APRIL 11th 1931
 APRIL SPECIAL

REG.U.S.PAT O=F.

The First and Only National Radio Weekly 472d Consecutive Issue-TENTH YEAR

USES FOR A 1-TUBE SET

Full Details on New Output Pentode
ALL U. S. BROADCAST STATIONS BY FREQUENCY
(Nine Full Pages)

A new "nprovement in short-wave condensers is established in the use of a constant inpedance pigtail ard rear-shortened shaft to prevent the eff=ct of a short-ci-cuited turn. The condense- is shown in an all-wave converie-. See pages II and II.

STOP:DON'T SHOP:

HERE'S a NEW plan, which saves you money. Stop shopping 1 the lowest prices are right on this page. Yes, lower than in log every month, but by advertising in this magazine we can bring
you the latest and lowest prices up to the time this ad is printed. We watch our competitors and do not allow anyone to undersell us. We meet ANY price on NEW merchandise. Order direct from this page and save money. 100% satisfaction on every transaction.
 former- 80 Watts

Kolster Speaker Chassis

\qquad
A.C. Short Wave Converter

The thrill of tuning in short wares is yours,
berause you can con-
nect this short-wave nect this short-wave
jonnerter to your
jinoner itrondrast receciver. no
mat ter what tye matter what type re-
ceiver you have. Tunes
from 10 from 10 to 200 mee
tris wing only two
nlug - in coils

 180 roits. Voltage not critical. No moles.
tation of the recolver. No tricky regeneration cuntrol, orly a single, smooth-operating
dial to manipulate. No saueals dial to manipulate. No squeals, no prunt-
ing, no hody caparty. Ail parts for 3 -tutbe short-wave converter. includdn\% cabinet. with
flament transformer, cumplete instructions and pletorial dlagram. Shmplete ing weighuctions 8 libs.
and List Price $\$ 20.00$.
No. $1617-$ Your price, less tubes $\$ 9.45$ In the plate circuit of type - 12 a tubes; or to higherpower tubes through an out
put device. In push-pull cir put device. In push-pull cir
cults. speaker may be connected from plate to plate.

- 7 -inch cone typo rattle is prevented by
Hannel tannel damper: bass notes
are well reproduced due to

4 New READRITE Analyzer. This chree-meter analyzer has selector switeh
for cheek Ing all
narts of tube circuits hy conneeting to the set sockerts. selectition for
testink voltages of plate, grid, cathode and screentesting roltages of plate, grid, cathode and screen-
srid done ouickly and accurately. Plate current. grid done ouickly and accurately. Plate current.
filament colts, line and lower supply volts are
neeasure Grid flament Folts, ine and bower supply volts are
neasured. Grid swing test for tubes used. Just
puslı one lutton for sireen-grid and other button pusho one lutton for sirgen-grid and other button for other tubes. Makes testing of all type tubes simple and thorough. $41 / 2$-rolt grid battery is
furnished Battery is furnished. lattery is used for grld test. and
continuity testing of transformers, chokes, etc. continuity testing of trangformers, chokes, etc. Ing use of instruments for testing condensers, also measuring resistances up to 100,000 ohms.
Elght scale readings of meters Elght scale readings of meters may be used sep-
arately with the jack terminals providell. Scale arately with the jack terminals provided. Scale
readings are $0-60-300-600$ D.C. yolts, $0-10-140$ 700 A.C. volts and $0-20-120$ milliamperes. A. A. And D. C. flatment voltages are accurately
measured on the one meter. Strong case with leatherette covering. Attractive. Compact.
 "250" A.C. Power Transformer

TRADINGCO.

NEWY BRKCITM

SERVICE TREATISE." It's reil hadio the way through. 52 new hookups and Partial contents: Moteristrations sarts. How to convert hazing old radio sets. Sow to convert bettery to mower
sets. Seiection of tubes. The detector
tube. tube. Tlie power tube. Changes in
grid or "ce" bias clrcuits. Push pul! ampliffers Replacing audio trans-
formers. Phono. attachments. How to choose power transformers. Voltage dividers.
Formers.
Selecting of phe triner transPormers, selecting and installing
replacenent parts ind radto sets,
Fllter condensers. Repairing iB

 fall of REA. radio infornation
catalog way through. Fsen the

WE ARE A WHOLESALE HOUSE AND CAN NOT ACCEPT ORDERS FOR LESS TMAN \$3.00. If C. O. D. shipment is desired, please remit 20% remittance, which must accompany all orders.
If full cash accompanies order, deduct 2% discount Send money order-certified check-U. S. stamps.

Radio Trading Co. 25T West Broadway New York, N. Y.

NEW! NEW!!
Superheterodyne S-W Converter Positively qratest converter ever built, it brIngs
in Euro pean stations daily, cloar as a dell

that converts an
broalcast set into
super ine
q superlieteroclyne
shliort-wave recelv-
er.
Employs three

115 meters.
plur-incoils!
N

beny capacity, no
gilueals. Thisc
verier has but
former to leat the three 927 tilament trans
to obtain from your reeefrce
All you neet to obtain from your reeeeficer is a bositive B
voltage antwhere from 45 to 180 volts. Volt-

Genuine Magnavox Microphone Do Your Own Home
Masto by the worldfamous Magnayor Co . While originally made
to strap on the head. It is easy to screw a

handie onto one

the side brackets, The side brackets are
copered with soft rubher and pats and covered with soft rubber and place the
nimicrophone at the best speaking
diftance
 The biggest mike bargain in Amerlea! Com-
pilete with straps and buckle to ft around
jle head. Brand new, int oritina
ing. Shipping weight 1 ib. List Price, $\$ 10.75$
No. $1610-\mathrm{YOUR}$

High-Voltage Condenser Units Wo guarantee these con
densers unconditionally The
densers unconditionafly. Th
are
tdeal for general

	$\begin{gathered} 600 \mathrm{VOL} \\ \mathrm{Mid} \text {. } \end{gathered}$			Mo
No.	Capac.	Price	No.	Capac.
${ }_{1}^{1702}$	1/2		1706	
1704	2	${ }^{40}$	1708	${ }_{4}$

ORDER FROM THIS PAGE. Yon will find special
prices from time to time in this masazine. Get our prices from came to time in this magazine. Get our Should you wish goods shipped by parcel post. be Any excess will be refunded.

The New Jiffy Tester

Chromium-Plated Case and Accurate Meters

ANEW and improved Jiffy Tester, improved and appearance, is Model JT-N. The meters are of the moving iron type. Tested on precise batteries, they show errors not exceeding 2%. As for appearance, the case is first copper plated, then nickel plated, then chromium plated, giving a lustrous, permanent, non-peeling non-rusting finish. It is the same finish found on hardware in fine automobiles. The handle and lock strap are genuine leather.
Jiffy Tester, Model JT-N, conslats of three
meters, adapter, test cords and ecreeen grid cable, enabling atmultaneous reading of plate voltage, plato current and filament
voltage
or
or
or , beater plugged into the socket of ney eet. The range: are filament,
heater or other $A C$ or $D C, ~ i-10$ heater or other AC or DC: ${ }^{0-1}$ - 300 v . If makes all tests former 100 ma; plata voltage: on $-\boldsymbol{\varphi}$, is also independently accessihle for each range. The mentire device io built in accessihle for each range. The entiro. plated slif-cover. Instruction aheet will be lound laslas. Order Cat. JT-N.

GUARANTY RADIO GOODS CO.

 143 WEST 45th STREET (Just East of Broadway) NEW YORK, N. Y.

PARTS FOR 1-TUBE RECEIVER

Exactly as specified by Herman Bernard

3-circuit eoll	\$0.75
. 00035 mfd . variable	. 49
. 00025 mid. grid con.	. 25
00035 mid . fixed	. 10
Two $30 \mathrm{ohm}, 2$ mounts.	. 40
${ }^{\prime \prime} \mathrm{A}^{\prime}$ " switch	. 25
Dial	. 25
Knob	. 08
Binding post-strip	. 29
4 blank posts	. 40
Bakelite front panel	. 88
Alum. subp.. socket	. 59
1 dozen screws. nuts	.12
2 flathead screws	. 04
4 milled bushings	. 29

ORDER ANY OR ALL
(10-Day Money-Back Guaranty on Above Parts) TOTAL s5. 1

GUARANTY RADIO GOODS CO. 143 West 45th Street, New York, N. Y. (Just East of Broadzoay)

Fixed Condensers

Dublifer Micoo fized condensers, type u2, ers evailable at following capacities and roices:

GUARANTY RADIO GOODS CO. 143 West 45 th St., New York, N. Y.

GOODS COMPANY, 143 WEST 45th STREET, NEW YORK, N. Y. (Just East of Broadway)

- SPECIALS -

Five-lead cable, 2 ft . longs, with plug to fit a five-prong (UY), socket. The cable is connected at the factory so that following wires represent the respective prongs of the socket: Blue with white marker-G post of socket; $\begin{gathered}\text { Red-plate of } \\ \text { soen-cathode of }\end{gathered}$ adjoining cathode; Black with yellow markerheater adjoining plate.et 65 c MARCO black bakelite vernier dials. Read 0.100 with a supplementary scale reading $0-10$ between
figures on large scale. Takes a $1 / 4 /$ shaft...Net 50 c figures on large scale. Takes a $1 / 4$ " shaft...Net 50 c Parts for "A" battery eliminator:. Dry rectifier,
$\$ 2.10 ; 0-10$ a mmeter, 75 c , 20 volt filament trans: $\$ 2.10 ; 0-10$ a mmeter, 75 c ; 20 -volt filament trans-
former, $\$ 2.50$. Will hande up to 2 amperes filaformer, $\$ 2.50$. Will handie up to 2 amperes fila-

GUARANTY RADIO GOODS CO. 143 West 45th St. New York, N. Y.

SHORT WAVE STATIONS BY FREQUENCIES

With schedule of hours on the air given for the five time zones. In Radio World dated March 28, 1931. Mailed on receipt of 15 c in stamps. Or send subscription order to start with this issue. Radio World, 145 W. 45 th St., N. Y. City.

FILL OUT AND MAIL NOW

SUBSCRIPTION BLANK

RADIO WORLD

RADIO WORLD

145 West 45th Street, New York City
Please send me RADIO WORLD for months, for which

SUBSCRIPTION RATES:

Single Copy..................... $\$.15$ Three Monits 1.50
3.00 One Year. 52 Issues........... 6.00 Add $\$ 1.00$ a Year for Foreign Postage; 30 c for Canadian Postage.
\square If this is a renewal, put cross
in square at left.

NEW...

SMALLER-LIGHTER

A CARDWELL QUALITY CONDENSER AT A LOWER PRICE!

For fraoeling ung tion
THE
CARDWELL

f=ATMERWEIOHT SEE IT!

SOLD IN NEW YORK CITY BY
LEEDS RADIO 45 VESEY STREET SUN RADIO 64 VESEY STREET WM. EGERT LItEATURE ON THESE AND OTHER CON. DENSERS ON REQUEST.
The Allen D. Cardwell mFG. CORP.
95 Prospect Street, Brooklyn, N. Y.

Bristol Double Button Micnophone Transformers An excellent input transformer for all standard microphones. Primary impedance is 100 ohms per button. Use unt gide for gingle button miken. This un-
cassed transformer is equal in efticlency to others selling at many times our spectel $\mathbf{\$ 1 . 9 5}$ FREE Send Now for a copy of FREE $\underset{189}{\text { H ARRIS O N }}$ R R A DIO IO \quad CO

Two
 for the
 price of One

Get a FREE one-year subscription for any ONE of these magazirtes
\square CITIZENS RADIO CALI BOOK AND SCIENTIFIC DIGEST (quarterly, four issues)
RADIO LOG AND LORE. Quarterly. Full station lists, cross indexed, etc.
\square RADIO (monthly, 12 issues; exclusively trade magazine)
\square RADIO ENGINEERING (monthly, 12 issues; technical and trade magazine).
\square RADIO INDEX (monthly, 12 issues) Stations, programs, etc.
\square SCIENCE \& INVENTION (monthly, 12 issues; scientific magazine, with some radio technical articles).
\square AMERICAN BOY-YOUTH'S COMPANION (monthly, 12 issues; popular magazine)
\square BOYS' LIFE (monthly, 12 issues; popular magazine)
Select any one of these magazines and get it FREE for an entire year by sending in a year's subscription for RADIO WORLD at the regular price, $\$ 6.00$. Cash in now on this opportunity to get RADIO WORLD WEEKLY, 52 weeks at the standard price for such subscription, plus a full year's subscription for any ONE of the other enumerated magazines FREE! Put a cross in the square next to the magazine of your choice, in Whe above 145 West 45 th Street, New York, N. Y. (Just East of Broadway).

Your Name
Your Street Address
City
\square If renewing an existing or expiring subscription for RADIO WORLD, please put a cross in square
\square If renewing an existing or expiring subscription for other magazine, please put a cross in square If the beginning of this sentence.
RADIO WORLD, 145 West 45th Street, New York, N. Y. (Just East of Broadway)

OVER 50\%

OF THE

BROADCASTING STATIONS
IN THE U.S. A. ARE USING

fLECHTHEIM
 SUPERIOR CONDENSERS

UNEXCELLED, FOR QUALITY DEPENDABILITY and MOST REASONABLY PRICED
NEW TYPE ¢X-7000 V.D.C.- 5000 rms . RAC
Hrite for Catalogue No. 22
A. M. FLECHTHEIM \& CO., Inc.

