

A FISTFUL OF POWER. SEE PAGES 6 AND 7.

How About
 Short Waves?

Have you been troubled wth tricky regeneration
control osclllation, before you can reach a satisfactory
 Mlus, detector lead,

CLAROSTAT MFG. CO, Inc. Specialists in Radio Aids 291 N. 6th St., Brooklyn, N. Y.
clarostat

By JOHN F. RIDER

"The Mathematics of Radio"
The Latest Book on
This Important Subject
Price $\$ 2.00$

Here is the first radio
book that
between thers the
field

techrinquat and 1s written in
a practical manner for the

practical man. It
Is non-
 written for the veriost be-
ginner although he, too,
he ginner although he, too,
may obtain much valuable assistance and information. It is the frst book in
which the 1 metest data are
 what appilt to your tubbos,
weceiver, amplifier, elimin9 ator. illustrations. Printed and

TABLE OF CONTENTS:

OHM'S LAW: IR drop, DC and AC circuits, peak and RESISTANCES: Basisis for resistance vartation, atomic structure, temperature coesficient, calculation of resist
ance variation, expression of ampere fractions, application of voltage drop, plate circutts,
 sistances. Parailel, series. wattage rating, maximum
permissible current fow, distribution of eurrent, ealcuparmissibie current fow, distribution of eurrent ealcu-
 ing, distribution of output voltages, voltage reducing CAPACStances, line voltage reduction. Calculaty diolectric constant, condensers in parallel, condensers in series, volt-
ane of condensers in VOLTAGE DIVIDER SYSTEMS FOR B ELIMINATORS: Calculation of voltage divider resistances, types of volt-
age dividers, selection of resistances, wattage rating of INDUCTANCES: Air core and iron core, types of air
core inductances, unit of inductance, calculation of inINDUCTANCE REQUIRED IN RADIO CIRCUITS: capacity, short wave coils, colls for broadcast band copopling, short wuave conds, conls for broadeast band
cond REACTANCE AND Indictince

 sign of chokes, core, airgap, inductance, reactanco, ${ }^{\text {H. }}$ m-
pedance, transformers, halr wave full wave winding. V pedance transformers, half wave, full wave windings. emission, limitations, classifications of fliaments, strucTHRREE EEEMEENT TUBES: Structure of tube, detector, grld bias, grld leak and structure of tubse, detector,

 POWER AMPLIFICATION: Square law, offect of load,
 utility of curves, types of curves, silngificance of ouprves,
roitage amplifcation, power amplification MUL' radio frequeney amplifceation: Resistance coupling, design, calculation of values, effect of resistance, calcuof tiput coup, capacity, calculation, reactance coupling tuned double impacance, caleulation, reactance eoupling,
 ALTERNATING CURRENT TUBES: Temperature variation hum, voltage variation hum, remperature vari-
grid and filament, filament circuit center tan SCREENEGRID TUBE: Structural design, appication,

[^0] Enclosed please find \$2.00 for vame

Address
Clty

Fourteen Circuits
Each Shown in Colored Picture Diagram, Colored Schematic Diagram and Frent Panel Layout

Get This FREE Book!

Complete $A C$
Alectric
recelvers, with
included, ellimin-
also liminators, also battery operated models, all ensy co-buid circuits, using your own parte.

Gentlemen: Ynclosed pleste and 81.00 for which please
 Battery Hookupa The Radio Blueprini Library of 40 anc

Nassa.
Addron!
Clty..
Noto: Present mall aubseribers may take adrantage a this offire by puting a crose the this square, प Xour sub:
$0.600 \mathrm{~V} . \mathrm{AC}$ and $D C$ High Resistance Meter

Same Meter Reads Both AC and DC Accurate to 1 per cent.

The O-600 volt AC and DC meter (Cat. No. 600), with $3-\mathrm{ft}$. cord, de luxe tips and hanger $\$ 7.00$.
THi outpur roltages of all B eliminatora, the voltagos roltage, whether AC or DC , and the roltage across Dowor

 1\% plus or minus, it is adrisable to got this moter for
 Without it DC. Tou ean and trouble more aulckiy.

[^1]
Individual METERS

For Portable or Panel Use

HIgh renlitance $0-800$ Foltmeter,
 cord, with luxurious jack tips and hanger. l lize fith

luxe finth No. 346 F .
POCKET AND PORTABLE VOLTMETERS
$\mathrm{Ne}_{0-8}^{8-\text { rolta }}$ teating A batterios, dry or storage, No. 10-For testing A batteries, dry or atorase, 1. .e.
No. 13 -For tenting A battertes, dry or storNo. 80 - 10 vor ago, but not for B batiorion, dry or atorNa s9 seale For iomitio............................. 1.0 ${ }_{\text {ge }}^{\text {DO }}$ but not for B ellminstors, $0-100$ volts No. $40-$ For tasting A and B batorion, ory romding, $0-8$ volts and $0-100$ volts DC scalo.. A.78
 No. $348-$ For teinting ic eurrenl supply ine, 4.00 PANEL AO VOLTMETER8
(Panol meters take $\mathbf{8}-5 / \mathbf{0 4}^{\prime \prime}$ hole)
 (Ese No. ${ }^{348} \frac{\text { under }}{}$ Voltmeterackent and Portable

PANEL VOLTMETERS
 No. 316-For resding DC voltagos. ${ }^{-16}$ rolte $\begin{array}{llll}\text { No. } 326 \text {-For } \\ \text { No. } 837 & \text { For } \\ \text { Nouding } \\ \text { DC }\end{array}$

 VOLTAMMETERS
No. 18-For tosting amperage of dry eoll A
 No. 85-mpor testing amperace of dry battertes and roltage of battorion (not $\frac{A}{B}$ amperet DC
 No. 218- VOLTAGE REGULATOR No. 218-Tor preventing ercersi poltage on the

Immediate Shipment

QUARANTY RADIO GOODS GO.i city.
Send me the following individual metor: (quantily to sguare):
.
口 Cat. Ne.
\square Cat. No. \square Cat. No. \square Cat. Ne.
name
ADDREGB
crre..
TEN-DAY MONEY-BACK ABSOLUTE GUARANTYI

RADIO WORLD, published every Wednesday,
dated Saturday of same week, from publication office, Henness Radio Publications Corporation, 145 West 45th Street, New York, N. Y., just east M Broadway. Roland Burke Hennesoy, President; M. B. Hennessy, Vice-President; Herman BerHerman Berard Managing Editens J,
Leaders-224 and 245!

What These Marvelous Tubes Do

The 245 has a low filament voltage, 2.5 volts, at a relatively high current, 1.25 ampere. This eliminates the objectionable hum. The tube requires only 250 volts on the plate to be able to handle about as great undistorted power as the 210 does at 350 volts. A single 245 output tube will handle, without overload, the largest input to a last stage as would be required in any home. It works well into a dynamic speaker, or, by filtering the output, into a magnetic speaker. In pushpull two 245 s give superb tone at doubled power handling capacity. The 250 requires 50 volts negative bias at 250 volts on the plate and draws 32 milliamperes under those conditions. The direct filament heating method is used. Type of socket, UX (four-prong).

There never was a power tube so exrellently suited to home use-one that handles such large input without stran, yet which operares on a plate voltage now regarded as in the medium performance.


```
```

Kelly Tubg Company,57 Dey Street; Now York Clty.

```
```

Kelly Tubg Company,57 Dey Street; Now York Clty.
Keliy (uabe Company,57 Dey Strest; New York Clit

```
Keliy (uabe Company,57 Dey Strest; New York Clit
```

