VOLUME V

JOHN F RIDER

P. R. MALLORY \& CO.

Directions for Servicing 1932 Type Mallory 'Single-Reed' Elkonodes

The 1932 type Mallory Elkonode is a half-wave, single-reed converter used with a BR Raytheon tube for rectification. This Elkonode is supplied in six standard types-from 1 to 6 inclusive - and modifications are supplied for special requirements, such as $S \mid 01$, SI02, SI03, T112, and S111. 12-volt single-reed Elkonodes are supplied in types G1 to G6 inclusive, and 32 -volt Elkonodes in types from Fl to F 6 inclusive.

The mechanical construction of the single-reed Elkonode is the same in all types with the exception of the size and number of turns of wire on the Elkonode coil. Following is a table of characteristics indicating the output obtainable from these standard Elkonodes:

The following reproductions picture the Mallory single-reed Elkonode in two positions:

(a) Remove screws which fasten outer housing or can to base.
(1) is a side view showing the Elkonode with cover and rubber cushion removed. (2) is a front view with can and cushion removed. Numbered arrows clearly indicate the position of the Elkonode parts involved in installing new contact spring assemblies and new reed assemblies.

Routine for Dismantling Elkonodes for the Purpose of Replacing Contact and Reed Springs

(b) Hold can in upright position and tamp gently against hand permitting base and rubber housing inside of can to drop out gently. (CAUTION: Do not attempt to remove Elkonode assemblies from cans by pulling on the base.)
(c) Remove rubber cushion from Elkonode assembly in the same manner as entire assembly was removed from can.

TO REMOVE SPRINGS:

(d) Remove contact spring assembly by extracting screws at point marked " A " on above diagram.
(e) Remove reed assembly by extracting screws at point marked " B " on above diagram.
(f) Install reed assembly, using care to insure that metal blocks in which this reed is mounted are squarely aligned. NOTE: Use only Kester Resin Core Solder.
(g) Install contact spring assembly using care to properly align metal blocks in which this spring assembly is mounted.
(h) Inspect alignment of contact points to insure that contacts on both reed and contact springs are in proper alignment, and that their surfaces engage squarely and evenly. Alignment of these points is controlled by the position of the springs, and the screws mounting these springs should not be tightened firmly until the points are in alignment.
(i) With points in proper alignment, the air-gap or clearance between pole-piece of the coil and reed should be adjusted to approximately $1 / 32$ inch. This adjustment is provided for by the cam nut and locking screw at point marked " 6 " in diagram 2. The reed should be in a perfectly perpendicular plane, and the surface of the pole-piece or core of the coil should be exactly parallel with surface of reed.

P. R. MALLORY \& CO.

(j) Loosen the locking screw of the stop post (identified at point 3. on diagram 1) and adjust the stop post (identified at point 4. diagram 1) so that the tip of contact spring assembly engages screw-side of stop post head, allowing contacts to meet with a light pressure. This stop post is easily adjusted by turning to left until head of contact post pulls contact on left, or contact spring, away from contact on right, or reed contact. Then turn stop post screw to right about $1 / 8$ to $1 / 4$ turn, until contact points meet the light pressure. At this point, stop post locking screw should be firmly tightened down to hold stop post in this position.
(k) If the foregoing mechanical adjustment has been carefully followed out the Elkonode is now ready for Electrical Tests. These tests should be conducted with a master Eliminator, into which the Elkonode can be inserted while the can and rubber cushion are still removed, and with a "dummy" load on the Eliminator which will require 180 volts at $35 \mathrm{~m} . a$. for Elkonode types 6, S101, S102, S103, S111, and T112. The output of the Elkonode is adjusted by increasing or decreasing the air-gap clearance between pole-piece of coil and surface of the armature reed. A cam nut and locking screw arrangement provide a flexible adjustment which sometimes must be supplemented by inserting thin metal shims between coil and bracket. NB-Shims are required only where construction of the unit will not permit air-gap clearance being decreased to point required, by adjustment of cam nut.
(1) Electrical adjustment for other types of Elkonodes, from I to 5 inclusive, must be conducted with "dummy" load to equal maximum output available from whichever type Elkonode is involved per characteristics shown in the foregoing table.
(m) Extreme care must be exercised to insure that no dirt or foreign matter is allowed to accumulate on contact points and that entire Elkonode assembly is kept thoroughly dry.
(n) Excessive sparking usually results from improper pressure between and alignment of contact points. If it is found necessary to bend the reed to secure a flat alignment of points, this should be done very carefully, using a pair of thin flatnosed pliers, to grasp the reed firmly at the base where it is mounted. A very slight pressure at this point will be required to change the angle of contact for vibrator points. No sparking whatever results from improper adjustment of stop post, permitting contact springs to follow reed springs past the center of cycle of amplitude or arc of vibration. Contacts should be lightly touching when at rest so there is about .014 inch clearance between stop post and contact spring. Stop post will then break this contact at the center of cycle of amplitude.

If the foregoing instructions are followed carefully, and if reliable instruments are used to measure the output of the Elkonode when electrical adjustments are being completed. you should be able to install contact and reed spring assemblies without difficulty. When adjustments have been completed to your satisfaction, place vibrator assembly inside rubber cushion by holding cushion in inverted position, and allowing assembly to drop into place. Next. place entire assembly inside can, in same manner, and fasten can to base, using screws provided for that purpose.

Thorough instructions for servicing other parts of the Mallory Elkon "B" Eliminator are provided in the service and installation bulletin accompanying each unit,-copies of which may be had upon request.

The following equipment is recommended as being extremely useful in conducting repairs on MalloryElkon "B" Eliminators and Elkonodes:

1. High resistance volt-meter. Scale: 0 to 300 . Resistance: Not less than 1000 ohms per volt.
2. One good quality milliammeter. Scale: 0 to 50 .
3. One set feeler gauges.
4. One small screw-driver.
5. One pair thin, flat-nosed pliers (duck-bill type).
6. One 1932 Mallory-Elkon "B" Eliminator chassis.
7. One variable resistor-"dummy" load arrangement to duplicate maximum load for which each of six standard types of Elkonodes is designed.

Directions for Servicing 1933-34 Type Dual-Reed Mallory 'Self-Rectifying' Elkonodes

The 1933 Mallory Self-Rectifying Elkonode is a dual-reed converter which within itself sets up the essentially alternating current required, and likewise rectifies it to the form of direct current required for radio receiver plate supply. No rectifying tube is used with the 1933 Mallory Self-Rectifying Elkonode.

This Elkonode is supplied in five standard typesfrom 10 to 14 inclusive-and modifications are supplied for special requirements under such designations as Nos. 30, 31. 34, 35 (for Motorola Receivers), and Nos. 36 and 37 . 12 -volt types are supplied in types G10 to G14 inclusive, and 32 -volt types from F10 to F14 inclusive. The mechanical construction of the dual-reed Self-Rectifying Elkonode is the same in all types with the exception of size and number of turns of wire on Elkonode coil.

P. R. MALLORY \& CO.

Following is a table of characteristics indicating
output obtainable from each standard Elkonode at storage battery terminal voltage of 6.6 , for the 6 -volt, 13.2 for 12-volt type.

ELKONODE RATING TABLE or Self-Rectifying Elkonodes for the Purpose of Replacing Contact and

$\begin{gathered} \text { Elkonode } \\ \text { Type } \end{gathered}$	$\begin{aligned} & \text { Volts } \\ & \text { Output } \end{aligned}$	For Receivers Requiring the Following Current in Milliamperes in the B MinusLead at 200 V on Signal ead at 200 V . on Signal		$\begin{gathered} \text { Elkonode } \\ \text { Rated } \\ \text { Output } \\ \text { Watts } \end{gathered}$	$\begin{aligned} & \text { Storage } \\ & \text { Battery } \\ & \text { Drain in } \\ & \text { Amps. } \end{aligned}$
		Without Voltage Dividers in Elim	With 2 M. A. $100.000 \mathrm{Ohm})$ in Elim.		
10	200	40-45	38-43	8.4	2.1
11	200	35-40	33-38	7.4	1.9
12	200	30-35	28-33	6.4	1.6
13	200	25-30	23-28	5.4	1.4
14	200	20-25	18-23	4.4	1.2

(a) Remove screws which fasten outer housing or can to base
(b) Hold can in upright position and tamp gently against hand, permitting base and rubber housing inside of can to drop out gently. (CAUTION: Do not attempt to remove Elkonode assemblies from cans by pulling on base.)
(c) Remove rubber cushion from Elkonode assembly in the same manner as entire assembly was removed from can.

Current at which Phantom Load Relay should
(d) With internal assembly in view, displace condensers by turning each outward from center carefully. be adjusted

Elkonode Type	No. 10	No. 11	No. 12	No. 13	No. 14
Current	20 M.A.	17.5 M.A.	15 M.A.	12.5 M.A	10 M.A

TO REMOVE SPRINGS AND REEDS:
(e) Remove contact spring assembly by extracting screws at point marked " A " on above diagram, No. III.