136 LIBERTY ST., NEW YORK, N. Y.

DEALERS and SERVICE MEN! STANDARDIZA ON

SERVICE MEN'S NEW ADAPTER

Here is a new adapter tha does the rery trick you've wanted done-enables inter ruption of the connections to tube, so current can be fording direct access to the prongs for voltage tests Remove tube from socket insert adapter in socket, pu tube in adapter, and yon're all set. Removabl links, supplied with adapter, permit access to For 5-prond tubes, Cat. B.I @ $\$ 1.05$
For 4 -prong tubes. Cat. B-2 @ \$1.05.
Connecting cables.s. ${ }^{2}$ tt. long, Jack pins at both onds.$~$ Connecting cables, 2 ft long, jack pin one end, forked lug at other, Cat. 2066 two reads). @ 48 c

DIRECT RADIO CO
143 West 45th Street
New York, N. Y
REPLACEMENT CONDENSER BLOCKS

REPLACEMENT POWER TRANSFORMERS R. C. A. ${ }^{174}$ 18, ${ }^{\text {R. }}$ (33, 51

Zenith, all models 52 up to 77
Write for price list of replacement parts.
BRONX WHOLESALE RADIO CO.
7 W. Tremont Ave. \quad New York, N. Y.
115 DIAGRAMS 5 $\boldsymbol{4}$ 5 5
 Rtder s
diagrams "Trouble shooter't Manus!" Tactory-made recivers. These achematic diagrams of factory-made receivers, yiving the manu
facturer's name and model number on each diagrami, in clude the MOST IMPOBTANT SCREEN GRID RECEIVEBS
The 115 dlagrams, each in black and white, on sheots loosg-leal inchus, punched with three standard holea for loose-leaf binding, constitute a supplement that must be oblained by all possessors of "Trouble Shooter'' Manusl,"
to make the manual complete. We guarantee no duplice. tion of the diagrams that appear in the in Maplice:.

 Electrostatir serlea: Phitro 76 gcreen grid. for 3 months at the regular Hivered to you FREEI
Present subscribers may take advantage of this Present Please put a cross here \square to expedite Radio World, 145 West 45th St., N. Y. C.

Vol, XIX [Entered as April 11th, 1931 second-class matter, March 1922, at the Post Office at New York 15 c per Copy, $\$ 6.00$ per Year

RADIO WORLD, owned and published by Hennessy Radio Publications Corporation, 145 West 45 th Street, New York, N. Y. Roland Burke Hennessy, president and treasurer, 145 West 45 th Street, New York, N. Y.; M. B. Hennessy, vice-president. 145 West $45 t h$ Street, New York, N. Y.; Herman Bernard, secretary, 145 West 45th Street, New York, N. Y.; Roland Burke Hennessy. editor: Herman Rernard, managing editor; J. E. Anderson, technical editor; L. C. Tobin. Advertising Manager

TENTH YEAR
Technical Accuracy Second to None
Latest Circuits and News

A Weekly Paper published by Hennessy Radio Publications Corporation, from Publication Office. 145 West 45th Street, New York, N. Y
Telephone, BRyant 9-0558 and 9-0559

Service from One-Tuber

By Herman Bernard

THE one-tube regenerative set, about the simplest set you can build that will give satisfaction, serves several purposes. First, it may be used for earphone reception of broadcast stations, although the tickler, that is, moving plate coil, must not be advanced so far as to cause oscillation and thus create interference due to radiation. Second, it may be calibrated, and thus serve as an oscillating frequency or wave meter, modulated or not, to be used thus only when testing, as the same precautions against interference by radiation must be observed. Third, by placing a smatl coil in parallel with the secondary, short waves may be tuned in on earphones, and if speaker operation is desired, the B plus connection shown in the diagram may be ignored, and the end of the plate coil, illustrated as one of the phone connections, connected by an insulated wire lead to the plate of the detector socket of a broadcast receiver. Under these circumstances the detector tube would be removed from the broadcast set and the lead from plate of the one-tube device bared at the end and inserted in the set's detector socket at the plate prong.

Principal Components

The device consists primarily of front panel, subpanel, binding post strip, four binding posts, socket, coils, filament resistor or resistors, grid leak and condenser and four insulated wires for battery connection. No cabinet is included, but one may be selected that is large enough to contain two No. 6 dry cells for series connection, to constitute the A battery, and also large enough to contain a small 45 -volt B battery, even of the type used in large battery-operated sets for C bias of the power tube, or two small $221 / 2$ volt batteries in series. Those who have at hand a battery affording $401 / 2$ volts for negative C bias of a 171 or 171A tube may use that.

The layout and the circuit are very simple, and the operation requires only a little skill, principally the ability to tune without causing radiation. The tube should be operated just below the oscillation point for best sensitivity, and this point should be reached by tuning at first with the tickler in such position as to act as a damper, rather than a booster, with gradual advancement of the tickler until sensitivity is highest, which is just before that point where the tube would "spill over."

Coil Data

These directions apply to the reception of broadcast frequencies as well as reception of short waves. For broadcast work the coil consists of two forms, a large one and one that fits inside its mate, so that the small form may be rotated by a knob attached to a shaft actuating the rotor form. For a diameter of $21 / 2$ inches for the larger form, using No. 24 silk covered wire, either single or double covered, the secondary turns may be 60 , while the primary, separated from the secondary by $1 / 8$ to $1 / 4$ incl, may consist of 12 turns of the same kind of wire. The tickler form then should not be more than $11 / 2$ inches diameter, to pernit free rotation inside the other form.
The wire for the tickler may be either the same as uṣed on the other windings, or may be No. 22 stranded wire or any other insulated wire. The direction of putting on the windings is not important in any instance, except as to the tickler, and even there it is not necessary to pay attention to this detail in the winding, since if, after the set is built, no oscillation can be produced at any setting of the tickler.

Fig. I
This simple circuit affords at least three valuable uses, and is excellent for novices as well as for service men. Its purposes are told in the text.
all that is necessary is to reverse the connections to the tickler, putting to plate the terminal of the tickler that previously went to B plus, and to B plus the terminal of the tickler that previously went to plate.

These data apply to a coil for a 00035 mfd . condenser

The Parallel Coil

For short-wave work you yourself can wind also the parallel coil. You may use some insulated stifi wire, for instance, (Continted on next page)

LIST OF PARTS

Coils
One three-circuit tuner, as described.
One short-wave parallel coil.

Condensers

One .00035 mfd . tuning condenser.
One .00025 mfd . fixed grid condenser with clips.
One $\mathbf{0 0 0 3 5} \mathrm{mfd}$. fixed condenser.
Resistors
Two 30 ohm filament resistors with two mountings.
One 5 meg. grid leak.
Other Parts
One A battery switch.
One dial.
One knob.
One binding post strip, with four unmarked binding posts.
Four insulated wire leads for battery connections.
One 8×5-inch bakelite front panel.
One 6×43-inch aluminum subpanel with 4 -prong socket attached.
One dozen roundhead $6 / 32$ machine screws and nuts to match.
Two flathead $6 / 32$ machine screws.
Four milled bushings.

Calibrated Oscillator

Modulation Easily Provided and

FIGS. 2 AND 3
Front panel dimensions at top, subpanel below.

(Continued from preceding page)

No. 18 or No. 16, and wind 8 turns on a form $31 / 2$ inches in diameter, to pass the knurled nuts of the three-circuit coil. For this winding you certainly can find a can about the house somewhere to use as the temporary form, from which the winding is removed when finished. Get a piece of stiff insulating material, even wood, if you can not lay your hands on bakelite or fibre, and anchor the ends of this special coil to the bracing insulator, using a lug at each end. Drill out a larger hole in one lug and solder a short piece of flexible wire to the other lug. Then, to tune in short waves, you can simply put the drilled lug over a knurled nut representing one secondary terminal and fasten the flexible lead to the other secondary terminal. Leave the secondary connections otherwise just as you found them.
The same coil data apply no matter what type of tube is used. The diagram suggests a 230 tube, because this draws used. little filament current (. 06 ampere), and works well as a detector with relatively low plate voltage. However, a 199 tube may be used, in which instance another No. 6 dry cell in the series constituting the A battery is advisable, to bring the A voltage up to $41 / 2$ volts. The resistance value in the negative filament leg then should be 20 ohms. A 201 A tube, from a 6 volt source, would take 4 ohms

Why Two Parallel Resistors Are Used

The value for the 230 , with a 3 volt source, is 15 ohms, comprised of two 30 ohm resistors in parallel, because you probably have 30 ohm values, and can improvise the necessary 15 ohms that way. If you have 15 ohms at hand, use that.

The whole outfit, as diagrammed in Fig. 1, with the two

No. 6 dry cells and a small 45 volt B battery, or two small $221 / 2$ volt B batteries in series, weighs only about 5 pounds, so the portability feature is attractive. As for size, the set is small enough to make a handy package, as well as a light one, even though the front panel's dimensions, 8×5 inches, provide plenty of room behind the panel, for better operating results. The dimensions of the front panel, subpanel and binding post strip are given in accompanying illustrations.

The frequency meter feature will be of importance to many, including service men. The circuit has to be calibrated, and this is done most readily by using broadcast station frequencies. You tune the set and listen in on earphones. Remember when using the device later as a calibrated radio frequency oscillator, modulated or unmodulated, to put the phones just where you had them when the calibration was made, and to have the filament and B voltages the same, as failure to abide by these instructions would change the frequency a little, that is, introduce unnecessary inaccuracy in the settings.

Making the Chart

By noting the dial settings of a dozen or more stations, representing a fair distribution over the entire scale, and including the lowest and highest frequencies receivable, you can transfer these settings to a piece of plotting paper, a point representing each setting, and then draw the resultant curve through the points. The general shape of the curve may be followed arbitrarily, to cover frequencies not otherwise represented. Such plotting paper you may make yourself, by ruling off squares in pencil on a sheet of paper, say of standard size, $81 / 2 \times 11$ inches. Draw a line as the base, and divide into 10 equal parts. Draw a perpendicular line at left, and divide into 10 equal squares of the same size as the previous ones. Each square may be ruled off again in fifths or tenths. The base line, or abscissas, will represent dial settings, 0 to 100 or 100 to 0 , while in the right angle direction (the ordinates), the frequencies may be put in down. Since the broadcast band is covered by 950 kc , the ten squares will more than suffice "up and down." The direction of the curve will be affected by whether the frequencies increase or decrease, in counting from the base line, but in either instance the curve will be equally effective.

To use the calibrated oscillator, you can couple it to a broadcast set, and tune in stations on the set, using the oscillator

Remote Con

66 USH-button-radio" has long been the dream of radio inventors and manufacturers. One of the obstacles to wider radio use has been the technicalities of the set. Many prospective listeners do not want to learn how to operate the dials, but would prefer simply to press a button for each station.

Conveniently, too, push-button radio may be combined with remote control, so that ali one needs in the living-room is a small box with a row of push-buttons, and the loudspeaker.

There are two principal systems in use for remote control systems: (1) the contact method, and (2) the motor method.
The contact system uses a number of push-buttons, depending on the number of stations to be heard. There are separate condensers in the set for each station, which are previously adjusted to the correct setting, and closing the push-button operates a magnet that moves the corresponding set of contacts. This system has not been widely used, principally because one is limited to a few stations only. Of course, most listeners really depend on a few stations for their radio programs, but listeners like the idea of getting others occasionally.

Motor System Uses Dial

The motor system is in wider use for remote control systems. Here a dial is employed, which operates an electric motor, geared to the condenser shaft. A method of synchronizing the control dial and the motor is essential, and numerous diffictulties have been encountered. However, several very dependable commercial outfits are on the market utilizing the motor control method.

In addition to adjusting the set to the different stations, a method for regulating the loudness must also be provided in the push-button or remote control box. This is, fortunately, not a difficult matter, and a variable resistor ordinarily handles this requirement nicely.

Aids Service Men

Condenser Sections Lined Up

to determine the frequency of the stations thus received, hence calibrate the set without waiting to ascertain the identity of the stations tuned in.

Modulation of Oscillator

For use as a device for enabling the lining up of gang condensers in circuits, as by trimmer adjustment, modulation of the oscillator is necessary. This is provided very easily, if your home or other place of testing is wired with AC. Simply get an 0.1 mfd . condenser, connect one side of the condenser to one side of the $A C$ line, and the other side of the condenser to the phone binding post that connects to the tickler coil. The 60 cycle hum, or more pronouncedly, the second harmonic thereof, that is, 120 cycle hum, will be heard, and the trimmers can be adjusted in the tested set for loudest hum response. A meter in the output of the tested set's detector would indicate relative sensitivity as to frequencies, if the meter is very sensitive.

The coupling of oscillator and modulator may be effectuated by connecting ground to the ground post of the one tube set, aerial post of this small set to ground of the tested set, and aerial wire to the antenna post of the tested set.

In all calibration work involving a tickler, the position of the tickler should not be changed, so this too alters the frequency. Use the same tickler setting all the time in these tests.

Helpful Hints on Mechanical Features

There are a few special precautions to take to insure utter ease in construction of the set. The tuning condenser has three mounting brackets built in, and also a slotted support. Remove the front mounting bracket and the rear support, which can be done with pliers, although part of the rivets that hold this hardware may remain. Drill where the rivets were, using No. 28 or 29 drill, and the rivet pieces will fall right out. Two holes thus will be cleared at front and meet countersunk front panel holes, through which $6 / 32$ machine screws may be passed, with nut at the back to hold the condenser to the front panel, and in fact attach the front panel and subpanel to each other. Since the coil wiring is a large part of the total, it is preferable to mount front and subpanels at once, and put the coil in position, by single hole mounting on front panel. One more operation concerns the condenser. Remove the pigtail nut and

trol Tuning

ard Foote

A number of distinct advantages accrue to the push-button radio method, where the set may be located in some other room. In the first place, the set need not be in the living-room, occupying useful space. Since it is not an article of furniture any longer, the set may be built with less attention to its appearance and more attention to its mechanical and electrical features. It may be larger, which is a good thing, allowing heavier apparatus, which gives better results and with much less danger of breakdown. The safety factor in the design may be larger. It may be designed so that the service-man can get at the important parts more easily, for repairs or replacements.