Gentlemen: Please send me the following tubes: Gentlemen: Please send me the following tubes:

```
\(\begin{array}{cccccc}\text { Quantity } & \text { Type } & \text { Quantity } & \begin{array}{c}\text { Typs } \\ \square\end{array} & 224 & \square \\ 222 & \text { Quantity } & \text { Type } \\ \square & \square & \square & 280\end{array}\)
OTHER SPECIAL PURPOSE TUBES
3.32 Screen Grid, for battery or AC eliminator operation;
22 to 45 volts screse grid; negative biss 1.5 voits. . 8 plate 50
240 high mu tube, for detector or audio circults, where
a resistor or impedance coil is in the plate circult:
amplifitation factor,


5 -poit filament @ 1.25 amperes








tive
\(250 \times\) power tube,
7

GENERAL PURPOSE TUBES

on plate, 5 -volt positive for detector to 4.5 negative biss,
for





are boxed together a and bear equal Matual cond conductance. They
stickers.
No etra char
The Radio Trade Show In Chicsgo
established the 224 AC Screen Grid
Tube and the 245 AC Power Tube,
both new, as by far the leading tubes
for 1930. The master designers of
circuits hae chosen these tubes, the
224 for radio frequency amplification,
the 245 for output tube They merely
conflrmed what experimenters aready
had established extreme sensitivity,
grest distance and fine stability are
possible with the 224, while main-
taining needie-point selectivity.
    The 224 is capable of RF amplif-
    cation of a hy her order than en-

    \({ }_{\text {the }}\) the 201 A
    Indirect heating is is ued
ment, called heater , requires
The
and
fila-
volts


    to the cap at top of tube The
cathode
the the ele

    Ordinary coils may be used with
this tube by doubling the number of
turns on the primary
    If still greater emplifcation is do-
    If stin greater emplification is de
inde \({ }^{\text {a }}\) lager primar may be used,
ind still greater selectivty is de de

    ired, the primary may be reduced
ut should thave tit least one-third

 for 1930. The master designers or 224 for radio frequency amplification, confirmed
had bestabit experimenters already
extreme sensitilty, grest distance and fine stability are possible with the
taining
needle-point
selectivits.

 gain of 60 , as can compared with 8 for
the

Indirect hasting 18 used
nent, called heater, requires
2.5
The and draws 1.75 ampere. The plate
voltage should be 180. the screen prid
voltage



Ordinary coils may be used with this tube thy dounting the number
turns on the primary. If stal lareater primplifcation be used
sired it arter
and if still greater selectivty if ded de.
tired, the primary may be reduced itred, the primary may be reduced,
gut should bave st lest onethird
more turns than for ordinary tubes.

"Look for the Green Box"
Look for the Green Box"
222 OTHER SPECIAL PURPOSE TUBES 3.3 voit filament, \({ }^{(0)} 132\) ampere; 135 voits plate 22 to 45 volts seren grid, negative bias 1.5 voits. Shish mu tube, for detector or audio circuits, Where

 5 -volt filament @ 1.25 ampores,\(\ldots . .1\)


 5 volts @. 25 ampere; 135 plate volts; 9 volts negative

 Dower general purfose tubes
on plate, 5 -volt frolt positive for detector to 4.5 negative biss for 199 amplifier on plate; 3.3 -volt positive blas for detector, to 4.5 negsThe 220,245 , 171 A a nd 12 A are sold in matched
 are boxed together and bear "Matched Pair" identifcation
stickers.
No extra \(\begin{array}{cccccc}\text { Quantity } & \text { Type } & \text { Quantity } & \text { Typs } & \text { Quantity } & \text { Type } \\ \square & 224 & \square & 222 & \square & 280 \\ \square & 245 & \square & 201 \mathbf{A} & \square & 281\end{array}\) \(\begin{array}{llllll}\square & 245 & \square & 2014 & \square & 281 \\ \square & 226 & \square & 240 & \square & 250\end{array}\) \(\begin{array}{ll}\square & 227 \\ \square & 1124\end{array}\)
\(\square \quad 199\) If ordering c.0.D. put a cross here If enclosing remittance a cross here \(\square \quad\) MP. I enclosing remittance with order put \(\cdot \mathrm{a}\) eross here \(\square\) you pay cartage plus we pay cartage on Co. O.D. order you pay artage pin Name

Address
city
State


THE RESEARCH WORKER
will keep you abreast of developments in radio. It may be had
free on request.


This Great New Book tells you how to build MARVELOUS POWER AMPLIFIERS
EERE'S the latest, greatest and most help1 ful Book on POWER AMPLIFIERS, Audio Amplification, and Adaptation of Dynamic Speakers. Contains diagrams with components for building 10 hookups, including UX245 and UX 250 Push Pull Power Amplifiers . . . powerful, realistic amplifiers which will outperform any you ever heard. Endorsed by leading technical writers, proessional builders, musicians and others. Send Coupon today

FERRANTI, Inc.

\section*{130 W. 42nd St. Desk 25 New York City}

FERRANTI, Inc
130 W. 42nd St. . Dept. 28. New York, N.Y.
Gentlemen. Enclosed find 15k coin, for which send me paid. Money to be refunded if \(I\) ask it.


City..........................................................................

New Junior Model
POLO UNIT \$4


The famous twin magnet principle for double sensitivity, large magnets for great flux, permanently adjusted armature, all are in the new junior model Polo Unit. Weight, 23/4 lbs. Stands 150 volts unfiltered. Stands up to 250 push-pull filtered. Works any output tube, power or otherwise. Supplied with \(10-\mathrm{ft}\). cord. Order unit now. Five-day money-back guarantee.

\section*{Acoustical Engineering Associates}

143 West 45th Street
New York City


\section*{Send \(\$ 6\) for year's Radio World Subscription And Obtain Unit FREE!}

Radio World for one year (52 numbers, one each week) will keep you abreast of latest circuits and news. Act now. Offer revocable without notice.
\(\square\) If renewal put cross here. Radio World, 145 West \(\overline{45 t h} \overline{\text { St. }}\) N. Y. City.

Enclosed please find \(\$ 6\) for one \(\begin{array}{cc}\text { year's subscription } \\ \text { World } \\ \text { ( } 52 \text { numbers). } & \text { Rend your }\end{array}\) "superb unit" free.

\section*{Name}

Address
City

\section*{ARISTOCRAT FLOOR SPEAKER yut nata yon}


The speaker cabinet is walnut finish, \(33^{\prime \prime}\) high, \(241 /{ }^{\prime \prime}\). wide, \(17^{1 / 2 \prime \prime}\). deep, with, carved. legs Golden cloth grille covers front opening: Built inside is No. 595 molded wood horn with baffle volts without filtration. Horn and motor revolts without filtration. Horn and motor removable. Table alone is worth price asked crat Floor Speaker.
Acoustical Engineering Associates
143 WEST 45th STREET
Just East of Bromdway)

Recent Issues of Radio World, 15 cents each. Any number published in 1928 available for \({ }^{2}\) hort while. Six issues 75 cents, 10 issues \(\$ 1.00\). Send stamps, coin or money order NOW, before the issues are sold, New York City.

\section*{Cash in on This Offer Now!}

ONE full year's subscription for any TWO of the following magazine given to you-RADIO NEWS or SCIENCE AND INVENTION or RADIO (San Francisco) or BOYS' LIFE CITIZENS RADIO CALL BOOK AND SCIENTIFIC DIGEST or RADIO ENGINEERING.

Select any TWO of these four publications, each of which will be sent to you (at only
 send in now your aubscription for RADIO WORLD for two fears ( RADIO WORLD'S subscription price for one year is \$6.00, so you gain the extra taking advantage of the liberal offer for two-year subsoriptions; and, besides, Jous list, making a scription for each of the 128 numbers for \(\$ 10.00\).

If you want to select only one from among the four other magazines, you may obtain this one for TWO years, so that you will be subacribing for RADIO WORLD for two years and or the other magazine for TWO years, all for only \(\$ 10.00\) (both mailed to one address only) imited as to expiration date (see notice below) you must act now.

Please use the attached coupon

\section*{SPECIAL TWO-FOR-PRICE-OF-ONE COUPON}

MADIO WORLD, 145 West 45 th 8 treat, Now Yark Clty (Juat East of Broadway): two yenri (104 aumbera),
 84 tosues-grand total, 128 numbors:
\[
\begin{aligned}
& \square \text { RADIO NEW8 INVENTIOM } \square \square \text { RADIO (Ban Franelses) } \\
& \square \square \text { 8CIENCE AND INVENTION }
\end{aligned}
\]
\[
\begin{aligned}
& \square \text { BOYg' LIFE } \\
& \square \text { RADIO ENGINEERING }
\end{aligned}
\]
\(\square \square\) CITIZENS RADIO CALL BOOK, ETC.
If you want one of each, put a crost in a nquare nert to the nsme of oech of the two other magasigot, If you Want in twe-year subseription for 188 numberi), cut twe cressea bofore the neme of one mageine
 one of the otber

Present RADIO WORLD
albarlbert may renory ubdor

Name

Street Addreas
Clty.

\section*{Filament Transformer}


The heater type tube draws 1.75 ampere at 2.5 volts. If several such tubes are used a heavy. dury. filament transformer is necessary. The top 2.5-voit winding of this filament transformer easily carries NINE AMPERES, or enough cur reat for five heater type tubes. The bottom 2.5 . volt winding stands four amperes, or enough ursent to heat TWO MORE such tuben, a total SEVEN TUBESI The power tube, if of the -volt type, may be heated from the 5 -volt cen. tral winding. 5 -volt power tubes in push-pul

All three windings are tapped at the exact lectrical center. This precision location, mad with the aid of an impedance bridge, accounta fo when heated directly with AC by the last tube tubes are indirectly weated by AC heater type flament that glows is fed by AC but commun cates beat to the cathode or electron emitter

The heater type tube is represented by the 227 excellent as radio amplifier and audio amplifier, and the exclusive type of AC detector tube. Als the new AC screen grid tubes, with the aame flament voltage and current, are of the heater type.

The transformer is beautifully finished in crackled glossy black, with bakelite front, and comes equipped with 52 -inch AC cable with plus Six riveted mounting holes for baseboard or deep. Shipping weight, 6 lbs. \(2 \%\) in. wide, 3 in. 0
Cat. F226A, for 50-to-60 cycles, 105-to-120 volta

\section*{Guaranty Radio Goods Co. 145 West 45th St. \\ N. Y. City}

\section*{All Parts for PUSH-PULL DIAMOND}

\section*{Mershon Electrolytic}

Condensers, four in one Copper Container

8-8-18-18 mfd.
List price, \(\$ 9.60\)
\(\$ 5.76\)
10-10-10-10 mfd.
List price, \(\$ 7.75\)


Vol. XV, No. 14

Technical Accuracy Second to None Latest Circuits and News
EIGHTH YEAR

A Weekly Paper published by Hennessy Publication Ofitions Corporation, from New York, N. N.
Telephone, BRYant 0558 and 0559 Telephone, BRYYant 0.58 and 0559
(Just East of Broadway)

\title{
Bypass Yes and No
}

\section*{The Relative Reduction of Impedance Counts}

\author{
By J. E. Anderson
}

Technical Editor


1A


1B


2A


2B

FIG. 1
(A.) - A BY-PASS CONDENSER CONNECTED ACROSS A RESISTOR
(B.) -A CONDENSER, R2, CONNECTED IN SERIES WITH A GRID BIAS RESISTOR RI TO MAKE THE CONDENSER C RELATIVELY MORE EFFECTIVE AS A BY-PASS.

FIG. 2
(A.) -SCREEN GRID RADIO FREQUENCY AMPLIFIER IN WHICH TWO BY-PASS CONDENSERS CI AND C2 ARE USED. (B.) -Cl MUST BE SMALL BECAUSE IT IS ACROSS THE LINE AND ACROSS A HIGH IMPEDANCE.

BY-PASS condensers are used in large numbers in radio frequency circuits, audio frequency amplifiers and current supply filters. In the radio frequency portion of the circuit it is seldom that such condensers exceed .5 mfd . In audio frequency amplifiers and filters they often are as high as 18 mfd .
What determines the size of a condenser that should be used in a given position? Why are condensers smaller in radio frequency sections of a receiver than in the audio amplifier and in current supply filters?
The first thing that enters into the choice of size of condenser is the purpose of that condenser. Then comes the frequency at which it is to work, and finally the resistance or other impedance across which it is connected.

\section*{Formula for Impedance}

In most instances a bypass condenser is connected across a resistance to lower the impedance of the circuit, as in Fig. 1A. The effective value of a resistance and a condenser in parallei is \(R\) divided by the square root of the quantity \(\left(1+C^{2} W^{2} R^{2}\right)\), in which \(C\) is the capacity of the condenser connected across the resistance \(R\), and \(w\) is 6.28 times the frequency of the current flowing through the parallel circuit.
This formula tells directly how much a given condenser reduces the impedance of a resistor and it also tells how effective the condenser is. Suppose the resistance is only one ohm and that it is in such a critical position that the impedance must be reduced to one per cent. of the value of the resistance. That is, the impedance is to be reduced to 01 ohm. Let the frequency at which it is to work be 550,000 cycles. Substituting in the formular given above we find that 10,000 equals
\(1+\mathrm{C}^{2} \mathrm{~W}^{2}\). Since unity is negligible in comparison with 10,000 we may put 100 equals Cw. We know that \(w\) is equal to 6.28 times 550,000 . Hence \(C\) must be equal to 23.4 microfarads.

A condenser of this size is never used in the radio frequency amplifier. Indeed, it is rarely used in audio frequency amplifiers or current supply filters, If there is a resistance of one ohm in the radio frequency amplifier that needs bypassing, a common size of condenser is .001 mfd . Just how much does this reduce the impedance at 550 kc ? Substitution in the formula shows that the impedance is reduced from one ohm to .999994 ohm, which is only six parts in a million.

\section*{Reduction Greater at 1500 kc}

The reduction in the impedance is a little greater at \(1,500 \mathrm{kc}\) Indeed, it is reduced by 45 parts in one million. Hence it is obvious that a condenser of .001 microfarad does little good when connected across a resistance of one ohm. This fact may explain why bypass condensers sometimes fail to suppress oscillation in radio frequency amplifiers.
Now let us see how effective bypass condensers are when they are connected across 1,000 ohms, first at 550 kc and then at \(1,500 \mathrm{kc}\). We substitute in the same formula, using 1,000 ohms.

The impedance of the parallel combination of 1,000 ohms and a .001 mfd . condenser is 277 ohms at 550 kc and 106 at \(1,500 \mathrm{kc}\). The reduction is substantial. Now if there is a one ohm grid bias resistor which must be bypassed to prevent oscillation it is quite feasible to connect a \(1,000 \mathrm{ohm}\) resistor in series with it so as to make the .001 mfd . condenser more effective and yet not alter the grid bias. How this can be done is shown in Fig. 1B. R1 is the low value resistance to be bypassed and R2 is the
high value resistance which is used to make C relatively more effective.
The value of R2 is not limited to 1,000 ohms. It could well be 10,000 ohms.

\section*{Bypassing Across Plate}

Frequently a bypass condenser of about .01 mfd . is connected across a resistor in the plate circuit of a radio frequency amplifier. Just how effective is it? The resistance to be bypassed may be 1,000 ohms. The question is to determine how the impedance of the parallel combination of \(1,000 \mathrm{ohms} .01 \mathrm{mfd}\). Let us consider 550 kc . since the reduction in the impedance at that frequency will be the least in the broadcast band.

Substituting in the formula we find that the impedance is 289 ohms. That is a substantial reduction.
The reduction is approximately the same for the same condenser and at the same frequency when the condenser is connected from the screen grid to the filament, because the resistance to be bypassed is of the same order of magnitude.

Obviously it is better to use much larger condensers even at radio frequency when resistances of 1,000 ohms or less are to be bypassed when the resistances are in critical positions. Hence the condensers C 1 and C 2 in Fig. 2A should be no smaller than .01 mfd . and it would be preferable if they were as large as 1 mfd . When a resistor or a radio frequency choke coil is connected in series with the screen grid or plate lead the condensers may be smaller.

\section*{Bypassing at Audio Frequency}

Condensers of 2 mfd . are often used for bypassing at audio frequencies. Just how effective is such a condenser when connected across a one ohm grid bias resistor at a frequency of 50 cycles? It reduces the impedance by two parts in ten million. In other words, it serves no purpose. Even at 5,000 cycles it reduces the impedance by only 9 per cent. Hence if there is a one ohm grid bias resistor in a circuit there is no object of putting a 2 mfd. condenser across it unless there is a much larger resistor in series with the condenser which is not a part of the grid bias resistor.

But a grid bias resistor is often 1,000 ohms or more. How effective is the 2 mfd . condenser in reducing the impedance at 50 and 5,000 cycles? At 50 cycles the reduction is about 18 per cent., and at 5,000 the impedance is only 159 ohms instead of 1,000 ohms.

Condenser C2 in Fig. 2B may be assumed to be across 1,000 ohms, therefore the conclusions apply as determined with respect to the grid bias resistor just discussed. They do not apply, however, if a resistor be connected in the plate lead to B plus. Suppose we insert a 10,000 ohm resistor in series with this lead. The total resistance now is 11,000 ohms and C 2 will be relatively more effective. At 50 cycles the total impedance is 4,583 ohms, a substantial reduction at this frequency.

\section*{Apparent Discrepancy}

Now some one may ask the purpose of adding a 10,000 ohm resistor when that increases the actual impedance a 50 cycles from 847 ohms to 4,583 ohms. The object of the condenser in the first place is to prevent signal current from flowing into the plate voltage supply, assumed in the above to be 1,000 ohms. The added 10,000 ohm resistor aids greatly in preventing the current from reaching the \(1,000 \mathrm{ohm}\) resistor and forces it through the condenser. It is the relative reduction in the impedance that counts.
A bypass condenser across the primary of an audio transformer such as C 1 in Fig. 2B must be small when considered from the view point of audio frequencies and large when considered from the view point of radio frequency. Let the yalue of C 1 be .0005 mfd . At 550 kc the reactance is 578 ohms. This is negligible in comparison with the plate resistance of the tube, which may be of the order of 20,000 ohms. Hence this condenser is satisfactory.

The inductance of the primary of the transformer may be assumed to be 100 henries, so that its reactance at 10,000 cycles is 6.28 million ohms. The reactance of C1 at 10,000 cycles is 31,800 ohms. Hence the reactance of the condenser is only \(1 / 200\) of the reactance of the primary. Hence the condenser will act as a short circuit and the amplification on the \(10 ; 000\) cycle frequency will be very low. If a smaller condenser is used the detection will not be so good. The .0005 mfd . condenser is a fair compromise between detection and audio suppression at the high frequencies.

Consider now the bypass condenser C 1 in Fig. 3. Assume that the effective plate load resistance is 100,000 ohms. Let C1 be .0005 mfd . At 10,000 cycles the reactance, as before, is 31,800 ohms, or about one-third of the value of the resistance. There is much reduction in the amplification due to the condenser, and therefore the capacity must be kept small. Again about .0005 mfd . is a good compromise.

\section*{Common Bypass}

There are many instances in which condensers are distributed in the receiver when they are actually connected in parallel. There is no good reason for this practice. For example, suppose there is an audio amplifier having three tubes, all of which
\[
\begin{aligned}
& \text { Why This Valve Has Become } \\
& \text { of Its Use As Amf } \\
& \text { the Space Charge } \\
& \text { By Capt. Peter } \\
& \text { Contributise }
\end{aligned}
\]

THE AC screen grid tube is destined to be the most popular of all radio frequency amplifier tubes, because it has more favorable characteristics than any other tube. Also it will be used as a detector in many future receivers, as well as audio frequency amplifier.
The technique for this tube as a radio frequency amplifier has been worked out sufficiently, so that already many receivers now on the market embody this tube. The use of the tube as a detector is now being discussed both from theoretical and practical viewpoints. The use of the tube as an audio amplifier is merely being suggested as possibly desirable.

Why is this tube becoming the most popular tube with such rapidity? Because it has a greater amplification constant than any other tube that has been offered the public, because it has a higher mutual conductance than any other high mu tube, because it is operated with alternating current on the heater, because it has a very low grid-to-plate capacity.
The heater voltage is 2.5 volts, either AC or DC, the heater current 1.75 amperes. Thus the tube has the same heater characteristics as the 227 type tube, and can be connected to the same transformer winding as these tubes.

\section*{Voltages Needed}

It requires a plate voltage not in excess of 180 volts and a screen voltage of 75 at this plate voltage. Lower voltage may be used provided that the screen and plate voltages are reduced in proportion. The plate current is about 4 milliamperes and the screen current one-third as much. These values are for normal values of heater, plate, screen and grid potentials, and for no external load.
The required grid bias on the control grid with 180 volts on the plate and 75 volts on the screen is 1.5 volts. The amplification constant of the tube is 420 . It is clear that the signal voltage cannot swing 1.5 volts in either direction without distortion. If it did the amplitude of the signal voltage in the plate circuit would be 630 volts, and there are only 180 volts DC in the plate circuit.

The mutual conductance of the tube itself is 1,050 micromhos which compares with 350 for the DC screen grid tube. The plate resistance is only 400,000 ohms, which compares with 850,000 ohms for the DC tube. The mutual conductance in any tube is the quotient of the amplification constant by the resistance.
Suppose the load resistance of the AC screen grid tube is 500,000 ohms. The total resistance in the plate circuit is then 900,000 ohms, and the amplification is \(5 / 9\) of 420 , or 233 . If the tube is used in an audio frequency amplifier preceding a 245 type tube requiring a maximum input of 50 volts a voltage of only \(50 / 233\) volt is needed to loed up the power tube. That is, it is only necessary to impress .214 volt on the control grid of
have the same plate voltage. There are then three apparent places where condensers may be connected to advantage. Then if the detector is also connected to the same voltage source there is another place where a condenser may be put. Actually the four condensers are in parallel and a single condenser could be used just as well. A single condenser of the same capacity as the sum of the capacities of the four separate condensers would not cost so much as the four smaller condensers, and it would not take up so much room. It would be much easier to put into the circuit, with less chance of making a mistake. And the single condenser would perform the same function as the four.

\footnotetext{
[In some instances in push-pull circuits the bypass condenser across a biasing resistor is not only unnecessary, but injurious, as will be explained in an article next week, issue of June 29th.]
}

\title{
of Power 24 Tube
}

\section*{he Most Popular- Discussion lifier or Detector,}

\section*{Method Included}

\section*{V. O'Rourke}

Editor
the screen grid tube. It appears, then, that one of the things the tube will do is to eliminate tubes from the amplifier.