Special Types Should be Adjusted to SET MFRS. Specifications (See Paragraph "N")
The following reproductions picture the Mallory dual-reed or self-rectifying Elkonode in two positions: (3) is a side view showing the Elkonode with cover and rubber cushion removed, and (4) is a front view with cover and cushion removed. Numbered arrows clearly indicate position of Elkonode parts involved in installing new contact spring and new reed assemblies.
 ENLARGED STOP POST ASSEMBLY

[^0](f) Remove reed assembly by extracting screws at point marked "B" on above diagram No. III.
(g) Install reed assembly, using care to insure that metal brackets in which these reeds are mounted are squarely aligned with reeds. (NB-Use only Kester Rosin Core Solder.)
(h) Install contact spring assembly using care to properly align metal brackets and blocks with which this assembly is mounted.
(i) Inspect alignment of contact points to insure that contacts on reed and contacts on springs are in proper alignment. Their surfaces must engage squarely and evenly. Alignment of points is controlled by the position of the springs. Screws mounting these springs should not be tightened firmly until points are in alignment.
(j) With points in proper alignment, air-gap or clearance between pole-piece of coil and counter-weights on ends of reed assemblies should be adjusted to approximately $1 / 32$ inch, when reeds are pulled in to center position. This adjustment is provided for by removing or inserting shims between the Elkonode frame and coil, at top of coil.
(k) Loosen locking screw of stop posts (identified at point 3 , diagram 1II, above) so that tips of contact spring assembly engage screw-side of stop post head, allowing contacts to meet with contacts on reed assemblies at light pressure. Stop post is adjusted by turning to left until head of contact post pulls contact springs away from contact on reed assembly. Then turn stop post screw to right (about $1 / 8$ to $1 / 4$ turn) until contact points on both contact spring and reeds meet with light pressure. At this point, stop post locking screw should be firmly tightened to hold stop post in this position.

PAGE 5-4 MALLORY

MODG 1933-34 Type
 Dual Reed Elkonodes
 Dismantling and
 Adjustments

(l) It is extremely important, if secondary reed and contact spring assembly show any sign of having been burned as a result of "arcing," that condenser No. 16611, rated at . 01 mfd .1600 V ., used across the secondary side of the Elkonode be replaced with a new one.
(m) Elkonodes which have become inoperative through the breaking down of this condenser, or which show evidence of overload at contact points, should never be replaced in Eliminators or automotive radio receivers until the adjustment of the "phantom load" relay has been checked carefully. Following is an outline of the causes which may bring about Elkonode failure through no fault of the Elkonode, and the method for correcting them :
(n) Elkonode failure is usually the result of a "no load" operating condition, which ordinarily is due to (A) film of dirt between contact points of phantom load relay, (B) iron filings between core and clapper of phantom load relay, (C) insufficient tension in phantom load relay springs. (D) open phantom load resistor, (E) receiver output tube defective, (F) connections to output tube open.

Most prevalent of these difficulties are items (B) and (C) which invariably cause Elkonode failure through no fault of the Elkonode.

Conditions (A) and (B) are corrected by thorough cleaning with strips of paper. Condition (C) is corrected by inserting milliammeter in coil circuit of phantom load relay, or in $B+$ lead to receiver, and adjusting spring tension so that relay clapper will pull to core when current is equivalent to current rating for that type of Elkonode, as indicated in foregoing table. Conditions (D) and (F) are detected by continuity checks, while Condition (E) is detected by means of a tube tester.
(o) A choke coil is mounted within the rubber cushion in the base of the Elkonode can, and the continuity of this choke coil should be checked by continuity tests between mounting prongs and soldering terminal of the secondary contact spring assembly.
(p) If the foregoing mechanical adjustments have been carefully followed out, the Elkonode is now ready for electrical tests. These tests should be conducted with a master Eliminator, into which the Elkonode can be inserted while the can and rubber cushion are still removed. A "dummy" load to equal the output characteristics of whichever type dual-reed selfrectifying Elkonode is involved should be imposed, and all tests should be conducted with a battery terminal voltage of 6.6. Special types of Elkonodes designed for so-called "allelectric" automotive receivers may best be tested in this same manner, or with a "dummy" resistor load to match the output characteristics of that Elkonode.
(q) Extreme care must be exercised to insure that no dirt or foreign matter is allowed to accumulate on contact points, and that the entire Elkonode assembly is kept thoroughly dry.
(r) "Excessive sparking" usually results from improper pressure between and alignment of contact points. If it is found necessary to bend reed assembly to secure flat alignment of points, this should be done by carefully grasping reed assembly at bracket where it is mounted with a pair of thin, flat-nosed pliers. A very slight pressure will be required to change the angle of contact for vibrator points. "No sparking" results from improper adjustment of stop post, permitting contact spring to follow reed spring past center of cycle of amplitude
or arc of vibration. Contacts should be lightly touching when at rest, so a clearance of approximately .012 exists between stop post head and contact spring on interrupter side and .002 to .006 on rectifier side. Stop post will then break these contacts at center of cycle of amplitude.

If the foregoing instructions are followed carefully, and if reliable instruments are used to measure output of Elkonodes when electrical adjustments are being completed, you should be able to install these contact spring and reed assemblies without difficulty. When adjustments have been completed to your satisfaction, place vibrator assembly inside rubber cushion by holding cushion in inverted position and allowing assembly to drop into place. Next, place entire assembly inside can, in the same manner, and fasten can to base.

Thorough instructions for servicing other parts of the Mallory-Elkon "B" Eliminator are provided in Service and Installation Bulletin accompanying each unit, copies of which may be had upon request. A circuit diagram of the entire Eliminator is shown herewith for your convenience in making continuity tests.

It is important that Elkonodes be used only with Eliminators having same type numbers, and that phantom load relays and resistors are matched to type of Elkonode and Eliminator involved. Correct types of phantom load relays and resistors are shown in the parts list.

The following equipment is recommended as being extremely useful in conducting repairs on MalloryElkon "B" Eliminators and Elkonodes:

1. High resistance volt-meter. Scale: 0 to 300 . Resistance: Not less than 1000 ohms per volt.
2. One good quality milliammeter. Scale: 0 to 50 .
3. One set feeler gauges.
4. One small screw-driver.
5. One pair thin, flat-nosed pliers (duck-bill type).
6. One 1933 type 10 Mallory-Elkon "B" Eliminator chassis, with one each proper phantom load relay and resistor for types $10,11,12,13$ and 14. (A test-board switching arrangement to cut in whichever type phantom load relay is required for the Elkonode being repaired will be valuable in conducting these tests.)

P. R. MALLORY \& CO.

Routine for Dismantling Elkonodes for the Purpose of Replacing Contact and Reed Springs
(a) Remove screws holding cover on can.
(b) Loosen cover from can and hold in upright position, prongs down; gently shake the rubber sock and Elkonode from the can.
(c) Closely observe the manner in which the leads from the prong base to the Elkonode are placed in the outer slots of the rubber sock. This is important for correct placement of wires when replacing assembly in can.
(d) Observe the location of the various parts, especially the position of the reed Armature (2) with respect to the coil pole shoe of the Elkonode. (1).
(e) Unsolder the three leads at the Elkonode terminals, noting that the top lead (with Elkonode held as in diagram) crosses over the ground lead to the center connection at the plug. Unsolder the coil wire at the spring terminal.
(f) Loosen lock nuts A, and A2 and turn the adjusting screws B, and B2 counter clockwise until the insulating bushings (5) are against the frame, then remove screws and slide out bushings.
(g) Loosen stack screws (3) and remove. Press on the under side of the bakelite stack and reed so as to move the assembly out from between the frame. Save the insulating bushings (5), stack screws (3), connector plate (4), adjusting screws, and the lock nuts. Remove the bakelite stack spacers and insulating tubes from the assembly.
ROUTINE FOR REBUILDING THE ELKONODE:
(h) Rebuild the stack assembly, making sure to use the thicker of the four bakelite spacers on either side of the reed.
(i) Since the Elkonode is largely magnetic in operation, extreme care must be taken to prevent particles or filings of iron from attaching themselves to the iron parts of the Elkonode. Clean the pole shoe, frame, and reed thoroughly.
(j) Hold the assembly with the reed in the position shown in the illustration, place the frame under the assembly, as shown also, and insert the assembly from the top. It may be necessary to spread the frame slightly in order to make the insertion. Inspect the stack screws for signs of weakening, and if satisfactory, replace with the connector plate and tighten slightly.
(k) The reed should stand approximately in the center of the frame at rest. The end of the reed should be parallel to the face of the pole shoe and from $.003^{\prime \prime}$ to $.005^{\prime \prime}$ distant from it when the reed is pulled down opposite its center. This distance should be accurately set by feeler gauges. The reed may be adjusted because of play in the mounting holes.
(1) Insert the insulating bushings in the slots in the ends of the springs, thread the adjusting screws into place, together with the lock nuts. Adjust the screws to place the contacts close to the reed contacts. The springs should be moved so as to allow the contacts to strike the reed contacts without overlapping. The contacts should be fairly flat in making contact, and still not bind on the insulated adjusting bushing.
(m) Tighten the stack firmly without disturbing the adjustments. Hold the reed over a piece of white paper in the vertical position shown in the illustration. The end edge of the reed, on the opposite side from the armature should rest from flush with the edge of the pole piece to $.003^{\prime \prime}$ above same. Any bending of the reed should be done at the extreme armature end, and only slight alterations should ever be necessary. Should the pole shoe not be parallel with the armature in a vertical direction, turn the pole shoe with a pair of long-nosed. pliers; do not attempt to twist the reed. Check the air-gap spacing and tightness of coil mounting screws, if such adjustments are made, then recheck alignment.
(n) Solder the leads back as before, with the ungrounded heater terminal lead to the reed tail. The connector plate is soldered to the reed tail also, at the same time, and the coil wire to the - near spring lug.
(o) Some method of exerting high pressure upon the stack end of the Elkonode while the final tightening of the clamping screws is taking place is essential. It is suggested that an arbor press, capable of exerting a total pressure of about 2000 pounds, be used. Pressure should be exerted directly over the stack, between the screws, while a large screw driver draws the screws down firmly. This prevents loosening of the stack in service and consequent failure.
(p) Turn the adjusting screw $B-1$ clockwise until the space between the contacts G and H is between $.003^{\prime \prime}$ and $.004^{\prime \prime}$, as measured carefully with a feeler gauge, with the lock nut A-1 tightened firmly. Proceed likewise with B-2 and A-2 until clearance between contacts E and F is between $.004^{\prime \prime}$ to $.006^{\prime \prime}$. Check lock nuts for tightness. The unit should then be ready for operation.
Following is a test circuit which may be set up for electrically testing and adjusting Elkonodes of the " 50 " Series. "Sound" tests may be obtained only with receiver in operation.

