z300	2402	
	C300C: Condenser, 33 mmi r-f voltage divider \qquad Part of $\mathbf{Z 3 0 0}$		C402A: Condenser, trimmer (455 kc)Part of $\mathbf{Z 4 0 2}$ C402B: Condenser, fixed, $330 \mathrm{mmf} . ~ P a r t ~ o f ~ Z 402 ~$
	C300D: Condenser, 68 mmi , rf voltage		C402C: Condenser, trimmer (9.1 mc)Past of $\mathbf{Z 4 0 2}$
	divider ...Part of Z300		C402D: Condenser, trimmer (9.1 mc)Part of 2402
	R300A: Resistor, 6800 ohms, dampingPart of Z300		C402E: Condenser, fixed, 3 mmf Part of $\mathbf{Z 4 0 2}$
	TC300: Core, luning (9.1 mc), FM det.Part of Z300		TC402: Core, tuning (455 kc)art of $\mathrm{Z402}$
	SECTION 4	Z403	Transiormer, 4th i-i ...32-4003-2
C405	Condenser, . 01 mf , r-i by-pass61-0120*		C403A: Condenser, trimmer ($455 \mathrm{kc} \mathrm{)}$
C406	Condenser, . 01 mf , fil. by-pass61-0120*		C403B: Condenser, trimmer (9.1 mc) Part of $\mathbf{Z 4 0 3}$
C407	Condenser, 220 mmi , r-f by-pass60-10245307*		C403C: Condenser, trimmer (9.1 mc) Part of $\mathbf{Z 4 0 3}$
C408	Condenser, . 01 mf , r.f by-pass61.0120*		C403D: Condenser, fixed, 270 mmf Part of $\mathbf{Z 4 0 3}$
C409		2404	Condenser (.01 mf) and choke assembly.
C410	Condenser, . 01 mf , rfi by-pass61-0120*		i-f by-pass ..-3851-3
C411	Condenser, 01 mf , rif by-pass . 61.0120^{*}		
C412	Condenser, . 01 mf , fil. by-pass		
C413	Condenser, 01 mf , rif by-pass ... 61.0120^{*}	C501	Condenser, main tuning gang31-2694
C414	Condenser, 220 mmi , r-i by-pass . ${ }^{\text {a }}$ (10245307*		C501A: Condenser, FM aerial-coil trimmer..... Part of C501
C415			C501B: Condenser, FM r-f-coil trimmerPart of C501
C416	Condenser, .01 mf , B + by-pass61-0120*		C501C: Condenser, FM osc. coil trimmerPart of C501
C417	Condenser, . 05 mf , a-v-c filter $\quad 61.0122^{\circ}$	C502	Condenser, 3-section, trimmer assembly31-647.
C418	Condenser, . 01 mf , r-f by-pass $\quad 61-0120^{*}$.		C502A: Condenser, shunt trimmer,
C419	Condenser, . 01 mf . rif by-pass $\quad 61.0120^{\circ}$		be aerial ...-...Part of C502

replacement parts list - Continued

SECTION 5 (Continued)
Part No

66.222340°
66.5473340°
$66-5473340^{\circ}$
66.3223340°
66.3223340°
66.3223340°
66.1103340°
66.1183340°
66.3103340°
38.9942

\qquad

 54.4319
31.6449 .1

 둥융 $\stackrel{\infty}{\circ}$ $\stackrel{\circ}{\stackrel{0}{6}}$

Circuit Description

Philco Radio Model 48-485 is a six-tube superheterodyne, which provides reception in the standardbroadcast band. The circuit includes a 14AF7 converter, a 7B7 1st i-f amplifier, a 7B7 2nd i-f amplifier, a 7C6 detector, a.v.c., and 1st audio amplifier, and a 35L6GT output amplifier. The power supply employs a 50 X 6 rectifier in a voltage-doubling circuit.
A low-impedance loop aerial, located within the cabinet, normally provides adequate signal pickup. If greater signal pickup is required, the jumper should be disconnected from the terminal at the rear of the chassis and an external aerial connected to the terminal.
Two series-resonant circuits, consisting of condensers C302 and C303 together with the coils wound on these condensers, function as traps to prevent feedback of the intermediate frequency and the second harmonic of the intermediate frequency through the B- lead. One circuit is resonant at 455 kc ., and the other at 910 kc . Each circuit offers a very low impedance to the resonant frequency, and, therefore, shunts it to the chassis.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

Section 1-the power supply
Section 2-the audio circuits
Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits
Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.
In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.
Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Section 1-Power Supply

Make the tests for this section with a d-c voltmeter; connect the leads between B-, test point B, and the test points indicated in the chart.

The voltage readings given were taken with a 20,000 -ohms-per-volt merer, at a line voltage of 117 volts.
Set the volume control to minimum, and the tone control fully clockwise.
Follow the steps in the order given. If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

MODEL 48-485 SPECIFICATIONS

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before connecting the radio to a source of power.

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance between $B+$ (pin 7 of 50 X 6 recrifier) and $\mathrm{B}-$. When the ohmmeter leads are connected in the proper polarity, the highest reading will be obtained. If the reading is lower than 3000 ohms, check condensers C101, C102, C103A, and C207 for leakage or shorts.
NOTE: The resistance value above, which is much lower than normal, does not represent a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 (power supply) are performed.
TROUBLE SHOOTING

Figure 1. Bottom View, Showing Section 1 Test Points

			PHILC	CORP. MODET 48-185
STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDIC^TION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	107v		Trouble in this section. Isolate by the following tests.
2	D	$225 v$	No voltage Low voltage High voltage	Defective: 50X6, S100, W100, PL100. Shorted: C101 and C102. Defective: 50X6. Open: C101, C102. Leaky: C101, C102, C103A. Cl03B. Open: R100, R101.
3	C	190v	No voltage Low voltage High voltage	Shorted: Cl03A. Open: R100. Changed resistance: R100. Shorted: C207*. C103B. Liaky: C103A. Open: R101, T200*, R207*.
4	A	107 v	No voltage Low voltage High voltage	Shorled: Cl03B. Open: R101. Leaky: C103B. Open: R207*, T200*.
Listoning Test: Abnormal hum may be caused by open C100, C103A, C103B, or R102.				

*This part, located in another section, may cause abnormal indication in this section.

Section 2—Audio Circuits

TROUBLE SHOOTING
For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B-, test point B; connect the output lead through a $.1 \cdot \mathrm{mf}$. condenser to the test points indicated in the chart.
Set the volume control to maximum, and the tone control fully clockwise.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

Figure 2. Bottom View, Showing Section 2 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak sig. nal input.	Trouble in this section. Isolate by the following tests.
2	C	Clear signal with strong signal input.	Open: T200. R207. Shorted: C203. C206, C207, C205. Leaky: C203. Defective: 35L6GT, LS200.
3	D	Same as step 1.	Open: R202. R203. C203. Shorted: C202. C204. Defective: 7C6 (triode section).
4	A	Same as step 1.	Open: C200. C201. R200 (roiate through range). Shorted: C307*, C301D*.

Listening Test: Distortion may be caused by open R201 or R206, or by shorted or leaky C200 or C201.

Section 3-1-F, Detector, and A-V-C Circuits

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to $B-$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully clockwise. Rotate the tuning control until the tuning condenser is fully meshed.
If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in this section.

Since the circuit location of test point A for this section is in Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear signal with moderate signal input.	Defective: 7B7 (2nd i-f amplifier). 7C6 (diode section). Open: L301A. L301B, R306, R304, R303. R300. Shorted: C305, C301A, C301B, C306, C304, C301C, L301A, L301B. Leaky: C305.
3	D	Same as step 1.	Defective: 7B7 (1st i-f amplifier). Open: C305, R301, R302. Shorted: C300B, L300B.
4	A	Same as step 1.	Defective: 14AF7. Open: R402*. L401*. L300A, C300A, L300B. Shorted: C200A, L300A.

* This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F and Converter Circuits

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to $B-$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully clockwise. Set the radio tuning control and signalgenerator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in this section.

Figure 4. Bottom View, Showing Section 4 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIC. GEN. FREQ.	RADIO TUNINC	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	Tune to signal.	Loud, clear sig. nal with weak signal input.	Trouble in this section. Isolate by the following testa.
2	C Osc. test; see note below.)		Rotate through range.	Negative 3.5 to 5 volts.	Defective: 14AF7. Open C403, C407, C408, L401, R401. Shorted: C405, C400A. C400C, C408, C407. Leaky: C407, C408.
3	A	1000 kc .	Tune to signal.	Same as step 1.	Open: C401, C404, T400. Shorted: C400B, C400D, C406,
Listening Test: Distortion and hum may be caused by open C409 or R404.					

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to B -, test point B: connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 4 of the 14 AF), test point C. Proper operation of the oscillator is indicated by negative voltages of approximately the values given in the chart (measured with 20,000 -ohms-per-volt meter) throughout the tuning range.

> REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk (") are general replacement items. These numbers may not be identical with those on factory assemblies; also. the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

	SECTION 1 POWER SUPPLY		$\begin{aligned} & \mathrm{C} 200 \\ & \mathrm{C} 201 \end{aligned}$
Reference		Service	C202
Symbol-	Description	Part No.	C 203
C100	Condenser, line filter, 05 mf .	61-0122.	C204
Cl01	Condenser, filter, 15 ml ., 200v	30-2575-11	C205
C102	Condenser, filter, 15 mf ., 200v	. 30-2575-11	C206
C103	Condenser, electrolytic, 2 -section	. $30-2575-17$	C207
C103A	Condenser, filter, 75 mf ., 250v ...	Part of Cl 103	LS200
C103B	Condenser, filter, 10 mf ., 250v	Part of C103	R200
1100	Pilct lamp34-2477*	R201
R100	Resistor, filter, 500 ohms	-...33-3435-3	R202
R101	Resistor, filter, 8200 ohms	...66-2824340	R203
R102	Resistor, leakage, 150.000 ohms	.66-4153340*	R204
S100	Switch, on-off	-	R205
W100	Power cord	.41-3755-13	
PL100	A-c plug	Part of W100	R206
			R207 T200
			T200

AUDIO CIRCUITS

Condenser, d-c blocking, . 006 mf30-4504*
Condenser, d-c blocking, .01 mf61-0120*
Condenser, plate decoupling. . 25 mf61-0125*
Condenser, d-c blocking, . 01 mf61-0120*
Condenser, tone control, . 004 mi30-4623*
Condenser, tone compensation, 004 mf30-4623*
Condenser, r-f by-pass, 220 mmf .
Condenser, tone compensation, 006 mf30-4504*
Speaker, 8" p-m ...36-1626-1
Vclume control, 2 megohms (center-tapped)..33-5535-15
Resistor, grid return, 10 megohms66.6103340*
Resistor, plate load, 100,000 ohms666-6103340*
Resistor, plate dropping, 220,000 ohms66-4223340*
Tone control, 5 megohms
..33-5539-33
Resistor, tone compensation, 33,000
ohms
66-3333340*
Resistor, grid return, 470,000 ohms66-4473340*
Resistor, cathode bias, 130 ohms66-1123340*
Transformer, output

©John F. Rider

ALIGNMENT PROCEDURE

DIAL-Calibration and pointer-index measurements are shown in figure 6 . With tuning gang fully meshed, set pointer to index mark.

OUTPUT METER-Connect to voice-coil terminals.
SIGNAL GENERATOR-Connect as indicated in chart. Use modulated output.

RADIO CONTROLS-Set volume control to maximum, and tone control fully counterclockwise.

OUTPUT LEVEL-During alignment, adjust signal generator output to maintain output-meter indication below 1.25 vo'ts.

RADIATING-LOOP NOTE: Make up a 6-8 turn, 6 -inch-diameter loop, using insulated wire; connect to signal-generator leads and place near radio loop aerial. Make certain that radio loop aerial is connected to radio.

Figure 6. Calibration Measurements for Dial Backplate

Figure 7. Top View, Showing Trimmer Locations

[^4]
TROUBLE SHOOTING

For the tests in this section, use a d-c voltmeter. Connect the negative lead to the B bus, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

With the radio-phono switch set to the radio position, turn the volume control to minimum.

Follow the steps in sequence; if the "NORMAL INDICATION" is obtained in step 1,

Figure 1. Bottom View, Showing Section I Test Points proceed with the tests for Section 2; if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	90v		Trouble within this section. Isolate by the following tests.
2	C	215v	No voltage Low voltage High voltage	Defective: 50X6, S100, W100. Shorted: C101, C102, C100. Defective: 50X6. Open: C101, C102. Leaky: C101, C102, C103A. Open: R100, R204,* T200.*
3	D	185v	No voltage Low voltage High voltage	Open: R100. Shorted: C103A. Shorted: C103B, Leaky: C103A. Open: R101, R204,* T200.*
4	A	90v	No voltage Low voltage	Open: R101. Shorted: C103B. Leaky: C103B.

Listening Test: Abnormal hum or garbled speech may be caused by open C100, C101, C102, C103A, C103B, or R102.

* This part, located in another section, may cause abnormal indication in this section.

Section 2
 TROUBLE SHOOTING

For the tests in this section, use an audiofrequency signal generator. Connect the generator ground lead to the B- bus, test point B; connect the generator output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

In steps 1 and 4, set the volume control to maximum in the radio position when testing at test point A , and to maximum in the phono position when testing at test point E. Adjust the signal-generator output as required for each step.

If the "NORMAL INDICATION" is

Figure 2. Bottom View, Showing Section 2 Test Points obtained for both test points A and E in step 1, proceed with the tests for Section 3. If the "NORMAL INDICATION" is obtained at one test point and not at the other, the volume control is defective. If the "NORMAL INDICATION" is not obtained at either test point, isolate and correct the trouble within this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	$\begin{aligned} & \mathbf{A} \\ & \mathbf{E} \end{aligned}$	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	Loud, clear signal with strong signal input.	Defective: 50A5, LS200. Shorted: C203, C204, T200. Open: R204, T200.
3	D	Loud, clear signal with weak signal input.	Defective: 7C6. Open: C202, R202, R203. Shorted: C202. Leaky: C202.
4	A E	Loud, clear signal with weak signal input.	Defective: R200. Open: C200. Shorted: C305.* Leaky: C305.*
Listenting Test: Distortion on strong signals may be caused by open-circuited R201 or by short-circuited or leaky C200. Hum modulation on phonograph operation may be caused by open-circuited C201.			

Section 3

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the Bbus, test point B; connect the generator output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Turn the volume control to maximum in the radio position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4; if not, isolate and correct the trouble in this section.
NOTE: Since the circuit location of test point A for this section is the same as that of test point C for Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	Loud, clear signal with strong signal input.	Defective: 7B7, 7C6, Z301. Open: C302, R300, R301, R302. Shorted: C302, C304, C305.
3	A	Loud, clear signal with weak signal input.	Defective: 7A8,* Z300. Misaligned: Z3300.

*This part, located in another section, may cause abnormal indication in this section.

Section 4 TROUBLE SHOOTING

For the tests in this section (with the exception of the oscillator test), use an r-f signal generator with modulated output. Connect the generator ground lead to the B - bus, test point B; connect the generator output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Turn the volume control to maximum in the radio position.

Except as noted for the oscillator test, set the radio and signal-generator dials to 1000 kc .

Figure 4. Bottom View, Showing Section 4 Test Points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	Loud, clear signal with moderate sig. nal input.	Defective: 7A8, osc. circuit. Misaligned: osc. circuit. Open: C403, R401.
3	D (Osc. test; see note below.)	Negative 4-8 volts.	Defective: 7A8, T400. Shorted: C400, C400B. Open: R402.
4	A	Loud, clear signal with weak signal input.	Defective: LA400. Shorted: C400, C400A. Open: C401, C402.

OSCILLATOR-TEST NOTE: Connect positive lead of high-resistance d.c voltmeter to B-bus, test point B; connect prod end of negative lead through $100,000 \cdot \mathrm{hm}$ isolating resistor to oscillator grid, test point D. Use suitable meter range, such as 0 - 10 volts. Proper operation of oscillator is indicated by negative voltage of 4 to 8 volts (measured with 20,000 -ohms-per-volt meter) through. out range of tuning control.

© John F. Rider

ALIGNMENT PROCEDURE

TURN VOLUME CONTROL TO MAXIMUM IN THE RADIO POSITION

NOTE: Make alignment with loop connected to radio. OUTPUT METER-Connect to terminals indicated in
figure 7 . figure 7

DIAL-Calibration and pointer-index measurements are shown in figure 8 . With tuning gang fully meshed, set pointer to index mark.

SIGNAL GENERATOR-Connect ground lead to Bbus; connect output lead as indicated in chart. Use modulated output.

OUTPUT LEVEL-During alignment, adjust signalgenerator output to maintain output-meter indication below 1.25 volts.

STEP	Signal generator			RADIO	ADJUST
	CONNECTIONS TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	DIAL SETTING	SPECiAL instructions	
1	Through . 1-mf. condenser to ext. aerial lead.	455 kc .	Gang fully meshed.	Adjust trimmers for maximum output in order given.	TC301B — Comen m mos
2	Through 100 -mmf. condenser to ext. aerial lead.	1600 kc .	1600 kc .	Adjust trimmer for maximum output.	
3	Same as step 1.	1500 kc .	1500 kc .	Adjust trimmer for maximum output.	
4	Repeat steps 2 and 3.				AERIAL - SIDE OF CHASSI

Figure 7. Top View, Showing Trimmer Locations

Figure 6. Drive-Cord Installation Details

MODEL 48-1201

Figure 8. Calibration Measurements for Dial Backplate

REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk (${ }^{\circ}$) are general replacement items. These numbers may not be identical with those on and parts list. The values substituted in any of some replacement items may differ from the values indicated in the schematic diagram When ordering replacements, use only the "Service Part so ch

Section 1			Section 1 (Continued)		
$\begin{gathered} \text { Reference } \\ \text { Symbol } \end{gathered}$	Description	$\begin{aligned} & \text { Service } \\ & \text { Part No. } \end{aligned}$	$\begin{aligned} & \text { Reference } \\ & \text { Symbol } \end{aligned}$	Description	Service Part No.
C100	Condenser, line filter, . 05 mf .	61-0122*	C102	Condenser, electrolytic, filter,	
C101	Condenser, electrolytic, filter,	5-	C103	15 mf , ${ }^{\text {a }}$,	45-3018-18**

©John F. Rider

MODEL 48-1256

SPECIFICATIONS

CABINETWood, walnut or mahogany finish	
CIRCUIT	Six-tube superheterodyne
FREQUENCY RANG	$540-1620 \mathrm{kc}$.
OPERATING VOLTA	105-120 volts, 60 cycles,
POWER CONSUMPT	60 watts
AERIAL	il-in loop; terminal provided external aerial
INTERMEDIATE FRE	ENCY . 455 kc .
PHILCO TUBES (6)	$\begin{aligned} & \text { 7C7, 7A8, 14A7, 7C6, } \\ & \text { 35L6GT, } 50 \times 6 \end{aligned}$
RECORD CHANGER	Philco Automatic Record Changer, Model D. 10 (For service information, see manual PR-1156.)

Circuit Description

Philco Model $48-1256$ is a table-model radio-phono graph combination consisting of a six-tube, a-c, superheterodyne radio and a Philco Model D-10 Automatic Record Changer. The tuning range is $540-1620 \mathrm{kc}$. The built-in, high-impedance loop is usually adequate, although an external aerial may be used where additional signal pickup is required. The tube complement is as follows: 7C7, r-f amplifier; 7A8, converter; 14A7, i-f amplifier; 7C6, detector-a.v.c.-1st audio; 35L6GT, output amplifier; 50X6, rectifier.

A series-resonant, i-f by-pass, C304 (with choke), is connected between the chassis and $\mathrm{B}-$; this combination functions as an r-f by-pass at broadcast frequencies. If short-wave interference originating near $14-$ 28 mc . is encountered, install a $.01-\mathrm{mf}$. by-pass condenser between the chassis and B - (the choke wound on C304 has appreciable impedance at these frequencies).

The d-c operating voltages are obtained from a voltage-doubler circuit using a 50 X 6 rectifier; a resist-ance-capacitance network is used for filtering. The radio operates on a.c. only.

The radio-phono switch, which is mechanically connected to the volume-control shaft, is operated by turning the control to either side of center-clockwise for radio and counterclockwise for phonograph.

Preliminary Checks

The following preliminary checks should be made before turning on the radio:

1. Carefully inspect both top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$ (pin 7 of the $50 X 6$ rectifier) and B-, test point B; use the ohmmeter polarity that gives the highest resistance reading. If the reading is lower than 3000 ohms, check condensers C101, C102, C103A, and C103B for leakage or shorts.

The resistance value above, which is much lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests for Section 1 are performed.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure. Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Section 1

TROUBLE SHOOTING

For the tests in this section, use a d-c voltmeter. Connect the negative lead to $B-$, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn the power on; set the volume control to minimum for radio, and the tone control counterclockwise.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2; if not, isolate and correct the trouble in this sec-

Figure 1. Bottom View, Showing Section 1 Test Points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	140v	Trouble within this section. Isolate by the following tests.
2	C	215v	Defective: 50X6. Open: W $100, \mathrm{~S} 100, \mathrm{C} 101, \mathrm{C} 102$. Shorted or leaky: C101, C102, C103A, C103B, C204*, C205*.
3	D	200v	Change in value: R100. Leaky: C103A.
4	A	140v	Change in value: R101. Leaky: C103B.

$$
\text { Listening Test: } \begin{aligned}
& \text { Abnormal hum may be due to loss of capa citance in } \mathrm{C} 101, \mathrm{C} 102, \mathrm{C} 103 \mathrm{~A}, \text { or } \mathrm{C} 103 \mathrm{~B} \text {; test by substituting } \\
& \text { good condensers. }
\end{aligned}
$$

* This part, located in another section, may cause abnormal indication in this section.

Section 2 TROUBLESHOOTING

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to $B-$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Turn the volume control to maximum for radio, and the tone control counterclockwise. Adjust the signalgenerator output as required for each step.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 3; if not, isolate and correct the trouble in this section.

Figure 2. Bottom View, Showing Section 2 Test Points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with moderate signal input.	Trouble within this section. Isolate by the following tests.
2	C	Moderate, clear signal with strong signal input.	Defective: 35 L 6 GT . Open: LS200 voice coil, T200 pri. or sec., R204. Shorted: C202, C203, C204, C205, LS200 voice coil, T200 pri. or sec.
3	D	Loud, clear signal with moder. ate signal input.	Defective: 7C6. Open: C202, C203, R202.
4	A	Loud, clear signal with moderate signal input.	Open: C200, R200. Shorted: C303*.
5	E	Volume control at maximum for phono. Loud, clear signal with moderate signal input.	Open: R200. Shorted: crystal pickup, shielded pickup cable.

[^5]Section 3
For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Turn the volume control to maximum for radio, and the tone control counterclockwise.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4; if not, isolate and correct the trouble in this section.

TROUBLE SHOOTING

Since the circuit location of test point A for this section is the same as that of test point C for Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with moderate signal input.	Trouble within this section. Isolate by the following tests.
2	C	Loud, clear signal with strong signal input.	Defective: 14A7, 7C6 (diode section). Misaligned: Z301 Open: Z301 pri. or sec., C301A, C301B, C303, R300, R301. Shorted: Z301 pri. or sec., C301A, C301B, C301C, C301D, C300B, C302.
3	A	Loud, clear signal with moderate signal input.	Defective: 7A8*. Misaligned: Z300. Open: Z300 pri. or sec. C $300 \mathrm{~A}, \mathrm{C} 300 \mathrm{~B}, \mathrm{C} 302, \mathrm{R} 300, \mathrm{~S} 300, \mathrm{R} 403^{*}$. Shorted: Z300 pri. or sec., C300A, C300B. C302, T400* sec.

[^6]*This part, located in another section, may cause abnormal indication in this section.

Section 4
 TROUBLE SHOOTING

For the tests in this section (with the exception of the oscillator test), use an r-f signal generator with modulated output. Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a $11-\mathrm{mf}$. condenser to the test points indicated in the chart.

Turn the volume control to maximum for radio. and the tone control counterclockwise.

Set the tuning control and signalgenerator frequency as indicated in the chart.

If the "NORMAL INDICATION"

Figure 4. Bottom View, Showing Section 4 Test Points (Locations of C400, C401, C403, and C407 are shown in figure 7.) is not obtained in step 1 , isolate the trouble by following the remaining steps.

STEP	TEST POINT	DIAL SETTINGS		NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
		SIG. GEN.	RADIO		
1	A	1000 kc .	1000 kc .	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	1000 kc .	1000 kc .	Clear signal with moderate signal input.	Oscillator trouble (see oscillator test be-low-) Defective: 7A8. Misaligned: T401. Open: T401 pri. or sec., C406, R404. Shorted: C402B, C402D, C407.
3	F	1000 kc .	1000 kc .	Loud, clear signal with weak signal input.	Defective: 7C7. Open: Tío pri. or sec., C.405, C404.
4	A	1000 kc .	1000 kc .	Somewhat louder signal than in step 3.	Misaligned: C402C. Open: LA400, Ci(0), C403. Shorted: LA400, C401.

Listening Test: Distortion may be due to open R400.

negative lead throngh $100,000-$ ohm iodating resistor to oscillator grid (pin 4 of 7 AB), teat point E. t/se witable meter range, surh as $0-10$ wolts. Proper opration of oncillator is indicated ly wegative voltage throughout range of luning. condenser.

Figure 5. Phiko Radio-Phonograph, Modet 48-1256, Sectionalized Schematic, Showing Test Points

ALIGNMENT PROCEDURE

TURN THE VOLUME CONTROL. FOR RADIO TO MAXIMUM.

DIAL-Calibration and pointer-index measurements OUTPUT METER-Connect to the right-hand (out-
are shown in figure 6 . With the tuning condensers are shown in figure 6. With the tuning condense put) lug and center (ch

SIGNAL GENERATOR-Connect the ground lead to B-; connect the output lead as indicated in the chart. Use modulated output.

OUTPUT LEVEL-During alignment, adjust the sig. nal-generator output to maintain an output-meter indication below 1.25 volts.

INDEX MARK DIAL BACKPLATE
Figure 6. Calibration Measurements for Dial Backplate

Figure 8. Drive-Cord Installation Details
©John F. Rider

REPLACEMENT PARTS LIST
 NOTE

Abstract

Part numbers marked with an asterisk (*) are general replacement items. These numbers may not be identical with those on factory assemblies; also. the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION 1

SECTION 4

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Reference Symbol	Description	Service Part No.	
C100	Condenser, power-line by-pass, . 05 mf . 61-0122	C400	Condenser, aerial isolating, .0015	f. 45-3500-6*	
C101	Condenser, electrolytic, filter, 15 mf . 30-2575-11	C401	Condenser, fixed circuit capacitance,		
C102	Condenser, electrolytic, filter, 15 mff. 30-2575-11		10 mmf	60-00105407*	
C103	Condenser, electrolytic, 2-section 30-2575-12	C402	Condenser, tuning gang	31-2527-2	
C103A	Condenser, filter, 40 mf Part of C103	C402A	Condenser, aerial tuning	Part of C402	
C103B	Condenser, filter, 10 mf . $\ldots .$. Part of C103	C402B	Condenser, oscillator tuning	Part of C402	
I100	Lamp, panel, 110 volts, 6 watts ... 34-2477	C402C	Condenser, aerial trimmer	Part of C402	
R100	Resistor, filter, 500 ohms 33-3435-3	C402D	Condenser, oscillator trimmer	Part of C402	
R101	Resistor, filter, 8200 ohms 66-2824340*	C403	Condenser, d-c blocking, 100 mm	60-10105407*	
R102	Resistor, a-c leakage, 120,000 ohms 66-4123340*	C404	Condenser, cathode r-f by-pass, .l	mf. 61-0113*	
S100	Switch, a-c power Part of R200	C405	Condenser, a-v-c filter, . 05 mf .	-61-0122*	
S102	$S_{\text {witch, }}$ phono-motor power Part of 42-1736	$\begin{aligned} & \mathrm{C} 406 \\ & \mathrm{C} 407 \end{aligned}$	Condenser, d-c blocking, 47 mmf Condenser (ceramic), fixed circuit capacitance, 10 mmf .	$\begin{gathered} 60-10255237^{*} \\ 62-010009001^{*} \end{gathered}$	
		LA400	Loop-aerial assembly 76-3020	
	SECTION 2	R400	Resistor, grid return, 1 megohm	.66-5103340*	
		R401	Resistor, 6800 ohms	Part of T400	
Reference Symbol	Description Part No.	R402 R403	Resistor, 15,000 uhms Resistor cathode bias 180 ohms	$\begin{aligned} & \text { Part of T400 } \\ & 66-1183340^{*} \end{aligned}$	
C200	Condenser, d-c blocking. $01 \mathrm{mf}$. 61-0120*	R404	Resistor, cathode bias, 180 ohms 66-1183340* Resistor, oscillator grid leak,		
C201	Condenser, a-c isolation, $2 \mathrm{mf}$. 45-3500-3*		120,000 ohms 66-4123340*	
C202	Condenser, d-c blocking, . 003 mm . 61-0109*	T400	Transformer, r-f band-pass, including		
C203	Condenser, r-f by-pass, 240 mmf . 60-10245307*		R401 and R402	32-3595	
C204	Condenser, tone compensating, 01 mf . 61-0120*	T401	Transformer, oscillator		
C205	Condenser, tone control, . 03 mf . 45-3500-1*				
LS200	Speaker36-1613				
R200	Control, volume, .5 megohm each side of center tap	MISCELLANEOUS Service			
R201	Resistor, grid return, 10 megohms 66-6103340*		Description	Part No.	
R202	Resistor, plate load, 220,000 ohms . 66-4223340*	Backplate assembly, dial 76-3178			
R203	Resistor, grid return, 470,000 ohms 66-4473340*				
R204	Resistor, cathode bias, negative feedback, 180 ohms66-1183340*				
S200	Switch, tone control42-1770	Baffle-and-cloth assembly 40-6798			
T200	Transformer, audio output32-8242	Band, rubber, scale mountingGrommet, for corner plate			
		Hinge, butt			
		Hinge, lid support . 45-6305			
	SECTION 3	Knob . 54-4488			
Reference	Service	Plate, corner, record-changer mounting56-3103 Scale dial			
Symbol	Description Part No.				
C300A	Condenser, trimmer Part of Z300	Screw, chassis mountingIW13210FA3			
C300B	Condenser, trimmer Part of Z300	Strap, dial mounting \quad 56-2234			
C301A	Condenser, trimmer Part of Z301	Washer, cupped, for 1W15471FA9 screw 1W42303FA9		1W42303FA9	
C301B	Condenser, trimmer Part of Z301				
C301C	Condenser, r-f by-pass Part of Z301	Cam assembly, phono-radio switch ${ }_{\text {\% }}$ 76-1638			
C301D	Condenser, r-f by-pass Part of Z301	Clamp, electrolytic-condenser mounting . . 56-1466			
C302	Condenser, r-f by-pass, . 05 mf . 61-0122*	Clip, coil mounting (oscillator, r.f.) 28-5002FA1			
C303	Condenser, r-f by-pass, 100 mmf . 60-10105407*	Cord, tuning-condenser drive (25-ft. spool) 45-8750*			
C304	Condenser-and-choke assembly. resonant at 455 kc .	Cord, pointer drive (25-ft. spool) Diffusing panel 45-8755* 54-4257			
R300	Resistor, screen dropping, 33,000	Grommet, tuning-condenser mounting$27-4610$			
	ohms66-3333340*	Lever assembly, phono-radio switch 76-1642			
R301	Resistor, r-f filter Part of Z301	Plate, backing, tuning condenser 56-2105			
R302	Resistor, a-v-c decoupling, 2.2 66-6103340*				
	$\underset{\text { megohms (combined with S102), radio }}{\text { S6-6103340 }}$	Shaft, tuning-condenser drive76-1717			
	disabling Part of 42-1736	Socket, Loktal . 27-6138*			
Z300	Transformer, 1st i-f. $455 \mathrm{kc} .$, including	Socket, octal 27-6174			
	C300A and C300B 32-3962	Spring, tuning-condenser drive \quad 56-2617			
Z301	Transformer, 2nd i-f, 455 kc. , including	Spring, retaining, switch-lever assembly 28-8658			
	C301A, C301B, C301C. C301D,	Spring, pointer drive . 28-8953			
	and R30132-4005	Stud, swit	h lever	56-2945	
Change of parts list: Z300 Transformer, first IF \quad 32-4160					

MODEL 48-1262, Code 121,

Clicle

Philco Model $48-1262$ is a console combination of a Philco Model D-10 Automatic Record Changer and a sixtube superheterodyne radio which provides reception within the Standard Broadcast Band.

PHILCO CORP.

The loop aerial normally provides adequate signal pickup. If greater pickup is required, an external aerial may be connected.

The loop works into a 14 AF 7 converter, and variablecondenser tuning is used. The two i-f stages employ 7B7 high-transconductance tubes. To obtain good stability, resistance coupling is employed berween the first and second i-f tubes. The diodes of the 7C6 provide detection and a-v-c voltage. The triode section of this tube functions as the first audio amplifier, and is resistance-coupled to the 35L6GT output tube. The loud-speaker is a permanentmagnet dynamic type. The power supply employs a 50 X 6 full-wave voltage-doubling rectifier and a resistor-condenser filter network.

The 120,000 -ohm resistor, R102, is connected between B- and the chassis to prevent hum under conditions of high humidity.

The two series-resonant circuits, C304 and C305, function as by-passes of exceptionally low impedance; one is resonant at the i.f., 455 kc ., while the other is resonant at the second harmonic of the i.f., 910 kc .

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before it is rurned on:

1. Carefully inspect both top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$ (pin 7 of the 50 X 6 rectifier) and the $\mathrm{B}-$ bus, test point B . When the ohmmeter leads are connected in the proper polarity, the highest resistance reading will be obtained. This reading should be not lower than 3000 ohms. If it is lower, check condensers C101, C102, C103A, and C204 for leakage or shorts.

The above resistance value is not intended as a quality check for these condensers. It is the lowest value at which the rectifier will operate safely while the voltage tests of Section 1 are being performed.

For service information concerning Model 48-1283
Model $48-1283$ is similar to Model 48-1262, Code 121, with the exceptions given in this supplement. The radio-phonograph is contained in a cabinet which has two record shelves. The aerial loop is mounted on rails at the back of the cabinet. Automatic Record Changer Model M-8 is used, and the isolating condenser and the load resistor for the crystal pickup are mounted on a terminal strip located on the speaker baffle.

S C H E M A T I C

Section 1

The $.05-\mathrm{mf}$. condenser between the phono chassis and the phono-cable shield is removed, and is connected between the phono chassis and the radio chassis. This condenser is located on a terminal strip attached to the cabinet.
A $1 \cdot$ megohm resistor is connected across the crystal pickup.
A $.01 . \mathrm{mf}$. condenser is connected between the low side of the crystal pickup and the phono-cable shield.
R102 is 150.000 ohms.

Section 1

R102 is 150,000 ohms, Service Part No. $66-4153340^{*}$.

Section 2

C200 is removed.
C205 is $\mathbf{0 3} \mathrm{mf}$., Service Part No. 45-3500-1*. LS200 is Service Part No. 36-1626-1.

DIAGRAM

Section 2

C200 is removed and the cable shield is connected directly to B - .
C205 is .03 mf .

Section 3

R302 is 150,000 ohms.

Section 4

R400 is 150,000 ohms.
LA400 is 3.5 ohms.
PARTS LIST
Section 3
C304 is .15 mf ., Service Part No. 38-9851-5.
C305 is . 05 mf ., Service Part No. 38-9851-4.
R302 is 150,000 ohms, Service Part No. 66-4153340*.

Section 4

C400 is Service Part No. 31-2715-1.
LA400 is Service Part No. 32-4273.
R400 is 150,000 ohms, Service Part No. 66-4153340*.

Section 1

TROUBLE SHOOTING

For the tests in this section, use a d-c voltmeter. Connect the negative lead to the B - bus, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.

With the radio-phono switch set to the radio position, turn the volume control to minimum and turn the tone control fully clockwise.

Follow the steps in sequence; if the
 "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 ; if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POIT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	possible cause of abnormal indication
1	A	167 v .		Trouble within this section. Isolate by the following tests.
2	(.	214 v.	No voltage. Low voltage. High voltage.	Defective: 50X6, S100, W100. Shorted: C101, C102. Defective: 50X6. Open: C101, C102. Leaky: C101, C102, C103A, Cl03B. Open: R100, T200,* R204.*
3	D	181 v.	No voltage. Low voltage. High voltage.	Shorted: C103A. Open: C103A. Leaky: C103A, C204.* Open: R101, R204,* T200.*
4	A	167 v .	No voltage. Low voltage. High voltage.	Shorted: C103B. Leaky: C103B. Open: R204,* T200.*

Listening Test: Abnormal hum may be caused by open C103A, C103B, or R102.

* This part, located in another section, may cause abnormal indication in this section.

Section 2

TROUBLE SHOOTING

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to the B - bus, test point B ; connect the generator output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully clockwise. Adjust the signal-generator output as required for each step.

If the "NORMAL INDICATION"

- Figure 2. Bottom View, Showing Section 2 Test Points TP-3395B is obtained in step 1 , proceed to the tests in Section 3; if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL indication	Possible Cause of abnormal indication
1	A	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	Loud, clear signal with strong signal input.	Defective: 35L6GT, LS200, T200. Shorted: C202, C203, C204, C205. Leaky: C202, C203, C204, C205. Open: R203, R204.
3	D	Loud, clear signal with weak signal input.	Defective: ${ }^{\text {C66. Open: C202, R202, R201. Leaky: C202. }}$
4	A	Loud, clear signal with weak signal input. (Rotate R200 through its range.)	Defective: WS1, R200. Open: C201. Shorted: C301D.*
Listening Test: Distortion on strong signals may be caused by short-circuited or leaky C201, or open-circuited R201.			
* This part, located in another section. may rause abnormal indication in this section.			

Section 3

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the B-bus, test point B; connect the generator output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio-phono switch to radio, curn the volume control to maximum, and set the tone control fully clockwise.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4; if not, isolate and correct the trouble in this section.

NOTE: Since the circuit location of test point A for this section is the same as that of test point C for Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in

Figure 3. Bottom View, Showing Section 3 Test Points
Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL Indication	POSSIBLE CAUSE OF ABNORMAL Indication
1	A	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	Loud, clear signal with strong signal input.	Defective: WS1, 7B7 (2nd i.f.), 7C6, Z301. Open: C302, C306, R300, R302. Shorted: C302, C306. Leaky: C302, C306.
3	D	Loud, clear signal with moderate signal input.	Defective: 7B7 (1st i.f.) Open: C303, C304, C305, C308, R301, R302. Shorted: C303. Leaky: C303.
4	A	Loud, clear signal with weak signal input.	Defective: 14AF7,* Z300. Misaligned: Z300. Open: R402,* R401.*

* This part, located in another section, may cause abnormal indication in this section.

Section 4

TROUBLE SHOOTING
For the tests in this section (with the exception of the oscillator test), use an r-f signal generator with modulated output. Connect the generator ground lead to the B-bus, test point B; connect the generator output lead through a $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio-phono switch to radio, curn the volume control to maximum, and set the tone control fully clockwise.

Except as noted for the oscillator test, set the radio and signal-generator dials to 540 kc

Figure 4. Bottom View, Showing Section 4 Test Points TP-3395D

STEP	TEST POINT	NORMAL INDICATION	Possible Cause of abnormal indication
1	A	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	Loud, clear signal with weak signal input.	Defective: 14AF7, osc. circuit. Open: C407, R402. Shorted: C407. Leaky: C407.
3	D $\left.\begin{array}{c}\text { (Osc. test; } \\ \text { see Note } \\ \text { below.) }\end{array}\right]$	Negative 3.3 to 4.2 volts.	Defective: L400. Open: C403, C405, C406, R401, R403. Shorted: C400, C400A, C401, C403, C405, C406.
4	A	Loud, clear signal with weak signal input.	Defective: LAA 400. Shorted: C400, C400A, C402, C404. Open: C402, C404. Leaky: C402, C404.

OSCILLATOR-TEST NOTE: Connect positive lead of high-resistance d-c voltmeter to B-- bus, test point B; connect prod end of negative lead through 100,000 -ohin isolating resistor to oscillator grid, test point D. Use suitable meter range, such as $0-10$ volts. Proper operation of oscillator is indicated by negative voltage of 3.3 to 4.2 volts (measured with 20,000 -ohms-per-volt meter) throughout range of tuning control.

ALIGNMENT PROCEDURE

SET RADIO-PHONO SWITCH TO RADIO POSITION AND TURN VOLUME CONTROL TO MAXIMUM NOTE: Make alignment with loop aerial connected to radio.

DIAL-Calibration and pointer-index measurements are shown in figure 6. With tuning gang fully meshed, set pointer to index mark

OUTPUT METER-Connect to terminals indicated in
figure 7.

SIGNAL GENERATOR (modulated) -Connect as indi cated in chart.

OUTPUT LEVEL-During alignment, adjust signal generator output to maintain output-meter indication

RADIATING-LOOP NOTE: Make up a $6-8$-turn, 6 -inch-diameter loop, using insulated wire; connect to signal-generator lead and place near radio loop aerial.

Figure 8. Drive-Cord Installation Details

PHILCO PAGE 18-137

$\overline{\text { PHILCO CORP. }}$

REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk (*) are general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION 1

Reference Symbol	Description Service Part No.
C100	Condenser, line filter, 05 mf 61-0122*
C101	Condenser, electrolytic, filter, 15 mf 30-2575-11
C102	Condenser, electrolytic, filter, $15 \mathrm{mf.}$. . 30-2575-11
C103	Condenser, electrolytic, 2 -section filter . 30-2575-17
C103A:	Condenser, electrolytic, filter, 75 mf .. Part of C103
C103B:	Condenser, electrolytic, filter, 10 mf .. Part of C103
I100	Panel lamp . 34-2477*
R100	Resistor, filter, 500 ohms. 33-3435-3
R101	Resistor, filter, 82,000 ohms.... 66-2824340
R102	Resistor, leakage, 120,000 ohms......66-4123340
S100	Switch, on-off, power. 42-1816-1
W100	Line cord 41-3755-13

SECTION 2

C200	Condenser, audio by-pass, 2 mf45-3500-3*
C201	Condenser, blocking, 01 mf61-0120*
C202	Condenser, blocking, . $01 \mathrm{mf.}$. 61-0120*
C203	Condenser, by-pass, 220 mmf 60-10205307*
C204	Condenser, tone compensator, . 01 mf61-6120*
C205	Condenser, tone compensator, .05 mf.....61-0122*
LS200	Loud-speaker 36 3-1626
R200	Volume control, . 5 megohm.33-5539-22
R201	Resistor, grid return, 10 megohms....66-6103340*
R202	Resistor, plate load, 220,000 ohms. . . 66-4223340*
R203	Resistor, grid return, 470,000 ohms . . 66-4473340*
R204	Resistor, cathode bias, 130 ohms. . . . 66-1133260
S201	Tone-control switch Part of S100
T200	Output transformer 32-8242-3
WS1	Wafer switch, radio-phono.42-1824-1

SECTION 3

C300A	Condenser, trimmer Part of Z300
C300B	Condenser, trimmer Part of Z300
C301A	Condenser, trimmer Part of $\mathbf{Z 3 0 1}$
C301B	Condenser, trimmer Part of Z301
C301C	Condenser, by-pass Part of Z301
C301D	Condenser, by'pass Part of Z301
C302	Condenser, by-pass, . 05 mif 61-0122*
C303	Condenser, coupling, 220 mmf60-10205307*
C304	Condenser-and-choke assembly, .05 mf..38-9851-4
C305	Condenser-and-choke assembly, . $15 \mathrm{mf} . .38$-9851-5
C306	Condenser, by pass, . 003 mf 61-0109*
C307	Condenser, by'pass, 100 mmf 60-10105407*
C308	Condenser, a-v.c by-pass, $05 \mathrm{mf.}$. 61-0122*
R300	Resistor, screen dropping, 33,000 ohms . 66-3333340*
R301	Resistor, plate load, 18,000 ohms. . . . 66-3183340*
R302	Resistor, grid load, 470,000 ohms 66-4473340*
R303	Resistor, plate dropping, 82,000 ohms. 66 -2823340*

SECTION 3-Continued

Reference Symbol R304 R305 Z300

Z301 Transformer, 2nd i. f., 455 kc ., includes
 Description
 Service Part No.
 Resistor, diode load, 47,000 ohms. . Part of Z301
 Resistor, a-v.c filter, 2.2 megohms....66-5223340*
 Transformer, 1 st i. f., 455 kc ., includes C300A and C300B
 .32-4151-1 C301A, C301B, C301C, and C301D. 32-3948-9

SECTION 4

C400 Condenser, tuning gang 33-5539-22

C400A: Condenser, trimmer Part of C400
C400B: Condenser, trimmer Part of C400
C401 Condenser, compensating, 33 mmf .. 60-00305307* C402 Condenser, series blocking, 4.7 mmf . . . 30-1221-5
C403 Condenser, isloating, $1 \mathrm{mf} . .$. 61-0113*
C404 Condenser, coupling, 470 mmf 60-10515307*
C405 Condenser, osc. plate, $220 \mathrm{mmf} . .$. . . 60-10205307*
C406 Condenser, osc. grid, 100 mmf. 60-10105407*
C407 Condenser, by-pass, . 05 mf 61-0122*
LA400 Loop aerial . 76-3310
R400 Resistor, ext. aerial loading, 120,000
ohms 66-4123340
R401 Resistor, oscillator grid, 47,000 ohms. . 66-3473340*
R402 Resistor, cathode bias, 2200 ohms. . . 66-2223340*
R403 Resistor, plate dropping, 18,000 ohms. 66-3183340*
R404 Resistor, grid return, 2.2 megohms . . .66-5223340*
L400 Coil, oscillator . 32-4019-6

MISCELLANEOUS

Description	Service Part No.
Cabinet less scale, Mahogany	10706A
Cabinet less scale, Light Walnut	107068
Back, cabinet	54.7540 .1
Baffle and cloth assembly	219109
Baffle and cloth	40-6991-1
Bezel	56-5367
Bin mechanism (lin)	76-3223
Bin mechanisin (rh.)	76.3223 .1
Dome	45.6190
locor pull	56-4420-2
Dion door	45-6447
Feet, wood	45-6423
Frame assembly (changer intg.)	76-3222-1
Hinge	56-4066
Instrument panel	45-6422
Spring. bin mechanism	56-4978
Cable. picikup	41-3837.3
Condenser, crystal isolating, 01 mt	61-0120*
Dial Scale	27-5999
Backplate	76-3713
Drive cord (25 ft spool)	45-8750*
Pointer	56-3583-3
Strap	56-4756
Spring drive cord	28-8953
Knob	54-4486-2
Lamp bracket	56-2332
Pilot-light assembly	27-6233
Resiator. crystal load I megohm	66.5103340*
Socket, octal	27-6174
Socket. Loktal	27-6138*

To reduce phonograph rumble, a 1 megohm resistor, part number $66-5103340$, has been added across the crystal pickup.

MODEL 48-1263

Circuit Description

Philco Model 48-1263 is a console model radio-phonograph combination consisting of an eight-tube superheterodyne radio and a Philco Model D-10 Automatic Record Changer. The radio provides reception within the standard broadcast band, 540 to 1720 kc ., and within the short-wave band, 9.3 to 15.5 mc .

The built-in loop aerial is usually adequate for normal reception, but provision is made for connecting an external aerial if additional pickup is required.

A 7AF7 dual-triode converter is used to provide high signal-to-noise ratio. Oscillator-to-mixer coupling is made by a condenser conrrected between the cathodes of the mixer and oscillator. On the short-wave band, reverse feedback from the oscillator to the mixer is applied through a $10-\mathrm{mmf}$. condenser to minimize the reaction on the oscillator frequency caused by adjustment of the aerial trimmer.

Two i-f amplifier stages, operating at 455 kc . and using type 7A7 pentodes, provide high gain and good selectivity. The diode section of the 7C6 dual-diode triode operates as the detector and a-v-c rectifier, while the triode section operates as the first audio amplifier. The type 6J5GT triode functions as a phase inverter and drives the two 6K6GT beam-power output tubes in push-pull operation.

The audio section employs inverse feedback to provide bass compensation and to reduce distortion. The feedback takes place from the secondary of the output transformer to the input of the first audio stage. The tone control is continuously variable, and, when rotated clockwise, provides: first, an increase in bass response, and then, as ro ation is continued, attenuation of the higher audio frequencies. The 12 -inch electrodynamic loud-speaker is capable of excellent bass reproduction.

SPECIFICATIONS

CABINET	d walnut tin
CIRCUIT	Eight-tube superheterodyne
FREQUENCY RANGES	Broadcast: 540 to 1720 kc . Short Wave: 9.3 to 15.5 mc .
AUDIO OUTPUT	6 watts
OPERATING VOLTAGE	117 volts, 60-cycle, a.c.
POWER CONSUMPTION	Radio, 110 watts
	Phonograph, 20 watts
AERIAL	Builtin low-impedance loop
INTERMEDIATE FREQUENCY	455 kc .
PHILCO TUBES (8)	7AF7, 7A7 (2), 7C6, 6J5GT, 6K6GT (2), 5Y3GT
PHONOGRAPH	Philco Automatic Record Changer Model D.10. (For service information, refer to PR-1156.)

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube-electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before it is turned on: 1. Carefully inspect both top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$ (pin 8 of the 5Y3GT rectifier) and the radio chassis, test point C . When the ohmmeter leads are connected in the proper polarity, the highest resistance reading will be obtained. This reading should be not lower than 3400 ohms. If it is lower, check condensers C101 and C102A for leakage or shorts.

The above resistance value is not intended as a quality check of these condensers. It is the lowest value at which the rectifier will operate safely while the voltage tests of Section 1 are being performed.

Section 1
 TROUBLE SHOOTING

For the tests in this section, use a d-c voltmeter. Connect the negative lead to the radio chassis, test point C; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.
Set the wafer switch to BC, turn the volume control to minimum, and turn the tone control fully counterclockwise.

Follow the steps in sequence; if the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2; if not, isolate and correct the trouble in this section.

Figure 1. Bottom View, Showing Section 1 Test Poin's

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	235v		Trouble within this section. Isolate by the following tests.
2	D	340 v	No voltage Low voltage High voltage	Defective: 5Y3GT, S100. T100. Shorted: C102. Defective: 5Y3GT, T100. Open: C102. Leaky: C102. Shorted: C103A, C103B. Open: L100, R100, T200*.
3	B	235v	No voltage Low voltage	Open: R100. Shorted: C102A. Leaky: C103A. Shorted: C304*, C308*, C407*.
4	A	235v	No voltage Low voltage High voltage	Open: L100, R101. Shorted: C305*. Shorted: C309*, C410*. Defective: T200*. Defective: T200*.

*This part, located in another section, may cause abnormal indication in this section.

Section 2 TROUBLE SHOOTING

For the tests in this section, use an audiofrequency signal generator. Connect the generator ground lead to the radio chassis, test point C; connect the generator output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, turn the tone control fully counterclockwise, and set the wafer switch to BC. Adjust the signalgenerator output as required for each step.

If the "NORMAL INDICATION" is obtained in step 1, proceed to the tests in Section 3 ; if not, isolate and correct the trouble in this section.

Figure 2. Bottom View, Showing Section 2 Test Points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2.	8	(Remove 6J5GT.) Loud, clear signal with strong signal input.	Defective: 6K6GT, T200, LS200. Open: C208, R213. Shorted: C208. Leaky: C208.
3	D	Same as step 2.	Delective: 6K6GT, T200, LS200. Open: C207, R212. Shorted: C207. Leaky: C207.
4	E	(Replace 6J5GT.) Loud, clear sig. nal with moderate signal input.	Delective: 6J5GT. Open: R209, R210. R211. Shorted: C206. Leaky: C206.
5	F	Loud, clear signal with weak signal input.	Open: C206, R207. (Rotate volume control through its range.) Shorted: C205, C204. Leaky: C204. Defective: 7CE.
6	A	Same as stes 5.	Defective: WS1(F), R200. Open: C200, C202. R204, R206.
7	G	Same as step 5. (Sel wafer switch to phono.)	Defective: WSI(F). PL200. Open: R201.
Listening Test: Distortion may be caused by leaky C202, C206, C207, C208, C209. or C200, or by shorted C209 or open. circuited R214. Hum will result if C209 is open-circuited.			

Section 3

TROUBLE

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the radio chassis, test point C; connect the generator output lead through a l-mf. condenser to the test points indicated in the chart.

Set the wafer switch to $B C$, turn the volume control to maximum and turn the tone control fully counterclockwise.

If the "NORMAL INDICATION" is obtained in step, 1 , proceed with the tests for Section 4; if not, isolate and correct the trouble in this section.
NOTE: Since the circuit location for test point A of this section is the same as that for test point B

SHOOTING

 of Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."| STEP | TEST POINT | NORMAL INDICATION | POSSIBLE CAUSE OF ABNORMAL INDICATION |
| :---: | :---: | :---: | :---: |
| 1 | A | Loud. clear signal with weak signal input. | Trouble within this section. Isolate by the following tests. |
| 2 | B | Loud. clear signal with mod. erate signal input. | Defective: 7C6, 2302, 7A7, WS1 (R). Misaligned: Z302. Open: C306. С308. C309. R305, R306, R307, R309. Shorted: C306, C308, C309, C310. Leaky: C306, С308. С309. |
| 3 | D | Loud. clear signal with weak signal input. | Defective: 7A7, Z301. Misaligned: 2301. Open: C303, C304, C305. C307. R301, R302, R303. R304. Shorted: C303, C304, C305, C307. |
| 4 | ת | Loud, clear signal with weak signal input. | Defective: 7AF7*, WS3 (F)*, 2300. Misaligned: 2300. Open: C410*. L402 ${ }^{\circ}$. R402*. |

- This part. located in another section, may cause abnormal Indication in this section.

Section 4
 TROUBLE SHOOTING

For the tests in this section (with the exception of the oscillator tests), use an r-f signal generator with modulated output. Connect the generator ground lead to the radio chassis, test point C; connect the generator output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Turn the volume control to maximum and the tone control fully counterclock wise. Set the wafer switch, signal generator dial, and radio dial as indicated in the chart.

Figure 4. Bottom View, Showing Section 4 Test Points

STEP	TEST POINT	WAFER SWITCH	DIAL	Itings	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMALINDICATION
			SIG. GEN.	RADIO		
14	A	BC	1000 kc .	1000 kc . (tune to signal)	Loud, clear signal with weak signal input.	Trouble within BC circuits. Isolate by performing steps 2, 3, and 4.
1 B	A	SW	15 mc .	15 mc . (tune to sig. nal)	Loud. clear signal with weak signal input.	Trouble within SW circuits. Isolate by performing steps 5 and 6.
2	B	BC	1000 kc .	1000 kc . (tune to sig. nal)	Loud, clear signal with moderate signal input.	Defective: 7AF7, Osc. circuit. Open: C409. R400.
3	D Osc. Iest: see Note below.)	BC	Not used	Rotate through range	Negative vollage 5 to 7 volts.	Detective: 7AF7. WS3, WS4. Open: R403. R401. L402. C407. C408. Shorted: C400. C402B, C407. C408. Leaky: C407. C408
4	A	BC	1000 kc.	1000 kc . (tune to signal)	Loud, clear signal with weak siqnal input.	Defective: WS2, WS4, L400. Open: C404. Shorted: C400, C401A, C404. Leaky: C404.
5	D (Osc. lest: see Note below.)	SW	Not used	Rotate through range	Negative voltage 2 to 3 volts.	Defective: 7AF7. WS3. WS4. L403. Shorted: C402C, C405. Open: C405.
6	A	sw	15 mc .	15 mc . (tune to signal)	Loud, clear signal with weak signal inpul.	Defective: 7AF7, Whorted: C401B, W403. Lecky: C404.

OSCILLATOR-TEST NOTE: Connect positive lead of high-resistance d-c voltmeter to radio chassis, test point C; connect prod end of negative meter lead through 100,000 -ohm isolating resistor to oscillator grid, test point D. Use suitable meter range, such as 0 to 10 volts. Proper operation of oscillator is indicated by negative voltage within limits shown in "NORMAL INDICATION" column throughout range of tuning control. Indicated values were measured with 20,000 -ohms-per-volt meter.

Figure 5. Philco Radio-Phonograph Model 48-1263, Sectionalized Schematic Diagram, Showing Test Points

ALIGNMENT PROCEDURE

CAUTION: Do nol turn on the radio with the loud-speaker disconnected
NOTE: Make alignment with loop cerial connected to the radio.

OUTPUT Level: During alignment, adjust signal generator output to maintain output-meter indication below 1.5 volts. Set volume control fully clockwis and tone control fully counterclockwise.

DIAL: Calibration and pointer-index measurements OUTPUT
figure 7. et pointer to index mark.
tuning gang fully meshed,

STEP	Signal generator		R A D io			
	$\underset{\substack{\text { CONNECTIONS TO } \\ \text { RADIO }}}{\text { Co }}$	$\frac{\text { DIAL }}{\text { SETTING }}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\underset{\text { WS }}{\text { PSITION }}$	special instructions	ADJUST
1	Through .l-mf. condenser to Terminal 1 of TB400.	455 kc .	540 ke .	BC	Adinst for maximum, ONCE only, in order.	$\begin{aligned} & \mathrm{C} 302 \mathrm{~A} \\ & \mathrm{C} 301 \mathrm{~A} \\ & \mathrm{C} 300 \mathrm{~B} \\ & \mathrm{TC} 300 \end{aligned}$
2	Radiating loop Isee Note below).	580 kc .	580 kc .	BC	Adjust for maximum.	C402A
3	Same as step 2.	1760 kr .	1700 kc .	BC	Adjust for maximum.	C402B
4	Same as step 2.	1500 kc .	1500 kr .	BC	Adjust for maximum.	C401A
5	Same as step 2.	580 kc .	$\begin{gathered} 580 \mathrm{kr} . \\ 1 \text { (\%pirox. } 1 \\ \hline \end{gathered}$	BC.	Rock tuning control while adjusting for maximum.	C402A
ค	Repeat steps 3, 4, 5, and 3, in order, until no improvememt resu't.					
;	Same as step 2.	15 mc .	15 mc .	ST	Adjust for maximum on FilRST pak from loose position. Image should be heard at 14.1 me .	$\mathrm{C402C}$
8	Same as step 2.	15 mc .	15 mc .	SW	Adjust for maximum.	C4018

and place near radio loop aerial.

Figure 7. Top View, Showing Trimmer Locations

Figure 8. Drive-Cord Installation Details

REPLACEMENT PARTS LIST SECTION 1		marked with an asterisk (*) are general replacement items. These be identical with those on factory assemblies; also, the electrical acement items may differ from the values indicated in the schematic list. The values substituted in any case are so chosen that the dio will be either unchanged or improved. When ordering replace"Servica Part No.".
		SECTION 3 (Continued)
Reference	Symbol Description Service Part No.	Reference Symbal Description Service Part No.
C100	Condenser, line filter, . 01 mf $61-0120^{*}$	K306 Resistor, screen dropping, 47,000 ohms . $66-3473340^{*}$
C101	Condenser, line filter, . 01 mf61-0120**	R307 Resistor, plate dropping, 33,000 ohins . . .66-2333340*
Cl 102	Condenser, electrolytic, filter, 20 mf30-2555	R308 Resistor, r-f filter, 47,000 ohms 60-3473340
C103	Condenser, two-section, clectrolytic $30-2556$	R309 Resistor, diode load, 330,000 ohns66-4333340**
Cl03A	Condenser, filter, 10 mf Part of C103	R310 Resistor, a-v-c filter, 1.0 megohm 66.5103340^{*}
C103B	Condenser, filter, 25 mfPart of C103	WS1 (R) Wafer switchPart of WS
1100	Panel lamp . 34 -2040	Z300 Transforıner, list i.f., 455 k
1101	Panel lamp . 3442040	includes C300A and C300B 32-3956-3
J100	Record-changer power socket 27.6200	Z301 Transformer, 2nd i.f., 455 kc .,
L100	Speaker, field Part of LS200	includes C301A $32.395-3$
R100	Resistor, screen dropping, 15.000 ohms ..66-3155340	Z302 Transformer, 3rd i.f., 455 kc ,
R101	Resistor, grid bias, 165 ohms 33-3435.1	includes C302A, C302B, and C302C . . $32.395 \overline{3} \cdot 3$
S100	Power switch \& Part of R203	
T100	Power transformer $32-8248$	SECTION 4
W100	Line cord and plug L3339	C400 Condenser, tuning gang 31-2719
ITS.	Wafer switch Part of WS	C401 Condenser, antenna trimmer, two-section .31-6476-4
	SECTION 2	C401A Condenser, trimmer Part of C401
C.200	Condenser, d-e blocking, .006 mf45-3500-7 ${ }^{\text {- }}$	C401B Condenser, trimmerPart of C401 C402 Condenser, osc. trimmer and padder,
C201	Condenser, r-f by-pass, 100 mmif60-10105407*	three-section . 31.6464
C 202	Condenser, d-c blocking, . 006 mif45-3500-7*	C402A Condenser, padder Part of C402
C203	Condenser, tone compensation, . 01 mf61-0120*	C402B Condenser, trimner Part of C402
C204	Condenser, r-f by-pass, 100 mmf60-1010540;*	C402C Condenser, trimmer Part of C402
C205	Condenser, tone compensation, . 01 mff61-0120*	C403 Condenser, fixed, 255 mmf 30 -1220-24*
(206	Condenser, d-c lolocking, . 006 mf 45-3500-\%	C404 Condenser, d-c blocking, 220 mmf 60-1020530\%**
C20:	Condenser, d-4 blocking, . 006 mf 45-3500-7*	C405 Condenser, fixed, 225 mmf 30 -1220-24
C.208	Condenser, d-6 hlocking, . 006 mf 45-3500- ${ }^{\text {\% }}$	C406 Condenser, feedback, 10 nmmf60-00105407*
(209	Condenser, audio liy-pass, . 1 mfol-0113*	C40: Condenser, d.c blocking, 220 tnmf60-1020530\%*
(210	Condenser, lone compensation, .003 mff61-0109*	C408 Condenser, oscillator feedhack, $100 \mathrm{mmf} \mathrm{.30-1225-2*}$
5200	Test socket . 27 亿.6180	C 409 Condenser, oscillator coupling, .006 mf . $45-3500 \cdot 7^{\text {* }}$
LS200	Loud-speakrr . 36-1595	C410 Condenser, r-f by-pase, 01 nof61-0120*
R200	Volume control, 2 megohms:33-553う-1	L.400 Coil, BC aerial . 32 -4033-1
R201	Resistor, reystal load, 470,000 ohms . . . 66-4473340*	L401 Coil, SW aerial . 32.4050-6
R202	Resistor, tone compensation, 33,000 ohms , 66-3333340*	L402 Coil, BC osc. 32-4019-2
R203	Tone control, 6 megohms33-5538-1	L403 Coil, SW ose. $32-4113$
R204	Resistor, feedback voltage divider, 4.7 ohms. 473340	LA400 Loop aerial . 76-1989-2
R205	Resistor, feedback voltage divider,	R400 Resistor, grid return, 1 megohm66-5103340*
	68 ohms . 66-0683340	R401 Resistor, grid leak, 47,000 ohms 66-3473340**
R206	Resistor, grid return, 10 megohms66-6103340*	R402 Resistor, cathode bias, 2200 obms 66 -2223340*
R207	Resistor, plate load, 220,000 ohms 66.4223340^{*}	R403 Resistor, plate dropping, 33,000 ohms . .66-3333340*
R208	Resistor, grid return, 1 megohm66-5103340**	TB400 Terminal panel, aerial $27-6213$
R209	Resistor, cathode bias, 4700 ohms666-2473340*	TB401 Socket, 5-prong, external aerial 27-6214-1
R210	Resistor, cathode load, 47,000 ahms . . . $66-3473340^{*}$	WS Switch, wafer, five-section42-1813
R211	Resistor, plate load, 56,000 ohins 06.3563340^{*}	
R212	Resistor, grid return, 330,000 ohms66-4333340**	MISCELLANEOUS
R213	Resistor, arid return, 330.000 ohm-66.4333340**	Description Service Part No.
R214	Resistor, hias filter, 150.000 ohms66-4153340*	Cabinet (less scale) . 10682
WSl (F)	Wafer switch . Part of WS	Baffle and cloth . 40.6933
T200	Output transformer . 32-8271	Bezel . 56-4878
	SECTION 3	Bin mechanism (R.H.) . 76-3223-3
C300A	Condenser, fixed, 3000 mmf Part of 7300	
C300B	Condenser, trimmer Part of Z300	Door pull . 56 6-4867
C301A	Condenser, trimmer Part of Z301	Frame assembly . 76-2199
C302A Cor	Condenser, trimmer Part of 7302	Hinge . 45.6200
C302B	Condenser, r-f by-pass, 100 mmf Part of 7302	Scale strap . 56-4916
C302C C	Condenser, r.f by-pass, 100 mmif Part of Z302	Scale and backplate . 76-3187
C303 C	Condenser, r-f by-pass, 01 mf 61.0120 *	Speaker grille . 56.4920
C304 C	Condenser, r-f by-pass, 01 mf61-0120*	Wood baffle . 219085
C305	Condenser, r-f by-pass, . 01 mf61-0120*	Dial backplate assembly . 7 76-2005-3
C306 Cor	Condenser, r-f by-pass, 01 mf 61.0120 ${ }^{*}$	Drive cord (25.ft. spool)45-8750*
C307	Condenser, a-v-c filter, 05 mf61.0122 ${ }^{\text {\% }}$	Pointer . 56-3179
C308 C	Condenser, r-f by-pass, 01 inf 61-0120**	Spring pointer . 28 -8953
C309 C	Condenser, r-f by-pass, .01 mf61-0120**	Knob . 54-4376
C310 Com	Condenser, r-f by-pass, 100 mmf60-10105407*	Link assembly (wafer switch) 76-2186-3
R300 R	Resistor, plate dropping, 10.000 ohms . 66.4103340^{*}	Phono cable41-3735-2
R301 R	Resistor, a-v.c decoupling, 2.2 megohms . $66-5223340$ *	Pilot light assembly . 76.2109
R302 R	Resistor, cathode bias, 150 ohms 66-1153340*	Shaft (wafer switch) . 56-3298FAll
R303 R	Resistor, screen voltage divider, 100,000 ohms	Shield, cable ($\overbrace{}^{\prime \prime}$) . 47.3754 .5
R304 l	Resistor, acreen voltage divider,	Shield, cable (6") . 4 . 41.3701
	150,000 ohms 66-4153340**	Socket, Loktal . 27-6138**
R305 l	Resistor, cathode bias, 180 ohms 66-1183340*	Socket, octal . 27.6174

PHILCO RADIO-PHONOGRAPH MODEL 48-1270

Circuit Description

Philco Radio-Phonograph, Model 48-1270, contains a 13 -tube superheterodyne, providing reception on the standard-broadcast band, 540 to 1720 kc ., the short wave range between 9.3 and 15.5 mc ., and the FM band 88 to 108 mc .

A low-impedance loop within the cabinet provides adequate signal pickup for the standard-broadcast and short-wave bands. In most locations, the built-in FM dipole aerial provides satisfactory FM reception. In areas where FM signals are weak, an outdoor dipole aerial (Philco Part No. 45-1462) will provide additional pickup.