On of the main advantages of the screen grid tube is that it has a very low plate-to-grid capacity. In the AC tube this capacity is only .01 mmfd . At a frequency of 10,000 cycles this has an impedance of 1.59 billion ohms, compared with the load resistance of 500,000 ohms. Thus there will be no appreciable suppression of the high frequency audio notes. In the threeelement tube one of the limitations is the suppression of high notes due to the plate-to-grid capacity.

\section*{Stable RF Amplification}

The small grid-to-plate capacity also permits the tube to be used efficiently at high radio frequencies without oscillation. Indeed, the tube was especially designed for this purpose. It is quite feasible to design a radio frequency amplifier with this tube at a step-up of 50 per stage without the use of any neutralization. The only precaution that must be taken is to shield the stages so that there will be no feedback by external coupling, electric or magnetic. The fact that the step-up is so high requires more thorough shielding than in a circuit using ordinary tubes.
The plate-to-cathode and grid-to-cathode capacities are also smaller in the \(A C\) screen grid tube than in the \(D C\), and this fact adds further to the efficiency of the tube at high radio frequencies. The grid-to-cathode capacity is only 5 mmfd . and
the plate-to-cathode capacity is only 12 mmfd . These compare with 6 and 15 , respectively, for the DC tube.

\section*{Operation from Common Transformer}

One of the advantages of the AC screen grid tube is that it has the same filament voltage as the 227 and 245 type tubes. Thus it is practical to use a single transformer winding for all the tubes in an AC receiver. This materially simplifies the construction. Of course, it is not practical to use a low-power 2.5 volt winding to supply the heaters. The current required by each tube of the heater type is 1.75 amperes. Many transformers now on the market will not carry much more than this. Hence if two or more tubes are put on the winding the transformer will heat up dangerously and the voltage on each tube will not be the rated 2.5 . It is necessary to use a transformer which has been designed to carry a very heavy current. For example, if there are 5 heater tubes in the circuit, the total current will be 8.75 amperes. Certainly the transformer should be designed to carry at least 9 amperes in this case.

There is only one fact that makes it inadisable to use the same heating winding for an AC screen grid tube as for a tube of the 245 type. If the power tube is given a bias, by means of the usual voltage drop in a resistor, of 50 volts, there will be a positive voltage of this amount on the heater with respect to the cathode on the heater type tubes. The AC screen grid tube's heater requires a negative voltage of 9 volts or less. Any higher voltage, whether positive or negative, endangers the tube. This does not apply to the case where the bias on the power tube is obtained with a battery or battery substitute not depending on a drop in the plate circuit of the power tube.

Even if all the heater type tubes are put on one winding and the power tube on another, there considerable simplification of the transformer. It is better to have only two filament windings than four.

\section*{Space Charge Tube}

The AC screen grid tube, like the DC tube, can be used in the space charge connection. When this is done the screen grid becomes the control grid and the inner grid (cap) is given a positive voltage.
In the space charge connection the tube immediately loses some of its valuable characteristics. The capacity between the plate and the screen grid, now the control grid, is high, the amplification factor is greatly reduced, and it is no longer selfneutralizing. But the mutual conductance remains high because the internal resistance is low. The object of giving the inner grid a positive voltage is to accelerate the electrons from the cathode and thus to overcome retarding effect of the space charge, or the electrons distributed in the space between the cathode and the plate. It is this acceleration which reduces the internal resistance.

The space charge connection can be used in detector circuits and in audio frequency amplifiers where suppression of the highest audio notes is relatively immaterial.

When this connection is used it is best to employ resistance or impedance coupling.


FIG. 1
THIS CIRCUIT EMPLOYS ONE AC SCREEN GRID TUBE AND TWO 227 TYPE TUBES ON ONE HEATER WINDING. THE TWO 245 TYPE TUBES ARE ON A SEPARATE 2.5 VOLT WINDING FOR REASONS EXPLAINED IN THE TEXT.

\title{
SpaceCharge orNot Screen Grid Experiments Invited-Simple Audio
}

\author{
By Herman Bernard \\ Managing Editor
}


FIG. 1
TWO SCREEN GRID TUBES ARRANGED IN A TUNER THAT FEEDS AN AUDIO AMPLIFIER WELL ABLE TO REPRODUCE SPEAKER VOLUME. THE DETECTOR IS A SCREEN GRID OF NEGATIVE BIAS TYPE.

THE use of the screen grid tube has not been fully explored. This applies even to the 222 battery model, which soon will have been on the market two years, and, of course, to the recently introduced 224 AC type. The two models are similar in use and performance, but by no means identical. Some may take the viewpoint they are dissimilar, although related. Either way, they are different. It depends on how much importance you assign to the difference. Certainly even the standard voltages do not agree:
\begin{tabular}{|c|c|c|c|}
\hline Type & Plate Volts & S. G. Volts & . Bias Volt \\
\hline & 1.35 & 45 & -1.5 \\
\hline , & 180 & 75 & -1.5 \\
\hline
\end{tabular}

Even the grid biases do not agree. The same bias prevails for a \(331-3 \%\) difference in plate voltage.
On the operational side there is a difference, too. The screen grid tube of either type may be used (a) as a screen grid tube, as shown in Fig. 1, or (b) as a space charge tube, as shown in Fig. 2. The screen grid method, with cap to the tuned circuit, is the only one desirable for radio frequency and amplification. The space charge method lends itself to detection or audio amplification, where a resistor or an impedance coil is on the plate circuit. As a space charge detector the tube functions well as a grid bias detector. In audio circuits the problem of stability arises when the tube is used as a space charge grid tube.

\section*{Chance to Experiment}

Fig. 1 lends itself to experimentation. The two screen grid tubes are of the battery-operated type, 222, both used in screen grid fashion. L1L2 is an antenna coupler, of standard design. L3L4 is special, in that the primary L3 has about twice as many turns as would be used for general purpose tubes. On a \(21 / 2^{\prime \prime}\) diameter tubing L1L2 would consist of 12 and 48 turns, L2L 3 of 24 and 48 turns, both on .0005 mfd . The wire is No. 24 insulated.
Note how the negative bias is obtained. Tube 1 gets 1.7 volts, because the grid return is made to negative filament of a 5 -volt tube fed from a 6 -volt battery, while the 222 filament gets 3.3 volts. Negative filament of the first 222 tube is -2.7 in respect to the A battery minus ( \(6-3.3\) ). The negative filament of the 5 -volt tubes is 1 volt negative in respect to \(A\) battery minus. As -2.7 was measured from A minus, if it is measured from \(\mathrm{F}-\) of a 5 -vole tube the difference is 1 volt less, or 1,7 . This measurement is correct when the grid return is made as shown.

\section*{Rotor Connection Common}

The rotor of the tuning condenser C4 goes to the same point as the rotor of C2 and the, end of L2. But the detector grid coil L4 goes to C-41/2, for grid bias detection, which takes place when 135 volts are applied to a .5 to 1 meg. resistor R4.
The audio amplification is enough to operate a speaker if a high mu tube, 240, is used in socket 3, with R6 a . 25 to .5 meg. resistor. R7 has to be small to prevent audio gurgling. About .5 meg will work well, or a little lower resistance value may be used.
Both G posts of sockets holding screen grid tubes in Fig. 1 are shown connected to \(\mathrm{B}+221 / 2\). This is to prevent self-oscif-

FIG. 2
SPACE CHARGE DETECTOR. FOR THIS HOOKUP INCREASE THE CAP VOLTAGE TO 67 OR 90. BY THE OTHER METHOD THE G POST GETS A POSITIVE VOLTAGE INSTEAD BUT OF A LOWER ORDER.
lation at radio frequencies. However, the lead may be lifted to +45 on the batteries as an experiment, especially as the volume control ( \(25,000 \mathrm{ohm}\) Clarostat) is an oscillation stifler.
Compare results obtained this way with those obtained when the space charge method is used, as in Fig. 2. Louder signals, but not purer ones, may result when the space charge tube's grid return is to A-, rather than to C-41/2, but the extra bias is fully justified.

\section*{Pointers on Parts}

The last tube is a 112 A , with 9 volts negative bias, and requires no output filter for any speaker whatsoever.
Constants not previously stated are: C1, a midget condenser, adjusted once and left thus; R1, 10 ohms; R3, a 112 amperite or 2 ohms; \(\mathrm{R} 5,5\) to 8 meg . ; C7, C8, .02 mfd .; C 6 , as large as you
have; \(\mathrm{C} 5, .0005 \mathrm{mfd}\).
The circuit should be built with tube 1 at left, tube 4 next, tube 3 next, tube 2 at right, all in line. A \(7 \times 17^{\prime \prime}\) subpanel is large enough. The coils are near the front panel, extreme left and right. A double condenser (two sections, each .0005 mfd.) may be used, with flat type dial, by this method of layout. A Hammarlund MLD 23 is suggested. If factory-made coils are desired use Screen Grid Coil Company's RF5 for L1L2 and R5 for L3L4. For .00035 mfd . these coils are RF3 and R.3.

\section*{Experimental Suggestions}

In using the tube as a grid bias detector in screen grid fashion microphone effects will be present, but when the space charge grid method is used these are absent. To cure microphonism put a metal shield over the tube, the type of shield that simulates the shape of the tube and fits over the socket. The box type stage shield is not meant.
The space charge grid develops higher grid-to-filament capacity and requires readjustment of the equalizing condenser, by use of more capacity. This detail must be attended to in switching from screen grid to space grid detection. If the change-over is made in the other direction of course less equalizing capacity is needed.
When the space grid method is used the detector plate bypass condenser may be omitted, as the capacity in the plate circuit is automatically enlarged.
The leak-condenser method of detection is not shown, but may be tried. The grid condenser should be about .0001 mfd., or less than half the capacity otherwise used. The leak value should be more than .5 meg. The higher the value of the louder signals, up to overload. The grid return (coil connection only) would go to A + when the leak condenser method is tried. It is to be expected that the grid bias method will prove more satisfactory under actual circuit conditions, although a dissociated tube under test might seem to provide good detection by the leak-condenser method. The operating circuit changes
this situation.

\section*{Good Audio Channel}

Excellent tone at moderate volume is reproducable by the audio amplifier in Fig. 1, although the detector output is indeed modest, due to the tuner. But locals will be plenty loud enough. If a more sensitive tuner is used, say two or more stages of tuned radio frequency amplification, all signals will be louder, and the fine quality of which the audio amplifier is capable will not be invalidated.
The audio amplifier will not motorboat on B batteries, nor on a well-filtered B supply. What seems to be motorboating, if any disturbance arises, will prove to be RF oscillation. R2 will
control that.

\title{
CondenserSpeakers Have Preponderance of Good Points
}

\section*{By James H. Carroll}

\section*{Contributing Editor}

THE outstanding radio developments during the 1929 season are the application of the heater type tube, the placing of the AC screen grid and the 245 power tubes on the market, the perfection of the inductor-dynamic speaker, and the announcement of the condenser type speaker. Push-pull audio amplification and power detection have also been emphasized during the season.
The trend seems to be in the direction of eliminating all but the heater type tubes, except in the power stage and toward a wider use of push-pull amplification. Most of the receivers announced for the coming season have this form of amplification. In most instances the receivers of the 1930 season will be sold with the loudspeaker built in, so that the complete radio installation will be in compact and convenient form. The dynamic speaker leads at the present time, but there is no doubt that the new inductor-dynamic will figure prominently in the near future, because it has certain inherent advantages which lend simplicity to the receiver assembly.

\section*{The Electro-static Speaker}

The so-called electro-static speaker has been announced, and the public is keenly interested in its possibilities
But since the electro-static, or more logically, the condenser type speaker has been announced, occasionally an individual is found who has heard one in operation. He reports' splendid results, irreproachable quality. Such reports keep the interest alive and may induce many to tolerate their present loudspeaker a while longer until they will be able to procure one of the condenser speakers. Some suspicious individual has suggested that those rare persons who go around reporting having heard a condenser speaker in operation are the emissaries of the manufacturers, and that the sole object of their enthusiasm is in the direction of sales.
The idea of a condenser speaker is not new. It is much older than radio as we know it. The principle upon which it works is as old as electricity. Indeed, it was one of the first things worked out when knowledge of electricity was as new as radio is today. Yet there has been no commercial application of it until the present. But that is not against the speaker, for the dynamic was known for at least thirty years before it came to be applied commercially. When that came, it came with a rush. It may be the same with the condenser speaker. If it has all the virtues that are claimed for it, there is no doubt about the rush.
F. K. Vreeland is credited with a patent on a condenser speaker as far back as 1907, the year of the birth of the threeelement vacuum tube, and it is said that a successful model of it has been perfected recently. Working models of condenser speakers have also been made in Germany by Hans Vogt and others. Condenser headphones made in Germany have been in this country for several years and are capable of unexcelled quality as long as they stand up, which is not long. They deteriorate rapidly whether or not in use.

\section*{Deterioration a Problem}

It is this difficulty of deterioration which has held up progress of condenser loudspeaker development. It may be that this explains why we had nothing until now in this or any other country. As soon as this problem hás been solved satisfactorily we shall be able to use condenser speakers, and we may have something exceptionally good to listen to.
There is no doubt of the possibilities of the condenser speaker. It works essentially on the same principle as the condenser microphone, and there does not exist a practical microphone which is superior to this. But the microphone is. not subject to deterioration to the same extent as the speaker. This is because in the microphone the dielectric between the two plates of the condenser is air while in the loudseaker it is an elastic membrane, usually rubber. It is the rubber which deteriorates with time. The condenser speaker will be practical as soon as somebody discovers a substitute for the rubber membrane which will hold up. There is a great fortune in that discovery.
The condenser speaker is particularly effective on the bass frequencies, one reason for which is that it has a relatively large radiating surface. Another advantage is that it has a comparatively high impedance and so can be used in conjunction with tubes having a high output impedance. It will not require any step-down output transformer. Since high impedance tubes
can be used, the power to operate the speaker can be made up of low current and high voltage, rather than high current and low voltage. This fact will make filtering of the plate voltage supply a simpler matter.
But the condenser speaker has disadvantages too. It is not so effective on the high audio notes. This is not because it is. a poor sound radiator on the high frequencies. It is as good in this respect as any other radiating surface of the same size. The loss of the high notes results from the capacity of the condenser, an unavoidable feature if the speaker is to be made large enough to radiate the bass, as well as sensitive enough to radiate much power on any frequency.
Since the size of the radiating surface determines the effectiveness at the bass frequencies as well as the capacity which reduces the response at the high, it is possible to proportion the radiating surface so that the response will be good at both the high and the low frequencies. Any lack of bass can be compensated for by using a baffle board. The baffle will aid in the radiation of the bass but it will not increase the capacity which cuts down the high notes. Indeed, the baffle will help the radiation of sound on the high frequencies too.

It is well known that dynamic speakers require an external power source for polarizing the field. This has always been used by magnetic speaker proponents as an argument against dynamics. In a sense it is a disadvantage, but this is more than offset by the results.
In the condenser speaker, too, a polarizing potential is needed. No current is required, however, only potential. And the DC voltage needed is rather high, from 600 volts upward. Many objections are raised against this. It is inconvenient to provide an extra source of potential. The voltage is so high that it may be dangerous. And extra expensive equipment is needed.

\section*{Potential Not Dangerous}

These objections have no weight when balanced against superior performance. In the first place it is no more inconvenient to supply the required voltage than to use the speaker itself. The voltage supply readily can be built into the speaker assembly, and it will take very little room. As to the danger, there is none. Suppose the voltage is 1,000 volts. If this were a battery, or a generator, it would be dangerous to life. If it were an eliminator such as is used for power amplifiers, it might result in an unpleasant shock. But for a condenser speaker neither of these sources is required. The high voltage supply can be designed so that no appreciable power can be taken from it. And then it would be quite harmless. Possibly a shock from the device would not feel pleasant but it would not be more than a severe tickle.
Battery eliminators are already available for supplying the potential to condenser speakers, when and if promises are substantiated. One of these is a compact little device employing a single 201 A tube for rectification. High and low voltage windings, as well as chokes and condensers, are built in, and the whole device can be held in one hand.
There are two types of condenser speaker, unilateral and bilateral. The unilateral has two plates, one fixed and one movable. The signal and the polarizing voltages are impressed between these two plates. As the signal voltage varies, the movable plate vibrates just as any other loudspeaker diaphragm or piston.
The bilateral type of speaker contains two fixed plates and one movable, the movable plate being placed midway between the two fixed plates. The polarizing voltage is impressed between the center plate and the two fixed plates. That is, the center plate is made positive and the two fixed plates negative, potential difference between the center plate and the fixed plates being the same. The signal voltage is impressed between the center and the fixed plates simultaneously in such manner that when the total effective voltage between one pair is increased by a certain amount it is decreased by the same amount between the other two. That is, the bilateral type speaker is a push-pull speaker. The moving plate in the center is held in an unstrained position when no signal is impressed, or in a balanced pocition. The signal voltage upsets the balanced in proportion to the strength of the signal.
The effect of the push-pull arrangement is to make the speaker more sensitive and free from distortion.

\section*{POWER AMPLIFIERS}

\author{
By J. E. Anderson and Herman Bernard
}
[ A notable series of expository articles on power amplifiers, by J. E. Anderson and Herman Bernard, was begun in the June 1st issue, in which the components of battery, DC and \(A C\) power amplifiers were analyzed, and illustrated with fifteen diagrams. Types of audio couplers zeere also described and compared. In the June 8 th issue loudspeaker coupling devices and battery-operated amplifiers were explained. A special analysis of resistance-coupled audio was included. There were nine illustrations. Last week, in the June 15th issue, the exposition was carried forward to the D \(D\) Cupply of \(A, B\) and \(C\) voltages, e.g., for operation from 110-volts \(D C\) obtained from the convenience outlet. Ohm's lave was explained in conjunction with the design of a DC supply Then the part was begun that treats of \(A C\) fully, with rectifier and filter analysis exceptionally revell set forth. The \(A C\) topic is continued this reveek. In the June 25th issue next week will be another fine instalment of this notable series. The articles will continue from week to week. Follow them closely.-Editor.]


FIG. 16
(A) -CIRCUIT OF A HALF-WAVE, VACUUM TUBE TYPE RECTIFIER DURING THE ACTIVE HALF-CYCLE. (B) -THE SAME CIRCUIT AS IN A DURING THE INAC. TIVE HALF-CYCLE.

Suppose the current in the primary flows in the direction indicated by the arrow (a) in Fig. 16A. There will then be a current in the filament circuit in the direction indicated by the arrow (b). There will also be a voltage induced in the high voltage winding in the direction indicated by the arrow (c). But will there be a current?. The direction of the voltage is such that the plate is positive with respect to the filament. Hence electrons will be attracted from the hot filament to the plate, This is equivalent to an electric current from the plate to the filament, and there will be a current through the external circuit as indicated by the arrows (d).

While the plate is positive with respect to the filament, the direction of the current is such that the filament end of the load resistance is positive and the plate end of the load is negative.

The primary current will flow as indicated by arrow (a) for only half cycle, which for 60 -cycle current has a duration of \(1 / 120\) th part of a second. The current will rise and fall as indicated by the first loop in Fig. 17.

At the end of the first half-cycle the current will reverse in the primary as well as in the heater winding, as indicated by the arrows in Fig. 16B. The voltage in the plate winding will also reverse and act in the direction indicated by the dotted arrow. Now the plate of the tube is negative with respect to the filament, and therefore no electrons are attracted from the filament to the plate. Indeed, they are driven back to the filament. Hence there will be no current through the external circuit, or through the load. The arrow representing the voltage has been dotted to show that the voltage produces no current, and the second loop in Fig. 17 also has been dotted to indicate the absence of current.

