VOLUME V

JOHN FRADER

PERPETUAL

TROUBLE SHOOTER'S MANUAL

VOLUME \mathbf{Y}
by

JOHN F. RIDER

Published by

JOHN F. RIDER

Perpetual Trouble Shooter's Manual Volume I
About 1000 pages. Price $\$ 7.50$
Perpetual Trouble Shooter's Manual Volume II
About 800 pages. Price $\$ 6.50$
Perpetual Trouble Shooter's Manual Volume III
About 1185 pages. Price $\$ 7.50$
Perpetual Trouble Shooter's Manual Volume IV
About 1060 pages. Price $\$ 7.50$
\section*{Specialized Auto Radio Manual Volume I}
About 350 pages. Price $\$ 3.50$

The Perpetual Trouble Shooter's Manuals listed above are the "standard" of the radio service industry.

Their absolute supremacy as sources of accurate-complete and detailed radio service data is established by their use by the world-famous tube manufacturing organizations, such as E. T. Cunningham, Inc., National Union Radio Corp., RCA Radiotron, Inc., Arcturus Radio Tube Co., Raytheon Production Corp., Hygrade Sylvania Corp.-the most famous service instrument manufacturers, like Weston, Hickok, Readrite and Supreme and their use and recommendation by the world's leading radio receiver manufacturers.

Entire contents copyright 1934 by John F. Rider

Manufacturer
Keep Your
RIDER'S MANUALS UP-TO-DATE with

SERVICING
Riders freE Monthly House-organ
Every month manufacturers make various changes in their chassis and, as far as possible, these important facts are published in our houseorgan..... Such changes, together with timely servicing articles, are brought to you monthly..... It is vital that you have these changes.... This FREE service is yours for the asking.
\qquad
mail This Coupon Today ${ }^{{ }^{\circ}}{ }^{\circ}$ Rider leach month Fees.
John Broadway 1440 bro city New York

ACRATEST PRODUCTS

MODEL 108
Schematic Layout

FOR 500 W LINE of recorofr

MODEL 108
AMPLIFIER

MODEL $126 \quad$ ACRATEST PRODUCTS
Schematic

KODEL 4 Tube Comet Schematic HODEL 7 Tube Bde't Super. Schematic

PAGE 5-2 AIR-KING
MODEL Atlas 5 Tube
Universal All-Wave
AIR KING PRODUCTS CORP. Schematic

AIR-KING PAGE 5-3

PAGE 5-4 AIR-KING

PAGE 5-2 ALLIED

MODEL F-9505

Schematic,Alignm't
ALLIED RADIO CORP.
MODEL F-9511
Schematic, Alignm't

OPERATING INSTRUCTIONS
sults are better if the tip of the antenna wire is connected to a radiator or other ground connection or to an outside aerial.

TO OPERATE :

Turn left-hand knob to right as far as it will go. Wait a few moments for tubes to heat. Turn right-hand knob slowly back and forth till a sta-
ion is heard. Adjust this knob carefully to setion is heard. Adjust this knob carefully to se-
cure best tone and adjust left-hand knob to volume desired. When left knob is turned entirely to left a click is heard and power is turned off. When operating on D. C. current and set fails to operate after waiting a reasonable time for tubes to heat up, reverse power supply plug. PHONOGRAPH:

Connect pick-up leads to single pole toggle switch, which may be mounted in large hole in
rear flange of set. Unsolder black wire and 5 rear flange of set. Unsolder black wire and 5
mfd condenser from ground lug of coil on under side of chassis and resolder to one side of toggle
switch. Solder other side of switch to ground
 This instrument is equipped for operation on 110 volts D. C. or A. C., any frequency from to to 133 cycles per second. Before attempting to operate on any other voltage be sure that the proper adapors accompanying them are understood. Special adaptors can be secured from the factory at a slight extra cost, for operating this receiver on automobiles, 32 volt farm light plants and 200 volt A. C. or D. C. ALWAYS plug cord into back of set before plugging into power supply. Cord for 110 volt or 220 volt heats moderately, as the cord contains resistance necessary for operation at these voltages. The 20 ft . aerial wire extending from the back of the set should be unwound, laid out along the floor or hung outside a window and is ordinarily all the aerial required. No
ground connection should be used. Sometimes re-

ALLIED RADIO CORP.

kit with full instructions for installing. CONTROL KNOBS:
 The built-in aerial at hhe back of the set usually gives satisfactory sensitivy when stretched around the edge of the flor or along the picture moulding of the roomivi stred outside aerial connected to the built-in aerial sometimes increases sensitivity. git Power noise interferes especialy with shor-wave reception. If set is located power noise is prevalent it may be necessary to install an aerial high above the street

 dial. The upper middle knob is tuning comtrol. The right-hand knob is power switch
and volume control and the left-hand knob is tone control. PHONOGRAPH:

Mount a single pole toggle switch and two insulated pin jacks in the rear of the
hassis near the tube socket marked "85," connect one side of the switch to one pin chassis near the tube socket marked "855" connect one side of the switch to one pin
ack, the remaining pin jack to one outside terminal of the volume control and the remaining switch terminal to the other outside terminal of the volume control. Plug the phonograph pickup leads into the pin jacks.
SERVICE NOTES:
SERVICE NOTES:
The intermediate stages are carefully phased to 456 kilocycles at the factory. Should
eephasing be necessaly, feed a 456 kilocycle signal irom a test oscillator to the grid cap of the tube marked "78," located at the rear end of the tuning condenser, then
 kieep the oscillator signal at a low voluine level. In trimming the frequency bands. first
竍 set the dial to the third group of figures from the right-hand end. Trim the "red" band
first by adjusting the trimmers on the top oi the tuning condenser until a signal of the

ALLIED RADIO CORP.

PAGE 5-8 ALLIED
MODEL F-9555
Schenatic
ALLIED RADIO CORP.

ANSLEY RADIO CORP.

If PEAK 175 KC.

ATWATER-KENT MFG. CO.
MODEL 165-Q
26809 Cabinet, less screen
26679 Screen
25745 Name decalcomania
25965 Tone decalcomania
24278 Knob (tuning and volume)
25145 Knob (tone)
25022 Variable condenser
26727 Dial assembly
25692 Volume control, . 5 U
25004 Volume control bracket
24327 Shield for T5
24554 Shield for T4 includes A5
36980 Tone control and police switch
25226 Shaft and blade
TRANSFORMER
Code Part

No.	No.	Name of Part
T1	37080	No. 1 R. F. T.
T2	37090	No. 2 R. F. T.
T3	37110	Osc. T .
T4	37180	No. 1 I. F. T.
T5	37190	No. 2 I. F. T.
T6	37150	Input T .
		RESISTORS
Code	Part	
No.	No.	Name of Part
R1	30340	Red-blue, . $1 \mathrm{U}, 1 / 3-\mathrm{W}$.
R2	30390	Red-bl'k, 20,000 Ω, 1/3-
R3	30340	Red-blue, $1 \mathrm{U}, 1 / 3-\mathrm{W}$.
R4	30380	Red-green, 3,300 Ω, 1/3-

MODET 165-Q,525-Q Sooket, Trinmer, Parts

R5	$\begin{array}{r} 36430 \\ W \end{array}$	Blue-yel., 5,000 $\Omega, 1 / 3-$
R6	30370	Green, $2 \mathrm{U}, 1 / 3-\mathrm{W}$
R7	31970	Red-yel., . 25 U, 1/3-W.
R8	30340	Red-blue, $1 \mathrm{U}^{\text {U }}$ 1/3-W.
R9	30360	Gray-blue, 1 U, 1/3-W.
R10	30320	Maroon, 10,000 Ω, 1/3-W.
R11	36240*	Wire wound, 1.03Ω
with set for use with $3 \cdot V$ " dry " A " battery.		
CONDENSERS		
Code	Part	
No.	No.	Name of Part
C1	31160	. $05 \mathrm{MF}, 100-\mathrm{V}$, , NI
C2	31160	. 05 MF 100-V.. NI
C3	33930	25 MMF. $500-\mathrm{V}$.
C4	36950	730 MMF. $100-\mathrm{V}$.
C5	27630	. $01 \mathrm{MF}, 200-\mathrm{V}$., IND.
C6	27630	. $01 \mathrm{MF}, 200-\mathrm{V}$., IND.
C7	27630	. $01 \mathrm{MF}, 200-\mathrm{V} ., \mathrm{IND}$.
C8	21160	200 MMF, 450-V.
C9	29890	. 005 MF . $450-\mathrm{V} ., \mathrm{IND}$.
C10	22472	$7 \mathrm{MF}, 200 \mathrm{~V}$.
	34010	Multiple by-pass, J-15

27128 Magnet
27129 Magnet clamping plate
8188 8/32 hex. nut
9898 No. 6 lock washer
23318 No. 2 washer
27138 Clamping block top
27139 Clamping block bottom
27141 Adjusting screw, 6/32
27142 Cover plate
27143 Mounting bracket
27144 Sound unit assembly, less magnets
27145 Conehead assembly
27146 Coil
27147 Armature
27211 Mount. brackets, pair (525-Q)
27148 Spring
27149 Terminal

MODEL 525-Q

(For parts not listed below refer to Model 165-Q parts list) Part
No. Name of Part 26565 Variable condenser assembly
27305 Knob shaft
37450 Osc. T (T3)
26719 Dial light socket
26722 Battery cable with resistor
26519 Dial assembly
26721 Dial lamp (air cell, 2-V., 60

MILS.)

26642 Base cover
26571 Knob (tone)
36250* Wire wound, 1.15Ω (R11)
26669 Shipping container
26545 Escutcheon nameplate
25691 Escutcheon window
26718 Volume control,. 5 U
37490 Tone control switch
26573 Shaft and blade

* A No. 37130 resistor (1.15Ω) is suppliet with set for use with a 3.V. dry "A" battery.

MODEL 425,665
Socket, Trimmer, Parts

ATWATER-KENT MFG. CO.

ATWATER-KENT MFG. CO.

MODEL 275
Soc ket, Trimmer Parts List
ATWATER-KENT MFG. CO.

\section*{MODEL 310 and $310-510$ SPEAKER No. 36500 MODEL 510
 Part
 | Part | Name of Part | 34630 | Field coil (625 Ω) |
| :---: | :---: | :--- | :--- |
| No. | 20737 | Diaphragm | |
| 25798 | Volume control, 5 U | 20657 | Cable and plug assembly |
 23031 Variable condenser assembly 21370 Output transformer}

Code Part		
No.	No.	
T1	34540	No
T2	34550	No.
T3	34560	No
T4	34570	Os
T5	23356	N
T6	23975	N
T7	34980	A
T8	21370	A
T9	25875	P

Name of Part
No. 1 R.F.T.
No. 2
No. 3
N. F. T. T.
R.
Oscillator T .
No. 1 I. F. T.
No. 2 I. F.
T.
No. 2 I. F. T.
Audio output T.
Power transformer used in 310 below 7750943*
in 510 below 2564911*
T9 26395
in 310 above 7750942
in 510 above 2564910

* Ir a few early tyne sets. the power transtormer is a sealed type No. 26154.

RESISTORS

Code Yart
No. No.
R1 20050

Name of Part
Flexible, 355Ω
Flexible, 1050Ω
Blue-red, . $1 \mathrm{U}, 1 / 3-\mathrm{W}$.
Flexible, 550Ω
Bl'k, 65,000 Ω, 1/2-
Bl'k, 65,000 Ω, 1/2-W.
Bl'k-pur., . 5 U, 1/2-W.
Green, 2 U, 1/2-W
Flexible, 355Ω
Yel.-blue, $5000 \Omega, 1 / 2-$
Flat, wire wound, 8000
Flexible, 8000Ω
Flexible, 1050Ω
Green. $2 \mathrm{U}, \mathrm{I} / 2-\mathrm{W}$.
Flexible, 4000Ω
Gray, 30,000 Ω, 1/2-W.
Bl'k. $65,000 \Omega, 1 / 2-W$.
Flexible, 200Ω
Maroon, 10,000 Ω, 1/2-
Maroon, $10000 \Omega, 1 / 2-W$
Filament shunt, 10Ω
Flexible, 1.0Ω
White, $40,000 \Omega, 11 / 2-W$
White, 40,000 $\Omega, 11 / 2-W$

CONDENSERS

Code Par
No. No.

No. No.	
C1	

C2 34020 . 05 and $250 \mathrm{MMF}, 200-\mathrm{V}$.,
C3 31160 . $05 \mathrm{MF}, 100$-V., N
C4 31530 . $1 \mathrm{MF}, 100-\mathrm{V}$., NI
C5 $534460 \quad 10 \mathrm{MMF}, 500-\mathrm{V}$
C5A $3628014 \mathrm{MMF}, 500-\mathrm{V}$.
$\begin{array}{lllll}\text { C6 } & 31160 & .05 \mathrm{MF}, & 100-\mathrm{V} . \text {., NI } \\ \mathrm{C} 7 & 31160 & 05 & \mathrm{MF} & 100-\mathrm{V} \text {., NI }\end{array}$

C7	31160	.05
C8	34670	1450
MMF	$100-\mathrm{V} . \mathrm{N}$	N

C8 34680 2200 MMF, 100-V.
C10 $3393025 \mathrm{MMF}, 500-\mathrm{V}$.
C10A $35970 \quad 14 \mathrm{MMF}, 500-\mathrm{V}$
$\begin{array}{lll}\text { C11 } & 33670 & 250 \\ \text { MMF }\end{array}$
C12 $33670 \quad 250$ MMF
22220 100 MMF, 450-V
$\begin{array}{llll}\mathrm{C} 14 & 23250 & .01 & \mathrm{MF}, 450-\mathrm{V} \\ \mathrm{C} 15 & 33640 & .001 & \mathrm{MF}, 450-\mathrm{V} .\end{array}$
C16 16490 B-6, 100 -V
C17 32740 . $003 \mathrm{MF}, 500-\mathrm{V}$. (early)
C17 23250 . 01 MF, $450-\mathrm{V}$. (late)
C18 26620 . $7 \mathrm{MF}, 450-\mathrm{V}$. (K5)

C 19	22538	8	$\mathrm{MF}, 475 \mathrm{~V}$.
C 20	22538	8	MF

$\begin{array}{lllll}\mathrm{C} 21 & 22538 & 8 & \mathrm{MF}, & 475-\mathrm{V} . \\ & 22538 & 8 & \mathrm{MF} & 475-\mathrm{V}\end{array}$
30720 Multiple bypass, 200-V (J10)
CHOKES
Code
Part
No. No.
CK1 17015 R. F. plate choke
CK2 19210 1st detector choke
CK3 17390 2nd detector plate choke
CK4 26970 Filter choke unit used in 310 below 7750943 and 510 below 2564911

PAGE 5-8 A-K
lSODEL 145,325
Socket, Trimmer,Chassis A'TWA'TER-KENT MFG.CO.

A-K PAGE 5-9

MODEL 185-A
ATWATER-KENT MFG. CO.

The 30,000 ohm resistor (gray) in the center left-hand side of this abart is R16.

MODEL 185-A

$\begin{array}{llll}\text { R2 } & 31980 & \text { Bl'k, 65,000 } \Omega, 1 / 3-W \text {. } \\ \text { R3 } & 23120 & \text { Red-bl'k, 20,000 } \Omega, 1 / 2 \text {-W. } \\ \text { R4 } & 30380 & \text { Green-red, } 3300 \Omega, 1 / 3-\end{array}$ W.
$\begin{array}{lll}\text { R5 } & 28950 & \text { Flexible, } 160 \Omega \\ \text { R6 } & 30350 & \text { Bl'k-purple, } .5 \text { U, } 1 / 3-\mathrm{W} .\end{array}$
R7 30370 Green, $2 \cup, 1 / 3$-W.
$\begin{array}{lll}\text { R7 } & 30370 & \text { Green, } 2 \\ \text { R8 } & 30340 & \text { Red-blue, } 1 \text { U, } 1 / 3-W .\end{array}$
R9 30370 Green, 2 U, 1/3-W.
$\begin{array}{cll}\text { R10 } & 30340 & \text { Red-blue, } 11 \text { U, } 1 / 3-W \text {. } \\ \text { R11 } & 31970 & \text { Red-yel., } 25 \text { U, } 1 / 3-W \text {. }\end{array}$
$\begin{array}{lll}\text { R11 } & 31970 & \text { Red-yel., } 25 \\ \text { R12 } & 30360 & \text { Blue-gray, } 1 \text { U, } 1 / 3-W \text {. }\end{array}$
R13 32010 Blue-red-green, 500Ω, 1 W.
$\begin{array}{lll}\text { R14 } & 36430 & \text { Blue-yel., } 5000 \Omega, 1 / 3-W \\ \text { R15 } & 28030 & \text { Bl'k-red, } 20,000 \Omega, 11 / 2-\end{array}$
R16 20970 Gray, $30,000 \Omega, 1 / 2$-W.
R17 31860 Flexible (yel. covered),
1.0Ω

CONDENSERS

Code Part
Code Part

| No. No. | Name of Pa | |
| :--- | ---: | :--- | ---: |
| C1 | 31530 | . $1 \mathrm{MF}, 109$-V., NI |

CIA $382804 \mathrm{MMF}, 500$-V.
C2 $38070 \quad 25 \mathrm{MMF}, 500 \mathrm{~V}$.
$\begin{array}{lll}\mathrm{C} 2 & 28035 & .006 \mathrm{MF}, 450-\mathrm{V} .\end{array}$
C4 29530 . $03 \mathrm{MF}, 200$-V., NI
C5 $\quad 28060 \quad 730 \mathrm{MMF}, 100-\mathrm{V}$.
C6 32390 . $05, .05, .2 \mathrm{MF}, 200-\mathrm{V}$., TND. 05 .
TN.

C7	32410	$\begin{aligned} & \text { Triple } .05 \text { MF, } 100-\mathrm{V} ., \\ & \text { IND. } \end{aligned}$
C8	33630	Double 250 MMF, $450-\mathrm{V}$. IND.
C9	33630	Double 250 MMF, 450-V. IND.
C10	23250	. 01 MF, 450-V.
C11	33660	. 0022 MF, 450-V., IND.
C12	27630	. $01 \mathrm{MF}, 200-\mathrm{V}$. , IND.
C13	25379	10 MF, 25-V. (dry electrolytic)
C14	36420	. $02 \mathrm{MF}, 200-\mathrm{V}$. , IND.
C15	32740	. $003 \mathrm{MF}, 500-\mathrm{V}$.
C16	25168	8 MF, 475-V. (electrolytic)
Cl_{17}	26381	8 MF, 450-V. (blue)

TRIMMER CONDENSERS
Code Part

No. No.	Name of Part
A4, 532880	Double I. F.
A6	33080
A7	Single I. F.
A7 (used only	
	38180
	Trap trimmer (used
	CHOKES models)

Code Part

No.	No.
CK1	23657

Name of Part
CK2 27324 Trap choke (used only in some models) SOCKETS
Part
No. Name of Part
261117 prong
25196 Speaker
24492 Rectifier
24494 Small 6 prong (2 used)
22733 Large 6 prong
MISCELLANEOUS
Part Name of Part
No.
27088 Tone decalcomania
24327 Shield for T5
25056 Shield for T4
24323 Power T. cover (2 used)
24327 Wave trap shield (A7)
27182 Dial assembly
15404 Pilot lamp, 2.5-V.
27179 Tuning tag, F-1135
27113 Instruction folder, F-1134
26618 Shipping container
185-A SPEAKER No. 34100
Part
No. Name of Part
18870 Field coil (2000 Ω)
21672 Output T. (T6)
21161 Diaphragm
25179 Cable and plug
25308 Speaker plug (3 prong)
23657 Choke (CKI)
$\Omega=$ ohms. $\quad U=$ megohms. \quad IND $=$ indut tive.
$\mathrm{NI}=$ = non-inductive. $\mathrm{W} .=$ watt.

PAGE 5-14 A-K
MODEL 206,376 (lst)
Socket,Trimmer, Parts ATWATER-KEN'T MFG. CO.

ATWATER-KEN'T MFG. CO.

ATWA'TER-KENT MFG. CO.

PARTS LIST

INSTRUCTIONS FOR CONNECTING DOUBLET ANTENNA

TO RECEIVER
The Model "DT" doublet transformer has a convenient mounting bracket to permit mounting on the rear of cabinet. The transformer has four terminals which are clearly marked. The connections are shown in Fig. 3 Model "DT" transformer has a two-position switch. For short-wave broadcast reception, turn knob on this sith the knob so dot is at "BC" (broadcast)
IMPORTANT
дадаq e 'suo!̣!puos ןeoo uo su!puadap 'saseo awos uI ratio of signal-to-noise may be obtained WITHOUT a

 leave the ground connection off. (Of course, this does not apply to the ground on the lightning arrestor, which must be connected as shown in the illustration.)
Fig. 2. How to connect the doublet
transmission leads to receiver that is pro-
vided with doublet-antenna terminals, such
as Atwater Kent Models 112,318 , 447, and
559 The leads to the set may be twisted
for a distance of 2 or 3 feet without loss
of signal strength.

 shown in this drawing. The transformer has

ATWATER-KENT MFG. CO.
Socket,Trirmer, Parts

2nd TYPE 387

(Above Serial No. 7873966)

2nd TYPE 427-Q

(Above Serial No. 1948501) Part

No.	Name of Part
27054	Dial assembly
26721	Dial lamp (2-V., 60 MILS.)

37830 Tone control switch complete
26337 Cabinet complete (387)

26053 Screen

25686 Escutcheon
26031 Knob-volume and tone control
25811 Knob-dial
26177 Variable condenser assembly
25692 Volume control, 5 U
25704 Battery cable
23288 Dial plate
TRIMMERS
Code Part
No. No.
A4, 530110 Double I. F. trimmer A6, 730110 Double I. F. trimmer CONDENSERS
Code Part
Code Part
No. No.
No. No. Name of Part
C1 $37840 \quad 1450$ MMF. $100 \cdot \mathrm{~V}$.

RESISTORS

MISCELLANEOUS

	MISCELLANEOUS
Part	
No.	\quad Name of Part
21877	I. F. T. shield
22678	R. F. T. shield
22654	I. F. T. shield cap
25735	Battery cable tag, F1082
25602	Instruction and log card, F1072
25804	Shipping container
15213	Tube shield

$38 \div$ SPEAKER No. 31700
Part
No. Name of Part
19465 Diaphragm
19918 Magnet assembly
23701 Output transformer, less case 23764 Cable and plug
427.Q SPE.AKER No. 36400

Part
No.
Name of Part
23863 Speake: cable and plug assem.
Part
No. No.
T1 37920
No. 1 R. F. T
No. 2 R. F. T.
Oscillator T.
No. 1 I. F. T.
No. 2 I. F. T.
Input T
SOCKETS

Code Part
No. No.
No. No. Name of Part R1 30340 Red-blue, . $1 \mathrm{U}, 1 / 3-\mathrm{W}$. R2 30390 Bl'k-red, $20,000 \Omega$, 1/3W.

R3 30380 Red-green, 3300Ω, 1/3W.

R4 30370 Green, 2 U, 1/3-W
R5 31970 Red-yel., 25 U, 1/3-W.
R6 30340 Red-blue, . 1 U, 1/3-W.
R6A 30320 Maroon, $10,000 \Omega$, 1/3W.

R7 30350 Bl'k-purple, $5 \mathrm{U}, 1 / 3-\mathrm{W}$.
R9 36250* Red-blue, . 115 in 427.Q

R9 $36240 \dagger$ Wire wound, 1.03Ω in 387

Part	
No.	Name of Part
20237	4 prong
22733	6 prong
21336	Speaker (4 prong)

This late lype of Models 387 and $427 . Q$ differs from the early type by baving a police-switch circuit which permit
tuaing in both police bands.

ATWATER-KENT MFG. CO.

MODEN 511 Tun-0-Natic Schematic, Data

ACTION OF ATWATER KENT Tune * O • Matic

A simple diagram of the Tune-O-Matic is shown on this page. It is NOT necessary to understand the circuit details in order to set up the Tune-O-Matic, but a few notes on the mechanical action are given below for your convenience.

The tuning motor is a shaded-pole induction type. The motor shaft rotates in only one direction, and the required forward and reverse drive for the variable condenser is secured by an ingenious and simple arrangement for tipping the motor, which is pivoted for this purpose. Tip ping is accomplished by a solenoid and lever.

The motor drive shaft extends between two rubber, tired wheels, one large, and one small. When the solenoid is not energized, the motor drive shaft rests against the small wheel and the resulting motion drives the variable condenser in the direction from 540 to 1600 K . C. When the solenoid is energized, the motor is tipped so that its drive shaft rests against the large wheel, and the variable condenser is then driven in the direction from 1600 to 540 K . C.

The current that energizes the solenoid is controlled by a switch (mounted above the top rear of the variable condenser). This switch opens at $1600 \mathrm{~K} . \mathrm{C}$. and closes at 540 K . C. The switch is operated by a cam on the shaft of the variable condenser.

Eight adjustable discs are mounted on the shaft of the variable condenser, which is extended out in back of the condenser. Each disc has a small insulated sector on the rim. Each disc is held by spring tension to the shaft. Normally, the discs do not move with respect to the shaft, but by holding the front gear of the variable condenser, and using a special wrench which is furnished with Model 511 , each disc may be rotated on its shaft so that the insulated sector is in the desired position. Between adjacent disc there is a spacer which is keyed to the shaft. This prevents the movement of any disc other than the one moved with the wrench.

Eight contact fingers are mounted at one side of the discs, each finger contacting with the rim of its corresponding disc.

The electrical action is briefly as follows:
Assume that we have one lead of station " G " plugged in the $4: 30$ jack and the switch is set to automatic.

When the contact blade on the rear of the jack panel comes to the 4:30 jack, the electric circuit through the motor and solenoid is completed and the solenoid tips the motor shaft against the large rubber-tired wheel. The motor turns the variable condenser from the automatic-off position, near 1600 K . C., across the dial to the frequency of station " G ".

When the motor reaches this point, the insulated sector of disc " G " has come under its contact finger and the circuit, from the finger through the disc to ground, is broken. This cuts the high-impedance relay into the motor circuit and reduces the current through the motor and solenoid to such a low value that the motor stops turning and the solenoid lever comes up, throwing the motor drive shaft against the small rubber-tired wheel which acts as a mechanical brake, bringing the motor to a dead stop on station "G". Simultaneously, the relay has completed the 110 volt circuit to the set power transformer and the set, now tuned to station " G ", begins to operate.

Now plug one of the "off" leads into the $4: 45$ jack. When the contact finger moves off the $4: 30$ jack, the circuit through the relay is broken, the set is turned off, and the contact finger, now on the $4: 45$ jack, completes the circuit through the motor and solenoid, driving the condenser to $540 \mathrm{~K} . \mathrm{C}$., where a cam on the shaft trips the
switch, thus cutting out the solenoid, and the motor tips back against the small rubber-tired wheel, driving the condenser back in the opposite direction to 1600 K . C .

Beyond the 1600 K. C. end of the dial, the cam on the variable condenser shaft again trips the switch, which opens, and the solenoid, being energized, tips the motor shaft against the large wheel, starting the condenser moving back. But at 1600 K . C. the insulated sector of the "off" disc comes under its contact finger, breaking the circuit and stopping the motor. In the off position, NO CURRENT IS DRAWN BY THE SET; the only current is the small amount required by the electric clock.

Inspection of the diagram will show that the jack panel is shorted out by the switch when the condenser is moving from 540 to 1600 K . C. For greatest accuracy all tuning is done while the condenser is moving from 1600 to 540 K . C

ATWATER-KENT MFG. CO.

SETTING UP THE Tune O • Matic

The Tune-O-Matic mechanism should be adjusted by the dealer in his store, and not in the customer's house. If the customer indicates his choice of seven different stations, the dealer should adjust the Tune-O-Matic for these seven stations. If the choice is left to the dealer, he should select the seven strongest and most reliable stations. In any case, do not select a weak station, a station with pronounced fading habits, nor a station that has interference; such stations can be received better with manual tuning.

1. Make a list of the seven desired stations, listing them numerically by frequency, and mark the call letters of the seven stations on the station index plates at the front of the clock unit, beginning at the top of the left-hand row and working down the left hand row, then to the top of the right-hand row and working down the right-hand row. The bottom index plate on the right-hand row is marked "OFF". Each celluloid plate has two spring return tip-jack leads. There are two leads for each of the seven stations and two "off" leads.
2. Remove the small cover at center rear of chassis. This cover is held by two screws and encloses eight adjustment discs and eight corresponding contact fingers. (The disc nearest the front of the set is the "off" dise and it is ad justed at the factory to a point beyond the 1600 K.C. end of the dial.
3. Turn the tone control extreme right (high pitch), and turn the on-off switch to the "manual" position (right). Tune in the first station on the list; we will refer to this as station "A".
4. Without disturbing the tuning, firmly grasp the dial gear at front of variable condenser in one hand and move the rear disc, by means of special wrench furnished with set, until the rear contact finger is on the small insulated sector of the rear disc.

The wrench is designed to fit loosely on the rim of the disc in order that it may be moved easily to any desired point on the rim. In using the wrench to move the disc, it is necessary to press against the wrench in such a way that the wrench grips the rim of the disc, and then press slowly but firmly in moving the disc.

If you have not held the dial gear securely while turning the disc, the set may have detuned slightly. (Detuning is most readily noticed when the tone control is set at high pitch). In this case retune the station carefully and readjust the rear disc.
5. Plug one of the top left-hand pair of tip leads into the jack at which the HOUR hand points or has just passed.

Note that the clock is marked in 15 -minute intervals, not in minutes. Turn on the on-off switch to "automatic" (left) and tune off the station. This will cause the set to shut off and start the Tune-O-Matic motor. Allow the automatic mechanism to bring the pointer back to the station, at which point the motor will stop and the set will be turned on. After the tubes have heated and the station comes in, note whether the station is correctly tuned in. If the station is not tuned in correctly, a slight readjustment of the disc in the correct direction is necessary. Again throw the station off tune and repeat the procedure if necessary
6. Proceed with the 2 nd station as outlined in paragraphs numbered 4 and 5 , above, but adjust the 2 nd disc from the rear and use one of the 2 nd pair from the top left row of tip leads to plug into the jack at which the hour hand points.
7. Adjust for the remaining stations in the same way, noting that the adjustment discs and the corresponding pairs of tip leads shown on page 1 of customer's instruc tions are as follows:

$$
\begin{aligned}
& \text { Rear disc............. (Station "A"). } \\
& \text { 2nd from rear disc (Station "B"). } \\
& \text { 3rd from rear disc (Station "C"). } \\
& \text { 4th from rear disc (Station "D"). } \\
& \text { 5th from rear disc (Station "E") } \\
& \text { 6th from rear disc (Station "F"). } \\
& \text { 7th from rear disc (Station "G"). } \\
& \text { Front disc (OFF). This is set at factory. }
\end{aligned}
$$

ADDITIONAL AUTOMATIC "OFF" POSITIONS

If more than two automatic "off" positions are required, it is possible to obtain two additional "off" positions by using one of the seven station discs for this purpose.

Use the 2 nd disc from the front and adjust it so its insulated sector is in the same position as the front or regular "off" disc. Mark "OFF" on the index plate directly above the regular "off" plate.

This arrangement provides selection of six different stations with four automatic "OFF" positions.

ADDITIONAL STATION LEADS

If seven good stations are not continuously available, it is necessary to double up on the good stations. Use two adjacent discs for each good station, marking the index plates to correspond.

INSTALLING ATWATER KENT REMOTE CONTROL ON MODEL 511 Tune \bullet © Matic

The Atwater Kent remote control consists of a small control box with a ten-point switch and illuminated switch dial. Seven of these ten points are used to select the seven different stations for which the Tune-O-Matic has been previously adjusted. There are two "off" points (one at each end of the switch movement), and one point marked "time" which restores the set to automatic time operation.
THE SWITCH ON THE CONTROL UNIT MUST BE PLACED IN THE "TIME" POSITION WHEN IT IS DESIRED TO HAVE THE SET TUNE AUTOMAT. ICALLY.

The remote control has 25 feet of cable so the control unit may be placed across the room or in an adjoining room from the set.

The other end of the remote control cable has a multiprong socket and plug. Attach the socket to the left-rear side of the cabinet by means of the two screws furnished with the unit.

Remove the plug of the Tune-O-Matic clock unit from the socket at top-left of chassis and insert it in the socket which you have just fastened to rear of cabinet. Then insert the plug at end of remote control unit into the socket on top of chassis.

This control unit does not have a volume control, but Model 511 has a superautomatic volume control circuit which ensures constant volume level from one station to another.

MODEL 511 Tun-O-Matic
ATWATER-KEN'T MFG. CO. Data

SETTING UP THE Tune $\stackrel{\text { O }}{\text { - Matic }}$

TUBULAR FIXED CONDENSERS

PAGE 5-24 A-K
MODEL 534 (2nd)
Socket, Speaker, Parts
Trinmers
ATWATER-KENT MFG. CO.

MODEL 534

Part No.	Name of Part
25655	Set container
25653	Container cover
25475	Wire screen
25482	Set mounting bolt, $21 / 2^{\prime \prime} \times 3 / 8^{\prime \prime}$
24486	Nut, 3/8' ${ }^{\prime \prime}$
24485	Lockwasher, 3/8"
21143	Plug suppressor
21144	Distributor suppressor
23260	Generator condenser, 1 MF $200-\mathrm{V}$.

$\begin{array}{ll}23520 & \text { Ignition filter } \\ 25509 & \text { Shield for No. 1 R. F. T. } \\ 25441 & \text { Shielded grid lead and cap }\end{array}$
25287 Variable condenser assembly
25406 Station selector clamp
25519 Antenna cable, 24"
21126 Control pulley
21127 Control pulley spring
25851 Spring centering ring

TRANSFORMERS

Code Part
No. No.
$\begin{array}{lll}\text { T1 } & 33710 & \text { No. } 1 R R . F . T . \\ \text { T2 } & 33720 & \text { Oscillator } \mathrm{T} .\end{array}$
T3 25651 No. 1 I. F. T.
T4 33790 No. 2 I. F. T.
T5 25371 Power T.
RESISTORS
Code Part
No. No.
Name of Part
R1 30360 Blue-gray, 1 U, 1/3-W.
R2 30380 Red-green, 3300Ω, 1/3W.

R3 30380 Red-green, 3300Ω, $1 / 3$ W.

R4 15820 Flexible, 70Ω
R5 26160 White, $40,000 \Omega$, $1 / 3$-W.
R6 30340 Red-blue, $1 \mathrm{U}, 1 / 3-\mathrm{W}$.
R7 30370 Green, 2 U, 1/3-W.
$\begin{array}{lll}\text { R8 } & 31970 & \text { Red-yellow, } 1 / 4 \mathrm{U}, 1 / 3-W . \\ \text { R9 } & 30360 & \text { Blue-gray, } 1 / 3-W \text {. }\end{array}$
R10 20120 Flexible, 800Ω
R11 30350 Bl'k-purple, 5 U, 1/3-W.
R12 30370 Green, 2 U, 1/3-W.
CONDENSERS

Code	Part No.	Name of Part
Cl	30260	50 MMF , letter E stamp. ed on washer, $450-\mathrm{V}$.
C2	31530	. 1 MF, 100-V., NI
C3	33680	290 M MF, 100-V.
C4	33660	. $0022 \mathrm{MF}, 450-\mathrm{V} ., \mathrm{IND}$.
C5	31160	. $05 \mathrm{MF}, 100-\mathrm{V}$. , NI
C6	26820	. $05 \mathrm{MF}, 200-\mathrm{V} ., \mathrm{NI}$
C7	33630	Double 250 MMF, $450-1$ V., IND.
C9	31530	. 1 MF, 100-V., NI
C10	23250	. $01 \mathrm{MF}, 450-\mathrm{V}$.
C11	27630	. $01 \mathrm{MF}, 200-\mathrm{V} ., \mathrm{I}$ IND.
C12	28040	. $005 \mathrm{MF}, 200-\mathrm{V} . .1$ IND.

C13 25379 Dry electrolytic, 10 MF ,
C14 25385 Dry electrolytic, 8 MF , $250-\mathrm{V}$.
C15 33070 .05 MF, 450-V.
$\begin{array}{lllll}\text { C16 } & 33070 & .05 & \mathrm{MF}, & 450-\mathrm{V} . \\ \text { C17 } & 29030 & .02 \mathrm{MF}, & 450-\mathrm{V} ., & \mathrm{NI}\end{array}$
C18 25384 Dry electrolytic, 8 MF. 300-V.
C19 31150 . $3 \mathrm{MF}, 100$-V., NI
$\mathrm{C} 20 \quad 27630$. $01 \mathrm{MF}, 200-\mathrm{V} .$, IND.
C21 31150 . $3 \mathrm{MF}, 100-\mathrm{V} ., \mathrm{NI}$
TRIMMER CONDENSERS
Code Part
No. No. Name of Part $\begin{array}{cl}\text { A3, } 432880 & \text { Double I. F. trimmer } \\ \text { A5 } 24495 & \text { Single I. F. trimmer }\end{array}$ $\begin{array}{lll}\text { A5 } & 24495 & \text { Single I. F. trimmer } \\ \text { A6 } 31870 & \text { Single trimmer }\end{array}$ Single trimmer

CHOKES

Code No.	Part No.	Name of Part
CK1	17015	R. F. "B" filter choke
CK2	33450	A. F. filter choke
CK3	23530	R. F. "A" filter choke SOCKETS
	Part No.	Name of Part
	24493	5 prong
	25196	3 prong
	24494	6 prong
	23147	Fuse
	POWER UNIT SUPPLY	
	Part No.	Name of Part
	25595	Vibrator assembly
	25563	Connector card, female
	25564	Connector card and b male
	25344	Insulator (fish paper)
MISCELLANEOUS PART		
	Part No.	Name of Part
	21406	Fuse, 10 amp .
	25658	Shipping container
	20976	Lockswitch key

REMOTE CONTROL UNIT Part
Par
Part Name of Part
No.
33430 Remote control unit complete
21496 Volume control, 5 U
21496 Volume control, 5 U
24169 Dial knob
21491 Lockswitch
21407 Dial lamp ($6-8$ volts, $1 / 4 \mathrm{amp}$.)
25483 Remote control unit to set cable, 4^{\prime}
26179 Station selector cable, 4' 11"
26181 Station selector cable sheathing, 4'
25492 Shielded lead to ungrounded
Part \quad Name of Part
No.
244935 prong
25196 3 prong
23147 Fuse
POWER UNIT SUPPLY
No. Name of Part 25595 Vibrator assembly
25564 Connector card and bracket, male

MISCELLANEOUS PARTS
Par
21406 Fuse 10 Name of Part
25658 Shipping container
76 Lockswitch key
side of battery. $6^{\prime} 6^{\prime \prime}$

ATWATER-KENT MFG. CO.

PAGE 5-26 A-K

MODEL 559
Sooket, Trinmers
Alignment Notes (1)
Balancing Gadget

TOP VIEW MODEL 559

The location of trimmers on Model 112 is the same on Model 559.

Refer below for names of trimmers on these models.

R. F. TRIMMERS ON MODELS 112 AND 559

	$\underset{\text { Range }}{\text { 10-18 MC }}$	$\underset{\text { Range }}{4-10 \mathrm{MC}}$	$\begin{gathered} 1.5-4 \mathrm{MC} \\ \text { Range } \end{gathered}$	$\begin{gathered} 540-1600 \mathrm{KC} \\ \text { Range } \end{gathered}$
R. F.	A4	A3	A2	A1
1st-Detector	A12	A11	A8	A9
Oscillator	. A14	A13	A 7	A6
Tracking	. None	None	A 10	A5

The I. F. trimmers are A15 to A22, inclusive.

ADJUSTING TRIMMER CONDENSERS

EQUIPMENT.

1. OSCILLATOR. The oscillator should extend from the lowest I. F. frequency (125 KC in Atwater Kent sets) to at least 18 MC . The oscillator should have a good attenuator and should be well shielded. If the oscillator is not well shielded, it may be difficult to peak the pre-selector trimmers on some models, owing to pick-up by the 1 st-detector grid circuit. In general, it is advisable to connect an 00025 MFD fixed condenser in series with the oscillator pick-up lead at the antenna terminal of the set.
2. OUTPUT METER. Use a sensitive output meter and keep the radio volume control turned on full volume. This is necessary to minimize the effect of the automatic-volume-control action of the set which would otherwise prevent sharp peaking of the trimmers.
3. BALANCING UNIT. Build two of the Type "A" balancing units and one of the I. F. coupling units shown on right. These are required for correct adjustment of Atwater Kent super-heterodynes. The Type " B " balancing unit, also described, is used on earlier models of Atwater Kent sets.
4. Use a non-metallic screw driver for adjustment of the trimmers.

Fig. 1. I. F. Coupling unit.

Fig. 2. Balancing unit "A."

ADJUSTING TRIMMER CONDENSERS (Contd.)

GENERAL NOTES.

1. Do not make any trimmer adjustments and do not disturb the dial gear or the dial indicator adjustments unless absolutely necessary.
2. With all-wave sets, it is very desirable to use a test oscillator that extends to $18 \mathrm{MC}(18,000 \mathrm{KC})$. If you attempt to use harmonics of a broadcast oscillator, you are likely to use the wrong harmonic and set the trimmers incorrectly.
3. When using a test oscillator, you will experience "doublespot" or image reception, particularly on the highest frequency range of the set. The double-spot point is twice the I. F. frequency below the correct point. For instance, if a set has an I. F. frequency of $4721 / 2$ kilocycles, and you are tuning in an 18 MC signal, the double-spot or image will be twice $4721 / 2$ or $945 \mathrm{KC}(.94 \mathrm{MC})$ below 18 . In such a case you will hear the signal at 18 MC and also at 17.06 MC . In properly aligned sets of six tubes or more, the image should be weaker than the desired signal.
4. Because of the facts mentioned in paragraphs 2 and 3 above, it is very desirable, wherever possible, first to check the short-wave dial calibration and determine how far, and in what direction, the readings are "off." This should be done on actual reception of short-wave stations of known frequency. This prechecking will assist you in selecting the correct harmonic (in case you are using a broadcast oscillator), and it will also minimize possibility of confusing the correct signal and the image signal.
5. On oscillator trimmers there may be two different settings at which the signal is received. Always use the first of these two positions as you screw the trimmer in from a loose or minimum-capacity position. THIS IS IMPORTANT.
6. On sets with a combined oscillator and lst-detector tube, tune the set to a quiet point near $1,000 \mathrm{KC}$ while adjusting the I. F. trimmers.

OSCILLATOR GOVERNS DIAL ACCURACY.

It is essential to understand definitely that in a super-heterodyne the dial calibration depends on the oscillator circuit of the set, providing that the I. F. trimmers are correctly aligned. The pre-selector (R. F. and 1st-detector) trimmers do not affect the dial calibration but simply affect sensitivity.

If the dial calibration of one or more of the frequency ranges of the set is "off", check the oscillator trimmer, the oscillator tracking condenser and tracking trimmer, and the oscillator transformer for the particular range or ranges in question.

The oscillator trimmer is used to adjust the high-frequency end of the particular range.

The oscillator tracking condenser adjusts the low-frequency end of the particular range.

In Atwater Kent sets the fixed tracking condenser on the broadcast range (and in some models also on the police range) is shunted with an adjustable tracking trimmer condenser. The adjustable tracking trimmer condenser is not used on the highfrequency ranges.