Avoids Coupling From Speaker

Another point is that of separating the loudspeaker and the set. Where the set is in the same room and in the same cabinet, the vibrations of the speaker may shake the set and cause the elements in the tubes to vibrate. This causes distortion and sometimes what is known as microphonic howling. Where the set is in a different location no trouble of this kind is experienced.

These advantages are, of course, entirely aside from the convenience of being able to sit in your easy chair and select the station you wish with little effort.

Some sets are equipped with push-button or lever or cam controls which the listener may move to adjust the set to a number of different stations. In one type the levers are something like those of a cash-register. They are pulled down to a pre-adjusted stop and this movement is the same as turning the dial around to a certain position. The set may also be regulated by the tuning dial in the usual manner, if desired. This arrangement is convenient, since the well-liked stations may be brought in with hardly a glance at the set, and the DX fan may use the set for radio fishing, too.

FIG. 4
View of the parts of the one-tube multi-purpose circuit mounted in the correct position.
instead solder the pigtail anywhere to the frame, or to the upper nut on the side strip, out of the way of the rotor plates.

The switch goes near the bottom of the front panel, at center, and there is just enough room for it, provided it is mounted with the hooked contact toward the bottom.

Lining Up the Panels

The subpanel is elevated to the same height as the bottom of the front panel, principally by use of two milled bushings at rear. These bushings are $5 / 8$ inch high. That is not quite enough, so a screw is placed through holes at rear corners of the subpanel, head up, and two $6 / 32$ nuts are tightened down against the screwheads, from the bottom, adding about $1 / 8$ inch to the elevation, and permitting the tightening down of the bushings, which are threaded for $6 / 32$, for front panel matching. Four bushings are used, but only two need the help of nuts for elevation, as the binding post strip takes care of the rest.
One of the corner holes referred to is used for fastening for binding post strip, at left of the subpanel as you view the set from the front. A corresponding corner hole passes a screw to anchor the other end of the binding post strip. If desired, a third hole in this strip may be used, by drilling through it and through the subpanel (which has not the third hole in this position), for still greater security in anchoring the strip. The four binding posts are for antenna (extreme rear), ground (second from rear), plate coil (third from rear) and B plus (nearest front panel). The battery connections, as stated, are made with separate wires, and their length will depend on how far the batteries will be from the set, but it is assumed they will be just in the rear, so the leads would be short.

FIG. 5
Detail of binding post strip:

Output Pentode En

 rather depends on the amplification factor, or on the mutual conductance, called transconductance for the pentode. The square of the power sensitivity is a measure of the power output per volt squared on the grid of the tube.
Advantages of Pentode

The advantage of a tube having a high power sensitivity is that a given power output will be obtained with a small input voltage and hence with a low amplification in the audio frequency amplifier. With the pentode output tube it is possible to connect the tube directly to the power detector by means of resistance coupling and load up the power tube until the maximum of 2.85 watts will be obtained. Thus all the distortion which the omitted tubes and parts would have introduced is avoided and the quality of the output will be considerably better. Not only that, but the output will be obtained at lower initial and maintenance cost. This is true even when the European license fee is not involved. The

Fig. 1
A circuit showing the connections of a PZ pentode when batteries are used. G1 is the control grid, G2 the space charge grid, and G3 the cathode grid, or pentode grid.

THE pentode power tube has been introduced into American receivers and it is expected that many new circuits will be developed around it. A tube of this type has been in wide use in Europe for many years, but heretofore it has not been available in America, except by importation. It was developed in Europe to meet the conditions existing there, particularly the receiver license fee, which is based on the number of tubes in the set. The main advantage of the pentode power tube is much greater power sensitivity than any other output tube.
The power sensitivity of a tube is defined as the ratio of the square root of the output power to the effective value of the signal voltage impressed on the grid. The following table shows the power sensitivity of five different output tubes, including that of the new pentode, PZ.

Power Sensitivity of Output Tubes

Tube	Ep	Eg	P	S
112 A	157.5	10.5	.195	.0594
171 A	180	20.5	.700	.0292
245	250	50	1.60	.0358
250	450	84	4.05	.0239
PZ	250	18	2.85	.1236

In this table Ep is the effective DC voltage on the plate, Eg the peak signal voltage on the grid, P the output power, and S the ratio of the s quare root oi P to the effective value of Eg.
It will be noted that the pentode has a power sensitivity of more than twice that of the 112 A and nearly four times as great and the most popular power tube, the 245 . The 171 A and 250 tubes have the lowest power sensitivity of all.
Note in column headed by P that the power sensitivity has little to do with the actual power delivered by the tube. for the greatest power is delivered by the 250 . The power sensitivity

Fig. 2
A family of plate voltage, plate current curves for the PZ pentode power tube.

Characteristics of the Pentode

2.5Filament voltage
Filament current, amperesPlate voltage.250
Plate current, milliamperes. 32.5Control grid 'bias voltsSpace charge grid voltages.Space charge grid current, maCathode potential, volts.2507
Plate impedances, ohms. 38,000
Transconductance, micromhos 2,500
Amplification factor
9
Power output rating, watts.. 2.5
Socket Standard UY
advantages of the power pentode tube will soon be generally realized in this country.
As will be noted, the filament voltage and current ratings are the same for the pentode as for the 245 power tube. Hence no new filament supply need be provided when the pentode is substituted. However, since the socket required by the pentode is a UY and that required by the 245 is a UX, it is necessary to change sockets.
The pentode will probably be used primarily in new receivers in which the detector and the audio coupler have been especially designed for it, but many will want to substitute a pentode in the power stage when the amplification in the audio frequency
amplifier is not quite sufficient.

The Circuit for Pentode

In Fig. 1 is a simple circuit showing the connection of the various elements of the tube. G1, the control grid, is connected the same as the control grid of a 227 tube, that is, to the apex prong of the base. The plate P is connected to the same prong as in the 227 and the 224 . The space charge grid G2 is connected to the prong to which the cathode is connected in the 227 and the 224 tubes. The two filament terminals are the same as the two heater terminals of these two tubes. Thus the main external difference between the connections of the PZ and the 227 is that the cathode in the 227 becomes the space charge connection in the PZ . This is an important difference, for in the 227 this prong is given a voltage of zero or a positive voltage equal to the grid bias on the tube, and in the PZ it is given a voltage of 250 volts. It will not do, therefore, to plug in a 227 tube in a socket wired for a PZ.

ters American Arena

Anderson

The screen grid in this pentode is not represented by any external connection because the screen is connected to the center point of the filament. Since the center point is virtually at zero potential the filament voltage is called zero. The screen is indicated by G3 in Fig. 1, and it is shown conriected to K , which stands for the combined cathode and filament.
The grid and plate returns are made to the center point of the 2.5 volt filament winding, which is customary when AC is used for heating a filament.

Bias Provision

In Fig. 1 the bias is provided by a battery having a voltage of 16.5 volts. This is the best way, electrically, but it is not the most convenient way. The most practical way is to use a bias resistor. What should be the value of the grid bias resistor We have to compute this from the plate and space charge current and the required grid bias. The plate current is 32.5 milliamperes and the space charge current is 7 milliamperes. Hence the total current is 39.5 milliamperes. Since the required bias is 16.5 volts, the required grid bias resistor is 418 ohms. Since it is not critical, either 400 or 500 ohms may be used if the exact value is not available.
The slope of the output characteristic depends to a great extent on the grid bias resistance. It is less when a bias resistor is used than when a battery is employed to supply the bias, and therefore the output will be less when the bias resistor is used. This effect might be looked upon as a reverse feedback through the bias resistor. Since this effect is not desired, a large condenser should be connected across the bias resistor, and this should not be less than four microfarads, for if it is the low notes will be suppressed.

Characteristic Curves

In Fig. 2 is a family of plate current, plate voltage curves for the PZ pentode between zero and 400 volts on the plate and a grid bias range of zero and 35 volts. The space charge voltage is 250 volts and the filament voltage 2.5 volts.
The maximum output on the fundamental and the minimum second harmonic occur when the plate load resistance is nearly 8,000 ohms. By drawing a load line across the family of curves in Fig. 2 corresponding to a load of 8,000 ohms, we can compute the power output. An 8,000 ohm load line is obtained by drawing it through 400 volts on the voltage axis and 50 milliamperes on the current axis. This would be the proper line for a pure resistance load, but when there is inductance in the circuit the line should be higher up but parallel to the first line. The second line should pass through the 16.5 volt curve at 32.5 m.a. Drawing the line we find that it crosses the zero bias curve at 57 milliamperes and 40 volts. The line also crosses the 33 volt bias curve, assumed to be drawn, at 4 milliamperes and 460 volts. Thus the plate voltage changes from 460 to 40 , while the plate current changes from 57 to 4 milliamperes. The product of the current change by the voltage change is $420 \times .053$, or 22.26 . This is eight times the power output, which therefore is 2.78 watts. The value given in the table of power sensitivity is 2.85 and that given in the table of tube characteristics is 2.5 watts. The value just obtained lies between these two.

Computing Power Sensitivity

The grid veltage change that produced this power in the plate circuit was 16.5 volts, peak value. The root mean square of this is 11.68 volts. The square root of 2.78 is 1.669 and therefore the power sensitivity is 0.1428 . This is approximately the same as that given in the table for a root mean square input voltage of 18 volts.
In Fig. 3 are two curves, one showing the relationship between the grid voltage and the plate current and the other that between the space charge grid current and the grid voltage. These are drawn to the same scale the more clearly to show the difference between them. They were taken with 2.5 volts on the filament, 250 volts on the plate and the same voltage on the space charge grid.
In this graph the plate current changes from 75 to 4 milliamperes, as the grid voltage changes from zero to 33 minus. The space charge grid current remains about one-fourth as great as the plate current at all times.

Variation of Mu

In a three element tube the amplification factor remains practically constant, but in this tube it varies almost directly as the plate voltage, being zero when the plate voltage is zero and about 147 when the plate voltage is 400 volts. At the

Fig. 3
Curves of the PZ pentode showing the variation in the plate and space charge grid currents with the control grid voltage.
operating point of 250 volts on the plate and 16.5 volts negative on the grid and 250 volts on the space charge grid, the amplification factor is approximately 97 . It is listed at 95 , but this is an average for a large number of tubes and the factor varies a little with different tubes.
As the space charge grid voltage varies, the other factors remaining constant, the amplification factor varies inversely as the voltage, that is, it decreases as the voltage increases.

Variation of Transconductance

The transconductance, or mutual conductance, increases as the plate voltage increases, at first very rapidly and then more slowly for the higher plate voltages. It also increases in a somewhat similar manner as the grid voltages change from high negative values to less negative values. Its variation with increase of space charge grid voltage is similar, at first very rapidly and then more slowly. It is assumed here that all conditions other than those specifically mentioned remain constant. For example, when the plate voltage is varied, all the other voltages remain constant and it is under these conditions that the mutual conductances vary as stated.
It has been stated that the plate and space charge grid voltages should be the same, but in Fig. 1 the space charge grid is connected to a lower voltage than the plate return. The difference is due to the fact that there is a voltage drop in the load impedance in the plate circuit. In the space charge grid lead there is no impedance and therefore the applied voltage is the same as the effective voltage. The plate return should be connected to a point where the voltage is high enough to make the effective voltage on the plate equal to the space charge grid voltage. If a high resistance voltmeter is used, the applied voltage in the plate circuit can be adjusted accurately enough with its aid, connecting it between the plate and the mid-point of the filament transformer.

Bias Resistance Feedback

We mentioned the fact that a bias resistor that is not by-passed will cause a decrease in the amplification because of reverse feedback. Let us examine this effect in detail. Since the bias on the tube is determined by the sum of the plate and space charge grid current and the resistance used for bias, it is obvious that the actual bias depends on the signal voltage. As the signal voltage makes the grid more negative, the plate and space charge grid current decreases (Continued on next page)

Tuning

FIG. I
Circuit diagram of the JA-3 all-wave converter, using the new National Equicycle tuning condenser and four plug-in coils, 15 to 600 meters.

THE NATIONAL COMPANY, of Malden, Mass., has put on the market a new short-wave condenser that has special features. The model SE-100 rotates in an angle of 270 degrees, with straight frequency line tuning and requires a clockwise type dial that will accommodate this large angular displacement of plates, since most dials work in only 180 degrees. The advantage of the greater displacement is improved ease of tuning, the stations being spread farther apart on the dial, hence the danger of not receiving distant stations, because of passing them, is avoided.
The rotor shaft does not protrude through the metal rear support bracket, as in most condensers, as this condition would approximate a slort-circuited turn and might give rise to crackling sounds in the tuning process, besides acting as a damper on sensitivity. Therefore a thick pigtail is soldered to the rear of the shaft, being passed through an insulated bushing before being soldered to a lug at rear of the frame. No detuning from the effect of the pigtail then is present, as the pigtail thus included presents a constant impedance.

Important in Short-Wave Work

These considerations, applied to broadcast frequencies, might not be important, but on short waves such improvements are of inestimable value, particularly in the reduction of noise and in the effectuation of a calibration for tuning in stations.

