VOLUME III

JOHNFRRIDER

Model 205 Data

The tanng range of the receiver is 550 to $1,750 \mathrm{kc}$, and reception of the $2,480-\mathrm{kc}$. police signals as an trage frequency. The intermediare frequency used is 465 kc

The most interesting feature of this receiver is the control unir which, instead of merely consisting of the usual remote tuming dial and volume control, actually contans the trpe ' $\$ 7$ combination first detector and asciltator tube rogether with the associated units. This unit is then coupled to the m-termediate-frequency amplifier by an $\mathrm{t}-\mathrm{f}$. Eransmission line contained in a shield along
with the " A " and " B " feed itres, etc. The intermediate frequency and audio units are in a case with an eightinch Lansing speaker, making the whole a two-unt gob with remote control and no flexsble shafts.

The i-f. feed line has at each end a corl composed of three turns of wire around a standard if bobbin, and the line may be 15 fect long without causing appreciable loss
the loss with a 15 -foot run being about 5 db .
The two type 's8 tubes in the intermediatefrequency stages are used as standard rf f
pentodes. AVC is provided by the rype ' 55 second detector tube which feeds the type ' 47 output pentode Total plate current is 18 ma at 180 volts
Care should be taken with the $\mathrm{B}+$ termsnal as it $t 5$ inclined to short to the chassis, in which case the 900 -ohm bias resistor for the 47 tube will blow, as well as the elec trolyuc condenser shunting it

The plate winding on the osciltator coil in the control unit suffers seriously from electrolysis

MODEL 25 Schematio
Data

JACKSON-BELL CO., LTD.

Make all adjustments with volume control at maximum. Before aligning set make sure all tubes are in correct position and primary on oscillator and R.F. coils are well down towarde grid end of coil.

TO ALIGN 175 KC ALIGNVENT.
Put set in operation and set tuning condenser to full 100 degree position. Next, remove the screen grid cap from the autodyne oscillator and apply 175 modulated signal to this tube. (Looking at rear of set this tube is the fourth on the extreme right.) Next, remove license plate and adjust trimmers for maximum out-nut.

BROADCAST ALIGNMENT.

With external modulated signal generator set at approximately 1710 KC (Police frequency). The dial should be set at approximately 5 degrees past minimum. Adjust oscillator trimmer on rariable and resonate the other 2 trimmers from maximum out-put at this position. Apply 855 KC modulated signal and align set at this point by bending plates of variable. Do not readjust trimmers. Repeat this operation at 600 KC .

With set at 600 KC readjust trimmers on I.F. transformers, for maximum output. If set oscillates when properly aligned, shift external ground lead from center section of variable to point where oscillation ceases.

JACKSON-BELL CO., LTD.
MODEL 27 Type 1

JACKSON-BELL CO., LTD.

Make all adjustments with volume control at maximum. To align 175 KC I.F. stage -
Set switoh in broadcast position and short out middle, or oscillator section of variable condenser. Apply 175 KC modulated signal to front section of variable condenser or grid cap. Chassis must be grounded to 175 KC oscillator. Remove 27 and 24 short-wave tube beside I.F. transformer and adjust all I.F. trimers to maximum output. This should be checked by an output meter.

To align Broadoast Band.
Close variable condenser and set dial at last division marker past 550 KC . Open variable condenser to 1350 KC and with 1350 KC modulated oscillator signal. Adjust middle or oscillator section trimer of variable condenser to maximum response. R.F. and antenna section of trimers are adjusted likewise at this frequency. Signal generator at 850 KC . Set dial at 850 KC and resonate by bending of slit plätes on variable condenser. Repeat above at 650 KC and 550 KC .

To align 840 KC Short-wave I.F.
Place the type 24 and 27 short-wave tubes back in the chassis, and after they have warmed up, turn wave selector, short-wave, to any one of the short-wave positions. Connect output of 840 KC modulated signal generator to grid cap of short-wave 24 tube. Note:- When short-wave is in short-wave position the variable condenser no longer tunes the broadoast coils. These are tuned to 840 KC by means of large trinmer condensers, adjusted from top of chasais beside variable condenser. Each 840 KC trinmer is beside the section of the variable condenser which it substitutes for. Note:- In loation where a broadcast station is on or too close to 840 KC , adjust above or below if interference is encountered.

To align short-mave oscillator and modulator.
Note:- In the short-wave bands the front and rear of the variable tuning condenser, are connected in series with semi-variable padding condensers. These reduce the effective tuning cap of the tuning condenser to the low valus necessary for tuning the short-wave coils.