The adjustment of the trimmers for the high-frequency and low-frequency end of a particular range is slightly interlocking. For example, assume that the broadrast tange of a set is off calibration. First turn the tuning knob so the dial pointer is at 1500 KC and, using a 1500 KC signal, peak the broadcast oscillator trimmer. Then turn the set to 560 KC and, using a 560 KC signal, peak the oscillator broadcast tracking trimmer for maximum output. This adjustment will have slightly affected the previous adjustment at 1500 KC so it will be necessary to repeat the adjustment at 1500 KC and also possibly at 560 KC .

If adjustment of the oscillator trimmer and the oscillator tracking trimmer does not correct the dial readings, it may be necessary to replace the fixed oscillator tracking condenser or the oscillator transformer for that particular range.

Naturally, the I. F. trimmers should be checked, and adjusted if necessary, before any attempt is made to align the R. F. or oscillator trimmers.

GENERAL PROCEDURE.

First check the I. F. trimners. If reception is satisfactor and the dial calibration is correct on the broadcast range, it is safe to assume that the I. F. trimmers are correctly adjusted
If the dial calibration is "off" (or the set is weak) on only one range, adjust the trimmers for that range only. If this does not correct the trouble, inspect the resistors, condensers transformers, and switch contacts associated with that particular range.

In checking a set, do not disturb the position of the wiring any more than necessary.

MODELS 112 AND 559

I. F. TRIMMERS.

Connect an I. F. test oscillator to the 1st-detector tube by means of the I. F. coupling unit shown in Fig. 1. Adjust the I. F. oscillator to $472 \frac{1}{2} \mathrm{KC}$. Connect a sensitive output meter I. F. oscillator the set. Use the weakest possible oscillator signal that will give a reading on the output meter with the radio volume control on full. Put tone control in 2nd-position from right.

Put balancing unit A (shown in Fig. 2) across trimmer A21 and peak A22

Put unit A across A22 and peak A21.
Put unit A across A19 and peak A20.
Put unit A across A20 and peak A19.
Put one unit A across A17 and another unit A across A15; peak A18 and A16.
Put one unit A across A18 and another unit A across A16; peak A17 and A15.

In case of instability while adjusting A21 and A22, place an extra balancing unit A across A18.

Remove the I. F. coupling unit and the balancing units and seal the trimmer screws.

R. F. TRIMMERS.

Connect an R. F. oscillator to the antenna and ground terminals of the set. Use the weakest possible signal to give a reading on the output meter. Loosen the trimmer screws for the frequency range or ranges that are to be re-adjusted.

10 to 18 MC range. Tune oscillator exactly to 18 MC and turn tuning knob of set so indicator is at 18 MC mark. Adjust trimmers A14, A4 and A12 for peak output.

4 to 10 MC range. Tune oscillator exactly to 10 MC and turn set to 10 MC mark on the 4 to 10 MC range. Peak trimmers A13, A3 and A11.
1.5 to $4 M C$ range. Tune oscillator to 4 MC and turn set to the 4 MC mark on the 1.5 to 4 MC scale. Peak trimmers A7, A2 and A8. Tune oscillator to 1.5 MC and, with set at 1.5 , peak A10. Repeat adjustments on A7 and A10 if necessary.

Broadcast range. Tune oscillator and set to 1500 KC . Peak trimmers A6, A1 and A9. Tune oscillator to 560 KC and turn set to the 560 KC mark. Peak A5. Repeat adjustments on A6 at 1500 and A5 at 560 if necessary.

MODELS 145 AND 325

I. F. TRIMMERS.

Connect an I. F. test oscillator to the 1st-detector tube by means of the I. F. coupling unit shown in Fig. 1. Adjust the I. F. oscillator to 264 KC . Connect a sensitive output meter to the set. Use the weakest possible oscillator signal that will give a reading on the output meter with the radio volume control on full. Turn the set to a quiet point near 1000 KC .

Peak trimmer A7, A6 and A5. Remove the I. F. coupling unit and seal the trimmer screws.

ATWATER-KENT MFG. CO.

DIAL POINTER ADJUSTMENT.

With the variable condenser all the way in, the dial pointer should be set at 535 KC .

R. F. TRIMMERS.

Connect an R. F. test oscillator to the antenna and ground terminals of set. Use the weakest possible oscillator signal. Loosen the trimmer screws.
Short-wave range. Oscillator at 15 MC , and set turned to 15 MC mark, peak trimmer A3
Police range. There are no trimmer adjustments for this range.
Broadcast range. Oscillator at 1500 KC and dial pointer at 1500 KC mark, peak trimmers A8, A2 and A1. Tune oscillator and set to 560 KC . Peak A4. Repeat adjustments on A8 at 1500 KC and A 4 at 560 KC if necessary.

MODELS 206 AND 376 (1st type)

I. F. TRIMMERS.

Connect an I. F. test oscillator to the 1st-detector tube by means of the I. F. coupling unit shown in Fig. 1. Adjust the oscillator to $4721 / 2 \mathrm{KC}$. Use the weakest possible signal that will give a reading on the output meter with the radio volume control on full.

Turn the set to a quict point near 1000 KC .

Peak trimmers A8, A7 and A6 for maximum output. Remove the I. F. coupling unit and seal the I. F. trimmers.

DIAL POINTER ADJUSTMENT.

With the variable condenser rotor completely meshed, the dial pointer should be set at 535 KC .

R. F. TRIMMERS.

Connect a suitable R. F. oscillator to the antenna and ground terminals of set.

Broadcast range. Oscillator at 1500 KC and dial pointer at

1500 KC mark, adjust trimmers A9, A2 and A3. Tune oscillator and set to 560 . Peak A5. Repeat adjustments on A9 at 1500 KC and A5 at 560 KC if necessary.
Police range. There are no trimmer adjustments for this range.
Short-wave range. With oscillator at 15 MC and set turned to 15 MC , peak trimmers A10, A1 and A4.

MODELS 318 AND 447

I. F. TRIMMERS.

Connect an I. F. test oscillator to the 1st-detector tube by means of the I. F. coupling unit shown in Fig. 1. Adjust oscillator to $472 \mathrm{I} / 2 \mathrm{KC}$. Connect a sensitive output meter to the set. Use the weakest possible oscillator signal that will give a reading on the output meter with the radio volume control on full.
Put balancing unit A (shown in Fig. 2) across trimmer A19 and peak A20.
Put unit A across A20 and peak A 19.
Put unit A across A17 and peak A18.
Put unit A across A18 and peak A17.
Put unit A across A15 and peak A16.
Put unit A across A16 and peak A15.
Remove the I. F. coupling unit and balancing unit and seal the I. F. trimmers.
R. F. TRIMMERS.

Connect an R. F. test oscillator to the antenna and ground terminals of set. Use the weakest possible oscillator signal that will give a reading on the output meter. Loosen the trimmer screws for the frequency range or ranges that are to be re-adjusted.
12 to 22.5 MC range. Oscillator at 18 MC , dial pointer at 18 MC , peak trimmers A13, A4 and A8.
4.6 to 12.2 MC range. Oscillator at 12 MC , dial pointer at 12 MC , peak trimmers $\mathrm{A} 14, \mathrm{~A} 2$ and A 6 for maximum output.

R. F. TRIMMERS ON MODELS 318 AND 447

	$\underset{\text { Range }}{12-22.5 \mathrm{MC}}$	$\begin{gathered} \text { 4. }-12.2 \mathrm{Mange} \end{gathered}$	$\underset{\substack{1.6-4.6 \\ \text { Range }}}{\mathrm{Mc}}$	$\begin{gathered} 540-1600 \mathrm{KC} \\ \text { Range } \end{gathered}$
R. F.	A4	A2	A3	A1
1st-Detector	A8	A6	A7	A5
Oscillator	A13	A14	A12	A11
Tracking	None			A9
	trimmers	A15 to A20, inclusive.		

ADJUSTING TRIMMER CONDENSERS (Contd.)

1.6 to 4.6 MC range. Oscillator at 4 MC and dial pointer at 4 MC , peak trimmers A12, A3 and A7. Tune oscillator to 1.7 MC , and with dial pointer at 1.7 , peak A10. Repeat adjustments on Al 2 at 4 MC and A 10 at 1.7 MC if necessary.
Broadcast range. Oscillator at 1500 KC and dial pointer at 1500 KC mark, peak trimmers A11, A1 and A5. Tune oscillator to 560 KC , turn dial pointer to 560 KC mark, and peak A9. Repeat adjustments on A11 at 1500 KC and A9 at 560 KC if necessary.

MODEL 944

I. F. TRIMMERS.

Connect an I. F. test oscillator to the lst-detector-by means of the I. F. coupling unit shown in Fig. 1. Adjust the I. F. oscillator to 450 KC . Connect a sensitive output meter to the set. Use the weakest possible oscillator signal that will give a reading on the output meter, with the condenser A5 turned well out in counter-clockwise direction (when facing rear of chassis). Peak the I. F. trimmers A3 and A4 for maximum, output. Now turn the regenerative control condenser "in" (clockwise from rear of chassis) until a "squeal" or audio howl indicating oscillation of the I. F. stage, then back off about onequarter turn, or until the audio howl stops. The adjustments of the I. F. trimmers should again be checked for peak-i.e.,
the peaking procedure and adjustment of the regenerative condenser should be repeated until maximum output is obtained.

R. F. TRIMMERS.

Check the dial setting by turning the gang condenser to maxinum position and observing, by means of steel scale held vertically over the condenser shaft axis, whether the 540 KC mark on the dial is perpendicular to a line along the top of the condenser frame in back of the dial. Connect an R. F. oscillator to the antenna and ground terminals of the set. Use the weakest possible signal to give a reading on the output meter. Loosen the trimmer screws. Tune the oscillator to 1500 KC and turn the tuning knob of the set to a dial mark half way between 140) and 150 and perpendicular to a line along the top of the condenser frame. (Determined as explained in setting dial at 540 KC .) Peak the trimmers Al and A2 for maximum output. Retune oscillator and set to 1100 KC and check regenerative condenser A5 adjustment for maximum sen-sitivity-i. ε., one-quarter turn below audio howl. If osciliation occurs at any other point on the dial after the above adjustments, it will be necessary to again turn back a fraction of a turn on the condenser A5.

Note.-lst-detector grid clip must be inside of shield can when adjusting the R. F. trimmers.

PARTS LIST

MODEL 145

28839
27906
27945
27389
2743
27692
2757
27947
2752
2753
2752
24323 Power trans. cover
25056 I. F. T. shield
27485 Range switch
19566 110 V. cable
40090 Pilot light assem.
28827 Dial lamp socket
26526 Ferrule and bushing
26524 Spring
22683 Tube shield
28281 Front and back plate assem.
28594 Tuning shaft assem.
22657 Dial rubber and bushing
25058 I. F. T. shield cover
25059 I. F. T. shield cover (hole)
27676 Pilot lamp, 2.5 V. (frosted)
27425 Vol. control, . 5 U
39620 Tone control switch assem.
28192 Shaft and blade for above
27562 Inst. sheet, F. 1149
27867 Shipping container
TRANSFORMERS
T1 39820 No. 1 R. F. T
T2 39830 No. 2 R.F.T

MODEL 145 (Contd.)
T3 39840 Oscillator T.
T4 27789 No. 1 I. F. T.
T5 27791 No. 2 I. F. T.
T6 28621 Output T.
T7 25191 Power T.

RESISTORS

(For tubular resistors see page 19.)
R6 28950 Flexible, 160Ω
CONDENSERS
(For tubular condensers see page 18.)

C1	25035	.006 MF, blue, blk, and red
C3	27650	8 MMF
C4	33670	$250 \mathrm{MMF}, 500-\mathrm{V} .$, mica
C7	33930	25 MMF
C8	39660	730 MMF
C10	33670	$250 \mathrm{MMF}, 500-\mathrm{V} .$, mica
C10A	33670	$250 \mathrm{MMF}, 500-\mathrm{V} .$, mica
C18	22538	$8 \mathrm{MF}, 475 \mathrm{~V}$.
C19	27585	$8 \mathrm{MF}, 350 \mathrm{~V}$.

A4 39630 Rear
A5,6 32880 T4
A7 36570 T5
A8 38890 Front

CHOKES
CKI 28623
CK2 40140
On speaker
R. F. choke

MODEL 145 (Contd.)
SOCKETS

```
244946 prong
244924 prong
21336 Speaker
261117 prong
```

MODEL 145 SPEAKER
42100 Complete speaker
28619 Diaphragm assem.
28621 Output trans. (T6)
28622 Field coil
28623 Choke coil (CKI)

MODEL 325

(For parts not listed below refer to Model 145.)
27985 Bottom plate
27946 Escutcheon and crystal assem.
28535 Dial plate
40140 R. F. choke (CK2)
27865 Shipping container

MODEL 325 SPEAKER 41800

27661	Cone housing
25525	Choke (CK1)
21260	Field coil
20737	Diaphragm
20657	Cable and plug assem.
18582	Plug only
19469	Segment

ATWATER-KENT MFG. CO.

PAGE 5-32 A-K

Socket,Trimner
Parts Layout
A'TWATER-KENT MFG. CO.

MODEL 666

MODEL 666

26827 Field coil, 6.5Ω 26559 Cable and plug assembly REMOTE CONTROL HEAD (Same as used on Model 815

1934 Set Model Specifications

ATWATER-KENT MFG. CO.

ลనత్రత్

agaman тачиж

ATWA'TER-KENT MFG. CO.
MODEL 711

NODEL 711 Socket, Tr immers Parts List

ATWATER-KENT MFG. CO.

MODEL 711

 PartNo.
$26441 \dagger$ Front panel complete with escutcheon

25923 Escutcheon

25737 Knob-volume and station selector (711R)
25738 Knob-tone and silencing adjustment (711R)
$27003+$ Knob-range switch (711R)
25145 Knob-tone and silencing adjustment (711T-J)
25811 Knob-volume and station selector ($711 \mathrm{~T}-\mathrm{J}$)
$27002+$ Knob-range switch (711T-J) $25924 \dagger$ Dial plate
25689 Shadow tuning indicator
25839 Range switch
34520 Tone control switch complete 25846 Variable condenser assembly 711 the range switch. hnob and dial in late Model knobs, dials and panel assemblies are furnished for senite. 25798 Volume control, 5 U 26338 Silent tuning adjustment, 14,000 Ω
TRANSFORMERS

Code Part

$\begin{aligned} & \text { Code } \\ & \text { No. } \end{aligned}$	Part No.	Name of Part
T1	34830	No. 1 R. F. T,
T2	34840	No. 2 R. F. T.
T3	34870	No. 1 H. F., 1st range
T4	34890	No. 1 H. F., 2nd range
T5	34920	No. 1 H. F., 3rd range
T6	34850	No. 3 R. F. T.
T7	34860	Oscillator T.
T8	34880	No. $2 \mathrm{H} . \mathrm{F}$., 1st range
T9	34910	No. 2 H. F., 2nd range
T10	34930	No. 2 H. F., 3rd range
T11	26251	No. 1 I. F. T.
T12	25503	No. 2 I. F. T.
T13	25503	No. 3 I. F. T.
T14	35350	Audio T. unit
T15	26207	Output 'T.
T16	26257	Power T.
		RESISTORS
Code	Part	
No.	No.	Name of Part
R1	30340	Red-blue, . $1 \mathrm{U}, 1 / 3 \mathrm{~W}$.
R2	30340	Red-blue, 1 U, 1/3-W.
R3	17380	Flexible. 425Ω

R4	33230	Flexible, 2000Ω
R5	33210	Flexible, 670Ω
6	20980	Red-blue, 1 U U, 1/2-W.
R7	21030	Flexible, 2000Ω
R8	25950	Flexible, 200Ω
R9	30340	Red-blue, 1 U, 1/3-W.
R10	25840	Flexible, 300Ω
R11	30320	Mar'n, 10,000 Ω, 1/3-W.
R12	20930	Bl'k-pur., 5 U, 1/z-W.
R13	20940	Green. 2 U, 1/2
R14	20980	Red-blue. . 1 U , 1/2-W.
R15	24340	Flexible, 8000Ω
R16	24340	Flexible, 8000Ω
R17	20120	Flexible, 800
R18	20940	Green, $2 \mathrm{U}, 1 / 2$ W.
R19	21041	Bl'k, 65,000 Ω, 1/2
R20	26160	White, 40,000 $\Omega, 1 / 2-W$.
R21	20380	Flexible, 1500Ω
R22	19180	Iron core, 1100Ω
R23	17077	Flexible, 10Ω, white bl'k tracer
R24	17077	Flexible, 10Ω, white bl'k tracer
R25	31860	Flexible, 1.0Ω, yellow
CONDENSERS		
Code	Part	
No.	No.	Name of Part
C1	31160	. 05 MF, 100-V.. NI
C2	31160	. $05 \mathrm{MF}, 100-\mathrm{V} ., \mathrm{NI}$
C3	31160	.05 MF. 100-V., NI
C4	25032	. $00025 \mathrm{MF}, 450-\mathrm{V}$.
C5	25837	. $0011 \mathrm{MF}, 450-\mathrm{V}$.
C6	25034	. $003 \mathrm{MF}, 450-\mathrm{V}$.
C7	25035	. 006 MF, 450-V.
C8	32810	. $01 \mathrm{MF}, 450-\mathrm{V}$
C9	36220	$8 \mathrm{MMF}, 500-\mathrm{V}$.
C10	36220	8 MMF. 500 V .
C11	25661	$8 \mathrm{MMF}, 500 \mathrm{~V}$.
C12	25661	8 MMF .500 V .
C13	31160	.05 MF. 100-V., NI
C14	32810	. 01 MF, 450-V., NI
C15	31160	. $05 \mathrm{MF}, 100-\mathrm{V}$. , NI
C16	31160	. 05 MF. 100-V., NI
C17	31160	. $05 \mathrm{MF}, 100-\mathrm{V}$, , NI
C18	32810	. 01 MF, 450-V.. NI
C19	31160	. $05 \mathrm{MF}, 100 \mathrm{~V}$. ., NI
C20	32810	. 01 MF, 450-V., NI
C21	31160	. $05 \mathrm{MF}, 100-\mathrm{V}$. , NI
C22	31160	. $05 \mathrm{MF}, 100-\mathrm{V}$. , NI

C23	35290	125	MMF, 500-V.
C24	35290	125	MMF, 500-V.
C25	26670	125	MMF. 500 V .
C26	25384	8 M	MF, 300-V.
C27	27630	. 01	MF, 200-V.
C28	25385	8 M	MF, 250-V.
C29	35420	. 08	MF, 200-V., N
C30 \dagger	29690	Ton (B	e control co B15)
C31	22528	8 M	MF, 475-V.
C32	22538	8 M	MF, 475-V.
C33	22538	8 M	MF, $475-\mathrm{V}$
C34	23250	01	MF. 450-V.

CHOKES

Code Part
Name of Part
1st detector plate filter 1st I. F. plate filter choke
2nd I. F. plate filte choke
Audio filter choke

TRIMMER
Code Part
Name of Plate
No. No.
A5 20190 Single I. F. trimmer
A6, 732880 Double I. F. trimmer A8, 932880 Double I. F. trimmer A10, 1132880 Double I. F. trimmer

SOCKETS

Part
No.
Name of Part
22734 5 prong, lower base
22689 Rectifier socket
227354 prong, lower base
21336 Speaker, 4 prong
18449 Fuse socket
244946 prong, upper base

MISCELLANEOUS

I. F. T. shield cap (with hole) I. $\underset{\text { hole) }}{\text { F. }}$ T. shield cap (without

22865 Bottom plate
22683 Tube shield
26255 I. F. T. shield insulator
25056 I. F. T. shield
25906 Filter choke cover
25758 Power T. cover
26254 Power T. insulator
35380 Dial light socket and reflector
15404 Dial lamp (2.5-V.)
26793 Instruction folder, F1123
26237 Shipping container
26218 Shields for T1, 2, 6, 7
26217 Shields for T8, 9, 10
26216 Shields for T3, 4. 5
27072 Wave guide, F1131
23774 Fuse 3A
26934 Tuning inst. tag, F1124
711 SPEAKER No. 36700

Part

No.	Name of Part
26243	Diaphragm
23668	Cable and plug
35080	Field coil (325 $\Omega)$
15079	Speaker plug

A-K PAGE 5-37

PAGE 5-38 A-K

A'TWATER-KENT MFG. CO. R.F. Transformers MODEL 788,Trimmers MODELS 711 AND 788 R. F. TRANSFORMERS

MODEL 788

ATWATER-KENT MFG. CO.
There are three types of quality filter
The flrst type used an $007-\mathrm{MF}$ condenser.
The second type used an .005-MF condenser.
The third type uses resistor R23 in serles with $03-\mathrm{MF}$.

Try

connections in

PAGE 5-44 A-K
MODEU 816,926,936 (1st)
Socket,Trimmers,Parts, ATWATER-KEN'I MFG. CO.
Power Unit Schematic

In late type sets, the " A " battery cable is brought out the top side, near the speaker plug.

1st TYPES OF

MODELS 816, 926 AND 936
woort no

$$
\begin{array}{|c|c|c|}
\hline \text { woort } \\
\text { rupe }
\end{array}
$$

Model 936 has a separate speaker which plugs into a three-prong socket on the inside of lid of set container.

MODEL 816

(Below Serial No. 1121818)
Part

- When ordering cabinet, specify brewn or black

TRANSFORMERS
Code Part

| No. | No. | Name of Part |
| :---: | :---: | :--- | :--- |
| T1 | 35680 | No. 1 R.F. T. |
| T2 | 35690 | No. 2 R. F. T. |
| T3 | 35710 | Oscillator T. T. |
| T4 | 26592 | No. 1 I. F. T. |
| T5 | 26593 | No. 2 I. F. T. |
| T6 | 26606 | Audio input T. |
| T7 | 26478 | Audio output T. |
| T8 | 26291 | Power T. |

RESISTORS
Code Part
$\begin{array}{ccc}\text { No. No. } & \text { Name of Part } \\ \text { R1 } 20040 & \text { Flexible, } 100 \Omega\end{array}$
R2 20970 Gray, $30,000 \Omega, 1 / 2-W$
R3 30340 Red-blue, $1 \mathrm{U} .1 / 3-\mathrm{W}$.
R4 31830 Flexible. 250Ω
R5 30370 Green, 2 U, 1/3-W.
R6 30350 Bl'k-purple. $.5 \mathrm{U}, 1 / 3-W$.
R7 30320 Mar'n, 10000Ω. 1/3-W
R8 30370 Green. 2 U. 1/3-W.
R9 20120 Flexible 800Ω
R10 31980 Bl'k. $65,000 \Omega$. $1 / 3-W$.
R11 30390 Red-bl'k, 20,000 Ω, 1/3W.

R12 30380 Red-green, 3300Ω, 1/3W.

R13 16840 Flexible, 22Ω
R14 33250 Blue, $2000 \Omega, 1 / 3-W$. CONDENSERS
Code Part

o.	No.	art
C1	31160	. 05 MF, 100-V., NI
C2	31530	.1 MF, 100-V., NI
C3	36460	$600 \mathrm{MMF}, 100 \mathrm{~V}$. (mica)
C4	36510	$500 \mathrm{MMF}, 500-\mathrm{V}$. (mica)
C5	29530	. $03 \mathrm{MF}, 200-\mathrm{V}$., N I
C6	36440	.1. .05, . $1 \mathrm{MF}, 100-\mathrm{V}$., IND.
C7	33670	$250 \mathrm{MMF}, 500-\mathrm{V}$.
C8	33670	250 MMF, 500-V.
C9	36450	$\begin{aligned} & .05, .05, .005, .005 \mathrm{MF} \text {, } \\ & 200-\mathrm{V} ., \mathrm{IND} . \end{aligned}$
C9A	33660	2200 MMF, 450 V., IND.
C10	23250	. $01 \mathrm{MF}, 450-\mathrm{V}$.
C11	36480	. $64 \mathrm{MF}, \mathrm{H}-52,200-\mathrm{V}$.
C12	31150	.3 MF, 100-V., NI
C13	31150	. ${ }^{\text {MF }}$, 100-V., NI
C14	36490	. $05 \mathrm{MF}, 450-\mathrm{V}$. , N 1
C15	36490	. $05 \mathrm{MF}, 450-\mathrm{V}$. , NI
C16*	36490	. 05 MF 450-V., NI
C16A	29030	. $02 \mathrm{MF}, 450-\mathrm{V} ., \mathrm{NI}$
C17	26092	8 MF. 8 MF, $300-\mathrm{V}$. (electrolytic)

ATWA'TER-KENT MFG. CO.

C18** 36880 . 0? MF, 450-V., NI
C19 30270 Tone control cond. (B-16)

* C16 is . 02 MF. 450.V.. NI 29030 in some of
these sets.
als is . 05 MF, 200.V., NI 26820 in later
sets.

POWER UNIT ASSEMBLY

Part

No.	Name of Part
26863	Vibrator
26854	Rubber (2)
26855	Rubber (1)
$2606!$	Inside vibrator container
26062	Lid for above
26522°	Grommet
2608.	Tubular condenser clamp
26663	Middle container body
26091	Middle container lid
26136	Vibrator lid insulator
26664	Outer container body
26665	Outer container lid
	SPEAKER
Part	
No.	Name of Part
26851	Speaker less cable
26826	Cone head assembly
26827	Field coil, 6.5Ω
26559	Speaker cable and plug

MISCELLANEOUS PARTS
Part
No. Name of Part
21878 Disc shield, No. 2 I. F. T.
26578 Disc (insul.) for No. 2 I. F. T.
21406 Fuse, 10 amp.
REMOTE CONTROL HEAD
26646 Remote control head complete with mounting parts (less cables)
26893 Pointer gear (fibre)
26894 Spring washer
26108 Mounting strap and bushing
26884 Head assembly
26892 Pointer and shaft
26886 Screw No. 4-36 x 1/4
26888 Cork gasket
26889 Dial assembly
26891 Diffusing strip
26107 Mounting bracket
26528 Screw $1 / 4-20 \times 1 / 2$
26104 Assem. vol. cont. cable, 35 in.
26105 Assembled tuning cable, 31 in.
26109 Key
26887 Glass
27118 Lamp (6-8-V., 1/8A), green
26895 Gear shaft assembly
26896 Tuning knob
27312 Tuning knob spring
26897 Key knob
26898 Screw No. $10-32 \times 1 / 4$ F. H. cup pt.

26899	Shielded wire (dial lite lead)	
26901	Wire clamp	
26531	Screw 1/4-20 $\times 7 / 8$	
24082	Wire tip	
27059	Steering column	mounting
	bracket assembly	
26107	Mounting bracket	(column
26531	type $\begin{array}{ll}\text { Column clamp screw }\end{array}$	
26108	Column clamp	

21141 Lockwasher
26.528 Mounting screw

26943 Panel mounting bracket assem.
26944 Mounting bracket (panel type)
? 6945 Wing screws
26946 Flat head screws
26947 Felt pad

EXTRA LENGTH ASSEMBLED CABLES

27114 Assem. vol. cont. cable, $31 /$ ft.
27115 Assembled tuning cable, $31 / 2 \mathrm{ft}$. 27016 Assem. vol. cont. cable, 11 ft . 27017 Assembled tuning cable, 11 ft .

MODEL 926
(Below Serial No. 8276401)
Model 926 speaker and chassis is identical to Model 816, but the 926 uses a genemotor power unit

POWER UNIT MODELS 926 and 936

Part	
26093	Power unit container
26942	Lid for above
36610	R F "A" filter choke (CK8)
36620	R F "B" filter choke (CK9)
22359	A F "B" filter choke (CK10)
26864	7 MF, 300-V., dry electrolytic (C20)
35930	. 25 MF, 200-V., NI (C21)
36420	. $02 \mathrm{MF}, 200-\mathrm{V} ., \mathrm{IND}$. (C22)

GENEMOTOR No. 26734

Part
No. Name of Part
26964 Motor end bracket assembly
26965 Generator end bracket assembly.
26966 Generator brushes assembly
26967 Motor brushes assembly
26968 Field coils and field core assembly
26969 Field coils set
26971 Armature
26972 Ball bearing
26973 Motor mounting bracket
26974 Rubber bumpers
26975 Steel studs $45 / 8^{\prime \prime} \times 8 / 32$ thd.
26976 Hex. iron nuts-cadmium plated
26977 Ground lug
26978 25/8" long-No. 18 extra flexible bare ground lead
27043 Field core assembly
27044 Shunt field (2 leads)
27045 Shunt and series field (4 leads)
MODEL 936
(Below Serial No. 4542201)
Model 936 chassis is identical to Model 816, but the 936 uses a genemotor power unit (listed above), and a separate speaker (listed below).
Part
No. Name of Part
26806 Lid
25196 Socket (3 prong)
26831 Cable and plug assembly (5
21963 Tone control knob
936 SPEAKER No. 38900

DATA FOR CURRENT MODELS

The last figure in the model number indicates the number of tubes；for instance，Model 145 has 5 tubes；Model 511 has 11 tubes，etc．The
All models listed below have tone control，and all models with exception of 465 Q and 655 Q have automatic volume control．All models have dynamic speakers，with exception of battery sets，which have special magnetic speakers．

																TUBE				
$\begin{aligned} & \text { 曹 } \\ & \text { en } \end{aligned}$	䓓			髴	䚪官			愧雒	$\begin{aligned} & \text { 餢 } \\ & 0 \end{aligned}$				∞		\dot{i}			$\begin{aligned} & \dot{\varepsilon} \dot{4} \\ & \dot{\alpha} \\ & \dot{e} \\ & \hline \end{aligned}$		㱕
112	All Wave			Console	$110 \mathrm{~V}, 60 \mathrm{C}$	4721／2	36700	150	15	YES	YES	540－18000	58	$58 \quad 58$	58（2）	－－2B7－－	56	56（2）	2A3（2）	$5 \mathrm{Z3}$
145	Standard and	Short	Wave．	Compact	$110 \mathrm{~V}, 60 \mathrm{C}$	264	42100	60	3.3	NO	NO	$\left\{\begin{array}{c}540-1600 \\ 16-4.8 \\ 53-16\end{array}\right\}$		－2A7－	58	－2A6－	2A5	．．	．	80
206	Standard and	Short	Wave．	Compact	110V， 60 C	4721／2	41900	80	3.3	NO	NO	$\left\{\begin{array}{c}540-1600 \\ 1.6-5.0 \\ 5.7-15.5\end{array}\right\}$		－2A7－	58	－2A6－	2A5	．	．	80
318	All Wave			Console	$110 \mathrm{~V}, 60 \mathrm{C}$	4721／2	41600	120	6.6	YES	YES	540－22500	58	－2A7－	58（2）	－55－	2A5（2）		．	80
325	Standard and	Short	Wave	．Console	$110 \mathrm{~V}, 60 \mathrm{C}$	264	41800	60	3.3	NO	NO	$\left\{\begin{array}{c}540-1600 \\ 16-4.8 \\ 53-16 \\ 540\end{array}\right\}$		－2A7－	58	－2A6－	2 A 5	\cdots	．	80
376	Standard and	Short	Wave．	Console	$110 \mathrm{~V}, 60 \mathrm{C}$	4721／2	43700	80	3.3	NO	NO	$\left\{\begin{array}{c}540-1600 \\ 16.5-0 \\ 5.7-15.5\end{array}\right\}$		－2A7－	58	－2A6－	2 A 5	．	．	80
447	All Wave			Compact	$110 \mathrm{~V}, 60 \mathrm{C}$	4721／2	41700	90	3.3	YES	YES	540－22500	58	－2A7－－	58（2）	$-2 \mathrm{~A} 6-$	2A5		．．	80
511＊	Standard and	Short	Wave．	Console	$110 \mathrm{~V}, 60 \mathrm{C}$	4721／2	36700	150	15	YES	NO	$\left\{\begin{array}{l}540-1600 \\ 5.15 .5\end{array}\right.$	58	－2A7－	58（2）	－2B7－	56	56（2）	2A3（2）	$5 \mathrm{Z3}$
559 944	All Wave Broadcast			Console Compact	$\begin{aligned} & 110 \mathrm{~V}, 60 \mathrm{C} \\ & 110 \mathrm{~V}, 60 \mathrm{C} \end{aligned}$	$\begin{aligned} & 4721 / 2 \\ & 450 \end{aligned}$	$\begin{aligned} & 36500 \\ & 34100 \end{aligned}$	$\begin{array}{r} 120 \\ 45 \end{array}$	$\begin{aligned} & 6.6 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	$540-18000$ $540-1720$	58	$\stackrel{58 \quad 58}{-57-}$	58（2）	$\frac{-55-}{57}$	${ }_{2 \mathrm{~A} 5}^{2 \mathrm{~A} 5(2)}$		\because	80 80
944 4650	Broadcast	Short	Wave．	Compact	$12 \mathrm{~V}, 60 \mathrm{C}$ 2 l	264	42900	＊＊	2.0	NO	NO	$\left\{\begin{array}{c}540-1600 \\ 16-48 \\ 53-16\end{array}\right.$		－1C6－	34	$32 \ldots 30$	19	\cdots	．	
655，	Standard and	Short	Wave	Console	2 V	264	43200	＊＊	1	NO	NO	$\left\{\begin{array}{c}540-1600 \\ 16-4.8 \\ 53-16\end{array}\right.$		－1C6－	34	32.30	19	\cdots	．	
768 Q 978 Q	All Wave All Wave			Compact Console	$\underset{2 \mathrm{~V}}{2 \mathrm{~V}}$	$\begin{aligned} & 4721 / 2 \\ & 472^{1 / 2} \end{aligned}$	43100 43200	+ $+\dagger$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	NO	NO	$540-22500$ $540-22500$		$\begin{aligned} & -1 \mathrm{C} 6- \\ & -1 \mathrm{C} 6 \end{aligned}$	$\begin{aligned} & 34(2) \\ & 34(2) \end{aligned}$	$\begin{array}{ll} -30- & 32 \\ -30- & 32 \end{array}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30(2) \\ & 30(2) \end{aligned}$	\cdots	
978 Q 206D	All Wave Standard and	Short	Wave	Compact	$110 \mathrm{~V}, \mathrm{DC}$	4721／2	43500	45	1	NO	NO	$\left\{\begin{array}{c} 540-2<500 \\ 540.1600 \\ 1.6-5.0 \\ 5.7-15 \end{array}\right.$		－6A7－	78	－85－	43（2）		．	
376D	Standard and	Short	Wave	Console	$110 \mathrm{~V}, \mathrm{DC}$	4721／2	43600	45	2	NO	NO	$\left\{\begin{array}{l} 540-1600 \\ 1.6-50 \\ 5.7-15.5 \end{array}\right.$		－6A7－	78	－85－	43（2）		－	
1352	Standard and	Short	Wave	Compact	32 V	264	42700	40	2	NO	NO	$\left\{\begin{array}{l}540-1600 \\ 16-48 \\ 53-16 \\ 540\end{array}\right.$		－${ }^{\text {A }}$ 7－	78	－75－	43		．	$6 \mathrm{Z4}$
2152	Standard and	Short	Wave	Console	32V	264	42800	40	2	NO	NO	$\left\{\begin{array}{c} 540-1600 \\ 16-48 \\ 53-16 \end{array}\right.$		－6A7－	78	－75－	43	－	．	624
825	AC－DC			Compact	$110 \mathrm{~V}, \mathrm{AC}-\mathrm{D}$	C 264	26159	50	1.0	NO	NO	540－1720 \dagger		－6A7－	39	－75－	43			2525

Switch in Broadoast position

PAGE 5-48 A-K

ATWATER-KEN'T MFG. CO.

PAGE 5-50 A-K
MODEL 944
Socket, Trimers
ATWA'TER-KEN'T MFG. CO.
Parts Layout

AUDIOLA RADIO CO.
 Six Tube Auto Radio

This receiver is a six tube superheterodyne using the most modern circuit design and tubes. Tubes used are: one 6D6 R.F. Amplifier; one 6A7 combination lst detector and oscillator; one 6D6 I.F. Amplifier; a 75 diode detector with delayed A.V.C. and one stage audio; one 41 power output tube; and one 84 rectifier tube.
In the installation of this receiver there are a few important fundamental principles to adhere to:
(1) Avoid having any battery wires in close relation to the high voltage spark coil or plug wires.
(2) The antenna must be routed over the most quiet location. Interference will of ten go through the antenna shielding if touching brake, accelerator, or steering column rods. The lead in must be shielded up to the antenna and the shield bonded to the set chassis. In many installations the antenna shield must also be bonded to the chassis of the car where the shield turns up to the top.
(3) If the chassis has to be removed from housing, be certain to tighten the three screws on the bottom when replacing the chassis.
(4) After installation is completed, adjust antenna trimmer on some distant station around 1400 to 1500 K.C. turn in either direction for loudest signal. The antenna trimmer is directly under the serial number on the top of the set. The front cover screws must always be tight.
(5) The gang condenser control (tuning) must run very freely and have not less than $1 / 32$ of an inch end play. 346

PAGE 5-2 AUDIOLA
MODEL 347
Schamatic, Socket
Alignment

AUDIOLA RADIO CO.

Seven Tube Auto Fadio

This receiver is a seven tube superheterodyne using the most modern circuit design and tubes. Tubes used are: one $6 \mathrm{D} 6 \mathrm{~F} . \mathrm{F}$. Amplifier; one 6 A 7 combination lst detector and oscilator; one 6D6 I.F. Amplifier; an 85 diode detector with delayed A.V.C. and one stage audio; two 41 power output tubes and one 84 rectifier tube.

In the installation of this receiver there are a few important fundamental principles to adhere to:
(1) Avoid having any battery wires in close relation to the high voltage spark coil or plug wires.
(2) The antenna must be routed over the most quiet location. Interference will often go through the antenna shielding if touching brake, accelerator, or steering column rods. The lead in must be shielded up to the antenna and the shield bonded to the set chassis. In many installations the antenna shield must alsc be bonded to the chassis of the car where the shield turns up to the top.
(3) If the chassis has to be removed from housing, be certain to tighten the three screws on the bottom when replacing the chassis.
(4) After installation is completed, adjust antenna trimmer on some distant station around 1400 to $1500 \mathrm{~K} . \mathrm{C}$. turn in either direction for loudest signal. The antenna trimmer is directly under the serial number on the top of the set. The front cover screws must always be tight.
(5) The gang condenser control (tuning) must run very freely and have not less than 1/32 of an inch end play.

347

Audiold is first to develop an auto radio that inminate, meter miome without the we of spark plug suppressors.

This is an important engineering advancement in the auto radio art. W'e are plrased to have made this contribution to the radio industry.

It is important that you understand this now piomering development.
We have successfully installed the AudiolA auto ratio without spark plug suppressors, and eliminated all motor noise and other noise, from every car that we hive tried. This has covered almost every make and model of automobile.

For Elimination of Interference data, see liodel 346.

PAGE 5-6 AUDIOLA

PAGE 5-8 AUDIOLA
MODEL 34-S5-LW
Sohematio
AUDIOLA RADIO CO.

AUTOCRAT RADIO CORP.
MODEL 5
Schematic
MODEL 5-SA
Schematic

Model 5

MODEI 4-SA
Schemat 1c
MODEL 6 (Revised)
MODEL 6-D-32
Schematic

AUTOCRAT RADIO CORP.

Model 4-SA

IF PEAK 175 KC .

AUTOCRAT RADIO CORP.

BALKEIT RADIO CO.

PAGE 5-2 BALKEIT

BALKEIT PAGE 5-3

BALKEI'T RADIO CO.

PART NO.	DESCRIPTION		LIST	PRICF
701	FILTER CONDENSER		2.40	EACH
702	. 1 BY-PASS CONDENSER		. 14	n
703	.05 "		. 14	"
704	. 02 -		. 14	"
705	. 25		. 18	"
706	. 5		. 35	"
707	. 00025 n		. 20	${ }^{\prime \prime}$
708	1-WATT RESISTOR		. 20	"
709	MISCELLANEOUS RESISTORS (SPFCIFY	VALUES)(SEE	DIAGRAM. 20	"
717	350 OHM POWER RESISTOR		. 30	"
718	VOLIJME CONTROL		1.25	"
719	SHORT WAVE AND BROADCAST SWITCH		. 75	n
720	OSCILLATOR COIL 456 KC		. 90	"
723	CORD AND PLUG		. 50	"
733	POWER TRANSFORMER		4.25	"
738	3-GANG CONDENSER		4.50	"
739	IST I F TRANSFORMER		2.10	"
740	2ND । F TRANSFORMER		2.10	"
741	PRE SELECTOR COIL		1.25	"
745	PILOT LAMP		. 25	"
749	TRIMMER		. 20	"
751	KNOB (LARGE)		.20	"
751-A	KNOBS		. 15	"
754	PILOT LIGHT SOCKET		. 15	"
758	SPEAKER		6.00	"
758-A	SPIDER AND VOICE COIL		. 40	"
758-B	6" DIAPHRAM		. 30	1
762	S.W. OSCILLATOR COIL		. 60	"
763	ANTENNA S.W. OSCILLATOR COIL		. 60	"
767	DIAL DRIVE DISC		. 60	"
768	CELLULOID ORIVE DISC		. 50	"
769	DIAL FACE		. 60	"
777	DIAL POINTER		. 12	"
779	CONVEX DIAL CRYSTAL		. 30	"

MODEL 71-C
Schematic, Socket Alignment

BELMONT RADIO CORP.
IF PEAK 175 KC.

MODEL 430	BELMONT RADIO CORP.	MOD登 420
Sohematic, socket	Schematio, Socket	

MODEL 420,430
Alignment

BELMONT RADIO CORP.

SERVICE MANUAL FOUR TUBE T.R.F. RECEIVERS

> 105-215 Volts Alternating (any oyoles) or Direct Current - 40 Watts
> $530-1720 \mathrm{Kilocyoles}$

Both of the above models are four tube T.R.F., two gang reavivers, the prinoiple difforence being that model 420 is equipped with a permanent magnet apeaker and the model 430 with an eleotro dynamic speaker.

The tube oomplement of model 420 is as follows
1 - Type 6D6 - ramote out-off pentode na an R.F. amplifier.
1 - Type 76 - triode as a deteotor.
1 - Type 38 - pentode as an output tube.
1 - Type 1223 - high vaounn reotifier.
The tube oomplement of model 430 is as follows
1- Type 6D6 - remote out-off pentode as an R.F. amplifier.
1 - Type 76 - triode as a deteotor.
1 - Type 12A5 - pentode output tube.
1 - Type 1223 - high vacuun reotifier.

SERVICE NOTES

Should it ever beome neoessary to oheok a ligment or re-align these receivers, the oorreot prooedure is as followss

Before any adjustments are made, the ohassis must be removed from the oabinet. To do this it is neoessary to pull off the volune and seleotor knobs, remove the baok of the oabinet and the four sorems which fasten the ohassis to the base of the oabinet.

FRBQUENCY ALIGNMENT:

1. Disoonneot antenna wire from lug on antenna coil to whioh it is attaohed and conneot in its place, in series with a 50 mafd. condenser, a test oscillator. With this osoillator sot at 1400 kilooyoles and the R.F. (front trimmer) opened as far as possible, trin the antenna (rear) trimer to resonance with osoillator (maximum defleotion on an output meter conneoted aoross the two leads of the PM speaker on the model 420 and across the primary of the speaker input transformer on the model 430).
2. Cheok tracking at 1200-1000-800-600-530 ldlooycles, bending plates only if absolutely neoessary.
3. Re-set osoillator to 1712 klocyoles, tuning osoillator by rotating variable condenser for a oheok to ascertain if receiver tunes to 1712 .