The only successful way of obtaining dependable distance reception is to note the dial settings for the frequencies to be tuned in, and, consulting a list of short-wave stations, such as the one published in the March 28th issue of Radio World, tune deliberately for the desired stations at a time when they are known to be on the air. The list gave the hours on the air in terms of your time zone. The other method, of simply fishing for stations, is not productive of a big log of distant stations, and often proves so disappointing that one quarrels with the short-wave set or converter, instead of with the method of attempting to bring in the stations.
The JA-3 All-Wave Converter tunes from approximately 15

LIST OF PARTS

Coils
One set of four plug-in coils, tube base type
Two National short wave radio frequency choke coils
One 30 henry B supply choke coil
One $21 / 2$ volt filament transformer (center taps on secondary optional).
Condensers
One National Equicycle short-wave condenser, SE-100, capacity
.0001 mfd . (270 degrees rotation)
Two National MB 30 shields with four 3 s-inch right-angle
brackets.
One . 00025 mfd . grid condenser
One .00035 mfd . fixed condenser
Four .0015 mfd . fixed condensers
One 8 mfd . electrolytic condenser.
One 1 mfd . filter condenser.
Resistors
One .02 meg . (20,000 ohm) pigtail resistor
One .05 meg . ($50,000 \mathrm{ohm}$) pigtail resistor
One Electrad 150 ohm flexible biasing resistor.
Other parts
One National clockwise disc type dial with pilot bracket and
$21 / 2$-volt lamps (270 degrees rotation)
Two National grid clips
One 7×10-inch front panel
One $61 / 2 \times 97$-inch subpanel
Two binding posts
One AC cable with male plug
One Goneral Electric AC toggle switch
One dozen 6-32 machine screws and one dozen nuts to match
Two subpanel support brackets
Two 5 -inch brass bushings, tapped for $\mathbf{6 . 3 2} \mathrm{ms}$, to augment support brackets

Four UY sockets
One fuse with holder
meters to 600 meters with any broadcast receiver, and has a 227 rectifier built in, so there is no uncertainty about obtaining the B voltage. The plates of the tubes get an applied voltage of 110 volts, while the total current drain is about 10 milliamperes. The bias on the oscillator, resulting from the 150 ohm resistor intercepting the plate current, is .7 volt, so the oscillator plate current is a little less than 5 milliamperes. The response is keener under this condition of low bias.

8 Mfd. Used Next to Rectifier
Altogether satisfactory filtration results from the placement of an 8 mfd . electrolytic condenser next to the rectifier, and a 1 mfd . paper condenser at the end of the B supply choke. However, the choke should have a commercial rating of 30 henries, that is, must be of substantial inductance to insure adequate filtration with the specified capacities.
The effect of poor filtration is not only to introduce hum but to reduce the sensitivity of the converter very sharply. For instance, during the experiments with the circuit 1 mfd . condensers were used in both positions, next to the rectifier and at the other end of the B supply choke. As it remains possible to tune in broadcasting stations with the receivers used, the converter acting as a booster, there was a loud hum when a broadcast carrier was reached. As the set's dial was turned one hum after another was heard, or rather, the same hum, impressed on each succeeding carrier by the converter.

When the capacity next to the rectifier was increased to 8 mfd . this condition completely disappeared. Of course, the arrangement of 1 mfd . next to the rectifier and 8 mfd . at the other end was tried

Pentode Power Tube Makes Its Bow

(Continued from preceding page)
making the drop in the bias resistance less, which has the effect of reducing the signal voltage as it is impressed on the control grid. As the signal drives the control grid toward the positive, that is, less negative, the current through the bias resistor increases, and again the effect is to oppose the signal voltage.
Now this effect can be counteracted by a by-pass condenser across the resistor, for the condenser acts as a filter, tending to keep the voltage across the bias resistor constant at the mean value, that is, at the value it has when no signal is impressed. The larger the condenser the more nearly is the voltage across it constant and the more nearly does the operation approach that when a battery is used for biasing.

The condenser charges up when the plate current is above normal and discharges when it is below normal.
In a push-pull stage the bias resistance need not be by-passed, because the current through the resistance is practically constant, provided that the circuit is halanced, and if it is not balanced the bias resistor helps to bring about balance. Therefore it is not even desirable to by-pass the bias resistor in such circuits. The PZ pentode can be used in push-pull just as any other power tube. When two of them are so used the output will be abount 6 watts without appreciable distortion.
The pentode herein discussed is a power tube, and is not to be confused with the radio frequency amplifying pentode brought out by CeCo last year.
Atwater Kent was the first out with a pentode set.

Herman

but proved of little advantage over 1 mid. in each position. There fore it is next to the rectifier that large capacity is absolutely needed. Then short wave signals come in without hum, and are louder, besides

In the model illustrated a dry electrolytic condenser was placed underneath the subpanel, since such a condenser may be put in any position. Results were good. Somewhat better results were obtained when a wet electrolytic was used, of the sanne capacity rating. A wet electrolytic can be mounted only one way. There are two mounting types, the standard and the inverted. With the in verted type, the condenser is mounted upside down, as it were, with threaded bushing entering a subpanel hole from the top, while a nut is placed over the screw, underneath the subpanel, to hold the condenser in position. Since the subpanel is insulating material, and the condenser can is aluminum and won't take solder, a wire loop or washer is placed between the nut and the subpanel in mounting this type of condenser, and soldered connection mále to negative. In, electrolytics, the can always is negative, the anode (lug at end) positive.

Acts as Broadcast

The converter is to be worked with a broadcast receiver with some favorable frequency used as the intermediate frequency. Most receivers are more sensitive at the higher frequency settings, so experiment with that extreme of the set dial. The other extreme should be tried, too. Some modern receivers are much more sensitive at the lower frequency end
Also, many receivers are trimmed at a medium frequency, so that resonance is not so keen at the extremes, though otherwise the tendency would be for greater sensitivity at the higher end. This suggests to users of converters that, if the higher frequency end seems more favorable, retrimming of ganged condensers might well be done at $1,500 \mathrm{kc}$, so that the set, if tuned a little beyond that, will result in far more and better short-wave reception when the converter is used.

Since the converter tunes the broadcast band as a converter, and the set tunes it as a straight receiver, you may tune in such stations by either method, when the two devices are attached, particularly using the set for this purpose if the converter proves to be a substantial booster of signal strength, as it almost unfailingly will.

Constructional Details

As for the arrangement of parts, the coil socket is naturally right near the tuning condenser, and the modulator and oscillator tubes are on either side of this socket. The coils fit in regular UY sockets.

The tuning condenser is $41 / 2$ inches high, with plates half disengaged (the extreme condition) and the dial frame accounts for more than an inch extra, so there are only about $11 / 4$ inches room underneath the subpanel, if the front panel is 7 inches high. However, the largest part underneath clears the bottom by $3 / 8$ inch, since the two large objects, the filament transformer and the choke coil, are placed on top. For symmetrical appearance two aluminum shields are placed over these devices, using two small right-angle brackets for each, these brackets being commected also to B minus which is automatic ground, due to the power line being grounded.

Do Not Use External Ground

No external ground connection should be used. The two binding posts are for aerial, which is removed from the set and connected here, and for output, which is connected to the vacated antenna post.
It may be noticed that far better results are obtained when the plug is inserted in the convenience ontlet or lamp socket in one direction, as compared with the other direction. This would seem

to be due to the improvement expected when the natural ground side becomes uninterruptedly the grounded side of the converter, in other words, ground is not intercepted by the impedance of the primary of the filament transformer. So try the plug first one way and then the other.
The case of the 1 mfd . condenser is to be scraped and a lead from B minus soldered thereto, the lug going to positive.

This is a nicely-working converter of dependable performance, and smoothly meets the fundamental requirement of mixing the incoming frequency with the oscillator frequency to produce the intermediate frequency
[Other Illustration in Front Cover]

FREE AID TO A NEW JOB!

SITUATIONS WANTED AND HELP WANTED ADVERTISEMENTS WITHOUT COSTI

Address: Industrial Dept., RADIO WORLD, 145 W. 45th St., N. Y. C.

SITUATIONS WANTED

RADIO REPAIR AND SERVICE MAN. Age 34 years, married. 10 years' experience in D.C. sets. Course in modern A.C. Radio from Radio Training Association of America. Consider radio position of any kind in Milwaukee or Chicago and suburbs. Work must be steady. Start at any reasonable salary, with chance of promotion. Charles Schmidt, 2814 N. 27th Street, Milwaukee, Wisc.

EXPERIENCED SERVICE MANAGER-age 26 married, formerly with RCA-Victor Co., of CamP, N. J., and Elliott-Lewis Electrical Co. of Phiadelpha. Three years' Electrical Engineering Course at Drexel Institute. References of highest order. Desire to locate with manufacturer interested in public address systems or centralized $\stackrel{r}{\text { radig }} \mathrm{S}$ and antenna work. Position anywhere in 109 S. Franklin Ave., Morton, Pa. Greathead,

YOUNG MARRIED MAN, AGE 28 YEARS, wants position as broadcast operator or repairman. Have class S. Government commercial firstwith the radio game since have been connected tional Radio Institute, Washington, D S S Steres No 16089 Witl consider U. S W. Wite . S. Write I L Crusoe, P O Box 15, Key West, Fla.

Band Pass Pre-Sele

FIG. I
Calibration curves of the Selectifier. The rejection curve gives the dial settings when the signal is tuned out and the acceptance curve give them when the signal is loudest.
[Circuit diagran and other details of the Selectifier, which kills off an undesired frequency with absolute certainty, were published in the March 21st issue.-Editor.]

THE Selectifier is a band pass filter to be used in front of a receiver which does not have sufficient selectivity to prevent interference. It may be used either as an acceptor for selecting the desired station with greater sharpness or as a rejector for eliminating some interfering station. In either case it helps to select the one desired without interference from others.
It consists of two tuned circuits coupled loosely by means of a large condenser of 0.05 mfd . capacity. Each of the two tuning condensers contains a trimmer for aligning the two main tuning condensers and enabling them to be put on the same tuning control. In addition to the common coupling condenser there is a small condenser joining the stators of the two tuning condensers to increase the coupling when this is desired. There is a switch in series with the condenser so that it may be cut out when it is not needed.
The circuit is housed in an attractive walnut finish wooden box approximately $8 \times 8 \times 5.5$ inches, and the tuning dial and switch control knob are mounted on a black bakelite panel measuring 7 inches square. The tuning condensers, coils and other parts
are mounted on a bakelite sub-panel measuring 4.5×5.5 inches Grooved cleats are fastened on the sides of the box in such a position that the sub-panel slides into the grooves and holds the assembly firmly in place. The assembly may be made still more firm by means of wood screws in the upper two corners of the front panel or at the sides where the grooved cleats abut against the panel.

The tuning condensers are provided with an REL vernier dial by means of which it is easy to set the tuner at any desired position accurately.
The switch in series with the stator-to-stator condenser is mounted directly below the knob with which the circuit is tuned and it is arranged so that when the switch knob is in the condenser is out. That is, the lead from one of the stators to the condenser is open when the switch knol is all the wav in.

Tuning Curves

The calibration curves of the Selectifier are given in Fig. 1. The curve marked "rejection" is that which gives the positions of the dial when the stations not desired are to be tuned out, while the curve marked "acceptance" is that which gives the position of the dial when the desired stations are to be brought in loudest.
A marked advantage of the Selectifier is the nearness with which the acceptor and rejector positions come. If there are two stations operating close together and one interferes with the other, it is usually possible to set the Selectifier so that the acceptor position comes on the desired station, or close to it, and the rejector position directly on the undesired station. Thus the one not wanted is suppressed while the one desired is strengthened.

The coils in the Selectifier have been wound so that the 550 $k c$ channel falls at 100 on the dial for rejector position. This makes the acceptor point for the same frequency fall at a lower point on the dial. At the other extreme of the broadcast band the rejector tunes to $1,500 \mathrm{kc}$ at 8 on the dial and the acceptor 2 . Thus the circuit covers the entire broadcast band both for rejection and acceptance

Midline Tuning

It will be noticed that the curves are nearly straight lines. However, they are not exactly straight line frequency because the tuning condensers employed are of the midline type, that is, about half way between straight line frequency and straight line capacity. For the shorter waves the change follows closely straight line frequency.

Either curve may be used as a guide to identifying stations, particularly the rejection curve because this is the more clearly defined on the dial. Suppose, for example, that a distant unknown station is tuned in with the receiver and then cut out with the rejector, say at 60 on the dial. We note from the rejection curve that this corresponds to a frequency of 860 kc and therefore the station must be operating on this frequency. Three stations are operating on this frequency and we lave to judge by the intensity of the signal and the distances as to which is being tuned in at the time. Suppose, again, that another station is tuned out by the Selectifier at 62 on the dial This corresponds to a frequency of 750 kc . We find two stations operating on this frequency, namely, WSB, Atlanta, Ga. and KMMJ, Clay Center, Neb. The station tuned in must be one of these two.

Connection of Selectifier

There are only three leads coming from the Selectifier circuit. One of these is to be connected to ground post on the receiver It is imperative that the receiver be grounded, even if for other purposes leaving off the ground "makes no difference." One of the other leads to be connected to zerial and the third to the antenna post on the receiver from which aerial was removed.
When the Selectifier is connected an interfering station will not come in, if the Selectifier is tuned to the station's frequency on the rejection curve, because the suppression is 94 per cent.
The principal function of the Selectifier, as its name implies, is to impart selectivity, which it does most effectively by the rejection method, that is, getting rid of an interfering frequency. It is regarded as the most powerful and effective wave trap ever produced commercially, and can be used by interference sufferers living close to broadcasting stations, even being set to reject the offender, and left thus. Then the offender may not be heard at all, and other stations brought in, or by slight retrieving of the Selectifier you can give the neighboring transmitter some of your listening time.

Coil in Selectifier

There are two identical coils in the Selectifier. Each coil con-

ctor Kills Interference

Burroughs

tains two windings, one of 15 turns and another of 70 turns. The first 15 turn winding is in the antema circuit and the second is across the input terminals of the receiver. The two 70 turn windings are in between, one of them acting as secondary for the antenna winding and the other as primary for the output winding. All windings are wound with No. 28 enameled wire on 1.75 inch bakelite tubing.

These two coils are mounted under the sub-panel with their axes parallel and their centers 3 and $7 / 16$ inches apart. Thus there is a certain amount of inductive coupling between the two coils in addition to the capacitive coupling afforded by the 0.05 mfd . coupling condenser. This inductive coupling has been proportioned so as to aid in the functioning of the circuit.