The r-f stage (FM only), converter stage, and first i-f stage are mounted on a separate chassis to insure reliable performance at high frequencies. A 7W7 highfrequency pentode is used in the r-f stage, and a 7 F 8 high-frequency double triode is employed as a converter. These stages provide high signal-to-noise ratio, high conversion efficiency, and good image rejection. The FM tuning gang is constructed with copper plates to obtain the high Q required for proper selectivity.

Three transformer-coupled i-f stages are used. The first, third, and fourth i-f transformers have two sets of windings; one set is tuned to 455 kc . for AM operation, and the other to 9.1 mc . for $\mathbf{F M}$ operation. The second i-f transformer, having a single primary winding tuned to 9.1 mc ., one secondary winding tuned to 9.1 mc ., and another secondary winding tuned to 455 kc ., provides untuned-primary, tuned-secondary coupling on AM, to prevent instability. All transformers provide tuned-primary, tuned-secondary coupling on FM, to supply the additional gain needed at 9.1 mc . Switching of the windings, to attenuate undesired beat frequencies, is necessary only in the first i-f transformer; the large difference between the two intermediate frequencies makes further switching unnecessary. One 7B7 and two 7H7 high-transconductance pentodes are used in the i-f stages.

The new Philco advanced FM detector circuit, employing the FM1000 tube of special design, is used for FM reception. This circuit has excellent tuning characteristics, and inherently rejects AM and noise. Very briefly, the circuit functions as follows: The first and second grids (pins 2 and 5) of the FM1000 are used as grid and anode, respectively, of a modified Colpitts

SPECIFICATIONS

CIRCUIT	
FREOUENCY RANGES	
Broadcast 540-1720 kc.	
Short wave $9.3-15.5 \mathrm{mc}$.	
FM . ${ }^{\text {a }}$ - 108 mc .	
AUDIO OUTPUT 10 watts	
PUSH BUTTONS	Ten: One for OFF, five for broad-cast-station selection, three for band selection and one for phonograph operation
OPERATING VOLTAGE	105-120 volts, 60 cylas, a.c.

POWER CONSUMPTION Radio: 110 watts Phonograph: 140 watts
AERIALS Built-in loop and dipole; external aerial also may be used
INTERMEDIATE	
FREQUENCY	
AM 455 kc	
FM 9.1 mc .	
PHILCO TUBES (13) ...	7W7, 7F8, 7H7(2), 7B7, FM1000, 7AF7, 6SQ7GT, 6V6GT(2). 7F7, 7E7. 5U4G
RECORD PLAYER Philco Automatic Record Chang. or, Model M-4

oscillator, which nominally operates at the intermediate frequency of 9.1 mc . The output of the i-f amplifier stages is fed into the injection grid (pin 6). The reactive coupling between the plate and oscillator circuits causes the oscillator to lock in and follow the frequency variations of the i-f signal. As the oscillator frequency increases, the plate current through R324 decreases, and as the oscillator frequency decreases, the plate current increases. This variation is linear with respect to frequency deviation; the plate current, therefore, produces the same wave shape as the modulation of the FM carrier. This audio signal is fed to the audio amplifier through the decoupling network, C331 and R322.

The high-mu-triode section of a 6SQ7GT is used in the first audio stage, and is biased from the bleeder in the negative return of the power supply. The first audio stage is resistance-coupled to one triode section of a 7 AF 7 twin-triode. This section functions as a cathode-and-plate-loaded phase inverter, and is resistance-coupled to the audio output stage, which employs two 6V6GT beam pentodes in push-pull combination. The output tubes are transformer-coupled to a twelve-inch electrodynamic speaker, and are biased from the bleeder circuit connected across the speaker field in the negative return of the power supply. Inverse feedback is obtained by connecting the secondary of the output transformer, through the resistor network, R203 and R204, to the volume control. The second triode section of the 7AF7 tube is used as the phonograph preamplifier stage, and is self-biased by cathode resistor R 213.

The new Philco scratch-eliminator circuit reduces the high-frequency surface noise during the low-volume passages on a phonograph record, and permits maximum treble response during the high-volume passages. The circuit consists of a reactance tube (pentode section of the 7E7), a two-stage amplifier (7 F 7), and a halfwave rectifier (diode section of the 7 E 7). The reactance tube (connected to the plate circuit of the phono amplifier) functions as a variable capacitance which shunts a controlled amount of the surface-noise frequencies to ground. A portion of the audio signal is amplified, rectified, and applied as a bias voltage to the grid of the reactance tube. During the low-volume passages, when the surface noise tends to mask the high frequencies, the low bias voltage increases the capacitance of the reactance tube, and the surface noise is reduced. During the high-volume passages, when the surface noise itself is masked by the volume, the high bias voltage decreases the capacitance of the tube, thus permitting all audio frequencies to pass relatively unaffected.

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring the tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$ (pin 2 of the 5 U 4 G) and the radio chassis (test point C). When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1000 ohms, check condensers C101A, C101B, C101C, C102, and C103 for leakage or shorts.

This resistance value, which is much lower than normal, is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 are performed.

Symbolization

The components in the radio circuit are symbolized according to the types of parts and the sections of the radio in which the parts are located. The prefix letter of the symbol designates the type of part, as follows:

C-condenser	LS-loud-speaker	W-line cord
I-pilot lamp	PB-push button	TB-_terminal board
J-socket	R-resistor	WS-wafer switch
L-choke or coil	S-switch	Z-elecrical assembly
LA-loop aerial	T-transformer	

LA-loop aerial
 T-transformer

The number of the symbol, except when the number is less than 100 , designates the section in which the part is located, as follows:
100 -series components are in Section 1-the power supply. 200 -series components are in Section 2 -the audio and scratcheliminator circuits.
300 -series components are in Section 3-the i-f amplifier, detector, \& a-v-c circuits.
400 -series components are in Section 4 -the aerial, r-f, and oscillator circuits.
A suffix letter identifies the part as a non-replaceable component of the assembly which bears an identical number without a suffix letter, and with perhaps a different prefix letter.

Section 1 TROUBLE SHOOTING

CAUTION: Do not turn on the power with the speaker disconnected, or the radio may be damaged.

For the tests in this section, use a d-c voltmeter. Connect the negative lead to the chassis (test point C); connect the positive lead to the test points indicated in the chart. The voltage readings given were taken
with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.

Depress the BC push button, set the volume control to minimum, and turn both tone controls counterclockwise.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2; if not, isolate and correct the troubie in this section.

Section 2

AUDIO-CIRCUIT TESTS

For the tests in the audio circuit, use an audio signal generator. Connect the ground lead of the generator to the chassis (test point C); connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated.

Set the radio volume control to maximum, turn both tone controls counterclockwise, and depress the phono push button.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the scratch-elimina-tor-circuit tests. If not, isolate and correct the trouble in the audio circuit.

TROUBLE SHOOTING

Figure 3. Bottom View, Showing Section 2 Test Points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud. clear signal with weak signal input.	Trouble in audio circuit. Isolate by the following tests.
2	$\begin{aligned} & \mathbf{B} \\ & \mathbf{D} \end{aligned}$	Loud, clear signal with strong signal input.	Defective: 6V6GT, T200, LS200, R238, R239. Shorted or leaky: C221. Open: C104.
3	E	Loud, clear signal with moderate signal input.	Defective: 7AF7, R211, R212, R235. Open: C206, C219. Shorted or leaky: C206. C219.
4	\mathbf{F}	Loud, clear signal with weak signal input.	Defective: 6SQ7GT. Open: R208 (rotate through entire range), R209. R210. Shorted or leaky: C203, C204, C205.
5	G	Same as step 4.	Defective: R200, R203, R205, R206, R207. Shorted or leaky: C202.
6	A	Same as step 4.	Detective: 7AF7, R236, R237. PB9. Shorted or leaky: C220. Open: C208, R216, R217.

SCRATCH-ELIMINATOR-CIRCUIT TESTS

For the tests in the scratch-eliminator circuit, set the volume control to maximum, turn the bass tone control counterclockwise, and depress the phono push button. Set the scratch-eliminator switch, which is operated by the treble-tone-control knob, as directed in the chart.

Connect the output lead of an audio signal generator through a $.1-\mathrm{mf}$. condenser to the test points indicated
in the chart. Set the generator for an output frequency of 5000 cycles.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3; if not, isolate and correct the trouble in the scratch-eliminator circuit.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	(With scratch eliminator turned off, adjust generator for 2 volts across voice coil)	. 8 volt across voice coil, with scratch eliminator turned on.	Trouble in scratch-eliminator circuit. Isolate by the following tests.
2	H (Adjust generator output to ap. proximately .3 volt)	Approximately -6 volts* from J io C. with scratch eliminator turned on.	Defective: 7F7, 7E7 (diode section). Open: R231, R233, R234, C217. Shorted or leaky: C213. C217. C218.
3	A (Reduce generator output to maintain -6 volts* from J to C)	Considerable reduction in generator output required to maintain voltage from I to C at $\mathbf{- 6}$ volts.*	Defective: 7F7. Open: R228, C215, R221: R220, R219. C203. Shorted or leaky: C209. C214. C215.
4	A (Generator output reduced as in step 3)	-1.4 volts* trom K to C.	Open: R222, R225, R226. Shorted or leaky: C210, C212. C213.
5	(Generator adjusted as in step 1)	.8 volt across voice coil, with scratch eliminator turned on.	Defective: 7E7 (pentode section). Open: R218, R223, R224, C210. C211. Shorted or leaky: C211.

[^7]
Section 3

TROUBLE SHOOTING

AM CIRCUITS

For the following tests use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the radio chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Depress the BC push button, set the volume control to maximum, and turn both tone controls counterclockwise.

If the "NORMAL INDICATION" is obtained in the first step, proceed with the tests for the FM circuits. If not, isolate and correct the trouble in this section.

Since the circuit location of test point A for this section is the same as that of test point D for Section 4 , the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed under "POSSIBLE CAUSE OF ABNORMAL INDICATION".

Figure 4. Bottom View, Showing Section 3 Test Points

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in AM circuits. Isolate by the following tests.
2	B	Loud, clear signal with strong signal input.	Defective: 7H7, 6SQ7GT (diode section), PB1, PB9. Open: R311. R313, R315, R316, R318, C321. Shorted: C320. C322. C324. C325, C326. Defective or misaligned: 2303.
3	D	Loud, clear signal with moderate signal input.	Defective: 7B7, PB1. Open: R305, R306, R307, R308, R309. Shorted: C312. C313, C314, C315. C403 ${ }^{\circ}$. Defective or misaligned: Z302.
4	E	Loud, clear signal with weak signal input.	Defective: 7H7. Open: R301, R302, R303, R325. Shorted: C306, C307, C308. C309, C310. Defective or misaligned: Z301.
5	A	Loud, clear signal with much weaker signal input.	Defective: 7F8*, WS3(R). Open: R300, R410. Shorted: C305. Defective or misaligned: $\mathbf{Z 3 0 0}$.

- This part, located in another section, may cause abnormal indication in this section.

Section 3 (Cont.) TROUBLE SHOOTINC

FM CIRCUITS (FM DETECTOR)

The tests in this circuit are made with an audio signal generator, an AM r-f signal generator, and a 20,000-ohms-per-volt meter. Connect a $.1-\mathrm{mf}$. condenser in series with the output lead of each generator.

In step 1 , unmodulated r-f signals together with d-c voltage readings are used to check the response of the detector circuit to FM, by observing the voltage drops across the audio-load resistor R324 for different input frequencies within the i-f range of the detector. In step 3, the oscillator section of the detector is made inoperative, thereby converting the circuit to an AM detector and making it possible to check certain components with an AM signal. The tests in this section will not indicate the condition of alignment of the detector unless the circuit is extremely misaligned.

NOTE: In steps 1 and 3, the output of the AM signal generator must be at least .5 volt. If the output
is insufficient, the generator lead may be connected to test point B or D in this section, depending upon the maximum output of the generator used. When using these test points, it is assumed that the last two i-f stages are trouble-free. These two i-f stages may be at fault, however, if abnormal indications are obtained in BOTH steps. If doubtful, refer to steps 2 and 3 in the chart for "FM CIRCUITS (I-F Amplifier)" and check the components listed under "POSSIBLE CAUSE OF ABNORMAL INDICATION".

Set the radio volume control to maximum. Turn both tone controls counterclockwise, and depress the FM push button.

If the "NORMAL INDICATION" is obtained in the first step, proceed with the tests for "FM CIRCUITS (I-F Amplifier)." If not, isolate and remedy the trouble in the FM detector.

STEP	PROCEDURE	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	Connect d-c voltmeter across resistor R324 (positive lead to junction of R324 and R323; negative lead to junction of R324 and C331), with meter on 50 -volt range. Connect r-f-generator output to test ooint F. Turn of modulation and adjust generator output to approximately .5 volt. Swing generator frequency from approximately 80 kc . above to 80 kc . below 9.1 mc .	Approximately 15 to 30 volts across R324 for 9.1 -mc. signal or no signal; a swing of ap. proximately \pm 12 to 20 volts for a deviation of $\pm 80 \mathrm{kc}$.	Trouble in FM detector. Isolate by the following tests.
2	Connect audio siznal generator to test point F: adjust for high generator output.	Loud, clear signal.	Delective: Z304, FM1000, PBl. Shorted: C332, C333. Open: C316B, C331, R322, R323, R324. L300.
3	Short test point G (pin 2 of FM1000) to chassis. Connect r-f generator output to test point F. Use modulated signal. Set generator for maximum output at 9.1 mc .	Loud, clear signal	Defective: FM1000. Shorted: C3168, C332. Open: R323. R324, L300.
4	Remove short from test point G. Connect negative lead (prod end) of d-c voltmeter through 50,030 ohm resistor to test point G : connect positive lead to test point C. Set meter to 10 -volt range.	Approximately 2.5 volts negative.	Defective: FM1000, 2304, L300. C330. Shorted: C329. Open: R320, R321.

FM CIRCUITS (I-F AMPLIFIER)

Follow the preliminary instructions for the AM circuits with these exceptions: Depress the FM push button, set the signal-generator frequency to 9.1 mc ., and short test point G (pin 2 of $\mathrm{FMiO0}$) to the chassis (test point C), to permit the use of an AM signal.

The parts which were found to be satisfactory for AM, with the exception of those indicated in the chart. will usually operate satisfactorily for FM.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4. If not. isolate and correct the trouble in the FM i-f amplifier.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATICN	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with we=k signal input.	Trouble in FM if amplifier. Isolate by the following tests.
2	B	Loud, clear signal with strong signal input.	Defe=tive: 7H7. Shorted or open: C327. Defective or misaligned: 2303.
3	D	Loud, clear signal with moderate signal input.	Defective: 7B7. Defective or misaligned: 2302.
4	E	Loud. clear signal with weak signal input.	Defective: 7H7. Defective or misaligned: 2301.
5	A	Loud, clear signal with weak signal Input.	Defective: 7F8, WS3(R). Defectlve or misaligned: Z 300.

Section 4

TROUBLE SHOOTING

For the following tests, with the exception of the oscillator tests, use an r-f signal generator with modulated output. Connect the ground lead to the chassis (test point C); connect the output lead through a . $1-\mathrm{mf}$. condenser to the test points indicated in the chart. Adjust the generator to give a weak input signal.

Set the radio volume control to maximum, and turn both tone controls counterclockwise.
OSCILLATOR TESTS ("AM CIRCUITS" chart,
steps 5, 8, and 10; "FM CIRCUITS" chart, step 2): Connect the positive lead of a high-resistance voltmeter to the oscillator cathode ($\operatorname{pin} 5$) of the $7 \mathrm{F8}$, test point E. Connect the prod end of the negative lead through a $100,000-\mathrm{ohm}$ isolating resistor to the oscillator grid (pin 8), test point F. Use a suitable meter range, such as $0-10$ volts. Absence of negative voltage with any push button (PB8 through PB4 depressed, or for any dial position (push button PB1, PB2, or PB3 depressed), indicates the oscillator is not functioning.

AM CIRCUITS

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN FREQUENCY	PUSH BUTTON OR TUNING CONTROL	NORMAL INDICATION	POSSIBLE CAUSE OF abNORMAL INDICATION
1	A	Adjust to irequency of each push bution in sequence.	Depress, in sequence. PB8 through PB4.	Loud, clear signal when each push button is depressed.	Trouble in circuits associated with push-button station selectors. Isolate by tests in steps 4, 5, and 6.
2	A	1000 kc.	Depress BC push but ton (PB3). Tune in signal with tuning control.	Loud, clear signal.	Trouble in circuits associated with dial tuning (BC band). Isolate by tests in steps 7 and 8.
3	B	12 mc .	Depress SW push button (PB2). Tune in signal with tuning control.	Loud, clear signal.	Trouble in circuits associated with dial tuning (SW band). Isolate by tests in steps 9 and 10.

Section 4 (Cont.) TROUBLE SHOOTING

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQUENCY	PUSH BUTTON OR TUNING CONTROL	NORMAL INDICATION	possible cause of ABNORMAL INDICATION
4	D	Adjust to frequency of push button	Depress PB6.	Loud, clear signal.	Defective: 7F8. WS1(F). Open: R410, C423.
5	E to F Oscil. lator test)		Depress, in sequence. PB8 through PB4.	Negative voltage.	No voltage for any particular push button-Defective: Coil (L409A through L409E) or push button. No voltage for all push buttons-Defective: 7F8, WS2(F). PB2. PB3, C416. Open: R406, R407, R409, R411, C400, C411B. C415, C418, L404, L405, WS2(F), WS2(R).
6	A	Adjust to frequency of each push button in sequence.	Depress, in sequence. PB8 through PB4.	Loud, clear signal when each push button is depress. ed.	Defective: TB400, L400, C411C, C424A through C424E, Open: R412. R413, C413, PB2, PB3. WS1(F). WS2(F).
7	A	1000 kc.	Depress BC push button (PB3). Tune in signal with tuning control.	Loud, clear signal.	Defective: C400, PB3.
8	E to F (Oscil. lator test)		Depress BC push button (PB3). Rotate tuning control through range.	Negative voltage.	Defective: L404.
9	B	12 mc.	Depress SW push button (PB2). Tune in signal with tuning control.	Loud, clear signal.	Defective: J400. L401, L402, C401, C412.
10	E to F (Oscillator test)		Depress SW push button (PB2). Rotate tuning control through range.	Negative voltage.	Defective: 7F8. L403, C409, C411A, C410.

FM CIRCUITS

Before proceeding with the tests for the FM circuits, connect test point G in Section 3 to the chassis.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQUENCY	PUSH BUTTON OR TUNING CONTROL	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	G	100 mc .	Depress FM push bution (PB1). Tune in signal with funing control.	Loud, clear signal.	Trouble in FM circuits. Isolate by the following tests.
2	E to \mathbf{F} (Oscillator test)		Depress FM push button. Rotate tuning control through range.	Negative voltage.	Defective: 7F8. L408. C400. C400C. PB1, WS2(F). Open R408. Shorted: C421.
3	H	100 mc .	Depress FM push button (PB1). Tune in signal with tuning control.	Loud, clear signal.	Defective: 7W7. Open: R400, R402. R403, R404, C408. Shorted: C400. C400B, C405, C406, C407, WS2(F).
4	G	100 mc .	Same as step 3.	Loud, clear signal.	Defective: J400, L406, C400A, C404.

CALIBRATING DIAL BACKPLATE

When the radio chassis has been removed from the cabinet, dial calibration and alignment points may be marked on the dial backplate below the pointer with a pencil.

The method of measuring for these points is illustrated in figure 1. Hold a rule against the dial back-
plate, with the start of the rule against the inside of the upturned edge of the backplate.

With the tuning gang fully meshed, the pointer should be adjusted on the dial-drive cord to coincide with the index mark.

Figure 1. Calibration Measurements for Dial Backplate

 $\begin{array}{cc}\text { BC } & \text { SW } \\ \text { AERIAL } & \text { AERIAL }\end{array}$

BAND-SWITCH SECTIONS SHOWN IN BROADCAST POSITION AS VIEWED FROM UNOCR SIDE OF CHASSIS. (F) INDICATES FRONT CONTACTS, LOOKING FROM FRONT. (R) INDICATES REAR CONTACTS, LOOKING THROUGH WAFER.

CONDENSER SYMBOLS

NOTE:
ALL PUSH BUTTONS EXCEPT PB8 ARE SHOWN IN OUT POSITION. ALL ROTARY SWITCHES ARE LINKED TO FM PUSH BUTTON.
ALL RESISTOR VALUES ARE \mathbb{N} OHMS UNLESS MARKED OTHERWISE.
VOLTAGES IN SECTION 1 AND IN AUDIO CIRCUITS OF SECTION 2 WERE TAKEN WITH BC PUSH BUTTON IN. VOLTAGES IN SCRATCH ELIMINATOR CIRCUITS OF SECTION 2 WERE TAKEN WITH PHONO PUSH BUTTON IN AND TREBLE CONTROL SET TO SCRATCH ELIMINATOR POSITION. vOLTAGES IN SECTIONS 3 AND 4 WERE TAKEN WITH FM PUSH BUTTON IN.

ALIGNMENT PROCEDURE

CAUTION: Do not turn on power with speaker disconnected, or the radio may be damaged.

ALIGNMENT OF AM CIRCUITS

When the complete AM and FM alignment is to be made, the AM alignment should be made FIRST; however, if FM alignment is not required, the AM alignment alone may be made.
OUTPUT METER-Connect between No. 3 terminal (voice-coil connection) of the aerial terminal panel and the chassis.
AM SIGNAL GENERATOR-Connect the ground lead to the chassis, and the output lead as indicated in the chart. Use modulated output.
OUTPUT LEVEL-During the alignment, the signal-ge nerator output must be attenuated to maintain the radio output below 1.5 volts, as read on the output meter.
CONTROLS-Set the volume control to maximum, the bass tone control fully counterclockwise, the treble tone control fully clockwise, and the signal-generator dial, radio dial, and radio push buttons as indicated in the chart.
DIAL POINTER-With the tuning condenser fully meshed, the dial pointer must coincide with the index mark at the low-frequency end of the dial. See "CALIBRATING DIAL BACKPLATE" for method of measuring backplate for index and calibration marks.

ALIGNMENT OF FM CIRCUITS

Align the AM circuits first.
OUTPUT METER-Connect the output meter between terminal No. 3 of the aerial terminal panel and the chassis.
AM SIGNAL GENERATOR-Connect the generator ground lead to the radio chassis; connect the output lead through a $.1-\mathrm{mf}$. condenser to the points specified in the chart. Use modulated output.
CONTROLS-Set the treble tone control and the volume control fully clockwise, and the bass tone control fully counterclockwise. Depress the FM push button.
LOCATION OF COILS-For the location of coils L406, L407, and L408 (steps 11 and 15), refer to the base layout of Secton 4, figure 5.
Note 1. When pin 2 of FM1000 is connected to the chassis, the oscillator portion of the FM detector is made inoperative, thereby converting the circuit from an FM to an AM detector.
Note 2. Make the loading network by connecting a 4700 -ohm resistor and a $1-\mathrm{mf}$. condenser in series. Attach an alligator clip to each free end of the network. When this network is connected across the primary or secondary winding of an over-coupled i-f transformer, the network loads the circuit so that the transformer is effectively below critical coupling; the unloaded winding may then be correctly peaked at the intermediate frequency.
Note 3. The top of padder C303D can be reached only from the top of the shield can. Slide a length of flattened solder or wire down between the ceramic form and the edge of the trimmer plate. Attach the loading network between this connection and the chassis.
Note 4. It is essential that the output from the generator be kept below the point where the oscillator of the FM detector locks in, otherwise an erroneous zero beat will be obtained. When a single very sharp zero-beat point is obtained, the adjustment is correcr.
Note 5. The use of a signal generator for steps 10 through 16 is recommended only if the available generator is sufficiently accurate to insure correct frequency settings. Otherwise, an alternate procedure employing FM broadcast-station signals in place of a signal generator is recommended. For the adjustments at the high-frequency end of the band, use the station nearest 105 mc .; for the adjustments at the low-frequency end of the band, use the station nearest 88 mc . or 92 mc ., as indicated. If the radio is greatly misaligned, it may be necessary to adjust the padders and coils for maximum noise at each end of the band before station signals can be heard. The FM detector must be made inoperative as directed in step 10 of the "FM ALIGNMENT CHART."
Note 6. Check all coil adjustments with a tuning wand. If inserting the brass end in or near the coil increases the output-meter reading, spread the turns; if the powdered-iron end increases the output reading, compress the turns. If both ends cause a decrease in output, the coil is correctly tuned. Do not change the coils excessivaly, since only a small adjustment is required at these frequencies.
Note 7. Make two simple dipole aerials to feed signals from the signal generator to the radio. Each dipole aerial may consist of two 30 -inch lengths of rubber-covered wire. Connect one dipole aerial to terminals 1 and 2 on the FM aerial socket of the radio. Connect the other dipole aerial to the output of the signal generator. Place the two dipoles several feet apart.

Figure 7. Philco Radio-Phonograph, Model 48-1270, Sectionalized Schematic Diagram, Showing Test Points
©John F. Rider

AM ALIGNMENT CHART

FM ALICNMENT CHART

© John F. Rider

REPLACEMENT PARTS LIST

NOTE

Part numbers marked with an asterisk (*) are general replacement items. These numbers may not be ideatical with those on factory assemblies: also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram ard parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the 'Service Part No."

	SECTION 1	SECTION 2 (Cont.)	
Reference Symbol	Description Sarvice Part No.	Reference Symbol	Description Service Part No.
Cl00	Condenser, two-section \qquad 30-1226-1	C219	Condenser, d-c blocking, . 006 mf 45-3500-7*
C100A	Condenser, line filter, . 01 mfPart of C100	C220	Condenser, audio by-pass, . 1 mf .-.....................61.0113*
C100B	Condenser, line filter, . 01 mf Part of Cl00	C221	Condenser, tone compensating, . 003 mf . 61.0117°
C101	Condenser, electrolytic, three-section30-2570-1	J200	Socket, FM test ..67.6180
C101A	Condenser, filter, 10 mfanalum Part of Cl01	LS200	
C101B	Condenser, filter, 15 mfart of C101	R200	Volume control, 2 megohms, tapped
C101C	Condenser, filter, 30 mfPart of C101		
C102		R201	Tone control, bass, 1 megohm33-5539-7
C103	Condenser, filter, 40 mf	R202	Resistor, tone compensating, 33,000 ohms.....66-3333340*
C104	Condenser, bias filter, . 5 mf ...	R203	Resistor, inverse feedback, 4.7 ohms66-9473340*
1100	Lamp. Bin $\triangle \square$	R204	Resistor, inverse feedback, 68 ohms66-0683340
1101	Lamp, dial ..34-2040	R205	Resistor, grid return, 1 megohm66-5103340*
1102		R206	Resistor, bias divider, 1 megohm66-5103340*
1103	Lamp, jewel ... ${ }^{\text {34-2040 }}$	R207	Resistor, bias divider, 10 megohms66-6103340*
1100	Socket, phono power ...- - - - - -	R208	Tone control, treble, 500,000 ohms33-5539-8
L100		R209	Resistor, plate load, 220,000 ohms66-4223340*
R100	Resistor, B+ dropping, 18.003 ohms66-3184340	R210	Resistor, grid return, 1 megohm66-5103340*
R101	Resistor, B+ dropping, 15,000 ohms66-3154340*	R211	Resistor, cathode load, 47,000 ohms66-3473340*
R102	Resistor, bias filter, l megohm66-5103340*	R212	Resistor, cathode bias, 4700 ohms66-2473340**
R103	Resistor, bias filter, 220,000 ohms66-4223340*	R213	Resistor, cathode bias, 6800 ohms ...- 66.
R104	Resistor, jewel-lamp dropping, 10 ohms66-0104340	R214	Resistor, grid return, 4.7 megohms66-5473340**
S100	Switch, master power, on-offPart of PB10	R215	Resistor, tone compensating, 220,000 ohms...66-4223340*
S101	Switch, phono power, on-oft Part of PB9	R216	Resistor, voltage divider, 100.000 ohms66-4103340*
T100	Transformer, power .-.).an - 32-8282	R217	Resistor, voltage divider, 100,000 ohms664103340*
W100		R218	Resistor, voltage divider, 33.000 ohms66-3334340*
		R219	Resistor, tone compensating, 680.000 ohms...66-4683340*
		R220	Resistor, grid return, 330,000 ohms66-4333340*
	SECTION 2	R221	
		R222	Resistor, grid return, l megohm66-5103340*
C200	Condenser, tone compensating, . 006 mf45-3500.7*	R223	Resistor, voltage divider, 33,000 ohms66-3334340*
C201	Condenser, by-pass, 100 mmf .-....- $30.1224 .1^{*}$	R224	Resistor, plate load, 18,000 ohms66-3183340*
C202		R225	Resistor, bias filter, 220.000 ohms-
C203	Condenser, tone compensating, 01 mf61-0120*	R226	Resistor, bias filter, 220,000 ohms66-4223340*
C204	Condenser, by-pass, 220 mmf ${ }^{\text {a }}$.	R227	Resistor, grid return, 560.000 ohms66-4563340*
C205	Condenser, d-c blocking, .006 mf45-3500.7*	R228	Resistor, plate load, 220,000 ohms66-4223340*
C206	Condenser, d-c blocking, . 006 mf45-3500.7*	R229	Resistor, bias filter, 3.3 megohms66-5333340*
C207	Condenser, tone compensating, .001 mf 45 -3500-5*	R230	Resistor, bias filter, 1.5 megohms66-5153340*
C208	Condenser, d-c blocking, . 02 mf61-0108*	R231	Resistor, plate load, 100,060 ohms66-4103340*
C209	Condenser, d-c blocking, 150 mmf60-10155407*	R232	Resistor, bias filter, 220.000 ohms .-...........66-4223340*
C210	Condenser, d-c blocking, .001 mf45-3500.5*	R233	Resistor, voltage divider, 220.000 ohms66-4223340*
C211	Condenser, d-c blocking, 330 mmf60-10335407*	R234	Resistor, bias filter, 560,000 ohms66-4563340*
C212	Condenser, bias filter, . 01 mf .-....- $61-0120^{*}$	R235	Resistor, plate load, 56,000 ohms66-3563340*
C213	Condenser, bias filter, 01 mf61-0120*	R236	Resistor, plate decoupling, 470,000 ohms66-4473340*
C214	Condenser, bias filter, 01 mf61-0120*	R237	Resistor, plate load, 150,000 ohms66-4153340*
C215	Condenser, d-c blocking, 330 mmf60-10335407*	R238	Resistor, grid retum, 330,000 ohms66-4333340*
C216	Condenser, bias filter, 03 mf45-3500.1*	R239	Resistor, grid return, 330,000 ohms66-4333340*
C217		S200	Switch, scratch eliminatorPart of R208
C218	Condenser, bias filter, . 02 mf	T200	Transformer, output ...32-8274

REPLACEMENT PARTS LIST

SECTION 3

ference ymbol	o.
C300A	Condenser, fixed trimmer, primary ...) Part of $\mathbf{Z 3 0 0}$
С3008	Condenser, trimmer, primary - Part of 2300
C300C	Condenser, trimmer, secondary .-- Part of 2300
C300D	Condenser, trimmer, secondary ...- Par of Cl 300
C300E	Condenser, coupling Part of 2300
С3	
C3018	Condenser, trimmer, secondaryPart of 2301
C301C	Condenser, trimmer, secondary ...) Part of Z301
C302	Condenser, fixed trimmer, primary .-. Part of 2302
C302B	Condenser, trimmer, primary - Part of 2302
C302C	Condenser, trimmer, secondary Part ot 2302
C30	Condenser, trimmer, secondary ...) Pana Part of 2302
C302E	Condenser, coupling ...- Parn of 3302
C303A	
C3	
C303C	Condenser, r.f by-pass, 270 mmfPart of $\mathrm{Z303}$
C303D	Condenser, trimmer, secondary ...- Part of 2303
C	Condenser, voltage divider, 68 mmf .-. ${ }^{\text {a }}$ Part of z 304
C304B	Condenser, voltage divider, 33 mmf .-. Part of $\mathbf{Z 3 0 4}$
C304C	Condenser, trimmer .
C	Condenser, fixed trimmer .- Part of 2304
C30	Condenser, r-f by-pass, . 01 mf - 61.0120
C306	Condenser-and-choke assembly, i-f by-pass, .01 mf \qquad .38-9851-3
C308	Condenser, by-pass, 220 mmi -
C309	
C310	
C311	Condenser, α-v-c by-pass, $01 \mathrm{mf} \times \square^{(1) \times 1-0120}$
C312	
C313	
C314	
C315	Condenser, plate by-pass, . 01 mf .
C3	Condenser, electrolytic, two-section -.- 30-2552
C316A	Condenser, by-pass, 10 mf ...w
C3	Condenser, by-pass, 10 mt
C317	Condenser, rif by-pass, . $01 \mathrm{mf} \times \quad$ - $\mathbf{l l}^{(0120}$
C318	
C319	Condenser, rif by-pass, . 01 mf -
C320	Condenser, cathode by-pass, . $01 \mathrm{mf} \cdots \cdots \cdots{ }_{\text {a }}$ ($61-0120^{*}$
C	
C3	
C323	Condenser, coupling, $100 \mathrm{mmf} \times \quad \mathbf{6 0 - 1 0 1 0 5 4 0 7 ^ { * }}$
C324	Coridenser, plate by-pass, $01 \mathrm{mf} \quad$ 61-0120*
C325	Condenser, r-f by-pass, $220 \mathrm{mmf} \quad \mathbf{6 0 - 1 0 2 0 5 3 0 7}{ }^{*}$
C326	
C327	Condenser, r-f by-pass, $01 \mathrm{mf} \times \quad \mathbf{6 1 - 0 1 2 0 ^ { \circ }}$
C	Condenser, filament by-pass, 01 mf
C329	Condenser, screen by-pass. 01 mf .- $61-0120^{*}$
С330	Condenser, oscillator coupling. $33 \mathrm{mmi}60-00305307^{\circ}$
C331	Condenser, audio coupling. 03 mi \quad 45-3500-1*
C332	Condenser, r-f by-pass. $01 \mathrm{mf} \times \quad$ 61-0120*
C333	Condenser, rif by-pass, $1500 \mathrm{mmf} \quad \mathbf{6 0 - 2 0 1 5 5 4 0 4 ^ { * }}$
L.300	Coil, FM detector 32.4007-1
R	Resistor, plate dropping, 47.000 ohms66-3473340*
	Resistor, a-v-c decoupling, 1 megohm ...) 66.5103340^{*}
R302	Resistor, cathode bias, 180 ohms \quad - 66.1183340°
R30	Resistor, screen dropping, 100,000 ohms ... 66.4103340°
R304A	Resistor, shunt, 6800 ohms ...) Part of 2304

SECTION 3 (Cont.)

Reference Symbol	Description Service Parł No.
R305	Resistor, a-v-c decoupling. 1 megohm66-5103340*
R306	Resistor, cathode bias, 180 ohms66-1183340*
R307	Resistor, cathode bias, 1500 ohms66-2153340
R308	Resistor, screen dropping, 100.000 ohms66-4103340*
R309	Resistor, plate dropping. 3300 ohms66-2333340*
R310	Resistor, a-v-c filter, 330,000 ohms66-4333340*
R311	Resistor, cathode bias, 180 ohms66-1183340*
R312	Resistor, diode load, 1 megohm66.5103340*
R313	Resistor, screen dropping, 82,000 ohms66-3823340*
R314	Resistor, inverse feedback, 100 ohms66-1103340*
R315	Resistor, plate dropping. 3300 ohms $\quad 66$-2333340*
R316	Resistor, audio decoupling, 100,000 ohms.....66-4103340*
R317	Resistor, diode load, 270,000 ohms66-4273340*
R318	Resistor, r-f coupling, 47.000 ohms66-3473340*
R319	Resistor, parasitic suppressor, 22 ohms66.0273340 ${ }^{\circ}$
R320	Resistor, grid leak, 15.000 ohms66-3153340*
R321	Resistor, screen dropping, 56,000 ohms66-3563340*
R322	Resistor, audio decoupling, 100,000 ohms.....66-4103340*
R323	Resistor, plate dropping, 15,000 ohms66-3153340
R324	Resistor, plate load, 47,000 ohms66-3473340*
R325	Resistor, plate dropping, 3300 ohms66-2333340*
TC300A	
TC302A	Tuning core ...- Part of Z302
TC304A	Tuning core ...an Part of 2304
WS3 (R)	Switch, wafer ...ert of WS
Z300	Transformer, 1st i.f., including C300A, C300B. C300C, C300D, C303E, and TC300A32-4020-1
Z301	Transformer, 2nd i.f., including C301A, C301B, and C301C \qquad 32.4001
Z302	Transformer, 3rd i.f., including C302A, C302B, C302C. C302D. C302E, and TC302A32-4002
$\mathrm{Z} 303$	Transformer, 4th i.f., including C303A, C303B, C303C, and C303D \qquad 32.4003-2
Z304	Transformer, FM detector, including C304A, C304B, C304C, C304D, R304A, and TC304A $\ldots \ldots \ldots .$.

SECTION 4

C400	Condenser, tuning ..31-2694
C400A	Condenser, trimmer Part of C400
C4008	
C400C	
C401	Condenser, trimmer ...31-6473-2
C402	Condenser, r-f by-pass, 220 mmf60-10205307*
C403	
C404	Condenser, coupling, 10 mf60-00105407*
C405	Condenser, filament by-pass, 220 mmf60-10205307*
C406	Condenser, screen by-pass, 510 mmi60-10515307*
C407	Condenser, plate by-pass, 510 mmf60-10515307*
C408	Condenser, d-c blocking, 47 mmf60-00515307*
C409	Condenser, neutralizing (s.w.), 10 mmf60-00105407
C410	Condenser, oscillator series, 255 mmf30-1220-24
C411	Condenser, trimmer assembly, three-section31-6477
C411A	Condenser, trimmer, oscillator shunt (s.w.) \qquad Part of C411
C4118	Condenser, trimmer, oscillator shunt (bc.) \qquad Part of C411
C4IIC	Condenser, trimmer. aerial shunt (bc.) ...Part of C411

REPLACEMENT

SECTION 4 (Cont.)

Reference
Reference
Symbol
Description Service Part No.
C412 Condenser, aerial series (s.w.), 300 mmf . 60.10305307°
C413 Condenser, d-c blocking, $22 \mathrm{mmf} \quad \mathbf{6 0 . 0 0 2 0 5 3 0 7 ^ { * }}$
C414 Condenser, trimmer, b-c series \quad 31.6473.3

C416 Condenser, r.f voltage divider, 485 mmf .
C417 Condenser, r-f by-pass, $510 \mathrm{mmf} \quad \mathbf{6 0} 10515307^{*}$
C418 Condenser, d-c blocking. $510 \mathrm{mmf} \quad \mathbf{6 0 . 1 0 5 1 5 3 0 7 ^ { * }}$
C419 Condenser, r.f by-pass, $220 \mathrm{mmf} \quad \mathbf{6 0 - 1 0 2 0 5 3 0 7 ^ { \circ }}$

$\begin{array}{llll}\text { C421 } & \text { Condenser, r-f by-pass, } 220 \mathrm{mmf} & \mathbf{6 0 - 1 0 2 0 5 3 0 7}{ }^{*} \\ \text { C422 } & \text { Condenser, oscillator coupling, } 100 \mathrm{mmf} & \mathbf{6 0 - 1 0 1 0 5 4 0 7 ^ { * }}\end{array}$
C423 Condenser, oscillator-to-mixer coupling.
$750 \mathrm{mmf} \quad \mathbf{6 0 - 1 0 7 5 5 3 0 1 ^ { * }}$
C424 Condenser, trimmer assembly, five-section31-6479
C424A Condenser, trimmer $\longrightarrow \square \quad$ Part of C424
C424B Condenser, trimmer $\quad \square \quad$ Part of C424
C424C Condenser, trimmer $\quad \rightarrow \quad$ Part of C424

| C424D | Condenser, trimmer |
| :--- | :--- | :--- |
| C424E | Condenser, trimmer |
| $\cdots \quad P_{\square} \quad$ Part of C424 | |
| \quad Part of C424 | |

C425 Condenser, r-i by-pass. $22 \mathrm{mmf} \cdot \ln ^{-} \quad 60-00205307^{\circ}$
$\begin{array}{lll}1400 & \text { Socket, s-w and FM arial } & \text { 27.6214-1 } \\ & \text { Coind }\end{array}$
$\begin{array}{llll}\text { L400 } & \text { Coil. bc. aerial } \\ \text { L401 } & \text { Coil, s-w aerial } \\ \text { Cun }\end{array}$

L402 Coil, FM isolation \quad| $32-4111$ |
| :--- |
| |
| Cill |

L404 Coil, bc. oscillator :- \quad 32.4019-4
L405 Choke, oscillator isolation $-\square \quad 32-\quad$-4089
L406 Coil, FM aerial …

L409C Coil, push button $\quad \begin{aligned} & \text { 32.4059-1 }\end{aligned}$

LA400 Loop, be. \quad 76-2262

R400 Resistor, grid return, 1 megohm \quad 66-5103340*
R401 Resistor, voltage divider, 100,000 ohms66.4103340.
R402 Resistor, screen droppting, 103,000 ohms 66.4103340°
R403 Resistor, plate dropping, 3300 ohms $\quad-\quad \mathbf{6 6 - 2 3 3 3 3 4 0 ^ { \circ }}$
R404 Resistor, plate load. 33,000 ohms $-\quad \mathbf{6 6 - 3 3 3 3 3 4 0 ^ { \circ }}$
R405 Resistor, voltage divider, 4.7 megohms 66.5473340°
R406 Resistor, parasitic suppressor, 100 ohms 66.1103340°

R409 Resistor, grid return, 22,000 ohms ... $\quad \mathbf{6 6 . 3 2 2 3 3 4 0 ^ { \circ }}$
R410 Resistor, cathode bias, 2200 ohms66-2223340*
R411 Resistor, cathode bias, 10,000 ohms …… 66.3103340°
R412 Resistor, parasitic suppressor, 10 ohms 66.0103340°
R413 Resistor, grid return, 4.7 megohms ... \quad -
WS Wafer switch, three-section \quad 76.2211

WS1	Switch, wafer
WS2	Switch, water

PARTS LIST

MISCELLANEOUS

MISCELLANEOUS (Cont.)		MISCELLANEOUS (Cont.)
Description Knob, control (L) (4 required) \qquad (M and W) (4 required)	Service Part No. 54.4227-1 54-422'	Description Terminal strip, coils (5 required) Tuning core (5 required)
Knob, push button (10 required)	- \quad 54-4292	Record-changer mig. hardware
Loop mig. hardwere	1W2si84FA*	Input transformer ...
Spacer (2 requirec) Washer (6 required)	1W52540FA3	Rubber mount \qquad 54-4313
Washer, spring	$\begin{array}{r}28-4186 \\ \hline \text { IW29091FA3 }\end{array}$	E-f-unit mtg. hardware
Palnut, volume-control mig. (3 required)	$54-4346$	Screw (3 required) \qquad 1W19674FA3
Plug, FM dipole hardware		
ush	54-4294	
Cover assembly	76-1343	Socket, Loktal, r-f unit (2 required) ...-27-6213
Cap centering (5 required)	28.6936	Socket, Loktal, main chassis and r-f unit (7 required)27-6138 ${ }^{\circ}$
Rubber mount (2 required)	27-4596	
Screw (2 required) (5 requi		Socket assembly, dial light, 7-inch lead
Screw, tuning core	54-4318	Socket assembly, pilot ..41-3737
Tab, FM	54-4317-4	Tube shield, FM1000 ..
	40-6943	Water-switch hardware
Tab, OF	54-4317-1	
	54 4317-5	
Tab, SW	54-4317-3	

Figure 6. Drive-Cord Installation Details

Circuit Description

Philco Radio-Phonograph Model 48-1286 contains an 11 -tube superheterodyne and a Model D-10 Philco Automatic Record Changer.

A low-impedance loop aerial within the cabinet normally provides adequate signal pickup on the standard broadcast band. In most locations, the built-in FM dipole aerial provides satisfactory FM reception. In areas where FM signals are weak, an outdoor dipole aerial (Philco Part No. 45-1462) will provide additional pickup. To increase the pickup on both bands, use the Philco Aerial Coupler, Part No. 76-2353, with the outdoor dipole aerial. For increased pickup on the standard broadcast band only, the coupler may be used with an external aerial of the single-wire type, such as Philco Part No. 45-1494. Information on aerial and coupler connections is given in the external aerial bulletin PR-1200.

The r-f stage (FM only) and converter stage are mounted on a separate chassis, for improved performance at high frequencies. A GAU6 high-frequency pentode is used in the r-f stage, and a $7 \mathbf{F 8}$ high-frequency double triode is employed as a converter.

Two transformer-coupled i-f stages are used. The transformers have two sets of windings; one set is tuned to 455 kc ., for AM operation, and the other set is tuned to 9.1 mc ., for FM operation. A 6BA6 high-frequency pentode is used in the first i-f stage. The pentode section of a 7R7 duo-diode, pentode functions as the second i-f amplifier; one diode of this tube is used for AM detection, while the other diode provides a.v.c.

The dual-diode section of a 7×7 is employed in the FM ratio-detector circuit; this circuit has good noisereducing properties and an excellent tuning characteristic.

The triode section of the 7×7 functions as the first audio stage. A 6J5GT triode operates as a plate-and-cathode-loaded phase inverter, driving two 6K6GT output amplifiers, in push-pull operation. Tone fidelity is obtained by the use of inverse feedback in the audio system; feed-back voltage is taken from the secondary of the output transformer.

The Philco Electronic Scratch Eliminator, for phono operation, may be switched on or off, as required. The pentode section of a 7E7 functions as a variable shunt capacitance at the phono-input circuit; at low signal levels, a controlled portion of the higher audio frequencies is by-passed to ground. The grid bias of the reactance tube controls the effec ive capacitance, which becomes maximum with low bias, and minimum with high bias. This control bias is developed by the audio signal itself; a proportionate amount of the signal is taken from the pickup output, amplified by each triode section of the 7 H 7 , and rectificd by the diode section of the 7 E 7 .

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

> Section 1-the power supply Section 2-the audio circuits
> Section 3-the i-f, detector, and a-v-c circuits
> Section 4-the r-f and converter circuits

Test points are specified for each secuon, and are indicated in the sectionalized schematic diagram. The crouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire chart.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resist-
ances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

SPECIFICATIONS

CABINETWood, mahogany finish CIRCUIT H.tule superheterodyne
FREQUEN:Y RANGES

IUDIO OUTPUT 6 watts
OPERATING VOLTAGE . . 105-120 volts, 60 cycles, a.c. POWER CONSUMPTION
Radio 110 watts
Phonograph 125 watts

AERIALS Built-in loop and FM cabinet dipole; external aerial also may be used

INTERMEDIATE FREQUENCIES	
AM	4.55 kc .
FM	9.1 me.

PHILCO TUBES (11)6.1U6, 7F8, 6BA6, 7R7, 7X7, 6J5GT, 6K6GT (2), 7E7, 7F7, 3AZ4
PHONOGRAPIt Philco Automatic Record Changer, Model D. 10

Section 1 TROUBLE SHOOTING POWER SUPPLY

CAUTION: Do not turn on the power with the speaker disconnected, or the set may be damaged.

Make the tests for this section with a d-c voltmeter, connecting the leads between the chassis, test point C , and the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.

Set the volume control to minimum, and the tone control fully counterclockwise. Set the band selectorphono switch to the broadcast position.

Follow the steps in the order given. If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	195v		Trouble in this section. Isolate by the following tests.
2	B	300 v	No voltage. Low voltage. High voltage.	Defective: SAZ4. Open: 100 , T100. Shorted: Clo2. Defective: 5AZ4. Shorted: C103B, (310*, C411*. Leaky: C102. Open: C102, L100. Shorted: L100. Open: T200*.
3	A	195.	No voltage. Low voltage. High voltage.	Open: R100. Shorted: C103A, C311* Leaky: C103A, C311*. Changed resistance: R100. Open: T200*.
4	D	Negative 27,	No voltage. High voltage.	$\begin{aligned} & \text { Open: R101. } \\ & \text { Open: R102. } \end{aligned}$

Listening Test: Ahnormal hum and instahility may be caused by open C103A or C103B.

* This part, located in anuther section, may cause abnormal indication in this section.

Figure 2. Bottom View, Showing Section 1 Test Points

Section 2
 TROUBLE SHOOTING AUDIO-AMPLIFIER TESTS AUDIO CIRCUITS

Use an audio-frequency signal generator. Connect the generator ground lead to the chassis, test point C, and connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully counterclockwise. Set the band (wafer)
switch to the broadcast position. Make certain that the scratch-eliminator switch is turned off (two-position switch turned counterclockwise). If the "NORMAL INDICATION" is obtained in steps 1 and 6, proceed with the scratch-eliminator tests; if not, isolate and correct the trouble in the audio-amplifier circuits.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in audio-amplifier circuits. Isolate by the following tests.
2	$\begin{gathered} B \\ \text { (Remove 6J5GT) } \end{gathered}$	Clear signal with strong sienal input.	
3	$\left(655 G T \quad \begin{array}{l} \text { removed) } \end{array}\right.$	Same as step 2.	Defective: 6 K6GT(\#2). Open: C207, R212. Shorted or leaky: C207.
4	$\begin{gathered} E^{E} \\ \text { (Replace } 6 \mathrm{~J} 5 \mathrm{GT} \text {) } \end{gathered}$	Loud, clear signal with moderate signal input.	$\begin{aligned} & \text { Defective: 6J5GT. Open: R208, R209, R207, R210. Shorted } \\ & \text { or leaky: C205, C204. } \end{aligned}$
5	A	Same as slep 1.	Defective: 7X7. Open: R200 (rotate through range), C202, R205, R206. Shorted: C203.
$6 *$	F	Loud, clear signal with weak signal input.	Open: R230, WS-2(R).

Listening Test: Distortion may be caused by leaky C202, C205. C206, or C207; or by open R205, C207, C211, or C212.
*For this step, set band (wafer) switeh to phono.

Section 2 ICont.l TROUBLE SHOOTING
 SCRATCH-ELIMINATOR TESTS

Set the tone control fully counterclockwise. Turn the band (wafer) switch to the phono position. For all steps except $1(\mathrm{~b})$, set the volume control to maximum; for this step, adjust the volume control as directed in the chart.

Turn the scratch eliminator on or off as indicated in the chart. (The scratch eliminator is on when the twoposition switch is turned clockwise.)

Connect an output meter across the primary of the output transformer, T200.
IMPORTANT! For all steps except step 4, use the $0-10$-volt output-meter range; for step 4 only, use the $0-50$-volt range. If the proper ranges are not used, erroneous readings will result.

Connect the ground lead of an audio signal generator to the chassis, test point C, and connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the generator for 5000 cycles. Adjust the generator output as directed in the chart.

If normal operation is indicated by the tests in step 1 , (a) and (b), proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in the scratch-eliminator circuits.

NOTE: For steps 2, 3, and 4, connect the positive lead of a 20,000 -ohms-per-volt, d-c voltmeter to the chassis, test point C; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the "VOLTMETER" test points indicated in the chart.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POIN'T } \end{aligned}$	SIG. GEN. OUTPUT	$\begin{aligned} & \text { VOLT- } \\ & \text { METER } \end{aligned}$	SPECIAL INSTRUCTIONS	Possible cause of ABNORMAL INDICATION
$1(a)$ $1(b)$	F F	Adjust for 10 v outputmeter reading, with scratch-eliminator off. Same as for l(a).		Turn scratch eliminator on; output voltage should drop to 6.5 v (approx.). Reduce volume control to oltain output-meter reading of 1 v . Increase generator output for out-put-meter reading of 10 v . Turn scratch eliminator on; output voltage should not drop below 8.8v (approx.).	Trouble in seratch-eliminator circuits. Isolate by the following tests.
2	G	See SPECIAL IN. STRUCTIONS.	H	With scratch eliminator on, increase gentrator output for voltmeter reading of $8.8 v$, negative; failure to obtain this value indicates trouble.	Defective: 7F7, 7E7 (diode section), WS.3(R). Open R224, R222, R225, R228, C217, S200.
3	G	Same setting which pro. duced $8.8 v$ reading in step 2, with scratch eliminator on.	J	With scratch eliminator on, voltage at point J should be $2 v$, negative.	Open: R220, R219, R217. Shorted: C213, C214, C212.
4	F	Same as step 2.	H	With scratch eliminator on, voltage at point H should be approx. 28 v , negative.	Defective: 7F7. Open: C210, C216, R214, R215, R223. Shorted or leaky: C216.
5	F	Adjust for 10 v outputmeter reading, with scratch-eliminator off.		Turn scratch eliminator on; output voltage should drop to 6.5 v (approx.).	Defective: 7E7 (pentode section). Open: R221, R216, R218, C211, C212. Shorted: (:211, 1212.

Section 3

TROUBLE SHOOTING

I-F, DETECTOR, AND A-V-C CIRCUITS

AM CIRCUITS

Use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the chassis, test point C, and connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the tone control fully counterclockwise. Set the band (wafer) switch to the broadcast position. Turn the tuning condensers to full-mesh position.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for the FM circuits, or the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in the AM circuits.

Since the circuit location of test point A for this section is in Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POIN'T	NORMAL INDICATION	possible cause of abnormal indication
1	1	Loud, clear signal with wral. signal input.	Trouble in AM circuits. Isolate by the following tests.
2	is	Loud, clear signal with stronsignal isput.	Defective: 7R7. Open: R309, R310, R312, L302A, L302C, L302D, R313, R314, R316, C325, C317, WS.3(R). Shorted: C317, C318, C321, C322, C323, C324, C320, C302B. Misaligned: Z302.
3	11	Loud, clear signal with mod prate signal input.	Defective: 6BA6. Open: R302, R305, C308, R306, L301A, L301B, L301C, L301D, C301A, C301C, C301D. Shorted: C308, C301C, C301D, C309, C313, L301C, L301D, C300D. Misaligned: 'Z301.
4	A	Loud, clear signal with weak signal input.	Defective: 7F8*. Open: R406*, R405*, L406*, C300C, L300C, L300D, C300D, R300, WS.4(R), WS-4(F).' Shorted: C300C, L300C, C303, C304, L300D. Misaligned: Z300.

*This part, located in another section, may cause abnormal indication in this section.

FM CIRCUITS

These tests are also made with an AM r-f signal generator, using modulated output.

Set the band (wafer) switch to the FM position, and follow the instructions preliminary to the tests for the AM circuits, with these exceptions: set the signal-generator frequency to 9.1 mc ., and detune to one side or the other until a satisfactory test signal is obtained.

The best indication of satisfactory FM-detector operation is the ability of this circuit to take the alignment properly (see page 14).

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in the FM circuits.

Section 3 (Cont.) TROUBLE SHOOTING

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAI. INDIC ATION	POSSIBIE CAUSE OF ABNORMAL INDICATION
1	1	Loud, clear signal with woak signal input.	Trouble in FM circuits. Isolate by the following tests.
2	is	Loud, clear signal with strony signal input.	(1pen: L302B, C302A, ©328, C329, K315, K318, C325, R317, WS-3(R). Shorted: L302A, C319, C302A, C328, L302E, C329, C330, C331, C332, C337.
3	1)	Loud, clear signal with mod. erate si\&nal input.	Defective: 6BA6. Open: R302, R305, C308, R306, L301A, L301B, [.301C, L301D, C301A, C301C, C301D. Shorted: C308, C301C, C301I), C.309, C.313, I.301C:, L301D, C300D. Misaligned: 7.301.
4	A	Loud, clear signal with wak signal input.	Open: WS-4(R), WS-4(F).

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before connecting the radio to a source of power:

1. Inspect the top and bo tom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance across condenser C102 (see figure 2). When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 3500 ohms, check condensers C102 and C103B for leakage or shorts.

The resistance value above, which is much lower than normal, does not represent a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 (power supply) are performed.

Important!

To avoid altering FM operation, special care should be used in replacing any part. Replacement parts should be placed in the same physical locations as the original parts; connections should be of the same length, and should be soldered to the same points. The placement or length of leads should not be changed.

Section 4

TROUBLE SHOOTING

For the following tests, with the exception of the oscillator tests, use an AM r-f signal generator, with modulated output. Connect the generator ground lead to the chassis, test point C, and connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum, and the tone control fully counterclockwise.

Set the band (wafer) switch, tuning control, and signal-generator frequency as indicated in the chart.

OSCILLATOR TESTS (AM AND FM CIRCUITS) :

Connect the positive lead of a high-resistance d-c voltmeter to the chassis, and connect the negative lead through a 100,000 -ohm isolating resistor to the $7 \mathrm{F8}$ oscillator grid (pin 1), test point B. Use a suitable range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltages of approximately the values given in the chart (measured with 20,000-ohms-per-volt meter), throughout the tuning range.

If the "NORMAL INDICATION" is not obtained in step 1 of both the AM and the FM test charts, isolate the trouble by following the remaining steps.

AM CIRCUITS

STEI'	$\begin{aligned} & \text { TES' } \\ & \text { POIN'I } \end{aligned}$	SIG. GEN. FREQ.	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \end{aligned}$	$\begin{gathered} \text { RADIO } \\ \text { TUNING } \end{gathered}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL. INDICATION
1	λ	1000 kc .	Broadeast	Tune to signal.	Loud, clear sig. nal with weak signal input.	Trouble in AM circuits. Isolate by the following tests.
2 (Osc. test ; see note above.)	13		Broadcast	Tune throunh range.	Negative 1.5 v tu 3.5 v .	Defective: 7F8. Open: R304*, C405, C404B, C408, L404, R402, WS.2(F), WS-2(R), WS-1(F), WS-3(F), WS-3. (R). Shorted: C405, C404A. C400F, C.404B, C408.
3	A	1000 kc .	Broadcast	Tune to sig. nal.	Loud, clear six. nal witl weak signal input.	Open: LA400, R401, L402, C402, C413, WS-1(R) Shorted: L402, C400D, C403.

Listening Test: Distortion may be caused by open R401 or K307*.
Hum and instability may be caused by open C312* or R301*.
*This part, located in another section, may cause abnormal indication in this section.

FM CIRCUITS

Observe the instructions preliminary to the tests for the AM circuits, with the following exception: After tuning the signal generator and the radio to 95 mc .,
detune one or the other until a satisfactory test signal is obtained.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	$\begin{aligned} & \text { SIG. GEN. } \\ & \text { FREO. } \end{aligned}$	$\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \end{aligned}$	$\begin{gathered} \text { RADIO } \\ \text { TUNING; } \end{gathered}$	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	D	9.5 me.	FM	Tunc to signal.	Loud, clear signal with weak signal input.	Trouble in PM circuits. Isolate by the following tests.
$\begin{aligned} & \text { (Osc. test; } \\ & \text { we note } \\ & \text { ahtive.) } \end{aligned}$	B		FM	Tune throush range.	Neqative lv.	Defective: iF8. Open: L403, WS.2(F), WS-2(R), WS.l(F), WS-3(F), WS.3. (R). Shorted: Ifo3, C400C; (100H.
3	n	9.5 me .	FM	Tune to signal.	Loud, clear signal with wrak signal input.	Defective: 6, DU6. Open: L400, L405, R400, R403. R404, C409, L,401, WS.1. (R). Shorted: L400, C400A. C4001', C407, C409, C.40, C4ll, L401, C400B. C400G.

Figure 5. Bottom View, Showing Section 4 Test Points

CALIBRATING DIAL BACK゙PLATE

When the radio chassis has been removed trom the cabinet, dial calibration and alignment points may be marked on the dial (chassis) backplate at the end of the pointer with a pencil. The method of measuring
for these points is illustrated in figure 1.
With the tuning gang fully meshed, the pointer should be adjusted on the dial-drive cord to coincide with the index mark.

Figure 1. Dial-Backplate Calibration Measurements

AM ALIGNMENT CHART

STEP	Signal generator		RADIO	
	CONNECTIONS TO RADIO	$\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	special instructions
1	Through .I-mf. condenser to terminal l of aerial terminal panel. TB400.	455 kc .	540 kc .	Adiust, in order given, for maximum output.
2	Radiating loop (see nute below).	580 kc .	580 kc .	Adjust for maximum while rocking tuning control.
3	Same as step 2.	1700 kc .	1700 kc .	Adiust for maximum.
4	Same as step 2.	1500 kc .	1500 kc .	Adjust for maximum.
5	Same as step 2.	580 kc .	580 kc .	Adjust for maximum while rocking tuning contrcl.
6	Repeat steps 2. 3, and 4 until no further improvement is oblained.			

RADIATING
FM ALIGNMENT CHART

©John F. Rider

NOTE: Parts marked with an asterisk (') are general replacement items. These numbers

REPLACEMENT PARTS LIST may not be identical with those on factory assemblies; also the electrical values of some replacement items may differ from the values indicated in the schematic diaaram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use onlv the "Service Parl No."

REPLACEMEN 3 (Continued) AND A-V-C CIRCUITS		R-F AND CONVERTER CIRCUITS	
Reference	Symbol Description Service Part No.	Reference	Symbol Description Service Part No.
L302B	Transformer, secondary (FM), 3rd i-fPart of 2302	L406	Coil (including R405), parasitic suppressor
L302C	Transformer, primary (AM), 3rd i-f Part of 2302		(plate of 7F8) ..32-4157
L302D	Transformer, secondary (AM). 3rd i-fPart of $\mathbf{Z 3 0 2}$	R400	Resistor, cathode bias, 82 ohms66-0823340*
L302E	Transformer winding, isolating, 3rd i-f... Part of $\mathbf{Z 3 0 2}$	R401	Resistor, grid return, 2.2 megohms66-5223340*
R300	Resistor, plate dropping, 47,000 ohms66-3473340*	R402	Resistor, grid return, 15,000 ohms66-3153340*
R301	Resistor, α-v-c filter, 2.2 megohms66-5223340*	R403	Resistor, screen dropping. 33.000 ohms ...66-3333340*
R302	Resistor, cathode bias. 68 ohms66-0683340*	R408	Resistor, plate decoupling. 1000 ohms66-2103340*
R303	Resistor, plate dropping, 4700 ohms66-2473340*	R405	Resistor (with coil L406), parasitic
R304	Resistor, plate dropping. 33,000 ohms66-3333340*		suppressor, 1500 ohmsPart of L406
R305	Resistor, screen dropping, 27,000 ohms66-3273340*	R4U6	Resistor, cathode bias, 1500 ohms66-2153340*
R306	Resistor, plate decoupling. 1000 ohms66-2103340*	R407	Resistor, a-v-c voltage divider (FM),
R307	Resistor, a-v-c filter, 3.3 megohms66-5333340*		470,000 ohms66-4473340*
R308	Resistor, grid return, 2.2 megohms66-5223340*	TB400	Terminal panel, bc. aerial38-9942
R309	Resistor, cathode bias, 150 ohms66-1153340*	WS-1 (F)	Switch-wafer section Part of 42-1803-1 \dagger
R310	Resistor, screen dropping, 68,000 ohms ...66-3683340*	WS-1 (R)	Switch-wafer sectionart of 42-1803-1 \dagger
R311	Resistor, α-v-c load, 1 megohm	WS-2 (F)	Switch-wafer sectionPart of 42-1803-1 \dagger
R312	Resistor, plate decoupling, 1000 ohms66-2103340*	WS-2 (R)	Switch-wafer section Part of 42-1803-1 \dagger
R313	Resistor. i-f filter, 47,000 ohms66-3473340*	WS-3 (F)	Switch-wafer sectionPart of 42-1803-1 \dagger
R314	Resistor, diode load, 330.000 ohms … 66.4333340^{*}	WS-3 (R)	Switch-wafer sectionPart of 42-1803-1 \dagger
R315	Resistor. FM detector load, 6.8 megohms ..66-5683340*	† 42-1803-1	5 -section wafer switch (band selactor-phono)
R316	Resistor, isolating, 100,000 ohms66-4103340*		
R317	Resistor, noise suppressor (FM), 47,000 ohms $66-3473340^{\circ}$		
R318	Resistor, isolating. 100.000 ohms66-4103340*		
R319	Resistor. isolating, 100.000 ohms66.4103340*		
TC300A			
TC302A			
WS-2 (F)	Switch-wafer section Part of 42-1803-1,		
WS-2 (R)	Switch-wafer sectionPart of 42-1803-1 \dagger		
WS-3 (R)	Switch-wafer section .-................Part of 42-1803-1		
WS-4 (F)	Switch-wafer sectionPart of 42-1803-17		
WS-4 (R)	Switch-wafer sectionPart of 42-1803-1 ${ }^{\text {t }}$		MISCELLANEOUS
2300	Transformer, lst i-f . .i. .i. . .	Descriptio	Service Part No.
Z301	Transformer, 2nd if32-4156	Cabinet	d Cabinet Hardware
2302	Transformer, 3rd i-f ...	Back	Masonite)
	SECTION 4 R-F AND CONVERTER	Baffle Baffle,	
C400	Condenser. tuning gang, 5-section31-2703-2	Bezel	56-4878
C400A	Condenser, tuning, FM aerialPart of C400	Bin m	chanism, r.h. ... ${ }^{\text {a }}$ 76-3223-8
C400B	Condenser, tuning, FM r.f. Part of C400	Bin me	chanism, l.h.an .
C400C	Condenser, tuning. FM ose.Part of C400	Cabin	t. less scale .. 10704
C400D	Condenser. tuning, bc. aerialPart of C400	Dome	45-6042
C400E	Condenser, tuning, be. osc. Part of C400	Door,	olding ...
C400F	Condenser, trimmer, FM aerialPart of C400	Escutch	
${ }^{\text {C400G }}$		Escutc Frame	
${ }_{\text {C401 }}$	Condenser, trimmer, FM osc.Part of C400	Front,	
C402	Condenser, d-c blocking, 220 mmf62-122001001.	Hinge,	
C403	Condenser, trimmer, bc. aerial31-6473	Hinge,	
C404	Condenser, trimmer assembly, 2-section31-6476-5	Hinge Dial Scale	(under lid)..
C404A	Condenser, shunt trimmer, bc. osc.Part of C404		and Backplate Hardware 76.2005
C404B	Condenser, series padder, bc. osc.Part of C404		ate-and-pulley assembly76-2005-3
C405	Condenser. d-c blocking. 220 mmf62-122001001*		cale
C406	Condenser, cathode by-pass, 100 mmf ...62-110009001*		strap
C407	Condenser, screen grid by-pass, 100 mmf .	Spring.	pointer drive
C408	Condenser, osc. grid. 100 mmf62-110009001*	Drive cord	
C409	Condenser, d-c blocking. 33 mmf .	Knob (4 r	
C410	Condenser, r-f by-pass, 1500 mmf62-215001011	Knob, scrat	
C411	Condenser, r-f by-pass. 1500 mmf62-215001011	Lamp-socke	assembly, pilot (2 required) \qquad 76-2109
C412	Condenser, filament by-pass, 100 mmf ...62-110009001*	Shield, pilo	
C413	Condenser, d-c blocking. 750 mmf60-10755301*	Socket, Lok	
1400	Socket, FM derial ...-6214-1	Socket, octal	27-6174
L400	Coil, FM derial .-_	Socket, Lok	
L401		Socket, min	
L402	Coil, bc. aerial ...n) -	Socket, min	
L403	Coil, FM osc. ...32-4018-2	Water-Switc	h Hardwar
L404		Link	sembly ...76-2186.4
L405	Coil, r-1 choke (plate of 6AU6)	Shaft	

ALIGNMENT PROCEDURE

When the conplete AM and FM alignment is to the made, the AM alignment should be made FIRST; if AM alignment is not required, the FM alignment alone may be made.