(Transformer should be the same as used in set from which the Elkonode was taken. The set itself may be used for test if an extension lead is made up. Do not expect quiet operation while set is open and unit is uncanned.)
(q) If test equipment is available, operate the Elkonode on this equipment before placing it in the Elkonode can. The unit should start operation at 4.4 volts (2 cells of 6 -volt battery on charge), should provide correct output at 6.6 volts and should operate satisfactorily at 8.8 volts (4 cells on charge). Should any adjustment be necessary, adjust screw B-2 only. A very slight movement of the screw should permit final adjustment.

CAUTION

(r) Do not attempt to bend contact springs.

Use only Kester Rosin Core Solder.
Keep moisture from all parts of the Elkonode.
Keep metallic particles out of Elkonode.
Keep dust, moisture, grease and liquid from the contact surfaces. Clean contact surfaces with a dry, clean piece of linen paper.

P. R. MALLORY \& CO.
 (Continued)

(s) When inserting the Elkonode into the rubber sock, be very careful to turn the frame of the Elkonode parallel with the flat sides of the inside holes of the sock, so as to leave the air spaces at the open sides of the Elkonode. The single ground lead (from reed) is taken down the smaller of the two slots. while the other two leads are taken down the larger slots. Place the Elkonode in the sock, so that no wires need be bent to meet this arrangement. Draw the leads to the prong base, and fold under the lid. Insert the sock assembly into the can, with the large slot next to the seam of the can. Screw cover to can with screws provided.

"60-70-80"

The series 60, 70, and 80 Mallory Elkonodes are described as single-reed, full-wave inverters, with selfcontained synchronous rectifiers. These units within themselves supply the direct current, high voltage for radio receiver plate supply. No tube rectifiers are required with these types. Inasmuch as the mechanical construction of all of the 60,70 and 80 series units is the same, the following service information will apply to all such units:
The 60 series unit is no longer in production--having been replaced with the 70 series unit, and differs from the 70 series principally in that its self-contained point buffer condensers were of the wax impregnated paper type, rated at .008 mfd .1600 volts DC. The 70 series is supplied with an oil-impregnated and immersed paper condenser of .01 mfd . capacity, rated at 1600 volts DC, and whenever occasion arises to replace contact spring and reed assemblies in the 60 series unit, advantage should be taken of that opportunity to replace the old unreliable paper condensers with the new type, described as our part A-18237.

The 80 series Mallory Elkonodes are identical with the 60 and 70 series except that no internal point condensers are supplied. These units are to be used only in cases where the original point buffer condensers in the type 60 Elkonodes have been removed, and suitable condensers installed permanently at the Elkonode socket prong. In some special cases, a manufacturer may have used external secondary buffer condensers in place of the internal point condensers, but such cases will be rare.

As with all other types of Mallory Elkonodes, the prefix letter G denotes 12 -volt operation, and the prefix letter F denotes 32 -volt operation. Differences in wire size and in the number of turns of the Elkonode driver coil distinguish the 6 -, 12 -, and 32 -volt types, but the output ratings as set forth in the following table apply to 6 -, 12 -, and 32 -volt types alike:

Elkonode Series No.	Maximum Watts Output
$60-70-80$	11
$60 \mathrm{~B}-70 \mathrm{~B}-80 \mathrm{~B}$	18
$61-71-81$	11
$63-73-83$	18
$65-75-83$	11

A-A2	-Rectifier Lock Nut	1. Magnet Coil Pole Shoe
B1-B2	-Rectifier Adjusting Screw	2. Reed Armature
C1-C2	-Interrupter Lock Nut	3. Stack Clamping Screw
D1-W2 -Interrupter Adjusting Screw	4. Connector Plate	
E. F. G. H-Rectifier Contacts	5. Insulating Bushing	
E. F. G. H-Duplicate for Interrupter Side	6. Reed Tail	

P. R. MALLORY \& CO.

The 50 Series Mallory Elkonode is a single-reed fullwave inverter for use in supplying alternating-current voltage which in turn is rectified by a tube rectifier for supplying the high direct-current voltage needed for radio receiver plate supply.

This Elkonode is used in three standard types, Nos. 50,51 , and 53 , and in certain modified forms for special requirements. For 12 -volt operation, the type number is prefixed with the letter " G " to designate the change in construction. Likewise, for 32 -volt operation, the letter " F " is used. The mechanical construction for all types is the same except for a change in the driver-coil windings for the 12 -volt and again for the 32 -volt types. The types 50 and 51 Elkonodes are adjusted and intended to carry output loads up to $\|$ watts. The type 53 Elkonode is designed for loads from 11 to 18 watts. These types have an advantage over earlier types in not being limited to a narrow range of load conditions. Ratings are given, in every case, for operating battery voltages of $6.6,13.2$, and 33 volts, for the 50, G-50, and F-50 Series, respectively.

The following reproduction pictures the Mallory Type 50 Series Elkonode in a top view, with covers removed.

Instructions For Adjusting Contact Springs When Such Springs Do Not Require Replacement

As with automobile ignition contacts, the tungsten contact points in Elkonodes will show some evidence of wear after they have been in service for a long period of time. This wear progresses gradually, and as long as the Elkonode is capable of operation, any amount of wear at the contact points will have no influence whatever on the performance of the radio set or on the voltage supplied to the tubes. However, after a long period of service the Elkonode may refuse to start, and when this point is reached it should be taken as indicative of excessively worn contact points. The Elkonode has been designed with a generous reserve of tungsten in its contact points, and this reserve may be utilized to give the Elkonode extended life, providing one simple adjustment is made. This adjustment is outlined as follows:

[^1]2. Place the Elkonode on a piece of white paper, so that when viewed from above it appears exactly as in drawing above.

1. Magnet coil pole shoe
2. Reed armature
3. Stack clamping screw
4. Connector plate
5. Insulating bushing
6. Reed foil

A-lock-nut. B-adjusting screw. E. F. G. H-contact points
3. Loosen lock nut (A2) and turn screw (B2) clockwise until $.005^{\prime \prime}$ of light can be seen between contacts (F) and (E). If the contact points are roughened, the light can not be seen across their entire diameter, even though they are correctly spaced (i. e., within $.005^{\prime \prime}$ of touching each other).
4. A check on the accuracy of the spacing adjustment is obtained by pressing lightly against the center of the reed with a small pointed metal instrument in the direction and location shown by arrow (K). When the reed is thus moved, so as to just close contacts F and E, the weight (2) on the free end of the reed should move $1 / 64$ inch from its "at rest" position. Check should be made after lock nut has been firmly tightened down.
5. DO NOT readjust spacing between contacts G and H , unless the tungsten is nearly all worn away. In this case, readjustment is obtained in exactly the same manner as for contacts F and E.
6. In reinserting the Elkonode into its rubber sock, be very careful to turn the "flats" of the sock hole so that they are in line with the lock-nuts. This provides ample space in the sock for the free movement of the reed. In reinserting the "socked" Elkonode into the can, be sure that the can seam lines up with the wider of the wire-carrying channels on the outside of the sock. This is important.

CAUTION: Inasmuch as the Elkonode mechanism is partially magnetic, extreme care should be observed while making adjustments to prevent iron fil
getting into the Elkonode.

PODEL 60,70,80 Series	
Eukonode Repair	P. R. MALLORY \& CO.