Advantage of Symmetrical Layout

The physical layout of the circuit is as nearly symmetrical as practical. So are the electrical features and the physical symmetry helps to bring about electrical symmetry. The two tuning condensers are also alike in their tuning characteristics. Because of the features of symmetry the two circuits remain similar throughout the tuning range and the selectivity is not impaired. However, some differences are bound to occur and it is for this reason that the two trimmer condensers are used so that the differences may be compensated for. To align the trimmer condensers the circuit should be tuned in for the acceptance position for a frequency in the middle of the broadcasi band and the two adjusted until the sigual is as loud as possible.

Since the two trimmer condensers may be set at different values to bring about alignment it is usually possible to fit the tuning curve to a calibrated curve such as that shown in Fig. 1. The middle frequency on the geometric scale is near 910 kc . Suppose, then, that we wish to fit the tuning curve of a Selectifier to the acceptance curve in Fig. 1. We note that the acceptance curve croshes the 910 kc line at 44 on the scale. Therefore the receiver is tuned to 910 kc and the Selectifier dial is set at 44. Then the two trimmer condensers are adjusted until the 910 kc signal is as loud as possible. The curve has then been fitted at one point and that is the best that can be done for there is no other arbitrary adjustment. But if the tuning condensers in the Selectifier thus adjusted are the same as those used in taking the curve the fitting should be close throughout the scale.
If a 910 kc signal is not available any other signal not too far from the middle of the scale will do just as well, the only difference being that the Selectifier dial is set at a different point

Advantage of Filter

The Selectifier has several advantages well worthy of consideration when the receiver is not sufficiently selective to tune out interference.
In the first place, it offers another tuner which is adjustable independently of the tuner in the receiver. Thus if the broadcast receiver is not selective because of lack of alignment of the tuning condensers the filter in front of the receivers affords an independent tuner which may be adjusted sharply to the desired station, building up its signal and suppressing others not wanted.
In the second place, it adds to the selectivity even when the broadcast receiver is very selective and permits selection of the desired station to the exclusion of stations not desired. Then there is the suppression feature of the circuit, which is the most important, especially when the interfering station is so close that ordinary tuned circuits cannot separate the two clashing stations. It suppresses the undesired station without at the same time diminishing the desired one.

If the circuit appears to be broad it should be remembered that it contains only two tuned circuits and that the receiver tuner against which it is directly compared may contain as many as six. But tuner for tuner the selector is more selective, and it must be remembered that it affords added selectivity. Its usefulness is particularly great in the vicinity of high pewer broadcast stations the signals of which are so strong as to override all other stations regardless of the type of receiver that is used. The added selectivity is then most welcome, and, indeed, in such places the Selectifier has met with greatest success.

Variable Selectivity

The switch in series with the midget condenser between the two stators of the tuning condensers and the adjustor on this condenser provide means of varying the selectivity of the device. When the switch is closed the coupling is the closest, the selectivity the lowest, and the signal transfer the greatest. If the midget condenser is set at maximum these effects are very great while when the condenser is set at minimum the effects are not much greater than when the switch is open. If greatest

FIG. 2
Front view of the Selectifier in its cabinet showing the REL vernier dial and the condenser switch.
selectivity is desired, either when using the circuit as an acceptor or as a rejector, the switch should be open regardless of the setting of the midget condenser, for the minimum capacity of the midget is of the order of 20 mmfd .

Good Ground Important

A good ground connection is far more important than most listeners believe. Of course, the difference in results from local stations will not be pronounced but on distant and faint stations a good ground will bring a noticeable gain in volume. Furthermore, a good ground will reduce the hum present in sets operated from electric power or sets using electrically-operated accessories.

In an apartment house it is well to make connection with as many radiators, water pipes, etc., as possible. It is easy to test out these additional connections. The daytime is best for such tests as results are not likely to be confused by fading. Tune in a weak station, then try adding new ground connections, retuning if necessary:
The suburban dweller should get a direct wire to the water main where the main enters the cellar. Additional wires to pipes and radiators in the room often help, too.
Farm listeners need to pay special attention to their ground connections. A copper wire screen, heavy and coarse mesh, will be useful. It should have about 10 or more square feet of area. Bury it in a trench 3 feet deep or so, preferably in a damp spot. In dry country, the ground may be a counterpoise, about 100 feet of wire suspended on stakes a foot high, under the aerial. Another good system is 100 feet or more of well-insulatd wire laid in a furrow ploughed in the ground under the aerial.

MERCURY VAPOR RECTIFIER

The DeForest Radio Company, Passaic. N. J., has announced a new half-wave mercury vapor rectifier, Type 575, for use in B supplies of transmitters or other applications requiring a high rectified voltage and current.
The characteristics of the tube are as follows Filament voltage

5 volts
Filament current
12.5 amperes

Max. peak inverse voltage
ampe
Max. peak plate current
2.5 amperes

Approximate tube voltage drop
12 volts
Overall length
9 inches
Diameter of bulb
4 incher
The filament must be maintained at not less than 5 volts. The tube is not similar to nor interchangeable with any other make of mercury vapor rectifier now available, but it fits a standard 50 -watt base. The filament should always be lighted for 30 seconds before the plate voltage is applied. This is usually prov vided for by insertion of a time relay in the plate circuit which delays the application of the plate voltage until the filament has been lighted the required length of time.

DX-4 Does Its Stuff

Doubters Turn Into Boosters as Rectifier Model Is Used

FIG. 1
The DX-4 All-Wave Converter, with constants used in models that won over anti-converter folk.

"I'M looking for a short-wave set, but a short-wave converter, no." That was what one man said to a fellow radio enthusiast when they met on the street the other day.
The person addressed had no short-wave experience, as yet, so he hesitated to purchase parts for a converter, although he had had one in mind for a week or more. If his friend, who assumptively knew more about it than he did, was off converters for life, and then some, what chance had a converter of winning its way into the disillusioned one's home?
The pair visited a mutual friend that night in a neighboring city. And that mutual friend had a device he was eager to demonstrate. It was in a handsome walnut finish cabinet, small in size, and matching well the console on which it stood. If the thing, obviously a radio device, only worked half as well as it looked, what performance could be expected 1

The Demonstration Takes Place

Well, it was indeed a short-wave converter, or, rather, an allwave converter, and it was built of parts of specified values shown in the diagram, Fig. 1. Every part is duplicated just as he had it.
"It's a DX-4' All-Wave Converter," said the enthusiastic possessor, "and I've had it a week. What fun!"
"Where," asked the doubting Thomas, "does it get its name DX?"
"I don't know where it gets it, but I'm willing to christen it that, after my experience with it. Why, the little thing brings in everything!" And so there was at the beginning a difference of opinion, a sharp difference between the owner of the DX-4 and the friend who was all off converters for life, a rather mild and uncertain difference on the part of the third fellow.
After the demonstration that night the middle-ground nan recovered his sensible poise, while the strength of the opposition to converters crumpled up under the showing. Four European stations were tuned in, by using the time table of short-wave stations published in the Marcla 28th issue of Radio World, as well as a station in Honduras and another in Canada, and anv quantity of American stations from all parts of the coluntry, including coast-to-coast reception, all on short waves.
It is hard to imagine a more astonished man than was that anticonverter crab. The question naturally arises as to why persons are opposed to converters.

Must Oscillate

It follows that they tried one and could get no results. But if you will tax the objector, no doubt he will admit that the converter he used required obtaining the \underline{B} voltage from some external source, and that he tried to fish it out of the receiver itself, somehow.
Methods of doing this have been outlined from time to time in these columns, and an article last week stressed the four principal methods, yet it is a certainty that some who try to obtain the B voltage externally by some attachment simply don't succeed.
The reason is that the receiver's circuit is such that it does not lend itself to yielding the B voltage, because the B current for the converter must flow through some impedance in the set, hence the voltage both to the converter and to the loads supplied at the same voltage in the set, is too low, due to enlarged drop. The converter's oscillator won't oscillate, and when that situation obtains there is no possibility of bringing in short waves.
The built-in rectifier, of course, solves that problem. Several options as to values to use for filtration have been given, regarding the DX-4 and other circuits, while the characters and values of load impedances have been different from time to time, the circuit remaining always the same.

Fig. 2 Front view of the
DX-4 All-Wave Converter

There is a little difference in performance as the character and values are altered.
For instance, if very tiny radio frequency choke coils are used, for example those of $1 / 4$ millihenry, the converter will not act as much of a booster for broadcasting reception through the set itself, and there will be less difficulty in finding a quiet spot on the set dial for intermediate frequency.
If medium value resistors are used, or relatively high inductance choke coils, response will be louder when the converter is worked as such as well as when the set is tuned for broadcasts and the converter worked as a booster. On the other hand, the receiver should be able to tume heyond the broadcast band at one extreme, preferably the higher frequency end, so that a quiet intermediate frequency is obtainable. Any fairly sensitive set, being made more sensitive by boosting, naturally affords scarcely any point in the broadcast band itself that will serve as intermediate frequency.
So the parts and constants, shown in Fig. 1, presuppose the use of a receiver that does go a little beyond either extreme. No matter what intermediate frequency is used, the lowest broadcast frequency (550 kc .) can be tuned in with the largest and sometimes with the second largest converter coil, while the highest response frequency is about the same, independent of the intermediate frequency, about $30,000 \mathrm{kc}$. (10 meters). The reason for the similarity, despite intermediate frequency difference of 950 kc . is that 950 is then only about one-thirtieth of the signal frequency to which the device responds.

A dealer wrote to a manufacturer of parts saying he would like

Queer English

to get a short-wave set made, but wouldn't want a converter. So the manufacturer, who specialized on converters, took pains to inquire what was the objection to a converter.
"She no worka," wrote back the dealer.
The manufacturer wrote back:
"Oh, yes, she do, and we senda yon one wired on ten-day moneyback jamboree. Whaddye say?"
"Me say yes," came the telegraphed reply. (Postal Telegraph, collect.)

Out went the converter. It stayed out. The dealer wrote a letter of thanks and denounced an unnamed local expert who said that converters don't work. Pinned to the letter was a list of 496 stations the dealer's customer (you see, he had designs on dollars) had tuned in during nine days.

And so the story might go on, of one doubter after another over-come-yes. overcome with joy. The circuits referred to were one and the same as Fig. 1 herewith.

RADIO WORLD
ADVERTISING RATES

		1 Inser.	$\begin{gathered} 4 \text { consec. } \\ \text { Inser. (ea.) } \\ 10 \% \end{gathered}$	13 consec. Inser. 123%	26 consec. Inser. 15%	$\begin{aligned} & 52 \text { consec. } \\ & \text { Inser. } \\ & 20 \% \end{aligned}$
1	page	. $\$ 150.00$	\$135.00	\$131.25	\$127.50	\$120.00
3	page	75.00	67.50	65.62	63.75	60.00
1	page	50.00	45.00	43.75	42.50	40.00
4	page	37.50	33.75	32.81	31.87	30.00
${ }_{6}$	page	25.00	22.50	21.87	21.25	20.00
1	page	18.75	16.87	16.41	15.94	15.00
1	inch	5.00	4.50	4.37	4.25	4.00

Classified advertisements, 7 cents a word; $\$ 1.00$ minimum; must be
Classified adver
paid in advance.

Advertising Department

Radio World, 145 West 45th St., New York, N. Y.

A Tube Galvanometer

By Brunsten Brunn

Circuits of a simple vacuum tube voltmeter for measuring radio and audio voltages.

THERE is no better instrument for making qualitative and quantitative tests on radio apparatus than a vacuum tube voltmeter. There is no other instrument that is so versatile in its application. And the vacuum tube voltmeter is exceptionally simple to construct. In fact, it is only a power detector, or grid bias detector, working into a milliamneter instead of into another tube.
The most difficult part of the construction of a acuum tube voltmeter is the calibration. This requires instruments which are not always available. But it is not necessary to calibrate the circuit if it to be used only for qualitative or comparative work. Without calibrating it resonance curves may be taken, the effect of coupling may be studied, the relative efficiency of tuners may be determined, the amplification of a stage or of an amplifier chain may be measured, and many other measurements may be done with it. In fact, in most of its applications it is not at all necessary to know the particular relationship that exists between the effective AC grid voltage and the plate current.
Of course, when the circuit is not calibrated in volts it cannot rightly be called a vacuum tube voltmeter, but rather a vacuum tube galvanometer, a vacuum tube comparator, or simply a detector.

Parts Needed

The parts needed for the construction of such an instrument are indicated in Fig. 1. Here we have a condenser CI, which should have a capacity from one to four microfarads. It is used mainly to make the vacuum tube voltmeter applicable to high frequency measurements. For audio frequencies it is not really necessary, but

FIG. 2
Two different methods of calibrating a vacuum tube voltmeter. (a) The use of AC milliammeter and a 1,000 ohm non-inductive resistance. (b) The use of an AC voltmeter previously calibrated.
nevertheless it is useful for them, too. Then we have a condenser C 2 in the plate circuit. This is the usual plate condenser found in all detectors. In connection with detectors it is said that this condenser provides a low impedance path for the high frequencies. That is just what it does, but it does more. Or what it does do may be looked at in a different light. It is a filter. It has exactly the same effect as the first condenser in a B supply. It may increase the output by a factor of two. Without this condenser we would have a case similar to choke input in a B supply, and the output voltage of such a device may be only about half as great as the output when a fairly large condenser is used next to the rectifier.
In this case the meter is the choke, for the armature coil has considerable inductance in a sensitive instrument. The current pulses flow into the condenser without much opposition until the condenser is charged. During the inactive half-cycle the condenser discharges through the meter and the resistance in series with the meter. Of course, some of the current in the impulses flows through the meter, and it is this part which is the only current when the condenser is not used. With the condenser, current flows through the meter all the time and consequently the average is considerably greater.