ALIGNMENT OF AM CIRCUITS

DIAL POINTER: With tuning condensers fully meshed, dial pointer must coincide with index mark at low-frcquency end of dial. (See "CALIBRATING DIAL BACKPLATE," page 2.)
OUTPUT METER: Connect between No. 3 terminal (voice-coil connection) of aerial terminal panel and chassis. AM R-F SIGNAL GENERATOR: Connect ground lead to chassis, and output lead as indicated in chart. Use modulated output.
OUTPUT LEVEL: During alignment, signal-generator output musr be attenuated to maintain radio output below 1.5 volts, as read on output meter.

CONTROLS: Set band switch to broadcast position. Set volume control to maximum, and tone control fully counterclockwise. Set signal-generator frequency and radio tuning dial as indicated in chart.

ALIGNMENT OF FM•CIRCUITS

Make AM alignment first.

OUTPUT METER: Connect as for AM alignment (this meter is used only in step 3).
D-C METER: Connect 20,000 -ohms-per-volt meter across 2 - mf. condenser, C327, in FM-detector circuit-negative lead to pin 6 of 7 X 7 tube, and positive lead to chassis. Use 10 -volt range.
AM R-F SIGNAL GENERATOR: Use modulated output for entire alignment. Generator must have sufficient output to give reading of approximately 9 volts on d-c meter, and signal should be attenuated during alignment to keep meter at this value. Connect generator ground lead to chassis, and output lead as indicated in chart.
VOLUME AND TONE CONTROLS: Same as for AM alignment.
RADIO BAND SWITCH, RADIO DIAL, AND SIGNAL-GENERATOR DIAL: Set as indicated in chart. Allow radio and generator to warm up for 15 minutes before starting alignment.
R-F COIL NOTE: When making the tracking adjustments, the resonance of the circuits using coils L400, L401, and L403 may be checked with a powdered-iron tuning core, such as Part No. 56-6100. If the signal strength (meter reading) increases when the iron end is placed in, or near, the coil, compress the turns slightly. If the threaded brass end causes an increase in signal strength, spread the turns. Do not compress or spread the turns excessively; only a small change is required at these frequencies.

Figure 7. Drive-Cord Installation Details
TP-4058E

- John F. Rider

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, as follows:

Section 1-the power supply
 Section 2-the audio circuits

Section 3-the i-f, detector, and a-v-c circuits
Section 4-the r-f and converter circuits
Test points are specified for each section, and are indicated in the sectionalized schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and

Section 1

TROUBLE SHOOTING POWER SUPPLY

CAUTION: Do not turn on the power with the speaker disconnected, as this may cause damage to the set.

Make the tests for this section with a d-c voltmeter; connect the leads between the chassis, test point C, and the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-pervolt meter, at a line voltage of 117 volts, a.c.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	200v		Trouble in this section. lsolate by the following tests.
2	B	250%	No voltage Low voltage High voltage	Defective: SU4G. Open: L100, T100. W100. S100. Shorted: C101B, C102, C103, C317*, C405*. Defective: 5U4G, T100. Open: C103. Lecky: C101B, C102, C103. C317*, C405*. Defective: 6V6GT*. Open: T 200°.
3	D	$\begin{aligned} & \text { Negative } \\ & 9.8 \mathrm{y} \end{aligned}$	No voltage Low voltage High voltage	Shorted: Cl04. Open: R101. Changed resistance: R101. Open: H 102.
4	A	200v	No voltage Low voltage	Open: H100. Shorted: C101A, C415 $, ~ C 417^{\circ}, \mathrm{C} 41^{\circ}$. Changed resistance: A100. Leaky: C101A, C415 ${ }^{\circ}$, C417 ${ }^{\circ}$, C419*.

Listening test: Abnormal hum may be caused by open C101A, C101B, or C104.

- This part, located in another section, may cause abnormal indication in this section.

Figure 1. Bottom View, Showing Section 1 Test Points

Section 2 TROUBLE SHOOTING AUDIO-AMPLIFIER AND PHONO-PREAMPLIFIER TESTS

Use an audio-frequency signal generator. Connecr the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and the bass

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
$\begin{aligned} & 1(a) \\ & 1(b) \end{aligned}$	A B	Loud, clear signal with weak signal input (with BC button, PB-3, depressed). Loud, clear signal with weak signal inpui (with PHONO button, PB-9, depressed).	Trouble in audio-amplifier circuits. Isolate by steps 2, 3, 4. 5 , and 6. Trouble in phono-preamplifier circuit. Isolate by step 7.
2	D (Remove 7AF7)	Clear signal with strong signal input (BC button depressed).	Defective: 6V6GT. Open: LS200, T200, R238, C206. Shorted or leaky: C221, C206.
3	E (7AF7 removed)	Clear signal with strong signal input (BC button depressed).	Defective: 6V6GT. Open: C219, R239. Shorted or leaky: C219.
4	F (Replace 7AF7)	Loud, clear signal with moderate signal input ($B C$ button depressed).	Defective: 7AF7. Open: R211, R212, R235, R210. Leaky: C205.
5	G	Loud, clear signal with weak signal input (BC button depressed).	Defective: 6SQ7GT. Open: C205, R209. Shorted or leaky: C222, C204.
6	A	Loud, clear signal with weak signal input (BC button depressed).	Open: $\mathbf{N 2 0 0}$ (rotate through range), C202, R205, R206.
7	B	Loud, clear signal with weak signal input (PHONO button depressed).	Defective: 7AF7. Open: R236, R237, PB-9, C208, R216, R213. Shorted or leaky: C220.

Listening Test: Distortion may be caused by leaky C202, C205, C206, or C219, open R207.
*This part, located in another section, may cause abnormal indication in this section.

Figure 2. Bottom View Showing Section 2 Test Points (location of R200 shown in figure 8)

Section 2 (Cont.) TROUBLE SHOOTING
 SCRATCH-ELIMINATOR TESTS

Set the bass control fully clockwise. Turn the treble control clockwise as far as possible without turning on the scratch eliminator, except as noted in chart (the scratch eliminator is on when this control is turned fully clockwise until switch S200 is actuated). Depress the PHONO push button, PB-9. For all steps except 1(b), set the volume control to maximum; for this step, adjust the volume control as indicated in the chart.

Connect an output meter between terminal 3 (voice-coil connection) of the aerial terminal panel and the chassis.

Connect the ground lead of an audio signal generator to the chassis, test point C ; connect the output
lead through a $1 \mathrm{l}-\mathrm{mf}$. condenser to the test points indicated in the chart. Set the generator for 5000 cy cles. Adjust the generator output as indicated in the chart.

If normal operation is indicated by the tests in step 1, (a) and (b), proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits) ; if not, isolate and correct the trouble in the scratch-eliminator circuits.

NOTE: For steps 2, 3, and 4, connect the positive lead of a 20,000 -ohms-per-volt, d-c voltmeter to the chassis, test point C; connect the prod end of the negative lead through a $100,000-\mathrm{ohm}$ isolating resistor to the points indicated in the "METER POINT" column of the chart.

STEP	TEST POINT	SIC. CEN. OUTPUT	METER POINT	SPECIAL INSTRUCTIONS	possible cause of ABNORMAL INDICATION
1(a) 1(b)	A A	Adjust for $3 v$ output-meter reading, with scratch eliminator off. Adjust for 3 v output-meter reading, with scratch eliminator off.		Turn scratch eliminator on; output voltage should drop to 1.2 v (approx.). Reduce volume control to oblain output meter reading of .5 v . Increase generator output to obtain out-put-meter reading of 3 v . Turn scratch eliminator on; output voltage should not drop more than .6 v (approx.).	Trouble in scratch-eliminator circuits. Isolate by the following tests.
2	H	See "SPECIAL INSTRUCTIONS" column.	J	With scrateh eliminator on, increase generator output to obtain llv, negative: failure to obtain this value indicates trouble.	Defective: 7F7. 7E7 (diode section). Open: R231, C217, R234, R233. Shorted: C218, C217.
3	H	Same setting which produced 11 v reading in step 2, with scratch eliminator on.	K	With scratch eliminator on, voltage at point K should be $5 v$, negative.	Open: R222, R225, R226. Shorted or leaky: C212. C213, C210.
4	A	Same as step 3.	J	With scratch eliminator on, voltage at point J should be approx. 28 v , negative.	Defective: 7F7. Open: R228, C215. R227, R221, R220, R219, C209. Shorted or leaky: C209, C215, C214.
5	A	Adiust for 3 v output-meter reading, with scratch eliminator off.		Turn scratch eliminator on: output voltage should drop to 1.2 v (approx.).	Defective: $7 E 7$ (pentode section). Open: R224, R218, R223, C210, C211. Shorted or leaky: C211.

Section 3

TROUBLE SHOOTING
 I-F, DETECTOR, AND A-V-C CIRCUITS AM CIRCUITS

Use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Depress the BC push button, PB-3. Set the volume control to maximum, and turn the bass and treble controls fully counterclockwise.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for the FM circuits, or
the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in the AM circuits.

Since the circuit location of test point A for this section is the same as that of test point D for Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble in AM circuits. Isolate by the following tests.
2	B	Loud, clear signal with strong signal input.	Defective: 6BA6, 6SQ7GT (diode section). Open: PB-1. PB.9. R311, R313, R315, R316, R317, R318, C321, L303A. B. D. Shorted: C322, C324. C325. C326. C302C. L303B, D. Mis. aligned: Z303.
3	D	Loud, clear signal with moderate signal input.	Defective: 7A7. Open: PB-1, R305, R306. R307. R308. R309. L302A. B. C, D. Shorted: C340. C314. C315. C301B, L302B. C. Misaligned: Z302.
4	\mathbf{E}	Loud, clear signal with weak signal input.	Defective: 6BA6. Open: R301. R302, R303. R325. L301A. B. C. Shorted: C308, C309. C310, C300B. L301A, B. Misaligned: Z301.
5	A	Loud, clear signal with signal input much weaker than in step 4.	Defective: 7F8*, WS-3(R). Open: R300. R408*, L300B, C. D. Shorted: C338, C305, L300B, D. Misaligned: Z300.

- This part, located in another section, may cause abnormal indication in this section.

FM CIRCUITS

The tests for the FM circuits are made with an AM r-f signal generator and a 20,000 -ohms-per-volt, d-c voltmeter.

In steps $1(a), 4,5,6,7$, and 8 , the oscillator section of the FM detector is made inoperative, thereby converting the circuit to an AM detector; this makes it possible to use an AM signal for testing the i-f amplifiers and the pentode section of the detector.

In step $1(b)$, an unmodulated r-f signal is used to check FM detection (with the oscillator section operating) ; the test is made by observing the d-c voltage drops across the audio load resistor (R324) for different input frequencies within the i.f range of the detector.

In steps 2 and 3, d-c voltage and r-f signal tests are used to check the oscillator section of the FM detector.

Set the volume control to maximum, and turn the
bass and treble controls fully clockwise. Depress the FM push button, PB-1. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

NOTE: The "TEST POINT" column refers to signalgenerator connections in all cases except for step 2, in which the test is made with the voltmeter only.

If the "NORMAL INDICATION" is obtained in step 1, (a) and (b), proceed with the test for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in the FM circuits.

Since the circuit location of test point A for this section is the same as that of test point D for Section 4 , the effectiveness of step 1 , (a) and (b), as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

Section 3 (Cont.) TROUBLE SHOOTING

STEP	TEST POINT	SPECIAL INSTRUCTIONS	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1(a) 1(b)	A (l.fampl. check). B (FM-det. check).	Set generator to 9.1 mc . (mod. on). Short test point G (pin 2 of FM1000) to chassis. Set generator to 9.1 mc (mod. off), with high output. Remove short from test point G. Connect positive lead of voltmeter to test point J. and negative lead to test point H. Use 50 volt range.	Loud, clear signal with very weak signal input. 15 to 30 volts for $9.1 \cdot \mathrm{mc}$. signal or no signal. 12 to 20 volts when generator is set at 80 kc . above or 80 kc . below 9.1 mc .	Trouble in detector or i-f circuits. Isolate by steps 4, 5, 6, 7, and 8. Trouble in FM-detector circuit. Isolate by stops 2 and 3.
2	(FM-det. osc. check).	Connect positive lead of voltmeter to chassis; connect prod end of negative lead through $100,000-\mathrm{hm}$ isolating resistor to test point G. Use 10 -volt range.	Negative 1.8 volts (approx.)	Defective: FM1000. Open: L305, C330, R321. L304A, B, C342, C341, C343. R319, R320. R304. Shorted: C330. C342, C341, C343, C331, C333, C334. C332. C304A, L304A.
3	B	Using low to moderate output (mod. off). tune generator across 9.1 mc .	Beat signal, with zero beat at 9.1 mc .	Misaligned: Z304. Shorted: L304A, B. Changed capacitance: C342. C343. Open: C331. R322.
4	F	Set generator to 9.1 mc . (mod, on). Short test point G to chassis. Shert test point B (for this step only) to chassis.	Clear signal with strong signal input.	Defective: FM1000. Open: R324, R323, PB.1. Shorted or leaky: C329, C333. C334.
5	B	Set generator to 9.1 mc . (mod on). Leave test point G shorted. Remove short from test point B.	Loud, clear signal with strong signal input.	Defective: 6BA6 (3rd i.f.). Shorted or leaky: C303B, C, L303A, C. Open: R314. Misaligned: 2303.
6	D	Set generator to 9.1 mc . (mod. on). Leave test point G shorted.	Loud, clear signal with moderate signal input.	Defective: 7A7 (2nd i.f.). Misaligned: 2302. Shorted: C302A, C302B. L302A. B.
7	E	Set generator to 9.1 mc . (mod. on). Leave test point G shorted.	Loud, clear signal with weak signal input.	Defective: 6BA6 (1st i.f.). Misaligned: 2301. Shorted: C301A, C301C, L301C.
8	A	Set generator to 9.1 mc . (mod. on). Leave test point G shorted.	Loud, clear signal with very weak signal input.	Defective: 7F8*. Misaligned: 2300. Open: L300A, WS-3(R), WS.1(F). Shorted: C300A, C300C, L300A, C.

*This part. located in another section, may cause abnormal indication in this section.

Figure 3. Bottom View, Showing Section 3 Test Points

Section 4

TROUBLE SHOOTING

R-F AND CONVERTER CIRCUITS

For the following rests, with the exception of the oscillator tests, use an r-f signal generator, with modulated output. Connect the generator ground lead to the chassis, test point C; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart. Adjust the generator to give a weak input signal.

Set the radio volume control to maximum, and turn the bass and treble controls counterclockwise.

OSCILLATOR TESTS (AM and FM CIRCUITS):

Connect the positive lead of a high-resistance voltmeter to the oscillator cathode (pin 5) of the 7F8. test point F. Connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 8), test point E. Use a suitable range, such as $0-10$ volts. Absence of negative volt age with any station-selector push button (PB-8 through PB-4) depressed, or for any dial position with push button PB-1, PB-2, or PB-3 depressed, in dicates that the oscillator is not functioning.

AM CIRCUITS

PUSH BUTTON

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIC. CEN. FREQUENCY	PUSH BUTTON OR TUNING CONTROL	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Adjust to frequen cy of each push button, in turn.	Depress. in turn. PB. 8 through PB-4.	Loud. clear signal when each push button is de. pressed.	Trouble in circuits associated with push-button station selectors. Isolate by tests in steps 2 and 3.
2	E to F (Oscillator test)		Depress, in turn. PB. 8 through PB-4.	Negative voltage.	No voltage for any particular push button - Defective: Coil (L409A through L409E) or push button. No voltage for all push buttons-Defective: 7F8, WS-2(F). PB-2, PB-3. Open: R404, R405. R407. R409, C413, C414. C416. L405, WS-2(F), WS-2(R). Shorled: C415. C417. C419.
3	A	Adjust to frequency of each push button, in turn.	Depress. in turn, PB-8 through PB. 4.	Loud, clear signal when each push button is depressed.	Defective: L400. C411. C424A through C424E. Open: R412. R413. C413, PB-2, PB.3, WS-1(F). WS.2(F).

BROADCAST MANUAL

4	A	1000 kc.	Depress BC push button. PB.3. Tune to signal.	Loud. clear signal.	Trouble in broadcast manualtuning circuits. Isolate by tests in steps 5 and 6.
5	A	1000 kc .	Depress BC push button, PB-3. Tune to signal.	Loud, clear signal.	Open: PB-3. PB-2. C421. C411. WS-1(F) Shorted: C400D, L400.
6	E to F (Oscillator test)		Depress BC push button. PB-3. Rotate tuning control through range.	Negative voltaga.	$\begin{aligned} & \text { Open: PB.3. L404. Shorted: C409E } \\ & \text { L404. C400E } \end{aligned}$

SHORT-WAVE MANUAL

7	B	12 mc.	Depress SW push button. PB-2. Tune to signal.	Loud, slear signal.	Trouble in short-wava circuits, lsolate by tests in steps 8 and 9.
8	B	12 mc .	Depress SW push button, PB. 2. Tune to signal.	Loud, clear signal.	Defective: 1400. L401. L402, C401 C410. Open: L401. PB-2.
9	E to F (Oscillator test)		Depress SW push button, PB-2. Rotate tuning control through range.	Negative voltage.	Open: L403. C408, C407. Shorted: C409A.

Section 4 (Cont.) TROUBLE SHOOTING

FM CIRCUITS

Before proceeding with the tests for the FM circuits, connect test point G in Section 3 to the chassis.

Figure 4.

Bottom View, Showing Section 4 Test Points (locations of C409 and C412 shown in figure 8)

CABLIBRATING DIAL BACKPLATE

When the radio chassis has been removed from the cabinet, dial calibration and alignment points may be marked, with a pencil, on the dial backplate at the end of the pointer.

The method of measuring for these points is illustrated in figure 5. Hold a rule against the dial backplate, with the start of the rule against the inside of the upturned edge of the backplate.

With the tuning gang fully meshed, the pointer should be adjusted on the dial-drive cord to coincide with the index mark.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before turning on the power:

1. Inspect the top and bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance between $B+$ (pin 2 of the 5 U 4 G) and the radio chassis. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1000 ohms, check condensers $\mathrm{C} 101 \mathrm{~B}, \mathrm{C} 102$, and C103 for leakage or shorts.

This resistance value, which is much lower than normal, does not represent a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage tests of Section 1 are performed.

TP-10
Figure 5. Calibration Measurements for Dial Backplate

REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk (') are general replacement items. These rumbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

SECTION 1

 POWER SUPPLY| | POWER SUPPLY |
| :---: | :---: |
| Reference Symbol | Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$ |
| C100 | Condenser, line filter, . 01 mf30-1226.1 |
| C101 | Condenser, electrolytic, 2 -section30-2570-19 |
| C101A | Condenser, filter, $10 \mathrm{mf} . .450 \mathrm{w} . \mathrm{v}$.Part of C101 |
| Cl01B | Condenser, filter, $10 \mathrm{mf} ., 450 \mathrm{w} . \mathrm{v}$.Part of Cl01 |
| C102 | Condenser, r-i by-pass, 003 mf61.0117* |
| C103 | Condenser, filter, $40 \mathrm{mf} ., 450 \mathrm{w}$. v.30-2568-5 |

SECTION 1 (Continued) POWER SUPPLY

	POWER SUPPLY			
Reference				
Symbol			\quad	Service
:---:				
C104				

REPLACEMENT SECTION 1 (Continued) POWER SUPPLY		I	T Continued
		SECTION 2 (Continued)	
		AUDIO CIRCUITS	
Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
J100	Socket. phono power27-6200	R212	Resistor, cathode bias, 4700 ohms66-2473340*
L 100	Field, speakerPart of LS200	R213	Resistor, cathode bias, 6800 ohins66-2683340*
R100	Resistor, B + filter, 5600 ohms66-2564340	R214	Resistor, grid return, 4.7 megohms66-5473340*
R101	Resistor, voltage divider, 1 megohm66-5103340*	R215	Resistor, tone compensating. 220,000
R102	Resistor, voltage divider, 220,000 ohms ..66-4223340*		ohms ..66.4223340*
R103	Resistor, telltale-lamp dropping. 10 ohms . 66-0103340	R216	Resistor. voltage divider, 100,000 ohms .66-4103340*
S100	Switch, master power, on-off42-1717	R217	Resistor, voltage divider, 100.000 ohms ..66-4103340*
S101	Switch, phono power, on-off :.........................42-1714	R218	Resistor, voltage divider, 33.000 ohms ...66-3334340*
T100	Transformer, power32-8282	R219	Resistor, tone compensating. 680.000
W100	Line cord ..41-3755-18	R220	ohms ...66.4683340*
	SECTION	R221	Resistor, cathode bias, 2200 ohms66-2224340*
		R222	Resistor, grid return: 1 megohm66-5103340*
	AUDIO CIR	R223	Resistor, voltage divider, 33.000 ohms ...66-3333340*
C200	Condenser, bass control, . 006 mf 45-3500.7*	R224	Resistor, plate load, 18,000 ohms66-3183340*
C201	Condenser, tone compensation, 100 mmf . . 30-1224-1*	R225	Resistor, bias filter, 220,000 ohms66-4223340*
C202	Condenser, tone compensation, 02 mf61-0108*	R226	Resistor, bias filter, 220.000 ohms66.4223340*
C203	Condenser. treble control, . 01 mf61-0120*	R227	Resistor, grid return, 560:000 ohms66-4563340*
C204	Condenser, r-f by-pass, 220 mmf60-10205307*	R228	Resistor, plate load. 220.000 ohms66-4223340*
C203	Condenser, d.c blocking, 006 mf45-3500.7*	R229	Resistor, bias filter, 3.3 megohms66-5333340*
C206	Condenser, d.c blocking. 006 mff45-3500.7*	R230	Resistor, bias silter, 1.5 megohms66-5153340*
C207	Condenser, tone compensating, . 001 mf 45-3500.5*	R231	Resistor, plate load, 100,000 ohms66-4103340*
C208	Condenser, d-c blocking. 02 mf61-0108*	R232	Resistor, bias filter, 220.000 ohms66-4223340*
C209	Condenser, high-pass, 150 mmf60-10155407*	R233	Resistor, voltage divider, 220.000 ohms 66-4223340*
C210	Condenser, d-c blocking, .001 mf45-3500.5*	R234	Resistor, voltage divider, 560.000 ohms ..66-4563340*
C211	Condenser, reactance feedback, 330 mmf. ...60-10335407*	R235 R236	Resistor, plate load, 56.000 ohms66.3563340* Resistor. plate dropping, 470.000 ohms ... 66.4473340°
C212	Condenser, bias filter, 01 mf61.0120*	R237	Resistor, plate load, 150.000 ohins66-4153340*
C213	Condenser, bias filter, . 01 mf610120*	R238	Resistor, grid return. 330,000 ohms66.4333340*
C214	Condenser. bias filter, . 01 mf61-0120*	R239	Resistor, grid return. 330.000 ohms66.4333340*
C215	Condenser. d-c blocking, 330 mmf60.10335407*	S200	Switch, scratch eliminatorPart of R208
C216	Condenser, bias filter, . 03 mf45-3500.1*	T200	Transforıner, output32-8274
C217	Condenser, d-c blocking. . $002 \mathrm{mf}$.61-0062*	T201	Transformer. phono input32-8256
C218	Condenser, bias filter, 02 mf61-0108*		
C219	Condenser, d-c blocking. 006 mf45-3500-7*		SECTION 3
C220	Condenser, plate by-pass, . 1 mf . .a..............61-0113*	I-F, DETECTOR, AND A-V-C CIRCUITS	
C221	Condenser, tone compensating, . 003 mi61.0117*		
C222	Condenser, r-f by pass, 22 mmi60-00205307*	C300A	Condenser, trimmerPart of 2300
J200	Socket. FM test27.6180	C300B	Condenser, trimmerPart of 2300
LS200	Speaker ..36-1606	C300C	Condenser, trimmerPart of 2300
PB-9	Push bution, PHONOPart of $42.1777 \dagger$	C301A	Condenser. trimmerPart of 2301
PL290	Phono plug and cable41-3735	C301B	Condenser, trimmerPart of 2301
PL201	Phono plug ..Part of T201	C301C	Condenser, trimmerPart of $\mathbf{Z 3 0 1}$
R200	Volume control, 2 megohms (tapped at l megohm) ...33-5535-5	C302A	Condenser, trimmer Condenser. trimmer
R201	Tone control, bass, 1 megohm33-5539-7	C302C	Condenser, trimmerPart of 230?
R202	Resistor, tone compensating. 33,000 ohms 66.3333340^{*}	C303A	Condenser, trimmerPart of 2303
R203	Resistor, inverse feedback, 4.7 ohms66.9473340*	C303B	Condenser, trimmerPart of $\mathbf{Z 3 0 3}$
R204	Resistor, inverse feedback, 68 ohms	C303C	Condenser. trimmerPart of $\mathbf{Z 3 0 3}$
R205	Resistor, grid return, 1 megohm	C304A	Corıdenser, trimmerPart of $\mathbf{Z 3 0 4}$
R206	Resistor, bias divider, 1 megohm	C305	Condenser, r.f by-pass, 01 mf61-0120*
R207	Resistor, bias divider, 10 megohms66-6103340*	C306	Condenser, i-f by pass, 01 mf61-0120*
R208	Tone control (with scratch eliminator	C307	Condenser, filament by-pass, 006 mt 45-3500.7*
R208	Tone control (with scratch eliminator switch), treble. 500,000 ohms33-5538.22*	C308	Condenser, by-pass. 220 mml60-10205307*
R209	Resistor, plate load, 220.000 ohms66-4223340*	C309	Condenser, screen by pass, 01 mt61.0120*
R210	Resistor, grid return. 1 megohm66-5103340*	C310	Condenser, plate by-pass, . 01 mf61.0120*
R211	Resistor, cathode load, 47,000 ohms66-3473340*	C311 C312	Condenser. a-v-c by-pass. . 01 mf61-0120*
+42-1777	Push-button switch assembly.	C312 C313	Condenser, cathode by-pass, 01 mf. Condenser, filament by-pass, $.006 \mathrm{mf}45 \cdot 3500.7^{\circ}$

	SECTION 3 (ECTION 3
I-F,	DETECTOR, AND A-V-C CIRCUITS		DFTECTOR, AND A-V-C CIRCUITS
Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$	Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C314	Condenser, screen by pass, 01 mf61.0120 ${ }^{\circ}$	R301	Resistor a.v.e decoupling. 1 megohm66.5103340*
C315	Condenser, plate by-pass, . 01 mf61.0120 ${ }^{\circ}$	R302	Resistor, cathode bias 68 ohms66-0683340*
C316	Condenser, filament by-pass, 006 mf $45.3500 .7^{\circ}$	R303	Resistor, screen dropping, 47,000 ohms ...66-3473340*
C317	Condenser, r-f by-pass, 01 mf61-0120 ${ }^{\circ}$	R304	Resistor, shunt, 6800 ohms, part of Z304 66.2683340*
C318	Condenser, $a \cdot v-c$ filter, 05 mf61.01220	H305	Resistor, a-v.c decoupling. 1 megohm .66-5103340*
C319	Condenser, r.f by pass, 01 mf61.0120 ${ }^{\circ}$	R306	Resistor, cathode bias, 180 ohms 66-1183340*
C320	Condenser, cathode by-pass, 01 mf61.0120 ${ }^{\circ}$	R307	Resistor, cathode bias, 1500 ohms 66.2153340
C321	Condenser, d.c blocking, 006 mf $45.3500 .7^{\circ}$	R308	Resistor, screen dropping, 100,000 ohins 66.4103340*
C322	Condenser, screen by-pass, 01 mf61-0120 ${ }^{\circ}$	R309	Resistor, plate decoupling, 3300 ohms66-2333340*
C323	Condenser, de blocking, 100 mmf . .a...6010105407 ${ }^{\circ}$	R310	Resistor, a.v.c filter, 330,000 ohms66.4333340*
C324	Condenser, plate by-pass, .01 mi.61.0120 ${ }^{\circ}$	R311	Resistor. cathode bias, 180 ohms 66.1183340*
C325	Condenser, rif by-pass, 220 mmi . .a.c. 60-10205307 ${ }^{\circ}$	R312	Resistor diode load. 1 megohm66-5103340*
C326		R313	Resistor, screen dropping, 47,000 ohms ...66.3473340
C327	Condenser, r-f by-pass, 01 mf61-0120 ${ }^{\circ}$	R314	Resistor, inverse feedback, 100 ohms ...66.1103340
C328	Condenser, filament by pass, . 006 mf45-3500-7*	R315	Resistor, plate decoupling. 3300 ohms66-2333340*
C329	Condenser, screen by-pass. $01 \mathrm{mf}$.61-0120*	R316	Resistor, audio decoupling, 100,000 ohms 66-4103340*
C330	Condenser, grid, 33 mmf60-00305307*	R317	Resistor, diode load. 270,000 ohms66-4273340*
C331	Condenser, d-c blocking, . 03 mf 45.3500.1	R318	Resistor, rif filter, 47.000 ohms66.3473340*
C332	Condenser, r-f by-pass, .01 mt610120.	R319	Resistor, oscillator stabilizing. 27 ohms ...66-0273340*
C333	Condenser, rf by pass, 1500 mmf . 60.60155404^{*}	R320	Hesistor, grid leak, 15,000 ohms66.3153340*
C334	```Condenser, electrolytic, audio by-pass, 10 mt., 450 w. v. ..30-2417-6```	R321	Resistor, screen dropping. 56.000 ohms....66-3563340*
C335	Condenser, r.f by-pass, 220 mmi . 60.10205307*	R3	
C336	Condenser, rif by-pass, 220 mmi60-10205307*	R324	Resistor, audio plate load, 47,000 ohms 66.3473340°
C337	Condenser, fixed trimmer, 3000 mml . part of 2300 ..60.20305304	R325	Resistor, plate dropping. 3300 ohms66.2333340*
C338	Condenser, coupling. 9 mmf ., part of Z300 60.90905417	R326 TC300A	Resistor, voltage divider, 100.000 ohms66.4103340 Tuning core
C339	Condenser, fixed trimmer. 330 mmf . part of 2302 . 60.10335407	$\begin{aligned} & \text { TC302A } \\ & \text { TC304A } \end{aligned}$	Tuning core Tuning core
C340	Condenser, coupling, 3.3 mmf., part of 2302 ..30-1221	WS.3(R)	Switch-wafer section Part of $76.2211 \ddagger$
C341	Condenser, voltage divider, 68 mmf . part of Z304 ..60-00683327	Z300	Transformer, Ist i-l. including C300A. C300B. C300C. C337, C338, and
C342	Condenser, voltage divider. 33 mmf . part of Z30460-00333327	2301	
C343	Condenser, fixed trimmer. 15 mmf., part of 2304 ... 60-00155327	2302	C301B, and C301C 32.4001 Transtormer, 3rd i-f. including C302A.
C344	Condenser, fixed trimmer. 270 mmf .		C302B. C302C. C339. C340, and TC302A
L300A	Primary winding Part of. 2300	Z303	Transformer, 4th i-f. including C303A
L300B	Primary windingPart of. $\mathbf{Z 3 0 0}$		C303B, C303C, and C34432.4003.2
L300C	Secondury windingPart of Z300	2304	Transformer, FM detector, includin
L300D	Secondary windingPart of Z300		
L301A	Pimary windingPart of Z301		
L301B	Secondary windingPart of Z301		SECTION 4
L301C	Secondary windingPart of Z301	R-F AND CONVERTER CIRCUITS	
L302A	Primary windingPart of Z302		
L302B	Primary winding Part of Z302	C400	Condenser, tuning31-2694
L302C	Secondary windingPart of Z302	C400A	Condenser, trimmer. FM uerial Part of C400
L302D	Secondary windingPart of Z302	C400B	Condenser, trimmer, FM r.t. Part of C400
L303A	Primary winding Part of Z303	C400C	Condenser, trimmer. FM osc.Part of C400
L303B	Primary winding Part of Z303	C400D	Condenser section, tuning. AM aerial .. Part of C400
L303C	Secondury winding Part of Z303	C400E	Condenser section, tuning. AM osc.Part of C400
L303D	Secondary windingPart of Z303	C400F	Condenser section, luning, FM aerial Part of C400
L304A	Primary windingPart of Z304	C400G	Condenser section, tuning. FM r.f.Part of C400
L304B	Secondary windingPart of Z304	C 400 H	Condenser section, tuning, FM osc. Part of C400
L305	Coil, FM detector ..32.4007.1	C401	Condenser. trimmer, s.w derial 31-6473.2
PB-1	Push button, FM Part of 42.1777	C402	Condenser, d.e blocking, 10 mmt . 60.00105407°
R300	Resistor, plate decoupling, 47,000 ohms . 66.3473340	C403	Condenser, filament by pass. 220 mmf . 60.10205307 ${ }^{\circ}$
$\dagger 42.1777$	Push-button switch assembly.	C404	Condenser, screen by-pass, 1500 mmf . ..60-20155404*

REPLACEMENT PARTS LIST (Continued)

SECTION 4 (Continued) R-F AND CONVERTER CIRCUITS

Reference Symbol	Description $\begin{gathered}\text { Service } \\ \text { Part No. }\end{gathered}$
C405	Condenser, plate by-pass, 1500 mmi60-20155404*
C406	Condenser, d-c blocking, 33 mmf60-00335407*
C407	Condenser, neutralizing (s.w.), 10 mmf . . 60-00105407*
C408	Condenser, oscillator series, 255 mmi30-1220-24
C409	Condenser, trimmer assembly. 3-section31-6477
C409A	Condenser, trimmer, oscillator shunt (s.w.) \qquad Part of C409
C409B	Condenser, trimmer, oscillator shunt (bc.) Part of C409
C409C	Condenser, trimmer, aerial shunt (bc.)....Part of C409
C410	Condenser. aerial series (s.w.), 300 mmf.60-10305307*
C411	Condenser, d-c blocking. 22 mmf60-00205307*
C4 12	Condenser, trimmer, bc. sėies31-6473-3
C4 13	Condenser, r-f voltage divider, 285 mmf30-1224-14
C414	Condenser, r-f voltage divider, 485 mmf30-1224-15
C415	Condenser, r.f by-pass, 470 mmf60-10475307*
C416	Condenser, d-c blocking. $470 \mathrm{mmif}$.60-10475307*
C417	Condenser, r-f by-pass, 220 mmf60-10205307*
C418	Condenser, d-c blocking, 220 mmf60-10205307*
C419	Condenser, r-i by-pass, 220 mmf60-10205307*
C420	Condenser, oscillator grid, $100 \mathrm{mmi}60-10105407 *$
C421	Condenser, oscillator-to-mixer coupling, 750 mmf60-10755301*
C422	Condenser, trimmer assembly, 5 section, aerial tuning (push button)31-6479
C422A	Condenser, trimmerPart of C422
C422B	Condenser, trimmerPart of C422
C422C	Condenser, trimmerPart of C422
C422D	Condenser, trimmerPart of C422
C422E	Condenser, trimmerPart of C422
C423	Condenser, cathode by-pass, 100 mmf60-10105407*
J400	Socket, s-w and FM aerial27-6214-1
L400	Coil, bc. aerial ..32-4049-3
L401	Coil, s-w aerial ...32-4050
L402	Coil, FM isolation ...32-4111
L403	Coil, s-w osc. ...32-3996
L404	Coil, be. osc. ...32-4019-4
L405	Choke, osc. isolation32-4089
L406	Coil, FM aerial ...32-3993
L407	Coil, FM r.f. ...32-3992
L408	Coil, FM osc. ...32-3994
L409A	Coil, push-button osc.32-4059
L409B	Coil, push-button osc.32.4059
L409C	Coil, push-button osc.32-4059-1
L409D	Coil, push-button osc.32-4059-1
L409E	Coil, push-button osc.32.4059.1
L410	Choke, FM plate load32-4061
LA 400	Loop, bc. ...76-3530
PB-1 to PB-10	Push-button-switch assembly42-1777
PL400	Plug assembly, FM a-c-line aerial41-3791
R400	Resistor, grid return, l megohm66-5103340*
R401	Resistor, screen dropping. 56,000 ohms ...66-3563340*
R402	Resistor, cathode bias, 82 ohms66-0823340*
R403	Resistor, voltage divider, 4.7 megohms....66-5473340*
R404	Resistor, parasitic suppressor, 100 ohms .66-1103340*
R405	Resistor, plate feed, AM, 22,000 ohans66-3223340*
R406	Resistor, plate feed, ${ }^{\text {FM, }}$, 22,000 ohms......66-3223340*
R407	Resistor, grid return, 22.000 ohms66-3223340**
R408	Resistor, cathode bias, 2200 ohms66-2223340*
R409	Resistor, cathode bias, 10,000 ohms66-3103340*
R410	Resistor, parasitic suppressor, 10 ohms ...66-0103340*
R411	Resistor, grid return, 4.7 megohms66-5473340*
WS. 1	Switch waler Part of $762211 \ddagger$
WS-2	Switch waferPart of $76.2211 \ddagger$
† 42-1777	Push-button switch assembly.
$\pm 75-2211$	Rotary wafer switch, 3 section.

MISCELLANEOU	
Description	Service Part No.
Bin-lamp-socket assembly	26.6233.3
Cabinet (less scale)	. 10697
Cabinet Parts and Hardware	
Back, cabinet	54-7516
Baffle and cloth. 1.h.	40.6785
Baffle and cloth. r.h.	40-6968-1
Baffle, wood	219001
Bin mechanism, l.h.	76-3223
Bin mechanism, r.h.	76.3223-1
Bolt, speaker (4 req.)	W-1587
Bracket, lamp	56.3545-5
Catch, bullet (2 req.)	45-6002
Cradle assembly	76-3222
Dial-scale-and-backplate assembly	76-3187-4
Dome (4 req.)	45.6042
Door, record album	45-6414
Doors (matched pair furnished)	45-1556
Grille, wire (2 req.)	56.3250
Hinge, continuous	.56-3627
Hinge, knife	56-4882
Hinge, stop	56.5278.1
Panel, instrument	45-6382
Pull, brass	..56-3249
Spring, bin mechanism	.56-4978
Strike, bullet catch (2 req.)	.45-6003
Telltale jewel	54-4304
Top, cabinet	45-6415
Cable and plug, speaker	41-3734.3
Cord, drive ($25-\mathrm{ft}$. spool)	45.8750
Dial-lamp-socket assembly, 14" lead	76-2109
Dial-lamp-socket assembly. $8^{\prime \prime}$ lead76-2109-2	
Dial-Scale Hardware	
Backplate	76.2106
Pointer	56-3179
Scale strap (2 req.)	56-4916
Spring. drive	28.8953
Grommet, r-f.unit mtg. (3 req.)	54.4295
Knob, control (4 req.)	54-4227
Knob, push button (10 req.)	54.4292
Push-Button-Assembly Hardware	
Cap (10 req.)	54-4294
Cap, centering (5 req.)	28.6936
Cover asseably	.76.1343
Screw, luning core (5 req.)	.56-2249
Switch assembly, push-button	42.1777
Tab, BC	54.4317.2
Tab. FM	54.4317 .4
Tab kit (station call letters)	40-6943
Tab, OFF	54-4317.1
Tab. PHONO	54.4317-5
Tab. SW	54-4317.3
Telltale-lamp-socket assembly	41-3737
Terminal strip, coils (5 req.)	56-2250FA3
Tuning core (5 req.)	56-6100
Shaft, drive (tuning)	76-2107
Socket, aerial (s.w and FM)	27-6214-1
Socket-adapter plate (3 req.)	56-4033-1FA3
Socket, Loktal (3 req.)	27.6138*
Socket, miniature (2 req.)	27.6226
Socket, octal (4 req.)	27.6174
Socket, Loktal, r-t unit (l req.)	27.6213
Socket, miniature (l .eq.)	27-6203-1
Socket, Loktal, scratch eliminator (2 req.)	27-6138*
Wafer-Switch Hardware	
Fulcrum assembly	76-2206
Link, connecting	54.7169

SETTING PUSH BUTTONS

1. Connect the output meter between the No. 3 terminal of the aerial terminal panel and the chassis.
2. Turn the volume control to maximum, and bass and treble controls fully counterclockwise.
3. Couple the signal generator loosely to the loop aerial (see Note under "AM ALIGN. MENT CHART").
4. Turn on the power, and allow the radio to warm up for 15 minutes before starting the adjustments.
5. Starting with the lowest frequency desired, set the signal generator to the desired frequency (modulation on), push the station-selector push button, and adjust the associated oscillator tuning core and aerial trimmer condenser (marked on rear of chassis) for maximum indication on the output meter.
6. Reset the signal-generator frequency, and repeat the procedure for each remaining sta-tion-selector push button.
7. Turn off the signal generator, and make a final adjustment of all tuning cores and trimmer condensers while listening to the stations for which the adjustments are being made.

Figure 6. Drive-Cord Installation Details

IMPORTANT!

To avoid altering FM operation, special care should be used in replacing any part. Replacement parts should be placed in the same physical positions as the original parts; connections should be of the same length, and should be soldered to the same points. The placement or length of leads should not be

ROTARY WAFER SWITCH SECTIONS ARE SHOWN (AS VIEWED WITH CHASSIS INVERTED) IN THE POSITION FOR BROADCAST, SHORT-WAVE, PUSH-BUTTON, OR PHONO OPERATION. THESE SECTIONS ARE THROWN TO THE FM POSITION WHEN ACTUATÉD BY THE FM PUSH BUTTON. WAFER SECTIONS ARE SYMBOLIZED WS-1, WS-2, WS-3,FROM FRONT OF CHASSIS TOWARD REAR. (F)INOICATES FRONT CONTACTS, LOOKING FROM FRONT. (R)INDICATES REAR CÓNTACTS, LOOKING THROUGH FROM FRONT.

ALIGNMENT PROCEDURE

CAUTION: Do no turn on power with speaker disconnected, or the radio may be damaged.

ALIGNMENT OF AM CIRCUITS

When the complete AM and FM alignment is to be made, the AM alignment should be made first; however, if AM alignment is not required, the FM alignment alone may be made.
OUTPUT METER-Connect between No. 3 terminal (voice-coil connection) of aeriat terminal panel and chassis.
AM SIGNAL GENERATOR-Connect ground lead to chassis, and output lead as indicated in chart. Use modulated sutput.

OUTPUT LEVEL-During alignment, signal-genera-

ALIGNMENT OF FM CIRCUITS

OUTPUT METER-Connect between No. 3 terminal (voice-coil connection) of aerial terminal panel and chassis.
AM SIGNAL GENERATOR-Connect ground lead to chassis; connect output lead through $.1 \cdot \mathrm{mf}$. condenser to points specified in chart. Use modulated output unless otherwise specified.
OUTPUT LEVEL-During alignment, signal-generator output must be attenuated to maintain radio output below 1.5 volts, as read on output meter. All adjustments are made for maximum output, unless otherwise specified in chart.
CONTROLS—Set volume control to maximum, bass tone control fully counterclockwise, and treble tone control fully clockwise. Depress FM push button, PB-1.
LOCATIONS OF COILS-For the locations of coils L406, L407, and L408 (steps 11 and 15', refer to fig. ure 4.
Note 1. When the oscillator grid (pin 2) of the FM!000 is connected to the chassis, the oscillator section of the FM detector is made inoperative; the circuit is thereby converted from an FM to an AM detector.
Note 2. Make the loading network by connecting a 4700 -ohm resistor and a $.1-\mathrm{mf}$. condenser in series. Attach an alligator clip to each free end of the network. When this network is connected across the primary or secondary winding of an overcoupled i-f transformer, the network loads the circuit so that the transformer is effectively below critical coupling; the unloaded winding may then be correctly peaked at the intermediate frequency.
Note 3. The top of padder C303C can be reached only from the top of the shield can. Slide a length of flattened solder or wire down between the ceramic form and the edge of the trimmer plate. Attach the loading network between this connection and the chassis.
tor output must be attenuated to maintain radio output below 1.5 volts, as read on output meter.
CONTROLS-Set volume control to maximum, bass tone control fully counterclockwise, treble tone control fully clockwise (do not turn on scratch eliminator), and signal-generator dial, radio dial, and radio push buttons as indicated in chart.
DIAL POINTER-With tuning condensers fully meshed, dial pointer must coincide with index mark at low-frequency end of dial. See "CALIBRATING DIAL BACKPLATE" for method of measuring backplate for index and calibration marks.

Note 4. It is essential that the output of the generator be kept below the level at which the oscillator of the FM detector locks in; otherwise, an erroneous zero beat will be obtained. When a single very sharp zero-beat point is obtained, the adjustment is correct.
Note 5. The use of a signal generator for steps 10 through 16 is recommended only if the available generator is sufficiently accurate to insure correct frequency settings. Otherwist, an alternative procedure employing $F M$ broadcast-station signals is recommended. For the adjustments at the high-frequency end of the band, use the station nearest 105 mc .; for the adjustments at the low-frequency end of the band, use the station nearest 88 mc . or 92 mc ., as indicated. If the radio is greatly misaligned, it may be necessary to adjust the trimmers and coils for maximum noise at each end of the band before station signals can be heard. The FM detector must be made inoperative, as directed in step 10 of the "FM ALIGNMENT CHART."
Note 6. Check the tracking of oscillator and r-f circuits with a tuning wand. If placing the brass end in or near the coil increases the output-meter reading, spread the turns; if the powdered-iron end increases the output reading, compress the turns. If both ends cause a decrease in output, the coil is correctly tuned. Do not change the coils excessivelv, since only a small adjustment is required at these frequencies.
Note 7. Make two simple dipole aerials to feed sig. nals from the signal-generator to the radio. Each dipole aerial may consist of two 30 . inch lengths of rubber-covered wire. Connect one dipole aerial to terminals 1 and 2 on the FM aerial socket of the radio. Connect the other dipole aerial to the output leads of the signal generator. Place the two dipoles several feet apart.

Figure 8. Top View, Showing AM Trimmer Locations
FM ALIGNMENT CHART

STEP	SIGNAL GENERATOR		Radio		ADIUST
	CONNECTIONS TO RADIO	dial setting			
1.	To terminal 2 of L 407 (see figure 4).	9.1 mc.	Gang fuly closed.	Connect jumper between osc. grid. pin 2 of FM1000, and chassis (see Note 1). Connect loading net work (see Note 2) between top of padder C3日3C and chassis (see Note 3).	C303B-4th i.f pri- R200 117^{7}
2	Same as step 1.	9.1 mc .	Same as step 1.	Connect loading network between plate pin 2 (blue lead), of third i-f tube and chassis.	C303C-4th i.f sec.
3	Same as step 1.	9.1 mc .	Same as step 1.	Connect loading network between grid. pin 6 (green lead), of third i.f tube and chassis.	C302A-3rd i.f pri.
4	Same as step 1.	9.1 mc .	Same as slep 1.	Connect loading network between platel pin 2 (blue lead), of second i-f tube and chassis.	
5	Same as step 1.	9.1 mc .	Same as step 1.	Connect loading network between grid, pin 6 (green lead). of second i.f tube and chassis.	
${ }^{6}$	Same as step 1.	9.1 mc.	Same as step 1.	Connect loading network between plate, pin 2 (blue lead), of first i.f tube and chassis.	C301C-2nd i.f sec.
7	Same as step 1.	9.1 mc.	Same as step 1.	Leave loading network connected as in step 6.	-lst i-f sec 0 . 80 C300A-1st i-f pri \square
8	To grid (pin 6) of third i.f tube.	$\begin{aligned} & 9.1 \mathrm{me.} \text { (modu. } \\ & \text { lation off) } \end{aligned}$	Same as step 1.	Remove loading network, and remove jumper from pin 2 of FM1000 and chassis. Connect jumper between plate, pin 4 (blue lead) of FM1000, and junction of R324 and red lead of 2304. Adjust trimmer for zero beat.	
9	Same as step 8.	9.1 mc.	Same as step 1.	Remove jumper used in step 8. Adjust tuning core for zero beat (see Note 4).	rC304A-FM det. line. $\begin{aligned} & \text { linity. }\end{aligned}$
10	To terminal 2 of 1400 (see Note 5).	105 mc .	105 mc .	Connect jumper between pin' 2 of FM1000 and chassis. Adiust for maximum output.	C400C-FM osc.
11	Same as step 10.	88 mc .	88 mc .	Adjust coil L408 for maximum output (see Note 6).	FM ose. tracking.
12	Repeat steps 10 and 11 until no fur	her improvement is			
13	Same as step 10.	105 mc .	105 mc .	Adiust for maximum output (rock tuning control).	C400B-FM r.t
14	See Note 7.	105 mc .	105 mc .	Adjust for maximum output.	C400A-FM aerial.
15	Same as step 14.	92 mc .	92 mc .	Adjust coil L407, then L406, for maximum output (see Note 6).	FM r.f and aerial tracking.
16	Hepeat steps 13. 14, and 15 until no further improvement in sensitivity cam be oblained.				

Figure 9. Top View, Showing FM Trimmer Locations

Section 1-Power Supply

TROUBLE SHOOTING

For the tests in this section, use a d-c voltmeter. Connect the negative lead to B-, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum.

TP.6923A
Figure 1. Bottom View, Showing Section I Test Points

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	104V		Trouble in this section. Isolate by the following tests.
2	C	133v	No voliage Low voltage High voltage	```Defective: 35W4. Open or shorted: Cl00, ClO1A, S100, W100. Leaky: C101A. Leaky: C100, Cl01A. Open: R100.```
3	D	121 v	No voltage Low voltage High vollage	Open or shorted: C101A, C101B. Open: R100. Leaky: ClolA, Cl01B. Open: R101.
4	A	104V	No voltage Low voltage	Open or shorted: C101C. Open: R101. Leaky: Clolb.
Listening Test: Abnormal hum may be caused by open or leaky Cl00, C101A, C101B, CiolC.				

Section 2-Audio Circuits

TROUBLE SHOOTINC

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum.

Figure 2. Bottom View, Showing Section 2 Test Points

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolare and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with moderale generator input.	Trouble in this section. Isolate by the following lests.
2	D	Same as step 1.	Defective: 50B5, LS200. Shorted: C203, T200. Open: C203. T200. R205.
3	C	Same as step 1.	Defective: 12AT6. Open: C201, R201, R204. Shorled: C202.
4	A	Same as step 1.	Open: C200. Shorted: 2301*.
Listening Test: Distortion may be caused by shorted or loaky C200, C201.			

- This part, located in another section, may cause abnormal indication in this section.

Section 3-I-F, Detector, And A-V-C Circuits
 TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests

Figure 3. Bottom View, Showing Section 3 Test Points for Section 4 ($\mathrm{r}-\mathrm{f}$ and converter circuits); if not isolate and correct the trouble in this section.

To provide a complete i-f-amplifier check, test point A for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under the "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	test point	NORMAL INDICATION	possible cause of abnormal indication.
1	A	Loud, clear speaker output with moderate generator input.	Trouble in this section. Isolate by the following tests.
2	C	Same as step 1.	Defective: 12BA6, 12ATs. Open or shorted: C300, C302, 2301. Open: R301, R304. Miealigned: Z301.
3	A	Same an stop 1.	Delective: 128E6*. Open or shorted: z300. Misaligned: 2300.

*This part, located in another section, may cause abnormal indication in this section.

Section 4-R-F And Converter Circuits

TROUBLE SHOOTING

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to B -, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum. Set the tuning control and the signalgenerator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

STEP	TEST POINT	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc.	1000 kc.	Loud. clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C (Osc. test; see note		Rotate through range.	Negative 3 to 6 volts.	Detective: 12BE6. Open or shorted: C400. C400B, C402. C403. T400.
3	A	1000 kc.	1000 kc .	Same as step 1.	Open: LA400. L400, C401, R400. Shorted: C400, C400A.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to B-, test point B; connect the prod end of the negative lead through a 100,000 ohm isolating resistor to the oscillator grid (pin l of 12BE6), test point C. Use a sultable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (measured with 20,000 -ohms-per-volt meter) throughout the tuning range.

ALIGNMENT PROCEDURE

RADIO CONTROLS - Set volume control to maximum. Set tuning control as indicated in chart.
OUTPUT METER - Connect to left-hand terminal on wiring pancl and to
chassis.
RADIO CONTROLS - Set volume control to maximum. Set tuning control as
indicated in chart.

OUTPUT METER - Connect to left-hand terminal on wiring pancl and to
chassis.

SIGNAL GENERATOR - Use r-f signal generator, with modulated output. Connect generator and set frequency as indicated in chart.
OUTPUT LEVEL - During alignment, signal-generator output must be attenuated to hold output-
meter reading below 1.25 volts. meter reading below 1.25 volts.

RADIATING LOOP: Make up a 6-8 turn, 6-inch-diameter loop, using insulated wire; connect to signal-generator
leads and place near radio loop aerial. Radio loop aerial must be connected to radio.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before it is turned on:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the
proper sockets, and look for any broken or shorted proper sockets, and look for any broken or shorted
connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $\mathrm{B}+$ (pin 7 of 35 W 4) and B- (test point B). When the ohmmeter est resistance reading will be obtained. If the reading is lower than 1000 ohms, check condensers C101A, C 101 B , and C203 for leakage or shorts. The resistance value given is much lower than normal, and is not intended as a quality check of these condensers; the
value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed.

Circuit Description

Philco Radio Model 49-603 is a five-tube, manually tuned superheterodyne, providing reception on the standard broadcast band, $540-1620 \mathrm{kc}$. A high-impedance loop within the cabinet normally provides adequate signal pickup.

C301 is a special condenser, inductively wound to act The converter employs a 12 BE 6 , which provides as a series-resonant circuit at the $455-\mathrm{kc}$. intermediate high-signal-to-noise ratio and high conversion efficiency. frequency. This condenser provides an exceptionally The signal from the converter is transformer-coupled low-impedance i-f by-pass between B-and the chassis to a 12BA6 i-f amplifier. This in turn is transformercoupled to a 12AT6 tube, one-half of which functions as the detector and supplies a-v-c voltage. Both i-f ondary windings. ndary windings
The other half of the type 12AT6 is used as a first udio amplifier, which is resistance-coupled to the 50B5 oud-speaker. The 50B5 is transformer-coupled to the aker.
The d-c operating voltages are supplied by a type 5W4 rectifier through a resistance-condenser network. A 150,000 -ohm resistor is connected between B- and the chassis to prevent hum which might otherwise occur
under conditions of high humidity.

REPLACEMENT PARTS LIST

NOTE: Part numbers marked with an asterisk (*) are general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the "Service Part No."

Reference Symbol	SECTION 1 POWER SUPPLY Description Service Part No.	Reference Symbol	SECTION 3 (Continued) J-F, DETECTOR, AND A.V-C CIRCUITS Service Description Part No.
C100	Condenser, line filter, 047 mf . .-.	R302	
Clol	Condenser, electrolytic, 3-section30-2573	R302 R303	Resistor, a-v-c filter, 2.2 megohms66-5223340 Resistor, diode load, 47.000 ohms66473340*
C101B		2300	Transformer, 1st i-f 32 -4160-6
Cl01C	Condenser, filter, 20 mfenart of Clol	2301	Transformer, 2nd i-f ...32-4240
R100	Resistor, filter, 220 ohms66-1224340**		
R101	Resistor, filter, 1200 ohms		
R102	Resistor, leakage, 150,000 ohms .-.........66-4153340*		
$\begin{aligned} & \text { S100 } \\ & \text { W100 } \end{aligned}$	Switch, power on-off		
		SECTION 4	
			R-F AND CONVERTER CIRCUITS
		C400	Condenser, tuning gang .-. ${ }^{\text {31-2735 }}$
		C400A	Condenser, r-f trackingPart of C400
	SECTION 2	C400B C401	Condenser, oscillator tracking - Part of C400
	AUDIO CIRCUITS	C402	Condenser, isolating, 47 mmf . .-..................30-1224-2*
C200		C403	Condenser, r-f by-pass, 10 mmf . ${ }^{\text {a }}$ - 30-1224-26*
C201	Condenser, d-c blocking, . $01 \mathrm{mf}$.61-0120*	LA400	Loop, aerial ...32-4325
C202	Condenser, d-c blocking, . 01 mf61-0120*	1400	Coil, loading
C202	Condenser, parasitic suppressor, 220 mmf .	R400	Resistor, grid return. 1 megohm 66-5103340*
C203	Condenser, tone compensation, 022 mf61-0108	T400	Resistor, oscillator grid, Transformer oscillator
LS200	Loud-speaker, permanent-magnet type661627.4	1400	Iransformer, osciliator
R200	Volume control, 500,000 ohms66-4503340*		
R201	Resistor, plate dropping, 470,000 ohms66-4473340*		
R202	Resistor, grid return, 3.3 megohms66-5333340*		
R203	Resistor, grid return, 470,000 ohms66-4473340*		
R204	Resistor, bias, 130 ohms66-1123340*		
T200		MISCELLANEOUS	
		Descriptio	Service Part No.
		Back-panel	
		Button-and-	pring assembly \quad 76-4322
		Button-and	pring assembly 76.4322 .1
		Cabinel (co	nplete)
		Baffle-a	ad-cloth assembly ${ }^{\text {40-7589 }}$
		Front-panel	assembly ...76-4228
	SECTION 3	Hinge asse	mbly .an - 46.6450
	I-F, DETECTOR, AND A.V-C CIRCUITS	Screw Sock	ature ${ }^{\text {a }}$ W237.5FA3
C300	Condenser, screen by-pass, 047 mf 61-0179*	Spring, aer	al ground
C301	Condenser, special i-f by-pass, . 1 mf .-3) 30-4644.1	Wiring pan	- 38-5083-10
C302	Condenser, r-f by-pass, 047 mf .		
R300	Resistor, bias, 220 ohms ... 66-1223340*		
R301	Resistor, screen dropping, 6800 ohms66-2863340*		

Section 1

TROUBLE SHOOTING

For the tests in this section, use a d-c voltmeter. Connect the negative lead to the B bus, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter, at a line voltage of 117 volts, a.c.

Turn the power switch "on," and set the volume control to minimum.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 2; if not, isolate and correct the trouble in this section.

FIGURE 1. BOTTOM VIEW, SHOWING SECTION 1 TEST POINTS

STEP	TEST POINT	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	98 volts		Trouble within this section. Isolate by the following tests.
2	C	131 volts	No voliage. Low voltage. High voltage.	Defective: 35Y4. W100, S100. Shorted: C100A. Defective: 35Y4. Open: Cl00A, 1100. Leaky: C100A. Open: R100.
3	D	118 volts	No voltage. Low voltage. High voltage.	```Shorted: Cl00B. Leaky: C100B, C100C, C203*. Open: R101, T200*, R204*.```
4	A	98 volts	No voltage. Low voltage. High voltage.	```Shorted: C100C. Open: R101. Leaky: C100C. Open: R204*.```

Listening Test: Abnormal hum may be caused by open C100A. C100B, C100C, or R102.

* This part, located in another section, may cause abnormal indication in this section.

Section 2
 TROUBLE SHOOTING

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B-, test point B; connect the output lead thtough a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum. Adjust the signal-generator output as required for each step.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests tor Section 3. If not, isolate and correct the trouble in this section.

FIGURE 2. BOTTOM VIEW: SHOWING SECTION 2 TEST POINTS

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
2	C	Clear signal with strong signal input.	Defective: 50L6GT, T200, LS200. Shorted or leaky: C203, C202. Open: R204, R203.
3	D	Same as step 1.	Defective: 7C6. Shorted or leaky: C201. Open: R201. R202, C201.
4	A	Same as step 1. Note: Rotate R200 through range.	Defective: R200. Shorted or leaky: C200. Open: R201, C200.
Listening Test: Distortion on strong signals may be caused by leaky C200 or open R201.			

Section 3
 TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B-, test point B; connect the output lead through a . $1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4; if not, isolate and correct the trouble in this section.

Since the circuit location of test point A for this section is the same as that of test point C for Section 4, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in Section 4; these parts are listed under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear signal with weak signal Input.	Trouble within this section. Isolate by the following tests.
2	C	Loud, clear signal with strong signal input.	Defective: 7B7 (2nd i.f.), 7C6 (diode section), Z301. Shorted or leaky: C305. Open: R303. Misaligned: Z301.
3	D	Loud, clear signal with moderate signal input.	Defective: 7B7 (lst i.f.). Shorted or leaky: C303. C302. Open: R301, R302, R300, C303. C302.
4	A	Loud, clear signal with weak signal input.	Defective: 14AF7*, Z300. Open: R401*, R403*, C306. Shorted or leaky: C306. Misaligned: Z300.

* This part, located in another section, maY cause abnormal indication in this section.

Section 4

TROUBLE SHOOTING

For the tests in this section, use an r-f signal generator, with modulated output. Connect the generator ground lead to B -, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the radio volume control to maximum.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate the trouble by following the remaining steps.

FIGURE 4. BOTTOM VIEW, SHOWING SECTION 4 TEST POINTS (LOCATION OF C401 SHOWN IN FIGURE 6)		
0	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
kc.	Loud, clear signal with weak signal input.	Trouble within this section. Isolate by the following tests.
kc.	Same as step 1.	Defective: 14AF7. Open: C406. R402. Trouble in oscillator circuit. See step 3.
kc.	Negative voltage 1.6 volts to 1.8 volts.	Defective: L400. Open: R400, R402, C405. C404. Shorted: C402. C400, C405. C404. C400A.
$\mathbf{k c}$.	Same as step 1.	Defective: LA400, C400, C400B. Open or shorted: C403.

[^8]
REPLACEMENT PARTS LIST

NOTE

Part numbers marked with an asterisk (*) are general replacement tiems. These numbers may not be identical with those on factory assemblies: also, the electrical values of some replacement items may differ trom the values indicated in the schematic diagram and paris list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When orderina replacements, use only the "Service Part No."

SECTION 1 POWER SUPPLY

Reference	Symbol Description	Service Part No.
Cl00	Condenser, electrolytic, 3-section	30-2570.14
C100A	Condenser, filter, 30 mf .	- Part of C100
C100B	Condenser, filter, 25 mf .	Part of C100
Cl00C	Condenser, filter, 20 mf .	. Part of C100
C101	Condenser, line filter, 04 mf .	
1100	Panel lamp	$\ldots34-2068$
R100	Resistor, filter, 220 ohms	\cdots........66-1224340*
R101	Resistor, filter, 1200 ohms66-2123340*
R102	Resistor, leakage, 150,000 ohms	$\cdots . .$.
S100	Switch, a-c power	Part of R200
W100	Power cord and plug	- - - - - - - $\mathrm{C} 2183^{*}$

SECTION 2 AUDIO CIRCUITS

C200	
C201	
C202	Condenser, by-pass, 220 mml62-122001001*
C203	Condenser, plate, . 02 mf30-4599*
LS200	Loud-speaker ..-36-1615
R200	Volume control (with a-c power switch). 500,000 ohms \qquad 33-5491
H2O1	Resistor, grid load, 3.3 megohms66-5333340*
R202	Resistor, plate load, 470,000 ohms66-4473340*
R203	Resistor, grid leak, 470.000 ohms66-4473340*
R204	Resistor, bias, 130 ohms66-1123340*
T200	Transformer, outputPart of LS200

SECTION 3

C300A	Condenser, trimmer
C300B	Condenser, trimmer Part of 2300
C301A	Condenser, trimmerPart of 2301
C301B	Condenser, trimmerart of 2301
C301C	Condenser, i-f by-passPart of 2301
2301D	Condenser, i.f by-passPart of 2301
C302	Condenser, by-pass, . 003 mf30-4582*
C303	Condenser, coupling, 220 mmf62-122001001*
C304	Condenser-and-choke assembly, 2 mf $\mathbf{3 0 - 4 5 9 4}$
C305	Condenser, screen by-pass, . 05 mf . -...
C306	Condenser, a-v-c by-pass, . 05 mf30-4510*
R300	Resistor, dropping, 2200 ohms66-2223340*
R301	Resistor, plate load, 15,000 ohms66-3153340*
R302	Resistor, grid load, 150,000 ohms66-4153340*
R303	Resistor, screen, 33,000 ohms66-3333340*
R304	Resistor, a-v-c, 2.2 megohms66-5223340*
R305	Hesistor, diode load, 47,000 ohms (part of Z301) \qquad 66-3473340*

SECTION 3 (Continued) I-F, DETECTOR, AND A-V-C CIRCUITS

Reference	Symbol Description Service Part No.
Z300	Transformer, 1st i-f, including C300A and C300B \qquad 32.4151
2301	Transformer, 2nd i-f, including R305, C301A, C301B, C301C and C301D \qquad $.32-4152$
	SECTION 4
	R-F AND CONVERTER CIRCUITS
C400	Condenser, tuning, 2-section31-2727
C400A	Condenser, trimmerart of C400
C400B	Condenser, trimmerart of C400
C401	Condenser, series blocking, .0015 mf. .-......30-4621*
C402	Condenser, isolating, . 04 mf . ..-
C403	Condenser, coupling. 470 mmf62.147001001*
C404	Condenser, osc. grid, 100 mmf30-1225-2
C405	Condenser, osc. plate, 220 mmf62-122001001*
C406	Condenser, by-pass, . 05 mf30-4510*
4400	
LA400	Loop derial)
R400	Resistor, oscillator grid, 47.000 ohms66-3473340*
8401	Resistor, bias, 2200 ohms66-2223340*
R402	Resistor, dropping, 10,000 ohms66-3103340*
R403	Resistor, grid, 2.2 megohms

MISCELLANEOUS

Description Cabinet (less acale)	Service Part No.
49-900-E	10629D
49-900-I	10629C
Back, Cabinet	
49-900-E	54.7096
49-900-I	54-7097
Clip, scale mounting	56-3290
Fastener, cabinet back	56-2726FA9
Pointer	.54-4253
Pointer bracket and arm assembly	76-1654-2
Spring, pointer bracket	.56-3859
Scale, dial	
49-900-E	27-5916-2
49-900-I	27.5916-3
Cord, pointer drive (25-ft. spool)	45.8760*
Cord, tuning-condenser drive (25-ft. spool) ...	45.8750*
Tnob	
49-900.E	54-4218-1
49-900-1	54-4218
Socket assembly, pilot lamp	76-1981
Socket, loktal	27-6177*
Socket, octal	27-6174*
Spring, tuning-condenser drive cord	56.2617
Shaft, tuning	56-3031FA11
Bushing	27-9437
Retaining spring	57-1468FA3

OJohn F. Rider

ALIGNMENT PROCEDURE

OUTPUT LEVEL-During alignment, adjust signalgenerator output to maintain an output-meter indication below 1.25 volts.

STEP	SIGNAL GENERATOR		RADIU		ADJUST
	CONNECTIONS TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	DIAL SETTING	SPECIAL INSTRUCTIONS	
1				Turn C300B down tight.	
2	(Chassis out of cabinet). Ground lead to $\mathrm{B}-$; output lead through .1mf . condenser to test point C, Section 4.	455 kc .	540 kc .	Adjust trimmers, in the order given for maximum output.	$\begin{aligned} & \text { C301B } \\ & \text { C301A } \\ & \text { C300B } \\ & \text { C300A } \end{aligned}$
3	(Chassis in cabinet). Radiating loop. (See note below.)	1600 kc .	1600 kc .	Adjust for maximum output.	C 400 B
4	Same as step 3.	1500 kc .	1500 kc .	Adjust for maximum output.	C400A

RADIATING LOOP: Make up a six-to-eight-turn, 6-inch-diameter loop, using insulated wire; connect to signal-generator leads and
place near radio loop.

