VOLUME V

JOHN F RIDER

PHONOGRAPH CONNECTION

INSTRUCTIONS FOR CONNECTING ELECTRIC PICKUP TO ALL MODEL RECEIVERS:

The use of jacks and switches for operation of electric phonograph pickups is unsatisfactory with the modern highly perfected radio receivers. The electrical loss in the long leads used to connect the switch and jack into the circuit is enough to unbalance these highly
sensitive, long distance receivers and the full capabilities of the set

For best radio and phonograph operation the rules below should be followed. With the methods graphically shown, full efficiency of
the radio and phonograph are utilized and the greatest satisfaction is obtained.

METHOD No. 1
Remove shield cover " C." Remove cap "A."
Place cap " B ", with attached clip, on top of phonograph pickup wire to clip "B." Connect other phonagraph wire to clip "D." Phonograph will now play and volume control en radio
will control phonograph.

Some pickups work better with a $41 / 2$ volt C battery in series with
lead that connects to clip " D." (+) to clip. (—) to pickup lead.

MODEL PR-10 Schematic Socket

PATTERSON RADIO CO.

To rebalance the receiver does not require any equipment. The meter will indicate the exact resonance point of the I.F. trimmers and also the condenser gang. Proceed as follows: Set band spread dial at " O," then tune in a station on the high frequency end of the Broadcast band (any station around 1400 K.C. is okay). Next, adjust the trimmer on the condenser section nearest the dial until the station reads exactly on its known K.C. Now, tune in a station in around 600 K.C. and be careful to be on ihe exact center of the carrier. All of the above operations must be made with the manual control in off position. Next, turn the sensitivity control toward minimum so that the meter reads about R-9. Now, adjust each of the eight I.F. trimmers very carefully until the meter swings the farthest to the right. You probably will not be able to increase the gain more than 1.5-R. It should not be necessary to turn any trimmer more than $1 / 8$ of α turn.

Everything from A to Z

A-"B" on and off, Beat Oscillator switch.	N-High Frequency Oscillator Tube - \# 56.
B-Push, Tone Control. Normal,	O-Beat Oscillator Control.
Band Spread. C-Volume Control, Power Switch	P-Second Detector and AVC Tube
D-Push, Band Change. Normal	Q-Beat Oscillator Tu
Main Tuning.	R-Vacuum Tube Volt Meter-\#57.
hort-Wave Trimmer, two	S-Output Tube-\# 59.
Band Indicator.	T-Heavy Duty Power Supply.
G-Heary 18-gauge Chromium	U-Moisture-proof Filter. V-Rectifier Tube- 523 .
Irst Detector-\#57	W-Patterson Velvet Tuning Dials.
First I. F. Tube-\#58.	X - Manual Control Mounts H
B. C. and 75 Meter Oscillato	Y-Sensitivity, "R" Meter Rdjust-
Second I. F. Tube-\#58.	
Three Stages I. F.	Z-Three-gang Condenser, Rubber
-Third I. F. Tube-\#58.	Mounted.

PR-10 Chassis

CHRYSLER • DODGE • PLYMOUTH • CAR RADIO

The Model "CGD" is a cusiom built radio which is made exclusively for the Chrysler Corporation and its various car divisions and which is sold only through their dealer organizations.

The Receiver and controls are specially designed for installation in the 1934 Chrysler Six Models CA and CB, the Dodge Models DR and DS and the Plymouth Models PE and PF. Many of these cars will be equipped at the car factory with the Philco custom built radio. In many others, the installation will be made by you in your service stations.

Don't file this "Service Broadcast" in your Office. The men in your service station must know how to install and service these radios if you expect to get your share of tbis profitable installation and service work.

Carefully unpack the cartons and check tbe contents witb the material packing lists. Examine the parts and compare them with illustrations given in these instructions so that you may become familiar witb them and thus make the installation easily and quickly.

Receiver and Speaker Installation

Refer to Figure 1, which gives detailed dimensions for the location and drilling of the holes in the dash. Remove the paint from the dash for $3 / 4^{\prime \prime}$ from around the holes to insure good ground contact after drilling. All dimensions are shown from the engine side of the dash. After drilling the holes, bolt the two (2) mounting brackets to the inside of the dash, using both the flat and the lockwashers under the nuts. The left-hand bracket (over the steering column) is for the speaker unit; the right-hand bracket is for the Receiver.

Remove the car wiring cable outlet grommet cap on the lefthand side of the dash, so that the battery cable can be installed. Push the metal fuse housing end of the cable through the grommet from the engine side, leaving just enough slack so that the cable can be connected and fastened in place as shown in Figure 4. Route the cable through the clip that holds the car wiring harness and along under the foor boards to the battery. Replace the grommet and cap, but do not connect the cable terminal to the battery terminal at this time.

The Receiver mounting plate must be fastened to the Receiver housing, using the four (4) self-tapping screws. Four (4) holes are provided for these screws in the side of the housing. To fasten the speaker mounting plate to the speaker, first remove the four (4) hexhead machine screws from the back of the speaker. Use these same four (4) screws to fasten the mounting plate to the back of the speaker. Figures 2 and 3 show the correct positions of the brackets
and mounting plates. Hang the Receiver on its bracket and fasten it securely with the hex-head retaining screw at the bottom of the plate.

Before installing the speaker, remove the car wiring fuse on ammeter. To get the speaker in place turn it sideways with the back against the left front kick pad. Then slide it in between the kick pad

Figure 3 and the steering column. Push the clutch pedal down to get sufficient clearance and then turn the speaker around over the steering column with its back against the dash. Hang the speaker in place on its bracket and fasten it securely with the hex-head retaining screw at the bottom of the plate. The battery cable must be placed over top of speaker.

Connect the interconnecting cable to both tbe Receiver and the Speaker, the six (6) hole plug connecting to the Receiver and the four (4) hole plug to the Speaker. The shield terminals at the cable ends must be grounded under their respective ground terminal screws on the Receiver and Speaker housings, shown in Figures 2 and 3. Ground the pigtail in the center of the cable to the dash, using the hole that holds the dash lining retainer and the 8-32 screw.

The antenna lead branches out of the interconnecting cable near the Receiver. Place this lead over the top of the Receiver, splice, and tape it to the antenna lead in as close as possible to where the lead-in leaves the front right windshield pillar. Cut off excess car

PHILCO RADIO \& TELEV. CORP.

lead-in. The shielding must be grounded to the cowl panel by drilling a $1 / \mathbf{\beta}^{\prime \prime}$ hole where the hood overlaps and as close to the A pillar as possible, using the 8-32 bolt and nut supplied for this purpose. (See Figures 4 and 5.) Remove paint from around hole.
Place the fuse and fuse insulator in the metal fuse housing of the battery cable and connect it to the small fuse connector which branches out of the interconnecting cable close to the Speaker. The two (2) shield terminals at the fuse housing must be connected under the same terminal screw that is used to ground the speaker cable shield at the speaker. Figure 4 shows the general layout of the cables and connections.

Instrument Panel Control

Remove the ash receiver from the panel with an upward pull. Remove the ash receiver bezel from the panel by compressing the retaining tabs at the bottom of the bezel assembly. This can be done best by using a screw-driver and working from in back of the instrument panel. While pushing up on an end tab, pull the bezel forward and it will come out.

Loosen the two (2) screws which secure the instrument board brace to the instrument board flange. The cradle assembly can then be slid forward. Next, loosen the bolts on the brace in back of the instrument panel and remove the toggle spring. Slide the entire assembly forward and remove. Figure 6 gives the details of the ash receiver assembly, while Figure 7 gives an enlarged view of the Section A in Figure 6. Be sure to tighten all bolts and screws that were loosened for this operation. (See Note 1.)

Loosen the car lighting switch to permit more working space. While this operation is not absolutely necessary, it makes the following operation easier.

nuts tightened to draw the control bezel flush with the instrument panel. (See Figure 8.) Replace and tighten the car lighting switch.
The flexible shafts must be placed around to the Receiver. The ends of the two (2) shafts are different so that they can only be installed in the proper couplings The long shaft and housing is on the left of the control unit, while the short one is on the right.

Figure 4

The set screws on the coupling bushings must be loosened sufficiently to allow the shaft housings and couplings to be properly seated. After the shafts have been coupled, tighten the set screws again.

Battery Connections

Connect the battery lead to the negative terminal of the storage battery. Be sure this connection is tight. The shield terminal must be connected to positive or ground terminal of the storage battery.
The black lead from the control unit must be connected to the pilot light terminal on the Speaker. (See Figure 3.)

Adjustment

Turn on the Receiver and tune in a station whose frequency in kilocycles is known. (The numbers on the dial represent channel numbers which, with the addition of a cipher, become the frequency numbers.) Pull the knob from the right-hand control shaft and loosen the set screw found there. (See Figure 8.) Turn the shaft until the indicator points to the correct number on the dial. Then tighten the set screw and replace the knob.

Motor Interference Suppression

Cut the elbow terminals from the spark plug cables and screw on the molded bakelite elbow suppressor terminals. Cut off the end of the distributor center lead cable and screw the straight

Figure 7 molded resistor into the lead. Then plug this into the distributor cap. Install a one microfarad by-pass condenser on the generator. Mount it on the generator frame under the screw that holds the generator relay in place. Connect the condenser lead under the screw that connects the generator battery lead to the relay

Nore 1.-A hole large enough for the dash control has been provided in the center of the instrument panel in all standard Piymouth Model, Code PF.
This bole is covered with a special Plymouth plate which can be removed easily by forcing it out from the rear with the lingers or with a scres-driver.
(see Figure 4). Install a $1 / 2$ microfarad by-pass condenser, splicing and soldering it to the dome light lead as close as possible to the point where it enters the windshield pillar. The condenser must be fastened to the cowl panel in front of the hood line by drilling a $5 / 8$ " hole where the hood overlaps and as close to the pillar as possible, using the $8-32$ bolt and nut supplied for this purpose. (See Figures 4 and 5.) Remove paint from around hole. Replace the car lighting fuse-test the lights and horn.

There may be some interference caused by an excessive gap between the distributor rotor and the high tension contacts. This can be overcome by lengthening the contact end of the rotor.

The following procedure should

Figure 8 be carefülly followed: Remove the distributor cap and chalk the inside faces of the stationary contacts. Remove the rotor and place the contact end on a small anvil or steel block. Peen or hammer the end carefully with a small machinists' hammer. Replace the rotor and the cap, then turn the engine over by hand. After a couple of revolutions, examine the distributor cap to see if the rotor has scraped or touched any of the stationary contacts in the cap. If so, dress lightly with a fine file. Repeat the above operation until the rotor just clears the contacts.

In some stubborn cases, it may be necessary to solder a bond to the control wires and tubes where they enter the dash, grounding them securely under one of the dash grommet cap screws. No. 14 stranded and tinned copper wire can be used for this purpose, a length of which is provided (see Figure 9). Be sure that all the high tension wires are properly seated in their sockets in the distributor cap.

An additional $1 / 2$ microfarad condenser may at times be used to advantage. This condenser should be mounted on the bottom edge of the instrument board and connected to one of the terminals on the ignition switch directly behind the instrument panel.

I. F. Transformer and Padders

The new style I. F. transformer complete with padders is used in the Model G

The padders are placed in the top of the shield can one above the other.
The primary padder is adjusted by means of the screw slot, accessible through the hole in the top of the shield can. The secondary padder is adjusted by means of the small hex nut, also accessible through the hole in the top of the shield. (Sce Figures 10 and 11.)

The coil windings terminate in leads instead of terminals or lugs The color scheme of the leads is given in Figure 1.

If replacements are ever necessary, replace aur mive anso ano the entire coil assembly 32-1236 for the first I. F. stage and $32-1237$ for the second I. F. stage. Neither the coil nor the padders or ane $3 \cdot \sum_{\text {ancen arcues }}$
 the above numbers.

Figure 10

Model G Adjustments

All adjustments have been carefully checked at the factory. If, however, it is found necessary to readjust the padding condensers, this procedure must be followed carefully. Do not attempt to make any adjustments until the procedure is clearly understood or without the use of a good oscillator or signal generator and output meter. The Philco Set Tester 048 is highly recommended for this procedure and for all service work.
The Receiver must be connected to a six-volt storage battery and turned on for operation. It is assumed that tubes have been checked and that the Receiver is in good condition except for the padding adjustments.
Remove the lid from the Receiver. Remove the grid cap from the 6A7 tube (for location see Figure 11).
Set up the signal generator and adjust it to exactly $260 \mathrm{~K} . \mathrm{C}$. Connect the generator lead to the grid cap of the 6A7 tube. (See Figure 11.) The output meter must be connected by means of an adapter to the small prong of the speaker plug and to the chassis.
The Receiver volume control must be turned on to approximately full volume and the attenuator in the generator set for a half-scale reading of the output meter.

Figure 11
The padders (24) and (26) are adjusted first (Figures 11 and 12). Turn the adjusting screw (24) all the way in. A metal screw-driver can be used for this. Then, with generator attenuator set so there is approximately half-scale reading, adjust the nut (at) with a fibre wrench for the maximum reading on the output meter.

Then adjust the screw (24) for maximum reading on the meter. This adjustment is critical. Note the maximum reading obtainable a.ld then turn the screw in again and readjust, just bringing the adjustment up to the maximum reading. Do not pass it and then back off.

Repeat the above procedure with the condensers (15) and (18)
After padding the first I. F. stage, remove the generator lead from the 6A7 tube and reconnect the grid lead to the 6A7 tube. Set the generator to $1500 \mathrm{~K} . \mathrm{C}$. and then connect the generator lead to the antenna lead.

There are four holes in line, one in each of the sections of the tuning condenser housing. (See Figure 11.) Place a nail of the size that fits snugly through the holes and then turn the condenser plates out of mesh until they strike against the nail.
With the tuning condenser in this position adjust the high-frequency padder (B) until the maximum reading is obtained in the output meter. This is the true setting for $1500 \mathrm{~K} . \mathrm{C}$., 150 on the dial scale.

Next turn the condenser plates in mesh to 140 on the scale, 1400 K. C., and set the signal generator for 1400 K. C. The R. F. padder (8) and the antenna padder (3) are next adjusted for the maximum reading on the output meter.

Turn the condenser plates in mesh to 60 on the scale, $600 \mathrm{~K} . \mathrm{C}$ and readjust the signal generator to this frequency. Adjust the lowfrequency padder (13) for the maximum meter reading.

Recheck the adjustments and then remove all test leads. If this procedure has been carefully followed and an accurately calibrated oscillator or signal generator used, the Receiver is adjusted properly.

PAGE 5-4 PHILCO

MODEL G

Schematic
Chassis Layout
PHILCO RADIO \& TELEV. CORP.
Parts List

(1) Antenna Transformer. 32-1220	
	Tuning Condenser 31-1182
(3) 1st Padder (on tuning cond)	
	Resistor (99,000 o
	Conden
	R. F. Transformer
	Condenser (. 03
(8) 2nd Padder (on tuning cond.)	
(9) 3rd Padder (on tuning cond.)	
(10) Resistor (51,000 ohms) 6098 (11) Oscillator Transformer.32-1222	
(12) Condenser (.00025 mid.) . . 3082	
(13) Padder31-6012	
(14) Resistor (15,000 ohms) 6208	
(15) Palder (Prim. 1st 1. F.) part of 32-1236 asserwhly	
(16) I. F. Transformer (1 st) ... 32-1236 (17) Resistor (1,000,000 ohms) . 33-1096	
(13) Padder (Secondary 1st I. F.) part of 32-1236 assembly	
	Condenser (03 mfd)
	Condenser (.5 mfd .)30-4018
)	Resistor (500 ohms)
(32)	Resistor (500,000 ohms)
Condenser (. 00011 mid .) . . .30-1006	
(24) Padder (l'rim. 2nd I. F.) part of 32-1237 assembly	
(25) I. F. Transformer (2nd) ...32-1237	
(28) Padder (Secondary 2nd I. F.) part of 32-1237 assembly.	
(27) Resistor (25,000 ohms)33-1013	
Condenser (. 00011 mid.) . . . 30-1006	
(30)	
(3)	
(32)	
(33)	
(34)	
(35)	
(36)	
(3)	
(38)	
(39) Resistor (500,000 ohm	
(40) Resistor (700 ohms)	
(4)	
(12) Output	
(13) Conr and Voice	
44 Field Coil Assem	
(46) Tone Control 30-4127	
(46) Condenser ($25, .25 \mathrm{mfd}$) . . 30-4126	
(47) Resistor (20,000 ohms) 5649	
	Condenser (. 05 mkl .) $30-40$
	Resistor (32,000 ohms) $3 \overline{\text { a }}$

Figure 13

(a)	Condenser (.5 mfd)	30-1018
(51)	Resistor (200 ohms)	7217
(52)	Condenser (01 mfd)	30-4124
(35)	Resistor (100 ohms)	33-3023
(44)	"A" Choke	32-1312
(55)	Condenser (5 mid .)	.30-4015
(56)	Vibrator Choke	32-1260
(57)	Condenser (5 mid.)	30-4015
(58)	Condenser (5 mid.)	. $30-4015$
(59)	Vibrator Unit	38-5036
(60)	Condenser (. 05 mid .)	30-4039
(b1)	Resistor (200 ohms)	7217
(62)	Resistor (200 ohms)	7217
(63)	Power Transformer	32-7110
(6)	Condenser (. 006 mfld .)	30-4024
(6) Jitter Condenser (4 aifd. 8 mfd .) 30-2030		
(66)	"B" Chokes	.32-7118
(6)	R. F. Chok	.32-1260

(68) Pilot Lamp

PHILCO RADIO \& TELEV. CORP.

MODEL 10 (Code 122) RECEIVER

The Model 10 (Code 122) represents the latest developments in single-unit automobile radio. Compact and easy to install, its performance is amazing.
A superheterodyne, using six of the latest tubes designed for automobile radio, it has a tremendous power output and is equipped with a full-size electro-dynamic speaker, the same type used in high-priced home radio Receivers.

Bass compensation gives full rounded tone at any volume. Four point tone control is provided to satisfy the individual preference. Greater sensitivity, a three-section tuning condenser giving improved selectivity and fidelity, inherently quiet circuits and all the other improvements, make this model the outstanding automobile radio.

The new interference filters and improvement in shielding, cut installation time to just a fraction of what it would be without these improvements. The ease of installation characteristic of this model (only one unit to install, one lead to the antenna and one lead to the ammeter) makes it the most desirable one to sell, install or own.

I. F. TRANSFORMER AND PADDERS

A new style I. F. transformer complete with padders is used in the Model 10. (Code 122.)

The padders are placed in the top of the shield can one above the other.

The primary padder is adjusted by means of the screw slot, accessible through the hole in the top of the shield can. The secondary padder is adjusted by means of the small hex nut, also accessible through the hole in the top of the shield. (See Figs. 1 and 2.)
The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Fig. 1.

If replacements are ever necessary, replace the entire coil assembly 32-1236 for the first I. F. stage and $32-1237$ for the second I. F. Stage. Neither the coil nor the padders will be furnished separately. Order only by
 the above numbers.
ers. Fig. 1
A new type first I. F. transformer is used, but retains the same part no. 32-1236.

This transformer can be distinguished from the old type, since the bottom fibre spacer is painted green.

MODEL 10 (Code 122) ADJUSTMENTS

All adjustments have been carefully checked at the factory. If, however, it is found necessary to readjust the padding condensers, this procedure must be followed carefully. Do not attempt to make any adjustments until the procedure is clearly understood or without the use of a good oscillator or signal generator and output meter. The Philco Set Tester 048 is highly recommended for this procedure and for all service work.

The Receiver must be connected to a six-volt storage battery and turned on for operation. It is assumed that tubes have been checked and that the Receiver is in good condition except for the padding adjustments.

Remove the speaker lid from the Receiver and disconnect the antenna lead from the Receiver. Remove the grid cap from the 6A7 tube (for location see Fig. 2).

Set up the signal generator and adjust it to exactly 260 K . C. Connect the generator lead to the grid cap of the 6A7 tube. (See Fig. 2.) The output meter must be connected by means of an adapter to the small prong of the speaker plug and to the chassis.

The Receiver volume control must be turned on to approximately full volume and the attenuator in the generator set for a half-scale reading of the output meter.

The padders (25) and (27) must be adjusted first. These padders should be adjusted to peak. (Figs. 2 and 3.) First adjust the screw, then the nut.

The padders (17) and (21) must be adjusted next. (Figs. 2 and 3.) Turn the adjusting screw (in all the way in. A metal screwdriver can be used for this. Then, with generator attenuator set so there is approximately halfscale reading, adjust the nut (21) with a fibre wrench for the maximum reading on the output meter.

Then adjust the screw (it) for maximum reading on the meter. This adjustment is critical. Note the maximum
reading obtainable and then turn the screw in again and readjust, just bringing the adjustment up to the maximum reading. Do not pass it and then back off.

After padding the first I. F. stage, remove the generator lead from the 6A7 tube and reconnect the grid cap to the 6A7 tube. Connect the antenna lead to the Receiver. Set the generator to 1500 K . C. and then connect the generator lead to the antenna lead.

There are four holes in line, one in each of the sections of the tuning condenser housing. (See Fig. 2.) Place a nail of the size that fits snugly through the holes and then turn the condenser plates out of mesh until they strike against the nail.

With the tuning condenser in this position adjust the high-frequency padder (12) until the maximum reading is obtained in the output meter. This is the true setting for $1500 \mathrm{~K} . \mathrm{C}$., 150 on the dial scale.
Next turn the condenser plates in mesh to 140 on the scale, $1400 \mathrm{~K} . \mathrm{C}$., and set the signal generator for 1400 K. C. The R. F. padder (10) and the antenna padder (3) are next adjusted for the maximum reading on the output meter.
Turn the condenser plates in mesh to 60 on the scale, $600 \mathrm{~K} . \mathrm{C}$., and readjust the signal generator to this frequency. Adjust the low-frequency padder (is) for the maximum meter reading.
Recheck the adjustments and then remove all test leads. If this procedure has been carefully followed and an accurately calibrated oscillator or signal generator used, the Receiver is adjusted properly

Fig. 2

Schematio
Chassis,Parts List

PHILCO RADIO \& TELEVISION CORP.

MODEL 11 RECEIVER

The Philco auto radio Model 11 is a new Philco development in single-unit automobile radio. It is compact, easy to install and will give exceptional performance.
A superheterodyne, using six of the latest tubes designed for automobile radio, it has a genuine Philco electrodynamic speaker, the same type that is used in many of the larger home radio Receivers. A three-section tuning condenser giving improved selectivity, remarkable sensitivity and tone, inherently quiet circuits and other improvements make this model one of the outstanding and most popular automobile radios.

Added to this, the ease of installation characteristic of this model (only one unit to install, one lead to the antenna and one lead to the ammeter) and the handy, attractive steering-column control which makes this model universal in its use are additional features which make the Model 11 a very desirable one for the dealer and for the owner.

I. F. TRANSFORMER AND PADDERS

The new style I. F. transformer complete with padders is used in the Model 11.

The padders are placed in the top of the shield can one above the other.

The primary padder is adjusted by means of the screw slot, accessible through the hole in the top of the shield can. The secondary padder is adjusted by means of the small hex nut, also accessible through the hole in the top of the shield. (See Figs. 1 and 2.)
The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Fig. 1.

If replacements are ever necessary, replace the entire coil assembly 32-1329 for the first I. F. stage and 32-1237 for the second I. F. stage. Neither the coil nor the padders will be furnished separately. Order only by the above numbers.

Fig. 1

MODEL 11 ADJUSTMENTS

All adjustments have been carefully checked at the factory. If, however, it is found necessary to readjust the padding condensers, this procedure must be followed carefully. Do not attempt to make any adjustments until the procedure is clearly understood or without the use of a good oscillator or signal generator and output meter. The Philco Set Tester 048 is highly recommended for this procedure and for all service work.

The Receiver must be connected to a six-volt storage battery and turned on for operation. It is assumed that tubes have been checked and that the Receiver is in good condition except for the padding adjustments.

Remove the speaker lid from the Receiver. Remove the grid cap terminal from the 77 tube (for location see Fig. 2).

Set up the signal generator and adjust it to exactly 260 F . C. Connect the generator lead to the grid cap of the 77 tube. (See Fig. 2.) The output meter must be connected.

The Receiver volume control must be turned on to approximately full volume and the attenuator in the generator set for a half-scale reading of the output meter.

The padders (8) and (24) are adjusted first (Figs. 2 and $3)$. Turn the adjusting screw (22) all the way in. A metal screwdriver can be used for this. Then, with generator attenuator set so there is approximately half-scale reading, adjust the nut aidh a fibre wrench for the maximum reading on the output meter.

Then adjust the screw (22) for maximum reading on the meter. This adjustment is critical. Note the maximum reading obtainable and then turn the screw in again and readjust, just bringing the adjustment up to the maximum reading. Do not pass it and then back off.

Repeat the above procedure with the condensers (18) and (ib).

After padding the first I. F. stage, remove the generator lead from the 77 tube and reconnect the grid lead to the 77 tube. Set the generator to 1500 K . C. and then connect the generator lead to the antenna lead

There are four holes in line, one in each of the sections of the tuning condenser housing. (See Fig. 2.) Place a nail of the size that fits snugly through the holes and then turn the condenser plates out of mesh until they strike against the nail.
With the tuning condenser in this position adjust the high-frequency padder (4) until the maximum reading is obtained in the output meter. This is the true setting for 1500 K . C., 150 on the dial scale.
Next turn the condenser plates in mesh to 140 on the scale, 1400 K . C., and set the signal generator for 1400 K. C. The R. F. padder (a) and the antenna padder (3) are next adjusted for the maximum reading on the output meter.
Recheck the adjustments and then remove all test leads. If this procedure has been carefully followed and an accurately calibrated oscillator or signal generator used, the Receiver is adjusted properly.

PAGE 5-8 PHILCO

PHILCO RADIO \& TELEV. CORP. Model 18 (Code 124)

Model 18 (code 124) is an eight-tube superheterodyne receiver, for operation on alternating current (A.C.) The range of receivable frequencies is from 530 to 1720 kilocycles which includes standard broadcasts and police stations on the first (lowest) police band. The tubes used are: Type 78 R.F.; type 6A7 detector-oscillator; type 78 I.F.; type 75 2d detector, 1st A.F.; type 42 driver; two type 42 output tubes, and type 80 rectifier. The intermediate frequency is 260 kilocycles.

Adjusting Compensating Condensers

The adjustment of the compensating or padding condensers in Model 18 (124) requires an accurate signal generator, such as the Philco Model 024, an output meter, and a special insulated hex wrench. The adjustments are made as follows:

1. I. F. (Intermediate Frequency). Remove the grid clip from the cap on the 6A7 tube and attach the shielded antenna lead from the signal generator to the grid cap of the 6A7. Set the switch of the signal generator at 260 K . C. (the I. F. of Model 18) and the dial of the set at 550. Turn on the set and signal generator. Adjust each of the three I. F. compensating condensers in turn to give maximum reading in the output meter (connected to primary of output transformer). If the needle on the meter goes off scale, turn down the attenuator adjustment on the signal generator. See Fig. 4 for locations of the I. F. compensating condensers. The first and 2d I. F.
primary condensers (11) and (2) are accessible through the two holes in the chassis sub-base directly over them. The 1st I. F. secondary (24) is accessible from the rear.
2. ANT. H. F., DET., and OSC. H. F. CONDENSERS (5), (10), and (12).) These are located on top of the tuning condenser assembly and adjusted from above. (5) is mounted on the section nearest front of set. Replace the grid cap clip on the 6A7 and connect the antenna lead of signal generator direct to antenna post of set for these adjustments. Set signal generator at 1500 and dial of set at 1500 .
3. OSC., L. F.-This adjustment (B) is made from rear of chassis (see Fig. 4). Set Signal Generator and dial of set at 600 . The tuning condenser assembly should be "rocked" while this adjustment is being made.

Replacement Parts for Model 18 (Code 124)

No. on Figs. \quad Description	Part No.	List Price
(1) Resistor (10,000 ohms) (Brown-Black-Orange)	33-1000	\$0. 25
(2) Resistor ($70,000 \mathrm{ohms}$) (Violet-Black-Orange)	5385	25
(3) Antenns Transformer	32-1396	60
(4) Tuning Condenser Assembly	31-1196	6.00
(5) Compenssting Condenser (Ant.)	Part of (4)	
(5) Condenser (. 05 Twin-Bakelite Block)	3615AM	40
(7) Resiztor (200 ohms Flexible Wira-wound)	7217	20
(8) Condenser (. 09 Twin-Bakelite Block)	4989AC	40
(9) Detector Transformer	32-1397	50
(10) Compensating Condenser (Det.)	Part of (4)	
(11) Resistor (50,000 ohms) (Green-Brown-Otange)	4518	25
(12) Compensating Condenser (Osc. H. F.)	Part of (4)	
(13) Oscillator Transformer	32-1398	45
(14) Condenser (. 00011 Mfd . Mica)	4519	35
(15) Compensating Condenser (Osc. L. F.)	04000R	45
(16) Resistor ($20,000 \mathrm{ohms}$) (Red-Black-Orange)	6650	25
(17) Resistor ($20,000 \mathrm{ohms}$) (Red-Black-Orange)	6650	25
(18) Condenser (Double: .05-. 15 Bakelite Block)	6287M	. 40
(19) Resistor (2 Meg.) (Red-Black-Green)	5872	25
(20) Condenser (05 Mfd . Bakelite Block)	3615AA	. 35
(21) Compensating Condenser (1st I. F. Pri.)	04000M	20
(22) Resistor (2500 ohmg) (Red-Green-Red)	7775	25
(23) 1tt I. F. Transformer.	32-1288	55
(24) Compensating Condenser (1st I. F. Secondary)	04000X	20
(25) Compensating Condenser (2d I. F. Primary)	04000A	15
(20) 2d I. F. Transformer	32-1258	55
(27) Condenser (.00011 Mfd . Twin-Bakelite Block)	8036-K	\$0.25
(28) Resistor (11 Meg . White-White-Orange).	4411	. 25
(29) Condenser (05 Mfd . Tubular Paper)	30-4020	. 35
(30) Volume Control (350,000 ohms Tapped at 75.000$)$	33-5069	1.00
(31) Resistor (. 25 Meg .) (Red-Yellow-Yellow)	441	. 25

Tube Socket Voltages

Circuit	R. \mathbf{F}.	Det. Ose.	I. F.	${ }_{\mathrm{A} .}^{1 \mathrm{st}} \mathrm{~F} .$	Drivar	$\begin{gathered} \text { Ou!put } \\ \text { (Class " } A \text { ") } \end{gathered}$		Rectifier
Type Tube	78	6A7	78	75	42	42	42	80
Filament (F-F).	6.3	6.3	6.3	6.3	6.3	6.3	6.3	5.0
Plate (P-K).	210	210	210	120	205	280	280	350
Screen Grid (SG-K) (6A7) G1-K G2-K	80	$\begin{aligned} & 35 \\ & 130 \end{aligned}$	80	\because	200	300	300	\cdots
Cathode (K-F)	2.8	2.8	5.3	0	0	0	0	

(32)	Condenser (. 01 Mfd. Bakelite Block)	3903-2	. 25
(3)	Resistor (1. Meg.) (Brown-Black-Green)	4409	. 25
(3)	Resistor (. 5 Meg .) (Yellow-White-Yellow)	4517	. 25
(35)	Resistor (10,000 ohms) (Brown-Black-Orange)	4412	. 25
(3)	Shadowmeter	45-2028	2.50
(3)	Condenser (.00011 Mica)	4510	35
(38)	Condensar (. 09 Mfd .) (Bakelite Block)	4989-N	. 35
(39)	Resistor (50,000 ohms) (Green-Brown-Orange)	4518	. 25
(6)	Condenser (Electrolytic-1, 1, 2 Mfd)	30-2029	1.20
(1)	Resistor (. 1 Meg .) (White-White-Orange)	4411	25
(12)	Resistor (. 5 Meg .) (Yellow-White-Yellow)	4517	. 25
(43)	Condenser (.015 Mfd. Bakelite)	3793AB	. 35
(4)	Condenser (.006 Mfd . Tubular Paper)	30-4024	. 40
(4)	Input (Audio) Transformer	32-7114	2.00
(46)	Resistor ($10,000 \mathrm{ohms}$) (Brown-Black-Orange)	3524	25
(4)	Condenser (01 Mfd. Bakelite Block)	3903-P	. 25
(18)	Output Transformer	32-7078	1.40
(4)	Voice Coil and Cone Assembly $\left\{\begin{array}{l}\mathrm{H}-13 \\ \mathrm{~K}-17\end{array}\right.$	02625 36-3159	. 80
(30)	Field Coil and Pot. Assembly	36-3104	2.70
(31)	Resistor (B) (6500 ohms Wire-wound)	33-3033	30
(52)	Resistor (Voltage Divider-9.5, 112, 84 ohms	33-3034	\$0.20
(53)	Tone Control	30-4073	. 75
(5)	Condensers (in Tone Control)	Inside (33)	
(55)	Reeistor (32,000 ohms) (Orange-Red-Orange)	33-1026	. 35
(56)	Hesistor (50,000 ohms) (Green-Brown-Orange)	4518	25
(57)	Condenser (Twin 015 Mfd . Bakelite Block)	3793-R	40
(58)	Power Transformer	32-7111	5.75
(50)	Condenser (Electrolytic 8 and 10 Mfd .)	30-2045	1.95
(60)	Condenser (Electrolytic 8 Mfd .).	30-2025	2.00
61)	Condenser (. 25 Mfd. Bakelite Block)	6287-N	. 40
(62)	Filter Choke.	32-7115	1.80
(6)	On-Off Switch	42-1064	. 40
(64)	Pilot Lamp (Station Selector)	6608	. 11
(65)	Pilot Lamp (Shadowmeter)	Part of (36)	
(8)	Resistor (2900 ohms) (Red-White-Red)	5309	.25
	A. C. Cord and Plug Assembly.	L-943A	60
	Tube Sbield.	28-1107	10
	4 Prong Socket	7544	10
	6 Prong Socket.	7547	11
	7 Prong Socket.	27-6005	11
	Speaker Socket	4957	10
	Knob (Large)	27-4051	10
	Knob (Small)	27-4052	. 10
	Chassis Mfg. Screw	W-1345-A	2.75 C
	Chassis Mfg. Washer	29-2089	35 C
	Chassis Mfg. Foot (Rubber)	27-4116	05
	Chassis Mfg. Foot Plate	27-7497	35C
	Dial Assembly	31-1207	. 50
	Dial Scale.	27-5049	. 25

All the above values were obtained from the underside of the chassis, using test prods and leads with an A. C. voltmeter for filament voltages and a high-resistance multi-range D. C. voltmeter for all other values. The Philco Model 048 All-Purpose Sot Tester is highly recommended for this use. Volume control at maximum and atation selector at 520 K . C. Readings obtained with a plug-in adaptor will NOT be satisfactory.

PAGE 5-10 PHILCO
HODEL 18 (Code 124) Schematic

PHILCO RADIO \& TELEV. CORP.
Sooket Layout

NOTE: A resistor No. 5309 (2900 ohms) (red-whitered) is used, shunted across the shadowmeter. Not shown in Fig. 3 or Fig. 4.

Fig. 1-Socket Layout (Underneath)

Fig. 4-Bottom View of Chassis Showing Parts
Power Transformer Data

Terminal	A. C. Volts	Circuit	Color
1-2	105-125	Primary	White
3-5	6.3	Filament	Black
6-7	5.0	Filament of 80	Blue
8-10	760	Platee of 80	Yellow
4		Center Tap of 3-5	Black-Yellow Tracer
9		Center Tap of 8-10	Yellow-Green Tracer

Adjusting Compensating Condensers

For adjustment of compensating (padding) condensers in Model 28, an accurately calibrated signa! generator, an output meter, and a special insulated padding wrench and screwdriver are needed. We suggest the Philco Model 024 Signal Generator, which is accurately calibrated and easy to handle. Philoo No. 3164 fibre wrench and No. 27-1159 fibre-handled screwdriver are also recommended. For the output meter either Philco Model 025 complete tester or Philco Model 012 shadow output meter is suggested.
The chassis must be removed from cabinet in order to make all adjustments.
Adjustments are made in the following order-
ADJUSTMENT OF THE INTERMEDIATE FRE-QUENCY-Remove the grid clip from the type 6-A-7 tube and connect the "ANT" output terminal of the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.
Connect the output meter adapter leads to the plate and cathode prongs of the type 43 tube. Set the signal generator at $460 \mathrm{~K} . \mathrm{C}$. (the intermediate frequency of Model 28) and with the receiver and signal generator turned on, the wave band switch at left and dial at 600 K.C., adjust each of the I. F. compensating condensers in turn, to give maximum response in the output of the receiver. The three pairs of I. F. compensating condensers are located one pair at the top of each of the three I. F. transformer shields. These are the three metal "cans" near the rear of the chassis. Each of the transformers has a dual compensating condenser mounted at its top, and accessible through a hole in the top of the coil shield. In the dual compen-

Fig. 1-Top View Showing Location of Compensating

sators, the Primary circuit is adjusted by turning the screw; the Secondary circuit is adjusted by turning the hex-head nut. ADJUṠTMENT OF THE WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 6-A-7). Connect the output leads from the signal generator directly to the antenna and ground terminals of the receiver. Set the Wave-Band Switch of the receiver to the standard broadcast band (left-hand position) and the Station Selector at the low frequency ($540 \mathrm{K.C}$. .) end. Adjust the Wave Trap condenser to give MINIMUM response to a 460 K.C. signal from the signal generator. The Wave Trap (2) is located at rear and underneath the chassis, and is shown in Figure 1. It is reached from the rear of the chassis by inserting the fibre wrench through the hole near left-hand rear corner of chassis.
ANTENNA AND OSCILLATOR "HIGH" AND "LOW" FREQUENCY ADJUSTMENTS-The "antenna" and "oscillator H. F." compensators are located on top of the tuning condenser assembly, reached from above.
Set the signal generator at $1500 \mathrm{~K} . \mathrm{C}$., tune in this signal on the set and adjust the antenna compensator (B) (nearest tuning control) to give maximum reading in the output meter.
Next adjust the oscillator H.F. condenser (a) (located on the other section of tuning condenser) to maximum reading.
Finally, set the signal generator at 600 , tune in this signal and adjust the "oscillator L. F." condenser, located underneath chassis (18) in Fig. 1) to maximum reading. This adjustment is reached through the hole in top of chassis, between the two electrolytic condensers (left-hand end of chassis wherr facing rear).

(31)	3d 1. F. Transformer	32-1384	1.55
(32)	Compresating Condenser (3d I. F. Secondary) .Part of (31)		
(3)	Condenser (. 05 mld ---Tubular) 30-4020	35	
(31)	Resistor (1000 obms) (Brown-Blark- Red) 5837	25	
(35)	Resistor (2 megs.) (Red-Black-Green) 5872	. 25	
(36)	Condenser (.0001 mld --Twin-Bakelite Block) . 8035 E	25	
(87)	Resistor (50,000 ohms) (Green-Brown-Orange) 4518	. 25	
(38)	Volume Control and On-Off Switch (350,000 ohms, tapped at 75,000) . 33-5066	1.45	
(39)	Resistor (10,000 ohmis) (Brown- Black-Orange) $33-1000$. 25	
(40)	Condenser (05 mfd --Bakelite Block) 3615-BU	. 35	
(41)	Condenser (01 mfd - Tubular) $30-4124$. 25	
(42)	Condenser (. 00025 mld - Mica) . . . 5358	. 35	
(43)	Resistor (1 meg.) (Brown-BlackGreen) . 4409	. 25	
(4)	```Resistor (.5 meg.) (Yellow-White- Yellow) . 4517```	. 25	
(45)	Condenser (11 mfd .-Tubular)30-4122	. 35	
(40)		. 40	
(47)	Condenser (.00011 mfd.-Mica) 30-1031	. 35	
(48)	Condenser (. 02 mfd .-Mica) $30-4113$	30	
(49)	Resistor (. 25 meg.) (Red-YellowYellow)	25	
(50)	Resistor (5 meg.) (Yellow-WhiteYellow)	25	
(51)	Resistor (50,000 ohms) (Green-Brown-Orange)	. 4518	\$0.25
(52)	Condenser (09 mfd.-Twin-Bakelite Block).	.4989M	. 40
(63)	Resistor (25,000 ohms) (Red Green-Orange)	.33-1013	. 25
(64)	Tone Control (3-puint)	.30-4211	. 75
(55)	Condensers (In tone control)	Inside ${ }^{6}$	
(56)	Output Transformer (28C)	32-7243	1.10
(57)	Condenser (. 25 mid.-Tubular)	.30-4146	. 40
(58)	Voice Cuil and Cone Assembly $\left\{\begin{array}{l}\text { P-21 }\end{array}\right.$. 02861	. 65
(6)	Voice Coil and Cone Aasembly $\{\mathrm{K}-27$.	. $36-3159$. 80
(50)	Field Coil and Pot Assembly $\left\{\begin{array}{l}\text { P-21. } \\ \mathbf{K} 27\end{array}\right.$. 36-3357	3.50.
	Field Con and Pot Assembly $\{\mathbf{K} \mathbf{- 2 7}$.	. $36-3352$	4.00
(60)	Pilot Lamp .	. 4567	. . .
(61)	Resistor (Wirc Wound, New Type) (37, 63, 29 ohm	s)33-3159	. 35
(62)	Filter Choke.	. 6658	1.50
(63)	Filter Choke	32-7018	1.50
(84)	Condenser (05 mfd - Tubular)	. $30-4123$. 35
(65)	Condenser (Electrolytic 6 and 12 mfd , 150 volts)	. $30-2083$	1.70
(68)	Resistor (Wire Wound, New Type) (10, 137 ohms)	33-3158	. 45
(67)	Condenser (.09 mfd .-Tubular)	. $30-4122$. 35
(68)	Condenser (Electrolytic 6 and $12 \mathrm{mfd} ., 150$ volts).	. $30-2083$	1,70
August, 1934			

PHILCO RADIO \& TELEV. CORP.

On Line Voltage 120 A.C.
TUBE SOCKET VOLTAGES
(22) (28)

TPPE 43 (3) (6) (23) (34) (16) (12 (12) 65
 (1) 68

Type Tube	6-A-7	39-44	39-44	75	43	25-Z-5	6-A-7	39-44	39-44	75	43	25-Z-5
Plate (P to K)	100	100	98	45	95	120	95	95	85	40	90	.
Screen Grid (SG to K)	$\begin{aligned} & \text { G1 }=-8 \\ & \text { G2 } 2=80 \\ & \text { G } 385=60 \\ & \hline \end{aligned}$	100	100	.	100	\cdots	$\begin{aligned} & \mathrm{G} 1=-10 \\ & \mathrm{G} 2=80 \\ & \mathrm{G} 385=60 \end{aligned}$	95	95	.	95	\cdots

[^0]Total Filament Voltage-83
High resistance D.C. voltmeter used for above tests. Volyme control at maximum; dial at 55 ; wave band switeh at left. Refer to
Fig. 2 (Socket View
B. ${ }^{\text {Philco Model } 025 \text { Circuit Tester is recommended for making the above voltage tests. }}$

Philco Model 29 is a superheterodyne receiver operating on alternating current and capable of receiving either standard and police broadcasts between 540 and 1720 kilocycles, or short-wave stations between 4.2 and 13 megacycles. The left hand side of the dial is calibrated in kilocycles and the right in megacycles. A two-position switch changes reception from standard to short-waves. This model is equipped with shadow tuning, three point tone control with fixed bass compensation, and automatic volume control. The output is 5 watts.

Model 29 uses a type 6-A-7 detector-oscillator, two type 39-44 I. F. tubes, type 75 2d detector, type 42 output tube, and type 80 rectifier. The power consumption is 70 watts. The intermediate frequency is $460 \mathrm{~K} . \mathrm{C}$.

Adjusting Compensating Condensers

For adjustment of compensating (padding) condensers in Model 29, an accurately calibrated signal generator and a special insulated padding wrench and screwdriver are needed. We suggest the Philco Model 024 Signal Generator or the 048 Tester which includes a similar instrument. Philco No. 3164 wrench and 27-1159 screwdriver are recommended in addition.

Adjustments are made in the following order:-
ADJUSTMENT OF INTERMEDIATE FREQUENCYRemove the grid clip from the type 6-A-7 tube and connect the "ANT" output terminal on the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.

Connect the output meter to the primary terminals of the output transformer. Set the signal generator at 460 K .C. (the intermediate frequency of Model 29) turn wave-band switch of receiver to left and dial to $600 \mathrm{~K} . \mathrm{C}$. Turn receiver and Signal Generator "ON". Adjust each of the I. F. compensating condensers in turn, to give maximum response in the output of the receiver. The three pairs of I. F. compensating condensers are located, one pair at the top of each of the three I. F. transformer shields. These are the metal "Cans" near the rear of chassis. Each of these transformers has a dual compensating condenser mounted at its top, and accessible thru a hole in the top of the coil shield. In the dual compen-

Tube Socket Voltages-(Line Voltage 115)

Function	Det. Osc.	$\begin{aligned} & \text { 1st } \\ & \text { I. F. } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { I. F. } \end{aligned}$	2nd Det.	Output	Rectifier
Type	6 A7	39/44	39/44	75	42	80
Filament (F to F)	6.3	6.3	6.3	6.3	6.3	5.0
Plate (P to K)	210	200	200	200	300	310
Screen (SG to K).	80	80	80	. .	315	. .
Cathode (K to GND).	4.8	4.8	4.8	0	0	. .
6-A-7 Grid G1 to K	35	\ldots	. .	\cdots	\ldots	. .
6-A-7 Grid G2 to K	170	\cdots	\cdots	. .	\cdots	. .

sators, the Primary circuit is adjusted by turning the screw; the secondary circuit is adjusted by turning the hex-head nut. ADJUSTMENT OF WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 6-A-7). Connect the output leads from the Signal Generator directly to the antenna and ground terminals of the receiver. Set the wave-band switch of the receiver to the standard broadcast band (left hand position) and the Station Selector at the low frequency (540 K.C.) end. Adjust the Wave Trap condenser to give MINIMUM response to a $460 \mathrm{~K} . \mathrm{C}$. Signal from signal generator. The Wave Trap (1) is located at rear and underneath the chassis, and is shown in Figure 4. It is reached from the rear of the chassis, thru hole at right hand end of set base.
DETECTOR; AND OSCILLATOR - "HIGH" AND "LOW FREQUENCY" ADJUSTMENTS-The "Antenna" and "Oscillator H. F." compensators are located on top of the tuning condenser assembly, reached from above.
Set the signal generator at $1500 \mathrm{~K} . \mathrm{C}$., tune in this signal on the set, and adjust the antenna compensator (7) (nearest tuning control), to give maximum reading in the output meter.
Next adjust the oscillator H. F. condenser (11), located on the other section of tuning condenser, to maximum reading. Finally set the signal generator at 600, tune in this signal and adjust the oscillator L. F. condenser, located underneath chassis (15) in Fig. 4) to maximum reading. This adjustment is reached thru the hole in top of chassis, between the two electrolytic condensers (left-hand end of chassis when facing rear).

Power Transformer Voltages

Terminals	A. C. Volts	Circuit	Color of Leads
$1-2$	120	Primary	White
$3-4$	5.0	Fil. of 80	Blue
$5-7$	746	Plates of 80	Yellow
$8-10$	6.3	Filaments	Black
6		Center of 5-7	Black-Yellow Tracer
9	Center of 8-10	Yellow-Green Tracer	

The above tests were made with an A. C. voltmeter for filament voltages and a high-resistance D. C. voltmeter for all others. Dial at 550 K.C., wave-band switch

Starting with run No. 14, all type Model 16 will use a different type tone control. This will be Part No. 30-4168 which replaces $30-4069$ formerly used. Condenser 7653-C (6) on wiring diagram in Bulletin 165-B) is replaced by $3615-\mathrm{L}$.

The new tone control has fixed bass compensation, effective on all four positions, which helps subdue background noise and thus favorably affects short-wave reception.

Starting with Run No. 15, a No. 30-4125 tubular condenser, .006 mfd , will be added, connected between the plate of the 77 tube and the tone control. This gives a smoother variation in control and prevents too great a change in tone from one step to another.

Starting with Run No. 16, the tone control used on Model 16 will be part No. 30-4204, which replaces 30-4168. (See June 1st change notices.) At the same time, condenser $3615-\mathrm{L}$ replaces $3615-\mathrm{J}$, and external tone control condenser $30-4125$ is removed. This latter condenser is now built in as part of the new tone control, thus simplifying assembly of the set.

Model 18-124

Starting with Run No. 4, Resistor 33 on wiring diagram of Model 18-124 will be Part No. 5837 (1000 ohms) instead of No. 7775 (2500 ohms). There is a slight change in the antenna and oscillator transformers, the new ones being identified by a red paint mark on the bracket. No change in part number. Change to increase sensitivity.

酸otel 29 (Code 123-TX)

The differences between regular Model 29 and the TX type are that the latter has the following parts added:

$$
\begin{aligned}
& \text { Output transformer . } 32-7256 \\
& \text { Speaker switch (toggle) . } 116 \\
& \text { Speaker }
\end{aligned}
$$

Model 29-TX also includes a furniture-type speaker, HR-2, which is connected to the receiver by a 25 -foot cable and plug assembly, part No. 36-3327, attached to the speaker cabinet.

The A. C. cord on $29-T X$ is a flat cable and contains an extra wire, which is for use as an antenna lead by connecting the antenna to the binding post mounted on the side of the special flat A. C. plug used. However, the antenna may be connected to the regular antenna clip terminal on the receiver chassis if desired and more convenient.

The part numbur of this special cable and plug assembly is 41-3104.

Model 29

Effective July 1st, condenser (3) in wiring diagram of Model 29 is changed from 4989 AM, (. 09 mfd .) to 3615 AW (. 05 mfd .). This improves the fixed bass compensation used in this model.

Starting with Run No. 8, the cathode resistor (@in wiring diagram of Model 29) will be changed from Part No. 6977 (500 ohms) to $33-3016$ (400 ohms). This will prevent variation in performance of sets due to considerable variation in 6A7 tubes.

Starting with Run No. 9, electrolytic condenser © (on wiring diagram) will be a Part No. 30-2026 instead of $30-2020$. The new type is of a higher working voltage.

Models 29 \& 45

Effective July 1st, a new wave-trap will be used in this model: Part (1) on wiring diagram of Model 29 is changed from Part No. $38-5199$ to $38-5995$. The new wave trap uses an improved construction which facilitates production.

Effective July 1st, mica condenser (B8) on wiring diagram of Model 29 was changed from Part No. 7301 to $30-1028$. No change in capacity; change to facilitate wiring only.

PHILCO RADIO \& TELEV. CORP.

Correcting Intermittent Operation

On some of the earlier models of the 89,19 and 38 , difficulty may occasionally be experienced with intermittent operation. This condition usually occurs during periods of humid weather, and is caused by stopping of the oscillator. In some cases, the radio may be completely dead and at other times this in-operative condition may exist over a portion of the dial only.

There are a number of possible causes for the difficulty and the necessary steps have been taken in later production to correct the condition. On a few of the earlier sets, however, it may be necessary to make one or more of the changes outlined below:

1. OSCILLATOR TUBE: In most cases, partial or complete failure of the oscillator circuit can be corrected by replacing the oscillator tube.
2. BATTERY VOLTAGE: In the Model 38, low voltage of the " A " or " B " battery may cause failure in oscillation.
-3. CATHODE RESISTOR: In the Models 89 and 19, correct performance can usually be restored by changing the cathode resistor (10) in the wiring diagrams of service bulletins 146 and 146A from 15,000 ohms to 10,000 ohms (Philco Part No. 4412). In the Model 38, the cathode resistor (12) in the wiring diagram of service bulletin 106 is changed from 6,000 ohms to 4,000 ohms (Philco Part No. 33-1040).
3. COMPENSATING CONDENSERS: The first I. F. compensating condensers in Models 89 and 19 (15) in service bulletin 146, (13) in service bulletin 146-A and (10) in service bulletin 166 have been changed from Part No. $04000-\mathrm{M}$ to Part No. 31-6016. The new condenser has a larger insulating surface between the plates of the condenser and the mounting holes. The possibility of moisture absorption is thus eliminated. It is necessary to re-drill a hole in the chassis so that the condenser can be mounted correctly with respect to the opening in the chaseis for the compensating condenser wrench.
4. BAKELITE WASHERS: In order to prevent moisture absorption with resulting drifting in the compensating condenser adjustment, a bakelite washer and a metal washer are now being used on top of the compensating condenser, in place of the fibre washers previously used. The part number of the bakelite washer is $27-4109$ and the metal washer (placed on top of the bakelite) is W-1331. These two replace the old fibre washer Part No. 3500.
5. MICA INSULATION: It was found on some sets that the mica which separates the leaves of the high frequency oscillator compensating condensers was extremely thin and would crack easily. Moisture absorption in the cracks was sufficient to stop oscillation. This condition was corrected by replacing the mica.
6. WIRE INSULATION: The wire which connects from the oscillator tuning condenser to the oscillator coil should be rubber-covered. Possible moisture absorption in the insulation of the cotton-covered wire may be sufficient to produce leakage to ground.
7. OSCILLATOR COIL IMPREGNATION: In some cases, it may be desirable to reimpregnate the oscillator coils in accordance with the present methods of production. The coil is dipped in hot paraffine for twenty seconds. The entire coil, including the terminals, is sulmerged; the only part which is out of the paraffine is a portion of the mounting lug, thus assuring a good ground connection. The coil and the paraffine both are allowed to cool until the paraffine becomes a considerably heavier consistency, at which time the coil is again dipped, thus allowing a fairly heavy covering over the entire coil. The coil is now entirely sealed and will not be affected by any moisture changes.
8. TUNING CONDENSER: A few tuning condensers of the 89 and 38 Models went out of the factory with a sanded surfacc on the bakelite between the stator and rotor plates. Noisture absorption at this point was sufficient to stop oscillation. Changing the tuning condenser to the type with smooth bakelite insulation will correct the trouble. In present production, these bakelite pieces are dipped in insulating varnish to seal all possible openings which might absorb noisture.
9. OSCILLATOR SOCKETS: In extreme cases it may be necessary to change the detectoroscillator tube socket. Moisture absorption occasionally takes place around the rough edges of the socket.

ELIMINATION OF NOISE INTERFERENCE CAUSED BY THE FARM LIGHTING SYSTEM

The operation of a radio receiver directly from a 32 volt farm lighting system 18 sometimes in reception, caused by in reception, caused by ing operation's of the light ing system charging are radisted from the are radiated from the up by the antenna sad lead-in A certain smount of the noise also comes directly thru the lines. A whirring or crackling noise may be caused by noparking at the brushes of the generator; and a "clicking" by the sparks at the sparis plug of the gasoline motor used to gasoline motor used to
drive the generator, and by the operation, the "breaker" in the spark coil primary.

Installation of the proper type of antenna system is of considerable importance in eliminating these troublesome noises. For maximum freedom from noise the antenna should be the special
Philco "Three-Purpose" aerial system, which was designed to prevent pick-

Fig. 8-Best Method of Antenna Installation for Model. 32
up of noise by the antenna lead-in.

The antenna wire should in all cases be run in a direction from the house opposite to that of the service leads from the lighting system, as indicated in Fig, 8. Where the Three-Purpose System is used, the instructions furnished with it should be very carefully followed. Note that this system employs a special ' 'transmission line" lead-in, at each end of which a special transformer is installed. The transformers must be installed as per instructions, and if this is done the transmission line (lead-in) will be completely noise-proof, All ather necessary parts for the antenna installation such as ground clamps, lighting arrester, etc. are included with the Three-Purpose Antenna System.

Philco has designed a apecial interference-suppression and filter for 32 volt systems which will eliminate most if not all of the interference encountered in the rasjority of installations. This unit consists
of filter chokes and condensers, and is connected directly in the output lines of the generator as per instructions supplied with this specisl unit. The unit may be obtained from your Philco Distributor.

It is generally advisable also to conncet a $1 / 3 \mathrm{mfd}$. fixed condenser (Philco Part No. 30-4015) from euch set of generator brushes to the
frame of the generator (which should be grounded). The method of frame of the generator (which should be groundedi). The method of view of one eud of a generator. These condensers help eliminate the whirring or erackling caused by the generator brushes

To reduce the clicking noise caused by the ignition at the spark plug, a suppressor (Philco Part No. 4531) should be inserted in series between the terminal of the plug and the cable leading to it. See Fig. 10.

Fig. 9-Condensers Attached to Genergtor for Suppressing Interference

PHILCO RADIO \& TELEV. CORP.

Model 32

Philco Model 32 is a superheterodyne radio receiver designed to operate directly from a 32 volt D. C. (direct current) electric system, such as used on many farms for lighting purposes. In this model the filaments of the tubes (except the rectifier) are connected in series, while the necessary plate and grid voltages are secured from a special vibrator-

Fig. 1-Top View of Model 32
NOTE: In 32-volt systems where the batteries are old, the voltage is high (40 volts) when generator is running (due to the higher Internal resistance of the batterles). In such cases it will help conserve life of the tubes in the set if battery charging is done at pertods of the day when the radio is not in use.

75 Socket
and-rectifier unit, contained in a separate metal box mounted on a shelf of the radio cabinet. The rectifier tube is inside the vibrator-andrectifier unit box. It obtains its filament voltage from a secondary winding of the transformer which is also located in the vibrator-andrectifier unit box.
Model 32 uses the following tubes: R. F., type 39-44; DetectorOscillator, type 36; I. F., type 39-44; 2d detector, type 75; Output type 42 ; Rectifier, type 84

The frequency range of the model 32 is 520 to 3260 kilocycles. The intermediate frequency (I. F.) is 260 K . C. The power consumption is 50 watts when the line voltage is 32 , and approximately 70 watts when the line voltage reaches 38 .
With a line voltage of 35 volts to the vibrator and an effective voltage of 28 at primary of power transformer (voltage from white lead to white-black-tracer), the A. C. voltage across secondary should be about 300 volts at 65 milliamperes. Secondary voltage measured from yellow lead to yellow-green-tracer. Voltage across 84 filament approximately 7 volts at .5 amperes. (Filament leads bave blue insulation.)
Tube Socket Data Line Voltage 34 Volts

Circuit	RF	Det.Oec.	IF	AF	Out put	Rect.
Type Tube	39-44	36	39-44	75	42	84
Filament Volts....	6.8	6.8	6.8	6.8	6.8	6.8
Plate Volts....	205	200	235	155	220	300
Screen Grid Volts (SG to K)	85	83	85		240	
Cathode Volts (K to Gnd).	4	8.5	4	0	0	

The above voltage values were obtained with a high-resistance, multi-range D . C voltmeter. The readings were taken from the underside of the chassis, with teet prods and leads. The PHILCO MODFL, 048 ALL-PURPOSE SET TESTER is an ideal instrument for taking these readings, and is highly recommended for this purpose. When the above values were obtained, the Station Selector was set a the low frequeney (550 K . C.) end of the scale; the Volume Control was at maximum

Fig. 2-Terminai Arrangement of Tube Sockets Viewed from Under Side of Chassis

Flg. 3-Rear of Model 32 Chassis, showing location of I.F. Compensating Condensers. I.F. of Model 32 is 260 K . C.

Fig. 4-Top View of Chassis Showing Compensating Condensers Mounted on Tuning Condenser, also Low Frequency Compensating Condenser.

ADJUSTMENT OF MODEL 32

COMPENSATING CONDENSERS

Theae receivers are adjusted accurately before they are shipped from the Factory. If re-adjustment is required, it is usually necessary to re-align only the intermediate frequency compensating condensers. intermediate frequency is 260 kilocycles.

An accurately calibrated signal generator is required for these adjustments. The PHILCO MODEL, 024 is a precision signal generator supplying frequencies from 105 kilocycles to 2000 kilocyclea and is recommended for this work.

To adjust the I. F. condensers, remove the grid cap clip from the type 36 tube and connect the shielded antenna lead from the aignal generator to the grid cap. Connect the ground lead from signal generator to ground post of set.

Connect the primary terminals of the output transformer to an output meter. Set the signal generator frequency switch at 260 K . C. turn it and the receiver "on" and adjust the attenuator of the signal generator so as to get a half scale defection on the meter. Now with the fibre hex wrench, adjust each of the I. F. condensers in turn so as to obtain maximum reading in the meter

If re-adjustment of the intermediate frequency circuits is not sufficient to restore sensitivity, the high frequency and low frequency compensating condensers are resligned as described in the following paragraphs. Figure 4 shows the location of these compensating condensers.

When making these adjustments replace the grid clip on the 36 tube, and connect the antenna and ground leads from the signal generator direct to the antenna and ground posts of set.

The High Frequency compensating condenser is first adjusted. This adjustment is made with the signal generstor set at 1400 kilocycles. Next the Detector and Antenna Condensers, located on the tuning condenser assembly, should be adjusted, with the signal generattenuator on the signal generator for these adjustments.

The last adjustment is that of the low frequency (LF) compenating condenser which is accessible from above through the hole in ating condenser which is accessible from above through the hole in
chassis alongside the tuning condenser assembly. This adjustment is chassia alongside the tuning condenser assembly. This adjus
made with the signal generator set to give a 700 K . C. signal.

PHILCO RADIO \& TELEV. CORP.

PHILCO RADIO \& TELEV. CORP.

Fig. 6-Bottom View of Chassis

Fig. 7-Bottom of Vibrator and Rectifier Unit

REPLACEMENT PARTS FOR MODEL 32

	on Figs. and 7	Part No.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
(1)	Condenser ($09 \mathrm{mfd} .-.09 \mathrm{mid}$))	4989-G	80.40
(2)	Condenser (0025 mfd .) (mica)	7006	. 40
(3)	Resistor (10,000 ohms-Brown-BlackOrange).	33-1000	. 25
(1)	Antenna Transformer.	32-1062	70
(5)	Tuning Condenser Assembly	31-1059	5.00
(B)	Wave-band \& On-off Switch	42-1017	1.00
(3)	Compensating Condenser (ant)	Part of (5)	
(8)	Detector Transformer	32-1063	. 50
(9)	Compenaating Condenser (det.)	Part of (5)	
(10)	Condenser (.05 mfd tubular)	30-4123	. 35
(11)	Oscillator Transformer	06620	. 90
(12)	Compensating Condenser (osc. H. F.)	Part of (5)	
(13)	Compensating Condenser (1st I. F. pri.).	04000-M	. 20
(14)	Compensating Condenser (osc. L. F.).	04000-S	. 35
(15)	Condenser (00007 mid - mica)	5863	. 35
(16)	Resistor (15,000 ohms) (Brown-GreenOrange)	6208	. 25
(17)	Resistor ($50,000 \mathrm{ohms}$) (Green-BrownOrange)	4518	. 25
(18)	Resistor (39,000 ohms) (Orange-WhiteOrange)	33-1027	. 25
(19)	First I. F. Transformer	32-1289	. 60
(20)	Compensating Condenser (1st I. F. secondary)	04000-M	. 20
(21)	Second I. F. Transformer	06622	1.20
(22)	Compensating Condenser (2d I. F. primary).	04000-A	. 15
(2)	Resistor (50,000 ohnns) (Green-BrownOrange)	4518	. 25
(24)	Volume Control (350,000 ohms)	33-5065	1.00
(25)	Condenser ($09 \mathrm{mfd}$. tubular)	30-4122	. 35
(28)	Resistor (5,000 ohms) (Green-Black-Red)	3526	. 25
(27)	Resistor (2 meg. Red-Black-Green)	5872	. 25
(28)	Resistor (1 meg. Brown-Black-Green).	4409	. 25
(29)	Condenser (.00011 mfd.-mica)	30-1006	35
(30)	Condenser (.00011 mfd-mica)	30-1006	. 35
(31)	Condenser (01 mfd tubular)	30-4124	25
(32)	Condenser (00025 mfd --mica)	3082	. 35
(33)	Condenser (01 mfd tubular)	30-4145	25
(34)	Resistor (5 meg.) (Yellow-White-Yellow)	4517	. 25
(33)	Resistor (70,000 ohme) (Violet-Black-()range)	5385	. 25

	on Figs. and $7 \quad$ Description	Part No.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
(36)	Resistor (70,000 ohms) (Violet-Black-Orange)	5385	\$0.25
(3)	Condenser (.25 mid dubular)	30-4134	. 45
(38)	Resistor (25,000 ohms) (Red-Green-Orange)	33-1013	. 25
(39)	Condenser (09 mfd .) (Bakelite block type).	4989-AL	. 35
(40)	Tone Control.	06764	. 50
(4)	Condensers	Part of (40)	
(42)	Output Transformer (For K-26 apkr.)	32-7042	95
(43)	Voice Coil and Cone (For K-26 spkr.)	36-3174	. 40
(4)	Field Coil and Pot Assembly (K-26)	36-3306	2.85
(4)	Resistor (Pilot light) (27 ohms)	33-3132	. 20
(46)	Pilot Lamp	4567	. 12
(47)	Line Fusea (Located in line plug) (3 amp .)	45-2046	ea. 06
(4)	Filter Choke.	32-7213	1.60
(4)	Condenser (Electrolytic-8 mid. wet)	30-2026	1.50
(5)	Condenser (Electrolytic-8 mfd. dry)	30-2014	1.70
(31)	Condenser (.05 mfd tubular)	-4020	. 35
(52)	B. C. Resistor (235-32 ohms)	7998	. 20
(53)	Condenser (.09 mfd . tubular)	30-4 122	. 35
(54)	Resistor (25 meg .) (Red-Yellow-Yellow)	4410	25
(5)	Resistor (Flexible-300 ohnis)	33-3010	20
(56)	Condenser (. 09 mifd tubular)	30-4122	. 35
(57)	Condenser (.09 mfd . tubular)	30-4122	. 35
	Speaker Plug Socket.	4957	10
	Line Plug Arsembly with Cord (Less furee)	L-1738	. 85
VIBRATOR AND RECTIFIER UNIT			
(58)	R. F. Choke (Low voltage)	32-1375	\$0.40
(59)	R. F. Choke (High voltage)	32-1348	30
(60)	R. F. Choke (High voltage)	32-1348	30
(61)	Condenser (.01 mifd tubular)	30-4145	25
(62)	Contenser (05 mfd. tubular)	30-4020	35
(83)	Power Tramsformer	32-7218	4.95
(64)	Condenser (5 mfd .-. 5 mfd -mietal case)	30-4155	85
(6)	Condenser (05 mfd tubular)	30-4020	35
(6)	Resistor (30 ohms flexible wire wound)	33-3119	25
(67)	Resistor (30 ohms flexible wire wound).	33-3119	25
(68)	Condenser (. 05 mid . tubular)	30-4020	35
(69)	Condenser (.00041 mfd.-mica)	Inside 71	
(70)	Resistor (2,000 ohms)	Inside 71	
(7)	Vibrator Unit	38-5640	6.00

PHILCO RADIO \& TELEVISION CORP.

FIG. 3-Tube Socket Layout (View of Underside)

ADJUSTING MODEL 34

The compensating condensers of Model 34 have been adjusted accurately before shipment. If later adjustment is required, in most cases only the intermediate frequency and low frequency compensating condensers should be done. Extreme care must be given the adjustment of the high frequency circuits, and the adjustment should NOT be undertaken unless the receiver is seriously out of alignment.

DO NOT ATTEMPT TO ADJUST the compensating condensers mounted upon sections numbered 3 and 4 of the Tuning Condenser Assembly. These have been adjusted, and sealed, at the factory.

Philco Model 048 All-Purpose Set Tester, which incorporates a signal generator covering broadcast and police band frequencies, is recommended for the adjustment of the intermediate frequency and low frequency compensating condensers.

Philco Model 091 crystal-controlled Signal Generator is recommended for the high frequency adjustments. It gives an accurate and constant 3600 kilocycle (3.6 megacycle) signal, the harmonics of which include the necessary high frequencies for adjusting the compensating condensers in the high frequency circuits.

1-ADJUSTMENT OF THE INTERMEDIATE FREQUENCY-Remove the grid clip from the type 1C6 tube and connect the "ANT" output terminal of the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.

Connect the output meter to the primary terminals of the output transformer. Set the signal generator at 460 K.C. (the intermediate frequency of Model 34) and adjust each of the I.F. compensating condensers in turn, to give maximum response in the output of the receiver. The location of the I.F. compensating condensers is shown in Figure 2. Each of these transformers has a dual compensating condenser mounted at its top, and accessible thru a hole in the top of the coil shield. In the dual compensators, the Primary circuit is adjusted by turning the screw; the Secondary circuit is adjusted by turning the hex-head nut.

2-ADJUSTMENT OF THE WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 1C6). Connect the output leads from the signal generator directly to the antenna and ground terminals of the receiver. Set the Wave-Band Switch of the receiver to the standard broadcast band (Range 1) and the Station Selector at the low frequency ($520 \mathrm{~K} . \mathrm{C}$.) end. Adjust the Wave Trap (2) condenser to give MINIMUM response to a 460 K . C. signal from the signal generator. The Wave Trap (2) is located at rear and underneath the chassis, and is shown in Figures 2 and 5. It is reached from the rear of the chassis.

3-ADJUSTMENT OF THE DIAL FREQUENCIES -Model 34 has four separate frequency bands or ranges, each obtained by one of the four positions of the waveband switch. There is a compensating condenser for each
range, which must now be adjusted. In the following procedure, the frequency ranges referred to, and obtained by the different positions of the switch are

Range 1	. 520 K.C.-1500 K.C.
Range 2.	1.5 M.C.-4.0 M.C.
Range 3.	4.0 M.C. -11.0 M.C.
Range 4.	11.0 M.C.-23.0 M.

Connect the output terminals of the Model 091 or equivalent Signal Generator, to the "ANT" and "GND" terminals of the receiver chassis. Connect an output meter to the primary terminals of the Output Transformer of the receiver. Set the Wave-Band Switch to Range 4, and the Station Selector at 21.6 M.C. The sixth harmonic of the 3.6 M.C. crystal in the Model 091 Signal Generator is picked up at this point. Adjust the compensating condenser (1b) on Section 1 of Tuning Condenser for maximum response in the output of the receiver.
Turn the Wave-Band Switch to Range 3, and the Station Selector to 10.8 M.C. Here, the third harmonic of the 3.6 M.C. crystal will be heard. Adjust the compensating condenser (16) on Section 2 of Tuning Condenser for maximum response in the output of the receiver.

Turn the Wave-Band Switch to Range 2, and adjust the Station Selector to 3.6 M.C. The "Antenna" connection between the Signal Generator and the receiver chassis must be removed for this adjustment, otherwise the output of the Signal Generator will be too great. Adjust the compensating condenser (12) to give maximum response in the output circuit. This compensating condenser is located underneath the chassis and is not accessible from above. See Figure 5.
This concludes adjustments requiring the Model 091 (or equivalent) high frequency signal generator.

The Model 048 or its equivalent is now used again. Turn the Wave-Band Switch of the set to Range 2 and the Station Selector to 1.5 M.C. Set the, Signal Cenerator at 1500 K.C. Make sure the "Antenna" connection between the Signal Generator and the Chassis has been restored. Adjust compensating condenser (iib located underneath the chassis, (Figure 5). Adjustment is made from the underside of the chassis.
Tune the Wave-Band Switch to Range 1 and the Station Selector to 1400 K.C. Set the Signal Generator at 1400 K.C. Adjust compensating condenser (10), which is located underneath the chassis. (See Figure 5). This adjustment is made from the underside of chassis.

Finally, with Wave-Band Switch at Range 1, and Station Selector at 520 K.C., set the Signal Generator at 520 K.C. and adjust compensating condenser (18) (Figure 5). This compensating condenser is also mounted underneath the chassis, and reached from below.

For proper and accurate adjustment of Model 34, the procedure must be followed exactly in the order given. The adjustment should not be undertaken without proper equipment as mentioned above.

PHILCO RADIO \& TELEVISION CORP.

MODEL 34,34-A
Chassis Layout
Parts List

FIG. 5-Bottom View of Chassis, Showing Parts, and Position of Compensating Condensers Reached from Below Chassis

MODEL 34 PARTS

Starting with Run No. 4, the antenna and ground Fahnestock clip

 terminals will be replaced with insulated wire leads. This is done to better meet Underwriters' requirements.Starting with Run No. 5 , Model 32 will use a type 77 detector-oscillator tube instead of a type 36. This change gives more stable performance of the oscillator.

This change involves using a six-hole tube socket instead of the original five-hole socket used for type 36. It also requires making the following substitutions:

Part (15), No. 6208 resistor (15,000 ohms) is replaced by 33-1114 (8000 ohms)
Part (15), No. 5863 condenser (700 Mmfd) is replaced by 7007 (1400 Mmfd)
On page 3, correct Part No. of (24) Volume Control is 30-5063, instead of 30-5055.
(List price given (81.00) is correct.)

Model 34

Correct list price of Part (36), 36-3157 voice-coil and cone-assembly, KR-6 speaker, to read 0.75
Starting with Run No. 3, Model 34 will be equipped with a 4-point tone control instead of a 2 -point. The part No. of the new control is $30-4168$ which replaces $30-4152$.

Model 38-122

This model will use a new output transformer, Part No. 32-7286. This replaces No. 2565 formerly used.

Referring to change notice of July 1st regarding ballast tube shunt resistor on Model 38-122, the correct part number of the 20 ohm resistor used will be $33-3043$ instead of $33-3160$.

A new ballast tube shunt resistor will be used in production effective this date. This will be part No. 33-3160, 20 ohms, instead of part No. 7155,30 ohms. This gives a slight (desirable) increase in filament voltage.

Model 45

Starting with Run No. 5, the cathode resistor on 6A7 tube, Part No. (2) on diagram will be changed from Part No. 6977 (500 ohms) to $33-3016$ (400 ohms). This is to prevent variation in output of sets due to variation in 6A7 tubes.

Starting with Run No. 6, electrolytic condenser (\%) and (9art No. 30-2028) is replaced by No. 30-2079, same capacity but higher voltage rating.

Starting with Run No. 8, electrolytic condenser (see Service Bulletin 191) will be changed from part No. 30-2020 to $\mathbf{3 0 - 2 0 2 6}$. Same capacity (6 mfd .), higher voltage rating.

Both Codes 121 and 122 on this model will now use bypass condenser 3615-W for part @. This change was made to simplify assembly on this model and does not affect performance.

Models 45 © 29

Effective July 1st, mica condenser (10) on wiring diagram of Model 29 was changed from Part No. 7301 to $30-1028$. No change in capacity; ohange to facilitate wiring only.

Effective July 1st, a new wave-trap will be used in this model. Part (1) on wiring diagram of Model 29 is changed from Part No. 38-5199 to 38-5995. The new wave trap uses an improved construction which facilitates production.

Model 45

Philco Model 45 is a six tube receiver operating on alternating current and capable of receiving either standard and police broadcasts between 540 and 1720 kilocycles, or short-wave stations between 4.2 and 13 megacycles. The left hand side of the dial is calibrated in kilocycles for standard reception and the right in megacycles for short-wave stations. A two-position switch changes reception from standard to short-waves.

Model 45 uses a type 6-A-7 detector-oscillator, two type 39-44 I. F. Tubes, type 75 2d detector, type 42 output tube, and type 80 rectifier. The power consumption is 65 watts. The intermediate frequency is $460 \mathrm{~K} . \mathrm{C}$.

Power Transformer Voltages

Termanals	Volts	Ciroult	Color Leads
$1-2$	120	Primary	White
$3-4$	5.0	Fil. of 80	Blue
$5-7$	680	Platoe of 80	Yellow
$8-10$	6.3	Filamenta	Black
6	\ldots	Center of 5-7	Yellow-Green tr.
0	\ldots	Center of $8-10$	Black-Yellow tr.

Tube Socket Voltages

CIRCUIT	$\begin{aligned} & \text { Det. } \\ & \text { osec. } \end{aligned}$	$\begin{aligned} & \text { let } \\ & \text { If } \end{aligned}$	$\begin{gathered} 28 \\ i f \end{gathered}$	$\begin{aligned} & 20 \\ & \text { Det. } \end{aligned}$	OutPut	Rect.
Type Tube	Q 47	3044	39-44	75	42	80
Filament (F to F)	6.3	8.3	8.3	6.3	6.3	5.0
Plate (P to K)	260	253	265	175	250	335
Screen Grid (SG to K)	$\begin{aligned} & \mathrm{G} 1-35 \\ & \mathrm{G} 2-135 \\ & \mathrm{G} 345-85 \end{aligned}$	73	75	\ldots	200	-..
Cathode ($\mathrm{K}_{\text {to }} \mathbf{F}$) $\ldots .$.	4.2	3.8	3.8	0	0	\ldots

The above testa were made with an AC voltmeter for flament voltages and a high resiatance DC voltmeter for all others. Dial at $B 50$ KC, volume control at ehassia. Line voltage 115

Adjusting Compensating Condensers

For adjustment of compensating (padding) condensers in model 45. an accurately calibrated signal generator and a special insulated padding wrench are needed. We suggest the Philco Model 024 Signal Generator or the 048 Tester which includes a similar instrument.
The chassis must be removed from cabinet in order to make all adjustments.

Adjustments are made in the following order-
ADJUSTMENT OF THE INTERMEDIATE FRE-QUENCY-Remove the grid clip from the type 6A7 tube and connect the "ANT" output terminal of the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.

Connect the output meter to the primary terminals of the output transformer. Set the signal generator at $460 \mathrm{~K} . \mathrm{C}$. (the intermediate frequency of Model 45) and with the receiver and sigaal generator turned on, the wave band switch at left and dial at 600 K.C., adjust each of the I. F. compensating condensers in turn, to give maximum response in the output of the receiver. The three pairs of I. F. compensating condensers are located one pair at the top of each of the three I. F. transformer shields. These are the three metal "cans" near the rear of the chassis. Each of the transformers has a dual compensating condenser mounted at its top, and accessible thru a hole in the top of the coil shield. In the dual compensators, the Primary circuit is adjusted by turning the screw; the Secondary circuit is adjusted by turaing the hex-head nut.

ADJUSTMENT OF THE WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 6A7). Connect the output leads from the signal generator directly to the antenna and ground terminals of the receiver. Set the Wave-Band Switch of the receiver to the standard broadcast band (left hand position) and the Station Selector at the low frequency ($540 \mathrm{~K} . \mathrm{C}$.) end. Adjust the Wave Trap condenser to give MINIMUM response to a $460 \mathrm{~K} . \mathrm{C}$. signal from the signal generator. The Wave Trap (1) is located at rear and underneath the chassis, and is shown in Figure 4. It is reached from the rear of the chassis, by inserting the fibre wrench thru the bole near right-hand rear corner of chassis.
DETECTOR, AND OSCILLAATOR "HIGH"AND "LOW" FREQUENCY ADJUSTMENTS--The "antenna" and "oscillator H. F." compensators are located on top of the tuning condenser assembly, reached from above.

Set the signal generator at $1500 \mathrm{~K} . \mathrm{C}$., tune in this signal on the set and adjust the antenns compensator (7) (nearest tuning control) to give maximum reading in the output meter.

Next adjust the oscillator H. F. condenser (11) (located on the other section of tuning condenser) to maximum reading.
Finally set the signal generator at 600, tune in this signal and adjust the oscillator "L. F. condenser", located underneath chassis (18) in Fig. 4) to maximum reading. This adjustment is reached thru the hole in top of chassis, between the two electrolytic condensers (left hand end of chassis when facing rear).

Fig. 1-Tube Socket Layout (underside)

PHILCO RADIO \& TELEV. CORP.

MODEL 49
Alignment Data
Parts List
Model 49 is a superheterodyne radio receiver designed for operation on 115 volts direct current (D. C.) only. Model 49 covers two bands of frequencies-from 530 to 1720 KC and from 4.2 to 12.0 megacycles. This gives either standard or short wave reception by turning the wave-band switch on the panel. The intermediate frequency (I. F.) of the set is 260 kilocycles. The power consumption of Model 49 is 50 watts. The receiver uses the following tubes: Type 6A7 detector-oscillator; type 78, R. F.; type 78, I. F.; type 85 2nd detector-1st A. F.; type 76 driver; two (2) type 43 output tubes.

Adjusting Compensating Condensers

For adjusting compensating or padding condensers in Model 49, an accurately calibrated signal generator covering the broadcast range of frequencies is required and also a crystal controlled signal generator for the high frequency adjustments. For the former we suggest the Philco Model 024 Signal Generator and for the latter the Model 091, Crystal Controlled high frequency signal generator. The actual adjusting calls for a special insulated hex wrench and insulated screwdriver. Philco Part No. 3164 Fibre Wrench and No. 27-1159 Screwdriver are recommended. An output meter is also required, for connection to the receiver. Figs. 1 and 2 show the locations of the various compensating condensers.
I. F. ADJUSTMENT-The I. F. (intermediate frequency) of Model 49 is 260 K . C.