The Current Indicator

The current indicator M should be a sensitive milliammeter or a microammeter. In case no such instrument is available it is allowable to use a meter of less sensitivity. The main reason for using a sensitive instrument is to save the tube used as, rectifier and to hold the calibration a long time. It is also practical to use a voltmeter as indicator, say one that has a sensitivity of 1,000 ohms per volt. The range of this meter should be about 100 volts. If the range of this meter is too high the maximum deflection will not be high enough on ordinary input voltages to the vacuum tube voltmeter. Moreover, if it is too high it is not possible to adjust the resistance until the deflection has the desired value. The range of the voltmeter is not important otherwise because the only object of the meter is to get a deflection.
In Fig. 1 there is a variable resistance Rh, which is used to adjust the current in the plate current until the deflection has the desired value. Its value depends on the sensitivity of the indicator meter, being greater the greater the sensitivity. It also depends on the voltage applied in the plate circuit of the tube. The higher the voltage the higher the resistance required.

In one case the meter M was a $0-1$ milliammeter and the resistance Rh was a 100,000 ohm fixed resistor. This just happened to be right in that case and it was not necessary to use a variable one.
(Continued next aveek)

LIST OF PARTS

Cl-One 4 mfd . by-pass condenser
C2-One 0.1 mfd . by-pass condenser or larger
M-One 0-1 milliammeter
$\mathbf{R h}$-One variable resistance of about $\mathbf{1 0 0 0 , 0 0 0}$ ohms.
Eight binding posts
One socket

Table of Kilocycles(kc) to Met

The columns are interchangeable. The table gives the approximate values in meters corresponding to any number of kilocycles, or in kilocycles corresponding to any number of meters. The table is based on the factor 300,000 . To obtain kilocycles (independent of the table), divide 300,000 by the
number of meters, or to obtain meters divide 300,000 by the number of kilocyeles. The table gives values for every 10 kilocycles or meters between the limits of 10 and 30,000 . The table is entirely reversible; that is, for example 80 kilocycles eouals 3,750 meters and also 3,750 meters equals

ers (m), or Meters to Kilocycles

80 kilocycles. The range of the table is easily extended by shifting the decimal point; the shift is in opposite directions for each pair of values. For example, one cannot find 567 in the first column, but its equivalent is obtained by finding later in the table that 5,670 kilocycles or meters equals
52.91 meters or kilocycles, from which 567 kilocycles or meters equals 529.1 meters or kilocycles. Again, one cannot find 11 meters in the first column but 110 is given opposite 2,727, from which we obtain II meters equalling 27,270 kilocycles.

FIG. 906
A family of grid voltagé, plate output voltage curves for the 232 tube working into 250,000 ohms.

Tapped Coils Versus Plug-ins

WHICH is better, to cover the short-wave band with one coil having a number of taps or with plug-in coils without any taps? What are the advantages and disadvantages of each?-T. H. E.
It is better from the electrical point of view to use plug-in coils. From the mechanical point of view it may be better to use taps on a single coil. The advantage of the plug-in coil system is that all the windings on the form may be propor tioned for best efficiency. This is not practical with the tappedcoil systen because there would be two or three switches to contend with. Losses in the leads to the switches and the coils and capacity couplings are the adverse points about the tapped coil.

Characteristics of 232 Tube

IAM interested in the 232 tulse and should like to have curves showing its characteristics. For example, 1 should like to know what can be expected from the tule when it is working in a resistance coupled audio frequency amplifier. I should also like to know the relationship between the plate current and the screen current-W. H. J.
In Fig. 906 is a family of grid voltage, plate output voltage curves for the 232 tube working into a 250,000 ohm resistance, the screen voltage being 22.5 volts. The El voltages given at the left and associated with the curves represent applied vol-
tages in the plate circuit and not effective plate voltages. The curves clearly show that the applied voltage should be high if a wide signal swing without distortion is to be obtained. The best curve in the family is the highest for which the applied voltage is 202.5 volts. The voltage may be made considerably higher to advantage. With 202.5 volts in the plate circuit the best grid bias is about 1.25 volts. In Fig. 907 are three curves of plate and screen grid current for the same tube. The plate current is shown for self bias as well as for battery bias. Note that the effect of self bias is to reduce the amplification. This reduction is prevented by connecting a large condenser across the bias resistor.

Voltage for Series Filaments

WHAT is the secondary voltage of a series heater type transformer per tube, or for six type 27 tubes in series? -J. A. P.
The voltage across the terminals of the transformer when all the tubes are getting their full heater current should be 2.5 volts times the number of tubes in the series. For six tubes, therefore, the voltage should be 15 volts. If the voltage is higher it is necessary to put in a ballast resistor in series to drop the excess. This does not mean that the voltage of the secondary of the transformer should necessarily read 15 volts when no current is drawn. If the regulation is poor the no-load voltage may be considerably higher. Indeed, it must be considerably higher if the voltage is to be 2.5 volts per tube under load conditions.

Selectivity of Receivers

AS_{S} a rule, is the selectivity of a receiver better at the low frequency end of the broadcast band than at the high frequency end? I understand that this is a fact. If this is so, what makes the selectivity better at the low end?-B. W.C. It depends on how selectivity is defined and measured. If the selectivity is based in kilocycles off resonance, it is considerably greater at the low frequency end that at the high, and this is the only view which has a real significance. When the selectivity is viewed on the frequency ratio basis there is not so much difference, but even then the circuit is usually more selective at the low end. The main reason for the greater selectivity at the low frequency end is that the resistance of a circuit is lower at the lower frequencies. The difference in selectivity on the basis of kilocycles off resonance is not so large as appears in many commercial receivers having ganged tuning controls for the lack of selectivity in them at the higher frequency end is mostly a matter of lack of tuning. All the tuned circuits on the gang are not tuned to the same frequency. * * *

Radiation of a Superheterodyne

DOES a superheterodyne radiate any of the energy put out by the oscillator? If so, is the radiation sufficient to cause interference with other radio receivers in the neighborhood? What can be done to eliminate the radiation? F. W. N.

Yes, a superheterodyne radiates but only if the coils are exposed, especially the oscillator coil. The radiation is very small, however, but still enough to cause interference with other receivers located near it. Shielding the oscillator is about the best way of eliminating the radiation. The superheterodyne may cause considerable interference with other receivers even if there is no trace of it in the output of the super.

Calculating Mutual Inductance

IHAVE two equal coils wound on the same tubing an inch apart. I can calculate the inductance of either coil but I should like to know what the mutual inductance is because I want to use the coils in a band pass filter, tuning both windings. Is there a simple way of calculating the mutual inductance? If so, please explain it.-Y. B.
In a case like this there is a simple way. First imagine that the blank space between the two coils is wound just like the other parts of the tubing, that is, assume that there is one continuous winding. Calculate the inductance of this imaginary coil. Then calculate the inductance of an imaginary coil consisting of one of the coils and the supposedly filled-in section. Again, calculate the inductance of the imaginary coil made up of the other actual coil and the supposedly filled in section. Finally calculate the inductance of the middle section if it were filled with wire. Add the inductance first obtained, that is. of the total to the inductance of the imaginary coil in the center. Then subtract the sum of the inductances of the other
two. Divide the result by 2 and the quotient is the mutual inductance sought. Let us express this in symbols. The coil is divided into three parts, 1,2 , and 3 . Let the inductance of the total be L123 and that of the middle section L2. Also let the inductance of the first and second sections be L12 and that of the second and third L23. Then the mutual inductance M13 between the first and the third sections is $(\mathrm{L} 123+\mathrm{L} 2-\mathrm{L} 12-\mathrm{L} 23) \div 2$. If the two coils are equal the formula takes the form $\left(\mathrm{L}_{*} 23_{*}+_{*} \mathrm{~L} 2\right) / 2-\mathrm{L} 12$.

Variable Mu Tube Detector

IHAVE a RCA 235 variable mu tube which I wish to use as a power detector. What should the bias be for the best results?-W. G. N.
Don't use it as a detector. It is an amplifier tube designed so that it will not detect well.

Rectifying Efficiency of A Tube

WHEN a screen grid tube is used as power detector and working into a resistance load is the rectified output voltage smaller than the effective AC input voltage, or is it of about the same magnitude?-W. D.
In the case of the 232 screen grid tube working into a resistance load of 200,000 ohms the rectified output voltage is about 14.3 times greater than the effective AC input voltage. This holds also for other tubes, although the gain factor is smaller or larger, depending on the amplification factor of the tube

Dial With 270 Degree Rotation

WHAT is the advantage of using a condenser which has a rotation of 270 degrees for short-wave tuning pur poses? Would a 180 degree condenser be just as effective? -J. M.
The only object of having a 270 degree tuning condenser for short-wave receivers is to spread out the stations more. Instead of covering a certain number of stations on 180 degrees, the same are spread out over 270 degrees. The tuning becomes less critical. About the same effect can be produced by using a small tuning condenser so that the distributed capacity is a large percentage of the total. But this requires more plug-in coils to cover the short-wave band.

Broadcast Interference on Converters

HOW do you explain the fact that broadcast signals come in on short wave converters when the intermediate frequency is higher than any broadcast station frequency and when the circuit is otherwise extremely selective? Could it be that the broadcast stations are sending out harmonics which are tuned in with the converter?-S. G.
Harmonics generated by the broadcast stations may be partly responsible for the interference but it is more likely that it is the receiver which generates the harmonics from the strong broadcast fundamental. If the short-wave signals are tuned in before the first detector with a sharp tuner and if the coupling between the oscillator and the modulator is loose, there should be no trouble from this source. The variable mu tubes might help, especially if one is placed before the first detector. Shielding from the broadcast stations will also help.

Television of the Future

THERE are many different ways of scanning in television most of which depend on some rotating device. Do you think that one of these will be adopted as standard in the future when television becomes a means of public entertainment? Or is there some other means more likely to be adopted?-P. C.

Television is still in so rudimentary a state that it is impossible at this time to foretell what type of scanner will be adopted as standard. Indeed, there is even no certainty that television will ever become a means of public entertainment and instruction. The cathode ray method of scanning seems to offer greater practical possibilities than any mechanical devices. The absence of rotating mechanical parts is the principal advantage. But this, too, has its disadvantages. The light is very feeble, for one thing, and then there is yet no means of making the cathode ray move at a uniform rate across the screen. Both of these difficulties may be overcome in the near future, and they must be before the system can be adopted.

Pentode Output Tubes

IN Europe they have used pentode output tubes for a long while as a means of saving tubes in the receivers. If the pentode is a satisfactory tube for this purpose, why has it not appeared on the American market? Is there any likelihood that it will be offered to the American buyers?-C. W. G.

It will soon appear. In fact, even now one tubemaker has announced that the tube is ready for distribution. Plenty of circuits incorporating the tube will be published as soon as the tube is available and its characteristics are known.

Radio From Submarines

IN a recent issue you had a news story to the effect that Sir Hubert Wilkins plans to send out reports by radio from his submarine, the Nautilus. Since he plans to travel under the ice the radio waves must come through, not only the water but

FIG. 907
These curves give the relationships between the screen grid current and the screen voltage and the plate current and the plate voltage. The plate current is given both for self bias (resistor) and battery bias. The self bias is - 3 volts only at one point, namely, 135 v . and 1.5 milliamperes.
a thick layer of ice and possibly the hull of the ship besides. Does this look feasible? Is it not a fact that water and ice stop radio waves? Steel most certainly does.-H. H. B.

Sir Hubert does not intend to stay under the ice all the time, for that would be planning suicide. The aim is to come up for air now and then by cutting holes in the ice over the submarine. When they come up they can erect antennas either on the submarine or on the ice and thus they can transmit radio wayes just as well as anybody. Whether they put the antenna on the ship or on the ice the transmitting conditions will probably be excellent.

IF Tuner for Short-Wave Sets

IWISH to build an intermediate frequency amplifier in which the frequency is around $1,500 \mathrm{kc}$. I have one inch tubing and some No. 36 double silk wire which I wish to use. Will you kindly suggest what kind of tuning condensers would be the most suitable and how many turns should be used to give the right amount of inductance? Would it be better to wind the two coils of each transformer on separate forms or on the same form? If on the same form, please give the correct distance between the two windings.-F. W. C.

The most suitable tuning condensers are the 100 mmid. midgets used for modern superheterodynes and also for trimming radio frequency tuners. We may arbitrarily assume that the tuning capacity in each circuit is 75 mmfd., partly made up by distributed capacity and partly by the capacity in the midgets This capacity requires an inductance of 150 microhenries. This requires 86 turns of the wire specified. It is best to put the coils on different forms because in that manner it is possible to make a more compact assembly. If they are put on the same form the two windings will be far apart and the tubing will take much space. The mutual inductance should only be about one microhenry for a 10 kc . band.

Effective and Efficient

SOMETIMES you speak of a circuit as being effective and sometines as efficient, frequently using the two at the same time. Don't these mean the same thing? -C. N.
No, they do not mean the same thing. Something is effective when it produces results, and something else, or the same thing, is efficient when it produces a given effect with least expense. Efficiency is a precise scientific term and means the ratio of the output to the input. For example, if 1,000 kilowatts are put into a radio transmitter and only 750 kilowatts are radiated into space, the transmitter is 75 per cent efficient. Of course, the term efficiency is not always used in this precise way.

HOW TO GET QUESTIONS ANSWERED

UESTIONS of general interest are answered by publication in this department, and the answers invariably are to quesfions submitted by members of Radio Worid's University Club. Copies of the answers, in such instances, are mailed promptly to the inquirers, so they will not have to wait to see the answers published in this department. We can not undertake to answer questions except those submitted by members of the University Club. For details of acquiring membership in this Club please see notice printed in the heading of this department.-Editor.

TELEVISION PROJECTED ON 10-FOOT SCREEN

(Acme)
Projection of television on a 10 -foot screen has been accomplished by U. A. Sanabria, 24, of Chicago. He is shown holding a screen of the largest size previously used for home entertainment, contrasted with his larger effort. At right he is shown behind the eight photo-electric cells of a transmitter.