Circuit Description

Circuit Description
Philco Models 49-900-E and 49-900-I are six-tube tions of the test points and components of that section.
table-model superheterodyne radios, providing reception in the standard broadcast band
dentical except for the cabinets
The high-impedance loop aerial normally provides adequate signal pickup. If greater p .
The loop works into a 14 AF 7
The loop works into a 14AF7 converter. Variable ondenser tuning is used. The two i-f stages employ ${ }^{7}$ B7 pentode tubes. To obtain good stability, resistance coupling is employed between the first and second i-f tubes. One diode (pin 5) of the 7 C 6 provides detection
and a-v-c voltage. The triode section of this tube funcand a-v-c voltage. The triode section of this tube functions as the first audio amplifier, and is resistance-
coupled to the 50 L 6 GT output tube. The speaker is a permanent-magnet dynamic. The power supply employs 35Y4, working into a resistance-capacitance filter sys em.
The $150,000-\mathrm{ohm}$ resistor R 102 , connected between B- bus and chassis, prevents the hum which migh otherwise occur under conditions of high humidity. The series-resonant circuit, C304, functions as a by pass of exceptionally low impedance; C304 is resonan
at the i.f., 455 kc . t the i.f., 455 kc
Philco TROUBLE-SHOOTING Procedure
For rapid trouble shooting, the radio circuit is di vided into four sections, with test points specified for
each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting pro cedure given for each section includes a simplified test

In the test points and components of that section. In each chart, the first step is a master check for out going ${ }^{\circ}$ Faing in
解

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring the tube-electrode voltages; third, measuring ouble revealed should bubstituting condensers. The her.
CAbinet

SPECIFICATIONS

Model 49-900.1 CIRCUIT FREQUENCY RANGE AuDio output operating voltag power consumption aerial
intermediate frequency
philco tubes (6)

DIAL POINTER-Turn tuning condensers to full-mesh position. Adjust dial pointer to coincide with index dot located to left of "55."

OUTPUT METER-Connect to left-hand (output) and center (chassis) lug of terminal panel, shown in Fig ure 6 .
© John F. Rider

TROUBLE SHOOTING

Section 1
 Power Supply

For the tests in this section, use a d-c voltmeter. Connect the negative lead to $\mathrm{B}-$, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume to minimum.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 2 (audio circuits) ; if not, isolate and correct the trouble in this section.

Figure 1. Bottom View, Showing Section 1 Test Points

STEP	TEST POINT	NORMAL IHDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	100 volts		Trouble within this section. Isolate by the following tests.
2	C	124 volts	No voltage	Defective: 35Y4. Open: W100, S100. Shorted: Cl01A.
			Low voltage	$\begin{aligned} & \text { Leaky: C101A. } \\ & \text { Open: C101A. } \end{aligned}$
			High voltage	Open: R100.
3	D	111 volts	No voltage	Shorted: C101B. Open: R100.
			Low voltage	Leaky: C101A, C101B. Shorted: C203*.
			High voltage	Open: R101, T200*, R204*.
4	A	100 volts	No voltage	Shorted: C101C. Open: R101.
			Low voltage	Leaky: C101C.

Listening Test: Abnormal hum may be caused by open C101A, C101B, or C101C.
*This part, located in another section, may cause abnormal indication in this section.

TROUBLE SHOOTING

Section 2
 Audio Circuits

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to $\mathrm{B}-$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume to maximum.
If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits) ; if not, isolate and correct the trouble in this section.

Figure 2. Bottom View, Showing Section 2 Test Points

STEP	TEST POINT
1	A
2	C
3	D
4	A

Lormal INDICATION moderate signal-generator input. mor spaker output with
Loud, clear output with strong input.
Loud, clear output with moderate input.
Same as step 3.

Listening Test: Distortion may be caused by shorted or leaky C201.

* This part, located in another section, may cause abnormal indication in this section.

TROUBLE SHOOTING Section 3 I-F, Detector, and A-v-c Circuits

For the tests in this section, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to B -, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume to maximum.
If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for Section 4 (r -f and converter circuits) ; if nor, isolate and correct the trouble in this section.

To provide a complete i-f-amplifier check, test point A for this section is placed at the grid of the mixer in Section 4 ; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

Figure 3. Bottom View, Showing Section 3 Test Points

STEP	TEST POINT	NORMAL INDICATION
1	A	Loud, clear speaker output with moderate signal-generator input.
2	C	Loud, clear output with moderate input.
3	A	Same as step 2.

POSSIBLE CAUSE OF ABNORMAL INDICATION
Trouble within this section. Isolate by the following tests.

* This part, located in another section, may cause abnormal indication in this section.

TROUBLE SHOOTING

Section 4
 R-F and Converter Circuits

For the tests in this section, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator grourd lead to B-, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume to maximum, and set the drum tuner and the signal-generator frequency as indicated in the chatt.

If the "NORMAL INDICATION"' is not obtained in step 1, isolate and correct the trouble in this section. If the trouble is not revealed by the tests for this section, check the alignment.

Figure 4. Bottom View, Showing Section 4 Test Points

STEP	TEST POINT	SIG. GEN. FREP.	DRUM TUNER	NORMAL INDICATION	possible cause of abnormal INDICATION
1	A	Adjust to frequency of each station setting.	Depress drum tuner for each station setting, in turn.	Loud, clear speaker output with weak signalgenerator input.	Trouble in circuits associated with each position of the station-selector drum tuner. Isolate by steps 2 and 3.
2	$\begin{aligned} & \text { C to B } \\ & \text { Osc. Test } \\ & \text { (see Note } \\ & \text { helow) } \end{aligned}$		Same as step 1.	-3.5, to -4.5v.	No voltage for any station setting-De. fective: 7A8. Shorted: C402, C403, C404, C405, L400 to L405, WS-1 (F). Open: L400 to L403, C404, C403, R401.
3	A	Same as step 1.	Same as step 1.	Same as step 1.	Shorted: C407, WS-2(R), C400A-F. Open: C401, C407, R403, WS-2(R), C400A-F.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to $B-$, test point B; connect the prod end of the negative lead through a 100,000 ohm isolating resistor to the oscillator grid (pin 4 of 7 A 8), test point C. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approxinately the value given in the chart (measured with 20,000 -ohms-per-volt neter) throughout the tuning range.

Figure 5. Philco Radio Model 49-901, Sectionalized Schematic Diagram, Showing Test Points
©John F. Rider

[^9]Philco Model 49－901 is a table－model radio employing st the by rotating the drum tuner．Continued rotation adjusts the depressing the drum tuner once for each station．The depressing the drum tuner once for each station．The pickup．However，a terminal is provided for connecting

The loop works through a condenser into a 7A8 con－ verter．The 7A8 is transformer－coupled to a 14 A 7 i－f amplifier，which，in turn，is transformer－coupled to the permeability－tuned primary and secondary windings，and permeability－tuned primary and secondary windings，and vides detection and a－v－c voltage；the a－v－c voltage is ap－ plied to the grids of the mixer and i－f amplifier．The 1st
audio（triode）section of the 14 B 6 is resistance－coupled to audio（triode）section of the 14 B 6 is resistance－coupled to

NOTE：Part numbers identitiod by an asterisk（＊）
indicate general replacement items．These nem．
num．

SECTION 4－R－F AND CONYERTER CIRCUITS

Reference Symbol Description Service Part No．
C400
Condenser assembly，

 훈 ̛ㅓ웡 C 403
C 404
C 405
C 406
LA400 Loop aerial an external aerial，if required． Cotoc Condereer timet arial
 $\mathrm{C}_{\mathrm{C} 402}$ Condenser，r－f by－pass， $680 \mathrm{mmf} \ldots . .60-10685331^{*}$

Circuit Description

 $\begin{array}{ll}\text { C404 } & \text { Condenser，isolating，} 220 \mathrm{mmf} . \\ \text { C } 405 \\ \text { C406 } & \text { Condenser，rf by pass，} 270 \mathrm{mmf} \\ \text { Condenser，av－c filter，} 05 \mathrm{mf}\end{array}$ $\begin{array}{ll}\mathrm{C} 407 & \text { Condenser，blocking，} 220 \mathrm{mmf} \text { ．} \\ \mathrm{J} 400 & \text { Accessory jack ．．．．．．．．．．．．．}\end{array}$

$$
\begin{array}{r}
.32-4316 \\
. .32-4315
\end{array}
$$ approximately 1 watt of audio power to the PM dynamic speaker．

D－c operating voltages are supplied by a 35 Y 4 half－wave rectifier and a resistance－capacitance filter．The $150,000-$
ohm resistor，R102，is connected between B－and the chassis to prevent hum caused by condenser leakage under
high－humidity conditions． ño $.31-651-0$
$.32-4599.5 *$
$32-4059-4 *$
$56-6100^{*}$ \％䒬鿓古
 Tuning coils and trimmercondenser assembily．

 R401 Resistor，bias， 100,000 ohms．．． R402 Resistor WS－2（R）Switch－wafer section ．．．．．．．．． MISCELLANEOUS

\section*{| o |
| :--- |
| $\mathbf{2}$ |
| \mathbf{t} |
| \mathbf{L} |}

 mining whether trouble exists in that section，without going
through the entire test procedure．

Failure to obtain the＂NORMAL INDICATION＂in any given step indicates trouble within the circuit under test． After isolating the trouble to a single stage，the defect is
located by：first，testing the tube；second，measuring tube located by：hirst，testing the tube；second，measuring tube
electrode voltages；third，measuring circuit resistance； fourth，substituting condensers．The trouble revealed
should be corrected before testing further．

 Condenser，tone compensation， $02 \mathrm{mf} \ldots . .61-0180^{*}$

Volume control（with on off switch），
50,000 ohms ．．．．．．．．．．．．．．．．33－5556－6＊
Resistor grid return， 3.3 megohms．．．66－5333340＊
 Resistor，bias， 130 ohms．．．．．．．．．．．．．．66－1123340＊ Output transformer ．．．． For rapid trouble shooting，the radio circuit is divided
into four sections，with test points specified for each sec－
tion；these sections and test points are indicated in the
schematic diagram．The trouble－shooting procedure given
for each section includes a simplified test chart and a bor－
tom view of the chassis showing the locations of the test
points and the components of that section．

In each chart，the first step is a master check for deter－

SECTION 3－I－F，DETECTOR，AND A－V－C CIRCUITS Condenser，fixed， 1 st iff primary ．．．．．Part of Z300
Condenser，fixed， 1 st i－f secondary．．．Part of Z300

 Condenser，i－f filter ．．．．．．．．．．．．．．．．．Part of Z301 Condenser，i：f filter Condenser（inductively wound）． 30－4644－1＊

Board－and－clamp assembly …．．．．． Tuning－assembly hardware（76－4082） Sleeve，adjusting
Bushing（12） Bushing（6）．．．．
Ring，
Link，adjusting Pilot－laupling（6ssmbly
Socket，Loktal（5） Mounting strip，trimmer Socket，Loktal（5）．．．．．．．．．．．．．．．．．．．．．．．
$\dagger 76.4057$ Roller switch assembly．

Reference Symbol \quad SECTION 1—POWER SUPPLYReference Symbol $\begin{array}{ll}\mathrm{C100} & \text { Condenser，line filter，} .04 \mathrm{mt} \\ \mathrm{C} 101 & \text { Condenser，electrolytic，} 3 \text { section．}\end{array}$ \qquad
101 A
101 B
101 C
L100
R100
R101
R102
S100
$\mathbf{W} 100$

Circuit Description

Philco Radio Model $49-905$ is a six-tube superhetrodyne, which provides reception in the stand-ard-broadcast band and in the FM band. A built-in high-impedance loop is used as the aerial on the broadcast band, and the line cord is used as the aerial on the FM band. These aerials normally provide adequate signal pickup; if additional pickup is required, Philco Dipole Aerial, Part No. 45. 1462, may be used. When connecting the dipole aerial, disconnect the blue, external AM aerial lead from the chassis, and attach it to pin 1 of the dipole-aerial plug which fits into J400. No additional coupler is required.

A 12AT7 dual triode is used as the oscillator and mixer for both bands by switching the mixer grid and both the oscillator and mixer cathodes to the proper circuits.

For broadcast reception, the i-f signal is trans-former-coupled to a 12 AU 6 i -f amplifier. The output of this stage is transformer-coupled to a diode section of the 19 T 8 , which provides detection and a-v-c action.

For FM reception, an additional i-f amplifier stage, which employs a 6 BH 6 , is used to provide adequate gain and stability. This stage is coupled into the circuit by applying $B+$ voltage to the plate and screen grid when the band switch is in the FM position. The 6BH6 is transformer-coupled to both the mixer and the second i-f amplifier. The 12AU6 is also transformer-coupled to two diode sections of the 19 T 8 in a ratio-detector circuit.

In the i-f circuits, two sets of i-f transformers are used; one set is tuned to 455 kc . for standard broadcast, and the other set is tuned to 9.1 mc . for FM. The use of two sets of transformers makes better shielding possible, so that undesirable beat signals and interaction between transformers are eliminated.

The triode section of the 19 T 8 is employed as the first audio amplifier, and is resistance-coupled to the 35 C 5 output tube, which supplies an audio output of approximately one watt to the perma. nent-magnet dynamic speaker.

The power supply utilizes a 35 W 4 as a half.
wave rectifier, which operates from a line voltage of $105-120$ volts, a.c. or d.c

SPECIFICATIONS

CABINET Plastic, brown finish
CIRCUIT Six-tube superheterodyne
FREQUENCY RANGES FREQUENCY RANGES
Broadcast 540- 1620 kc.
FM $88-108 \mathrm{mc}$.

AUDIO OUTPUT 1 watt
OPERATING VOLTAGE . $105-120$ volts, a.c./d.c. POWER CONSUMPTION. 30 watts
AERIAL Built-in high-impedance loop for AM, line cord for FM; provision for
INTERMEDIATE connecting external aerial.

FREQUENCY

```
AM .455 kc.
```

FM 9.1 mc .
PHILCO TUBES (6)35W4, 35C5, 12AU6, 12AT7, 19T8, 6BH6

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; those sections and test points are indicated in the schematic diagram. The troubleshooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain the "NORMAL INDICA. TION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the fol. lowing preliminary checks should be made before it is turned on:

1. Inspect both the top and the bottom of the chassis. Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious sources of trouble.
2. Measure the resistance between $B+$ (pin 7 of $35 W 4$ rectifier) and $B-$, test point B. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1700 ohms, check condensers C100A, C100B, C100C, C201, C305, C308, and C310 for leakage or shorts. The resistance value given is much lower than normal, and is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed.

Important!

To avoid altering FM operation, special care should be used in replacing any part. Replacement parts should be placed in the same physical positions as the original parts; connections should be of the same length, and should be soldered to the same points. The placement or length of leads should not be altered.

Section 1

TROUBLESHOOTING

POWER SUPPLY

For the tests in this section, use a d-c voltmeter. Connect the negative lead to $B-$, test point B; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000-ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, set the volume control to minimum, and set the band switch to the broadcast position.

If the "NORMAL INDICA. TION" is obtained in step 1 , proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

Figure 1. Bottom View. Showing Section l Test Points

STEP	$\begin{gathered} \text { TEST } \\ \text { POINT } \end{gathered}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	104v		Trouble in this section. Isolate by the following tests.
2	C	125v	No voltage Low voltage High voltage	Defective: 35W4. Open: L100. L101, S100, W100. Shorted: CIOOA. CIOI. Defective: 35W4. Shorted: C100B. Open: Cl00A. Open: R100.
3	D	113v	Nc voltage Low voltage High voltage	```Shorted: ClOOB. Open: RlOD. Open: C100B. Shorted: C201*. Leaky: C100B, C201*. Open: R101, T200*. R204*. Defective: 35C5*.```
4	A	104v	No voltage Low voltage	Open: Rlol. Shorted: C100C. Leaky: Cl00C.
Listening Test: Abnormal hum may be caused by leaky or open Cl00A. Cl00B, or Cl00C.				

[^10]
Section 2

TROUBLE SHOOTING
 AUDIO CIRCUITS

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B -, test point B ; connec * the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume contro! to maximum. Set the band switch to the broadcast position for test points A, C, and D, and to the FM position for test point E .

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits); if not, isolate and correct the trouble in this section.

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	$\begin{aligned} & \mathbf{A} \\ & \mathbf{E} \\ & \hline \end{aligned}$	Loud, clear speaker output with weak generator input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 35C5. LS200. Open: R204, C200, T200, R203. Shorted: C201, C200. C202. Leaky: C200, C201, C202.
3	D	Same as step 1.	Defective: 19T8 (triode section). Open: R202, C202. R201. Shorted or leaky: C203.
4	A	Same as atep 1.	Open: WS, C205. R200 (rotate through range). Shorted: WS1(F).
5	E	Same as step 1.	Open: WS-1(F). Shorted: WS-1(F).
Listening Test: Distortion may be caused by shorted or leaky C205 or C202.			

* This part, located in another section, may cause abnormal indication in this section.

Figure 2. Bottom View, Showing Section 2 Test Points

Section 3

TROUBLE SHOOTING
 I-F, DETECTOR, AND A-V-C CIRCUITS AM Circuits

For the following tests, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a .1 -mf. condenser to the test points indicated in the chart.

Set the volume control to maximum, set the band switch to the broadcast position, and rotate the tuning control until the tuning condenser is fully meshed.

If the "NORMAL INDICATION" is obtained
in step 1, proceed with the tests for the FM circuits or to the tests for Section 4 (r-f and converter circuits); if not, isolate and correct the trouble in the AM circuits.

To provide a complete i.f amplifier check, test point A for this section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under the "POSSIBLE CAUSE OF ABNORMAL INDICATION."

AM Chart

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak generator input.	Trouble in AM circuits. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 12AU6, 19T8. Open: Z303, Z304, R303, R308. Shorted: C310, C312, C304C, Z304, C315, C314.
3	A	Same as step l.	Open: Z300, Z301, Z302, R302. L300, R402*, R400*, WS-2(R)*. Shorted: Z301, Z302, C308, C309, C305, C408*. Defective: 12AT7* (mixer section). Misaligned: Z302.

*This part. located in another section, may cause abnormal indication in this section.

FM Circuits

The following tests are also made with an AM r-f. signal generator, using modulated output.

Observe the instructions preliminary to the tests for the AM circuits, with these exceptions: Set the band switch to the FM position. Set the sig. nal-generator frequency to 9.1 mc ., and detune to one side or the other until a satisfactory test signal is obtained.

The best indication of satis. factory FM-detector operation is the ability of this circuit to take the alignment properly (see page 11).

Figure 3. Bottom View, Showing Section 3 Test Points

The parts which were found to be satisfactory for AM operation, with the exception of those indieated in the chart, will usually be satisfactory for FM operation.

If the "NORMAL INDICATION" is obtained in step 1, proced with the tests for Section 4 (r -f and converter circuits) ; if not, isolate and correct the trouble in the FM circuits.

FM Chart

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak generator input.	Trouble in FM circuits. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 12AU6. 19T8 (diode section). Open: 2301, 2302 . Z303, Z304, R304. R307, R309, C318, Shorted: Z301, Z303, C311. C317. C318.
3	D	Loud, clear output with moderate input.	Delective: 6BH6. Open: Z330, Z301, R300. R301, WS-2(R). Shorted: C307, Z301, C306.
4	A	Same as step 1.	Defective: 12AT7*. Open: Z300, C316, C305, WS-2(R)*, C316, R401*. Shorted: C316, 2300.

This part, located in another section, may cause abnormal indication in this section.

Section 4

TROUBLE SHOOTING

R-F AND CONVERTER CIRCUITS

AM Circuits

For the tests in this section, with the exception of the oscillator test, use an AM r-f signal generator with modulated output. Connect the generator ground lead to $B-$, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, set the band switch to the broadcast position, and set the tuning control and the signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1 , isolate and correct the trouble in the AM circuits. If the trouble is not revealed by the tests for this section, check the alignment.

FM Circuits

The following tests are also made with an AM r-f signal generator, using modulated output. Observe the instructions preliminary to the tests for the AM circuits with the following exceptions:

Figure 4. Bottom View. Showing Section 4 Test Points

Set the band switch to the FM position.
If the "NORMAL INDICATION" is not obtained in step 1, isolate and correct the trouble in the FM circuits.

AM Chart

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQUENCY	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	Tune to signal.	Loud, clear speaker output with weak generator input	Trouble in AM circuits. Isolate by the follow. ing tests.
2	C (Osc. test: see note below.)		Tune through range.	Negative 2 to 2.5 volts.	Defective: 12AT7 (osc. section). Open: C410. R404, WS-1 (F), R403, L401. C411, C407. Shorted: C409, C410, C407, C411. L401. WS-1(F). C400, C400B.
3	D	1000 kc.	Tune to signal.	Same as step 1.	Defective. 12AT7 (mixer section). Open: R400, R402, WS-2(R). Shorted: WS-2(R), C408.
4	A	1000 kc.	Tune to signai.	Same as step 1.	Open: C402, C403, LA400. Shorted: C400, C400A, LA 400.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to B-, test point B; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 2 of 12AT7). test point C. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value givela in the chart (measured with 20,000 -ohms-per-volt meter) throughout the tuning range.

FM Chart

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN. FREQUENCY	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	E	100 mc .	Tune to signal.	Loud. clear speaker output with weak generator input	Trouble in FM circuits. Isolate by the follow. ing tests.
2	C (Osc. test: see note above.)		Tune through range.	Negative 1 to 1.5 volts.	Defective: 12AT7 (osc. section). Open: C409, C406, L400, C410, L402, WS-1 (F). Shorted: C400. C401, I402. C406. C409. C410. L400. WS-1 (F).
3	D	100 mc.	Tune to signal.	Same as step 1.	Open: R401, WS-2(R). Shorted: C408, WS-2(R).
4	E	100 mc .	Tune to signal.	Same as step 1.	Open: C404. L403, C405. Shorted: C404, L403. C400. C400C. C405.

REPLACEMENT PARTS LIST

NOTE: Part numbers identitied by an asterisk (*) indicate general replacement items. These numbers may not be identical with those on factory assemblies; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and replacement parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements use only the "Service Part No."

SECTION 3 (Continued)

Reference Symbol	SECTION 1 POWER SUPPLY Description
C100 CIOOA C100B Clonc	Condenser, electrolytic, 3 -section Condenser, filter, 40 mf ., 150 v Condenser, filter, 70 mf ., 150 v Condenser, filter, 40 mf ., 150 v
C101	Condenser, r-f by-pass, 100 mml
C102	Condenser, line by-pass, 04 mf
C103	Condenser, r-f by-pass, 100 mmt
C104	Condenser, line by-pass,
1100	Lamp, pilot, 110 v
2100	Coil, r-f choke
2101	Coil, r-f choke
R100	Resistor, filter, 220 ohms
R101	Resistor, filter, 470 ohms
S100	Switch, on-off
W100	Line-cord-and-plug assembly

I-F, DETECTOR. AND A.V-C CIRCUITS

Service Part No.

 30-2568-10$\begin{array}{ll}\text { Part of C100 } \\ \text { Part of C100 } & \text { C312 }\end{array}$ Part of Cl00 Part of Cl00 62-110001001* 45-3500*

62-110001001*

61-0120*
34-2068
32-4111
32-4111
$66-1224340^{*}$
66-1474340*
Part of R200
L-2183*

SECTION 2

AUDIO CIRCUITS
Condenser, electrolytic, cathode by-pass 25 mf . 25v

45-3001
Condenser, tone compensation, $006 \mathrm{mt} . .30-4504 *$
Condenser, d-c blocking, . 006 mf30-4504*
Condenser, parasitic suppressor,
Condenser, parasitic suppressor, $\quad \mathbf{6 0 - 1 0 6 8 5 4 0 1}$
680 mmf .
Condenser, r-t by-pass, $100 \mathrm{mmt} .62-110001001$
Condenser, d-c blocking, 02 mf 30-4594*
Jack, FM test
27-6180
36-1614
LS200 Speaker
Volume control (with off-on switch),
500,000 ohms
45-5019* Resistor, grid return, 10 megohms

66-6103340*
66.4473340^{*}
66-4473340*
$66-1153340^{*}$
art of LS
L
Resistor, grid return, 470,000 ohms
Part of 42-1870

SECTION 3

I-F, DETECTOR, AND A-V-C CIRCUITS

C300A	Condenser, fixed trimmer	Part of 2300
C3008	Condenser, fixed trimmer	Part of Z300
C301A	Condenser, fixed trimmer	Part of Z301
C301B	Condenser, fixed trimmer	Part of Z301
C302A	Condenser, fixed trimmer	Part of 2302
C302B	Condenser, fixed trimmer	Part of 2302
C303A	Condenser, fixed trimmer	Part of Z303
C304A	Condenser, fixed trimmer	Part of 2304
C304B	Condenser, fixed trimmer	Part of 2304
C304C	Condenser, i-f tilter	Part of 2304
C304D	Condenser, i-f filter	Part of 2304
C305	Condenser, r-f by-pass, 220 mmf	62-122001001*
C306	Condenser, r-f by-pass, 01 mf .	61-0120*
C307	Condenser, screen by-pass, 003	30-4582*
C308	Condenser, plate by-pass, 01 ml .	61-0120*
C309	Condenser, r-f by-pass, 01 mt .	61-0120*
C310	Condenser, screen by-pass, 004 mf .	30-4623
C311	Condenser, r-f by-pass, 01 mt	61-0120*

Description
Service Part No.

SECTION 4

R-F AND CONVERTER CIRCUITS

C400	Condenser, tuning gang	31-2733
C400A	Condenser, trimmer, AM aerial	Part of C400
C400B	Condenser, trimmer, AM osc	Part of C400
C400C	Condenser, trimmer, FM aerial	Part of C400
C401	Condenser, trimmer, FM osc.	$31-6495-2$
C402	Condenser, aerial isolating.	
	10 mmi.	$\mathbf{6 2 - 0 1 0 0 0 9 0 0 1 *}$

REPLACEMENT PARTS LIST (Continued)
 SECTION 4 (Continued)
 R-F AND CONVERTER CIRCUITS
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">WS-1(F)</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Switch-water section</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$\ldots . .$. Part of 42-1870 \dagger</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">WS-2(R)</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Switch-water section \ldots| Part of |
| :--- |
| 42-1870 |</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| WS-1(F) | Switch-water section | $\ldots . .$. Part of 42-1870 \dagger |
| :--- | :--- | :--- |
| WS-2(R) | Switch-water section \ldotsPart of
 42-1870 | |</table-markdown></div>

AM ALIGNMENT PROCEDURE

Make alignment with loop aerial connected to radio. The AM alignment should be completed before the FM alignment is made.
DIAL POINTER-With tuning-condenser plates fully meshed, adjust dial pointer to coincide with index mark at low-frequency end of dial.
OUTPUT METER-Connect across voice-coil terminals.
AM R-F SIGNAL GENERATIOR-Connect as indicated in chart. Use modulated output.
RADIO CONTROLS-Set volume control to maximum, and set band switch to broadcast position.
OUTPUT LEVEL—During alignment, adjust signal-generator output to maintain output-meter indication below 1.25 volts.

FM ALIGNMENT PROCEDURE
 Make AM Alignment First

OUTPUT METER-Connect across voice-coil terminals.
ALIGNMENT INDICATOR-Connect negative lead of 20,000 -ohms-per-volt meter to pin 2 of 19 T 8 tube; connect positive lead to $B-$, test point B, in Section 2. Use $\mathbf{1 0}$-volt range.
AM R-F SIGNAL GENEPATOR-Generator must have sufficient output to give a reading of 8.5 volts on alignment indicator. Connect ground lead to B_{-}; connect output lead as indicated in chart. Use modulated output.
RADIO CONTROLS-Set volume control to maximum, and set band switch to FM position. Allow radio and signal generator to operate for at least 15 minutes before making alignment.
NOTE: Check resonance of coils L402 and L403 by inserting each end of a powderèd-iron tuning core, such as Philco Part No. 56-6100, into the coils. If the signal strength increases when the iron end is inserted, compress the turns slightly. If the signal strength increases when the brass end is inserted, spread the turns slightly. If the signal strength decreases when either the iron or the brass end is inserted, no further adjustment is necessary. Do not spread or compress turns of coil excessively; only a small change is required at these high frequencies.

©John F. Rider

AM ALIGNMENT CHART

OTE: Make up a six-to-eight-turn. 6 -inch-diameter loop from insulated wire; connect to signal-generator leads and place near radio loop aerial. Make certain that loop cerial is connected to radio.

FM ALIGNMENT CHART

©John F. Rider

Circuit Description

Both models are 9-tube superheterodynes designed to provide reception on the standard broadcast band and the FM band. The only electrical difference between the two models is in the broadcast loop aerial; Model 49-909 has a semi-high-impedance loop and a series aerial coil; Model 49-1101 has a low-impedance loop and an aerial transformer. Any other minor differences are indicated in the schematic diagram and the replacement parts list. A built-in line-cord aerial is used for FM reception.

These aerials normally provide adequate sigral pickup; if additional pickup is required, Phico Dipole Aerial, Part No. 45-1462, may be used. When connecting the dipole aerial, disconnect the black lead from terminal 2 of TB400, and attach it to pin 1 of the dipole-aerial plug which fits into J400. No additional coupler is required.

To eliminate complicated switching and to provide greater stability and gain on both bands, separate converter tubes are used for broadcast and FM reception. A'12AU6 high-gain pentode is used as a tuned-r-f amplifier on the FM band. The output of this stage is fed to a 14 F 8 dual triode, which functions as the converter for the FM signal. A 12 AU7 dual triode is used as the converter for the broadcast signal. Band-switching is accomplished by means of a single-wafer switch, which connects the $B+$ voltage to the proper mixer plate.

6 BJ 6 tubes are used in the two i-f-amplifier stages. Two sets of i-f transformers are used; one set is tuned to 455 kc . for standard broadcast, and the other set is tuned to 9.1 mc . for FM. The use of two sets of transformers makes better shielding possible, so that undesirable beat signals and interaction between transformers are eliminated.

Two diode sections of the 19 T8 triple-diode-triode are used in a ratio-detector circuit for the detection of FM signals. The other diode section is used in a half-wave rectifier circuit for detection of standard-broadcast signals and to provide a-v-c voltage.

The triode section of the 19 T 8 is employed as the first audio amplifier, and is resistance-coupled to the 50L6GT output tube, which supplies an audio output of approximately three watts to the PM dynamic speaker.

The d-c operating voltages are provided by two 117Z3 rectifier tubes in a half-wave doubler circuit. The output is filtered by a resistance-capacjiatince network.

SPECIFICATIONS

CABINET

AUDIO OUTPUT 3 watts OPERATING VOLTAGE. 105-120 volts, 50/60 cycles, a.c. POWER CONSUMPTION . . 45 watts $\begin{aligned} & \text { AERIALS } \ldots \ldots . . \text { Built-in loop (semi-high-impedance } \\ & \text { for Model 49.90; ; low-impedanee }\end{aligned}$

INTERMEDIATE FREQUENCY

AM 455 kc.
FM . 9.1 mc .
PHILCO TUBES (9).....12AU6, 12AU7, 14F8, 6BJ6(2), 19T8, 50L6GT, $117 \mathrm{Z3}$ (2)
PANEL LAMP. 110.volt, serew-base, Part No. 34-2477 TP-5856 \& TP-6234A

Philco TROUBLE-SHOOTING Procedure

For rapid trouble shooting, the radio circuit is divided into four sections, with test points specified for each section; these sections and test points are indicated in the schematic diagram. The trouble-shooting procedure given for each section includes a simplified test chart and a bottom view of the chassis showing the locations of the test points and the components of that section.

In each chart, the first step is a master check for determining whether trouble exists in that section, without going through the entire test procedure.

Failure to obtain the "NORMAL INDICATION" in any given step indicates trouble within the circuit under test.

After isolating the trouble to a single stage, the defect is located by: first, testing the tube; second, measuring tube electrode voltages; third, measuring circuit resistances; fourth, substituting condensers. The trouble revealed should be corrected before testing further.

Preliminary Checks

To avoid possible damage to the radio, the following preliminary checks should be made before it is turned on:

1. Inspect both the top and the bottom of the chassis.

Make sure that all tubes are secure in the proper sockets, and look for any broken or shorted connections, burned resistors, or other obvious indications of trouble.
2. Measure the resistance between $B+$ (lug 1 of R101) and $B-$, test point B. When the ohmmeter test leads are connected in the proper polarity, the highest resistance reading will be obtained. If the reading is lower than 1875 ohms, check condensers $\mathrm{C} 104 \mathrm{~A}, \mathrm{Cl04B}$, and $\mathrm{Cl04C}$ for leakage or shorts. The resistance value given is much lower than normal, and is not intended as a quality check of these condensers; the value given is the lowest at which the rectifier will operate safely while the voltage checks of Section 1 (power supply) are performed.
3. If the S0L6GT or the 6BJ6 1st i-f amplifier is burned out, check C314 for a short before installing a new tube.

Important!

To avoid altering FM operation, special care should be used in replacing any part. Replacement parts should be placed in the same physical positions as the original parts; connections should be of the same length, and should be soldered to the same points. The placement or length of leads should not be changed.

Section 1
 TROUBLE SHOOTING

POWER SUPPLY

For the tests in this section, use a d -c voltmeter. Connect the negative lead to $\mathrm{B}-$, test point B ; connect the positive lead to the test points indicated in the chart. The voltage readings given were taken with a 20,000 -ohms-per-volt meter at a line voltage of 117 volts, a.c.

Turn on the power, and set the volume control to minimum. Set the tone control for minimum treble response (fully clockwise), and set the band switcte to the broadcast position.

If the "NORMAL INDICATION"' is obtained in step 1 , proceed with the tests for Section 2 (audio circuits); if not, isolate and correct the trouble in this section.

Figure 1. Botfom View, Showing Section 1 Test Points

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	NORMAL INDICATION	ABNORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	120 volts		Trouble in this section. Isolate by the following tests.
2	C	210 volts	No voltage	Defective: 117Z3. Open: W100, S100, R100, C103. Shorted: Cl01, C104A.
			Low voltage	Defective: 117Z3. Leaky: C104A, C103. Shorted: C103, C104IS. Open: Cl04A.
			High voltage	Open: R101A.
3	D	190 volts	No voltage	Open: R101A. Shorted: C104B.
			Low voltage	Leaky: C104B. Shorted: C104C. Open: C104B.
			High voltage	Open: R101B, T200*, R204". Defective: 50L6GT.
4	A	120 volts	No voltage	Open: R101B. Shorted: C104C.
			Low voltage	$\begin{aligned} & \text { Leaky: C104C. } \\ & \text { Shorted: C317*, C311*. } \end{aligned}$

[^11]
C John F. Rider

Section 2

TROUBLE SHOOTING
 AUDIO CIRCUITS

For the tests in this section, use an audio-frequency signal generator. Connect the generator ground lead to B -, test point B; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, turn the tone con-
trol for maximum treble response (fully counterclockwise), and set the band switch to the broadcast position.

If the "NORMAL INDICATION"' is obtained in step 1, proceed with the tests for Section 3 (i-f, detector, and a-v-c circuits) ; if not, isolate and correct the trouble in this section.

STEP	test point	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with moderate signal-generator input.	Trouble in this section. Isolate by the following tests.
2	C	Loud, clear output with strong input.	Defective: 50L6GT. Shorted: LS200, T200. Open: R203, R204, C205, LS200, T200. Shorted or leaky: C203, C205, C207.
3	D	Same as step 1.	Defective: 19 T 8. Open: R205, R202, C203, R207, R201. Shorted or leaky: C202, C204 (rotate R201 through range).
4	A	Same as step 1.	Open: R200 (rotate through range), C200, C201, R206 (rotate R201 through range). Shorted or leaky: C200, C201, C206 (rotate R201 through range), C305D*

Listening Test: Distortion may be caused by leaky C200, C201, C202, or C203.

* This part, located in another section, may cause abnormal indication in this section.

Figure 2. Bołłom View, Showing Section 2 Test Points

Section 3
 TROUBLE SHOOTING
 H-E, DETECTOR, AND A.V.C CIRCUITS—AM CIRCUITS

For the following tests, use an r-f signal generator, with modulated output, set at 455 kc . Connect the generator ground lead to $\mathbf{B}-$, test point \mathbf{B}; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control for maximum trcble response (fully counterclockwisc). Set the band switch to the broadcast position, and rotate the tuning control until the cuning condenscr is fully meshed.

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for the FM circuits; if not, isolate and correct the trouble in the AM circuits.

To provide a complete i-f-amplifier check, test point A for the AM i-f circuits is placed at the grid of the AM mixer in Section 4 ; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

Section 3 ICont.)

TROUBLE SHOOTING I-F, DETECTOR, AND A-V-C CIRCUITS

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	Loud, clear speaker output with weak signal-generator input.	Trouble in AM circuits. Isolate by the following tests.
2	D	Loud, clear output with moderate input.	Defective: 19T8, 6BJ6 (2nd i-f amplifier). Open: Z302, Z303, Z304, Z305, R307, WS2, R308, R309, R311, C305C, C305D, WS1, R310. Shorted or leaky: C303B, C315, C316, C317, C324, C305A, C305B, C305C, C305D. Shorted: Z303, Z305.
3	E	Same as step 2.	Defective: 6BJ6 (lst if amplifier). Open: Z300, Z301, R301, R305, R306, R302, R304, Z302, Z303. Shorted or leaky: C308, C313, C311. Shorted: Z303.
4	A	Same as step 1.	Defective: 12AUT*. Open: R409*, L404*, R303, R300, Z301, R411*, WS1. Shorted or leaky: C410*, C307. Shorted: Z301.

Listening Test: Hum and distortion may be ca sed by shorted or leaky C100*, C310, C314, C320, C312, C102*, C420", C421*, C422*, C423*, C324, C325 or C323.

* This part, located in another section, may cause abnormal indication in this section.

FM CIRCUITS

For the following tests, use an AM r-f signal generator, with modulated output. Set the generator frequency to 9.1 mc . and detune to one side or the other until a satisfactory test signal is obtained. Connect the generator ground lead to B -, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control for maximum treble response (fully counterclockwise). Set the band switch to the FM position, and rotate the tuning control until the tuning condenser is fully meshed.

The most satisfactory check on the operation of the discriminator is the ability of the circuit to take proper alignment, as directed under "ALIGNMENT PROCEDURE.'

Figure 3. Bottom View, Showing Section 3 Test Points ${ }^{\text {TP-6461 }}$

If the "NORMAL INDICATION" is obtained in step 1, proceed with the tests for Section 4 (r-f and converter circuits) ; if not, isolate and correct the trouble in the FM circuits.

The parts which were found to be satisfactory for AM operation, with the exception of those indicated in the following chart, will usually be satisfactory for FM operation.

To provide a complete i-f-amplifier check, test point A for the FM i-f circuits is placed at the grid of the FM mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condition of certain parts in the mixer circuit. These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION."

STEP	TEST POINT	NORMAL INDICATION	POSSIBLE CAUSE OF AbNORMAL Indication
1	C	Loud, clear speaker output with weak signal-generator input.	Trouble in FM circuits. Isolate by the following tests.
2	D	Loud, clear output with strong input.	Defective: 6BJ6 (2nd i-f implifier), 19T8, Z304. Misaligned: Z304. Open: R312, R313, R314, C320, C319, C318, C304, C306. Shorted or leaky: C319, C320, C304, C306, C318, C326.
3	E	Loud, clear output with moderate input.	Defective: 6BJ6 (lst i-f amplifier). Misaligned: Z302. Open: Z302. Shorted: Z302.
4	C	Same as step 1.	Defective: 14F8*. Open: R300, R406*, R405*, R407*, L408*, Z300, WSl. Shorted or leaky: C418*, C419*.

[^12]
Section 4
 TROUBLE SHOOTING R-F AND CONVERTER CIRCUITS

AM CIRCUITS

For the following tests, with the exception of the oscillator test, use an r-f signal generator with modulated output. Connect the generator ground lead to $\mathrm{B}-$, test point B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Set the volume control to maximum, and turn the tone control for maximum treble response (fully counterclockwise). Set the band switch to the broadcast position, and set the tuning control and the signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is obtained in step 1 , proceed with the tests for the FM circuits, if not, isolate and correct the trouble in the AM circuits.

FM CIRCUITS

For the following tests, with the exception of the oscillator test, use an AM r-f signal generator with modulated output. Connect the generator ground lead to $\mathrm{B}-$, test poini B ; connect the output lead through a $.1-\mathrm{mf}$. condenser to the test points indicated in the chart.

Figure 4. Bottom View, Showing Section 4 Test Points

Set the volume control to maximum, and turn the tone control for maximum treble response (fully counterclockwise). Set the band switch to the FM position, and set the tuning control and the signal-generator frequency as indicated in the chart.

If the "NORMAL INDICATION" is not obtained in step 1, isolate and correct the trouble in the FM circuits. If the trouble is not revealed by the tests for these circuits, check the alignment.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	SIG. GEN.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	1000 kc .	Loud, clear speaker output with weak signalgenerator input.	Trouble in AM circuits. Isolate by the following tests.
2	D	1000 kc .	1000 kc .	Loud, clear output with moderate input.	Defective: 12AUT, oscillator circuit. Shorted: C410, C417, WS1. Open: R409, R411, R303*, WS2.
3	Eto B (Osc.test, see note below.)		Rotate through range.	Negative 2 to 3 volts.	```Defective: 12AU7. Open: R408, R410, L404, C408, C407, L409. Shorted: C408, C409, C400, C401B.```
4	A	1000 kc .	1000 kc .	Same as step 1.	Open: L400, C417, L405. Shorted: C400, C401A, C425.

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltmeter to $B-$, test point B; connect the prod end of the negative lead through a 100,000 ohm isolating resistor to the oscillator grid (pin 2 of 12AU7), test point E. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart (neasured with 20,000 -ohms-per-volt meter) throughout the tuning range.

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \\ & \hline \end{aligned}$	SIG. GEN. FREQ.	RADIO TUNING	NORMAL INDICATION	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	C	95 me.	Tune to signal.	Loud, clear speaker out put with weak signalgenerator input.	Trouble in FM circuits. Isolate by the following tests.
- 2	F	95 me.	Tune to signal.	Loud, clear output with noderate input.	Defective: 14F8, oscillator circuit. Open: R405, R406, R407, L408, C418, L402. Shorted: C418, C416, C400, C400B, C419, L402.
3	G to B (Osc. test, see note below.)		Tune through range.	Negative 1.2 to 2 volts.	Defective: 14F8. Open: R404, L407, R403, C413, C415, L403. Shorted: C400, C400C, C413, C415, C414, C412, L403, I. 407.
4	H	95 mc .	Tune to signal.	Same as step 1.	Defective: 12AU6. Open: L402, L406, R400, R401, R402, C411, C418, R412. Shorted: C405, C404, C406, C411, C400, C400B, C404, L402. Open
5	C	95 mc .	Tune to signal.	Same as step 1.	$\begin{aligned} & \text { Open: C402, L401, C404, R412. } \\ & \text { Shorted: C404, C400, C400A, L401. } \end{aligned}$

OSCILLATOR TEST: Connect the positive lead of a high-resistance voltneter to B, test point B; connect the prod end of the negative lead through a 100,000 -ohm isolating resistor to the oscillator grid (pin 1 of $14 F 8$), test point G. Use a suitable meter range, such as $0-10$ volts. Proper operation of the oscillator is indicated by negative voltage of approximately the value given in the chart. (measured with 20,000 -ohms-per-volt meter) throughout the tuning range.

Figure 5. Drive-Cord Installation Details

REPLACEMENT PARTS LIST

NOTE: Port numbers identified by on asterisk ($*$) ore general replacement items. These numbers may nat be ldentical with those on factory parts; also, the electrical values of some replacement items may differ from the values indicated in the schematic diagram and parts list. The values substituted in any case are so chosen that the operation of the radio will be either unchanged or improved. When ordering replacements, use only the iservice Part No.'

SECTION 1

 POWER SUPPLY CIRCUITS| Reference | Symbol Description Service Part No. | Reference | Symbol Description | Service Part No. |
| :---: | :---: | :---: | :---: | :---: |
| C100 | Condenser, r-f by-pass, 100 mmf 62-110009001 | R204 | Resistor, cathode bias, 150 ohms | 66-1153340* |
| C101 | Condenser, line filter, 04 mf 45-3500-2* | R205 | Resistor, grid return, 10 megohms | 66-6103340* |
| C102 | Conderser, r-f by-pass, 100 mmf 62-110009001 | R206 | Resistor, tone compensation, 33,000 ohm | ms. 66-3333340* |
| C103 | Condenser, electrolytic, voltage doubler, | R207 | Resistor, plate decoupling, 100,000 ohms | s. 66-4103340 |
| C104 | 40 mf , 200 v $30-2568-11$ Condenser, electrolytic, 4 -section . . . $30-2568-24$ | $\begin{aligned} & \text { T200 } \\ & \text { WS2 } \end{aligned}$ | Transformer, output
 Switch-wafer section | rt of 42-1745-2t |
| Cl04A | Condenser, filter, 40 mf , 250 v . Part of Cl 04 | WS2 Switch-wafer section | | |
| C104B | Condenser, filter, 40 mf ., 250 v........ . Part of C104 | SECTION 3 | | |
| Cl04C | Condenser, tilter, 20 mf ., 250 v........ . Part of Cl04 | | | |
| 1100 | Lamp, pilot, 110 v., screw-base........... 34-2605 | I-F. DETECTOR, AND A-Y-C CIRCUITS | | |
| L100 | Choke, r-f, filament by-pass............. 32-4143-4 | | | |
| R100 | Resistor, current-limiting, 25 ohms 33-1334-5 | C300A | Condenser, shunt | Part of Z300 |
| R101 | Resistor, filter, 2-section 33-3435-20 | C300B | Condenser, shunt | Part of Z300 |
| R101A: | Resistor, filter, 180 ohms Part of R101 | C301A | Condenser, shunt | Part of Z301 |
| R101B: | Resistor, filter, 3800 ohms Part of R101 | C301B | Condenser, shunt | Part of Z301 |
| S100 | Switch, power on-off Part of R201 | C302A | Condenser, shunt | Part of Z302 |
| W100 | Line-cord-and-plug assembly (including | C302B | Condenser, shunt | Part of Z302 |
| | FM line aerial)41-3755-19* | C303A | Condenser, shunt | Part of Z303 |
| SECTION 2 | | C303B | Condenser, shunt | Part of Z303 |
| | | C304 | Condenser, shunt, 68 mmf . | Part of Z304 |
| AUDIO CIRCUITS | | C305A C305B | Condenser, shunt | Part of Z305 |
| C200 | Condenser, d-c blocking, $02 \mathrm{mf}$. 61-0108* | C305C | Condenser, a-v-c filter | Part of Z305 |
| C201 | Condenser, d-c blocking, $006 \mathrm{mf}$. 45-3500-7* | C305D | Condenser, a-v-c filter | Part of Z305 |
| C202 | Condenser, plate by-pass, 100 mmf62-110009001 | C306 | Condenser, shunt, 5 mmf ., Part of Z304 | 4 . 30-1224-5 |
| C203 | Condenser, d-c blocking, $006 \mathrm{mf}$. 45-3500-7* | C307 | Condenser, plate decoupling, . 01 mi . | 61-0120* |
| C204 | Condenser, tone compensation, $006 \mathrm{mf....45-3500-7*}$ | C308 | Condenser, a-v-c by pass, 01 mf . | $61-0120 *$ |
| C205 | Condenser, r-f by-pass, $100 \mathrm{mmf}62-110009001$ | C309 | Condenser, r-f by-pass, 100 mmp . | 62-110009001 |
| C206 | Condenser, bass compensation, $01 \mathrm{mf}$. 61-0120* | C310 | Condenser, r- $-\frac{5}{\text { by-pass, }} .05 \mathrm{mf}$. | 61-0122** |
| C207 | Condenser, tone compensation, 006 mf . . . 45-3500-7* | C311 | Condenser, decoupling. 006 mf | 45-3500-7* |
| C208 | Condenser, r-f by-pass, 01 mf61-0120* | C312 | Condenser, r-f by-pass, 03 mt . | 45-3500-1* |
| C209 | Condenser, electrolytic, filter, 10 mf . 250 v | C313
 C314 | Condenser, a-v-c by-pass, 01 mf Condenser, $\mathrm{r}-\mathrm{f}$ by-pass, 01 mf | $\begin{aligned} & 61-0120^{*} \\ & 61-0120^{*} \end{aligned}$ |
| J200 | | C315 | Condenser, plate by-pass, 01 mf | 61-0120* |
| J201 | Jack, accessory input27-6126 | C316 | Condenser, cathode by-pass, $01 \mathrm{~m}^{\frac{1}{4}}$ | 61-0120* |
| LS200 | Speaker, permanent-magnet | C317 | Condenser, screen by-pass, 01 mf | 61-0120* |
| | Model 49-909 36-1629 | C318 | Condenser, decoupling, 1500 mmt . | 62-215001001 |
| | Model 49-110136-1626-1 | C319 | Condenser, electrolytic, filter, | |
| R200 | Volume control, 2 megohms 33-5535-17 | FM detector, 2 mf . 50 v........... . 30-2417-7 | | |
| R201 | Tone control (with power on-off switch), | C320 | Condenser-and-choke assembly, 05 m | . . 39-9851-6 |
| | 4 megohms $33-5538-34$ | C321 | Condenser, r-f by-pass, 100 mmf . | 62-110009001 |
| R202 | Resistor, plate load, 470,000 ohms66-4473340* | C322 | Condenser, compensating, . 01 mf | 61-0120* |
| R203 | Resistor, grid return, 470,000 ohms66-4473340* | C323 | Condenser, r-f by-pass, 100 mml . | 62-110009001 |

REPLACEMENT PARTS LIST ICont.)

SECTION 3 (Cont.)

I-F. DETECTOR. AND A-V-C CIRCUITS

Refere	Symbol Description S	Service Part
C324	Condenser, r-i by-pass, 100 mmf	62-110009001
C325	Condenser, r-f by-pass, 100 mmi	62-110009001
C326	Condenser, r-f by-pass, 100 mmf .	62-110009001
L300	Choke, r-f by-pass	
R300	Resistor, decoupling, 68 ohms	66-0683340*
R301	Resistor, grid return, 1 megohm	66-5103340*
R302	Resistor, cathode bias, 68 ohms	66-0683340*
R303	Resistor, grid return, 1 megohm	66-5103340*
R304	Resistor, decoupling, 1000 ohms	66-2103340*
R305	Resistor, a-v-c filter, 3.3 megohms	66-5333340*
R306	Resistor, isolating, 68 ohms	66-0683340*
R307	Resistor, cathode bias, 120 ohms	66-1123340*
R308	Resistor, screen dropping, 1000 ohms	66-2103340*
R309	Resistor, plate decoupling, 2200 ohms	66-2223340*
R310	Resistor, diode load, 330,000 ohms	66-4333340*
R311	Resistor, diode load, 47,000 ohms	66-3473340*
R312	Resistor, decoupling, 47,000 ohms	66-3473340*
R313	Resistor, decoupling, 100,000 ohms	66-4103340*
R314	Resistor, FM-detector load, 47,000 ohn	66-3473340*
WS1	Switch-wafer section Pa	of 42-1834-2 ${ }^{\text {a }}$
WS2	Switch-water section Pa	of 42-1745-2ד
TC300A	Tuning core, primary, lst FM i-f trans.	Part of Z300
TC300B	Tuning core, secondary, lst FM i-f	Part of Z300
TC301A	Tuning core, primary, 1st AM i-f trans..	. Part of Z301
TC301B	Tuning core, secondary, 1st AM i-f trans	s.Part of Z301
TC302A	Tuning core, primary, 2nd FM i-f trans.	Part of Z302
TC302B	Tuning core, secondary، 2nd FM i-f trans	ns.Part of 2302
TC303A	Tuning core, primary, 2nd AM i-f trans..	. Part of Z303
TC303B	Tuning core, secondary, 2nd AM i-f trans	ns.Part of Z303
TC304A	Tuning core, primary, 3rd FM i-f trans.	Part of Z304
TC304B	Tuning core, secondary, 3rd FM i-f trans	ns.Part of Z304
TC305A	Tuning core, primary, 3rd AM i-f trans.	Part of Z305
TC305B	Tuning core, secondary, 3rd AM i-f tran	Payt of Z305
Z300	Transformer, 1st FM i-f	32-4257
Z301	Transformer, lst AM i-f	32-4258
Z302	Transformer, 2nd FM i-f	32-4257-1
2303	Transformer, 2nd AM i-f	32-4160-3
Z304	Transformer, 3rd FM i-f	32-4261-1
3305	Transformer, 3rd A	32-4240-2

SECTION 4

R-F AND CONVERTER CIRCUITS

C400	g	2724-3
C400A	Condenser, trimmer, FM aeria	Part of C400
C400B:	Condenser, trimmer, FM r-f	Part of C400
C400C:	Condenser, trimmer, FM oscillator	Part of C400
C401	Condenser, trimmer, 2-section	31-6476-18
C401	Condenser, trimmer, BC aerial	Part of C401
C401 B:	Condenser, trimmer, BC oscillator	Part of C401
C402	Condenser, aerial coupling, 100 mmf .	62-110001011
C403	Condenser, r-f by-pass, 100	62-110001001
C404	Condenser, blocking, 51 mmf .	62-051009001
C405	Condenser, cathode by-pass, 100 mm	62-110001011
C406	Condenser, screen by-pass, 100 mm	62-110001001
C407	Condenser, isolating, 01 mf .	61-0120*
C408	Condenser, blocking, 100 mmf .	62-110009001
C409	Condenser, r-f by-pass, 220 mmf .	62-122001001
C410	Condenser, cathode by-pass, 1500 mm	62-215001001
C411	Condenser, d-c blocking, 51 mmf .	62-051009001
C412	Condenser, r-f by-pass, 1500 mmf	62-215001001
C413	Conderiser, $\mathrm{d}-\mathrm{c}$ blocking, 220 mmf	62-122001001
C414	Condenser, r-f by-pass, 51 mmf .	62-051009001
C415	Condenser, d-c blocking, 2700 mmf .	62-122001001
C416	Condenser, cathode by-pass, 100 mmf .	62-110001001
C417	Condenser, isolating, 100 mmf .	62-110001001
C418	Condenser, d-c blocking, 100 mmf .	62-110001001
C419	Condenser, plate decoupling, 01 mf	61-0120*
C420	Condenser, r-f by-pass, 03 mf .	45-3500-1*
C421	Condenser, r-f by-pass, 100 mmf	62-110001001

SECTION 4 (Cont.J R-F AND CONVERTER CIRCUITS

Reference	Symbol Description	Service Part No.
C422	Condenser، r-1 by-pass, 100 mmf	62-110001001
C423	Condenser, r-i by-pass, 100 mmi .	62-110001001
$\begin{aligned} & \mathrm{C} 424 \\ & \mathrm{C} 425 \end{aligned}$	Condenser, aerial coupling, 100 mmf .	62-110001001
	Condenser	
	Model 49-909-aerial coupling, 10 mmf .	. 62-010009001
	Model 49-1101-fixed trimmer, 10 mmf .	62-010009001
L400	Coil, BC aerial	
	Model 49-909	32-4217-1
	Model 49-1101	32-4033-10
L401	Coil, FM aerial	32-4158-1
L402	Coil, FM r-f	32-4159-1
L403	Coil, FM oscillator	32-4018-5
L404	Coil, BC oscillator	32-4221-1
1405	Coil, r-f choke	32-4061-2
L406	Coil, FM r-f plate load	32-4061-2
L407	Coil, FM oscillator plate load	32-4061-2
L408	Coil, r-f choke	32-4061-2
1409	Coil, r-f choke	32-4061-2
LA 400	Loop aerial	
	Model 49-909	32-4052-27
	Model 49-1101	76-3583-5
J400	FM aerial socket	27-6214-1
PL400	Plug, FM aerial	Part of W100
R400	Resistor, grid return, 1 megohm	66-5103340*
R401	Resistor, cathode bias, 100 ohms	66-1103340*
R402	Resistor, screen dropping, 10,000 ohms.	66-3103340*
R403	Resistor, plate decoupling, 4700 ohms.	66-2473340*
R404	Resistor, grid return, 15,000 ohms	66-3153340*
R405	Resistor, cathode bias, 2200 ohms.	66-2223340*
R406	Resistor, grid return, 10,000 ohms	66-3103340*
R407	Resistor, plate decoupling, 10,000 ohms	S 66-3103340*
R408	Resistor, grid return, 15,000 ohms	66-3153340*
R409	Resistor, cathode bias, 3300 ohms	66-2333340*
R410	Resistor, plate load, 15,000 ohms.	66-3153340*
R411	Resistor, plate decoupling, 15,000 ohms	S 66-3153340*
R412	Resistor, isolating, 68 ohms	66-0683340*
TB400	Terminal panel, aerial	38-9942
WSl	Switch-wafer section Part	t of 42-1834-2 ${ }^{\text {f }}$

MISCELLANEOUS

Description

Cabinet and Cabinet Parts
Bezel, Model 49-1101
Service Part No.

Cabinet (less dial scala)
Model 49-909 10722

Model 49-110110701A
Cabinet back
Model 49-90954-7635
Model 49-110154-7640
Dial scale
Model 49-909
Model 49-1101
Strap, scale mounting (2 required)
Dial-backplate assembly
Dial cord (25 -foot spool)
Diffusing panel
Pointer
Model 49-909
Model 49-1101
Spring, pointer
Spring, gang
Dial drive-shaft assembly
Knob, control (4 required)
Model 49-909
Model 49-1101
54-5025
54-5027
56-4756FEl1
76-3918 45-8750* 54-7593

56-5630-2FCP
56-5630-3FCP
28-8953
56-2617
76-3479-1
nob, accessory switch
Socket assembly, pilot lamp
4-4488-1
54-4486

Bracket-and-clip assembly, pilot lamp 27-4809 27-6233
76-3919
Socket, 9-pin miniature
27-6203-5
Socket. 8-pin Loktal
27-6138*
Socket, 7-pin miniature
+42-1745-2 Switch accessory
$\neq 42-1834-2$ Switch, band, BC-FM.

ALIGNMENT OF AM CIRCUITS

Make alignment with loop aerial connected to radio. The AM alignment should be completed before the FM alignment is made.
DIAL POINTER-With tuning condenser fully meshed, adjust dial pointer to coincide with index mark at low-frequency end of dial. See figure 7.
OUTPUT METER-Connect between terminal 3 (voice-coil connection) of aerial terminal panel TB400 and chassis. AM SIGNAL GENERATOR-Connect as indicated in chart. Use modulated output.
OUTPUT LEVEL-During alignment, signal-generator output must be attenuated to hold radio output below 1.25 volts, as read on output meter.
CONTROLS-Set volume control to maximum, turn tone control for maximum treble response (fully counterclockwise), and set band switch to broadcast position.

ALIGNMENT OF FM CIRCUITS Align the AM circuits first.

OUTPUT METER-Connect between terminal 3 (voice-coil connection) of aerial terminal panel TB400 and chassis. ALIGNMENT INDICATOR-Connect negative lead of a 20,000 -ohms-per-volt, d-c voltmeter to pin 2 of 19T8 tube; connect positive lead to $\mathrm{B}-$, test point B in Section 2. Use 10 -volt range.
AM SIGNAL GENERATOR-Generator must have sufficient output to give a reading of at least 8.5 volts on alignment indicator. Connect generator ground lead to $B-$, test point B; connect output lead as indicated in chart. Use modulated output.
CONTROLS-Same as for alignment of AM circuits, except set band switch to FM position.
Allow radio and signal generator to warm up for at least 15 minutes before starting alignment.
NOTE: Check resonance of circuits using coils L401, L402, and L403 by inserting each end of a powdered-iron tuning core, such as Philco Part No. 56-6100, in the coil. If the signal strength increases when the iron end is inserted, compress the turns slightly. If the signal strength increases when the threaded brass end is inserted, spread the turns slightly. If the signal strength decreases when either the iron or the brass end is inserted, no adjustment is necessary. Do not spread or compress the turns of the coil excessively; only a small change is required at these high frequencies.

Figure 7. Dial-Backplate Calibration Measurements

OJohn F. Rider

Step	signal generator		radio	
	CONNECTION to RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	SPECIAL instructions
1	Ground lead to B--, test point B; output lead through . $1 \cdot \mathrm{mf}$. condenser to terminal lof TB400.	455 kc .	540 kc .	Adjust each trimmer, in order given, for maximum output. Do not repeat adjustments.
2	Radiating loop (see note be. low).	1600 kc .	1600 kc .	Adjust for maximum output.
3	Same as step 2.	1500 kc .	1500 kc .	Adjust for maxinum ontput.

RADIATING LOO1': Make up a six-to-eight-turn, 6 -inch-diameter loop, using insulated wire; connect to the signal-generator
FM ALIGNMENT CHART

	signal generator		radio		ADJust	NOTE:- L401, L402,L403, TC300A,TC302A AND TC304A are located on underside of chassis.
	$\begin{aligned} & \hline \text { CONNECTION } \\ & \text { TORADIO } \end{aligned}$	SETTING	SETTAL	Special instructions		
1	Through . 1-mf condenser to pin 1 of 6 BJ 6 lst i-f amplifier.	9.1 me.	88 mc .	Adjust for maximum reading on alignment indicator. Attenuate signal generator to maintain reading of approximately 10 volts. Repeat adjustments until no further improvement is noted. After this step, do not disturb any of these trimmers except as directed in step 3.	TC304B-3rd i.f sec. TC304A-3rd i-f pri. TC302P-2nd i.f sec. TC302A-2nd i.f pri.	
2	Through . $1-\mathrm{mf}$. condencer to pin 8 of 14 F 8 .	9.1 mme .	88 mc .	Adjust for maximum reading on alignment indicator. Repeat adjustments until no further inprovement is noted. Do not disturb these trimmers after this step.	TC300B-lst i.f sec. TC300A-lst i.f pri.	
3	Same as step 2.	9.1 me.	88 mc .	Adjust for minimum reading on output meter. This adjustment is critical; repeat to make sure that it is correct.	TC304R-3rd i.f sec.	
4	To terminal 2 of J400.	105 me.	105 mc .	Adjust for maximum reading on alignment indicator.	C400C-FM osc.	
5	Same as step 4.	105 mc .	105 mc .	Same as step 4. Rock tuning control.	C400B-FM r-f	
6	Same as step 4.	105 mc .	105 mc .	Same as step 4.	C400A-FM aerial) $(9$, जो
7	Same as step 4.	92 mc .	92 mc .	Same as step 4. See note on page 10.	L403-FM osc. (tracking)	-
8	Same as step 4.	92 mc.	92 mc .	Same as step 7.	L402-FM r.f (tracking)	NOTE TP6504
9	Same as step 4.	92 mc .	92 mc .	Same as step 7.	L401-FM aerial (tracking)	
10	Repeat steps 4 through 9 until no further improvement is obtained.					-LOOP CONNECTI

©John F. Rider

PHILHARMONIC PAGE 18-1

MODELS 400C, 500C
 PHILHARMONIC RADIO CORP.

ANTENNAS. - The built-in antennas are satisfactory in most locations, however, external antennas can be used when needed. For amplitude-modulated reception, connect an external antenna and ground wire to the terminals provided on the built-in loop.

For frequency-modulated signals, the antenna and lead-in should have an impedance of 300 ohms. Connect the lead-in to the two left-hand terminal screws on the rear of the chassis. Connect a ground wire to the third terminal screw.
POWER SOURCE. - Connect the power plug to an alternating-current supply of 115-120 volts, 60 cycles. DO NOT CONNECT TO DIRECT CURRENT.
RADIO OPERATION. - Switch on the power by turning the Volume control clockwise. Wait 35-40 seconds for the tubes to reach operating temperature. Set the three-position switch on AM or FM as desired. Select the station with the Tuning control. Adjust the Volume control and Tone control to suit.

TYPE: Eleven-tube $F-M / A-M$ superheterodyne.
FREQUENCY RANGES:A-M, 540-1600 KC. F-M, 88-108 MC.

INTERMEDIATE FREQUENCIES: A-M, $456 \mathrm{KC} ; \mathrm{F}-\mathrm{M}, 10.7 \mathrm{MC}$.

POWER SOURCE: $105-125$ volts, 60 cycles.

POWER CONSUMPTION:
RADIO, 80 watts.
RADIOAND PHONOGRAPH, 95 watts.
POWER OUTPUT: 4.5 watts
STANDARD RMA WARRANTY APPLIES.

TUBES
1 6BA6
2 6BE6
36 C 4
4 6SK7
5 6SH7
6 6H6
7 6SQ7
8 6V6GT
9 6SK7
10 6SA7
115 Y 3 GT
Pilots,
Mazda 47

A-M Alignment

Turn gang condenser to fully meshed position. Set dial pointer on the small dot to the left of the end calibration. Turn volume control to maximum volume. Use a standard A-M signal generator, with the high side coupled to the input point through a. 01 uf capacitor. Ground the other side to the chassis. Connect the output meter across the voice coll of output transformer 108. The output of the signal generator should be no higher than necessary to obtain the output reading. Where loop coupling is specified, connect the signal generator output to two or three turns of wire spaced about two feet from the antenna loop.