In the absence of the short-wave signal generator, the broadcast signal generator may be set to 1000 KC . This will give harmonics on ehortmave at 150 Meters, $100,75,60,50,42.8,37.5,33.3$ and 30 moters. The best harmonic to use is the 75 meter one as it is just below the amateur 85 meters phone band.

Lift front of chassis up until sot lays on its back. Threc trimer condensers will bo seen in upper left hand corner of chassis. These are raading from top to botton. The short-wave oscillator padder (in series with front section of tuning condenser). The short-wave modulator padder (in serigs with the rear section of tuning condenser), and last the trinmer tuning the modulator plate choke to 840 KC .

With the wave selector shortmove in 40 to 80 meters position and signal generator at 1000 KC . Adjust the top or shortwave oscillator padding condenser until the harmonics appear in their proper pleces at 75, 60 and 50 meters. Note:- Disregard weaker intermediate harmonics. Then adjust the short-mave modulator padder for maximum response. Note:- The tuning condenser must be swung back and forth across the signal when this is being done as it effects the oscillator tuning. The tuned choke trimer is then packed on any signal.

The harmonice in the 20-40 meter band will be only approximately correct because of extremely high frequenciea involved. However, they will be within one meter correct on this band.

POOR QUALITY. Poor-quality may also be due to defeotive tubes or in oase all tubes are $0 . K$. check the $\frac{1}{2} \mathrm{meg}$. ohm resistor in the grid oirouit of the 47 tubes, as this value is extremely critical. Check coupling condenser for open short or laakage. If tone is too deep you will find the by-pass condenser on plate of 47 tube will be incorroct. This value should be .002. Check by-pass condenser on plate of first audio tube to ground, whioh value is .00025. If tone is too deep you will find a . 002 in P2 plates to ground either short or leaky. Check . 1 oondenser from plate of 47 tubes to tone control. This will also cause a lack of bass if condensers are open. Chock tone control for short, open or ground.

Howl. Make sure set is not pushod too far forward in oabinet or resonant howl will occur. Loosen bolts in bottom of oabinet, slide chassis as far back as shaft will permit. If this does not oure trouble, remove ohassis and loosen bolts holding variable making sure same is fres floating. foke sure shield is not making contact with variable as shield is insulated from variable by rubber gromet. If set has been realigned be sure plates in variable are not too close as a howl will result when volume is turned up.

ALIGNARNT AND BALANCE. Make all adjustments with volume control at maximume Bofore allgning set, be sure all tubes are in their correct position, primary on osoillator and R.F. coil are well down towards grid ond of coil.

Ist, lilignment os intermediate frequency transformer.
Put get in operation, short primary of oscillator ooil out. Remove soreen grid oap on fourth tube from the right looking at rear of set. Apply at this point 175KC modulated signal. (If other frequenoies are desired apply same to this point). Adjust trimers on I.F. transformers for maximum out-put. adjust trimers on second I.F. transformer first.
2nd. Broadcast alkgmont.
With intermediate aligned to their proper frequency remove wire shorting primary of oscillator coil, placing grid cap back on oscillator tube. Set dial marker at last division on minimum side of soale. With extornal signal generator adjust trimmers at 1350 KC . Adjust oscillator trimer first and resonate other two trimers for maximum out-put. Set signal gonorator at 850 KC and bend plates of variable to bring set in resonance at this point. Ropeat this operation at 700 KC and again at 575 KC .
If set osoillates oheck all connootions, slide primary 0011 to osoillator towards ground end until oscillation coases. If this does not cure the trouble, readjust intermediate trimers with variable set at 600 KC . Also check grid suppressor for open or short in grid lead of R.F. All above adjustments in using a signal generator with meter in out-put should bo made with selsotor switoh on distance, or number threo position.

In case signal generator is not used place out-put meter from .C as heretofore described to ground and balance set on incoming sigals for maximum out-put.

KELLER-FULLER

(a)

ORIGINAL
MODEL- M

KELLER-FULLER PAGE 3-3

The tubes employed are as follows, and are operated at normal voltages and biases:

Radio frequency	235	Second detector 227
Mixer	235	Automatic Vol. Control .. 227
Intermediate frequency	235	First Audio 227
Oscillator	227	Power 247

Rectifier 280

To accommodate the automatic circuits it will be noted that the long wave R.F. and I.F. tube filaments and cathodes are biased positively about 100 volts above ground. Then the AVC tube receives a signal it draws current (being normally biased to cut-off) throurh the 250,000 ohm resistor. The voltage drop across this resistor is then applied to the automatically controlled grids as additional bias. An inspection of the circuit diagram will clarify this simple and efficient AVC action.