Directions for Replacing Contact Spring and Reed Assemblies in the 1933 and 1934 60 ,' '70,' and ' 80 ' Series Mallory Self-Rectifying Elkonodes ROUTINE FOR DISMANTLING ELKONODE: \qquad (c) Closely observe the manner in which the leads from the prong base to the Elikonode are placed in the outer slots of \qquad \qquad \qquad \qquad \qquad \qquad \qquad ROUTINE FOR REBUILDING THE ELKONODE: \qquad \qquad \qquad \qquad \qquad \qquad \qquad (k) Reinscr \qquad \qquad	\qquad \qquad face of the pole shoe, and from $.003^{\circ}$ to $.005^{\circ}$ distant from it when the reed is pulled down opposite its center. This distance should be accurately set by feeler gauges. The reed may be adjusted because of play in the mounting hotes. \qquad (q) Loose \qquad \qquad clearance \qquad \qquad \qquad \qquad \qquad		

MISSION BELL RADIO MFG. CO., INC.
MISSION-BELL RADIO CO.
MODEL 11 AUTO-RADIO.

MODEL 14 ^UTO RADIO

Mission Hell Radio Co.

MIRACO PAGE 5-1

MONTGOMERY-WARD \& CO.

Condenser Alignment

Misalignment or mistracking of condensers generally manifests itself in broad tuning and lack of volume at portions or all of the broadcast band. The receivers are all properly aligned at the factory with precision instruments and realignment should not be attempted unless all other possible causes of the faulty operation have first been investigated and unless the service technician has the proper equipment. A signal generator that will provide accurately calibrated signals over the broadcast band and accurately calibrated signals at and around $262.5 \mathrm{~K} . \mathrm{C}$., the intermediate frequency and an output indicating meter are desirable.
Do not take the chassis out of the box. First set the signal generator at approximately 262.5 K . C. Connect the antenna lead from the generator to the control grid of the I. F. 78 tube, through a .05 mfd . condenser. The ground lead of the generator goes to the ground of the receiver. Turn the rotor plates of the tuning condenser completely out and keep the signal weak enough to prevent A. V. C. action. Note from Fig. 1 that the second I. F. transformer is self tuned and cannot be adjusted. Adjust the frequency of the signal generator until the output meter shows maximum output. The intermediate frequency setting of the generator is then correct, although it may be a very small percentage higher or lower than 262.5 K . C.
Next connect the signal lead from the signal generator to the grid of the 1 st detector tube through a .05 mfd . condenser. Do not change the signal generator setting. Then adjust the 1st I. F. trimmer condenser screws for maximum output. There are 2 holes at one end of the chassis box. The 2 trimmer screws can be reached through these holes. CAUTION-use an insulated screwdriver to prevent short circuiting to ground.
Now disconnect the signal generator and adjust it to exactly 1400 K . C. The antenna lead from the generator is then connected to the antenna lead of the receiver. Connect the tuning condenser flexible drive shaft to the chassis if it has been disconnected. Turn the station selector knob until the rotor plates are completely in mesh. Then with a screwdriver turn the calibration screw on the back of the control unit, until the pointer is at the lowest frequency mark. This is the large point. 5 points below the 55 mark. Then turn the station selector knob untll the pointer on the dial scale is at 1400 K . C.

Then adjust the oscillator, R. F., and antenna trimmer condensers on the gang tuning condenser for maxinum output, adjusting the oscillator section first. See Fig. 2.

Next, set the signal generator for a signal of 600 K . C. and adjust the oscillator 600 K . C. trimmer. This condenser is mounted on the end of the gang condenser. See Fig. 2.

A non-metallic screwdriver is necessary for this adjustment. Turn the tuning condenser rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting, at the same time adjusting the 600 K C . trimmer screw until the highest output is obtained.
Then set the signal generator again for a signal of 1400 K C . and check the adjustment of the tuning condenser trimmers at this frequency for maximum output.
If the control unit or flexible shaft is moved after the set has been aligned, the setting of the dial pointer may change. This can be adjusted by turning the control unit calibration screw until the pointer is at the correct setting.

Adjusting Antenna Trimmer

After the receiver is installed and the car antenna is connected it will be necessary to adjust the antenna trimner. Tune in a weak signal between 1200 and 1400 K . C. with the volume control about three-fourths on. Remove the cover of the chassis box. The antema trimmer is the trimmer condenser closest to the terminal strip-see Fig. 2. Turn the adjusting screw of this condenser up or down until maxinum output is obtained. CAUTION-Do not turn any of the other trimmer adjusting screws for this turn any of
adjustment.

Removing and Replacing Units From Chassis Box
 Removing Chassis Unit From Box

Disconnect the flexible shafts, antenna cable and pilot lamp lead at the chassis box. Pull off the tone control knob and disconnect the battery cable at the fuse receptacle. Remove the cover of the box and take off the black lead on the cover screw. Disconnect the " A " and " $B+$ " leads at the terminal strip. Pull the battery cable inside of the box.
Take out the 4 screws around the speaker grill. Then pull the chassis out by means of the "A" choke and condenser block. Do not pull the chassis out by means of the gang condenser as this might injure the cushion mounting.

Removing " B " Unit From Box

Disconnect the " A " and " $B+$ " leads at the terminal strip. On the end of the box at which the "B" unit is located will be found 9 screws around the edge. Remove these 9 screws. The " B " unit and end plate can then be lifted out.

Replacing the Vibrator

Note that vibrator unit is of the plug-in type. This unit can be inserted and removed in the same manner as a tube.

Replacing Chassis Unit

In replacing the chassis unit be sure that the ground spring near the output transformer makes a good contact with the chassis box. Reverse the procedure as given above for removing this unit.

Replacing " B " Unit

When replacing the " B " unit be sure that the ground spring makes a good contact to the partition wall in the chassis box. Reverse the procedure as given above for removing this unit.

Removing Speaker

If service work is required on the chassis, it is advisable in some cases to remove the speaker, as this will permit ready access to all of the units and wiring.
The pot magnet is secured to the vertical walls of the chassis base by means of 3 screws, 2 on one side and 1 on the other. Remove these screws. Then carefully lift out the speaker as far as the leads will permit. The yellow field lead and the black secondary lead may then be unsoldered.

Trouble Shooting and Service

Vibrator Unit

When servicing this receiver a new vibrator unit should be tried out in the same manner as a new set of tubes would be tried out. These units are plugged in in the same manner as a tube. One or more vibrator units should be kept on hand for replacement purposes.

"B" Unit

In case of failure in the " B " unit try out a new vibrator. If this does not remedy the difficulty and the " B " unit cannot be repaired locally it is not necessary to return the entire chassis. Remove the " B " unit from the chassis box as per the instructions in this manual after which this unit may be carefully packed and returned separately.

MONT.-WARD PAGE 5-3
MODEL 62-120,62-122. 62-126,62-128
MONTGOMERY-WARD \& CO. Schematic, Socket, Parts

Misalignment or mistracking of condensers generally manifests itself as broad tuning and lack of volume at portions or all of the broadcast band. The receivers are all properly aligned at the factory with precision instruments and realignment should not be attempted unless all other possible causes of the faulty operation have first been investigated and unless the service technician has the proper equipment. A signal generator that will provide accurately calibrated signals over the broadcast band and at the intermediate frequency, and an output meter are required for indicating the effect of adjustments.

First set the signal generator to a frequency of 175 K. C. Connect the antenna lead of the signal generator to the grid of the 1 st detector thru a .05 mfd . condenser. The ground lead from the signal generator goes to the ground lead of the receiver. Adjust trimmer condenser C9 on the back panel of the chassis until maximum output is obtained. A non-metallic screw driver should be used in making this adjustment as the I. F. trimmer is at B + potential.

Next set the signal generator for 1730 K . C. Turn the rotor to the full open position. The antenna lead from the signal generator is in this instance connected to the antenna lead of the receiver. Adjust the trimmer of the oscillator section of the 3 gang condenser until maximum output is obtained. The oscillator section is the one with the cut plate rotor.

Then set the signal generator for 1400 K . C. and turn the rotor until maximum output is obtained. Adjust the other two trimmers on the gang condenser for maximum output.

To obtain dial scale calibration tune in an $800 \mathrm{~K} . \mathrm{C}$. signal and set the dial pointer at that mark on the dial scale. When calibrated in this manner, the setting will be approximately correct at both ends of the scale.

Fig. 4-Using Voltage Regulator with 3 Volt "A" Battery
The use of the cut plate type of condenser eliminates the necessity of a 600 K . C. padder and no adjustment at this frequency, therefore. is required.

Low Volume

In a battery operated receiver the two most common causes of low volume are run down batteries and defective tubes.

Check the "B" and "C" batteries under load with a high resistance voltmeter. See ,if the filament voltage is low and if so, put in a new "A" unit. A high resistance voltmeter is not necessary for testing the "A" batteriem.

The next most common cause of low volume is defective tubes. In any case of low volume, therefore, procure a new set of tubes that have been tested or have been operating satisfactorily in another receiver. Insert these in the chassis one at a time and note any difference in performance.

Altho a short inside antenna is sometimes satisfactory. a good outside antenna 100 to 150 ft . in length is recommended. If the antenna system is faulty or in a shielded location, the volume may be low on distant or weak stations. This is particularly true if the antenna is in or near a steel building. The antenna and lead-in should he inspected for poor connections and grounds. In a shielded location try a longer antenna in a different location.

Misaligning or mistracking of variable tuning condensers is another possible cause of low volume. Instructions for realigning are contained in this manual. Do not, however, attempt realignment unless other causes of low volume have first been investigated.

Other causes of low volume are defective apeaker, and various opens, shorts and grounds in the receiver assembly.