Signal Generator and Coupling Capacitor	Signal Generator Frequency	Input to	Tuning Dial Setting	Output Meter	Adjust	Remarks
A-M Signal Generator . 01 uf.	455 KC	$\begin{aligned} & \text { Pin } 8 \\ & 6 \mathrm{SA} 7 \end{aligned}$	Low-Freq. End.	Across Voice Coll of 108	$\begin{aligned} & \text { Al3, Al2, } \\ & \text { A9, A8 } \end{aligned}$	Adjust for max. output. Repeat
	600 KC	"	600 KC	"	A17	Adjust for max. output.
	1600 KC	"	1600 KC	"	A18	" " "
	600 KC	"	600 KC	"	A17	" "
	1400 KC	Loop Coupling	$\begin{aligned} & \text { Tune to signal } \\ & \text { at } 1400 \mathrm{KC} \end{aligned}$	"	A16	" " "
F-M Alignment						
A-M.002 uf	10.7 MC	Pin 4 6SH7	Low-Freq. End.	Use D-C VTVM. Pin 3 6H6 to gnd.	A15, bottom of ratiodetector can	Adjust for max. reading.
A-M . 002 uf	"	"	"	Use D-C VTVM. High Side of capacitor 43 to gnd.	Al4, top of ratio detector can	Adjust for zero voltage. At the correct setting, the slightest movement of Al4 will throw the voltage positive or negative. A slow approach to zero indicates that Al4 should be turned in the opposite direction.
A-M . 002 uf	"	$\begin{aligned} & \text { Pin } 3 \\ & \text { 6SK7 } \\ & \text { item } 4 \end{aligned}$	Low-Freq. End.	Use D-C VTVM. Pin 36H6	All, Al0	Adjust for max. reading.
A-M . 002 uf	"	$\begin{array}{\|l\|} \hline \text { Pin } 7 \\ \text { SBE6 } \\ \hline \end{array}$	"	"	A7, A6	" " "
						Repeat last two steps.
```F-M Signal Generator Set for }75\textrm{Kc} Deviation and 400-cycle Modulation```	88 MC	Dipole antenna terminals	88 MC	Output meter across voice coil of 108	A4	Adjust for max. output.
"	"	"	"	"	A2	" " "
"	108 MC	"	108 KC	"	A5	" " "
"	"	"	1	"	A3	" " "
						Repeat last four steps until properly tracked.
"	98 MC	"	$\left\|\begin{array}{l} \text { Tune to signal } \\ \text { at } 98 \mathrm{MC} \end{array}\right\|$	"	A1	Adjust for max. output.

PAGE 18-6 PHILHARMONIC


© John F. Rider

Operation: The set operates on 105-125 volts 60 cycles, AC. The power drain is approximately 35 watts on radio operation and 17 watts additional on phonograph operation.

Range: This set has both a broadcast and shortwave range. The complete broadcast band is covered from 532 to 1700 kilocycles. Since the broadcast dial scale is calibrated from 55 to 160 , the actual frequency of the station may be obtained by adding zero to the dial calibration. The shortwave band covers from 5.6 to $12.5 \cdot \mathrm{mega-}$ cycles. The shortwave dial scale is calibrated directly in megacycles.

Alignment: No attempt should be made to re-align this receiver until it has been determined that poor tubes or some local condition is not responsible for faulty reception. The signal generator may be connected through 0.01 mfd capacitor used as a dummy antenna, to the lug on the RF section " $B$ " of the tuning capacitor. Connect ground clip of generator directly to chassis. An output meter may be clipped across the voice coil lug on the speaker. Align IF trimmers to 455 kilocycles, using the least possible input in the signal generator. With tuning plates completely out of mesh (pointer at the extreme right end of travel) the set in broadcast position, adjust the
broadcast oscillator trimmer (A) to 1700 kilocycles. Then switch to shortwave and adjust the shortwave oscillator trimmer (D) to 12.5 megacycles. Replace the 01 mfd dummy by a 39 mmfd mica capacitor and connect to antenna terminal "A." Tune set and signal generator to 600 kilocycles and adjust broadcast antenna coil slug for maximum output. Then re-tune set and signal generator to 1550 kilocycles and adjust RF trimmer "B" on tuning capacitor for maximum response. Repeat these adjustments until no further adjustment is required, then switch receiver to shortwave. Tune set and signal generator to 6 megacycles and adjust shortwave antenna coil slug " $E$ " for maximum response. Retune set and signal generator to 10.5 megacycles and tune shortwave antenna, trimmer "C" for maximum response. In these adjustments the tuning control should be rocked for best results. Repeat these adjustments until no further adjustment is needed.

For checking purposes, five marks are engraved on the dial plate. These represent, in order from left to right: the pointer position capacitor plates fully meshed and the pointer settings for 600 kc or $6 \mathrm{mc} ; 1000-\mathrm{kc}, 10.5 \mathrm{mc}$ and 1550 kc .

## MODEL 3-81A

Operation: The set operates on 110 to 120 volts, 60 cycles A.C. Power drain is approximately 125 watts for radio and about 20 watts additional for the record changer

Ranges: This receiver has AM broadcast and short-wave and FM ranges

$$
\begin{gathered}
\text { FM-87.4 to } 108.7 \text { megacycles } \\
\text { AM Broadcast- } 535 \text { to } 1720 \text { kilocycles } \\
\text { AM Short-Wave- } 5.6 \text { to } 18.5 \text { megacycles } \\
\text { Instructions For Removing Radio From Cabinet }
\end{gathered}
$$

## Main Chassis:

To remove main chassis from the cabinet it is first necessary to remove the four control knobs by pulling them gently until they come off. Remove all plugs from the rear of the main chassis and power pack chassis. Pull the 5U4G reatifier tube out of the power pack chassis. The four screws holding the chassis may now be removed. The chassis itself may now be taken out by sliding it straight back toward the rear of the cabinet.

## Power Pack Chassis:

The power pack chassis may be removed from the cabinet by unscrewing the four large screws holding it to its support shelf. These are accessible from the under side of the cabinet.

## Record Changer:

Most adjustments may be made to the record changer without removing it from its drawer. Before attempting to remove the record changer from the cabinet the motor plug and the phono pickup plug must first be removed from the main and power pack chassis. Loosen the cable clamps on the rear of the cabinet sufficiently to lift out cables.

Pull changer drawer forward until it hits its stop. Lift the turntable completely off. Be careful not to lose the spring and loose gear on the spindle of the record changer. Remove retaining washers from the mounting screws at the front and rear of the record changer. The mounting screws may now be removed from the bottom of record changer drawer and the record changer may be lifted out.


PHILLIPS PAGE 18-5
PHILLIPS PETROLEUM CO. YODEL 3-81


PAGE 18-6 PHILLIPS
MODEL 3-81A PHILLIPS PETROLEUM CO.


J John F. Rider

©John F. Rider


PAGE 18-6 PILOT



DUNDMY ANT   IT SERIES WITH SIGNAL GENERATOR	CONNECT HIGH SIDE OF GENERATOR TO	SIGNAL GENERATOR FREQUENCY	RECEIVER   DIAL   SEITING	TRIMMER NUMBER	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT
. 1 MFD.	Lug on trimmer No. 6 on rear section of gang (see figure below for location of trimmer.)	455 KC	Any point where it does not affect the signal.	1-2	$\frac{\text { 2nd } I . F .}{\text { 1st I.F. }}$	Adjust for maximum output.   Then repeat adjustment.
LOOP	Radiation to set loop	1400 KC	1400 KC	5	Broadcast Oscillator	Adjust for maximum output.
LOOP	Radiation to set loop	1400 KC	Tune to 1400 KC aenerator signal.	6	Broadcast Antenna	Adjust formaximum output.

## APPROXIMATE STAGE GAIN DATA

Be sure R.F. and I.F. stages are accurately aligned before measuring gain. R.F. gains can be measured with a "channel" type instrument containing a tuned and calibrated R.F. amplitier. A vacuum tube voltmeter may be used for audio gain measurements. Observe following precautions:

1. For all gain measurements connect signal generator as shown. Use 600 KC signal with 400 cycles modulation (use nearby frequency if local station interferes.)
2. For R.F. and I.F. measurements connect negative terminal of $\alpha$ 3 -volt battery (twa $11 / 2$ volt cells in series) to A.V.C. lead and positive terminal to chassis. This provides a definite operating point.
3. Be sure radio is carefully tuned to generator signal (use weak signal for sharp tuning.)
4. When using $\alpha$ "channel" type instrument carefully tune it for moximum output at desired frequency before making measurements.

The R.F. and I.F. stage gains shown below are less than under normal operating conditions due to the use of 3 volts fixed bias in order to establish a definite operating point. Therefore, these values are not intended to indicate the full capacity of a stage.

Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line voltage will influence stage gain. Accuracy of measurements is dependent upon careful tuning of receiver to generator signal and experience in using your test equipment. These factors may create considerable variation in gain measurements.


© John F. Rider
pointer. chart for convenient B- connection).
4. Connect ground lead from signal generator to B-- through a . 25 Mid . condenser.
5. Set volume control at maximum volume position and use a weak signal from the signal generator.

DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR	CONNECTION OF SIG. GENERATOR OUTPUT TO RECEIVER	SIGNAL GENERATOR FREQUENCY	RECEIVER DIAL SETIING	TRIMMER NUMBER	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT
$\begin{aligned} & 200 \text { MMFD. } \\ & \text { Mica } \\ & \text { Condenser } \end{aligned}$	Control Grid of 12SA7	455 KC	Any point where it does not affect the signal	1-2	2nd I.F.	Adjust for maximum output. Then repeat adjustment.
				3-4	1st 1.F.	
200 MMFD. Mica Condenser	External   Antenna   Clip on   Loop Frome	1500 KC	Set pointer to 1500 KC reforence line stamped into metal dial plate (first line at the right)	5	Broadcast Oncillator (Shunt)	Adjust for maximum output.
200 MMFD Mica Condenser	External Antenna Clip on Loop Frame	1500 KC	Tune to 1500 KC generator signal	6	Broadcast R.F.	Adjust for maximum output.
$\begin{aligned} & 200 \text { MMFD. } \\ & \text { Mica } \\ & \text { Condenser } \end{aligned}$	External Antenna Clip on Loop Frame	1500 KC	Tune to 1500 KC generator signal	7	Broadcast Antenno	Adjust for maximum output.


APPROXIMATE STAGE GAIN DATA			
Be sure R.F. and I.F. stages are accurately allgned before measuring gain. R.F. gains com be mecurured with a "channel" type instrument containing a tuned and callbrated RF. amplifier. $A$ vacuum tube voltmeter mary be used for audio gain mecauremonts. Observe fallowing precautions:			
1. For all gain measurements connect signal generator as shown. Use 600 KC . signal with 400 cycle modulation (use nearby frequency if local station interferes.)	2. For R.F. and 1.F. mecururements connect negative terminal of a 3 voll battery (two $11 / 2$ volt cells in series) to K.V.C. lead and positive terminal to B --. This providen a definite operating point.   IMPORTAINT: Disconnod battery when mecsuring cudio stage gains.	3. Be sure radio is carefully tuned to gen erator signal (une weak sigtuning.) nal for sharp	When using $\alpha$ "channel" type instrument caredully tune it fox maximum output at desired frequency be fore making measure. ments.
The R.F. and I.F. stage gains shown below are less than under normal operating conditions due to the use of 3 volts fixed bias in order to establish a definite operating point. Therefore, these values are not intended to indicate the full capability of a stage.			
Differences in tube characteristics, tolerance of parts, adjustment of tunod circuits, and variations of line voltage will influence atage gain. Accuracy of measurements is deoendent upon careful tuning of receiver to generator signal and experience in using your test equip. ment. These factors may erealo considerable variation in gain measuremunts.			


DIA.	
GAMART PART	
MKO.	DHSCRIPTION






 (1)


RCA PAGE 18-1


MODELS MI-13174-1,   RADIO CORP.   MI-13174-3   Alignmen   Critical Lead Dress   1. Dress blue and green leads of both I-F transformers back in shield cans, leaving them as short as possible   2. Dress R-F plate filter capacitor ( $\mathrm{C} 2,0.1 \mathrm{mf}$.) back aqainst rear chassis apron.   3. Dress yellow and brown leads from 2nd I-F away from all other leads.   4. Dress all heater leads next to chassis.   5. Dress capacitor (C13, 01 mf .) parallel to osc. coil and approximately $3 / 16$ inch from coil.   6. Dress tone control lead and speaker field leads next to chassis and front apron.   7. Dress pilot lamp leads away from ant. coil.   8. Dress leads from loop ant. coil around rectifier tube towards end of chassis.   9. Dress output plate lead against chassis.   Test Oscillator. Connect high side of test oscillator as shown in chart. Connect low side through a .01 ml . capacitor to common "-B." Keep the output signal as low as possible to avoid A.V.C. action.   Output Meter. Connect meter Icross speaker voice coil. Turn volume control to maximum clockwise position, station selector switch to broadcast maximum high position (pos. 1), for broadcast alignment and to position 3 for high frequency bond.	ed	ICA				
	Steps	Connect high side of the test oscillator to-	Tunc test ose. to-	Turn radio dial to-	Rdfust the following for maximum peak output	
	1	Pin \#t of 125A7 in series with 0.1 mid.	455 kc	Quiet Point at 1,600 ke end of dial	C25, C26 2nd I-F trans.	
	2				$\begin{gathered} \text { C23, C24中 } \\ \text { 1st I-F trang. } \end{gathered}$	
	3	Hnt. terminal in series with 220 mnal.	600 kc	600 ke   "R" Band	C30 (ose.)   Rock gang	
	4		1300 kc	"R" Band	C28 C20 ( (R.F.)	
	5		Repeat 3 Rocking gang			
	6		Repeat 3, 4 and 5 for exact eal.			
	7	Ant. terminal in series with 0.1 mid .	11.8 mc	11.8 mc	C29 (osc.)*   Rock \%amø	
	0	Ant. torminal	11.8 mc	11.8 me	$\begin{aligned} & \text { C22 (R.F) } \\ & \text { Rock gcme } \end{aligned}$	
Dial Pointer Adjustment.- Rotate tuning condenser fully counterclockwise (plates fully meshed). Adjust indicator pointer to left (max. cap.) mark on dial back plate.	8	47 mm.	gs 7 and 8			

Calibration Scale. -The glass tuning dial may be easily removed from the cabinet and temporarily attached to the dial backing plate

Power Supply Polarity.-For operation on d-c, the power plug must be inserted in the outlet for correct polarity. It the set does not function, reverse the plug. On a-c, reversal of the plug may reduce hum.

- Use minimum capacity peak if two can be obtained. Check for selection of correct peak by tuning receiver to approximately 10.9 mc where a weaker signal should be received.
$\dagger$ Do not readjust C25 or C26.


Specifications

Frequency Range	
Broadcast	540.1600 kc
Short Wave	8.9-12 mc
Intermediate Frequency ....................................................... 455 kc	
Pilot Lamp ................................... Mazda	, 0.2 cmp .
Power Output	
Undistorted	1.0 watts
Maximum	1.5 watts
Loudspeaker (92510-1) "PM"	
Power Supply Rating	
105-125 volts, AC, 50 or 60 cycles, or DC	30 watts
Tuning Drive Ratio	20:1

Dimensions

Width	16.9/16 inches
Height	93/4 inches
Depth	10-7/16 inches

RCA PAGE 18-3

©John F. Rider

## MODELS Q109, Q109X <br> RADIO CORP. OF AMERICA



## Loudspeaker

Chassis No. RC 602, RC 602A
92562-1
Type (Electrodynamic)
Elliptical
V-C Impedance ( 400 c.p.s.)
2.2 ohms

Pilot Lamps 2 type 516.3 volts, 0.15 amp.
1 troe 556.3 volts, 0.40 amp .


Reduced Reproduction of Receiver Dial, Q109, and Corresponding 0-180 ${ }^{\circ}$ Calibration Scales
The correspuding pastion of the dial indicator for any setting of the calibration scale can be determined by drawing a line from this point on the buttiom catibration sable w the same puint on top calibration scale. Fur example $150^{\circ}$ on the calibration scale corresponds to 600 ke on




Reduced Reproduction of Recciver Dial Q109X, and Corresponding 0-180 Calibration Scales
The correspunding position of the dial indicator for any setting of the calibration scale can be determined by drawing a line from this point on the bottom calibration scale to the same point on top calibration scale. For example $150^{\circ}$ on the calibration scale corresponds to foo ke on A" band, ete. Real instractions umder "Alignment Procedure.'

- John F. Rider


## RADIO CORP. OF AMERICA

MODELS Q109, Q109X

## Alignment Procedure

Q109
Cathedo-Ray Alignment is the preferable method. Connections for the oscillograph are shown on the Schematic Circuit Diagram.

Oufpul Motor Alignment.-If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum. Test Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Calibration Scala on Indicator-Drive-Cord-Drum.-The tuning dial is fastened in the cabinet and cannot be used for reference during alignment, therefore a calihration scale is attached to the indicator drive-cord-drum which is mounted on the shaft of the gang condenser The setting of the gang condenser is read on this scale. Which is calieach alignment frequency, is given in the alignment table.

As the first step in r-f alignment, check the position of the drum The " 180 " mark on the drum scale must be vertical, and directly over the center of the gang-condenser shait when the places are iuny which must be tightened securely when the drum is in the correct which mu
To determine the corresponding freiuency for any setting of the calibration scales, refer to the calibration scale drawing which abow the dial with $0-180^{\circ}$ calibration seales drawn at top and bottom.

Poinfer for Calibration Scale.- Improvise a pointer for the callbration acale by fastening a piece of wire to the gang-condenser frame, and bend the wire to that it points to the " $180^{\circ "}$ mark on the calibration scale when the plates are fully meshed

Dial-Indiewtor Adjustmoni.-After fastening the chassis in the cabinet. attach the dial indicator to the drive cable with indicator at the 540 kc mark (the first mark on " $A$ " band to the left of " $560^{\prime \prime}$ ), and gane condeaser fully meshed. The indicator has a spring clip for attachment to the cable.

Sproed-Bend Alignment.-The most satisfactory method of aligning or checking the spread-band ranges is on actual reception of short wave stimions of known frequency, by adjusting the magnetite-core
oscillator coil for each spread-band so that these stations come in at oscillator coil for each spread-
the correct points on the dial.

In exceptional cases. when the set is being serviced in a location where the noise level is high enough to prevent reception of shortwave stations, a test-oscillator may be used for alignment, but an extremely high degree of accuracy is required in the frequency mettings of the test-oscillator, as alight error will produce considerable test-oscillator may be checked by one or both of the following methods :

1. Determine the exact dial settings of the test-oscillator (for frequencies at or close to the specified alignment frequencies) by zero-beating the test-oncillator against short-wave stations of known frequency
2. Use harmonice of the standard-broadcast range of a test-oscillator, first checking the frequency settings on this range by means of a crystal-controlled oscillator, or by zero-beating against standard broadeast stations.
When a test-oscillator is employed for spread-band alignment, a final check should be made on actual reception of short-wave stations of han frequency, and the magnetie-core oscillator coll for each band should be retouched so that the stations come in at the correct
pointa on the dial.

Stepa	Connect the high side of the tent-owe. to-	Tune testoac. to-	$\begin{gathered} \text { Turn } \\ \text { Range } \\ \text { Switch } \\ \text { to- } \end{gathered}$	Turn radio dial to-	Adjust the following for max. peak output
1	6SG7 I-P grid in series with .01 mifd.	455 kc	"A"   Band	Quiet point mear 600 kc (148ㅇ)	$\begin{gathered} \text { L23, L24 } \\ \text { 2nd. I-F trans. } \end{gathered}$
2	6SA7 Det. grid in series with .01 mid.				$\begin{gathered} \text { L21, L22 } \\ \text { 1at. I-f trane. } \end{gathered}$
3	Antenna terminal in series with 200 mand.	1500 kc	$\begin{aligned} & \text { "A" } \\ & \text { Band } \end{aligned}$	$\begin{aligned} & 1500 \mathrm{kc} \\ & \left(19^{\circ}\right) \end{aligned}$	C23 onc. C30 ri. C10 ant.
4		600 kc		$\begin{aligned} & 600 \mathrm{kc} \\ & \left(148^{\circ}\right) \end{aligned}$	L20 onc.   L15 rf.t   L10 ant. $\dagger$
5	Repent Stepe 3 and 4				
6	$\begin{aligned} & \text { Anteanal } \\ & \text { termainat } \\ & \text { in geries with } \\ & 300 \text { olums } \end{aligned}$	6.2 mc	"B"Fand	$\underset{\left(14^{\circ}\right)}{6.2 \mathrm{mc}}$	$\begin{aligned} & \text { C22 onc.* } \\ & \text { C29 ri. } \\ & \text { C9 ant. } \end{aligned}$
7		2.6 mc		$\begin{aligned} & 2.6 \mathrm{mc} \\ & \left(152^{\circ}\right) \end{aligned}$	L19 anc. $\dagger$ L14 rit. Le ant. $\dagger$
8	Repeat Stepes 6 and 7				
9	Antenna terminal in series with 300 ohms	11.8 mc	"31-25   Meter"   Band	$\begin{aligned} & 11.8 \mathrm{mac} \\ & \left(40^{\circ}\right) \end{aligned}$	C21 osc.* C28 ri. C8 ant.**
10		9.5 mc		$\begin{aligned} & 9.5 \mathrm{me} \mathrm{c} \\ & \left(170^{\circ}\right) \end{aligned}$	$L 18$ aec. $\dagger$   L13 rf. ${ }^{+}$   L6 ant. $\dagger$
11		F7.75 me	"19-16   Meter"   Band	$\begin{aligned} & 17.75 \mathrm{mec} \\ & \left(40^{\circ}\right) \end{aligned}$	C19 onc.* C27 r1. ${ }^{\text {. }}$ C7 ant."*
12		15.2 mc		$15.2 \mathrm{mc}$	L17 oac. $\dagger$   L12 fi. +   L4 ant. $\dagger$
13		26.25 mc	"13-11   Meter"   Band	$\begin{gathered} 26.25 \mathrm{mc} \\ \left(42^{\circ}\right) \end{gathered}$	$\begin{aligned} & \text { C18 osc.* } \\ & \text { C26 rft** } \\ & \text { C6 ant. }{ }^{*} \end{aligned}$
14		21.25 mc		$\begin{gathered} 21.25 \mathrm{mc} \\ \left(180^{\circ}\right) \end{gathered}$	L16 ogc. $\dagger$ L11 rf. L2 ant. $\dagger$

Oscillator tracks above signal on all bands.
Use minimum cepacity peak if two peaks can be obtained †These adjustments are pre-set and should not require re-adjustment except when components of the tuning section are changed. *Rock in-use maximum capacity peak if two penka can obtained.


## RADIO CORP. OF AMERICA

Staps	Connect the high side of the test-ose. 10-	Tune test ose. 10-	Turn Range Switch to-	$\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { To- } \end{aligned}$	Adiust the following for max. peak output
1	65G7 I-F grid in series with 01 mfd .	455 kc	$\begin{aligned} & \text { "A" }{ }^{\prime \prime} \\ & \text { Band } \end{aligned}$	Quiet point near 600 ke (148 ${ }^{\circ}$ )	123, 124   2nd. I-F frans.
2	6SA7 Det. grid in series with .01 mfd				$\begin{gathered} \text { 121, } 122 \\ \text { 1st. I-F trans. } \end{gathered}$
3	Antenno Perminal in series with 200 mmfd	360 kc	$\begin{aligned} & \text { " } x \text { " } \\ & \text { Band } \end{aligned}$	$\begin{aligned} & 360 \mathrm{ke} \\ & \left(19^{\circ}\right) \end{aligned}$	C23 osc. C30 rf . Clo ant.
4		160 kc		$\begin{aligned} & 160 \mathrm{kc} \\ & \left(133^{\circ}\right) \end{aligned}$	120 osc.   1.15 rf.   L10 ant. $\dagger$
5	Repeat Stopt 3 and 4				
6	Antenno terminal in series with 300 ohms	1500 kc	$\begin{aligned} & \text { "A" } \\ & \text { Band } \end{aligned}$	$\begin{gathered} 1500 \mathrm{kc} \\ \left(19^{\circ}\right)^{\circ} \end{gathered}$	C22 osc.* C29 if. C9 ont.
7		600 kc		$\begin{aligned} & 600 \mathrm{kc} \\ & \left(148^{\circ}\right) \end{aligned}$	119 asc. $\dagger$ 114 ri. $\dagger$ 18 ant. $\dagger$
8	Repoot Stept 6 and 7				
9	Antenna terminal in sories with 300 ohms	7.2 mc	"49-40   Meter' Band	7.2 mc (44 ${ }^{\circ}$ )	C21 ase.   C28 rf.**   C8 ant.**
10		6.1 mc		${ }_{\left(141^{\circ}\right)}^{6.1} \mathrm{mc}$	$\begin{aligned} & 118 \text { osec. } \dagger \\ & 113 \text { ff.t. } \\ & 16 \text { ant. } \end{aligned}$
11		11.8 mc	" 31 -25   Moter'   Band	${ }_{\left(40^{\circ}\right)}^{11.8 \mathrm{me}}$	C19 ase.* C27 if.** C7 ant.**
12		9.5 mc		$\begin{aligned} & 9.5 \mathrm{mc} \\ & \left(170^{\circ}\right) \end{aligned}$	117 eec. $\dagger$   112 rf. $\dagger$   14 ant. $\dagger$
13		17.75 mc	'19-16 Moter Band	$\underset{\left(40^{\circ}\right)}{17.75 \mathrm{mc}}$	C18 osc.   C26 rf.*   C6 ont.**
14		15.2 mc		$\begin{aligned} & 15.2 \mathrm{me} \\ & \left(155^{\circ}\right) \end{aligned}$	116 asc. $\dagger$ 111 rf. $\dagger$ L2 ont. $\dagger$

Oscilfator tracks above signal on all bands.
Use minimum capacity peak if two peaks can be obtained
†These adjustments are preset and should not require re-adjuatment except when components of the tuning aection are changed. *FRock in-use maximum capacity peak if two peaks can be btained.

## Critical Lead Dress

1. Dress C47 and R16 against chassis.
2. Dress R23 against chassis.
3. Dress C 48 on power transformer side of terminal board.
4. All resistor and capacitor leads should be as short as practical.
5. Twist electrolytic capacitor leads and dress between chassis and electrolytic capacitor.
6. Twist all A.C. leads and keen close to chassis and away from otner component parts and wires
7. Dress blue treble tone control (R18) lead along intersection of chassis and rear apron and under electrolytic capacitor
8. Keep tuning indicator and pilot lamp leads away from 6SQ7 tube 9. Dress C35 against RF plate assembly.
9. Dress C25 and $R 7$ and C24 midway between range switch and RF coil.
10. Keep coil leads to switch and trimmers with minimum slack but not stretched tight
11. Flexibility of RF plate assembly must be maintained.
12. Dress black lead from phono-radio switch to range awitch close to chassis.
13. Iress C13A away from RF shield.
14. Dress C34 against RF plate assembly.
15. Keep all gang leads as short as practical.
16. A loop must be maintained in ground braid connecting RF plate ansembly to chassis.
ix Dress hlue lead to antenna terminal against RF shield.


Dial-Indicator and Drive Mecbanism


[^13]


## CLARI-SKEMATIX

MODELS Q109, Q109X RADIO CORP. OF AMERICA



John F. Rider

## Replacement Parts

$\begin{aligned} & \text { sTOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	stock No.	DESCRIPTION
	CHASSIS ASSEMBLIES	-70968	Core-Adiustable core and stud for Model Q109X's "X" bond R. F. coil
	RC 602-Q109	'70969	Core-Adiustable core and stud for "A" band R. F. coil
	RC 602A-Q109X	70937	Core-Adiustable core and stud for 19.16 meter band R. F. and oscillator coils and for Q109's 13-11 meter band oscillator
$\begin{array}{r} 12930 \\ .70952 \end{array}$	Board-"Antenma-Ground" board   Bracke:-L.H. bracket complete with drive cord pulley	* 76970	Core-Adiustable core and stud for Model Q109's 13-11 meter
-70951	Bracket-R. H. bracket complete with four (4) pulleys	70942	
*70840	Cable-Bronze cable ( $20^{\prime \prime}$ long) for band indicator mechanism	70942	Core-Adiustable core and stud for Model Ql09X's "X" band oscillator coil
$\begin{array}{r} 35795 \\ * 71086 \end{array}$	Calibrator-Drive Drum Calibrator Capacitor-Ceramic, 4.7 mmf . (C13A)	70939	Core-Adiustable core and
70935	Capacitor-Ceramic, 27 mmf . (C20)	7201	Drum-Band indicator actuating drum-located on range switch
-73247	Capacitor-Ceramic, 33 mmf . (C12)		
71924	Capacitor-Ceramic, 56 mmf . (C25)	$3739{ }^{\circ}$	Drum-Condenser drive drum ${ }_{\text {Granmet- Rubber }}$
7193	Capasitor-Mica, 180 mmf . (C16 for Q109X)		Groinmet-Rubber grommet for mounting R. F. assembly (4 required)
39	Capacitor-Mica, 220 mmf ( (C3, C13, C24, C46)	35787	Jack-Phono inpul socket
7193	Capacitor-Mica, 510 mmf ( (C16 for Q109, C17 for Q109X)	5117	Lamp-Band indicator lamp-Marda 55
72526	Capacitor-Mica, 2000 mmf . (C17 (or Q109) Capacitar-Mica trimmer, comprising ${ }^{\text {a }}$ ( section of $3-35 \mathrm{mmf}$.	11765	Lamp-Dial lamp-Maxda 51
70931	Capacitar-Mice trimmer, comprising l section of $3-35 \mathrm{mmf}$ and 2 sections of $4-70 \mathrm{mmf}$. for 0109 (C8, C9, C10, C28,	35630	Pulley-Drive cord pulley
	C29, C30)	5040 36637	Plug-4 contact female plug Receptacle-AC power rece
-70966	Capacitor-Mica trimmer, comprising 2 sections of $3-35 \mathrm{mmf}$.	34761	Resistor-i0 ohms. $1 / 2$ watt (R2)
	and 1 section of 4.70 mmf . for Q109X (C8, C9, C10, C28,   C29, C30)	36732	Resistor-47 ohins, $1 / 2$ walt (R7)
70754	Capacitor-Mica trimmer, comprising i section of 4.70 mmf .	34765	Resistor -100 ohms, $1 / 2$ watt (R8)
	and 1 section of 12-160 mmf. (C6, C7 for Q109x, C26, C27	37278 34767	Resistor-470 ohms, 1 watt (R23) Resistor- 2200 ohms, 1/2 watt (R10)
	for Q109)	30436	Resistor $-12,000$ ohms, $1 / 2$ watt (R15)
70745	Capasitor-Mica trimmer, comprising 1 section of $12-160 \mathrm{mmf}$ and 1 section of $4-70 \mathrm{mmf}$. (C6, C7 for Q109, C26, C27	71085	Resisto:-12,000 ohms, 2 watts (R3)
	$\text { for } 0109 \mathrm{X})$	35523	Resistor-15,000 ohms, 2 watts (R24)
*70965	Capacitor-Ceramic trimmer, comprising 5 sections of 5.50	30492 71084	Resistor $-22,000$ ohms, $1 / 2$ watt (RG, R12) Reristor- 39.000 ohms, 1 watt (R1)
	mmf. for Q109 (C18, C19, C21, C22, C23)	30651	Ressis:or-270,000 ohms, $1 / 2$ watt (R13, R22)
*70967	Capacitor-Ceramic trimmer, comprising 4 sections of 5-50	30648	Resistor-470,000 ohms, $1 / 2$ watt (RS, R17, R19, R21)
	mmf . and 1 section of 30.65 mmf . for Ol09X (C18. C19,	30652	Resistor-1 megohm, $1 / 2$ watt (R4, R9)
71592	Capacitor-Moulded paper 002 mfd 200 valts (C52)	30649	Resistor-2.2 megohms, $1 / 2$ watt (R11)
-71590	Capacitor-Moulded paper, 002 mfd ., 600 volts (C47)	330992	Resistor- 10 megohms, $1 / 2$ watt (R16, R20, R25)
71087	Capacitor-Moulded paper, . 003 mfd , 1000 volts (C5O, C51)		Screw-No. 8-32 square head set screw for drive or band
71587	Capacitor-Moulded paper, 005 mfd ., 600 volis (C5, C35, C37)	-70750	Shaft-Tuning knob shaft and flywheel
. 71593	Capacitor-Moulded paper, 005 mmf ., 600 volts (C45)	34909	Socket-Band indicator lamp socket
*71589	Capacitor-Moulded paper, 025 mfd ., 200 volts (C43)	31364	Socket-Dial lamp socket
71585	Capacitor-Moulded paper, $01 \mathrm{mfd}, 200$ volts (C42)	70827	Socket-Tube socket
72219	Capacitor-Moulded paper, 01 mfd ., 600 volts (C4, C34, C48, C49)	9914	Socket-Tube socket for 6AT6 tube
72527	Capacitor-Moulded paper, $05 \mathrm{mfd}, 100$ volts) (C36)	*71554	Socket-Tuning tube socket
33014	Copacitor-Electrolytic, comprising three (3) sections of 10	31418 +7095	Spling-Dive or indicotor cord spring
	mfd., 450 volts and one (1) section of 20 mfd , 25 volts		Switch-"Local-Distance" switch ( 55 )
	(C44A, C44B, C44C, C44D)	$70917$	
*70953	Clamp-Mounting clamp for electrolytic capacitor	70918	Transformer-Second I. F. transformer ( $\mathbf{T} 2,123,124,{ }^{\text {c }}$ C38, C39,
38201	Clamp-Clamp for drive ond pointer cords		C40, C41)
70726	Clip-Retaining clip for coils core and stud	*71154	Transformer-Power transformer, 117 volts, 25 cyele (T3)
70923 70924	Cail-Antenna coil, 13-11 meter band for Model Q109 (L1, 12)	-71153	Transformer-Power transformer, 117 volts, 60 cycle ( 73 )
70924	Coil-Antenna coil, $19-16$ meter band (L1, 12 for Q109X, 13, 14 for Q109)	-70947	Transformer-Power transformer, 110/125/150/210/240 volis, 50/60 cycle (T3)
70925	Coil-Antenna coil, 31-25 meter band (L3, 14 for Q109X, 15, 16 for Q109)	34373	Washer-" $C$ " washer for tuning shoft
70928	Coil-Antenna coil, 49-40 meter band for Model Ol09X (L5, 16)		
70926	Coil-Antenna coil. "B" band for Model Q109 (17, L8)		
70927	Coil-Antenna coil, "A" band (17, L8 for Q109X, 19, 110 for Q109)		SPEAKER ASSEMBLIES
70929 .70964	Coil-Antenna coil, "X" band for Model O109x (19, L10)		Stamped 92562-1]
*70964	Coil-R. F. coil, 13-11 meter band for Model Q109 (111)		Stampod 92562-1J
-70963	Coil-R. Q109) coil, $19-16$ meter, band (LII for Q109X, 112 for	70927	Cone-Cone and voice coil assembly
*70962	Coil-R. F. coil, 31-25 meter bond (L12 for Qi09X, 113 for Q109)	70971	Plug-4 prong male plug for speaker   Speaker-6"x9"E. M. speaker complete with cone and voice
* 70961	Coil-R. F. coil, 49-40 meter band for Model Q109X (L13)	37899	coil less output transformer and plug Iransformer-Output transformer (T4)
*70960	Coil-R. F. coil, "B", band for Model Q109 (114)	37899	
*70958			NOTE: If stamping on speaker in instrument does not agres
70920	Coil-Oscillator coil, 13-11 meter band for Model Q109 (16)		with above speaker number, order replacement parts by
70823	Coil-Oscillator coil, $19-16$ metei band (L16 for Q109X, 117 for Q109		referring to model number of instrument, number stamped on speaker and full description of port required.
70825	Coil-Oscillator coil, 31-25 meter band (117 for Q109X l1E for Ql09)		
$\begin{aligned} & 70921 \\ & 70829 \end{aligned}$	Coil-Oscillator coil, 49-40 meter band for Model Q109X (t18) Coil-Oscillator coil, "B" band for Model Q109 (L19)		miscellaneous
70789	Coil-Oscillator coil, "A" band ( 119 for Q109X ${ }^{\text {a }}$ (20 for Q109)		
70922	Coil-Oscillator coil, "X" band for Model Q109x (t20)	*70919	Back-Cabinet back
70	Condenser-Variable tuning condenser (C1, C2, C11, C14, C15, C31)	$\begin{array}{r} 30716 \\ \times 1655 \end{array}$	Clip-Tuning tube mounting clip
-70949	Control-Tone control (R18)	* 71906	Decal-Control panel decal
*70948	Control-Volume control and power switch (R14, S6)	*71828	Dial-Glass dial for Q109
-72953	Cord-Drive cord (approx. $45^{\prime \prime}$ overall length required)	*7:829	Dial-Glass dial for Q109X
72913	Cord-Indicator cord (approx. 57" overall length required)	* 70977	Disc-Band indicutor actuating disc-located on dial frame
70945	Core-Adjustable core and stud for "X" band antenna coitfor Model Q109X	11771 $* 70974$	Foot-Rubber foot for cabinet (4 required)
70938	Core-Adiustable core and stud for "A" band antennc coils,		cator disc, spring indicator and " $C$ " washer
	for 31-25 meter band R. F. and oscillator coils for Model Q109's 'B'" band oscillator coil	$\begin{array}{r} 70979 \\ \quad 72954 \end{array}$	Indicator-Station selector indicator   Knob-'Local-Distance-Phono" switch knab
70944	Core-Adjustable core and stud for 31-25 meter band antenna	*72950	Knob-Tone control or range switch knob
	coits and for Madel Q109's "B" baind antenna coil and for	* 72949	Knob-Volume control or tuning knob
	Model Q109X's 49.40 meter band antenna coil	+35630	Pulley-Drive cord pulley
70943	Core-Adjustable core and stud for 19-16 meter band antenna coil	$\begin{array}{r} 70976 \\ 6647 \end{array}$	Screen-Band indicator screen-green Shade-lamp shade
70941	Coro-Adiustable core and stud for Model Q109's 13-11 meter band antenna coil and for Model Q109X's 49-40 meter band oscillator coil	$\begin{array}{r} * 70978 \\ +14270 \end{array}$   *71143	Spring-Band indicator dise spring Spring-Retaining spring for knob Washer-" $C$ " washer to hold dise

*This is the first time that this stock number has appeared in service data.


## Alignment Procedure

Cathode Ray Alignment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.

Output Meter Alignment.-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

Test Oscillator.-For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.

Battery oneration of the receiver is preferable during alignment: on $A C$ operation an isolation transformer ( $117 \mathrm{v} . / 117 \mathrm{v}$.) may be necessary for the receiver if the test oscillator is also $A C$ operated.

Calibration Scale.-The calibrated dial scale is attached to the chassis. It can be used directly as a reference for alignment.

With the gang at full mesh set the dial pointer so that the pointer is in line with the left hand vertical of the first figure 5 of the figures 55 on the dial scale as illustrated below.

## Alignment Tabulation

Steps	Connect high side of sig. gen.	Sig. gen. output	Turn radio dial to-	Adiust for peak oufput
1	Pin No. 6 of 114 I.F. Amplifier thru . 01 mfd .	455 kc	Quiet point near 1600 kc	2nd I.F. Trans.   18, 19   top $\dagger \&$ bottom
2	Pin No. 6 of 1R5 Converter thru .01 mfd .			$\begin{aligned} & \text { 1st l.F. Trans. } \\ & \text { to. L7 } \\ & \text { top } \& \text { bottom } \end{aligned}$
3				$\begin{gathered} \text { 2nd I.F. Trans. } \\ \text { bottom core } \end{gathered}$
4	High side of loop (Blue lead) in series with .01 mfd .   Bottom shield cover in place	1600 kc	1600 kc	C11 (osc.)
5		1400 kc	1400 kc	ClO (r.f.)
6		600 kc	600 kc	$\begin{aligned} & 14 \text { (osc.) } \\ & 13 \text { (r.f.) } \end{aligned}$
7	Repeat steps 4, 5 and 6			
8	Short wire placed near loop. (Chassis in cabinet and internal loop connected)	1400 kc	1400 kc	Clit (loop) (Cabinet closed)

$\dagger$ Two peaks may be found, the correct peak is that with the core in the outer position (counter-clockwise)
$\dagger \dagger$ Accessible thru slot in case provided for cable of external loop NOTE: Adjustments L8, L9, L6, L7, I.4 and L3 do not have visible adjusting screws. The magnetite cores have a screw driver slot to bermit adjustment (use non-metallie serew driver).


## Specifications

Frequency Range
540-1,600 kc
Intermediate Frequency
.455 kc

## Power Supply Rating

110 to 125 volts, AC 50 or 60 cycles, or DC . . . . 18 watts

## Bafteries required

One RCA Battery Pack VS019 or equivalent
Tube Complement
(1) $\mathrm{RCA}-1 \mathrm{~T} 4$
R.F.
(2) RCA-1R5
. Converter
(3) RCA-1T4 ................................Amplifier
(4) RCA-1U5 ..... 2nd Det. AVC. \& A.F.-Amplifier
(5) RCA-3V4 ........................ Power Output
(6) RCA-117Z3


Current Consumption
Battery Operation
"A" $50 \mathrm{ma} .$, "B" 13 ma .
(Average life of RCA VS019 Battery
125 hrs . intermittent service.)
Total Rect. Current ( 117 volt, 60 cycle)......... 61 ma .
Power Oułput
Undistorted . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 watt
Maximum .275 watt

Loudspeaker 4 in. P.M. 3.4 ohms at 400 cycles
Cabinet Dimensions
Height. . $13^{1 / 4}$ in. Width... $91 / 2 \mathrm{in}$. Depth... $51 / 2 \mathrm{in}$. CAUTION.-

1. Do not remove any tubes from the chassis with the set operating and the plug connected to the power line. Damage to tubes may result.
2. When cleaning the aluminum portion of the case use soap and water or cleaning fluid. Do not use abrasive cleansers.


## Using External Loop.-

A loop antenna is mounted inside the cabinet. Under normal conditions this will give satisfactory reception. If however, the receiver is used in a shielded compartment such as an automobile, airplan can be used.

This external loop antenna has a strap connector cord with identical two prong plugs on either end. this makes it convenient in connecting it to the circuit through the receptacle located in the left hand sidc of the chassis.
Open the case, plug the external loop antenna cord into the socket (it will orly go in one way), bring the strap out through the slot in the case and attach the external loop antenna by means of the suction cup to any convenient vertical surface.

This external loop antenna can be stored in the cabinet, in the compartment below the battery pack, and the cord in the small compart. ment in the lower right hand corner of the cabinet

Insulating Woshers:
The mounting bracket and dial frame are insulated from the chassis with insulating washers. This serves to insulate the case from the chassis. In servicing make certain that these washers are in place and properly positioned.

## To Remove Chassis from Cabinet:

1. Diaconnect battery plug and remove battery.
2. Disconnect antenna in cabinet.
3. Remove the two screws in the top of the cabinet (beneath handle).
4. Remove the two battery clips.
5. Remove the chassis from the cabinet

To Remove Speaker:

1. Remove tubes $3 V 4$ and $1 U 5$.
2. Remove the three screws " $B$ " holding power cord bracket assembly and remove bracket.
3. Remove the three screws " $A$ " holding speaker bracket assembly. 4. Disconnect voice coil leads.
4. The speaker and speaker bracket may now be remoyed.

## AC-DC Operation.-

This receiver will operate on 105 to 125 volts, AC 50 or 60 cycles, or DC.

A power cord is stored in the fiber tube which is clamped above the chassis inside the cabinet. To open the cabinet, push the wire latch on the bottom of the case to the right, and raise the back cover upward on its hinges, Then pull the power cord plug out of the socket on the top of the chassis as shown, and the cabinet allows the closing the power cord, A slot in the bord passing through. Close the cabinet of the cabine wing with the cord extending through the slot and insert the plug into a convenient electrical outlet.
When returning to battery operation. be sure to replace the power plug in its socket inside the case with the cord stored in the fiber tube.

NOTE, If rcception is not obtained on DC, recerse plug in oulet receptacle. This may also reduce hum on $A C$ operation.


Dial Pointer Setting


Dial-Indicator and Drive Mechanism


## Replacement Parts



RCA PAGE 18-15


## RADIO CORP. OF AMERICA

## Alignment Procedure

Cathode-Ray Alignment is the preferable method. Connections for the oscilloscope are shown on the Schematic Diagram.
Output Meter Alignment.-If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.
Test Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Stops	Connect high side of teat oscillator to-	Tune tast oscillator	Tum radio dial to-	Adjust the following for maximum peak output
1	6SK7 grid in serice with .01 mfd.	455 kc .	Quiet Point at 550 kc . and of dial	Top and bottom (2nd I-F Trans.) T-2
2	6SAT grid in series with .01 mfd .			$\begin{gathered} \text { Top and bottom } \\ \text { (1as I-F } \\ \text { Trans.) T-1 } \end{gathered}$
3	Primary leod on loop in serios with $\mathbf{2 0 0} \mathrm{mmfd}$	1,400 ke.	1,400 ke.	$\begin{aligned} & \mathrm{C} 4 \text { (osc.) } \\ & \mathrm{C} 2 \text { (ant.) } \end{aligned}$
4		600 kc.	600 kc.	12 (osc.) Rock gang
5		Repeat staps 3 and 4		



Tube and Trimmer Locations (Top View)
Critical Lead Dress:

1. Dreas speaker cable leads down next to chassis.
2. Dress output plate capacitors next to chassis.
3. Dress plate lead of output tube away from grid of audio amplifier.
4. Dress all a-c leads away from volume control down next to chassis.
5. Dreas lead from top tap of volume control to range-tone switch along front apron of chassis.
6. Dress R12 and R15 down near chassis base.

Replacement Parts

$\begin{aligned} & \hline \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	STOCK No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC 615	$\begin{array}{r} 70134 \\ 70128 \end{array}$	Switch-Range switch (51)   Transformer-First I. F. mansformer (TI)
*70137	Bracket-Dial bracker-1.H.-complere with drive cord pulley	70129	Iransformeer-Second I. F. transformer (T2)
*70136	Bracket-Dial bracket-R.H.-complete with drive cond pulley	70127	Transformer-Power transformer, 117 volt, 60 cycles (T4)
71924	Capacitor-Ceramic, $\mathbf{5 6 ~ m m f . ~ ( C 5 ) ~}$	35969	Washer-' $C$ ' Washer for tuning shaft
71614	Capacitor-Ceramic, 120 mmf ( (C18)		SPEAKER ASSEMBLIES
70602	Capacitor-Tubular, .0025 mfd ., 400 volts (C9, ${ }^{\text {C12 }}$ )		SPEAKER AS69-1w
70646	Capacitor-Tubular, . 0035 mfd. . 1000 volts (C19, C20)		92569-1 W
70601			RL 103-1
70606 70572	Capacitor-Tubular, $.005 \mathrm{mfd} ., 400$ volts ( $\mathrm{Cl14}, \mathrm{C16)}$ Capacitor-Tubular, 015 mfd . 400 volts ( $\mathrm{Cl3})$	$\begin{aligned} & 13867 \\ & 36145 \end{aligned}$	Cap-Dust cap
70572		36145	Cone-Cone and vaice coil assembly
70610	Capacitor-Tubular, 01 mfd, 400 volts ( $\mathrm{C6}, \mathrm{C10}, \mathrm{C17)}$	71560	Plug-5 prong male plug for speaker with con and voice coil
70611 70615	Capacitor-Tubular, 02 mfd ., 400 volts ( ${ }^{\text {( } 11, ~ C 15) ~}$ Capacitor-Tubutar, 05 mfd., 400 volts (C8)	71961	Speaker-12" P.M. speoker complete with cone and voice coll less output transformer and plug
71976	Capacitom-Electrolytic, comprising 1 section of 20 mfd ., $\mathbf{4 5 0}$ valiss; 1 section of 30 mfd ., 350 valts; and 1 section of $20 \mathrm{mfd}, 25$ volts (C21A C21B, C21C)	$\begin{array}{r} 71145 \\ 37899 \end{array}$	Suspersion-Metal come suspension   Transformer-Output transformer (T3)   NOTE: If stamping on speaker in instrument does not ogree
*70133	Coil-Oscillator coil (12, 13)		with above speaker number, order replacement parts by
$\begin{array}{r} 70139 \\ 703429 \end{array}$	Condencer-Variable tuning condenser (C1, C2, C3, C4) Control-Volume control and power switch (R6, S2)		referring to model number of instrument, number stampad on speaker and full description of part required.
†72953	Cord-Drive cord (approx. 49" overall length required)		
70930	Grommet-Rubber grommet to mount variable condenser (3		
	required)	71599	Bracket-Indicator lamp b
71608	Indicator-Station selector	72437	Cable-Shielded pickup cable complete with pin plug
*70138	Plate-Dial back plate	13103	Cap-Indicator lamp iewel
30868	Plug-2 contact female plug for Motor cable	70142	Clamp-Dial clomp
12493	Plug-5 centact female plug for speaker cable	  1796   $\times 7313$	Cloth-Grille cloth
72602	Pulloy-Drive cord pulley	*73413	Decal-Control panel decal for blonde instruments
	Resistor-Fixed composition, $\mathbf{3 3 0}$ ohms, $\pm 10 \%$, 1 watt (R19)   Resistor-Fixed composition, $2200 \mathrm{ohms}, \pm 10 \%, 2$ watts (R20)	73084	Decal-Control panel decal for walnut or mahogany instruments
	Resisfor-Fixed composition, 8200 ohms, $\pm 10 \%, 1 / 2$ watt (R17)	71966	Decal-Trade mark decal (Victrola)
	Resistor-Fixed composition, $15,000 \mathrm{ohms}, \pm 10 \%, 2$ wats (R2)	70141	Decal-Trade mark decal (RCA Victor)
	Resistor-fixed composition, 18,000 ohms, $\pm 10 \%$, $1 / 2 \mathrm{waH}$ (R4) Resistor-Fixed composition, 22,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{wott}$ (R1)	72856	Grammer-Rubber grommet for mounting record changer (3
	Resistor-Fixed composition, 27,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R5, R7)	698	required)   Hinge-Cabinet lid hinge (4 required)
	Resistor-Fixed composition, 56,000 ohms, $\pm 10 \%, 1 / 2$ watt (R8) Resistor-Fixed compasition, 100,000 ohms, $\pm 10 \%, 1 / 2$ watt	72824	Knob-Radio-phono-tone switch knob-brown-for blonde instruments
	(R21)	71822	Knob-Radio-phono-tone switch knob-maroon-for walnut or mahogany instruments
	Rosistor-Fixed composition, 270,000 ohms, $\pm 10 \%, 1 / 2$ wan (R10, R11, R13, R14)	72800	Knob-Tuning or volume control knob-brown-for blonde
	Resistor-Fixed composition, 330,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R3)   Resistor-Fixed composition, 470,000 ohms, $\pm 10 \%, 1 / 2$ watt	71821	Knob-Tuning or volume control knob-maroon--for walnut or mahogany instruments
	(R16, R18)	11765	Lamp-Dial, indicator or compartment lamp-Mazda 51
	Resistor-Fixed composition, 2.2 megohms, $\pm \mathbf{2 0 \%}$, $1 / 2$ waft (R9)	70140 73109	
	Resistor-Fixed composition, 10 megohms, $\pm 20 \%, 1 / 2$ watt (R12 R15)	73109 31048	Nut-Tee nut for mounting record changer (3 required) Plug-Pin plug for shielded pickup cablo
-70135	Shaft-Tuning knob shaft	73110	Screw-1/4-20 fillister head screw for mounting record changer
31364	Socket-Lamp socket		( 3 required)
35787	Socket-Phono input socket	-30900	Spring-Reraining spring forknobs
31251 31418	Socket-Tube socket	*73411	Support-Cabinet lid support-L.H.
31418	Spring-Drive cord tension spring	*73412	Support-Cabinet lid support-R.H.

*This is the first time this Stock No. has appeared in Service Data. $\dagger$ Stock No. 72053 is a reel containing 250 ft . of cord.

RCA PAGE 18-17


Loudspeaker

Tuning Drive Ratio................ 18:1 (9 turns of knob)
Dial Lamps (2) ........Type No. $51,6-8$ volts, 0.2 amp .


These receivers have built-in antennas for standard
broadcast (AM) and frequency modulation (FM) re-
Under average conditions these antennas will provide satisfactory reception. However, provision is made for cated below:
Ground: Connect external ground to " G " terminal.
AM Antenna: Connect a single wire antenna to ter-
minal "A."
M Antenna: Remove the built-in FM antenna lead
 Connect the transmission line of an external FM
dipole antenna to these two "FM" terminals. dipole antenna to these two "FM" terminals.


Circuit Description
The chassis used in this receiver has a 6 J 6 tube (V1) (twin triode), one section of which is used as mixer and the FM oscillator coil are placed in such position as to provide coupling between them. A section of the AM input when the selector switch is in AM position. taining both $A M$ and $F M$ windings. The I-F amplifier is 2 (6BA6). The selector switch has five functions:
(1) Selection of tuning range. (2) Selection of tuning range.
(2) Selection of AVC supply voltages to be applied to grids of V1 and V2 on AM. Delayed AVC is used
(3) Controls application of B+ voltage to V1, V 2, V 3
(4) Controls audio input to volume control.
(5) Controls circuit loading of M.M. reactor
(5) Controls circuit loading of M.M. reactor tube V11

The driver V3 (6AU6) and ratio detector V4 (6AL5)
circuits are similar to those used in other RCA Victor
AM-FM receivers.
The audio system is conventional. It consists of
$(6 \mathrm{AV6}$ a.f. amp.), V7
$(6 \mathrm{AV6} \mathrm{ph}$. inv.), V6 and V8 The rectifier is $\mathrm{V} 9(6 \mathrm{X} 5 \mathrm{GT}$ ).

The Magic Monitor system uses V10 (6AV6 M. M.
amp.) and V11 (6BA6 M. M. reactor).

## Alignment Procedure

## CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

## Alignment Indicators:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed $d \cdot c$ voltage during FMI alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indi cate minimum audio output during FM Ratio Detector alignment Connect the output meter across the speaker voice coil.

The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure a-v-c voltage.

When audio output is being measured the volume control should be turned to maximum.

## Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to generator to the receiver chassis. The output should out adjusted provide accurate resonance indication at all times. If ourput measurement is used for An alignment the output of the as as low as possible to avoid a.v.c action.

The FM i.f alignment may be checked by means of an FM sweep generator and cathode ray oscilloscope. Connect the output from the sweep generator, which is set to 10.7 mc , to the mixer grid (6]6 Pin No. 5), low side to chassis. Disconnect the 2 mfd . capacitor C33 from the Ratio Detector circuit.

Connect the high side of the oscilloscope to the junction of R25 and R26. low side to chassis. Adjust the sweep generator and oscillo. scope to obtain the response curve.

The Ratio Detector characteristic may he viewed by connecting the oscilloscope across the volume control R14. Capacitor C33 should be re-connected before checking the Ratio Detector characteristic.

## CRITICAL LEAD DRESS

1. Keep leads of C 7 short.
2. Dress R27 away from range switch and pin No. 5 of V1.
3. The ground lead of pin No. 2 of $V 2$ and V3 should be down against chassis. Its length is critical.
4. The AVC lead from R26 to range switch should be dressed against chassis and away from 6AU6 driver tube socket.
5. C43 should have short leads and the color code of the capacitor should go to the coil L4. The capacitor should be cemented down with polystyrene cement at the same time $L 2$ is cemented.
6. The lead from the high side of the loop should be dressed away from tubes
7. Lead from pin No. 2 of V1 to terminal "A" of 1 st I. F. trans former should be dressed against the chassis.
8. Connect C 40 directly between the gang condenser and pin No. 1 of V1.
9. Make all FM leads as short as possible
10. Dress lead from pin No. 5 of $V_{2}$ to terminal " $A$ " of 2nd I. F. transformer down against chassis.
11. Dress resistor R15 near chassis base
12. Dress all A. C. "leads, away from volume control.
13. The lead from "FM" terminal of antenna terminal board to L1 tap should be dressed away from V2
14. The taps on L1 and L2 are critical. L1 tap should be turn from the ground end. L2 tap should be $2 \frac{1}{2}$ turns from the gang con denser C8.
15. Dress C25 and C26 against the chassis with the shortest lead
16. The position of

Tw V1 1 and L2 is critical. L1 should be midway be tween V1 and the $1 \mathrm{st} I$. F. transformer. The end of $L 2$ should
be approximately $3 / 16^{\prime \prime}$ from $V 1$.

Dial Indicator
With the tuning condenser fally meshed (closed) the indicator should be set to the SECOND REFERENCE MARK from the left hand edge of the dial hack plate.

Refer to the dial scale reproduction on page 7 .
SHOWN WITH TUNING CONDENSER AT
MAXIMUM CAPACITY (FULLY CLOSED)


AM Alignment
RANGE SWITCH IN BC POSITION

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	C3 in series with .01 mfd .	455 kc .	Quiet point at low freq. end.	AM windinge. $\dagger$ T3 bottom core (sec.). T3 top core (pri.).
2				AM windings. $\dagger$   T2 top core (sec.). T2 bottom core (pri.).
3	"A" terminal of terminal board at rear of chassis in series with 220 mmf .	1400 kc.	1400 kc.	C13 osc. C4 ant.
4		600 kc .	600 kc.	L4 osc.   (Rock gang.)
5	Repeat Steps 3 and 4.			

+ Use alternate loading
Alternate loading involves the use of a 47,000 olim resistor to load the AM plate winding while the AM grid winding of the SAME TRANSFORMFH is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 47,0010 olim resistor aiter $\mathrm{T}: 3$ and Tr bave been aligned.

Oscillator frequency is above signal frequency on both $A M$ and $F M$.

## FM Alignment

RANGE SWITCH IN FM POSITION - VOLUME
CONTROL MAXIMUM

Steps	Connect high side of sig. gen. to-	Sig.gen. output	Turn radio dial to-	Adjust for peak output
1	Connect the d-c probe of a Voltohmyst to the negative lead of the 2 mid . capacitor C33 and the common lead to chassis. Turn gang condenser to max. capacity (fully meshed).			
2	Pin 1 of GAU6 in series with .01 mfd .	10.7 mc . modulated $30 \% 400$ cycles AM (Approx. .05 volt).	Max.capacity (fully meshed).	T4 top core for max. d-c voltage across C33.   T4 bottom core for min. audio output.*
3	FM ant. term. in series with a 300 ohm resistor. (Remove ant. lead from "FM" term.)	10.7 mc .   Adjust to provide 2 to 3 volts indication on Voltohmyst during alignment.		FM windings. $\dagger \dagger$ T3 top care (sce.). T3 bottom core (pri.).
4				FM windings. $\dagger \dagger$ T2 top core (sec.). T2 bottom core (pri.).
5		106 mc.	106 mc .	L2 osc.** C2 ant.   Set C2 at max. capacity while adjusting L2.
6		90 me.	90 mc .	L. 1 nt."• (Rock Eanf.)
7	Repeat Steps 5 and 6 until further adjustment does not improve calibration.			

* Two or more points may be found which lower the audio output. At the correct point the minimum audio.output is approached rapidly and is much lower than at any incorrect point.
$\dagger \dagger$ Align $T 3$ and $T 2$ by means of alternate loading as explained under AM alignment. Use a 680 ohm resistor instead of a 47,000 ohm resistor and load the F.II windings.
* $\mathrm{L}^{1} 1$ and $L 2$ are adjustable by increasing or decreasing the spacing between turns.


Tube and Trimmer Locations
Note：FIf mixer and oscillator coils are aljustahle by increasing or decreasing the spacing between turis．The position of the coils and location of the taps are critical（refer to＂Critical Lead Dress＂）．

## SOCKET VOLTAGES

Voltages measured with Chanalyst or VoltOhnyst and should hold within $\pm 0 \%$ with rated line voltage． Tuning condenser closed－no signal input．

Tube	Terminal		Voltage			
			M．M．	Phono	A．M．	F．M．
（1） 6 J 6	Plate Grid Plate Grid	1 6 2 5	$-\overline{0.4}$	$\begin{aligned} & -\overline{-4} \\ & -0.8 \end{aligned}$	$\begin{array}{r} 102 \\ -6.8 \\ 96 \\ -2.7 \\ \hline \end{array}$	$\begin{array}{r} 98 \\ -6.0 \\ 110 \\ -2.5 \end{array}$
（2） 6 BA 6	Plate   Screen Cathode Grid	5 6 7 1	$\begin{array}{r} \text { 二 } \\ -1.0 \end{array}$	二	$\begin{array}{r} 196 \\ 100 \\ 0.7 \\ -1.3 \\ \hline \end{array}$	$\begin{array}{r} 192 \\ 83 \\ 0.84 \\ -0.2 \end{array}$
（3）6AU6	Plate   Screen Cathode	5 6 7	－	二	$\begin{aligned} & 190 \\ & 145 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 185 \\ & 141 \\ & 1.21 \end{aligned}$
（4） $6 \mathrm{AL5}$	－－	－	－	－	－	－
（5） 6 AV 6	Plate Grid	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 95 \\ -0.6 \end{array}$	$\begin{array}{r} 125 \\ -0.6 \end{array}$	$\begin{array}{r} 85 \\ -0.6 \end{array}$	$\begin{array}{r} 84 \\ -0.6 \end{array}$
（6） 6 V 6 GT	Plate   Screen Cathode	3   4   8	$\begin{array}{r} 295 \\ 275 \\ 19.6 \end{array}$	$\begin{array}{r} 299 \\ 295 \\ 21.4 \end{array}$	$\begin{aligned} & 282 \\ & 220 \\ & 15.5 \end{aligned}$	$\begin{array}{r} 280 \\ 217 \\ 15.4 \end{array}$
（7） 6 AV 6	Plate   Grid	7 1	$\begin{array}{r} 158 \\ -0.5 \end{array}$	$\begin{gathered} 168 \\ -0.5 \end{gathered}$	$\begin{array}{r} 125 \\ -0.5 \end{array}$	$\begin{array}{r} 125 \\ -0.5 \end{array}$
（8） 6 V 6 GT	Plate Screen Cathode	3   4   8	$\begin{gathered} 295 \\ 275 \\ 19.6 \end{gathered}$	$\begin{array}{r} 299 \\ 295 \\ 21.4 \end{array}$	$\begin{array}{r} 282 \\ 220 \\ 15.5 \end{array}$	$\begin{array}{r} 280 \\ 217 \\ \mathbf{1 5 . 4} \end{array}$
（9） $6 \times \mathbf{5 G T}$	Cathode	8	310	313	300	299
（10）6AV6	Plate   Cathode	7   2	$\begin{gathered} 171 \\ 1.85 \end{gathered}$	$\begin{array}{r} 184 \\ 1.98 \end{array}$	$\begin{array}{r} 131 \\ 1.55 \end{array}$	$\begin{array}{r} 130 \\ 1.53 \end{array}$
（11）6BA6	Plate   Screen Cathode Grid	5 6 7 1	$\begin{array}{r} 195 \\ 56.5 \\ 0.65 \\ -0.2 \end{array}$	二	二	$\underset{-0.8}{\text { 二 }}$

## MAGIC MONITOR

## Circuit Description

The Magic Monitor circuit acts as a capacity shunt across the audio input to the volume control when the selector switch is turned to M．M．position．This shunt is variable，diminishing with increasing input level and in－ creasing with increase of frequency．The phono signal input is applied to the grid of V10（ $6 \mathrm{AV} 6 \mathrm{M} . \mathrm{M}$. amp．）， is amplified and fed through a resistance－capacity net－ work to the diode plates of V10 which rectifies it and produces a grid voltage on V11 in proportion to the level of the high frequencies contained in the audio signal．

## Tests

（1）Feed a .04 volt 400 cycle signal from a low impedance source into the phono jack．Adjust the volume control for maximum out－ put with selector switch in PHONO position．Set switch to M．M． The output level should decrease to approximately one－half．
（2）Repeat Step 1 except using 2 volt signal．The output level should decrease only slightly when the selector switch is turned to M．M．position．
（3）Repeat Step 2 except using 3,000 cycle signal．The output level should not decrease when the selector switch is turned to M．M． position．
（4）Repeat Step 3 except using .04 volt signal．The output level should decrease to approximately onefourth when the selector switch is turned to M．M．position．

CATHODE CURRENTS（MA）

Tube	Terminal	M．M．	Phono	A．M．	F．M．
$(1)$ 6J6	7	-	-	8.2	8.7
$(2)$ 6BA6	7	-	-	11.6	13.4
$(3)$ 6AU6	7	-	-	10	9.7
（4）6AL5	$1 \& 5$	-	-	-	-
（5）6AV6	2	0.7	0.75	0.5	0.5
（6）6V6GT	8	23.2	25.1	19.1	18.5
$(7)$ 6AV6	2	1.6	1.7	1.1	1.1
$(8) 6 V 6 G T$	8	23.2	25.1	19	18.5
$(9)$ 6X5GT	8	57	53	70	70.5
$(10)$ 6AV6	2	0.2	0.25	0.2	0.2
$(11)$ 6BA6	7	8.0	-	-	-




The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedure.

## PHONO Position

Similar to that shown above.
Plate and screen supply (term. No. 5 of $\mathrm{S} z$ rear) to V11 ( $6 \mathrm{BA} 6 \mathrm{M} . \mathrm{M}$. reactor) is disconnected. Signal circuit (term. No. 6 of S1 rear) to V11 is also disconnected. This removes the variable capacity shunt of V11 from the audio circuit


Replacement Parts

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC 616
* 73610	Board-Terminal board (FM-G) with link
73866	Capacitor-Ceramic, 2 mmf . (C9)
$\begin{array}{r}33101 \\ -73664 \\ \hline\end{array}$	Capacitor-Ceramic, 22 mmf . (C42)
39042	Capacitor-Ceramic, $47 \mathrm{mminf}$. (C26, $\mathbf{C 3 7}$ )
73867	Capacitor-Ceramic, 56 mmf . (C43)
33103	Capacitor-Ceramic, 68 mmf. (C40)
48125	Capacitor-Ceramic, 150 mmf . (C7, C19, C38, C50, C53)
71920	Capacitor-Ceramic, 220 mmf . (C36)
39640	Capacitor-Mica, 330 mmf . (C30, C31, C58, C62)
73748	Capacitor-Ceramic, $1,500 \mathrm{mmf}$. (C39)
70646	Capacitor-Tubular, . 0035 mfd ., 1,000 volts (C34, C56)
* 73659	Capacitor-Tubular, $003 \mathrm{mfd} ., 100$ volts (C24)
72573 71926	Capacitor-Tubular, $0033 \mathrm{mfd}, 400$ volts ( 428 )
71926	Capacitor-Tubular, 005 mid., 200 volts (C20, C27, C32, C59, C60)
72791	Capacitor-Tubular, $005 \mathrm{mfd} ., 400$ volts (C14, C16, C17, C21, C22)
$\begin{aligned} & 72120 \\ & 71923 \end{aligned}$	

## Replacement Parts (continued)


*This is the first time that this Stock No. has appeared in Service Data
tStock No. 72953 is a reel containing 250 feet of cord

RCA PAGE 18-25


## CLARI-SKEMATIX

RCA PAGE 18-27


## CLARI-SKEMATIX



## CLARI-SKEMATIX



John F. Rider


Simplified Schematic Diagram-Position. (AUX.).
Testing the Magic Monitor:

Any serious defects in Magic Monitor operation will be made evident by the following tests. An audio oscillator and an a-c voltmeter flat to 3,000 cycles are needed for the tests.

## Procedure:

1. Set up the equipment as shown in Fig. 10. Although two volmeters are shown, one can be used in both positions.
2. Turn the receiver function switch to PHONO and turn S 8 to ON position. Set the audio oscillator to 400 cycles and acljust its output to 0.2 volt (measured across the oscillator output terminals). Adjust the receiver volume control for a reading of 1 volt (measured at the voice coil). There
should be little or no change in receiver output when S8 is turned to "M.M." position.
3. Repeat Step 2 except using oscillator output of 1 volt, 400 cycles. There should be little or no change in receiver output when S 8 is turned to "M.M." position.
4. Repeat Step 2 except using oscillator output of 1 volt. 3,000 cycles. There should be little or no change in receiver output when S 8 is turned to "M.M." position.
5. Repeat Step 2 except using oscillator output of 0.2 volt, 3,000 cycles. When S 8 is turned to "M.M." position the output should decrease to approxinately $1 / 5$ of that obtained with S 8 in ON position.


Wiring Diagrant - Magic Monitor Unit.

RADIO CORP. OF AMERICA

Back View.


Control Panel.


## Push-Button Adjustment

The push-buttons should be adjusted for eight favorite stations after the receiver is operating, and has had a 5 or 10 minute warm-up period.

Any standard broadcast or frequency modulation stations may be chosen. The preferable arrangement is to adjust for stations in the order of frequency, from low to high. Proceed as follows:

1. Remove the first PUSH-BUTTON (Just pull) and note the adjustment screw beneath.
2. Loosen the adjustment screw
3. Manually tune very accurately for the desired station
4. Push the PUSH-BUTTON rod in till it is against stop.
5. Tighten adjustment screw

checking each for the chosen station in a similar manner
6. Recheck all PUSH-BUTTONS and reset if found necessary


Some may not have the color code indicated.


SOME MODELS MAY HAVE EXTRA SPACING WASHER TO INKREASE CLUTCH FRICTION

Tuning Shaft and Clutch Assembly.




MS 259

## Antenna Terminal Board Connections

EXTERNAL ANTENNAS-If reception is not satisfactory on one or more of the three bands, using the built-in cabinet antennas, an external antenna may be used. The Magic Loop Antenna will usually provide sufficient pickup on the Standard Broadcast band, but if an external dipole is installed to improve reception on Frequency Modulation it may be used for Standard Broadcast and Short Wave as well. Connections are made to the antenna terminal board in the back of the cabinet. External antennas may be erected indoors or outdoors and should be oriented in direction for requirements of best reception. RCA Television Antenna, Stock No. 225 or 226 , or the equivalent with 300 -ohm transmission line is recommended for an external antenna.

Figure 21 (A) shows the Antenna Terminal Board with connections for internal cabinet antennas.

Figure 21 (B) shows connections for the RCA Television Antenna replacing those for the internal FM antenna on terminals 1 and 2, and the internal $S W$ antenna disconnected
at terminal 3. The external dipole antenna is now the antenna for FM and SW bands.

Figure 21 ( $C$ ) shows the additional change for connecting the Standard Broadcast band to make use of the external RCA Television Antenna. The link across terminals 4 and 5 is changed to terminals 4 and 3 . The external antenna is now effective on all bands. Tighten terminals and be sure that the red, black and yellow leads (R.B.Y.) to terminals 4,5 and 6 are still in place and securely connected.

Figure 21 (D) shows connections for a separate outdoor antenna on SW and SB reception, and the external dipole on FM. This outdoor antenna should consist of a wire 30 to 60 feet or so in length mounted in a convenient location as high as possible. Connect lead-in from the antenna to terminal 3 on the antenna terminal board. This outdoor antenna is effective on SB and SW bands. If this connection makes the SB signal too strong, causing overload and distortion, replace the link across terminals 4 and 5 as in Figure 21 (A) and (B). This outdoor antenna is now effective on SW only


Dial Cord Assembly.


Loop Antenna.


Range Switch Coupling Shaft.

To Remove Shaft: Loosen square head set screws "C" in collar of gear. Remove nut "E" (on front apron of chassis) from bushing "D." Push shaft and bushing to the rear so that shaft and bushing are clear of the chassis apron. Flex the shaft and pull forward.

To Remove Bushing from Shaft: Remove "C" washer from shaft at inside end of bushing. push shaft through bushing to permit removal of "C" washer normally recessed inside bushing. Pull shaft through bushing to in-
side of chassis.

Record Capacity......... Ten 19, or twelve 10" reco
Maximum Power Output
Cabinet Dimensions   Height.....367/16" Width.....401/8" Depth..... 1715/1"
.......18.4:1 (4.6 turns of knob)

Specifications

> эи •
.10 .7 mc
RF Amplifier
 2nd IF and Phono. Amp. ................. Detiver
M. AM-DET-AVC-AF
M. Band-Pass Amp.
M. M. Amp. and Rect. Tube Complement of RK-121C 1. RCA-6BA6. 2. RCA-6BE6
Shortwave "C". Band..
Frequency Modulation. Intermediate Frequency AM Intermediate Frequency FM

Built-in antennas are provided for Standard Broadcast grid of $V \overline{0}$ (this tube serves as 2 nd I.F. on FM); the outModulation (" FM ") ; connected through the range switch and is coupled through the range switch and volume control to V8 (A.F. amp.) and also to the "Magic Monitor" which varies the audio output during phono operation.
The audio output of $V 8$ is coupled to the AMP output jack.
When the selector switch is turned to max. counterclockwise position this instrument may be used as an audio amplifier. The audio input for this purpose is connected to the AUX jack (middle) at the rear (or bottom)
of the chassis. The input from this jack is coupled through the range switch and volume control to the grid of V8.
Note: Plate voltage supplied to V5 (2nd I.F.) on FM
only. Plate and scrcen voltages supplied to V6 (driver) only. Plate and screen voltages supplied to V6 (driver) on FM. only. Plate and screen voltages supplied to V3
(osc.) on FM, A and C bands only.
The circuit of the A.F. amplifier chassis is conventional consisting of a 6SN7GT which serves as audio amplifier and phase inverter feeding into two 6 F 6 G tubes connected both chassis (RK-121C and RS-123D).


## Tube Complement of RS-123D

 1. RCA-5U4G.... 4. $\mathrm{RCA}-6 \mathrm{~F} 6 \mathrm{G}$©john F. Rider


## ALIGNMENT PROCEDURE

Before aligning set, completely mesh the gang and set the dial pointer on the mechanical maximum calibration point at the extreme left hand end of the dial.

When making a complete alignment follow in proper sequence the tabulated form below.

If only a portion of the circuit is to be aligned select the portion required, followed by the remaining steps in the chart. Any adjustments made on the FM 10.7 mc . IF's make it necessary to realign the AM 455 kc . IF's.

For "A" and "C" band alignment use output meter across voice coil keeping Test Oscillator output as low as possible to prevent $A V^{\prime} \mathrm{C}$ action.

## CRITICAL LEAD DRESS

(Make lead dress before alignment)

1. Lead from pin 5, tube C 2 , to terminal " C " on transformer T1 should be dressed close to chassis.
2. Leads to terminals "C" and "D" on transformer T2 should be dressed close together.
3. The following capacitors must be dressed close to the chassis with leads kept as short as possible: C32, C33, C66, C69, C79, and C80
4. All FM coil connections must be soldered in exact place as the original. (One-sixteenth inch difference in length may be excessive).
5. Lead from pin 7, tube V8, must be dressed away from lead to terminal "D" of transformer T7.
6. ALL wiring in the receiver is critical as to length and placement. It is therefore important when servicing, that extreme care should be taken so as not to disturb more of the wiring than absolutely necessary.
Note: keep tuning capacitor rotor grounding brushes clean and making good contact.

## FM RATIO DETECTOR ALIGNMENT

SEt RANGE SWitch to fm position

Steps	Connect. High Side of Test Osc. To-	Tune the   Osc. To	Turn Vol. Cont. To-	Adjust
1.	Connect a 680 ohm Resistor between lugs $D$ and $E$ of the ratio detector transformer T7. Connect DC probe of a voltcapacitor C81. The common lead of the meter to chassis.			
2.	Driver gridpin 1, of gAUS(V0) in series with a 01 MFD capacitor	$\begin{aligned} & 10.7 \mathrm{MC} \\ & 30 \%_{0} \mathrm{Mod} . \\ & 400 \mathrm{Cycles} \\ & \mathrm{AM} \end{aligned}$		Driver transformer To for maximum DC voltage across C-81
3.	Remove Meter Leads and disconnect the 680 ohm resistor from D and E on T7. Connect two 68,000 ohm resistors within $1 \%$ of each other) in series, across C81. Connect the common lead of the Voitohmyst to the center point of on rear of Switch wafer So. Use the 30 volt scale.			
4.	$\begin{aligned} & \text { Saine as } \\ & \text { Step } 2 \end{aligned}$	$\begin{gathered} \text { Same as } \\ \begin{array}{c} \text { Step } \\ \hline \end{array} \end{gathered}$	$\left\|\begin{array}{c} \text { Volume } \\ \text { Control } \\ \text { Maximum } \end{array}\right\|$	†T7 Bottom core for Zero DC Balance on $\dagger+T 7$ top core for minimum audio meter across voice coil)
5.	Reconnect voltohmyst as in step 1 , omitting the 080 chmm resistor.			
6.	Repeat step 2 omitting 680 ohms.			
7.	Remove all connections.			

+Near the correct core position the zero point is approached rapidiy and continued adjustment causes the indicated polarity to reverse. A slow continued adjustment causes the indicated polarity to reverse. A slow
approach to the zero point is an indication of severe detuning, and the bottom core should be turned in the opposite direction.
ttThe zero DC balance and the minimum AF output stould occur at the same point: if such is not the case. the two cores should be adjusted uncil both occur with no further adjustment of either core. It may be advantapsous to adjust both cores simultaneously. watching the voltat which both zero DC and minimum output occurs
Note:-Two or more points may be found which will satisfy the condition required in step 4 . T7 top core should be correctly adjusted when approximately $1 / \mathrm{g}$ inch of threads extend above the can, therefore, it is desirable to start adjustment with the top core in its furthest in position and turn and minimum DC is reached.


Tube and Trimmer Locations - Top View.


Tube and Trimmer Locations-Bottom View.
ANT.-RF.-IF. ALIGNMENT

Steps	Connect the High Side of the Test Osc to-	Connect Side of the Test Osc.	Tune the   Osc. To	$\begin{aligned} & \text { Radio } \\ & \text { Dial } \\ & \text { Tuned } \\ & \text { to- } \end{aligned}$	Adjust

"FM" IF Alignment

1.	Connect the DC probe of a voltchmyst to the negative lead of the 5 MFD electrolytic capacitor $C 81$, and the common lead of the meter to chassis ground				
2.	Mixer grid pin   * 1 of 6BA6,   (V2) in series with a .01   MFD capacitor   (Adjust test   osc. output for   6-10 volts   developed   across C81)   Range switch in $\mathbf{F M}$ position) (Use very short lead)	To RF Tube shelf ground near mirer tube(use very short leads)	10.7 MC $30 \%$ modulated at 400 cycles AM.	$\begin{aligned} & \text { Max. cap. } \\ & \text { (Fully } \\ & \text { meshed) } \end{aligned}$	*T5, T3, T1 top and bottom cores alternately loading primary \& secondary of each transformer with 680 ohms while the opposite side of the same transformer is being adjusted. Adjust all transformers for maximum voltage across $\mathrm{CB1}$

*This method is known as alternate loading which involves the use of a 680 ohm resistor to load the plate winding while the grid winding of the same transformer is being peaked. Then the grid winding is loaded with 680 ohm resistor while the plate winding is being beaked.

When the windings are loaded, it is necessary to increase the 10.7 MC input since the gain will decrease and the voltage acrose C81 will be les

MODEL 8V151				RADIO COR   ANT-RF-IF-A	
Steps	Connect the High Side of the Test Osc. to	Connect Ground Side of the Test Osc.	Tune the Osc. ToOsc. To	$\underset{\text { Dial }}{\text { Radio }}$ Tuned to	Adjust

"AM" IF Alignment

3.	Mirer grid pin (1 of (V2) in series with a .01 MFD Capacitor. Turn band switch to "A" or "C" band)	To chassis ground	455 KC	$\begin{gathered} \text { High } \\ \text { Freq.end } \\ \text { of Dial } \end{gathered}$	**Top and bottom Cores of T2 and T4. (For maximum voltage across voice coll)

"C' Band OSC.-RF.-ANT. Alignment

4.	"C" Band Ant.   Terminal 3   Through a dummy Ant. comprising a 150 ohm resistor in series with a 25 to 30 mmf capscitor	To Chassis ground	15.5 MC	15.5 MC	RF. - C15   Ant.-C8 For maximum voltage across voice coill
5.			9.5 MC	9.5 MC	$\begin{aligned} & \text { Osc L17*** } \\ & \text { RF-L12 } \\ & \text { Ant. LL5 } \\ & \text { (For maximum } \\ & \text { voltage across } \\ & \text { voice coil) } \end{aligned}$
6.	Repeat steps 4 and 5 for accurate alignment				

"A" Band OSC.-RF.-ANT.

7.	Hiph Side (Red Lead) of Loop Primary with link open through a Dummy Ant. comprising a 200 manf. Capacitor	To Chassis ground	1400 KC	1400 KC	Osc.-C36   RF:-C84   Ant. -Cl   (For maxinnum voltage across voice coil)
8.			600 KC	600 KC	$\begin{array}{\|c\|} \hline \text { Osc.-L18 } \\ \text { RF-L13 } \\ \text { Ant-L6 } \\ \text { (For maximum } \\ \text { voltage arcoss } \\ \text { voice coil) } \end{array}$
9.	Repeat stepe 7 and 8 for Max. output.				

** It is necessary to alternately load the primary and secondary of each 455 KC l. F. transformer with 10.000 ohms while the opposite side of the 455 KC l. F. transfurner with 10.
same transformer is being adjusted.
*** To guard against the possibility of alignment of 1.17 and C 37 to imake frequencies. tune the test oscillator to 15.5 MC and turn the radio dial to 15.5 Mc . Then adjust the test oscillator to 16.41 MC (image frequency). By ;acreasing the test oscillator outpue. a signal should be heard.

Tune the test oscillator to 9.5 MC and turn the radio dial to 9.5 MC . then adjust the test oscilliator to 10.41 MC (image frequency). By increasing the test oscillator output, a signal should be leard.
(If these image frequencies cannot be heard, the set is incorrectly aligned, therefore repeat steps 4 and 5)).


Dial Scale Drawing.

## Replacement Parts

$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	description	Stock No.	N
	$\begin{aligned} & \text { HEAD END UNIT } \\ & \text { RK } 121 \mathrm{C} \end{aligned}$	$\begin{aligned} & 11891 \\ & 71962 \\ & 71963 \end{aligned}$	Lamp-Pilot lamp-Mazda 44   Pinion-Pinion and shaft for tuning capacitor   Pinion-Pinion and shaft tor tuning capacitor   Plate-Bearing plate for for selector switch exten-
71964 71651		4	Plate-Connecting plate for selector switch extension shatta
3658	Ball-steet ball ( $3,32^{\prime \prime}$ "ia.) for tuning capacitor	71644	Plate-Dial back plate only, less dial window, dials,
10705 71638		71648	Pulley-luler puliey (2 required) or indicator cor
716	Bracket-later bracket less pulley		
71642	Bracket-Dial plate support bracket R.	71650 71636	
71643 72986		71636 71637	Receptacle-AMP-AUX-PHONO jacks
	couphng shatt	72323	
71809 71804			(R54)
71803	Capacitor-Adjustable, 2.5-13 minf. (C20)		sistor-Fixed,
71808			
719043	Capacitor-Ctramic, 6.8 mmf. (C25)		tt (R38)
71807	Capacitor-Adjustable, $10-160 \mathrm{mmt}$. (C8, C15)		tor-rixe
71924 39396			tor-
39396   71922	Capacitor-Ceramic, $180 \mathrm{mmf}$. ( C 34 )		watt (R24, K37, R46)
719	Capacitor-Mica, 180 mmf . (C18)		Resistor--1-ixed, composit
71920	Capacitor-ceranic, 220 mmf . (6, C10)		watt (R12, R25, R36) ${ }_{\text {cose }}$
3396140	Capacitor-Mica, 350 nmi. (C92)		
39644	Capacitor-Mica, 470 mmif . (C755, C90)		, istor-Fixed, composition, 4,700 ohms, $\pm 20 \%$, $1 / 2$
39646 71929	Capacitor-Mica, 560 mmit. (C94)		or
72117	Capacitor-Tubular, 0012 mid ., 400 v . (C53)		watt (R13, R63)
71927	Capacitor-lubular, . 002 mid , 400 v . (C59, 995 )		隹
71921	Capacitor-1 ubular, . 003 mida		watt (R6)
719	Capacitor-Tubular, 005 mmd , 200 v. (C40, C42,		2 watt (R76)
	, C66, C76, C77, C78, C86) 00 (C		sistor-Fixed, composition, 15,000 ohms, $\pm 20 \%$,
72791	C58, C68, C69. C88, C91)		esistor-Fixed, composition, 15,000 ohms, $\pm 10 \%$,
72120	Capacitor-Tubular, 015 mid ., 200 v. (C65)		
70612			Resistor-Fixed, composition, 15,000 ohms, $\pm 10 \%$, 1 watt (R7)
72827			\% watt (R3, R31, R35, R49),
70631	Capacitor-Tubular, 01 mid , 600 v ( ${ }^{\text {c }} 61$ )		${ }^{2}$ watt (R18)
71588	Capacitor-Moulded paper, $01 \mathrm{mfd}$. , 600 v . (C87)		Resistor-Fixed, composition, 22,000 ohms, $\pm \mathbf{2 0 \%}$,
72596	Capacitor-Tubular, 05 mfd., 200 v. (C33, C39, C41, C73, C79)		sistor-Fixed, composition, 27,000 ohms, $\pm 10 \%$,
72121	Capacitor-Electrolytic, 5 mid., 50 v . (C67, $\mathbf{C 8 1}$ )		Resistort (R11, R45) ${ }^{1 / 2}$
332223	Capacitor-Electrolytic, 15 mid, 300 v. (C60)		Resistor-Fixed, composition, 39,000 ohms, $\pm 10 \%$,
$\begin{aligned} & 716494 \\ & 71940 \end{aligned}$	Coil-Antenna coill-F.M.-Complete with adjustable		sistor-Fixed.
	and stud (1.2, 1		
71856	Coil-Antenna coil-" C" band-complete with adjus ble core and stud (L4. L5)		Resistor-Fixed, comp
71942	Coil-Filament choke coil (L7,		Resistor-Fixed, composition, 100,000 ohms, $\pm \mathbf{2 0 \%}$,
71855	Coil-Loop loading coil-"A" band adjustable core and stud (L6)		'/2 watt (R28, R58, R59, R65, R70) ohms, $\pm 10 \%$,
71937	Coit-Oscillator coil-F.M.-complete wish adjustable		$1 / 2$ watt (R16)
71853	core and stud (L9) "C" band--.complete with ad-		Resistor-Fixed. R watt (R75)
	justable core and stud (L17)		istor-Fixed, composition, 180,000 ohms, $\pm 10 \%$,
71852	il-Oscillator coil-"A" band--complete with		碞 Watt (R17, R20, R34, R55, R66) ohms, $\pm 20 \%$,
71854	Coil-R. F. coil- "C' band-complete with		1/2 watt (R33, R71, R72, R74),
	able core and stud (1.12)		Resistor-Fixed, composition, 270,000
71857	Coil-R. F. coil- "A" band-Comp		istor-Fixed, composition, 330,000 ohms, $\pm 20 \%$,
	able core and stud (L13, L14)		
71938	core and sud (III)		Resistor-Fixed, composition, 330,000   watt (R77)
	Control-Tone control--H.F. (R27)		Resistor-Fixed, composition, 470,000 ohms, $\pm 20 \%$,
38401 71596	Control-Tone control-L.F. ${ }_{\text {c }}$ (R26)		, Watt R14, R39)
†72987	Cord-Manual drive cord (approx. 42		watt (R57, R69)
	quived) or indicator drive cord (approx. 30 " overall required)		watt (R1, R2, R19, R73, R78)
71941	Coupting-F.M. coupling unit (L16, C17, R5;		Resistor-Fixed, composition, 2.2 megohm, $\pm 10 \%, 1 / 2$
71654 71653	Oial-Glass dial scale-F.M.		Resistor-Fixed, composition, 3.9 megohm, $\pm 10 \%, 1 / 2$
71652	Dial-Gilass dial scale-Short Wave		Watt (R8) ${ }_{\text {Res }}$
71805	Drum-Tuning condenser drive drum		Resistor-Fixed, composition, 22 megohm, $\pm 20 \%$, $1 / 2$
71800	Gear-12 tooth gear fastened to selector swit		W-No.8-
	Gear-in tooth gear fastened to selector switch shaft	71965	Screw-Pus
3584.4		71812	Shaft-Manual tuning shaft less spring and pulle
71799	Grommet-Rulber giommet to mount R.F. unit cradle	73726 73727	Shaft---Selector switch coupling shaft-switch end
429	Grommet-Rubler grommet to mount tube socket		Shess threaded bushing
	d	72951	Shield-Lead tube shield
72674	rommet-Rubber grommet for chassis front mounting ( 2 required)	71831 71834 7185	Socket-Dial lamp socket-R.H.
72069	ormmet-Rubler grommet for chassis rear mount-		Sochet-Pilot lamp socket
	(2) required)	71850	So
71647 71832	Cuide-Indicator slide	73117 72516	Socket-Tube soch
765	Lamp-Dial lamp-Mazda 51	9	Spring-Coil spring for manual tuning shaft

## Replacement Paris (Continued)

Stock   No.	DESCRIPTION	Stock No.	DESCRIPTION
71936	Spring-Drive cord	- 73715	Back-Cabinet back-tan-for blonde in
33622	Spring-Push button arm return spring	71599	Bracket-Jewel lamp bracket
73658	Switch-"Magic Monitor" and power switch (S7, S8)	71874	Bushing-Bushing and washer for large knobs
$\begin{aligned} & 71802 \\ & 71645 \end{aligned}$	Switch-Selictor switch (S1, S2, S3, S4, S5, S6)	73626	Bumper-Rubber bumper for record changer carriage actuating link
71845	iransiormer-First I.F. transformer-F.M. (Ti)	71884	Burtor-P'ush but
	(C28, C30)	71863	Cable-5 wire moulded lead-in cable
718.46	Transformer-First I.F. transformer-A.M. (T2) (C29, C31)	72583   13103   188	Cable-Shielded pickup cable complete with pin plug Cap-Pilot lamp jewel
71847	Transtormer-Second I.F. transformer - F.M. (T3)	38684	Capracitor-Mica trimmer, 2-20 mmi. (Ca)
	(C45, C47, C51)	* 73695	Carriage-Record changer mounting carriage com-
71848	Transformer-Second I.F. transformer - A.M. (T4) (C46, C48, C49, C50)	71892	plete with rumiers   Catch-Bullet catch and strike for lower doors
71849	Transiormer-Third I.F. transformer - F.M. (T5)	$72434$	Check-Radio compartment door check
71935	Transformer-Driver transformer (T6) (C70)		Cloth-Grille cloth for mahogany or walnut instru- ments
71934	Transformer-Ratio detector transformer (T7) (C72, C74)	$\begin{gathered} \times 1666 \\ 71966 \end{gathered}$	Cloth-Grille cloth for blonde instruments Decal-Trade mark decal (Victrola)
37435	Washer- "C" washer for hoiding threaded bushing to	71910	Decal-Trade mark decal (RCA-Victor)
31608	Welector switch shaft ${ }^{\text {sasher }}$ Spring washer for drive cord pulleys or idl	73716	Escutcheon-Escutcheon only less window, screen and marker strips for mahogany instruments
	pulley	7371	Escutcheon-Escutcheon only less window, screen
$\begin{array}{r} 71875 \\ 2917 \end{array}$	Washer-Spring washer for chassis front mounting   Washer-Spring washer for selector switch coupling shaft and bushing (knob-end) or manual tuning	* 73718	and marker strips for walnut instiuments Escutcheon-Escutcheon only less window, screen and marker strips for blonde instruments
71810	shaft   Window-Dial window (clear glass)   AMPLIFIER ASSEMBLIES   Ks 1231	$* 73712$ $\cdot 73713$ $\cdot 73870$	Gasket-Rabber gasket-tan-for under escutcheon for blonde instruments   Casket-Kubber gasket-black-for under escutcheon for mahogany or walnut instruments
70646	Capacitor-Tubular, $0035 \mathrm{mid} ., 1,000$ volts (C5, C6)		ments
70631	Capacitor-Tubular, 01 mid., 600 volts (C3, C4)	-73873	Grille-Metal grille for blonde instruments
70632	Capacitor-Tubular, 02 mid., 600 volts (C8)	- 73699	Grommet-Kubber grommet for mounting record
72596 31323		73702	changer (+ required) Grommet-Kubber grommet for loop mounting (2
72955	Capacitor-Electrolytic, comprising 1 section of 30 mid., 450 volts; 1 section of 50 mid., 400 volts; and 1 section of 40 mfd., 25 volts (CiA, Cib, CIC)	16058	required)   Grommet-Rubber grommet for speaker mounting (3 required)   Hinge-Speaker compartment door or record storage
1176 1846	Lamp-Jewel tamp-Mazda 51		compartuent door hinge ( 2 required for each
	Plate-Mounting plate (bakelite) for electrolytic capacitor	73735	Hinge-L.H. hinge for phono compartment door or
12493	Plug-5 contact femaie piug for speaker cable   Resistor-Fixed, composition, 2,700 ohms, $10 \%$, $1 / 2$	* 73751	K.H. hinge for radio compartment door Hinge-R.H. hinge for phono compartment door or
	watt (R3, Ry)		L.H. hinge tor radio compartment door
	Resistor-Fixed, composition, 22,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R4)	73711	Knob-Selector switch or power switch knob-brown -for blonde instruments
	Resistor-Fixed, composition, 27,000 ohms, $\pm 10 \%, 1 / 2$ watt (R5)	71822	Knob-Selector switch or power switch knob-maroun-for mahogany or walnut instruments
	Resistor-Fixed, composition, $47,000 \mathrm{ohms}, \pm 20 \%, 1 / 2$ watt (R11)	72	Knob-Tone control knob-brown-for blonde instruments
	Resistor-Fixed, composition, 220,000 ohms, $\pm \mathbf{2 0} \%$. $1 / 2$ watt (R6, R7, R12)	7188	Knob-Tone control knob-maroon-for mahogany or walnut instruments
71660	Resistor-Voltage divider, comprising 1 section of 180 ohms, 3.5 watts, 1 section of 2,520 ohms, 3.97	72118	Knob-Volume control or tuning knob-brown-for blonde instruments
	watts, and 1 section of 2,760 ohms, $\mathcal{Y} .3$ watts (R1a, Rib, Ric)	71	Knob-Volume control or tuning knob-maroonfor mahogany or walnut instruments
	Resistor-Fixed, composition, 1 megohm, $\pm 20 \%$, $3 / 2$ watt (R10)	73616	Link-Actuating link assembly for record changer carriage-R.H.
35787	Socket-Audio input socket	617	Link-Actuating link assembly for record changer
71659	Socket-9 prong power socket (J1)		carriage-L.H.
31364	Socket-Jewel lamp socket	71862	Loop-Antenna loop complete (L1, L15, C1)
31319 37048	Socket-Tube socket	7196	Marker-Station markers
37048	Transformer-Power transiormer, 115 voits, 60 cycle (Ti)	7276	Nut-Speed nut to fasten transparent screen to escutcheon (2 required)
71661	Transformer-Output transformer (T2)	71879	Plate-Backing plate for transparent screen
		71881	Plate-Call letter marker pla
	$\underset{92567-2 \mathrm{~W}}{\text { SPEAKER }} \underset{\substack{\text { ASSES }}}{ }$	71819	Plate-Radio compartment door check mounting plate
	RL 70Ri	30868	Plug-2 contact female plug for power cable
13867	Cap-Dust cap	30870	Plug-2 prong male plug tor power cable
71147	Clanp-Clamp to hold metal cone suspension (2 re-	32641 31048	Plug-3 prong male plug for loop cable Plug--Pin plug for shielded pickup cabl
71146	Coil-Field coil- 1,060 ohms	* 73872	Pull-Din plug for shielded pickup cable
11469	Coil-Neutralizing coil	71878	Screen-Transparent screen (Victrola indicator)
36145	Cone-Cone complete with voice coil	36422	Socket-3 contact socket for loop cable
31539 71144	Plug-5 prong mate plug for speaker	73	Spring-Connecting spring between link and record
71144	voice coil less plug   Suspension-Metal cone suspension   NOTE: If stamping on speaker in instrument does not agree with above speaker number, order replacement parts by referring to model number of instrument, number stamped on speaker and full description of part required.	-73697	Spring-Conical spring for mounting record changer
71145		71818	Spring-Radio compartment door check spring
		30960	Spring-Retaining spring for knob
		73185	Spring-Metaining spring for push
		72936	Stop-Stop for lower doors
		70164	Stop-Stop for phono compartm
		71880	Strip--Backing strip for call letter marker plate
	MISCELlaneous	* 73612	Track-Record changer carriage mechanism track complete with mounting plate ( 2 required)
* 73714	Antenma-Dipole antenna   Back-Cabinet back-burgundy-for mahogany or walnut instruments	71814	Washer-Rubber washer for radio compartment door check   Window-Window for call letter markers

${ }^{7}$ Stock No. 72967 is a spool containing 150 feet of cord.
*This is the first time that this Stock No. has appeared in Service Data.


## Alignment Procedure

Output Meter Alignment.-If this method is used, connect the meter across the voice coll, and turn receiver the volume control to maximum

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Calibration Scale.-Tlic glass tuning dial may be removed from the cabinct and mounted above the pointer for reference during alignment. The extreme left hand mark of the Standard Broadcast scale must be in line with the left hand mark on the dial backing plate.

Dial Backing Plate. - In the event that only the chassis is returned for service, the mataks on the dial bucking plate may be used during alignment; refer to the Dial Indicator and Drive Mechanism drawing for corresponding frequencies.

Dial Pointer. - With the gang condenser in fill mesh the dial pointer should be set to the left hand reference mark on the dial backing plate.
For additional information reter to booklet. "RCA Victor Receiver Alignment.

## Critical Lead Dress

1. Dress all heater Ioads next to chassis
2. Ores power cord away from volume control and audio circuit .
3. Dress capacitor (C14) toward switch and parallel to chassis length.
4. Dress capacitor (C16) back against rear chassis apron.
5. Dress (ablicitor (C17) over and twwards 50L6 socket perpendicular (6) calbacitor (Clt) and (Clf).
6. Dress pilot lamp leads over second I-F transformer and away from thises.
. Drese bbe lead from output trancormer against front apron and away from $1 \cdot \mathrm{~F}$ leath.

Steps	Connect the high sile of test-oscillator to -	$\begin{aligned} & \text { Tune } \\ & \text { test-osc. } \\ & \text { to } \end{aligned}$	Turn radio dial	Adjust the following for max. peak output
1	12SK7 I-F grid through 0.1 mfd . capacitor	455 kc	$\begin{aligned} & \text { Quiet-point } \\ & 1,000 \mathrm{kc} \\ & \text { end of dial } \end{aligned}$	T2   Top \& bottom 2nd. I-F trans.
2	Stator of C1 through 0.1 mfd .			*T 1   Top \& bottom lst. I-F trans.
3	Short wire placed near loop antenna	$1,300 \mathrm{kc}$	1,300 kc	$\begin{aligned} & \mathrm{C} 4(\text { osc. }) \\ & \mathrm{C} 2(\operatorname{ant} .) \end{aligned}$
4		600 kc	$\begin{gathered} 600 \mathrm{kc} \\ \text { "A" Band } \end{gathered}$	L2 (osc.)   Rock gang
5	Repeat steps 3 and 4			

* Do mot readjust $T 2$ when tost usimilator is connected to Cl


Replacement Parts

*THIS IS THE FIRST TIME THIS STOCK NUMBER HAS APPEARED IN SERVICE DATA

## RADIO CORP. OF AMERICA MODELS $8 \times 521,8 \times 522$, CHASSIS RC 1066, 1066A



Alignment Procedure
Cathode Ray Alignment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram

Output Meter Alignment.-If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test-Oscillator-For all alignment operations. comnect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to aviod a-v-c action.

On AC operation an isolation transformer ( $115 \mathrm{v} . / 115 \mathrm{v}$.) may be necessary for the receiver if the test oscillator is also AC operated.

For additional information refer to booklet "RCA Vic tor Receiver Alignment."

NOTE.-If the speaker should be removed in servicing, its position should be checked when re-assembling. The distance between the front of the speaker and the rear chassis apron slould be maintained at $3!1 / 2$ inches.

Steps	Connect the high side of test-oscillator to-	Tune test-osc. to-	Turn radio dial to-	Adjust the following for max. output
1	12BA6 I-F grid through 0.1 mfd . capacitor	455 kc	Quiet-point $1,600 \mathrm{kc}$ end of dial	T-2 (top and bottom) 2nd I-F trans.
2	Stator of C1 through 0.1 mfd .			T-1 (top and bottom) 1st I-F trans.
3	Short wire placed near loop to radiate signal.	$1,600 \mathrm{kc}$	$1,600 \mathrm{kc}$	C4 (osc.)
4		$1,400 \mathrm{kc}$	$1,400 \mathrm{kc}$	C2 (ant.)
5		600 kc	600 kc	L. 2 (osc.)   Rockgang
6		Repeat steps 3, 4 and 5.		

*Do not readjust $T$ - 2 when test oscillator is connected to Cl .


Tube and Trimmer Lacations

PAGE 18-44 RCA


## Specifications

Tuning Range
Intermediate Frequency
Power Output
Undistorted
Maximum
Tube Complement
(1) RCA-1 BE 6
(2) $\mathrm{RCA}-12 \mathrm{BA} 6$
(3) RCA-12AT6
(4) RCA-50C5
(5) RCA-35Wt

Pilot Lamp


Loudspeaker (92577-1)

V. C. Impedance. . . . . . . . . . . . . 3: olmes at ton cycles

Cabinet Dimensions
Height.....55/8" Width......7/3" Depth...... $\mathbf{5}^{\prime \prime}$
Power Supply Rating
115 rolts, AC, 50 or 60 cycles, or DC
30 watts
POWER SUPPLY POLARITY. - For operation on d-c, the power plug must be inserted in the outlet for cor rect polarity. If the set does not function, reverse the plug. On a-c, reversal of the plug may reduce hum.
Critical Lead Dress

1. Dress all heater leads close to chassis
$\because$. Dress output plate bypass capacitor C11 inside of ter minal board
i. Dress all exposed leads away from each other and away from chassis.

Replacement Parts

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
	CHASSIS ASSEMBLIES   RC 1066-8X521		Resistor-Fixed, composition, 4.7 megohm, $\pm 20 \%$, 1/2 watt (R5)
	RC 1066A-8X522	34449	Socket-Lamp socket
73499	Capacitor-Ceramic, 56 mmf . (C5)	73117 73488	Socket-Tube socket
*73501	Capacitor-Ceramic, 150 mmf ( ${ }^{\text {(C14) }}$	73488 73037	Transformer-First 1.F. Transformer
72571	Capacitor-Mica, 330 mmf . (C8)	72296	Transformer-Output transformer (T3)
70601	Capacitor-Tubular, 002 mfd ., 400 volts (C9)		
70611	Capacitor-Tubular, 02 mfd , 400 volts (C7, C11)		SPEAKER ASSEMBLY
70615			92577-1 W
70617	Capacitor-Tubular, 0.1 mfd., 400 Volts (C13)		
* 73500	Capacitor-Electrolytic, comprising 1 section of 30 mfd., 150 volts and 1 section of 50 mfd ., 150 volts (C10A, C10B)	73123	Speaker-4" P.M. speaker complete with cone and voice coil
*73935	Clip-Spring clip for mounting I.F. transformers (2 required)		MISCELLANEOUS
$70133$	Coil-Oscillator coil (L1, L2)	$73502$	Bezel-Decorative bezel
*73495	Condenser-Variable tuning condenser (C1, C2, C3, C4)	Y2001	Cabinet-lvory plastic cabinet complete with dial back plate, indicator, escutcheon and wire trim for
* 73498	Control-Volume control and power switch (R4, S1)		Model 8X522
$* 73496$ +73497	Loop-Antenna loop and back cover-for Model $8 \times 521$	Y1499	Cabinet-Maroon plastic cabinet complete with dial back plate, indicator, escutcheon and wire trim for
-73497	Loop-Antenna loop and back cover-for Model 8X522	-73508	Model 8X521   Clip-Spring clip to fasten dial knob
	Resistor-Fixed, composition, $100 \mathrm{ohms}, \pm 10 \%, 1 / 2$	*73507	Dial-Calibrated dial knob
	$\begin{aligned} & \text { Resistor- Fixed, composition, } 150 \text { ohms, } \pm 10 \%, 1 / 2 \\ & \text { watt (R8) } \end{aligned}$	-73511   73510	Fastener-Push fastener to hold dial back plate (3 required)   Fastener-Push fastener to hold loop (2 required)
	Resistor-Fixed, composition, 1,200 ohms, $\pm 10 \%, 1$	*73504	Indicator-Station selector indicator
	watt (R9)   Resistor-Fixed, composition, 22,000 ohms, $\pm 20 \%, 1 / 2$	* 73506	Knob-Volume control and power switch knob-ivory -for Model 8X522
	watt (R1)   Resistor-Fixed, composition, 220,000 ohms, $\pm 20 \%$,	* 73505	Knob-Volume control and power switch knob-maroon-for Model sX521
	1/2 watt (R6, R10)	11765	Lamp-Dial lamp-Mazda 51
	Resistor-Fixed, composition, 470,000 ohms, $\pm 20 \%$,	71095 73509	Nut-Speed nut to fasten wire trim (2 required)
	1/2 watt (R7) 3.3 mego $+20 \%$	* 73509	Plate-Dial back plate
	Resistor-Fixed, composition, $3.3 \mathrm{megohm}, \pm 20 \%$. $1 / 2$ watt (R3)	$\begin{array}{r} 73503 \\ 30900 \end{array}$	Rod-Wire trim rod   Spring-Retaining spring for knobs

RCA PAGE 18-45


## Alignment Procedure

Cathode-Ray Alignment is the preferable method. Connections for the oscilloscope are shown in the schematic diagram.

Output Meter Alignment.-If this method is used, connect the meter across the voice coil. and turn the receiver volume control to maximum.

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

On AC operation an isolation transformer (115 v./115 v.) may be necessary for the receiver if the test oscillator is also AC operated.

## Dial Centering:

If the mounting of the tuning condenser has been disturbed, it may be necessary to adjust its position after replacing the chassis in the cabinet. This may be done in the following manner:

1. Install chassis and tighten the three mounting screws.
2. Replace tuning knob.
3. Loosen the two screws which hold the tuning condenser mounting bracket to the chassis.
4. Adjust the position of the tuning condenser mount ing bracket so that the tuning knob may be rotated without binding on the cabinet. With tuning condenser plates fully meshed the dial should be in the position indicated below.
5. The two screws should then be tightened to maintain this position.


Dial and Indicator

Steps	Connect the high side of test-oscillator to-	Tune test-osc. to-	Turn radio dial to-	Adjust the following for max. output
1	12SK7 I-F grid through 0.1 mfd. capacitor	455 kc	Quiet-point 1600 kc end of dial	T2 (Top and bottom) 2nd I-F trans.
2	Stator of Cl through 0.1 mfd .			T1 (top and bottom) 1st I-F trans.
3	Short wire placed near loop to radiate signal	1600 kc	1600 kc	C4 (osc.)
4		1400 kc	1400 kc	+C2 (ant.)
5		600 kc	600 kc	L2 (osc.) Rock gang
6		Repeat steps 3,4 and 5 .		

- Do not readjust $T 2$ when test oscillator is connected to Cl . $\dagger$ When adjusting C2 (ant. trimmer) it is necessary to have the loop in the same position and spacing as it will have when assembled in the cabinet. This spacing is $31 / 4^{\prime \prime}$ from chassis to loop.


Tube and Trimmer Locations

PAGE 18-46.RCA


## Specifications

Tuning Range
Intermediate Frequency .............................. 455 kc
Power Output
Undistorted.............................................. . 1.0 watt
Maximum ............................................ 1.5 watts
Tube Complement
(1) RCA-12SA7

(3) RC.A-1:SQ7.....2nd Det., A.V.C., and A.F. Amplifier
(4) RCA-50L6GT ............................... Output
(5) RCA-35Z5CT ................................. Rectifier

Pilot Lamp........... Mazda No. 47, 6-8 volts, 0.15 amp. Loudspeaker (! $1.577-5$ )
Type................................................-inch PM
V. C. Impedance.................. 3.2 ohms at 400 eycles

Cabinet Dimensions
Height......7" Width........103/4" Depth........is/8"
Power Supply Rating
115 volts, AC, 50 or 60 cycles, or DC........... 30 watts
POWER SUPPLY POLARITY-For operation on $\mathrm{d}-\mathrm{c}$, the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a-c, reversal of the plug may reduce hum.
Critical Lead Dress

1. Dress all heater leads close to chassis.

2 . Dress pilot light leads away from speaker cone.
3. Dress lead to low side of loop between the two gang condenser leads.
4. Dress C- (AVC by-pass) close to the bend in the base and clear of the end I.F. transformer.

Replacement Parts

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
	$\begin{gathered} \text { CHASSIS ASSEMBLIES } \\ \text { RC } 1065-8 \times 541 \\ \text { RC } 1065 A-8 \times 542,8 \times 547 \end{gathered}$		```Resistor-Fixed, composition, 3.3 megohm, }\pm20%,1/ watt (R4) Resistor-Fixed, composition, 4.7 megohm, \pm20 % C, 12 watt (R6)```
$\begin{aligned} & 73499 \\ & 73501 \end{aligned}$	Capacitor-Ceramic, 56 mmf . (C5) Capacitor-Ceramic, 150 mmf . (C13)	34449	Socket-Lamp socket
$72571$	Capacitor-Ceramic, ${ }^{\text {Capacitor-Mica, } 330 \mathrm{mmf} \text {. (C23) }}$	54414 73036	Socket-Tube socket
70601	Capacitor-Tubular, $002 \mathrm{mfd} ., 400$ volts (C16)	73037	Iransformer-Second 1-F transformer (T2)
70606	Capacitor-Tubular, $005 \mathrm{mfd} ., 400$ volts (C6)	71111	Transformer-Output transformer (T3)
70611	Capacitor-Tubular, 02 mfd , 400 volts (C14)		
70613	Capacitor-Tubular, $03 \mathrm{mfd}, 400$ volts (C17)		SPEAKER ASSEMBLY
70615	Capacitor-Tubular, $05 \mathrm{mfd} ., 400$ volts (C12, C18)		92577-5 W
70617 73500	Capacitor-Tubular, 0.1 mfd ., 400 volts (C24)   Capacitor-Electrolytic, comprising 1 section of 50 mfd., 150 volts and 1 section of 30 mfd ., 150 volts (C19a, C19b)	73919	Speaker-4" P.M. speaker complete with cone and voice coil   MISCELLANEOUS
73935 70133	Clip-Spring clip for mounting I.F. transformers (2 required)   Coil-Oscillator coil (L1, L2)	Y 1495	Cabinet-Plastic cabinet - maroon - complete with station indicator and dial backing disc for Model $8 \times 541$
+73485 +38410	Condenser-Variable tuning condenser (C1, C2, C3, C4)   Control-Volume control and power switch (R5, Si)	Y1496	Cabinet-Plastic cabinet - ivory - complete with station indicator and dial backing disc for Model
72283 $*$ $* 3486$ $* 73487$	Grommet-Rubber grommet to mount tuning condenser ( 3 required)   Loop-Loop and back cover assembly for Model $8 \times 541$	$Y 2053$ 73494	$8 \times 542$   Cabinet-Plastic cabinet-white-complete with station indicator and dial backing disc-for Model $8 \times 547$ Clip-Spring clip to hold cabinet back and loop assembly to cabinet (4 required)
* 73487	Loop-Loop and back cover assembly for Models BX542 or 8X547	73489	Dial-Dialing knob
	Resistor-Fixed, composition, 150 ohms, $\pm 10 \%$, $1 / 2$	$\begin{array}{r}7 \\ \hline 73493 \\ \hline 73492\end{array}$	Disc-Dial backing disc   Indicator-Station selector indicat
	```watt (R9) Resistor-Fixed, composition, 1,200 ohms, # 10%, 1```	73490	Knob-Volume control and power switch knob-maroon-for Model 8X541
	watt (R15) Resistor-Fixed, composition, 22,000 ohms, $\pm 20 \%, 1 / 2$	-73491	Knob-Volume control and power switch knob-ivory-for Model 8×542
	watt (R1) Resistor-Fixed, composition, 220,000 ohms, $\pm 20 \%$,	74007	Knob-Volume control and power switch knob white - for Model 8×547
	1/2 watt (R7, R16) Resistor-Fixed, composition, 470,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R8)	$\begin{aligned} & 31480 \\ & 38458 \end{aligned}$	Lamp-Dial lamp-Mazda 47 Nut-Speed nut to fasten indicator to cabinet (2 required)
	Resistor-Fixed, composition, 1 megohm, $\pm 20 \%, 1 / 2$ watt (R3)	$\begin{array}{r} 73914 \\ 14270 \end{array}$	Spring-Retaining spring for dial knob Spring-Retaining spring for volume control knob