In aligning, it is first desirable to see that the intermediate froquency transformers are properly set. This is mort readily accomplished by using an output meter and an accurate source of 175 kilocycle radio frequency, such as an oscillator. The accuracy of this oscillator may be checked by tuning a radio set to a station on 700 kilocycles and placing the oscillator near the antenna. A harmonic of the 175 kilocycle oscillator will "zero beat" with the station if the oscillator is correct. Other "harmonic" points may also be tried.

COLIN B. KENNEDY CORP.

Kemore the grid clip from the top of the first detector tube and fasten a short length of wire to the grid terminal of this tube. Lay this wire sufficiently near the $175 \mathrm{~K} . \mathrm{C}$. oscillator to note the energy from it in the output meter. With the oscillator set on exactly $175 \mathrm{~K} . \mathrm{C}$. , adjust the trimmers in the tops of the I.F. transformer shields for maximum reading of the output meter. If the meter tends to read "off scale", move oscillator farther from set and wire, thereby reducing input energy. If these I.F. transformers are badly out of alignment, it may be necessary to place the "pick up" wire on the grid of the lst I.F. tube and adjust the second transformer alone, at first, than moving wire to deteotor grid and proceed as above.

The tuning condenser may be adjusted for alignment or. "tracking" of the tuned circuits by a similar method except that an oscillator covering the broadcast band should be used. The output meter is used as before. The energy from the oscillator, in this case, is coupled weakly into the antenna circuit - a simple means being to place the oscillator near the antenna wire.

The receiver and oscillator are first tuned to approximately 1,500 kilocycles, and by watching the output indicator, the three condenser trimmers (reached through three holes in top-right of condenser shield, or, in some cases, throuch removable plate) are adjusted for maximum output. These three trimmers mast then be left untouched for all further aligning.

The next step is to tune both receiver and oscillator to some point near 550 kilocycles. Here, the alignment is made by adjusting the "padding" condenser (through hole in rear of condenser shield) for maximum response. If necessary to adjust the two R.F. condenser sections, it may be accomplished by bending the condenser end plates. If found necessary to align at other than the ends of the "band", it may be done by bending the slotted end plate of the condenser rotors. Alignment of the two ends of the scale is usually quite sufficient.

COLIN B. KENNEDY CORP.

Socket

The tukes employed are as follows, and are operated at normal voltages and biases (except the noise suppression, ow muting, tube):

$$
\begin{aligned}
& \text { Radio frequency } 58 \text { Second Detector \& A.V.C. ... } 55 \\
& \text { Mixer } 58 \text { First audio } 56 \\
& \text { Intermediate frequency... } 58 \text { Power } 247 \\
& \text { Pscillator } 56 \text { Rectifier } 280
\end{aligned}
$$

Noise Suppressor ... 57
To accommodate the "Fush", or noise suppressor, circuit it will be noted that the filament and cothode of the first audio tube are biased positively about 95 volts above'ground. Automatic volume control is obtained from the type 55 second detector, the voltage drop aoross the 500,000 ohm resistor (between Cath. and I.F. coil secondary) which is caused by the rectified signal being. applied, through suitable filtering resistors, to the grids of the R.F., mixer, and I.F. tubes. The A.V.C. voltage generated also actuates the noise suppressor tube. When no signal is tuned in, there is no A.V.C. voltage applied to the grid of the suppressor tube, permitting it to draw plate current. The plate current thus drawn oomes from the cathode of the first audio tube (cathode being positively biased) through the 5,000 ohm resistor and $250,000 \mathrm{ohm} \mathrm{grid}$ leak, causing a sufficientiy high blas to be applied to the grid of the audio tube (voltace drop across grid leak) to completely stop plate current and thus all noise. Variation in the amount of suppression is obtained by manually varying the bias on the suppressor tube.

In aligning, first properly adjust the intermediate frequency transformers preferably with a $175 \mathrm{~K} . \mathrm{C} .0 \mathrm{oscillator}$ fed into grid circuit of first deteotor, or mixer, and adjusting for maximum reading of an output meter. The tuning circuits may next be adjusted, using an oscillator covering the broadcast band (feeding into antenna circuit) and the output meter. Tune receiver and oscillator first to some point near $1,500 \mathrm{~K} . \mathrm{C}$. , and ndjust the three condenser. "trimmers" through large hole in condenser shield for maximum reading of output meter. Then retune receiver and oscillator to point near $550 \mathrm{~K} . \mathrm{C}$. and adjust oscillator "pad" condenser (through hole in rear of condenser shield) for maximum output. (Do not touch condenser trimmers after first adjustment at 1,500 K.C.) If further adjustment at $550 \mathrm{~K} . \mathrm{C}$. is necessary, bend slotted condenser end plates. Alignment at the two ends of the scale is usually sufficient. If desired to align at internediate points, bend the proper section's of the slotted plates for maximum output reading.