NOTES:

If trouble is experienoed in getting receiver tuned down to 1712, look for the followings

That the green grid and black ground wires conneoted to the antenna coil are well separated from each other and that both the green leads to the grid oap and the antenna are clear of the tube shiold (thia reduces to a minimum the external oapaoity of the antenna coil).

BELMONT RADIO CORP.

BELMONT RADIO CORP.

105-115 Volts Alternating (any cycles) or Direct Current - 40 Natts. 530-1500 Kilooycles - 1500-L000 Kilocycles

SERVICE NOTES

Should it be at any time necessary to rebalance this set, the correct procedure is as follows

BROADCAST BAND ALIGNMENT:
Remove ohassis from cabinet by pulling off volume, seleotor and wave changing switoh knobs, removing back and four screws which hold ohassis in cabinet, replace knobs and disconnect, antenna wire from coil.

1. Set wave changing switch in broadcast position by rotating in clockwise (right) direction.
2. With gang condenser in its minimum capacity position, plates entirely out of mesh, extreme left of its rotation, and with volume control full on, make the following adjustments:
(a) Connect an oscillator set at 1500 kilocyoles in series with a 50 mmfd . condenso to the antenna termina) of the coil (from which antenna lead has been removed) and to ground (chassis), adjust both antenna and R.F. trimmers of the variable condenser to resonanoe (maximuis deflection on an output meter connected across the primary of the speaker input transformer).
(b) Reset osciljator to 14,00 kilocycles, adjust variable condenser to pick up oscillator and re-align antenna trimmer (rear seotion of variable condenser) to resonance.
(o) Check output at 1200-1000-800-600 kilocycles. Bend plates only at 1200 and 1000 kilocycles to increase output, and then only if necessary. No bending is necessary at 600 or 800 kilocycles.

SHORT WAVE BAND ALIGNMENT:

1. Set wave changing switch in counter-olockwise (left) position.
2. With oscillator adjusted to 3700 kilocycles, adjust the condenser mounted on top of the antenna coil and consisting of a center piece of heavy enameled copper wire about which is wrapped a spiral of a smaller enameled oopper wire, with your fingers sliding the spiral to and fro until maximum output is attained, as indicated by maximum defleotion on the output meter.
3. Next reset osoillator to 1550 kilocjcles and adjust slip coil at the bottom of antenna coil assembly until maximum output is obtained (this coil is wound on a paper tube which has been slipped over the dowel on which the other coils are wound). Seal this slip coil with wax after making adjustment.
4. Now reset oscillator to 3700 kilocycles and readjust the condenser previously adjusted, as explained in 1. On completing this readjustment, seal the adjustment by dropping some wax in the hole of the terminal strip at the top of the antenna coil assembly where the spiral enameled wire passes through the strip. Do not put wax on the spiral wire, as this will change the capacity of this small condenser.

NOTES

When making these adjustments with the small condenser at the top of the coil and with the slip ooil at the bottom of the antenna assembly, keep the recoiver tuned to the generator at all times by gently rooking the variable condenser to and fro.

In order to replace pilot lights, it is neoessary to remore the chassis. These lamps are connected in series, if. one of them burns out the other one will not light. They are 6-8 volt, . 15 ampere lamps.

BELMONT RADIO CORP.

Should it be at any time necessary to rebalanoe this set, the oorreot procedure is as foll ows s

1. Volume control on full during all alignment.
2. Variable condenser in minimum oepaoity position, plates open, at start of all aligning.

I.F. ALIGNMENT

1. To peak I.F. transformers, oonneot osoillator set at 456 kllocyoles to the grid of the 6 D 6 tube direotly in back of the variable oondenser and adjust the trimming oondensers of the I. F. transformers to resonanoe (Maximum defleotion on an output meter oonneoted aoross the primary of the speaker input transformer).

Each I F. trimer has two adjustments, one nut and one sorew, both of whioh are adjustable from the top.

BROADCAST BAND ALIGNMENT

1. Disoonneot antenna wire and conneot osoillator in series with a 75 mifd. oondenser to the antenna coil. With the variable oondenser set at its minimu oapaoity position, at the extreme right of its rotation, and with an oscillator output adjusted to 1720 klooyolas, adjust trinmer of osoillator esation of variable condenser (rear seorion) to resonanoe (maximum defleotion on an output meter connested aoross the primary of the speaker input transformer). Next adjust the triumer oondenser of the front seotion of the variable condenser to resonanoe.
2. Cheok alignent at 1400-1200-1000-800-600-530 kilooyoles, bending the slotted plates of the front seotion of the variable condenser only if absolutely necessary.

Service Notes

Voltages taken from different points of circuit to chassis are measured with volume control full on, using a voltmeter having a resistance of 1000 ohms per volt. These voltages are indicated on the schematic circuit diagram.

Part No. 145-2

Common Black to Brown	$-.003 \times 600$ Volts	
Common Black to Green	-.1	$\times 200$ Volts
Common Black to Red	-.1	$\times 200$ Volts
Common Black to Orange	$-.25 \times 200$ Volts	
Blue to Blue	$-.05 \times 400$ Volts	

Aligning I. F. Transformer

1. With volume control full on, at extreme right of its rotation, and with variable condenser at its maximum capacity posi tion (extreme right of its rotation) make the following adjustments:
(a) Connect an external oscillator adjusted to 175 kilocycles, in series with a 1 mfd . condenser, to the control grid cap of the type 57 tube located between the R. F. coil (part numbers 109-10) and the I. F. transformer (part number 108-11) and chassis.
(b) Adjust trimming condensers of I. F. transformer (part number 108-11) to resonance. See top view of chassis. Use as a resonance indicator an output meter connected across the primary of the speaker input transformer or between the plate and screen terminals of the type 2A5 tube, by means of an adapter. Maximum deflection of the meter indicates resonance. Care must be taken to use only enough signal to give a readily readable output, as excessive input will result in overload and a false resonance point.
NOTE: The two trimmer condensers which tune the primary and secondary of the I. F. transformer are adjusted by set screws accessible from the back of the chassis.

Aligning R. F. and Oscillator Circuits

1. Connect the external oscillator set at 1720 kilocycles and in series with a 200 Mfd . condenser, between the antenna (tan) and ground (black) leads.
(a) With volume control full on and variable condenser plates in minimum capacity position, plates entirely out of mesh (extreme left of its rotation), adjust trimmer of rear oscillator section of variable condenser to resonance.
(b) Shift external oscillator frequency from 1720 to 1400 kilocycles, pick up signal by rotating variable condenser and peak R. F. (center) and antenna (front) section trimmers of variable condenser to resonance
(c) Check tracking at $1500,1200,1000,800,600$ and 530 kilocycles by changing external oscillator frequency and rotating variable condenser to pick up signal. Adjust slotted end plates of R.F. (center) and antenna (front) sections to increase output, if necessary. DO NOT BEND OSCILLATOR PLATES.

BELMONT RADIO CORP.
 SERVICE NOTES

Voltages taken from different points of the circuit are measured with a voltmeter having a resistanoe of 1000 ohms per volt and are made between the points indicated and the ohassis pan. These voltages are indicated on the oirouit diagram.

To oheok for open by-pass condensers, shunt each condenser with another condenser of the same oapacity and voltage rating, whioh is known to be good, until the defertive unit is loceted.

Excessive hum, stuttering, low volume and a reduction in all D.C. voltages is usualiy caused by a shorted electrolytic oondenser, open by-pass condensers frequently sause oscillation and distorted tone.

ALI GNNENT:

No aligning adjustments should be made until the set has been thoroughly ohecked for all other possible oauses of trouble, suoh as poor installations, low line voltages, defeotive tubes, condensers and rosis. tors.

ALIGNING I.F. TRANSFORMERS:

1. With volume control full on, at extreme right of its rotation, and with wave changing switoh in the long wave position, extreme left of its rotation, and with variable condenser at its minimum capacity position, extreme left of its rotation, plates entirely out of mesh, adjust the I.F. transformers, parts number 108-15 and 108-16, in the following manners
(a) Conneot an external oscillator which has been adjusted to 370 kilocycigs, in series with a .l mfd. condenser to the control grid cap of the type 57 first detector tube (see diagram and ohassis).
(b) Adjust trimming condensers of both I.F. transformers (parts number 108-15 and 108-16) to resonanca! Use as a resonance indioator an output meter connected across the primary of the speaker input transformer or by means of an adapter betweer plate and screen terminals of type 2 A 5 E output tube Maximum defleotion of the meter indicates resonance. Care should be taken to use only enough signal to give a readily readable output.
Notes The two adjustments on each transformer are aocessible through holes in the transformer cans from the back of the ohassis.

LONG VAVE BAND ALIGNMENTs

1. Shift frequenoy of external osoiliator to 1000 meters and connect in series with a 200 mmf . condenser to the tan antenna wire and the blaok ground wire, set wave ohanging switeh to extreme left of its rotation and variable condenser at its minimum capacity position, extrame left of its rotation, plates entirely out of mesh.
(a) Adjust long wave shunt trimmers of antenns. soil, part number 111-i4 and oscillator ooil, part number 110-11 to resonance (these adjustments are located nearest to the chassis and each of these coils are adjustable from side of the ohassis).
(b) Shift frequenoy of external oscillator to 2000 meters, rotate variable condenser to pick up sigal
(c) Adjust series trimer to resonance. This adfustment is aooessible from top of the chassis detween the variable condenser and the power transformer and is marked " A " on top view of chassis. BROADCAST BAND ALIGNMENT:
2. Set wave ohanging switoh in the broadaat, oenter, position and re-set external osoillator to 196 meters ($1530 \mathrm{kilocyoles)} ,\mathrm{set} \mathrm{variable} \mathrm{condenser} \mathrm{at} \mathrm{its} \mathrm{minimum} \mathrm{capaoity} \mathrm{position}$,
(a) Adjust osoillator shunt trimmer, upper adjustment part number lloll, to resonanoe.
(b) Re-set external osoillator to 214 meters (1400 kilooyoles), rotate variable condenser to piok up signal, adjust shunt trimmer of antenna 0011 , upper adjustment part number lll-1/4, to resonanoe.
(o) Re-set external oseillator to 542 meters (550 kilooycles), rotate variable oondenser to pick up signal and adjust osoillator series trimmer (between condenser and transformer, marked "B" an diagram) to resonanoe.

SHORT NAVE BAND ALIGNMENT:

1. Set wave changing sifitch in the short wave position, extreme right of its rotation, and ohange external osoillator frequency to 20 meters (15 megacyoles), oanneot osoillator in series with a 300 ohn resistor to tan antenna wire and black ground wire.
(a) Adjust variable condenser with seleotor kob so that pointer is opposite the 20 meter oalibration on the dial. Adjust center trimers of oscillator ooil, part numberllo-11 and antenna ooil part number lll-14, to resonanoe. These adjustments are aocossible from side of the chassis.

NOTES:

Should the planetary vernier dial drive meohanism fail to funotion properly, it will probably be found to be due to a craoked or broken compression spring." This drive may be dis-assembled by removing the two sorews which fasten it to the dial bracket. The part number of the compression spring is 112-3l, All of the other dial parts are hardened and should oause no trouble.

MODEI 650
Socket, Alignment
BELMONT RADIO CORP.

Before attempting any adjustment, the ohassis must be removed from the oabinet. This is accomplished by pulling off the volume and selector knobs, removing the back and the four sorews whioh fasten the chassis to the cabinet.

I.F. ALIGNIENT:

1. With volume control on full, at the extreme right of its rotation, and with variable condenser at its marimum capacity position (extreme left of its rotation) make the following adjustments:
(a) Conneat an oscillator set at 175 kilocyoles in series with a .1 mfd . condenser to the control grid (aap at top of type GA7 oscillator first deteotor tube).
(b) Adjust trimming condensers of both input and output I.F. transformers, parts number 108-3 and 108-4, (see top view of chassis) to resonance. Use as a resonance indioator an out put meter conneoted across the primary of the speaker input transformer. Maximum defleotion on the meter indiaates resonance.

Note: Each I.F. transformer trimmer has two adjustments, one nut and one sorew, both of whioh are adjustable from the top.

FREQUENCY ALIGNMENT:

1. Disconnect antonna wire from lug on antenna coil to wich it is attached and conneot to this lug, in series with a 50 mmfd. condenser, an oscillator whioh has been set at 1720 kilocycles.
2. Adjust trinmer condenser of the osoillator seotion of variable oondenser (the shaft end section) to resonance with oscillator (maximum defleotion on an output meter).
3. Change input oscillator to 1400 kilocycles and piok up signal by rotating variable condenser, then adjust trinmers of antenna and R.F. detector sections of variable condenser (oenter and rear respeotively) to resonance with osolllator.
4. Check tracking at $1200-1000-800-600-530$ kilocyoles by setting oscillator at these frequencies and picking it up by rotating variable condenser. Bend alotted plates of condenser only if necessary.

NOTES:

The pilot lights are oonneoted in series. Should one burn out, the other will not light. To replace them it is necessary to remove ohassis from cabinet. The lamps used are 6-8 volts, . 15 amperes.

Voltares from chassis to different points are indioated on the sohematic oircuit diagram and should be measured with a volt meter having a resistance of 1000 ohms per volt.

If receiver fails to function at the low frequencies, the trouble is apt to be a defeotive GA7 tube. remedy of course, is to replace the 6A7. They sometimes fail to osoillate on the lower frequencies.

BELMON'T PAGE 5-13
MODEL 670 Schematic Socket, Trimmers

BELMONT RADIO CORP.

ELIMNATION OF YOTOR NOISE: (Cont'd)

In some fow ones, such as Buioks, it is neoossary to use morem type suppressors. Cut load about two inohes from distributor and sorem one end of suppressor into the wire attaohed to distributor, sorew . Wre from soil into other ond of suppressor.

Generator oapoitor, number 148-1, is conneoted to generator alde of outout. The ground side of onpaitor oan befastened to the gonerator housing under the aame arew that holde the relay housing to generator. In sore oases, an adiftional ompaitor, number lis-1, (obtainable fram your deelor) must be inatalled between the bettery alde of ignition ooll and the oar framo.

If after oonneoting euppressors and oondensers a outlined above there is still motor noise, wake the following teste:

Shield high tension leads.
Bond floxible ahaft leads, ach as free wheoling, whioh run olose to diatributor, radiating ignition interforenoe which is pioked up by the antenna inside of as.

Cars using wooden floor boards, place a grounded oopper soreen under toe board.
Exoessive gap betweon distributor rotor and high tension contacta, replaoe with a apooial radio rotor arm or build up ond with older and drees ond with file so that its original hape is retained. The rotor ehould not brush or Wipe the oontacts, but should just olear them.

In some oases, suoh as V-8 Ford, it is neoessary to pull bettery and primary leade out of speoial tube whioh houbes high tension leads, ahield and ground these leads. Also on V-O Forda it is neoessary to install a orpapitor at primary terminal of coil housing.

Additional suppressors oan bo obtained from your dealer.
The ignition system of oar mast be kept in good condition.
Fouled plugs or pluga with improperly adjusted gaps Will affect the operation of reoelver as well as of the automobile. Burned or poorly adjusted braker points. will miso impair the performanoe. It is adviaable to advance the generator eharging rate in order to compensate for the additional drain of the reoelver on oer storege battery.

It is sometimes necessary to oonneot a condenser (1L8-3) between the hot side of the dome light anitoh and ground.

BALANCING SET TO ANTENHA:

Whon this sot has beon inatalled and is roedy for operation, it may be found neoessary (deponding on antonna) to balince eot to thi antonna. Thia la acoomplished as follows
With the reoelver tuned to a rery weak station, about 130 to 140 (1300 to 1400 kllogyolea) on the dial, adjust the antenna trimer with a sorew driver until maximum volume is attained. To rea oh the antenna trimer romove the plug button from the top of the oase.

SEPTICE NOTES

Should it ever be neoessary or desirable to re-align this reoelver, the proper method ia as follows Adjustments oan be made whth the reoeiver mounted in the oabinot, being neceasary only to remove the top cover.
I.F.ALIGNMENT:

1. With variable condenser at ita maximan oapaity position and with volume control full on, oonneot in serfes with a .1 mfd . oondenser, an osolliator set at 175 lilooyoles to the grid cap of the $6 C 6$ tube.
2. Ad just trimaing condensers of both input and output I.F. transformers, parts number 108-5 and $108-6$ (see top viow of ohasis) to rescmance with oscillator; as indicated on an output meter oonneotod aoross the primary terminala of the apeaker input transformer. Marimm dofleotion on the metor indioates resamance

Notes Buoh I.F. transformer trinmer has two adjustments, one nut and one acom, both of whioh are adjust able through the top of the oan.

FREQUENGY ALIGNMENT:

1. Attach oscillator conneoted in series with a 200 maid. condenaer to the antenna lead and wh the vir lable condenser at its minimum capaity poaition (axtreme right of its rotation) and with an osoillator lable condenser at its 1550 kilocyoles , adjust oondenser trimer of osoillator seotion (ahaft ond) to resonance.
2. Ret at 1550 kilocyoles, adjust oondenser trimer of osoillator seotion (ahart ond) to resonance.
3. Re-set oscillator to 1400 l
4. Cheok a ligment at $1200-1000-300-600-530 \mathrm{k} 1$ locyoles by aetting oadilator to theae frequenolea and pioking up signal by rotating condonaer.
5. Bend slotted plates of antenna and R.F. seotions only if neoessary. UNDER NO CIRGUSSTANCES BEND PLATES OF OSCILLATOR SECTION.
NOTES:
Voltagea from ohasis to different points are indioated on sohematio oirouit diagram, and should be metared with a volt netor having a resistance of 1000 ohss per volt.

Fallure to operato, nolay or woak recoption, may be due to defeotive tubea or poor oontaot betweon cap on top of tube and grid olip.

Tubes may be oheoked by replaoing with another tube whioh is known to be good.
If fuse blows out frequently, and insulating aleave has been properly placed over fuse, the trouble probably is in the vibrator and vibrator should be replaced.

NEVER ATTEMPT TO ADJUST VIBRATOR POINTS.

BELMONT PAGE 5-15

Alignment

BELMONT RADIO CORP.

SERVICE NOTES

Voltages taken from difforent points of the oirouit are measured with a voltmeter having a resistance of 1000 ohms per volt and are made between the points indioatedand the chassis pan. These voltages are indicated on the oirouit diagram.

To oheck for open by-pass condensers, shunt each oondenser with another condenser of the same oapacity and voltage rating, which is known to be good, until the defeotive unit is looated.

Excessive hum, stuttering, low volume and a reduotion in all D.C. voltages is usually caused by a shorted eleotrolytic condenser, open by-pass condensers frequently cause oscillation and distorted tone.

ALI GNMANT :

No aligning adjustments should be made until the set has been thoroughly cheoked for all other possible causes of trouble, such as poor installations, low line voltages, defeotive tubes, condensers and resistors.

ALIGNING I.F. TRANSFORMERS:

1. With volume control full on, at the extreme right of its rotation, and with wave seleotor switoh in the broadcast position, extreme left of $1 t s$ rotation, and with variable condenser at its minimum capacity position, extreme left of its rotation, plates entirely out of mesh, adjust the I.F. transfomi.ers (parts number 108-15 and 108-16) in the following manner:
(a) Connect an external osoillator whioh has been adjusted to 370 kilocycles, in series with a . 1 mf . condenser to the control grid cap of the type 57 first detector tube (see diagram and chassis)
(b) Adjust trimaing condensers of both I.F. transformers (Parts number 108-15 and 108-16) to resonance. Use as a resonance indicator an output meter conneoted aoross the primary of the spoaker input transformer or by means of an adapter between plate and soreen terminals of type 2A5 output tube. Naximum defleotion of the meter indicates resonance. Care should be taken to use only enough signal to give a readily readable output.
Notes The two adjustments on each transformer are accessible through holes in the transformer cans from the back of the shasais.

BROADCAST BAND ALI GNMENT:

1. Shift frequency of external oscillator to 535 kilocycles and connect in series with a 200 mmfd. condenser to the tan antenna wire and the black ground wire.
(a) Set the variable condenser in its maximum capaoity position, extreme right of its rotation.
(b) Adjust the broadcast oscillator series trimmer to resonance with oscillator. This trimmer is located between the gang oondenser and the power transformer (see top view).
2. Shift frequency of external oscillator to 1712 kilocycles and set variable condenser in its minimum capacity position, extreme left of its rotation, plates entirely out of mesh.
(a) Adjust the broadcast oscillator shunt trimmer to resonance. This adjustment is the top adjust. ment in the oscillator coll can, part number 110-8.

SHORT RAVE BAND ALIGNMENT:

1. Set the wave changing switch in the short wave position, extreme rjght of its rotation, and change exterral oscillator frequency to 15 megacycles.
(a) Adjust variatle conderser with selector knob so that pointer is opposite the 15 megacycle colibration on the dial.
(b) Adjust the short wave oscillator shunt trimmer to resonance with the signal (use extreme care and rake certain that you do not adjust to resonance with the image instead of the signal). This trimmer is the bottom trimeer (closest to the chassis) on the oscillator coil, part number 110-G, and is accessible from the sire of tre chassis.
(c) Adjust the shof, wave antenna trimier to resonance (single trimrer in antenna can, part number 111-11, accessible from the side of the chassis, between type 27 and 57 tubes).

NOTES:

Should the flanetary vernier dial drive mechanism fail to function properly, it will probably be found to be due to a cracked or broken compression spring. This drive may be dis-assembled by removing the two screws which fasten it to the dial bracket. The part number of the compression spring is 112-31. All of the other dial parts are hardened and should cause no trouble.

BELMONT RADIO CORP.

SERVICE NOTES

Should it ever become necessary or desirable to realign this receiver, procedure is as follows
Before making any adjustments, the ohassis should be removed fran the cabinet. This is aosomplished by removing the four bolts whioh anchor it to the base of the oabinet and removing the knobs from the front of the cabinet, ohassis aan then be slipped out.

To properly align this receiver, espeoially the short wave band, it is essential that the oscillator used have good atability and inolude an attenuator in addition to covering the frequenoies required. An output meter must be used to indicate resomance. It may be oonnected across the primary of the speaker input transformer.

I.F. ALIGNMENT:

1. Fith volume concrol full on, at extreme right of its rotation, and with variable oondenser at its maximum capacity position (plates entirely in mesh) and with band seleotor switoh in brcadoast positiom, left (counter-olookwise), make the following adjustments:
(a) Connect an oscillator set at 370 kilooycles in series with a .1 mf . ocndenser to the control grid of the first detector (cap at top of 2A7 tube), and conneot the ground side of the test osoillator to the ground lead of the set (black wire).
(b) Adjust trimming condensers of all three I.F. transformers, part number 108-12 input I.F., $108-12$ second I.F. and 108-1 \mathcal{H}_{4} output I.F. to resonance.
2. Adjustments are provided on each transformer and are a00esable from the back of the ohasis (see top view of chassia).

BRCADCAST BAND FREQUENCY ALIGNMENT:

1. With volume control full on and the gang oondenser set to its minimuo capacitys
(a) Re-set test oscillator to 1712 kilocyolas.
(b) Adjust broadcast oscillator shunt trimer to resonanoe. This trinamer is the one nearest the top of the oscillator coil and oan assembly, part number llo-b.
(c) Re-set test oscillator to 1400 kilooyoles and shift the test osollator lead from grid cap of the oscillator tube to the grid cap of the R.F. tube (type 58).
(d) Tume the gang oondenser to resonance with the test signal (1400 k .0.)
(e) Adjust the R.F. tuned oircuit to resonance by bending adjustable condenser plate of the R. F. (rear) section of the gang oondenser.
(f) Shift test oscillator lead to the antenna lead (tan wire) and substitute a 200 mmf. oondenser for the .1 mfd . condenser which is in series with the test lead.
(g) Adjust the antenna tuned circuit to resonance by bending the adjustable oondenser plate of the antenna (front) section of the gang condenser.
(h) Turn the gang condenser to maximum capacity.
(i) Adjust the broadasst series trimmer (located to the left of the gang oondenser and acoessible through the top of the chassis) to resonance with the test osoillator, with the test oscillator set at 535 klocycles.
(j) Cheok alignment at 1400,2000 and 800 kilooyc les , bending plates of the R.F. (rear) and antenna (front) sections of the variable oondenser if necessary. DO NOT BEND PLATES OF OSCILLATOR (CENTER) SECTION UNDER ANY CIRCUMSTANCES.

SHORT WAVE BAND FREQUENCY ALIGNMENT:

1. Turn the band selootor switch to the short wave position, right (olookwise) position.
(a) Adjust input oscillator to 15 megaoyolea and attach to grid of first deteotor (oap at top of 2a7 tube).
(b) Adjust short wave oscillator shunt trimuer to the oscillator signal. Be careful that you don't adjust it to the image. This adjustment is the one olosest to the ohssis on the side of the oscillator ooil and oan assembly, part number $110-6$.
(c) Move the signal generator slip to the grid of the first R.F. tube (type 58).
(d) Adjust short wave F. F. trimer to resonanoe. Adjusting screw is looated on side of R.F. ooil and an assembly, part number 109-8.
(e) Conneot oscillator in serles fith a 200 mafd. condenser to the tan antenna lead and black ground lead and adjust short wave antenna trimmer to resonance (adjustment on side of antenna coil and can assembly, part nimber 111-9).
(f) Cheok senaitivity at 6 magscycles.

NOTES:

Should the planetary vernier diul drive mechanism fail to funotion properly, it will probably be found to be due to a cracked or broken oompression spring. This drive may be dis-assembled by removing the two screws which fasten it to the dial bracket. The pirt number of the compression spring is $112-j 1$. All of tie other dial parts are hardened and should oase no trouble.

BELMONT RADIO CORP.

SERVICE MANUAL SEVEN TUBE SUPERHETERODYNE WITH A.V.C. AND SHORT WAVE
105-115 Volts Alternating Current, 50-60 Cyoles, 80 Wetts. 530-1720 Kilocyoles - 1700-4500 Kilocycles. SERVICE NOTES

Should it be at any time necessary to rebalance this set, the correct proceedure is as follows:

1. Volume and tone controls on full during all alignment.
2. Squelch switoh in "no squeloh" position (counter-olockwise (left) rotation) during all slignment.
3. Adjust variable equeloh control on rear flange of chassis to maximum counter-olockwise (left) position.
4. Set variable condenser in minimum oapacity position (plates open) at the start of all aligning.

I. F. ALIGNMENT

The intermediate frequency of model 750 is $175 \mathrm{kilocyc} l e s$, and is aligned as follows:

1. Connect oscillator (set at 175 kilocycles) to I.F. grid (second 58 tube) and adjust both trimmers of second I.F. transformer (underneath chassis) to resonance (maximum defleotion on an output meter connooted across the primary of the speaker input transformer).
2. Connect oscillator output to converter grid (2A7 tube) and adjust both trimmers of first I.F. transformer to resonance. Under no conditions touch the trimmers of the second I.F. transformer after adjusting them (see No. 1).

The four trimers of the two I. F. transformers are all adjusted from the bottom of the chassis (one nut and one screw adjustment on each I.F. transformer trimmer).

BROADCAST BAND ALIGNMENT

Wave changing switoh in olockwise (right) position.

1. Connect an osoillator in series with a 200 mofd. condenser to the Tan (antenna) lead and Black (ground) lead. With the oscillator set at 1720 kilocycles and the variable condenser at its minimm position (extreme right of its rotation), adjust trimmer of oscillator (rear) section to resonance.
2. Change oscillator to 1400 kilocycles, rotate variable to this frequency and adjust R.F. and antenna trimmera (center and front trimers respectively) to resonance. Do not touch the oscillator trimmer.
3. Check tracking at the following points only: 1200-1000-800-600-534 kilocycles. NOTE: This receiver will be slightly out of track at 534 kilocycles - do not bend plates in an attempt to track it at this frequency. Rotor plates of condensers should not be bent, except if absolutely necessary, and then only on the center and front sections.

SHORT WAVE BAND ALIGNMENT

Wave changing switch in counter-clockwise (left) position.
2. The frequency range of this short wave band is approximately 1700 to 4500 kilocycles.
2. Peak short wave antenna coil to resonance with oscillator set at 1720 kilocycles by slipping primary.
3. Check for sensitivity at the following frequencies only: 1720 and 3700 kilocycles - under no conditions touch trimers or plates of variable condenser while checking short wave band.

NOTES:

For failure to operate over both bands, check 247 tube and connections to and contacts of wave changing switch.

Condenser shaft to which pointer is attached is rotated by means of a celluloid dial attached to the condenser shaft and a bronze friction drive assembly, to which is attached the selector knob. Should this drive ever slip or become rough, it can be adjusted for smooth operation by sliding the bronze washer drive assembly either closer to the variable shaft or farther away from it in the slot in which it is mounted, to insure smooth operation.

BELMONT RADIO CORP.

SERVICE MANTAL TEN TUBE SUPERHETERODYNE WITH A.V.C., SQUELCH AND SHORT VIAVE
105-115 Volts Alternating Current, 50-60 Cycles, 105 Watts, 530-1720 Kilocycles - 1700-4500 Kilocyoles: SERVICE NOTES

Should it be at any time necessary to rebalance this set, the correct prooedure is as follows:

1. Volume and tone controls on full during all alignment.
2. Squelch switch in "no squelch" position (counter-clockwise (left) rotation) during all alignment.
3. Adjust variable squalch control on rear flange of chassis to maximum counter-clockwise (left) position.
4. Set variable condenser in minimum capacity position (plates open) at the start cf all aligning.
I. F. ALIGNMENT

The intermediate frequency of model 1050 is 175 kilocycles, and is aligned as follows:

1. Connect oscillator (set at $175 \mathrm{kilocyc} l e s$) to I.F. grid (second 58 tube) and adjust both trimers of seoond I.F. transformer (underneath chassis) to resonance (maximum deflection on an output metor connected across the primary of the speaker input transformer).
2. Connect oscillator output to converter grid (2A7 tube) and adjust both trimmers of first I. F. transformer to resonance. Under no conditions touch the trinmers of the second I.F. transformer after adjusting them (see No. 1).

The four trimmers of the two I.F. transformers are all adjusted from the bottom of the ohassis (one nut and one screw adjustment on each I.F. transformer trimmer).

EROADCAST BAND ALIGNMENT

Wiave changing switch in clockwise (right) position.

1. Connect an oscillator in series with a 200 mifd. condenser to the Tan (antenna) lead and Black (ground) lead. With the osd llator set at 1720 kilocycles and the variable condenser at its minimum position (extreme right of its rotation), adjust trimer of oscillator (rear) section to resonance.
2. Change oscillator to 1400 kilocycles, rotate variable to this frequency and adjust R.F. and antenna trimmers (center and front trimmers respectively) to resonance. Do not touch the oscillator trimer.
3. Check tracking at the following points only: 1200-1000-800-600-534 kilocycles. NOTE: This receiver will be slightly out of track at 534 kilocycles - do not bend plates in an attempt to track it at this frequency. Rotor plates of condensers should not be bent, except if absolutely necessary, and then only on the center and front sections.
SHORT NAVE BAND ALIGNENT
Wave changing switch in counter-clockwibe (left) position.
4. The frequency range of this short wave band is approximetely 1700 to 4500 kilocyc es.
5. Peak short wave antenna coil to resonance with oscillator set at 1720 kllocycles by slipping primary.
6. Check for sensitivity at the following frequencies only: 1720 and 3700 kilocycles - under no conditions touch trimers or plates of variable condenser while checking short wave band.
Tun-a-lite.
VISUAL TUNING CHECK
The visual tuning indicator (tun-a-lite tube) is mounted horizontally on the front of the variable condenser
assembly and its operation in this respect can be checked as follows:
7. Normally there will be a small continuous glow in the base of the tube when no signal is being received.
8. With strong oscillator input at 1000 ktlocycles , the tun-a-lite should glow to approximately the end of the bulb, varying slightly with different tun-a-lites. If the glow "travel" is ahort, or none at all, remove the tun-a-lite tube and oheck its socket connections and contacts. If the tube still fails to indicate satisfactorily, replace the tube.
SQIELCH CBECK
The tun-a-lite tube is also used for noise suppression between stations. Its operation can be checked as follows:
9. Squelch switch adjusted to squelch (clockwise (right) position).
10. Disconnect oscillator, connect antenna, tune set to a position where no signal is received. Noise level at this position should be quite high.
11. Rotate set screw of squelch control on rear flange of chassis, and at some point the noise should cease and the set sound "dead", indicating that the tun-a-lite is squelching and eliminating between station noise.

HTES: For failure to operate over both bands, check $2 A 7$ tube and connections to and contacts of wave changing switoh.
Condenser shaft to which poirter is attached is rotated by means of a celluloid dial attached to the condenser shaft and a bronze friction drive assembly, to which is attached the selector knob. Should this drive ever slip or beotme rough, it can be adjusted for smooth operation by sliding the bronze washer drive assembly either closer to the variable shaft or farther away from it in the slot in which it is mounted, to insure smooth operation.

BUICK MOTOR

PAGE 5-2 BUICK

BUICK MOTOR

BUICK MOTOR

PEAKING ADJUSTABLE CONDENSERS

The complete Condenser Aligning Kit is now available under part
No. nessary for the proper allging of the condensers on the U.M.S.. 8-0-P. and Chevrolet Radio Recelvers. All of the adjustable condensers, commonly called trimmer condensers, are very accurately adjusted at the factory and will former is changed or the adjustments are tampered with in the
field.

DO NOT attempt, to change the setting of any of the trimmer concensers unless $1 t$ is definltely known thatiadustment is necessary, and an accurate test oscillator and a screw driver screw driver for this purpose will not give accurate adjustment Proceed as follows:
A. Disconnect the antenna lead-in from the chassis.
B. Ground the antenna terminal on the chassis to the frame of the chassis.

Set "test oscillator" to 262 kllocycles. Some oscillators
are not equipped with a frequency of $262 \mathrm{K.C}$. but do have a
frequency of $130 \mathrm{K.C}$. In this case, the second harmonic of
$130 \mathrm{K.C.} ,\mathrm{namely} 260 \mathrm{K.C.} ,\mathrm{may} \mathrm{be} \mathrm{used}$.
D. Connecu the output leads of the test osclllator to the grid Leave grid cap in place.

Connect an output meter across the plates of the type 89
thbes. If the output meter is not protected, place a. 1 mfd condenser in series with the meter.

[^0]G. Arljust I. F. Trimmers in the following order, in each case
leaving ine urimmer set for maximum output as shown by the
output meter.. (See note
C-4, Plate circuit of lst Det.
$C-5$, Grid circuit or i. F. Amp
$C-6$, Diode Input circuit.
See Flg 2, and 3 for location of condensers

PAGE 5－4 BUICK

MODEL 980393
 Test Data

LOCATING TROUBLES ISOLATED BY VOLTAGE TESTS
The voltmeter tests of the chassis merely serve to isolate the
defect in some particular stage cf the circuit．The actual defect in some particular stage cf the circuit．The actual point check of the resistance values of the defective stage． NOTE：Al？tubes should be removed from the chassis before max－
рвət पәəдฎ do es na

$$
\begin{aligned}
& \text { C-12 } \\
& \text { Defective wiring }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Zero Defective wiring } \\
& \text { " } \\
& 500 \text { R-1-C }
\end{aligned}
$$

区ヘロー
ジが

$$
\overline{O_{I}} \quad \overline{\operatorname{HoxI}} \overline{7 s \partial \bar{I}}
$$

気采我号

description of
incorrect voltage
No filament
voltage at
any socket

$$
\begin{array}{lrrl}
89 \# 5 & \text { (B) } & 500 & \mathrm{R}-1-\mathrm{C} \\
89 \# 5 & \text { (B) } & 500 & \mathrm{R}-1-\mathrm{C} \\
& & \\
85 \# 2 & 9,500 & \mathrm{~L}-3 ; \mathrm{T}-5 \\
& & \\
\text { GId. } & 1,800 & \mathrm{R}-1-\mathrm{B} ; \mathrm{R}-1-\mathrm{D} \\
85 \# 6 & 500,000 & \mathrm{R}-11 ; \mathrm{T}-4 ; \mathrm{C}-9 \\
85 \# 1 & 1,000,000 & \mathrm{R}-7 ; \mathrm{R}-8 ; \mathrm{R}-1-\mathrm{B} ; \\
& & \mathrm{R}-11 ; \mathrm{C}-2 ; \mathrm{C}-9 \\
85 \# 5 & 1,800 & \mathrm{R}-1-\mathrm{B} ; \mathrm{R}-1-\mathrm{D} ; \\
& & \mathrm{C}-7-\mathrm{E}
\end{array}
$$

$7 B$ O8B7T0A $07 B T \mathrm{C} O N$ voltage at any socket

\qquad

BUICK MO'TOR

MODEL 980393 Test Data

SPECIAL TESTS

These tests cover all parts of the circuit which are not shown up as defective by the voltage tests Correct Probable location of resistance trouble if incorrect in ohms reading is obtained

1. Ground (frame) 25
2. 236 RF \#6 26
3. 236 osc. \#6 27

32
6 T-l " " Sec
T-1 Antenna co1l Pri
4. 236 0sc. \#6 Gnd
$2.5 \mathrm{~T}-2 \mathrm{RF}$ coil Sec.
5. 239 Osc. \#6 28
6. Ground 29
7. " 35
8. 85 Det. \#6 36
9. $28 \quad 37$
10. 85 Det. \#1 26
11. 85 Det. \#l 37
12. 37 Grd
13. $33 \quad 36$
14. 85 Det. \#7 Grd.
15. 89 AF \#7 (a) Grd.
$\begin{array}{ll}\text { 16. 89 AF \#7 (b) Gnd. } \\ 17.36 & 38\end{array}$

$$
c-3
$$

Defective voice coil or Input Trans. Sec.
NOTE-Disconnect the voice coil lead at one of its terminals on the lower side of the input transformer and test from the end of the disconnected lead to the terminal from which it came

MODEI $600,601,605,610$
Schersatic, Voltage Socket

READING TAKEN WITH WESTON MODEL 565 ANALYZER
MODEL No CUSTOMER BY

No.	Stago	Typo Tubo	"A" Volts	"B" Volts	Cont. Grid Volt	Cath. Volts	S. G. Volts	Ip Norm.
1	R. F.	51	2.15	235	2.4	2.5	80.	5.0
2	Autodyne	24	2.15	225	5.0	6.0	75.	3.0
3	I. F.	51	2.15	230	2.4	2.5	75.	4.0
4	2nd Det.	24	2.15	104	10	15.	65.	0.6
5	Audio	47	2.25	250	16	0	260	30.
6	Rect.	80	4.4					

Line Voltage 115. Order of Test: 1 Rect., 2 Pöwer, 3 Det., Etc. Volume Control Position, Full On.
Note: Since resistance tolerances in the sets are plus or minus 10% and tubes may vary over 20%, your readings may disagree with the above by plus or minus 30%.

BULOVA WATCH COMPANY

READJUSTING TRIMMERS

Number 1 is the antenna trimmer.
Number 2 is the gang condenser trimmer tuning the grid of the Super-autodyne.

Number 3 is the gang condenser trimmer tuning the plate (or oscillator of the superautodyne).

Number 4 is the oscillator padding t rimmer.

Number 5 is the Super-autodyne plate trimmer.

Number 6 is the I. F grid trimmer.
Number 7 is the second detector grid trimmer.

To readjust the trimmer, it will be necessary that a good design of $175 \mathrm{k} . \mathrm{c}$. oscillator be employed, and that a dependable broadcast test oscillator be on hand so that stages handling intermediate frequency, and those handling radio frequency can be thoroughly checked. It is advisable to use a bakelite screwdriver when making any of these adjustments.

First, connect the 175 k. c. oscillator output leads from the control grid cap of the superautodyne tube to ground. Do not remove any of the tubes from the sockets, and it is not necessary to disconnect the grid cap clip from the tube. Reset trimmers numbers 5, 6 and 7 for maximum output. While this test oscillator is working into the intermediate fre-
quency stages, no adjustment of the tuning condenser on the receiver will have any effect, inasmuch as the intermediate frequency stage is fixed tuned.

If your test oscillator is properly designed, it will supply exactly $175 \mathrm{k} . \mathrm{c}$., and when trimmers number 5,6 and 7 are set for maximum output, they will be correctly adjusted and should be sealed.

Next, disconnect the 175 k. c. test oscillator and connect to the antenna binding post of the receiver, the output lead from your broadcast test oscillator, or tune in a broadcast signal around 1400 k . c., then reset trimmers numbers 2 and 1 respectively for maximum output. This adjustment will track the super-autodyne grid circuit of the R. F. stage.

To check the calibration of the receiver. whether it be high or low, trimmer number 3 should be reset until a station of known nigh frequency is brought in on the correct dial marking with peak volume. If your broadcast test oscillator is accurately calibrated, it might be used in place of the broadcasting station signal. In this adjustment, a broadcast station or test oscillator signal at about 1400 k . c. should be chosen. The setting of the trimmer at 1400 k . c. is more critical than it would be at 600 k . c.; calibration, therefore more accurate.