PAGE 5-6 MONT.-WARD

MONTGOMERY-WARD \& CO.

Condenser Alignment

Correct alignment is extremely important in connection obtained. This trimmer is on the tuning condenser and with all wave receivers. The receivers are all properly its location is shown in Fig. 2.
aligned at the factory with precision instruments and realignment should not be attempted unless all other possible causes of the faulty operation have first been investigated and unless the service technician has the proper equipment. A signal generator that will provide an accurately calibrated signal of 456 K . C. and accurately calibrated signals over the broadcast and short wave bands, $530-1730 \mathrm{~K}$. C. and $5.8-16.0 \mathrm{M}$. C., is required. An output indicating meter is also necessary. It will be practically impossible to align the receiver if unsatisfactory apparatus is used.

Use a non-metallic screw driver for the adjustments. The complete procedure is as follows:

Intermediate Frequency Adjustment

Set the signal generator for 456 K . C. Connect the antenna lead of the signal generator to the grid of the 1 st detector through a .05 mfd . condenser. Turn the tuning

Fig. 3-Trimmer Locations
condenser rotor until the plates are completely out. The ground lead from the signal generator goes to the ground lead of the receiver. The volume control should be at the maximum position. Reduce the signal so that A. V. C. action is not obtained.

Then adjust the five I. F. trimmer condensers until maximum output is obtained. The adjusting screws for the 1st and 2nd trimmer condensers are reached from the top of the chassis and are in the round I. F. cans-See Fig. 2. The openings of these trimmer condensers are covered over by small cover plates which are held in position by screws. Loosen these screws until the cover plates can be swung around. CAUTION-Use an insulated screwdriver for adjusting trimmers to prevent short circuiting to ground. In the 3rd I. F. coil, only the primary cuiting to grable trimmer condenser. This condenser is mounted on the back panel of the chassis as shown in Fig. 3 and the adjustment screw is reached through a hole in the back panel.

Broadcast Band Adjustment

The broadcast short wave switch should be in the broad-

cast position. Set the signal generator for $1730 \mathrm{~K} . \mathrm{C}$. Turn the rotor to the full open position. The antenna lead from the signal generator is in this instance connected to the antenna lead of the receiver. Reduce the signal so that A. V. C. action is not obtained. Adjust the oscillator broadcast trimmer until maximum output is

Then set the signal generator for 1500 K . C. Turn the rotor until maximum output is obtained. Loosen the set crew in the pointer hub and set the pointer at the 1500 K. C. mark on the broadcast band scale. Retighten the hub set screw. Then adjust the antenna and 1st detector broadcast trimmers until maximum output is obtained.
Next set the signal generator for 600 K . C. and adjust the 600 K . C. trimmer. The adjusting screw is reached through a hole in the front panel of the chassis as shown in Fig. 3. Turn the tuning condenser rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting at the same time adjusting the 600 K . C. trimmer screw until the highest output is obtained.

Short Wave Band Adjustment

CAUTION-After the broadcast band alignment as described abcve has been made, do not change the adjust-

Fig. 5-Using Voltage Regulator with a 3 Volt "A" Battery ment of any of the broadcast band trimmers.

In aligning the short wave band of the receiver, it will be noted that the signal will be heard with the signal generator set at two points 912 K . C. apart. That is, if the receiver is tuned to $15,000 \mathrm{~K}$. C. a signal will be heard when the signal generator is set at $15,000 \mathrm{~K}$. C . and again at approximately $15,912 \mathrm{~K}$. C. This is due to image reception or the fact that a 456 K . C. beat is obtained when the signal is 456 K . C. lower than the receiver oscillator and also when the signal is 456 K . C. higher than the receiver oscillator. Care should be taken to see that the receiver is tracked with the signal generator adjusted to the lower of the two frequencies, at which a signal is heard, in order that the oscillator in the receiver will be 456 K . C. higher in frequency than the signal.

Turn the broadcast short wave switch to the short wave posit on. As explained above, the volume control should be at the maximum position and the signal should be reduced to prevent A. V. C. action.

Next set the signal generator for $15,000 \mathrm{~K}$. C. Turn the rotor until maximum output is obtained. Then adjust the antenna and 1st detector short wave trimmers for maximum output.

Next set the signal generator for $6000^{\circ} \mathrm{K}$. C. and adjust the 6000 K . C. trimmer. This condenser is mounted on the front panel of the chassis as shown in Fig. 3 and is reached through a hole in the front panel. Turn the tuning condenser rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting, at the same time adjusting the 6000 K. C. trimmer screw until the highest output is obtained.

Changes in Early Models

The condenser, C26 was used only on the early models of this receiver. Another change was in the tone control circuit. In the early models K 8 was a $150,000 \mathrm{ohm}$ resistor paralleled by a $60,000 \mathrm{ohm}$ resistor. However, in the later models this arrangement was replaced by a single $45,000 \mathrm{ohm}$ resistor to provide greater sensitivity in tone control.

Replacing Drive Cord

Lift off the pilot light assembly.
Detach the large pointer by removing the center screw. Loosen the dial assembly by taking out the two screws which secure the bottom of this assembly to the chassis.

Then lay the complete dial assembly face downward in front of the chassis. It is not necessary to remove the volume control and tone control collars which hold the indicator cords of these two controls in position.

Turn the drive drum until the opening in this drum is approximately vertical and with the hole at the top as shown in Fig. 6.

Remove the tension spring and the old drive cord.
See that the eyelet is in the hole in the drive drum as shown in Fig. 6. Insert one end of the drive cord from the outside through the hole in the eyelet in the drive drum.

Tie the end of the cord which has been inserted in t'se hole to one end of the tension spring.

Wrap the cord in a clockwise direction (facing front of chassis) around the drive drum approximately one-half turn.

Then tilt the chassis up on its back panel and bring the cord mentioned in the previous paragraph down to the drive shaft. Wrap it two and one-half times around the drive shaft as shown in Fig. 6.

Then bring this cord up from the drive shaft and wrap it around the drive drum approximataly one and one fifth turns in a clockwise direction until it is up to the hole in this drum as illustrated.

Insert the free end of the cord through the hole in the eyelet and tie it to the end of the tension spring. The end of the spring, when hanging free, should te approximately $3 / 4$ " from the flange of the drum as shown in Fig. 6. Cut off the surplus length of cord after it is knotted.

Then secure the other end of the tersion spring over the spur on the drive drum.

Replace the dial assembly and pointer.
Replace the pilot light assembly.

Batteries

To prolong " B " battery life instruct the customer to keep the volume down as high volume increases the "B" train considerably. The average " B " drain is 23.5 milliamperes. The reception of weak signals also increases the " B " drain.

This receiver is designed to operate from a 2 volt

	Voltages at Sockets			ckets Groun ages. Se Filame	$\text { Fig. } 1$	ninal
$\begin{aligned} & \text { Type } \\ & \text { of } \end{aligned}$	Function	Across Filament	Plate to Gnd,	Control Grid to Ground	Screen to Gind	Normal Plate M. A.
34	R. F.	2.0	135	$4.5{ }^{(1)}$	80	2.8
34	1 st Det.	2.0	135	$4.5{ }^{(1)}$	80	3.0
30	Osc.	2.0	80			2.8
34	1st I. F.	2.0	135	$4.5{ }^{(1)}$	80	2.8
34	2nd I. F.	2.0	135	4.5	80	2.8
30	2nd Det.	2.0				
30	1st Audio	2.0	95	$9.0^{(2)}$		0.35
30	2nd Audio	2.0	135	$9.0^{(3)}$		3.0
19	Output	2.0	135	6.0		1.3

(1) Computed figure cannot be read because of high resistance cir.
(2) Volume Control-at minimum
(3) As read at battery.

Fig. 2-Arrangement of Tubes, Batteries and Controls
storage cell but can be operated from a 3 volt dry cell used in conjunction with the voltage regulator shown in Fig. 5. This device consists of a rheostat in series with the supply, for controlling the voltage and a voltmeter for measuring it.

The voltmeter should not indicate more than 2 volts when the above arrangement is used, an optimum setting being 1.9 to 2.0 volts.

For the grid "bias a special $221 / 2$ volt " C " battery with $41 / 2,6,9$ and $161 / 2$ volt taps (Fig. 2) may be used. If not available, ," standard $41 / 2$ volt " C " and a standard $221 / 2$ volt " C " battery can be connected as shown in Fig. 4.

PAGE 5-8 MONT.-WARD
20DEI 62-132,62-137
Sohematic, Parts
MONTGOMERY.WARD \& CO.