Alignment Procedure

Output Meter Alignment.- If this method is used, connect the meter across the voice coil. and turn receiver the volume control to maximum.
Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Calibration Scale.-The glass tuning dial may be removed from the cabinet and mounted above the pointer for reference during alignment. The extreme left hand mark of the Standard Broadeast scale must be in line with the left hand mark on the dial backing plate.
Dial Backing Plate. -In the event that only the chassis is returned for service, the marks on the dial backing plate may be used during alignment; refer to the Dial Indicator and Drive Mechanism drawing for corresponding frequencics.
Dial Pointer.-With the gang condenser in full mesh the dial pointer should be set to the left hand reference mark on the dial backing plate.
lor additional information refer to booklet, "RCA Victor Receiver Alignment."

ALIGNMENT TABULATION RC-1064

Steps	Connect the high site of test-oscillator to	$\begin{aligned} & \text { Tune } \\ & \text { test-osc. } \\ & \text { to } \end{aligned}$	$\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to - } \end{aligned}$	Adjust the following for max. peak output
1	12SK7 I-F grid through 0.1 mid . capacitor	455 kc	Quiet-point $1,600 \mathrm{kc}$ end of dial	T2 Top \& bottom 2nd. I-F trans.
2	Stator of Ci through 0.1 mfd .			Top \& bottom 1st. I-F trans.
3	Short wire placed near loop antenna	1,300 kc	1,300 kc	$\begin{aligned} & \text { C4 (osc.) } \\ & \text { C2 (ant.) } \end{aligned}$
4		600 kc	$\begin{aligned} & 600 \mathrm{kc} \\ & \text { "A Band } \end{aligned}$	L2 (osc.) Rock gang
5	Repeat steps 3 and 4			

* Do noe readjust T2 when test oscillator is connected to C2.

Critical Lead Dress

1. Dress blue and grean leads of hoth I-F transformers back in shield cans, leaving them as short as possible.
2. Dress all heater leads next to chassis.
3. Dress power cord toward output transformer away from volume control and nudio circuits.
4. Dress capacitor (C14) toward switch and parallel to chassis length.
5. Dress capacitor (C16) back against rear chassis apron
6. Dress capacitor (C17) over and towards 50L6 socket perpendicular to capacitor (C 14) and (C 16).
7. Dress pilot lamp leads over second I-F transformer and away from tubes.
8. Dress blue leads from out put transformer against front apron and away from I-F leads.
9. Dress contact on oscillator section of gang condenser back away from oscillator coil adjustment.

TUBE AND TRIMMER LOCATIONS RC-1064

Dial-Indicator and Drive Mechanism

Replacement Parts

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC 1034-RC 1064		Resistor-Fixed composition, 3.3 megohms $\pm 20 \%$, $1 / 2$ watt (R4)
$\begin{aligned} & 39622 \\ & 72571 \end{aligned}$	Capacitor-Mica, 56 mmaf. (for RC-1064 \& some RC-1034) (C5)		Resistor-Fixed composition, 4.7 megohms $\pm 20 \%$, $1 / 2$ watt (R6)
70606		70467 34449	Shaft-Tuning knob shaft
70611	Capacitor-Tubular, 02 mfd ., 400 volts ($\mathrm{C}_{14} 14, \mathrm{C} 17$)	37605	Socket-Tube socket, molded
70615	Capacitor-Tubular, 05 mfd ., 400 volts (C12, C_{18})	70390	Spring-Drive cord tension spris
70617	Capacitor-Tubular, 0.1 mfd ., 400 volts (C24) Capacitor-Electrolytic, comprising 1 section of 30 mfd ., 150 volts and I section of 50 mfd., 150 volts (C19A, C19B or C19,	70465 73036	Transformer-First 1.F. transformer (for RC-1034) (L6, L7, C6, C7)
70477	Coil-Ossillator coil (for some RC-1034) (L3, L4, L5)	70466	Transformer-Second I.F. transfermer (for RC-1034) (L8, L9, C8, C9)
71406 73048	Coil-Oscillator coil (for some RC-1034) (L3, L4)	73037	Transformer-Second I.F. transformer (for RC-1064) (T2)
70643	Condenser-Variable tuning condenser complete with drive drum (for RC-1034) (C1, C2, C3, C4)	70385 72296 33726	Transformer-Output transformer (for RC-1034) (T1)
73047	Condenser-Variable tuning condenser complete with drive drum (for RC-1064) (C1, C2, C3, C4)		Washer-"C" washer for tuning knob shaft
70322 72913 72283	Control-Volume control and power switch (R-5, S-i)		SPEAKER ASSEMBLY
72283	Grommet-Rubber grommet to mount tuning condenser (3 required)	70470	Speaker-4" $\times 6^{\prime \prime}$ elliptical speaker complete with cone and
$\begin{array}{r} 70469 \\ 11765 \end{array}$	Indicator-Station selector indicator Lamp-Dial lamp-Mazda *51		voice coil
70468 73049	Loop-Antenna loop (for RC-1034) (LI, L2)		Miscellaneous
70462	Plate-Dial back plate complete with drive cord pulleys less dial	$\begin{aligned} & 71794 \\ & 71795 \end{aligned}$	Back-Cabinet back for Radiola 61-8 Back-Cabinet back for Radiola 61 - 0
36230	Pulley-Drive cord pulley	$\times 1365$	Cabinet-Brown plastic cabinet for Radiola 61-8
	Resistor-Fixed composition, $\mathbf{1 2 0} \mathrm{ohms} \pm 10 \%$, ${ }^{\text {R watt (}}$ (R9)	Y 1366	Cabinet-Ivory plastic cabiner for Radiola 61-9
	Resistor-Fixed composition, 1200 ohms $\pm 10 \%$, 1 watt (R15) Resistor-Fixed composition, 22,000 ohms	70475	Clamp-Dial clamp (1 set)
	(R1) Fixed composition, 22,000 ohms $\pm 20 \%$, ${ }^{\text {(R) }}$ watt	71796 37831	Fastener-Push fasteners (1 set) for
	Resistor-Fixed composition, 220,000 ohms $\pm 20 \%$, $1 / 2$ watt	70473	Knob-Control knob-red-brown-for Radiola 61-8
	Resistor-Fixed composition, 470,000 ohms $\pm 20 \%$, 1/2 watt (R8)		Knob-Control knob-ivory-for Radiola 61-9 Spring-Retaining spring for knob

RCA PAGE 18-49
CHASSIS RC-1050, RC-1050A, RADIO CORP. OF AMERICA MODEIS 75×11 75×12, RC-1050B

Alignment Procedure

Output Meter Alignment.-Connect the meter across the voice coil, and turn the receiver volume control to maximum.
Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
On AC operation on isolation transformer (117v./117v.) may be necessary for the receiver if the test oscillator is also AC operated
Dial Pointer.-With the tuning condenser in full mesh the dial pointer should be adjusted to approx. 17.0° counterclockwise from he vertical position. It ane be adjusted before reasse fram

Dis-assembly.-To remove bezel assembly:
Remove the two knobs and the four hex head screws in the feet, pull the bottom of the bezel outward and upward.
To remove chassis from cabinet:
Remove bezel assembly as described above, remove the dial by prying assembly outward on the bottom edge, remove the pointer by pulling straight to the front, remove the dial lamp, remove the round head screws which hold the chassis to the cabinet.
For additional information refer to booklet "RCA Victor Receiver Alignment.

Steps	Connect the high side of test-oscillator to-	$\begin{aligned} & \text { Tune } \\ & \text { test-osc. } \\ & \text { to- } \end{aligned}$	Turn radio dial to-	Adjust the following for max. peak output
1	12SK7 I-F grid through 0.1 mid . capacitor	455 kc	Quiet-point $1,600 \mathrm{kc}$ end of dial	$\begin{aligned} & \text { L8 and L9 } \\ & \text { 2nd I-F } \\ & \text { transformer } \end{aligned}$
2	Stator of C2 through 0.1 mfd .			$\begin{gathered} \text { L6 and L. } 7 \\ \text { lst I-F } \\ \text { transformer } \end{gathered}$
3	Ant. lead in series with 200 mmid .	1.620 kc	full clockwise	C3 (osc.)
4		1,400 kc	$\begin{aligned} & 1,400 \mathrm{kc} \\ & \text { signal } \end{aligned}$	Cl (ant.)
5		600 kc	600 ke signal	L. 5 (ose.) Rock gang
6	Repeat steps 3, 4 and 5.			

* Do not readjust L8 or L9 when fest oscillator is connected to C2.

Dial-Indicator and Drive Mechanism
MODELS $75 \times 11,75 \times 12, \quad$ RADIO CORP. OF AMERICA
$75 \times 14,75 \times 15,75 \times 16$

Specifications

Frequoncy Range ...540-1600 kc Intermediate Frequency ... 455 kc
Power Output
Undistorted
.....................

Tube Complement

1) RCA-12SA7
2) $\mathrm{RCA}-12 \mathrm{SK7}$
(3) RCA-12SQ7
(4) RCA-50L6GT (4) RCA-50L6GT
(5) RCA-35Z5GT

Pilot Lamp
Mazda No. 47. $6-8$ volts, 0.15 amp . Loudspeaker (92572-2)
Type .. PM $5-1 n c h ~ P M$
400 cycles Cabinet Dimensions
Height, 7.1/4"; Width, 10": Depth, 7.3/16"
Tuning Drive Katio \qquad
Power Supply Rating
105.125 volts, AC, 50 or 60 cycles, or DC

10:1 (5 turns of knob) For operation on d-c, the power plug must be inserted in the oullet for correct polarity. If the set does not function, reverse the plug. On a-c, reversal of the plug may reduce hum.

75X11 Maroon .75X12 Ivory 75X14 Mahogany 75X15 Walnut 75XIf Blonde

Critical Lead Dress

1. Dress all heater leads close to chassis.
2. Dress AVC resistor R4 away from $12 S K 7$ tube socket.
3. Dress diode load resistor R3 away from 12SQ7 tube socket.
4. Dress $12 S Q 7$ plate resistor $R 7$ over 2 nd $I F$ transiormer terminal.
5. Dress output plate bypass capacitor Cl7 close to rear of chassis.
6. Dress power cord lead along rear and bottom of chassis between 3525GT and 50L6GT tubes.
7. Dress audio coupling capacitor Cl4 close to bottom of chassis.

Replacement Parts

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCAIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
72880 72878 773499 39632 39640 70606 70610 70613 70615 70617 70408 70477 73048 72992 38410 +72953 72283 72867 73706 72882 72313	CHASSIS ASSEMBLIES RC-1050, RC-1050A, RC-1050B Bracket-Dial lamp bracket Bracket-Mounting bracket for indicator pulley assembly Capacitor-Ceramic, 56 mmf., for RC-1050B (C5) Capacitor-Mica, 150 mmfd . (C13) Capacitor-Mica, 330 mmi . (C23) Capacitor-Tubular, .005 mid ., 400 volts (C16) Capacitor-Tubular, 01 mfd., 400 volts (C14, C15) Capacitor-Tubular, 03 mid., 400 volts (C17) Capacitor-Tubular, $05 \mathrm{mfd} ., 400$ volts (C12, C18) Capacitor-Tubular, 0.1 mid., 400 volts (C24) Capacitor-Electrolytic, comprising 1 section of 50 mfd ., 150 volts and 1 section of 30 mid., 150 volts (C19, C20) Coil-Oscillator coil (L3, L4, L5) for RC 1050 \& RC-1050A Coil-Oscillator coil (L3, LS) for RC-1050B Condenser--Variable tuning condenser complete with drive pulley ($\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C4}$) Control-Volume control and power switch (R5, SI) Cord-Drive cord (approx. $29^{\prime \prime}$ required) Grommet-Rubber grommet to mount tuning condenser (3 required) Loop-Antenna loop complete (L1. L2) for RC. 1050 \& RC. 1050 A Loop-Antenna loop complete (L1, L2) for RC-1050B Pulley-Dial indicator pulley Resistor-Wire wound, fuse type, 33 ohms (R17) Resistor-Fixed composition, 150 ohms, $\pm 10 \%$, $1 / 2$ watt (R9) Resistor-Fixed composition, 1200 ohms, $\pm 10 \%$, l watt (R15) Resistor-Fixed composition, 22,000 ohms, $\pm 20 \%, 1 / 2$ walt (R1) Mesistor-Fixed composition, 47,000 ohms, $\pm 20 \%, 1 / 2$ watl (R3) Resistor-Fixed composition, 220,000 ohms, $\pm 20 \%$. $1 / 2$ watt (R7, R16) Resistor-Fixed composition, 470.000 ohms, $\pm 20 \%$. $1 / 2$ watt (R8) Resistor-Fixed composition, 3.3 megohms, $\pm 20 \%, 1 / 2$ watt (R4) Resistor-Fixed composition, 4.7 megohms, $\pm 20 \%$, $1 / 2 \mathrm{watt}$ (R6)	72881 72877 72879 32299 54414 72540 71558 71631 70128 70129 72296 33726 72201 72884 72883 $Y 1428$ $Y 1431$ $Y Y 2013$ $Y 2014$ $Y 2015$ 72871 72868 72885 72869 72870 72890 73707 31480 73728 73729 14270	Ring-Retaining ring for indicator pulley assembly Shalt-Tuning knob shaft Socket--Dial lamp socket Socket-Tube socket-water-for RC-1050 \& RC-1050A Sockot-Tube socket-molded-for RC. 1050 B Spring-Drive cord epring Transiormer-First I. F. transformer (L6, L7, C6, C7) for RC-1050 Transiormer-Second I. F. transformer (L8, L9, C8, C9, Cll) for RC-1050 Transformer-First I. F. transtormer (L6, L7, C6, C7) for RC-1050A \& RC.1050B Transformer-Second I. F. transformer (L8, L9, C8, C9, Cll) tor RClos0A \& RC-1050B Transformer-Output transformer (Tl) Washer-"C" washer for funing shaft SPEAKER ASSEMBLY 92572-2W RL 101-3 Speaker-S" P.M. speaker complete with cone and voice coil MISCELLANEOUS Baffle-Speaker baffle board and grille cloth Bezel-Dial scale bezel only-less dial Cabinet-Maroon plastic cabinet tor $\mathbf{7 5 \times 1 1}$ Cabinet-Ivory plastic cabinet for 75×12 Cabinet-Mahogany plastic cabinet for 75×14 Cabinet-Walnut plastic acabinet for 75×15 Cabinet-Blonde plastic cabinet for 7.5×16 Cover-Bottom cover Dial-Dial scale complete with dial lamp shield Fool-Mounting foot (bakelite) (2 reauired) Indicator-Station selector indicator Knob-Contro' knob (maroon) for 75X11, 75X14\& $\mathbf{7 5 \times 1 5}$ Knok-Conirol knob (ivory) for 75×12 Knob--Control knob (tan) for 75×16 Lamp-Indicator lamp-Mazda \#47 Screen-Ventilating screen fo: back of cabinet for 75X11, $75 \times 14 \& 75 \times 15$ Screen-Ventilating screen for back of cabinet for $75 \times 12 \&$ 75×16 Spring-Retaining spring for knobs

- this is the first time that this stock no. has appeared in service data.
+ STOCK NO. 72953 IS A REEL CONTAINING 250 FEET OF CORD.

RCA PAGE 18-51

© John F. Kider

Critical Lead Dress

1. Dress output plate bypass capacitor (C. 11 . 02 mf) against chassis.
2. Dress 35L6GT plate lead (red) against chassis and away from volume control, leads and terminals.
3. Dress audio coupling capacitor (C-7 .02 mf) away from 35L6GT heater leads
4. Dress 2nd i-f yellow and brown leads away from output plate bypass capacitor ($\mathbf{C}-11, .02 \mathrm{mf}$) and away from all heater leads.
5. Dress blue and green leads of both i-f transformers back in shields leaving exposed lengths as short as possible.

Specifications

Frequency Range ..540-1600 vc
Intermediate Frequency
. .455 kc
Power Output
Undistorted \qquad 1.0 watt

Maximum 1.5 watts

Tube Complemen
(1) RCA Radiotron 12SG7
(2) RCA Radiotron 12 SK 7
\qquad
7 ..I.F. Amplifiez 4) RCA Radiotron 12SQ72nd Det., A.V.C., and A.F. Amplifier
diotron 35L6GT
(5) RCA Radiotron 12I5GT
(6) RCA Radiotron $35 Z 5 \mathrm{GT}$

RCA PAGE 18-53

Electrical and Mechanical Specifications

Control Positions

Alignment Procedure

CAUTION-CLOSE TUNING CONDENSER PLATES COMPLETELY (C-C-W BEFORE REMOVING CHASSIS FROM CABINET.
Take off both wooden strips on liottom of rabinet by removing wood screws before loosening chassis bults.
CRITICAL LEAD DRESS. -

1. Dress output plate bypasses as near chassis as possible.
2. Drese all filament leads down to chassis.
3. Dress all exposed leads away from each other and away from chassis to prevent short circuits.
4. Dress K-6 sway from shield.
5. I) ress AVC resistor away from R-13 and R-14.
6. Dress output plate leads down to chussis.

Drews R-18 away from R-15.
Dress R-16 away from V4 sucket.
. Dress R-10 away from V4 socket.
10. Dress high side of line cord down to front apron.
11. Dress lead of C-5 which connects to phono input away from aide of chassis
Dial Pointer Adjustment.-Rotate tuning condenser fully counter clockwise (plates fully meshed). Adjust indicator pointer go that it is 3 为" from the left hand edge of the dial back plate.

Tubes 6 C 4 and 6 AQ 6 may be replaced by removing the sloping panel (remove four wood serews) in the front of the record changer com. wartment. Before removing the chassis from the cabinet it is advis-

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPIION
	CHASSIS ASSEMBLIES RC 1057A		Resistor-Fixed composition, 470,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R12)
70407	Button-Plug bution to cover holes for I. F. transformers' adjustment		Resistor-Fixed composition, 470,000 ohms, $\pm 10 \%, 1 / 2$ watt (R15)
39622	Capacitor-Miaa, 56 mmf . (C21)		Kesistor-fixed composition, 1.5 megohms, $\pm 10 \%$, $1 / 2$ watt (R20)
70600	Capacitor-Tubular, $001 \mathrm{mfd} ., 400$ volits (C20, C22)		Resistor-Fixed composition, 3.3 megohms, $\pm 20 \%$, $1 / 2 \mathrm{waft}$
72791	Capacitor-Tubular, 005 mfd ., 400 volts (C10)		Resistor-Fixed composition, 10 megohms, $\pm \mathbf{2 0} \%, 1 / 2$ watt
70608	Capacitor-Tubular, $007 \mathrm{mfd} ., 400$ voits (C12)		
70612			(R8, R9)
70610		*73103	Shaft-Tuning knob shoft
71928 70611		* 72998	Socket-Dial lamp sockel and lead assembly
70615		35787	Socket-Phono input socket
70617	Copacitor-Tubulor, 0.1 mfd ., 400 volts (C2, C5)	725	Socket-Tube Socket, minial
${ }^{*} 73013$	Capacitor-Electrolytic, comprising 1 section of 80 mfd ., 150 volts; 1 section of 30 mfd ., 150 volis; and 1 section of	37605 70390	Socket-Tube socket, molded
		70390 70396	Spring-Drive cord tension spring
38201	Clamp-Drive cord clamp	-73011	Switch-Power, radio and shono switch (S1, S2)
70477	Coil-Oscillator coil ($\mathbf{L 2 , 1 3)}$	73036	
*73007	Condenser-Variable tuning condenser (C3, C4, C6, C7)	73037	Transformer-Second I. F. transformer (T2)
38403	Control-Volume control (R7)	* 73008	Transformer-Output transformer (13)
72953	Cond-Drive cord (opprox. 52"	33726	Washer-' 'C'' washer for tuning knob shaft
70392	Cord-Power cord and plug	34457	Washer-Spring washer for tuning knob shaft
70397	Geor-Power, rodio and phono switch gear		SPEAKER ASSEMBLIE$92573-1 \mathrm{~K}$
73014	Grommet-Rubber grommet to mount funing condenser (3 required)		
72283		72728 72727	Cone-Cone and vaice coil assembly Speaker-5"x7" PM speaker complete with cone and voice coil
*73015	Indicator-Station selector indicatorLoop-Antenna loop complete (LI)	7272	
73010			NOTE: If stamping on speaker in instrument does not agree with above speaker number, order replacement parts by referring to model number of instrument, number stamped
${ }^{*} 73006$	Plate-Dial back plate complete with (3) pulleys Plug-2 contact female plug for motor cable		
30868 .73009	$\begin{aligned} & \text { Pug-2 contact female plug for } \\ & \text { Rectifier-Selenium rectifier (SR1) } \end{aligned}$ referring to model number of instrument, number stamped on speaker and full description of part required.		
- 73038	Resistor-Normal value 66 olums with positive temperature coefficient (R18)		on speaker and full description of part required. MISCELLANEOUS
* 73072	Resistor-Fixed composition, 82 ohms $\pm 10 \%, 1$ watt (R17) Resistor-Normal value 95 ohms $(i) 38^{\circ} \mathrm{C}$ with negative temperature coefficient (R21)	71105	Cable-Shielded pickup cable Clamp-Dial clamp (2 required)
		73017	
		$\times 1660$	Cloth-Grille cloth
		*73051	Decal-Styling line decal (2 required)
	Resistar-Fixed composition, 1800 ohms, $\pm 10 \%$, $1 / 2$ watt (R13)	71966	Decal-Trade mark decal (Victrola)
	Resistor-Fixed composition, 12,000 ohms, $\pm 10 \%$, $1 / 2$ watt	71984	Decal-Trade mork decal (RCA Victor) Dial-Glass dial scale
	(R16) \%	73039	
	Resistor-Fixed composition, $(R 2)$	72894	Foot-Rubber mounting foot (4 required) Grommet-Rubber grommet to mount record changer (3
	Resistor-Fixed composition, 82,000 ohms, $\pm 10 \%$, $1 / 2$ wat		
	(R19)	-73052	Handle-Cabinet lid handle
	Resistor-Fixed composition, 100,000 ohms, $\pm 10 \%$, 1/2 watt	72692	Hinge-Cabinet lid hinge (2 required)
	(R6)	-73016	
	Resistor-Fixed composition, 220,000 ohms, $\pm \mathbf{2 0 \%}, 1 / 2$ wat	73065	Knob-Tunirg knab
	(R1, R10, R11, R22)	73078	
	Resistor-Fixed composition, 270,000 ohms, $\pm 10 \%$, $1 / 2$ wat	11765	Spring-Retoining spring
	(R5)	14270	
	Resistor-Fixed composition, 390,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R3)	$\begin{array}{r} 71824 \\ * 73050 \end{array}$	Stud-Stud and screw to mount lid hinge (1 set) Support-Cabinet lid support

-THIS IS THE FIRST TIME THIS STOCK NUMBER HAS APPEARED IN SERVICE DATA

RCA PAGE 18-55

CLARI-SKEMATIX

John F. Rider

RADIO CORP. OF AMERICA

Alignment Procedure

Alignment Sndicators:
An RCA Voltohmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation below. An output meter is also necessary to indicate minimum audio output during alignment. Connect the output meter across the speaker voice coil.

The RCA Voltohmyst can also be used as an AM alignment indicator, either to measure audio output or to measure a-v-c voltage.

When audio output is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations. except as stated in FM alignment connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal kenerator should be kept as low as possible
to avoid a-v-c action.

Calibration scale.-The dial scale printed in this service note may be temporarily attached to the chassis for quick reference during alignment.