Remove the grid clip from the top of the 6A7 tube and connect the shielded antenna lead from the Signal Generator to the cap of this tube. Connect the ground lead of the Signal Generator to the ground post of receiver. Connect the output meter adapter leads to the plates of the output tubes (type 43) in the receiver. Set the wave-band switch at the left position (standard broadcast).

Set the wave switch of the Signal Generator at 260 K. C., and the dial of the receiver at 550 . Turn on the set (volume full on), and the Signal Generator. Now adjust the lat I. F. Primary and Secondary condensers (Nos. (21) and (23) in Fig. 2) and the 2d I. F. primary and secondary condensers ((20) and (28)) to give maximum reading on the output meter. The I. F. primary condenser is adjusted by turning the screw on top of the I. F. transformer and the secondary is adjusted by turning the nut. The I. F. transformers are in the smaller metal "cans". The screw and nut are reached through the hole in top. If the needle on the output meter goes off the scale, turn down the "attenuator" on the Signal Generator until a lower reading is obtained.

NOW REMOVE Antenna lead of signal generator from grid cap of 6A7 tube and reconnect it to antenna post of receiver. Replace cap on 6A7 tube.

ANTENNA, DETECTOR AND OSCLLLATOR H. F. (Broadcast)-These condensers Nos. (8), (12), and (14), are iocated on top of the tuning condenser gang (See Fig. 2) adjustment made by means of the fibre wrench. Set the signal generator at 1500 K . C., tune in the signal at 1500 on dial and adjust these condensers in the order given, to give maximum output reading. (8) is located on the section nearest the front and (12) on the center section.

OSCILLATOR-LOW FREQUENCY-This is condenser (17) (see Fig. 1) located underneath chassis and accessible from underneath. Use the fibre wrench. Set signal generator switch at 600 , tune in the signal at 600 on the dial and adjust condenser to maximum

ANT. AND OSC. H. F.-SHORTWAVE-The crystal controlled signal generator is used for these adjustments. These are condensers (4) (Ant.) and (15) (Osc. H. F.) located underneath chassis. (4) is adjusted from underneath, and (16) from above, thru hole in sub-base directly behind tuning condenser assembly. The fundamental frequency of the Philco Model 091 crystal controlled signal generator is 3600 K . C. or 3.6 megacycles. The third harmonic of this is 10.8 M. C. Turn the wave-band switch of the set to the right and the dial to just below 11 M . C. The 10.8 harmonic should be picked up here and the two condensers should be adjusted to give maximum reading on the output meter, on this signal.

REPLACEMENT PARTS

	on Doscription	Part No.	$\underset{\text { Price }}{\text { Llest }}$
(9)	Condenser (.05 Mfd. Tubular)	30-4020	35
(10)	Detector Transformer	32	90
(11)	Condenser (000015 Mica)	30-1030	35
(12)	Compensating Condenser (Det.)	Part of (5)	
(13)	Resistor ($160,000 \mathrm{ohms}$) (Brown-Blue-Y	5331	. 25
(14)	Compensating Condenser (Osc. H. F.)	Part of (5)	
(15)	Compensating Condenser (Os. S. W.)	31-6016	15
(16)	Oscillator Transformer	32-1428	70
(17)	Compensating Condenser (Osc. 1	000	45
(11)	Condenser (.003 Mfd. Mica)	30-1028	. 60
(19)	Condenser (00008 Mfd . Mica)	6021	35
(30)	Resistor (10,000 ohmg) (Brown-Black-Orange)	4412	25
(21)	Compensating Condenser (1st I. F. Primary)	Part of (22)	
(22)	First I. F. Transformer	32-1381	1.50
(2)	Compensating Condenser (1st I. F. Secondary)	Part of (22)	
(24)	Resistor 70,000 ohms (Violet-Biack-Orange)	33-1115	. 25
(23)	Condenser (. 09 Mfd. Bakelite Block)	4989N	. 35
(2)	Compensating Condenser (2d I. F. Primary)	Part of (27)	
(27)	2d I. F. Transformer	32-1424	1.60
(29)	Compensating Condenser (2d I. F. Seconda	Part of (27)	
(29)	Condenser (.00011 Twin Bakelite Block)	8035 E	25
(30)	Resistor (50,000 ohms) (Green-Brown-Orange)	609	. 25
(3)	Condenser (05 Mfd . Tubular)	30-4020	35
(3)		33-1097	25
(33)	Resistor (10,000 olims) (Brown-Black-Orange)	33-1000	25
(3)	Condenser (. 09 Mfd. Bakelite Block)	4989-P	35
(35)	Volume Control and On-Off Switch.	33-5024	1.45
(30)	Condenser (.05 Mfd . Bakelite Block)	615-H	. 35
(3)	Resistor (1 Meg.) (Brown-Black-Green)	33-1096	. 25
(38)	Rexistor (5 Meg .) (Yellow-White-Yellow)	6097	25
(39)	Condenser (Metal Case Block) (.2-75-.25-05-.09)	30-4144	1.30
(40)	Resistor (200 ohms Flexible Wire-Wound)	7217	20
(4)	Condenser (. 09 Mfd . Bakelite Block)	4989P	. 35
(4)	Shadowmeter	45-2042	2.50
(43)	Condenser (. 00011 Mfd . Mics)	30-1006	. 35
(4)	Condenser (. 05 Mfd . Bakelite Block)	3815AX	. 35
(45)	Resistor ($1 . \mathrm{Meg}$) (White-White-Orange)	6099	25
(4)	Resistor (. 5 Meg .) (Yellow-White-Yellow)	6097	25
(47)	Resistor (25,000 ohms) (Red-Green-Orange)	33-1013	5
(4)	Reesistor (.1 Meg.) (Yellow-White-Yellow)	6099	25
(4)	Tone Control.	30-4043	. 75
(50)	Condensers in Tone Control	Part of (19)	
(61)	Audio Tranaformer	32-7211	5.75
(62)	Condenser (. 006 Mfd. Bakelite Block)	7625-E	. 25
(38)	Output Transformer.	2550	1.75
(34)	Voice Coil and Cone Assembly	H-10 02625	. 80
		K-13 36-3159	50
(B6)	Field Coil and Pot Assembly	02745	\$4.25
(36)	Rexistor (10,000 ohms) (Brown-Black-Orange)	4412	. 25
(57)	Resistor ($50,000 \mathrm{ohms}$) (Green-Brown-Orange)	4518	25
(68)	Filter Choke	32.7213	1.60
(6)	Filter Choke	32-7018	1.50
(6)	B. C. Resistor (Wirewound:, 5.1-10.2-27.0-10.8 ohms).	33-3128	25
(61)	Pilot Lamp (Dial).	4567	. 09
(62)	Pilot Lamp (Shadowmeter)	Part of (4)	
(8)	Condenser (2.0 Mfd . Metal Case)	30-4140	. 80
(64)	Condenser (1.0 Mfd . Metal Case)	04357	75
(8)	Condenser (. 15 Mfd. Twin Bakelite Block)	6287-T	. 40
(6)	Condenser (. 09 Mfd . Twin Baketite Block)	4989AP	. 35
(6)	Reesistor (2900 ohms) (Red-White-Red)	5309	. 25
(18)	Reaistor (2 Meg.) (Red-Black-Green)	33-1025	
	Dial Assembly	31-1205	
	Dial Scale	27-5046	. 25
	Knob (large)	${ }^{27-4051}$	10
	Knob (amall)	27-4052	10
	Five Prong Socket	7546 7547	10 10
	Seven Prong Socket	27-6005	
	Chassis Mtg. Screw	W-1358A	2.60 C
	Chassis Mtg. Foot (Rubber)	27-4116	
	Chassis Mtg. Foot Plate	27-7497	${ }^{35} \mathrm{C}$.
	Chassis Mtg. Washe	29-2089	35 C .
	Speaker Socket	4957	. 10
	Cord \& Plug Assembly	Lr943A	

PHILCO RADIO \& TELEV. CORP.

Model 59

Philco Model 59 is a four-tube superheterodyne receiver operating on alternating current, capable of receiving standard broadcasts, and police calls on the first (lowest) police range. The tubes are as follows: Type 77 detector-oscillator, type 77 second detector, type 42 output and type 80 rectifier. The intermediate frequency is 460 K .C. The power consumption of model 59 is 52 watts.

Circult	$\begin{aligned} & \text { Det. } \\ & \text { Osc. } \end{aligned}$	2nd Det.	Output	Rectlfier
Type Tube	77	7	42	80
Filament Volts-F to F............	6.3	8.3	6.3	4.8
Plate Volts-P to K	235	45	235	300
Screen Grid Volts SG to K	110	35	250	\ldots
Control Grid Volts-CG to K............	10.5	. 25	. 25
Cathode Volto-K to F.	25	15	15	\ldots

Power Transformer Data

Terminal	A. C. Volts	Circult	Color
$1-2$	$105-125$	Primary	White
$3-5$	6.3	Filament	Black
$6-7$	5.0	Filament of 80	Blue
$8-10$	580	Plates of 80	Yellow
4	\cdots	Center Tap of 3 5	Black-Yellow Tracer
9	\ldots	Center Tap of 8-10	Yellow-Green Tracer

*All of the above readings were taken from the underside of the chassis, using test prods and leads with a suitable A. C. voltmeter for filament voltages and a high resistance multirange D. C. voltmeter for all other readings. Volume control at maximum and station selector turned to low frequency end. Readings taken with a plug-in adapter will NOT be satisfactory. The Philcc Model 048 All-Purpoes Set Teater is recommended for all tests of Model 59.

Fig. 1—Tube Socket Layout (Viewed from Bottom)

Adjusting Compensating Condensers

In Model 59 the I. F. primary and secondary condensers and the "regeneration" compensating condenser are located at the rear of chassis' and accessible from the rear; the "ANT" and "OSC H. F." are located on the side of the tuning condenser gang.

Referring to Fig. 3, the I. F. primary and secondary condensers (8) and (15) should be adjusted first. Use an accurate signal generator such as the Philco Model 024. Remove the grid cap clip from the detector-oscillator tube and connect the antenna lead from the signal generator to the eap of this tube. Connect the ground lead from the signal generator to the ground terminal of the set. Connect the primary terminals of the output transformer to an output meter. Set the frequency switch of the signal generator at 460 K .C. (the I. F. of model 59), and turn the switches of the set and signal generator on. Turn volume control full on. Turn the dial pointer on the set to 600, and then adjust the I. F. compensating condensers (8) and (15) by means of a fibre wrench so that maximum reading is obtained in the output meter. If the needle goes off scale, adjust the attenuator on the signal generator so that a lower reading is obtained.

Next adjust the ANT. and OSC. H. F. (high frequency) con-
densers (4) and (9) located on the tuning condenser gang. To adjust these condensers it is necessary to remove the chassis from the cabinet, necessitating removing back plate, base screws, knobs and pointers. Replace the grid clip on the 77 tube and connect the antenna and ground leads of the aignal generator direct to the antenna and ground terminals of the set. Set the signal generator switch at 1400 , turn the tuning condenser shaft until the rotary plates barely start to mesh with the stationary ones. Tune in the $1400 \mathrm{~K} . \mathrm{C}$. signal here and adjust condensers (4) and (9) for maximum output meter reading. When replacing the dial pointer, be sure it is mounted exactly as it was removed.
Finally adjust the regeneration condenser (16). With the set connected to an antenna, turn the station selector to receive a station at about 130 on the dial. With a screw driver turn the small fibre hex-head screw (which operates the regeneration condenser) located at rear of chassis below antenna and ground terminals, clockwise until the set squeals or oscillates. Then turn the hex-screw $1 / 4$ of a turn back until the squealing stops. Tune in other stations on different points on the scale to make sure that the squealing is eliminated. It will be necessary to readjust this condenser if a different type 77 tube is used for second detector.

No. on Diagram Item	Part No.	List Price
(1) Volume Control and On-Off Switch..........	33-5057	\$1.40
(2) Antenna Transformer.	32-1388	45
(3)* Tuning Condenser Assembly	31-1190	2.75
(4)* Compensating Condenser-Ant.	Part of (3)	
(5) Resistor (6.000 ohms-Blue-Black-Red).	7352	25
(6) Condenser (. 0014 Mfd --Mica).	7007	35
(3) Oscillator Transformer.	32-1389	. 40
(8) Compensating Condenser (I. F. Irimary).	04000-A	. 15
(9)* Compensating Condenser (Ose. H. F.)	Part of (8)	
(10) Kesistor (25,000 ohms-Red-Green-Orange)	3656	. 25
(11)* Condenser (. 09 twin--Black Bakelite)	4989-C	40
(12) Resistor (20,000 obmo-Red-Black-Orange)	6650	. 25
(13) I. F. Transformer	32-1155	1.20
(14)* Rexistor (4 Megohms-Yellow-Black-Green).	6010	. 25
(16) Compensating Condenser (I. F. Secondary).	04000-D	. 15
(16) Compensating Condenser (Regeneration).	04000	20
(17) Resistor (1 Megohm-Brown-Black-Green).	33-1096	. 25
(18) Resistor (10,000 ohms-Brown-Black-Orange).	33-1000	. 25
(19) Condenser (.015-0001 Mrd. Block type)	7762-B	. 30
(20) Resistor (250,000 ohms-Red-Yellow-Yellow).	33-1097	. 25
(21) Resistor (500,000 ohms--Yellow-White-Yellow)	6097	25
(22)* Condenser (.006 Mfd. Blook type).	$7625-\mathrm{E}$. 25
(23)* Output Transformer	32-7041	. 95
(24)* Voice Coil and Cone Assembly	36-3029	. 75
(25)* Field Coil and Pot Assambly	38-3081	1.75
(86)* Pilot Lamp.	6608	. 11
(27) Power Transformer	32-7064	3.15
(28) Condenser (015 Mfd Twin)	3793-R	. 40
(29) Condenser (015 Mfd .).	See Note	
(30) Resistor (Wire wound 325 ohms)	7465	. 15
(31) Condenser (Electrolytic 8.0-4.0 MId.)	30-2013	1.95
Tube Shield.	28-1107	. 10
Four Prong Tube Socket	7544	. 10
Six Prong Tube Socke	7547	. 11
A. C. Cord and Plug.	L-943A	. 60
Dial Scale.	27-5023	. 15

Nute A: Condenser (29) not used in production.

MODEL 66

PHILCO RADIO \& TELEV. CORP.
Alignment Data
Voltage
Parts List

Model 66

Model 66 is a five-tube superheterodyne radio receiver, capable of receiving either standard broadcasts (and police calls up to $1720 \mathrm{~K} . \mathrm{C}$.), or short-wave stations within a frequency range of 5.5 to 16.0 megacycles. The frequency range on standard broadcast is $540-1720$ kilocycles.

The tubes used are: Type 6A7 detector-oscillator, type 78 intermediate frequency, type 752 d detector, type 42 output and type 80 rectifier. The intermediate frequency of the Model 66 is 460 K.C. and the power consumption is 60 watts.

Adjusting Compensating Condensers

The adjustment of the compensating condensers in Model 66 Receiver requires the use of an accurate signal generator such as Philco Model 024, an efficient output meter (Philco Model 012 or Model 025 are recommended), and a suitable fibre hex wrench. Connect the output meter to the plate and cathode prongs of the 42 output tube.

Adjustments are made in the following order:
(1)-I. F. (Intermediate Frequency)-Remove grid clip from cap on 6A7 tube and connect antenna lead from signal generator to cap of tube. Connect ground lead to ground post on set. Turn on set and signal generator; set wave switch of latter to 460 K . C. (the I. F. of Model 66) and dial of set at 540 , wave band switch to left. Adjust each of the four I. F. compensating condensers (17), (19), (32) and (24) in turn so that maximum reading is obtained in the output meter. If the meter reading goes off scale, adjust the attenuator on the signal generator so as to get a lower reading. These I. F. condensers (visible in Fig. 4) are adjusted by inserting the
hex wrench thru the holes in rear of chassis sub-base (except one to extreme left when facing rear of set). Two of the holes are covered by small metal buttons which can be removed temporarily by hand.
(2)-WAVE TRAP-Replace grid clip on cap of 6A7 tube and connect antenna lead from signal generator to antenna post on set. Set signal generator at 460 K . C. and adjust wave trap (1) so as to get MINIMUM reading in output meter.
(3)-ANT. and OSC. H. F.-These adjustments (7) and (i1) are located on top of the tuning condenser assembly at right (facing front of set) and adjusted from above. The "ANT" (7) is nearest front of set. Set signal generator at 1700 and dial of set at 1700 and adjust these two condensers to get maximum output meter reading.
(4)-OSC. L. F.-This condenser (13) is located underneath chassis (see Fig. 4) and is reached from underneath. Set dial of set and signal generator switch at 600 , and adjust for maximum reading.

Replacement Parts for Model 66

Tube Socket Voltages-Line Voltage 115

Tube	6A7	78	75	42	80
Circult	Det. Osc.	1. F.	2d Det.	Output	Rect.
Filament (F-F)	6.3	6.3	6.3	6.3	5.0
Plate (P-K).	260	260	160	- 250	340
Screen (SG-K)	85	85	\ldots	260	
Cathode (K-H).	2.1	2.2	0	0	\ldots

No. on Figs.	Descriptlon	Part Ne.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
(28)	Resistor (70,000 ohms) (Violet-Black-Orange)	33-1115	25
(28)	Resistor (70000 ohms) (Violet-Black-Orange)	33-1115	25
(30)	Condenser (.00011 Mid. Mica)	30-1006	. 35
(31)	Condenser (. 02 Mfd . Tubular).	30-4113	. 3
(32)	Resistor (500,000 ohms) (Yellow-White-Yellow)	6097	2
(33)	Tone Control	30-4192	. 5
(34)	Condensers in Tone Control	Inside (33)	
(35)	Output Transformer	32-7019	. 2
(36)	Voice Coil \& Cone Assembly (S-12)	36-3014	60
(37)	Field Coil and Pot. Assembly (S-12)	36-3341	2.75
(38)	Resistor (2 Megohms) (Red-Black-Green)	33-1025	25
(39)	Volume Control and On-Off Switch.	33-5006	1.4
(40)	Condenser (. 01 Mfd .) (Bakelite Block)	$3903-\mathrm{AB}$	
(41)	Resistor (1 Megohm) (Brown-Black-Green)	33-1096	
(42)	Condenser (11 Mfd)	30-4122	3
(43)	Resistor (. 1 Meg.) (White-White-Orange)	6099	25
(4)	Resistor (B C. Wire-wound) (22-235 ohmis)	33-3037	20
(45)	Resistor (1 Meg.) (White-White-Orange)	6099	80.25
(46)	Condenser (.05 Mfd . Tubular)	30-4123	35
(47)	Resistor (37,000 ohms) (Orange-Violet-Orange).	33-1098	. 35
(48)	Filter Choke	32-7018	1.50
(49)	Condenser (Electrolytic-6 Mfd.)	30-2021	1.5
(50)	Condenser (Electrolytic-8-8 Mfd.)	30-2028	2.4
(51)	Condenaer (. 09 Mfd. Bakelite Block)	4989-D	. 3
(52)	Power Transformer	8046	3.4
(6)	Condenser (.015 Mrd. Bakelite Block)	3793-W	.
(5)	Condenser (. 05 Mfd . Tubular)	30-4020	.
(55)	Dial Light.	6608	. 1
	Four Prong Socket.	7544	. 10
	Six Prong Socket	7547	. 1
	Seyen Prong Socket.	27-6005	1
	Tube Shield.	28-1107	. 10
	Chassis Mounting Screw	W-567	3.00 C
	Chassis Mounting Washer (Metal).	W-315	. 500
	Chassis Mounting Washer (Rubber).	5189	. 0
	Knob (Large)	27-4051	. 10
	Knob (Small).	27-4052	1
	Dial Assembly.	31-1234	. 30
	Dial Scale.	27-5057	. 1
	A. C. Cord and Plug Assembly. .	- ${ }^{3} \mathrm{~A}$. 00

PAGE 5-32 PHILCO

Model 49

A change in the Shadowmeter Circuit on this model becomes effective with Run No. 4. This is in order to reduce the current thru the shadowmeter.

Referring to Figure 3 of Service Bulletin No. 199, the lead from the primary of (2nd I. F. transformer) is removed from one side of the Shadowmeter (42) and connected to the other side. Resistor (0), Part No. 5309 is omitted.

In list of tubes for Model 49 (DC), correct to read 2 type 78 instead of 3.

Starting with Run No. 3, Part (1), 3615AX By-Pass Condenser will be replaced with 3615BB. This change facilitates wiring in the factory.

Model 66

Starting with Run No. 9 the following changes in compensating condensers will be made, which will make padding adjustments less critical.

Replace condenser (17), 04000 M with an 04000 J , and condenser (10) 04000 M with an 04000 A .
Connect a mica condenser, Part No. 30-1029 (.00005 mfd.) across (10).

Effective July lst, a new wave trap will be used. Part (1) in diagram will be Part No. 38-5994 instead of $38-5199$ previously used. The new wave trap uses an improved construction which facilitates mounting.

Starting July 10th, a 70 -ohm wire wound resistor Part No. $33-1129$ will be added. Connected in series with condenser (14) on the oscillator coil side. This will prevent oscillation at extreme high frequency end of the short wave band.

The part number of the Tone Control on Model 66 will be $30-4212$ instead of $30-4192$ previously used. No change in wiring needed. The new Tone Control gives a slight desirable increase in response to high notes.

Effective August 1st, a 50 Mmfd. Mica Condenser, Part No. 30-1029 was added across the secondary of the 2nd I. F. Transformer. This makes adjustment of the 2nd I. F. Padder smoother and easier.

At the same time a 20,000 Ohm Resistor, Part No. 6650 was added, connected between the arm of the wave-band switch and the grounded junction of (B) and () This corrects any tendency toward oscillation on the high end of the short-wave band.

A $70-\mathrm{Ohm}$ flexible wire-wound resistor is also added, Part No. 33-3027, connected in series between condenser (14) and the upper end (on diagram) of the oscillator transformer plate winding.

CURRENT MODELS--IMPROVEMENT IN COMPENSATING CONDENSER

To prevent any tendency to "Frequency Drifting" in current models, a bakelite washer and a metal washer are now being used on top of the Compensating Condenser, in place of the fibre washer previously used.

Part No. of bakelite washer is 27-4109, and of the metal washer (placed on top of bakelite) is W-1331. These two replace the old fibre washer Part No. 3500.

MODEL 118

Incorrect cut was used by printer for Fig. 2 of this Bulletin. Correct cut is reproduced herewith and is same as Fig. I of Instruction Book on Model 118.

Model 118

Correct price of dial scale, Part No. 27-5046 is

Effective with Run No. 8 on Code 121 and Run No. 2 on Code 123 (RX), the following parts on Model 118 will be changed. These changes are made to facilitate wiring. Note that resistors are not changed in value, but in current rating only. New resistors are $1 / 3$ watt rating.

No. on Bulletin 194	Old Part No.	New Part No.	No. on Bulletin 194	Old Part No.	Now Part No.
(9)	3615-BK	3615-AU	(1)	4517	6097
(1)	3615 -D	3615-AP (twin)	(1)	4409	38-1096
(1)	4517	6097	(4)	4410	33-1097
(6)	4412	33-1000	(6)	4411	6099
(10)	5385	33-1115	(0)	4519	30-1031
(0)	4518	6098	(10)	30-4020	Included in (19)
(13)	5872	38-1025			

In the Model 118A (25 Cycle Model) the part numbers of parts which differ from the 60 Cycle Model are

$$
\begin{aligned}
& \text { (20) Power Transformer } 32-7112 \quad \$ 8.00 \text { list price } \\
& \text { (72) Condenser } 30-4093(1.0 \mathrm{Mfd} \text {) } \quad 0.60 \text { list price }
\end{aligned}
$$

Also add a condenser, . 1 Mfd . Tubular, Part No. 30-4122 connected across field coil of Speaker.

Model 118 (Code 123-RX)

Replacement parts on Model 118-RX which differ from other 118 models are as follows:

\quad No. on Bulletin 194	Model 118	118-RX
(34) Electrolytic condenser	$30-2025$	$\mathbf{3 0 - 2 0 1 4}$
(6) Tuning condenser	$31-1173$	$\mathbf{3 1 - 1 2 4 2}$
Dial essembly	$31-1205$	$\mathbf{3 1 - 1 2 4 1}$
Dial scale	$\mathbf{2 7 - 5 0 4 6}$	$\mathbf{2 7 - 5 0 5 8}$

Model 118-RX uses a type HR-2 speaker, which is equipped with a 25^{\prime} cable-and-plug assembly, part No. 36-3327.

The A. C. cord on Model $118-\mathrm{RX}$ is a flat cable and contains an extra wire, which is for use as an antenna lead by connecting the antenna to the binding post mounted on the side of the special flat A. C. plug used. However, the antenna may be connected to the regular antenna clip terminal on the receiver chassis if desired and more convenient.

The part number of this special cable and plug assembly is 41-3104.

Model 118

Philco Model 118 is an eight tube superheterodyne radio receiver operating on alternating current (A. C.) and designed for reception on either the standard broadcast band (including police bands up to 1720 K . C.), or a major section of the short wave band. A two-position switch changes reception from broadcast to short-wave. The frequency ranges are 540 to 1720 K . C. and 4.2 to 12 megacycles.

Model 118 is equipped with shadow-tuning, four point tone control with fixed bass compensation, and automatic volume control. The power consumption is 110 watts and the undistorted output of the Super Class "A" Amplifier is 10 watts. The intermediate frequency (I. F.) is 260 K . C.

Model 118 is equipped with the following tubes:

R. F.	Type 78
Detector-Oscillator	Type 6A7
I. F.	Type 78
2d Det. 1st A. F.	Type 75
Driver	Type 42
Output tubes (2) (Connected as triodes)	Type 42
Rectifier.	. Type 80

Replacement Parts for Model 118

No. onDiagram		Part No.$38-5740$	List Price .45	No. on Diagram		Part No.4518	List Price $\$ 0.25$
(1)	Wave Trap			(45)	Reaistor (50,000 ohms) (Green-Brown-Orange).		
(2)	Compensating Condenser (Ant.-H. F.)	04000D	$\$ 0.15$	(46)	Condenser (Electrolytic 1, 1, 1, and 2 Mfd .)..	30-2078	2.45
(3)	Resister (10,000 ohms) (Brown-Black-Orange)	$33-1000$. 25	(47)	Resistor (.1 Meg.) (White-White-Orange)	4411	. 28
(4)	Antenna Transformer	32-1378	1.00	(48)	Resistor (. 5 Meg.) (Xellow-White-Yellow)	4517	. 25
(3)	Wave Band Switch.	42-1046	80	(49)	Condenser (. 015 Mfd. Bakelite Block)	3793F	. 35
(6)	Tuning Condenser Assembly	31-1173	6.25	(50)	Condenser (.0001 Mfd. Mica).	4519	. 35
(7)	Compensating Condenser (Ant.-Broadcast).	Part of (B)	(51)	Tone Control.	30-4186	. 75
(8)	Resistor (400 ohms Flexible Wire-Wound).	33-3010	. 20	(52)	Condensers (In Tone Control)	Part of (51)	
(9)	Condenser (.05 Mfd.) (Bakelite Biock)	3615 BK	. 35	(53)	Condenser (. 006 Mfd . Tubular)	30-4024	. 40
(10)	Resistor (70,000 ohms) (Violet-Black-Orange)	5385	. 25	(54)	Input Transformer.	32-7114	2.00
(11)	Condenser (. 05 Mfd) (Tubular)	30-4020	. 35	(55)	Resistor (10,000 ohms) (Brown-Black-Orange)	3524	. 25
(12)	Detector Tranaformer.	32-1379	. 70	(56)	Condenser (. 01 Mfd . Bakelite Block)..	3903P	. 25
(13)	Condenser (.000015 Mfd.) (Mica)	30-1030	. 35	(57)	Output Transformer.	32-7078	1.40
(14)	Compensating Condenser (Det.)..	Part of (B)	(58)	Voice Coil and Cone Assembly	H-13-02625	. 80
(15)	Resistor (2 Meg.) (Red-Black-Green)	5872	. 25			K-17-36-3020	. 60
(18)	Coudenser (. 05 Mfd) (Bakelite Block)	3615 D	. 35	(59)	Field Coil and Pot Assembly	36-3104	2.70
(17)	Condenser (. 05 Mfd) (Tubular)	30-4020	. 35	(60)	Resistor (Wire-Wound) (6500 ohms)	33-3033	. 30
(18)	Resistor (300 ohms Flexible Wire-Wound)	33-3010	. 20	(61)	Resistor (Wire-Wound) (9.5, 112, 84 ohms).	33-3034	. 20
(19)	Condenser (. 05 Mfd .) (Tubular)	30-4020	. 35	(62)	Volume Control and On-Off Switch........	33-5024	1.45
(20)	Resistor (50,000 ohms) (Green-Brown-Orange).	4518	. 25	(83)	Condenser (.05 Mfd. Tubular)	30-4020	. 35
(21)	Compensating Condenser (Osc. H. F. Bdest.)	Part of (6)	...	(64)	Resistor (240,000 ohms) (Red-Yellow-Yellow)	4410	. 25
(22)	Compensating Condenser (Osc . H. F. Shortwave) .	31-6016	. 30	(55)	Resistor (10,000 ohms) (Brown-Black-Orange).	4412	. 25
(23)	Oscillator Transformer	32-1380	. 70	(66)	Condenser (. 025 Mfd . Bakelite Block)	7853 D	. 35
(24)	Condenser (. 0008 Mfd . Mics)	5878	. 35	(67)	Resistor (32,000 ohms) (Orange-Red-Orange)	33-1020	. 35
(25)	Resistor (20,000 ohms) (Hed-Black-Orange)	6850	. 25	(68)	Resistor (50,000 ohms) (Green-Brown-Orange).	4518	. 25
(26)	Resistor (20,000 ohms) (Red-Black-Orange).	6650	. 25	(69)	Condenser (.015 Mfd. Twin) (Bakelite Block).	3793R	. 40
(27)	Pilot Lamp (Station Sclector)	8608	. 11	(70)	Power Transformer	32.7111	5.75
(28)	Compensating Condenser (Osc. L. F.)	04000R	.45	(71)	Filter Choke..	32-7115	1.80
(29)	Condenser (.003 Mfd. Mica).	7301	. 45	(72)	Condenser (.25 Mfd.).	8287-R	. 40
(30)	Compensating Condenser (1st I. F. Pri.)	Part of (31)		(73)	Condenser (Elec. 8 Mfd .10 Mfd)	30-2045	1.95
(31)	lst I. F. Transformer..	32-1381	1.50	(74)	Condenser (Elec. 8 Mfd .)	30-2025	2.00
(32)	Compensating Condenser (1st I. F. See.).	Part of (31)	(75)	Compensating Condenser (2d I. F. Secondary)	Part of (38)	
(33)	Resistor (500 ohms Flexible Wire-Wound)	6977	. 20	(76)	Resistor (2900 ohms) (Red-White-Red)	5300	. 25
(34)	Condenser (.05 Mfd.) (Bakelite Block).	3615AU	. 35		Chassis Mtg. Screw...................	W-1345A	2.25 C .
(35)	Shadowmeter.........................	6497	2.50		Chassis Mtg. Washer. Chassis Mtg. Foot (Rubber)	29-2089 $27-4118$.35C
(36)	Shadowmeter Pilot Lamp.	Part of (35)		Chassis Mtg. Foot Plate ...	27-7497	. 350
(37)	Compensating Condenser (2d I. F. Pri.).	${ }^{*} 04000 \mathrm{~A}$. 15		Knob Assembly (Large)	27-4051	. 10
(38)	2d I. F. Transformer (Early Prod. 32-1258)	32-1424	\ldots		Knob Assembly (Small) Dial Assembly	$\begin{aligned} & 27-4052 \\ & 31-1205 \end{aligned}$.10 .50
(39)	Condenser (.0001 Mfd. Twin) (Bakelite Block).	8035-K	. 25		Dial Scale....	$31-1205$ $27-5046$. 8.50
(40)	Resistor (.1 Meg.) (White-White-Orange)	4411	. 25		Tube Shield...	28-1107	. 10
(41)	Condenser (. 01 Mfd. Bakelite Block).....	3903Z	25		4 Prong Socket	7544	. 10
(42)	Resistor (1 Meg) (Brown-Black-Green)	4409	. 25		6 Prong Socket 7 Prong Socket.	7547 $27-6005$. 11
(43)	Resistor (5 Meg.$)$ (Yellow-White-Yellow).	4517	. 25		Speaker Socket.	4957	. 11
	Condenser (. 09 Mid. Bakelite Block).	4989 D	. 35		A. C. Cord and Ping	L-943 A	. 60

PAGE 5-36 PHILCO
MODEL 118
Schematic
Socket Layout
PHILCO RADIO \& TELEV. CORP.

PHILCO RADIO \& TELEV. CORP.

Adjusting Compensating Condensers

For adjusting compensating or padding condensers in Model 118, an accurately calibrated signal generator covering the broadcast range of frequencies is required and also a crystal controlled signal generator for the high frequency adjustments. For the former we suggest the Philco Model 024 Signal Generator and for the latter the Model 091, Crystal Controlled high frequency signal generator. The actual adjusting calls for a special insulated hex wrench and insulated screwdriver. Philco Part No. 3164 Fibre Wrench and No. 27-1159 Screwdriver are recommended. An output meter is also required, for connection to the receiver.
I. F. ADJUSTMENT-The I. F. (intermediate frequency) of Model 118 is 260 K . C.

Remove the grid clip from the top of the 6A7 tube and connect the shielded antenna lead from the Signal Generator to the cap of this tube. Connect the ground lead of the Signal Generator to the ground post of receiver. Connect the output meter to the primary terminals of the output transformer of receiver. Set the waveband switch at the left position (standard broadcast).

Set the wave switch on the Signal Generator at 260 K . C., and the dial of the receiver at 550 . Turn on the set (volume full on), and the Signal Generator. Now adjust the 1st I. F. Primary and Secondary condensers (Nos. (30) and (32) in Fig. 3) and the 2 d I. F. primary and secondary condensers ((3) and (35)) to give maximum reading on the output meter. The I. F. primary condenser is adjusted by turning the screw on top of the I. F. transformer and the secondary is adjusted by turning the nut. The I., F. transformers are in the smaller metal "cans". The screw and nut are reached through the hole in top. If the needle on the output meter goes off the scale, turn down the "attenuator" on the Signal Generator until a lower reading is obtained.

Note: In early production the 1 st I. F. compensating condensers only are adjusted as
described above. Part (76) is not used. The 2d I. F. primary (3) is an 04000A condenser reached and adjusted through hole in top of chassis near the 42 driver tube.

WAVE TRAP-Remove antenna lead from grid cap of 6A7 tube and attach it to antenna post on set. Replace cap on 6A7 tube. With Signal Generator still operating at 260 K . C., adjust wave-trap condenser (1) in Figs. $3 \& 4$) so as to get MINIMUM reading in output meter. This adjustment is made from underneath the chassis.

ANTENNA, DETECTOR AND OSCILLATOR H. F. (Broadcast) - These condensers Nos. (7), (11), and (21), are located on top of the tuning condenser gang, adjustment made by means of the fibre wrench. Set the signal generator at 1500 K. C., tune in the signal at 1500 on dial and adjust these condensers in the order given, to give maximum output reading. (7) is located on the section nearest the front and (14) on the center section.

OSCILLATOR-LOW FREQUENCY-This is condenser (2) (see Figs. 3.and 4) located underneath chassis and accessible from underneath. Use the fibre wrench. Set signal generator switch at 600 , tune in the signal at 600 on the dial and adjust condenser to maximum.

ANT. AND OSC. H. F.-SHORTWAVEThe crystal controlled signal generator is used for these adjustments. These are condensers (2) (Ant. H. F.) and (22) (Osc. H. F.) located underneath chassis, and adjusted from underneath. The fundamental frequency of the Philco Model 091 crystal controlled signal generator is 3600 K. C. or 3.6 megacycles. The third harmonic of this is 10.8 M . C. Turn the waveband switch of the set to the right and the dial to just below 11 M . C. The 10.8 harmonic should be picked up here and the two condensers should be adjusted to give maximum reading on the output meter, on this signal.

Tube Socket Voltages-Line Voltage 115

Funetion	R.F.	$\begin{aligned} & \text { Dot. } \\ & \text { Osc. } \end{aligned}$	I.F.	A.F.	Drivar	Output		Rect.
Type	78	6A7	78	75	42	42	42	80
Filament (F-F) ...	6.3	6.3	6.3	6.3	6.3	6.3	6.3	5.0
Plate (P-K).	180	180	200	125	195	280	280	315
Screen (SG-K)......	80	175	80	\cdots	195	290	290	
Cathode (K to F) . .	2.5	2.6	3.2	0	0	0	0	\cdots
BA7. G^{1} to K.......	26							
6A7. $\mathrm{G}^{\text {a }}$ to K \ldots	150							

Power Transformer Voltages

Terminals	A.c. Volta	Clrcult	Color of Leads
$1-2$	120	Primsry	White
$3-5$	6.3	Filaments	Black
$6-7$	5.0	Filament of 80	Blue
$8-10$	760	Platea of 80	Yellow
4	\cdots	Center Tap of 3-5	Black-Yellow Tracer
9	\cdots	Center Tap of 8-10	Yellow-Green Tracer

The above tests were made with an A. C. voltmeter for filament voltagee and a high recistance D. C. voltmeter for all others. Dial at 550 K . C., wave band switch to left, volume control at maximum. Tents made with teat prode spplied to socketa underneath chassis. Philoo Model 048 All-purpoes Tester or Model 025 Circuit Tester are recommended for these tests. Use Fig. 1 in making tests given in left hand table above.

PHILCO RADIO \& TELEV. CORP.

Model 60

Effective August 1st, resistors (10) and (28) in wiring diagram of Model 60, Bulletin No. 164 will be changed from Part No. 4518 ($1 / 2$ watt) to Part No. 6098 ($1 / 3 \mathrm{watt}$). These changes are made to facilitate wiring in assembly.

Starting with Run No. 7, the following changes will be made. Note that a Wave Trap is added, necessitating several changes; other changes are to improve sensitivity.

Part No. (Fig. 3)	Remove	$\begin{gathered} \text { Add } \\ \text { 38-6073 Wave Trap } \end{gathered}$	Location In series with antenna post
(8)	4989-Z Condenser		
(7217 Resistor	(Bias Resistor, 300 Ohms, flex.)	Refer to Schematic Diagram
		33-3016 (Bias Resistor, 400 Ohms)	From 78 Cathode to Ground
		(Condenser .05 Mfd . Tubular	From 78 Cathode to Ground
(24)	3656 (25,000 Ohms)	33-1027 (39,000 Ohms)	Refer to Schematic Diagram
(37)	4412		
(10)	4518 (5,000 Ohms) $1 / 2$ Watt	6099 (99,000 Ohms) 1/3 Watt	Refer to Schematic Diagram
(3)	4517	6097	Refer to Schematic Diagram
(18)	04000M	04000J	Refer to Schematic Diagram
(20)	$\text { 30-4063 (.05-.09-.09-.5-. } 2 \text {) }$ $\text { (. } 2 \text { section not used) }$	$\begin{gathered} 30-4217 \\ (.05-.09-.09-.5) \end{gathered}$	(Filter block)

Model 89

Effective with Run No. 13 compensating condenser (B) on diagram (1st I. F. primary) will be a Part No. 31-6024 instead of 04000 M previously used.

The new condenser is of an improved construction which eliminates possibility of "frequency drift" or breakdown.

Starting with Run No. 14, Model 89 will use a type 77 tube as detector-oscillator instead of the type 36 tube previously used. This change results in more stable performance of the oscillator.

In addition to requiring the use of a six-hole socket for the detector oscillator tube instead of the 5 -hole previously used, the following changes are required:

Part (10), No. 6208 resistor (15,000 ohms) is replaced by No. 33-1114 (8,000 ohms).
Part (8) , No. 8174-B condenser (.09 and .0007 Mfd .) is replaced by No. 8322-B (. 09 and .0014).

Model 144

Effective with Run No. 6, electrolytic condenser (3) (see Bulletin No. 193) will be changed from part No. 30-2020 to 30-2026، Same capacity (6 mfd.), higher working voltage.

Starting with Run No. 7, Part (10) filter choke in Model 144 will be a 32-7018 instead of No. 5930 which has been used. This change is to adjust factory material lists and does not affect value of choke or performance of set.

The part number of the Shadowmeter to be used on the Model 144 will be 45-1106 instead of 6497 as listed on Bulletin 193. Change to identify in production.

On Fig. 3 (Schematic) fixed condenser (78) used in the bass compensation circuit, should be marked . 02 Mfd. (Part No. 30-4113). The list of parts on Page 3 of Service Bulletin 193 gives this part number and value, which is correct.

PHILCO PAGE 5-41

PHILCO RADIO \& TELEV. CORP.

Adjusting Compensating Condensers

The compensating condensers of Model 144 have been adjusted accurately before shipment. If later adjustment is required, in most cases only the intermediate frequency and low irequency compensating condensers should be done. Extreme care must be given the adjustment of the high frequency circuits, and the adjustment should NOT be undertaken unless the receiver is seriously out of alignment.

DO NOT ATTEMPT TO ADJUST the compensating condensers mounted upon sections numbered 3 and 4 of the Tuning Condenser Assembly (Fig. 5). These have been adjusted, and sealed, at the factory.

Philco Model 024, an accurately calibrated signal generator covering broadcast and police band frequencies, is recommended for the adjustment of the intermediate frequency and low frequency compensating condensers.

Philco Model 091 erystal-controlled Signal Generator is recommended for the high frequency adjustments. It gives an accurate and constant 3600 kilocycle (3.6 megacycle) signal, the harmonics of which include the necessary high frequencies for adjusting the compensating condensers in the high frequency circuits.

1-ADJUSTMENT OF THE INTERMEDIATE FREQUENCY-Remove the grid clip from the type 6A7 tube and connect the "ANT" output terminal of the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.

Connect an output meter to the primary terminals of the output transformer. Set the signal generator at 460 K .C. (the intermediate frequency of Model 144) and adjust each of the I. F. compensating condensers in turn, to give maximum response in the output of the receiver. The location of the I. F. compensating condensers is shown in Figure 5. Each of the I. F. transformers has a dual compensating condenser mounted.at its top, and accessible thru a hole in the top of the coil shield. In the dual compensators, the Primary circuit is adjusted by turning the serew; the Secondary circuit is adjusted by turning the hex-head nut.

2-ADJUSTMENT OF THE WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 6A7). Connect the output leads from the signal generator directly to the antenna and ground terminals of the receiver. Set the Wave-Band Switch of the receiver to the standard broadcast band (extreme left) and the Station Selector at the low frequency (520 K.C.) end. Adjust the Wave Trap (4) condenser to give MINIMUM response to a 460 K .C. signal from the signal generator. The Wave Trap (4) is located at rear and underneath the chassis, and is shown in Figures 4 and 5 . It is reached from the rear of the chassis.

3-ADJUSTMENT OF THE DIAL FREQUENCIESModel 144 has four separate frequency bands or ranges, each obtained by one of the four positions of the wave-band switch. There is a compensating condenser for each range, which must now be adjusted. In the following procedure, the frequency ranges referred to, and obtained by the different positions of the switch are:

Range	520 K.C.-1500 K.C.
Range 2.	1.5 M.C.-4.0 M.C.
Range 3.	4.0 M.C.-11.0 M.C.
Range 4.	11.0 M.C.-23.0 M.C

Connect the output terminals of the Model 091 or equivalent Signal Generator, to the "ANT" and "GND" terminals of the receiver chassis. Connect an output meter to the primary terminals of the Output Transformer of the receiver. Set the

Wave-Band Switch to Range 4, and the Station Selector at 21.6 M.C. The sixth harmonic of the 3.6 M.C. crystal in the Model 091 Signal Generator is picked up at this point. Adjust the compensating condenser (13) on Section 1 of Tuning Condenser for maximum response in the output of the receiver. Turn the Wave-Band Switch to Range 3, and the Station Selector to 10.8 M.C. Here, the third harmonic of the 3.6 M.C. crystal will be heard. Adjust the compensating condenser (14) on Section 2 of Tuning Condenser for maximum response in the output of the receiver.

Turn the Wave-Band Switch to Range 2, and adjust the Station Selector to 3.6 M.C. The "Antenna" connection between the Signal Generator and the receiver chassis must be removed for this adjustment, otherwise the output of the Signal Generator will be too great. Adjust the compensating condenser (12) to give maximum response in the output meter. This compensating condenser is located underneath the chassis and is not accessible from above. See Figure 4.

This concludes adjustments requiring the Model 091 (or equivalent) high frequency signal generator.

The Model 024 or its equivalent is now used again. Turn the Wave-Band Switch of the set to Range 2 and the Station Selector to 1.5 M.C. Set the Signal Generator at 1500 K.C. Make sure the "Antenna" connection between the Signal Generator and the Chassis has been restored. Adjust compensating condenser (19) located underneath the chassis, (Figure4). Adjustment is made from the underside of the chassis. Turn the Wave-Band Switch to Range 1 and the Station Selector to 1400 K.C. Set the Signal Generator at 1400 K.C. Adjust compensating condenser (18), which is located underneath the chassis. (See Figure 4). This adjustment is made from the underside of the chassis.

Finally, with Wave-Band Switch at Range 1, and Station Selector at 520 K.C., set the Signal Generator at 520 K.C. and adjust compensating condenser (18) (Figure 4). This compensating condenser is also mounted underneath the chassis, and reached from below.

For proper and accurate adjustment of Model 144, the procedure must be followed exactly in the order given. The adjustment should not be undertaken without proper equipment as mentioned above.

PHILCO RADIO \& TELEV. CORP.

Model 144

Philco Model 144 is a six-tube superheterodyne receiver operating on alternating current (A. C.) and designed for reception of any frequency from 520 K.C. to $23,000 \mathrm{~K} . \mathrm{C}$. (23 megacycles). It is equipped with shadow-tuning, four-point tone-control with fixed bass compensation; Model 144 has 5 watts output. The intermediate frequency (I. F.) is 460 K.C. Tubes used are the following Philco high-efficiency types:-

Detector-Oscillator.	Type 6A7
1st I. F.	.Type 78
2nd I. F.	. Type 78
2nd Detector 1st A. F	.Type 75
Output.	Type 42
Rectifier	.Type 80

The power consumption of model 144 is 70 watts.

REPLACEMENT PARTS - MODEL 144

	on \quad Description	Part No.	Llist Price	Nos. onDiagram		Part No.	List Price
(1)	Wave-Band Switch.	42-1045	\$3.60	(46)	Resisttr (4,000 ohms) (Yellow-Black-Red)	7832	\$0.25
(2)	Antenna Transformer (H, F. Bands)	32-1271	. 70	(47)	Resistor (1 Mes.) (Brown-Black-Green)...	4409	. 25
(3)	Tuning Condenser Assembly	31-1175		(48)	Condenser (.05 Mid. Bakelite Block)	3615-I.	. 35
(4)	Wave Trap.	38-5487	55	(49)	Resistor (100,000 ohms) (White-White-Orange)	4411	. 25
(5)	Condenser (.00025 Mica)	3082	. 36	(iv)	Hesistor BC (283 ohms, 21 ohms, Wire-Wound)	33-3069	. 25
(6)	Compensating Condenser (Ant. H. F.)	Part of (3)		(51)	Resistor (32,000 ohms) (Orauge-Red-Orauge)	3525	. 25
(7)	Compensating Condenser (Ant. Broadcast)	Part of (3)		(52)	R.xistor (32,000 ohms) (Orange-Red-Orange)	3525	. 25
(8)	Antenna Transformer (Broadcast Band)	32-1270	. 55	(53)	Resistor (70,000 ohms) (Violet-Black-Orange)	5:385	. 25
(9)	Rewistor (10.000 ohms) (Brown-Black-Orange)	33-1000	. 25	(54)	Revistor (70,000 ohms) (Violet-Black-Orange)	5385	. 25
(10)	Condenser (.0008 Mfd. Mica)	6021	. 35	(65)	Condenser (25 Mfd.) (Metal Case)........ .	4264	. 60
(11)	Oscillator Transformer (H. F. Bands)	-32-1273	. 35	(56)	Resistor (500,000 obms) (Yellow-White-Yeliow)	4517	. 25
(12)	Compensating Condenser (Range 2)	04000C	. 15	(57)	Condenser (. 01 Mfd. Bakelite Block) .	3903 AN	. 25
(13)	Compensating Condenser (Usc. Range 4)	Part of (3)		(58)	Cundeuser (. 00025 Mfd. Mica)	30-1032	. 35
(14)	Compensating Condenser (Osc. Hange 3)	Part of (3)		(59)	Condenser (. 006 Mfd. Tubular)	30-4024	. 40
(15)	Oscillator Transformer (Broadcast).	32-1272	. 70	(60)	Output Transformer...........	32-7178	1.60
(16)	Compensatiug Condenser (Osc. Broadcast)	04000A	15	(b1)		(H -16) 0	25.80
(17)	Kexistor (25,000 ohms) (Red-Green-Orange)	33-1013	. 25	(6)	Vore Cuid	(K-23) 30	1744.40
(18)	Compensating Condenser (Broadcast Series)	04000s	. 35	(62)		(H-16 (36-	18) 3.50
(19)	Compensating Condenser (Hange 2; Series)	04000R	. 45	(6)	Freld Coil a Pot Asse	K-23 (36-	39) 3.75
(20)	Condenser (.0007 Mfd. Mica)	4520	. 35	(13)	Tone Control	30-4168	. 75
(21)	Condenser (.003 Mfil Mica)	7301	. 45	(64)	(Condensers (Inside 63)	Part of (6)	
(22)	Condenser (. 05 Mfd . Bakelite Block)	3615-L	.35	(i5)	Resistor (1.000 ohans) (Brow L-Black-Red)	5837	. 25
(23)	Resistor (100,000 ohrns) (White-White-Orange)	4411	. 25	(66)	Resistor (50,000 ohms) (Crees-Browit-Oratige)	6098	25
(24)	Resistor (150 ohms Flexible Wire-Wound)	33-3140	. 20	(67)	Condenser-Electrolytic (8-8-10 Mfd.)	30-2073	3.45
(25)	Condenser (05 mfd tubular) (Used in Code 122 only)	30-4123	. 35	(68)	Power Transformer.................	32-7234	4.75
(28)	Condenser Block (.25, .25, 25, .05, 05, .05, .05)	30-4167	1.15	(69)	Condenser (.015 Mfd. Twin)	3793-11	. 40
(17)	Cumpensating Condenser (1st I. F. pri.)	Part of (28)		(70)	Filter Choke...........	5930	1.75
(28)	1st I. F. Transformer	32-1369	1.60	(11)	Condenser (6 Mfl . Electrolytic)	30-2020	1.40
(29)	Compensating Condeuser (1st l. F. Sec.)	Part of (28)		(72)	Resistor (20,000 ohms) (Red-Blatk-Oritnge)	6649	. 25
(30)	Resistor (300 ohms Flexible Wire-Wound)	33-3010	. 20	(73)	Resistor (50,000 ohms) (Green-Brown-()range)	5888	. 35
(31)	Pilot Lamp.	6608	. 11	(74)	Resistor ($39,000 \mathrm{obms}$) (Orange-White-Orange)	33-1027	. 25
(32)	Compensating Condenser (2d I. F. Pri.)	Part of (33)		(75)	Tesistor (10,000 ohms) (Brown-Black-Orange).	$33-1000$. 25
(33)	2d I. F. Transformer	32-1306	90	(76)	Condenser (.02 Mfd Tubular).	30-4113	. 30
(34)	Compensating Condenser (2d I. F. Sec.)	Part of (33)			A. C. Cord and Plug Assembly	L-043A	. 60
(35)	Resistor ($\mathbf{3 0 0}$ ohms Flexible Wire-Wound)	33-3010	20		Dial Assembly	31-1206	1.25
(36)	Reaistor (2 Megs.) (Red-Black-Green)	33-1025	. 25		Dial Scale	27-5044	. 65
(37)	Compensating Condenser (3 d I. F. Pri.)	Part of (38)	\cdots		Chassis Mounting Serew	W-1358.	2.60 (
(38)	3d I. F. Transformer	32-1307	. 80		Chissis Mounting Foot (Rubler)	27-4116	.05
(39)	Compensating Condenser (3 d I. F. Sec.)	Part of (38)			Chassis Mounting Foot (Plate)	27-7497	. 35 C.
(40)	Condenser (.0001 Mid. Twin-Bakelite Block)	8035-L	. 25		4 Tube Shield........	$\frac{28-1107}{7544}$.10 .10
(41)	Pilot Lamp for Shadowmeter.	Part of (43)			6 Prong Tube Socket.	7547	.11
(42)	Condenser (. 05 Mfd . Bakelite Block)	3615AB	. 35		7 Prong Tube Socket.	27-6005	. 11
(43)	Shadowmeter	6497	2.50		Speaker Socket	4957 $27-405$.10 .10
(44)	Volume Control \& On-Off Switch.	33-5068	1.45		Knob (Sinall)	27-4052	. 10
(15)	Condenser (01 Mfd. Bakelite Block)	3903J	. 25		Knob (Station sielector).	27-4127	10

PAGE 5-44 PHILCO
MODEL 144
Voltage
Chassis Layout
Socket Layout
PHILCO RADIO \& TELEV. CORP. voltage-tested.

Tube Socket Voltages-Line Voltage 115
bove values were obtained by means of sn A. C. voltmeter for filament voltages and a high resistance D. C. voltmeter for all others. All values obtained from
underside of chassis with test prods. Positions of controls were: Volume Controlmaximum; Wave-Band Switch-extreme left (counter-clock wise); Disl at 520 K.C.

Philco Model 048 All-Purpose Tester is recommended for making the above tests. Use the illustration below (Fig. 1) as a guide to determine the points to be

CIRCUIT	Det.Osc.	$\begin{aligned} & \text { 1st } \\ & \text { I. F. } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { I. F. } \end{aligned}$	A. F.	Output	Rectifier
TUBE *	647	78	78	75	42	80
Filament Volts (F-F).	6.3	6.3	6.3	6.3	6.3	5.0
Plate Volts (P-K).	250	230	230	185	300	350
Screen Grid Volts (SG-K)..	60	75	75	. .	310	\cdots
Cathode Volts (K-Gnd).	1.4	2	2	0	0	\ldots
6A7-G2 to K..............	160	\ldots	- .	\cdots	- \cdot	\cdots
6A7-G1 to K..............	20	\ldots	\cdots		\cdots	\ldots

Wiring Diagram— Philco Model 200-X

PAGE 5-46 PHILCO

PHILCO RADIO \& TELEV. CORP.

ADJUSTING COMPENSATING CONDENSERS IN MODEL 200-X

The quality performance of this receiver depends to a great extent upon providing a wide channel through the R.F. and I, F. stages to permit the passage of a broadcast signal without cutting of the side bands

In order to produce this wide tuning band, the set must be carefully and accurately adjusted. These adjustments will be more critical than in the conventional radio, and the padding procedure will be considerably more complicated.

In making the adjustments, it is necessary to use an unmodulated signal generator. The PHILCO Model 048 Set Tester or the Model 024 Signal Generator can be readily adapted for this purpose by the installation of a single-pole double-throw switch, and an additional grid leak resistor, as shown in Figure 9. This switch will adapt the signal generator for either a modulated or an unmodulated signal.

Figure 9

Fioune 10

With an unmodulated signal, it is not possible to obtain an indication of output by means of the usual form of output meter. An indirect indication can be obtained, however, through the automatic volume control system by connecting a high resistance valtmeter having a scale reading of $0-5$ or $0-10$ volts across the R.F. cathode resistor, shown in the wiring diagram Fig. 8. This connection can be made conveniently through the use of leads equipped with test clips. With this arrangement, maximum output at the second with test chilor will be indicated by a minimam reading of the meter, and vice versa. detector will be indicated by a minimam reading of the meter, and vice versa.
In other words, the action will be just the opposite of an output meter used In other words, the action will be just the opposite of an output meter used
to measure audio frequency voltage at the power output stage. With no to measure audio frequency voltage at the power output stage. With no
signal applied to the receiver, the bias voltage indicated by the voltmeter, will signal applied to the receiver, the bias voltage indicated by the voltmeter, will
be approximately 3 volts. This voltage will be reduced by the "pplication be approximately 3 volts. This voltage will b
of a signal to the R. F. or I. F. input circuits.

I. F. ADJUSTMENTS

After preparing the unmodulated signal generator and connecting the voltmeter as directed, proceed as follows:

1. Set the receiver tuning dial at its extreme low frequency position. Remove the grid clip from the cap of the 6-A-7 detector oscillator tube, and connect the signal generator antenna lead in its place. Connect the ground lead from the signal generator to the ground terminal of the chassis. Adjust the sigmal generator frequency to exactly $175 \mathrm{~K} . \mathrm{C}$. Turn the fidelity control of the receiver all the way to the left.
2. Adjust the 6 I. F. padding condensers (3), (3), (2), (13), (1) and (3) (see Fig. 10) in the tops of the 3 I. F. cans, for maximum out put (minimum meter reading), starting with the padder at the front of the chassis, and continuing with the adjustments toward the rear of the set. During these adjustments, the output of the signal generator should be regulated to maintain a voltmeter reading of approximately 2 volts.
3. Connect a 280 Mmf . Condenser from the plate of the sud I. F. tabe to ground. This will increase the voltmeter reading to approxi mately 2.5 volts.
4. Readjust the 3d I. F. secondary padder © for maximurn output
5. Readjust the 3d I. F. primary padder for maximum output

Do not touch the grid padder (11) again.
6. Turn the fidelity selectivity control all the way to the right.
7. Adjust the 1 st \& 2nd I. F. tertiary padders and for MINIMUM output (maximum voltmeter reading).
8. Leaving the fidelity selectivity control in the right hand position, it will be found, upon varying the frequency of the signal generator that two definite dips will appear in the voltmeter reading-one at 167 K . C. and another at $182 \mathrm{~K} . \mathrm{C}$. These dips in the voltmeter reading indicate peaks in the tuning curve. The amplitude of these peaks should be equal; that is, the same voltmeter reading should be obtained at both $167 \mathrm{~K} . \mathrm{C}$. and $182 \mathrm{~K} . \mathrm{C}$. Any variations in these two readings can be corrected by a slight readjustment of the 3rd I. F. primary padder . If the peak at 167 K . C. is higher than the one at 182 K . C., the primary padder will have to be turned out. If the reverse is true, the capacity of this padder must be increased. In any case, the voltmeter rcadings must be made equal by dividing the differences through readjusiment.
by dividing the differences through readjustment

R. F. ADJUSTMENTS.

The R. F. portion of the receiver is adjusted as follows:
9. Replace the grid clip on the detector-oscillator tube and connect the antenna terminal of the signal generator to the antenna terminal of the chassis. Turn the fidelity selectivity control all the way to the left and set the receiver dial at $1,500 \mathrm{~K}$. C. The same type of output indication is employed as in the I. F. adjustments.
10. Adjust the signal generator for a frequency of $1,500 \mathrm{~K}$. C Adjust the "oscillator" padding condenser (i) and the "detector" padding condenser (10) for maximum output and in the order mentioned. Regulate the signal generator output control to maintain a voltmeter reading of 2 volts as before.
11. Turn in padder (1) (R. F.) until the voltmeter reads 2.5 volts and then adjust padder (a) (ANT.) for maximum output.
12. Readjust padder (©) for maximum output. Do not touch padder (3) again.
13. Set the receiver dial and the signal generator at 600 K . C. Adjust the "oscillator low frequency" padder (ii) for maximum output. As the R. F. tuning is rather broad, there will be a considerable range on the dial that will give about the same output when the oscillator L. F. padder is adjusted for maximum. The padder must be adjusted at the middle of this range. This point may be determined with accuracy in the following manner: Starting with the usual voltmeter reading of 2 volts, slowly turn the receiver dial toward the low frequency end and, at the same time, readjust the padder (17) for maximum output until a point is reached where the maximum output is indicated by a voltmeter reading of 2.5 volts. Note carefully the exact dial reading at this point. Follow the same procedure while turning the dial in the opposite direction until the output reading decreases to the same value. Set the dial at the exact center of these two points and readjust padder (10), for maximum output.
14. Adjust the 8d I. F. tertiary padder to give minimum width in the shadow tuning meter in the receiver. This padder is reached from rear of chassis.

ADJUSTMENT OF 10 K . C. FILTER

Tie 10 K . C. filter in the audio circuit will rarely require readjustment. As the proper adjustraent of this pedder (-) on diagram) requires an accurately calibrated audio oscillator, it should be reset only in the event thes it has been tampered with or in cases where it has become necessary to replace one of the elements of this filter. An emergency adjustment of this filter can be made in the following manner:
15. Connect the signal generator to the control grid of the trpe 6-A-7 tube, leaving the grid clip in place.
16. Disconnect the voltmeter from resistor (7) and connect an output meter to the plates of the power output tubes in the usual way.
17. Set the receiver dial at 550 K . C. At this point, the oscillator in the receiver will be tuned to 725 K . C. The adjustment of the signal generator (switch in unmodulated position) to approximately this same frequency will cause an audible beat note to be heard in the speaker. By means of the signal generator tuning control, reduce the speaker. By means of the signal generator tuning control, reduce
the frequency of this beat note until zero beat is reached, at which the frequency of this beat note until zero beat is reached, at which
point the output meter reading will decrease to 0 . Turning the receiver dial in either direction will gradually increase the frequency of the audible note so that at 540 or 560 K . C. a $10,000 \mathrm{~K}$. C. note will be heard. At either of these points, the padder should be adjusted for minimum reading of the output meter.

PHILCO RADIO \& TELEV. CORP.

MODEL 700 RECEIVER

THE latest Philco development in single-unit automobile radio is the new Model 700. This Receiver is compact, easier to install than ever before and will give exceptional performance.
It is a six-tube super-heterodyne with a genuine full-size Philco electro-dynamic speaker-the same type that is used in many of the larger home radio Receivers. It has remarkable sensitivity, a three-section tuning condenser, giving improved selectivity-wonderful tone, with a three-point tone control, and inherently quiet circuits. Interference filters in the "A" lead and in the pilot light lead greatly simplify motor interference suppression. In most installations standard suppression is sufficient.

Added to this, the ease of installation characteristic of this model (only one unit to install-one lead to the antenna, one lead to the ammeter) and the convenient, attractive airplane type steering column control, which makes this model universal in its application, are additional features of the Model 700 which appeal to both the dealer and the public.

I. F. TRANSFORMER AND PADDERS

The new style I. F. transformer complete with padders is used in the Model 700.
The padders are placed in the top of the shield can one above the other.

The primary padder is adjusted by means of the screw slot, accessible through the hole in the top of the shield can. The secondary padder is adjusted by means of the small hex nut, also accessible through the hole in the top of the shield. (See Figs. 1 and 2.)

The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Fig. 1.

If replacements are ever necessary, replace the entire coil assembly 32-1329 for the first I. F. stage and 32-1237 for the second I. F. stage. Neither the coil nor the padders will be furnished separately. Order only by the above numbers.

Fig. 1

MODEL 700 ADJUSTMENTS

All adjustments have been carefully checked at the factory. If, however, it is found necessary to readjust the padding condensers, this procedure must be followed carefully. Do not attempt to make any adjustments until the procedure is clearly understood or without the use of a good oscillator or signal generator and output meter. The Philco Set Tester 048 is highly recommended for this procedure and for all service work.

The Receiver must be connected to a six-volt storage battery and turned on for operation. It is assumed that tubes have been checked and that the Receiver is in good condition except for the padding adjustments.

Remove the speaker lid from the Receiver. Remove the grid cap terminal from the 77 tube (for location see Fig. 2).

Set up the signal generator and adjust it to exactly 260 K . C. Connect the generator lead to the grid cap of
the 77 tube. (See Fig. 2.) The output meter must be connected.
The Receiver volume control must be turned on to approximately full volume and the attenuator in the generator set for a half-scale reading of the output meter.
The padders (2) and (24) are adjusted first (Figs. 2 and 3). Turn the adjusting screw (22) all the way in. A metal screwdriver can be used for this. Then, with generator attenuator set so there is approximately half-scale reading, adjust the nut (24) with a fibre wrench for the maximum reading on the output meter.
Then adjust the screw (22) for maximum reading on the meter. This adjustment is critical. Note the maximum reading obtainable and then turn the screw in again and readjust, just bringing the adjustment up to the maximum reading. Do not pass it and then back off.

Repeat the above procedure with the condensers (12) and (ib).
After padding the first I. F. stage, remove the generator lead from the 77 tube and reconnect the grid lead to the 77 tube. Set the generator to $1600 \mathrm{~K} . \mathrm{C}$. and then connect the generator lead to the antenna lead.
There are four holes in line, one in each of the sections

MODE工 700
Schematic Chassis Layout

PHILCO RADIO \& TELEV. CORP.
Perts List

Fig. 4
of the tuning condenser housing. (See Fig. 2.) Place a nail of the size that fits snugly through the holes and then turn the condenser plates out of mesh until they strike against the nail.

With the tuning condenser in this position adjust the high-frequency padder (14) until the maximum reading is obtained in the output meter. This is the true setting for $1600 \mathrm{~K} . \mathrm{C} ., 160$ on the dial scale.

Next turn the condenser plates in mesh to 140 on the scale, $1400 \mathrm{~K} . \mathrm{C}$., and set the signal generator for 1400 K. C. The R. F. padder (©) and the antenna padder (3) are next adjusted for the maximum reading on the output meter.

Recheck the adjustments and then remove all test leads. If this procedure has been carefully followed and an accurately calibrated oscillator or signal generator used, the Receiver is adjusted properly.

MODEL 700 PARTS LIST

	Anlenna Transformer. 32
	Tuning Condenser 31-1199
	1st Padder (in tun. cond)
(4)	Resistor (70,000 ohms) $33-1115$
5	Condenser (. 03 mid) $30-4025$
(Condenser (.05 mid.) 30-4020
(7)	Resistor (700 ohms) 6443
	R. F. Transiormeer32-1332
	2nd Paditer (in tun cond.)
(10)	Resister (10,000 ohms) 33-1000
(11)	Condenser (0007 mfd.) ... 586.3
	Padder (Pri. 1st I. F゙. Tram.)
(13)	Oscillator Transformer . . . 32-1:333
	3rd Padder (in tun. cond.)
	1st I. F. Transformer 32 -1329
	Pidder (Sec. 1st I, F. Tratu.)
(17)	Condenser (.03 mfd.) $30-4025$
(18)	Resistor (1500 ohms)33-3047
(19)	Condenser (05 mfd) $30-4020$
(20)	Resistor ($1,000.000$ ohms) - .33-1096
(21)	Condrame (05 mfd) $30-4020$
	Padder (Pri. 2nd I. F. Tran.)
(23)	2nd I. F. Transformer 32-12:37
(24)	Pitdler (Sec. 2nd I. F. Tran.)
(25)	Condenser (000025 mufd.) . . 30-1032
(25)	Condenser (.00011 mid.) . . $30-1031$
(26)	liesist or (25,000 ohms)33-1013
(27)	Vol. Con. \& Switch Assmı. .38-iji34
(28)	Condenser (. 006 mfd.)30-4125
(29)	Resistor (2.000,000 ohims) .33-1025
(30)) Resistor (5000 ohms) 096
(31)) Condenser (. 25 mfd) $30-4146$
(3)	Resistor (32,000 ohms)
(33)) Condenser (.00025 mifd.) . 3082
(34)	Condenser (25 mfd) 04360
(35)	Resistor (100,000 ohms) . . 60
(36)	Resistor (500.000 ohms) ... f0097
(37)	Condenser (.006 ufd.) ... 30-4125
(38)	(ondenser (10 mfd))30-2072
(39)	Resistor (50) ohtms) 33 3031
(0)	Condenser (.006 mfd.) : . . 30-4024
(1)	Output Transformer 32-7214
2	Conr \& Voice Coil . . 363157
	Field Coil Assembly 36-3046;
	Pilot Lamp 34-2031

	"A" Choke	68
(4)	Condenser (. 5 mfd .)	30-4147
(48)	Vibrator Choke	32-1235
(49)	Condenser (5 mfd .)	30-4015
(50)	Vibrator	38-5036
(51)	Condenser (. 05 mifd .)	30-4039
(52)	Resistor (200 ohms)	7217
(39)	Resistor (200 ohms)	7217
(5)	Condeuser (00125 rufd)	5886
(56)	Power Transformer	32.721
(56)	Condenser (01 mfd)	$30-4051$
(57)	Condenser ($4-8 \mathrm{mfd}$)	30-207:
(3)	"B" Choke	32-7215
(59)	R. F. Choke.	32-1281
(60)	Resistor (32,000 ohms)	352
(61)	Resistor (25,000 obms)	33-1013
(62)	Tone Control	30-4180
(63)	Condenser (000005 mfd)	30-1029
(64)	Condenser (00005 mid.)	31)-102!
(65)	"A" Choke	32-137
(6)	Condenser (1 mid)	30
	Spark Plug Resistor	33
	Distributor Resistor	3:3-11131
	Interference Condenser	3)-400
	Nuts (mounting).	W55.
	Battery Cable	38 -290
	Acorn Nut	1 F 2
	Fuse	722
	Fuse Insulator	27-713
	Studs.	25-60
	Bracket	$60:$
	Strap	043
	Strap Pad	
	Knob.	27-405
	Glass	27-732
	Gasket (for glass)	27-750
	Pointer	18-195
	Fiace Assembly	$42-518$
	Control Housing Cover	29-706
	Control Unit Assembly.	42-518
	Shaft	38-8206
	Antenna Lead	38-577
	4-Prong Socket	27-6006
	5 -Prung Socket	$27-601$
	6-Prong Socket	6.478

PHILCO PAGE 5-49

PHILCO RADIO \& TELEV. CORP.

I. F. TRANSFORMER AND PADDERS

The new style I. F. transformer complete with padders is used in the Model 800 (Code 122).

The padders are placed in the top of the shield can one above the other.

The primary padder is adjusted by means of the screw slot, accessible through the hole in the top of the shield can. The secondary padder is adjusted by means of the small hex nut, also accessible through the hole in the top of the shield. (See Figs. 1 and 2.)

The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Fig. 1.

If replacements are ever necessary, replace the entire coil assembly 32-1471 for the first I. F. stage and 32-1449 for the second I. F. stage. Neither the coil nor the padders will be furnished separately. Order only by the above numbers.

Fig. 1

MODEL 800 ADJUSTMENTS

All adjustments have been carefully checked at the factory. If, however, it is found necessary to readjust the padding condensers, this procedure must be followed carefully. Do not attempt to make any adjustments until the procedure is clearly understood or without the use of a good oscillator or signal generator and output meter. The Philco Set Tester 048 is highly recommended for this procedure and for all service work.

The Receiver must be connected to a six-volt storage battery and turned on for operation. It is assumed that tubes have been checked and that the Receiver is in good condition except for the padding adjustments.

Remove the speaker lid from the Receiver and disconnect the antenna lead from the Receiver. Remove the grid cap from the 6A7 tube (for location see Fig. 2).

Set up the signal generator and adjust it to exactly $260 \mathrm{~K} . \mathrm{C}$. Connect the generator lead to the grid cap of the 6A7 tube, grounding the shield. (See Fig. 2.) The output meter must be connected by means of an adapter to the small prong of the speaker plug and to the chassis.

The Receiver volume control must be turned on to approximately full volume and the attenuator in the generator set for a half-scale reading of the output meter.

The padders (23) and (27) are adjusted first (Figs. 2 and $3)$. Turn the adjusting screw (2) all the way in. A metal screw driver can be used for this. Then, with generator attenuator set so there is approximately half-scale reading, adjust the nut (27) with a fibre wrench for the maximum reading on the output meter.

Then adjust the screw (26) for maximum reading on the meter. This adjustment is critical. Note the maximum reading obtainable and then turn the screw in again and readjust, just bringing the adjustment up to the maximum reading. Do not pass it and then back off.

Repeat the above procedure with the first I. F. condensers, (16) and (19).

After padding the first I. F. stage, remove the generator lead from the 6A7 tube and reconnect the grid lead to the 6A7 tube. Connect the antenna lead to the Receiver. Set the generator to 1500 K . C. and then connect the generator lead to the antenna lead.

There are four holes in line, one in each of the sections of the tuning condenser housing. (See Fig. 2.) Place a nail of the size that fits snugly through the holes and then turn the condenser plates out of mesh until they strike against the nail.

With the tuning condenser in this position adjust the high-frequency padder (10) until the maximum reading is obtained in the output meter. This is the true setting for $1500 \mathrm{~K} . \mathrm{C} ., 150$ on the dial scale.

Next turn the condenser plates in mesh to 140 on the scale, 1400 K . C., and set the signal generator for 1400 K. C. The R. F. padder (8) and the antenna padder (3) are next adjusted for the maximum reading on the output meter.
Turn the condenser plates in mesh to 60 on the scale, $600 \mathrm{~K} . \mathrm{C}$., and readjust the signal generator to this frequency. Adjust the low-frequency padder (1) for the maximum meter reading.

Recheck the adjustments and then remove all test leads. If this procedure has been carefully followed and an accurately calibrated oscillator or signal generator used, the Receiver is adjusted properly.

PAGE 5-2 PILOT

REMOVAL OF CHASSIS FROM CABINET

To remove the chassis from the cabinet proceed as follows: Be certain that the line cord is not plugged in the power outlet socket. Dismount the Noise Suppression Control from the side of the cabinet. Remove the "slip-on" knobs and felt washers from the controls located at the front of the receiver.

Unfasten the four $10 / 32$ mounting screws which support the chassis in the cabinet. They are located underneath the cabinet, one at each corner.

Remove the speaker plug from its socket at the rear of the chassis.

AD.JUSTMENT OF ALIGNMENT CAPACITORS

At the factory the receiver is carefully adjusted and aligned, and precautions are taken to maintain the accuracy of the adjustment. However, should the receiver ever require realignment the following procedure should be observed. In Fig. 2 the location and description of the various alignment capacitators are clearly illustrated. An External modulated oscillator with a frequency range sufficient to cover the requirements of the receiver should be used for obtaining best results.
Before connecting the chassis to the power line, reconnect the loudspeaker cable in its socket at the rear of the chassis. When aligning the Intermediate Amplifier the external oscillator must be set at 115 kilocycles which is the I.F. frequency of the receiver. The Frequency Range Selector Switch should be in the position marked B.C. when aligning the I.F. amplifier and the Broadcast range. For the various short wave ranges its position should correspond with aligning frequency selected from the external oscillator. Connect the antenna lead from the external oscillator to the control grid of the No. 58 tube in the I.F. amplifier stage. The alignment capacitators for the I.F. are located at top of the shiclded I.F. transformers. When adjusting these units it is advisable to insulate the metal blade of the screwdriver so that short circuiting the B plus to the chassis will be avoided. Slowly rotate the adjusting screws of each of the capacitors until maximum output is noted in the loudspeaker output circuit. Use an output meter if one is available as a visual indication is likely to be more accurate than the audible method. With the completion of this operation, remove the external oscillator leads from the No. 58 I.F. amplifier tube and connect them in the same manner to the control grid of the No. 57 lst Detector tube. In a similar manner rotate each adjustor screw for maximum audio response in the speaker circuit.

CAUTION: Do not readjust the I.F. stage employing the No. 58 tube, when the external oscillator leads are connected to the No. 57 lst Detector control grid.

After the I.F. Amplifier has been completely realigned remove the external oscillator leads from control grid of the No. 57 tube and connect them to the Antenna and the Ground leads of the receiver. The BLACK wire at the rear of the chassis is the antenna connection; the YELLOW lead is for the ground. Set the frequency of the cxternal oscillator at 1400 kilocycles.

Rotate the "FREQUENCY SELECTOR DIAL" to a position where the "shadow line indicator" of the dial light is in a position coincident with the 1400 kilocycle calibration of the dial scale. Adjust the oscillator trimmer of the broadcast range (See Fig. 2) until resonance is indicated by maxinum audio response in the speaker output circuit. Proceed next to the lst Detector alignment capacitor which is located on the top of the gang condenser section of that circuit. The same procedure is followed in aligning the R.F. amplifier and the Preselector stages, the alignment capacitors of which are located also on top of their respective sections of the gang condenser. The correct positions are clearly illustrated in Fig. 2.

ALIGNMENT OF THE SHORT WAVE RANGES

Each of the Short Wave ranges has a separate aligning capacitor in its heterodyne circuit. The alignment frequencies for the various short wave ranges are:

The antenna and ground leads of the e ternal oscillator should be connected to the black and yellow wires respectively of the receiver. Adjust the external oscillator to the required frequency for the short wave range being aligned. Rotate the "frequency selector dial" until the signal is noted in the audio output. Turn the tuning condenser slowly from the left to right in the vicinity of the signal, at the same time adjusting the alignment capacitor until the maximum signal response is noted in the loudspeaker output circuit. The signal voltage of the external oscillator should always be held constant while making alignment adjustments. The same alignment procedure should be followed on all of the short wave ranges.

REMOVAL OF FREQUENCY RANGE SELECTOR SWITCH ASSEMBLY

When removing this assembly great care must be exercised by the operator to avoid scratching or marking the coils. Remove the bottom plate and the side plate from the chassis. It is advisable to first unsolder the leads connecting the assembly to the main chassis. Remove the four $8 / 32$ nuts which support the assembly in the chassis. The switch assembly is then ready for removal.

In replacing the switch assembly the same precautions must be observed to avoid damage to the coils. Refasten the assembly firmly in the mounting provided for it. Resolder all connections well. Use only ROSIN CORE SOLDER. DO NOT USE SOLDERING PASTE OR ACID FLUXES OF ANY TYPE. Replace the bottom plate and the side plate. It is advisable to realign the receiver after the replacement of the assembly is completed.

PAGE 5-4 PILOT
MODEL 8,84,7,81
(Dragon A-W. Super) PILOT RADIO CO. (New Co.)
Socket Layout
Voltage, Trinmers

POWER SUPPLY

The operating voltage of the receiver is indicated on the label at the rear of the chassis. In the PILOT "DRAGON" receiver a special type of "universal" power transformer is used. Its design permits the receiver to be used on line voltages of 115 , $125,150,220$, or 240 volts ALTERNATING CURRENT from forty-five to sixty cycles. At the factory the transformer is connected for operation on voltages existing in the location where the receiver is to be used. If doubt exists regarding the voltage of the electric power in your locality consult the power company for advice. When certain that the receiver is connected for the proper operating voltage then plug in the line cord to the nearest outlet.

Frequency coverage of Range Selector Switch positions.
Position BC \quad 540-1500 kilocycles 555-200 metres _1500-3900 kilocycles 200-77. metres ...3900-9000 kilocycles 77.- 33.4 metres 9000-21,400 kilocycles 33.4-14. metres

Intermediate Frequency. 115 kc . The use of this frequency provides a very favorable degree of sensitivity and selectivity.

*The D.C. voltages measured at the tube sockets of the set should be read with a high resistance voltmeter of at least 1000 Ohms per volt.

	58	56	57	58	2 A6	2 A 5	$5 Z 3$	57
Plate	235	85	230	230	$* 88$	205	335	235
Cathode	3	-	5	2	2	14	-	2
Screen	82	-	80	83	-	220	-	0 to 83
Filament		2.4	2.4	2.4	2.4	2.4	2.4	2.4

All plate voltages measured to cathode. Screen voltages measured to cathode.
All cathode voltages measured to chassis frame. Measurement at the 5 Z 3 tube made from filament to center tap of power transformer high voltage center tap. Speaker Field Voltage 100 V .

PILOT RADIO CO. (New Co.)

PAGE 5-6 PILOT
MODEL 53
Schematic
Socket Layout

PILOT RADIO \& TUBE CORP.

ALIGNMENT OF INTERMEDIATE-FRFRUENCY AMPLIFIER:

The I-F. peak frequency is 115 kc . Remove the chassis from the cabinet. To do this remove the slip-on knobs from the controls at the front of the receiver. Next remove the four screvs which hold the chassis to the base of the cabinet. Set the signal generator at 115 kc . Connect the ground lead of the signal generator to the chassis of the receiver. Place the fixed condenser in series with the antenna lead from the signal generator (approximately. $002 \mathrm{mf} \cdot$) and connect the antenra lead to the control grid of the $6 A 7$ tube. Adjust the intermediate-frequency capacitors of the I-F. unit No.l and No. 2 for maximum sensitivity. It is advisable to make these adjustments at least twice. Use a low input from the signal generator when aligning the receiver in order that greater accuracy may be obtained.