During the third half-cycle all the events of the first halfcycle are repeated, and therefore the loop in Fig. 17 representing the current in this phase has been drawn in a solid line. The process is continued as long as there is an alternating current in the primary of the transformer, current pulses being produced in one direction only with total absence of current half of the time.

It is the function of the filter to smooth out the pulsations into a steady, direct current. The condensers in the filter store up part of the electricity from the pulses, and they discharge this electricity during the half-cycles when the tube does not supply any. The choke coils in the filter maintain a steady flow, part time taking the current from the tube and


FIG. 17
APPROXIMATE FORM OF THE RECTIFIED CURRENT BEFORE FILTERING AS PRODUCED BY A HALF-WAVE RECTIFIER. THE DOTTED LOOP INDICATES NO CUR-


FIG. 18
(A) -CIRCUIT OF A FULL-WAVE RECTIFIER SHOWING THE DIRECTION OF CURRENT AND VOLTAGES DURING THE HALF-CYCLE WHEN THE PLATE L IS ACTIVE (B) -THE SAME CIRCUIT DURING THE HALF-CYCLE WHEN PLATE R IS ACTIVE.
part time from the condensers. The property of the coil is to resist changes in the current, increases as well as decreases. The value of the steady current is the mean value of the current during a complete cycle, or .318 of the peak value of the current.

The current output of a rectifier and filter is steady only if the filtering is very good. If the filtering is not adequate there will be ripples in the current. In a half-wave-rectifier the frequency of the main ripple will be the same as the frequency of the supply current, but there will also be ripples at harmonic frequencies, that is, two, three, four, and so on, times the frequency of the supply. But these will be very small.

The effectiveness of the filter in removing the ripple depends on the capacity of the condensers and the inductance of the chokes. The larger they are the less ripple will remain in the output. Also, the more condensers and more chokes used, the steadier will the output current be. Again, the smaller the current that is drawn from the rectifier-filter, the less rinnle for any given filter and type of rectification.

During the half-cycle in which no current flows the voltage rises to a higher value than during the half-cycle in which current does flow, and since the average value of the current is only .318 of the maximum, a higher input voltage is required in order to get the required value of steady current. Therefore the filter condensers used must be designed to withstand comparatively high voltages.

\section*{Full-Wave Rectifier}

A more satisfactory rectifier is one in which current flows every half-cycle. This type is known as full-wave rectifier and is shown in Figs. 18A and 18B, and the corresponding rectified current curve is shown in Fig. 19. It will be observed that the full-wave rectifier is essentially the same as the half-wave rectifier, except that the tube has two equal plates and the high voltage winding is center-tapped.

Consider the half-cycle during which the primary current flows in the direction indicated by arrow (a) in Fig. 18A. The high voltage is then in the direction indicated by the long arrows (c). This voltage makes plate \(L\) positive, and plate \(R\) negative, with respect to the filament. Therefore current flows between plate \(L\) and the filament, and the direction of this current in the external circuit is indicated by the short arrows, The portion of the circuit containing plate \(L\) is active because current flows. The portion containing plate \(R\) is inactive for no current is produced by the voltage, indicated by the dotted arrow.

The active portion of this circuit corresponds with Fig. 16A and the inactive portion corresponds with Fig. 16B.

When the current in the primary of the transformer reverses, the current flows as indicated in Fig. 18B. The portion of the circuit containing plate \(L\) is now inactive while that containing plate \(R\) is active. The important thing to note is that the current in the external circuit flows in the same direction in both instances. Therefore there will be no time during which the rectifier as a whole is inactive, but current will flow every half-cycle.

The filament current has not been indicated in \(A\) or \(B\) in Fig. 18, because the current is equally effective in heating the filament whether it is flowing in one direction or the other.

In Figs. 18A and 18 B the positive terminal has been connected to the center of the filament heating transformer, whereas in Figs. 16A and 16 B it has been connected to one side. It makes practically no difference whether the connection is made to the center or one side in either the full-wave or halfwave rectifier

Fig. 19 shows the current pulses contributed by the two sides of the full-wave rectifier. The loops are marked \(L\) and R according to which plate contributes them.

The filtered current from the full-wave rectifier is the mean current of a half-wave rectifier multiplied by 2 .


FIG. 19
THE FORM OF THE RECTIFIED CURRENT FROM A FULL

But it does mean that for a given current output, the maximum current in one instance is twice the maximum in the other. And from this it follows that the output from a full-wave rectifier is more easily filtered, for the fluctuations to start with are not so great. The half-wave rectifier for a given current output has the greater maximun! current peaks

The frequency of the main ripple component from a fullwave rectifier is twice the frequency of the supply current. For example, if the supply is 60 -cycle current, the main ripple will have a frequency of 120 cycles. There will be a ripple component at 60 cycles and other components at the higher harmonics of 60 , but these will be very small compared with the 120 -cycle ripple.

Not only is the output of the full-wave rectifier easier to filter than that of a half-wave rectifier because the original fluctuations are smaller, but also because the ripple frequency is higher. Condensers and chokes of given values will be just twice as effective at 120 cycles as at 60 cycles.

Taking into consideration that the ripple frequency is twice as great in the full-wave rectifier as in the half-wave, and that the original fluctuations are only half as great, it would seem, other conditions being equal, that the output of the full-wave rectifier is four times more easily filtered than the output of the half-wave rectifier. And so it is
Another advantage of the full-wave rectifier is that its voltage regulation is better. That is, the output voltage does not fluctuate so much when the amount of current drawn from it is changed. There are two reasons for this. First the rectifier tube has a lower resistance because it is conductive during both half-cycles, and second, because the filter chokes need not be so large and therefore have less resistance.

\section*{The Gaseous Type Rectifier}

A typical circuit of a full-wave gaseous type rectifier is given in Fig. 20. The current to be rectified is supplied by a voltage stepup transformer \(T\), the secondary of which is center-tapped. There are two rectifying elements inside the tube composed of the central plate A and the two points K . Current can flow only from the points \(K\) to the plate \(A\) and not in the opposite direction. Hence the plate A is the anode, or positive terminal, and the Ks take turns being the cathode, or negative terminal.

The functioning of this tube is similar to that of the filament type rectifier. Consider the half-cycle during which the primary current flows in the direction indicated by arrow (a). The sec ondary voltage is then in the direction of the long arrows placed near the center-tapped winding. Current then flows around the current as indicated by the short arrows, because it can flow only from K to A .
When the primary current reverses, the upper half of the centertapped winding becomes active, but the current in the external cir cuit does not change direction. Therefore the rectified output current has the form indicated in Fig. 19. Condensers C, C across the two halves of the high voltage winding are called buffer condensers and they- serve to improve the rectification characteristic of the tube. The value of each is usually .02 mfd . to .1 mfd .

\section*{Filtering Rectified Output}

Since the output current of every type of rectifier contains considerable ripple, it is necessary to employ filters to remove the fluctuations and to make the current truly steady and continuous

The simplest filter, shown in Fig. 21A, consists of a single condenser \(C\) across the output of the rectifier and across the load. If the condenser has a large capacity, and if the load resistance is high, this type of filter takes out a large proportion of the ripple. The output current from a full-wave rectifier may be represented by a curve such as that in Fig. 21B. Io represents the mean value of the partly filtered current, and I represents the amplitude of the ripple. The frequency of the ripple is twice the frequency of the current supplied to the rectified by the step-up transformer.
More thorough filtering can be effected by inserting a high inductance choke coil \(L\) in series with the line, as shown in Fig. 22A. This coil tends to keep the current steady, opposing both increases and decreases. But if the coil works into a high resistance it is not effective, and therefore it is desirable to connect another condenser C2 across the load resistance. The coil then works into the comparatively low impedance of the condenser C 2 , rather than into the high resistance of the load.
The greater the inductance of \(L\) the more complete is the filtering. The effective inductance is not that of the coil when no direct cur-


FIG. 20
CIRCUIT OF A FULL-WAVE RECTIFIER EMPLOYING A GASEOUS TYPE TUBE


FIG. 21
(A) - SIMPLE FILTER CIRCUIT CONSISTING OF A SINGLE CONDENSER ACROSS THE OUTPUT OF THE RECTIFIER AND ACROSS THE LOAD
(B) - THE FORM OF THE FILTERED CURRENT AFTER IT HAS PASSED BY THE CONDENSER IN A. I IS THE AMPLITUDE OF THE RESIDUAL RIPPLE
rent is flowing, but that when the mean output current is Howing in the coil. This is considerably less inductance, for the larger the current the lower the inductance. The filtering is also more thorough the larger condenser C2 is. The wavy curve in Fig. 22B represents the form of the output current after it has passed by the filter comprising the two condensers C and C2 and through the choke L . Io as before, represents the mean value of the current and I represents the amplitude of the residual ripple. The amplitude of this ripple has been exaggerated to emphasize it. Actually the amplitude may not be greater than one per cent. of the mean current.
Although the ripple is as small as one per cent. of the steady current, it is too large for use on an amplifier. Hence it is necessary to add another filter section consisting of a choke coil L2 and condenser C3, Fig. 23A. If the first filter section reduced the ripple to one per cent. of the steady current, and if the second section is just like the first, the residual ripple is reduced to one per cent. of one per cent. This is so small that the current may be considered to be pure DC. The undulations in the output current


A


B
FIG. 22
(A) - SIMPLE FILTER CONSISTING OF TWO CONDENSERS C AND C2, ACROSS THE LINE AND A CHOKE COIL L IN SERIES WITH THE LINE (B) - THE FORM OF THE FILTERED OUTPUT AFTER IT HAS PASSED BY THE TWO CONDENSERS AND THROUGH THE COIL IN A. I IS THE AMPLITUDE OF THE RESIDUAL RIPPLE.
are so small that the wavy curve does not appreciably deviate from the mean current curve, as shown in Fig. 23B.

When the ripple is as low as one per cent. of one per cent. the current may be used for audio frequency amplifiers without any noticeable hum resulting. It also can be used to supply a radio frequency amplifier and detector without hum, provided that there is no oscillation or excessive regeneration in the radio circuit. It is assumed that there is no oscillation or regeneration in the audio amplifier. If there is, even a very small residual hum will become noticeable. But if a circuit oscillates, or regenerates excessively, at audio frequencies, the amplifier is not satisfactory, and it becomes necessary to treat the circuit so as to stop the regeneration.
The filter given in Fig. 23A has come to be regarded as standard, and it is the one most frequently used. But there are other forms. Fig. 24, for example, shows a two-section filter in which one of the choke coils is tuned with a condenser C 4 : The inductance of L 2 and the capacity of C 4 are proportioned so that L2C4 forms a tuned circuit at the principal ripple frequency, that is, at 120 cycles in a full-wave rectifier using 60 -cycle current supply.

L 2 and C 4 form a parallel tuned circuit at the resonant frequency, and one characteristic of such a circuit is that its impedance at the resonant frequency is extremely high. Hence if L2 and C4 are adjusted to resonate at the principal ripple frequency, say 120 cycles, the ripple is almost completely suppressed.

C 4 admits, the higher harmonic ripple frequencies, but these are


FIG. 23
(A) - A FILTER CONSISTING OF THREE CONDENSERS C, C2 AND C3 AND TWO CHOKES L1 AND L2. THIS IS A TWO-SECTION FILTER
(B) - THE FORM OF THE FILTERED CURRENT AFTER HAVING PASSED THROUGH THE TWO-SECTION FILTER IN A. THE RESIDUAL RIPPLE IS NOW SO SMALL THAT THE ACTUAL CURRENT CURVE COINCIDES WITH THE MEAN CURRENT CURVE.


FIG. 26
TYPICAL REGULATION CURVES OF A FULL WAVE REC-TIFIER-FILTER EMPLOYING 280 TYPE TUBE WORKING INTO A FILTER LIKE THAT IN FIG. 23 A.
drop. It is only the voltage drop across the load resistance which is useful. The voltages dropped in the other resistors decrease the total useful voltage. When the load is short-circuited all the voltage is dropped in the transformer, the tube and the chokes, and hence there is no output.

A regulation curve of a rectifier-filter is the relation, graphically shown, between the output voltage and the output curent for a fixed value of AC input voltage. Three such curves for a 280 rectifier tube working into a filter like that in Fig 23A are shown in Fig. 26. The ordinates give the DC voltage across the load resistance and the abscissas the current drawn from the circuit. The AC voltages associated with the three curves are effective values and equal to one-half of the total effective voltages across the center-tapped winding when no current is drawn.

If these curves were horizontal, or parallel with the current axis, the regulation would be perfect. The slope of any curve is a measure of the regulation. The greater the slope the poorer the regulation
It is clear that the slope of any curve does not remain constant but decreases as the current drawn increases. Thus the regulation improves as the current is increased. Unfortunately, this improvement in the regulation is accompanied by a decrease in the effective filtration, an increase in the power loss, and shortenin the effective filtration, an increa
ing of the life of the rectifier tube.

Poor regulation of a current supply, or B battery eliminator invariably results in distortion of the signal. When the signal is strong there is a sudden increase in the current requirements and this causes a decrease in the output voltage. The signal and this causes a decrease in the output voltage. The signal will not be amplified as much as it should. The distortion is argely of the wave form type, which is harmonic distortion
Poor regulation also indicates that the current supply has a high internal resistance to direct current. It may or may not indicate a high resistance to alternating current. Usually, if the resistance is high for direct current it is also high for alter ating current, especially for low frequencies.
Good filtering does not necessarily mean that the AC resistance of the current supply device is low, looking from the amplifier, but it does mean that the resistance to AC is low, looking from the rectifier. If the last condenser, C 3 in Fig. 23A is very large, the AC resistance looking from the amplifier is low. This resistance is lowered still further by the voltage divider which is associated with the load.
A low AC resistance for all frequencies looking from the amplifier is essential for good performance of the rectifier-filter If the resistance is low some of the effects of poor regulation will be annulled. If it is high, feedback will result in the amplifier, and this will cause frequency distortion or actual oscillation at some frequency. The AC resistance of the filterrectifiet, looking from the amplifier, is a large part of the common impedance among the tubes served. The other part of the common impedance is the reactance due to the various chokes and condensers, and this reactance may be either inductive or capacitive, depending on the frequency.

\section*{The Voltage Divider}

Every rectifier-filter designed to deliver current at different voltages must have a voltage divider, which usually consists of a resistor across the output, with one or more taps on it

To design properly a voltage divider it is necessary to know the current distribution as well as the voltages desired. It is impossible to say what the value of the resistance between any
the voltage difference between the two points is the product of the current and the resistance. Also, it is not practical to adjust the position of the taps with the aid of a voltmeter, because the voltmeter takes current, so that the voltage will not be the same when the meter is removed as it was when the meter was in position. A voltmeter of 1,000 ohms per volt can be used to get a close approximation to the voltage, for such a meter takes only a small current, but a less sensitive voltmeter will take possibly more current than that which flows in the re sistor itself. With such a meter not even a rough approximation to the correct voltage can be obtained.
A simple voltage divider is shown in Fig. 27A, which consists of two resistances R1 and R2 in series, with a tap \(X\) at the junc tion. If it is assumed that no curent flows into the tap the total voltage between the positive and negative sides of the line is divided in proportion to the values of the resistors, that is, the voltage between X and plus is to R 1 as the voltage between minus and \(X\) is to \(R 2\). This holds because the same current flows in R1 and R2. The current \(i\), flowing in the main load does not affect the division but it does affect the total voltage across R1 and R2. The larger this current the lower the total voltage, as was explained in connection with voltage regulation
Referring again to Fig. 27A, suppose that the total voltage across R1 and R2 is 180 volts and that R1 is 15,000 and R2 is 10,000 ohms. The total resistance is then 25,000 ohms. Hence the current through the resistors is \(180 / 25,000\) amperes, or 7.2 milliamperes. The voltage drop in R1 is therefore 108 volts and the drop in \(R 2\) is 72 volts
The current flowing through the voltage divider is known as the "bleeder current" because it flows whether or not the recti-fier-filter is delivering any useful power,
There are three objects of the bleeder current. First, it prevents a sudden and high rise of the voltage across the condensers in the filter when the load is removed, that is, when the filanents in the amplifier are turned off or when the line to the amplifier is opened. Second, it provides a means for obtaining lower voltages than the maximum, that is, it enables the voltage divider to function. Third, it brings the current operating point of the rectifier-filter to a place where the regulation is better. The first two of these functions are the more important.

Only infrequently may it be assumed that no current llows in a tap on the voltage divider. The only case where this assumption is justified is when the tap is used to supply a grid potential. When the tap is connected to a plate of a tube, or to a screen grid, some current flows, and this must be taken into account in determining the positions of the taps on the voltage divider resistance

Fig. 27B shows a voltage divider suitable for an amplifier involving 224 AC screen grid and 245 type tubes. The maximum voltage is 300 volts, which provides the plate and grid voltages for the 245 tube or tubes. The next lower voltage is 180 , which provides voltage for the plate of the screen grid tube, or for any other tubes which may be operated at this voltage. The lowest voltage is 75 volts, intended primarily for the screen grid (G post of socket) of the 224 tube. The 75 -volt tap terminates in an arrow on the resistor strip, indicating that the voltage is adjustable

Current is taken by all of the taps in Fig. 27B, as is indicated by the arrows. But the amount of current taken by any tap is not known, for it depends on the filament temperature of the tubes, on the grid bias on the tubes, on the number of tubes on a given tap, and on the nature of the coupling devices used in the amplifier. Hence the current in any section of the voltage divider is unknown
However, in section R1 all the plate current flows, as well as the bleeder current of the amplifier, except the plate current of the tubes on 300 volts. In section R2 the bleeder current and the current taken by the 75 -volt tap flows. In section R3 only the bleeder current flows.

In the design of a voltage divider certain simplifying assumptions sometimes may be made. Suppose the bleeder current is large, so that the current taken by the screen grids is small in comparison. Then it is permissible to assume that the same current flows in both R2 and R3, and that this is the bleeder current. Let the bleeder current be 20 milliamperes. The 180 volts equals \(.020 \times(\mathrm{R} 2+\mathrm{R} 3)\). Hence the sum of the two lower resistors should be 9,000 ohms. A \(10,000 \div\) ohm potentiometer could then be used for R 2 and R 3 , with the 75 -volt tap connected to the slider. The bleeder current would be 18 milliamperes. Hence both the 180 - and 75 -volt potentials would be adjusted regardless of how much current were drawn from the 180 - and 300 -volt taps
Now it remains to determine the value of R1. We might find by measurement in the 180 -volt lead that the current is 15 milliamperes. This measurement should be made after the 180volt potential and the grid and filament voltages on the tubes served by the 180 -volt tap have been adjusted to the desired values.
Having determined the current to be 15 milliamperes under normal operating conditions, we know that the current in Rl is 33 milliamperes. The voltage drop in this resistor is also known, being the difference between 300 and 180 volts. Therefore we know that R1 must have a value of 3,636 ohms. For a different current distribution the resistance would have another value
Fig. 27C shows a voltage divider suitable for a circuit compris-


FIG. 27
(A) - A VOLTAGE DIVIDER HAVING A SINGLE TAP WHICH IS ASSUMED TO TAKE NO CURRENT.
( B ) - A TYPICAL VOLTAGE DIVIDER DESIGNED TO SUP. PLY A CIRCUIT USING 245 POWER TUBES, AC SCREEN GRID TUBES AND OTHER TUBES REQUIRING THE VOLTAGES INDICATED.

\section*{(C) —A VOLTAGE DIVIDER DESIGNED FOR A CIRCUIT} USING 250 POWER TUBES, BATTERY TYPE SCREEN GRID TUBES, AND OTHER TUBES REQUIRING THE VOLTAGES GIVEN.