The next adjustment is important and not easily explained in writing, so pay close attention to the following instruction. We will now balance the oscillator to the r. f. and first detector stages.
Tune the external broadcast test oscillator and the receiver both to 600 k.c., then slowly increase or decrease the capacity of No. 4 (oscillator padding trimmer), at the same time and continuously tuning back and forth across the signal with the receiver tuning condenser gang. The output meter needle will now be swinging up and down in step with the variation in tuning. Watch the peak of this swinging closely and readjust No. 4 trimmer until the swinging needle reaches its highest peak

Retune the receiver and broadcast test oscillator to 1400 k.c. and re-check trimmer No. 3 to make sure that the adjustment of No. 4 has not thrown the receiver out of calibration. If it has, then readjust No. 3 until the calibration is correct, (as previously explained), and check on trimmers No. 2 and No. 1, to make sure that the adjustment of No. 4 has not reduced the sensitivity.
MODES O6H
CADILLAC
Notes on Hounting

 mately parallel with the dash.

 er promedure is contained in the article on attach
ng the flexible drive shafts. The four monnting screws pass through the four slots in the mounting plate (Fig. 3). After they are
in place and tight, the dash mounting plate with M place and tight, the dash mounting plate with,
hassis attached is slipped over the three mounting
huits. The two upper brackets on the plate slip Mounting the Control Unit

The control unit is mounted to the instrument for these holes is at a point where the tuning con1933 models there are two holes on the flange at the substantially a straight line (see Figs. 1 and 2). which line up with the two holes on the mounting attach the flexible shaft., as explained in the next

CADILLAC MOTOR CAR COMPANY Description

The new 06 W Secies Auto Radio Receivers are is for the tuning nechanism. A roof antenna is used. - B"e eliminator unit and control winit. The control for the installation of ench part and information for ppeaker. " β " climinator mait and chassis are fompletince nnd mintaining the installation. The followint towls ary required: portable electric drill,
mounted on the dash charrent to operate the chassis
nom " 3 " eliminator is ohtained f fon the antomobilt
 this manual be completely read.
 shown in Fir. 4 . A washer, lorkwasher, and nut are on hold them in place hetween nuts " A " and " B "
 of the dash, such as wires, tubing. etc. the chassis
rill dave to set out far enough to clear it. However. in practically all models of Cadillac and Lasalle
ho finance . wather zero. third mounting bolt

 Next secure the dash mounting plate to the chassis
 ff the lase is at the bettom

Mounting the Chassis

\qquad powition or monnt it in plare temporarily, so that
the position of the thexible shalts cun he determined. fift side as shown in l'iz. 1. It should be mounted rive shaft to the control unit will be in substarially a straight line as shown in Figs. 1 and 2 . The
hascis is mounted with the aurthor bushmes in which the tlexible clafts sob facing the control umit, and
with the cover at the hattom. It is serered to the dash Whems of the clash mounting plate, si4' F'ig. 4. In nowr the cut-rut max to a higher berations in orther First clrill the three monuting holes repmired for We duah moutine plate. The logation and size of nge these holes is supplied with the set. Threc $4^{\prime \prime}$ पuare hed mountmu bolts ars suppliped Take twa

PAGE 5-2 CADILLAC

MODEL OGIT
Notes on Mounting

CADILLAC
which holds the bushing in place. Then fingort the

 large plate held on the chassis box by 5 screws. Ex-
tend the volume control flexible shaft and casing several inches through the hole in the anchor bush
ing of the tube cover plate so that the plate will be on the casing and out of the way. Turn the volume
control coupling counter-clockwise until the switcl. is anapped to the off position. Lock the receiver ol
the control unit and turn the volume control knok counter-clockwise until it is in the locked position. Then locsen both set screws in the votume control
coupling and insert the fiexible shaft in the coup-
ling (see Fig. 6). Tighten the outer set screw first ling (see Fig. 6). Tighten the outer set screw first
on one of the four Aat foces of the flexible ahaft and
then tighten the inner set screw. Then again temthen tighten the inner set screw. Then agsain tem-
porarily hang the chsseis on the mounting bolte.
Next, check the operation of the switoh, volume Next, check the operation of the switch, volume
control and lock. The switch should be off when the
volume oontrol kneb is in the locked position. It
 do a elight amount
eetting in obtained.
Next, alide the tube cover plate into position and Next, side the tube cover plate into position and
fastan it in plece by means of the five screws. Then tighten down the ciamping nut on the volume con-
trol shaft casing but do not tighten this nut excessively.
To attrach the tuning condenser fiexible shaft, first check the centering of the anchor bashing by explained sbove. Then extend the tuning the tuning condenser drive pinion. With the rotor
 stop. The set screw may then be tightoned and the
clamping nut secured on the casing as was explained

but sear in order to get an accurate calibration.
Antenna Antenna
As the Cadillac and LaSalle cars come equipped If any installations are made in cars which do
from the factory with built-in antennas, the an- \quad not have a roof antenna, one wrll have to be put in.
The roof antenna is by far the moet satisfactory type tenna portion of the installation is very simple. The The roof antenna is by far the most astisfactory type
lesd-in wire from the antenna will he found behind and hould be ued in all cases except in aport
nodels, in which case a plate antenna under the car lesd-in wire from the antenna will
the right cowl pad at the top edge.

Fig. 6-Detalle of Fiosible Drive Shaf: Connections tsken out to cut), it is neceasary only to secure them
at the chasais end. Before attaching the shafts, eee if the set is in working order.
socitet in place on the chassis and operate the set
with the cover off. with the cover off.
In Fig. 6 is shown a cross-sectional view of the
she In Fig. 6 is shown anections at the chassis end.
first check the centering of the volume controt anchor bushing by eye. The center of the bushing
should be in a line with the center of the volume

 shown in Figs. 1 and 2 . The $12^{\prime \prime}$ a shaft is the volume control ohaft. This ahaft bends upward from the cut with a hack saw.
control unit, as shown in Fig. 2.

 Pig. 5-Yethod of Mounting spacker Attaching the Flexible Drive Shafts

After the chassis is temporarily mounted and the supplied with the receiver are too long. For that After the chassis is temporarily mounted and the supplied with the receiver are too long. For that
position of the control unit is known, the flexible
shafts may be attached. Remove the chassia from these shafta (inside portion) are squared for
a length of $3^{\prime \prime}$ at one end. The shaft may then be the mounting bolta to make the connection. Cadilac eut at any point along the squared portion to what
Pig. -Dotain of Chaenie kounting on Dain
after which the lockwashera and nuts are then
put on.
Ignition and Generator Noise, before this can be
done. In Fig. 5 (B) is shown how the brackets may be
mounted vertically if space does not permit their
heing mounted horizontally ss is the case in some Afrifter the position of the speaker is decided on, After the position of the speaker is decided on,
drill the four fis' holes required for the bracket
 in a rectangle. The centers of the holes, the small
dimension are $21 / 2^{\prime \prime}$ apart and the hong dimension $10 "$ apart. Four $1 / /^{\prime \prime} \times 3^{\prime \prime}$ mounting bolts, nuts and
lock washers and two reenforcement plates are provided. The mounting bolts are put through the bracket and the dash with the shanks extending into
the engine compsitment. The reenforcement plates
are then put on, one heing used for each bracket.

\author{

}

Battery Cable and Six Lead Cable

As shown in Figs. 1 and 2, the battery cable is brought down the dash, through a hole in the dash and thence over to the battery. It passes through the raised portion of the battery compartment cover.

The lug on the lead marked "positive" is connected to the positive side of the battery and the lug on the negatively marked lead is connected to the negative side of the battery. Ground the pigtail of the shield by screwing the No. 6 Parker Kalon screw through the end of the pigtail and through the hole in the lug which is grounded.

The six-lead cable between the chassis and the speaker-" B " eliminator is usually brought over along the dash as shown in Fig. 1.

Pilot Lamp

Before the coutrol unit is permanently mounted, complete the pilot lamp connections. The pilot lamp cable is attached to the eight-prong socket. At the end of this cable is the pilot lamp socket and clip, the latter being attached to an angle bracket. This bracket is to be screwed to the pilot lamp plate which will be found in the bag of parts. A $1 / 4^{\prime \prime} 6-32$ binding head screw, nut and lockwasher are provided for this purpose. The bracket is put on the pilot lamp plate in such a way that the leads will come out at the back of the control unit. The pilot lamp plate is then screwed to the bottom of the control unit by means of the lug on each side of the plate.

Trying Out the Set and Adjusting

Fig. 7-Location of Tubes

After the wiring has all been completed and before the chassis is permanently installed, try out the set and adjust the antenna trimmer condenser.

To adjust the antenna trimmer, tune in a weak signal between 1200 and 1400 KC with the volume control about three-quarters on. On one end of the chassis box is a small metal plate. Remove the two screws which hold this plate in place. Directly under the hole in the chassis box is the antenna trimmer condenser screw. Turn this adjusting screw up or down until maximum output is obtained.

The location of the tubes is shown in Fig. 7.

MODEL O6W
 Parts List
 CADILLAC

 Replacement Parts for Series 06W Receivers

 Replacement Parts for Series 06W Receivers}
CHASSIS PARTS

Part No.	Description
P-1763	No. 85 Tube Socket
P-1761	No. 77 Tube Socket. .
P-1762	No. 78 Tube Socket
P-1665	No. 41 Tube Socket
P-1760	8-Prong Male Plug
P-50581	Tuned Impedance Transformer
P. 20546	Pinion Compression Spring.
P-20544	Pinion Mtg. Bracket
P. 20586	Cond. Drive Pinion
P-20585-A	Cond. Drive Gear. .
P-1568-A	Tube Shield Assembly
P-10263	3/8 Long Tube Bumper (Rubber)
P-10210	5/8 Long Tube Bumper (Rubber)
P-30417	Volume Control Coupling Unit.
P-5094	2nd I. F. Coil and Can Assembly Complete.....
P. 5063	1st I. F. and Oscillator Coil and Can Assembly Complete
P-5069	Complete R. F. Coil and Can Assembly
P-5064	Antenna R. F. Transformer only
P-5065	Interstage R. F. Transformer only
P-20516	6.32 Wing Nuts for Chassis Cover-Black...
P. 20737	6.32 Wing Nuts for Chassis Cover-Red.....

Resistors

(In Chassis)

Part No.	Code No.	Resistance	Type
P-B90962	R1	260 ohm	Carbon
P-A90948	R2	1 Megohm	Carbon
P-A90948	R3	1 Megohm	Carbon
P-A90941	R4	50,000 ohm	Carbon
P-91061	R5	500,000 ohm	Volume Control
			and Switch
P-B91047	R7	30,000 ohm	Carbon
P-B90964	R8	800 ohm	Carbon
P-A90947	R9	4,000 ohm	Carbon
P-B91020	R10	15,000 ohm	Carbon
P-B90950	R11	20,000 ohm	Carbon

	(In Speaker-"B" Eliminator)		
P-98001	R12	6,000 ohm	Vit. Enamel
P-91013	R13	150,000 ohm	Tone Control

Condensers

(In Chassis)

Part No.	Code No.	Capacity	Voltage	Type
P-80946	C1	.05	mfd. 200 V.	Tubular
P-80821	C3	.001	mfd. 600 V.	Molded
P-80965	C6	4.0	mfd. 150 V.	Electrolytic

SPEAKER
 "B" ELIMINATOR PARTS

Part No.	Description
P-50582	Power Transformer Assembly
P. 50583	"B" Choke Assembly-Iron Core
P-5089	"B" Choke-Air Core (2 Used)
P-5090	Dual "A" Choke-Air Core.
P. 1765	Dual Vibrator Elkonode.
P-1766	Five-Prong Socket
P-1767	On-Off Relay
P-1768	Automatic Load Relay
P-70737	"A" Cable and Lugs.
P-70748	Six-Lead Cable, Antenna Cable, Pilot Lamp Cable and Eight-Prong Socket Assembly, Complete
P-1624	10 Amp. Fuse-Size No. 3AG Fuse Block...
P-1771	6-Incl Speaker-S Type Set.
P-1772	8-Inch Speaker-R Type Set.
P-1790	5-Lug Terminal Strip....

CONTROL UNIT PARTS

Part No. Description	
P-20534	Dial Gear
P-20537	Dial Retaining Washer
P-30387-A	Worm Drive Gear
P-30378	Anchor Bushing
P-30384	Anchor Bushing Clamping Nut.
P-30385	Anchor Bushing Hex. Nuts.
P-1848	Lock Assembly
P-30435	Keys
P-20724-A	Lever
P-20725	Ribbon Tension Spring
P-1562	Knobs-S Type Set.
P-1855	Knobs-R Type Set.
P-1610	Flexible Shaft 93/4 Inch
P. 1611	Flexible Shaft 123/4 Inch
P-1849	Dial Strip
P-30437	Volume Control Drive Shaft
P-30390	Drive Shaft
P-1563-A	6-8 Volt Pilot Lamp
P-1871	Pilot Lamp Socket and Clamp.

CADILLAC (072), (072-A)

Power Paok Data

Power Units

Turn on the lock switch.
Read the " A " voltage between terminals 6 and 7 .
Read the " B " voltage between terminals 3 and 6 . Read the " 13 " voltage between terminals 3 and 6 .
using a high resistance voltmeter. CAUTION-In all of the above procedure great
care should be taken not to ground the $A+$ or $\mathrm{B}+$ to the car frame, chassis, cable, or any nther ground.
 the set due to a defert in the units themselves, or to the associated apparatus
CAUTION-In the installation manual it was
stated that the voltages should not be read by restated that the voltages should not be read by re-
moving the cable head and reading them at the multi-
post socket The reason for this is that when the post socket. The reason for this is that when the
lock switch is turned off with the cable head removed
the inductive surge caused by the speaker field may burn out the pilot lamp.

The above readings are made under losd condi-
ions and indicate that proper power is being sip--

 and seven in the above diagram. This unit could TESTING AND REPAIRING CHASSIS If all accessories are found, upon test, to be in
working order, it will be necessary for the service
echnician to eheck the chassis over.

 testing in the car, due to the fact that the power
units, speaker, control unit and cables are installed

ase in testing the receiver. Of course, if a duplicate
set of parts are available, then all of the testing can
be done on the bench.
Reading Voltages at Sockets
 leads from a voltmeter. By providing a link in the plate line, screen line, or other lines, as desired, the oy opening the link and connecting a miliammeter made for the control grid line.
 time might be spent in tracing through the wiring.
For that reason, we are including in this supplement the complete wiring diagram. After the chassis has been removed from the box
and before making the continuity tests, make a a care. ful inspection of all exposed wiring and moidered
connections for opens, grounds, shorts and faulty connections. Then proceed to make continuity testa
through the various cirouits, using as a guide tha
iring diagram, H_{8}. Make the continuity teets in an orderly manner,
starting with the R. F. and work ing through the \boldsymbol{I},

 external closed circuit around the one under test.
Most service men at the present time use direct read. nos ormmeteres as continuity meters and in this way
check for continuity while at the same time deter. check for continuity while at the same time deter-
mining the reaistance of the circuit. To see whether
there is an external closed circuit. reference should
共
When making continuity teats which are across the
electrolytyic comndenserss, the positive text prod must
me on the poantive lead.

 Alignment of Tuning Condensers

Broad tuning is most frequently caused by mis-
alignment of the intermediate frequency tuning con

radically incorrect reading at any point will give a
clue as to where the trouble may liie. In the installa-
 Chart showing all of the voltages and plate currenens.
 involves removal of the other units and cabies,
will be quickest in most cases to make the readings In most cases, it will be necessary to remore the
 to setif foctorily hheck he volteges at the sockets.
The proedres is follows The prooedure is as follaws

Take of the cable head by removing the five Take the chassis off of the mounting and lay it on
 sufficenent slack was left in the wint cables at
time of installation.

In some instanees, it will be neeceasry to discon.部
 It is advisable to take the chasiis out of the box,
although this is not absolutely necesesry. if the

 scribed beloy, will be necesaary .
 to insure euntact on all prongs.
Then turn on the lock switch.

CAITION-II the e chassis is taken ont of the box. Le sure to keep it on thasy wood or other theulated location in the front compartment of the euto, Great
cerre should he taken to prevent \&n $A+$ or $B+$ point
 such ay the car frame, levera, caste
 Lower ranges will be necessery tor the grid hag
 ins. ${ }^{\text {wo of of the sockets are partially covered under the }}$ chasesis by the bypepses condenaer block. If the volt.

A handy method of reading the voltakes on an

 at the top to binding poats or or orer terminals, which
can be rearhhed with the tips of the teet prods on the

MODEL 2721 (072)	
Parts List	
MODEL 2721,2722	
Trimmer Data	

 Trimmar Condensers
meter. In either methord of conneetion, opening the
voice coil of the speaker will give a hetter deflection
on the output puter. First set the signal generatur for a signal of exFirst set the signal generatur for a signal
artly $262 \mathrm{~K} . \mathrm{C}$. The rotor of the tuning condenser the oscillator. Remove the grid cap from the grist
connection of the ' 36 first detector tulue. Connect connection of the "36 first detector tulue. Comme the
the antenna lead fromn the signal generatur to yrid of the ":36 first detectior. Connect the ground

Attemate the signal from the signal generator so at to prevent the leverlling-ot iction of the A. V. C.

 Ifter all threw have hard andusted the first times. If when aligument has been completed, the out-

Aligning R. F. and OsciHator Condensers-Be.

 5
0
0
0
0 wesh. Then turn the station selector knot, until the
dial scale is at 144 K K (. The tuning condenser will
then be correctly set for the 1400 K . C. signal. Set the sipmal generator for a signal of exactly
ton K.C. The signal input from the vignal gener-

Latk of volume at certain points of the dial is
anlerilly caused by mistracking between the R. F.
ancillator condensers. This occurs generally at the high frequency end and may be corrected hy an-
 misaligmment. If this securs at the high fremuency cond. the endition may be orrerted by the adjust-
ment of the R. F. trimmer condensers. If the set is Wat at both ends of the dial. mistra.king hetween
the K. F^{2}. and oscillator condensers is wenr rally the
 Low volume all over the band is generally due to CALTION-We do not recommend that realignment he attempted unless other possible causes of lens the service technician has the proper equipment.
Realignment by anyone other than a qualified radio -rrice terhnician is not advisable, as one not exlifficuity and throw the set completely out of alignA local and accurately calibrated signal genera-
tur as well as an ontput indicating meter are abso-

 As in the case of reating the voltages at the sock-

 box, wood buard, or other insulated location. The
chassis muss be removed from the bex.

The cormplete procedure for realimment and re-
racking is as follows:
Aligning Intermediate Condensers-First

One of the best ways of reading the output is by ueans of a rectifier type meter. This meter, if of

No. 072A Series Receivers (41 Output)

The form 375.J Installation Mannal and foregoing service supplement cover the 072 Series (38 output) receivers. The copy in general is applicable to the 072 A Series (41 output) as the sets differ only in the audio amplifier.

In Fig. 4 is shown the schematic circuit diagram of the 072 A set. The sehematic circuit diagram of the 0.72 set is shown in Fig. 1 of the Form 375J Installation Manual. By looking at the two circuits the similarity as well as the points of difference can be noted.

On this page is given an explanation of the parts which are different in the 41 output set, a supplement to the chassis parts list covering the new parts used, and a complete voltage chart for the receiver.

Differences in 072A Chassis

In comparing the No. 072 Series (38 output) receivers with the No. (172-A Series (41 output) the following parts changes in the chassis have been made:
R-2 changed from 7,000 ohms to 6,000 ohms.
R12 changed from 50,000 ohms to 25,010 ohms.
$\mathrm{R}-13$ changed from 900 ohms to 800 ohms.
R-14, as shown in the old schematic circuit diagram (Fig 1 in the installation manual) is not used in the new receiver.

C-9 is changed from a .02 mfd . condenser to a .25 mfd . condenser.

The No. 38 sockets are changed to No. 41 sockets.
A new audio transformer is used.
No. "B" fuse is used with the No. 072-A series receiver.

Voltage Chart for 072A Receivers

Type of Tube	Function	Across Heater	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Cathode } \end{gathered}$	Screen to Cathode	$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Cathode } \end{gathered}$	$\begin{gathered} \text { Normal } \\ \text { Plate } \\ \boldsymbol{M A} \end{gathered}$
'39	R. F.	6.	177	80	3	3.6
'36	1st Det.	6.	173	76	6	. 7
'39	I. F.	6.	177	80	3	3.6
'37	2nd Det.	6.	0		0	0
'39	1st Audio	6.	88	88	4	3.0
'41	Output	6.	159	162	15	9

Note.-Read bias voltages from cathode to ground.

Supplementary Parts List for 072A Receivers

New Parts Used in the 072A (41 Output) Series Receivers

Parts Shown in 072 List Not Used in 072A Series Receivers

PAGE 5-10 CADILLAC

PAGE 5-2 CAPEHART
KODELS 400-B, 402-B 404-B Tuner

CAPEHART CORPORATION
Schematic

PAGE 5-4 CAPEHART

CAPEHART CORPORATION

GENERAL NOTES ON ALIGNMENT

In the service notes or ALIGNMENT PROCEDURE, directions are to couple the test oscillator to the receiver. Since test oscillators of different makes vary considerably in their design and construation, it is not possible to give specific instructions for coupling any particular test oscillator to the receiver. However, the following general method can be applied with practically any test oscillator.

Most test oscillators have two output leads. One of them is the "hot" lead and the other the ground lead. The ground lead should be connected directly to the receiver chassis, except in the case of $A C-D C$ receivers. The connection then should be made through a . 1 mfd condenser since the chassis of such receivers is above ground potential. If the test oscillator has only one lead, this information about the ground lead may be disregarded.

As mentioned in all of the service notes, for IF alignment tine test oscillator should be connected through a . . mfd. condenser directly to the control grid cap of the IF or Transiator tubes. It is important to leave the grid clip attached to the cap and to leave the tube shields in place. The oscillator tube of the receiver also should be in its socket.

For RF alignment, whether broadcist or short wave, the "hot" lead of the test oscillator should be coupled to the antenna lead of the receiver. The exact means of coupling will depend upon several factors. Among them are the power of tie test oscillator, the sensitivity of the receiver, and the extent to which the receiver is out of align-
ment. If the test oscillator is quite powerful and the receiver one of high sensitivity, merely placing the test oscillator lead parallel to, and several inches away from the receiver's antenna lead may provide sufficient coupling. In some casea it may be necessary to bring the leads very close to each othen, or it may even be necessary to twist the antenna lead and the oscillator lead together for several inches. (Of course, the two leads must be separated by their insulation and not make metallic contact.) As the receiver is brought into alignment, thereby increasing its sensitivity, it will be possible to decrease the amount of coupling between the test oscillator lead and the antenna lead. (Move the leads further apart.) Always uso the lowest amount of coupling that still will provide a signal strong enough for working purposes. If the test oscillator has a variable control for its power output, it is better to turn this control to its high position and decrease the signal input to the receiver by decreasing the amount of coupling between the test oscillator and the receiver's antenna lead. This procodure will insure the greatest possible oc uracy in alignment.

> When adjusting the oscillator trimmer condenser, set the variable condenser to the frequency or condenser position indicated in the Service Notes. Do not change this position while adjusting the trimmer. However, when adjusting the antenna or transiator trimmers, the proper method is to continually "rock" the variable condenser a degree or two both sides of the alignment frequency and, at the same time, adjust tie trimmer.

PREVENTING ADJUSTMENT AT THE IMんGE FREQUEICY

When adjusting trimmers for short wave alignment, it sometimes will be found that a peak can be obtained at two different positions of the trimmer. Onl y one of these peaks is the correct one to use. The other is the image response. The proper procedure follows.

Oscillator Trimer:

Screw the oscillator trimmer all the way in (maximum capacity). Then reduce the capacity until a peak is reeched. Now continue to reduce the capacity until a second peak is reached. Almost always, this second peak is con-
siderably louuer than the first one. The first peak is the image frequency adjustment, and must be avoided.

Antenna and Translator Trimmers:

Abstract

Screw the trimmers all the way in and then reduce capacity until a peak is reached. If the capacity is reduced still furtiner, a second peak will be obtained. However, the correct setting is the first one, the one using the greater amount of capacity. Note that this is exactly opposite to the procedure for the oscillator trimmer.

MODEL 150,164,182
Supplementary Data

COLONIAL RADIO CORI.

SUPPLEMENTARY SERVICE NOTES
 MODELS 150-164-182

MODEL 150

Certain improvements have been incorporated in the Model 150 auto receivors since the Instruction Booklets and Service Manuals for this model were printed. For the most part these improvements facilitate removal of the chassis from its case when necessary.

1. The permanently connected shielded antenna lead has been replaced with gne using a bayonet and socket type of connection.
2. In order to eliminate the necessity for going through the operation of polarity changing in the fleld, some of the sets are shipped with the polarity connection correct for positive groundod batteries and others for negative
grounded batteries. The shipping cartons are stencilled to indicate the polarity connection of the set.

Abstract

3. The vibrator unit has been improved and it is suggested that a couplo of them be carried in stock to replace any that may break dom in service. De. fective units should be returned to the Colonial Radio Corp., 254 Rano St., Buffalo, N.Y., for replacement.

4. Any letters appearing after Model 150, on the chassis or carton, have no significance. All changes and improvements were incorporated in all of the chassis before being shipped.

MODELS 164 AND 182

 in later production of Model 164 and 182. When these springs are used, it makes no difference whether an insulated or an uninsulated tip drive cable is used for the tuning condenser, and two brass tip cables are supplied when the grounding springs are included in the original package. Accordingly, if the grounding springs are used, all reference to the insulated tip drive cable in the Instruo

Two types of speakers have been used on the Model 164 . They can be told apart by the fact that one type has a patent notice sticker pasted under the output transformer. Should parts of this speaker need replacement, return the entire speaker. The list of replacement parts for the other type speaker follows:

Part No.	Description	Price
S-9967-A	Speaker - Complete	$\$ 8.28$
S-9988-A	Speaker cone and voice coil	1.38
S-10152	Speaker field coil	1.65
S-9994	Speaker clamping ring	.05
S-9968	Speaker eyelets	for
S-10144-A	Speaker transformer	103
		1.28

Two types of set screws for binding the flexible drive cables and casings have been used in the Model 164 and 182 remote controls. One is a $6 / 32 \times 1 / 8^{\prime \prime}$ screw, Part \#R-5386, price - .01. The
other is $8 / 32 \times 3 / 16^{\prime \prime}$, Part \#R-6498, price - .02. It is suggested that a small stock of both of these screws be carried.

INTERFERENCE ELIMINATION

Occasionally a car is encountered in which the "dirt" at the ammeter is exceptionally great. To remedy a condition of this sort, solder a . 001 mfd mica condenser, (Part \#R-6759), from
the fuse container shell to a point about an inch away, on the ammeter end of the "A" lead. Wrap tape around the condenser and lead to protect them.

COLONIAL PAGE 5-3

COLONIAL RADIO CORP.
MODEL 164
Schematic, Voltage
Parts Layout

Remote Control Data Alignment Data

COLONIAL RADIO CORP.

THE REMOTE CONTROL UNIT

As mentioned in the Instruction Booklet, the flexible drive shaft with the bleck, insulated tongue at its end, MUST be used for the condenser drive. The insulation is to prevent ienition noise pick up by the cable from being fod into the tunina condenser. Failure to observe these instructions will result in motor noise.

The pilot light switch, in the remote control urit, works coincidentally with the set switch in the chassis. Filckering of the pilot light may be due to poor contect between the phosphorbronze spring and the rotating drum. Bending of the spring and sandpapering of the drum will correct the condition.

To gain access to the switch, procede as follows:

1. Disconnect the flexible cables from the remote control unit and remove the unit from the steering column.
2. Remove the outer shell from the unit bv bendinf up the taba.
3. Pull the pointer off of its shaft and then remove the dial.
4. Remove the three flat head screwa holding the cover and remove the cover, exposing the mechanism.

The illustration shows how to replace the pointer drive cable. Note
that the end of the cable coming from the clamped end of the spring passes OVER the other end of the cable. Also note that when the large pulley is set into place, the spring is diametrically opposite the drive pulley.

When replacing the pointer, turn the Station Selector shaft clockwise to its limit and set the pointer one division to the right of the bottom center line. Then when the sheft is turned all the way counter clockwise, the pointer will stop one division to the left of the center line.

Failure of the set switch and the remote control switch and lock to coincide in their operation Fill be caused by movement of the cables or of the control unit, after the synchronizing adfustment has been made. To secure similtaneous action of the two switches again, it will be necessary to disconnect the cable, turn the set switch to its "Off" position with a screw driver, turn the Volume Control knob in the control unit to its "Off" position with the key out, and then securely tighten the cable coupling and set screws. If the control unit is not moved then, the operation of the two switches wili remain in avnchronism.

The pilot light is accessible for replacement when the single screw at the back of the case is removed.

POWER SUPPLY UNIT

The plate supply unit is of the vibrating reed type with rectifier tube. No attempt should be mede to repair the vibrator proper. Return it to vour distributor for repair or replacement. The unit can be pulled out of its case when the five terminal screws are loosened.

It is very important that the proper polarity connection be made. For cars with the negetive battery terminal grounded, the blue lead should be connected to the terminal nearest the outside of the case. For cars with grounded positive terminal, the positions of the blue and black leads are interchanged so that the black lead is connected to the outside terminal. Failure to observe these instructions will cause damare to the vibrator in a very fow
minutes of operation.
R17, R18, C22 and C23 are part of the assembly of the vibrator proper. C25, C26, C27, L6 and R19 are all mounted within the power supply case. R19 is a resistor whose value varies with the voltage applied to it. When the receivor is first turned on, the output voltage tends to become very high until the tubes heat sufficientiy to draw their normal load. Under this condition, the value of Rig drops to a compsratively low value, loading the transformer sufficiently to prevent damage. As the tubos become heated, tending further to lower the voltage, the resistance of Rlg increases greatly so thet it no longer ronstitutes a load on the power supply.

THE IF TUNING ADJUSTMENTS

When peaking the IF stages, use a low enough output from the test oscillator to render the AVC action inoperative.

The screw adjusts the primery tuning condenser; the nut adjusts the secondery, as shown in the illustretions.

IHE RF TUNING ADIUSTMENTS

There are three holes at the back of the chassis through which the condenser trimmers are accessible. The unit nearest the control end of the chassis is the RF unit. The next one is the translator and the last one the oscillator.

The rcllowing chart wil for making tests of the	olpful unit. supply	continuity meter or onmmeter mav
VIBRA TOR UNIT ONLY		
TEST	PROPER EFFECT	TROUBLE IF IMPROPER EFFECT IS HAD
```Between brass contact ad- qusting screws. (With piece of paper inserted between contact points.) Reading Open transformer primary```		
Grey lead to elther red lead	Approx. 400 onms	Open or shorted transformer secondary.
Blue and bleck leads, (with paper out.)	Reading	Contact points not making contact.
POWER SUPPLY (With Virrator Disconnected)		
Fannstock clip to switch	Reading	Open fuse or open L4
Fahnstock cilp to ground (With tubes out of sockets.)	Approx. 5. ohms	Open fleld coil
84 cathode to ground	Approx. 75 M ohms	If low res. reading, shortod C28 or C29. If no reading, open L6, L7, R2 or R4

## REMEDIES FOR UNUSUAL NOISE CONDITIONS

If a condition is met in which the installation of standerd suppressor equipment still leaves objectionable noise, proceed as follows:

1. Ground the antenna shield to the case by jamming a Parker-Kalon screw cetwaen the shield and the case.
2. Bond the bulkhead to the nearest point on the motor.
3. Disconnect the high tension lead running from the coil to the center of the distributor. Disconnect it both at the coil end and at the distributor end. Tum the ignition switch on and turn the motor over with the hand crank. If clicks are heard as the distributor breaker makes and breaks contact, interference comes from this source.

Additional capecity should NOT be put across the breaker points as it will interfore with the proper operation of the coil. (A condenser, conneoted across the points, is built into all distributors.) Rewire the entire low tonsion ignition sustom, using shielded low tension imnition cable which mat be well grounded. Do not run the wiring qiong side of other wiring, but keep it separate, snci if possible, along the car chassis channels.
4. If the trouble still persists, it may be necessary to use shielded high tension cable from the distributor to the coil. The shielding must be woll grounded.
5. Very often the interference is fed into the antenna through the dome ifght wiring. This can be determined br disconnecting the dome light lead from the ammetor. If an improvement results, by-pass the dome light at the point where it enters the cormer post.
6. Metal windshield tubing, gas and oll lines sometimes have to be bonded to the bulkhead with heavy copper braid.
7. In some cars the high tension coll or leads come very close to the motor side of the floor board. As a rem sult, interference is picked up by the occupant's body and transferred to the car antenna. Trouble of this sort is manifested by noisy reception ONLY when a person is sitting in the car. It can be remedied by tacking a grounded metal plate or screen to the motor side of the floor board, or by placing a grounded screen between the floor matting and the floor board.

It should be understood that it practically never is necessary to apply ALL these remedies. How many of thom are needed will depend on the particular car and installation.

PAGE 5-6 COLONIAL
MODEL 164
Sooket, Ass embly, Speaker COLONIAL RADIO CORP.


## SERVICE NOTES

## MODEL 164B

This manual applies to receivers having a serisl number above 50600 .

A different power supply unit is employed in these recesvers, using a plug-in type of vibrator, making replacement of it very simple. Its construction is such that no attertion need be paid to polarity. Accordingly, pro-
vision for changing polarity is omitted from this model.

The schematic of the chassis is the same as that shown in Fig. 76, Page 136, for the Model 164. The revised schematic for the power surply unit is shown in Fig. 82.


PART NO.
R-6381
R-6381-AR
R-9705
R-9706
R-9707
R-9577-A
R-9144
R-9743
R-9032
R-8531
R-8286
R-8920
R-7070
R-9776
R-6461
R-6759
R-6760
R-4592
R-8030
R-10025
R-9711
R-9710
R-9717
R-7688
R-9733
R-8870-A
R-9578-A
R-7228
R-6710
R-9777

DSCRIPTION
Clip - irid
Clip - Grid with shielded lead
Coil - Antenna
Coil - Oscillator
Coil - Trenslator
Condenser - Variable
Condenser - 10 Mfd .25 volt
Condenser - Electrolvtic, dual 8 Mfa
Condenser - . 5 Mfd . 160 volt
Condenser - . 1 Mfd. 300 volt
Condenser - . 1 Mfd .200 volt
Condenser - . 05 Mfd . 200 volt
Condenser - . 01 Mfd . 600 volt
Condenser - . 01 mfd .800 volt
Condenser - . 003 Mfd .800 volt
Condenser - . 001 Mfd . Mica
Condenser - . 0005 Mfd . Mica
Condenser - .00025 Mfd. Mica
Condenser - 1 Mfd. noise suppressor
Condenser - . 5 Mfd . noise suppressor
Control - Tone
Control - Volumo
Connector - Fuse container
Fuse - 10 Amp.

Instmation leaflet
Lead - Antenne shielded
Lead - "A", with clip
Resistor - 500 M ohms, $1 / 3$ watt carbon
Resistor - 500 M ohms, $1 / 3$ watt carbon
Resistor - 400 M ohms, $1 / 3$ watt curbon
Resistor - 300 in ohms, $1 / 3$ watt carbon

R-6638 R-7586 R-9725 R-6637 R-6640 R-7291 K-8972 $\mathrm{R}-7441$
$\mathrm{R}-6436$ $\mathrm{R}-6436$
$\mathrm{R}-6632$
$R-6632$
$\mathrm{R}-9745$
R-9959
R-9589-A
R-9360 Shield - Tube
R-8253 Societ - 5 Prong
$\begin{array}{ll}\text { R-8092 } & \text { Socket - } 6 \text { Prong } \\ \text { R-8072 } & \text { Sockst - } 7 \text { Prong }\end{array}$
S-9718-A Sockst - 7 Prong
S-9718-A Speaker R2-8018 Suppressor - Distributor R-9720 Switch - Sensitivity $\begin{array}{ll}\text { R-9720 } & \text { Switch - Sensitivity } \\ \text { R-9721-A } & \text { Transformer - IF input }\end{array}$
R-9581
R-9723

Shield - Ant. coil
$\begin{array}{ll}\text { R-9591 } & \text { Shield - Translator coil } \\ \text { R-9360 } & \text { Shield - Tube }\end{array}$

R1-8018 Suppressor - Spark plug R-9722-A Transformer - IF output

Resistor - 200 M ohms, $1 / 3$ watt Resistor - 100 M ohms, $1 / 3$ watt
Resistor - 60 M ohms, $1 / 2$ watt
Resistor - 50 M ohms, $1 / 3$ watt
Resistor - 20 M ohms, $1 / 3$ watt
Resistor - 15 M ohms, $1 / 2$ watt
Resistor - $\quad 3 \mathrm{M}$ ohms, $1 / 3$ watt
Resistor - 800 ohms, $1 / 2$ wett
Resistor - 400 ohms, $1 / 2$ watt
Resistor - 50 ohms, $1 / 3$ watt
Resistor - 500 M Globar ( R 19 )
Ring - Felt (speaker)

Tube - Rubber, var. cond. mta. Vibrator

R-9044-A	Choke (L4)
R-9044-B	Choke (L5)
R-9033	Choke (L6)
R-9708-A	Choke (L7)
R-9741	C11p- "A" lead

PAGE 5-8 COLONIAL

## MODEL 164.182

Service Data

## COLONIAL RADIO CORP.

## NOTES ON IGNITION INTERFERENCE ELIMINATION FOK MODELS 164 AND 182

The following chankes should entirelveliminate innition interference
in instances where difficulty of this sort has been experienced.

## SYORTENING THE SHIELD GROUNDING PIGTAIL

The Model 164 has a piftail soldered te the "A" lead shield, with its other end clamped under one of the acorr nuts. The model 182 has, in addition, a similer pigtail on the speaker cable shielo. These pigtelis should be removed and a shorter ground provided as follows:

Drill a hole in the case immediately alongsice the point where the shielda come through the case. Fasten a large soldering lug ( $R-8311$ ) to the inside of the case by means of a nut and screw pessed through the drilled holes and solder the shields to the lugs.


GROTNDING THE: SHIELD CABLES AND ANTENNA

To completely eliminate any pickup by the drive cables, grounding springs (Part R10165) are put between the collar on boti flexible cable couplings and the case. It will be necessary to scrape away the paint on the case, under the springs, so that they can make good contact with the case.

In cars having an intense interference field near the antenna shield, further improvement can be had by soldering an Antenne Shielc Grounding clip to the antenna shield. (Part No. R-1oloti). The cllp makes contact with the case at the point where the shield enters the case. Sandpeper the case to insure good contact.


INSTRUCTIONS FOR SHORTENING THE DRIVE CABLES

1. Renove the split sleeve from the chassis end of the cable cesing.
2. Heat the chassis end of the cable until the solder melts, permititing removal of the brass sleove. Then take the cable out of its casing.
3. Determine the point where the cable is to be cut and ciean it thorourhly with fine sandpaper. Tin this point thoroughly.
4. Cut the casing $5 / 8^{\prime \prime}$ shorter than the length desired for the cable. Re-
place the split sleevo.
5. Fut the cable back in the short ened casing. Silde the brass sleeve along the cable to the tinned portion and solder it there. Do rot let it bind against the end of the casing. Then cut the cable at the end of the sleeve with a fine toothed hacksam.

If the cables are cut in the roregoing manner, there can be no difficulty from unravelilng of the strands since the soldered sleeve holds them.

## MODEL 182

The colonial Model 182 is a six tube superheterodyne automobile radio receiver. The circuit is shown in block form in Fig. 78 and schematically in Fig. 80.

A 78 RF tube feeds the incoming signal to the 6A7 translator-oscillator. The 175 kc output of this tube is ampli-
fled by the pentode portion of the 6F7 tube and then fed to the 6B7. This tube provides AVC, diode detection ana, together with the triode portion of the 6 F7, furnishes audio amplificetion for Input of the 41 push-pull output stage. The speaker is a seperate $8^{\prime \prime}$ dynamic. A dynamotor furnishes the plate supply, drawing its power from the cer's battery.

## THE AVC AND SENSITIVITY CONTROL CIRCUITS

The $17 B$ ke output of the 6F" IF stage is impressed between the cathode and diode plates of the 6B7, In series with Rl2, R13, Rl4. The diode current flowing causes a voltege drop ecross these resistors. only the drop across R12 is used for AVC. Since the grid returns of the 6A7, 78 and 6 FW are connected to R12, the negative bias across it is impressed upon the grids of these tubes. Increases in sipnal strencth ore offset by decresses in tube amplification resulting from this increased negative grid bias. The effect is to tend to maintain the output of the $6 \mathrm{~F}^{7}$ IF at a constant $\nabla a l u e$.

Residual biss for the tubes is furnished by R2. In addition, the residual bias and therefore the tube amplification is affected by the setting of the Local-Distance switch. When the switch lever is on contact \#2, the drop across Rl5, due to the olste current of the 6B7,
bucks the residual from Riz, decreasing the total negative bias and increasing tube amplification. In the "Local"position, contact \#l, only the residual from R2 is applied to the tube grids.

Be sure the sensitivity control is either FULL clockwise or FULL counter clockwise. If allowed to remain half way between the two positions, $R 15$ will be shorted, remoring the 6B7 bies.

The volume control shunts Rl2 and Rl3 for audio frequencies. Accordingly, any desired amount of the audio component across Rl2 and R13 can be picked off br the moveable arm of the volume control and fed to the control grid of the pentode portion of the 6B7.

When peaking the IF trangformers, use a low enough output from the test oscillator to render the AVC action inoperetive.

THE RF TUNING ADJUSTMENTS

There gre three holes at the back of the chasgis through which the condenser trimmers are accessible. The unit nesrest the control end of the chassis
is the RFunit. The next one is the translator and the last one the oscillator.

## THE 6F"7 PHASE CHANGER CIROUIT

In any push-pull circuit, the instantanaous voltage on the grid of one of the tubes must be opposite in dolarity to the voltage on the other tube's grid. Ordinarily, this polarity difference or phase change is accomplished by the push-pull input transformer. In the Model 182, it is accomplishedes follows:

At some perticular instant the polarity of the signal voltage on the 6B7 plate will be negative. This negotive voltege is coupled through cls to the control grid of one of tha 41's. This signal voltage on the 6B7 plate also
causes a drop (audio frequency) across C17, R16, R10, and C27, with the polarities becoming increasingly negative toward C27. Accordingly, the control grid of the triode portion of the 6 FH is driven in a positive direction by the drop across Rlo and C27. This causes the plate current to increase, which is to say that the plate becomes more positive. This positive potential is coupled through Cl9 to the grid of the other 41 tube. The result, then, is that the grid of one 41 is going in a positive direction while the other is going negrtive.

## THE POWER SUPPLY UNIT

The plate supply unit is of the rotating dynamotor type. To remove it, take out the three Parker-Kalon screws at the bottom edge of the dynamotor hous ing and then take out the two screws holding the metal can type of condenser to the housing. The housing and dynamotor then can be loosened from the chessis. Unsoldering the leads under the dynamotor and removing the four screws that hold the dynamotor to the
housing case permits complete removal of the dynamotor. After considerable use, the dynamotor commatator may need cleanIng. Use the finest sandpaper. NEVER USE EMERY CLOTH.

If the recelver is set up on the bench, outside of its case, be sure to connect a wire from the speaker catle to the chessis, to complete the sparker field circuit.

PAGE 5-10 COLONIAL


TUBE VOLTAGE AND CURRENT CHART

TUBE	$\begin{aligned} & \text { PLATE } \\ & \text { VOLTAGE. } \end{aligned}$	SCREEN VOLTAGE	PLATE   M. A.	$\begin{aligned} & \text { SCREEN } \\ & \text { M.A. } \end{aligned}$
78-RF	200	95	8	2.25
6B7 - AVC-Det-AF	60	60	1.25	. 3
4*1- Output	205	208	14	2.5
6A7-0sc-Transl.	$\mathrm{Ep}=200 \mathrm{v} ; \quad \mathrm{Eg} \# 2=125 \mathrm{v} ; \quad \mathrm{Eg} \# 38 \# 5=95 \mathrm{v} ; \quad \mathrm{Ip}=3.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{g}} \mathrm{F} 2=3 \mathrm{ma}$; Ig\#3d\#5.3.5ma;			
6F\% - IF \& AF	$\mathrm{Ep}=200 \mathrm{v} ; \quad \mathrm{Eg} \# 2=75 \mathrm{v} ; \quad$ Eg\#3\& $\# 5=95 \mathrm{v} ; \quad \mathrm{Ip}=5 \mathrm{ma} . \quad \mathrm{Ig}_{\mathrm{g}} \# 2=3 \mathrm{ma} ;$ IR\#3c\# $5=1 \mathrm{ma}$.			

Care should be used when taking readings with a set analyzer as the capacity or the cables may cause circuits to oscillate, giving rise to erratic reedings. Usually, touching the finger to grid or plate is sufficient to stop oscillation. If an analyzer is not used, the voltage readings can be tiken with a 1000 ohms per volt voltmeter, from the cathode to the respective elements of each tube. Ordinarily, a 20\% deviation from the chart value may be allowed.


## THE REMOTE CONTROL UNIT

As mentioned in the Instruction Booklet, the flexible drive shaft with the black, insulated tongue at its end, MUST be used for the condenser drive. The insulstion is to prevent ignition noise pick up by the cable from being fed into the tuning condenser. Failure to observe these instmuctions will result in motor noise.

The pilot light switch, in the remote control unit, works coincidentally with the set switch in the chassis. Flickering of the pilot light may be due to poor contect between the phosphorbronze spring and the rotating drum. Bending of the spring and sandpapering of the drum will correct the condition.

To gain access to the switch, procede as follows:

1. Disconnect the flexible cables from the remote control unit and remove the unit from the steering column.
2. Remove the outer shell from the unit by bending up the tabs.
3. Pull the pointer off of its shaft and then remove the dial.
4. Remove the three flat head screws holding the cover and remove the cover, exposing the mecranism.

The illustration shows how to replace the pointer drive cable. Note
that the end of the cable coming from the clamped end of the spring passes OVER the other end of the cable. Also note that when the large pulley is set into place, the spring is diemetrically opposite the drive pulley.


#### Abstract

When replacing the pointer, turn the Station Selector sheft clockwiee to its limit and set the pointer one division to the right of the bottom center inne. Then when the sheft is turned all the wey counter clockwise, the pointer will stop one division to the left of the center line.


Failure of the set switch and the remote control switch and lock to coincide in their operation will be caused by movement of the cables or of the control unit, after the synchronizing adjustment has been made. To secure simultaneous action of the two switches again, it will be necessary to disconnect the cable, turn the set switch to its "Off" position with a screw driver, turn the Volume Control knob in the control unit to its "Off" position with the key out, and then securely tighten the cable coupling and set screws. If the control unit is not moved then, the operation of the two switches will remain in synchronism.

The pilot light is accessible for replecement when the single screw at the beck of the case is removed.
reptacement parts list
号 Knob - Tone \& sensitivity controls Lead - Acorn cover

Resistor - 500 M ohms, $1 / 3$ watt carbon Resistor - 500 M ohms, $1 / 3$ watt carbon



5
5
0
0
0
0
0
0
0


 पоqu8刀 7 uoquaj
पoqua noquav



## SERVICE NOTES

## MODEL 602

The COLONIAL Model 602 is a 12 tube, four wave band superheterodyne embodying such features as AVC, sensitivity control, tone control, neon visual tuning indicator, and twin speakers. The circuit is show in block form in Fig. 85 and schematically in Fig. 86.

A 56 tube is used in the oscillator circuit. A 6A7 serves as an electron coupled translator. Its 175 kc output is amplified by the two 78 IF stages and then fed to the 37 detector, which is used as a diode. Two 37 AF tubes comprise a push-puli input stage to drive the push-pull 2A3H output stage. A 6B7 tube is used in the AVC stage, a 6B7 in the neon visual tuning circuit, and an 83V is the rectifier. The speakers are both moving coil dynamics. One is a $12^{\prime \prime}$ and the other an $8^{\mathrm{t}}$.

The incoming signal is fed to the translator control grid through coils Ll and L2 for the broadcast range, L3 for the next range, L4 for the next and L5 for the highest frequency range. L6
is the broadcast oscillator coil. L7 is the oscillator for the next range. L8 is the next, and L9 the one for the highest frequency range. Cl is the broadcast antenna coil trimmer. C3 is the broadcast translator coil trimmer. C2 is the translator trimmer for the first high frequency range. C4 the one for the next range, and C5 is the translator trimmer for the highest frequency range. C6 is the broadcast range oscillator trimmer. $C 7$ is the triramer for the first high frequency range, CB the one for the next range, and C9 is the trinmer for the highest frequency oscillator coil. Clo is the padder for the low frequency end of the broadcast range, Cll the one for the next range, Cl 2 for the next and CIS is the padder for the highest frequency oscillator coil.

The location of the coils and condensers is show in the Service Illus. trations. The numbering and lettering corresponds to that used in the Schematic.

## 6B7 TUNING LIGHT CIRCUIT

The 6B7 tuning light circuit is shown schematically in Fig. 83. A portion of the IF sienal voltage, that exist ing across condenser $A$, is tepped up and impressed on the diode part of the 6B7 by means of the sharply tuned transformer, T, which is wound with Litz wire. The rectified signal current flows through the 1 megohm resistor from point (1) to point (2) so that point (2) is negative with respect to point (1). The control grid of the 6B7 is connected to point (2) and the cathode to point (1). As the signal is tuned in, the voltage across the 1 megohm resistor increases, increasing the negative control grid bias on the 6B7, thereby cutting down
its plate current. The reduced plate current means a decreased voltage drop across the 130 M ohm resistor, making available a greater voltage across the neon tuning flasher. When the signal is properly tuned in, the plate current of the 6B7 is sufficiently decreased to permit the neon lamp to light. Until a signal is tuned in, the plate current of the 6B7 causes sufficient drop across the 130 M ohm resistor to prevent the neon bulb from lighting. The sharply tuned transformer insures that voltage is not applied to the diode part of the 6B7 until the station is accurately tunod in.


FIG. 83. THE NEON TUNING LIGET CIRCUIT

The AVC circuit is shown schemat1cally in Fig. 84. If there were no plate current
through the $6 B 7$ its cathode mould be
negative with respect to diode plate (A)
by the omount of the voltage drop across
the 2500 ohm speaker field. However,
because of the $6 B 7$ plate current and con-
sequent voltage drop across the 50 M ohm
resistor, the cathode potential of the
$6 B 7$ is raised so that it is approximate-
ly 15 volts positive to diode plate (A).

A portion of the IF signal is fed through $C l$ to diode plate (B). The resulting current, flowing through Rl creates a voltage drop across it with point (1) positive with respect to point (2). This voltage is impressed through R2 onto the control grid of the 6B7. This increased negative control grid bias decreases the plate current and the voltage drop across R3. As a consequence, the cathode bias with respect to ground decreases. This is equivalent to saying that diode plate A becomes positive with respect to the cathode. Current therefore flows from diode plate (A) to the cathode, creating a voltage drop across R4 with point (3) positive with respect to point (4). Since the grid returns of the translator and IF stages are connected to point (4), the voltage drop across R4 is impressed on the control grids of these tubes. This negative bias, which varies in step with the strength of the signal, controls the amolification of these tubes. An in-
crease in signal strength is offset by a decrease in tube amplification so that the output of the IF stage tends to remain at a constant valu. Because the cathode is 15 volts positive with respect to diode plate (A) the AVC action is delayed until the received signal is strong enough to cause diode plate (A) to go positive with respect to the cathode. In this way the full sensitivity of the receiver is maintained for statlons too weak to give full output from the receiver.

Residual bias for the first IF tube is supplied by the 15 M ohm variable cathode resistor, which serves as a sensitivity control. Set owners should be instructed not to increase the sensitivity any further than necessary for satisfactory reception. Unnecessarily high sensitivity will result in unwanted between-station-noise.

When peaking the IF stages, use a low enough output from the test oscillator to render the AVC action inoperat1ve.

To peak the tuning flasher transformer, tune in a station whose strength is just about sufficient to operate the neon light. Then try retuning it very accurately by ear. If the flasher transformer is off calibration, the light will go out when the station is accurately tuned. With the station accurately tuned in, adjust the transformer tuning condensers until the neon bulb lights


FIG. 84. THE AVC CIRCUIT - MODEL 602

COLONIAL RADIO CORP.


PAGE 5-16 COLONIAL


## HUM ADJUSTMENT

There is a hum adjustment to be turned with an insulated handle screwdriver, at the rear of the chassis, under the type 2A3H tubes. With the volume control all the way off, turn the hum adjustment to the point of minimum
hum. If this point appears to be beyond the end of the control, interchange the positions of the 2A3H tubes. If a balance still cannot be had, the 2A3H tubes mast be replaced by ones more nearly matched in their characteristics.

## ALIGNMENT

## BROADCAST

Disconnect the antenna and connect a . 00025 mfd . condenser between the sets antenna and ground leads, to take the place of the normal antenna capacity. Adjust the test oscillator to a frequency near the high frequency end of the broadcast range and couple the oscillator to the recelver antenna lead. With the wave switch in the broadcast position, set the dial accurately to the test oscillator's frequency. Then peak Cl, C 3 , and C 6 .

Retune the test oscillator and the recelver to a frequency near the low frequency end of the broadcast range. Peak ClO.

## 100 METER RANGE

Turn the wave switch to the first high frequency range. Adjust the test oscillator to a frequency near the high frequency end of this range. Then the
dial to this frequency and peak C7 and C2. Then change the test oscillator's frequency to the low frequency end of the range and peak Cll.

## 40 METER RANGE

Turn the wave switch to the next high frequency range. Adjust the test oscillator to a frequency near the high frequency end of this range. Turn the dial to this frequency and peak C8 and C4. Then change the test oscillator's frequency to the low frequency end of the range and poak Cl2.

## 20 METER RANGE

Turn the wave switch to the highest frequency range. Adjust the test oscillator to a frequency near the high frequency end of this range. Turn the dial to this frequency and peak C9 and C5. The padder for this range, C13, is fixed.

TUBE	PLATE VOLTAGE	SCREEN VOLTAGE	PLATE M. A.	SCREEN M. A.
$56-0 \mathrm{sc}$.	70		4	
78 - lst. IF	215	110	8	1.5
78-2nd. IF	215	110	8	1.5
$37-\mathrm{AF}$	165		4	
$37-\mathrm{AF}$	165		4	
2A3H - Output	265		60	
6B7- AVC	60	60	4	1
6B7 - Flasher	$\begin{array}{r} 7-\text { No. sig. } \\ 90 \text { - With sig. } \end{array}$			
83V - Rect	DC volts $=350$, Plate current $=87 \mathrm{ma}$. per plate.			
6A7-Transl	$\begin{array}{ll} E p=180 ; & E g \# 2=80 ; \quad \mathrm{Eg} \# 3 \& \# 5=95 \\ I p=4 \mathrm{ma} ; & \mathrm{Ig} \# 2=2 \mathrm{ma} ; \\ \mathrm{Ig} \# \# 3 \& \# 5=4 \mathrm{ma} \end{array}$			

Readings taken with 1000 ohms per volt voltmeter, sensitivity control on full, no signal received. Care must be used if measurements are made with an analyzer since the capacity of the cables may cause circuits to oscillate, giving rise to erratic readings. Usually, touching the finger to grid or plate is sufficient to stop oscillation. If an analyzer is not used, voltage readings can be made from cathode to the respective elements of each tube. Ordinarily, a $20 \%$ deviation from the chart value may be allowed.


PART NO DESCRIPTION


TUBE VOLTAGE CHART
All readings are to be taken between the chassis and the respective element of each tube.


MODEL 603
Socket Layout
Trirmers
Alignment

## COLONIAL RADIO CORP.



## ALIGNMENT PROCEDURE

The IF Stages:

1. Connect the low scale of the output meter across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the receiver chassis.
3. Connect the other lead of the test oscillator in series with a .1 mfd . condenser to the grid of the 78 IF tube. Leave the grid clip attached to the cap and the tube shield in place.
4. Set the test oscillator to 480 $k c$ and tune the IF output transformer. The locetions of the tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the control grid of the 78 Translator tube and adjust the IF input transformer.
6. Repeat the adjustments to secure greater accuracy.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.

RF Alignment (Broadcast):

[^1]kilocycles.
3. Screw the oscillator padder condenser to approximately three quarters of its maximum capacity.
4. Turn the variable condenser plates all the way out. Then adjust the oscillator trimmer for maximum output.
5. Set the teat oscillator to 1400 kc and tune in its signal. Then adjust the translator trimer, mounted on the variable condenser section nearer the dial, for maximum output.
6. Set the test oscillator to 600 ke and ture in its signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same time, adjust the padder until maximum output is obtained.
7. Repeat the 1660 kc and 1400 kc adjustments.

Always use as low an output from the test oscillator as possible.

Short Wave Alignment:

1. Leeve the test oscillator coupled to the green antenna lead as for broadcast alignment.
2. Set the test oscillator to 15 megacycies and tune in its signal. Then adjust the trimmer, mounted on the short wave translator coil, for maximum output.


The IF Stages:
l. Connect the low scale of the
output meter across the loud speaker
voice coil.
2. Connect the ground lead of the
test oscillator to the chassis.
3. Connect the other lead of the
test oscillator, through a 1 med con-
denser, to the control grid of the 78
IFtube. The grid clip should be left
attached to the cap and the tube shield
must be in place.
4. Set the test oscillator to 445 kc and tune the IF output transformer. The locations of its tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the control grid cap of the 6A7 tube and tune the IF input transformer.
6. In order to secure greater accuracy repeat the adjustments, starting with the IF output transformer.