BROADCAST BAND ALIGNMENT:

Connect the antenna and ground loads of the signal generator to the antenna and ground leads of the chassis. Use a durmy antenna in place of the .002 mf. condenser, if one be available. Set the frequency range switch of the receiver in the broadcast position. Set the signal generator at 1400 kc . Rotate the tuning condenser of the receiver until the compass dial pointer coincides with the 1400 kc . calibration mark on the dial scale. Adjust the oscillator trimmer on the gang condenser until resonance is indicated in the loudspeaker circuit. Next adjust the heterodyne stage and preselector stage for maximum sensitivity. Next set the signal generator at a frequnecy of 1630 kc . Adjust the image suppression circuit condenser for minimum signal response, as noted in the loudspeaker circuit. When adjusting the inage suppression condenser, a strong R-F. signal should be applied to the receiver. Again set the signal generator to 1400 kc . and adjust the oscillator, heterodyne stage and preselector trimer condensers for maximum sensitivity. Next, set the signal generator at 600 kc . and rotate the tuning condenser on the chassis until resonance is noted in the loudspeaker output circuit. Adjust the 600 kc . alignment capacitor (padder) at the same time, slowly rocking the gang condenser to the right or loft for maximum sensitivity. Again, set the signal generator at 1400 kc. Rotate the tuning condenser on the chassis until the compass dial pointer coincides with the 1400 kc . calibration mark on the dial scale. Readjust the oscillator, the heterodyne stage and the preselector circuit trimmer on the gang condenser. for maximun sensitivity. Check the sensitivity of the receiver at 1000 kc . and 600 kc .

SHORT-WAVE BAND No. 2 ALIGNMENT:
Set the frequency range switch of the receiver on position Band No.2. Set the signal generator at 6100 kc . (49 meters.) Adjust the Band No. 2 alignment capacitor for maximum sensitivity. Set the signal generator at 2400 kc . Check the sensitivity of the receiver at this point also.

STORT-WAVE BAND No.l ALIGNMENT:
Set the signal generator at $17,800 \mathrm{kc}$. (16.85 meters). Rotate the tuning condenser until the signal is noted in the loudspeaker circuit. The compass dial pointer should then be approxinately on the 17.8 megacycle mark on the dial scale. Adjust the Band No.l trinwer for maximan sensitivity. Set the signal generator at 7500 kc . and check the sensitivity of the set at this point.

Then maling all adjustments, it is advisable to have the volume control and tone control turned on full in a clockwise direction.

HIGH BAND SECTION ALIGNMWTT:
Rotate the frequency range switch to the position marked "High Band". Set the signal generator at 300 kc . Rotate the tuning condenser until the 300 kc . signal is noted in the loudspeaker circuit. The signal should be observed when the dial pointer is on the 1000 meter calibration. Adjust the First Detector and the Preselector circuit alignment capacitore for maximm sensitivity. There is no oscillator capacitor adjustment at 1000 meters.

Set the signal generator at 155 kc . Rotate the tuning condenser until the signal is noted in the loudspeaker circuit at 1930 meters on the dial. Adjust the "High Band" padder condenser for maximum sensitivity. Realign the set at 1000 meters and check the sensitivity at 1500 meters (200 kc .).

Schematio
PILO'T RADIO CO. (New Co.)
Socket Layout

PILOT RADIO CO. (New Co.)

MODEL 93 Schematic

PILOT RADIO CO. (New Co.)

RCA-VICTOR CO., INC.

Figure B-Wiring Diagram

RCA.VICTOR CO., INC.

SERVICE DATA

Electrical Specifications

Voltage Rating-
105-120 Volts, 25-133 Cycles A. C. or D. C.
Power Consumption. 40 Watts Frequency Range 540 K. C.-1712 K. C. Type and Number of Radiotrons. 1 RCA-36, 1 RCA-37, 1 RCA-38, 1 RCA-39-Total 4

This receiver is an A. C.-D. C. table model tuned R. F. broadcast receiver. Features such as universal operation of both A. C. and D. C., wide tuning range, excellent performance and compact construction characterize this instrument. Figures A and B show the schematic and wiring diagrams respectively. The voltage readings and replacement parts are given below.

RADIOTRON SOCKET VOLTAGES

Measured at Maximum Volume- 115 Volt A. C. Line
 All Voltages on D. C. will be slightly lower

Radiotron No.	Cathode or Filament to Control Grid, Volts	Cathode or Filament to Screen Grid, Volts	Cathode or Filament to Plate, Volt*	Plate Current M. A.	Filament or Heater Volts
1. RCA-39 R. F.	3.0	105	105	7.0	6.0
2. RCA-36 Det.	*0.75	11.0	*60	. 025	6.0
3. RCA-38 Output	11.0	100	95	5	6.0
4. RCA-37 Rect.	-	-	115	15	6.0

* Impossible to measure on ordinary voltmeter

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

(Stack	DESCRIPTION	$\begin{array}{\|c} \substack{\text { List } \\ \text { Price }} \end{array}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	(${ }_{\text {List }}^{\text {Lisiee }}$
	RECEIVER ASSEMBLIES		4071	Capacitor-0.006 mfd. (C6)	\$0.42
3076	Resistor-1 megohm-Carbon type (R6)Package of 5 .	\$1.00	4073	Resistor- 350,000 ohms-Carbon type-1/2 watt-(R8)-Package of $5 \ldots \ldots$.	1.00
3537	Reactor-Filter reactor (L7)	1.10	6188	Resistor- $\mathbf{2}$ megohm-Carbon type- $1 / 2$ watt (R5)-Package of 5	
3542 3559	Volume control-Complete with mounting nut (R2, S1)	1.18	6451	Condenser-2-gang variable tuning condenser (C2, C3, C9, C10)	1.00 2.04
3559	Resistor- 31,000 ohms-Carbon type-1/2 watt (R4)-Package of 5	1.00	6819	Resistor-Filament resistor-Power cord315 ohms (R1)	2.04 1.00
3560	Resistor - 1,600 ohms - Carbon type - $1 / 2$ watt (R7)-Package of 5 . Escutcheon - Station selector escutcheon-	1.00	6844	Capacitor-Filter capacitor-Two 5.0 mfd . capacitors (C11, C12)	1.00 1.10
3567	Escutcheon - Station selector escutcheonPackage of 2.	.42	6845	Capacitor-Filter capacitor-Two 4.0 mfd . $(\mathrm{C} 4, \mathrm{C} 5)$	1.10 1.18
3568	Escutcheon - Volume control escutcheonPackage of 2.	.42	7484	Socket-Radiotron socket-5-contact 35
3569	Knob-Station selector or volume control knob-Package of 5 .	. 65	10820	Capacitor- 100 mmfd (C13) LOUDSPEAKER ASSEMBLIES	. 40
3713	Capacitor-0.05 mfd. (C7, C8)	. 32		MAGNETIC TYPE	
3714	Coil-Detector coil (L4, L5, L6)	. 98	7594	Cone-Speaker cone-Package of 5	5.00
3715	Coil-R. F. coil complete (L1, L2, L3) .	1.08	7595	Support-Cone support. 60
4007	Capacitor-2,400 mmfd. ($\mathrm{Cl}, \mathrm{C} 14$)	. 35	7596	Mechanism-Speaker mechanism complete with magnet (L8).	3.00
4070	Capacitor -0.004 mfd (Cl 5$).$.	. 42	9426	Loudspeaker complete.	4.38

RCA.VICTOR CO., INC.

Figure 1-Schematic Circuit Diagram

Figure 2-Wiring Diagram

Voltage Rating . 105 -125 Volts	
Frequency Rating. 25-40 Cycles and 50-60 Cycles	
Power Consumption. 70 Watts	
Number and Types of Radiotrons. 1 UX-280, 1 RCA-2A5, 1 RCA-58, 1 RCA-57, 1 RCA-2A7-Total, 5	
Undistorted Outp	ts
Frequency Rang	540 K. C. to 1500 K.

This receiver is a five-tube Super-Heterodyne incorporating a Dynamic Loudspeaker as a part of the chassis; twopoint tone control; single heater type Pentode Output and the inherent sensitivity, selectivity and tone quality of the Super-Heterodyne.

The circuit consists of an R. F. stage, a combined oscillator and first detector in the RCA-2A7 tube, an intermediate stage consisting of a transformer only using two tuned circuits, a second detector, an output tube and a rectifier.

Service work in conjunction with this receiver will be similar to that of other Super-Heterodyne receivers of the small compact type construction. The line-up adjustments are made in conjunction with an external oscillator and an output meter. The line-up capacitors on the gang capacitor are adjusted for maximum output when the oscillator is coupled to the antenna and the set and oscillator are both set at 1400 K . C. The I. F. frequency is 175 K . C. and the two circuits that comprise it are adjusted for maximum output at 175 K. C.

RADIOTRON SOCKET VOLTAGES
 115 Volt A. C. Line MAXIMUM VOLUME CONTROL SETTING-NO SIGNAL

Hadiotron No.	Cathode to Control Grid, Volts	Cathode to Screen Grid, Volts	Cathode to Plate, Volts	Plate Current, M. A.	Heater Volts
1. RCA-58 R. F. Amplifier	3.0	95	250	5.0	2.33
2. RCA-2A7 First Detector Oscillator	3.0	95	250	3.0	2.33
3. RCA-57 Second Detector	6.0	89	170	0.3	2.33
4. RCA-2A5 Power Amplifier	18.0	235	220	32.0	2.33
5. RCA-80 Rectifier	725 Volts plate to plate- 60 M. A. Total				4.82
TOTAL CATHODE CURRENT-11 M. A.					

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers.

Stock No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	Stock No.	DESCRIPTION	List Price
	RECEIVER ASSEMBLIES		3605	Capacitor-770 mmfd.	\$0.30
2747	Contact cap-Package of 5	\$0.50	3606	Capacitor-Comprising one 0.005 mfd and one .025 mfd . capacitors	. 40
2749	Capacitor-2,400 mmfd.	1.50	6143	Resistor- $\mathbf{4 0 , 0 0 0}$ ohmb-Carbon type-1/4 watt-Package	
3050	Resistor-14,000 ohms-Carbon type-3 watts	. 60		of 5	2.00
3456	Capacitor - 0.05 mfd .	. 44	6228	Resistor- $\mathbf{2 0 0 , 0 0 0}$ ohms-Carbon type- $1 / 2$ watt-Pack	
3459	Capacitor-80 mmfd.	. 44		age of 5 .	2.50
3472	Capacitor -0.0024 mfd .	. 32	6303	Resistor-20,000 ohms-Carbon type-1/2 watt-Package	
3514	Resiator-250,000 ohms-Carbon type-1/2 watt-Package of 5	1.00	6306	of 5 Resistor-14,000 ohms-Carbon type-1 watt-Package of 5	2.50 2.50
3555	Capacitor-0.1 mfd.	. 36			2.50
3572	Socket-Radiotron 7 contact socket.	. 38	6443 6464	Capacitor-10 mfd. Traneformer--I. F.	$\begin{aligned} & 1.50 \\ & 1.88 \end{aligned}$
3573	Socket-Radiotron 4 contact socket	. 32	6464 6470	Transformer-I. F. transformer Coil-Antenna coil	$\begin{aligned} & 1.88 \\ & 1.08 \end{aligned}$
3574	Coil-Choke coil.	. 68	6471	Coil-Oscillator coil assembly	
3584	Ring-R. F. or oscillator coil retaining ring-Package of 5.	. 40	6472	Coil-R. F. coil assembly....	. 94
3586	Scale-Dial acale	. 50	6472 7485	Coil-R. F. coil assembly.......... Socket-Radiotron 6 contact socket	.94 .70
3587	Socket-Dial lamp socket and bracket.	. 32	7485 7487	Socket-Radiotron 6 contact socket Shield-Radiotron tube shield	.70 .50
3588	Volume control-Complete with mounting nut	1.40	7487 7589	Shield-Radiotron tube shield... Capacitor-Filter capacitor-Two 4.0 mfd . in container	$\begin{array}{r} .50 \\ 1.64 \end{array}$
3589	Switch-Tone control switch.	. 54	7589 7592	Capacitor-Filter capacitor-Two 4.0 mfd . in container Condenser-3 gang rariable tuning condenser. .	1.64 3.35
3592 3593	Knob-Station selector, operating switch or volume control knob-Package of 5	.80 .30	7592 8985	```Transformer-Power transformer -105-125 volts-50-60 cycles.```	3.35 4.26
3593 3594	Screw-Chassis mounting screw-Package of $10 \ldots$. Resistor- 50,000 ohms-Carbon type-1/2 watt-Package	. 30	8986	Transformer - Power transformer - 200-250 volts - 60	
		1.00		Transformer-Power transformer-105-125 volts	88
3596	Capacitor-60 mmfd.	. 36		cycles	6.00
3597	Capacitor-0.25 mfd.	. 40			
3598	Capacitor-0.1 mfd.	. 36			
3601	Coil-Choke coil.	. 68		REPRODUCER ASSEM	
3602	Resistor- $\mathbf{6 0 , 0 0 0}$ ohms-Carbon type- $1 / 4$ watt-Package of 5 .	1.00	6467 8987	Transformer-Output transformer. Cone-Reproducer conc-Package of 5 .	1.44 5.00
3603	Resistor- 500 ohms-Carbon type-1 watt-Package of 5.	$\begin{array}{r}1.10 \\ \hline\end{array}$	9004	Coil assembly-Comprising field coil, magnet and cone	
3604	Capacitor-400 mmfd. .	. 30		support..	2.35

RCA PAGE 5-5

Figure 2-Wiring Diagram—Note-Speaker is not mounted on chassis and sign lamps are connected to R. F. heater

PAGE 5-6 RCA
MODEL R-28-BWC
Voltage
Parts List

RCA-VICTOR CO., INC.

SERVICE DATA

Voltage Rating
Frequency Rating. 25-40 Cycles and 50-60 Cycles
Power Consumption n . 70 Watts
Number and Types of Radiotrons.
. 1 UX-280,
1 RCA-2A5, 1 RCA-58, 1 RCA-57, 1 RCA-2A7--Total, 5
Undistorted Output
1.75 Watts

Frequency Range 540 K. C. to 1500 K. C.
This receiver is a five-tube Super-Heterodyne incorporating a Dynamic Loudspeaker, two-point tone control, single heater type Pentode Output and the inherent sensitivity, selectivity and tone quality of the Super-Heterodyne.

The circuit consists of an R. F. stage, a combined oscillator and first detector in the RCA-2A7 tube, an intermediate stage consisting of a transformer only using two tuned circuits, a second detector, an output tube and a rectifier.

Service work in conjunction with this receiver will be similar to that of other Super-Heterodyne receivers of the small compact type construction. The line-up adjustments are made in conjunction with an external oscillator and an output meter. The line-up capacitors on the gang capacitor are adjusted for maximum output when the oscillator is coupled to the antenna and the set and oscillator are both set at 1400 K . C. The I. F. frequency is 175 K . C. and the two circuits that comprise it are adjusted for maximum output at 175 K. C.

> RADIOTRON SOCKET VOLTAGES 115 VoltA.C.Line
> MAXIMUM VOLUME CONTROL SETTING-NO SIGNAL

Radiotron No.	Cathode to Control Grid, Volts	Cathode to Screen Grid, Volts	Cathode to Plate, Volts	Plate Current, M. A.	Heater Volts
1. RCA-58 R. F. Amplifier	3.0	95	250	5.0	2.33
2. RCA-2A7 First Detector Oscillator	3.0	95	250	3.0	2.33
3. RCA-57 Second Detector	6.0	89	170	0.3	2.33
4. RCA-2A5 Power Amplifier	18.0	235	220	32.0	2.33
5. RCA-80 Rectifier	725 Volts PLATE TO PLATE-60 M. A. TOTAL				4.82

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers.

Stock No.	DESCRIPTION	List Price	Stock No.	DESCRIPTION	List Price
	RECEIVER ASSEMBLIES		3739 3740	Knob-Station selector or volume control knob-Package of 5 Knob-Operating awitch knob-Package of 5 .	$\$ 0.80$.75
2269	Capacitor-720 mmfd.	\$0.75	3740 3741	Knob-Operating awitch knob-Package of 5 Eacutcheon-Station selector escutcheon.	.75 .30
2747 3050	Contact cap-Package of 5 50	3741 3742		. 30
3050 3076		.25 1.00	3742	covering aperture "wings"--Package of 2	. 54
3456	Capacitor-0.05 mfd. .	. 44	6228	Resistor- 200,000 ohms-Carbon type-1/2 watt-Pack-	
3459	Capacitor - 80 mmfd .	. 44			1.00
3472	Capacitor 0.0024 mfd .	. 32	6303	Resistor- 20,000 ohms-Carbon type- $1 / 2$ watt-Package of 5	1.00
3514	Resistor-250,000 ohms-Carbon type-1/2 watt-Package of 5 .	1.00	6306	Reaistor-14,000 ohms-Carbon type-1 watt-Package of 5	
3555	Capacitor-0.1 mfd.	. 36	6464		1.10 1.88
3572	Socket-Radiotron 7 contact socket	.38 32	6464 6470	Coil-Antenna coil.	1.08 1.08
3573 3574	Socket-Radiotron 4 contact socket Coil-Choke coil. 32	6471	Coil-Oscillator coil assembly	. 7.
3575	Coil-Choket-Dial lamp socket and bracket	. 34	6472	Coil-R. F. coil assembly	. 94
3584	Ring-R. F. or oscillator coil retaining ring-Package of 5.	. 40	6473	Scale-Dial scale.	. 50
3588	Volume control-Complete with monnting nut	1.40	7485	Socket-Radiotron 6 contact socket	.40
3589	Switch-Tone control switch..............	. 54	7487 7589	Shield-Radiotron tule shitid. Capacitor-Filter capacitor-Two 4.0 mfd . in container $^{\text {a }}$. 2.64
3593	Screw-Chasgis mounting screw-Package of 10 .	. 30	7589 7590		1.64 1.40
3594	Resistor- 50,000 ohms-Carbon type- $1 / 2$ watt-Package of 5	1.00	7590		3.35
3596	Capacitor-60 mmfd. .	. 36	8986	Transformer - Power transformer - 200-250 volts - 60 cycles	1.38
3597	Capacitor 0.25 mfd .	. 40	9002	Transformer-Bower transformer-105-125 volts-25-50	
3598 3602	Capacitor-0.1 mfd. . . . ${ }_{\text {Resistor }} \mathbf{6 0 , 0 0 0}$ ohma-Carbon type. ${ }^{\text {- }}$. 36	9002	cycles.	6.00
3602	Resistor-60,000 ohms-Carbon ype-1, watt-Package of 5 .	1.00	9025	Transformer-Power transformer-105-125 volts-50-60 rucles	4.26
3603	Resistor- 500 ohms-Carbon type-I watt-Package of 5.	1.10			4.26
3604	Capacitor-400 mmfd.	.30			
3605 3606	Capacitor- 770 mmfd . Capacitor-Comprising	30		REPRODUCER ASSEMBLIES	
	capacitors	40	6467	Transformer-Output transformer	1.44
3623 3624	Shield-Antenna or R. F. Coil Shield.......... Socket-Lamp aocket and bracket-Located behind	. 30	8987 9004	Cone-Reproducer cone-Package of $5 \ldots ~$	5.00
3624	Socket-Lamp socket and bracket-Located behind aperture wings	.40	9004	Coil assembly-Comprining field coil, magnet and cone support	2.35

RCA PAGE 5-7
MODEH R-73
Sohematic
Chassis Wiring

Figure 3-Schernatic Circuit.

Figure 4-Chassis Wiring Diagram

PAGE 5-8 RCA
MODET R-73
Alignment Data
Voltage

RCA-VIC'TOR CO., INC.

SERVICE DATA

Electrical Specifications

Voltage Rating . 105-125 Volts
Power Consumption 3 RCA-58, 1 RCA-56
Type and Number of Radiotrons..... 3 RCA-58, 1 RCA-56,
1 RCA-55, 2 RCA-247, 1 UX-280-Total, 8 1 RCA-55, 2 RCA-247, I UX-280-Total, 8 Type of Circuit. Super-Ifeterody Pentode Output with A. V. C., tone control and push-pull Pentode Output Undistorted Output

3 Watts
R. F. and Oscillator Alignment Frequency
$600 \mathrm{~K} . \mathrm{C}$. and $1400 \mathrm{~K} . \mathrm{C}$.
Intermediate Frequency \qquad 175 K. C.
This receiver is an eight tube Super-Heterodyne incorporat ing Automatic volume control, tone control and Push-Pull Pentode Output. Service Data will be found to be similar to that of other Super.IIeterodyne receivers incorporating similar features.

Figure 5-I. F. Alignment Location

Line-up Adjustments

I. F. Tuning Adjustments-Two transformers comprising four tuned circurits are used in the intermediate amplifier. These are tuned to 175 K . C. and the adjustment screws are accessible from the rear of the chassis. See Figure 5 for location of the adjustment screws and proceed as follows:
(a) Procure a modulated oscillator giving a signal at 175 K. C., a non-metallic screw driver such as Stock No. 7065 and an output meter.
(b) Remove the oscillator tube and connect a ground to the chassis.
(c) Connect the oscillator output between the $1_{\text {st }}$ detector control grid and chassis ground. Connect the output meter across the voice coil of the loudspeaker and adjust the oscillator output so that with the receiver volume control at maximum, a slight deflection is obtained in the output meter.
(d) Adjust the secondary and then the primary of the second and then the first I. F. transformers until a
maximum deflection is obtained. Keep the oscillator output at a low value so that only a slight deflection is obtained on the output meter at all times. Go over these adjustments a second time as there is a slight interlocking of adjustments. This completes the I. F. Adjustments.
R. F. and Oscillator Adjustments-The three gang capacitor screws are accessible through the bottom cover and the 600 K . C. oscillator trimmer through the top of the chassis adjacent to the R. F. coil. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at 1400 K. C. and 600 K . C., a non-metallic screw driver such as Stock No. 7065 and an output meter.

Figure 6-Loudspeaker Wiring
(b) Connect the output of the oscillator to the antenna and ground lead of the receiver. Check the dial at the extreme maximum position of the tuning capacitor. The indicator should be at the short line on the dial. Then set the dial at 1400 K . C., the oscillator at 1400 K. C. and connect the output meter across the cone coil. Adjust the oscillator output 80 that a slight deflection is obtained when the receiver volume control is at maximum.
(c) Adjust the three line-up capacitors accessible at the bottom of the receiver until maximum deflection is obtained in the output meter.
(d) Shift the oscillator frequency to 600 K . C. and tune the signal. Then adjust the 600 K . C. capacitor, accessible through the top, until maximum defection is obtained. The main tuning capacitor must be rocked back and forth while making this adjustment.
(e) Then realign at 1400 K . C. This completes the adjustments.
When making both the I. F. and R. F. adjustments, the important point to remember is that the receiver volume control must be at its maximum position and the minimum input signal necessary from the oscillator must be used.

RADIOTRON SOCKET VOLTAGES
120 Volts, 60 Cycles A. C. Line-V. C. At Maximum and no Signal

Radiotron No.	Control Grid to Filament or Cathode Volts	Screen Grid to Filament or Cathode Volta	Plate to Filament or Cathore Volts	Plate Current M. A.	Heater or Filament Volts
1. R. F. RCA-58	4.5	100	165	6.0	2.37
2. lat Det. RCA-58	11.0	95	155	1.5	2.37
3. Oscillator RCA-56	-	-	70	4.5	2.37
4. I. F. RCA 5 B	4.5	100	165	6.0	2.37
5. 2nd Dot. RCA-55 and A.V.C.	-	-	55	4.7	2.37
6. Power RCA-247	19.0	235	225	20.0	2.37
7. Power RCA-247	19.0	235	225	20.0	2.37

Voltage Across Field
.120 Volts
Rectifier . 370 Volts R.M.S. Each Plate- 80 M.A. Each Plate

REPLACEMENT PARTS

(Replacement parts may be purchased from authorized Distributors or Dealers Only)

Stock No	DESCRIPTION	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Stack No.	DESCRIPTION	Lisi Price
	RECEIVER ASSEMBLIES		6370	Tone control-Complete with mounting nut	\$1.34
2746	Socket-Dial lamp socket	\$0.50	7054	Cord-Power cord.	0
2747	Cap-Contact cap-Package of	. 50	7062	Capacitor-Adjustable trimming capacitor	
2749	Capacitor-2,400 mmfd. capacitor	1.50		-Capacity 15 to 70 mmfd.	1.00
3003	Cushion-Sponge rubber chassis support cushions-Package of 4.	. 50	7065	Screw driver-Micarta screw driver for I. F., R. F. and oscillator condensers.	1.10
3048	Resistor- 500,000 ohms-Carbon type-1/2 watt-Package of $5 \ldots \ldots . ~$	2.50	7439	Drum-Dial drum with 3 dial mounting nuts	0
3076	Resistor-1 megohm-Carbon type-1/2 watt -Package of 5.	2.50	7481	Coil-Detector and oscillator coil complete with mounting bracket.	3.50
3077	Resistor- 30,000 ohms- $1 / 2$ watt-Carbon type-Package of 5 .		7484 7485	Socket-UY type Radiotron socket. Socket-6 contact Radiotron socket	65
3252	$\begin{aligned} & \text { Resistor- } 100,000 \text { ohms- } 1 / 2 \text { watt-Carbon } \\ & \text { type-Package of } 5 \ldots \ldots \ldots \ldots \ldots . . \end{aligned}$	2.75	7485	Socket-6 contact Radiotron socket Shield - Radiotron tube shield - Maroon finish.	70
3369	Resistor-4,500 ohms-Porcelain type-20 watts. .	1.00	7511	finish Shield-Radiotron tube shield top-Maroon finish.	50 .50
3437	Knob-Noise suppressor knob	. 60	7549	Transformer-Interstage audio transformer..	. 48
34	Coil-Choke coil mounted on resistor board.	1.12	7550	Capacitor pack-Comprising two 10.0 mfd .,	
3450	Capacitor- 0.2 mfd . mounted on resistor board	. 46		one 8.0 mfd ., one 0.3 mfd ., two 1.0 mfd ., one 0.5 mfd ., and three 0.1 mfd . capacitors	
3451	Bracket-Dial lamp bracket and indicatorPackage of 2	. 38	7551	in metal container-For 60 cycle operation Transformer-Power transformer-105-125	7.40
3455	Capacitor -0.01 m	. 44		volts-50-60 cycles............	6.40
3456	Capacitor-0.05 mfd	. 44	7552	Capacitor-3 gang variable tuning capacitor	
3457	Resistor - Porcelain type - 3,665 ohms Tapped at 365 ohms	. 78		complete with mounting screws and washers	4.52
3458		1.00	7556	Transformer-Power transformer-105-125 volts-25-50 cycles.	8.50
3459	Capacitor-80 mmfd. capacitor.	44	7564	Capacitor pack-Comprising two 10.0 mfd .,	
3460	Capacitor-1,200 mmfd. capac	. 54		mfd., one 0.3 mff. , one 4.0 mfd .,	
3468	Resistor-300 ohms-Flexible type-Pk. of 5	60		in metal container-For 25 cycle operation.	7.24
6142	Resistor- 6,000 ohms- $1 / 2$ watt-Carbon type-Package of 5 .	2.00	7565 7566	Shield-Radiotron tube shield top-Red....	. 36
6192	Spring-3 gang tuning capacitor drive cord tension spring-Package of 10 .		7566	-Radiotron tube shield-Red	8
6279	Resistor-15,000 ohms-1/2 watt-Carbon type-Package of $5 \ldots . .$.	2.50		REPRODUCER ASSEMBLIES	
6282	Resistor- 60,000 ohms-Carbon type-1/2 watt-Package of 5	2.50 2.50	3237	Screw assembly-Comprising 4 screws, 8 nuts, 4 washers, and 4 eyelets-Package	. 50
6288	Knob-Station selector, tone control or volume control knob-Package of 5 .	1.50	61		. 50
6298	Cord-3 gang variable tuning capac cord-Package of 5	1.50 1.00		terminals-Package of 5.	1.90 .50
${ }_{6}^{6300}$	Socket-4 contact Radiotron socket	1.00 .55		Ring-Cone retaining ring	
6301 6303	Reactor-Filter reactor	2.00	8920	Ring-Cone retaining ring.	12.50
6303	Resistor- 20,000 ohms-1/2 watt-Carbon type-Package of 5	2.50	8935	Cone-Reproducer cone complete with voice coil-Package of 5 .	12.50
6308	Coil-R. F. coil complete with mounting bracket	1.90	9421	Coil assembly-Comprising field coil, magnet and cone support.	4.32
6323	Shaft-Tuning condenser drive shaft with one flat washer and 2 " C " wasters-Package of 2 .	1.90 .85			
6367	Transformer-First intermediate frequency transformer			CABINET ASSEMBLIES	
6368		2.14	6113	Foot-Cabinet felt foot-Package of 5	
	quency transformer...............	2.14	7523	Escutcheon--Station selector escutcheon	
6369	Volume control-Complete with mounting		X181	Cabinet-Complete less equipment	
		1.16	X182	Baffle board and grille cloth	

MODEL R－75（47s Output）
 MODEL R－75（2A5s Output）RCA－VICTOR CO．，INC．
 Parts Lists

NODLI R－75
REPLACEMENT PARTS

－ 0^{8}	
营家	
580	
总	

RCA PAGE 5-11

Figure 4-Chassis Wiring Diagram

RCA-VICTOR CO., INC.

 SERVICE DATA

 SERVICE DATA}

Electrical Specifications

Voltage Rating . 105-125 Volt
Power Consumption 100 Watts
Type and Number of Radiotrons..... 3 RCA-58, 1 RCA-56, 1 RCA-55, 2 RCA-247, 1 UX-280-Total, 8 Type of Circuit. Super-Heterodyne
with A. V. C., tone control and push-pull Pentode Output Undistorted Output.

3 Watts
R. F. and Oscillator Alignment Frequency
$600 \mathrm{~K} . \mathrm{C}$. and $1400 \mathrm{~K} . \mathrm{C}$.
Intermediate Frequency
................. 175 K. C.
This receiver is an eight tube Super-Heterodyne incorporating Automatic volume control, tone control and Push-Pull Pentode Output. Service Data will be found to be similar to that of other Super-Heterodyne receivers incorporating similar features.

Figure 5-I. F. Alignment Location

Line-up Adjustments

1. F. Tuning Adjustments-Two transformers comprising four tuned circuits are used in the intermediate amplifier. These are tuned to 175 K . C. and the adjnstment screws are accessible from the rear of the chassis. See Figure 5 for location of the adjustment screws and proceed as follows:
(a) Procure a modulated oscillator giving a signal at 175 K. C., a non-metallic screw driver such as Stock No. 7065 and an output meter.
(b) Remove the osciliator tube and connect a ground to the chassis.
(c) Connect the oscillator output between the 1st detector control grid and chassis ground. Connect tbe output meter across the voice coil of the loudspeaker and adjust the oscillator output so that with the receiver volume control at maximum, a slight deflection is obtained in the output meter.
(d) Adjust the secondary and then the primary of the second and then the first I. F. transformers until a
maximum deflection is obtained. Keep the oscillator output at a low value so that only a slight deflection is obtained on the output meter at all times. Go over these adjustments a second time as there is a slight interlocking of adjustments. This completes the I. F. Adjustments.
R. F. and Oscillator Adjustments-The three gang capacitor screws are accessible through the bottom cover and the 600 K . C. oscillator trimmer through the top of the chassis adjacent to the R. F. coil. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at 1400 K. C. and 600 K . C., a non-metallic screw driver such as Stock No. 7065 and an output meter.

Figure 6-Loudspeaker Wiring
(b) Connect the output of the oscillator to the antenna and ground lead of the receiver. Check the dial at the extreme maximum position of the tuning capacitor. The indicator should be at the short line on the dial. Then set the dial at 1400 K . C., the oscillator at 1400 K. C. and connect the output meter across the cone coil. Adjust the oscillator output so that a slight deflection is obtained when the receiver volume control is at maximum.
(c) Adjust the three line-up capacitors accessible at the bottom of the receiver until maximum deflection is obtained in the output meter.
(d) Shift the oscillator frequency to 600 K . C. and tune the sigual. Then adjust the 600 K . C. capacitor, accessible through the top, until maximum deflection is obtained. The main tuning capacitor must be rocked back and forth while making this adjustment.
(e) Then realign at 1400 K . C. This completes the adjustments.
When making both the I. F. and R. F. adjustments, the important point to remember is that the receiver volume control must be at its maximum position and the minimum input signal necessary from the oscillator must be used.

RADIOTRON SOCKET VOLTAGES

120 Volts, 60 Cycles A. C. Line-V. C. At Maximum and No Signal

Radiotron No.	Control Grid to Filament or Cathode Volts	Screen Grid to Filament or Cathode Volts	Plate to Filament or Cathode Volts	Plate Current M. A.	Heater or Filament Volts
1. R. F. RCA -58	4.5	100	165	6.0	2.37
2. 1st Det. RCA -58	11.0	$95{ }^{\text {- }}$	155	1.5	2.37
3. Oncillator RCA -56	-	-	70	4.5	2.37
4. I. F. RCA.58	4.5	100	165	6.0	2.37
5. 2nd Det. RCA 55 and A.V.C.	-	-	55	4.7	2.37
6. Power RCA -247	19.0	235	225	20.0	2.37
7. Power RCA-217	19.0	235	225	20.0	2.37

2nd Detector and A.V.C. Cathode to Low Side of Field. 105 Volts Chassis to Low Side of Field.

Voltage Across Field Rectifier . 370 Volts R.M.S. Each Plate- 80 M.A. Each Plate

RCA-VICTOR CO., INC.

SERVICE DATA

Electrical Specifications

Voltage Rating . 105-125 Volts
Power Consumption. 100 Watts
Type and Number of Radiotrons. . 3 RCA-58, 1 RCA-56, 1 RCA-55, 2 RCA-2A5, 1 UX-280-Total, 8 Type of Circuit. .Super-Heterodyue with A.V.C., tone control and push-pull Universal Output Tubes Undistorted Output.
. 3 Watts
R. F. and Oscillator Alignment Frequency
$600 \mathrm{~K} . \mathrm{C}$. , and $1400 \mathrm{~K} . \mathrm{C}$.
Intermediate Frequency
................ . 175 K. C.
This receiver is an eight tube Super-Heterodyne incorporating Automatic volume control, tone control and Universal Output tubes operated as a push-pull pentode stage, Service Data will be found to be similar to that of other SuperHeterodyne receivers incorporating similar features.

Figure C-I. F. Alignment Location

Line-up Adjustments

1. F. Tuning Adjustments-Two transformers comprising four tuned circuits are used in the intermediate prising fifier. These are tuned to 175 K . C., and the adjustment screws are accessible from the rear of the chassis. See Figure ${ }_{\mathrm{C}}^{\mathrm{C}} \mathrm{for}$ location of the adjustment screws and proceed as follows:
(a) Procure a modulated oscillator giving a signal at 175 K. C., a non-metallic screwdriver such as Stock No. 7065 and an output meter.
(b) Remove the oscillator tube and connect a ground to the chassis.
(c) Connect the oscillator output between the lst detector control grid and chassis ground. Connect the output meter across the voice coil of the loudspeaker and meter across the voice coil of the loudspeaker and
adjust the oscillator output so that with the receiver volume control at maximum, a slight deflection is obtained in the output meter.
(d) Adjust the secondary and then the primary of the second and then the first I. F. transformers until a
maximum deflection is obtained. Keep the oscillator output at a low value so that only a slight deflection is obtained on the output meter at all times. Go over these adjustments a second time as there is a slight interlocking of adjustments. This completes the I. F. Adjustments.
R. F. and Oscillator Adjustments-The three gang capacitor screws are accessible through the bottom cover and the 600 K . C. oscillator trimmer through the top of the chassis adjacent to the R. F. coil. Proceed as followe:
(a) Procure a modulated oscillator giving a signal at 1400 K. C. and 600 K . C., a non-metallic screwdriver such as Stock No. 7065 and an output meter.

Figure D-Loudspeaker Wiring
(b) Connect the output of the oscillator to the antenna and ground lead of the receiver. Check the dial at the extreme maximum position of the tuning capacitor. The indicator should be at the short line on the dial. Then set the dial at 1400 K . C., the oscillator at 1400 K . C. and connect the output meter across the cone coil. Adjust the oscillator output so thet a slight deflection is obtained when the recciver volume control is at maximum.
(c) Adjust the three line-up capacitors, accessible at the bottom of the receiver until maximum deflection is obtained in the output meter.
(d) Shift the oscillator frequency to $600 \mathrm{~K} . \mathrm{C}$. and tune the signal. Then adjust the 600 K . C. capacitor, accessible through the top, until maximum deflection is obtained. The main tuning capacitor must be rocked back and forth while making this adjustment.
(e) Then realign at 1400 K . C. This completes the adjustments.
When making buth the I. F. and R. F. adjustnients, the important point to remember is that the receiver volume control must be at its maximum position and the minimum input tron must be at from the oscillator must be used.

RADIOTRON SOCKET VOLTAGES

120 Volts, 60 Cycles A. C. Line-V. C. at Maximum and No Signal

Radiotron No.	Control Grid to Catheds, Voltes	Screen Grid to Filament or Cathode. Volta	Plate to Filament or Cathode, Volts	Plate Current. M. A.	Heater or Filament, Volts
1. R. F. RCA. 58	4.0	100	240	6.0	2.4
2. 1rt Det RCA-58	10.0	90	230	2.0	2.4
2. 1rt Det RCA-s8		-	75	4.5	2.4
3. Onc. RCA-56	4.0	100	240	6.0	2.4
4. I. F. RCA 58	4.0	100	100	4.0	2.4
5. 2nd Det. HC.A 55 and A.V.C.	5.8	- 230	220	20.0	2.4
6. PWR. RCA-2A5	19.0	230	220	20.0	2.4
7. PWR. RCA-2AS	10.0	230			

Figure B-Wiring Diagram

Capacitar Adjustment
Voltage
Parts List

RCA-VICTOR CO., INC.

SERVICE DATA

"A" Battery Required
" B " Battery Required
"A" Current.
"B" Current.
Type and Number of Radiorrons
1 RCA-78, 1 RCA-77, 1 RCA-38, Total 3
Undistorted Output.
. 0.2 Watts
Tuning Range
540-1712 K. C.
Type of Loudspeaker
Magnetic
This battery type tuned R. F. receiver incorporates excellent performance in conjunction with minimum cost and up-keep requirements. Service work consists principally of replacements and line-up adjustments. The proper method of aligning the receiver follows.

R. F. Line-up Capacitor Adjustments

Two adjustable capacitors are provided for adjusting the R. F. circuits to maximum electrical alignment. In order
to properly adjust the capacitors, a Stock No. 9050 Test Oscillator and 7065 adjustment screwdriver are required. Also an output meter should be connected across or in place of the loudspeaker winding. Proceed as follows:
(A) Place the oscillator in operation at 1400 K . C. and connect its output to the antenna and ground of the receiver. Connect the output meter and place the receiver in operation.
(B) Tune in the signal from the oscillator and adjust the volume control and oscillator output until a deflection is obtained in the output meter. Adjust each trimmer until maximum output is obtained. The proper adjustment is when a minimum value of trimmer capacity is used. Readjusting the dial may be necessary to arrive at such a condition. Then slightly reduce the setting of the detector trimmer by turning it clockwise. This compensates for a slight increase in the capacity of this circuit that occurs when the chassis is returned to its case. A little experimenting will disclose the proper amount of this reduction.

RADIOTRON SOCKET VOLTAGES

Maximum Volume Control Setting

Rediotron Nu.	Cathode 20 Control Grid, Volte	Cathode to Screen Grid, Volt.	Carhode to Plate, Volta	Plate Current. M. A.	Filament or Heater, Volta
1. HCA.78 R. \mathbf{F}.	2.5	95	132.5	7.0	6.0
2. HCA-77 Dereetor	$2.5 *$	27*	50*	0.135	6.0
3. RCA-38 Outpat	12.0	123	115	7.5	6.0

* Cannot be mozaured with ordinary voltmeter.

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers.

Stock	DESCRIPTION	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Stock No.	DESCRIPTION	Liat Price
	RECEIVER ASSEMBLIES		6114	Resistor- $\mathbf{2 0 , 0 0 0}$ obme-Carbon rype-l wati (R2)Package of 5.	\$1.10
3546	Capacitor-150 mmid. (Cl)	\$0.32	6186	Resistor- 500.000 ohme-Carlon type- $1 / 4$ watt (R6)-	
3560	Resistor-1,600 obmb-Carbon type--5/2 watt (H8)Package of 5.	1.00	6242	Package of 5 Resistor-2 megobms-Carbon typo- $/ 4$ watt (R5)-	1.00
3602	Kesistor- 60,000 ohms-Carhon type $-1 / 4$ watt (K7)Package of 5.	1.00	6516	Package of 5 . Connector-Fuse connector.	1.00 .16
3640	Capacitor 0.05 mfd ((C4)	. 25	6820	Coil-Antenna coil (L1, L2, L3)	. 86
3701	Capacitor-0.01 mfd. (C5, Cli)	. 30	6821	Coil-Detector coil (IA, L5, L6)	. 96
3748	Fuse-0.5 ampere (Fl)-Package	.40 .30	6822	Condenser-2-gang variable tuning condenser ($\mathrm{C} 2, \mathrm{C} 3$,	
3848	Capacitor-300 mmfd. (C9)......	. 32		C6, C7)	2.34
3860 3877	Socket-5-contact Radiotron sock Capacitor-0.1 mfd. (C10)......	. 32	6829	Volume control (R1)	1.05
38877 3998	Capacitor-0.1 mfd. (C10) Hewistor-15,000 ohma-Carbon type--1/4 watt	. 32	6830	Cable-Battery cable	1.12
	Package of 5................	1.60	6831	Capacitor-Two 5.0 mfd. (C8, C12)	. 94
4070	Capacitor- 0.004 mfd. (C14)	42	6832	Capacitor-4.0 mfd. (C13)	85
4073	Hesistor- 350,000 ohzns-Carbon type- $1 / 2$ watt (R3) Package of 5.	1.00	7485	Sucket-6-contact Radiotron socke	. 40
4076	Escutcheon-Volume control eacurcheon-Package of 2	. 26		REPRODUCER ASSEMBLIES	
4077	Encutcheon-Station selector escutcheon-Package of 2	. 26			
4078	K nob-Station selector knob-Pack	. 76	7712	Support-Cone bupport	50
4079	Foot-Rubber foot-Package of 4.	. 22	7713	Mechanism-Speaker mechaniem complete (L7)	3.72
4096	K nob-Volume control knob-Package of 5.............	. 75	9470	Reproducer-Complete.	4.62
4097	Switch-Operating switch-Double pole-Single throw (S1. S2)	. 94	9471	Cone-Speaker cone-Packape of 5	3.50

PAGE 5-18 RCA
MODEL R-92 Recorder
Chassis Wiring

RCA Victor Model R-92 STORE RECORDER

 SERVICE DATAExcept for the replacement of defective Radiotrons, very little service work will be required in conjunction with this instrument. Figure 1 shows the schematic circuit diagram, Figure 2 the wiring diagram, and Figure 3 the various socker voltages. Figure 4 shows the assembly wiring diagram.

Service Data on Magnetic Pickup

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance it is similar to that of the older type, details of construction are considerably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequencyresponse characteristic is substantially flat from 50 to 5,000 cycles.

Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure 6), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.

MODEL R-92 Recorder Pickup Adjustments
 Parts List

RCA-VICTOR CO., INC.

(d) Insert whe armature chrough che new block so old. Also ascertain that the block is in correct
vertical alignment with the armacure. It will vertical alignment with che armature. It will
be noted that the hole in che damping block is
somethater of the somewhat smaller than the diameter of the
armature. This is done so that a snug fit will
 of contact with the armature. A special tip,
constructed as shown in Figute 7, will prove constructed as shown in Figute 7, will prove
desirable for fusing the block in place. The iron should be applied long enough to slightily
melt che block and cause a small bulge on both sides, but should not be applied long enough to
cause any bubling. The pickup should then 8 8upozad ay ui paquosap se prquursstan aq

 bright. These parts may now be tinned by using as
lux a water solution of zinc chloride (commonly

$0=0=0$

 snours auanad גquay pur xny pire aq, (xny

(d) Remove screws A and B, Figure 6, and then pole pieces.
(e) The coil or the front pivot rubber may now be
temoved and replaced. If it is desired to replace the rear pivot rubber, then
the armature soldered to the mechanism suppore the armature soidered to the mechamping block
 replaced. Ahlamping block should be fastened
place a new dature
as outlined in instructions on replacing the damping block.

Figure 5

 the magnetizer onto the pole pieces without
breaking physical contace. After placing the pole pieces on the magnet, the entire assembly
should be remagnetized thoroughly being careful nor to change the polarity obrained by the
(g) After assembling to the mechanism, the entire (g) After assembling to the mechanism, the enlate by means of che screws frovided. making sure
the damping block is securely clamped. Ac
be (h) Afeer remagnetizing, it is necessary to correctly

 ment is made by loosening screws A and B
(Figure 6), and sliding che mechanism slightly The cover may be now replaced over the entire asembly, and the pickup recerned to the tone
arm. In assembling, it may be desirable to check the In assembling,
Thature air gap means of a smail Feeler Gauge.
This air gap should be $009^{\prime \prime}$ on each side of the armature. However, 2 litele practice with the needle
in place will quickly disclose whether or not the armature is cencered.
(4) Replacing the Damping Block (a) Disassemble the pickup as described under the

RGA PAGE 5-21

RCA-VICTOR CO., INC

RCA VICTOR DUO JUNIOR MODEL R-93 78 R.P.M. Resistance. 20,000 Ohms

$$
\begin{aligned}
& 11 \text { Inches } \\
& .8 \text { Inches }
\end{aligned}
$$

This phonograph turntable and pickup assembly is of the record grooves to voltage variations-a volume fi a modern radio receiver. Use of the audio ampli- level and a radio-record switch for shifting the conprovides a quality of reproduction equal to or better nections to the receivet so that either radio or record han that obtaned from radio stations. A switch is Figure 1 shows a eypical layour for an ideal instal provided for changing from radio to record repro- lation. Figure 2 shows the proper connections to be
duction, or vice-versa. Simplicity, compacr size and
made between the pickup unit and the switch assembly. inserument. Electrically, the instrument consists of a magnectic 4 and 5 show the chassis and cable wiring diagrams
pickup-for transforming the mechanical variations Connecting Phonograph to the Radio Receiver
When connecting 2 phonograph unir to 2 radio and the Radio-Record Switch on the Receiver idered. First, the output of che pickup muss be con- reproduction. The 1929 Victor Receiver and nected to the receiver at a point where sufficient audio \quad numerous Stromberg-Catlson Receivers are
eypical examples of this type of connection. (2) Receivers having phonograph terminal board
connections. Such connections are made in accordance with the instructions pertaining to (3) Recrivers using the $2 \mathrm{B7}$ or 687 Second Detectors. With receivers of this type, the yellow
and green leads are connected in series with the (4) Receivers not having any of the foregoing having a split cathode connection is necessary.
Sock No. 611 , five-prong adaptor, or Sock Nock No. 4612 , six-prong adaptor, may be used. In
such cases, the yellow and green leads are con-

 connections are given.

PHONOGRAPH MOTOR SERVICE DATA

 simple design and fool-proof construction. Among
many features are low pomer consumprion, singl
moving part, ease of starting, oilles main bearing service repairs.
Figure 6 shows the main parts of the motor and the
points that may require atcention. Operation:
The two stator coils are connected as shown in wise spin with che hand. If it is found to be difficult as starting, or if it tuns at a sub-synchronous speed such
as at 70 R.P., such action may result from one of
the following causes:
Difficult to Start-This may be due to the seator
ailing to rotate on the outer bearing. This can be failing to rotate on che outer bearing. This can be
caused by the lug being bent and rubbing in the lot, or sticking to the resilient bumper. The outer
bearing not being properly lubricated may also
cause this condition. It is important that the ball cause this condition. It is important that che ball
bearing be at the botcom of the main beating
assembly.
Slow Speed-If the turntable is jarred or slowed
down, the motor may run at a sub-synchronous
speed, such as 70 R.P.M. This is remedied by
merely lifting the tone arm from the turnable,
thereby removing the lod. The turntable speed
will then immediately increase to normal.

MODEL R－93 Phonograph Pickup Data Parts List

RCA－VICTOR CO．，INC．

It is important to remember that in all operations

 he pickup should be magnetized and the armature
centered after remagnetizing．Magnecizing should be
done by placing che pickup magnet on the magnetizer done by placing the pick ep mageer，after magnetizing
and sliding it onto the pole．pieces．
being careful not to break the magnetic crrcuit． REPLACEMENT PARTS

Insist on genuine factory tested parts，which are readily identified and may be purchased from authorized dealers
（b）Remove the damping block from the armature
and clean the armature shaft with emery paper． （c）Insert the armature through the new block so that it occupies the same position as that of the
Id．Also ascertain that the block is in cortect vertical alignment with the armature．It will be nored that the hole in the damping block is This is done so that a snug fit will be obrained． （d）After properly locating the damping block，a
soldering iron should be applied to the arma－ soldenng iron should be applied so hec armit
ture so that the block will melt slighly at is
point of contact with che armature．A special

 The iron should be applied only long enough to
mel the block sufficiencly to cause a small buige ．

告	$\underset{\sim}{n}$		－	
劳运				
然管	$\underset{\sim}{\sim}$	$\stackrel{\text { Tin }}{\sim}$	～${ }_{\sim}^{8}$	
寿				
苞家	$\stackrel{\rightharpoonup}{\circ} \stackrel{\hat{\sigma}}{\stackrel{\rightharpoonup}{\circ}}$	$$	骨	

 Service work will consist of centering the armatand Pickup：
Disassembling the Piekup： manner：
（a）Unsolder the two cable connections to the （b）Remove the needle screw and screws＂A＂and （c）Remove the pickup assembly from the arm d）Unsolder the two magnet coil leads attached Unsolder the two mangee cor eads actrached
to the terminals and chen remove screw E ．
This will allow the removal of the cer－
c）If cencering the pickup armature is the only

RCA PAGE 5-23

RCA-VICTOR CO., INC.

Figure 1-Typical Layout and Comnections for Model R-93
RCA VICTOR RECEIVERS - DETAILS OF LEAD CONNECTIONS

Model	Method of Connection	Green	Yellow	Red	Blue	Sheld
R-4. 6	4. Adapor	Det. Cathode	Carhode Socket Contace	Anc.	${ }^{\text {Ant. Lead }}$	Chasis
R-5	4. Adapor	Det. Şathade	${ }^{\text {Cathade Soskrs }}$	Ans.	Anc. Lexd	Deer Cethode (Yellow)
R-7	2. Term, Board	$\text { Term. } 2 \text { Link) }$	Term. 1	Anc.	Ant. Lead	Terrn. 4
R-7A	2. Term. Board	$\begin{aligned} & \text { Tertipen Link) } \\ & \hline \text { (On } \end{aligned}$	Term. 1	Anc.	Anc. Lead	Term. 4
R-8, 10, 12	4. Adaptor	Det. Cathode	Cathode Socker Consact	Anc.	Arc. Lead	Chass
R-11	2. Term. Board	$\begin{aligned} & \text { Term } 2 \\ & \text { (Open Link) } \end{aligned}$	Term 3	Term. 4	Tern. 5	Term. 6
R-17M	4. Adaptor	Det. Cathode	Cathode Socket Contact	Ans.	Ant Lead	Det. Caxtodect (Yellow)
R-18W	4. Adaptor	Det. Cathode	Cathode Socker Contacs	Ans.	Ant. Lead	Det Cathode (Yellow)
R.21	2. Term. Board	Temi. 2 Link)	Tern. 3	Term. 4	Term. 5	Term 6
R-22	4. Adaptor	Det. Carhode	Cathode Socket Contset	Ant.	Ant. Lead	Det Cathoc' (Yellow)
RO-23	4 Adapor	Det. Carhode	Carhode Socker Contact	Anc	Anc. Lead	Chassis
R-27	4. Adppor	Det. Cartode	Cathode Socket Contace	Ant	Ant Lead	Det Caxhode (Yellow)
R-28	4. Adaptor	Dec. Carhode	Cathode Socket Contrat	Ant	Ant Lead	Chass
R-37. 38	3. Grid Clip	Grid Cap of		Ant	Ant. Lead	Chassis
Rad. 48	2. Term. Board	Term. 4 'Open Link	Term. 5	Term 2	Term. 3	Tem
R-50, 55	2. Term. Boas		Term. 4	${ }_{\text {Term } 1}^{1}{ }^{1}$ Link	Term. 2	Term 6
R-70	4 Adaptor	Der. Carhode	Catho di Socker Contact	Ant.	Anc. Lead	Chassis
R-71, 72	4. Adaptor	Det. arthode	Carhode Sockel Contact	Anc.	Ant. Lead	Chasis
R-73, 75	3. Grid Clip	$\begin{aligned} & \text { Grid Cap of } \\ & \text { Tube } \end{aligned}$	Grid Clip	Ant.	Anc. Lead	Chassis
R-73A, 75A	3. Grid Clip	$\begin{gathered} \text { Grid } \mathrm{C}_{22} \text { of } \\ \text { Tube } \end{gathered}$	Grid Clip	Anc.	Ant Lead	Chassis
R-74, 76, 77	4. Adspor	Det. Caxhode	Cachode Socker Conease	Anc	Anc. Lead	Chasis
R-78	2. Term. Board	$\begin{aligned} & \text { Term. } 7 \\ & \text { (Open Link) } \end{aligned}$	Tarm. 8	Term. 1	Term. 2	Chassis
Rad. 80	4 Adapor	Det. Cathode	Caxhode Sockret Conterat	Ant.	Ant Bind Post	Chassis
R.d. 182	2. Term. Board	$\begin{aligned} & \hline \mathrm{Temm}_{\left(\mathrm{OPe}_{2}^{2}\right.}^{2} \end{aligned}$		Term. 1	Term. 3	Term. 3
R-90, 260,261	4. Adipror	Det. Cathode	$\begin{aligned} & \text { Cachode Socker } \\ & \text { Conrace } \end{aligned}$	Osc. Cathode*	$\begin{array}{\|c} \hline \text { Os. Cathoic } \\ \text { Scket } \\ \text { Concact } \\ \hline \end{array}$	Chasis
	4. Adapor	Det. Cathode	Cachode Socker Contact	Anc.	Anc. Lead or Bind Pose	Cachode Socker Coneact
114	4. Adapror	Det. Carhode	Cathode Socket Consacs	Ans.	Anc. Lead	
$\begin{aligned} & 120,124, \\ & 2200 \end{aligned}$	3. Grid Clip	$\begin{aligned} & \text { Grid } C_{a p} \text { of } \\ & \text { Tube } \end{aligned}$	Grid Clip	Ans.	Ant. Lead on Bind. Pose	Chassis
${ }_{\substack{121.122, 22.1}}^{122}$	3. Grid Clip	$\begin{gathered} \text { Crid Cap of } \\ \substack{\text { Tube }} \end{gathered}$	Grid Clip	Anc.	Anc. Lead on Bind Post	Chassis
140, 141, 240	2. Term. Board	Term 3	$\begin{aligned} & \mathrm{Tem.m} .1 \\ & \text { (Open Link) } \\ & \hline \end{aligned}$	Term. 1	Term. 2	Term 1
280	4. Adapor	Det. Cashode	Caxhodes Sokec	Ox. Cashode ${ }^{\text {a }}$		Chassis

Figure 2-Connections from Pickup to Switch Unit

25 and 50 cycle connections

Figure 3-Schematic Diagram

Figure 5-Cable Connections

110 Volt-25 Cycle

Figure 6-Motor Wiring Connections
110 Volt-60 Cycle

RCA PAGE 5-25
MODEL 102
Schematic
Chassis Wiring

Figure A-Schematic Circuit Diagram

MODEL 102
Voltage
Parts List

RCA-VICTOR CO., INC.

SERVICE DATA

Electrical Specifications
Voltage Rating. . 105-120 Volts, 25-133 Cycles A. C. or D. C.
Power Consumption. 40 Watts
Frequency Range 540 K. C.-1712 K. C.
Type and Number of Radiotrons-
1 RCA-77, 1 RCA-37, 1 RCA-38, 1 RCA-78-Total 4
Undistorted Output. 0.18 Watts
This receiver is an A. C.-D. C. table model tuned R. F. broadcast receiver. Features such as universal operation on both A. C. and D. C., wide tuning range, excellent performance and compact construction characterize this instrument. Figures A and B show the achematic and wiring diagrams
respectively. The voltage readings and replacement parte are given below.

The receiver is aligned at 1400 K . C. by means of the two trimmer capacitors located on the main tuning capacitor. The proper alignment is made by adjusting the trimmers for maximum output after tuning in a 1400 K . C. signal. Tbis adjustment should be made when they are near their extreme minimum position. After alignment a check to make sure that a $1712 \mathrm{~K} . \mathrm{C}$. signal can be heard when the main tuning capacitor is near its extreme minimum position should be made. Stock No. 9050 Test Oscillator and Stock No. 7065 non-metallic screwdriver are desirable for making this adjustment.

RADIOTRON SOCKET VOLTAGES

Measured at Maximum Volume-115 Volt A. C. Line
All Voltages on D. C. will be slightly lower

Radiotron No.	Cathode or Filament to Control Grid Volts	Cathode or Filament to Screen Grid, Volts	Cathode or Filament to Plate, Volts	Plate Current M. A.	Filament or Heater Volts
1. RCA-78 R. F.	2.5	105	105	7.0	6.0
2. RCA-77 Det.	*2.0	17.0 *	* 40	0.1	6.0
3. RCA-38 Output	10.0	100	95	5.5	6.0
4. RCA-37 Rect.	-	-	115 RMS	16.0	6.0

* Impossible to measure on ordinary volimeter.

Note-Above voltages will be approximately 5% lower on 115 volts D. C. except for heater voltagea which will be the eame.

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	description	$\underset{\substack{\text { Ligr } \\ \text { Price }}}{\text { co }}$	$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	description	List Price
	CHIASSIS ASSEMBLIES		6819	Cord-Power cord-315 ohms (R8, Pl)	\$1.00
2747	Cap-Contact Cap-Package of 5	\$0.50	6820	Coil-RF coil (L1, L2, L3)	. 86
3048	Resistor - 500,000 ohms Carbon type-1/2	\$0.50	6821 6822	Coil-Detector coil L4, L5, L6) Condenser -2 -gang variable tuning condenser	. 96
	$\underset{\text { watt (R5)-Package of } 5 ~}{\text { Wesistor-1 megohm-Carbon type-1/ watt }}$	1.00		(C2, C3, C6, C7)	2.34
3076	Resistor-1 megohm-Carbon type-1/2watt (R6)- Package of 5	1.00	6823	Capacitor-T o 4. mfd. capacitors (C13, C14).	1.14
3537	Reactor-Filter reactor (L8)	1.10	6824	Capacitor Two 5 mfd. capacitors (C8, C11)	. 94
3542	Volume control (R1, S1) Capacitor- 0.05 mfd. (C4,	1.18 .32	7485	Socket-6-onta t Radiotron socket....	. 40
3713 3860	Capacitor- 0.05 infd . Socket-5-contact Radiotron socket	.32		REPRODUCER ASSEMBLIFS	
3932	Capacitor-2400 mmmfd. (C10)	. 30			
3998	Resistor- 15,000 olyms-Carbon type- $1 / 4$ watt R3)-Package of 5	1.00	7712 7713	Support-C.one support Mechansm-Speaker mechanism complete	50
4007	Capacitor-2400 mmfd. (C1) 35		(L7) …	372
4046	Rebsstor-2 megohm-Carbon type-1/2 watt		$\begin{aligned} & 9470 \\ & 9471 \end{aligned}$	Repr ducre-Complete Cone-Sy eaker cone-Package of 5	4.62 3.50
	(R4)-Package of 5	1.00		of of	3.
4068	Lead-Antenna lead (C9)	.30		MISCELLANEOUS PARTS	
4069 4070	Capacitor- 0.1 mfd (C) (C12)	. 42	4076	Escutcheon- Volume control escutcheon-	
4071	Capacitor -0.006 mfd . (C15)	. 42		Packabe o 2 ..	. 26
4072	Capacitor 300 mmfd (Cl 16)	. 26	40\%7	Escutcheon Station selector escutcheon	
4073	Resistor- 350,000 ohme-Carbon type-1/2 watt (R2)-Package of 5 .	1.00		Package 2. Knob-Station selector knob--Package of 5	. 26
4074	wesistor-1700 ohms-Carbon type-1 watt	1.00	4079	Knob-Station selector knob--rackage of 5 oot-Rub er foot-Package of 4 .	. 22
	(R7)-Package of 5.................	. 88	4096	Knob-Volume control knob-Package of 5	75

SERVICE DATA

 i. $\mathrm{F} . \operatorname{Adjuatmentic}$

In order to mate the I. F. aj jutrmemto it in nocosary to

 Practical Hints on Installation

RADIOTRON SOCKET VOLTAGES

(b) Couple che ourpua of the owililtot from anterann to froman, pue the ocilt oror and rovive in operation and

 vided to prevent vibratare interterencec.
 Thithre F . F Linowp capation and tivo I. F , wing

 adjustments:

Line-up Capacitor Adiustments

\section*{ | Filterd D. C. Vo.tare |
| :--- |
| Toual llate Curem. |}

 "B" Bottery Eliminator

RCA-VIC'TOR CO., INC.

 shaft. In such cases, the shaft may be either short.
ened (as described under "Mounting of Unit"") or exchanged for one of propertength by the dealer. NOTE-Two support brackets are attached to
 speakrer opening. The side eracket must he esed
when the unit is mounted at the extreme left. hand end of the dash in order to arvidid sharp hends
in the fexible shaft and resultant unsatisfactry As furnished, the remote control unit is equipped Aor attachment to the steering column of the car. select from a wide variety of possible mounting positiong for maximum accepsibiblity. The aspocesated
tel hrack ot atrap will be found to accoramiodate practio.
ally any diameter steering column. If considered desirable, however, the remote control unit may be
supported upon the instrument panel by means of supported upon the instrument panel by means of
an accessory bracket procurable from the dealer. Antenna:
(a) Roof (B (a) Roof (Buit-in) Type-Best results will be
obtaiued by use of a built-in roof anienna. Tbe majority of modern automobiles (closed body types
only) are already equipped with such an antenna installed at the factory, the lead-in wire from which
will usually be found coiled-up beneath the instrument pancl. Many other earlier cars employ a piece of ungrounded (not in ilectrical contatct with the
metallic frame), may be readily utilized as an otema. NOTE-The presence of a top support screen
nd of grounds in that screen may be determined and of grounds in that screen may be determined
vithout removing any portion of the inside fabric
 (at several points if necessary) and feel around in
 screen is found. connect an ordinary dash or
head-lamp between either terminal of the auto. head. lamp bet ween either terminal of the auto.
mobile ammeter and the tool, re-ingert the tood through the head.lining and make contact with
the screen. If he lamp lights. however dimmy it
shall be assumed that the gecreen is grounded. In order to use an ungrounded support screen, nin order to use an ungrounded support screen,
first release the head-lining at the front corner
nearest the receiver. Then connect a fexible rubbernearest the receiver. Conner of the screen and solder.
insulated lead to the
the jount. Feed the free end of the lead down the the jont. Feed the free end of the lead down the
adjacent pillar-post of the car nnt the driving com. partment and replace the head-lining.

If the top support gcreen 18 grownded. or if no
screen is present, it will be necessary to drop the
 several inches from all edges and from the dome
(b) The remote coutrol unit contains one dial lamp (a-8 (c) The wiring cathe include one fusc (20 amperres)
installed in antacthrd fuse recectitacle. 2. Outfit Package-Containing: (b) Receiver unit mounting tohk (th inch diameter), dash (c) Self-arping serews, wabtere and rubberr bumplers (4 (d) Stereing column lirackect for renote eonatoo unit witb (e) Shielt. elamp for anteana lead in wire with secrew (1) (f) Key (1) and knoh (1) for remote control unit and eye(E) Ignition Interference Sappreasion E.quipment: 6 Spark plug type suppromeres (additional obtain I Distributuor type euppresaor. ${ }^{2}$ (b) Instrustiocitory. Boikg.
B. Additional Equiproent liequired: 1. Antenna-One of the following types: (a) Roof (built-in) type recommended.
(b) Roof (interior) type for atta,thernt to headi-lining

Location of Units

Receiver and Remote Control Units-The Receiver and Remote Control Units-TMe
arrangemen of unis shown in Figure 1 is recomof automombies. Consideration sh ull bl be given to
of other equipmenent beneatht the nstrument panel or of other equipmenteleneath apparatus on the engine side
the mounting bole with
of the dash. By placing the ereeiver unit toward the right.band side of the dash, the flexible shaft will be
of correct length as furriehed in practically all cases.

Alignment Data Voltage, Service Data

RCA-VICTOR CO., INC.

light fixture. The possibility of subsequent siufting
may be eliminated by tacking the screen to one or light fixture.
may be eliminated by tacking the sereen to one or
more of the ribs and by lacing the sides with cord. Where no support screen is sused, a copper screen having a total iten ould be located as far to the rear
ee inserted. as possible and insulated from all metallic parts
arounded to the frame of the car.
The antenna froully should be tested for grounds (see the foreattach the lead-in wire and replace the head-lining

NOTE-Since a degree of skill-only acquired replacing the top fabric material, such work
should be alloted to a competent "trim" man.
(b) Roof (Interior) Type-The accessory interiortype roof antenna also will provide very satisfactory
performance and, in addition, is extremely simple to install. It may be quickly attached to the head-
lining iaside the car (preferably as far to the rear as posibibe) by means of pin-books, thereby precluding
renioval of the fabric. An antenna of this type, how. ever, should not be used in any automobile having
a grounded top material support screen since the proximity of that screen would seriously reduce its
efficiency. Before purchase, therefore, it will be advisable to check this possibility, following the test,
procedure described under "Roof (Built-in) Type." As furnished. the interior-type antenna is equipped The effective antenna wire is enclosed by long-wearas desired to harmonize with the car uphoistery. (c) Plate Type-For those cases where the instal.
lation of a built-in roof antenna is considered too costly and the interior roof antenna impractical,
goond reception from local or bemi-distant powerful stations may be procured with the special plate.
type antenna also obtainable as an ace type antenna also obtainahe as an acceserory. Aes lengh nd may be noounted either length wise or crosswise of the chasis, which position should
selected n , The regard to the prevention of overcrowding. The plate must be placed as close to the
groound as possibhe, but not telow the lowest portion of the chassis at the desired lecation, as sufficient
road elearance must be retained. It is also important to avoid any position in which the plate will impecte
frre emotion of chasois parrs such ats springs,

Mounting of Units

Details of mounting the various units are shown
in rigure 1. The following procedures are recom-
mendrd:
Receiver Unit-It is necessary first to determine
the electrical polarity of the storaye battery sulpply. the electrical polarity of the storage battery supply.
This may be done mumt cunseriently by making an

Installation Details RCA-VICTOR CO., INC.

RCA-VICTOR CO., INC.

Figure B-Wiring Diagram

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\underset{\text { Price }}{\text { Liat }}$
	RECEIVER ASSEMBLIES			CONTROL BOX ASSEMBLIES	
2240	Resistor- $\mathbf{3 0 , 0 0 0}$ ohms-Carbon type-1 watt (R5)	\$0.22	3649	Koy-Vol	\$0.18
2747	Cap-Contact cap-Package of 5	. 50	3650	Screw-Self locking No. 10-32-16" fulldog point act berew	
3218	Resistor- 600 obms-Carbon type-1/4 watt (R7)-Package of 5 .	1.00	3651	-Package of 10 Screw-Self locking No. 10-32-1" cupped point set screw	. 32
3536	Capacitor-Comprising two 5.0 mfd . capacitore ($\mathrm{C} 17, \mathrm{C} 22$).	1.10		-Package of 10............................	. 32
3572	Socket-Radiotron 7-contact sock	. 38	3652	Screw-Self locking No. 10-32-3/4" cupped point act screw -For flexible drive shaft-Package of 10	. 32
3584	Ring-Antenna R. F. or oscillator coil retaining ringPackage of 5	. 40	3690	Strap and bracket assembly-Comprising ono bracket, two screws, one lockwasher and one strap.	. 40
3602	Resistor $-60,000$ ohms-Carbon typb-1/4 watt (R1, R4)Package of 5	1.00	$\begin{aligned} & 3718 \\ & 3757 \end{aligned}$	Bracket-Control box dash mounting bracket............. Coupling-Slotted coupling for end of fexible drive shaft-	. 25
3616	Capacitor-300 mmid. ($\mathrm{Cl} 15, \mathrm{Cl})^{\text {) }}$. 34		Package of	.40
3617	Capacitor 0.005 mfd (C 21)	. 38	3758	Connector-For control box end of dexible drive ohaft-	
3618	Capacitor- 0.02 mfd (C 16)	. 38		Package of 5.	.68 .90
3621	Coil-Choke coil-Located on resistor board (L.17)	. 35	6496	Knob-Station selector knob-Package of 5................ Shaft-Flexible drive shaft complete with connector:-	0
3623	Shield-Antenna R. F. or oscillator coil shield	. 30		Approximately $243 /{ }^{\prime \prime}{ }^{\prime \prime}$ long .	1.60
3632	Resistor- 500 ohms-Carbon type-I watt (R11)-Package of 5 .	1.10	6497	Shaft-Fiexible drive shaft complete with connoctor: Standard lengtb-Approximately $333 \mathbf{s}^{\prime \prime}$ long.	1.75
3636	Transformer-First intermediate frequency transformer (L7, L8, C14)	1.74	6499	Volume control-Combination volume control and awitch (R8)	1.36
3637	Transformer-Second intermediate frequency traneformer (L9, L10, C19)	1.65	6500	Nut-Volume control and awitcb lock nut Shaft-Flexible drive shaft complete with	. 24
3641	Capacitor-0.1 mfd. (C8)	. 35		Approximately 1278' ${ }^{\prime}$ long	. 85
3645	Knob-Tone control knob-Pack	. 90	6532	Shaft-Flexible drive shaft-Complete	
3695	Capacitor-375 mmfd. (C24, C3I)	. 22		Approximately 1876" long	1.24
369	Capacitor 40 mmfd ((C9)	. 22	6784	Scale-Dial scale....	. 58
3699	Capacitor-720 mmfd. (C20)	. 40	7695	Box-Control box comple	3.70
3744	Resistor-250,000 ohma-Carhon type-1/4 watt (R10)Package of 5 .	1.00	7698	Cover-Control box cover. 44
3745	Capacitor-745 mmfd. (C12)	. 34		miscellaneous Parts	
3746	Capacitor-800 mmfd. (C32)	. 34	346	Connector-Antenna lead-in conne	60
3920	Capacitor-. 003 mfd ((C23)	. 25	3646	Fure-20 amperes-Package of 5	. 40
3921	Mounting screws, wather and bushing assernbly-For		3647	Nut-Cap nut and lock washer-Package of 10	. 35
	3-gang variable tuning condenser-Comprising three spacers, throe screws, three washers and three lockwashers.		3648 3689	Screw-No. 10-32-f' cap screw and lockwasher-Package of 10 Bracket-Receiver mounting bracket, bolt and nut as.	. 32
3922		1.00	3791	nembly-One set Bushing and plate assembly-Flexible drive shaft bushing with plate mounting acrewe rubler bushings and	. 30
4091	Resistor-80 ohms-Carbon type-1/4 watt (R3)Package of 5 . .	1.00	3827	washera-Located on main case Cable-From fuse connector to ammeter.	. 30
6192	Spring-Tuning condenser drive cord tension springPackage of 10 .	. 30	3856	Clip-Spring clip-Grounds receiver chassis to metal housing-Package of 10 .	. 30
6242	Reaistor-2 megobm-Carbon type- $1 / 4$ watt (R2)Package of 5 .	1.00	3884 4051	Clamp-Cable clamp-Package of 10 Bumper-Rubber humper used in mounting receiver	. 20
6298	Cord-Tuning condenser drive cord-P	. 60	6151	chassis-Package of 4	. 20
6471	Coil-Oscillator coil assembly (L5, L6)	. 74	6152	Suppressor-Spark plug suppressor Suppressor-Distributor suppressor	. 56
6490	Tone control awit	. 35	6175	Suppreseor-Distributor splice-in suppressor	. 56
6492	Capacitor-Comprising one 3.6 mfd . and one 1.0 mfd . capacitor (C4, C13)	1.08	6494	Capacitor-Ammeter capacitor- 0.5 mfd . . Capacitor-Generator capacitor 0.5 mid .	. 46
6493	Drum-Tuning condenser drive drum	. 40	6670	Suppressor-Spark plug suppressor-"Elbow type"	. 56
6514	Capacitor-Comprising two 0.05 mfd . capacitors (Cl, C5).	. 28	7065	Screw-driver-For R. F. and I. F. adjustments.	. 80
6515	Cable-Shielded cable with antenna conne	. 32	7622	Antenna-Roof antenna-Paper type (Gray)	1.50
6516	Connector-Fuse	. 16	7686	Housing-Front section of housing complete with mounting	
6517	Cable-Main cable complete with fuse cona	1.40	7689	Vibrator	3.48 7.84
6540	Coil-R. F. coil assembly (L3, L4)	. 94	7699	Housing-Rear section of bousing complete with mounting	7.84
6731	Coil-Antenna coil (L1, L2)	. 88		screw	1.92
6732	Transformer-Interstage audio traneformer (T2)	2.00	9050	Oscillator-Test oscillator-150-25,000	33.50
7485	Socket-Radiotron 6-contact mocke	. 40		REPRODUCER ASSEMBL	
7600	Fitter pack-Compriaing one reactor, one choke coil, one 0.5 mfd , two 4.0 mfd . and one 375 mmfd , capacitors (L13, L16, C25, C26, C29, C30)	4.0	3688 7607	Tranaformer-Output tranaformer (T3 Screen-Metal screen	1.50 .44
7601	Condenser-3-gang variahle tuning condenser.	2.84	76	Coil assembly-Compriaing field coil, magnet and cone support (L14)	2.40
9049	Transformer-Power transformer (T1)	3.75	9023	Cone-Reproducer cone complete (Lil)-Package of 5	2.40 5.00

RCA-VICTOR CO., INC.
Schematic
Service Details

PAGE 5-34 RCA
MODEL $\mathrm{Ki}-107$
Chassis Wiring
RCA-VICTOR CO., INC.

SERVICE DATA

(1) Removing Units from Chassis:

The three major units, the power unit, the loudspeaker and the receiver chassis, are easily removed independently withour disturbing the orher units not removed. To do this, the use of a screwdriver and soldering iron are the only tools required. Figure 2 shows the details of the screws and terminals to be removed in each individual case.

(2) Line-Up Capacitor Adjustments:

Adjustable capacitors are provided in the R. F. oscillator and intermediate frequency amplifier to provide a means of properly aligning the receiver. A modulated R. F. oscillator such as Full-Range Test Oscillator, type TMV-97-B (Stock No. 9050), a non-metallic screwdriver such as alignment wrench Stock No. 4160 and an output meter are required for properly aligning this receiver. Refer to Figure 3 for the location of the line-up capacitors.

I. F. Tuning Adjustments:

Two transformers comprising three tuned circuits (the secondary of the second transformer is untuned) are used in the intermediate amplifer. These are tuned to $175 \mathrm{~K} . \mathrm{C}$. and the adjustment screws are accessible from beneath the chassis as shown in Figure 3. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at $175 \mathrm{~K} . \mathrm{C}$., a non-metallic screwdriver such as Stock No. 4160 and an output meter.
(b) Short-circuit the antenna and ground leads and tune the receiver so that no signal is heard. Set the volume control at maximum and connect a ground to the chassis.
(c) Connect the oscillator ourput between the first detector control grid and chassis ground. Connect the output meter across the voice coil of the loudspeaker and adjust the oscillator output so that with the receiver volume control at maximum, a slight deflection is obtained in the output meter.
(d) Adjust the primary of thesecond, and the primary and secondary of the first I. F. cransformers, until a maximum deflection is obtained. Keep the oscillator output at a low value so that only a slight deflection is obtained on the output meter at all times. Go over these adjustments a second time, as there is a slight interlocking of adjustments. This completes the I. F. adjustments.

R. F. and Oscillator Adjustments:

The three-gang capacitor trimmer screws are located
on the main tuning capacitor, accessible at the top of the chassis. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at $1400 \mathrm{~K} . \mathrm{C}$. and $600 \mathrm{~K} . \mathrm{C}$. , a non-metallic screwdriver such as Stock No. 4160 and an output meter.
(b) Connect the output of the oscillator to the antenna and ground lead of the receiver. Place the receiver in operation and attach the control box as in normal operation. Turn the tuning control until the tuning capacitors are fully meshed. Then set the indicator on the dial at the $530 \mathrm{~K} . \mathrm{C}$. reading. Turn the cuning control until the dial reads 1400 . Then set the oscillator at $1400 \mathrm{~K} . \mathrm{C}$. and connect the output meter across the cone coil. Adjust the threegang capacitor trimmer screws until maximum outpur is obrained. Be careful not to disturb the relation of the control box to the receiver after setting the dial.
(c) After making the 1400 K . C. adjustment, shift the oscillator to $600 \mathrm{~K} . \mathrm{C}$. and tune in the signal. Adjust the 600 K. C. trimmer, accessible from the side of the chassis for maximum output while rocking the gang-capacitor back and forth. Then again check the adjustment described in (b).
When making both the I. F. and R. F. adjustments, the important point to remember is that the receiver volume control must be at its maximum position and the minimum input signal necessary from the oscillator must be used.

(4) R. F. Interference from Vibrator with Shielded Lead-In Disconnected from Antenna:

In event R. F. interference originating with the vibrator inverter-rectifier unit is encountered, check the following points:
(a) Vibrator not properly seated. The vibrator must be pushed tighe against its socket at all times.
(b) The various by-pass capacitors, such as C-28, C-29 and C-30 and chokes L-13, L-14 and L-16, must be properly connected, and in operating condition. It is well to remember that some of the interference produced by the vibrator is of a frequency as high as one meter and any replacement of capacitors must always be made with one of similar mechanical as well as electrical construction.

MODEL K-107
Vibrator Data
Trimmer Locations
Socket Layout

(5) Voltage Readings:

The following voltages are those at the tube socket while the receiver is in operating condition. No allowance has been made for currents drawn by the meter and if low resistance meters are used, such allowances must be made.

(6) Vibrator Inverter:

The Vibrator Inverter unit used in this receiver is of advanced design and construction. It is adjusted by
means of special equipment at the factory and then sealed to prevent tampering. The unit is provided with a special plug-in base so that in event of suspected failure it may be easily interchanged with one of known condition.

With the seals unbroken, the Vibrator carries the standard ninety-day guarantee, which also applies to all parts of the receiver. Vibrator defects should be remedied by replacement, not by attempted adjustment.

Figure 3-Location of Line-Up Capacitors

Figure 4-Voltages at Individual Socket Contacts

RCA PAGE 5-37

* Voltage impossible to measure with ordinary voltmeter.

REPLACEMENT PARTS
Insist on genuine factory lested pents，which are readily identified and may be purchosed from authorized dealers

号欨	
感	
${ }_{5}{ }_{5}$	
氝	
免	
葡家	

RCA.VICTOR CO., INC.

Power Requirements
105-125 volt, 50-60 Cycle A. C. or 6-volt Storage Battery Power Consumption. . 115 Volts, 60 Cycles A. C. -40 Watts, Battery-5.7 Amperes at 6.3 Volts
Number and Types of Radiotrons. \qquad 1 RCA-78, 1 RCA-6A7, 1 RCA-6B7, 1 RCA-4i, 1 Ficai-1-V-Total 5 Maximum Undistorted Power Output 1.8 Watts Maximum Output. 3.6 Watts Type of Rectifier A. C.-Radiotron RCA-1 -V Battery-Vibrator Inverter-Rectifier Tuning Frequency Range. 540 K. C.-1500 K. C.

This automobile receiver is of unique design and construction. Among its many features is its adaptability to either battery or 110 -volt alternating current operation. This is accomplished by having a separate power transformer and a

Figure C-Location of Line-up Capacitors
tube rectifier for alternating current, while the conventional vibrator inverter-rectifier with its associated transformer is used for battery operation.