IMPORTANT: It is desirable to move the dial back and forth across the signal while making the above alignments, particularly when altering capacities connected with the oscillator circuit. A bakelite, or non-metalic, screwdriver is adviscd for making adjustments.

COLIN B. KENNEDY CORP.

The tubes employed are as follows, and are operated at rated voltages and biases:

$$
\begin{aligned}
& \text { Osoillator and Mixer } 57 \\
& \text { Intermediate frequency ... } 58 \\
& \text { Second Detector } 55 \\
& \text { Output } 247 \\
& \text { Reotifier } 280
\end{aligned}
$$

This receiver employs a combination oscillator and first detector, or mixer. The second detector is the new dual diode-triode, the diode portion aoting as detector and providing automatio volume control - acting on the grid of the type 58 I.F. tube. The triode portion of the second detector is operated as an individually biased A.F. amplifier.

The first two variable tuned oirouits are not olectrically coupled. They are mutually coupled by being placed olose together and left unshielded. In all other respects the circuits are entirely oonventional.

In aligning, it is first desirable to see that the I.F. transformers are properly set. The first I.F. transformer is on top of the base and has two adjustments. The second is inside the base but its single adjustment may be roachod through a hole in the rear-center of the bese. The intermediate frequency is 175 K.C.

COLIN B. KENNEDY CORP.

Alignment
Sooket

The tuning condenser may be adjusted for alignment or "tracking" of the tuned circuits by means of an osoillator and output meter. The osoillator should cover the band from 550 to 1500 K.C. The energy from the osoillator is coupled weakly into the antenna circuit - a simple means being to place the oscillator near the antenna wire. The reoeiver and oscillator are first tuned to approximately $1500 \mathrm{~K} . \mathrm{C}$. , and by watohing the output indicator, the three oondensor trimmers are adjusted for maximum output. These throe trimerg must then be left untouched for all further aligning.

The noxt stop is to twne both receiver and oscillator to some point near $550 \mathrm{~K} . \mathrm{C}$. Here the aligment is made by adjusting the oscillator "pad" condenser for maximum response. It may be roached through hole in base near the first I. F. transformer. If necessary to adjust the tro R.F. condenser sections, it may be done by bending the condenser end plates. If necessary to align at points other than the ends of the "band" it may be done by bending portions of the slotted end plates of the condenser rotor sections. Alignment of the two ends of the soale is usually quite sufficient.

IMPORTANT: It is desirable to move the dial back and forth across the signal while making the above alignments. This is partioularly neoessary when altering any capacities oonnected with the oscillator circuit. Use an insulated or bakelite screm driver. No aligning, other than the I.F. transformers, is necessary for the short wave band (75 to 200 meters) as no attempt has been made to tune more than the oscillator.

Be oertain that a good 57 tube is used in the first sooket.
Service parts may be obtained by supplying a description of the part desired, as well as the model and serial numbers of the receiver.

Kennedy 10 Tube Long and Short Wave Receiver CHASSIS MODEL 64 B

The tubes employed are as follows, and are operated at normal voltages and biases:

```
Short wave mixer ...... 57
Short wave oscillator.. 56
Radio frequenoy ....... }5
```



```
Rectifier ...... 280's
```

For short wave reoeption the long wave mixer becomes an I. F. amplifier, while the long wave oscillator filament goes out. For long wave reception, the short wave osoillator and mixer filaments go out. These circuits are indicated above. The intermediate frequency used throughout is $175 \mathrm{~K} . \mathrm{C}$.

In aligning, it is first desirable to see that the intermediate frequency transformers are properly set. This is more readily accomplished by using an output meter and an accurate source of 175 kllocycle radio frequency, such as an oscillator. The accuracy of this nacillator may be checked by tuning a radio set to a station on 700 kilocycles and placing the oscillator near the antenna. A harmonic of the 175 kilocycle oscillator will "zero beat" with the

HODEL 164-B

(Chassis 64-B)