RCA SUES 30 N SET PATENTS

The Radio Corporation of America has filed suits against three manufacturers of broadcast receiving sets for alleged infringement of patent rights.
Those named in the actions are Forrest R. Smith, doing business under the name of Westerner Manufacturing Company, of Los Angeles; Trav-Ler Manufacturing Corporation, of St. Louis, and Zaney-Gill Corporation, of Chicago. All the suits are in United States District Courts. The suit against Smith is in the Southern Division of the Southern District of California; that against Trav-Ler in the Eastern District of Missouri, and that against Zaney-Gill in the Eastern Division of the Northern District of Illinois.

They Say

H. R. BROWN, principal of the Condit School of Ashland, Ky.: "After a year's test I am glad to state that radio in the school has fully vindicated itself. The rebellious child can be more easily reached by educational radio than by any other means I have ever tried. In spite of himself, the rebellious child becomes interested in the gripping programs that come to him. He heard an Indian battle over the radio and is surprised to find it is part of American History. It sends him to his textbooks to find out more about this subject that appears dry and dull before. It peps him up, vitalizes his studies, gives his imagination a chance to act, and guides him along the right pathway. Scts for each room will come when the radio has been made a more intimate part of classroom study and the idea has been sold to the public and school boards."

Forum

LIKES SHORT-WAVE LIST

PERMIT me to congratulate you on the excellent list of short-wave stations, contained in your issue of March $281 \mathrm{~h}, 1931$. It is the most complete and comprehensive list that I have ever seen in any radio publication. It fills a long-felt want for a good list of broadcasting short-wave stations, and when used in connection with a sinilar list of amateur and commercial stations, should enable one to identify any short-wave station that he may hear.

Now I am more satisfied than ever that I have been a subscriber for several years for Radio World.

Henry C. Gray.
Box 283, Chico, Calif.

A THOUGHT FOR THE WEEK

DR. FRANK H. VIZETELLY, le.ticographer, editor and enzoy extraordinary to the great open spaces from which come new words and phrases, tells us that the English language would be flat, stale and unprofitable if it were not for idioms. He holds, therefore, that "listening in" is now good English and consequently that "listener-in" comes of good parentage. Dr. Vizetelly may be a little late in succumbing to the onslaught of those millions who have been using these combinations because they were sensible and comprchensive rather than for any cultural or other reason. The learned savant also tells us that Shakespeare, Coleridge and Bulwer-Lytton were among those who fought valiantly against mussing tup the purity of the langnage and that they are dead and the words and phrases they abhorred are still alive and flowrishing. Custom is long but men are fleeting!

CANADIAN LIST NEXT WEEK

The complete list of Canadian stations will be published next week, issue of April .18th.

KENT PRODUCES PENTODE SET

A. Atwater Kent announced a pentode

 compact superheterodyne weighing thirty pounds.The pentode tube, through the proper use of which scientists have foreseen superior reception, has excited the interest of American radio engineers for more than two years Its power has been generally acknowledged but the problem, engineers found, was the development of a circuit for the fullest utilization of the tube's remarkable qualities.
The development of the new pentode circuit, Atwater Kent engineers say, has enabled them to pack into a minimum space equipment which equals or surpasses in performance that which formerly has required a large cabinet to house.

The pentode tube itself is a five-element power amplifier which does the work which formerly required three tubes. It has twice the available undistorted output and six times greater amplification than the customary three-element tube. Its efficiency also is much higher than three-element power tubes.

While the pentode tube ifself utilizes the principle of the screen grid tube to obtain exceedingly high amplification, the new set which Mr. Kent announces also employs three screen grid tubes, one as first detector one as intermediate frequency amplifier, and one as second detector.
The new set complete, including receiving equipment and speaker, is housed in a walnut cabinet nineteen inches high, sixteen inches wide and ten inches deep.

A statement issued by the Atwater Kent engineers says :
"Until recently, the pentode tube was not sufficiently perfected for use in moders high-powered receivers. The pentode now ranks with the screen grid tube as being one of the most valuable, practical developments in radio in the last five years."

U. S. Broadcast Stations by Frequencies

[A conversion table for equivalent wavelengths zwill be found on pages 16 and 17]
550 KILOCYCLES

BROADCASTING STATIONS BY FREQUENCIES-Continued

680 KILOCYCLES

840 KILOCYCLES (Canadian Exclusive)

850 KILOCYCLES

${ }^{7}$ Experimentally on 780 Kilocycles.
${ }^{\text {Licensed at present for }} 10 \mathrm{KW}$ only
${ }^{\circ}{ }^{\circ} \mathrm{C}$. P . P. to move tratsmitter to Wayne, N. J., and increase power to 50 KW -LP.

BROADCASTING STATIONS BY FREQUENCIES-Continued 890 KILOCYCLES-(Cont.)

960 KILOCYCLES (Canadian Exclusive)

970 KILOCYCLES

1030 KILOCYCLES (Canadian Exclusive)

1040 KILOCYCLES

BROADCASTING STATIONS BY FREQUENCIES-Continued

1050 KILOCYCLES

BROADCASTING STATIONS BY FREQUENCIES-Continued

1200 KILOCYCLES (Canadian Shared)-Continued			
Call letters	Main Studio location	Licenses Power	Tome of operation
WNBO	Silver Haven, Pa	ohn Brownlee Spriggs............................. 100 W.	. Shares with WHBC Sundays.
WCOD.	Harrisburg, Pa..	Keystone Broadcasting Corporation.....100W	Shares with WKJC.
WKJC.:	Lancaster, Pa.	Kirk Johnson \& Co................................... 100 W	Shares with WCOD.
WNBW	Carbondale, Pa........	C. F. Schiessler and M. E. Stephens, doing busi- 10 ness as Home Cut Glass \& China Co.	Unlimited.
KMLB.	Monroe,	J. C. Liner....................................	Day time.
WABZ.	New Orleans,	(iseum Place Baptist Church.................... 100 W .100 W ji	Shares with WJBW.
WJBW	... door	Carlson........ 100 W	Shares with WABZ. Unlimited.
WBEBZ	Ponca City, Ok	C. L. Carrell... . 100 W . First Baptist Church	Unlimited. Do.
$\begin{aligned} & \text { WFBC } \\ & \text { WRBL } \end{aligned}$. Knoxville, Tenn	First Baptist Church. David Parmer	Do.
KGHI.	Little Rock, Ark	. Berean Bible Class, First Baptist Church........ 100W	Do.
KBTM	.Paragould Ark	W. J. Beard, Beard's Temple of Music............ 100W	Daytime. ${ }_{\text {S }}$
WJBC.	La Salle, Ill.	Wayne Hummer \& H. J. Dee, doing business as 100 W . Kaskaskia Broadcasting Co.	.Shares with WJBL.
WJBL	Deoatur, Ill	Commodore Broadcastirg Corporation. 100 W	Shares with WIBC.
WWAE	Hammond, Ill	. Hammond-Calumet Broadcasting Corporation.....100W	Shares with WRAF.
WRAF.	Laporte, Ind.	Charles Middleton..................................... 100 W	Shares with WWAE.
KFJB.	. Marshalltown, Iowa	. Marshall Electric Co. (Inc.)........................ $\left\{\begin{array}{l}100 \mathrm{~W} \\ 250 \mathrm{~W}\end{array}\right.$	\} One half time.
KGCU	. Mandan, N. Dak	. Mandan Radio Association........................... 100 W	Unlimited.
WCAT	. Rapid City, S. Da	.South Dakota State School of Mines...100W	Do.
KGDY	.Huron, S. Dak	. Voice of South Dakota...............................100W	Do.
KFWF	St. Louis, Mo..	.St. Louis Truth Center (Inc.)100W	hares Shares with WIL.
KGDE.	.Fergus Falls, Minn	.C. L. Jaren... ... $\left\{\begin{array}{l}\text { 100W } \\ 250 \mathrm{~W}\end{array}\right.$	\} Unlimited.
WCLO.	Janesville, Wis..	WCLO Radio Corporation........................... $100 \mathrm{~W} . .$.	Do.
WHBY	Green Bay, Wis. T-West Pere, Wis.	St. Norbert College. 100 W	Do.
WIL	St. Louis, Mo.	.Missouri Broadcasting Corporation................ $\left\{\begin{array}{l}100 \mathrm{~W} \\ 250 \mathrm{~W}\end{array}\right.$	S Shares with KFWF.
G	. Los Angeles, Cal	. Ben S. McGlashan... 100 W	Unlimited.
KSMR	Santa Maria, Cali	.Santa Maria Radio. 100 W	Do.
KWG.	Stockton. Cal	. Portable Wireless Telephone Co. (Inc.).......100W	Do.
KGEK	Yuma, Colo...	.Elmer C. Beehler, tradirg as Beehler Electrical 50W.... Equipment Co .	Shares with KGEW.
KGEW	- Fort Morgart, Colo	.City of Fort Morgan............. 100	Shares with KGEK.
KVOS	Bellingham, Wash.	KVOt (Inc.).. 100 W	Unlimited.
KGY..	Lacey, Wash..	St. Martin's College................................... . 10	Do.

1210 KILOCYCLES (Canadian Shared)

1230 KILOCYCLES

17 license granted to increase power to this amount.

BROADCASTING STATIONS BY FREQUENCIES-Continued

 1240 KILOCYCLES

BROADCASTING STATIONS BY FREQUENCIES-Continued 1310 KILOCYCLES-(Cont.)

BROADCASTING STATIONS BY FREQUENCIES-Continued 1370 KILOCYCLES-(Cont.)

1430 KILOCYCLES

WHP	$\left\{\begin{array}{c} \text { Harrisburg, Pa. T-Lemoyne, }\} \\ \text { Pa. } \end{array}\right\}$	WHP (Inc.)	$\begin{aligned} & 500 \mathrm{~W} \\ & 1 \mathrm{KW} \text {-L } \end{aligned}$	ares with WBAK and	WCAH.**
WBAK	Harrisburg, Pa.................	Pennsylvania Pennsylvania. State Police, Commonwealth of	500W. 1 KW -) ares with WHP.	
WCAH	Columbus, Ohio	Oommercial Radio Service Co.	500 W	Shares with WHP and	WBAK. ${ }^{\text {ssa }}$
WGBC.	Memphis, Tenn	Lemphis Broadcasting Co	500W	Shares with WNBR.	
WNBR	Memphis, Tenn.	Memphis Broadcasting Co	500 W	Shares with WGBC.	
KGNF.	North Platte, Neb	Herbert Logan Spencer.	5	Daytime.	

1440 KILOCYCLES

1450 KIIOCYCLES

1470 KILOCYCLES

1480 KILOCYCLES

Oklahoma City, Oklaational Radio Manufacturitrg Co.
1490 KILOCYCLES

1500 KILOCYCLES

FREI

Your Choice of NINE Meters!

To do your radio work properly you need me ters. Here is your opportunity to get them at no Heretofore we have offered the choice of any one of these meters free with an 8 . weeks subscription for RADIO WORLD, at $\$ 1$, the regular price for such subscription. Now we extend this offer. For the first time you are permitted to obtain sending in $\$ 1$ for 8 -weeks' subscription, entitling you to one meter; $\$ 2$ for 16 weeks, entitling you to two meters; $\$ 3$ for 26 weeks, $\$ 6$ for 52 weeks, entitling you to six meters. Return coupon with remittance, and check off desired meters in squares helow.

```
RADIO WORLD, 145 West 45th Street, New York, N. Y. (Just East of Broadway)
```



``` premium the meters checked off below. Diease send as free \(\square\) I am a subscriber. Fxtend my subscription. (Check㞋 \(\begin{aligned} & 0-6 \\ & 0-50 \\ & \text { Voltmeter } \\ & \text { Voltmeter } \\ & \text { D. } \\ & 0 . C\end{aligned}\) C-Volt Charge Teste 0-10 Amperes D.C. D.C. \(0-25\)
Milliamperes
\(0-50\)
Milliamperes
\(0-100\)
Mil.
\(0-300\)
0 0.400 Milliamperes D.C
```

Name

ADDRIES

CITY
STATE

RADIO WORLD and "RADIO NEWS" Eirtrige

You ann obtiln the two deading radio technical magazine

 or ai, jear-a new isbue eaeb month for tweive monthi.

NEW VARIABLE MU TUBE

TC remedy cross-modulation and cross talk, without circuit changes, a new AC screen grid tube has been developed, the G.51. In AC circuits where the volume control varies the grid bias or the screen voltage, or in which there is an automatic volume control, the new tube works wonders. This is the sensational tube developed by Stuart Ballantine. Price, $\$ 3.80$.
RELIABLE RADIO CO.
143 WEST 45 th St.,

N. Y. City

Hammarlund SFL

Hammarlund's precision. 0005 mid condenser, removable shaft; oxcellent for calibrated radto fre. quency oscliatora, short-wave
conserters and adapters and TRF converters and adapters and TRF or Superheterodyne broadcast reeivers. Lowest loss ranstruction irlidity; Hammarlund's Derfectio hroughout.
Order Cat. HaM-SfL, list price GUARANTY RADIO GOODS CO. 14 West 45 th St., New York, N. Y.

"A" BATTERY SWITCH

GUARANTY RADIO GOODS CO.

BARGAINS

in High-Grade

Standard Parts

"A" eliminator parts

Choke coil, to filter out the hum. Wound with No. 16 wire on secondary. Husky choke. Only one needed. Will pass 3 amperes. In shielded westinghouse Rectox Westinghouse Rectox metal disc rectifier, to pass pass 4 amperes; mounting brackets. Cat
 Jefferson transformer, 110 v. $50-60$ cycle primary 12 volts, no load; 9 volts when used full load on Rectox rectifier; DC voltage at full load, 7 volts Cat. J-12V @
 high; cutout for bakelite binding post strip. Cat high; cutout for bakelite binding post strip. Cat.