Other important features include its compact portable size, full vision "airplane" type dial, tone control, sensitivity switch, electro-dynamic loudspeaker and the inherent sensitivity, selectivity and tone quality characteristic of the super. heterodyne.

Figure A shows the schematic diagram, Figure B the wiring diagram, Figure C the location of the line-up capacitors and Figure \mathbf{D} the wiring of the battery cable. A brief description of the circuit follows

Radio Circuit-The radio circuit consists of four Radiotrons; namely, an RCA-78 R. F. stage, an RCA-6A7 first detector-oscillator, an RCA-6B7 intermediate frequency amplifier, second detector and A. V. C. and an RCA-41 output amplifier.

Power Circuit-The power circuit for battery operation consists of a vibrator inverter-rectifier with its associated transformer and filter circuits. The heaters of the various Radiotrons are powered direct from the car storage battery. The operating switch is so arranged that at one position battery operation is obtained. while at the other position, proper connections are made for A. C. operation.

When the switch is at the A. C. position, the A. C. input current is connected to the primary of the A. C. transformer. Two secondaries are provided, one for furnishing power to the Radiotron heaters and the dial lamp, the other for plate supply to Rectifier RCA-1-V. The output of the rectifier is then filtered by the same filtering system as that used for battery operation. The loudspeaker field is used as a filter reactor.

Inverter-Rectifier Adjustments

This receiver uses a vibrator inverter-rectifier for supplying all plate and grid voltages when operated from a battery source. This unit is accurately adjusted and sealed at the factory and service adjustment should not be attempted.

Line-up Capacitor Adjustments

The three R. F. line-up capacitors and two I, F. tuning capacitors are accessible and may require adjustments. The R. F. adjustments are made at 1400 K . C. and the I. F. adjust ments at 175 K . C. In order to make these adjustments, it is first necessary to remove the cover of the instrument. The following procedure should be used:

R.F.Adjustment :

(a) Check tho position of the dial pointer. It should be aligned with the low-frequency end graduation, as indicated by the small arrow marked "Max. Cap." when the tuning capacitor rotor in fully meshed with the stator.
(b) Procure a modulated oscillator giving a signal at 1400 K . C. (Stock No. 9050), a non-metallic serew driver (Stock No. 7065) and an output meter. Connect the output meter acrose the cone
coil of the loudspeaker. coil of the loudspeaker.
(c) Couple the output of the oscillator from antenna to ground, set the dial at 140 , and the oscillator at 1400 K . C.
(d) Place the oscillator and receiver in operation and adjust the oscillator output so that a small deflection is obtained in the output meter whon the volume control is at its maximum position.
(e) Then adjust the three line-up capacitors until maximum deflection in the output meter is obtained. Readjuat these capacitors a second time, as there is a slight interlocking of adjustments.

I. F. Adjustments :

(a) Procure modulated oscillator giving a aignal at 175 K . C. (Stock No. 9050), a non-metalic serew driver (Stock No. 7065) and an output meter.
(b) Connect the oscillator between the control grid of the first detector and ground.
(c) Connect the output meter across the voice coil of the loudspeaker. Then connect the antenna lead to groind and adjust the tuning capacitor so that no signal except the I. F. oncillator is heard at maximum volume. With the volume control at maximum, reduce Unless this is done, the action of the A. V. C. will make it impos. sible to obt ain correct adjustmente.
(d) Each transformer has but one winding that is tuned by mesns of an adjustable capacitor, the other windings being untuned. The capacitors should be adjusted for maximum ontput. At the time I. F. adjustments are made it is good practice to follow this adjustment with the R. F. adjustments, due to the interlocking that always occurs. The reverse of this, however, if notalways true.

RADIOTRON SOCKET VOLTAGES
115 Volts A. C. or 6.3 Volt Bottery-No Signal-Max. Sensitivity

Radiotron No.	Cathode to Ground	Cathode to Screen Grid Volt :	Cathode to Plate Volta	Cathode Current M. A.	Heater Volts
RCA-78 R.F.	4.2	86	216	5.5	5.9
$\begin{array}{c\|l} \hline \text { RCA- } & \text { First Detector } \\ 6 A 7 & \text { Oscillator } \end{array}$	4.2	86	216	$\begin{aligned} & 10.0 \\ & \text { Total } \end{aligned}$	5.9
		-	216		
RCA-6B7 Second Det.	2.7	87	207	4.5	5.9
$\overline{\mathrm{R} C A}-41$ Power	15.0	255	235	30.0	5.9
RCA.1.V	-	-	325 RMS	50.0	5.9

SOLID CONNECTIONS FOR
 +A GROUNDED. DOTTED
 CONNECTIONS FOR -A゙GROUNDED.

Figure D-Internal Connections of Cable

PAGE 5-40 RCA
MODEL M-116
Chassis Wiring
RCA-VICTOR CO., INC.

Figure B-Wiring Diagram

RCA-VICTOR CO., INC.

RCA.VICTOR CO., INC.

 Parts List
connect the cable lugs to the battery terminal
clamps as illustrated. The lug stamped "BATT. GROUND" must be connected to that side of the battery grounded to the car frame and the remaining lug (on lead with fuse receptacie) attached to the
supply side of the battery. Finally, replace the floor cover, notching the side of the opening if
necessary to provide clearance for the battery cabie. eecessary to provide clearance for the battery cable.
Suppression of Ignition Interference1. Disconnect all wires from the spark plugg. Fasten one spark-plug suppressor to the top of each
plug and re-attach the wires to the free ends of the suppressors. These suppressors may be mounted either in line with or at right angles to the plugs in
order to avoid interference with metallic parts order to avoid interference with metalic parts
grounded to the engine or frame.
2. If the distributor is of the plug-in type., disconnect the center wire from the head Pug
the digtributor suppressor into the distributor head and insert the wire in the free end of the suppressor. NOTE-For cap-type distributors, exchange
the distributor suppressor at your dealer' for one of a peecial type.. Cut the wire leading from
the distributor to the coil and screw the sup. peresor into the end attached to the distributor.
crew the other end of the wire (leading to the coil) into the opposite end of the suppressor. 3. Clamp the generator capacitor agaiust the
generator frame.
The screw holding the cut-out generator frame. bue scred for securing this unit.
ordinarily may be utilized the
Connect the capacitor lead to the terminal on the Connect the capacitor lead to the terminal on the
generator side of the cut-out switch. (In some cases, however, less interference will be encountered with this lead connected to the opposite side of the
cutout; the most suitable position therefore should
determined by trial.)
4. The ignition capacitor (unit with two leads) must be connected between the battery terminal of the ammeter and any convenient screw on the in
trument panel. In certain cars. interference will he reduced still further by connecting an additional capacitor (obtainable from your dealer) between the
battery side of the ignition coil and the car frame. Home Installation
The circular insert on the frontispiece illustrates品 a table or other level surface, attacci the antenna
lead-in wire (using the small connector furnished)

 inside the case.
 is accomplished in the following manner: Lift the battery cable and antenna shielded lead-in wire in position and then replace the seat. In cases that seat, however, it will be necessary to connect the battery cable to the battery (as deacribed in
the subsequent paragraph entitled "Connection the subsequent paragraph entitled Connection
to Battery") before replacing the seat. Finally,
mount the receiver on the seat, attach the connector mount the receiver on the seat, attach the connector
of the lead-in wire to the short (antenna) lead extending from the rear of the instrument and, with the power switch "off" in AC position,
nna lead-in wire beneath floor mat to the side of car nearest the wire extending from the antenna. The is brought down one of the front pillar posts and left in a coil behind the instrument panel. In such
cases, therefore, the lead-in wire after leaving the foor mat should be concealed behind the kick-board, then soldered to the wire extending from the aftenting
at the lower end of the body pillar post, after cutting at the lower end of the body pillar post, after cutting
the necessary lengh from each wire to eliminate excessive slack. Insulate the joint with tape and
then solder or bond the pig-tail extension from the A similar procedure is followed when
alternative form of antenna ("interior" roof or plate type) is employed except that the lead-in case. Such antennas should be mounted as far to the rear of the car as possible to insure minimum
ignition interference. The lead-in wire for the interior type unit thus may be carried down the rear quarter of top and then behind the back cash be
of seat in open and convertible models or may be anchored to any convenient pillar post in closed
models. With the plate antenna, the lead-in wire models. With the plate antenna, the lead-in wire
should be fed through any opening in the loor
Connection to Battery-Since, in most cars,
它 after passing beneath the driver's seat (see note concerning longer cable available for rear seat
operation-Equipment, "Battery Cable Package"). Run the cable under the floor mat and through
the floor opening provided above the battery and

REPLACEMENT PARTS

1K0DEL 118,211
Schematio
Trimer Locations

PAGE 5-44 RCA

RCA PAGE 5-45
RCA-VICTOR CO., INC.
MODEL 118,211
Voltage
Sooket Layout Loud Speaker Wiring

RADIOTRON SOCKET VOLTAGES

115-Volt, A. C. Line-Maximum Volume Control-No Signal

Figure 7-Radiotron Socket Voltages

Figure 3-Table Model Loudspeaker Wiring

Figure 4-Console Model Loudspeaker Wiring

Parts List

 (b) With the Range Switch at the "in" position,
adjust the two trimmers under the cwo R. F. (1) Line-Up Capacitor Adjustments:
To properly align chis receiver, it is essential that a
moscillator, such as Scock No 9050, modulated R. F. oscillator, such as Seock No. 9050, an output indicator and an alignment tool (Socak the various line-up capacitors.
I. F. Tuning Adjustments: are used in the intermediate amplifier. These are tuned to 460 K . ${ }^{2}$. and the adjustment scress as as shown in Figure 6 . Proceed as follows: (a) Short-circuit the antenna and ground tean is heard. See the volume control at maximum
and conpect a ground to the ground tetminal. (b) Connect the test oscillator outpur between the Connect the test oscillator oucput
firse detector concrol grid and chassis ground Connect the ourpur meter across the voice coin
of the loudspeaker and adjuse the oscillator output so chat, with the rectiver volume conerol
at maximum, 2 slight deflection is obtained in at maximum,
the output meter
(c) Adjust the secondary and primary of the firse and then the second I. F cransformers until a
maximum deflection is obcained. Keep the oscillator outpur at a low value so that only a slight deflection is obcaiked ones adjusements a second time, as there is a slight interlocking
of adjustments. This completes the I. F. adjustments.
R. F. and Oscillator Adjustments:

The R. F. line-up capacitors are located at the bottom of the coil assemblies instead of their usual from the bottom of the chassis except the 600 K . C. ieries capacitor, which is accessible from the top of
be chassis. Proceed as follows: be chassis. Proceed as follows:
(a) Connect the output of the oscillator to the Check the position of the indicacor pointer when the tuning capacitor plates are fully
meshed. It should be coincident with the meshed. It should be coincicent line adjacent to the dial reading of 540 .

 control is at its maximum position.

SERVICE DATA

The various by-pass capacitors, such as $\mathrm{C}-29$,
$\mathrm{C}-30, \mathrm{C}-31, \mathrm{C}-34, \mathrm{C}-37$, and chokes $\mathrm{L}-16$ and
$\mathrm{L}-14, \mathrm{~L}-13$, muse be properly connected, and
in operating condition. It is well to remember
that some of che interference produced by the
vibrator is of a frequency as high as one meter
and any replacement of capacitors must always
be made with ones of similar mechanical as
well as electrical construction.
(c)

Voltage Readings:
The following volcages are chose at the rube No allowance has been made for currents drawn by
the meter and if low the meter and if low resistan
allowances must be made. (6) Vibrator Inverter-Rectifier;

The Vibrator Inverter-Rectifier unit used in this receiver is of advanced design and construction. It is
adjusted by means of special equipment at the
factory and then sealed to prevent factory and then sealed to prevent campering. The
unit is provided with a special plug--in base so chat in event of suspected failure it may be easily inter-
changed with one of known condition.

With the seals unbroken, the Vibrator carries the With the seals unbroken, the Vibrator carries the
standard ninety-day guarancee, which also applies to all parts of the receiver. Vibrator defects should be
rernedied by replacement, not by attemped adjustment.
(7) Stiff Tuning Mechanism:
In event the station selector turns hard or stiff, it is
probably due to excessive pressure berween the worm probably due to excessive pressure between the worm
and drive gear. Proper tension betwen these unirs
exists when the gear is pushed 尿" beyond the point of exists when the gear is pushed meyond the point of
contact with the worm, before being tightened. (8) Antenna Lead Clamp A clamp has been provided for holding the antenna
lead securely to the side of case. This clamp is held by lead securely to the side of case. This clamp is held by
one of the chassis mounting screws and prevenss the
antenna lead from interfering with the operation of antenna lead from interfering with the operation of
the brake pedal or statrer button. When making an
installation is is important to see that this lead is securely clamped.

RADIOTRON SOCKET VOLTAGES RADODRONS S

Radiotron No.		$\begin{aligned} & \text { Cathode to } \\ & \text { Ground Volts, } \\ & \text { D. C. } \end{aligned}$	$\begin{aligned} & \text { Squen Gaid to } \\ & \text { Ground V Volts } \\ & \text { D. C. } \end{aligned}$	Platz ro Ground Vocts, D. C.	Cathode Curprnt, M. A	$\begin{gathered} \text { Heatas Volts } \\ \text { D. } \\ \text { C. } \end{gathered}$
RCA-6D6 R.F.		3.9	76	192	4.5	5.9
RCA-6A7	1 st Det.	3.9	76	192	7.5	5.9
	Osc.		-	192		
RCA-6D6-1. F		3.6	76	192	5.3	59
RCA-75-2nd Det.		1.25	-	165	46	5.9
RCA-41-A.F.		22.0	-	235	14.5	5.9
RCA-79-Pwr.		0	-	256	10.5	5.9

R. F. and Oscillator Adjuriments: The three-gang capacitor screws are located on the main cuning capacitor, accessible at the cop of the
chassis. Proceed as follows: (a) Procure a modulated oscillator giving a signal Procure a modulated oscillator giving and $1400 \mathrm{~K} . \mathrm{C}$ and 600 K . $C_{\text {, a non-meallic }}^{\text {at }}$
screwdriver such as Stock No. 4160 and an (b) Connect the outpur of the oscillator to the antenta and ground lead of the receiver. Place
che receiver in operation and attach the con-
trol box as in normal operation. Turn the cuning concrol until the tuning capacitors are dial at the 530 K . C. reading. Turn the tun-
 the ouppe meter across the cone coin. Adjust maximum outpur is obrained. Be careful not (c) After reiver after setting the dial. (c) After making the $1400 \mathrm{~K} . \mathrm{C}$. adjusunent, the signal. Adjust the $600 \mathrm{~K} . \mathrm{C}$. trimmer,
accessible from the side of the chassis for maximum output while rocking the gang-
capacitor back and forth. Then again check When making boch the I. F. and R. F. adjustmens,
 the minimum input signal necessary from the oscillator
must be used. (4) R. F. Interference from Vibrator: In event R. F. interference originating with the
vibrator inverter-rectifier unit is encountered, check
the following poins:
(a) Vibrator not properly seated. The vibracor must be pushed tight against its socket at all
times.
(b) The clip from the top of the R. F. cube shield
to the gang-capacitor must be in place.左 (a) Procure a modulated oscillator giving a signal
at 175 K . C., a non-mecallic screwdriver such
as Stock No. 4160 and an output meser. (h) Short-circuic che antenna and ground leads and
 Connect the oscillator output between the first detector control grid and chassis ground.
Connect the output meter across the voice coil
 output so that with the receiver volume con-
trol ar maximum, a slight deflection is ob-
(d) Adjuse the primary of the second, and the secondary and primary of the first I. F. tuans-
formers, until a maximum deflection is obtained. Keep the oscillator output at a low on the ourpur meter at all times. Go over
 pleces the I. F. adjustments.

 whenever this change is made, che adjusting screw located on the front of the drive unit should be tension and elimination of backlash is obtained.
(3) Line-up Capecitor Adjustments:

Adjustable capacitors are provided in the R. F provide a means of properly aligning the receiver. A modulated R. F. oscillator such as Full Range Test non-merallic screwdriver such as alignment wrench Stock No. 4160 and an output meter are required for
properly aligning this receiver. Refer to Figure 3 for the location of the line-up capacitors.
I. F. Tuning Adjustments: (the secondary of the second ctansformer is untuned) tuned to in the intermediate amplifier. These are accessible from beneath the chassis as shown in Figure 3. Proceed as follows:

Electrical Specifications Type and Number of Radionrons Used-2 RCA-6D6, 1RCA-6A7, 1 RCA-75, 1 RCA-41, 1 RCA-79

 Battery Current (6.3 Volt Battery): 135 AmperesSpeaker Field (Cold) Speaker Field (Cold) .1.35 Amperes Tubes......................2.2 Amperes

uning Frequency Range $540 \mathrm{~K} \mathrm{C}-1600 \mathrm{~K} \mathrm{C}$ Maximum Undistorted Outpur...........4.2 Wates Maximum Qurput
Line-up Frequencies $175 \mathrm{~K} . \mathrm{C} ., 600 \mathrm{~K} . \mathrm{C}^{6}$,
1400 K
C

1) Removing Units from Chassis: speaker and the receiver chassis, are easily removed independently withour disturbing the other units nor
removed. To do this, the use of a screwdriver is the only tool required. Figure 2 shows che details of the screws and terminals to be removed in each individual

(2) Loose of Tight Tuning Action:

An adjustment screw is provided at the worm
drive unit, so that proper tersion may be provided
for the particular worm being used. The instruction

MODIL $\mathrm{M}-123$
Sohematic
Sockot Layout

PAGE 5-50 RCA
MODEL H-123
Chassis Wiring
RCA-VICTOR CO., INC.

RCA-VICTOR CO., INC.

Figure 6-Assembly Wiring Diagram

Figure 7-Vibrator Inverter-Rectifier Unit Wiring

PAGE 5－52 RCA
MODEL M－123
Parts List
RCA－VICTOR CO．，INC．
REPLACEMENT PARTS

怱	
－	
${ }_{\square}{ }_{n}$	
考	
\％	
華我	

SERVICE DATA

These are tuned to 175 K . C. and the adjustment screws are accessible as shown in Figure D. Proceed as follows:
(a) Procure modulated oecillator giving a signal at 175 K. C. a nonmetallic screw driver such as Stock No. 7065 and an outpot meter.
(b) Short -circuit the antenna and zround ter minale and tune the receiver so that no signal is beard. Set the volume control at maximnm and connect a ground to the chmesia.
(c) Connect the oscillator output between the first detector control grid and chasesia groond. Connect the output moter acroes the voice coil of the loudspeaker and adjutt the oncillator output 20 that with the receiver volumo control at maximom. alight defiection is obtained in the output meter.
(d) Adjust the primary of the cecond, and the secondary and primary of the Grat I. F. transformers until a maximum deflection io oblight defiection is obtained on the outpot meter at all timen Go over these adjustments a second time, as there is a diftht interlocking of adjustments. This completes the I. F. Adjontmente.

Figure D-Location of I. F. Line-up Adjustment Screws
R. F. and Oscillator Adjustments-The three gang capacitor screws are accessible at the bottom of the chassis. The high frequency capacitor screws are located on the Range Switch. Proceed as follows:
(a) Procure a modulated oscillator fiving aignal at 1400 and 2440 K. C., n non-metallic acrew driver auch an Stock No. 7065 and an nutput meter.
(b) Connect the output of the oscillator to the antenna and ground terminals of the receiver. Check the dial at the extreme maximum position of the tuning capacitor. The indicator should be opposite at its center position. Then equency end of ecale with the indicato K . Cand connect the output meter acroan the cone coil. Adjust the oscillator output so that a alight deflection is obtained when the receiver volime control is at maximum.
(c) With the Range Switch at the counter-clockwise position, adjuat the three tuning condenner line-up caparitors antil maximum defection is obtained in the ont put meter. Then shift the oacillator to 2440 K . C.. the Range Switch to the clock wise position and the Switch should then be adjusted for maximnm output.
When making both the I. F. and R. F. adjustments, the important points to remember are that the receiver volume control must be at its maximum position and that the input signal from the external oscillator must be no greater than necessary.

TUBE SOCKET VOLTAGES

115 Volts, A. C. Line-No Signal

Radintron No.	Cathode to Control Grid. Volte	Cathorle to Serpen Grid. Volta	Cethorle to Plate. Volte	Plate Current M. A.	Heater Volte
1. RCA 58 R . F.	4.0	95	255	5.0	2.31
2. RCA-2A7 list Det. Onc.	5.0*	95*	25.5*	3.0*	2.31
3. RCA-58 I. F	4.0	95	255	5.0	2.31
4. RCA-2B7 2nd Det. A. V. C.	7.5	92	60	2.0	2.31
5. RCA-2A5 Powor	20.0	250	235	33.0	2.81
6. RCA-80 Roctifier	700-350 Voito-75 M. A. Total Current				4.82

RCA-VICTOR CO., INC.

Figure A-Schematic Circuit Diagram

Figure B-Wiring Diagram

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	$\begin{aligned} & \text { List } \\ & \text { Prico } \end{aligned}$	$\xrightarrow[\substack{\text { Stock } \\ \text { No. }}]{ }$	DESCRIPTION	ListList Price
	RECEIVER ASSEMBLIES		4135	Socket-Dial lamp socket and bracket.	\$0.25
2269	Capacitor-720 mmfd. (Cl	\$0.75	4140	Shield-Radiotron shield-1st detector	. 30
2747	Cap-Contact cap-Package of 5	. 50	4141	Shield-Radiotron shield-2nd detector	. 36
3047	Resistor - 1500 ohms - Carbon type - $1 / 2$ watt (R7)-Package of 5		6188	$\begin{gathered} \text { Resistor - } 2 \text { megohm - Carbon type }-1 / 2 \\ \text { watt }(\text { R1, R12) -Paclage of } 5 \ldots \ldots \ldots \ldots . \end{gathered}$	1.00
			6282	Resistor- 60,000 ohms-Carbon type- $1 / 2$	1.00
3076	Resistor - 1 watt R $)$-Package of 5 watt (R6)-Package of 5 .	1.00	6300	watt (R8, R10, R15)-Package of $5 \ldots \ldots$. Socket-Radiotron 4-contact socket $\ldots . . .$.	1.00 .35
3252	Resistor-100,000 ohms-Carbon type- $1 / 2$ watt (R5)-Package of 5	1.00	6303	$\begin{aligned} & \text { Resistor- } \mathbf{2 0 , 0 0 0} \text { obms Carbon type- } 1 / 2 \\ & \text { watt (R9)-Package of } 5 \ldots \ldots \ldots \ldots . . . \end{aligned}$	1.00
3358	$\begin{gathered} \text { Resistor }-3,000 \text { ohms - Carbon type - } \\ 1 / 2 \text { watt (R13)-Package of } 5 \ldots \ldots \ldots . \end{gathered}$	1.00	6471	Coi--Oscillator coil (L5, L6) Transformer-mst intermediate frequency	. 74
3459	Capacitor - 80 mmfd ((C10)	44	6483	Transformer-lst intermediate frequency transformer (L7, L8, C15, C16)	1.84
3514	Resistor-250,000 ohms-Carbon type-1/2 watt (R17)-Package of 5	1.00	6484	Transformer-2nd intermediate frequency transformer (L9, L10, C18)	1.70
3572	Socket-Radiotron 7-contact	. 38	6485	Volume control-With mounting uut (R11).	1.20
3584	Ring $-\mathbb{R}$. F. or oscillator coil retaining ring Package of 5 .	. 40	6487	$\begin{aligned} & \text { Capacitor assembly }- \text { Comprising three } 4.0 \\ & \text { mfd. and one } 10.0 \text { mfd. capacitors (C4, } \\ & \mathrm{C} 14, \mathrm{C} 22, \mathrm{C} 30 \text {) } \ldots \ldots \ldots \ldots . . \end{aligned}$	$\begin{aligned} & 2.26 \\ & 2.90 \end{aligned}$
3594	$\begin{aligned} & \text { Resistor-50,000 ohms-Carhon type-1/2 } \\ & \text { watt (R14, R18)-Package of } 5 \ldots \ldots \ldots . \end{aligned}$	1.00	6527 6528	Coil-Antenna coil (L1, L2) Coil-R. F. coil (L3, L4)	1.08 .94
3597	Capacitor -0.25 mfd .	40	6534	Switch-Range switch (S2, S3, S4, S5, S6, C32, C34, C35)	
3598	Capacitor- 0.1 mfd -R. F. and I. F. by-pass (C5)	. 36	6598	Condenser-3-gang variable tuning con-	1.25
3616	Capacitor-300 mmfd. (C20	34		C7, C8, C11,	3.00
3623	Shield-Antenna or R. F. coil shield	. 30	6619	Tone control with mounting nut (R20)	1.44
3626	Shield-Oscillator coil shield	. 22	6620	Capacitor-Comprising one .005 and one .035 mfd . (C28, C36).	. 50
3630		. 25	6851	Scale-Dial scale and drive assembly	1.22
3632	Resistor - 500 ohms - Carbon type - 1 watt (R19)--Package of 5 .	1.10	6853 7485	Escutcheon-Station selector escutcheo Socket-Radiotron 6-contact socket....	.34 .40
3633	Capacitor-400 mmfd. (C23	. 38	7590	Capacitor-10.0 mfd. (C29)	1.40
3634	Capacitor-160	. 34	9005	Transformer-Power transformer-105-125 volts, 50-60 cycles (T1)	4.80
3639	Capacitor - 0.02 mfd (C 25)	. 25			4.80
3640	Capacitor 0.05 mfd ($\mathrm{C} 3, \mathrm{C} 6$,	. 25	9006	Transformer-Power transformer-200-250 volts, $50-60$ cycles	5.05
3641	Capacitor 0.1	. 35	9024	Transformer-Power transformer-105-125 volts, 25-40 cycles	5.85
3721	$\begin{array}{r} \text { Resistor }-1,000 \text { ohms }- \text { Carbon type }-1 / 2 \\ \text { watt }(\mathrm{R} 3) \text {-Package of } 5 \ldots \ldots \ldots . . \end{array}$	1.00		REPRODUCER ASSEMBLIES	
3783	Capacitor-9 mmfd. (C31,		6476	Transformer-Output transformer (T2)	1.44
	of 2	. 50	6852	Cabl-3-conductor reproducer cable	. 26
4103	Shield-Radiotron shield	. 20	9032	Coil assembly-Comprising coil, magnet and cone support (L12).	2.35
4133	Knob-Station selector, volume control, tone control or range switch knob-		9428	Cone-Reproducer cone (L11)-Package of 5	5.00
	Package of 5......................	. 80	9440	Reproducer complete	4.75

PAGE 5-58 RCA
MODEL 126-B
Chassis Wiring
RCA-VICTOR CO., INC.

RCA-VICTOR CO., INC. SERVICE DATA

MODEL 126-B

Alignment Data Volttage

(1) Important

Always disconnect the batteries before attempting to remove the chassis from the cabinet. Always turn the operating switch "off" before changing tubes, batteries or fuses.

Figure 3-Loudspeaker Wiring

(2) Line-up Capacitor Adjustments

Line-up capacitors are provided in the first detector, oscillator and intermediate amplifier to provide a means of properly aligning the receiver. A modulated R. F. oscillator, such as Full Range Test Oscillator, type TMV-97-B (Stock No. 9050), a non-metallic screw driver, such as alignment wrench (Stock No. 4160), and an output indicator are required for properly aligning this receiver. Refer to Figure 4 for the location of the line-up capacitors.

I. F. Adjustments

Two transformers comprising four circuits, two of which have trimmer capacitors, are used in the I. F. amplifier. Proceed as follows:
(a) Short-circuit the antenna and ground terminals and connect the output of the oscillator between the control grid cap of the first detector (RCA-1A6) and ground. Connect an output indicator across the voice coil leads of the loud peaker. Place the oscillator in operation at 460 K . C. and adjust its output and
the receiver volume control until a deflection is obtained in the output indicator.
(b) Adjust the secondary and then the primary of the first I. F. transformer (see Figure 4) until a maximum deflection is obtained in the output indicator.

This completes the I. F. adjustments. It is good practice to always follow the I. F. adjustments with the detector and oscillator adjustment, as there is an interlocking of adjustments that always occurs.

Detector-Oscillator Adjustments

The two-gang capacitor trimmer screws are accessible at the top of chassis. The series (600 K . C.) trimmer is accessible from the rear. Proceed as follows:
(a) Connect the oscillator between the antenna and ground terminals of the receiver. Connect the output meter across the voice coil leads of the loudspeaker.
(b) Place the oscillator in operation at $1400 \mathrm{~K} . \mathrm{C}$., set the dial at 140 and adjust the oscillator output and receiver volume control until a deflection is obtained in the output indicator.
(c) Adjust each trimmer on the gang capacitor until a maximum deflection is obtained.
(d) Set the oscillator at $600 \mathrm{~K} . \mathrm{C}$. and tune in the signal on the receivet. Then adjust the series trimmer, located on the rear of the chassis, until maximum output is obrained. While making this adjustment, rock the tuning capacitor back and forth through the signal. Then again check the adjustments in (b).

(3) Voltage Readings

The following voltages are those at the tube sockets while the receiver is in operating condition. No allowance has been made for current drawn by the meter and if low resistance meters are used, such allowances must be made.

RADIOTRON SOCKET VOLTAGES

135-Volt "B" Supply-No Signal-Maximum Volume Control

Radiotron No.		Control Gelo to Ground Volts, D. C.	Scrern Grid to Ground Volts, D. C.	Plate to Ground Volts, D. C.	$\begin{aligned} & \text { Plate, } \\ & \text { M. A. } \end{aligned}$	Filament Vocts, D.C.
RCA-1A6	1st Det.	*3.0	67.5	135	1.7	2.0
	Osc.	-	-	135	1.8	
RCA-34-1. F.		*3.0	67.5	135	3.0	2.0
RCA-32-2nd Dec.		*6.5	67.5	*95	0.4	2.0
RCA-30-Driver		*9.0	-	130	3.5	2.0
RCA-30--Output		12.0	-	135	1.0	2.0
RCA-30-Ourput		12.0	-	135	1.0	2.0

[^1]
RCA-VICTOR CO., INC.

REPLACEMENT PARTS
Insiat on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers.

Stock No.	Description	List Price	Stock No.	Description	List Price
	RECEIVER ASSEMBLIES		6980	Socket-4-contact output (No. 5) Radiotron socker.	\$0.20
2747	Cap-Contact cap-Package of 5.........	\$0.50	38.59		
4000	Capacitor-Adjustable crimmer capacitor (C8)	. 78	38.5	socket.	. 30
4353	Capacitor-100 mmfd. (C12)	. 30	4232	Socket-6-contact-1st detector and oscil-	. 35
4354	Capacitor-1500 mmfd. (C3)	. 36		lator-Radiotron socket	$\begin{aligned} & .35 \\ & .50 \end{aligned}$
4352	Capacitor-300 mmfd. (C18, C19)	. 25	6669	Switch-Tone control switch (S5).....	$.50$
6512	Capacitor -0.005 mfd (C 23)	. 28	4347	Terminal strip-Engraved "ANT-GND".	$.25$
3888	Capacitor-0.05 mfd. (C24).	. 25	6993	Transformer-First intermediate frequency transformer (L5, L6, C14, C15)	2.10
3701	Capacitor-0.01 mfd. (C1, C20)		6994		
3877	Capacitor-0.1 mfd. (C2, C16, C17)	. 32	6994	Iransformer-Second intermediate frequency transformer (L7, L8)	1.05
4355	Capacitor pack-Comprising two 1200 mmfd. capacitors (C21, C22)	. 26	6995	Volume control (R7)	1.10
4349	Capacitor and eransformer pack-Comprising one 8.0 mfd ., one 0.5 , one 0.25 mfd		4350	REPRODUCER ASSEMBLIES Cable-4-conductor-Reproducer cable.	. 54
	capacitor and driver cransformer (C7, C6, C13, T1)	3.95	9428	Cone-Reproducer cone (L10)--Package of 5.	5.00
6992	Coil-Antenna coil (L1, L2, R1, C1)	. 98	9503	Housing-Cone housing and core assembly	2.70
4343	Coil-Choke coil (L9)	. 60	3949	Magnet	1.40
6664	Coil-Oscillator coil (L3, L4)	. 94	9502	Reproducer assembly complet	8.40
6660	Condenser- $\mathbf{2}$-gang variable cuning condenser (C4, C5, C10, C11).	2.78	6996	Transformer-Output transformer (T2) MISCELLANEOUS ASSEMBLIES	1.68
4356	Resiscor- 0.7 ohm-Flexible type (R6)Package of 10.	1.50	42.89	MISCELLANEOUS ASSEMBLIES Body-Fuse connector body-Package of 10.	. 35
4345	Resistor - $\mathbf{3 2 0 0}$ ohms - Carbon cype - $1 / 4$ watt (R12)-Package of 10 .	2.00	4357	Cable-Battery cable-6-conductor	1.52
4346	Resistor - 3700 ohms - Carbon cype - $1 / 4$ watt (R13)--Package of 10	2.00	4288	Cap-Fuse connector cap-Package of Connector-Fuse connector complete	. 16
4344	Resistor - 7500 ohms - Carbon type - $1 / 4$ watt (R8)-Package of 10	2.00	4468	Dial-Station selector dial.... Escutcheon-Operating switch	. 22
6303	Resistot-20,000 ohms-Carbon typc-1/2 watt (R5)-Package of 5 . .	2.00 1.00	6176 4286	Package of 5 Ferrule-Fuse connector ferrule and bushing- $\text { Package of } 10$.50 .38
3114	Resistor-50,000 ohms-Carbon rype--1/4 watt (R2)-Package of 5 .	1.00	3748	Fuse-0.5 ampere (F1, F2)-Package of 5...	. 40
3118	Resistor-100,000 ohms-Carbon type-1/4 wate (R4)-Package of 5.	1.00	4290 3088	Insulator-Fuse connector insulator-Package of 10	.35 .50
3619	Resistor-400,000 ohms-Carbon type-1/4 watt (R10)-Package of 5	1.00	3088 4085	Knob-Station selector knob and pointer Package of 5	. 60
6186	$\begin{aligned} & \text { Resistor- } 500,000 \text { ohms-Carbon type-1/4 } \\ & \text { watt (R1, R3)-Package of } 5 \ldots \ldots \ldots . \end{aligned}$	1.00	4132	Knob-Volume control or tone control	. 55
3033	Resistor- 1 megohm-Carbon type- $1 / 4$ watt (R11)-Package of 5.	1.00	4348	Lamp-Dial lamp38 29.50
6242	Resistor- $\mathbf{2}$ megohm-Carbon cype--1/4 watt (R9)--Package of 5	1.00	9050 3886	Oscillator-Test oscillator-90 to 25,000 K.C. Reflector-Dial light reflector.	$29.50 \dagger$.30
3584	Ring-Oscillator coil retaining ring-Package of 5	40	3238	Screw-Set screw for operating switch knob -Package of 10	. 25
3682	Shield-First detector and oscillator-Radiotron shield.	22	4393	Screw-No. 8-32-5/6-inch headless set screw for knobs-Package of 10	25
4351	Shield-I. F. Radiotron socket s	. 25	4160	Screw driver-Combination insulated screw	
6665	Shield--Oscillator coil shield. 34		driver and socket wrench for I. F. and R. F. adjustments.	1.00
3056	Shield-Second detector-Radiotron shieldPackage of 2.	. 40	4284	Spring-Fuse connector spring-Package of 10	. 30
3858	Socket-Dial lamp socket.	26	4540	Switch-Operating switch (S1, S2, S3, S4) ...	2.28
6300	Socket-4-contact second detector-Radiotron socker.	. 35	4285	Washer-Fuse connector insulating washerPackage of 10	. 22

PAGE 5-62 RCA
MODEL 127
Chassis Wiring RCA-VICTOR CO., INC.

Figure 3-Loudspeaker Wiring

ALL VOLTAGES ARE TO-B
Figure 5-Radiotrom Socket Voltages

The following voltages are those at the various tube sockets while the receiver is in operating condition. No allowance has been made for currents drawn by the meter, and if lower resistance meters are used, such allowances must be made.

RADIOTRON SOCKET VOLTAGES

$290-$ Volt, D. C. Line - No Signal

Radiotron No.		$\begin{aligned} & \text { Cathode } \\ & \text { to B-Volts, } \\ & \text { D. C. } \end{aligned}$	$\begin{aligned} & \text { Screen Grid } \\ & \text { to B--Volts, } \\ & \text { D. C. } \end{aligned}$	Plate to B- Volts, D. C.	Plate Current, M. A.	Heater Volts, A. C.
RCA-6D6 R.F.		3.0	90	200	6.0	6.4
RCA-6A7	ist Detector	4.0	90	200	2.6	6.4
	Oscillator	-	-	125	3.3	
RCA-6D6 I. F.		3.0	90	200	6.0	6.4
RCA-75 2nd Detector		1.5	-	200	0.7	6.4
RCA-41 Power		13.0	190	205	25.0	6.4
RCA-41 Power		13.0	190	205	25.0	6.4

RCA－VICTOR CO．，INC．

Parts List
REPLACEMENT PARTS
Insirt on genuine factory tested parts，which are readily identified and may be purchesed from suthorized dealers

曷缶	
成	
莺它	
爰	
吅	

SERVICE DATA

CAUTION－This receiver operates on 220 －volt \quad Proceed as follows：
direct current without a transformer between the line
（a）Connect the output of the oscillator to the antenna and ground terminals of the receiver． Check the position of the indicator pointer
when the tuning capacitor plates are fully when the tuning capacitor plates are full
meshed．It should be coincident with the
radial line adiacent to the dial radial line adjacens to the dial reading of 54 the dial indicator at 140 and the oscillator our－ put so that a slight deflection will be obtained in the ourpur meter when the volume control
is at is maximum position．
（b）With the Range Switch at the＂in＂position， adjust the three trimmers under the chree R．F．
coils，designaced as L in Figure 4，until a coils，designaced as L in Figure 4，until a
maximum deflection is obtained in che ourpure
 quency to $600 \mathrm{~K} . \mathrm{C}$ ．The trimmer capacitor，
accessible from the rear of the chassis，should

 K．C．adjustment．
（c）Now place the Range Switch at the＂out＂
position，shift the Test Oscillator to 15,000
 trimmer capacitors designated as S in Figure
4 for maximum output，beginning with the oscillator and first detector trimmers will have two positions at which the signal will give maximurn output．The position which obed by the lower trimmer capacitance，obtained by
turning the screw counter－clockwise，is the
proper adjustment for the oscillator，while the proper adjustment for the oscillator，while the
position thar uses a higher capacitance is cor－ rect for the detector．Both of these adjustments
must be made as indicated irrespective of must be made as indicated irrespective of
output．The R．F．is merely peaked．In con－ junction with the detector adjustment，it is
necessary to rock the main runing capacitor necessary to rock the main tuning capacitor
back and forth while making the adjustment．
This completes the line－up adjustments． This completes the line－up adjustments．

CAUTION－This receiver operates on 220 －voit
direct current without a transformer between the line and the various parts of the receiver，such as A ．C ．
receivers use．It is therefore extremely important to receivers use．It is therefore extremely important to
use the utmost caution when operating the receiver outside of the cabinet．Also a knob must always be
placed on the shaft of the main tuning capacitor，as

（1）Line－up Capacitor Adjustments
To properiy align this receiver，it is essential that a
modulared R．F．oscillaror，such as Srock No． 9050 ， odureut indicator and an alignment tool（Stock No． 4160 ）be available．Figure 4 shows the location of the various line－up capacitors．
Two transformers comprising four tuned circuits are used in the intermediate amplifier．These are accessible as shown in Figure 4．Proceed as follows： （a）Short－circuit the ancenna and ground leads and tune the receiver so that no signal is heard．
Set the volume control at maximum and
 first detector control grid and chassis ground，
preferably through a series condenser．Con－ nect the output meter across the voice coil
 ourput so that，with the receiver volume con－
trol at maximum，a slight deflection is obrained in the output meter，
（c）Adjuse the secondary and primary of the irst and then the second．

 of adjusements．This completes the I．F．
adjustments． R．F．and Oscillator Adjustments

[^2]RCA PAGE 5-65

PAGE 5-66 RCA

Figure 2-Chassis Wiring Diagram

RCA-VICTOR CO., INC.

DESCRIPTION OF ELECTRICAL CIRCUIT

The general circuit arrangement consists of an R. F. stage, a combined oscillator and first detector, an I. F. stage, a combined second detector and automatic volume control and a single Pentode ourpur stage. An RCA-80 rectifier, together with a suitable filtering system, provides plate and grid voltages for all tubes and field excitation for the loudspeaker. Figure 1 shows the schematic circuit diagram, Figure 2 the chassis wiring, and Figures 3 and 4 the loudspeaker wiring.

The signal enters the receiver through a shielded antenna lead and is applied to the grid of the R. F. tube through the antenna coupling transformer. The secondary of this transformer is tuned to the signal frequency by means of one unit of the gang-capacitor. The output of this stage is transformer coupled to the grid circuit of the first detector, which is also tuned to the signal frequency by a unit of the gang-capacitor.

Combined with the signal in the first detector is the local oscillator, which is always at a 460 K . C. frequency difference (higher) from the signal frequency. A separate coil system and the third unit of the gangcapacitor are used in this circuit.

Figure 6-Location of Line-up Capacitors

In conjunction with these three tuned circuits, it is well to point out that three different groups of runed circuits are used, one for each tuning band. A threeposition selector switch is provided for selecting the band in which the desired signal is located. In addition to selecting the desired coil system, additional groups of contacts are provided for short-circuiting the preceding lower frequency R. F. and detector coils and the two preceding oscillator coils. This is to prevent "dead" spors due to the absorption effects caused by the coils, the natural period of which, with tuning capacitor disconnected, fall in the next higher frequency band.

The output of the first detector, which is the I. F. signal ($460 \mathrm{~K} . \mathrm{C}$.), is fed directly through two tuned circuits to the grid of the I. F. amplifier stage. The I. F. stage, which utilizes Radiotron RCA-6D6, uses two transformers, which consist of four tuned circuirs, all of which are tuned to 460 K . C.

The output of the I. F. amplifier is then applied to the diode electrodes of the RCA-6B7, which is a combined second detector, automatic volume control and A. F. amplifier. The direct current component of the rectified signal produces a voltage drop across resistor

Figure 7 -Tube Socket Voltages

RCA-VICTOR CO., INC.

R-12. The full voltage drop constitutes the automatic bias voltage for the R. F. while a tap is provided for the first detector and I. F. voltage. These automatic bias voltages for the R. F. first detector and I. F. give

Figure 3-Table Loudspeaker Wiring
the automatic volume control action of the receiver. The volume control selects the amount of audio voltage that is applied to the grid of the RCA-6B7 and thereby regulates the audio output of the entire receiver.

The output of the RCA-6B7 is resistance coupled to the grid of the RCA-41 tube, which is the power ourput amplifier. This tube is operated as a Pentode and provides high audio gain and satisfactory output power. The plare circuit of the output stage is matched to the cone coil of the reproducer by means of a stepdown transformer.

The tone control consists of a variable resistor and fixed capacitor connected in series across the primary of the output transformer. At the minimum resistance position of the variable resistor, maximum attenuation of the high audio frequencies is obtained.

Plate and grid voltages for all tubes are supplied from the outpur of the rectifier-filter system. An RCA-80 is used as a rectifier and a suitable network of capacitors and resistors gives the necessary filtering and voltages. The loudspeaker field is used as a filter reactor.

(1) LINE-UP PROCEDURE

The line-up procedure of this receiver is somewhat involved and it is important that these instructions be carefully followed when making adjustments. Properly aligned, this receiver has outstanding performance; improperly aligned, it may be impossible to receive signals on all bands.

Figure 4-Console Loudspeaker Wiring

Checking with Tuning Wand

Before making any R. F., oscillator or first detector adjustments, the accuracy of the present adjustments may be checked by means of the tuning wand (Stock No. 6679). The runing wand consists of a bakelite rod having a brass cylinder at one end and a special finely divided iron insert at the orher end. Inserting the cylinder into the center of a coil lowers its inductance, while inserting the iron end increases its inductance. From this, it is seen that unless the trimmer adjustment for a particular coil is perfect at alignment frequencies, inserting one end of the wand may increase the output of a particular signal. A perfect adjustment is evidenced by a lowering of ourpur when either end of the wand is inserted into a coil.

The shields over the R. F. coil assembly have a hole at their top for entrance of the tuning wand. The location of the various coils inside of the shield is shown in Figure 8. An example of the proper man ner of using the tuning wand would be to assume the external oscillator were set at 1720 and the signal tuned in, and the output indicator should be connected across the voice coil of the loudspeaker. Then the tuning wand would be inserted, first one end and then the other end, into the top of the three transformers at the left of the R. F. assembly, facing the front of the chassis. A perfect adjustment of the trimmer would be evidenced by a reduction in ourput when each end of the wand is inserted in each of the three transformers. If one end-for example, the iron end-when inserted in one coil caused an increase in output, then that circuit is low. An increase in the trimmer capacitance would be the proper remedy.

(2)
 2) I. F. TUNING CAPACITOR ADJUSTMENTS

Although this receiver has one I. F. stage, two transformers having four adjustable capacitors may require adjustment. The transformers are all peaked, being tuned to $460 \mathrm{~K} . \mathrm{C}$.

A detailed procedure for making this adjustment follows:
(a) Connect the output of an external oscillator tuned to 460 K . C. between the first detector grid and ground. Gonnect the outpur indicator across the voice coil of the loudspeaker.
(b) Place the oscillator in operation at $460 \mathrm{~K} . \mathrm{C}$. Place the receiver in operation and adjust the station selector until a point is reached (Band A) where no signals are heard and turn the volume control to its maximum position. Reduce the oscillator inpur until a slight indication is obtained in the output indicator.
(c) Refer to Figure 6. Adjust each trimmer of the I. F. transformers until a maximum output is obtained. Go over the adjustments a second time.

This completes the I. F. adjustments. However, it is good practice to follow the I. F. adjustments with the R. F and oscillator aajustments due to interlocking which always occurs.

(3)
 R. F. OSCILLATOR AND FIRST DETECTOR ADJUSTMENTS

Four R. F., oscillator and first detector adjustments are required in band "A." Three are required in bands " B " and " C ."

To properly align the various bands, each band muse be aligned individually in the order given. This is "A," "B" and "C." The preliminary set-up requires the external oscillator to be connected between the antenna and ground terminals of the receiver and the output indicator must be connected across the voice coil of the loudspeaker. The volume control must be at its maximum position and the input from the oscillator must be at the minimum value possible to get an output indication under these conditions. In the high frequency bands, it may be necessary to disconnect the oscillator from the receiver and place it at a distance in order to get a sufficiently low input to the receiver.

The dial pointer must be properly set before starting any actual adjustments. This is done by turning the variable capacitor until it is at its maximum eapacity position. One end of the pointer should point exactly at the horizontal line at the lowest frequency end of band " A," while the other end should point to within $1 / 4$-inch of the horizontal line at the highest frequency.

Figure 8-Location of Coils in Shields
Figure 6 shows the location of the trimmers for each band. Care must be exercised to merely adjust the trimmers in the band under test.

Band " A "

(a) Set the Band Switch at "A."
(b) The oscillator series capacitor, located on the rear apron of the chassis, should be set at about the center of its range.
(c) Tune the external oscillator to $1,720 \mathrm{~K} . \mathrm{C}$., set the pointer at $1,720 \mathrm{~K} . \mathrm{C}$. and adjust the oscillator, detector and R.F. trimmers for maximum output.
(d) Shift the external oscillator frequency to 600 K. C. Tune in the $600 \mathrm{~K} . C$. signal, irrespective of scale calibration, and adjust the series trimmers, located on rear apron of chassis, for maximum output, at the same time rocking the variable tuning capacitor. Then readjust at $1,720 \mathrm{~K}$. C. as described in (c).

Band "B"

(a) Set the Band Switch at "B."
(b) The detector and antenna trimmers should first be tightened to approximately $3 / 4$ maximum capacity (turned $3 / 4$ inch).
(c) Tune the external oscillator to $5,160 \mathrm{~K}$. C., set the pointer at $5,160 \mathrm{~K}$. C. Adjust the oscillator trimmes for maximum output. The trimmer should be set at the first peak obtained when increasing the trimmer capacitor from minimum to maximum.
(d) Check for the image signal which should be received at approximately $4,240 \mathrm{~K}$. C. on the dial. It may be necessary to increase the external oscillator output for this check.
(e) Reduce the capacity of the detector trimmer, while rocking the cuning capacitor, until the signal disappears. The first derector circuit is then aligned with the oscillator circuit and the RCA-6A7 tube is blocked. Then increase the capacity of the detector trimmer, while rocking the cuning capacitor, until the signal is peaked for maximum output.
(f) The antenna trimmer should now be peaked for maximum output. It is not necessary to rock the main tuning capacitor while making this adjustment.

Band "C"

(a) Set the Band Switch at "C."
(b) The detector and antenna trimmers should first be tightened to approximately $3 / 4$ maximum capacity (turned $3 / 4 \mathrm{in}$.)
(c) Tune the external oscillator to $18,000 \mathrm{~K} . \mathrm{C}$., set the pointer at 18 M . Adjust the oscillator trimmer for maximum output. The trimmer should be set at the first peak obtained when increasing the trimmer capacitor from minimum to maximum.
(d) Check for the image signal, which should be received at approximately 17,080 on the dial. It may be necessary to increase the external oscillator output for this check.
(e) Reduce the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal disappears. The first detector circuit is then aligned with the oscillator circuit and the RCA-6A7 tube is blocked. Then increase the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal is peaked for maximum ourpur.
(f) The antenna trimmer should now be peaked for maximum output. It is not necessary to rock the main tuning capacitor while making this adiustment.

REPLACEMENT PARTS

Insint on genvine factory terted parts，which are reedily identified and may be purchased from authorized dealen

年家	
${ }^{\circ}$	
苞家	
${ }^{5}$	
¢	
${ }^{2}$	

Voltage readings
The following voltages are those ae the various tube 115－Volt A．C．Line－No Signol－Volume Control Maximum

Rapiotron Numbra		Cathode to Ground， Vours．D．C	Screen Grid to Ground． Vonts，D．C．	Plate to Ground， Volts，D．C．	$\begin{aligned} & \text { Plater } \\ & \text { Curient, } \\ & \text { M. A. } \end{aligned}$	$\begin{aligned} & \text { Hearez } \\ & \text { Vours, } \\ & \text { A. C. } \end{aligned}$
RCA．6D6－R．F		6.0	105	265	9.0	6.3
RCA－6A7	Det	6.0	105	265	3.5	6.3
	Osc．	－－	－	220	4.5	
RCA－6D6－1．F．		6.0	105	265	9.0	6.3
RCA－6B7－2nd Decector		3.0	50	90^{*}	0.7	6.3
RCA． 41 －Pwr		16.5	265	245	30.0	6.3
RCA－80－Rectificr		－	－	$\begin{gathered} 690 \\ \text { (RMS) } \end{gathered}$	70.0	5.0

REPLACEMENT PARTS
Insist on genuine factory tested pentrs，which are readily identified and may be purchased fom authorized dealers

RCA PAGE 5-71
RCA-VICTOR CO., INC.
MODEL 135-B,235-B
Sohomatic
Trimmer Layout

RCA-VICTOR CO., INC.

Voltage

Figure 3-Loudspeaker Wiring

Volume Control at Maximum-No Signal-135 Volt "B" Battery-4.5 and 7.5-Volt Bias Batteries

Radiotron No.		Control Grid to Ground	Screen Grid to Ground	Plate to Ground	Plate, M. A.	Filament Volts
RCA-1C6	1st Detector	3.5*	67.5	135	0.6	2.0
	Oscillator	-	-	130	4.0	
RCA-34-I. F.		3.5*	67.5	135	2.3	2.0
RCA-34-I. F.		3.5*	67.5	135	2.3	2.0
RCA-30-Detector AVC		-	-	-	-	2.0
RCA-32-Audio		3.0*	30*	40*	0.3	2.0
RCA-30-Driver		7.5*	-	133	4.0	2.0
RCA-19-Power		3.0	-	135	3.0	2.0

*These voltages cannot be measured with ordinary voltmeter.

RCA PAGE 5-73

Parts List

(1) Line-UP Copocitor Adjustments coils, designated as BC in Figure 4 , until a
 a, modulated R. F. oscilliator of suitable frequency
tange such 25 Stock No. 9050 , an output indicator. tange such 2s Stock No. 9050 , an output indicator.
Stock No. 4317, and an alignment tool, Stock No. 4160 , be availabie. Figure 4 shows the location of the various line-up capacitors.

F. F. Tuning Adiustments

The I. F. amplifer comprises two stages which have three transformers. The third transtormer is
uncuned so that only 2 toral of four tuned circuits is used. Refer to Figure 4 and proceed as follows: (a) Shor-circuit the antenna and ground terminals heard. Set the volume control at maximum and conneea a ground to the ground terminal.
(b) Connece the test oscillator output between
 ground. Connect the ourput indicator across the vocice coil of the loudspeaker he receiver volume concuol 2 ct maximum, 2 slighe (c) Adjust the secondary and primary of the first (c) Adjust the seconeond I. F. transformers until 2 maximum deflection is obtained. The require adjusting. Keep the oscillator output
 is obained on the oupus ase a second time, as
Go over these adjustments
and there is a slight interlocking of adju
This complees the I. F. adjustmenss.
R. F. and Oxillator Adjurtments

The R. F. line-up capacitors are located at the
ctom of the coil assemblies instead of their usual boctom of the coing capacitor. They are all accessible from the bottom of the chassis except the 600 K . .

(a) Connect the output of the oscillator teiver. Check the position of the indicator poiner
when the tuning capacitor plates are fully when
meshed. It should be coincident with the
radial line adizent co che dial readinn of 540 . (b) Then sec the Test Oscillator at 1720 K . C.,

RCA-VICTOR CO., INC.

SERVICE DATA

MODEL 140,141,141-E, 240 Revised
Circuit Data
Alignment Data

Electrical Specifications

This all-wave super-heterodyne receiver is of the continuous tuning type, utilizing a straight super-heterodyne circuit in all bands. The bands are as follows:

Selecior Switch Position	Frequency Range (Kilocycles)	Wave-Tength Range (Meters)
X	$150-410$	$2000-732$
A	$540-1500$	$555-200$
B	$1500-3900$	$200-77.0$
C	$3900-10000$	$77.0-300$
D	$8000-18000$	$37.5-16.7$

This receiver will be supplied in two models, one including all bands and one with band X omitted. These instructions, however, will cover both types of the receiver. The variations in the wiring for the two models are plainly shown in the illustrations. Figures A, B and C show the schematic circuit and wiring diagrams.

The circuit consists of an R. F. stage using Radiotron RCA-58, a combined oscillator and first detector using Radiotron RCA-2A7, an I. F. stage using RCA-58, a second detector and A. V. C. using RCA-2B7, an A. F. driver using RCA-56, and a Class "B" output stage using an RCA-53. The RCA-80 functions as the rectifier in the power supply circuits.

The foregoing tubes and circuit functions apply to bands X, A, B and C only. In the case of band D, an additional R. F. stage utilizing an additional Radiotron MCA-58 is used. This is to increase the sensitivity and image frequency selectivity and to reduce the interference caused by tube hiss and signals corresponding to the intermediate frequency.

The intermediate frequency is 445 K . C. The use of this frequency gives an expecially good image frequency ratio and facilitates alignment of the obciluator at the bigher frequency bands.

Mechanical Construction

The chassis consists of two major assemblies, which must be disassembled for certain repair work. These assemblies consist of the chassis proper, including the main frame, power transformer, etc., and the coil assembly. The coil assembly consists of fifteen transformers supported upon individual tubular bakelite forms, each fastened to a separate porcelain strip upon which the coil terminals are mounted with their associate trimmer capacitor. This entire assembly, with the selector switch, is grouped in a shielded compartment which is mounted in the base of the main chassis assembly.

In order to remove this assembly it is necessary to remove the four nuts shown in Figure D and unsoider the connections of the fifteen leads shown in Figure C at the points where they connect to the main chassis. The leads should be ailowed to remain on the coil assembly. After this is done,
the coil assembly may be removed and repairs to it or to the main chassis may be easily made. If a coil or its associated trimmer is to be replaced, then only the bottom shield of the coil assembly must be removed. This is done by removing the four nuts that hold it to the chassis studs. This is shown in Figure D.

Line-Up Capacitor Adjustments

This receiver is aligned in a similar manner to that of a standard broadcast band receiver. That is, the three main tuning capacitors are aligned by means of three trimmers in each hand and, on the three lowest frequency bands, a series trimmer is adjusted for aligning the oscillator circuit. The other two bands do not require this low-frequency trimmer, it being fixed in value. In the case of band D, it is necessary to adjust four trimmers, due to the additional F. R. stage used.

The intermediate frequency amplifier is aligned in a similar manner to that of standard broadcast receivers except that it is aligned at 445 K . C. In order to properly align the receiver, it is essential that the Stock No. 9050 Test Oscillator be used. This oscillator covers the frequencies of 90 K . C. to $25,000 \mathrm{~K}$. C., continuously, has good stability and includes an attenuator. In addition to the oscillator, a 300 -ohm resistor, for use as a "dummy" antenna, a non-metallic screw-driver such as Stock No. 4160, and an output meter are required. The output meter should be preferably a thermocouple galvanometer connected either across or in place of the cone coil of the loudspeaker.

To align the intermediate frequency circuits, connect the output of the external oscillator to the grid of the first detector. For the R.F. and oscillator adjustments, the oscillator output should be connected to the antenna and ground terminals of the receiver with a 300 -ohm resistor inserted in series with the antenna lead. In many cases, however, the signal strength obtained with this direct connection will be too great to permit proper alignment, even at the minimum setting of the oscillator attenuator. When this is true, the external oscillator must be loose-coupled to the receiver. This is done hy connecting the 300 -ohm resistor between the antenna and ground terminals of the receiver and attaching a short length of wire to the antenna post. Lay the free end of this wire across the oscillator case, adjusting its position as necessary to obtain the degree of pickup required.

The output of the external oscillator should be at the minimum value necessary to obtain a deflection in the output All adjustments are made for a maximum deflection in the output meter.

The accuracy of line-up of each band may be checked without touching the trimmer condensers, by the use of the tuning wand, Stock No. 6679.

One enci of the wand consists of a brass cylinder. When this is inserted in a coil the effective inductance of the coil is lowered.

The other end of the wand contains a special finely divided iron suitable for use at radio frequencies. When this is inserted in a coil the inductance is raised.

To use the tuning wand a signal is first tuned in at the frequency at which a check is desired on alignment. The wand is then inserted slowly in the Antenna and R. F. transformers, using first one end and then the other end of the wand. Unless the alignment is perfect, it will be found that the power output indicated by the meter will be increased to a peak for a critical position of the wand in the coils.

The end of the wand required indicates whether the coil is high or low.

```
MODEL 140,141,141-E,
    240 Revised
Voltage
Wave Band Data
```

Power Supply-The instruments in this series are supplied in either of two alternating current power supply ratings: (1) $100-125 / 200-250$ volts, $50-60$ cycles and (2) 100-125 volts, 25-60 cycles (see rating label inside cabinet). To insure correct Radiotron operating voltages, both types are equipped to permit rearrangement of the internal connections to conform with the actual voltage available. Thus, the $50-60$ cycle models may be adapted for $100-115,115-125,200-230$ or $230-250$ volts; and the 25-60 cycle models for either 100-115 or 115-125 volts.

Of course, alignment correction at the high-frequency end of a tuning range should be accomplished by the use of the trimmer condenser. If alignment correction should be required at the low-frequency end of a tuning range, it may be accomplished by sliding the end coil of the transformer. The winding farthest from the trimmer panel is pushed toward the trimmer panel to increase the inductance, and farther away to decrease the inductance. On band D coils, the last two or three turns may be pushed in a similar manner to obtain the proper inductance.

This adjustment should not be attempted unless a quite appreciable improvement will result (as shown by the tuning wand).

The following chart gives the details of all line-up adjustments. The recciver should be lined up in the order of the adjustments given on the chart. Refer to Figure E for the location of the line-up capacitors.

Pickup Connections

A terminal board is provided at the rear of the chassis for attaching a magnetic pickup to this instrument. Such connections are shown in Figures \mathbf{F}, \mathbf{G} and \mathbf{H}.

Transformer Connections

The power transformer of the $50-60$ cycle recciver uses two tapped primary windings. By connccting them in parallel or in series, the receiver may be used either on 110 or 220 volt lines. Figure J shows the proper manner of making the various connections possible for this transformer.

The 25-60 cycle transformer uses only one 100-125-volt winding, a tap being provided for the lower voltages. Normally the transformer is connected for 115-125-volt lines, but the connection shown in Figure I may be used for 100-115-volt lines.

TUBE SOCKET VOLTAGES

120 Volt A. C. Line

Radiotron No.	Control Grid to Cathode, Volts	Screen Grid to Cathode, Volts	Plate to Cathode Volts	Plate Current M. A.	Filament or Heater Volts
RCA 58, R. F.	**2.0	100	255	6.0	2.6
RCA-58, S. W. R. F.	**2.0	100	255	6.0	2.6
RCA-2A7, Det.-Osc.	**2.5	100	250	*5.0	2.6
RCA $58, \mathrm{I}$ F.	**2.0	100	255	6.0	2.6
RCA-2B7, 2nd Det.-AVC	**1.5	35	105	1.5	2.6
RCA-56, A. F. Driver	**12.0	--	245	6.0	2.6
RCA-53, Output	0	-	300	36.0	2.6
RCA-80, Rectifier	640 R. M. S. Plate to Plate			130 per Plate	5.0

* Voltages and current apply to detector portion of tube.
** These voltagea cannot be measured because of the high resistance of the circuits.

External Oscillator Frequency	Dial Setting	Location of Line-Up Capacitors	Position of Selector Switch	Adjust for	Number of Adjustrments To be Made
445 K. C.	Any setting that does not bring in atation.	At rear of chassis.	Any position that does not bring in station.	Maximum output.	4
$370 \mathrm{~K} . \mathrm{C}$.	370 K. C.	Bottom of chassis.	\mathbf{x}	Maximum output.	3
$175 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	X	Maximum output while rocking dial back and forth.	1
1400 K. C.	$1400 \mathrm{~K} . \mathrm{C}$.	Bottom of chassis.	A	Maximum out put.	3
$600 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	A	Maximum output while rocking dial hack and forth.	1
$3900 \mathrm{~K} . \mathrm{C}$.	3900 K. C.	Bottom of chassis.	B	Maximum output.	3
1710 K. C.	Set for signal.	Top of chassis.	B	Maximum output while rocking dial back and forth.	1
$10 \mathrm{M.C}$.	$10 \mathrm{M} . \mathrm{C}$.	Bottom of chassis.	C	Maximum output. (See Note.)	3
15 or $18 \mathrm{M} . \mathrm{C}$.	15 or $18 \mathrm{M} . \mathrm{C}$.	Bottom and top.	D	Maximum output. (See Note.)	4

NOTE-It is important to note, when aligning bands C and D, that two peaks will be observed on the trimmers for the oscillator and for the
 obtained with the greater capacitance. It is essential that the proper peak be chosen, as otherwise tracking and sensitivity will be very poor at other frequencies. When adjusting the detector trimmer, the tuning capacitor should be rocked, since there is a reaction on the oscillator tuning.

RCA PAGE 5-77

PAGE 5-78 RCA
MODE $140,141,141-E$, 240 Revised Chassis Wiring

RCA PAGE 5-79
(

MODEL 140,141,141-E, 240 Revised
 RCA-VICTOR CO., INC.

Parts List

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

ctork	DESCRIPTION	($\begin{gathered}\text { Lisi } \\ \text { Price }\end{gathered}$	$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\underset{\text { Prise }}{\text { List }}$
	aeceiver assemblles		6631	Coil and capacitor assembly-Antenna coil and capacitor -150-410 kilocycles-5-band (L1, L6, C1).	$\$ 2.16$
${ }_{2817}^{274}$	Contact cap-Package of 5.....................	\$0.50	6632	Coil and capacitor- \mathbf{R}. F. coil and capacitor asembly -	
2816		1.00	6633	Coil and capacitor-Oscillator coil and capacitor assembly	2.1
3056	Shield-Output Radiotron shield-Package of 2	. 40		-150-410 kilocycles-5-band (L21, 1.26, C28).	
3076		1.00	663	Coil and capacitor-Antenna coil and capacitor as8embly $-540-1,500$ kilocycles-4- or 5 -band (L2, L7, C2).....	1.86
3114		1.00	6635	Coil and capacitor-R. F. coil and capacitor assembly- $540-1,500$ kilocy cles-4- or $5-$ band (L12, L17, C18)	2.00
3118	Resistor-100,000 ohme-Carbon type- $1 / 4$ watt (R3, R8) -Package of 5.	1.00	663	Coil and capacitor-Oscillator coil and capacitor assembly - $540-1,500$ kilocycles-4- or 5-band (L22, L27, C30)	1.40
3435		. 00	663	Coil and capacitor-Antenna coil and capacitor ansembly - $1,500-4,000$ kilocycles-4- or 5 -band (1.3, L8, C3)	1.56
3470		1.10	663	Coil and capacitor-R. F. coil and capacitor ansembly 1,500-4,000 kilocycles-4- or 5 -band (L13, L18, C19)	1.66
3526		1.00	6639	Coil and capacitor-Oacillator coil and capacitor assembly $-1,500-4,000$ kilocy cles-4. or 5 -band (L23, L28, C33).	1.40
35	Resistor-800 ohms - Carbon type- $1 / 2$ watt (R16) Pkg of 5 .		6640	Coil and capacitor-Antenna coil and capacitor assembly-4,000-10,000 kilocycles-4- or 5 -band (L4, L9, C4)	1.54
3529 3555	Socket-Dial la mp socket, Capacitor-0.1 nifd. (C26)	. 32	664		1.0
35572 3572	Socket-7-contact Radiotron socket-First detector and oscillator.	. 38	6642	4,000-10,000 kilocycles-4- or 5-band (L14, L19, C20) Coil and capacitor-Oscillator coil and capacitor assembly	1.60 1.34
3594	Resistor- $\mathbf{5 0 , 0 0 0}$ ohms-Carbon type- $1 / 2$ watt (R17, R18) -Package of 5 . Capacitor -0.25 mfd (C5B)	1.00 .40	664	Coil and capacitor-Antenna or R.F. coil and capacitor assembly- $8,000-18,000$ kilocycles-4- or $5-\mathrm{band}$ (L5,	1.34 1.52
3597 3602	Capacitor-0.25 mfd. (C58).. Resistor-60,000 ohms-Carb			$\begin{aligned} & \text { assembly } \\ & \text { L10, C5-Li5, L20,C21) } \end{aligned}$	1.52
		1.00 .34	664	Coil and capacitor-Oscillator coil and capacitor ansembly $-8,000-18,000$ kilocy cles-4-or 5-band (L25, L30, C38)	1.54
$\begin{aligned} & 3616 \\ & 3622 \end{aligned}$	Capacitor-300 mmfd. (C51) Shield-Second detector Rad	$.34$	6675	Shaft-Shaft for condenser drive assembly-Comprising shaft, ball race with retainer and set acrew. .	35
3641	Capacitor-0.1 mfd. (C10, C	35		Wand-Tuning wand for R. F. and oscillator adjuatments	
36	Capacitor-. 005 mfd (C 57)		6889	Capacitor-18. mfd. (C60)	1.55
3711	Capacitor-80 mmfd. (C55)	. 30	6890	Tranfformer-First ${ }^{\text {intermediate }}$ frequency (L31, L32, C41, C42)	
3719	Socket-7-contact Radiotron socket \ldots... Resistor--8,500 ohma-Carbon type-3				
3771 3845	Resistor--8,500 ohms-Carbon type Capacitor-2,340 mmfd. (C39)	. 50	6891		,
3845 3846	Capacitor-2,340 mmid. (${ }^{\text {(393) }}$ (. 50	6892	Tone control (R20)	1.50
3848	Capacitor -300 mmfd ((C3	. 30	6955	Shield-Second R.	25
3849	Capacitor-50 mmid. (C16)	. 30	6956	Shield-Radiotron shield top.	15
3861	Capacitor-Adjustable trimmer (C29, C32, C35)	78	7065	Screwdriver-Combination insulated screwdriver and alligator jaw end wrench for R. F. or I. F. adjustment	
3863	Hesistor 400 ohmb-Carlon type- $1 / 2$ watt H12)-Package of 5	1.00	718.4	Socket-5-contact Radiotron socket.................	35
3864	Capacitor-300 mmfd. (C46)	. 30	7885	Socket-6-contact Radiotron bocket.	40
	Capacitor -160 mmfd . (C47).	. 35	9042		6.84
388		. 35	9016	Transformer-Power transformer-105-125 volts-25-40	
3901	Capacitor- 05 mfd . (C48) Capacitor-45 mmfd. (C27)	.36 .30	9050	creces..................................	9.22 $33.50+$
393	Capacitor-. 0024 mfd. (C11)	. 30	9050 1019.4	Oncillator-Test oscillator-150 to $25,000 \mathrm{~K} . \mathrm{C}$. Bail-Steel ball for condenser drive assenbly-Package	33.50
3973	Capacitor-1,000 mmfd. (C64, C65)	34 34 .3		$\text { of } 20$. 25
4019	Capacitor- $-1,000 \mathrm{mmfd}$. (C34)	34 10			
4030	Bracket-Tone or volume control moun	10		MISCELLANEOUS	
4033	Capacitor-20 mmfd. (C61, C62, C63)		3829	K nob-Volume control or tone control lnob--Package of 5 .	1.10
4103	Shield-First detector and R. F. Shield-I. F. Radiotron shield.	. 20	3830	\mathbf{K} nob-Station selector knob -Package of $5 \ldots$.	1.08
4104		. 50	${ }^{3831}$	Knob-Range switch knob-Package of 5	1.08
4207		. 34	76	Cable - 3 -conductor for lo	0
6136		10	387	Screws-No. 4-40-1. filhster head ecrew and wash fastening atation selector pointer--Pack age of 20.	25
6188	Resistor-2 megohmo Carbon type- $1 / 2$ watt (R13)-		3952	Escutcheon--Volume control escutcheon-........	. 10
	Package of 5 .	1.00	3953	Escutcheon-Range switch escutcheon-5-5	. 10
6300	Socket-4-contact Radiotron socket	. 35	3992	Escutcheon-Range switch escutcheon-4-band	10
6303	Resistor-20,000 ohms-Carbon type-1/2 watt (R26) Package of 5 .	1.00	4160	socket wrench for I. F. and R. F. adjuatment:	1.00
6512	Capacitor-. 005 mfd ((C54)	. 28	6112	Cushions-Rubber cushions for chassio-Package of 4	25
6603	Condenser-4-gang variable		6614	Glass-Station selector dial glass	30
	C24, C40).	3.80	6615	Ring-Retaining ring for dial glase-Package of 5	34
6604	Capacitor 0.5 mfd ((C53)	50	6616	Bezel-Metal bezel for station selector dial (RCA)	. 50
6605	Transformer Output transformer (T3)		6671	Cable-2-conductor sbielded for loudspeaker-5-band	36
${ }_{6606}^{607}$	Reactor-Fitter reactor (L37).......		6672	Screen-Translucent celluloid acreen-For dial lamps	
6607	Reactor-Tone control reactor (L33)	1.14 2.04 1.0			64
6608	Tranformer-Audio driver transformer	2.04	673	Pointer-Station selector pointer-Package of 5	64
6609	Capacitor-18. mfd. (C59)	1.10	6677	Dial-Station selector dial-5-band-Package of 5	1.42
6612	Volume control (R15)	1.20	6.678	Dial-Station selector dial-4-band-Package of 5	42
66	Drive-Variable condenser drive assembly-Comple	1.00	6756	Berel-Metal bezel for station selector dial	0
6626	Capacitor pack-Comprising one 4. mfd., and two l0. mfd., capacitors (C12. C49, C56)	1.86		REPRODUCER ASSEMBLIES	
28	Capacitorand coil-Antenna coil and capacitor assembly-8,000-18,000 kilocycles - 1 - or 5 - band (L39, 1.10. C8)	1.50	8969	Cone-Reproducer cone complete (L36)--Package of 5.	6.35
,29	Switch-5-band selector awi	48	9438	Reproducer comple	5.22
66.30	Switch-4-band selector awitch	8	9439	Coil assembly-Field coil, magnet and cone support (L38)	5.22

RCA Victor Models 143 and 242

SERVICE NOTES

ELECTRICAL SPECIFICATIONS

Voltage Rating.	Volts and 100-130/195-250 Volts (Double Range)
Frequency Rating	25-60 and 50-60 Cycles
Power Consumption.	130 Watts (All Frequencies)
Type and Number of Radiorrons	$\begin{array}{r} 2 \text { RCA-6D6, } 1 \text { RCA-6A7, } 1 \text { RCA-75, } 1 \text { RCA-76, } \\ 2 \text { RCA-42, } 1 \text { RCA-5Z3-Total, } 8 \end{array}$
Tuning Frequency Rang	$\left\{\begin{array}{l} \text { Band X- } 140 \mathrm{~K} . \mathrm{C} .-410 \mathrm{K.C.} \\ \text { Band A-540 K. C. }-1720 \mathrm{K.C.} \\ \text { Band B-1720 K. C. }-5400 \mathrm{K.C.} \\ \text { Band C-5400 K. C. }-18000 \mathrm{K.C.} \end{array}\right.$
Line-up Frequencies...... 175 K Maximum Undistorted Output.	$\begin{aligned} & 600 \text { K. C., } 1720 \text { K. C., } 5160 \text { K. C., } 18000 \text { K. C. } \\ & \text {. } 4.0 \text { Watts } \end{aligned}$
Maximum Output.5.0 Watts

PHYSICAL SPECIFICATIONS

	Model 143	Model 242
Height	.20\%6 Inches	$411 / 2$ Inches
Width.	.17\%/8 Inches	26 Inches
Depth.	141/2 Inches	14 Inches

This eight-tube, four-band Superheterodyne receiver is of the "all-wave" type, having a continuous tuning range extending from 140 K . C. to $18,000 \mathrm{~K} . \mathrm{C}$. , except for one break berween 410 K. C. and 540 K. C. Such a tuning range permits the listener to receive all of the important broadcasting, police, aircraft and amateur call bands used throughout the world.

Excellent sensitivity, selectivity and tone quality,
together with a high outpur (4 watts undistorted), Class A amplifier gives the receiver outstanding performance. Operating features include an "airplane" type dial, a double-ratio vernier drive, a visual band indicator, and a special "second hand"' on the dial for logging short-wave stations. Other important features include automatic volume control, sensitivity control, large loudspeaker unit and a terminal board for easily artaching a magnetic pickup.

DESCRIPTION OF ELECTRICAL CIRCUIT

The general circuit arrangement consists of an R. F. stage, a combined oscillator and first detector, an I. F. stage, a combined second detector and automatic volume control, a first audio stage and a push-pull Pent 8 de output stage. An RCA-80 rectifier, together with a suitable filtering system, provides plate and grid voltages for all tubes and field excitation for the loudspeaker. Figures 1 and 2 show the schematic diagrams, Figures 5 and 7 the chassis wiring and Figures 3 and 4 the loudspeaker wiring.

The signal enters the receiver through a shielded antenna lead and is applied to the grid of the R. F. tube through the antenna coupling transformer. The secondary of this transformer is tuned to the signal frequency by means of one unit of the gang capacitor. The output of this stage is transformer coupled to the grid circuit of the first detector, which is also tuned to the signal frequency by a unit of the gang capacitor.

Combined with the signal in the first detector is the local oscillator, which is always at a 460 K . C. frequency difference (higher) from the signal frequency. A separate coil system and the third unit of the gang capacitor are used in this circuit.

In conjunction with these three tuned circuits, it is well to point out that four different groups of tuned circuits are used, one for each tuning band. A fourposition selector switch is provided for selecting the band in which the desired signal is located. In addition to selecting the desired coil system, additional groups of contacts are provided for short-circuiting the preceding lower frequency R. F. and detector coils and the two preceding oscillator coils. This is to prevent "dead" spots due to the absorption effects caused by the coils, the natural period of which, with the tuning capacitor disconnected, falls in the next higher frequency band

RCA-VICTOR CO., INC.

The ourput of the first detector, which is the I. F. signal ($460 \mathrm{~K} . \mathrm{C}$.), is fed directly through two tuned circuits to the grid of the I. F. amplifier stage. The I. F. stage, which utilizes Radiotron RCA-6D6, uses two transformers, which consist of four tuned circuits, all of which are tuned to 460 K . C.

Figure 3-Console Loudspeaker Wiring
The output of the I. F. amplifier is then applied to the diode electrodes of the RCA-75, which is a combined second detector, automatic volume control and A. F. amplifier. The direct current component of the rectified signal produces a voltage drop across resistor R-32. The full voltage drop constitutes the automatic bias voltage for the R. F. while a tap is provided for the first detector and I. F. voltage. These automatic bias voltages for the R. F., first detector and I. F. give the automatic volume control action of the receiver. The volume control selects the amount of audio voltage that is applied to the grid of the RCA-75 and thereby regulates the audio output of the entire receiver.

The ourpur of the detector is resistance coupled to the grid of the RCA-76, first audio stage, which is transformer coupled to the push-pull output stage. On some models the grid coupling resistor between
the detector and audio stage is 1 megohm (R-21, Figure 1). Other models have two resistors, R-59, 400,000 ohms, and R-21, 2 megohms (Figure 2), with the band selector switch shorting out R-21 in bands B and C. The purpose of this latter type of connection is to reduce the low frequency output in bands B and C , thereby improving the performance of the receiver in these bands.

The output stage uses two RCA-42's, which give a low distortion, high audio output to the loudspeaker. A high frequency tone control, which consists of a variable resistor and capacitor, is connected across the grids of the output stage. At the minimum resistance position of the variable resistor, maximum attenuation of the high audio frequencies is obtained.

Figure 4-Table Loudspeaker Wiring
The plate circuit of the output stage is matched to the cone coil of the reproducer by means of a stepdown transformer.

Plate and grid voltages for all tubes are supplied from the output of the rectifier-filter system. An RCA-5Z3 is used as a rectifier and a suitable nerwork of capacitors and resistors gives the necessary filtering and voltages. The loudspeaker field is used as a filter reactor.

SERVICE DATA

(1) LINE-UP PROCEDURE

The line-up procedure of this receiver is somewhat involved and it is important that these instructions be carefully followed when making adjustments. Properly aligned, this receiver has outstanding performance; improperly aligned, it may be impossible to receive signals on all bands.

Equipment

To properly align this receiver, proper test equipment must be used. This consists of a modulated R. F. oscillator having proper frequency range, an output indicator, an alignment tool and a tuning wand.

These parts, which are shown on page 15 , have been developed by the manufacturer of this receiver for use by service men to duplicate the original factory adjustments.