```
Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.
RF Alignment; Band "A" (Broadcast):
1. Couple the output of the test oscillator to the antenna lead of the set, with the antenna connected.
```

2. Set the test oscillator to 1520 kilocycles.
3. Turn the variable condenser plates all the way out. Then adjust the \#l oscillator trimmer for maximum output. The locations of all of the trimmers are shown in the Service Illustrations.
4. Set the test oscillator to 1400 kc and tune in its signal. Then adjust the \#1 antenna trimer and the \#1 translator trimer for maximum output.
5. Set the test oscillator to 600 kc and tune in its signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same
time, adjust the \#l oscillator padder for maximum output.
6. Repeat the 1520 kc and 1400 kc adjustments for greater accuracy.
Band "B":
7. Leave the test oscillator coupled to the antenna lead as for broadcast band alignment.
8. Set the test oscillator to 4250 kilocycles.
9. Turn the variable condenser plates all the way out. Then adjust the \#\# oscillator trimmer for maximum output.
10. Set the test oscillator to 4000 kc and tune in its signal. Then adjust the \#2 antenna trimmer and the \#2 translator trimmer for maxima output.
11. If turns have been shifted, repeat the 10 megacycle and the 9 megacycle adjustments, since they will have been affected by shifting of the turns.
Band "D":
12. Set the test oscillator to 19 megacycles.
13. Turn the variable condenser plates all the way out. Then adjust the \#4 oscillator trimer for maximum output.
14. Set the test oscillator to 18 megacycles and tune in its signal. Then adjust the \#4 antenna trimmer and the \#4 translator trimmer for maximum output.
15. Set the test oscillator to 9 megacycles and tune in its signal. If necessary, shift turns on the antenna and translator coils to secure maximum sensitivity. Be sure to cement the turns in place.
16. If turns have been shifted, repeat the 19 megacycle and 18 megacycle adjustments since they will have been affected by shifting of the turns.

TUBE VOLTAGE CHART
All readings are to be taken betwoen the chassis and the respective element of each tube.

TUBE	PLATE	SCREEN	$\begin{gathered} \text { OSC. SECTION } \\ \text { PLATE } \\ \hline \end{gathered}$	CATHODE
$78-\mathrm{RF}$	220	90		3.1
6A7-Osc-Transl	220	90	160	2.6
78 - IF	235	90	,	3
75 - AVC-Det-AF	75			0
37 - Phase Changer	125			9
47 - Output	230	235		16



PAGE 5-24 COLONIAL
MODET 604

## COLONIAI, RADIO CORP.

## REPLACEMENT PARTS AND PRICE LIST

PART NO.	DESCRIPTION	PRICE
R8297A	Board - Terminal, double	. 04
R8308A	Board - Terminal, triple	. 05
R9446A	Board - Terminal, 4 terminals	. 06
R8900A	Board - Terminal, 5 terminals	. 08
R10741	Cabinet	23.33
R10765	Card - Operating	. 07
R7011A	Clip - Red and green antenna leads	. 04
R7011B	Clip - Double, black ground lead	. 08
R11043	Clip - Grid	. 01
R10731	Coil - Antenna, broadcast	. 68
R10730	Coil - Oscillator, broadcast	. 35
R10732	Coil - Translator, broadcast	. 75
R10729	Coil - Choke	. 19
R6973K	Coil - Antenna, short wave, \#2 range	. 82
R10993A	Coil - Antenna, short wave, \#3 range	. 56
R10993D	Coil - Antenna, short wave, \#4 range	. 56
R6973M	Coil - Oscillator, short wave, \#2 range	. 75
R10993C	Coil - Oscillator, short wave, \#3 range	. 65
R10993F	Coil - Oscillator, short wave, \#4 range	. 64
R6973L	Coil - Translator, short wave, \#2 range	. 83
R10993B	Coil - Translator, short wave, \#3 range	. 56
R10993E	Coil - Translator, short wave, \#4 range	. 42
R10735	Condenser - Variable	4.04
R10735B	Condenser - Variable with drive assembly	6.20

 $\underset{-}{+}$


MODEL 650
Schematic, Voltage
Notes


PAGE 5-26 COLONIAL
MODEL 650
Parts Layout, Notes
COLONIAL RADIO CORP.
Socket,Trimers


Some of these receivers have a 14 mf . first filter condenser, others an 8 mfd. one. Either may be used for replecement purpose.

The trimer condenser on the proselector section of the ganged condenser should be adjusted at about 1500 kc . The oscillator trimmer, C3, should be adjustod so that the set is tuned to 2000 kc when the ganged condensor is at its minimum capacity setting. Adjustments should be made with the Vernier at its half capacity setting.


MODEL 651
Socizet Layout
Alignment, Trimmers
In order to prevent interference from code stations when the receiver is located near the coast, a wave trap is incorporated in the antenna circuit. Although this trap is shown in the schematic as a coil with a series condenser, actually it consists of two multilayer coils wound on top of each other with one end of each coil left unconnected. The distributed capacity between the coils is the condenser shown in the schematic. The design of the coil is such that the combination of distributed capacity and inductance is resonant at about 600 meters which is the frequency used by ships and also is very near the IF frequency of the recerver.

## The 75 AVC-Detector-AF Circuit:

The IF signal existing et, the IF output transformer secondary is impressed betweell the diode plates and the cathode of the 75 tube, in series with the 500 m ohms of the volume control and the 50 M ohm resistor. Diode current flows, creating a voltage drop across these resistances. Only the drop across the volume control resistance is used for AVC voltage. The control grid returns of the $6 A 7$ and 78 tubes are connected through filter resistors to one end of the volume control. This end is negative with respect to the other end of the control so that the voltage drop across it, due to the diode current, is impressed as negative bias on the control grids of the 6 A 7 and 78 tubes. Any increase in signal strength increases the 75 diode current, increases the voltage drop across the volume control, and so increases the negative bias of the 6 A7 and 78 tubes with a resultant decrease in tube amplification. Since increases in signal strength are offset by decreases in tube amplification, the input to the detector tends to remain at a constant value.

Any desired portion of the audio component across the volume control may be ficked up by the movable arm of the control and fed through the . 02 mfd. condenser to the triode section of the 75 tube. It is there amplified and then coupled to the 41 output tube.

## The IF Stages:

1. Connect the output meter (low scale) across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the chassis.
3. Connect the other lead of the test oscillator, in series with a . 1 mfd. condenser, to the grid of the 78 IF tube, leaving the grid clip attiached to the cap.
4. Set the test oscillator to 480 kc and tume the IF output transformer. The locations of the tuning adjustments are shown in the Service Illustration.
5. Change the test nscillator connection to the grid of the 6A7 tube and adjust the IF input transformer.
6. Repeat the adjustments to secure greater accuracy.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.

RF Alignment: (Broadcast)
l. Couple the test oscillator to
the green antenna lead, leaving the
antenna connected.
2. Set the test oscillator to ex-
actly ic40 kc.
With the kriable conclenser plates open all the way
3. Turn the dial pointer to exactly
l640 kc andadadust the broadcast oscil-
lator trimer for maximum outrut.
4. Set the test oscilletor to 1400 kc and tune in its signal. Then adjust the trimmer on the variable condenser for maximun output.
5. Set the test oscillator to 600 kc and tune in its signal. Then slowly rotate the variable condenser back arid forth a degree or two and, at the same time, adjust the padder until maximum output is obtained.
6. Since the adjustments are interacting to an extent, it is advisable to repeat the entire operation.

Always use as low an output from the test oscillator as possible.

Short Fiave Alignment:
Set the test oscillator to 15 megacycles and tune in its signal. Then adjust the trimmer on the short wave translator coll for maximum output.



## MODEL 652

Socket Layout
Trimer Data
Alignment
COLONIAL RADIO CORP.

## ALIGNMENT PROCEDURE

The IF Stages:

1. Connect the low scale of the output meter across the loud speaker volce coil.
2. Connect the ground lead of the test oscillator to the receiver chassis.
3. Connect the other lead of the test oscillator, in series with a . I mfd. condenser, to the grid of the 78 IF tube. Leave the grid clip attached to the cap and the tube shield in place.
4. Set the test oscillator to 480 kc and tune the IF output transformer. The locations of the tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the grid of the 6A7 tube and adjust the IF input transformer.
6. Repeat the adjustments to secure greater accuracy.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.

RF Alignment (Broadcast):

1. Couple the test oscillator to the green antenna lead, leaving the antenna connected.
2. Set the test oscillator to 1650 kilocycles.
3. Screw the osoillator padder condenser to approximately three quarters of its maximum capacity.
4. Turn the variable condenser plates all the way out. Then adjust the oscillator trimmer for maximum output.
5. Set the test oscillator to 1400 kc and tune in its signal. Then adjust the transiator trimmer, mounted on the variable condenser section nearer the dial, for maximum output.
6. Set the test oscillator to 600 kc and tune in its signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same time, adjust the padder until maximum output is obtained.
7. Repeat the 1650 kc and 1400 kc adjustments.

Always use as low an output from the test oscillator as possible.

Short Wave Allgnment:

1. Leave the test oscillator coupled to the green antenna lead as for broadcast alignment.
2. Set the test oscillator to 15 megacycles and tune in its signal. Then adjust the trimmer, mounted on the short wave translator coil, for maximum output.