ing 250 power tubes, battery type screen grid tubes (222) and other amplifier tubes requiring voltages from 45 to 180 volts. The placement of the taps is determined in the same way as in the preceding example. The first thing to do is to determine the value of the bleeder current, making it large enough to permit simplifying assumptions, yet not so large as to lower the total available voltage excessively or to affect adversely the filtering. When the bleeder current has been determined, and neglecting the current to the 45 -volt tap, R3 and R4 may be determined. The 45 volt tap should be adjustable, as indicated by the arrow termination. Next the current to the 135 -volt tap should be measured so that R2 may be determined. Then the current to the 180 -volt tap should be measured to give data for determining R1.
It is well to use a voltage divider strip with adjustable taps so that there will be no limitation on the resistance values that may be selected. But if strips of fixed taps are used it is possible to use the tap which gives the voltage nearest to that desired, and then adjust the grid bias on the tubes served to suit the plate voltage actually obtained.
If a high resistance voltmeter, one of 1,000 ohms per voltage, is used, fair accuracy may be attained without measuring the current in the various taps. It should be remembered that even 1,000 ohms per volt reads lower than the actual voltages. But the discrepancy is small and should not seriously affect the operations of the amplifier

The suggestion was made that the current drawn from a certain tap be measured under normal operating conditions. This is not always easy to comply with, for the object of the adjustment is to bring about normal operating conditions, and the normal current cannot be measured before normal conditions have been brought about.

The current that will be drawn from any tap can be determined quite accurately without any measurement at all. Let us illustrate how this may be done.

Let us suppose that two 201A tubes are connected to the 135 volt tap and that these tubes are properly biased and that they are working into primaries of audio transformers. Under these conditions the current taken by each tube is known. Let us say that the bias is such that each tube takes 6 milliamperes. Therefore 12 milliamperes will flow from the 135 volt tap. That figure can be used in place of the result of measurement, at least for purposes of calculating the resistances in the voltage divider.

In the same manner the current from any tap can be estimated It is only necessary to count the number of tubes of various types served by a given tap and then take from tube tables the normal current for each, tap for the plate voltage in question. If there are any other conductors taking current from the same tap the current should be estimated and added to the total.

It will be noted that the highest voltages in Figs. 27A and 27 B are higher than the rated plate voltages for the tubes. The difference is the grid bias intended for the power tubes. For example, the 534 volts are divided in the ratio of 450 for the plates and 84 for the grids. The bias on the tubes served by the other taps is so small that allowance need not be made for it.

No by-pass condensers are shown in Fig. 27, A, B, or C, because only DC voltages were considered. When the voltage divider is used with an amplifier there will also be signal cur rents flowing in the various taps and resistors, and each of these currents must be provided with a low impedance path to the negative side of the line, or to the filament. Hence a by-pass condenser should be connected from every tap to the negative side. These condensers may be connected either in the amplifier or in the voltage divider.
(Part V next zueck, isstle of June 29th)



FIG. 762

\section*{B SUPPLY WITH ONE-STAGE AUDIO, USING A HALF-WAVE RECTIFIER}
by coiling. Inductance is a property of the wire that relates to the number of lines of force in the magnetic field of the wire under stated conditions. Nobody ever saw inductance, but its manifestations have been studied and measured. Defining inductance is as difficult as defining electricity. An extended exposition is required. It will surprise many to learn that inductance is measured in linear length. Europeans express it directly in terms of the meter. We use an equivalent method, with the henry as the unit.

I DESIRE TO USE a 245 output tube incorporated in a B supply with 281 rectifier. Please show diagram.-A. L.
Fig. 762 shows the wiring. The secondaries of the power transformer T 1 are, top to bottom, \(71 / 2\) volts, 300 volts, \(21 / 2\) volts. L1L2 are a \(S M\) Unichoke 331. C1, C2, C3 are 2 mfd . each, \(600-\) volt AC rating. C4, C5, C6 are 2 mfd . each, C7 and \(\mathrm{C} 8,4 \mathrm{mfd}\). each. T 2 is an audio trans former to which detector plate and \(\mathrm{B}+\) detector are conrected. L3 is an output filter choke. The output potentiometer is an Aerovox Pyrolim type A, 1,500 ohms being used from C - to \(\mathrm{C}+\).

THE LID of my table model cabinet rests on top of the 281 rectifier tube, because in

IN BUILDING my present receiver I used ample radio frequency amplification, power detector and two stages of impedance coupled audio amplification, as there was enough detector output to enable loading up the last tube with the two stages of moderate-amplification audio. However, when I turn the set on it sounds like a clocking hen until the heater type tubes get warm enough to function. This sounds like incipient motorboating, and while it disappears about the time when the program starts to become audible, some visitors commented on the preliminary knocking sound, and I should like to do something to avert their criticisms.-M. L. B.

This condition results primarily from the fact that your audio circuit is capable of good low-note reproduction, and to the high value of voltage actually applied to the plates of the heater tubes during the heaters' warming-up process. The preliminary motorboating is not a vice, since it disappears before the program begins to be audible. This proves the interference's relationship to the proper functioning of the tube. As the plate current begins to flow at near its normal value, the voltage drop in the plate loads increases proportionately, and reduces the effective voltage on the plates commensurately. This increase in current flow also reduces the voltage at the \(B\) plus terminals of the eliminator, on the basis of the regulation of the rectifier tube and its associated circuit. The heavier natural drain pulls the voltage down. The only remedy would be heater tubes of instantaneous action, but none such tubes exist.

WHEN IS A GROUND an aerial? My set works well when the aerial is left off, the ground connected to the antenna post of the receiver, and nothing connected to the ground, I should say it works as well that way as if the aerial were used in the accustomed place and the ground in its regular position. How come?-J. J. \(\dot{K}\).
A self-grounding effect is produced by the \(A\) battery and \(B\) batteries, if used, or by the power transformer in AC sets. Thus when seemingly nothing is connected to the ground post, \(B\) minus, which is self-grounded, actually is connected there, so that an external ground lead, especially if rather long, may be at a higher radio frequency potential than the selfground. In that instance you simply have an antenna, one end of which goes to external ground, the other end to the set. Hence you have aerial and ground. But an outdoor aerial, connected to the antenna post, and a short ground lead from a cold water pipe or a radiator, with all connections securely made, will give better results. Compare stations that come in weakly, rather than strong ones, since on loud stations it is sometimes hard for the ear to tell there is any volume difference at all, though that difference may be nearly 50 per cent. However, use any method that you, think works your set best.

\section*{IS A COIL of wire an inductance? -T. M.}

No. That is a popular definition, but not a scientific one. A coil is no more an inductance than a steam engine is a puff of steam or a pistol is a bullet. All wire, coiled or straight or twisted, has inductance. Inductance is more compactly obtained
building the set I did not allow sufficient room, not having counted the thickness of the baseboard in connection with the unusual height of the rectifier tube. How can I avoid this situation, so that if the cabinet lid should fall it won't break another 281 tube?-M. C.
Remove the 281 socket. Drill a \(1^{\prime \prime}\) hole through the baseboard at this point. Then elevate the baseboard sufficiently to permit mounting the socket on bottom of the baseboard, so that the socket prong holes are accessible through the \(1^{\prime \prime}\) opening. The filament and plate wiring of the rectifier can be brought to the top of the baseboard through holes specially drilled, or simply by bringing the wires around the back of the baseboard.

\section*{IF THE WATTAGE is known, is the current known?-C F. O'B}

No. The wattage is the product of the current and the volt age. Infinite combinations of current and voltage would produce the same wattage. Often, however, when the wattage is stated the current is known because the voltage is known from experience, reputation, or other disclosure. Thus a 25 -watt lamp draws 208 ampere, since the voltage at which the wattage rating was established is imprinted on the glass, with the wattage, thus : 25 watts, 120 volts. The test voltage of 120 is used because this is the highest voltage usually obtained in practice from \(A C\) or \(D C\) lines rated at 110 volts. However, with radio devices, other than tubes, the wattage gives no clue to the current, because the current depends on the voltage, and nobody knows what voltage will be used, and the range of useful voltages is
large. large.

OUR BABY is just beginning to walk. What type of cabinet or console would you suggest that would be imnulune from all attacks by said infant during the three trying years to come? -L. G.
A cabinet or console of such perfect security as to render all attacks by an infant futile is impossible of attainment except by armor-plating. This from one who knows.

IS IT NECESSARY to use a large coupling condenser between the plate of a tube and the grid of the next tube in a resist-ance-coupled audio amplifier?-S. M.
That depends on what you consider large. The product of the grid leak and the grid condenser, where the capacity is in microfarads and the resistance in megohms, should be at least 02. Therefore with a high value of grid leak the capacity may be less than otherwise. Thus the condensed may be .02 mfd . if the leak is 1 meg. or more. The condenser that you mistakenly refer to as a coupling condenser does not couple one tube to the next, but is simply a stopping condenser used for keeping the positive plate voltage off the grid of the succeeding tube, which grid must be maintained negative. For a detailed discussion of this entire topic see the second instalment of "Power Amplifiers," published in the June 8th issue of Radio World, page 13 , column 1 .

IS IT BETTER to incorporate the coils and the condensers in separate shields in building a shielded receiver, or should one use a large can and place all the parts in it? I notice that in several descriptions of shielded receivers, the front portions of the can are left off. Wouldn't it be better to place them on? Must the cans be grounded? If so, does it matter whether the plus \(A\) or the minus \(A\) is also brought to the ground?-M. A. The separate shields should be used for best results. Using a common shield does only one thing, and that is to prevent the coils from acting as miniature antennas, thus making the set a bit more selective. There is no shielding unless the can is complete. If the front is left off the shielding may as well be omitted. Ground the shields. A minus is the usual connec tion to the shields in battery sets.

MY SUPER-HETERODYNE is extremely selective yet it does not cut all interference. It heterodynes with certain stations. What can I do to remedy this condition? The receiver was built of the very best parts throughout but still I do not like the quality. The signals are muffled and throaty. What is the reason?-A. D

The cause of the interference is lack of selectivity in the radio frequency level. Another tuner and radio frequency amplifier will remedy this condition. The cause of the muffled or throaty signals is too great selectivity in the intermediate frequency filter.

IS THERE ANY ADVANTAGE in using an output filter consisting of a choke and a condenser over an output transformer? What should be the inductance of the choke coil and the capacity of the condenser in an output filter? What should the ration of the transformer be if this method of output is em-ployed?-S. W
Each method has advantages over the other but perhaps the choke and condenser method has the more. There is less danger of saturating the core, the inductance used can be larger, and it is possible to shunt the AC component of the output around the \(B\) voltage source. The inductance of the choke used acruss the speaker should be about 100 henrys when working with normal plate current in its winding. Good results will be obtained even if the inductance is as low as 35 under the same conditions. The condenser should have a capacity of at least 4 mfd . The type of transformer depends on the type of tube and on the type of speaker. The primary impedance should be somewhat larger than the impedance of the tube and the secondary impedance should be the same as the impedance of the speaker. Often that means a ratio of 1-to-1.

WHY DO CERTAIN transformer manufacturers recommend the use of a low ratio transformer next to the detector and a somewhat higher ratio in the amplifier stage when the rule has long been just the opposite. Is there any advantage in the newer method and is it worth while to switch the transformers around in my old set?-J. L.
The detector has a higher impedance than the amplifier tube, hence the transformer coupled to the detector should have a higher impedance. The lower ratio transformer has a higher impedance. The newer method gives a little better amplification on the low notes.

WHY DOES the resistance of a coil increase with frequency? I understand that the resistance of a wire is directly proportional to its length and inversely and proportional to its crosssection. Don't these remain the same as the frequency varies? -D. M.
There are two reasons why the resistance of a coil goes up with the frequency. The first is that the effective area of the cross-section of the wire does not remain the same as the frequency is increased, but decreases rapidly. The second is that at the higher frequencies there are greater losses due to eddy currents in surrounding metal bodies, as well as greater dielectric losses. The decrease in the effective area is known as the skin effect. The current travels in a thin layer on the surface of the wire and the higher the frequency the thinner the layer in which current flows. The increase in radio frequency resistance with frequency, that is the skin effect, depends on the conductivity of the wire, on the diameter and on the permeability of the material of which the wire is made. For magnetic metals of high permeability such as iron the skin effect is very large. Even for comparatively low frequencies the current travels on the surface to such an extent that the resistance of the wire is several times the direct current resistance. For fine wires the skin effect is not nearly so pronounced as for heavy wires. It is for this reason that radio frequency conductors are frequently stranded, that is, made of a large number of very fine wires. The foregoing applies to resistance to radio frequencies. The direct current resistance is proportional to the length of the wire. Do not confuse the AC and DC resistances.

SEVERAL QUESTIONS REGARDING PUSH-PULL have been puzzling me and therefore I ask you kindly to answer them. First, there is the capacity effect between the grid and plate of a tube, and if two tubes are used in push-pull this capacity must be present to an added extent. As this capacity may be one reason for unbalance sometimes encountered in push-pull circuits, I am wondering whether there is not some way of counteracting this effect directly? It seems to me that


FIG. 763
HOW THE CAPACITY EFFECT OF THE GRID AND PLATE ELEMENTS OF A TUBE IS BALANCED OUT. C2 AT TOP NEUTRALIZES C1 AT BOTTOM, C2 AT BOTTOM NEUTRALIZES CI AT TOP. THE OUTPUT IS RESIST-ANCE-COUPLED, A NOVEL'TY IN PUSH-PULL
if this is accomplished that the effect that even a small capacity may have upon frequency response would be nullified. This small capacity, due to the height of the amplification, must have an attenuating effect upon the higher frequencies, particularly if the load is resistive. Is there not some way of taking the output from a detector through resistors for pushpull input to the first audio stage, and can not a commensurate push-pull resistance coupled output be obtained from the first audio?-A. B. L.
The capacity effect between the grid and plate exists, as you say, and it may be balanced out by the introduction of neutralizing condensers. See Fig. 763. The two neutralizing condensers are C2, each connected from plate of one tube to grid of the other. The inter-electrode capacity his shown by the small symbols, both marked C 1 . Therefore lower C2 balances out the capacity of upper Cl , and the others the same. The diagram also shows a resistance coupled push-pull output, where the plate load is an electrically center-tapped resistor of a total resistance of about 200,000 to 300,000 ohms. The electrical center must be accurately established, and it is advisable to use a potentiometer with a movable arm to B plus, so that differences in the plate resistances of the two tubes may be compensated. The isolating condensers must be equal also. There is no way of satisfactorily taking the output of a detector through pushpull resistance coupling, as the circuit works one-sidedly, that is, the other side is inactive. A coil is necessary, and a pushpull output transformer may be used, as shown in the diagram.

\section*{Join}

Radio World's

\section*{Uliniversity Club}

And Get Free Question and Answer Service for the Coming 52 Weeks. This Service for Yearly Subscribers Only
Subscribe for RADIO WORLD for one year ( 52 numbers). Use the coupon below. Your name will be entered on our subscription and University Club lists by special number. When sending questions, put this number on the outside of the forwarding envelope (not the enclosed return envelope) and also put it at the head of your queries. If already a subscriber send \(\$ 6\) for renewal from close of present subscription and your name will be entered in Radio University.

\section*{NO OTHER PREMIUM GIVEN WITH THIS OFFER}
[In sending in your queries to the University Department please paragraph and number them. Write on one side of sheet only. Always give your University Club Number.]

RADIO WORLD, 145 West 45th Street, New York City. Enclosed find \(\$ 6.00\) for RADIO WORLD for one year ( 52 nos.) and also enter my name on the list of members of RADIO WORLD'S UNIVERSITY CLUB, which gives me free answers to radio queries for 52 ensuing weeks, and send me my number indicating membership.

\section*{Name}

Street
City and State
If renewing subscription, put cross here. \(\square\)

Harry Buchman. 817 Court. Scranton, Pa. Vern G. Mathiesen. P. O. Box 604, Lindsay, Calif.
E. F. Woodrow, 8 St. Angle St.. Quebec City, Que. Can.
Alex Gyorfi, 4 Hollywood St., New Brunswick, N. J. R. Galvin, 20 Harding Rd.. Buffalo. N. Y. Okla D. Mohundoo, 230 N. Market St., Shawnee, Okla.
Joel Lucyn, 2334 Lawrence Ave., Chicago, Ill. Louis Fowler, 8119 Ingleside Ave.. Chicago, IUI. Chas. C. Flynn, 16190 Wark Ave., Detroit. Mich. City. J. Alger, 449 Corbett Ave., San Francisco, Calif. W. Mateyka. 608 Thomas St., Edwardsville, III.

Chas. Coombs. Jr., 14 Gilman St. Holyoke, Mass. D. L. Boak, 533 Cora St., Wilkinsburg. Pa. Pa F. X. Lindgren, 62 Front St., Farga, N. Dak. 124 Barrington St., Halifax, N. S., Can. . Schehl. 4200 Hartford Ave.. Baltimore, Md.
M. G. Gossard, 8077 Beverly Blvd,, Los Angeles, Calif.
Baker \& Stevens Radio Service, 301 3rd St., Braddock, Pa.
Clark-Warner. Box 160 Glenside, Pa.
Harrison P. White, 450 High St., Newark, N. J \(\stackrel{\text { P. W. Richards, }}{ } 1409\) No. Felton St., Phila. Pa Charles Harvey, 2915 West St., Wilmington, Del. C. Ramsay, 650 Main St., New Rochelle. N. Y. Harry L. Williams, Jr., Gen'l Del'y.. BloomsCharles. E. McGrew, 416 N. Maple. Newkirk,
Okla. Okla,
Chas
Chas. H. Hager, Box 193. New Butler. Wis. Frank P. Surdyk, 838 Pearl St., Milwaukee, Wis A. Skeiner, 14 Dean St., Toronto No. 2, Ont. S. Jacobs. 2118 76th St. Brooklyn, N. Y. Hi. C. Bidinger, 17917 Lumkin Ave., Detroit, Tohn C. Hagan. Cairo. Ill.
Francis J. Holland, 520 3rd Ave., Brooklyn, N. Y Harry Haskell, 10823 Magnolia Drive. Cleveland Roy P. Norton, 1317 Dolores St., San Francisco, Calif.
James Nash, 8022 Normal Ave., Chicago. Ill.
Hunter, "The Radio Nut," Box 63, Prosperity So. Car.
L. F. Heller, 40 No. Dearborn, 2nd Floor, Chi \(\stackrel{\text { earo, Kittle, } 1321 \text { N.W. 27th St., Miami, Fla }}{\text { W. }}\)
W. L. Rutledge, Elkport. Iowa.

Ray Schroder, Box \(4533^{\prime}\) Chelsea, Mich.
H. F., Brockman, 18425 So. Morris Ave., Homewood, Ill.
Acorn Radio \& Electric Co.. 4824 16th Ave.
Atlee W. Vance. 948 Fallon St. Phila. Pa.
. B. Carmody, 121 Julian St.. Providence. R. I
George L. Klingler, 6349 Gifford Ave., Bell, Calif
Thomas Fisher, 12210 Roselawn St., Detroit Mich.
A. Prestwood. 557 110th St. Whiting, Ind.
A. Helming. 109 Pape St., San Francisco. Calif.
R. E. Brown, Box 713, Bellows Falls. Vt. R. E. Brown, Box \({ }^{713}\), Bellows Falls, Vt. John Hamilton, 29 Pear St.. Palmyra. N. J.
August H. Hoffman, 2207 Grand Ave.. Butte, Augy
Mont.
Mat. Spooner. Yr., 511 1st St., Albany, N. Y. Charley Schmidt. Fultz, 3038 Prospect Ave., Kansas City, Mo .
\({ }_{\text {Moscar }}^{\text {O. }}\) E. Malech, 323 Woolsey St. San Fran. H. M. Sutterfield. Towa Park. Texas.
M. George Hassar, 4405 Ashland Ave., Detroit, James W. Burns, 2113 E. Lombard St., Baltimore, Md.
A. E. Albrecht, 633 W. 52d St., Phila., Pa. Wayne Storch, Radio Service, Beecher. IIl.
H. A. Sterling, 1107 Third Ave., New York, N. Y. Robt. E. Wilson, 1812 3rd Ave., N., Birmingham, Robt
Ala.
F.
I.
M. Wilson, 8006 Loomis St., Chicago, III. Boston, Mass. care Hotel Statler. Park Square, Fted Volimer, P. O. Box 175, Bucyrus, Ohio. N. Y, G. Barlow, Pittsville, Md.
G. M. Wright, 45 S. Franklin Ave., Valley Stream, N. Y.
F. E. Titus. Box 126. Middleport. Ohio \%. H. Pedersen, 1132 N. Mayfield Ave., Chicago, J. A. Bradley, Box \({ }^{722,}\), Cobourg, Ont., Can. L. M. LeFevre, 11 Beech St. Sutley, N.J. William H. Shuey, Box 218, Oak Park, Ill W. Wallace Wyllie. Corning, Calif.
Ira B. Valentine, Box 2 , Sq. Hill Sta., Pitts burgh, Pa
Martin Johanesen. 330 W
95 th St., N. Y. City. H. B. Krause. 699 Hudson Ave., West New Yokk. N. J. Clark, 434 So. Grand Ave., Los Angeles, H. Barker. 1711 30th Ave., West. Seattle. Wash. W. C. Thompson, Cor. Mills \& Baldy Roads. Claremont. Calif.
Chas. D. Freeman Second Ave., Rockford, Ill.
Mich. R. Shelden, 2509 Garfield Ave.: Bay City,

Literature Wanted
\(T^{\mathrm{HE}}\) names and adrecese of readers of RADIO WORLD who desire literature on parts and sets from radio manufacturers, jobbers, dealers and mail order houses are published in RADIO WORLD on request of the reader. The blank at bottom may be used, or a post card or letter will do instead.
RADIO WORLD,
145 Weat 45th St., N. Y. City.
I desire to receive radio literature.
Name
Address
City or town
State

Hark, Koskinen, 1+4-03 123d Ave., South Ozone B. T. Burch, 3710 Ridgecroft Rd., Gardenville, Baltimore. Md.
J. W. Hanlon, 24 Darina Pl., Milford, Conn.

Otto Lee, Burns. Tenn.