Checking With Tuning Wand

Before making any R. F., oscillator or first detector adjustments, the accuracy of the present adiustments may be checked by means of the runing wand (Stock No. 6679). The tuning wand consists of a bakelite rod having a brass cylinder at one end and a special finely divided iron insert at the other end. Inserting the cylinder into the center of a coil lowers its inductance,

To properly align the various bands，each band
must be aligned individually．The preliminary set－up
requires the external oscillator to be connected between
（4）POWER TRANSFORMER CONNECTIONS The 220 －volt power transformer furnished with
some instruments includes aps for operating on 110 － volt lines．Figure 9 show＇s the schematic circuit of the transformer and the proper voltage to be applied
to the vatious taps．The taps are located on the power transformer assembly and are accessible withour re－
moving the chassis from the cabinct．
（5）MAGNETIC PICKUP CONNECTIONS
A Terminal Board is provided at the rear of che
chassis for adding phonograph facilitics to this instru－
 tions that will be required for the different turntable
assemblies． assemblies．
（6）VARIATIONS IN MODELS
There are four slighe variacions in the electrical
circuits of these receivers，which should be noted in circuits of these receivers，which should be noted in
event service work is necessary in the circuits that
differ from the diagrams． differ from the diagrams． 120 mmfd ．
 100,000 ohms
15,000 ohms
$\begin{aligned} \text { Group 2－C．52 } & 200 \text { mmFd } \\ \text { R－18 } & \mathbf{1 0 0 , 0 0 0 \text { ohms }} \\ \text { R－19 } & 60,000 \text { ohms } \\ \text { R－20 } & \mathbf{1 0 , 0 0 0} \text { ohms }\end{aligned}$ （d）Reduce the capacity of the detector crimmer，
while rocking the cuning capacitor，until the
signal disappears．The first detector circuit is
then at the oscillator frequency and the RCA ar the oscillator frequency and the
thene is blocked．Then increase the capacity of the detector trimmer，while rocking
the tuning capacitor，until the signal is peaked for maximum output．
（c）The antenna trimmer should now be peaked for maximum output．It is not necessary to
rock the main tuning capacitor while making
this adjuscment．
Band "C"
～～～
（c）Check for the image signal，which should be
received ar approximately 17,080 on the dial．
It may be necessary to increase the external
it may be necessary to increase
RCA－VICTOR CO．，INC．
（c）Check for the image signal，which should be received at approximately $4,240 \mathrm{~K} . C$ ．on the
dial．It will be necessary to increase the ex （d）The antenna and detector trimmers should now （d）be peaked for maximum output． （a）Set the band switch at＂C．＂
（b）Tune the external oscillator to $18,000 \mathrm{~K} . \mathrm{C}$
and set the pointer at 18 M ．C．Adjust the oscillator trimmer for maximum output．The
erimmer should be ser at the first peak obrained
\square input from the oscillator must be at the minimum value possible to gee an output indication under
these conditions．In the high frequency bands，it may be necessary to disconnect the oscillator from
the receiver and place it at a distance in order to get isufficiently low input to the receiver．
ing any actual adjustments．This is done by turning the variable capacitor until it is at its maximum
 frequency end of Band＂A ，＂＂while the orher end should
point to within $1 / 64$ insh of the horizontal line at point to within $1 / 64$ inch of the horizontal line at
the highest frequency end of Band＂A．＂

Figute 8 shows the location of the trimmers for
each band．Care must be exercised to only adjust each band．Care must be exercised to only adjust
the trimmers in the band undet test．
Band "X"

oscillator，detector and R．F．trimmers for
（c）Shift the external oscillaror frequency to 175
K．C．Tune in the 175 K．C．signal irrespective of scale calibration and adjuse the series trim－

 （a）Set the band switch at＂A．
RADIOTRON SOCKET VOLTAGES
120．Volt A．C．Line－Mximum Volum end S semitivit－No SIs
while inserting the iron end increases its inductance．
From chis，it is scen that unless the trimmer ad－ armer for a particular coil is perfect ar alignmen等莡冨 The

年 signas thed in．and hor oupurimitakor connete tuning wand should be inserted，firs one end and chen
the orhere cadd inoo the cop of the three ransformess at the left of the R．F．assembly，facing the front of the chassis．A perfect alijustrmene of the ruimmer
would be evidenced by a reduction in outrue when ach ent of the wand is inserted in each of the chrce tran insered in one coil cususd an inceresce in out． －when inserede in in coil col caused an increase in out－ trimmer capacitance would be the proper remedy．
（2）I．F．IUNING CAPACITOR ADJUSTMENTS This reciver has one 1 ．．．stage with two trans－
formess having four adjustable capacitors chas may

A decailed procedure for making chis adjusement
（a）Connect the ouppuc of an external osillator cuned ao grid and ground Cornecect the oupput indicicator
（b）Place the osillaror in operation as 460 K．C．
（b）Place the osililator in operation ac 460 K ．C．
Place the receiver in operation and adiust the sation selector uncil a point is reached（Band
A ）where no signals are heard and turn the

Reduce the oscalaror inpur uncul 2 slight
indication is obasined in the oupput indicaor． （c）Refer to Figure 8．Adjust each trimmer of the obe ．transtormers uncil maximum ourpur is
time．Go ove the adjustments a second

This complcees the I．F．adiusscrmens．However， it is good praticte to follow the 1. ．．．adjuscrenens with
the R ．F ．and oscillator adjusmens due to interiock－ ing which always occurs．
（3）R．F．，OSCILLATOR AND FIRST DETECTOR
Four R．F．oseillator and first decector ajpustmenss
皆

 Band＂B＂

	\％	3		\％	$\stackrel{3}{6}$	3	\％	$\stackrel{m}{6}$	$\stackrel{\square}{2}$
	シั．	$\stackrel{\square}{\ddagger}$		n	$\stackrel{\square}{\circ}$	$\stackrel{\infty}{\sim}$	$\stackrel{n}{i}$	$\stackrel{n}{\sim}$	$\stackrel{\circ}{\circ}$
	N	N	～	N	\dot{Q}	N	8	$\stackrel{8}{\sim}$	
	욕	1	9	g	1	1	$\stackrel{\text { a }}{\sim}$	ลิ	1
	$\stackrel{\sim}{\mathrm{N}}$	1	\pm	\％	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{ \pm}$	$\stackrel{\circ}{\mathrm{j}}$	O-	1
						$\begin{aligned} & a \\ & \dot{z} \\ & \dot{u} \\ & \dot{U} \\ & \dot{\sim} \end{aligned}$			

PAGE 5-84 RCA

MODEL 143,242 Trimener Layout
Alignment Data

Figure 6-Location of Coils in Shields

RCA-VICTOR CO., INC.

Group 3-R-28 and C-52 are removed from the resistor board inside of chassis and mounted externally on phonograph terminal board. No. 3 terminal has been added to terminal board. Electrically, this group is identical with Group 2, the schematic and wiring diagrams being shown in Figures 1 and 5.
Group 4-Resistor R-10 has been removed. Resistor R-59 has been added and Resistor $\mathrm{R}-21$ has been changed to 2 megohms. Capacitors C-52 and C-43 have been changed to 1120 mmfd . Figures 2 and 7 show the schematic and wiring diagrams of the models having these changes.

(7) FIDELITY LINK

It will be noted that a small link is mounted on the rear apron of the chassis which is closed on table models and open on console models. The purpose of the link is to increase the low frequency output of the receiver when open.

(8) VOLTAGE READINGS

The following voltages are those at the various tube sockets while the receiver is in operating condition. No allowance has been made for currents drawn by the meter, and if low-resistance merers are used, such allowances must be made.

Figure 8-Location of Trimmer Capacitors

RCA PAGE 5-85 HODEL 143,242
Schematic with Sensitivity Cont. Change

PAGE 5-86 RCA
MODEL 143,242
Sohematic with
Fidelity Change

RCA-VICTOR CO., INC.

RCA PAGE 5-87

PAGE 5-88 RCA
MODEL 143,242
Chassis Wiring
with Fidelity Change
RCA-VICTOR CO., INC.

REPLACEMENT PARTS
Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealent

REPLACEMENT PARTS

Insist on genuine factory lested parts, which are readily identified and may be purchased from authorized deolers

RCA PAGE 5-91

Electrical Specifications

Voltage Rating...
 Power Consumption................ 60 Cycle, 75 Watts; 25 Cycle, 80 Watta Namber and Type of Tubea. 1 RCA-2A7, 1 RCA-2B7, 1 RCA-2A5, 1 RCA-80-Total 6 Taning Rangen. 540 K. C- 1500 K. C. $-5400 \mathrm{~K} . \mathrm{C} .-15,350 \mathrm{~K} . \mathrm{C}$. Undistorted Output. 1.75 Watts

MTERUN COWECTONS OF SPEAKER

This receiver is a six-tube two-band A. C. operated Superheterodyne Receiver combining the standard and ohort-wave broadcasting bands. The frequency ranges are selected by means of a wo-position switch. Other features include a double reduction vernier drive using two concentric knobs giving a $10-1$ and a $55-1$ ratio of speed reduction, a continuously variable tone control, ten-inch electrodynamic loudspeaker, automatic volume control, single Pentode output tube and the inherent sensitivity, selectivity and tone quality of the Superheterodyno.

The chassis is of compact construction, affording unusual accessibility to all parts and adjuatmenta. Aa "Airplane" type dial calibratod in frequency and showing the location of the short-wave bands is a special feature of this iastrument. Figure A shows the schematic circuit, Figure B the wiring diagram and Figure C the loudepeaker wiring.

Line-Up Capacitor Adjustments

In order to properly align this receiver, it is ensential that Stock No. 9050 Test Oscillator be used. This oscillator covers the frequencios of No. 150 K. C. to $\mathbf{2 0 , 0 0 0} \mathrm{K}$. C. continuously, has good stability and include an attenuator. In addition to the oscillator a non-metafic screwdriver such as Stock No. 7065 and an output meter are required. The output meter place of the cone coil of the loudspeaker.

1. F. Tuning Adjustments-Two transformers comprising foor tuned circuits are used in the intermediate amplifier. These are tuned to 370 K . C. and the adjustment screw are accessible as shown in Figure D. Proceed as follown:
(a) Short-circuit the antenna and ground terminals and tune the receiver eo that no aignal is heard. Set the volume control at maximum and connect a ground to the chassis.
(b) Connoct the teat oscillator output between the firnt detector control grid and chassis ground. Connect the output meter acroan the trol grid and chassis ground. Connect the output meter acroan the
voice coil of the londspeaker and adjust the oscillator output se voice coil of the londspeaker and adjust the oscinator output so
that, with the receiver volume control at maximum, a slight deflection is ohtained in the output meter.
(c) Adjust the eccondary and primary of the first and then the second I. F. transformers until a maximum deflection is obtained. Keep the oscillator output at a low valuo so that only a alight deflection is obtained on the output meter at all times. Go over these adjustmonts a second time. an there in alight interlocking of adjustmonts. This completes the I. F. adjustments
R.: F. and Oscillator Adjustments-The R. F-lfoe-up capacitors aro located at the bottom of the coil assomblies instead of their unual
position on the gang capacitor. They are all accossible from the bottom of the chanaia orcept the 600 K . C. seriea capacitor, which in accensible from the rear of the chassia. Proceed an follows:
(a) Connect the output of the oscillator to the antenna and ground terminals of the receiver. Check the position of the indicator pointer when the tuning capacitor plates are fully moshed. It should be Then set the Test Oscillator at 1400 K C the dial readirg of 540. 1400 and the oacillator ourput 1400 K . C. the dial indicator at obtained in the output meter when the volume control is at itt
(b) Maximum porition.

With the Range Switch at the "in" position, adjuat the three trimmers under the three R. F. coils, deaignated as L. W. in Figure D, until maximum deffection is ohtained in the output meter. Thenshift the Test Obrilhator frequency to 600 K . C. The trimmer capacitor, accessible from the rear of the chassis. should now be adjuated for maximum output while rocking the main tuning eapacitor back and forth through the signal. Then repeat the
(c) Now place the Range Switch at the "out", position, shift the Test Opeillator to $15,000 \mathrm{~K} . \mathrm{C}$ and set the dial at 15 on the cycle scale. Adjust the threetrimmer capacitors denignated as S. W. in Figure D for maximum output. beginning with the osciliator trimmer. It will be noted that the oscillator and first detector trimaners will have two positions at which the signal will givemaximum output. The position which uses the lower trimmer capacitance. obtained by turning the acrew counter-clock wise. is the proper adjustment for the oscillator, white the position that ures a higher capacitance in correct for the detector. Hoth of these adjustments must be nude as indicated irrespecrive of ontput. The R. F. is merelv to rock theonjunction with the detector adjuat mont, while makin the adjuatment. Thing completen the line-up adjuntments.
The important points to remember are the need for using the minimum oscillator output to obtain a deflection in the output meter with the volume control at its maximum poaition and the manner of obtaining the proper high frequency ofcillator and detector adjustments.

Power Transformer Connections

The power transformer used in this model has a tapped primary winding. The traneformer is normally connected for lines ranging in voltage from 110 to 125 volts. If for any reason the line is normally below 110 volt

Figure D-Location of Line.Up Capacitors
the connections should be changod ao the tap will be used. This it done by unnoldering the black with red tracer tranaformer load connected to the power awitch (on tone control) and substituting the red and black lead normally taped up. The black with red tracer lead thould thea be carefully
taped to provent ebort -circuit.

115 Volts, A. C. Line-No Signal

Type No.	Cathode to Control Grid, Volte	Cathode to Sereen Grid, Volts	Cathode to Plate, Volte	Plate Current M. A.	Meater Volte
1. RCA-58 R.F.	3.0	100	265	6.0	2.42
2. RCA-2A7 lat Det. Osc.	3.0	100**	265*	2.0*	2.42
3. RCA-58 I. F.	3.0	100	265	6.0	2.42
4. RCA-2B7 2nd Det. A. V. C.	1.5	35	100	1.5	2.42
5. RCA-2A5 Power	16.0	255	240	35.0	2.42
6. RCA-80 Rectifier	725 Volta R. M. S.-75 M. A. Total Corrent				4.80
* The voltages and current refer to the detector part of the tube.					

PAGE 5-92 RCA

Chassis Wiring

RCA-VICTOR CO., INC.

RCA-VICTOR CO., INC.

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

ctock	Description	(list	(tork $\begin{gathered}\text { Stock } \\ \text { No. }\end{gathered}$	description	List Price
	RECEIVER ASSEMBLIES		4032	Capacitor-390 mmfd. (C14)	
	Resistor - 30,000 ohms - Carbon type - 1		4075	Knob-Range switch or tone control knob.	
2240	Resistor - watt $(\mathbf{R 6} 6)$.		4119	Screw-No. 8-32-1/4" headless cup point set screw for station selector knob	
2747	Cap-Contact cap.		4120	Knob-Volume control knob	
3056	Shield-2nd detector Radiotron shield.		4121	Knob-Station selector knob.	
3076	Resistor-1 megohm-Carbon type- $1 / 2$ watt (R10, R11)		6188	$\text { Resistor- } 2 \text { megohm-Carbon type- } 1 / 2 \text { watt }$ (R12)	
3252	```Resistor-100,000 ohms-Carbon type-1/2 watt (R1, R3)```		6282	Resistor- 60,000 ohms-Carbon type-1/2 watt (R5, R8, R15)	
3170	Resistor- 6,500 ohms-Carbon type-1 watt (R20)		6571	Capacitor-10 mfd. (C37)	
3514	Resistor-250,000 ohms-Carbon type-1/2 watt (R16)		6614	Glass-Station selector dial glass . Ring-Retaining ring for dial glass	
3529	watt (R16) .		6620	Capacitor-Comprising one .005 mfd . and one .035 mfd (C35, C36)	
3572	Socket-7-contact Radiotron socket........		6676	Socket-6-contact Radiotron socket-Out-	
3594	Resistor- 50,000 ohms-Carbon type- $1 / 2$ watt (R14, R17)		6676 6694	put Condenser-3-gang variable tuning conden-	
3631	Resistor- 850 ohms-Carbon type-1/2 watt (R13)		6694 6695	Condenser- 3 -gang variable tuning condenser (C4, C9, C1i) Volume control (R9)	
3639	Capacitor-. 02 mfd ((C34)...		$\begin{aligned} & 6695 \\ & 6696 \end{aligned}$	Switch-Range switch (S1, S2, S3, S4)	
3683	Shield-Radiotron shield top.		6696 6697	Transformer-First intermediate frequency	
3701	Capacitor-. 01 mfd (C6, C21)		6697	transformer (L13, L14, C23, C24).	
3702	Capacitor-. 25 mfd (C 32)		6698	Transformer-Second intermediate frequency	
3768	Screw-Square head No. 6-32-1/4" set screw for condenser drive .		6699	transformer (L15, L16, C26, C41) Coil-R. F. coil (L5, L6, L7, L8, C7, C8)	
3796	Capacitor-4. mfd. (C28)		6700	Coil-Oscillator coil (L9, L10, L11, L12, Cl2,	
3849	Capacitor-50 mmfd. (Cl0)			C17)	
3859	Socket-4-contact Radiotron socket.		6701	Coil-Antenna coil ($\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~L} 4, \mathrm{Cl}, \mathrm{C} 2$)	
3861	Capacitor Adjustable capacitor (C13) .		6702	Drive-Variable tuning condenser drive	
3877	Capacitor-. 1 mfd ($\mathrm{C} 5, \mathrm{Cl5}, \mathrm{C25}, \mathrm{C33)...}$.			assembly complete.....................	
3878	Screw-No. 4-40- $\frac{3}{16 \prime}$ screw for fastening station selector pointer		6703	Capacitor pack-Comprising one 8. mfd. and two 4. mfd. capacitors (C20, C22, C38)	
3888 3892	Capacitor-. 05 mfd (C19, C27) Resistor $\mathbf{6 0 0}$ ohms-Carbon type- $1 / 2$ watt		6704	Shaft-Tuning condenser drive assembly	
	$\underset{\text { (R2, R4, R7) }}{\text { R }}$.....................		6705	Tone control complete (R22)	
3897	Resistor-400 ohms--Carbon type-l watt (R18)		6841	Dial-Station selector dial..	
3901	Capacitor-. 05 mfd ($\mathrm{C} 3, \mathrm{Cl6}$)		6842	Pointer-Station selector pointer. . .	
3905	Screw-Chassis mounting screw assembly comprising 4 screws, 4 washers, and 4 cushions		7485 7487	Sbield-I. F. and R. F. amplifier Radiotron shield	
3906	Mounting assembly - Variable condenser mounting assembly comprising 3 bushings,		9446 9451	Transformer-Power transformer-105-125 volts 50-60 cycles (T1) Transformer-Power transformer-105-125	
3937	3 lock washers, 3 nuts, and 3 washers Capacitor- $\mathbf{3 0 0}$ mmfd. (C30, C31)		9451	Transformer-Power transformer-105-125 volts 25-40 cycles	
3938	Capacitor - 9 mmfd. (C39)		10194	Ball-Steel ball for condenser drive assembly	
3939	```Resistor - 3,500 ohms - Carbon type - \(1 / 2\) watt (R21)```			REPRODUCER ASSEMBLIES	
3912	Shield-1st detector Radiotron shield		6770	Transformer-Output transformer (T2)	
3943	Screen-Translucent screen for dial light		6843	Cable-3-conductor reproducer cable	
3944 3991	Shield-Antenna, R. F. or oscillator coil shield. Resistor-10,000 ohms-Porcelain type (R19)		$\begin{aligned} & 8935 \\ & 9460 \end{aligned}$	Cone-Reproducer cone (L17). Coil-Field coil, Magnet and cone support (L18).	
3991 4031	Resistor-10,000 ohms-Porcelain type (R19) Capacitor-2,700 mmfd. (C18, C29, 40)		9461	Reproducer complete.	

RCA-VICTOR CO., INC

Circuit Data
Alignment Data
Voltage Voltage
(d) Adjus the primary of the second, and the
taps and capacitors is to change the tuning range as
follows:

1. At the broadcast position all of the additional circuits are open as shown in Figure 1 .
2. At che police band position, all of the additional 2. At the police band position, all of the additional
swieches are cioud. Shorting of turns in the grid coils
reduces their induresing reduces their inductance so that the tuning capacitors cover the high frequency range. Connecting the two
coupling capaciors increases the coupling and thereby the sensitivicy at the higher frequency position. The
trimmer capacitor on the oscillator circuit provides trimmer apacitor on the oscillator
proper cracking with the R. F. circuics.

Line-up Adjustments
Inoperation, poor tone quality, or lack of proper
sensitivity and selectivity are direct resuls of lack of sensignent. In event the receiver is to be aligned,
aligne
carefuly wes che foll
carefully use the following procedure
I. F. Tuning Adjustuents-Two cransformers

 the adjustment screws are accessible as shown in
Figure 4. Proced as follows:
(a) Procure 2 modulated oscillator giving 2 signal
ar 175 K . C., a non-metallili screwiddiver sulch
as Stock No. 4160 and an output meter. Tex as Stock No. 4160 and an outpur meter. Ta
Oscillator, Stock No. 9050 , is suitable and
(b) Shoor-circuid fhe making these adjusiments. Shor-dircuit the antenna and ground terminals the receiver so that no signal is heard.
and See the volume control at maximum and con-
nect a ground to the chassis.
(c) Conneca the oscillator ourput between the firse nect the output metera across the voice coil of the loudspeaker and adjust the oscillator outpur so
that with the receiver volume concrol ac maximum, a slighe defiction is obrained in the
output meter.

The ourput of the second detector is applied to the

Field excitation for the loudspeaker is obtained by connecting it directy across the 32 -volt direct currenc
supply. Heater excitation for the ubbes described is obtained by connecting chem in series and placing the

Plate and grid volta ges for all tubes are obsained from a special plate supply unit which consists of a号
0
0
0
0 vibrator interference to a negligible degree. The purpose
of the vibrator is to intertupe che direce current and apply it first in one direction and then in the opposite direction across individual sections of che primary of the power transformer. The cransformer steps the voltage up
several times and applies it to the plates of che fullwave reccifict, Radiotron RCA-84. The filament of this tube is eonnected in series with the Amperite 5-16
voltage regulating tube. This regulating tube mainvoltage regulating tube. This regulating tube main-
tains a constant current through the rectifer filament

The range switch provides a quick means of shiffing ?
?
?
0

 A tap is provided on the grid coils of the R. F. and
first decector circuis. Also additional coupling ca-

loudspeaker.
over 2 wide variation of line volcages.

RCA VICTOR MODEL 223

service notes

Electrical Specifications
 Voltage Rating. $26-40$ Volts D. C Power Consumption. 60 Watts al 32 Volts

 Number and Types of Radiotrons..... 2 RCA-6D6,1 RCA-6A7, 1 RCA-6B7, 1 RCA-38, 1 RCA-84 Type of Ballast Lamp.............Amperite 5-16
 This receiver is a six-tube, 32 -velt D. C. superThis receiver is a six-tube, 32 -voit D. C. sureer-
heterodyne designed primarily for operation from $32-$ volt farm lighting circuits. Excellent sensitivity and
selectivity, large undistorted output and excellenc tone quality are inherent features of chis receiver. Other oustanding features inctude 10 -inch electro-dynamic
loudspeaker, wide cuning range (police, aviation and broadcast), ballast lamp for voltage fuctuations, and
a separate power supply with a newly designed filcer units.

Figure 1 shows the schematic circuit diagram, Figures
2 and 3 the chasis and power unit wiring and Figure 5 the assembly wiring diagram. The replacement parts are given on page 9 .

The circuir of this receiver is similat in many ways power supply differs in several respects. Chiehly among the differences is the use of a vibrator interrup-
zef for obsaining alternating current and a tube rectifer for receifying it ar a higher volcage.

The R. F. stage uses Radiocron RCA-6D6, which is
a six-volt heater type super concrol R. F. amplifying tube The function of this stage is to select and
amplify the desired incoming signal and apply it to the

The next tube is a combined oscillator-detector which is known as the RCA-6A7 and which provides frecuency. The local oscillacor, due to the bridge circuics used, provides a signal that has a constane (175 K . C. higher) ac all poinst chroughout the tuning eange. The detector portion of the tube serves to
extract the beac frequency from the combined signals (oscillator and signal) and apply it to the grid of the

The plate circuit of the first detector and the grid
and plate circuits of the I. F. tube are all tuned by

PAGE 5-96 RCA
HODEL 223
Noise Suppression
Assembly Wiring
RCA-VIC'TOR CO., INC.

SUPPRESSION OF GENERATOR AND IGNITION INTERFERENCE Operating this recciver while the 32 -volt generator from each brush of the generator to the generator
frame, which must be grounded. This reduces the interference ecaused by sparking at the commutazor of the
generator. If excessive sparking occurs, it is very ungenerator. If excessive spatking occurrs, it is very un-
ikely that the capaciors will reduce the noise suff-
ciently. In this case, the commutator must be thorciencly. In this case, the commutator must be thor-
oughly cleaned and sanded and the brushes researed.
In bad cases it is usually best to clean the forecign matOughy cleaned and saly best to clean the foreign mat-
In bad cases in in uskill
ter from between the commutaror segments by means ter from becween he comnuren shen sand he commutator
of a hrree-crnered file, and the
by placing the sand paper around a small block and by placing the sand-paper around a small block and
holding is squarely against he commutator while it
is running. Never use emery cooth.

Coil Capaciror:--Some installations will require ${ }^{2}$ capacitor connected from che batcery side of the ignition coil to ground.
caused by the primary breaker.

Grounds:-It is important that the frame of the generator be thoroughly grounded. A steel ground-
rod, driven at least six feet in moist earth, provides a good ground. In evenc one side of the line is grounded,

Figure 4-Typical Installation showing suppression equipment and proper anterna system

PAGE 5-98 RCA
Chassis Wiring
RCA-VICTOR CO., INC.

RCA-VICTOR CO., INC.

Figure 3-Power Unit Wiring Diagram

RCA-VICTOR CO., INC.

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	Description	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Stock No.	Description	List Price
	RECEIVER ASSEMBLIES		6485	Volume control with mounting nut (R12)	\$1.20
2816	Resistor - 1,000 ohms - Carbon type - 1/2		6527	Coil-Antenna coil (L1, L2)	1.08
2816	watt (R18)-Package of 59	\$1.00	$\begin{aligned} & 6528 \\ & 6534 \end{aligned}$	Coil-R.F. coil (L3, L4). Switch-Range switch (S2, S3, S4, S5, S6,	. 94
3047	Resistor - 1,500 ohms - Carbon type - $1 / 2$ watt (R7)-Package of 5 .	1.00		C5, C12, C20)..................	1.25
3076	Resistor-1 megohm-Carbon type-1/2 watt (R6)-Package of 5	1.00	6598	Condenser-3-gang variable tuning condenser (C6, C7, C13, C14, C16, C17)	3.00
3252	Resistor- 100,000 ohms--Carbon type-1/2 watt (R5)-Package of 5	1.00	6622 6859	Dial-Station selector dial scale and drive assembly.	95
3358	Resistor - 3,000 ohms - Carbon type - $1 / 2$ watt (R13)--Package of 5 .	1.00	6859	Capacicor-Comprising three 4 mfd and one 10 mfd . capacitors (C8, C23, C28, C32) Tone concrol with mounting nut (R20)	2.85 1.15 1.36
3514	Resistor-250,000 ohms-Carbon cype-1/2 watt (R17)-Package of 5		6860	Tone control with mounting nut (R20).... Transformer- Output transformer (T2)	1.15 1.36
3572	watte (R17)-Package of 5.............	1.00 .38	7484 7485	Socker-5-contact Radiorton socker....	. 35
3584	Ring-Antenna, R. F. or oscillator coil retaining ring-Package of 5 .	. 40	7485	Socket-6-contact Radiotron socker	40
3594	Resistor-50,000 ohms-Carbon type- $1 / 2$ watt (R14, R16)-Package of 5..	1.00		VIBRATOR POWER UNIT ASSEMBLIES Capacitor-. 025 mfd . (C42, C43, C44)	
3597		40	3855	Capacitor-. 025 mfd (C42, C43, C44) Socket-4-contact Radiotron socket. . .	. 34
3602	Resistor 60,000 ohms-Carbon cype- $1 / 4$ watt (R8, R11)--Package of 5	1.00	3860	Socket-5-contact Radiotron socket	. 32
3616	Capacitor-300 mmfd. (C30).	. 34	4145 4148	Shield-Radiocron shield-Rectifier Suspension assembly-Comprising one bolc	. 30
3622	Shield-Antenna or R. F. coil shield	. 36		Suspension assembly-Comprising one bolt assembly, one " C " washer, two cup washers,	
3624	Socker-Dial lamp socker and bracker.	. 40		two springs, two damping bushings.	. 40
3625	Scale-Volume indicator scale assembly	. 40	4150	Clamp assembly-Vibrator mounting clamp	
3626 3630		. 22	4186		. 22
	watt (R2, R3) 25	4187	Capacitor- 745 mmfd . (C51, C52)	. 28
3634	Capacitor-160 mmfd. (C31)	. 34	6862		
3639	Capacitor- 02 mfd (C35)	. 25		4.0 mfd . capacitors ($46, \mathrm{C} 48, \mathrm{~L} 21) \ldots .$.	3.34
3750 3783	Capacicor- 25 mfd (C2) Capacitor- 9 mmfd (C3, C10)-Package of 2	. 36	6863	Capacitor-Comprising one 3.5 mfd and one	
3783 3877	Capacitor- 1 mmfd . (C9, C15, C36, C37) 32		.5 mfd capacitors (C45, C47)	3.46
3888	Capacitor-. 05 mfd . (C4. C11, C25, C27)...	. 25	6864	Tube-Regulator tube	3.00
3892	Resistor- 600 ohms-Carbon type-1/2 watt		6865	Coil-Line R. F. choke coil	. 92
	(R4)-Package of 5........	1.00	6867	Coil-Line R. F. choke coil.	. 54
3993	Screw-Set screw for volume control dial		6868	Coil-Line R. F. choke coil (L16)	. 78
	Package of 10	25	6869	Capacitor-1.0 mfd. capacitor (C41)	. 88
4046	Resistor- 2 megolam-Carbon cype- $1 / 2$ watt (R1)-Package of 5 .	1.00	6870	Shield-Outer shield with felt pad for vibrator assembly	. 60
4142	Mouncing assembly for receiver chassis Comprising 8 cushions 8 washers, 4		6871	Coil-Filter coil (Li8) 76
	Comprising 8 cushions, 8 washers, 4 spacers, 4 lockwashers and 4 screws.		7734	Transformer-Power uransformer (T1)	3.60
4143	spacers, 4 lockwashers and 4 screws. Capacitor- 2400 mmfd . (C1)	. 38	7735	Vibrator complete (L13, L14, L19, L20, C40,	
4144	Clamp-Capacitor mounting clamp-Package of 5	. 20		R21)	8.20
4145	Shield-Radiocron shield	30		REPRODUCER ASSEMBLIES	
4181	Capacitor-720 mmfd. (C19)	30	4149	Shield-Terminal board shield	20
4182	Capacicor-80 mmfd. (C18)	25	8935	Cone-Reproducer cone (L11) Package of 5	5.25
4183	Capacitor-400 mmfd. (C33)	26	9474	Reproducer complete.	7.10
4184	Capacitor pack-Comprising one 035 and one .005 mfd capacitors (C38, C39). .	. 30	9475	Coil-Field coil magnet and cone support (L12)	4.55
4185	Resistor-175 ohms-Wire wound (R19)	. 78			
6242	Resistor - 2 megohms - Carbon type - $1 / 4$ watt (R10)-Package of 5 .	1.00		MISCELLANEOUS PARTS	
6282	Resistor- 60,000 ohms-Carbon type- $1 / 2$ watt (R15)-Package of 5 .	1.00	3592	Knob-Station selector--Volume control or tone control knob-Package of 5 .	80
6303	Resistor-20,000 ohms-Carbon type-1/2		3615	Knob-Range switch knob-Package of	60
	watt (R9)-Package of 5	1.00	3881	Escutcheon-Station selector escutcheon	42
6471	Coil-Oscillator coil (L5, L6)	. 74	3899	Escutcheon-Volume concrol escutc	42
6483	Transformer-First intermediate frequency		4292	Capacitor-Geneator capacitor-. 5 mfd	90
	transformer (L7, L8, C21, C24).........	1.84	6151	Suppressor-Spark plug suppressor	. 56
6484	Transformer-Second intermediate frequency transformer (L9, L10, C26).	1.70	6152 6516	Suppressor-Discributor suppressor Connector-Fuse connector comple	.56 .16

RCA-VICTOR CO., INC. DESCRIPTION OF ELECTRICAL CIRCUIT

Circuit Data

The general circuit arrangement consists of an R. F stage, a combined oscillator and first detector, and I. F. stage, a combined second detector and automatic volume control, an audio stage, a push-pull driver stage and a push-pull Pentode output stage. Plate and grid voltages are supplied by the RCA-5Z3 heavy dury rectifier combined with a suitable filtering stage, of which the loudspeaker field is a part. Figures 1 and 2 show the schematic circuit diagrams.

The signal enters the receiver through a shielded antenna lead and is applied to the grid of the R. F. tube through the antenna coupling transformer. The secondary of this transformer is tuned to the signal frequency by means of one unit of the gang-capacitor. The output of this stage is transformer coupled to the grid circuit of the first detector, which is also tuned to the signal frequency by a unit of the gang-capacitor.

Combined with the signal in the first detector is the local oscillator signal, which is always at a 460 KC frequency difference (higher) from the signal frequency. A separate coil system and the third unit of the gang-capacitor are used in the oscillator circuit.

In conjunction with these three tuned circuits it is well to point out that five different groups of tuned circuits are used, one group for each tuning band. A five-position selector switch is provided for selecting the band in which the desired signal is located. In addition to selecting the desired coil system, additional groups of contacts are provided for short-circuiting the preceding lower frequency R. F. and detector coils and the two preceding oscillator coils. This is to prevent "dead" spots due to absorption effects caused by the coils, the natural period of which without the gang-capacitor connected falls in the next higher frequency band. This gang-swirch also has additional contacts for changing the sensitivity in the various bands.

The sensitivity control in bands X and A controls the R.F. and first detector while in bands B, C and D it controls the R. F., first detector and I.' F. stage. This is caused by the action of the selector switch. It should also be noted that the sensitivity control is paralleled with a 500 -ohm resistor (R-12, Figure 1) in bands B, C and D.

The output of the first detector, which is the I. F. signal (460 KC), is fed directly through two tuned circuits to the grid of the I. F. amplifier stage. The I. F. scage, which utilizes Radiotron RCA-6D6, uses two transformers, which consist of four tuned circuits, all of which are tuned to 460 KC .

The output of the I. F. amplifier is then applied to the grid of the RCA-76 second detector. The plate of this tube is connected to its cathode and the tube operated as a diode derector and automatic volume control. The direct current component of the rectified signal produces a voltage drop across resistors R-32 and R-17. The voltage drop across both resistors constitutes the automatic bias voltage for the R. F. stage, while the drop across R-17 alone constitutes
the bias voltage for the first detector and I. F. stage. These automatic bias voltages for the R., F., first detector and I. F. stages give the automatic volume control action of the receiver. It should be noted that resistor $R-33$ is connected in parallel across resistors $\mathrm{R}-32$ and R-17. This reduces the total amount of resistance in the circuit to a proper value. Resistor R-34 and capacitor C-43, which are connected in series and from a tap on the volume control to ground, provide low frequency, low volume compensation.

The volume control selects the amount of audio voltage that is applied to the grid of the RCA-76 A. F. stage and thereby regulates the volume of the entire receiver. The first audio stage is coupled through a high and low frequency tone control system and transformer to the grid circuit of the push-pull drive stage. It should be noted that a link has been provided in series with the cathode of this stage, so that phonograph connections may be easily made if required.

The driver stage is transformer coupled to the output stage, which consists of two Radiotrons, RCA-42, connected in push-pull. A feature of the output stage is the use of fixed bias, which reduces distortion and increases the available output. This is accomplished by the use of the drop across R-29, which carries the entire DC output from the rectifier. Naturally the output stage uses but a portion of the total rectified current and current variations in it have but little effect on the drop across the resistor.

The output of the power stage is coupled through a step-down transformer to the voice coil of the loudspeaker. A separate winding, which is shunted by a capacitor, has been provided in this transformer which gives a very sharp, high-frequency cur-off for the entire audio system. This greatly reduces the reproduction of any high-frequency interchannel interference or other disturbance of a high-frequency character which is outside of the useful musical range.

VARIATIONS IN MODELS

The preceding description of the electrical circuit applies to numerous models of this receiver. However, there are other models in which a change from the foregoing has been made. This change consists of using the section of the band selector switch that formerly changed the sensitivity control, for changing the fidelity in various bands, the sensitivity remaining the same in all bands. This permits the receiver to maintain the utmost fidelity in bands X and A while reducing the low frequency output in bands B, C and D. Such a change results in improved performance.

The sensitivity control in these models operates as formerly in bands X and A. That is, the sensitivity control adjusts the residual bias for the R. F. and first detector stages.

PAGE 5-102 RCA
MODEL 262
Schematic with
Sensitivity Change

RCA PAGE :-103
RCA-VICTOR CO.. INC.
MODEL 262
Schematic with
Fidelity Change

PAGE 5-104 RCA

RCA-VICTOR CO., INC. 111 Change
(ecuca
皆

涪
Resistar Cone Cometrions
 Resistox Bomo Conkections

PAGE 5-106 RCA
MODEL 262
RF Unit Wiring with
RCA-VICTOR CO., INC.
Sensitivity Change

RCA PAGE 5-107

RCA-VICTOR CO., INC.
BF Unit Wiring with Fidelity Change
位
40visen-an-

$$
===-1
$$

(ase serser

PAGE 5-108 RCA
MODEL 262
Sooket and Trimmer Layouts RCA-VICTOR CO., INC.

Figure 3-Loudspeaker Wiring

Figure 7-Location of Trimmer Capacitors

RCA-VICTOR CO., INC.
$175 \mathrm{KC}, 410 \mathrm{KC}, 460 \mathrm{KC}, 600 \mathrm{KC}, 1720 \mathrm{KC}, 5160 \mathrm{KC}, 18,000 \mathrm{KC}$
7 Watss
14 Watis
c) The antenna and deteccor crimmers should
now be peaked for maximum output.
now be peaked for maximum output.
Band " C "

Figure 9-- Junior "Duo"
trimmer should be set at the first peak obatined
when increasing the trimmer capacity from minimum to maximum.
(b) Check for the image signal, which should be
teceived ut received at approximately 17,080 on the dial.
it many be neesary to increase the external
oscill
(c) Reduce the capacity of the detector crimmer. while rocking the tuning capacaitor, until the
signal disappears. The first decector circuit is then ali nocd with the oscillatoro circuir and
the RCA-6A7 tube is blocked. Then increase the capacicy of the dectecror trimmer, while
tocking che tuning capaitor, until the signal
is peaked for maximum outpur.
(d) The antenna crimmer should now be peaked for maximum output. It is not necessary to
rock che main tuning capaciicor while making
chis adjusment. No adjustments are

No adjurtments are required for band "D."
(4) MAGNETIC PICKUP CONNECTIONS
A terminal board (link in scries with frist andio

igure 9 shows the connections chat will be required
for the Junior "Duo" turncable assembly. (5) VOLTAGE READINGS

The following volta ges are those at the various
tube sockess while ehe receiver is in operating conditube sockecs while the receiver is in operateng cond
tion. No allowance has been made for currenss drawn
by the mecere and if liw low-resistance meters are used
 are sbown.

Line-up Frequencies............
Maximum Undiscorted Output.
Maximum Ouppur.
 voice coil of the loudspeakers. The volume concrol
must be at its maximum posicion and che input from the osecilltor muxt be at the minimum valup possible
to gec an ourpur indication under chese conditions. In on get an ourpur indication under hese colditions.
the high-frequency bands, it may be neesesary to dis-
connect the oseill at a distance in order to get 2 sufficiently low input
to the receiver.

The dial poincer must be property see before sarting any accual adjustmens. This in done by curning the
variable capacitor until it is at is maximum capacity position. One end of the pointer should poinc exacely band ", ", while che orther end should poinncte tive thin
$1 / 64$ inch of the horizontal line at the highes
frequency end of band "A."
Figure 7 shows the location of the crimmers for
each band, Care mmuse be exerisedd to only adjuse
the trimmers in the band under tess. "X," pueg
(a) Tune the external osillator to 410 KC , see the

 (b) in the 175 KC signal irrespective of scale cali in the 1 an signal irrespective of scale cali-
bration and adus the scrics rimmer marked
175 KC on Figure 7 for maximum ourput,

Band "A"
(a) Tune the external oscillator to 1720 KC , set
che pointer act 1720 KC and adj just the oscillator,

(2) Tune the external oscillazor 105160 KC , and
sec che pointer act 5160 KC Adjust the oscill

(b) Check for the image signal, which should be

A detailed procedure for making this adjustment
follows:

SERVICE DATA

(a)
Connect
tured
oud
did
dicator a
(b)
Place the
Place he
Staion se

(3) R. F. OSCILLATOR AND FIRST DETECTOR
ADJUSTMENTS

 muse be aligned individually. The preliminary set-up It will be necessary to increase
oscillator output for this check.

Tuning Frequency Range.
(1) LINE-UP PROCEDURE The line-up procedure of this receiver is somewhat
involved and it is imporant that these instuctions be aligned, this receiver has oussanding performance, signapls on all bands.
Equipment

To align chis receever, proper test equipment muss
be used. This consist of a modulated d . F . oscillator having proper frequency range, an output indicator, an
alignment tool and a cuning wand These parts, which are shown on pape 15 h heve been developed by the
manufacurer of this receiver for use by service men
to duplicate the original factory adjustmens.
Before making any R. F., oscillator or first detector adjustrents, the accuracy of che present adjussimenss
may be checked by means of the cuning wand (Stock No. 6679). The cuning wand consiss of a a bekilite
rod having a brass cyclinder at one end and a secial finely yivided iron insert at the ocher end. Inserting
tee clyinder into ehe center of a coil lowers its in ductance, while inserting the iron end increases its
inductance. From this, it is seen that unless the crimmer ajjusument for a parcicular coil is perfect ar
alignment frequencies, inscrting one end of the wand may increase e the output of a patticular signal. A
perfect adjustrenen is evidenced by a lowering of , The shields over che R. F. coil assembly have a
toole at cheir top for enranace of the tuning wand
The locaion of the various coils inside of the shicld The location of the various coils inside of the shield
is shown in Figure 5 An example of the proper
manner of tsing the manner of using the tuning wand would be to assume
the external osidilator were sea 1 1720 KC and the
cigal tuned in signal cuned in. The output indiciator should be
sonnectev across che voice coil of the loudsperker.
Then insert the cuning wand, first one end and then
 at che left of the R. F. F . assembly, facing the front of
the chassis. A perfer 2 ajjusument of the trimer
would be evidenced hy would be evidenced by a teduction in output when
cach end of the wand is insered in cactof of the three when insereded in one coil caused an increase in output,
then that circuit is low. An increase in the trimmer
(2) I. F. TUNING CAPACITOR ADJUSTMENTS This receiver has one I. F stage, and two trans-
formers having four adjustabie capacitors which may formurs having four adjustable capacaitors which may
require dajusment. The transformers are all peaked
ar 460 KC .

PAGE 5－110 RCA
MODEL 262
Voltage
Parts List
RCA－VIC＇TOR CO．，INC．
RADIOTRON SOCKET VOLTAGES

REPLACEMENT PARTS

	絽 8
受纪	
\％	

DESCRIPTION OF ELECTRICAL CIRCUIT

The general circuit arrangement consists of an R.F. stage, a combined oscillator and first detector stage, two I. F. stages, a combined second detector and automatic volume control, a push-pull audio driver stage and a push-pull Class A ourput stage. Plate and grid voltages are supplied by the RCA-5Z3 heavy duty rectifier combined with a suitable filtering system. In addition, a double channel A.V.C. stage is provided

Figure 3-Switching Arrangement of Automatic Volume Control Systems
which uses two additional tubes. Figure 1 shows the over-all schematic circuit diagram while Figure 2 shows the R. F. assembly wiring.

The signal enters the receiver through a shielded antenna lead and is applied to the grid of the R.F. tube through the antenna coupling transformer. The secondary of this transformer is tuned to the signal frequency by means of one unit of the gang-capacitor. The outpur of this stage is transformer coupled to the grid circuit of the first detector, which is also tuned to the signal frequency by a unit of the gang-capacitor.

Combined with the signal in the first detector is the local oscillator signal, which is always at a 460 K . C. frequency difference (higher) from the signal frequency. A separate coil system and the third unit of the gang. capacitor are used in the oscillator circuit.

In conjunction with these chree tuned circuits it is well to point out that five different groups of tuned circuits are used, one group for each cuning band. A five-position selector switch is provided for selecting the band in which the desired signal is located. In addition to selecting the desired coil system, additional groups of contacts are provided for short-circuiting the preceding lower frequency R.F. and detector coils and the two preceding oscillator coils. This is to prevent "dead" spors due to absorption effects caused by the coils, the natural period of which withour the gang capacitor connected falls in the next higher
frequency band. This gang switch also has additional contacts for performing other functions which will be discussed.

The output of the first detector which is the I. F signal (460 K . C.) is fed directly through two cuned circuits to the grid of the automatic volume control I. F. amplifier stage. A coupling coil adjacent to the secondary of this transformer is connected directly to the signal I. F. stage, which is in effect parallel to the A. V.C., I. F. stage. Examining the signal amplifier further we find that the ourput of the first signal I. F. stage is applied through a transformer to the second I. F. stage and thence through a second transformer to the second detector. Both circuits of each transformer are accurately tuned to the I. F. signal, which is 460 K. C.

Further examining the A. V. C., I. F. stage it will be seen that the output of this stage is applied to the A. V. C. tube through an untuned I. F. transformer. The A. V. C. stage, which is an RCA-76, is operated as a straight rectifier, its plate being grounded and only the grid being used. This rube is shielded in the usual manner. A small grid voltage, approximately 5.0 volts, is maintained so that rectification does not occur until the signal level exceeds this grid voltage. When this occurs, a portion of the rectified signal produces a voltage drop across resistors R-18 and R-19. The drop across borh of these resistors constitutes the automatic bias voltage for the R. F. stage. The drop across R-19 alone gives the automatic bias voltage for the first detector and first I. F. stage on bands X and A.

Examining the second detector, the diode electrodes provide the derector action while the grid and plate give audio amplification. A portion of the rectified signal also gives a voltage drop across R-23 which is a second automatic volume control system for the receiver. The voltage drop is applied to the second I. F. stage in all bands and to the first detector and first I. F. stage in bands B and C. The change in

Figure 4-Sensitivity Control Switching Arrangement
automatic volume control systems is made by an additional group of contacts on the band selector switch. Figure 3 shows the switching arrangements for changing the A.V.C. system in the various bands.

PAGE 5-112 RCA
HODET 281
Schematio
RCA-VICTOR CO., INC.
Pickup Connections

RCA PAGE 5-113
RCA-VICTOR CO., INC.

1.AGE 5-114 RCA

MODEL 281
RF Wiring
RCA-VICTOR CO., INC.

Figure 9-Location of Various Trimmer Capacitors

Figure 10-Radiotron Socket Voltages

(a) Connect the output of an excernal oscillator
suned to 460 K . C. between the first detector grid and (uned to 460 K . C. between the first detector grid and coil of the loudspeaker. Replace the A. V. C. tube in
the receiver with the "dummy" RCA-76.
(b) Place the oscillator in operation at $460 \mathrm{~K} . \mathrm{C}$.; place the receiver in operation and adjust the station
selector until a point is reached (Band A) where no signals are heard and turn both the volume and sensi-
tivity controls to their maximum position. Reduce the oscillator input until a slight indication is obtained
in the oupput indicator.
(c) Refer to Figure 9. Adjuss each erimmer of the 1.F. cuning capacitors untia a maximum ond pume.
Stack No. 416o-Alignment Tool

Figure 8-Equipment Required for Aligning Receiver

No. 6679). The cuning wand consists of a bakelite Nod having a brass cylinder at one end and a special
finely divided iron insert at the other end. Inserting the cylinder into che center of a coil lowers its induc-
tance, while inserting the iron end increases is induc-
 adjustment for a particular coil is perfect ar alignment
frequencies, inserting one end of the wand may frequencies, inserting one end of the wand may

The The shields over the R. F. coil assembly have 2
hole at their cop for entrance of the runing wand. The location of the various coils inside of the shield is shown in Figure 7. An example of the proper menner
of using the tuning wand would be to assume the of using the tuning wand would be to assume the
external oscillator were set ar 1720 and the signal tuned in. The A. V. C. tube would be replaced by the "dummy" RCA-76 and the output indicator could be

 frone of the chassis. A perfect adjustment of the
trimmer would be videnced by a reduction in output
when each end of the wand is inserted in each of the
 end-when inserred in one coil caused an increase in
outpur, ehen that circuit is low. An increase in the
trimmer capacitance would be the proper remedy.
(2) I. F. TUNING CAPACITOR ADJUSTMENTS Alchough this receiver has thrree I. F. seages, two for
the signal and one for the A. V. C., only three cransthe signal and one for the A. V. C., only three crans-
ormers having six adjuscable capacitors require ad-
justmenc. The fourth uransformet is in the A. V. C. justment. The fourth transtormer is in the A.
circuit and is broadly tuned, not requiring adjustments
The cransformers are all peaked, being tuned to
460 K . C.

Figure 5 shows the chassis wiring while Figure 6
shows the loudspeaker wiring.
(1) LINE-UP PROCEDURE

The line-up procedure of this receiver is somewhat
involved and it is important thar these instructions be carefully followed when making adjusuments. Properly
aligned, chis receiver has outscanding performance: improperly aligned, it may be impossible to receive
signals on all bands.
. 2uəwd!nb]

Equipment
To property align this receiver, the following
cquipment must be used. This is a modulaced R. F.
 oscillator having proper trequency range, an oup
indicator, an alignmene cool, a tuning wand, and a
dummy" Radiorron RCA-76. These parts, which dummy Radiotron RCA-76. These parts, which manufacturer of this receiver for use by service men to
duplicate the original factory adjusments. The
"der "dummy" Radiorron, RCA-76, is obtained by remov-
ing one heacer prong from an ocherwise perfect cube. Checking with Tuning Wand

Before making any R. F., oscillator or first derector adjusements, the accuracy of the present adjussments
may be checked by means of the tuning wand (Sock

Ac this point, an explanation as to why iwo automansitivity control is changed in different bands may be in order.

Two automatic volume control systems are used
because of the different receiving conditions in different because of the different receiving conditions in different
bands. For example, in the broadcast and long-wave band (X and A) signal levels are very high. Also due
to the use of an aurally compensated volume control, a constant input to the second detector must be
maintained. From this, it is evident that the double channel I. F. automatic volume control is ideal. It mainctins a constant input to the second detector and
yee does not function on an extremely weak signal. In yee does not function on an extremely weak signal. In
the short-wave bands, however, conditions are different. Signal strengths are always very low and
fluctuate widely. For this reason it is imporant to have some automatic volume conerol action below
the level at which the double channel system works. This is provided by the diode A. V. C. of the second detector, which functions on the firss detector and cwo n. F. stages on the short-wave bands. It should be stage on all bands. This furcher flactens the action of
the double-channel system in bands X and A.

At this point it is well to examine the sensitivity
control which also changes on differenc bands. The control which also changes on different bands. The
sensitivity concrol adjusts she residual bias on the R. F. and first detector stages in bands X and A while it con-
trols the R. F., 1 st detector and boch 1 . F. stages on trois the R. F, and D. Figure 4 shows the switching
bands B,
atrangement used. The sensitivity control is changed so that in bands
X and A it controls the R. F. and 1st detector while in X and A it controls the R. F. and 1st detector while in
bands B, C, and D ie controls the R. F., 1st detector, 1st 1. F. and 2nd I. F. stages The reason for this is
that for a given degree of sensitivicy in bands X and A the residual bias will be considerably higher in the
R. F. and 1se detector stages than in the bands B, C, and D used. This is to prevent possible overloading,
of these stages due to the high-signal strengchs encountered in bands X and A Also, in bands B, C. and D, for a given degree of sensitivity the R. F. stage
operates at a higher gain, which gives an improved signal to noise ratio. This is caused by the paratleling
of the sensitivity control with an 850 -ohm resistor in these bands.

[^3]RCA-VICTOR CO., INC.

(5) VOLTAGE READINGS

RADIOTRON SOCKET VOLTAGES

Maximum Sensitivity-No Signal-120-Volt A. C. Input

	\cdots		\%	$\stackrel{3}{6}$	3	9	3	3	${ }_{6}$	\%	$\stackrel{8}{8}$	$\stackrel{m}{6}$	i
	∞			\cdots	m	$\stackrel{\circ}{+}$	\bigcirc	\sim	n	in	$\stackrel{\circ}{\sim}$	$\stackrel{\circ}{\sim}$	앙
	च	~	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{\sim}$	*	~	-	8	~	~	感	哭	
	8		8	8	8	8	1	1	1	$!$	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\text { g }}{\sim}$	
	$\stackrel{m}{\sim}$			$\stackrel{\circ}{-}$	$\stackrel{\sim}{2}$	\bigcirc	~	-	$\stackrel{-}{-}$	$\stackrel{-}{\square}$	-	-	I
	$\begin{aligned} & u \\ & \dot{\sim} \\ & \text { d } \\ & 0 \\ & 0 \\ & \dot{U} \\ & \ddot{\sim} \end{aligned}$	ox					$\begin{aligned} & u \\ & > \\ & < \\ & \vdots \\ & \stackrel{~}{\dot{U}} \\ & \underset{\sim}{u} \end{aligned}$						

$$
\begin{aligned}
& \text { (c) Shift the external oscillator to } 600 \mathrm{~K} . \mathrm{C} \text {. Tune } \\
& \text { in the } 600 \mathrm{~K} \text {. C. signal irrespective of scale calibration }
\end{aligned}
$$

apacity from ninimum to maximum
(c) Check for the image signal, which should be he necessart to increase the external oscillator ourput
(d) Reduce the capacity of the detector trimmer. while rocking the cuning capacioror, until the signal
disappears. The firse detector circuit is then aligned with the oscillator circuit 3nd the RCA-6A7 tube is
blocked. Then inctease the capacity of the detector (r) peated (c) The antenna trimmer should now be peaked for maximum output. It is not necessary to rock the
main tuning capacitor while making this adjustment. Band "D"
No adjustments are required for
No adjustments are required for Band D. in the 600 K . C. signal irrespective of scale calibration
and adjust the series trimmer, marked $600 \mathrm{~K} . \mathrm{C}$. on Figure 9, for maximum output, at the same time
rocking the variable tuning capacitor. Then readjust tocking the variable tuning capacitor. Then readjuse
it $1720 \mathrm{~K} . \mathrm{C}$ as described in (b). Band "B"
(a) The detector and antenna trimmers should first
be tightened to approximately $3 / 4$ maximum capacity
(turned $3 / 4 \mathrm{in}$). (b) Tune the external oscillator to $5160 \mathrm{~K} . \mathrm{C}$., and (b) Tune the extern3. oscillator to 5160 K . C., and
mer for maximum outpur. The trimmer should be set at the first peak obtained when increasing the
trimmer capacitor from minimum to maximum. (c) Check for the image signal, which should be
received at approximately 4240 on the dial. It may
be necessary to increase the external oscillator output (d) Reduce the capacity of the detector crimmer,
while rocking the cuning capacitor, until the signal
disappears. The first derector circuit is then aligned

 (c) The antenna trimmer should now be peaked for maximum output. It is not necessary to rock the
main tuning capacitor while making this adjustment. .). purg (a) The detector and antenna trimmers should frist
be tightened totapproximately $3 / 4$ maximum capacity
(uurned $3 / 4$ in). (b) Tunc che excernal oscillator to $18,000 \mathrm{~K}$. C , and
set the pointer at 18 M Adjurt the oscillacor trimmer

Figure 6-Loudspeaker Wiring

Band " A "
(a) The oscillator scries capacitor, marked 600
K. C., Figure 9, should be set at about the center of
its range.
This completes the I. F. adjustments. However, it is good practice to follow the I. F. adjustments with ing which always occurs.
(3) R. F. OSCILLATOR AND FIRST DETECTOR

Four R. F., oscillator and firse detector adjustments are required in bands " X " and " A." Three are required
 oscillator while
have trimmers.

To properly align the various bands, each band muse
be aligned individuaily in the order given. This is " X ," " A ," " B, , " " C ," and " D ." The preliminary setup requires the external oscillator to be connected be-
tween the antenna and ground terminals of the tween the antenna and ground cerminals of the
receiver. The output indicator muse be connected receiver.
across the voice coil of the loudspeaker while the
"dummy" RCA 76 must be placed in the A. V. C. dummy Reck. The sensitivity and volume controis must be at their maximum position and the input from the
oscillator must be as the minimum value possible to oscillator must be at the minimum value possible to the high-frequency bands, it may be necessary to disconnect the oscillator from the receiver and place it at
a distance in order to gec a sufficiently low input to the receiver.

The Dial Pointer must be properly see before starting any actual adjusements. This is done by curning the variable capacitor until it is at its maximum capacity
position. One end should point exactly at the horizontal line ar the lowest frequency end of band " A," while the other end should point to within $1 / /^{\prime \prime}$ "of the
horizontal line at the highest frequency end of band "A." Figure 9 shows the location of the crimmers for each
band. Care must be exercised to only adjust the
rrimmers in the band under test. Band " X "

(b) Tunc the excernal oscillator to $410 \mathrm{~K} . \mathrm{C}$. sec the pointer at $410 \mathrm{~K} . \mathrm{C}$. and adjust the oscillator,
detector and R F. trimmers for maximum output.
(c) Shift the external oscillator to $175 \mathrm{~K} . \mathrm{C}$. Tune
in the 175 K C signal irrespective of scale calibration in the 175 K C. signal irrespective of scale calibration Figure 9, for maximum output, at the same time
rocking the variable cuning capacitor. Then readjust
at 410 K . C. as described in (b).

PAGE 5-118 RCA
HODEL 281
Parts List

RCA-VICTOR CO., INC.

REPLACEMENT PARTS

RCA PAGE 5-119

PAGE 5-120 RCA
MODEL 301
Voltage, Alignment
Pickup Data

RCA-VICTOR CO., INC. SERVICE DATA

Voltage Rating..
Frequency Rating.
Power Consumptio
Number and Types of Radiotrone.
RCA-6A7, 1 RCA-6F7, 1 RCA-41, 1 RCA-1-V
 Frequency Range.

This table type combination instrument consista of a four tube superheterody ne chassis and a new compactly constructed motor board assembly. The receiver incorporates features such as wide tuning range, electrodynamic loudspeaker, two-point tone control, illuminated dial and the inherent sensitivity, selectivity and tone quality of the super-beterodyne.

The following description of the circuit describes several new design features which are incorporated in this receiver.

The first tube is a combined first detector and oscillator using Radio. tron RCA-bA7. Separate tuned circuits are provided for each function. The detector coil is tapped so that the tuning range may be extended merely by shorting out a portion of the coil. The oscillator circuit is not tapped, the high frequency range being obtained by use of it second harmonic instead of the fundamental for obtaining the I. F. frequency.

The next tube is a combined I. F. atage and second detector using Radiotron RCA-6F7. It has two sets of elements, one being used as a screen rid I. F. amplifier and one as a triode detector. The I. F. frequency in this receiver is 460 K . C. The output stage is a single Pentodo RCA-41.

The rectifier is an RCA-1.V used in a half-wavo rectifying circuit, A feature of this circuit is that onlv one transformer secondary is used. This filmmenta and a tapped secondary winding.

Figure A show the pickup details, Figure B the assembly wiring, Figure C the schematic circuit and Figure D the wiring diagram and Figure E the loudspeaker wiring.

RADIOTRON SOCKET VOLTAGES

120 Volt, 60 Cycle Line-Maximum Volume Control Setting-No Signal

Radiotron No.	Cathode to Control Grid, Volts D. C.	Cathode to Screen Grid, Volts D. C.	Cathode to Plate, Volts D.C.	Plate Current, M.A.	Heater or Filament, Volts
RCA- ${ }^{\text {First Detector }}$	1.25	70	235	2.5	6.3
$6 A 7$ Oxcillator	-	-	180	3.5	
RCA- I. F.	1.25	70	235	5.5	6.3
6F7 Second Det.	19	-	145°	0.4	
RCA-41 Output	17	240	230	26.5	6.3
RCA-I-V Rectifier		-	335 RMS	50	6.3

* Actual voltage cannot be measured with ordinary voltmeter.

Line-Up Adjustments

The detector and oscillator line-up trimmer capacitors are adjusted
by setting both the dial and an external oscillator firat at 1400 K . C. and

adjusting the tuning capacitor trimmer capacitors for maximom output then changing the oscillator frequency and dial setting to 600 K . C. and adjusting the submounted trimmer capacitor for maximum output. The I. F. adjustments are made by adjusting the two trimmer capacitors located on the firat I. F. transformer for maximum output when a 460 K. C. signal is connected between the control grid of the first detector and ground. Be sure and set the station selector at a point where no signal is being received when making I. F. adjustments.

Pickup Service Data

The magnetic pickup and tone-arm assembly of this instrument is of new design and unique construction. Service work will consist of centering the armature, replacing the rubber pivots and replacing the megnet coil.

Disassembling the Pickup

The pickup may be disassembled in the following manner:
(a) Unsolder the two cable connections to the terminal strip.
(b) Remove the noedle screw and screws "A" and "B."
(c) Remove the pickup asaembly from the arm and bousing.
(d) Unsolder the two magnet coil leada attached to the terminala and then remove screw E. This will allow the removal of the fibre terminal board.
(o) If centering the pickup armature is the only adjustment required, such contaring can be done without removing the fibre terminal board indicated in (d). The armature is centered by loosening berew F. accesaible through the hole shown, and holding the armature with the finger in proper position while serew F is ughtened. Feeling the armature whic deferting it betwoen When centering sfter work has been done or the magnet removed it is important that the magnet be remagnetized while in place.
(f) If the coil or pivot rubbers are to be replacerl, the pickup must be further disassembled. This is done by removing the magnet and then removing serews C and D. The pole piece may now be removed and the old coil and sleeve disassembled. Acetone will be found helpful for dissolving the old cement that holds the coil in place. The new coil, with its aleeve, may now he replaced and cemented in similar position to that occupied by the old coil. Duco housebold or Ambroid cement may be used to hold the coil in place. Be careful to center the coil with its paper sleove before cementing.
(g) The pivot rubbers are replaced by loosening the armature adjusting ocrow F and removing the armature from ita bracket. The rinbers can then be removed by olipping them from each ond of the pivot shaft.
It is important to remember that in all operations after reassembling but before placing in the tone arm, the pickup should be magnetized and the armature centered after remagnetizing. Magnetizing should be done by placing the pirkup mugnet on the magnetizer and gliding it onto the pole pieces, after magnetizing being careful not to break the magnetic circuit.

Figure A-Pickup Details

PHONOGRAPH MOTOR SERVICE DATA

The synchronous motor used in this instrument aegligible amount while running is normal. If
is of simple design and foolproof construction. excessive vibration occurs either at starting or is of simple design and foolproof construction.
Among its many features are low power consumption, single moving part, easo of starting, oilless main bearing, resilient bumper, and long life with freedom from service repairs.
Figure E shows the main parts of the motor and
the points that may require attention.
Operation-The two stator coils are connected in series and the motor is started by giving it a clock wise spin with the hand. If it is found to be
difficult of starting, or if it runs at a sub-synchronous speed such as at 70 R. P. M., such action may result from one of the following causes:
Difficult to Start-This may be due to the stator failing to rotate on the outer bearing.
This can be caused by the spaghetti slecve theing jammed in the slot, or sticking to the resilient bumper. The outer bearing not being
ren properly lubricated may also cause this condition. It is important that the ball bearing be at
the bottom of the main bearing assembly. Slow Speed-If the turntable is jarred or slowed down, the motor may run at a subsynchronous speed, such as 70 R. P. M. This is remedied by merely lifting the tone arm from
the turntable, thereby removing the load. The turntable speed will then immediately increase
Excessive Vibration and Hum-A small NOTE: The above values of power consumption are
average for a 60 eycle motor at 125 rolto. At lower

Figure B-Assembly Wiring $^{\text {B }}$

RECEIVER

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\underset{\text { Prist }}{\substack{\text { List }}}$	Stuck No.	DESCRIPTION	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
	RECEIVER ASSEMBLIES		6669	Switch-Tone control ewitch (S2)	\$0.50
2747	Contact cap-Package of 5 .	\$0.50	6832	Capacitor-4.0 mfd. (C10)	. 86
3047	Resistor-1500 ohme-Carbon type-5/2 watt (117)Package of 5 .	1.00	9464	Tranaformer-Power transformer- - $105-125$ volts- $\mathbf{5 0 - 6 0}$ cycles (T1).	3.20
3076	Resistor-1 megohm-Carbon type-1/2 watt (R10)Package of 5	1.00	9465	Transformer-Power trangformer-105-125 volte-25-40 cycles.	4.38
3118	Reaintor- 100,000 ohms-Carbon type- $1 / 4$ watt (K1)Package of 5	1.00		REPRODUCER ASSEMBLIES	
3077	Resistor- 30,000 ohms-Carbon type-I/ watt (R9)Package of 5 .	1.00	6788	Transformer-Out put transformer (T2).	1.60
3459	Capacitor-80 mmfd. (C5) 44	8987	Cone--Reproducer cone complete (L9)-Package of 3.	5.00
3597	Capacitor-0.25 mfd. (C18)	.40	943	Coil assembly-Comprising field coil, magnet and cone support (L10)	2.72
3572	Socket-7-contact Radiotron so	. 38	9467	Keproducer complete	5.15
3584	Ring-Oncillator coil retaining ring-Package of $\overline{3}$. 40			
3602	Resistor- $\mathbf{C 0 . 0 0 0}$ ohms-Carbon type-1/4 watt (R2) Package of 5 .	1.00		TURNTABLE AND MOTOR ASSEMBLIES	
3603	Rebistor-500 obms-Carbon type-1 watt (R11) Package of 5 .	1.10	4052	Spring-Package of 5	. 40
3641	Capacitor-0.1 mfd. (C9)	. 35	3813	Motor suspension assembly-Comprising one screw, one metal bushing, twor, rubber bushings, one flat washer, one	
3682	Shield-Radiotron sbield	. 22.			. 56
3701	Capacitor -0.01 mfd . (C1)	. 30	4083	Washer-Leather washer-Package of 10	. 20
3713	Capacitor -0.05 mfd . (C17)	. 32	4084	Washer-Metal washer-Package of 10	. 26
3857	Coii-Detector choke coil (L8)	. 90	7651	Coil-Stator coil-60 cycle operation	. 48
3858	Socket-Dial lamp socket and bracket	. 26	7652	Coil-Stator coil-50 cycle operation	. 48
3859	Socket-4-contact Radiotron socket. 30	7653	Lamination-Stator laminations-Assembled-60 cycle operation-110 or 220 voles.	. 66
3862	Screw-Chassis mounting screw and washer-Package of 4 .	.24 30	7654	operation-10 or Lamination-Stator laminations-Assembled -so cycle	. 66
3865	Capacitor-160 mmfd.	. 30		operation	. 66
3869	Resiator- 170,000 ohms-Carbon tyne- $1 / 2$ watt (R8) Package of 5 .	1.00	7655	Lamination-Rotor lamination asse mbly- $\mathbf{6 0}$ cycle operation.	1.00
3873	Capacitor-1500 mmfd. (C3)	. 30	7656	Lamination-Rotor lamination assembly-50 cycie opera-	
3877	Capacitor-0.1 mfd. (C14)	. 32		tion	1.00
3886	Refector-Dial light reffector	. 30	7657	Base - Motor base and hearing assembly	1.20
3887	Scale-Dial scale-Package	. 60	7714		1.76
3889	Renistor-25,000 ohma-Carbon type-3 walt	. 25	7715	Coil-Stator coil-60 cycles-220 volts	. 68
3917	Capacitor-0.25 mfd. (C18)	. 40	9038	Motor complete-105-125 volts-60	4.20
3932	Caparitor-2400 mmfd. (C15)	. 30	9039	Motor complete -105-125 volts-50 cyc	4.20
3933	Capacitor-630 mmid. (C2)	. 32	9040	Turntable complete-With suindle for 50 or 60 cycle	
4000	Capacitor-Adjustable capacitor	. 78	9040		1.16
4018	Coil-Choke coil (LII)	. 90	10194	Ball-Steel ball bearing -Package of 20	. 25
6676	Socket-6-contact socket	. 40			
6787	Capacitor-Comprising one .005 mfd and one .017 mfd . capacitors (C20, C21).	. 30		PICKUP AND ARM ASSEMBLIES	
6114	Resistor-20.000 ohms-Carbon type-1 watt (R3, R5)--		3811	Screw - N	. 46
	Pactas	1.10	3812	Armatur	. 32
6660	Condenser-2-gang variable condenser (C4, C6, C24, C25)	2.78	6825	Pickup and arm assembly complet	4.82
6661	Capacitor park-Comprising two $\mathbf{5 . 0} \mathrm{mfd}$. and two 8.0 mfd. capacitora (C13, C19, C22, C23).....	2.70	6826	Coil-Pickup coil (L12)	. 64
6662	Tranaformer-First intermediate frequency transformer (L4, L5, Cl1. C12)	2.34		Miscellaneous Parts	. 60
6663	Transformer-Second intermediate frequency transformer (L6. L7)	1.06	4075	Knob-Range switch or volume control knob-Package	.
6664	Coil-Oscill	. 94	4086	K nob-Tone control switch \mathbf{k} nob-Package of 5	1.00
6665	Shield-Oscillator coil shield and mounting	. 34	4087	Screw and washer-Chansis mounting acrew and washer	
6666	Coil-Antenna coil (Ll,	1.08			. 20
6667	Volume control (R6, S3)	1.58	6827	Volume control-Phonograph volume control (R12)	1.46
6668	Switch-Range switch (S1)	. 58	6828	Transformer-Phonograph input transformer (T3)	2.60

RCA PAGE 5-123 MODEL Duo 320

Alignment Data Voltage

Electrical Specifications

RCA-VICTOR CO., INC.

position on the gang capacitor. They are all acceasibte from the bottom ot position on the gang capacitor. They are all accessibte rrom the botiom or the chassis except the 600 K. C. вeries capa
(a) Connect the output of the oscillator to the antenna and ground terminals of the receiver. Check the position of the indicator pointer when the tuning capacior plates are Then set the Teat Oucillator at 1400 K . C. . the dial indicator at 140 and the oscillator output so that a slight deflection will be obtained in the output meter when the volume control is at its obtained in the ou
(b) With the Range Switch at the "in" position, adjust the three trimmers under the three R. F. coils designated as L. W. in Figure Then ehift the Teat Oacillator frequency to 600 K C The trimmer Then mhift the Ceft Oscilator frequency the capacied ace maximun ouput whle rocking the main funing capactor back and forth through the signal. Then repeat the capacitor back and for
1400 K . C. adjuatment.
(c) Now place the Range Switch at the "out", position, shift the Test Oscillator to 15.000 K . C. and set the dial at 150 . Acljust the three trimmer capacitors designated as $S W$ in Figure D for a peak, begitning with the oscinator trimmer. have wo no noted The pesition which uace the lower trimerer capacitance obtained by position which uses the lower trimmer capacitance, obrained hy the oscillator while the position that uses a hipher capacitance is correct for the iletector. Both of these adjustments must be made as corrert for the ciector. Boh of the Re Finstments must be made as inlicatedirrespecrine oulpun. whe . is merely peaked. Incen min main This capalior back
The important points to remember are the need for using the minimum oscillator output to obtain a deflection in the output meter with the volume control at its maximum porition and the manner of ohtaining the proper high frequency oscillator and detector adjustments.

Power Transformer Connections

The power transformer used in this model has a tapped primary winding. The transformeris normally connected for linearanging in voltage from 110 to $\mathbf{1 2 5}$ volts. If for any reason the line is normally below 110 volts,

Figure E-Location of Line-Up Capacitors
the connections should be changed so the tap will be used. This it done by unsoldering the black with red tracer transformer lead connected to the power switch (on tone control) and substituting the red and black lead normally taped up. The black with red tracer lead should then be carefully taped to prevent ahort-circuit.

TUBE SOCKET VOLTAGES (RADIO OPERATION)
 115 VOLTS, A. C. Line-No Signal

Radiotron No.	Cathode to Control Grid, Volts	Cathode to Screen Grid, Volts	Cathode to Plate, Volt	Plate Current M. A.	Heater Volts
1. RCA-58 R. F.	3.0	100	265	6.0	2.32
2. RCA-2A7 1st Det. Oec.	3.0	100*	265*	2.0*	2.32
3. RCA-58I. F.	3.0	100	265	6.0	2.32
4. RCA-2B7 2nd Det. A. V. C.	1.5	35	100	1.5	2.32
5. RCA-2A5 Power	16.0	255	240	35.0	2.32
6. RCA-80 Rectifier	725 Voltr R. M. S.-75 M. A. Total Current				4.80

[^4]PAGE 5-124 RCA
MODEL Duo 320
Schematic
RCA-VICTOR CO., ING.

RCA.VICTOR CO., INC.

Figure B-Wiring Diagram

Figure C-Assembly Wiring Diagram

RCA-VICTOR CO., INC.
 MoDel Duo 320
 Piokup Data SERVICE DATA FOR MAGNETIC PICKUP

The Magnetic Pickup uscd in this combination instrument is of a new design with an improved frequency range. While in physical appearance it is similar to that of the older type, details of construction are considerably different. It consists essentially of a chromium stecl magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequency-response characteristic is substantially flat from 50 to 5,000 cycles.

Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure G), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and ncedle screw.
(b) Remove the pickup magnet land the magnet clamp by pulling thein forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.

Figure F
(d) Remove screws A and B, Figure G, and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot-rubber; then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mechanism-with the pole pieces up-ward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately hy feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws A and B (Figure G), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tone arm.

In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. 'This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manncr:
(a) Disassemble the pickup as described under the preceding section.

Figure G
(h) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping hlock with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure H, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil lcads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the bole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called

Figure H
acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the airgap as explained under (h).

RCA-VICTOR CO., INC.