```
MODEL 653
Alignment, Socket COLONIAL RADIO CORP.
Parts List,Trimers
```




COLONIAL PAGE 5-33


The COLONIAL Model 654 is a five tube, broadcast superheterodyne, designed for operation from either $A C$ or DC power supply. The tubes and their functions are:

$6 A 7$	- Oscillator-Translator
78	IF
37	- Detector
38	Output
IV	- Rectifier

Since the tube heaters are in series, if any one tube burns out, none will light. However, it is necessary to replace only the burned out tube. The others then will light. The full line voltage will appear across the heater prongs of a socket in which there is a burned out tube.

## ALIGNMEN'T PROCEDURE

The IF Stages:

1. Connect the high scale (about 100 volts) of the output meter across the loud speaker terminals.
2. Connect the ground lead of the test oscillator to the chassis through a .1 mfd . condenser.
3. Connect the other lead of the test oscillator, in series with a .l mfd. condenser, to the grid of the 78 IF tube, leaving the grid cilp attached to the cap.

PART NO.	DESCRIPTION
R8297A	Board - Terminal, double
R8308A	Board - Terminal, triple
R10690	Cabinet
R11043	Clip - Grid
R10632	Coil - Antenna
R10633	Coil - Oscillator
R8960	Condenser - Variable
R10689	Condenser - Dry electrolytic
R10197	Condenser - Trimmer
R6444	Condenser - . 1 mfd. 200 volts
R9145	Condenser - . $05 \mathrm{mfd}$.600 volts
R6629	Condenser - . $02 \mathrm{mfd}$.200 volts
R10893	Condenser - . 006 mfd . 200 volts
R6759	Condenser - . OOl mfd. mica
R4592	Condenser - . 00025 mfd . mica
R8059	Control - Volume, 3 M ohms
R10685	Cord - Power supply
R10692	Escutcheon - Station selector
R8683	Escutcheon - Volume control
R10691	Instruction leaflet
R8664	Knob with pointer
R7228	Resistor - 500 M ohms, $1 / 3$ watt carbon
R7586	Resistor - 100 M ohms, $1 / 3$ watt carbon
R6637	Resistor - 50 M ohms, $1 / 3$ watt carbon
R6110	Resistor - 30 N ohms, $1 / 3$ watt carbon
R6640	Resistor - 20 M ohms, $1 / 3$ watt carbon
R5821	Resistor - 20 M ohms, $1 / 2$ watt carbon
R6073	Resistor - 2 M ohms, $1 / 2$ watt carbon
R8922	Resistor - 100 ohms, $1 / 3$ watt carbon
R8315	Socket - 4 prong
R8253	Socket - 5 prong
R8092	Socket - 6 prong
R8072	Socket - 7 prong
S10694	Speaker
R10687A	Transformer - IF input
R10631A	Transformer - IF output

R10631A Transformer - IF output
4. Set the test oscillator to 480 $k c$. and tune the IF output transformer. This transformer is mounted under the chassis and has a single bakelite base tuning condenser mounted on its terminal board. There is but one tuning adjustment for this transformer, since only the transformer secondary is tuned.
5. Change the test oscillator connection to the grid of the 6A7 tube and adjust the IF output transformer. The locations of its tuning adjustments are shown in the Service Illustration.
6. Repeat the adjustments to secure greater accuracy.

RF Alignment:
l. Couple the test oscillator to antenna connected.
2. Set the test oscillator to 1750 kilocycles.
3. Turn the variable condenser plates all the way out. Then adjust the trimmer on the oscillator section of the variable condenser for maximum output. The oscillator section is the one furthest from the dial, as shown in the Service Illustration.
4. Set the test oscillator to 1400 kc and tune in its signal. Then adjust the trimmer on the translator section of the variable condenser for maximum output.



PAGE 5-36 COLONIAL
MODEL 655
Voltage
Alignment

## COLONIAL RADIO CORP.

## ALIGNMENT PROCEDURE

The IF Stages:

1. Connect the output meter (low scale) across the loud speaker voice co11.
2. Connect the ground lead of the test oscillator to the chassis.
3. Connect the other lead of the test oscillator, in series with a $\quad 1$ mfd. condenser, to the grid of the 78 IF tube, leaving the grid clip attached to the cap.
4. Set the teat oscillator to 480 kc and tune the IF output transformer. The locations of the tuning adjuatments are ohown in the Service Illustration.
5. Change the test oscillator connection to the grid of the 78 translator tube and adjust the IF input transformen
6. Repeat the adjustments to secure groater accuracy.

Always use as low an output as possible from tha teat osoillator in order to render the AVC action of the set inoperative.

RF Alignment (Broadcast):

1. Screw the oscillator padding condenser to about three quarters of 1 ts maximum capacity.
2. Couple the test oscillator to the green antenna lead, leaving the antenna connected. Set the test oscillator to 1610 kc .
3. Turn the variable condenser plates all the way out. Then adjust the oscillator trimmer for maximum output. Some of these sets have a trimmer on the oscillator section of the variable condenser as well as one mounted on the broadcast oscillator coil. In others, the adjusting.screw has been removed from the trimmer on the variable condenser and only the trimer on the oscillator coil used. It will be found that in sets using both condensers, that maximum output cannot be reached even though one of the trimmers is screwed all the way in, making it necessary to use the other trimmer. In effect, both trimers are in parallel when the Wave Switch is in the broadcast position.
4. Set the test oscillator to 1400 kc. and tune in its signal. Then adjust the trimer on the translator section of the variable condenser for maximum output.
5. Set the test oscillator to 600 kc. and tune in its signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same time, adjust the padder until maximum output is obtained.
6. Since the adjustments are interacting to an extent, it is advisable to repeat the entire operation.

Always use as low an output from the test oscillator as possible.

Short Wave Alignment:
Set the test oscillator to 15 megacycles and tune in its signal. Then adjust the trimmer on the short wave translator coil for maximum output.

All readings are to be taken between the chassis and the respective element of each tube.

TUBE	PLATE	SCREEN	CATHODE
78 - Translator	-	160	60
41 - Oscillator	-	75	75
$78-$ IF	-	170	60
$75-$ AVC-Det-AF	-	70	
41 - Output	-	160	170
$84-$ RectipiAr	-		



The IF Stages:

1. Connect the low scale of the output meter across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the chassis.
3. Connect the other lead of the test oscillator, in series with a .1 mfd condenser, to the control grid of the 78 IF tube, leaving the grid clip attached to the cap.
4. Set the test oscillator to 175 kc and tune the IF output transformer. The locations of its tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the grid of the 78 translator tube and tune the IF input transformer.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.
6. Repeat the procedure in order to secure greater accuracy.

RF Alignment (Broadcast Band) :

1. Set the test oscillator to 1650 kilocycles.
2. Couple the output of the oscillator to the antenna lead of the set, with the antenna connected.
3. Turn the variable condenser plates all the way out. With the wave band selecting switch in position "A", tune the oscillator trimmer for maximum output. The position of this trimmer is shown in the Service Illustration.
4. Set the test oscillator to 1400 kc and adjust the antenna and translator trimmers. The antenna trimmer is the one on the variable condenser section nearest the dial. The translator trimmer is accessible through the hole in the top of the translator coil shield as shown in the Service Illustration.
5. Set the test oscillator to 600 kc and tune in its signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same time, adjust the broadcast oscillator padder for maximum output. The location of this padding condenser is shown in the Service Illustration.
6. Repeat the 1650 kc and 1400 kc operations. Then repeat the 600 kc padding operation.

Always use an output from the test oscillator low enough to render the AVC action inoperative.

Short Wave (Band "B") Allgnment:

1. Leave the test oscillator coupled to the antenna lead as for broadcast alignment.
2. Set the test oscillator to 5000 kc. and ture in its signal. Screw the short wave (Band "B") antenna coil trimmer all the way in (maximum capacity). Then reduce the trimer capacity until the output reaches a peak. A second peak may be obtained when the trimmer capacity is reduced still further. However, the correct position in which to leave the trimmer is the one using the maximum capacity, that is, with the trimmer condenser plates most nearly in a closed position.
3. Set the test oscillator to 1800 kc. and tune in its signal. If necessary, turns may be shifted on the short wave antenna coil to secure maximum output. If turns are shifted, it will be necessary to repeat the trimmer adjustmont at 5000 kc .

Short Wave (Band "C") Allgnment:

1. Leave the test oscillator coupled to the antenna lead as before.
2. Set the test oscillator to 15 megacycles.

## 3. With the wave band selecting switch in position "C", tune the receiver to 15 megacycles.

4. Screw the short wave (Band "C") antenna coil trimmer all the way in (maximum capacity). Then reduce the trimmer capacity until the output reaches a peak. A second peak may be obtainod, when the trimmer capacity is reduced still further. However, the correct position in which to leave the trimmer is the one using the maximum capacity, that is with the trimmer condenser plates most nearly in a closed position.
5. Set the test oscillator to 6 megacycles and tune in its signal. If necessary, turns may be shifted on the short wave (Band "C") antenna coil to secure maximum output. If turns are shipted. it will be necessary to repeat the trimmer adjustment at 15 megacycles.

As mentioned in the instructions for this receiver, either a conventional type antenna or a doublet can be used. If a doublet is used, the wave band selecting switch automatically changes connections on the broadcast band so that the doublet acts as a conventional antenna. Examination of the schematic will reveal that all three sections of the variable condenser are used only when the wave band selecting switch is in the BROADCAST position. In the short wave positions, ${ }^{B^{\prime \prime}}$ and " C ", the variable condenser section nearest the dial is disconnected.

The 500 K ohms of the volume control is used to supply AVC voltage by utilizing the drop across it, due to the diode current of the 75 tube.

COLONIAL RADIO CORP.

DESCRIPTION


$$
\begin{array}{ll}
\text { R10656B } & \text { Transformer - IF input } \\
\text { R10657A } & \text { Transformer - IF output } \\
\text { K10643A } & \text { Transformer - Power } \\
\text { R8366 } & \text { Socket - 4 prong, speaker } \\
\text { R8315 } & \text { Socket - } 4 \text { prong } \\
\text { R8092 } & \text { Socket - } 6 \text { prong } \\
\text { R10549 } & \text { Socket - Pilot IIght } \\
\text { R10702 } & \text { Speaker } \\
\text { R10655A } & \text { Switch - Wave }
\end{array}
$$



PAGE 5-40 COLONIAL
MODEL 657
Sohematic, Voltage
Trimners


## COLONIAL RADIO CORP.

In order to prevent interference from code stations, when the receiver 1s located near the coast, a wave trap is incorporated in the antenna circuit. Although this trap is shown in the schematic as a coil with a series condenser, actually it consists of two multilayer colls wound on top of each other with one end of each coll left unconnected. The distributed capacity between the coils is represented by the condenser in the schematic. The design of the coil is such that the combination of distributed capacity and inductance is resonant at about 600 meters, which is the frequency used by ships and also is very near the IF frequency of the receiver.

## The 75 AVC-Detector-AF Circuit:

The IF signal existing at the IF output transformer secondary is impressed between the diode plates and the cathode of the 75 tube, in series with the 500 M ohms of the Volume Control and the 50 M ohm resistor. Diode current flows, creating a voltage drop across these resistances. Only the drop across
the Volume Control resistance is used for AVC voltage. The control grid returns of the 6A7 and 78 tubes are connected through filter resistances to one end of the Volume Control. This end is negative with respect to the other end of the control so that the voltage drop across it, due to the diode current, is impressed as negative bias on the control grids of the 6 A 7 and 78 tubes. Any increase in signal strength increases the 75 diode current, increases the voltage drop across the Volume control, and so increases the negative blas of the 6A7 and 78 tubes with resultant decrease in tube amplification. Since increases in signal strength are offset by decreases in tube amplification, the input to the detector tends to remain at a constant value.

Any desired portion of the auaio component across the volume Control may be picked off by the movable arm of the control and fed through the . 01 mfd. condenser to the triode section of the 75 tube. It is there amplified and then coupled to the 43 output tube.

The IF Stages:

1. Connect the output meter (low scale) across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the chassis.
3. Connect the other lead of the test oscillator, in series with a .l mfd. condenser, to the grid of the 78 IF tube, leaving the grid clip attached to the cap.
4. Set the test oscillator to 480 kc and tune the IF output transformer. The locations of the tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the grid of the 6A7 tube and adjust the IF input transformer.
6. Kepeat the adjustments to secure greater accuracy.

Always use as low an output as possible from the test osciilator in order to render the AVC action of the set inoperative.

RF Alignment (Broadcast):
the green antenna leat, oscillator to antenna connected.
2. Set the test oscillator to 1660 kilocycles.
3. Turn the variable condenser plates all the way out. Then adjust
the oscillator trimmer for maximum output. Some of these sets have a trimmer on the oscillator section of the variatle condenser as well as one mounted on the broadcast oscillator coil. In others, the adjusting screw has been removed from the trimmer on the variable condenser and only the trimmer on the oscillator coil used. It will ke found that in sets using both condensers, that marimum output cannot be reacked even though one of the trimmers is screwed all the way in, making it necessary to use the other trimmer. In effect, both trimmers are in parallel when the Wave Switch is in the broadcast position.
4. Set the test oscillator to 1400 kc . and tune in its signal. Then adjust the trimmer on the transiator section of the variable condenser for maximum output.
5. Set the test oscillator to 600 kc. and tune in its signal. Then slovily rotate the variable condenser back and forth a degree or two and, at the same time, adjust the padder until maximum output is obtained.
6. Since the adjustments are interacting to an extent, it is advisable to repeat the entire operation.

Always use as low an output from the test oscillator as possible.

Short Wave Alignment:
Set the test oscillator to 15 megacycles and tune in its signal. Then adjust the trimer on the short wave translator coil for maximum output.

There is an Isolantite base condenser mounted under the chassis immediately below the volume control. This condenser is used to minimize hum.

With the set detuned and the volume control on full, adjust this condenser until the point affording minimum hum is found.

PAGE 5-42 COLONIAL
MODEI 657
Socket Layout
Trimners
Parts List
COLONIAL RADIO CORP.


REPLACENENT PARTS AND PRICE LIST

PART NO.	DESCRIPTION	PRICE
R8297A	Board - Terminal, double	. 04
R8308A	Board - Terminal, triple	. 05
R10859	Cabinet	5.58
R7011A	Clip - Antenne and ground leads	. 04
R11043	Clip - Grid	. 01
R10198	Coil - Antenna	. 56
K10199	Coil - oscillator	. 35
R9565	Coil - Antenna wave trap	. 36
R9829D	Coil - Antenna, short wave	. 73
R9829C	Coil - Oscillator, short wave	1.01
R10605	Condenser - Variable	2.82
R10605A	Condenser - Variable, with pilot light bracket assembly	3.42
R10601	Condenser - Electrolytic, dry, block	3.89
R10197	Condenser - Trimmer, 25 mmf.	. 15
R9975	Condenser - Padding, 325 mmf .	.37
R6444	Condenser - . 1 mfd . 200 volts	. 17
R8301	Condenser - . $] \mathrm{mfd}$. dusl, 200 volts	. 32
R6761	Condenser - . 02 mfd. 600 volts	.18
R8432	Condenser - . 01 mfd .200 volts	.16
R7681	Condenser - .003 mfd. 600 volts	. 16
R6759	Condenser - . 001 mfd miça	. 25
R6760	Condenser - . 0005 mfd . mica	. 20
R8621	Condenser - . 00005 mfd . mica	. 20
R7585	Resistor - 1 megohm, $1 / 3$ watt carbon	. 18
R7226	Resistor = 500 M ohms, $1 / 3$ watt carbon	.18
R6638	Resistor - 200 M ohms, $1 / 3$ watt carbon	. 18
R6637	Resistor - 50 M ohms, $1 / 3$ watt carbon	. 18
R6445	Resistor - 50 M ohms, $1 / 2$ watt carbon	. 20
R7587	Resistor - 10 N ohms, $1 / 3$ watt carbon	. 1.8
R7226	Resistor - 5 M ohms, $1 / 3$ watt carbon	.18
R6634	Resistor - 2 M ohms, $1 / 3$ watt carbon	. 18
R7227	Resistor - 200 ohms, $1 / 3$ watt carbon	. 18
R8922	Resistor - 100 ohms, $1 / 3$ watt carbon	. 18
R8562	Resistor - 400 ohms, 3 watt, flexible	.21
R9360	Shield - Tube	. 09
R8366	Socket - 4 prong	.07
R8092	Socket - 6 prong	.09
R8072	Socket - 7 prong	.10
R8445	Socket - Pilot light	.19
R10600A	Speaker	5.37
R8076	Switch - AC-DC	. 93
R10207	Switch - Wave	. 59
R10208A	Transformer - IF input	1.51
R10209	Transformer - IF output	1.49



## COLONIAL RADIO CORP.

Socket Layout

## ALIGNMENT PROCEDURE

The IF Stages:


#### Abstract

1. Connect the low scale of the output meter across the loud speaker voice coil. 2. Connect the ground lead of the test oscillator to the receiver chassis. 3. Connect the other lead of the test oscillator, in series with a . 1 mfd. condenser, to the grid of the 78 IF tube. Leave the grid clip attached to the cap and the tube shield in place.


4. Set the test oscillator to 480 kc and tune the IF output transformer. The locations of the tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the control grid of the 78 translator tube and adjust the IF input transformer.
6. Repeat the adjustments to secure greater accuracy.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.

RF Allgnment (Broadcast):

1. Couple the test oscillator to the green antenna lead, leaving the antenna connected.
2. Set the test oscillator to 1660 kilocycles.
3. Screw the oscillator padder condenser to approximately three quarters of its maximum capacity.
4. Tum the variable condenser plates all the way out. Then adjust the oscillator trimmer for maximum output.
5. Set the test oscillator to 1400 kc and tune in its signal. Then adjust the translator trimmer, mounted on the varlable condenser section nearer the dial, for maximum output.
6. Set the test oscillator to 600 kc and tune in its signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same time, adjust the padder until maximum output is obtained.
7. Repeat the 1660 kc and 1400 kc adjustments.

Always use as low an output from the test oscillator as possible.

## Short Ware Alignment:

1. Leave the test oscillator coupled to the green antenna lead as for broadcast allgnment.
2. Set the test oscillator to 16 megacycles and tune in its signal. Then adjust the trimer condenser, mounted on the short wave translator coil, for maximum output.

In order to reduce the diatributed capacity and thereby extend the high frequency limit of the receiver, the grid and plate leads to the oscillator coil and oscillator socket must be kept out in the open and as far rearoved from the metal of the chassis as possible.

## TUBE REPLACEMENTT

There are two wood ecrews inside the cabinet, at the upper rear corners. These are used to secure the cabinet top, for shipping purposes only. They can be easily removed if the rear panel of the cabinet is taken off. Once removed, they need not be replaced. To remove the cabinet top then, for tube replacement, take out the single screw at the top center of the rear panel and push the top up and off.



COLONIAL RADIO CORP.

Socket, Trimners


## Model 103

## Specifications

Model 103 is a five tube superheterodyne designed for operation from a six volt automobile storage battery. The " $B^{\prime \prime}$ voltage is furnished by a Crosley Syncronode. The intermediate frequency used is 181.5 kc .

Tubes and Voltage Limits
The following are the tubes and voltages measured with the receiver in operating condition but with no signal to the antenna, and with a battery voltage of 6.3 volts. All voltages are measured from tube contact to chassis with a 300 volt D. C. voltmeter ( 1000 ohms per volt).

Tube	Position	Plate	Screen   Grid	Cathode	Supp.   Grid	Filament
78	R. F. Amplifler	210	100	2	2	6.3
78	Oscillator Modulator	210	100	28	0	6.3
6B7	I. F. Amplifier and Diode Detector	210	100	2.5	6.3	
78	Audio Amplifier	50	20	2.0	2	6.3
41	Output	195	210	16.0		6.3

Voltage limits are plus or minus $15 \%$ of values given.
PARTS LIST-MODEL 103
INSTRUCTLONS FOR ORDERING-Give part namber, deecription of part, and serial number of receiver on which part le to be used. If article wanted is not listed separately, then that part of complete assembly contalning this article should be ordered. Goods ehipped usual trade discounts, and are subject to change without notice.

| Qty. | Part No. | Description <br> RECEIVER CHASSIS | Item | Llet Each | \||aty.1 | Part No. | Description <br> MODEL 409 SYNCRONODE | Item 60 | List Esoh .30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | G48-28807 | Seven Prong Socket 687... | 48 | . 10 | 1 | W 30367 | Condenser . 25 Mfd............... | 60 59 | .30 .50 |
| 1 | G22-2880 ${ }^{\circ}$ | Six Prong Socket 41.......... | 47 | 10 | 1 | W-30366 | Condenser .5 Mfd............... | 59 | . 50 |
| 3 | G39-28807 | Six Prong Socket 78........... | 46 | . 10 | 1 | W-23142 | Condenser . 02 Mfd. ( 400 จ.) | 88 | . 30 |
| 1 | W-27981 | Tube Shield Base................ |  | . 05 | 1 | W-30884 | Condenser . 02 Mfd. ( 800 v.) |  | . 30 |
| 1 | W-27328 | Tube Shleld......................... |  | . 10 | 4 | W-29314 | Rubber Sleeve (to Mount Sync.) ........................... |  |  |
| 1 | G21-24985, | Antenna Coil. <br> Oscillator Coil | 1 | . 40 |  |  | Sync.) …......................... |  | . 15 |
| 1 | G25-24996 | Oscillator Coil..................... Radio Frequency Coil..... | 3 2 | . 50 | 1 | IV-20264 | Terininal Board............... | 45 | . 15 |
| 1 | G7-25968 | Radio Frequency Coil....... | 2 | . 75 | 1 | G2-29029 | MODEL 353-3C SPEAKER <br> Cone Assembly |  | 2.50 |
| 1 | G1-25444 | I. F. Transtormer (1st) ..... | 4 | . 75 | 1 | W-24777 | Fleld Coil................................... |  | 1.00 |
| 1 | G3-25445 | 1. F. Trausformer (2nd)...... |  | . 03 | 1 | G4-24628 | Transformer Assembly....... |  | 1.40 |
| 4 3 | W-25200 W-25024 | Coil Socket Shield (Large) .......................... |  | . 10 | 1 | G4-24628 | MISCELLANEOUS ${ }^{\text {a }}$ |  |  |
| 1 | W-25025 | Coll Shicla (Small) ............ |  | . 10 | 1 | L-30452 | Recaiver Case...................... |  | . 65 |
| 1 |  | Coil Shleld Assembly........... |  | . 15 | 1 | C-30450 | Cover .................................... |  | . 25 |
| 1 | W-292f3 | Coil Bracket.......................... |  | . 05 | 1 | C-30481 | Bottom ............................... |  | . 25 |
| 5 | W-24300 | lusulating Wasuer.............. |  | . 05 | 1 | L-28034 | Remote Control.................... |  | 4.11 |
| 5 | W-21541B | Coil Itetaining Ring.......... |  | . 05 | 1 | W-28102A | Clamp Spring..................... |  | . 15 |
| 1 | L-29783 | Variable Condenser Ging.- | 6, 7, 8 | 3.25 | 8 | W-20070 | Suppressor (Spark Plug).- |  | . 50 |
| 1 | G1-29302 | Coupling Assembly ............. |  | . 40 | 1 | W-20071 | Suppressor (Dist. Head).. |  | . 50 |
| 1 | W-30436 | Volume Control \& Switch.. | 40, 41 | 1.10 | 3 | W-29754 | Elin. Condenser................... |  | 5 |
| 2 | G2-25948 | I. F. Trimmer Condenser.. | 0,11 | . 30 | 1 | W-25784 | Tennaflex ........................... |  | 1.50 |
| 1 | W-25008 | I. F. Condenser IBlade....... | 10 | . 05 | 1 | W-29323 | Mounting Bolt..................... |  | 10 |
| 1 | W-25584 | Mica ..................................... |  | . 05 | 1 | W-29324 | Mounting Washer............... |  | . 05 |
| 1 | R-80 | Serew ................................... |  | . 05 | 1 | 7961 | Mintg. Shakeproof Washer |  | 5 |
| 1 | W-26009B | Adjusting Nut...................... |  | . 05 | 1 | W-29325 | Mounting Nut. |  | . 05 |
| 1 | W-24885 | Wasber ............................... |  | . 03 | 2 | W-30739 | No. $8 \times 1 / 3$ P, K. Screw |  |  |
| 1 | W-25400E | lnsulating Washer.............. |  | . 05 |  |  | (Top \& Bottom) .......... |  | . 05 |
| 1 | W-25007E. | Insulating Washer.............. |  | . 05 | 4 | W-30739 | No. $8 \times 1 / 2 \mathrm{P}$. K. Screw |  |  |
| 1 | W-25440 | Bakelite Washer.................... |  | . 05 |  |  | (Chassis to case) ........... |  | . 05 |
| 1 | O-4 M 20 |  |  | . 05 | 30 | W-31050 | No. $\begin{array}{rll}8 \times 1 / 4 \\ \text { (Case) } & \text { P. } & \text { K. .......................... }\end{array}$ |  | . 05 |
| 1 | G4-28067 |  | 49 | . 35 | 4 | W-31070 | 6-32x $1 / 2$ Screw (Speaker)... |  | . 04 |
| 2 | 21454 | Resistor 1 megohin............ | 34, 35 | . 15 | 4 | W-24074 | Elastic Stop Nut (Speaker) |  | . 05 |
| 1 | 23785 | Resistor 500,000 ohm........... | 37 | . 15 | 4 | O-8 | Flat Washer (Speaker)..... |  | .05 |
| 1 | 21875 | Resistor 100.000 ohin.......... | 36 | . 15 | 3 | W-20800 | Shakeproof Washer (Spr.) |  | . 05 |
| 2 | 22514 | Resistor 750 ohm............... | 39,68 | . 15 | 1 | W -4562 | Solder Lug (Speaker)....... |  |  |
| 1 | W-30127 | Resistor 450 ohm | 28 | . 15 | 1 | G1-25891 | Antenna Wire..................... |  | . 75 |
| 1 | W-21237 | Resistor 60.000 ohm............ | 31 | . 15 | 1 | $W-28010$ $W-31100$ | Antenna Wire Shield.......... | 42 72 | 65 |
| 1 | W-25357 W-2145 | Resistor $750 \mathrm{hm} . . . . . . . . . . . . . . . . ~$ | 33 38 | . 10 | 1 | $W-31100$ $W-31102$ | "A" Cable \& Fuse Assem. |  | 10 |
| 1 | 31094 | Resistor 4,500 ohm............... | 71 | . 15 | 1 | W-20106 | Fuse Carrier Cap............... |  | 05 |
| 2 | W-21084 | Resistor 165 ohm............... | 27,32 | . 15 | 1 | W-20110 | Spring ................................ |  | 05 |
| 1 | 23616 | Resistor 15,000 ohm... | 30 | . 15 | 2 | W-20107 | Washer ................................ |  | 05 |
| 1 | W-26571 | Condenser . 005 Mfd........... | 21 | . 15 | 1 | W-31103 | 10 Ampere Fuse.................... |  | 10 |
| 1 | W-23142 | Condenser 09 Mfd .............. | ${ }^{2} 22$ | . 20 | $88^{\prime \prime}$ | W-31101 | Wire ..................................... |  |  |
| 1 | W-30419 | Condenser 8-8 Mfd.............. | 24, 25 | 1.40 | 1 | W-31076 | Lug ${ }_{\text {Switch }}$ |  |  |
| 1 | W-23635 | Condenser .Of Mfd...... | ${ }_{26}^{23}$ | . 20 | 1 | W-26156A $\mathbf{W}-23191$ |  | 58 | . 25 |
| 2 | W-20389 | Condenser .0005 Mifd........ | 26,70 | . 25 | 1 | W-23191 | Condenser 01 Mrd............... |  | . 15 |
| 1 | W-23615 | Condenser . 05 Mfd............. | 14 | 15 | 1 | W-29298 | Grill Cloth |  | . 20 |
| 1 | W-25438 | Condenser . 1 - 1 Mfd........... | 19,20 | .25 | 1 | B-29308 | Mounting Plate mat............ |  | 20 |
| $\bigcirc$ | W-24049A | Condenser . 1 Mfd.............. | 17, 18 18, | . 15 |  |  | REMOTE CONTROL ${ }_{\text {Drive Shaft Assem. (V. }}^{\text {D. }}$ ) |  | 1.65 |
| 4 | W-27203 | Condenser . 02 Mfd............. | $\begin{aligned} & 16,65 \\ & 68,67 \end{aligned}$ | . 15 | 1 | G8-25888 | Drive Shaft Assem. (V. Ci) |  | 1.65 |
|  |  | MODEL 409 SYNCRONODE | 44 |  | 1 | G1-28035 | Strap Assembly ................. |  | 15 |
| 1 | L-30424 | Cover ................................... |  | . 50 | 1 | W-28029B | Column Bracket |  | 20 |
| 1 | C-30455 | Chassis ............................... |  | . 50 | 1 | G4-26317 | Bracket Assem |  | 30 |
| 1 | I, 29160 | Vibrator Assembly.............. | 55 | 4.50 | 1 | W-29316A | Gear Dial ........................... |  | . 30 |
| 1 | G2-28067 | "A" Choke Assembly......... | 58 | 35 | 1 | W-4807 | Spring Washer ................... |  | . 06 |
| 1 | G7-28045 | Power Transformer............ | 54 | 2.25 | 1 | G5-23472 | Knob |  | 10 |
| 1 | G1-24234 | R. F. Choke Assembly.-.... | 63 | . 15 | 1 | G1-28036 | Key Knob .......................... |  | 20 |
| 1 | G7-28089 | Filter Choke......................... | 84 | 1.45 | 1 | B-28307D | Houslng ............................... |  | 0 |
| 1 | W-29808 | Condenser 12 Mfd.............. | 62 | 1.35 | 1 | W-28025C | Cover |  | 80 |

PAGE 5-2 CROSLEY


## Model 169

## Specifications

Model 169 is a four-tube superheterodyne designed for operation from AC electric circuits. It uses an intermediate frequency of 456 kc .

Tubes And Voltage Limits
The following are the tubes and voltages measured
with the receiver in operating condition but with no signal to the antenna circuit, and with a line voltage of 117.5 volts ( 235 for a 220 volt receiver). All voltages, except filament, are measured from tube contact to chassis with a 500 volt ( 1000 ohms per volt) DC voltmeter. Filament voltages are measured with a low range AC voltmeter.

Tube	Position	Plate	Screen   Grid	Cathode	Supp.   Grid	Filament
58	Oscillator-modulator	165	82	22	0	2.5
6F7	I. Detector	165	82	2	0	2.5
2A5	Output	158	165	10	4.5	
80	Rectifier	295			4	

Voltage limits are plus or minus $\mathbf{1 0 \%}$ of values given.

PARTS LIST-MODEL 169
INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used. If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.

* Figures in 2nd last column refer to parts shown in diagram.


PAGE 5-4 CROSLEY
KODEI 169
Schematic
Socket Layout
CROSLEY RADIO CORP.



PAGE 5-6 CROSLEY
HODEL 178
Schematio, Voltage
Parts List, Socket
CROSLEY RADIO CORP.


## Model 179

## Specifications

Model 179 is a seven tube superheterodyne de signed for operation from AC electric circuits. The intermediate frequency used is 181.5 kc .

Tubes and Voltage Limits
The following are the tubes and voltages meas-
ured from tube contact to chassis with the receiver in operating condition but with no signal to the antenna circuit, and with a line voltage of 117.5 volts ( 235 volts for 220 volt receivers). All voltages, except filament, are measured with a 500 volt ( 1000 ohms per volt) DC voltmeter. Filament voltages are measured with a low range AC voltmeter.

Tube	Position and Use	Plate	Screen Grid	Cathode	Supp. Grid	Filamen
58	RF Amplifier	260	125	3	3	2.5
58	Oscillator-modulator	260	125	34	0	2.5
58	IF Amplifier	260	125	${ }_{0}^{4}$	4	2.5
56 56	AF Amplifier	50		4		2.5
2 A 5	Output	250	260	16.5		2.5
80	Rectifier	355				

## PARTS LIST-MODEL 179

INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used. If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.



CROSLEY RADIO CORP.

## Model 180

## Specifications

Model 180 is a ten tube superheterodyne designed for operation from AC electric circuits. It uses an intermediate frequency of 181.5 kc .

## Tubes and Voltage Limits

The following are the tubes and voltages meas- ured with a low range a. c. voltmeter

Tube	Position and Ose	Plate	Screen   Grid	Voltages	Cathode

## PARTS LIST-MODEL 180

INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.


Schematio，Socket CROSLEY RADIO CORP．

$$
\bar{m}
$$

$$
\frac{0}{3}
$$



$$
\begin{aligned}
& \text { 华品嵒品 } \\
& \text { Tube Type } \\
& \text { だ } \\
& \text { ¢ 독 } \\
& 8
\end{aligned}
$$

CROSLEY RADIO CORP．

## Model 181

## Specifications

Model 181 is a six tube superheterodyne designed for operation from AC electric circuits. The intermediate frequency used is 456 kc .

Tubes and Voltage Limits
The following are the tubes and voltages meas-
ured from tube contact to chassis with the receiver in operating condition but with no signal to the antenna circuit, and with a line voltage of 117.5 volts ( 235 volts for 220 volt receivers). All voltages, except filament, are measured with a 500 volt ( 1000 ohms per volt) DC voltmeter. Filament voltages are measured with a low range $A C$ voltmeter.

Tube	Position and Use	Plate	Screen Grid	Volto   Cathode	Supp.   Grid	Filament
2 A 7	Oscillator	165		-9.5		
	Modulator	240	110	2.5		2.45
58	IF Amplifier	236	110	0		2.45
56	Diode Detector and AVC	52	27	0		2.45
2 A 5	Output ${ }^{\text {Amplifier }}$	222	240	0		2.45
80	Rectifier	330				4.8

Chassis to B- 93 volts.
Bias voltages are obtained by a resistor divider shunting the speaker field which is in $\mathbf{B}$ - circuit, from rectifer to chassis.

IF Amplifier bias (Grid to B-) 28 volts.
AF Amplifier bias (Grid to $\mathrm{B}-$ ) 12 volts.
Output bias (Grid to B-) 18 volts.
PARTS LIST-MODEL 181
INSTRUCTICNS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used. If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.


CROSLEY RADIO CORP.


Specifications
Model 182 is a five tube superheterodyne designed for operation from AC or DC electric circuits. The intermediate frequency used is 456 kc .

Tubes and Voltage Limits
The following are the tubes and voltages measured
from tube contact to negative line ( $\mathrm{B}-$ ) with the re ceiver in operating condition but with no signal to the antenna circuit (antenna coiled up), and with a line voltage of 117.5 volts, 60 cycle a. c. All voltages except filament, are measured with a 500 volt ( 1000 ohms per volt) d. c. voltmeter. Filament voltages are measured with a low range $A C$ voltmeter.
PARTS LIST-MODEL 182
INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used. If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped
on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.



## Model 184

## Specifications

Model 184 is a four-tube superheterodyne designed for operation from AC electric circuits. It uses an intermediate frequency of 456 kc .

Tubes and Voltage Limits
The following are the tubes and voltages meas-

Tube	Position	Plate	Screen   Grid	Cathode	Supp.   Grid.	Filament
58	Oscillator-modulator	165	82	22	0	2.5
6 F7	I. F. \& Detector	165	82	2	0	2.5
2 A5	Output	158	165	10	2.5	
80	Rectifier	295		4.9		

## PARTS LIST-MODEL 184

INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.

* Figures in $2 n d$ last column refer to parts shown in diagram on page 18.

Q19.	Tart No.	Description
1	W20264	Ant.-Grd. Teruinal .............
1	G28-24093.	Antenng Coil .........................
1	G12-2400	Oscillator Coil .........................
1	G7-25444	1st I, F. Transformer
1	G9.93i45	?nd I F F Transformer
1	W95024	Coil Shield (Large) .............
3	W25025	Cuil Shield (Small) ......
4	W 25200	Coll Socket ..........................
4	W24801	Insulating Washer
4	W21541B	Coil Retainiug Ring ...........
1	B31784	Variable Condenser Ga
1	G15-25050	Dial Assem. ..................
1	G2-25048	1st I. F. Prim. Trim. Cond.
1	G10-25948	2nd I. F. Prim. Trim. Cond.
1	W27548	1st I. F. Sec. Trim. Cond.   (Adjustable Blade Only)
1	W25584	Mica ........................................
1	R80	Screw
1	W26069B	Adjusting Nut
1	TV24865	Metal Washer
1	W25450B	Insulating Washer
1	W25007B	Insulating Washer
1	W25446	Bakelite Washer (Large) ...
1	04	Washer .................................
1	M20	Rivet
1	G24-27456	Socket -58
1	G49-27456	Socket 6-F-7
1	G43-27456	Socket 2-A-5
1	G6-27456	Socket -80
2	W 26010	Tube Shield Base


	List Price	Qty.	Part No.
1	. 65	1	W27328A
44	. 65	1	B26009C
3	. 40	1	B21401B
4	. 60	1	W31009
5	. 50	1	W 210573 B
	. 10	2	G1-23472
	. 10	1	G1-28500
	. 05		G2-28500
	. 05		G3-28500
	. 05		
	2.75		
	. 40		
7	. 30		
9	. 15	1	W27204
8	. 05	1	W24049A
		1	W93191A
	. 05	1	W25537A
	. 05	1	W20592A
	. 05	2	W27203
	. 0.5	1	W29150A
	. 05		
	. 05		
	. 03		
	. 05	1	W25937
	. 05	1	W 31094
32	. 10	1	W24990
33	. 10	1	W21454
34	. 10	1	W28471
35	. 10	2	W23785
	. 05	1	W25521



*	$\begin{aligned} \text { List } \mathbf{P r} \\ \mathbf{. 1 0} \end{aligned}$
	. 10
31	25
43	25
40-41	1.00
	. 20
37	2.25
38	3.00
39	3.25
12-13	. 25
14	. 15
15	. 25
16-17	. 30
18	20
10-11	. 13
21	2.90
22	. 15
23	. 15
24	. 20
26-27	. 15
28-30	. 15
29	. 15

## SPEAKER PARTS * 36

Magnavox
$324-2 \mathrm{M}$
Spec. 1300
28761
28763
28764
Jensen
S42-2J
Spec. 2617
29934
29436
29437

|  |  |
| :--- | :--- | :--- |
| Cone \& Volce Coil Assem. | 2.00 |
| Field Coil |  |
| Transformer | 1.10 |
|  | 1.25 |

342 A5 OUTPUT



CROSLEY RADIO CORP.

## Alignment Procedure . .

To align the receiver at intermediate frequency it is necessary that there be available a suitable modulated oscillator capable of adjustment to 456 Kc . with good accuracy. This oscillator should have an attenuator so that the strength of the oscillator output can be adjusted. Connect the high side of the output of the modulated oscillator, which has been adjusted to 456 Kc . to the control grid connection on the top of the 6 F 7 tube through an .02 mfd . series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I. F. transformer condensers for maximum signal output. To make this adjustment it is necessary that a standard $5 / 16$ " (across flat) hexagon socket wrench

## Automatic Volume Control Circuit

Diode voltage is developed across resistor 34 which is the level control. This voltage is fed back through isolating resistor, part No. 26, to the grid return of the antenna coil, part No. l, thereby exerting automatic volume control voltage on the pentode section of the 6 F 7 oscillator modulator. No AVC voltage is impressed on the 6B7 I. F. amplifier because in so doing serious distortion might result. AVC voltage is also impressed on the 6D6 A. F. amplifier by means of coupling resistor 57.

## Method of Biasing . . .

Both the pentode and triode section of the 6 F 7 oscillator modulator obtain their bias from the cathode resistor, part No. 22. The 6B7 I. F. amplifier section obtains its bias from the cathode resistor, part No. 25 . Bias for the $6 \mathrm{D} 6 \mathrm{~A} . \mathrm{F}$. amplifier is also obtained from resistor No. 25, while the bias for the output type 42 is obtained from resistor part No. 30.
be used for the upper condenser, and a small screw driver fitting inside of the nut hole for adjustment of the lower condenser. Always make this I. F. adjustment very carefully and go over the adjustment several times to be sure that the peak has been reached. To align a receiver at broadcast radio frequency, it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc. together with a suitable attenuator and dummy antenna be available. Set the oscillator at 1400 Kc . and connect the high side of the oscillator to the receiver antenna terminal through a .0002 mfd . (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial. Now adjust the oscillator shunt trimmer which is located on the front section of the gang condenser until
the signal is heard best. Without changing the gang condenser setting, adjust the antenna trimmer located on the rear section of the gang condenser. It is necessary that these adjustments be gone over several times until no further improvements can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. Now rotate the dial until it reads 60 and set the modulated oscillator at approximately 600 Kc . The approximate sensitivity of the receiver may be checked here and it is possible that by slight bending of the gang condenser plates some improvement may be made. It is very essential, however, that this bending of plates be done with extreme care and by someone who is experienced in this operation.

## Analysis of Signal Channel...

The signal enters at the antenna lead-in terminal through the bayonet socket and then goes to the antenna coil, part No. 1. There is optionally offered a wave trap to be used with this receiver when it is operated in the neighborhood of commercial code stations using frequencies in the region of 456 . This wave trap prevents these code stations from riding on through and being amplified by the intermediate frequency amplifier. The signal is tuned by the rear section of the gang condenser, part No. 3, and then impressed on the pentode grid of the 6F7. The 6F7 triode section is equipped with a conventional oscillator circuit tuned by the front section of the gang condenser, part No. 4. The oscillator output is impressed on the cathode of the 6F7 through a pickup coil. The output therefore of the 6F7 pentode section is intermediate frequency which is impressed on the first I. F. transformer, part No. 5. This I. F.

Type	Where Used
6F7	Osc. Mod.
6B7	I.F. and Diode
6D6	A.F.
42	Output
All	
viltages	are plus or minu

All voltages are plus or minus $10 \%$ and measured to chassis with 500 volt 1000 ohm per volt voltmeter. Battery voltage 6 volts.
transformer is double tuned. The signal is then fed to the grid of the pentode section of the 6B7 I. F. amplifier which tube has a double tuned output I. F. transformer, part No. 8, in its plate circuit. This amplified output is impressed on the two diodes of the 6 B 7 in parallel and diode voltage is developed across level control, part No. 34. The DC component of this voltage is fed forward through resistor 57 to the grid of the 6D6 A. F. amplifier, but the audio frequency component is fed from the level control contact arm through coupling condenser 56 to the grid of the 6 DGA . F. amplifier. In this way a bias depending on the strength of the signal is impressed on the grid of the 6 D 6 A . F. amplifier while the actual audio frequency voltage is determined by the setting of the level control. The amplified audio frequency output of the 6D6 is fed through coupling condenser No. 18 to the grid of the 42 output tube and is then amplified and fed to the speaker part No. 43. Condenser No. 19 serves to keep the impedance of the output system more nearly constant.

Ef	Ep	Eg	Ek	Esg	Eposc	Esup
6.0	230	0	8	100	60	-
6.0	230	0	3	100	-	-
6.0	60	0	3	25	-	3
6.0	220	0	16	230	-	-

General Description...
Chassis 5M3 is used in the Fiver Jr. It is a low-priced but highly efficient 5 -tube superheterodyne receiver covering the frequency range

# CROSLEY RADIO CORP. 

of $535-1750 \mathrm{Kc}$. The internediate frequency is 456 Kc .

## Tubes Used and Their Function . . .

The tubes used are 6D6 oscillator

Type	Where Used	Ef	Ep	Eg	Ek	Esg	Esup
6D6	Osc-Mod.	6.3	235	29	32	120	0
6D 6	I.F.	6.3	235	0	3	120	3
76	Detector	6.3	30	0	10	-	-
42	Output	6.3	225	0	18	235	-
80	Rectifier	4.9	-	-	310	-	

All voltaçes are measured to chassis voltages and are plus or minus $10 \%$. All DC are voltages measured to chassis at 117.5 volt line with 1000 ohms per volt, 250 -volt volt. meter. Power demand 50 watts, 110 volts, 60 cycles.

## Method of Biasing . . .

Referring to the circuit diagram, it will be seen that the 6D6 oscillator modulator tube has a more or less complex biasing system. This is because resistor No. 22 in the cathode circuit creates a bias for the input section of the tube, while resistors 22 and 23 in series create the bias for the suppressor grid oscillator section. The 6D6 I. F. amplifier obtains its bias from the volume control, part No. 40. There is a fixed limiting resistance in this volume control so that at the full volume position there is still the bias indicated in the voltage chart, and as the volume is reduced, the bias on the 6D6 I. F. amplifier increases. The 76 detector obtains its bias from the cathode resistor, part No. 24 , while the 42 output tube obtains its bias from its cathode resistor, part No. 29.

## Volume Control <br> Circuit . . .

As explained above, as the volume control is backed off of the maximum sensitivity position, cathode bias is inserted in the 6D6 I. F. am. plifier circuit. At the same time, resistor 40 , being connected across the antenna and ground, tends to short circuit the antenna circuit. Thus, reduction in sensitivity is ob. tained simultaneously by reducing
the gain in the I. F. amplifier and reducing the effectiveness of the antenna.

## Anclysis of Signal

 Channel...Starting with the antenna, the signal is fed through the antenna coil, part No. 2, and tuned by the radio frequency section of the gang condenser, part No. 6. The signal is then impressed on the control grid of the GD6 oscillator modulator. This tube is so connected that the combination cathode, suppressor grid, and plate of the 6D6 tube form a conventional triode oscillator. The oscillator frequency is determined by the setting of the gang condenser oscillator section, part No. 6, in conjunction with oscillator coil, part No. 3. The plate shape of the oscillator section of the gang condenser is such that a constant I. F. frequency of 456 Kc . is present at the primary terminals of the first I. F. transformer, part No. 4. This I. F. transformer is double tuned and the I. F. signal is then impressed on the grid of the 6D6 I. F. amplifier. The amplified output of this tube is im. pressed on the second I. F. transformer, part No. 5 , which is single tuned, with condenser part No. 9. To prevent overload being serious in the 76 detector circuit, resistor No. 25 is used so that when grid current is drawn the bias on the tube increases very rapidly. In the plate circuit of the 76 detector there is present in addition to the normal DC plate current, both intermediate frequency and audio frequency. The intermediate frequency is bypassed by condenser No. 16, while the audio
frequency is passed on to the output tube grid through condenser No. 17. The grid circuit of the output tube is completed through resistor No. 28. The amplified audio output of the type 40 tube is, of course, fed to the speaker in the usual manner.

## Power Supply System ...

The power supply system consists of a transformer, part No. 37, for 110 -volts, 60 cycles, part No. 38 for 110 -volt 25 cycles, and part No. 39 for 220 volts, a type 80 rectifier tube, electrolytic condenser part No. 19, the speaker field as a filter choke, and electrolytic condenser part No. 20.

## Alignment Procedure . . .

To align the I. F. amplifier, it is necessary that there be available a suitable modulated oscillator capable of adjustment to 456 Kc . with good accuracy. This oscillator should have an attenuator, so that the strength of the oscillator output can be adjusted. Connect the high side of the output of the modulated oscillator, which has been adjusted to 456 Kc . to the control grid connection on the top of the 6D6 oscillator modulator tube through an .02 Mfd series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the three I. F. tuning condensers located on the top of the chassis for maximum sig. nal output. To make this adjustment, it is necessary that a standard $1 / 4$ " (across flats) hexagon socket wrench be used. The wrench is preferably insulated. Always make these adjustments very carefully and go over

MODEL Fiver Jr. (5M3)
Schematic, Socket
Parts List
CROSLEY RADIO CORP.

them several times to be sure that the peak has been reached.

To align the receiver at radio frequency it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc . together with a suitable attenuator and dummy antenna be available. Set the modulated oscillator to 1400 Kc . and connect the high side of the oscillator to the receiver antenna terminal
to the reciver antenna terminal
through a .0001 (dummy antenna) condenser and the low side to receiver chassis. Now, with dial set at 140 , adjust the gang condenser oscillator trimmer, which is in the rear section of the gang until the signal is heard best. Then adjust the R. F. trimmer, which is in the front section of the gang condenser, for maximum signal. The set is now
aligned at 1400 Kc . and by setting the modulated oscillator to 600 Kc ., the set may be rechecked at this point. It will be sometimes found that a slight bending of the gang condenser plate will help the sensitivity at 600 Kc . This operation should be done very carefully so that no short circuiting of the condenser plates result.

## PARTS LIST-MODEL 5M3

* Figures in znd last column refer to parts shown in wiring diagram of Model 5M3									
Qty.	Part No.	Description	Item	List Each	Qty.	Part No.	Description	$\stackrel{*}{\text { Item }}$	List Ea
1	G7-32000	Antenna Coil .........	2	. 35	1	G25 - 27456	42 Socket ............................	34	. 10
1	G6-32002	Osc. Coil	3	. 40	1	G6-27456	80 Sorket	35	10
1	G3-32004	1st I. F. Trans. Coil	4	. 55	2	Wetiolo	Tube Shield Base (GD6) ....		10
1	G4-32004	Ond I. F. Trans. Coil ...........	5	. 55	2	1326009C	Tube Shield ........................		05
$+$	W25200	Coil Socket ...........................		. 05	1	B21491C	Cable \& Plug ........................	31	. 50
?	W20024A	Coil Shield		. 10	1	65-28500	Power Trans. 60 cy .110 V .	37	$3.0 n$
2	W25025A	Coil Shield		. 10		G6-28500	Power Trans. 25 cy. 110 V .	38	4.00
4	W 28891	lusulating Washer .....		. 05		G7-28000	Power Trans. 23 cy . 220 V .	30	4.00
4	W 21541 B	Retaining Ring .................		. 05	1	LW-20264	Ant.-Gud. Terminal ............	1	. 15
1	G3-33001	Tuning Condenser Gang ....	44	2.25					
1	G19-9500	Dial Assen, ......................		. 35			FILTER \& BY-HASS		
1	G12-27812	Dial Light Brkt Assm. .......		20			CONDENSERS		
		1 Cond. ............................	7	. 30	1	W25337A	0.001-0.03 Mfd. 400 V .400 V .	16-17	. 30
1	Wre7st8	1st I. F. Sec. Tuning Cond.			1	W23191A	0.01 Mfd. 400 V. .................	18	. 25
		Adj. Rlade ..................	8	. 05	1	W3080a	0.01 1ffd ${ }^{(100)} \mathrm{V}$.	43	. 20
1	W25008A	2nd I. F. Sec. Tuning Cond.			1	W286\%	$0.1-0.1$ Mfd. $200 \mathrm{~V}^{-200} \mathrm{~V}$.		25
	W3147	Adj. Blade   First Blade	9	. 05	2	W 28523	$0.02-0.02$ 200 V. Mfl. ..............................	$47-48$   $49-50$	25
$\stackrel{9}{2}$	W2.584	Mica Insulator .....................		. 05	1	W29150B	8.-6.-12. Mfd. 450 V. -450 V.-	19-20	
$\stackrel{9}{9}$	W9ion9B	Adjusting Nut .....................		. 05			25 V. ..............................	21	2.60
$\stackrel{9}{2}$	W2544;	Bakelite Washer ..................		. 05					
$\stackrel{2}{2}$	W-24865	Metal Washer ......................		. 05			RESISTORS		
$\stackrel{2}{2}$	W25450B	Insulating Washer		. 05		W25937	2750 Om ...	22	. 15
$\stackrel{2}{2}$	W25007B	Insulating Washer ..............		. 05	1	31094 21237 A	${ }^{4500}$ Ohm	23 24	. 15
$\stackrel{9}{2}$	O-4 $\mathrm{M}-20$			. 05	1	212374 21454	60000 Ohm .......................................	24 25	15
$\underline{9}$	M80	4-36x $3 / 4 \mathrm{Rd}$. Hd. Mach.		. 0	1	W27120	25000-8500 Ohm ..........................	26-27	40
		Screw ...............		. 05	1	23785	500000 Ohm .........................	28	15
1	W96573B	Vol. Control \& Line Switeh	40-41	1.10			750 Ohm .............................	$\stackrel{29}{3}$	. 20
$\stackrel{2}{2}$	G75-27456	fiD6 Socket ...........................	32	.10	1	21455	300000 Ohm ..........................	30	. 15
1	G80-27456	76 Socket ..............................	33	. 10	2	W32352	K nob ......................................		. 10

## General Description. . .

Chassis 5V1 is used in the DeLuxe Fiver and DeLuxe Fiver Lowboy. It is a 5 -tube 3 -gang automatic volume control dual band receiver. The frequency bands are 535 to 1720 Kc . and 1650 to 4.500 Kc . The intermediate frequency is 181.5 Kc .,

Type	Where Used	Ef
$6 A 7$	Osc-Mod.	6.5
$6 D 6$	I.F. F.	6.5
$6 B 7$	Diode-AF	6.5
42	Output	6.5
80	Rectifier	5.1

All voltages are plus or minus $10 \%$. All DC voltages are measured to chassis at 117.5 line with 1000 ohms per volt 250 -volt voltmeter. Power demand is 50 watts at 110 volts 60 cycles.

## Method of Biasing . . .

Referring to the circuit diagram, it will be seen that the input section of the 6A7 oscillator modulator obtains its bias from the cathode resistor, part No. 30, while the oscillator section of the same tube gets its bias from the grid leak and condenser combination, in which part No. 31 is the grid leak and part No. 12 is the grid condenser. Bias for the remainder of the tubes is obtained from the voltage divider network connected across the speaker field, which also is the filter choke. Resistors 41,42 and 43 form its voltage divider network, and the bias voltage applied to the 6D6 I. F. amplifier is that voltage drop across resistor 41 . The audio frequency amplifier section of the 6B7 tube obtains its bias from the drop across resistor 41. The grid circuit is completed through volume control part No. 29. The output tube bias is the drop across the combined resistors 41 and 42, completed, of course, through resistors 39 and 56.

## Automatic Volume Control Circuit ...

Automatic volume control voltage is generated across resistor 34 and is fed back through filter resistor 33 to the 6A7 control grid via the switch

CROSLEY RADIO CORP.
the use of which insures adequate selectivity.

Ef	Ep	Eg	Ek
6.5	240	0	3
6.5	240	-3.5	0
6.5	30	-3.5	0
6.5	230	-18	0
5.1	-	-	240

and second secondary in the preselector system. No automatic volume control is exerted on the I. F. amplifier stage, which is the 6D6, because in so doing there is a serious danger of introducing distortion.