Condenser Alignment

Correct alignment is extremely important in connection with all wave receivers. The receivers are all properly aligned at the factory with precision instruments and realignment should not be attempted unless all other possible causes of the faulty operation have first been investigated and unless the service technician has the proper equipment. A signal generator that will provide an accurately calibrated signal of $456 \mathrm{~K} . \mathrm{C}$. and accurately calibrated signals over the broadcast and short wave bands, $530-1740 \mathrm{~K} . \mathrm{C}$ and $5.8-18.3 \mathrm{M}$. C., is required. An output indicating meter is also necessary. It will be practically impossible to align the receiver if unsatisfactory apparatus is used

Use a non-metallic screw driver for the adjustments. The complete procedure is as follows:

Intermediate Frequency Adjustment

Set the signal generator for $456 \mathrm{~K} . \mathrm{C}$. Connect the antenna lead of the signal generator to the grid of the lst detector through a 05 mfd . condenser. Turn the turing condenser rotor until the plates are completely out. The ground lead from the signal generator goes to the ground lead of the receiver. The volume control should be at the maximum position. Reduce the signal so that A. V. C. action is not obtained.
Then adjust the five I. F. trimmer condensers until maximum outpat is obtained. The adjusting screws for the 1st and 2 nd trimmer condensers are reached from the top of the chassis and are in the round I. F. cans - See Fig. 2. The openings to these trimmer condensers are covered over by Small cover plates which are held in position by screws.
Loosen these screws until the cover plates can be swung around. CAUTION . Use an insulated screwdriver for adjusting trimmers to prevent short circuiting to ground. In the 3rd I. F. coil, only the primary has a variable trimmer condenser. This condenser is mounted on the back panel of the chassis as shown in Fig. 2 and the adjustment screw is reached through a hole in the back panel.

Broadcast Band Adjustment

The broadcast short wave switch should be in the broadcast position. Set the signal generator for 1740 K . C. Turn the rotor to the full open position. The antenna lead from the signal generator is in this instance connected to the antenna lead of the receiver. Reduce the signal so that A. V. C. action is not obtained. Adjust the oscillator broadcast trimmer until maximum output is obtained. This trimmer is on the tuning condenser and its location is shown in Fig. 2.
Then set the signal generator for 1500 K . C. Turn the rotor until maximum output is obtained. Loosen the set screw in the pointer hub and set the pointer at the 1500 K . C. mark on the broadcast band scale. Retighten the hub set screw. Then adjust the antenna and 1 st detector broadcast trimmers until maximum output is obtained.
Next set the signal generator for $600 \mathrm{~K} . \mathrm{C}$. and adjust the $600 \mathrm{~K} . \mathrm{C} . \operatorname{trimmer}$. The adjusting screw is reached through a hole in the front panel of the chassis as shown in Fig. 2. Turn the tuning condenser rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting at the same time adjusting the 600 K . C. trimmer screw until the highest output is obtained.

Short Wave Band Adjustment

CAUTION-After the broadcast band alignment as described above has been made, do not change the adjustment of any of the broadcast band trimmers.
In aligning the short wave band of the receiver, it will be noted that the signal will be heard with the signal generator set at two points 912 K . C. apart. That is, if the receiver is tuned to $15,000 \mathrm{~K}$. C. a signal will be heard when the signal generator is set at $15,000 \mathrm{~K}$. C. and again at approximately $15,912 \mathrm{~K}$. C. This is due to image reception or the fact that a 456 K . C. beat is obtained when the signal is $456 \mathrm{~K} . \mathrm{C}$.
lower than the receiver oscillator and also when the signal is 456 K . C. higher than the receiver oscillator. Care should be taken to see that the receiver is tracked with the signal generator adjusted to the lower of the two frequencies at which a signal is heard, in order that the oscillator in the receiver will be $456 \mathrm{~K} . \mathrm{C}$. higher in frequency than the signal.
Turn the broadcast short wave switch to the short wave position. Turn the rotor to the full open position. As explained above, the volume control should be at the maximum position and the signal should be reduced to prevent A. V. C. action. Set the signal generator for $18,300 \mathrm{~K}$. C. Then adjust the oscillator short wave trimmer for maxinum output. This trimmer is reached from under the chassis, and its position is shown in Fig. 2. If a maximum output peak cannot be reached, it may be due to the fact that the antenna and 1st detector short wave trimmers are screwed down tou far. Back off these two trimmer screws two or three turns and then adjust the oscillator short wave trimmer for maximum output.
Next set the signal generator for $15,(000) \mathrm{K}$. C. Turn the rotor until maximum output is obtained. Then adjust the antenna and 1st detector short wave trimmers for maximu'm output.
Next set the signal generator for 6000 K . C and adjust the 6000 K . C. trimmer. This condenser is mounted on the front panel of the chassis as shown in Fig. 2 and is reached through a hole in the front panel. Turn the tuning condenser rotor until maxinum output is obtained. Then turn the rotor slowly back and forth over this setting, at the same time adjusting the 6000 K . C. trimmer screw until the highest output is obtained.

Twenty-five Cycle Receivers

The twenty-five cycle receiver differs from the sixtycycle, receiver only in the fact that a different power transformer is used. The correct power transformer is shown in the parts list.

A 115-230 Volt, 40-60 cycle Power Transformer is also available for this model.

Phono Connections

Phonograph connections can be made as shown in Fig. 5. A single pole double throw switch and double pin jack are required. These should be mounted on the back panel of the chassis close to the 2nd detector. The connections are made by opening the diode circuit at the point shown in the illustration and completing the connections to the switch and pin jacks as indicated. A high impedance pickup should be used. If a low impedance pick-up is used a step-up transformer will be required for sufficient volume The volume control of the set will regulate the phono volume.

Voltages at Sockets
 LINE VOLTAGE - 115 ANTENNA SHORTED TO GROUND

$\begin{aligned} & \text { Type } \\ & \text { of } \\ & \text { Tube } \end{aligned}$	Functior	$\begin{aligned} & \text { Across } \\ & \text { Fila. } \\ & \text { or } \\ & \text { Heater } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { to } \end{aligned}$	$\begin{gathered} \text { Screen } \\ \text { tath. } \end{gathered}$	Cath. to	Normal Plate M. A.
6D6	R. F.	6.3	95	95	28	7.0
6D6	1st Det.	6.3	88	95	9.2	2.9
76	Osc	6.3	110	-	-	5.0
6D6	1st I. F.	6.3	95	95	2.8	7.0
6D6	2nd I. F.	6.3	300	95	3.3	6.0
76	2nd Det.	6.3	-	-	-	-
76	1 st Audio	6.3	160	-	9.0	4.0
45	Output	2.5	245	-	48.0	30.0
80	Rectifier	5.0	890 V. A. C. pl. to pl.			$\begin{gathered} 58.0 \\ \text { per plate } \\ \hline \end{gathered}$

MODEL 62-132,62-137
Sooket, Trimers Drive Cord Data

MONTGOMERY.WARD \& CO.

Replacing Drive Cord

Remove chassis from cabinet.
Take off the pilot light assembly by lifting off the two sockets and spring clips.
Detach the large pointer by removing the screw at the center of the dial.
Loosen the dial assembly by taking out the two screws which secure the bottom of this assembly to the chassis.
Then lay the complete dial assembly face downward in front of the chassis. It is not necessary to remove the volume control and tone control collars which hold the indicator cords of these two controls in position.
Turn the drive drum until the opening in this drum is approximately vertical and with the hole at the top as shown in Fig. 4.

Remove the tension spring and the old drive cord.
See that the eyelet is in the hole in the drive drum as shown in Fig. 4. Insert one end of the drive cord from the outside through the hole in the eyelet in the drive drum.

Tie the end of the cord which has been inserted in the hole to one end of the tension spring.
Wrap the cord in a clockwise direction (facing front of chassis) around the drive drum approximately one-halí turn.
Then tilt the chassis up on its back panel and bring the cord mentioned in the previous paragraph down to the drive shaft. Wrap it two and one-half times around the drive shaft as shown in Fig. 4.

Then bring this cord up from the drive shaft and wrap it around the drive drum approximately one and one fifth

Fig. 4-Drive Cord Replacement
turns in a clockwise direction until it is up to the hole in this drum as illustrated.

Insert the free end of the cord through the hole in the eyelet and tie it to the end of the tension spring. The end oyelet and the spring, when hanging free, should be approximatelv $3 / 4$ " from the flange of the drum as shown in Fig. 4. Cut off the surplus length of cord after it is knotted.

Then secure the other end of the tension spring over the spur on the drive drum.
Replace the dial assembly and pointer.
Replace the pilot light assembly after which the chassis may be reinstalled in the cabinet.

Fig. 2-Tube Arrangement \& Location of Trimmers

Change in Early Models

In the early models of this receiver the side of the trimmer condenser C 27 which is shown in Fig. 1 as connected to ground was connected to the $\mathrm{B}+$ side of the 3 rd I. F. coil primary.

SERVICE SUGGESTIONS:
 Make certaln of the tot. lowing: That all tube are pushed fimly in their proper sockets and that the dips are securoly fastened to the caps. That the serlal connection is cuited to ground. (Pilot lights illuminate when set is turned on.)

PILOT LIGHT:

The pilot light used is 2.5 volt Mazda No. T41-G31/2. To Common Black to Red - 1×200 Volts replace, remove re-Common Black to Orange - $.25 \times 200$ Volts ceptacle clipped to Blue to Blue -. 05×400 Volts top of the variable condenter.

Part No. 145-2

Part No. 145-3
Common Black to Brown - 1×200 Volts Common Black to Green - 05×200 Volts Common Black to Orange $-.05 \times 200$ Volts Common Black to Yellow $-.05 \times 200$ Volts

Voltages taken from different points of circuit to chassis are Should any section of either of these blocks fail, it is not measured with volume control full on, using a voltmeter having necessary to replace the entire condenser. A small tubular a resistance of 1000 ohms per volt. These voltages are indicated condenser may be used to replace the defective section. on the schematic circuit diagram.