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$
	RECEIVER ASSEMBLIES		7485	Socket-6.contact Radiotron sochet	\$0.40
2240	Resistor-30,000 obms-Carbon type-1 watt (R6)	$\mathbf{8 0 . 2 2}$	7487 9446	Shield-I. F. and R. F. amplifier Radiotron ahield 60	. 25
2747	Cap-Contact cap-Package of 5...	. 50	9446	$\underset{\text { Traneformer-Power transformer-105-125 volte-50-60 }}{\text { cy }}$	5.40
3056 3076	Shield-Second detector Radiotron Resistor-1 megohm-Carbon type	40	9451	Transformer-Power transformer-105-125 volta-25-40	5.4
	```Package of 5 .```	1.00	10194	cycles...i bill for............................	5
$311{ }^{\text {P }}$	Resistor- 100,000 ohms-Carbon type- $1 / 4$ watt (R1, R3) -Package of 5.	1.0	10194	Ball-Ste	5
3470	Resistor 6,500 ohms-Carbon type- 1 watt (R20)-			PICKUP. PICKUP ARM ASSEMBLIES	
	Package of 5   Resistor-250,000 ohms-Carbon	1.10	3385	Coil-Pickup coil	50
3514	Resistor-250,000 ohms Package of 5 .	1.00	3385 3387	Cover-Pickup cover ..................................	56
3529	Socket-Dial lamp sock	.32 .38		Comprising one acrew, one nut and one washer-10 sets.	40
3572 3594	Socket-7-contact Radiotron socket	8	3388	Screw-Pickup needle holding screw-Pkg. of 10	60
3594	Resistor- 50,000 ohms-Carbon type- $3 / 2$ watt (R14, R17)-Package of 5.	1.00	3389	Rod-Automatic brake trip rod with lock nut-Package of 5 .	. 40
3631		1.00	3390	Escutcheon-Pickup ario escutcheon complete with mounting rivets.	. 40
3639	Capacitor-0.02 mfd. (C34)	. 25	3417	Armature- Pickup	. 72
3683	Shield-Radiotron mhield top	. 20	3418	Cushions-Pickup ruhber cushiona-Comprising one	
3701	Capacitor-0.01 mfd. ( ${ }^{\text {C6, }}$, ${ }^{\text {c }}$	. 32		damper and two spacer cushions and one damper	
3702	Capacitor- 0.25 mfd. (C32)	. 42		busbing-Package of 5 sets. . . . . . . . . . . . . . . . ${ }_{\text {a }}$. ${ }^{\text {a }}$.	10
3768	Screw-Square head No. 6-32- $1 / 4$ " set screw for condenser drive-Package of 10	.35	3419 635	Screw-Pickup cover mounting scre	40
3796		. 60	6335 6346	Pickup-Pickup unit comp	45
3849	Capacitor-50 mmfd. (Cl0)	30   .30	7693	Arm-Pickup arm complete less escutcheon, pickup,	
3859 3861	Socket-4-contact Radiotron rocket ${ }^{\text {Capacitor-Adjustable capacitor (Ci3) }}$	. 30		pickup mounting screw, nut and washer..............	6.00
3877	Capacitor- 0.1 mfd . (C5, C15, C25, C33)	. 32			
3878	Screw-No. 4-40-1." screw for fastening sis pointer-Package of 20	5	3261	Bushing-Rubber buehing-Used on turntable spindle for	
38	Eacutcheon-Volume control encutcheo	. 42		long-playing records	40
3888		. 25	3338	Ring-Clamp ring assembly-Comprising epring, latch	
3892	Resistor- 600 ohms-Carbon type- $1 / 2$ watt (R2, R4, R7) -Package of 5	1.00	3340	Wever and stud	. 50
3897	Resistor - 400 ohma-Carhon type-1 watt (R18)-Pack-		3341	Pin-Groov-Pin-Package of 2	56
	age of 5	1.10	3342	Spring-Latch spring-Located on	
3899	Eacutcheon-Station selector e8o	.42			. 56
3901	Capacitor-0.05 mfd. (C3, C16)	. 34	3343 3344	Sleeve-Sleeve complete with ball race	2.86 .70
3903	Screw-No. 8-32-1/' ${ }^{\prime \prime}$ headleas cup		3346	Buahing-Speed shifter lever bushing-Packa	. 6
	station selector knob-Package of 20	36	3347	Spring-Speed shifter lever apring--Package of 2	. 30
3904	Knob-Yolume control knob-Pack	8	3399	Lever-Speed shifter lever with mounting acrew	. 50
3905	Screw-Chassis mounting serew assembly-Comprining 4 screws, 4 washers and 4 cushions.	. 46	7084 8948	Cover-Suede cover for turntable Turntable-Complete	.40 5.50
3906	Mounting assembly-Variable condenser mounting as-sembly-Comprising 3 bushings, 3 lockwashers, 3 nuts and 3 washers.	28		MOTOR ASSEMBLIES	
39	Capacitor- 340 mmid (C14)	. 34	3599	Motor mounting washer asembly-Comprising one acrew,	
3936 3937	Capacitor-3,900 mmfd. (C18, C2	.68 .34		Mone washer and one lockwasher-Package of 3 sets . . . . .	18.52
3937   3938	Capacitor- 300 mmfd ( $\mathrm{C} 30, \mathrm{C}$ Capacitor 9 mmfd. (C39)	. 34	8989 8990	Motor-Motor complete-10.-125 volts-60 cycles	18.52
3939	Resistor-3,500 ohms-Car		8991	Motor-Motor complete-105-125 volts-40 cycles.	23.36
	Package of 5.	1.00	8992	Motor-Motor complete-105-125 volts- 25 cycles	23.36
3940	Pointer-Station selector pointer	50	8993	Rotor and shaft for 105-125 volte, 60 cycles motor	7.00
3941	Dial-Station selector dial-Packa	1.75	94	Spindle-Turntable spindle with fibre gear for 60 cycles	
3942	Shield-First detector Radiotron sh	. 18			4.75
3943	Screen-Translucent acreen for dial light-Pack	. 18	8995 8996		7.00
3944	Shield-Antenna, R. F or oscillator coil shicld	. 28	8996	Spindle-Turntable spindle with fibre gear for 50 cycles	
3991	Resistor-10,000 ohms-Porcelain type (R19)	. 60			4.75
6188	Renistor-2 megohm-Carbon type-1/2 watt (R12)Package of 5 .	1.00	$\begin{aligned} & 8997 \\ & 8998 \end{aligned}$	Rotor and shaft for $105-125$ volts, 40 cycles motor Spindle-Turntable spindle with fibre gear for 40 cycles	8.00
6282	Resistor- $\mathbf{6 0 , 0 0 0}$ ohms-Carbon type一1/2 watt (R5, R8, R15)-Package of 5	1.00	8999	Rotor mad siaft for 105-125 colts, 25 cycles motor.......	$\begin{aligned} & 5.50 \\ & 8.00 \end{aligned}$
6571	Capacitor-10 mmfd. (C37)	1.20	9001	Spindle-Turntable spindle with fibre gear for 25 cycles	
6620	Capacitor Comprising one .005 mfd and one .035 mfd . (C35, C36)	. 50			5.50
6676	Socket-6-contact Ra	. 40		MISCEllan eous Parts	
6694	Condenser-3-gang variable tuning condenser Cl1)	3.75	3297	Leather-Friction leather-Package of 20..	. 50
6695	Volume control (R9)	1.20	3322	Switch-Automatic brake switch with mounting serews (S8)	
6696	Switch-Range switch (S1, S2, S3, S4)	2.24	3430	Box-Needle box with lid-Package of 2	.90
6697	Transformer-First intermediate frequency transformer (L13, L14, C23, C24)	1.80	3615	Knob-Tone control, range switch, or phonograph volume control knob-Package of 5	60
6698	Transformer-Second intermediate frequency transformer (L15, L16, C26)	1.78	3994 6757	Cover-Motorstarting switch cover....	26
6699	Coil-R. F. coil (LS, L6, L7, L8, C7, C8)	2.44	6757	Volume control-Phonograph volume control (R23, S9, S10)	
6700	Coil-Oscillator coil (L9, L10, L11, L12, $\mathrm{Cl} 2, \mathrm{C17}$ )	2.30	6758	Transformer-Phonograph input trandormer (T	2.70
6701	Coil-Antenna coil (L1, L2, L3, L4, C1, C2) .............	2.64	9050	Oscillator-Test oscillator-150 to $25,000 \mathrm{~K}$. C.	3.50
6702	complete	1.86	10174 10184	Spring --Automatic brake springe-One ret of 4 mprings... Plate-Automatic brake lateh trip plate with mounting	. 50
6703	Capacitor pack-Comprising one 8.0 mmfd . and two 4.0 mmfd. capacitors (C20, C22, C38)	2.46	10164	screws-Package of 5	40
6704	Shaft-Tuning condenser drive assembly shaft	. 64			
6705	Tone control complete (R22)	1.20 20		REPRODUCER ASSEMBLIES	
6708	Ring-Retaining ring for dial glass-Package of 5	. 44	${ }_{9428}^{6476}$		1.44 5
6755	Bexel-Metal bezel for station selector	. 50	9449	Reproducer comple	5.20
7065	Screw driver-For I. F. and R. F. adjus	. 80	9450	Coil-Field coil magnet and cone support (L18)	2.80

# RCA-VICTOR CO., INC. SERVICE DATA 

## Electrical Specifications

Voltage Rating
Frequency Rating Power Conang .................................... 30 and 60 Cycles Number 1 RCA-2A7, 1 RCA-2B7, i RCA-2A5, 1 RCA-80-Total 6 Tuning Ranges. . . . 540 K. C. -1500 K . C. and $5400 \mathrm{~K} . \mathrm{C} .-15,350 \mathrm{~K}$. C. Undistorted Output

This "Selective Short-Wave" combination instrument utilizes the new six tube double band superheterodyne togetber with the standard twospeed motor board assembly. Excellent quality of record reproduction together with unusual radio performance characterize this inatrument.

The receiver is a six-tube two.band A. C. operated Superhetorodyne receiver combining the standard and short-wave broadcasting bands. The frequency ranges are selected by means of a two position switch. Other The frequency ranges are selected by means of a two position switeb. Other
featuresinclude a double reduction vernier tuning drive using two concentric features include a double reduction vernier tuning drive ubing two concentric knobs giving a $10-1$ and a 55-1 ratio of speed reduction, a continuously
variable tone control, eight-inch electrodynamic loudspeaker, automatic variable tone control, eight-inch electrodynamic loudspeaker, automatic
volume control, single Pentode output tube and the inherent sensitivity. selectivity and tone quality of the Superheterody ne.

The chassis is of compact construction, affording $t$ nusual accessibility to all parte and adjustments. An "Airplane" type dial calibrated in frequency and showing the location of the short-wave bands is a special feature of this ingtrument. Figure $A$ shows the sehematic circuit, Figure $B$ the wiring diagram, Figure $C$ the assembly wiring and Figure D the location of the line-up capacitors. Service data on the magnetic pickup ia given on one of the following pages.

## Line-Up Capacitor Adjustments

In order to properly align this receiver it is cssential that Stock No. 9050 Test Oscillator be used. This oscillator covers the frequencies of 150 K. C. to $25,000 \mathrm{~K}$. C. continuously, has good stahility and includes an attenuator. In addition to the oscillator, a non-metallic screwdriver auch as Stock No. 7065 and an output meter are required. The output meter should be preferably a thermo-couple galvanometer connected across or in place of the cone coil of the loudspeaker.
I. F. Tuning Adjustments-Two transformers comprising four tuned circuits are used in the intermediate amplifier. These are tuned to 370 K. C. and the adjustment serews are accessible as shown in Figure D. Proceed as follows:
(a) Short-circuit the antenna and ground termiaals and tune the receiver so that no signal is heard. Set the volume control at ceiver so that no signal is heard. Set the
(b) Connect the test oscillator output between the first detector control grid, and chassis ground. Connect the output meter across the voice coil of the loudspeaker and adjust the oscillator output so that, with the receiver volume control at maximum, a slight deflection is obtained in the output meter.
(c) Adjust the secondary and primary of the first and then the second I. F. transformers until a maximum deflection is obtained. Keep the oscillator output at a low value so that only a slight doflection is obtained on the output meter at all times. Go over these adjustments a second time, as there is a slight iaterlocking of adjustmonts. This completes the I. F. adjustments.
R. F. and Oscillator Adjustmenta-The R. F. line-up capacitors are located at the bottom of the coil assemblies instead of their usual position on the gang capacitor. They are all accessible from the bot tom of the chassis except the 600 K . C. series capacitor, which is accessible from the rear of the chassis. Proceed as follows:
(a) Connect the output of the oscillator to the antenna and ground terminals of the receiver. Check the position of the indicator pointer when the tuning capacitor plates are fully meshed. It should be coincident with the radial hine adjacent to the dial reading of 540. Then set the Test Oscillator at 1400 K . C.: the dial indicator at 1400 and the oacillator output so that a slight defection will be obtained in the output meter when the volume control is at its maximum position.
(b) With the Range Switch at the "in" position, adjust the threo trimmers under the three R. F. coils deaignated as L. W. in Fisure $D$, until a maximum deflection is obtained in the output moter. Then shift the Test Oscillator frequency to 600 K . C. The trimmor capacitor accessible from the rear of the chasais should now bo adjusted for maximum output while rocking the main tuning capacitor back and forth through the eignal. Then repeat the 1400 K . C. adjustment.
(c) Now place the Range Switch at the "out" position, shift the Test Oscillator to $15,000 \mathrm{~K}$. C. and set the dial at 15 on megacycle scale. Adjust the three trimmer capacitors designated as S . W. in Figure D for a peak, beginning with the oscillator trimmer. It will be noted that the oscillator and first detector trimmers will have two peaks. The position which uses the lower trimmer capacitance, obtained by turning the screw counter-clockwise, is the proper adjustment for the oscillator while the position that usea a hisher capacitance is correct for the detector. Both of these adjustments must be made as indicated irrespective of output. The R. F. is merely peaked. In conjunction with the detector adjustment, it is neceasary to rock the main tuning capacitor back and forth while making the adjustment. This completos the line-ap adjustments.
The important points to remember are the need for using the minimum oacillator output to obtain a deflection in the output meter with the volume control at its maximum position and the manner of obtaining the proper hish frequency oscillator and detector adjustments.

## Power Transformer Connections

The power transformer used in this model has a tapped primary winding. The transformer is normally connected for lines ranging in voltage from 110 to 125 volte. If for any reason the line is normally below 110 volta,


Figure D-Location of Line-Up Capacitors
the connectiona should be changed so the tap will be used. This is done by unsoldering the black with red tracer transformer lead connected to the power awitch (on tone control) and substituting the red and black lead normally taped up. The black with red tracer lead should then be care. fully taped to prevent short-circuit.

## TUBE SOCKET VOLTAGES (RADIO OPERATION) <br> 115 VOLTS, A. C. Line-No Signal

Radiotron No.	Cathode to Control Grid, Volts	Cathode to Scroen Grid, Volts	Cathode to Plate, Volts	Plato Current M. A.	Heater Volts
1. RCA-58 R.F.	3.0	100	265	6.0	2.32
2. RCA-2A7 lst Det. Osc.	3.0	100*	265*	2.0*	2.32
3. RCA 58 I. F.	3.0	100	265	6.0	2.32
4. RCA-2B7 2nd Det. A. V. C.	1.5	35	100	1.5	2.32
5. RCA-2A5 Power	16.0	255	240	35.0	2.32
6. RCA-80 Rectifier	725 Volte R. M. S.-75 M. A. Total Current				4.80
* The voltages and current refer to the detector part of the tube.					



shaxse

 n22. 100.00 THONE TONTROL


Figure B-Chassis Wiring Diagram

RCA.VIC'TOR CO., INC.

PAGE 5-132 RCA
MODEL Duo 321
Assembly Wiring
RCA.VICTOR CO., INC.


Figure $C-$ Assembly Wiring Diagram

## RCA.VICTOR CO., INC. <br> SERVICE DATA ON MAGNETIC PICKUP

MODEL Duo 321
Piokup Data
'The Magnetic Pickup used in this comlination instrument is of a new design with an improved frequency range. While in physical appearance, it is similar to that of the older type, details of construction are considerably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequency-response cbaracteristic is substantially flat from 50 to 5,000 cycles.

## Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure F), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by puilling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.


Figure $E$
(d) Remove screws $\mathbf{A}$ and B, Figure F. and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mechanism-with the pole pieces upward should be placed so that the magnet moy be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to cbange the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws $A$ and $B$ (Figure F), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tonc arm.

In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

## Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.

(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure G, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core sol er should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called


Figure $G$
aeid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the airgap as explained under (h).

## RCA-VICTOR CO., INC.

## REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	$\underset{\text { List }}{\text { Price }}$	Stock   No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$
	RECEIVER ASSEMBLIES		3417	Armature-Pickup a	\$0.72
2240	Resistor- 30,000 ohms-Carbon type-1 watt (R6)	30.22	3419	Srrew-Cover mounting screw-Package of 10	. 40
2747	Cap-Contact cap-Package of 5 .	. 50	3516	Damper ansembly-Comprising 1 upper and 1 lower	
3056	Shield-2nd detector Radiotron shield-Package of $\mathbf{2} \ldots \ldots$.	. 40		damper 1 upper and 1 lower bearing-For pickup base	. 14
3076	Renistor-1 megohm-Carbon type- $3 / 2$ watt (R10, R11) -Package of 5.	1.00	3521 3737	Cover-Pickup lack cover.... block-Package of 5......	. 18
3252	Resistor-100,000 ohns-Carbon type- $1 / 2$ watt (R1, R3)		6346	Back-Pickup housing back. . . . . . . . . . . . . .	45
		1.00	6601	Pickup-Magnetic pickup co	4.54
3470	Reaistor-6,500 ohme-Carbon type-l watt (R20)Package of 5.	1.10	6602 7731	Coil-lick up coil (L19)   Arm-Picku1 arm complete lesn picknp and escutchenu	.65 5.40
3514	Resistor-250,000 ohms-Carbon type-1/2 watt (R16) Package of 5 .	1.00		TURNTABLE ASSEMBIILS	
3529	Socket-Dial lamp socket	. 32		TIRNTABILE ASSEMBIIES	
3572	Socket-7-contact Radiotron sock	. 38	3261	Bushing-Rubher buahing-Used on turntable apindle for	
3594	Resistor- 50,000 ohms-Carbon type- $1 / 2$ walt (R14, R17) Package of 5.	1.00	3338	long playing recorin-Parkage of 5   Ring-Clamp ring assembly Comprising apring, latrh	50
3631		1.00	3340	lever and atud.   Washer-Thrisi wanher-Fackage of 2	. 50
3639	Capacitor- 02 mfd . (C34)	. 25	3341	Pin-Groov-Pin-lackage of 2 . $\ldots$. .	. 56
3683	Shield-Radiotron shield	. 20	3342	Spring-Latch apring-Located on clamping ring-Pack-	
3701	Capacitor- 01 mfd ( $\mathbf{C 6}$, C ${ }^{\text {c }}$	. 30		age of 2	. 56
3702	Capacitor-25 mfd. (C32) .....in'..................	. 42	3343	Sleeve-Sleeve complete with ball race.	2.86 70
3768	Screw-Square head No. 6-32-1/4" sct screw for condenaer drive-Package of 10	. 35	3344 3346	Cover-Grease retainer cover-Package of 2.....	.70 .66
379	Capacitor-4. mfd. (C28)	.60	3347	Spring Speed shifter lever apring-Parkage of 2	. 30
3849 3859	Capacitor- 50 mmfd ( ${ }^{\text {Cl10) }}$	. 30	3399	Lever-Speed shifter lever with mounting screwa	50 50
3859 3861	Socket-4-contact Radiotron socket Capactor-Adiustahle capacitor (Ci3)	.30 .78	89.48	Turntable-Complet	50
3877 3878	Capacitor-. 1 mfd . (C5, C15, C25, C33) .............	. 32		MOTOR ASSEMBILES	
3878	Screw-No. 4-40-18 screw for fastening station nelector pointer-Package of 20 .	. 25	3398	Motor mounting aspembly-Comprining 2 cup wasticre, 4	
3888	Capacitor- 05 mfd ( (C19, C27) . . . . . . . . . . . . .	. 25		springs and ! "C' was	18
3892	Resiator- $\mathbf{6 0 0}$ ohme-Carbon type-1/2 watt (R2. R4, R7) -Package of 5 .	1.00	3817 8989	Stud-Motor mounting atud-Package of 3   Motor-Motor complete- 105 - 125 volis $\mathbf{~} 0$ cycle	.18 18.52
3897	Resistor- $\mathbf{4 0 0}$ ohms-Carbon type-1 watt (R18)-Pack.		8990	Motor-Motor complete-105-125 volta 50 cycle	18.52
	age of 5	1.10	8991	Motor-105-125 volis- 40 cyclee	23.36
390	Capacitor-. 05 mfd ( $\mathrm{C} 3, \mathrm{Cl} 16$ )	. 36	8992	Motor-Motor complete-105-125 volte- 25 cycle	23.36
3906	Mounting assembly-Variable condenser mounting asmembly comprising 3 bushings, 3 lock washere, 3 nutn, and 3		$\begin{aligned} & 8993 \\ & 8994 \end{aligned}$	Rotor and shaft for $105-125$ volts, 60 cycle motor   Spindle-Turntable apindle with fibre gear for 60 cycle	7.00
	washers	. 28		motor	5
3937	Capacitor-300 mmfd. (C30, C31)	. 34	8995	Rotor and shaft for 105-125 volte-50 cycle motor	
39	Capacitor 9 mmfd. (C39)	. 25	8996	Spindle-Turntable spindle with fibre gear for 50 cycle	
3939		1.00	8997	Rotor and ahaft for 105-125 volts- 40 rycle motor	3.75 8.00
3942	Shield-1at detector Radiotron shield	. 18	8998	Spindle-Turntable spindle with fibre gear for $\mathbf{4 0}$ cycle	
3943	Screen-Translucent screen for dial light-Package of 2	. 18		motor.	5.50
3944	Shield-Antenna, R. F. or oscillator coil shield	.28 .60	8999	Rotor and shaft for 105-125 volts-25 rycle mot	8.00
3991 4031		. 60	9001	$\underset{\text { motor-Turntable spindle with fitire gear for } 25 \text { cycle }}{\text { Sple }}$	5.50
4032	Capacitor - 390 mmfd. (C14)	. 34			
4119	Screw-No. 8-32-3/4' headlebs cup point set acrew for gtation selector knob-Package of 20	. 38		MISCEllaneols parts	
6188	Reaistor- 2 megohm-Carbon type- $1 / 2$ watt (R12) Package of 5 .	1.00	$\begin{aligned} & 2947 \\ & 3322 \end{aligned}$	Leather-Friction leather-Package of 20 .   Switch-Automatic brake pwitch with mounting arrews	50
6282	Resistor- 60,000 ohmb-Carbon type- $1 / 2$ watt (R5, R8, R15)-Package of 5.	1.00	3391	(S8)   Suapension apring and wanher assembly for motor botril	75
6571	Capacitor-10 mfd. (C37)	1.20		Comprising one bolt, one top spring, one bottom spring.	
6620	Capacitor-Comprising one 005 mfd . and one .035 mfd . (C35, C36)	. 50	34.30	2 cup wasbers, one "C" washer, and one nut Box-Needle box with lid-Package of $2 \ldots .$.	80
6676	Socket-6-contact Radiotron socket-Output	. 40	3994	Cover-Automatic switch brake cover	$2{ }^{2 n}$
6694	Condenser - 3-gang variable tuning condenser (C4, C9, Cl1) .	3.75	4075	K noh-Tone control or range switch knob-Package of 5	1.00
6695	Volume control (R9)	1.20 2.24	4120	Knob-Volume control knob-Package of 5 .	1.18
6696 6697	Switch-Range switch (S1, S2. S3, S4)   Transformer-Firat intermediate frequency tranaformer	2.24	4121		1.18
	$(\mathrm{L} 13, \mathrm{~L} 14, \mathrm{C} 23, \mathrm{C} 24)$	1.80	4136	Screw-Chassia mounting acrew ansembly-Comprising four screws, four washers, eight cushions.	. 62
6698	Tranaformer-Second intermediate frequency transformer $(\mathrm{I} 15, \mathrm{~L} 16, \mathrm{C} 26, \mathrm{C} 41)$	1.78	6614	Class-Station selector dial glasa. .-........	.30 .34
6699	Coil-R. F. coil (L5, L6, L7, L8, C7, C8)	2.44	6288	Knob-Phonograph, volume control knob-Packag	1.00
6700	Coil-Oscillator coil (L9, L10, Lil, L12, C12, C17)	2.30	6614	Glasa-Station aelector dial glass.	30
6701	Coil-Antenna coil (L1, L2, L3, L4, C1, C2) ............	2.64	6615	Ring-Retaining ring for dial glana-Package of 5	134 2.38
6702	Drive-Variable ioning condenser drive assembly complete.	1.86	6766 6840	Volume control-Pbonograph volume control (R23, S9)   Bezet-Metal bezel for ntation selector dial .	2.28 .56
6703	Capacitor pack-Comprising one 8. mfd. and two 4 mfd. capacitors (C20, C22, C38)	2.46	6855	Cable-3-conductor cable with apade terminala-Reproducer cable	. 44
6704	Shaft-Tuning condenser drive assembly shaft Tone control complete (R22)	1.20	6856	Cahle - 3 -conductor bhielded with male section of con-	
6705 6841	Tone control complete (R22) .........	1.20 2.74	57	nection plug-Phonograph volume control . . . . . .	.85 1.24
6842	Pointer-Station selector pointer-Package of 5	46	6858	Transformer-Phonograph input transformer-Compris-	
7485	Socket-6-contact Radiotron socket . . . . . . . . .	. 40		ing one transformer, one reactor, one. 01 mfd . and 0.1	
7887	Shield-I. F. and R. F. amplifier Radiotron shield	. 25		mfd. capacitora, one 5,000 and one 50,000 ohm resigtor	
9446	Tranaformer-Pow ertransformer-105-125 volts-50-60 cycles (T1)	5.40	10174		2.50
9451	Tranaformer-Power tranaformer-105-125 volta-25-50 rycles	5.40	10184	Package of 2 sets   Plate Automatic brake latch trip plate with mouming	. 50
10194	Bati-Steel ball for condenser drive assembly-P'ackage of 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PICKUP AND PICKUP ARM ASSEMBLIES	. 25		screws-Package of $5 \ldots \ldots .$. HEPRODUCLS	40
3386	Cover-Pickup cover	. 56	6770	Transformer-Output tranaformer (T2)..	2.00 6.35
3387	Screw assembly-Pickup mounting screw assembly comprising one screw, one nut and one washer-Package of 10	. 40	8969 $\mathbf{9 4 6 0}$	Cone-Reproducer cone (L17)-Package of 5 . . Coil assembly-Comprising field coil magnet and cone	6.35
3388	Screw-Aickup needle hoiding acrew-Package of 10.	.60 40		( support (L18)	6.00 8.00
3389	Hod-Automatic brake trip rod-Package of 5	. 40	9473	Reproducer complete	

RCA-VIC'IOR CO., INC.


PAGE 5-136 RCA
MODEL 327
Chaseis Wiring
RCA-VICTOR CO., INC.


RCA PAGE 5-137


RADIOTRON SOCKET VOLTAGES
The voltages at the right are those taken while the set is in operating condition. No allowance has been made for currents drawn by the meter, and if lower resiatance meters are used. such allowances must be made.

- Radiotron No.		$\begin{aligned} & \text { Cashode } \\ & \text { to B-. Voles, } \\ & \text { D. C. } \end{aligned}$	Screen Grid to B Voles, D. C.	$\begin{aligned} & \text { Plare os } \mathrm{B} \\ & \text { Volts, } \mathrm{D} \text { C } \end{aligned}$	Plage Current, M. A	Heater Voles, A. C .
RCA 6D6 R.F.		3.0	90	20)	6.0	6.4
RCA 6A7	1st Detector	4.0	90	200	2.6	6.4
	Oscillator	-	$\because$	125	3.3	
RCA-6D I I. F.		3.0	90	200	6.0	6.4
RCA-75 2nd Derector.		1.5	-	200	0.7	6.4
RCA-41 Power		13.0	190	205	25.0	6.4
RCA- 11 Power		13.0	190	205	25.0	6.4

PAGE 5-138 RCA
MODEL 327
Pickup Data
Trimmer and
Socket Layouts


Figure 3-Loudspeaker Wiring

## (4) Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure 8), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.
(d) Remove screws $A$ and B, Figure 8, and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivor rubber now may be replaced. After putting the pivor rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mech-anism-with the pole pieces upward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is

inserted. A litcle practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws $A$ and $B$ (Figure 8), and sliding the mechanism slightly in relation to the pole pieces.


Figure 7
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tone arm.
In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be .oog" on each side of the armature. However, a little practice with the needle in place will quickly disclose wherher or not the armature is centered.

## (5) Replacing the Damping Block

If it is desired to replace the damping block, it may be dcne in the following manner:
(a) Disassemble the pickup as described under the preceding section.
(b) Remove the armature encirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fir will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip,
constructed as shown in Figure 9, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the


Figure 8
end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious


Figure 9
subsequent corrosion. After making sure that the pivor rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the air gap as explained under (h).


RCA PAGE 5-141


PAGF 5-142 RCA
MODEL "All Wave Duo"
340, 340-E
RCA-VICTOR CO., INC.
Chassis Wiring


RCA PAGE 5-143

MODEL "All Wave Duo"
340,340-E
Assembly Wiring
Voltage, Alignment $\quad$ RCA-VICTOR CO., INC.


## RCA-VICTOR CO., INC.

The accuracy of line-up of each band may be checked without touching the trimmer condensers, by the use of the tuning wand, Stock No. 6679.

One end of the wand consists of a brass cylinder. When this is inserted in a coil the effective inductance of the coil is lowered.

The other end of the wand contains a special finely divided iron suitable for use at radio frequencies. When this is inserted in a coil the inductance is raised.

To use the tuning wand a signal is first tuned in at the frequency at which a check is desired on alignment. The wand is then inserted slowly in the Antenna and R. F. transformers, using first one end and then the other end of the wand. Unless the alignment is perfect, it will be found that the power output indicated by the meter will be increased to a peak for a critical position of the wand in the coils.

The end of the wand required indicates whether the coil is high or low.

Of course, alignment correction at the high-frequency end of a tuning range should be accomplished by the use of the trimmer condenser. If alignment correction should be required at the low-frequency end of a tuning range it may be accomplished by sliding the end coil of the transformer. The winding farthest from the trimmer panel is pushed toward the trimmer panel to increase the inductance, and farther away to decrease the inductance. On band $D$ coils, the last two or three turns may be pushed in a similar manner to obtain the proper inductance.

This adjustment should not be attempted unless a quite appreciable improvement will result (as shown by the tuning wand).

The following chart gives the details of all line-up adjustments. The receiver should be lined up in the order of the adjustments given on the chart. Refer to Figure F for the location of the line-up capacitors.

## Transformer Connections

The power transformer of the $50-60$ cycle receiver uses two tapped primary windings. By connecting them in parallel or in series, the receiver may be used either on 110 or 220 volt lines. Figure $H$ shows the proper manner of making the various connections possible for this transformer. Note: The transformer is normally connected for 115-125-volt lines, and a 100 -volt motor supplied. The 220 -volt connections must not be used unless the motor is also changed. However, 220 -volt operation of the standard equipment may be obtained by using the Stock No. 9034 step-down line transformer.

The 25-60 cycle transformer uses only one 105-125-volt winding, a tap being provided for the lower voltages. Normally the transformer is connected for 115-125-volt lines, but the connection shown in Figure G may be used for $100-115$-volt lines.

External Oncillator Frequency	Dial Setting	Location of Line-Up Capacitors	Position of Selector Switch	Adjust for	Number of Adjustments to be Made
445 K. C.	Any setting that does not bring in station.	At rear of chassis.	Any position that does not bring in station.	Maximum ontput.	4
$370 \mathrm{~K} . \mathrm{C}$.	$370 \mathrm{~K} . \mathrm{C}$.	Botrom of chassis.	X	Maximum output.	3
$175 \mathrm{~K} . \mathrm{C}$.	Set for sigual.	Tup of chassis.	K	Maximum output while rocking dial back and forth.	1
$1400 \mathrm{~K} . \mathrm{C}$.	1400 K. C.	Botsom of chasaie.	A	Maximum output.	3
600 K. C.	Set for nignal.	Top of chassig.	A	Maximum output while rocking dial back and forth.	1
$3900 \mathrm{~K} . \mathrm{C}$.	$3900 \mathrm{~K} . \mathrm{C}$.	Bottom of chassis.	13	Maximum output.	3
$1710 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	B	Maximum output while roching dial biek and forth.	1
$10 \mathrm{M} . \mathrm{C}$.	$10 \mathrm{M.C}$.	Bottoni of chassis.	C	Maximum output. (See Note.)	3
15 or $18 \mathrm{M} . \mathrm{C}$.	15 or $18 \mathrm{M} . \mathrm{C}$.	Bottom and top.	D	Maximum output. (See Note.)	4

NOTE-lt is important to note, when aligning bands $C$ and $D$, that two peaks will be observed on the trimmers for the oscillator and for the frat detector. The correct oscillator peak is the one obtained using the lower trimmer capacitance, whereas the correct detector peak is the one obtained with the greater capacitance. It is essential that the proper peak be chosen, as otherwise tracking and sensitivity will be very pror at other frequencies. When adjusting the detector trimmer, the tuning capacitor should be rociced, since there ia a reaction on the oscillator tuning.

PAGE 5-146 RCA
MODEL "All Wave Duo"
340,340-E
Controls Data
Transformer Data
RCA-VICTOR CO., INC.

## Controls

The four control knobs on the front panel of the cabinet serve the following purposes:
(1) Range Switch (Left-band Knob)-This switch converts the receiver for operation within any of the tuning ranges provided. As indicated on the selector dial, the letters on the switch escutcheon signify:
X-Long-Wave Range- 150 to 410 kilocycles ( 2000 to 732 meters). This range is included only in certain models of the instrument (see "Introduction").
A-Standard Broadcast Band-540 to 1500 kilocycles ( 555 to 200 meters).
B-Police Band-1500 to 3900 kilocycles ( 200 to 77 meters). Services available within this band include police calls at 1574, 1712 and 2450 kilocycles, amateur radio "phone" communications between 1800 and 2000 kilocycles, and aviation communications (phone) between 2500 and 3500 kilocycles.
C-Short-Wave Range- 3900 to 10,000 kilocycles (77 to 30 meters). Within the limits of this range are included two of the internationally-assigned short-wave broadcast bands. These are known as the 49 and 31 meter bands. (The portion of this range from 8000 to 10,000 kilocycles, which includes the latter band, is preferably received on range $D$.)
Figure G-100-115 Volt Connection of 25-60 Cycles Transformer
D-Short-Wave Range - 8,000 to 18,000 kilocycles ( 37.5 to 16.7 meters). This range embraces four of the standardized short-wave broadcast bands located at 31, 25, 19 and 16 meters, respectively.


Figure $\boldsymbol{H}$-Power Transformer Connections (50-60 cycles)

## SERVICE DATA ON

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance, it is similar to that of the older type, details of construction are considerably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequency-response characteristic is substantially flat from 50 to 5,000 cycles.

## Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure K), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.


Figure I
(d) Remove screws $\mathbf{A}$ and B, Figure J, and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mechanism-with the pole pieces up-ward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to bave the armature centered properly. The adjustment is made by loosening screws $A$ and $B$ (Figure J), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assem. bly, and the pickup returned to the tone arm.

## MAGNETIC

PICKUP
In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

## Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.


Figure J
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure K, will prove desirable tor fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both side, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called


Figure K
acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the airgap as explained under (h).

RCA-VICTOR CO., INC.

## Parts List

REPLACEMENT PARTS

RCA.VICTOR CO., INC.
IF PEAK 445 KC .

Figure $A$-Schematic Circuit

RCA-VICTOR CO., INC.




RCA PAGE 5-153

## RCA-VICTOR CO., INC.

The intermediate frequency amplifier is aligned in a similar manner to that of standard broadcast receivers except that it is aligned at $445 \mathrm{~K} . \mathrm{C}$. In order to properly align the receiver, it is essential that the Stock No. 9050 Test Oscillator be used. This oscillator covers the frequencies of 150 K . C. to $20,000 \mathrm{~K}$. C. continuously, has good stability and includes an attenuator. In addition to the oscillator, a 300 ohm resistor for use as a "dummy" antenna, a non-metallic screwdriver (such as Stock No. 7065), and an output meter are required. The output meter should be preferably a thermocouple galvanometer connected either across or in place of the cone coil of the loudspeaker.


Figure F-Location of line-up capacitors.
To align the intermediate frequency circuits, connect the output of the external oscillator to the grid of the first detector. For the R. F. and oscillator adjustments, the oscillator output should be connected to the antenna and ground terminals of the receiver with the 300 ohm resistor inserted in series with the antenna lead. In many cases, however, the signal strength obtained with this direct connection will be too great to permit proper alignment, even at the minimum setting of the oscillator attenuator. When this is true, the external oscillator must be loose-coupled to the receiver in the following manner: Connect the 300 ohm resistor between the antenna and ground terminals of the receiver and attach a short length of wire to the antenna post. Lay the free end of this wire across the oscillator case, adjusting its position as necessary to obtain the degree of pickup required.

The output of the external oscillator should be at the minimum value necessary to obtain a deflection in the output meter when the volume control is at its maximum position. All adjustments are made for a maximum deflection in the output meter.

The accuracy of line-up of each band may be checked with. out touching the trimmer condensers, by the use of the tuning wand, Stock No. 6679.

One end of the wand consists of a brass cylinder. When this is inserted in a coil the effective inductance of the coil is lowered.

The other end of the wand contains a special finely divided iron suitable for use at radio frequencies. When this is inserted in a coil the inductance is raised.

To use the tuning wand a signal is first tuned in at the frequency at which a check is desired on alignment. The wand is then inserted slowly in the Antenna and R. F. transformers, using first one end and then the other end of the wand. Unless the alignment is perfect, it will be found that the power output indicated by the meter will be increased to a peak for a critical position of the wand in the coils.

The end of the wand required indicates whether the coil is high or low.

Of course, alignment correction at the high frequency end of a tuning range should be accomplished by the use of the trinmer condenser. If alignment correction should be required at the low frequency end of a tuning range it may be accomplished by sliding the end coil of the transformer. The winding farthest from the trimmer panel is pushed toward the trimmer panel to increase the inductance, and farther away to decrease the inductance. On band D coils, the last two or three turns may be pushed in a similar manner to obtain the proper inductance.

This adjustment should not be attempted unless a quite appreciable improvement will result (as shown by the tuning wand).

The following chart gives the details of all line-up adjustments. The receiver should be lined up in the order of the adjustments given on the chart. Refer to Figure $\mathbf{F}$ for the location of the line-up capacitors.

Extermal Oncillator Frequency	Dial Setting	Location of Line-Up Capacitors	Position of Selector Switch	Adjust for	Number of Adjustmenta To Be Made
435 K. C.	Any betting that dues not bring in station.	At rear of chansis.	Any poxition that dues not bring in atation.	Maximum output.	4
370 K. C.	370 K. C.	Bottom of chassis.	X	Maximum output.	3
$175 \mathrm{~K} . \mathrm{C}$.	Set for eignal.	Top of rhassia.	X	Maximum output while rocking dial hack and forth.	1
$1400 \mathrm{~K} . \mathrm{C}$.	$1400 \mathrm{~K} . \mathrm{C}$.	Bottom of chassis.	A	Maximum output.	3
$600 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	A	Maximum output while rocking dial back and forth.	1
3900 K. C.	3900 K. C.	Bottom of chassis.	B	Maximum output.	3
1710 K. C.	Set for signal.	Top of chassis.	B	Maximum output while ratking dial back and forth.	I
$10 \mathrm{M} . \mathrm{C}$.	$10 \mathrm{M} . \mathrm{C}$.	Bottom of chasais.	C	Maximum output. (See Nute)	3
15 or 18 M. C.	15 or $18 \mathrm{M} . \mathrm{C}$.	Bottom and top.	D	Maximum output. (Sec Note)	4

NOTE-It is important to note, when aligning bands $C$ and D, that two peaks will be observed on the trimmers for the oscillator and for the first detector. The correct oscillator peak is the one obtained using the lower trimmer capacitance, whereas the correct detector peak is the one obtained with the greater capacitanco. It is essential that the proper peak be chosen, as otherwise tracking and sengitivity will be very poor at other frequencies. Whed adjusting the detector trimmer, the tuning capacitor should be rocked, since there is a reaction on the oscillator tuning.


## Transformer Connections

The power transformer of the $50-60$ cycle receiver uses two tapped primary windings. By connecting them in parallel or in series, the receiver may be used either on 110 or 220 volt lines. Figure $H$ shows the proper manner of making the various connections possible for this transformer. Note: The transformer is normally connected for 115-125-volt lines and a 110 -volt motor supplied. The 220 -volt connections must not be used unless the motor is also changed. However, 220 -volt operation of the standard equipment may be obtained by using the Stock No. 9034 step-down line transformer.

The 25-60 eycle transformer uses only one 105-125-volt winding, a tap being provided for the lower voltages. Normally the transformer is connected for 115-125-volt lines, but the connection shown in Figure $G$ may be used for 100-115. volt lines.
$110 V .25 \sim$
CONNECTMNS COWNECTRONS

Figure G-100-115 Volt Connection of 25-60 Cycles Transformer


Figure H-Power Transformer Connections (50-60 cycles)

# RCA-VICTOR CO., INC. <br> <br> SERVICE DATA ON MAGNETIC 

 <br> <br> SERVICE DATA ON MAGNETIC}

MODEL $340,340-E$ Pickup Data
PICKUP

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance, it is similar to that of the older type, details of construction are considerably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any had peaks in the frequency range. The frequency-response characteristic is substantially flat from 50 to 5,000 cycles.

## Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure K), it is necessary to proceed as follows:
(a) Kemove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.


Figure I
(d) Remove screws $A$ and $B$, Figure $J$, and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mechanism-with the pole pieces up-ward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws $A$ and $B$ (Figure J), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assem. bly, and the pickup returned to the tone arm.

In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

## Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.


Figure J
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a anug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure $K$, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both side, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be neces. sary to scrape the end of the spring and the hole in the mechanism until hright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called


## Figure $K$

acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by usiug rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the airgap as explained under (b).

## REPLACEMENT PARTS

insist on genuine factory tested parts, which are readily identified and may be purchased hom authorized desien


RCA PAGE 5-157

RCA-VICTOR CO., INC.




Figure 9-Details of Pickup



## DESCRIPTION OF ELECTRICAL CIRCUIT

The general circuit arrangement consists of an R. F. stage, a combined oscillator and first detector, an I. F. stage, a combined second derector, A. F. amplifier and automatic volume control, a driver audio stage and a push-pull Pentode output stage. An RCA-5Z3 rectifier, rogether with a suitable filtering system, provides plate and grid voltages for all tubes and field excitation for the loudspeaker. Figure 1 shows the schematic diagram, Figure 2 the chassis wiring, Figure 3 the loudspeaker wiring and Figure 4 the assembly wiring.

The signal enters the receiver through a shielded antenna lead and is applied to the grid of the R. F. tube through the antenna coupling transformer. The secondary of this transformer is tuned to the signal frequency by means of one unit of the gang capacitor. The output of this stage is transformer coupled to the grid circuit of the first detector, which is also tuned to the signal frequency by a unit of the gang capacitor.

Combined with the signal in the first detector is the local oscillator, which is always at a $460 \mathrm{~K} . \mathrm{C}$. frequency difference (higher) from the signal frequency. A separate coil system and the third unit of the gang capacitor are used in țhis circuit.

In conjunction with these three tuned circuits, it is well to point out that four different groups of tuned circuits are used, one for each tuning band. A fourposition selector switch is provided for selecting the band in which the desired signal is located. In addition to selecting the desired coil system, additional groups of contacts are provided for short-circuiting the preceding lower frequency R. F. and detector coils and the two preceding oscillator coils. This is to prevent "dead" spors due to the absorption effects caused by the coils, the natural period of which, with the tuning capacitor disconnected; falls in the next higher frequency band.

The output of the first detector, which is the I. F. signal ( $460 \mathrm{~K} . \mathrm{C}_{\text {. }}$ ), is fed directly through two tuned circuits to the grid of the I. F. amplifier stage. The I. F. stage, which utilizes Radiotron RCA-6D6, uses two transformers, which consist of four tuned circuits, all of which are tuned to $460 \mathrm{~K} . \mathrm{C}$.

The output of the I. F. amplifier is then applied to the input electrodes of the RCA-75, which is a combined second derector, A. F. amplifier and automatic volume control. The direct current component of the rectified signal produces a voltage drop across resistor $\mathrm{R}-32$. The full voltage drop constitutes the auto matic bias voltage for the $R$. $F$. while a tap is provided for the first detector and I. F. voltage. These automatic bias voltages for the R. F., first detector and I. F. give the automatic volume-control action of the receiver. The volume control selects the amount of audio voltage that is applied to the grid of the RCA-75 and thereby regulates the audio output of the entire receiver.

The output of the A. F. section of the RCA-75 is resistance coupled to the grid of the RCA-76, first audio stage, which is transformer coupled to the push-pull output stage.

The output stage uses two RCA-42's, which give a low distortion, high audio output to the loudspeaker A high-frequency tone control, which consists of a variable resistor and capacitor, is connected across the grids of the output stage. At the minimum resistance position of the variable resistor, maximum attenuation of the high audio frequencies is obtained.

The plate circuit of the output stage is matched to the cone coil of the reproducer by means of a stepdown transformer.
Plate and grid voltages for all cubes are supplied from the output of the rectifier-filter system. An RCA $5 Z 3$ is used as a rectifier and a suitable network of capacitors and resistors gives the necessary filtering and voltages. The loudspeaker field is used as a filter reactor.


A detailed procedure for making this adjustment follows:
(a) Connect the output of an external oscillator tuned to 460 K . C. between the first detector grid and ground. Connect the output indicator across the voice coil of the loudspeaker.
(b) Place the oscillator in operation at $460 \mathrm{~K} . \mathrm{C}$. Place the receiver in operation and adjust the station selector until a point is reached (Band A) where no signals are heard and turn the volume control to its maximum position. Reduce the oscillator input until a slight indication is obtained in the output indicator.
(c) Refer to Figure 6. Adjust each trimmer of the I. F. transformers until maximum output is obtained. Go over the adjustments a second time.
This completes the 1. F. adjustments. However, it is good practice to follow the I. F. adjustments with the R. F. and oscillator adjustments due to to interlocking which always occurs.


Figure 3-Loudspeaker Wiring


Figure 5-Location of Coils in Shields

RCA-VICTOR CO., INC.

## (g) Afer assembling to the mechanism, the entire

 After assembling to the mediansm, che elareassembly should be fatened the back plue
by means of the screws provided, making sure by means of he sewe prowe
the damping block is sceurely, clamped. At
the same time, che mecal dust cover must be placed in position.
(h) Affer remagnetizing, it is necessary co correctly cencer the arnaure. is play after the needle is
acurately by feling
insered. A litle practice will quickly show inserred. A litele practice will quickly show
which way an adjuscmencis is necessary to have the armature centered properly. The adjuse
menc $\overline{i s}$ made by loosening sceews $A$ and $B$ (Figure 0 ) and slidings the mechanism slightly
in relation to the pole pieces in relation to the pole pieces.

The cover may be now replaced over the entive
assembly, and the pickup returned to the cone In assemb
arm
and
and In assembling, it may be desirable to check che
armacura eis gap by means of a small Feverer Gaveg.
This air gap should be Trmature. However at liciele prataice with che needle
arter inmplace will quickily disclose whether or not the
armacure is centered

Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solider
should be saisfactory for resoldering the end of the spring in the hole in the mechanism, sinco eboth these
pares have been previously tinned. In case the parts parts have been previously tinned. In case the parts
are noc well cinned, it will be necessary to scrape the
end of the spring and the hole in the mechanism unid end of the spring and the hole in the mechanism until
brighr. Thees parts may now be tinned by using as a
fux a water solurion of Alux a water solurion of zinc chloride (commonly
called acid fux). After tinning, dip the parts in watef to wash off the acid fux and thereby prevent serious
subequer corrosion Afer making sure that the subsequent corrosion. After making sure that the
pivor rubbers and damping block are property in place, pivoc fubbers and damping block are property in place,
as described under (c) above, , he armature may yow
be soldered in place in the mechanism by using rosin be soldered in place in the mechanism by using rosin
core solder, since the parts are now cinned Care
must be exerised to get the needle hole perfectly
 will be difficult if nox impossible to center the armarure (9) REPLACING THE DAMPING BLOCK If is is desired to replace the damping block, it may
be done in che following manner: (a) Disassemble the pickup as described under the
(b) Remove the armature entirely by unsoldering (c) Remove the damping block from che armature
(7) SERVICE DATA ON MAGNETIC PICKUP

The Magnecic Pickup used in this combination The Magnectic Pickup used in his combinased
instumenc in of a rew design with an improved
fecuency tange. While in physical appearance it is similar to that of the older yype, details of construction are considerably different. Ie consiss essencially of a
chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an
armature that is damped by means of an anchored damping block.
The we of the anchored damping block eliminates

(8) REPLACING MAGNET COIL, PIVOT In order to replace a defective coil or the hardencd
pivor rubbers (see Figure to), it is necessary to proceed
as follows: (a) Remove the pickup cover by removing the (b) Remove the pickup magnee and the magree (c) Unsolder the coil leads and remove the
mechanism assembly from che back plate by damping block clamping screw. (d) Remove screws A and B, Figure 10, and then




 (f) The mechanism should now be reassembled, excepe for the magnet, which must be mag-
netized. Afree being magnetized rhe mech
. anism-with the pole pieces upward-should
be placed so that the magneet may be slid from the magnetizer onto the pole pieces without break oig physical conaga. After plaing the
pole pieces on the magnet, he encire assembly



## 

E
minimum to maximurn.
(c) Check for the imate signat, which should be
received ac approximately 17,080 on the dial,
It may be necessary to increasese the external
(d) Reduce the capacity of the detector trimmer, (d) Reduce the capacicty of the detector trimete
 the turing capacior, unin
for maximum outpus.



(4) POWER TRANSFORMER CONNECTIONS
The 220 -ovet power
someransormer funtruished with
sunces indudes taps for operating on 10.

 to the various taps The taps are located on the power
uansformer zessmbly and are accessible without re-
moving the chassis fom the cabinect uansformer assembly and are accessible wichout re-
moving the chassis from the cabinet.
(5) FIDELITY LINK (5) FIDELITY LINK

It will be noted that a small link is mounted on the
rear apron of the chassis which is open. Closing the
link reduces the low frequency outpur of the receiver. link reduces the low frequency ourput of the reciver.
(6) VOLTAGE READINGS (6) VOLTAGE READNG
The following volages are
tube sockess while the receiver The following voltages are chose at the various
tube sockecs while the receiver is in operating condi-
tion. No allowance has been mate form tion No allowance has beeen made for cortrenting condrawn
by the meer, and if low resisance meters are used,
such allowances must be made. Figure 8 shows the by the meeter, and if low-resistance meters are used,
such allowances muss be made Figure 8 shows the
voluges ac each individual socket contact
(3) R. F. OSCILLATOR AND FIRST DETECTOR

To properly align the various bands, each band
must te aligned individualy. The preliminary sec-up requires the external oscillator to be connected betwen che ancenna and ground cerminals of the receiver of the loudspeaker. The volume and senstit. input from the osallaror at the possible to get an output indication under hese con-
ditions. In the high frequency bands, it may be necessary to disconnect the oscillator from the receiver
and place it at a distance in order to ger a sufficiently

The dial pointer must be properly ser before start The dial pointer must be properly set before start-
ing any actual adjuscments. This is done by turning
the variable capacitor uncil it is at its maximum poine exactly at the horizontal line at the lowest point to within $1 / 64$ inch of the hotrizontal line at he highest frequency end of Band "A. Figure 6 shows the location of the erimmers
each band. Care must be exercised to only adjus
che trimmers in the band under test. Band " $A$ "

## (b) Thne the exernal oseillazor to $1,720 \mathrm{~K} . \mathrm{C}$., see

(c) Shift the external oscillator frequency to 600 K. C. Tune in the 600 K . C. signal, irrespective
of scale calibration, and adjust the series trim-
mers, marked 600 K . C., Figure 6 , for maximurn oucput, at the same time rocking the
variable tuning capacior. Then readjust at Band "B"

$$
\begin{aligned}
& \text { (b) Tune the external oscillator to } 5,160 \mathrm{~K} . \mathrm{C} \text {. and }
\end{aligned}
$$

C) Check for the image signal, which should be
 d) The ancenna and detector trimmers should now
be peaked for maximum ourput. (a) Set the band switch at " " $C$ ",

RCA PAGE 5-163

## RCA-VICTOR CO., INC.

MODEL 341
Pickup Data
Record Changer Data


The above covers the proper manner of maling adjustments, assuming all parts are in normal condireplaced. The spring gear may be checked by turning replaced. The spring gear may be checked by turnang
it until the spring is tight and unwinding it slouly.
It should unwind $41 / 4$ turns. (10) AUTOMATIC RECORD CHANGER

The automatic record changer used in this instrument is of simple design and fool-proof construction. should be negligible. However, in event adjusements are required, a reference to Figure 12 will disclose the
proper method of making all adjustments. proper method of making all adjustments.
11) ADJUSTMENT OF DIAL VERNIER MECH-
 simple means of band spread. Under normal condi-
tions, adjustment of this mechanism will noe be required. However, in event the initial adjustment is not satisfactory or adjusement is required because of
replacement, the following procedure should be used: (a) Remolacement, the following procedure should be used:
(hassis from the cabinet to 2 (a) Remove the chassis from
place convenient for work.
 be considerable tension against such a push.
If this rension does not exist, the action of the umian oz pey A
 pliers.
(d) Straigh



## HdVySONOHd

## 


 the receiver. The radio receiver is made inoperative
by the switch used for changing from radio to record
reproduction. The turntable assembly consists of the
 and fool-proof in operation.
 d) Insere the armature through the new black so id. Also ascertain that the block is in corree be noted that the hole in the damping block is somewhat smallet than the diamecer of the be obeained
e) Afeer property locating the damping block, a soldering iron should be applied to the armature
so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure A, will prove iron should be applied long enough to slightly melt the block and cause a small buige on both
sides, but should not be applied long enough to caus any bubbling. The pickup should then


$A-C \rightarrow$
 (f) Turn the dial to each extreme and to its center position and check the backlash of the
back gear (closest to reflector). There should be definite backlash in each direction at each (g) If this backlash is not ob
(g) If this backlash is not obtained, loosen the nur on the back of the refector which holds the
shaft of these gears and slide the shaft toward the outer edge of the reflector. The hole is
elongated to permit this adjustment.
elongated to permit this adjustment.
(h) After making sure there is backlash at the three check points mentioned, turn the out-
side gear in a clockwise direction $1 / 1 / 2$ turns.
Hold it at this position and replace the stem

Turn the dial throughout its range. If the gears become noisy, move the gear further
coward the reflector edges described in (g). (j) Replace the dial scale, making sure the hole
(k) Replace the vernier hand. It should point ai (1) Replace the large hand. One end of ne



## REPLACEMENT PARTS

${ }_{\substack{\text { Seck } \\ \text { No. }}}$	Descaption	$\xrightarrow[\substack{\text { List } \\ \text { Price }}]{\text { cein }}$	Stock	suptio	List
3861		78	4625		
4633	$\mathrm{Capaxicor}^{\text {5 }} \mathbf{0} \mathrm{mmfd}$ (C19)	25	462	(e)	70
4635		25	370		
3937	$\mathrm{C}_{\text {2pacitor }-300 \mathrm{mmfd} \text { (C8) }}$	34	${ }^{3}$		1.00
4413	Capacitor - $360 \mathrm{mmfd}$. (C24)	22	4338	Ssisor - 2500 ohms- Caxbe	
4183	Capacitor-400 mumfd. (C59)	26		watt (R6, R11, R13)-Pach	2.00
4412	Capacior 1120 mmfd ( ${ }^{\text {c }}$ (27)	25 35	4242		
4634		35 35	4436		
4524	Capacitor-2850 mofd. (C29)	35	3998	Resistor-15,000 ohms-Cath	
15	Capacior-2850 mmfd ( C17, CS6 $^{\text {a }}$	34	3	wate (R20)-Packige of 5	
88		28	3602	Reciseor-60,000 ohms-Carbon tyre- ${ }^{\text {c/is }}$	
378	Capacior-0.01 mfd ( C48) $^{\text {a }}$	30	3118	watt (R8, R18, R23, R26)-Package of 5 .	
4	Capactor-0.01 mid ( C 88 )	5	3118		
	$\mathrm{C}_{\text {Pracitor }} 0.05 \mathrm{mfd}$ ( C 37 )	25	3619	Recistor 4000000 ohms - Cax	
4417	Capacior-0.05 mfd. (CS, C15	25		watt (R59)-Package	
$4415$	$\mathrm{C}_{\text {ppacicor- }} 0.1 \mathrm{mfd}$ (C38)	32 30	3033	Resistor -1 megohm - Carbon type - $1 / 4$ wate $(R 16)-$ Package of 5.	
4645		. 25	6242	Resistor -2 mergohms - Carbon eype - $-1 / 4$ watt (R15, R21, R28)-Package of $5 \ldots$	
3750 7790	$\mathrm{C}_{\text {apacitor }} 0.25 \mathrm{mfd}$ (C47).   Capacitor-10 mfd. (C53, C54)	$\begin{gathered} 36 \\ 1.05 \end{gathered}$	3078	Resistor-10,000 ohms-Cartoon type - $1 / 2$ wati R27)-Packaze of	
4619	Capacitor pack-Comprisicg one 0.5 mfd one 10 mfd, caracitor (C42, C51)	1.44	4623	Resistor- 13,000 ohms Carbon rype 1/2	
4626	C46. C55)	2.82	2240	Resistor-30,000 ohms-Carton oy watit (R25)	
7810	Coil-Ancenna soil "PBELW" (Li, L2, LS, L6, C1, C3)	2.10	4418	$\rightarrow$ Package of 10   Resisor- 100 ohms Flexible cype (R1,	
7803	L8, C2, C4)   Coil-Anterna coil "B.S.W." (L3, L4, L7		4618	Rheozat-Sensitivity contol (R5)	
	Coil- Detereror coil		9011	Motor-105-125 volss-60	19.72
	L13, L14, C9, C11).	2.05	9014	T	19.72
7805	Coil-Detecoro coil "B-S W)" (11, L12,		12	Moror-105-125 voles-25 cycle	24.16
7807	Coill		9537	Coil-Field coil magnes   (L31)	
7809	${ }_{\text {L23, }}^{\text {L24. C23, }}$		8969	Cone-Reproducer cone--Package of 5 (L30).	6.35
	${ }_{\text {Cin }}$ L21. L22, C22, 226 ).	1.70	9536	Reproducer complece	
1	Condenser- ${ }^{3}$-gang variable tuning (C6, C16, C20).	4.42	4637	f	1.50
4616	Tone conerol (R24, St)	1.28	6303		
4431		2.28	4678	Ring-Dial retioining ring-Pa	34
505	Transformer--Power transformer- $105-125$ volts- $50-60$ cycles (T1)	6.35	4613	Screw- 8 -32-7/16" headiess set sctew for knob	
9506	Transformer-Power transformer-105-125 volts- 25 -40 cycles	8.90	${ }_{4}^{4572}$	Shade-Phonograph compartment lamp shade.	35
9507	Transformer-Power cransformer-105-250		4671	Switch-Toggle cype-Moror starting switch (S16)	
	-40-60 cycles. ...............		4672	Tranisformer-lnput cransformer	
4433	Trans Sormer-Sceond inermediate frequency transformer (LL7, $128, \mathrm{C} 35, \mathrm{C} 36, \mathrm{C} 40$ ) R14)			rising one cransformer, one reactor, one  	
4620				(T4, L33, C6n, C61, R60, R61)	5.42
	Volume contel (R32)	2.98	6766	Volume conerol-Phonograph volume	2.28

RCA PAGE 5-165
MODEL 9-Tube General Purpose A-N. Schematic, Voltage


PAGE 5-166 RCA

## MODEL 9-Tube General Purpose A-N.

RCA-VICTOR CO., INC.
Chassis Wiring


RCA PAGE 5-167


## MODEL 9-Tube General Purpose A-it. Alignment Data <br> SERVICE DATA

The circuit consists of an R. F. stage using Radiotron RCA-58, a combined oscillator and first detector using Radiotron RCA-2A7, an I. F. stage using RCA-58, a second detector and A. V. C. using RCA-2B7, an A. F. driver using RCA-56, and a Class "B" output stage using an RCA-53. The RCA-80 functions as the rectifier in the power supply circuits.

The foregoing Radiotrons and circuit tunctions apply to bands $X, A, B$ and $C$ only. In the case of band $D$, an additional R. F. stage utilizing an additional Radiotron RCA-58 is used. This is to increase the sensitivity and image frequency selectivity and to reduce the interference caused by tube hiss and 445 K . C. signals or static.

The intermediate frequency is 445 K . C. The use of this frequency gives an especially good image frequency ratio and makes easicr alignment of the oscillator at the higher frequency bands.

In order to reccive pure $C W$ signals, an $I$. $F$. heterodyne oscillator has been provided. This oscillator is an RCA-56 that operates at a 1000 -cycle higher frequency than the I. F. An adjustable capacitor is provided so that the pitch of the heterodyne frequency may be varied throughout the audible range.

The intermediate frequency amplifier is aligned in a similar manner to that of standard broadcast receivers except that it is aligned at 445 K . C. In order to properly align the receiver, it is essential that the Stock No. 9050 Test Oscillator be used. This oscillator covers the frequencies of 90 K . C. to $25,000 \mathrm{~K}$. C. continuously, has good stability and includes an attenuator. In addition to the oscillator, a 300 ohm resistor for use as a "dummy" antenna, a non-metallic screwdriver (such as Stock No. 4160), and an output meter are required. The output meter should be preferably a thermocouple galvanometer connected either across or in place of the cene coil of the loudspeaker.

To align the intermediate frequency circuits, connect. the output of the external oscillator to the grid of the first detector. For the R. F. and oscillator adjustments, the oscillator output should be connected to the antenna and ground terminals of the receiver with a 300 ohm resistor inserted in series with the antenna lead. In many cases, however, the signal strength obtained with this direct connection will be too great to permit proper alignment, even at the minimum setting of the oscillator attenuator. When this is true, the external oscillator must be loose-coupled to the receiver. This is done by connecting the 300 ohm resistor between the antenna and ground terminals of the receiver and attaching a short length of wire to the antenna post. Lay the free end of this wire across the oscillator case, adjusting its position as necessary to obtain the degree of pickup required.

The output of the external oscillator should be at the minimum value necessary to obtain a deflection in the output
meter when the volume control is at its maximum position. All adjustments are made for a maximum deflection in the output meter.

The accuracy of line-up of each band may be checked without touching the trimmer condensers, by the use of the tuning wand, Stock No. 6679.

One end of the wand consists of a brass cylinder. When this is inserted in a coil the effective inductance of the coil is lowered.

The other end of the wand contains a special finely divided iron suitable for use at radio frequencies. When this is inserted in a coil the inductance is raised.

To use the tuning wand a signal is first tuned in at the frequency at which a check is desired on alignment. The wand is then inserted slowly in the Antenna and R.F. transformers, using first one end and then the other end of the wand. Unless the alignment is perfect, it will be found that the power output indicated by the meter will be increased to a peak for a critical position of the wand in the coils.

The end of the wand required indicates whether the coil is high or low.

Of course, alignment correction at the high frequeticy end of a tuning range should be accomplished by the use of the trimmer condenser. If alignment correction should be required at the low frequency end of a tuning range it may be accomplished by sliding the end coil of the transformer. The winding farthest from the trimmer panel is pushed toward the trimmer panel to increase the inductance, and farther away to decrease the inductance. On band $D$ coils, the last two or three turns may be pushed in a similar manner to obtain the proper inductance.

This adjustment should not be attempted unless a quite appreciable improvement will result (as shoun by the tuning wand).

The following chart gives the details of all line-up adjustments. The receiver should be lined up in the order of the adjustments given on the chart. Refer to Figure E for the location of the line-up capacitors.

The CW oscillator beat frequency may be adjusted by means of the trimmer capacitor shown in Figure E. (It may be necessary to slightly loosen' the shielding cover to gain access to this screw.) A weak modulated or telephone signal should be accurately tuned-in with the oscillator "off" The oscillator should then be turned "On" and the trimmer screw adjusted until a 1000 cycle note is obtained.

## Line-up Capacitor Adjustments

This receiver is aligned in a similar manner to that of a standard broadcast band receiver. That is, the three main tuning capacitors are aligned by means of three trimmers in each band and on the three lowest frequency bands a series trimmer is adjusted for aligning the oscillator circuit. The other two bands do not require this low freguency trimmer, it being fixed in value. In the case of band $D$, it is necessary to adjust four trimmers due to the additional R. F. stage used.

External Orcillator Frequency	Dial Setting	Location of Lime-Up Capacitors	Position of Selector Switch	Adjugt for	Number of Adjustments To Be Made
445 K. C.	Any setting that does not bring in station.	Top of chassis.	Any position that does not bring in station.	Maximum ontput.	4
$370 \mathrm{k} . \mathrm{C}$.	$370 \mathrm{~K} . \mathrm{C}$.	Bottom of chassis.	X	Maximum output.	3
$175 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	X	Maximum output while rocking dial back and forth.	1
$1400 \mathrm{~K} . \mathrm{C}$.	$1400 \mathrm{~K} . \mathrm{C}$.	Bottom of chassis.	A	Maximum output.	3
$600 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	A	Maximum output while rocking dial back and forth.	1
$3900 \mathrm{~K} . \mathrm{C}$.	3900 K. C.	Bottom of chassis.	B	Maximum output.	3
$1710 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chasmis.	B	Maximum output while rocking dial back and forth.	1
$10 \mathrm{M} . \mathrm{C}$.	$10 \mathrm{M.C}$.	Bottom of chassis.	C	Meximum output. (See Note)	3
15 or 18 M. C.	15 or $18 \mathrm{M} . \mathrm{C}$.	Bottom and top.	D	Masimum output. (See Note)	4

NOTE-It is important to note, when aligning bands $C$ and $D$, that two peaks will be observed on the trimmers for the oscillator and for the first detector. The correct oscillator peak is the one obtained using the lower trimmer capacitance, whereas the correct detector peak is the one obtained with the greater capacitance. It is essential that the proper peak be chosen, as otherwise
other frequenties. When adjusting the detector trimmer, the tuning capacitor should be rocked, since there is reaction on the oscillator tuning.

RCA PAGE 5-169

RCA-VICTOR CO., INC.



Figure F-Power Transformer Connections (50 60 cycles)


## Transformer Connections

The power transformer of the $50-60$ cycle receiver uses two tapped primary windings. By connecting them in parallel or in series, the receiver may be used either on 110 or 220 volt lines. Figure $F$ shows the proper manner of making the various connections possible for this transformer.
(1) Range Switch (Upper Left-hand Knob)-This switch converts the receiver for operation within any of the tuning ranges provided. As indicated on the selector dial, the letters on the switch escutcheon signify:
X-Long-Wave Range- 150 to 410 kilocycles ( 2000 to 732 meters). Airport band.
A-Standard Broadcast Band-540 to 1500 kilocycles ( 555 to 200 meters).
B-Police Band- 1500 to 3900 kilocycles ( 200 to 77 meters). Services available within this band include police calls at 1574,1712 and 2450 kilocycles, amateur radio "phone" communications between 1800 and 2000 kilocycles, and aviation communications (phone) betweea 2500 and 3500 kilocycles.
C-Short-Wave Range- 3900 to 10,000 kilocycles (77 to $\mathbf{3 0}$ meters). Within the limits of this range are included two of the internationally-assigned shortwave broadcast bands. These are known as the 49 and 31 meter bands. (The portion of this range from 8000 to 10,000 kilocycles, which includes the 31 meter band, is preferably received on range D.)
D-Short-Wave Range- 8,000 to 18,000 kilocycles ( 37.5 to 16.7 meters), This range embraces four of the standardized short-wave broadcast bands located at $31,25,19$ and 16 meters, respectively.


Figure E-Location of line-up capacitors.

PAGE 5-170 RCA
MODEL 9-Tube General Purpose A-W.

RCA-VICTOR CO., INC.
Parts List

## REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Stock } \\ & \text { Nor } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { Lint } \\ & \text { Price } \end{aligned}$	Stock No.	DESCRIPTION	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
	RECEIVER ASSEMBLIES		6633	Coil and capacitor-0scillator coil and capacitor assembly -150-410 kilocy cles-5-band (1.21, L26, C28)	\$1.40
2747 2816		80	6634	Coil and capacitor-Antenna coil and capacitor assembly	1.86
3056	Package of 5 . Shield-Output Radiotron shield-Package of 2	1.00 .40	6635	Coil and capacit	
3076	Rexistor-1 megohm-Carbon type-1/2 watt (R19, R22, R23)-Package of 5	1.00	6636	Coil and capacitor-Oscillator coil and capacitor assembly	
3114	Reaiator-50,00 ohms-Carbon type-3/4 wa	. 0		Coil $540-1,500$ kilocycles-4- or 5-band (L22, L27, C30)	1.40
		1.00	663	Coil and capacitor-Antenna coil and capacitor asaembly $-1,500-4,000$ kilocycles-4- or 5 -band (L3, L8, C3) .	1.56
3118	Reaitor- 100,000 obms-Carbon type-I/4 watt (R3, R8) -Package of 5 .	1.00	6638		1.66
3435	Resistor-2.50 ohms-Carbon type- $1 / 2$ watt (RI)Package of 5 .	1.00	6639	1,500-4,000 kilocycles-4- or 5-band (L13, L18, C19) Coil and capacitor Oacillator coil and capacitor ansembly 1,500-4,000 kilocycles-4- or 5-band (L23, L28, C33).	1.66
3470	Redintor - 6,500 ohms-Carbon type-1 watt (R6)Package of 5 .	1.10	6640	Coil and capacitor-Antenna coil and capacitor assembly 4,000-10,000 kilocyclen-4- or 5-band (L4, L9, C4)	1.54
3526	Keaintor-2,000 ohmis-Carbon type- $1 / 2$ watt (R21)Package of 5 .	1.00	6641	Coil and capacitor-R. F. coil and capacitor assembly-4,000-10,000 kilocycien-4- or 5-hand (L14, L19, C20)	. 60
3527	Resistor- $\mathbf{8 0 0}$ ohms-Carbon type-1/2 watt (R16)-Package of S	1.00	6642	Coil and capacitor-Oacillator coil and capacitor assembly	1.34
3529	Socket-Dial lamp nock	.32	6643	Coil and capacitor-Antenna or $R$. $F$. coil and capacitor	1.34
35.5	Caparitor 0.1 mfd. (C26, C68)	. 36	6643	Coil and capacitor-Antenna or R. F. coil and capacitor	
3572	Socket-7-contact Rediotron socket-First detector and oscillator	. 38		L10, C5-L15, L20, C21)	1.52
3594	Resistor- 50,000 ohms-Carbon type- $1 / 2$ watt (R17, R18) Package of 5 .	1.00	6644	Coil and caparitor-Oacillator coil and capacitor asembly 8,000-18,000 kilocycles-4- or 5-band (L25, L30, C38)	1.54
3.97	Capacitor 0.25 mf	. 40	6675	Shaft-Shaft for condenser drive assembly-Comprising	35
3602	Rediator $\mathbf{6 0 , 0 0 0}$ obms-Carbon type一1/4 watt (RI Package of 5 . . .	1.00	$6679$	shaft, ball race with retainer and set screw.   Wand-Tuning wand for R. F. and osciliator adjustments.	$\begin{aligned} & 1.10 \dagger \\ & 1.55 \end{aligned}$
3616	Capacitor- 300 mmfd (C51)	. 34	$6889$	Capacitor-18.mfd. (C60)	
3622	Shield-Second detector Radiot	. 36	6890	Transformer-First intermediate frequency transforme (L31, L32, C41, C42)	2.40
3641		. 25	6891	Tranaformer-Second intermediate frequency tranaformer	
3711	Capacitor 80 mmfd . (C55)	.40		(1,33, L34, C44, C45)	2.40 1.50
3719	Socket-7-contart Radiotron	. 30	6892	Tone control (R20)	1.25
3771	Reaistor- 8,500 ohme-Carbon type - 3 watt	. 25	6995.5	Yolume control-Radio senaitivity con	. 25
384.5	Capacitor - $\mathbf{2 , 3 4 0}$ mmfd. (C39)	. 50	6956	Shield-Second R. F. Rad	. 15
3846 3848	Capacitor $\mathbf{- 2 , 2 5 0} \mathrm{mmfd}$ ( (C37)	. 50	6956 7065		80
3848 3849	Capacitor-300 mmfd. (C31) Capacitor 50 mmfd ( (C16).	.30   .30	7986 7484 7485	Screwdriver-For R. F. or I. F.adjustment Socket-5-contact Radiotron socket......	.35 .30
3861	Capacitor-Adjustable trimmer (C29, C32, C35)	. 78	7485	Socket-6-contact Radiotron socket	. 40
3863	Reaistor- 100 ohms-Carbon type- $1 / 2$ watt (R4, R10, R12)—Package of 5	1.00	9042	Transformer-Power transformer-105-250 volts-50-60 cycles (T1)	6.84
3864	Capacitor-300 mmfd. (Cik) .....................	. 30	9046	Tranaformer-Power transformer-105-125 volts-25-40	9.22
3865	Capacitor-160 mmfd. (C47)	. 30		Ocycles.............. $150-25000$	33.50 t
3888	Capacitor-05 mfd. (C6, C22,	.25	10194	Oscillator-Test oscillator-150-25,000 K. C. . Ball-Steel ball for condenser' drive assembly-Package	
3901 3931	Capacitor -.05 mmfd (C18) Capacitor 45 mmfd . (C27)	.36 .30		Ball-Steel ball for condenser drive assembly-Package of 20	. 25
3931 3932	Capacitor 45 mmfd. (C27)   Capacitor-. 0024 mfd. (C11)	.30 .30			
3973	Capacitor-1,900 mmfd. (E64.	. 34			
4019	Capacitor-1,000 mmfd. (C31)	. 34		miscellaneous Parts	
1030	Bracket-Tone or volume control moun	.10			
4033	Capacitor-20 mamfd. (C61, C62, C63) ....	.34   .20	4224 4225	Bczel-Station selector dial bezel	.95
4103 4104	Shield-Firgt detector and R. F. Radiotron	. 20	4225 4226	Ring-Dial glans retaining ring-Package of 5 . Escutcheon - Engraved - "AVC-on-off" -- "Radio Sen-	
4104	Shield-I.F. Radiotron shield.	.20	4226	Escutcheon - Engraved - "AVC-on-of""- "Radio Sen-; sitivity" -.. "Power Tone-off-on" - "Speaker-Phone"	
4207	Capacitor-0.1 mfd. (Cl3, Ci3).	.34			85
4217	Switch-Single pole-Single throw-"CW-OSC" (S10)	1.15	122	Eacutelicon-Audio senxitivity control	. 70
4218	Switch-Double pole-Single ilirow-"AVC" (S9).	1.00	1228	1:scutcheon-Range switch escutcheon.	5
4219	Switch-Single pole-Double throw-"Speaker-Phone" (S8)	1.90	4229	K nob-Audio volume control tone control or radio sensitiv-	
4220	Resistor-200,000 ohms-Carbon type-1 watt (R28)Package of 5 .	1.10	4230		5
6112	Cashion-Wubber cushons for classis-Packaze	25		range switch knob-Package of 5	1.15
6136	Rebistor-3,500 ohme-Carbon		1231	K not-Station selector knob-Package	1.15
		1.10	6614	Glans-Statiọn nelector dial	. 30
6188	Resintor 2 mepolims-Carbon type- $1 / 2$ watt (RI3)Package of 5	1.00	6954	Adapter-5-prong adapte	. 82
6278	Revistor- 750.000 whms-Carbon type- $1 / 2$ watt (R31)Package of 5	1.00			
6300	Socket-4-contact Radiotron aocket	35		IE	
6.303	Resiator-20,000 ohms-Carbon type-1/2 watt (IR26) Package of 5 .	1.00	3118	Resistor- $\mathbf{1 0 0 , 0 0 0}$ ohms-Carbon type-1/4 watt (R30)-	1.00
6.512 6603	Capacitor-005 mfd. (C54)...................	. 28	3634	Capacitor-160 mmfd., (C70)	. 34
6603	Condenser- $\mathbf{1}$-gang variable tuning condenser C24, C40)	3.80	3682	Shield-Radiotron ahield . .	. 22
6604	Capacitor 0.5 mfd. (C53)	. 50	4027	Capacitor -800 mmfd. (C72)	. 44
6605	Transformer Output tranforn	1.48	4221	Jack-Pinjack-Package of 2	. 45
6606	Reactor-Filter reactor (L37)	1.66	4222	Shield-Coil shield.	8
6607 6608	Reactor-Tone control reactor (L35)..	1.14   204	6242	Reaistor-2 megohms-Carbon type-1/4	
6608 6609	Transformer-Andio driver transiormer	2.04 1.10		Package of 5..................	1.00 2
6612	Volume control-Audio volime control (Ris)	1.20	6700	Coil-Oscillator coil (L42, L43, C69)	2.30
6613	Drive Variahle condenser drive asaemhly Complete	1.00	6899	Capacitor-Adjustable capacitor-120-220 mmfd. (C71)	70
6 626	Capacitor pack-Comprisingone 4. mfd., and two 10.mfd.,		6951	Cable-3-conductor shielded cable	32
	capacitora (C12, C49, C56) ........................	1.86	6952	Cable-Single conductor shiel	. 24
6628	Capacitor and coil-Antenna coil and capacitor asembly-8.000-18,000 kilocycles-4. or 5-band (L39, L40, C8).	1.50	7484	Socket-5-contact Radiotron sock	. 35
6629)	Switch-5-band melector swit	3.48			
66.30	Switch-4-band selector switeh	3.48		REPROLUCER ASSEMBLIES	
6.631	Coil and caparitor ansembly-Antenna coil and -150-410 kilocycles-5-band (L1, L6, C1).	2.16	8969	Cone-Reproducer cone complete (L36)-Package of 5	6.35
66.32	Coil and capacitor-R. F. coil and capacitor assembly		9438	Reproducer complete	8
	150-410 kilocycles- 5 -band (111, L16, C17) . . . . . . . . . .	2.10	9439	Coil assembly-Field coil, magnet and cone support (L38) .	5.22

$\dagger$ Full Discount not allowed.

## RCA-VICTOR CO., INC.

## Electrical Specifications

Voltage Rating. . . . . . . . . . . . . . . . . . . . . . . . . . 105 - 125 Volts Power Consumption ( 60 Cycle)........................175 Watts Type and Number of Radiotrons...... 4 RCA-56, 4 RCA.58, 1 RCA-55, 2 RCA-59, 1 RCA-5Z3-Total 12 Frequency Range. 540 K.C. 1500 K.C.- 1400 K.C. -2800 K.C. Undistorted Output.
10.0 Watts

This combination instrument utilizes the new perfected automatic record changing mechanism and the twelve-tube Deluxe Super-Heterodyne receiver. Excellent fidelity on both radio and record reproduction is an inherent feature of this instrument. Other features include double tuning range ( 540 K. C. -1500 K. C. and 1400 K. C. -2800 K. C.), high and low frequency tone control, compensated volume control and the inherent sensitivity, selectivity and tane quality of the Super-Heterodyne.


## Figure B-Location of Line-up Capacitors

Figure A shows the schematic circuit, Figure B the location of the adjustable capacitors, Figure C the chassis wiring, and Figure $D$ the assembly wiring diagram. The Radiotron socket voltages, the line-up procedure and the replacement parts are given on the following pages.

## R. F. and Oscillator Line-up Capacitor Adjustments

Four adjustable. capacitors are provided for aligning the R. F. circuits and adjusting the oscillator frequency so that the oscillator will maintain a constant frequency-175 K. C. -difference from that of the incoming signal. Poor quality, insensitivity, poor A.V.C. action and possible inoperation of the receiver may be caused by these capacitors being out of adjustment.

If the other adjustments have not been tampered withthe intermediate transformer tuning capacitors-the following procedure may be used for aligning these capacitors.
(a) Procure an R. F. Oscillator, such an Stock No. 90.50, giving a modulated signal at 600 K . C., 1400 K . C., and 2440 K , Giving a
procure a non-metallic screw driver sinch as Stock No. 7065 . Also
(b) Anoutpur meteris necessary. This ehould be a 0.10 milliam
b) An outpur meter is necessary. This should be a 0.10 milliammeter
(c) A dummy hadiotron RCA 56 is necessary to substitute for detector. A dummy Raniotron RCA. 56 is necessary to substitute for the one
normally used in the A. V. C. socket. This shonld be a tube that normally used in the A. V. C. socket. This shomd be a tabe that
is otherwise normal in all respects, but having one heater prong is otherwise normal in all respects, but having on
removed. lnmert this tube in the A. V. C. socket.
(d) First check the chassis and carcfully ascertain that the dial pointer reads exactly at the first line on the scale when the tuning capacitor rotor plates are filly meshed with the stator plates.
(c) Place the oscillator in operation at exactly 1400 K . C. and couple its output to the antenna. Set the Range Switch counter-clockwise
and the dial scale at exactly 1400 . Connect the output meter to the set and place the volume control and auppressor control. if
noise level will permit, at its maximum position. Adjast the oscillator input so that only a slight reduction in current is obteined
(f) With output meter.
adjust the oscillatoret wrench-the nuts areat ground potentialuntil minimum deflection is octor and $R$. F. line-up capacitors,
(g) The bigh frequency berion is obtained in the output meter.
in a similar manner to in adjusted at 2440 K . C. This is done oscillator is set at 2440 K . C. the dial at 1200 and except that the in the cluckwise position. The line-up capacitors on the Range Switch are adjuated for minimum ousput at this frequency.
(h) Set the oscillator at 600 K . C. Tune in the signal with the receiver until a nlight deflection is obtained in the output meter. Now adjust the 600 K . C. series capacitor. Figure B, untilater. Now deflection is obtained in the output meter. Rock the tuning capacitor back and forth while making this adjuatment.as the tuning capacitor and oscillator series capacitor adjustmonte interlock.
(i) Change the frequency of the oscillator to 1400 K . C. and set the dial at 1400 . Again make the adjustments given under ( $f$ ), ( g ),
and then (h).
So adjusted, the R. F. circuits are properly aligned and the oscillator will maintain a constant frequency difference from the incoming R. F. signal.

## I. F. Tuning Capacitor Adjustments

Although this receiver has two I. F. stages, one for the second detector and one for the A. V. C., only two of the three I. F. transformers are tuned by adjustable capacitors and require adjustment. The stage used for the A. V. C. is broadly tuned and does not require any adjustment.

The transformers are all tuned to 175 K . C. and the circuits broadly peaked.

A detailed procedure for making this adjustment follows:
(a) Procure a modulated R.F. Oscillator, such as Stock No. 9050. that gives a modulated 175 K . C. signal. Also procure non-metallic serew driver such as Stock No. 7065.
(b) An output meter is necessary, This should be a $\mathbf{0}-10$ milliammeter (c) A dummy Radiotron RCA-56 is necessary to subatitute for the one normally used in the A. V. C. socket.
(d) Remove the oscillator tube and make a good ground connection to the chasmia. Plare the oacillator in operation and comple its output
from the control grid of the firat detector to ground. Adjust tho oscillator output, with the receiver volume conerol at maximum, untila alightly reduced deflection is obtained in the output meter.
(e) Refer to Figure B. Adjust the Becundary and prinury of the pecond and then the firat l. F. tranaformer until a minimum deflection is obtained in the output meter. Go through these ad. justments a second time, as a slight readjustment may be necessary.
When the adjustments are made the set should perform at its maximum efficiency. However, due to the interlocking of adjustments, it is good practice to follow the I. F. adjustments with the R. F. and oscillator line-up capacitor adjustments. The correct method of doing this is given in the preceding section.

Antenna Connections-It will be noted that three antenna terminals are provided at the rear of the receiver chassis. Two of these will normally be used for the usual antenna and ground connections, while the third one is for use in connection with a shielded antenna system. The tap eliminates the need of the transformer usually used for coupling the shielded line to the radio receiver.

Stock No. 7717 shield kit, which comprises a lightning arrester, transformer assembly, a 200 mmfd . capacitor, and 100 feet of shielded wire, is recommended. When such an antenna system is used, it is necessary to connect the 200 mmfd. capacitor between terminals 1 and 2. This prevents the first R. F. circuit from being detuned and results in maximum gain from the antenna. This capacitor is included with the Stock No. 7717 Kit.

Automatic Record Changer-The automatic record changer used in this instrument is of simple design and excellent construction. The various adjustments that may be required are shown in Figure E. A point to remember with this instrument is that it must always be level, otherwise proper operation will not be obtained.

Radiotron No.	Cathode to Control Grid, Volts	Cathode to Screen Grid, Volts	Cathode to Plate, Volts	Plate Current, M. A.	Heater Volts
RCA. 58 R. F.	3.1	97	212	7.5	2.5
RCA 56 Osc.	-	-	100	6.0	2.5
RCA-58 1st Det.	9.5	91	206	2.8	2.5
RCA 58 I. F.	7.5	93	208	4.0	2.5
RCA-58 A. V. C.-1. F.	8.5	92	207	3.0	2.5
RCA. 56 A. V. C.	12.0	-	-	0	2.5
RCA-55 2nd Det.	0	-	74	8.0	2.5
RCA-56 A. F. Driver	11.0	-	205	5.0	2.5
RCA-56 A. F. Driver	11.0	-	205	5.0	2.5
RCA 59 Power	0	-	394	13.0	2.5
RCA 59 Power	0	二	394	13.0	2.5
RCA-523 Rect.	990-495 R. M. S.			92 Total	5.0

## OPERATION-PHONOGRAPH

## Automatic Operation

Important Precautions-The following precautions must be observed during operation:

1. In loading the turntable, make certain that the first record inserted (last to be played) is flat-that is, essentially free from warpage.
2. Before starting the turntable, make certain that the reject pocket (at the left of the phonograph compartment) is either empty or sufficiently clear to permit proper disposal of records by the automatic mechanism.
3. Never restrain by force the normal motion of any part of the automatic mechanism while it is changing records.

Procedure-The phonograph operating controls are located on the front panel and in the playing compartment as shown in Figures 1 and 2. Proceed as follows:

1. Set the Transfer Switch counter-clockwise for record reproduction.
2. Apply power by turning the Radio Volume Control clock wise from the "of?" position. Set the two Tone Controls for full-range reproduction (see paragraph 7 under "Operation-Radio").
3. With the Motor Switch in the "off" position (Record Volume Control fully counter-clockwise), load the turntable with records, as follows:
(a) Set the Index Lever at "Manual." Always do this before loading or unloading records.
(b) Place the electric pickup on the rubber rest.
(c) Raise the Record Ejector arm (very slowly, at first, until the internal weight has rolled to the rear of the arm, then as rapidly as desired) to its upper position of rest. Always raise the ejector arm in this manner.
(d) Select the records to be played. All records for one loading must be of the same diameter (either ten or twelve inches), close to standard thickness and operable at the same speed (either 78 or $331 / 3$ R. P. M.).
CAUTION-Do not use thin flexibletype records for automatic operation.
(e) Place the records, one at a time, on the turntable (see paragraph 1 under "Important Precautions"). The spindle should resume its normal height after each record is added. The turntable is fully loaded when the top surface of the uppermost record is nearly flush with the top of the spindle. (It should not be possible to slide off the top record without lifting its edge or depressing the spindle.)
(f) Lower the Record Ejector arm gently onto the spindle.
4. Insert a new needle in the pickup as far as it will go and tighten the needle screw. For long-playing ( $331 / 3$ R. P. M.) records, use only the orange Chromium needle. For standard ( 78 R. P. M.) records, use the latter needle or, if preferred, either the green Chromium or the full volume (full tone) Tungstone needle. Transparent-faced (illustrated) records, however, should not be reproduced with Tungstone needles.

NOTE-With care, the orange Chromium needle should play 75, the green Chromium 100, and the Tungstone 100 to 150 records. Never re-insert in the pickup a Chromium needle which has been used (however slightly) as damage to the record grooves would result.
5. Place the pickup needle on the smooth outer rim of the record, near the first groove. Then move the Index Lever to the position ( 12 or 10) correspond. ing to the diameter (inches) of the records on the turntable. Be careful not to move the lever beyond the proper index hole. Push the index pin firmly into the hole.

## CAUTION-Never attempt to move the <br> Index Lever from the Manual position when the pickup is on the rubber rest.

6. Start the turntable by turning the Motor Switch clockwise; then set the Speed Shifter for the

speed ( 78 or $331 / 3$ R. P. M.) corresponding to the records on the turntable.

NOTE-The speed shifter should not be moved inward (from the 78 to the $331 / 3$ R. P. M. position) while the turntable is at rest.
7. Adjust the Record Volume Control to obtain the desired volume.
8. Close the cabinet doors to extinguish the compartment lamp and to render less prominent the mechanical noises incident to record playing and changing. If needle scratch reproduction (particularly noticeable with old records) is considered excessive, turn the treble Tone Control slightly counter-clockwise. For most faithful reproduction, however, both Tone Controls should be left in the positions which provide full illumination of the tone color indicator.

NOTE 1-When a record has been played, the ejector arm slides it off into the record pocket and the pickup moves to the outside of the next record. The records on the turntable are thus played consecutively until only one


## RCA-VICTOR CO., INC.

## SERVICE DATA FOR MAGNETIC PICKUP

The Magnetie Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance it is similar to that of the older type, Letails of construction are considerably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any had peaks in the frequency range. The frequency-response characteristic is substantially flat from 50 to 5,000 cycles.

## Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure G), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and ncedle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism asscmbly from the back plate by releasing the two mounting screws and the damping block clamping screw.

(d) Kemove screws $A$ and $B$, Figure $G$, and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mechanism-with the pole pieces up-ward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is nccessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. 'The adjustment is made by loosening screws $A$ and $B$ (Figure G), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tone arm.

In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be nine inils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

## Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.


Figure $G$
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure H, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be neces. sary to scrape the end of the spring and the bole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called


## Figure $H$

acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the airgap as explained under (h).

RCA PAGE 5-175
MODEL Duo 380
Chassis Wiring


RCA-VIC'TOR CO., INC.



Figtre E-Automatic Record Changer Adjustments


## REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	Stock No.	DESCRIPTION	$\underset{\text { List }}{\text { Price }}$
	HECEIVER ASSEMBLIES		6282	Remistor-60,000 ohms-Carbon type-1/2 watt (R22) Package of 5 .	\$1.00
2730	Package of 5	\$1.10	6298	Cord-3-gang tuning condenser drive cord-Package of 5	. 60
2747	Cap-Contact cap-Package of 5	. 50	6300	Socket-4-contact Radiotron socket	. 35
3024	Capacitor-9 mmfd. (C2)-Package of 2	. 50	6312	Capacitor-650 mmfd. (C15)-Package of 5	1.50
3047	Resistor-1,500 ohms-Carbon type-1/2 watt (R8)Package of 5 .	1.00	6316	Resistor-2.500 ohms-Carbon type-1/2 watt (R10)Package of 5	1.00
3085	Capacitor $\mathbf{4 0 0} \mathrm{mmfd}$ ( C 38 )	. 30	6437	Coil-Oscillator coil (L5, L6, L7)	. 2.4
3118	Resistor-100,000 ohms-Carlon type- K/ $_{4}$ watt (R5)Package of 5 .	1.00	6447	Volume control (R20, S1)	1.92
3252	Resistor-100,000 ohms-Carbon type-1/2 watt (R6, R7) -Package of 5.	1.00	6448	Toue control-Low frequency (R17)	1.04
3376		1.00 .40	6150	Tone control-High frequency (R21)	. 6
3435	Resiator- 250 olims-Carbon type-1/2 watt (R2)-Pack.	. 40	64.50	Rheostat - Noise suppressor rheostat (R3)	1.24
	age of $5 \ldots \ldots \ldots \ldots . .$.	1.00	6.512	Capacitor -0.005 mfd ( C 37 )	. 28
3460	Capacitor-1.200 mmfd. (C31)	. 30	6537	Switch-Range switch	1.30
3526		1.00	6539	Coil-Detector coil (L.3, L4)	1.44
3527	Reeistor--800 ohms Carbon type-1/2 watt (R19)Package of 5.	1.00	6561	Coil-Antenna coil (L1, 1,2, R1, C3)	. 75
3528	Bracket - Noise suppressor or volume control tamp bracket	. 18	6562	Tranaformer-Audio driver transformer	3.04
3529	Socket-Noise suppressor or volume control lamp socket	. 32	6564	Tranaformer-First intermediate frequency transformer (18, L9, C20, C21, C24)	
3533	Shutter-High frequency tone control shutter	. 50		(1.8, L9, C20, C21, C24)	2.30
3534	Shutter-Low frequency tone control shutter	. 50	6565	Franaformer-Second intermediate frequency transformer (1.12, L13, C28, C29)	
3535	Socket-High or low frequency tone control lamp socket	. 32		Tranaformer-Third intermediate frequency	2.10
3556	Capacitor-0.05 mufd.-Located on antenna coil (C3) .	. 34	65.6	Transformer-Third intermediate frequency tranaformer (L10, L11)	
3558	Caparitor-50 mmfd. (C19) ..........................	. 36	6.567	Capacitor pack-Comprising one 0.17 mfd and one 0.7	1.72
3564	Bracket-Station selector dial lamp-Mounting bracket Socket-Station selector dial lamp sorket. . . . . . . . .	.25 .50	6.567	Capacitor pack-Comprising one 0.17 mfd ., and one 0.7 mffl. capacitors (C35, C36)	5
3597	Capacitor-0.25 mfd. (C33, C45).	. 40	6568	Transformer-Interstage audio transformer (T2)	3.10
3640	Capacitor -0.05 mfd ( $\mathrm{C} 9, \mathrm{C} 22, \mathrm{C} 26$ )	25	6571	Capacitor -10 mfd . (C43, C44)	1.20
3641	Capacitor-0.1 mfd. (C7, C13, C23, C25, C27)	. 35	6572	Reactur-Tone control reactor (114)	
3643	Capacitor-0.005 mfd. (C39).	. 25	6574	Capacitor pack-Comprising two 10	
3652	Screw-No. 10-32-1/4 set screw for bracket and bushing assembly-Package of 10 ..	. 32	657	(C32, C41)	1.80
3719	Socket-7-contact Radiotron socket....	. 30	6578	Reactor-Fitter reactor (LI8)	3.22
3726	Arm-Range switch operating arm assembly-Comprising arm, link, studs and set screws	. 45	6797	Capacitor-10.0 mfd. (C49) ..............	1.04
3727	Shaft-Shaft and bushing assembly for range switch operat-ingarm-Comprising two washers, shaft, bushing and nut	.45 .30	6847 7062	Shield-Rectifier sochet shield and capacitor Capacitor-Adjustable capacitor (C14).	.65 .50
3747	Capacitor-15 mmfd. (C8)	. 36	7439	Drum-Dial drum with set screw and	
3749	Capacitor-0.1 mfd. (C40)	. 30		nuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	35
3765	Capacitor-0.025 nifd. (C34).	. 34	7484	Socket-5-contact Radiotron socket	35
3774	Resistor- $\mathbf{7 , 4 0 0}$ ohme-Tapped at 3,800 and 500 olune (R25, R26, R27)	. 80	7485	Socket - 6-contact Radiotron so	40
3797 3798	Reactor-Volume control compensating reactor (L15) Resiator-700 ohms-Carbon type- $1 / 2$ watt (R18)	. 64	7700	Condenser- $\mathbf{3 - g a n g}$ variable tuning condenser (C4, C5, C6, C10, C11, C12, C16, C17, C18, S2, S3, S4, S5, S6)	7.44
378	Package of 5   Capacitor- 80 mmfd. (C30)	1.00	9468	Transformer-Power tranaformer-105-125 volts-50-60	
3799	Capacitor-80 mmfd. (C30)	. 70		cyclen (TI)	7.75
3883	Fuse-2-ampere (F1)-Package of 5.	. 40	9469	Tranaformer-Power transformer-105-125 volts-25-10 cycles	
4035 4036	Switch-Radio-Phonograph switch (S9) . . . . . Shield-Low or high frequency tone control hig	2.10			11.75
4037	Shield-Low or high frequency tone control hig Shield-Antenna, detector or oscillator ahield.	. 30		CAble ASSEMBliIES	
4038	Shield-Radiotron shield.	.30	6793	Cable - $\mathbf{2}$-conductor shielded-From ratio volume control to Radio-Phonograph awitch	
4039	Shield-Radiotron shield-Second detsetor shield	30		to Radio-Phonograph switch	.30
4040	Shield-Radiotron tube shield	25	6794	Cable-Single conductor shielded-From Kadio-Phonograph switch to Phonograph volume control (R3I)	
4041	Cover-Fuse cover.	25		graph switch to Phonograph volume control (K3I).....	38
4042	Reactor-Volume control series reactor (L16) ...........	1.20	6795	Cable-P'ionograph motor cable--3-conductor with fenale section of connector plug.	
4046 4129	Resistor-2-neguhm-Carbon type- $1 / 2$ watt (R33)Package of 5 .	1.00	6796	section of connector plug   Cable-2-conductor-Compartment lamp cabie .	$\begin{array}{r} 1.10 \\ .80 \end{array}$
4129	Bracket-Bracket and bushing assembly for radio-phonograph awitch shaft-Located on receiver chassis . . . . . . .	. 28	6798	Cable-Compartment lamp and uwith cable	2.85
4130	Shield-IL. F. Radiotron shield.	. 30	6818	Cable-Tapped calie with two connectord-From Phono-	
5817	Resistor-20,000 ohms-Carbon type-3 watt (R15, R16).	25		graph Motor connector to motor starting ewitch plug and Phonograph volume control	2.12
6186	Resistor- 500,000 ohms-Carhon type- $1 / 4$ watt-Located on antenna coil (R1)—Package of 5 ...	1.00	6819	Cable-Single-conductor shielded cable with male section	2.12
6192	Spring-3-gang tuning condenser drive cord tension apring -Package of 10	. 30		of connector-From Phonograph volume control to receiver chassis.	38
6,228	Kesistor-200,000 ohms-Carbon type-1/2 watt (R14)Package of 5 .	1.00	6850	Cable-Single-conductor shielded cable From input transformer to terminal board .	. 50
6277	Capacitor 0.1 mfd .-Located on rectifrer socket shield (C50)	. 35		MOTOR BOARD ASSEMBLIES	
6280	Resistor 100,000 ohins-Carbon type-1/2 watt (R11, R12, R13)-Package of 5 .	1.00	$\begin{aligned} & 2893 \\ & 2917 \end{aligned}$	Spring-Trip lever latch tension spring-Package of 10   Washer--Spring washer, "U" type-Package of 10	.30 .25
6281	Resistor-1.100 ohins-Carlon type-1/2 watt (R23)Package of 5.	1.00	3654	Roller-Guide roller assembly-Comprising bracket roller and guide pin	. 34

## REPLACEMENT PARTS (Continued)

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Stock No.	DESCRIPTION	List Priec
3666	Spring-Cable lever tension spring-Package of 10	\$0.44		PICKUP AND ARM ASSEMBLIES	
3670	Finger-Friction fill	. 32	3388	Screw-Pickup needle holding screw-Package of	\$0.60
3672	Pin-Manual index lever pin	. 42	3728	Coil-Pickup coil (L20)	. 50
3673			3737	Damper-Package of 5.	. 65
	Package of 5 .	. 20	4062	Rod-Automatic brake trip rod	. 20
3676	Spring-Cam and gear pawl carrier tension apring-Pack age of 10	. 52	4063	Screw-Pickup mounting screw assembly-Comprising one screw, one nut, and one washer-Package of $10 \ldots . .$.	. 54
3677	Lever-Cable lever assembly	. 40	4064	Cable--Pickup arm cable-Package of 5 ................ .	$1.00$
4059	Screw-Trip lever clutch tenaion adjustment acrew-Package of 10	. 22	6811	Armature-Pickup armature. Pickup-Pickup unit.complete	.96 4.30
4060	Escutcheon-Manual-12-10	. 28	6812	Cover-Pickup cover	. 34
4061	Spring-Main	. 38	6813	Back-Pickup housing back	. 68
4124	Plate-Actuating plate ansembly	. 50	6815	Escutcheon-Pickup arm escutcheon with mounting rivets.	. 64
4127	Spring-Actuating	24	7707	Arm-Pick up arm complete, leas eacutcheon, pickup, pickup	
6502	Cam-Cam and	1.18		mounting screw, nut and washer	4.12
6503	Pawl-Trip pawl assem	40		TURNTABLE ASSEMBLIES	
6806	Lever-Manual index 1	. 55	3340	Washer-Thrust washer-Package	. 56
6807	Lever-Trip lever assembly	1.16	33.11	Pin-Groov-pin-Package of 2.	. 56
6808	Clutch-Trip lever friction cluteh	. 30	3342	age of 2	. 56
6809	Finger-Manual index finger assembly	. 25	3341	Cover-Grease retainer cover-Package of 2	. 70
6810	Lever-Main spring le	. 44	33.4	Spring-Speed shifter lever spring--Packa	. 30
6846	Lever-Main lever and link a	1.45	$\begin{aligned} & 4065 \\ & 6816 \end{aligned}$	Bushing-Speed shifter lever bushing-Package of 4...... Ring-Clamp ring assembly-Compriaing spring, latch	. 82
7710	Cover-Metal cover for trip lever and friction finger asarmblies.	. 28	6817	lever, and atud   Slecve-Sleeve complete with ball race	$\begin{array}{r} .42 \\ 2.25 \end{array}$
			6818	lever-Speed shifter leve	. 38
	MOTOR ASSEMBLIES		7711	Turntable-Complete	5.10
3777	Molor mounting apring washers and stid assembly-Comprising three upper and threc lower apringa. six cup washers, three spring washers, and three studs		3638	MISCELLANEOUS PARTS Srale-Tuning meter scaio-Package of $5 \ldots \ldots . . . . . . . . .$.	. 60
	ers, three spring washers, and three studs.......		3763	Motor mounting board spring, Washer and stud assembly--	
9011	Motor-Motor completo-105-125 volts-60 ed	19.72		Comprising one boit, two "wabhers, one bottom	
9012	Motor-Motor complete-105-125 volts-25 cycles	24.16		washer, and one nut. .	. 42
9013	Motor-Motor complete-105-125 voltu- $\mathbf{4 0}$ cycles	24.16	3780	Shutter-Noise suppressor shutter . . . . . . . . . . . . . . . . .	. 30
9014	Motor - Mutor complete - $105-125$ volts - 50 cycl	19.72	3781	Stutter-Volume control shatter.	. 30
			4043	Switch Operating awitel (S7).	. 80
	EJECT ARM ASSEMBLIES		40.4	Socket-Compartment lamp socke	1.28
			4045	Shade-Compartment lamp shade.	. 50
3655	Retainer-Ball retainer with three hull bearing*	.45	4047	Keceptacle--Noedle recepta	. 55
3656	Bearing-Ejector tip beari	.48	406	Rest-Pickup rest.	. 14
3657	Tip-Ejector tip	. 30	4080	Knob-Range awitch knob-Package of 5	. 75
3658	Rall-Ball bearing-Package of 20	. 30	4081	X noh-Station aclector, volume control or noise suppreasor knob-Package of 5	
3662	Plate-Ejector plate-Paekage of 5..........	. 95		knob-Package of 5 .   Knob-High or low frequency tone control, radio-phono-	
3665	Screw-Eject arm horizontal adjuntment acrew and nutPackage of 5.	. 25	4082	Knob-High or low frequency tone conirol, radio-phonograph switch or phonograph volume control knoh Package of 5 .	1.02
3729	Roller-Counter balance roller-Located inside of eject arm.	. 45	6456	Eacutchoon-Volume control escutcheon and color screen..	. 50
3930	Cushion-Counter balance cushion and bracket-located inside of eject arm.	. 18	6457 6458	Escutcheon-Noise suppressor escutcheon and color screen Eacutcheon-High and low frequency escutcheon and	. 50
4054	Bracket-Eject arm bracket aseembly .................. .	1.35	6458		. 92
4055	Post-Vertical adjustment post-Located on eject arm.	. 30	6461	Meter-Tuning meter	
4056	Yoke-Eject arm yoke asseinbly	1.04	6547 6799	Bezel-Tuning meter bezel............................ Volume control-Phonograph volume control (R31, S10).	.145 3.00
4057	Shaft and collar-For eject arm	. 24	6599 6800	Transformer--Phonograph input transformer-Compriaing	
4058	Collar-Eject arm shaft collar....	. 18	6800	one transformer, one .008 mfd., one 0.06 mfd ., and one	
4067	Spring-Eject arm bracket spring-Package of 10......	. 30		0.18 mifd. capacitors, one 50,000 ohm, one 4,000 ohm, and	
4125	Spring-Eject arm horizontal action tension spring60 cycle operation-Package of 10	. 42			6.30 1.15
4126	Spring-Eject arm horizontal action tension apring-For 25 cycle operation -Package of 10	. 60	$\begin{aligned} & 6801 \\ & 6802 \end{aligned}$	Bearing and plate assembly-For Radio-Pbonograph switch shaft-Located on cabinet.	. 34
7708	Arm-Eject arm complete	7.74			
7709	Cover-Eject arm co	1.38		REPRODUCER ASSEMBLIES	
			4131	platee, two bolta, two nute, and two lockwabhera........	. 44
	SWITCH		6569	Transformer-Output transformer (T4).	1.95
3322	Switch--Motor switch (S8).	. 75	6618	Cable-4-conductor-Reproducer cable.	.54 6.35
6805	Switch assembly-Automatic switch complete	1.90	8969	Cone-Reproducer cone (L17)-Package of 5.	6.35 4.90
10174	Springs-Automatic brake springt-Package of 4.	. 50	9031	Coil-Field coil magnet and cone support Reproducer complete.................	4.90 8.50
10184	Plate-Automatic brake latch plate-lackage of 5	. 40	9472	Reproducer complete.................	

RCA PAGE 5-179

# SERVICE DATA 

## Electrical Specifications

Voltage Rating.
105-125 Volts
Power Consumption ( 60 Cycle) . . . . . . . . . . . . . . . 175 Watts Type and Number of Radiotrons...... 4 RCA-56, 4 RCA-58, 1 RCA-55, 2 RCA-59, 1 RCA-5Z3-Total 12 Frequency Range. 540 K.C. -1500 K.C. -1400 K.C. -2800 K.C. Undistorted Output. 10.0 Watts

This combination home recording instrument utilizes the new perfected automatic record changing mechanism and the twelve-tube Deluxe Super-Heterodyne receiver. Excellent fidelity on both radio and record reproduction, together with facilities for recording either programs or voice are inherent features of this instrument. Other features include double tuning range ( $540 \mathrm{~K} . \mathrm{C} .-1500 \mathrm{~K}$. C. and $1400 \mathrm{~K} . \mathrm{C} .-2800$ K. C.), high and low frequency tone control, compensated volume control and the inherent sensitivity, selectivity and tone quality of the Super-Heterodyne.


Figure D-Location of Line- Up Capacitors
Figure A shows the schematic circuit, Figure B the chassis wiring, and Figure $C$ the assembly wiring diagram. The Radiotron socket voltages, the line-up procedure, special service hints and the replacement parts are given on the following pages.

## R. F. and Oscillator Line-up Capacitor Adjustments

Four adjustable capacitors are provided for aligning the R. F. circuits and adjusting the oscillator frequency so that the oscillator will maintain a constant frequency-175 K. C. --difference from that of the incoming signal. Poor quality, insensitivity, poor A. V. C. action and possible inoperation of the receiver may be caused by these capacitors being out of adjustment.

If the other adjustments have not been tampered withthe intermediate transformer tuning capacitors-the following procedure may be used for aligning these capacitors:
(a) Procure an R. F. Obcillator, such as Stock No. 9050, giving a modulated signal at 600 K . C. 1400 K . C., and 2440 K . C. Also procure a non-metallic acrew driver auch as Stock No. 7065.
(b) An ontput meter is necessary. This should be a $0-10$ miliammeter connected in series with the plate supply to the second detector.
A dummy Radiotron RCA-56 is necessary so substitute for the one A dummy Radiotron RCA-56 is necessary so substitute for the one
normally used in the A. V. C. socket. This should be a tube that normally used in the A. C. socket. This should be a tube that is otherwise normal in alf respects, but having one
removert this tulie in the A. V. C. mocket.
(d) First chock the chassis and carefully ascertain that the dial pointer reada exactly at the first line on the acale when the tuning capacitor rotor plates are fully meshed with the stator plates.
(e) Place the oscillator in operation at exactly 1400 K . C. and couple its output to the antenna. Set the Range Switch counter-clockwise
and the dial scale at exactly 1400 . Connect the output meter to the set and place the volume control and suppressor control, if
noise level will permit, at its maximum position. Adjuat the oscillator input so that only a slight reduction in current is obtained in the output meter.
(f) With a suitable socket wrench-the nuts are at ground potentialadjust the oscillator. first detector and $R$. F. line-up capacitors, adjust the obcillator, first detector and R . F. hine-up capa
(g) The high frequency band is adjusted at 2440 K . C. This is done in a aimilar manner to the $R$. F. adjustmenta except that the oscilator is set at 2440 K . C., the dial at 1250 and the kange Switch in the clockwise position. The line-ap capacitors on the
Switch are adjusted for minimum output at this freguency.
(h) Set the obcillator at 600 K . C. Tune in the signal with the receiver until a slight deflection is obtained in the output meter. Now adjust the 600 K . C. series capacitor, Figure $D$, until a minimum deflection is obtained in the output meter. Rock the tuning capacitor back and forth while making this adjustment, as the tuning capacitor and oscillator series capacitor adjustinent
interlock.
(i) interlock.
dial at 1400 . and then (h).
So adjusted, the R. F. circuits are properly aligned and the oscillator will maintain a constant frequency difference from the incoming R. F. signal.

## I. F. Tuning Capacitor Adjustments

Although this receiver has two I. F. stages, one for the second detector and one for the A. V. C., only two of the three I. F. transformers are tuned by adjustable capacitors and require adjustment. The stage used for the A. V. C. is broadly tuned and does not require any adjustment.

The transformers are all tuned to 175 K . C. and the circuits broadly peaked.

A detailed procedure for making this adjustment follows:
(a) Procure a modulated R. F. Oscillator, such as Stock No. 9050, that gives a modulated 175 K . C. signal. Also procure a non-metallic acrew driver such as Stock No. 7065.
(b) An output meter is necessary. This should be a $0-10$ milliammeter connected in series with the plate supply to the second detector.
c) A dummy Radiotron RCA-56 is necensary to substitute for the one
normally used in the A. V. C. socket.
(d) Remove the osciliator tube and makea good ground connection to the chassis. Place the orcillator in operation and couple its output from the control grid of the first detector to ground. Adjunt the oscilator output, with the receiver volume control at maximum,
(c) Refer to Figure D. Adjusp the secondary and primary of the Recond and then the first l. F. transformer until a minimum deflection is obtained in the output meter. Go through these adjustments a secend time, as a slight readjustment may be necessary.
When these adjustments are made, the set should perform at its maximum efficiency. However, due to the interlocking of adjustments, it is good practice to repeat the R. F. and oscillator line-up capacitor adjustments after completing alignment of the I. F. system. The correct method of doing this is given in the preceding section.

Antenna Connections-It will be noted that three antenna terminals are provided at the rear of the receiver chassis. Two of these are used for the normal antenna and ground connections, while the third one is for use in connection with a shiclded antenna system. The tap climinates the need for the transformer usually used for coupling the shielded line to the radio rectiver.

Stock No. 7717 shield kit, which comprises a lightning arrester, transformer assembly, a 200 mmfd . capacitor, and 100 feet of shielded wire, is recommended. When such an antenna system is used, it is necessary to connect the 200 mmfd. capacitor between terminals 1 and 2 . This prevents the first R. F. circuit from being detuned and results in maximum gain from the antenna. This capacitor is included with the Stock No. 7717 Kit.

Automatic Record Changer-The automatic record changer used in this instrument is of simple design and excellent construction. The various adjustments that may be required are shown in Figure G. A point to remember with this instrument is that it must always be level, otherwise proper operation will not be obtained.

RCA-VICTOR CO., INC.


RCA PAGE 5-181
MODEL Duo 380-5R

Chassis Wiring


INTERNAL CONNECTIONS OF
DRVVER RANSF
RCA-VICTOR CO.. INC.


Radio Reproduction


Record Reproduction


Home Recording


# SERVICE DATA ON MAGNETIC PICKUP 

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance it is similar to that of the older type, details of construction are consider ably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequency-response characteristic is substantially flat from 50 to 5,000 cycles.

## Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure J), it is nccessary to procced as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism asscmbly from the back plate by releasing the two mounting screws and the damping block clamping screw.


Figure I
(d) Remove screws $A$ and $B$, Figure $J$, and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldcred to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mechanism-with the pole pieces up-ward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to corrcctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws $A$ and $B$ (Figure $J$ ), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tone arm.

In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

## Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.


Figure $J$
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure $K$, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zine chloride (commonly called


Figure K
acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the air gap as ex. plained under (h).
provided a new needle is inverted for each selection. Do
hot use Tungutone needles with either thin Alexible type or
ransparent.faced (illustrated ) recerrds. 5. Start the turntable by turning the Motor Switch ciock.
wise, then set the Speed Shifter for the spred corresponding to
the record on the turntable. Iower the needle genily onto the wise,
the record on the turntable. Lower the needle gently onto the
amooth outer rim of the record.
6. Adjust the Record Volume Control and elose the cabinet
doors (see paragraph 8 under "Automatic Operation"). 7. After the record has been plaved, atop the turntable by
turning the Motor Switch to the "off" poeition (motor stopa turning the Motor Switch to the "of" poition (motor stopa
auttomaticully at the end of any record having the eccentric
final grouve). Lift the electric pickup from the record and
8. When through operating, turn the power "off", and
close the cabinet doors.

## RECORDING

7. Start the turntable by turning the Motor Switch "on,"
then set the Speed Shifter for the desired turntable speed. NOTE-For best results, always record at 78 R. P. M.
If a record of longer duration is deserired, recording may be
dome at $33 /$ R. P. M. Such records should be go marked, 1f a record on
done at $331 / \mathrm{R.P}$. M. Such records should be so mariked,
nad must of course be reproduced at the sume speed. 8. Place the necelle in the outcr groove of the blank record
and ecording will procecd automatically. During this process,
 9. Recording may be interrupted at any time by simply
lifting the pickup from the record. It may be resumed on the
 10. Upon completing a recording, lift the electric pick up
from the record, turn the Motor Switeh "of"" and place the
 cord connected) and place it in an upright position on a table
or any othrr horizontal surface conveniently near the sound
source.
For best resulta, special att-ntion must be given to the
location and arrangerenent of the person or persons presenting
the program. All suunds to be recorded must be directed









Manual Operation
 2. Make sure that the Index Lever is at "Manual.", that
the electric pick up in on itt rubber reat, and that the Mootor
Suitch is in the "of ons peition. 3. Raise the Record Ejector arm to the upper reat position (see paragraph 3 (c) under Automatic Operation).
4. Place the rcoord on the turntable and insert anredle in
the piekup. For needle information, ece paragraph 4 under NOTE-Ordinary stecl nce.lles (full volume or full
tone) can be used with standard ( 78 R. P. M.) records. OPERATION

## Recording Precautions When using the home. recorting facilities of this instru- ment, the (ollowing precuutions must be observed:

 ment, the lollowing precaut (unwarped) 10 - or 12 -inch rccord1. Alwasa place a fat
of the commercial variety benfath the home-rccording record when recording.
2 . To prevent surface sitppage, always recoril with the felt 2. To prevent surface slippage, always recorl with thr fen
recoring pad inserted berween the home-recording and
standard records. This pad nerd not be removed for "playing. Lack" purpures but must never be left on the turntable when
automatie operation is in tended.
2. Use only the special home-recording needle (identified
by ita yellow shank and blunt-point) for both reciding and by it y yellow shank and blunt-point for both recording and
reproducing. Suck necdlee, however, muat not l, unged for
playing otber than home-recorded records. 4. For recording, the needle pressure on the record must
Le increased by placing ther recording weight on the electrie
pickup. This weight must be removed for reproducing either Le increased by placing thi" recording weight on the electric
piekup. This weight must be removed for reprotucing either
the home-recorded or any other record. Radio Recording


 rubber rest, and that the Motor Switch is in the off position
3. Raise the Record Ejector arm to its upper position of 2. Raise the Record Ejector arm to its upper position of
reperation- paragraph 3 (e) under "Procedure-Automatic
Operation-1hongraphi"). 3. Place a thank home-recording record on the turntable
(see paragraphs 1 and 2 of pieceding section "Recordiag
b'recautions") and lower the Record Ejector arm. 4. Insert a home-recording needle in the electric pickup
and place the recording weight on the pickup head. and place the recording weight on "Radio Recording." In
4. Sel the Trasser Swith for "In
this position, the radio program should be heard at reduced
5. Adjust the Radio Volume Control to obtain the currect
recording volume as determined by olserving the flashing of recording volume as deterrinined hy oliserving the flashing of
the two neon-lamp indicators located at the fromt of the play-
 is either "ofr" or ilashing only y at intervals. When hoth lamps
are "off," the volume io too low and when hoth are flashing
continuously, the volume in too high.

## OPERATION-PHONOGRAPH

 of the records on the turnatite. Be rareful not to move theever beyond the proper index hole. Puabh the index pin firmly
 NOTE-The fpeed. stifiter efoond not be moved in.
ward (from the 78 to the $33 / 3 \mathrm{~s}$. P. M. position) while
㽬
7. Adjuat the Receurd Volume Control to obtain the
8. Close the cabinet dixurs to oxtingutith the compartment
lamp and to renter leet prominnent the mechanical noisee
 eqproduction (part iculurly notierable with old recordis) is con-





 2
0 6
6
0
0



PAGE 5-186 RCA
MODEL $380-$ HR
Phonograph Data
RCA-VIC'ROR CO., INC.
Vol tage
orchestra, it would be preferable to group the members in a semi-circle with the stringed instruments nearest the microphone and the horns at the rear.

Adjustment of Recording Volume-Before the actual recording is undertaken, it will be advisable to test for the proper volume as follows:

1. Set the Transfer Switch for "Home Recording."
2. Turn the power "on" (Radio Volume Control rotated slightly clockwise). As for radio recording, make certain that the Index Lever is at "Manual," that the electric pickup is on its rubber rest and that the Motor Switch is "off."
3. Raise the Record Ejector arm and load the turntable with a blank home-recording record, first inserting a standard record and the felt recording pad, then lower the Record Ejector arm.
4. Set the Record Volume Control fully clockwise (turntable now should be rotating) and commence the program which is to be recorded.
5. Regulate the distance between the sound source and the microphone, while observing the flashing action of the neon-lamp indicators at the front of the playing compartment, until both lamps are illuminated continuously or at approximately the same intervals.
6. Turn the Record Volume Control counter-clockwise until the right-hand lamp is either "off" or flashing infrequently; however, do not reduce the setting sufficiently to