Alignment

Socket
station if the oscillator is oorrect. Other harmonic" points may also be tried.
With the reoeiver switched to short wave position, remove the grid clip from the top of the S. W. mixer tube and fasten a short length of wire to the grid
to note the energy from Lay this wire suffioiently near the $175 \mathrm{~K} . \mathrm{C}$. oscillator
exactly $175 \mathrm{~K} . \mathrm{C}$., adjust the trimmers in meter. With the oscillator set on
for maximum reading of the output meter. If the of the I.F. transformer shields
move oscillator farther from set and wire, thereby these I.F. transformers are badly out of ili the "piok up" wire on the grid of the long gnment, it may be necessary to place transformers alone, at first, then moving wire mixer and adjust the last two as before. It will be noted that the fing wire back to S. W. mixer and proceed ment.
The tuming condenser may be adfusted for alignment or "traoking" of the tuned oiroutts by a similar method except that an oscillator covering a broadcast band should be used. The output meter is used as before. The energy from the oscillator, in this case, is coupled weakly into the antenna circult a a simple means being to place the oscillator near the antenna wire. The receiver and osciliator are first tuned to appriximately $1,500 \mathrm{kilocycles}$ and by watching the output indicator, the three condenser trimmers, reached through the removable plate, are adjusted for maximum output. These three trimmers must then be left untouched for all further aligning.
The nert step is to tune both. receiver and oscillator to some point near 550 tor maximum respone the ali gnment is made by adjusting the "padding" condenser ohassis base.
If necessary to adjust the two R.F. oondenser sections, it may be accomplished by bending the oondenser end plates. If found necessary to align at other than the ends of the "band", it may be done by bending the slotted end plate of the oondenser rotors. Alignment of the two ends of the scale is uaually quite sufficient.
IMPORTAFT: It is desirable to move the dial back and forth across the signal while making the above alignments. This is particularly necessary when altering any capacities connected with the oscillator circuit. An insulated or bakelite screw driver (containing little, if any, metal) is advised for use in adfusting "trimmer" or "padaing" condensers.
The front section of the tuning condenser is for short wave use only. Unless accidientally shorted it requires no adjustment.

COLIN B. KENNEDY CORP.

The tubes employed are as follows, and are operated at normal voltages and biases (except the noise suppression, or muting, tube):
Radio Prequency 58 Seoond Deteotor \& A.V.C. 55
First Audio 56
Mixer 57
Power
Power 247 247
Intermodiate frequency . 58
Intermodiate frequency . 58
Rectifior 280
Noise Suppressor 67

To acoommodate the "Hush", or noise suppressor oircuit it will be noted that the filament and oathode of the first audio tube are biased positively about 95 volts above ground. Automatic volume control is obtained from the type $55 \mathrm{se}-$ cond detector, the voltage drop across the 500,000 ohn resistor (between Cath. and I.F. coil seoondary) which is caused by the rectified signal being applied, through suitable filtering resistors, to the grids of the R.F. and I.F. tubes. The A.V.C. voltage generated also actuates the noise suppressor tube. When no signal is tunod in, there is no A.V.C. voltage applied to the grid of the suppressor tube, permitting it to draw plate ourrent. The plate current thus dramp comes from the oathode of the first audio tube (cathode being positively biased) through the 5,000 ohm resistor and 260,000 ohm grid leak, oausing a sufficiently high blas to be applied to the grid of the audio tube (voltage drop aoross grid leak) to oompletely stop plate ourrent and thus all noise. Variation in the amount of suppression is obtained by manually varying the bias on the suppressor tube.

In aligning, first properly adjust the intermodiate Prequency transformers preferably with a 175 K.C. oscillator fed into grid oirouit of first deteotor, or mixer, and adjusting for maximum reading of an output meter. The tuning cirouits may next be adjusted, using an osoillator covering the broadoast band (feeding into antenna circuit) and the output meter. Tune receiver and oscillator first to some point near 1,500 K.C., and adjust the three condenser "trime mers" through large hole in condenser shield for maximum reading of output meter. Then retune receiver and oscillator to point near $550 \mathrm{~K} . \mathrm{C}$. and adjust oscillator "pad" condenser (through hole in rear of condenser shield) for maximum output. (Do not touch condenser trimmers after first adjustment at l,500 K.C.) If further adjustment at $550 \mathrm{~K} . \mathrm{C}$. is necessary, bend slotted condenser end plates. Alignment at the two ends of the scale is usually sufficient. If desired to align at inter mediate points, bend the proper sections of the slotted plates for maximum output reading.

IMPORTANT: It is desirable to move the dial back and forth across the signal while making the above alignments, particularly when altering capacities connectod with the oscillator circuit. A bakelite, or non-metalic, screw-driver is advised for making adjustments. The short wave police band circuits require no aligning other than the I.F. transformers.