To check for open by-pass condensers, shunt each condenser with another condenser of similar capacity which is known to be in good condition, until the defective unit is located. Part numbers 145.2 and 145.3 are by-pass condenser blocks and consist of the following condensers:

Excessive hum, low volume or reduction in all D. C. volt ages is usually caused by open or shorted electrolytic filter con densers. Open by-pass condensers cause oscillation and distorted reproduction.

62-148, 62-148X
 MONTGOMERY-WARD \& CO.

 Alignment, Parts List
25 Cycle Chassis

The 25 cycle model $62-148 \mathrm{X}$ chassis may be used on a power supply of from 105 to 125 volts, 60 cycles, but the 60 cycle model 62.148 must not under any circumstances be operated on 25 cycles.

Alignment

The set should be thoroughly checked for all other possible causes of trouble, such as defective tubes, condensers, poor in stallations and low line voltages before any attempt is made at re-alignment.

Aligning I. F. Transformer

1. With volume control full on, at extreme right of its rota. tion, and with variable condenser at its maximum capacity position (extreme right of its rotation) make the following adjustments:
(a) Connect an external oscillator adjusted to 175 kilocycles, in scries with a .1 mfd . condenser, to the control grid cap of the type 57 tube located between the R. F. coil (part numbers $109-10$) and the I. F. transformer (part number 108-11) and chassis.
(b) Adjust trimming condensers of I. F. transformer (part number 108-11) to resonance. See top view of chassis. Use as a resonance indicator an output meter connected across the primary of the speaker input transformer or between the plate and screen terminals of the type 2 A 5 tube, by means of an adapter. Maximum deflection of the meter indicates resonance. Care must be taken to use only enough signal to give a readily readable output, as excessive input will result in overload and a false resonance point
NOTE: The two trimmer condensers which tune the primary and secondary of the I. F. transformer are adjusted by set screws accessible from the back of the chassis.

Aligning R. F. and Oscillator Circuits

1. Connect the external oscillator set at 1720 kilocycle and in series with a 200 Mfd . condenser, between the antenna (tan) and ground (black) leads.
(a) With volume control full on and variable condenser plates in minimum capacity position, plates entirely out of mesh (extreme left of its rotation), adjust trimmer of rear oscillator section of variable condenser to resonance.
(b) Shift external oscillator frequency from 1720 to 1400 kilocycles, pick up signal by rotating variable condenser and peak R. F. (center) and antenna (front) section trimmers of variable condenser to resonance
(c) Check tracking at $1500,1200,1000,800,600$ and 530 kilocycles by changing external oscillator frequency and rotating variable condenser to pick up signal. Adjust slotted end plates of R.F. (center) and antenna (front) sections to increase output, if necessary. DO NOT BEND OSCILLATOR PLATES.

Tubes

The tube complement of this chassis is as follows:
1 Type 58 remote cut-off pentode as an R. F. amplifier
1 Type 57 pentode as an oscillator and first detector
1 Type 57 pentode as second detector.
1 Type 2A5 pentode output A. F. amplifier
1 Type 80 high vacuum rectifier.

All resistors are RMA color coded-specify value and/or resistor (per schematic diagram) and model number.

When ordering condensers, specify part number, model number and/or capacitor (per schematic diagram) and model number.

When ordering parts, always specify part and model number as well as serial number of chassis.

Part No.	Description
BE 101-10	Volume Control with Switch
BE 102.9	Three Gang Variable Condeniser
BE 106-10	5,450 Ohm Metal Clad Resistor..
BE 108-11	I. F. Transformer Complete.
BE 109-10	R. F. Coil Complete.
BE 110.7	Oscillator Coil and
BE 111.8	Antenna Coil Complete
BE 112.9	Dial Bracket Drive Complete
BE $112 \cdot 12$	Dial Scale
BE 11215	Dial Glass
BE 112.17	Dial Drive Disc
BE 112.34	Pilot Light Socket
BE 112.37	Bakelite Escutcheon Plate
BE 114-3	Dynamic Speaker
	Cabinet-Model 62.148
	Cabinet-Model 62-140
BE 115.15	Coil Cans
BE 115.22	Tube Shield-No. 01360.
BE 116.1	2.5 Volt Pilot Lamp-41.G31/2
BE 119.6	Dual 8 Mfd . Electrolytic Condenser
BE 129.1	. 001 Mica Condenser
BE 130.5	300M Ohm-1/5 Watt Carbon Res.
BE 130.8	200M Ohm-1/5 Watt Carbon Res.
BE 130.11	250 M Ohm-1/5 Watt Carbon Res.
BE 130.12	50M Ohm-1/5 Watt Carbon Res.
BE 130-19	1 Meg Ohm-1/5 Watt Carbon Res.
BE 130.25	19M Ohm-1.2 Watt Carbon Res.
BE 131.2	Bakelite Knobs (Inc. Springs)
BE 145.2	503 Mfd. By-Pass Block
BE 145-3	. 25 Mfd. By-Pass Block
BE 1011	Power Transformer-50.60 Cy
BE 1019	Six Foot Cord and Plug
	All Sockets
BE 104.5	Power Trans.-25 Cycle

NOBLITT SPARKS INDUSTRIES

NOBLITT SPARKS INDUSTRIES

MODEL 10.A SOCKET VOLTAGES

Make voltage tests with 1000 ohm per volt meter. Voltages given in table are only compar-

All readings taken to ground unless otherwise specified. Readings taken with all tubes
removed from set and R. F. chassis and speaker disconnected from power pack unit.
${ }^{687}+$ Heater + Heater

Screen (No. 2) to B+...........40,000
Diode450,000
Contro Grid (No. 1) to Grid
Term S2..................450,000

MODEL 10-A POINT TO POINT RESISTANCE CHECK

${ }_{+}^{84}$ Heater

MODEI 15
Voltage,Test Data
Coil Resistance

MODEL 15 SOCKET VOLTAGES

$$
\begin{gathered}
\text { Heaters } \\
6.3 \\
6.3 \\
6.3 \\
6.3 \\
6.3
\end{gathered}
$$

NOBLITT SPARKS INDUSTRIES

ARVIN PAGE 5-5

NOBLITT SPARKS INDUSTRIES

SPECIAL INSTALLATION BULLETEN FOR THE MODEL 25 ARVIN CAR RADIO

1934 Models Plymouth and Dodge

The model 25 Arvin Car Radio will install very satisfactorily on these model cars in an inverted position directly above the accelerator pedal, leaving the entire right hand side of the dash for mounting an Arvin Heater.

First: Disconnect the free wheeling cable at the bottom, drill another hole in the dash 5 or 6 inches to the right and relocate the cable back through this hole. Connect the freewheeling cable again, making sure that this is done correctly so that it will engage and disengage. The oil pressure gauge tube should be moved to the left by disconnecting it at both ends and relocating it through another hole 4 or 5 inches to the left of its present location. The water temperature gauge tube does not have to be moved. A groove should be cut in the dash insulation for this tube to run in and then the set can be mounted over this. Make sure, however, that the tube is not bent nor pinched by the mounting bracket when the set is pulled up tight.

Now, to mount the set upside down, the mounting bracket is inserted, with the two mounting bolts in place, in the horizontal tapered slots in the back of the case. This bracket will then be in a horizontal position on the bulkhead when the set is mounted.

Locate the set just to the left of the cowl vent lever and as high as it will go. The flexible shafts and Bowden wire then enter at the bottom of the set. The tubes will operate satisfactorily in an inverted position. A special socket prevents them from falling out.

1933 Models Plymouth and Dodge

The same installation as explained above may be used on the 1933 models Plymouth and Dodge cars in which case it will not be necessary to relocate the oil pressure gauge tube.

Another way to install the Arvin No. 25 on the 1933 Plymouth and Dodge is as follows:

Relocate the free wheeling cable to either side of its present location. Then attach the radio to the right hand side of the dash directly under (or just to the left of) the glove compartment. The set is mounted in normal position with remote control connections at the top.

This location of the radio leaves room for an Arvin Hot Water Heater just above and to the right of the brake pedal.

SPECIAL INSTALEATION BULLETIN FOR THE MODEL 15 ARVIN CAR RADIO

Note: All parts of the model 15 Arvin Radio mentioned in this bulletin are fully described in the regular installation instruction sheet furnished with each set.

All Model V-s Ford Cars

The model 15 Arvin Car Radio can be installed very satisfactorily on Ford V-8 Cars directly below the glove compartment on the right hand side of the dash.

Remove the glove compartment by taking out the six screws around its front edge and also remove the door by taking the two screws out of the hinges which hold it. Now, by means of a hammer and anvil, flatten out the turned up lip at the rear of the instrument panel flange so as to provide a wider flange on which to mount the front end of the radio. Bend up the ears on either side of the front mounting bracket to conform to the contour of the bottom of the instrument panel. Also spread this bracket apart so that it forms about a 105 degree angle instead of a 90 degree angle.

Now, hold the front mounting bracket up against the instrument panel flange with its shorter leg butting up against the flange, and the longer leg extending upward behind the dash. Locate this bracket so that the right hand edge of its longer leg is just to the left of the loop in the door spring, or in other words, so that this spring will just clear the radio when the door is shut.