## Analysis of Signal Channel . . .

The signal enters at the antenna terminal and when the switch is thrown to the broadcast position flows through the antenna coil primary. In the first secondary circuit it is tuned by means of one section of the gang condenser, part No. 5, and then due to the inductive coupling between the first secondary and the second secondary, signal is fed over to this latter coil where it is tuned by another section of the gang condenser, part No. 5. This signal is impressed on the grid of the oscillator modulator tube. The oscillator section of this tube is tuned by the specially-shaped third section of the gang condenser, part No. 5, in conjunction with oscillator coil, part No. 2. The frequency of the oscillalator is such that a constant intermediate frequency of 181.5 kilocycles is present in the plate circuit of the first detector or oscillator-modulator tube. This intermediate frequency signal is fed to the first I. F. transformer, part No. 3, which transformor is double tuned. The signal is then fed to the grid of the 6D6 I. F. amplifier and then the amplified output is fed to the second I. F. transformer. part No. 4, which transformer is also double tuned. The I.

MODEL Deluxe Fiver-L-B
(Chassis 5V1)
Voltage,Data, Parts List
Tubes Used and Their Function..
The tubes used are 6A7 oscillatormodulator, 6D6 I. F. amplifier, 6B7 diode and audio frequency amplifier, 42 output, and 80 rectifier. The tube voltages are shown in the table below:

Esup	Eg-osc	Ep-osc
0	-15	125
0	-	-
-	-	-
-	-	-

F. signal is then impressed on the diode plates in parallel. In this stage there is developed across resistor 34 a DC diode voltage, an audio frequency voltage, and some intermediate frequency. The audio frequency and intermediate frequency signals pass through coupling condenser, part No. 20, but the filter resistor, part No. 35, excludes most of the intermediate frequency so that mostly audio frequency is present across resistor 29 , the volume control. This audio frequency is then amplified through the pentode section of the 6B7 tube and the amplified audio output is fed through coupling condenser 18 to the grid of the output tube type 42. The output of the type 42 tube is fed to the speaker in the conventional manner. Resistor 56 in the grid circuit of the output tube acts as a further filter for whatever intermediate frequency might still be present and also tends to suppress distortion at extremely loud volume. Condenser part No. 16 is connected across the speaker transformer and tends to hold the impedance of the speaker load more constant at the higher audio frequencies.

For the high frequency band the signal channel is slightly different in that the first section of the preselector is not used. Instead the signal is fed directly over to the second secondary through coupling condenser part No. 10. The switch is now connected into the tap on the second secondary so that part of this secondary acts as an antenna primary and the balance as the high fre-

MODEL Deluxe Fiver, I-E
(Chassis 5V1)
Schematic,Alignment
Socket Layout
quency secondary. The oscillator coil is tapped in the usual manner simply to reduce inductance.

## Power Supply System ...

The power supply system consists of a transformer part No. 45 for 110 volts 60 -cycle, part No. 46 for 110 volts 25 -cycle, part No. 47 for for 220 volts, a rectifier tube type 80, the speaker field as the filter choke, and filter condensers parts 24 and 25 . In this circuit the filter choke is included in the negative leg of the power supply system, because in so doing it is possible to use the drop across the filter choke for biasing, and eliminates the use of a large bypass condenser on the cathode of the output tube, type 42 . At the same time, better audio quality for the lower notes is obtained than with the ordinary bypass condenser circuit.

## Alignment Procedure...

To align the I. F. amplifier, it is necessary that there be available a suitable modulated oscillator capable of adjustment to 181.5 Kc . with good accuracy. This oscillator should have an attenuator so that strength of the oscillator output can be adjusted. Connect the high side of the output of the modulated oscillator, which has been adjusted to 181.5 Ke . to the control grid connection on the top of the 6AT tube, through an .02 Mfd . series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I. F.

CROSLEY RADIO CORP.

transformer condensers, three of which are located on top of the chassis and one in the rear of the chassis, for maximum signal output. To make this adjustment, it is necessary that a standard $1 / 4^{\prime \prime}$ (across flats) hexagon socket wrench be used. This wrench should be insulated. Always make these I. F. adjustments very carefully and go over the adjustments several times to be sure that the peak has been reached.

To align the receiver at broadcast frequencies it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc . together with a suitable attenuator and dummy antenna be available. Set the oscillator to 1400 Kc . and connect the high side of the oscillator to the receiver antenna terminal through a .0001 (dummy antema) condenser. Turn the tuning control of the receiver to 140 on the dial. Now adjust the oscillator trimmer on the gang condenser (the oscillator section is in the rear of the gang) until the signal is heard best. Without changing the gang condeuser setting, adjust the remaining two sections of the gang condenser. The gang con-
denser adjustment may be accomplished with an ordinary screwdriver. It is necessary that these adjustments be gone over several times until no further improvement can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. The performance of the receiver may now be checked at 600 Kc . by setting the modulated oscillator to 600 Kc . and the receiver dial to that point around 60, which gives best reception. Sometimes it is possible to make a slight improvement in the performance at this point by bending some of the gang condenser plates slightly. This operation should be done very carefully so that no short circuiting of the condenser plates results.

The receiver may be checked in the higher frequency band if a modulated oscillator, capable of covering frequencies of 1700 to 4000 is available. It is not necessary, however, to align the receiver at these frequencies because if the receiver is properly aligned at broadcast frequencies it will be in alignment at the higher frequencies.


## CROSLEY RADIO CORP.

## General Description..

Chassis 5 Hl is used in the Model Fifty and Model Fifty Lowboy. It is a 5 -tube short wave and broadcast chassis employing the latest superheterodyne circuit, in which has been incorporated a high efficiency tuned radio frequency stage for both short wave and broadcast. The frequency ranges covered are 535 to

1750 Kc ., which is the normal broadcast band and the lower frequency police band, and 5700 to $15500 \mathrm{Kc}$. , which is the short wave or high frequency band. The intermediate frequency is 456 Kc . and while there is only one intermediate frequency stage, adequate selectivity is obtained through the use of very high efflciency I.F. transformers, in addition to the three-gang condenser.

## Tubes Used and Their Function . . .

The tubes used are 6F7 radio frequency amplifier and audio frequency amplifier, 6A7 oscillator modulator, 6 B 7 intermediate frequency amplifier and diode detector, 42 output tube and type 80 rectifier. The tube voltages are shown in the table below:

Type	Where Used	Ef	Ep	Eg	Ek	Esg	Esup	Epl	Egl
6F7	R.F.-A.F.	6.5	250	-3.5	0	125	-	35	-3.5
6A7	Osc.-Mod.	6.5	250	-3.5	0	125	-	190	-15.0
6B7	I.F.-Diode	6.5	250	-3.5	0	125	-		
42	Output	6.5	230	-18	0	250			
80	Rectifier	5.1							

All voltages are plus or minus $10 \%$. All D.C. voltages measured to chassis at 117.5 volt line with 1000 ohms per volt, 250 -volt voltmeter. Power demand 50 walls, 110 volts, 60 cycles.

## Method of Biasing . . .

Referring to the circuit diagram attached, it will be seen that the bias for the pentode section of the 6F7 tube is obtained from the drop across resistor No. 52. Resistors Nos. 52, 53 and 54 form a voltage divider network across the speaker field, which field also acts as a filter choke. The tap between resistors Nos. 52 and 53 may be followed through resistors Nos. 48 and 47 and thence to the grid return of the 6F7 pentode section. The cathode of the 6 F7 returns to the ground, as does also the lower end of resistor No. 52, therefore the drop across resistor No. 52 is impressed on the grid of the pentode section of the 6F7 tube. The grid of the pentode section of the 6F7 returns, of course, through the band change switch. The same condition exists for the grid section of the 6A7 tube. The $6 A 7$ also obtains its hias from the drop across resistor No. 52 but in this case this voltage is fed through resistor No. 48 only and then to the grid return of the 6A7 tube. The oscillator section of the 6A7 obtains its bias, of course, from the grid leak and condenser combination, resistor No. 56 being the low frequency grid leak and resistor No. 57 being the high
frequency grid leak. The bias for the pentode section of the 6 B 7 tube is also obtained from the voltage drop across resistor No. 52 but in this case this voltage is not fed through any filter resistor. Now returning to the triode section of the 6 F7, which section is an audio amplifier, it will be found that the bias for this section is also obtained from the drop across resistor No. 52 and through volume control part No. 70. The bias for the output tube type 4.2 , must be greater than that for the other tubes and it is generated due to the drop across resistors 52 and 53 in series and is fed through the grid leak, part No. 51.

## Automatic Volume Control Circuit . . .

Automatic volume control voltage is developed in the diode circuit across resistors 35,47 and 48. Since resistor 48 returns to the junction between resistors 52 and 53, a delay voltage is supplied and this voltage is equal to the drop across resistor 52 . The audio frequency diode resistor is part No. 49 and it will be noted that it returns directly to ground which is the same point that the low potential end of resistor 52 relurns. Automatic volume control is exerted on the 6F7 pentode section which is the radio frequency stage. While the full diode voltage is that drop across resistors 35,47 and 48 in series, only the voltage across 47 and 48 is impressed on the radio fre-
quency amplifier. In a similar manner automatic volume control is exerted on the 6A7 control grid and this voltage is obtained from the drop across resistor 48. No automatic volume control is exerted on the intermediate frequency amplifier stage, which is the 6B7, because in so doing there is serious danger of introducing distortion.

## Analysis of Signal Channel . . .

Starting with the antema, the signal enters switch contacts, part No. 2l, at which point, depending upon the position of the switch, it will flow either to the broadcast or short wave antenna coil primary, parts Nos. 1 and 2 respectively. Tuning is accomplished by the first section of the gang condenser, part No. 20, connected in the secondary circuit of the antenna coil. The signal is then impressed on the radio frequency pentode grid of the 6F7 tube and is amplified by the tube. The output of the 6F7 tube goes into the primary of the inter-stage radio frequency transformer, part Number 3 or 4 , depending on whether the switch is connected to the low or high frequency position. The secondaries of the interstage coils are again tuned by another section of the gang condenser, part No. 20, and the signal is then impressed on the control grid of the 6A7 oscillator modulator tube. The oscillator section of the 6A7 tube uses the oscillator coils 5 and 6 for the low

PAGE 5-24 CROSLEY
MODEL $50,50 \mathrm{LB}$ ( 5 HI )

Alignment, Notes
ana Minn nequency bands respectively, and the oscillator is tuned by the third section of the gang condenser, part No. 20. In this tube the frequency of the signal is changed from radio frequency to 456 Kc ., the intermediate frequency. The signal passes from the plate of the 6A7 tube to the first intermediate frequency transformer, part No. 7, and the primary and secondary of this transformer are both tuned to obtain maximum selectivity. The output of the secondary of the transformer is impressed on the control grid of the 6B7 tube in which the intermediate frequency signal is amplified and fed to the second intermediate frequency transformer, part No. 10, which transformer is also tuned in both the primary and secondary circuits. The signal is now impressed directly on the audio frequency diode, in the 6B7 tube and through condenser No. 27 on the automatic control diode of the same tube. In the audio frequency diode the signal is converted from intermediate frequency to audio frequency which audio frequency is present across resistor 49 and condensor 46. There is also a direct current voltage and some intermediate frequency also present here. The audio frequency signal is separated from the direct current voltage by condenser 45 and whatever intermediate frequency there may be left in this circuit is filtered by resistor 50 and the remaining pure audio frequency voltage is impressed across volume control, part No. 70 . Adusting the position of the arm of this volume control applies greater or less audio frequency voltage on the grid of the triode section of the 6F7. This triode is used as an audio frequency amplifier. The plate of this tube is connected to the audio coupling resistor, part No. 58, and the audio frequency voltage is coupled to the grid of the output tube, type 42 , through condenser 32 . The grid circuit of the output tube is completed through resistor 51. The amplified andio output is impressed across the speaker transformer in the speaker assembly, part No. 59.

## Power Supply System ...

The power supply system consists of a transformer, part No. 67, for 110 -volt 60 -cycle, part No. 68 for 110 -volt 25 -cycle, and part No. 69 for 220 -volt $25-60$ cycle, a rectifier tube type 80 , the speaker field

CROSLEY RADIO CORP. as a filter choke, wet electrolytic condenser part No. 39, and dry electrolytic condenser part No. 38. In this particular circuit the filter choke is included in the negative leg of the power supply system, because in so doing it is possible to use the drop across the filter choke for biasing, and eliminate the use of a large bypass condenser on the cathode of the output tube, type 42 . At the same time, better audio quality for the lower notes is obtained than with the ordinary bypass condenser circuit.

## Alignment Procedure . . .

To align the I. F. amplifier it is necessary that there be available a suitable modulated oscillator capable of adjustment to 456 Kc . with good accuracy. This oscillator should have an attenuator so that the strength of the oscillator output can be adjusted. Connect the high side of the output of the modulated oscillator which has been adjusted to 456 Kc . to the control grid connection on the top of the 6A7 tube through an .02 mfd . series condenser. The low side of the oscillator to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I. F. transformer condensers for maximum signal output. To make this adjustment it is necessary that a standard 5/16 inch (across flats) hexagon socket wrench be used for the upper condenser, and a small screwdriver fitting inside of the nut hole for adjustment of the lower condenser. Always make this I.F. adjustment very carefully and go over your adjustment several times to be sure that the peak has been reached.

To align the receiver at broadcast radio frequency it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc ., together with a suitable attenuator and dummy antenna, be available. Set the oscillator at 1400 Kc ., and connect the high side of the oscillator to the receiver antenna terminal through a .0002 (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial. Now adjust the oscillator broadcast shunt trimmer indicated on the diagram attached and located under the chassis until the signal is heard best. Without changing the gang condenser setting, adjust the antenna and radio frequency broadcast trimmers for maximum signal. It is necessary that these adjustments be gone over
several times until no further improvements can be made. Always work with the weakest possible sig. nal from the modulated oscillator for best accuracy. Now rotate the dial until it reads 60 and set the modulated oscillator to approximately 600 Kc . Adjust the modulated oscillator carefully until maximum response is obtained. Now readjust the oscillator series trimmer located on the side of the chassis as shown on the diagram attached for maximum signal. It is sometimes advisable to move the main dial back and forth slightly about 60 on the dial during the course of this adjustment if a still greater signal is obtainable.

To align the set in the high frequency or short wave band, it is necessary that a modulated oscillator be available for frequencies of 6000 and 15000 Kc . The procedure for this band is similar to the broadcast band except that a 750 ohm midget carbon resistor is used for the dummy antenna instead of the .0002 condenser. Set the modulated oscillator to $15,000 \mathrm{Kc}$. and the receiver dial to 15 . Adust the oscillator shunt trimmer for the high frequency band to maximum signal. Now adjust the antenna and interstage R.F. trimmers for maximum signal, making sure to go over the adjustment several times so that no further improvement can be made. Now set the modulated oscillator to approximately 6000 Kc . and the receiver dial to 6 . Readjust the modulated oscillator slightly for maximum signal and then adjust the oscillator series trimmer for the high frequency band for best signal, mak. ing whatever slight adjustments in the tuning control are necessary to bring in maximum signal.

## Tuning Receiver In High Frequency Band . . .

Due to the tremendously greater number of transmitter channels covered in the high frequency band, the receiver is endowed with a much greater apparent selectivity. For this reason, if the receiver is tuned carelessly, many high frequency stations will be missed or passed over without hearing them. It is very necessary that the receiver be tuned slow ly and that extreme care be exercised in final adjustment of the receiver to the center of the carrier after a high frequency station is received.

CROSLEY RADIO CORP. Schematic,Trimmers


# CROSLEY RADIO CORI. 

INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used. It article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.

PARTS LIST-MODEL 5C2


$\underset{\text { Part No. }}{\text { G1-32000 }}$	
	G2-32003
G1-32003	
W25200	
$\begin{aligned} & W 21541 B \\ & W 26891 \end{aligned}$	
G5-33002	
	W31812
	G 2 -27817
G3-33006	
G4-3300	
	W32242
	W31204
	G49-27975
G39-27975	
G48-27970	
G51-27975	
W33360	
W31213W31210	
B309375	
$\begin{gathered} \text { W31705 } \\ \text { G2 } 2-28594 \end{gathered}$	
W31909	
W30325	
W27668	
	W3032:A




Description
0.01 Mfd. 200 V. ...............
0.02 Mfd . 200 V .
0.02-0.02 Mfd. 200 V.-200 V.
$0.02-0.02$ Mfti. 400 V. 400 V .
0.25 Mfd. 200 V .
KESISTORS
3 O\% Ohms
1400 Ohms
${ }_{6} 60 \mathrm{Ohms}$
26.7 Ohms
600h) 0 Ohms.
1 Megohm ....
5 Megohm
a00009 Ohms
150000 Ohms
300000 Ohms
720 Ohms
Lewo Ohms .........
$\begin{aligned} & \text { CABINET ANi) } \\ & \text { SPEAKER } \end{aligned}$
Cabinet Assembly
Dial Plate
Vol. Control Plate
Bulls Eye ...............
Bezel
Grille Cloth
Baffle
Back Cover
Knob
Knob
Speaker \& Plate Assm. .......
Cone \& Voice Coil
Transformer
Field Coil
Speaker Mounting Screws


Item	List Ea
36	15
63	15
64-65	25
66-67	9
68	. 20
6	10
7	. 10
8	. 10
9	. 20
10	. 15
11	. 15
12	. 15
13-17	. 15
14	. 15
18	. 15
58	. 15
57	. 20
	5.47
	. 15
	15
	. 05
	10
	10
	. 50
	. 10
	+10
	2.00
	1.10
	1.25
	. 05

PARTS LIST—MODEL 5 HI

* Figures ill 2nd last column refer to parts shown in wiring diagram of Model 5 FH



Item			
$\begin{gathered} \text { Item } \\ 1 \end{gathered}$	List Each .45	$\underset{i}{\text { Qty. }}$	$\begin{aligned} & \text { Part No } \\ & \mathbf{G} t \mathrm{f}-3074 \mathrm{~J} \end{aligned}$
73	. 00		G7-307ts
3	. 55		G-830745
4	. 15		
5	. 40		
6	50		
7.8		1	W29097C
9	1.60		
$10 \cdot 11$		1	W2619+ B
12	1.60	1	W30321A
		1	W32304
14-15	. 35	1	1632:380
16-17	. 30	1	W3.379
18	. 25	1	w3080.
		1	W32:378
22-23	1.25	1	W25.337
		1	W23.317
7	4.00	1	W24784
	. 60	1	W30322
	. 05		
	.15		
	. 10		
1-3	. 10	0	9 ¢577
5	. 05	2	2145
1-3-5	. 05	1	(V31883
2-4-6	. 05	3	23785
	. 20		
43-44	1.10	1	21875
70	. 90	1	21876
21	1.30	1	21237 A
66	. 45	1	21453
75	15	1	33403
c0	10	1	24814
61	. 10	1	24960
62	. 10	1	W31007A
63	. 10	3	W32352
64	. 10	1	W:32353
	. 05	1	W31463
	. 10	3	S-27



	凪 Ni	¢	¢19t\%
*		6 4 19	

## General Description. .

Chassis 5 C 2 is used in the Model 51. It is a 5 -tube AC-DC superheterodyne receiver employing a 3 -gang condenser, Automatic Volume Control and electrodynamic speaker. The frequency range is $535-1750 \mathrm{Kc}$.

The intermediate frequency is 181.5 . Use of this low intermediate frequency assures very good selectivity.

## Tubes Used and Their Function...

The tubes used are 6F7, Oscillator-
modulator, 78 I. F. amplifier, 6B7 diode and audio frequency amplifier, 43 output, and $25 Z 5$ rectifier. The tule voltages are shown in the table below:
Esg
100
100
15
100
-
Esup
$-\frac{3}{-}$
-
Ep-osc
100
-
-
-

All voltages are plus or minus $10 \%$. All DC voltages are measured to -B at 117.5 volt line with 1000 ohms per volt, 250 -volt voltmeter. Power demand 50 watts, 110 volts, 60 cycles. Voltages on other frequencies and DC will vary slightly from the above table.

## Method of Biasing ..

Referring to the circuit diagram it will be seen that the 6F7 Pentode section obtains its bias from the cathode resistor part No. 5. The oscillator section obtains the major portion of its bias from the grid leak and condenser combination in which part No. 55 is the grid leak and 54 the grid condenser. The 78 I. F. amplifier obtains its bias from the cathode resistor, part No. 6. Bias for the 6B7 audio amplifier is obtained from cathode resistor part No. 7. The effect of this circuit is that a slight bucking bias is applied to the diode section, but a very weak signal soon overcomes this bias and the diode then acts as though there were no bias resistor. The pentode audio amplifier section, however, makes use of this initial bias in resistor No. 7 and after signal is applied, depending on the strength of the signal, a varying amount of bias will be applied to accommodate the signal from the AVC circuit. Bias for the output tube, type 43 , is obtained from the drop across the filter choke, part No. 41. and whatever hum component there is remaining is filtered through resistor 18 and bypass condenser 30.

## Automatic Volume Control Circuit...

Automatic volume control voltage is developed in the diode circuit across resistor 10 in series with volume control, parts No. 15 or 50. This voltage is fed back through filter resistor No. 11 to the control grid return of the 6 F 7 modulator section. No automatic volume control is exerted on the intermediate frequency amplifier, type 78 tube, because in so doing there is a serious danger of introducing distortion.

## Analysis of Signal Channel . . .

Starting with the antenna, part No. 1 , which is a self-attached reel of wire in the case of this receiver, the signal flows through condenser part No. 25. The purpose of this condenser is to insulate the antenna from the balance of the set, so that if it should touch any devices having voltage on then, neither the receiver nor the device will be burned out. The signal then feeds into the primary of the first preselector coil and is transferred to the first secondary and tuned with one section of the gang condenser, part No. 20. This first secondary coil is coupled inductively to the second secondary coil, which coil is tuned by another section of the gang condenser part No. 20. The output of this doubletuned preselector circuit is fed to the grid of the $6 \mathrm{~F}^{7}$ modulator section. The oscillator section of the 6 F 7 is tuned with the third section of the gang condenser, part No. 20, in conjunction with coil part No. 2, all of
these coils bearing the same part number, since they are mounted on one continuous core. The shape of the oscillator section of the gang condenser is such that a constant intermediate frequency of 181.5 is generated when the signal is applied and this intermediate frequency is present across the primary of the first I. F. transformer, part No. 53. This I. F. transformer is double tuned by condensers 21 and 22 respectively, and the signal is then applied to the grid of the 78 I . F. amplifier. The amplified I. F. output is then fed to the second I. F. transformer, part No. 52 , which transformer is also double tuned. This then goes to the diode plates connected in parallel. As mentioned above, the diode resistor is a combination of fixed resistor part No. 10 and the volume control part No. 15 or 50 . All of the diode voltage developed is used for automatic volume control, while only that portion of the combination DC diode voltage and audio frequency voltage across the volume control is fed to the grid of the $6 \mathrm{~B} \overline{7}$ audio frequency amplifier. Due to the fact that some intermediate frequency is present in this circuit, and it is necessary to eliminate it, this is done in the plate circuit of the 6 B ? amplifier with bypass condenser, part No. 34. The audio frequency wottage is fed over to the grid of the type 43 output tube thru coupling condenser 35 , while the grid circuit of this tube is completed thru resistors 17 and 18. The amplified output of this tube is, of course, fed to the speaker in the usual manner. A very important part of the audio frequency amplifier

## CROSLEY RADIO CORP.

is resistor, part No. 13, connected between plate of the type 43 output tube and the screen of the type 6B7 audio amplifier. Naturally some audio frequency is fed through this resistor, as well as the direct current voltage which supplies the screen. However, at the screen of the 6B7 is located a bypass condenser, part No. 33 , so that the higher audio frequencies do not affect the screen of this tube, while the lower audio frequencies are not bypassed, and the effect, therefore, is a regenerative one so far as the lower audio frequencies are concerned. The result of this circuit is that in spite of the very small proportions of the cabinet and speaker a desirable amount of lower notes are reproduced by the set.

## Power Supply System . . .

Since this is an AC-DC receiver, no power transformer is used. To supply the filament of the tubes a series resistor, part No. 19, is used to drop the voltage to the required amount, while the plate voltage supply is obtained from the 25 Z 5 rectifier. This rectifier has two plates and two cathodes, all of which are separated from each other. It is therefore possible to use one plate and cathode to supply the plates of the remaining tubes and the other plate and cathode to supply the speaker field. In so doing much smoother operation is obtained and less hum results. The speaker field supply is filtered with condenser No.
38. The signal plate supply is filtered with condensers No. 39 and 40, in conjunction with choke, part No. 41.

## Alignment Procedure . . .

To align the I. F. amplifier, it is necessary that there be available a suitable modulated oscillator capable of adjustment to 181.5 Kc . with good accuracy. This oscillator should have an attenuator, so that strength of the oscillator output can be regulated. Connect the high side of the output of the modulated oscillator, which has been adjusted to 181.5 Kc . to the receiver antenna wire, as close to where it enters the cabinet as possible, through an .02 Mfd . series condenser. The low side of the oscillator is to be connected to the receiver chassis. It will be found that the best way to make this connection to the antenna wire is with a sharp, pointed prod, so that the insulation. on the antenna wire is not permanently damaged. The unused dead end portion of the antenna wire should be rolled up on its reel. With the oscillator set to a convenient level, adjust the four I. F. transformer tuning condenser adjustment nuts available through the front flange of the chassis for maximum signal output. To make these adjustments, it is neces. sary that a standard $1 / 4^{\prime \prime}$ (across flats) hexagon socket wrench be used for the adjustment nut. The wrench should be insulated. It may be necessary to move the tuning dial slightly
for best results. Always make these I. F. adjustments very carefully and go over the adjustments several times to be sure that the peak has been reached.

To align the receiver at broadcast frequency, it is necessary that an adjustable oscillator, having frequencies of 1400 and 600 Kc . together with a suitable attenuator and dummy antenna be available. Set the oscillator at 1400 Kc . and turn the tuning control of the receiver to 140 on the dial. Connect the high side of the oscillator to the receiver antenna through a . 0001 Mfd . (dummy antenna) condenser. Now adjust the oscillator section trimmer on the gang condenser (the oscillator section is the rear-most section of the gang) until the signal is heard best. Then adjust the remaining two R.F. trimmers on top of the gang condenser for best signal. It is necessary that these adjustments be gone over several times until no further improvement can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. The set is now aligned at 1400 Kc . and by adjusting the modulated oscillator to 600 , the set may be rechecked at this point. It will sometimes be found that a slight bending of the gang condenser plates will help the sensitivity at 600 Kc. This operation should be done with extreme care, however, so that no short circuiting of the condenser plates results.


## CHASSIS 6V2

## General Description . . .

Chassis 6V2 is used in the Dual Sixty and Dual Sixty Lowboy. It is a 6 -tube 3 -gang automatic volume control dual range receiver. The chassis has a continuously variable tone control. The frequency bands

Type	Where Used
58	R. F.
247	Osc.-Mod.
58	I. F.
55	Diode-AF
2A5	Output
80	Rectifier

All voltages are plus or minus $10 \%$. All DC voltages are measured to chassis at 117.5 line with 1000 ohms per volt, 250 -volt voltmeter. Power demand is 60 watts at 110 volts 60 cycles.

## Method of Biasing . . .

Referring to the circuit diagram, it will be seen that the bias for the R.F. tube is obtained from the cathode bias resistor, part No. 29. The bias for the input section of the type 2A7 oscillator modulator is obtained from cathode bias resistor, part No. 30 , while the oscillator section obtains its bias from the grid leak and condenser combination in which part No. 15 is the grid condenser and part No. 35 the grid leak. The remainder of the tubes are shunt biased. The bias voltages are obtained from a voltage divider network connected across the speaker field, which field acts as a filter choke connected in the negative leg of the power supply. Referring to the diagram, it will be seen that the grid return of the I.F. amplifier tube, type 58 , is connected to the junction point between resistors 34 and 46 .
The other side of resistor 46 returns to ground so that the voltage drop across resistor 46 is the bias on the I.F. amplifier grid. This same bias voltage is used for the type 55 audio amplifier section, but in this case it is fed through volume control part No. 42. In the case of the output tube, type 2A5, the voltage developed across resistors 34 and 46 is fed through resistor 40 to the grid of this tube.
covered are 535 to 1700 , and 1650 to 4500 Kc . The intermediate frequency is 181.5 Kc ., the use of which insures adequate selectivity

## Tubes Used and <br> <br> Their Function .

 <br> <br> Their Function .}The tubes used are type 58 R. F.
amplifier, type 2A7 oscillator modulator, type 58 I. F. amplifier, type 55 diode and A. F. amplifier, type $2 A 5$ output, and type 80 rectifier. The tube voltages are shown in the table below:

Ef	Ep	Eg	Ek
2.5	225	0	3
2.5	225	0	3.5
2.5	225	-4	0
2.5	40	-4	0
2.5	210	-18	0
4.9	$330 A C$	-	225

## Automatic Volume Control Circuit.

In the broadcast band automatic volume control is exerted on the 58 R.F. amplifier, but in the high frequency band automatic volume control is used on the 2A7 oscillator modulator. The automatic volume control voltage is developed across resistor 36 and fed back to filter resistor, part No. 37, directly to the grid return of the high frequency antenna coil, part No. 4, and then to a switch contact in the secondary circuit of the broadcast antenna coil. When the switch is thrown to the broadcast band (down in the circuit diagram) the automatic volume control voltage goes through the switch, part No. 45, to the grid of the R.F. amplifier through the antenna coil secondary, part No. 2. With the switch thrown in the high frequency position (up in the circuit diagram), the automatic volume control voltage is fed through the secondary of the high frequency antenna coil, part No. 4, and then to the switch, part No. 45, to the grid of the oscillator modulator tube, type 2A7.

## Analysis of Signal Channel .. .

The signal enters at the antenna terminal and depending on the position of the switch, part No. 45, is transferred either to the broadcast antenna coil or the high frequency antenna coil, parts No. 2 and No. 4 respectively. In the broadcast band the signal is tuned with one section of the gang condenser, part No. 8,
and fed to the grid of the $58 \mathrm{R} . \mathrm{F}$. amplifier. The broadcast antenna coil is tapped, as indicated in the diagram, for the purpose of improving the image ratio. The effect of this tap is to produce an unsymmetrical selectivity characteristic, so that at the point of the normal image response, approximately 360 Kc . higher, this unsymmetrical selectivity curve tends to attenuate the image signal very materially. The amplified R.F. output of this tube is fed to the interstage transformer, part No. 3, the secondary of this transformer being tuned by another section of the gang condenser, part No. 8. The signal then goes to the control grid of the 2A7 oscillator modulator. The oscillator section of this tube is tuned by the third section of the gang condenser, which has specially-shaped plates, also indicated as part No. 8. The frequency of the oscillator is such that a constant internediate frequency of 181.5 Kc . is present in the plate circuit of the 2A7 oscillator modulator tube. The I.F. output of the oscillator modulator tube is impressed on the first I.F. transformer, part No. 6, which transformer is double tuned. The output of this transformer is impressed on the grid of the type 58 I.F. amplifier. The amplified output of the type 58 I.F. amplifier is mpressed on the second I.F. transformer, part No. 7, which transformer is also double-tuned. The I.F. signal is then impressed on the diode plates of the type 55 tube connected in parallel. In this stage there is developed across resistor 36 , a DC diode voltage, an audio fre-

## CROSLEY RADIO CORP.

quency voltage, and some intermediate frequency. The audio and intermediate frequency signals pass through the coupling condenser, part No. 19 but the filter resistor, part No. 38, excludes most of the intermediate frequency remaining so that only audio frequency is present across the volume control, part No. 42. The audio frequency is amplified through the triode section of the 55 and then fed through coupling condenser 21 to the grid of the type 2A5 output tube. The slight amount of intermediate frequency remaining at this point is filtered through bypass condenser No. 20. The power audio output of the $2 A 5$ is then fed to the speaker in a conventional manner. Condenser 22 is permanently connected across the speaker to hold its impedance at a more nearly constant value at higher audio frequency, while condenser 23 and variable resistor 43 form a tone control combination.

## Power Supply System ...

The power supply system consists of a transformer, part No. 51, for 110 volts, 60 cycles, part No. 52 for 110 volts 25 cycles, and part No. 53 for 220 volts, a type 80 rectifier tube, the speaker field as the filter choke, and the electrolytic filter condensers. part Nos. 25 and 26. In this circuit the filter choke (speaker field) is included in the negative leg of the pow. er supply system, because in so doing it is posible to use the drop across the filter choke for biasing, and eliminate the use of a large bypass condenser in the cathode of the output tuhe. type 2A5. At the same time, hetter audio quality for the lower
notes is obtained than with ordinars bypass condenser circuits.

## Alignment Procedure . . .

To align the I.F. amplifier, it is necessary that there be available a suitable modulated oscillator capable of adjustment to 181.5 Kc . with good accuracy. This oscillator should have an attenuator so that the strength of the oscillator output can be adjusted. Connect the high side of the output of the modulated oscillator which has been adjusted to 181.5 Kc . to the control grid connection on the top of the 2A7 tube, through an .02 Mfd . series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I.F. transformer tuning condenser, all four of which are accessible from the top of the chassis for maximum signal output. To make this adjustment it is necessary that a standard $1 / 4^{\prime \prime}$ (across flats) hexagon socket wrench be used. The wrench is preferably insulated. Always make these I.F. adjustments very carefully and go over the adjustments several times to be sure that the peak has been reached. To align the receiver at broadcast frequencies, it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc., together with a suitable attenuator and dummy antenna be available. Set the oscillator to 1400 Kc . and connect the high side of the oscillator to the receiver antenna terminal through a .0002 Mfd . (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial and adjust the oscillator
trimmer on the top of the gang condenser as indicated in the diagram until the signal is heard best. Without changing the gang condenser setting, adjust the R.F. trimmer, which is also on top of the gang, and the antenna trimmer for the broadcast band, located as indicated in the diagram on the side of the chassis, for maximum signal. It is necessary that these adjustments be gone over several times until no further improvement can be made. Always work with the weakest possible signal from this modulated oscillator for best accuracy. The performance of the receiver may now be checked at 600 Kc . by setting the modulated oscillator to 600 and the receiver to that point around 60 which gives best reception. Sometimes it is possible to make a slight improvement in the performance at this point by bending some of the gang condenser plates slightly. This operation should be done very carefully so that no short circuiting of the condenser plates results.

To align the receiver in the higher frequency band it is necessary that a modulated oscillator, capable of adjustment to frequencies of 1700 and 1000 Kc . be available. Set the oscillator to 4000 Kc . and throw the wave change switch to the high frequeney band. Adjust the receiver in the neighborhood of 4.0 on the dial until maximum signal is heard. Now adjust the short wave antenna trimmer located on the side of the chassis as indicated in the diagram for best signal. The receiver may now be re checked at 1700 Kc. by setting the oscillator at 1700 and the receiver dial at 1.7.



MODEL Sixty-One (6H2)<br>Sixty-One LB<br>Voltage,Notes

# CHASSIS 6H2 

## General Description...

Chassis 6 H 2 is used in the Model Sixty-one and Model Sixty-one Lowboy. It is a 6 tube short wave and broadcast chassis employing the latest superheterodyne circuit, in which has been incorporated a high efficiency tuned radio frequency stage for both short wave and broadcast. The frequency ranges covered are

535 to 1750 Kc ., which is the normal broadcast band and the lower frequency police band, and 5700 to 15500 Kc ., which is the short wave or high frequency band. The intermediate frequency is 456 Kc . and while there is only one intermediate frequency stage, adequate selectivity is obtained through the use of very high efficiency I.F. transformers, in addition to the three-gang condenser.

## Tubes Used and Their Function ...

The tubes used are 6D6 radio frequency amplifier, 6A7 oscillator modulator, 6B7 intermediate frequency amplifier and diode detector, 76 audio frequency amplifier, 42 output tube and type 80 rectifier. The tube voltages are shown in the table below:

Type	Where Used
6D6	R.F.
6A7	Os..Mod.
6B7	I.F.-Diode
76	A.F.
42	Output
80	Rectifier

All voltages are plus or minus $10 \%$. All D.C. voltages measured to chassis at 117.5 volt line with 1000 ohms per volt, 250 -volt voltmeter. Power demand 60 watts, 110 volts, 60 cycles.

## Method of Biasing . . .

Referring to the circuit diagram attached it will be seen that the bias for the 6D6 R.F. tube is obtained from the drop across cathode resistor No. 45. The input section of the 6A7 also obtains its bias from the drop across cathode resistor No. 41. The oscillator section of the 6A7 obtains its bias, of course, from the grid leak and condenser combination, resistor No. 42 being the grid leak. The bias for the pentode section of the 6B7 tube is also obtained from the voltage drop across resistor No. 45 but is not fed through the filter resistor. The 76 audio amplifier bias is also obtained from the drop across resistor No. 45. The bias for the output tube type 42 , due to the drop across resistor 54, is fed through the grid leak, part No. 50.

## Automatic Volume Control Circuit . . .

Automatic volume control voltage is developed in the diode circuit across resistors 44 and 46. A delay voltage is supplied and this voltage is equal to the drop across resistor 45. The audio frequency diode resistor is part No. 47 and it will be noted that it returns directly to re-
sistor 45. Automatic volume control is exerted on the 6D6 which is the radio frequency stage. While the full diode voltage is that drop across resistors 44 and 46 in series, only the voltage across 46 is impressed on the radio frequency amplifier. In a similar manner automatic volume control is exerted on the 6A7 control grid and this voltage is obtained from the drop across resistor 46. No automatic volume control is exerted on the intermediate frequency amplifier stage, which is the 6 B 7 , because in so doing there is serious danger of introducing distortion.

## Analysis of Signal Channel...

The signal enters at terminals Al, A2, and G. These three terminals are provided to permit the use of a doublet antenna with transposed lead-in and no ground if desired. With such an antenna, the two lead-in wires are connected to A1 and A2 and the strap between A2 and $G$ is open circuited. If it is desired to operate the receiver with simply a conventional antenna and ground, connect A2 and G together and to the ground wire. The conventional antenna is connected to the Al terminal.

The signal enters switch contacts, part No. 74, at which point, depending upon the position of the switch, it will flow either to the broadcast or short wave antenna coil primary,
parts Nos. 2 and 3 respectively. Tuning is accomplished by the first section of the gang condenser, part No. 10 , connected in the secondary circuit of the antenna coil. The signal is then impressed on the 6D6 tube and is amplified. The output of the 6D6 tube goes into the primary of the inter-stage radio frequency transformer, part Nos. 4 or 5 , depending on whether the switch is connected to the low or high frequency position. The secondaries of the interstage coils are again tuned by another section of the gang condenser, part No. 10 , and the signal is then impressed on the control grid of the 6A7 oscillator modulator tube. The oscillator section of the 6A7 tube uses the oscillator coils 6 and 7 for the low and high frequency bands respectively, and the oscillator is tuned by the third section of the gang condenser, part No. 10. In this tube the frequency of the signal is changed from radio frequency to 456 Kc ., the intermediate frequency. The signal passes from the plate of the 6A7 tube to the first intermediate frequency transformer, part No. 8, and the primary and secondary of this transformer are both tuned to obtain maximum selectivity. The output of the secondary of the transformer is impressed on the control grid of the 6B7 tube in which the intermediate frequency signal is amplified and fed to the second internediate frequency transformer, part No. 9, which transformer is also tuned in both the pri-

# MODEL Sixty-One (6H2) <br> Sixty-0ne LB <br> Alignment, Trinmers 

## CROSLEY RADIO CORP.

mary and secondary circuits. The signal is now impressed directly on the audio frequency diode, in the 6B7 tube and through condenser No. 40 on the automatic control diode of the same tube. In the audio frequency diode the signal is converted from intermediate frequency to audio frequency which audio frequency is present across resistor 47 and condenser 26. There is also a direct current voltage and some intermediate frequency present here. The audio frequency signal is separated from the direct current voltage by condenser 27 and whatever intermediate frequency there may be left in this circuit is filtered by resistor 48 and the remaining pure audio frequency voltage is impressed across volume control, part No. 58. Adjusting the position of the arm of this volume control applies greater or less audio frequency voltage on the grid of the 76. This triode is used as an audio frequency amplifier. The plate of this tube is connected to the audio coupling resistor, part No. 49, and the audio frequency voltage is coupled to the grid of the output tube, type 42 , through condenser 29 . The grid circuit of the output tube is completed through resistor 50. The amplified audio output is impressed across the speaker transformer in the speaker assembly, part No. 70.

## Power Supply System . . .

The power supply system consists of a transformer, part No. 71, for 110 -volt 60 -cycle, part No. 72 for 110 -vole 25 -cycle, and part No. 73 for 220 -volt $25-60$ cycle, a rectifier tube type 80 , the speaker field as a filter choke, wet electrolvic condenser part No. 36, and diry electrolytic condenser Part No. 37 . In this particular circuit the filter choke is included in the negative leg of the power supply system, because in so doing it is possible to use the drop across the filter choke for biasing, and eliminate the use of a large bypass condenser on the cathode of the output tube, type 42. At the same time, better audio quality. for the lower notes is obtained than with the ordinary bypass condenser circuit.

## Alignment Procedure . . .

To align the I. F. amplifier it is necessary that there be available a suitable modulated oscillator capable of adjustment to 456 Kc . with good accuracy. This oscillator should have an attenuator so that the strength of the oscillator output can be adjusted. Connect the high side of the output of the modulated oscillator which has been adjusted to 465 Kc . to the control grid connection on the top of the 6A7 tube through an .02 mfd . series condenser. The low side of the oscillator to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I. F. transformer condensers for maximum signal output. To make this adjustment for I.F. transformers in a round shield it is necessary that a standard $5 / 16$ inch (across flats) hexagon socket wrench be used for the upper condenser, and a small screwdriver fitting inside of the nut hole for adjustment of the lower condenser. A screwdriver only will adjust the I.F. transformers in a square shield. Always make this I.F. adjustment very carefully and go over your adjustment several times to be sure that the peak has been reached.

To align the receiver at broadcast radio frequency it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc ., together with a suitable attenuator and dummy antenna, be available. Set the oscillator at 1400 Kc ., and connect the high side of the oscillator to the receiver antenna terminal through a .0002 mfd . (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial. Now adjust the oscillator broadcast shum trimmer indicated on the diagran and located under the chassis until the signal is heard best. Without changing the gang condenser setting, adjust the antenna and radio frequency broadcast trimmers for maximum signal. It is necessary that these adjustments be gone over several times until no further improvements can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. Now rotate the
dial until it reads 60 and set the ,modulated oscillator to approxim,ately 600 Kc . Adjust the modulated ,oscillator carefully until maximum response is obtained. Now adjust the oscillator series trimmer located on the side of the chassis as shown on the diagram attached for maxi, mum signal. It is sometimes advisable to move the main dial back and forth slightly about 60 on the dial during the course of this adjustment if a still greater sigual is obtainable.

To align the set in the high frequency or short wave band, it is necessary that a modulated oscillator be available for frequencies of 6000 and 15000 Kc . The procedure for this band is similar to the broadcast band except that a 750 ohm midget carbon resistor is used for the dummy antenna instead of the .0002 condenser. Set the modulated oscillator to $15,000 \mathrm{Kc}$. and the dial to 15. Adjust the oscillator H.F. shunt trimmer until the signal is heard best. Now adjust the antenna and interstage H.F. trimmers for maximum signal, making sure to go over the adjustment several times so that no further improvement can be made. Now set the modulated oscillator to approximately 6000 Kc . and the receiver dial to 6 . Readjust the modulated oscillator slightly for maximum signal and then adjust the oscillator series trinmer for the high frequency band for best signal, making whatever slight adjustments in the tuning control are necessary to bring in maxinum signal.

## Tuning Receiver In High Frequency Band...

Due to the tremendously greater number of transmitter chanuels covered in the high frequency band, the receiver is endowed with a much greater apparent selectivity. For this reason, if the receiver is tuned carelessly, many high frequency stations will be missed or passed over without hearing them. It is very necessary that the receiver be tuned slow. ly and that extreme care be exercised in final adjustment of the receiver to the center of the carrier after a high frequency station is received.


PAGE 5-34 CROSLEY

## MODEI Sixty-One (6H2) <br> Sixty-One LB

Schematic, Parts List
Socket Layout


## CHASSIS 7H2

## General Description...

Chassis 7 H 2 is used in the Model 72 and 72 Lowboy. It is a seventube short wave and broadcast chassis employing the latest superheterodyne circuit, in which has been incorporated a high efficiency tuned radio frequency stage for both short wave and broadcast. The frequency ranges covered are 535 to ${ }^{17} 50 \mathrm{Kc}$.. which is the regular broadcast band and lower frequency police band, and 5700 to 15500 Kc .
which is the short wave or high frequency band. The intermediate frequency is 456 Kc . Two stages of I. F . are used to assure adequate selectivity. A special friction type 80:1 drive is used to make tuning as smooth and easy as possible. Instead of the customary tuning knob, a special fishing-reel type of crank is provided- so that the tuning can be spun quickly from one end of the dial to the other. With the high ratio drive employed, this would be
quite laborious if a conventional knob were used for tuning.

## Tubes Used and Their Function...

The tubes used are type 58 R . F . amplifier, type 2A7 oscillator modulator, type 58 first I. F. amplifier, type 58 second I.F. amplifier, type 2B7 diode detector and audio amplifier, type 2A5 output tube and type 80 rectifier. The tube voltages are shown in the table below:

Type	Where Used	Ef	Ep	Eg	Ek	Esg	Ep-osc.
58	RF	2.5	225	0	3	100	
2A7	Osc. Mod.	2.5	225	0	3	100	150
58	1st IF	2.5	225	0	4.5	100	
58	2nd IF	2.5	225	0	4.5	100	
2 B 7	Diode AF	2.5	50	0.5	0	22	
2 A 5	Output	2.5	215	2.0	0	225	
80	Rectifier	4.9	-	-	225	-	

All d. c. voltages are plus or minus ten percent. All voltages measured to chassis at 117.5 volt line with 1000 ohms per volt, 500 volt voltmeter. Power demand 75 watts at 110 volts 60 -cycle.