Using Printed Dial Scale.

1. Cut out the printed dial scale, or, make a tracing of the scale
2. With gang at full meah the pointer should be set to the first reference mark from the left hand end of the dial backing plate.
3. Place the printed dial scale or the tracing under the pointer so that the extreme left scale graduations coincide with the pointer. Use scotch tape to hold the dial scale in place.
Note.-It is not recommended that the glass dial scale in the cabnet be removed as an alignment reference. This glass dial scale is fastened to the bezel with sheet metal lugs bent over the scale to hold it in place. Removing the glass dial scale will necessitate bending the lugs, resulting in their weakening and subsequen breakage.

Critical Lead Dress

1. Dress capacitor $\mathbf{C} 5$ near chassis base.
2. Dress lead from pin $5, V-1$, to terminal C, of transformer $T 1$, as near bottom of FM shelf as possible.
3. The lead from capacitor C24 to the high side of the volume control must be dressed next to chassis along front apron.
4. Dress resistors R32 \& R33 near chassis base.
5. Dress all A.C. leads away from volume control
6. Solder FM antenna coil primary leada to terminal board with as short a lead length as is practical.
7. Make all FM leads as short as possible.
. The lead from pin 2, V-3, to chassis ground must be dressed as close to base and as near to the back apron as possible. This lead provides point at which it is grounded to the chassis should be changed
8. Dress all leads away from the $\mathbf{3 3 0 0}$ ohm resistora R34 and R35.

TOP VIEW OF CHASSIS

The FM i-f alignment may be checked by means of an FM sweep generator and cathode ray oscilloscope. Connect the output from the sweep generator. which is set 10.7 mi., to the FM 1st Det.列 eapacitor C34 from the Ratio Detector circuit
Connect the high side of the oscilloscope to the junction of R27 Connect the high side of low side to chassis. Adjust the sweep generator and oscillo-
scope to obtain the reaponse curve
The Ratio Detector characteristic may be viewed by connecting the oseilloscope across the volume control R22. Capacitor C34 should be re-connected before checking the Ratio Detector characteristic

FM Alignment

RANGE SWITCH IN FM POSITION-VOLUME CONT. MAXIMUM

Stops	Connect sig. gen.	Sig. gen. output	Turn radio dial to-	Adiustment for peak output
1	Connect the d-c probe of a VolfOhmyst to the negative lead of the 5 mfd . capacitor C34 and the common lead to chastis Turn gang condenser to max. capacity (fully moshod).			
2	High side to Pin 1 of driver tube 6AU6 in series with 01 mfd . low side to chassis	10.7 mc . modulated $30 \% 400$ cycles AM (Approx. 1 volt)	Max. capocity (fulty meshed)	T5 top core for max. d-c voltage across C34. T5 bottom core for min. audio output
3	High side to one FM ant. term. in series with .01 mfd. Low side to the other FM ant. serm.	10.7 mc . 30% modulation, 400 cycles AM. Adjust to provida 2 to 3 volis indication on VoltOhmyst during alignmant.		tusing alter nate looding: T3 bottom core (sec.) T3 top core (pri.) TI bottom core (sec.) 11 top core (pri.)
4	High side to one FM ant. term. in series with a 120 ohm resistor. Low side to the other FM ant. term in	106 mc	106 mc	C2 osc. C4 ant.
5	series with c 120 ohm resistor.	90 mc	90 mc	13 ose. 12 ant.
6	Repeat Steps 4 and 5 until furthey adjusiment does not improve calibration.			

\dagger Alternate loading involves the use of a 680 ohm resistor to load the plate winding while the grid winding of the SAME TRANS FORMER is being peaked. Then the grid winding is loaded with the resintor while the plate winding is peaked. Only one winding is T1 have been aligned

AM Alignment
 (Correct alignment of the 455 kc . If requires that the 10.7 mc . If be aligned previously)
 range switch in bc position

Steps	Connect high side of sig. gen. fo-	Sig. gen. output	Tum radio dial to-	Adjust for peok output
1	AM converfer grid 6BE6 V-2 in series with . 01 mfd.	455 kc	Quiet point at low freq. end,	†T4 top core (sec.) \dagger tT bottom core (pri.)
2				$\dagger T 2$ bottom core (sec.) \dagger T2 top core (pri.)
3	"A" terminal of terminal board af rear of chaseis in series with 200 mm . (link open)	1400 kc	1400 kc	C12 asc. C 7 ant. (loop)
4		600 kc	600 kc	16 osc. (Rock gang)
5	Repeat Step 3.			
6	Affer chassis and loop have been installed in cabinet, adjust C7 for max. output on a woak station near 1400 kc .			

\dagger Align T4 and T2 by means of alternate loading as explained under FM alignment. Use a 47,000 ohm resistor instead of a b80 ohm resistor.

Oscilator frequency is above signal frequency on both AM and $F M$.

Replacement Parts

STOCK No.	DESCRIPTION	STOCK No	DESCRIPTION
	CHASSIS ASSEMBLIES RC 613A		Resistor-Fixed composition, 10 megohm, $\pm 20 \%, 1 / 2$ watt (R32, R33) Resistor-Fixed composition, 22 megohm, $\pm 20 \%, 1 / 2$ watt (R29)
-73107	Boord-'F.M." board-antenna end	72055	Shoft-Tuning knob shaft
*73106	Board-Two (2) contact termina! board for transmission line -chassis end	31364 35787	Socket-Lomp socket Socket-Phono input socket
72046	Copacitor-Mico trimmer, 2.5-13mmf. (C2)	72516	Socket-Tube socket-miniat
71808	Capacitor-Adiustable, $3-35 \mathrm{mmf}$. (C4)	31251	Socket-Tube socket-oct
72334	Copacitor-Adjustable, 4-70 mmf. (C12)	31418	Spring-Drive cord tension spring
72570	Copacitor-Ceramic, 27 mmf . (C5)	*73104	Support-Dial back plate support-R.H.-complete with four
39042	Capacitor-Ceramic, 47 mmf. (C41)		(4) drive cord pulleys
71924 71614	Capacitor-Ceramic, 56 mmf . (C13) Capacitor-Ceramic, 120 mmf . (C9, C39)	*73105	Suppori-Dial back plate support-L.H.-complete with one (1) drive cord pulley
39640	Capacitor-Mica, 330 mmf . (C6, C32, C33)	72060	Switch-Rang switch (S1)
39642	Capocitar-Mica, 340 mmf ((C10)	71603	Switch-Tone control switch (52)
70646	Capocitar-Tubular, 0035 mfd ., 1000 volis ((C42, C43)	72887	Transformer-First I.F. transformer-F.M. (T1)
73186	Copacitor-Tubular, 001 mfd ., 400 volts (C23)	71625	Transformer-First I.F. transformor-A.M. (T2)
72573	Capacitor-Tubutar, $003 \mathrm{mfd}, 400$ volts (C25)	72888	
72874	Capacitor-Moulded paper, . 003 mfd., 600 volts (C35)	71631	Transformer-Second I.F. transformer-A.M. (T4)
72490	Capacitor-Tubular, $005 \mathrm{mfd} ., 200$ volts (C19, C29, C30, C31. C44)	$\begin{aligned} & 72889 \\ & 71975 \end{aligned}$	Transformer-Rotio detector transformer (T5) Transformer-Power tronsformer- 117 volt, 60 cycle (77)
$\begin{aligned} & 71553 \\ & 70606 \end{aligned}$	Capacitor-Tubulor, $005 \mathrm{mfd} ., 400$ volts (C17, C18, C20, C21) Copacitor-Tubular, .005 mfd ., 400 volts (C24, C37)	35969	Washer-"C" washer for tuning knob shaft
72120	Capacitor-Tubular, $.015 \mathrm{mfd} ., 200$ valts (C27, C28)		SPEAKER ASSEMBLIES
71423	Capacitor-Tubular, $01 \mathrm{mfd} ., 200$ volts (C26, C45)		SPEAKER ASSEMBLIES
71925	Capocitor-Tubutar, 01 mfd , 400 volis ($\mathrm{C14}, \mathrm{C16}, \mathrm{C22}$)		92569-1 W or 92569-1 W 1
70610 70611	Capacitor-Tubular, $01 \mathrm{mfd.}$,400 volts (C38) Capacitor-Tubular, 02 mfd , 400 volts (C36)	13867	Cop-Dust cap
$\begin{aligned} & 70611 \\ & 71551 \end{aligned}$		36145	Cone-Cone and voice coit ossembly-(2.2 ohm voice coil)
72121	Capacitor-Etectrolytic, 5 mfd , 50 volis (C34)	71560 71961	Plug-5 prong mate plug for speaker Speaker $12^{\prime \prime}$ PM speaker complete with cone and voice coil
72052	Copocitor-Electrolytic, comprising 1 section of $30 \mathrm{mfd} ., 450$ volts, 1 section of 30 mfd ., 350 volts and 1 section of $40 \mathrm{mfd}, 25$ volts (C40A, C40B, C40C)	71145 37899	Speoker-12 PM speaker complete with cone and voice coil less oulput transformer and plug (92569-1 W) Suspension-Metal cone suspension Transformer-Output transformer (T6)
72335	Coil-Antenna coit-F.M.-complete with adjustable core and stud (L1, 12)		
72336	Coil-Oscillator cail-F.M.-complete with adiustable core and spud (L3)		SPEAKER ASSEMELIES 92569-1 W2
72333	Coil-Oscillator coil-"A" band-complete with adjustable core and stud (L6)	13867	Cop-Dust cap 92569-1 W2
72574	Coil-Filament choke coil (L7)	72828	Cone-Cone and voice coil assembly-(6 ohm voice coil)
72059	Condenser-Variable tuning condenser (C1, C3, C8, C1I)	71560	Plug-5 prong male plug for speaker
70342	Control-Volume control and power switch (R22, S3)	71145 $\cdot 73242$	Suspension-Meral cone suspension Transformer-Output tronsformer (16)
772953 70392	Cord-Drive cord (approx. 82" overall required) Cord-Power cord and plug	-73242	Transformer-Output tronsformer (T6) NOTE: If stamping on speaker in instrument does not agree
72069	Grommet--Rubber grommet for rear mounting feet (2 required)		with above speaker number, order replacement parts by
71799	Grommet-Rubber grommet to mount R.F. shelf (3 required)		referring to model number of instrument, number stamped
71608	Indicatar-Station selector indicator		on epeaker and full description of part required.
71607	Plate-Dial back plate		
30868	Plug-2 contact female plug for motor coble		
12493	Plug-5 contact femate plug for speaker cable		MISCELLANEOUS
72602	Pulley-Drive cord pulley Resistor-Fixed composition, 10 ohms, $1 / 2$ watt (R40)		Antenno-Di-pole antenna
	Resistor-Fixed composition, 10 ohms, $1 / 2$ watt (R40) Resistor-Fixed composition, 47 ohms, $\pm 10 \%, 1 / 2$ wott (R9)	71599	Bracket-Pilot lamp bracket
	Resistor-Fixed composition, 68 ohms, $\pm 10 \%$, $1 / 2$ watt (R15)	72583	Cable-Shielded pickup cable complete with pin plug
	Resistor-Fixed composition, 100 ohms, $+5 \%, 1 / 2 \mathrm{wath}$ (R18)	13103	Cap-Pilot lamp jewel
72865	Resistor-Wire wound, 560 ohms, 2 watt (R39) Resistor-Fixed composition, 820 ohms, $\pm 5 \%, 1 / 2$ watt (R27)	$\begin{aligned} & 71892 \\ & 71820 \end{aligned}$	Catch-Record storage compartment door catch and strike Check-Radio compartment door check
	Resistor-Fixed compasition, 820 ohms, $\pm 5 \%, 1 / 2$ watt (R27) Resistor-Fixed composition, 910 ohms, $\pm 5 \%, 1 / 2$ watt (R25)	71820 $\times 1752$	Cloth-Grille cloth
	Resistor-Fixed composition, 1000 ohms, $\pm 20 \%$, $1 / 2$ watt (R6, R17)	73088 71910	Decal-Control panel decal Decal-Trade mark decal (RCA Victor)
	Resistor-Fixed composition, 2200 ahms, $\pm \mathbf{2 0 \%}$, 1 watt (R11)	71966	Decal-Trade mark decal (Victrola)
	Resistor-Fixed composition, 3300 ohms, $\pm 10 \%$, 2 watt	72682	Dial-Glass dial scale
	(R34, R35) Resistor-Fixed composition, 6800 ohms, $上 10 \%$, 1 watt (R5)	72861 +73181	Escutcheon-Dial escutcheon less dial Grille-Metal grille
	Resistor-Fixed composition, 6800 ohms, $\pm 10 \%$, 1 waft (RS) Resistor-Fixed composition, 8200 ohms, $\pm 10 \%, 1 / 2$ watt (R36) Resistor-Fixed composition, 8200 ohms, $\pm 10 \%$, I war (R4)	11889	Grommet-Rubber grommet for radio chassis mounting strap (2 required)
	Resistor-Fixed composition, 10,000 ohmas, $\pm 10 \%, 1 / 2$ watt (R26)	$\begin{aligned} & 73024 \\ & 36817 \end{aligned}$ 36610	Hinge-Radio compartment door hinge (2 required) Hinge-Record storage compartment door hinge-L. H. (1 set)
	Resistor-Fixed composition, 15,000 ohms, $\pm 10 \%, 1 / 2$ watt (R19)	36610 71821	Hinge-Record storage comportment door hinge-R.H. (1 2et) Knob-Control knob
	Resistor-Fixed Composition, 18,000 ohms, $\pm 10 \%$, 2 watt (RJ)	11765	Lamp-Dial or jewel lamp-Mazda 51
	Resistor-Fixed composition, 22,000 ohms, $\pm 10 \%, 1 / 2$ watt (R2, R3) Resistor-Fixed composition, 22,000 ohms, $\pm 10 \%$, 1 watt (R10)	$* 73108$ 70546	Loop-Antenna loop complete (14, L5, C7) Mounting-One set of hordware to mount record changer consisting of four (4) upper springs and four (4) lower
	Resistor-Fixed composition, 27,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R23, R24)		springs Plate-Mounting plate for door check
	Resistor-Fixed composition, 33,000 ohms, $\pm 10 \%, 1 / 2$ watt (R16)	$\begin{array}{r} 30870 \\ \mathbf{7 3 0 3 4} \end{array}$	Plug-2 prong male plug Pull-Record storage compartment door pull (2 required)
	Resistor-Fixed composition, 100,000 ohohs, $\pm 10 \%, 1 / 2$ watt (R20)	72556 $* 73184$	Pull-Record changer compartment or radio compartment door pull (2 required) Runner-Record changer motor board runner-R.H.
	Resistor-Fixed composition, 270,000 ohms, $\pm 10 \%, 1 / 2$ wott (R13, R14 R30, R31)	$\begin{aligned} & \text { *73184 } \\ & \text { * } 73183 \end{aligned}$	Runner-Record changer motor board runner-R.H. Runner-Record changer motor board runner-L.H.
	Resistor,-Fixed composition, 470,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$	*73185	Stop-Metal stop for mator board runners (2 required)
	(R37, R38)	72936	Stop-Record storage compartment door stop
	Resistor-Fixed composition, 1 megohm, $\pm 20 \%$, $1 / 2$ wott (R1)	71818	Spring-Radio compartment door check spring
	Resitior-Fixed composition, 1 megohm, $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R21)	+30900	Spring-Retaining spring for knob
	Resistor-Fixed composition, $1.5 \mathrm{megohm}, \pm 20 \%, 1 / 2$ watt (R28) Resistor-Fixed composition, 2.2 megohm, $\pm 20 \%, 1 / 2$ watt (R8, R12)	$* 73182$ $* 73248$	Track-Record changer compartment track (2 required) Washer-Flat washer (1 "square) to mount record shanger (4 required)

*This is the first time this Stock No. has appeared in Service Data.
\dagger This is a reel containing 250 ft . of cord, order from your distributor by specifying Stock No. and length required.

John F. Rider

To set pointer, completely mesh tuning capacitor and align pointer with last reference mark at low frequency end of dial. Volume control should be in maximum clockwise position. Bass and treble controls should be in maximum counter-clockwise position. Output of signal generator should be no higher than necessary to obtain an output reading. Low side generator and indicating meter should be connected di chassis at all times. Use an insulated screw driver w thick blade for adjusting IF transformers.								
$\begin{aligned} & c \\ & \text { ci } \\ & \text { N } \\ & \text { 世 } \\ & 0 \end{aligned}$	Signal Generator			Band Switch Position	Dial Setting	Indicating Meter	Adjust	Indication
	Coupling	Freq.	Modulation					
1.	$.01 \mu f$ to pin 7 (grid) 6BE6	455 kc	400 cps AM	AM (most CCW)	point of no interference	AC voltmeter across audio output	T7,T5 top \& bottom	maximum deflection
2.	220unf to loop ant. socket pin 2.	1500kc	400 cps AM	$\begin{aligned} & \text { AM (most } \\ & \text { CCW) } \end{aligned}$	1500kc	AC voltmeter across audio output	Cla,Cle,Clf	maximum deflection
3.	220unf to loop ant. socket pin 2.	600kc	400cps AM	AM (most CCW)	tune for maximum response	AC voltmeter across audio output	T1, T11	maximum deflection
4.	Repeat steps 2 and 3							
5.	01uf to pin 7 (grid) 6BE6	10.7 mc	none	FM (1 pos. CW from most CCW)	point of no interference	neg. DC VTVM to output of diode filter (F1)	T8,T6,T4 top \& bottom	maxdmum deflection
6.	.01uf to pin 7 (grid) 6BE6	10.7 mc	none	FM (1 pos. CW from most CCW)	point of no interference	neg. DC VTVM across C25	$\begin{aligned} & \mathrm{T} 9 \\ & \text { top } \end{aligned}$	zero volts
7.	300Ω (carbon) to top FM ant. post	104 mc	400cps FM	FM (1 pos. CW from most CCW)	104 mc	AC voltmeter across audio output	Cld,Clc,Clb, T8 bottom	maximum deflection

ELECTRICAL SPECIFICATIONS

Power supply 105-125 V., 60 cycle AC	Antennas (AM) low-Impedance loop
Power Consumption. 100 watts	(FM) 300-ohm folded dipole
Tuning Range (AM) 535-1620 kc.	Output Impedance 47,000 ohms
(FM) 88-108mc	Sepnsitivity (AM) 5 microvolts
Intermediate Frequency (AM) 455 kc .	(30% mod., 0.5 V . output) (FM) 8 microvolts
(FM) 10.7 mc	

stage gain measurements

Location	AM		FM	
Ant. to RF grid	600 kc	2X	100 mc .	1.2X
RF grid to Conv. grid	600 kc		100 mc .	20X
Conv. grid to 1st IF grid	600-4	50X	$100-10.7 \mathrm{mc}$.	20x
1st IF grid to 2nd IF grid	455 kc	110X	10.7 mc .	30x
2nd IF grid to 3rd IF grid			10.7 mc .	25X
Audio grid to output plug	400 cps	1.5X	400 cps .	1.5X

VOLTAGE READINGS

TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
6BA6	-0.6DC	0	0	6.3AC	140DC	85DC	0.7DC	-
R.F.	0	0	0	6.3 AC	160DC	850 C	$0.9 D C$	
6BE6	-8 DC	0	0	6.3AC	155DC	85DC	-0.6DC	-
Mixer	$-5 D C$	0	0	6.3AC	165 DC	950 C	-0.5DC	
6BA6	-0.6DC	0	0	6.3AC	210DC	100DC	0.9DC	-
1st I.F.	-0.1DC	0	0	6. 3 AC	205 DC	$95 D C$	$0.9 D C$	
6BA6	-0.9DC	0	0	6.3AC	0	0	0	-
2nd I.F.	-0.1DC	0	0	6.3AC	210 DC	$950{ }^{\text {a }}$	$0.9 D C$	
6AU6	-0.6DC	0	0	6.3AC	25DC	50DC	0	-
1st. Lim.	-0.6DC	0	0	6.3AC	25 DC	50 DC	0	
6AU6	-0.7DC	0	0	6.3AC	210DC	85DC	0	-
2nd. Lim.	-0.7DC	0	0	6.3AC	210DC	$85 D C$	0	
6AL5	0	-0.6DC	0	6.3AC	0	0	-0.8DC	-
Disc.	0	$-6 D C$	0	6.3AC	-0.3DC	0	$-4 D C$	
6 J 6	130DC	0	0	6.3AC	0	-5 DC	2DC	-
Osc.	160 DC	150DC	0	6.3AC	$-0.6 D C$	$-1.5 D C$	$3 D C$	
6 C 4	30DC	0	0	6.3AC	30 DC	-0.6DC	0	--
Audio	$35 D C$	0	0	6. 3 AC	$35 D C$	-0.6DC	0	
5Y3-GT	0	280DC	0	285AC	0	285 AC	0	280DC
Rect.	0	290DC	0	285 AC	0	285 AC	0	2900 C
C34	(A) 280DC 290DC	(B) 210DC 220DC	(C) 145DC 175 DC		Phono Socket \#3 100 DC			

MODEL RC-8 THE RADIO CRAFTSMEN INC.

©John F. Rider

REPLACEMENT PARTS LIST

© John F. Rider

PAGE 18-4 REL PAGE 18-4 REL

© John F. Rider
© John F. Rider

PAGE 18-6 REL
MODELS 646,647,648 RADIO ENGINEERING LABS., INC.

CHASSIS TUBE AND TRIMMER LAYOUT

$$
\begin{gathered}
\text { AUDIO } \# \text { POWER } \\
\text { CHASSIS } \\
647
\end{gathered}
$$

O5Y 3 GT
$\bigcirc c 107$
$\bigcirc_{7 N 7} \bigcirc_{757}$
Oc 108

© John F. Rider

These receivers are single superheterodyne units of orthodox circuit and design. As with all VHT receiving equipment, performance is dependent on correct installation, particularly the associated antenna and lead-in system.

The nominal impedance at the antenna terminals (marked Λ - A) is 150 ohms, Both 70 and 300 ohm lines may be used here without serlous mismatch consequences. Whether or not the ground terminal (marked G) is used depends on local conditions. Because of uncertainties in this connection and because the input circuit coupling is falrly tight, the latter is not precisely tracked at the factory. For very weak signals or for technical use at any one frequency, these circuits may be trimmed up by adjusting, C2, for the 88 to 108 band, and Cl for the 44 to 50 band. These are accessible at the top of the chassis and are located as shown in the tube layout sketch.

For convenience in tuning and rough measuring the circuits are adjusted so that one small division of the TUNE meter corresponds to a frequency shift of about 20 kilocycles, and so that the steps of the RF GAIN control are roughly ten to 1 each. Indications on the SIGNAL meter are approximately linear. Both these meters may be supplemented externally by use of the connections on the rear terminal board. The TUNE meter is $25-0-25$ microamperes, and the SIGNAL is $0-1$ milliampere.

To use external meters, remove the strap between terminals 4 and 5 and the ground bus from terminal 5. then connect the TUNE meter between terminals 5 and 1 (ground) and the SIGNAL meter between terminal 4 and 1 . If only one of the se meters are connected externally, the terminal for the second meter must be connected to terminal 1.

The output of the detector is directly available at the rear at terminals 3 (high) and 1 (ground). This is at a fairly high impedance and not more than 50 micro-microfarads should be placed across this pair unless C33 (part of the standard de-emphasis network) is reduced correspondingly. The audio amplifier may be used by connecting to 2 (high) and 1 (ground). The terminals present to $A C$ about one megohm and 30 micro-microfarads. For the 646 , about 2.0 volts R.M.S. at these terminals gives full output of the audio amplifier.

The 646 and 647 receivers are designed for operation at 115 volts. They should not be operated permanently on lines higher than 125 volts. The 648 receiver requires at least 5.8 volts $D C$ at the indicated terminals. They are connected for negative ground. If the rehicle has a positive ground system the vibrators must be reoriented according to the legend on the top of the Vibrapacks.

The maximum audio output of the 646 receiver is ten watts into either 500 or 8 ohms (mismatch up to 2 to 1 here is not generally aurally serious). The maximum output of the 647 receiver is $\& 18$ DBM into 600 or 150 ohms. This receiver
is connected for 600 ohm load; to use with 150 ohm load the output transformer should be restrapped by replaceing strap from 5 to 6 by a strap from 4 to 6 and another from 5 to 7. The maximum audio output of the 648 receiver is 4 watts into 6 ohms.

$\begin{aligned} & \text { SYMBOL } \\ & \text { REF. } \end{aligned}$	DESCRIPTION	SYMBOL RMP.	DESCRIPTION
R7	Resistor, 220,000 ohms $+10 \%$, $1 / 2$ watt	V3	Type 7ag7 tube
R8	Resistor, 150 ohms, \pm 10\%. $1 / 2$ watt	$\begin{aligned} & \nabla 4) \\ & \text { V5) } \end{aligned}$	Same as V3
R9	Resistor, 47 ohms, \pm 10\%, $1 / 2$ watt	$\begin{aligned} & \nabla 6) \\ & \nabla 7) \end{aligned}$	
R10	Resistor, 1000 ohms, $+20 \%, 1 / 2$ watt	78	Type 7a6 tube
811	$\overline{\text { Resistor, }} 330$ ohms, $£$ 10\%. $1 / 2$ watt	X 12 $\times 2$	Socket, octal, mica filled bakelite Same $\mathrm{as} \mathrm{XI}^{\mathrm{XI}}$
2i?	Resistor, 560 ohms, \downarrow	X ${ }^{1}$	Same as XI
	10\%, 1/2 watt	X 4	Same as XI
R13	Resistor, 820 ohms, \pm	X5	Same as XI
	10\%, 1/2 watt	$\mathbf{x} 6$	Same as XI
R14	Same as R8	X_{7}	Same as XI
R15	Same as RlO	X 8	Same as XI
R16	Resistor, 220 ohms, \pm 10\%, $1 / 2$ watt	X9	Minlature, bayonet type socket
R17	Same as R10	X10	Same as X9
R18	Same as Rlo	X11	Same as X9
R19	Resistor, 100000 ohms, \& 10%. 1 watt	$\begin{aligned} & \mathrm{X} 12 \\ & 21 \end{aligned}$	Same as X9 Interstage coupl-
R20	Resistor, 47000 ohms, $\pm 10 \%$, l watt	22	ing unit, 10.7 me . Interstage coupl-
R21	Same as R2O		ing unit, 10.7 mc .
R22	Resistor, 47000 ohms, i 10\%, 1/2 watt	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	Same an 21 Interstage coupl-
R23	Resistor. 68000 ohms, $\perp 10 \%$, 1 watt	25	ing units, 10.7 mc . Interstage coupl-
R24	Resistor, 10000 ohms, $\pm 10 \% \text {. } 1 / 2 \text { watt }$	Z6	ing unit, 10.7 me . Discriminator assem-
$\begin{aligned} & \text { R25 } \\ & \text { R26 } \end{aligned}$	Same as R24 Resistor 33000 ohms, $\downarrow 10 \%, 1 / 2$ watt		bly unit 10.7 mc .
R27	Sume as R26		
R28	Resistor, 470,000 ohms, $\pm 10 \%, 1 / 2$ watt		
R29	Resistor, 150,000 ohms, $\pm 10 \%, 1 / ?$ watt		
R30	Same as R9		
S1	Switch, ceremic, 3 wafer, ? oosition, 3 pole		
S?	Switch, tan, 3 pole, 4 nosition		
53	Switch, single nole, single throw, rotary		
V1	Tyme 7F8 tube		
$\nabla ?$	Same as Vl		

CAT. 646, 647, and 648 FM RECEIVER PARTS IIST FOR RF AND IF CHASSIS. SCHEMATIC WIRING DIAGRAM DWG. S-615.

SYMBOL REF.	DESCRIPTION	$\begin{aligned} & \text { SYMBOL } \\ & \text { REF. } \end{aligned}$	DESCRIPTION
Cl	Capacitor, glass, variable	C32	Same as C6
	1-12 mmfd. 500 V. D.C.W.	C33	Capacitor, 470 mmfd .
C1A	Capacitor, ceramic 27 mmfd .		$\pm 10 \%$, 500 V.D.C.W.
C 2	Same as Cl	C34	Same as C18
C2A	Capacitor, ceramic 4.7 mmfa.	C35	Capacitor, 1.0 mmfd . $\pm 20 \%$
63	```Capacitor, 500 mmfd, 士20%, 500 V.D.C.W.```	II	\bar{P} ilot light, miniature bayonet base, 6-8 volts,
C4	Capacitor, $1200 \mathrm{mmfd} ., \pm 20 \%$, 300 V.D.C.W.		. 15 amps .
C5	Same as C4	12)	
06	Capacitor, $47 \mathrm{mmfa}{ }^{ \pm} 10 \%$,	13)	Same as Il
	500 V.D.C.W.	I4)	
C7	Same as Cl		
C7A	Capacitor, ceramic 27 mmfd .	L1)	Antenna and first grid
C8	Same as Cl	L2)	coil assembly
09	Same as C4	L3)	
Cl0	Same as C4		
Cll	Capacitor, 22 mmfa . 10%,	24)	Mixer grid coil
	500 V.D.C.W.	L5)	
$\mathrm{Cl2}$	Same as Cl		
Cl 3	Capacitor, 20 mmfa . 10%.	L6)	Oscillator coil
	500 V.D.C.W. N750	L7)	
C14	Same as C3		
C15	Same as Cll	L8)	Choke, 3 microhenries des
c16	Capacitor, $4.7 \mathrm{mmfd} .15 \%$, mmfd. 500 V.D.C.W.		$\pm 25 \%$
Cl7	Same as Cl2.	L9)	
018		L10)	Same as L8
	600 V.D.C.W.	LII)	
C19)	Same as 018	M1	Signal strength meter, 0-1 m.a.
c21)	Same as 018	M2	Tuning meter, 25-0-25
C21A	Cajacitor, 500 mmfd 。		microamps.
C22)		R1	Resistor, 4700 ohms -
C23)	Same as C4	R2	10\%, 1 watt Resistor, 270 ohms \downarrow
C24)		R	108, $1 / 2$ watt
c25)		R3	Resistor, 100 ohms, \pm
C26)			10\%, $1 / 2$ watt
C27)	Same as 018	R4	Resistor, 1500 ohms. ${ }^{4} 10 \%, 1 / 2$ watt
c29)		R5	Resistor, 15000 ohms. t10\%, $1 / 2$ watt
c30)		R6	Resistor, 39000 ohms. $+10 \%$, 1 watt

PAGE 18-10 REL
RODEIS 646,647,648 RADIO ENGINEERING LABS., INC.

CAT. 646 COMBINED AUDIO \& POWER SUPPIY
CHASSIS, SCHEMATIC WIRING DIAGRAM DWG. B-685

$\begin{aligned} & \text { SYMBOI } \\ & \text { RRF. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { SYMBOI } \\ & \text { REP. } \end{aligned}$	DESCRIPTION
C101	Capacitor, fixed, paper, tubular, .05 mfd .600 volts D.C. WkG. plug/ minus 20\%.	R110 R111	Resistor, 4700 ohms, 1 watt, plus/minus 10% Resistor, 200 ohms, 10 watt, plus/minus 5%
C102	Capacitor, fixed, dry electrolytic, $25 \mathrm{mfd} .$, 25 volts D.C. wkg.	$\begin{aligned} & \mathrm{Rll} 12 \\ & \mathrm{Rll} 3 \end{aligned}$	Same as Rilo Resistor, 10,000 ohms, plus/minus $10 \%, 1$ watt
C103	Same as Cloz	R114	Resistor, 150,000 ohms,
C105	Same as Clol	T101	Transformer, output,
C106	Capacitor, fixed, dry electrolytic, 25 mfd. 50 volts D.C. Wkg.		Pri. 10,000 ohms CT, 12 MA DC unbalance, pushpull windings, balanced
C107	Capacitor, fixed, electrolytic, 20 mfd., 475 volts D.C. Wkg.		at high audio frequenc ies, Sec. $8 / 500$ onms, Max. operation level 10 watts
C108	Canacitor, fixed, elecm trolytic, 40 mfa .475 volts D.C. Wkg.	T102	Transformer, power. Pri. 115 volts, $50-60$ cycles, single phase, Sec. \#l,
0109	Capacitor, fixed, elecm trolytic, $10 \mathrm{mta}, 475$ volts D.C. Wkg.		320-0-320 volts RMS at 0.160 amp . Sec. $\frac{\pi}{\# 2}, 5$ volts at 3 amp . Sec. \#3,
0110	Cepacitor, fixed, mica 300 mmfa., plus/minus 20 多, 500 velts D.C. Wkg.		6.3 \#4, 6.3 volts C.T. at 1.5 amp .
F10I	Fuse, 2 ampere, 250 volts	V101	Tube, Type 7F7
L101	Choke, 10 henries, 0.160 amps	$\begin{aligned} & \text { V102 } \\ & \text { V103 } \end{aligned}$	Tube, Type 705 Tube, Same as Vl02
R101	Resistor, variable, composition, 1 megohm, Z taper, standard shaft	$\begin{aligned} & \text { V104 } \\ & \times 101 \end{aligned}$	Tube, Type 5U4G Socket, loctal, micam filled bakelite
R102	Resistor, 220 ohms, 1/2 watt, plus/minus 10%.	X102 X103	$\begin{aligned} & \text { Same as Xlol } \\ & \text { Same as Xlol } \end{aligned}$
2203	Hesistor, 2700 ohms, $1 / 2$ watt, plus/minus 10%	X104	Socket, octal, micam filled bakelite
2204	Same as Rl03. ${ }^{\text {R }}$	X105	Fuse holder, molded
R105	Resistor, 180,000 ohms, $1 / 2$ watt, plus/minus 10% Same as Rl05		bleck bakelite, finger onerated.
8207-	Resistor, 330,000 ohms, 1/2 watt, plus/minus 10% Same as RlC?		
2109	Resistor, 100,000 ohms, 1/2 watt, plus/minus 10\%		

CAT. 647 COMBINED AUDIO \& POWER SUPPLY CHASSIS: SCHEMATIC WIRING DIAGRAM DWG. B-709

$\begin{aligned} & \text { SYMBOI } \\ & \text { REF: } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { SYMBOL } \\ & \text { BEF. } \end{aligned}$	DESCRIPTION
C100	Capacitor, . $05 \mathrm{mfd} .$,	R109	Same as R105
	600 v.D.C.W.	R110	Resistor, 27,000 ohms
ClO1	Capacitor, Electrol-		$\pm 10 \%, 1 / 2$ watt
	ytic $50 \mathrm{mfd},{ }^{\text {d. }} 25 \mathrm{v}$.	RIll	Resistor, 1500 ohms t10\%, 1 watt
Cl02	Same as Cl00	Rll2	Resistor, 100,000
C103	Same as Cl00		ohms, 10%, 2 watts
C104	Capacitor, .25 med. 600 v. D.C.w.	Rl 13	Resistor, 68,000 ohms, $+10 \%, 1 / 2$ watt
C105	Capacitor, electrolytic, dual 20 mfd. 450 v. D.C.w.	T100	Transformer, power, Pri. 115 volts, 50-60 cycles, single phase,
C106	Part of Cl05		Sec. \#1, 310-0-310
C107	Capacitor, electrol-		volts RMS at 0.1 amp., Sec. \#2, 5 volts at
	D.C.w.		2.0 amp Sec. \#3, 6.3
C108	Canacitor, electrol-		volts © 2.5 amps
	ytic, 20 mfd .475 v . D.C.w.	Tl01	Transformer, output, Pri. 16,000 ohms CT;
F100	Fuse, glass, 1 amp.		6 ma. D.C. unbalance,
	250 V .		push-pull windines
L100	Choke, 10 henries, at		balanced for high
	0.100 amp .		audio frequencies,
R100	Resistor variable, 1 mesohm $\mathrm{t}_{10 \%}$ 1/2 watt		Sec. 600/150 ohms Max. operation level +26
	" megohm,		$\mathrm{d} \mathrm{bm}$
R101	Resistor, 100,000 ohms	V100	Type 7I7
	$\pm 10 \%, 1 / 2$ watt	V101	Type 7N7
R102	Same as RlOl	V102	Tyne 5Y3GT
Rl03	Resistor, 2200 ohms, +10\%, 1/2 watt	X100	Socket, loctal, mica filled, bakelite
R104	Same as Rl03	X101	Same as X100
R105	Resistor, 330,000 ohms,	X102	Socket, loctal, mica
	$\pm 10 \%, 1 / 2$ watt		filled bakelite
R106	Resistor, 4,700 ohms +10\%, 1/2 watt	X105	Fuse holder, molded black bakelite, finger
R107	Same as Rlol		operated.
R108	Resistor, 680 ohms, +10\%, $1 / 2$ watt		

DC AUDIO AND POWER SUPPLY FOR 6 V. DC. USKD WITH CAT. 648 . SCHEMATIC WIRING DIAGRAM DWG.B-684

MODEL B4 RADIO KITS, INC.

© John F. Rider

John F. Rider

The RME-84 is an eight tube superheterodyne communication type receiver. It has a continuous tuning range from . 54 megacycles to 44 megacycles in four overlapping bands. The bandspread dial provides 1000 arbitrary divisions on each range.

Specifications
Power Supply: 115 volts, 60 cycle, single phase Power Consumption: 62 watts at 117 volts
Audio Output: 1.1 watts
Audio Frequency Responses 100 to 3,500 cycles $\pm 3 \mathrm{db}$
Overall Cabinet Dimensions:

Height	Depth	Iength
$9-3 / 8^{\prime \prime}$	$9-3 / 4^{\prime \prime}$	$18^{\prime \prime}$

Weight: 28 pounds
Tube Complement

Type Use
R.F. Amplifier VI

Mixer and Oscillator V2
lat I.F. Amplifier V3
2nd I.F. Amplifier V4
Detector, AVC, and lst Audio V5
Noise Limiter and Beat Freq. Csc. V6
Output Amplifier V7 Rectifier V8

Schematic Circuit Symbol

V5

Antenna
The terminals on the rear apron marked "A-A-G" are for the antenna and ground connections. When the recelver leaves the factory there is a jumper between the eround post (Marked G) and the ad jacent antenna post. Cood resuits may be cbtained by connecting a wire 50 to 75 feet lone to the other "A" post. If a 2 wire feeder system is used the jumper is removed and the two feeders are conected to "A" and "A". The input impedance between these points is approximately 300 ohms. A. ground may be connected to the " G " post if it improves reception.

OPERATION AND CIRCUIT DETAIIS

Introduction

The purpose of this book is to familiarize the operator with the RME-84, that he may realize the maximum results and endiyment from his receiver. Each control on the FME-84 has a definite function. The following paragraphs briefly describe them.

Tuning Dial
The RME-84 tuning mechanism features a. spring ioaded gear, ergaged by a plaretary driven pinion. The pre-loading eliminates backlash. Pandspread lcesing is obtained by using the figures on the illuminated translucent dial visible through the window in the center of the megacycle acale. The 200 divisions on this dial are calibrated from zero to 100 . The dial makes 5 complete revolutions as the

MODELS 84,84A

RADIO MFG. ENGINEERS INC.
megacycle pointer travels from one end of the scale to the other. This dial is used in conjunction with the innermost half circle, calibrated from 0 to 4, on the megacycle scale. While the red pointer is covering one of the megacycle scale sections the bardspread dial makes one complete revolution. After a station has been heard it can be logged accurately by using the two sets of figures.

For exanqle, if a station is heard on band II with the pointer in section 3 of the megacycle scale and with the bandspread dial at 28 , that station is derinitely logged as 328 because it will always be found at 328 on band II. Cr, if a station is logged at 173 on band III, it is always tuned in on band III by turnine the tuning knob until the red pointer is section I of the megacycle scale and until 73 comes upon the bandspread dial.

Elimination of the bandspread condenser necessary in an olectrical bandspiead syatem lowers the losses in the R.F. circuit and gives greater gain and stability!

Standby Switch

The second control from the left is the standby switch, used to make the receiver inoperative without turning off the line switch. It also turns on the beat frequency oscillator for CW reception. . There are tbree positions and reading clockwise they are marked CW, TR, and PH. The first position makes both receiver and beat frequency oscillator operative for CW reception. The second position makes the set inoperative while leaving it warmed up, as during a transmitting period, by disabling the RF and IF stafes of the recelver. The third position provides for phone reception without the beat frequency oscillator.

Eeat Oscillator PITCH Control.
The pitch of the beat frequency nay be varied by means of the control labelod B.C. Fitch. The beat frequency oscillator is indispensible in the reception of CW signals and is an aid in locating weak phone carriers.

AUDIO GAIN

The AUDIC GAIN Control in the center of the control panel adjusts the audio volume to the desired level.

Best CW reception is usually obtained with this control well advanced (clockwise) and the gain of the receiver controlled by the $R F$ gain control.

ITNE Switch and TONE Control
The LTNE TONE Control turns the receiver on and off. As the control is turned clockwise the line switch will close. Continued turning of the knob controls the tone by increasine the high frequency response.

Band Selector Switch
The BAND SELECTOR Switch selects the frequency range desired. The range of the receiver is divided into 4 bands. The range covered by each bend is as follows:

Band I	.540	to	1.65	MC	(American Broadcast)
Band II	1.65	to	5.	MC	
Band III	5.	to	15.	MC	
Band IV	15.	to	44.	MC	

Actially these figures do not represent the full range of each band since there is considerable overlap betveen the end of one band and the start of the next.

Radio Frequency GAIN Control
Counter clockwise rotation of this control reduces the gain of the receiver manually. Automatic control of the receiver gain is fully effective only when the R.F. GAIN control knob is rotated to and set at its maximum clockwise position.

Noise Limiter
An AUTOMATIC NOISE LIMITER is incorporated in the receivor circuit. No adjustment is required. The circuit is of a type that automatically adjusts itself to maximum effectiveness.

TMPORTANT

The action of the noise limiter is such that a slight amount of distortion is introduced on the signel. Therefore when it is desirable to do so the noise limiter may be switched out of the circuit. This is controlled by the slide switch just below the control panel. When the switch is to the left the limiter is out of the circuit.

Automatic Volume Control
AVC is obtained by feeding a portion of the signal rectified by the 7 K 7 tube back to the grids of the RF and IF tubes. As the RF gain is rotated counterclockwise the AVC action becomes subordinate to the bias developed in the cathodes by this control. The AVC is fully effective only when the RF gain control is in the extreme clockwise position. AVC is removed when the standby switch (3.4) is turned to CW.

Power Supply
The RME-84 is provided with very flexible power requirements. The standard recelver operates from 115 volts $A C, 50-60$ cycles. On special order it may be had for 115 or 230 volts, 25 to 60 cycle operation. All models may be operated from A and B betteries, or vibropack. The octal plug on the rear apron must be in place for $A C$ operation. It is removed and replaced by ε battery cable for battery operation. The 5Y3G rectifier supniies current through pi-section filter. This filter is also in the circuit when the battery cable is used, simplifying converter or vibropack requirements.

Battery Operation

The RME-84 is designed for econimical battery operation. The standard RUE-34 hes an octal socket on the rear apron into which is inserted a shorting plug when operating on AC. For battery operation tre shorting plug is removod and battery cable is plugeed intu the socket. The battery cable is not supplied with the 84 but may be purchesed separately or made up from the schematic diagram.

Battery requirements are as follows: "A" battery ôV at 1.5 amperes. "B" buttery, 135 volts with a tap at 90 volts. The "B" battery drain is 32 millian:peres. The " A " battery drain may be reduced to 1.2 amperes by removine the dial lamps.

When operatine on batteries all of the controls function normally. The re-
ceiver is turned on and off by means of the power switch on the LINE TONE CONTROL.

IMPORT ANT

THE LINE CORD MUST BE DISCONNECTED FROM THE AC SUPPLY BEFORE ATTEMPTING TO CONNECT FOR BATTERY OPERATION.

MAINTENANCE AND SERVICE

No maintenance work of importance is required on this unit. It is suggested that periodic cleaning of the equipment be done, including blowing out any accumulated dust with a suitable air stream.

UNLESS IT IS DEFINITELY ESTABLISHED THAT ALTGNMENT IS INCORRECT, NO ADJUSTMENTS OF THE TUNED CIRCUITS SHOULD BE MADE.

Equipement required is a signal yenerator, an INSJLATED screwdriver, and an output meter unless the receiver has an " R " meter.

In this paragraph, and following paragraphs on alignment the "meter" referred to is either the output meter or the " R " meter, whichever is used. A difference in procedure required is as follows:

When the R meter is used, the R.F. gain is turned full clockwise, all other operating conditions are normal.

When using an sudio output meter it is necsssary to ground the AVC line, and it may be necessary to reduce the R.F. efin control setting to avoid overloading the first stages of the receiver with strong signal inputs. The neter may be clipged acrose the voice coil windings of the speaker, both terminals of which are accessible through the lid of the cabinet. The AVC may be removed from the receiver by tuming the STANDBY switch to CW. This will also turn on the beat frequency oscillator. Since it is undesirable to have the BFO on while aligning the receiver, the BFO tube (V) should be removed from the sociset. It must, of course, be replaced while aligning the BFO.

I.F. Alignment

The I.F. frequency of the RME-34 is 455 KC . The bandswitch should be turned to band I. The tianing dial should be tumed to the low frequency end (. 55 MC) and the hot lead from the signal generator clipped to the lug on the detector (center) section of the tuning condenser. With the signal generator set at 455 KC each padder on the lst, 2nd and 3rd I.F. transformers is carefully adjusted for maximum response as indicated on the meter.

B.F.O. Alignment

With the signal senerator connected as for aligning I.F. circuits, turn the stand-by switch to CW and set "B.O. PITCH" control pointer vertical. With an insulated screwdriver adjust BFO padder until zero beat is obtained.

R.F. Alignnent

Alignment of the radio frequency section of the receiver will affect, princijally, the calibration of the receiver. Within certain limits this, of course, will also affect the sensitivity. Small variations in frequency (up to $2 x$) will not
materially reduce the sensitivity of the receiver although they will, of course, show up as variations in the calibration as indicated by the setting of the MAIN TUNING DIAL. Correction of any variation of calibration can be made by following the suggestions outlined in the following paragraphs.

All adjustments are made from the top of the chassis. The proper points for each band are marked on figure 3. There are 18 of them, plus one used only on band IV and accessible from the rear apron.

High frequency beat is used on all bands, that is, the oscillator is 455 KC higher in frequency than the signal received.

If sufficient input is used, a given signal can be received at two points on the tuning dial. There is 810 KC difference in frequency between these points. The true signal is the one received at the higher frequency dial reading while the image or "Low-beat" signal is received with the dial reading 910 KC lower in frequency. The circuits must be aligned to the true signal.

When using a signal generator or test oscillator to align the receiver, a resistor of about 300 ohms should be inserted between the signal generator and the antenna terminal. This vill prevent misaligning of the RF stag"e caused by connecting the receiver input, the low impedance output of the signal generator.

Band I includes frequencies between 540 and 1650 KC . For Band I there are two frequency adjustments for adjusting the dial to the proper calibration.

The first step is to choose a station or a signal of accurately known frequency on the low frequency end of the range (for example 600 KC) and set the main tuning scale to read this frequency. If the sigmal is not tuned in when the scale indicates its frequency it may be brought in by adjusting the oscillator coil core. This may be done with a smell screwdriver at the point marked "BAND I OSC. Lo". Another station or signel is now selected near the high frequency end of the range (for example 1400 KC). If this signal is not heard when the dial is accurately set to its frequency it may be brought in by adjusting the padier under the large hole marked "BAND I OSC. Hi" by means of an insulated trimmer tool. When this signal is accurately brought in as indicated by a maximum reading on the meter, the low frequency test point should be readjusted if it has changed. It may be necessary to go back and forth several times until both frequencies are accurately calibrated.

When the calibration is correct the R.F. circuits can be aligned. The two marked "Bend I Mixer Lo" and "Band I RF Lo" are adjusted for maximum meter reading on the low frequency end of the band (such as 600 KC); and the trimners inarked "Band I Mixer Hi" and "Bund I RF Hi" are used to obtain naximum output at the high frequency end, such as 1400 KC . It may be necessary to repeat these adjustments for perfect alignnent. The oscillator calibration $o z$ any band must be done first, and shouli not be chansed while making the other adjustments.

The procedure on Band II is the same as for Band I. Adjust "Band II Osc.Lo" at approximately 1.3 MC and "Band II Osc. Hi" around 4.5 to 5 MC ; then tune the mixer and RF stages.

Band III and IV differ in that there is no "Lo" end adjustment, the inductance of the coils being accurately adjusted at the factory. Band III is therefore set at only one frequency, preferably at the high end. Band IV may be adjusted at about 30 MC .

The trimmer accessible through the hole in the rear of the chassis affects only the extreme low end of Band IV and should not be disturbed unless absolutely necessary. It will determine calibration only between 14 and 17 MC , and will also affect sensitivity of the set through that region of Band IV.

Schematic
Symbol
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

1. 13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22

Function
R.F. Grid Fesistor
R.F. \& lst I.F. Cathode Resistor
R.F. Goin Control
R.F. Gein Bleeder
R.F. Screen Filter Resistor
R.F. Plate Resistor
R.F. Plate Decoupling Resistor

Oscillator Plato Filtor Resistor
Mixer Cathode Resistor
Oscillator Grid Lenk
inixer Screen Filter Resistor
Mixer Plate Pilter Resistor
lst I.F. ivC Resistor
lst I.F. Screen Filter Resistor
2nd I.F. Cathode Resistor
B.F.O. Plate Droppine, Resistor

Part of Bloeder iesistor
Part of Blender Rosistor aVC Filter Resistor
Tone Control
aNL Docoupling Resistor
Hoise Li::iter Bias Resistor
Output Anp. Grid Resistor
First \mathbb{F} Plate Filter Resistor
Output Amp. Cathode Resistor
lst audio Cathode Kesistor
Part of Diode Lead
Part of Diode Loed
B.F.O. Grid Leak

Phone Shunt Resistor
lst $A F$ Grid Filter Resistor
lst $d F$ Plate Resistor
Audio Gain Control
Heter Bleeder
lleter Zero Adjustment
Pilot Lamp Dropoing Resistor
Band I RF Trimmer
Band II RF Trimmer
Band III RF Trimmer
Bnad IV RF Trimmur
RiF Grid Blockinis Condenser
RF Tuning Condenser
KF Cathode Bypass Condenser
RF Screen Bypeas Condenser
RF Plate Decoupling Condenser
Oscillator Plate Bypass Cond.
Uscillator Plate Filter Cond.
RF Plate Coupling; Condenser
Band I Mixer Trimmer
Band II Mixer Trimmer
Band III Mixer Mrimmer
Band IV Mixer Trinmer
Band IV Osc. Series Trimmer
Mixer Tuninf Condenser
Band 1 Series Pad
Band II Series Pad
Band III Series Pad
Band IV Secies Pad

Spccification
$220 \mathrm{~K}+20 \% 1 / 2$ Vatt Carbon
150 ohms $+20 \% 1 / 2$ Watt Carbon
30 K Variable
$47 \mathrm{~K}+20 \% 1 / 2$ Vatt Cerbon 4700 ohns $\pm 20 \% 1 / 2$ Watt Carbon 22 Y $+20 \% 1 / 2$ Watt Carbon $4700 \mathrm{l} / 2$ vatt 20, Carbon $22 \times \pm 20 \%$
220 ohras $+20 \% 1 / 2$ Natt Carbon $47 K+20 \% 1 / 2$ Natt Carbon $220 \mathrm{~K}+20 \% 1 / 2$ Watt Carbon $22 \mathrm{~K}+20 \% 1 / 2$ Vatt Carbon $220 \mathrm{~K}+200_{0}^{\prime} 1 / 2$ Watt Carbon 4700 ohns $+20 \%$ 1/2 Watt Carbon 470 ohns $+20 \% 1 / 2$ Watt Carbon $100 \mathrm{~K}+20 \% 1 / 2$ Watt Carbon 10,000 ohns 10 Watt Trpped at 5500 wire wound

1 meg $+20,51 / 2$ Watt Garbon
1 meg Variable with switch
1 meg. $+20 \% 1 / 2$ Watt
$680 \mathrm{~K}+10 \% 1 / 2$ Watt Carbon $220 \mathrm{~K}+20 \% 1 / 2$ Watt Grbon $22 \mathrm{~K}+20 \% 1 / 2$ Watt Carbon 470 ohris $+20 \% 1 / 2$ Wratt Carbon 820 ohras $+10 \% 1 / 2$ Uatt Corbon
$220 \mathrm{~K} \pm 20,5 \mathrm{l} / 2$ Watt Carbon
$220 K+20 \% 1 / 2$ Uatt Corbon
$47 \mathrm{~K}+20,51 / 2$ Vatt Carbon
33 ohras $\pm 206_{0}^{6} 1 / 2$ Watt Corbon
$22 \mathrm{~K}+20 \% 1 / 2$ Watt Carbon
$100 \mathrm{~K}+20 \% 1 / 2$ Watt Carbon
250 K Variable
$68 K+20 \% 1 / 2$ vatt Carbon
5 K Variable M Screw Driver Slot
15 ohns $+20,61 / 2$ Watt Cerbon
40 mafd lic: Variable
40 mmfil Mica Variable
40 mmfd Kica Veriable
40 mmfd lijca Variable
250 mmf i $+20^{\circ} \mathrm{p} 600 \mathrm{~V}$ lica
Prrt of Ganf Condenser
$.01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Proer
$.01 \mathrm{mfd} .+20 \% 600 \mathrm{~V}$ Pener
$.01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Ppper
$.01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
$.001 \mathrm{mfd}+20 ; 600 \mathrm{~V}$ inica
$250 \mathrm{mfd}+20,6600 \mathrm{~V}$ Mica
40 mmfd liica Variable
40 mmfd lica Variable
40 mmfd Mica Variable
40 mafd lica Variable
70 mmfd rica Variable
Part of Geng Condenser
$.0005 \mathrm{mfd}+5 \% 600$ Volt Mica
$.0015 \mathrm{mfd}+5 \% 600$ Yolt hica
$.004 \mathrm{mfd} 5 \% 500$ Yolt vica
.015600 Volt Paper

Schematic Symbol	Function	Specification
2.23	Band I Osc. Trimaer	40 mmfd Hica Variable
2.24	Band II Osc. Trimmer	40 mmfd Iiica Variable
2.25	Band III Osc. Irimmer	40 mmfd Hica Variable
2.26	Band IV Csc. Trimmer	40 mmfa lica Variable
2.27	Vixixer Cathode Bypass Condenser	. $01 \mathrm{mfd}+20 \% 600$ V Paper
2.28	Osc. Grid Condenser	$50 \mathrm{mmfd}+20 \% 600 \mathrm{~V}$ Mica
2.29	Osc. Tuning Condenser	Part of Gang Condenser
2.30	Hixer Screen Bypass Condenser	. $01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
2.31	Mixer Plate Filter Condenser	$.01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
2.32	First I.F. Grid Filter Condenser	. $01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
2.33	lst I.F. Cathode Bypass Condenser	. $01 \mathrm{mfd}+200 \% 600 \mathrm{~V}$ Paper
2.34	lst I.F. Screen Bypass Condenser	. $01 \mathrm{mfd}+20 \% 600$ V Paper
2.35	P.F.C. Coupling Condenser	$5 \mathrm{mmfd}+20 \%$ Mica
2.36	2nd I.F. Cathode Bypass Cond.	. $01 \mathrm{mfd}+20 \% 600$ V Paper
2.37		
2.38	Pover Supnly inlter Condenser	10-10-15 nfd Electrolytic
2.39		
2.40	2nd I.F. Screen Bypass Cond.	. $01 \mathrm{mfd}+200_{0}^{6} 600 \mathrm{~V}$ Paper
2.41	AVC Bypase Condenser	. $01 \mathrm{mfd}+20 \% 600$ V Paper
2.42	Diode Lead Filter Condenser	$50 \mathrm{mmfd}+20 \% 600 \mathrm{~V}$ liica
2.43	AI Bias Filter Condenser	. $01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
2.44	B.F.O. Plate Bypass Condenser	. $01 \mathrm{mfd}+20 \%, 600 \mathrm{~V}$ Paper
2.45	Tone Control Condenser	. 01 mfd t20; 600 V Paper
2.46	First Audio Plate Coupling Cond.	. $01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
2.47	Output Plate Leading Condenser	. $01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
2.48	Outnut Cathode Bypass Condenser	20 mfd 25 V Tubular Electrolytic
2.45	lst Audio Grid Decoupling Cond.	$250 \mathrm{mmfd}+20 ; 600 \mathrm{~V}$ liica
2.50	B.F.O. Grid Condenser	$100 \mathrm{mmfd}+20 \% 600 \mathrm{~V}$ Mica
2.51	Ist Audio Grid Coupling Cond.	. $01 \mathrm{mfd}+20,5600 \mathrm{~V}$ Paper
2.52	B.F.O. Trimmer Condenser	70 mmfd Lica Variable
2.53	B.F.O. Grid Condenser	$100 \mathrm{mmfd}+20 \% 600 \mathrm{~V}$ Mica
3.1	Ric Coil Switch	Primary Soctioh, part of Bandswitch
3.2	RF Coil Switch	Grid Section, part of Bandswitch
3.3	lifxer Coil Switch	Part of Bandswitch
3.4	Osc. Coil Switch	Plate Scction, part of Bandswitch
3.5	Osc. Coil Switch	Grid Section, part of Bandswitch
3.6 3.7	Off-On Switch	2 pole, single throw on tone control
3.7 3.8	Stand-by Switch	2 pole, 3 throw rotary
3.8 4.1	Noise Iimiter Switch	SPGT Slide Sivitch
4.1 4.2	Band I R.F. Coil Hssembly Band II R.F. Coil issembly	
4.3	Band III R.F. Coil Assembly)	
4.4	Band IV R.F. Coil Asseribly)	Wound on seme form
4.5	Band I illxer Coil issembly	
4.6	Band II Mixer Coil Assembly	
4.7	Band III Mixer Coil Assembly)	
4.8	Band IV Mixer Coil Assenbly)	Wound on sane forn
4.9	Band I Osc. Coil Assembly	
4.10	Band II Osc. Coil Assembly	
4.11	Band III Osc. Coil Asseribly)	
4.12	Band IV Osc. Oiil Assenbly)	Wound on same forn
4.13	Band IV Oscillator Series Coil	
4.14	B.F.O. Coil	
4.15	Filter Choke	
5.1	Power Transforner	
5.2	Output Transforner	
5.3	lst I.F. Transforner	
5.4	2nd I.F. Transformer	
5.5	3rd I.F. Transformer	

Schematic Symbol	Function	Specification
1.1	R.F. Grid Resistor	$220 \mathrm{~K} \pm 20 \% 1 / 2$ Watt Carbon
1.2	R.F. \& Ist I.F. Cathode Resistor	150 ohms $\pm 20 \%$ l/2 Watt Carbon
1.3	R.F. Gain Control	30 K Variabie
1.4	R.F. Gain Bleeder	$47 \mathrm{~K}+20,412$ Watt Carbon
1.5	R.F. Screen Filter Resistor	4700 ohms $\pm 20 \% 1 / 2$ Watt Carbon
1.6	R.F. Plate Resistor	$22 \mathrm{~K} \pm 20 \% 1 / 2$ Watt Carbon
1.7	R.F. Plate Decoupling Resistor	$4700 \mathrm{l} / 2$ Watt 20% Carbon
1.8	Oscillator Plate Filter Resistor	$22 \mathrm{~K}+20 \%$
1.9	Mixer Cathode Rosistor	220 ohms $\pm 20 ; 1 / 2$ Watt Carbon
1.10	Oscillator Grid Leak	$47 \mathrm{~K} \pm 20 \% 1 / 2$ Natt Carbon
1.11	Mixer Screen Filter Resistor	$220 \mathrm{~K} \pm 20 \% 1 / 2$ Watt Carbon
1.12	Wixer Plate Filter Resistor	$22 \mathrm{~K} \pm 20 \% 1 / 2$ Watt Carbon
1.13	1st I. F. AVC Resistor	$220 \mathrm{~K} \pm 20 \% 1 / 2$ Watt Carbon
1.14	lst I. F. Screen Filter Resistor	4700 ohms $\pm 20 \% 1 / 2$ Watt Carbon
1.15	2nd I.F. Cathode Resistor	470 ohms $\pm 20 \% 1 / 2$ Watt Carbon
1.16	B.F.O. Plate Dropning Resistor	$100 \mathrm{~K} \pm 20 \% \mathrm{l} / 2$ Watt Carbon
1.17	Part of Bleeder Resistor	10,000 ohms 10 Watt Tapped at 5500 wire wound
1.18	Part of Bleeder Resictor	
1.19	AVC Filter Resistor	1 meg $+20 \% \mathrm{l} / 2$ Watt Carbon
1.20	Tone Control	1 meg Variable with switch
1.21	ANL Decoupling Resistor	$1 \mathrm{meg} \pm 20 \% 1 / 2$ Watt
1.22	Hoise Limiter Bias Resistor	$680 \mathrm{~K} \pm 10 \%$ 1/2 Watt Carbon
1.23	Output Amp, Grid Resistor	$220 \mathrm{~K} \pm 20 \%$ 1/2 Watt Carbon
1.24	First AF Plate Filter Resistor	$22 \mathrm{~K} \pm 20 \% 1 / 2$ Watt Carbon
1.25	Output Amp. Cathode Resistor	470 ohms $\pm 20001 / 2$ Watt Carbon
1.26	lst Audio Cathode Resistor	820 ohms $\pm 10 \% 1 / 2$ Watt Carbon
1.27	Part of Diode Load	$220 \mathrm{~K}+20 \% 1 / 2$ Watt Carbon
1.28	Part of Diode Load	$220 \mathrm{~K}+20 \%$ l/2 Watt Carbon
1.29	B.F.O. Grid Leak	$47 \mathrm{~K} \pm 20 \% 1 / 2$ Watt Carbon
1.30	Phone Shunt Resistor	33 ohms $\pm 20 \% 1 / 2$ Watt Carbon
1.31	lst AF Grid Filter Resistor	$22 \mathrm{~K} \pm 20 \% \mathrm{l} / 2$ Watt Carbon
1.32	lst AF Plate Resistor	$100 \mathrm{~K}+20 \% 1 / 2$ Watt Carbon
1.33	Audio Gain Control	250 K Variable
1.34	Meter Bleeder	$68 \mathrm{~K} \pm 20 \% 1 / 2$ Watt Carbon
1.35	Meter Zero \&djustment	2 K Variable W才 Screw Driver Slot
1.36	Feedback Resistor	$250 \mathrm{~K}+20 \% 1 / 2$ Watt Carbon
2.1	Band I RF Trimmer	40 mmfd Mica Variable
2.2	Band II RF Trimmer	40 mmfd Mica Variable
2.3	Band III RF Trimmer	40 mmfd Mica Variable
2.4	Band IV RF Trimmer	40 mmfd lifca Variable
2.5	RF Grid Blocking Condenser	$250 \mathrm{mmfd}+20 \% 600 \mathrm{~V}$ Mica
2.6	RF Tuning Condenser	Part of Gang Condenser
2.7	RF Cathode Bypass Condenser	. $01 \mathrm{mfd} \pm 2006600$ V Paper
2.8	RF Screen Bypass Condenser	.01 mfd . $420 \% 600 \mathrm{~V}$ Paper
2.9	Rir Plate Decoupling Condenser	$.01 \mathrm{mfd} \pm 20 \% 600 \mathrm{~V}$ Paper
2.10	Oscillator Plate Bypass Cond.	. $01 \mathrm{mfd}+2006600 \mathrm{~V}$ Paner
2.11	Oscillator Plate Filter Cond.	. $001 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Mica
2.12	RF Plate Coupling Condenser	$250 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Mica
2.13	Band I Miser Trimmer	40 mmfd Mica Variable
2.14	Band II Mixer Trimmer	40 mmfd Mica Variable
2.15	Band III Mixer mrimmer	40 mmfd Nica Variable
?. 26	Band IV Mixer Trimmer	40 mmfd Mica Variable
2.17	Band IV Osc. Series Trimmer	70 mmfd Mica Variable
2. 18	Mixer Tuning Condenser	Part of Gang Condenser
2.19	Band I Series Pad	. $0005 \mathrm{mfd} \pm 5 \% 600$ Volt Mica
2.20	Band II Series Pad	. $0015 \mathrm{mfd}+5 \% 600 \mathrm{Volt} \mathrm{Mica}$
2.21	Band III Series Pad	. 004 mfd 5600 Volt Mica
2.22	Band IV Series Pad	.015600 Tolt Paper

Schenatic Symbol
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2. 36
2.37
2.38
2.39
2.40
2.41
2.42
2.43
2.44
2.45
2.46
2.47
2.48
2.49
2.50
2.51
2.52
2.53
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
5.1
5.2
5.3
5.4
5.5

Function

Band I Osc. Trimmer
Band II Osc. Trimmer
Band III Osc. Trimmer
Band IV Osc. Trimner
Mixer Cathode Bypass Condenser
Osc. Grid Condanser
Osc. Tuning Condenser
Mixer Screen Bypass Condenser
Mixer Plate Filter Condenser
First I. F. Grid Filter Condenser
lst I.F. Cathode Bypass Condenser
lst I. F. Screen Bypass Condenser
B.F.O. Couplinp Condenser

2nd I.F. Cathode Bypass Cond.
Power Supply Filter Condenser
2nd I.F. Screen Bypass Cond. AVC Bypass Condenser
Diode Lead Filter Condenser
ANL Bias Filter Condenser
B.F.O. Plate Bypass Condenser

Tone Control Condenser
First Audio Plate Coupling Cond.
Feod Back Blocking Condenser
Output Cathode Bypass Condenser
lst Audio Grid Decoupling Cond.
B.F.O. Grid Condenser
lst Audio Grid Coupling Cond.
B.F.O. Trimer Condenser
B.F.O. Grid Condenser

RF Coil Switch
RF Coil Switch
Mixer Coil Switch
Osc. Coil Switch
Osc. Coil Switch
Off.On Switch
Stand-by Suitch
Noise Iimiter Switch
Band I R.F. Coll Assembly
Bend II $\mathrm{F}_{\mathrm{*}}$ F. Coil assembly
Band III R.F. Coil Assombly)
Bend IV R.F. Coil Assembly)
Band I Wixer Coil issenbly
Band II Mixer Coil Assembly
Band III Mixer Coil Assembly)
Band IV Mixer Cnil issembly)
Band I Osc. Coil Assenbly
Band II Osc. Coil Ussembly
Band III Osc. Coil Assembly)
Band IV Osc. Coil Assembly)
Band IV Oscillator Series Coil
B.F.O. Coil

Filter Chole
Power Transforner
Output Transformer
lst I.F. Transformer
2nd I.F. Transformer
3rd I.F. Transformer

Specification

40 mrfa Mica Variable
40 mmfd Mica Variable
40 mmfd Mica Variable
40 mafd Mica Variable
$.01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
$50 \mathrm{mmfd}+20 \% 600 \mathrm{~V}$ Mica
Part of Gang Condenser
$.01 \mathrm{mfd}+20 \% 600$ V. Paper
$.01 \mathrm{mfd} \pm 20 \% 600 \mathrm{~V}$ Paper
$.01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
$.01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
$.01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
5 mmfd $+20 \%$ Mica
$.01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
10-10-15 mfd Electrolytic
$.01 \mathrm{nfd}+20 \% 600 \mathrm{~V}$ Paper
$.01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
$50 \mathrm{mmfd}+20 \% 600 \mathrm{~V}$ Mica
$.01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
$.01 \mathrm{mfd}+206600 \mathrm{~V}$ Paper
. $01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
$.01 \mathrm{mfd} \pm 20 \% 600 \mathrm{~V}$ Paper
$.01 \mathrm{mfd}+20 \% 600 \mathrm{~V}$ Paper
20 mfd 25 V Tubular Electrolytic
$250 \mathrm{mmfd}+20 \% 600$ V Mica
$100 \mathrm{mmfd}+20 \% 500$ V Mica
$.01 \mathrm{mfd} \pm 20 \% 600 \mathrm{~V}$ Paper
70 mmf dica Variable
$100 \mathrm{mmfd}+20 \% 600$ v Mica
Primary Section, part of Bendswitch
Grid Section, part of Bandswitch
Part of Bandswitch
Plate Section, part of Bandswitch
Grid Section, part of Bandswitch
2 pole, ingle throw on tone control
2 pole, 3 throv rotary
SPST Slice Switch

Wound on sane form

Wound on same form

Wound on same form

RADIO 8\% TELEV PAGE 18-1

ALIGNMENT PROCEDURE FOR A.M.:

Equipment Required
a) Broadcast Band Signal Generator.
b) Output Meter.