Horace M. Duncan, 731 Moro St., Manhattan, Kans. E. Hoover, 1110 Maryland Ave., S. W., Can F. Wh. McKenney, Box 79. Haverhill. Mass. H. P. Covington, 1315 N. Calvert St., Baltimore, Md.

New England Stock Co., Box 79. Haverhill, Mass Al. Gill, Seaview Hospital. Staten Islaud.' N. Y
 Re G. Floyd, Jr., Sabinal, Texas. Kenneth Breen, 126 Charles St., Painted Post, N. W. G. Burdick, 624 Academy St., Watertown y. William Ryan, 744 Franklin Ave., Brooklyn. N. M. Geo. Hassar, 4405 Ashland Ave., Detroit, Mich. H . H . Graef, 3110 N. Damen Ave., Chicago G. W. Neill, 25 Howard St.. Newark, N. J. D. Heath 21 No Dewhurst Blvd Toint, II. Can. Alex C. Ruble, Chapel Hill, N. C. E. Coon, 123 Laurel Ave., Binghamton, N. Y J. E. Coon, 123 Laurel Ave., Bing
A. Bartolomei, 315 Orange Rd.. Montclair, N. J
Geo. A. Plinske, 1108 Hamilon Geo. A. Plinske, 1108 Hamilton St., Manitowoc
John Lamhofer. 834 Brown's Ave. Erie, Pa. Arthur N E Etz, P. 1114 Bh St., Cleveland. Ohio Calif.
A. C. McClure, 640 S . 39 th St. Louisville, Ky.
L. G. Smith, 3601 No. Miami Ave., Miami, Fla. G. S. Lawrence, Hillsdale, Okla.

Theo. W. Epfeld, 1115 Flushing Rd., Flint, Mich. Raymond D. Sherman, 5 Hubbard St., Saratoga prings, N. Y.
Russell Crosby 12166 Broster Ave., Cleveland, Ohio. Russell Crosby, 12166 Broadstreet. Detroit. Mich. Gulian J. Schaefer. 81 Linden St., Brooklyn. N. Y.
Geo. E. Ingalls, 1729 Melrose Ave., Seattle, Wash. 146 South Side Ave., N. S., Pittsburgh, Pa. W.A. West, care Dept. of Works and Mines,

Halifax,
Frank
Winfrey.
S.
Bin
Chas. F. King, Box 54, Rachel. W. Va.
Joseph B. Alloway, 6426 Norwood St., Gtn. Phila... Pa. L. Sterling, 25 Noe St., Apt. 2, San Francisco. Calif. \({ }^{\text {Victor }}\) Rocco. 174 W. Parmenter St., Newburgh, N. Y. W. Wright. 1404 Maryland Ave., Steubenville, Ohio. S. Connor, 1127 Harford Ave., Baltimore. Md. H. A. Allen, Brookston, Ind.

Eli Goldberg. 386 Penna. Ave.. Brooklyn. N. Y. Otto Heuer. 279 Linden St., Brooklyn, \(\mathbf{N}\). Y. \({ }^{\text {. }}\) W. B. Bradshaw, 223 Conn. Ave., New London

Conn.
N..
Y. Zeltvay,
134-20 Grand St., Ozone Park
N. Y. Ashton B. Heyl, N. W. Cor. Madison Rd. and Wold Ave., Cincinnati, Ohio. Mark. Ithaca. N. E. Wansor The Vallev Radio \& Elec. Laboratory, Locust Valley, L. I. Ind.
Cyril Forry. Remington, In
James D. Huckaby, 1810 Madison Ave., Montgomery, Ala.
Frank
Elmer
Etrasser. Soldiers' Home. Tafavette, Ind.
Bretthauer Box 105 KAW Ste
Kansas City, Kans.
Harry Briggs, 13706 Glenside Rd., Cleveland,
G. C. Watson, P. O. Box
Edw. Roth, 1736 Naud St., Los Angeles, Calit

Harold Palladino, 2923 No. Stillman, Phila, Pa. G. C. Broun, Box 2, Leechburg, Pa. Brand N. Yard Fity. Berry, 193 Geenesee Ave., Paterson, N. I.
R. White,
W. S. Perry, 1638 W Louden St., Phila., Pa J. C. Cushman, 905 Randolph, Neosho, Mo. Boston Music House, Brilliant, Ala.
Radio Engineering \& equipment Co., E. E. Erickson, Pres., 420 Manufacturers Exch., Kansas L. M. Jenkins, 3508 California St., San Fran. cisco, Calif. Ellis, Cedar Grove, No. Car.
W. G. Strabala, Lohrville, Ia. Keifer, Jr., Bostwick, Nebr

Andor Gazdab, Main Stwick, Nebry
Virgil E. Lewis, 792 Commercial Ave., El Centro, Calif.
Robert Lakes, N. J. Tomas, Jr., 2715 S . Komensky Ave., Chicago, I!l.
The Radio Window Cleaning Co., 200 East 72nd T. New York City. Birdie Ave., St. Louis, Mo. F. W. Stroehle, 2112 32nd St., Rock Island, III. O. A. Weiling, 625 No. Orlando Ave., Los An. geles, Callif.
R. J. Thatcher, Serv. Mgr.,
Lane, Germantown, Penna \({ }^{2} \mathbf{W}\) W. School Lane, Germantown, Penna
132, Italy Peck, Via Nicola Piccinni No. 5, Milano J. Geo. Burton, 3915 61st St., Huntington Park. Calif.
Overland Radio Service, 2513 Woodson Road, W. M. Smith, R. No. 4, Frankfort, N. Y.
R. W. Walton, Lake \& High Rock Aves., Sara
 Henry D. Byseit, 14831 Rockdale Ave., Detroit. Mich. E. Gilcreasd 5357-A Union Ave., St. Louis,
Mo.
Norman H. Kutz,
Na
in 17 So. 10th St., Allentown, Pa Julior C. Montaluo, Box 664, Mayaguez, Puerto Rico.
Mich.
C. Appeller, 3839 Lafayette Blvd., Dețroit Mouis C. Stark, 57 Home Ave., Terre Haute,
Lnd. Ind. Anthony Tubbiclo, 7 Madeline Ave., Clifton
A. W. Seidler, 217 Bridge \(\begin{aligned} & \text { St., Berea, Ohio } \\ & \text { Jas. G. Burton, } 3915 \text { E. } 61 \text { st } \\ & \text { St., Maywood }\end{aligned}\)
A. A. Busby, Goodsprings, Ala
N. Y. M. Gerstenfeld, 350 Stone Ave., Brooklyn, Donald B. Ocamb, 5326 Bond St., Oakland, Calif.
N. V. Hardy, 209 Akron Savings \& Loan Bldg.,
Akron, Ohio
 Ohio. G. Osburn, 418 E. Oliver St., Owosso, Mich
H. Ioseph Willis Co., 443 Third Ave., Kwosso, Mich. Joseph Willis Co., 443 Third Ave., Kingston, Pa. lanta, Ga. Henry Ouillette Box 222 Jewett City Conn Henry Ouillette, Box 222 , Jewett City, Conn. Ira Winbigler, Ormsby at St. Joseph, Mt. Clemens, Mich.
F. Linden Thaler, 820 E. 175 th St., N. Y, City. Hoke Brown, 504 Likley St., Waycross, Ga.
Roy C. Letno, 707 Jefferson' St., N. E., Minne Roy C. Letno, 707 Jefferson St., N. E., Minne
L. B. Minn. L. B. Shaughnessy, 5079 Underwood Ave., De. J. H. Vinson (manufacturets on!y), Carrollton, W. F. Lambert, Temple, Ga.
Y. R. Mantelman, 1853 74th St., Brooklyn. . Morris, 610 Baker St., Lansing, Mich Conn. H. Couch, 108 Shelton Ave., New Haven, G. F. Roberts, 4707 Glenshade Ave (MadisonCrile), Cincinnati, Ohio. 048 A 5048 Eagle Rock Blvd., N. Abraham Tietler, 442 Lorimer St., Brooklyn, Tom W. Searle, Cascade, Mont.
R. V. Glaudel, 2226 Scott St., Davenport, Iowa. A. C. Hall, 275 Rutiledge St., Brooklyn,
H. Cramer, 12 Boyden Ave., Beverly, Mass. G. E. Delk, 932 Park Ave., Manning, Iowa. T. F. Hall, Lacey ville. \(\mathrm{Pa}_{\mathrm{M}}\). rnd E. C. Milla, R. No. 2, Boise, Idaho.
B. Lovegren, 7846 Euclid Ave., Chicago, IIl. W. Leeking, 2nd \& Penn, Greensburg, Pa. Brity, c/o Journal of Commerce. 83 ColumC., Franklin Wash.

Goggin, \(171 \stackrel{954}{ }\) Melmont Ave., Phila., Pa.
Goggin, 171 Maple St., Bangor, Me. Ma.
A. Murphy, Box 310, Leesburg, Fla.
F. E. Leeger, Freeport, Pa.
H. W. Batty, 88 Oak, Battle Creely. Mich.
J. A. Boutnik, 2837 So. St. Louis Ave., Chi-
cago, Ill. Drake, 8839 Point Ave., Niagara Falls,
Edwin Bodner, 3906 So. 3rd St., Louisville, KY.
Sam'l Watkinson, Schodack Landing, N. Y

\section*{NEW STATIONS ARE REGARDED AS HINDRANCE}

Washington.
Improvement in radio reception, which has resulted from the reallocation of broadcasting facilities effected November 11th, should not be jeoparded by the licensing of additional broadcasting stations and further .crowding of the broadcast band, William D L. Starbuck, R a dio Commissioner, said.

Calling attention to the increasing number of applicants from all sections of the country for permission to operate stations, he
said that the
W. D. L. Starbuck ercrowded. There broadcast band is overcrowded. There are now more than 600 stations on the
"It is a fact, in spite of the overcrowding of broadcasting stations which now exists, that the listening public is enjoying better reception than was possible before the allocation of November, 1928.

The Commission desires to maintain this condition and to improve it, and to this end does not encourage the establishment of new stations. It is not believed that new stations contribute to a condition of good reception but rather that they are detrimental in greatly increasing interference and reducing the service area of existing stations."

\section*{Inventor Sues Over}

\section*{Majestic's "B" Design}

Suit has been brought against Chicago. Furniture \& Carpet Company in Danville, Illinois, for the sale of Majestic radio sets made by Grigsby Grunow Company, of Chicago, for alleged infringement of three patents of Philip E. Edelman. One patent relates to a voltage divider for use in B eliminator packs. Another covers the use of two choke coils whose fields are set so as to buck each other for the elimination of hum from the circuit. The third covers an arrangement of rectifier and filter circuits with a regulator for compensating for the voltage drop as the output current is increased. These are said to be controlling patents covering the use of AC power packs for radio sets.
Edelman is the author of several books on radio, the first of which was copyrighted in 1912. His attorneys are Banning \& Banning.

\section*{Pilot Corporate Name Undergoes a Change}

The name of the Pilot Electric Manufacturing Company has been changed to the Pilot Radio \& Tube Corporation. The organization will continue to function as before, no changes in either management or policy being contemplated. The officers of the corporation are Isidor Goldberg, president; Henri Sadacca, vice-president, and James I. Benjamin, secretary and treasurer.

\section*{Dill Asks Census \\ Include Receivers}

Senator Dill, of the State of Washington, has promulgated a bill to have the number and class of radio sets counted in conjunction with the 1930 personal census. Opposition to the measure developed in the House.

\section*{STORMS BRING LOUD SIGNALS}

\section*{Washington.}

The Bureau of Standards of the Department of Commerce made the following announcement
"A study of the variation in long-wave daylight signal intensity observed at the laboratory for special radio transmission research at the Bureau of Standards, at Washington, and of the disturbances in terrestrial magnetism, reveals a marked increase in the intensity of long-wave signals following severe magnetic storms.
"In the case of long distance reception from European stations, there is a general tendency for the signal intensity to be below normal for several days before the maximum of the magnetic disturbance, and to show a definite increase from one to three days after the passage of the storm.
"Observations taken on stations at moderate distances, i. e., the Radio Corporation stations at Tuckahoe and New Brunswick, N. J., and Rocky Point, L. I., give somewhat different results. While the intensity of signal from these stations is high from two to four days after the storm, as in the case of the distant stations, there is also a decided increase in signal strength from two to four days before the magnetic disturbance."

\section*{Richmond is Elected}

\section*{President of R. M. A.}
H. B. Richmond, treasurer Chicago. Radio Corporation, has been elected president of the Radio Manufacturers Association, succeeding Herbert H. Frost, who served three terms. Major Frost is a vicepresident of Kolster. A sterling silver plaque was presented to the Major as a token of esteem.
T. K. Webster, Jr., president of the Ekko Company, was elected treasurer.
Mr. Richmond is the first president to come from the engineering profession. He is a graduate of Massachusetts Institute of Technology.

Although he joined the ranks of General Radio Company as engineer in 1919 most of his activities have been along administrative lines. He is a member of the Institute of Radio Engineers and of the American Institute of Electrical Engineers. At M. I. T. he was president of the Electrical Engineering Society, one of the student branches, and vice-president of the Radio Society.
Mr. Richmond is an expert rifleman. During his first year at college he won the freshman rifle-shot medal.

\section*{NEW 60-STATION CHAIN}

A coast-to-coast chain of sixty stations is planned by the American Broadcasting Company of Seattle, Wash. The company plans to add New York and Washington (D. C.) stations to the chain and have the sixty stations in operation within a year.

\section*{LABOR STATION GOES TO COURT FOR FULL TIME}

The Chicago Federation Washington. rating WCFL, at Chicago, Labor, opized labor broadcasting station, has petitioned the Court of Appeals of the District of Columbia to reverse the decision of the Federal Radio Commission denying it a cleared channel and fulltime operation with 50,000 watts power. The petition, filed by E. M. Nockels, secretary, and Hope Thompson, attorney, contended that the Commission's decision was contrary to the law, against public interest, convenience and necessity, and contrary to the evidence in the record.

\section*{Seeks Wider Scope}

The petition sets forth that the station is operated in the interests of the entire membership or organized labor. The improved assignment is desired, it is asserted, to permit the promulgation of the "policies, principles and ideals of the Federation."
"The Federal Radio Commission, by its decision, denies to this vast body of citizens any adequate facilities in this great new field of communication, partly on the theory that radio should not be used for propaganda purposes, and partly, no doubt, for other reasons to be assigned by the "Commission," the petition sets forth. "In so denying one single frequency to organized labor the Federal Radio Commission, in its decision, disregarded the public interest, necessity and convenience in denying the appellant the means and opportunity to render this service."

\section*{Wants 770 kc Exclusively}

The station now operates on the 970kilocycle channel with 1,500 watts in daylight hours only. It sought assignment on the 770 -kilocycle channel, now occupied by KFAB, Lincoln, Nebr., and WBBH, Chicago, Ill., with unrestricted hours of operation and the maximum power of 50,000 watts.
Officials of the American Federation of Labor, including its president, William Green, appeared in favor of the WCFL application at hearings held by the Commission last April.
The Chicago Federation also sought two or more short-wave channels to be employed in rebroadcasting programs of WCFL throughout the United States and to foreign countries.

\section*{U. S. Offers Afternoon}

\section*{Programs to Europe}

\section*{Schenectady, N. Y.}

To provide Europeans with an American radio program at a convenient hour, WGY's short-wave station W2XAF has inaugurated a series of afternoon broadcasts on two different frequencies: These programs also afford engineers of the British Broadcasting Company an opportunity to carry on experiments in reception and rebroadcasting of trans-Atlantic programs.
The afternoon schedule of W2XAF, effective at once, follows: Sunday, \(2: 30\) to 5:30 p. m., 15,340 kilocycles; Monday, 2:00 to \(4: 00\) p. m., 13,660 kilocycles; Tuesday, \(2: 00\) to \(3: 00\) p. m., 15.340 kilocycles; Thursday, \(2: 00\) to \(4: 00\) p. m., 13,660 kilocycles; Friday, \(2: 00\) to \(3: 00\) p. m., 15,340 kilocycles. All time references are Eastern Daylight Saving Time.

\section*{NEW WARNING ON TRANSFERS} Washington.
The Federal Radio Commission held a hearing on the application of the Clarke Electrical Company, of Danville, Va., for permission to establish a broadcasting station in that city.
Thomas F. Little, of Newport News, owner of WGH in that city, had entered into an agreement with the Clarke Company to transfer the WGH station license for \(\$ 2,700\) payment for station equipment.
Ira E. Robinson, Commission chairman, declared that under the law a station license may not be transferred by the licensee without authority of the Commission.
"The law specifically prohibits the transfer of a station license from one party to another without authority of this Commission," he said. "When this Commission granted you this valuable franchise it was for your use as a trustee of the public, and when you decided that you had no further use for the license it must revert back to the Commission. It is not within your province to allocate stations and wavelengths in Virginia. That is one "of the problems before the Commission."
Mr. Little voluntarily relinquished his license to WGH after examination by the Commission. He explained he had made a practice of leasing or selling stations but that he now proposes to operate one station himself.

\section*{Engineer Tours U. S. to Study Reception}

\author{
Schenectady, N. Y.
}
K. B. Hoffman, maintenance engineer of WGY, began a national survey of the United States to ascertain facts concerning average reception of WGY and the other General Electric Company stations KGO, of Oakland, Calif., and KOA, of Denver, Colo., since November 11th, 1928, when the reallocation ordered by the Federal Radio Commission was put into effect.

Mr. Hoffman travels in a car especially equipped with radio. His western route takes him through Chicago, Denver and Salt Lake City to San Francisco, and on his return he will travel by slow stages through Los Angeles, Phoenix, Fort Worth, New Orleans and Montgomery. The investigation will deal more especially with reception in small cities, villages and in rural sections which have no local station from which to get radio entertainment.
Mr. Hoffman will invite listeners, radio editors and radio dealers to fill out questionnaires. The radio survey car in which Mr. Hoffman is making his tour is equipped with a long wave and a short wave receiver and a loudspeaker.

\section*{Home Talkies Plànned \\ With Radio Receiver}

The Vision Tone Sales Company, of Texas, with headquarters at Dallas, announces a new invention combining a radio, a phonograph and a motion picture machine, with records and films synchronized to create talking pictures in the home.
Films with synchronized records will be rented at 10 cents a night on the circulating library plan.

\section*{Compact Condenser}

New Flechtheim Item


ACTUAL SIZE ILLUSTRATION OF NEW 1 MFD. CONDENSER, 1,000 VOLTS DC, 750 VOLTS AC TEST
A. M. Flechtheim \& Co., Inc., of 136 Liberty Street, New York City, announces a high voltage condenser of small physical size. "We have succeeded in making a 1,000 volt DC continuous working condenser in a metal container \(2^{\prime \prime}\) high, \(11 / 8^{\prime \prime}\) wide and \(58^{\prime \prime}\) deep, considerably less than one-quarter of the size of present standards for a 1 mfd . 1,000 volt condenser," said Leon L. Adelman, chief engineer.
"This new unit is wound in non-inductive manner, and had an accuracy of capacity within \(5 \%\) plus or minus of rating. It has a power factor appreciably less than \(1 \%\). It has an insulation resistance of more than 600 megohms per microfarad and its breakdown voltage is three times its safe rating of 1,000 volts DC (750 rms AC)."

\section*{W2XCL Is Licensed \\ for Television Tests}

W2XCL, 323 Berry Street, Brooklyn, N. Y., operating since March 27 th under a construction permit issued by the Federal Radio Commission, has been licensed as ani experimental visual broadcasting station to transmit in the \(2,000-2,100\) kilocycle channel (142.9-150 meters). The Pilot Radio \& Tube Corporation owns the installation.
Television broadcasting on a regular schedule will begin soon from W2XCL, said James I. Benjamin, treasurer. A new system of disc scanning and a simple method of maintaining synchronization will be used.

\section*{NEW RESISTANCE FOLDER}

A new folder on resistance in radio, ranging from an adjustable grid-leak of \(1 / 10\) to 10 megohms to a super-power variable resistor of 250 watt rating, has just been issued by the Clarostat Manufacturing Company, Inc., 291 North Sixth Street, Brooklyn, N. Y. A copy will be sent to any interested person upon request. Mention Radro World.

\section*{SCHNELL IS GENERAL MANAGER}

Lieut. Commander F. H. Schnell has been made general manager of Aero Products, Inc., Chicago. James Barnes, formerly of Thordarson Mfg. Co., has joined Aero Products as radio engineer.

\section*{A THOUGHT FOR THE WEEK}

CERTAIN announcer in a Mid-West broadcasting station has one of those soft voices that occasionally go off into a diminuendo that threatens at times to reach the point of disappearance. Surely in these days it would not be nice to refer to him as a speakeasy, would it, now?

\section*{HOTEL HAS NEW GUEST TUNERS}

A new system for distributing radio programs to individual rooms in hotels, hospitals, apartment houses and staterooms on ships was announced recently and demonstrated in the Hotel Lincoln, New York City, where the system is now in operation.
At present the system comprises six receivers of conventional design located in the "studio room" on the 29th floor of the hotel. Each of these receivers is tuned to a different station, and all receivers are operated from the same antenna on the roof of the hotel. The six receivers are battery-operated and are completely shielded except for their connection to the common antenna.
The output of these receivers is carried to the transmission room on the floor below, where a monitor operator is stationed. The function of this operator is to listen in and to select the programs and to control the volume and modulation of the transmitted signals.
In the transmission room are six minature transmitters which receive the signals from the six receivers. The oscillators for these transmitters operate at different frequencies from those of the carriers of the signals selected. When the signals have been impressed on the new frequencies they are impressed on the steel framework of the building.
Receivers located in the rooms can be tuned in to any one of the six programs by a simple switching arrangement. No antenna is used for the individual receivers because all that is necessary is to connect a single wire to the radiator in the room, or to any other metal which is in electrical contact with the framework of the building.
The entire system is carefully shielded so that the signals on the new frequencies do not get outside the building.
The new distributing system was invented by Dr. F. L. R. Satterlee, long a prominent figure in the X-ray and radio fields; Louis Kalozsy, a Hungarian engineer and inventor, and Samuel Saltzman, chief electrician for the Chanin Theatres Corporation.

\section*{WEBC Asks Court}

\section*{To Grant Full Time}

The Wear Washington. Co., Inc. operating WEBC Broadcasting Wis., filed with the Court of Appeals of the District of Columbia a petition for review of the Federal Radio Commission's decision denying it full-time operation.
The notice of appeal states that the station was denied its application for fulltime operation on the 1,280 kilocycle channel, which it now shares with WDAY, at Fargo, N. D. The Commission's finding that the public interest would not be served by granting the application "is not supported by the testimony before the Commission," the petition contends.

\section*{NAMES N. Y. REPRESENTATIVE}

The Automatic Radio Manufacturing Co., of Boston, Mass., manufacturers of Tom Thumb Portable Radio, announces the appointment of the Friedman-Snyder Co., 15 Park Place, New York City, as its representatives in the Metropolitan area.

\section*{GRIMES JOINS PILOT}

David Grimes, radio inventor, has been appointed chief research engineer of the Pilot Radio \& Tube Corporation, I. Goldberg, president of the firm, announced.

\section*{June 22， 1929}

List of Stations by Frequency With Wavelength Conversion

Canadian exclusive
S－Studio
550 KC 545.1 METERS
WEAN－Providence，R．I． WGR－Buffalo，N．
WEAO－Columbus，
WRRC－Cincinnati， WEAO－Columbus， O
WRRC－Cincinnati，
KFUO－Clayton，Mo．
KSD－St．Louis，Mo．
KFDY－Brookings，S．S．
KFYR－Mismark，N．D．
KTAB－O2kland，Calif．
S50 KC
\(560 \mathrm{KC}, 535.4\) METERS
WDGY－Minneapolis，Minn WHDI－Minneapolis，
WIOD－Miami，Fla．
WIT． WFIT．Philadelphia KFDM－Beaumont，Tex．
WNOX－Knoxvile，Tenn． WOI－Ames，Iowa 570 KC 526 METERS WMCA－Hoboken，
WSYR－Syracuse，
WMAC－Cazenovia，
WSMK－Dayton，
WKBN．Youngetown，O． KGKO－Wichita Falls，Te
WNAX－Yankton，
WPCC WIBO－Desplainos KUOM－Missoula，Mont． KMTR－Hollywood，Cal．
580 KC， 516.9 METERS WTAG－Worcester，Mass．
WOBU－Charletton，W． WSAZ－Huntington，W．
KGFX－Pierre， S ，
KSAC－Manhattan，Kan
 WEMC－Berrien Spge，Mich
WCAJ－Lincoln，Nebr． WOW－Omaha，Nebr： KHQ－Spakane，Wash
\(*\) GOD KC， 199.7 METERS WCAC－Storrs，Conn WREC－Whitehaven，Tenn． WEBW－Beloit，Wie．Calif． 610 KC， 491.5 METERS WFAN－P W hiladelpa WDAP－Kansas City，Mo． KFRC－San Prancisco
620 KC， 483.6 METERS WLBZ－Bangor，Maine
WDBO－Orlando，Fla． WDAE－Tampa，Fla． WTMMJ－Brookkifid，Wis． KGW－Portland，Ore．