The tubes employed are as follows, and are operated at normal voltages and biases:

T1	Short wave mixer	$\ldots .$.	224
T2	Short wave oscillator	227	
T3	Radio frequency	$\ldots .$.	235
T4	Long Wave Mixer	$\ldots .$.	224
T5	Long Wave oscillator.	227	

T6 Intermediate frequency 235
T7 Second Detector 227
T8 Automatic Vol. Control 227
T9-10 Power tubes 247
T11-12 Rectifiers 280

To acconmodate the automatic circuits it will be noted that the long wave R.F. and I.F. tube filaments and cathodes are biased positively about 100 volts above ground. When the. AVC tube receives a signal it draws current (being normally biased to cut-off) through the 250,000 ohn resistor. The voltage drop across this resistor is then applied to the automatically controlled grids as additional bias. An inspection of the circuit diagram will clarify this simple and efficient AVC action.

In aligning, it is first desirable to see that the intarmediate frequency transformers are properly set. This is most readily accamplished by using an output metar and an accurate source of 175 kilocycle radio frequency, such as an oscillator. The accuracy of this oscillator may be checked by tuning a radio set to a station on 700 kilocycles and placing the oscillator near the anterna. A harmonic of the 175 kilocycle oscillator will "zero beat" with the station if the oscillator' is correct. Other "harmonic" points may also be tried.

With the receiver switched to short wave position, remove the grid clip from the too of the S.W. mixer tube and fasten a short length of wire to the

The tuning condenser may be adjusted for alignment or "tracking" of the tumed circuits by a similar method except that an oscillator covering the broadcast band should be used. The output meter is used as before. The energy from the oscillator, in this case, is coupled weakly into the anterna circuit - a simple means being to place the oscillator near the antenna wire.

The receiver and oscillator are first tuned to approximately $1,500 \mathrm{kilow}$ oycles, and by watching, the output indicator, the three condenser trimers, reached through the removable plate, are adjusted for maximum output. These three trimmers must then be left untouched for all further aligning.

The next step is to tune both receiver and oscillator to some point near 550 kilocycles. Here, the alignment is made by adjusting the "padding" condenser for maximun response. It may be reached through hole in rear center of chassis base.

- If necessary to adjust the two R.F. condenser sections, it may be accomplished by bending the condenser end plates. If found necessary to align at. other than the ends of the "band", it may be done by bending the slotted end plate of the condenser rotors. Alignment of the two ends of the scale is usually quite sufficient.
IMPORTANT: It is desirable to move the dial back and forth across the signal while making the above alignments. This is particularly necessary when altering any capacities connected with the oscillator circuit. An insulated or bakelite screw driver (containing little, if any, metal) is advised for use in adjusting "trimer" or "padding" condensers.

The front section of the tuning condenser is for short wave use only. Unless accidentally shorted it requires no adjustment.

Service parts may be ordered by giving model and serial numbers, and description.

COLIN B. KENNEDY CORP.

MODEL $266-B, 366-B$
(Chassis 66-B) Sohematic

The tubes employed are as follows, and are operated at normal voltages and biases:

$$
\begin{aligned}
& \text { Short wave mixer } 57 \text { Intermediate frequency ... } 58 \\
& \text { Shっrt wave oscillator . } 56 \text { Second detector } 56 \\
& \text { Radio frequency } 58 \text { Automatic vol. Control... } 56 \\
& \text { Long wave mixer } 57 \\
& \text { Long wave oscillator .. } 56 \\
& \text { Power tubes } 247 \\
& \text { Rectifiers } 280
\end{aligned}
$$

To accomodate the automatic circuits it will be noted that the long wave R. F and I.F. tube filaments and cathodes are biased positively about 100 volts above ground. When the AVC tube receives a signal it draws current (being normally biased to cut off) through the 250,000 ohm resistor. The voltage drop across this resistor is then applied to the automatically controlled grids as additional bias. An inspection of the circuit diagram will clarify this simple and efficient AVC action.

In aligning, it is first desirable to see that the intermediate frequency transformers are properly set. This is most readily accomplished by using an output meter and an accurate source of 175 kilocycle radio frequency, such as an oscillator. The accuracy of this oscillator may be checked by tunt ing a radio set to a station on 700 kilocycles and placing the oscillator near the antenna. A harmonic of the 175 kilocycle oscillator will "zero beat" with the station if the oscillator is correct. Other "harmonic" points may alsobe tried.

With the receiver switched to short wave position, remove the grid clip from the top of the S.W. mixer tube and fasten a short length of wire to the

COLIN B. KENNEDY CORP.