## Method of Biasing . . .

Referring to the circuit diagram attached, it will be seen that the bias for the first type 58 tube is obtained from the resistor, part No. 78, in the cathode circuit of this tube. Bias for the type $2 A 7$ is obtained in a similar manner from cathode resistor, part No. 19. The oscillator section of the 2A7 obtains its bias, of course, from the grid leak and condenser combination, resistor 20 being for the broadcast or low frequency band and resistor 23 for the short wave or high frequency band. Bias for both 1. F. tubes is obtained in the broadcast band from cathode resistor, part No. 34. In the high frequency band it is desired that the sensitivity of the set be improved, so bias resistor No. 31 is connected in shunt to resistor No. 34 so that the I. F. amplification is thereby increased when the set is switched to the short wave or high frequency band. The result of this circuit arrangement is that the set has substantially the same sensitivity in
both broadcast and short wave bands, in spite of the fact that the radio frequency coils in the short wave band cannot possibly be as efficient as they are in the broadcast band. The next two tubes employ shunt instead of self biasing. Resistors 55,56 and 57 form a voltage divider network connected across the speaker field, which also is the filter choke. The most negative point of this voltage divider network is the end of resistor 57 which connects to the speaker field, while the positive end of the network is that end of resistor 55 which connects to the type 2B7 and 2A5 cathodes. It will therefore be seen that the negative grid bias for the type 2B7 audio frequency amplifier section is obtained at the junction point between resistors 55 and 56. The voltage obtained at this point has some hum present and it is therefore necesary that it be fed through the hum filter resistor, part No. 43, and thence through the grid circuit completing resistor, part No. 41 , to the type 2 B 7 grid. Bias for the output tube, type 2 A5 is obtained at the junction point between resistors 56 and 57 and fed through the grid circuit completing resistor to the grid of the 2A5 output tube. It is therefore seen that the bias fed
to the output tube is necessarily larger than that fed to the 2B7, since it is the drop across two resistors, while that fed to the 2 B 7 is the drop across only one resistor.

## Automatic Volume Control Circuit . . .

Automatic volume control is developed in the diode circuit across volume control resistor, part No. 39. This voltage is picked off at the junction between resistor 38 and the volume control, part No. 39, and fed through isolating resistor, part No. 75 , to the grid return circuit of the 2A7 tube. The same point is also fed to the grid return of the first type 58 I.F. amplifier. From this point there is connected an additional isolating resistor, part No. 27, and from there to the type 58 R.F. amplifier grid return. No automatic volume control is exerted on the second intermediate frequency amplifier type 58 tube because in so doing there is serious danger of introducing distortion.

## Analysis of Signal Channel...

Starting with the antenna, the signal enters switch contact indicated as part No. 1, and depending on

CROSLEY RADIO CORP.

which position the switch happens to be in, flows either to the short wave antenna coil primary or to the broadcast antenna coil primary, parts No. 2 and No. 3 respectively. It is to be noted that a resistor, part No. 77, is connected across the broadcast antenna coil primary for the purpose of securing better alignment. The secondary of the antenna coil is tuned with a section of the gang condenser, part No. 14, and the signal is then impressed on the grid of the type 58 R.F. amplifier. The amplified output of the tube follows through the switch and into the primary of broadcast or high frequency interstage coil, depending on the switch position. The output of the secondary of the interstage coil is tuned with another section of the gang condenser, part No. 14, and fed to the control grid of the type 2A7 modulator oscillator tube. The oscillator section of this tube is automatically connected at the same time the switch is thrown so that the frequency of the oscillator is controlled by the third section of the gang condenser, part No. 14, so as to give a constant intermediate frequency of 456 Kc . in the plate circuit of the type 2A7 modulator oscillator. This intermediate frequency is now fed into the primary of the first I.F. transformer, part No. 29, and thence to the secondary of the same transformer. This transformer is tuned in both primary and secondary circuits to obtain maximum selectivity. The output of transformer No. 29 is fed to the first type 58 I.F. amplifier and the output of this tube then goes to the second I.F. transformer, part No. 33, which I.F. transformer is also double tuned. The signal then follows to the grid of the second type 58 I.F. amplifier whose output is in turn fed to the primary of a single tuned diode type I.F. transformer, part No. 35. The tuned secondary circuit of the diode transformer feeds the two diode plates of the type 2B7 connected in parallel. The diode resistor is a combination of part No. 38 and volume control No. 39 connected in series, but only that portion of the diode voltage developed across part No. 39 is used. The reason for this connection is that smoother action is obtained without regeneration. Both audio frequency and direct current are present across resistor No. 39 and, to separate out the direct current, condenser, part No. 40, is used to couple the audio
frequency over to the grid of the type 2B $\overline{7}$ audio frequency amplifier. Resistor No. 41 completes the grid circuit of this tube. The amplified audio frequency in the plate circuit of the 2B7 is fed through coupling condenser, part No. 47 into the grid of the type 2A5 output tube, which grid circuit is completed with resistor No. 48. The plate circuit of the output tube is connected to the speaker transformer in the customary manner. Condenser No. 50 is used to match the impedance of the output tube and speaker-more closely at higher audio friequencies, while condenser No. 51 and variable resistor No. 52 form the tone control.

## Power Supply System . . .

The power supply system consists of a transformer, part No. 63, for 110 -volt 60 -cycle, part No. 64 for other uses, a rectifier tube type 80, the speaker field as a filter choke, wet electrolytic condenser, part No. 60, and dry electrolytic condenser, part No. 8. In this particular circuit the filter choke is included in the negative leg of the power supply system, because in so doing it is possible to use the drop across the filter choke for biasing, and eliminate the use of a large bypass condenser in the cathode of the output tube, type 2A5. At the same time better audio quality for the lower notes is obtained than with the ordinary bypass condenser circuit. The Universal transformer, part No. 64, is a special transformer originally developed for export use, but because of its enthusiastic reception it has been incorporated in this chassis. The primary of the transformer is equipped with four voltage taps clearly marked so that the set can be made to operate from 90 to 265 volts in four steps. The transformer operates on any frequency from 25 to 100 cycles.

## Alignment Procedure . . .

To align the I.F. amplifier it is necessary that there be available a suitable modulated oscillator capable of adustment to 456 Kc . with good accuracy. This oscillator should have an attenuator so that the strength of the oscillator output can be regulated. Be sure that the band change switch is thrown to the low frequency or broadcast band position. Connect the high side of the output of the modulated oscillator, which has been adjusted to 456 Kc .
to the control grid connection on the top of the 2A7 tube through an .02 Mfd. series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I.F. transformer condensers for maximum signal output. The first and second I.F. transformer tuning condensers are located on the left-hand side of the chassis, while the diode tuning condenser is located under the chassis as indicated in the diagram attached. To make these adjustments. it is necessary that a standard $1 / 4^{\prime \prime}$ (across flats) hexagon socket wrench be used for the adjustment nut. The wrench is preferably insulated. Always make this I.F. adjustment very carefully and go over the adjustments several times to be sure that the peak has been reached.
To align the receiver at broadcast frequency, it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc ., together with a suitable attenuator and dummy antenna be available. Set the oscillator at 1400 Kc . and connect the high side of the oscillator to the receiver antenna terminal through a 0002 (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial. Now adjust the oscillator broadcast shunt trimmer, indicated on the diagram as "oscillator trimmer condenser L.F. band" and located under the chassis, until the signal is heard hest. Without changing the gang condenser setting, adjust the antenna and radio frequency broadcast trimmers, also located under the chassis and indicated in the diagram attached for maximum signal. It is necessary that these adjustments be gone over several times until no further improvement can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. Now rotate the dial until it reads 60 and set the modulated oscillator to approximately 600 Kc . Adjust the modulated oscillator carefully until maximum response is heard. Now adjust the oscillator series trinmer for the low frequency band located under the chassis as shown in the diagram for maxinum signal. It is sometimes advisable to move the main dial back and forth slightly about 60 on the dial during the course of this adustment if a still greater signal is obtainable.

## CROSLEY RADIO CORP.

To align the set in the high frequency or short wave band, it is necessary that a modulated oscillator be available for frequencies of 6000 and 15000 Kc . The procedure for this band is similar to the broadcast band, except that a 750 ohm midget carbon resistor is used for the dummy antenna instead of the .0002 condenser. Set the modulated oscillator to 15000 Kc . and the receiver dial to 15 . Adjust the oscillator trimmer condenser under the chassis to maximum signal. Now adjust the antenna and interstage trimmers for maximum signal, making sure to go
over the adjustment several times number of transmitter channels covso that no further improvement can ered in the high frequency band, the be made. Now set the modulated receiver is endowed with a much oscillator to approximately 6000 Kc . greater apparent selectivity. For this and the receiver to 6 . Readjust the modulated oscillator slightly for maximum signal and then adjust the high frequency band oscillator series trimmer for best signal, making whatever slight readjustments in the tuning control are necessary to bring

## Tuning Receiver In High Frequency Band . . .

 reason, if the receiver is tuned carelessly, many high frequency stations will be missed or passed over without hearing them. It is very neces. sary that the receiver be tuned slowly and that extreme care be exercised in final adujstment of the receiver to the center of the carrier after a high frequency station is located and Due to the tremendously greater received.INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used. If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Criosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.

## PARTS LIST-MODEL 7H2

aty.	Part No.			ist Eac		No			
1	G1-32002	Antenna Coil (H. F.) .......	81	. 0	3	B2609:9	Tube Shleld (58 Tube) .......		. 10
1	G3-32000	Antenna Coil ( $\mathrm{I}_{\text {a }}$, F.) ..........	3	. 45	2	W 28632	Tube Shield (2A7-2B7) ......		. 10
1	G1-32001	R. F, Coil (H. F.) .-	11	. 65	1	B21491A	Cord \& Plug .......................	66	50
1	G2-32001	R. F. Coil (L. F.) ..............	12	. 55					
1	G2-32002	Ose. Coil (I. F.) ............	16	. 40			FILTER \& BY-PASS		
1	G1-32002	Osc. Coil (H. F.)	17	. 50			CONDENSERS		
1	G1-32004	1st I. F. Trans. ......	29	. 50	1	W26194H	12. Mid. 475 V . Condenser	60	1.25
1	G1-32004	2nd I. F. Trans. ....	33	. 50	1	W20097C	8.-8.-8. Mfd. 450 V. 450 V.-	$8-9$	
1	G2-32004	3rdi. F. Trans. (Diode) ....	35	. 50			250 V . Conclenser ..........	10	2.85
	W3138i	Coil Shield Bracket ...........		. 05	1	W32380	0.05 Mfd . 00 V . Condenser	18	. 20
6	W2.3200	Coil Socket ..........................		. 05	1	W25435	0.003 Mfd. 400 V . .................	24	.15
3	W30802	Coil Shield ...		. 15	3	W24049	0.1 Mfd. 200 V. ......................	30-42	
$\underline{1}$	W2.5025A	Coil Shield ....		. 10				44	15
1	W93024A	Coil Shield ...		. 10	1	W27932	0.0001 Mffd. 900 V. ..............	37	. 15
3	G1-24064	Coil Shield .....	29-33		1	W27216	0.05 Mfd. 200 V . .................	47	. 15
			35	. 15	1	W30321	1.0 Mifd. 160 V . ..............	49	. 55
${ }_{6}^{6}$	Wr6891	Insulating Washer ..............		. 05	1	W31052	0.004-0.05 Mfd. $400 \mathrm{~V} .-400 \mathrm{~V}$.	50-51	$\times 30$
3	W21541B	Retaining Ring ...................	3-12		1	W30805	0.01 Mfd. 400 V. .................	62	.20
			16	. 05	1	W32304	0.0014 Mfd. ...........................	74	. 30
3	W30026	Retaining Ring	$81-11$		2	W28621	0.02 Mfd 200 V . .................	83-85	15
			17	. 05	1	W 28619	0.004 Mfd. 200 V. .................	84	15
1	G1-33008	Ant. Tuning Condenser .....	86	. 35	1	W32379	0.02 Mfd. 200 V. ..................	6	15
1	G1-33008	R. F. Tuning Condenser ....	87	. 35					
1	(12-33009	Osc. Tuning Condenser ......	80	. 30			RESISTOES		
1	G7-33004\%	I. F. Condenser	88.89	1.25	2	W25937	275 Ohm ..............................	19-78	. 15
$\because$	G6i-3300t	1st \& 2nd I. F. Condensers	90-91	. 90	1	W21237A	60000 Ohm	20	. 15
1	G1-3300\%	3rd I F. Condenser ..........	92	. 25		W214.23	40000 Ohm ............................	23	. 15
1	G13-33002	Variable Tuning Condenser			2	We1876	10000 Ohm ............................	25-26	15
		Gang ..............................	82	4.00	1	W21455	$300000 \mathrm{Ohm} \mathrm{.........................}$.	27	15
	G1-32086	Dial Drive Assin. ................		2.75		W-2514	750 Ohm	31-34	15
$\frac{9}{9}$	G4-27134	Dial Light Bracket Assm.	61	. 20	2	W23403	150000 Ohm	38-54	15
$\stackrel{2}{2}$	W32128A	Light Diffuser ..................		10		W21454	1 Megohm	41-43	
$\bigcirc$	W32244	Light Diffuser Retainer ....		. 05				57	15
1	1332147A	7 Pole D. T. Switch ..........	1.	1.35	2	W23785	500000 Ohm ...........................	45-48	15
1	W 32062	Level (Volume) Control (1 Meg.)			1	W21875	100000 Ohml ................................................	46	15
1	W:32063	Tone Control \& Switch ......	${ }_{52-53}$	.80 1.20	1	W ${ }^{\text {W12 }}$	7000-11000 Ohms ....................	$58-59$	45
1	G16-26719	Ant.-Gnd. Terminal .......	93	15	1	W 26577	3 Megohm ......	75	15
1	(65-30745	Power Trans. $60 \mathrm{cy}$.110 V .	63	3.75	1	W31094	4500 Ohm	77	15
	G36-20469	Power Trans. 25 cy 110.			1	W31007A	Speaker Cord (4 Lead) .......	76	. 25
		-2 220 V....	64-83	9.00	3	W32352	Knob ...................................		10
3	G24-97975	58 Socket ....	67-69		1	G1-32067	Crank Assm. .........................		50
			70	. 10	1	W32127A	Dial Glass ...................		10
1	G56-27975	${ }_{2} 2 \mathrm{~A} 7$ Socket	68	10	1	W32129A	Dial Glass Retainer ...........		.05
1	G43-27975	2 A 5 Socket	72	. 10	1	W 38880 A	Thumb Screw		. 05
1	G6-27975	80 Socket	73	. 10	1	[332172	Tube \& Cond. Shield		10
5	W'21981	Tube Shield Base ................		. 05	1	C32149	Bottom		. 25

PAGE 5-38 CROSLEY


# CHASSIS 7H3 

## General Description...

Chassis 7H3 is used in the Models 72 and 72 Lowboy. It is a 7 -tube, short-wave and broadcast chassis, employing the latest superheterodyne circuit in which has been incorporated a high efficiency tuned radio frequency stage for both short wave and broadcast. The major difference bewteen chassis 7 H 3 and its predecessor, chassis 7 H 2 , lies in the addition of a broad A.V.C. Circuit to chassis 7 H 3 and the further use of A.V.C. on the first audio amplifier. The frequency ranges covered are

535 to 1735 Kc ., which is the regular broadcast band and the lower frequency police band, and 5700 to $15,500 \mathrm{Kc}$., which is the short wave or high frequency band. The intermediate frequency is 456 Kc . Two stages of I.F. are used to assure adequate selectivity. A special frictiontype $80-1$ drive is used to make tuning as smooth and easy as possible. Instead of the customary tuning knob, a special fishing reel type of crank is provided so that the tuning can be spun quickly from one end of the dial to the other. With the
high ratio drive employed, this would be quite laborious if a conventional knob were used for tuning.

## Tubes Used and <br> Their Function . . .

The tubes used are - type 6D6 R.F. amplifier, type 6A7 oscillator modulator, type 6B7 first I.F. amplifier and AVC Diode, type 6D6 second I.F. amplifier, type 6F7 A.F. Diode and AVC A.F. amplifier, type 42 output, and type 80 rectifier. The tube voltages are shown in the table below:

Type	Where Used
6D6	R.F.
6A7	Osc.-Mod.
6B7	1st 1.F. \& A.V.C. Diode
6D6	2nd I.F.
6F7	Diode \& I.F.
42	Output
80	Rectifier


Ef	Ep	Eg	Ek	Esg	Ep-Osc
6.5	225	-	0	100	-
6.5	225	-	$(10 \mathrm{LF})$	100	150
6.5	225	0.3	$0 \mathrm{HF})$		
6.5	225	-	0.0	100	-
6.5	30	.5	0	100	-
6.5	215	2.0	0	225	-
4.9	-	225	-	-	
105 volts across speaker field.					

All DC voltages are plus or minus $10 \%$. All DC voltages are measured to chassis at 117.5 volt line, with 1000 ohms per volt, 500 volt voltmeter. Power demand is 75 watts at 110 volts 60 cycles.

## Method of Biasing . . .

Referring to the circuit diagram it will be seen that the 6D6 R.F. amplifier obtains its bias from the voltage drop across resistor 55 . Resistors 55,56 and 57 form a voltage divider network connected in shunt with the speaker field, which field is in the negative leg of the power supply system. The most positive point of the network is where resistor 55 is connected to chassis, and the most negative point on the network is where resistor 57 connects to the center tap on the power transformer secondary. The grid return of the 6D6 R.F. amplifier follows through isolating resistor part No. 27, and thence through a second group of resistors, parts Nos. 75, 78, 80, down to the junction point between resistors 55 and 56 . The 6A7 input section obtains its bias through isolating resistor No. 7 and then through resistor 80 to the same point, namely the junction between resistors 55 and
56. The oscillator section of the 6 A 7 obtains its bias from the usual grid leak and condenser arrangement in which part No. 20 is the grid leak for the low frequency band and part No. 23 for the high frequency band. Bias for the 6B7 first amplifier, is obtained from the drop across resistor 55 , while the bias for the 6D6 second I.F. amplifier is obtained at the same point but through resistors 75,78 and 80 . The 6 F 7 pentode section, which is used as an audio amplifier, obtains its fixed bias from resistor 55 , but there is also a varying bias, depending on the signal strength applied due to the diode voltage drop across the level control, part No. 39. In this case, resistors 65 and 41 form a voltage divider network so that the diode voltage developed is split up in their ratio. The type 42 output tube obtains its bias from the combined drop across resistors 55 and 56 in series, this circuit being completed through grid resistor No. 48.

## Automatic Volume Control Circuit ...

Automatic Volume Control voltage is generated in the diode of the 6B7 first I.F. amplifier. This diode is fed
from the second I.F. transformer and the A.V.C. voltage is developed across resistors 78 and 80 , after the signal voltage has become sufficiently large to overcome the initial bias across resistor 55. Automatic volume control voltage is fed both forward and back in the circuit of this 7 H 3 receiver. The full voltage is fed to the 6D6 R.F. amplifier through isolating resistor 75 and 27, while that part of the voltage developed across resistor 80 only is fed through isolating resistor No. 7 to the 6A7 input grid. The 6B7 pentode section does not have any AVC exerted on it because if this were done some distortion might result. The 6D6 second I.F. amplifier has the full voltage exerted on it through isolating resistor 75 . It will be noted that in this stage the AVC voltage is sent forward instead of back through the circuit. The first audio amplifier, type 6F7 also has AVC exerted on it. In this case, the grid and plate of the 6F7 triode section are used as a diode and diode voltage is developed across resistors 38 and 39 in series. Resistors 65 and 41 form a voltage divider network so that a portion of this diode voltage is fed onto the input grid of the 6F7 pentode section.

CROSLEY RADIO CORP.

## Analysis of Signal Channel...

The signal enters at the terminals A1, A2 and G. These three terminals are provided to permit the use of a doublet antenna with transposed lead-ins and no ground connection, if desired. With such an antenna the two lead-in wires are connected to Al and A 2 , and the wire strapped between A2 and G is open-circuited. If it is desired to operate the receiver with simply a conventional antenna and ground, connect A2 and G together and to the ground wire. The conventional antenna is connected to the Al terminal.
The signal flows either to the short wave antenna coil primary or to the broadcast antenna coil primary, parts No. 2 and No. 3 respectively. It is to be noted that a resistor, part No. 77, is connected across the broadcast antenna coil primary for the purpose of securing better alignment. The secondary of the antenna coil is tuned with a section of the gang condenser, part No. 14, and the signal is then impressed on the grid of the type 6D6 R. F. amplifier. The amplified output of the tube follows through the switch and into the primary of broadcast or high frequency interstage coil. The output of the secondary of the interstage coil is tuned with another section of the gang condenser, part No. 14, and fed to the control grid of the type 6A7 modulator oscillator tube. The oscillator section of this tube is automatically connected at the same time the switch is thrown so that the frequency of the oscillator is controlled by the third section of the gang condenser, part No. 14, so as to give a constant intermediate frequency of 456 Kc . in the plate circuit of the type 6A7 modulator oscillator. This intermediate frequency is now fed into the primary of the first I. F. transformer, part No. 29, and thence to the secondary of the same transformer. This transformer is tuned in both primary and secondary circuits to obtain maximum selectivity. The output of transformer No. 29 is fed to the type 6B7 first I. F. amplifier and the output of this tube then goes to the second I. F. transformer, part No. 33, which I. F. transformer is also double tuned. The signal then follows to the grid of the type 6D6 second I. F. amplifier whose output is in turn fed to the primary of a double tuned diode type I. F. transformer, part No. 35. The tuned secondary circuit of the diode transformer feeds the triode grid and plate of the type $6 \mathbf{F} 7$ connected in
parallel. The diode resistor is a combination of part No. 38 and volume control No. 39 connected in series, but only that portion of the diode veltage developed across part No. 39 is used. The reason for this connection is that smoother action is obtained without regeneration. Both audio frequency and direct current are present across resistor No. 39. Condenser, part No. 40, is used to couple the audio frequency over to the pentode grid of the type 6F7 audio frequency amplifier. Resistor No. 41 completes the grid circuit of this tube. The amplified audio frequency in the plate circuit of the 6 F 7 is fed through coupling condenser, part No. 47 into the grid of the type 42 output tube, which grid circuit is completed with resistor No. 48. The plate circuit of the output tube is connected to the speaker transformer in the customary manner. Condenser No. 50 is used to match the impedance of the output tube and speaker nore closely at higher audio frequencies, while condenser No. 51 and variable resistor No. 52 form the tone control.

## Power Supply System . . .

The power supply system consists of a transformer, part No. 63, for 110 -volt 60 -cycle, part No. 64 for other uses, a rectifier tube type 80 , the speaker field as a filter choke, wet electrolytic condenser, part No. 60 , and dry electrolytic condenser, part No. 8. In this particular circuit the filter choke is included in the negative leg of the power supply system, because in so doing it is pos. sible to use the drop across the filter choke for biasing, and eliminate the use of a large bypass condenser in the cathode of the output tube, type 42. At the same time better audio quality for the lower notes is obtained than with the ordinary bypass condenser circuit. The Universal transformer, part No. 64, is a special transformer originally developed for export use, but because of its enthusiastic reception it has been incorporated in this chassis. The primary of the transformer is equipped with four voltage taps clearly marked so that the set can be made to operate from 90 to 265 volts in four steps. The transformer operates on any frequency from 25 to 100 cycles.

## Alignment Procedure

To align the I. F. amplifier it is necessary that there be available a suitable modulated oscillator capable of adjustment to 456 Kc . with good accuracy. This oscillator
should have an attenuator so that the strength of the oscillator output can be regulated. Be sure that the band change switch is thrown to the low frequency or broadcast band position. Connect the high side of the output of the modulated oscillator, which has been adjusted to 456 Kc . to the control grid connection on the top of the 6A7 tube through an .02 Mfd. series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I. F. transformer condensers for maximum signal output. The first and second I. F. trans. former tuning condensers are located on the left-hand side of the chassis, while the diode transformer tuning condensers are located on the top of the tall I. F. transformer as indicated in the diagram attached. To make these adjustments, it is neces. sary that a standard $1 / 4^{\prime \prime}$ (across flats) hexagon socket wrench be used for the adjustment nuts and a small screw driver for the slot. The tools are preferably insulated. Always make these I. F. adjustments very carefully and go over the adjustments several times to be sure that the peak has been reached.

To align the receiver at broadcast frequency, it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc ., together with a suitable attenuator and dummy antenna be available. Set the oscillator at 1400 Kc . and connect the high side of the oscillator to the Al receiver antenna terminal through a .0002 (dummy antenna) condenser. Be sure that there is a connection between A2 and G. Turn the tuning control of the receiver to 140 on the dial. Now adjust the oscillator broadcast shunt trimmer, indicated on the diagram as "oscillator trimmer condenser L. F. band" and located under the chassis, until the signal is heard best. Without chang. ing the gang condenser setting, adjust the antenna and radio frequency broadcast trimmers, also located under the chassis and indicated in the diagram attached for maxinum signal. It is necessary that these adjustments be gone over several times until no further improvement can be made. Always work with the weak. est possible signal from the modulated oscillator for best accuracy. Now rotate the dial until it reads 60 and set the modulated oscillator to ap. proximately 600 Kc . Adjust the modulated oscillator carefully until maximum response is heard. Now adjust the oscillator series trimmer for the low frequency band located
CROSLEY RADIO CORP.

## CROSLEY RADIO CORP．

under the chassis as shown in the dial to 15 ．Adjust the oscillator diagram for maximum signal．It is trimmer condenser under the chassis sometimes advisable to move the to maximum signal．Now adjust the main dial back and forth slightly antenna and interstage trimmers for about 60 on the dial during the maximum signal，making sure to go course of this adjustment if a still greater signal is obtainable．
To align the set in the high fre－ quency or short wave band，it is necessary that a modulated oscillator be available for frequencies of 6000 and 15000 Kc ．The procedure for this band is similar to the broadcast band，except that a 750 ohm midget carbon resistor is used for the dum－ my antenna instead of the ． 0002 condenser．Set the modulated oscil lator to 15000 Kc ．and the receiver in maximum signal．

Tuning Receiver In High Frequency Band．．．

Due to the tremendously greater number of transmitter channels cov－ ered in the high frequency band，the receiver is endowed with a much greater apparent selectivity．For this reason，if the receiver is tuned care－ lessly，many high frequency stations will be missed or passed over with－ out hearing them．It is very neces． sary that the receiver be tuned slow－ ly and that extreme care be exercised in final adjustment of the receiver to the center of the carrier after a high frequency station is located and receiver．

PARTS LIST—MODEL 7H3

Part No．	Antenna Coil（H．${ }^{\text {Deseription }}$（ ．．．．．．．．	$\begin{gathered} * \\ \text { Item } \\ 2 \end{gathered}$	List Each .50	Qty.	Part No． IV：32（）i3	Description   Tone Control \＆Line Switch	Item   52－53	$\begin{gathered} \text { List Ea } \\ 1.20 \end{gathered}$
（11－32002	Antenna Coil（H．F．）．．．．．．．．．	2	． 50	$1$		Tone Control \＆hine Switch   Cord \＆Plug	66	1.50 .50
G3－32000	Antenira Coil（L．F．）．．．．．．．．．	3	． 45			Cord \＆Plug		
（i1－3：3011	R．F．Coil（H．F．）．．．．．．．．．．．．．．	11	． 65					
G9－32001	R．F．Coil（I． Osc．Coil（L． F．）	12	． 55			CONDENSERS		
G2－32002	$\left.\begin{array}{l}\text { Osc．Coil（L．} \\ \text { Osc．Coil } \\ \text {（ } \mathrm{H} . \\ \mathrm{F} .\end{array}\right)$	16	． 50					
G1－32094	1st I．F．Trans．	29	． 50	1	W－29097C	8．－8．－8．Mfd．450 V．－450 V．－	8－9	
（31－320）4	－nd 1．F．Trans．．．．．．．．．．．．．．．．．．．	33	． 50			15． 270 V．	10	2．85
（36－32004	3rd I．Fr．Trans．（Diode）\＆ Trimmer Condensers ．．．．	35－36	1.90	1	W：3194B W30321	12．Mfd． 475 V．   1．Mfd． 160 V	60 49	1.25 .05
W31380	Coil Shield Bracket ．．．．．．．．．．．．		． 05	1	W32379	（0．02 Mtil． $2001{ }^{+}$	4	． 15
W2うこ00	Coil Sockets ．．．．．．．．．．．．．．．．．．．．．．．．．．		． 03	1	W32380	0.05 Mfd． 200 V ．	18	20
W30802	Coil Shield		． 15	1	W25435	0.603 Mid． 400 V．．．．．．．．．．．．．．．．．．	24	． 15
W2502．）A	Coil Shield		． 10	2	W27216	0.05 Mfd． 200 V ．	$30-47$	． 15
We5ovid	Coil Shield		． 10	1	W31937	0.0001 Mfd．	31	.15
G1－24064	Coil Shield ．．．．．．．．．．．．．．．．．．．．．．．．．．．．	29－33	． 15	1	W97933	0.0001 Mfd． 000 V	40	.15
W゙90891	Insulating Washer ．．．．．．．．．．．．．．		．03	1	W98619	0.006 Mfd． 200 V.	$\stackrel{40}{49}$	.15
W21．71I5	Retaining Ring ．．．．．．．．．．．．．．．．．	3－12－16	． 05	2	W24049	O．1 Mfd． 200 V ．．．．．．．．．．．．．．．．．．．	［	． 30
IV3002s	Retaining Ring ．．．．．．．．．．．．．．．．	11－2－17	． 05	1	Wh1052	$0.004-0.05$ Mfd． 400 V．-400 V． 0.01 Mfd． 400 V．．．．．．．．．．．．．．	30－61	． 20
	Ant．Trimmer Condenser	4 13	． 35	1	W32304	0．0014 Mfd．．．．．．．．	74	.30
G14－3300！	Osc．Trimmer Condenser	13	． 30					
（i）2－3i3mbi	L．F．\＆H．F．Ose．Trimmer Cond（Series）	21－22	1.00			RESISTORS		
G6－33006	1st I．F．Trimmer Cond．．．．	28	． 90	3	96577 $W 27503$	3 Megohn	7－41－75	10 .10
G6－33004；	2nd I．F．Trimmer Cond．．．．．	32	． 90	1	W27503 ${ }_{21237 \mathrm{~A}}$	1400 Ohill ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． ti0000 Ohin ．．．．．．．	19	． 15
G18－33002	Variable＇Tuning Condenser   Gang	14	4.00	1	212374 21453		23	． 15
G1－32086	Dial Drive Assm．．．．．．．．．．．．．．．．		2.75	1	21876	10000 Ohm ．．．．．．．．．．．．．．．．．．．．．．．．．．	25－26	15
（14．07134	Dial Liglat Brkt Assm．．．．．．．．	61	20	1	21455	300000 Ohm	27	． 15
W3－108．	Light Diftuser ．．．．．．．．．．．．．．．．．．．．．		11	1	W 25837	2750 hm m ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	34	． 15
W3294t	Light Iniffuser Rutainer ．．．．		． 05	1	23103	150000 Ohm ．．．．．．．．．．．．．．．．．．．．．．．．．．．．	$\begin{gathered} 38 \\ 43-57 \end{gathered}$	． 13
G75－27975	6IOG Sucket（R．F．\＆2nd I．F．）	67－70	10	3	21454	1 Megohmı ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	$\begin{gathered} 43-57 \\ 78 \end{gathered}$	． 15
G＋7－27975	BA7 Socket（Osc．）．．．．．．．．．．．．．．．	68	． 10	2	23785	500000 Ohm ．．．．．．．．．．．．．．．．．．．．．．．．．．	45－48	． 15
G＋8－27975	HB7 Socket（I．F．\＆Diode）	$6 \%$	.10	1	21875	100000 Olims ．．．．．．．．．．．．．．．．．．．．．．．．	46 55	．15
（44！－27975	6 F7 Socket（Diode \＆1st			1	33390 $2340 ;$	30000 Ohins   1500000 hms	55	． 15
	4．A．F．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	71	.10 .10	1	W $\begin{array}{r}23 \\ \text { W136 }\end{array}$	1000）－11000 Ohims ．．．．．．．．．．．．．．．．．．．	58－69	40
G25－27975	80 Socket（Rectifier）．．．．．．．．．．．．．．	73	． 10	1	26578	5 Megohm ．．．．．．．．．．．．．．．．．．．．．．．．．．．．	65	． 15
W－6981	Tube Shield Base ．．．．．．．．．．．．．．．		． 05	1	31094	4.000 Ohms	77	． 15
Wr－286：3	Tube Shield 16A7－4B7－tiF＇7）		．111	1	W：31007A	Speaker Cord ．．．．．．．．．．．．．．．．．．．．．．．	76	． 25
［126649	Tube Shield（6Df Tube）．．．		： 10			Dial Glass		． 10
（19－30745	lower Transformer for cy． 110 V.	63	4.25	1	$w: 3264$	Dial Glass Retainer ．．．．．．．．．．．．．．		． 05
G39－05069	Power Transformer 95 cy．			1	B3210．3	Escutcheon ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．		1.00 10
	110－290 V．．．．．．．．．．	64	9.00	3	W32352	Knob ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．		． 10
132147．	7 I＇．D．T．Switch	$\frac{1}{2}$	1.35	1	G1－32047	Crank Assm．   Tube \＆Cond．Shield		． 10
G11：－26719	Ant．－Gnd．Terminal ．．．．．．．．．．．．．	$\overline{5}$	． 15	1	133217：	Tube \＆Cond．Shield Thumb Screw		． 10
W：3（riz	Level Control（Volume） 1   Megohm $\qquad$	39	． 80	1	$\begin{gathered} \mathrm{V} 23880 \mathrm{~A} \\ \mathrm{C} 2141 \end{gathered}$	Thumb Screw $\qquad$		． 05

## TECHNICAL DATA PERTAINING TO CHASSIS 8 HI

## General Description ...

Chassis 8 Hl is used in the Model 80-AW and Model 80-AW Lowboy. It is an 8 -tube all-wave receiver, covering the band of $540-24000 \mathrm{Kc}$., in four steps. Other features are an 80 to 1 ratio drive mechanism with special fishing reel type of control, airplane type dial, push-pull pentode output, doublet antenna terminals,
and tone control. Two stages of double-tuned I. F. amplification, making a total of six tuned I. F. circuits are used to insure adequate selectivity. A tuned radio frequency stage is used in all frequency bands. The automatic volume control is of the broad type to obtain smoothest possible operation.

Type	Where Used
6D6	R.F.
6A7	Osc.-Mod.
6D6	1st I. F. F.
6B7	2nd I. F. and Diode
6F7	A.F.and Phase Inv.
42	Output
80	Rectifier


Ef	Ep	Eg	Ek   SW-BC	Esg	Epx	Egx
6.3	250	0	3	100	-	-
6.3	250	0	3	100	220	0
6.3	250	0	$7-21$	100	-	-
6.3	250	0	3	100	-	-
6.3	140	0	4	35	70	0
6.3	240	0	16	250	-	-
5.0	-	-	350	-	-	-

All voltages are plus or minus $10 \%$. All DC voltages are measured with 1175 volts AC line and with a 500 -volt 1000 -ohms-per-volt DC voltmeter. Power demand is 100 watts.

## Method of Biasing . . .

The type 6D6 R. F. amplifier obtains its normal bias from the cathode resistor, part No. 39. The bias for the input section of the 6A? oscillator modulator is obtained from the cathode resistor, part No. 40. The oscillator bias is obtained from the grid leak and condenser combination in which part No. 29 is the grid leak and part 50 the grid condenser. The type 6D6 first I. F. amplifier obtains its bias from the cathode resistor, part No. 41, for all bands except No. 4, the broadcast band. When the switch is thrown to the band No. 4 position, auxiliary resistor, part No. 95, is inserted in series with part No. 41. It is the purpose of this auxilary resistor to reduce the gain of the receiver at broadcast frequencies, because if full sensitivity were used the receiver would be entirely too sensitive in the broadcast band. The bias for the 6B7 second I. F. amplifier input section, is obtained from the cathode resistor, part No. 42, which resistor also furnishes the delay voltage for the AVC system. The variable mu
pentode AF amplifier and phase inverter, type 6F7, obtains its bias from resistor No. 36, while the output tubes obtain their bias from the resistor No. 43.

## Automatic Volume Control Circuit.

The automatic volume control diode in the 6B7 is fed from the plate of this tube through coupling condenser, part No. 51. Diode voltage is developed across resistors 32 and 33 after the signal has become sufficiently strong to overcome the initial bias generated in resistor 42. The voltage across resistor 32 is that part which is used for AVC purposes. Following the circuit diagram, it will be seen that the AVC voltage flows through isolating resistor No. 27 to the grid return of the high frequency interstage coil, part No. 8, and then to the input grid of the 6A7 oscillator modulator. In the other three bands, the AVC voltage is fed through the additional isolating resistor, part No. 26, to the grid return and then to the input grid of the 6A7. AVC voltage is also fed from resistor 27 through isolating resistor 24 to the grid return of the highest frequency antenna coil, part No. 4, and then to the grid of the 6D6 R. F. amplifier. For the other bands the AVC voltage is fed

## Tubes Used and Their Function . . .

The tubes used are type 6D6 R. F. amplifier, type 6A7 oscillator modulator, type 6D6 first I. F. amplifier, type 6B7, second I. F. amplifier, AVC diode and AF diode, type 6F7 first AF pentode amplifier, and triode phase inverter, two type 42 pushpull output and type 80 rectifier. The normal tube voltages are as indicated in the table below:

CROSLEY RADIO CORP.

als be removed. In using a conventional type of antenna be sure that the strap is connected between terminals A2 and G. Connect the ground wire to either the A2 or G terminal and the antenna wire to the Al terminal.
The path of the signal then depends on the position of switch No. 14. It will be seen that the signal may be made to enter antenna coil primaries, part Nos. 1, 2, 3 and 4, for bands Nos. 4, 3, 2 and 1 , respectively. The shunting resistor, part No. 23 , across the broadcast antenna coil primary is for the purpose of producing better alignment. Each secondary is provided with a trimmer condenser, and the output of the secondary goes through the section of the switch indicated in the wiring diagram just above the gang condenser, part No. 13. The remaining coils not in use are short circuited by another section of the switch. It will also be seen that still another section of the switch is used to insert an additional bias resistor, part No. 95 , in series, with part No. 41, so that the receiver operates with higher bias on the I. F. amplifier, type 6D6, when the switch is thrown to the broadcast band No. 4. After tuning with a section of the gang condenser, part No. 13, the signal is impressed on the grid of the 6D6 R. F. amplifier and the amplified output of this tube then gres through another section of switch 14 to the primaries of the interstage coils designated as parts 5, 6, 7 and 8. Separate trimmer condensers are there provided for each of the secondaries and the signal flows through switch 14 to the grid of the 6A7 oscillator modulator tube after tuning with a section of the gang condenser, part No. 13. An additional section of the band change switch is used to short-aircuit the coils not in use. The oscillator coils are designated as parts $9,10,11$ and 12 respectively, they being provided with separate shunt trimmers for all bands and separate series trimmers for tracking in all bands except the highest frequency band No. 1 , in which case the series condenser is fixed. Both the primary and secondary of the oscillator coils are switched with separate sections of the band change switch, and the unused secondaries are short-circuited with another section. In the 6A7 oscillator modulator the signal is converted into the I. F. frequency of 456 Kc ., and then fed to the primary of the first I. F. transformer, part No. 18. Here it is double-tuned and fed to the grid of the first I. F. amplifier, type 6D6. The output of this
tube goes to the second double-tuned I. F. transformer, No. 19, and then to the grid of the second I. F. amplifier, type 6B7. The output transformer for this tube, part No. 20, is double tuned. The voltage developed across the primary of this transformer is fed to one of the diodes through coupling condenser part No. 51 for AVC purposes. In this way the AVC channel is not quite as sharp as the signal channel and a very desirable stabilizing effect is produced. The tuned secondary output is fed to the other diode in the 6B7 tube and diode voltage is developed across the series combination of resistors 28,46 and 34 , of which part No. 46 is the level control. Since resistor 34 is bypassed there is no audio or intermediate frequency present across this resistor, it being used only for the purpose of furnishing a residual bias to the AF amplifier section of the 6F7 tube. To insure stability, that portion of the voltage across resistor 28 is not used. The audio voltage across part No. 46, however, is fed directly to the grid of the 6 F7 pentode section. The audio frequency voltage is amplified and the amplified output of the 6 F 7 pentode section is present across resistor 35. It is fed through coupling condenser 64 to the grid of one of the type 42 output tubes. The grid circuit of this tube is completed through resistors 38 and 31 in series but that portion of the audio frequency voltage present across resistor 31 only is fed to the triode section of the 6F7. The output of this triode section is present across resistor 37. The characteristics of the tube and circuit constant are so adjusted that the voltage across resistor 35 and the voltage across resistor 37 are equal to each other but 180 degrees out of phase, so that when the output of the triode section is fed to the grid of the second push-pull output type 42 amplifier, which grid circuit is completed through resistor 38 , the output stage functions as a normal push-pull amplifier. The power output of the type 42 tubes is fed to the speaker transformer in the speaker assembly, part No. 77, in the conventional manner. Condenser 66 across the plates of the two output tubes serves to keep the impedance more constant at all frequencies, while the combination of rheostat 47 and condensers 65 and 92 make up the tone control.

## Power Supply System . . .

80 , for 110 -volt 60 -cycle, and part
The power supply system is made up of a power transformer, part No.

No. 81 for other voltages and frequencies, a type 80 rectifier tube, first filter condenser part No. 67, filter choke part No. 79, second filter condenser part No. 68, second filter choke made up of the speaker field in assembly 77 and the third filter condenser part No. 69. This power supply system is conventional and requires no further explanation.

## Alignment Procedure . . .

To align the I. F. amplifier it is necessary that there be available a suitable modulated oscillator capable of adjustment to 456 Kc . with good accuracy. This oscillator should have an attenuator so that the strength of the oscillator output can be regulated. Be sure that the band change switch is thrown to the high frequency or No. 1 band position. Connect the high side of the output of the modulated oscillator, which has been adjusted to 456 Kc . to the control grid connection on the top of the 6 A 7 tube through an .02 Mfd . series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I. F. transformer condensers for maximum signal output. These I. F. transformer condensers are accessible on the top of the three tall I. F. transformer cans. To make these adjustments it is necessary that a standard $5 / 16^{\prime \prime}$ (across flats) hexagon socket wrench be used for the upper condensers, and a small screwdriver fitting inside of the nut hole for the adjustment of the lower condenser. Always make these I. F. adjustments very carefully and go over them several times to be sure that the peak has been reached.

To align the receiver at broadcast frequencies, it is necessary that an adjustable oscillator having the frequencies of 1400 and 600 Kc . together with a suitable attenuator and dummy antenna be available. Set the oscillator at 1400 Kc . and connect the high side of the oscillator to the receiver antenna terminal through a 0002 (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial and throw the band change switch to range No. 4. Now adjust the oscillator broadcast shunt trimmer on the end of the coil assembly in the topmost front position as indicated on the diagram until the signal is heard best. Without changing the gang condenser setting, adjust the antenna and radio frequency broadcast trimmers in this same top row for maximum signal. Sometimes it is advisable to readjust the dial slightly because the oscilla-
tor is somewhat affected by the R. F. adjustment. It is necessary that these adjustments be gone over several times until no further improvement can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. Now rotate the dial until it reads 60 and set the modulated oscillator to approximately 600 Kc Adjust the modulated oscillator carefully until maximum response is heard. Now adjust the oscillator series trimmer condenser for the broadcast band, located in the third hole from the front on the chassis end flange, indicated in the diagram, until maximum response is heard. It is sometimes advisable to move the main dial back and forth slightly about 60 on the dial during the course of this adjustment if a still greater signal is obtainable.

The same procedure is used for the remaining three bands except that the dummy antenna condenser is replaced by a 750 -ohm midget carbon resistor. The shunt padding condensers for band No. 3 are located in the middle row on the end of the coil assembly, while the series padding condenser for band No. 3 is the second from the front on the receiver end flange. To align the receiver in band No. 3 it is necessary that a modulated oscillator and suitable attenuator be available, with frequencies of 1700 and 4000 Kc . Set the dial at 4 and the modulated oscillator to 4000 Kc . Adjust the oscillator shunt trimmer, which is the front condenser on the coil shield assembly in the middle row for max-
imum signal. Then adjust the remaining two condensers in the middle row for maximum signal, making what slight adjustments may be necessary if the oscillator is slightly detuned by the R. F. adjustment. Then set the modulated oscillator to approximately 1700 Kc ., and the receiver dial to 1.7. Adjust the modulated oscillator shightly until the signal is heard best and then adjust the oscillator series trimmer located on the receiver end flange (the second from the front) for maximum signal. Make whatever slight readjustments are necessary in the dial to bring this signal in best.

To align the receiver in band No. 2 , the bottom row of trimmer condensers on the coil shield assembly are used. An oscillator capable of adjustment to 4500 and $10,000 \mathrm{Kc}$. is necessary. Set the oscillator at approximately 10,000 and the receiver dial to 10 . Adjust the oscillator shunt trimmer condenser, which is the front condenser in the lower row, for maximum signal. Then adjust the remaining two condensers in the lower row, making whatever slight readjustment of the dial is necessary to bring the signal in best. Set the dial of the receiver to 4.5 and the modulated oscillator to 4500 Kc . Now adjust the oscillator series trimmer condenser for this band, which is the frontmost one on the receiver on the chassis end flange, for maximum signal, making whatever slight dial readjustments are necessary.
The aligning condensers for band No. 1 are lacated directly under and
to the right of the gang condenser. To align the receiver in this band, it is necessary that a modulated oscillator and attenuator for a frequency of $22,000 \mathrm{Kc}$. be available. Set the modulated oscillator to 22,000 Kc. and the receiver dial to 22 . Adjust the oscillator shunt trimmer, which is the frontmost of the three trimmer condensers available from the top of the chassis, for maximum signal. Now adjust the remaining two trimmer condensers also available from the top of the chassis, and make whatever slight dial adjustments are necessary to bring the signal in best. There is no series trimmer condenser for this band but the alignment may be checked by setting the modulated oscillator to approximately $11,000 \mathrm{Kc}$. and tuning it in on the receiver dial. It should come in at about 11 on the dial.

## Tuning Receiver In <br> High Frequency Band . . .

Due to the tremendously greater number of transmitter channels covered in the high frequency band, th receiver is endowed with a much greater apparent selectivity. For this reason, if the receiver is tuned carelessly, many high frequency stations will be missed or passed over without hearing them. It is very necessary that the receiver be tuned slowly and that extreme care be exercised in final adjustment of the receiver to the center of the carrier after a high frequency station is located and received.


PAGE 5-46 CROSLEY

*Figures in 2nd last column refer to parts shown in wiring diagram of Model 8HI

Qty. 1	Part No.	Description   Antenna Coil (Broadcast)	Item	List Each	Qty. 1	Part No.		Item	List
,	43-32000	Antenna Coil (Broadcast) ..		$\begin{aligned} & .45 \\ & .40 \end{aligned}$			FILTER \& BY-PASS		
1	G4-32000	Ant. Coil ( $15000-4000 \mathrm{Kc}$. )	$\frac{1}{3}$	. 60		W28194B	12 M.F.D. 475 VOLT		25
1	G5-32(M)	Ant. Coil ( ${ }^{\text {Ant. C. }}(10000-24000 \mathrm{Kc}$.)	4	. 55	1	We9m7C	8.-8.8. Mfd. $450-450-250$	68-69	
1	G6-32001	Inter. Coil (Broadcast) .	5	. 55			Volts		2.85
1	G8-32001	Inter. Coil (1500-4000 Kc.)	6	. 50	1	W32938	8. Mfd. 300 Volts..........	90	1.20
1	G3-32001	1n. Coil ( $4000-10000 \mathrm{Kc}$.)	7	. 60	1	W 30321	1. Mfd. 160 Volts ...........	61	. 50
1	G4-32001	In. Coil ( 10000024000 Kc .)	9	. 60	a	W32278	$0.001{ }_{0} \mathbf{M}$	48-49	. 15
1	G2-32002		10	. 40	1	W322:96	0.0005 Mfd	51	15
1	G3-320002	Os. Coil ( $4000-10000 \mathrm{Kc}$.)	11	. 50	1	W31937	0.0001 Mfd	52	15
1	G5-32002	$\mathrm{Os} . \mathrm{C} .(10000-2+000 \mathrm{KC}$.	12	55	1	W 32379	0.02 Mid. 200 Volt ............	53-54	. 15
1	W33378	Level Control (Volume)	46	. 75	2	W28621	0.02 Mfd. 200 Volt .....	50.56	
1	W320033	Tone Control \& Line Switch	47	1.20					15
1	G16-26719	Ant. Gnd. Terminal ............	88	. 50		W23035	0.006 Mfd .	69	20
1	B21491C	A. C. Cord \& Plug ...	83	. 10	1	W23191A	0.01 Mipd. 400 Volt ...............	63-97	25
2	G75-27975	Socket 6A7 ......................	84	10	2	W 231615	0.05 Mfd .400 Volt	64	15
1	G2-33070	Socket GB7	85	10	1	w:31052	0.05-0.004 Mfd. $400-400$ Volt	65-66	. 30
1	G48-27975	Socket 6F7	80	. 10	1	W3:279	0.00085 Mfd..................	74	. 20
1	G49-27975	Socket 42	87	. 10	1	W 3.2332 A	0.000791 Mfd................	75	. 30
1	G60-27975	Socket 80 .......................	88	. 10	1	W30270	0.001 Mfd.	92	15
1	W3307:	Socket Cushion..............	884	. 05	1	W2alte	0.02 Mfd. 400 Volt	94	
$\stackrel{3}{1}$	W33071	Tube Shield Base........	84	. 10			RESISTORS		
1	W28632A	Tube Shield...............	84.85	. 10					
$\underline{2}$	B2ROOPD	Tube Shield .........................	83	. 10	1	$\underline{1405}$	4500 Ohms ..		15
3	W27981A	Tube Shiled Base .................	-83-80	. 05	1	د10\%	3000no Ohins	24-27	15
$\bigcirc$	W32744	Socket Power Trans. 60 Cy				23785	500000 Ohms	28-38	
1	G37-25689		80	6.50	3			93	. 15
	G38-25069	Power Trans. 25 Cy . 110-120			1	$\because 1875$	100000 Ohms		15
1	G1-24628	Filter Choke ...........................................	79	1.25	$\stackrel{2}{9}$	21237 A	60000 Ohms	31-35	15
		$18 t$ Tuned I F Tran	18	190	2	20577	3 Megohms	32.33	. 15
1	G19-32044	2nd Tuned I. F. Trasa....	19	1.90	1	21876	10000 Ohms	34	. 15
1	G5-32904	3rd Tuned I. F. Trans. .......	20	1.90	$\stackrel{\square}{1}$	W30127	$\pm 50$ Ohms (Flexible)	36-42	15
	G7-33009	Parallel Padding Cond.	15	. 15	1	W234037	150000 Ohms (Flex.	39.40	15
	G5-33009	Parallel Padding Cond.	17	. 15		W25937	7.9) Ohins (Flex.) ...................	41-96	15
	G17-33009	Parallel Padding Condenser	100	. 15	1	W22873	220 Ohms .........	43	15
	G2-33008	Parallel Padding Condenser	98	. 15	1	W3 3 391	10060-150M0 Ohins	44-45	45
	G11-33009	Parallel Padding Cond.	${ }_{16} 1$	. 15	1	\|V:32:37	10-10 Ohins	60	3
	G2.33006	Padding Condenser ...	72.73	1.90	1	2.831	15000 Ohms	95	15
	G14-33003	Padding Condenser ............	98	45					
1	B321903	Band Change Switch....	14	2.50					
1	G18-32002	Tuning Condenser Gang ....	13	4.00					

CROSLEY RADIO CORP.

```
MODEL 5Al
Schematic, Socket
``` Parts List

```


[^0]: Turn the tuning condenser rotor to minimum capacity (rotor
 plates out of stator places).

[^1]: 1. Couple the test oscillator to the green antenna lead, leaving the anterna connected.
 2. Set the test oscillator to 1660