KFAD－Phoenix，Arix． WMAL－Washington，D．C KFRU．Columbia，Mo．
WGBF－Evansville， 040 KC 488.5 METERS
WAIU－Columbus， 0. KTI－Lo Angeles，Calif． 660 KC，454．3 METERS
WEAF－Bellmore，N．Y WAAW－Omaha，Nebr． WMAQ－Addison，III．
S－Chicago，III．
O80 KC， 400 METERS WPTF－Raleigr，N．
KPO．San Francisco
＊＊oso KC， 434.5 METERS
700 KC， 23.3 METERS WLW－Mason，Ohio WOR－Kearny，N．J．J．
S．Newark，in．，J．
KFVD－Culver WGN－WLIB－ENGi，
S．Chicago，II． \(* 730 \mathrm{KC}, 413\) METERS
\(740 \mathrm{KC},{ }^{4052} \mathbf{~ M E T E R S}\) KMMJ－Clay \(\mathrm{Center}, \mathrm{Neb}\)
\(750 \mathrm{KC}, 59.8 \mathrm{METERS}\) WJR－Silver Lake，Mich． 760 KCC， 394.5 METERS MERS
WJZ－Boundbrook，N．J． WEW－St．Louis，Mo． 770 KC \(\mathbf{K}\) ． 389.4 METERS

\section*{\({ }^{780}\) SCChicago，III． 3314 MERS} WBSO－Wellesley，Mass．\(\quad\) Kino KC， 285.5 METE
WTAR－WPOR－Norfolk，Va．

 820 KC， 36.6 METERS
WHAS．Jeffersontown \(830 \mathrm{KC}, 361.2\) METERS
WHDH－Gloucester，Mass．
 \(850 \mathrm{KC}, 352.7\) METERS KNX－Los Angelea，Caifif．
S．Hallwood，Calif．
1069 KC，282．8 METERS

 WFBL－Syracuso，N．Y．
WMAK－Martins ville，N．
S－Bufalo N．Y． S－Bufalo N．
WFL－Okla，Cty
WSIa． WLBL－Stevens Point，
KHI－Los Anceles，Calif． KGBUU－Ketchikan，Alaska
＊＊918 KC， 329.5 METERS
920 KC， 325.9 METERS
WWJ－Detroit，Mich．
KPRC－Houston，Tex． KPRC－Houston，Tex．
WAAF－Chicago，
Wll
 WDBG－EXina Park，
WBRC－Birmine， WBRC－Birmingham， KMA－Shenandoth， Kowa KFWT－San Francisco
\(940 \mathrm{KC}, 319.0\) METERS WCSH－Portland，Maine
WFIW－Hopkinville，Ky KOIN－Sylvan，Ore． KGU－Hondulu， T Ore． H ． KFEL－Denver，Colo．
KFXF－Denver，Codo．
950 KC， 315.6 METERS 950 KC，315．6 METERS
WRC－Wahingon，D．C．
KMBC－Independence，Mo KMBC－Independence，Mo
WHB－Kanas City，Mo．
KFWB－Holywodif．
KPSN－Pasydena，Calif． KGHL－Billings，Mont．
＊＊960 KC， 312.3 METERS
970 KCC 309.1 METERS
 990 KC \(\quad 302.8\) METERS
WBZ．E．Springfield，Mass WBZA－Boston，Mass．
1000 KC，298．METERS
WHO－Den Moines Towa WHO－De：Moines，Iowa KPLA－Los Angeles，Calif，
K1010 KC， 296.9 METERS
WQAO－WPAP． WQAO．WPAP．
 WHN－New York，N．Y．
WRNY－Coy tesvile，N．J K－New，York，N．
KGFAD－Nicher，Okla．
WNAD－Norman，Okla KQW－San Jose，Calif．
1020 KC， 293,9 WRAX－Philadelphia．
 1040 KC，288．3 METERS WKAR－E．Lafalo，N．Y，Mich． WKAR－E．Lansing，Mich
WFAA－Dallas，Tex．
KRLD－Dallas，Tex． KFKB－Milford，Kans． \(W\)
\(K\)
\(W\)
\(W\)
\(W\)
\(W\) W WTIC－Hartford，Conn．
WJAG－Norfolk，Nebr． 1077．KC， 280.2 METERS
WAAT－J．City，N．J． WTAM－Cleveland，Ohio
WEAR－Ceveland，Ohio
WCAZ－Carthage 11. KJBS－San Francisco
1080 KC，277．6 METERS
WBTCharlote N．C． WBT－Charlotte N WMBI．Chicago，III．
1090 KC 2571 METERS
KMOX－FOA－Kirk 1100 S KC．Louis，Mo WPG－Atlantic City，N．J


\section*{} Wis．
lif． is． 1180 KC 254.1 METl，CRS
WDGY－Minneapolis，Minn WHDI－Minneapolis，Minn．
WGBS－Astoria， S－New York City．
KEX－Portland，OFe．
KOB．State Colloge，M．
1190 KC ， 252 METERS WICC－EAaton，Conn．
S－Bridgeport，Conn． WOAI－San Antonio，Tex．
WABI－Bangor METERS WABI－Bangor，Maine．
WEPS－Springiceld，Vt．
WETHester，Mass． WRBE－Webster，Mass．
WIBX－Utica，N．Y．

\section*{，} WLBG－Enisville，\(K \mathbf{y}\) ． WPRC－Hastingurg， Pa ．
WRIC．Tantole WNBW－Carbondale，Pa．
WABZ－Ner WABZ－New Orleens，La．
WJBW－New Orleans，La．
WBBY－Charleston，S．C． WBBZ－Ponca City Okla．
WFBC－Knoxvile，Tenn． WRBL－Coxvmbus
KGCUCMandan，Ga．
WJBC－IaSalle，III：

\section*{W}

\section*{\[
v
\] \\ を분}

\begin{tabular}{|c|}
\hline  \\
\hline \multirow[t]{2}{*}{RFWF－St．Louis，Mo．} \\
\hline \\
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

\section*{KCLO－Kenosha，Wis．
WHBY－West DePere，Wis．
KFWC－Ontario，Calif．}

\section*{KPPC－Pasandena，Calif．} KXO－E1 Centro Calif． KSMR－Senta Maria，Calif．
 KGY－Lacey，Wash．
＂1210 KC 247.8 METERS
WJBI－Red Bank，N．J． WJBI－Red Bank，N．
WGBB－Freeport， WINR－Bayshore，\({ }^{\text {WCOH－Greeville．}} \mathbf{N}\). WOCL－Jamestown， \(\mathrm{N} . \mathrm{Y}\) ． WPAW－Pawtucket，R．I
WDWF－WLSI－ Cranston， WMAN－Columbus，Ohio
WJW－Mansfield，Ohio
\(\qquad\)S－Rochester，N．Y．
1160 KC． 285.5 METERS
WWVA－Wheoling，W．YaWWVA－Wheoling，W．Va
WOWO．Ft．Wayne，Ind．
\(1170 \mathrm{KC}, 256.3\)1170 KC， 256.3 METERS
WCAU－Byberry，Pa．
TNT－Muscatine，Iowa．


\section*{路}

1310 C 2283 METERS WEBR－Buffalo，N．Y．
WNBH－New Bedford， WOL－Washington，\(D\).
WGH－Newport News， WGH－Newport News，Va
WRK－Hamilton，Ohio WRGM－Ramilton，Oak Mio WFDFF－Flint，Mich．
WNAT－Philadelphia， Pa ． S－Philadelphia WHBP－Johnstown， \(\mathbf{P a}\) WFBG－Altoona，\({ }^{\text {Pa．}}\)
WRAW－Reading，
WGA
 NOON，JUNE \(12 T H\) ］
WLTH－Brooklyn，N．I．
WBBC－Brooklyn，N． KOCW－Chickasha，Okla．
WCMA－Culver，Ind．
WKDF－Indianapolis，ImA． WKDF－Indianapolis，InA．
1410 KC 2126 METER
WBCM－Hamptors Mioh WBCM－Harngtos，Mioh
KGRS－Ay Gity，Mich．
WDAG－Arillo，Teac．
K，FLV－Rodefort，Tlic． KGFI－Corpus Christi，Tex．
KFPL－Dublin，Tex．
KFXR－Okla．City，Okla．
WKBS－Galesburg，Ill． WKBS－Galesburg，Ill．
WEHS－Evanston，Ill．
WCLS－Joliet，Ill．
WKBB－Toliet，Ill． \(1420 \mathrm{KC}, 211.1\) METER
WHDL－Tupper Lake，
WHIS－Bluefield WHIS－Bluefield，W．Wa．
WLBH－Patchague，N． WMRJ－Jamaice，N
WLEY－Jexington WLEY－Lexington，Mass．
WTBO－Cumberland，
WSSH－Boston WSSH－Boston，Mags．
WPOE－Patchogue，N．Y．
WIBR－Steubenville，O．
WILM－Wilmington，Del． WED－Wimington，Del
WMBC－Detroit WKBP－Battlo Creok，Mioh．
WOBZ－Weirton，W．Va． WQBZ－Weirton，W．Va．
KGFF－Alva，Orla．
KTAP－San Antomio，Tox．
KTUE－Houston，Tex． KTAP－San Antomio，Te
KTUE－Houston，Tox．
KFYO－Abilene，Tex． KFYO－Abilene，Tex．
KICK－Red Oak，Iowa
WIAS－Ottumwa，Iowa WLBF－Kansas City，Kan．


KGIW－Trimidat，Colo． KGVF－Portland，Ore KORE－Eagene，Ore．
KFQW－Seattle，Wash．
KXRO－Aberdoen，Was

\section*{1436 KC， 209.7 METERS
WBRL－Manchater，N．} WHP－Harrisburg，P WBAK－Harrisbers， WGBC－Memphis，Ters． WHE KC 2208.2 METERS

WCBA－Alentown，Pa
WSAN－Allentown；
WNRC－Greasbora，
WTAD－Quiagr，III． KLS－Oakland，Calif．
1 1to KC，200．METERS
WBMS．Fort Lee N．J． WBMS－Fort Lee，N．J．
WNJ－Newark，N，J．
WIBS－Elizabeth，N．J．
WKBO－Jersey City，N．J
WSVS－Buffalo，N．Y． WBBL－Richmond， WTBS－Shreveport，
WJBK－Ypsilanti，Mich． 1469 KC， 208.4 METERE
WIBM－Jackson，Mich． KSTP－Westoott，Mina．
S－St．Paul，Minn．
WELK－Philadelphia． 1470 KC， 204 METERS
WJBO－Now Orleans，La．WKBW．Amhernt N．

KCRG－Okla．City，
KGCI－San Antonio，Tex．
KGRC－San Antonio，Tex．
KFJZ－Ft．Warth，Tex．
WRUF＇Gaines vilt，
KGA－Spokane Wash．
WJAZ－Mt．Prompeters II．
KGIX－Galveston，Tex．
WFBJ－Collegeville，Minn．
WGL－Ft．Wayne，Ind．
W
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{29}{*}{}} \\
\hline & \\
\hline
\end{tabular}

\title{
Alphabetical List of Stations by Call Letters;Location and Frequency \\ [FROM FEDERAL RADIO COMMISSION LIST REVISED UP TO NOON, JUNE 12TH]
}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline \[
\begin{aligned}
& \text { LAF } \\
& \hline
\end{aligned}
\] & WGES Chicago, Ill., 1360 &  & & \\
\hline  & WGH-Newport News, Va., 1 &  & & \\
\hline & & WMAN-Columbus, Ohio, 1210 & WTAW-College Station, 1120 & KGIQ-Twin \\
\hline WABC.WBOQ-N.Y. City, 860 &  & & & 1420 \\
\hline \[
1200
\] & 0 WGN-WLIB-Elgin, Ill., 720 & &  & \\
\hline WADC-Akron, O., 1320 & & &  & KGJF-Little Rock, \\
\hline 1310 & 0 WGY-Scherectady & & \[
060
\] & \begin{tabular}{l}
KGKB-Brownwood, Tex., 1500 \\
KGKL-San Angelo, Tex. 1370
\end{tabular} \\
\hline \[
1310
\] & WGY-Schenectady, N. Y., 790 & \[
20
\] & WWAE-Hammond, Ind., 120 & KGKO-Wichite Fo. Tex.0 \\
\hline & WHAD-Milwaukee, Ẅis., 1120 & WMBI-Addison, Inl, 1080 &  & KGKX-San Point, Idaho 1420 \\
\hline WASH-Gd. Rapids, Mich., 123 & WHAM-Rochester, N. Y., 1150 & & & KGRC-San Antonio.'Tex. 1370 \\
\hline WBAK-Harrisburg, pa., 1430 & & WMBL-Lakeland, Fla., 1310. & WWRL-Woodside, N.Y., 1500 & KGRS-Amarillo. \\
\hline WBAP-Fort Worth, Tex., 800 &  & WMBO-Auburn, N. Y., 1370 WMBQ-Brooklyn, N. Y. 1500 & WWVA-Wheeling, W.Va., 1160 & KGU-Honolulu, Hawaii, 940 \\
\hline 1490 & & Fla., 12i0 & KDB-Santa Barbara, Cal.,1500 & \\
\hline WBAX-Wilkes-Barre, Pa., 121 WBBC Broollyn N Y 1400 & WHBC-Canton, Ohio, 1200 & , Tenn. \({ }^{570}\) & KDKA-Pitsbura \({ }^{\text {a }}\) & \\
\hline \[
\begin{array}{r}
1400 \\
1370
\end{array}
\] & WHBD-Bellefontaine, O., 1370 WHBF-Rock Island, Ill., 1210 & \[
570
\] & \[
1210
\] & KHQ-Spokane, Wash., 590 \\
\hline 11 & WHBL-Sheboygan, Wis., 1410 & WMMN-Fairmont, W. Va., 890 & \begin{tabular}{l}
KDYL-Salt Lake, Utah, 1290 \\
KEIK-Beverly Hílls, Calif, 1170
\end{tabular} & \begin{tabular}{l}
KICK-Red Oak, Iowa, 1420 \\
KID-Idaho Falls Idaho 1320
\end{tabular} \\
\hline WBBR-Rossville, N. Y. \({ }_{\text {Cl }} 1300\) & W & WMPC-Lapeer Mich 1500 & KELW--Burbant Ca, if \({ }^{\text {cos }}\) & KIDO-Boise, Idaho. \(1250{ }^{130}\) \\
\hline WBBY-Charleston, S. C., 1200 & WHBQ-Memp & & & \\
\hline WBBZ-Ponca City Okla., 1200 WBCM-Bay City Mich. 1410 & WHBU-Anderson, Ind., 1210 WHBW Philadelphia Pa 1500 & WMSG-New York, N. Y., 1350 & n, Nebr., 770 & \\
\hline \[
\begin{aligned}
& \text { WBCM-Bay Cit } \\
& \text { WBIS-See WN }
\end{aligned}
\] & WHBW-Philadelphia, Pa., 1500 WHBY-W. De Pere, Wis., 1200 & WMT-Waterioo, Iowa, 1200 WNAC-WBIS-Boston, 1230 & KFAD-Phoenix, Ariz., 620 KFBB-Great Falls, Mont. & KJR-Seattle, Wash, 970 \\
\hline WBMS-Fort & WHDF-Calumet Mish 1370 & & KFBK-Sacramento, Calif., 1310 & \\
\hline WBNY-New Yor & WHDH-Gloucester, M & WNAT-Philadelphia, \({ }^{\text {Pa., }} 1310\) & & KLRA-Little Rock, Ark. \\
\hline See & WHDI-Minneapolis, M & WNAX-Yank & & KLS-Oakland, Calif., 1440 \\
\hline WBRC-Birmingham, Ala., 9 &  & WNBF-Binghamton, N.Y., 1500 & KFDY-Brookings, S.Dak., 550 & \\
\hline Wilkes-Barre, Pa. & W & rille, Tenn., 1310 & WFEQ-St. Joseph, Mo., 560 & \\
\hline & WHIS-Bluefield, W. Va., 1420 & 1200 & & \\
\hline WBSO-W ellesley H., Mass., 780 & ela & WNBR-Memphis, Tenn., 1430 & KFH-Wichita, Kans., 1300 & KMED-Medford Ore, Mo., 950 \\
\hline & WHN-New York, N.Y., 1010 & WNBW-Carbondale, Pa., 1200 & KFHA-Gunnison, Colo., 1200 & \\
\hline & WHO-Des Moines, Ia., 1000 & t., 1200 & KFI-Lo Angeles, Calif., 640 & \\
\hline WBZA-Boston, Mass., 990 & WHP-Harrisburg, Pa., 1430 & BZ-Saranac Lk., N.Y. 1290 & KFIF-Portland, Ore., 1420 & \\
\hline WCAC-Storrs, Conn. 600 & WIAS-Ottumwa, Iowa, 1420 & J-Newark, N. J', 1450 & & \\
\hline Canton, & WhBA-Madison, Wis., 1210 & & KFIZ-Fond du Lac, Wi & \\
\hline CAE-Pittsburgh, Pa., CAH-Columbus Ohio & WIBM-Iackson Mich 1370 & WNRC-Greensboro, N.C., 1440 & KFJB-Marshalltown, Ia, 1200 & \\
\hline CAH-Columbus, Ohio, & \begin{tabular}{l}
WIBM-lackson, Mich., 1370 \\
WIBC-Chicago, Ill., 570
\end{tabular} & WNYC-New York N Y. 570 & KFJF-Okla., City., Okla., 147 & \\
\hline & teubenville, O., 1420 & & & \\
\hline & WIBS-Elizabeth, N. J., 1450 & WOAX-Trenton, N. J., 1280 & KFJR-Portland, Ore., 1300 &  \\
\hline WCAO-Baltimore, Md., 6001000 & WIBU-Poynette, Wis., 1310 & & KFTY-Fort Dodge, Iowa, 1310 & KOB-State College, N.M., 1 \\
\hline WCAP-Asbury Pk., N. J., 1280 & Topeka Kan 1300 & & KFJZ-Fort Worth, Tex., 1370 & \(\mathrm{KOH}-\mathrm{Reno}\), N \\
\hline WCAT-Rapid City, N.D., 1200 & WIBX-Utica & WOC-Davenpert, Ia., 1000 & KFKA-Greeley, Colo., 880 & \\
\hline - & WICC-Bridgeport. Conn., 1190 & Jamestown N. Y., 1210 & KFKB-Milford, Kans, 1050 K & KOIN-Portland, Ore., 940 \\
\hline & ouis, & & KFKU-Lawrence, Kans., 1220 & KOL-Seattle, Wash., 1770 \\
\hline & WTLL-Urbana, & & K & \\
\hline & WINR-Wilmis & & & \\
\hline BM-Baltumore, & WTOD-Miami Beach, Fla, 560 & WOKO-Poughreepsie, NY., 1440 & KFLV-Rockford, III., 1410 K & \\
\hline WCCO-Minne & IP & & & \\
\hline & WISN-Milwaukee, Wis., 1120 & WOOD-Gd. Rapids, Mich., 1270 & & \\
\hline & & & & \\
\hline WCGU-Coney Island, N.Y.. 1400 & WJAG-Norfolk, Nebr., 1060 & & \[
\text { Beach, Calif, } 1250
\] & KPO-San Francisco, Cal, 680 \\
\hline - & WJAK-Kokomo, Ind., 1310 & WORD-Chicago, Ill., 1480 & & \\
\hline WCLB-Lg. Beach, N.Y., 1500 & Providence, & efferson City, Mo., 630 & & \\
\hline WCLO-Kenosha, Wis., 1200 & WJAS-Pittsburgh, Pa., 1290 & WOV-New York, N.Y., 1130 & & \\
\hline WCLS-Joliet, IIL., 1310 & WJAX-Jacksonville, Fla., 1260 & Omaha, & & \\
\hline WCOA-Pensacola, Fla., 1120 & WYAZ-Chic & & KFQA_KMOX-See & \\
\hline alu & W & awtucket, R.I. 1210 & KFQD-Anchorage, Alaska, 1230 & KP \\
\hline WCOH-Yonkers, N.Y., 1210 & WJBI-Red Bank, N. J., 1210 & & & KOW-Pittsbargh, Pa., 1380 \\
\hline WCRW-Chicago, Il1. 1210 & W & & KFQZ-Holly &  \\
\hline W & W & WPG-Atlantic City. N.J., 1100 & KFRC-San Franciaco, Cal., 610 & Berkeley, Calif., 1370 \\
\hline & New Orleans, La., 1370 & WPOE-Patchogue, N. Y., 1420 & & RLD-Dallas, Tex., \(10.40{ }^{\text {a }}\) \\
\hline & BU-Lewisburg, Pa., 1210 & WPOR-WTAR-See WTAR & KFSD-San Diego, Calif., 600 & KRMD-Shreveport, La., 1310 \\
\hline WDAF-Kansas City, Mo, 610 & WJBW-New Orleans, La., 1200 & WPRC-Harrisburg, Pa., 1200 & KFSG-Los Angeles, Calif., 1120 & \\
\hline & WIBY-Gadeden Ala 1210 & WPSC-State College, Pa., 1230 K & KFUL-Galveston, Tex., 1200 K & KSAC-Manhattan, Kans., 580 \\
\hline El Paso, Tex., 1310 W. Fargo, N. D., 1 & & WPSW-Philadelphia, Pa., 1500 & ings, Cal.,1z70 & aux City, Ia., 1330 \\
\hline rgo, N. D., 1 & WJDX-Jackson, Miss., 1270 WJDZ-W Satem N. C 1310 & WPTF-Ralei & KFUO-Clayton, Mo., 550 & \\
\hline Oanoke, &  & QAM-Miami, Fla., 1240 & & \\
\hline WDEL-Wilmington, Ind., 1120 & WJKS-Gary, Ind.' 1360 & WOAO.WPAP-N.Y.C. \({ }^{880} 101 \theta\) & KFVD-Culver City, Ca & Lal \\
\hline WDGY-Minneapolis, Minn., 1180 & WJR-Detroit, Mich., 750 & WOBC Utica M. & & \\
\hline WDOD-Chattan & WJSV-Mt.Vernon Hills, Va., 1460 W & WOBZ-Weirton, W.V., 1420 K & & \\
\hline WDRC-New Ha & WJW-Mansfield, O ., \({ }^{1210}\) W & WRAF-LaPorte, Ind., 1200 K & KFWF-St. Louis, Mo., 1200 K & KSTP—St. Paul, Minn., 1460 \\
\hline W & ew York, N. Y., 760 & & & \\
\hline WDWF WLSI-Cr'nst'n, R.I. 1210 W & WKAQ-San Juan, P. R., 890 & & & \\
\hline WDZ-Tuscola, Ill., \(1070{ }^{\text {WEAF-New }}\) York, N.Y., 600 W & WKAR-E. Lansing, Mich., 1040 W & WRAX-Philadelphia, Pa., 1020 WRBC-Valparaiso, Ind., 1240 & KFXD-Jerome, Idaho, 1430 & t. Worth, Tex., 1240 \\
\hline WEAI-Ithaca, N. \({ }^{\text {a }}\) (, 123000 & & & & \\
\hline & rmingham, Ala., 1310 W & & & \\
\hline WEAO-Columbus, O., 550 & KBE-Webster, Mass., 1200 W & WRBL-Columbus, Ga., 1200 & KPXY-Fla gitaff, Ariz., 1420 & \\
\hline WEAR-Cleveland, O., 1070 & KBF-Indianapolis, Ind., 1400 & WRBQ-Greenville. Miss., 1219 K & KPYO-Abilene, Tex. \({ }_{1420}\) & \\
\hline WEBC-Duluth, Minn., 1280 & a Crosse, Wis. 1380 & BT-Wilmington, N. C., 1370 K & KFYR-Bismarck, N.D., 550 K & \\
\hline WEBE-Cambridge, O, \({ }^{\text {W }} 1210\) & WKBI-Chicago, Iil., \({ }^{1310}\) W & BU-Gastonia, N.C., 1210 E & KGA-Spokane, Wash., 1470 K &  \\
\hline WEBQ-Harrisburg, III., 1210 & KBN-Youngstown, O., 570 W & WRC-Washington, D. C., 950 & KGAR-Tuscon, Ariz., 1370 K & \\
\hline WEBR-Buffalo, N. Y., 1310 & \[
\text { KBO-Jersey City, N.J., } 1450
\] & WREC-Memphis, Tenn., 600 K & KGB San Diego, Calif., 1360 & \\
\hline WEBW-Bed & WKBP-Battle Creek, Mch., 1420 W & WREN-Lawrence, Kans., 1230 K & KGBU-Ketchikan, Alaska, 900 & \[
\begin{aligned}
& 1420 \\
& , 1270
\end{aligned}
\] \\
\hline WEDH-Erie \({ }^{\text {Pa }} 1430\) & New York, N. Y., 1350 & WRHM-Friedley, Minn., 1250 K & & \\
\hline WEDH-Erie, Pa., 1420 & 1310 & & & \\
\hline WEEI-Boston, Mass., 590 & Brookville Ind., 1500 W & WRK-Hamilton, Ohio, 1310 K & KGCA-Decorah, Iowa, 1270 K & KUOM-Missoula, Mont., 570 \\
\hline WEHS-Evanston, III., 1310 WELK-Phila, Pa., 1370 & WKBW-Buffalo, N. Y., 1470 WKBZ-Ludington, Mich., 1500 & WRNY-New York, N.Y., 1010 K
WRR-Dallas, Tex., 1280 & \begin{tabular}{l}
KGCI-San Antonio, Tex., 1370 \\
KGCR-Watertown, S.D., 1210
\end{tabular} & OD-Vermillion, S.D., 890 \\
\hline W EMMC-Berrien Spgs., Mch. 590 & WKEN-Buffalo, N. Y., 1040 & WRUF-Gainesville, Fla., 1470 & \[
\begin{array}{cc}
1210 \\
1200 & K \\
K
\end{array}
\] & KUT-Austin, Tex., 1120 \\
\hline -Chicago, II., 870 & WKJC-Lancaster, Pa., 1200 W & WRVA-Richmond, Va., 1110 K & KGCX-Vida, Mont., 1420 & KVI-Tacoma, Wash., 760 \\
\hline s3., 1200 W &  & WSAI-Cincinnati, O., 1330 K & KGDA-Dell Rapids, S.D., 1370 & KVOA-T ucson Wash., 1370 \\
\hline WEVD-New York , N. Y., 1300 & , Okla., 900 & 1310 & GGDE-Fergus Falls, Minn, 120 & \\
\hline WEW-St. Louis, Mo., 760 W & WLAC-Nashville, Tenn., 1490 W & Allentown, Pa., 1440 K & KGDM-Stockton, Calif., 1100 K & \\
\hline WFAA-Dallas, Texas, 104010 & WLAP-Luuisville, Ky., 1200 W & WSAR-Fall River, Mass.; 1450 K & KGDR-San Antonio, Tex., 1500 K & KW BS-Portland, Ore., 1500 \\
\hline WFAN-Philadelphia, Pa., 610 WEBC-Knoxville, Tenr., 1200 & WLB-WGMS-Minneapolis, 1250 WLBC-Muncie, Ind., 1310 & WSAZ-Huntington, W.V., 580 & Odiham, S. 'D., 12000 K & KWCR-Cedar Rapids., Ia., 1310 \\
\hline WFBG-Altoona, Pa., 1310 & WLBF-Kansas City, Mo., 1420 W & WSBC-Chicago, 1210 & KGEF-Los Angeles, Calif., 1300 KGEK-Yuma, Colo., 1200 & veport, La., 1210 \\
\hline WFBI-Codlogeville, Minn., 130 W & WLBG-Ettrick, Va., 1200 & WSBT-South Bend, Ind., 1230 & ER-L\%. Beach, Calif., 1370 K & WG-Stockton, Calif., 1200 \\
\hline WFBL-Syracuse, N. Y., 900 WFBM-Indianapolis, Ind., 1230 & WLBL-Stevens Pt., Wis., 900 WLBW-Oil City, Pa. 1260 & WSDA-WSGH-See WSGH 1400 K & EW-Ft. Morgan, Colo., 1200 K & KWK-St. Louis. Mo., 1350 \\
\hline WFBR-Baltimore, Md. \({ }^{\text {a }} 1878\) & & & & KWKC-Kansas City,' Mo., 1370 \\
\hline WFDF-Mint, Mich., 1310 & WLBZ-Bangor, Maine, \({ }^{2} 200\) & IX-Springfield, Tenn. 1210 & KGFF-Alva., Okla., 1420 K 1370 K & KWKH-Kennonwood, La., 850 \\
\hline WFI-Philadolphia, Pa., 560 W & WLCT-Ithaca, N. Y.. 1210 W & K & & \\
\hline WFIW-Hopkinsville, \({ }^{\text {dy }}\)., 940 W & WLEX-Lexington, Mass., 1360 W & WSMB-New Orleans, La., 1320 K & KGFI-Los Angeles, Calif., 1420 K &  \\
\hline WFJC-Akron, O., 1450 W & WLEY-Lexington, Mass., 1420 W & WSMK-Dayton, Ohio, 570 K & KGFK-Hallock, Minn., 1200 & \\
\hline 10 W & WLIB-WGN-See WGN-WLIB W & WSOA-Deerfield, I11., 1480 K & KGFL-Raton, N. Mex., 1370 & WWYO-Laramie, Wyo., 600 \\
\hline WFLA-WSUN-C1rw'tr Fla , 900 & WLIT-Philadelphia, Pa., 560 W & WSPD-Toledo, Ohio, 1340 K & KGFW-Ravenna, Nebr., 1420 & KXA-Seattle Wash, 570 \\
\hline WGAL-Laneaster, Pa. 1310 W & WLOE-Chelsea, Mass., 1500 W & WSSH-Boston, Mass., 1420 & & \\
\hline Y., 1210 W & WTS-Chicago, III., 870 W & WSUI-Iowa City, Ia.. 5 & Francisco, Cal., 1420 K &  \\
\hline & WLSI-WDWF-See WD & W & GF-Picher, Ok & \\
\hline & WLTH-Brooklyn, N. Y., 1400 W & SVS-Buffalo, N. Y. \({ }^{13}\) & GM-Albunuerque, N.M., 1370 K & \\
\hline & & & KGMF-Pueblo, Colo., 1320 K & \\
\hline & & & & WFA-Chicago, III., 1020 M-Hayward, Calif., 1370 \\
\hline
\end{tabular}

DIAMOND Pair


AC5
\(\$ 1.50\)
Highly aelective antenna coil for any cireuit, and interstage coil for AC circuits. Step-up ratio, 1-to-8. Tunes with . 6 Step
my.
mode
Model AC3, for \(.00035 \mathrm{mfd} . . . . . . . . . . . \$ 1.75\)


SE55 • • \(\$ 2.75\)
Tuner to work out of a screen grid tube. The large primary is fixed and is connected in the plate circuit of the acreen grid tube. Tunes with .0005 mfd . Model SGT3, for . \(00035 \mathrm{mfd} . . . . . . . . . . \$ 3.00\)

\section*{UNIVERSAL Pair}

\section*{TP5 . . . . \$3.00}

Interstage coupler to work out of a screen grid tube, where the primary in the plate circuit is tuned, the secondary, in the next


\section*{RTS}
\(\$ 1.50\)
Exceliently selective antenna coil for any circuit, and interstage coil for any battery operated receiver, excepting output of acreen grid tube. Tunes with .0005 mfd . Model RF3, for \(.00035 \mathrm{mfd} . . . . . . . . . .\). . 71.75


A5
\(\$ 1.75\)
Conductively coupled antenna coil, for maximum pickup, where selectivity is not the main consideration. Continuous win Model A.3, for .00035 mfd.

Model T5 screen grid Transformer for .0005 ,


\section*{CONE ASSEMBLY WITH DOUBLE MAGNET UNIT \(\$ 6.00\) \\ }

An excellent magnetic type speaker for fnstallntion in any cabinet. The unit is a double-magnet Paratone, With two magnet coils, for utmost The magnet coils are forever protected against dust and other foreign, injurious substances, by special bakelite housings. The pin is reverse drive. The cone frame is metal. The \(9^{\prime \prime}\) cone is specially treated buckram

All assembled, with long cord, ready
to play, Shipping weight lbs.
(Cat. CAS) Net ..............................

The unit alone (cord included). It
will operate any type sounding sur.
face, including paper, cloth, wood, etc. \$ 8.50
Shipping weight 4 lbs. (Cat. UA). \(\$ \mathbf{5 0}\) Net

\section*{Guaranty Radio Goods Co. 145 West 45th St., New York City}

HAVE AN EXPERT PUT
If your receiver or amplifier, no matter of what kind, is not giving proper results, send it to us, what's. wrong, telling yo FREE and let you know charges are very reasonable. Six years' experience. Loudspeakers and units repaired. Burnt-out coils replaced. Jaynxon Laboratories, 57 Dey Street, New York City.

\section*{YOU MUST GET THIS BOOK!}

DRAKE'S RADIO CYCLOPEDIA (New Edition) has boen developed to service men, custom ial
bullders and home contructors, of oxperimenters, students, salesmen
and operatori of recelving and operators of racolving
equipment and to aliow all these to hare instant access to the information they want. The author;
Harold \(P\). Manly, mis colloctea and translatod into plain Eagiling the minteripl formerls obtaia:-
able oriy from dozens of able only from d
Esch rule, fact, poothed, is ind Instantly pleked out B00K 15 2 \(2 / 2^{\prime \prime}\) THICK, and reparatod frome ovoryEIGH8 3 3/4 LBS. 1,025
 order fith crosi roferble name under which the information might be Thls xhis alphabetical arrangement Iets the experienced is intereter directily to the ons thing in whlch he non-essentials. The meods of the boginner hanting throagh
The important articles deal primarily Fith recelvera and reception. Thet dis not stop with the slectrical and, but go eliso into the meehanica of construction Eyory now thing in radio in ectered in datail.
l,880 Alohabetlial
025 Illustrations, Diagram\&, Layouts and Oraph 240 Comblnations for Roceiver Layouth
OF THE PRINCIPAL ARTICLES
159 Coneorn sorvice men, 129 hoip the sist builder 162 holp the experimonter, 155 Interest the student

GUARANTY RAD10 GOODS OO., (Just E. of B'way) Gentlemen: Pleses mall me at once the now (seeond) edition of "Drase's Radio Crclopedia," by Harold P. Manly, Juit published, with all the lates 86.00 plus a fow cents extra for postage. If I am not delighted, I may return the book in dive days and you will promptly refund my purchase money

Name
Address
city..
5-DAY MONEY-BACK GUARANTY!

\section*{Twice as Much for Your Money!}

Send \(\$ 6.00\) for one year's mail subscription for RADIO WORLD ( 52 numbers, one each week), and you will be given one full year's subscription for any one of the following six magazines:

Radio News (monthly)
Science and Invention (monthy)
Radio, San Francisco (monthly)
\(\square\) Citizens Radio Call Book
Boys' Life (monthly)
Scientific Digest

\section*{SPECIAL TWO-FOR-PRICE-OF-ONE COUPON}

RADIO WORLD, 145 West 45th Streot, New Yerk Clity (Iust East of Broadway):
Enclosed please find \(\$ 6.00\), for which aend me RADIO WORLD each week for one yoar, bi numbers, and also send me, without exrta cost, for one year ONE of the following magazines as indicated:
\begin{tabular}{ll}
\(\square\) & RADIO NEWS \\
\(\square\) SCIENCE AND INVENTION & \(\square\) RADIO ENGINEERING \\
\(\square\) & \(\square\) YOUTH'S COMPANION \\
& \(\square\) BOYS' LIFE \\
& \(\square\) CITIZENS RADIO CRACISO)
\end{tabular}
[Put a cross in the proper square above. FIII out eoupon and send \(\mathbf{\$ 6 . 0 0}\). If you ary a subserlber
RADIO WORLD or for the other magazine you select, or both, chock ofl squares below it loft.]

Present RADIO WORLD
subseribert may renew under
this offor. If renewing, put
eross here \(\square\)
If renewing for the other
magazine you select, put a \(\underset{\text { magazine } y \text { you solect, put also }}{\square}\)

THIS OFFER EXPIRES AT NOON JULY 30TH, 1929

Look at the date of the label pasted on the wrapper containing your subscription copies. If this date on wrapper is older than the date of the issue received, then your subscription has expired and should be renewed.