change the action of the left-hand lamp. The instrument is now properly adjusted and the test program may be discontinued while making final preparations for recording.

Procedure-After the recording volume is adjusted, leave the Record Volume Control setting intact permitting the turntable to remain in rotation, and proceed as follows:

1. Insert a home-recording needle in the electric pickup and place the recording weight on the pickup head.
2. Set the Speed-Shifter for the deaired turntable speed (see note in paragraph 7 under "Radio Recording").
3. Place the needle in the outer groove of the blank record and commence without delay the program to be recorded.
4. When the recording is complete (see paragraph 9 under "Radio Recording"), lift the electric pickup from the record, turn the Motor Switch "off" and place the pickup on its rubber rest.

## Reproduction of Home Recordings

Home-recorded records (either radio or microphone recordings) may be reproduced in the manner described for manual operation of standard records under "OperationPhonograph." Such records, however, must not be employed with the automatic record changer and always must be reproduced with the special home-recording needle. Always make certain to remove the recording weight from the electric pickup when "playing-back" recordings.

## GENERAL

Fuse-This instrument is protected by a fuse located at the rear of the chassis, under the metal cover marked "Caution: Remove Power Supply Before Removing Cover."' If the fuse burns out, check the power supply connections and rating, and have all tubes tested by your dealer before installing a new fuse. This is a special fuse-obtain replacement fuses from your dealer-do not use any substitute for this fuse.

In districts where the line voltage is always below 115 (225 for 200-250 volt models), the fuse should be
set in the " 110 " position (" 213 " position for $200-250$ volt models). Always disconnect the power cord from the a-c outlet before removing the fuse cover.

Maintenance-With normal use and handling, troublefree service is to be expected. The automatic phonograph mechanism and associated parts, however, should be kept clean and well-lubricated. To insure continued efficient operation, it is recommended that the entire instrument be thoroughly inspected and adjusted by an experienced service man once each vear.

# RADIOTRON SOCKET VOLTAGES (RADIO OPERATION) <br> 120 Volt A. C. Line-Volume Control and Sensitivity Control at Maximum-No signal being received 

Radiotron No.	Cathode to Control Grid, Volt:	Cathode to Screen Grid, Volta	Cathode to Plate, Volts	Plate Current, M. A.	$\begin{aligned} & \text { Heater } \\ & \text { Volta } \end{aligned}$
RCA 58 R. F.	3.1	97	212	7.5	2.5
RCA 56 Osc.	-	-	100	6.0	2.5
RCA-58 lat Det.	9.5	91	206	2.8	2.5
RCA-58 I. F.	7.5	93	208	4.0	2.5
RCA-58 A. V. C.-I. F.	8.5	92	207	3.0	2.5
RCA-56 A. V. C.	12.0	-	--	0	2.5
RCA-55 2nd Det.	0	-	74	8.0	2.5
RCA-56 A. F. Driver	11.0	-	205	5.0	2.5
RCA-56 A. F. Driver	11.0	-	205	5.0	2.5
RCA-59 Power	0	-	394	13.0	2.5
RCA-59 Power	0	-	394	13.0	2.5
RCA-5Z3 Reet.	990-495 R. M. S.			92 Total	5.0

RCA PAGE 5-187
MODEL 380-HR
RCA-VICTOR CO., INC.
Neon Lamp and Switching Data Record Changer Data


Figure H-Anomatic Rerord Changer Adjustments


## REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\underset{\text { Price }}{\text { Liet }}$
	RECEIVER ASSEMBLIES		6447	Volume control (R20, S1)	\$1.92
	RECEIVER ASSEMBLIES		6448	Tone control-Low frequency (R17)	1.04
2730	Resistor-18,000 ohms-Carbon type-l watt (R24)-		6449	Tone control-High frequency (R21).	1.06
		\$1.10	6450	Rheostat-Noise suppressor rheostat	1.24
2747	Cap-Contact cap-Package	. 50	${ }_{6512}^{651}$	Cpacitor- 0.005 mfd . (C37)	.28 1.30
3047		. 50	6537 6539	Switch-Range switch, ${ }_{\text {Coil-Detector coil }}^{\text {(L3, L4) }}$	$\begin{array}{r} 1.30 \\ 1.44 \end{array}$
3047	Resistor- 1,500 ohms-Carbon type- $1 / 2$ watt (R8)Package of 5 .	1.00	6539 6541	Coil-Detector condenser dial and scal	$\begin{array}{r} 1.44 \\ .75 \end{array}$
3085	Capacitor-400 mmind. (C38) .........................	. 30	6561 6562	Coil-Antenna coil (L1, L2, R1, C3).........	1.65 3.04
3118	Resistor- 100,000 ohnns-Carbon type- $1 / 4$ watt (R5)Package of 5	1.00	6564	Transformer-First intermediate frequency transformer (L8, L9, R9, C20, C21, C24)	2.30
3252	Resistor- 100.000 ohms-Carbon type-1/2 watt (R6, R7) -Package of 5	1.00	6565	Transformer-Second intermediate frequency transformer (L12, L13, C28, C29)	2.10
3376	Mount-Fuse mount	. 40	6566	Transformer-Third intermediate frequency transformer	
3435	Resistor- $\mathbf{2 5 0}$ olims-Carbon type- $1 / 2$ watt (R2)--Pack. age of 5	1.00	6567	(L10. LlI)........................................	1.72
3460	Capacitor -1.200 mmfd ( (C31)	. 30		mfd. capacitors (C35, C36).	95
3526	Resistor - 2.000 ohme-Carbon type- $1 / 2$ watt (R4, R32)Packape of 5		6568	Transformer-Interstage audio transformer	3.10
3527		1.00	6571	Capacitor 10 mfd. (C43, C44)	$\begin{array}{r} 1.20 \\ 90 \end{array}$
	Package of 5........................................	1.00	6572 6574	Reactor-Tone control reactor (L14)   Capacitor pack-Comprising two 10.0 mfd. capacitors	. 90
3528	Bracket - Noise suppressor or volume control lamp bracket	. 18	6574	(C32, C41)	1.80
3529	Socket - Noise nuppressor or volune control lamp socket.	. 32	6578	Reactor-Filter reactor (L18)	3.22
353	Shutter-High frequency tone control shutter	. 50	6797	Capacitor-10.0 mfd. (C49).	1.04
3534	Shutter-Low frequency tone control shutte	. 50	684	Shield-Rectifier socket shield and e	. 65
3535	Socket-High or low frequency tone control lamp soc	. 32	7062	Capacitor-Adjustable capacitor (C14)	. 50
3556	Capacitor 0.05 mfd . -Located on antenna coil (C3)	. 3.4	7439	Drum-Dial drum with set screw and the	
3558	Capacitor - 50 mmfd . (C19)	. 36		nute.	35
3564	Bracket-Station relector dial lamp-Moun	. 25	7484	Socket-5-contact Radiotron	. 35
3563	Socket-Station selector dial lamp socket	. 50	7485	Socket-6-contact Radiotron socket	.40
3597	Capacitor-0.25 mfd. (C33, C45)	. 40	7700	Condenser-3-gang variable tuning condenser ( $\mathrm{C} 4, \mathrm{C} 5, \mathrm{C}$,	
3640	Capacitor -0.05 mfid. (C9. C22. C26)	. 25		C10, C11, C12, C16, C17, C18, S2, S3, S4, S5, S6)	7.44
3641	Capacitor-0.I mfd. (C7, C13, C23, C25, C27)	. 35	9468	Trannformer-Power transformer-105-125 volse-50-60	
3643	Capacitor 0.005 mfd ( $\mathrm{C} 3^{9}$ )	. 25		cycles (T'1)	7.75
3652	Screw-No. 10-32-1/4 set serew for bracket and bushing assembly-Package of 10	. 32	9469	Transformer-Power transformer-105-125 volts-25-40 cycles.	11.75
3719	Socket-7-contact Madiotron socket	30		MOTOR BOARD ASSEMBL	
3726	Arm-Range switch operating arm assembly-Comprising arm, link, stads and net merews.	. 45	2893	Spring-Trip lever latel tension spring-Package of 10	. 30
3727	Shaft-Sliaft and hushing assembly for rangeswitch operat-		2917	Washer-Spring washer, "U" type-Package of 10 .	. 25
3747	ing arm-Comprising two washerg, ghaft, bunhing and nut Capacitor- 15 mmfu. (C8)..	. 30	3654	Roller-Guide roller assembly-Comprising bracket roller and guide pin.	. 34
3749	Capacitor -0.1 mfd ( ( 40 )	. 30	3666	Spring-Cable lever tension spring-Package of	. 44
3765		. 34	3670	Finger-Friction finger	. 32
3774	Rexistor- 7.400 ohme-Tapped at 3,800 and 500 ohms ( $\mathrm{R} 25, \mathrm{R} 26, \mathrm{R} 27$ )	. 34	3672 3673	Pin-Manual index lever pin......... . . . . . . . .   Screw-Manual index lever adjustment sere	. 42
3797	Reactor-Volume control compensating reactor (L15) . . . .	. 64	3673	1'ackage of 5	. 20
3798	Kesistor-700 olma-Carbon type-1/2 watt (R18)Package of 5	1.00	3676	Spring-Cam and gear pawl carrier tension spring-Package of 10 .	. 52
3799	Capacitor-80 mmfl ( C 30 )	1.0 .70	3677	Lever-Cahle lever assembly	. 40
3883	Fuse-2-ampere (F1)-1'ackage of 5	40	4059	Screw-Trip lever clutch tension adjuatment screw-Pack-	
4013	Capacitor-200 mmfd (CI)	. 30			22
4035	Switch-Radio-Phonograph switch (SO)	2.10	4060	Escutcheon-Manual-12-10	28
4036	Shield-Low or biglt frequency tone control light shield	. 30	4061	Spring-Main spring-Package of 10	. 38
4037	Shicld-Antenna, detector or oscillator shield..	. 55	4124	Plate-Actuating plate assembly	. 50
4038	Shield-Radiotron shield	. 30	4127	Spring-Actuating plate spring-Package of 10	24
4039	Shield-Radiotron shield-Second detector	. 30	6502	Cam-Cam and gear assembly	1.18
4010	Shield-Radiotron tule shield	. 25	6503	Pawl-Trip pawl assembly	. 40
4041	Cover-Fune cover	. 25	6806	Lever-Manual index lever-Less pin	. 55
4042	Reactor-Volune comtrol series reactor (L16)	$\stackrel{.}{1.20}$	6807	Lever-Trip lever assembly	1.16
4129	Bracket-Bracket and bushing assembly for radio-phono. graph switch shaft-Located on receiver chassis.	,	6808 6809	Clutch-Trip lever friction clutch.... Finger-Manual index finger assembly	. 30
4130	Shield-1R. F. Radiotron shield . . . . . . . . . . .	. 30	6810	Lever-Main spring lever	. 44
5817	Resistor- $\mathbf{2 0 , 0 0 0}$ ohms--Carbon type-3 watt (R15, RI6).	. 25	6846	Lever-Main lever and link assembly	1.45
6186	Resistor- $\mathbf{5 0 0 , 0 0 0}$ obms-Carbon type- $1 / 4$ watt-Located on antenna coil (K1) -Package of 5 .	1.00	7710	Cover-Metal cover fos trip lever and friction finger ansemblies.	. 28
6192	Spriug - - -gang zuning condenser drive cord tension spring -Package of 10.	. 30		MOTOR ASSEMBLIES	
6228	Resistor 200,000 ohms-Carbon type- $1 / 2$ watl (R14, R34. R35, R3()一Package of 5 .	1.0	3777	Motor mounting apring washers and stud aseembly-Comprising three upper and three lower springe, six cup wash-	
6277	Caparitor- 0.1 mfd.-Located on rectitier socket shield (C.50)	. 35	9477	ers, three spring washers, and three studs........ Motor-Motor complete- $105-125$ volts-60 cycles.	
6280	Resistor- 400,000 olims-Carbon typc-3/2 watt (R11, R12. R13)-Package of 5 .	1.00	9479 9478	Motor-Motor complete-105-125 volis-25 cycles.   Motor-Motor complete-105-125 volis-50 cycles.	36.48 25.88
6281	Resintor-1.100 ohme-Carbon type-1/2 watt (R23)Package of 5	1.00		EJECT ARM ASSEMBLIES	
6282	Resistor - 60.000 ohme-Carlon type- $1 / 2$ watt (R22) Package of 5	1.00	3655 3656	Retainer-Ball retainer with three ball bearings Bearing-Ejector tip bearing. . . . . . . . . . .	. 45
6298	Cord-3-gang tuning condenser drive cord-Package of 5.	. 60	3657	Tip-Ejector tip..........	. 30
6300	Socket-4.contact Radiotron socket........	. 35	3658	Ball-Ball bearing-Package of 20	. 30
6312	Capacitir-6.50 mmind. (C15)-Package of 5............	1.50	3662	Plate-Ejector plate-Package of 5	. 95
6.316	Resistor-2.500 ohmis-Carbon type- $/ 2$ watt (K10) Package of 5	1.00	366.5	Screw-Eject arm horizontal adjustment screw and nutPackage of 5	. 25
64.37	Coil-Oscillator coil (L5, L6, L, 7 )	1.24	3729	Roller-Counter balance roller-Located inside of eject arm	. 45

RCA-VICTOR CO., INC.
Schematic


PAGE 5-190 RCA
MODEL DuO 381
RF Assombly Wiring
RCA-VICTOR CO., INC.


## RCA-VICTOR CO., INC.



Record Reproduction


Radio Recording


Home Recording

Figure 5-Schematic Circuits of Audio Amplifier at each Selector Switch Position

RCA-VICTOR CO., INC.


RCA-VICTOR CO., INC.

Record Changer Data

Figure 14-Automatic Record Changer Adjusiments

## DESCRIPTION OF ELECTRICAL CIRCUIT

 ee seen that the ourput of this staze is applied to theA. C. tube through an untuned I. F. transformer. The a straight rectifier, is plate being grounded and only the grid being ised. This tube in ape approx-
 $n$
0
0
0
0
0 rectifed signal produces a voleage drop across ressisis
R-18 and $R-19$ The drop across boot of these resistors
.
 on bands $X$ and $A$.

Figure 4-Sensitivity Control Switching Arrangement
Examining the second detecter, the diode eleccrodes
 a second automatic volume control system for the receiver. The voltage drop is appled to the second

1. F. satage in all band and to the frrst detector and
and first I. F. stage in bands B and C. The change in
automatic volume control systems is made by an additional group of concacts on the band selecoor
switch. Figure 3 shows the switching arrangemens for changing the A. V. C. syseem in the various bands. At this point, an explanation as to why two auro-
matic volume control systems are used and why the
sensitivicy control is changec in different bands may sentic vivity conc control syssems are echanged in different bands may
be in order.

[^5]

The signal enters the receiver through a shielded
necenna lead and is applied to the grid of the $R$. F. antenna lead and is applied to the grid of the R. F.
cube through the antenna coupling transformer. The secondary of this transformer is tuned to the signal
frequency by means of one unic of the gang.capacitor. 50
0
0
0
0
0
0
0
0
0 the signal frequency by a unit of the gang-capacitor. Combined with the signal in the first detector is the
local oscillator signal, which is always at a 460 K . C . Ocal oscilator signal, which is atways at a 40 ,
frequency difference
higher) from the signal frequency. frequency difference (higher from the signal frequency.
A separat coils sycem and the third unin of the gang.
capacitor are used in the oscilator circuit.
In conjunction with these chrre tuned circuits it is
well co point our that five different groups of tuned well to point out that five different groups of runed
circuits are used, one group for each cuning band. A five-position seleccor switch is provided for selecting
the band in which the desired signal is located. In addition to selocting the desired coil system, addicional groups of contacts are provided for shor-c-circuiting
the prcceceding lower frequency R. F. and detector coils
 prevent ce.a spost due to absorption effects casesed
 requency band. This gang swich also has additional
contacts for performing ocher functions which will
be discussed.

Two automatic volume control systems are used because of the different receiving conditions in the various bands. For example, in the broadcase and long-wave band ( X and A ) signal levels are very high. Also due to the use of an aurally compensated volume control, a constant input to the second detector must be maintained. From this it is evident that the double channel I. F. automatic volume control is ideal. It maintains a constant input to the second detector and yet does not function on an extremely weak signal. In the short-wave bands, however, conditions are different. Signal strengths are always very low and fluctuate widely. For this reason it is important to have some automatic volume control action below the level at which the double channel system works. This is provided by the tube marked 2nd detector and 1st A. F. which functions on the first detector and two I. F. stages on the short-wave bands. It should be noted that this action is present on the second I. F. stage on all bands. This further flattens the action of the double-channel system in bands $X$ and $A$.

At this point it is well to examine the sensitivity control, which also changes on different bands. The sensitivity control adjusts the residual bias on the R. F. and first detector stages in bands $X$ and $A$ while it controls the R. F., 1sr detector and both I. F. stages on bands B, C, and D. Figure 4 shows the switching arrangement used.

The sensitivity control is changed so that in bands X and A it controls the R. F. and 1st detector while in bands B, C, and D it controls the R. F., 1st detector, 1 st I. F. and 2nd I. F. stages. The reason for this is that for a given degree of sensitivity in bands $X$ and $A$ the residual bias will be considerably higher in the R. F. and 1st detector stages than in the bands B, C, and D used. This is to prevent possible overloading of these stages due to the high-signal strengths encountered in bands $X$ and $A$. Also, in bands B, C, and $D$, for a given degree of sensitivity the R. F. stage operates at a higher gain, which gives an improved signal to noise ratio. This is caused by the paralleling of the sensitivity control with an 850 -ohm resistor in these bands.
Returning to the second detector, we find its ourput circuit is coupled to the grid circuit of the driver stage through a compensated volume control system, tone concrol system and transformer. The volume control uses two stages of compensation, which serves to increase the high and low frequencies as the volume is reduced. This compensates for the natural loss in sensitivity of the human ear to the high and low frequencies at low sound levels. A low and a high frequency tone control enables the listener to alter the fidelity of the receiver to his individual taste.

The driver stage, which is a pair of RCA-76 Radiotrons connected in push-pull, is transformer coupled to a pair of RCA-42's which are the output stage. A feature of the output stage is the use of fixed bias, which reduces distortion and increases the available output. This is accomplished by the use of the drop
across R-38 and R-39, which carries the entire D. C. output from the rectifier. Naturally the output stage uses but a portion of the total rectified current and current variations in it will have but little effect on the drop across the resistor.

The output of the power stage is coupled through a step-down transformer to the voice coil of the loudspeaker. A separate winding, which is shunted by a capacitor, has been provided in this transformer which gives a very sharp, high-frequency cut-off for the entire

audio system. This greatly reduces the reproduction of any high-frequency interchannel interference or other disturbance of a high-frequency character which is outside of the useful musical range.
The loudspeaker used is of the large-field ten-inch type. It is fully capable of handling the high-power, high-quality output of the receiver and converting it into faithful sound reproduction.

Figure 6 shows the loudspeaker wiring while Figure 7 shows the chassis wiring diagram. Figure 9 shows the assembly wiring diagram.

## PHONOGRAPH AND RECORDING

The record reproducing facilities consist of a low impedance magnetic pickup with its associated inertia type tone arm, a compensated volume control, the audio amplifier of the receiver and the loudspeaker of the receiver. The radio receiver is made inoperative by the switch used for changing to record reproduction.

The recording facilities use the audio amplifier of the radio receiver, the output of which is connected to the magnetic pickup instead of the voice coil of the loudspeaker. The input to the amplifier may be either from the microphone or from the radio receiver, depending on whether radio recording or home recording is desired. It should be noted that when radio recording is being used, the loudspeaker is connected across the output through a resistor so that the program being recorded may be monitored at the same time.

Figure 7 shows schematic circuit diagram of the audio circuits at each of the four selection switch positions.

# RCA-VICTOR CO., INC. 

 SERVICE DATA
## (1) LINE-UP PROCEDURE

The line-up procedure of this receiver is somewhat involved and it is important that these instructions be carefully followed when making adjustments. Properly aligned, this receiver has outstanding performance; improperly aligned, it may be impossible to reccive signals on all bands.

## Equipment

To properly align this receiver, the following equipment must be used. This is a modulated R. F. oscillator having proper frequency range, an output indicator, an alignment tool, a tuning wand, and a "dummy" Radiotron RCA-76. These parts, which are shown on page 20, have been developed by the


Figure 8-Location of Various Coils in Shields
manufacturer of this receiver for use by service men to duplicate the original factory adjustments. The "dummy" Radiotron, RCA-76, is obtained by removing one heater prong from an orherwise perfect tube.

## Checking with Tuning Wand

Before making any R. F., oscillator or first detector adjustments, the accuracy of the present adjustments may be checked by means of the tuning wand (Stock No. 6679). The tuning wand consists of a bakelite rod having a brass cylinder at one end and a special finely divided iron insert at the other end. Inserting the cylinder into the center of a coil lowers its inductance, while inserting the iron end increases its inductance. From this it is seen that unless the trimmer adjustment for a particular coil is perfect at alignment frequencies, inserting one end of the wand may increase the output of a particular signal. A perfect adjustment is evidenced by a lowering of output when either end of the wand is inserted into a coil.

The shields over the R. F. coil assembly have a hole at their top for entrance of the tuning wand. The location of the various coils inside of the shield is shown in Figure 8. An example of the proper manner of using the tuning wand would be to assume the external oscillator were set at 1720 and the signal tuned in. The A. V. C. tube would be replaced by the "dummy" RCA-76 and the outpur indicator connected across the voice coil of the loudspeaker. Then the tuning wand should be inserted, first one end and then the other end, into the top of the three transformers at the left of the R. F. assembly, facing the front of the chassis. A perfect adjustment of the trimmer would be evidenced by a reduction in output when each end of the wand is inserted in each of the three transformers. If one end -for example, the iron end-when inserted in one coil caused an increase in output, then that circuit is low. An increase in the trimmer capacitance would be the proper remedy.

## (2) I. F. TUNING CAPACITOR ADJUSTMENTS

Although this receiver has three I. F. stages, two for the signal and one for the A. V. C., only three transformers having six adjustable capacitors require adjustment. The fourth transformer is in the A. V. C. circuit and is broadly tuned, not requiring adjustments. The transformers are all peaked, being tuned to 460 K. C.

A derailed procedure for making this adjustment follows:
(a) Connect the output of an external oscillator tuned to 460 K . C. between the first detector grid and ground. Connect the output indicator across the voice coil of the loudspeaker. Replace the A. V. C. tube in the receiver wirh the "dummy" RCA-76.
(b) Place the oscillator in operation at 460 K . C.; place the receiver in operation and adjust the station selector until a point is reached (Band A) where no signals are heard and curn both the volume and sensirivity controls to their maximum position. Reduce the oscillator inpur until a slight indication is obtained in the output indicator.
(c) Refer to Figure 10. Adjust each trimmer of the I. F. transformers until a maximum output is obtained. Go over the adjustments a second time.

This completes the I. F. adjustments. However, it is good practice to follow the I. F. adjustments with the R. F. and Oscillator adjustments due to interlocking which always occurs.

## (3) R. F. OSCILLATOR AND FIRST DETECTOR ADJUSTMENTS

Four R. F., oscillator and first detector adjustments are required in bands " $X$ " and " $A$." Three are required in bands " $B$ " and " $C$ " while none are required in band "D." Band "D" uses the second harmonic of the oscillator while the detector and R. F. coils do nor have trimmers.

To properly align the various bands, each band must be aligned individually. The preliminary set-up requires the external oscillator to be connected between the antenna and ground terminals of the receiver. The output indicator must be connected across the voice coil of the loudspeaker while the "dummy" RCA-76 must be placed in the A. V. C. socker. The sensitivity and volume controls must be at their maximum position and the input from the oscillator must be at the minimum value possible to get an output indication under these conditions. In the highfrequency bands, it may be necéssary to disconnect the oscillator from the receiver and place it at a distance in order to get a sufficiently low input to the receiver.

The Dial Pointer must be properly set before starting any actual adjustments. This is done by turning the variable capacitor until it is at its maximum capacity position. One end should point exactly at the horizontal line at the lowest frequency end of band " $A$," while the other end should point to within $1 / 66^{\prime \prime}$ of the horizontal line at the highest frequency end of band " $A$."

Figure 10 shows the location of the trimmers for each band. Care must be exercised to only adjust the trimmers in the band under test.

## Band " $X$ "

(a) Tune the external oscillator to $410 \mathrm{~K} . \mathrm{C}$., set the pointer at $410 \mathrm{~K} . \mathrm{C}$. and adjust the oscillator, detector and R.F. trimmers for maximum output.
(b) Shift the external oscillator to $175 \mathrm{~K} . \mathrm{C}$. Tune in the 175 K . C. signal irrespective of scale calibration and adjust the series trimmer marked 175 K . C. on Figure 10, for maximum output, at the same time rocking the variable tuning capacitor. Then readjust at 410 K . C. as described in (a).

## Band "A"

(a) Tune the external oscillator to $1720 \mathrm{~K} . \mathrm{C}$. ., set the pointer at 1720 K . C. and adjust the oscillator, detecror and R. F. trimmers for maximum output.
(b) Shift the external oscillator to 600 K . C. Tune in the 600 K . C. signal irrespective of scale calibration and adjust the series trimmer, marked 600 K . C. on Figure 10, for maximum output, at the same time rocking the variable tuning capacitor. Then readjust at 1720 K . C. as described in (a).

## Band " B "

(a) Tune the external oscillator to $5160 \mathrm{~K} . \mathrm{C}$., and set the pointer at 5160 K . C. Adjust the oscillator trimmer for maximum output. The trimmer should be set at the first peak obtained when increasing the trimmer capacitor from minimum, to maximum.
(b) Check for the image signal, which should be received at approximately 4240 on the dial. It will be necessary to increase the external oscillator outpur for this check.
(c) The antenna and detector trimmers should now be peaked for maximum output.

## Band " C "

(a) Tune the external oscillator to $18,000 \mathrm{~K} . \mathrm{C}$., and set the pointer at 18 M . C. Adjust the oscillator trimmer for maximum output. The trimmer should be set at the first peak obtained when increasing the trimmer capacity from minimum to maximum.
(b) Check for the image signal, which should be received at approximately 17,080 on the dial. It may be necessary to increase the external oscillator output for this check.


Figure 10-Location of Various Trimmer Capacitors

PAGE 5-198 RCA
MODEL Duo 381
Neon Lamp Test

Voltage
(c) Reduce the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal disappears. The first detector circuit is then at the oscillator frequency and the RCA-6A7 tube is blocked. Then increase the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal is peaked for maximum ourput.
(d) The antenna trimmer should now be peaked for maximum output. It is not necessary to rock the main tuning capacitor while making this adjustment.
Band "D"

No adjustments are required for Band D.

## (5) VOLTAGE READINGS

The following voltages are those at the various tube sockets while the receiver is in operating condition. No allowance has been made for currents drawn by the meter, and if low-resistance meters are used, such allowances must be made. Figure 13 shows the location and voltage at each socket contact.

## (6) TESTING NEON LEVEL INDICATING LAMPS

Two Neon Level Indicating Lamps are provided so that a visual indication of the recording level may be obrained at all times. These lamps normally give long service without attention. However, if failure occurs, and all circuits have been checked and eliminated as possible source of failure, the lamps may be


Figure 11 -Testing Circuit
easily checked as indicated in the circuit shown in Figure 11. The method for checking involves testing for lighting between certain voltages. The lamps must not light before 52 volts have been applied and must not require a voltage greater than 64 volts to cause them to light. Lamps requiring different voltages from these are defective and must nor be used.

Maximum Sensitivity-No Signal-120-Volt A. C. Input						
$\frac{\text { Radiotron No. }}{\text { RCA-6D6-R. F. }}$		Cathode to Ground, Volts	Screen Grid to Ground, Volts	Plate to Ground, Volts	Cathode Current, M. A.	Heater   Volts,   A. C.
		2.3	100	231	8.8	6.3
RCA-6A7	Osc.	3.0	-	232	10.9	6.3
	Det.		100	238		
RCA-6D6-ist I. F.		7.0	100	236	3.5	6.3
RCA-6D6-2nd I. F.		7.0	100	236	3.5	6.3
RCA-6D6-A. V. C.-I. F.		6.0	100	236	4.0	6.3
RCA-76-A.V.C.		4.7	-	0	0	6.3
RCA-85-2nd Det.		0	-	60	7.2	6.3
RCA-76-A.F.		11.0	-	235	5.5	6.3
RCA-76-A.F.		11.0	-	235	5.5	6.3
RCA-42-Power		0	240	365	23.0	6.3
RCA-42-Power		0	240	365	23.0	6.3
RCA-5Z3	Recrifier	-	-	$\begin{gathered} 768-384 \\ \text { RMS } \end{gathered}$	104.0	5.0

Power Transformer connected to 120 -vole Tap.

## RCA-VICTOR CO., INC.

## (7) SERVICE DATA ON MAGNETIC PICKUP

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance it is similar to that of the older type, details of construction are considerably different. It consists essentially of a


Figure 12-Details of Magnetic Pickup
chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequencyresponse characteristic is substantially flat from 50 to 5,000 cycles.

## (8) REPLACING MAGNET COIL, PIVOT RUBBERS, ARMATURE OR DAMPING BLOCK

In order to replace a defective coil or the hardened pivot rubbers (see Figure 15), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.
(d) Remove screws A and B, Figure 15 and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mech-anism-with the pole pieces upward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At


## RCA-VICTOR CO., INC.

the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have


Figure 15-Pickup Nomenclature
the armature centered properly. The adjustment is made by loosening screws $A$ and $B$ (Figure 15), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tone arm.
In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be .009" on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

## (9) REPLACING THE DAMPING BLOCK

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is
somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure 16, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called acid flux). Afrer tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place,


Figure 16-Special Soldering-Iron Tip
as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the air gap as explained under (h), section (8).

## (10) AUTOMATIC RECORD CHANGING MECHANISM

The automatic record changer used in this instrument is of simple design and fool-proof construction. Under normal operating conditions service difficulties should be negligible. However, in event adjusements are required, a reference to Figure 14 will disclose the proper method of making all adjustments.

RCA-VICTOR CO., INC.
REPLACEMENT PARTS

$\begin{aligned} & \begin{array}{l} \text { Sock } \\ \text { No. } \end{array} \end{aligned}$	Discalition	$\begin{array}{\|l\|l\|} \substack{\text { Pise } \\ P_{\text {tice }}} \end{array}$	Stack	pron	$\underset{\text { Price }}{\substack{\text { Lise }}}$
	RECEIVER ASSEMBLIES	85	6242		
4372	Bracket-2				
	Bracke--High				
			2240	Resiscor-30,000 ohms - Carbontype-1watt	
$\begin{aligned} & 2747 \\ & 4907 \end{aligned}$	Cap-Concacte		5817	Resiscor-20,000 ohms -Catbon type- $\mathbf{3}$ wats	
			6997	Resissor-Total resistance 14,470 ohms with$160-60-350-7150$ and 6750 ohm $\times$ crions $1(R 38, ~ R 39, ~ R 40, ~ R 41, ~ R 42) . ~$	
4376	Capacioor-250 mmfd. - Locrated on second intermediate frequency				
4404		${ }^{80} 8$		Rheostat-Noise suppressor theostat (R4) Shield-First I. F., AVC-I. F. or second 1. F.	1.30
	${ }_{\text {a }}^{\text {age of } 5 \ldots \ldots \ldots}$				
4070	$\mathrm{Capazatior}^{\text {a }} 004 \mathrm{mfd}$. (C)	35 42 4	4452	Shield-Rediocron shicld	
3643	Capacior - 005 mfd ( $(6)$	25		Shirla shield.	
${ }_{3}^{6512}$	$\mathrm{C}_{\text {apaciior-}-005 \mathrm{mfd}}$ (Ca)	28	7800	Shield-Shield for ineermediate frquency coils.	
3888 388		35	3859	Socker-4-contact retificr Radiorron so	
3765	Capacitor- $025 \mathrm{mfd}$. ( $C 42$ 2	. 25	7484	Sockec-5-contact AVC R2d	
4645	Capacitot-1 mfd. (C32, C41, C43, C	25	7485	Sockee-6- -onact output	
	Capacior- 1 mfd. (C37, C38, C47)	. 32	7796	Swich-Operating swicch (513)	
779	Capacitor- 035 mfd (C57)	42	7795	Tonc control-Low frequency (R	
		1.05	7797	Tone control-High frequency (R34)	1.35
7787	Capacior 18 mfd. (C68)	1.10	7794		
	and one 5 mfd. cappcitors	. 10	785	Transformer-Driver tran	
	Capatior pack-Comprising one 4 , one 8 and		7791		
4358	Clamp-Eiec	15			
	Coil -Scoond derector plaze choke coil (138)			volt, 50-60 cycle (Ti).	
371	Cover-Fuse mounc	15	9506	Transformer - Power trans	
	Cover-Terminal board co			25-40 cycle	
	sco-3-2mpere-P	40	7792		
	ount-Fux mount 105-125   ment			${ }_{\text {Cras) }}^{\text {trasf }}$	
7784	Reactor-Tone control re	1.40	7793	Tansform	
	Reactor-Volume control			23)	
6135	Resisior-270		7786	Transforn	
	(R3, R7, R14, R20)		7798		4.25
	30) Packaze of 5	1.00			
4375	S-Carb			R. F. UNIT ASSEMBL	
6247				$\mathrm{C}_{2}$ 2aritor-4.5 mmid ( C 10 )	
	1)-Packige of 5	1.00		$\mathrm{C}_{2}$	
4687	Resi		4413		
	Package of 10	2.00	4412	$\mathrm{C}_{2}$ Pcitior-1120 mmfd ( (25)	
3110	Resiscor- 25.000 ohms-Carbon cype-1/		4524		
	stor-60.000 ohms Carbon	1.00	4417		34 25 25
	It (R32)-Packaze	1.00	4415		
		1.00	${ }_{3861}$	C	
			4420	${ }^{\text {ampm-Ancrona }}$ lead dimp and	
	23)-Packaze of 5	1.00			
4368	$\begin{aligned} & \text { Resiscor } 400,000 \text { ohms- } \mathrm{Ca}_{2} \\ & \text { wate (R18, R19)-Package } \end{aligned}$		7803		

## RCA-VICTOR CO., INC.

REPLACEMENT PARTS-(Continued)



RCA PAGE 5-203
MODEL AR-1229
RCA-VICTOR CO., INC.
Schematic
Chassis Details

PAGE 5-204 RCA


# PART IV—SERVICE DATA 

Type and Number of Tubes Used.
1 RCA-41, 1 RCA-78, 1 RCA-6A7, i RCA-6B7-Total, 4
Total Battery Current (With 6.3 volts between chassis and $A$ (hot) terminal) 5.35 Amperes
Undistorted Output $\qquad$
Loudspeaker Field Current
1.35 Watts

Filtered D. C. Voltage from Rectifier. 1.35 Amperes

Total Plate Current . 227 Volts

This four tube Superheterodyne Police Receiver is of compact construction and gives excellent performance. Fea"ures such as unit construction (one unit contains the receiver, "B" battery eliminator and loudspeaker), ease of installation, freedom from ignition noise and excellent sensitivity, selectivity and tone quality characterize this instrument.

## "B" Battery Eliminator

This receiver uses a vibrator-type Inverter-Rectifier that provides a source of direct current voltage for use as plate and grid supply for all tubes. This unit is accurately adjusted and sealed at the factory and service adjustments should not be attempted.

## Line-up Capacitor Adjustments

The three R. F. line-up capacitors and two I. F. tuning capacitors are accessible and may require adjustments. The R. F. adjustments are made at 2508 K. C. and the I. F. adjustments at 175 K. C. The R. F. adjustments can be made with the receiver in its case, access to the adjusting screws being obtained through a slot in the bottom of the case. For the I. F. adjustments, however, it is necessary to remove the rear cover in order to couple the oscillator to the first detector. The following procedure should be used for these adjustments:

## R. F. Adjustment

A satisfactorily accurate and rapid adjustment of the three R. F. line-up capacitors can be made by ear; although, for optimum results, the use of an output meter connected across the loudspeaker voice coil is recommended. The latter method however, involves removal of the rear cover to connect the meter, thus in turn eliminating the shielding effect of the case. Temporary shielding for the bottom and tube sides of the chassis and for the transformer therefore must be provided to prevent vibrator interference.
(a) Procure a modulated oscillator giving a signal at 2508 K. C. and a non-metallic screw driver. Stock No. 9050 oscillator and 7065 screw driver are suitable.
(b) Couple the output of the oscillator from antenna to ground, set the dial at 97 , and the oscillator at 2508 K . C.
(c) Place the oscillator and receiver in operation and adjust the oscillator output so that a weak signal is obtained in the loudspeaker when the volume control is at its maximum position.
(d) Then adjust the three line-up capacitors until maximum sound in the speaker or maximum deflection of the output meter is obtained. Readjust these capacitors a second time as there is a slight interlocking of adjustments.

## I. F. Adjustments

In order to make the I. F. adjustments, it is necessary to remove the rear cover, due to the fact that the external oscillator must be connected between the control grid of the first detector and ground. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at 175 K. C., a non-metallic screw driver and an output meter.
(b) Remove the receiver from its case, shield the transformer and tubes as described under R. F. adjustments, place the receiver in operation and connect the oscillator output between the first detector and ground. Connect the output meter across the voice coil of the loudspeaker. Then connect the antenna lead to ground and adjust the tuning capacitor so that no signal except the I. F. oscillator is heard at maximum volume. With the volume control at maximum, reduce the external oscillator output until a small deflection is obtained. Unless this is done, the action of the A. V. C. will make it impossible to obtain correct adjustments.
(c) Each transformer has but one winding that is tuned by means of an adjustable capacitor, the other windings being untuned. The capacitors should be adjusted for maximum output.

At the time I. F. adjustments are made it is good practice to follow this adjustment with the R. F. adjustments, due to the interlocking that always occurs. The reverse of this, however, is not always true.

## Practical Hints on Installation

The following suggestions may prove useful when making installations on the particular cars mentioned.

Chevrolet 1933-Mount chassis on left side, end against car bulkhead and use short flexible shaft. Use both capacitors, one on the ammeter and one on the generator. Use all suppressors. Place a copper screen under the toe board on right side, $10^{\prime \prime} \times 10^{\prime \prime}$ to prevent the body from radiating ignition interference which may be picked up by the antenna. This screen must be grounded.

Plymouth 1933-Mount chassis on left side, back against car bulkhead and use $33 \geqslant 8^{\prime \prime}$ flexible shaft. Use both capacitors, one on the ammeter and one on the generator. Use all suppressors.

Ford V-8 1932 or 1933-Mount chassis on left side, end against car frame and use short flexible shaft. Use one capacitor, connected to the generator. Install eight spark plug type suppressors only, no distributor suppressor being necessary.

The majority of cars will be found to be entirely free from ignition noise when the standard equipment is used. Usually mounting the chassis on the right side of the bulkhead will be found most desirable, although if a heater is used, the left side will be preferable.

## TUBE SOCKET VOLTAGES

### 6.3 Volt Battery-No Signal

Tube No.		Cathode to Ground	Cathode to Screen Grid Volts	Cathode to Plate Volts	Cathode Current M. A.	Heater Volts
RCA-78 R.F.		4.42	83	222	5.25	6.0
RCA-6A7	First Detector	4.42	83	222	11.0	6.0
	Oscillator	4.42	-	223	Total	
RCA-6B7 Second Detector		3.22	84	218	5.25	6.0
RCA.41 Power		13.0	214	200	26.0	6.0

## REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	List Price
	RECEIVER ASSEMBLIES		3652	Screw-Self locking No. 10-32-14" cupped point bet bcrew -For flexible drive shaft-Package of 10	\$0.32
2240	Resistor-30,000 ohms-Carbon type-1 watt (R5)	30.22	3690	Strap and bracket assembly-Comprising one screwa, one lockw asher and one strap	. 40
2747	Cap-Contact cap-Package of 5	. 50	¢ 3718	Bracket-Control hox dash mounting bracke	. 25
3218	Resistor- $\mathbf{6 0 0}$ ohms-Carbon type - $5 / 4$ watt (R7)-Pack age of 5 .	1.00	3718 3757	Coupling-Slotted coupling for end of flexible drive shaftPackage of 5	. 40
3536	Capacitor-Comprising two 5.0 mfd. capacitors (C17, C22).	1.10 .38	3758	Connector-For control box end of flexible drive shaft-	. 68
3572	Socket-Radiotron 7 -contact socket....			Package of 5...	.90
3584	Ring-Antenna R. F. or oscillator coil retaining ring Package of 5 .	.40	$\begin{array}{\|c\|c\|} \hline \text { G5021 } \\ \hline 6496 \end{array}$	K nob-Station selector $\mathbf{k}$ nob-Package of $5 \ldots \ldots . . .$.   Shaft-Flexible drive shaft complete with connectors-	1.60
3602	Resistor- 60,000 ohms-Carbon type Package of 5 .	1.00		Approximately $2433^{\prime \prime}$ long Shaft-Flexible drive shaft complete with connectors-	
3616	Capacitor-300 mmfd. (C15, C18)	$\begin{array}{r}.34 \\ .38 \\ \hline\end{array}$	649	Standard length-Approximately $337 / \mathrm{s}^{\prime \prime}$ long	1.75
3617	Capacitor-0.005 mfd. (C21)	.38 .38	6499	Volume control-Combination volume control and switch	1.36
3618	Capacitor-0.02 mfd. (C16)......	. 35		(R8)	. 24
3621	Coil-Choke coil-Located on resistor board (Lillat . . . . . . .	. 30	6500	Nut-Volume control and swith	
3623 3632	Shield-Antenna R. F. or oscillator coil shield.   Resistor- 500 ohms-Carbon type-1 watt (Rii)-Pack-	1.10	6531	$\qquad$   Approximately 12 38' long.	. 85
3636		1.70	6532	Shaft-Flexible drive shaft-Complete Approximately 18 78 $\mathbf{z}^{\prime \prime}$ long.	$\begin{array}{r}1.24 \\ \hline 88\end{array}$
	(L7, L8, C14)..	1.74	6784	Scalo-Dial scale	.58 3.70
3637	Transformer-Second intermediate frequency transiormer (L9, L10, C19).	1.65	G7850   G7851	Box-Control box complet Cover-Control box cover	. 44
3641	Capacitor- 0.1 mfd ( CB )	. 90			
3645	Knob-Tone control knob-	. 22		miscellaneous parts	
3695	Capacitor-375 mmfd. (C24.	. 22			
3696	Capacitor -40 mmfd . (C9).	. 40	3466	Connector-Antenna lead	. 60
3699	Capacitor- 720 mmfd (C20).   Resistor-250,000 ohros-Carbon		3646	Fuse-20 amperes-Package of 5	. 40
3744	Resistor-250,000 ohme-Carbon Package of 5 .	1.00	364	Nut-Cap nut and lock washer-Package of	35
3745	Capacitor-745 mmfd. (Cl2)	. 34	3648	Scrow-No. 10-32-5/6' cap screw	32
374	Capacitor-800mfd. (C.32).	. 25			
3920 3921	Capacitor-. 003 mfd . (C23) ...........................	. 25	3689	sembly-One set	. 30
	3-gang variable tuning condenser-Comprising three spacers, three screws, three washers and three lockwashers	. 34	3791	Bushing and plate assembly-Flexible drive shaft bushing with plate, mounting gerews, rubber bushings, and washera-Located on main case.	. 30
3922	Resistor-300,000 ohms-Carbon type- $1 / 4$ watt (R6	1.00	3827	Cable-From fuae connector to ammeter . . . . . . . . . . . . .	. 10
6135		1.00	4051	Bumper-Rubber bumper used in mounting receiver chassis -Package of 4 .	. 20
6192	Package of 5   Spring-Tuning condenaer drive cord tension springPackage of 10	1.00 .30	3856	Clip-Spring clip-Grounds receiver chassie to metal housing-Package of 10	.30 .20
6242	Resistor-2 megohm-Carbon	1.00	84	Clamp-Cable clamp-Package of 10...............	.20 .70
	Package of 5 ........e	. 60	G5046	Escutcheon-	. 50
64	Coil-Oscillator coil assembly (L5, L6)	.74	G5047	Escutcheon-Metal label for	. 56
6490	Tone control switch	. 35	151	Suppressor-Spark plug	. 56
6492	Capacitor-Comprising one	1.08	6152	Suppressor-Di	56
		. 40	175	Suppresso	46
493	Drum-Tuning condenser drive dram. capacitors (C1, C	. 28	6494	Capacitor-Ammeter capacitor	72
514	Capacitor-Comprising two Cable-Shielded cable with antenna connoctor	. 32	6495	Capacitor-Generntor capacitor-0.5	2
515	Cable-Shielded cable with an	. 16	6670	Suppressor-Spark plug suppressor--'Elbo	6
516	Connector-Fuse connector....	1.40	7065	Screwdriver-For R. F. and I. F. adjustr	80
17		. 94	7621	Antenna-Roof antenna-Paper type (Brown)	5
6540	Coil-R. F. coil assembly (L3,	. 88	7622	Antenna-Roof antenna-Paper type (Gray)	1.50
6731	Coil-Antenna coil (L1, L2) ...	2.00	7622	Housing-Front section of housing complete with mounting	
6732	Transformer-Interstage audio	. 40	7686		3.48
7485	Socket-Radiotron 6-contact sock				7.84
7600			7689		
	0.5 mfd. two 4.0 mid . and one 375 mmid . capacitors (L13, Li6, C25, C26, C29, C30).	4.06 2.84	7699		1.92 33.50
7601	Condenser-3-gang variable t	, 4	G9050	Oscillator-Test oscillator-150 to $\mathbf{2 5 , 0 0 0}$ K. C.	
9049	Tranaformer-Power transfor			REPRODUCER ASSEMBLIES	
	CONTROL BOX ASSEMBLIES			Transformer-Output transformer (T3)	1.50
	Key-Volume control and switch	. 18	607	Screen-Metal screon.	44
3650	Screw-Self locking No. 10-32- $\mathbf{f}^{\prime \prime}$ fulldos point set screw -Package of 10	. 32	7608	Coil assembly-Comprising field coil, magnet and cone support (L14)	2.40
3651	Screw-Self locking No. 10-32- $\mathbf{n}^{\prime \prime}$ cupped point aet screw -Package of 10	. 32	9023	Cone-Reproducer cone complete (L11)-Package of 5	5.00



RCA-VICTOR CO., INC.

## Electrical Specifications

Voltage Rating.
200-230 AC or DC Frequency Rating (AC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-60 Cycles Power Consumption............AC 60 Cycles-105 Watts-DC-85 Watts Number and Types of Radiotrons. Undistorted Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Watts Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540 KC C-1500 KC


Figure C-Location of Line-UP Capacitors
This receiver is a fivetube Super-Heterodyne designed to operate on AC or $\mathbf{D C}$ over the voltage and frequency range indicated. Features such as compact construction, dynamic speaker, single Pentode Output tuhe and
the inherent sensitivity, selectivity and tone quality of the Super-Heterothe inherent sensitivity, selectivity an
dyne are included in this instrument.

The circuit consists of an R. F. stago using Radiotron RCA.78, a combined oscillator and first detector using Radiotron 6A7, an I. F. trans. former using two tuned circnits, a second detector uning Radiotron RCA-77 and a power atago nsing Radiotron RCA-43. The rectifier is Radiotron RCA-12Z3, which is used in a half-wave circuit.

## Line-Up Capacitor Adjustments

The line-up capacitor adjustmonts for the I. F. stage and for the R. F. circuite should be made in the following manner:
(a) Procure a modulated oscillator giving a aignal at 175 KC and 1400 KC . An ontput meter and non-motallic screw driver are also necessary. The Stock No. 9050 test oscillator and Stock No. 7065 screw driver are suitable for this purpose. Figure $C$ shows the location of the I. F. capacitors.
(b) The I. F. line-up capacitors should he first adjusted. This is done by placing the oscillator in operation at 175 KC , coupling its output between the control grid of the first detector and ground, connecting the output meter across the cone coil of the loudspeaker and adjusting the two I. F. line-up capacitors until maximum output is obtained.
(c) After the I. F. circuits are aligned, the R. F. and oscillator circuits are adjusted at 1400 KC . Prior to making the adjustment, however, the dial should be checked. This is done by making sure the dial indicator reads 530 (indicator in center position) when the tuning capacitor rotor plates are fully meshed with the stator plates. The adjustments are then made in similar manner as tbat of the I. F. except that the oscillator is set at 1400 KC , its output is connected from antenna to ground of the receiver, and the dial is set at 140. The adjustment is made with the trimming capacitors located on top of the gang capacitor and each capacitor is adjusted for maximum output.

## REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchaséd from authorized dealers

Stock	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	Stock No.	DESCRIPTION	List   Price
	RECEIVER ASSEMBLIES		6228	Resistor 200.000 ohms-Carbon type- $1 / 2$ watt ( H 4 ) Package of 5	\$1.00
2747	Cap-Contact cap-Package of 5	\$0.50	3700	Resistor 450,000 ohms-Carbon type-1/2 watt (R6) -	
3710 3711	Capacitor-60 mmfd. (C15)	.36 .40		Package of 5   Resistor-500 ohms-Carbon ty - 1 watl (H8)-Pack-	00
3711   3712   375	Capacitor-80 mmfd. Capacitor -400 mmfd . (C9) (14)	. 40	3632	Resistor-500 ohins-Carbon type-l watl (R8)-Package of 5	. 10
3754	Capacitor -1150 mmfd . (C8)	. 50	2963	Resistor 8,000 ohme-Carbon type-1 watt (R10)-	
3701	Capacitor 0.01 mfd ( (C19)	. 30		Package of 5.	1.10
3888	Capacitor - 0.05 mfd . (C16)	. 25	6114	Resistor-20,000 ohms-Carbon type-l walt (RII)	
3916 3917	Capacitor-0.05mfd. ${ }_{\text {Capacitor- } 0.25 \mathrm{mfd} \text { ( }{ }^{\text {C20 }} \text { (17) }}$	. 40	3914	Package of 5 . ...-Ficxible type (Ri3)	1.10 .28
375	Capacitor-Comprising two 0.i nifd. and one 0.25 mfd.		4718	Resistor-205 ohms-Porcelain type-(R15)	90
		. 60	3915	Resistor-320 ohms-Porcelain type-(RR14)	88
6621	Capacitor-Comprising one 0.05 and one 0.1 mfd. ( C , , C 25 )	46	3584	Hing-Antenna R. F. or oscillator coil retaining ring - Package of 5 . ....................................	. 40
6728	Capacitor-Comprising one 4.0 mfd ., one 10.0 mfd . und two 8.0 mfd ( $\mathrm{C} 18, \mathrm{C} 26, \mathrm{C} 28, \mathrm{C} 31$ ).	2.94	3993	Screw-No. 6-32 aquare head net serew for condenser dial and drive assembly-Package of 10 .	25
6726	Coil-Choke coil (L9)	. 68	7065	Screwdriver-Insulated screwdriver and socket wreach-	
6519 6521	Coil-Antenna coil (L1, L2) Coil-Oseillator coil (L5, L6)	.88 .60	3623	For I. F., R. F. and oscillator condenser adjustment Shield-Antenna R. F. or oscillator coil shield	1.00 .30
6520	Coil-R. F. coil (L3, L4) .	.9.4	3950	Shield-Radiotron shicld	
6723	Condenser- 3 -gang variable tuning condenser (C2, C3, C4 C5, C6, C7)	4.15	$\begin{array}{r} 4700 \\ \\ 2950 \end{array}$	Socket-Dial lamp socket . . . . . . . Socket-4-contact Radiotron sockel	$\begin{array}{r}35 \\ .30 \\ \hline\end{array}$
4701	Dial-Tuning condenser dial and drive assembly . . .	1.50	6676	Socket-6-contact Radiotron socket.	40
4703	Ebcutcheon-Station selector escutcheon.	35	7485	Socket-6-contact Radiotron socket-Second detectire	0
4449	Knoh-Volume control or station selector knob-Package of 5	. 60	6727	Transformer-Intermediate frequency transformer (L.7. 18, C10, C11)	1.68
3602	Resistor- 60,000 ohms-Carbon type- $1 / 4$ watt ( $R$ Package of 5 .	1.00	4702	Volume control (R12, S1)	1.30
3033	Renistor-1 megohm-Carbon type- $1 / 4$ watt (R2 Package of 5 .	1.00		mblies	
6250	Resistor- 4000 ohms-Carbon type- $1 / 2$ wat			heproducer	
6303	Package of 5 ohms Carlon iype- watt (R3)		7845	Coil-Field coil magnet and cone support (L11)	2.50
	Package of 5...........................	1.00	9492	Cone-Keproducer cone (L10)-Package of 5	3.70 6.30
3594	Resistor- 50.000 ohiny-Carbon type-1/2 watt (R5) -	1.00	7847 7846		1.65

RCA PAGE 5-209

RCA-VICTOR CO., INC.

PAGE 5-210 RCA

RCA-VIC'TOR CO., INC.



RCA-VICTOR CO., INC.
World Wide Antenna Installation Data


## ALTERNATIVE ANTENNA ARRANGEMENTS

In certain installations, space limitations may prevent the use of the full antenna span-approximately 60 feet. Three alternative arrangements, listed in order of preference, are possible:
(a) Reduced overall length through the use of loading coils.
(b) Reduction of the horizontal angle from a straight line span ( 180 degrees) to any other of not less than 90 degrees.
(c) Vertical suspension.

The first arrangement (a), in which loading coils are inserted to replace lengths removed from the horizontal sections of the antenna as illustrated by Figure 2, is recommended as the preferred alternative. In this manner, the overall span is reduced to approximately 34 feet, without impairing the original tuning characteristics of the system except in the region of 31 meters. The loss encountered within the broadcast band at this wavelength, however, will not be serious.

Using the second alternative (b), the length of
the antenna span is decreased by reducing the horizontal angle between the halves of the system (as viewed from above), rather than by shortening the lengths of the horizontal sections. While loading coils are not required, a third support for the antenna at the crossover insulator must be provided, the installation therefore being usually more difficult than for either straight-line arrangement. The antenna efficiency naturally will be lowered as the angle is decreased, resulting in a signal-strength loss on all bands of approximately 30 percent at an angle of 90 degrees.

If vertical suspension (c) is employed, much less ground space than for any horizontal form of antenna is necessary. Although somewhat inferior in noise ratio to the horizontal type, the vertical system enjoys an additional advantage of being practically non-directional. Such an installation, however, is usually both difficult and expensive, but can be simplified to a large extent through the use of loading coils.


Figure 2

## REPLACEMENT PARTS

Insist on genuine factory-tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$	Stock	DESCRIPTION	$\underset{\text { Pist }}{\text { Lice }}$
4324	Transformer (Coupling transformer and switch assembly) -For replacement purposes only; item to be replaced must be returned with order	\$2.50	4327 4328	Insulator (Crossover inaulator)-For replacement purposes only; item to be replaced must be returned with order Transmission line (special lead-in - 110 feet long)	$\begin{array}{r}30.10 \\ 3.72 \\ \hline 174\end{array}$
4325		1.00	4329	Transmission line (special lead-in-220 feet long)	7.44 11.16
4326	Wire (2 rolls stranded wire, each $461 / 2$ feet long)	1.16	4330	Tranamisaion line (apecial lead-in-330 feet long)	11.16

## RCA-VICTOR CO., INC. SERVICE DATA

HODET 2-19
Portable Victrola Notes

This instrument is a small portable type mechanical phonograph built into a cabinet resembling a small suitcase. Excellent quality, high output and good mechanical construction are features of this instrument.

## LUBRICATION

Premature wear, noisy operation and failure of parts are direct results of failure to clean and lubricate the motor at necessary intervals. The various bearings and gears of the motor should be cleaned and lubricated at least once every six months. In addition to the regular lubrication, all motor parts should be covered with a light film of oil to prevent rusting. Use only Stock No. 7226 Motor Oil and Stock No. 7227 Motor Grease when lubricating this instrument.


Figure A-Lubrication Diagram

Motor. Figure A shows a view of the motor with the top plate cut away. Before lubricating the parts shown in this illustration, a thorough cleaning with carbon tetrachloride (Carbona) or gasoline is necessary. If necessary disassemble the entire motor for such cleaning.

Tone Arm. The joint between the taper tube and the sound chamber must be free to swing casily without play and be sealed with grease. This bearing is accessible when the three mounting screws are removed. Failure to seal this joint will result in poor quality. Unnecessary friction will canse undue record wear.

## MOTOR

The motor used is of simple design and will give excellent performance. If kept clean and properly lubricated, little service attention will be required. The following points may prove useful when it is necessary to effect repairs. Before doing any work on the motor the machine must be allowed to run down completely.

Removing Motor from Cabinet. To remove the motor from the cabinet proceed as follows:
(a) Unscrew the spindle cap and remove the turntable.
(b) Remove the five screws that hold the motor board and lid-support to the cabinct and remove the motor-board assembly.
(c) Remove the speed-regulator lever.
(d) Remove the three machine screws that hold the motor in place. The motor may then be removed.

Changing Motor Springs. Should a spring break and require replacement the best method to make a repair is to replace the entire spring barrel. While the cost of the spring barrel is greater than that of the spring alone, the saving in labor will usually justify such replacement. Unless the serviceman is experienced in handling springs of this type, the following directions should be followed carefully:
(a) Disassemble the motor and remove the spring barrel. Remove the winding gear.
(b) Place the gear flat on a piece of metal and file off the ends of the six rivets. Remove the rivets and gear.
(c) Place the palm of the right hand over the closed end of the barrel, making sure that the fingers do not protrude beyond the open side. Firmly hold the barrel, open side downward, over a large can or barrel. With the left hand pull the center turns of the spring out. As soon as the spring starts, pull the left hand clear of the can, holding the spring barrel firmly until the spring is entirely clear.
(d) A new coiled spring may prove extremely dangerous if not properly handled. Read these instructions and work very carefully, especially if not experienced in work of this kind. The new spring is furnished coiled and with a heavy wire clamp holding the spring tightly wound. Pull out about one foot of the spring. Then with the spring flat on a table gently tap the ring until it comes to the edge. Do not push the clamp so close to the edge that it will not hold the spring.

Place the hook end of the spring over the barrel hook. Wind the exposed end into the barrel and then insert the entire spring in the barrel, allowing the clamp to be on the outer edge. Place a block over the entire spring and force the spring into the barrel, thereby releasing the clamp.
(f) Place a tablespoonful of spring lubricant between the spring leaves and in the center of the spring.
(g) Place the gear in position and rivet it with six rivets to the spring barrel. Use a small punch for flattening the ends of the rivets. Place the gear on a flat surface while re-riveting the barrel to it.
(h) Reassemble the motor in the reverse manner of that used to dismantle it.

Winding Shaft Binding. A heavy jar may cause the motor to shift slightly on the motor board and produce binding of the winding shaft against the motor board. Loosening the motor mounting screws and shifting the motor to its proper position (center of slot) will correct this condition.

## REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	description	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Stock No.	description	$\underset{\text { Price }}{\text { List }}$
2872	Governor ball and spring assembly-Comprising ball, spring mounting screws, and washers-Package of 5 .	\$0.75	7214	Governor assembly - Comprising governor spindle, disc, sleeve, collar, governor balls and springs	\$2.50
2937	Gear-Winding gear and sleeve	. 75	7226	RCA Victor motor grease-1 pint can	. 40
2947	Leather-Friction leather for brake-Pack-		7227	RCA Victor motor oil-l pint can.	. 50
	age of 20.	. 50	7228	RCA Victor spring lubricant-l pint can.	. 65
4107	Brake-Turntable brake and bracket	. 55	7719	Board-Motor board with horn-Less hard-	
4108	Lever--Spced regulator lever	. 45		ware and motor-Gree	3.90
4109	Cup-Needle cup	. 22	7720	Arm-Tone arm assembly	3.26
4110	Holder--Ncedle holder	. 45	7721	Turntable - Green	1.20
4111	Cap-Turntable spindle c	. 65	7722	Turntable-Blue	1.20
4112	Plate-Speed regulator pla	. 55	7723	Board-Motor board and horn-Less hard-	3.90
4113	Bracket-Sound box rest bracket	. 50		ware and motor-Blue. . . . . . . . . . . .	
4114	Support-Lid support	. 25	7724	Cabinet-Complete with handle and catches -Blue.	12.40
4115	Screw and washer-Motor board mounting screw and washer-Package of 3 .	. 25	7725	Cabinet-Complete with handle and catches -Green.	12.70
4116	Catch-Cabinet catch complete with mount. ing rivets-Package of 2	. 40	7726	Pocket-Record pocket-Black	. 98
4117	Strap-Record pocket strap assembly	. 16	7727	Pocket-Record pocket-Green	. 98
4118	Screw-Needle holding screw-Package of 10	. 65	7729	Plate-Top plate assembly	3.96
6837	Key-Winding key	. 70	7730	Motor-Motor complete with spindle cap	10.40
6838	Handle-Carrying hand	. 82	8655	Barrel--Spring barrel assembly	2.64
6839	Extension--Winding shaft extensio	. 45	8656	Spring-Mainspring	1.15
6933	Sound box-Complete with needle screw	1.80	8657	Gear-Intermediate gear pinion and shaft	. 70
7210	Spindle-Turntable spindle with pins and ball bearing-Less gear. .	. 50	8658	Shaft - Winding shaft - Comprising shaft, collar, pin, ratchet, and washer - Less winding extension.	. 96
7211	Gear--Turntable spindle gear complete, with set screw.	. 50	10116	Spring-Brake spring-Package of 10 .	. 60

RCA PAGE 5-215 KODEI TMV-97~A RCA-VICTOR CO., INC.



## REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Suck } \\ & \text { No. } \end{aligned}$	description	$\underset{\text { Price }}{\text { List }}$	$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\underset{\substack{\text { Liat } \\ \text { Price }}}{\substack{\text { che } \\ \hline}}$
2039	Switch-Single pole, single throw toggle switch.	\$0.72	3979	Transformer-A. F. oscillation transformer (T1).	\$1.94
2744	Capacitor-4.5 mmfd. capacitor (C1)Package of 5.	1.60	3980	Condenser-Tuning condenser (C3).	1.40
2932	Capacitor-5,000 mmfd. capacitor (C2).	. 50	3981	Capacitor-300 mmfd. capacitor (C5).	. 30
3110	Resistor- 25,000 olim- $1 / 4$ watt carbon resistor (R3)-Package of 5 .	1.00	3982 3983	Handle-Carrying handle... Switch-Range switch (S1,	.60 3.94
3114	Resistor- 50,000 ohm- $1 / 4$ watt carbon re. sistor (R2)-Package of 5 .	1.00	3984 3985	Knob-Moulded knob..	. 30
3640	Capacitor-. 05 mfd . capacitor ( C 6 )	. 25	3986	Scale-Attenuator potentiometer dial scale.	. 66
3765	Capacitor- 025 mfd . capacitor (C7). .	.34 .30	3987		
3794 3975	Capacitor-100 mmfd. capacitor (C4) . . . . . Coil-R. F. oscillation coil (L1, L2, L3, L4)	.30 1.38	3987	(R1)	1.70
3975 3976	Coil-R. F. oscillation coil (L1, L2, L3, L4) Coil-R. F. oscillation coil (L5, L6, L7, L8)	1.38 1.38	$\checkmark 3988$	Post-"Antenna-Ground" binding post.	. 32
3977	Coil-R. F. oscillation coil (L9, L10, L11,		3989	Dial-Tuning condenser vernier dial	4.15
	L12).........................	1.28	3990	Clip-Spring steel clip...	. 25
3978	Coil-R. F. oscillation coil (L13, Li4).	1.28	6300	Socket-Radiotron socket.	. 35



Figure B-Amplifier Wiring





## REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Stock } \\ & \text { Sock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$	Stock	DESCRIPTION	(tiat
	$\begin{aligned} & \text { TURNTABLE-MODEL PT-16A1 AND } \\ & \text { PT-16A2 } \\ & \text { TURNTABLE ASSEMBLIES } \end{aligned}$		3599	MOTOR ASSEMBLIES   Screw-Motor mounting scréw and lock-washer-Package of 3 sets.	\$.30
3261	Bushing-Rubber bushing for turntable spindle-Package of 5 .	\$0.40	8989 8990	Motor-105-125 volt-60 cycle motor Motor-105-125 volt--50 cycle motor	18.52 18.52
3338	Ring-Clamp ring assembly	. 50			
3340	W asher-Thrust washer-Pack	. 56	8993	Rotor-Rotor and shaft for motor 105-125 volt 60 cycle.	7.00
3341	Pin-Groov pin-Package of 2	. 56	8994	Spindle -Spindle and gear for motor 105-	
3342	Spring-Latch spring on clamping ring Package of 2	. 56		125 volt- 60 cycle	4.75
3343	Sleeve-Sleeve complete with ball race....	2.86	8995	Rotor-Rotor and shaft for motor 105-125 volt- $\mathbf{5 0}$ cycle.	7.00
3344	Cover-Grease retainer cover-Package of 2	. 70	8996	Spindle -Spindle and gear for motor 105-125	
3346	Bushing-Speed shifter lever bushing Package of 4 .	. 66		volt -50 cycle ......................	4.75
3347	Spring-Speed shifter lever spring-Package of 2	. 30		MOTOR BOARD ASSEMBLIES	
3838	Lever-Speed shifter lever	. 70	2779	Pointer-Volume control pointer-Package	
7084	Cover-Suede cover for turntable	. 40			. 50
8948	Turntable-Turntable complete	5.50	2947	Shoe-Leather brake shoc-Package of 20.	. 50
			3322	Switch-Automatic brake switch	. 75
	ASSEMBLIES		4098	Cord-Power cord and plug	1.00
3385	Coil-Pickup coil	. 50	4099	Cable-Shielded signal cable and plug	1.25
3386	Cover-Pickup cov	. 56	4100	Volume control-Turntable volume control	2.50
3387	Screw assembly-Pichup mounting screw, nut and washer.	. 40	4101	Switch-Single pole-double throw-toggle switch.	. 75
3388	Screw-Pickup needle holding	. 60	6247	Resistor-850 ohm-1/4 watt-Carbon type	
3389	Rod-Automatic brake trip rod	. 40		resistor-Package of 5	1.00
3390	Escutcheon-Pickup arm escutcheo	. 46	6288	Knob--Volume control knob-Package of 5.	1.00
3417	Armature-Pickup armature	. 72	7387	Reactor-Tone compensating reactor	. 85
3418	Cushions-Pichup rubber cushions	1.10			
3419	Screw-Pickup cover mounting screw	. 40	7691	Support-Pickup support	4.28
3516	Damper-Damper and bushing for pickup arm base $\qquad$	. 14	10174	Springs-Automatic brake springs Package of 2 sets .	. 50
6335	Pickup-Pickup unit comp	4.00	10184	Plate-Automatic brake latch trip plate	
6346	Back-Pickup housing back	. 45		Package of 5	. 40
7593	Arm-Pickup arm less pickup	6.00	10241	Box--Needle box with lid-Package of 2.	. 60

# RCA-VICTOR CO., INC. SERVICE DATA 

MODETS PT-16-A1,PT-16-A2<br>PT-17-A1, PT-17-A2<br>Pickup Data

Voltage Rating . . . . . . . . . . . . . . . . . . . . . . 105-125 Volts A. C
Frequency Rating. . . . . . . . . . . . . . . . . . . . . . 50 and 60 Cycles
Power Consumption
(30 Watts Single Turntable
$\{60$ Watts Double Turntable

## WIRING

The schematic and assembly wiring diagrams are shown in Figure C.

## MAGNETIC PICKUP

## Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or hardened pivot rubbers, it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.


Figure A
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.
(d) Remove screws A and B, Figure A, and then remove the mechanism assembly from the pole pieces.
(c) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled except for the magnet, which must be magnetized. After being magnetized the mechanism-with the pole pieces upward, should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking phayical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(b) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws $A$ and $B$, Figure $A$, and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover now may be replaced over the entife assenibly, and the pickup returned to the tone arm.
In reassembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whother or not the armature is centered.

## Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.


Figure B
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure B, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be assembled as described in the preceding section.

Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the airgap as explained under (h) above.

MODEL PT-17-A1
PT-17-A2
Sohematic
Parts List




Figure C-Wiring end Schematic Diagrams ('TTITAI, AZ)


## Pickup Data, Parts List



## service data

 $\left\{\begin{array}{l}105-125 \text { Volts A. C. } \\ \left\{\begin{array}{l}30 \text { Watto Single Turnates } \\ 60 \text { Watts Double Turntable }\end{array}\right.\end{array}\right.$

## WIRING <br> The achematic and assembly wiring diagrams areshown in Figure 1 . <br> dn>>Id JIIJNפVW <br> Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

 In order to replace 2 defective ooil or hardened pivotrubbers, it is necessary to proceed as follows: (a) Remove the pickup cover by removing the center (b) Remove the pickup magnet and the magnet clamp



 -


## VOLTAGE AMPLIFIER PB23M1

## REPLACEMENT OF INPUT TRANSFORMER

Should it become necessary to replace the input transformer in the first stage of the voltage amplifier, care must be used to replace it in such a position that maximum shielding is obtained. The position of the transformer with respect to the amplifier panel which gives minimum hum is the correct position for maximum shielding.

## FIDELITY CHARACTERISTICS

In this voltage amplifier the low -frequency booster circuit is located in the plate circuit of the UY-224A, and the voice frequency filter in the cathode circuit of the RCA-56. The voltage amplifier is connected at the factory to operate with 50 -inch baffles. The response at 60 cycles is approximately $90 \%$ of the 1000 -cycle response and at 100 cycles the response is approximately 60 per cent. If it is desired to shift the low. frequency peak either to a lower frequency or higher frequency, or to change the value of the frequency response, proceed as follows:
(a) To sbift the peak to 50 cycles, remove the .02 mfd capacitor C-41 from the low-frequency booster circuit by disconnecting the jumper wire between terminals No. 16 and No. 18 on the capacitor pack. Place the .03 mfd capacitor C-40 in the circuit by connecting a jumper between terminals No. 16 and No. 17.
(b) To shift the peak to 40 cycles, connect the capacitors C .40 (. 03 mfd ) and $\mathrm{C}-41(.02 \mathrm{mfd})$ in parallel by connecting jumpers between terminals No. 16, No. 17 and No. 18.
(c) If 27 -inch baffles or doublet baffles are used on the stage, it will be necessary to shift the low-frequency
peak to 80 cycles. To do this, disconnect the jumper wires between terminals No. 16, No. 17 and No. 18 on the capacitor pack. Connect a .02 mfd capacitor (Catalog No. 3639) externally between terminals No. 16 and No. 17 on the capacitor pack. This will connect the .02 mfd capacitor in series with the .03 mfd capacitor $\mathrm{C}-40$ to give .012 mfd across $\mathrm{L}-30$.
(d) To increase the value of response at any of the peak values used in the foregoing, remove the $100,000 \mathrm{ohm}$ resistor $\mathrm{R}-81$ connected across reactor L-30, between terminals on the tube shelf connected to terminals No. 7 and No. 16 on the capacitor pack. If a still further increase, to a maximum of approximately 400 per cent, is desired, shunt the plate resistor R-18 ( $125,000 \mathrm{ohm}$ ) with the $100,000 \mathrm{ohm}$ resistor.
(e) To increase the response at 100 cycles, decrease the value of the shunt resistor $R-80$, and if a decrease in response is desired increase the value of the shunt resistor R-80. If male voices sound boomy it will be necessary to increase the value of the shunt resistor.

## RADIOTRON SOCKET VOLTAGES

120.Volt A. C. Line

Radio   tron	Control   Grid   Volts	Screen   Grid   Volts	Plate   Volto	Plate   Current   M. A.	Filament   or Heater   Volts
UY-224A	1.3	45	185	.7	2.5
RCA-56	6.0	-	130	2.3	2.5
UX-245	48.0	-	250	30.0	2.5
UX.245	48.0	-	250	30.0	2.5

## REPLACEMENT PARTS

Stock No.	DESCRIPTION	List Price	Stock No.	DESCRIPTION	List Price
20058	Screws-One set of two special thumb-screws for securing perforated panel	\$0.60	25383	Board-Torminal board engraved "1, 2, 3, 4, 5," completo with five terminals, two mounting ecrews two lock-	
20096	Screwo-One set of two thumb-acrews for fastening input shields.	1.00 1.00		washers, two washers, and two spacers (located under power transformer)	\$4.50
21630	Switch-Single pole, double throw toggletype switch -		25553	Resistor-200 obmer porcelain type resistor.......................	1.50 1.40
	cmounted on tube shelf.	2.00	25587	Transformer-Voltage amplifier input transformer-less	
21632	Cap-First atage Radiotron control grid	. 75		container (RT 188) . . . . . . . . . . . . . . . . . . . . . . . . . .	12.95
22178		. 26	27328	Capacitor pack-Capacitor pack comprising three 2 mfd .	
22186 22195	Reaistor- 760 ohm porcelain-type rea Resistor- 50000 ohm carbon type r	. 90		condencers and one 4 mfd . condenser in metal container complete with four mounting serews, four lockwashers,	
22868	Resistor- 80,000 ohm carbon type resistor-1/2 watt	. 50		and four nuts (CP 31) .......................	24.00
22932	Socket-UX type socket complete with two mounting screws, two lock washers and two nuts.	. 60	27459	Transformer-Power transformer ( $50-60$ cycle) complete with four mounting screwe, four lockwashers, and four	
23000	Capacitor 550 mmfd . fixed capacitor. . .	1.20	27514		50.00
23001	Kesistor- $90,000 \mathrm{ohm}$ carbon type resistor- $1 / 2 \mathrm{w}$	. 50	27514	mounting serews, two lock washers, two washers, and two	
23002	Capacitor- 950 mmfd . fixed capacitor	1.20		spacers (located under capacitor pack) . . . . . . . . . . . . . .	3.95
23003	Reaistor-30.000 ohm carbon type resistor-1/2 watt	. 50	27515	Board-Terminal board complete with gix terminale, two	
23004 23005	Resistor-40,000 ohm carbon type resistor- $1 / 2 \mathrm{watt}$ Resistor- 20.000 ohm carbon type reaistor-1/2 watt	. 50		mounting acrewa, two lockwaghers, two washers, and two spacers.	3.65
23006	Kesistor-100,000 ohm carbon type resistor-1/2 watt	. 50	27576	Capacitor pack-Comprising four reactors, two 10 mfd .	
23007	Resistor- 120,000 ohm carbon type resistor-1/2 watt	. 50		electrolytic condensers, one 2 mfd . capacitor, five $1 / 2 \mathrm{mfd}$.,	
23009	Kesistor-1,300 ohm carbon type resistor-1/2 watt	. 50		one . 45 mfd ., one .03 mfd. , and one .02 mfd . capacitors in metal container complete with four mounting screws,	
23014	Potentiometer- 50 whm hum control potentiometer complete with mounting nut.	2.50		four lock washers, and four nute.	45.00
23015	Capacitor- .0075 mfd . fixed capacitor complete with two mounting screws (CX 43)	2.50		VOLUME CONTROL POTENTIOMETER	
23016	Capacitor- 05 mfd . fixed capacitor (CX 45) . . . . . . . . . . .	2.00	22869	Resistor-120,000 ohm, $1 / 4$ watt carbon typ	. 50
23017	Socket-UY type socket complete with insulator, two mounting acrewe, two lockwashers, and two nuts.	. 65	23123 23124	Resistor-1,300 ohrn, ${ }^{1 / 4}$ watt carbon type. Resistor- 700 obri, $1 / 4$ watt, carbon type.	.50 .20 .20
23018	K nob-Volume control potentiometer pushon-type knob.	1.10	23124 23125	Resistor- 700 ohms, $1 / 4$ watt, carbon type Resistor- 900 ohm, $1 / 4$ watt, carbon type	. 20
23019	Cable-Remote volume control contact switch cable	3.00	23126	Resistor-1,700 ohm, $1 / 4$ watt, carbon typ	. 20
23118	Capacitor - 2 mfd. fixed capacitor (CX 75)	1.75	23127	Registor-2,200 ohm, $1 / 4$ watt, carbon type	. 20
23122	Resistor-2,000 ohm, $1 / 4$ watt, carbon resiator	.20	23128	Resistor-2,900 ohm, $1 / 4$ watt, carbon type.	. 20
23123	Resistor-1,300 ohm, $1 / 4$ watt, carbon resistor . . . . . . . . . . .	. 20	23129 23130	Registor $-4,000 \mathrm{ohm}$, $1 / 4 \mathrm{watt}$, carbon typ Resistor-5, 300 ohm , $1 / 4 \mathrm{wat}$, carbon typ	. 20
25065	Reactor-Filter reactor in metal container complete with four mounting serews, four lockwashers, and four nuts		23130 23131		. 20
		25.00	23132	Reastor-9,400 ohm, $1 / 4$ watt, carbon type. . . . . . . . . . . . .	. 20
25376	Tranaformer-Output transformer in metal container com- plete with four mounting acrews, four lock washers, and		23133 23134	Resistor-13,000 ohm, $1 / 4$ watt, carbon type.... . . . . . . . . . . .	. 20
	four nuts (RT 165).	35.00	23135	Resistor-22,000 obm, 1/4 watt, carbon type . . . . . . . . . . . .	. 20
25377	Trangformer-Interstage transformer in metal container complete with four mounting ecrews, four lockwaehere,		23136 23137	Resistor- $\mathbf{3 0 , 0 0 0}$ ohm, $1 / 4$ watt, carbon type. ............. . . . . Resistor- 40,000 ohm, $1 / 4$ watt, carbon type.	. 20
	and four nuts (RT 166)	25.00	23138	Reaiator-53,000 obm, 1/4 watt, carbon type. . . . . . . . . . . . .	. 20
25381			23139	Reaintor $\mathbf{7 0 , 0 0 0} \mathbf{~ o h m}, 1 / 4$ watt, carbon type. . . . . . . . . . . . . .	. 20
	transformer ( $1 / 4^{\prime \prime} \geq 1^{\prime \prime} \times 33 / 8^{\prime \prime}$ ) . . . . . . . . . . . . . . . . . . . . . .	2.25	23140	Resistor-94,000 obm, $1 / 4$ watt, carbon typ	. 20
25382	Cushion-One set of three rubber cushions for input transformers (located in metal container)	5.00	23141 27534	Resistor-2,100 ohm, $1 / 4$ watt, carbon type................ ${ }^{\text {w }}$. Potentiometer-Volume control potentiometer complete . .	$\begin{array}{r} .20 \\ 16.25 \end{array}$

PAGE 5-226 RCA
MODEL PB-23-M1
Schematic
RCA-VICTOR CO., INC.



# Supplement No. 3 to RCA Victor Photophone Theatre Reproducing Equipment Type PG-59 

(High Fidelity)

## (1) PA83C1 AMPLIFIER RACK

The PA83C1 Amplifier rack is similar electrically to the PA83B2. The PA83C1 has heavier front panels than previous models of this amplifier type.

## (2) PA83C3 AMPLIFIER RACK—PB82CI AMPLIFIER UNIT

The frequency response characteristic is a modification of that obtained on previous models. The amplifier is connected at the factory so that more pronounced low frequency response is obtained with the 27 -inch baffles. The response is such that no loudspeaker filter is required in the loudspeaker voice coil circuit.

A fuse is connected in series with capacitor C-11 in the PK22 exciter lamp supply unit as a protection to the rectox rectifier and transformer.

Figure 1 shows the rack wiring and schematic diagram of the PA83C3 rack.

## (3) FIDELITY CHARACTERISTICS-PB82C1

## For 27-inch Baffle

The amplifier unit is connected at the factory so that the response is approximately 160 per cent at 80 cycles, 64 per cent between 200 cycles and 300 cycles, 125 per cent between 2000 cycles and 4000 cycles and then drops off to approximately 40 per cent at 10,000 cycles.

To modify the frequency response characteristic, proceed as follows: See Figure 2.
(a) To reduce the frequency response between 100 cycles and 300 cycles, remove the short circuit which is connected across C-28 and R-40.
(b) Should the operation performed in (a) reduce the extreme low frequency response too much, remove the resistors R-32 and R33 (2 megohms each).
(c) To increase the frequency response between 100 cycles and 300 cycles, remove the 0.1 mfd capacitor C- 27 which is shunted across C-3. Open up by-pass circuit on R-9.
(d) To reduce extreme low frequency response disconnect the resistors $\mathrm{R}-32$ and $\mathrm{R}-33$ (2 megohms each) and connect $R-41$ and $R-42$ ( $1 / 2$ megohm each) in place of those removed.

## For 50-inch Baffle

(a) If 50-inch Baffles are used with the PG-59 equipment, disconnect the resistors R-32 and R-33 ( 2 megohms each) and also replace C-25 and C-26 (. 04 mfd each) by C-19 and C-20 (. 07 mfd each). The frequency response characteristic will then be approximately 160 per cent at 60 cycles, 64 per cent between 200 cycles and 300 cycles, 125 per cent between 2000 cycles and 4000 cycles, and 40 per cent at 10,000 cycles.
(b) To reduce the frequency response between 100 cycles and 300 cycles, remove the short circuit which is connected across C-28 and R-40.
(c) To increase the frequency response between 100 cycles and 300 cycles, remove the 0.1 mfd capacitor C-27 which parallels C-3. Open up the by-pass circuit on R-9.
(d) To reduce the extreme low frequency response, connect resistors R-32 and R-33 (2 megohms each) across the reactors in the grid circuit of the Radiotrons RCA-2A3.

## (4) LOUDSPEAKER-PL52C2

The Model PL52C2 Loudspeaker mechanism has a new type of terminal board for the voice coil circuit as shown in Figure 3. The design of these terminals is such that they are more easily accessible for installation and service work.

RCA PAGE 5-229
MODEL PG-59
Chassis Wiring



Figure 1-Pack Assembly Wiring (PA83C3)


PRE-AMPLIFIER

For program pickup, or where the velocity microphone is used for any purpose except close talking, a pre-amplifier is required for each microphone. The overall gain of this preamplifier is 58 DB. The Radiotron voltages for this preamplifier are obtained from a PK24Bl power supply unit.

The pre-amplifier is designed to work from a 250 -ohm source and into a 250 ohm line.

RADIOTRON SOCKET VOLTAGES
120 Volt, A. C. Line

Radiotron	Control   Grid   Volta	Screen   Grid   Volt	Plate   Volte	Plate   Current   M. A.	Heater   Volte
RCA-57	1.1	40	110	.63	2.5
RCA-59	22.5		245	25.5	2.5

## REPLA CEMEN'T PARTS

Stock No.	DESCRIPTION	List	Stock No.	DESCRIPTION	List Price
	MICROPHONE PRE-AMPLIFIER Model PA103A1		23178	Resistor-110,000 ohm, $1 / 4$ watt carbon resistor (R4).	20
2747	Cap-Control grid cap	80.10	25532	Socket-6-contact Radiotron socket. . . . . . . . .	. 40
3110	Resistor- $25,000 \mathrm{ohm}$, 1/4 watt carbon resistor (R2).		25626 25810	Socket-7-contact Radiotron socket. . . . . . .	. 45
3634	Capacitor-160 mmfd. fixed capacitor (C7)	.20 .34	25840	Board-Input terminal board complete with three terminals.	1.62
3713	Capacitor -.05 mfd . fixed capacitor (C6)...	. 32	25841	Board-Voltage supply terminal hoard with	1.62
3744	Resistor $-250,000$ ohm, $1 / 4$ watt carbon resistor (R6)	. 20		four terminals	2.00
3853	Resistor $-1,500$ ohm, $1 / 4$ watt carbon resistor (R1)	.20 .20	25842	Board-Output terminal board complete with three terminals.	1.56
6241	Resistor- $140,000 \mathrm{ohm}, 1 / 4$ watt carbon resistor (R3)	. 20	27586	Transformer-Input transformer complete with three rubber cushions (RT-231)	9.34
23094 23176	Latch-Male section of shield cover latch...	. 35	27587	Transformer-Output transformer (RT-232)	30.00
23176 23177	Resistor- $70,000 \mathrm{ohm}, 1 / 4$ watt carbon resistor (R5).   Resistor- 900 ohm, 1 watt carbon resistor (R7)	.20 $\$ 0.22$	27588	Capacitor pack-Comprising two 10 mfd . one 8 mfd ., two .5 mfd . capacitors, and one filter reactor in container (C1, C2, C3, C4, C5, L1).	11.76

PAGE 5-232 RCA
MODEL PA-103-A1
Panel Wiring
RCA-VICTOR CO., INC.

The RCA Victor Portable Public Address System, Type PG. 62 is a complete amplifying system consisting of an amplier, a microphone, and wo loudspeakers. It is designed for use as a sound is ouse lighting receptacle. The maximum undistorted obtained from any 50 or 60 cycle, 10 vat house ilghting receptacle. The maximum undistorted power output of this equipment is 20 watts
which is sufficient to meet the average requirements of sound reinforcement in auditoriums with a capacity up to 2,500 seats.
The amplifier consists of two units; the voltage and power amplifier units both mounted in a
carrying case. The loudspeakers, two of which are supplied with the equipment, are each mounted in carrying case. The loudspeakers, two of which are supplied with the equipment, are each mounted in
a wooden housing. A special carrying case is provided for the loudspeakers when they are to be
transported.
A velocity type microphone. the latest type developed by the RCA Vitor engineers, is also furnished as a standard part of the equipment. Provision is made for placing microphone and stand
together with the microphone interconnecting cables in the amplifier carrying case when the equipAll the controls except the power control switch are mounted on the voltage amplifier base and are easily accessible to the operator. The controls consist of the power control switch mounted on the power amplifier base, the microphone volume control, amplifier volume control, the speech clari-
fying switch and the tone switch. Figure 2 shows the location of the various controls. Facilities are provided for operating the equipment with a phonograph turntable. If it is desired, phonograph music may be played as a background for the microphope pick-up, the volume phone selector switeh is mounted on the voltage amplifier to permit the use of a carbon type micro-
phone with the equipment.
 ingidinot shl da oniluss-I lavd (1) TYPE PG-62 EQUIPMENT
The equipment is set up for operation in the following manner:

1. Open the amplifier carrying case and lay the two halves on the floor or a table so that the
Radiotrons will be in an upright position. Remove the microphone and microphone stand and Check and make certain:
2. 

(a) That all Radiotrons are in their proper sockets and pressed down firmly. Never apply power
to the instrument unless all Radiotrons are in place. See Figure 2 .
(b) That the short flexible lead is connected to the top grid contact of the Radiotron RCA. 57.
(c) That all shields are rigidly in place over all the tubes in the voltage amplifier and the cap is
on the shield over the Radiotron RCA.57

RCA PAGE 5-235
MODEL PG-62-S
Operating Notes
Chassis Views
Loud Speaker Data

(6) PHASING LOUDSPEAKERS (PG-62 Equipment)
If either of the loudgreaker cones are replaced, the two loudgpeakers muat be properly, phated
after the replacement work is done. That is, the motion of both after the replacement work is done. That is, the motion of both cones must be in the same direction
at a given instant when a signal is is impressed on them. The following procedure may be used to phase

1. Place the two loudspeakers side by side and connect them together by means of the cord and

CAUTION: The loudgpeaker fields are at approximately 400 valts albove ground.
Therefore care must be observed in making tests on the loudspeakers.
(7) DIRECTIONAL BAFFLE LOUDSPEAKER
It is eometimes desirable to we a directional banle type of loudspeaker with this amplifying

 The power suplly for both the voltage and power amplifiess is obtained from the RCA.-83 and a
Giler syttem located on the power amplifier base. The field coil of one loudspeaker in the PG. 6 . Universal Amplifer an additional reactor is used in the filter circuit in place of the loudspeaker feld (2) CARBON MICROPHONE CONNECTIONS (Universal Amplifier Only) The Universal Amplifer Equipment is designed so that it will operate with a double button car-
bon microphone of 250 ohms impedance. A thre-pole plug, similar to that employed with the velo.
 peint of the microphone. When using the carbon microphone, the microphone selector switch shoulo
be placed at the "Carhon" position. (3) PHONOGRAPH CONNECTIONS
An inpur jack is provided in the grid circuit of the RCA-57 which pernits the use of a phono
graph turntable RCA Victor Type PT-14, Type PT-15. Type PT-16 or Type PT-17. The inetruc graph turntable RCA Victor Type PT-14, Type PT-15, Type PT-16 or Type PT.17. The instruc
tions for operation of the turnables are included with the phonograph equipment.

(5) Radiotron socket voltages
The Radiotron ocket volta ges given in the following tabulation are the actual values at which
eacb Radiorron should operate. In circuits containing hieht reseistance, voltages reail on a seet analyzer




## RCA-VIC'TOR CO., INC.

Parts List

# RADIOTRON SOCKET VOLTAGES <br> 115 VOLT A. C. LINE-NO INPUT SIGNAL VOLTAGE 

Radiotron No.	Control Grid to Cathode or Filament Volts	Screen Grid to Cathode or   Filament Volts	Plate to Cathode or Filament Volts	Plate Current M. A.	Filament or Heater Volts
1. RCA-57	1.0	80	145	. 25	2.5
2. RCA-56	3.5	-	120	1.2	2.5
3. RCA-56	4.0	--	165	1.6	2.5
4. RCA-59	2.8	-	242	23.0	2.5
5. RCA-59	0	-	390	13.0	2.5
6. $\mathrm{RCA}-59$	0	-	390	13.0	2.5

CAUTION: Whenever the Radiotron RCA-83 rectifier is removed from or installed in its socket, the A. C. power control switch should be in the 'off" position.

REPLACEMENT PARTS
Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Sturk } \\ & \text { No. } \end{aligned}$	DESCRIPTIOY	$\underset{\text { Price }}{\text { List }}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$
	PORTABLE AMPLIFIER ASSEMBLY		23115	Resistor- 60.000 ohms-Carbon type- $1 / 2$ watt	\% . 50
	model pagtaz		23116	Resistor-4,000 ohms-Carbon type-1/2 wal	. 50
	Power Amplitier		23117	Resistor-100 ohms-Carbon type-1/4 walt	. 50
	Models Pl389Al and PB89B1		25531	Socket-Five-contact Radiotron socke	. 35
2725	Fuse-1 $1 / 2$ ampere cartrilge fuse-Package of	80.40 50	25615	Transformer-Core and coil for input transformer	10.60
21581	Resistor-50,000 ohme-Carbon type-1	. 50	25617	Capacitor 0.05 mfd . capacitor	1.25
21623	Resistor-15,000 ohms-Carlon type-1	. 50	25618	Capacitor-0.005 mfd. capacitor	1.40
22451	Switch-Single pole, single throw-Toggle type	. 50	25619	Rheostat-100,000 ohms-Tone control rheostat	3.70
22853	Plug-Four-contact male connector plug (for PB89B1	. 50	25620	Switch-Triple pole, double throw-Key type switch	2.60
23113	Resistor-1.200 ohms-Carbon type-1	. 65	25621	Receptacle-Three-contact female receptacle	3.60
23119	Resistor-i5 ohms-Carbon type-1 watt	. 50	25622	Jack-Pbonograph input jack. . . . . .	1.05
23120	Resistor- 5,000 ohms porcelain resistor	2.00	25623	K nob-Moulded knob and pointer	. 30
25536	Socket-Four-contact Radiotron socket	. 35	25624	Cuphion-One set of four rubber cushione for input traus-	
25626	Sucket-Seven-contact Radiotron socket	45	25624	former . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	3.00
25627	Capacitor-4.0 mfl. filter capacitor	1.00	25625	Cable-Six-conductor braid covered intercommecting cable	5.80
25628	Board-Terminal board complete with five termi	1.50	25778	Potentiometer- 75,000 ohms-Mierophone volume control	1.35
25629	Capacitor- 0.003 mfd capacitor	1.30		potentiometer.	1.35
25630	Capacitor pack-Comprising two 10.0 mfd . capacitors in container	9.30	25779	Potentiometer-150,000 ohms-Amplifier volume control potentiometer	1.75
25631	Reactor-Filter reactor (for PB89A1)	6.15	25827	Socket-Six-contact Radiotron so	. 60
25633	Cord-Two-conductor power cord and plug	6.70	25828	Cushion-One set of two rubber cushions for socke	. 90
25634	Reactor-Double filter reactor (RT-200)	8.00	27529	Capacitor pack-Comprising four 4.0 mfd . capacitors in container.	8.35
27526	Transformer-Power transformer (RT-189)	12.30			
27527	Transformer-Audio transformer pack-Interstage and output transformers (RT-190)	15.30		MODEL PB90A1	
	Voltage A mplifier		25782	Guard-Front and rear guard for microphone	11:00
	Models PB88A3 and PB88A4		25783	Transformer-Microphone transformer	18.00
3294	Reaistor-15 ohms-Flexible type resisto	. 20	25784	Cable-30 foot, two-conductor, rubber covered. shielded cable	7.30
3471	Capacitor- 0.025 mfd capacitor		25785	Plug-Two-conductor male connector plug	1.75
3555	Capacitor-0.1 mid. capacitor			LOUDSPEAKER-MODEL PL71Al	
7487	Shield-Metal shield for Kadiotrons	. 25			. 10
7488	Cap-Radiotron shield cap for RCA-57 Radiotro	. 20	8184		1.27
21581	Resistor-50,000 ohms - Carbon tyle-1	. 50	8969	Cone-Loudspeaker cone with	1.27
21632	Cap-Control gridl cap.	. 75	9421	Coil-Field coil-Comprising coil, cone housing an magnet.	4.32
22197	Resistor-2,500 ohms-Carb	. 50	25780	Cable- 30 foot, four-conductor, rubber covered cable-	
22621	Resistor-200,000 ohms-Carlon type-1/2	. 50		Complete with four-contact plug	\%
22859	Switch-Single pole, single throw-Toggle			LOUDSPEAKER-MODEL PLIIBI	
23004	Resisior- 40,000 ohms - Carbon type-- $1 / 2$	. 50	6184	Board-Terminal board complete with three termin	. 10
23006	Resistor-100.000 ohms-Carbon type - $1 / 2$	. 50	8969	Cone-Loudspeaker cone with voice	1.27
23007	Resistor-120,000 ohms-Carbon type	. 50	9416	Coil-Field coil comprising coil, cone housing and magnet.	4.00
23008 23011	Resistor- $\mathbf{3}, 000$ ohme-Carbon type- $1 / 2$   Rexistor- $\mathbf{5 0 , 0 0 0}$ ohme-Carbon type-	.50 .50	25781	Cable-50 foot, three-conductor, rubber covered. cable Complete with three-contact plug.	11.00

RCA-VICTOR CO., INC.


PAGE 5-238 RCA
MODEL PG-62-C
Chassis Wiring
RCA-VICTOR CO., INC.


Figure 8-Wiring Diagram-PG-62 Equipment

RCA-VICTOR CO., INC.
Universal Amplifier Schematic


PAGE 5-240 RCA MODEL PG-62 -C

Universal Amplifier
Chassis Wiring


## RCA-VICJOR CO., INC.





Figure 10-Wiring Diagram-Universal Amplifier

# Supplement No. 1 to RCA Victor Photophone Theatre Reproducing Equipment Type PG-65 <br> (High Fidelity) SERVICE NOTES 

## (1) PA96B1 AMPLIFIER RACK

The PA96B1 Amplifier rack is similar electrically to the PA96A1 rack. The PA96B1 rack has heavier front panels than previous models of this amplifier rack.

## (2) PA96C1 AMPLIFIER RACK-PB82C1 AMPLIFIER UNIT

The frequency response characteristic is a modification of that obtained on previous models. The amplifier is connected at the factory so that more pronounced low frequency response is obtained with the 50 -inch baffles. The response is such that no loudspeaker filter is required in the loudspeaker voice coil circuit.

A fuse is connected in series with capacitor C-11 in the PK23 exciter lamp supply unit as a protection to the rectox rectifier and transformer.

Figure 1 shows the rack wiring and schematic diagram of the PA96C1 rack.

## (3) FIDELITY CHARACTERISTIC-_PB82CI

## For 50-inch Baffle

The amplifier is connected at the factory so that the response is approximately 160 per cent at 60 cycles, 64 per cent between 200 cycles and 300 cycles, 125 per cent between 2000 cycles and 4000 cycles and then drops off to approximately 40 per cent at 10,000 cycles.

To modify the frequency response characteristic, proceed as follows: See Figure 2.
(a) To reduce the frequency response bet ween 100 cycles and 300 cycles, remove the short circuit which is connected across C-28 and R-40.
(b) To increase the frequency response between 100 cycles and 300 cycles, remove the 0.1 mfd capacitor C-27 which is shunted across C-3. Open up by-pass circuit on R-9.
(c) To reduce extreme low frequency response, connect the resistors R-32 and R-33 (2 megohms each) across the reactors in the grid circuit of the Radiotrons RCA-2A3.

## For 27-inch Baffle

(a) If 27-inch baffles are used with the PG-65 equipment, connect resistors R-32 and R-33 (2 inegohms each) across the reactors in the grid circuit of the Radiotrons RCA-2A3, and also replace $\mathrm{C}-19$ and $\mathrm{C}-20(.07 \mathrm{mfd}$ each) by $\mathrm{C}-25$ and $\mathrm{C}-26(.04 \mathrm{mfd}$ each). The frequency response characteristic will then be approximately 160 per cent at 80 cycles, 64 per cent between 200 cycles and 300 cycles, 125 per cent between 2000 cycles and 4000 cycles and then will drop off to approximately 40 per cent at 10,000 cycles.
(b) To reduce the frequency response between 100 cycles and 300 cycles, remove the short circuit which is connected across $\mathbb{C}-28$ and $\mathrm{R}-40$.
(c) Should the operation performed in (b) reduce the extreme low frequency response too much, remove the resistors $\mathrm{R}-32$ and $\mathrm{R}-33$ ( 2 megohms each).
(d) To increase the frequency response between 100 cycles and 300 cycles, remove the 0.1 mfd capacitor C-27 which is shunted across C-3. Open up by-pass circuit connected across R-9.
(e) To reduce extreme low frequency response, disconnect the resistors R-32 and R-33 (2 megohms each) and connect R-41 and R-42 ( $1 / 2$ megohm each) in place of those removed.

## (4) LOUDSPEAKER-PL52C2

The Model PL52C2 Loudspeaker mechanism has a new type of terminal board for the voice coil circuit as shown in Figure 3. The design of these terminals is such that they are more easily accessible for installation and service work.


Figure 1-Rack Assembly Wiring (PA96C1)
 power transformer

(5) (b) (3) (1)

## RCA-VICTOR CO., INC.

## Sealed-Vibrator Test

In order to properly test the new sealed cype vibrators, it is essential that certain test specifications be
made. The following bench layour and rest information will permit proper tests of vibrators
for all important qualities except R.F. interference. R. F. interference must be cested by installing
the vibrator in the instrument in which it is to be used and making an operating test. No
other test for R F. interference is conclusive. other test for R F. interference is conclusive.
The bench test set-up shown uses the following material:-
17000 Ohm 75 Watt Resistor capped at 5000 Ohms
( 10,000 Ohms standard stock size) 1 Capacitor, Scock No. 6738
1 Bracker
The following tabulation gives the proper transformer, load, resistance and other information

Vibrator   Under Test	Transpormer To Be Used	Load Resistance (онмs)	Minimum Output Voltaor At 6 Volts input	Maximum Input Current (amperps) 8 Volts
M-34 (7604)	9430	5000	$210^{*}$	6.25
M-105 (7689)	9049	5000	$180^{\circ}$	5.0
M-116 (7694)	9457	7000	$240^{*}$	5.0

- In event reading is reversed, incerchange either green and red or brown and blue vibrator leads.
Using the test set-up shown, proceed as follows:-

1. The vibrator should start every time the circuit is properly connected across the 6 -volt section of battery.
Check starting by feeling for a slight vibration or listening for vibrator noise.
2. The ourput voleage should be above the values given in the table.
3. The inpur current should be below the values given in the table.
Failure to meet any of these three conditions is sufficient cause for rejection of a unit as defective.


Typical Bench Set-Up for Testing Vibrators


These service notes pertain to two receivers which are identical with the exception that one model had Duola connections incorporated in it. These connections are shown in the schesatic drawing by the dotted ilnes. Where Duola provisions are provided connections marked " $X$ " on the diagram are open. Receivers with Duola comnections may be identified by the Duola switch and two tip jacks located on the back of the chassis. Receivers which do not have the Duola connections do not have the awitch (Part 49566 ) or the tip jacks (Part \#9565).
ALIGMMENT: Only when an antenna, oscillator or IF transformer has become defective due to an open or short od winding should it be necessary to realign the receiver. For aligning either the intermediate transformer or the variable condenser it is necessary that an osillator be used with some type of output measuring device.

## INTERMESIATE TRANSFORUER ALIGNMENT:

1. Connect the high side of the oscillator output to the control grid of the GA7 tube leaving the grid clip disconnected. CONNECT A 50,000 OHM RESISTOR FROM THE CONTROL GRID OF THE GA7 TUBE TO THE ROTOR FRAME OF THE VARIABLE CONDENSER. The ground side of the test oscillator should be comected to the gang condenser frame and must not be otherwise grounded.
2. Set the oscillator at 265 kilocycles (this must be accurate) and adjust the output of the oscillator so that convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the first intermediate transformor trimmer up and down until maximm reading is obtained on the output meter. Then adjust the trimaer screw located inside of the brasa hex nut in the same manner. The intermediato transformer trimmer screws are accessible through the small hole in the top of the intermediate transformer trimmer shields.
4. The second IF transformer should next be adjusted in the same manner es the first intermediate transformer.

## TO ALIGN THE VARIASLE CONDENSER:

1. Place the band selector switch for operation on the 1500-540 kilocycle band (right hand position) and-tune the receiver to exactly 1400 kilocycles on the dial and set the oscillator to this frequency. Next, adjust the trimmer screws of the oscillator and antenna section of the variable condenser to obtain maximum output reading. These trimmers are mounted on the top of the variable condenser.
2. Tune the receiver and set the oscillator frequency to approximately 600 kilocycles. Adfust the 600 kilocycle padding condenser which is located on the rear of and accessiole through the amall hole in the chassis for maximum output. Be sure ta rock the variable condenser slightly to the right and left so as to obtain the position of greatest output.
HOTE: There is no short wave adjustmont. Aftor alignment has been properly made in accordance rith the instructions given, the dial calibration will be correct and the receiver will properly track on short wave bend.

	VOLITAGE TABLE							
$\begin{aligned} & \text { TYPE OF } \\ & \text { TUBE } \end{aligned}$	POSITION OF TUBE	FILAMEANT VOLTS	PLate VOLTS	$\begin{aligned} & \text { SCRERSA } \\ & \text { VOLTS } \end{aligned}$	GATHODE VOLTS	OSC. GRID HO. 1	ANODE aRID NO . 2	$\begin{aligned} & \text { SCREEX } \\ & \text { GRID } \\ & \text { MO.3 \& } 5 \end{aligned}$
687	Oacillator e Modulator	5.2	128		2.00	1.5	125	76
78	Intermediate Prequency	5.1	128	128	2.25			
75	2nd Detector Diode \& AVC	5.0	82.54		2.00			
45	output	25	115	128	204*			
2525	Rectifior	25						

* Triode plate voltage. Comparative only is not the true voltage applied. The voltrater, when radings are takon at this point, is in aerlos with very high resistance.
*W Bias for the 43 output tube is obtained by the voltage drop across the filter choke. Read bias voltage from cathode to negative side of filter choke.

PARTS AND PRICE LIST

PART MOLBER		LIST PRICE
9755	BC Antenna, Flrst Detector, Oscillator \& Sw oscillator Coil	\$2.14
9754	Six Antenna and Pirst Detector Coil	.74
9478	First IP Transformer	1.38
9479	Second IF Transformer	1.38
9756	Band Selector Switch	. 88
9485	Gang Condenser	2.69
9331	Volume Control	1.32
9062	Padding Condenser	. 50
9442	Dry Electrolytic Condenser	2.85
9438	Wire Wound Resistor Strip 145 Ohas	. 60



PAGE 5-4 RADOLEK

RADOLEK CO.
Voltage
VOLTAGE TABLE:


* Comparative voltage only. The voltmeter, when readings are taken at this point, is in series with a high resistance and is therefore not the true voltage applicd. Read all voltages from socket to chassis unless otherwise specified.
** Read from grid to chassis.
Only when the antenna, oscillator or I. F. transformer has become defective due to an open or shorted winding should it be necessary to realign the receiver. For aligning either the intermediate transformer or the variable condenser it is necessary that an oscillator be used with some type of output measuring device.


## INTERMEDIATE ALIGNMENT:

1. Connect the high side of the oscillator output to the coritrol grid of the type 57 modulator tube (lst detector) leaving the grid cap disconnected. The ground side of the oscillator should be connected to the chassis.
2. Set the oscillator at 465 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the first intermediate transformer trimer up and down until maximum reading is obtained on the output meter. Then adjust the trimmer screw located inside of the brass hex nut in the sane manner The intermediate transformer trimmer screws are accessible through the small hole in the top of the intermediate transformer shields.
NOTE: Some of the IF intermediate transformers used do not have the brass hex nut and the Erimmer screw inside of the brass hex nut, but have two parallel trimmers which are likewise accessible through two holes provided in the top of the $I$. F. shield can.
4. The second I. F. transformer should next be adjusted in the sane manner as the first I. F. transformer.

VARIABLE CONDENSER ALIGNMENT: It is important when aligning the variable condenser to follow the procedure given carefully, otherwise the dial calibration will be incorrect

1. Connect the high output side of the oscillator to the antenna and the ground to the chassis.
2. Tune the receiver to exactly 1400 kilocycles on the dial, adjust the band selector switch for operation on the broadcast band (1500-540 kilocycles) and set the oscillator to 1400 kilocycles. Then adjust the oscillator variable condenser section trimmer condenser TO BRING THIS SIGNAL IN (maximum output). The oscillator and antenna variable copdenser trimmers are mounted on top of the variable condenser. Looking at the front of the receiver the first section of the variable condenser is the oscillator section and the other section tunes the antenna coil.
3. Leave the band selector switch for operation on the same band, set the cscillator at 600 kilocycles and tune the receiver to approximately 600 kilocycles on the dial. Then adfust the 600 kilocycle padding condenser which is the one located towards the front on the right hand side of the chassis and accessible through the small hole in the chassis for maximum output. It is necessary to rock the condenser slightiy to the right and left to obtain the correct position. After aligning the 600 kilocycle padding condenser be sure to recheck the 1400 kilocycle adjustment as the 600 kilocycle alignment may have changed the alignment at 1400 kilocycles .
4. Adjust the short wave switch for operation on 1500 kilocyc le to 4500 kilocycle band. Set the oscillator at 4 megacycles and the receiver to 4 megacycles on the dial. Turn the FOc eiver on end and BRING THE 4 MEGAGYCLE SIGNAL IN (TO MAXIMMM OUTPUT) BY ADJUSTING THE 4 MEGACYCLE TRIMMER located underneath the chassis and adjacent to the band selector switch. Next, tune the receiver to 1600 kilocycles on the dial and set the oscildetor irequency to 2600 kilocycles after which adjust the 1000 kilocycle padding condenser which is located on the rear right hand side and accessible through the hole in the chassis for maximum output. It is imperative that after making this adjustment at 1600 kilocycles that the alignment at 4 megacycles be rechecked, as the 1600 kilocycle adjustment may throw the receiver out at 4 megacycles.

RADOLEK CO.

## RADOLEK CO.

## TUBE EQUIPMENT: The receiver uses the following tubes:

One (1) type 57 Firat Detector
One (1) type 57 Oscillator
One (1) type 58 I.F. Amplifier
One (1) type 2A6 Second Detector Diode Triode, AVC.
One (1) type 2A5 Output.

Only when an antenna, oscillator or IF transformer has become defective due to an open or shorted winding should it be necessary to realign the receiver. For aligning either the intermediate transformer or variable condenser it is necessary that an oscillator be used with some type of output measuring device.

## INT ERMEDIATE ALIGNMENT:

1. Connect the high side of the oscillator output to the control grid of the \#57 Modulator tube (lst detector), leaving the grid clip disconnected. The ground side of the oscillator should be connected to the chassis.
2. Set the oscillator at 465 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the ist intermediate transformer trimmer up and down until maximum reading is obtained on the output meter, then adjust the trimmer screw located inside of the brass hex nut in the same manner. The intermediate transformer trimmer screws are accessible through the small hole in the top of the intermediate transformer shields.
4. The second I.F. transformer should next be adjusted in the same manner as the first I.F. transformer.

TO ALIGN THE VARIABLE CCNDENSER: It is important when aligning the variable condenser to Follow the procedure given carefully, otherwise the dial calibration will be incorrect.

1. Connect the high output side of the oscillator to the antenne and the ground to the chassis.
2. Tune the receiver to exactly 4 megacycles on the dial and adjust the band aelector switch for operation on this band.
Set the short wave trimmer about one-half the distance between maximum clockwise and counter-clockwise rotation.

Next set the test oscillator to exactly four megacycles and tune the signad in by adjustingthe oscillator variable condenaer trimmer mounted on top or the variable condenser. Looking at the front of the recelver the first section of the varlable condenser $1 s$ the oscillator section and the other section tunes the antenna coil.
3. Leave the band selector switch for operation on the same band and tune the receiver to 1.6 megacycles on the dial.

Set the oscillator to exactly 2.6 megacycles.
Adjust the padding condenser accessible through the hole in the right hand side of the chassis and the closest to the rear of the chassis to obtain maximum output reading. After making this adjustment recheck the alignment at 4 megacycles. It is advisable to recheck the 1.6 and 4 megacycle adjustment everal times.
4. Adjust the band selector awitch for operation on the broadcast band.

Tune the receiver to exactly 1400 kilocycles on the dial and set the oscillator to this frequency.

Turn the receiver on end and adjust the trimmer screw on the small trimmer located adjacent to the short-wave switch underneath the chassis for maximum signal after which adjust the antenna variable condenser trimmer mounted on top of the variable condenser for maximum signal strength.
5. Leave the band selector switch for operation on the broadcast band and tune the recelver to approximately 600 kilocycles and adjust the oscillator to this frequency. Then adjust the 600 kilocycle padding condenser which is located on the righthand side next to the l. 6 megacycie padding condenser for maximum output reading. As this adjustment is quite critical it is necessary to rock the condenser slizhtly to obtain maximum sensitivity.
NOTE: Always recheck the 1400 kilocycle aliEnment after making the adjustment at NOTE: Always recheck the 1400 kilocycle aliEnment after making the adjustment at
600 kilocycles and the 600 kilocycle adjustment after aligning at 1400 kilocycles.
All short-wave bands are properly aligned after correctly aligning at 4 megacycles.


## RADOLEK CO.

These service notes pertain to two receivers which are identical with the exception that one model had Duola connections incorporated in it. These connections are shown in the schematic drawing by the dotted lines. Where Duola provisions are provided connections marked " $X^{\prime \prime}$ on the diagram are open. Receivers with Duola connections may be identified by the Duola switch and two tip jacks located on the back of the chassis. Receivers which do not have the Duola connections do not have the switch (Part $\# 9566$ ) or the tip facka (Part \#9565) 。

ALIGNMENT: Only when an antenna, oscillator or IF transformer has become defective due to an open or shorted winding should it be necessary to realign the receiver. For aligning either the intermediate transformer or the variable condenser it is necessary that an oscillator be used with some type of output measuring device.

## INTERMEDIATE TRANSFORMER ALIGNMENT:

1. Connect the high side of the oscillator output to the control grid of the GA7 tube leaving the grid clip disconnected. CONNECT A 50,000 OHM RESISTOR FROM THE CONTROL GRID OF THE GA7 TUBE TO THE ROTOR FRAME OF THE VARIABLE CONDENSER. The ground side of the test oscillator should be connected to the gang condenser frame and must not be otherwise grounded.
2. Set the oscillator at 265 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the first intermediate transformer trimmer up and dow until maxinum reading is obtained on the output meter. Then adjust the trimer screm located inside of the brass hex nut in the same manner. The intermediate transformer trimmer screvs are accessible through the smali hole in the top of tho intermediate transformer trimmer shields.
4. The second IF transformer should next be adjusted in the same manner as the first intermediate transformer.

## TO ALIGN THE VARIABLE CONDENSER:

1. Place the band selector switch for operation on the 1500-540 kilocycle band (right hand position) and-tune the receiver to exactly 1400 kilocycles on the dial and set the oscillator to this frequency. Next, adjust the trimmer screvs of the oscillator and antenna section of the variable condenser to obtain maximum output reading. These trimmers are mounted on the top of the variable condenser.
2. Tune the receiver and set the oscillator frequency to approximately 600 kilocycles. Adfust the 600 kilocycle padding candenser which is located on the reas of and accessible through the small hole in the chassis for maximum output. Be sure to rock the variable condenser silghtly to the right and left so as to obtain the position of Ereatest output.

HoTE: There is no short rave adjustment. After alignment has been properly made in accordance with the instructions given, the dial calibration, will be correct and the receiver uill properly track on short wave band.


RADOLEK PAGE 5-9


RADOLEK CO.

TUBE	FIL.	PLate	SCREEN	CATHODE VOLTS
57 1st Detector	2.4	230	90	4.5
57 0scillator	2.4	175	175	1.7
58 I. F.	2.4	230	90	1.7
2 AF 2nd Detector				3
${ }_{80}^{2 A 5}$ A Rectifier	2.4 4.8	218 340	230	7**

* Comparative voltage only. The voltmeter, when readings are taken at this point, is in series with a high resistance and is therefore not the true voltage appliod. Read all voltages from socket to chasis unless otherwise specified.
* Read from grid to chasis.

Only when the entenna, oscillator or I. F. transformer has become defective due to an open or shorted winding should it be nocessary to realign the receiver. For aligning either the intermediate transformer or the variable condenser it is necessary that an osciliator be used with some type of output measuring device.

## INT'ERMEDIATE ALIGMMEAT:

1. Connect the high side of the oscillator output to the control grid of the type 57 modulator tube (list detector) leaving the grid cap disconnected. The ground side of the oscillator should be connected to the chassis.
2. Set the oscillator at 465 kilocycios (this must be accurate) and adjust the output of the oscillator so that a convenient roading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the first intermediate transformer trimmer up and down until maximum reading is obtained on the output meter. Then adjust the trimmer screw located inside of the brass hex nut in the same manner The intermediate transformer trimer screws are accesaible through the small hole in the top of the intermediate transformer shields.
NOTE: Some of the IF intermediate transformers used do not have the brass hex nut and the Erimmer screw inside of the brass hex nut, but have two parallel trimmers which are likewise accessible through two holes provided in the top of the $I$. F. shield can.
4. The second I. F. transformer should next be adjusted in the samemanner as the first I. P. transformer.

VARIABLE CONDENSER ALIGNMENT: It is 1 mportant when aligning the variable condenser to follow the procedure given carefully, otherwise the dial calibration will be incorrect.
l. Connect the high output side of the oscillator to the antonne and the ground to the chassis.
2. Tume the receiver to exactly 1400 kilocycles on the dial, adjust the band selector 8witch for operation on the broadcast band ( $1500-540$ kilocycles) and set the oscillator to 1400 kilocycles. Then adjust the oscillator variable condenser section trimmer condenser TO BRING THIS SIGNAL IN (marimum output). The osciliator and antenna variable condenser trimiers are mounted on top of the variable condenser. Looking at the front of the receiver the first section of the variable condenser is the oscillator section and the other section tunes the antenna coil.
5. Leave the band selector awitch for operation on the same band, set the oscillator at 600 kilocycles and tune the receiver to approximately 600 kilocycies on the dial. Then adjust the 600 kilocyc le padding condonser which is the one located towards the front on the right hand side of the chassis and accessible through the small hole in the chassis for maximum output. It is necessary to rock the candenser silghtly to the right and ioft to obtain the correct position. After aligning the 600 kilocycle padding condenser be sure to recheck the 1400 kilocjcle adjustment as the 600 kilocycle alignment may have changed the
4. Adjust the short wave switch for operation on 1500 kilocycle to 4500 kilocycle band. Set the oacillator at 4 megacycles and the receiver to 4 megacycles on the dial. Turn the Focoivor on end and BRING THE 4 MEGACYCLE SIGNAL IN (TO MAXIMUM OUTPUT) BY ADJUSTING THE MEGACYCLE TRINDER located undernerth the chasis and adjacont to the band selector switch.

Fext, tune the recelver to 1600 kilocycles on the dial and set the oscillator frequency to 1600 kilocycles after which adjust the 1600 kilocycle padding condenser which is located on the rear right hand side and accessible through the hole in the chassis for maximum output. It is 1mperative that after making this adjustment at 1600 kilocycles that the alignment at 4 megacycles be rechecked, as the 1600 kilocvcle adjustment may throw the receiver out at 4 megacyctos.


RADOLEK PAGE 5-11
MODEL 10953
RADOLEK CO.
Schematic
MODEL 10969
Schematic,
Service Data



RADOLEK PAGE 5-13

## RADOLEK CO.



Schematic, Vol tage MODEL 10970
Schematic, Voltage Alignment Data
 ㅂNㄱN:








 sure to
"s, first
of the


RK LABS PAGE 5-1

RK RADIO LABORATORIES, INC.
HDD 4 4rabe Schematic


RK RADIO LABORATORIES, INC.


RK RADIO LABORATORIES, INC.



## REMLER COMPANY, LTD.

MODEL 10-4
Schematic, Voltage
Socket, Alignment


INSTALLATION:
Thia get 1s designed to operate frome 110 to 125 volt, 50 or 00 oycle alternating current supply.
An outdoor antenna should be used, baving a langth or from 60 to such ast. The antonna should be kopt clear of all motal objocts, in wire. Shielded mire should not . This also applies to the leadthe lead-in to the red miro extanding used ror the lead-in. Connect ground conneotion should be made to the bleot Fire. This. in hould bo as short as possible and preforably connected to a oold watep1pe, scraped claan, and a zround clamp uaed.
Loosen the chasia hold-down acrows one turn when installing the
The knob on the lert controla the volume and also operates the on ad OFF switch.

The center knob controls the station selector, or tuning. Thia knob operates through a jualmatio reducing mechanism. Fhen preseed in, the ratio is thres and a halr to one. This position maybe used on bend to another. inan then it is desired to wirn quickly from one to one is obtained. d be used for tuaing on the

The dial 1s divided into throe ranges. The outer range is from 540 to 1900 kilocycles, and is oalibrated in tens of rilocyoles, or broadcast channels. The bands includ ed in this range are: the rogular broadcast band from 540 to 1500 K.C., the police band from range covors from 1900 to 6400 K . C. This range include. Themiddale 1900 to $2000 \mathrm{~K} . \mathrm{C}$. . police atations 2308 to 2490 K . C. Ad aviation anters to 3485 and 4110 to 5700 K.C., amateurs 3500 to 4000 K.C., and shor wave broadcast 6010 to $6150 \mathrm{~K} . \mathrm{C}$. This range 1s calibrated in hundroda of kilooyclea.
The inner range covers the higher frequency bands, oxtending from O to 18 megacjeles ( 8000 to 18,000 kilocyeles).

The principal ahort wave broadoast ranges included are: 6 to 6.15 megacycles, 9.5 to 9.8 megreycles, 11.7 to 11.9 megacyeles, 15.1 to 15.35 mogacycles, and 17.7 to 17.8 magacycles. Amateur phone transmiasions may be tuned 1 n from 14 to 14.4 megaoyclas. This range on the dial is mariced in megacyoles, which are thousands of kilocycles. The knob on the right oontrola the range awitoh and the pointer,

A continuous type tone control is adjustable from the back of the receiver. This may bo adjusted to modify the tone or to reduce nolse or stabic diaturbancos


## SERVICE DATA:

This is a aix tube superheterodyne recoiver with automatio volume control. The following tubes are used:

6 67 Congerter (mixor-oscillator)
78 Super-control amplifior, ist I.F. stage
78 Super-control amplifler, 2nd I.F. stage
6B7 Diode detioctor - AF amplifier, $\triangle V . C$
8 Power amplifior
Dial light $8-8$ volt lazda 50
The 0 soillator, antenna, and mixer coila are mound on the same form for each band. The short wave coila are mounted directly on the switch together with the trimer apacities. A variable serios trimer is provided for the broajcast band oscillator circult. This 1a accessible from the bottom of the chasais, and ia mounted near aluminum shields mounted on top of the ohessian formera are in the these coils may be adjusted from the topa of the shields. termediate frequency is 450 kilooycles. Use a meak signal or oscillator input whon adjusting the trimera.
In romoving the chasis from the cabinet, take the set screw,apring and brass pin from the tuning knob so that it may be ramoved from ith a mooden sarem drivor th procing cabinet.
voltage readings for servicing purposea follow
A. c. voltages:


From ground to:

80	Roctifier filament
42	Plate
42	Screen grid
42	Grid
887	Plato
687	Screen grid
6B7	Gr1d
78	2nd 1.F. plate
78	2nd I.F. soroen grid
78	2nd I.r. oathode
78	lat I.F. plate
78	lst 1.F. sorsen grid
78	1st 1.F. cathodo
017	plate (mixer)
647	Screan grid
647	Cathode
647	Plato (oscillator)
	Speaker fiold (rod lead)


-

Due to currait takon by poltmeter uned, readiogs of 6B7 and

MODEL 21-4
Schematic
REMLER COMPANY, LTD.
Voltage,Alignment


REMLER MODEL \#21-4

This radio receiver is of the superheterodyne type wh automatic volume control.

TUBES:

```
2a7 - Converter (mixer - oscillator)
58 - I. F. amplifier
237 - Diode detector - audio amplifier
2A5 - Power amplifier
 80 - Rectifier
 Diallight, 3.8 volt
```

INSTALIATION:
This set is designed to operate from a power supply of 110 to 125 volts, 50 or 60 cycle alternating current.

Two antenne connections are provided. The red wre should be connected when the antenna is less than 100 feet in length, and the green wire should be used when

CONTROLS:
The knob at left controls the volume and also operates the on and foFF 9witch.
The knob in the center is the station selector. The dial is calibrated in kilocycies for both broadcest and short wave bends. The tone control is operated by the knob on the risht. The short wave switch is located on the beck of the chassis. In the lonk wave or broadcast position the receiver covers a band from 540 to 1750 kilocycles. When the suitch is roved to the right, or short wave position, the receiver covers from 1700 to 4500 kilocycles. This band includes police, amateur and airport stations as indiceted on
the dial. Tha 10 er frequency band for police calls is from 1714 the dial. The lower rrequency band for police calls is from 1714 to 1500 kilocycles. This range is cov
the left or normal broadcast position.

SERVICE DATA:
The antenne and mixer coils are in the aluminum shield nearest the back of the chassis. The trimmer condenser, adjustable through the top of the shield, is for trimming the high rrequency end of the short wave position. frimers for the broadcest bend are loceted on the variable condenser.

REMLER PAGE 5-3

## REMLER COMPANY, LTD.

MODEL 35 Auto<br>Schematic, Socket<br>Voltage, Installation

## INSTALLATION:

The recelver unit is intended to be mounted on the bulkhead of the 085
$1 / 2$
inch hole through the bulikhead. when log locating the position of this hole consideration should be givon to possible interfarition of the hot wi th the position of control on to possible interforence of twoen the desh and tho bulkhead and also of and other apparatuabo apparatus on the motor alde or the bulkhead. preferably the oolver should be mounted so as to allow long easy curves or the flexible control cables and a short load connection to the antenna.

The location of antonna leaca from factory installed entennas dapends on the make and model or the oar. Usually tris load is brought down one of the front body plilar posts and will be found coiled up at the end of the daah. Connect this lead to the shiolded lead from the receiver and tape the joint. there the car is not stalled oquth lead brought to a convoniont pleco for connection to the sot. The lead and antenna should be kept as far as possible from wiring circuits and the motal body.

The rlexible control abbles for tho tuning and volume control are fitted With special ends to look in the control head. Insert the cable with the slotted end into the left or rolume control bushing, and the cable with keyed and into the right, or tuning controi bushing. Be sure the oable housing oxtends into the head at least
three-eighths of an inch, then tighton the set acraws on the bushings. Next insert the cables into the bracieta and couplings on the set. The volume control oable in the lower coupling and the tuning cable in the upper coupling, but do not tighten the set screas on the shafts. Next clamp the control head to the steoring column, tape the control cables to the column bracket or some solid object under the dash and tighton the clamps on the cable housings at the set. Now tura the volume knob to the position where it is removable from the koy slot, and turn the tuning knob to the left till the pointer is on the white line at the low frequency end of the dial. Hotate the couplings projecting from the sot to the loit till the condenser is against the stop and the switch on the volume control is in the of position. Now the set screws on the shaft couplings may bo t1antoned.
Plug the dial light into the opening at the rear of the control hoed. Connect the battery wire, the shielded wire with fuse holder and terminal, to the battery side of the ammeter. Thia tarminal on the ameter usually has only one wire attached.

IGNITION NOISE SUPPRESSION:
The spark plug aupprossors should be oonnooted in serien with the plugs at each plug and the distributor appreasor should be lsad running to this point. The generator condensor should bo mounted on the geferator and the flexible lead connected to the terminal at the catout where the wire from the generator is attached. Some cars require special work to further reduce noisos due to pecullarities of the wring systems.
OPERATION :
The left hand knob on the control head aperates both the power switch and the volume control. Purn the knob slockniso to incroaso
volume. The dial should bocomo illuminated when the power is volume. The dial should bocome illuminated whon the power is on.
rotate the station selector, or tuning knob until the desired program is heard, reduce the volume, and readjust the selector to the position where quality is the best. The volume control may now be of the , the knob on the right side of the set is the tone oontrol. Ihis may be adjusted to modify the tone or to reduce noise and static disturbances.

SHORT MAVE
The short ware awitch is on the loft of the speaker, then this knob is turned to the lert the rogilar bromoast band lo covered by the station selector dial as woll as the lower frequency poilce band an noted on the dial. When the switoh la turned to the right the selootor dial corers from 2200 to 6500 K . C. The positions of the higher frequency police band, the 49 meter ahort wave broadcast band and the major airport and amateur banda are notad on the 1 nner porquitable for isany automobilo antenna installations are not instance for feceiving thes short wave atations from eny ereat the cer purked, a fiter or sixty foot porteb rarse is desired with the far end raised at least firty foot portable antenna wiro, with the far end raised at least fiftoon faet from the ground, may be used.

SERVICE DATA:
Tubes:

> 647 Converter (mixer-oscillator
> 78 Super-control amplifier, ist I.F. stage
> 7 Super-control amplifier, 2nd i.F. stage
> 75 Diodo-detector-i F amplifier, A.V.し.
> 41 Power amplifior
> 84 Pull wavo rectifior
> T-40 Dial light 6.3 V .

Whe antonna and mixer coils for the broadcast band are in the shield at the loft side of the set. The short wave coils are mounted directiy on the short wave switch with the oscillator coil for the broadcast band at the end of the svitch. the 1.F. transformers ars In the aluminum shiolds adjacent to the antenna-mixer shield. These transformers are peaked at $450 \mathrm{~K} . \mathrm{L}$. by the trimers located at the an ouf the shields. Uso a wask signal, or oscillatar input, and an output meter when aligning the set.

The vibrator type interrupter and transformer are enclosed in the detal box at the right of the receiver. after several hundred hours wear. The necessity of may require a slight adjustrent due to marked reduction in plate supply voltage. Yibrat be done only by a sorvice man with instructions and experience in this work.

Voltages: To chassis - No signal.

	tiory, hot	side			volts
84	Rectifier	cathodo		250	
41	?ower	sareen E	Id	230	"
41	"	plata		220	"
41	"	cathode		14	"
75	betector	amplifier	plate	125	"
75	"	,	cathode	1.5	
78	2nd I.F.	"	plate	230	,
78	2nd I.F.	"	screen grid	100	"
78	2nd I.F.	"	cathode	3.5	"
78	10t I.F.	*	plate	230	"
78	lst I.F.	"	screen grid	200	"
78	$1 \mathrm{st} \mathrm{I.F}$.	"	cathode	5	"
	Mixer plat			230	"
817	Mixer scre	oon grid		100	"
	Oscillator	r plate		200	"
647	Mixer-osci	1liator c	thode		"

IF PEAK 450 KC .


REPUBLIC INDUSTRIES
Schematic


MODEL CS-6
Schematic

## REPUBLIC INDUSTRIES

Voltage
Socket Layout


REPIBLIC PAGE 5-3


MODEL TR-5B
Schematic
REPUBLIC INDUSTRIES
Vol tage, Socket



[^0]:    Total Filament Voltage-75

[^1]:    *These voltages cannot be measurcd with ordinary voltmeter, a they are obtaiacd by meana of high resistance bleedery across a 22 位-volt "C" battry.

[^2]:    
    
     the chassis．

[^3]:    Returning to the second detector, we find its output
    circuit is coupled to the grid circuit of the driver seage circuit is coupled to the grid circuit of the driver stage through a compensated volume control system, tone
    control system and transformer. The volume conerol uses two stages of compensation, which serves to
    increase the high and low frequencies as the volume is reduced. This compensates for the natural loss in
    sersitivity of the human ear to the high and low

[^4]:    * The voltages and current refer to the detector part of the tube

[^5]:    
    $\qquad$ wo I. F. stages, a combined second detector, auto-
    matic volume control and ist As F. mplififer a pushpull audio driver stage and a push-pull Class a outpur
    tage. Plate and grid voltages are supplied by the RCA-SZ3 heavy duty rectifier combined with a suitable-
    kitering ssstem. In daddition, double channel A. $V$ C. stage is provided which uses two add ditional tubes.
    Figure 1 shows the over-all schematic circuit diagram while Figure 2 shows the R. F. assembly wiring.