TESTOLIGHT

Neon lamp in bakelite housing with two test prods. Tells whether voltage is AC or DC, and if DC which side is negative. Finds shorts and
opens. Full directions. Cat. TSTL @99c CABLE AND PLUG
Five-lead cable with 5 -prong plug attached that fits into Y socket. seful as a connector of set CPG @ .. HOORUP WIRE
10-strand genuine copper wire (not steel or alloys), with rubber insulation above which is ornamental fabric insulation. Best hookup wire for sets. Insolation good for 1,000 volts or more. Available in five different types: blue, brown, red
with black marker, blue with white marker with black marker, blue with white marker,
green. Cat. HW (specify color). 12 ft . lengths @..4ic RESISTORS
Grid leaks 5 meg., 2 meg., $1 / 4$ meg., 1 meg., 5,000 ohms (specify which) Cat. CGL @ $\quad . . .1 .11 c$ Filament ballasts: 4 ohm for one 201A, 112 A
$200 \mathrm{~A} .240 \mathrm{~A}, 171 \mathrm{~A} ; 2$ ohm for two 201 A
112 A $200 \mathrm{~A}, 240$ or 171A, or for one 171 or 112 Mounting supplied. (Specify which.) Cat. FB @.......11c Wire-wound resistors: 1 ohm, 1-3/10 ohm, 6-5/10 ohms; 30 ohms; 50 ohms. (Specify which.) No mounting supplied or needed. Cat. WWR @ 16c 30 -ohm rheostat with battery switch attached.
Cat. $30 \mathrm{RH} @$..
 25,000 ohm potentiometer, wire-wound; Electrad Tonatrol. Will pass 30 ma. Excellent volume control or for tone control in series with .3 mfd condenser. Cat. ELTT @99c 30,000 ohm wire-wound clarostat potentiometer With AC switch attached. Cat. CLSA @ $\$ 1.25$ lon ma; vight sliders and fixed terminal pass nections; mounting bracket. Cat. VVD @ $\$ 1.49$ CONDUCTORS
2 ampere fuse cartridge type, for fusing AC line entering receiver; with fuse holder. Cat. 2 AFH GRID CLIPS
Grid clip for connection to control grid of screen
grid tube. Cat. GC @
GUARANTY RADIO GOODS CO.
143 West 45th Street, New York, N. Y.

STATEMENT OF THE OWNERSHIP, MAN QUIRED BY THE ACT OF COI
GRESS OF AUGUST 24,1912,

Of Radio World published weekly at New York,

 N. Y. for April 1, 1931$\left.\begin{array}{l}\text { State of New York } \\ \text { County oí New York }\end{array}\right\}$
Before me, a Notary Public in and for the State and county aforesaid, personally appeared Roland Burke Hennessy, who, having been duly sworn according to law, deposes and says that he is the Editor of the Radio World, and that the follow. ing is, to the best of his knowledge and belief, (and if a daily paper, the circulation), etc., of the aforesaid publication for the date shown in the above caption, required by the Act of August 24, 1912 , embodied in section 411, Postal Laws and Regulations, printed on the reverse of this form, to wit:

1. That the names and addresses of the pub-
lisher, editor, managing editor and business manlisher, editor, managing editor and business managers are: Publisher Hennessy Radio Publications Corp., 145 Hennsy, 145 West 45 th St., N. Y. C. ManBurke Hennessy, 145 Est 45th, 145 West 45 th St., aging ${ }^{\text {Editor Herman }}$ Bernard, ${ }^{\text {Husiness }}$ Manager, Herman Bernard, 145 West 45 th St., N. Y. C.
2. That the owner is: (If owned by a corporation, its name and adder the names and addresses of the stockholders owning or holding one per cent of the stockholders owning or holding one per cen
or more of total amount of stock. If not owned by a corporation, the names and addresses of the individual owners must be given. If owned by a firm, company, or other unincorporated concern, its name and address, as well as those of each individual member, must he given.) Hennesy Radio Publications Corp, 145 West 45th St, St., ․ . Y. C. Mrs. Mary J. McArthur, Edgewater St., N. Y. C. Mrs. Mary J. McArthur, E.
Manor, 9828 Lake Avenue, Cleveland, O .
3 That the known bondholders, mortgagees, and other security holders owning or holding 1 per cent, or more of total amount of bonds, mortgages, or other securities are: (If there are none, so state.) None.
3. That the two paragraphs next above, giving the names of the owners, stockholders, and security holders, if any, contain not only the list of stockholders and security holders as they appear upon the books of the company but also, in
cases where the stockholder or security holder appears upon the books of the company as truste or in any other fiduciary relation, the name of the person or corporation for whom such trustee is acting, is given; also that the said two paragraphs contain statements embracing affiant's full knowledge and belief as to the circumstances
and conditions under which stockholders and security holders who do not appear upon the booka ities in a capacity other than that of a and securities in a capacity other than that of a bona fide that any other person, association, or to helieve has any interest direct or indirect in the said stock, bonds, or other securities than as so stated by him.
4. That the average number of copies of each issue of this publication sold or distributed, scribers, the maing or otherwise, to paid sub. shown above is the six montins preceding the date mation is required from daily publications only.)

ROLAND BURKE HENNESSY.
Sworn to and subscribed betore this 30 th
day of March, 1931. HARRY GERSTEN
[Seal.] ${ }^{\text {Otablic, Kings Co. Clks. No. } 121 \text {, Reg }}$ HARE 2133, N. Yu Co. Clks. No. 214, Reg. No. 2-G-153. My commission expires March'" 30,1932 .
and both copies delivered liy be made in duplicate and both copies delivered ly the publisher to the
postmaster, who shall send one copy to the Third Assistant Postmaster General (Division of Classification). Washington, D. C., and retain the other in the files of the post office. The mublisher must publish a copy of this statement in the second issue printed next after its filing.

Here are facts why RADIO-CRAFT

has been chosen

as the leading Service Man's magazine

Mail Coupon Today!
RADIO-CRAFT
RW 4-11 96-98 Park Place. New York, N. Y

Enclosed find $\$ 1.00$ for which enter my subscription to RADIO-CRAFT for the next eight montlis.

Name
Address
City
(Canada and Foreign)

POLO

SHORT-WAVE CONVERTERS

 POLO ENGIEERING LABORATORIES

DOUBLE RANGE POTENTIOMETER; made by Centralab, designed for volume made by 10,000 and 20,000 ohms. Price. \$1.05. Guaranty Radio Goods Co., 143 W 45 th St., New York.

ERLA-DYNAMIC CHASSIS, WESTINGHOUSE RECTIFIER. Sensitive and efficient dynamic speaker chassis. Lisi price, $\$ 25$; our net price, $\$ 9.50$. Guaranty Rrice, $\$ 25$; ods Co., 143 W. 45th St., New York.

THE rapid growth of Radio-Craft during the past two years has been most astonishing - and today we find the largest number of Service Men in every community in the country using it in their daily business. Manufacturers, professionals and experimenters as well, find the material published in each issue most helpful and in every instance only the latest and recent developments. Get a copy at the next newsstand you pass - the first copy read, and you'll never miss an issue thereafter.

- "What you will find in each issue of RADIO-CRAFT-
Contributions by well-known authorities in the radio service field.

Every article contains at least one illustration, others several of wiring diagrams, charts or photographs.
New devices helpful to Service Men
A four-color cover illustrating the latest use of radio and a complete article covering it.
Dozens of columns of advertising of large mail order houses, parts manufacturers, schools, etc., etc.
In the line of articles in every issue we find-
Operating Notes for Service Men-Leaves from Service Men's Notebooks-Radio Service Data Sheets-New Deyelopments-The Radio Craftsman's Page--RADIO-CRAFT Kinks-Information Bureau-Short Wave and Television articles-Public Address Sys-tems-Automobile and Airplane RadioCauses and Cure of Interference-MoneySaving Kinks-these and many other subjects are understandably described each month in RADIO-CRAFT. The magazine is edited by men outstanding in the radio profession.

Special Offer-
 8 Months for $\$ 1.00$

By sending in the coupon at the leit, together with One Dollar, you will receive the next eight issues of RADIO-CRAFT. This is much lower than the regular subscription rate and a big saving for you.

SHIELDED LEAD-IN WIRE

[^0]
Quick-Action Classified Advertisements

7c a Word - $\$ 1.00$ Minimum Cash With Order
$\underset{\mathrm{N} .}{\mathrm{HI}-\mathrm{Q}}{ }^{31}$ COMPLETE $\$ 100$. F. L. Hanson, Ilion,
PRINTING: $\quad 1000$ BUSINESS CARDS $\$ 2.75$ POSTPAID. Other printing reasonable. Samples
free. Miller, (RW), Printer Varberth Pa iree. Miller, (RW), Printer, Narberth, Pa.
A-B-C- POWER PACKS 110 volt, 60 cycle, for sets using $11 / 2,21 / 2$ and 5 volt tubes or for elec. trifying battery sets. Packs are well made, filtered
with Potter Condensers and are remarkably free with Potter Condensers and are remarkably free Radio, 1013 N . McDonel St., Lima, Ohio.
"A DISCUSSION OF RADIO TUBES FOR THE LAYMAN," a copyrighted article by L. G. Mason will help you sell radio tubes in competition with
mail order and clain store houses $\$ 100$ per mandred. $\$ 7.50$ per thousand houses. $\$ 1.00$ per Florida Ave, Tampa, Florida Mason-Radio, 6212

FILAMENT TRANSFORMER FOR SERIES OPERATION, new Radio World circuits, $\$ 2.50$. Apfelbaum, 2711 Girard Ave., Philadelphia, Pa.

NEW PHILCO 96, 1931, A.C. 9 Tubes, Highboy. Cost $\$ 189.00$. Sell $\$ 85.00$ E. A. Fountain, 436 E . 138 th Street, Apt. 5L, New York.

TRANSFORMERS-700 V. C. T. secondary; 2.2.5 Power, 1028 windings $\$ \mathbf{\$ 6 . 0 0 .}$ Special made. Radio

FILAMENT TRANSFORMERS, $11 / 2,21 / 2,5,73 / 2$ volt, center tapped. State voltage wanted. $\$ 1.15$ each. V. C. Cook, 3406 Frederick, Detroit, Mich.
"FORD MODEL 'A' CAR." Its Construction,
Operation and Repair. By Victor W. Page ME, Operation and Repair. By Victor W. Pagé, M.E,
545 Pages, 251 Specially Made Engravings, $\$ 2.50$, 54s Pages, 251
postpaid. Radio Wocially Made Engravings,
W. $\$ 2.50$
W. Costp.

ATWATER-KENT HORN UNIT, $\$ 1.95$ postpaid. For use in lome or portable, 108 -inch tipped cord; $11 / 2$ lbs. weight; size 3 -inch height; 1 -inch diam.
eter. Guaranty Radio Goods Co., 143 West 45 th eter. Guaranty Radio Goods Co., 143 West 45 th

BARGAINS in first-class, highest grade mer BARGAIN in first-class, highest grade mer-
chandise. Phono-link pick-up with vol. control
and adapter. $\$ 3.32$. fourand adapter. $\$ 3.32$; four-gang .00035 mfd . with trimmers built in, $\$ 1.95$; 00025 midd. Dubilier grid

SOUND PICTURES TROUBI
SOUND PICTURES TROUBLE SHOOTER'S MANUAL, by Cameron and Rider, an authority on this new science and art. Price ${ }^{\$ 7.50}$. Book
Dept., Radio World. 145 W. 45 th St., N. Y . City.
"HANDBOOK OF REFRIGERATING ENGINEERING, by Woolrich.-Of great use to every-
body dealing in refrigerators. $\$ 4$. Book Ihept., body dealing in refrigerators. \$4. Book Dept
Radio World, 145 W . 45 th St., N. Y. City.
"A B C OF TELEVISION"' by lates A omnpre nensive book on the subject that is attracting
sttention of radiuists and scientists all over the ${ }_{4}$ world. St. $^{\$ 3.00}$, postpaid Radin World. 145 West

SHORT-WAVE NUMBERS OF RADIO WORLD Copies of Radio World from Nov. 8, 1930 to Jan. 3, 1931 , covering the various short-wave angles,

sent on teceipt of $\$ 1.00$. Radio World, 145 W . | sent on receipt of |
| :--- |
| 45 th St. |
| N. |

"MATHEMATICS OF RADIO"-A great help to everybody interested in radio. $\$ 2$ postpaid.
Radio World, 145 W .45 th St ., N . Y . City.
RADIO WORLD AND RADIO NEWS. Both for one year, $\$ 7.00$. Radio World, 145 W .45 th St.,
N. Y. Cits

BALKITE A-5 RECEIVER, eight-tube, three
stages of Neutrodyne $R F$ and two stages stages of Neutrodyne RF and two stages audio with push-pull output. Good distance-getter and
very sensitive. Has post for external B voltage yery sensitive. Has post for external $\frac{B}{\text { voltage }}$
for short-wave converters. Brand new in factory for short-wave converters. Brand new in factory
case. Berkey.Gay walnut table model cabinet. Price $\$ 35$ (less tubes). Direct Radio Co., 143 West 45th St., New York.

SHORT WAVE STATIONS BY FREQUENCIES -with schedule of hours on the air given for the five time zones. This valuable information appeared in Radio World dated March 28, 1931;
mailed on receipt of 15 c in stamps or coin Or send your suhscription starting with this issue. Radio World. 145 W. 45 th St., N. Y. City.

We Make What We Advertise and Guarantee What We Make

[^0]: "RADIO TROUBLE SHOOTING," E. R. Haan. 328 pages, 300 illustrations, 53. Guaranty Radio Goods Co., 143 W. 45th St., New York.