\title{
Alphabetical List of Stations by Call Letters; Location and Frequency \\ [FROM FEDERAL RADIO COMMISSION LIST REVISED UP TO NOON, JUNE 12TH]
}

[IF YOU WANT TO CONVERT THE FREQUENCIES TO WAVELENGTHS, CONSULT PRECEDING PAGE]

\title{
DIAMOND Pair
}


AC5
\(\$ 1.50\)
Highly aelective antenna coil for any cir. euit, and interstage coil for AC circuits. Step-up ratio, 1-to-8. Tunea with .000
Model AC3, for .00035 mfd .
. \(\$ 1.75\)


ECT5 • - \$2.75
Tuner to work out of a screen grid tube. The large primary is fixed and is connected in the plate circuit of the screen grid tube. Tunes with .0005 mfd . Model SGT3. for \(.00035 \mathrm{mfd} . . . . . . . . . \$ 3.00\)

\section*{UNIVERSAL} Pair

\section*{TP5 • . . . \$3.00}

Interstage coupler to work out of a screen grid tube, where the primary in the plate circait is tuned, the secondary, in the next srid circuit, untuned. Tunes with .0005. Model TP3, for . \(00035 \mathrm{mfd} . . . . . . . . . . .\). . \(\$ 3.25\)

\section*{RE5}
- . . .
\(\$ 1.50\)
Exceliently aelective antenna coil for any circuit, and interstage coil for any battery operated receiver, excepting output of gereen grid tube. Tunes with . 0005 mfd . Model RF3, for .00035 mfd.................. 81.75


\section*{A5}
\(\$ 1.75\)
Conductively coupled antenna coil, for maximum pickup, where selectivity is not the main consideration. Continuous win
colors. Tune Model A3, for . 00035 mfd ..

Model T5 screen grid Transformer for . 0005, Screen Grid Coll Co., 143 W. 45th st., N. Y. city


An excellent magnetic type speaker for installation in any cabinet. The unit is a double-magnet Paratoae, With two magnet coils, for utmost The magnet coils are forever protected against dust and other foreign, injurious substances, by special bakelite housings. The pin is reverse drive. The cone frame is metal. The \(9^{\prime \prime}\) cone is specially treated buckram.

All assembled, with long cord, ready
to play, Shipping weight lbs. \(\$ \mathbf{0} 0\)
(Cat. CAS) Net ...........................

The unit alone (cord included). It
will operate any type sounding sur-
race, including paper, cloth, wood, etc.
Shipping weight 4 lls. (Cat. UA). \(\$ 50\)
Net …..........................................

\section*{Guaranty Radio Goods Co.}

145 West 45th St., New York City

HAVE AN EXPERT PUT
If your receiver or amplifier, no matter of what kind is not giving proper results, send it to us prepaid. We will test it FREE and let you know what's wrong, telling you cost af repairs. Our charges are very reasonable. Six years' experience. Loudspeakers and units repaired. Burnt-out coils replaced. Jaynxon Laboratories, 57 Dey coils replaced. Jaynxon

\section*{YOU MUST GET THIS BOOK!}

DRAKE'S RADIO CYCLOPEDIA (Now Edition) has been developed to
answer the questions of answor the questlons of norvice mon, cuatom cos
bulldery ind home conertructors, of orparimentera, itudonts, salosmen
and operstors of recoiving and operators of recoiving
equipment and to allow equipment to ad to allow accoss to the informatikn thoy want. The author,
Harold \(P\). Many, bats collectod and tranimated Into plain Englinh the matorlel formarly obtala:
able only from doxect of able only from do
icattered sources.
Each rule, fact, mothed, plan, layout and diacram is instanty plekod eut
 EIGH8 \(33 / 4\) LBS. 1,02
ILLUSTRATIONS.
He name under order with crasis roferclassed.
This alphabotical arranioment leta the exporlenced worter refor directly to the one thing in which be Is interested at the moment without hunting through non-easentials. The noeds of the becinner are eared The important articlea deal primarily with recoivert ond, but fo aiso tito the mechanics of contruction. Elory now thing ia radio in ecrecred in deianl. 025 Illustration Zero Beat A-battory to . 025 Illustratlons, Dlagrams, Layouts and Oraphs 240 Comblnations for Recolver Layouth OF THE PRINCIPAL ARTICLES 159 Coneern serviee men, 129 holp the wet hullder. 162 balo the experlmenter,
75 assist in sales work, 73 interest sot owners.

QUARANTY RADIO GOODS OO.,
145 W. 45th St., Now York. N. Y.' (Just E. of B'way) Gantlemen: Please mail, me at once the new (seeond) edition of "Drake's Radio Cyclopedia," by
Harold \(P\) Manly, Juat published, with all the latest Harold P. Manly, Juat published, with sil the latest \(\$ 6.00\) plus a fow cents extra for postage. If I am not delighted, I may retirn the book in five daya and sou will promptly refund my purchase money.

Neme
Addres
city.
5-DAY MONEY-BACK GUARANTYI

\section*{Twice as Much for Your Money!}

Send \(\$ 6.00\) for one year's mail subscription for RADIO WORLD ( 52 numbers, one each week), and you will be given one full year's subscription for any one of the following six magazines:

Radio News (monthly)
Science and Invention (monthy)
Radio, San Francisco (monthly)

Radio Engineering (monthly)
Youth's Companion (weekly)
Boys' Life (monthly)

\section*{SPECIAL TWO-FOR-PRICE-OF-ONE cOUPON}

RADIO WORLD, 145 West 45th Street, New York Clty (Just East of Broadway):
Enclosed please find \(\$ 6.00\), for which send me RADIO WORLD oach week for one yoar, 58 sumbera, sond me, without exrta con,
\begin{tabular}{lll}
\(\square\) & RADIO NEWS & \(\square\) RADIO ENGINEERING \\
\(\square\) & SCIENCE AND INVENTION & \(\square\) YOUTH'S COMPANION \\
\(\square\) & RADIO (San FRancIseo) & \(\square\) BOY' LIFE \\
& \(\square\) CITIZENS RADIO CALL BOOK AND SCIENTIFIC DIGEST
\end{tabular}


> Prosent RADIO Weribers may renew under
> this offer. if renewing, put
> cross here \(\square\).
> If renewing for the othor magazine you soleot, put a

Street Address. . .................................................................................
City............................................. State.
THIS OFFER EXPIRES AT NOON JULY 30TH, 1929

Look at the date of the label pasted on the wrapper containing your subscription copies. If this date on wrapper is older than the date of the issue received, then your subscription has expired and should be renewed.


\section*{VICTOREEN}

Super Coils
Write for Free Blueprinta of
New Vietoreen clireults
Geo. W. Walker Co.
2825 Chester Avenue Dept. B Cleveland, \(O\).

\section*{NEWEST BOOK ON VACUUM TUBES}
 RADIO WORLD
145 West A5th \(\begin{gathered}\text { Street, } \\ \text { (Just } \\ \text { East } \\ \text { of }\end{gathered}\) Bow Yoadway)

\section*{DNAMIC BAEFI
 De luxe finlsh. 81ze. \(24 \times 24\) inohes....... 4 \\ GUARANTY RADIO GOODS CO.
145 West 45tb street. Now Yark city}

\section*{Lacault's B00K}

Super-Heterodyne
Construction and
Operation," giving the master's most. masterful exposition of the theory, performance and construction of
this fascinating type of. circuit, is a necessity 100 pages and more than 50 illustrations. Buckram cover. This book by R. E. Lacault, FREE if you send \(\$ 1.00\) for an 8 -weeks subscription for Radio World, Present subscribers may accent
this offer. Subscription will be extended. RADIO WORLD 145 W .45 th St., N.Y. CIt

\section*{Power Amplifiers}

The First Complete Treatise on This Important and Fascinating Subject Now appearing serially in Radio World -a fine, big installment each week! Written for the novice, but worth any expert's time to read!
J. E. ANDERSON, Technical Editor, and Herman Bernard, Managing Editor, are the
authors of this splendid exposition of the authors of this splendid exposition of the
known facts and previously unknown mysknown facts and previousi
teries of power amplifiers.
Nowhere else can you get the correlated information, the liberal education, on this subject, for this series traverses a virgin field, biazes the way, and reaches a high goal in
instructional literature.
instructional literature.
Service men must know power amplifiers if they are to prosper-indped, even survive. Custom-set builders. must have an equally
thoroush understanding of the subject thorough understanding of the subject. Home constructors, experimenters, students, teach-
ers-all need
follow this amazingly yet simplified, exposition of an absorbing

\section*{YOUR OPPORTUNITY:}

The series started in the June 1st issue
of Rado Words. It will continue for at least three months from then. Send \(\$ 1.50\) for a three-months mail subscription for Radio World and you will receive Radio WorLD every week for 13 weeks ( 3 months), and begides receive FREE the issues be-
ginning June ist when the Power Amplifier series started.

PLEASE USE THIS COUPON RADIO WORLD,
145 West 45th St., New York City.
Gentiemen: Enclosed please find \(\$ 1.50\), for which please send me Radio World each week for 13 weeks, beginning at once. Also send with which my subscription starts, without extra charge.
Name.
Address.
City
This offer expires July 6th, 1929.

BLUEPRINT of the New, Highly Selective Screen Grid DIAMOND (AC MODEL)
\(\$ 1.00\)
us wem Radio world
est 45th Street \(\quad\) New Yorl Clty
Few Doors East of Broadway

\section*{Equip Yourself Now With Necessary Meters!}
your opportunity to get them at no extra cost. Soe the lint of nine meters at left. Heratofore we have offorod the chocice of any one of these meters free with an 8-weeks subscriptioa
for RADIO WORLD, at \(\$ 1\), the regular price for such for RADIo WORLD, at \(\$ 1\), the regular price for wuch
subscription. Now we oxtend this offer. For the firit time you are permitted to obtain any one or more or sil of these
meters free, by sending in \(\$ 1\) for 8 -week's subscription, ontwo meters; \(\$ 3\) for meter; \(\$ 2\) for 16 weeks, entitling you ontitling you to \(\$ 4\) for 35 weeks, entitling woeks, entitling you to throe meters;
entitling you to 5 meters; \(\$ 6\) for 52 weeks; \(\$ 5\) for 44 weiki; entiting you to 5 meters; \(\$ 6\) for 52 weeks, entitling you to
six meters. Return this offor with remittance, and check off
desired metors in desired meters in squares at left.
RADIO WORLD Will help you in your radio work, to abreast of all the new circuits, intimate details on periocting exisistng sets, and get inculde track on sensitivity, periocting
reception, tonal quality, and news reception, tonal quality, and news of radio, techncal and non-
technical. Enjoy the writings of Dr. Lee De Forest, McMurdo Silver, J, Enjoy the writings of Dr. Lee De Forest, McMurdo
 caters to your needs than RADIO Womagazine that better sensitife broadcast recefvers you all about them. Extremely -push-pull discussed with confdent regularity. Power opersition Large receivers otherwise? AC recelvers? Screen grid tubes? small, economical recelvers that giversundance of performancecomparison to their idze? Are you interested in these of Then
you're interested in RADIO worid this remarkably

\section*{RADIO WORLD}

145 W. 45th St.; N. Y. City-Published Weelrly.

\section*{}

\section*{SOCKET WRENCH}


Push out control lever with linoh (as at left) and put wrench on nut turn nut left or riote
ONE of the handiest toola for a cuatom apt builder, service man or home constructor is a BERNARD socket wrench.
It consists of a \(61 / 2^{\prime \prime}\) long metal tubing ta The plun a plunger, controlled inal (called socket her has a gripp "socket wrench") that may be expanded or contracted to fit \(6 / 32\) \(8 / 32\) and \(10 / 32\) nuts, the most popular nised nut: in radio.
Use the knob to push out the plunger, prees down on the handle to grip the nut, then turn ening down. Total length, distended, includine tained wooden handle, \(10^{\prime \prime}\). Gets nicely into tight places. Send \(\$ 1\) for 8 weeks mail mbe acription for RADIO WORLD and get this wrench FREE.
No other premium with this offer. Present cubscriber may extend ubscription by atating he is one, and entitle himself to this FREE RADIO WORLD
145 WEST 45 TH ST., N. Y. CITY


Front Panel and Subpanel for the
Screen Grid Universal Bakelite front panel alone, drilled.... \(\$ 2.35\) Drilled aluminum subpanel alone, with self-bracketing feature, built - in sockets, extra washers and hardBoth front and subpanel together............................. 5.0 GUARANTY RADIO GOODS CO 145 West 45th Street, New York Clity (Just East of Broadway)

\section*{SUBSCRIBERS!}

Look at the Expiration Date on Your Wrapper
Please look at the subscription date stamped on your last wrapper, and if that date indicates that your subscription is about to expire, please send remittance to cover your renewal.

In this way you will get your copies without interruption and keep your file complete.

SUBSCRIPTION DEPARTMENT RADIO WORLD
145 WEST 45TH ST., N. Y. CITY

\section*{PLUG AND CABLE for any SHORT WAVE ADAPTER}

\title{
May also be used as a 5 -Lead Battery Cable and Plug, in conjunction with a 5 -prong (AC227) socket.
}

Handiest thing for ANY short-wave adapter.
Put detector tube of your present eet in Put detector tube of your present set in socket of any short-wave adapter you build, put plug in detector mocket of your \(34^{\prime \prime}\). Leads identified both and and New York City Just Eant of Brondway

RADIOLA 18 AC-All-electric special 570 . Radiola 10 A speaker, special \$21. Act quiek. Brooklyn, N. Y.

MARVELOUS NEW pick up for phonograph. Only twelve left, all pippins. Money-back 10-day guarantee. Send
143 W. 45
St., N. Y.
C.

\section*{Quick Action Classified Ads} Radio World's Speedy Medium for Enterprise and Sales 10 cents a word - 10 words minimum - Cash with Order

HOOK UPS made easy. Plug in all parts and connections on a Standardized Radio Hook-up Board. Three tube board, plug in bases, connections \(\$ 2.75\) post paid. Larger boards. Francis Street, Memphis, Tenn.

\section*{RADIO INFORMATION}

Refiable, prompt, accurate, in every-day language, 25 o per question. Radio Infor

THE CRAFTSMAN Dollar Speaker Filter is guaranteed to relieve speaker of the plate direek curreut, up to 250 volts. \(\$ 1.00\) postpaid. Refuad if not satisfactory. Attach dollar to This Ad and recerve FREE Solid-molded grid-leak, 1 to 5 megohm. Craftsma

ARTISTS and Art Students are printing 250 signs or pictures an hour without machinery Sample and particulars 10c. Straco, 1014 Mu berry, Springfield, Ohio.

ELIMINATE AERIAL. Greater distance, volume selectivity with "Little Black Boo." Rosens selectivity with
Shop, 616 Plant St., Utica, N. \(\mathbf{N}\)

RADIO RECEIVING TUBES, by Moyer and Wostrel, first edition just off the press. No radio service man, experimenter or student of radio should be without this authoritative book on the principles and applications of vacuum tubes, It answers all Jour questions relating to receiving, \(\$ 2.50\) Radio \({ }^{\text {amplifying }}\) World, 145 W . 45th St., New Yorte.

REDUCE STATIC: The Phantom increases selectivity, chokes out static. No lightning danger, no aerial, no holes to dig. Completely shielded. years. Price \(\$ 7.50\) postpaid. Brighton Radio Lab., Brighton, Lówa.

ARTISTS and Art Students are printing 250 signs or pictures an hour without machinery. Sample and particulars 10c. Straco, 1014 Mul . berry, Springfield, Ohio.

ORIGINAL BALDWWIN PHONES, tested and guaranteed, \(\$ 3.65\), postpaid, Blan, the Radio

\section*{AGENTS AND SALESMEN WANTED}

Sell \(\$ 5.00\) Men's Daily Necessity for 50 c . Cost quantities, 20c. Sample postpaid 30c. Catalog hundreds household articles free. Mills Sales Co., 901 Broadway, New York.

AGENTS WANTED
CARTER WINDOW WASHER. Exclusive Dis tributor wanted. BIG PROFITS. Cleans, Dries, Polishes, one operation. Territory closing fast. Act quick. CARTER PRODUCTS, \(9851 / 2\) Front Street, Cleveland, Ohio.
\(\$ 25-\$ 35\) WEEKLY. Easy. Address cards at home Spare time. Experience unnecessary. Everything furnished. Particulars free. Write today.

\section*{RADIOS FOR SALE}

RADIO FANS-Would Jou like to purchase the latest electric Coast to Coast Screen Grid Radio for less than the cost of a battery set? If 20 address Economy Sales Co., Pa. Ave. Sta., Wash D. C.

MODEL SHIP for your RADIO. Unusually pretty \(16^{\prime \prime}\) Santa Maria. Electric light in hollow of composition hull. Nothing to do but paint and rope. Pictured directions for roping. Kit \(\$ 7.50\) Irl J. Neal, Mattoon, Illinois.

\section*{FARM WANTED}

CASH FOR YOUR PROPERTY, farm, busineas or residence. No matter where located. Free Detroit.

WHY WORK for others? Employ agents yourself. Manufacture Toilet Articles, Specialties, etc., at home. \(500 \%\) profit. \(\$ 1\) brings complete line. Formco, Box 175, Algoma, Wis.

LATEST KNAPP A-ELIMINATOR. New \(\$ 16.00\). D. L. Currens, Owensboro, Ky.

\section*{SEEDS FOR SALE}

ALFALFA SEEDS, hardy common varieties *8.40, \(\$ 10.20\), \(\$ 12.60\), bushel; Grimm variety Alfalfa seed \(\$ 18\). Scarified sweet clover \(\$ 3.90\),
E5.20; Alsike or red clover \(\$ 15\). Bags Free. Send for samples and catalogue. Kansas Free. Seed Co.,
Salina, Kan. Salina, Kan.

\section*{HAVE AN EXPERT PUT
YOUR SET IN SHAPE}

If your receiver or amplifier, no matter of what kind, is not giving proper results, send it to us, prepaid. We will test it FREE and let you know what's wrong, teling you cost of repairs. Our Loudspeakers and units repaired. Burnt-out coils replaced. Jaynxon Laboratories, 57 Dey Street, New York City.

SAFETY FIRST!!! Protect your electric set and tubes from expensive blowouts, reduce, noises and hum. Simply plug in "Protect-o.set" A.C. or D.C. \$1.00 guaranteed. Kingsway Radio Co.,

RADIO FANS: Improve summer reception by using my new method of grounding your eet Cheaply installed, more economical in operation Full instructions 25 cents. Address Leslie Charchill Route 3, Batavia, New York

TRADE-12 Gauge Pump Gun for somplete portable radio.-John A. Garriott, Little York, Iod

RADIO TROUBLE FINDER-Explaing and describes 102 possible radio ailments. Fuhy illus trated. Also list of Radio Broadcasting etatione Our reduced price 50 c for a limited time. An thony's Book Shop, Box 2711 W. P. Station Cleveland. O.

FLORIDA ORANGES Box containing 80 Sweot Juicy Oranges and 30 Grapefruit: Express paid o your home \(\$ 3.75\). Address Taylor's Grovea Box 282 Tampa, Florida.

PATENT YOUR IDEAS. Easy terms. Booklet Free. Established 25 years. H. Sandern, Rand Free Established 25 years.
McNally Building, Chicago, Ill.
\(\$ 5\) STARTS YOU in printing businens. Five hundred cards printed in three colors. Samplom
FREE.-Frank B. Ashley, Room 1517, No. 461 FREE.-Frank B. Ashley, Room 1517, No. 461

\section*{Import Your 0wn Goods} German Export Magaztne pubished in Enxilih offers
numerous barkains in latest articles, noveltioz and
new jnventions. Also opportunilios for obtaining new inventlons. Aiso opportunilios for obtaining
proftablo distributing agencies. Sample copy of cents postpald (nobe free or on mema). Two monthly
coples \(\$ 1.00\). Subscription price \(\$ 3.00\) par your for coples \(\$ 1.00\) subscription price \(\$ 3.00\) par your for
12 monthly coples with special privileges.


\section*{DYNAMIC SPEAKER}

Build your own with our castings. Set of mechined castings, \(\$ 8.00\); not machined, \(\$ .00\). Fim set blue prints and instructions included. Priose of complete parts on request.

IMPERIAL RADIO SPEAKER CO.
1453 East 17 ith St., Cleveland, Ohio
RADIO WORLD, published every Wednceday, dated Saturday of same week, from publication \({ }^{145} \mathrm{West} 45 \mathrm{th}\) Street, New York, N. Y., juat eant of Broadway. Roland Burke Hennessy., President, M. B. Hernessy, Vice-President; Herman Ber: nard, Secretary. Roland Burke Hennesay, Fditor; Herman Bernard, Managing Editor; J. \(\mathcal{C}\). Ander: son, Technical Editor; Anthony Sodaro, Art Editor.

\section*{New Style DeLuxe Leatherette Carrying Case FREE with each Jiffy Tester! \\ This combination of meters tests all standard tubes, including the new AC screen grid tubes and the} new 245 tube, making thirteen tests in \(41 / 2\) minutes! Instruction sheet gives these tests in detail.


A PORTABLE testing laborstory is yours Tester fhen you possess a combination Jiffy plater, for then you can measure the filament and plate voltages of all standard tubes, including AC tubes; also platandard battery-operated or AC screen grid aistance meter that is \(99 \%\) accurate; also plate current.

The Jiffy Tester consists of a \(0.20,0-100\) milliammeter, with changeover switch and a \(0-10\) volt AC and DC voltmeter (same meter reads both), with two sockets, one for 5 -prong, the other for 4 -prong tubes the cords of the high resistance voltmeter; also built-in cable with 5 . prong plug and 4 -prong adapter, so that connections in a receiver are transferred to the Tester automatically. Not only can you test tubes, but also opens or shorts in a receiver, continuity, bias, oscillation, etc. The instruction sheet tells all about these tests.

In addition you can test screen grid tubes by connecting a special cable, with clip to control grid (cap of tube) and other end of special cable to the clip in the set that went to the cap before the of special transferred to the tester

THE new carrying case, whioh i for a Combina the entire outfit, including the three meter cable and plug, and three adapters (one for 4. prong tubes, two for 199 tubes). This case for 4; lock. The \(73 / 4 \times 31 / 2^{\prime \prime}\) and has nickel corner pieces and protective nnaplock. The case is made of strong wood, with black leatherette averapTo operate, remove a tube from the receiver, place the cable plug in the vacant receiver socket, put the receiver, place the cable plug the Tester, connect the high resistance meter to the two binding posto and you're all set to make the thirteen vital tests in \(4 / \not / 2\) minutes! The Combination Jiffy Tester is just the thing for service men cos "Jiffy 500 "" The experimenters, students, teachers and factories. Order "Jiffy 500." The price is only \(\$ 14.50\).

If a 0.600 AC and DC high resistance meter ( \(99 \%\) accurate) desired, so bouse electricity line voltage and power transformer volta voltmeter, order "Jiffy 600 " at plate voltage, instead of the \(\$ 15.50\).

GUARANTY RADIO GOODS CO., 145 W. 45 St., N. Y. City. (Just East of Broadway) (1) Please ship at once on 5-day money-back guaranty one "Jiffy 500 ," at \(\$ 14.50\), consisting of (1) One Two-in-One 0 to 10 voltmeter for AC and DC. Same meter reads both. Scale (2) Onpecially legible at \(15 / 2\) to \(71 / 2\) Volts. This meter reads the \(A C\) and \(D C\) filament voltages. (2) One DOUBLE reading DC milliammeter, 0 to 20 and 0 to 100 milliamperes, with changeover switch. This reads plate current.
(3) One 0.500 volts high resistance voltmeter, \(99 \%\) accurate; with tipped \(30^{\circ}\) cord to measure
(4) One 5 -prong plug with \(30^{\prime \prime}\) cord for \(A C\) detector tubes, etc., and one 4 -prong adapter for
(5) One grid switch to change bias.
(6) One 5 -prong socket
(7) One 5 -prong socket.
(8) Two binding posts.

If 0.300 DC posts.
Price is DC high resistance \(99 \%\) accurate voltmeter is preferred to \(0-500\), put check here
\(\square\) Same as above, exce voltmeter (same meter reads both) a \(0-600\)-volt AC and DC high resistance \(99 \%\) accurate

NAME
ADDRESS \(\qquad\)
CITY
STATE
FIVE-DAY MONEY-BACK GUARANTY


The new de luxs leatherette carfying case is compact and handy. Sise \(101 / 2^{\prime \prime}\) long, \(7 \%\) "
wide, \(3 y^{\prime \prime}\) deep.```


[^0]:    RADIO WORLD, 145 West ${ }^{(J u s t}{ }^{245}$ East of Broadway). ${ }^{\text {4t., New York, N. Y. }}$

[^1]:    RADIO WORLD, a weekly paper, published by Hennessy Radio Publication Corporation, from Publication Office, 145 West 45 th Street, New York, N. Y. Phone: BRYant 0558 and 0559 . 15 c per copy, $\$ 6$ per year. This issue is dated
    Iune $22 \mathrm{~d}, 1929$ and is Vol XV, No. 14. Whole No. 378. Entered as second-class matter, March 1922, at the post office at New York, N' Y, un.