1. Sct hand switch to AM. Advance volume control to full volume setting.
2. Connect output meter across voice coil.
3. Connect the Signal Generator across the broadcast band antenna section of the variable condenser. The "high" side of the Generator should connect to the stator section and the "ground" side to the frame or chassis. Adjust the Signal Generator to 455 kc and with the recciver switched on, adjust the first and second I.F. transformers for peak output as shown on the output meter. The signal injected into the receiver should be as small in magnitude as possible, consistent with a useful deflection on the output meter.
4. Connect the "high" side of the Generator to the antenna terminal with a 200 mmf condenser inserted in series. Connect the "ground" side of the Generator to the chassis. Tune recciver to 60 on the dial, adjust Signal Gencrator to 600 kc . Adjust the BC padder and the BC antenna coil for max. imum deflection on the output meter. Use a weak signal.
5. Tune recciver to 160 on the dial. Adjust Sig, nal Generator to 1600 kc . Adjust BC oscillator and BC antenna trimmers for maximum output.
6. Repeat operations 4 and 5
\checkmark ALIGNMENT PROCEDURE FOR F.M.:
Note: Points A, B, C, D, E, F, G, and H are noted on circuit diagram.
Points B, C, and D have been brought out to the unused contacts of the speaker socket at the rear of the chassis.
Equipment Required:
a) High frequency Signal Generator witin $88-108 \mathrm{Mc}$ tuning range.
b) Signal Generator capable of delivering .1 V at 10.7 mc .
c) Audio output meter.
d) D.C. vacuum tube voltmeter with zero center scale.
a. Ratio Detector Alignment:
7. Connect V.T.V.M. across points " B " and "C" (A.V.C. Voltage)
8. Feed 10.7 me unmodulated R.F signal into 6 SH 7 grid (point A) through $.01 \mu \mathrm{fd}$. condenser. This signal should be 1 volt.
9. Adjust primary of Ratio Detector (T-5) for maximum voltage indication on V.T.V.M.
10. Connect zero centered V.T.V.M. across points " B " and "D".
11. Adjust secondary of Ratio Detector (T-5) for zero indication.
12. Tune 10.7 mc Signal Generator higher in grequency (about 200 kc) until maximum voltage reading is obtained on V.T.V.M.; note this voltage. then tune signal generator lower in frequency until maximum voltage of the opposite polarity is oh
tained. Note this voltage, then if necessary readjust primary of the Det. (T-5) until the detector voltaqes are about equal on either the high or low side of 10.7 mc .
b. 10.7 I.F. Alignment:
13. Shunt a 1,000 -ohm carbon resistor across the primary of the detector ($\mathrm{T}-5$) (Points G and H)
14. Connect output meter across speaker voice coil.
15. Volume and tone controls at maximum clock. wise position.
16. Connect 10.7 mc (modulated 30% signal generator through $.01 \mu \mathrm{fd}$. condenser across point " F " and ground.
17. Adjust secondary, then primary of (T-3) for maximum audio output. (Reduce input signal to maintain output at .5 -watt level.)
18. Connect $10.7 \mathrm{mc} 30 \%$ modulated signal generator across point " E " and ground
19. Adjust secondary, then primary of ($\mathrm{T}-1$) for maximum audio output. (Reduce input signal to maintain output at .5 watt level.)
20. Remove 1000 -ohm shunting resistor from across primary of (T-5).
c. Oscillator and R.F. Alignment:
21. Connect V.T.V.M. across "B" and "C" (A.V.C. voltage)
22. Connect 108 mc signal generator to FM antenna terminals. If generator impedance is low, put one 150 ohm carbon resistor in series with each of the generator leads. Tune receiver dial to 108 mc .
23. Adjust FM oscillator trimmer (C-51) for maximum V.T.V.M. reading.
24. Adjust FM R.F. trimmer (C-52) for maximum V.T.V.M. reading. During alignment reduce input signal to maintain A.V.C. voltage at 2 V .
25. Repeat steps 3 and 4.
26. Feed a 90 me signal into antenna terminals (as in $\mathrm{C}-2$), tune receiver dial to signal.
27. Adjust spacing of FM R.F. coil (L-4) for maximum V.T.V.M. reading at 90 mc . During alignment reduce input signal to maintain A.V.C. voltage at 2 V .
28. Repeat steps 2 and 4 if necessary.

Tube and Trimmer Locations.

C $1-1,500 \mathrm{mmfd}, \pm 300 \mathrm{mmfd}$
C $2-2$ minfd., 20%
C $3-25 \mathrm{mmfd} ., 10 \%$
C $4-1,500 \mathrm{mmfd}$, $\pm 300 \mathrm{mmfd}$
C $5-1,500 \mathrm{mmfd}$, $\pm 300 \mathrm{mmfd}$ C $6-500 \mathrm{mmfd} ., 20 \%$
C $7-.02 \mathrm{mifd}, 400 \mathrm{~V}$.
C $8-.05 \mathrm{mfd} ., 400 \mathrm{~V}$.
C 9-1,500 mmfd, $\pm 300 \mathrm{mmfd}$.
C10- 100 mmfd ., 20%
C11-. 1 mfd ., 400 V
C $12-1,500 \mathrm{mmfd} ., \pm 300 \mathrm{mmfd}$.
C13-. 01 mfd ., 400 V .
C14- 100 mmfd ., 20%
C15-1,500 mmfd., $\pm 300 \mathrm{mmfd}$.
C $16-1,500 \mathrm{mmfd} ., \pm 300 \mathrm{mmfd}$.
C $17-.05 \mathrm{mfd}$. 200 V .
C18-. 05 mfd ., 200 V .
C19-. 02 mfd ., 200 V .
$\mathrm{C} 20-.005 \mathrm{mfd} ., 600 \mathrm{~V}$.
C21-250 mmfd., 20%
C22-. 01 mfd ., 400 V .
C23- $250 \mathrm{mmfd} ., 20 \%$
C24- $12 \mathrm{mfd} ., 350 \mathrm{~V}$.
C 26 -Var. cond. (AM-FM)
C $27-1,500 \mathrm{mmfd}$., $\pm 300 \mathrm{mmfd}$
$\mathrm{C} 28-.003 \mathrm{mfd}$. 20%
C29--. 05 mfd ., 400 V .
$\mathrm{C} 30-.05 \mathrm{mfd} ., 400 \mathrm{~V}$.
C31-250 mmid., 20%
C32-4 mfd., 250 V .
C33--. 5 mfd .200 V .
$\mathrm{C} 34-.002 \mathrm{mfd}, 600 \mathrm{~V}$
C35-. $002 \mathrm{mfd} ., 600 \mathrm{~V}$
C $368 \mathrm{C} 37-40 \mathrm{mfd} \times 40 \mathrm{mfd}$, electrolytic, 400 V .
$\mathrm{C} 38-.05 \mathrm{mfd} .400 \mathrm{~V}$.
C39- $1,500 \mathrm{mmfd}$, $\pm 300 \mathrm{mmfd}$
C $40-1,500 \mathrm{mmfd}, \pm 300 \mathrm{mmfd}$
C $41-1,500 \mathrm{mmfd}$., $\pm 300 \mathrm{mmfd}$. $\mathrm{C} 42-1,500 \mathrm{mmfd}, \pm 300 \mathrm{mmfd}$. C $43-1,500 \mathrm{mmfd}, \pm 300 \mathrm{mmfd}$

C44--47 mmfd., 10%
C45-. 002 mid ., 400 V
C $46-100 \mathrm{mmfd}$., 20%
$\mathrm{C} 47-.02 \mathrm{mfd} ., 400 \mathrm{~V}$.
C $48-1,500 \mathrm{mmfd}$. $\pm 300 \mathrm{mmfd}$
C49--Trimmer, compression, 3.35 mmfd .

C50-Trimmer, compression, 3.35 mmfd .

C51--Trtmmer, ceramic, $1.5 \cdot 7 \mathrm{mmfd}$
C52-Trimper, compression,
1.6 .48 mmid

C53-Padder condenser, 275.1 .000 mmfd .

R $1-470 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $2-22 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R 3-47R, $1 / 4 \mathrm{~W} ., 20 \%$
R $4-470 \Omega, 1 / 4 \mathrm{~W} .20 \%$
R $5-1 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}$, 20%
R $6-470 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $7-15 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $8-22 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} .20 \%$
R 9-2,2008, 1/4W., 20%
R $10-2.2 \mathrm{Meg} . \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R11-100 1 , $1 / 4$ W., 20%
*C-6.042 R.12-. 5 Meg. Ω Volume Control
(Audio Taper) tapped at $50 \mathrm{~K} \Omega$
R13-10K $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R14-1 Meg. Ω Tone Control, with power switch \quad RA-9.070
R15-10 Meg. $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R16-220K $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $17-470 \mathrm{~K} \Omega, 1, \mathrm{~W}, 20 \%$
R18-100s, $1 / 4 \mathrm{~W} ., 20 \%$
R19-220K』, $1 / 4 \mathrm{~W} ., 20 \%$
R20-1 Meg. Ω Bass Control *RA-9.112
$\mathrm{R} 21-220 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}, 20 \%$
R22-100Ks, $1 / 4 \mathrm{~W}$., 20%
R23-470K $\Omega, 1 / 4 \mathrm{~W}$, 20%
R24-100K $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R25-2,200 , $1 / 4 \mathrm{~W} ., 20 \%$
R26-10R, $1 / 4 \mathrm{~W}$., 20%

MODEL T 5000

Part No. GN-559
*Mfg. Part No.

R27-2,2005, 1/4W., 20%
R28-220K $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $29-220 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R 30-100N, $1 / 4 \mathrm{~W} .20 \%$
R31-220K $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $32-10 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}$., 20%
R33-10K $\Omega, 1 / 4 \mathrm{~W}, 20 \%$
R34-470K $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R35-2,200s, 10 W ., wirewound, 10%
R36-2208, $2 \mathrm{~W} ., 20 \%$
R $37-100 \Omega, 1 / 4 \mathrm{~W}$. 20%
R $38-22 \mathrm{~K} \Omega, 1 \mathrm{~W} ., 20 \%$
R39-2.2 Meg. $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $40-47 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R41-22K $\Omega, 1 / 4 \mathrm{~W}$.. 20%
R.42-100K $\Omega, 1_{4}$ W., 20%

R $43-2,200 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R44-47Kの, $1 / 4 \mathrm{~W} .20 \%$
R $45-220 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $46-470 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $49-1 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}, 20 \%$
R $50--22 \mathrm{~K} \Omega, 1 / 2 \mathrm{~W} ., 20 \%$
T 1—FM I.F. Trans., 10.7 Mc .
T 2-AMIF. Trans., 455 Kc .
T 3-FMI.F. Trans., $10.7 \mathrm{Mc} \quad * \mathrm{ZB} \cdot 2.276$
T 4-AMI.F. Trans., 455 Kc . $\mathrm{Z}_{\mathrm{ZB}}-2.275$
T 5-FM Ratio Detector Trans.
former, 10.7 Mc .
T 6-Output Trans.
*ZC-2.278
T 7--Power Trans. \quad *TA-15.019
S 1-Band Switch *SA-12.06n
L 1-FM Antenna Coil *LA-2.241
L 2-Antenna Coil, Broadcast *LA-2.273
L 3-R.F. Plate Choke *LA-2.279
L 4-R.F. Coil, FM
L 5 - Oscillator Coil, Broadcast *LA-2.221
L 6 Oscillator Coil, FM *LA-2.222
L 7 -R.F. Choke, Conv. Plate \quad LA 2.242
L 8-Loop, Broadcast ${ }^{\text {Antenna, FM, Folded Dipole }}$
Antenna, FM, Folded Dipole
(3008)
*LA- 5.010
Pilot Lanip, No. $47,6.8 \mathrm{~V}$.

```
C 1-1,500 mmfd., }\pm300\textrm{mmfd}\mathrm{ .
C 2-2mmfd., 20%
C 3-25 mmfd., 10%
C 4-1,500 mmfd., }\pm300\textrm{mmfd}
C 5-1,500 mmfd., }\pm300\textrm{mmfd}
C 6- }500\textrm{mmfd.,}20
C 7-. . }02\textrm{mfd.,}400\textrm{V
C 8-. .05 mfd., 400 V.
C 9-1,500 mmfd., }\pm300\textrm{mmfd}
C10-100 mmfd., 20%
C11-}.1\textrm{mfd}.,200\textrm{V}
C12-1,500 mmfd., }\pm300\textrm{mmfd}
C13-.01 mfd., 400 V.
C14-100 mmfd., 20%
C15-1,500 mmfd., }\pm300\textrm{mmfd}\mathrm{ .
C16-1,500 mmfd., }\ddagger300\textrm{mmfd}
C17-.05 mfd., 200 V.
C18-. }05\textrm{mfd.,}200\textrm{V
C19-. }02\textrm{mfd.,}200\textrm{V}
C20-.005 mfd., 600 V.
C21-250mmfd., 20%
C22-. . }01\textrm{mfd.,400 V.
C23-250 mmfd., 20%
C24-12 mfd. 350 V.
C25-.01 mfd., 200 V.
C26-Var.cond. (AM.FM) *C-6.012
C27-1,500 mmfd., }\pm3.00\textrm{mmfd}\mathrm{ .
C28-.003 mfd., 20%
C29-.05 mfd., 400 V V
C}30-.05\textrm{mfd.,}400\textrm{V}
C31-250 mmfd., 20%
C32-4 mfd., 250 V.
C33--. 5mfd., 200 V.
C34-.002 mfd., 600 V
C35-. .002 mfd., 600 V.
C36 83 C37-40 mfd. x 40 mfd.,
        electrolytic, 400 V
C38-. 05 mfd., 400 V.
C39-1,500 mmfd., }\pm300\textrm{mmid}
C40-1,500 mmfd., }\pm300\textrm{mmfd}\mathrm{ .
C41-1.500 mmfd., }\pm300\textrm{mmfd}
C42-1,500 mmfd., }\pm300\textrm{mmfd}
C43-1,500 mmfd., }\pm300\textrm{mmfd}
Part No. GN.569—Rev. 2.5.48
```

C44-47 mmfd., 10%
$\mathrm{C} 45-.002 \mathrm{mfd} ., 400 \mathrm{~V}$.
C46- $100 \mathrm{mmfd}, 20 \%$
C47- .02 mfd ., 400 V
C $48-1,500 \mathrm{mmfd} ., \pm 300 \mathrm{mmfd}$
C49-Trimmer, compression, 3.35 mmfd .

C50-Trimmer, compression, 3.35 mmfd .

C51-Trimmer, ceramic, 1.5 .7 mmfd .
C52-Trimnier, compression, 1.6 .18 mmfd .

C53--Padder condenser,
R $1-470 \mathrm{~K} .1 / \mathrm{mmf}$
R $2-470 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
$\begin{array}{ll}\text { R } 2-22 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \% \\ \mathrm{R} & 3-47 \Omega, 1 / \mathrm{W} ., 20 \%\end{array}$
$\begin{array}{ll}\text { R } & 3-47 \Omega, 1 / 4 \mathrm{~W} .20 \% \\ \text { R } & 4-470 \Omega, 1 / 4 \mathrm{~W} ., 20 \%\end{array}$
R $5-1 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}$. 20%
R $6-470 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $7-15 \mathrm{~K} \Omega, 2 \mathrm{~W} ., 20 \%$
R $8-22 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}, 20 \%$
R $9-2,200 \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R10-2.2 Meg. $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R11-100 $\Omega, 1 / 4 \mathrm{~W}$., 20%
R12--. $5 \mathrm{Meg} . \Omega$ Volume Control (Audio Taper) tapped at $50 \mathrm{~K} \Omega \mathrm{~W} \quad{ }^{*} \mathrm{RA}-9.069$
R13-10K $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R14-1 Meg. Ω Tone Control, with power switch *RA-9.070
R15- 10 Meg. $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $16-220 \mathrm{~K} \Omega, 1,4 \mathrm{~W} ., 20 \%$
R16- $220 \mathrm{~K} \Omega, 14 \mathrm{~W}, 20 \%$
$\mathrm{R} 17-470 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R18-100 $, 1 / 4 \mathrm{~W}, 20 \%$
$\mathrm{R} 19-220 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R20-470K $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R21-220K $\Omega, 1 / 4$ W., 20%
R22-100K $\Omega, 14 \mathrm{~W} ., 20 \%$
$\mathrm{R} 22-100 \mathrm{~K} \Omega, 14 \mathrm{~W} ., 20 \%$
$\mathrm{R} 23-470 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R24-100K $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R25-2,200 $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R26-10 $\Omega, 1 / 4 \mathrm{~W}, 20 \%$
R27-2.200 $2,1 / 4 \mathrm{~W} ., 20 \%$ * Mfg. Part No.

R $28-220 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R29--220K $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $30-100 \Omega, 1 / 4 \mathrm{~W}$, 20%
R31-220K $\Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $32-10 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R33-10K Ω, $1 / 4 \mathrm{~W}$., 20%
R34-470K $\Omega, 1 / 4 \mathrm{~W}$., 20%
R35-2,200, 10 W ., wirewound, 10%
R 36-220 $2,2 \mathrm{~W}, 20 \%$
R37-100 , $1 / 4 \mathrm{~W}$., 20%
R $38-22 \mathrm{~K} \Omega, 1 \mathrm{~W},, 20 \%$
R 39-2.2 Meg. $\Omega .1 / 4 \mathrm{~W} ., 20 \%$
R 40-47K $\Omega, 1 / 4 \mathrm{~W}$., 20%
R41- $22 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}$., 20%
R42- $100 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R43- $2,200 \Omega, 1 / 4 \mathrm{~W}$., 20%
R $44-47 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
R $45-220 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W} ., 20 \%$
$\mathrm{R} 46-470 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}$., 20%
R $47-2,200 \Omega, 1 / 4 \mathrm{~W} .20 \%$
R $48-2.2 \mathrm{Meg} \Omega, 1 / 4 \mathrm{~W}$., 20%
R 49-1K $R, 1 / 4 \mathrm{~W}, 20 \%$
R $50-22 \mathrm{~K} \Omega, 1 / 2 \mathrm{~W} ., 20 \%$
T 1-FM I.F. Trans., 10.7 Mc .
T 2-AM I.F. Trans., 455 Kc .
T 3-FM I.F. Trans., 10.7 Mc .
T 4 AM I.F. Trans., 455 Kc .
*ZB-2.276
*ZB-2.275

* ZB - 2.276
*ZB-2.276
*ZB-2.275
T 5-FM Ratio Detector Trans.
former, 10.7 Mc .
T 6-Output Trans. *ZB-2.278
T 7-Power Trans. *TA.18.053
S 1 -Band Switch *SA-12.060
L 1-FM Antenna Coil *LA-2.241
L 2-Antenna Coil, Broadcast *LA-2.273
L 3-R.F. Plate Choke *LA-2.279
L 4-R.F. Coil. FM
L 5-Oscillator Coil, Broadcast *LA-2.221
L 6 -Oscillator Coil, FM ${ }^{*}$ LA- 2.222
L 7-R.F. Choke, Conv. Plate
L 8-Loop, Broadcast
Antenna, FM, Folded Dipole

MODEL T6000

KODEL T5000
 RADIO \& TELEVISION INC.

ALIGNMENT PROCEDURE FOR A.M.:

Equipment Required:
a) Broadcast Band Signal Generator.
b) Output Meter.

1. Set band switch to AM. Advance volume control to full volume setting.
2. Connect output meter across voice coil.
3. Connect the Signal Generator across the broadcast band antenna section of the variable condenser. The "high" side of the Generator should connect to the stator section and the "ground" side to the frame or chassis. Adjust the Signal Generator to 455 kc and with the receiver switched on, adjust the first and second I.F. transformers for peak output as shown on the output meter. The signal injected into the receiver should be as small in magnitude as possible, consistent with a useful deflection on the output meter.
4. Connect the "high" side of the Generator to the antenna terminal with a 200 mmf condenser inserted in series. Connect the "ground" side of the Generator to the chassis. Tune receiver to 60 on the dial, adjust Signal Generator to 600 kc . Adjust the BC padder and the BC antenna coil for maximum deflection on the output meter. Use a weak signal.
5. Tune receiver to 160 on the dial. Adjust Sig. nal Generator to 1600 kc . Adjust BC oscillator and $B C$ antenna trimmers for maximum output.
6. Repeat operations 4 and 5 .

ALIGNMENT PROCEDURE FOR F.M.:

Note: Points A. B. C. D. E. F. G. and H are noted on circuit diagram.
Points B, C, and D have been brought out to the unused contacts of the speaker socket at the rear of the chassis.
Equipment Required:
a) High frequency Signal Generator with $88-108 \mathrm{Mc}$ tuning range.
b) Signal Generator capable of delivering .1 V at 10.7 mc .
c) Audio output meter.
d) D.C. vacuum tube voltmeter with zero center scale.

a. Ratio Detector Alignment:

1. Connect V.T.V.M. across points " B " and " C " (A.V.C. Voltage).
2. Feed 10.7 mc unmodulated R.F. signal into $6 \mathrm{SH}^{7}$ grid (point A) through $01 \mu \mathrm{fd}$. condenser. This signal should be .1 volt.
3. Adjust primary of Ratio Detector (T-5) for maximum voltage indication on V.T.V.M.
4. Connect zero centered V.T.V.M. across points "B" and "D".
5. Adjust secondary of Ratio Detector (T-5) for zero indication.
6. Tune 10.7 mc Signal Generator higher in frequency (about 200 kc) until maximum voltage reading is obtained on V.T.V.M.; note this voltage, then tune signal generator lower in frequency until maximum voltage of the opposite polarity is obtained. Note this voltage, then if necessary re-adjust primary of the Det. (T-5) until the detector voltages are about equal on either the high or low side of 10.7 mc .

Tube and Trimmer Locations.

b. 10.7 !.f. Alignment:

1. Shunt a 1,000 ohm carbon resistor across the prunary of the detector ($\mathrm{T} \cdot 5$) (Points G and H).
2. Connect output meter across speaker voice coil.
3. Volume and tone controls at maximum clockwise position.
4. Connect 10.7 mc (modulated 30% signal generator through $.01 \mu \mathrm{fd}$. condenser across point " F " and ground.
5. Adjust secondary, then primary of (T-3) for maximum audio output. (Reduce input signal to maintain output at .5 - watt level.)
6 . Connect $10.7 \mathrm{mc} 30 \%$ modulated signal generator across point " E " and ground.
6. Adjust secondary, then primary of ($\mathrm{T}-1$) for maximum audio output. (Reduce input signal to maintain output at .5 -watt level.)
7. Remove 1000 ohm shunting resistor from across primary of ($\mathrm{T}-5$).

c. Oscillator and R.F. Alignment:

1. Connect V.T.V.M. across "B" and "C" (A.V.C. voltage).
2. Connect 108 mc signal generator to FM antenna terminals. If generator impedance is low, put one 150 ohm carbon resistor in series with each of the generator leads. Tune receiver dial to 108 mc .
3. Adjust FM oscillator trimmer (C-51) for maximum V.T.V.M. reading.
4. Adjust FM R.F. trimmer (C-52) for maximum V.T.V.M. reading. During alignment reduce input signal to maintain A.V.C. voltage at 2 V .
5. Repeat stcps 3 and 4.
6. Feed a 90 mc signal into antenna terminals (as in C-2), tune receiver dial to signal.
7. Adjust spacing of FM R.F. coil (L-4) for maximum V.T.V.M. reading at 90 mc . During alignment reduce input signal to maintain A.V.C. voltage at 2 V .
8. Repeat steps 2 and 4 if necessary.

Power:

This receiver operates on $105-125$ velts, 60 cycle, AC. Do not phig this radio receiver into a direct current socket. Power consumption is 80 watts.

ANTENNA

A shielded antenna catle (30 mmf . capacity) with bayonet connector plug is required.
The plug on the antenna cable is iriserted in the socket at the side of the radio case. The wire at the other end of the cable is connected to the antenna.

Low Capacity Antenna

This radio is designed for a low capacity car antenna. The total capacity of antenna and shielded cable should be 40 to 70 mmf .

The following procedure has been found to be effective in reducing motor noise to a satisfactory level in most cars. Follow the steps in the order given. Additional procedure, which may be required in exceptional cases of motor noise, is not covered here and will be found by referring to current literature on this subject.

GENERATOR CONDENSER-A generator condenser is required in all cases. Connect the condenser lead to the battery terminal of the generator. The case and mounting strap connect the other side of the condenser to ground. This unit must, therefore, be well grounded at its mounting.

CAUTION-In cars with automatic regulators, it is important not to connect the condenser across the field terminal. Most manufacturers at the present time have a recommendation for the proper post at which to connect the condenser.
DISTRIBUTOR SUPPRESSOR—A distributor suppressor will be required in most cases. Remove the high tension lead to the distributor. Insert a distributor suppressor and connect the wire to the other end of the suppressor. If this is not practical, cut the high tension lead close to the distributor and use a wood screw end type distributor suppressor in this line.

Withdraw Antenna Cable Plug

Turn on the radio and start the motor.
If motor noise is heard, proceed as follows:
BONDING CABLES, STEERING COLUMN, ETC.-Try grounding to the fire wall all cables and tubing which pass through it such as oil lines, gas lines, etc. It is also possible for the steering column, foot pedals, and brake lever to carry interference to the back of the fire wall at which point it may affect the radio. By means of a file, contact can be established between any of these parts and the fire wall or frame in order to determine whether such a ground will reduce the noise. To bond the parts to the fire wall or frame, clean the point of contact, wrap a length of one inch braided shielding around the part, and solder the connection. Then solder the end of the shielding to the fire wall or frame or ground it under a screw head if one is convenient.
Sufficient play should be left in the bonding shielding so that movement of the parts will not loosen this shielding. Then Reinsert Anfenna Cable Plug
If motor noise is heard when the antenna cable is recon-
nected, proceed as follows until the noise is satisfactorily reduced:

BYPASS CONDENSERS—Try a .5 mfd . bypass condenser from the ammeter to ground and see if interference is reduced. Install this condenser permanently if there is an improvement.

In like manner, try a .5 mfd . condenser from car fuse to ground, switch to ground, tail light and stop light connections to ground, windshield wiper and various other 6 volt connections to ground, noting what effect these condensers have on the noise pickup.
Try a .5 mfd . condenser between the point at which the dome light lead leaves the pillar post and ground.
Try a .5 mfd . condenser from the "Hot" side of the coil primary to ground.
The electric gauges used for oil, water, and gas are often a source of interference and bypass condensers should be tried. The condenser should usually be connected to the end of the line nearest the measuring device rather than at the instrument panel.
HIGH AND LOW TENSION LEADS-In some cases, the high and low tension leads between the coil and distribu. tor are run close together. In some cars, they are in the same conduit. If this is the case, remove the low tension lead from this conduit. In any event, keep the high and low tension leads as far apart from each other as possible.
If separating the two leads is not sufficient, shield and ground the shield of the low tension lead.
GROUNDING MOTOR AND OTHER PARTS - The motor must, in every case, be well grounded to the frame of the car. If it is not, use a very heavy braided lead for this purpose, similar to a storage battery ground lead. In like manner, it may be necessary to check the grounding of the metal fire wall, instrument panel, transmission, radiator, hood, and muffler to the frame of the automobile. To obtain a good electrical connection, scrape off the paint, if necessary, at the point where ground contact is made.
PEENING ROTOR ARM-in extreme cases of motor noise, it is advisable to peen the distributor rotor arm. that is, increase the length of the arm by using a small machinist's hammer. This will lessen the gap between the rotor arm and the stationary contacts thus reducing the spark. Be sure, after peening the arm, that it does not strike the stationary contacts.
SPARK PLUG SUPPRESSORS-If motor noise persists, spark plug suppressors must be installed. One suppressor is put on each plug. These are not regularly supplied with the radio and must be purchased extra. Ninety-five per cent of all cars will not require spark plug suppressors. Care should be taken that a good mechanical and electrical connection is made between the spark plugs, suppressors, and plug wires.
WHEEL OR BRAKE STATIC-To determine if noise is being caused from this source, set the car in motion; then with the motor shut off and the clutch disengaged, apply the brakes. If the noise stops, the source of the static is in the wheels. The use of a front or rear wheel static eliminator will generally end the trouble.

BAND-SWITCH SHOWN
AT $4^{\text {TH }}$ POSITION CLOCKWISE. \#2 BAND
SHORT WAVE 4-1OMC.

BAND-SWITCH SHOWN
AT $5^{\text {TH }}$ POSITION CLOCKWISE.
\#1 BAND
SHORT WAVE 10-23MC.

GANGING OF AC-DC SEVEN TUBE SUPERHETERODYNE

APPARATUS:

Signal Generator having output frequencies from 20 megacycles to 150 kilocycles .
Output Meter.
Small tools such as screwdriver, $1 / 4^{\prime \prime}$ wrench, etc, GANGING OF THE I.F. ABMYLIFIER:
The signal generator should be adjusted to 456 kilocycles, its output should be adjusted to some medium value and connected directIy (no dummy antenna beine used) to the grid of the first detector which is the first tube on the left hand side of the receiver when facing the front of the receiver. With this connection made and the volume control turned on a signal should be indicated on the output meter. This should be adjusted to approximate half scale reading and the adjustments of the trimaing condensers in the I.F. transformers made. The last intermediate irequency transformer, which is the trensformer furthest to the rear of the receiver on the right hand side. These two circuits should be ganged for maximum amplitude as indicated by the output meter and output of the signal Eenerator should be decreased from time to time as the ganging operation progresses so that it is not over loaded. After carefully fanging the last transformer the secand transformer should be ganged. The ganging operation should be carried on as before and then the first transformer, which is the transformer on the right hand front coiner of chassis, should be ganged. It is often desirable to go over this procedure a second time because slight variations of one circuit tend to detune other circuits and the operation will be found to have been more accurately made if the whole fanging sequence pertaining to the I.F. amplifier is gone over a second time.

The sensitivity of the I.F. amplifier after it is correctly ganged should be in the neighborhood of 8 to 10 microvolts. GANGING OF OSCILLATOR AND PRESELECTOR CIRCUTIS:
(Broadcast Band)
The output of the signal generator should now go through a standard dummy antema and be connected to antenna and ground posts of the radio chassis. The signal generator should be set at 1400 kilocycles, the wave change switch should be set on its fourth position and the dial set so that No. 4 band reads 1400 kilocycles. At this point the trimming condenser on the first section of the variable condenser should be trimaed until a signal is indicated on the output meter. After correctly peaking this signal, the two preselector trimming condensers occurring on the second and rear sections of the variable condenser should be trimmed, for maximum output. The dial reading of the receiver and the signal generator should now be changed to 600 kilocycles and the reciprocal trimer for the broadcast band, which is the trimming adjustment occurring at the left upper position of the four trimmers on the frant of the chassis, should be varied until the $600 \mathrm{kilocy-}$ cle signal is indicated on the output neter. The signal generator and the receiver should again be tuned to 1400 kilocycles and the trimming adjustment on the first section of the variable condenser retuned for maximum amplitude at 1400 kilocycles. The signal senerator and receiver should now be tuned to 1000 kilocycles and the sensitivity at this point checked. This completes the ganging for the broadcast band.
(Police Band No, 3)
The signal generator should be set at 4 megacycles, the wave change switch changed to the No. 3 position and the receiver tuned in the vicinity of the dial reading on the No. 3 band of 4 megacycles whe re the sicnal will be found. After peaking this signal on the output meter by means of dial tuning, the No. 3 band preselector adjustment should be peaked - this will be found on the under side of the receiver and it will be that adjustment mounted on the small coil which is nearest the rear of the receiver. In making these preselector adjustments on the higher frequencies, it is often desirable to continuously sweep the tuning of the receiver back and forth across the receiver and note the anplitude of the out put meter, continuously trinming the preselector circuit because at these higher frequencies a change in preselector tuning will affect the oscillat or tuning to some extent. After this adjustment is made the signal generator and receiver should be adjusted to 1.5 megacycles and the left lower adjustment to the lefi of the wave change switch should be adjusted until the signal peaks on the output meter. The signal generator and receiver should again be set to the 4 megacycle reading then checked for amplitud ϵ.
(Nu. 2 Eand)
The signal generator should now be adjusted to 10 megacycles and the wave change switch be in the No. 2 position and the tuning adjustment of the radio receiver swept back and forth in the vicinity of ten megacycles until the signal peaks on the output meter. The center adjustment of the three adjusting trimmers underneath the chassis should now be adjusted for maximum amplitude on the output meter after which the signal and receiver should be tuned to 4 megacycles and the left lower adjustment on the left hand side of tire wave change switch should be adjusted until the signal peaks on the output meter.
(No. 1 Band) 20 megacycles and the wave change switch placed in its No. I position. The tming adjustment of the radio receiver should be swopt back aml forth in the vicinity of 20 megacycles until the signal peaks on the output meter after which the adjustine trimmer nearest the front chassis skirt should be adjusted for maxiinum amplitude.
(No. 5 Long Wave Ran(1)
The signal generator and tuning adjustment on the radio should be adjusted to 350 kilocycles and the wave change switch be in its No. 5 position and the adjustment locatod underneath the chassis noar tho left hand front corner should be adjusted until the simal is indicated on the output meter, after which the adjustment on the coill on top of the receiver chasis immediately to the left of the variable condenser should be adjusted for maximum amplitude. Tho signel generator and the tunine adjustment on the radio clessis should be adjus ted to 150 kilocycles and the adjustment furthest to the left above and to the left of the wave change switch should now be adjusted until the signal peaks on the output motor. The signal generator and radio chassis should açain be adjusted to 350 kflocycles and the first adjustment compensatod for any change that tine last adjustments may have had on it.
© John F. Rider

ALIGNAENT PROCEDURE

Do not attempt the following adjustments unless thoroughly familiar with the alignnent procedure of modern superheterodyne circuits and in possession of all necessary equipment.

To align the Kodel A-41
Short antenna to ground. Short oscillator section of 3 gang tuning condenser. Connect a signal generator tuned to $175 \mathrm{~K} . \mathrm{G}$. thru a .00025 mfd . condenser to grid of first detector tube. Signal generator and receiver grounds should be connected together. Connect output meter to output of amplifier tube. With volume control at maxinum, adjust signal generator attenuator for minimum visible deflection on output meter. Adjust I. P. trimner condensers for maximum deflection on output meter. Then I.F. is aligned, remove shorts from oscillator condenser and antenna. Using same procedure as in aliģning I. F.'s, now connect signal generator tuned to $1400 \mathrm{~K} . \mathrm{C}$. to antenna lead. idjust trimmer condensers on three gang condenser for correct calibration and maximua output.

To align receiver on policy band, tune three ganc condenser to a $4000 \mathrm{~K} . \mathrm{C}$. signal from generator, and adjust police band trimmer till maximun sensitivity 'is noted on output meter. Band Switch is on "Police Band" position during this aliennent.

D.C. VOLTAGES TO CHASSIS

TUBE	FILAMENT	CATMODE	SCREEM GRID	PLATE	OSC. GRID	OSC. PLATE
78	5.3	2.65	69	170	--	----
76	5.3	--	--	93	--	----
42	5.3	9.6	178	168	----	----
80	4.2 ((Fil. to chassis)- 178 volts				
$6 A^{7}$	5.3	2.6	97	178	5.3	178

©John F. Rider

INSTRUCTIONS FOR INSTALLATITTI AND OPERATIOH

CURRENT: Thie receiver operates on AC (Alternating Current) only on freouenciea from $\frac{40 \text { to } 60}{}$ cyoles.

Vol TAGF: Any line voltago from 105 to 260 volte may be used. This model is ecuipped With ? Univeral Traneformers for filament and pate supply, with five tapa marked ae follows:-115, 135, 150, 220, 250. Access to this tap changer is obtained by iffing off the box-1ike biack cover on top of the transformer. The lug attached to the flexible lead is then moved to the point which corresponde most nearly to the ilne vol tage available. The cover is then anapred beck into place. Unlese othermise ipecifled, the receiver is alwaye conneoted to the 115 volt tap (sultable for 105 to 125 volts). Before inserting the line plug, be aure to ascertain what the line voltage is and cannect to the correct tap. Be bure to eet loth transformers for the corrected voltage..
AETENMA: while thin receiver will operate extremely well with almost any kind of antenna, it is deeirable to h, ve a good antenna instiliation in order to obtain beet reulits an insulatad antenna allonger antenna whioh is poorly ins talled. beat reaulta will be obzained inth an Which can be obsalned from your dealer. Detalled ingtructions for the antenna installation are onclosed with this kit. proper installation will reault in reduction of nolse and more consletent end dependable short-wave reception.

AITRMMA CONLicTIOM:- Three antenne terminala are previded marked A-1-A-2 and G. If are connected to A-1 and A-2, and a ground to G. (This ground may be unneceseary in cartain cases.) If however, the ueual type of antenna with only one lead-in is used, this ia connected to A-1. A2 and Gare connected together by a wire and both to a ground connection.
WAVE BAMDS:- The wave bance covered by this recelverare ae follows:

$\frac{\text { K11 ocycles or }}{36.25} \frac{\text { yegacyoles }}{18}$
18
5.2
$1600-540$ 1.6
$1600-540$
$343-142$
ALIGNMENT PROCEDURE
$\frac{\text { Yotere }}{8.125-16.6}$
$16.6 \quad 57.5$

Reallgament of tinis reoeiver sinould not be attempted except by an experienced servicaman and only after all other poseible causes of faulty operation have first been thoroughly investigated. An accurately callbrated signal generator which will cover the necessary wave bands is required. Either a suitable output meter or the cathode-ray tunirg indicator may be used for indicating the effects of adjustments. It is necessary, in all of the ensuing procedure, that the sienal generstor be attenusted as much as possible.
I.F. ADIUBTXENP - The 1.f. transformers are housed in the polished metal shield or the chassis. The location of these transformere is indioated in the acoompinying dijagram. The trimmers are on the tops of the transformer cans. The first and e econd i.f. trans. formers have two trimmers each and the detector coupling transformer has onlv one trimmer. These trimers are adjusted at 456 kc . for marimumgain. In making thic adjustwent, the oscillator (rear) section of the tuning condenser should be short-circuited. and the signel generator conneoted between the grid ogp of the 6as and the grnund post. of the receiver. The selectivity a witoh should of courge be in tae high selectivity position.
SHORT WATE BAKD - With the output from the signal generator conneoted acrose the gerial and ground terminals of the receiver, and the volume control in position for maximm rolume, the oscillator trimmer for this band is adiusted for maximum response as indica ied by the 6EF. This adjustment must be made with the dial set at eractiv 17 mc ., otherwise the calibration wil to off. The beries padder for thie band ahmuld then be edjusted by setting the signal generator at a frequency of 5.5 megracycles and tunine the signal in on the receiver. The tuning oondenger is rotated slightly back ond forth as the padder sorew is adjusted for maximum output. The 17 ac. adjustment shguld then be rechecked. If the dial calibration is off, the orocedure should be receated agatn.

ULTE SHCRT WAVE BAVD - The trimors for this band are adjusted at 36 mecacycles in the manner desoribed above. 'They are located on the under side of the chassis and are not shown on the chassis layout diagram. ithere are only two trimers for this band, the oe cillator operating on a harmonic of another band. POLICE BAND ADJUSTMEST - The trimmers for this band are adifusted at 4.8 megacyoles in tne manner described and the series padder at 1.7 me. exacily as indioated in the sHORT FiAVE BAND ADJUSTAENT procedure.
BROADOAS' BARD - The adjustments for this band are as described above. the trimmers are adjusted at 1400 kc . and the padder at 600 ko .
LOIG MAVE BAND - The adjustmeats for this band are rade in the preacribed manner. the trimmere being adjusted at 340 kc . and the padder at approximately 150 kc .
A.V.C. AUPLIFIER ADJUSNMINT - The a.v.c. has a separate amplifier which is tuned as follows: line signal generator is aet at 1400 ko . and the signal tuned in on the receiver, Be indyoated by the minimum ofening in the 6E5 beam. The a.v.c. trimer ie then adjusted to give the WIDEST opening in the bean. The receiver is then carefully retuned and the adfustment repested.
BEAT NOLEOSOLHANOR ADIUSTMENI - A weak Eignal from the signal generacot is tuned in on the recelver as indicated by the minimum opening in the be5 beam. rhe beat oscillator switoh is then turned on. An audible note should be heard whose pitch may be varied by adjusting the corew on the small square oan on the left bide of the chasis. This ghould be so adjusted that when the etation is tuned in exactiy, no beet is heard (zern beat). If no beat note if audibie when firet turned on, rotation of thie same screw should bring in the note.

VOLTAGE TABLE

All voltager are measured betreen socket reminale and ohasia: bet in operation: volume contral full on; antenna disconnected. voltmeter sensitivity-1000-ohms-per . volt. Line voltage measured:- 115.0 Power Consumption: 250 watts

TLEE	FUCTION	$\mathrm{HE}^{\text {F }}$ 'R	PLAPT	BGR.GR. SS	SUPYR.GR.	CATH.	QSC.PL.
6K7	preselector	6.0	200.0	85.0	1.0	1.C	--
6a8	det.-080.	0.0	200.0	100.0	--	5.2	175.0
0×7	1.1. amplif.	6.0	175.0	85.0	-	2.2	---
6K7	1.1. amplif.	6.0	175.0	85.0	12.0	12.0	--
6H6	diode det.	6.0	----	----	----	---	----
605	lst audio	6.0	120.0	\cdots	----	7.0	-
$\left.\begin{array}{l} 605 \\ 605 \end{array}\right\}$	2nd audio	6.0	200.0	---	-	7.0	--
4ち18	audio output	2.2	240.0	----	--m	--	---
6K7	A. 1.0.	6.0	200.0	85.0	9.0	9.0	--
005	beat osc.	6.0	58.0	----	----	7.0	-
6H6	a.v.c.-diode	6.0	9.0	--	----	10.0	---
6 K 7	a.v.c. amplif.	6.0	140.0	8.0	40.c	40.0	---
655	$\begin{aligned} & \text { tuning } \\ & \text { indioetor } \end{aligned}$	6.0	---	200.0(target)) ---	145.0	--
$\left(\begin{array}{ll} 523 \\ 5 & 23 \end{array}\right)$	reotifier	4.5	340.0	----	---	-	--
45	$\begin{aligned} \text { grid bias } \\ \text { rectifier } \end{aligned}$	2.2	75.0	-----	---	-----	---

TOP VIEW OF CHASSIS SHONING LOCATION OF TUBES

AUDIO OUTPYT AND RECTIFIER TUES:S AKE IN POWER SUPYIY CHASSIS.

TOP VIEW OF CHASSIS SHOWING LOCATION OF ALIGNIIGG TRIMAERS

- John F. Rider

SERVICE IMSTRUCTIONS

Realignment of this recelver should not be attempted unless all other
 and an output meter for indicating the effect of adjustments are re-
During the alignment procedure all adjustments should be made under the
following conditions:

1) Line voltage as indicated on instruction sheet.
2) Volume and Tone control at maximum volume positions.
3) Minimum Input from signal generator.
If this procedure is not adhered to, all adjustments will ap-
pear very broad. This is due to the action of the automatic
volume control.

I. F. ADJUSTMYNT

The signal generator is set at 456 KC and is connected to the grid of the converter tube (6A7) through a .5 MFD condenser. Be sure to connect
a resistor of approximately 25,000 OMS between the converter grid and ground so that the grid circuit is at ground potential for D.C.
The Input I.F. transiormer trinmers are adjusted for maximum output as the primary coll of the loud speaker.
The output I. F. transformer trimer is located underneath the chassis. Adjust the trimrer for maximum output as indicated on the output meter.
The Input I.F. should now be re-checked for maximum output. BROADCAST BAND ALIGNMENT
Connect the output of the signal generator to a loop antenna consisting of about five turns of "bell wire making a circle a foo loo should be VERY LOOSEL coupled to the receiver loop and should not be less than one foot from the recelver.
Set the signal generator at 1500 KC and tune the receiver until a response
is indicated on the output meter with signal generator set at 1500 KC . is indicated on the output meter wing condenser while adjusting the oscillator trimmer condenser
The dial pointer should co-incide with the 1500 KC mark on the dial. If
it does not, check other callbration points at both ends of the scale before re-setting the pointer.
MODEL CC58-A RADIO WIRE TELEVISION

∇

SERVICE INSTRUCTIONS

In case of faulty operation of the receiver, first make sure that the antenna and ground are in good condition and properly attached to the receiver. Then determine if any of the tubes are faulty. In case of trouble within the receiver itself, the circuit diagram shown on the opposite page will be useful to the service man in locating and correcting the trouble.

L. F. Alignment:

Connect a test oscillator or signal generator through a .1 mfd . condenser to the grid of the 6A7 tube and set the oscillator to 456 KC : Use an output meter connected to the speaker if possible, to obtain the most accurate adjustments. Peak each I.F. stage to maximum response, reducing the output of the oscillator as far as possible for final adjustments.

R.F. Alignment:

With the test oscillator set to 1720 KC and connected to the antenna wire of the receiver through a .00025 mfd condenser, switch the receiver to the broadcast band and set the pointer at the end of travel on the right (at the 1700 KC end). Adjust the rear trimmer on the top of the variable condenser, for maximum gain. Then set the test oscillator at 1400 KC and tune in this signal on the receiver as though tuning a station. If an adjustment at this point is necessary on your set, you will have a trimmer condenser to adjust on top of the variable condenser at the front; this is adjusted for maximum gain.
Now adjust the test oscillator to 600 KC and tune in this signal. Adjust the padder condenser (which is adjusted through the right hand end of the chassis) in the following manner: turn the dial slowly and repeatedly back and forth across the signal while adjusting the padder. Adjust for maximum gain.
Now switch the receiver to short wave. With the test oscillator set at 6 megacycles, tune in this signal on the receiver. Then adjust the short wave trimmer (which is located on top of the coil above the chassis) for maximum gain.

RADIO WIRE TELEVISION

I. F. ALIGNMENT:

With volume control on full and variable gans condenser at maximum capacity, attach test oscillator lead in series with a .1 mfd . condenser to stator of R. F. section of gang condenser (center section). Set test oscillator at 262.5 KC and adjust I.F. trimmers for maximum output as indicated on an output meter connected across voice coil of speakers or from plate and screen of 42 tube.
Set test oscillator to 600 KC and adjust oscillator padding (located on bakelite strip, 2nd from front). Also adjust 600 KK antenna padding condenser (located on bakelite strip, 1st condenser). Reset test oscillator to 1400 KC and readjust antenna and R. F. trimmers.

R. F. ALIGNMENT:

Set test oscillator at 1550 KC and connect through a 150 mmf . condenser to antenna of reciever. Rotate variable gang condenser to minimum capacity and back off slightly. Adjust trimmer on oscillator section of gang condenser (third section from shaft end) to resonance indicated by maximum output. Re-set test oscillator of 1400 KC and rotate variable condenser until oscillator signal is picked up. Adjust antenna trimmer (front section) and R. F. trimmer (center section)

to resonance.

ANTENNA ADIUSTMENT:

When set is in operation, tune to a station on or about 1400 KC and adjust antenna trimmer to maximum volume. This trimmer is accessable by removing the plug button on the front cover of the receiver.
Proper adjustment of this trimmer matches the particular antenna used in the auto to the receiver which increases the sensitivity of the receiver.

END. VIEWS

ALIGNMENT PROCEDURE IN TABULATED FORM

Be sure to follow procedure carefully and in the order given-otherwise the receiver will be insensitive and the dial calibration incorrect. For alignment procedure read tabulations from left to right. If more than one adjustment is required on any one band, make the adjustment marked (1) first, (2) next, (3) third.

Before starting alignment:
(a) Check tuning dial adjustment by turning gang condenser until plates touch maximum capacity stop (completely in mesh) at which point the dial needle must be exactly even with the last line at the low frequency end of the dial calibration. If dial needle does not point exactly to last line move to correct position.
(b) Use, an accurately calibrated test oscillator with some type of output measuring device.

IMPORTANT: BEFORE ALIGNING, PLACE LOOP ANTENNA IN THE SAME APPROXIMATE POSITION IN THE back of Chassis it will be in when the set is in the cabinet and the back attached.
When adjusting $1650 \mathrm{~K} . \mathrm{C}$. oscillator trimmer and $1400 \mathrm{~K} . \mathrm{C}$. antenna trimmer, couple test oscillator to sel loop br placing lead from high side of test oscillator on top of or near set loop. Be sure that neither the loop or test oscillator lead moves during alignment.
DO NOT ATTACH LOW SIDE OF TEST OSCILLATOR TO RECEIVER-LEAVE UNCONNECTED.

	TEST OSCILLATOR			
Set receiver dial to:	Adjust test oscillator frequency to:	Use dummy antenna in series with output of test oscillator consisting of:	Attach output of test oscillator to:	Refer to parts layout diagram for location of trimmers mentioned below-and:

I. F.	$455 \mathrm{~K} . \mathrm{C}$.	condenser	High side to grid terminal	Adjust each of the second I. F. transformer trimmers for maxi- where no interiering signal is received

(1) Exactly ${ }_{1650}$	$\begin{aligned} & \text { Exactly } \\ & 1650 \mathrm{~K} . \mathrm{C} . \end{aligned}$	None	Lay lead on top of or close to loop	Adjust 1650 K. C. oscillator trimmer for maximum output.
(2) Approx. 1400 K. C.	$\begin{aligned} & \text { Exactly } \\ & 1400 \mathrm{K.} . \mathrm{C} . \end{aligned}$	None	Lay lead on top of or close to loop	Adjust $1400 \mathrm{~K} . \mathrm{C}$. antenna trimmer for maximum output.

PARTS LIST

IHus.	Part	Part	Description	Illus. No.	$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	Part Name	Description
			1st IF. Transformer	24	6879	Resistor	Carbon 50,000 Ohm
2	10698	Coil	${ }_{2}$ 2nd I.F. Transformer				Carbon 20.1000 Ohm
${ }_{3}^{2}$	1	Coil	Oscillator.	25	1784	Resistor	Carbon $1 / 3 \mathrm{Watt}$. ${ }^{\text {a }}$
4	10700	Condenser	Tuning Two Gang.folytic	26	1694	Resistor	Carbon ${ }^{4} \mathrm{Meg} \mathrm{Ohm}$
5	4895	Condenser	Tubular Dry 25 Mfd. 200 volt........	27	2705	Resistor	Carbon 2 Mat Meg Ohm
6	4895	Condenser	Tubular Dry Electrolytic 25 Mfd. 200 Volt	28		Resistor	Line Wallast Type L-55-B
7	9386	Condenser	Tubular $1 . \mathrm{Mfd} .200$ Volts	29	10711	Speaker	Electro Dynamic 5".....
8	1147	Condenser	Tubular 05 Mifd. 200 Volts	30	4839	Volume Control	With Switch
9	1147	Condenser	Tubular 03 Mfda 200 Volts	31	3706	Resistor	Carbon 50 Ohm $1 / 3$ Watt.
10	1147	Condenser	Tubular 01 MPd .400 Volts	32	1627	Condenser	
12	7860 8961	Conderiser	Tubular 00 Mfd. 400 Volts	3.	1597	Condenser mata	Trimmer PARTS
13	1368	Condenser	Tubular 400 Yolts Mr...........		10292	Bulb	6-8 Volt $2 \overline{2} 0$ Ampere Dial Light
14	9458	Condenser	Mica 00025 Mrd		10707	Dial Scale	Calibrated Glass Scale...
15	9458	Condenser	Mica 0005 Mfd		3814	Dial Cord	Dial Drive Cord
16	9459	Condenser	Cabinet Back with		4975	Dial Shaft	Dial Drive Shaft
17	10714	Loop Antenna	Cabinet Back Lerial		4762 10654	${ }_{\text {Dial }}$ Dial Pulley	With Bushing For Dial
18	4804	Resistor	Carbon 10 Meg Ohm $1 / 3$ Watt		10650	Escutcheon	For Dial Used With Wood Cabinet Only
19	2673	Resistor	Carlon 750,000 Ohm I/3 Watt		10208	Knob	For Use With wood
20	6984	Resistor	Carbon 500,000 Ohm $1 / 3$ Watt		4784 10207	Knob Knob	Walnut Finish Ivory Finish.
21	6984	Resistor	Carbon 500,000 Ohm $1 / 3$ Watt		-8117	Shaft Clamp	"C" Retainer Washer for Drive Shaft
22	890 ¢	Resistor	Carbon 250.000 Ohm			Cahinet	Walnut Plastic
23	6879	Resistor	Carbon 50.000 Ohm		10712	Cabinet Handle	Ivory Plastic ${ }_{\text {Mention }}$ Required Finish

RADIO WIRE TELEVISION

ALIGNMENT: The Intermediate Frequency is 455 KC . To align the broadcast band, set the oscillator to 550 and 1650 KC . . aligning the RF at 1500 KC . To align the SW , set the oscillator to 21 MC . Align the RF at 18.5 NC .

WARNING: USE NO GROMND CONNECTIONS! If set is inoperative on DC , reverse the 1 ine plug.

PHONO OPERATION: The J62C has a single-post record changer, which plays ten 12 -inch or twelve 10 -inch records without reloading. It has a single-button control for Start, Stop or Reject. Pickup is of the crystal type having an excellent response over the entire audible range. WARNING: PHONO FOR AC ONLY! THE PHONOGRAPH WILL NOT OPERATE ON DC. MOTOR WILL BE DAMAGED BEYOND REPAIR IF IT IS CONNECTED TO A DC POWER SOURCE!

INTRODUCTION: This six-tube superheterodyne is designed to operate on 105-125 volts AC or DC.

The tuning range, from 550 to 1650 kilocycles, covers the regular broadcast and high-fidelity broadcast experimental stations. Band number 2 covers from 6 to 21 megacycles, for European, Amateur, Police, Aircraft and Government stations.

CLARI-SKEMATIX

chamges

1. SENSITIVITY CONTROL CHANGE
a. For improved squelch action and greater sensitivity control on early models change $R-21$ to 10,000 ohms and R-20 to 6800 ohms 1/2 watt. (M)-13154-10 receivers incorporate the above.

- In actual operation set the squelch control full on (counter-clockwise) and then reduce sensitivity
control (counter-clockwise) until noise leveldrops to an acceptable point. This adjustment should be accomplished with the receiver not tuned to any station.
c. For improved TUNING EYE operation move yellow lead from juncture of $R-1$ and pin A of $T-6$ to pin 5 of tube V8.

OJohn F. Rider

A. I.f. Alignment

I. Full mesh on gang condenser.
2. V.T.V.M. connected at juncture of $R-27$ and $R-28$.
3. Connect signal generator in ser ies with .02 mfd . condenser to pin 4 of $V-6$. Set generator at 455 k.c.
4. Tune $T-9$ top and bottom for maximum signal on V.T.V.M.
5. Move signal generator connection to pin 4 of $\vee-5$.
6. Now shunt terminals 8 and D (top of $T 8$) with a 3900 ohm $\frac{1}{2}$ watt resistor and tune the primary (bottom slug) of T8. Remove 3900 ohm resistor.
7. Now shunt terminals F and G (bottom of $T 8$ and tune the secondary (top slug) of T8. Remove 3900 ohm resistor.
8. Follow the same procedure for T-7.
9. Move signal generator to pin 4 of $V-4$ and follow same procedure for T-6 and T-5.
10. Move signal generator to pin 8 of $\vee-3$ and tune for maximum signal on V.T.V.M.
B. R.F. ALIGNMENT
"Connect signal generator in series with
500 mmfd . condenser to pin 3 of plug P-1 and then follow procedures 1 through 5.

1. Turn oscillator L-1 to 535 k.c. (Condenser'full mesh.)
2. Move condenser full out and tune $\mathrm{C}-3 \mathrm{D}$ to $1600 \mathrm{k} . \mathrm{c}$.
3. Return condenser to $550 \mathrm{k} . \mathrm{c}$. and tune $\mathrm{C}-1, T-1, T-2$, and $T-3$ for maximum.
4. Move condenser to $1400 \mathrm{k} . \mathrm{c}$. and tune $\mathrm{C}-3 \mathrm{~A}, \mathrm{C}-3 \mathrm{~B}$, and $\mathrm{C}-3 \mathrm{C}$ for maximum
5. Return condenser to $535 \mathrm{k} . \mathrm{c}$. and retune L-1.

This completes alignment. Check receiver on local signal with 70^{\prime} antenna. Normal receiver should develop $18-20$ volts on V.T.V.M.

REPLACEMENT PARTS

MI-I3154
Train Radio Receiver

Stock No.

TR 101	R1, R4, R12, R16, R30, R31, R33...... 560,000 ohm $1 / 2$
TR 102	$R 2, R 6$. 39,000 ohm $1 / 2 \mathrm{~W}$
TR 103	R3, R7, R10, R13, R15, R17, R18, R24, R25 1,000 ohm $1 / 2$
TR 104	R5, R8, R43, R44. 10 ohm $1 / 2$
TR 105	R9 . $50600 \mathrm{ohm} 1 / 2$
TR 106	$\mathrm{R11}, \mathrm{R26} \mathrm{}. \mathrm{33,000} \mathrm{ohm} 1 / 2$
TR 107	R19 . 8,200 ohm 2
R 108	R20. 12,000 ohm $1 / 2$
TR 109	R23 . 390 ohm $1 / 2$
TR 110	R27 . 68,000 ohm $1 / 2$
TR 111	R28, R41. $2.2 \mathrm{meg} 1 / 2$
R 112	R29 . 680,000 ohm $1 / 2$
$T R$ 113 $T R$ 114	R34 560000 ohm $1 / 2$
TR 114	R35. R36 270 , 000 ohm $1 / 2$
TR 115	R37 . ${ }^{\text {a }}$. 100.000 ohm $1 / 2$
$\begin{array}{ll}\text { TR } & 116 \\ \text { TR } & 117\end{array}$	R39, R40 470,000 ohm $1 / 2$
$\begin{gathered} \text { TR } 117 \\ \text { TR } 118 \end{gathered}$	R21 5,000 ohm pote ${ }^{\text {nt iomete }}$
TR 119	R38 . 1 meg potent iome
TR 120	R32 . 2 meg potentiometer
TR 121	R42 190 ohm tapped at 15 ohm - 20 W
TR 122	
TR 123	
TR 124	C4, C5, C16. 05 mfd 600 vection metapar can
TR 125	C6, C7, . 180 mmf mica
TR 126	c9. ${ }^{56} \mathrm{mmf} \mathrm{mica}$
$\begin{array}{ll}\text { TR } & 127 \\ \text { RR } & 128\end{array}$	
TR 129	C12.... mfd 3 section metal can 600 V
TR 130	C13, C14 1 mfd 3 section metal can 600
TR 131	
TR 132	C19, C36 . $\mathrm{il}^{\text {c mfd } 600}$
TR 133	$\mathrm{C} 20^{\text {. }}$. 003 mfd 600
TR TR 134 135	C22, C23, C27... 0025 mfd 600
TR 139	C3A. E, C. D................ . 4 sect ion tuning capacit or
TR 140	T-1... antenna coil (\#95520-509)
TR 141 TR 142	
TR 142 TR 143	
TR 144	
TR 145	
$\begin{array}{ll}\text { TR } 146 \\ T R & 147\end{array}$	
TR 1478	
TR 149	$V-12$. R RCA 6H6 trabe
TR 150	
$\begin{array}{ll} \text { TR } & 151 \\ \text { TR } & 152 \end{array}$	
TR 153	
TR 154	T-11 out put transformer ${ }^{* 14329} \mathbf{F}$
$T R$ TR 1	L-2...................... power fransformer \#14300 F
TR 156	
TR-157	10,000 ohm potentiometer
TR-158	6,800 ohm 1/2 w

© John F. Rider

This Model is a 5 tube 2 band superheterodyne which will give reception over a wide range, including standard broadcast and foreign shortwave. The tuning range of the broadcast frequency is 540 to 1650 kilocycles, or 560 to 182 meters. The short wave frequency is 5.8 to 18.3 megacycles, or 16 to 49 meters, which includes the following: 16, 19, 25, 31, 39 and 49 meter bands.
This radio is designed for convenient use in any location within range of a standard outlet receptacle. It will operate on 105 to 125 volts, 50 to 60 cycles alternating current, or on 105 to 125 volts direct current.

ELECTRICAL SPECIFICATIONS

The circuit is a superheterodyne employing 9 tuned circuits for maximum sensitivity and selectivity, with automatic volume control (AVC), beam power output system. The tube complement consists of (1) 12SA7 as a converter, (1) 12SK7 if amplifier (1) 12SQ7 detector AVC and first audio amplifier, (1) 50 L 6 beam power amplifier and (1) $35 \mathrm{Z5}$ rectifier.
(See diagram on back for location of tubes)
If your set does not work check your tubes. Make sure each tube is in its socket and also make sure the pilot light works.

INSTALLATION

Antenna

The loop Antenna in this receiver will give good reception under normal conditions. It is directional and the best position may be obtained by slowly rotating the receiver in different directions until the signal volume is at its strongest. For better results on weak signals and for foreign reception connect a good outside Antenna. A connection is provided at the rear of the receiver for connecting an outdoor Antenna.

The Model 7162 is a 6 tube 2 band superheterodyne which will give reception over a wide range, including standard broadcast and foreign shortwave. The tuning range of the broadcast frequency is 540 to 1650 kilocycles, or 560 to 182 meters. The short wave frequency is 5.8 to 18.3 megacycles, or 16 to 49 meters, which includes the following: $16,19,25,31,39$ and 49 mcter bands.
This radio is designed for convenient use in any location within range of a standard outlet receptacle. It will operate on 105 to 125 volts, 50 to 60 cycles, alternating current, or on 105 to 125 volts direct current.

ELECTRICAL SPECIFICATIONS

The circuit used is a superheterodyne employing 9 tuned circuits for maximum sensitivity and selectivity, with automatic volume conlrol (AVC), heam power output system, IF wave trap, and a URF stage (untuned radio frequency stage). The tube complement consists of (1) 12SG7, 12SH7, or 12SK7 in the RF stage, (1) 12SA7 as a converter, (1) 12SK7 if amplifier, (1) 12SQ7 detector AVC and first audio amplifier, (1) 35L6 or 50 L 6 beam power amplifier and (1) 3575 rectifier.

Antenna

The loop Antenna in this receiver will give good reception under normal conditions. It is directional and the best position may be obtained by slowly rotating the receiver in different directions until the signal volume is at its strongest. For better results on weak signals and for foreign reception connect a good outside Antenna. A connection is provided at the rear of the receiver for connecting an outdoor Antenna.

IF TWO PEAKS OAM 日E OBTAINED, USE ONE WITH TRIMMEA SCREW FURTHER OUT.

VOLTAGES TAKEN WITH 2 OK Ω PER VOLT METER WITH CHASSIS GROUND, AT $1000 \mathrm{KC}$.
 heterodyne which will give reception over a wide range, including standard broadcast, intermediate short wave, and foreign short wave. The tuning range of the broadcast frequency is 540 to 1650 kilocycles, or 560 to 182 meters. The intermediate short wave frequency is 2.3 to 7.5 megacycles, or 130.0 to 40.0 meters, and the foreign short wave frequency is 7.25 to 22.3 megacycles or 41.5 to 13.5 meters. This receiver covers the following meter bands, $13,16,19,25,31,49,60,90$, and 125.

REMLER Scollie Junior
5520 - De luxe - Walnut
5530 - De luxe - White

REMLER Scottie Pup
$=5500$ - Walnut Plastic
$=5505$ - Ebony with White Grille and Knobs
$=5510$ - White Plastic
$=5515$ - Red with White Grille and Knobs
$=5535$ - Red with White Grille and Knobs

REMLER AUTOMATIC Table Combination
$=5310 \mathrm{M}$ - Mahogany
$=5310 \mathrm{Bi}$ - Blonde
Base and Record Cabinet
$=110$ - Mahogany
$=111$ - Blonde

REMLER AC-DC Battery Portable
$=5400-$ Walnut with matching leatherette
= 5410 - White with brown leatherette

TPPUT TRANSFOMMEA

-
\cdots

NOTES
 $110-120$ VOLTS A.C. $50-60$ CYCLES
50WATTS

- John F. Rider

PAGE 18-4 REMLER
FiODELS 5310, 5400, 5500, REMLER COMPANY LTD. 5520, 5530, 5560, 5565

$5400-5520-30-60-65$

REMLER PAGE 18-5
REMLER COMPANY LTAD. MODELS 5500, 5505, 5510, 5515, 5520, 5530, 5535, 5560, 5565 MODELS 5400, 5410

MODELS 5400, 5410

[^0]: NOTE: Connect positive lead of a 20,000 -ohms-per-volt meter to radio chassis, test point C; connect prod end of negative lead through a 100,000 -ohm isolating resistor to test point E (use. grid, pin 4 of 1 LA 6).

[^1]: - This part, located in another section, may cause trouble in this section.

[^2]: - John F. Rider

[^3]: * This part, located in another section, may cause abnormal indication in this section.

[^4]: ©John F. Rider

[^5]: Listening Test: Distortion or hum may be due to defective 7CG or 35LGGT (test by substituting good tubes). Distortion may also result from open R201, or shorted or leaky C200.

 * This part, located in another section, may cause abnormal indication in this section.

[^6]: Listening Test: Instability or whistles may be due to shorted coil on C304, or by open C 302 .

[^7]: - Readings taken with 20,000 -ohms-per-volt meter on 10 -volt range, with $\mathbf{1 0 0 , 0 0 0}$-ohm resistor connected in series with neaative lead.

[^8]: OSCILLATOR TEST: Connect positive lead of a high-resistance voltmeter to \mathbf{B}-, test point B; connect prod end of negative lead through a 100,000 -ohm isolating resistor to 14 AF 7 oscillator grid, test point D. Use a suitable range, such as $0-10$ volts. Proper operation of oscillator is indicated by negative voltage of 1.6 v to 1.8 v (measured with 20,000 -ohms-per-volt meter) throughout range of tuning condensers.

[^9]: ©John F. Rider

[^10]: *This part, located in another section, may cause abnormal indication in this section.

[^11]: * This part, located in another section, may cause abnormal indication in this section

[^12]: * This part, located in another section, may cause abnormal indication in this section.

[^13]: R. F. Wiring Diagram (Bottom View)