Alignment

Socket

grid terminals of this tube. Lay this wire oufficiently near the $175 \mathrm{~K}, \mathrm{C}$. oscillator to note the energy from it in the output meter. With the oscillator get on exactly 175 K. C., adjust the trimmera in the tops of the I.F. transformer shields for maximum reading of the output meter. If the meter tends to read "off scale", move oscillator farther from set and wire, thereby reducing input energy. If theae I.F. transformers are bady out of alignment, it may be necessary to place the "pick up" wire on the grid of the long wave mixer and adjust the last two transformers alone, at first, then moving wire back to $S . W$. mixer and proceed as before. It will be noted that the first I.F. transformer has but one adjuatment.

The tuning condenser may be adjusted for alignment or "tracking" of the tuned circuits by a similar method except that on osoillator covering the broadcast band shouis be used. The output meter is used as before. The energy from the , osoillator, in this case, is coupled weakly into the antenna cirouit - a simple means being to place the osoillator near the antenna wire.

The receiver and cooiliator are first tuned to approximately l, 500 kilo oyoles, and by watching the output indicator, the three condenser trimmers, repohed through the removable plate, are adjusted for maximum output. These three trimmers must then be left untouched for all further aligning.

The next step is to tune both receiver and osoillator to some point near 550 kilocyoles. Here, the alignment is made by adjusting the "padding" condenser for maximum response. It may be reached through hole in rear center of chassis base.

If necessary to adjust the two R.F. oondenser seotions, it may be accompliahed by bending the condenser end plates. If found neoessary to align at other than the ende of the "band", it may be done by bending the slotted end plate of the condenser rotors. Alignment of the two ends of the scale is usually quite sufficient.
IMPORTANT: It is desirable to move the dial baok and forth aoross the aignal while making the above alignments. This is partioularly neoessary when altering any capaoities connected with the osolllator oirouit. An insulated or bakelite screw driver (containing little, if any, metal) is advised for use in adjusting "trimmer" or "padding" condensers.

The front section of the tuning condenser is for short wave use only. Unless accidentally shorted it requires no adjustment.
gervice parts may be ordered by giving model and serial numbers, and desoription.

MODEL FP
KING MFG. CORP.

PAGE 3-2 KING
MODEL 218
KING MFG. CORP.

readings with plug in set socket and tube in tester socket

Tube	Position	Type					S	
No.in	of	of	A	B	Creen			

Model 218

PAGE 3-2 KOLSTER

KOLSTER RADIO, INC. MODEL $\mathrm{K}-110, \mathrm{~K}-120, \mathrm{~K}-122$

皿めOOMOル11
产

adjustment for calibration alignment of tuning pointer Rotate the tuining knob clockwise to the limit of rotation．Loosen the dial pointer aljust－
tient earew and adjust the dial scalc pointer to the stop line beyond the 550 KC．selling

 station．Make sure that the dial lamp socket is firmly mounted and pressed down into its proper
pooition during these adjustments．

I．F．，R．F．AND OSCILLATOR CIRCUIT ADJUSTMENTS
Obviously unsatisfactory performance of this set due to improper adjustment or misadjust－ set analyzer．Although tuning adjustments can be made by utilizing a received signal，such adjustments are at best inaccurate and inefficient．It is imperative that the Service Department
of each dealer and distributor be equipped with some form of signal generator and output device of each dealer and distributor be equipped with some form of signal genera
which may be either purchased or constructed by the Service Department．

The eignal generator consists essentially of a modulated oseillator covering the entire broad－ cast frequency band with accurate adjustments at 600 kilocycles and 1400 kilocycles．It should
also incorporate a 175 kilocycle output capable of accuate adjustment．The output indicating device may be any one of the several standard output meters obtainable，a current squared
galvanometer or a low range A．C．voltmeter connected across the secondary of the output

It is imposible to ecure satisfactor rimmer ajiustorents without using a specin insuluted

Turn tuning knob clockwise to its limit of rotation and if necessary ：djusts the dial scale poiter as previousty described．Rotate the tuning knob counter－cloch wise to the other extreme
limit and leave it in this position duriny he following I．F．adustmentls：
．Remove the＇ 56 oscillator tube and the tube stield aud grid clip from the＇58 I．F．tube．
 leas．Senter
Adjar 1 ，
5．Adiust IC．1 and IC－2 for maximum output．It is alvisable to recheck the adiustment of IC． 3 and IC4 while the oseillator is coupled to the firist detector．Adjust all four contlensers

6．Replace the frist detector grid elip and tube shield and oseillator tube and shicld．
7．Couple the oupput of the signal generator to the anterna and ground leads．Do not run a
third lead to the chassis rrame：Adjust the signal generator to 1400 K ．C．
8．Set the tuning dial to $1400 \mathrm{~K} . \mathrm{C}$ ．Adjust the oscillator trimmer TC．3 until the signal Recheck adjustinents of TC．，T． 2 －and TC .3 several times for best results． 9．Reset the signal generator to 600 K．C．

10．Tune the set to $600 \mathrm{~K} . \mathrm{C}$ ．Rock the uning condenser slowly back and forth either side of this point while adjusting OC． 1 for maximum output．

[^0]KOLSTER RADIO, INC.