Mark the location of the holes to be drilled in the flange by inserting a pencil through the tapped holes in the mounting bracket. Drill a $9 / 32^{\prime \prime}$ hole at each of these two points. Now lift the bracket into place with the shorter leg underneath and against the instrument
panel flange (the illustration in the model 15 installation instruction sheet erroneously shows this leg resting on top of the flange with the screw entering from the bottom) and insert the $1 / 4-20$ oval head screw from the top, first through the flange and then into the tapped holes in the bracket ly reaching through the glove pocket door opening. Draw these serews up tight with a short screw driver.

Next remove the main mounting plate from the radio as explained in the regular installation instruction sheet and install the rear mounting bracket onto this plate with its longer leg extending horizontally to the rear. Insert the threaded studs extending from the front end of this plate through the oval shaped holes in the bracket just mounted and fasten with the proper washers and nuts.

The rear end of the set is supported by one carriage bolt through the square hole in the center of the rear mounting bracket and clamped to the step plate in the dash. Mark the location of this hole and drill one 11/32" hole. Insert the carriage bolt and draw up tight with the proper washers and nuts.

You are now ready to replace the glove compartment. This can be pushed through the door opening in the dash from the front and bolted into place in exactly the same manner as it came out. The lower front edge, of course, will have to be bent down around the top of the radio. However, this can be done without great difficulty. Now slip the radio chassis and outer cover, with speaker attached, up into place in the main mounting plate and complete the installation exactly as explained in the regular installation instruction sheet.

This procedure might appear to be a rather complicated and involved installation, however, it really is not at all difficult and in the end makes a very neat and workmanlike job.

NOBLITT SPARKS INDUSTRIES

Voltage,Test Data
Coil Resistance

NOBLITT SPARKS INDUSTRIES

DIAGRAN	
ISSUE NO.	OATE
$11-8-33$	

웅(1)

4 RESISTORS CHOKES \square $\begin{array}{llll}\text { R1 } 100,000 & \text { L2 } 100 \mathrm{~T} & 16 \mathrm{GA} . & \\ \text { R2 } 75,000 & \text { L2 } 100 \mathrm{~T} . & 16 \mathrm{GA} . & \end{array}$ $\begin{array}{lll}\text { L2 } & 100 \mathrm{~T} . & 16 \mathrm{GA} . \\ \text { L3 } & 100 \mathrm{~T} . & 29 \mathrm{GA} .\end{array}$ L3 100 T. 29GA. For Alignment See Inder
three gang condenser

MODFH 30~A (3rd Type) Voltage,Test Data Coil Resistanoe
Make voltage tests with 1000 ohm per volt meter. Voltages given in table are only compar-
Suppressor
all voltages
Cathode
2.4
6
2.4
1.3
16.0
0
190
Measured with vacuum tube voltmeter only.
$\begin{array}{cc}\text { Plate } & \text { Screen } \\ 180 & 60 \\ 180 & 60 \\ 180 & 60 \\ 120 & - \\ 175 & 180 \\ 180 & - \\ 700(\mathrm{AC}) & -\end{array}$

MODEL 30-A POINT TO POINT RESISTANCE CHECK
 All readings to ground unless otherwise specified. Readings taken with all tubes removed from set and R. F. chassis and speaker disconnected from power pack unit.
 All readings to ground unless otherwise specified. Readings taken with all tubes

$$
\begin{aligned}
& \text { 'juI } \cdots \\
& 000 \mathrm{~s}^{\cdots} \\
& 000^{6} \mathrm{SOS}
\end{aligned}
$$

COIL RESISTANCES
\dagger Reads leakage of electrolytic condenser.
Ant. Primary ..
R. F. Primary...
R. F. Secondary.
Osc. Primary...

Osc. Secondary. .
First I. F. Secondary
Second I. F. Primary.
Second I. F. Primary... Audio Transformer Primary Audio Transformer Sec..
Speaker Trans. Primary.

$$
\text { 2nd } 78
$$

$$
\text { Cathode } . . .
$$

$$
\begin{aligned}
& \text { Cathode } 1000 \text { some } 500 \\
& \text { Suppressor Grid (No. 3) . } 1000 \text { some } 500
\end{aligned}
$$

$$
\begin{aligned}
& \text { Suppressor Grid (No. 3) . . } 1000 \text { some } 500 \\
& \text { Plate to B+.......................... } 50
\end{aligned}
$$

$$
\text { Control Grid (No. 1) } 1,505,000
$$

$75 \quad 79$

$$
\begin{aligned}
& \text { Plate to B + . } 000,000 \\
& \text { Diode }
\end{aligned}
$$

Diode . .

$$
\begin{aligned}
& \text { Code } \\
& \text { Cathode } \\
& \text { Control Grid (No. } 1 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Plate (PL) to B+ } \\
& \text { Control Grid (GR) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Heater } \cdots \cdots . . \\
& \text { Plate (PL) to B+ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cathode } \\
& \text { Plate (PR) to } \mathrm{B} \text { - } \\
& \text { Control Grid (GL) }
\end{aligned}
$$

. Inf.
.. .0
.500
. .150
. .0
.500
.
150

$$
\begin{aligned}
& \text { Plate to B+............................. . . . } 590
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1st } 78 \\
& \text { Cheater } \\
& \text { Suppressor Gr } \\
& \begin{array}{l}
\text { Plate to B+.................... } \\
\text { Screen (No.2) to B+. } \\
\text { Control Grid (No. 1).. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Plate to B+. }
\end{aligned}
$$

For Alignment See Index

NOBLITT SPARKS INDUSTRIES

Models 10-A, 20-A, 20-B and 30-A

Note: All adjustments in the following instructions should be justment is made at other frequencies by bending the split plates on Note: All adjustments in the following instructions shoud be
made with an output meter or some indicating device connected with the output of the radio receiver to insure maximum sensitivity and
selectivity. the output of the radio receiver to insure maximum sensitivity and
selectivity.

әп!̣ ภи! from the radio chassis to the power pack. Connect the output of the oscillator to the grid cap of the 77 or 6A7 tube after removing the
 to the lowest amount giving a satisfactory deflection of the output meter. Adjust with a Bakelite screwdriver the first and second I. F. џəәииол ‘d!̣ р р! the output of the oscillator to the antenna terminal of the radio set through a .0001 mfd mica condenser and set the oscillator to 1510 kilocycles. Rotate the variable condenser fully out of mesh, then back until the rotor plates begin to enter the stator. Adjust the oscillator padder condenser until the maximum signal is attained. Then readjust the oscillator input to 1400 kilocycles, rotate the variable condenser until the signal is again heard.
 and rotate the variable condenser until a signal is heard and then adjust the oscillator series padder condenser located on the right hand condenser back and forth until a point is found where the setting of the padder gives maximum deflection on the output meter. Setting of the padder and variable condenser are both variable, each dependent upon the other, there being one point on the setting of the variable condenser whete a maximum deflection will be obtained. After the 600 kilocycle adjustment has been made return to the 1400 kilocycle position and recheck slightly the adjustment of the radio frequency and the antenna padders to insure no change has been made.
 antenna padder on all Radios-except model 10A-materially improves the sensitivity of the receiver. nance. whether more or less capacity is needed to bring the set into reso-
\qquad

NMENT Models

FDI

NOBLITT SPARKS INDUSTRIES

Circuit Diagram
Arvin Car Radio Model

TRANSFORMERS
Description
Part No.
$00-3020-1$
$00-3017-1$
$00-4482-1$
$00-2258 \mathrm{~A}$
$00-4476$
$00-4111$
$00-4102-2$

Nore: On orders for replacement parts,
state part number and quantity desired.
 $\underset{\text { Description }}{\text { CAPACITORS }}$

3 Gang Variable

Also, be sure when shielding the secondary lead from the coil to the distributor to ground both ends of this shield, either to the motor or to the bulkhead. On some few cars the hood over the engine appears to be ungrounded or at least is a very high resistance ground and should be grounded with pigtails of shielding cable soldered to both sides of the hood and also to the motor bulkhead or motor block.
On cars equipped with co-incidental lock on the steering post an extra generator condenser should be installed from one switch terminal to ground. The exact terminal on which to install this condenser can be determined only by experiment. The condenser body should be grounded to the dash or to the motor bulkhead. On some Ford V-8's it is necessary to install an extra generator condenser on the generator to the other terminal of the cutout relay, thus making two condensers on the same relay-one on each terminal to ground.
 to install an extra condenser from the primary of the ignition coil to ground. The exact terminal to connect this condenser to can only be determined by experiment. Be sure that the grounding of this con-

[^0]: 1. Air-gap

 No. IlI

 1. Air-gap
 2. Reed counter weights
 3. Stop-post Locking-screw
 . Reed Spring Assm
 4. Contact Spring Assm.
 No. IV
 5. Coil
 6. Stop-post mounting block
 7. Position contact spring behind
 11 stop-post head
 8. Contact points
[^1]: 1. Remove the Vibrator unit from the can and rubber sock, by following closely the directions covered by paragraphs A, B, C and D in the procedure for dismantling Elkonode. Use care to avoid bending wires at the soldered connections.