KOLSTER RADIO, INC.

KOLSTER PAGE 3-9

KOLSTER RADIO, INC.
MODEL K-113, K-123

KOLSTER RADIO, INC

I.F., R.F. AND OSCILLATOR CIRCUIT ADJUSTMENTS
The Kolster Model K-140 receiver employs a highly developed circuit incorporating broadly
tuned I.F. and R.F. circuits: These receivers are adjusted at the factory with a special visual tuned 1.F. and R.F. circuits. These ecectivity characteristic over the entire broadcast frequency full realization of tone response from the double speakers.
It should not be necessary to readjust these circuits in the field as all the trimmers are has been severely jarred in rough handing, when coils have been replaced, or when the set has Any attempts to adjust the K-140 in the conventional manuer, using a modulated oscillator Any attempts to adjust the K-140 in the conventional manner, using a modulated oscillator
and trimming for maximum output, will be unsuccessful resulting in instability and poor ovcrall
fidelity.
First be certain that other sources of trouble, defective tubes, faulty antenna construction, etc., are eliminated. Cireck over line and socket voitages. If it is then evident that poor response improperly tuned circuit can be found and readjusted without going through the entire following
It will be necessary to have a modulated oscillator with accurate adjustments at 600 K.C. and 1400 K.C. in the broadcast range, also 170,175 and $180 \mathrm{~K} . \mathrm{C}$. in the meermediate frequency
Conet mantormer. This meter may be any one of the gandard makes avante, a current square ged for masimum scale deflection. Readjust the trimmers according to the following procedure:
2. Remove the grid clip of the 2nd I.F. tube and connect the "Ant." lead of the eignal ener Re Couple the signal generator output to the first I.F. tube and 4. IC-1 and IC. 2 should next be adjusted by coupling the oscillator to the first detector. With this same coupling it is advisable to go hack over IC-3, IC-4, IC-5 and IC-6. Thesc adjustments
The oscillator output should be coupled directly to the grids, without a dummy antenna.
If the oscillator is capacitively coupled the opened.grid circuit may cause oscillation, in which case it will be necessary to place a 1000 ohm resistor between grid and chassis. channel so that it presents uniform gain for frequencies between 170 and 180 K .C. This gain will not be as great with he broady tuned circuits as it was with the peaked $15 \mathrm{~K} . \mathrm{C}$. adjustment. output reading the snal generator to 180 K .C. and adjust the intermediate trimmers to a prefiminary 6. Set the signal generator to 170 K.C. and readjut the intermediate trimners to the same output It will be necessary to go back over the six trimmers several times. The I.F. circuit when
finaly properly adjusted will show equal gain at 170 K .C. and 180 K .C. The gain should be
slighty lower at 175 K .C.
In aligning the RF. stages, it is nccessary that the R.F. selectivity be auper-imposed on the midd. of the 1.F. selectivity curve in order that he orcillator tube and shield. Couple the signal generator output p the chaseis "Ant. Gnd." leads, not to the "Ant." lead and the chassis. Set the signal generator to $600 \mathrm{~K} . \mathrm{C}$ The $600 \mathrm{~K} . \mathrm{C}$. trimner should be adjusted while the drunn dial is being rotated back and forth across the 600 K . C setting until the output remains fairly constant with the shift of several
kilocycles either side of 000 K . . 3. Reset the signal generator to $1400 \mathrm{~K} . \mathrm{C}$.
3. Reset he signal generator to 1.00 K .
4. In trimming the set at $1400 \mathrm{~K} . \mathrm{C}$. it
By varying trimming oscillator get at $1400 \mathrm{~K} . \mathrm{C}$. it it is necessary to trim up the oscillator section first.
athis point, it is easy to locate the two peaks and the
dip in the middle. The oscillator should be trimmed for this dip. The remaining three gan
 not affect the previous alignment at 600 K.C.

MODEL Short-ilave Converter
KOLSTER RADIO, INC.

[^0]: 11．It is advisable to recheck－ 1400 and $600 \mathrm{~K} . \mathrm{C}$ ．setting after the first adjustment to assure
 accuracy．

